

Preface

This manual describes the operation of the power system and provides main tenance information for the 3115 and $3115-2$ Processing Units. The manual supplements the System $/ 370$ Model 115 CE course and also serves as a recal aid; it is not intended for self-education, nor should it be used as an aid to make changes to the system.
The manual is divided into seven chapters.
Chapter 1 contains a general introduction.
Chapter 2 contains logic information in the form of an overview and in the form of simplified logic diagrams (SLDs). The SLDs show the logic circuit operation without regard to signal levels.
Chapter 3 describes the operation of the power system.
Chapter 4 describes the different types of power supplies.
Chapters 5 and 6 contain all the necessary maintenance information. Chapter 7 contains a list of abbreviations.

CEs should note that the 3115-2 Processing Unit is equipped with an Instruction Processing Unit (IPU) instead of a with an Instruction Processing Unit (IPU) instead of a
Machine Instruction Processor (MIP) as used in the 3115 Processing Unit.

Prerequisite Reading

IBM 3115 Processing Unit, General System Information, SY33-1088.

Associated Publications

Maintenance Library Manuals

IBM 3115 Processing Unit, Central Test Manual, or
IBM 3115-2 Processing Unit, Central Test Manual. These manuals contain
pages appropriate to the individual 3115 or $3115-2$ Processing Unit.
BM 3115 Processing Unit, Compatibility Features, SY33-1094
IBM 3115 Processing Unit, Input/Output Processor, SY33-1079, or "IBM 3115-2 Processing Unit, Input/Output Processor, SY33-1098. IBM 3115 Processing Unit, Installation Manual, Parts 1896850 through 1896875.

BM 3115 Processing Unit, Integrated Communications Adapter and Line Adapter, B/M 1877939.
IBM 3115 Processing Unit, Integrated Console Printer Attachment, SY33-1087.
"IBM 3115 Processing Unit, Machine Instruction Processor, SY33-1078, or
*IBM 3115-2 Processing Unit, Instruction Processing Unit, SY33-1097
"/BM 3115-2 Processing Unit, Magnetic Tape Adapter, SY33-1101.

IBM 3115 Processing Unit, Main Storage, SY33-1092.
IBM 3115 Processing Unit, Main Storage Controller, SY33-1077. IBM 3115 Processing Unit, Main Storage (Enhanced), SY33-1095. IBM 3115 Processing Unit, Microinstructions, SY33-1089.
IBM 3115 Processing Unit, Multiplexer Channel Front End, SY33-1080, or IBM 3115-2 Processing Unit, Multiplexer Channel Front End, SY33-1099. IBM 3115 Processing Unit, Parts Catalog, S135-1001.
IBM 3115 Processing Unit Service Process Susys
IBM 3115 Processing Unit, Service Processor Subsystem, SY33-1076. IBM 3115 Processing Unit, 2560 Attachment, Front End, SY33-1083. IBM 3115 Processing Unit, 3203 Attachment, Front End, SY33-1085. *IBM 3115 Processing Unit, 3340 Direct Disk Attachment, SY33-1082, or IBM 3115 Processing Unit 5203 Ata 1 IBM 3115 Processing Unit, 5425 Attachmet, Frot End, SY33 1084.

These manuals are specific to the 3115 Processing Unit or the 3115-2 Processing Unit, Other manuals in this list are applicable to both models of Processing Unit.

System Library Manuals

IBM System/360 Principles of Operation, GA22-6821
IBM System/370 Principles of Operation, GA22-7000
IBM System/370 Model 115 Functional Characteristics, GA33-1510. IBM System/370 Model 115 Operating Procedures, GA33-1513

Fourth Edition (November, 1976)

This is a major revision of, and makes obsolete, SY33-1075-2 and Technical Newsletters SN33-1621, SN33-1630, and SN33-1655. Technical information has been added relating
to increased storage size ($384 \mathrm{~K}-512 \mathrm{~K}$). Other information in the manual has been updat and some publishing errors corrected. Changes are indicated by a vertical line to the left of the change.
Changes are continually made to the information in this manual; any such changes will be Changes are continually made to the informail Newsletters.
reported in subsequent revisions or Technical

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality

Forms for readers' comments are provided at the back of the manual. If the forms have been removed, comments may be addressed to IBM Laboratories, Product Publications, Dept. 3179, 703 Boeblingen/Wuertt, P.O. Box 210, Germany. Comments become th property of IBM.
© Copyright International Business Machines Corporation 1974, 197

Contents

Safety

PERSONAL SAFETY

Personal safety cannot be over-emphasized; it is a vital part of custome
engineering. To ensure your safety and that of co-workers, always observe the safety precautions given during your safety training and adhere to the following:
Observe all DANGER notices given in this manual. Example:

DANGER

Voltages in excess of 600 V are present within the TSR. Therofore, safet
cover of TSR must be in place and TSR must be installed before applying mout voltage

General Safety Practices

Observe the general safety practices and the procedure for performing artificial respiration that are outlined in CE Safety Practices card, order no. S229-1264 (shown here).

Grounding

Ground current may reach dangerous levels. Never operate the system with the grounding conductor removed

Line-Powered Equipment

Ground all line-powered test equipment through the third-wire grounding conductor in the power cord of the machine being tested.

Machine Warning Label

Heed the warning labels in hazardous areas of the machines.

EQUIPMENT SAFETY

Observe all CAUTION notices given in this manual. Example:

caution

Before installation of the new control card, set the adjustment screw of the main potentiometers to its original setting. This ensures that the output evel is approximately correct, otherwise OV/UV condition will occur during PWR On.
bserve routing of cable string during instaliation of the control card. If fore reconnecting to control card. Polarity is indicated on control card.

CE SAFETY PRACTICES

All Customer Engineers are expected to toke every sofety pre-
caution possibile and observe he following safety proctices
while maintaining lBM equipment: You should not work alone under hazardous conditions or
around equipment with dongerous voltage. Always advise

3. Wapliies bond power swalling changes when turned off should be lictil locked or tagged in off position. Do not Operate" togs. 'torm 229.1266, affixed when applicable. Pull power supply cord
whenever possible. whenever possible.
 precoutions must be followed
be in immediate vicinity. with power off controls must Rings, wrist watches, chains, braceles shaill not be worn.
Only insulated pliers
d. Keop one hond in pocket.
o. When using trivers shall be used.
.
carrectly ond proper copacity, insulooed probos ore usod. Avoid contacting ground potential (metal foor strips.
machine frames. Atc. $\begin{aligned} & \text { use suitable rubber mats pur }\end{aligned}$ machind framess, entc. - use suita
chase locally it neessary).

b. Poover hand driling, reaming, grindin

ote. Alic. oth
Cyes. REMEMBER, THEY ARE YOUR EYES. Speciar sately instructions such as handing Cathode Roy
Tubes and extreme high voltoges. adil untined in CEM's and Safety Section of the Moilintenance Mantinueds.
7. Do not use solvents, chemicals, greases or oils that have
8. Avoid using toois or
est equipment that have not
9. Replace worn or broken tools and test equipment.
10. The max mum load to be itted dis that which in the opinion

II. All sefety devices such as gupordses, shields, signs, ground

- Snowing suetir gues is not mo

KNOWING SAFETY RULES IS NOT ENOUGH
AN UNSAFE ACT WILL INEVITABIY LEAD TO AN ACCIDENT USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS

11/71 5229.1264.2
. Each Customer Engineer is responsible to be certain tha no action on his part renders product unafe or exposes
hazards to
er personnel

1. Aloce where no one can trip overs them.
2. All machine covers musts be in place be
before machine is r
3. Alwad to customer.
4. Always place CE tool kit oway from walk areas where no
one can trip over it (i.e., Under desk or table)
5. Avoid touching mechanical moving parts (i.e., when lubriil
cating, checking tor ploy, etc.). .
Whing parts (i.e., when
Whb
6. When using stic
7. Avorid wearing.
mating
8. Avoid wearing loose clothing that may be cought in machin.
erry Shirt sleeves must be left butioned or rolled above the
9. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approx:marely 3 inches from end. Tie chai
10. Before storting equipment, make certain fellow CE's and
11. Maintain goos housekeeping in area of machines while per . Mointioin good housekeeping in area of ma.

Artificial Respiration general considerations

1. Start immodiately, Seconds Count

Do not move victim unless abso
lutely necessary to remove from lutely necessary to remove trom
danger. . Do not wait or look for help or stop to loosen cliothing,
warm the victim or apply stimu-
2. Check
2. Check Mouth for Obstructions

Remore foreigg
Rongue forword.
3.
3. Loosen Clothing - Keep Warm

Toke care of these items ofter vic.
tim is breathing by himself or
4. Remain in heosition is

After victiom revives. be ready to
resume respiration if necessary
5. Collume a Despirior
C.
oid.
Don', Give Up
Continue with
victim is sith
Continue winhout
vistim is breathing
is sertainly doad.
heprint Cowl doad.
Roscue Braothing for Adults
Victim on His Back Immediotely
Clear throat of woter, food, of
2. Tilt head back 3. Lift iaw up to keep tongue out of air passage.
4. Pinch nostris
4. Pinch nostrils to preve
age when you blow.
5. Blow until you see chest rise
6. Remove your lips and allow lungs
7. Listen for snoring and gurgling
7. Listen for snoring and gurglings.
sings of throat obstruction.

Ropport mouth to mouth
10.20 times a minute.
Continues rescue hine.athi
breathos for himsolf.
breathes for himsalf.
,
\qquad

Chapter 1. Introduction

Power System Arrangement

The power system of the Model 115 is divided into two
main groups:
IBM 3115 Processing Unit power system.
Printer and MFCU power supplies.

Note: In the 3115 Processing Unit gate 018 and/or
PS 3 are only installed for optional features. PS 4
is used for MSE only.
in the $3115-2$ Proce
feature. PS 3 is used for optional features.
PS 11 and 17 are used for storage extension up to
384 K
384 K

Function Principle

The power system consists of four main sections.
1 AC distribution and control
2 Power sequence control logic
3 Printer power supply
4 DC distribution system
AC Line Input

AC Input Voltages to the Power System

- The power system of the Model 115 can be connected to the following different ac lines.

Frequency	No. of Phases	Type of Connection	Voltage	Max. Input Power
$50 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$	3	Y	380 or $408 \pm 10 \%$	12 kVA
		200 or 220 or $235 \pm 10 \%$		
$60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$	3	Δ	200 or 208 or $230 \pm 10 \%$	

- The 5203 power subsystem is connected to the power system of the

3115 by an ac connector (AC2).

- If a 3203 Printer is attached instead of a 5203, the 3203 Printer is also connected to the AC2 connector.
The voltages on the AC2 connector are:

Froquoncy	No. of Phases	Voltage	Max. Current per Phase
$50 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$	3	$220 / 380 \pm 10 \%$	20 A
$60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$	3	208 or $230 \pm 10 \%$	

- Power line transients (PLTs) are filtered by an ac line filter.
- The power system is immune to power line disturbances (PLDs) of 120 Hz maximum.
If the voltage-dependent machine jumpering has to be changed, see ALD YD091 (50 Hz) or YD191 ($60 \mathrm{~Hz}, 208 / 230 \mathrm{~V}$).

