
-- -------------;:- = = = =--- - --- - --- - - -- - - ------ ----------- --- Processing Unit
M icroi nstructions

- ---- --- ---- ---- ------ ---======= ~ == Maintenance Library

SY 33-1058-1

3125 MLM. Microinstructions

Third Edition (October 1973)

This manual obsoletes SY33-1 058-0. Changes are continually made to the information

in this manual; any such changes will be reported in subsequent revisions or Technical

Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or

to the IBM branch office serving your locality.

Forms for reader's comments are provided at tHe back of the manual. If the forms have

been removed, comments may be addressed to/3M Laboratories, Product Publications,
Dept 3179, 703 BoeblingenlWuertt., P.O. BO)f 210, Germany. Comments become the

property of IBM.

© Copyright I Aternational Business Machi,! ;S Corporation 1973

II

Preface

This manual provides information on the IBM 3125 Processing Unit's instruction
processing unit (lPU), input/output processor (lOP), and service processor (SVP)
microprogram codes. Its main purpose is to explain the functions of:
• Each microinstruction group,
• Each microinstruction and
• Each microinstruction bit.
It also enables the reader to determine the mnemonic by analyzing the bit pattern
of a given instruction word.

The reader should have a basic knowledge of the IPU, lOP and SVP data flow of
the IBM System/370 Model 125.

Prerequisite Reading

3125 Processing Unit, General System Information, Maintenance Library Manual,
Order No. SY33-1059.

Associated Publications

System Library Manuals

IBM System/370 Principles of Operation, Order No. GA22-6821.
IBM System/370 Model 125 Functional Characteristics, Order No. GA33-1506.

3125 MLM. Microinstructions

Maintenance Library Manuals

IBM 3125 Processing Unit, Power Supplies, Order No. SY33-1060.
IBM 3125 Processing Unit, Main Storage Controller, Order No. SY33-1061.
IBM 3125 Processing Unit, Instruction Processing Unit, Order No. SY33-1062.
IBM 3125 Processing Unit, Input/Output Processor, Order No. SY33-1063.
IBM 3125 Processing Unit, Magnetic Tape Adapter, Order No. SY33-1064.
IBM 3125 Processing Unit, Service Processor Subsystem, Order No. SY33·1065.
IBM 3125 Processing Unit, Main Storage, Order No. SY33-1066.
IBM 3125 Processing Unit, Multiplexer Channel, Order No. SY33-1067.
IBM 3125 Processing Unit, 2560 Attachment, Front End, Order No. SY33-1068.
IBM 3125 Processing Unit, 5425 Attachment, Front End, Order No. SY33-1069.
IBM 3125 Processing Unit, 3525 Attachment, Front End, Order No. SY33-1070.
IBM 3125 Processing Unit, 3504 Attachment, Front End, Order No. SY33-1071.
IBM 3125 Processing Unit, 1403 Attachment, Front End, Order No. SY33·1072.
IBM 3125 Processing Unit, Direct Disk Attachment, Order No. SY33-1073.
IBM 3125 Processing Unit, Integrated Console Printer Attachment, Order

No. SY33-1074.
IBM 3125 Processing Unit, Integrated Communications Adapter, Part

B/M 1876075.
IBM 3125 Processing Unit, Installation Instructions, Part 4014001.
IBM 3125 Central Test Manual. Contains pages appropriate to the individual

3125 Processing Unit.
IBM 3125 Processing Unit, Parts Catalog, Order No. S135-1000.

Preface III

3125 M LM. Microinstructions

Contents

Section 1: IPU Microprogram Codes • • • • • • • •

IPU MICROINSTRUCTION GROUP DETERMINATION
IPU MICROINSTRUCTIONS BY GROUP

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10 ••••••••••••••
Group 11 • • • •
Group 12 • • • • • •
Group 13 ••••••••

LISTING OF IPU MNEMONICS
EXPLANATION OF IPU MICROINSTRUCTION GROUPS
Group 1: Halfword from Local Store to TDR or CDR

Primary Function • • • • • • • •
Secondary Functions • • • • • • •
Common Layout of Group 1 Instructions
Bit Function Description. • • • • •
Valid Parameters for Group 1 Instructions • • • • •

Group 2: Immediate Data to TDR or CDR . • • •
Primary Function • • • • • • • .
Secondary Functions • . • . • • .
Common Layout of Group 2 Instructions
Bit Function Description. • • • . • • • • •
Valid Parameters for Group 2 Instructions

Group 3: Arithmetic/Logic Operations to Local Storage. •
Primary Function • • • • • • • .
Secondary Functions . . • • • . •
Common Layout of Group 3 Instructions
Bit Function Description. • • • • . • • • • • • • •
Valid Parameters of Group 3 Instructions

Group 4: Arithmetic/Logic Operations to Main Storage •
Primary Function • • • • • • • • •
Secondary Functions • • • • • • •
Common Layout of Group 4 Instructions
Bit Function Description. • • • • • • • • • • • • •
Valid Parameters of Group 4 Instructions • • • •

XMSC = Exclusive OR to Main Storage, Read from Main Storage into
CD R. • • • • • • • • • ~ • • • . • • • • • •

XMSCR = Exclusive OR to Main Storage, Read from Main Storage
into CDR, then Return
Layout of XMSC/XMSCR • • • • • • • • • • • • •

1

2
2
2
2
3
3
3
3
4
4
4
4
4
4
4
5
7
7
7
7
7
7
8
8
8
8
9
9
9
9
9

10
10
10
11
12
12
12
12
13
14

15

15
15

Group 5: Read from Main Storage into TDR or CDR 16

Primary Function • • • • • • •• ••••• 16
Secondary Function • • • • • • • • • • • • • • • • • 16
Common Layout of Group 5 Instructions 16
Bit Function Description. • • • • • • • • • • • • • • • 16

Group 6: Read from MSC Local Storage or Key Store 17
Primary Function • • • • • • • •
Secondary Functions • • • • • • • • •
Common Layout of Group 6 Instructions • • • • • • • •
Bit Function Description. • • . • • • • • •
Immediate Control Operation Details. •

Group 7: Arithmetic/Logic Operations to MSC Local Storage or
Key Storage. • • • • • • • •

Primary Fu nction • • • • • • • • • • • • • • •
Secondary Functions • • • • • • • • • • • • •
Common Layout of Group 7 Instructions •
Bit Function Description.

17
17
17
17
19

• 20
· . 20

· 20
· 20

· . 20
23 Group 8: Test Instructions

Primary Function •.• • • • • • • 23
Secondary Functions • • • • • • • • • • • • • •
Layout of Test Instruction •
Bit Function Description. • •

Table of Test Condition Specifications •

• 23
• • • 23

• 23
.23,24

Group 9: Branch on Test Instructions (Branch Type 1) . • • • • • • 25
Primary Function • • • • • • • • • • • • 25
Secondary Functions • • • • • • • • • • • 25
Common Layout of Branch on Test Instructions • • • • • • • • 25
Bit Function Description. • • • •

Group 10: Conditional Branch Instructions •
Primary Functions. • • • • • • • •
Secondary Functions • • • • • •
Common Layout of Group 10 Instructions. • • • •

25

· . 26
· . 26
• • 26

Bit Function Description.. •••••••••
· . 26

· 26
• 27 Group 11: Shift Instructions. • • • • • •

Primary Function • • • • • • • • 27
Secondary Functions • • • • • • • • • • • • • • 27
Common Layout of Shift Instructions • • • • • • • • • • • 27
Bit Function Description. • • • •• •••••••• 27

28 Group 12: Sense and Control Instructions • • • • •

· 28 Sense
Control • • • • • • • • 28
Common Layout of Sense and Control Instructions •
Secondary Functions • • • • • • •
Bit Function Description • • • • • •

Sense Table • • • • • • • • • •
Control Table • • • • • •

• 28
. • • • 29

• • 29
· • 29
· . 30

Contents IV

Group 13: Table Look Up (Translate and Branch) Instruction •
Function • • • • • • •
Layout of TRB Instruction
Bit Function Description •

• • 31
• 31
• 31

• • • 31

Section 2: lOP Microprogram Codes • • • • • 33

lOP INSTRUCTION GROUP DETERMINATION. • • • 34
lOP MICROINSTRUCTIONS BY MNEMONICS • • • • • • 35
EXPLANATION OF lOP MICROINSTRUCTION GROUPS • • 37
Group 1: lOP Branch Instructions • • • •• ••••••• 37

Primary Function • • • • • • • • • • • • 37
Secondary Functions . • • • • • • • • • • 37
Layout of Group 1 Instructions • • • • • • • • • • • • • 37
Table of Parameters used with mnemonics BC (tJ) and BCR (U) • • • 38
Bit Function Description. • • • • • • • • • 38

Group 2: lOP Data Storage Instructions • • • • • • • 38
Primary Function • • • • • • • 38
Secondary Functions • • • • • • • • •• •• 38
Layout of lOP Group 2 Instructions • • • • • • • • 38
Bit Function Description. • • • • • • • • • • • • • • • 38

Group 3: lOP Move Instructions • • • • • • 39
Primary Function • • • • • • • • • • • • • • • 39
Secondary Functions ~ • • • • • • • • 39
Layout of lOP Group 3 Instructions •••••••••• 39
Bit Function Description. • • • • • • 39

Group 4: Logical lOP Instructions • 41
Primary Function • • • • • • • • • • • 41
Secondary Functions • • • • • • • • • 41
Layout of lOP Group 4 Instructions •••••••••• 41
Bit Function Description. • •• •••••••••• 42

Section 3: SVP Microprogram Codes •

SVP OP CODES BY BIT PATTERN
SUMMARY OF SVP MNEMONICS

ADD = Add LS-Reg plus Accu into Accu • • • •
ADDI = Add Accu plus Immediate data byte into Accu •
AND = AND LS-Reg with Accu into Accu • • • • •
ANDI = AND Accu with Immediate data byte into Accu
B = Branch unconditionally. • • • •. • • • • •
BR = Branch unconditionally to address contained in register •
BZ = Branch if ALU zero. • • • • • • • • • • •
BZR = Branch to address contained in register if ALU zero
CHECK = Op code check. • • • •
BNZ = Branch if (Not) ALU zero • • • •

• 43

• 44
• • 44

45
• • • 45

45

• • 45
45

• 46
• • 46

• 46
46

• 47
CTB = Count, test for zero and branch • • • • • • • • 47
FR = Fetch one byte from LS-Reg into Accu • 47
LBAP = Load Bus and Parity bit from LS-Reg into BAR (S) or BDR (S) 47

LBI = Load Immediate data byte into LS-Register
LBR :;:: Load Accu into Bus Register • • •
LDAC = Load immediate data byte into Accu. .
NOP = No operation • • • • • • • • •
OR = Logically OR LS-Reg with Accu into Accu •
ORI = Logically OR Accu with Immediate data byte into Accu •

• • 48
48

• • 48
• • 48

• 48

• • 49
SF :;:: Fetch one byte from storage into Accu • 49
SLS = Switch Local Storage Zone. • . • • • • • • • . • • 49
SST = Store one byte from Accu into storage . • • • •• • 50
STBA = Sense, AND with mask into Accu, Branch if ALU zero • 50
STBX = Sense, exclusively 0 R with mask into Accu, Branch if

ALU zero • • • • • • • • • • • • • • • • • 50
STOP:;:: Halt Service Processor • • . • • • • • • • . 51
STR = Store one byte from Accu into LS-Register • . • • 51
STROB :;:: Sense from Bus a and/or 1 into Accu, or activate 'CTR L

Strobe Bus a and/or l' 51
XOR = Exclusively OR Ls-Reg with Accu into Accu. • • • • • • 51
XORI = Exclusively OR Accu with Immediate data byte into Accu 52

3125 MLM. Microinstructions Contents (continued) v

Section 1: IPU Microprogram Codes

3125 MLM. Microinstructions 2

I PU M i c ro instruction Group Determ i nation IPU Microinstructions by Group

1 Instruction Bits I Instruction I
1_~_§_1_1_~_~_1_11_1 ____ ~£2~I ____ l

Q,I2'yJ2_1

1 I Bit 1 1 Mnemonic
I a a 0 x x x I 9
) a 0 x o)(.x I 9 0 LC (R)
I I
I 0 0 1 1 x x I 10 1 LT (R)
I a 1 x x x x I 10
I I
I 1 0 0 o 0 x I 13
I I
) 1 0 0 0 1 0 I 11 Qf,Q]E_l
I I
I 1 0 0 0 1 1 I 8 Bits Mnemonic
) I 8 1 1 13
) 1 0 0 1 0 x I 12
I I 0 0 0 IRC (R)
I 1 0 1 x 0 x 1 1
I I 0 0 1 ILC (R)
I 1 0 1 x 1 x I 2
I I 0 1 0 IRT (R)
I 1 1 0 x x x I 3
J I 0 1 1 ILT (R)
I 1 1 1 o 0 x I 7
J J 1 0 0 ZIRC (R)
I 1 1 1 0 1 x I . 6

I I 1 0 1 ZILC (R)
J 1 1 1 1 0 x I 4
I I 1 0 ZIBr (R)
I 1 1 1 1 , x I 5
I I 1 1 1 ZILT (R)

Bits I Mnemonic
_1~ __ 1~_1 __ ~ __ 2_1~_~Q_l _____________________ _

I
o 0 X "X I OL (R)

I
o 1 0 x I LTOL(R} direct addressing

I
o 1 1 x I LTCOL(R)

o 0 -------------------------------------

o 1

lOx 0
lOx 1

1 1 x 0
1 1 x 1

OL (R)
05L (R)

OB L (R)
OSBL (R)

o 0 x x I AL(R)
1

indirect add~essing

o lOx I LTAL (R) direct addressing
I

I 0 1 1 x I LTCAL(R)
1-------------------------------------
J lOx 0 I A L (R)
1 lOx 1 1 ASL (R)
I 1 indirect addressing
1 1 1 x 0 1 ABL (R)
I 1 1 x 1 I ASBL CR)

1 0 0 x x I NL (R)
I 1
I 0 lOx 1 LTNL(U) direct add~essing
I I
I 0 1 1 x I LTCNL (R)

1 0 1-------------------------------------
1 lOx 0 I NL (R)
I lOx 1 I NSL (R)
I 1 indirect addressing
I 1 1 x 0 I NBL (R)
I 1 1 x 1 I NSBL (R)

I a 0 x x I XL (R)
I I
I a lOx I LTXL(R) direct addressing
1 I
I a 1 1 x I LTCXL(R)

1 1 I--------------------~-----------------
I lOx 0 J XL (R)
1 lOx 1 I XSL(R)
I I indirect addressing
I 1 1 x 0 I XB L (R)
I 1 1 x 1 I XSBL CR}

3125 MLM. Microinstructions

Bi ts I Mnemonic
_1~ __ 12_1_1§_~~_1 __ - __ --------.

1 I
I 0 0 1 OMS(R)

o 0 1------------------
I 1 0 I OSMS (.R)

I 0 0 1 AMS(R)

o , 1-------------------
I 1 0 1 ASMS(R)

I 0 0 1 N M S (R)

o 1-------------------
1 1 0 1 NSl'1S(R)

I 0 0 1 X M S (R)

1------------------
1 1 1 1 0 1 XSMS (R)

1-------------------
I 0 1 1 XMSC (R)

-----------------------------_.

.§ff!.Y1!_.Q

Bits Mnemonic
1 1 16

0 0 MSC (R)

1 0 MST (R)

1 1 MSTIX (R)

~IQ]E_§.

Eits Mnemonic
1 1 16 17

0 0 0 MLC (B)

0 1 0 MKC (R)

1 0 0 MLT (R)

1 0 1 MSCTL (B)

1 1 0 MKT (R)

3

3125 MLM. Microinstructions

Bits I Mnemonic
_1~ __ 1~ __ 1 __ 1§ __ 12 __ 1 _____________ _

I I
1 0 0 I OMt(B)
1 1
I 0 1 I OLML(R)

a a 1-------------------------
I 1 0 1 OMK(R)
I I
I 1 1 I OLMK(R)

I 0 0 AML(R)
I
I 0 1 I ALl1L(R)

o 1 1-------------------------
I 1 0 I AMK(R)
1 1
I 1 1 I ALMK(B)

-----------------------------~----
o 0 1 NML (R)

I
I 0 1 1 NLML(R)

1 0 1-------------------------
1 1 0 I NMK(R)
I 1
I 1 1 I NLMK(R)

o 0 I Xl1L(R)
I

I 0 1 I XLML(B)
1 1 1-------------------------

I 1 0 1 XMK (R)

I 1
1 1 1 J XLMK (E)

The mnemonic is 'T' or 'TRt, depending on the status of bit 10.

§!2.YE_2 (Branch type I)

Bits Mnemonic
1 8

0 0 BT

0 1 BTS

1 0 BTM

The mnemonic is 'BC' (Branch conditional).

Bits I Mnemonic 12 __ 1§ __ 12 __ 1 _____________ _
I

o 0 0 1 SRC(R). or NOP(R) if bits 16 ••• 23 = all zeros
I

o 0 1 1 SRT (R)
I

o 1 0 1 SRCN (R)
I

o 1 1 I SRTN(R)
------------1--------------

1 0 0 I SLC (R)
J

1 0 1 J SLT (R)
I

1 1 0 I SLeN(H)
I

1 1 1 I SLTN (D)

------------1-------------~

Bits I Mnemonic 11 __ 11 __ 1~ __ 1 _____________ _ ,
o 0 0 J SNSCB(R)

J
o 1 0 I SNSCL(B)

I
1 0 0 I SNSTR(R)

I
1 1 0 I SNSTL(R)

J
x x 1 I CTL (B)

------------1--------------

The mnemonic is;
THB = Translate and branch (Bit 10 = off), or
TRBR = Translate, branch and return (Bit 10 = on).

4

Listing of IPU Mnemonics

ABL (R)

AL (R)

ALMK (n)

ALML (ll)

AMK (R)

~ML CR)

A~S fR)

A5BL (R)

A5L (R)

ASMS CR)

BC

BT

BTH

BTS

CTL (R)

ILC (R)

ILT (R)

I.RC (R)

IRT (R)

LC CR)

LT (R)

LTAL (R)

Add to IPU local storage, suppress ALU Bits 0 ••• 7,
(then return).

Add to IPU local storage, (then return).

Add to IPU local storage and key storage, (return).

Add to lPU local storage and MSC local storage,
(then re turn) •

Add to MSC ke1 stora~e, (then return).

Add to MSC local storage, (then return).

Add to main storage, (return).

Add with six correction to IPU local storage,
sUPFress ALU Bits 0 ••• 7, (then return) •

Add with Six correction to lEU local storage,
(then return).

Add with six correction to MSC main storage,
(then return).

Branch Conditional.

Branch on Test (no level switching).

Branch on Test to Main routine.

Branch on Test to Sub routine.

Control, (then return).

3

3

7

7

7

7

4

3

3

4

I 10
I
I 9
I
I 9
I
J 9
I
I 12
I

Immediate data Left adjusted to CDR, (then return) ~ I 2

Immediate data Left adjusted to TDR, (then

Immediate data Right adjusted to CDB, (then

Immediate data Right adjusted to TDR, (then

Load CDR, (then return).

Load TDR, (then return).

lPU Local storage to TDR, Add with CDR into
IPO Local storaye, (then return).

I
return) • I 2

I
return}.1 2

I
return).1 2

I
I 1
I
I 1
I
I 3
I

3125 MLM. Microinstructions

LTCAL (R) I
I
I

LTCNL (R) I
I
1

LTCOL (N)

IPU Local storage to TDR and CDR, Add both into
lPU Local storage, (then return).

lPU Local storage to TDR and CDB, lqgically AND
into IPU Local storage, (then return).

lEU Local storage to TDR and CDR, logically OB
into IPU Local storage, (then return).

LTCXL (R) IPU Local storage to TDR and CDB, excl usi vely 'OB
into lPU Local storage, (then return).

LTNL (R)

LTOL (R)

IPU Local storage to TDB, logically AND into
lPU Local storage, {then return).

IPULocal storage to TDR, logically OR into
IPU Local storage, (then return).

3

3

3

3

3

3

·1
LTXL (E) IPU Local storage to TDR , exclusively OR into 1 3

lPU Local storage, (then return). I
I

MKC (R) Read from MSe Key storage in to CDR, (then return). I 6
1

MKT (R) Read from Mse Key storage in to TDR, (then return). I 6
1

MLC (R) Read from MSC Local store into CDR, (then return). I 6

I
MLT (R) Read from MSC Local store into TDR. (then return). I 6

I
M5C (R) Read from Main storage into CDB. (then return). I 5

I
MSCTL (R) Main Storage Con trol,. I 6

I
MST(R) Read from Main storage into TDR, (then return). I 5

I
MSTIX(R} I Bead from Main Storage into TDR, test for I-Phase I 5

exception, (then return). I
I

NBL(R) ,IIfD to lPU Local storage, suppress ALU Bit 0 ••• 7, I 3
(then ret urn) • I

I
NL (R) AND to IPU Local storage, (then return). I 3

I
NLMK(R) AND to lPU Local storage and MSC Key storage, I 7

(then return). I
J

NLML(R) AHD to lPU Local storage and MSC Local storage, I 7
(then return). J

J
NMK (R) lID to MSC Key storage, (then return). 1 7

I
NML (R) lllD to Mse Local storage, (then return). I 7

I
NMS (R) AID to Main storage, (then return). I 4

5

3125 MLM. Microinstructions

NOP CE)

NSBL (R)

NSL (R)

NSMS (R)

OBL (R)

OL (R)

OLHK (R)

OLl'lL (n)

OMK CE)

OML (B)

OMS (E)

I

No operation (then return).

AND with Six correction to IPU Local storage,
suppress ALU Bit 0 ••• 7, (then return).

AND with Six correction to IPU local storage.
(then return).

