

Program Product

SC26-4036-0
File No. S370-21

Assembler H Version 2
Application Programming:
Guide
Program Number 5668-962

Release 1.0

--- ------ - - --- ---- - ---- - - ------------"~

Ff rst Edf tton (January 19831

This edition applies to Version 2, Release 1, Modification o, of
Assembler H, Program Product 5668-962, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters. This manual merges assembler information contained
in QS/VS-VM/370 Assembler Programmer's Gujde, GC33-4021, and ~
Assembler H Programmer's Guide, SC26-3759.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibljography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

e Copyright International Business Machines Corporation 1983

NEW FEATURES

This manual tells how to use Assembler H Version 2, Release 1,
Modification O, Program Product 5668-962 <hereafter referred to
as the Assembler H program or, simply, assembler).

Assembler H is an assembler language processor that performs
high-speed assemblies on all IBM System/370, 303x, 3081, and
43xx processors, provided they are supported by any of the
following operating systems: OS/VS2 MYS 3.8, MYS/Extended
Architecture CMVS/XA>, MYS/System Product <MYS/SP> Yl, OS/YSl
Release 7, VM/SP, or YM/XA Migration Aid.

This manual is divided into three parts that relate to the
various operating systems under which the assembler operates.
The first part is common; the second part is labeled "OS/VS" and
includes information relating to OS/VS2 MYS 3.8, MYS/XA, MYS/SP
Yl, and OS/VSl Release 7; and the third part is labeled "CMS"
and includes information relating to YM/SP and VM/XA Migration
Aid.

Hew features in the Assembler H Version 2 Program Product are:

• A program using System/370 Extended Architecture CS/370-XA>
machirie instructions may be assembled with Assembler H under
MYS/Extended Architecture CMVS/XA), OS/VS2 MYS Release 3.8,
OS/VSl Release 7, MYS/SP Vl, VM/XA Migration Aid, or
VM/System Product CYM/SP>. Programs using the Extended
Architecture instruction set can be assembled on any system
supported by the above operating systems; however, programs
containing Extended Architecture instructions can only be
executed on an Extended Architecture mode processor under
MYS/XA, or with MYS/XA operating as a guest operating system
under YM/XA Migration Aid.

• An AMODE attribute allows specification of the entry point
of the addressing mode C24-bit, 31-bit, or any addresses
that are not sensitive to addressing mode> to be associated
with a control section.

• An RMODE attribute allows specification of the residence
mode (in the 24-bit addressable range or anywhere) to be
associated with a control section.

• Hew channel command word instructions: CCWl (format 1)
allows 31-bit data addresses; CCWO (format 0) allows 24-bit
data addresses.

• Hew machine instructions for the IBM 308X models operating
in System/370 Extended Architecture mode; in addition, the
System/370 set cf machine instructions has been expanded. A
changed installation option allows users to specify whether
the System/370, Extended Architecture, or Universal Call
inclusive> instruction set will be used for assemblies.

• Three new instruction types are included for the Extended
Architecture object code: E, RRE, and SSE.

• An underscore character is allowed in ordinary symbols.

• Operation is now supported in the CMS <Conversational
Monitor System) environment of VM/SP and VM/XA Migration
Aid.

Preface iii

WHO THIS MANUAL IS FOR

This manual is for application programmers coding in the
Assembler H language. It is intended to help you assemble,
link-edit, and execute your program. It describes assembler
options, how to invoke the assembler, assembler listing and
output, assembler data sets, error diagnostic facilities, sample
programs, programming techniques and considerations, messages,
and storage e~timates.

HOW TO USE THIS MANUAL

MAJOR TOPICS

To use this manual, you should be familiar with the basic
concepts and facilities of your operating system as described in
OS/VSl Planning and Use Guide, GC24-5090; OS/VS2 MVS Overview,
GC28-0984; MVS/Extended Architecture Overview, GC28-1146; or
VM/SP Introduction, GC19-6200. You should also have a good
understanding of the assembler language as described in
Assembler H Version 2 Application Programming: Language
Reference, GC26-4037, and, if running under MVS/XA, you should
also understand the concepts described in MVS/Extended
Architecture System Programming Library: 31-Bit Addressing,
GC28-1158.

And, because this is a reference manual, you should use the
index or the table of cont~nts to find the subject in which you
are interested.

The manual is divided into the following major topics:

Part 1. Common Information

"Chapter 1. Introduction" describes the organization of this
manual, the purpose of the assembler, and system requirements.

"Chapter 2. Using the Assembler listing" describes each field of
the assembler listing.

"Chapter 3. Using the Assembler Diagnostic Facilities" describes
the purpose and format of error messages, MNOTEs, and the MHELP
macro trace facility.

Part 2. OS/VS Information

"Chapter 4. Using the Assembler" reviews the concepts of job,
job step, and job control language; describes assembler input
and output; tells how the operating system handles your program;
describes the assembler options, the data sets used by the
assembler, the number of channel programs, and return codes; and
the job control language cataloged procedures supplied by IBM.
The cataloged procedures can be used to assemble, link-edit or
load, and execute an assembler program.

"Chapter 5. Programming Considerations" discusses various
topics, such as standard entry and exit procedures for problem
programs and how to invoke the assembler dynamically.

"Chapter 6. Calculating Storage Requirements" describes the
priorities and use of main storage by Assembler H during an
assembly.

Part 3. CMS Information

"Chapter 7. Assembler Language Programming under CMS" describes
how to assemble and execute your program, how to choose and
specify the options you need, and how to interpret the listing
and diagnostic messages issued by the assembler.

iv Assembler H Version 2 Application Programming: Guide

nchapter 8. Programming Considerationsn discusses various
topics, such as standard entry and exit procedures for problem
programs.

nAppendix A. Sample Programn has a program example that
demonstrates many of the assembler language features.

nAppendix B. Sample Macro Trace and Dump CMHELP>n lists the
operation, name, and operand entries related to macro calls.

nAppendix C. Object Deck Outputn describes the object module
output format.

nAppendix D. Assembler H Messagesn describes the Assembler H
error diagnostic messages and abnormal termination messages.

nGlossaryn defines the terms used in this manual.

ASSEMBLER H PUBLICATIONS

RELATED PUBLICATIONS

Other publications in the Assembler H library are:

Assembler H Version 2: General Information, GC26-4035, contains
a brief description of Assembler H and compares Version 2,
Release 1.0, features with those of Version 1, Release 5.0.
Comparisons are also made between Assembler H and VS Assembler.

Assembler H Version 2: Installation, SC26-4030, contains
information necessary to install the assembler program.

Assembler H Version 2 Application Programming: Language
Reference, GC26-4037, describes the basic assembler language
functions and specifications that are available with Assembler
H.

Assembler H Versjon 2: Logjc, LY26-3908, describes the design
logic and functional characteristics of Assembler H.

Assembler Coding Form, GX28-6509, provides the means for
programmers to structure their code in the proper columns.

The following publications provide definitive information about
machine instructions:

IBM System/370 Principles of Operation, GA22-7000

.llrl 4300 Processors Principles of Operation for ECPS: VSE Mode,
GA22-7070

For quick reference, see:

IBM System/370 Reference Summary, GX20-1850

For information about IBCOM requirements, see:

VS FORTRAN Applicatjon Programmjng: Librarv Reference, SC26-3989

OPERATING SYSTEM PUBLICATIONS

Within tha text, references are made to the following manuals.

If You Ara Running under OS/VS

OS/VSl JCL Reference, GC24-5099

OS/VS2 MYS JCL Refere..!ll<.fl, GC28-0692

MYS/Extended Architecture JCL, GC28-1148

Preface Y

OS/VS Li nkf!.!llL~Qj tor a11.~LL.PJ11.P.!:> GC26-3813

MYS/Extended Architecture linkage Editor and loader, GC26-4011

OS/VSl Supervisor Services And Macro Instructions, GC24-5103

OS/VS2 MYS Supervisor Services and Macro Instructions, GC28-~683

MYS/Extended Architecture System Prosrammi ng l i brarv: Supervi ~HU'.'.
Services and Macro Instructions, GC28-1154

OS/VSl Utilities, GC26-3901

OS/YS2 MVS Utilities, GC26-3902

MYS/Extended Architecture Utilitie~, GC26-4018

MYS/Extended Architecture Conversion Hotebook, GC28-1143

MVS/Extended Architecture Syst~m Programming Library: 31-Bj~
Addressing, GC28-1158

If You Are Running under .Cl"IS

VM/System Product System Messages and Codes, SC19-6204

VM/System Product CMS Command and Macro Reference, SC19-6209

VM/System Product CP Command Reference for General Users,
SCI 9-6211

CMS manuals will be distributed as part of the YM/Extended
Architecture Migration Aid library.

vi Assembler H Version 2 Application Programming: Guide

CONTENTS

Part 1. common Information

Chapter 1. ~ntroduction
Purpose of the Assembler
System Requirements •••••
Compatibility .•••.•••

Chapter 2. Using the Assembler Listing
External Symbol Dictionary CESD> •••••••••••••
Source and Object Program • . • . • • • • • • • . ••••
Relocation Dictionary CRLD> • • • • • . • •••
Symbol and Literal Cross-Reference • • • • • • • •••
Diagnostic Cross-Reference and Assembler Summary

Chapter 3. ustng the Assembler Diagnostic Facilities
Assembly Error Diagnostic Messages •••••••
MNOTE Statements • • • • • . . • • • • • • • . •
Suppression of Error Messages and MNOTE Statements
Abnormal Assembly Termination •••••
Macro Trace Facility CMHELP>

Macro Call Trace . • • • •
Macro Branch Trace
Macro Entry Dump
Macro Exit Dump
Macro AIF Dump • • • • • • • • •
Global Suppression
MHELP Suppression • • • •
Combining Options •••
MHElP Control on &SYSNDX

Part 2. OS/VS Information

Chapter 4. Using the Assembler
Input . • • • • • • • • • • • • • • • •
Output • • • • • • • • • • • • • • •
How the Operating System Handles Your Program

Assembler . • • • • • • • •
Linkage Editor • • • • . • ••••
Execution of Your Program ••••••
Loader •

Job Control Language • • • •
Jobs and Job Steps • • • • •
Job Control Language . • . . • . • . • • •

Job Control Statements for Assembler Jobs • • • • • • • •
Simple Assembly and Execution ••••••••••

Assembly • . • • • • • •
Assembly and Execution

Assembler Options for OS/VS
ALIGN I NOALIGN
BATCHINOBATCH
DECKINODECK
ESDINOESD
FLAGCnnn> • • • •
LINECOUHTCnn)
LIST I NO LIST
OBJECTIHOOBJECT
RENTINORENT
RLDINORLD
SYSPARMCstring)
TERMIHOTERM
TESTIHOTEST ••••
XREFCFULLISHORT>INOXREF ••••

Default Options • • • • • • •••••••••
Assembler Data Sets • • • • • • •

DDname SYSUTl • • • • • • • • •
DDname SYSIN • • • • • • • • • •
DDname SYSLIB • • • • • • • • • • • • •
DDname SYSPRIHT • . • • • • • •

Contents

1

2
2
2
3

4
4
7
9

10
11

12
12
15
15
15
15
15
15
16
16
16
16
16
16
16

17

18
18
18
18
19
19
19
20
20
20
21
22
22
22
23
24
25
26
26
26
26
26
26
27
27
27
27
28
28
28
29
29
32
32
32
32

vii

DDname SYSTERM
DDname SYSPUHCH
DDname SYSLIH •••••

Humber of Channel Programs CHCP>
Return Codes • • • • • • • • • • • • • • •
Cataloged Procedures • • . . •

Cataloged Procedure for Assembly CASMHC> ••••••
Cataloged Procedure for Assembly and Linkage Editing

< ASMHCL > •
Cataloged Procedure for Assembly, Link-Editing, and

Execution CASMHCLG> ••••••.•••••••••
Cataloged Procedure for Assembly and Loader Execution

CASMHCG> • • • • • • • • • • • • • •••••
Overriding Statements in Cataloged Procedures

EXEC Statements • • • • • • • . • • •
DD Statements • • • • • • • •

Examples of Cataloged Procedures

Chapter s. Programming Considerations • • •
Saving and Restoring General Register Contents
Program Termination •••••••••••••
PARM Field Access ••••••••••••••
Macro Definition Library Additions •••••.
Load Modula Modification--Entry Point Restatement
Object Module linkage .•••.••••••
linking with IBM-Supplied Processing Programs
Invoking the Assembler Dynamically •••••

Chapter 6. Calculating storage Requirements
Main Storage ••••

Fixed Storage
Variable Storage ••••

Buffers • • • • •
Work Fila Blocks ••••••
Symbol Tables • . • • • • •
Overall Dynamic Storage

Auxiliary Storage Estimates
Work File Space for SYSUTl •••••
Auxiliary Space on LINKLIB and PROCLIB

Part 3. ens Information

.

Chapter 7. Assembler Language Programming under ens
Relationship of Assembler to CMS ••••••••
Input • • • • • • • . • . • • • • • • • • • • • • •
Output • • • • • • • • • • • • • • • • •
CMS Management of Your Assembly

Files Created during Assembly ••••
File Processing by the Assembler ••••••••

Creating an Assembler Language Program: CMS Editor ••••
Overriding HASM File Defaults ••••••

Using Macros ••••••••••
Assembler Macros Supported by CMS • • • • •
Macro Definition Library Additions ••••
Specifying Macro Libraries ••••••••••••

Assembling Your Program: HASM Command •••••
HASM Command Format • • • • • • • •

File Name Entry • • • • • •••
Assembler Options for CMS •••••

Command Defaults ••••
Command Format • • • • • • • • • •

ALIGN f NOALIGH • • • • • • • • • • • • • • • • • •
BATCHINOBATCH • • • • • •••••
DECKf NODECK ••••••••
ESDINOESD ••••
FLAGCnnn> • • • . •
lINECOUNCnn>
LIST I NO LIST
NUMBER,NONUMBER
OBJECT NOOBJECT
PRINTINOPRINTfDISK
RENTf NORENT
RLDINORLD
STMTIHOSTMT

viii Assembler H Version 2 Application Programming: Guida

33
33
33
33
33
33
34

35

37

38
40
40
40
40

43
43
44
44
45
45
46
48
48

so
50
so
52
52
53
54
54
55
55
55

57

58
58
58
59
59
59
59
60
60
62
62
62
62
62
62
62
63
63
64
64
65
65
65
65
65
66
66
66
66
66
67
67

SYSPARMCstring)
TERMINALCn>INOTERM
TESTINOTEST
XREFCFULLISHORT>INOXREF

Assembler Data Sets and Storage Requirements
Assembler Data Sets for CMS Users

DDname SYSUTl
DDname SYSIN
DDname SYSLIB
DDname SYSPRINT
DDname SYSPUNCH
DDname SYSL IH
DDname SYSTERM

Assembler Virtual Storage Requirements .
Loading and Executing Your Assembled Program ..•

CMS Register Usage during Execution of Your Program
Passing Parameters to Your Assembler Language Program
Creating a Module of Your Program

Programming Aids •.•..••
CMS SYSTERM Listing
Diagnostic Messages Written by CMS
HASM Command Error Messages

Chapter 8. Programming Considerations •••
Saving and Restoring General Register Contents
Program Termination ••••

Appendix A. sample Program

Appendix B. sample Macro Trace and Dump CMHELP) •••
Macro Call Trace CMHELPl> •••.•.•••••.
Macro Entry Dump CMHELP 16)
Macro AIF Dump CMHELP 4) .
Macro Branch Trace CMHELP 2)
Macro Exit Dump CMHELP 8)

Appendix c. Object Deck
ESD Card Format
TEXT CTXT> Card Format
RLD Card Format
END Card Format .
TESTRAN CSYM) Card Format

output

Appendix D. Assembler H Messages
Message Descriptions . . . • . • •••.

Message Number and Text • • • .
Explanation of Message
System Action •..•.
Programmer Response
Severity Code ...•..•

Assembly Error Diagnostic Messages
Message Hot Known . . • . . .
Messages . . . • • •

Abnormal Assembly Termination Messages
Messages . •

Appendix E. Assembler H version 2 Incompatibility with
OS/VS Assemblsr • • • •

Glossary

Index

67
67
68
68
68
68
68
68
69
69
69
69
69
69
70
70
70
70
70
71
71
72

7~
74
75

76

87
87
87
88
88
88

9~
94
94
95
96
97

100
100
100
100
100
100
100
100
101
101
126
126

130

131

13~

Contents ix

FIGURES

1. Assembler H Listing 5
2. Types of ESD Entries 6
3. Sample Error Diagnostic Messages 14
4. How the Operating System Handles Your Program 19
5. Jobs and Job Steps 20
6. Cataloged Procedure Concept 21
7. Assembler H Data Sets 30
8. Assembler Data Set Characteristics 31
9. Number of Channel Program CNCP> Selection 32

10. Cataloged Procedure for Assembly CASMHC> 34
11. Cataloged Procedure for Assembling and link-Editing

CASMHCL) 36
12. Cataloged Procedure for Assembly, link-Editing, and

Ext~cuti on CASMHCLG> • 38
13. Cataloged Procedure for Assembly and loader Execution

CASMHCG> 39
14. Sample Assembler Linkage Statements for FORTRAN or

COBOL Subprograms 47
15. Basic layout for Assembler tf 51
16. Required Space in link Pack . . 52
17. Aid in Assessing Main Storage Required by a Symbol

Table with 1000 or 2000 Symbols 55
18. Files Created during Assembly 60
19. TES TRAN SYM Card Format 99

x Assembler H Version 2 Application Programming: Guide

PART. 1. COHHON INFORMATION

Part 1. Common Information 1

CHAPTER 1. INTRODUCTION

The three chapters in this part of the manual contain
information common to all the operating systems under which
Assembler H executes.

This chapter describes the purpose of the IBM Assembler H
Version 2, Program Product 5668-962 (hereinafter referred to as
Assembler H or, simply, the assembler), and its system
requirements. "Chapter 6. Calculating Storage Requirements" on
page 50 and "Assembler Data Sets and Storage Requirements" on
page 68 have information on the amount of main and auxiliary
storage required by Assembler H for OS/VS and CMS, respectively.

"Chapter 4. Using the Assembler" on page 18 and "Chapter 7.
Assembler Language Programming under CMS" on page 58 describe

• Assembler input and output

• How the operating system handles your program

• How to assemble your program

• Assembler options

for OS/VS and CMS, respectively.

PURPOSE OF THE ASSEMBLER

SYSTEM REQUIREMENTS

The purpose of Assembler H is to translate programs written in
assembler language into object code.

In addition to its ability to execute under OS/VS, Assembler H
can be used in the CMS environment of VM/System Product CVM/SP>
and VM/Extended Architecture CVM/XA> Migration Aid. Thus,
Assembler H V~rsion 2 executes under the following operating
systems:

MVS/XA
OS/VS2 MYS 3.8
OS/VSl Release 7
MVS/SP Vl
VM/XA Migration Aid
VM/SP

Note: Assembler H Version 2 cannot be used with the OS/MFT,
OS/MVT, or OS/VS2 SVS operating systems.

Assembler H supports the new operation codes available with the
Extended Architecture mode processor, VM/XA, and bimodal
addressing of MVSIXA. It is required for installation and
service of MVS/SP-JES2 Version 2 and MVS/SP-JES3 Version 2, for
installation of Data Facility Product, and for installation of
service and modifications to VMIXA Migration Aid.

Programs written using Assembler H can be assembled, including
use of the new Extended Architecture mode processor machine
instructions, on all IBM System/370, 303x, 308x, and 43xx
processors supported by the above operating systems. You may
require the MVS/XA macro library to assemble programs that will
be executed on MVS/XA, depending on macro usage.

Execution of programs assembled with Version 2 containing
Extended Architecture machine instructions can only be
accomplished on processors operating in Extended Architecture

2 Assembler H Version 2 Application Programming: Guide

COMPATIBILITY

mode under MVS/XA or an MVS/XA guest operating system under
VM/XA Migration Aid.

Virtual Storage: Assembler H Version 2, Release 1.0, requires a
minimum of 200K bytes of main storage.

Auxiliary Storage Space: Auxiliary storage space is required for
the following data sets:

• System input.

• Macro instruction library--either system or private or both.

• An intermediate work file, which must be a direct-access
device (3330/3333, 3340/3344, 3350, 3375, or 3380). Under
VM/XA Migration Aid, the intermediate work file must be
formatted as a CMS minidisk. Under VM/SP, the intermediate
work file, which must be a direct-access device (3310, 3370,
or one of the devices mentioned above), must also be
formatted as a CMS minidisk.

• Print output.

The language supported by Assembler H Version 2 has functional
extensions to the language supported by VS Assembler and OS
Assembler H 5734-ASl Rel~ase 5.0. Programs written for VS
Assembler and OS Assembler H Release 5.0 that were successfully
assembled with no warning or diagnostic messages can be
assembled with Version 2, with the minor exceptions described in
Appendix E, "A3sembler H Version 2 Incompatibility with OS/VS
Assembler."

Chapter 1. Introduction 3

CHAPTER 2, USING THE ASSE"BLER LISTING

This chapter tells you how to interpret the printed listing
produced by the assembler. The listing is obtained only if the
option LIST is in effect. Parts of the listing can be
suppressed by using other options; for information on the
listing options, refer to "Assembler Options for OS/VS" on page
24 or "Assembler Options for CMS" on page 63.

The Assembler H listing consists of up to five sections, ordered
as follows:

• External symbol dictionary CESD>

• Source and object program

• Relocation dictionary CRLD>

• Symbol and literal cross-reference

• Diagnostic cross-reference and assembler summary

Figure 1 on page 5 shows each section ~f the listing. Each item
marked with a circled number is explained in the following text.
CSee "Glossary" for definitions of terms.)

~XIJRNAL SY"BOL DICTIONARY CESDJ

This section of the listing contains the external symbol
dictionary information passed to the linkage editor or loader in
the object module.

This section helps you find references between modules in a
multimodule program. The ESD may be particularly helpful in
debugging the execution of large programs constructed from
several modules.

The ESD entries describe the control sections, external
references, and entry points in the assembled program. There
are seven types of ESD entries CSD, LD, ER, PC, CM, XO, and WX>.
They are shown in Figure 2 on page 6 with their associated
fields. The numbers refer to the corresponding headings in the
sample listing shown in Figure 1 on page 5. For each of the
different types of ESD entries, the Xs indicate which of the
fields will have values.

4 Assembler H Version 2 Application Programming: Guida

PR ltitE l::XFR'IAL ~Vi'te.t:l IJICTiuNARY PAltE I

0 0 G) © @ © 0
SVMBUL lYPr:: l<l A•llW. LF.NGJ H Ul IP FLAGS ASM H V 02 17.29 09/30/82

PC 0001 0ll0000 OO'l?OC
EXSYM ER 1)002
IOLOl)i> LO 000021. JOOl
COMSECT r, 000!' Q('\1,)0(}0 OOOU50
EltOMY xn 0004 0001103 000078
WR.KFLllS so oooo; ~)01121() ooooqo

© <V
PRIME StiMPLE LISTING OESCRIPTIUN

@ @ @) @
LCt Ot1Jf:CT CODE AOORl AllORl Sf"'(T

000000

3000('10 90F.C iJOOC
000004 OSCO

OOOOOb 5000 COFb
OOOOOA 0000)000

000!)5

OOOl'C

000'.J.&
OJ Off'.
00000

2
3
4
5

1

" q
10
II

•5

00

00

00

@
SOURCE STATl:MENT

tSFC:T
E.XrRN F.XSYM
ENTRY I i1LOUP
EQU 5

ST<
P.ALR
USIN~
H
LA

14,l2,l2Cl31
12,0
•,ll
l J, SAl/£+4
lJ, SAUE

I EY044 *** EIUUl'l •••
OOOOOE 511Ci.O C202

UNOEFINl:ll ~ YM,'\Ul

00002.?. 4110 Cl.JE
00007.b 4100 C05'1
00U02A ';'iFO 1030
00002• 05ff

PRl~f

® @ ®
Pt1S. 10 RF.L .ID Fl AC.5

OOtll 0101 l8
0001 (Jl)Ql O•
0001 0'H17 OL
OOll 'hl04 2(

002oa

n0144
oooir;;a
00010

@
fl.')tJIH:ss

000019
Q:lOOl 0
0~\>20 ~

0C'J141l

IZ L K'i,=AC EXSYMI
13 Pl{ I NT f\IJCEN
14 ' 1PEN (INllCf\,,OUTOCPi,(OUlPUTI)

2> PRINT i.;EN
24 IULJOP uET INr:>CB, INBUF
.'5+1CLUJP LA i, rnuc~
u.+ LA ri, INOUf
21+ L l5,48I01IJ
l~+ OALR 14, 1..,

RFLOCATl.IN fllCTlll'.14.RY

PRl•E CHOSS 'lEFERE1iC.f

@ @ @ @
SY•RUL LE• YALUf. Dl:FN

COMSECT 00001 00000000 Olb7
EXOMV 00001 000()0000 0169
EXSVM 00001 000011000 tl003
EXTNUlUJitYSCTN

OOOJ4 000140 0052
I NRUF 00004 l'lOOJ58 004q
INOCB 00004 C00144 005ti
I OLOUP 00004 ooon22 0025
OUTBlJF OOOJ4 OOC"l\JAH ooc;o
OUTBUF noon 1 OOOOOJOO 01 7'2
OUTOCR 00004 0001A4 0115
R5 000~1 0()000005 0005
SAUE ••••lJNllEF INEO••••
$AVE 00004 OOOOF8 0051
"'RKFLDS 00001 ooooo;nn 0110
.:=ACEKSYMJ

000i)4 000200 0174

@
REFERE~Cl:S

Jos;2
lll 74

0026 003 ...
::>018 V0;?5
0004 003q
003·~ 01136

••**DUPLICATE****
on20 0r35
rm 12 UC 12
UOll
UOlO U041

no12

PRIME OIA(,NiJSTlC ,.,ass R[ffREl\.IC!-= fi~l1 ASStMBLL:R Sll~MARY

THE FOLLOWING STATEMENTS l'l~RE t=L~C.GH"
00011 00172

2 STATEMP.HS FLAGGEU IN THIS ASSEMl'LY R WAS Hll,HEST StVE~ITV CODE

OVERRIDING PARAMETERS- SYSPARMISAMPLE PROGRAHl,NOOECK,BATCH
OPT IONS FOR THIS ASSEMBLY

@)
PAGE

@
ASM H V 02 17.29 09/30/82

LOAD PARAMETER REG l 02- IHl\IN
LOAD PARAMETER REG 0 C12-1H!HN
LOAO GET ROUTINE AOOR. 01-GET
LIM<. TO GET ROUTINE 01-GET

PAGE 5

ASM H V 02 17.29 09/30/82

PAGE 6

ASM H V 02 17.29 09/30/82

PAGE

ASM H V 02 17.29 09/30/82

NOOfCKt NOOBJECT, LIST, XREFCFU1.llt NORENT, NOTEST, BATCH, ALIGN, ESO, Rl.0 1 1.1NECOUNTC55t, FLAGCOt, SYSPARM(SAMPLE P
ROGRAMI

NO OVERRIDING DD NAMES

48 CARIJS FRUM SYSIN
151 LINES OUTPUT

157~ CllR lS fROM SYSL 1B
0 CA;{US OUTPUT

Figura 1. Assamblar H listing

Chaptar 2. Using tha Assembler listing 5

(1) (2) (3) ('t) (5) (6) (7)
SYMBOL TYPE ID ADDR LENGTH LD ID FLAGS

x SD x x x - x
x LD - x - x -
x ER x - - - -
- PC x x x - x
x CM x x x - x
x XD x x x - -
x wx x - - - -

Figure 2. Types of ESD Entries

Cl) The name of every external dummy section, control section.
entry point, and external symbol.

C2) The type designator for the entry, as shown in the table.
The type designators are defined as:

SD Control section definition. The symbol appeared in
the name field of a CSECT or a START statement.

LD Label definition. The symbol appeared as the operand
of an ENTRY statement.

ER External reference. The symbol appeared as the
operand of an EXTRN statement, or was declared as a
V-type address constant.

PC Unnamed control section definition (private code). A
CSECT or START statement that commences a control
section does not have a symbol in the name field, or a
control section is commenced (by any instruction which
affects the location counter) before a CSECT or START
is encountered.

CM Common control section definition. The symbol
appeared in the name field of a COM statement.

XD External dummy section. The symbol appeared in the
name field of a DXD statement or a Q-type address
constant. CThe external dummy section is also called
a pseudo register in the appropriate Linkage E!ti..:t.su:
and Loader.)

WX Weak external reference. The symbol appeared as an
operand in a WXTRN statement.

(3) The external symbol dictionary identification number
CESDIDl. The number is a unique 4-digit hexadecimal
number identifying the entry. It is used in combination
with the LD entry of the ESD and in the relocation
dictionary for referencing the ESD.

(4) The address of the symbol Cin hexadecimal notation) for
SD- and LD-type entries, and blanks for ER- and WX-type
entries. For PC- and CM-type entries, it indicates the
beginning address of the control section. For XO-type
entries, it indicates the alignment by printing a number
one less than the number of bytes in the unit of
alignment. For example, 7 indicates doubleword alignment.

(5) The assembled length, in bytes, of the control section Cin
hexadecimal notation).

6 Assembler H Version 2 Application Programming: Guide

(6) For an LO-type entry, the ESDID of the control section in
which the symbol was dQfined.

C7) For SD-, PC-, and CM-type entries, this field contains the
following flags:

Bit 5: 0 = RMODE is 24
1 = RMODE is ANY

Bits 6-7: 00 = AMO DE is 24
01 = AMO DE is 24
10 = AMO DE is 31
11 = A MODE is ANY

SOURCE AND OBJECT PROGRAH

This section of the listing documents the source statements of
the module and thQ resulting object coda.

This section is the most useful part of the listing, because it
gives you a copy of all the statements in your source program
(except listing control statements> exactly as they are entered
into the machine. You can use it to find simple punching
errors, and, together with the diagnostics and statistics, to
locate and correct errors detected by the assembler. By using
this section with the cross-reference section, you can check
that your branches and data references are in order. The
location counter values and the object code listed for each
statement help you locate any errors in a storage dump.
Finally, you can use this part of the listing to check that your
macro instructions have been expanded properly.

(8) The 1- to 8-character deck identification, if any. It is
obtained from the name field of the first named TITLE
statement. The assembler prints the deck identification
and date Citem 16) on every page of the listing.

C9) The information taken from the operand field of a TITLE
statement.

ClO> The listing page number.

Cll) The assembled address (in hexadecimal notation) of the
object code.

• For ORG statements, the location-counter value before
the ORG is placed in the location column and the
location counter value after the ORG is placed in the
object code field.

• If the END statement contains an operand, the operand
value (transfer address> appears in the location field
CLOC>.

• In the case of LOCTR, COM, CSECT, and DSECT
statements, the location field contains the current
address of these control sections.

• In the case of EXTRN, WXTRN, ENTRY, and DXD
instructions, the location field and object code field
are blank..

• For a USING statement, the location field contains tha
value of the first operand. It is 4 bytes long.

• For LTORG statements, the location field contains tha
location assigned to the literal pool.

• For an EQU statement, the location field contains the
value assigned, It is 4 bytes long.

Chapter 2. Using the Assembler listing 7

C12) The object code produced by the source statement. The
entries are always left-justified. The notation is
hexadecimal. Entries are machine instructions or
assembled constants. Machine instructions are printed in
full with a blank inserted after every 4 digits (2 bytes).
Only the first 8 bytes of a constant will appear in the
listing if PRINT NODATA is in effect. unless the statement
has continuation cards. The entire constant appears if
PRINT DATA is in effect. CSee the PRINT assembler
instruction in Assembler H Version 2 Application
Programming: language Reference.)

C13) Effective addresses (each the result of adding a base
register value and a displacement value):

The field headed ADDRl contains the effective address
for the first operand of an SS instruction.

The field headed ADDR2 contains the effective address
of the last operand of any instruction referencing
storage.

Both address fields contain 6 digits; however, if the
high-order digit is a O, it is not printed.

(14) The statement number. A plus sign (+) to the right of the
number indicates that the statement was generated as the
result of macro call processing. An unnumbered statement
with a plus sign (+) is the result of open code
substitution.

C15) The source program statement. The following items apply
to this section of the listing:

• Source statements are listed, including those brought
into the program by the COPY assembler instruction,
and including macro definitions submitted with the
main program for assembly. listing control
instructions are not printed, except for PRINT, which
is always printed.

• Macro definitions obtained from SYSlIB are not listed,
unless the macro definition is included in the source
program by means of a COPY statement.

• The statements generated as the result of a macro call
follow the macro call in the listing, unless PRINT
HOGEN is in effect.

• Assembler and machine instructions in the source
program that contain variable symbols are listed
twice: as they appear in the source input, and with
values substituted for the variable symbols.

• All error diagnostic messages appear in line except
those suppressed by the FLAG option. "Chapter 3.
Using the Assembler Diagnostic Facilities" describes
how error messages and MNOTEs are handled.

• literals that have not been assigned locations by
lTORG statements appear in the listing following the
END statement. literals are identified by the equal
sign C=) preceding them.

8 Assembler H Version 2 Application Programming: Guide

• Whenever possible, a generated statement is printed in
the same format as the corresponding macro definition
Cmodel> statement. The starting columns of the
operation, operand, and comments fields are preserved,
unless they are displaced by field substitution, as
shown in the following example=

Source Statements: &C SETC
&C LA

Generated Statement: ABCDEFGHIJK LA

'ABCDEFGHIJK'
1,4
1,4

It is possible for a generated statement to occupy ten or
mora continuation lines on the listing. In this way,
generated statements are unlike source statements, which
ara restricted to nine continuation lines.

C16> Tha version identifier of Assembler H.

C17> Tha current date Cdata run is mada).

C18) The identification-sequence field from the source
statement. For a macro-generated statement, this field
contains information identifying the origin of the
statement. Tha first two columns define the level of the
macro call.

For a library macro call, the last five columns contain the
first fiva characters of the macro name. For a macro whose
definition is in the source program (including one read by a
COPY statement), the last fiva characters contain the line
number of the model statement in the definition from which the
generated statement is derived. This information can be an
important diagnostic aid in analyzing output resulting from
macro calls within macro calls.

RJLOCATION QICTIONARY CRLD)

This section of the listing contains the relocation dictionary
information passed to the linkage editor in the object module.
The entries describe the address constants in the assembled
program that are affected by relocation. This section helps you
find relocatable constants in your program.

C19) Tha external symbol dictionary ID number assigned to the
ESD entry for the control section in which the address
constant is used as an operand.

C20) Tha external symbol dictionary ID number assigned to the
ESD entry for the control section in which the referenced
symbol is defined.

C21> The 2-digit hexadecimal number represented by the
characters in this field is interpreted as follows:

• First Digit. A 0 indicates that the entry describes an
A-type or Y-type address constant; 1 indicates that
the entry describes a V-type address constant; 2
indicates that the entry describes a Q-type address
constant; 3 indicates that the entry describes a CXD
entry.

• Second Digit. The first three bits of this digit
indicate the length of the constant and whether the
base should be added or subtracted:

Btts 0 and 1 Bit 2 Bit 3

00 = 1 byte 0 = + Always 0
01 = 2 bytes 1 = -
10 = 3 bytes
11 = 4 bytes

Chapter 2. Using the Assembler listing 9

C22) The assembled address of the field where the address
constant is stored.

SYMBOL AND LITERAL CROSS-REFERENCE

This section of the listing concerns symbols and literals that
are defined and used in the program. This is a useful tool in
checking the logic of your program; it helps you see if your
data references and branches are in order.

C23) The symbols or literals.

C24) The length, in bytes Cin decimal notation), of the field
represented by the symbol. The length of a literal is
always 1.

C25) Either the address that the symbol or literal represents,
or a value to which the symbol is equated. The value is 3
bytes long, except for the following, which are 4 bytes
long: CSECT, DSECT, START, COM, DXD, EQU, LOCTR, EXTRN,
WXTRN, and a duplicate symbol.

C26) The number of the statement in which the symbol or literal
was defined.

C27> The statement numbers of statements in which the symbol or
literal appears as an operand. In the case of a duplicate
symbol or literal, the assembler fills this column with
the message:

The following notes apply to the cross-reference section:

• The statement numbers in fields 26 and 27 may have ~.
5, or 6 print positions. The number of print
positions for the statement number will be chosen
based on the highest statement number assigned for the
assembly. For example, if 21056 is the highest
statement number used in an assembly, all statement
numbers in the cross-reference listing will have 5
print positions.

• Symbols appearing in V-typa addrass constants do not
appear in the cross-reference listing.

• Cross-reference entries for symbols used in a literal
refer to the assembled literal in the literal pool.
Look up the literals in the cross-reference to find
where the symbols are used.

• A PRINT OFF listing control instruction does not
affect the production of the cross-reference section
of the listing.

• In the case of an undefined symbol, the assembler
fills fields 24, 25, and 26 with the massage:

****UNDEFINED****

10 Assembler H Version 2 Application Programming: Guida

DIAGNOSTIC CROSS-REFERENCE AND ASSEMBLER SUMMARY

The diagnostic messages issued by the assembler are fully
documented in Appendix D, "Assembler H ~essages."

C28) The statement number of each statement flagged with an
error message or MHOTE appears in this list. The number
of statements flagged and the highest nonzero severity
code encountered are also printed. The highest severity
coda is equal to the assembler return code.

If no errors are encountered, the following statement is
printed:

HO STATEMENTS FLAGGED IN THIS ASSEMBLY

Saa "Chapter 3. Using the Assembler Diagnostic Facilities" for a
complete discussion of how error messages and MNOTEs are
handled.

C29) A list of the options in effect for this assembly is
printed. The options specified in the PARM field to
override the assembler default options are also printed.

C30) If the assembler has been called by a problem program Csee
"Invoking the Assembler Dynamically" on page 48) and any
standard (default> ddnames have been overridden, both the
default ddnames and the overriding ddnames are listed.
Otherwise, this statement appears:

HO OVERRIDING DD HAMES

C31) The assembler priints the number of records read from SYSIH
and SYSLIB and the number of records written on SYSPUHCH.
The assembler also prints the number of lines written on
SYSPRIHT. This is a count of the actual number of
121-byte records generated by the assembler; it may be
less than the total number of printed and blank lines
appearing in the listing if the SPACE n assembler
instruction is used. For a SPACE n that does not cause an
eject, the assembler inserts n blank lines in the listing
by generating n/3 blank 121-byte records, rounded to the
next lower integer if a fraction results. For example,
for a SPACE 2, no blank records are generated. The
assembler does not generate a blank record to force a page
eject.

Chapter 2. Using the Assembler listing 11

CHAPTER 3. USING THE ASSEMBLER DIAGNOSTIC FACILITIES

The diagnostic facilities for Assembler H include diagnostic
messages for assembly errors, diagnostic or explanatory messages
issued by the source program or by macro definitions CMNOTEs), a
macro trace and dump facility CMHELP), and messages and dumps
issued by the assembler in case it terminates abnormally.

This chapter briefly describes these facilities. The assembly
error diagnostic messages and abnormal assembly termination
messages are described in detail in Appendix D, "Assembler H
Messages."