Physical Locations and Part Numbers

- Detailed information about physical locations and part numbers of components within the power system are given in the ALD for 50 Hz PS starting on page YD011 for 60 Hz PS starting on page YD111
- Details of power supplies, Transistor Switching Regulators (TSR), Series Regulators (SR), and Ferroresonant Transformers (Ferro or F), are shown in the ALD on the YF-pages.
Note: The cross references in this manual to the ALD pages for 50 Hz and Hz are as shown in example below
YD011/YD111
The first reference is valid for 50 Hz only and the second is valid for 60 Hz only

Chapter 2. Principles of Operation

Power Interface

* If the multiplexer channel is installed without a card $1 / 0$ front end, the multiplexer channel front end and IOP 9 will be located in 01A.C2.
If the multiplexer channel and card $1 / O$ front end are both installed, the card $1 / \mathrm{O}$ front end is located in $01 \mathrm{~A} \cdot \mathrm{C2}$. The multiplexer channel front end and IOP 9 are installed in board 01B-A1.

Power System Overview

Power Sequence - Timing

Power Sequence - Control

Logic Operation

The logic of the power sequence control is subdivided into several groups:

1 Timing Circuits
The timing circuits consist of an oscillator and time delay counter with decoders (time delay counter is reset after each sequence step).

2 Sequence Steps A1 through C4
Forward/reverse stepping is controlled by the PWR On FL being on or off in conjunction with the time delay counter
3 On/Off Control
$\mathrm{On} / \mathrm{off}$ control for PSs, contactors and power to tape, disk and CUs is executed by sequence steps. In the case of an uncontrolled power down (EPO o
line voltage drop) no sequencing is provided.

Voltage Sense Circuits
The voltage sense circuits check voltages of PSs for overvoltage (OV) and/or undervoltage (UV). overvoltage (OV) and/or undervoltage (UV).
OV - Sense: (for TSRs only) switches off the failing TSR and the OV condition is indicated at the CE Panel.
ov - Protection: series regulators have overvoltage protection circuits. OV condition switches off the output voltage This results in a UV sense
UV - Sense: (for all PSs) causes Power Check which has two different effects:

1. During the power on sequence the
sequence stops and remains at failing step. 2. When power is complete UV sense initiates the power off sequence.
For more details, see Chapter 5 "Error Conditions".
5 Check Circuits
The check circuits supervise CBs and temperatures at several locations in the system.

6 Indication Circuits
The indicator circuits control signals to SVP indicators.

Power On, Step A1, and Timing Clock

Power Sequence - Control (continued)

Steps A2 and A3

Step A4

Power Sequence - Control (continued)

Steps C1 and C2

Steps C3 and C4

Power Sequence - Control (continued)

Thermal and Circuit Breaker Loops
For the physical locations of Thermal Switches and CBs, see Component Charts
in the ALD.
Thermal Switch Loops

3115 MLM. Power Supplies [19190E]

```
3115 MLM. Power Supplies [19191C]
```


Power Sequence - Control (continued)

Failures and Test Switches

A

YD645
Note: See Feature Tie Up/Tie Down List on ALD page A6101

Indicator Circuits and Panels

CE Indicator Panel

3115 MLM. Power Supplies [19192D]

Signal Source List		OV Ind PS 1-4V	21004	Step C4 Complete
- Page numbers given on this page refer only to Chapter 2.		OV Ind PS $1+5 \mathrm{~V}$	210 D 4	Step C4 On
		OV Ind PS $1+6 \mathrm{~V}$	210 D 4	Step C4 Sense Gate FL
A		OV Ind PS $1+8 \mathrm{~V}$	21004	
Any Thermal Failure	28084	OV Ind PS $1+34 \mathrm{~V}$	210 D 4	T
		OV PS 1	21004	
C		OV PS 2	21084	TDC Reset F1
CB Failure	$290 C 3$	OV PS 3	$210 \mathrm{B4}$	TDC Reset F2
(CB Failure Ind)	290 C 3	OV PS 4	21084	TDC Reset F3
Check Reset Key	200A3	OV PS 5	21084	TDC Reset F4
(Clock)	$200{ }^{2}$	OV PS 6	21084	TDC Reset F5
Contactor K10 On	240A8	OV PS 11	21089	TDC Reset F6
Contactor K11 On	23085	P		TDC Reset F7
CPU AC Connector on	20089	P		TDC Reset $\mathrm{R1}$
		(Partial PWR)	$240 \mathrm{C9}$	TDC Reset R2
D		Partial PWR Ind	290A3	TDC Reset R3
Delay Counter Drive	20005	PWR Compl Ind	290A3	TDC Reset R4
Delay Counter Reset	200E5	(PWR Complete)	$240 \mathrm{C9}$	TDC Reset R5
DC Gnd CB Blower Loop End	270E8	PWR Failure	280A3	TDC Reset R6
DC Gnd CB CPU DC Loop End	270E8	PWR Failure Ind	29043	(TF PS ind)
DC Gnd to CU Interf RY	250B3	PWR Hold	200A7	(TF Blower Ind)
DC Gnd for RY 01	25084	PWR On	200A5	(TF Gate A Ind)
DC Gnd for RY 06	25084	PWR On Reset	200A5	(TF Gate B Ind)
DC Gnd for RY 11	25084			(TF Gate C Ind)
DC Gnd Sequence Board	270A2, C2, E2	R		(TF Printer Ind)
		Remote Start PS 1	21085	(TF 2560 Ind)
F		Remote Start PS 2	21085	Thermal Failure
Failure PWR Off	28087	Remote Start PS 3	21085	Thermal Failure Delayed
		Remote Start PS 4	21085	Thermal Failure Ind
G		Remote Start PS 5	21085	Thermal Loop 1 Open
Gated Delay Counter Reset	20054	Remote Start PS 6	21085	Thermal Loop 2 Open
Gated Forward Count Signal (G.F.C.S.)	$200 \mathrm{C5}$	Remote Start PS 7	21089	Thermal Loop 3 Open
Gated Reverse Count Signal (G.R.C.S.)	20005	Remote Start PS 11	21089	Thermal Loop 4 Open
Initial Reset	200B3	Remote Start PS 15	22086	Thermal Loop 5 Open
		Reset	20083	Thermal Loop 6 Open
				Thermal Loop 7 Open
K	$280 C 8$	S		Thermal Loop $1+2$ Gnd (TSR Over Volt Ind)
KB Lamp Test		SCR GT Up PS 14	23005	
K12 On 7.25 V AC	21085	Sensed UVF PS 7	21089	
L		Sensed UVF PS 11	21009	U
Lamp Test CE	280D7	Step A1 On FL	200A9	UV + 24 V CDF PS 20
Line Fault from IPI	20003	Step A2 On FL	210A3	UFPS 2
		Step A2 Sense Gate FL	210A5	UV PS 3
N		Step A3 On	21047	UV PS 4
Normal PWR Off	280A7	Step A3 Sense Gate FL	21049	UV PS 5
		Step A4 On	22043	UV PS 6
0		Step A4 Sense Gate FL	22046	UV 12V PS 20
(OV)	280D3	Step C1 On	230A3	
OV Ind PS 2	21084	Step C1 Sense Gate FL	230A5	
OV ind PS 3	21084	Step C2 On	230A7	V
OV ind PS 4	21004	Step C2 Sense Gate FL	230A9	VFPS 1
OV Ind PS 5	$210 C 4$	Step C3 On	240A3	(VFPS 1 Ind)
OV Ind PS 6	21004	Step C3 Sense Gate FL	24045	VFPS 2

Your comments may help us to improve this manual. Prase use the resder's comment form llast sheet of the
manual); if the form has been removed, send the
comments to:
IBM Laboratories,
IBM Laboratories,
Product Publications, Dept. 3179,
703 Boeblingen/Wuertt, P.O. Box 210,
Germany
Comments become the property of IBM.

Chapter 3. Operational Details

Power System On/Off Sequence

During on/off switching of the power system all primary and secondary voltages must be turned on/off by steps in a specific sequence. This is performed by the power on
sequence and the power off sequence.
Power On Sequence
Initiated by the POWER ON key.

- Sequence steps are switched on starting with step A1 going up through step C4 (forward stepping).
Stepping is controlled by the logic of the power
sequence control
The light within the POWER ON key indicates the
status of the sequence.
Power on reset signal is sent to SVP.
Power Off Sequence
- Initiated by the POWER OFF key or failure conditions.
- Sequence steps are switched off starting with step C4 going down through step A1 (reverse stepping).
Stepping is controlled by the logic of the power sequence control
The light within the POWER ON key indicates the status of the sequence.
- The POWER OFF key or power failure initiate immediately the power-off sequence. At the same time the corresponding signals to the SVP are generated.
- Thermal failure generates immediately the corresponding signals to the SVP. After a delay of approximately 3.5 seconds, the power off sequence is initiated.

Power Sequence Control

- Main function: controls the power on/off sequence and supervises the correct functioning of the power system.
- Consists of several function groups and logic circuits.
- The 3115 power sequence logic is subdivided into
several circuits as shown in the diagram.
- Timing circuits of the 3115 logic generate and control
steps A1 through C4 of the power on/off sequence
- The diagram shows the relationship between the
- Several function groups and the logic

More details are shown in Chapter 2, "Principles of Operation"

Chapter 4. Functional Units

Types of Power Supplies

- Three different types of power supplies (PSs) are used
in the power system:
1 Ferroresonant Transformer (F)

2. Series Regulator (SR)

1 Ferroresonant Transformer

- AC output voltage(s) (if required) rectified to dc.
- Output voltage(s) may vary due to line voltage and frequency variations within the system operating limits of $\pm 10 \%$ and $\pm 0.5 \mathrm{~Hz}$

F On/Off Control

- By applying/removing the ac input.
(2) Series Regulator

- Series regulators are used for positive and negative voltages.
- DC output voltage is controlled by comparing a sample outpu
voltage with a reference voltage
- Any alferee is ampiried which controls a seris
- The over voltage protection circuit short circuits the SR output when an over voltage condition occurs. This trips the CB in the input circuit, or causes the TSR to switch off.

SR On/Off Control

- By applying/removing the dc input.

3 Transistor Switching Regulator
The TSR consists of four main sections:

AC to DC Converter Section
(Part of Control Card)

- Rectifies the ac input voltage and converts it to a high dc voltage.
- The input capacitor buffers power disturbance so that the TSR operates satisfactorily during PLD.

20 kHz Inverter Section (Switch Card)

- Generates an ac voltage across the primary coil of the transformer by alternately turning the switching transistors on and off at a 20 kHz rate.

Control Section (Control Card)

- Controls the on-off ratio of the two transistors in the
inverter section by generating a 20 kHz frequency.
- Controls UV/OV protection circuits within the TSR. These circuits will switch off the TSR if voltage is out of the tolerance given by the TSR operating limits.
- The control section is equipped with a main simultaneously.

Output Section (Output Card)

- Each dc output has a separate secondary coil on the

Some TSRs have additional potentiometers in the
output section to adjust the output voltages individually.

- Output voltage(s) may vary, due to line voltage and frequency variations, within the system operating limits of $\pm 10 \%$ and $\pm 0.5 \mathrm{~Hz}$.
- The transformer has an additional secondary coil fo control functions, also to supply the control section of the TSR.

