
Proc,ssing Un.It
Theo~. - · ·~int'n'~ce

/
Votume30 /

INDEX

PLAN

INTR~~,~on ~~·frin~~ J(ayboard

CPU Har~

Voklml 32 Volwat 33 Volumt.34
-;;~

PoWeR. '.'CHaNneLs (,~c,;';,,
':_,·;i-

~~coNsol.t ·: .. ::r

STORaue

SVU-3581-4

OUTLINE

PLAN

Preface

Documentation
Pian

Abbreviations

Legend

Index

VOL 30
INDEX
PLAN
INTR
CPU

INTR

Model 145
General
Description

CPU
Configuration

Features

3145 Data FIOw

Microprograms

Error Handling

Compatability
with System/300

3145 Channets
Gener•I Description
Description

Integrated
File Adapter

CPU MIC

SPTL Microprogram
SOBO Principles
Pre-Asm,Asm

SDBO,
Pre-Assembler
unit Data Flow

Local Storage

Expanded Local
Storage {EXPLS)

External Facilities

I-Cycles

A-Register
8-Register
and ALU

Z Register and
0-Register

C-Regist•
(Control Word
Decode)

CPU Clock

M,N,and
MS-Registers

Secondary
Control
Assembler

Control Registers

3145 Processing Unit Theory-Maintenance
VOL 31

MIC
CFA
CPK

CFA

Introduction

Data Flow

Console File
Clock

Shift Register

Sector Ready

CF Commands

CF Error Checks

CPK

Introduction

3210 Console
Printer-
Keyboards

3210 PK-KB
Integrated
Attachment

3215PK-KB
Integrated
Attachment

Alter /Display
Operations

Microprogram
Operation

Progr11mming
Information

VOL 32

PWR

General
Information

Safety

PWR
STOR

Motor Generator

Electrical
Component
Locations

Power
Distribution

Distribution

Power Frame,
Poww
Con-sion

Conuotsand
Indicators

Power
Sequencing

Protection and
Checking

Power Service
Checks

Regulator
Removal and
Replacement

Power Check
Troubleshooting

Gener"lll
ll'lfonrmtion

F unc.tJonel
Aral

Functional
Operations

Servicing
Information

Model 146
l/OChannels

Byte-Multiplexer
Channel

Selector
Channels

Block·
Multiplexer
Feature

VOL 33

CHNL
IFA
FEAT

Abbreviation
List

Diagram List
Introduction

Functional
Units

Theory of
Operation

REC DIAG

IBM 1401/1440/ Fixed Indicators Introduction Test;ng V<:>ltaQe
1460and

Roller Indicators Recording
Philosophy Oistributio.n

1410/7010
Compatibility Rotary Control Modes Basic Diagnostic Basic L0gic

Switches Error Checking
Troubleshooting Symbo1ogy

Direct Control
Rotary Switches

and Correction Extended T estS 3145Support
Channel-to- A-H Machine·Checks

Trouble$hooting Documents
Channel Adapter

Toggle Switches
and Error CPU Diagnostic Functions of
Retry Hardware Diagnose

Keys
Sell!ctor Channel

Instruction
Summary of

Use Meters Machine Check GA Diagnostic
Handling Functions
Feature

Stop After Log

Software
Recovery

INTRODUCTIWN

CONTENTS

SYSTEM/370 MODEL 145 -
GENERAL DESCRIPTION.

Features. . • • • • • • •
3145 Models GE, GFD, H. HG, and I
3145 Models H2, HG2, 12, IH2, J2, Jl2, and K2 . •

OVERALL DATA FLOW

3145 DATA FLOW.

Storage • . . • . .
Main Storage • • •
Control Storage (CSI .

Storage Data Bus·Out Assembler.
C-Register .
M-Register .
N-Register .
MB-Register
Storage Protection
A- and B-Registers
Arithmetic and Logic Units (ALUs>.
Z-Register . . • • . • •
D·Register . • . . ·. • •
SPTL-Special External Word •
H-Register . . • . . . •
Backup and Retry External Register
Flush-Through Check
Local Storage . . • •
External Facilities . •
Expanded Local Storage
I-Cycle Controls • • •
I-Buffers. • • • • .
Address Adjust llld Dynamic Address Translate.
A- and 8-Local Store Complre • • • • • • •

INTR 2

INTR 3
INTR 3
INTR4

INTR 6

INTR 7

INTRS
INTR 8
INTR 8
INTR 9
INTR9
INTR9
INTR9
INTR9
INTR 9
INTR 10
INTR 10
INTR 10
INTR 10
INTR 10
INTR 10
INTR 10
INTR 10
INTR 11
INTR 11
INTR 11
lNTR 11
INTR 11
INTR 11
INTR 11

MICROPROGRAMS

Control Word Readout .
Instruction/Data Readout •
Control Word Functions •

Branch and Module Switch •
Branch Word . . • • •
Branch and Link or Return ,
Word Move ••
Storage Word . . •
Arithmetic Word • •
Word Type-Definition .

ERROR HANDLING

Microprogram lnstrurtion Retry.
Error Checking and Correction (ECC) •
Channel Retry. •
Command Retry • • • • • • • •

COMPATIBILITY of MODEL 145 with OTHER
SYSTEM/370 MODELS and SYSTEM/360

Control Registers •
Program Status Word Changes

STANDARD INTERFACE.

Data-In • • •
Disconnect-In •
Mark·O.ln
Data-Out ••

INTR 12

INTR 12
JNTR 12
INTR 13
lNTR 13
INTR 13
INTR 13

• · INTR 13
INTR 13
INTR 13
INTR 13

lNTR 14

INTR 14
INTR 14
INTR 14
INTP 14

INTR 14

lNTR 14
INTR 14

INTR 15

INT't 15
INrR 15
INTR 15
tr.TR 15

3145 CHANNELS -
GENERAL DESCRIPTION

Standard Features . . •
Optional Features • • •
Byte-Multiplexer Channel •

Data Rates • •
Selector Channels

Data Transfer •
Data Rates . •

Block-Multiplexing Feature
Block Multiplexing • •
Block-Multiplexer Operation

INTEGRATED FILE ADAPTER.

INTR 16

INTR 16
INTR 16
INTR 16
INTR 16
INTR 16
INTR 16
INTR 16
INTR 17
INTR 17
INTR 17

INTR 17

3145 TM INTR 1

SYSTEM/370 MODEL 145 - GENERAL DESCRIPTION

The System/370 Model 145 is a high-availability, general-purpose
data processing system that provides the reliability, availability,
performance, and convenieoce demanded by both business and
scientific users. This is achieved by:

• Using monolithic system technology (MST) circuitr9"~ All
system storage-local, control, and main-is implemented
using monolithic technology.

• Providing logout information. Hard copy is available under
con:iole switch control. Programming determines whether
the logout information is to be written on some 1/0 device
(disk, tape, etc).

• Providing microprogram retry. Detected CPU hardware
errors can be retried automatically by CPU retry hardware.
CPU retry is accomplished by additional microprogram
routin~ and hardware.

• Providing error checking and correction (ECC). Correction
circuitry for both main and control storage automatically
corrects single-bit errors. Double-bit storage errors are
detected, the error location is indicated in fixed storage,
and a machine-check interrupt occurs.

• Providing expanded machine-check interrupt facilities to
facilitate better error recording and recovery procedures.

. ~ ;-~~~»tii~. I

~~-=- :~™~~?aIE

,~~~~;;;---"~~
El ~ s I

@®@@@@®©I
~--- =~-- ~ 7-::~_~ -~ o··,~ I

=~

SYSTEM CONTROL PANEL contains the operator panels, the
lights, and the switches used during check-out and maintenance
of the system. This console contains roll charts that can be
checked to determine the status of different conditions
using the same lights. For a detailed description of the system
control panel. refer to "System Console (CNSLJ."

3145 PROCESSING UNIT (CPU) contains from 112k to 2048k
bytes of main storage, plus 32k for control storage. Monolithic
control storage is reloadable and is used to contain the micro
program necessary for system operation. Control storage is not
accessible to the user.

The CPU contains all hardware controlled by the microprogram,
necessary to decode and execute the System/370 instruction set
and, optionally, those in the hardware compatibility features

required by the 1401/1440/1460 and 1410/7010 emulator programs.
All CPU and channel operations are controlled by the micro

program contained in control storage loaded from the console file.
The CPU clock is basically one main oscillator. Its pulses are

distributed to each board. Each board clock then develops the
basic timing signals to time the CPU circuitry. These clocks have
four basic cycle times: 202.5, 247.5, 292.5, and 315 nanoseconds.

,f'rrY~

Either Console Printer-Keyboard can be used. For information
on integrated attachment for these Console Printer-Keyboards,
refer to "Console Printer-Keyboard ICPKI."

3215 CONSOLE PRINTER-KEYBOARD is a wire-matrix printer
that prints 85 characters per second.

3210 CONSOLE PRINTER-KEYBOARD MODEL 1 uses the
SELECTRIC ® 1/0 II printing unit. The print element contains
88 characters arranged in an optimized pattern to provide fast
response. The printing speed is 15.5 characters per second.

I

GENERAL DESCRIPTION INTR ~

.............
' ,,"',,,..,I

' ,,, / I I
..,...>j(,.,"' ,...-1 I

............ § I "" ., I
,. Et t"' ,...-1 I ',,......... 'I I I

T... v' A I
I 1,: /'I I

1, /))
I I /
P. v //

)t,.../
......

/

-......_l,,,,............... i

ii

CONSOLE FILE through an integrated attachment is used to l1

load control storage with either the System/370 microprogram 'I

for customer operations or with the microdiagnottic used to :
check out the CPU. For dP.tails about this integrated attachment.!
refer to "Console·File Adapter (CFA)."

FEATURES

3145 Models GE, GFD, H, HG, and I

Standard Features

3145 Processing Unit (with main power frame)
160k to 512k Bytes of Main Storage
32k Bytes of Control Storage

Model Main Storage

3145FEo• 114,688 bytes (112k)

3145GE 163.840 bytes (160k)
3145GFD 212,992 bytes (208k)
3145H 262.144 bytes (256k)
3145HG .. 393.216 bytes (384k)
31451** 524.288 bytes (51 :lkl

. *Withdrawn from th;, product line.

••See Note 2.

Audible Alarm
Byte-Multiplexer Channel
Byte-Oriented Operand
Channel Indirect Data Address
Cha;;nel Retry Information
Console File
Control Registers
Dynamic Address Translation
Error Checking and Correction fECCI
Extended Control
Interval Timer
Machine-Check Handling
Microprogram Instruction Retry
OS!DOS Compatibility
Program-Event Recording

Control Storage

See Note 1

Selector Channel 1 (without IFA) or Selector Channel 2
(with IFA)

Storage Protection (Store and Fetch)
System 370 Comrnercial Instruction Set
Time-of·Day Clock

Note 1: The standard control·storage is 32.768 bytes
(32k). The system is equipped with a movable control
storage boundary that allows up to 64k bytes of control
storage, depending upon the mix of features installed.
These additional control-storage requirements are at the
expense of main storage. The storage boundary is set
automatically as a function of the initial microprogram
load (IMPLl function. For additional information, refer
to "Control Storage Requirements."

Note 2: Main storage above 256k bytes is contained in
the 3345 Storage and Control Frame Model 1 or 4
(128k additional bytes for 384k bytes total) or the 3345
Storage and Control Frame Model 2 or 5 (256k additional
bytes for 512k total). When any of these units is included,
it contains the low-order storage addresses. The 3046
Power Unit is required for these models.

Both main and control-storage are equipped with error
checking and correction (ECCl. ·

Optional Features

Additional Byte-Multiplexer-Channel Subchannels (Note 31
Block-Multiplexer Channels (up to four) (Note 4)
Channel-to-Channel Adapter
Clock Comparator and CPI! Timer
Conditional Swapping Feature
Direct Control (with external interrupt)
System/370 Floating-Point Instruction Set and

Floating-Point (includes extended precision)
Integrated File Adapter (IFA) (Note 5)
Integrated Storage Control (contained in 3345

Models 3, 4, and 51
Selector Channels 2, 3, and 4 (without IFA) or

Selector Channel 3 (with IFAl (Note 5)

Virtual Machine Assist Feature

Word Buffer (Note 6)
1401/1460, 1440 Emulator
1401/1460, 1440and 1410/7010 Emulator
3210 Console Printer· Keyboard Model 1 (Note 7)
3210 Console Printer-Keyboard Model 2 (Note 7l
3215 Console Printer-Keyboard Model 1 (Note 7l
3345 Storage and Control Frame Model 1 or 4

(for 384k System)(Note 8)
3345 Storage and Control Frame Model 2 or 5

(for 512k System)(Note 8)

Note 3: T.he byte-multiplexer channel has 16 subchannei~
that address up to 136 1/0 devices (eight shared UCWs can
address up to 16 devices each; eight unshared UCWs can
address one device each). Up to eight control units can
be attached. Configurations with 32, 64, 128, or 256 sub·
channels are available.

Note 4: A block-multiplexer feature can be ordered in
place of all installed selector channels. Block-multiplexer
channels cannot replace selector channels 1 and 4 when
integrated file adapter is installed.

Note 5: The integrated file adapter and selector channels
1 and 4 are mutually exclusive. Each selector channel
addresses up to 256 1/0 devices. Up to eight control
units can be attached.

Note 6: The word buffer feature is installed on all
selector or block-multiplexer channels or none. The
word buffer feature is not available for the integrated file

adapter feature.

Note 7: The 3210 Model 1 and the 3215 are mutually
exclusive; one is required. The 3210 Model 2 can be
used as an auxiliary printer-keyboard (except for alter/
display functions).

Note 8: A 3046 Power Unit Model 1 is required for all
configurations having a 3345 Storage and Control
.frame Model 1, 2, 4, or 5.

3145 TM INTR3

3145 Models H2, HG2, 12, IH2, J2, Jl2, and K2

Standard features

3145 Processing Unit (with main power frame) (Note 1)

256k to 2048k Bytes of Main.Storage
32k Bytes of Control Storage

Model Main Storage

3145 H2 262, 144 (256k)
3145 HG2 393,216 (284k)
314512 524,288 (512k)
3145 IH2 786.432 (768k)
3145 J2 1,048,576 (1024k)
3145 Jl2 1,512,864 (1536k)
3145 K2 2,097, 152 (2048k)

Audible Alarm
Byte-Multiplexer Channel
Byte-Oriented Operand
Channel Indirect Data Address
Channel Retry Information
Con5ole File
Control Registers
Dynamic Address Translation

Control Storage

Note 2

Error Checking and Correction (ECCi
Extended Control
Interval Timer
Machine-Check Handling
Microprogram Instruction Retry
OS:DOS Compatibility
Program-Event Recording
$elector Channel 1
Storage Protection (Store and Fetchl
System/370 Commercial Instruction Set
Time-of-Day Clock

Note 1: The 3145 Models H2, HG2, 12, IH2, J2, Jl2, and K2
require a 3047 Power Unit Model 1.

Note 2: The standard control storage is 32,768 bytes (32k).
The system is equipped with a movable control-storage
boundary that allows up to 64k bytes of control storage,
depending upon the mix of features installed. These addi·
tional control-storage requirements are at the expense of
main storage. The storage boundary is set automatically
as a function of the initial microprogram load (IMPLI func
tion. For additional information, refer to "Control Storage
Requirements."

Both main and control storage are equipped with error
checking and correction (ECC).

Optional Features

Additional Byte-Multiplexer-channel Subchannels (Note 31
Advanced Control PrO!J'llm Support Feature (Note 4)
Block-Multiplexer Olannels (up to four) (Note 51
Channel ·to-channel Adapter
Clock Comparator and CPU Timer
Conditional Swapping Feat1Ke
Direct Control (with Extern.al Interrupt)
System/370 Floating-Point Instruction set and

Floating-Point (includes extended precision)
Integrated Storage Control
Selector Channels 2. 3, and 4

Virtual Machine Assis_t Feature
Word Buffer (Note 6)
1401/1460, 1440 Emulator
1401/1460, 1440and 1410/7010 Emulator
3210 Console Printer-Keyboard Model 1 (Note 71
3210 Console Pr.inter-Keyboard Model 2 (Note 71
3215 Console Printer-Keyboard Model 1 (Note 71

Note 3: The byte-multiplexer channel has 16 subchannels
that address up to 136 1/0 devices (eight shared UCWs can
address up to 16 devices each; eight unshared UCWs can
address one device each). Up to eight control units can be
attached. Configurations with 32, 64, 128, or 256 sub·
channels are available.

Note'4: Available only on 3145 Models IH2, J2, Jl2, and K2.

Note 5: A block-multiplexer feature can be ordered in
place of all installed selector channels.

Note 6: The word buffer feature is installed on all selector
or block-multiplexer channels or none.

Note .7: The 3210 Model 1 and the 3215 are mutually
exclusive; one is required. The 3210 Model 2 can be used
as an auxiliary printer-keyboard (except for alter/display
functions).

FEATURES INTR 4

OVERALL DATA FLOW

PC

-
- DOU8L£W0RD

B·REG 1:::S3

BACK·UPand
RETRY
EXTER~AL

REGISTER

OVERALL DATA FLOW INTR&

3145 DATA FLOW'"

This is a high-level data flow of the 3145 CPU. The general
layout is such that you can easily reference from any area of
this high-level data flow to the same area of the overall data
flow, The facing page illustrates the overall data flow for the
3145 CPU.

The number of bits entering or leaving a function or register
is identified either by the wight (thickness) of the line (see
the legend block at the lower center of the overall data flow)
or by placing the number of bits in the flow line.

This section gi11es a brief description of the 3145 functional
units illustrated in the high-level data flow. Some basic facts
to be introduced for overall understanding of the system follow.
•When power is fi; st apj:.;ied to the system, an automatic

Initial Microprogram Load (IMPL) occurs. Data is read from
the console-file disk into the external assemblerlD. From the
assembler the data moves to the A-Register ID, to the A-Byte
Assembler, out on Storage Data Bus-In SDBI and then the
data is loaded into control storage. ra

•The 3145 is a word length processor. Each time storage is
accessed, a doubleword is read out. Through address bit for
mat, the e11en or odd address word is gated and used for that
specific operation.

•Normal addressing of storage is through the B·Register ID
to the M-Register. DI The M-Register sets up the address of
main or control $torage to be accessed. Control storage is a
reserved area and is unavailable to the user. All addresses
are validitY checked.

•The microprogram resides in control storage and is read
out into the C-Register. II This control word information
provides clock cycle length and sets up hardware gating
controls for the handling of data. The clock is a variable
cycle clock designed to accommodate operations requiring
longer cycle times.

•Local Storage (LSI 1!J consists of two monolithic stacks
of 64 words each (A-LS and B-LSI. Destined data is written
into both A-and B-LS so that both stacks contain the same
information at any corresponding address.. This permits
comparison checking of LS data.

•The External facilities are compo5ed of registers, buses,
status lines, and other circuitry that form the communi
cation line between the microprogram and:

Channels ICHNLI
Console-File Adapter (CFA)
Console Printer-Keyboard (CPKI
Checking Facilities
Retry Circuits
Integrated File Adapter (IFA)
Features..

External facilities have restrictions associated with them because
of the manner in which t~ey are used. For example, certain
externals cannot be addressed as destinations for data. Others
cannot be sources for data.

B·LS

•The arithmetic and logic unit IA LUI m performs the logic
manipulations and adding operations in the CPU. Two ALU
units are provided to allow halfword binary and word-move
operations in one pass. Each ALU consists of A and B entry
gates, logic and arithmetic circuits, and output gating to
position the output byte in the Z-Register. U

8-Local
Storage

m
A-Local
Storage

External
Assembler

• The SPTLll, special external registers, are used for
direct and indirect addressing, byte selection, and status indi
cations. The SPTL registers are destined in the same machine
cycle.

II

D

-
SOB! (Storage Data Bus-In)

Control
Storage

Main
Storage

..,.___ SDBO (Storage Data Bus Out)

3145 TM INTR 7

STORAGE
for deUlits about ltllnll9. nl• to~ ISTORI ...
Storage for the Model 145 is implemel)ted by monolithic
technology. It is based on bipolar, semiconductor storage
cells with nondestructive read capabilities. Unlike magnetic
core storage, the content of $torage is lost when power is
turned off.

The main advantages of semiconductor storage are:
• price/performance

• reliability and serviceability (a storage card can easily
be replaced).

Storage Structure

All 145 storage (local, control, and main) is implemented
using monolithic technology.

Main Storage

The 3145 processor has the following models and storage size
options:

FED
GE
GFD
Hor H2

Storage Size

112k*
160k
208k

HG when used with a 3345 Model 1 or 4, or HG2
I when used with a 3345 Model 2 or 5, or 12

256k
384k
512k
768k IH2

J2
Jl2
K2
•112k withdrawn from product line.

Data-Transfer Tim11

1024k
1536k
2048k

Storage data path width is eight bytes. The CPU fetches a
doubleword in 540 nanoseconds. It stores one word in 607.5
nanoseconds. (This involves fetching eight bytes, updating
four of them, resetting the ECC, and then storing back.)

Control Storage (CS)

The amount of control storage required depends upon
features in the system.

Basic system microcode contains:

Standard instructions
Standard features
Patch area and routine

and requires 24,600 bytes of CS.

Additional storage is required for:

Byte and block MPX UCWs
Block MPX feature
Console support
Integrated file adapter {IFA)
14XXn010/DOS emulators
Floating-point .etic

3145 DATA FLOW INTR 8

.. ~

Direct control Reloadable Control Storage {RCSl-Advantages

• Amount of control storage needed is minimized by recorf.''~·g
a console-file cartridge for each customer according to the
features the customer orders.

ftCS SIZE

32k bytes is the minimum. RCS may be expanded in increments
of 2k bytes up to 64k at the expense of main storage.

Clock comparator

Advanced control program

Sample requirements

CS is assigned in the high-order range of available storage. • Engineering changes to the microprogram can be easily effected. . The location of the RCS/main storage boundary is established
by microcode at IMPL time.

For example:

Main Storage
Control Storage

160k Model 145

Amount

160k
32k

Address Range

0·160k
160k-192k

• One storage system (single addressing design, circuits, data
flow) allows greater serviceability,

• Functions implemented through RCS can be easily extended.

Instructions accessing control storage cause address checks;
attempting to access a control word from main storage causes a Speed
machine check. This is checked by comparing the address fetch cycle: 540 ns, 8 bytes.
with the setting of the address check boundary register (ACB).
The ACB register is part of the external facility. ~

For ct.t•ils of items on this ft~ "CPU H.rdw•• ICPUI.''
For 1tor11g11 protectiOlt, reter":W'.; (STORI.''

STORAGE DATA BUS-OUT ASSEMBLER E\i1

• The Storage Data Bus-Out (SOSO) preassembler receives a
doubleword of data from main storage.

• The output of the SOSO preassembler is gated' to provide
word, halfword. or byte selection.

• The SOSO assembler receives input data from the SDBO pre
assembler, the storage-protect stack and the D-register. It
provides an output that is used as data for external bus-in
(EBI) and local storage.

C-REGISTER II
The C-register decodes the control word and provides control
and gating of CPU functions. When read out of control storage
and gated to the C-register. the control word is decoded to
determine:

• Word type

e CPU function

• CPU clock cycle and length

The C-register is set through the secondary control assembler
during certain operations; for example, manually setting a
control word from the switches on the console.

M-REGISTER Iii

• Composed of M 1, M2. and M3. which provides a 21-bit
(plus three parity bits) storage address.

• Addresses main and control storage. Storage is read out on a
doubleword boundary and stored on a word boundary.

N-REGISTER II
• Composed of N2 and N3.

• Backup register for control-5torage addressing.

• N2 is set with the same information as M2 and is changed
only when the control word being executed performs a
module-switch function.

• N3 is set with the same information as M3.

• N is not changed when a trap OcaJrs.

• When a trap occurs, the M-register is set to the trap address.
The trap routine stores the contents of N (the N-Reg
contains the next address that would have been used had
the trap not occurred). At the end of the trap routine, M
.ld N are restored to their original value so that the c:ontrol
word sequence may continue as if there had not been any
trap.

. •.

MB-REGISTER II
• Composed of MB2, M83.

• Set with the control-word address in M2, and M3 from M2
BFR and M~ BFR. .

• When the CPU clock is stopped, MB contains the address of
the last word executed.

• MB output is available to the retry and backup circuits as
well as the external 8S181llbler.

STORAGE PROTECTION l!J
The storage-protect unit has a 64 x 8 monolithic storage
protection stack that applies to main storage locations zero
through 131,072 (in sequential blocks of 2.048 bytes).
Additional stacks are provided in the CPU when main·
storage capacity extends from 131,072 bytes to 524,288
bytes. Above 524,288 bytes, storage protect is located in
the Power Frame (03) and is a mix of 64 x 8 and 64 x 18
monolithic storage cards.

Storage-protect circuits prevent accessing protected
areas during either store or fetch operations. To protect
specific areas of storage, key bits are first stored in the array of
the storage-protect circuit by a. write-key operation. During a
subsequent store or fetch operation, one of the prestored keys
is accessed and compared with the key provided by the user.
If the keys match, access to data storage is wanted; if not,
access is denied.

···~

j

3145 TM INTR 9

f« deUils of items on this 11991, nf• to "a'U_. ICPUJ.'•

A- AND B-REGISTERS lit
The A- and 8-registers, each with a fullword capacity. provide the
primary data inputs to the ALUs. ·

The 8-register also feeds the M-register during address setup:

• In the first cycle of a storage word, or

• During a return function in which the return address is
taken from local storage or an external facility.

ARITHMETIC AND LOGIC UNITS (ALUs) ID

Two one-byte ALUs (ALU2 and ALU3) perform the
following operations in one CPU cycle:

• Binary addition, true or complement, of up to two fullword
operands. Two halfword additions are performed to achieve
the fullword add. Binary halfword addition is achieved by
gating the two low·order operand bytes of each halfword
into ALU3, and two high-order operand bytes of each half
word into ALU2.

• Logical operation on two 1-byte operands. The operation
can be AND, OR, or Exclusive OR.

• One-byte, packed-decimal addition (true or complement).

• Operations and microprogram symbols are:

Symbol Operation

,A. AND
,OR, OR
,OE, Exclusive OR
+ True ADD

Complement ADD
,D+-, Decimal ADD
+· Binary ADD
,A-, Complement ANO

Z-REGISTER rl
ALU results are set into the four-byte Z-register. The ALU
result data can then be routed from Z to:

e The 0-register (normal gating)

• The S, P, T, or L-registers

• The A- or a-registers.

Also, the Z-register data (that is, ALU result) is tested, if so
specified in the control word being executed, to set/reset
$-register bits.

D·REGISTER m
The D-register is used as an interim destination for data to be
routed to external facilities or local storage. The data leaves
the 0-register on the following control-word cycle.

SPTL-SPECIAL EXTERNAL WORD DI
• Addressed directly by control-word bits.

• Has special data path to A· and a-register inputs.

• Only external that can be used as a B·source.

• Only facility that is destined in the same cycle (except H-Reg).

• Composed of four one-byte registers: S, P, T, and L.

$-Register: holds the status of arithmetic and logical results;
controls some arithmetic functions.

P-Register: base address register for local storage and external
addressing. ·

T·Aegister: used in conjunction with special branch functions,
shifting, storing, and indirect-byte addressing.

L-Register: used in conjunction with P-high bits to form indirect
local-storage addresses.

H-REGISTER II
The setting of the latches in the H-register isused to determine
the priority of traps. The bits are set during trap-2 cycle and
prevent traps of lower priority from occurring.

BACKUP AND RETRY EXTERNAL REGISTER liJ
To allow recovery from certain kinds of errors, hardware
registers (externals) are provided. The backup registers are set
to the current cycle setting of the prime register; the retry
registers are set to the cycle prior to the one currently being
executed.

3145 DATA FLOW INTR 10

FLUSH-THROUGH CHECK GI
Data routed to local storage, as the result of some control-word
operation, other than a storage word read, is Qated from the D·
register through the SDBO assembler D to local storage. The data
that is stored in A-local storage is set into the flush-Through
Check (FTC) latches and is matched to the data routed from the
0-register. If the match is unequal, an error condition is set. The
same check is made on information routed to the external
facilities from the D·register.

For deuils about items on th19"refer to "CPU Hardware (CPU!."

LOCAL STORAGE 11
• A and B local storage are identical monolithic stacks of 64

words each.

'.

• Both stacks contain the same information at the corresponding
address. This enables checking to ensure that ·data being
operated on is correct.

• The microprogram uses the local-storage area as a buffer
between main storage and the CPU hardware.

• Addresses are formed with combinations of bits from the
control word, P-register, L·register, T-register, console-file
command register. and forced by the selector channel.

• Access time is 24 nanoseconds.

EXTERNAL FACILITIES fiJ
• External facilities are composed of registers, buses, status lines,

and other circuitry that form the communications line
between the microprogram and:

Channels
Console file
Documentary console
Checking facilities
Retry circuits
Integrated file adapter
Features

• Addresses are formed from control words, console-file data,
selector-channel circuits, console switchH, retry information,
and local-storage address data.

• Data from the externals enters the data flow through the
external assembler to the A-Reg.

• Data to the externals is gated through the SDBO assembler on
the external bus-in (EBI).

EXPANDED LOCAL STORAGE r!I
The expanded local storage (EXPLSI registers are hardware
registers addressed as though they are local-storage (LS)
registers. EXPLS operates similar to the external facilities;
however, the output is routed to the A· and B·registers similar
to LS.

1-CYCLECONTROLS ID
This hardware improves the CPU performance for System/360
and System/370 instructions by reducing the time during I.Phase
of instruction processing.

I-BUFFERS II
The I-buffers consist of three 1-word registers and se used to

hold the present instruction plus, in most cases, the next
doubleword of the instruction stream.

ADDRESS ADJUST ANO DYNAMIC ADDRESS II
TRANSLATE

This logic is used by the OS/DOS compatibility and Dynamic
Address Translation features. OS/DOS compatibility foature
uses the logic for executing a· DOS supervisor and DOS
programs under control of the OS supervisor in any main·
storage location. Dynamic Address Translation uses the
logic to make avairabte by software and hardware up to
16M of virtual storage.

~D B·LOCAL STORE COMPARE DJ
Data stored in local storage is located at the corresponding
address in both local-storage stacks. The data is read from both
stacks and compared. If the data does not compare, an error
condition is set. Note that the output of expanded local storl!98
is routed along the same path but is not compared.

~

~~1 ..

3145 TM INTR 11

MICROPROGRAMS

for ~ils 8bout microprogr.ns, to "MicrCllll'OOIWa CMICI. • ·

• All functions performed by. the 3145 are controlled by a
microprogram.

• Before any processing may begin, the microprogram must be
loaded into the control-storage area. m

• The microprogram is loaded into control storage from a disk
that is read by the console file.

• .This loading process is called Initial Microprogram Program
Load (IMPL).

• The microprogram is composed of microroutines of varying
sizes, each having a specific task to perform.

• The microprogram handles the processing of the instructions
and data that are read into the main-storage area.

• Channel operations and the operations of the integrated
devices are also handled by the microprogram.

• Each microroutine is composed of bit-significant control
words that handle particular functions. These functions
control execution of the specified task of the microroutine.

CONTROL WORD READOUT

Before a control word can perform any of its functions, it
must be set into the four-byte control register (C-Reg). ID The
outputs of the C-Reg activate circuitry that causes the execution
of specified data-flow functions.

Control words are normally read from control storage and
set into the C-Reg. However, control words can be set into the
C·Reg directly from the console file, and certain control-word
bit combinations may be forced into the C-Reg by circuitry.

Assume that control and main storage have been loaded and
that processing has begun:
1. Control words are read out of control storage and gated out

on the Storage Data Bus-Out (SOBOi. B
2. Portions of the control words are gated from the SOBO to

either the local storage control assembler lilor the external
control assembler iiJ. This is done to set up source addresses
for these facilities early in the cycle.

3. The control words are gated into the control register
(C-Reg) l!J. where they are decoded. Decoding the control
words brings up control and addressing lines that access
and execute the programs located in main storag~. INSTRUCTION/DAT A READOUT

When a control word performs a read operation on main
storage, either instructions or data is accessed. All read
operations, for control or main storage, result in a double·
word's being accessed from storage. ·

Assume that a control word is performing a read operation
on main storage;

1. The doubleword from main storage is gated out on the
SDBO l!J to the 5080 pre-assembly latches II .

2. The odd or even address word, of the doublf!Word, is
selected and gated to the SDBO assembler.

3. If the word selected is a data word, it is gated to local
storage m or some external facility m .

4. If the word is an instruction, it is gated to the I-buffers B.
expanded local storage D , and in some cases to the address
apjustment circuits II .

MICROPROGRAMS INTR 12

CONTROL WORD F.ONS

For details about control -ds. refer to "Microprogram (MIC)".·

The control words arld their high-level functions are:

Branch and Modula Switch
Functions:

• Branch

• Module switch
' • Destine data to the S, T. or t...registers

Branch Word

Functions:

• Branch

• Module switch (special functioni

• Set/reset bits in. local storage or external registers

Branch and Link or Fleturn

Branch and Link Functions:

• Store S, P, N2. N3 into a link register

• Set P with a value, or module switch

• Branch

Return Functions:

• Restore S, P, N2, N3

• Reset H·register bits

• Alter the link address in some cases

Word Mova

• Move a fullwi>rd or selected bytes from one local
storage/external location to another.

• Branch

Storage Word

Functions:

• Read data from or store dab into
Local storage
Main storage
Control storage
External registers
Storage protect stack

• Branch

Arithmetic Word

Type 10 Functions:

• Perform a variety of arithmetic and logical operations

• Operate on fullwords for arithmetic or shifting operations

Type 11 Functions:

• c~,,erates on bytes only

• Performs OR, or true ADD only

• Provides A-register input crossing

WORD TYPE-DEFINITION

Byte 0

Byte 1

Byte 2

Byte3

0
0
1
1
1
0
0
1

1
1
0
0
1
1
1
0

0
0
0
0
1
0
0
1

C-REG

The first hex digit of the
control word is found on the

byte 0, bits 0-3.

microprogram listing'\
and in the C-register

Wonl ·-~ ,. 39 CE 09

first Hex Control-Word
Digit Type

0
1
2
3

4-7
S.B
C-F

Branch and module switch
Branch
Branch and link or return
Word move
Storage word
Arithmetic type 10
Arithmetic type 11

3145 TM INTR 13

ERROR HANDLING

If application-program errors occur (such as illogical action
requests), the operating system attempts to handle the exception
and provide any necessary operator messages.

If a failure occurs within the CPU or an 1/0 unit, provisions are
made to retry the failing operation. Error-logout facilities to
record any such failures are incorporated into the system. This
is in addition to any provisions made by the operating system
for error retry and error logging.)

Microprogram instruction retry, limited and extended channel
logout, storage validation (Error Checking and Correction--ECC)
the main and control storage, and other error-detection and
error-handling provisions are standard.

MICROPROGRAM INSTRUCTION RETRY

The ability to recover from most intermittent failures is provided
by retry techniques. CPU retry is done by microprogram routines
that save the source data before it is altered by the operation.
When an error is detected, a microprogram routine returns the
CPU to the beginning of the operation (or to a point during the
operation that was executed correctly), and the operation is
repeated. For a detailed description of microprogram instruction
retry, refer to the "Recovery Features !REC):'

ERROR CHECKING AND CORRECTION (ECC)

Error checking and correction circuitry for main and control
storage automatically corrects single-bit errors. Automatic
detection of double-bit errors is also provided. For a detailed
description of ECC circuits, refer to "Storage (STOA)."
For a description of handling ECC errors, refer to "Recovery
Features (REC)."

CHANNEL RETRY

This feature ensures that most failing channel oper'ations can
be retried by error-handling routines. Both a limited and an .
extended channel logout are implemented. When a channel
error or a CPU error associated with a channel operation
occurs, the channel status word (CSW) and an extended
channel status word (ECSW) are stored. in the fixed lower
storage area during the 1/0 interrupt. The ECSW or limited
channel log out data provides additional, more exacting
status information about the channel failure. This data is
formatted by the channel check handler (CCH) routine and
passed to a device-dependent error recovery routine to be
used in the retry o-f the failing 1/0 operation. The ECSW
contains information as to:

Which unit detected the error
Which unit caused the error
Successful retries
Channel retries
Validity flags
Retry code--how far has the instruction progressed in

execution

COMMAND RETRY

Command retry is a control-unit-initiated procedure between the
channel and the control unit. (Not all control units have this
capability.) No 1/0 interruption is required. The number of
retries is device-dependent.

ERROR HANDUNG-3145 COMPATIBILITY INTR 14

COMPATIBILITY of MODEL 145, with OTHER SYSTEM/370 MODELS
and SYSTEM/360

Within the storage capacity, internal and input/output
channel processing rates, and type of input/output devices
that can be attached, compatibility is maintained with other
System/370 and System/360 models, with the following
exceptions.
1. Programs using machine-dependent data (for example,

machine logouts).
2. Programs using the ASCII bit (PSW bit ;'.;.1.
3. Programs that depend upon features or 1/0 devices that

are not implemented on this system (such as special
instructions for ths System/360 Model 44).

4. Programs that depend upon validity of data after the
system power has been turned off and restored.

Programs written for other System/370 or System/360
models that contain the following conditions or require
ments should be evaluated on an individual basis to ensure
proper operation.

1. Time-dependent programs.
2. Programs written to cause deliberate program checks.
3. Programs that depend upon model-dependent features of

other System/370 and System/360 models.
4. Programs that use storage locations between address 128

(decimal/ and 704 after a diagnostic logout into program
storage. However, such programs may be executed if:
a. Check-control switch is set to Stop After Log

position. In this case, processing stops after the
diagnostic logout into program storage takes place.

b. Program-storage locations that are overlaid by the
diagnostic logout are restored with the program require
ments followed by an appropriate program restart
procedure.

Any attempt to continue processing after a dianostic logout
to program storage without restoring your program informa
tion to the logout area has unpredicatable results.

The 705-byte extent (the permanently assigned program
storage locations) can be reduced to 512 bytes by moving
the 192 bytes (between locations 512 and 704) into another
program-storage area. The technique used to accomplish this
relocation depends upon your application.