ASSEMBLY ERROR DIAGNOSTIC MESSAGES

Assembler H prints most error messages in the listing
immediately following the statement in error. It also prints
the total number of flagged statements and their line numbers in
the diagnostic cross-reference section at the end of the
listing.

The messages do not follow the statement in error when:

• Errors are detected during editing of macro definitions read
from a library. A message for such an error appears after
the first call in the source program to that macro
definition. You can, however, bring the macro definition
into the source program with a COPY statement. The editing
error messages will then be attached to the statements in
error.

• Errors are detected by the lookahead function of the
assembler. (lookahead scans, for attribute references,
statements after the one being assembled.) Messages for
these errors appear after the statements in which they
occur. The messages may also appear at the point at which
lookahead was called.

• Errors are detected on conditional assembler statements
during macro generation or MHELP testing. Such a message
follows the most recently generated statement or MHELP
output statement.

A typical error diagnostic message is:

IEV057 ***ERROR*** UNDEFINED OPERATION CODE~xxxxx

The term ***ERROR*** is part of the message if the severity codQ
is 8 or greater. The term **WARNING** is part of the message if
the severity code is 0 or 4.

A copy of a segment of the statement in error, represented above
by xxxxx, is appended to the end of many messages. Normally
this segment, which can be up to 16 bytes long, begins at the
bad character or term. For some errors. however, the segment
may begin after the bad character or term. The segment may
include part of the remarks field.

If a diagnostic message follows a statement generated by a macro
definition. the following items may be appended to the error
message:

• The number of the model statement in which the error
occurred, or the first five characters of the macro name.

• The SET symbol, parameter number, or value string associated
with the error.

12 Assembler H Version 2 Application Programming: Guide

Note: References to macro parameters are by number Csuch as
PARAM008) instead of by name. The first seven numbers are
always assigned for the standard system parameters as follows:

PARAMOOO = &SYSNDX
PARAMOOl = &SYSECT
PARAM002 = &SYSLOC
PARAM003 = &SYS TIME
PARAM004 = &SYSDATE
PARAM005 = &SYSPARM
PARAM006 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in
the macro definition, followed by positional parameters. When
there are no keyword parameters in the macro definition,
PARAM007 refers to the first positional parameter.

If a diagnosttc message follows a conditional assembler
statement in the source program, the following items will be
appended to the error message:

• The word "OPENC"

• The SET symbol or value string associated with the error

Several messages may be issued for a single statement or even
for a single error within a statement. This happens because
each statement is usually evaluated on more than one level (for
example, term level, expression level, and operand level) or by
more than one phase of the assembler. Each level or phase can
diagnose errors; therefore, most or all of the errors in the
statement are flagged. Occasionally, duplicate error messages
may occur. This is a normal result of the error detection
process.

Figure 3 on page 14 is an example of Assembler H handling of
error messages.

Chapter 3. Using the Assembler Diagnostic Facilities 13

LUC 'JHJECT CUDE A[)'JK[AllDRZ ST~l ASM H V 02 11.Sl 09/30/RZ

000000
000000 0000 ')00() onooo

IEV044 ••• HRllR *** UNi:c f I '<El'
I EV029 ••• ERROR *** INCURRECT
IEV179 ••• ~RROR ••• Dl'l lMlHK

000004 O'>CO
00006

000006 0000 ')000 00000
IE V044 ••• ERROR ••• U'<DE FINED

IE V088 ••• FRRflK • •• U~BALA~CED

OOOOOA 0700
IJOOOOC 4510 COOF (l() 014
100010 00000')00
000014 0000 0000 000(1']

IE V029 ••• E '{!<JR *** INCUR~f'CT

IEV044 ••• ERR JP • •• UNlln l'fffl
IEV177 ••• ""~()!< • •• nl'LIMITER

*************•***********************••••······························
* SA~PL~ oRt>.OR OIAGNtlSTIC MESSAGES *

3 * f~ S1U•Cl PRJGHA~ COPEN CODEI ANU GENERATED RY MACRO CALLS *
4 **•························

h A
7

> YMC uL

l SECT
ST" 14,U2,12(l~C

PEGISTH< SPECIF ILATl<l"l
[RPnP, t'XPECT Rl(;HT PARtNTHESIS

e HAL• 12,u
9 US IN•> *• L!

10 ST l3,SAV~•4
SYMhfJL

11 GPl'N ICi<OHI,(INPLJTI ,CKIJOUT,(UUTPUTl
PA"lNTHtSlcS IN ~4CWl CALL OPtKANU UPENCllCROIN,llN
ll• CNilP 0,4 01-rJP~N

13+ BAL 1,•+~ LOAD RFGl W/LIST 40DR. 01-0PEN
14+ OC AIOI OPT RYTE ANO OCR 400R. 01-0PEN
l~• ST C~u!N, (l~PUTI ,CR'llUT,(nUTPUT,0(1,01 XOl-rJPEN

STORE INTO LIST
,\El>l S HR SN.CIFICAT! JN
S'f' MH(1l
FRKCR, f X P EC T tlLANK JR Ul-T PARENTHESIS

00001~ 9280 10()0 00000 lo• ~VI \1(lJ,l2~ MOVf IN OPTION BYTE Ol-OPEN
OOOOIC OAP 17• SVC IY ISSUE OPFN SVC

19 ***********•**********************••··································
?0 * EDITIN<; ANJ GE:NfRATllJ'I ERRORS AND MNOTES FROM A LIBRARY MACRO *
?1 ***********************************•··································
23 L'lAUR RE~l=IO,RE<;Z=8,CHEROKEE,CHAMP

ILLEGAL LUGICAL/R~LATIONAL UPF~ATU• MACRU - LUADR

01-0PF.N

IFV136 ••• ER~OR ***
lEVOSl *** eRKOR ***

00001[58AO C02A
ARITHMCTIC fXPRfoSSIDN CUNTAINS !LU.GAL »HIMITER UR ENDS PREHATURELV

00030 24• l:J,CHtRIJKEE
MACRO - LUAOR

01-LOAOR

lb L)Alli< Pt ;1=75,RrG.'=t'.,CHERCIKH,SWIFT
000022 0000 onno 00000 27• L 2~,(HtRUKEE

IEV029 *** ERROf< *** l''C'IP'lECT Q[GlSH« SPECIHCATinN

100026 j~QO C07E

OOOOUC 58AO CD04
000010 51BO C008

IEV003 *** ERROR ***
000014 0000 0000

IEV02~ *** ERROR ***
000016 0000 0000

ltV074 *** ERROR ***

IFV254 *** MNUTE ***

000~4

0:1004
0000~

29
30+

UJAilR K[,;2=10,CHAMP,SWIFT
l 0,CHA'IP

6 •***•·························
7 * SA~PLF MAC~n !l~FINITI~N RFRUN WITH EDITING ERRORS CORRECTED *
~ ***••·······················

10 MACKd
I l f,NAME UJADI~ f,qLGl=,®2=,&UPl,&OP2
12 r,, (l J SUA f.~{t'.Gl, £.REG2
13 AIF IT'!:RfGl F~ '0' l .ERR
I'• L f.M(ll,&OPl
15 L &P(ZJ,&UP2
16 MEX I T
17 .r'.Rk MNl'Tf ~6, • YflU L[FT OUT THE FIRST REGISTER'
18 MEND

?O *~**
21 * SA~PL~ MACRO CALLS WITH GENERATIUN ERRORS ANO MNOTES *
?2 *******************************•······································

LUAOM RF~l=IO,REG?•R,CHEROKEE,CHA~P
l 10 ,CHfRflKH:
L q,(HA~P

?~ l<JALlK tlfG1=25,MUi2=8,CHEROi<EE,l:SWIFT
UNDFCLAREn VAR!AbL' SYMBOL. Oc<4ULT=O, NULL, UR TYPE=U OPFNCISWIFT

00000 2~1 l 25,CH~RJKE:E

INCORQECT REGlSTtK SPECIFICATION
00000 10• L 9,

lllfGAL SYNTAX IN i:XPRfS'illlN

32
13+
34

LUAOQ R~G2=8,CHAMP 1 SWIFT
>&,Y'lU LEFT <JUT THE FIRST RFGISHR

ENO

Figure 3. Sample Error Diagnostic Messages

14 Assembler H Version 2 Application Programming: Guide

01-LOAOR

Ol-l'JAOR

01-or.01•
01-00015

Ol-OOOl't

01-00015

Ol-00017

nNOTE STATEnENTS

An MHOTE statement is included in a macro definition or in the
source program. It causes the assembler to generate an inline
error or informational message.

An MNOTE appears in the listing as follows:

IEY254 ***MNOTE*** severity code, message

Unless it has a severity code of * or the severity code is
omitted, the statement number or the MNOTE is listed in the
diagnostic cross-reference.

iUJ!!..RESSION OF ERROR nESSAGES AND MNOTE STATEMENTS

Optionally, error messages and MNOTE statements below a
specified severity level can be suppressed by specifying the
assembler option 'FLAGCn>' <where "n" is the selected severity
level when the assembler is invoked).

ABNORMAL ASSEMBLY TERMINATION

Whenever the assembly cannot be completed, Assembler H provides
a message and, in some cases, a specially formatted dump for
diagnostic information. This may indicate an assembler
malfunction or it may indicate a programmer error. The
statement caus~ng the error is identified and, if possible, the
assembly listing up to the point of the error is printed.
Appendix D, "Assembler H Messages" on page 100 describes the
abnormal termination messages. The messages give enough
information to enable you Cl> to correct the error and
reassemble your program, or (2) to determine that the error is
an assembler malfunction.

Assembler H Vers~on 2: logic contains a complete explanation of
the format and contents of the abnormal termination dump.

MACRO TRACE FACILITY CMHELPJ

Macro Call Trace

Macro Branch Trace

The MHELP instruction controls a set of trace and dump
facilities. Options are selected by an absolute expression in
the MHELP operand field. MHELP statements can occur anywhere in
open code or in macro definitions. MHELP options remain in
effect continuously until superseded by another MHELP statement.
Appendix 8, "Sample Macro Trace and Dump CMHELP>" is a sample
MHELP trace and dump.

MHELP B'l' or MHELP 1: This option provides a one-line trace for
each macro call, giving the name of the called macro, its nested
depth, and its &SYSNDX Ctotal number of macro calls> value.

Note: This trace is provided upon entry into the macro. No
trace is provided if error conditions prevent entry into the
macro.

MHELP B'10'• or MHELP 2: This option provides a one-line trace
for each AGO and true AIF conditional-assembly statement within
a macro. It gives the model-statement numbers of the "branched
from" and "branched to" statements, and the name of the macro in
which the branch occurs. This trace option is suppressed for
library macros.

Chapter 3. Using the Assembler Diagnostic Facilities 15

Macro Entry Dump

Macro Exit Dump

Macro AIF Dump

Global suppression

MHELP suppression

combining Options

MHELP 8'10000', or MHELP 16: This option dumps parameter values
from the macro dictionary when the macro is called.

MHELP 8'1000', or MHELP 8: This option dumps SET symbol values
from the macro dictionary upon encountering a MEND or MEXIT
statement.

MHELP 8'100', or MHELP ~: This option dumps SET symbol values
from the macro dictionary immediately before each AIF statement
that is encountered.

MHELP 8'100000', or MHELP 32: This option suppresses global SET
symbols in the two preceding options, MHELP 4 and MHELP 8.

MHELP B'l0000000', or MHELP 128: This option suppresses all
currently active MHELP options.

Multiple options can be obtained by combining the option codes
in one MHELP operand. For example, call and branch traces can
be invoked by MHELP B'll', MHELP 2+1, or MHELP 3.

MHELP Control an &SYSNDX

The MHELP operand field is actually mapped into a fullword.
Previously defined MHELP codes correspond to the fourth byte of
this fullword.

&SYSNDX control is turned on by any bit in the third byte
(operand values 256 to 65535 inclusive). Then, when &SYSNDX
(total number of macro calls> exceeds the value of the fullword
that contains the MHELP operand value, control is forced to stay
at the open-code level, by in effect making every statement in a
macro behave like an MEXIT. Open-code macro calls are honored,
but with an immediate exit back to open code.

Examples:

MHELP 256
MHELP 1
MHELP 256+1
MHELP 65536
MHELP 65792

Limit &SYSNDX to 256.
Trace macro calls.
Trace calls and limit &SYSNDX to 257.
No effect. No bits in bytes 3,4.
Limit &SYSNDX to 65792.

When the value of &SYSNDX reaches its limit, the message "ACTR
EXCEEDED--&SYSNDX" is issued.

16 Assembler H Version 2 Application Programming: Guide

PART 2. OS/VS INFORMATIO~

Part 2. OS/VS Information 17

CHAPTER 4. USING THE ASSEnBLER

OUTPUT

This chaptar describes assembler input and output; tells how the
operating system handles your program; reviews the concepts of
job, job step, and job control languaga; shows you how to invoke
the assembler for simple jobs (using cataloged procedures); and
lists tha job control statements that make up the four assembler
cataloged procedures. In addition, it describQS the
assembly-time options available to the assemblar languaga
programmer; data sets used by the assembler; and number of
channel programs, return codes, and cataloged procedures of job
control language suppliad by IBM to simplify assembling,
link-editing or loading, and execution of assembler language
programs. The job control languaga is described in detail in
tha appropriata JCL Reference.

As input, the assembler accepts a program written in the
assemblar language as dafined in Assembler H Version 2
Application Programming: Language Reference. This program is
referred to as a source module. Some statements in the source
module (macro or COPY instructions> may cause additional input
to ba obtained from a macro library.

The output from the assembler consists of an object module and a
program listing. The object module can either be punched or
included in a data set residing on a direct access device or a
magnetic tape. From that data set, the object module can be
read into the computer and processed by the linkage editor or
the loader. See Appendix C, "Object Deck Output" for the format
of the object module.

The program listing lists all the statements in the module, both
in source and machine language format, and gives other important
information about the assembly, such as error messages. The
listing is described in detail in "Chapter 2. Using the
Assembler Listing."

HOW THE OPERATJNG SYSTEM HANDLES YOUR PROGRAM

Once you have coded and entered your program, it must be
processed by the assembler and the linkage editor or the loader
before it can be executed. figure 4 on page 19 shows how the
operating system handles your program.

18 Assembler H Version 2 Application Programming: Guida

The source program is read in
for processing by the assembler.

COMPUTER

The output of the assembler,
the object module, is placed on
auxiliary storage.

Source
Module Assembler

The object module is read into
either the linkage editor or the
loader for processing.

Object

Loader

After processing your program,
the loader gives control to it.

Module

Linkage

The linkage editor output, the
load module, is placed on a load
module i; brary.

Editor

Load
Your program, in load module
format, is read into the computer
for execution.

Module
Your
Program

Figure 4. How the Operating System Handles Your Program

ASSEMBLER

LINKAGE EDITOR

The assembler translates your source module into an object
module, the machine language equivalent of the source module.
The object module, however, is not ready for execution; it must
first be processed by the linkage editor or loader.

The linkage editor prepares your program for execution. The
output of the linkage editor is called a load module and can be
executed by the computer. The linkage editor can combine your
program with other object and load modules to produce a single
load module. The linkage editor stores your program in a load
module library, a collection of data sets on a direct access
device. These load modules can be read into the computer and
given control. The load module library may be either permanent,
so that you can execute your program in later jobs, or
temporary, so that the program is deleted at the end of your
job.

EXECUTION OF YOUR PROGRAM

Once you have included your program in a permanent load module
library, you can execute it any number of times without assembly
and link-editing. However, if you need to change your program,
you must assemble and link-edit it again. Therefore, you should
not store your program in a permanent load module library until
it has been tasted properly. To save time during test runs, you
can use a program that combines the basic functions of the
linkage editor with the execution of your program. That program
is the loader.

Chapter 4. Using the Assembler 19

LOADER

The loader performs most of the functions of the linkage editor;
in addition, it loads your program into the computer and passes
control to your program. The loader car.not, however, include
your program in a load module library. For a full description
of the linkage editor and loader, refer to the appropriate
Linkage Editor and Loader.

JOB CONTROL LANGUAGE

JOBS AND JOB STEPS

Job
Assembly
and
Link
Editing

Job Step
Assembly

Job Step
Link
Editing

Each time you request a service from the operating system, you
are asking it to perform a i2,b. A job may consist of several
~, each of which usually involves the execution of one
processing program under the control of the operating system's
control program. For example, if you submit a job to the
computer calling for assembly and linkage editing of a program,
that job will be a two-step job. The concepts of jobs and job
steps are shown in Figura 5.

Source
Module

Object
Module

Load
Module

Figure 5. Jobs and Job Steps

20 Assembler H Version 2 Application Programming: Guida

JOB CONTROL LANGUAGE

The job control language is your way of communicating to the
operating system control program what services you want used.
Job control language statements are usually punched into cards
and supplied in the job stream with your source module and other
data needed by the job. For a detailed discussion of job
control language statements, see the appropriate JCL Reference.

To save time and trouble, you can use predefined
statements that reside in a library. Such a set
called a cataloged procedure, can be included in
means of a single JCL statement naming the set.
the concept of a cataloged procedure.

sets of JCL
of statements,
your job by
Figure 6 shows

There are several cataloged procedures available for assembler
jobs. They are described in the following sections.

Input
Stream

DATA
Procedure
Library

II EXEC PRCD

II JOB

Resulting Job Stream

Figure 6. Cataloged Procedure Concept

Chapter 4. Using the Assembler 21

JOB CONTROL STATEMENTS FOR ASSEMBLER JOBS

The following sections show you how to invoka tha assambler for
simple jobs, using cataloged procaduras, and list tha job
control statements that make up the four assembler cataloged
procedures.

SIMPLE ASSEMBLY AND EXECUTION

Assembly

This section gives the minimum JCL statements needed for two
simple assembly jobs:

• Assembly of your program to produce a listing and an object
deck

• Assembly and execution of your program

Both jobs use cataloged procedures to call the assembler.

To assemble your program, use the following JCL statements:

/.ljobname
//
//SYSIH

JOB
EXEC
DD

accountno,progrname,MSGLEVEL=l
ASMHC

*
(your source program)

Notes:

(1)
(2)
(3)

C1> Identifies the beginning of your job to the operating
system. 'jobname' is the name you assign to tha job.
'accountno' specifies the account to which your job is
charged, and 'progrnama' is the nama of the programmer
responsible for the job. 'MSGLEVEL=l' specifies that the
job control statements connected with this job are to ba
listed. Check what parameters are required at your
installation and how they must ba 5pecifiad.

C2) Calls the cataloged procedura ASMHC. As a result, a number
of job control statements are included in the job from the
procedure library. ASMHC is described under "Cataloged
Procedure for Assembly CASMHC>" on page 34; an expanded job
stream is shown there.

(3) Specifies that the assembler language source program
follows immediately after this statement.

These statements cause the assembler to assemble your program
and to produce a listing (described in "Chapter 2. Using the
Assembler Listing") and an object module punched on cards
(described in Appendix C, "Object Deck Output"). If you do not
want any object module cards to he punched during the job, use
the following statements:

//jobname
//
.l/SYSIN

JOB
EXEC
DD

accountno,progrname,MSGLEYEL=l
ASMHC,PARM=NODECK

*
(your source program)

Nota:

(1)

<1> The second parameter <PARM> specifies the assembler option
NODECK, which tells the assembler not to produce any
punched object module. For a full discussion of assembler
options, sea "Assembler Options for OS/VS" on page 24.

22 Assembler H Version 2 Application Programming: Guida

Assembly and Execution

To run a job that both assembles and executes your program, code
the following statements:

//jobname
//
//C.SYSIN

JOB
EXEC
DD *

accountno,progrname,MSGLEVEL=l
ASMHCG

(your source program)

//G.SYSIH DD

Cdata, if any, for your program)

Notes:

Cl>
(2)

(3)

Cl> Calls the procedure ASMHCG, containing job control
statements for execution of the assembler Cin procedure
step C> and the loader Cin step G>. ASMHCG is described
under "Cataloged Procedure for Assembly and Loader
Execution CASMHCG>" on page 38; an expanded job stream is
shown there.

(2) Specifies that the input for procedure step C (assembly)
follows immediately after this statement.

(3) Specifies that the input for step G (execution of your
program under control of the loader) follows immediately
after this statement.

The first step of the ASMHCG procedure executes the assembler.
The assembler produces a listing, a punched object module on
cards, and an object module on a direct acce5s device. The
second step causes the loader to be executed. The loader
transforms the object module, which was written on a direct
access device by the assembler, into a load module. In
addition, the loader causes the load module Cthat is, your
program) to be executed.

If you do not want the assembler to punch an object deck in this
example, supply the following statements instead:

//jobname JOB accountno,progrname,MSGLEVEL=l
// EXEC ASMHCG,PARM.C=COBJECT,NODECK> Cll
//C.SYSIH DD * .

(your source program)

//G.SYSIH DD *
Cdata for your program)

Note:

Cl> The PARM parameter specifies the assembler options OBJECT
(telling the assembler to produce an object module on the
partitioned data set used as input by the loader) and
HODECK for step C (assembly) of the procedure.

Chapter 4. Using the Assembler 23

ASSEMBLER OPTIONS FOR OS/VS

Assembler H offers a number of optional facilities. For
example. you can suppress printing of tha assembly listing or
parts of the listing, and you can specify whether you want an
object deck or an object module. You select the opti~ns by
including appropriate keywords in the PARM field of the EXEC JCL
statement that invokes the assembler. There are two types of
options:

• Simple pairs of keywords: A positive form Csuch as OBJECT>
that requests a facility, and an alternate negative form
(such as NOOBJECT> that rejects that facility

• Keywords, such as LINECOUNTC50), that permit you to assign a
value to a function

Each of ~hese options has a standard or default value which is
used for the assembly if you do not specify an alternative
value. The default values are explained under "Default Options"
on page 29.

To override the option specification in a cataloged procedure,
you must includQ the PARM field in the EXEC statement that
invokes the procedure. If the cataloged procedure contains more
than one step, you must also qualify the keyword parameter
CPARM) with the name of the step within the procedure that
invokes the assembler. for example=

// EXEC ASMHCG,PARM.C='OBJECT,NODECK'

"Overriding Statements in Cataloged Procedures" contains more
examples on how to specify options in a cataloged procedure.

PARM is a keyword parameter that is followed by a list of
options. PARM options are coded according to the following
rules:

• If you specify two or more options. the entire list must be
enclosed within single quotation marks or parentheses.

• The options must be separated by commas.

• If you specify only one option and it does not include any
spacial characters, the enclosing single quotation marks or
parentheses can be omitted.

• The FLAG, LINECOUNT, SYSPARM, and XREF options must appear
within single quotation marks Csince they contain special
characters).

• The options can be specified in any order.

• The option list must not be longer than 100 characters,
including the separating commas.

• If you need to continue the PARM field onto another card,
the entire PARM field must be enclosed in parentheses.
However, any part of the PARM field enclosed in single
quotation marks must not be continued on another card.

• If contradictory options are used Cfor example, lIST and
NOJ.IST), the rightmost option Cin this case, NOLIST> is
used.

24 Assembler H Version 2 Application Programming: Guide

ALIGNINOALIGN

The following examples illustrate these rules:

,PARM=DECK

,PARM='LINECOUNTC40)'

,PARM=<DECK,NOOBJECT>
or

,PARM='DECK,NOOBJECT'

Only one option specified.

LINECOUNT, FLAG, SYSPARM,
and XREF must be surrounded
by single quotation marks.

More than one option is
specified. None of them
require quotation marks.

,PARM='DECK,NOLIST,SYSPARMCPARAM>' More than one option is
or specified. SYSPARM must

,PARM=CDECK,NOLIST,'SYSPARMCPARAM>'> appear within quotation
or marks.

,PARM=CDECK,'NOLIST,SYSPARMCPARAM)')

,PARM=CDECK,NOLIST,'LINECOUNTC35)', The whole field must be
NOALIGN,NORLD> enclosed in parentheses

because it is continued
onto another card. The
LINECOUNT option must be
within single quotation
marks, and the portions of
tha field that are
enclosed within quotation
marks cannot be continued
onto another card.

The assembler options are:

ALIGNINOALIGN
BATCHINOBATCH
DECKINODECK
ESDINOESD
FLAGCnn>
LINECOUNTCnn)
LISTINOLIST
OBJECTINOOBJECT
RENTINORENT
RLDINORLD
SYSPARM (string)
TERMINOTERM
TESTINOTEST
XREFCFULLISHORT>INOXREF

Nata: Even though the formats of some of the options previously
supported by Assembler H have been changed, you can usa tha old
formats for the following options: ALGN Cnow ALIGN>, NOALGN
CNOALIGN>, LINECNT=nn CLIHECOUHTCnn)), LOAD COBJECT>, HOLOAD
CNOOBJECT>, MULT CBATCH), NOMULT CNOBATCH>, XREF CXREFCFULL)),
and MSGLEVEL=nn CFLAGCnnn)).

ALIGN
The assembler doas not suppress tha alignment error
diagnostic massage; all alignment errors are diagnosed.

NOALIGN
The assembler suppresses the diagnostic message "IEV033
ALIGNMENT ERROR" if fixed point, floating point, or logical
data referred to by an instruction operand is not aligned
on the proper boundary. The message will be produced,
however, for references to instructions that are not
aligned on the proper (halfword) boundary or for data
boundary violations for privileged instructions such as

Chapter 4. Using the Assembler 25

BATCHINOBATCH

DECKINODECK

ESDINOESD

FLAGCnnnJ

LINECOUNTCnnJ

LISTINOLIST

LPSW. In addition, DC, DS, DXD, or CXD constants, usually
causing alignment, are not aligned.

Default: ALIGN

BATCH
The assembler will do multiple (batch> assemblies under tha
control of a singla set of job control language cards. The
source decks must be placed together with no intervening /M
card; a single /M card must follow the final source deck.

NOBATCH
The BATCH option is suppressed.

Default: HOBATCH

DECK
The object module is placed on the device specified in the
SYSPUNCH DD statement.

NODE CK
The DECK option is suppressed.

Default: DECK

ESD

NOESD

The assembler produces the external symbol dictionary as
part of the listing.

No ESD listing is printed.

Default: ESD

Error diagnostic messages below severity coda nnn will not
appear in the listing, and will not be used to set a condition
code. Diagnostic massages can have a severity coda of O, 4, 8,
12. 16, or 20 CO is tha least severe). MNOTEs can have a
severity code of 0 through 255.

For example, FLAGC8> will suppress me~sages for severity codes 0
through 7.

Default: 'FLAGCO>'

The number of lines to be printed between headings in the
listing is nn. The permissible range i~ 1 to 99 lines.

Note: The heading occupies 5 of these lines.

Default: 'LINECOUHTC55)'

LIST
An assembler listing is produced.

26 Assembler H Version 2 Application Programming: Guide

OBJECTINOOBJECT

RENTINORENT

RLDINORLD

SYSPARM(string)

NOLI ST
No assembler listing is produced. This option overrides
ESD, RLD, XREF, and LINECOUNT.

Default: LIST

OBJECT
The object module is placed on the device specified in the
SYSLIN DD statement.

NOOBJECT
The OBJECT option is suppressed.

Default: NOOBJECT

Note: The OBJECT and DECK options are independent of each
other. Both or neither can be specified. The output on SYSLIN
and SYSPUNCH is identical, except that the control program
closes SYSLIN with a disposition of LEAVE, and SYSPUNCH with a
disposition of REREAD.

RENT
The assembler checks for a possible coding violation of
program reenterability. Code that makes your program
nonreentrant is identified by an error message, but it
cannot be an exhaustive check, because the assembler cannot
check the logic of the code. Therefore, it is possible to
have nonreentrant code not flagged.

NOR ENT
The RENT option is suppressed.

Default: NORENT

RLD

NORLD

The assembler produces the relocation dictionary as part of
the listing.

The relocation dictionary is not printed.

Default: RLD

'string' is the value of the system variable symbol &SYSPARM.
The assembler uses &SYSPARM as a read-only SETC variable. If no
value is specified for the SYSPARM option, &SYSPARM will be a
null (empty) character string. The function of &SYSPARM is
explained in Assembler H Version 2 Application Programming:
langyage Reference.

Because of JCL restrictions, the length of the SYSPARM value is
limited Cas explained in Note below>. Two single quotation
marks a~e needed to represent a single quotation mark, and two
ampersands to represent a single ampersand. For example=

PARM='OBJECT,SYSPARMCC&&AM,''EO>.FY)'

assigns the following value to &SYSPARM:

C&AM,'EO>.FY

Chapter 4. Using the Assembler 27

TERMINOTERM

TESTINOTEST

Any parentheses inside the string must be paired. If you call
the assembler from a problem program (dynamic invocation),
SYSPARM can be up to 256 characters long; otherwise, it is
limited to 56 characters Csee Note below).

Default: 'SYSPARMC)'

Note: The restrictions imposed upon the PARM field limit the
maximum length of the SYSPARM value to 56 characters, unless you
use symbolic procedure parameters to substitute for the value.
or the value contains commas that can be used as breaking points
between cards. Consider the following example Cthe underscored
characters indicate columns 1, 4, 13, and 68, respectively):

// EXEC ASMHC,PARM=COBJECT,NODECK,
(_/ ~SYSPARM CAB CD •.•••••.•.•••••••••••••••••••••••.••. ..L.)')

Because SYSPARM uses parentheses, it must be surrounded by
single quotation marks. Thus, it cannot be continued onto a
continuation. card. The leftmost column that can be used is
column 4 on a continuation card. A quotation mark and the
keyword, as well as the closing quotation mark. must appear on
that line. In addition, either a right parenthesis, indicating
the end of the PARM field, or a comma, indicating that the PARM
field is continued on the next card, must be coded before or in
the last column of the statement field (column 71>.

TERtt
A summary of error diagnostics is written to the SYSTERM
data set for use in sending error messages to a TSO
terminal.

NOT ERM
The TERM option is suppressed.

Default: NOTERM

TEST
The object module contains the special source symbol table
required by the test translator CTESTRAN> routine.

NOT EST
The special source symbol tabla is not produced.

Default: NOTEST

XREFCFULLISHORTJINOXREF

XREFCFULL)
The assembler listing contains a cross-reference table of
all symbols used in the assembly. This includes symbols
that are defined but never referenced. The assembler
listing also contains a cross-reference table of literals
used in t.he assembly.

XREFCSHORTJ
The assembler listing contains a cross-reference table of
all symbols that are referred to in the assembly. Any
symbols defined but not referred to are not included in the
table. The assembler listing also contains a
cross-reference table of literals used in the assembly.

NOXREF
No cross-reference tables are printed.

Default: 'XREFCFULL)'

28 Assembler H Version 2 Application Programming: Guida

DEFAULT OPTIONS

ASSEMBLER DATA SETS

If you do not coda an option in the PARM field, the assembler
assumes a default option. The following default options are
included when Assembler H is shipped by IBM:

PARM=CALIGN,DECK,ESD,'FLAGC0)','LINECOUNTC55)',
LIST,NOBATCH,NOOBJECT,NORENT,NOTERM,
NOTEST,RLD,'SYSPARMC>','XREFCFULL>'

However, these may not be the default options in affect in your
installation; the defaults can ba respecified when Assembler H
is installed. For example, NODECK can be made the default in
place of DECK. Also, a default option that you cannot override
can be specified during installation.

The cataloged procedures described in this book assume the
default entries. "Overriding Statements in Cataloged
Procedures" on page 40 tells you how to override them. First,
however, check whether any default options have been changed, or
whether there are any you cannot override at your installation.

Assembler H requires the following data sets, as shown in
Figure 7 on page 30:

SYSUTl

SYS IN

A utility data set used as intermediate external storage
when processing the source program.

An input data sat containing the source statements to be
processed.

In addition, the following five data sets may be required:

SYS LIB
A data set containing macro definitions (for macro
definitions not defined in the source program> and/or
source coda to be called for through COPY assembler
instructions.

SYS PRINT
A data set containing the assembly listing (unless the
HOLIST option is specified).

SYS TERM
A data set containing essentially a condensed form of
SYSPRINT, principally error flagged statements and their
error messages Conly if the TERM option is specified).

SYS PUNCH
A data set containing object module output, usually for
punching (unless the NODECK option is specified>.

SYS LIN
A data set containing object module output usually for the
linkage editor Conly if the OBJECT option is specified>.

Chapter 4. Using tha Assembler 29

SYSLIB

(Macro and
COPY Calls)

SYSIN

Assembler H

SYSUT1

(overflow)

SYSPUNCH

'-.(Object Modules) JI
(80 Character Card Image)

Figura 7. Assamblar H Data Sats

Tha data sets listed abova are described in tha text following
Figura 8 on paga 31 and Figura 9 on page 32. Tha ddnama that
normally must ba usad in tha DD statamant describing tha data
sat appears as tha heading for each description. The
characteristics of these data sets, those sat by the assembler
and those you can override, are shown in Figura 8 and Figura 9.

30 Assembler. H Version 2 Application Programming: Guida

SYS PRINT
Data set SYSUTl SVSPUNCH SYSTER!1 SYSLIN SYS IN SYS LIB

Access Method BSAf'I BSAM BSAM BSAM BSAM BSAf'I

Logical Fixed at Fixed at Fixed at Fixed at Fixed at Fixed at
Record Length BLKSIZE 80 121 80 80 80
CLRECL>

---Block Size Cl) (2) (2) (2) (2) (3)
CBLKSIZE>

Record Format (4) (4,6) (5,6) (4,6) C4,6) C4,6>
CRECFM>

Number of Cl> (7) (7) (7) (7) Not
Channel Applicable
Programs
CNCP>

Figure 8. Assembler Data Set Characteristics

Notes ta Figure 8:

Cl> You can specify a block size CBLKSIZE> between 2008 and
5100 bytes in the DD statement or in the data set label.
BLKSIZE should be a multiple of 8; if it is not, it will ba
rounded to the next lower multiple of 8. If you do not
specify BLKSIZE, the assembler sets a default block size
based on the device used for SYSUTl.

"Chapter 6. Calculating Storage Requirements" discusses the
reasons for changing the default block size.

C2> If specified, BLKSIZE must equal LRECL or a multiple of
LRECL. If BLKSIZE is not specified, it is set equal to
LRECL. If BLKSIZE is not a multiple of LRECL, it is
truncated.

Refer to the appropriate Linkage Edjtor and Loader for the
block size requirements of SYSPUNCH and SYSLIN, if they are
used as input to the linkage editor.

C3> BLKSIZE be specified in the DD statement or the data set
label as a multiple of LRECL.

C4> Set by the assembler to F or FB if necessary.

CS> Sat by the assembler to FM or FBM if necessary.

C6> You may specify B, s, or T.

(7) You can specify the number of channel programs CNCP> used
by any assembler data set except SYSUTl and SYSLIB. The
HCP of SYSUTl is fixed at 1. Tha assembler, however, can
change your HCP specification under certain conditions.
Figure 9 on page 32 shows how HCP is calculated.

Nate: If the HCP is greater than 2, chained I/O request
scheduling is sat by the assembler.

Chapter 4. Using the Assembler 31

DDna• SYSUTl

DDname SYSIN

D.Dnan SYSLIB

DDname SYSPRINT

Unit Record No unit
Device Record Device

HCP specified ~21 User specified User specified

HCP specified = 1 Computed 2 User specifiedC=l>

HCP not spec i fi ad Computed2 Computed 2

Figura 9. Humber of Channel Program CNCP> Selection

Notes to Figura 9:
1 If the HCP is greater than 2, chained I/O scheduling is sat

by the assembler.

2 For SYSPRIHT and SYSTERM data sets, the HCP sat by the
assembler is the larger of 1210/BLKSIZE or 2. For SYSIH data
sot, the NCP sat by the assembler is the larger of
800/BLKSIZE or 2. For SYSLIN or SYSPUHCH data sets, the NCP
sat by the assembler is the larger of 240/BLKSIZE or 2.

The assembler uses this utility data set as an intermediate
external storage device when processing the source program. The
input/output device assigned to this data set must be a
direct-access device. The assembler does not support
multivolume utility data sets.

The following are the devices supported for t~is data set:
3330/3333, 3340/3344, 3350, 3375, and 3380.

This data set contains the input to the assembler~the source
statements to be processed. The input/output device assigned to
this data set may be either the device transmitting the input
stream, or another sequential input device that you have
designated. The DD statement describing this data set appears
in the input stream. The IBM-suppl1ed procedures do not contain
this statement.

From this data set, the assembler obtains macro definitions and
assembler language statements to be called by the COPY assembler
instruction. It is a partitioned data set; each macro
definition or sequence of assembler language statements is a
separate member, with the member being the macro instruction
mnemonic or COPY operand name.

The data set may be defined as SYSl.MACLIB or your private macro
definition or COPY library. SYSl.MACLIB contains macro
definitions for the system macro instructions provided by IBM.
Your private library may be concatenated with SYSl.MACLIB. The
two libraries must have the same logical record length C80
bytes), but the blocking factors may be different. The DD
statement for the library with the largest block size must
appear first in the job control language for the assembly Cthat
is, before any· 1 i brary DD statements>. The appropriate JCL
Reference explains the concatenation of data sets.

This data set is used by the assembler to produce a listing.
Output may be directed to a printer, a magnetic tape, or a

32 Assembler H Version 2 Application Programming: Guide

DDname SYSTERM

DDnama SYSPUNCH

DDname SYSLIN

direct-access storage device. The assembler uses tha machine
code carrier control characters for this data set.

This data set is used by the assembler to store a summary form
of SYSPRINT containing flagged statements and their associated
error messages. It is intended for output to a terminal, but
can also be routed to a printer, a magnetic tape, or a
direct-access storage device. The assembler uses the machin~
coda carrier control character to skip to a new line for this
data set.

The assembler uses this data sat to produce tha object module.
The input/output unit assigned to this data set may ba either a
card punch or an intermediate storage device capable of
sequential access.

This is a direct-access storage device, a magnetic tape, or a
card punch data set used by the assembler. It contains the same
output text as SYSPUNCH. It is used as input for the linkage
editor.

NUMBER OF CHANNEL PROGRAMS (HCP)

RETURN CODES

~ATALOGED PROCEDURES

The number of channel programs can be specified by the user or
set by the assembler. The number will vary depending upon
whether or not a unit record device is used. figure 9 on page
32 shows how the HCP selection is made.

Assembler H issues return codes for use with the COND parameter
of the JOB and EXEC job control language statements. The COND
parameter enables you to skip or to execute a job step,
depending on tha results (indicated by the return code) of a
previous job step. It is explained in the appropriate .J.&.!.,
Reference.

The return code issued by the assembler is the highest severity
code that is associated with any error detected in tha assembly
or with any MNOTE message produced by the source program or
macro instructions. See Appendix D, "Assembler H Messages" for
a listing of the assembler errors and their severity codes.

Often the same set of job control statements is used over and
over again (for example, to specify the compilation, linkage
editing, and execution of many different programs). To save
programming time and to reduce the possibility of error, sets of
standard series of EXEC and DD statements can be prepared once
and cataloged in a system library. Such a set of statements is
termed a cataloged procedure and can be invoked by one of the
following statements:

//stepname EXEC
//stepname EXEC

procname
PROC=procname

The specified procedure is read from the procedure library
CSYSl.PROCLIB> and merged with the job control statements that
follow this EXEC statement.

Chapter 4. Using the Assembler 33

This section describes four IBM cataloged procedures: a
procedure for assembling CASMHC>; a procedure for assembling and
linkage editing CASMHCL); a procedure for assembling, ·
link-editing, and executing CASMHCLG); and a procedure for
assembling and loader executing CASMHCG>.