TSR On/Off Control

- TSR on

2. After 200 ms (minimum) by applying

24 V dc to reed relays (RR).
3. After 1 second dc output voltage(s) up.

- TSR off: By removing voltage from RR.
- TSR on
again: Possible 2 seconds after TSR off
TSR Components
- For more details see Chapter 6, "Maintenance Information"

3115 MLM. Power Supplies [19197C]

CAUTION
Short circuit of wire E18 to frame may damage the +24 V
net of board 01 C - A 1 . If a damaged +24 V net is
suspected, check if +24 V is present at the following pins
of board 01C-A1:
F2-D02 B1-D03
F2-D03 F6-A01
2-00
2-D05
A2-D03
very D03 pin of every card location is also connected to the +24 V net (see ALD YD591).

Flexible Distribution System

FDS cables are used for prime dc distribution. An FDS cable consists of a thin copper band surrounded by layers of insulation.

Handling FDS Cables

FDS cables must be handled carefully. Do not drag an FDS cable over sharp corners or edges. Route it carefully through gate openings.

Installation of FDS Cables

Each bill of material to install a feature contains a detailed description for handling and routing FDS cables, and a folding tool

Trouble Shooting on FDS Cables
Check for a short circuit from cable to cable and for a short circuit to ground (e.g. machine frame)

Repairing FDS Cables

Damage to insulation can be repaired by Mylar tape (IBM part no. 817 979) or a similar tape. Use at least two complete turns of tape around the FDS cable, but not more than two and a half turns.

Refolding FDS Cables
Do not refold the cable, or reverse the fold direction more than once at any fold mark. Use the tool for recovery from misfold, straighten the FDS cable carefully and repair the insulation as described before in "Repairing FDS Cables". Then fold the cable correctly using the folding too

Example of FDS Cable Routing

Chapter 5. Error Conditions
Failure Indications

Notes: 1 1. Ps
PS 14 has n sepparate failure indicator. VF
PS 14 will be indicateod by VF step C 1 .
2. TSR overvoltage indication is not telated to

The sequence logic.

1. TSR overvovoltage indicator is set is detecter
2. The overiving tage indicator is set
3. The corresponding $V F$ PS indicator is set
4. The correspond
UV
condition of this T TS
.

The correspondding VF Step indicicator is set

Failure Conditions

- The power control logic may be in one of three conditions. In each condition, a failure can occur:
Condition 1: POWER ON key red indicating 'system power on' and 'control units power complete' or 'system power on' and 'control units power incomplete'

Condition 2: POWER ON key red indicating 'system power complete' and control units power incomplete
Condition 3: POWER ON key white indicating 'system power complete' and 'control units power complete'

- VF in step X will turn off all the following steps ($X+N$) immediately and all power
- Normal power off sequence is started
beginning with step X
- 'Failure PWR off' signal to SVP
- To restart, press the POWER CHECK RESET key and then the POWER ON key

Power System Signals to SVP

Four logic signals are transmitted by three lines to the SVP. These four signals give the status information of the power system.
PWR On Reset (POR)

- Active after POWER ON key is pressed and Step C5 not complete.
- POR drops if: a) Power system complete
b) CB failure detected
c) Thermal failure detected.

2. Normal PWR Off

- Active when POWER OFF key is pressed and no failure is detected by the power system

3. Failure PWR Off

- Active if a faliure is
- Active when system power is turned off by the POWER OFF key after a failure condition which previously had stopped the power on sequence.

4. Failure PWR Off and Normal PWR Off

- Both lines active at the same time indicate that a thermal failure has been detected. After a minimum time of 3.5 seconds the power off sequence is started.

Chapter 6. Maintenance Information

Power System Trouble Shooting

| DANGER |
| :--- | :--- |
| Press POWER OFFF, |
| swith |
| s.off main CB (CB8). |
| for maintenance on electrical |
| commonents (wiring, powers. |
| etc.). |

General Note: If no IPI detector is installed the power system is not checked for a missing phase. A missing phase may cause power
failures or thermal failures (blowers too slow or not running). Check ac line as follows:

1. Switch off main CB (CBB).
2. Check for 3 phases of line voltage present at the entry of main CB

3115 MLM. Power Supplies [19203B]

TSR Trouble Shooting
${ }^{\text {Dancen }}$ DAN
Press POWER OFF and switch off main CB for maintenance on
caution
Control voltages on board 01C-A1 are present with power off.

3115 MLM. Power Supplies [19204B]

TSR Components

- Control card and switch card, must be replaced together
- Output unit (different part no. for each type of TSR)
- Input capacitor
- Output fuse(s)

Notes:
Voltage card: only on 3 phase TSRs.
In USA 60 HZ TSRs are available which have no voltage card. Plugging of the voltage card depends on line voltage. Refer to ALD YD091/YD191.
AUTION: Two different types of voltage card are available If there are 5 wires connected to connector $J 2$ the new card must be used.
If there are 15 wires connected to connector J 2 the old card must be used.

2. Input fuses: there are additional input fuses with indicator located on the ac compartment door of the 3115 (see page 2-100 and 2-1201
. Main potentiometer: TSRs with more than one output.
5. Output potentiometer: maximum two on front of output unit Some TSRs have additional output potentiometers Irheostats. not shown in the figure). They are located between the outpur terminals and are multiturn potentiometers.

6. DANGER

AC line voltage on E20.
E22 is not used on later models.
For TSR part numbers see component chart on ALD page For TSR part nu
YDO75/YD175.

CAUTION: Some switch cards have W9 and W 3 in reverse order. Correct identification is etched on the card. Some output assemblies have unlabelled wires to W8 and W9. These are connected to the load resistor only. Polarity is unimportant. See YF pages of ALD.

TSR Replacement Procedures

DANGER
Voltages in excess of 600 V are present within the TSR.
Therefore, safety cover of TSR must be in place and
Refer to page 6 -200.

1 Replacement of TSR

1.1 Removal

1. Press POWER OFF key and switch off main CB
2. Disconnect ac input and control input from control card
3. Disconnect ac input and controf enpun
4. Loosen both fasteners, take out TSR
1.2 Installation
5. Unscrew fasteners to their stops.
6. Install TSR and fasten it.
7. Reconnect input and output wiring

2 Replacement of Control Card

 and Switch CardUnder no circumstances are the input fuses on the contro card to be replaced.
2.1 Removal

danger

Allow at least two minutes after POWER OFF switch has been operated before removing cover from the TSR (discharge time of input capacitor)

1. Remove TSR.
2. Remove the two cover screws, then the cover
3. Short the input capacitor to discharge it completely.
4. Remove a) Two terminal screws for input capacitor on control card.
b) Four mounting screws for control card (observe the different screws) Note: Shims may be present between control card assembly and output assembly.
c) Ground terminal.

CAUTION
5. Before removing the pluggable voltage card make a careful note of the visible inscription in its top-eft corner:
$34 \downarrow \Delta$ or $3 \Phi+Y$ or $3 \Phi-Y$
THE CARD MUST BE RETURNED TO THIS SAME POSITION.
IMPORTANT: Observe the two different Y-plugging possibilities.
Remove voltage card.
6. Remove upper mounting screw for shield tolding the plug on front panel
7. Loosen lower mounting screw only so that the plug becomes free.
8. Carefully loosen plug between control card and switch card (P1-J1)
9. Remove four slip-on connectors on bottom edge of control card (W4 through W7).
Note that W6 and W7 are out of sequence (see page 6.200).

Note: Before removal of control card note routing of cable from voltage card to control card for later reinstallation.
10. Carefuliy remove control card from front panel. Do no damage main potentiometer.
12. Remove irre mora from frot
12. Remove switch card from front panel.
13. Remove four slip-on connectors from switch card (w1, 3, 8, 9).
Some output assemblies have unlabelled wires connected to W8 and W9. W8 and W9 are connected to a load resistor. The polarity is unimportant. See YF pages in the ALD
14. Check input capacitor visually, and replace if defective.
2.2 Installation
caution
Observe routing of cable string during installation of the control card.

Install control card and switch card in reverse sequence. Ensure correct polarity of the input capacitor before reconnecting it to the control card. Polarity is indicated on the control card on the land pattern side.Replacement of Output Unit

3.1 Removal

1. Remove TSR (see 1.1).
2. Remove control card and switch card (see 2.1)
3. Remove all output terminal straps and high frequency
filter capacitors from the output assemb
Renove output unit from front panel

3.2 Installation

Install new output unit in reverse sequence.

TSR Voltage Adjustment

TSR Adjustment Principle

Hints for Voltage Adjustment

1. Main potentiometer will raise or lower all output voltages simultaneously. The voltages are increased when the potentiometer is turned clockwise.
2. The individual output adjustments will raise or lower a specific output voltage
3. Prime output levels (levels with no output potentiometer/rheostat) can on/y be adjusted by the main potentiometer
Therefore, if during adjustment of the main potentiometer an overvoltage condition occurs before the desired voltage is reached, it indicates that one or more of the output potentiometers/rheostats are adjusted too high.
This can be corrected by turning the output potentiometers/rheostats in a counter-clockwise direction. This should be done in small steps until adjustment of prime voltage is possible.
4. Outputs of TSR(s) feeding an SR have no individual adjustment potentiometer. These output levels are changed simultaneously by the main potentiometer.

Each output voltage is
individually adjustable Prime Voltage
Cadiustable by ladiustable by man
potentiometer only

Side View
contains a torque screw (to be adjusted at the manufacturing plant only)
stem moves in when turning clockwise
total travel approximately 20 turns

- turning torque very heavy
- to find the center of the output rheostat, place two marks on the adjustment screwdriver, 1 inch $(25 \mathrm{~mm})$ and 2 inches $(50 \mathrm{~mm})$ from the tip of the blade. Turn the $1 / 4$ inch $(6.25 \mathrm{~mm})$ shaft until the 1 inch $(25 \mathrm{~mm})$ mark is flush with the supply front panel.
caution
For rheostat adjustment there is a special screwdriver (P / N 2361840) available. Never turn the shaft in a clockwise direction beyond the 2 inch $(50 \mathrm{~mm})$ mark on the screwdriver.

2. Solid Shaft Type

Side View

- stem does not move in or out when turning
total travel approx. 50 turns
- turning torque very light
- to find the center, turn carefully to the end of travel and then turn 25 turns back.
Output rheostats located at E8 and E11 of the TSR dc output terminals are multiturn adjustment type.
Output potentiometers R3, R21 and R24 protrude from the power supply.
Front plate and are $1 / /$ turn.
All potentiometers and rheostats increase voltage output when turned clockwise.

DC Voltage Distribution Summary

All power supply output voltages shown in the tables in this section in the "Output Voltage" column are
measured at the sense points, (if a sense point is available)
The sense points are used by the power control logic
for the voltage sense circuits and by the CE voltmeter in
gate 01 C .
The CE should adjust the power supply output voltag
as close as possible to 0% reading at the CE voltmeter.