Add with Six correction to Main storage, (return).

OR to IPU Local storage, suppress ALU Bit 0 ••• 7.
(then return).

OR to IPU Local storage, (then return).

OR to IPU Local storage and MSC Key storage,
(then return).

OR to IPU Local storage and MSC Local storage,
(then return).

OR to MSC Key storage, (then return).

OR to MSC Local storage, (then return).

OR to Main storage, (then return).

OSBL (R) I OR wi th Six correction to IPU Local storage,
I sUFFress ALU Bit 0 ••• 7, (then return).
I

OSLeR) I OR with Six correction to IPU Local storage,
I (then return).
I

OSMS (R) I OR wi th Six correction to Main stora~Je, (return).
I

SLC (B) I Shift Left to CDR, (then return).

SLeN(H) Shift Left to CDR, using Negative shift amount,
(then return).

SLT (E) Shift Left to TDR, (then return).

SLTN{R) Shift Left to TDR, using Negative shift amount,
(then return).

SNSCL (R) Sense into CDE Left, (then return).

SNSCR (R) Sense into CDR Right, (then return).

SNSTL (.B) Sense into TDR Left, (then return).

SNSTR (B) Sense into 'IDE Right, (then return).

SHe (E) Shift right into CDR, (then return).

1 1

3

3

4

3

3

7

7

7

7

4

3

3

4

1 1

1 1

1 1

1 1

12

12

12

12

1 1

SReN (n) I Shift Right into CDR, using Negative shift amount,
I (then return).

SRT (B) J Shift Right into TDR" (then return).
I

SRTN (R) I Shift Right into TDR, using negative shift amount,
I (then return).
I

T (R) I Test, (then return) •
I

THB (R) I Translate and Branch, (then return).
I

XBL(R) I Exclusive OR to IPU Local storage, suppress ALU

XL (R)

XLMK(R)

XLML (R)

XMK (R)

XML (R)

I Bit 0 ••• 7, (then return).

Exclusive DB to IPU Local storage, (then return).

Exclusive OR to IPU Local storage and MSC Key
storage, (then return).

Exclusive OR to IPU Local storage and MSC Local
storage, (then return).

Exclusive OR to MSC KEY storage, (then return).

Exclusive OR to MSC Local storage, (then return).

XMS (R) Exclusive OR to Main storage, (then return).

XMSC(R) Exclusive OR to Main Storage. read from Main
I Storage into CDR, (then return).
I

XS8L (R) I Excl usi ve OR wi th Six correction to IPU Local
I storage, suppress ALU Eit 0 ••• 7, (then return).
I

XSL(R) I Exclusive OR with Six correction to IPU Local
I storage, (then return).
I

XSMS,(R) 1 Exclu.sive OR with Six correction to Main storage,
I (then return).
I

ZILC(R) 1 Zero set, then place Immediate data Left adjusted
I into CDR, (then return).
I

ZILT (R) I Zero set, then place Immediate data Left adjusted
I into TDR, (then return).
1

ZIRC (R) I Zero set, then place Immediate data Right adjusted
I into CDB, (then return).
I

ZIRT (R) I Zero set, then place Immediate data Right adjusted
I into TDR, (then return).
J

6

11

1 1

1 1

a

13

3

3

7

7

7

7

4

4

3

3

2

2

2

2

Explanation of IPU Microinstruction Groups

Group 1: H alfword from Local Store to TOR or CD R

g£!ID~~1_!~n£!i2Bl One halfvord is fetched from the IPU local storage and
set into either the True Data Register (TDR) or Complement Data Register
(CDR) •

• The contents of TDR can be propagated to the local storage address
reqisters (LSARs) 0 and 1; or 2 and 3; or O,1,2,and 3 (see under LSAR
setting cases).

• The invert switch can be set to true, invert l force ones, force zeros.

• The local storage can be addressed direct or indirect.

• A return from a subroutine can be initiated.

1 Invert Bit
2 Parity Bit

EyteO d _______ gl£~ _______ _

5 1
6 0 Op Code Group 1
7 1

----S--O-;dlrect/l;Indlrect----
9 0 =LS to TDR or CDR (op code)

10 1 =Leave subroutine
11 1 =TD.R/O=CDR

Eyte1 12 1 =set LSARO and 1
13 1 =set LSAR2 and 3
14-----Invert-swltch-1uDctlon
15 ---16-----'----------------16-------------
17 17 High Order
18 18 Portion
19 direct indirect 12 ____________ _

Eyte2 20 L5 addr LS addr 2Q_n2-!~B£!!2~_
21 21_1=1~!~Q ____ _
22 22

---1]------_______________ ll_b2~B_~Qgf __ _

~Q~~: Bits 0 and 4 of Byte 0 do not exist

3125 MLM. Microinstructions

~1!_!~~£1iQ~_~g§~f!£!iQn

~!1-1L-Inyg~1~ Generated internally by hardware. (When instruction is
inverted by SVP.)
~ii_2~_g~~iiI_Bii~ Generated by assembler program. (To obtain an odd
number of zero bits.)
~it ~gFCN =-Pa~iiI-Function~it~ Generated by assembler program. (To
obtain an odd number of control gates.)
~i!_§L§Ll_~~~ __ ~L_QE_~Q~g~ These bits represent a unique pattern that is
common to all group 1 instructions.

~!!_~L_~1f~f!Ll]g1!~£!~ This bit determines how the IPU local stora~e is to
be addressed. Direct addressing is employed when bit 8 is 0 3 indirect
addressing is used when hit 8 is 1.