CONTROL REGISTERS

The control registers provide for loading and storing control infor-
mat ion.

The structure provides for sixteen 32-bit registers for control
purposes. These registers are not part of addressable storage.

One or more specific bit positions in control registers are
assigned to each function requiring register space. Some of
these functions and registers are:

Making the timer interrupt and external interrupt in
control register O.

Masking machine-check subclasses by bits set in control
register 14.

Pointing to an extended CPU logout area in control regis
ter 15.

For details of the control registers, refer to "CPU Hardware
(CPU)."

PROGRAM STATUS WORD CHANGES

Bit 7 External Mask bit 1s now a summary bit with control
register 1 conataining the individual mask bits.

Bit 12 is now reserved and must be zero. ASCII code is removed.

Bit 6 is the mask bit for channels 6 and over.

Bit 13 Hard Stop bit is now a summary bit. Control register
14 contains mask bits for subclasses of machine chedcs.

STANDARDINTERllill!E

fhe standard interface for System/370 has all the lines used
on the System/360 standard interface, plus several additional
lines. The additional lines used by the 3145 are identified

on this page. For details of these lines, refer to "Channel
ICHNL)."

DATA-IN

During read and sense operations, Data-In rises when data is
available on Bus-In. During write and control operations,
Data-In indicates that the control unit is ready to receive
data.

Data-In indicates to the channel that data on Bus-Out was
accepted by the control unit or that the control unit pro
vided the requested·data on Bus-In.

Data-In is effective with selector/block-multiplexer channels
only and is used a.l~ng with the Service-In Tag line to increase
data rates.

DISCONNECT -IN

Disconnect-In provides control units with the ability to alert
the system of malfunctions.

The channel responds to Disconnect-In by performing a
selective reset.

BUS.OUT

9 Lines
Bits P, 0-7

BUS-IN

9 Lines
Bits P, 0-7

MARK

TAGS OUT
Address-Out
Command-Out
Service-Out
Data-Out

Address-In
Status-In
Service-In
Data-In
Disconnect· In

Select-Out ~
Hold-Out
Operational-Out
Suppress-Out

CSelect-ln
Request-In
Operational· In

METERING CONTROLS

Clock-Out
Metering-Out

Metering-In

MARK-0-IN

Mark-0-ln is used only for the Command Retry feature.
When the command being executed encounters a con

dition requiring retry. the control unit indicates this by
raising Mark-0-ln.

DATA-OUT

Data-Out is the response to Data-In.
Data-Out indicates to a control unit that data on Bus-In

was accepted by the channel or that the channel provided
the requested data on Bus-Out.

Data-Out is effective with selector/block-multiplexer
channels only and is used along with the Service-In Tag
line to increase data rates.

3145 TM INTR

3145 CHANNELS-GENERAL DESCRIPTION
For details, refer to #ChMMI ICHNLI ...

The Model 145 has two types of channels available:

• Byte Multiplexer

• Selector
The selector channel optionally may have the block
multiplexer feature attached.

Channels on the Model 145 are integrated in the CPU and
share CPU cycles for 1/0 operations.

STANDARD FEATURES

• Byte multiplexer channel

• Selector channel 1 (Channel 2 if the IFA is present)

• Channel retry

OPTIONAL FEATURES

• Selector channels 2·4 (only selector channel 3 if IFA is present).

• Block-multiplexer feature.

• Integrated File Adapter for 2319 DSF. (DiSPlaces Channels 1
and4.)

• Channel-to-Channel Adapter.

BYTE-MULTIPLEXER CHANNEL

Functionally is equivalent to the System/360 multiplexer channel.

Data transfer is on a byte basis only.

UCWs (Unit Control Words) are provided for subchannels
in control storage. Each UCW is contained in four words
116 bytes).

• UCWs provide a place to store channel register data between
data transfers, thus allowing multiplexing of data.

• A maximum of 256 subchannels is available on the Model 145.

• 16 UCWs are standard on the Model 145.
A shared UCW can be shared by up to 16 devices, of which
only one can operate at a time.

A non-shared UCW can be used by one device only,

Thus, with 16 UCWs, if 8 are shared and 8 non-shared, a
total of 136 1/0 devices can be attached,

Up to eight control units can be attached per channel.

• Configurations of 32, 64, 128, or 256 subchannels are
available. The number of subchannels must be specified so
that the proper amount of control storage may be allocated
and written on the console file,

Data Rates
• Aggregate data rate in byte mode is 50 kb. Note that the

selector channels and IFA can interfere with the byte
multiplexer channel.

• Burst mode data rate is 180 kb.

SELECTOR CHANNELS

The 3145 has one selector channel as standard. Up to three
more may be attached as an optional feature. DASO devices
without command retry feature should not be attached to
channel 4, •

• Functionally is equivalent to the System/360 selector channel.

• If the IFA is installed. only channels 2 and 3 can be installed.

Data Transfer
Data is transferred one byte at a time unless the optional word
buffer feature is installed on the channel.

• A four·byte buffer is provided for each channel if the
feature is installed.

• The word buffer feature allows fewer accesses to main
storage to be made while transferring data from the
selector channels and increases channel data rates.

• A one-byte operation requires 585 nanoseconds; a one
byte fetch operation requires 517.5 nanoseconds. The
word buffer feature allows four bytes to be transferred
rather thar one.

• The word buffer is required if the 2305 is attached.
This buffer is recommended if the 3330 is attached.

Data Rates
• Single Channel

without word buffer
with word buffer

• Aggregate data rate
without word buffer
with word buffer

.82 megabytes
1.85 megabytes

1.5 megabytes
5.0 megabytes

CHANNELS INTR 16

BLOCK·MULTIPLEXEFn="EATURE

The block-multiplexer feature may be installed on the selector ' '
channels as an optional feature.

It is required if the 3330 and 2305 are attached.
The selector channel operates as a block-multiplexer channel

when the mode bit in the control register is set on.
A maximum of 512 UCWs is provided when the block·

multiplexer feature is installed. These UCWs provide a pool that
may be assigned to devices. Each UCW is contained in two words.

• UCWs may be shared or non-shared

• UCWs are contained in control storage

• Shared UCWs must be determined and assigned device
addresses,

• Non-shared UCWs are dynamically assigned in blocks of
eight to devices at start 1/0 time. If no UCWs are avail
able, a not-operational-condition code is returned.

• UCWs are provided in control storage in increments of
16 UCWs. Each increment contains two groups of 8 UCWs.

Block Multiplexing
Block multiplexing allows the channel to disconnect a device at
channel-end time. During the interval between channel-end and
device-end, another device on the channel could be started or
could complete data transfer for a previously started operation.
Thus, a block-multiplexer channel can multiplex blocks of data
from different devices giving a much greater effective data rate
than a selector channel.

Block multiplexing occurs only if a control unit presents
channel-end and not deviclH!nd during command chaining,
and the channel is in block MPX mode.

The block-multiplexer channel can operate as a selector
channel so that existing System/360 channel programs can
run unchanged.

Block-Multiplexer Operation

Because the channel is busy only during the time when data is
actually being transferred, several channel programs can be
executed concurrently by sharing the channel hardware. This
is called "Channel Multiprogramming,"
The sequence of events in channel multiprogramming is:

A channel program controlling a device is started by the
channel and remains active until the device signals that it
has no need for the channel path at that stage of its
operation.

The channel disconnects the channel program and stores
all information needed to restart the program in UCWs
that are in control storage.

The channel can start another channel program at this
point if one is ready.

Upon receipt of a signal from the previously disconnected
device indicating that it is ready to use the channel data
path again, the channel restarts the appropriate channel
program.

The process is repeated for all active devices until each
one is completely serviced.

If a channel is busy when a device reconnection is
requested, the device must wait until the channel becomes
available.

To facilitate channel scheduling, a new channel available
interrupt has been defined for the block-multiplexer
channel.

At disconnect time for a channel program, the channel is
available for the resumption of an uncompleted channel
program or the initiation of a new one. A channel available
interrupt occurs at disconnect time if any 1/0 command was
issued previously while the channel was busy.

lm'EGRATED FILE ADAPTER

• The Integrated File Adapter (IFA) feature connects three
to eight 2314-type disk drives to the System/370 Model 145.

• The IF A feature is assigned exclusive use of the channel-1
address and functions as both channel and control unit for
the files.

• Data transfer takes place one byte at a time on a share-cycle

basis the same selector channels.

• The initiation of operations and each step of the file sequence
requires the CPU controls and microprogramming.

The primary control for the I FA is contained in the CPU,
where it can make use of the CPU hardware and microprogram

for operation. The 2319-A 1 contains the read clocking circuits,
the write oscillator, and the storage module switching for up to
eight files. The disk storage drives operate the same as the 2314
system connected to a selector channel. The record format is
identical, and the operation requires the same programming
systems.

The I FA control-unit operation is initiated as a channel
operation using the 1/0 instructions and channel commands.
Primary control information for the file operation is stored
in the CPU. Operating commands are processed by micro
programs stored in the CPU. The microprogram starts the
operation by developing the appropriate information for a
portion of the sequence and issues a mini-op to the control-unit
hardware. While the hardware is performing the mini-op, the
microprogram stores a link address and returns to CPU operation.
When the hardware finishes that portion of the sequence, it
requests a trap to return to the microprogram link address to

continue the operation. To complete a command, a·n operation
may require 'several of these transfers between the microprogram
and hardware.

Data movement during the hardware control period is per
formed by requesting a selector-channel share cycle for each byte.
The CPU or other channel operations can use the CPU hardware
IOd microprogram for other operations when time is not
required by the IFA controls either for setup or data transfer.
The file operation should never overrun during normal operation
because of the assigned priorities.

For details on the IFA, refer to "Integrated File Adapter (IFA)."

3145 TM INTR 17

CPU HARDW'ARE
CONTENTS
SPTL

S-Register
P-Register
T·Register
l-Register

SOSO PRE-ASM, ASM

SDBO PRE-ASSEMBLER UNIT DATA FLOW

LOCAL STORAGE ..
Local Storage Operation
Data Checking. . . .

Fl~sh-Through Check (FTC)
A·ar"d B·local Storage Compare .

Local Storage Timing .
Local Storage Destination Addressing

Dest'nation look·Ahead . . .
A-Local Storage Unit Data Flow
A-Local Storage Address Assembly
B·Local Storage Unit Data Flow . .
·s-Local Storage Addressing Assembly •
local Storage Map (370 Microprogram.in
Control Storage! . . •

Scope Procedure for Local-Storage Addressing

EXPANDED LOCAL STORAGE (EXPLS) .

Expanded Local Storage Map .
I-Register <EXPLS 50) .
V-Register (EXPLS 51) .
W-Register iEXPLS 52).
U-Register iEXPLS 53).
I BU-Register <EXPLS 54)
TR-Register tEXPLS 55)
iCS (I-Cycle Status) Register (EXPLS 561.
G20RL. G3DRL.G1DRL. and G40RL (EXPLS
60, 64. 68 and 6CI • • . • •
G2DBRL, G3DBRL. GlDBRL,and G4DBRl
IEXPLS 61, 65, 69, and 6Dl.

SN-Register IEXPLS 781
PN-Register (EXPLS. 79)
WK-Register (EXPLS 7Al
NP-Register <EXPLS 7B)
DK-Register lEXPLS 7CI

Expanded Local Storage: Source Gating
Expanded local Storage: Source Gating Examples .
Expanded Local Storage: Destining • . • • • •

~ination Control . . • . • . • • • •

'.
CPU 3

CPU4
CPU 6
CPU6
CPU7

CPU 8

CPU9

CPU 10
CPU10
CPU 10
CPU 10
CPU 10
CPU 10
CPU 11
CPU 11
CPU 12
CPU 13
CPU 14
CPU 15

CPU 16

EXTERNAL FACILITIES

External Control Assembler
X-Y Decodes : . .
Source Addressing . . .
Flush-Through Check • .
External Assembler Data Flow
Expanded External Assembler Data Flow.
External Assignment and Index Map

NOREG Word •.
Diag Word Byte 2.
Oiag Word Byte 3.
CPU Word ...
SW Word (Console Switches) .
PSWCTL Word
Misc Word Bytes 2 and ~- • .
In Word (Interrupt Register) .
ACB (Address Check Boundary) Register .
Sys (System) Register • •

Priority Operations-H-Register
Priority Operations . . •
H-Register . • • . . •
Priority and Trap Controls.
M2 Gating (Traps)
M3 Gating (Traps) . . •

CPU
17 I-CYCLES

CPU 19

CPU21
CPU 21
CPU 21
CPU 21
CPU 21
CPU 21
CPU 21
CPU 21

CPU22

CPU 22
CPU 22
CPU 22
CPU 22
CPU 22
CPU22
CPU 23
CPU25
CPU 27
CPU 28

I-Phase Functions
Hardware Functions .
Microcode-Hardware Functions
Microcode-Hardware Relationship
I-Cycles Microcode Module Assignment
I-Cycles Microcode and Control Hardware
Loading of I-Buffers . • •

I-Cycles Microcode and Control Hardware
Calculate Operanrl Address and Perform Prefetches
I-Cycle Hardware Locations .
l·Cyt:re Hardware Description. . . •
I-Cycles Data Flow • . •
Instruction Cycles Address Generation .
I-Cycles Control Line Generation . •
I-Cycles Address Generation and Control
Decode. •

Unique Conditions During I-Cycles .
I-Cycle Error Conc!itions
Storage Correction Cycle . .
I-Cycle Timings . • • . •
I-Cycle Operational Description
I-Cycles Alignment Routine .
I-Cycles Program Modification

CPU 29

CPU 29
CPU 29
CPU 29
CPU 29
CPU 30
CPU31
CPU 32
CPU34
CPU 34
CPU 34

CPU 34
CPU 34
CPU 34
CPU 34
CPU 34
CPU35
CPU 38
CPU39
CPU39
CPU41
CPU43
CPU44
CPU45

CPU 47

CPU48
CPU49
CPU SO
CPU51
CPU 52

CPU53

CPU54
CPU 56
CPU57
CPU58
CPU63
CPU64

CPU 65
CPU66
CPU66
CPU66
CPU67
CPU68
CPU73
CPU 76

Execute Phase (I.Cycles) . • •
Example 2B Add (SA) Instruction (Double
Indexing with Alignment). • •

MVC (D2) Instruction Example •
Execute 44 Instruction Example.

A-REGISTER, B-REGISTER, and ALUs.

A-Register and A-Byte Assembler
B·Register and B·Byte Assembler
ALU A-Entry Gating
ALU B-Entry Gating
Shift Gating • . •
ALU K-Assembler. .
Arithmetic and Logic Unit (ALU)

Half·Sum Checking

Z-REGISTER and 0-REGISTER

Z·Register Parity Checking
Z-Register • •
0-Register . . • • . •
D·Register and Flush-Through-Check IFTC) •
Register

C-REGISTER (CONTROL WORD DECODE).

C-Register •

M, N, and MB-REGISTERS

M-Register . . • • • • •
Setting M-Register for Main Storage Addressing .
Setting M-Register for Control Storage
Addressing.

N-Register . • .
MB-Register

Buffer Registers •
M-, N-. and MB-Registers Branch Circuits •

CPU CLOCK

CPU Clock Oscillator.
CPU Clock Timing .

CPU Clock Checks and Adjustments

SECONDARY CONTROL ASSEMBLER

CONTROL REGISTERS .

Description .

CPU 82

CPU 83
CPU 84
CPU86

CPU 88

CPU89
CPU 90
CPU91
CPU91
CPU92
CPU92
CPU93
CPU93

CPU 94

CPU 94
CPU94
CPU95
CPU96

CPU 98

CPU98

CPU 102

. CPU 102
CPU 103

CPU 103
CPU 103
CPU 103
CPU 103
CPU 104

CPU99

CPU99
CPU99
CPU 100

CPU 104

CPU 106

CPU 106

STANDARD FEATURES

Time-of-Day Clock . . .
Physical Description • .
Clock Security Switch (TOD CLK) .
Clock Validity Indicator (TOD CLK INVAL)
Error Detection • • . . •
Clock-Setting Sequence. • •
TOD Clock Update Sequence.
TOD Manual Set . • . • •
TOD Clock Instructions
TOD Clock Output Assembler
TOD Circuit Card Locations and
Related Logic.

Interval Timer
Description. • • . .
Interval Timer Operation

OS/DOS Compatibility. .
Introduction
OS/DOS Functional Units .
New Instructions for OS/DOS Emulator

Monitor Call • . • . .
Monitor Call Instruction

Extended Control Mode
Introduction . .
Feature Mask . . .
Control Registers. .
Permanent Storage Assignments •
PSW Interchange Sequence
Interrupt Codes
Store Then Mask Instructions

Dynamic Address Translation . .
Introduction • •
Addresses Subject to Translation
Addresses Not to be Translated •
Basic Operation of Oynamic Address Translation
Associated Hardware
DAT Functional Operations • .
Instructions Associated With DAT
Hardware Error Checking . .
DAT Exercise

Channel Indirect Data Addressing
Introduction . • . • . •
Byte-Multiplexer Channel . .
Selector and Block Multiplexer and IFAChannels

Program Event Recording (PERI •
Introduction . • . • .
Control Register Allocation •
Extended Interrupt Code . .
Successful Branch Instruction
Instruction Fetching. • .
Storage Alteration • . ·. •
General Register Alteration •
PER Operations liltroduction

CPU 109

CPU 109
CPU 109
CPU 109
CPU 109
CPU 109
CPU 110
CPU 110
CPU 110
CPU 110
CPU 112

CPU 113
CPU 114
CPU 114
CPU 114
CPU 116
CPU 116
CPU 117
CPU 119
CPU 130
CPU 130

CPU 131
CPU 131
CPU 131
CPU 132
CPU 134
CPU 136
CPU 138
CPU 138
CPU 139
CPU 139
CPU 139
CPU 139
CPU 140
CPU 148
CPU 156
CPU 161
CPU 162
CPU 164
CPU 170
CPU 170
CPU 170
CPU 170
CPU 173
CPU 173
CPU 173
CPU 173
CPU 174
CPU 174
CPU 174
CPU 174
CPU 174

3145 TM CPU 1

SPTL

The SPTL word is a special external register that has a word
address of 04.

• Addressed directly by control-word bits.

• Has special data path to A· and B·register inputs.

• Only external that can be used as a 8-source.

• Only facility (other than the H-Reg) that is destined in the
same cycle.

• Composed of four byte registers: S, P, T, and L

• Set by I-cycle controls during I-cycles.

s 'p T

-~~~

s-n.,;u~L the"""'••\ arithmetic and logical results;
' ' 'controls some arithmetic

functions.

Base address registers for
local-storage and external
addressing.

'.

L

~

\
Used with P-high bits to
form indirect local-storage
addresse&.

Controls expanded
local-storage
addressing

Used with special branch
functions, shifting, storing,
and indirect-byte addressing.

.~~rr-s~:.~~ -...
.. ~ ·-~-'~"'"~~'~
a- - "~u "°'~

JIU11'Y -
&fOAf& J(JUHA\.

, HT - ACIUllUUlliMatEll

" A$M ~·:i·~~' - Ml;-- 1•------!o-!i-~

-~ ~f.B -:==~:7 ...
.. :~~ .=· .ljf M~ -~
[~ r.:::-··~,. .. .JJI L .. - ~~]

-

:·:;J:R .
'"~

..._: I
r-=r=J ~
t.__,.-J '-.-·

Note: For details concerning how SPTL affects control-word
operations and addressing, see the Microprogram (MIC) Sl!ction.

3145 TM CPU3

S-REGISTER

2 3 4 5 6

Indicates true or I I
complement add.

Status set for
arithmetic words.

\\

\eneral-purposestatus
indicators for branching.

Status set for
arithmetic and storlgll wordl.

Status set for storage
and arithmetic words.

Normally set to the value of
the high-order carry during
an arithmetic operation.

5-register bits are used primarily to indicate the results of ALU
operations or to specify how certain ALU operations are to be
performed.

Branch fields in the control words can be set to specify branch
testing of 5-register bits. The results of the branch testing are used
to determine a portion of the next control-word address. There
fore, a control-word sequence can be modified according to ALU
results. For example, the following is frequently used in micro
program routines.

1. A control word specifying an ALU operation calls out set/
reset of specific S-register bits, depending upon the ALU
result.

2. A subsequent control word specifies branching on the same
5-register bits.

Note: If the S-register is set with a control word and this same
control word is branching on S·bits, the branch test is made on a
previous"S-register setting and not on the result of the current
control-word operation.
3. The control word branched-to continues the microprogram

sequence required by the ALU r;sult.

The $-register can also be used as a general-purpose data
register. For example, a control word can cause the 5-register
to be loaded with a byte for use in operations with subsequent
control-word operations such that none of the following descrip
tions apply. Such use of the $-register is determined by the
microprogrammer. The following listed $-register bit functions
are not automatically performed. Any function must be
explicitly specified in the control word for which the function
is desired.

The data from the $-register is used in the M-register for
branching.
Note: The duplicate S-registers are designated $-register
A and B, respectively. The data from $-register B is displayable,
and is gated to the A-register and B-register.

so
The setting of SO determines whether a true or complement add .
is to be performed in the ALU(s) when either a binary or decimal
add is specified by the control word.

SO Value Specifies

0 True add
Complement add

The true/complement circuitry affects only the B-input (from
the B-register or th!! K-assembler) to the ALU(s). The A-register
input is always presented to the ALU(s) in true form, regardless
of the value of so,

In arithmetic word (type 10) shift operations, the value of SO is
shifted into the four high bits of the result word (shifted right)
when the shift field of the arithmetic word specifies (S R4, SO).

The bits 14-7) shifted out of the source-word byte 3 are set into
T-register bits 0 through 3, respectively.

S1
··-·~\

1. In decimal operations, 51 is set to 1 if an invalid decimal digit
is detected in the A or B inputs to the ALU. 51 is not changed
if the decimal digits are all valid. A decimal digit greater than
1001 (binary) is invalid. The test on the inputs is made
before the original decimal data is binarily added in ALU3;
no such test is made on decimal data when it is being sent to
ALU3 on a ±6 correction cycle.

In order for S1 to function in this manner, the arithmetic
control word (type 101 must specify both decimal addition
(C, D+-, C), and the 512 st~tus set.

2. In binary operations, 51 is set to the value of the carry-out
of:
a. Bit 1 in single-type ALU operations,
b. Bit 1 of byte 0 in fullword ALU operations.

The control word must specify the 512 status set, along with
the appropriate binary ALU operation, in order for St to
function in either of these two ways.

SPTL CPU4

S2
1. In byte operations, 52 is set to 1 ifthe Z-bus (ALU result

byte 3) is not zero (ZO). If the Z-bus is z.-o S2 is not
changed from its prior setting. The arithmetic comrol word
calling for the byte operation must specify the Sl 2 status
set in order for the 52 bit to function in this manner.

2. In fullword binary operations, S2 is set to 1 if the entire 32·
bit result is nonzero. S2 is not changed if the 32-bit result is
zero. A status set of 512 must be specified in the arithmetic
control word (calling for the fullword operation) in order for
S2 to function in this manner.

3. In fullword binary operation. $2 is set to 1 if:
a. A Z24 status set is specified, and
b. The low-order 24 bits (ALU result bytes 1, 2, and 3) are

nonzero. If the low-order 24 bits are all zero, S2 is not
changed.

4. When an S2 status set is specified in a storage word, $2 is 5et

to 1 if the count field is not zero after the count is decremented;
52 is set to 0 if the count field is zero after decrementing. The
decrement-count function is specified in the storage word to
effect the following actions:
a. The 24-bit address, in bytes 1, 2 and 3 of the even word (of

an even/odd pair of local-storage words), is updated.
b .. The count field (low-order 16 bits of the odd word of the

pair) is decremented.
c. S2 is set according to the low-order 16-bit result of step b.

Note that the count value is updated by circuitry and that S2 is
set/reset if the S2 status set is specified even if decrement count is
not specified. In this case, however, the updated count value is not
stored back into the count location.

S3
SJ is set to the value of the carry-out of bit-0 of the ALU opera
tion. This function is used in both byte and word operations. Tlfe•
arithmetic operation field must contain a bit configuration
designated by a statment that contains a C at the left, in order
for SJ to function in this manner. For example, in the statement:

SO=O
C+O

the C specifies that SJ is to be set/reset.
In fullword arithmetic operations, SJ is set to the carry-out of:

a. Bit 0 of byte 0 if an S12 or no status set is specified.
b. Bit 0 of byte 1 if a Z24 status set is specified

53 is not set/reset in storage-word address and count updates.

S4and S5

In arithmetic words (types 10 and 11) that specify a status set of
545, S4 and S5 are set/reset according to the bit values of the ALU
result byte as follows:

Bit Value Indicates Result Byte Bits
S4 0 0-J not equal to 0000
54 1 O·J = 0000
S5 0 4· 7 not equal to 0000
S5 1 4·7 = 0000

If a Z6 status set is specified:

Bit Value Indicates Result Byte Bits

S4
S4
SS
SS

0
1
0

0-S not equal to 000000
O·S= 000000
4· 7 not equal to 0000
4.7 =0000

The S45 and Z6 status sets can be spei:ifieci in an arithmetic word,
only if a single-byte ALU operation is called for; 545 and Z6 do
not pertain to fullword arithmetic operations.

In storage-word operations, S4 and S5 functiv11~ are the same as
in the arithmetic words and are specified in the same manner (545
and Z6). S4 and SS are set according to the value of the low-order
byte of the count field after the count has been decremented.
The count is in bytes 2 and 3 of the odd word of an even-odd pair
of local-storage words. The address is in bytes 1, 2, and J of the
even-word location.

In an arithmetic word (type 10) that specifie.; an AB CK byte
operation: S4 is set to 1 if a parity·check error is detected on
the A input to the ALU(s).

Note: If an 124 status set is specified in a type 10 arithmetic
word, no $-register bit.setting occurs, regardless of any other
specified status set. For example, if the operation specified is:

SO=O
C+O

and 124 is also specified, then S3 and SO are not changed even
though the operation field calls for such set/reset functions.

3145 TM CPU5

P-REGISTER

lo 2 3 i 4 s e

....... L • ... T \ h:;~~
to form indirect local· local-storage addrea..
storage.word addr-.

:.:t~~:i~::::= P3 • 1 indicates external
addressing if C1bitOz1.

"Used for expanded
local-storage control.

The primary function of the P·register is to provide a base address
wring local·storage or external-register addressing. That is, the
P-register is used to point to groups of external registers or areas
of local storage; the remainder of the external/local-storage ad·
dress is specified by the outputs of the C·register. In some cases,
the L· and/or T·register contents are used to determine portions
of the address.

TREGISTER

TH

3

. I
81ta 0 and 1 era 91tlld to
bits 2 and 3 of M3
during the next control.
word address 18tup for
special modulHWitc:h
function of the branch
word.

Used as a mask for a
store-word function.
Used to hold low-order
hex digit shifted out
during arithmetic word
•hift-right function.
May be used as digit
shifted into the high·
order position of a
right shifted result.

TA TB

.. 6

\
Used •a byte pointer
for the S--rce during
arithmetic word using
indirect-bVta addrassing.
Usually S9t by • spacial

function of a norage
word rad operation.

Used • a bvt• pointer
for th• A-source d,.ing
arithmetic word using
Indirect byte eddres-·"11·
Usually set by a spe... ... 1
function of a storage
word read operation.

The T-register is used in a variety of ways:
1. Bits 4 ~nd 5 and/or 6 and 7 are used in indirect·bY1e

addressing and branching operations.
2. Bits 0 and 1 are used to form a portion of the next·

control-word address when a module-switching.operation is
specified in the branch word.

3. Bits 0 through 3 are used in arithmetic fullword
shift operations.

4. In certain storage-word read operations, bits 4 and 5 or
6 and 7 are set to the value of the two low-order storage
address bits before the address is updated.

5. In certain storage-word store operations, bits 0 through 3
are used to specify which bytes of a source are to be stored
and what constant, if any, is to be used to update the
storage address.

6. May be used as a working register.

SPTL CPU&

L-REGISTER

LH

3

I
Used ~th high-order
bits of the P-register
to form indi111et llddren
of tocal-sto,. register
ODntaining fint opennd.

4

LL

\
Used with high-order
bits of the P-register
to form indirect
lddreu of locat-sto,...
register containing
'9COnd opermnd.

The primary purposl! of the L-register is to hold the addresses of
the general or floating-point registers, all of which are in local
storage. The address of a general register can be specified by LO
through L3 or L4 through L7. For example, L0-3=0111 can
specify general register 7. Note, however. that while this address
corresponds to the hexadecimal address of general register 7, that
register's address in local stqrage is determined by C, P, and L·
register bits when the L-register is used in the addressing.

The liddress of a floating-point register is usually specified by
L0-3only (not L4-7). ·

The L-register may be used as a working register.

$"

3145 TM CPU7

SDBO PRE-ASM, ASM

• The Storage Data Bus-Out (SOBOi preassembler receives
a doubleword of data from internal or external storage.

• The output of the SOBO preassembler is gated by M3 bits
5, 6, and 7 to provide word, halfword, or byte selection.

• The SBDO assembler receives inputs from the SDBO
preassembler, the storage-protect stack, and the 0-register.
The assembler provides an output that is used as data for
External Bus-In (EBI) and local storage.

The selection of data fed to the SOBO assembler is
accomplished by decoding M3 bits 5, 6, and 7. The decode
of the M3 bits causes corresponding gating lines to be
activated, which cause data from the SOBO preassembler to
be routed to the SDBO assembler.

Ml Reg Selects

bit 5 0 Even word ~es 0-3
1 Odd word t)rtes 4-7

bit 6 0 Even halfword, bytes 0, 1
1 Odd halfword, bytes 2, 3

bit 7 0 Even bytes 0, 2
1 Odd bytes 1, 3

Read Word

Word Selected Word, Halfword, SOBO

~·;HIH!~WEXT

SDBO PRE·ASM, ASM CPUS

'
~::.~:;:.~. §

Read Byte

"""' Halfwonl, M3 bit 6=0 . R .. d H•lfWO<d, M3 bit 6•1 ;§W;H;I- To Byte
3

;~mHm ;H;H; ~
1 1 1 1 . 1
o o

2 2
• M3 bit 6,7=00, Byte 0 to X

2 • M3 bit 6,7=01, Byte 1 to X
1 1 r To Bytes 2 and 3 3 3 3 ~To Bytes 2 and 3 ' ~ M3 bit 6,7=10, Byte 2 to X

LS/EXT - LS/EXT M3 bit 6,7=11, Byte 3 to X

SDBO PRE~Ass&R UNIT DATA FLOW

1NTERNAL

Data to

System

Bits

0-63

SOSO 8yt1!$ 0-7

SQ203 - SQ302

Data to

System

Bits

0-63

Gate Internal Storage

External SOSO Bytes 0-7

SQ203 - 50302 Store-2 Cycle -----1

0-Time -------1
INotl SOBO Gate

0-Regist"f

Gate 0-Reg through SOSO Asm

SOBOOata

SOSO Preasm latches

Gate SOSO

Local Storage Q'!'ti.!!9

Destine prev cycle

Destine address

Store-1 Cycle

0-T 1-T 2-T

I

.SDBO
PRE·ASM

PH
1

PH
2

PH
3

PH
4

PH
5

PH
6

PH
7

Bytes 4-7

RC113 - RC193

Next Control
Store-2 Cycle Word Cycle

0-T 1-T 2-T O·T 1-T 2·T

-
J I I

0-T

Destine count

Store data

SDBO Gating ----------
w
x
x

0

MODE

~~
·o 1

·x x

BYTE

0 1 1

0 1 0 1

The bytes in the shaded

area are gated but are

not used at the output.

1 3 0 1 2 3 1-------------------f

RC114-RC194

The two-word SDBO preassembler latches retain the storage
entry for use during the cycle.

M3 bit 5 of the storage address defines which word of the
storage access is to be gated to the SDBO assembler.

For a word·mode operation, the fullword is gated to the
assembler when the gate SDBO line is raised.

MS115 Protect Stack X
Gt St Prot through 5080 Asm _J

For a halfword-mode operation, the upper or lower halfword;
depending on M3 bit 6, is gated to bytes 2 and 3. Input bytes 0
and 1 continue to gate to output bytes 0 and 1.

For byte-mode operation, the byte defined by M3 bits 6 and 7
is gated to byte 3. The remaining input bytes are gated to their
respective output positions.

The protect stack readout is gated to the SDBO assembler
byte 3 during the ISK instruction to allow transfer to a GP
register.

The fOU"-byte output of the D-register is gated to the
respectivo! outputs of the SOSO assembler when neither the
gate SOSO line oor the gate st prot line are active.

soao Asm

0

3

RC114-RC194

3145 TM CPU9

LOCAL STORAGE

• Local Storage (LS) consists of two monolithic stacks of 64 words
each (A-LS and 8-LS).

• Destined data is written into both A· and 8-LS so that both stacks
contain the same information at any corresponding address. This
permits comparison checking of LS data.

• LS is used by the microprogram as a high-speed buffer. Access
time is 24 nanoseconds.

• Readout is nondestructive.

• Address range within each stack is 00 to 3F (He><).

• Addressing is accomplished with combinations of control-word bits,
P-register bits, L-register bits, T-register bits, selector-channel
share-cycle forced bits, and console-file command-register bits.

LS has assigned locations for specified functions. Refer to "Local
Storage Map (370 Microprogram in Control Storage)." Locations
included are:

16 general registers
4 floating-point registers
Selector-channel work area
CPU work area

These locations are valid when the 370 microprogram is located in
control storage. When diagnostics are running, another set of LS
assignments is in effect.

LS is external to main and control storage. Each 64·W1?rd stack is
located on two MST cards:

8-LS

Bytes Card Location

Oand 1
2and 3
Oand 1
2and 3

A-84P2
A-84M2
A-C482
A-C4C2

Note: Do not remove or replace LS array cards with power on.

LOCAL STORAGE OPERATION

Read

• Either or both A-LS and 8-LS can be accessed in one cycle.

• Data from A·LS is gated to the A-register.

• Data from B·LS is gated to the 8-register.

• A-LS and 8-LS sources can be different addresses.

Write/Read

• Data destined to LS always is written into both A· and B·LS.

'• Data destined during any cycle is written during the next
cycle.

• A write LS is always followed by a read LS. The read LS
data is used for flush-through checking and A- and B·LS
comparing.

DATA CHECKING

Flush-Through Check (FTC)

Data destined to local storage as a result of some control-word
operation, other than a storage word read, is gated from the ·
D-register through the SDBO assembler to local storage. The
data in the D-register is compared with the data from the
A-LS address that was the destination. If the compare is not
equal, bit 2 of MCKA 1 sets to indicate an FTC error.

A and B Local Storage Compare

Data destined to local storage is stored at corresponding addresses
in both local-storage stacks. The data is then read from these
addresses and compared. If the compare Is not equal, bit 1 of
MCKA 1 sets to indicate the error.

D·Registet

0
1
2

FTC
Latches

MCKA1,Blt 1

LOCAL STORAGE TIMING

Read

Write/Read

FTC

A/B-LS Compare

0-Time 1·Time

I 0-Time Delayed I 1·Time

Delayed

-- --
Write/Read, FTC, and A/B-LS compare occur during the cycle
following the control-word cycle that the data was destined.

IWrltel LS Bit Gate
Bit
Timing
Pwr.

IReldl LS Set Byte Set Pwr

XO
X1
X2
X3
X4
X5
X6
X7

L~LSTORAGE CPU10

~~.--- ------r~'?.Ji, --u

w;;i " "' -- - [;°=::::;-_:. ==n -
--~~ ff=~~=:~IJ ±-
flr"' ":]I' · ' ·- -:• ' ·-·-·X 11!:
~.~--, ~ ±; __ ~-.J.-~ r~- r~<
;~_:. I-Jli

t
-,~; :-m:~"1-. L::.~ IL ;;:_~;~ --.·:E:_~·~. ! l...>!2'!...J ·-·- Lr---;;;··- -. ~ ··--.-·~~

§ jl" ,ff-..---~- -c;~ ;:~,·-
t ~ _ ~-

c-

"'"··'·""···.· .•••••.•. ., ,~\.!;i~

64Words
It Stack)
8x8

·,'

Sense Amp Lth

LSD11a

L

LOCAL STORAGE D.ATION ADDRESSING
The type/form of the control word selects the source address
(A or Bl that is used for the destination address.

1. During fast gate, decoded source addresses are stored in
the A and B buffers. fl

2. At the beginning of slow gate, the previous control-word
destination address is gated from the A and B destination
address latches to the address decoders.ID

3. The data destined during the previous cycle is written. ll
4. The buffer IA or B) selected by the word type/form is

gated to both the A and B destination address latches. EJ
5. At slow gate of the next cycle, this address is gated to the

address decoders for destination write/read. m

Destination Look-Ahead II
A new source address may be the same local•storage address
as the previous destination address. When this condition occurs,
the destined data in the Z-register is not stored into local storage
in time to be accessed by the following control word as source
data. Destination look ahead detects this condition by comparing
A and B new source addresses with the previous destination
address. An unequal compare (previous destination not new source)
gates the new source data from local storage to the A- or 8-register.
An equal compare (previous destination is new source) gates the
neW source data directly from the Z·register to the A- or B-register.
This compare is done on a byte basis.