CATALOGED PROCEDURE FOR ASSEMBLY CASMHC)

//C

//SYS LIB

//SYSUTl

//SYSPUHCH

//SYSPRIHT

EXEC

DD

DD

DD

DD

This procedure consists of one job step: assembly. The name
ASMHC must be used to call this procedure. The result of
execution is an object module, in punched card form, and an
assembler listing. CSee also "Simple Assembly and Execution" on
page 22 for more details and another example.)

In the following example, input enters via the input stream. An
example of the statements entered in the input stream to use
this procedure is:

//jobname
//stepname
//SYSIH

JOB
EXEC PROC=ASMHC

DD *

source program statements

/M (delimiter statement>

The statements of the ASMHC procedure are read from the
procedure library and merged into the input stream.

Figure 10 shows the statements that make up the ASMHC procedure.

PGM=IEV90,REGIOH=200K

DSN=SYSl.MACLIB,DISP=SHR

UHIT=CSYSDA,SEP=SYSLIBl,SPACE=CCYL,Cl0,5)),DSH=&SYSUTl

SYSOUT=B,DCB=CBLKSIZE=800l,SPACE=CCYL,C5,5,0))

Cl>

(2)

(3)

(4)

SYSOUT=A,DCB=CBLKSIZE=3509),UHIT=C,SEP=CSYSUT1,SYSPUHCH>> (5)

Figure 10. Cataloged Procedure for Assembly CASMHC>

Notes to Figure 10:

Cl> PARM= or COHD= parameters may be added to this statement by
the EXEC statement that calls the procedure <sea
"Overriding Statements in Cataloged Procedures">. The
system name IEV90 identifies Assembler H.

<2> This statement identifies the macro library data sat. The
data sat name SYSl.MACLIB is an IBM designation.

(3) This statement specifies the assembler utility data sat.
The device class name used here, SYSDA, represents a
direct-access unit. The I/O unit assigned to this name is
specified by the installation when the operating system is
generated. A unit name such as 3330 may be substituted for
SYSDA.

C4) This statement describes the data set that will contain the
object module produced by the assembler.

34 Assembler H Version 2 Application Programming: Guida

(5) This statement defines the standard system output class,
SYSOUT=A, as the destination for the assembler listing.

CATALOGED PROCEDURE FOR ASSEMBLY AND LINKAGE EDITING CASHHCL)

This procedure consists of two job steps: assembly and linkage
editing. The name ASMHCL must be used to call this procedure.
Execution of this procedure results in the production of an
assembler listing, a linkage editor listing, and a load module.

The following example illustrates input to the assembler via the
input job stream. SYSLIN contains the output from the assembly
step and the input to the linkage edit step. It can be
concatenated with additional input to the linkage editor as
shown in the example. This additional input can be linkage
editor control statements or other object modules.

An example of the statements entered in the input stream to use
this procedure is:

JOB //jobname
//stepname
/IC.SYSIN

EXEC PROC=ASMHCL
DD *

source program statements

/M
//l.SYSIN DD *

/M

object module or
linkage editor
control statements

Note: //l.SYSIN is necessary only if the linkage editor is to
combine modules or read linkage editor control information from
the job stream.

Figure 11 on page 36 shows the statements that make up the
ASMHCL procedure. Only those statements not previously
discussed are explained.

Chapter 4. Using the Assembler 35

//C EXEC PGM=IEV90,PARM=OBJECT,REGIOH=200K

//SYS LIB DD DSH=SYSl.MACLIB,DISP=SHR

//SYSUTl DD UNIT=CSYSDA,SEP=SYSLIB>,SPACE=CCYL,(10,5)),DSH=&SYSUTl

//SYSPUHCH DD SYSOUT=B,DCB=CBLKSIZE=800>,SPACE=CCYL,C5,5,0>>

//SYSPRIHT DD SYSOUT=A,DCB=CBLKSIZE=3509),UHIT=C,SEP=CSYSUT1,SYSPUNCH>>

//SYS LIN DD DISP=C,PASS>,UNIT=SYSDA,SPACE=CCYL,C5,5,0>>, Cl)

// DCB=CBLKSIZE=400l,DSH=&&LOADSET

//L EXEC PGM=IEWL,PARM='MAP,LET,LIST,NCAL',REGION=96K,COND=C8,LT,C>
C2)

//SYS LIN DD DSN=&&LOADSET,DISP=COLD,DELETE> C3)

// DD DDNAME=SYSIN C4)

//SYSLMOD D DISP=C,PASS>,UNIT=SYSDA,SPACE=CCYL,(2,1,2>>,DSN=&GDSETCGO>
(5)

//SYSUTl DD UNIT=SYSDA,SPACE=CCYL,(3,2)),DSH=&SYSUTl (6)

//SYSPRINT DD SYSOUT=A,DCB=CRECFM=FB,BLKSIZE=3509) (7)

Figure 11. Cataloged Procedure for Assembling and Link-Editing CASMHCL>

Notes ta Figure 11:

Cl> In this procedure, the SYSLIH DD statement describes a
temporary data set, the object module, which is passed to
the linkage editor.

C2> This statement initiates linkage editor execution. The
linkage editor options in the PARM field cause the linkage
editor to produce a cross-rafaranca tabla, a module map,
and a list of all control statements processed by the
linkage editor. The NCAL option suppresses the automatic
library call function of the linkage editor.

C3) This statement identifies the linkage editor input data set
as the same one CSYSLIH> produced as output from the
assembler.

C4> This statement is used to concatenate any input to the
linkage editor from the input stream Cobjact decks and/or
linkage editor control statements> with the input from the
assembler.

CS> This statement specifies the linkage editor output data sat
Cthe load module>. As specified, the data set will be
deleted at the and of the job. If it is desired to retain
the load module, the DSN parameter must be respecified and
a DISP parameter added. Saa "Overriding Statements in
Cataloged Procedures." If the output of the linkage editor
is to ba retained, the DSN parameter must specify a library
name and a member name at which the load module is to be
placed. The DISP parameter must specify either KEEP or
CATLG.

C6) This statement specifies the utility data sat for the
linkage editor.

C7> This statement identifies the standard output class as the
destination for the linkage editor listing.

36 Assembler H Version 2 Application Prog'rammi ng: Gui de

CATALOGED PROCEDURE FOR ASSEMBLY, LINK-EDITING, AND EXECUTION CASMHCLGJ

This procedure consists of three job steps: assembly,
link-editing, and execution.

The name ASMHCLG must be used to call this procedure. An
assembler listing, an object deck, and a linkage editor listing
are produced.

The statements entered in the input stream to use this procedure
are:

//jobname
//stepname
//C.SYSIN

JOB
EXEC PROC=ASMHCLG
DD *

sobrce program statements

/M
//l. SYS IN

/Yr.
//G.ddname
//G.ddname
//G.ddname

DD *
.

object module or
linkage editor
control statements

DD
DD
DD

(parameters>
(parameters)

*

problem program input

/Yr.

Notes:

1. //l.SYSIN is necessary only if linkage editor is to combine
modules or read linkage editor control information from the
job stream.

2. //G.ddname statements are included only if necessary.

Chapter 4. Using the Assembler 37

//C EXEC

//SYS LIB DD

//SYSUTl DD

//SYSPUNCH DD

//SYSPRINT DD

//SYSLIN DD

//

//l EXEC

//SYS LIN DD

// DD

//SYSLMOD DD

//SYSUTl DD

//SYSPRINT DD

//G EXEC

Figura 12 shows the stataments that make up tha ASMHCLG
procedure. Only thosa statamants not previously discussed are
explained in the figure.

PGM=IEV90,PARM=OBJECT,REGION=200K

DSN=SYSl.MACLIB,DISP=SHR

UNIT=CSYSDA,SEP=SYSLIB>,SPACE=CCYL,Cl0,5)),DSN=&SYSUTl

SYSOUT=8,DCB=CBLKSIZE=800>,SPACE=CCYL,CS,S,O>>

SYSOUT=A,DCB=CBLKSIZE=3509),UNIT=C,SEP=CSYSUT1,SYSPUNCH>>

DISP=C,PASS>,UNIT=SYSDA,SPACE=CCYL,CS,5,0)),

DCB=CBLKSIZE=400),DSN=&&LOADSET

PGM=IEWL,PARM='MAP,LET,LIST,NCAL',REGIOH=96K,COHD=C8,LT,C>
Cl)

DSN=&&LOADSET,DISP=COLD,DELETE>

DDNAME=SYSIN

DISP=C,PASS>,UNIT=SYSDA,SPACE=CCYL,C2,1,2>>,DSH=&GOSETCGO>

UHIT=SYSDA,SPACE=CCYL,C3,2)),DSN=&SYSUT1

SYSOUT=A,DCB=CRECFM=F8,BLKSIZE=3509>

PGM=*.L.SYSLMOD,COHD=CC8,LT,C),C4,LT,L>>

(2)

C3)

Figure 12. Cataloged Procedure for Assembly, link-Editing, and Execution CASMHCLG>

Notes ta Figure 12:

Cl> Tha LET linkage editor option spacifiad in this statement
causes the linkage editor to mark the load module as
exacutable even though errors were encountered during
procassing.

C2> Tha output of the linkage aditor is specified as • membar
of a temporary data set, residing on a direct-access
device, and is to be passed to a following job step.

C3> This statement initiates execution of tha assembled and
link-edited program. The notation •.L.SYSLMOD identifies
the program to be exacuted as being in the data set .
described in job step L by the DD statement named SYSLMOD.

CATALOGED PROCEDURE FOR ASSEMBLY AND LOADER EXECUTION (ASMHCGJ

This procedure consists of two job steps: assembly and loader
execution. Loader execution is a combination of linkage editing
and loading the program for execution. Load modules .for program
libraries are not produced. CSee also "Simple Assembly and
Execution" on page 22 for more details and another example.)

38 Assembler H Version 2 Application Programming: Guide

//C

//SYS LIB

//SYSUTl

//SYSPUHCH

//SYSPRINT

//SYS LIN

//

//G

//SYSLIN

//

//SYS LOUT

The statements entered in the input stream to use this procedure
are:

//jobnama
//stepname
//C.SYSIN

/IE
//G.ddname
//G.ddname
//G.ddnama

JOB
EXEC PROC=ASMHCG
DD IE

source program

DD
DD
DD

(parameters)
(parameters)

*

problem program input

/IE

Note: //G.ddname statements are included only if necessary.

Figura 13 shows the statements that make up the ASMHCG
procedure. Only those statements not previously discussed are
explained in the figure.

The name ASMHCG must bo used to call this procedure. Assembler
and loader listings are produced.

EXEC

DD

DD

DD

DD

DD

EXEC

DD

DD

DD

PGM=IEV90,PARM=OBJECT,REGIOH=200K

DSN=SYSl.MACLIB,DISP=SHR

UNIT=CSYSDA,SEP=SYSLIB>,SPACE=CCYL,C10,5)),DSN=&SYSUT1

SYSOUT=B,DCB=CBLKSIZE=800),SPACE=CCYL,C5,5,0))

SYSOUT=A,DCB=CBLKSIZE=3509),UHIT=C,SEP=CSYSUT1,SYSPUNCH>>

DISP=C,PASS>,UNIT=SYSDA,SPACE=CCYL,(5,5,0)),

DCB=CBLKSIZE=400>,DSN=&&LOADSET

PGM=LOADER,PARM='MAP,LET,PRINT,HOCALL'

DSH=&&LOADSET,DISP=COLD,DELETE>

DDNAME=SYSIH

SYSOUT=A

Cl)

(2)

(3)

. Figura 13. Cataloged Procedure for Assembly and Loader Execution CASMHCG>

Notes to Figura 13:

Cl> This statement initiates loader execution. The loader
options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option
is the same as NCAL for the linkage editor, and the LET
option is the same as for the linkage editor.

(2) This statement defines the loader input data set as the
same one produced as output by the assembler.

Chapter 4. Using the Assembler 39

(3) This statement identifies the standard output class as the
destination for the loader listing.

OVERRIDING STATEMENTS IN CATALOGED PROCEDURES

EXEC Statements

DD statements

Any parameter in a cataloged procedure can be overridden except
the PGM= parameter in the EXEC statement. Such overriding of
statements or fields is effective only for the duration of the
job step in which the statements appear. The statements, as
stored in the procedure library of the system, remain unchanged.

Overriding for the purposes of respecification, ~ddition, or
nullification is accomplished by including in the input stream
statements containing the desired changes and identifying tha
statements to be overridden.

Any EXEC parameter (except PGM> can be overridden. For example,
the PARM= and COND= parameters can be added or, if present,
respecified, by including them in the EXEC statement calling the
procedure, the notation PARM.stepname=, or COND.stapname=,
followed by the desired parameters. "Stepname" identifies the
EXEC statement within the proc&.idura to which the modi fi cation
applies.

If the procedure consists of more than one job step, a
PARM.procstapname= or COND.procstepnama= parameter may be
entered for each step. The entries must be in order
CPARM.procstepnamel=, PARM.procstepname2=, ate.>.

All parameters in the operand field of DD statements may be
overridden by including in the input stream (following the EXEC
card calling the procedure) a DD statement with the notation
//procstepname.ddname in the name field. "Procstepname" refers
to the job step in which the statement identified by "ddname"
appears.

Note: If more than one DD statement in a procedure is to be
overridden, the overriding statements must be in the same order
as the statements in the procedure.

EXAMPLES OF CATALOGED PROCEDURES

Example 1: In the assembly procedure ASMHC (Figura 10 on page
34), the production of a punched object deck could be suppressed
and the UNIT= and SPACE= parameters of data sat SYSUTl
respecified, by including the following statements in the input
stream:

//stepnama EXEC PROC=ASMHC, x
// PARM=NODECK
//SYSUTl DD UNIT=3330, x
// SPACE=C200,C300,40)) x
//SYS IN DD *

source statements

/M

40 Assembler H Version 2 Application Programming: Guida

EXB11Ple 2: In procedure ASMHCLG (figure 12 on page 38),
suppressing production of an assembler listing and adding the
COND= parameter to the EXEC statement, which specifies execution
of the linkage editor, may be desired. In this case, the EXEC
statement in the input stream would appear as follows:

.l.lstepname

.I .I

.I .I

EXEC PROC=ASMHCLG,
PARM.C=CNOLIST,OBJECT>,
COND.L=C8,LT,stepname.C>

x
x

For this execution of procedure ASMHCLG, no assembler listing
would be produced, and execution of the linkage editor job step
.I.IL would be suppressed if the return code issued by the
assembler Cstep C> were greater than 8.

Note: When you override the PARM field in a procedure, the
entire PARM field is overridden. Thus, in this example,
overriding the LIST parametar affectively deletes PARM=OBJECT.
PARM=OBJECT m~st be repeated in the override statement;
otherwise, the assembler default valua NOOBJECT will ba used.

Example J: Tha following list shows how to use the procedure
ASMHCL (figure 11 on page 36) to:

1. Read input from a nonlabeled 9-track tape in unit 282 that
has a standard blocking factor of 10.

2. Put the output listing on a tape labeled TAPElO, with a data
set name of PROGl and a blocking factor of 5.

3. Block the SYSLIN output of the assembler and use it as input
to the linkage editor with a blocking factor of 5.

4. Link-edit the module only if there are no errors in the
assembler CCOND=O>.

5. Link-edit onto a previously allocated and cataloged data set
USER.LIBRARY with a member name of PROG .

.l.ljobname

.l.lstepname

.I .I
l'.IC.SYSPRINT
.I .I
.I .IC. SYS LIN
.l.IC.SYSIN
.I .I
.I .IL. SYS IN
.I.IL. SYLMOD
./IE

JOB
EXEC

DD

DD
DD

DD
DD

PROC=ASMHCL, X
COND.L=CO,NE,stepname.C>
DSNAME=PROGl,UNIT=TAPE, X
VOLUME=SER=TAPE10,DCB=CBLKSIZE=605)
DCB=CBLKSIZE=800>
UNIT=282,LABEL=C,NL>, X
DCB=CRECFM=FBS,BLKSIZE=800)
DCB=stepname.C.SYSLIN
DSNAME=USER.LIBRARYCPROG>,DISP=OLD

Nate: The order of appearance of overriding ddnames for job
step C corresponds to the order of ddnames in the procedure;
that is, SYSPRINT precedes SYSLIN within step C. The ddname
C.SYSIN was placed last because SYSIN does not occur at all
within step C. These points are covered in the appropriate JCL
Reference. - ...

Chapter 4. Using the Assembler 41

Example 4: Tha follow;ng example shows assembly of two programs,
l;nk-ed;t;ng of tha two assembl;as ;nto one load module, and
axecut;on of the load module. The ;nput stream appears as
follows:

//stapnamel
//SYSLIN
//
//
//SYSIN

/M
//stepnama2
/.IC.SYSLIN
//C.SYSIN

/M
/.tl.SYSIN

.IM
//G.ddname

EXEC
DD

DD

EXEC
DD
DD

PROC=ASMHC,PARM=OBJECT
DSNAME=&LOADSET,UNIT=SYSSQ, X
SPACE=C80,ClOO,SO>), X
DISP=CMOD,PASS>,DCB=CBLKSIZE=800)

*

source program 1 statements

PROC=ASMHCLG
DCB=CBLKSIZE=800>,DISP=CMOD,PASS>
M

source program 2 statements

DD !IE
ENTRY PROG

DD dd cards for G step

The appropr;ate JCL Refprence prov;das add;t;onal dascr;pt;ons
of overrid1ng techn;quas.

42 Assembler H Version 2 Application Programmfog: Gu;da

CHAPTER S. PROGRAMMING CONSIDERATIONS

This chapter discusses some topics in assembler language
programming.

SAVING AND RESTORING GENERAL REGISTER CONTENTS

A problem program should save the values contained in the
general registers upon commencing execution and, upon
completion, restore to the general registers these same values.
Thus, as control is passed from the operating system to a
problem program and, in turn, to a subprogram, the status of the
registers used by each program is preserved. This is done
through use of the SAVE and RETURN system macro instructions.

The SAVE macro instruction should ba the first statement in the
program. It stores the contents of registers 14, 15, and 0
through 12 in an area provided by the program that passes
control. Whan a problem program is given control, register 13
contains the address of an area in which the general contents
should be saved.

If the program calls any subprograms, or uses any operating
system services other than GETMAIN, FREEMAlN, ATTACH, and XCTL,
it must first save the contents of register 13 and then load the
address of an 18-fullword save area into register 13. This save
area is in the problem program and is used by any subprograms or
operating system services called by the problem program.

At completion, the problem program restores the contents of
general registers 14, 15, and 0 through 12 by use of the RETURN
system macro instruction <which also indicates program
completion). The contents of register 13 must be restored
before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process
of saving and restoring the contents of the registers. A
complete discussion of the SAVE and RETURN macro instructions
and the saving and restoring of registers is contained in the
appropriate Supervisor Services and Macro Instructions.

Name Operation Operand

BEGIN SAVE (14,12)
USING BEGIN,15 . .
ST 13,SAVEBLK+4
LA 13,SAVEBLK .
L 13,SAVEBLK+4
RETURN (14,12)

SAVEBLK DC 18F'0' . .
END

Chapter 5. Programming Considerations 43

PROGRAM TERMINATION

PARM FIELD ACCESS

You indicate completion of an assembler language source program
by using the RETURN system macro instruction to pass control
from the terminating program to the program that initiated it.
The initiating program may be the operating system or, if a
subprogram issued the RETURN, the program that called the
subprogram.

In addition to indicating program completion and restoring
register contents, the RETURN macro instruction may also pass a
return code~a condition indicator that may be used by the
program receiving control.

If the return is to the operating system, the return coda is
compared against the condition stated in the COND= parameter of
the JOB or EXEC statement.

If return is to another problem program, the return code is
available in general register 15, and may be used as desired.
Your program should restore register 13 before issuing the
RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in
the appropriate Supervisor Services and Macro Instructions.

Access to information in the PARM field of an EXEC statement is
gained through general register 1. When control is given to the
problem program, general register 1 contains the address of a
fullword which, in turn, contains the address of the data area
containing the information.

The data area consists of a halfword containing the count Cin
binary) of the number of information characters, followed by the
information field. The information field is aligned to a
fullword boundary. The following diagram illustrates this
process:

General Register 1

J Address of Fullword J L
Points

to
Fullword

... J Address of Data Area L
L J Points

J to

Data Area

... I Count in Binary l Information Field J -l

44 Assembler H Version 2 Application Programming: Guide

MACRO DEFINITION LIBRARY ADDIT~ONS

Source statement coding, to be ratriavad by tha COPY assembler
instruction, and macro definitions may ba added to the macro
library. The IEBUPDTE utility program is used for this purpose.
Details of this program and its control statements are contained
in the appropriate Utilities publication. The following example
shows how a new macro definition, NEWMAC, is added to the system
library, SYSl.MACLIB.

//CATMAC
//STEP!
//SYSUTl
//SYSUT2
//SYSPRIHT
//SYS IN
./

./
/M

JOB
EXEC
DD
DD
DD
DD
ADD
MACRO
NEWMAC
LCLA

.
MEND
ENDUP

12345,BROWN.JR, •••
PGM=IEBUPDTE,PARM=MOD
DSNAME=SYSl.MACLIB,DISP=OLD
DSNAME=SYSl.MACLIB,DISP=OLD
SYSOUT=A
DATA
LIST=ALL,NAME=NEWMAC,LEVEL=Ol,SOURCE=O

&OP1,&0P2
&PAR1,&PAR2

The SYSUTl and SYSUT2 DD statements indicate that SYSl.MACLIB,
an existing program library, is to ba updated. Output from tha
IEBUPDTE program is printed on the Class A output device
(specified by SYSPRINT). The utility control statement, ./ ADD,
and the macro definition follow the SYSIN statement. The ./ ADD
statement specifies that the statements following it ara to be
added to the macro library under the name NEWMAC. Whan you
include macro definitions in the library, the name specified in
the NAME parameter of the ./ ADD statement must boa the same as
the operation coda of the macro definition.

LOAD MODULE MODIFICATION--ENTRY POINT RESTATEMENT

If the editing functions of the linkage editor ara to be used to
modify a load module, the entry point to the load module must ba
restated when the load module is reprocessed by the linkage
editor. Otherwise, the first byte of the first control section
processed by the linkage editor will become the entry point. To
enable restatement of the original entry point, or designation
of a new entry point, the entry point must have bean identified
originally as an external symbol; that is, it must have appeared
as an entry in the external symbol dictionary. External symbol
identification is done automatically by the assembler if the
entry point is the name of a control section or START statement;
otherwise, an assembler ENTRY statement must be used to identify
the entry point as an external symbol.

Whan a new object module is added to or replaces part of the
load module, the entry point is restated in one of three ways:

• By placing the entry point symbol in the operand field of an
EXTRN statement and an END statement in the new object
module

• By using an END statement in the new object module to
designate a new entry point in the new object module

• By using a linkage editor ENTRY statement to designate
either the original entry point or a new entry point for the
load module

Further discussion of load module entry points is contained in
the appropriate linkage Editor and loader.

\

Chapter 5. Programming Considerations 45

OBJECT MODULE LINKAGE

Object modules, whether generated by the assembler or by another
language processor, may be combined by the linkage editor to
produce a composite load module, provided each object module
conforms to the data formats and linkage conventions required.
This makes it possible for you to usa different programming
languages for different parts of your program, allowing each
part to be written in the language bast suited for it. This
topic discusses the use of the CALL system macro instruction to
link an assembler language main program to subprograms produced
by another processor. The appropriate Supervisor Services and
Macro Instructjons manual contains additional details concerning
linkage conventions and the CALL system macro instruction.

Figure 14 on page 47 is an example of statements used to
establish the assembler language program linkage to FORTRAN and
COBOL subprograms.

If any input/output operations are performed by called
subprograms, appropriate DD statements for the data sets used by
the subprogr~ms must be supplied. See the appropriate language
programmer's guide for an explanation of the DD statements and
special data sat record formats used for the processor. Saa
Appendix c, "Object Deck Output" for the format of the object
deck.

46 Assembler H Version 2 Application Programming: Guida

ENTRPT SAYE C14.12>
LR 12.15
USING ENTRPT,12
ST 13,SVAREA+4 (1)
LA 15,SVAREA
ST 15.8(13)
LR 13,15

CALL name,<Vl,V2,V3>,VL (2)

L 13,SVAREA+4
RETURN (14,12)

SY AREA DC 18F'O' (3)
Yl DC Cdata> (4)
Y2 DC (data> (5)
Y3 DC Cdata> (6)

END

Cl> This is an example of OS/VS linkage convention. See your system
Supervisor Services and Macro Instructions for details.

(2) The symbol used for "name" in this statement is:

Ca) The name of a subroutine or function, when the linkage is to a
FORTRAN-written subprogram.

Cb> The name defined by the following COBOL statements in the
procedure division:

ENTER LINKAGE. ENTRY'nama'.

Cc) The name of a CSECT or START statement, or a name used in the
operand field of an ENTRY statement in an assembler-language
subprogram.

The order in which the parameter list is written must reflect the order in which
the called subprogram expects the argument. If the called routine is a
FORTRAN-written function. the returned argument is not in the parameter list: a
real or double precision function returns the value in floating point register
~; an integer function returns the value in general purpose register zero.

Nata: When linking to FORTRAN-written subprograms, consideration must be given
to the storage requirements of IBCOM (FORTRAN execution-time I/O and interrupt
handling routines> which accompanies the compiled FORTRAN subprogram. In some
instances, the call for IBCOM is not automatically generated during the FORTRAN
compilation. ys FORTRAN Application Programming: library Reference provides
information about IBCOM requirements and assembler statements used to call
IBCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow
variable-length parameter lists in linkages which call them; therefore, all
linkages to FORTRAN subprograms are required to have the high-order bit in the
last parameter in the linkage set to 1. COBOL-written subprograms have
fixed-length calling linkages; therefore, for COBOL the high-order bit in the
last parameter need not be sat to 1.

(3)

(4,5,6)

This statement reserves the save area needed by the called
subprogram. When control fs passed to the subprogram, register 13
contains tha address of this area.

When linking to a FORTRAN or COBOL subprogram, the data formats
declared in these statements are determined by the data formats
required by the FORTRAN or COBOL subprograms.

Figura 14. Sample Assembler linkage Statements for FORTRAN or COBOL Subprograms

Chapter 5. Programming Considerations 47

LIN(ING HIIH Iln-SUPPLIED PROCESSING PROGRAMS

You usually use the EXEC job control statement to load and give
control to a processing program of the operating system.
However, you can also load and give control to a sort program, a
utility program, or even a compiler "dynamically," that is, by
using a system macro instruction CLINK, XCTL, CALL, or ATTACH>
in your own program.

Nata: If you use the ATTACH macro instruction, the MVS/XA
object program will not run on S/370. See MYS/Extended
Architecture Conversion Notebook for more details.

When calling a program dynamically, make sure you follow the
OS/VS linking conventions described in the appropriate
Supervjsor Servjces and Macro Instructions manual. You must
also pass certain parameters to the processing program. These
parameters give the same information to the program as you would
supply in job control statements if you called the program with
an EXEC statement. The following section describes how to call
the assembler dynamically. Dynamic invocation of each of the
other IBM-supplied processing programs is covered in one of the
manuals describing that program.

INYOKING THE ASSEnBLER DYNAMICALLY

Assembler H can be invoked by a problem program at execution
time through use of the CALL, LINKAGE, XCTL, or ATTACH macro
instruction. If the XCTL macro instruction is used to invoke
the assembler, no user options may be stated. The assembler
will use the standard default, as set during system generation,
for each option.

If the assembler is invoked by CALL, LINKAGE, or ATTACH, you may
supply:

• The assembler options

• The ddnames of the data sets to be used during processing

Name Operatf on Operand

EP

[symbol] CALL IEV90,Coptionlist
[,ddnamelistl>,VL

{LINK! EP=IEV90,
ATTACH) PARAM=Coptionlist

[,ddnamelistl>,VL=l

specifies the symbolic name of the assembler. The entry
.point at which execution is to begin is determined by the
control program (from the library directory entry).

PARAn
specifies, as a sublist, address parameters to be passed
from the problem program to the assembler. The first word
in the address parameter list contains the address of the
option list. The second word contains the address of the
ddname list.

opttonltst
specifies the address of a variable-length list containing
the options. This address must be written even if no
option list is provided.

The option list must begin on a halfword boundary, that is,
not also a fullword boundary. The first two bytes contain
a count of the number of bytes in the remainder of the
list. If no options are specified, the count must be zero.
The option list is free form, with each field separated

48 Assembler H Version 2 Application Programming: Guide

from tha next by a comma. No blanks or zeros appear in tha
list.

DDnamelist

VL

specifies the address of a variable-length list containing
alternative ddnames for the data sets used during compiler
processing. If standard ddnames are used, this operand may
be omitted.

The ddname list must begin on a halfword boundary. The
first two bytes contain a count of the number of bytes in
the remainder of the list. Each name of less than 8 bytes
must be left-justified and padded with blanks. If an
alternative ddname is omitted, the standard name will be
assumed. If the name is omitted within the list, the
8-byte entry must contain binary zeros. Names can be
omitted from the end merely by shortening the list. The
sequence of the 8-byte entries in the ddname list is as
follows:

Entry

1
2
3
4
5
6
7
8
9

Alternative

SYS LIN
not applicable
not applicable
SYSLIB
SYS IN
SYSPRINT
SYSPUNCH
SYSUTl
SYS TERM

Note: An overriding ddname specified when Assembler H wa~
added to the operating system occupies the same place in
the above list as the IBM-supplied ddname it overrides.
The overriding ddname can itself be overridden during
invocation. For example, if SYSWORKl replaced SYSUTl, it
occupies position 8 in the above list. SYSWORKl can be
overridden by another name during invocation.

specifies that the sign bit is to be set to 1 in the last
word of the address parameter list.

The appropriate JCL Reference provides additional
description of overriding techniques.

Chapter 5. Programming Considerations 49

CHAPTER 6. CALCULATING STORAGE REQUIREMENTS

MAIN STORAGE

FIXED STORAGE

Whan Assembler H is run in a 200K-byte region, about half the
region is devoted to fixed storage for load modules, data
management, and operating system workspace. The other half is
allotted to variable storage for buffers, tablas, and
intermediate results. If the region size is varied, the size of
the variable storage will ba affected. ThGre are ways to
decrease tha size of fixed storage, whether tha region size is
increased or kept at 200K bytes.

Fixed storage accounts for approximately 95K bytes, of which
about 86K bytes are needed for load modules. Figura 15 on page
51 shows the assembler's use of a 200K-byta region. Neither
time nor main storage is drawn to scale. The shaded portion
represents main storage that is fraa at any point in time.

Figure 15 represents a series of ~ssemblias in BATCH mode. The
first few events follow. For further· details, sea "Program
Organization" in Assembler H Version 2: Logic.

1. Module IEV90 is loaded first.

2. Modula IEV90 loads modules IEVOO and IEVlO, than transfers
control to module IEVOO.

3. Modula IEVOO loads module IEV60, opens the necessary data
sets (bringing in Data Management modules), gets all
remaining free space in the region by a GETMAIN, releases 4K
bytes for OS transient use, and returns to mod~la IEV90.

4. Module IEV90 deletes module IEVOO, loads module IEV50, and
transfers control to module IEVlO.

5. Modula IEV90 deletes module IEVlO, loads module IEV20, and
transfers control to module IEV20.

6.· Modula IEV90 deletes module IEV20, loads module IEVlO, ate.

An installation can reduce the region size or increase the
amount of variable storage by putting one or more modules into
the link pack area. Note that approximately 6K bytes can be
saved if the required BSAM data management modules are in link
pack.

50 Assembler H Version 2,Application Programming: Guide

Main
Storage

191 K

86K

77K

12K

6K

IEV60

IEV10

?ASS 1
(65K)

IEVOO
INITIALIZE

6K)

IEV90

Note: Values in bytes.

DATA MANAGEMENT MODULES
(5K)

VARIABLE STORAGE (105K)

Buffers, Tables,
Workspace, etc.

ASSEMBLER COMMON TABLES
(9K)

I IEV50

IEV20

PASS 2,
REINITIALIZE

(64K)

OPCODE TABLE
(6K)

Time

Figura 15. Basic Layout for Assembler H

Chapter 6. Calculating Storage Requirements 51

YABIABLE STORAGE

Buff a rs

Figure 16 shows the amount of space required in link pack by the
indicated modules, and the r~duced minimum region required for
the assembler.

Modules Space in Assembler H Region
Link Pack ctn Bytes>

Hone 0 200K

IEV90 6K 194K

IEVlO 133K 135K
IEV20 '

IEV80

IEVlO 139K 129K
IEV20
IEV80
IEV90

Figure 16. Required Space in Link Pack

Module IEV80 was not shown in F\gure 15 on page 51. It is
called by IEV90 only if an I/O error from which the system
cannot recover occurs, or if Assembler H encounters an
impossible situation. Module IEV80 produces a formatted dump of
the region.

If Assembler H is in link pack, a maximum of only a few seconds
is saved for each assembly. However, if a high volume of
assemblies justifies keeping two regions active, the saving in
region size shown in Figure 16 becomes more meaningful.

The amount of main storage that module IEVOO sets aside for
buffers can be considerable. Consider the following example:

OPTIONS=BATCH,DECK,OBJECT
BLKSIZE=3200 Cfor SYSIN>

3360 Cfor SYSLIB>
3146 Cfor SYSPRIHT>

400 Cfor SYSPUHCH and SYSLIH>
2 buffers for each data set

Then,

BUFFERS = 2C3200+3360+3146+400+400) bytes
= 21, 012 bytes

If all factors are as above except PARM=NOBATCH, then

BUFFERS = MAXCCSYSIH+SYSLIB>,CSYSPRINT+SYSPUHCH+SYSLIH>l
= MAXC2C3200+3360),2(3146+400+400)]
= MAXCC13,120>,C7,892>l
= 13,120 bytes

Either way, the assembler is tying up a lot of variable storage
for buffers.

52 Assembler H Version 2 Application Programming: Guide

Wark Ftla Blacks

Suppose 200K bytes is the size of the largest region available
in a particular installation and there is no possibility of
putting Assembler H modules into link pack. If a particularly
large source deck will not assemble under Assembler H because of
a lack of variable storage, than you can attempt the following
procedures, in the indicated sequence, singly or in combination:

1. If both the options TERM and LIST have bean specified, sea
i.1hather one of them can be al i mi natad.

2. Decrease BLKSIZE, particularly on SYSIH and SYSPRIHT. The
distributed cataloged procedures (for details, see
"Cataloged Procedures" on page 33) include the following DD
statement:

//SYSPRIHT DD SYSOUT=A,DCB=CBLKSIZE=3509)

Override these as follows:

//SYSPRIHT DD SYSOUT=A,DCB=CBLKSIZE=1210)
//SYSIH DD M,DCB=CBLKSIZE=800)

Note that BLKSIZE must be a multiple of 121 for SYSPRIHT and
SYSTERM, and a multiple of 80 for SYSIH, SYSLIB, SYSPUNCH,
arid SYSL IH.

3. C~py SYSLIB to a private library, reblocking it to a smaller
s1za. The new BLKSIZE must be a multiple of 80. Override
the SYSLIB DD statement to indicate the new blocking factor
and the new DSHAME.

4. Consider the default setting of SYSUTl described below.
Specify, by overriding the default, a smaller BLKSIZE on the
SYSUTl DD card. Saa "Work Fila Blocks," below, for details.

5. If none of these procedures solves the problem, you are
faced with the prospect of breaking the single, large
program down into two or more smaller ones.

Assembler H keeps the ordinary symbol table and global
dictionary in main storage throughout Pass 1 CIEVlO>. This
leads to the type of problem covered by the above five steps.
Before breaking the program into smaller ones, you might attempt
to decrease the number of symbols that are in your program or
are generated by your program.

For example, if you use the DCBD macro to define all possible
symbolic fields of a DCB and actually use only one such field,
you have unknowingly put about 100 unused symbols into the
symbol tabla. These 100 symbols occupy about 3400 bytes.

After setting aside sufficient variable storage for data sat
buffers, IEVOO divides the remaining variable storage into work
file blocks.

Several factors are considered in determining the block size.
They include the following:

1. Many of these blocks will ba spilled onto SYSUT1. For
efficient utilization of SYSUT1 space, the block sizes
should be chosen from full-track, half-track, third-track,
etc., sizes corrasponding to the device assigned to SYSUT1.

2. The block size should be reasonable.

3. For ease of internal processing, the block size should be a
multiple of 8. ·

The default size selected Cthat is, the largest block size
satisfying 1, 2, and 3 above> for a 3330/3333 direct-access
device is 4248 bytes.

Chapter 6. Calculating Storage Requirements 53

symbol Tables

The various routines in Assembler H are given one block of work
space at a time, as needed. Once obtained, the blocks are not
reusable until the requesting routine indicates that they can be
returned or spilled onto SYSUTl. Depending on the assembly and
the device used for SYSUTl, this may result in inefficient use
of main storage.

For example, Pass 2 needs a block for RLDs. If SYSUTl is a 3330
and there is only one RLD involved, then Pass 2 ties up 4248
bytes of main storage for 8 bytes of useful information.
Because there is room for fewer than 20 of these blocks in the
normal ZOOK-byte region, it is conceivable that the assembler
could run out of main storage in soma situations.

As pointed out in the previous section, one method of attempting
to remedy this situation would be to override the block size
CBLKSIZE> for SYSUTl on the DD statement. Thus, in the case of
the 3330 (refer to "Cataloged Procedures" on page 33), you could
use the following:

//SYSUTl DD UNIT=SYSDA,DCB=CBLKSIZE=2056),SPACE=CCYL,C10,5>>

Strictly speaking, you do not need to restrict yourself to the
natural divisors (full, half, third, quarter> of device tracks.
However, you should be aware of the consequences of a poor
choice. For example, 4248 bytes is nearly a third of a track
for the 3330; 4144 bytes bytes is also nearly a third of a
track, but 4352 bytes is too big--only two 4352-byte blocks
would fit on each track. In addition, making the block size too
small may cause unusually heavy I/O activity on SYSUTl and
hinder performance. Assembler H will sat the SYSUTl block size
to the default value if you attempt to sat it to lass than 2003
bytes.

You can specify a BLKSIZE larger than the size of a track for
the device if you also specify the parameter RECFM=T (for track
overflow>; naturally, the device used for SYSUTl must have the
track overflow feature. If the BLKSIZE specified is larger than
a track but track overflow is not specified in RECFM, the
assembler takes the default block size for the device.

A program containing approximately 1000 symbols, each symbol
occu'pyi ng about 34 bytes of main storage work space, can be
assembled in the Assembler H ZOOK-byte region.

Figure 17 on page 55 can be used as a guide in assessing the
amount of main storage needed to assemble a program with a given
number of symbols.

overall Dyna•ic storage

Assembler H uses BPAM to access library data and BSAM for
general data management. The assembler can run on any OS/VS
system that has a virtual storage area of ZOOK bytes assigned to
it.