Direct. When direct is
~~~~;~~nt a binary number 
local storage. Bit 16 
lowest binary value. 

specified, bits 16 to 23 of the instruction 
(from 0 to 255) which is llsed to address the 
has the highest binary value, bit 23 has the 

Indirect. When indirect is specified, either one of two methods is used 
~s-d~t~~mined by bit 21 (LSAR 0). 

~it_~1_Q!!_JQ1~ With bit 21 off, instruction bits 16 through 19 
represent the high order portion of the address. The contents of 
the local store address register (LSAR) addressed by instruction 
bits 22 and 23 represent the low order portion of the address. Both 
portions are said to be concatenated (chained) to form one logical 
bit string. 

~i~_21_Qn_Jjl~ with bit 21 on, instrllction bits 16 throug~ 19 are 
ignored. The high order portion of the address then is prov1ded by 
the contents of LSAR O. The low order portion is provided by the 
LSAR addressed by instruction bits 22 and 23. These bits may 
specify any LSAR including LSAR O. Both LSAR contents are said to be 
concatenated to form one logical bit string. 

~i!_lQL_~gA!!_~]~~Qy!!ng~_ This bit allows the IPU microprogram to re
enter the vrogram level that was in effect prior to the last level 
switching operation. In this manner, the program may return from a 
subroutine to its original point of continuation. 

The instruction which has bit 10 on is still part of the subroutine and so 
is the next following instruction. However, the instruction that follows 
thereafter is the first one of the continued previous routine. 

7 



3125 MLM. Microinstructions 

]!1_11L_~~1_!~BLf~n~ This bit determines the register into which the data 
(fetched from local store) will enter. (0 = CDn / 1 :: TDR) 

~1i_llL_~g1_1~!B_Q-~nQ_l~ nit 12 provides the means to propagate the left 
half (one byte) contents of TDR into LSAR's 0 arid 1. When bit 12 is on (1) 
bits O-J of ~DR are set into LSAR 0, bits 4-7 of TDR are set into LSAR 1. 

I The readout from TtR is non-destructive. 

]i1_1lL_~~1_1~!E_~_~n~_J~ Hh~n bit 13 is on (1) bits 8-11 of TDR are set 
into LSAR 2, bits 12-15 of TDR are set into tSAR 3. The readout from TDR is 
non-destructive. 

~!1_1~_~]Q_l~~ These bits provide four different patterns which determine 
the function of the invert switch for some later arithmetic/logic 
operation, (see parameters). 

]J!§_ll_~ng_~lL_b§~B_!ggf~§§~ When indirect addressing is used, both bits 
re~resent a binary number (from 0 to 3) that addresses one of the LSAR's 
(see pdrameters). 

The parameters are listed as cases Cl •••• CXX which will also appear in the 
microproq~am listinjs to allow ~rientation. 

b2!B_2~111Qg_~~~~~ 

Eit 12 Eit 13 

C1 = 0 0 = no LSAR setting 

:2 = 1 0 = TDR bits O •••• 3 to LSARO, and 
TDR bits 4 •••• 7 to LSAR1 

C3 = 0 1 = TDR bits 8 ••• 11 to LSAR2, and 
TDR bits 12 •• 15 to tSAR3 

C4 = 1 1 = TDR bits 0 •••• 3 to LSARO. and 
TDR hits 4 •••• 7 to LSAR', and 
TDR bits 8 ••• 11 to LSAR2. and 
TDR bits 12 •• 15 to LSAR] 

8 

In!~~!_~~!!£h_£g§~~ 

Eit 14 Eit 15 

C5 = 0 0 = invert 
C6 :: 0 1 = true 
C7 = 1 0 = force ones 
C8 :: 1 1 = force zeros 

Eit 8 Bit 21 Bit 22 Bit 23 

C9 = 0 = instr.bits 16 •••• 23 
C10 :: 1 0 0 0 = instr.bits 16 •••• 19//LSABO 
Cl1 = 1 0 0 1 = instr.bits 16 •••• 19//LSARl 
C12 = 1 0 1 0 = instr.bits 16 •••• 19//LSAR2 
C13 = 1 a 1 1 = instr.bits 16 •••• 19//LSAR3 
C14 = 1 1 0 0 = LSARO//LSARO 
C15 = 1 1 0 1 = LSARO//LSARl 
C16 = 1 1 1 0 = LSARO//LSAR2 
C17 = 1 1 1 1 = LSARO//LSAR3 

I . 
Group 2: Immediate Data to TDR or CDR 

gf!m~f~_1~Q£!iQnl A data byte provided by the instruction is set into 
either TDR or CDR in either right or left adjusted position. 

• The ~emainaer of TDR or CDR may either keep its original data or may be 
set to zeros. 

• Data from TUB may be further distributed to LSAR's 0 and 1. 

• The invert switch can be set to true, invert, force ones, force zeros. 



1 Invert Bit 
2 Parity Bit 

EyteO ] _______ ~I~! _______ _ 

5 1 
6 0 Op code Group 2 
7 1 

----8--0-;-keer/l~reset-------
9 1 = imrnedi~te to TDR/CDR (Or Code) 

10 1 = Leave surroutine 
Byte1 11 1 = 'Ir;q/O=CDR 

12 1 = set LSARO and 1 
ll __ 1_=_1£11LQ=£}g]1 ______ _ 
14 
15 invert switch f~nction ---'6-------------------------
17 
18 

Byte2 19 
2C 
2 1 
22 
23 

immediate 
data bite 

------------------------------

]i!§_~L§Ll_~ng __ ~L_Qf_~Q£~~ These bits represent a uniq~e pattern that is 
common to all yroup 2 instruction3. 

]!!_~L_~§§lLE~§~l~ This bit determines whether the eight bits in TbR or CDR 
inlo which no data is set keep their ori]inal data or change to zero. 

]1!_lQL_1g~1~_~]~fQ~!~ng~_ This bit provides the means to return from a 
subroutine to the proJram level thdt was in effect prior to the last level 
switching operation. The instruction that has bit 10 on is still part of 
the subroutine and so is the next instruction. However, the instruction 
thereafter is the first one in the previous· level. 

]il_11L_~~! __ 1~ELf~n~_ This bit determines whether the immediate aata byte 
enters iutu TDR or ctn. 

3125 MLM. Microinstructions 

~i! __ 1~L_~gl_1~~B_Q_~n~ __ 1~ This bit causes the contents of TDR bit 0-3 to 
be set into LSAR 0 and TOR bits 4-7 to be set into LSAR 1. when turned on 
( 1) • 

~it __ ll_1§!lL~igh!~ ~ince TDR or CDB are halfword wi~e, bit 13 determines 
whether the immediate byte enters bits 0-7 oi bits 8-15 of the respective 
register. 

~i!§_1~_ang __ 12L_1n~g£!_~~!!fQ_I~~£i!Qn~ These bits represent four patterns 
that set the invert switch for a latec arithmetic/logic operation, (see 
parameters) • 

E!!§_1~=ZlL_l~~gg~2!g __ ~~!g~ These bits have binary values assigned, 
running from bottom to tor in ascending value, capable of representing dny 
value from 00 to FF. 

lJl!_ll 
C1 = 0 = no LSAR setting 

C2 = 1 = TDR bits 0 •••• 3 to LSARO, and 
TDR bits 4 •••• 7 to LSAR1 

see CS •••• C8 of group 1 parameters 

Group 3: Arithmetic/Log ic Operations to Local Storage 

!:~.!.mg£~_f:.!!.!!'£!!~H!":' The contents of TDR represent an operand that is either 
added, ANDed, ORed, or EXCLUSIVE ORe~ with the contents of CDR. The result 
is stored into the IPU local storage. Before the ALU operation (in the 
same cycle) TDR and CDR may be loaded from the same LS location which
receives the result from the AtU output afterwards. 

]Q!~l Th~ contents of CDR pass through the invert switch before they enter 
the ALU. The result, therefore, depends on the microinstruction that sets 
the invert switch prior to the arithmetic/logic operation. 

9 



3125 MLM. Microinstructions 

• the local storage can be addressed either direct or indirect. 

• various ALU conditions can be saved and propagated to other ALU 
operations .hich need not be in consecutive order. 

• six correction on byte basis can be performed. 

• the left byte of the result can be suppressed. 

• The proyram Cdn be made to return from a subroutine. 

1 Invert Bit 
2 Parity Bit 

By teO ] _______ E!~~ _______ _ 

5 1 
6 1 Op Code Group 3 
7 0 

----8--0-;-dIre~t/1;IndIrect---
9 1 = LS to TDR (dir. addr.), suppr. ALU 0 •• 7 (indir. addr.) 

1.Q ____ Q=_~.Q_!~D£!i2n_L_l=_f§!~~D_!~_~~iD_f2~!ine 
11 See tit function descri~tion and 

Byte1 12 cases 1 •••• 6 
13 . . 14------ALu-iunctlon---------------------------
15 ---'6----------,-----------'6---------------------
17 I 17 High order 
18 I 18 Portion 
19 direct lindirect 19 

Eyte2 20 LS addr ILS addr ~~=l~=~ji~i=iii:~~iii~~ion 
21 21 1= LSARO 
22 See cases 7 •••• 15 ~~----I~ii-i~~r~;;-----___ ll __________ 1 ___________ 2l ____________________ _ 

10 

~.!!§_,§.L§.Ll.L_QE_~.Qg.§.!. These bits refresent a pattern that is un·.igue and 
common to all group 3 instructions. 

~!!_.§L_12iI'§£!Lll!.9i!~£!.:. This bit has a dual function. It determines whether 
the LPU local storage is addressed direct or indirect. 

12!.I~£! __ l~i!_'§=.Ql. When direct is specified. instruction bits 16 •••• 23 
represent a binary number that is used as address. The lowest binary 
value is assigned to bit 23, the highest binary value is assigned to bit 
16. 

1]~i!~f!_j~1!_§~11~ When indirect is specified, bit 21 determines which 
of the two indirect addressing methods are used, as follows: 

~i!_21_2"_Jgl.!. Instruction bits 16 •••• 19 represent the high order 
portion of the address. The low order portion is provided by the 
contents of the local store address register (LSAR) that is 
addressed by instruction bits 22 dod 23. Eoth address portions are 
said to be concatenated (chained) to form one logical bit string. 

]i!_21_~D_Jjl~ With bit 21 on, instruction bits 16 •••• 19 are 
ignored. The high order portion of the dddress is provided by LSAR 
O. The low order portion is provided by the LSAn addressed by 
instruction bits 22 and 23. This mal be any LSAR including LSAR O. 
Both address portions are chained to form' one logical bit string. 

!Q!g: six correction can be specified only with indirect addressing. 

~i1_~L_!.~Y.E12!:~~H~_A~!!_~Q§i!.!..Q.!!§_Q~~~.:.I~ __ Q.!: __ .!.~Q£~1_~!Q£~lliL_!Q __ !QR~~ ~ it h 
indirect LS addressing this bit provides a means to suppress the left byte 
of the ALU (the ALU is halfword wide). This function is used when 24-bit 
addresses are calculated via two passes through the ALD, such as for load 
register type operations. with direct LS addressing bit 9 is used to 
indicate that the TDR has to be loaded from local storage before the ALU 
performs its operation~ 

~!!_1QL_1~g1~_~]£I.Q]£!n~~ This bit 
a.subroutine) to the program level 
level switching operation The 
part of ~he subroutine and so is 
instruction that follows thereafter 

allows the microprogram. to return (from 
that vas in effect pr~or to the last 
instruction that has bit 10 on is still 
the next jnstruction. However, the 
is the first one in the previous level. 

~i!_11L_!f£Bm]l~!~_fQB~i!iQn_~Q~.§~ This bit provides the means to logically 
link any number of ALU operations with each other so as to obtain one 
result and one result condition from which a final condition code (for the 
~SW) can be derived. Conversely, by turning hit 11 off, any number of 
independent ALD operations can be inters~ersed in a string of linked 
operations. Bit 11 thus eliminates the need for processing long operands in 
consecutive sequence, and allows manipulation of operands or portions 
thereof inbetween the main string. 



The following detail functions are involved: 

The first ALD operation of a string must have bit 11 on and either bit 12 
or bit 13 on. This bit combination sets the ALUZERO latch to the zero 
state. The latch remains in the zero state as long as all operations of the 
string (all those that have bit 11 on) including the first one produce zero 
results. If any operation in the string (including the first one) produces 
a result greater than zero, the latch changes to the "not zero fl state and 
remains in this state until it is reset, irrespective of how many zero 
results may follow in the string. 

Only those operations which have bit 11 on are treated as part of the 
string. Bit 11 also ensures that the signs of the operands and carries out 
of ALU position 0 and 1 are saved and propagated to the next operation that 
has bit 11 on. In this manner a cornman condition is accumulated for the 
striny. Interspersed operations (which have bit 11 off) cannot disturb the 
accumulated condition because the latter is saved. The accumulation ends 
with the first instruction that has bit 11 and either bit 12 or 13 on 
because this combination deliberately set the .ALUZERO latch to the zero 
state (reset). thus starts a new string. 

Operations which have bit 11 off may also form a string because carries can 
be propagated, however, no common condition is accumulated (also see bit 12 
and bit 13). 

~!!_llL_~XQ!£~_f2ffl~_Q~_~1Q£21_~1Q£~~~_!Q_fn]~~ When on, this bit causes a 
carry to be generated and entered into ALU position 15 which is the low 
order position. Bit 12 sets the ALUZEBO latch to zero if bit 11 is also on. 
If the mnemonic is lLTxxx' (bits 8 and 9 = 01), bit 12 being on causes CDR 
to be loaded from local storage prior to the ALU operation. 

~!1_11L_g~§g~_~~ff1_~21£h~ This bit provides the means for controlling the 
carry that way emerge from ALU position zero (the high order position). 
When bit 13 is off (0) I a carry from the preceding operation automatically 
enters ALU position 1S during the next lLU operation. This action is 
prevented if bit 13 is on (1). Bit 13 sets the ALUZERO latch if bit 11 is 
also on. 

].!.t_l!!_2.nQ_l.§L_~~l! __ .!.!H!£.t'!Q!!.!. These bits are capable of providing four 
different patterns, which specify the lLU functions OR, Add, AND, Exclusive 
OR as follows: 

Bit 14 Bit 15 

0 0 ::: OR 
0 1 .- Add 
1 0 - AND 
1 1 = Exclusive OR 

]~!_lgL_]11Q~ __ ~i~_f9f!g£li2n~ This bit provides 
hexadecimal value to a decimal value. When bit 20 is 

3125 MLM. Microinstructions 

the means to convert a 
on, a binary 6 is 

s~btracted from ILO positions 12 •••• 15 (units digit) if no carry emerged 
from ALU position 12. The same occurs with ALU positions 8 •••• 11 (tens 
digit) if no carry emerged from ALU position 8. ALU positions 0 •••• 7 do not 
participate in six correction. 

Note: six correction is possible only in conjunction with indirect LS 
addressing. 

C1 = Bit 11 Bit 12 Bit 13 
000 

C2 = Bit 11 Eit 12 Bit 13 
001 

C3 = Bit 11 Bit 12 Bit 13 
010 

(See Note below) 

C4 - Bit 11 Bit 12 Bit 13 
100 

~ allow carry from ALO pos 0 that was 
previously saved by an instruction 
that had bit 11 off to enter ALO 
pos 15. 

• save carry out of ALU pos O. 

• prevent carry from entering ALU 
pas 15. 

o save carry out of ALD pas O. 

G force carry into ALU pas 15. 

• save carrl out of ALU pos O. 

G allow carry from ALU pos 0 that 
was previously saved by an 
instruction that had bit 11 on 
to enter ALU pas 15. 

• save contents of ILO pas a (sign). 

o save carry out of ALU pas O. 

~ save carry out of ALU pas 1 • 

• reset ALUZERO latch if result 
not zero. 

11 



3125 MLM. Microinstructions 

C5 = Bit 11 Bit 12 Bit 13 
101 

C6 = Bit 11 Eit 12 Bit 13 
1 1 0 
(See Note below) 

• set ALUZERO latch to zero prior 
to operation. 

• prevent carry from entering ALD 
pas 15. 

• save contents of ALO pos 0 (sign). 

• save carry out of ALU pas O. 

• save carry out of ALU pas 1. 

• reset ALUZERO latch if result 
not zero. 

• set ALUZERO latch to zero prior 
to oferation. 

• force carry into ALO pas 15 • 

• save contents of ALD pas o (sign) .. 

• save carry out of ALU pas O. 

0 save carry out of ALU pas 1. 

0 reset ALUZERO latch if resul t 
not zero. 

]2!~1 Cases 3 and 6 are not valid for LTxxx instructions (instruction bits 
8 and 9 = 01). with these mnemonics instruction bit 12 is used to indicate 
'local store to CDBt. 

Case I Instruction bits I Source of local storage address ) 
_____ 1 ___ ~ __ ~1 __ ~~ __ ~1 __ 1 __ high_2fg~f ____ l ___ lg~_~f~~f ____ 1 ____ -_ 
__ 1 __ 1 ___ ~ ___ ~ ___ ~ ___ ! __ 1 __ !~~!!]£!~g~_~i!§_JQ~~~~l _______ l_Q!f~ft 

8 J 1 0 0 0 I I LSAR 0 I 
9 J 1 0 0 1 1 Instr. bits I LSAR 1 J 

10 J 1 0 1 0 I 16 ••• 19 I LSAR 2 I indirect 
_jJ __ l ___ l ___ ~ ___ j ___ J __ l ________________ l _____ 1~~]_1 _____ 1 

12 ) 1 1 0 0 I 1 LSAR 0 I 
13 J 1 1 0 1 I LSAR 0 I LSAR 1 laddressing 
14 J 1 1 1 0 I I 1SAR 2 I 

_1~ __ 1 ___ 1 ___ 1 ___ 1 ___ 1 __ 1 ________________ 1 _____ 12~E_] _____ 1 _____ _ 

!Q!!! The parameters actually used will be shown in the microprogram 
listings. 

12 

Group 4: Arithmetic/Logic Operations to Mai n Storage 

Rfi!~!l_IY~£!ign~ The contents of TDR are Added, ANDed, ORed, or Exclusive 
ORed with the contents of CDR and the result is placed into main storage. 

• the format can b~ specified as halfword or byte. 

• the main storage address can be automatically incremented, decremented, 
or left as it is. 

o the lLU can be controlled so as to propagate carries (or not) and to 
accumulate a common result condition (or not). 

~ the result can be subjected to six correction. 

• the program can be made to return from a subroutine. 

• dynamic address translation can be enabled or disabled. 

• For mnemonics XMSC/XMSCR see special paragraph at the end of this group 
description. 

1 Invert Bit 
2 Parity Bit 

EyteO 2 _______ ~1~B ______ -_ 

'5 1 
6 1 Op Cede Group 4 

____ 1_ 1 

8 1 = main storage 
9 0 = write 10--1-;-leave-subroutIne-

By tel 11 1 = dccumulate condition code 
12 1 = force carry 
J] __ 1_=_!g~g!_£~!£1_1~1£h 
14 
15 lLD = Function 

---16--1-;-allow-sIi-correction 
17 1 = halfword/O=byte 

Eyte2 18 1 = increment 
19 1 = decrement 20-----------------------
21 ~sc LS address 
22--0-~-~~-fu~~tion------

___ ~]===1_~=~iI2~~!~2Q~n2=f~10cate 



~il§_~~~~~~L_Qi __ ~fQ~_~£2~£_~~ These bits represent a uni~ue pattern that 
is common to all sroup 4 instructions. Bit 8 at 1 level designates the 
orerations as Fertainin~ to main storage. while bit 9 at 1 level specifies 
the direction as "ten main storage. 

~11_1QL_1g~!~_§]~!gY!ing~ This bit allows the IPU Dicroproqram to re-enter 
the rrogram level that WdS in effect l'rior to the last level switching 
o~erdtion. In thi~ IDanner, the frogram mal return from a subroutine to its 
original Foint of continuation. 

The instruction which has bit 10 on is still part of the subroutine and so 
is the next fcllo~ing instruction. Ho~ever, the instruction that follo~s 
thereafter is the first one of the continued previous routine. 

~11_11L_!~£~~~1~!g_fgngl!!QQ_£Qgg~ This bit provides the means to logically 
link any number of ALU operations with each other so as to obtain one 
result and one result condition from Hhich a final condition code (for the 
FS~) can be derived. Conversely, by turning bit 11 off, any number of 
independent ALU operations can be interspersed in a string of linked 
orerations. Eit 11 thus eliminates the need for processing long operands in 
consecutive seguence, and allows manipUlation of operands or portions 
tnereof incetween the main string. 

The following detail functions are involved: 

The first ALU operation of a string must have bit 11 on and either bit 12 
or bit 13 on. This tit combination sets the ALUZERO latch to the zero 
state. The l~tch rereains in the zero state as long as all operations of the 
strin~ (all those that have bit 11 on) including the first one produce zero 
results. If any OFeration in the string (including the first one) produces 
a result jreater than zero, the latch chanyes to the "not zero" state and 
remains in this state until it is reset, irrespective of how many zero 
results rna1 follow in the string. 

Cnlt those of-erations which have bit 11 on are treated as part of the 
string. Eit 11 also ensures that the signs of the operands and carries out 
of ALU fosition a and 1 are saved and propagated to the next operation that 
has bit 11 on. In this manner a common condition is accumUlated for the 
strinj. Interspersed operations (which have bit 11 off) cannot disturb the 
accumulated cond~t~on b~cduse the Idtter is saved. The accumulation ends 
with the first instruction that has bit 11 and either bit 12 or 13 on 
because this combination deliberately set the ALUZERO latch to the zero 
state (reset) I thus starts a new string. 

Operations which have bit 11 off may also form a string because carries Cdn 
be propagated, however, no common condition is accumulated (also see bit 12 

3125 MLM. Microinstructions 

and bit 13). 

~i!_12L_IQ~£~_~2ffl~ When turned on, this bit causes a carry to be 
generated and entered into ALU position 15 which is the low order position. 
Eit 12 sets the ALUZERO latch to zero if bit 11 is also on. 

]i!_11L_Bg§g!_~~fIl_1~!£b~ This bit provides the means for controlling the 
carry that may emerye from ALU position zero (the high order position). 
When bit 13 is off (0), a carry from the Freceding operation automatically 
enters ALU position 15 during the next ALU oFeration. This action is 
prevented if bit 13 is on (1). Bit 1) sets the ALUZERO latch if bit 11 is 
also on. 

~!!_1~_~n~_1~L_A1Q __ IYnf!iQll~ These bits are capable of providing four 
different patterns, which specify the ALU functions OR, Add, AND, Exclusive 
OR as follows: 

Bit 14 Eit 15 

0 0 = OR 
a 1 = Add 
1 0 = AND 
1 1 = Exclusive OR 

]1!_1§L_J112~_~!!_fQff~£!iQn~ When turned on (10gica11). this bit alloas 
AtU bits 12 •••• 15 (units di<Jit) and 8 •••• 11 (tens digit) to be subjected to 
six correction. Six correction consists of a subtraction of a binary 6 from 
ALU pas 12 •••• 15 provided there was no carry out of pos 12. "The same 
occurs for ALU pas 8 •••• 11 if no carry emerged from pas 8. Since the 
boolean functions AND, OR. and XOR do not produce carries, a binary 6 is. 
in effect, subtracted unconditionally when bit 16 of the instruction is 
on, for these operations. ALa pas 0 •••• 7 do not participate in six 
correction. 
~i! __ llL_B~lf!~!gL~l!g~ This bit has a dual function because it deteraines 
either of two data transmission formats. When at logical 1 level, halfuord 
is specified which means that ALU positions 0 ••••• 15 are transferred to 
main storage. If at logical 0 level, byte is specified which means that ALO 
positions 8 •••• 15 are transferred to main storage. 

~!!_l~L_Jn£~g~gn!~ This bit specifies how the main storage address that is 
used for the store ofera~lon is to be updated. The update amount 
corresponds to the specified format (half~ord/byte) and is thus either 2 or 
1. 

]g!g_l; ~hen operand 1 is stored with bit 18 on, the a~~ress of operand 1 
is incremented and, simultaneously, the length count of operand 2 is 
decremented. When operand 2 is stored with bit 18 on, the address and the 
length count of operand 2 are decremented. 

~2i~_~~ Bit 18 must be on when a halfword or a byte is to be stored on odd 
l:oundary. 

]i!_1~L_~g£f~!~n!~ This bit.spec~fies how the main storage address that is 
used for the store operat10n 1S to be updated. The update a.ount 
corresponds to the srecified format. 

13 



3125 MLM. Microinstructions 

!2!~2 When operand 1 is stored with bit 19 on. the address of operand 1 is 
decremented, and simultaneously, the length count of operand 2 is also 
decremented. When operand 2 is stored with bit 19 on, both the address and 
the length count of operand 2 are decremented. 

2E~£!~1_B2!~_!~£_~i!§_1~_~nQ_12~ Bits 18 and 19 cannot both be on in the 
same instruction. However, both bits can be off simultaneously which means 
that neither an address nor a length count is changed. 

~i!§_l~_~nQ_ll~_~~~_b2£~!_~!2£~_!ggf~§§~ These bits specify the MSC local 
store register the contents of which are used to address the main storage. 
The following registers with fixed assignment are thus addressed as 
follows; 

Number ~i!_lQ ~!!_ll , 

Value 4 2 

Pattern o 
o 
1 
1 

C = lAB (Machine instruction address reg.) 
1 - Operand 1 address register 
o = Operand 2 address register 
1 = I/O Common register 

Note: The actual addresses of these registers are, in hex notation, 18,lA, 
lC:1F and proper addressing is accomplished by the MSC which forces the 
missing bits. 

~i!_~J~_]~12£~!~LB2_~~lQ£~!~~ This bit provides the means to access a real 
(physical) maIn storage location directly without going through the 
relocate (dynamic address translation) mechanism. conversely, when on (1), 
the bit provides fer dynamic address translation if the extended control 
mode bit in the current PSW is on. 

C1 - Bit 11 Bit 12 Bit 13 
000 • allow carry from ALU pas 0 that was 

previously saved by an instruction 
that had bit 11 off to enter ALO 
pos 15. 

• save carry out of ALD pas O. 

C2 = Bit 11 Bit 12 Bit 13 
o O· 1 

C3 = Bit 11 Bit 12 Bit 13 
010 

C4 = Bit 11 Bit 12 Eit 13 
100 

C5 = Bit 11 Eit 12 Bit 13 
1 0 1 

C6 = Eit 11 Eit 12 Bit 13 
1 1 a 

• prevent carry from entering AtO 
pos 15. 

• save carry out of ItU pos O. 

• force carry into ALU pas 15. 

• save carry out of ALU pos O. 

o allow carry from ALU pas 0 that 
was previously saved by an 
instruction that had bit 11 on 
to enter ILO pos 15. 

• save contents of ALD pas 0 (sign), 

• save carry out of Atu pos O. 

• save carry out of lLO pos 1. 

• reset ALUZERO latch if result 
not zero. 

• set ALUZEBC latch to zero prior 
to operation. 

• prevent carry from entering ALO 
pas 15. 

• save contents of ALO pas 0 (sign), 

• save carry out of ALD pas O. 

• save carry out of ALU pas 1. 

• reset ALUZERO latch if result 
not zero. 

• set ALUZERO latch to zero prior 
to operatiori. 

• force carry into ALO pos 15 • 

14 



C 7 = Bit 17=0 Eyte 
C 8 = Bit 17=1 Halfword 

].E.Q~!~_£;~§g~ 

12,i'!:_112 Bit 19 ----.--
C 9 = 0 0 

C 10 = 1 0 

C 11 = 0 1 

• save contents of ALU pos o (5i9n). 

• save carry out of ILO pos O. 

• save carry out of AlU pas 1. 

• reset ALUZERO latch if result 
not zero. 

= no update 

= increment 

= decrement 

XMSC = Exclusive OR to Main Storage, Read from Main Storage into CDR 

This is a combination of the two mnemonics XMS (group 4) and MSC (group 5). 
The IPU places a main storage request. When the request is honored I the 
main storage performs a read and a write cycle. The IPU executes tuo 
cycles (see figure below). During the first IPU cycle the ALU performs an 
Exclusive DB function. The result of which will be stored into main storage 
during the MS write cycle. The byte fetched from main storage earlier 
(during the MS read cycle) is placed into CDR bits 8 ••• 15 during the second 
IPU cycle. CDR bits 0 ••• 7 are set to zeros. 
The IPU performs during iti first cycle the same functions as for an XMS 
instruction. For the second cycle control word bit 9 will be inverted to a 
logical one l which indicates main storage read. Thus the IPU performs the 
same operations as for the mnemonic MSC and stores the data coming from 
main storage into CDR (bit 11 = 0). Eesides bit 9 no other bit of the 
control word is changed or inverted after the first IPU cycle and the 
Neither of the IPU cycles is interruptible. Bit 10 of the 
microinstruction is off. 

XMSCR = Exclusive OR to Main Storage, Read from Main Storage into CDR, then Return 

The basic functions are exactly the same as for x~sc (see previous 
paragraph). 1he only difference is in bit 10, which is a logical one. This 

3125 MLM. Microinstructions 

causes the aicroprograa to return (branch) to the main routine two micro-
instructions later. 

Read data to be 
loaded into CDR. 

I 
I 
I 
I 
I _________________________________ 1-

write data originating from 
Ex OR function (first IPU 
cycle) into gain storage. 

ALU Exclusive OR, 
result will be written 
into ~ain storage 
during MS Hrite cycle. 

I 
I 
I 
I 
I 
I 
I 

Data read out of main storage 
during MS Read cycle is loaded 
into CDR. 

~~I.QYt- O!:2~SCL!!!~~1! 

l~!~!_lE~=fl£l~_=_!~~ I 2g£Qn~_!R]_£lCl~_=_~~~ __________ I 
__ pattern fixed for XMSC(R) I 
I I 

~ __ 1____________________ I 
By teO 2_______________________ I 

~------------------------------I-----------------------5 1 I 
6 1 I 

____ 1_ 1 Op code = group 4 I Op code = group 5 
8 1 I 

_2 __ Q_=_~~~!§_~ _________________ 1_1J,i~~~!!gg_~~!21_=_~~gd 
1Q __ g_=_1~~£_L_l_=_!~§f~ ________ 1~~!~_~§_f!!§~_£Y£!~ __ _ 

Eyte1 11 0 I 0= read into CDR 
12 0 no function I 0 11 __ ~ ___________________________ I_Q ___ ~Q_f~n£!i2n ______ -
14 1 I 1 

___ j~ __ 1 ___ ~1]_=_E!f!~~!1§_Q~ ______ I_l ___ ill!~~!_§!!!£h_=_!Qrce zeros 
16 0 = no function I 
17 0 = byte format I 
18 0 = not increment I same as 

Eyte2 12 __ ~_=_~Q!_g~£~~~~n!____ I 
20 1 MSC LS address = I 
11 __ ~ ______ Q]~_1_~~~~~=~~gister I first cycle 
11 __ 1_=_1~~fJ]1__________ I ___ ~l __ l_=_~~.!g£.2!~ ______________ J ___________________ _ 

15 



3125 MLM. Microinstructions 

Group 5: Read from Main Storage into TDR or CDR 

ff!!~fl_fY~£!!2n£ A halfword or a byte is fetched from main storage and 
flaced into either TDR or CDR. If a byte is fetched, tbis byte is 
automaticalll set into bits 8 •••• 15 of the selected register (right 
adjusted) and bits 0 •••• 7 of the selected register are set to zero. 

~~fQ~g2fY_X~~f!1~n 

• The contents of TDR may be propagated into LSARs 0 and 1; or 2 and 3; 
or 0,1,2 and 3. 

• The length count or the main storage address may be updated. 

• A test on exceptional conditions may be performed so that a branch to a 
specific address can be initiated upon finding exceptional conditions~ 

• Dynamic address translation can be employed or circumvented. 

<I The invert switch can be set to true, invert, force ones or force zeros. 

A return from a subroutine can be initiated. 

• Dynamic address translation can be enabled or disabled. 

1 Invert Bit 
2 Parity Bit 

EyteO ] _______ gl~B _______ _ 

5 1 
6 1 Op Code Group 5 
7 1 

----8--1 = Main storage 
9 1.:: Eead 

10--1-:-Leave-subroutIne 
Eyte1 11 1 = TDR/O=CDB 

12 1 = set LSAR 0 and 1 
1] __ 1_~_§~!_1~AB_~_~n~_] 
14 
15 invert switch function ---'6--,-;-iest-exceptIon--
17 1 = halfword/O=byte 
18 1 = increment 
l~ __ l_=_~~£~~!~n! ______ _ 

Eyte2 20 
1j ______ ~2~_12_~ggfg~§ __ 
22 1 = Length count/O=address 

___ l] __ l_=_~glQ£~!~LQ=nQ_£~locate 

~i!_lL_1Eyg~!~ Generated internally by hardware. 

~!!_lL_R~~i!l_~!!~ Generated by assembler program. 

~!!_~L_~!~!_=_g~!i!1_f~ll£!i2n_~!!£ Generated by assembler program. 

16 

~!!§_~_!hI2~g~_~L_9E_fQ~~~ These bits represent a pattern that is unique 
ana common to all group 5 instructions. 

~l!_l~L_b~~!g_~]~!Q~!!llg~ This bit provides the means to branch back from a 
subroutine to the program level that was in effect prior to the last level 
switching oferation. The instruction that has bit 10 on is still part of 
the subroutine and so is the next instruction. However, the instruction 
that follows thereafter is the first one in the previous level. 

~!1_11L_1~~Lf~~£ 
da ta is place·d .. 
CDE. 

This bit determines the register into which the fetched 
Logical 1 level specifies TDR, logical 0 level specifies 

Ei!_12L_~~!_1~~E_~_~ng_l~ When this bit 
propagated to LSARC and TDR bits 4 •••• 7 are 

is on, TDR bits 0 •••• 3 
propagated to tSAR1. 

are 

l!!!Bg_!Q!~£ If main storage data enters TDR the propagated data is not 
valid in the LS.ARs until 450 nano sec (1 IPU cycle) after the read from 
main storage hds ended. This means that the microinstruction that follows 
immediately after the read from main storage cannot use the LSAR contents. 
However, the propagated data is available to the instruction thereafter 
(the second after the read from main storage). 

This t~ming restricticn does not aFply if main storage data is placed into 
CDR because then the TDR contains valid data from a previous operation. 

~i!_1]L_~~!_b~!E_2_~B~_]~_ When on (1), TDR bits 8 •••• 11 are propagated to 
LSAR 2 and TDR bits 12 ••••• 15 are propagated to LSAR 3. The same timing 
restriction as sFecified under "Eit 12" applies when main storage data is 
fetched in TDR and this data is propagated. 

~i!!_1! __ ~n~_1~~_Inl!~!_~!!!£h_IY~£1!2D~ These bits determine the function 
of the invert switch, as follows: 

Bit 14 Ei t 15 
0 C = invert 
0 1 = true 
1 0 = force ones 
1 1 = force zeros 

.!!1!_1.§.L __ .!g.§!_~!£g.E!iQ!!.!. This bit provides the means for cbecking on 
interrupts, address stops, and similar exceptional conditions. When bit 16 
is on (1), data is fetched from main storage and simultaneously exceptional 
conditions are checked. If exceptional conditions are found, the micro
program branches to a fixed address where the exceptional condition 
handling routine begins. If exceptional conditions are not found, the 
microprogram proce'eds with the next seguential microinstruction. 



~!!~l]£_~~!!~~!gL~~!~~ This bit provides the means to determine the format 
of the data to be fetched. If either form of updating (increment or 
decrement) is also specif.ied in the aicroinstruction, bit 17 implicitly 
determines the updating aaount as either 2 or 1 as required for the 
selected format. 

!2!~i If the main storage read operation uses the contents of the machine 
instruction lAR as main storage address, the format must be specified as 
"halfword". because the smallest machine instruction (e. g. RR format) has 
halfword size. 

~l!_l~L_Jn£!g~gB!~ This bit determines the updating modus as plus 2 or plus 
1 as required for the selected format. Whether the updating pertains to the 
main storage address or to the length count defends on bit 22 which 
specifies either lEngth count or address. 

!Q!§_ll If "length count" is specified, bit 18 must be off because the 
length count can ce decremented only. 

!g!~_ll If a byte or a halfword is to be fetched from odd boundary, bit 18 
must be on. If either decrement or no update is specified for an odd 
address, data is fetched from the even boundary below the odd address. 

]l! __ l~~_~~f!~~~B!~ This bit determines the updating modus as minus 2 or 
minus 1 as reguired by the selected format. Whether the updating pertains 
to the main storage address or to the length count depends on bit 22 which 
specifies either length count or address. Either facility may be specified 
for decrement. 

~~~~!~1_!2!~_!Q~_~!!§_1~_~ng_l~~ Bits 18 and 19 cannot toth be on in the 
same instruction. However both bits may be off simultaneously which means
"no change" to length counts or addresses.

]!!§_l~_2ng-llL_~~f_1Q~~1_~!Q~~_!gg!~§§~ These bits are usea to address
four MSC LS re~isterswith fixed assignments as follows:

Bit 20 Bit 21

o
o
1
1

o = IAR (machine instruction address register)
1 = Cperand 1 address register
o = Oferand 2 address register
1 = I/O Common register

~J!_llL_1§n~!B_fg~B!L!gg!~§~~ This bit provides the means to specify either
the length count or the address as the facility to be updated by the main
storaye controller. The updated value is available when the main storage
operation has ended (i.e. for the next operation).

~!!_~JL_I~12£~!~LB2_~gl2£~~!£ This bit provides the means to read from a
fixed or known main storage location directly without going through the
relocate mechanism. Conversely, the relocation mechanism can be employed,
provided the extended control mode bit is on in the current PSi.

3125 MLM. Microinstructions

Group 6: Read from M S C Local Storage or Key Store

R!i~g~~_I~~f!!gnl The contents of either the right or left portion of an
MSC local store register or the contents of a key storage position are
fetched and placed into either the TDR or CDR.

o the contents of TDR can be propajated into LSAR 0 and 1; or 2 and 3; or
0,1,2 and 3.