LOCAL STORAGE ADDRESSING " Force Selector Channel

Cons, File Command Reg Bits 2-7 B·LS
Addr

m--Source/Destine
lllllllllllllllllllllllllllllWlllllllllllllllllllllllllllllllllllllltlltnlllllQlllHIHlllHllllllllllllll

P·Reg L-Reg i
/l;Hllllllllllllll

~ ~1111
~ 1!i Destine
§ ~111111111111mn111111111111m1111111111111111

SOBO I r---~--...,
----·LS Control § Dest

Secondary Control Asm -

Assembler ~1111m1111111diii11n11 Look

I Ahead A
Decode

ii Destine ~

SOBO ASM

B·LOCAL
STORAGE

-=
;=~ . r .. -... -~ .. l·" (.... "' ~, Gate A-LS or Z-Reg to A-Reg

Fast Gate

m Set A/8 Buffers

Read A/B·LS

Set A/8-Regis··• ;

Slow Gate

II Gate Oest. Addr. Lths

Iii Write/Read

LA021
LA033
LA116
LA126 ;; ''""" ~~~r~'~'" llllllllll~=~:UMIHUHUIHIHlllll: Dest

~IHlllllllllllllHll A-LS I m m Addr llllUlllllllfllBack-upand Retry Regs

P-Reg L-Reg Addr ltf111111fffff1PHILlfflllfllllllmllflflfHIRUlllHfllflfflll~~~:~:~i;:~i:1111111nnnu11111111111m11111nnltlfl11UIHHHIHlllllllHIH!~:~ ASM
Decode

M3 I0-61 !See externel facilities CPURTY word)

Force Selector Channel

0-Time 1-Time 0-Time 1-Time 0-Time 1-Time

1-Time

I 0-Time Delay I 1·Time Delay I 0-Time Delay I 1-Time Delay I 0-Time Delay I Delay

QC=O+Y

Prev. Dest. a R

liJ Set A/8 Oest. Addr Lths --------J---L--------'---L-----------
~ 8 Compare Unequal

II) A. Compare equal

{ A Compare Equal Z·Rey to A·Reg

A· LOCAL
STORAGE

0-Reg

To 8-Reg

Aand8

MCKA 1 Bit 1 lerrvrl

To A·Reg

MCKA 1 Bit 2 (error)

3145 TM CPU 11

-

A-LOCAL STORAGE UNIT DATA FLOW·
CIRCUIT

FAST DECODE
DEST BFR LATCHES 2,3,4
OEST BFR LATCHES 5,6,7
DEST ACOR LATCHES 2,3,4
DEST ACOR LATCHES 5,6,7
SLOW X ASSEMBLER
SLOW Y ASSEMBLER
COMPARE
X DECODE
Y DECODE
XCHECK
YCHECK
MONO BUFFER

CARD

C4F2,C4N2,C4M2
C4G4
C4J4
C4G4
C4J4
C4G4
C4J4
C4N2,C4L2
C4F2
C4M2
C4G4
C4J4
B4P2,B4M2

Note: For local-storage card-swapping technique, refer to the Reference
IREFl section.

LOCAL STORAGE
CONTROLASM

SDBO 0 Bits 0..2 ------t
SDBO 4 Bits 0..2 ------1 0

Sec. Ctrl. Asrn. 0 Bits 0-2

SDBO 1 Bits ().6 ------4
SDBO 5 Bits ().6 -----~

Sec. Ctrl. Asrn. 1 Bits 0-6

SDBO 2 Bits 0..3 ----~

SORO 6 Bits 0..3 ------4
Sec. Ctrl. Asrn. 2 Bits ().3

p
0
1
2
3
4

m
Force X or Y check

5 P-Reg Bits 1,2,5,6,7
6
7 L·Reg Bits 0,4

ALO

LA011·LA018,LA021,LA111·LA111
LA212
LA222
LA212
LA222
LA211
LA221
LA022·LA024, LA031·LA032
LA015·LA016
LA114
LA212
LA222
LA311,LA327

OEST BFR
LATCHES

B·Local Storage Bfr. latches 5·7

Et LOCAL.STORAGE CONTROL ASSEMBLER m DIAGNOSTIC FUNCTION:

A control word read from control storage Ion the SOBOi, or
assembled in the secondary control assembler, is gated to the
local'Storage control assembler. In the local-storage control
assembler. the word type is identified to specify the type of
addressing needed.

With DIAGO bit 5 on, and RTY backup Asrn
byte ·o bit 5 off, an extra X·line is forced up to
cause an X·check.

With DIAGO bit 5 on, and RTY backup .Asm
byte 0 bit 6 off, an extra Y·line is forced up to
cause a Y-check.

SLOWX
ASSEMBLER

LOCAL STORAGE

0.Till'llt I l·Time
l 0-Tlme Dly

.,.
1-TimeDly

Read Source Write· Read Previous Destination

Oest Bir latches

Gate Slow Path

Oest Addr Latches

X-CHECK

Set MCKAO bit O (During Source Access)

Set MCKAO bit 2 (During Destination Access)

M3 Bits 0-2 ----1

OEST ADDA
LATCHES

COMPARE

Gate Z·Register to A·Register
IByte Compare) Block A-LS

M3 Bits 3-5

Switch G bits 1-3

SLOWY
ASSEMBLER

II DIAGNOSTIC FUNCTION:

With DIAGO bit 4 or 5 on, and ATV back~p
Asrn byte 3 bit 6 off, the storing of data into
A local storage is blocked. This causes both a
flush-through check an.d an A· and B·local store
compare error.

Y·CHECK

m

Set MCl<A1
bit2.

Set MCKAO bit 0 I During Source Access)

Set MCKAO bit 2 !During Destination Access)

m X-.nd V.CHECKS

The X· and Y-checks are tests to determine
ltlhether if at least one, but not more than

• o"ne, X· and Y-line is active ;1t a time.

CPU12

A-LOCAL STORAGE A.ESS ASSEMBL V

A-SOURCE DIRECT ADDRESS

When the A-source is called for by its symbolic name, or the
actual address, is used. bit O of byte 1 of the control word is 0
to flag direct addressing. Bits 1, 2. and 3 of byte 1 of the •
control ¥110rd form the V-line, and bits 5, 6, end 7 of the P-Reg
form the X-line.

A-SOURCE DIRECT ADDRESS .
IX· ar.d Y· lines carried in control word)

Two control words haW the capability of carrying the X· and
V-lines in the bit structure of the control word. The Branc:h and
link or Retum word carries the X·and Y·lines of the link register
in bits 1-6 of byte 1. The won;Hnove word carries the X· and Y-lines
of the source or destination in byte 1.

LCSC MOOE

A special diagnostic function called LSCS (local-Storage
Control Stora9'!'l mode causes control words located in local
storage to be read out and executed. The X· and V-lines of
the cor>trol word to be executed are formed from bits 0-5
of the M3-register, which is set UI> by the last word executed.
Any of the other -vs of addressing local storage may be
used for data llCC8S1eS during the execution of the control
words read from local stcnge. For Miditional inform11tion
about LSCS mode, refer to the !Mgnosbc Functions (DIAG)
section under the heeding .. Bmic Tests."

'' FAST
DECODE

P-Reg bits 5, 6, 7 2 X
3
4

LS Ctrl Asm 1bits1, 2, 3 5 y

6
7

FAST
DECODE

LS Ctrl Asrn 1 bits 4, 5, 6 2 X
3
4

LSCtrlAsm 1bits1,2,3 5 y
6
7

SLOWX
ASSEMBLER

~
SLOWY
ASSEMBLER

~

INDIRECT ADDRESSING

USING L HIGH (LH)

Two symbols in the microprogram language call for indirect
word addressing. The symbol LH calls for local-storage addrassing.
The high bits of the L-register and bits 1 and 2 of the P-register
form the X- and Y·lines.

USING L LOW (LL)

The symbol LL calls for local-storage addrassing, The low
bits of Iha L-register and bits 1 and 2 of the P-register form
the X- and Y·lines.

ADDRESSING FROM CONSOLE

Local stontge is also accessible from the operator's
console. The X-liM is formed from biu 2 and 3 of
switch F end bit 0 of Mitch G. The Y ·line Is formed
from bhs 1-3 of IWitdl G.

FAST

P·Reg bits 1, 2

L-Reg bits 0-3 5 y ~~r·
-------! 6

7

FAST
OECOOE

P-Reg bits 1, 2

L-Reg bits 4-7 5 y
'~! x

------t 6
7

SLOWX
ASSEMBLER

SwitchGbitO I~

SwitchFbits2,3 IW-

SLOWY
ASSEMBLER

SWitch G bits 1-3 rn Y

3145 TM CPU 13

B-LOCAL STORAGE UNIT DATA FLOW

CIRCUIT
FAST DECODE
DEST BFR LATCHES2,3,4
DEST BFR LATCHES 5,6,7
DEST ADDA LATCHES 2,3,4
DEST ADDA LATCHES 5.6.7
SLOW X ASSEMBLER

CARD
C4F2,C4N2,C4H2
C4G2

ALO
LA011·LA018,LA021,LA121·LA127
LA232 ·

C4J2 LA242
C4G2 LA232
C4J2 LA242
C4G2 LA231
C4J2 LA241 SLOW Y ASSEMBLER

COMPARE
X·DECODE

C4N2,C4L2
C4F2

LA022·LA024,LA031 ·LA032
LA017·LA018

Y-DECODE C4H2

X·CHECK
Y-CHECK

C4G2
C4J2

LA124
LA232
LA242

LOCAL STORAGE
CONTROL ASM.

SDBO o Bits0.2 --------t
SDB04Bits0.2 -------""'

m
0

Force LS X or V ck

SEC. Ctrl. Asm. 0 Bits 0.2 ----....i
SDBO 1 Bits0-6 -------'""

SDBO 5 Bits 0-6 --------t
Sec. Ctrl. Asm. 1 Bits G-6 ------1
SDBO 2 Bits 0.3 --------t
SDBO 6 s;uo.3--------t 3

Sec. Ctrl. Asm. 2 Bits G-3------i

m LOCAL-STORAGE CONTROL ASSEMBLER

A control word read from control storage on the SOBO or
assembled in the secondary control assembler is gated to the
local-storage control assembler. In the local-storage control
assembler, the fields that indicate the source accessing are
tested to determine the type of address formation needed
to address local storage.

FAST
DECODE

OEST BFR
.LATCHES

A-Local Storage Bfr Latches 5·7

. II DIAGNOSTIC FUNCTION

With DIAGO bit 5 on, and ATV backup Asm
byte O bit 5 off, an extra X-line is forced up to
cause an X-check.
With DIAGO bit 5 on, and RTY backup Asm
byte 0 bit 6 off, an extra Y-line is forced up to
cause a Y-check.

LOCAL STORAGE

0-Time -• 1-Time
I

().Time Oly 1-Tir:ieD1v·

SLOWX
ASSEMBLER

Read Source

Dest Bir Latches

X·DECOOE

Write-Read Previous Destination

Gate Slow Path

Dest Addr Latche

X·CHECK
Set MCKAO bit 1 (During Source Access)

Set MCKAO bit 3 (During.Destination Access)

XO
X1
X2
X3

"------------------c X4.,_,._..

OEST ADDA
LATCH:2S

Console File Command
Reg, bits 5-7

COMPARE

SLOWY
ASSEMBLER

Iii X-and V- CHECKS

XS
XS
X7

Gate Z·Register to B·Register
IByte Comparel

The X- and Y-checks are tests to determine whether at least
one but not more than one X- and Y-line is active et a time.

B·LOCAL STORAGE

Set MCKAO bit 1 I During Source Accessl

Set MCKAO bit 3 (During Destination Access)

Y-CHECK

m

CPU1~

B·LOCAL STORAGE ADDRESS ASSEMBL V

8-SOURCE DIRECT ADDRESS

When the B-Source it called for by its symbolic neme, or the
ectual addra$ is used. bit O of byte 2 of the eontrol word is O
tv fl~ direct adchssing. Bits 1, 2. and 3 of byte 2 of tht control
WQrd form tht Y-liM, and bits 5, 6, and 7 of the P-ng form the
X-line.

ADDRESSING FROM CONSOLE FILE

Some console-file com1n11nds - the control~
currently in the C-ngister to be exeoited. The x. and
Y-lines thlt would normally be tornled by control word
bits - formed from bits 2·7 of the c:Ontole-file aimmand
register,

FORCE COUNT ADDRESS

When a storage word with the dea-ement count
function is executed. an odd local storage address must
be forc!!d. The Y-line in effect. for addressing the source
register. is assumed to be an even Y ·fine. The count to
be att.esSed is in the next higher address; therefore,
the next higher Y·lioe is forced.

For example: A storage word is addressing the GO
register for selector-channel 2 lsee "Local Storage Map
1370 Microprogram in Control Storag11"I. The X Y..flnes
for GD are X4, YO. To - the count, V1 is forced,
and the GC ,._ is addreald..

The X·lirw rwm.iM the- for the-'-·

'.
FAST

D~E

P-Reg bits 5, 6, 7 ! ~
4

LSCtrlAsrn2bits 1,2,3 t-5'"' y
6~

~

SLOWX
ASSEMBLER

ConlOle-Flle Commend Reg bits 2-4 rn X

SLOWY
ASSEMBLER

Console-File Command Reg Bits 5-71] y

SLOWX
ASSEMBLER

ffi2--
SLOWY
ASSEMBLER

Force Count (Sunge word) ,ffi2--

INDIRECT ADDRESSING

USING L HIGH ILHI

Two symbols in the microprogram languege cell for Indirect
-d llddressing. The symbol LH callt for local-storage eddresslng,
The high bits of the L-reglstar end bits 1 and 2 of the P-registw
form the X- and Y-llnes,

USING L LOW (LLI

The symbol LL ca11s for local-storage addressing. The low
bits of the L-reglster end bits 1 and 2 of the P-reglster form
the X·and Y-llnes.

ADDRESSING FROM CONSOLE IB • LS)

L.oC8I ~Is 8bo -.Ible from the operator's console.
The X..ftrw II farfnld from bits 2 and 3 of switch F and bit O
of the Mitch G. The Y .fine II fonned from bits 1-3 of switch
G.

FAST
DECODE

P-Regbltst,2 .I~

~.w... l[l]--z-

FAST
DECODE

P-Regbitst,2 'UJ--a--
L~~H I~

SLOWX
ASSEMBLER

Switch G bitO ~

Switch F blts2,3 :~

SLOWY
ASSEMBLER

Switch G bits 1-3 rn V

3146 TM CPU 16

LOCAL STORAGE MAP (370 MICROPROGRAM IN CONTROL STORAGE)

MPX

Channel

Current PSW

Displayed in:

Word LS ByteO Byte I Byte2 ByteJ

Name Location

00 General Register 0

01 General Register 1

02 General Register 2
OJ General Register J

04 General Register 4

OS General Register S

06 General Register 6

07 General Register 7

08 General Register 8

09 General Register 9

OA General Register A

08 General Register B

oc General Register C

OD General Register D

OE General Register E

OF General Register F

AX 10 SRTN Temp Link

DJ 11 Alter/Display Log Link

RTX 12 Retry Link

DTX IJ Translate Link

x 14 Working

R lS Working
y 16 Working

Q 17 Working

MA 18 Working

MBS 19 Working

MX lA Working

MC lB Working

MD IC Working

MF 10 Working

MW lE Working

ex IF CPU Link Register

BC
System Mask

0

KEY OMWP Interrupt Code

11 12 IS 16

I External 10 I EXP LS 50 EXP LS 5J

l : Byte 0 I Byte 1

I NOTE: The PSW can be manually displayed u~ing
I
I
I
I

IEC

the Console PR-KB. This procedure is
contained in CPK.

I

I

I

XandY Direct

Line Access

XO YO

1 XO Y1

XO Y2
XO VJ

XO Y4

XO VS

XO Y6

XO Y7

XI YO

X1 Y1

XI ·v2

Xl VJ I

Xl Y4

Xl Y5

XI Y6

XI Y7

X2 YO

X2 YI

X2 Y2

X2 VJ 2
X2 Y4

X2 VS

X2 Y6

X2 Y7

XJ YO

XJ YI

XJ Y2

XJ VJ J

XJ Y4

XJ YS

XJ Y6

X3 Y7

ILC CC

31 32 JJ 34

~ EXP LS SJ

: Byte O : Byte O

I Bit 0, 1 I Bit 2, J

I ndirect
A ccess

0

2

sx2-f
···-i
SX1 --i
···-f

Program Mask

J5 36 J7 38

EXP LS53

ByteO

Bits4-7

39 40

Word IFA LS BvteO Bytet Byte2 _l Byte3
Name Name Location

GD 20 I
GC 2t Count

GM 22 Protect CCW Address l
GW 23 I
GD 24 l
GC 2S Count

GM 26 Protect CCW Address I
GW 27 l
GD FD 28 1
GC FC 29 Count

GM FM 2A Protect CCW Address l
GW FW 28 l
GD FA 2C l
GC FB 20 Count

GM FS 2E Protect CCW Address

± GW FL 2F

30 Floating-Point Register 0

J1 Floating-Point Register 0

32 Floating-Point Register 2

33 Floating-Point Register 2

34 Floating-Point Register 4

3S Floating-Point Register 4

36 Floating-Point Register 6

37 Floating-Point Register 6
so 38

PM 39 PE Control PE Code Group After Mask

OM 3A Adjustment Factor l
RW 3B Address Adjustment Working

DP JC IF A Low-Priority Link

LNK 3D I-Cycle Link l
P4X JE SX-4 Link Register I
PJX 3F SX-1, 2 •. 3 Link Register

Note: Words 28 through 2F are shown with selector channel designations.

Instruction Address
6J

EXP LS 50

Bytes I, 2, J

System Mask KEY IMWP 00 : CC ; ~:si : 000000000 00000000 Instruction Address

0 7 8 11 12 IS 16 118 120 23 124 J1 32 40 63

LOCAL STORAGE CPU 16

XandY Direct Indirect

Line A ems Acces

X4 YO

1
X4 Y1

X4 Y2

X4 VJ

X4 Y4

X4 Y5

X4 VG

X4 Y7 4

X5 YO

X5 Y1

XS Y2

X5 Y3 5
XS Y4

XS Y5

XS Y6

XS Y7

X6. YO

X6 Y1

X6 Y2

X6 Y3 6

X6 Y4

X6 Y5

X6 Y6

X6 Y7 6
X7 YO

X7 Y1

X7 Y2

X7 Y3 7

X7 Y4

X7 YS

X7 Y6

X7 Y7

SCOPE PROCEDURE F.OCAL. STORAGE
ADDRESSING
Use Tektronix• Type 454, or equivalent
lOX Probes
Set Time/Div: .05 us
Set Channel 1 Volt/Div: 50 MV
Set Channel 2 Volt/Div: 50 MV

Store 385E6FC8 (using system console rotary switches A
through Hl in an unused location of control storage. This is a
word· move word: Y = LNK, SF, STOP

Set the P-register = 02

The word-move word is the version 1 type that carries the X
and Y-lines of the Source register in byte 1 of the control word •.
The mask of F specifies that all four bytes of the source are to

' ..

be moved to the destination register. The STOP function is active
{bit 4 of byte 3 = 1); therefore, the word-move word is continually
executed.

After storing the word and setting the P-register,
1. Dial the address uf the word-move word into switches E

through H.
2. Operate the control address set key.
3. Operate the start key.

Note: The manual indicator is on because the soft-stop condition
is set by the STOP furlction of the word-move word.

4. Sync with channel 1 on +0-time (gate A C4 E2 GOS).
With channel 2, scope the+ A-LS AO[)R V EQUALS 5 line

CC4M2J121.

By altering the P-register settirlg;and the address bits in the
word-move word, all the local-storage registers may be addressed.

For example:

Original word-385E6FC8 Statement-V = LNK, SF, STOP
Change word to-385E7FC8 Statement-0 = LNK, SF, STOP

Change P-register setting
to 03; leave the original
control word in control
storage. Statement-MN=LNK, SF. STOP

,i;or the P-register settings necessary for addressing local
storage, refer to the local-storage map in the CPU-Hardware
(CPU) section.

For variations of this word, refer to the bit definition of the
word-move word in the Miaoprogram (MIC) section.

•Manufactured by Tektronics, Inc.

-+<>-Time

Y5

-+<>-Timli

X7

CYCLE 1

WM Word

CYCLE 1 I El
WM Word

CYCLE 2

WM Word

CYCLE 2

WM Word

With channel 2, scope the+ A·LS ADDR X EQUALS 7 line (C4 F2 G12).

• Scope pictures D and fl show the X· and Y • 5- for the source
register LNK being activated early in the cyde of the word-move word.

With channel 2, scope the+ SLOW AX PATH DECODE 2 (C4 G4 803)

().Time

X2

CYCLE 1 El
WM Word

X2 Latched for write/read of
previous destination.

CYCLE 2
WM Word

X2 Latched for write/read of
destination reg. of cyde 1.

With channel 2, scope the+ SLOW A Y PATH DECODE 6(C4 J4 D02) !

CYCLE 1 a CYCLE 2
WM Word WM Word

O.Tlme

Y6

Y6 Latched for write/ read
of previous destination.

Y6 L.atched fOI' write/read
of Destination reg. of cycle 1.

Scope pictures II and D show the X· and Y-line for the destination
Y-register being activated in the second half of the~ word cycle.
Destlnetion addressing Is always activated for the destining of the previous
control word's results.

3145 TM CPU17

EXPANDED LOC.TORAGE (EXPLS)

• Composed of hardware registers that are physically
ex ti:irnals but are logically connected as local storage.

• Source addresses are formed through the expanded local
storage-address assembler.

• Destination addresses are formed through the local.
storage.control assembler and the A-local-storage-address
assembler.

e Expanded local-storage registers are not duplicated as
are the local-storage registers.

• Used with I-cycles, selector channels, and address-adjustment
circuits.

In. order to access expanded local storage:
l. Mode register bit 1 must be on.
2 Direct local-storage addressing must be specified {C1 or

C2bit0=0}.

P-register bits 0, 3, and 4 control the expanded local·
storage inputs to the A- and B-registers (shown on page
CPU 201.

Only one expanded local-storage register can be accessed
as a source in any one control word.

The branch and link/return word and the word-move word
version 1 cannot access exi>anded local-storage registers.

All expanded local-storage registers may be displayed
from the console, but altered only from the console
printer-keyboard.

The I, V. U, and W-registers are not under control of bits
0 and 4 of the P-register, but do require that Plow= 2 •
or A.

If different expanded local-storage addresses are called
for with A and B inputs, the register designated as the A
source is used for both A and B sources.

$.

'-! flflt.t ~~'""::';'~ -·~ = ·--- '
... i!i-__ ..

~ ~~;\~~'!'-~~,~~~~

-------------------....... ~ : ~=~j

3145 TM CPU19

LOCAL STORAGE GATING

A-LS

B-LS r-------

Exp LS
PO=O
P4=0

EXPANDED B·LOCAL STORAGE INPUT

8-LS

Exp LS

EXPANDED A-LOCAL STORAGE INPUT

A·LS

EXPANDED LOCAL STORAGE (EXPLSI

OR ---G

PO=O
P4=1

rB-----G
~ I, V, U, and Ware not dependent on the setting of PO or P4.

' 8-LS r-------·---.______._ :

Exp LS

~
I

A-~

--G

Note: l(f~~ ~!Ji.II !?., ~i , the ~!Jdress accesses an external
location rather than expanded local storage.

CPU20

EXPANDED LOCAL STORAGE MAP ,..
Note Expanded local storage may be altered
t h k 'O"' t .e printer- eyboa•d with the CE key on. ..---

X and Y

EXP LS Word Name Bvte O Byte 1 Bvte 2 J Byte 3 Line

so I Key l-Registe1 X2 YO
51 v V-Register X2 Yl

52 w W-Register X2 Y2
SJ u U-Register X2 VJ

54 IBU IBU·Register X2 Y4

55 TR TR-Register X2YS
56 ICS I-Cycle Control Display ± X2Y6

S7 through SF unassigned
60 G2DRL DATA ADDA ISX 2) X4 YO
61 G2DBRL BACKUP DATA ADDA X4 Y1

62 T I J<!Y2
63 l X4 YJ

64 G3DRL DATA ADDA (SX 3) X4 Y4
6S G3DBRL BACKUP DATA ADDA X4 VS
66 1 X4 Y6
67 J X4 Y7
68 G1DHL DATA ADDA (SX 1l XSYO
69 G1uBRL BACKUP DATA ADDA X5Y1
6A I .l X5Y2
68 l X5Y3
6C G4DRL DATA ADDA ISX 41 XS Y4
60 G4DBRL BACKUP DATA ADDA X5Y5
e:: 1 X5Y6
6F XSY7

70 through 77 unassigned I
73 SN SEGMENT NUMBER GATE X7YO
79 PN PAGE NUMBER GATE X7Y1
7A WK Working Register I X7 Y2
78 NP * CONTROLl CONTROL X7 Y3
7C DK Local.Addr. Reg. T LB DESTINATION GA TE X7 Y4
70 SS SEGSIZE I X7YS
7E I X7Y6
7F I X7Y7

*SEGMENT AND PAGE NO. FROM PAA

I-Register (EXPLS 50}

When the instruction counter register is used as a destination
byte 0, 24 bits, or fullword·l~ading is possible. . '

B)'te 0: If the I-Reg is destined, byte 0 is gated to the Key-Reg
Bytes 1,2, and 3 contain the instruction address

V-Register (EXPLS 51)•

B·1tes 1. 2. and 3 usually contain the second operand address
generated during I-cycles.

W-Register (EXPLS 52)•

Bytes 1, 2, and 3 usually contain the first operand address
IJl!nerated during I-cycles.

• If used in a storage word, the key register is Qated as byte 0.
The key register contains the storage protect key (bits 0-3,
bits 4-7=0).

If V or W is used as a storage address in a storage word, the
KEY reg is gated as byte 0. The KEY reg is always gated as
by1e 0 for I, TR,~ IBU.

U-Register (EXPLS 53)

When used as a destination, byte 2 may not be changed (loaded
via hardware}

Byte 0 bits 0-1 used for I LC
bits 2-3 used for CC
bits 4-7 used for progr'lm mask

Byte 1 bits 0-1 reseived for F LP mult. and divide
bit 2 Indicates that GRs 0-3 need restoring.
bit 3 indicat11s LEX MOOE

bit 4-7 used for OWMP
Byte 2 used for Op-code
Byte 3 used for immediate byte information
Note: Byte 0 bits 0 and 1 and Byte 2 bits 0 through 7 are set
only by hardware.

!BU-Register (EXPLS 54} *
Upon entering I-cycles, I-Reg bytes 1, 2, and 3 are set into IBU.
If a retry condition is encountered during I-cycles, the instruction
may be repeated {return to OFOCI. In this event, IBU is moved
to the I-Reg. This source-only register may not be used as a desti·
nation. IBU is loaded via hardware only from the I-register.

TR-Register (EXPLS 55) *
This register is the address of next doubleword after the address in
the I-register. TR·Reg may not be used as a destination, but changes
if the I-Reg is destined.

ICS (I-Cycle Status} Register (EXPLS 56)
This unique register is provided for manual display only, and is
not accessible via microcode. While the specific signals occupy an
expanded local-storage register address, no such register exists.
Instead, various key signals from the I-cycle hardware (under
hardware control) are gated via the register address to form a
display. Interpretation of the display requires a fundamental
knowledge of the functional operation of the I-cycle hardware.

Byte 0 forced to zeros
Byte 1 forced to zeros
Byte2

bit 0 BR Read Latch
bit 1 Op Load Latch
bit 2 Op L2
bit 3 Op L1
bit 4 Prefetch required
bit 5 Prefetch inhibit
bit 6 F LP Long
bit 7 Op BR to OF

Byte 3
bit 0 1-Bfr 0 parity check latch
bit 1 1-Bfr 1 parity check latch

· bit 2 Half Adder check latch
bit 3 IMM byte modifier parity check
bit4 X=O
bit 5 B=O
bit 6 Set Control Address
bit 7 Low bit

1CS Bits: Functional Significance

Byte 2: Bit 0 {BR Read Latch), when on, indicates that a RTN
to I-cycles has forced an initial I-cycle address of

OFOC.

Bit 1 (Op Load Latch), when on, indicates a hardware
attempt to:

a) provide an initial I-cycle address of D F 14 (if
byte 2 bit 0 is off).

b) provide an address of OF14 for a further fetch
of the instruction when within 1-tycles and Set
Control Address (Set CA) (byte 3 bit 61 is on.

Op Length

1 2 Format

1 0 RR

0 1 RX SI

1 1 SS

Bit 2 (Op Length 2) from decode of two high-order bits
of Op Reg, when on, denotes that the data currently
in Op Reg is not an RR format.

Bit 3 (Op Length 1) from decode of two high-order bits
of Op Reg, when on, denotes that the data currently
in Op Reg is not of RX. RS, SI format.

Bit 4 (Prefetch required) when on indicates {as a func
tion of I-Reg, 1-Bfrs, and current instruction con
ditions) that the next instruction should be pre

fetched.

Bit 5 (Prefetch inhibit} When on. indicates that a
Pref etch will not be allowed. This signal is also
a function of I-Reg, l·Bfrs, and current instruction.
Note that this signal does not take into account
other functions, such as Real Instruction Address
Compare mode.

Bit 6 (Floating Pt Long), when on, represents a partial
decodl!'G.f.__the data in the Op Reg. This signal is
used with R'R-instr-uet1on format to determine a
specific I-cycle path.

Bit 7 (Op Branch to OF). when on, indicates that the
end of the hardware I ·cycles branched to the read and
align phase of I-cycles {the other half of the OF module

instead of a ex module).

Byte 3: Bit 0 (1-Bfr 0 parity check latch). when on, indicates an
incorrect parity condition for 1-Bfr 0.

Bit 1 (1-Bfr 1 parity check latch) when on, indicates an

incorrect parity condition for 1-Bfr 1.

Bit 2 (Half Adder check latch}, when on, indicates that
a check condition occurred in the half adder
during an I-register hardware update.

Bit 3 (Immediate Byte Modifier parity check), when on,
indicates a parity check of the immediate byte
modifier register. This signal is the check latch
input.
Note: The above four signals are combined to
form the signal 'I-cycle hardware check'.

Bit 4 (X=O) Has particular significance when the op
reg data is for an RX format. When this bit is
off (and byte 3 bit 5 is off~ double indexing is
indicated for RX format instructions. Note that
RS, SI, and SS format instructions force this
signal on.

Bit 5 CB=O), when on, indicates that the data being gated
through the base assembler of the 1-Bfrs is zero.
(refers to GPROO}. This signal has no significance
RR format instructions.

3145 TM CPU 21

Bit 6 (Set CAI, when on, indicates either that the current
control store address is not within the hardware
I-cycle range, or that a branch point within that
address range has been encountered.

Bit 1 (Low Bitl when on, indicates that hardware

detected conditions are currently satisfied for
deviating from the normal branch to the execution:
the starting address is C (Op code) 4 instead of C
(Op code) 4. This signal has significance for certain
branch instructions, floating-point, and shift-double
instructions.

Byte 3 bits 0-3 provide a further definition of the cause of an
I-cycle hardware check. Byte 2, bits 0-6 and byte 3, bits 4-6 may
be used, with discretion, to determine the starting address for
I-cycle sequences. Byte 2 bit 7 indicates when the "read and align"
phase is used; ar.d Byte 3 bit 7 indicates the status of hardware

tests for branch on condition, floating-point reg, specification, etc.

G2DRL, G30RL, G1DRL, and G4DRL (EXPLS 60, 64,
68, and 6C)

These registers function as a pointer to the next storage location
used for a share cycle.

BYTE 0 contains the protect key.

G2DBRL, G3DBRL, G1DBRL, and G40BRL (EXPLS 61,
65, 69, and 60)

Only bytes 1 and 2 exist.

SN-Register (EXPLS 78)

Byte 0
Byte 1

FF hex

00 hex

PN-Register (EXPLS 79)

Byte 0
Byte 1

FF hex

OOhex

WK-Register (EXPLS 7A)

Working Register

ByteO=FF

NP-Register (EXPLS 78)

Bytes 0 and 1 Logical Address

Byte 2
BitO

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5 Lex Mode
Bit 6
Bit 7

Byte 3

Bit 0
Bit 1
Bit 2
Bit 3

Reset Tables

Bit 4 Execute Instruction
Bit 5
Bit 6
Bit 7

See "Dynamic Address Translation NP2
and NPS Register.'' page CPU 155.

EXPANDED LOCAL STORAGE (EXPLS) CPU22

DK-Register (EXPLS 7C)

ByteO BitO

Bit 1
Bit 2
Bit 3
Bit4
Bit 5
Bit 6
Bit 1 logical Address

Byte 1 Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5 0
Bit 6 0
Bit 7 0

Byte 2 BitO

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7 Real Address

· Byte 3 Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit6
Bit 1

EXPANDED LOCAL ST~GE: SOURCE GATING
When used as a source, expanded local storage is addressed
by the expanded local-storage address assembler. The address
bits from the control word are intercepted as the control word
is being read from control storage, and gated to the expanded
local·storage address assembler. Gating lines generated by
the address assembler gate the proper expanded local-storage
register to either the A- or B·register.

If expanded local storage is being gated to the A-register,
the sense latches for A-local storage are blocked from being
set. If expanded local storage is being gated to the B-register,
the sense latches for 8-local storage are blocked.

If the expanded local-storage register is also the destination,
the destination latches in local storage are set to be used in
the following control-word cycle.

Examples on the following pages show the various ways
the expanded local-storage gates may be formed for source
addressing.

Whether the expanded local-storage register is an A or a 8
source, it is gated to both the A-LS and 8-LS assemblers.
The source gating circuits then gate the A or 8 assembler
to the A- or B-register.

There are control words in the microprogram listings that
appear to be addressing two different expanded local-storage
registers as sources in ·the same word. However, the B-source
address defaults to the A-source. For example:

Control Word-----WK1 = NP2, OE, WK1

NP2 is the A-source
WKl is the 8-source

The decode of this word defaults to read effectively

WK1 = NP2, OE, NP20

This type of control word is valid only if the 8-source is
being blocked from ALU entry.

·'~
; ._ ____________________ ~

.. ·-·-1 - ·~
:~-·,Si

----~"! u T~
·~·-"·' I ·;:::· -~·JI

II*•• -::;:.'·

.• 1

3146 TM CPU 23

DATA TO SYS BITS

RV 012 (NOTI EXP LSCA BYTE 2 BIT 1

EXPLS SOURCE X • 2 -----1111----t

RV 011 (NOTI EXP LSCA BYTE 1 BIT 1

GATE B·HOOK

Q.TIME BFR

T~PiR2~31 MOOE REG BIT 1 =1---,__..
RV013

LC016
O.TIME BFR

I ISL
B ,. ~ I I 8-LOCAL
T I 1nc

STORE 1
s H

DI e E
R I I S

CPU28

GATE EXPLS TO B-REG

LATCH RESET B
A-LOCAL ISL

I I e A
T

STORE ant
Is H 0 eE R I s

GATE A EXPLS
CPU28

BLOCK A·LS LATCH SET-------------'

EXPANDED

LOCAL

STORAGE

X:Y OECOOE

x

I
x

.. .,Lo~.i:L~~~~~Gi:l-----.,l_-_.::.GA~T~E~E~·x~P~L~S ___ __.

AOORASM

x

x

EXPANDED LOCAL STORAG.E (EXPLS)

A-REG

CROSS & GATING
ALUs, HALF.SUM CHECKING

Z-REG

0-REG

CPU24

EXPANDED LOCAL slfl'AGE: SOURCE GATING
EXAMPLES

Word-Move Version 0

P low=2 (X2 decode)

Statement CO Bits 0-4=00110
C2 Bits 0.3=0010

Cl=W,07

:~i.' , RV 012 (Not) Exp LSCA 8yte 1 Sit 1

-'! EXPLS Source X=2 ~--------f
:;>,,

'-·~ ... ~ ..

:-. ..,..,,_.Y'--":~~ .. ~~.~ ••

RV 011 <Not I Exp LSCA ~vte 1 B,it ·',;""' +--+-__..

<late~·''"'~

In this word-move example, the expanded local-storage W-register
is the B-source. W is one of the four expanded L5-registers that do
not rely on PO or P4 to bring up a gating line.

The upper ANO circuit is activated by thi$ control word. The line
'Gate B Exp LS' gates the W-register (from the 8-Asm) to the
8-locaktorage bus-out. This gating line 1lso blocks the 8-local
storage sense latch set.

"''""' .. ,. ' ' '

l.,.Oata to SVS Sits

CO Bits0-4

Arithmetic Word (A destination)

P Low=2 (X2 decode)

Statement

VO=O

CO Bits 0-4=11000
Cl Bits 0-3=0001

The decode of this arithmetic word specifies that the expanded
local-storage V'register is to be accessed as the A-source and is also
to be destination of the arithmetic result.

The 'Gate A Exp LS' line is activated through the ANO circuit
highlighted in the diagram. The X ah<I Y decode for the V-register is
also set up in the A-local storage destination latches for use in the
following control word cycle.

3145 TM CPU 25

Storage Word (Read Word)

P Low = F (X7 decode)

Statement

ROW AW WK. NOP

CO Bits 0-4=01000
C2 Bits 0-3=0010

The expanded local-storage WK-register is the address source for
this Read Word. The highlighted AND circuit brings up the 'Gate B
Expls' line. The set to the B-local-storage sense latches is blocked to
prevent any conflict on the B·register input.

EXPANDED LOCAL STORAGE (EXPLS)

ET".)2:\![Z~:~r~~~ ::·;:~0::::1r:r::~~ry~c~\W~'''~~'.'''·''~"~~--~~·~--~~·.-..-~-~·,-.:
~c EX''-S'°""'""'

r

Arithmetic Word (A destination)

P=87

Statement CO Bits 0-4=10001
C1 Bits 0-3=0011

NP2=NP2, OR, KOS

The expanded local-storage N'P2 register is the A-source and
destination in this arithmetic word. The 'Gate A Exp LS'
line is brought up by the highlighted ANO circuit.

The X- and Y-decode for NP is set up in the A-local storage
destination latches for use in the following control word cycle.

CPU26

EXPANDED LOCA.AGE: DESTINING
When expanded local storage is addressed as a destination,
the destination address latches of A-local storage are used to • •'
retain the address until the following cycle.

A.t destination time, the bit gates for both A· and B''local
storage <!re blocked to prevent local storage from being set.
·The data destined to expanded local storage is 9,.8ted from
the 0-register through the SDBO .assembler on the EBI
to the expanded locaktorage register addressed by the A
local storage destination latches.

3145. TM CPU 27

DESTINATION CONTROL

CPU24

A
GATE AEXPLS

TIME

PH
INOTI EARLY OEST IS EXT-----~ A

BB,BAL,WMO,or ARITH A-OEST

STORAGE INTERLOCK ------1
CYCLE

C1BIT7m1--------1

READ ADDRESS ADJUST
STORAGE CYCLE 2

1-TIME----------1

LC017

(NOT) EARLY DEST IS EXT

(NOTI BR,BAL,WMO, or ARITH
, A-OEST

INOTI STORAGE
INTERLOCK CYCLE

CPU24

LC017

~·
GATE B EXPLS--------

LC017

PH

LC017

These latches provide the
delay to destine expanded
local storage in the next cycle.