Power Supply No. Output Voltages		1					$\begin{gathered} 2 \\ -4 \end{gathered}$	$\begin{aligned} & 3 \\ & -4 \end{aligned}$	$\begin{gathered} 4 \\ -4 \end{gathered}$	5	6	$\begin{gathered} 7 \\ +3.4 \end{gathered}$	$\begin{gathered} 8 \\ +20 \end{gathered}$	$\begin{gathered} 11 \\ +3.4 \end{gathered}$	$\begin{gathered} 12 \\ +3.2 \end{gathered}$	$\begin{gathered} 13 \\ -3.2 \end{gathered}$	14 -4.17	15 +8.5	16 $+6.25$	17$+8.5$	AC7.25	19				20			$\begin{gathered} 52 \\ +24 \end{gathered}$	$\begin{aligned} & \text { Prt } \\ & \text { Ps } \\ & +60 \end{aligned}$	$\begin{aligned} & 5425 \\ & \text { PS } \\ & +24 \end{aligned}$
		-4	+6	+8	+5	+34																24	+24	-4	+6	+12	-12	+24			
Load	01A-A1		-				-																								
	01A-A2									-		-						-													
	01A-A3		-							-																					
	01A-B1		\triangle						\triangle			\triangle						\triangle								*	*				
	01A.B2		-								-	-						-								-	-				
	01A.B3								$\begin{aligned} & \text { - XOR - } \\ & \text { See Note } \end{aligned}$			-						-													
	01A.C1		-				-					\bullet						-			-										
	01A.C2		-								-	-	-					-	-		-										
	01A.C3	-	-									\bullet						\bullet								-	-				
	01B-A1		-					-				-						-											-		
	01B-A2																									\triangle	\triangle				
	01B-A3								\triangle			\triangle		\triangle				\triangle		\triangle											
	01C-A1																					-	-	-	-						
	CRT		-	-		-																					-				
	CDF	-	-																									-			
	KB				-																										
	5213																-		-									\cdots	-		
	5203/3203																-		\bullet									-		-	
	2560														-	-			-		-										
	5425										-								-											-	-

Note: Board 01 A.B3 is supplied with - -4 V from PS4 only if MSE is installed.

* - 3115 only

Bulk voltages and bias voltages used for the series regulators
are not shown in this table.
For more detailed information see pages 6-310 through 6-330

A - $3115 \cdot 2$ only

PS 1-11: Locations and Voltage Distribution

Nores:
See page 6 -200
2. Dep page 6 -
3. AC line voltage on E20.
about Δ / Y plugging of voltage used for 50 Hz . For information
YD091/YD191.
4. Voltages for reference only. For TSR voltage adjustment, see
page 6-211. Physical locations of adiustment potentiometers
5. Positive Bulk voltages for YR po

TSRs have the negative potential floating ies generated by
Example: Bulk voltage is $14 \mathrm{~V}(+8.5 \mathrm{~V}$ and -5.5 V). Output Voltage of SR power supply is +8.5 V .
The -5.5 V nominal voltage from TSR is variable and depends on the load current of the SR power supply.

PS 1
Type:
Type: TSR
ALD: YD501, YF774

PS 7.11

Type: TSR
ALD: YD507, YD515, YF773

PS 2, 3, 4, 5, 6
Type: TSR
ALD: YD503, 505, 507, YF775

PS 8
ALD: YD511, YF847

[^0]PS 1－11：Locations and Voltage Distribution（continued）

$\begin{aligned} & \text { PS } \\ & \text { No. } \end{aligned}$	Type	Location	Input Voltage	Output		Current（A）		$\begin{aligned} & \text { Foeds } \\ & \text { PS No. } \end{aligned}$	Adjustment （See Note 1）	UV Trip Range		OV Trip Range		Sense Points		Load	Exit on ALD Page	Load Connection Points（See Note 2）	
				No．	Voltage	Min	Max			From	то	From	To	Votage	Gnd			Voltage	Gnd or Opposite Polarity
1	TSR	3115	AC 3 Ph．	1	－4．0	16.8	35.0	－	в	－3．0	－3．4	－4．5	－4．7	01A．C3 L4B06	GB 24.14	$\begin{aligned} & \text { SVP } \\ & \text { CDF } \end{aligned}$	$\begin{aligned} & \text { YD217 } \\ & \text { YD251 } \end{aligned}$	$\begin{aligned} & \text { O1A.C3 Y4. Z4 } \\ & \text { TB } 22.7 \end{aligned}$	$\begin{aligned} & \text { O1A.C3 Y3, Y6, Z1, Z3 } \\ & \text { GB } 24 \end{aligned}$
				2	＋6．0	15.0	25.0	－	в	＋4．6	＋5，2	＋6．7	＋7．2	01A－A3 06002	GB 24.14	DDA，MTA MSC ICA，IOP B Printer FE Card I／O FE MPX SVP CRT CDF IOP A，MTAム Bleeder R16，R18	YD201 YD205 YD209 YD213 YD215 YD215 YD217 YD251 YD251 YD501	$01 \mathrm{~A} \cdot \mathrm{~A} 1 \mathrm{~K} 5 \mathrm{~B} 11$ 01A－A3 L5 B11 01A．B2 K2，J2，H2，G2，K4，J4－B11 H4．G4．B11 01A－C1 U2 D09（for 5203） U2 811 （for 3203） 01A．C2 T2．U2－B11（for 2560 only） 01A－C2 B3－B11 01A．C3 L2－B11 TB 22.5 TB 22－6 01A－B1 S2－B11，T2－B11 TB 18.1	01A－A1 Y3，Y6，Z1，Z3 $01 \mathrm{~A} \cdot \mathrm{~A} 3$ Y $3,21, \mathrm{Z3}$ $01 \mathrm{~A} \cdot \mathrm{~B} 2 \mathrm{Y} 3, \mathrm{Z1}, \mathrm{z3}$ 01A．C1 Y3，Y6．Z1． 23 $01 \mathrm{~A}-\mathrm{C} 2 \mathrm{Y} 3, \mathrm{Z1}, \mathrm{Z3}$ 01A．C2 Y3，Z1，Z3 $01 \mathrm{~A} . \mathrm{C3}$ Y3，Y6，Z1，z3 GB 24.15 $01 \mathrm{~A} . \mathrm{Cl}^{\mathrm{T} 2}$ 01A．B1 Y3，Z1 TB 18 －2
				3	＋8．0	0.8	3.0	－	в	＋5，5	＋6．4	＋9．0	＋9．8	тв 23－6	GB 24.14	CRT	YD251	т8 23.6	CB 24.15
				4	＋5．0	1.0	2.0	－	в	＋3．7	＋4．2	＋5．8	＋6．9	TB 23.7	GB 24.14	$\begin{aligned} & \hline \text { Ktyboard } \\ & \text { Bleeder R23 } \end{aligned}$	$\begin{aligned} & \text { YD251 } \\ & \text { YD501 } \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { TB } 23.7 \\ \text { TB } 18.7 \end{array}$	$\begin{aligned} & \text { GB } 24.5 \\ & \text { TB } 18.8 \end{aligned}$
				5	＋34	0.15	0.75	－	A	＋21．5	＋26．5	＋37．5	＋39．0	TB 23－5	GB 24.14	CRT	YD251	TB 23.5	GB 24.15
2	TSR	3115	AC 3 Ph．	1	－4．0	16.8	84.0	－	A	－3．0	－3．5	－4．5	－4．9	01A－C1 L4B06	GB 24.14	Prtr FE，IOP 8 DDA，MTA＊	$\begin{aligned} & \text { YD213 } \\ & \text { YD201 } \end{aligned}$	$01 \mathrm{~A} . \mathrm{C1} \mathrm{Y} 4, \mathrm{Z4}$ $01 \mathrm{~A} \cdot \mathrm{~A} 1 \mathrm{Y} 4, \mathrm{Z} 4$	01A－C1 Y3，Y6，Z1，Z3 01A－A1 Y3，Z3，Y6，Z1
3	TSR	3115	AC 3 Ph．	1	－4．0	16.8	84.0	－	A	-3.0	－3．5	－4．5	－4．9	01B－A1 L4B06	GB 24.14	MPX／IOP9 ${ }^{\text {•• }}$	YD219	01 B － 1 Y4， $\mathrm{Z4}$	$01 \mathrm{BA} \mathrm{A}_{1} \mathrm{Y} 3, \mathrm{Z3}$
4	TSR	3115	AC 3 Ph．	1	-4.0	16.8	84.0	－	A	－3．0	－3．5	－4．5	－4．9	01A－B3 L4B06＊ 01A－B1 L4B06A	GB 24－14 GB 24－14	MSE（Memory ${ }^{1)}$ IOP A，MTAム MSE（Memory 2）${ }^{4}$ Bleeder R36，R37ネ	$\begin{aligned} & \text { YD211 } \\ & \text { YD207 } \\ & \text { YD223 } \\ & \text { YD505 } \end{aligned}$	See ALD page TW051 01A．B1 Y4，Z4 See ALD page Two 52 TB19－9	See ALD page TW 051 01A－B1 Y3，Z1 See ALD page TW 052 TB19－10
5	TSR	3115	AC 3 Ph．	1	－4．0	16.8	84.0	－	A	－3．0	－3．5	－4．5	－4．9	01A－A3 L4B06	GB 24.14	MIP，IOP E \＃，IPUム MSC Storage（See Note 3）	$\begin{aligned} & \text { YD203 } \\ & \text { YD205 } \\ & \text { YD211 } \end{aligned}$	01A－A2 Y4，Z4 01A－A3 Z4 See ALD page TW 05	$\begin{aligned} & 01 \mathrm{~A} \cdot \mathrm{~A} 2 \text { Y3, Y6, Z1, Z3 } \\ & 01 \mathrm{~A}-\mathrm{A} 3 \mathrm{Y}, \mathrm{Z}, \mathrm{Z3} \\ & \text { See ALD page TW } 051 \end{aligned}$
6	TSR	3115	AC 3 Ph．	1	－4．0	16.8	84.0	－	A	$\begin{aligned} & -3.0 \\ & - \\ & -2.8 \end{aligned}$	$\begin{aligned} & -3.5 \\ & -3.4 \\ & \text { ISee } \end{aligned}$	$\begin{aligned} & -4.5 \\ & \text { (Hor } 542 \\ & \text { Note } 4 \text { on } \end{aligned}$	-4.9 5 only） page 6	01A－C2 L4B06 PS 6－E10 20）	GB 24.14 GB 24.14	ICA，IOP B Card I／O FE or MPX 5425 （MFCU）	$\begin{aligned} & \text { YD209 } \\ & \text { YD215 } \\ & \text { YD255 } \end{aligned}$	01A－B2 Y4，Z4 01 A－C2 Y4，$Z 4$ DC 2－A03	01A－B2 Y3，Z1，Z3 01A－C2 Y3，Z1， 23 DC 2－B01，B04

．$A=$ Voltage is adjusted by the main potentiometer of TSR
$B=$ Voltage is adiusted by the individual potentiometer in the TSR Voltage is adjusted by the individual potentiometer in the SR． in these columns Y and Z connectors are shown．
The pins are connected as shown in the example on page 6－321．
For wiring refer to the respect tive ALD page．
Board 01 A － 83 is supplied with -4 V from PS 4 onlv if MSE is
installed．If MSE is not installed，the board 01 A－B3 is supplied installed．from PS 5 ．

For physical location of terminal blocks and ground bus，see
component charts in ALD
$\star=3115$ only
$\triangle=3115-2$ only
－If MPX and card I／O front end are installed．MPX and IOP 9 ar
located in board OIB－A1．If MPX is installed without card $1 / 0$
front end，MPX and $10 P 9$ are located in board $01 \mathrm{~A}-\mathrm{C} 2$