~ the invert switch can be set to true, invert, force ones, force zeros.

o the MSC can be addresssed directly or indirectly.

o uith MSCTL (R) control information as to page sizes and storage limits
can be transferred to the main storage controller. (For details see
under 'Eit function description' fOL bit 17.)

1 Invert Bit
2 Parity Bit

EyteO l _______ g!~] _______ _

5 1
6 1 Op Code Group 6 ____ 1 1

8 0 = MSC LS
9 1 = read

j]==1=~=1~~~§=§~~fQYl1ne
Byte' jj __ l_~_1~BLg=f]] _____ _

12 , = set LSAR 0 and 1
j] __ 1_~_~~!_b~~E_l_~nQ_3
14

___ j£ ______ ln~gf!_§~!!fh_!~n£1!Qn
16 0 = ~SC LS/l=key store
17 1 = immeoiate (MSC'FL/MSCTLR)

Eyte2 l~ __ ~_~_gi!gf!Ll~ing!£g~l _______________ _
19 direct l_l~ _________ 13n2!~g_
20 MSC LS 1_2~ ___ g_=_I~~-§~1~~~
21 address 1_21 _________ i~~2~§g_
~l __________________ l 22

___ ll __ 1_!_1~!!LQ~!!gh!1_~1 __ 1~~E_~~~!g§§ __ _

~i!_IYnf!iQ~_~~~~!iE!i~y

~!!_lA_!D~~~!~ Generated internally by hardware.

~i!_lA_gg!!!l_~!!~ Generated by assembler program.

17

3125 MLM. Microinstructions

]i!_JL_Rl~]_=_g~f!!l_I]nf!iQn_~i~£ Generated by assembler program.

~~!§_§~~~~~L_QE_£Qg~~ These bits represent a pattern that is unique and
common to all group 6 instructions. Bit 8 at zero specifies' the source as
being the Local storage of the main storage controller.

]i!_lQ~_1§~~g_~]EI9]!iB~~ This bit provides the means to branch back from a
subroutine to the program level that was in effect prior to the last level
switching operation. The instruction that has hit 10 on is still part of
the subroutine and so is the next instruction. However, the instruction
that follows theredfteJ is the first one in the previous level.

]i!_11L_l]BLf~~~ This bit determines the register into which the fetched
data is placed. Logical 1 level specifies TDB, logical 0 level specifies
CDB.

~i! __ j1~_~!!_1~IB_~_~ng_l~ When anI this bit causes TDR bits 0 ••• 3 to be
propagated to LSARO and TDR bit 4 •••• 7 to be propagated to tSAR 1.

~i!_11L_~!! __ ~~A]_~_~ng_l~ This bit causes TDR bits 8 •••• 11 to be
propagated to LSAR2 and TDR bits 12 •••• 15 to be propagated to LSAR 3.

!Q!~_~Q_~i!§_1~_gng_j]£ When reading from MSC Local Storage or Key Storage,
there is no timing restriction associated with LSAR propagation. This means
that the propagated data is available at the end of the MSC LS or Key store
read operation.

Eits 14 and 15 Invert switch Function. These bits determine the function
______________ L _______________________ _

of the invert switch, as follows:

Bit 14 Bit 15
0 a = invert
0 1 = true
1 a = force ones
1 1 = force zeros

~i1 __ 1~~_~~~_1Q£~1_~!Q!gLligl_~~Q£g~ This bit specifies the facility from
which data is to be fetched. Bit 16 at zero specifies MSC Local Store, bit
16 at 1 specifies key store.

!2!g1 If either key store or leftportion of an MSC register is specified,
seven data bits are fetched. These seven data bits are always placed right
adjusted into TDR or CDn (whichever is applicable). The remainder o£ the
receiving reyister (bits 0 •••• 8) is set to zero.

~i! __ lIL __ !mm!Q~£~~~ (MSCTL/MSCTLR). When this bit is on, the entire
character of the read instruction is changed. The primary function is then
the transmission of control information to latches and special registers in
the MSC and/or Relocation unit whereas the reading of data from MSC local
store registers or key storage becomes the secondary function. Actually, a
true operation takes place because coded control information is sent to the
MSC and/or Relocation unit and simultaneously the same coding addresses the
MSC local storage or key storage and reads from it.

18

The control information is taken from the ALU-output* which depends on:

a) the data loaded into CDR and TDR~
b) the last ALD operation called for prior to the MSCTL instruction, and
c) the invert switch function specified by the MSCTL instruction.

For more details, see description of bit 18.

]i!_l.§L_~i!:~£!Ll.n.Qi!g£!~ This bit specifies the source that is to supply
the control and/or MSC local-store address, as follows:

E!~_l~~~_j~!fg£!l£ Instruction bits 19 •••• 23 represent the source. Whether
this source represents an MSC LS address alone or an MSC LS address and, at
the same time, control immediate inftirmation depends on the state of ' bit
17. If'bit 17 is off (0) bits 19 •••• 22 represent the address and bit 23
specifies left or right. Bits 19 to 22 have the binary values 8,4,2~1
assigned and are thus capable of addressing the upper half of the ~sc Local
Storage because a bit with value 16 is forced by t~e MSC itself.
ConsequentlYI MSC LS registers ranging from address 10 to 1F can be
addressed.

If bit 17 is on (1), the meaning of bits 19 ••••• 23 is a control code.

The control code function of bits 19 •••• 23 is as follows:

Forced 19 20 21 22 23

1 1 1 a 0 0 = i~£~~~en!~~!~!io~_~nt~~~Y_l

1 1 0 0 1 a = .!£!!~_~1!; meaning all of -the sixteen
associative registers

1 1 0 0 0 a = §~!~glo£2tion_~Qg~, meaning
details such as page size, and
relocation yes/no which are taken
from PSi and control registers

1 1 a 1 1 0 = se!_!:g!.Q£~!:iQ!!~£.Q.!!!!!~£_!!L!!~.!__1

li!_1~~1_J1B~i£!f!1~ When indirect is specified, bits 19 •••• 23 are ignored
as address or control code. Instead, two choices exist as to the source l as
specified by bit 20 (TDR select):

Bit 20=1. When bit 20 is at 1 level, LSABO chained with one of the four
LSAR's-furnish the address/control code.

~!!_2~~~_jl~B_~~1~£!1~ When bit 20 is at 0 level, six specific TDR bits
provide the address/-con trol code.

The indirect method of specifying the control code (bit 17=1) allows for
the following control operations via the following source bits:

1~!B~_~1!§_l_2n~_] + ~~1~f!~g_1~~]_~!!§_Q~j~lL]

1~~_£i!_Q_2n~_1 + !]]_~!!§_QLjL~Ll

Eit Number

LSARO LSARO,1,2,or3
230 1 2 3

TDR TDR
€ 701 2 3

COx x .x 1 = .§~J:_.ill~l:'!!_§.!.Q!:~.9:.§_.§i~~L the main storage size
information stored by a previous IPU operation
into the MSC local storage will be transferred
tc latches in the MSC

o 0 x x x 0 = ~!i!~_~§§Qfi~!iY~_~ff~~L the ALU output is
transferred to an AA register addressed
hy the relocation counter

a 1 x x x 1 = ~f!!g_£g~!_~ggIg§§_lQfgl_§!QI~~ the ALU output
is transferred to a relocation local storage
register addressed by the relocation counter

1 1 0 0 1 a =]!i!g_~l.!L meaning all of the sixteen associati ve
registers. Write all is used for purging (invalidating)
the TLB

1 1 0 0 C 0 = §~!_£~lQf~112fl_~2QgL meaning page size,
segment protection, and relocation yes/no,
details that are fetch~d from the PSW and
the control registers

1 1 0 1 1 a = §£~_I£lQ£g!lQD_f2~.!!!~I_!Q_h~!_1
Note: bits identified by XXX are ignored

~g!_tl~ill-~iQ~~gg_Si~§~ The three bits denoted as XXX represent the values n 2, 1, and are thus capable of specifying eight different MSClocal
_~orage registers. However, as an engineering convention, MSC LS-Reg 0 is
always the one that has been loaded with the main storage size. The XXX
bits will, therefore, be zero. Either the SVP or the 2311 or 2314 emulator
supplies the main storage size.

~11!~_~§§9£i~!l~£_!~!~1~ The three bits denoted as xxx in the pattern
refresent the values 4,2,1 and are thus capable of addressing any of the
eight re~isters in the associative array_ The selected register is loaded

3125 MLM. Microinstructions

with the ALU outFut which is interpreted as follows:

ALU bits ---) 1_Ql_l1_~1_Jl_~1_~1_&1_11~1_211Qll111~11111~121
Logic Address bits116117118119)20t I xl xl 8191101111121131141151

l
1 1--- 0 = validate

1 = invalidate

]Q!g~ x is ignored.

Rrite Real Address Local Stor~. The contents of the relocation address
~~unt~-ar~-used~~addr~ss-a-specific register. The selected register is
loaded with the ALU output which is interpreted as follows:

B£!~~ x is ignored.

liri1g-ALL~ Each of the sixteen registers in the associative array is
loaded with the ALU output and will thus contain identical data. The ALU
output is interpreted as follows:

ALU bits ---) 1_~1_11_l1_l1_~1_§1_~1_11_~1_211Qll111111Jll~11§1
1 nl nl nl nt nl 1 xlxl nJ nl nl nl nl nt nJ nl

...
1
1--- 0 = validate

1 = invalidate

!g!gl x is ignored
n is any value

Set Relocation Mode. 7he ALU output is transferred to latches in the MSC
whIch-uses-the-riiformation to control the access operations accordingl-y-
The ALU output is interpreted as follows:

ALU bits ----) o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ESW and control x x x x 12 5 24 9 x x x x x x x x
Reg bits

!1Q_~j!_~ represents PSi bit 12 which specifies:

EC Mode when a
BC Mode when 1

!~Q_~i!_2 represents PSW bit 5 which specifies:

Dynamic Address Translation when 1
System/360 Addressing Mode when 0

19

3125 MLM. Microinstructions

A1!!_.Qit_l represents bit 9 of control register 0 which specifies:

2K Page Size when 1
4K Page Size when 0

InY~l~£~!~L!~lid~!g_Ma!£ging_~nt~y~ One of the sixteen registers in the
associative array which matches ALU output 0 ••• 4, 8 ••• 15 is loaded with the
ALU output 0 ••• 5, 8~ •• 15. ALO bit 5 invalidates the entry if it is at
logical 1 level.

ALU bits ---) 0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

Logic Addr.bit --)16 17 18 19 20 x x 8 9 10 1 1 12 13 14 15
t
I ,--- 0 .- validate

1 = invalidate

Group 7: Arithmetic/Logic Operations to MSC Local Storage or Key Storage

i!i~!!1_1YE£!i2E~ The contents of TDR are added, ANDed , CRed or Exclusive
CRed with the contents of CDR and the result is placed into either the
local storage or key storage of the Main Storage Controller.

20

• TDR bits 0 •••• 3 can be suppressed (set to zero) or not.

• The ALU can be controlled so as to force a carry into the low order
position or to prevent a carry from a previous operation from entering
the low order position.

• Addresses alone or addresses plus storage key can be placed into an MSC
LS register.

• Results that are to be stored into MSC Local store or key store can
simultaneously be placed into IPU local storage.

1 . Invert Bit
2 Parity Bit

EyteO ~ _______ ~l~~ _______ _

5 1
6 1 Group 7 Op Code ____ 1 1

8 0 = MSC LS
9 0 = write 10--'-;-ieave-subroutlne-----

By tel 11 1: sUFpress TDR 0 •••• 3
12 1: force carry
J] __ 1_=_~g§~!_gg!~1_1g!~h ___ _
14
15 ALU function ---16--0-;-MSC-LS/1;key-store---
17 1 = alter key

Eyte2 l~ __ Q_=_~i~§f!Ll=i~gi!§£! __
1~ __ 1_=_1£~_12_~!g~~_1_12 ___ ig~~~ed _____ _
20 1_~Q __ Q_=_1~~_~§lg£!
21 direct 1_~1 ___ 13nQI~g ____ _
~1 _____ ~~f_1§_!~~!~~!1 22 LSAR

___ ~~ __ l_=_l~!!LQ=~i~]!_l_l] __ ~~£~~§§ _____ _

!tit_E:!!!!£.t!Q1!_Q~§££!E~iQ.Y

E~!_l~_~~Y~~!~ Generated internally by hardware.

~!!_lL_R!!i!l_~i!~ Generated by assembler program.

]i!_~L_i!£~_=_~~!i!~_f~Qf!i2Q_~i!~ Generated by assembler program.

E!!~_~_!fl!g~~~_2L-Q~_££~~-g!Q~£_1~ These bits represent a pattern that is
unique and common to all group 7 instructions.

~!!_1~~_1~!lg_~Y~fQY!ing~ This bit allows the microproqram to return from
a subroutine to the level that was in effect prior to the last level
switchiny oFeration. The instruction that has bit 10 on is still part of
the subroutine and so is the next instruction. Only the instruction
thereafter is the first one in the previous lev~l.

]i!_11L_~Yllf~§§_1~g_D!!§_~~~~~1~ This bit provides the means to set the
leftmost fou~ bits of TOR to zero. This facility is used to delete the
reqister address field (El or B2) of an operand address so as to retain the
12-bit displacement (D1 or D2). This allows the displacement (alone) to be
added to the contents of a base register (general purpose register) •.

]1!_JlL_X2I~~_f~!Il~ 1his bit allows a carry to be generated and inserted
into ALD [osition 1E (the low order position).

~1! __ 1]L_B~§~!_f~f!1_1~!fh~ This bit resets the carr} latch to the "no
carry" state!:iO as to rrevent a carry frOID a previous ALU operation from
entering ALU position 15. An operation that has bit 13 on is. in effect,
always a stand-alone oferation.

Ei!§_J~_~ng_j~L_!1]_I~n£!iQn~_ These bits represent a pattern capable of
specifyin0 four different arithmetic/logic operations, as follows:

Bit 14 Eit 15

0 0 = OR
0 1 = Add
1 0 = AND
1 1 = Exlusive OR

]~!_J§L_~~~_bg~~l_~!g£~g~L~~~_~lg£~~~~ This bit specifies the destination
of the ALU result. When bit 16 is 0, the result is stored into either the
left o~ right portion of an ~5C L5 register, as specified, by bit 23
(left/rl.ght).If bit 16 is 1, the ALU resul t is stored into key storage. The
ALU result is a halfword (bits 0 •••• 15) and so is the right portion of
every MSC LS register. However, the left portion of an MSC LS register as
well as a key storage register are only 7 bits wide. Therefore, the
following description explains which bits are stored in which positions
defending on which destination has been specified.

]J!_l§=gL_~~!_~l=QL means store operation into right portion of MSC LS
register, as follows:

~SC LS

ALU o 1 2 3 4 5 6 7 PIS 9 10 11 12 13 14 15 P
I I I
I I
1 V

Reg. I •••••. I ••••• I •••••••••••••• •• I· •• ••••• •·•••••••• I
I I
Ileft pcrticnl right portion

3125 MLM" Microinstructions

~i!_l§=g~_~l!_~l=lL means store oreration into left portion of MSC LS
register. Actually, only two bits are stored because the physical size of
the address is 18 bits. During the store operation, the MSC checks the
binary value of the address and if the insertion of the two bits increases
the value to greater than 256K, the address check bit (bit 4 in the left
Eortion) is turned on. The parity in the left Fortion is generated ty the
MSC.

MSC LS Reg

ALU 0 1 2 3 4 ~ 6 7 IF 8 9 10 11 12 13 14 15 P
I I I

I I
I I

-----------------------------------. I
I
I
I
1

I 14 5

left Fortion

----------------------------------_.
I
I ,
6 PI ••••••••••• I · .. ········I

right portion

~J!_l§!J, means store operation to key storage. In this case ALU tits
8 •••• 14 are stored, as shown. ALU bits 8 ••• 11 represent the key, while the
rest of the bits have the following functions:

ALU bit 12 = reference bit
ALU bit 13 = change bit
ALU bit 14 = prctection bit

ALU 0 1 2 3 4 5 6 7 PI 8
) I

I
1
1

!gl_§.!:Q!g3~IO
I
I

9 10 11 12 13 14
I
I
I ,

2 3 4 5 6

keyword

15P
0 I ___ I

I
1
PI

I
I

]Q!~l ALU bit 15 must be zero to ensure correct key parity.

]J!_11L_~1!~£_~~1~ This bit provides the means to alter the ke Y
d

1a"n the
selected MSC local storage register in addition to storing a new a ress.

21

3125 MLM. Microinstructions

However, when altering the key, the address storing that occurs
concurrently must go into the left portion of the MSC L5 register, i.e.,
bit 23 must be on when bit 17 is on. The following ALU bits are stored:

012 3
1 ____ -1

J
I

q 5 6 7 FJS 9 10 11 12 13 14
000 0 IJx x x x x x I

I J
J J

15 P
I
J
I ________________ 1

I I 1
J
I
1
J
1
)

1
J
1 _-__ 1. __

I I

1 I 1 ______________ ~ __________ J J
I

1 1 I I _______________________________________ 1
I
I I I

I I
I I

----------------------------------______ 1

I J
I I
I 1 , ,

I
J
1
J ,

10 1 2 3 Pl4 5 6 P 17 8 9 10 11 12 13 14 P J 15 16 17 18 19 20 21 22 P J
I I I I I
I J I

Note: ALU bits 4 •••• 7 must be zero to ensure correct parity for the key.
itO-bits 8 •••• 13 are ignored.

]!1_1~L_~1!~f!Llngj!~£!~ This bit determines the method of addressing the
MSC local store dnd, in case of the special operation, the method of
addressing MSC local storage, logic address storage, o~ re~l address storage.

l!_~i!_l~ __ i§_Q_j~i~~£!l~ If direct addressing is specified, two address
Lits are forced by the MSC while four bits are provide~ by the
instruction# as fellows:

g!!.Sli.Dl
!gl.Y.§l

Forced, Forced, 20, 21. 22, 23
16, 8, 4, 2, 1,left/right

I! __ ~i!_l~_!§_l_jln~i~g£!l~ If indirect addressing is specified, two
indirect addressing sources are available as specified by bit 20 which
then has the logical meaning "TDB Select".

]i!_lQ~1_1nQ!_1~E_§§1~f!1~ The addressing source is composed of two bits
out of LSARO and four bits out of the LSAR selected by instruction bits 22
and 23 , as follows:

1'§~E.Q +
2,3,

16,8, 4,2,l,leftjright

]i!_2Q=Q_l1~B_§~1§f!l~ The addressing source is composed of specific bits
in the TDR exclusivel1, as follows:

6, 7, 0, 1, 2, 3 (TDB bits)
16, 8, 4, 2, 1, left/right

22

~!1_1~~_lgQ_1~_~!2£~~ This bit is available only when direct addressing
(bit 18=0) is specified. When bit 19 is aD, ALU bits 0 •••• 15 are placed
into IPU local storage and this occurs concurrently with the MSC local
store or key storage transfer operation, The MSC LS address bits will then
address also the IPU local storage. as follows:
Bit 22 Bit 21 Bit 20 IPU LS Register No (decimal)

1 1 1 = 71
1 1 a = 70
1 0 1 = 69
1 0 0 = 68
0 1 1 = 67
0 1 0 = 66
0 a 1 = 65
0 0 0 = 64.

!2!~.i. The IPU forces the missing address bits.

~!1_1].L_bgl.!L!Lkl!!.!.!. This bi t specifies the portion of the selected MSC LS
register into which data isstored. When indirect addressing is specified,
the low order bit of the chained tSAR provides the same function.

!2!!_11 When "alter key" is specified, the portion must be specified as
"left" to ensure correct key placement.

!~~2fe~_Qf-H~in_~1Q~ggg_Si~~ (for information only). The main storage
size The main storage size is set by a store operation into right portion
of MSC local store register. The contents of this register must be set
into hardware latches by a control instrucitcn to become effective. The
following table shows how the various main storage sizes reside in the
right portion of an MSC local store register:

MSC LS Register

Bit Number ----=;----
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Megni!!g
256K (when 1)
128K

64K
32K

8K
4K

)
)
)
)
) ignored
)
)
)

Allow Disk
Allow IPU

!!Q.!:g: "Allow Disk" is a hit
that permits the Disk rop to
access the 2311 or 2314 buffer
locations when the emulator is
acti ve.. "Allow IPU II is a hit
that permits the IPU to access
the 2311 or 2314 emulator
buffers. No other facility has
access to the emulator buffers.
Notice that up to eight
individual 4K or 8K buffers are
created at the upper end of main
storage by setting a size
smaller than the physical main
storage size.

Group 8: Test Instructions

f~~m~f1_XYn~!i~Bl A test is pe~fo~med on the presence or absence of a
specific condition. If the test finds the specified condition, the fTest
FI' does not change its status. If the specified conditi6n is not found,
the 'Test-FI' will be reset. The status of the 'Test-FI' can be tested by a
sutsequent 'Eranch on test'-inst~uction (Group 9: ET, ETS, BTM). The
microprogram will branch only if the 'Test-FI' is found on. The 'Branch on
test'-instruction causes the 'Test-FI' to be set. Therefore a second
'Branch on test'-instruction will be successful in any case.
Since the lest instruction can neve~ set the 'Test-FI', it is possible to
AND several conditions by issuing several Test instructions in sequence
cefore testing the status of of the 'Test-FI'. If either one of the tested
conditions does not exist, the 'Test-FI' will be ~eset by the Test
instruction and the subseguent 'Branch on test'-instruction is not
successful.

~§fQBg~f1_1~~f!1~D§1 None.

1~YQ!!!:_Qf_.Tg.§i_l!!§i£l!gtiQ!!