LATE DESTINE IS EXPLS BLOCK LS

PH

LC017

PH

LC017

SDBO EBI

r-----,
I DESTINATION I
I LATCHES I
I 2 I
I 3

I
I s
I 6 I
I I

. I A-LS Addr I
L __ A.:,: __ .J

x
S/R

EXP LS

N BITGATE

EXPANDED

LOCAL

STORAGE

X-YDECOOE

~: B-LOCAL I : L
Tl In~ 1-----1
01 STORE t,c
R' I e

EXPANDED LOCAL STORAGE (EXPLS)

CROSS & GATING

ALUs, HALF-SUM CHECKING

CPU28

EXTERNAL FA-IES

• External facilities are composed of registers, buses;status
lines, and other circuitry that form the communications
line between the microprogram and:

Channels
Console File
Console Printer-Keyboard
Checking facilities
Retry circuits
Integrated File Adapter
Features

• Addresses are formed from control wo_rds. console-file
data, selector-channel circuits. console switches, retry
information, and local-storage address data.

• Data from the externals enters the data flow through the
external assembler to the A-Reg only, Externals cannot

·be gated to the B-Reg.

• Data to the exterria1s is gated thro~gh the SDBO assembler
··on the External Bus-In (EBI).

External facilities have restrictions"ciss0ciated with them
because of the manner in which they are used. For example,
certain externals cannot be addressed as destinations for data,
others cannot be sources of data.

EXTERNAL CONTROL ASSEMBLER rJ
• Receives data from the SDBO early in the CPU cycle to

form the source gates necessary to gate-in external data
to the data flow in time to be used in source-control
word operation.

• Receives d(lta from the secondary control assembler to
form addresses in conjunction with source selector
channel, console file, or display operation.

X-Y DECODES

The X- and Y-lines are brought up only for destination
addresses. The X- and Y -combinations are routed to the
various external hardware locations to bring up set and
gating lines.

The X· and Y-lines are checked to assure that one and
only one X-line, and one and only one Y-line is activated
for a destination address. An X-compare check sets

MCKA3 bit 0. A Y-compare check sets MCKA3 bit 1.

SOURCE ADDRESSING

SoUrce addressing is performed by generating gating lines
that allow selected external buses to feed through the
external or expanded external assembler into the CPU
ct.ta flow.

. ·.
FLUSH-THROUGH CHECK DJ
Data destined to some external facility is gated from the
0-register through the SD

MODE ACCESS

Z· and 0-Register

Flush-Through C heck

Bus-In to the selected external facility. The data from the
D-register is gated to the flush-through-check match circuit
where It is compared with the data from the external that

-
EXAMPLE of SOURCE, DESTINATION, and FTC TIMING

CYCLE 1

j+--eontrol Word {Mode= O, OE, K10} is executed in this cycle.

G-Time .. , f 1-Time
·1~ • •

.l 0-Time Delayed ·I 1-Time Delayed
Read Mode Reg

Result to Z-Reg

was the destination. If the data does not compare, bit 2
of MCKA 1 is set to indicate the error.

Data gated from the console file to the CFOR is not
flush-through-checked.

CYCLE 2

The destining of the Mode Regist• and the FTC is
performed in this cycle.

O.Time ·I· l·Time

_...

-~

, I Q.Time Delayed ••
1-TimeDly

Write/Read Mode Reg

Z-Register to D-Register

FTC of Modeand_C:

3145 TM CPU 29

EXTERNAL ASSEMBLER DATA FLOW

(8Et11) EXT DEC BIT-'I BFR 1 IBFR 21 IBIT71

"t:G-(NOT BIT 7)

'\

(BE 1111 (External decode gate 1 bfr 1,21

ernal word· 36 bits) IRE021-024; RE031---036) (MCKA Ext

'-

' IRE041-RE054) (MCKB Ei1tenial word-36bits)

(BE 111 l (E xternal decode gate 2 bfr 1,2)

P0025, PD041-PD043 (DOC External wo rd· 36 bits)

L.

ternal word-36 bits) FA011-FA014, FA111-FA131 IMPX Ex

"'"
(BIT71

!"-. (NOTBITn

""- (BIT7)

f"\.. INOT...B.tI..ll.

....-,_...,
A

OR

36 ,......,
A

36
r--

A

36
~

A

36

The gate for these bus lin
(not) Gate External Grou

es is effectively
pA,8,andC.

EXTERNAL FACILITIES

~_..JfilI21__ -i A

(BE 111 I (External decode gate 3 bfr 1)

VS External word-36 bits) KF022,RH022-RH025, RS011-RS013 IS
(NOT BIT7)

(BE 111) (External decode gate 4 bfr 1)
l<F022,RD071,RD072,RJ011-RJ013 (IN External word- 36 bits)

JG011 UFAorSX1·36bitsl ---

8E011. BE021 (Sel Chnl 2· 36 bits) -

RC112-RC192 ISW or Cf! asm- 36 bits)

BE211-BE242 IRTY-DIAG-ACB asm- 36bitsl

RR116-RR148 IRTY back-up asm- 36 bits)

I I
I _1 _l

I I ..1

t-1-1
l. j I r J

BE111 Gate External Group A---------------JI 1 BE11 t Gate External Group B .

BE111 Gate External Group C---------------...1

36
t--i

A

36 36
~

BE112-164

Note

I -3e

x
I
x

....-r--
OR

OR

-~
A ~
36

A

~
A

~
BEtt2-164 P·Bits

(EXT Asm Bytes ().3, Bits P-7-

To A·REG and FTC

DE016 (Force ParitV Bid----------'

This line performs a diagnostic function by

causing bad paritV. It results in A·Reg Parity

errors.

Note: R'1er to "External Asambler" diagram in the
3145 P,Oc.,.;ng Unit MalntellMlc. Diagram., SY24-3580.

CPU3

EXPANDED EXTER-SSEMBLER DATA FLOW
$.

BF 111 EXf> EXT DEC BIT 7 BFR 1 (BFR 21------.t~..,_ __ , (BIT 71 5
.~(NOTBIT71

...-_...
!NOT BIT 71 ~ A

BF 111 Expanded EXT Decode Gate 1bfr1,2 ----""'

RM 812 RJ 011 RJ 012 PSW CTL External word· 36 bits -------------!------4~
L~l .. T71~ A ()fl

~· ~
BF 001 CTCAX External word-36 bits

~ I '!NOT BIT 71- A
BF 111 Expanded EXT Decode 3ate 2 bfr 1 ,2 "f l
BE 071 RO Q62 MISC External word-36 bits ----------------·!'-~----llllj~

f'l' 002 CTCAY External word-36 bits ___________ _,_.

L1_fBIT 71- A

"' ~ BF 111 Expanded EXT Decode Gate 3bfr 1-----------------1-{BIT ?I- A

JA 022 JA 023 DC External word-36 bits ~

"(NOT BIT 71- A BF 111 Expanded EXT Oeocde Gate 3 bfr 2

RM Bt1 KF 031 CPU External word-36bits -----------------------------.,~
BF112-164

The gate for these bus lines Is effectively
(not) Expanded Gate External Groups A,
B,andC.

r;;i Note .-------ild ___ ~,- ·, llx ____ _,--1-1

•.................................. l .. ~1.-.-.-... --:.3.6 x OR BE 031 BE 041 Sel Chnl 3 36 bits I I I I OR

BE 051 BE 061 Siii Chnl4 36 bits X -.,.~-------tl..36.
•.. -!-'~'!--~' -;~ (Spare) A

t-1 ~
CT112CT~4CT~4CT~1~~11FA~0~~36b~----------~~-~-------------------~l

I t-1---------1;.
----·-· Exp Ext Asm Bytes ~3 Bits P-7 ----

To A·REG and FTC

Ti- external woup gates .. { BF 111 Expanded Gate External Group A

r.~ ~~~ ~ _5'~ - BF 111 Expm1ded Gau External Group B

TB002-TB006 PIRorPIRM 3Sbits ----------------..:---~-------------------1 A

--------------~' I ;;;;;:7 ..
BF 111 Exp-.ded Gau Ext9m81 Group C

I
I
I

Note: Refer to "Expanded External Assembler" diagram in the
3146 Proceai111 Unit Mainttlnal>U Diagrams, SY24·3580.

3145 TM CPU 31

EXTERNAL ASSIGNMENT AND INDEX MAP

The one SPTL word and the one SYS word appear in every eight·
word group. These two registers have direct-type addressing and
are accessible with any P-register setting. SPTL is addressed when
the hex digit C is specified in either the.A-source or the B·source
fieids of a control word. SYS is addressed when the hex digit 0
is specified in the A-~urce field.

Bit MCKA and MCKB are set to zero when MCKA is used as a
destination in a word-move word, with the NO REG as the source.

WORD WORD BYTE BYTE BYTE

ADDRESS NAME 0 1 2

00 RTY MB MBJ-:- ECNT

01 NO REG NORE GO NOREG: NOf-ii:G2

02 OIAG -~IAGO DiAG1 FEAT2

03 xxxxxxxx xxxxxxxx xxxxxxx xxxxxxx
04 SPTL • S-REG P-REG T-REG

OS SYS• SYSO SYS1 SYS2

06 MCKB • MCKBO MCKBl MCKB'2
--·-

07 MCKA :v!CKAO MCKA1 MCKA2

08 CPU MODE CF DAR LRUM
1--09 CFOR CFDR CFDR CFDR

OA ACB ACBO ACB1 xxxxxx
OB SW swo SIN1-'.:_ SIN2

oc: SPTL • S·AEG P·REG T-REG

OD SYS• SYSO SYS1 SYS2

OE MPX MTO MTl MB1

OF DOC T1 TA TT

10 PSWCTL MSKA

11 CTCAX CT CA XO CTCAX1 CTCAX2

12 MISC EXTINT EC LEVEL

13 CTCAY CTCAYO CTCAY1 CTCAY2

14 SPTL • S-REG P-REG T-REG

15 SYS• SYSO SYS1 SYS2

16 IN INTA INTB SER2

17 DC ocao DCH1 TRBO

18 ABRTY ABRTYO ABRTY1 ABRTY2

19 SPTLB SRTY PRTY TRTY

1A HMRTY HRTY MRTY2

1B CPURTY BYOST RTYFLG LS DST

lC SPTL • S·REG P-REG T-REG

10 SYS• SYSO SVS1 SYS2

IE -.

1F

May not be used as a destination.

•Not Flush-Through Checked.

Both MCKA ana MCKB are set to zero .when MCKA is used as a
destination in a wor_Z.ve word, with the NOREG as the source.

EXTERNAL FACILITIES CPU32

Address Described ,;.
BYTE xv

00 REC
3 LINE

01 CPU

RC:NT 00
02 DIAG (Bytes 0, 11 CPU (Bytes 2, 31

03
NOREG3 01

04 CPU
FEAT3 02

xxxxxxxx 03
05 REC (Bytes 0, 1, 2) CPU IBVte 31

06 REC
L-AEG 04

07 REC
H-REG 05

08 CPU
MCKBJ 06

09 CFA
MCKAJ 07

OA CPU
MATCH 1 0

OB CPU
CFDR 11 oc CPU xxxxxxxx 12

SW3 13
OD REC (Bytes 0, 1, 21 CPU IBvte 31

OE CHNL
L-REG 14 OF CPK
H-REG 15 10 CPU
MBO 16 11 FEAT
TE 1 7

MSKB 20

cTCAX3 21

12 FEAT (Byte OICPU (Bytes 2, 3)

13 FEAT

14 CPU
SER 1 22

CTCAY3 23
15 REC (Bytes 0, 1, 21 CPU (Byte 3)

16 CPU
L-REG 24

17 FEAT
H-REG 25

SER3 _c 26
18 RECandDIAG

19 REC
DCB1 27

1A REC
ABRTY3 30

LRTY 31

MRTY3 32

EXTOST 33

L-AEG 34

H·AEG 35

1B REC

1C CPU

10 REC (Bytes 0, 1, 21 CPU IBVte 31

1E

1F

36 ~~ - -

37

WORD WORD BYTE BYTE --.BYTE BYTE XY Address Described In

ADDRESS NAME 0 1 2 3 LINE 20 CHNL or IFA
••• '7

'
21 CHNlor IFA

20 2f GBUF F6,AK GBOFWB GB1 FCH GBiFCL GB3 FOP 4 0

21 GBS FCND GSP FDS GBFFHC GCT FED GBO FMOD 4 1

22 GSTAT FSTAT GF FFL GE FSC GS FST GI. FGL 4 2

23 ; GTAG FTAG GTO FTO GT1 FT1 '. GOFBO GR FDR 4 3

}SX1/IFA
22 CHNLor IFA
23 CHNLor IFA
24 CPU

25 REC !Bytes 0, 1, 2) CPU (Byte 3)

24 '' SPTI,. S-REG P-REG T•REG l.·REG 4 4 26 IFA

25 SYS . SYSO SYS1 SYS2 H·REG 4 5 27

26 FERR FSB FGT FTS FAT 4 6 IFA 28 CHNLor IFA

27 4 7 29 CHNL

28 GBUF FAR GBO FRRA GB1 FRRC GB2 FSC GB3 FSA 5 0

29 GBS GSP -c:- GBF GCT GBD 5 1

2A GSTAT GF ''.;__ GE GS GL 5 2

2B GTAG GTO,i:_•': · GTl GO GR 5 3

} P~IFA
2A· CHNL

28 . CHNL

.2C CPU

20 REC (Bytes 0, 1, 21 CPU (Byte 31

2C SPTL S·REG P-REG T-REG L·REG 5 4 2E

20 SYS . SYSO SYS1 SYS2 H-REG 55 2F

2E AOJT LOGICAL ADDR REALAOOR 5 6 30 CHNL

2F 5 ~~
30 GBUF GBO GB1 GB2 GB3 6 0

31 CHNL
32 CHNL

31 GBS GSP GBF GCT GBQ 6 1 33 CHNL

32 GSTAT GF GE GS GL ';_ 6 2

33 .::__ GTAG GTO GTI GO GR 6 3

34 SPTL 5-REG P-REG T-REG L·REG 6 4

34 CPU
35 REC (Bytes 0, 1, 21 CPU (Byte 31
36 FEAT

3S SYS . SYSO .SYS1 SYS2 H·REG 6 5 37

36 7 TODH TODHO TOOH1 TOOH2 TOOH3 6 6 38 CHNL •

37 6 7 39 CHNL

38 GBUF GBO GB1 GB:Z GB3 7 0

39 GBS GSP GBF GCT SX3 7 1

3A GSTAT GF GE GS GL 7 2

38 GTAG ·7 GTO GT1 _., GO GR 7 3

3C SPTL . S-REG P-REG T-REG 1.-REG 7 4

}~·
3A CHNL
3B CHNL
3C CPU
30 REC (Bytes 0, t, 21 CPU (Byte 31
3E FEAT

30 SYS . SYSO SYS1 SYS2 H-REG 7 5 3F

3E TOOL TODLO TODl.1 TODl.2 TODL3 7 6

3F 7 7

may not be used as a destination

3145 TM CPU33

NOREGWord
This fullword facility is not really a register. It is used to zero
out other locations. For example, if a word-move control word
specifies that bytes 1 and 3 of the NOREG are to be moved to
a local:storage location, then bytes 1 and 3 of that location are
set to all zeros with odd parity.

Oiag Word Byte 2

3145 Models FED. GE, GFD, H. HG, and I

(Feat 2) Byte 2. Bits 0-3 Main Storage Size
1=112k

Bit 4
Bits 5, 6

2 = 160k
3 = 208k
4 = 256k
5 = 384k
6 = 512k
IFA
Channels (Note: IF A counts as one

channel)
00= 1
01=2
10= 3
11=4

Bit 1 Word Buffer

3145 Models H2, HG2, 12, IH2. J2, Jl2, and K2

(Feat 2) Byte 2, Bits 0-3 Main Storage Size

1 = 768k
2 = 1024k
3 = l536k
4 = 256k
5 = 384k
6 = 512k

'1=2048k ',
Bit 4 Reserved
Bits 5. 6 Channels

Bit 7

Diag Word Byte 3

(Feat 31 Byte 3, Bit 0

Bit 1
Bit 2
Bit 3
Bit4
Bits 5, 6

BD

00= 1
01=2
10= 3
11 =4
Word Buffer

Model Configuration
0 = 3145 Models FED, GFO, H,

HG, and I
1=3145 Models H2, HG2, 12, IH2,

J2, Jl2, and K2
3215
Second 3210

3145 Models Jl2 and K2
Clock Comparator, CPU Timer
Spare
Direct Control

CPU Word

ByteO

BitO
Bit 1

Bit 2
Bit 3

Bit4

Bit 5

Bit 6
Bit 1

Byte 1

Byte 2
Bits 0-7

Byte 3

Bits 0-7

MODE Register

Hard-stop latch (control register 14 bit 0)
Enable I-cycle and Adr Adj Ctrl and expanded
local storage.
Enable hardware retry
Full recording mode tor single-bit failures in main
storage
Full recording mode tor single-bit failures i_n
control storage
Threshold mode tor single-bit failures in control
storage
Reserved
Reserved

CFDAR (Consoie-file data-address register)
Track and sector address used by console fi111.

LRUM (Least Recently Used Matrix)
Indicate which adr adj table register was least
recently used.

MATCH

Indicate which adr adj table register matches
preaddress assembler, (useful only under diagnostic
control).

SW Word (Console Switches)

SWO through SW3 are the rotary console address/data switches:

SW Byte Console Switches
SWO AB
SWl CD
SW2
SW3

PSWCTL Word
Byte 0 EPSWA Bit

0
1
2
3
4
5
6
1

Byte 1 EPSWB Bit

0
1
2
3
4
5
6
1

EF
GH

Name

Translation mode
1/0 master mask
External master mask

Name

Machine-check mask
Wait state
Problem state

Byte 2 MSKA Bit Name

0 Timer mask
1 Interrupt mask
2 External signal mask

3 Reserved
4 Reserved
5 Reserved
6 Reserved
1 Reserved

Byte 3 MSKB Bit Name

0 MPX channel mask
1 Selector channel 1 mask

2 Selector channel 2 mask
3 Selector channel 3 mask
4 Selector channel 4 mask
5 Reserved
6 Reserved
1 Reserved

MISC Word Bytes 2 and 3

2. EC Level: External register 12 byte 2
The last two digits in the 370 microprogram EC number are

plugged. A test is performed before the go-no-go test to
determine whether the disk being loaded is at the proper
level.

3. Serial Number

External register 12 byte 3 contains the first two digits of the
six·digit serial number., These digits are always plugged as:
01 = U.S. manufacture
73 = German manufacture
82 = Brazilian manufacture

IN Word (Interrupt Register)

An INTA or INTB (interruption) register bit is set on when the .
corresponding source has an interruption pending and the system
mask is set to allow such·an interruption. Bit names in the INT
register are:

Byte 0 INT A Bit

0
1
2
3
4
5
6
7

Name

Spare
Spare
Timer
External signal
System control
CPU signal O
CPU signal 1
Process stop

Byte 1 INTB Bit

0
1
2

~

EXTERNAL FACILITIES

Nwne
Multiplex channel
Selector channel 1
Selector channel 2
Selector channel 3

4 Selector c;hannel 4
5 1/0 interrupt
6 Timer update
7* External

• External is set on if all of the following conditions exist:

CPU34

1. An external interruption signal is on (that is, from the EXTINT
register of the CPU signal from the SCPU register).

2. The external mask bit= 1 (bit 1 of the EPSWA register).

3. For the timer MSKA bit 0 = 1 or for externals 1 through 6,
MSKA bit 2 = 1.

Bytes 2 and 3 contain the last four digits of the serial number.

ACB (Address Check ~ary) Register

• The A CB-register is a two-byte hardware register that contail'lS •
boundary information used to check main- and control-storage
accesses.

~ The ACS-register is loaded at IMPL and is reloaded each time ·
the system reset routine (G RST) is executed,.

• The ACS-register is addressed by the external address OA and
can be used as a source or a destination.

The ACS-register is set at IMPL with a specific value determined
by the main-storage and control-storage configuration. Certain
feature mixes may require additional control storage, above the
32k bytes that are standard. This expansion of control storage
is made at the expense of main storage. The movement of the
lower control-storage boundary into the main-storage area is done
in 2k-byte inaements. The change in the boundary location
between main and control storage results in a different setting
for the ACB-regist~r.

Once the feature mix and control-storage size is established,
the 370 microprogram disk generated at the plant contains the
proper ACB setting for that configuration.

For each access of main or control storage, a comparison is
made between the ACS-register and the M·register. If a main
storage access attempts to address the control-storage area, an
address check occurs. If a control-storage access is made to a
main-storage location. a machine check occurs.

ACS-REGISTER

BYTE 0 BYTE 1

0 t 2 3 4 5 6 7 0 1 2 3 4 5 6 7 ---------Compared with
Ml bits 3-7 on
all mai~orage
accesses.

Compared with M2 5=0
bits~forall

Internal storage only
67=00-16k boundary·
67=01-32k boundary
67=10-48k boundary
67= 11 ·i4k boundary

storage accesses.

(Bits 0 and 1 may
be altered for
control-storage
~ 5•1 External storage attached

67c00-128k external storage
or 1256k external storage

67•01-256k external storage
or 1768k external storage

67•Hl·512k extern•I storage
67•11-768k external stor11111t

ACS SETTINGS

Main Control
Storage Storage

112k 32k
110k 34k
108k 36k
106k 38k
104k 40k
102k 42k
100k 44k
98k 46k
96k 48k
94k 50k
92k 52:1<
90k 54k
88k 56k
86k 58k
84k 6Qk
82k 62k
BOk 64k

160k 32k
158k 34k
156k 36k
154k 38k
152k 40k
150k 42k
148k 44k
146k 46k
144k 48k
142k 50k
140k 52k
138k 54k
136k 56k
134k 58k
132k 60k
130k 62k
128k 64k

ACS

01C2
01BA
0182
01AA
01A2
019A
0192
018A
0182
017A
0172
016A
0162
015A
0152
014A
0142

0281
0279
0271
0269
0261
0259
0251
0249
0241
0239
0231
0229
0221
0219
0211
0209
0201

Main Control
Storage Storage

208k 32k
206k 34k
204k 36k
202k 38k
200k 40k
198k 42k
196k 44k
194k 46k
192k 48k
190k 50k
18Bk 52k
186k 54k
184k 56k
182k 58k
180k 60k
178k 62k
176k 64k

256k 32k
254k 34k
252k 36k
2501<. 38k
248k 40k
246k 42k
244k 44k
242k 46k
240k 48k
238k 50k
236k 52k
234k 54k
232k 56k
230k 58k
228k 60k
226k 62k
224k 64k

ACB

0340
0338
0330
0328
0320
0318
0310
0308
0300
02F8
02FO
02E8
02EO
0208
0200
02C8
02CO

0403
03FB
03F3
03EB
03E3
030S
0303
03CB
03C3
03SB
03S3
03AS
03AJ
039S
0393
038S
0383

Main Control
Storage Storage

384k 32k
382k 34k
380k 36k
378k 38k
376k 40k
374k 42k
372k 44k
370k 46k
36Bk 48k
366k 50k
364k 52k
362k 54k
360k 56k
358k 58k
356k 60k
354k 62k
352k 64k

512k 32k
510k 34k
508k 36k
506k 38k
504k 40k
502k 42k
500k 44k
498k 46k
496k 48k
494k 50k
492k 52k
490k 54k
488k 56k
486k 58k
484k 60k
482k 62k
480k 64k

ACB

0604
05FC
05F4
05EC
05E4
050C
0504
05CC
05C4
05SC
0584
05AC
05A4
059C
0594
058C
0584

0805
07FO
07F5
07EO
07E5
0700
0705
07CO
07C5
07SO
0785
07AD
07A5
0790
0795
0780
0785

Note: The ACS se+ting for each 370 microprogram load may be
found in the module chart in the back of the micro listing. Look
up address FF08, the ACS setting is in bytes O and 1.

Main
Storage

768k
766k
764k
762k
760k
758k
756k
754k
752k
750k
748k
746k
744k
742k
740k
738k
736k

1024k
1022k
1020k
1018k
1016k
1014k
1012k
1010k
1008k
1006k
1004k
1002k
1000k
998k
996k
994k
992k

Control
Storage ACS

32k OC06
34k OBFE
36k OBF6
38k OBEE
40k OSE6
42k OBOE
44k 0806
46k 08CE
48k OBC6
50k OB8E
52k OBB6
54k OBAE
56k OSA6
58k OB9E
60k 0896
62k OB8E
64k 0886

32k 1007
34k OFFF
36k OFF7
38k OFEF
40k OFE7
42k OFDF
44k OFD7
46k OFCF
48k OFC7
50k OF8F
52k OFB7
54k OFAF
56k OFA7
58k OF9F
60k OF97
62k OFBF
64k OF87

Main
Storage

1536k
1534k
1532k
1530k
1528k
1526k
1524k
1522k
1520k
1518k
1516k
1514k
1512k
1510k
1508k
1506k
1504k

2048k
2046k
2044k
2042k
2040k
2038k
2036k
2034k
2032k
2030k
2028k
2026k
2024k
2022k
2020k
2018k
2016k

Control
Storage

32k
34k
36k
38k
40k
42k
44k
46k
48k
50k
52k
54k
56k
58k
60k
62k
64k

32k
34k
36k
38k
40k
42k
44k
46k
48k
50k
52k
54k
56k
58k
60k
62k
64k

ACB

1804
17FC
17F4
17EC
17E4
170C
1704
17CC
17C4
178C
17S4
17AC
17A4
179C
1794
178C
1784

2005
1FFD
1FF5
1FEO
1FE5
lFDO
1F05
1FCO
1FC5
1F80
1FS5
lFAO
1FA5
1F90
1F95
1F80
1F85

3145 TM CPU36

ACS Compere For Control Storage Acce9

ACBO ACB1

Bits Bits

0 1 2 3 4 5 6 7 0 t 2 3 4 5 6 7

Decrement-~
by 1

Compare

jo 1 2 3 4 5 6 1j
M2

Main Storage Size 112k

If the comparison indicates that the ACB value is more than
the M2 value, a machine-check condition is specified.

ACB Compare for Main Storage Access

ACBO AC81

Bits Bits

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

3 4 5 6 12345671

M1 M2

ACBO ACB 1

Bits Bits

0 t 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Straight:~
Gate

Compare

M2

Main Storage Size 160k

If the comparison indicates that the ACB value is equal to, or less
than, the M-register value, an address check occurs.

ACBO ACBt

Bits Bits

0 1 2 3 4 5 6 7 0 ·1 2 3 4 5 6 7

Increment__,,.~
by 1 .

Compare

M2

Main Storage Size 208k

EXTERNAL FACILITIES

ACBO ACB 1

Bits Bits

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Invert

~ bitO

lo 1 2 3 4 5 6

M2

Main Storage Size 256k and Above

7

71

CPU,

I
l

ACB Byte 1, Bit 0 and 1 Ga~ Compare Circuits (Control Storage Only I

Control- Storage Access

ACB Byte 1 Biu 6 and 7

INotl ACB Byte 1 Bit 0

Control-Storage Access ---------1

ACB Byte 1 Bit 6 -----1

ACS Byte 1 Bit 6 ---
INotl ACS Byte 1 Bit 7

ACB Byte 1 Bit 5 ----0-1

(Notl ACB Byte 1 Bit 6

ACB Byte 1 Bit 7 ----

MC017

INotl ACS Byte 1 Bit 0

ACB Byte 1Bit1-----.i

INotl ACB Byte 1 Bit 1

ACB Byte 1Bit1 -----n_
..---------~ ACB Byte 1Bit1 ______________ _. To compare circuits

(Not) ACB Byte 1 Bit 6

(Not)ACB Byte 1 Bit 6

NotP: Refer to "ACB and M1-Registers" in the
314S Processing Unit Maintenance Dia/Tlll'M
manual SV24-3580, for high-level <Hawam of
ACB compare.

ACB Byte 1 Bit 0
To compare circuits

Before comparison is made between the ACS-register and the
M-register, for control-storage accesse~. the output of bits 0 and
1 of ACB 1 may be altered on the input to the compare circuits.
Circuits shown on this page test the status of bits 0, 1, 5, 6, and
7 of ACB 1.

Effectively, the output of bits 0 and 1 to the compare circuits is
calculated in the following manner.

Main Storage Size

112K
160K
208K
256K (and above)

ACB 1 bits 0 and 1

Decrement by 1
Gate straight
Increment by
Invert bit 0.

3145 TM CPU "SI

SYS (System) Register
The system register gives the status or condition of the processor
SYS reg is an exteranl hardware register located at word address
05.

Byte 0
Bit 0

1
2
3
4
5
6

Byte 1
BitO

1
2

_3
4
5
6
7

Byte 2

MachinP.-check interruption pending
Retry routine
Machine-check routine
Documentary console 2
Log present

Sub-block protection mode
Selector channel Start 1/0 latch
Force module 0 to LSCS

Address contents
CPU interrupt force
SAR interrupt force
PSW restart

System control interrupt
Timer interrupt force
Reserved

Bit 0 Enable clear switch
1 IMPL
2 Load file wait bit
3 CE key in CE mode
4 --} 00 System reset - 10 subsystem load (IPL)
5 __ 01 Power-on reset - 11 system load (multip{oc:essl
6 Error in stop word -
7 Instruction processing latch

Byte 3 H-Register
Bit 0 Machine-check trap

1 Retry trap
2 CPU high trap
3 Integrated file adapter (IFA) if installed

Selector channels 1,2,or 3 if no IFA
4 Selector channels 1,2,or 3 if IFA installed

Selector channel 4 if no IFA
5 Multiplexer channel
6 IFA if installed
7 Store-display

EXTERNAL FACILITIES

PRIORITY OPERATION~ H-REGISTER

Priority Operations

Priority operations, which may be related to the current operation,
can cause delay of the current microprogram routine. Most (not
all) of the various priority operations are initiated by traps. A
trap is basically a circuit-forced branch out of the current micro
program routine to a priority routine. After the priority routine is
completed, a return can be made to the interrupted routine so that
its execution can continue.

The interrupted routine is delayed further when several priority
operations occur at the same time. Or, in some cases, the interrupted
routine may be ended by the occurrence of a priority operation.
For example, if an instruction address that specifies an unavailable ,
main-storage location is used, an address-check priority operation
occurs. The microprogram routine, in which the invalid address is
used, is discontinued.

A hierarchy of execution preference exists within the priority·
operation structure. Execution preference is exhibited in two
instances:
1. Circuit requests for two or more priority operations occur

in the same CPU cycle. The highest-priority operation is
executed first; the next highest second, etc.

2. During execution of a priority operatio~. a request for a
hi{fler-priority operation occurs. The higher-priority
operation is executed; the lower-priority operation is delayed
until completion of the higher-priority operation, subject
to the rules of execution of priority operations specified
later in this section.

Selector-dlannel data-transfer operations have the highest
priority but do not use the trapping mechanism. All of the other
priority operations use the trapping mechanism, which functions
in the following manner.
1. In a CPU cycle, a priority operation request is recognized.
2. The control-storage address of the first control word in the

priority mieroprogram routine is set into the M-register in what
is known as the trap-1 cycle, the cycle following the one in
which the request is recognized. (The normal next-control·
word address, generated by execution of the word in progress,
is set into the N-register.I The address set into the M-fegister
is forced by circuitry and depends upon the priority operation
for which the request is made.

3. The first word of the priority operation is read out of control
storage and set into the C-register. Normally, this first word is·
a branch and link word.

4. The branch and link word stores the contents of S, P, N2, and
N3 into a link lo~tion in local storage. (N2 and N3 contain the
address of the word that would have been executed next if the
trap had not occurred.) The cycle in which this occurs is called.

· -' the trap-2 cycle.
5. The priority routine is executed. Normally, the last word inttie

priority routine is a return word. This wor;d loads the link
information back into S, P, M2 (N21 and M3 (N31.

6. Execution of the interrupted routine iS resumed at the control
word specified by the link (return) address in M2. and M3.

3145 CPU 39

I

Tr1p Operation

TRAP· 1 CYCLE TRAP·2 CYCLE

Set By: Set By:

I. (Not) Inhibit 1. Trap-1 INLK
Traps. latch on.

2. Request 0-9 2. 0-45Time

3. 0-Time

4. (Not) Stg. 1 cycle

Purpose: Purpose:

1. Prevents any 1. Forces module
additional traps. address to M2

(N2 buffer).

2. Sets TR 1 IN LK 2. Normal M3 (NJ
latch at 90-135 buffer) addr
time. update.

3. Prevents normal *J. BAL operation
set to M-Reg. stores S, P, N2,

N3 in link area
(values that
were set during
the trap-1 cycle).

4. Forces trap 4. TR 2 INLK latch
address to M2 set at 9().1J5
&MJ. time.

5. N2 and N3 set *BAL is normally
Normal the first word of a·

trap Rolltine.

6. Set Block SPTL

7. Execute last
word of inter·
ruptecl routine.

TRAP·3 CYCLE TRAP·4 CYCLE

Set By: Set By:

1. Trap-2 INLK 1. Trap-3 INLK
latch on. latch on.

2. 0-45Time 2. 0-45Time

Purpose: Purpose:

1. Normal address 1. Reset Block SPTL
update to M2 (Set at TA 1 cycle).

2. TR 3 INLK latch
set at 9Q.1J5
time.

*Trap-J and 4 cycles prevents continuous
looping of Trap-1and2 cycles if an error
is in the SPTL area.

Trap address

Se.tin M·Regl N·Aeg Set
Normal.

,

Priority
Operation
Request
Recognized

I
Trap-1 Cycle

(Execution of
Last Control
Word)

(Execution of First

t

i: \ Control Word of Trap
\ Rout;oo)

I Trap-2 Cycle Trap-4 Cycle
.......... -1114 --?>---~

L
TraP,3 Cycle

Branch and Lin~
Word stores S, P,
N2, and NJ in a
Link Location

information into S, P,
M2 (N2) and M3 (NJ)

EXTERNAi. FACILITIES

Execution of Next
Word of Normal
Routine

CPU40

H-Register

Many priority operations cause an H-register bit to be set on in ~ •
the trap-2 cycle. The priority operations and associated H-register
bits are:

Operation
Selector share cycles

H-Register Bit Trap Address
none none

Machine check without 1/0
a. Normal
b. HO is already on
c. One or more machine

checks have already
occurred (SYSOI
Bit 2 = 11

d. HO and SYSO Bit 2 are
already on

Machine check with 1/0
a. Normal
b. HO is already on
c. One or more r.1achine

checks have already
occurred (SYSO
Bit 2 = 11

d. HO and SYSO Bit 2 are
already on

Retry
a. Normal
b. H 1 is already on
c. A retry trap operation

is in progress (SYSO
Bit 1=1)

d. H 1 and SYSO Bit 1 are
already on

HO

HO

H1

CPU High H2
a. Set IC
b. CA trap
c. Address contents
d. System reset

Integrated File Adapter H3
a. Mini-Op end
b. Error end
c. Index
d. Gated Attn or D ADA

Selector Channels 1. 2, 3 H3
(without IFAI

a. Exceptional status trap
b. Chaining (command or data)
c. UCW handling
d. DADA trap

0000
0004

0008

DOOC

0010
0014

0018

D01C

0200
0204

0208

020C

0300
0304
0308
030C

0128
012C
0124
0120

0120
0124

• D128
012C

Operation H-Aegister Bit

Selector Channels 2, 3/4 H4
lwith IFA:SX2, 3; without IFA:SX4)

a. Exceptional status trap
b. Chaining (command or data)

c. UCW handling
d. D ADR trap

Multiplexer channel HS

Integrated File Adapter H6
a. Return low
b. Unused
c. Unused
d. Diagnostic

Store/display H7
a. Store/display

CPU low without 1/0 None
a. Spare
b. Storage protect
c. Address check
d. ADR _ADJ exception

CPU low with 1/0 None
a. Spare
b. Storage protect
c. Address check
d. Spare

Scan/Clear None
a. Scan storage
b. Clear storage

Trap Address

DlOO
D104
0108
D10C

0400

D480
0484
0488
D48C

0840

0804
0808
D80C

0814
0818

0380
D384

The following rules apply to execution of priority operations:
1. A selector share cycle can break into any operation except

the first cycle of a storage control word and during an ECC
retry of a control word.

2. Any trap priority operation can not break into either:

a. the first cycle of a storage word operation, or

b. a trap-2 cycle operation. (ihat is, a trap-2 cycle can not
be a trap-1 cycle for another trap.)

3. If H 1 is on, all other priority operations (except HO-machine
check-and selector share cycles) are prevented. If, however,
a diagnostic trap occurs, it is executed, even though Ht is on.
Also, if the system is in a single-cycle mode of operation, a
store/display trap can be executed even if H1 is on.

4. If H3 is on. an H3, H4, HS, or H6 trap cannot be taken. If H4
is on, an H4, HS, or H6 trap cannot be taken. If H5 is on, HS
or H6 cannot be taken. If H6 is on, an H6 trap cannot be
taken. In any of these cases, the H3, H4, HS, or H6 trap
remains pending until after H3 (or H4 or HS) is turned off.

5~tor share cycles can delay execution of other traps for a
number of cycles, depending upon the rate at which share
cycles occur.

6. Discounting the effects of the various non·H-Reg priorities
(share cycles, CPU low, scan/clear), the following hierarchy
applies.

H-Reg
Bit
HO
Hl
H2
H3
H4
HS
H6
H7

Blocks Trap Request
for H-Reg Bit
None
H2,3.4,5,6,7
H2
H3.4.S,6
H4.S,6
H5.6
H6
H7

3145 TM CPU 41

Shafe Cycle Priority Operation (Applies to: Selector Channel,
Block Multiplexer, IFAt.

Priority operation for selector-share cycles is as follows:

Without IFA
1. The priority sequence is selector channel 1, 2, 3, and 4.