54 Assembler H Version 2 Application Programming: Guide

2000

1000

Number of
Symbols

170K

Main storage in bytes

200K 230K

Figure 17. Aid in Assessing Main Storage Required by a Symbol
Tabla with 1000 or 2000 Symbols

AUXILIARY STORAGE ESTIMATES

WORK FILE SPACE FDR SYSUTl

During both Pass 1 and Pass 2, the single work file SYSUTl is
used for intermediate results. Distributed cataloged procedures
(see "Cataloged Procedures" on page 33) for SYSUTl show a
primary allocation of 10 cylinders and up to 15 additional
secondary allocations in increments of 5 cylinders each. This
should be sufficient for most assemblies.

The amount of SYSUTl space used is almost independent of region
size. As pointed out earlier, a poor choice of BLKSIZE for
SYSUTl could drastically increase the direct access space
needed. Whenever IEVlO fills a block that can be spilled to
SYSUTl, the block is written out to SYSUTl in anticipation of a
need to reuse the main storage space. If this need never arises
and the main storage space is never overlaid, the data is simply
not read back from SYSUTl. However, such data is taking up
space on SYSUTl.

AUXILIARY SPACE DN LINKLIB AND PRDCLIB

The following list shows the number of tracks needed for the
Assembler H load modules on SYSl.LINKLIB (or a private library)
when the system uses the OS/VS linkage Editor or Loader. The
PROCLIB uses approximately 1 track regardless of device type.

Number of Di~ectory Blocks: 2

Number of Tracks Required for LINKLIB:

3330 DASO - 19
3340 DASD - 29
3350 DASO - 13
3375 DASD - 8
3380 DASD - 6

Chapter 6. Calculating Storage Requirements 55

PART 3. CMS INFORMAIIQH

Part 3. CMS Information 57

CHAPTER 7. ASSEMBLER LANGUAGE PROGRAMMING UNDER CMS

This chapter is for programmers who code in the assembler
language under CMS (Conversational Monitor System). It is
intended to help you assemble and execute your program, to
choose and specify the options you need, and to interpret the
listing and the diagnostic messages issued by the assembler. To
use this section effectively, you should be familiar with the,
assembler language described in Assembler H Yersjon 2 ·
Application Programming: Language Reference.

This chapter is composed of the following major sections:

• "Introduction" describes the relationship of the assembler
to CMS, and the input for and output of the assembler.

• "CMS Management of Your Assembly" describes how CMS manages
the processing of permanent and temporary files created
during assembly.

• "Creating an Assembler Language Program: CMS Editor"
describes how you create an assembler language program using
the CMS editor. This section also describes how to define
an OS/VS data set as a CMS file.

• "Using Macros" refers you to another manual for a
description of CMS Assembler macros, and describes how to
add macro definitions to a macro library and specify the
order in which those macro libraries are searched.

• "Assembling Your Program: HASM Command" describes the format
of the CMS HASM command.

• "Assembler Options for CMS" describes how you use the
assembler options when you assemble your program.

• "Assembler Data Sets and Storage Requirements" describes the
assembler data sets and storage requirements of the
assembler.

• "Loading and Executing Your Assembled Program" describes the
commands for execution and for executing more than one
module in an assembly. This section also describes CMS
register usage during program execution and how parameters
are passed to the program. Finally, this section tells you
how to create a module of your program, so that it will
execute when you invoke its file name on the command line.

• "Programming Aids" supplies information about the SYSTERM
listing, and about the diagnostic messages generated by CMS.

RELATIONSHIP OF ASSEMBLER TD CMS

The assembler language program can be executed under control of
CMS. This assembler program is the same as that supplied with
the OS/VS systems. When you are using CMS, VM/SP CP Command
Reference for General Users, VM/SP CMS Command and Macro
Reference, or VM/Extended Architecture Mjgration Ajd Command,
Macro. and Diagnose Code Reference should be used for more
detailed information about CMS.

As input, the assembler accepts a program written in assembler
language Cas defined in the Glossary). This program is referred
to as a source module.

58 As~amblar H Version 2 Application Programming: Guide ·

OUTPUT

The output from the assembler consists of an object module and a
program listing. The object module is stored on your virtual
disk in a TEXT file. You can bring it into your virtual storage
and execute it by using the CMS LOAD and START commands. The
program listing lists all the statements in the module, both in
source and machine language format, and gives other important:
information about the assembly, such as error massages. The
listing is described in detail in "Chapter 2. Using the
Assembler Listing."

CMS MANAGEMENT OF YOUR ASSE!!IJ..I

Whan you assemble a program under CMS, permanent and temporary
files are created and CMS performs certain processing steps.
This section describes how CMS manages this processing.

FILES CREATED DURING ASSEMBLY

During the assembly of your program, files are created by CMS.
Soma files are permanent, others temporary. The permanent files
are:

• An ASSEMBLE file, which is the sourca coda used as input by
the assembler

• The· LISTING file, which contains the listing produced by the
assembler, describing the results of the assembly

• The TEXT file, which contains tha object code created during
the assembly

A temporary file, SYSUTl, is created during assembly. It is
used as a work file during assembly of your program. Figura 18
on page 60 shows input to the assembler and its output.

The utility files are placed on the read/write disk with tha
most available write space.

The TEXT and LISTING files are placed on one of thraa possible
disks, if they are available:

• The disk on which tha source file resides

• Tha parent disk of the above disk Cif it exists>

• Tha primary disk

If all three attempts fail to place the information on a
read/write disk, the assembly will terminate with an error
massage.

FILE PROCESSING BY THE ASSEMBLER

Whan assembling under CMS, two new files are created, each with
the file name of the source ASSEMBLE file, but with file types
of TEXT and LISTING. During assembly, any files residing on the
virtual disk being processed, with the file name of the file you
are processing and file types of TEXT or LISTING, will be
erased. Unless you specify otherwise, the new TEXT and LISTING
files created during assembly take their place on your
processing disk. These files are erased even if you specify via
NOOBJECT and NOLIST that there will be no new files to replace
them.

CMS also defines a utility file for your assembly, thus
eliminating the need for you to define it. At the and of
assembly, the utility file is erased.

Chapter 7. Assembler Language Programming under CMS 59

INPUT TO ASSEMBLER ASSEMBLER OUTPUT

Virtual Disk
on which your
ASSEMBLE File
resides, the A 1 Disk.

Temporary
workfile; erased
after assembly

A1

MYFILE
ASSEMBLE

SYSUT1

Assembler
Program

MYFILE
LISTING

Your A1 Disk now
contains three files
with filename MYFI LE -
ASSEMBLE, TEXT,
and LISTING.

Figura 18. Filas Created during Assembly

CREATING AN ASSEMBLER LANGUAGE PROGRAM: CMS EDITOR

To create an assembler language program using CMS, you can use
the CMS EDIT command. The EDIT command invokes the CMS editor,
which provides an interactive environment for program creation,
including subcommands that allow you to perform such functions
as inserting and deleting lines and automatic tab setting. WhGn
you create an assembler language program under CMS, the EDIT
command is entered in the following form:

EDIT filename ASSEMBLE

where filename is tha name of your file. You must ensure that
you enter a filetypa of ASSEMBLE, thus specifying to the editor
(and CMS> that you ara creating an assembler language program.
You can find a complete description of the editor and its
facilities in YMISP CM§ Command and Macro Reference or
VM/Extended Architecture Miqratjon Ajd Command. Macro. and
Piagnose Coda Reference.

When you have created your assembler language program, you use
the CMS HASM command to invoke the assembler program to assemble
your program file.

OVERRIDING HASM FILE DEFAULTS

When you issue the HASM command, default FILEDEF commands arQ
issued for assembler data sets. You may want to override thasg
with explicit FILEDEF commands. The ddnames used are:

SYS IN

SYSLIB

Input to tha assembler

Macro/COPY library

60 Assembler H Version 2 Application Programming: Guida

SYSUTl Utility work file

SYSPUNCH Object module output

SYSLIN Object module output

SYSPRINT listing output

SYSTERM Diagnostic output

The default FILEDEF commands issued by HASM for these ddnames
are:

FILEDEF SYSLIN DISK fn ASSEMBLE * <RECFM FB LRECL 80 BLOCK 3200
FILEDEF SYSLIB DISK CMSLIB MACLIB * CRECFM FB LRECL 80 BLOCK 3200
FILEDEF SYSUTl DISK fn SYSUTl m4 CBLOCK 4000
FILEDEF SYSPUNCH PUNCH
FILEDEF SYSLIH DISK fn TEXT ml
FILEDEF SYSPRINT DISK fn LISTING ml CRECFM FB BLOCK 121
FILEDEF SYSTERM TERMINAL

In the FILEDEFs for SYSUTl, SYSLIN, and SYSPRINT, the file modes
'm4' and 'ml' are established dynamically by the HASM command
processor as follows:

In the FILEDEF for SYSUTl, the file mode 'm4' is set to use the
read/write disk with the most available space. For example, if
three read/write disks were accessed as the A, B, and D disks,
and if the D disk had the most available space, then 'm4' would
be set to 'D4' for use during the assembly.

In the FILEDEFs for SYSLIN and SYSPRINT, if the assembler source
file CSYSIN input) is not on disk or is on a read-only disk, the
file mode 'ml' is set to 'Al'. If the source file is on a
read/write disk, the mode letter 'm' is set to the mode of that
read/write disk. For example, if the source file were on a
read/write B disk, the file mode 'ml' would be set to 'Bl'.

A FILEDEF command, issued to any of the above ddnames prior to
invoking the assembler, overrides the default FILEDEF issued by
the HASM command processor. Assume that there is an assembler
source file in card deck form that you want to assemble. If you
have this card deck available to your CMS card reader, you could
issue an overriding FILEDEF command prior to assembling; that
is, FILEDEF SYSIN READER. Now you can invoke the assembler as
follows:

HASM SAMPLE (options ••.•

The name SAMPLE is used by the HASM as the file name for any
TEXT or LISTING files produced by the assembler. An existing
TEXT and/or LISTING file on your read/write A-disk would be
replaced by new versions created by the HASM command processor.

Similarly, if you have a tape containing an assembler input file
that you want to assemble, you must issue the following command:

FILEDEF SYSIN TAPn CRECFM F LRECL 80 BLOCK 80

or, if the file were blocked 80x800, you could specify BLOCK 800
in the preceding FILEDEF. In either case, the FILEDEF would be
followed by the command HASM SAMPLE (options ..•.

You can read OS/VS data sets on CMS files by defining those data
sets with the FILEDEF command. For example,

FILEDEF SYSIN DISK OSDS ASSEMBLE fm
DSN OS DATASET (options ..•

HASM (options •••

Chapter 7. Assembler language Programming under CMS 61

USING ftACROS

It is also possible to assemble a member of an OS/VS partitioned
data sat by using the MEMBER parameter of the FILEDEF command.

The same techniques used in these examples can ba applied to
other ddnames. Cara should be taken that any attributes
specified for a file conform to the attributes expected by the
assembler for the device.

ASSEnBLER nACROS SUPPORTED BY ens

There are several macros you can usa in assembler programs.
Among the sar\licas provided by thasa macros are the ability to
write a record to disk, to read a record from disk, to write
lines to a virtual printer, and so on. All the CMS Assembler
macros are described in VM/SP CP Comm1nd Reference for General
~.I::i or the appropriate VM/Extended Architecture Migration Aid
manual.

ftACRO DEFINITION LIBRARY ADDITIONS

Source statement coding, to be retrieved by the COPY assembler
instruction, and macro definitions may be added to a macro
library. The CMS MACLIB command is used to create and modify
CMS macro libraries. Details of this command are contained in
YM/SP CMS Command and Macr9 Reference or the appropriate
VM/Extended Architecture Migration Aid manual.

SPECIFYING MACRO LIBRARIES

The GLOBAL command is used to identify which CMS libraries are
to be searched for macro definitions and COPY coda. Private
libraries and CMSLIB may be concatenated with each other in any
order by the GLOBAL command; The format of this command is
described in YM/SP CMS Command and Macro Rafar9nca or the
appropriate VM/Extendad Architecture Migration Aid manual.

ASSEftBLING YOUR PROGRAM: HASM COMMAND

HASM COMMAND FORMAT

File N•• Entry

Once you have created or defined a source program, you assemble
the program using the CMS HASM command. This command invokes
the assembler program. This section describes how you use HASM.

You use the HASM command to create an object file from a source
file. The source program can be created by the CMS editor, or
it can be created externally and defined for use under CMS by
the FILEDEF command. HASM takes the following form:

HASM filename (options[)]

where 'filename' is the name of the file you are assembling and
'options' is a series of keywords used to specify functions
associated with the assembler. The options are described in
"Assembler Options for CMS" on page 63.

When your file has bean created by the CMS editor, you use the
file name associated with the file when you issue the HASM
command. If your file has bean defined for use under CMS by the
FILEDEF command, you use a dummy or unique file name to be used
by the assembler to define the LISTING and TEXT files the

62 Assembler H Version 2 Application Programming: Guida

assembler produces. You need not enter the standard CMS
file-type field, since the default file type is ASSEMBLE.

ASSEMBLER OPTIONS FOR CHS

COMMAND DEFAULTS

HASM offers a number of optional facilities. For example, you
can suppress printing of your assembly listing or parts of the
listing, and you can specify whether you want an object deck or
an object module. You select the options by including
appropriate keywords in the HASM command that invokes the
assembler. There are three types of options:

• Simple pairs of keywords= a positive form (such as OBJECT>
that requests a facility, and an alternative negative form
<such as NOOBJECT> that rejects that facility.

• Keywords that permit you to assign a value to a function
<such as LINECOUHCSO>>.

• HASM command processor options (such as PRINT> which are not
passed to Assembler H but are used to control certain
aspects of the assembly process. Such options are referred
to in later sections as "CMS options" to distinguish them
from Assembler H options.

Each of these options has a standard or default value that is
used for the assembly if you do not specify an alternative
value. The default values are discussed in "Command Defaults"
below.

The HASM command processor combines all the assembler options
into a string of characters with a comma separating each option.
This string is passed to the assembler when it is invoked. If n
options are specified Cn>l), then n-1 commas are inserted. The
total number of characters in the assembler options plus the
number of inserted commas must not be greater than 100. The CMS
options are not included in this count. You may specify the
options in any order. If contradictory options are used (for
example, LIST and HOLIST>, the rightmost option Cin this case,
HOLIST) is used.

The command options are described under "Command Format."

If you do not code a given option in the HASM command, a default
option will be assumed. The following default options are
included when HASM is shipped by IBM=

DECK, HOOBJECT, LIST, XREFf.FULL), NORENT, NOTEST, NOBATCH,
ALIGN, ESD, RLD, LINECOUNC55), FLAGCO), SYSPARMC), DISK,
NUMBER, NOSTMT, NOTERM

However, these m~y not be the default options in affect at your
installation. The defaults could have been respecified when
HASM was installed. For example, RENT could be made the default
in place of NORENT. Also, a default option·can be specified
during installation so that you cannot override it. Similar
considerations apply to the assembler ddnames for which the HASM
command processor issues FILEDEFs. In the description of the
HASM command, the options and ddnames specified as being
"default values" are those included when HASM is shipped by IBM.

You should determine which default values are in effect at your
installation and whether there are any you cannot override.

Chapter 7. Assembler Language Programming under CMS 63

COMMAND FORMAT

ALIGNINOALIGN

The HASM command is used to invoke Assembler H to assemble a
specified file. HASM processing and output are controlled by
the options selected. The format of the HASM command follows:

HASM [fnl [(options ... [)]]

where:

fn
is the file name of the source file to be assembled. The
file specified must consist of fixed-length, 80-character
records. If a user-issued FILEDEF for SYSIN is active, and
if the FILEDEF specif~ed DISK, the file name may be
omitted. If the user FILEDEF specifiQd TAPn or READER, a
"dummy" file name must be supplied and is used to name the
TEXT and LISTING files. If no user FILEDEF for SYSIN is
active, the source file must exist on an ACCESSed disk and
mus.t have a file type of ASSEMBLE.

options
(sea below>

Listing Control Options:

[ESDINOESDJ
[FLAG CO>IFLAG Cnnn>l
C LIST I NOLISTl
[LINECOUN CSS>ILINECOUN Cnn>l
[RLDINORLDl
CXREF CFULL>IXREF CSHORT>INOXREFl
CDISKIPRINTINOPRINTl

Object Modula Control Options:

CDECKINODECKl
COBJECTINOOBJECTl
CT EST I NOT EST l

SYSTERM Options:

CNUMBERINONUMBERl
[STMTINOSTMTl
[TERMINAL CO>ITERMINAL Cn>INOTERMl

Other Options:

[ALIGN I NOALIGNl
£BATCHINOBATCHl
CRENTINORENTl
CSYSPARM C>ISYSPARM Cstring>ISYSPARMC?>l

The list below, in alphabetic order, describes the assembler
options you can use to control the assembler listing.

ALIGN
The assembler does not suppress the alignment error
diagnostic message; all alignment errors are diagnosed.

64 Assembler H Version 2 Application Programming: Guide

BATCHINOBATCH

fi:SD!HOESD

L.INECDUNCnn)

NOALIGN
The ~ssembler suppresses the diagnostic message "IEV033
ALIGNMENT ERROR" if fixed-point, floating point, or logical
data referred to by an instruction operand is not aligned
on the proper boundary. The message will be produced,
however, for references to instructions that are not
aligned on the proper (halfword> boundary or for data
boundary violations for privileged instructions such as
LPSW. In addition, DC, OS, DXD, or CXD constants, usually
causing alignment, are not aligned.

Default: ALIGN

BATCH
Tha assembler will do multiple (batch) assemblies under the
control of a single HASM command. The sourca decks must be
placed together in ona file. The TEXT file produced will
contain multiple object decks. The LISTING file produced
will contain multiple listings.

NOBATCH
The BATCH option is suppressed.

Default: NOBATCH

DECK
The object module is placed on the SYSPUNCH device.

NODE CK
The DECK option is suppressed.

Default: DECK

ESD

NOESD

The assembler produces the external symbol dictionary as
part of the listing.

Ho ESD listing is printed.

Default: ESD

Error diagnostic massages below severity code nnn will not
appear in the listing nor on the SYSTERM device. Diagnostic
messages can have severity codas of O, 4, 8, 12, 16, or 20 CO is
the least severe). MNOTEs can have a severity code of 0 through
255.

For example, FLAGC8) will suppress messages for severity codas 0
through 7.

Default: 'FLAGCO)'

The number of lines to be printed between headings in the
listing is nn. The permissible range is 1 to 99 lines.

Note: The heading occupies 5 of these lines.

Default: 'LINECOUHC55)'

Chapter 7. Assembler Language Programming under CMS 65

LISTINOLIST

NUMBERINONUMBER

OBJECTINOOBJECT

PRINTINOPRINTIDISK

RENTINORENT

LIST
An assembler listing is produced. Hota that tha HOLIST
option overrides the ESD, RLD, XREF, DISK, and PRINT
options. In addition, no diagnostic information will ba
written on the SYSTERM davice.

NOLI ST
Ho assembler listing is produced. This option overrides
ESD, RLD, XREF, and LIHECOUH.

Default: LIST

NUMBERINUM
This CMS option writes the lina number field <columns 73 to
80 of tha input records) on the SYSTERM devica for
statements for which diagnostic information is produced.

NONUl'IBERINONUM
This CMS option suppresses the HUMBER option.

Default: NUMBER

OBJECT
The object modula is placed on the SYSLIN device.

NOOBJECT
The OBJECT option is suppressed.

Default: HOOBJECT

Note: The OBJECT and DECK options are independent of each
other. Both or neither can be specified. The output on SYSLIH
and SYSPUNCH is identical, except that the control program
closes SYSLIN with a disposition of LEAVE, and SYSPUNCH with a
disposition of REREAD.

PRINT IPR .
This CMS option writes the LISTING file on the printer.
The LISTING fila is not written on disk.

NOPRIMTINOPR
This CMS option suppresses tha writing of the LISTING file.
Any assembler diagnostic messages to be written to the
SYSTERM device ara not affected.

DISK I DI
This CMS option writes the LISTING on a virtual disk.

Default: DISK

RENT
The assembler checks for a possible coding violation of
program reenterability. Coda that makes your program
nonreentrant is identified by an error message, but it
cannot be an exhaustive chack as the assembler cannot check
the logic of the coda. Therefore, it is possible to have
nonreentrant code not flagged.

66 AssemblAr H Version 2 Application Programming: Guide

RLDINDRLD

STMTINOSTMT

SYSPARMCstring)

TERMINALCnJINOTERM

NOR ENT
The RENT option is suppressed.

Default: NORENT

RLD
The assembler produces the relocation dictionary as part of
the listing.

NORLD
The relocation dictionary is not printed.

Default: RLD

STMT
This CMS option writes the statement number assigned by the
assembler on the SYSTERM device for those statements for
which diagnostic information is produced.

NOSTMT
This CMS option suppresses the STMT option.

Default: NOSTMT

'string' is the value of the system variable symbol &SYSPARM.
The assembler uses &SYSPARM as a read-only SETC variable. If no
value is specified for the SYSPARM option, &SYSPARM will be a
null (empty) character string.

In the CMS environment, 'string' cannot be longer than 8
characters. If you wish to enter a string of more than 8
characters, use the SYSPARM<?> format. Using this form, you
will be prompted at your terminal with the message:

ENTER SYSPARM:

You may then enter as many characters as you want up to the
option limit of 100 characters. It is also necessary to use the
SYSPARM<?> form to enter parentheses and/or embedded blanks in
'string'.

Default: 'SYSPARM<>'

TERMINALCnllTERMCnJ
This CMS option provides the ability to stop diagnostic
·information of a given severity from being written on the
SYSTERM device. The value of n is a decimal number between
0 and 7. The value of n can be thought of as a 3-bit
binary number, and it is this 3-bit "mask" that serves as
the diagnostic message filter. Consider the 3 bits to be
labeled bO, bl, b2 from left to right. Than, the following
apply:

bO = 1
bl = 1
b2 = 1

suppress 'ERROR' diagnostics
suppress 'WARNING' diagnostics
suppress 'MNOTE' diagnostics

For example, TERM<4> will suppress ERROR diagnostics, and
TERMC5) will suppress ERROR and MNOTE diagnostics.

Chapter 7. Assembler Language Programming under CMS 67

TESTINOTEST

NOT ERM
This CMS option suppresses the writing of all diagnostic
information on the SYSTERM device. HOTERM has the same
effect as the option TERMC7>.

Default: NOTERM

TEST
The object module contains the special source symbol table
CSYM cards).

NOT EST
The special source symbol table is not produced.

Default: NOTEST

XREFCFULLISHORTJINOXREF

XREFCFULL)
The assembler listing contains a cross-reference table of
all symbols used in the assembly. This includes symbols
that are defined but never referenced. The assembler
listing also contains a cross-reference table of literals
used in the assembly.

XREFCSHORTJ
The assembler listing contains a cross-reference table of
all symbols that are referred to in the assembly. Any
symbols defined but not referred to are not included in the
table. The assembler listing also contains a
cross-reference table of literals used in the assembly.

NOXREF
No cross-reference tables are printed.

Default: 'XREFCFULL)'

ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS

This section describes the data set used by the assembler. It
also describes the main storage and auxiliary storage
requirements of the assembler. This description is intended for
programmers who want to alter the assembler's region size or
data set parameters.

ASSEMBLER DATA SETS FOR CMS USERS

DDname SYSUTl

DDname SYSIN

This section describes the data sets used by the assembler to
assemble your program under CMS; these data sets are referred to
as files.

The assembler uses this utility data set as an intermediate
external storage device when processing the source program.
This data set must be organized sequentially, and the device
assigned to it must be a direct-access device.

This data set contains the input to the assembler~the source
statements to be processed. The input device assjgned to this
data set may be DISK, READER, or TAPn, or another sequential
input device that you have designated. The FILEDEF command
describing this data set appears in the input stream.

68 Assembler H Version 2 Application Programming: Guide

DDnama SYSLIB

DDnam• SVSPRINT

DDnama SVSPUNCH

DDname SYSLIN

DDname SYSTERtt

From this data set, whose file type must be MACLIB, tha
assembler obtains macro definitions and assembler language
statements that can be called by the COPY or a macro assembler
instruction. It is a partitioned data sat: Each macro
definition or sequence of assembler language statements is a
separate member, with the member name being the macro
instruction mnemonic or COPY code name. The data set may be
CMSLIB or a private macro library. OSMACRO contains macro
definitions for the IBM-supplied OS macro instructions supported
by CMS. DMSSP contains macro definitions for the IBM-supplied
CMS macro instructions for VM/SP. Private libraries and CMSLIB
can be concatenated with each other in any order by the GLOBAL
command.

This data set is used by the assembler to produce a listing.
Output may be directed to a printer, a magnetic tape, or a
direct-access storage device. The default device is DISK. The
assembler uses the American National Standard Institute CANSI>
carrier-control characters for this data set. The smallest
block size recommended is 1089 bytes <with a blocking factor of
9).

The assembler uses this data set to produce a punched copy of
the object module. The output unit assigned to this data set
may be either a card punch or an intermediate storage devi~e
capable of sequential access. The object module is placed on
the SYSPUNCH device if tha assembler option DECK is specified.

This is a direct-access storage device or a magnetic tape data
set used by the assembler. It contains the same output text
(object module) as SYSPUNCH. It is used as input for the CMS
LOADER. The object module is placed on the SYSLIN device if the
assembler option OBJECT is specified.

This data set is used by the assembler to produce diagnostic
information. The output may be directed to a remote terminal, a
printer, a magnetic tape, or a direct-access storage device.
The assembler uses the ANSI carrier-control characters for this
data set. The smallest block size recommended is 1089 bytes
Cwith a blocking factor of 9).

ASSEMBLER VIRTUAL STORAGE REQUIREMENTS

The minimum size virtual machine required by the assembler is
344K bytes. However, better performance is generally achieved
if the assembler is run in 396K bytes of virtual storage. This
size is recommended for medium and large assemblies.

If more virtual storage is allocated to the assembler, the size
of buffers and work space can be increased. The amount of
storage allocated to buffers and work space determines assembler
speed and capacity. Generally, as more storage is allocated to
work space, larger and more complex macro definitions can be
handled.

Chapter 7. Assembler Language Programming under CMS 69

LOADING AND EXECUTING YOUR ASSEMBLED PROGRAM

Once you have assembled your program file, you can load and
execute the resulting TEXT file (containing object code) using
the CMS LOAD and START commands. The LOAD command causes your
TEXT file to be loaded into storage in your virtual machine and
the START command begins execution of the program. If you are
assembling more than one file, use the CMS INCLUDE command to
bring the additional files into storage. These commands and the
options associated with them are described in VM/SP CP Command
Reference for General Users or the appropriate VM/Extended
Architecture Migration Aid manual.

CHS REGISTER USAGE DURING EXECUTION OF YOUR PROGRAM

CMS reserves four registers for its own use during the execution
of an assembler language program. When control is received from
the user program, the entry point address for the program is
placed in register 15. Register 1 contains the address of a
parameter list, which contains any parameters passed to the
program. Register 13 contains the address of the save area.
Register 14 contains the section address to return control to
the control program.

PASSING PARAMETERS TO YOUR ASSEMBLER LANGUAGE PROGRAM

CMS provides you with the ability to pass parameters to an
assembler language program by means of the START command. The
statement below shows how to pass parameters to your program
using the CMS START command:

START MYJOB PARM! PARM2

The parameters must be no longer than 8 characters each, and
must be separated by blanks.

CMS creates a list of the parameters for use during execution.
The parameter list for the command above would look like:

PLIST DS OD
DC CL8'MYJOB'
DC CL8'PARM1'
DC CL8'PARM2'
DC 8X'FF'

where the list is delimited by hexadecimal FFs.

CREATING A MODULE OF YOUR PROGRAM

PROGRAMMING AIDS

When you are sure that your program executes properly, you may
want to create a module of it, so that you can execute it by
simply invoking its file name on the command line.

To create a module, you use the LOAD, GENMOD, and, in some
cases, the LOADMOD commands. For more information, see the
section in VM/SP CP Command Reference fqr General Users or the
appropriate VM/Extended Architecture Migration Aid manual on
creating a module.

This section contains reference information about the assembler.
It describes the SYSTERM listing and the diagnostic messages
generated by CMS.

70 Assembler H Version 2 Application Programming: Guide

CMS SYSTERM LISTING

The SYSTERM data set is used by the assembler to stora a summary
form of SYSPRINT containing flagged statements and their
associated messages.

You use the assembler option TERMINAL(n) to specify that you
want a SYSTERM listjng to be produced.

Each diagnosed statement 1n the assembly listing printed in the
SYSTERM listing is immediately followed by its associated error
message. If there are multiple error messages associated with a
source statement, the source statements will be listed once for
each error message. To help identify the position of the
statement in your program, two additional assembler options ara
available:

• NUMBER. which prints the line number(s) of the diagnosed
statement

• STMT, which prints the statement number assigned to the
diagnosed statement by the assembler

The format of the flagged statement as it appears in the listing
i 5:

Name Oparatfon Operand

Line No. Statement No. Source Records (columns
(option NUMBER> (option STMT> 1-72 of tha source

statement lines)

DIAGNOSTIC MESSAGES WRITTEN BY CMS

If an error occurs during execution of tha HASM command, a
message may be typed at the terminal and, at completion of the
command, register 15 contains a nonzero return coda.

There are two types of messages that may be issued:

• Messages that are issued by the assembler (see Appendix
D, "Assembler H Messages" on page 100)

• Messages that are issued directly by the HASM command
processor (refer to the following section)

The messages issued directly by the HASM command processor are
in two parts~ a message code and the message text. The message
code is in the form 'IEVCMSnnnt', where IEVCMS indicates that
the message was generated by the HASM command program, nnn is
the number of tha message, and t is the type of message. The
message text describes the error condition.

The actual message typed may not be complete. By using the CP
SET CEMSG) command, the user can specify that the entira error
message be typed. or only the error code, or only the text, or
neither code nor text. VM/SP GP CO.l!!J!!i!Pd Refg,r;gnce f1u: ~.ruu:A!
~Ser.:..2 or the appropriate VM/Extended Architecture Migration Aid
manual contains a description of the CP SET command.

Unless NOTERM 1s specified, diagnostic and error message5
originating in the assembler are typed at the terminal in the
form IEVnnn text. Errors detected by the HASM command program,
which terminate the command before Assembler H is called, result
in error messages Ctype E>.

For additional information about the text, format, or codes in
the messages for HASM, see VM/S~ System MesS§SLeli...A!J...~ or
VM/Extended Architecture ~igr1tjon Aid Svstem ~essa~
Codes.

Chapter 7. Assembler language Programming under CMS 71

HASH COMM.AND ERROR MESSAGES

IEVCttS002E FILE 'fn ft fm' NOT FOUND.

Explanation: The filename you included
in the HASM command does not correspond
to the names of any of the files on your
disks.

supplemental Information: The variable
filename, filetype, and filemode in the
text of the message indicate the file
that could not be found.

System Action: RC=28. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue the HASM
wlth an appropriate filename.

IEVCMS003E INVALID OPTION •option•.

Explanation: You have included an
invalid option with your HASM command.

supplemental Information: The variable
option in the text of the message
indicates the invalid option.

System Action: RC=24. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Check the format of
the HASM command, and reissue the
command with the correct option.

IEVCMS004E IMPROPERLY FORMED OPTION
'option'.

Explanation: You have included an
improperly formed option with your HASM
command.

supplemental Information: The variable
option in the text of the message
indicates the improperly formed option.

System Action: RC=24. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Check the format of
the HASM command, and reissue the
command with the correct option.

IEVCMS006E NO READ/WRITE DISK ACCESSED.

Explanation: Your virtual machine
configuration does not include a
read/write disk for this terminal
session, or you failed to specify a
read/write disk.

System Action: RC=36. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Issue an ACCESS
command specifying a read/write disk.

IEVCMS007E FILE 'fn ft fm' DOES NOT
CONTAIN FIXED LENGTH 80
CHARACTER RECORDS.

Explanation: The source file you
specified in the HASM command does not
contain fixed-length records of 80
characters.

supplemental Information: The variable
filename, filetype, and filemode in the
text of the message indicate the file
that is in error.

System Action: RC=32. The command cannot
be executed.

Programmer Response: You must reformat
your file into the correct record
length. CMS EDIT or COPYFILE can be
used to reformat the file.

IEVCMSOlOE FILENAME OMITTED AND DDNAME
'SYSIN' IS UNDEFINED.

Explanation: You have not included a
filename in the HASM command, and no
FILEDEF could be found for the ddname
specified.

System Action: RC=24. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue the HASM
command and specify a filename, or issue
a FILEDEF for the ddname specified.

IEVCMSOllE FILENAME OMITTED AND FILEDEF
'SYSIN' IS NOT FOR DISK.

Explanation: You have not included a
filename in the HASM command, and the
FILEDEF for the ddname specified is not
for disk.

System Action: RC=24. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue the HASM
command and specify a filename, or
reissue the FILEDEF for the ddname
specified with a device type of 'DISK'.

IEVCMS038E FILEID CONFLICT FOR DDNAHE
'SYS IN'.

Explanation: You issued a FILEDEF
command that conflicts with an existing
FILEDEF for the ddname specified.

supplemental Information: The variable
ddname in the text of the message
indicates the ddname in error.

72 Assembler H Version 2 Application Programming: Guide

System Action: RC=40. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue the FILEDEF
command with an appropriate ddname.

IEVCHS052E OPTIONS SPECIFIED EXCEED 100
CHARACTERS.

Explanation: The string of options that
you specified with your HASM command
exceeded 100 characters in length.

System Action: RC=24. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue your HASM
command with fewer options specified.

IEVCHS070E INVALID PARAMETER •parm'.

Explanation: You specified an invalid
parameter for an option in the HASM
command.

Supplemental Information: The variable
parameter in the text of the message
indicates the invalid parameter.

System Action: RC=40. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Check the format of
the option with its appropriate
parameters, and reissue the command with
the correct parameter.

IEVCHS074E ERROR CSETTINGIRESETTING)
AUXILIARY DIRECTORY.

Explanation: One of two conditions
causes this message to be generated:

1. The disk containing the assembler
modules Cthat is, the disk specified
at auxiliary directory generation by

means of the GENDIRT moda field) has
not been accessed.

2. An attempt to reset the file status
table has failed, thereby removing
the auxiliary directory from the
search chain. Either the auxiliary
directory was not included in th~
file status table chain, or a
processing error has caused the disk
containing the assembler modules to
appear to be not accessed.

System Action: RC=40. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Verify that the
disk containing the assembler modules
has been accessed using the proper mode
specification Cthat is, the mode
specified by means of the GENDIRT mode
field when the auxiliary directory was
generated). If the error occurred
resetting the auxiliary directory,
contact installation maintenance
personnel.

IEVCMS07SE DEVICE 'device' INVALID FOR
INPUT.

Explanation: The device specified in
your FILEDEF command cannot be used for
the input operation that is requested 1n
your program. For example, you have
tried to read data from the printer.

Supplemental Information: The variable
device name in the text of the message.
indicates the incorrect device that was
specified.

System Action: RC=40. Execution of the
command terminates. The system remains
in the same status as before the command
was entered.

Programmer Response: Reissue your
FILEDEF command, specifying an
appropriate device for the desired input
operation.

Chapter 7. Assembler Language Programming under CMS 73

CHAPTER 8. PROGRAMMING CONSIDERATIONS

This chapter discusses various topics in assembler language
programming.

SAYING AND RESTORING GENERAL REGISTER CONTENTS

A problem program should save tha values contained in the
general registers upon commencing execution and, upon
completion, restore to the general registers these same values.
Thus, as control is passed from the operating system to a
problem program and, in turn, to a subprogram, the status of the
registers used by each program is preserved. This is done
through use of the SAVE and RETURN system macro instructions.

The SAVE macro instruction should be the first statement in the
program. It stores the contents of registers 14, 15, and 0
through 12 in'an area provided by the program that passes
control. When a problem program is given control, register 13
contains the address of an area in which the general contents
should be saved.

If the program calls any subprograms, or uses any operating
system services other than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register 13 and than load the
address of an 18-fullword save area into register 13. This save
area is in the problem program and is used by any subprograms or
operating system services called by the problem program.

At completion, the problem program restores the contents of
general registers 14, 15, and 0 through 12 by use of the RETURN
system macro instruction (which also indicates program
completion). The contents of register 13 must be restored
before execution of the RETURN macro instruction.

The cod;ng sequence that follows illustrates the basic process
of saving and restoring the contents of the registers. A
complete discussion of the SAVE and RETURN macro instructions
and the saving and restoring of registers is contained in the
appropriate Supervisor Services and Macro Instructions.

Name Operation Operand

BEGIN SAVE (14,12)
USING BEGIN,15 . .
ST 13,SAVEBLK+4
LA 13,SAVEBLK .
L 13,SAVEBLK+4
RETURN C14,12>

SAVEBLK DC 18F'0' . .
END

74 Assembler H Version 2 Application Programming: Guide

PROGRA" TER"INATION

You indicate completion of an assembler language source program
by using the RETURN system macro instruction to pass control
from the terminating program to the program that initiated it.
The initiating program may be the operating system or, if a
subprogram issued the RETURN, the program that called the
subprogram.

In addition to indicating program completion and restoring
register contents, the RETURN macro instruction may also pass a
return code~a condition indicator that may be used by the
program receiving control.

If the return is to CMS, the return code is displayed to the
user.

If return is to another problem program, the return coda is
available in general register 15, and may .be used as desired.
Your program should restore register 13 before issuing the
RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in
the appropriate Supervisor Services and Macro Instructions.

Chapter 8. Programming Considerations 75

APPENDIX A. SAMPLE PROGRAM

The sample program included with Assembler H when it is received
from IBM is dQscribed in this appendix. This program
demonstrates some basic assembler language, macro, and
conditional assembly features, most of which are unique to
Assembler H. The letters in parentheses in the descriptions
below refer to corresponding letters in the listing that
precedes tha descriptions.