1 Invert Bit
2 Parity Bit

By teO] _______ fl~] _______ _

5 1
6 0

____ lOOp Code Test
8 a
9 1

jQ==1=~=1~~1§=§~~fQ~!!ng=JO = T / 1 = TR)
Bi tel lj __ l_=_QE_~£g~ __________ _

j~ __ ~_=_!g§!_12~_2n_L_1_=_test for off
13
14 ignored
15

---j§-------------------------
17

Eyte2 18
19
20
21
22

Test Condition
Specification

___ 1] ________________________ _

3125 MLM. Microinstructions

Ei!_1~n~!1Q~_~~§f£i~!lg~

~l!_lL_IB~g!!~ Generated internally by hardware.

~1!_1L_E!fi!1_~!!~ Generated by assembler program.

~~!§_~~~~~~_~ng_jlL_Q£_~Qg~~ These bits represent a pattern that is unique
fo~ the test instruction.

]!!_1]L_l~~~~_~~EfgE!1n~~ This bit provides the means to return from a
sucroutine. The instruction which has bit 10 on is still part of the
sub~outine and so is the next instruction. However, the instruction
thereafter is the first one in the previous level.

].i1_11L_1.§.§!_!gf_Q1!L.Q.f.!~ This bit provides the means to check for either
the presence (on) or absence (off) of the specified condition (see table
below).

~~!§_11~~~~2lL1g~!_~Qngl!!Qn_~Eg£1.!1~~!1Qn~ These bits can specify in
binary notation 128 different conditions. The conditions listed below are
presented as questions. It should, however, be noted that each such
question can be stated in true or false form by setting Eit 12 (on/off)
accordingly. The presently assigned test conditions are as follows:

Table of Test Condition Specifications

Instruction bits
17 •••• 23 12

Test Condition

coo 0000 0 Any I/0 Interrupt

1 (Not) Any I/O Interrupt
COO OeOl 0 External Machine Check

1 (Net) External Machine Check
COO 0010 0 (Not) Previous "Error

1 Previous E~ror
COO 0011 0 (Not) External Damage

1 External Damage
000 0100 0 (Not) SVP Hardware Error

1 SVP Hardware E~ror
000 0101 0 (Not) lOP Error

1 lOP Error
COO 0110 0 Program Interrupt

1 (Not) Program Interrupt
COO 0111 a SVP Interrupt

1 (Not) SVP Interrupt
COO 1Cxx a ICP Response

1 (Not) lOP Response
COO 11xx a (Not) FP Overflow

1 FP Overflow
001 ceoo a ICP Busy

1 (Not) lOP Busy
001 0001 a (Not) Page Carry

1 Page Carry

23

3125 MLM. Microinstructions

Instruction bits
17 •••• 23 12

Test Condition

001 0010 0 (Not) MS Address Stop
1 MS Address stop

001 0100 a lOP not operational
1 (Not) lOP not operational

001 10xx a (Not) TOD Security switch
1 TOD Security switch

00 1 l1xx 0 (Not) SVP Response
1 SVP Response

010 OCOO 0 (Not) TDR bit 15
1 TDR bit 15

010 OCOl 0 (Not) TDR bit 7
1 TDB bit 7

010 0010 a (Not) TDR bit 11
1 TER bit 11

010 0011 a (Not) TDR bit 3
1 TER bit 3

010 0100 0 (Not) TDR bit 13
1 TER bit 13

010 0101 C (Not) TDR bit 5
1 TtR bit 5

010 0110 a (Not) TDR bit 9
1 TDR bit 9

010 0111 0 (Not) 'IDR bit 1
1 TDR bit 1

010 1000 0 (Not) TDR bit 14
1 TDR bit 14

010 1001 0 (Not) TDR bit 6
1 TDR bit 6

010 1010 0 (Not) TDR bit 10
1 TDR bit 10

010 1011 0 (Not) TDR bit 2
1 TDR bit 2

010 1100 0 (Not) TDH bit 12
1 TDR bit 12

010 1101 0 (Not) TDR bit 4
1 TDR bit 4

010 1110 0 (Not) TDR bit 8
1 TDR bit 8

010 1111 0 (Not) TDR bit 0
1 TDR bit 0

011 xxx x 0 Exceptional Condit. 2
1 (Not) Exceptional Condition 2

100 OCOO a Not LSAR 2 bit 3 and not LSAR 2 bit 0
1 (Not) Not LSAR 2 bit 3 and not LSAR 2 bit 0

100 xxOl 0 (Not) ALU zero aycumulate
1 ALU zero accumulate

100 0010 0 Not LSAR 3 bit 3 and not LSAR 3 bit 0
1 (Not) Not LSAR 3 bit 3 and not LSAR 3 bit 0

100 xx11 a (Not) ALU carry acc.
1 ALU carry acc.

Instruction bits
17 •••• 23 12

Test Condition

-----------~-------------------------------------
100 0100

100 0110

100 1000

100 1010

100 1100

100 1110

101 oeoo

101 0001

101 0010

101 0011

101 01eO

101 0101

101 0110

101 0111

101 10xx

101 l1xx

110 0100

110 0101

110 0110

110 0111

110 1000

110 1001

110 1010

110 l1xx

a (Not) Test Cond. Code, {No CC match}
1 Test Condition Code, (Ce match)
o (Not) ALU bi t a accumulate
1 ALU bit 0 accumulate
o (Not) LSAR 2 bit 3
1 tSAR 2 bit 3
a (Not) LSAR .J bit 3
1 LSAR 3 bit 3
o (Not) tSAR 2 '= LSAR 3
1 tSAR 2 = LSAR 3
o (Not) C a
1 C 8
o (Not) Execute
1- Execute
o (Not) stop key
1 Stop key
a (Not) Macro Instruction step
1 Macro Instruction Step
o (Not) Macro Address stop
1 Macro Address Stop
a {Not} IABBoundary Check
1 IAR Boundary Check
o Relocation Exception
1 (Not) Reloca tion Exception
o (Not) MSC Check bit 2
1 MSC Check bit 2
o (Not) MSC Check bit 1
1 MSC Check bit 1
o (Not) Program Event Recording
1 Program Event Recording
o (Not) Length Count Carry
1 LC Carry
a (Not) Indicator bit 1
1 Indicator bit 1
a (Not) Indicator bit 2
1 Indicator bit 2
o (Not) Indicator bit 3
1 Indicator bit 3
o (Not) Indicator bit 4
1 Indicator bit 4
o Dec.Data CDB
1 (Not) Dec. Data CDR
o TDR (14 and 15 = O)
1 (Not) TDR (14 and 15 = 0)
o Exceptional Condition 1
1 (Not) Exceptional Condition 1
o (Not) ALU Carry Latch
1 ALU Carry Latch

24

Group 9: Branch on Test Instructions (Branch Type 1)

Ifi~~f1_fY]fligB~ A cllGck is performed on the state of the 'Test-Fl' thdt
was reset or left unchanged by a rrevious test instruction (group 8). If
the latch i.s found to ce on, the next se']uential instruction address
locat~~ in the curront IAr is iJnored and, instead, the branch address
contained in the "Branch on Test" instruction is used to read out the next
microinstruction (tranch) •

If the latch is found to be off, the contents of the current IAR are used
to red-d out the next microinstruction (no branch) and, in aedition, the
latch is turned en. The turned on latch provides the means to convert an
unsuccessful Lranch to an unconditonal branch upon repetition.

• Levl~l switchln] Cdn be specified or not. If specified, level switching
o c cur s () Ii 1 i if the t ran chi s s u c c e s sf u I •

1 Invert Eit
2 Parity Bit

Elt80] _______ £l~B _______ _

5 C
6 0 ____ 1--------------
E ______ ~~1!fh_lg1g1
9

10
Dyte1 11

12
13
14 Eranch

___ 1.9_
16
17

E1'te218
19
20
21
22
23

Address

~i!_lL_IB!~!!~ Generated internally by hardware.

~!!-~£_g~!i!l_~!!~ Generated ty as~ern1ler frcgram.

E!!-]L-glfB_=_g~!i!~_£~Ef!12E_~1!~ Generated by assembler fro~ram.

3125 MLM. Microinstructions

1!!§--1_!~~ __ ~~_~~J!fh_1~!~1~ These bits specify either of three functions
as follows:

!L!!_l ~i:.!_§

0 0 = no level switchinJ
0 1 = switch to subroutine
1 0 = switch to main routine

The level switching operations are deEineJ u.s folloilol3:

B2_~~!§1_~~i!fh!ng~ The IPU microproqram Cdn run in either one of three
levels. Ccnseguently, three types of microinstruction 3ddress registers
dre mdintdined as follows:

lAB C
IAll 1
IAH 2

= main level
= subrcutine level
= trdp routine level

The microprogram runs in a given level when the IAH of thdt level.
addresses the control store dnd subsequently receives the updated
instructien address which then, aJain, addresses the centrol store. The lAB
in charge is termed the "current IAR".

If no level switching is specified, and the branch is successful, then the
contents of the current IAR are i~nored and the branch address in the
instruction reads out the next microinstruction. However, the branch
address is ufdatedand ~laced into the current IAR. The program thus remains
in the same level.

~~i!£h_!2_~Y~f2~!in~~ The specification "switch to subroutine" is effective
cnly if the bIdnch instruction itself is located in the main routine. If
the branch instruction is successful and switch to subroutine is specified,
the current lAB (this would be IAR 0) is i(jncred and the branch address in
the instruction reads out the next microinstruction. The address of the
tranch instruction itself is updated and returned to lAR 0 (main routine).
However, the branch address is updated dnd placed into IAR 1 (subroutine).
As of this moment, centrel has passed from IAR 0 to IAR 1 and IAR 1 is in
char~e of addressing the control storage.

B9!§1 IAR 0 contairrs the address of the instruction that would have
followed if the branch had not been successful. Any instruction in the
subroutine level that has the "leave subroutine" bit (bit 10) on will
return control to IAR 0, hence, continue in the m~in routine.

Switch te Main Routine. This specification is effective in any branch
I~~~~~~iI~~-i~~i-I~-~~~cesful and not located in the main routine. Thus a
successful branch instruction in the sub or trap level has the effect that
the current IAR (lAB 1 or 2) is ijnored aud the branch address is used to
fetch the next instruction. The address of the branch instruction itself is
not updated, however the branch addres~ is u[dated and flaced into IAR 0
(main routine).

For Information. A branch instruction cannot go into the trap level. The
trap-level-Is-forced by hardware events only. However, any instruction in

25

3125 M LM. Microinstructions

the traF level that
control to the lAR that

has the "ledve subroutine" bit (tit 10) on, returns
was in charge at the time when the trap occurred.

§E~~i~!_!Qi£l If traf~ing occurred prior to
instruction, this instruction is repeated upon
routine.

Group 10: Conditional Branch Instructions

the completion of a micro
returning from the trap

Iflm~f~_lBBfli2n§~ A condition which is specified in the instruction is
tested. If the specified condition is found, the address provided· in the
instruction is used to fetch the next microinstruction. If the specified
condition is not found, the program continues with the instruction
srecified in the current rAR.

• Level switching is normally not performed, except where specifically
sta ted.

fQ~m2n_1~12~!_g!_g!2]~_lQ_!n§lI~g!!Qn§

1 Invert £i t
2 Parity Bit

EyteO] _______ R!~~ ________

5 0 0
6 0 or_l ___ Qf_fQg~ ____
7 1 J x ----] 1 ___ 1x x = condition specification

~--~----!--------------10
Eyte1 1 1

12
13
14 Eranch

___ 1.2
16 Address
17

Eyte2 18
19
20
21
22 ___ 1] ______________________

~it_1L_ln!g~i~ Generated internally by hardware.
!!il_.fL_.f~.tit.Y_~i!.. Generated by assembler program.
!!:!t_1L_£f~l!_=_!:~I::i!;;Y_£:}!!!£!!'Q!!_!!!'!.:.. Generated by assembler program.

26

]1i~_1~~~2L_~2Dgi!J2]_~f~fl~if2!12B~ These bits are used to specify eight
different branch conditions. However, by using an unused pattern (tits
5,6,7, and 8 = 0011) of the Type I branch instructions (Jroup 9, where hi t
6 is a logical zero), the total number of branch conditions is raised to
10. The assignment is as follows:

]'!!_.Q].!.t_l 12.!!_.§

1 0 0

1 0 1

1 1 0

1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 1 1

0 1 1

!!l!_:l

0

0

0

0

1

1

1

1

0

1

= Branch and switch to subroutine
level if LSABO not zero.

; Branch dnd switch to subroutine
level if LSARO is zero.

= Branch and switch to subroutine
level if LSAB3 not zero.

= Branch and switch to s~broutine
level if TDR bits 8 •••• 15 do not
contain decimal data.

= Branch in level if current ALU
exit is zero.

= Branch in level if current ALU
exit not zero.

; Branch in level if accumulated
ALU result is zero. If last
operation was executed with six
co~rection enabled, then the
condition is satisfied if ALU
bits 8 •••• 15 are zero.

- Branch in level if TDTI hit
position 0 contains a logical 1.

= Branch in level if the last
ALU operation with accumulate
bit on produced a carry out of
ALU position o. If ~his was an
operation with six correction
enabled, then the condition is
satisfied by a carry out of ALU
pcsition 8.

= Branch in level if MSC signals
length count overdra~, dnd
reset this si]nal.

Group 11: Shift Instructions

ff!m~IY_!~]~!ig~~ The contents of C~R are shifted by any
15 bit r-ositions either to the left or right and the
returned either to C~R or TDR.

amount from 0 to
shift result is

•

•

•

a

The shift amount can be specified direct (in the instruction) or can be
taken from one of the 4 LSARs •

The shift amount can be specified either in true or complement form.

The contents of TDTI can be pror-agated into LSARs 1 and 2 or 2 dnd 3 or
all LSARs.

The invert switch can be set to true, invert, force ones or force zeros.

• The shift instruction can initiate a return from a subroutine.

o For mnemonic NOP (R) the bit t:attern of the instruction word is similar
to SHC (H), only instruction bits 1€ ••• 23 must be zero. Bits 12 •• 15
(LSAR setting and invert switch) keep their normal functions dnd may be

one or zero.

1 Invert Bit
2 Paritj Eit

EyteO l _______ ~l~~ _______ _

5 1
6 0

____ 1 0 Cf Cede, shift
8 0
9 1 10--'-;-leave-sutroutIne---

Eyte1 }}==~=~=Qf=ff~§============ 12 1 = set LSAR 0 and 1
13 1 = set LSATI 2 and 3 14-------------------------
15 invert switch function ---,6--'-;-leftjo;rIght-------
17 0 = direct/1=indirect

Eyte2 18 0 = true/1=cemflement
j~ __ l_=_l~~LQ=~~~ _____________________ _
20 120
21 direct l~l ___ i~ng~~g ________ _
22 shift ammount 122

___ 1] _______________ 12l ___ L~A~_gQgfg§§ __ _

3125 M LM. Microinstructions

~1!§_~~~~~~ __ 2~g_Jj~_QE_£Qgg~ The3e bits represent a pattern that is unique
and common to all shift instructions.

]!!_1~L_1§~!§_~]~fBB!~B§~ This bit frovides the means to return from a
sutroutine. The instruction which has bit 10 on is still part of the
subroutine and so is the next instruction. However# the instruction
thereafter is the first one in the rrevious level.

]i!_J2L_~§1_1~~B_~_~Bg_j~_ This bit causes TDR bits 0 ••• 3 to be propagated
to LSAR 0 and 1DR bits 4 •••• 7 to LSAR 1.

~!! __ 11L_~~!_1~!B_~_~n~-J~_ This bit causes TDR bits 8 ••• 11 to be
propagated to LSAR2 ana TDR bits 12 ••• 15 to LSAR 3.

]1!_1~_2ng_j§Lln~gf!_~~1!~h_X~n£t~Qn~ These bits determine the function of
the invert switch as follows:

]i!_l~]:i!_1.§

0 0 = invert
0 1 = true
1 0 = force ones
1 1 = force zeros

]1!_1§L_1§i!LB:igh!~ This bit determines the shift direction as toward left
(high order) or right (lew oraer).

]i! __ 11L_~!!gf!Llng1!gfl~ This bit defines the facility that is to provide
the shift amount. If direct is specified# instruction bits 20 ••• 23
represent the shift amount. If indirect is specified, instruction bits 22
and 23 address an LSAR the contents of which represent the shift amount.

~2!g~ The indirect specification of the shift amount can conflict with
LSAR setting if TDR-data is propagated into that LSAR ~hich provides the
shift amount. Results are unpredictable.

~!!_l~~_lI~gLf~!Rl!m!n!~ This bit defines ho~ the shift amount is to be
interpreted. If true is specified (bit 18=0) the shift amount is used as
is. If complement is specified (bit 18=1) # every logical 1 in the shift
amount is interpreted as logical zero , and vice versa (15'$ complement).

]i!_l~L_l]BL~]B~ this bit defines the register into which the shift result
is to be stored.

27

3125 MLM. Microinstructions

number of tit ~ositiGns by which the CDR contents are to be shifted,
provided bit 17 is C (direct). Whether the shift amount is taken as a true
or complement number is defined bi bit 18.

~i1§_~~ __ ~n~_~lL_1~~n_~~~fg~§~ If hit 17 srecifies indirect, bits 20 and 21
dre iJncred dnd tits 22 dnd 23 refresent the address of the LSAR that is to
provide the shift amount.

Group 12: Sense and Control Instructions

A byte is sensed from the addressed £acilit1 dnd placed either right or
left aojusted into either rDR or CD~. The unused portion of TDR or CDR
remains unchanjed.

Used tc set d srecific register, or to activate a functional line as
defined ty the contrel number.

1 Invert Bit
2 Paritj Bit

EyteO l _______ Elf~ _______ _

5 1
6 0

__ --1 0 Cp Code
8 1
9 0

1~=====g~!!~=!~~f!lg~=Ll~i~1~i~_!.Q_l!}~.!.!!_!g]!tng
Eytel 11 1 = 'IDR/O = CDR

12 1 = set LSAR 0 and 1 Bits 11 throuyh 15 are
lJ __ l_=_l~!!LQ_=_!i~B! __ _

28

14 ignored in the control instruction
___ j~ ______ inliI!_§~!!£h_~g~fli2n ________________ _

1§ ______ ~_~_§~n§~_L_l_~_£Qn1!Ql
17

Eyte2 18
19 Sense address
20 or
21 control number
22 ___ 11 ____________________________ _

• For sense instructions the invert switch can be set to true, invert,
force ones or force zeros.

• Both instructions can initiate a return from the subroutine.

~i!_lL_ln!!~!~ Generated internally by hardware.

~lj-lL-gg£B-=_~~!i!1_l~nf!~Qn_~~1~ Generated by assembler program.

~J!§-~~~~~~L_~~~_J§L_QE_fQ~g~ These bits represent a pattern that is unique
and common to all sense instructions.

~!!_lQL_b~~!~_~E~!9~!~n~~ This bit allows the program to return from a
subroutine to the level that was in effect prior to the last level
switching oferation. The instruction that has bit 10 on is still part of
the subroutine and so is the next one. However, the instruction thereafter
is the first one in the previous level.

~!!_llL_l~~Lf~]~ This bit specifies the register into which the sensed data
is placed.

~1!_12L_~~!_1~!E_~_~ng_l~ This bit causes TDR bits 0 ••• 3 to be propagated
to LSAR a and IDB bits 4 ••• 7 to be propagated to LSAR 1.

~i! __ 1~ l=lett/O=right.

~!1§_1~_!n~-1~L_lnl!!!_~M!!£h_lEnf!i~n~ These bits specify the function of
the invert switch as fellows:

Bit 14 Bit 15

0 0 = invert
0 1 = true
1 0 = force ones
1 1 = force zeros

~i!2-11~~~~~lL_~~~§~_!~~f~§§_Q£_f2n~£21_~y~be~~ These bits represent binary
numbers which address the facility to be sensed (for sense) or to be
activated (for control). The following addresses are ass~gned:

3125 MLM. Microinstructions

Sense Addr.

Instr. Bits

Sense Table

Sensed into •••
CDR (bit 11· = 0) J
TDR (bit 11 = 1)

17 •••• 23 J Left I Right I
J (13 = 1) I (13 = 0) I

Sensed Data

-------------1--------1---------1--------------------------------------
010 0000 I 0 ••• 7 1 8 ••• 15 J TaD Byte 5 [TaD Bits 40 ••• 47)
010 0001 I 0 ••• 7 1 8 ••• 15 In" 4 [n n 32 ••• 39)
010 0010 J 0 ••• 7 1 8 ••• 151 " ft 3 [.t It 24 31)
010 0011 1 0 ••• 7 1 8 ••• 15 1 tI n 2 (" 11 16 ••• 2 3)
010 0100 10 ••• 7 1 8 ••• 15 I It f1 1 (" It 8 ••• 15)
010 0101 I 0 ••• 7 I 8 ••• 151 tt n 0 (" n 0 ••• 15)

010
010
010
010
010
010

1000
1001
1010
1011
1100
1101

I I I
I 0 ••• 7 I 8 ••• 15 I
I 0 ••• 7 1 8 ••• 15 1
t 0 ••• 7 I 8 ••• 15 I
1 0 ••• 7 I 8 ••• 15 I
J 0 ••• 7 I 8 ••• 15 1

Difference
between

TaD-Clock
and

TOD-

Byte
" .,
n

5 (Bits
4 { "
3 (n
2 { ..