2. A share-request for selector channel 4 is taken if no other
request is pending.

WithlFA
1. The priority sequence is selector channel 2, IFA, and

selector channel 3.

Machine-Check Priority Operation (HOt

A machine-check trap occurs (if allowed by the machine-check
bit in the PSWI because a series of retry operations has been
unsuccessful. The number of retry attempts is determined by a
hardware counter. Basically, a machine-check trap occurs either
because errors are occurring faster than can be handled or because
a hard error cannot be successfully retried.

An attempt is made to form logout information and initiate a
machine-check interruption (depending upon the value of the
machine-check bit in the PSW). The validity of such logout infor
mation may be unpredictable if the machine-check trap is called
for.

Retry Priority Operation IH 11

The retry routine is entered through the retry priority operation
(trap). The retry priority operation occurs when any machine
check occurs if the retry counter is not full, retries are not masked
off, and system register byte 2 bit 6 (indicates stop word error)
is off. Depending upon the nature of the error and the word type,
the error may be detected during execution of the failing micro·
program word (Type 1), during execution of the following word
(Type 21. or may be detectable but uncorrectable (Type 3).

CPU High Priority Opsation (H2)

System Reset Microprogram

The system reset microprogram is executed after a circuit system
reset has been performed. This action is initiated by operating:

· 1. The system reset key
2. The load key.
System reset causes various CPU registers and controls to be
reset.

Integrated File Adapter High Priority Operations IH3)

Four trap addresses are provided for Mini-Op End, for .Error End,
for Index, and for Gated Attention or 0 ADR.

Selector Channels or Block-Multiplexer Channels 1, 2 and 3 (H31

When IFA is not present, four trap addresses are provided for
channels 1, 2, and 3: for Exceptional Status Trap, for Chaining
(command or data), for UCW Handling, and to protect the next
entry of the 0 AOR list.

Selector Channels and Block-Multiplexer Channels 2, 3/4 (H4)

Four trap addresses are provided: for Exceptional Status Trap,
for Chaining (command or data), for UCW Handling, and to
protect the next entry of the 0 ADR list. When IFA is preset,

this trap is shared by channels 2 and 3. For non-IFA, this
trap is for the sole use of selector channel 4.

Multiplexer Channel (HS)

This trap is for the sole use of the multiplexer channt!I for handling
data, status, and chaining functions.

Integrated File Adapter Low Priority Operations (H6)

Four trap addresses are provided for Return Low, and for
Diagnostics. The other two are not assigned.

Store/Display (H7t

Store/Display pertains to system control panel operations.

CPU Low (No H·Register Bid

Address Check
This trap occurs when an access to an unavailable main-storage
area is attempted.

Storage Protection
This trap occurs because of a storage-protection violation.

Address Adjustment Exception
This trap is used with DOS emulator.

Scan/Clear (No H-Register Bit}
These traps are used for a clear-storage and a scan-storage
operation.

EXTERNAL FACILITIES CPU42

Priority and Trap Controls

Req111!$t0.9

0, 1, 3, 4. 5, 6

1-CTrap Requ~.

•Nor.: The request latches are reset dufing Trap-1 cyde and
not set again until the Trap-2 cyde. This prevents Trap-2 cvde
from being a T rap-1 cycle for a hlghw priority trap.

'.

STACK LATCHES*

0 Any Mach Chk

1 Retry

2 CPU High

3 SX 1,2,3or IFA

4 SX 4 or 2,3 llFAI

5 MPX or Doc Cotts
6 IFA

7 Store/Oisp

IOocC•.~•>

8 CPU Low

9 Scan/Clear

RH011 • RH012

(Trap Request)

7 Im•••••• Priority O
Trap-1 Cycl a

Good Data

135-180Tim e

H-REG

BitO

1

2

H·Reg 3

A H-REG
Bit0-7 4

0-7 5
6

..__

RH02l • RH023

~.;•--------Priority 0-A _________ ...
PH

INotl Trap-1 lntlk ---

INotl 0-Time Oly ----

0-Time -------

RH011

(Not) Storage-1 Cycle ----------t
INotl Inhibit All Traps---------'

0-45Tirne ----------1
(Notl Block Trap -----.ta--~

Set/Reset

OR
Good Data-----1

90-135 Time -------t

TR1

A

Trap Addr

ISet/Resetl

TR1 TR2

Trap Set/Reset

FORCE

ADDRESS

RH014, RH017,

RH018

TR2

INTLK

RH014

OPERATION

Mach Check

Retry

CPU High

sx 1,2,3,

or IFA-High

SX2,3,4

MPX

I FA-Low

Store/Display

Force Addr

Byte2&.3

TR3

Note: The prioritY sequence
is HO· H7. IHO has the

highest priority .I

M2

REG

To SAR

M3

REG

M2-RM031, RM032

M3-RM041, RM043,

RM044, RM052

PH

TR4

TR4
Cyde

3145 TM CPU 43

M2 Gating (Traps)

Gate N2 to M2 -------1
N-Reg Byte 2-----·

Gate 82 to M2 ------1
8-Reg Byte 2 -----·

(Notl Sel Share Cycle _____ _.

Trap-1 Cycle -------..J
O.Time _______ ..____.

!Not) Mode Sw Fuiiction-----1

Trap-2 Cycle -------..J
fNotl Stg K Addr -------'
!Not) Current Mod

Force Addr Byte 2 ----

OR

RM112

M2Prenm
GateN2No

M2 Set Traps A

rmal

M2 lnputA sm

GateTrapt

ForceAddr

oN2

Byte 2

LJ

OR

A

8 8

RM032

A
µ OR

A

r--!
A

8 B

RM033

M2 Reset 10-Timel

RM112

RM~:2BFRl:~~~=lt _

M2 M2

'REG BFR

M-BFR Set/R-t

8
RM122 (45-Timel

8

RM031 RM033
RM032

N2 N2

BFR REG

N2 Set/Reset

8 RM113 l135·Timel-

RM033 RM033
RM034

ii--.

8

MB·Reg Set/Reset

RM123 (0.Time)

. Rty-Diat-ACB Asm
BE231

T:E'"~rRtv

M·Re. ·Jyte 2

RM031

MB2

REG

RM035

EXTERNAL FACILITIES

----Rtv-Di-st-ACB Asm
BE211

Term for Rty
8E213

M-Retry Reg Bvte 2
RR135

CPU~

Ml Gating (Traps)

~te N3 to M3 -----~

!'<-Reg Byte 3 ------

A
M3Asm

OR iiiiiiiiiiiiii
OR

Gate C3 to 11.13 ------t
C-Reg 8yte·3 ------

Gate C2 to M3 ------t
C-Reg Bvte 2 ------

A

A

8

8

RM041,RM043
RM044,RM052

M3 Set Normal-A

Gate 83 to M3 -----'

B·Reg Byte 3 ----

8

RM041,RM043
RM044,RM052

GateB3toM3

B·Reg Byte 3 ----·

RM045,RM052

M3Reset
RM112 (0-Timel

N3 BFR Set/Reset

RM113 (45-Timel

M3

REG

8

RM041, RM043
RM044, RM052

N3

BFR

8

RM045, RM052

N3 BFR Set/Reset

RM112 (4!Hlmel

N3 Set/Reset

RM113 1135-Time)

M3

BFR

8

RM013, RM052

N3

REG

~M045, RM052

MB Reg Set/Reset

RM113 10-Timel

Term for RTV
BE243

M3Bit1
RM044

MB3

REG

·-·-Internal Mt
MC022

Display Assembler
PB043

RM013, RM052 Match Circuits
PM012

M3 Parity Gen
RM065

3145 TM CPU 45

I-CYCLES

Processing a single software instruction may be divided into two
parts: the I (instruction) phase and the E (exec:utio~J phase. '

" Instructions are defined to be in different groups according to .
their format. length, and general form of execution.

The l·phase of processing performs the following basic functions:

• Fetch instruction

• Initialize the CPU f_acilities for the completion of the processing.
,,, , . ·.,,• ' '

Otiri~ the E·phase, the CPU performs th!! unique functions
specified by the instrtiction op.code.

RR, 00-3F

RX,40-7F.

RS

SI

SS, CO·FF

Format

ILC=1 0 0

ILC=2 0 1

0.

f

0

1

Length of Instruction

In haffwords

First Halfword Second Halfword Third Halfword

Byte 0 Byte 1 Byte 2 Byte 3 Byte4 Byte 5

OP-CODE

OP.- CODE Oisplacement2

OP-CODE Displacement2

OP-CODE Displacement 1

OP-CODE Displacement1 Displacement2

The immediate byte is the byte following the op-<X>de

OPERATION

0 1 ·o 0 ADD (lA)

0 :1 0 0 ADD(5AI

0 0 SUB (58)

0 0 0 OR (161

0 0 0 OR (561

0 0 0 OR (96)

0 0 0 OR ID61

3145 TM CPU 47

I-PHASE FUNCTIONS
The initialization of CPU facilities for the E-phase depends
partially upon instruction type. All instructions require an

updating of the instruction counter, the setting of the specified
CPU Regs, and a branch to the start of the execution routine. In
addition, some instructions require the fetching of the second
operand from a general register, or the calculation of operand
addresses.

At this point, some observations may be made about the I-phase
functions. For example, the RX and RS/SI functions are very
similar. In fact, during the I-phase, an RS/SI instruction is handled
exactlythe same way as an RX instruction with the X2 field equal
to zero. Also, some functions are identical, with only the data

value depending up0n the format and op code (SPTL, U, and I
update}.

Note also that the E-phase for some instructions is identical;
such as, AR and A, NR and N. The difference between these RR
and RX types of instructions occurs only in the source of the
second operand (general register or stprage). Saving some control·
storage words and time is possible by including the operand fetch
as an I-phase function for such RX format op codes.

The l·phase functions may now be illustrated as follows:

I-PHASE FUNCTIONS BY INSTRUCTION

RR

1. Set IBU, 1. Set IBU,
SPTL, U. SPTL, U.

2. Update I· 2. Update I·
Reg by 2. Reg by 4.

3. Fetch 3. Calculate
operand operand
from address
general using X2,
Reg and 82and
pot in Y Oisp. Put
(and Oil result in
2wordsl. V·Reg.

Fetch
Instruction

Proceed to
Execution
Routine

RS/SI

1. Set IBU,
SPTL, U.

2. Update I·
Reg by 4.

3. Calculate
operand
address
using B
and Oisp.
Put result
in V-Reg.

SS

1. Set IBU,
SPTL, U.

2. Update I·
Regby6.

3. Calculate
operand
address
using 81
and Oisp1,
82 and
Oisp2.
Put results
in V·andW-
Regs.

I-PHASE FUNCTIONS BY INSTRUCTION LENGTH

RR (Length 1)

Fetch operand
from general
Reg, and put
in Y (andQ
if 2wordsl.

RX, RS/SI
(Length 21

Calculate
operand
address using
X, Band Oisp.
Put result in
V·Reg.

Some Rx

Fetch operand
from storage.
Align as req'd.
Put data in Y
(and a ii 2
words I.

Proceed to
Execution
Routine

Fetd\
Instruction

SS (Length 3)

Calculate
operand
address using
B, and Oisp1,
82 and Oisp2.
Put results in
V- and W-Regs.

• I-CYCLES CPU48

ALI.

1. Set IBU
2. Set SPTL,

Uper instr.
3. Update •·Rao

by instr.
length.

Hardware Functions

Each softwa~e instruction processed requires performing the , •
previously mentioned I-phase functions. Minimizing this time
and thereby reducing the time required to process a given
instruction is desirable. To minimize the number of machine
cycles required during the I-phase (that is, the I-cycles) some
functions are performed by hardware. Additionally, some other
characteristics of the machine are more fully exploited by hard
ware means.

First consider the previously defined I-phase functions which
apply to all instructions. Hardware is used to perform the
setting of IBU. SPTL •. U. and the I-Reg update. These functions
do not require microwords to be performed; hence, they do not
require· any additional time during I-cycles.

Now consider the function Proceed to Execution Routine. To· •
perform a hardware-forced branch, define the starting control
storage address of each execution routine as a function of instruc
tion op code. The hardware branch on the op code does not
require any additional time, because no microword is used to per
form the branch and module switch.

The interface between storage and the CPU provides a double
word transfer of eight bytes of data. During a read type of
microword, the SOSO assembler provides the selection of the
addressed word (halfword, or byte) from the doubleword actually
read. The I-cycle hardware provides fcir buffering the entire
doubleword from storage, via a time-slotting of data from SDBO
to EBI. When an instruction is fetched from storage, the ad
dressed word is routed from 5080 to the !;buffer, via EBI. dur
ing the normal destination time in storage-2 cycle. During the
next cycle time, the odd word is gated to EBI, and placed .in the
I-buffer. This time-slot action occurs when no decrement count
function is specified by the storage microword. Therefore, up to
two words of data from the instruction stream can be buffered
when fetching one instruction from storage. Upon completion of
the instruction being processed, the next instruction may be avail
able in the buffer and, therefore, need not be fetched from
storage.

A savings in processing time becomes obvious. especially if the
doubleword being buffered represents four RR instructions. The
concept of buffering a portion of the instruction stream can now
be extened to include pre-fetching: Although the buffer does
speed subsequent instructions, the fetch of the first (current)
instruction does require some time. Having the current instrµc
tion resident in the buffer is always desirable. To get to this 1-
buffer condition, the instruction must have been obtained at
some point during the previous instruction. This function of
reading the next instruction from storage to the I-buffer i~ termed
pref etching and is performed during I-cycles.

As described in "Expanded Local Storage," the TR Reg always
contains a value representing the next doubleword address beyond
ttJe current I-Reg value. The TR-Reg is always used as the storage
address during a prefetch, and the SOBO time-slo~ing is forced to
provide the even word; then the odd word; T.his guarantees that
the I-buffers are loaded with sequential data.

The I-phase functions at this point are:

RR (Length 1)

1. Fetch operand
from general
Reg,anif put
in Y (andQ
if 2words).

2. Prefetch
next instr
if req'd.

Begin I-cycles

Some RX

Fetch
operand
from
storage
align as
req'd. Put
data in Y
(andQ if 2
words).

RX, RS/SI
!Length 21

1. Calculate
operand
address
using X, 8
and Disp.
Put result
inV-Reg.

2. Prefetch
next instr.
ifreq'd.

Start Execution Routine

SS (Length 31

1. Calculate
operand
address
using 81 and
Oisp1, 82 and
Oisp2. Put
results in V
and W·Regs,

2. Prefetch next
instr. if req'd.

l

~Hardware Function)

Set 18U

SetSPTL,
Uper
Instr.

Update I-Reg
by Instr. Length

Provide Start
Address of
Execution
Routine

3145 TM CPU 49

Microcode-Hardware Functions
The complexity of the I-cycle functions are increasing. On a pre
vous diagram (CPU 491 selecting one of three paths after fetching
the instruction was necessary. Here also required is to:

• Determine source of instruction (storage vs. buffer).

• Select path if instruction is in the I-buffer.

• Determine whether a prefetch is required.

Also minimizing the time required to perform each of these
functions and the basic I-phase functions is desirable.

Microcode branch operations requires CPU time. I-cycle hard·
ware can force a control-storage address to the M-Reg. (for
example branch on the op code). This facility is expanded to
include all addressing within l·cycles. The I-cycle hardware
provides the starting address ol the I-cycle routine to the M-Reg,
as a function of I-buffer status, instruction format and prefetch
requirement. When the CPU encounters a RTN word (to I-cycles)
this address is set into the M-Reg and the I-phase of the instruction
begins. Thereafter, except for some parts of the RX-align routine,
the I-cycle hardware provides the next control-storage address
and a gating signal to the M-Reg, until the execution routine has
begun. The I-cycle hardware then initializes for the start of the
next I-phase.

The minimization of time spent performing the basic I-phase
functions requires more hardware control. The I-cycle hardware
controls the data inputs and setting of the SPT L Regs and uses
this facility to select general registers from local store. By setting
the P·Reg to a value of 02 or (621 and gating a portion of the
instruction to the L·Reg (R2, X, or Bl, the microcode can indirect
ly address any general register, including floating-point registers.
This gating to SPTL is done by hardware, and is, therefore,
transparent to the microcode. Note that setting SPTL to the
desired value one machine cycle before use is necessary.

Furthermore, the I-cycle hardware can force and/or block
gating of data through a portion of the Expanded Loca I Store.
This capability is utilized as follows: a microword is executed
performing the arithmetic operation of V = LL+V. During the
previous machine cycle, a value is set into the P· and L·Regs of:
P = 02, and L = R1B2 (for an RX format instruction). The under
lined data value gives the general register specified by the 82 field
of the instruction as the data source of the A-Reg. Although
the microword is attempting to source the V-register, the I-cycle

hardware blocks this Expanded Local Store source, and forces the
Disp 2 field through the gating to the B·register. The microword
function of adding the A- and B-Regs is then completed, with the
result destined to the V-register. Thus, the microcode and I-cycle
hardware are combined fo perform the function of:

V = Base + Displacement
Most of the I-cycle miaocode/hardware functions is performed
this way.

Another significant interaction of microcode and hardware
occurs 11\-hen prefetching and calculation of an operand address
are performed simultaneously. The microword executed during
a prefetch is of the form: ROW LL ADJ, V + 4. First, the V-Reg
is blocked as an address source. Then, the TR-Reg is substituted
as the address source for the M·Reg, with gating performed via
the PAA, and 1-cycle/ADR .ADJ path to the M-Reg. At the same
time, the Disp field is gated from the I-buffer through the
Expanded Local Store to the B·Reg. The A-Reg data source is
an indirectly addressed general register, as previously described.
This form of microword normally performs an update of the B·
register value; however, this function is blocked and changed
to an A+ B operation. The function, V = Base+ Displacement,
is, therefore, performed during the storage-1 cycle. During storagil-
2 cycle, the destination of data to local store is blocked, and SDBO
is time-slotted to the I-buffer, as previously described.

Because the 1-cyele hardware and microcode are expected to
operate simultaneously, the microcode must consist of specific
microwords at fixed addresses. This is obvious because the hard·
ware is providing the control-storage address f.or the microwords,
and then performing hardware functions coincident with the
microword execution. What has not been obvious is how the
hardware remains in sync with the microcode. This function is
performed by routing the M·Reg output back to the I-cycle
hardware. Thus, when the M-Reg contains a value corresponding
to the control-storage location of an I-cycle microword, the
I-cycle hardware can determine what functions are to be per
formed at the next 0-time (that is coincident with the micro·
word execution).

This introduction has provided the basic functional concepts
of the hardware I-cycles. Significant omissions include trapp'ng,
share cycles, correction cycles, error conditions, etc. The hardware
description in the rest of this section has sufficient explanation
for these conditions. The basic I-cycle functions are described
"Microcode-Hardware Relationship," page CPU 51.

• I-CYCLES CPU SO

Microcode-Hardware Re~ship

Microcode Function

execution
Routine

ll'

...... - 1

Fetch
instruct ion
from storage

l _I
RR (Length 11

1. Fetch operand
from general
Reg and put in Y
land U if 2 words)

2. f'refetch next
Instr .. if req'd.

(

RTN word, end of

executionphasl, ~ --- - - -- - -.--~ - - ------
goto I-eyelet.

I

Some RX

Fetch operand
from storage

lllign as req'd.
Put data in Y
Wn4 a if 2
words).

1
RX. RX/SI (Length 21

1. Calculate operand
address using X, 8
end Disp. Put Jesuit
inV-Reg.

2. Pref etch next Instr.
if required.

Start Execution Routine

1 1
SS (Length 31

1. Calculate
operand
address
using Band
Oisp fields.
Put results
inV-andW·
Regs.

2. Prefetch next
Instr. if req'd.

r-
1
I
I
I
J .,._ ________ J

I-Cycle Hardware Function

Inactive, But
provides initial
values at data
entry for SPTL,
and M-Reg.

Begin I-cycles.
SetlBU.
SPTL, M-Reg ere set.

Control data
and setting
ofSPTL,M·
Regs. Set U·
Reg. per instr.
Manipulate
I-buffer as
required.

Provide start
address of
execution
routine per
op.code.

Update l·Reg
by instr Length.

Initialize for
next instr.
I-cycles.

3145 TM CPU 51

- I-Cycles Microcode Module Assignment

The I-cycle microcode routine IGAAll resides in the OF module
of control storage. The control-storage address, hardware functions
generated, and microcode are directly related. Specifi~lly, the
hardware generates control signals (and a next control-storage
address) from the contents of the M-register, so as to be active
(and coincident) when the control word executed from that
address.

The OF module is active if bit 1 of the Mode Reg (external
address 081 is on.

MICROPROGRAM MODULE ASSIGNMENT

...------ l·PHASE-----•-il

RTN to I-CYCLES
lany addressl

1. Decode Format and
Op-Code

2. Calculate operand
addresses and/or
fetch operand.

3. Define ILC.
4. Branch to appropriate

necution routine
5. Control I-Reg.

.CHECKS
1. Instr. Address Check

INot halfword boundaryl

2, STG PAT-check

3. Address translation check

GAAi

OF ·Module

ALIGN 14----------E-¥HASE------------t"'4

I 1. Read data
I 2. Store data
I 3. SetCC
I 4. Perform any operation
I and use the Operands,
I prepared in l·Phase

I
I
I
I
I
I

Hardware Branch I
to execution
routin».

GARR

Cx·Module

GARS

Cx·Module

GARX

Cx·Module

GASS

C>c·Module

CHECKS
1. Operand address check
2. Operand STG PAT check
3. Opera.id address translation
4. Specification exception
6. •·1valid operation

(analyzed in 1-phasel
6. Privileged operation

Micro WO Branch
to required Routine
or RTN to ICY's

x = Op code high-order 4 bits

I-CYCLES CPU52

I.Cycles Microcode a.ntrol Hardware-Loading of I-Buffers

RTN LNK

Off

1-CVCLES

'.

GICM B40C

Handle the interrupt;
then issue a RTN LNK
\Xe LS 30 for RTN

V•V,SO
Time delay

RDWYAOJ, V
Further Fnch

DF10

v-v.so
TIME DELAY

Note 1. The branch read latch is set:
1. When !he execute latch on.
2. Any timr the I-Reg is destined.
3. With a CPU Low Request during Prefetch.
4. If V or W ~ I or TR during a storage word.
5. If the address compare switch is

on I COUNTER (reall and
address compare control switch is not
in the NORMAL position. Note that this
mode of operation blocks any pref etching paths.

Note 2. The op load latch is set:
1. When a Prefetch is blocked and the

next op-code is available.
2. When current instruction is not fully contained

in l·Bfr !requires a further fetch!.
Note 3. Delay words to set control address .

Yes

IOdd Byte Boundary)

Note3

No

Note3

Off

Use TR Reg

Turn on
Op Load
Latch

GAAi

C564
Specification
Check

Note2

Branch
on

format
of

opcode

.cleEntry

CPU54

I-cycles may be entered (and the I-cycle controls enabled) by
two RTN words:

• Conditional: testing for interrupt. C3 bits 5-7 are 111. If an
interrupt is pending, the RTN word is executed normally,
and does not go to the I-cycle routine. If no interrupt, the
return is to I-cycles.

• Unconditional: goes directly to I-cycles when C3 bits 5-7 are
011.

The M-register controls the decode of the return and accesses
control storage using the address inputs to the M-register from
I-cycles. Th" I-cycles inputs to the P- and L-registers are also
gated. Data is maintained on these inputs by the I-cycle hardware
when not in I-cycles (except when performing a storage address
adjustment access).

Initial I-Cycle Address

All I-cycle addresses are in the OF module. The initial address for
a given instruction is determined by:

• The instruction itself, and

• The requirement for prefetching the next instruction.

Current Instruction Not Fully Contained in 1-Bfrs

First, consider the two cases when the instruction is not com
pletely contained in 1-Bfr.

1. The first case (and highest address priority) occurs when the
branch read latch is on. This occurs not only from the most
obvious case of macroprogram branch, (detected by the
I-register being loaded from EBI), but also from:

• Program modification (detected by storing within the
present, or next, storage doubleword address as com
pared to the I-register).

• A prefetch condition that was not filled during the last
I-cycle phase.

• Blocking a trap during a prefetch in the last I-cycle
phase.

• Being in real instruction address compare mode.

• Performing an execute macro-instruction.

These examples are summarized as "whenever the instruction
must be read from storage." When the branch read latch is on, all
other initial addresses are blocked and an address of DFOC is sent
to the M-register input.

2. The second case (and next highest address priority) occurs
when the op load latch is on. The condition for setting this

latch occurs when part of the instruction is in 1-Bfr, but the
remainder is in storage. The latch is set during the previous
I-cycle phase if it is determined that a prefetch is required,
but blocked, and only part of the instruction is in 1-Bfr. When
this latch is on, all other initial addresses are blocked and an
address of OF 14 is sent to the M-register ini>ut.

Current Instruction Fully Contained In 1-B·

With the instruction fully contained in 1-Bfr. the next condition
considered for an initial address is prefetching. The rule for pre

fetching is that a prefetch is performed if the:

• Present instruction ends at a doubleword boundary (the
next op code is not available) or.

• Next instruction crosses a doubleword boundary. This is
determined by hardware as a function of:

a. The halfword address of the present instruction within
the doubleword,

b. The length of the present instruction, and

c. The length of the next instruction.

• A prefetch is blocked if the present instruction is decoded
to be a branch type, or a special addressing case of an SS
instruction, at an address of 6 or E

The initial address is gated to the M-register according to the
following table:

Instruction

RR (but not flt. pt. long)
RR (flt. pt. long only)
RX (double index only).
RS, SI, RX (not double index)
SS

Without
Pref etch

DF20
DF24
DF4C
DF48
DF6C

With
Pref etch

OF34
DF3C
DFSC
OF58
DF7C

1-BFR SET CONDITIONS FOR MOVE 1-BFRs

1. RR op and even halfword
2. SS op and odd halfword
3. Neither of the above conditions
4. Prefetch and the next instruction is not

fully contained in the 1-BFRs

=do nothing
=SIR 0,1
=SIR 0
=S/R 0, 1

I-BUFFER SET CONDITIONS FOR STORAGE WORDS

S/R 1
S/R 1
S/R 1

(begin in Stg 2 cycle)

1. Prefetch and the next op is not available
2. Prefetch and the next op is available
3. Branch load latch
4. Op load latch

=SIR 0, 1, 2
=S/R 1,2
=SIR 0, 1, 2
=S/R 1, 2

SIR 1.2
SIR 2
SIR 1, 2
S/R 2

3145 TM CPU 53

I.Cycles Microcode and Control Hardware-Calculate Operand Addr8ss and Perform Prefetches
CPU53

~

CPU55

• Prefetch: The next instru::tion is not fully
contained in the buffer$.

NOTE 1. X=O. if R 1 and R2 • 0,2,4. or 6 levenl

X=4, if R 1 or R2 a 1,3,5, or 7. or greater than 1 (odd}

No

Yes

Yes

Yes

Yes

DF34

Y•LL,DF
Y • 2nd Operand

DF24

Y •LL, OF
Y • high 2nd OPRO

DF3C

Pref etch
ROW LL ADJ, V

OF48

124 V= LL+V

v = 81121+ 0 1121

OF58

PREF ETCH
ROW LL ADJ, V+4

v = 81121 + o, 121

OF6C

124W= LL+W
W = e1 + Displ. l

DF7C

124W• LL+W
W • e1 + Displ. 1

DF20

Y m LL, OF
Y • 2nd Operand

DF30

PRE FETCH
ROW LL ADJ, V
Y" LL. OF
Y •2nd OPRD'

DF28

0 =LL, OF
Q = low 2nd OPRO

DF2C

Y =LL, OF
Y = high 2nd OPRD

DF60

124V•LL+V
V = e2 + Displ. 2

DF70

Pref etch
ROW LL ADJ, V + 4
V = e2 + Oispl. 2

I
I

GARR

Q>OO.C1FO
C30X.c34X
C38X-c:JFX
NOTE 1

GARR

C20X-c2FX
C35X-c37X
NOTE 1

GARS

r::'OO.CBFO

GASS

I CCOO.CFFO

i~
I Hardware Branch on Op.Code
I (Branch to axecution routine)

I

I-CYCLES CPU54

CPU54

No

Base Or
Index •O

Yes

No

Yes

OF4C

124V• LL+V
V•B2 +D2

OF5C

"------I Prefetch
'ROW LL ADJ, V + 4
Vce2 +o2

DF48

124 V= LL+ V
V = IX2 or e21 +

02

OF58

~etch

ROW LL ADJ, V + 4
v • ext" a.; + o2

*Prefetch: The next instruction is not fully
contained in the I-buffers.

OF40

124V•LL+V
v • IBz + D2I + Xz

Notes:

2

3

PERFORM A HARD·
WARE BRANCH ON
THE OP.CODE
(Branch to an
ALIGN Subroutine
If required)

The execute latch is set when the W·Reg is destined.
W-Reg byte 3 is stored in the Imm-Byte-Mod-Reg
and ORed with the Imm-Byte-Reg during I-cycles
of the instruction. The I-cycle latch and indicatM
go off when the execution-phase of the subject
Instruction is entered.

If an execute instruction (Op-44) is attempting to
use another execute Instruction (Op-44) as the
subject instruction.

X = 0, if R 1 = 0,2.4, or 6. (even)
X = 4 if R1 = 1,3,5,7 or greater than 7 (odd)

4 Use 4 if the previous word was a storage word (prefetch)

Use 0 if the previous word was not a storage word.

GARX

C400-C430
C440 if attempting
two e><ecute instr.

GARX

C450-c470

GARX

C4DO-C530

GARX

C600-C670

GARX

C700-C770

Note 1

OFA4

W = LH,DF

DF80

Delay

OF84

RTN LNK

DFOC

D D
F

Align
F

D Routine F

0/4 0

Note4

0 D
F Align F
B Routine E

0/4 0

Note4

D D
F Align F
9 Routine FIE

0/4 0

Note4

D D
F Align, F •
B Routine F/E

0/4 0

Note4

r-------

I

PERFORM A
HARDWARE
BRANCH ON THE
MODIFIED OP
CODE
(Branch out of the

GARX

C480-c4CO

GARR

C140-C1FO

GARR

C28X-c2FX

GARR

C38X-C3FX

Note 3

3145 TM CPU 65

I-Cycle Hardware Locations

H
I
N
G
E

"·:· . Channel 4
Direct Control

Phase 2I STG

(control Stg. and
high main Stg.I

(eontroi stg. and
high main stg.)

8 GATE ICARD SIOEI

CPU.Timer
Keyboard Clock Comparator
Channel to Channel

Phase 21 STG Phase 21 STG

t112 or 160KI 12081 or 256KI

Channel Ctris.
ADDA Adjust LAU Reg
I, V, W, U, I, BU. TR Re~ CPU ADDA ADJ.CTR~S ..
Logical Regs I-Cycle Ctrl.

Op Code and I-Buffers

Phase21 STG Phase 21 STG

1112 or 160Kl 1208 or 256KI

I-CYCLES CPU56

~~

8-C3D2 Type8561 RU011 Op.U2 Reg-Op Oecod9
RU012 Op·U2 Reg-Op Decode
RU013 Op·U2 Reg-Op Decode
RU014 Op·U2 Reg-Op Decode
RU015 0p-U2 Reg-Op Decode
RU016 Op-U2 Reg·Op Decode

8-C3E2 Type8562 RU021 Imm Byte·U3 Regs
RU022 Imm Byte-U3 Regs
RU023 Imm Bvte·U3 Regs
RU024 Imm Byte-U3 Regs
RU025 Imm Bvte·U3 Regs
RU026 Imm Byte·U3 Regs

B-C3F2 Type8553 RU031 I-Cycles Generation
RU032 I.Cycles Generation
RU033 I-Cycles Generation
RU034 I.Cycles Generation
RU035 I-Cycles Generation

8-C3G2 Type8554. RU041 I-Buff Ctrls and Gates
RU042 !·Buff Ctrls and Gates
RU043 I-Buff Ctrls and Gates
RU044 I-Buff Ctrls and Gates
RU045 I-Buff Ctrls and Gates

B-C3H2 Type8558 RU051 PAA Latches
RU052 PAA Latches
RU053 l·Cycles Controls
RU054 I-Cycles Error Latches

B.C3B2 Type 7771 RU111 I-Buffer
RU112 I-Buffer
RiJt13 I-Buffer
RUt14 I-Buffer
RU115 I-Buffer
RU116 I-Buffer
RU117 I-Buffer
RU118 l·Buffer

8-C3C2 Type 7771 RU121 I-Buffer
RU122 I-Buffer
RU123 I-Buffer
RUt24 I-Buffer
RU125 I-Buffer '
RU126 I-Buffer
RU127 I-Buffer
RU128 I-Buffer

I-Cycle Hardware p~sc·n
The hardware I-cycle concept increases CPU performance by: t ''

• aufferiog instructions and pref etching (using a hardware
generated address for the next doubleword storage location)

, , instructions while calculating an operand address.

• Performing hardware controls concurrent witli' micro
l)l'ogram execution.

• Instruction decoding via a hardware forced branch on the
eight-!>it Op cod~.

'i Y/iridO~ in D~ Flow Diagr'~,ri shOW the hardware ~
by l-cy'd1!5.

--~~'I -- •--·. i -•K' -•M
.__. t'T~ ..,,,.._,

.... . .. :;:''

.... A(fllT -1

3145 TM CPU 57

I-Cycles Data Flow

IEIU

0

To
M·Reg

BY1•0

cXPLS

2

Address
Assembler

54

3 31

ADDRESS COMPARE

Any
Address

'(§)' •WOTCHES ®'
C H

81,2,3

A·LS

0

I-Cycles Ctrls

Set Branch
Read Latch

0

2

SDBO
Asm

EVEN

2

A·Asm

3 0

II
ALU2 • ALU3

0 2

0 2

B·Asm

2

3

3

3

* Display in expanded loc;al
storage register 56

I.CYCLES CPU 58

83

m 1-BFR 2, 1-BFR\ .. R 0

Instruction Buffer (l·Bfr): three one-word registers are usec\ tD hold
the present instruction and next doubleword (where possible).
Loading of the registers is from EBI.

Instructions are assembled on a halfword basis to obtain the
op-code and immediate byte. The base and displacement fielas are
gated from the l~Bfr through separate assemblers as required.

r: Doubleword ~Ooubleword~
; en wd I odd wd · even wd !odd wd

1234567 89ABCOEF

M3 bit 5=1 indicates that the odd word
information is to be loaded into all 3 I-buffers.

When the TR~Reg is used, the even/odd tim~slot of data is forced.
When the I-Register is used, (OFOC) M3 bit 5 oontrols the gating.

' Bit 5 off= even/odd ·
· Bit on = odd/odd.

1-BFR SET CONDITIONS for MOVE I-BF Rs I-BU'. 'ER SET CONDITIONS for STORAGE WORDS (begin in Stg 2 cyde)
1. RR op and even halfword =do nothing 1. Prefetch and the next op is not available =S/R 0, 1, 2 S/R 1, 2
2. SS op and odd halfword -S/R 0, 1 S/R 1
3. Neither of the above conditions =S/R 0 S/R 1

2. Prefetch and the next op is available =S/R 1, 2 SIR 2
3. Branch load latch "'5/R 0, 1, 2 S/R 1, 2

4. ·Pref etch and the next instruction is not 4. Op load latch =S/R 1, 2 S/R 2
fully cont;iined in the 1-Bfrs =S/R 0, 1 S/R 1

Low-Order

ILC IBFR

LEGEND:

&~B-~~1

E--f-31
e~E-=i

E~d-~3
E--E-~11 ---E-3~-3

lt~l-31

E-...~.+~..;.3

E--E-=JI
E-3f!it::1

3rd Halfword 4/C

R~'!"'f--;.I

E-3--3
jt§--31

E-=t~g

E-+~:g

bd rm•t

E-3--11-. =The end of the doubleword in the 1-Bfrs

I L__,. = Content of Bfr not significant. ·

... -----•~ = Remainder of Ooubleword

~

~ .,; One IBFR Position

-Instruction being operated on by I-cycle hardware.

4th Halfword 6/E

F;_~+-~d

E--E-3
F-::MMI

The abow chart represents the oontents of the l·Bfrs for the 12 different combinations of instruction length and
inslruc:tion location within a doubleword.

ID SPT.L Registers

S-Reg Set from the op-reg for further use by the
execution routine.

Set time for SPTL.

l·Phase

E.Phase

I.Phase

l.i.J align..J

I
E-Phase

P-Reg Set to a value of 02 (or 62 for floating point) to
allow addressing of local-storage areas conuining
general registers. CPU ;...orking area. and floating.
point registers.

T·Reg

L-Reg

Reset to zero for use in an align routine (if
required).

Set from the immediate byte register or base field
assembler to allow indirect addressing of the
general registers and floating-point registers.

3145 TM CPU 69

a
Op-Regist•

The op-register is used to hold the present instruction op code
during I-cycles. The output is gated to the U- (21 and $-registers,
and is also used, for I-cycle decoding and branc_hing to the
instruction execution routine.

The decode of the o~egister is used to build the I LC, which is
gated to the U-register byte 0, bits 0 and 1.

L;a I-Phase

I.Phase .L I align

·m

L;;E-Phase

Immediate Byte Register

The Imm byte reg holds the second byte of the present
instruction during I-cycles. The output:

• Loads the U3-register.

• Is assembled with the base field to be gated to the L-register.

• Is gated to the I-cycle controls.

~I-Phase I
• l;;E-Phase_ I

14'hase

L.
align

I E-Phase
I .

Lm

•only with brandi-read IDFOCI

II
Immediate Bvte Modifier Register

• Used only by the Execute software instruction to modify
the second byte of the subject instruction (if the Rt field
of the Execute instruction is not zero).

• The register is set when the W-reg is destined, with data
from byte 3 of the GR specified by the R1 field. (Refer
to "Execute Phase II-Cycles).")

W=LH,DF

DFA4 DFSO KF84

II
U-Register (Exp LS 53)

Part of ~his register Is set only by hardwa•e. The two-bit
. Instruction Length Code (ILC) Is set to a value determined

by the op-reg decode. The condition Code (two bits) is used
by the I-cycle controls to determine whether a branch-on·
condition code instruction branches. Byte 2 is set to the
op-code by hardware only. Byte 3 is initialized to the
immediate byte by hardware .. Bytes 0 (except bits 0, and t),
1, and 3 may be loaded from EBI by microcode.