$\begin{aligned} & \text { PS } \\ & \text { No. } \end{aligned}$	Type	Location	Input Voltage	Output		Current (A)		Feeds PS No.	Adjustment (See Note 1)	UV Trip Range		OV Trip Range		Sense Points		Load	Exit on ALD Page	Load Connection Points (Soe Note 2)	
				No.	Voltage	Min	Max			From	To	From	To	Voltage	Gnd			Voltage	Gnd or Opposite Polarity
7	TSR	3115	AC 3 Ph.	1	+3.4	9.2	46.2		A	+2.5	+2.9	+4.3	+4.5	01A.B3 G2 D03	GB 24.14	MIP IPU ICA, IOP 8 Storage (MS) Storage (MSE) MPX, IOP 9.. Prtr FE, IOP 8 MPX, IOP 9** SVP PS 15 Bleeder R28, R29 (see Note 3) IOP A, MTA \triangle Memory 2 (MSE)	YD203 YD203 YD209 YD211 YD211 YD219 YD213 YD215 YD217 YD507 YD507 Y YD207 YD223	01A-A2 R1-C13, R1-A13 Q1-D13, Q1-B13 01 A-A2 Y4, 24 01A-B2 N4-D03, M4-D03 01 A-B3 D6-B02, D6-C02, S6-C02 G6-C02, G6-D02, S6-D02 P6-C02, P6-B02 01A-B3 S6-D02, S6-C05, R6-D02 R6-E04, D6-C02, D6-B05 L6-A02, K6-E05 01B-A1 M4-D03 01 A-C1 L2-D03, H4-D03 01A-C2 M4-D03 01A.C3 D3-D12, D2-D03 PS 15-TB 1.11 TB 19-1 01 A-B1 J4-D03, K4-D03 L4-D03, M4-D03 01B-A3 D6-B05. D6-C02 K6-E05, L6-A02 S6-C05, S6-D03 B6-E04. B6-D02	01A-A2 Y3, Z1, 23 01A.A2 Y3, Z1, Z3 01 A-B2 Y3, Z1, 23 O1A.B3 Y3, Z1, Z3 01 A-B3 D6-C05, D6-B02 L6-A05, K6-E02 S6-D05, S6-C02 01B-A1 Y3, Z1, Z3 01 A-C1 Y3, Y6, Z1, Z3 01A-C2 Y3, Z1, Z3 01 A-C3 Y3, Y6, Z1, $Z 3$ PS 15-TB 1-9 TB 19-2 01A-B1 D6-B02, D6-C05 K6-E02, P6-C05 Y3, Z 1 01B-A3 D6-C05, D6-B02 L6-A05, K6-E02 S6-D05, S6-C02 S6-D05, S6-C02
				2	14	3.5	17.5	-	D	-	-	-	-	-	-	PS 15 Bleeder R30, R31 (see Note 3)	$\begin{aligned} & \text { YD507 } \\ & \text { YD5007 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { PS 15-TB } 1.4 \\ \text { PS 15-TB 19-3 } \end{array}$	PS 15-TB 1.2 PS 15-TB 19-4
8	TSR	3115	AC 3 Pr.	1.	+20.0	1.0	2.0	-	A	+14.0	+16.5	+22.5	+26.5	T8 23-8	GB 24-14	$\begin{aligned} & 2560 \text { (MFCM) } \\ & \text { Bleeder R19 } \end{aligned}$ R20, R27	$\begin{aligned} & \text { YD215 } \\ & \text { YD511 } \end{aligned}$	$\begin{aligned} & \text { 01 A-C2 U5-D09 } \\ & \text { TB 18-3 } \end{aligned}$	$\begin{aligned} & \text { O1A.C2 Y3, Z1, Z3 } \\ & \text { TB } 18.4 \end{aligned}$
				2	+10.9	4.0	20.0	PS 16	D	-	-	-	-	-	-	$\begin{array}{\|l\|} \hline \text { PS } 16 \\ \text { Bleeder R21, R22 } \end{array}$	$\begin{aligned} & \text { YD511 } \\ & \text { YD511 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PS 16-TB } 1.4 \\ \text { TB 18-5 } \end{array}$	$\begin{aligned} & \text { PS 16-TB 1-1 } \\ & \text { TB } 18-6 \end{aligned}$
				3	+7.8	1.4	7.0	PS 12	D	-	-	-	-	-	-	$\begin{array}{\|l\|} \hline \text { PS } 12 \\ \text { Bleeder R25 } \end{array}$	$\begin{aligned} & \text { YD511 } \\ & \text { YD511 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PS 12.TB } 1.4 \\ \text { TB } 18.10 \end{array}$	$\begin{aligned} & \text { PS 12.TB } 1.1 \\ & \text { TB 18-9 } \end{aligned}$
				4	-7.8	1.4	7.0	PS 13	D	-	-	-	-	-	-	$\begin{array}{\|l\|} \hline \text { PS } 13 \\ \text { Bleeder R24 } \\ \hline \end{array}$	$\begin{aligned} & \text { YD511 } \\ & \text { YD511 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { PS 13.TB } 1-1 \\ \text { TB } 18.12 \end{array}$	$\begin{aligned} & \text { PS 13-TB } 1.4 \\ & \text { TB } 18.11 \end{aligned}$
11	TSR	3115	AC 3 Ph.	1	+3.4	9.2	46.2		A	+2.5	+2.9	+4.3	$4: 5$	018-A3 G02 D03	GB 24.14	Memory 2 Ext. (MSE 384K)	YD515	see ALD TW 052	see ALD TW 052
				2	14	3.5	17.5	PS 17	D	-	-	-	-	-	-	PS 17	YD515	PS 17.T8 1-3	PS 17-T8 1-1

1. $A=$ Voltage is adiusted by the main potentiometer of TSR.
$B=$ Voltage is adjusted by the individual potentiometer in the TSR Voltage is adjusted by the individual potentiometer in the SR $D=\begin{aligned} & \text { The potentiometer is located on the regulator card of the SR. } \\ & \text { Voltage cannot be adiusted (Bulk voltage for SR power supplies). }\end{aligned}$ 2. In these column Y and Z connectors are shown.

The pins are connected as shown in the example on page 6-321.
For wring refer to the respective ALD Page.
3. If board 01B-A3 (Memory 2) is installed, bleeder resistors R28, R29, R30
and R31 are removed.
$\star=3115$ only
$\Delta=3115.2 \mathrm{oly}$
A $=315 \cdot 2$ only
-. If MPX and card I/O front end are installed, MPX and IOP 9 are locat
in board O1B.A1. If MPX is installed without card I/O front end,
the MPX and IOP 9 are located in board O1A-C2.
For ohysical locations of TBs and Gnd Bus, see compoent charts in AlD

PS 12-17: Locations and Voltage Distribution

PS 12
Type: SR

PS 14 Type: SR

Type: SR
ALD: YD525, YF808

PS 16
Type: SR
ALD: YD511, YF354

> Type: SR ALD: YD513, YF356

PS 13
Type: SR
ALD: YD513, YF356

PS 15, 17
Type: : FR
Type: SR
ALD: YD507, YD515, YF714

1. Bias voltage for PS 12 is refered to TB 17.
2. Bias voltage for PS 13 is referred to TB 1-4.
3. OV signal from volt
protection SCR located at the respective TB
4. If a 5425 is attached a special
5. If a 5425 is attached, a special UV detection circuit for -4 V of
PS 6 is installed near PS 16 .

The UV detection circuit acts as a protection circuit for the
5425 hammer drivers in the case of an uncontrolled power
down (EPO or line voltage drop)
down (EPO or line voltage drop).
If -4 V from PS 6 drops below -3 V , the protection circuit will
short the output of PS 16. The short circuit of PS 16 output
prevents uncontrolled hammer firing in the 5425 . The normal
power off sequence is not affected by this circuit
5. The output voltage of each $S R$ power supply can be adjusted by an individual potentiometer which is located on the regulator
6. Positive bulk voltages for SR power supplies generated by

TSRs have the negative potential floating.
Example: Bulk voltage is $14 \mathrm{~V}(+8.5 \mathrm{~V}$ and $-5.5 \mathrm{~V})$.
Output voltage of SR power supply is +8.5 V .
depencs on the load current of the SR power supply.

$\begin{aligned} & \text { Ps } \\ & \text { No. } \end{aligned}$	Type	Location	Input Voltage	Output		Current (A)		Feeds PS No.	Adjustment (See Note 1)	UV Trip Range		OV Trip Range		Sense Points		Load	Exit on ALD Page	Load Connection Points (See Note 2)	
				No.	Voltage	Min	Max			From	To	From	To	Voltage	Gnd			Voltage	Gnd or Opposite Polarity
12	SR	3115	7.8 V dc from PS 08	1	+3.2	0.2	7.0	-	c	+1.8	+2.5	+3.8	+4.2	TB 23-9	GB 24.14	2560 (MFCM)	YD255	DC 3-A03	DC 3-A04
13	SR	3115	$\begin{aligned} & \text { 7.8V dc from } \\ & \text { PS } 08 \end{aligned}$	1	-3.2	0.2	7.0	-	c	-1.8	-2.5	-3.8	-4.2	TE 23-10	GB 24.14	2560 (MFCM)	YD255	DC 3-801	DC 3-802
14	SR	3115	$\begin{aligned} & \text { 9.0V dc from } \\ & \text { PS } 20 \end{aligned}$	1	-4.17	-	6.0	-	c	-3.0	-3.5	-4.5	-4.9	т5 23-13	GB 24.14	$\begin{aligned} & \text { 5203/3203 } \\ & 5213 \end{aligned}$	$\begin{aligned} & \text { YD259 } \\ & \text { YD261 } \end{aligned}$	$\begin{aligned} & \text { DC 1-A03 } \\ & \text { DC } 6.08 \end{aligned}$	DC 1-A04 DC 6-10
15	SR	3115	14 V dc from PS 07	1	+8.5	2.0	18.0	-	c	+5.5	+6.4	+9.0	+9.5	01A-83 G3-D07	GB 24-14	MIP, IOP E * IPU4 MTA, IOP A Memory 2 (MSE) ${ }^{\text { }}$ ICA, IOP B Main Storage MPX/IOP 9** Prtr FE, IOP 8 MPX/IOP 9** svp	YD203 YD203 YD223 YD209 YD211 YD219 YD213 YD215 YD217	01A-A2 R1-D11, R1-B11 01A-A2 S2-D07, 54--07 01A-B1 J2-J07, K2-J07 L2-J07, M2-J07 01B-A3 G6-C05, G6-D02 P6-B05, P6-C02 01A-B2 N3-D07, M3-D07 N5-D07, M5-D07 See ALD page TW 051 01B-A1 M2-D07 01A-C1 L2-D07. H3-D07 01A-C2 M2-D07 01A-C3 D3-D07, D2-D07	01 A-A2 Y3, Y6, Z1, Z3 $01 \mathrm{~A}-\mathrm{A} 2 \mathrm{Y} 3, \mathrm{Z1}, \mathrm{z3}$ 01A-A2 D6-B02, D6-C05 K6-B02, P6-C05 Y3, 21 01B-A3 G6-D05, G6-C0 P6-C05, P6-BO: $01 \mathrm{~A}-\mathrm{B2}$ Y3, Z1, Z3 See ALD page TW 051 01B-A1 Y3, Z1, 23 $01 \mathrm{~A}-\mathrm{C1}$ Y3, Y6, Z1, 23 01A-C2 Y3, Z1, 23 01A.C3 Y3, Y6, Z1, Z3
16	SR	3115	$\begin{array}{\|l\|} \hline 10.9 \mathrm{~V} \text { dc from } \\ \text { PS } 08 \end{array}$	1	+6.25	-	24.0	-	c	+4.6	+5.2	+6.7	+7.0	тв 23-12	GB 24.14	$\begin{aligned} & 5203.3203 \\ & 5213 \\ & 5425 \\ & 2560 \\ & 5425 \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { YD259 } \\ & \text { YD261 } \\ & \text { YD255 } \\ & \text { YD255 } \\ & \text { YD215 } \end{aligned}$	DC 1-A02 DC 6-09, 11 DC 2-A02 DC 3-A01 01A-C2 T2-B11, U2-B11	$\begin{aligned} & \text { DC 1-A04 } \\ & \text { DC 6-10, 12 } \\ & \text { DC 2-B01, BO4 } \\ & \text { DC 3-A02, AO4, B02 } \\ & \text { O1A-C2 Y3, Z1, Z3 } \end{aligned}$
17	SR	3115	DC from PS 11		+8.5V	2.0	18.0	-	c	+5.5	+6.4	+9.0	+9.5 ${ }^{\text {² }}$	018-A3 G02-J07	GB 24-14	Memory 2 extension MSE 384K	YD515	see ALD page TW 052	see ALD page TW 052

1. $\mathrm{C}=$ voltage is adjusted by the individual potentiometer in the SR The potentiometer is located on the regulator card of the SR.
In these columns Y and Z connectors are sho
The pins are connected as shown in the example on the right.
For wiring refer to respective ALD Page.
For physical locations of TBs and Gnd Bus, see component
charts in ALD.
$\star=3115$ only
2. $3115-2$ only

- If MPX and card I/O front end are installed, MPX and IOP 9 are located in board 01 B -A1. If MPX is installed without card I/O front
end, MPX and IOP 9 are located in board 01 A-C2.
- Overvoltage sense circuit mounted outside of 01.
next to power supply or part of power supply.