40 ••• 47)
32 ••• 39)
24 ••• 31)
16 ••• 23)

" 1 (n 8 ••• 15)
I 0 ••• 7 I 8 ••• 15) Comperator " o (" 0 •••• 7)

011
011
011
011
011
011
all

oeoo
OeOl
0010
0011
0100
0101
1001

I) I
I 0 ••• 7 t 8 ••• 15 t
1 0 ••• 7 1 8 ••• 15 I
I 0 ••• 7 I 8 ••• 15 1
) 0 ••• 7 I 8 ••• 15 I
I 0 ••• 7 I 8 ••• 15 I
I 0 ••• 7 1 8 ••• 15 I
I 0 ••• 7 I 8 ••• 15 I
I I I

100 oeoo I 0,1 t 8,9 I
1 2 I 10 I
I 3 I 11 1
1 4 1 12
I 5 I 13
I 6 I 14
I 7 I 15

101 ecce I 0 I 8
I 1 1 9
J 2 ••• 7 I 10 ••• 15

110 1000 I 0 J 8
I 1 J 9
I 2 I 10
I 3 I 11
J 4 I 12
I 5 J 13
I 6 I 14
t 7 1 15

111 1000 I 0 J 8
J 1 J 9
I 2 1 10
1 3 J 11
I 4 J 12
J 5 1 13
I 6 I 14
J 7 J 15

CPU Timer Byte 5 (CPU Timer 40 ••• 47)
.. 11 11 4 (" " 32 ••• 3 9)
n U tI 3 (1t n 24 ••• 31)
n tt II 2 (n " 16 ••• 23)
1t " " 1 (n •• 8 ••• 15)
n 11 " a (" " O •••• 7)

Accum. update carries from' Loc. 80
counter bit 24 to bit 23

Don't care
{Not} Timer Check
(Not) Loc. 80 Update Bequ.
(Not) Camp. Int.
(Not) CPU Timer Int.
(Not) Lac. 80 Timer Int.
(Not) Key Int.
ALU 8 ••• 15 zero
(Not) Except. Cond.
Don't care
MSCLS Addr.O

n 11 II 1
LC Crossing
No Associative Array
Successful Branch
Carry 0

It 1
Decrement
lAR Cnt. 1

11 n 0
CC 1
CC 0
(Not) Fixed Et.
Length Cnt. 2

" n 1
.. n 0

Match

29

3125 MLM. Microinstructions

Control Table

Control number I
(Instr. bits I Function

17 •••• 23) I
---------------1---

010 oeoo 1 Set 'laD byte 5 (bits 4 o ••• 47) from CDR bits 8 ••• 15
010 OCOl J " " " 4 (" 32 ••• 39) n " " " 010 0010 I " " It 3 (" 24 ••• 31) tt " " " 010 0011 J If " 11 2 (11 16 ••• 23) " " " " 010 0100 I " II " 1 (.. 8 ••• 15) tI " " " 010 0101 I 11 " 11 a (It o •••• 7) t1 " " n

I
010 1000 I Set Byte 5 (Ei ts 4 0 ••• 47)
010 1001 I Cifference " 4 (" 32 ••• 39)
010 1010 I l::etween n 3 (" 24 ••• 31)
010 1011 I 'lOt-Clock ., 2 (It 16 ••• 23)
010 11 CO I and TOD- ft 1 (" 8 ••• 15)
010 1101 I Ccrnperator tt a (" o •••• 7)

I
011 oeoo I set CPU Timer byte 5 (bi ts 4 o ••• 47) from CtR bits
011 CCOl I It n " tI 4 (.. 32 ••• 39) .. " " 011 0010 I It " " " 3 (" 24 ••• 31) " It " all 0011 1 " " .. " 2 (.. 16 ••• 23) " fI "
all 0100 I It " " " 1 (" 8 ••• 15) It II II

all 0101) " " " " a (" O •••• 7) II " "
I

all lCOl I set accum. update carries from Loc. 80
I Co un ter bit 24 to bit 23
I

100 CCOO I Immediate stop
100 CeCl I Set Indicate Bit 1 La tch
100 0010 I " tt " 2 " 100 0011 I II " " 3 " 100 0100 I Reset Trap Cond.
100 0101 I Reset StoF Key Latch
100 a 110 I Set Cond. Code LSAR a (2,3)
100 0111 1 Beset Indicate Bit 1 Latch
100 lCOO I I. " " 2 "
leO lCOl I .. " " 3 n

100 lCl0 I .. " " 4 " 100 1011 I Save (in case of trap condi tion)
100 1100 I Set LSAR 2
100 1101 I Set LSAR 3
100 1110) Set Indicate Bit 4 Latch
100 1111 J Beturn Saved Info

8 ••• 15
n

fJ

" tt

"

control number I
(lnstr. bits I Function

11 •••• 23) I
---------------1---

101 0000
101 0001
101 0010
101 0011
101 0100

110 0000
110 COOl
110 0010
110 0011
110 0100
110 0101
110 0110
110 0111
110 1000
110 1001
110 1010
110 1011
110 11CO
110 1101
110 1 110
110 1111

111 oeoo
111 0100
111 0101
111 ell 0 I
111 0111
111 lCOO
111 1001
111 1010

111 1100
111 1110

I lAB Decrement Ctl
I Set Execute Latch
J Reset Execute Latch
I Set Progr. Event Rec. Latch
J Beset Pro gr. Event Rec. Latch
J
I Set Wait Latch
I Block I/O Interr. Requ. Latches
I Set Halt 1/0 or Halt DV Latch
I Reset lAR Counter
I Beset wait Latch
I Reset lOP Error Latch
I Set Ext. Mach. Chk. Mask Latch
I Set FP Overflo~ Mask latch
I Beset Previous Error Latch
I Reset Halt 1/0 or Halt DV Latch
I Beset SVP Int. Requ. Latch
I Ext. Bus Check Reset
I Cpen 1/ 0 Int. Requ. Latches
I Set Mask Latches (CDR 0 •• 5,7,13)
I Set lOP Sel. Latches
I Reset SVP Response Latch
I
I Beset MS Addr. stop Latch
I Set Cond. Code a
I t1 " " 1
I " " II 2
I " .. 11 3
I SEt Lac. 80 Timer Interrupt
I (Set) Reset Ext. Damage from CDR bit 15
I Set Ext. Masks: TaD Camp. Mask from
I CPU Timer Mask t1

I Lac. 80 Timer Mask II

I Int. Key Mask from "
I Best Loe. 80 Update Hegu.
I Reset Ext. Interr.: Loc. 80 Timer In t.
) Int.Key Int.

CDR bit
tI tI

" tI .. "
from CDR .. 11

30

8
9

12
13

tit 8

" 9

Group 13: Table Look Up (Translate and Branch) Instruction

IYn~!!gn~ This instruction is a branch to a specific address in the control
storage.
The address of the next microinstruction is formed in various ways from:

• The immediate bits contained in this microinstruction,

• the contents of LSAR 0, and

• either IDR bits 0 ••• 3 or LSAR 0,1,2, or 3.

Instruction bits 20
1

through 23 define how the new address is to be
composed. The four ~igh order bits of CSAR are al~ays set to 0001. The
instruction located at the selected address is executed as next sequential
microinstruction. The translate and branch instruction is primarily used
at the beginning of the I-phase to branch to the execution routine required
for pro~essing a given System /360 or /370 op code.
If bit 11 1s on (Test TLU), a special test has to be performed (Compare
Cond. Cede). If the result is equal, subroutine level is forced and the
branch takes place. If the result is not equal (no Cond.-Code match), the
IRE can be regarded as a No-Oreration (no level switching,no branch).

BQ!~l Besides TRE, the version TBBR exists which defines a return from
sutroutine.

1 Invert Bit
2 Parity Bit

By teO] _______ Ef~~ _______ _

5 1
6 a ____ 1 a
8 0
9 0

Op Code THB (R)

1~--~-;-~ii-2-1-;-~iii----
Byte1 1'------O-;-normaI-TLu-j-l : Test T1U

l~ ______ i~]~!~g __________ _
13
14

--_1.2_
16
17

Eyte2 18
19

immediate
eits

20--0-;-TDR-bits-o:::3-j-,-: LSAR 0,1,2, or 3
ll--1-=_1~!]_Q_!Bgi!~£!_L_Q : Instr. bits 16 ••• 19
22
23 LSAR address ------------------------------

3125 M LM. Microinstructions

~1!_111_~~~~~1_lb]_L_l§§!_11~

]2!~!1_11]_J~1!_jl_=_gli with the normal TLU-Operation only one important
exception must be realized. If instruction bits 13, 14, 15 are 1 0 1, the
entries to CSAR-bits 8 and 14 will be interchanged by the logical circuitry
(e.y. instr. tit 17 goes to CSAR bit 14, while TDR bit 3 enters CSAR bit
8). However CSAR bits 7,9,10,11 and 14 will be set with the inverted bits
(see examFle 2).

!~§!_11Y_J~!!_11_~_11i This version of the TLU is used to simUlate the
system/360 or /370 Branch Op-codes 07 and 47 (BCR and Be).Therefore the
circuitry first compares the Condition-Code Latches with the Mask-field in
LSAR 2. If the two fields do not match, the /360 or /370 Branch
instruction is net effective (no Branch). Thus the microprogram can go to
the next sequential instruction without executing the THE instruction (same
as NOP).
In case of CC-match the machine will force subroutine level (change lAB)
and test LSAR3 fer zero. If LSAR 3 is not zero, CSAR bit 11 is set to one.
If LSAR 3 is zero, CSAB bit 11 is set to zero. In either case the other
CSAR bits are set according to Instruction bits 13 through 23. CSAR bits
7,9,10 and 14 dre set with the inverted bits from the immediate field, TOR
tits 0 ••• 3 and/or LSAR's (see example 3).

~!1§_~Q_~n~_ll determine four methods of address composition, as follows:

Instructionl Address of next microinstruction
bit I CSAR bits

20 21 1 0 1 2 3 I 4 5 6 1 8 ~ 1~ 1 11 12 13 1~ 1
-----------1--------------1----------- --------------1----------------1

o C 1) Instr. bits 1 TDR bits I
1 I 16 17 18 19 1 0 1 2 3 I

-----------1 I --------------1----------------1
o 1 I Always IInstruction LSAR 0 1 TDR bits I

I 1 101 231
-----------1 set to I bits --------------1----------------)

1 a I I Instr. bits 1 LSAR 1
I 0 a 0 1 1 13 14 15 16171819 1 0,',2, or 3 I

-----------1 I --------------1----------------1
1 1 I I LSAR 0 I LSAR I

I I I 0,1,2, or 3 I

]2!gl Eits entering CSAR positions 7,9 , 10,11 and 14 (underscored) are
inverted before setting of CSAR.

Eits 22 and 23: If bit 20 = 1, these bits determine the address of the LSAR
to-be-set-Into-csAR tits 11 ••• 14.

31

3125 MLM. Microinstructions

Bit 22 Eit 23
0 0 = tSAR 0
0 1 = tSAR 1
1 0 = LSAR 2
1 1 = tSAR 3

£!2!.El~_1.i Normal 'It u; bits 13,14,15 = not 1 0 1
bits 20 ••• 23 .: 1 1 0 1

Bits in LSAR 0 and 1 .: 0000 0111

Bits 7,9,10,11 and 14 inverted = 1 11 1 0

CSA R 'hi ts 7 ••• 14 (after THE) = 1011 1110

£!~!El~_21 Normal 1LU; bits 13,14,15 .: 1 0 1
bits 20 ••• 23 = 1 1 0 1

Bits in LSAR 0 and 1 = 0000 0111

Second and last bit interchanged = 1 a

bits 7,9,10,11,14 inverted = 1 11 1 1

CSAR bits 7 ••• 14 (after TR!3) = 1111 1111

f!2.!!!E1~_1.:. Test 'ItU (hi t 1 1 - 1) ; hits 20 ••• 23 = 1

Bits in tSAR 0 and 1 = 0100 0111

LSAR 3 .: not zero .: 1

Bits 7,9,10 and 14 inverted .: 1 1 1 0

CSAR bits 7 ••• 14 (after TRB) .: 1111 1110

32

1 0 1

Section 2: lOP Microprogram Codes

3125 MLM. Microinstructions 34

lOP Instruction Group Determination

Object Code in Op-Register Bit
Group 1 Description I 3rd Hex. Char. 15th Hex. Char. I C2 C] YO
------1-------------1----------------1----------------1---------

1 I Eranch 1 _____ g~~~1 ______ 1 ________ ~ _______ 1 __ Q __ Q __ ~
J Instructionsl 4 ••• 7 I 0 ••• 7 I 0 1 0

-----~I-------------J----------------J----------------J---------
2 J Data-Storage I 4 ••• 7 and 8 ••• FlO 1 1

1 Instructionsl 1 J

------1-------------1----------------1----------------1---------
3 1 Move 1 8 ••• B J x I lOx

I Instructionsl I I
------1-------------1----------------1----------------1---------

4 I Log ical I C ••• F I x 1 1 1 x
I Instructionsl 1 I

10 P Microinstructions by Mnemonics

Mnemonic I Cescription IGroup
---------1---1------

ACD (U) 1 Add register to register, reset previo ~s carry I 4
I (and change lAR's). I
I 1

AtDC (U) I Add register to register, use lJrevious carry I 4
1 (and change lAR IS) • I
I I

AtDE (U) I hdd register to reiJister l use external carry J 4
I (and change IAR' s) • I
I I

ACD1 (U) Add register to register, use forced carry I 4
(and chan':Je IAR IS) • 1

I
AtDI Add immediate data to register, reset previousl 4

carry. I
J

AND (U) AND register to r8gister (and change IAR ·s). I 4

I
ANDI AND immediate data with register into registerl 4

I
E (U) Branch unconditionally (and chan\je IAR 's). I 1

I
Ee (U) Branch en ccndition defined by mask (and I 1

change lAB's). I
1

BCN(U) Branch if 'Carry-FL'= Cn and Cond. Code = not I 1
zero (and change IARts). I

I
ECNR(U) Branch on register if 'Carry-FL'= On and Cond.1 1

Code = not zero (chan~e IAR's if condition I
is not met). I

I
ECn(U) Eranch on register on condition defined by 1 1

mask (change IAR's if condition is met). I
1

BCY(U) Branch if 'Carry-FL'=On (change IAn's if 1 1
condition is met). I

J
ECYR{U) Branch en reJister if 'Carrl-FL'=On [change I 1

IAR's if condition is met) I
1

BNC (U) Branch if 'Cdrry-FL'=Cff (change IAR's if 1 1
conditicn is met). I

I
ENCR{U) Eranch on register if lCarry-FL'=Off (change I 1

lAB's if condition is met). 1
I

ENZ(U) Brauch if Cond. Code= not zero (change lAB's I 1
if condition is met). I

3125 MLM. Microinstructions

Mnemonic J Description
---------1---

ENZR (U) I Branch on register if Cend. Code=not zero
1 (change IAR's if condition is met).
I

BE(U) 1 Branch on register unconditionally (and shange
I IAn's).
1

EZ (U) I Branch if condition code = zero (change IAR's
if condition is met).

BZN (U)

EZNR (U)

DZE (U)

EOR (U)

ECRI

LEI

LDEC

LINe

LLKB

~ V (U)

M VX (U)

NCP

OR (U)

ORI

Branch if condition code - zero, or if tCarry
FL'=Cff (change IAR's if either condition is
me t) •

Brdnch on register if Cond.Code = zero, or if
'Car:ry-FL'=Off, (and chan(je IAR's if either
condition is met).

Branch on register if Cond. Code = zero
(change IAn's if conditicn is met).

Exclusively OR register ~ith register into
register and set condition code (and
change IAil's).

Exclusively OR immediate data with register
into register and set condition code.

Load immediately byte into register.

Load byte from data storage into register and
decrement data storage address.

Load cyte from data storage into register and
increment data storage address.

Load register from SVP-Link-Rey.

Move byte from register to register (change
IARts).

Move byte from register to register with digit
crossin':1, (change lAB 'S) •

No operation.

OR register to register I (change IAR' s) •

OR immediate data with register.

Group

1

1

1

1

4

4

3

2

2

3

3

3

1

4

4

35

3125 M LM. Microinstructions

Mnemonic I Description IGroup
---------t--1------

SAEI I store ilf,mediate byte into ALS-B. I 3

SABR

SADI

5ADR

SLEC

SINC

SLKI

SLKR

SMODE

5Z1

SZR

TADD
('lADU)

TACDC
(TADCU)

TADDE
(ThDEU)

I I
I store byte from register into ALS-B. I 3
I I

store immediate bite into ALS-D. 1 3

store byte from reyi~ter into AlS-D.

store byte from rejistcr into data storage
and decrement data storage address.

store byte from register into data storage
and increment data stora~e address.

Set immediate byte into SVr-link-Reg_

set byte from register into SVP-Link-Beg.

I
I 3
1
I 2
I
I
1 2
I
1
I 3
I
I 3
1

set- ~ode buffer. 3

set immediate byte into ZL5.)

set byte from re1ister into ZL5. 3

Reset previous carry, add register plus 4
register into D-reg. and set new condition
code (change IAR IS) •

Add register plus register plus previous carry 4
into D-reJ# set new condition code (change
IAR's). I

I
Add register plus register plus external carryl 4

into t-reg., set new condition code (change I
IAR's). I

Mnemonic t Description IGroup
---------t---1------

TADD1 J Add register plus register plus forced carry 4
(TAD1U) I into D-reg., set new condition code (change

TADDI

I lAB's).
I
I
I
I
J

Reset previous carry, ddd register plus
immediate data into D-re9., set new
condition code.

4

TAND (U) I AND two re':Jisters into C-reg. and set -4

TANDI

TECFF

TEON

TEOR (U)

TEORl

TIBOF

TlEON

T C R (U)

TeEl

I condi tion code (change lAB's).
I

AND register with immediate data into 4
D-Reg. and set condition code.

I
Test tit and branch if eff. I 1

I
Test bit and branch if on. I 1

I
Exclusively OR two registers into D-reg. and I 4

set conai tion code (change IAE I s) • I
I

Exclusively OR register with immediate data I 4
into D-reg. and set condition code. I

I
Test Eit and Eranch if off, same as TBOFF I 1
Eit can be addressed indirectly. 1

I
Test Eit and Branch if on, same as TBON I 1
Bit can be addressed indirectly. I

I
OR two registers into D-reg. and set I 4

condi tion code (change lAB's). 1
J

OR register with immediate data into D-reg. I 4
and set condition code. I

36

Explanation of lOP M i croi nstruction Groups

Group 1: lOP Branch Instructions

fIim~f~_IQng!lQnl The microproJrarn branches to another instruction
anywhere in the control storage instead of continuing with the next
sequential instruction. The branch may be unconditional or depending on a
certain condition. In the latter case the microprogram proceeds with the
instr~ction if the condition is not met.
The branch condition is specified either directly by the mnemonic or in
conjunction with the mnemonics Be and Bcn by a separate parameter (mask
tits in hex.).

• Program level switching is fossible in case of a successful branch.
(See under tit function descri~tion for bit yO.)

• with the mnemonic ~CP the microvro)ram performs no operation but it
Froceeds with the next microinstruction.

3125-M LM. Microinstructions

CRY 1
1 Q 5 6 7 2 3 12 3 4 5 6 7 1 0 1 2 3 4 5 6 7 I

Mnemonic �--1
I Number of Hex Character in Assembler List
1 2nd I 3rd 14th 15th 16th

---------1--------1--------1--------1--------1-------- ----------
B (U) 1 1 a I I 1 I I Bra n c h D i s-

I 1 I 1 I 1 1 placement Addr
---------1 0)-10 0 I 1 1--------------

ER(U) 1 11 1 1 IOIAddr. of WR
1 1 1 1 1 Iwith CS-Disp

---------1-- -1---1) 1--------------
BNZ(U) 1 0 10 11) Block- SI
ECY(U) 10 1101 1 part III Branch
BCN(U) I 0 11 11 I fl

1 CI 1 1 of fl Displacement
EZ (U) J, 10 1 1 Iii
BNC(U) I 1 11 01 I CS- xl Address
EZN (U) 1 1 11 11 I 1 1

---------1-- -1---10 0 1 Branch- Ul--------------I
EN Z n (U) 1 0 1 0 , t I I 1 1
BCYR (U) 1 a 11 01 1 Address 8) I Address 1
ECNR(U) I 0 11 1\ 1 il J of ~-Reg. 1

1 11 I I tlOI containing 1
EZ R (U) 1 1 J 0 1 I 1) I C S- I
BNCR (U) 1 1 11 0 1 1 I Displacement 1
EZ N R (U) 1 1)1 1 1 1 1 I

---------1-- -1--- 1 l-l---~--------I----------
EC(U) IM110lM Mil Branch Dis- I

I I 12 3 I 1 placement Addr 1 See
---------J--I-I--- 1 1--------------1

BCR(U) IM111)M M 1 IOIAddr. of WR 1 Note 1
1 I 12 3 I 1 1 I wi th CS- Disp 1

---------1--1-}--- ----1------------1--1-1------------1----------
NCP I 1)0 0 a 0 0 1 Don't care I 01 Don 1 t care I

---------1--1----- ----1------------1--1--------------1----------
TEON t 01 Eit- I 1 1 Branch) See

---------1--1 0 1 1 WR tested 1 01 Displacement- 1
TEOFF 1 11 Pas. 1 1 1 Address 1 Note 2

]g!~_Jl For ~ask bits Ml, M2, M3 see next table.

]g!g_1~ With 'Bit testt-Instructions bit position 3 cannot be tested on its
own. If instruction bits C5 ••• C7 are 0 1 1 (hex 3), this means for:

1~QBl Branch if ~~~ bit of the selected byte is ~~.

!DQII! Branch if ~11 bits off the selected byte are 2!1.