Byte O Bits 0-1 Instr. length code (hardware set only)
Bits 2-3 Condition code
Bits 4-7 Program mask

Byte 1 Bits 0-3 Special CPU use
Bits 4-7 OMWP bits

Byte 2 Bits 0-7 Op code (hardware set only)
Byte 3 Bits 0-7 Immediate byte

I-Phase

I-Phase
I align -

J; E-Phase

E-Phase

I.CYCLES CPU&O

m
Special addr~s-matching function--on a doubleword basis 1

(bits 8-28!.
' • I-reg is compared to PAA IV or WI. TR-reg is compar~d

,to 'f'AA {V or WI. (These matches are required to
determine whether program modification is taking place
in that part of the instruction stream that r.nay have been
loaded in the 1-Bfrs.l

• If the comparison is equal during a store operation, the
BR read latch is set. (This forces a new loading of the
I-buffer op-reg and imm byte reg.J

m
V-Register (EXP LS 51} 40

Bytes 1, 2, and 3 usually contain the second operand address.

D
W-Register CEXP LS 52J•

Bytes 1, 2, and 3 usually contain the first operand address.

~tf used io a storage Wotd as a st~age address, the key register is
gated as byte zero.

II
• • Key Register

The key tegister acts as byte 0 of the I-register when the I-register
is destined. The key register contains the storage protect key in
bits 0-3. Bit 4 is the fetch protect bit. Bit 7 is 0. With the DAT
feature installed, bit 5 is the reference bit and bit 6 is the change
bit. For a more detailed description of bits 5 and 6, see
"Reference and Change Bit Recording" under OAT in the CPU
section.

If the V·register or W-register is used in a storage word as a
source, the key register is gated as byte 0 of the V or W-register.
If the I-register, I BU-register, or TR-register is used, the key
register is gated as byte 0 of that register. The key register is
set when the I-register is destined.

13
!BU-Register IEXPLS 54)*

Upon entering I-cycles, I-reg bytes 1, 2, and 3 are set into IBU.
If a retry condition is enco•·.,tered during I-cycles, the instruction
cycles may be repeated lret~rn to OFOC). In this case, IBU is
moved to the I-reg by the retry microprogram.

IBU is set from I-reg as follows:

~ 1-Phase--f

- · l--E.Phase--1

3145 TM CPU61

II I-Register (EXPLS 50)

Instruction counter register, byte 0: if the I-reg is destined, byte
0 is gated to the key register. Bytes 1, 2, and 3 contain the
instruction address.

The I-reg is updated as follows:

r-•·Phase -iiii4
I.Phase

J-E.Phase ---f

~aligri---I

- t-E.Phase --f

m Add Carry (Adder)

The two low-order adder positions 124-bit adder) add the instruc
tion length to the I-register bits 29-30.

• Adder (except the low two bits) adds a "1" to I-reg bit
position 28. This sum represents the next doubleword storage
location.

• A carry-out of position 28 is added to bits 27 to B.

• A carry-out of position 29 indicates that TR bits 8 to 28 are to
be loaded into I for a hardware update.

• An adder check turns the I-cycle hardware indicator on.

m TR-Register (EXPLS 55)

• The TR-reg consists of bits 8 to 30, with bit 31 always forced
to a zero. (Bit 31 has no latch.)

• Contains an address within the next doubleword after the
address in the I-register; used when prefetch or further fetch
(DF14) is required.

• Used to butter the adder output during hardware updating of
the I-register.

• I-hardware update, consists of loading I bits 29-31 from
TR 29-31. Bit 31 of the I-register is not gated through the
adder. I bits 8 to 28 from TR 8 to 28 if the Adder bit 29 had
a carry-out. (TR = I+ ILC + 8)

I-CYCLES CPU62

EXP LS 50
• I ! gµ __ ·_ I'

I · I · , : , I
23 24 25 26 27 28 31 -{

ADD ONE ----_j_--. 1------1--- ILC ~~===·SI
11-SS

8 15 16

.., _____ ADD CARRY

~1------+---=--f--r"---r---r--~3------r--~
8 15 16 23 24 25 26 27 28

TA EXP l.S 55

15 16 23 25 26 27 28 29 30 31

'--~~~~~~~-x lx-~~--'
~=t)J~~~-+-~~~~~-t____J

Update-I-Reg · G
Add Carry bit 29 to 28 A

Carry outs from add carry bit 29 to bit 28 are not allowed, but are remem·
bared. At update· I time, a. carry remembered causes all of TR to be gated
back to I. Otherwise, only bits 29 and 30 are used to update I-reg.

RS -- ·-1006-+------""-'---- 100C --..---+----1010

----1------lOOC -----4-----1010 r 101X IX=ILC+Bl:-i
-----i------1002 1006 -----i----- 1doc ------+---........ , ;;,

•A carry-out of position 29 causes TR , .
bits 8-28 to be gated to I-bits 8-28

Instruction Cycles Addr.en•ation . •.
HIGH-LEVEL DATA FLoW

Generate Address

M Byte 2

OFFO
OFE 0

RX Instruction with align
0

'1 E><ecute Instruction

2
3

4
5

6
7

Control·

Decode

oaia to M-Reg

/.,p~t~·S/R(.. ,

STG-1 Cycle STG·2Cvcle

0 0 0 0 (Not)DF

Representative Timing

A

Op-Branch
I From I· to E·Phase)

Pres. Next
Addr. Ad

oc 04

04 00
14 10

24 28
34 30
3C 2C

2C 28

Force OF

ForceCX

Force CS

Force64

l·Cy Op-Reg

0

4
5
6
7

0-3

4.7

Generate Address ~1-------r
Set Control Address---j OR

Op-Branch to OF-----

M Byte2

0

2
___ ;! __ _

1------x------•-.te•-CI 4

Op-Branch ___J :

~------x

Op-Branch~

Gate ICY toM
or RTNto ICY

M Byte3

0

l--~...J-_1!!--l--------------------------------+------------"----X-----------Jlll-

Genar1te Addrea _J
4C 40

3
--4--

DFOO DF10

Set Ctrl Addren

5C 40

6C 60

7C 70

RU033

RU034

BR Read to OC.
OP Read to 14.
Otherwise, use
ILC Format,
Double Index,
Prefetchto
define the next
address.

OR--------- Odd Flt point reg,
Odd Shift register,
unsuccassful branch,
branch to align
after prafetch WO

()p~ode

DECODE

to ALIGN

~

NEXT

ADDRESS

low Bit

...... -------------x
Op-Branch to OF _J

1----------------~i-----------------~x---------~

Sat Control Addreu J

5
Zero

Zero

3145 TM CPU 63

•

I-Cycles Control Line Gen.ation

ADDAESS

DFOO

01'04

DFOC

OF10
DF14

DF20

; OF24

OF2B
DF2C

DF30

OF34

' DF3C
DF40

/ 01'48

DF4C

DF58

OFSC

DF60

OF6C

OF70
DF7C

fNotl OF

RTN
10

1-C~cles

1 3

1 3

1 3

1 3

1 3

1. These controls are not the result of the control register decode.
2. The control_ line is activated by the corresponding address.
3. This line is activated by command preletch.

25

4. The set/reset of the 1-Bfrs is also controlled by command pref etch.
5. This control line is activated, but not used.
6. From OFOO through OF7C SPTL is controlled by I-cycles.

DFEO or OFFO activates this control line again to restore SPTL
after an align.

1. Set P-set LL

2 1 6

1 6

1 6

2 1 6
1 6

1 6

1 6

1 6
1 6
1 6
1 6

1 6

1 6

1 6

1 6

1 6

1 6
1 6

1 6

1 6
1 6

1 1

I-CYCLES
CTRLREG

BITS

1 2 3 4 5
0 0 - 1 -
0 0 - 1 -
0 0 1 0 1

0 0 1 0 1

- 1 1 - 0

1 0 1 1 -
0 1 1 1 -
- 1 - - 0
1 - - - 0

0 1 0 - 1

0 0 0 - -
- 1 0 0 -
1 0 0 1 -
1 - - 1 -
1 1 - 0 -
0 0 - - 0

I-CYCLES CPU64

CONTROL REGISTER DECODE

CONTROL LINE FUNCTION

C•Jmmand Branch Load Load l·Bfr 0 ll·Bfr 1 in next cycle)

Force I Gate 1:Reg to B (and Address Adjust)

Command Op Load Load l·Bfr 1 ll·Bfr 2 in the next cyclel -· -~

Force TA Gate TR-Reg to B (and Address Adjust) -

Activate Pref etch -

''.;- . ___ ._

Command Prefetch Force TR to ADR ADJ Asm

-- (and B if DFJO or DF3CI -

Cp Branch Command
-

Use op-reg to define the next Cxxx address; or go . ----

to the align routine

L plus one Force bits 1 and P of data being gated to L-reg to be inverted for FLP long

Load Op, Imm Byte Initial load of Op and Imm Byte

Command Move l·Bfr Used with l-reg't_o activate the set

or reset of the 1-Btr's

Gate o1 and e2 Used to gate the correct base or displacement

Gate o2 field from the 1-Bfrs 0 and 1 to L·low or B·Re9

Set Control Address Set next address for I-cycles sequence

I.Cycles Address Ge~ra~ndControl Decode
M Byte 2

ModeR •.

(Not) I/

Refer to the Exiianded Local Storage
definition of Exp LS 56

!CS BYTE 2
O - BR read latch
1 - Op load latch
2- OpL2
3- Opl1
4 - Pref etch required
5 - Preletch inhibit
6- FLP Long
1- OPS~ to OF

!CS BYTE 3
o - I-Bir 0 parity check latch
1 - 1-Bfr 1 parity check latch
2 - Half Adder check latch

04
14

24

34

3C

2C

4C

5C

6C

7C

10

28

30
2C

28

40

40

60
70

3--. Imm Byte Modifier parity check
4-X•O RU033

5~ B=O .
6 _,;.. Sei Conlrol Adchn
7~ Lowbit .

EXP LS 56 llCSI is i.ntended for use only es
aal dilPllY and cannot be accessed via
microclodL

RU034

Note 1

CURRENT I-REGISTER ADDRESS

0/8 2/A 4/C 6/E

1-BFR 1 1-BFRO

ByteO Byte 2 Pref etch
SS Not RR

1-BFR 1 No

OP
RS Byte 0 Byte 2 Pref etch

Prefetch

"T}-0-
4

SI SS Not RR

1-BFR 1 No 1-BFR2

Byte 2 Pref etch
ByteO SS Pre fetch

Notf:R (Note ti

~ ~x-0- ._ __ _ 'Instruction for

this I-Phase Special Case
(Note 1)

RU 118
RU011

(Notl 01'

Base From 1-BFRs

0

Imm Byte
REGISTER

1 LH
2
3
4
5
6 LL

0 Double Index

Index= 0

O Base=O
01------f
E R1=0

Note3

Note3

Unsuccessful Branch on CC -=B-R UllSUCC8Uful Bnndl .
Branch on Count R2 field=zero · Odd Shift Register

. · . Odd Fto.tin9 Point Reg

, ~- Op Branch to OF mer Pref etch
6

...J.. OpBmnch

(.:}- Op Branch to OF

-Prefetch Required

FL force DF14

ex
X=OP-Code

OF

Align Entry
A4,9Y
BYDY

YsLow bit

~'------------'

Gate I-Cycles to M-Reg (active when in DFI

RTN TO I-Cycles (activated by 10 RTN or
11 RTN and no interrupt)

Note 1: This condition (an SS instruction and the next instruction ·~ SSI -
the line Inhibit Prefetch to be active, and the Op load latch IS set when
the next Op.code is available.

Note 2: When in I-Cycles (OF module), the line Generate Adclren
is functionally overridden during addresses OFOO and OF10.

Note 3: If both Index and Base indicators are off, double indexing
takes place.

M BYTE 2

3146 TM CPU&&

Unique Conditions During I-Cycles

Share Cycle

If. a share c.ycle is attempted during I-cycles, the I-cycles hardware
is deconditioned. This occurs when the line 'Not 1/0 Op' becomes

.inactive. (See "l·CY Address Generation and Control Decode.")
With '(Not)l/O Op' inactive, the generate address, and generate
controls latches are deconditioned.

tr.me 135-t 80 -------l
fJNotl STG·l Cycle

r Good Data--------l

At---------~

ic;enerale
Address

4
1 l:::: ~··--.. -------1

. . . _..,.~,.;..;..,..;,;,J.~•·~ . .-;..~>.:.c .•• ,.,, ~~ ... -.:~.~
Trap (Not Machine Check}

In the event of a trap during I-cycles, the M-reg is set to the
appropriate trap address, and the trap is taken. When the
trap address enters the M-reg, the OF Decode turns off, and
suspends I-cycle operation. '(Not) 1/0 Op' is also deconditioned
whenever Hl, 3, 4, 5, 6, or 7 are on.

Trap (Machine Check)

If a machine-check trap occurs during I-cycles, the failing
instruction is retried eight times before entering the hard
machine-check routine.

The Retry Microroutine takes the contents of IBU (I-Reg
Backup; that is, the current instruction address) and places it'
in the I-Reg. The retry procedure is to then return to I-cycles to
begin processing the instruction again.

I-Cycle Error Conditions

Parity-check errors for 1-Bfr O, l·Bfr 1 Op and Imm Byte
regs as well as half-sum check errors are indicated in
expanded local-storage register 56 (ICS) I-cycle control
display.

Storage Correction Cycle

If a storage correction cycle occur~ during I-cycles, the latches
Generate Address and Generate Controls are not S/R. The line
'good data' blocks the clock pulse. (See "I-CY Address Genera·
tion and Control Decode.")

L

,.
~Not I CPU Low Request -

~.: '

t Time 135-180 -------l
''·:·(Not) STG-1 Cycle
.,·Good Data -------1
l'

~/Mode Reg Bit 1=1 -----.
~·(Not) 1/0 OP------i

L":...., """,;_;_"""··.:...,,.,...,.....~ ...

I-CYCLES CPU66

CPU Low Request (Not Prefetcht

The line 'CPU Low Request' may be activated by: .
• Storage-protect check (caused by a mismatch of the storage keys)

• Address check (TR pointing to the doubleword above the top of
storage) · > •

• Address translation trap

The two check conditions may be considered as program errors that
cause a program check and go to the GICM routine. The addreSS
translation trap may cause a similar~check, depending upon the
availability of the addressed area, • · ~ -

i;TTl
f, (Indicate Alig:>

Aoutinr:)

(Notf M-Rt'Q
Byte 3 Bit 0 I

~~:} CPU L~~ Request

~
l Time 135-180 ----__,

t~~~ ~!~-1-_cv_c_te ____ -:-1

' r (.
~- .
rModeReg Bit 1=1-~-~
;_ INotl 1/0 OP-------t

L~,,, .. ,;.,;; . .,, .. ;!_,;,'""~,·~=-'·'·' .. ,.J •. cO<.e·i.\.~:,.;;i.;~~;i*·\i"'*/~·;..·· ·""·"'~'-... ~·il1l\:illi.lliitlifllll

CPU Low Request (Pri;fetch)

CPU low request is blocked during Pref etch. If a storage check
-occurs during a Pref etch, it sets. the bfancti r~ latch. Upon
return to I-cycles, the I-Reg is used (instead of the TR-Reg)
to refill the I-Buffer. If a second CPU low request occurs, it
indicates a program check.

I.Cycle Timings

t I-CYCLE LATCH RU044

2 EXECUTE INSTRUCTION
LATCH RU044

3 ADDRESS RANGE
OFOO-OF7C

4 ADDRESS RANGE
OF84-0FFC

5 SET IBU REG RU044

6 uPOATE I-REG

SIR II or VI REG RU044

8 SIR OP, IMM BYTE.REGS

9 I-CYCLE CONTROLS
(!),P,L. M-REG-no1
STG-1 Cydel •

I
I

I
RTN .. , I
(To 1.Cvclesl ~

I EXECUTION
I

,
I

I
I I -------!I
I
I
I
I
I
I --' I
I
I
I

lorV• Ill

I
I
I

I
I
I
I
I
I
I
I
I
I
I

,., ___ __ .c.,r-_ If BR LO

, Sequence

I
I
I ,,
t

NORMAL I.CYCLES t

f
I

RTN I-CYCLES
(To I-Cycles) I

,..._.
I
I
I
I

J----1 I or V =IO

I
I

I

-..
I
I
I
I
I _,
I
I

I
I ...
I
I
I
I

I I

EXECUTION

I
,

I

I-CYCLES WITH READ AND ALIGN

RTN
(To I-Cycles!

f
I

-
I orV• (II

I-CYCLES

I
I EXECUTION OF
I SUBJECT
: INSTRUCTION

I

I
-------flNOTEi ~;~sset

- lorV•IVI
,

- I

, I-CYCLES FOR l!XECUTE INSTRUCTION

3145 TM CPU 87

..

I-Cycle Operational Description
Software instruction decoding on the 3145 is accomplished by a
unique interaction of microprogram and hardware.

The microprogram used for instruction decoding is the GAAi
routine, which resides in the OF module of control storage.

l·Phase

During I-phase, the instruction is read out of storage and placed
in I-buffers. Certain determinations may then be made concerning
format, Op.code, and instruction length code. The purpose of the
I-phase is to ensure that the correct data is available for use during
the E (e><ecute) phase. Upon exit from the I-phase, the Op-code is
used to point to the next control-word address of the microroutine
for that format. (for a lA add instruction, address Cl AO is used as
the entry to the GARR routine).

E-Phase

In the E (execute) phase, data is read, stored, and the correct
condition code (CC) is set. The operations indicated in I-phase
are performed by using the operands fetched during l·phase. The
address sent to the M-reg is that of the entry to. the execution
routine.

IORTN LNK

11 RTN LNK

M-REG BYTE 2, 3

INSTRUCTION STREAM

with hardware to arrive D
at the starting address

, . ., of the e><ecution routine. ~1

1~0HASE

1.evce.es CPU68

GASS

GARX c
x

GARS c
c x M

x 0
M D c 0

x M
D 0

M D

0
D

E·PHASE

x • Op code high-order four bits

Fetch Operations

Main Storage
Address 1000 1004

I l
-,(Ignore)-.--~ OF 10 01

1
FeTch

FETCH

• 1-Bfrs are initialized.· ·

• May have occurred by a program branch to the
instruction at address 1004.

Note: See Fetch Sequence and Loading !·Buffers for
additional .information.

Main-Storage
Address
1004

0_2 OF 10 01i 20 02 47 41 05 01 1A SA
I\ - - J ..,

further fetch required because the current
instruction is not fully contained in the
1-Bfrs.

FETCH SEQUENCE
(BRANCH LOAD SEQUENCE)

...

CON-rnoL WORD I . RTN ROW Y, V+4

FURTHER FETCH

• Required when the current instruction is not fully contained
in the l·Bfrs.

• Recognized by:
1. The decoding of the current Op-code, which determines

the length of the current instruction.
2. The I-register points to an address within the doubleword

that the first byte of the present instruction is located.

• Accomplished by: (storage word at DF14)
1. Setting the Op toad latch during DF04 and forcing D FOO

to branch fo OF 14 with the gating line Set Control Address.
2. DF14, a storage word, forces the TR·Reg to the 8-Reg,

thus fetching the next doubleword from storage by using
S/R I-buffers 1 and 2 with the even word late in the storage-2
cycle of Df14. During DF10 (early in the cycle), !·buffer ·
2 is S/R with the odd word, ·

Note: See "Fetch Sequence and Loading I-Buffers" for additional
information.

. 1A 5Al47 30 AO 20 47 FO A2 so! - •c . v- . ,,

Pref etch

v .. v.sF Y•Y,SF

~ETCHING

• Required when the next instruction is not fully contained in
the 1-Bfrs.

• Recognized by a combination of decoding:
1. The t-Reg points to where the instructions come from

within the doubleword.
2. The Op code indicates the length of the present instruction.
3. Instruction look-ahead knows the format of the next

instruction and, therefore, knows the length of the next
instruction.

• Prefetch is blocked under the following conditions:
1. All bnsnch·type instructions.
2. Two SS instructions in succession {TR is pointing to the

doubleword just fetched).

FURTHER FETCH SEQUENCE
(OP LOAD SEOl:JENCE)

CONTROL WORD I (Previous) ROWY, V Y •Y,SF

Tl.ME REFERENCE, I STG-1 STG-2 TIME REFERENCE I STG-1 STG·2

DFOC INSTADOR OF.04

CONTROL REG OFOC OF04

Force I

CONTROLS
(Ex L not ONI I Block LS Dest

Load Op, Imm Byte Regs

Fetch Instr

II FUNCTION

, I
SIR SIR

l·Bfr2 §B 1-Bfr 1.

1-BfrO

DFOO OFXX M-REG DF14

OFXX DFOO CONTROL REG

Force TR
CONTROLS

Op, Imm Byte-Regs Valid
FUNCTION

Determine tll•Xt A~•n l)FXX .

Next DBLE Wd I DF10 OFXX

DF14 OF10 DFXX

Block LS Oest

Fetch Next Instr

~--------.. , Determine Nut Addms DFXX

l·Bfr 2

1-Bfr 1

SIR S/R ao
3145. TM CPU 89

RR SEQUENCES I
I
I
I (Previous} Y •LL, OF

1. CONTROL WORD I
I

2. TIME REFERENCE I
I
I OF20

Execution 3. M-REG I Routine

I DF20
4. 1-CYCTRLREG I ,,

I I'
,I Move 1-Bfrs 0, 1

CONTROLS I
'·>;< :I ~~~rand to I I
6. 'FUNCTION I I

I I
I I
I I
I I
I NOT FLOATING POINT

I
I I
I NOT PREF ETCH I
I I

I
I

IPmllous) Y •LL.OF ROW LLAOJ, V I
I
I

STG-1 STG·2 I
I

OF34 OF30 (TAI
I

Execution I
Routine I

OF34 DF30 I ,, .,
Force TR I Blocks LS Dest I

1,
Move I Sirs O, 1 Load I Bf rs 2'. 11

R2 to Y REG
Prefetch for next Instruction I I

I
I
I
I
I

NOT FLOATING POINT LONG I

PREF ETCH

1. ., c coi•·fTROL WORp

2. TIME REFERENCE

3. M-REG

4. I-CV CTRL REG

5. CONTROLS

6. FUNCTION

I
I
I

(Previous I y.;.i_L,DF Q• LL, OF

jlll-mDmFii2•4 0.Fj28iiill ... !::~~:n

OF24 DF28

MovJ 1-Bfrs 0, 1

Force L Odd

R2 to Y-Reg R 2 + 1 to O·Aeg

FLOATING POINT LONG

NOT PRE FETCH

I
I

"' I

I
I
I ,,
I
I
I
I

I-CYCLES CPU70

(Previous I RDWLLADJ;V Y•LL.OF O• LL.OF

STG·1 STG·2

ti--lliDiiFii3iic tii-.. •tlliTlliRill iioi1Fiii2ciiill ·.oilF2iia--I E•ecution
RoutJnt '

DF3C DF2C DF28

I Force TR I I Block LS Dest. I I Fon:e L Odo (

Move I-Bin 0, 1 Load I-Sirs 2, 1
Prefetcn for next lnstrucuon I R2 To Y-Reg

FLOATING POINT LONG

PREFETCH

·.'

RX SEQUENCES

I I

1. CONTROL WORD

2. TIME REFERENCE

3. M-REG

I I
I I
I

(Previous) V =LL+ V V =LL+ V I
I I
I I

I I I
I . . I
I OF4C DF40 Execution Routine I
I I (or Read and I

I Align Routinel I

4. I-CV CTRL REG
I OF4C DF40 I
I I
I I

S. CONTROLS
I

Force disp. IU·8usl to PBA
I

I I
I Base to L-Reg I

. 8. FUNCTION

I I
I I

I
I Move 1-Bfrs 0, 1

I

I I
I I

Calculate Operand Address I I I
I I
I DOUBLE INDEX I
I NOPREFETCH

I
I. I

RX, RS, SI SEQUENCES

1. CONTROLWORD

2. TIME REFERENCE

3. M-REG

4. l·CY CTRL REG

· 5. CONTROLS

8. FUNCTION

(Previous) RDWLL ADJ. V + 4 V =LL+ V

STG 1 STG-2

(TRI DF40 I Execution Routine
... -•D•F•SC--·-----·-----iie. (or Read and

Align Routine)

DFSC OF40

Force TR Block LS Oest

,_ ____ Force Oisp. (U·Busl to PBA

I Base to L·Reg I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Force B =A+ 8 ALU operation

Move l·Bfrs 0, 1 load l·Bfrs 2, 1
Prefetch for next Instruction

I Calculate Operand 1
Address

(Previous)

DOUBLE INDEX

WITH PREFETCH

V =LL +V

OF48

I
I
I
I
I
I
I
f
I
I
I
I

t----f Force Oisp .. IU·Busl to PBA I
-----8ase to L·Reg for X if R.X lristructlon, · :

Move l·Bfrs and X 'I 0, base • 01 I
,_ _____ Block ALU A entry I

if Base is used and • 0 I
,. _____ Calculate Ope111nd

Address ·

NO DOUBLE INDEX

NOPREFETCH

I
I
I
I
I
I
I
I
I
I

(Previous) RDWLLAOJ,V+4

STG-1 STG-2

Execution Routine

... ----·-----· (or Read and

DF58 (TR)

Align Routine)
OF58

I Force TR I Block LS Dest

~ Force Disp. (U·Busl to PBA

·---- Base to L·Reg (or X if RX instr. and X 'I 0 8 • O
,_ _____ Force B =A+ B ALU Opar I
,_ ____ ... Block ALU A entry if I

Move l·Bfrs 0, 1
Base is used and • 0 I

Load 1-Bfrs 2, 1 I
Prefetch Nex~~~c;:::~i~:rand Address I

.1

NO DOUBLE INDEX

WITH PREFETCH

I
I
I
I
I
I
I

3145 TM CPU 71

SS SEQUENCES

1. CONTROL WORD

2. TIME REFERENCE

3. M-REG

4. I-CY CTRL Rl:G

5. CONTROLS

8. FUNCTION

I Previous) W•ll+W V • LL+V

DF6C DF60

-----------~ Execution Routirw

DF6C DF60

o,

~ 1

0
2 Force Displ 1 and 2
~ (lJ.Busl to L·Reg I

~Base1andBase2 1.

Block ALU A entry
if Base •0

B1
to L·Reg

82
·1

Move l·Bfrs 0, 1

I Calculate Operand I
Address 1 Calculate Operand

I . I
Address 2

NOPREFETCH

I
I
I
I
I
I
I
I
I
I
I
I

I Previous) W•LL+W ROW LL ADJ, V + 4

STG·1 STG·2

DF70 (TR) DF7C _____ _. _____ .. _____ 114 ExeuctionRoutirw

OF7C OF70

Force TR I Block LS Dest

02
~ Force Displ 1 and 2 (lJ.Bus) to PBA
B2
~ Base 1 and Base 2 to L·Reg

2

---------- Block ALU A Entry If Base• 0
liijl'._ ___

11141
~:~: ~;f~ ~.~.A2LU Operation

Move I Bfrs 0, 1

•l--•p•,.•1e•1c•hn•ex•1•1n•s1r•uc•tio•n--•
I Calculate Operand I

Address 1 I Calculate Operand I
Address 2

WITH PREFETCH

.1
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I.CYCLES CPUn

I.Cycles Alignment R~

1-Cycte Entry with No Prefetch • • .

(Previous word 'was'~~t ~ storage Word.>
The align routine is entered at address DFBO, which is a delay
Word. The delay word allows the destine of the V·Reg.

DF48

·;>.,;.----..-1 I 24 V=LL+V
V2 (X2 or s21+02

OF58

Pref etch -----------1 RbW LL ADJ, V + 4
V•IX2 or B21 + o2

54-&F i
IL
0

Align
Routine

IOF48~DFBO~OF84~

J~Tff;~J0ii::."!:?flfftfi.~
V':'IX2 or 821+02

ROW Y ADJ, V+4, T'

GARR

~ u. i------1
C140·C1FO 0

Perform a hardware
branch on the modi·
tied Op-code
(Branch out of the
align routine)

~e Entry with Prefetch

(Last word was a storage word, requiring a storage-1 and
storage·2 cycle.)
The align routine is entered at address DFB4, thereby eliminating
the delay word. The delay word is not necessary in this instance
because the storage-2 cycle allows sufficient time for the V·Reg
to be destined.

Start

No

Yes

OF48

I 24V=LL+V
V=IX2 or B21+02

DF5B

Pref etch '----------t ROW LL ADJ, V + 4
V•IX2 or e

2
1 + o

2

DIStlneV

V•IX2 or e2102

54-&F .,
ID
u.
0

Align
Routine

ROW y ADJ, V+4, TB

0 w
IL
0

GARR

C140-C1FO

Perform a hardware
branch on the modi·
fied Op-code
(Branch out of the
align routine)

. 3145 TM CPU n

I-Cycle Alignment

The align routine enables data in main storage not on a word
boundary to be alilJled to appear on a word boundary.

Consider the following example:

GR 1 • 00 00 10 00
GR 2• 0000 2000

::v..- 'f j 1 l T :.
1000

Effective Operand 2 Address • 3002

Operand 1
isinGR4

The data at main-storage address 3002 is to be added to
the contents of GR-4 and the result placed in GR·4.

In order to get the data at addre5s 3002, the problem arises
that the desired data is not on a word boundary.

MSADDR
3000

t 1 2

Word
03000

3 4 5 6 7

Word
03004

During the storage access, the bytes 0, 1, 2, and 3 are
placed in the V-Reg. Through the use of the TA-TB control·
word function, bytes 2 and 3 are moved to bytes O·and 1.

V Before

VAfter

E contents; with operations
E•nd MOVE (indirect)

I 0-R-e contents; with operation ROW

The information is then placed· In the V -Reg (via ~n indirect
move operation) in the form; ·

~v
IF~OJ

3

I-CYCLES CPU74

I-Cycle Exit from the Align.outine

In some instances, an RX instruction can place the operand 2
data into a local-storage register. Once in the register, the
operand 2 information may use the RR format-execution
routine. Consider the following example:

0 7 8 1112

'"-.. '
Register
Operand

1

1616

Address
Operand

2

1920

An RX "SA' add instruction has two operands, consisting of
R 1 and x2 + B2 +02. If the operand two fields are combined,
the instruction would then appear as a '1A' RR instruction.
The operand 2 data for both formats is placed into the Y
register before entering the execution phase.

I 1A

0

(RR)

7 8 11 12 15
• ''--y I

Register
Operand

1

Register
Operand

2

'.

31

During the align routine, the o~ data is placed in a
local-storage register. Upon exiting the align routine, the RR
execution routine may be used.

DF48
64-SF "' No

t2t:'J=LL+V
V=IX2 or B2l+D2 ------i II.

Yes

DF58

Pref etch
ROW LL ADJ, V+4
V•IX

2
or e

2
10

2

0

Align
Routine

0 w
II. a

GARR

C140-C1FO

Perform a hardware
branch on the modi·
fied Op-code
!Branch out of the
align routine)

3145 TM CPU 75

I-Cycles Program Modification

Program modification is detected by a store operation that uses V
or W as a storage address within the present, or next storage double
word address, as compared to the I- or TR-Reg. Only bits 8-28 are
compared.

When program modification is detected, the branch read latch is
set, and the modified instruction is loaded into the 1-Bfrs.

In this example, the Move Immediate Op.code causes the modi·
fication of a portion of storage that is already loaded in the
1-Bfrs. To continue operating on the old information in the
l·Bfrs would cause the wrong result. To replace the old informa
tion, the branch read latch is set, and the modified information
is loaded into the 1-Bfrs early in the next I-phase.

I =404

J -BFR 2

1- BFR 1

1-BFRO

AOOR.
400
404

v =405

Set Branch Read Latch

INSTR. LABEL
92FF0405 • MVI FF, INOUT + 1
0200F124F700 INOUT MVCOUTPUT (001, INPUT

I-CYCLES CPU76

Control Word DFf>c

ADDRESS

DFOC

C-Reg

0 0
1
2 0

co 3 0
4 0
5 0
6 0

0

Cl

0

0

C2

0

WORD
40 68 18 00

l- Storage Word

~ReadWord

STATEMENT

ROW Y ADJ, V + 4

I- Branch High IOI ITo bit 4 of M-31

~ """,v ,
f-- Increment+

I- SutSel

t~~w~IV~•I
Mode (Addr Adil

I- Special Stat Set

This statement would normally cause the word in main storage at
the address specified by the V-Reg to be read out and placed in
the Y-Reg.

This is not the caw when in the OF module of control storage.
The address DFOC activates certain lines that cause the handling
of data to be significantly different. The lines activated by
address DFOC are Command Branch Load and Force I-Reg.

These lines cause the following action to take place;
1. Tile data from storage is placed in the 1-Bfrs and the

Y-Reg equals 1-Bfr 0.
2. The I-Reg data is transferred to the B-Reg, and the V-Reg

equals the l'Reg + 4.

Mode Reg bit 1 Bfr KC 163

INotl 1/0 Operation RH 023

M Byte 2 RM 031, 32

INotl CPU Low Request MS 014

(Natl M Reg byte 3 bit 0 RM 074 -----

These lines are the decode of M-Reg byte 3 bits. The Ctrl Reg
is the I.Cycle Control Reg. In effect, the decode is OC.

Generate
Controls

----.-- CTRL Reg bit 1 and 2 are 0 RU 032

~ CTRLRegbit4RU032

INotl Execute Instr l>ltch RU 044 A

RU031

A

~ Next Address
1
2 r---;,=n;;d:es:--------- ----- - -- ----- - ---- - - -- -.- - ----,

3
C3 4

~·-'-'" 5 0
6 0

0

~, I
I
I
I l~DF

7
Not CPU Low Request

M Byte 3

-i: .._____. 24

'34

3C

2C

4C

5C

6C
RU 032

t 7C

40

40

60
70

RU033
RU034

Next Address

r'----~""----,

M Byte2 MByte3

D

ADDR
ASM

0

-----X

~.1..,<o~~l•o•~wMoloDFI ~ ·.1

RTN<o I..,,_.,...,'' IO RTN o• ~
~N and no interrupt)

4

' I
I

' I

1-CVCLES CPU78

Force I Reg;:::!..,

~
CPU79

r"',r"P?""''~"""•.ro . ..,,.,"'r"C-T-,,•ory"~~,.-:".'!')""\""'"',,_,,~~·,-,,~.,...,.0!"<'~··"'1.,JW"<_,..T,,W'~----------=.,..,..,.,.--------..
,_

~~-~
r ~ , 1~--··~ .. -,_...., .. ~-~~ · -,

:!::=;!!:::=::::!::::==::!::::::~==========:=t!!::=:::!::::=:==:::±:::==l!::=::::!====:!::=::=:!:===J . 1
5

·j

B0, 1,2,3

0 2 3

"[_, ____ 1-----------

A·Asm · B·Asm

0 2 3

-.. -~- --

3145 TM CPU79

Bnnch Loop Example

8 ~
RTN LNK ROW V ADJ, V + 4

forcel-M
STG-1 Cycle

1 +0-Time -2 . - Gate Rtn to I-cycle
3 + Force I-Reg to B·Reg
4 +.Gate I-CY to M-Reg

5 -Select EVEN data
8 +SIR 1-BfrO
1 +S/R 1-Bfr 1
8 +S/R 1-Bfr2
9 + S/R OP + Imm Byte

10 +S/R Inn. Length Cnt -11 -Gate Dt or B2
'2 - Force Displ
13 - Base• Zero
14 - Gate Base to LL

15 . - Set SPL from ICY
16 - Op Branch Cmd
17 - Move l·Bfr Cmd
18 -S/R I-Reg
19 + S/R I- or V-Reg

20

·,,,
·~ - Update I-Reg

21 - Branch Read Lt.
22 +SIR I-Back-Up -----·:;.~::~'.
23
24

+ I-Cycle Latch
-Set Ctr. Address -

*The Register Contenu
shows the value after
execution of the microword.
(M-Reg, C-Reg contain
next word.I

Save I - IBU

I
I

REGISTER CONTENT IS VALID IF THE OPERATION IS
PERF?RMED ONL v ONCE I

I
I

~ ~
Delay Delay
Load Op-Rag Load Op-Reg

STG-2Cvcle lnvn Byte SPTL Imm Byte and PSL.
Complete 1-bfr load Branch on Format

- - -

,, I
I 'I

;·1 I
I I
I I
I I
I I
I l
I I

G!!J
V• LL+V
Calculate Address
update I-Reg
from TR-Reg

-

-

I
I
I
I
I
I
I

02

B
l•V,07
Successful Branch
On Condition
Instr.

-

6A
Same

~
RTN LNK
Check for pending
interrupt.

Early recognition of I·
Reg Distination c Set
Branch RD Lth ----r-J

I 5A I 02 I oo l 24 I 47 I 02 I oo I Fo I 47 I 02 I oo I Fl I 47 I 02 I oo I Fo I 47 I 02 I oo I Fo I 47 I 02 I oo I Fol
(s T LI T LIS T LIS P T LIS P T LIS p T LI
I I I : . I I I
I : : ,· I I I
I I I I I I I
I I I I I I I
I I I I I I I

l·Reg
TR-Reg
l8U-R19
V-Reg

I I I I I .I
~ ------,:~------:-1 -------:-------....,.~---- 60,4 (from TRI -------... 600 (from VI

600 ::::::::::1::::::::::-50-0-1.:-_so_c_:-_-_-_-_-_-_ .. _-_-_-_-_-_-_-_-_-_-_-_-_-._-_-_-_-_-_-_-_-_-_-_-_-_: ... _-_ ... _ .. _ .. _-_-_-_-_-_-_-_..,.1o_e_-_-_-_-_-_ :_so,..a_-_
600 -----'------+--~----1 --------------604(1+41 ------------...... ---.......... ---~

1

-500--------..---1 I - I

OF48

No Special RX.
Instr. Branch on

. Op-Code XCCO

C470

Success I ul Branch
(Not Successful
= C474)

C428
Branch Read
U1ch on="
oFoc· ·

GRl = 00000000

. Th~ base register is assumed to be zero
for this example. This.causes an
unconditional branch to the first
instruction (471. The ADD instruction
l6A) is used only to provide data for
the registers.