76 Assembler H Version 2 Application Programming: Guide

> ,, ,,
ID
~
c. ...
x
>

(JI
Ill
SI ,,
ID

"V ,
0
IQ ,
Ill
SI

"' "'

0

BIGNAME EXTERNAL SYMBOL DICTIONARY PAGE

SYMBOL

A

TYPE ID ADDR LENGTH LD ID FLAGS ASM H V 02 13.19 02/19/82

PD2
SD 0001 000000 OOOODC
CM 0002 000000 0007D2

00
00

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 2

LOC OBJECT CODE

000000

ADDR1 ADDR2 STMT

00000
2 A
3

SOURCE STATEMENT

CSECT
USING *,8

ASH H V 02 13.19 02/19/82

00100000
00150000

000002 01230ABC0102030A
OOOOOA OBOC0102030AOBOC
000012 0102030AOBOC0102
OOOOlA 030AOBOC

00001E OA23
000020 01230ABC0102030A

00003C 5850 8098
000098
000098 00000005
000040

000040 1812

000042 000000000000
000048 413243F6A8885A30
000050 338D313198A2E037

0
5 **
6 * PUSH AND POP STATEMENTS *
7 * PUSH DOWN THE PRINT STATEMENT, REPLACE IT, RETRIEVE ORIGINAL *
8 **

10
11

PUSH PRINT SAVE DEFAULT SETTING ' PRINT ON,NODATA,GEN'
PRINT NOGEN,DATA © 12

14
WTO MF=(E,(1)) EXPANSION NOT SHOWN

DC X'123,ABC' ,(REALLYLONGSYMBOL-TRANSYLVANIA)B'1,10,11,1010,1011,1100'

15 POP PRINT RESTORE DEFAULT PRINT SETTING
16 WTO MF=(E,(1)) EXPANSION SHOWN
17+ SVC 35 ISSUE SVC
18 DC X'123,ABC 1 ,(REALLYLONGSYMBOL-TRANSYLVANIA)B'1,10,11,1010,1011,1100'

20 **
~ 21 * LOCTR INSTRUCT I ON *
\:::.)22 * LOCTR ALLOWS 'REMOTE' ASSEMBLY OF CONSTANT *

23 **

00098 25 L
26 DEECEES LOCTR
27 CONSTANT DC
28 A LOCTR

5,CONSTANT

F'5' CONSTANT CODED HERE, ASSEMBLED BEHIND LOCTR A
RETURN TO 1ST LOCTR IN CSECT A

0 30 **
31 * 3 OPERAND EQUATE WITH FORWARD REFERENCE IN 1ST OPERAND *
32 **

OOOAO

34 A5
35

LR 1, 2
PRINT DATA

L'A5 = 2, T'A5 = I

36 A7 DC L'3.1415926535897932384626433832795028841972' L'A7

37 &TYPE
38 A8

+A8

SETC
EQU
EQU

T'A7
B5,L'A5,C 1 &TYPE 1

B5. LI A5. c I LI

16,T'A7 L

00250000
00300000
00350000
00400000

00500000
00550000
00600000
00650000

00700000
00750000
01-WTO
00800000

00900000
00950000
01000000
01050000

01150000
01200000
01250000
01300000

01400000
01450000
01500000

01600000
01650000

01700000

01750000
01800000
01800000

CA> The external symbol dictionary shows a named common
statement. Tha namad co1nmon section is defined in
statement 158.

CB> Statement 10: Sava tha current status of tha PRINT
statement COH,HODATA,GEH>.

Statement 11: Leave OH in affect, modify the other two
options to DATA.HOGEN.

Statement 12: Macro callJ nota that the expansion
(statement 10) is not printed.

Statement 14: All 28 bytes of data are displayed to tha
two-operand DC.

Statement 15: Rastore prior status of PRINT.

Statements 17 and 18: The generated output of the macro WTO
is shown and only the first 8 bytes of the data are
displayed.

CC> Statements 14 and 18: Multiple constants are allowed in
hexadecimal and binary DC operands, and neither symbol- in
the duplication factor has been defined yet. Definition
occurs in statements 108 and 109.

CD> Statements 26, 28, 136, and 155 illustrate use of the LOCTR
assembler instruction. This feature allows one to break
control sections down into subcontrol sections. It may be
used in CSECT, DSECT, and COM. LOCTR has many of the
features of a control section; for example, all of the
first LOCTR in a section is assigned space, then the
second, and so on. The name of the control section
automatically names the first LOCTR section. Thus LOCTR A
is begun, or rasumed, at statements 2, 28, and 155. Nota
that the location counter value shown each time is the
resumed value of the LOCTR. On the other hand, various
LOCTR sections within a control section have common
addressing as far as USING statements are concerned,
subject to the computed displacement falling within 0
through 4095. In the sample, CONSVAHT is in LOCTR DEECEES
but the instruction referring to it (statement 25) has no
addressing problems.

CE> Three-operand EQU. Here, we are assigning: Ca> the value
of 85 Cnot yet defined) to A8, Cb) the length attribute of
AS to A8, and Cc) the type attribute of A7 to A8. If no
operand is present in an EQU statement, the type attribute
is U and the length attribute is that of the first term in
the operand expression. Symbols present in the label
and/or operand field must be previously defined. Note that
it is not possible to express the type attribute of A7
directly in the EQU statement. The EQU statement at 38
could have been written

A8 EQU 85,2,C'L'

A8 EQU 85,X'2',X'D3'

78 Assembler H Version 2 Application Programming: Guide

> ,, ,,
t1J
:I
a. ...
)(

>

en
Ill a ,,
ID .,, .,
c
IQ .,
°' a
.....
'°

BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 3

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

000058 7FFFFFFFC1C2C3C4
000060 FFFFFFFF
000064 181D

40 **
41 * IMPLICIT DECLARATION Of LOCALS &A, &C -- USE OF SETC DUP FACTOR TO *
42 * PRODUCE SETC STRING LONGER THAN 8, MNOTE IN OPEN CODE *
43 **

0 45 &LA8 SETA L'A8
46 &TA8 SETC T'A8
47 MNOTE *,'LENGTH OF A8 = &LA8, TYPE OF A8 = &TAB'

~ +*,LENGTH OF A8 = 2, TYPE OF A8 = L

0 49 &A SETA 2

8

FFFFFFE8

50 &C SETC (&A+3) 1 STRING, I

51 MNOTE *, '&&C HAS VALUE= &C'
+*,&C HAS VALUE = STRING,STRING,STRING,STRING,STRING,

53 **
54 * EXAMPLES OF 4 BYTE.SELF-DEFINED TERMS, UNARY+ AND - *
55 **

57

58

60 x

DC

LR

EQU

A(2147483647,C'ABCD' ,X' FFFFFFFF')

-i+2,16+-3

4*-6

01900000
01950000
02000000
02050000

02150000
02200000
02250000
02250000

02350000
02400000
02450000
02450000

02550000
02600000
02650000

02750000

02800000

02900000

CF> Set symbols &LAS and &TA8 have not been declared in an LCL
or GEL statement prior to their use here. Therefore, they
are defaulted to local variable symbols as follows: &LA8 is
an LCLA SET symbol because it appears in the name field of
a SETA: &TA8 is an LCLC SET symbol because it is first used
in a SETC.

CG) MNOTEs may appear in open code. As such, they have all
properties of MNOTEs inside macros, including substitution.

CH> A SETC expression may have a duplicate factor. The SETA
expression must be enclosed in parentheses and immediately
precede the character string, the substring notation, or
the type attribute reference.

CI> Statements 57 through 60 illustrate 4-byte self-defining
values and unary + and -. The value of X will appear later
in a literal address constant (see statement 162).

80 Assembler H Version 2 Application Programming: Guide

>
"tJ
"tJ
ID
:::J
a. -·)(

>

~
OI
3
"O
di
..,, .,
0
IQ .,
OI
a

00 ...

8 GNAME NSERT PROGRAMMER MACRO N SOURCE STREAM NOW "AGE 4

LOG OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

000066 1816
000068 9220 1005
00006C 5081 0008
000070 58F1 0008
000074 58FO F030
000078 05EF

00007A 5850 A008
00007E 1B9A
000080 98CD 8090
000084 5073 80A8

00005

62 **
63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGO AND AIF *
64 * STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS, *
65 * USE OF CREATED SET SYMBOLS, EXTENDED SET STATEMENTS *

f'7'\ 66 **

\:_,) 68 MACRO 0 69 DEMO
70 &LOC(1) SETC

~
;1 ~~~c

&P1,&KEY1=A,&P2,&KEY2=1,&P3,&KEY3=3,&P4
1 2 1 , 1 3 1 &LOG IS DIMENSIONED LCLC BY DEFAULT
&XA(5),&XB(20),&XC(l)
&SYSLIST(4),&SYSLIST(5),&SYSLIST(6),MF=E

0

73 &N SETA
74 AGO
75 &N SETA
76 MNOTE
77 Al F

78 MNOTE
79 AGO
80 .MNOTE1 MNOTE
81 AGO
82 .MNOTE2 MNOTE
83 AGO
84 .MNOTE3 MNOTE
85 .COMMON L
86 &XB(2) SR 9,10
87 &(X&KEY1)(2) LM
88 &P2 ST 7,&P3
89 MEND

1
(&KEY2).MNOTE1,.MNOTE2,.MNOTE3
2
*, '&&KEY2 NOT 1,2, OR 3---USE &&KEY3 IN PLACE OF IT'
(&KEY3 EQ 1).MNOTE1,
(&KEY3 EQ 2).MNOTE2,(&KEY3 EQ 3).MNOTE3
*,'BOTH &&KEY2 AND &&KEY3 FAIL TO QUALIFY'
.COMMON
*, '&&KEY&LOC(&N)
.COMMON
*, '&&KEY&LOC(&N)
.COMMON

1 I

2'

*, '&&KEY&LOC(&N) = 3 1

5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS

12, 13,=A(A5,X)
ON MODEL STATEMENTS

ARE KEPT IN PLACE UNLESS DISPLACED
AS A RESULT OF SUBSTITUTION

~ 91 ***** DEMO MACRO INSTRUCTION (CALL)

\.:.../ 93 GBLC
SETC
SETC
SETC
DEMO

&XA(1),&XB(2),&XC(3)
'A I IM I SS I SS I pp I I 94

G 95
96
97

&XA(1)
&XB(1)
&XC(1)

'B''. 'SUSQUEHANNA'
'C', 'TRANSYLVANIA'
KEY3=2,WRITE,REALLYLONGSYMBOL,
A8+8*(B5-CONSTANT-7)(3),KEY1=C,(6),SF,

00008
00008
00030

(8), KEY2=7
98+ LR 1,6
99+ MVI 5(1),X 1 20 1

100+ ST 8,8(1,0)
101+ L 15,8(1,0)
102+ L 15,48(0,15)
103+ BALR 14,15

SET

LOAD DCB

LOAD DECB ADDRESS
TYPE FIELD

STORE DCB ADDRESS
ADDRESS

LOAD RDWR ROUTINE ADDR
LINK TO RDWR ROUTINE

104+*,&KEY2 NOT 1,2. OR 3---USE &KEY3 IN PLACE OF IT
105+*,&KEY3 ""' 2

00008 106+ L 5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS ®107+SUSQUEHANNA SR 9,10 ON MODEL STATEMENTS
00090 108+TRANSYLVANIA LM 12,13,=A(A5,X) ARE KEPT IN PLACE UNLESS DISPLACED
OOOA8 109+REALLYLONGSYMBOL ST 7,A8+8*(B5-CONSTANT-7)(3)

+ AS A RESULT OF SUBSTITUTION

03000000
03050000
03100000
03150000
03200000

03300000
03350000
03400000
03450000
03500000
03550000
03600000
03650000
03700000

X03750000
03800000
03850000
03900000
03950000
04000000
04050000
04100000
04150000
04200000
04250000
04300000
04350000
04400000

04500000

04600000
04650000
04700000
04750000

M04800000
N04850000

04900000
03-IHBRD
03-IHBRD
03-IHBRD
03-IHBRD
03-IHBRD
03-IHBRD
01-00076
01-00082
01-00085
01-00086
01-00087

X01-00088

(J) Tha programmer macro DEMO is defined after the start of tha
assembly. Macros can ba defined at any point and, having
bean defined and/or expanded, can be redefined. Note that
tha parameters on the prototype are a mixture of keywords
and positional operands. &SYSLIST may be used. The
positional parameters are identified and numbered 1, 2, 3
from left to right; keywords are skipped over.

CK> Statement 70 illustrates tha extended SET feature Cas ~ell
as implicit declaration of &LOCCl> as an LCLC>. Both
&LOCCl> and &LOCC2) are assigned values. One SETA, SETB,,
or SETC statement can then do the work of many.

CL> Statement 72 is a model statement with a symbolic parameter
in its operation field. This statement will be edited as
if it is a macro call; at this time, each operand will be
denoted as positional or keyword. At macro call time, it
will not be possible to reverse this decision. Even though
treated as a macro, it is still expanded as a machine or
assembler operation.

CM> Statement 74 illustrates the computed AGO statement.
Control will pass to .MNOTEl if &KEY2 is 1, to .MNOTE2 if
&KEY2 is 2, to .MNOTE3 if &KEY2 is 3 or will fall through
to the model statement at 75 otherwise.

CH> Statement 77 illustrates the extended AIF facility. This
statement is written in the alternative format. The
logical expressions are examined from left to right.
Control passes to the sequence symbol corresponding to the
first true expression encountered, else falls through to
the next model statement.

CO> Statement 87 contains a subscripted created SET symbol in
the name field. Exclusive of the subscript notation, these
SET symbols have the form &Ce), where e is an expression
made up of character strings and/or variable symbols. When
such a symbol is encountered at expansion time, the
assembler evaluates e and attempts to use &Cvalue) in place
of &Ce>. Looking ahead, we see that DEMO is used as a
macro instruction in statement 97 and &KEYl=C. Thus, the
'e' in this case is X&KEYl, which has the value XC.
Finally, the macro-generator will use &XCC2) as the name
field of this model statement. In statement 108, note that
&XCC2> equals TRANSYLVANIA (statement 96). Finally, in the
sequence field of statement 108, we see that this statement
is a level 01 expansion of a programmer macro and the
corresponding model statement is statement number 87.

Created SET symbols may be used wherever regular SET
symbols are used in declarations, name fields, or operands
of SET statements, in model statements, etc. Likewise,
they are subject to all the restrictions of regular SET
symbols. In the programmer macro DEMO, it would not have
been valid to have the statement GBLC &CX&KEYl>Cl> because,
in statement 71, &XA, &XB, and &XC are declared as global
variable symbols and &CX&KEY1><2> becomes &XCC2> unless, of
course, &KEYl were assigned something other than the value
A, B, or C in the macro instruction DEMO, 5tatement 97. In
that case, we would need a global declaration statement if
we wanted &CX&KEYl) to be a global SET symbol. Because
global declarations are processed at generation time and
then only if the statement is encountered, we would insert
the following statements between, say, statements 71 and
12:

AIF C'&KEYl' EQ 'A' OR '&KEYl' EQ 'B' OR '&KEYl' EQ 'C'>.SKIP
GBLC &CX&KEYl><l>

.SKIP ANOP

82 Assembler H Ver&ion 2 Application Programming: Guide

As the macro is defined, &CX&KEYl) will be a global SETC if
&KEYl is A, B, or C; otherwise it will be a LCLC or,
possibly, a LCLA. In the macro, if &CX&KEYl) becomes a
local, it will have a null or zero value.

CP) In statements 93 and 94, note that &XA is declared as a
subscripted global SETC variable with a maximum subscript
of 1 and. in the next statement Can extended SET
statement), we store something into &XAC2>. There is no
contradiction here. The statement GBLC &XACl> marks &XA as
a subscripted global SETC symbol. Any decimal self-defined
number Cl through 2147483647) can be used. Furthermore,
only a nominal amount of space is sat aside in the global
dictionary. This space is open-ended and will be increased
on demand and only on demand.

CQ) Statement 97 is the macro instruction DEMO. Note that &Pl
has the value WRITE. Therefore, the model statement at
statement 72 becomes an inner macro, WRITE, producing the
code at statements 98-103. The sequence field of these
statements contains 03-IHBRD, indicating that they are
generated by a level 03 macro <DEMO is 01, WRITE is 02>
named IHBRDWRS. It is an inner macro called by WRITE.

CR> Statements 108 and 109 contain some ordinary symbols longer
than 8 characters. The limit for ordinary symbols,
operation codes (for programmer and library macros and
operation codes defined through OPSYH>, variable symbols,
and sequence symbols is 63 characters (including the & and
. in the latter two instances, respectively). Most long
symbols will probably be nearer to 8 than 63 characters in
length. Extremely long symbols are simply too difficult to
write, especially if the symbol is used frequently. The
requirement that the operation field be present in the
first statement of a continued statement is still in
effect. Furthermore, names of START, CSECT, EXTRH, WXTRH,
ENTRY, etc., symbols era still restricted to 8 characters.

Appendix A. Sample Program 83

°' .,.
>
UI
UI

;
O" ...
ID ,
::c
<
ID ,
UI -0
::ll

N

>
'O
'O ...
n
OI ,.. -· 0
::ll

-0 ,
0
IQ ,
OI a a ...
::ll
IQ ..
G)
c -a.
ID

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW PAGE 5

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

000088 1816
00008A 58FO 1054
00008E 05EF

00009C
00009C 00000000
OOOOAO OBOOOOA000000050

OOOOA8 E3C9D4C5407E40F1

OOOODC
OOOODC
000090

000000
000000
0007DO 1867

000090 00000040FFFFFFE8

111 **•**
112 * COPY 'NOTE' MACRO IN FROM MACLIB, RENAME IT 'MARK', CALL IT UNDER*
113 * ITS ALIAS -- IN EXPANSION OF MARK, NOTICE REFERENCE BACK TO *
114 * DEFINITION STATEMENTS IN 'COLUMNS' 76-80 OF EXPANSION *
115 **•**

© 117 COPY NOTE
118 MACRO
119 &:NAME NOTE &:DCB,&:DUMMY=
120 Al F ('&:DCB I EQ ' ') . ERR
121 &:NAME IHBINNRA &:DCB

05000000
05050000
05100000
05150000
05200000

05300000
00020000
00040017
00060000
00080000

122 L 15,84(0,1) LOAD NOTE RTN ADDRESS 00100000
123 BALR 14,15 LINK TO NOTE ROUTINE 00120000
124 MEXIT 00140000
125 . ERR IHBERMAC 6 00160000
126 MEND 00180000

0 129 MARK OPSYN NOTE COMMENTS OF GENERATED STATEMENTS OCCUPY SAME 05450000
130 MARK (6) 'COLUMNS' AS THOSE IN MODEL STATEMENTS 05500000
131+ LR 1, 6 LOAD PARAMETER REG 1 02-IHBIN

00054 132+ L 15,84(0,1) LOAD NOTE RTN ADDRESS 01-00122

G)

133+ BALR 14,15 LINK TO NOTE ROUTINE

135 *i+**
136 DEECEES LOCTR SWITCH TO AL TERNA TE LOCATION COUNTER

137 B5 ccw X'OB',B5,0,80

139 **
140 * DISPLAY OF &:SYSTIME, &:SYSDATE, &:SYSPARM AND &:SYSLOC *
141 *l•**

143 PRINT NODATA
144 DC

+ DC
C'TIME = &:SYSTIME, DATE = &:SYSDATE, PARM = &:SYSPARM'
C'TIME = 13.19, DATE= 02/19/82, PARM= SAMPLE PROGRAM'

146 MACRO
147 LOCATE
148 &:SYSECT CSE CT DISPLAY OF CURRENT CONTROL SECTION
149 &:SYSLOC LO CTR AND LOCATION COUNTER 0 150 MEND

152 LOCATE

0
0

153+A CSECT DISPLAY Of CURRENT CONTROL SECTION
154+DE:ECEES LO CTR AND LOCATION COUNTER
155 A LO CTR

157
158
159
160
161
162

*'~**
PD2 COM

OS
LR
END

500F
6,7

::A(A5,X)

NAMED COMMON THROWN IN FOR GOOD MEASURE

01-00123

05600000
05650000

05700000

05800000
05850000
05900000

06000000
06050000
06050000

06150000
06200000
06250000
06300000
06350000

06450000
01-00148
01-00149
06500000

06600000
06650000
06700000
06750000
06800000

CS) Library macros may be inserted into the source stream as
programmer macros by use of a COPY statement. The result
(statements 118 to 126) is essentially a programmer macro
definition. When a library macro is brought in and
expanded by use of a macro instruction, the assembler Cl)
looks the macro up by its member-name and (2) verifies that
this same name is used in the operation field of the
prototype statement. Therefore, for example, DCB has to be
cataloged as DCB. However, as COPY code, the member name
bears no relationship to any of the statements in the
member. Thus, several variations of a given macro could be
stored as a library under separate names, then copied in at
various places in a single assembly as needed. (Assembler
H allows you to define and redefine a macro any number of
times).

CT) In statement 129, MARK is made a synonym for NOTE. To
identify NOTE as a macro, it has to be used as either a
system macro call (that is, from a macro library) or a
programmer macro definition prior to its use in the operand
field of an OPSYN statement. The COPY code at 118 through
126 is a programmer macro definition. The macro
instruction at statement 130 is MARK. We can use MARK and
NOTE interchangeably. If desired, we could remove NOTE as
a macro definition in the following way:

MARK
NOTE

OP SYN
OP SYN

NOTE

We could then refer to the macro only as MARK.

CU> Statement 144 demonstrates &SYSTIME, &SYSDATE and &SYSPARM.
The values for the first two are the same as we use in the
heading line. The value for &SYSPARM is the value passed
in the PARM field of the EXEC statement of the default
value assigned to &SYSPARM when Assembler H is installed.

CV> System variable symbols &SYSLOC and &SYSECT are displayed.
The sequence field indicates that the model statements are
statements 148 and 149.

CW> Illustration of named COMMON. You can establish
addressability for a named COMMON section with:

USING section-name, register

You can address data in a blank COMMON section by labeling
a statement ~ the COMMON statement and using relative
addressing.

CX) If there are literals outstanding when the END statement is
encountered, they are assigned to the LOCTR currently in
effect for the first control section in the assembly. This
may or may not put the literals at the end of the first
control section. In this samplq assembly, the first
control section, A, has two LOCTRs, A and DEECEES. Because
A is active Cat statement 155), the literals are assembled
there. You always have the ability to control placement of
literal pools by means of the LTORG statement. Note that
X'FFFFFFE8' is used for the contents of ACA5,X), statement
162. The symbol X was assigned the value C4*-6) by an EQU
in statement 60.

Appendix A. Sample Program 85

00
CJ'

,..
UI
II
ID a
CT
ID .,
.:c
<
ID .,
II ...
0
::J

N ,.. ,, ,,
n
Ill
.+
0
::J

""O .,
0
G .,
Ill
a a -::J
IQ ..
Ci)
c ...
a.
ID

BIGNAME

POS.ID REL. ID FLAGS ADDRESS

0001 0001 oc 000090
0001 0001 08 OOOOA1

BIGNAME

SYMBOL LEN VALUE DEFN

A 00001 00000000 0002
A5 00002 000040 0034
A7 00016 000048 0036
AB 00002 OOOOOOAO 0038
B5 00008 OOOOAO 0137
CONSTANT 00004 000098 0027
DEECEES 00001 00000098 0026
P02 00001 00000000 0158
REALLYLONGSYMBOL

00004 000084 0109
SUSQUEHANNA

00002 00007E 0107
TRANSYLVANIA

REFERENCES

0028 0153 0155
0038 0162

0109
0038 0109 0137
0025 0109
0136 0154

0014 0018

00004 000080 0108 0014 0018
X 00001 FFFFFFE8 0060 0162
=A(A5,X) 00004 000090 0162 0108

RELOCATION DICTIONARY

CROSS REFERENCE

BIGNAME DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

PAGE 6

ASM H V 02 13.19 02/19/82

PAGE 7

ASM H V 02 13.19 02/19/82

PAGE 8

ASM H V 02 13.19 02/19/82

OVERRIDING PARAMETERS- SYSPARM(SAMPLE PROGRAM),NODECK,BATCH
OPTIONS FOR THIS ASSEMBLY

NODECK, OBJECT, LIST, XREF(FULL), NORENT, NOTEST, BATCH, ALIGN, ESO, RLD, NOTERM, LINECOUNT(55),
FLAG(O), SYSPARM(SAMPLE PROGRAM)

NO OVERRIDING OD NAMES

136 CARDS FROM SYSIN
198 LINES OUTPUT

524 CARDS FROM SYSLIB
11 CARDS OUTPUT

APPENDIX I. SAMPLE MACRO TRACE AND DUMP UHiELP)

The macro trace and dump CMHELP> facility is a useful means of
debugging macro definitions. MHELP can be used anywhere in ~h~
source program or in macro definitions. MHELP is processed
during macro generation. It is completely dynamic; you can
branch around the MHELP statements by using AIF or AGO
statements. Therefore, its use can be controlled by symbolic
parameters and SET symbols.

The following sample program illustrates the five primary
functions of MHELP. Because most of the information produced is
unrelated to statement numbers, the dumps and traces in the
listing are marked with numbers in parentheses. Most dumps
refer to statement numbers. If you request MHELP information
about a library macro definition, the first five characters of
the macro name will appear in place of the statement number. To
get the statement numbers, you should use COPY to copy the
library definition into the source program prior to the macro
call.

MACRO CALL TRACE CMHELPll

Item C1A> illustrates an outer macro call, C1B> an inner
In each case, the amount of information given is brief.
trace is given after successful entry into the macro; no
given if error conditions prevent an entry.

MACRO ENTRY DUMP CMHELP 16)

one.
This
dump is

This provides values of system variable symbols and symbolic
parameters at the time the macro is called. The following
numbering system is used:

Number Item

000 &SYSNDX
001 &SYSECT
002 &SYSLOC
003 &SYSTIME
004 &SYSDATE
005 &SYSPARM
006 Name Field on Macro Instruction

If there are NKW keyword parameters, they follow in order of
appearance on the prototype statement.

007
008

006+NKW

1st keyword value
2nd keyword value

NKWth keyword value

If there are NPP positional parameters, they follow in order of
appearance in the macro instruction.

007+NKW
008+NKW

.
006+NKW+NPP

1st positional parameter values
2nd positional parameter values

NPPth positional parameter values

For example, item C16A> has one keyword parameter C&OFFSET> and
one positional parameter. The value of the keyword parameter
appears opposite 110006, the positional parameter, opposite
110007. In both the prototype (statement 3) and the macro

Appendix B. Sample Macro Trace and Dump CMHELP> 87

instruction (statement 54), the positional parameter appears in
the first operand field, the keyword in the second. A length
appears between the HUM and VALUE fields. A length of HUL
indicates the corresponding item is empty.

Item Cl68) illustrates an inner call containing zero keywords
and two positional parameters.

MACRO AIF DUMP CMHELP 4)

Items C4A), C48), C4C), ••• are examples of these dumps. Each
such dump includes a complete sat of unsubscripted SET symbols
with values. This list covers all unsubscripted variable
symbols that appear in the same field of a SET statement in the
macro definition. Values of elements of dimensioned SET symbols
are not displayed.

MACRO BRANCH TRACE CMHELP 2>

This provides a one-line trace for each AGO and true AIF branch
within a programmer macro. In any such branch, the "branched
from" statement number, the "branched to" statement number, and
the macro name are included. Note, in example C2A), the
"branched to" statement number indicated is not that of the AHOP
statement bearing the target sequence symbol but that of the
statement following it. The branch trace facility is suspended
when library macros are expanded and MHELP 2 is in effect. To
obtain a macro branch trace for such a macro, one would have to
insert a COPY "macro-name" statement in the source deck at some
point prior to the MHELP 2 statement of interest.

MACRO EXIT DUMP CMHELP 8)

This provides a dump of the same group of SET symbols as are
included in the macro AIF dump when an MEXIT or MEND is
encountered.

Note: local and/or global variable symbols are not displayed at
any point unless they appear in the current macro explicitly as
SET symbols.

88 Assembler H Version 2 Application Programming: Guide

>
'U
'U
ID
::ll
a. ...
)(

1:11 .
en
1111
a
'U ...
•
3
1111
C') ..,
0 _. ..,
QI
C')
ID

• ::ll
a.

" c a
'U

....
3 ::c
m ,... .,, ...
00

"°

I

I

LOC OBJECT CODE

000000

~

LOC OBJECT CODE

PAGE 2

ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

06850000
06900000
06950000
07000000
07050000
07100000

ADDRl ADDR2

1
2 *
3
4 &:NAME
5
6 &:LABEL
7
8 &:LABEL
9 .SKIP

10 &LABEL
11
12
13

CSE CT
COPY LNSRCH
MACRO

LNSRCH &:ARG,&OFFSET=STNUMB-STCHAIN
LCLC &:LABEL
SETC 'A&SYSNDX'
AIF IT'&:NAME EQ
SETC &:NAME'
ANOP
LA
SCHI
BC
MEND

0,&:0FFSET
&:ARG,0(1)
1, &:LABEL

GENERATE SYMBOL
'O') .SKIP

IF MACRO CALL HAS LABEL, USE IT
INSTEAD OF GENERATED SYMBOL
LOAD REG. 0
SEARCH
IF MAX REACHED, CONTINUE

07150000
07200000
07250000
07300000
07350000
07400000
07450000

PAGE 3

STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

15 * COPY SCHI 07550000
16 MACRO 07600000
17 &:NM SCHI &:COMP, &:LI ST 07650000
18 LCLA &:CNT 07700000
19 LCLC &:CMPADR 07750000
20 &:CNT SETA 1 07800000
21 &NM STM 1,15,4(13) 07850000
22 .TEST ANOP 07900000
23 &:CMPADR SETC '&:CMPADR' .'&:COMP'(&:CNT 1) 07950000
24 AIF ('&:COMP'(&:CNT,1) EQ 1 (1).LPAR 08000000
25 &:CNT SETA &CNT+l 08050000
26 AIF (&:CNT LT K'&:COMP).TEST 08100000
27 .NOLNTH ANOP 08150000
28 LA 3,&:COMP COMPARAND 08200000
29 AGO .CONT IN 08250000
30 .LPAR AIF (1 &:COMP'(&CNT+1,1) EQ ',').FINISH 08300000
31 &:CNT SETA &CNT+l 08350000
32 AIF (&CNT LT K'&:COMP).LPAR 08400000
33 AGO .NOLNTH 08450000
34 . FIN I SH ANOP 08500000
35 &:CMPADR SETC '&:CMPADR 1 • 1 &:COMP 1 (&CNT+2,K 1 &COMP-&:CNT) 08550000
36 LA 3,&CMPADR COMPARAND SANS LENGTH 08600000
37 .CONTI N ANOP 08650000
38 LA 1,&ll ST LIST HEADER 08700000
39 MVC &COMP,0(0) DUMMY MOVE TO GET COMP LENGTH 08750000
40 ORG *-6 CHANGE MVC TO MVI 08800000
41 DC x•92' MVI OPCODE 08850000
42 ORG *+1 PRESERVE LENGTH AS IMMED OPND 08900000
43 DC X'DOOO' RESULT IS MVI 0(13),L 08950000
44 L 15,=V(SCHl) 09000000
45 BALR 14, 15 09050000
46 LM 1,15,iH13) 09100000
47 MEXIT 09150000
48 MEND 09200000

"° 0

>
ID
3
O"
• .,
:c
<
ID ., .. -0
:J

N

> ,, ,,
.....
n • ,... -· 0
:J .,, .,
0
G .,
• I _,
:J
G ..
Ci)
c -· a. •

LOC OBJECT CODE

000000
000000 05CO

000002 4100 0002

000006 901f D004

PAGE 4

ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

09300000
09350000
09400000 00002

e s

e
@)

00002 e
s

50 TEST
51

CSECT
BALR 12,0
USING *,12 52

54
55

MHELP B1 11111 1

LNSRCH LISTLINE,OFFSET=LISTLINE-LISTNEXT

++//MHELP. CALL TO MACRO LNSRCH . DEPTH=OOl, SYSNDX=OOOl, STMT 00055

09500000
09550000

//MHELP ENTRY TO LNSRCH . MODEL STMT 00000, DEPTH=OOl, SYSNDX=OOOl, KWCNT=OOl
////PARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIME,SYSDATE,SYSPARM,NAME,KWS,PPS) ///
//!WM LNTH VALUE (64 CHARS/LI NE)
//0000 004 0001
//0001 004 TEST
//0002 004 TEST
//0003 005 13.19
//0004 008 02/19/82
//0005 014 SAMPLE PROGRAM
//0006 NUL
//0007 017 LISTLINE-LISTNEXT
I /0008 008 LI STLI NE

//MHELP Alf IN LNSRCH . MODEL STMT 00007, DEPTH=OOl, SYSNDX=OOOl, KWCNT=001
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
/ /0000 LCLC LABEL LNTH= 005
// VAL=AOOOl

++//MHELP. BRANCH FROM STMT 00007 TO STMT 00010 IN MACRO LNSRCH

56+A0001. LA O,LISTLINE-LISTNEXT LOAD REG. 0 01-00010

++//MHELP. CALL TO MACRO SCH! DEPTH=002, SYSNDX=0002, STMT 00011

//MHELP ENTRY TO SCHI . MODEL STMT 00000, DEPTH=002, SYSNDX=0002, KWCNT=OOO
////PARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIME,SYSDATE,SYSPARM,NAME,KWS,PPS) ///
//NUM LNTH VALUE (64 CHARS/LINE)
//0000 004 0002
//0001 004 TEST
//0002 004 TEST
//0003 005 13.19
//0004 008 02/19/82
//0005 014 SAMPLE PROGRAM
//0006 NUL
//0007 008 LISTLINE
//0008 004 0(1)

00004 57+ STM 1,15,4(13) 02-00021

~ //MHELP Alf IN SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO

>
'tJ
'tJ
ID
:I
a. -· >C

Ill

en
GI a
'tJ
ID

3
DI
n .,
0

-t .,
QI
n
ID

DI
:J
a.
0
c
a
'tJ

......
3
:c
m
I"'"
"Q

'°

LOC OBJECT CODE

PAGE 5

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

©

®
@

®

®

////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000001

LNTH= 001 //0001 LCLC CMPADR
II VAL=L

//MHELP Alf IN
I I I /SET SYMBOLS
//0000 LCLA
//0001 LCLC
11 VAL=L

SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000002
CMPADR LNTH= 001

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC
11 VAL=LI

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC
11 VAL=LI

SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000002
CMPADR LNTH= 002

SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000003
CMPADR LNTH= 002

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC
II VAL=LIS

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC
// VAL=LI S

SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000003
CMPADR LNTH= 003

SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000004
CMPADR LNTH= 003

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

//MHELP Alf IN
I I I /SET SYMBOLS
//0000 LCLA
//0001 LCLC
11 VAL=LI ST

SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000004
CMPADR LNTH= 004

..
N

>
I s:
• ,
:z:
c • ,
0
!:'

N

> ,, ,,
~
no
0
!:' .,, ,
0
IQ ,
• I ..
:I
IQ ..
Ci)
c
a. •

LOC OBJECT CODE ADDR1 ADDR2 STMT

PAGE 6

SllURCE STATEMENT ASM H V 02 13.19 02/19/82

//MHELP Alf IN
////SET SYMBOLS
I /0000 LCLA
//0001 LCLC
11 VAL=LI ST

SCHI • MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000005
CMPADR LNTH= 004

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC

SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

CNT VAL= 0000000005

I I VAL=L I STL
CMPADR LNTH= 005

//MHELP Alf IN
////SET SYMBOLS
//0000 LCLA

SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

I /0001 LCLC
CNT VAL= 0000000006
CMPADR LNTH= 005

II VAL=LISTL

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

//MHELP A IF IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC

SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

II VAL=LISTLI

CNT
CMPADR

VAL= 0000000006
LNTH= 006

//MHELP AIF IN
////SET SYMBOLS
//0000 LCLA
//0001 LCLC

SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
(SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

II VAL=LISTLI

CNT
CMPADR

++//MHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

VAL= 0000000007
LNTH= 006

//MHELP AIF IN SCHI • MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000007
//0001 LCLC CMPADR LNTH= 007
II VAL=LISTLIN

//MHELP Alf IN SCHI • MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//

>
"CJ
"CJ • ::s
Q. ...
>C

Cllll .
Cit • iii
"Cl •
l
n .,
0

.... .,
• n • • ::s a.
~ c • 'V

"" 3 :c
m,,
....

"° "'

PAGE 7

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

VAL= 0000000008
LNTH= 007

OOOOOA 4130 C024 00026

OOOOOE 4111 0000 00000
000012 D202 C024 0000 00026 00000
000018 00012
000012 92
000013 00014
000014 DOOO
000016 58FO C02E 00030
00001A 05EF
00001C 981F D004 00004

®

000020 4710 cooo 00002

@

000024
000026
000030
000030 00000000
000000

58+

59+
60+
61+
62+
63+
64+
65+
66+
67+

68+

//0000 LCLA CNT
//0001 LCLC CMPADR
II VAL=LISTLIN

LA 3, LI STLI NE COMPARAND

++//MHELP. BRANCH FROM STMT 00029 TO STMT 00038 IN MACRO SCHI

LA
MVC
ORG
DC
ORG
DC
L
BALR
LM

1, 0(1)
LISTLINE,0(0)
*-6
X'92'
*+1
X'DOOO'
15,=V(SCHI)
14,15

1,15,4(13)

LIST HEADER
DUMMY MOVE TO GET COMP LENGTH
CHANGE MVC TO MVI
MVI OPCODE
PRESERVE LENGTH AS IMMED OPND
RESULT IS MVI 0(13),L

02-00028

02-00038
02-00039
02-00040
02-00041
02-00042
02-00043
02-00044
02-00045
02-00046

//MHELP EXIT FROM SCHI . MODEL STMT 00047, DEPTH=OD2, SYSNDX=0002, KWCNT=OOO
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLA CNT VAL= 0000000008
//0001 LCLC CMPADR LNTH= 007
II VAL=LISTLIN

BC 1,A0001 IF MAX REACHED, CONTINUE 01-00012

//MHELP EXIT FROM LNSRCH . MODEL STMT 00013, DEPTH=001, SYSNDX=0001, KWCNT=001
////SET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).//
//0000 LCLC LABEL LNTH= 005
II VAL=A0001

69 LISTNEXT DS H 09600000
09650000 70 LISTLINE DS FL3'0'

71 LTORG 09700000
72 =V(SCHI)
73 END TEST 09750000

APPENDIX C, OBJECT DECK OUTPUT

ESD CARD FORMAT

The format of the ESD card follows:

Columns contents

1 X'02'

2-~ ESD

5-10 Blank

11-12 Variable field count-·number of bytes of information in
variable field (columns 17-64)

13-n Blank

15-16 ESDID of first SD, XD, CM, PC, ER, or WX in variable
field

17-6~ Var;able field. One to three 16-byte items of the
following format:

65-72

73-80

8 bybas-Name
1 byte -ESD type code; the hexadecimal value is:

00 SD
01 LD
02 ER
04 PC
05 CM
06 XDCPR>
OA WX

3 bytes-Address
1 byte -Alignment if XD

-Blank if LD. ER, or WX
-AMODE/RMODE flags if SD, PC, or CM

Bit 5: 0 = RMODE is 24
1 = RMODE is ANY

Bits 6-7: 00 = AMODE is 24
01 = AMODE is 24
iO = AMODE is 31
11 = AMODE is ANY

3 bytes-Length, LDID, or blank

Blank

Deck ID and/or sequence number. The deck ID is the name
from the first TITLE statement that has a nonblank name
field. This name can be 1 to 8 characters long. If
the name is fewer than 8 characters long or if there is
no name, the remaining columns contain a card sequence
number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence
number.)

TEXT CTXT) CARD FORMAT

The format of the TXT cards follows:

94 Assembler H Version 2 Application Programming: Guide

RLD CARD FORMAT

Columns contents

1 X'02'

2-• TXT

S Blank

6-1 Relative address of first instruction on card

9-10 Blank

11-12 Byte count-numbar of bytes in information field
(columns 17-72>

13-1• Blank

15-16 ES DID

17-72 56-byta information fiald

73-80 Deck 'ID and/or sequence numbar. The deck ID is the name
from the first TITLE statement that has a nonblank name
fiald. The name can be 1 to 8 characters long. If the
name is fewer than 8 characters long or if there is no
name. tha remaining columns contain a card sequence
numbar. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence
numbar.>

The format of the RLD card follows:

columns

1

2-•
s-10

11-12

13-16

17-72

17-18
19-20
21
22-24
25-72

73-80

can tan ts

X'02'

RLD

Blank

Data field count-number of bytes of information in
data field (columns 17-72)

Blank

Data field=

Relocation ESDID
Position ESDID
Flag byte
Absolute address to be relocated
Remaining RLD entries

Deck ID and/or sequence number. The deck ID is the name
from the first TITLE statement that has a nonblank name
field. The name can be 1 to 8 characters long or if
there is no name, the remaining columns contain a card
sequence number. (Columns 73-80 of cards produced by
PUNCH or REPRO statements do not contain a deck ID or a
sequence number.)