37

3125 MLM. Microinstructions

Instr. Bits
Parameter I Same as Branch if: J C4 C5 C6 C7

J mnemonic I I M1 M2 M3 (Mask Bits)
-----------1----------1----------------------1-------------

Xl" 1 BNZ (U) J Condition Code = I 0 0 0 'j

) BNZR(U)! not zero J 0 1 0 1
-----------I~---------I----------------------J-------------

x t 2' 1 B C Y (U) . I Car r y- F 1 = On J 0 0 , 0
1 EeYR (U) I I 0 1 1 0

-----------1----------1----------------------)-------------
x 1 3' I BeN (U) I Carry-PI = On and J 0 0 1 1

I BCNR(U) I CC = not zero I 0 1 1 1
-----------1----------1----------------------1-------------

x' 9' I BZ"(U) I Condition Code = 1 1 0 a ,
I EZR(U) I zero J 1 1 0 1

-----------)----------]----------------------1-------------
x' A ' IBN C (U) I C a [r y-F 1 = a f f I 1 0 1 0

J BNCR (U) I J 1 1 1 0

-----------1----------1----------------------1-------------
x' B' I EZN (U) I Cond. Code = zero 1 , 0 1 1

I EZNR(U) 1 or Carry-Fl = Off I 1 1 1 1

£=!i~l~ This field represents the Op-code including the branch condition.
For mnemonics TBON and TBOFF bits C5 , C6 and C7 define the bit to be
tested.

]=!igl~l With Branch instructions this field contains the block part of
the branch address (6 high order bits of the 13 bits o~ the next
instruction).
With THaN and TBOFF the R-field is used to define the register
containing the bit to be tested.
With mnemonic NOP this field may be disregarded.

Y-field: YO = Suffix U-bit. This bit is on for all suffix-U mnemonics
---l1i~i-~~iii~i;~-~1-i~;i~nic = Ol. It causes the microprogram to change

IAR's {main routine IAR to subroutine lAR and vice versa} in case of a
successful branch. In such a case the address of the next sequential
instruction will be saved in the old IAR and the branch address derived
from the n- and Y-field of the branch instruction will be loaded into
the new IAR before control is switched to the new IAB.

11~~~11~ This field contains either the branch displacement (7 low order
bits of the 13 tit branch address) directly, or (with branch on register
instructions) it defines the register containing the displacement. The
displacement is leaded into ALS-D bit 1 through 7 of the controlling
IAR, while the block part of the address (B-field) enters ALS-B hit 2
th rough 7.
With mnemonics TBON and TROFF the block part of the instruction address
remains unchanged.
with mnemonic NOP the whole Y-field may be disregarded.

38

Group 2: lOP Data Storage Instructions

!f!.m~£I_"Fu!!£tiQ!!':' To ei ther store a byte from a .register into data storage
or to load a byte from data storage into a register. Multibyte transfer is
fossible if the multiple byte bit (ALS-B bit O) has been set by a previous
instruction. In such a case storage- and register-address will be
incremented by one after each byte transfer. The operation is repeated
until a double word boundary (8 bytes) in the f~!§tef area is reached. In
other words the operation is ended after a register with three loworder
ene-bits in its address has been loaded or stored.

§~~~~~g!~_I~~£!!Qn§

• It is possible to increment or decrement the data-storage address
contained in the register defined by the E-field. It must be emphasized
that this type of increment/decrement bas nothing to do with the
incrementing in multibyte transfer. It is performed after the byte
transfer, therefore, it affects the program only when this instruction
is executed the next time.

I C B Y
I 4 5 6 7 2 3 12 3 4 5 6 7 I 0 1 2 3 4 5 6 7 I

Mnemonic 1--1
I Number of Hex Character in Assembler List I
I 2nd I 3rd 14th 15th J 6th I

---------)--------1--------)--------1--------1--------1
SINC I OIIncr.1 J Address of) 10) J
SDEC I 11 or I I Work-Reg. I 10 J Address of I

---------I--IDecr.)O 1 I containing 1 1)-1 work-Reg~ I
LINC J 01 Am- I I Data-Store J 111 (Data-Reg.) I
LORC 111 ountl I Address) 11J I

f=!i~l~ Bits C4, C2, C3 together with bits YO and Y1 represent the Op
Code.
Bits C5, C6 and C7 define the increment/decrement amount in the
following way:

Instruction bits I Increment I Decrement I
C5 C€ C7 I by: I by: I

-----------------)-----------1-----------1
000 J 0 181
001 t 1 I 7 I
010 J 2 I 6 I
C 11 J 3 I 5 I
100 I 4 141
101 I 5 J 3 I
110 I € 121
111 I 7 1 1 I

The increment/decrement fart of the operation can ce considered as an
add or subtract immediate operation which is executed after the
load/store part. It.is used to modify the data storage add~~;;-before
this instruction is executed again.

~:!i~l~l Eits R2 th~ough R7 define the working register from which the
data storaje address will be taken. Cnly the displacement (7 low order
bits) is contained in this register. The block portion of the storage
address is ta~en from ALS-E bit 2 ••• 7. The content~ of this register
are incremented cr decremented according to the value of bits C5, C6 and
C7.

!=!i~l~l Bits YO and Y1 toyether with bits C4, C2 and C3 represent the Op
code. Bits Y2 throu~h Y7 define the working register which will receive
data in case cf a load instr~ction or from ~hich data will be taken in
case of a store operation. If the multiple byte bit in ALS-E is on, the
load; store 0t=eratlon starts at this working register.

Group 3: lOP Move Instructions

£fi~~fY_!~nf!l~Bl Tc move a byte of information from one location to
a no t 11 e r.

o With mnemonics MV or MYX level switching (main routine to subroutine or
vice versa) is fcssible. In these cases the mnemonic is MYU or MVXU
resfectivelj and instruction bit YO is on.

o If the mnemonic is MVX or MVXU, the two digits (hex characters) will be
crossed.

o For srecial Store and Load o~erations see under bit function description
of R- and Y-field.

3125 MLM. Microinstructions

C I R Y
~ 5 6 7 2 3 12 3 4 5 6 7 o 1 2 3 4 5 6 7

Mnemonic --
Number of Hex Character in Assembler List
2nd 1 3rd 14th 15th 16th

--------- -------- 1--------1--------1--------1--------
SABI 101
SADI- 101

a 0 1 I 1
SZI 111
SLKI 111

--------- ------1-1----
S~OCE 101
SAER 101
S.ADR 01110110
SZR 111
SLKR I 111

---------1------1-1
lLKR I 1 01111

---------1------1-1
LEI I 1 C 0101

---------1------1-1
MV{U) I 101

---------1 1 1 a 1- I
MVX(U) 1 111

I I I

a !12=~_!Qg£1
1 ALS-D Addrl

----------1 Immediate Data
o _~b2_.sggf.!.1
1 Cntl-Functl
- ----------1-----------------
o E~g~E~~~]~l_jlQl_~Qn~~_f~f~_1
a ALS-B Addr) 0101 Address
, ~1~=~=~~~£1 0101 of
a ZLS Addr. I 0101 'From'-
1 Cntl=Fu~ctl 0101 Register
- ----------1--1-1------------

see Note 10101'Tc'Be'j-Addr
------------1--1-1------------

Address
of

I Immediate r::ata
1-----------------
1 U I I Address
I BIOI of
I il I'From'-Re(j.
I t I I

N2!~i For details see description of mnemonic llKR.

C-field:These € instruction bits represent the Op-code. Unless the Y
---field contains immediate data, instruction bits YO and Y1 belong to the

Op-code as well.

39

3125 MLM. Microinstructions

1!.:_g,nQ_l=!1g.1g:
code:

The meaning of these two fields is dependent on the Op-

1~1~_~Yl~1~_~1~lQl~ With these mnemonics the B-field defines the
receiviuy register. The Y-field contains either immediate data or two
bits of the CF-cede and the 'From register' (see layout). If bit YO is
on (suffix 'U' bit)·, this causes the microprog~am to change from MIAR to
SlAB (main routine to subroutine) and vice versa. Instr. bit C7 being
on causes digit crossing (mnemonic MVX(U). In this case bits 0 ••• 3 of
the 'From-Re9_' go to bits 4 •.•• 7 of the 'To-Reg.' while bits 4 ••• 7 go to
bit 0 •••].

~AgIL~~gBl The purpose of these instructions is to store information
into Address Local storage B.

]]~~~~ll These bits contdin the address of the ALS-E where the
information is to be stored.

1~~~~111 These instruction bits contain either the information
(immediate data) if the Illilemonic is SAUl or the address of the work
register from where the informdtion is to be fetched if the mnemonic
is SAER. In the latter case bits YO amd Y1 telong to the Op-code
and must be 00.

SADILSACR: The purpose of these two instructions is to store
InformatIon into Address Local storage D.

B]~~~~11 1hese bits contain the address of the ALS-L where the
information is to be stored.

1.Q~~.!.1.!~ 1hese instruction bits contain either the information
(immediatp. data) if the mnemonic is SADI, or the address of the work
register from where the information is to be fetched if the mnemonic
is SADB~ In the latter case bits YO and Y1 are part of the Op-code
and must Le CO.

2~lL~;Bl !he Furpose of these two instructions is to store information
into the Zone Local storage.

El is always zero.

R3 ••• R7: 1hese 5 bits contain the address of the ZLS location where
the-Information is to be stored.

Y-field: For mnemonic SZI these bits contain the information
1i'iiiiiiecrIate data) to be stored into ZLS.
If the mnemonic is SZR, bit YO and Yl must be 00, while hits Y2
through Y7 contain the address of the work register from where the
informdtion is to be fetched.

40

§1~lL~bliB: These instructions serve for twc purposes:

• Transfer of data to the SVP.

• centrol functions,

~i!§_~J_!Qf2~gh_El_=_fQn!~Ql_E~D£!iQD_]il~: These bits are used to
determine the control functions which may be performed besides the
data trdnsfEr to the SVP.

Bit R3: If this bit is on, the contents of the Y-field (if SLKI) or
~E~-~;~tents of the work-~egister determined by the Y-field bits 2
t h r 0 ugh 7 (i f S L R B) w i 11 be t ran sf e r [e d to the X - reg is t e r • I fbi t
BJ is 2ff, no data will be transferred.

~i!_BEl If this bit is QTI, the FCR-FL (Frogram Controlled Bequest
from Iep to SVP) will be set. -.
~i!_~~l If this bit is QQ, the SVP-Reguest-FL (from SVP to rOP)
will te reset.

]i!_Bl1 If this bit is Q~, it causes the 'Prevent I/O-FL' to be
reset.

Note: If]-field bits 3,4,5 and 7 are all off, the SlKI/ SLKH oferation
~;ii~rms no function and ~hus it can be reyarded as an NOP i~struction.

LLKR: This instruction is used to transfet data from the X-register
Into-a work register.

~i!_Bl_! If this bit is ~!!, the work register is loaded with the
contents of the X-register.
If bit H7 is Qg, the work register is loaded as follows:
X-reg bits 0 ••• 5 into work register bits 0 ••• 5
'SVP-requ.-FL1 on: set 1 into work register bit 6
'FCB-FL'on: set 1 into work reg. bit 7.