Example: -4V from PS X
to board A-B3.

Vertical

$\overbrace{\text { ABCDEFGHJKLMNOPQRSTUV }}^{$| Vertical |
| :--- |
| Columns |$}$

Card Side View
of board A-B3

PS 19-20: Locations and Voltage Distribution

PS 19
Type: Fer

Note: The auxiliary contacts of the CBs located in PS 19, are connected to TB 2.10

 and TB 2.11.The three CBs of PS 19 control the voltages from PS 19 to gate 01 C Ifor internal wiring of PS 19 see ALD-page YF809 (50 Hz) or page YF810 (60 Hz$)$).
If one of these CBs opens, the supply to the power control logic in Gate 01 C is
disconnected and emergency power off occurs.
For physical locations of TBs, see ALD YD029/YD129.

Type: Ferro
ALD: YD523, YF809/YF810

PS 20
Type: Ferro
Type: Ferro
ALD: YD525, YF806/YF807

These voltages are used in the sequence board O1C-A1 +24 V from PS 19 is also used in the sequence board.

$\begin{aligned} & \text { PS } \\ & \text { No. } \end{aligned}$	Type	Location	Input Voltage	Output		Current (A)		$\begin{aligned} & \text { Feeds } \\ & \text { PS No. } \end{aligned}$	Adjustment (See Note 1)	UV Trip Range		OV Trip Range		Sense Points		Load	Exit on ALD Page	Load Connection Points (See Note 2)	
				No.	Voltage	Min	Max			From	то	From	To	Voltage	Gnd			Voltage	Gnd or Opposite Polarity
19	Ferro	3115	AC 1 Ph.	1	7.25 ac	-	12.0	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { 52-3.32-3 } \\ & 5525 \\ & \text { Op Console e } \\ & 2560 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { YD213 } \\ & \text { YD215 } \\ & \text { YD711 } \\ & \text { YD253 } \\ & \hline \end{aligned}$	01 A.C1 V5 B03 01A-C2 T3 B11, T4 B1 t KC 1-BB AC 3.B3	01A.C1 V5 B04 01 A.C2 T3 B08, T4 B08 KC 1.DD AC 3-B2
				1	-24	-	0.7	-	-		-	-	-	..	-	Pwr-Cnil Log	YD591	01C-A1 F3-E01, F6-E01	01C-A1 F2-E14, F5-E14
				3	+24	-	3.0	-	-	-	-	-	-	-	-	Pwr-Cntilog	YD591	O1C-A1 F3-A01, F6-A01	01C-A1 F2-E14, F5-E14
				4	-4.0	-	0.3	-	-	-	-	-	-	--	-	Pwr.Cnti Log	YD591	O1C.A1 A1-B13	O1C-A1 F2-E14, F5-E14
				5	+6.0	-	2.0	-	-	-	-	-	-	-	-	Pwr-Cnt1 Log	YD591	01C-A1 F2-A14, F5-A14	01C.A1 F2-E14, F5-E14
20	Ferro	3115	AC 1 Ph.	1	+12	-	6.5	-	-	+8.4	+10.0	-	-	TB 23-18	GB 24.14	ICA UCM, LAB* ucm, lab \triangle svp	$\begin{aligned} & \text { YD209 } \\ & \text { YD207 } \\ & \text { YD221 } \\ & \text { YD217 } \end{aligned}$	01A-B2 K3-, J3., H3-, G3-B11 K5-, J5-, H5-, G5-B11 01A-B1 P1-E11, Q1-D11 Q1-C13, R1-B13 O1B-A2 P1-E11, Q1-D11 Q1-C13, R1-B13 01A-C3 Q2-B04	01A-B2 Y3, Z1, Z3 01A-B1 R1-A11, R1-E11, R1-D13 Q1-A13, Q1-B11, Q1-E13 01B-A2 R1-A11, R1-E11, R1-D13 Q1-A13, Q1-B11, Q1-E13 01 A.C3 Y3, Y6, Z1, 23
				2	-12	-	3.5	-	-	-8.0	-10.4	-		TB 23-30	GB 24.14	ICA UCM, LAB * UCM, LABA svp CRT PS 12 PS 13	$\begin{aligned} & \text { YD209 } \\ & \text { YD207 } \\ & \\ & \text { YD221 } \\ & \text { YD217 } \\ & \text { YD251 } \\ & \text { YD521 } \\ & \text { YD521 } \end{aligned}$	01A-82 к3., J3., Н3., G3-809 01A-B1 R1-C11, S1-A11, S1-A13 01B-A2 R1-C11, S1-A11, S1-A13 $01 \mathrm{~A}-\mathrm{C3}$ 02-D10 TB 23 -19 PS 12. TB 1-3 PS 13-TB 1-3	01A-B2 Y3, Z1, Z3 01A-B1 R1-A11, R1-E11, R1-D13 Q1-B11, O1-A13, O1-E13 01B-A2 R1-A11, R1-E11, R1-D13 Q1-B11, Q1-A13, Q1-E13 $01 \mathrm{~A} . \mathrm{C3}$ Y3, Y6, Z1, 23 GB 24.15 PS 12.TB 1.7 PS 13.TB 1.7
				3	+24	-	8.0	-	-	+15.0	+20.6	-	-	$\begin{aligned} & \text { TB 23-04 } \\ & \text { TB 23-03 } \\ & \text { (See Note 4) } \\ & \text { TB 23-02 } \\ & \text { (See Note 5) } \end{aligned}$	GB 24.14	CDF 5203, 3203 Contactor K3 Power Cnt\| 1/F via K11 Bleeder R32	$\begin{aligned} & \text { YD251 } \\ & \text { YD257 } \\ & \text { YD525 } \\ & \\ & \text { YD543 } \\ & \text { YD553 } \end{aligned}$	TB 23.4 DC 1.A01 CB 14-2 TB 23.2 TB 19.5	GB 24-49 DC 11-A04, BO2 TB 16-12 TB 16-12 TB 19-6
				4	-9	-	6.0	14	-			-	-	-	-	PS 14	Y0525	PS 14-T8 1-1	PS 14-TB 1.4

PS 52 and Printer PS: Locations and Voltage Distributions

$\begin{aligned} & \text { PS } \\ & \text { No. } \end{aligned}$	Type	Location	Input Voltage	Output		Current (A)		Feeds PS No.	Adjustment (See Note 1)	UV Trip Range		OV Trip Range		Sense Points		Load	Exit on ALD Page	Load Connection Points (See Note 2)	
				No.	Voltage	Min	Max			From	To	From	To	Voltage	Gnd			Voltage	Gnd or Opposite Polarity
$\begin{array}{\|c\|} \hline 52 \\ \text { (Note 3) } \\ \hline \end{array}$	Ferro	5213	AC 1 Ph.	1	+24	-	6.0	-	-	.	-	-	-	-	-	5213	YD261	PS 52-TB 1-8	PS 52.TB 1.9
Print PS	Ferro	$\begin{aligned} & 52031 \\ & 3203 \end{aligned}$	AC 3Ph.	1	+60	-	36.0	-	-	+39.0	+52.0	-	-	TB 23-1	GB 24.14	$\begin{aligned} & 5203 / 3203 \\ & 5425 \end{aligned}$	$\begin{aligned} & \text { YD259 } \\ & \text { YD255 } \end{aligned}$	$\begin{aligned} & \text { DC 1-B01 } \\ & \text { DC 2-A04 } \end{aligned}$	$\begin{aligned} & \text { DC 1-B02 } \\ & \text { DC 2-B01, B04 } \end{aligned}$

Notes.
2. In these output voltages of ferro power supplies are not adiustable connected as shown in the examole on page $6-321$. For wiring
refer to the respective ALD Page.
4. +242 V via $\mathrm{K} 10 \cdot \mathrm{~T} 1$.
5. +24 V via K11-T2.

For physical locations of TBs, see ALD YD029/YD129

Contactors, Circuit Breakers, Connectors, and Fuses

Contactor No.	Coil on ALD Page	Coil on MLM Page	Used for AC/DC	Control Function	Contacts on ALD Page
K1	YD715	$2.100 E 7$	ac	AC power to all $1 / 0$ units	YD311/YD411
к3	Yo715	2-100C6	ac	Short of inrush-current limiting resistors for TSRs	YD311/YD411
K4	YD715	2-10008	ac	$A C$ power to blowers, usemeter transformer TSRs, PS 20 and CDF	YD311/YD411
K5	YD721	2-10005	ac/dc	EPO control	YD315/YD415
к6	YO715	2-10008	ac	AC power to blowers, usemeter transformer and CDF in case of 200 V ac input volt	YD311/YD411
K10	YD715	2.100E8	dc	+24 V dc control of 5425 and +24 V from PS 20 to 5203/3203	YD525
K11	YD715	2.100E6	dc	+24 V de from PS 20 to power-control.	YD525
K12	YD715	$2 \cdot 10006$	-	7.25 V ac from PS 19 to lods	YD523

Physieal locations: See ALD YD013/YD113 and YD017/YD117

Connector No.	Shown on ALD Page	Shown on MLM Page	Connector used for
AC2	YD257	2-100A4	3203/5203
AC3	YD253	2.10084	2560/5425
AC5	YD531	2-10044	5213
AC 10	YD251	2.10004	CDF
AC11	YD781	2-10004	Usemeter Power Pack
AC13 (at 5213 Box)	VD531	2.100A5	5213
PC1 PC8	YD273	2.250	Control Units for MPX. Channel
PCD	YD271	2-250	cu for Disk
РСт	YD271	2-250	CU for Tape

DC- and KC-Connectors

Connector No.	Shown on ALD Page	Shown on MLM Page	Connector used for
DC1	YD259	2.100 A 4	5203/3203
DC2	YD255	2.10044	5425
DC3	YD255	2.10084	2560
DC4	-	-	Spare
DC5	YD259	ns	5203 Thermo
			Loop
0C6	YD531	2.100A4	5213
DC8	YD781	NS	Usemeter and
DC13	YD531	2-100A5	$\begin{array}{\|l\|l\|} \hline \text { CE Key } \\ 5213 \end{array}$
KC1	YD711	NS	Keyboard