If the rightmost bit of the flag byte is set. tha following RLD
entry has the same relocation ESDID and position ESDID. and this
information will not be repeated; if the rightmost bit of the
flag byte is not sat. the next RLD entry has a different
relocation ESDID and/or position ESDID, and both ESDIDs will be
recorded.

Appendix C. Object Dack Output 95

Entry 1

For example, ;f the RLD antr;as 1, 2, and 3 of tha program
listing contain the following ;nformation:

Position Relocation
Entry ESDID ESDID Flag Address

1 02 Ott oc 000100
2 02 04 oc 000104
3 03 01 oc 000800

than columns 17-72 of tha RLD card would ba as follows:

Entry 2 Entry 3

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37---+ 72

00 02 OD 00 00 oc 00 01 04 00 01 00 03 oc 00 08 00

ESD IDs-' t
Flag
(set)

ENP CARD FORMAT

t . .. t . ..
Address Address ESD,IDs Address

Flag Flag
(not (not
set) set)

The format of the END card follows:

Columns contents
1 X'02'

2-4 END

S Blank

.I

blanks

6-8 Entry address from operand of END card ;n source dack
(blank if no operand)

9-H Blank

15-16 ESDID of entry point (blank if no operand)

17-32 Blank

33 Number of IDR items that follow CEBCDICl or EBCDIC2)

34-52 Translator identification, version and release lava!
(such as 0201), and data of the assembly (yyddd)

53-71 When present, they are the same format as columns 34-52

72-80 Deck ID and/or sequence number. Tha deck ID is tha nama
from the first TITLE statement that has a nonblank name
field. The name can be 1 to 8 characters long. If tha
name is fewer than 8 characters long or if thara is no
name, the remaining columns contain a card saquanca
number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a saquanca
number.>

96 Assembler H Version 2 Application Programming: Guide

TESTRAN CSYMJ CARD FORMAT

If you request it, the assembler punches out symbolic
information for TESTRAN concerning the assembled program. This
output appears ahead of all loader text. The format of the card
images for TESTRAH output follows:

Columns Contents

1 X'02'

2-~ SYM

s-10 Blank

11-12 Variable field--number of bytes of text in variable
field (columns 17-72>

13-16 Blank

17-72 Variable field Csee below)

73-80 Deck ID and/or sequence number. The deck ID is the name
from the first TITLE statement that has a nonblank name
field. The name can be 1 to 8 characters long. If the
name is fewer than 8 characters long or if there is no
name, the remaining columns contain a card sequence
number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence
number.)

The variable field (columns 17-72) contains up to 56 bytes of
TESTRAN text. The items comprising the text are packed
together; consequently, only the last card may contain less than
56 bytes of text in the variable field. The formats of a text
card and an individual text item are shown in Figure 19 on page
99 • The contents of the fields within an individual entry are
as follows:

1. Organization Cl byte)

Bit O: 0 = nondata type
1 = data type

Bits 1-3 (if nondata type):
000 = space
001 = control section
010 = dummy control section
011 = common
100 = instruction
101 ccw. ccwo. CCWl

Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates presence of

M field>

Bit 2 Cif data type):
0 : independent Cnot a packed or zoned

decimal constant)
1 = cluster (packed or zoned decimal

constant)

Bit 3 (if data type):

Bits 5-7:

0 = no scaling
1 = scaling (indicates presence ~f S

field)

0 = name present
1 = name not present

Length of name minus 1

Appendix C. Object Deck Output 97

2. Address C3 bytes)--displacement from base of control section

3. Symbol Name C0-8 bytes>~·symbolic name of particular item

Nata: If the entry is nondata type and space, an extra byte
is present that contains the number of bytes that have bean
skipped.

4. Data Type Cl byte>--contants in haxadacimal

00 = character
04 = hexadecimal
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
lC = floating point, long
20 = A-type or Q-typa data
24 = Y-type data
28 = s-type data
2C = v-type data
30 = packed decimal
34 = zoned decimal
38 = floating point, axtanded

5. Length C2 bytes for character, hexadecimal, decimal, or
binary items; 1 byte for other types>--length of data item
minus 1

6. Multiplicity-11 field C3 bytes)~equals 1 if not present

7. Scale-signed intager-S field C2 bytes)~presant only for F-,
H-, E-, D-, P-, and Z-typa data, and only if scale is
nonzero.

98 Assembler H Version 2 Application Programming: Guida

2 4 5

X'02' SYM blank

Entry
(complete or
end portion)

10 11 12 13 16 . 7

No.
of

bytes
of

text

blank

N complete entries
N ~ 1

Variable size entries

Org. Address Symbol name

3 ().8

Data
type

Figura 19. TESTRAN SYM Card Format

TESTRAN text - packed entries

56

Entry
(complete or
head portion)

Length

1-2

Mult.
factor

3

Scale Org.

2

Appendix D.

72 73 80

Deck & Sequence
ID number

8

name

A55embler H Messages 99

APPENDIX D. ASSEMBLER H MESSAGES

Assembler H has two types of messages:
Assembly error diagnostic messages and
assembly abnormal termination messages.
The following section describes both
types and gives their format and
placement. "Assembly Error Diagnostic
Messages" and"Abnormal Assembly
Termination Messages" on page 126
describe and list each type of message.

MESSAGE DESCRIPTIONS

Each message entry in this book has five
sections:

• Message Number and Text

• Explanation of Message

• System Action

• Programmer Response

• Severity Code

Message Number and Text

Only the message number and the major
fixed portion of the message text
included in the message description.
Any abbreviations in actual message text
are spelled out in full in the book.
Unused message numbers account for the
gaps in the message number sequence. No
messages are defined for numbers, such
as IEV006, not included in this section.

Explanation of Message

TL...---. --"• a...- ---- .a..&...!!11.- --- "'" ... 1 .,..,,, ; "'" I 11a1 C 1ngy ua 111v1 c '911u11 V••• .. n,., .. ut1'iliiil ... , -••

for some messages, because they are
generated by different sections of the
assembler. Several of the assembler
termination messages have identical
explanations.

system Action

This section tells how the assembler
handles statements with errors. A
machine instruction is assembled as all
zeros. An assembler instruction is
usually i~nored; it is printed but has
no effect on the assembly. Many
assembler instructions, however, are
partially processed or processed with a
default value.

For some instructions, the operands
preceding the operand in error or every
operand except the operand in error is
processed. For example, if one of
several operands on a DROP statement is
a symbol that has not been equated to a

register number, only that operand is
ignored. All the correctly specified
registers are correctly processed.

For some assembler statements,
especially macro prototype and
conditional assembly statements, the
operand or term in error is given a
default value. Thus the statement will
assemble completely, but will probably
cause incorrect results if the program
i s execu-t.iid.

Programmer Response

Many errors have specific or probable
causes. In such a case, the Programmer
Response section gives specific steps
for fixing the error. Most messages,
however, have too many possible causes
(from keypunch error to wrong use of the
statement> to list. The programmer
response for these error messages does
not give specific directions. The cause
of most such errors can be determined
from the message text and the
explanation.

severity Code

The severity code indicates the
seriousness of the error. The severity
codes and their meanings are shown in
the table at the end of this appendix.

This code is the return code issued by
the assembler when it returns control to
the operating system. The IBM-supplied
cataloged procedures include a COND
parameter on the linkage edit and
2xecution steps. The COHD parameter
prevents execution of these steps if the
return code from the assembler is 8 or
greater. Thus errors with ***ERROR***
in the message prevent the assembled
program from linkage editing or
executing. Errors with **WARNING** in
the message do not.

ASSEMBLY ERROR DIAGNOSTIC MESSAGES

Assembler H prints most error messages
in the listing immediately followin~ the
statements in error. It also prints the
total number of flagged statements and
their line numbers in the Diagnostic
Cross Reference section at the end of
the listing.

The messages do not follow the statement
in error when:

• Errors are detected during editing
of macro definitions read from a
library. A message for such an

100 Assembler H Version 2 Application Programming: Guida

•

error appears after the f;rst call
;n the source program to that macro
defin;t;on. You can~ however, bring
the macro definit;on ;nto the source
program with a COPY statement. The
editing error messages will then be
attached to the statements ;n error.

Errors are detected by the lookahead
function of the assembler.
(Lookahead scans, for attribute
references, statements after the one
being assembled.) Messages for
these errors appear after the
statements in which they occur. The
messages may also appear at the
po;nt at which lookahead was called.

• Errors are detected on conditional
assembly statements during macro
generation or MHELP testing. Such a
message follows the most recently
generated statement or MHELP,output
statement.

A typical error diagnostic messsaga is:

IEV057 ***ERROR*** UNDEFINED OPERATION
CODE-xxxxx

The term ***ERROR*** is part of the
message if the sever;ty code ;s 8 or
greater. The term MMWARNINGMM is part
of the message ;f the severity code is 0
or 4.

A copy of a segment of the statement in
error, represented above by xxxxx, is
appended to the end of many massages.
Normally this segment, which can be up
to 16 bytes long, begins at the bad
character or term. For some errors,
however, the segment may begin after the
bad character or term. The segment may
include part of the remarks field.

If a diagnostic message follows a
statement generated by a macro
definition, the following items may be
appended to the error massage:

• The number of the model statement in
which the error occurred, or the
first five characters of the macro
name.

• The SET symbol, parameter number, or
value string associated with the
error.

Note: References to macro parameters
are by number.Csuch as PARAM008) instead
of by name. The first seven numbers are
always assigned for the standard system
parameters as follows:

PARAMOOO = &SYSNDX
PARAMOOl = &SYSECT
PARAM002 = &SYSLOC
PARAM003 = &SYSTIME
PARAM004 = &SYSDATE
PARAMO OS = &SYSPARM
PARAM006 = Name Field Parameter

Then the keyword parameters are numbered
in the order defined in the macro
definition, followed by positional
parameters. When there are no keyword
parameters in the macro definition,
PARAM007 refers to the first positional
parameter.

If a diagnostic massage follows a
conditional assembly statement in the
source program, the following items will
be appended to the err~r massage:

• The word "OPENC"

• The SET symbol or value string
assoc1ated with the error

Several massages may be issued for a
single statement or even for a single
error within a statement. This happens
because each statement is usually
evaluated on more than one level (for
example, term level, expression level,
and operand level> or by more than one
phase of the assembler. Each level or
phase can diagnose errors; therefore,
most or all of the errors in the
statement are flagged. Occasionally,
duplicate error massages may occur. ,
This is a normal result of the error ,
detection process.

HESSAGE NOT KNOWN

The following massage may appear in a
listing:

IEVnnn MMMERRORMMM MESSAGE HOT
KNOWN-xxxxxxxxxx

The statement preceding this message
contains an error but the assembler
routine that detected the error issued
the number CIEVnnn) of a nonexistent
error message to the assembler's massage
generation routine. The segment of the
statement in error may be appended to
the message. If you can correct the
error, this statement will assemble
correctly. However, there is a bug in
the error detection process of the
assembler. Sava the output and the
source deck from this assembly and
report the problem to your IBM customer
engineer.

MESSAGES

IEVOOl OPERATION-CODE NOT ALLOWED TO
BE GENERATED

Explanatfan: An attempt was made to
produce a restricted operation code by
variable symbol substitution.
Restricted operation codes are:

Appendix D. Assembler H Messages 101

ACTR
AIF
COPY
MACRO
GBLA
LCLA

AGO
AIFB
REP RO
MEND
GBLB
LCLB

AGOB
ANOP
ICTL
MEX IT
GBLC
LCLC

A READ
SETA
SETB
SETC

System Action: The statement is ignored.

Programmer Response: If you want a
variable operation code, use AIF to
branch to the correct unrestricted
statement.

severity: 8

IEV002 GENERATED STATEMENT TOO LONG.
STATEMENT TRUNCATED

Explanation: The statement generated by
a macro definition is more than 864
characters long.

System Action: The statement is
truncated; the leading 864 characters
are retained.

Programmer Response: Shorten the
statement.

severity: 12

IEV003 UNDECLARED VARIABLE SYMBOL.
DEFAULT=O, NULL, OR TYPE=U

Explanation: A variable symbol in the
operand field of the statement has not
been declared (defined) in the name
field of a SET statement, in the operand
field of an LCL or GBL statement, or in
a macro prototype statement.

System Action: The variable symbol is
given a default value as follows:

SETA = 0
SETB = 0
SETC = null (empty) string

The type attribute CT'> of the variable
is given a default value of U
(undefined).

Programmer Response: Declare the
variable before you use it as an
operand.

severity: 8

IEV004 DUPLICATE SET SYMBOL
DECLARATION. FIRST IS RETAINED

Explanation: A SET symbol has been
declared (defined) more than once. A
SET symbol is declared when it is used
in the name field of a SET statement, in
the operand field of an LCL or GBL
statement, or in a macro prototype
statement.

System Action: The value of the first
declaration of the SET symbol is used.

Programmer Response: Eliminate the
incorrect declarations.

severity: 8

IEVOOS ND CORE FOR INNER MACRO CALL.
CONTINUE WITH OPEN CODE

Explanation: An inner macro call could
not be executed because no main storage
was available.

System Action: The assembly is continued
with the next open code statement.

Programmer Response: Check whether the
macro is recursive, and, if so, whether
termination is provided for; correct the
macro if necessary. If the macro is
correct, allocate more main storage.

severity: 12

IEV007 PREVIOUSLY DEFINED SEQUENCE
SYMBOL

Explanation: The sequence symbol in the
name field has been used in the name
field of a previous statement.

System Action: The first definition of
the sequence symbol is used; this
definition is ignored.

Programmer Response: Remove or change
one of the sequence symbols.

severity: 12

IEV008 PREVIOUSLY DEFINED SYMBOLIC
PARAMETER

Explanation: The same variable symbol
has been used to define two different
symbolic parameters.

System Action: When the parameter name
Cthe variable symbol) is used inside the
ma~ru definition, it will refer to the
fiJ:.a:! definition of the parameter in tha
prototype. However, if the second
parameter defined by the variable symbol
is a positional parameter, the count of
positional operands will still be
increased by one. The second parameter
can then be referred to only through usa
of &SYSLIST.

Programmer Response: Change one of the
parameter names to another variable
symbol.

severity: 12

IEV009 SYSTEM VARIABLE SYMBOL
ILLEGALLY RE-DEFINED

Explanation: A system variable symbol
has been used in the name field of a
macro prototype statement. The system
variable symbols are:

&SYSECT
&SYSLIST

&SYSDATE
&SYSLOC

102 Assembler H Version 2 Application Programming: Guide

&SYSNDX
&SYSTIME

&SYSPARM

System Action: The name parameter is
ignored. The name on a corresponding
macro instruction will not be generated.

Programmer Response: Change the
parameter to one that is not a system
variable symbol.

severity: 12

IEVOll INCONSISTENT GLOBAL
DECLARATIONS. FIRST IS
RETAINED

Explanation: A global SET variable
symbol has been defined in more than one
macro definition or in a macro
definition a'nd in the source program,
and the two definitions are inconsistent
in type or dimension.

System Action: The first definition
encountered is retained.

Programmer Response: Assign a new SET
symbol or make the definitions
compatible.

Severity: 8

IEV012 UNDEFINED SEQUENCE SYMBOL.
MACRO ABORTED

Explanation: A sequence symbol in the
operand field is not defined; that is,
it is not used in the name field of a
model statement.

System Action: Exit from the macro
definition.

Programmer Response: Define the sequence
symbol.

severity: 12

IEVOll ACTR COUNTER EXCEEDED

Explanation: The conditional assembly
loop counter (set by an ACTR statement)
has been decremented to zero. The ACTR
counter is decremented by one each time
an AIF or AGO branch is executed
successfully. The counter is halved for
most errors encountered by the macro
editor phase of the assembler.

System Action: A macro expansion is
terminated. If the ACTR statement is in
the source program, the assembly is
terminated.

Programmer Response: Check for an
AIF/AGO loop or another type of error.
<You can use the MHELP facility,
described in Chapter 3 and Appendix B,
to trace macro definition logic.) If
there is no error, increase the initial
count on the ACTR instruction.

Severity: 12

IEV017 UNDEFINED KE~'WORD PARAMETER.
DEFAULT TO POSITIONAL
INCLUDING KEYWORD

Explanation: A keyword parameter in a
macro call is not defined in the
corresponding macro prototype statement.

Note: This message may be generated by
a valid positional parameter that
contains an equal sign.

System Action: The keyword (including
the equals sign and value) is used as a
positional parameter.

Programmer Response: Define the keyword
in the prototype statement.

severity: 4

IEV018 DUPLICATE KEYWORD IN MACRO
CALL. LAST VALUE IS USED

Explanation: A keyword operand occurs
more than once in a macro call.

system Action: The latest value assigned
to the keyword is used.

Programmer Response: Eliminate one of
the keyword operands.

Severity: 12

IEV020 ILLEGAL GBL OR LCL STATEMENT

Explanation: A global CGBL> or local
CLCL> declaration statement does not
have an operand.

System Action: The statement is
ignored.

Programmer Response: Remove the
statement or add an operand.

Severity: 8

IEV021 ILLEGAL SET STATEMENT

Explanation: The operand of a SETB
statement is not O, 1, or a SETB
expression enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Correct the operand
or delete the statement.

Severity: 8

IEV02l SYMBOLIC PARAMETER TOO LONG

Explanation: A symbolic parameter in
this statement is too long. It must not
exceed 63 characters, including the
initial ampersand.

System Action: The symbolic parameter
and any operand following it in this
statement are ignored.

Appendix D. Assembler H Messages 103

,Programmer Response: Make sure all
symbolic parameters consist of an
ampersand followed by 1 to 62 alphameric
characters, the first of which is
alphabetic.

severity: 8

IEV024 INVALID VARIABLE SYMBOL

Explanation: One of these arrors has
occurred:

•

•

A symbolic parameter or a SET symbol
is not an ampersand followed by 1 to
62 alphameric characters, the first
being alphabetic.

A created SET symbol definition is
not a valid SET symbol expression
enclosed in parentheses.·

System Action: The statement is ignored.

Programmer Response: Supply a valid
symbol or expression.

severity: 8

IEV025 INVALID MACRO PROTOTYPE
OPERAND

Explanation: The format of the operand
field of a macro prototype statement is
invalid. For example, two parameters
are not separated by a comma, or a
parameter contains an invalid character.

System Action: The operand field of the
prototype is ignored.

Programmer Response: Supply a valid
operand field.

severity: 12

IEV026 MACRO CALL OPERAND TOO LONG.
255 LEADING CHARACTERS DELETED

Explanation: An operand of a macro
instruction is more than 255 characters
long.

System Action: The leading 255
characters are deleted.

Programmer Response: Limit the operand
to 255 characters, or limit it into two
or more operands.

severity: 12

1EV027 EXCESSIVE NUMBER OF OPERANDS

Explanation: Ona of the following has
occurred:

• More than 240 positional and/or
keyword operands have bean
explicitly defined in a macro
prototype statement.

• There are more than 255 operands in
a DC, DS, or DXD statement.

System Action: The excess parameters ara·
ignored.

Programmer Response: For a DC, DS, or
DXD statement, use more than one
statement. For a macro prototype
statement, delete the extra operands and
use &SYSLIST to access the positi~nal
operands, or redesign the macro
definition.

severity: 12

1EV028 INVALID DISPLACEMENT

Explanation: One of the following has
occur rad:

•

•

The displacement field of an
explicit address is not an absolute
value within the range 0 through
4095.

The displacement field of an S-type
address constant is not an absolute
value within the range 0 through
4095.

System Action: The statement or constant
is assembled as zero.

Programmer Response: Correct the
displacement or supply an appropriate
USING statement containing an absolute
first operand prior to this statement.

severity: 8

1EV029 INCORRECT REGISTER OR MASK
SPECIFICATION

Explanation: The value specifying a
register or a mask is not an absolute
value within the range 0 through 15; an
odd register is used where an even
register is required; a register is used
where none can be specified; or a
register is not specified where one is
required.

system Action: For machine instructions
and S-typa address constants, the
statement or constant is assembled as
zero. For USING and DROP statements,
the invalid register operand is ignored.

Progrannnar Response: Specify a valid
register.

Severity: 8

1EV030 INVALID LITERAL USAGE

Explanation: A literal is used in an
assembler instruction, another literal,
or a field of a machine instruction
where it is not permitted.

System Action: An assembler instruction
containing a literal is generally
ignored and another massage, relative to

104 Assembler H Version 2 Application Programming: Guida

tha operation coda of the instruction,
appears. A machine instruction is
assembled to zero.

Programmer Response: If applicable,
replace tha literal with the name of a
DC statement.

severfty: 8

IEV031 INVALID IMMEDIATE FIELD

Explanation: The value of an immediate
operand of a machine instruction
requires more than one byte of storage
(exceeds 255) or the value of the
immediate operand exceeds 9 on an SRP
instruction.

System Action: The instruction is
assembled as zero.

Programmer Response: Use a valid
immediate operand, or specify the
immediate information in a DC statement
or a literal and change the statement to
a nonimmediate type.

severity: 8

IEV032 RELOCATABLE VALUE FOUND WHERE
ABSOLUTE VALUE REQUIRED

Explanation: A relocatable or complex
relocatable expression is used where an
absolute expression is required.

System Action: A machine instruction is
assembled as zero. In a DC, DS, or DXD
statement, the operand in error and the
following operands are ignored.

Programmer Response: Supply an absolute
expression or term.

severity: 8

IEVOll ALIGNMENT ERROR

Explanation: An address referenced by
this statement may not be aligned to the
proper boundary for this instruction;
for example, the data referenced by a
load instruction CL> may ba on a
halfword boundary, or the address may
depend upon an index register.

System Action: The instruction is
assembled as written.

Programmer Response: Correct the operand
if it is in error. If you are using a
System/370 model that does not require
alignment or you wish to suppress
alignment checking for some other
reason, you can specify 'NOALIGN' as an
assembler option. If a particular
statement is correct, you can suppress
this message by writing the statement
with an absolute displacement and an
explicit base register, as in this
example=

L 1,SYM-BASEC,2>

severity: 4

IEV034 ADDRESSABILITY ERROR

Explanation: The address referenced by
this statement does not fall within the
range of a USING statement, or a base
register is specified along.with a
relocatable displacement.

System Action: The instruction is
assembled as zero.

Programmer Response: Insert the
appropriate USING statement prior to
this statement. Otherwise, check this
statement for a misspelled symbol, an
unintended term or symbol in an address
expression, or a relocatable symbol used
as a displacement.

severity: 8

IEVOJS INVALID DELIMITER

Explanation: Cl> A required delimiter in
a DC, DS, or DXD statement is missing or
appears where none should be; the error
may be any of these:

• A quotation mark with an address
constant.

•

•

•
•

•

A left parenthesis with a nonaddress
constant.

A constant field not started with a
quotation mark, left parenthesis,
blank. or comma.

An empty constant field in a DC •

A missing comma or right parenthesis
following an address constant.

A missing subfield right parenthesis
in an s-typa address constant.

• A missing right parenthesis in a
constant modifier expression.

C2) A parameter in a macro prototype
statement was not followed by a valid
delimiter: comma, equal sign, or blank.

System Actton: The operand or parameter
in error and the following operands or
parameters are ignored.

Programmer Response: Supply a valid
delimiter.

severity: 12

IEV0l6 REENTRANT CHECK FAILED

Explanation: A machine instruction that
might store data into a control section
or common area when executed has been
detected. This message is generated
only when reentrant checking is

Appendix D. Assembler H Messages 105

requested by the assembler option
'RENT'.

System Action: The statement is
assembled as writteh.

Programmer Response: If you want
reentrant code, correct the instruction.
Otherwise, you can suppress reentrant
checking by. specifying 'NORENT' as an
assembler option.

severity: 4

IEV037 ILLEGAL SELF-DEFINING VALUE

Explanation: A decimal, binary CB>,
hexadecimal CX), or character CC>
self-defining term contains invalid
characters or is in illegal format.

System Action: In the source program,
the operand in error and the following
operands are ignored. In a macro
definition, the entire statement is
ignored.

Programmer Response: Supply a valid
self-defining term.

severity: 8

IEV038 OPERAND VALUE FALLS OUTSIDE OF
CURRENT SECTION/LOCTR

Explanation: An ORG statement specifies
a location outside the control section
or the LOCTR in which the ORG is used.
Note that ORG cannot force a change to
another section or LOCTR.

System Action: The statement is ignored.

Programmer Response: Change the ORG
statement if it is wrong. Otherwise,
insert a CSECT, DSECT, COM, or LOCTR
statement to set the location counter to
the proper section before the ORG
statement is executed.

severity: 12

IEV039 LOCATION COUNTER ERROR

Explanation: The location counter has
exceeded 2 24-1, the largest address that
can be contained in 3 bytes. This
occurrence is called location counter
wraparound.

System Action: The location counter is 4
bytes long Conly 3 bytes appear in the
listing and the object deck). The
overflow is carried into the high-order
byte and the assembly continues.
However, the resulting code will
probably not execute correctly.

Programmer Response: The probable cause
is a high ORG statement value or a high
START statement value. Correct the
value or split up the control section.

severity: 12

IEV040 MISSING OPERAND

Explanation: The statement requires an
operand, and none is present.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored.

Programmer Response: Supply the mi !ssing
operand.

severity: 12

IEV041 TERM EXPECTED. TEXT IS
UNCLASSIFIABLE

Explanation: One of these errors has
occurred:

•

•

A term was expected, but the
character encountered is not one
that starts a term Clatter, number,
:, +, -, M).

A latter and a quotation mark did
not introduce a valid term; the
latter is not L, c, X, or B.

System Action: Another massage will
accompany an assembler statement. A
machine instruction will be assembled as
zero.

Programmer Response: Check for missing
punctuation, a wrong latter on a
self-defining term, a bad attribute
request, a leading comma, or a dangling
comma. Note that the length attribute
is the only one accepted hare. If a
scale, type, or integer attribute is
needed, use a SETA statement and
substitute the variable symbol where the
attribute is needed.

severity: 8

IEVH2 LENGTH ATTRIBUTE OF UNDEFINED
SYMBOL. DEFAULT=!

Explanation: This statement has a length
attribute reference to an undefined
symbol.

System Action: The L' attribute defaults
to 1.

Programmer Response: Define the symbol
that was referenced.

severity: 8

IEV043 PREVIOUSLY DEFINED SYMBOL

Explanation: The symbol in a name field
or in the operand field of an EXTRH or
WXTRN statement was defined Cused as a
name or an EXTRN/WXTRN operand) in a
previous statement.

106 Assembler H Version 2 Application Programming: Guide

System Action: The name or EXTRN/WXTRH
operand of this statement is ignored.
The following operands of an EXTRN or
WXTRN will be processed. The first
occurrence of the symbol will define it.

Programmer Response: Correct a possible
spelling error, or change the symbol.

severity: 8

IEV044 UNDEFINED SYMBOL

Explanation: A symbol in the operand
field has not been defined, that is,
used in the name field of another
statement or the operand field of an
EXTRN or WXTRN.

System Action: A machine instruction or
an address constant is assembled as
zero. In a DC, DS, or DXD statement or
in a duplication-factor or
length-modifier expression, the operand
in error and the following operands are
ignored. In an EQU statement, zero is
assigned as the value of the undefined
symbol. Any other instruction is
ignored entirely.

Programmer Response: Define the symbol,
or remove the references to it.

severity: 8

IEV045 REGISTER NOT PREVIOUSLY USED

Explanation: A registQr specified in a
DROP statement has not been previously
specified in a USING statement.

System Action: Registers not currently
active are ignored.

Programmer Response: Remove the
unreferenced registers from the DROP
statement. You can drop all active base
registers at once by specifying DROP
with a blank operand.

severity: 4

FLAG BYTE OPERAND IS NOT A
MULTIPLE OF 4

Explanation: Bits 6 and 7 of the flag
byte of a channel command word specified
by a CCW, CCWO, or CCWl statement are
not all zero.

system Action: The ccw, ccwo, or CCWl is
assembled as zero.

Programmer Response: Set bits 6 and 7 of
the flag byte to zero to suppress this
message during the next assembly.

severity: 8

IEV047 SEVERITY CODE TOO LARGE

Explanation: The severity coda (first
operand> of an MNOTE statement is not M
or an unsigned decimal number from 0 to

255.

Syste11 Action: The shtemen·t: is printed
in standard format instead of MNOTE
format. The MNOTE is given the severity
code of this message.

Programmer Response: Choose a severity
code of M or a number less than 255, or
check for a generated severity code.

severity: 8

IEV0"8 ENTRY ERROR

Explanation: One of the following errors
was detected in the operand of an ENTRY
statement:

•
•

•
•
•

Duplicate symbol (previous ENTRY>

Symbol defined in a DSECT or COM
section

Symbol defined by a DXD statement

Undefined symbol

Symbol defined by an absolute or
complex relocatable EQU statement

System Action: The external symbol
dictionary output is suppressed for the
symbol.

Programmer Response: Define the ENTRY
operand correctly.

severity: 8

ILLEGAL RANGE ON ISEQ

Explanation: If this message is
accompanied by another, this one is
advisory. If it appears by itself, it
indicates one of the following errors:

• An operand value is less than 1 or
greater than 80, or the second
operand (rightmost column to be
checked) is less than the first
operand (leftmost column to be
checked).

•

•

•

•

•

Mora or fewer than two operands are
present, or an operand is null
(empty).

An operand expression contains an
undefined symbol.

An operand expression is not
absolute.

The statamant is too complex. For
example, it may have forward
references or cause an arithmetic
overflow during evaluation.

The statement is circularly defined.

System Action: Sequence checking is
stopped.

Appendix D. Assembler H Massages 107

Progra111119r Rasponsa: Supply valid ISEQ
operands. Also, be sure that t.he car·ds
following this statement are in orderJ
they have not bean sequence checked.

savarity: 4

IEVOSO ILLEGAL NAME FIELD. NAME
DISCARDED

Explanation: One of these errors has
occur rad:

•

•

The name field of a macro prototype
statement contains an invalid
symbolic parameter (variable
symbol).

The name field of a COPY statement
in a macro definition contains an
entry other than blank or a valid
sequence symbol.

syatam Action: The invalid name field is
ignored.

Programmer Response: Correct the invalid
name field.

severity: 8

IEVOSl ILLEGAL STATEMENT OUTSIDE A
MACRO DEFINITION

Explanation: A MEND, MEXIT, or AREAD
statement appears outside a macro
defi ni ti on.

System Action: Tha statement is ignored.

Programmer Response: Remove the
statement or, if a macro definition is
intended, insert a MACRO statamant.

severity: 8

IEV052 CARD OUT OF SEQUENCE

Explanation: Input sequence checking,
under control of the ISEQ assembler
instruction, has determined that this
statement is out of sequence. The
sequence number of the statement is
appended to the massage.

System Action: The statement is
assembled normally. However, the
sequence number of the next statement
will be checked relative to this
statement.

Programmer Response: Put the statements
in proper sequence. If you want a break
in sequence, put in a new ISEQ statement
and sequence number. ISEQ always resets
the sequence number; the card following
the ISEQ is not sequence checked.

sever tty: 12

IEVOS3 BLANK SEQUENCE FIELD

Explanation: Input sequence checking,
controlled by the ISEQ assembler
statement, has detected a statement with
a blank sequence field. The sequence
number of the last numbered statement is
appended to tho massage.

System Action: Tha statement is
assembled normally. The sequence nu~har
of the next statement will be checked
relative to the last statement having a
nonblank sequence field.

Programmer Rasponse: Put the proper
sequence number in the statement or
discontinue sequence checking over the
blank statements by means of an ISEQ
statement with a blank operand.

severity: 4

IEV054 ILLEGAL CONTINUATION CARD

Explanation: A statement has more than
10 cards or end-of-input has been
encountered when a continuation card was
expected.

System Action: The cards already read
are processed as is. If the statement
had more than 10 cards, the next card is
treated as the beginning of a new
statement.

Programmer Response: In the first case,
break the statement into two or more
statements. In the second case, ensure
that a continued statement does not span
the end of a library member. Check for
lost cards or an extraneous continuation
punch.

Saver tty: 8

IEVOSS RECURSIVE COPY

Explanation: A nested COPY statement
CCOPY within another COPY> attempted to
copy a library member already being
copied by a higher level COPY within tha
same nest.

Syste• Action: This COPY statement is
ignored.

Programmer Response: Correct the operand
of this COPY if it is wrong, or
rearrange the nest so that the same
library member is not copied by COPY
statements at two different levels.

severity: 12

lEVOS7 UNDEFINED OPERATION CODE

Explanation: Ona of the following errors
has occurred:

• Tha operation code of this statement
is not a valid machine or assembler
instruction or macro name.

• In an OPSYN statement, this operand
symbol is undefined or illegal or,

108 Assembler H Version 2 Application Programming: Guide

if no oparand is prasant, tha name
fiald symbol is undafinad.

System Action: Tha statament is ignorad.
Note that OPSYN doas not search tha
macro library for an undafinad oparand.

Program111ttr Response: Corract the
statement. In tha casa of an undafinad
macro instruction, tha wrong data sat
may hava bean specified for tha macro
library. In tha casa of OPSYN, a
pravious OPSYN or macro dafinition may
hava failad to dafina the oparation
coda.

sever·tty: 8

IEVOS9 ILLEGAL ICTL

Explanation: An ICTL statament has ona
of tha following errors:

•

•

•

•
•

Tha operation coda was created by
variable symbol substitution.

It is not tha first statement ir. tha
assembly.

The value of one or more operands is
incorrect.

An operand is missing •

An invalid charactar is detacted in
tha operand fiald.

System Action: The ICTL statement is
ignored. Assembly continues with
standard ICTL values.

Programmer Response: Correct or remove
the ICTL. The begin column must be
1-40; tha and column must be 41-80 and
at least five greater than the begin
column; and the continua column must ba
2-40.

severity: 16

IEV060 COPY CODE NOT FOUND

Explanation: Cl> If this message is on
a COPY statement and no text is printed
with it, one of the following occurred:

• Tha library member was not found.

• Tha lookahead phase previously
processed tha COPY statement and did
not find tha library member, tha
copy was recursive, or the operand
contains a variable symbol.

C2> If this massage is not on a COPY
statement, but has a library member name
printed with it, the lookahead phase of
the assembler could not find the library
member becausa the name is undefined or
contains a variable symbol.

System Action: The COPY statement is
ignored; the library member is not
copied.

Progra11111ar Response: Check that the
correct macro library was assigned, or
check for a possibla misspelled library
member name. If the library member may
be read by the lookahead phase of the
assembler, do not make the library
mambar name a variable symbol.

If COPY member is not defined in any
macro library, and is not executed
because of an AGO or AIF assembler
in st ruction, add a dum1ny COPY member
with the name to the macro library.

severity: 12

IEV061 SYMBOL NOT NAME OF DSECT OR
DXD

Explanation: The operand of a Q-type
address constant is not a symbol or tha
name of a DSECT or DXD statement.

System Action: Tha constant is assembled
as zero.

Programmer Response: Supply a valid
operand.

severity: 8

IEV062 ILLEGAL OPERAND FORMAT

Explanation: Ona of the following errors
has occurred:

•

•

•

•

•

DROP or USING--more than 16
registers were specified in the
operand field.

PUSH or POP~an operand does not
specify a PRINT or USING statement.

PRINT~an operand specifies an
invalid print option.

MNOTE~the syntax of the severity
coda (first operand) is invalid.

AMODE~tha operand does not specify
24, 31, or ANY.

• RMODE~the operand does not specify
24 or ANY.

Syste• Action: The first 16 registers in
a DROP or USING statement are processed.
The operand in error and the following
operands of a PUSH, POP, or PRINT
statement are ignored. The AMODE or
RMODE instruction is ignored, and the
name field (if any) will not appear in
the cross-reference listing.

Programmer Response: Supply a valid
operand field.

severity: 8

IEV063 NO ENDING APOSTROPHE

Appandix D. Assembler H Massages 109

Explanation: The quotation mark
terminating an operand is missing, or
the standard value of a keyword
parameter of a macro prototype statement
is missing.

System Actic>n: The operand or standard
value in error is ignored. If the error
is in a macro definition model
statement, the entire statement is
ignored.

Programmer Response: Supply the missing
quotation mark.

severity: 8

IEV064 FLOATING POINT CHARACTERISTIC
OUT OF RANGE

Explanation: A converted floating-point
constant is too large or too small for
the processor. The allowable range is
7.2x10 75 to 5.3xl0- 77 •

System Action: The constant is assembled
as zero.

Programmer Response: Check the
characteristic (exponent), exponent
modifier, scale modifier, and mantissa
(fraction) for validity. Remember that
a floating-point constant is rounded,
not truncated, after conversion.

severity: 12

IEV06S UNKNOWN TYPE

Explanation: An unknown constant type
has been used in a DC or DS statement or
in a literal.

System Action: The operand in error and
the following operands are ignored.

Programmer Response: Supply a valid
constant. Look for an incorrect type
code or incorrect syntax in the
duplication factor.

severity: 8

IEV066 RELOCATABLE Y-TYPE CONSTANT

Explanation: This statement contains a
relocatable Y-type address constant. A
Y-constant is only 2 bytes long, so
addressing errors will occur if this
program is loaded at a main storage
address greater than 32K (32,768).

System Action: The statement is
assembled as written.

Programmer Response: If this program
will not be loaded at a main storage
address greater than 32K, you can leave
the Y-constant.

severity: 4

IEV067 ILLEGAL DUPLICATION FACTOR

Explanation: One of the following errors
has occurred:

• A literal has a zero duplication
factor.

•

•

The duplication factor of a constant
is greater than 22 4 -1.

A duplication factor expression of a
constant is invalid.

System Action: The operand in error and
the following operands of a DC, DS, or
DXD statement are ignored. The
statement containing the literal is
assembled as zero.

Programmer Response: Supply a valid
duplication factor. If you want a zero
duplication factor, write the literal as
a DC statement.

severity: 12

IEV068 LENGTH ERROR

Explanation: Ona of the following errors
has occurred:

• The length modifier of a constant is
wrong.

• The c, X, B, z, or P-typa constant
is too long.

• An operand is longer than 22 4 -1
bytes.

•

•

A relocatable address constant has
an illegal length.

The length field in a machine
instruction is invalid or out of the
permissible range.

System Action: The operand in error and
the following operands of the DC, DS, or
DXD statement are ignored, except that
an address constant with an illegal
length is truncated. A machine
instruction is assembled as zero.

Programmer Response: Supply a valid
length.

severity: 12

IEV070 SCALE MODIFIER ERROR

Explanation: A scale modifier in a
constant is used illegally, is out of
range, or is relocatable, or there is an
error in a scale modifier expression.

system Action: If the scale modifier is
out of range, it defaults to zero.
Otherwise, the operand in error and the
following operands are ignored.

Pragrallll'ler Response: Supply a valid
scale modifier.

110 Assembler H Version 2 Application Programming: Guida

severity: a
IEV071 EXPONENT MODIFIER ERROR

Explanattan: The constant contains
multiple internal exponents, the
exponent modifier is out of range or
relocatable, or the sum of the exponent
modifier is out of range.