I-CYCLES CPU80

Plrtial Instruction SJrea.cles Example

Th~ following instructions are contained in main storage.

.#A 32 5A 41 20 02J_IJ 46, (IC set to address 1000)

1: ~ ! ~? &

t---1A RR SA RX 18 RR ---t
..,. ,_PHASE-I t-•·PHASE+ALIGNi I-I-PHASE-I I

._E.PHASE -f f--E-PHASE: -I ..,.E·PHASE-f
I-REG f--1000 1002 1006 ---------1----1

TR-REG t-HlOA -tocx:--- tOOE ---t-----1008 ------'----!
IBU-REG H>oo--+---..;...1002---------1oos---.:.,

Add (1 A) Instruction

The 1A instruction starts at address 1000 in main storage. To
start processing at that address, assume that the set IC key is
pressed. During the set IC microroutine, the I-Reg is destined.
(This sets the instruction counter to address 1000.I The IBU·
Reg address 1000 and the TR-Reg.contains address 100A,
an address within the next doubleword. Destining the I-Reg
as a result of the set IC microroutine causes the branch read
latch (RU 0431 to set. Upc)n completion of the set IC routine
the start key must be preseed. This initiates the start micro· '
routine. At the end of the start microroutine is a 10 RTN LNK
microword. The combination of the 10 RTN LNK and the M:
Reg not being at address DFXX along with branch read latch
(previously set on) forces the M-Reg to address DFOC. The
M-Reg addresses control storage and reads out.the control
word at address OFOC.

CONTROLWO~D AT DFOC (ROW y A~J. v + 41

t. M-reg is at OFOC.
2. This.is 'a ROW, force I to Band read the doubleword at MS

1000 and put it on SDBO.
a. This doubleword (1A32 5A41 2002 1846) is in the

SOBO Pre-Asm early in storage-2 cycle (storage·t cycle
was addressing MS). _

b. Late in Stg-2 cycle, the even word from the SDBO Pre
Asm is gated to the SDBO Asm through EBI to the
1-B.frs. 1-Bfrs 0, 1, and 2 are "set/reset" (S/R). At the
end of storage-2 cycle, all three buffers contain the
same information (the even word).

c. During the control word OFOC, the M-ieg was at
address DFOC. Through hardware~ the M·Reg is forced to

-, DF04 by using the gating line 'Gen~ate Address' (RU 0311..
es: The M-Reg reads out the control word, from control·; .:, ' ;, ,

storage address OF04.-

CONTROL WORD AT DF04-(Y~)
' 1. Early in the cycle, the octd word of the doubleword read out

during DFOC is gated from the Pre-Asm to the SDBO Asm
through EBI to the 1-Bfrs. This time only 1-Bfrs 1 and 2 are
'SIR'. I-Buffers 1 and 2 contain the same information. The
odd word 1-Bfr 0 contains the even word •

I-BUFFERS

2 2002 1846

2002 1B46

0 1A32 5A41

2. The Op.code (RU 118) and the Imm byte (RU 128) are set
into the Op-Reg and Imm byte Reg, respectively. (I-Reg
indicates w'lich byte to gate to the Op-Reg.)

3. The I-CY controls decode the Op-code and set the I LC in UO
Bits 0 and 1. The I LC is also made available to the add-carry.
(The I LC is available to the add-carry at the time the I-Reg is
updated.)

4. The Op-Reg decode and the I-Reg are used to determine
whether the present instruction is fully contained in the buffers.
The Op-code indicates the length of the current instruction,
and the I-Reg indicates what part of the doubleword the
current instruction came from. Therefore, through this com
bination of decoding the need for further fetching can be
determined. (Further fetch is defined as the condition when
the present instruction is not fully contained in the I-buffers.)
In this case, no further fetching is required. The present
instruction is fully contained in the l·Bfrs. The Op-load latch
(RU 043) is not turned on.

5. The present instruction is fully contained in the 1-Bfrs. The
1-Bfrs must be decoded to see whether the next instruction is
fully contained in the l·Bfrs. Instruction Look-Ahead is used
to decode the format of the Op-code that is following the
current instruction. The decoding of this format indicates the
length of the instruction that follow the current instruction.
The I-Reg keeps track of the address that the data came from
within the doubleword: Through this combination of decoding
whether the next instruction is fully contained in the l·Bfrs
can be determined. If not, a prefetch is performed. (A
prefetch is defined as the condition when t.1e next instructio~
is not fully contained in the l·Bfrs.)The next doubleword is
loaded using the TR-register contents as an address. If the
1-Bfrs do not hav!! enough room for the next doubleword, the
prefetch is blocked. Prefetch is also blocked on all branch
type O·codes. (In this case, a prefetch is not required.)

The S· and L-Regs are set from the Op-Reg and Imm Byte
Reg. This occurs during I-CY and when a cycle is taken. LL ..
operand 2. LH = Operand t.

6. During the contrc>I word OF04, the M-Reg was at address
DF04. The M·Reg is forced via harthnre to address DFOO,
by gating line 'Generate Address' (RU 031).

M·Reg at OFOO, the M-Reg reads out the control word from
control storage address OFOO.

CONTROL WORD AT DFOO (Y = Y, SOI

1. This is a delay word that allows the hardware to develop the
next address.

2. The gating line 'Set Control Address' (RU 032) is needed
because a new sequence of control words is being started.
Note that DF20 does not always follow DFOO. In this case,
the Op-code has been decoded to lA and causes a branch
to DF20.

3. During the control word DFOO, the M-reg was forced to DF20.

Once the instruction is contained within the I-buffers, the next
address is formed as follows:

M

BYTE2

DF

Instruction }
Length
01=AR
10 = RX,RS,SI
11=SS
()()=fetching

: Set to 1 if a prefetch is to
be performed. } Set to 0 if no pref etch is
required.

M

BYTE3

01234567

A: : i !i bb.
: I ' I I tSet to 1 if m()l'f! .·
1 : : 1 : than one microword
I 1 I : 1 in the selected 1-
: l : • k cycle routine.
I I 1 : Set to 0 if only one
I : ' 1 microword is
l k : I required. : : f ::l~~~i~!f ::,:~~~o~

I I exists:
: : RA with prefetch x' RAFLPlong ,

RX with double·
indexing

SS instruction.
Otherwise, set to O

M·Reg at DF20, the M·Reg reads out the control word from
control-storage address DF20.

CONTROL WORD AT DF20 (Y =LL, OF) (the last cycle in
I-Phase)
1. The word Y =LL, DF. (LL points to operand 2.1
2. The contents of GR2 are placed in the Y·Reg.
3. At the end of this cyle, the value to be destined to the Y-Reg

is in the Z-Reg.
4. U2 and U3 are set from the Op-Reg and Imm-Byte-Reg,

respectively, so that the information is available to the
microprogram during E-phase.

5. Update I-Reg (I = 1002) (Note: TR is updated after the
S/R to the I-Reg.)

6. At the conclusion of I-phase, the Op-code has been decoded
(in this case 1AI and the next address is know (CtAO).

7. The M·Reg is forced to CtAO.
With M·Reg at C1AO, the M·Reg reads out the control word

from control-storage address Ct AO.

3145 TM CPU 81

EXECUTE PHASE (I-CYCLES)

The control word at address C1AO is read out (the first cycle of
E-phase of the lA instruction).

CONTROL WORD ATC1AO· (LHC= LH +YI
A. The following hardware functions are completed for I-cycles.

1. S/R the Op-Reg and the Imm Byte Reg from the next
Op-code and Imm Byte. The I-Reg was updated just before
leaving I-phase; therefore, the I-Reg is pointing to the next
instruction.

2. In E-Phase, the Op-Reg and Imm byte Reg cannot be set
into the S- and L-Regs. The system must be in I-cycles to
gate the Op-Reg and Imm byte Reg to the S· and L·Regs.

3. The TR-Reg is updated to point to the next double·
word.

B. The control word read from address Cl AO performs the
following.
1. LH is pointing to GR3.
2. Y has not been destined (Z = Y).
3. At source time, the Z-Reg is gated back to the B·Reg

controlled by Destination Look·Ahead, and the contents
of GR3 are gated to the A-Reg. At the end of this cycle,
the sum of GR3 and 2 is in the Z·Reg and is destined to
GR3 in the next cycle.

4. The 1Aadd instruction is now complete (during E-phase
of the add instruction):
a. The S-Reg is changed by Stat sets.
b. The U2- and U3-Regs still contain the Op~ode and Imm

byte of the current instruction.
c .. The L-Reg still contains the address of operations 1 and 2.
d. The microcode sets the condition code, test overflow,

etc.
e. While in E-phase of the 1A instruction, the l·CY controls

are decoding the next Op-code to determine the controls
required for the next I-phase operation and the first
address that will be used upon returning to I-CY ..

~.CYCLES CPU.82

Example 28 Add .<sA8uction (Double Indexing with Alignment)

1A 32 5A 41 20 02 18 46

Operand 1 ~ GR4

Operand 2 = main storage addr 3002

Add

AR [RR)

1A I
0 78 1112 15

A !RX)

0 78 1112 1516 1920 31

The second operand is added to the first operand. and the sum is
placed in the first operand location. ' '

RX With Double Indexing and Alignment

• The definition of double indexing is: Neither base'nor index
fields are using GRO {zero!. Another control word is.needed
to calculate the operand. ·

• Alignment: !operand 2 is pointing to a storage address; the
data at that address is to be added to the contents of the GR
that operand 1 is pointing to).

Fetch data from storage (using operand 2).

Align data in the GR;

Both operands are now in local storage.

The same routine may be used as in the RR Add to add the
two operands because both operands are in local-storage
r~sters.

J..--1-Phase for 5A ------+.---------Align-------"""'---E-Phase for 5A

m m m m
J--OF4C---t-- DF40 --"--DFBO-t-- DFB4--+-DFEO-+--CtAO --4
: I

LHC=LH+Y
1

V=B2+Displ V:.V+ Index DELAY l
I

V=2,D02 V=3,D02 Destil)e V-Reg :

Z Reg=V :
I~-----· --
Pointing to Contains the data from main storage to
Operand 1 which operand 2 was pointing.

ROW Y ADJ V+4, TB
At the end of the align routine, the
data to which operand 2 was pointing
is fully aligned in the Y·Reg.
The V·Reg, which contains the
main-storage address, must be
taken through the address Asm
because Destination Look-Ahead
can not be used at this time.
The OFBO delay word allows
time for this. m Developing address DF4C after £-Phase of the 1 A Op-code.

During E-phase of the 1A op code, the op-reg contains the next
Op-code 5A. During this time, I-CY controls are setting up for the
next address in the SF module by decoding the next op code SA.
The next address 4C is developed by the fines ILC, RX, RS, SI,
SS, and IF MORE THAN ONE M-WORD. (The line 'if more than
one M-word' is developed from the decode of double index.I
After the execution phase of the Add llA) operation is complete,
the RTN LNK microword develops the gate line 'set control
address' lnot OF). 'Set control address' gates the developed
address 4C to the M3 assembler, and gates OF to the M2 assembler.
Rtn to I-CY gates the assemblers to the M-Reg, setting the M-reg
to the next address DF4C.

At the end of DF4C, the V-Reg =Base+ Displacement (20021.

IJ The transition from address DF4C td,DF40 is accomplished by
using the decode of the l·CY Ctrl Reg 4C and gating line "Generate
Address'. · · · , , · ·, '

At the end of DF40, the V·Reg contains X + B + D (3002).

II Address OF40 to address OFBO (going to the Alignment Routine):
1. 'RX with alignment' develops the gating line 'Op-Branch to

OF'.
2. 'Op Branch to OF' gates 'Align Entry' !in this example, the

last control word in I-CY is not a prefetch. Therefore, the 'Lo,,;,
Bit Y' is zero and the Op-code 5A develops a Bl to the M3
assembler and OF to M2 Assembler.
'Gate I-CY to M·Reg' gates the assemblers to the M·Reg. The

M·Reg contains OFBO, which is the first address in the align
routine.
B~'"g in the align routine deactivates the I-CY controls. This is

done by M3 bit 0 being on, which deactivates 'generate address'
latch and 'Generate Controls'. With the I-CY controls deactivated,
the control words in the align routine develop the next address.
(The exception to· this is the first and last addresses of the align
routine, which are developed by I-CY controls.I

Note the setting of U2-U3, updating l·Reg, etc., when going
from DF40 to DFBO (Op-Reg and Imm byte are set in the first
control word of E·phase of the SA Op-code.I

The first control word in the align routine is a delay word to

m a.llow the destining of the V-Reg. This is necessary because the
next control word 'DFB4' in the alignment routine is ROW Y
ADJ, V + 4, TB.
The V-Reg is addressing storage, and 'ADJ' !hardware adjust·
mentl specifies that the V-Reg must be taken through the
Addr Asm to address storage. Destination Look-Ahead may not
be used to get data to the Addr Asm. Therefore, OFBO must be
used to allow destining of the V-Reg so that it is available to the
address Asm during 'DFB4'.

At the end of the alignment routine, the data to which operand
2 was pointing is fully aligned and is in local storage in the Y
Reg.

II The last address in the align routine is DFEO. M3 bit 0 being on
and the line 'FO. EO (M3J' activate the gating line 'Op Branch'
Ion Op-code). Upon exiting the align routine, the Op Code SA is .
still in the op-code register. The gating lines 'Op Branch' (on Op
code) cause a hardware branch. LH is pointing to operand 1
(GR41, and the data to which operand 2 was pointing is aligned
and in the Y-Reg. Branching to the RR add routine and adding
the two locations in local storage is now possible. The first con
trol word found in the RR add (at address Cl AO) is LHC =
LH + Y. Hardware takes the present op·code SA and 'minus 4'
from the left hex digit of the present op-code. Therefore, the
present op-code (5A) is changed to op-code of 1 A. This is how
the I-CY controls set up the next address when leaving the
alignment routine of some RX instructions and op-branch (on
op-Code) to the execute routine for a RR instruction.

3145 TM CPU 83

MVC (02) Instruction Example

MAIN-STORAGE

ADDRESS

1004

D20F 1D01i2D 0247F10501IA5A

·~
Funher fetch required because the

current instruction is not fully contained

inthel·Bfrs.

I-Phase for MVC (02) Requiring Further Fetch

• Set l/C to 1004.

• pFOC: (M-3 bit 5 is on, forcing the odd/odd time slot} late in
storage cycle 2, l·Bfrs 0, 1, and 2 are SIR with the odd Word.

• OF04: early in the cycle, 1-Bfrs 1 and 2 are again S/R with the
odd word. The Op-Reg, I mm byte, I LC and S and L are set. If
the current instruction is not fully contained in the
bfrs the 'Op latch' turns on.

• DFOO: delay 'set control address'.

• OF14: 'Op load' latch on and 'set control address' caused
generation of OF14. ROW: force TR to B·Reg (fetch next
doubleword). Storage-2 cycle S/R Bfrs 1 and 2 comes from
e\'en word. Next, the 'generate address' gating line is needed.

• OF10: {delay) S/R Bfr 2 from odd word. Format the branch.
A new sequence of words is being started in I-CY. Therefore,
the gating line 'set control address' is needed. The op·code in
the next address '6C' is developed by:

a. ILC, and SS develop the '6'.
b. More than one control word and the control line 'not RR

or F LP with pref etch' develops the "C'' ..

• OF6C W = LL+ W (add base 1 + displ 1 to W·Reg) Block 'W'
as a source and gate Displ. 1 from Bfr 0 to the B-Reg. LL
points to base register. At the end of this cycle, the Z-Reg
contains operand 1. B2 is gated from Bfr 1 to LL. (B2
must be in LL for the next address to calculate operand 2.)
To develop the next address, the gating line 'generate
address' is activated.

• DF60 V = LL+ V, Block Vas a source, gate displ. 2 from Bfr
1 to the 8-Reg. LL is pointing to Base Reg 2. During this
cycle, the W-Reg was destined. At the end of this cycle, the
Z-Reg contains operand 2. 'Op Branch' to CD20. Leaving
I-phase to E-phase, sets U2 U3. Update the I-Reg.(Update
I-reg before the bfrs are moved, and set Op-Reg and Imm byte.I
Move Bfrs (this overlaps into first cycle of E·phase).

e C020: Set Op-Reg and Imm byte with Op-code and Imm byte
of the next instruction. (The I-Reg indicates where the Op-code
and Imm byte are in the Bfrs.) .

• C020: Set ILC (from next Op.code). Update TR. The Sand
L Regs are set from the Op and Imm byte because the
addressing range is out of I-CY (DFXX Module).

• During E-phase of the MVC, the microprogrammer has the Op-·
code and Imm byte available in U2 and U3. The length is
decremented in U3. The condition code is set in UO bits 2 and
3. The S-Reg is changed by Stat sets. Move characters. During
E-phase, the I-CY controls are decoding the next Op-code 47
to develop the first address that is to be used when returning
to I-CY after E-phase of the MVC Op-code.

• XXXX · RTN LNK 11 - The I-CY controls provide an I-cycle
starting address of OF48. If no interrupt is pending_. this is
the data value set into the M·register.

• OF48 · V = LL+ V - Block Vas a source, gate displ 2 from
Bfr 1 to the B·Reg.LL is pointing to base Reg 1. 'Op Branch'
to C470. Leaving the l·phase, set U2U3. Update the I-Reg and
move the I-buffers.

• C470: Beginning of E·phase for branch instruction. V-Reg is
destined with sum Base+ Displacement.

• Note that a software branch has occurred. Refer to exami;'.e 1
for any further explanation.

1-a'CLES . CPU 84

Execute 44 Instruction Example

The execute instruction caises one instruction in main storage
to be executed out of sequence without actually branching to the
object instruction. For example, assume that a move (SI) in
struction is located at address 3820, with format as follows:

Machine Format
Assembler Format

Op-Code •2 81 01 Op-Code 01 81 12
92 I 66 c I 003 I MVl 3 (12);X'661

0 78 1516 1920 31

where register 12 contains 00 00 89 16.
Further assume that at storage address 5000, the following

execute instruction is located:

Machine Format

Op-Code R 1 X2 82 02

44 11 lolAloool

Assembler Format

Op-Code R 1 o2 x2 e2
EX 1.010.10)

0 78 1112 15161920 31

0

where register 10 contains 00 00 38 20, and register 1 contains
OOOF F099.

When the instruction at 5000 is executed, bits 24-31 of register
1 are ORed inside the CPU with bits 8-15 of the instruction at
3820;

Bits8-15:

Bits 24-31:

Result:

01100110 = 66

1001 1001 = 99

11111111 =FF

causing the instruction at 3820 to be executed as if it originally
were:

Machine Format Assembler Format

Op-Code 12 81 01 Op-Code D1 81 •2

92 I FF I c I 003 I MVI 3 (121. X'FF'

78 1516 1920 31

However, after execution:

Register 1 is unchanged.
The instruction at 3820 is unchanged.
Storage location 8919 contains FF. .
The CPU next executes the instruction at address 5004

(PSW bits 40-63 contain 00 50 04)

GR·1

00 OF

I-CYCLES

.. ~RESS .. ~RESS

000

/ · '\
FD 99 00 38 20

OR
FUNCTION

IOP
9
co;E I

RESULT (FFI

----------- TO ADDRESS8919

OP-CODE

9 2 FF c 003

EFFECTIVE INSTRUCTION FROM ADDRESS 3820

00 00 89 16 +o1 •8919

CPU88

1. a. Assume that the inst~ being processed had prefetched
storage location 5000.

b. During the E-phase, the I-cycle starting address of DF48
is provided as data input to M-Reg.

2. 10 for Instruction 0-Code '44'

• Base 1 was gated to LL during the RTN to I-CV.

• I-Reg= 5000

• During E-phase of the previous instruction, I-CY controls
recognized that the current and the next instructions are
fully contained in the 1-Bfrs. Therefore, the first address of
I-CY for Op-code 44 is DF48.

. .

• OF48 'set control address' and the lines 'ILC, RX, RS, SI,
SS, and not RR or FLP with prefetch' cause address OF48 ,
to be gated to the M-Reg.

Note: Op Branch to OF. The three control words used for
the 'Execute Instr' are referred to as align. That is, they
are in the OF module. When entering these three words,
the l·CY controls are inactive. The I-Reg is updated to
5004 (next sequential instruction).

• DFA4: 'Op Branch to OF gates out align entry _A4.

• The word at OFA4 moves the GR specified by the Al
field to the W-Reg, and doing so:
a. Sets the execute latch on II· or V-Reg"' VJ
b. Loads the immediate byte modifier reg and ORs it with

Imm byte reg because R1 is not GRO. (This is done dur·
ing I-phase of the instruction.)

e RTN LNK IDF84l: The first address in I-CY is OFOC
because the 'branch read' Latch was found on during
DF84.

I-Phase for the Subject Instruction

• OFOC: The 'execute' latch is on, indicating that the V-Reg
should be used in place of the l·Reg to address storage. The V
Reg contain~ the address of the subject instruction that was
calculated as operand 2 during I-phase of the execute instruction.

• V + 4, used if further fetch is required to load the subject
instruction.

• After E-phase of the subject instruction, returlffo DFOC and
reload the Bfrs. ;,;·

The I-Reg was not updated during the subject instruction;
therefore, the next sequential instruction is loaded from the
instruction stream (from address 5004).

3145 TM CPU 87

A-REGISTER, 8-REGISTER, AND ALUs

Arithmetic and logic operations in the CPU are processed by
two one-byte arithmetic and logic units (ALUsl.

ALU operations and program symbols:

Symbol Operation

.A • AND
• OR. OR
,OE, Exclusive OR

'+ True ADD

, .• O+-,
Complement ADO
Decimal ADD

+- Binary ADD
,A...:.., Complement AND

The two input operands for the ALUs are entered Info ·
the A-register and the a-register and gated through their
output assemblers.

Two ALUs are provided to allow simultaneous operation
in halfword operations and to provide checking during
logic-byte operations.

By using two ALU cycles during a CPU cycle, the ALU
system can binary-add two fullword operands.

Normal operations are for either byte operands or fullword
operands as defined by the control word.

Special gating controls are provided in the entry of each
ALU to allow manipulation of byte operands for logic and
arithmetic operations.

The description of ALU operation in control words is given
in the CPU Hardware (CPU)section;

A-REGISTER, B-REGISTERt and ALUs CPU88

l~~I - I __J
.__;..":""~ __ 8_.,, __

•··

L
I'

U~.~~~~~~~~~~~~~~~~~~~~~~~~~~~:~;~~~~~~~~~~~~~~~~~~~~~~~~~::=::!!!!:!'l!:~I

A-REGISTER AND A-BYTE ASSEMBLER . •,

The A-register is the A-sour~ entry for the ALU system and enteri
data into main storage through SDBI. ·

lnp:.'t data for the A-register comes from the A-local storage,
the external registers, or previous ALU output from the
Z-register.

An error condition is reported in MCKA byte 2 bit 4.
The A-register is a fullword (four-byte) register that normally

enters the fullword.
The A-byte assembler provides the means to present the A·

register bytes to the ALU system and to the SDBl.
The A-byte assembler has a four-byte output to allow

asSembling a fullword to feed the.SDBl.
Only th.e byte 2 and byte 3 assemblers feed the ALU system

and .have gating to enter any 9f the four A-register bytes 'into
either output. ·

Syte O assembler cannot gate.the A-register byte 1, and byte 1
assembler cannot gate the A-register byte 0 into their outputs,
because they are not required in defined operations.

Parity is checked on all four bytes of the A-register during
arithmetic fullword cycle, storage-word, and word·move cycles.
On CPU byte cycles, only the byte being specified is checked
at the A·byte assembler.

The high-order three bytes of the A-byte-assembler do not have
a parity cheCk but de~nd on the reeeiving area checks.

The byte 3 assembler is parity-checked because of its use in
decimai adding. and. the error condition is reported as an
A-register error~

$-Register Bit p.7

Z-Register Byte·O Bit p.7

External Asm Byte-0 Bit p.7

E•p Ext Asm Byte-0 Bit P 7

A·Local Stor Byte-0 Bit P-7

Z-Register Byte-1 Bit p.7

External Asm Byte·1 Bit P-7

Exp Ext Asm Byte-1 Bit P-7

A·Local Stor Byte-1 Bit P 7

T-Register Bit P· 7

Z-Register Byte-2 Bit p.7

External Asm Byte-2 Bit P-7

Exp Ext fsm Byte 2 Bit p.7

A-Local Ster Byte-2 Bit P-7

L·Register Bit P·7

Z-Aegister Bvte-3 Bit p.7

Externel Aim BYte·3 Bit P· 7

Exp Ext Asm Bvte-3 Bit P· 7

A·Local Stor BYte·3 Bi• p.7

A-REGISTER

Byte
1

R~;111-162

AOP-7

A1 P-7

A2P·7

A3P·7

AO P-7

A2 P-7

A3 P-7

AOP-7

A1 P-7

A3P-7

AO p.7

A1 p.7

A2P-7

A3P-7

AOP·7

A1 P·7

A2P·7

A3P·7

A-BYTE ASSEMBLER

Byte

0

Byte

1

Byte

2

Byte

3

BA021-028

A·Byte Assembler. Byte 0

A-Byte Assembler Byte 1

A·Bvt• Assembler Byte 2

A·Byte Assembler Byte 3

3145 TM CPU89

8-REGISTER AND 8-BYTE ASSEMBLER

The B-register serves as the B-source entry for the ALU system
and the data address entry for the M· and N-registers.

Input data for the B-register comes from the B-local storage,
the A-register, the SPTL external, or a previous ALU output from
the Z·register.

An error condition is reported in MCKA byte 2 bit 5.
The 8-register is a fullword (four-byte} register that normally

enters a fullword.
The B·byte-assembler provides the means to present the

B-register bytes to the ALU system.
The B-byte-assembler can gate any byte of the B·register into

both byte 2 and byte 3 outputs to feed the respective ALUs.
Parity is checked in all four bytes of the 8-register during

arithmetic fullword, storage word, and word-move cycles. On
.CPU byte cycles, only the byte being specified is checked.

The 8-byte assembler has a parity check on both outputs, and
an error condition is reported as a B-register error.

8-REGISTER

&-Register Bit P-7 Il-
Bvte

Z·Register Bvta-0 Bit P-7 O BO p.
7

8-Local Stor Byt.0 Bit P-7

A-Register Byt.O Bit P-7 . . .

P-Register Bit P-7n
Z-Register Bvte-1 Bit P-7 Byte. •

1. B1 p.7

8-Local Stor Byte-1 Bit p.7 . '. . B-Aeg Byte-1 Bit 4-1

A-Register Byte-1 Bit p.7 . • l- IALU-2 Shift Asml

T·Register Bit P-7Il-

Z-Aegister Byte-2 B.it P-7 Byte
. 2 B2 p.7

B·Local Stor Byte-2 .Bit P-7 . . .· ...

A-Register Byte-2 Bit P-7

. L-RegisterBitP-7Il-. , ·.· .

Z-Ae.gister By .. te·3. B.· it P-7. B.yte···· . · ... ··.·.· ..
3 B3P·7

B·Local Stor Byte-3 Bit P-7

A -Register Byte-3 Bit P-7

RA 113-164

A-REGISTER, 8-REGISTER, n ALUs CPU90

B·BVTE ASSEMLBER

BOP-7 flB-8yteA111128it0-3

Bl p.7 . Byte j IAL~. 2 Shift Asml
2 B Byte Assembler Byte-2

B2P·7 l-. B-Byte Asm 2 Bit 4.·7 · ·
B3 P-7 IALU-3 Shift Asm)

BOP-7 fl B-BvteAsm 3 Bit0-3

B·. l p.
7

Byt.e r.~ .• ·. ·. (ALU.·3Sh.iftA.sm.) 3 . B Byte Assembler Byte-3

B2P-7 L~ B-ByteAsm38it4·7

B3 P-7 · F IShif~ to T-Aegl

BB 112-123

ALU A-ENTRY GATV
The logic requriements of the system make it necessary tp be ab!f.
to block or transpose (cross) a part or all of the A-entry byte
operand.

The high (0.3) and low (4-7) portions of the operand are
separately gated to allow moving a portion straight to the ALU or'.
to cross high and low in entry to the ALU.

When none of the ALU entry gates are activated, the entry is
blocked and the operand is presented to the ALU as zeros.

For a normal entry, both straight gates are raised and the full
byte is entered.

For a crossed or transposed entry, both cross gates are raised.
For operations requiring only one portion of the operand, the

appropriate gate is raised to enter the desired portion into the
specified position of the ALU with zeros in the ungated portion.

ALU A-ENTRY GATING

8-Byte-Asm Bit 0.3

Gate B·Asm to A Sw
A

A-Byte Asm Bit 0-3-.... ---------------1

Op Entry Byte
Sym Operation HHHH LLLL ------ --- -------- ------BS Straight HHHH LLLL
850 Block High and Low 0000 0000
SSH Gate High; Block Low HHHH 0000
BSL Gate Low. Block High 0000 LLLL ------------------ ---- -
BSX Cross High •nd Low LLLL HHHH
BSXH Cross; Gate High; Block Low LLLL 0000
BSXL Cross; Gate Low: Block High 0000 HHHH -- --- ---- - -- ___ ..__ --- --

ALU A·lnp!Jt Bit 0.3

ALU A-Input Bit 4-7

Gate

SH CH CL SL --

x

..ri 8-ENTRY GATING '"

The logic requirements of the system make it necessary to be
able to block all or part of the B·entry byte operand and to enter
the shift and K factors.

The high (0-3) and low (4-7) portions of the operand are
separately gated to the ALU entry in order that one or both por
tions may be blocked and entered as zeros for the operand.

For a normal entry, both gates are raised and the data is trans
ferred straight to the ALU.

When the normal entry is blocked, the byte developed in
either the shift assembler or the K-assembler can be gated.

The ALU B-entry has a true/complement gating that reverses
the binary bit levels of the operand byte when the complement
line is raised.

The complement line is under control of the minus operation
sign or the presence of the SO bit when the operation sign is ± in
the control word.

ALU B·ENTRV GATING

Complement

Shift·ln Asm Bit 0-3 ----
A

Gate B Shift

K-Assembler Bit 0·3 ----
A 0

Gate K-Asm to ALU ALU B-tnput Bit 0·3

B·Bvte Asm Bit 0·3 --+---i~

Gate High (HI

Gate Low IU

ALU B-lnput Bit 4-7

BB 112·122

;~ -t~-ra:o::_ --------------1 ~~;H_ ;~L1- -~1ate _L_
BS Stfaight HHHH LLLL x x
BSO Block High •nd Low 0000 0000

BSH a.te High; Block Low . HHHH 0000 x

~ - ~':_ow_: !oc_!< ~ig!!_ - - - - - _ - - - -~- - L!L! _ _ !.

3145 TM CPU 91

SHIFT GATING

Special ALU entry gating is provided to allow the two-cycle right
shift (four bits) operation.

During both cycles, the low-order four bits of byte 2 and the
high-order four bits of byte 3 are assembled as a byte for the B
entry of ALU-3.

During the first cycle, the high-order four bits of the T-register
are set into buffer latches in the shift assembler, and the low-order
four bits of byte 3 enter the T-register.

During the first cycle, the low-order four bits 14·7) of byte 1
and the high-order four bits (0·3) of byte 2 are assembled as
a byte for the B·entry of ALU-2.

During the second cycle, the buttered T·register bits and the
high-order four bits (0-3) of byte 2 are assembled as a byte for
the B·entry of ALU-2.

The A-entries for both ALUs are blocked and enter leros for
both cycles.

SHIFT ASSEMBLER

B·Reg Byte·1 Bit 4·7

Shift T-Register Bit 0-3
Assem

B-Byte-Asm 2 Bit 0-3

88011

B-Byte·Asm 2 Bit 4-7

B·Byte-Asm 3 Bit 0-3

ALU2
High

Shift·lnAsm
Byte2

ALU2
Low

ALU3
High

Shift-In Asm
Bvte3

ALU3
Low

BB011

ALU K-ASSEMBLER
The K·assembler for the ALU gates fixed constant and con·

stants defined by the control word to the B-entries of the ALUs.
Byte 2 of the control word in the C-register can be gated

directly as a full byte to the ALUs. ·
The low-order four bits (4-71 of byte 2 in the C-register can be

gated to the low-order (4·71 of the K·byte with zeros in the high·
order (0-3).

The low-order four bits (4-7) of byte 2 in the C-register can be
gated to the high-order (0-3) of the K-byte with zeros in the low·
order (4-7).

The high-order four bits (0-3) of the T·register define the bytes
to be read or stored are converted to a binary count byte for
adjusting the address and the count.

The four :!'Amory flag bits from the selector-channel buffers
are converted to a binary count byte for adjusting the address and
count during share cycles.

When C-register byte 0 bits 2 and 3 are used to define the size
of the data transfer in a storage word, these bits are converted to
a binary count.

For a decimal operation requiring binary-to-decimal adjustments,
K60 and KOO are used as inputs on the second pass. The resulting
output developed is K60, K06, or K66.

ALU K·ASSEMBLER

T·Register Bit 0-3

Sel Chan Mem Flags

C-Reg Byte·O Bit 2·3

Binary
Decode

Binary
Decode

Binary
Decode

BK014

Decimal Corr High IK60)

C-Reg Byte-2 Bit 0-3

C·RegByte-2
Bit4·7

Decimal Corr
LowCK061

A-REGISTER, B-REGISTER, and ALUs

K·Bfr
High

K·Bfr
Low

BK015

K-Assembler. Bit 0-3

K·Assembler Bit 4-7

CPU92

ARITHMETIC ANO LWf: UNIT (ALU)

The arithmetic and logic unit (ALU) performs the logic .rf!anipul.,..,
tion and adding operations in the CPU.

Two ALU units are provided to allow halfword bina~y-and
word-move operations in one pass.

',_Two ALU passes can be made during a CPU cycle to complete
a fullword binary or word-move operation.

Each ALU consists of the A- and B-entry gates, the logic and
arithmetic circuits, and output gating to position the output byte
in the Z-register.

ALU-3 entry lines are checked for invalid decimal digits to
ensure a ctirrect decimal output with errors reported in S1 bit.

A carry look-ahead circuit is shared by the ALUs to allow simul
taneous arithmetic processing of two successive digits or bytes.

During logical operations, both ALUs are fed with the same
data. and a logical check circuit compares the results and reports
errors through MCKA2 bit 2 .

The ALU logic circuits develop four outputs for any input .c
presentation, and gates defined by. the control-word operation
select the appropriate output to 5et the Z -register. _ . · \ ·' : : . -.. ·

Three of the ALU cirt1Jits provide the logic AND, OR, and OE
· !JUlputs; the fourth combines these with the carry inputs to
develop a full:sum output used for binary arithmetic.

The A-logic function is performed by raising the complement

line in the B-entry and gating the AND output.
A parity prediction (generator) circuit on each ALU develops

ari output parity based on the inputs and the operation and is
proven by the parity check of the Z-register.

In word operations the ALU·2 output is set into ZO and Z2 and
ALU-3 output is set into Z1 and Z3 on the first pass with an
update of ZO and Z1 on the second pass.

For byte operations ALU-3 output is set into all Z-register bytes
to allow the SDBO byte assembler to enter the byte into any
position.

Half-Sum Checking
The half-sum lines (OE) developed from the two ALU operands
are tested against the parity bits of the two operands to check the
parity of the entry data.

E.0-~h half-sum line indicates the odd/even relation of a.bit
position within the operands. , · ...

Developing an odd/even count from the eight half-sum lines
indicates the level of the entry data bits (16) that should check •·

:· _ with the level of the entry parity bits.
A separate latch is set f • each pass and each ALU, but the

ALU~2 indii:11tions are blocked for decimal operations.
A detected error sets an ALU check indicator in MCKA2

(bit 0 for ALU-2; bit 1 for ALU-3).

,_.._ __ _._ __ Transmit 8yte-2 Bit 0-7 --------------... ----------------------~~---~
,_ ______ Haff-Sum Byte 2 Bit 0·7 ---------------1--41----------------------::i~'l-----1

t--------Ca•r-ry~G~e~n~B~y~te~2~B~i~t0~-~7---------------'--4--41~---------------------1.....:~~-...J ALU·2

ALU-3 8-lnput Bit 0-7

ALU-3 A-lnf!Ut Bit 0-7

. ; ALU-38-lnPut8it0-7

AL~115-125

Half-Sum Group Byte 2 B0-3

Half-Sum Group Byte 2 B4·7

Second Pass Time

C.rry into Addr'Byte·3 Bit-7

Complement

Arith Decimal Word

ry-Out Group Byte 3 B0-3
Carry-Out Group Byte 3 84·7
tQ!f-SUm Group Byte 3 80·3

lf·Sum Group Byte 3 84-7

Carry-In Group Byte 2 B0-3 ___ _.

Carry-In Group Byte 2 84-7 ---..i
ALU-3 Carry Bit 0-7 Pass-1

ALU-3 Carry Bit 0-7 Pass·2

ALU-2 Carry Bit 0-7

ALU-3 Carry Bit 4-7

1·Bit Carrv ALU·2

ALU OR Operation

ALU XOR Operation

Al.U AND Operation _ __,__..._

ALU ADD Operation --i--~-

1-Bit Carry ALU·3

AL·116-126

._ -ClrrvGenByte-3Bh0-7'~------------------"'l--J-.. ._-..... ._,...._._,.... _____________ .__:il;....-...I

t-----~Hllf-&nn8yt.-3Bh0-7~---------------------~---------------------------------ooio--A------4

._ T~lyw-3Bit0-7 ~ .. ----..... ----.. -. __ _,111~-----t

Out·
put
Assm

AL-133·143

ALU Bus Byte·2 Bit 0-7

ALU Bus Byte-2
Bit0-7 Ewn

ALU Bus Byte-3
Bit 0-7 Even

ALU Bus Bvte-3 Bit 0-7

AL-113-123

3145 TM CPU 93

Z·REGISTER and D-REGISTER

8-Reg

ALU·3

RA013

0

A· Reg
8-Reg
0-Reg
SPTL

Z-REGISTER PARITY CHECKING

Z-Aeg Byte 0 Bit 0
Z·Reg Byte 0 Bit 1
Z-Reg Bvte 0 Bit 2
Z-Reg Byte 0 Bit 3

Z-REG Byte 0 Bit P

PB014

Note: The function of the EV block
is to provide an output, only
when the number of active
inputs is even.