Physical locations: See ALD Yo037/YD137
DC connector chart: See ALD YD055/YD155 5213

Circuit Breakers/Circuit Protectors/Fuses

CB or CP	$\begin{array}{\|l\|} \hline \text { Shown on } \\ \text { ALD Page } \\ \hline \end{array}$	Shown on MLM Page	Used for AC/DC	Protection for Circuit
CB1	YD313/411	2.10004	ac	Blowers, Usemeter, CDF
CP1	YD315/415	2-100E4	ac	EPO
CB2	YD311/411	$2.100{ }^{\text {2 }}$	ac	PS 19, T1, Convenience Outlet
CP2	YD319/419	2-100E4	a	PS 19
св3	YD319/411	2-100C4	ac	PS 20
CB4	YD311/411	2-100A4	ac	2560, 3203, 5203, 5213, 5425
CB6	YD311/411	2-10084	ac	AC to Fuse Bus for TSRs
CB8	YD311/411	2-100A2	ac	Main-line CB
CB11	YD523	2.100E5	ac	7.25 V ac to Console, Printer, Card I/O
C812	YD525	2.10005	dc	-12V to ICA, UCM, SVP. CRT, PS 12, PS 13
CB13	YD525	2.100C5	dc	+24V to Printer, CDF, Power Control I/F, K3
CP13	YD531	NS	dc	+24V of 5213
CB14	YD525	2-100c6	dc	+24V to K3, Power Control I/F
C815	-		-	Space
CB16	Y Yo511	NS	dc	+20V from PS 8 to Board 01A.C2
CB17	Yo511	NS	dc	+3V Bulk voltage from PS 8 to PS 12
CB18	Yo511	NS	dc	+7.8V Bulk voltage from PS 8 to PS 13
CB19	YD511	NS	dc	+6V Bulk voltage from PS 8 to PS 16
CB20	YD525	2-100C5	dc	-9V Bulk voltage to PS 14
CB21	Yro525	2-10005	dc	+12V to ICA, UCM, SVP
F1, F2	YD315	2.100/120	ac	AC voltage to Conv. Outlet
F5, F6, F7	YD319	2.100/120	ac	Line voltage to PS 1
F8, F9, F10	YD319	2.100/120	ac	Line voltage to PS 2
F11, F12, F13	YD319	2.100/120	ac	Line voltage to PS 3
F14, F15, F16	YD319	2.100/120	ac	Line voltage to PS 4
F20, F21, F22	YD319	2.100/120	ac	Line voltage to PS 5
F23, F24, F25	Y0319	2.100/120	ac	Line voltage to PS 6
F26, F27. F28	YD319	2-100/120	${ }^{\text {a }}$	Line voltage to PS 7
F40, F41, F42	YD319	2.100/120	ac	Line voltage to PS 8
F43, F44, F45	YD319	2.100	ac	Line voltage to PS 11
F113, F213	YD531	Ns	ac	220 V ac to 5213

Physical locations: See ALD YD013/YD113 for AC-CE
YDO17/YD117 for DC.CB

Power Sequence Control Board 01C-A1

Indicators

c3/4		03/4
VF Step A2	\square	$\square \mathrm{VFPS} 1$
vf Step A3	\square	$\square \mathrm{VFPS} 2$
Vf Step A4	\square	$\square \mathrm{VFPS} 3$
VF STEP C1	\square	$\square \mathrm{VFPS} 4$
vf STEP C2	\square	$\square \mathrm{VFPS} 5$
Vf Step c3	\square	$\square \mathrm{VFPS} 6$
vf STEP C4	\square	$\square \mathrm{VFPS} 7.15$
spare	VU/ ${ }^{\text {a }}$	[$\square_{\text {S }}^{1}$ spare
CB-fail	\square	$\square \mathrm{VFPS} 8.12 .13 .16$
spare	TUS	[5 /a spare
spare	2TU2	$\underline{T} / 2 / 4 \mathrm{sp}$

C5/6	D5/D6
TOTS	\square VFPS 11.17
VDS	TOLS
tsr overvolt \square	
	T/T,
PS $\quad \square$	20173
PS-Blower ${ }_{\text {E }}^{\text {H }}{ }^{\text {H }}$	\% 0 [1],
Gate A ${ }_{\text {M }}^{\text {M }}$ 3 ${ }^{\text {a }}$	VDIU
Gate B ${ }_{L}^{\text {A }}{ }^{4}$	TJTS
Gate C L ${ }^{5}$	${ }^{\circ} \mathrm{O} / \mathrm{R}$
Printer ${ }^{\circ}{ }^{\circ} \sqrt[6]{\square}$	VTUS
2560	VTID.

[^1]
Power Control Voltages from PS19 to Board 01C-A1

Power Control Voitages from PS 19 to Board 01C-A1 (see ALD YD591)
CAUTION: Voltages are also present when system power off.

Voltage	Input pins to board 01C-A1	Pins connected to voltage net	Output pins of board 01C-A1	Output voltage used for:
-24V	F6-E01, F3-E01	Every 806 pin	A2-806	CE meter
+6V	F2-A14, F5-A14	Every B 11 pin	$\begin{aligned} & \mathrm{F} 3 . \mathrm{B} 11 \\ & \mathrm{~F} 1-\mathrm{B11} 1 \\ & \mathrm{~A} 2 . \mathrm{B11} \end{aligned}$	Console panel CE indicator lights CE meter
-4V	A1-B13	B2, B3, B6, B7, C5-D13	A2-D06	CE meter
+24V	F3-A01, F6-A01	Every 003 pin	A2-D03 F22.D02 F2.D03 F2-D04 F2.D05 F3-D02	CE meter Rem. start PS1 and PS6 Rem. start PS6 and PS7 Rem. start PS2 and PS8 Rem. start PS3 and PS4 Console panel
DC-Gnd	F2-E14, F5-E14	Every 008 pin	$\begin{aligned} & \text { A2-D08, A4-D08 } \\ & \text { F1.D08 } \\ & \text { F2.D06 } \\ & \text { F2.D07 } \\ & \text { F2.D08 } \\ & \text { F3.D07 } \\ & \hline \end{aligned}$	CE meter CE indicator lights TH loop 1 and 2 PS 15 bias TH loop 5 Console panel

Chapter 7. Reference Information

Abbreviations

A		H		P		U	
ac	alternating current	Hz	hertz	PCB	power control box	UCM	under-cover modem
ALD	automated logic diagram			PCD	power control connector for disk	uv	undervoltage
				PCT	power control connector for tape	UVF	undervoltage failure
C		T		ph	phase		
CB	circuit-breaker	ICA	integrated communications adapter	PLD	power line disturbance	V	
${ }_{\text {cd }}$	card	ind	indicator	PLT	power line transients	v	
CDF	console disk file	interf	interface	POR	power on reset	v	volt
chnl	channel	10P	input/output processor	Pr	printer	VF	voltage failure
CE	customer engineer	I/O	input/output	pwr	power supply	volt	voltage
cntr\|	control	IPI	input power interrupt	pwr	power		
compl	complete	IPU	instruction processing unit				
conv outl	convenience outlet						
CP	circuit protector	K		R			
cpltd	completed			R	resistor		
CPU	central processing unit	K	contactor	RC	regulator card		
CRT	cathode ray tube (screen)	KB	keyboard	rect asm	rectifier assembly		
Cu	control unit	KC	keyboard connector	RPQ	request for price quotation		
				RR	reed relay		
				RSS	remote start stop		
D		L		RY	relay		
${ }^{\text {dc }}$	direct current	LAB	line adapter base				
DDA	direct disk attachment	LED	light emitting diode				
		loc	location	5			
E				SCP	system control panel		
EC	edge connector			SC	sequence connector		
EC	engineering change	M		SCRGT	silicon-controlled rectifier gate		
EPO	emergency power off	MFCM	multifunction card machine (2560)	seq	sequence		
		mFCU	multifunction card unit (5425)	SLD	solid logic dense		
		MIP	machine instruction processor	SPEC	special circuits		
F		MPX	multiplexer channel	SR	series regulator		
F	ferroresonant transformer power supply	MS	main storage	SS	singleshot		
FDS	flexible distribution system	MSC	main storage controller	SVP	service processor		
FE	front end	MSE	main storage (enhanced)	sw	switch		
feat	feature	MTA	magnetic tape adapter				
ferro	ferroresonant transformer						
FF	flip-flop			T			
FL	flip latch	N		T	transformer		
FRU	field replaceable unit	NS	not shown	TB	terminal block		
				TD	time delay		
G				TDC	time delay counter		
				TF	thermal failure		
G.F.C.S.	gated forward count signal	0		th	thermal, thermo		
gnd	ground	osc	oscillator	therm	thermal		
G.R.C.S.	gated reverse count signal	ov	overvoltage	TSR	transistor switching regulator		

Appendix A

Service Procedures

The procedures on this page must be followed, to prevent component damage, 1. When machine power is off, control voltages from PS19 are present at gate 01C and at the system control panel. To remove the control voltages, switch off the main circuit breaker (CB8)
2. Before removing a TSR, always switch off the main circuit breaker (CB8).

Reasons
b. To remove +24 V from TSR terminal E18. If the E18 wire touches frame ground when +24 V is present, the +24 V net of power control board 01C-A1 will
Check that the TSR voltage selection card ($200 / 240 \mathrm{~V}$ or $380 / 408 \mathrm{~V}$) is plugged correctly. (This card may not be installed on $60-\mathrm{Hz}$ TSRs.) Reason: If the voltage selection card is plugged incorrectly, the TSR may be damaged.
4. Do not switch off the machine by switching off the main circuit breaker (CB8) or the customer's wall CB.
Reason: TSRs without EC 740200 and without EC 740205 may be damaged.
5. Never remove the -4 V supply to the 5425 when +60 V is present.

Reason: The 5425's print hammer fuses will blow or the driver circuits may be damaged.
6. Never remove the -4 V from PS14 or +6 V from PS16 to 5213 when PS52 (printer power supply) is on.
Reason: The 5213 's magnet driver resistors will overheat.
. Never remove the +8 V or +34 V from PS1 to the CRT individually; always disconnect both at the same time.
Reason: Disconnecting the +8 V or +34 V individually may damage the analog card in the CRT unit.
8. Do not use a rubber band to hold the spring-loaded voltmeter switch lever in gate 01C at the right or left position.
Reason: The meter may be damaged or made less accurate
9. Procedure for distinguishing between a faulty TSR and a shorted load circuit a. COnnect your CE voltmeter to the TSR's output terminals.
b. Bring power up and watch the voltmeter. If there is a small needle
 dinal or is defectiv. Se also the flowat on pase 105. If
nnect the load circuit from the TSR's output terminals. When the defective load circuit is disconnected, the TSR's output voltage will be about twice the nomina voltage. See also the flowchart on page 6-105
10. If you suspect noise problems, check all ground connections as described under "Check Ground Connections" in Chapter 9 of IBM 3115 Processing Unit, Installation Manual, Parts 1896850 through 1896875
The following tigure shows a typical output waveform for TSR4, measured at the TSR's output terminals. Switching noise can only be measured directly at the TSR's output terminals, and is not included in the maximum ripple imit of 3% of nominal voltage. Switching noise should not be present at the logic boards.