Y-field: tits 0 and 1 are always 00. Bits 2 ••• 7 address-of the receiving work register.
contain the


~~~~]: This instruction allows the setting (changing) of any mode buffer 
by any microprogram. 

Bil§ __ ]~~~§i These three bits address the mode buffer to be loaded. 

~i1§_~_~llg_1: The contents of these two bits are set into the mode 
buffer. 

R6 = MO 
R 7 = M 1 

Bits 0 and 1 = always 1 O. Bits 2 through· 7 = don't care. 

Group 4: Logical lOP Instructions 

1!1~gI1_X]]£!i2~~ 1he contents of the tFrom'-reg. and the 'To·-reg. are 
locially combined by the ALU (Added, ANDed, CRed or Exclusively aBed). 
Unless it is a test ty~e instruction, the result is stored into the 'To' 
work register defined by the R-field. 

• The condition cede is set depending on the ALU output to indicate 
whether the ALU outFut (D-reg.) was zero or not and to indicate a carry 
or no carry out of the high order ~osition of the ALU •. 

• with test o~erations (mnemonic Txx •• ) the result is not stored into the 
'To' work register, because the purpoae of these instructions is only 
the set tiny of the condition code. 

• with suffix 'U' instructions MIAR and SIAR will be interchanged (level 
switching) • 

• with Add-instructions it is possible to 
]~§~! the previous carry 
y§~ the previous carry 
l~l~~ a carry (one) 
~§~_~~_§~!g!ngl carry from the front end. 

3125 MLM. Microinstructions 

c 1 R y 
q 5 6 7 2 3 12 3 4 5 6 7 o 1 2 3 4 5 6 7 

Mnemonic --------------------------------------------

ANDl 
CRI 

EaRl 
AtDI 

TANDI 
TenT 

Number 
2nd 

1 10 0 
I 10 1 

1 I I 
1 11 0 
1 1 1 1 

--101---
I 10 0 
1 10 1 

01 I 
I I 1 0 TECRI 

TADDI 1 I \ 1 1 

AND 
CR 
EaR 

Ar:D 
ADDC 
ArDE 
ADD1 

ANDU 
ORU 
ECRU 

AtDll 
ADDCU 
AI:DEU 
ADD1U 

TAND 
TCR 
TEOR 

1 
\ 
1 

TADD ( 
TAIDC I 
TADDE 1 
TADD1 1 

---------1 
TANDU 1 
TORU I 
TEORU 1 

TADU 
TADCU 
TADEU 
TAD1U 

I 
1 
I 
1 
1 

--1-1---
1 10 0 
\ 10 1 
\ \1 0 
I \---
1 10 0 
1 10 1 1 
I 11 0 
1 1 1 1 

11 1---
1 10 0 
1 10 1 
1 \1 0 
1 1--
\ 10 0 
1 10 1 
\ 11 0 
J \ 1 1 

--111--""; 
1 10 0 
I 10 1 
1 \ 1 0 
1 1---
1 10 0 
1 I 0 11 
) 1 1 0 1 
1 J 1 1 I 

0\ 1---1 
I 10 01 
1 \ 0 1 I 
I 11 0 \ 
I 1---1 
\ 10 0 \ 
\ 10 11 
J 1 1 0 1 
\ I 1 1 I 

of Hex Character in Assembler List 
3rd 14th 15th 16th 

--------1--------1--------1--------
1 
I 
I Immediate 
1 
1 
1 
1 
1 
1 Data 
\ 
1 
1-----------------
1 I I 
I ] 1 1 
J I 1 

Address 1 0)-1 
I 1 I 
I 101 
I \ I 
\ 1 I 

1 1 of 1--1-1 Address 
1 I 1 
1 I 1 I 
J I \ 

'To'- 1 11-1 of 
1 I I 
1 101 
I J 1 

Register 1 1 'From'-
-I 

I 
1 I 

1 Register 
o -I 

1 
01 

1 
I 

-I 
I 

1 \ 
\ 

1 -\ 
I 

01 
1 
1 

I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
1 
I 
I 
I 
1 
I 
I 
I 
\ 
1 
I 
1 
I-

41 



3125 MLM. Microinstructions 

f=ljglg: This field represents the Op-code. Unless the instruction is of 
the RI-format where the Y-field contains immediate data, bits YO and Y1 
also belong to the Op-code. 

~i!_f~l If this bit is on, the result is not transferred from the D
register to the 1To'~register (test type instruction). 

Off = RI-format On = TIR-format. 

~!1§ _£2_~~g_~1: with the four different add operations, these two bits 
are used for carry control. 

]=1iglQl The content of this field defines the ·1o'-register. Except for 
test tYfe instructions (mnemonic Tx ••• ), the 'To'-register contains one 
of the two oferands before and the result after the operation. For test 
type instructions the content of the 'To'-register (operand) remains 
unchanged. 

With ~1=f2!~~! instructions (bit C5 = aff) this field contains one byte 
of immediate data. 

with g~-fQ£~~! instructions (bit c5 = on) bits Y2 through Y7 represent 
the 'Froml-reqister address and bits YO and Y1 are part of the Op-code. 
Bit YO is the suffix-IU'-bit. If the suffix 'U'-bit is on, lAR's (MIAR 
and SIAR) viII be intercnanqed after the operation is executed. Thus 
the program viII s~itch from subroutine level to main routine level or 
vice versa after storing the address of the next sequential instruction 
in the 'old' IAR. 

42 



Section 3: SVP Microprogram Codes 



3125 M LM. Microinstructions 

SVP Op Codes by Bit Pattern 

Byte 0 Mnemonic 
----------- ------------

C x CHECK 
1 x OR 
2 x xeR 
3 x ADD 
4 x AND 
~ x EZR .., 
6 x LEI 
7 x LBR 
e x STEOE 
9 x FR 
A x STH 
E x S·F 
C x SST 
D 0 ANDI 
D 1 CRI 
D 2 XOHI 
D 3 ADDI 
t 4 SLS 
D 5 LEAP 
r; € LDAC 
D 7 EZ 
D 8 B 
D 9 BNZ 
D A STOP 
D E Nap 
D C Eranch to stop (no mnemonic) 
D D STEX 
D E STEA 
D F CTE 
E x ER 
F x CHECK 

Summa ry of SVP Mnemonics 

Mnemonic I Description 
-----------1--------------------------------------------~--------

ADD I Add LS-Reg. plus Accu into Accu 
ADDI I Add Accu plus Immediat~ data byte into Accu 
AND J AND LS-Heg. with Accu into Accu 
ANDI I AND Accu with Immediate data byte into Accu 

B 
BNZ 
BR 
EZ 
BZR 

CHECK 
CTB 

LBAP 

LBI 
LBR 
LDAC 

NOP 

OR 
ORI 

I 
1 
I 
I 
I 
I 
I 
I 
I 
J 
1 

Branch 
Branch 
Branch 
Eranch 
Branch 

unconditionally 
if (Not) ALU zero 
unconditionally to address contained in register 
if ALU zero 
to address contained in register if AIU zero 

Op Cede check 
Add LS-Reg. plus constant into LS-Beg., exclusively OR 

result with mask into Accu, branch if ALU zero 

I Fetch one byte from LS-Beg. into Accu 
I 
1 
1 
I 
I 
I 
I 

Load Bus and Parity bit from LS-Reg. into 
EAR (BAR's) or BDH (BDH t s) 

Load Immediate data byte into LS-Reg. 
Lo~d Aceu into Bus-Beg_ 
Load Immediate data byte into Accu 

t No 0Feration 

Logically OR LS-Reg. with Accu into Accu 
Logically OR Aceu'with Immediate data byte into Accu 

Fetch one byte from storage into Accu 
Switch LS-Zone 
Store one byte from Accu into storage 

44 

SF 
SLS 
SST 
STBA 
STBX 

I 
1 
J 
I 
I 
I 
I 
I 
1 
I 
1 
J 
I 

Sense, AND with mask into Accu, Branch if ALU-out = 
Sense, exclusively OR with mask into Accu, 

zero 

STOP 
5TH 
STROE 

XOB 
XORI 

I 
I 
) 

I 

Branch if ALU zero 

store one byte from Accu into lS-Reg. 
Sense from Bus into Accu, or' 

activate CTRL Strobe Bus 0 and/or 1 

Exclusivell OR LS-Reg. with Accu into Accu 
Exclusively OR Accu with Immediate data byte into Accu 



Explanation of SVP Mnemonics 

IP,a 
1 

3 Beg. 

314 
Byte a 

7 I 
I 

The contents of a local storage register addressed by instruction bits 
4 ••• 7 are added to the contents of the Accu. The result is stored into the 
Accu. ~he LS-Zone is selected by the LSZR. A carry from a previous add 
operation is added inte bit position 7 of the ALO. A carry out of position 
G Cduses the 'Carry FI' to be set. The 'ALU zero FI' is set or reset 
deFending on the result. 

I-Fetch = 2 pica steps, 
Execution = 1 fice stefa 

Instruction address (IAR) is incremented by 1. 

IP,O 
I 

D 

314 
Byte a 

3 

71P,8 
I 

Immed. data 

Byte 1 

·1 

15 J 

I 

The Immediate data byte (instruction byte 1) is added to the contents of 
the Accu. The result is stored into the Accu. A carry from a previous Add 
operation is aaded into bit Fosition 7 of the ALU. A carry out of ALU 
fosition 0 causes the 'Carry FI' to be set. The 'ALU zero FI' is set or 
reset deFending on the result. 

I-Fetch =2 pica steps, 
Execution = 4 pico steps 

Instruction address (IAR) is incremented by 2. 

4 Reg. 
-------------------
IF,a 
I 

314 
Byte a 

3125 M LM. Microinstructions 

71 
I 

The contents of a local storage re9ister addressed by instruction bits 
4 ••• 7 are anded with the contents of the Accu. The result is stored into 
the Accu. The LS-Zone is selected depending on the contents of LSZR. The 
'Carry-FI' is reset before and cannot be set by this operation. The 'ALU 
zero FI' is set or reset dependin~ on the result. 

I-Fetch - 2 pica sters, 
Execution = 1 pico step. 

Instruction address (IAR) is increl1lented by 1. 

IP,O 
I 

D 

314 
Byte a 

a 

71P,8 
I 

Immed. data 

15 I 
I 

The contents of the Accu are ANDed with the Immediate data byte. The 
result is stored into the Accu. The 'Carry FI' is reset tefoLe and cannot 
be set by this operation. The 'ALU zero FI' is set or reset depending on 
the result. 

I-Fetch = 2 pica steps, 
Execution = 4 pico steps 

Instruction address (IAR) is incremented by 2. 

lP,O 
I 

D 

314 
Byte 0 

8 I Displacement 

71F,8 
I Byte 1 

151 
I 

Instruction bits 8 through 15 (byte 1) are set into the low order byte (odd 
numbered LS-Reg.) .of the current IAR. This provides the means to branch 
within a 256-byte block. 

I-Fetch = 2 pice steps, 
Execution = 4 pico steps. 

45 



3125 MLM. Microinstructions 

IP,O 
I 

E 

314 
Byte 0 

Reg. 1 

71 
1 

This instruction can be performed in two ways! 

o Instruction bit 4 = one: The low order hyte (displacement) of the 
current-IAR-Is-changed-to the value contained in the LS-Register 
defined by instruction bits 4 through 1. Only a branch within the 
current 256-byte block can be performed in this manner. 

• lB§!£~£!jgn_~i!_~_~_~g!91 Another pair of LS-Registers becomes IAR in 
order to branch to another 256-byte block. LS-Reg. pairs 0-1, 2-3, 
4-5, or 6-7 can be used as IAR. The pair is defined by instruction 
bits 5,6 and 7. However the value of bit 7 is ineffective and always 
considered to be zero, since the high order byte of the instruction 
address must be in an even numbered LS-Register (0,2,4, or 6). The 
LS-zone is defined by the contents of LSZR. 

I-Fetch = 2 pico steps, 
Execution = 2 pica steps~ 

The current (old) Instruction address (lAB) is incremented by 
1 if instruction bit 4 is a logical zero. 

D 

314 
Byte 0 

7 I I Displacement 

71P,8 
I Byte 1 

151 
J 

If the lALU zero FI' is on instruction bits 8 through 15 (byte 1) are set 
into the low order hyte (odd numbered LS-Reg.) of the current IAR. This 
provides the means to branch within a 256-byte block. 

I-Fetch = 2 pica steps, 
Execution : 4 pica steps. 

Instruction address (IAR) is incremented by 2 if the branch 
does not take place. (ALU zero = on.) 

JP,O 
I 

5 

314 
Byte 0 

Reg. I 

7 t 
I 

46 

The microprogram branches only if the 'ALU zero FI' is on. If the branch 
takes place, it will be performed in one of two ways depending on the value 
of instruction bit 4. 

• 1~§!~~£!!2n_~!!_!_~_Qngl The low order byte of the current IAR is 
changed to the value contained in the LS-Begister defined by 
instruction bits 4 through 7. Only a branch within the current 256-
byte block can be performed in this manner. 

• !~§lf]£liQn_~!!_!_~_1~£Ql Another pair of LS-Registers becomes IAR in 
order to br~nch to another 256-byte block. LS-Reg. pairs 0-1, 2-3, 
4-5 1 or 6-7 can be used as IAR. The pair is defined by instruction 
bits 5,6 and 7. However the value of bit 7 is ineffective and always 
considered to be zero, since the high order byte of the instruction 
address must be in an even numbered LS-Eegister (0,2,4, or 6). The 
LS-zone is defined by the contents of LSZR. 

I-Fetch 
Execution 

= 2 pico steps, 
= 2 ·pice stefs. 

The current (cId) Instruction address (IAR) is incremented by 1 if the 
branc.h does not take place , or if the entire lAR is changed (instr. bit 
4 is a logical C). 

I Q or F I x 

IP,O 
I 

314 
Byte 0 

7 I 
I 

Any Op code starting with either 0 or F in the first four bits is 
considered to be invalid. If such a non-valid Op code is detected in the 
storage Data Register, the SVP stops with the check light at the keyboard 
turned OD. Restart is possible only via IMPL key. 

Instruction address (IAR) is not updated. 



~----------------~-------------------
D 9 I I Displacement 

~------------------------------------
314 

Byte 0 
71P,8 

I Byte 1 
151 

I 

If the 'ALU zero FI' is off instruction bits 8 through 15 (byte 1) are set 
into the lo~ order byte (odd numbered LS-Beg.) of the current lAB. This 
provides the means to branch within a 256-byte block. 

I-Fetch : 2 pico steps, 
Execution = 4 pico steps. 

Instruction address (lAR) is incremented by 2 if the branch 
does not take place. (ALU zero = on.) 

I I 

IP,O 
I 

D 

314 
Eyte 0 

F 

7\l?,8 
I 

Reg. I Const.l Mask 

151P,16 1 1 1 1 2 
Byte 1 t Byte 2 

I 1 Displacement 

231P,24 
I Eyte 3 

311 
1 

This instruction provides the means to add d constant to the contents of an 
LS-reg. and to branch within a 256-byte block if the result matches a mask. 
The contents of the LS-reg. addressed by instruction bits 8 through 11 is 
added to the constant from instuction bits 12 through 15. The result is 
stored into the same LS-reg. from which the first operand was taken. 
Thereafter the result is exclusively ORed with the mask (instruction bits 
1E through 23) and the new result remains in the accumulator. If this new 
result of the Exclusive OR o~eration is zero, the displacement from 
instruction bits 24 thx:ough 31 is placed into the low order byte' o.f the 
current IAR thus causing a branch within this 256-byte block. 

I-Fetch : 2 pica steps, 
Execution = 10 Fico steps. 

Instruction address (IAR) is incremented by 4 if the branch is not taken. 

.~B_=_f§1~h_Qng_~21g_!fQill_1~=~£3~_in~Q_!££~ 

9 Reg. 1 

314 
Byte 0 

3125 MLM. Microinstructions 

71 
I 

A byte is fetched from any LS-register into the Accu. The LS-register is 
defined by instruction bits 4 through 7. The contents of LS2B define the 
LS-zone. 

I-Fetch = 2 pica steps, 
Execution = 1 pica step. 

Instruction addx:ess (lAB) is incremented by 1. 

IP,.O 
1 

D 

314 
Byte 0 

5 I I Reg. t Spec. 1 

71P,8 
I 

11112 
Byte 1 

151 
I 

This instruction provides the means to place any value into the data or 
address register of either one or both bus systems and to set either odd or 
even parity with this value onto the address bus. Instruction bits8,9 and 
10 select a pair of LS-regs. (even/odd numbered), bit 11 is ignored. 
lB~_g~~_n~m~f~~~ LS-reg. supplies the information that is placed into the 
Bus Data Beg. or the Bus Address Reg. selected by instruction bits 12,13 
and 15. 
The low order bit (bit 7) of the even numbered L5-reg. supplies the parity 
bit. If a Bus Address Bey. is specified, this bit 7 overwrites the parity 
bit that is normaly generated for the addx:ess bus. 
The contents of LSZR defines the L5-zone. Instruction bits 12 and 13 are 
set into the A-Reg. from where they are decoded. 
Bus registers are selected by instruction bits 11 through 15 as follows 
(bit 14 has no effect): 

Bi ts 12 through 15 in hex: 

0, 1, 2, or 3 = No operation 

4 or 6 == EllS Address Reg. 1 

5 or 7 = Bus Data Reg. 1 

8 or A .- Bus Address Reg. 0 

9 or B = Bus Data Reg. a 

C or E = Bus Address Heg. 0 and 1 

D or F .- Bus Data neg. 0 and 1 

I-Fetch = 2 pica steps, 
Execution = 5 pica steps. 

Instruction address (IAll) is incremented by 2. 

47 



3125 MLM. Microinstructions 

IP,O 
I 

6 

314 
Eyte a 

Reg. 1 

71P,8 
I 

Immed. data 

Byte 1 
15 I 

I 

The immediate byte provided by instruction byte 2 is placed into the LS
register addressed by instruction bits 4 through 7. 

I-Fetch = 2 pica steps, 
Execution = J pico steps. 

Instruction address (lAR) is incremented by 2. 

IF,O 
1 

7 I Sf€c. I 

314 
Byte C 

71 
I 

The contents of the accumulator (including the parity bit) are placed into 
the bus register sFecified by instruction bits 4 through 7. Either the 
address register(s) or the data register(s) of either or both bus systems 
may be specified as follows: 

Instr. bits 4 ••• 7 in hex 

0 , 1, 2, or J = No Operation 

4 or 6 = Bus Address Reg. 1 

5 or 7 = Bus Data Reg. 1 

8 or A = Bus Address Reg. C 

9 or B = Bus Data Reg. 0 

C or E = Bus Address Begs. a and 1 

D or F = Bus Data Regs. 0 and 1 

I-Fetch = 2 pico steps, 
Execution = 1 pico step. 

Instruction address (lAB) is inct'emented by 1. 

I I D 6 Immed. data 
-~~----------------------------------
IP,O 
I 

314 
Eyte a 

71F,,8 
I Byte 1 

151 
J 

48 

The immediate data byte provided by instruction bits 8 through 15 is placed 
into the accumulator. 

I-Fetch 
Execution 

= 2 pico steps, 
= 4 pico steps. 

Instruction address (IAR) is incremented by 2. 

~Q!_=_~£_2I~f~!i2n 

IP,O 
I 

D 

314 
Eyte a 

E 

71 
I 

This Op-Code causes no operation. The microprogram continues with the next 
operation. 

I-Fetch 
Execution 

= 2 pica steps, 
= 2 pico steps. 

Instruction address (IAR) is incremented by 1. 

gB_~_1~~i~~111_QI_1~=E~~~_!i!h_Aff~_i~!g_!f~] 

I 1 

IF,O 
I 

1 

314 
Eyte 0 

Reg. 

71 
I 

The contents of a local storage register addressed cy instruction bits 
4 ••• 7 are OBed with the contents of the Accu. The result is stored into the 
Accu. The LS-Zone is selected depending on the contents of LSZR. The 
'Carry-FI' is reset cefore and cannot be set by this operation. The 'ALU 
zero FI' is set or reset depending on the result. 

I-Fetch 
Execution 

= 2 pica steps, 
= 1 pica step. 

Instruction address (lAB) is incremented by 1. 



I I 

IP,O 
I 

D 

314 
Eyte 0 

1 

71P,8 
I 

Immed. data 

Byte 1 
15 1 

I 

The contents of the Accu are ORed with the Immediate data byte (instruction 
byte 1). The result is stored into the Accu. The 'Carry FI' is reset 
before and cannot be set by this operation. The 'ALU zero FI' is set or 
reset depending on the ~esult. 

1 J 

I-Fetch ~ 2 picosteps, 
Execution = 4 pice steps 

Instruction address (IAR) is incremented by 2~ 

E 

___ !!1nQ!gg 
I 
V 

I Reg.lxt 

IF,O 
I 

314 
Byte 0 

7 I 
t 

A single byte is fetched from the SVP storage a~d stored into the Accu. 
The 16-bit storage address is obtained from an adjacent pair (even+odd 
numbered) of LS registers. The even numbered LS register, containing the 
high order byte of the storage address, is defined by instruction bits 4,5 
and 6. Instruction bit 7 is ignored. The contents of LSZR define the LS
zone. The storage address (in the LS-reg. pair) is automatically 
incremented by 1 via the ALU. 

I-Fetch 
Execution 

= 2 pica steps, 
~ 3 pice steps. 

Instruction address (IAR) is incremented by 1. 

3125 MLM. Microinstructions 

D 4 

-~-----------------
IP,O 
I 

314 
Byte 0 

71 
1 

This instruction provides the means to select a new local storage zone (a 
new set of 16 registers) and, because each zone contains its own IAB 
pairs, also a new IAR. 
Prior. to issuing the SLS instruction, the microprograamer must have loaded 
two specific registers of the current zone with the following information: 

S~~i~~~f_l~_Jh~]_!1_!Q_£Y£f~n~_~2n~ must contain the binary number of 
. the new zone (0, 1, 2, or 3) in bits 2 and 3, and the IAR that is to 

have control in the new zone in bits 4 through 7. Any number from 0 
through 7 can be specified as IAR in the new zone. 
B~~i§!~!_l~_Jn~~_!l_i~_£]!!~nl_~~D~ should contain the number of the 
current zone in bits 2 and 3, and the number of the current lAB or any 
lAR that is to be used when switch back to the current zone is desired 
in bits 4,5 and 6. However, register 15 need not necessarily contain the 
current zone, another zone may be specified if the switch back is to be 
to another zone. 

The loading of register 14 and 15 is a prerequisite for the SLS instruction 
tecause the following actions occur when SLS is issued: 

• 

• 

o 

• 

• 

• 

The current IAR is updated by plus 1 

Bits 2 and 3 of LS-register 14 (E) in the current zone are loaded 
into LSZR. Bits 4,5 and 6 are loaded into the lAB Select Register 

The new zone is selected via LSZR 

The IAR Select Reg. points to the LS-Reg. pair in the new LS-zone 
that serves as lAB from now on 

The contents cf register 1~_1~1 of the old zone are transferred to 
register 12_111 of the new zone 

The contents of register lQ_1Il of the old zone are transferred to 
r~gister l~_JEl of the new zone 

After this cross-over of old to new registers, register 14 eE) of the new 

49 



3125 MLM. Microinstructions 

(now current) zone is the old zone recall register; while register 15 (F) 
of the new (now current) zone specifies the new zone for eventual recall. 
Thus by refeating SLS instructions, alternating zones can be selected. All 
register addresses in instructions refer to registers in the current zone 
cnly. 

I-fetch 
Execution 

- 2 pica steps, 
= 9 pica steps. 

Instruction address (lAR) is incremented by 1. 

IF,O 
1 

___ !::1112Igg 
I 
V 

C I Reg.lxl 

314 
Byte 0 

71 
1 

The contents of the accumulator are stored into the SVP storage. The 16-
bit storage address is obtained from an adjacent pair (even+odd numbered) 
of LS registers. The even numbered LS register, containing the higb order 
byte of the storage address, is defined by instruction bits 4,5 and 6. 
Instruction tit 7 is ignored. The contents of LSZB define the LS-zone. 
The storage address (in the LS-reg. pair) is automatically incremented by 1 
via the ALD. 

I-Fetch = 2 pica steps, 
Execution = 3 pice steps. 

Instruction address (IAR) is incremented by 1. 

IP,O 
I 

D 

314 
Byte a 

E 

1 = BAR 0 and Bus In 0 ,--------------------------
I 1 = BAR 1 and Bus In 1 
I 1------------------------
V V 

I I I IxlxJ Reg. I 

71P,8 
I 

11 112 
Byte 1 

151P,l€ 
1 

Mask 

Byte 2 

Displacement 

2311',24 
I Byte 3 

311 
J 

This instruction provides the means to address an external facility 
(outside SVP), to fetch the contents of this facility, and to logically AND 

50 

this data with a mask in order to derive a branch decision in case of a 
zero result. 
Instruction bits 12 through 15 specify an LS-Register, the contents of 
which are placed into either 2n~ of the two Bus-Address-Registers, 

.whichever is specified by instruction bits 8 and 9. 
The addresa placed onto the Bus causes the corresponding facility to set 
its data onto the incound side of the SVP data ring bus. The data appears 
in the External In Reg. 0 or 1. From there it is logically ANDed with the 
mask (instruction byte 2) and the result is placed into the accumulator. 
If the result is zero, the displacement (instruction byte 3) is placed into 
the low erder cyte of the current lAR, allowing a branch within a 256-byte 
tlock. 

I-Fetch 
Execution 

= 2 pico steps, 
= 9 pica steps if the branch does not take place, 

11 pica steps if the branch takes place. 

Instruction address (lAB) is incremented by 4 if the branch does 
not take place. 

2T~!_=_2gn§g~_g~fl]§!ygll_QB_~!lh_m2§!_!n!2_!ff~_~!~Qfh_!!_!~Q_~g!Q~ 

IPi O 
I 

D 

314 
Eyte 0 

D 

_____ j_=_~!~_Q_gng_~y§_ln_Q 
I 
1 1 = BAR 1 aud Bus In 1 
I 1------------------------
V V 

1 J JxJxl Reg. Mask 

71F,8 
I 

11 I '2 
Byte 1 

151P,16 
J Byte 2 

Displacement 

231P,24 
I Byte 3 

311 
I 

This instruction provides the means to address an external facility 
(outside SVP), to fetch the contents of this facillty,and to exclusively OR 
(compare) this data with a mask in order to derive a branch decision in 
case of a match. 
Instruction bits 12 through 15 specify an LS-Register, the contents of 
which are placed into either gng of the two Bus-Address-Registers, 
whichever is s~ecified by instruction blts 8 and 9. 
The address placed onto the Bus causes the corresponding facility to set 
its data onto the inbound side of the SVP data ring bus. The data appears 
in the External In Reg. 0 or 1. From there it is exclusively ORed with the 
mask (instruction byte 2) and the result is placed into the accumulator. 
If the result is zero, the displacement (instruction byte 3) is placed into 
the low order byte of the current IAR, allowing a branch within a 256-byte 
tlock. 

I-Fetch 
Execution 

= 2 pica steps, 
= 9 pica steps if the branch does not take place, 

11 pica steps if the branch takes place. 

Instruction address (lAR) is incremented by 4 if the branch does 
not take place. 



"12 0 
) I 

I 

D 

314 
Eyte 0 

A 

71 
1 

The SVP stops after the fourth cycle (last execute cycle). After that the 
SVP can be started only via the IMPL key. The Stop instruction is used for 
diagnostic purposes. 

I-Fetch = 2 Fice steps, 
Execution: 2 pico stefs. 

IF,O 
I 

A Reg. 

314 
Byte 0 

71 
I 

The contents of the accumulator are stored into any LS-register. The LS
register is defined by instruction bits 4 through 7. The contents of LSZB 
define the LS-zone~ 

I-Fetch = 2 pica steps, 
Execution = 1 pice step. 

Instruction address (IAR) is incremented by 1. 

IP,O 
II 

8 1 Sr ec • 

314 
Byte 0 

71 
I 

This instruction provides the means to send out data previously set into 
cne or both Bus Data Registers or to admit data from one or both Bus Input 
Registers into the accumUlator, depending on the specification bits 4 
through 7 of the instruction (see cases below). For both types of operation 
the appropriate Bus Address Beg. must have been loaded prior to the STROE 

3125 MLM. Microinstructions 

operation. For the send operation (control) the loading of the Eus Data 
Register(s) is an additional prerequisite. 
The STnaB operation then controls: 

• f2~_§~D§g (instruction bit 7 = off): The gating of data from the 
'External In Bus(es) into the accumulator. 
• !~~_£2~!!2!. (instruction bit 1 = on): The generation of 'CTBL strobe 
Bus 0/1' which control the gating tram the Eus out to the external or 
internal unit. 

When data is sensed from both buses simultaneously, the two bytes are ORed 
by the ALU and the result is placed into the acumulator. 
The bus and the action (sense or control) are specified by instruction bits 
4,5 and 7 as follows (bit 6 has no affect): 

Bit 4 ••• 7 in hex. 

4 or € = Sense 'External 

5 or 7 = Activate 'CTRL 

8 or A = Sense 'External 

9 or E = Activate 'CTRL 

C or E = Sense 'External 

D or F = Activate ·CTRL 

I-Fetch = 2 pico steps, 
Execution = 1 pico step. 

Instruction address (IAR) is 

2 Reg.. I 

IP,O 
I 

314 
Eyte 0 

71 
I 

In Bus 1 ' into Accu 

strobe Bus 1 ' 

In Bus 0' into Accu 

Strebe Bus o ' 
In Bus 0 and 1 ' (ORed) into Accu 

Strobe Bus 0 and 1 ' 

incremented by 1. 

The contents of a local storage register addxessed by instruction bits 
4 ••• 7 are exclusively ORed with the contents of the Accu. The result is 
stored into the Accu. The LS-Zone is selected depending on the contents of 
LSZ R. The • Carry- F l' is reset before and cannot be se~. b'y this opera tion. 
The tALU zero FI' is set or reset depending on the result. 

I-Fetch 
Execution 

= 2 pico steps, 
- 1 pica step. 

Instruction address (lAB) is incremented by 1. 

51 



3125 MLM. Microinstructions 

IP,O 
I 

D 

314 
Eyte 0 

2 

71P,8 
I 

Immed. data 

Byte 1 
151 

I 

Th.e contents of the Accu are exclusively ORed with the Immediate data byte 
(instruction byte 1). The result is stored into the Accu. The 'Carry FI' 
is reset before and cannot be set by this operation. The 'ALU zero FI' is 
set or reset dependiny on the result. 

I-Fetch : 2 pica steps, 
Execution = 4 pice steps. 

Instruction address (IAR) is incremented by 2. 

52 



3125 Processing Unit 
Microinstructions 

Order No. SY33-1058-1 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

READER'S 
COMMENT 
FORM 

What is your occupation? _____________________________ _ 

Number of latest Technical Newsletter (if any) concerning this pUblication: __________ _ 

Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 

3125 Processing Unit 
Microinstructions 

Order No. SY33-1058-1 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

READER'S 
COMMENT 
FORM 

What is your occupation? _________________ - - _ - __ - - - - - - -

Number of latest Technical Newsletter (if any) concerning this publication: ___ - - - - - ---

Please indicate in the space below if you wish a reply .. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.s.A. (Elsewhere. an IBM office 
or representative will be happy to forward your comments.) 



SY33-1058-1 

Your comments, please ••• 

This manual is part of a library that serves as a reference source for customer 
engineers. Your comments on the other side of this form will be carefully 
reviewed by the persons responsible for writing and publishing this material. 
All comments and suggestions become the property of IBM. 

SY 33-1 058-1 

Your comments, please .•. 

This manual is part of a library that serves as a reference source for customer 
engineers. Your comments on the other side of this form will be carefully 
reviewed by the persons responsible for writing and publishing this material. 
All comments and suggestions become the property of IBM. 

I 
Fold Fold Fold Fold ....................................................................................................................................... i··························································································································· ............ . 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department.813B 
1133 Westchester Avenue , 
White Plains, New York 10604 

First Class 
Permit 40 
Armonk 
New York 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 8138 
1133 Westchester Avenue 
White Plains, New York 10604 

First Class 
Permit 40 
Armonk 
New York 

•••..•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••..•• ~ •••••••••••••••••••.••••••.•••••••••.••• J ••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••. 
Fold 

International Businesl Machines Corporation 
Data Processing Dlvlalon 
1133 Weatchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Natlona Plaza, New York, New York 10017 
(International) 

Fold Fold 

International Buslnell Machines Corporation 
Dllta ProceSSing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 



System I 
I 

Maintenance I 
Library I 

Di 
I 
I 

System 
,..---------. I 

- - - cut here - -1 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

3125 Processing Unit, Microinstructions Printed in U.S.A. SY33-1058-1 


	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55