System Action: If the constant contains
multiple internal exponents, the operand
in error and the following operands are
ignored. Otherwise, the exponent
modifier defaults to zero.

Programmer Response: Change the exponant
modifier or tha internal exponent.

severity: 8

IEV072 DA.TA ITEM TOO LARGE

Explanation: A Y-type address constant
is larger than 2 15 -1 or smaller than
-21 5 , or the value of a decimal constant
is greater than the number of bits
(integer attribute) allocated to it.

System Action: The constant is
truncated. The high-order bits ara
lost.

Programmer Response: Supply a smaller
scale modifier or a longer constant.

severity: 8

IEV073 PRECISION LOST

Explanation: The scale modifier of a
floating-point number was large enough
to shift the entire fraction out of the
converted constant.

System Action: The constant is assembled
with an exponant but with a zero
mantissa (fraction>.

Programmer Response: Change the scale
modifier or use a longer constant. For
example, use a D-type constant instead
of an E-type constant.

severity: 8

IEV074 ILLEGAL SYNTAX IN EXPRESSION

Explanation: An expression has two terms
or two operations in succession, or
invalid or missing characters or
delimiters.

System Action: In a DC, DS, or DXD
statement, the operand in error and the
following operands are ignored. In a
macro definition, the entire statement
is ignored. A machine instruction is
assembled as zero.

Programmer Response: Check the
expression for keypunch errors, or for
missing or invalid terms or characters.

severity: 8

IEV075 ARITHMETIC OVERFLOW

Explanation: The intermediate or final
value of an expression is not within the
range -2 31 through 2 31 -1.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored.

Programmer Response: Change the
expression.

severity: 8

IEV076 STATEMENT COMPLEXITY EXCEEDED

Explanation: The complexity of this
statement caused the assembler's
expression evaluation work area to
overflow.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored.

Programmer Response: Reduce the number
of terms, levels of expressions, or
references to complex relocatable EQU
names.

severity: 8

IEV077 CIRCULAR DEFINITION

Explanation: The value of a symbol in an
expression is dependent on itself,
either directly or indirectly, via one
or more EQU statements. For example,

A EQU 8
8 EQU C
C EQU A

A is circularly defined.

System Action: The value of the EQU
statement defaults to the current value
of the location counter. All other EQu
statements involved in the circularity
are defaulted in terms of this one.

Programmer Response: Supply a correct
definition.

severity: 8

IEV079 ILLEGAL PUSH-POP

Explanation: More POP assembler
instructions than PUSH instructions have
been encountered.

System Action: This PCP instruction is
ignored.

Programmer Response: Eliminate a POP
statement, or add another PUSH
statement.

Appendix D. Assembler H Messages 111

severity: a
IEVOIO STATEMENT IS UNRESOLVABLE

Explanation: A statement cannot be
resolved, because it contains a complex
relocatable expression or because the
location counter has been circularly
defined.

System Action: The statement is ignored.

Programmer Response: Untangle the
forward references or check the complex
relocatable EQU statements.

severity: 8

IEV081 CREATED SET SYMBOL EXCEEDS 63
CHARACTERS

Explanation: A SET symbol created by
variable symbol substitution is longer
than 63 characters (including the
ampersand as the first character).

System Action: If the symbol is in the
operand field of a SET, AIF, or AGO
statement, its value is set to zero or
null, and the type attribute is sat to
undefined CU>. If the symbol is in the
operand field of a GBL, or LCL statement
or the name field of a SET statement,
the macro is aborted.

Programmer Response: Shorten the symbol.

severity: a
IEV082 CREATED SET SYMBOL IS NULL

Explanation: A SET symbol created by
variable symbol substitution is null
(empty string).

System Action: If the symbol is in the
operand field of a SET, AIF, or AGO
~tatement, its value is set to zero or
null, and the type attribute is set to
undefined CU>. If the symbol is in the
operand field of a GBL, or LCL statement
or thQ name field of a SET statement,
the macro is aborted.

Programmer Response: Supply a valid
symbol.

severity: a
IEV083 CREATED SET SYMBOL IS NOT A

VALID SYMBOL

Explanation: A SET symbol created by
variable symbol substitution or
concatenation does not consist of an
ampersand followed by up to 62
alphamaric characters, the first of
which is alphabetic.

System Action: If the symboi is in the
operand field of a SET, AIF, or AGO
statement, its value is set to zero or
null, and the type attribute is sat to
undefined CU>. If the symbol is in the

operand field of a GBL or LCL statement
or the name field of a SET statement,
the macro is aborted.

Programmer Response: Supply a valid
symbol.

severity: a
IEY08~ GENERATED NAME FIELD EXCEEDS

63 CHARACTERS. DISCARDED

Explanation: The name field on a
generated statement is longer than 63
characters.

System Action: The name field is not
generated. The rest of the statement is
assembled normally.

Programmer Response: Shorten the
generated name to 63 characters or
fewer.

severity: 12

IEV08S GENERATED OPERAND FIELD IS
NULL

Explanation: The operand field of a
generated statement is null (empty>.

System Action: The statement is
assembled as though no operand were
specified.

Programmer Response: Provide a nonempty
operand field. If you want the
statement assembled with no operand,
substitute a comma rather than leave the
operand blank.

severity: o
IEV086 MISSING MEND GENERATED

Explanation: A macro definition,
appearing in the source program or being
read from a library by a macro call or a
COPY statement, ends before a MEND
statement is encountered to terminate
it.

System Action: A MEND statement is
generated. The portion of the macro
definition read in will be processed.

Programmer Response: Insert the MEND
statement if it was left out.
Otherwise, check if all the macro
definition is on tha library.

severity: 12

IEY087 GENERATED OPERATION CODE IS
NULL

Explanation: Tha oparation code of a
generated statement is null Cblank>.

System Action: The generated statemant
is printed but not assembled.

112 Assembler H Version 2 Application Programming: Guida

Programmer Response: Provide a valid
operation coda.

severity: 12

IEV088 UNBALANCED P/>,RENTHESES IN
f'IACRO CALL OF1ERAND

Explanation: Excess left or right
parentheses occur in an operand
(parameter) of a macro call statement.

System Action: The parameter
corresponding to the operand in error is
given a null (empty) value.

Programmer Response: Balance the
parentheses.

severity: 8

IEV089 ARITHMETIC EXPRESSION CONTAINS
ILLEGAL DELIMITER OR ENDS
PREMATURELY

Explanation: An arithmetic expression
contains an invalid character or an
arithmetic subscript ends without
sufficient right parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid
expression.

severity: 8

IEV090 EXCESS RIGHT PARENTHESIS IH
MACRO CALL OPERAND

Explanation: A right parenthesis without
a corresponding left parenthesis was
detected in an operand of a macro
instruction.

System Action: The excess right
parenthesis is ignored. The macro
expansion may be incorrect.

Programmer Response: Insert the proper
parenthesis.

Severity: 8

IEV091 SETC OR CHARACTER RELATIONAL
OPERAND OVER 255 CHARACTERS.
TRUNCATED TO 255 CHARACTERS

Explanation: The value of the operand of
a SETC statement or the character
relational operand of an AIF statement
is longar than 255 characters. This may
occur before substrings are evaluated.

System Action: The first 255 characters
are used.

Programmer Response: Shorten the SETC
expression value or the operand value.

severity: 8

IEV092 SUBSTRING EXPRESSION 1 POINTS
PAST STRING END DEFAULT=NULL

Explanation: The first arithmetic
expression of a SETC substring points
beyond the end of the expression ·
character string.

System Action: The substring is given a
null value.

Programmer Response: Supply a valid
expression.

severity: o
IEV093 SUBSTRING EXPRESSION 1 LESS

THAN 1. DEFAULT=NULL

Explanation: The first arithmetic
expression of a SETC substring is less
than one; that is, it points before the
expression character string.

System Action: The substring expression
defaults to null.

Programmer Response: Supply a valid
expression.

severity: 8

SUBSTRING GOES PAST STRING
END. DEFAULT=REHAINDER

Explanation: The second expression of a
substring notation specifies a length
that extends beyond the end of the
string. -

System Action: The result of the
substring operati·on is a string that
ends with the last character in the
character string.

Programmer Response: Make sure the
arithmetic expression used to specify
the length does not specify characters
beyond the end of the string. Either
change the first or the second
expression in the substring notation.

sevartty: o
IEV095 SUBSTRING EXPRESSION 2 LESS

THAN O. DEFAULT=NULL

Explanation: The second arithmetic
expression of a SETC substring is lass
than or equal to zero.

System Action: No characters Ca null
string) from the substring character
expression are used.

Prograimner Response: Supply a valid
expression.

severity: 4

IEV096 UNSUBSCRIPTED SYSLIST.
DEFAULT=SYSLIST(l)

Explanation: The system variable symbol,
&SYSLIST, is not subscripted.
&SYSLISTCn> refers to the nth positional

Appendix D. Assembler H Massages 113

parameter in a macro instruction. Note
that N'&SYSLIST does not have to be
subscripted.

System Action: The subscript defaults to
one so that tha first positional
parameter will be referred to.

Programmer Response: Supply an
appropriate subscript.

severity: 8

IEV097 INVALID ATTRIBUTE REFERENCE TO
SETA OR SETI SYMBOL. DEFAULT=U
OR 0

Explanation: A type CT'>, length CL'>,
scaling CS'>, integer CI'>• or defined
CD'> attribute refers to a SETA or SETB
symbol.

System Action: The attributes are set to
default values: T'=U, L'=O, S'=O, and
D'=O.

Programmer Response: Change or remove
the attribute reference.

severity: 8

IEV098 ATTRIBUTE REFERENCE TO INVALID
SYMBOL. DEFAULT:U OR 0

Explanation: An attribute attempted to
reference an invalid symbol. CA valid
symbol is 1 to 63 alphameric characters,
tha first of which is alphabetic.)

System Action: For a type CT'>
attribute, defaults to U. For all other
attributes, defaults to 0.

Programmer Response: Supply a valid
symbol.

severity: 8

IEV099 WRONG TYPE OF CONSTANT FOR S'
OR I' ATTRIBUTE REFERENCE.
DEFAULT=O

Explanation: An integer Cl') or scaling
CS') attribute references a symbol whose
typa is other than floating-point
CE,D,L), decimal CP,Z), or fixed-point
CH,F>.

System Action: The integer or scaling
attribute defaults to zero.

Programmer Response: Remove the integer
or scaling attribute reference or change
the constant type.

severity: 4

IEVlOO SUBSCRIPT LESS THAN 1.
DEFAULT TO SUBSCRIPT : 1.

Explanation: The subscript of a
subscripted SET symbol in the name field
of a SET statement. the operand field of

a GBL or LCL statement, or an &SYSLIST
statement is lass than 1.

System Action: The subscript defaults to
1.

Programmer Response: Supply the correct
subscript.

severity: 8

IEV101 SUBSCRIPT LESS THAN 1.
DEFAULT TO VALUE=O OR NULL

Explanation: The subscript of a SET
symbol in the operand field is less than
1.

System Action: The subscript is set to
1.

Programmer Response: Supply a valid
subscript.

severity: 8

IEV102 ARI1THl1ETIC TERM IS NOT'
SELF-DEFINING TERM. DEFAULT:O

Explanation: A SETC term or expression
used as an arithmetic term is not a
self-defining term.

System Action: The value of the SETC
term or expression is set to zero.

Programmer Response: Make the SETC a
self-defining term, such as C'A',
X'lEC', 8'1101', or 27. Note that the
C, X, or B and the quotation marks must
be part of the SETC value.

severity: 8

IEV103 MULTIPLICATION OVERFLOW.
DEFAULT PRODUCT=!

Explanation: A multiplication overflow
occurred in a macro definition
statement.

System Action: The value of the
expression up to the point of overflow
is set to one; evaluation is resumed.

Programmer Response: Change the
expression so that overflow does not
occur; break it into two or more
operations, or regroup the terms by
parentheses.

severity: 8

IEVlOS ARITHMETIC EXPRESSION TOO
COMPLEX

Explanation: An arithmetic expression in
a macro definition statement caused an
overflow because it is too complex; that
is, it has too many terms and/or levels.

System Action: The assembly is
terminated.

114 Assembler H Version 2 Application Programming: Guide

Programmer Response: Simplify the
expression or break it into two or mare
expressions.

severity: 20

IEV106 WRONG TARGET SYMBOL TYPE.
VALUE LEFT UNCHANGED

Explanation: The SET symbol in the name
field does not match its declared type
(does not match the operation coda):
SETA, SETB, or SETC.

System Action: The statement is ignored.

Programmer Response: Make the
declaration agree with the ·sET statement
type. If you want to store across
types, store first into a SET symbol of
matching type.

severity: 8

IEV107 INCONSISTENT DIMENSION ON
TARGET SYMBOL. SUBSCRIPT
IGNORED DR 1 USED

Explanation: The SET symbol in the name
field is dimensioned (subscripted), but
was not declared in a GBL or LCL
statement as dimensioned, or vice ~ersa.

System Action: The subscript ?s ignored
or a subscript of 1 is used, 1n
accordance with the declaration.

Programmer Response: Maka the
declaration and the usage compatible.
Note that you can declare a local SET
symbol as dimensioned by using it,
subscripted, in the name field of a SET
statement.

severity: 8

IEV108 INCONSISTENT DIMENSION ON SET
SYMBOL REFERENCE. DEFAULT : O,
NULL, OR TYPE : U

Explanation: A SET symbol in the operand
field is dimensioned (subscripted), but
was not declared in a GBL or LCL
statement as dimensioned, or vice versa.

System Action: A value of zero or null
is used for the subscript. If the type
attribute of the SET symbol is being
requested, it is set to U.

Programmer Response: Make the
declaration and the usage compatible.
Note that you can declare a SET symbol
as dimensioned by using it, subscripted,
in the name field of a SET statement.

severity: 8

IEV109 MULTIPLE OPERANDS FOR
UNDIMENSIONED SET SYMBOL. GETS
LAST OPERAND

Explanation: Multiple operands were
assigned to an undimensioned
(unsubscripted) SET symbol.

Syste• Action: The SET symbol is given
the value of the last operand.

Progrannner Response: Declare the SET
symbol as dimensioned, or assign onl~
one operand to it.

sevarfty: 8

IEV110 LIBRARY MACRO lST STATEMENT
NOT - MACRO - OR COMMENT

Explanation: A statement other than a
comment statement preceded a MACRO
statement in a macro definition read
from a library.

System Action: The macro definition is
not read from the library. A
corresponding macro call cannot be
processed.

Programmer Response: Ensure that the
library macro definition begins with a
MACRO statement preceded (optionally) by
comment statements only.

Severity: 12

IEVlll INVALID AIF OR SETI OPERAND
FIELD

Explanation: The operand of an AIF or
SETB statement either does not begin
with a left parenthesis or is missing
altogether.

System Action: The statement is ignored.

Programmer Response: Supply a valid
operand.

severity: 12

IEV112 INVALID SEQUENCE SYMBOL

Explanation: One of the following errors
has occurred:

• A sequence symbol doesn't begin with
a period followed by one to 62
alphameric characters, the first
being alphabetic.

• A sequence symbol in the name field
was created by substitution.

• A sequence symbol contains an
underscore character.

System Action: The sequence symbol in
the name field is ignored. A sequence
symbol in the operand field of an AIF or
AGO ~tatement causes the entire
statemant to be ignored.

Programmer Response: Supply a valid
sequence symbol.

Appendix D. Assembler H Messages 115

severity: 12

IEV113 CONTINUE COLUMN BLANK

Explanation: A SET symbol declaration in
a GBL or lCl statement began with an
ampersand in the end column (normally
column 71) of the previous card, but the
continue column (normally column 16) of
this card is blank.

System Action: This card and any
following cards of the statement are
ignored. Any SET symbols appearing
entirely on the previous cardCs> are
processed normally.

Programmer Response: Begin this card in
the continuation column.

severity: 12

IEVlll'f INVALID COPY OPERAND

Explanation: The operand of a COPY
statement is not a symbol of 1 to 8
alphameric characters, the first being
alphabetic.

System Action: The COPY statement is
i~mored.

Programmer Response: Supply a valid
operand.

severity: 12

I EV US COPY OPERAND TOD LONG

Explanation: The symbol in the operand
field of a COPY statement is more than 8
characters long.

system Action: The COPY statement is
ignored.

Programmer Response: Supply a valid
operand.

severity: 12

IEV116 ILLEGAL SET SYMBOL

Explanation: A SET symbol in the operand
field of a GBL or LCL statement or in
the name field of a SET statement does
not consist of an ampersand followed by
one to 62 alphameric characters, the
first being alphabetic.

system Action: The invalid SET symbol
and all following SET symbols in a GBl
or LCL statement are ignored. The
entire SET statement is ignored.

Programmer Response: Supply a SET
symbol.

severity: 8

IEV117 ILLEGAL SUBSCRIPT

Explanation: The subscript following a
SET symbol contained unbalanced
parentheses or an invalid arithmetic
expression.

System Action: This statement is
ignored.

Programmer Response: Supply an equal
number of left and right parentheses or
a valid arithmetic expression.

severity: 8

IEV118 SOURCE "ACRO ENDED BY --"END-
IN COPY CODE

Explanation: A library member, being
copied by a COPY statement within a
macro definition, contained a MEND
statement. This terminated the
definition.

System Action: The MEND statement is
ignored. No more COPY code is read.
The statements brought in before the end
of the COPY code are processed. The
macro definition is resumed with the
statement following the COPY statement.

Programmer Response: Make sure that each
library member to be used as COPY code
contains balanced MACRO and MEND
statements.

Severity: 12

IEV119 TOO FEW MEND STATEMENTS IN
COPY CODE

Explanation: A macro definition is
started in ~ library member brought in
by a COPY statement and the COPY code
ends before a MEND statement is
encountered ..

System Action: A MEND statement is
generated to terminate the macro
definition" The statements brought in
before the end of the COPY code are
processed.

Programmer Response: Check to see if
part of the macro definition was lost.
Also, ensure that each macro definition
to be used as COPY code contains
balanced MACRO and MEND statements.

severity: 12

IEV120 EOD WHERE CONTINUE CARD
EXPECTED

Explanation: An end-of-data occurred
when a continuation card was expected.

System Action: The portion of the
statement read in is assembled. The
assembly is terminated if the
end-of-data is on SYSIN. If a library
member is being copied. the assembly
continues with the statement after the
COPY statement.

116 Assembler H Version 2 Application Programming: Guide

Programmer Response: Check to determine
whether any statements were omitted from
the source program or from the COPY
code.

severity: 12

IEV121 INSUFFICIENT CORE FOR EDITOR
WORK AREA

Explanation: The macro editor module of
the assembler cannot get enough main
storage for its work areas.

System Action: The assembly is
terminated.

Programmer Response: Split the assembly
into two or more parts or give the macro
editor more working storage. This can
be done by increasing the region size
for the assembler, decreasing blocking
factor or block size on the assembler
data sets, or a combination of both.

severity: 12

IEV122 ILLEGAL OPERATION CODE FORMAT

Explanation: The operat•on code is not
followed by a blank or is missing
altogether, or the first card of a
continued source statement is missing.

System Action: The statement is ignored.

Programmer Response: Ensure that the
statement has a valid operation code and
that all cards of the statement are
present.

Severity: 12

IEV123 VARIABLE SYMBOL TOO LONG

Explanation: A SET symbol, symbolic
parameter, or sequence symbol contains
more than 62 characters following the
ampersand or period.

System Action: This statem~nt is
ignored.

Programmer Response: Shorten the
variable symbol or sequence symbol.

severity: 12

IEV124 ILLEGAL USE OF PARAMETER

Explanation: A symbolic parameter was
used in the operand field of a GBL or
LCL statement or in the name fi~ld of a
SET statement. In other words, a
variable symbol has been used both as a
symbolic parameter and as a SET symbol.

System Action: The statement is ignored.

Programmer Response: Change the variable
symbol to one that is not a symbolic
parameter.

severity: 12

IEV125 ILLEGAL MACRO NAME - MACRO
UNCALLABLE

Explanation: The operation code of a
macro prototype statement is not a valid
symbol; that is, one to 63 alphameric
characters, the first alphabetic.

System Action: The macro definition is
edited. However, since the macro name
is invalid, the macro cannot be called.

Programmer Response: Supply a valid
macro name.

severity: 12

IEV126 LIBRARY MACRO NAME INCORRECT

Explanation: The operation code of the
prototype statement of a library macro
definition is not the same as the
operation code of the macro instruction
(call>. Library macro definitions are
located by their member names. However,
the assembler compares the macro
instruction with the macro prototype.

System Action: The macro definition is
edited using the operation code of the
prototype statement as the macro name.
Thus, the definition cannot be called by
this macro instruction.

Programmer Response: Ensure that the
member name of the macro definition is
the same as the operation code of the
prototype statement. This will usually
require listing the macro definition
from the library.

severity: 12

IEV127 ILLEGAL USE OF AMPERSAND

Explanation: One of the following errors
has occurred:

•

•

An ampersand was found where all
substitution should have already
been performed.

The standard value of a keyword
parameter in a macro prototype
statement contained a single
ampersand or a string of ampersands
whose length was odd.

• An unpaired ampersand occurred in a
character CC> constant.

System Action: In a macro prototype
statement, all information following the
error is ignored. In other statements,
the action depends on which field the
error occurred in. If the error
occurred in the name field, the
statement is processed without a name.
If the error occurred in the operation
code field, the statement is ignored.
If the error occurred in the operand
field, another message is issued to

Appendix D. Assembler H Messages 117

specify the default. However, if the
error occurred in a C-typa constant, the
operand in error and the following
operands are ignored.

Programmer Response: Ensure that
ampersands used in keyword standard
values or in C-type constants occur in
pairs. Also, avoid substituting an
ampersand into a statement unless there
is a double ampersand.

severity: 12

IEV128 EXCESS RIGHT PARENTHESIS

Explanation: An unpaired right
parenthesis has been found.

Systam Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored and an additional
message relative to the statement type
appears. However, if the error is in
the standard value of a keyword on a
macro prototype statement, only the
operands in error and the following
operands are ignored.

Programmar Response: Make sure that all
parentheses are paired.

severity: 12

IEV129 INSUFFICIENT RIGHT PARENTHESES

Explanation: An unpaired left
parenthesis has been found. Note that
parentheses must balance at each comma
in a multiple operand statement.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored and an additional
massage relative to the statement type
will appear. However, if the error is
in the standard value of a keyword on a
macro prototype statement, only the
operands in error and the following
operands are ignored.

Programmer Response: Make sure that all
parentheses are paired.

severity: 12

IEV130 ILLEGAL ATTRIBUTE REFERENCE

Explanation: One of the following er~ors
has occurred:

•

•

•

The symbol following a D, I, L, S,
or T'attribute reference is not a
valid variable symbol or ordinary
symbol.

The symbol following a K or N
attribute reference is not a valid
variable symbol.

The quota is missing from a T
attribute reference.

Systam Action: The statement is ignored.

Progra1111ner Response: Supply a valid
attribute reference.

severity: 12

IEV131 PARENTHESIS NESTING DEPTH
EXCEEDS 255 . .

Explanation: There are more than 255
levels of parentheses in a SETA
expression.

System Action: The statement is ignored.

Programmer Response: Rewrite the SETA·
statement using several statements to
regroup the subexpressions in the
expression.

severity: 12

IEV132 INVALID SETI EXPRESSION

Explanation: A SETB expression in the
operand field of a SETB statement or an
Alf statement does not consist of valid
character relational expressions,
arithmetic relational expressions, and
single SETB symbols, connected by
logical operators.

System Actton: The statement is ignored.

Programmar Response: Supply a valid SETB
expression.

severity: 12

IEV133 ILLEGAL SUBSTRING REFERENCE

Explanation: A substring expression
following a SETC expression does not
consist of two valid SETA expressions
separated by a comma and enclosed in
parentheses.

Syste• Action: The statement is ignored.

Programmer Response: Supply a valid
substring expression.

severity: 12

IEV13~ INVALID RELATIONAL OPERATOR

Explanation: Characters other than EQ,
NE, LT, GT, LE, or GE are used in a SETB
expression where a relational operator
is expected.

System Action: The statement is ignored.

Progranuner Response: Supply a valid
relational operator.

Severity: 12

IEV135 INVALID LOGICAL OPERATOR

Explanation: Characters other than AND,
OR, or NOT are used in a SETB expression
where a logical operator is expected.

118 Assembler H Version 2 Application Programming: Guide

System Action: The statement is ;gnored.

Programmer Response: S:.1P.ply a valid
logical operator.

Severity: 12

IEV136 ILLEGAL LOGICAL/RELATIONAL
OPIERATOR

Explanation: Characters other than a
valid logical or relational operator are
used in a SETB expression where a
logical or relational operator is
expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid
logical or relational operator.

Severity: 12

IEV137 ILLEGAL SETC EXPRESSION

Explanation: The operand of a SETC
statement or the character value used in
a character relation is erroneous. It
must be a valid type attribute CT')
reference or a valid character
expression enclosed in quotation marks.

System Action: The statement is ignored.

Programmer Response: Supply a valid
expression.

severity: 12

IEV139 EDD DURING REPRO PROCESSING

Explanation: A REPRO statement was
immediately followed by an end-of-data
so that no valid card could be punched.
The REPRO is either the last card of
source input or the last card of a COPY
member.

System Action·: The REPRO statement is
ignored.

Progr~mmer Response: Remove the REPRO or
ensure that it is followed by a card to
be punched.

severity: 12

IEV140 END CARD HISSING

Explanation: End-of-file on the source
input data set occurred before an END
statement was read. One of the
following has occurred:

• The END statement was omitted or
misspelled.

• The END operation code was changed
or deleted by OPSYN or by definition
of a macro named END. The lookahead
phase of the assembler marks what it
thinks is the END statement. If an
OPSYN statement or a macro
definition redefines the END

statement, premature end-of-input
may occur because the assembler will
not pass the original END statement.

System Action: An END statement is
generated. It is assigned a statement
number but not printed. If any literals
are waiting, they will be processed as
usual following the END statement.

Programmer Response: Check for lost
cards. Supply a valid END statement;
or, if you use OPSYN to define another
symbol as END, place it J::?J:.isu:. to
possible entry into the lookahead phase.

sever;ty: 4

IEV141 BAD CHARACTER IN OPERATION
CODE

Explanat;on: The operation code contains
a nonalphameric character, that is, a
character other than A to z, 0 to 9, $,
I, or a. Embedded blanks are not
allowed.

System Action: The statement is ignored.

Programmer Response: Supply a valid
operation code. If the operation code
is formed by variable symbol
substitution, check the statements
leading to substitution.

severity: 8

IEV142 OPERATION CODE NOT COMPLETE ON
FIRST CARD

Explanation: The entire name and
operation code, including a trailing
blank, is not contained on the first
card (before the continue
column~usually column 72) of a
continued statement.

System Action: The statement is ignored.

Pragrallllllel" Response: Shorten the name
and/or the operation code or simplify
thQ statement by using a separate SETC
statement to create the name or
operation code by substitution.

severity: 8

IEV143 BAD CHARACTER IN NAME FIELD

Explanation: The name field contains a
nonalphameric character, that is, a
character other than A to Z, 0 to 9, $,
I, a, or_. CNote: _ is invalid for
external names or in the name field of
an OPSYN instruction.}

System Action: If possible. the
statement is processed without a name.
Otherwise. it is ignored.

Pl"ogrammel" Response: Put a valid
in the name field.

Appendix D. Assembler H Messagc;n1 U9

severity: 8

IEV144 BEGIN-TO-CONTINUE COLUMNS NOT
BLANK

Explanation: On a continuation card, one
or more columns between the begin column
(usually column 1) and the continue
column (usually column 16) are not
blank.

System Action: The extraneous characters
are ignored.

Programmer Response: Check whether the
operand started in the wrong column or
whether the preceding card contained an
erroneous continue punch.

Severity: 8

IEV14S OPERATOR, RIGHT PARENTHESIS,
OR END-OF-EXPRESSION EXPECTED

Explanation: One of the following has
occurred:

•

•

A letter, number, equal sign,
quotation mark, or undefined
character occurred following a term
where a right parenthesis, an
operator, a comma, or a blank ending
the expression was expected.

In an assembler instruction, a left
parenthesis followed a term.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored and another
message, relative to the operation code,
is issued.

Programmer ~esponse: Check for an
omitted or mispunched operator.
Subscripting is not allowed on this
statement.

severity: 8

IEV146 SELF-DEFINING TERM TOO LONG OR
VALUE TOO LARGE

Explanation: A self-defining term is
longer than 4 bytes, (8 hexadecimal
digits, 32 bits, or 4 characters), or
the value of a decimal self-defining
term is greater than 2 3 1-1.

System Action: A machine instruction is
assembled as zero. An assembler
instruction is ignored. However,·
another message, relative to the
operation code, is issued.

Programmer Response: Reduce the size of
the self-defining term, or specify it in
a DC statement.

severity: 8

IEV147 SYMBOL TOO LONG, OR lST
CHARACTER NOT A LETTER

Explanation: A symbol does not begin
with a letter or is longer than 63
characters.

System Action: If the symbol is in the
name field, the statement is processed
as unnamed. If the symbol is in the
operand field, an assembler operation or
a macro definition model statement is
ignored and a machine operation is
assembled as zero.

Programmer Response: Supply a valid
symbol.

severity: 8

IEV148 SELF-DEFINING TERM LACKS
ENDING QUOTE OR HAS BAD
CHARACTER

Explanation: A hexadecimal or binary
self-defining term contains an invalid
character or is missing the final
quotation mark.

System Action: A machine operation is
assembled as zero. An assembler
operation is ignored and another
message, relative to the operation code,
is issued.

Programmer Response: Correct the invalid
term.

severity: 8

IEV149 LITERAL LENGTH EXCEEDS 256
CHARACTERS, INCLUDING EQUAL
SIGN

Explanation: A literal is longer than
256 characters.

System Action: The instruction is
assembled as zero.

Programmer Response: Shorten the
literal, or change it to a DC statement.

severity: 8

IEVlSO SYMBOL HAS NON-ALPHAMERIC
CHARACTER OR INVALID DELIMITER

Explanation: The first character
following a symbol is not a valid
delimiter (plus sign, minus sign,
asterisk, slash, left or right
parenthesis, comma, or blank).

system Action: A machine operation is
assembled as zero. An assembler
operation is ignored, and another
message, relative to this operation
codQ, is issued.

Programmer Response: Ensure that the
symbol does not contain a nonalphameric
character or that it is followed by a
valid delimiter.

120 Assembler H Version 2 Application Programming: Guide

severity: 8

IEVlSl LITERAL EXPRESSION MODIFIERS
MUST BE ABSOLUTE AND
PREDEFINED

Explanation: The duplication factor or
length modifier in a literal is not Cl)
a self-defining term or C2> an
expression using self-defining terms or
previously defined symbols.

System Action: The statement is
assembled as zero.

Programmer Response: Supply a valid
self-defining term or ensure that
symbols appear in the nama'field of a
previous statement.

severity: 8

IEV152 EXTERNAL SYMBOL TOO LONG OR
UNACCEPTABLE CHARACTER

Explanation: One of the following errors
has occurred:

• An external symbol is longer than 8
characters, or contains a bad
character. An external symbol might
be the name of a CSECT, START, DXD,
AMODE, RMODE, or COM statement, or
the operand of an ENTRY, EXTRN, or
WXTRN statement or a Q-type or
V-type address constant.

• The operand of an ENTRY, EXTRN, or
WXTRN statement or a Q-type or
V-type address constant is an
expression instead of a single term,
or contains a bad character.

System Action: The symbol does not
appear in the external symbol
dictionary. If the error is in the name
field, an attempt is made to process tha
statement as unnamed. If the error is
in the operand field, the bad operand is
ignored and, if possible, the following
operands are processed. A bad constant
is assembled as zero.

Programmer Response: Supply a shorter
name or replace the expression with a
term.

severity: 12

IEV153 START STATEMENT ILLEGAL -
CSECT ALREADY BEGUN

Explanation: A START statement occurred
after the beginning of a control
section.

System Action: The statement is
processed as a CSECT statement; any
operand is ignored.

Programmer Response: Ensure that the
START precedes all machine instructions
and any assembler instruction, such as

EQU, that initiates a control section.
If you want EQU statements before the
START, place them in a dummy section
CDSECT>.

severity: 12

IEVlS~ OPERAND MUST BE ABSOLUTE.
PREDEFINED SYMBOLS. SET TO 0

Explanation: The operand on a START or
MHELP statement is invalid. If there is
another message with this statement,
this message is advisory. If this
massage appears alone, it indicates ona
of the following:

• There is a location counter
reference (M) in a START operand.

• An expression does not consist of
absolute terms and/or predefined
symbols.

• The statement is too complex. For
example, it may have too many
forward references or cause
arithmetic overflow during
evaluation.

• The statement is circularly defined.

• A relocatable term is multiplied or
divided.

system Action: The operand of the
statement is treated as zero.

Programmer Response: Correct the error
if it exists. Note that paired
relocatable symbols in different LOCTRs,
even though in the same CSECT or DSECT,
are not valid where an absolute,
predefined value is required.

severity: 8

IEVlSS PREVIOUS USE OF SYMBOL IS NOT
THIS SECTION TYPE

Explanation: The name on a CSECl, DSECT,
COM, or LOCTR statement has been used
previously, on a different type of
statement. For example, the name on a
CSECT has bean used before on a
statement other than CSECT, such as a
machine instruction or a LOCTR.

system Action: This name is ignored, and
the statement is processed as unnamed.

Programmer Response: Correct the
misspelled name, or change the name to
one that does not conflict.

severity: 12

IEV156 ONLY ORDINARY SYMBOLS,
SEPARATED BY COMMAS, ALLOWED

Explanation: The operand field of an
ENTRY, EXTRN, or WXTRN statement
contains a symbol that does not consist

Appendix D. Assembler H Messages 121

of 1 to 8 alphameric characters, the
first being alphabetic, "or the operands
are not separated by a comma.

System Action: The operand in error is
ignored. If other oporands follow, they
will be processed normally.

Programmer Response: Supply a correct
symbol or insert the missing comma. If
you want an expression as an ENTRY
statement operand (such as SYMBOL+4),
use an EQU statement to define an
additional symbol.

severity: 12

IEV157 OPERAND HUST BE A
SIMPLY-RELOCATABLE EXPRESSION

Explanation: If there is another message
with this statement, this message is
advisory. If this message appears
alone, the operand of an ORG or END
statement is not a simple relocatable
expression, is too complex, or is
circularly defined. The error may also
be that the END operand symbol is not in
a CSECT.

system Action: An ORG statement or the
operand of an END statement is ignored.

Programmer Response: If an error exists,
supply a correct expression. Note that
paired relocatable symbols in different
LOCTRs, even though in'the same CSECT or
DSECT, may cause circular definition
when used in an ORG statement.

severity: 12

IEY158 OPERAND 1 EXPRESSION IS
DEFECTIVE. SET TO ~

Explanation: The first operand of an EQU
statement is defective.. If another
message appears with this statement,
this message is advisory. If this
message appears alone, one of the
following errors has occurred:

•

•

The statement is too complex. For
example, it has too many forward
references or causes an arithmetic
overflow during evaluation.

The statement is circularly defined.

• The statement contains a relocatable
term that is multiplied or divided.

System Action: The symbol in the name
field is equated to the current value of
the location counter (*), and operands 2
and 3 of the statement, if present, are
ignored.

Programmer Response: If an error exists,
supply a correct expression for operand
1 of the statement.

severity: 8

IEV159 OPERANDS HUST BE ABSOLUTE,
PROPER MULTIPLES OF 2 OR ~

Explanation: The combination of operands
of a CHOP statement is not one of the
following valid combinations:

0,4
0,8
4,8

2,4
2,8
6,8

System Action: The statement is ignored.
However, the location counter is
adjusted to a halfword boundary.

Programmer Response: Supply a valid
combination of CHOP operands.

severity: 12

IEV161 ONLY ONE TITLE CARD MAY HAVE A
NAME FIELD

Explanation: More than one TITLE
statement has a name field. The named
TITLE statement need not be the first
one in the assembly, but it must be the
only one named.

System Action: The name on this TITLE
statement is ignored. The name used for
deck identification is taken from the
first named TITLE statement encountered.

ProgramlllP.r Response: Delete the unwanted
name.

severity: 4

IEV162 PUNCH OPERAND EXCEEDS 80
COLUMNS. IGNORED

Explanation: A PUNCH statement attempted
to punch more than 80 characters into a
card.

iy5tem Actioni The s~a~ement i5 ignored.
The card is not punched.

Programmer Response: Shorten the operand
to 80 characters or fewer or use more
than one PUNCH statement.

severity: 12

IEV163 OPERAND NOT PROPERLY ENCLOSED
IN QUOTES

Explanation: The operand of a PUNCH or
TITLE statement does not begin with a
quotation mark, or the operand of a
PUNCH, MNOTE, or TITLE statement does
not end with a quotation mark, or the
anding quotation mark is not followed by
a blank.

System Action: The statement is ignored.

Programmer Response: Supply the missing
quotation mark. Be sure that a
quotation mark to be punched as data is
represented as two quotation marks.

122 Assembler H Version 2 Application Programming: Guide

severity: 8

IEV16" OPERAND IS A NULL STRING -
CARD NOT PUNCHED

Explanation: A PUNCH statement does not
have any characters between its two
single quotation marks, or a single
quotation mark to be punched as data is
not represented by two single quotation
marks.

System Action: The statement is ignored.

Programmer Response: Correct the
operand. If you want to "punch" a blank
card, the operand of the PUNCH statement
should be a blank enclosed in single
quotation marks.

severity: 12

IEV165 UNEXPECTED NAME FIELD

Explanation: The assembler operation has
a name and the name field should be
blank.

System Action: The name is equated to
the current value of the location
counter (M). However, if no control
section has been started, the name is
equated to zero.

Programmer Response: Remove the name.
Check that the period was not omitted
from a sequence symbol.

severity: 4

IEV166 SEQUENCE SYMBOL TOO LONG

Explanation: A sequence symbol contains
more than 62 characters following the
period.

System Action: If the sequence symbol is
in the name field, the statement is
processed without a name. If it is in
the operand field of an Alf or AGO
statement, the entire statement is
ignored.

Programmer Response: Shorten the
sequence symbol.

severity: 12

IEY167 REQUIRED NAME MISSING

Explanation: This statement requires a
name and has none. The name field may
be blank because an error occurred
during an attempt to create the name by
substitution or because a sequence
symbol was used as the name.

System Action: The statement is ignored.

Programmer Response: Supply a valid name
or ensure that a valid name is created
by substitution. If a sequence symbol

is needed, put it on an ANOP statement
ahead of this one and put a name on this
statement.

severity: 8

IEV168 UNDEFINED SEQUENCE SY"IOL

Explanation: The sequence symbol in the
operand field of an AIF or AGO statement
outside a macro definition is not
defined; that is, it does not appear in
the name field of an appropriate
statement. '

System Action: This statement is
ignored; assembly continues with the
next statement.

Programmer Response: If the sequence
symbol is misspelled or omitted, correct
it. Note that, when the sequence symbol
is not previously defined, the assembler
looks ahead for the definitions. The
lookahead stops when an END statement or
an OPSYN equivalent is encountered. Ba
sure that OPSYH statements and macro
definitions that redefine END precede
possible entry into lookahead.