Input Power Interrupt Detector (Optional Feature)

Note: The principle of the input power interrupt (IPI) detector is shown only on this page. There are no references to the IPI detector in other parts of the MLM.
To prevent malfunction of the system if the line input voltage drops, machines may be equipped with an input voltage drops, machines may be equipped with an input left of Gate 01C over PS 14.

The IPI detector checks the ac input voltage to the TSRs, If the voltage drops below 174 volts for more than 18 ms the signal 'line fault from |PI' is generated.
The signal 'line fault from IPI' is not generated if the sensed voltage falls below 190 volts for less than 13 ms (see the waveform on this page).
The voltage of the three phases is sensed by the sense circuits of the IPI detector.
The signal 'line fault from IPI' forces the 'initial reset signal which resets all latches in the power sequence control logic within 2 ms .
If the latches in the power sequence control logic are reset, the 'remote start' signal is removed from the TSRs and all contactors which are controlled by the power sequence logic are dropped.
The signal 'line fault from IPI' is not latched and is automatically reset within 50 ms (minimum) to 100 ms (maximum) after the error condition has disappeared. The sense input of the IPI detector is controlled by an external inhibit signal. The 'inhibit IPI step A2' signal becomes inactive when power sequence step A2 becomes active.
his inhibit signal is necessary to avoid the signal 'line fault from IPI' until the line voltage is applied to the TSRs in step A2
An LED indicator on the IPI detector is set on when a line fault' signal is generated
The CE can reset the indicator by an INDICATOR RESET switch which is located on the lower part of the IPI detector.
The LED indicator on the IPI detector is valid only if:

1. The power line disturbance did not exceed 150 ms .
2. The inhibit signal is correct.
3. The customer did not operate the main line switch after the ac line failure
The IPI detector is not field adjustable. The complete IPI detector box must be exchanged if an IPI detector fault is suspected.

PI Detector Quick Test
A quick test for correct operation of the IPI detector is described below:
With system power on, remove any one of fuses F5, F6, or F7. As a result, the system will immediately power down and the IPI detector will be on.
Operate the INDICATOR RESET switch to reset the PI indicator and press the POWER ON key.
The power on sequence will start up to step A2. During tep A2 the 'inhibit IPI step A2' is removed and the sense circuits will detect the missing phase. The system will be powered down, without the power off sequence, by the IPI detector signal 'line fault from IPI'. The IPI indicator will be set to on. Reset the indicator and reinsert the fuse If a failure is suspected in the IPI detector, the IPI connector may be removed. The system will then operate without the IPI facility
The IPI detector is supplied with +24 V from PS19,

Index

A
ac distribution to TSRs 2.100 input to power system $\quad 1.110$ ower diswion -1-100,2-100 connectors 2.100
arrangement, power system $\quad 1.100$

C
$\begin{array}{cc}\text { CB } & 2 \cdot 100,6-400 \\ \text { CB Ioop } & 2.150\end{array}$
CB loop 2.150
power sequence control $\quad 2.270$
CB 8 (main CB) $\quad 2-100$
CE
ind $+6 \mathrm{~V} \quad 2-280$
$\begin{array}{lll} & \text { ind drive }+6 \mathrm{~V} & 2.280\end{array}$
indicator panel 2-290,5-100 INDICATOR RESET switch $2-280$ LAMP TEST switch 2.280 check circuits 2-150 check circuits $\begin{aligned} & \text { 2-150 } \\ & \text { CHECK RESET key } \\ & \text { 2-100,2-200 }\end{aligned}$ circuit breakers $6-400$ circuit breaker loop 2-150 breaker loop 2-150 break
circuits check 2-150 indication 2.150
timing 2-150
voltage sense $\quad 2-150$
components of TSR 6-200
connectors $1-100,2-100,6-400$
ас I/O 1 1-100,2-100,6-400
dc $1 / 0 \quad 1-100,2 \cdot 100,6-400$
contactors 2-100,6-400
control, on/off 2-150
CP (circuit protector) 2-100,6-400

D

distribution 1-100 v/gate 01A, 01B, 01C 6.300
v/gate I/O units 6.300
$\begin{array}{ll} \\ \text { voltage distribution (summary) } & 6-300\end{array}$
detector, IPI A-020
distribution
$\begin{array}{ll}\text { ac power } & 2 \cdot 100\end{array}$
output voltage 2-100
disturbance, power line $1-110$
E

K01 2-100,2-240
K03 2.100
K04 2-100,2-200
$\begin{array}{ll}\text { K05 } & 2-100,2-250\end{array}$
K06 2-100,2-200
K10 2-100,2-240
K11 2-100,2-230
K12 2-100,2-210

L

lamp test
$\begin{array}{ll}\text { CE } & 2-280 \\ \text { KB } & 2-280\end{array}$
light in POWER ON key 2-100,2-290
locations and voltage distribution
PS 1-8 $6-310,6-311,6-312$
$\begin{array}{ll}\text { PS 1-8 } & 6-310,6-311,6-3 \\ \text { PS 12-16 } & 6-320,6-321\end{array}$
PS 19-20, 52, Printer PS 6-330
locations, physical 1-110
$\begin{array}{ll}\text { logic of power sequence control } & 1-100\end{array}$ operation of 2-150
in CB (CB 8) 2-100
N
normal power off 3 -100,5-120

0

$$
\begin{aligned}
& \text { on/off } \\
& \begin{array}{lll}
\text { control } & 2.150 \\
\text { power system } & 3.100 \\
\text { seauence } & 2.1013 .100
\end{array}
\end{aligned}
$$

sequence 2-101,3-100
scillator 2 -200
output voltage distribution 2-100,6-300 overview, power system 2-100
pane
CE indicator 2-290,5-100 system control 2-290,5-100 PCD connector $2-250,6-400$ PCT connector $\quad 2-250,6-400$ PC1 - PC8 connectors 2-250,6-400 physical locations 1.110 power distribution 1-100,2-100 power interface 2.010
power line disturbance $1-110$ power line transients $1-110$ POWER OFF key 2-100,2-200 $\begin{array}{ll}\text { Power On FL } & 2-200\end{array}$

POWER ON key 2-100,2-200
power on power sequence control
POWER ON RESET $\quad 3-100$
power on/off sequence $\quad 3.100$
power sequence board 01C-A1 (layout) 6-500
power sequence control 2-100,2-101
failures 2.280
ind circuits $\quad 2-290$
logic operation 2.150
principle of 3.11
PWR ON 2.200
$\begin{array}{ll}\text { step A1 } & 2.200\end{array}$
$\begin{array}{lll}\text { step } A 2 \text { and } A 3 & 2.210\end{array}$
$\begin{array}{lll}\text { step A4 } & 2.220\end{array}$
step C 1 and $\mathrm{C} 2 \quad 2.230$
step C3, C4 $\quad 2.240$
$\begin{array}{ll}\text { tape, disk, CU } & 2.250 \\ \text { test switches } & 280\end{array}$
$\begin{array}{lll}\text { test switches } & 2.280\end{array}$
thermal loops 2-270
$\begin{array}{ll}\text { timing clock } & 2.200 \\ \text { CB loop } & 2.270\end{array}$
logic 1.100
power sequence logic $3115 \quad 3-110$
$\begin{array}{ll}\text { power sequence } \\ \text { power supplies } & 2.100\end{array}$
$\begin{array}{cc}\text { types of } & 4.110\end{array}$
power system
ac input voltage 1-100
and control 1 1-100
arrangement 1.100
failure conditions 5-110
function principle $\quad 1.100$
on/off 3 -100
overview 2-100
signals to SVP $\quad 5-120$
trouble shooting 6-100,6-101
$3115 \quad 1-100$
principle of
$\begin{array}{ll}\text { ferroresonant transformer } & \text { 4-110 }\end{array}$
IPI detector A-020
power sequence control $\quad 3-110$
series regulator 4-110
transistor switching regulator $\quad 4.110$
PS locations and voltage distribution
PS 1-11 6-310,6-311,6-312
PS 12-17 6-320,6-321
PS 19-20 6-330,6-331
PS 52 6-331
rectifier assembly for EPO control circuit 2-100 replacement procedures of TSR 6-210
reset 2-200
rheostat 6-211

S	U
sequence steps A1 through C5 $\quad 2.150$	units, field replaceable 6-200
signal source list 2-300	
signals to SVP 2-150,3-100,5-120	\%
source list, signal 2-300	y
series regulator principle 4-110	VF step (see FL VF step)
step	voltage
Al on FL $2-200$	adjustment of TSR 6-211
A2 and A3 2.210	distribution 2.010
A2 on FL $2-210$	level of SLD technology 3-110
A3 on 2.210	sense circuit 2-150
A4 on 2.220	
C1 and C2 2.230	
Cl on 2-230	
C2 on 2-230	3115
C3 on 2-240	power system 1.100
C4 on 2-240	power sequence logic 3-110
switch	
CE INDICATOR RESET 2-280	
CE LAMP TEST $\quad 2.280$	
KB LAMP TEST $\quad 2-280$	
system control panel 2-290,5-100	
system power	
$3115 \quad 1-100$	
3203/5203 1-100	
T	
tape, disk, CU, power sequence control $\quad 2.250$	
test switches PWR SEO CONTROL $\quad 2-280$	
thermal failure FL $\quad 2.280$	
thermal loops 2-150,2-270	
time	
delay counter 2-200	
gate, 0.4s $\quad 2.200$	
gate, 1.0s $\quad 2.200$	
gate, 3.0s $\quad 2.200$	
timing	
circuits 2-150	
clock 2-200	
transients, power line 1-110	
trouble shooting	
TSR 6-110	
power-system 6-100,6-101	
transistor switching regulator	
components 6-200	
principle 4-110	
replacement procedures 6-210	
trouble shooting 6-110	
voltage adjustment 6-211	
types of PWR supplies $\mathbf{4 . 1 1 0}$	
T1 2.100	
T3 $\quad 2.100$	

3115 Processing Unit
Power Supplies (MLM)
READER'SCOMM
Order No. SY33-1075-3
Your views about this publication may help improve its usefulness; this form
Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:
What is your occupation?1
Number of latest Technical Newsletter (if any) concerning this publication: -1
Please indicate in the space below if you wish a reply 11Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM officeor representative will be happy to forward your comments.)

3115 Processing Unit

.

READER'S
COMMENT
FORM

Your views about this publication may help improve its usefulness; this form will be sent to the author's department for appropriate action. Using this form to request system assistance or additional publications will delay response dech requests, please contact your IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:
\qquad
Number of latest Technical Newsletter (if any) concerning this publication: _

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

SY33-1075-3
SY33-1075-3

Your comments, please...

This manual is part of a library that serves as a reference source for customer engineers. Your conments on the other side of this form will be carefully reviewed by the person Your comments on the other side of this form wili be carefully rene and suggestions become the property of IBM.
..
 International Business Machines Corporation Department 813B
1133 Westchester Avenue
White Plains, New York 10604

Fold

TBM
international Businoss Machines Corporation
Date Processing Divislon
1133 Wostchester Avenue, Whito Plains, Now York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, Now York, New York 10017 (International)

[^0]: Output No. 2: Bulk voltage for PS 16
 $\left.\begin{array}{l}\text { Output No. 3: Bulk voltage for PS } 12 \\ \text { Output No. 4: Bulk voltage for PS } 13\end{array}\right\}$

[^1]: WIS - Unused indicator position