Severity: 16

IEY170 INTERLUDE ERROR - LOGGING
CAPACITY EXCEEDED

Explanation: The table that the
interlude phase of the assembler uses to
keep track of the errors it detects is
full. This does not stop error
detection by other phases of the
assembler.

System Action: If there are additional
errors, normally detected by the
interlude phase, in other statements
either before or after this one, they
will not be flagged. Statement
processing depends on the type of error.

Programmer Response: Correct the
indicated errors, and run the assembly
again to diagnose any further errors.

severity: 12

IEV171 STANDARD VALUE TOO LONG

£xplanation: The standard <default>
value of a keyword parameter on a macro
prototype statement is longer than 255
characters.

System Action: The parameter in error
and the following parameters are
ignored.

Programmer Response: Shorten the
standard value.

severity: 12

IEY172 NEGATIVE DUPLICATION FACTOR.
DEFAULT : 1

Appendix D. Assembler H Massages 123

Explanation: The duplication factor of a
SETC statement is negative.

System Action: The duplication factor is
given a default value of 1.

Programmer Response: Supply a positive
duplication factor.

severity: 8

IEV173 DELIMITER ERROR, EXPECT BLANK

Explanation: Another character, such as
a comma or a quotation mark, is used
where a blank Cand of operand) is
required.

system Action: A machine instruction is
assembled as zero. An ORG statement is
ignored. For an EQU or END statement,
the invalid delimiter is ignored and the
operand is processed normally. For a
CHOP statement, the location counter is
aligned to a halfword boundary.

Progra11t111er Response: Replace the invalid
delimiter with a blank. Look for an
extra operand or a missing left
parenthesis.

severity: 12

IEV17~ DELIMITER ERROR, EXPECT·BLANK
OR COMMA

Explanation: Another character, such as
a quotation mark or ampersand, is used
where a blank or a comma is required.

System Action: A machine instruction is
assembled as zero. For a USING or DROP
statement, the invalid delimiter is
ignored and the operand is processed
normally.

Programmer Response: Replace the invalid
delimiter with a blank or a comma. Look
for an extra operand or a missing left
parenthesis.

severity: 12

IEV175 DELI~ITER ERROR, EXPECT COMMA

Explanation: Another character, such as
a blank or a parenthesis, is used where
a comma is required.

System Action: A machine instruction is
assembled as zero. For a CHOP
statement, the location counter is
aligned to a halfword boundary.

Progra11t111er Response: Replace the invalid
delimiter with a comma. Ba sure each
expression is syntacticailv correct and
that no parentheses are omitted.

severity: 12

IEV176 DELIMITER ERROR, EXPECT COMMA
OR LEFT PARENTHESIS

Explanation: Another character, such as
a blank or a right pare.nthesis, is used
in a machine instruction where a comma
or a left parenthesis is required.

System Action: The machine instruction
is assembled as zero.

Programmer Response: Replace the invalid
delimiter with a comma or a left
parenthesis. Look for invalid syntax or
invalid base or length fields on the
first operand.

severity: 12

IEV177 DELIMITER ERROR, EXPECT BLANK
OR LEFT PARENTHESIS

Explanation: Another character, such as
a comma or a right parenthesis, is used
in a machine instruction when a blank or
a left parenthesis is required.

System Action: The machine instruction
is assembled as zero. ·

Programmer Response: Replace the invalid
delimiter with a blank or a left
parenthesis. look for invalid
punctuation or invalid length, index, or
base field.

severity: 12

IEV178 DELIMITER ERROR, EXPECT COMMA
OR RIGHT PARENTHESIS

Explanation: Another character, such as
a blank or a left parenthesis, is used
in a machine instruction when a comma or
a right parenthesis is required.

System Action: The machine instruction
is assembled as zero.

Programmer Response: Replace the invalid
delimiter with a comma or a right
parenthesis. look for a missing base
field.

severity: 12

IEV179 DELIMITER ERROR, EXPECT RIGHT
PARENTHESIS

Explanation: Another character, such as
a blank or a comma, is used in a machine
instruction when a right parenthesis is
required.

Syste• Action: The machine instruction
is assembled as zero.

Programmer Response: Replace the invalid
delimiter with a right parenthesis.
Look for an index field used where it is
not allowed.

severity: 12

IEV180 OPERAND MUST BE ABSOLUTE

124 Assembler H Version 2 Application Programming: Guide

Explanation: The operand of a SPACE
statement or the first, third, or fourth
operand of a CCW statement is not an
absolute term.

System Action: A SPACE statement is
ignored. A CCW statement is assembled
as zero.

Programmer Response: Supply an absolute
operand. Note that paired relocatable
terms may span LOCTRs but must be in the
same control section.

severity: 12

IEY181 CCW OPERAND VALUE IS OUYSIDE
ALLOWABLE RANGE

Explanation: One or more operands of a
CCW statement are not within the
following limits:

• 1st operand--0 to 255

• 2nd operand--0 to 16 777 215 cccw •
CCWO>; or 0 to 2 147 483 647 CCCWll

• 3rd operand--0-255 and a multiple of
8

• 4th operand--0-65,535

System Action: The CCW is assembled as
zero.

Programmer Response: Supply valid
operands.

severity: 12

IEY182 OPERAND 2 MUST BE ABSOLUTE,
0-65535. IGNORED

Explanation: If there is another message
with this statement, this message is
advisory. If this message appears
alone, the second operand of an EQU
statement cvntains one of the following
errors:

• It is not an absolute term or
expression whose value is within the
range of 0 to 65,535.

• It contains a symbol that is not
previously defined.

• It is circularly defined.

• It is too complex; for example, it
cau~es an arithmetic overflow during
evaluation.

System Action: Operand 2 is ignored, and
the length attribute of the first
operand is used. If the third operand
is present, it will be processed
normally.

Programmer Response: Correct the error
if it exists. Note that paired
relocatable symbols in different LOCTRs,

even though in the same CSECT, are not
valid where an absolute, predefined
value is required.

severity: 8

IEV183 OPERAND 3 MUST BE ABSOLUTE,
0-255. IGNORED

Explanation: If there is another message
with this statement, this message is
advisory. If this message appears
alone, the third operand of an EQU
statement contains one of the following
errors:

• It is not an absolute term or
expression whose value is within the
range of 0 to 255.

• It contains a symbol that is not
previously defined.

• It is circularly defined.

• It is too complex; for example, it
causes an arithmetic overflow during
evaluation.

System Action: The third operand is
ignored, and the type attribute of the
EQU statement is set to U. ·

Programmer Response: Correct the error
if it exists. Note that paired
relocatable symbols in different LOCTRs,
even though in the same CSECT, are not
valid where an absolute, predefined
value is required.

severity: 8

IEY18~ COPY DISASTER

Explanation: The assembler copied a
library member (executed a COPY
statement) while looking ahead for
attribute references. However, when the
complete text was analyzed, the COPY
operation code had been changed by an
OPSYH statement or "swallowed" by an
AREAD statement, and the COPY should not
have been executed. (lookahead phase
ignores OPSYN statements.) This message
will follow the first card of the COPY
coda.

System Action:
be assembled.
statement, the
be used.

The library member will
If it included an ICTL
format of that ICTL will

Programmer Response: Mova COPY
statements, or OPSYN statements that
modify the meaning of COPY, to a point
in the assembly prior to possible entry
into lookahead mode.

severity: 16

IEV185 OPERAND NO. 2 IS ERRONEOUS

Appendix D. Assembler H Messages 125

Explanation: The second operand is
incorrect, or two operands appear where
there should be only one.

System Action: The second operand is
ignored.

PrograllHlt!r Response: Remove or correct
the second operand.

severity: 4

IEV186 AMODE/RMODE ALREADY SET FOR
THIS ESD ITEM

Explanation: A previous AMODE
instruction has the same name field as
this AMODE instruction, or a previous
RMODE instruction has the same nair1e
field as this RMODE instruction.

System Action: The instruction in error
is i ~.;mored.

Programmer Response: Remove the
conflicting instruction or specify the
name of another control section.

severity: 8

IEV187 THE NAME FIELD IS INVALID

Explanation: The name field of an AMODE
instruction does not refer to a valid
control section in this assembly, or the
name field of an RMODE instruction does
not refer to a valid control section in
this assembly.

System Action: The instruction in error
is ignored, and the name field will not
appear in the cross-reference listing.

Programmer Response: Specify a valid
control section in the name field of the
AMODE or RMODE instruction.

severity: 8

IEV188 INCOMPATIBLE AMODE AND RMODE
ATTRIBUTES

Explanation: A previous AMODE 24
instruction has the same name field as
this RMODE ANY instruction, or a
previous RMODE ANY instruction has the
same name field as this AMODE 24
instruction.

System Action: The instruction in error
is ignored.

Programmer Response: Change the AMODE
and RMODE attributes so they ar.e no
longer incompatible. All combinations
except AMODE 24 and RMODE ANY are valid.

severity: 8

IEV2Sl TOO MANY ERRORS

Explanation: No more error massages can
be issued for this statement,·because
the assembler work area in which the

errors are logged is full.

System Action: If no more errors are
detected for this statement, the
messages and/or annotated text is
discarded.

Programmer Response: Correct the
indicated errors, and rerun the
assembly. If there are more errors on
this statement, they will be detected in
the next assembly.

severity: 16

IEV254 ••• MNOTE •••
Explanation: The text of an MNOTE
statement, which is appended to this
message, has been generated by your
program or by a macro definition or a
library member copied into your program.
An MNOTE statement enables a source
program or a macro definition to signal
tha assembler to generate an error or
informational message.

System Action: None.

Programmer Raspanse: Investigate the
reason for the MNOTE. Errors flagged by
MNOTE will often cause unsuccessful
execution of the program.

Severity: An MNOTE is assigned a
severity code of 0 to 255 by tha writer
of the MNOTE statement.

ABNO~MAL ASSEMBLY TER'.HINAJJON MESSAGES

Whenever an assembly cannot be
completed, Assembler H provides a
message and, in some cases, a specially
formatted dump for diagnostic
information. This may indicate an
assembler malfunction or it may indicate
a programmer error. The statement
causing the error is identified and, if
possible; the assembly listing up to the
point of the error is printed. The
messages in this book give enough
information to enable you to correct the
error and reassemble your program, or to
determine that the error is an assembler
malfunction.

MESSAGES

IEV950

IEV951

IEV952

END OF STATEMENT FLAG WAS
EXPECTED IN MACRO EDITED TEXT.
BUT WAS NOT FOUND - MACRO
EDITOR IS SUSPECT

THE MACRO GENERATOR HAS
ENCOUNTERED UNTRANSLATABLE
MACRO EDITED TEXT

BAD SET SYMBOL NAME FIELD OR
LCL/GBL OPERAND - CHECK THE
MACRO EDITED TEXT

126 A:uembler H Version 2 Application Programming: Guide

IE\1953

IEV954

IEV95S

IEV956

IEV957

IEV958

IEV959

IEV960

IEV961

BAD SUBSCRIPT ON SET SYMBOL -
CHECK THE MACRO EDITED TEXT

CHARACTER EXPRESSION FOLLOWED
BY BAD SUBSCRIPTS - CHECK THE
MACRO EDITED TEXT

A RIGHT PARENTHESIS WITH NO
MATCHING LEFT PARENTHESIS WAS
FOUND IN AN EXPRESSION - CHECK
THE MACRO EDITED TEXT

MULTIPLE SUBSCRIPTS OR BAD SET
SYMBOL TERMINATOR - CHECK THE
MACRO EDITED TEXT

BAD TERMINATOR ON CREATED SET
SYMBOL - CHECK THE MACRO
EDITED TEXT

BAD TERMINATOR ON PARAMETER -
CHECK THE MACRO EDITED TEXT

UNEXPECTED END OF DATA ON
H-ASSEMBLER WORK FILE CSYSUTl>
- INTERNAL CORE MANAGEMENT IS
SUSPECT

A BAD INTERNAL FILE NUMBER HAS
BEEN PASSED TO THE xxxxx
INTERNAL CORE MANAGEMENT
ROUTINE

AN INVALID CORE REQUEST HAS
BEEN MADE, OR THE FREE CORE
CHAIN POINTERS HAVE BEEN
DESTROYED

Explanation: The assembly is terminated
because of one of the errors described
in IEV950 through IEV961. This usually
is caused by a bug in the assembler
itself. Under certain conditions,
however, th.a assembly can be rerun
successfully.

System Action: A special abnormal .
termination dump (Assembler H interrupt
and diagnostic dump) follows the
message. Depending on where the error
occurred, the assembly listing up to the
bad statement may also be produced. The
dump usually indicates which statement
caused termination. It also may include
contents of the assembler registers and
work areas and other status information
for use by IBM or your assembler
maintenance programmers in determining
the cause of the termination.

Progralftller Response: Check the statement
that caused termination. Correct any
errors in it or, especially if the
statement is long or complex, rewrite
it. Reassemble the program; it may
assemble correctly. However, even if it
reassembles without error, there may be
a bug in the assembler. Save the
abnormal termination dump, the assembly
listing Cif one was produced), and the
input deck and contact your IBM level-!
support center. Also, if the program
assembles correctly, submit a copy of

the listing and the input deck of the
correct assembly. This information may
be helpful in diagnosing and fixing the
assembler bug.

severity: 20

IEV970 STATEMENT CO"PLEXITY EXCEEDED,
BREAK THE STATEMENT INTO
SEGMENTS AND RERUN THE
ASSEMBLY

Explanation: The statement is too
complex to be evaluated by the macro
generator phase of the assembler. It
overflowed the evaluation work area of
the assembler. Normally, there is no
assembler malfunction; the statement can
be corrected and the program reassembled
successfully.

System Action: A special abnormal
termination dump (Assembler H interrupt
and diagnostic dump) follows the
message. The statement causing
termination is SETA, SETB, SETC, AGO, or
AIF. The dump does not indicate which
statement caused termination; however,
it may show the last statement generat~J
in the macro. The dump may also include
contents of the assembler registers and
work areas and other status information
for use by IBM or your assembler
maintenance programmers in determining
the cause of the termination. However.
it will not be needed unless the error
persists. This information may be
helpful in diagnosing and fixing an
assembler bug.

Programmer Response: Check the statement
that caused termination. Rewrite the
statement or split it into two or more
statements. Reassemble the program; it
should assemble correctly. However, if
the error persists, there may be an
assembler malfunction. Save the
abnormal termination dump, the assembly
listing Cif one was produced), and the
input deck and give them to your IBM
program support representative.

severity: 20

IEY971 INSUFFICIENT CORE AVAILABLE
FOR MACRO EDITOR WORK AREA

IEV972 NO AVAILABLE STORAGE REMAINS -
ALLOCATE HORE CORE OR BREAK
THE INPUT INTO MULTIPLE
ASSEMBLIES

Explanation: The assembler work areas
are full and none of the contents can be
spilled onto the auxiliary data set
CSYSUT!). Note that the load modules
and fixed data areas of the assembler
require about 96K bytes of main s~orage.
The rest of the assembler's region is
used for data set buffers, assembler
internal files, and work areas. Some of
the internal files, like the symbol
table, must remain in main storage
throughout the assembly.

Appendix D. Assembler H Messages 127

System Action: A spacial abnormal .
termination dump (Assembler H interrupt
and diagnostic dump) follows tha
massage. Depending on where tha error
occurred, tha assembly listing up to the
bad statement may also be produced. The
dump usually indicates the statement
being processed when the assembler ran
out of main storage. Tha other
information in the dump, such as
register and work area contents, is not
needed.

Programmer Response: Increase the region
size or split the assembly into two or
more assemblies. Check for loops in
open code that cause tha symbol table to
overflow. Complete information on these
and other remedies, such as decreasing
the storage used for data sat buffers,
is in "Chapter 6. Calculating Storage
Requirements" and "Chapter 7. Assembler
Language Programming undar CMS."

severity: 20

IEV980 SYSUTl IS REQUIRED TO BE
ASSIGNED TO A DIRECT ACCESS
DEVICE. BUT WAS NOT

IEV981 THE DD STATEMENTS FDR SYSIN
AND SYSUTl WERE "ISSING OR
INVALID

IEV982 THE DD STATE"ENT FDR SYSIN WAS
MISSING OR INVALID

IEV983 THE DD STATEMENT FDR SYSUTl
WAS MISSING OR INVALID

Explanation: The DD s'tatemants for the
data sets indicated in IEV980 through
IEV983 have not bean included in the job
control language for the assembly job
step or are invalid.

System Action: Tha assembly is not dona
because tha assembler does not have the
required data sets. This message
appears alone, without any other
abnormal termination dump information.

Programmar Response: Supply-a valid DD
statement and rerun the assembly.
"Chapter 1. Introduction" dascribas the
assembler data sets and tha standard DD
statements Cin the IBM-supplied
cataloged procedures) for them. Ba sura
to check whether your installation has
changed the ddname (for example, SYSUTl
to SYSWORKl> or one or mora parameters
in the cataloged procedure statement.

severity: 20

IEV998 THE ASSEMBLER COULD NOT RESUME
READING A SYSLIB MEMBER
BECAUSE IT COULD NOT FIND THE
MEMBER AGAIN

Explanation: The assembly is terminated,
because the assembler cannot find a COPY
member that it has already read. This
usually is caused by a bug in the
assembler itself or by an Operating
System I/O error. Under certain
conditions, however, the assembly can ba
rerun successfully.

System Action: A spacial abnormal
termination dump (Assembler H interrupt
and diagnostic dump) follows the
message. The dump usually indicates
which statement caused termination. It
also may include contents of the
assembler registers and work areas and
other status information for use by IBM
or your assembler maintenance
programmers in determining tha cause of
the termination.

Programmer Response: Reassemble the
program; it may assemble correctly. If
it does not reassemble without error,
save the abnormal termination dump, the
assembly listing (if one was produced),
and the input deck and contact your IBM
lavel-1 support canter.

severity: 20

IEV999(I) ASSE"BLY TERMINATED • SYNAD
EXIT TAKEN - PERMANENT l/O
ERROR ON xxxxx DATA SET

Explanation: The assembly was terminated
because of a permanent I/O error on the
data sat indicated in the message. This
is usually caused by a machine or an
operating system error. The assembly
usually can be rerun successfully. This
massage will also appear on the console
output device.

System Action:. A special abnormal
termination dump (Assembler H interrupt
and diagnost1c dump) follows the
massage. Depending on where the error
occurred, the assembly listing up to tha
bad statement may also be produced. Tha
dump usually indicates which statement
caused termination. It also may include
contents of the assembler registers and
work areas and other status information
for use by IBM or your assembler
maintananca programmers in determining
tha cause of the termination.

128 Assembler H Version 2 Application Programming: Guida

Pl'ogrammel' Response: If the l/O error is
on SYSIN or SYSLIB, you may have
concatenated the input or library data
sets incorrectly. Make sure that the DD
statement for the data set with the
largest block size CBLKSIZE> is placed
in the JCL before the DD statements of
the data sets concatenated to it. Also,
make sure that all input or library data
sets have the same device class Call
DASD or all tape).

Reassemble the program; it may assemble
correctly. If it does not reassemble

without error, save the abnormal
termination dump, the assembly listing
Cif one was produced), and the input
deck and give them to your IBM customer
engineer. Also, if the program
assembles correctly, submit a copy of
the listing and input deck of the
correct assembly.

severity: 20

Note: The following table is referred
to in "Severity Code" under "Message
Descriptions" on page 100.

sevel'ity
Explanation Code

0 Ho errors detected

4 Minor errors
detected; successful
program execution is
probable

8 Errors detected;
unsuccessful program
execution is possible

12 Serious errors
detected;
unsuccessful program
execution is probable

16 Critical errors
detected; normal
execution is
impossible

20 1/0 error from which
the system could not
recover occurred
during assembly, or
data sets are
missing; assembly
terminated

...........

Appendix D. Assembler H Messages 129

APPENPIX E. ASSEMBLER H VERSION 2 INCOMPATIBILITY HITH OS/VS ASSEMBLER

Assembler H has the following incompatibilities with tha OS/VS
Assembler:

• TEST option

The TEST option in the OS/VS Assembler generates entries in
the source symbol tabla for simply relocatable EQUs, named
lTORGs, named CHOPs, and named ORGs. Assembler H does not
generate source symbol tabla entries for these assembler
instructions.

• COPY

Assembler H scans a COPY member as a part of "lookahead"
processing even though conditional assemblv logic CAif gr
AGO> may subsequently cause a COPY instruction to be
.l;u(passed. This processing occurs regardless of whether or
not the COPY member is a macro or source coda segment
and--for macros--whether or not the macro is defined in a
source module or macro library.

Lookahead is a sequential, statement-by-statement, forward
scan over the source text; it is performed by Assembler H
but .n.21 by the OS/VS Assembler. During lookahead
processing, no macro expansion or open-code substitution is
performed, and no Alf or AGO branches are taken.

If the COPY member does not exist in a referenced macro
library, Assembler H issues error message IEV060, 'COPY CODE
HOT FOUND', even though conditional assembly logic may
subsequently cause the COPY instructjon to be bypassed. If
the COPY member does exist and contains errors, those errors
will be diagnosed and the appropriate error messages issued
.2!l!l! if the COPY member is actually assembled.

The OS/VS Assembler executes a COPY assembler instruction
and scans the COPY member only if conditional assembly logic
causes it to be executed. If the COPY member does not exist
and conditional assembly logic causes the COPY instruction
to be bypassed, no error message will be issued. The one
exception to this rule occurs when a macro is defined within
the source module and that macro contains a COPY statement;
if the COPY member does not exist in any referenced macro
library, the OS/VS Assembler issues massage IF0068, ~copy
MEMBER xxxxxxxx HOT FOUND IH LIBRARY'.

130 Assembler H Version 2 Application Programming: Guide

GLOSSARY

This glossary has three main types of
definitions that apply:

• To the assembler language in
particular (usually dist~nguished by
reference to the words "assembler."
"assembly." etc.)

• To programming in general

• To data processing as a whole

If you do not understand the meaning of
a data processing term used in any of
the definitions below. refer to
Vocabulary for Data Processing.
Telecommunications, and Office Systems.
GC20-1699.

IBM is grateful to the American National
Standards Institute CANS!) for
permission to reprint its definitions
from the American National Standard
Vocabulary for Information Processing,
which was prepared by Subcommittee X3K5
on Terminology and Glossary of American
National Standards Committee X3. ANSI
definitions are preceded by an asterisk
(M).

addressing mode C24-bitl. A System/370
addressing mode of the extended
architecture that allows a program to
execute using 24-bit addresses. When
operating in 24-bit mode, S/370
addressing architecture is applied.
Other facilities of the extended
architecture (see below) may be
utilized. Only the low-order 24 bits of
an address are used; the high-order bits
are ignored.

addressing mode C31-bitl. An extended
architecture addressing mode CAMODE>
that allows a program to execute using
31-bit addresses and/or other facilities
of the extended architecture. When
operating in 31-bit mode, extended
architecture addressing is applied. and
all but the high-order bit of an address
are used to address storage.

assemble. To prepare a machine language
program from a symbolic language program
by substituting machine operation codes
for symbolic operation codes and
absolute or relocatable addresses for
symbolic addresses.

•assembler. A computer program that
assembles.

assembler instruction. An assembler
language source statement that causes
the assembler to perform a specific
operation. Assembler instructions are
not translated into machine
instructions.

assembler language. A source language
that includes symbolic machine language
statements in which there is a
one-to-one correspondence with the
instruction formats and data formats of
the computer. The assembler language
also contains statements that represent
assembler instructions and macro
instructions.

bimodal program execution. A function
of the extended architecture Csee
"addressing mode (31-bit)") that allows
a program to execute in 24-bit or 31-bit
addressing mode. The addressing mode is
under program control.

control program. A program that is
designed to schedule and supervise the
performance of data processing work by a
computing system.

control section CCSECTJ. That part of a
program specified by the programmer to
be a relocatable unit. all elements of
which are to be loaded into adjoining
main storage locations.

•diagnostic. Pertaining to the
detection and isolation of a malfunction
or mistake.

dummy control section CDSECTJ. A
control section that an assembler can
use to format an area of storage without
producing any object code. Synonymous
with dummy section.

edited text. Source statements modified
by the assembler for internal use. The
initial processing of the assembler is
referred to as editing.

•entry point. A location in a module to
which control can be passed from another
module or from the control program.

extended architecture. A hardware
architecture for the IBM 3081 processor.
A major characteristic is 31-bit
addressing. See also "addressing mode
(31-bit)."

external symbol dictionary
CESD). Control information associated
with an object or load module which
identifies the external symbols in the
module.

global dictionary. An internal table
used by the assembler during macro
generation to contain the current values
of all unique global SETA, SETB, and
SETC variables from all tuxt segments.

Glossary 131

global vector table. A table of
pointers in the skeleton dictionary of
each text segment showing where the
global variables are located in the
global dictionary.

instruction. *Cl> A statement that
specifies an operation and the values
and locations of its operands. C2) See
also "assembler instruction." "machine
instruction," and "macro instruction".

job control language CJCLl. A language
used to code job control statements.

•job control statement. A statement in
a job that is used in identifying the
job or describing its requirements to
the operating system.

language. -A set of representations,
conventions, and rules used to convey
information.

•language translator. A general term
for any assembler, compiler, or other
routine that accepts statements in one
language and produces equivalent
statements in another language.

library macro definition. A macro
definition that is stored in a macro
library. The IBM-supplied supervisor
and data management macro definitions
are examples of library macro
definitions.

linkage editor. A processing program
that prepares the output of language
translators for execution. It combines
separately produced object or load
modules; resolves symbolic cross
references among them; replaces,
deletes, and adds control sections; and
generates overlay structures on request;
and produces executable code Ca load
module) that is ready to be fetched into
main storage and executed.

load module. The output of a single
linkage editor execution. A load module
is in a format suitable for loading into
virtual storage for execution.

loader. A processing program that
performs the basic editing functions of
the linkage editor, and also fetches and
gives control to the processed program,
all in one job step. It accepts object
modules and load modules created by the
linkage editor and generates executable
code directly in storage. The loader
does not produce load modules for
program libraries.

locai dictionary. An internal table
used by the assembler during macro
generation to contain the current values
of all local SET symbols. There is one
local dictionary for open code, and one
for each macro definition.

location counter. A counter whose value
indicates the assembled address of a

machine instruction or a constant or the
address of an area of reserved storage,
relative to the be~inning of the control
section.

•machine instruction. An instruction
that a machine can recognize and
execute.

•machine language. A language that is
used directly by the machine.

macro definition. A set of statements
that defines the name of, format of, and
conditions for generating a sequence of
assembler language statements from a
single source statement. This statement
is a macro instruction that calls the
definition. (See also "library macro
definition" and "source macro
definition.">

macro generation Cmacro expansion>. An
operation in which the assembler
generates a sequence of assembler
language statements from a single macro
instruction, under conditions described
by a macro definition.

macro instruction Cmacro call). An
assembler language statement that causes
the assembler to process a predefined
set of statements {called a macro
definition). The statements normally
produced from the macro definition
replace the macro instruction in the
source program.

macro library. A library containing
macro definitions. The supervisor and
data management macro definitions
supplied by IBM CGET, LINK, etc.> are
contained in the system macro library.
Private macro libraries can be
concatenated with the system macro
library.

main storage. All program addressable
storago from which instructions may be
executed and from which data can be
loaded directly into registers.

object module. The machine-language
output of a single execution of an
assembler or a compiler. An object
module is used as input to the linkage
editor or loader.

open code. The portion of a source
module that 11es outside of and after
any source macro definitions that may be
specified.

~operating system. Software which
controls the execution of computer
programs and which may provide
scheduling. debugging, input/output
control, accounting, compilation,
storage assignment, data management, and
related services.

ordinary symbol attribute reference
dictionary. A dictionary used by the
assembler. The assembler puts an entry

132 Assembler H Version 2 Application Programming: Guide

in it for each ordinary symbol
encountered in the name field of a
statement. The entry contains the
attributes Ctype, length, etc.) of the
symbol.

processing program. Cl> A general term
for any program that is not a control
program. C2> Any program capable of
operating in the problem program state.
This includes IBM-distributed language
translators, application programs,
service programs, and user-written
programs.

program. A general term for any
combination of statements that can be
interpreted by a computer or language
translator, and that serves to perform a
specific function.

real storage. The storage of a
System/370 computer from which the
central processing unit can directly
obtain instructions and data, and to
which it can directly return results.

•relocation dictionary. The part of an
object or load module that identifies
all addresses that must be adjusted when
a relocation occurs.

residence mode. An extended
architecture addressing mode CRMODE)
that allows a program to specify the
residence mode <below 16 megabytes or
anywhere) to be associated with a
control section.

return code. A value placed in the
return code register at the completion
of a program. The value is established
by the user and may be used to influence
the execution of succeeding programs or,
in the case of an abnormal end of task,
may simply be printed for programmer
analysis.

severity code. A code assigned by the
assembler to each error detected in the
source code. The highest code
encountered during assembly becomes the
return code of the assembly step.

skeleton dictionary. A dictionary built
by the assembler for each text segment.

It contains the glQbal vector, the
sequence symbol reference dictionary,
and the local dictionary.

source macro definition. A macro
definition included in a source module,
either physically or as the result of a
COPY instruction.

source module. The source statements
that constitute the input to a language
translator for a particular translation.

source statement. A statement written
in symbols of a programming language.

•statement. A meaningful expression or
generalized instruction in a source
language.

symbol file. A data set used by the
assembler for symbol definitions and
references and literals.

symbolic parameter. In assembler
programming, a variable symbol declared
in the prototype statement of a macro
definition.

system macro definition. Loosely, an
IBM-supplied library macro definition
which provides access to operating
system facilities.

text segment. The range over which a
local dictionary has meaning. The
source module is divided into text
segments with a segment for open code
and one for each macro definition.

•translate. To transform statements
from one language into another without
significantly changing the meaning.

virtual storage. Address space
appearing to the user as real storage
from which instructions and data are
mapped into real storage locations. The
size of virtual storage is limited by
the addressing scheme of the computing
system and by the amount of auxiliary
storage available, rather than by the
actual number of real storage locations.

Glossary 133

abnormal assembly tarminatton 15
adding macro definitions to
li brari as 45

ALGN option 25
ALIGN option CCMS> 65
ALIGN option COS/VS> 26
alignment of instructions and data

Csee ALIGN option>
AMODE 7
ASMHC, cataloged procedure for
assembly 34

ASMHCG, cataloged procedure for assembly
and loader execution 38

ASMHCL. cataloged procedure for assembly
and link editing 35

ASMHCLG. cataloged procedure for
assembly, linkage editing, and
execution 38

ASSEMBLE file type, CMS 60
assembler cataloged procedures 34
assembler data sets

characteristics of 30
for CMS users 68
language features 76
list of 29
sample program 76
storage requirements 50
virtual storage requirements

<CMS> 69
assembler diagnostics 100

abnormal assembly termination 15
cross-reference 10
error messages 12
faci 1 i ti ,95 12
macro trace facility CMHELP> 15
MNOTE statements 15
suppression of error messages •nd

MNOTE statement5 15
assembler H massages 100

(sea also error messages and
assembler diagnostics)

assembler listing
diagnostic cross-reference and
assembler summary 11

external symbol dictionary 6
parts of 4
relocation dictionary 9
source and object program 7
symbol and literal
cross-reference 10

assembler macros under CMS 62
assembler options

default 29
list of 25
overriding statements in cataloged
procedures 40

types of 24
assembler options under CMS

listing control options 64
object module control options 64
other assembler options 64
SYSTERM options 64

assembler statistics 11
assembler summary 11
assembly and link editing, JCL for

Csee ASMHCL>
assembly and loader execution, JCL for

C sea ASMHCG>
assembly error diagnostic massages 100
assembly, JCL for

Csee ASMHC>
assembly, link-editing, and execution,

JCL for
Csea ASMHCLG>

ATTACH macro instruction 48

BATCH option CCMS> 65
BATCH option COS/VS> 26
BLKSIZE for assembler data sat 31
buffering information CCMS> 69

CALL macro instruction 48
calling the assembler from a problem

program 48
cataloged procedures

for assembling CASMHC> 34
for assembling and linkage editing

CASMHCL> 35
for assembling and loader execution

CASMHCG> 38
for assembling, linkage editing, and
execution CASMHCLG> 38

invoking 34
ov!l!rriding 40

characteristics of assembler data
sets 30

CMS
ASSEMBLE file type for 60
assembler macros supported by 62
assembler options for 64
diagnostie messages 71
EDIT command for 60
editor 60
file defaults, overriding 60
HASM command error massages 71
HASM command for 60
management of assembly 59
programming aids 70
relationship to assembler 58
SYSTERM listing 71

codas
Csea return codes and severity codas>

concatenation of SYSLIB data sets 32
COND parameter 33, 40
conventions for linking 48
cross-reference

Csea also diagnostic cross-referenc•>
examples 4, 86

134 Assembler H Version 2 Application Programming: Guide

data sets, assembler
characteristics of 30
list of 29

DD statements, overriding in cataloged
procedures 40

ddnames
SYSIN 32
SYSLIB 32
SYSLIN 33
SYSPRINT 32
SYSPUNCH 33
SYSTERM 33, 71
SYSUTl 32

DECK option CCMS> 65
DECK option COS/VS> 26
default options 29

overriding 40
diagnostic cross-reference and assembler

summary 11
diagnostic facilities

<see assembler diagnostics>
diagnostic messages <CMS) 71
diagnostic messages, assembly error 100
DISK option CCMSl 66
dynamic invocation of assembler 48
dynamic invocation of IBM-supplied

program 48

EDIT command, CMS 60
entry point restatement 45
arror diagnostic messages 71, 100
error messages

abnormal assembly termination
messages 126

assembly error diagnostic 100
assembly error diagnostic

massages 12
suppression of 15

ESD option CCMS> 65
<see also external symbol dictionary)

ESD option COS/VS> 26
(see also external symbol dictionary)

examples
cataloged procedures coding 40
PARM coding 25
saving and restoring coding 44, 75

EXEC statements
COND parameter 33, 40
overriding in cataloged

procedures 40
PARM field 40, 44

external symbol dictionary CESD>
entry types 6
examples 4, 77
listing format 6

FLAG option CCMS> 65
FLAG option COS/VS> 26

HASM command error massages 71
HASM command, CMS 60

identification-sequence field
invoking cataloged procedures
invoking the assembler from a
program 48

job control language cataloged
procedures

(see cataloged procedures)

LIHECNT option 25
LINECOUN option CCMS> 65
LINECOUNT option COS/VS> 26
LINKAGE macro instruction 48
linkage, object module 46

9
34

problem

linking with IBM-supplied processing
programs 48

LIST option CCMS> 66
LIST option COS/VS) 27
listing control instructions, printing
of 9

listing format 4
load module modification 45
LOAD option 25
LRECL for assembler data set 31

macro definition libraries, additions
to 45

macro trace facility CMHELP>
description 15
sample 87

macro-generated statements, format of 9
macros, error messages in 12
messages

<see assembler diagnostics)
MHELP

<see macro trace facility)
MNOTE statements 15
MSGLEVEL option 25
MULT option 25

Index 135

HCP for assembler data set 31
NOALGH option 25
NOALIGN option CCMS) 65
NOALIGN option COS/VS> 26
NOBATCH option CCMS> 65
NOBATCH option COS/VS) 26
NODECK option CCMS> 65
NODECK option COS/VS> 26
NOESD assembler option COS/VS) 26
NOESD option CCMS> 65
NOLIST option CCMS> 66
NOLIST option COS/VS> 27
NOLOAD option 25
NOMULT option 25
NONUMBER option CCMS> 66
NOOBJECT option CCMS> 66
NOOBJECT option COS/VS> 27
NOPRINT option CCMS) 66
NOREHT option CCMS> 67
NORENT option COS/VS) 27
NORLD option CCMS> 67
NORLD option COS/VS> 27
NOSTMT option CCMS> 67
NOTERM option CCMS> 68
NOTERM option COS/VS> 28
NOTEST option CCMS> 68
NOTEST option COS/VS> 28
NOXREF option CCMS> 68
NOXREF option COS/VS> 28
number of channel programs CNCP>
selection for assembler data sets 33

NUMBER option (CMS> 66

object nK>dule linkage 46
OBJECT option CCMS> 66
OBJECT option COS/VS> 27
options, assembler

default 29
list of 24
ovarriding dafaults 29. 40
sample of use 77

output format listing 4
overriding default options 29, 40
overriding statements in cataloged

procedures 40

PARM field 24, 44
PRINT option CCMS> 66
printing of listing control
instructions 66

procedures
Csee cataloged procedures)

program termination 44, 75
programming considerations 43, 74

RECFM for assembler data set 31
registers, saving and restoring 43, 47,

74
relocation dictionary

examples 4, 84
listing format 9

RENT option CCMS> 67
RENT option COS/VS> 27
restoring registers 43, 74
return codas 33

(see also FLAG option)
RETURN macro instruction 43, 74
RLD option CCMS> 67

(see also relocation dictionary)
RLD option COS/VS> 27

(see also relocation dictionary)
RMODE 7

~ample programs and listings
assembler language features 76
assembler listing description 4
diagnostic error messages 14
MHELP 87

SAVE macro instruction 43, 74
saving registers 43, 74
sequence number 9
severity codes 12, 33, 100, 129

Csea also FLAG option)
source and object program assembler
listing format 7

statistics, assembler 11
STMT option CCMS) 67
storage estimates

auxiliary storage
for SYSUTl 55
on LINKLIB and PROCLIB 55

variable storage 52
storage requirements

fixed 50
ma1n 50

suppression of error messages and MHOTE
statements 15

SYSIN data set 29, 32
SYSLIB data set 29, 32
SYSLIH data set 29, 33
SYSPARM option CCMS) 67
SYSPARM option COS/VS> 28
SYSPRINT data set 29, 32
SYS?UNCH data sat 29, 33
SYSTERM data set 29, 33
SYSUTl data set 29, 32

0
TERM option CCMS> 68
TERM option COS/VS> 28
termination

abnormal assembly 15
program 44, 75

TEST option CCMS) 68
TEST option COS/VS) 28

136 Assembler H Version 2 Application Programming: Guida

unaligned operands 26
using the assembler 18
utility data set 29

XCTL macro instruction 48
XREF option CCMS> 68
XREF option COS/VS> 28
XREF option, using old format for 25

Index 137

e
2

.. !?
.s=
Iii

I 5l
B .,
c.
l'l
"O .,
E
E
:i
Cl
....
Cl>

.s=
0
0
·~
,;e ..
c
5l
~ a ..
~
c.
Cl> ..
:i
Cl> ..
~
a:

Assembler H Version 2
Application Programming: Guide
SC26-4036-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TN Ls) to this book, please list them here:

Previous TNL ----------
Previous TNL _________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

Reader's Comrnent Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

111111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

.......... "' " " ;\I ,. ... " ·l> " ill " .., "' 'h "' '" "' • ~ ·;< • It ,. w '" ·~ ~ "' • " " " ... "' ... "' * ••••••••• * '"' "' 4" •

Fold and tape

liiiiWiliili~~ ~

-~filMriiililliil-.... - --- _,. - -. ----... - - _
i..-.-~ W' -----·- .. --(©

Please do not staple Fold and tape