Z-Reg Byte 0 PC

PB014

Z-Reg Byte 0 Bit 4
Z·.fleg Byte 0 Bit 5
Z-Reg Byte 0 Bit 6
Z·Reg Byte 0 Bit 1

Sample circuit for parity
checking each byte,

PB014

Z-REGISTER

The ALU results are set into the four-byte Z-register. The
ALU result data can then be routed to:

• The S, P, T, or L·register

• The A· and B-registers

• The 0-register

Z-register data (ALU result) is tested, if so specified in the
rontrol word being executed, to set or reset $-register bits.

The direct path from the Z-register to the S, P, T, and
L-registers permits the setting of these externals earlier than
other external facilities. This capability is necessary because
these registers are frequently used by the next control word
for status information and for local-storage and external
register addresses. Data destined to all other facilities is
set into the 0-register and destined during the next control
word cycle.

ALU data set into an external register (other than S, P,
T, or LI in one control-word cycle is not available as source
data for the next control-word operation.

One-byte o'ps feed all four bytes of the Z·Reg with the
same data. ·

A path is provided from the Z-register to the A- and B·
registers. This path allows ALU data destined to local
storage (not externals)by 'lne control word to be used as source
data by the next control word.

Example:
A control word is executed, and the result is gated to the

A-register.

Z-REGISTER md 0-REGISTER

The next control word requires the A-register as the
B-source.

The Z-register to B-register gate is activated because the
result of the previous control word has not been Set into
the A-register. The Z-register is also gated to.the 0-register in
normal fashion.

Refer to "Local Storage, Destination·Look·Ahead" on CPU 11
Storage.

Any combination of byte selection is possible. For example:
if only byte 2 of a local-storage location is altered, then only
that byte is routed to the A· and B-registers from the Z·
register. Bytes 0, 1. and 3 come from the local-storage
location addressed by.the control word being executed.
Consequently, no matter which bytes of a local-storage
location are altered and destined by a control·word operation,
the altered data is available as source data for the next
control-word operation. Address information derive<! from
the.cQntrol word being executed determines whether Z·
regi~t;r data is routed to the A-register, th~B-register, or
both,

CPU9'

Z·Reg ----..J

:1910.Time1'r-Cl=:i}E}-.. i _ 122NSI . .,

012 TitM Oly Bfr A TD _:._:_·. . 0-Reg Set/Reset

RA011

D~REGISTER

The four-byte D Id . . res It d estmationl regm u ata (from Z-register) . er is set to the ALU
word cycle~ early m the next contro~ . .

The O·register dat . . wh I a is sent to the SO
ere t can be routed to BO assembler

or to local storage. exterflills (via external ~-in)
I I
I Control Word

1
I Control Won:t
I 2

!
ALU_ Operation I I

I~ I
I I
I ALU resuft 9rlt to EH'llg I

I

3145 TM CPU 96

D-REGISTER and FLUSH·THROUGH.CHECK(FTC) REGISTER

AL114, 117, 127

124, 127, 134

147

Z-Reg Byte 0-3

BitP-7

RA011 D-RegSet Reset ---------illll--f

Ext Alm Bytes 0-3 Bits P, 0-7 ----•rl
Gate Ext Atm to FTC A ·--·

A-Entry Bytes 0-3 Bit P, 0-7 -----11111 A ·--·
Gate Local Store ----------1

RC191 1-Time !FTC Reg S-RI

Byte

1

• Note: The D· and the FTC-registers

latch in the off-state; that Is, the latch

for a given bit position doas not set if

the gated input bit is active.

PH
Byte

0

27

PH

Byte

27

PH

Byte

2

27

PH

Byte

3

27

RM115-166

.. ----------- D-Reg ByteO Bit P-7

.. ___________ D-Reg Byte 1 Bit P-7

(FTC Matchl

Each 0-reg (destinationl

bit is matched against

the bit actually set in

the local storage or

external location when

that location is addressed

by the LS or EXT

destination-address

latches. tf any bit does

not match, an FT;;

error occurs.

RA15S..166

0-Reg Byte 2 Bit P-7

0-:'leg Byte 3 Bit P·7

Example shows only the handling of the dettination R.

RC=R+Q

First Cycle

0-Time 1·Tinie------0-Tlme---------
'-0-Time Dly ____ 1-Time Div---....._ __

ToSOBOAsm

ReadR&Q - Write/Read R

0-Reg = Result for R

Z-REGISTER-«! D-REGISTER CPU98

TbirdCyct~

O.Time-.------1·Time ---.

FTC Compare

C-REGISTER (CONTROL WORD DECODE)

C·REGISTER
The C-register contains 32 bits plus four parity bits. The
purpose of the C·register is to decode the control word
and provide control and gating of CPU functions. Once
read out of control storage and gated to the C-register,
the control word is decoded to determine:

• Word type

• CPU function

• CPU clock cycle and length

The functions of the bytes of the C-register are:

CO Define word type and format Branch High Addres$
lM3B41

C1 Specify A-source or destination (an external register
or an A-local-storage address). Stat sets and/or special
functions:

, C2 Specify.a B-local-storage source or destination. Contains
Mask or K values special Stat sets.

C3 Specify next control-word address Branch Low Address
(M3B51.

The C-register is set by 0-time of each control cycle.

First Cycle Next Cycle

0-Time --+-1-Time 0-Time 1-Time

C-RegSet

C-REGISTER (CONTROL WORD DECODEt . CPU98

--~ J; --.. ·-~~~:JJ-. ~
~~'i>:i;jj.~~~~,,~c'~~rt .. -_ -----------~,.........-~-- ... _ ' . ltJ ~

'
"'

~·

CPU CLOCK

CPU CLOCK OSCILLATOR
Timing for the 3145 is developed from a 22.22.2·MHz crystal·
controlled oscillator. This oscillator is fed to an oscillator c<introl •
card, where it goes through one frequency divider, stage and is
controlled for distribution to each board clock. From this, each
board clock then develops six basic timing signals to time the
CPU ci~itry.

CPU CLOCK TIMING
This clock 'is a v~;i~bt~'.dy~le clack th~t is di$igned' ~~ optirate'
180-, 225-, and 270-nanosecond cycles, with each cycle ha\ring
the further capability to extend by 22.6-nanosecond increments
(referred to as pauses). This then allows (wi.th one pause)

202.5 ns from a 180-ns cycle; 247.5 ns from a 225-ns cycle;
and 292.5 ns from a 270-ns cycle. With two pauses, a cycle
may be extended 45 ns as in the case of the Storage-1 Cycle
Write. (270 beco~s 315.) If the cycle after a Storage-2
cycle is a selector d1annel share cycle, t.he pause in storage-2 . '
cycle is eliminated 1270-ns cycle). · ·

The CPU control word decodes determine cycle length. They
provide 180-, 225-, and 270-cycle control signals that determine
the cycle with which the clock should operate and the number of
pauses the cycle should contain.

The CPU clock runs for. one cycle under control. of the clock
start latch. The clock start latch has many input controls (start
switch, set IC, CF clock start, etc.).

The clock consists of six latches operated in an overlapped ~
figuration to produce six timing pulses.

0-TIME

90 ns

225.CYCLE

0-TIME

90n$

270-CYCLE

90ns

90

225.Cycte

1247.51

270-Cyc:le
1292.51

~\

1-TtME

112.Sns
O·TIME DELAY

90 ns

247.5 0$

90

1-TIME

90ns
0-TIME DELAY

90ns

292.5ns

90

1-TIME

90ns
0-TIME DELAY

90ns

0-Time
0-Time Delay
1-Time
1-Time Delay

0-Time
0-Time Delay
1·Time
1-Time Delay
2·Time

0-Time
O·Time.Delay
1-Time
1 ·Time Delay
2-Time
2-Time Detav

180 202.5

O·TIME

OOns
1-TIME DELAY

112.5 ns

180 225 247.5

90

90

1·TIME DELAY I 0-TIME DELAY ...

112.5 ns
2-TIME

112.5 ns

180 270 292.5

2-TIME 0-TIME

112.Sns 90,.
1·TIME DELAY 2·TIME DELAY

90111 112.s ..

90

OSCILLATOR SIGNAL FROM OSCILLATOR CONTROL CARD
180.CYCLE 202.5 ns

0
0 45 90 135 202.5 45 90

225-CYCLE 247.5 ns

0

270-CYCLE 292.5 ns

STORAGE·1 CYCLE WRITE 315.0 ns

~)I

0
315 45

3145 TM CPU 99

CPU Clock Checks and Adjustments

Equipment Required

Tektronix* type 454 oscilloscope,~ equivalent.
Oscilloscope probes of equal length and equal attenuation.

Note: All measurements should be made With the displays
centered on the scope face.

Oscillator

Oscillator frequency is 22.5 MHz. Symmetry and frequency
are checked.at 01AB2L2S05.

Clock

The CPU clocks are initially synchronized at the factory and
should be readjusted only when additional boards are installed,
a feature is added to a board, or a clock card is replaced.

Each clock has a programmable delay-line adjustment. Pin G10
of each clock card (6735) is the oscillator test point. to ensure
oscillator synchronization during the following adjustment, sync
negative on the G 10 test point.

The. oscillator signal should now be synchronized for the
system. Check the oscillator test point on each board. If the signal
is found to be more than ±2.0 ns out of sync, resynchornize the
clock on the card that is out of sync.
1. To determine 'late clock' sync:

a. Set rate switch to SINGLE CYCLE HARO STOP (CLOCK
STOP indicator on).

b. Ensure that zero delay is plugged in the clock cards in
boards A-A 1, A-B 1, and A-Cl.

c. Oscilloscope settings
(1) A sweep Time/Div= .02 us.
(2) XlO multiplier on.

d. Sync channel 1 (minus) on clock card at A-C1G2G10 and
display the signal.

e. Using channel 2 to display the G10 pins of the clock cards
in A-A 1 and A·Bl boards, determine the latest (in time)
of the.three clocks.

f. Place the channel 1 probe on the latest of the three clocks;
Channel 1 is now synchronized on 'late clock'.

Note: By swapping the input signals at the oscilloscope,
verify that the oscilloscope is calibrated. The relationship
between the two signals must not change. If signal relation
ship does change, use another oscilloscope before continuing
with this adjustment.

•Trademark of Tektron~

8-GATE

c B A

Ons

8ns Sns

osc

i With ~han~el 1 sync and displ~y ~n ~late clock', display all
other clocks. Jf any clock is more than 1.0 ns earlier or later
than 'late clock.', change the programmable delay line for that
clock to being it to within± 1 ns of 'late clock' (negative
pulse at G10).

CPU Clock Locations note 3
Gate A-C1G2 C3G4 B1C(';;3H4 A1K2 A3C4

C2J2 C4E2 B2M2 B4K2 A2C4 A404
Gate B-A1C4 Bl C1M2 B3V3 C3J2

"-note4

Oscillator Location:

Oscillator and oscillator control card location: A-B4A3
A-B2C2

A-GATE

c B A

note3 note 1

Ons Ons

4 ns 4ns

Sns 8 ns

12 ns 12ns

OSCILLATOR CONTROL CARD

LOCATED ON A-82 BOARD

OSCILLATOR LOCATED ON A-84 SOARD

CJIUCLOCK

Notes:
l These numbers are initial programmable delay settings'.
2. Select has a separate oscillator signal.
3. For IFA version 003 machine, clock is locatect in 8184 socket

on the A-Gate.
4. Clock-card position is feature-sensitive. Refer to the KC ALO

pages.

a»t.1100

CIRCUITRY LOCATED-CH CLOCK CARD AND CLOCK-START CONTROL CARD

ll'.

_I

DELAY LINE

IPROGRAMMASLEl

AR

PROGRAMMABLE-DELAY LINE LAYOUT

OUT

L
~05V

'' 2ris

L---oosu
~05T

·4ns

L---ooss

,.8111

r
IN

CLOCK CARO (6736)

TO CLOCK
CIRCUITRY

I
Adjust neget1ve11oing PUIMI

for 1 n11xlmum of ±1 ns

CHANNEL 1 REF.

A• EARL V OSC. SIGNAL
B •LATE OSC. SIGNAL

3145 TM CPU 101

M, N, and MB-REGISTERS

M-REGISTER

• Addresses main an . d control storage.

ess buses (SAB).
• Feeds storage addr h"ch provide a 21-bit

Ml M2 and M3, w I
• Made up of •. 'torage address.

(plus 3 parity bits) s . d control storage.
both main an . e Ml, M2, and M3 addressd bleword boundary and

. •. Storage is read out on a ou

stored on a word boundary.. .· d being executed,

· 7 nd the storage wor d erations. • M3 bits 5,6, and '. a I ctions for storage-war op
provide the following see Store

Read W d Halfword, or Byte
Odd/Even word, Halfword, N:;e:' Information may :e te

or Byte stored under mask (any y

selected).

II. N. MCI MB-REGISTERS

Setting ~-Register ior. Storage A~dressing
• M 1, M2, and M3 are set from the ADA/ ADJ circuits ~r B·Aee. •,

bytes 1 (bits 4·7), 2, and 3.

• Mt, M2 may be forced to zero for direct main:storage
addressing.

-setting M-Register for Control Storage A~dressing

• Mt is set to zero for display purposes. A, line address CTR L '
store is sent to the ECC board.

• M2 selects the control-storage module and is set from C2,
trap ~ircuits, or N2 (no. module-switch function). M2 may
be forced to FF for direct control-storage addressing,

• A module is defined as a group of 64 words in storage.
This ina-emerit of storage has particular significance in the

. control storage addressing structure. The address in M2
selects the specific module. Any word in the 64 word
module can be specified by the _address in M3 bits 0-5.
Most control word operations cause only M3 to be changed,

• M3 selects one' of 64 words within the module selected by M2.
M3 is set from C2 (K-adr STW), CJ, or trap circuits.

N-REGISTER
e Made up ofN2'and N3.

' - '•, ·, :.> '

• N2 is set with the same information as M2 and is changed only
When the control ~ord being executed performs a module
switch function.

• N3 is set with the 5ame information as M3.

• N is not changed when a trap occurs.

• When a trap occurs, the M-register is set to the trap address.
The trap routine stores the contents of N (the N·Aeg contains
the next address that would have been used had the trap not
occurred). At the end of the trap routine, Mand N are restored
to their original value so that the control-word sequence may
continue as if there had not been any trap.

• N2 sets M2 for every control-storage word access except when
a module switch occurs.

MB-REGISTER.
:' Made up of MB2, MB3.

Set with the rontrol-word address in M2, and M3 from M2 BFR
and M3 BFR.

When the CPU clock is stopped, MB contains the address of the
last word executed.

MB-reg output is available to the retry and backup circuits as
well as the external assembler (word ATV).

Buffer Registers

' The M-bUtfer registers are an interim set of latches between the
M·register and the MB-register. This allows cycle-to·cvcte
communications.

The N-buffer registers perform a similar function:

MAND N ADDRESSING
TIME 0 45 135 0

I I I

Force ~ D Storage Address Bus

:~i:: ::::-==i 01------------------------.

c
2
---~---1 M

2
.__...,. __________ s_i_or_a_ge_A_d_d_re_ss_B_u_s ______ ~

B-reglster Bvte 2 B
Force

Trap Addrets

I.CY A« Asm ___ _,._rm ..

C2,C3

Force

Trap Addreis

I.CY Adi Asm

M2
SFR

M3

BFR

N3

First Cycle

Data from A-Reg Byte Asm

~a~·-~~, MB3 and

Retry Circuits

Ht] To Ext Assembler

Next Cycle

0-Time 1-TirN 0-Time 1-Time

M-Reg Set/Reset

M·Bfr Reg Set/Reset

MB·Reg Set/Reset

N·Bfr Reg Set/Reset

N-Reg Set/Reset

Internal

Main/Control

Storage

External Main

Storage

SOBO Preassembly latches

Even

0

SDBO 0-71

SOB00-71
3

Odd

6

3145 TM CPU 103

M-. N·. and MB-REGISTERS BRANCH CIRCUITS

C.Aeg Byte 0 Bit 5

C.Reg Byte 0 Bit 6
C.Reg Byte 0 Bit 7

Bus-In Byte 3 Bit 6

DECODE

RM211
RM 221

Ste-2 Cycle -----1

C-Re9 Byte 3 Bit 5
C-Reg Byte 3 Bit 6
C-Reg Byte 3 Bit 1

AM 212
AM 222

Block Br Hi lo 0

Gate S Hi Br -----=;;;;....-~..---!

A

Gate C2 to M3 ---------l
A

C-Aeg Byte 2 Bit 4 Bfr

Gate N3 to M3 ---------'
A

N-Aeg Byte 3 Bit 4 --------1 .___ ~
AM216

OR
Gate S Low --f--
Bl~ck Br Hi Lo

Z·Aeg Byte 3 Bit 7 -----~--'
Storage-2 Cycle ____ ,;...__..!-....J

Interrupt -----------1
C-Aeg Byte 2 Bit 5 ------~ A

Gate C2 to M3 ----------1
Arith Lo Branch Asm--------....1

RM216

Branch High Asm

Aritli Hi Branch Asm

Gate A-Source Br
Hi

M3 Set Normal--------1

RM215
RM225

M3Bit4

M-Reg Byte 3 Bit 4 Bfr

RM215
RM 225.

M-Bfr Set-Reset ____ _.

M3 bits 4 and 5 are used for hig!l and low branches.
respectively. M3 bits 6 and 7 are used to maintain
parity.

M3·5ToSDBO

Gate A-Source Br -.i-'--~-~
Lo

RM 225 RM213

MB-Reg Set Reset----•

RM 213

PH MB-Reg Byte 3 Bit 4

RM 223

MB-Reg Byte 3 Bit 5

II. N. Md MB-R~GISTERS CPU104

...

SECONDARY CO~OL ASSEMBLER

The Secondary Control Assembler provides a direct path for
the microprogram and the.console file to move data and
addressing information.
From: . . ;)c'.{. ·. ·To:

Console-file data register C-Register
A·Local storage
Console switches

ABCDEFGH
Selector-channel force

C-register

Local-storage control assembler
Expanded local-storage address

assembler
External control assembler

0
---x~ Sws A·B Parity _...,

---x'-H Sw A Bits0-3

I ~
Sw B Bits 0-3 ----• x---.!..J -,~
Sw~C-D Parity ____ X~

Sw C Bits 0-3----• ~-r1
Sw D Bits0-3 -----l~

I ~ SwsE·F Paritv ____ X......_

Sw E Bits0-3 -----~-r1
I

Sw F Bits0-3 •---•x~
,~

SwsG·H Parity ____ X

• ---xl~3 SwG Bits0-3,..,

Xl-J...17 SwHBits0-3 _____ ~

Force Switches KM022_J

Conlot9-Fite ---mxi-• 0...R9gisur_J
~GateC·Rll

Kf023
7

p

0

Note: In Local Storage Control Storage

(LSCS) mode, diagnostic hardware forees

A·locel 11orage to act as control norage. .

Control words are read out of A-local

storage, loaded into the C·Reg, a~
executed,

Refer to "CPU Diagnostic Hardware"
in DIAG section.

I Destinations
I
I
I

I
I
I
I
I

·I
I
I
I
I
I
I
I
I
I
I

0

C-Register

Logic Pages

BytesO, 1, 2, and 3.

Bit Page

p RC112
0 RC122
1 RC132
2 RC132
3 RC152
4 RC162
5 RC172
6 RC182
7 RC192

Note: Only the bits used by the microprogram are.shown for

each application of the Secondary Control Assembler,

Exp LS Address ~ssembler

p

3

7
p

f!!I"''.'

r:
t,

~.:

f'
;/
li.

':"·

LS Control Assembler
Ext Control ASlllmbler

3145 TM CPU 105

CONTROL REGISTERS

DESCRIPTION

The control registers provide a means for maintaining and manipulating
control information and are an extension to the EC PSW. The 3145 has
sixteen 32-bit registers that are located in control storage at addresses
F480 through F4BF.

Two instructions, Load Con~rol and Store Control, move data to and
from the control registers. The Load Control instruction provides a
means for loading control information from main storage into control
registers; whereas Store Control. permits information to be transferred
from control registers to main storage. These instructions operate in a
manner similar to Load Multiple and Store Multiple.

Details of the register assignments are contained in the sections that
discuss the features using the control registers.

CONTROL REGISTER ASSIGNMENTS

System Translate External Interrupt
0 Control Control Masks

Segment
Seg~ent Table Origin Address Table Length

Channel Masks

3 Reserved

4 Reserved

5 Reserved

6 Unassigned

7 Unassigned

8 Monitor Mask

PER Event
00000000

PER General Register
Masks Alteration Mask 9

10 00000000 PER Starting Address

11 00000000 PER Ending Address

12 Unassigned

13 Unassigned

Error Recovery
Control and Masks 14

15 00000000 MCEL Address

0 8 16 24 31

CONTROL REGISTER 0

Bits

Reset to 00 00 00 EO

CONTROL REGISTER 1

System
Control

10-4K 10=1M
Translate

Control

15 16 17 18 31

External Interrupt Masks

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Segment Table Length Segment Table Address

Reset to 00 00 00 00

1/0 Masks

Reset to FF FF FF FF

000000

Note: Initial Value of unassigned positions in all registers
i1 unpredictable but is assumed to be O.

• i

CONTROL REGISTERS CPU1~

CONTROL REGISTER.

$.

Bits

"-- to 00 00 00 00

CONTROL REGISTER 9

CONTROL REGISTER 10

00000000 Per Stertlng Addrea

f'eMtoOOOOOOOO

.AOL REGISTER 11

Bits

00000000

Reset to 00 00 00 00

CONTROL REGISTER 14

Bits

Reset to C2 00 00 00

CONTROL REGISTER 15

Bits

Anlt to 00 00 10 00

Per Ending Address

000

Note: Initial 11alue of unassigned positions in ell registers
is unpredictable but is assumed to bl zero.

3145 TM CPU 107

STANDARD FEAT. Physical· Description

. • The time-of-day clock is driven by a 1-MHz oscillator feeding a
• 'binary·coupled trigger to produce a 1-MHz output. These circuits

also develop a 75.46-KHz output that drives the interval timer.

TIME-OF-DAY CLOCK

The time-of-day ITODI clock provides a consistent measure of
time suitable for elasped time and time-of-day indications. The
cycle of the clock is about 143 years when started from zero as an

ela~ time measure. To provide a consistent time·of·day
indication. the zero point must be defined to a calendar date. IBM
programming systems have established this date as January 1,
1960, 0 AM Greenwich Mean Time.

Setting the TOD clock on the basis of a synchronization signal
given by the operator introduces errors in the fractions of a second.
This error is usually of small consequence in defining the time '
relating to human reaction. The error does not enter elapsed-time
calculations because the difference between two time readouts
does not consider the initial setting of the clock.For many TSO
applications, only the high-Order 32 bits. need.be considered. ·
Position 31 of the counter is advanced every 1.048576 seconds; .
Operation in thi5.rr.Ode still requires entering s9me value for the
TOOL' destination, or the clock does not start.
; The clock is a binary counter with a two-wdrd forma.t (64 bits)

numbered 0 to 63 corresponding to the bit positions of a fixed·
point number of double precision. Time is measured by increment
ing position 51 of the counter .every microsecond. Only the
high-order 52 positions of the counter are used for this configurat
ion. The remaining lciw·order positions are not used for time

indication and ;ire normaily set t~ zeros eicept for three positions
that define the status of the dock.

The program is not signaled of an overflow condition when the
counter is advanced to the point of carry from either position 1
or position 0. At the point of carry out from position 0, the
counter goes to zero and continues to count from that value.

The clock can be inspected by the instruction store-clock. Thi!
current value of the clock counter is stored in main storage. The
dock can be set to a specific value by the instruction set-clock.
The operand ~pecified by the instruction replaces the current
value in the clock counter. The set-clock instruction can be
executed only when the clock security switch on the system
control panel is set to enable.

The operation of the time-of-day clock is not affected or inhibit·
ed by any normal activity or event in the system other than
turning off the CPU power or running the TOD clock diagnostics.
The clock runs when the CPU is in wait state. stopped state. or
instruction step mode. and itS operation is not affected by system

reset or the IPL procedure.

The 3145 time-of-day clock stops when the CPU power-off
switch is operated. Execute the $et-clock instruction each time

· tfle's'IStem is started after powering up or after running the

TOD clock diagnostics. •

The clock cou~ter functions as a binary-connected counter but
is modified with a set of adder latches that allow holding the
output of the basic latches until such time that the CPU sampling
is complete. The counter can be loaded by destining the
appropriate binary values to the TOOL and TODH externals after
executing a loading sequence. The counter starts to advance,
immediately following the loading by gating.the 1-MHz drive
signal to the low'order position of the counter. The counter
advance is checked by predicting parity and then comparing the
predicted value with the parity generated from the counter. The
counter output with parity bits for each byte is available to the
CPU through the store clock instruction that causes externals
TOOL and TODH to be transferred to main storage.

The TODH and TOOL externals may be called out as a destinat·
ion at any time, but the contents of the clock are not.changed

.. unless TOOL byte 3 bit{) and the dock·rnn latch have be~m reset.
The FTC (flush·through check) is blocked by the TOOL byte 3
bitO to prevent error signals for this condition.

The control bits are associated with the clock readout to convey
information to the user. as to whether the clock value is a true
measure of elapsed.time since the last time the clock was set.
These control bits are stored as the three high·order bits of byte 3
of the low·order word (TOOL). Bit O.indicates that.!~~-.c~o9.l.<..is
running. f;iit 1 indicates that the clock was set.c!:Jit ~.indicates
-that-anerr~r:~curred'. During the pro;;;;ssiQg of the store-clock
i~;tt~cti~~: the indi~tors control the condition code to be set.

.OOH EXT 36

I BvteO I Byte 1 I Byte2

0 8 16

TOOL EXT3E

I ByteO I Byte l I Byte2

32 40 48

Bit definition:

TODH Bit. J-31 Binary Counter

TOi)L Bits 32-51 Binary Counter

I Byte 3

24

I Byte3

56

TOOL Bits 52·55 Soare Counter Positions
(forced to zeros)

I
31

I
63

TOOL Bit 56 Run Bit, This bit is set during the destining
of the TOD word following the destining of ·the other
TOD word. This bit must be reset by microcode with
the security switch in the enable-set position to reset
the TOD Run latch and enable the TOD clock hard
ware to accept the TOOL or TODH as a destination.
Power-on reset also resets this bit to allow the power
on reset routine to set the TOD clock to a consistent
value.

TCDL Bit 57 TOD Clock Security Switch. This bit on
signifies that the security switch is in the enable-set
position. This bit must be on to allow TOD Clock
destinations, except during the power-on reset routine.

TOOL Bit 58 Validity Latch. This bit on indicates that the
clock is valid. The TOD validity latch is set by the AND
of TOD L byte 3 bit 9 an<(TOD L byte 3 bit__~ This bit
is reset by resetting TOOL byte 3 bit 0, power-on reset,
or TOD clock error. This bit off lights the TOD invalid.
light on the console.

TOOL Bits 59- 63 CPU Identification.

TODH may be displayed through EXT 36.
TOOL may be displayed through EXT 3E.

Clock Security Switch (TOD CLK) . • .
The clock security switch (TOD CLKI provides an interlock with
the set-clock instruction to guard against inadvertent change of
the clock value. The switch is spring·returned to the secure posi
tion. When the switch is in the enable·set position. execution of
the set-clock instruction sets the clock to the value of the
designated operand. When the switch is in the secure position,
the set-clock instruction does not change the value of the clock.
The switch does not have any other effect on the operation of the

clock.

Clock Validity Indicator (TOD CLK INVP.L)

The clock validity indicator (TOD CLK INVAL) is used to indicate
when the time·of-day clock current value is not a true measure
of the elapsed time since the last time the clock was set. The
validity indicator is turned off when the set-clock instruction is
executed with the TOD CLK switch in the enable-set position and
no exceptions are encountered. The indicator is turned on when·
ever the clock misses a time increment.or stops. This may result
from a power failure or a malfunction in the clock circuits. When
the indicator lights for an error condition, the machine-check
indicator is set and an interrupt is requested. If the clock is
started by the power-on reset routine and used for elapsed-time
indications, the indicator remains lighted because it is invalid as a
TOD indication. In this case, the indicator being lighted does not
mean that an error has occurred.

Error Detection

The time-of-day clock checks its advance operation by a check on
the progressive parity conditions. Before the advance, the counter
value of each byte is fed into a parity predictor circuit to develop

the updated parity bits. These parity bits are compared with parity
bits generated from the updated value in the counter. Any failure
within the counter advance circuits results in a difference between
the predicted parity bits and the resultant parity bits. The
difference signal sets the TOD clock check latch. The latch outpUt
sets the MCKA3 bit 6 and resets the bit 2 and bit 1 latches
as indicators. A class 3 machine-check interrupt is requested. The
setting of the MCKA latch resets the TOD clock check latch. The
reset of the bit 2 latch lights the TOD invalid indicator on the

system control panel.

3145 TM CPU 109

Clock-Setting Sequence

The clock is set to zero and starte<f by the pilwer-on-reset sequence.
With this start the clock output can be used to indicate running
time or elapsed time. Under this mode of operation, the TOD
Invalid indicator on the system control panel remains lighted
because the clock output is not TOD.

To obtain time-of-day output, the set-clock instruction must
be executed to start the clock at the current time. When the set·
clock instruction is executed, the correct TOD is assumed and the
TOD Invalid indicator on the system control pan~I is not lighted.
If.a cl"Ock error is detected during operation, the indicator is
lighted to warn the operator.

The set-clock instruction must have the TOD CLK switch on
the system control panel held in the enable-set position to allow
execution. If the switch is not operated, the clock value and its
operation are not affected. The first step in the clock·set sequence
is to reset TOOL byte 3 bit 0 along with the 'clock run' latch
and the clock controls. With the 'clock run' latch reset, the TODH
and TOOL externals can be destined. The value destined for
TOOL m;ist have byte 3 bit 0 set to 1. When both load latches
have been set, the TOOL byte 3 bit 0 line is developed, the 'clock
run' latch is set, and the 'clock set' latch is set. At this point,
the dock is set and starts to run with the next 1-MHz pulse.

The power-on-reset start differs only in that the TOD CLK switch
does not need to be operated, and the first TOOL destined micro·
step is not required.

For microdiagnostic operation, the enable-set output of the
switch is forced; but the set sequence is the same as for the set·
clock instruction.

TO.D Clock Update Sequence

Because of the asynchronous operation of the TOD clock, the
advance pulse from the 1 MHz oscillator cannot be used directly
to advance the clock. The clock readout must .not change during
the A-register set/reset time. The CPU 90-135 time is gated with
the 1-MHz oscillator to develop the advance pulse. If the CPU
clock is stopped, the CPU oscillator provides the timing. The
advance pulse sets the start-update latch whose output provides
a series of delayed outputs that control error sample and advance
of the clock.

TOD CLOCK UPDATE SEQUENCE

---------- 1 us.

OSCILLATOR

ERROR SAMPLE

S/R PARITY PREDICT -
CLOCK ADVANCE -

TOD Manual Set
This procedure is available for manual setting of the TOO clock.
1. Hold TOD CLK switch at ENABLE SET.
2. Store in EXT 3E hex 00. Hex 00 is stored into all 4 bytes of

TOOL. This value resets the run latch.
3. Release TOD CLK switch.
4. Store in EXT 36 hex FF (see Note 1).

6. Hold TOD CLK switch to ENABLE SET.
6. Store in EXT 3E hex 80. This value sets the run latch.
7. Release TOD CLK switch.
8. Display either TODH (EXT 36). Observe that bit 31 inaemenu

approximately every second, or

TOOL (EXT 3El. Observe that counter is
rippling much faster.

Note 1: Any value put into switches A and B may be stored. This
value is propagated to all 4 bytes (example: hex 12 stored from
switches A and B is stored as 12 12 12 121. FF is inserted because
the first time the clock is incremented, the counter flips tb zero and
starts fror:n there. · ·

TOD Clock lnStructions

The time-of-day clock has two instructions:

• Set Clock used to set the initial time.

• Store Clock used to enter the current clock value into inain
storage.

Both instructions are Sl·format instructions modified so that
byte 2 is an extension of the operation code (byte 1) instead of
the immediate operand. Byte 2 specifies the exact function of the
Oµ€ration code.

Both instructions are decoded as operation code 82 in the
GAAi routine. The operation branches to the GGB2 routine to
decode and validate the modifier. A test tc,; iJrivileged operation
is made when required. Then the operation is branched to the
routine of the function specified. The common· data flow for
both instructions is:

GAAi

Normal I-cycles.

(START)

I
-------- ---- --- - - - -- - -- -,._ --
Decode SI-format insturction.

GGB2

Test for a valid code must be of the B20x format.

The last four bits of the modifier select a decode byte from the
16-byte table. ---------------.------- -- -
If the high-order bit of the decode byte is a.1. the instruction
is a privileged operation arid the CPU. must, be insupervisor ,
mode (PSW bit 15 = 0).

If a privileged operation and not in supervisor mode, branch to
the privileged oper.ation check routin.e in GICM. - - - - - - - -· - - - - - - - - - - - - - - --
If not a privileged operation or if in.supervisor mode, use the
decode byte as an address modifier and branch to the instruction
execution routine.

BRANCH

STANDARD FEATURE.S CPU 110

Set Clock Instruction. ~

Set-Clock Instruction

SCK 0 1 <B 11 (SI)

t e2 1 04 I s1 I 01

0 8 16 20

82 = Operation Code
04"' Set-Clock Function

31

8101 =Storage address ofan eight-byte field. Must be on a
doubleword boundary. Bits 52-63 of the field are ignored
and are not used in the clock value.

. •,

The set-dock instruction is a pr.lvjleged operation used to place a
value into the time-of-day clock. The location of the value is
specified by the 8101 portion of the instruction. The implied
length of the value is eight bytes (two words). The address must
be located on a doubleword boundary. Only the high-order 52
bits of the doubleword are used to set the clock counter. The re
maining bits (52 to 63) are ignored by the operation in setting
the clock value.

The value in the time-of-day clock is replaced by the designated
value if the set-clock instruction is executed while the> TOD CLK
switch is in the enable~t position. If the TOD CLK switch is in

'~·:·· the sea.ire position when the set-clock instruction is executed, the
value in the clock is not replaced and the condition code is set to
indicate:

Condition code settings:

· O= Clock'value set.
1 = Clock value secure ITOO CLK switch in secure position;

therefore, clock value was not changed).
2 =Not used by the 3145.
3 =Not used by the 3145.

START

GGCS

Test BlDl address for a doubleword boundary. Branch to
specification check in GICM if not a doubleword boundary.

Store high-order word of main-storage double-word in
local storage.

Store low-order word of main-storage doubleword in local
storage. Reset byte 3 t() zero.

Attempt to reset counter with TOOL destination of the
low-order word (this includt~ byte 3 bit 0 and the clock-run
latch).

Test TOOL byte 3 bit 0 to determine the TOOL. CLK
switch setting.
Bit 0 = ~ if in enable-set position.
Bit 0 = 1 if in secure position.

If the switch is in the secure position, set condition code 1
and return to I-cycles without setting the clock.

If the switch is in the enable-set position. set the low-order
word byte 3 bit 0 to 1 to set the clock control bit and set
the clock·run latch when the word is destined to TOOL

. ~tTODH from the high-order wor~ in local storage.

Set TOOL from the low-order word in local storage. Clock
starts with next 1-MHz oscillator pulse.

Set condition code 0 and return to I-cycles.

END

~Clock Instruction

Store-Clock Instruction

STCK o1te11 (Sil

! a2 I os I et! o1
0 8 16 20 31

B2 = Operation code
05 = Store-clock function
8101 = Storage address of an eight-byte field. May be located on

a byte boundary. Bits 52-63 of field are:

52-55 = Set to zero.
56·58.; TOOL Ctrl Bits 0-2.
59-63 = CPU Identification bits.

The store-clock instruction is used to place the current time-of.
day clock value in the eight-byte field of main storage designated
by the B 1D1 portion of the instruction. The 52-bit clock value
stores in the high,order of the doubleword assignment. The low
order byte stores the three clock control bits and the five-bit CPU
pluggable identification. If the clock value is invalid, the double
word is stored with all zeros.

Condition code settings:

0 = Clock in set state.
1 = Clock in not-set state.
2 = Clock in error state.
3 =Not used by the 3145.

START

GGCS

Store TODH in high-order word local store.

Store TOD L in low-order word local store.

Test TODH for no change since store in local storage. If
TOOL is not latest, branch back to store TODH and TOOL
again.

Test TOOL byte 3 bits 1 and 2 for clock status.

Bit 1 = 1 error state (invalid).
Bit 2 = 0 not-set state (not valid TOD).
Bit 2 = 1 set state (valid TOOi.

If clock is in error state, set condition code 2. Set both
local store words to zero and branch to GFST to store in
main storage.

If clock is in set state, set condition code 0 and branch to
GFST to store the clock words in main storage.

If clock is in not-set state, set condition code 1 and
branch to GFST to store the clock words in main storage.

GFST

If address is on word boundary, take two . store-word
operations and return to I-cycles.

If address is not on word boundary, shift the data to align
and store in three store-word operations, and return to
I-cycles.

END

3145 TM CPU 111

STANDARD FEATURES CPU 112
TOD Clock Output Assembler

TODH

x,--1 .: ..
TODCTRSS-15 __J -->K,-i B:ie1
TOD CTRS 16-23 \YI __Jt-_A_...,. _________________________ _

J.\ ---i Byte 2

·T·O·D·C·T·R·S·2·4·.3.1 ------J.<--1 .,~, 3

r~
.T.OD•C•T•R•S•40•4•7 ~, ~.~~~
TOD CTRS 48-51 (See Note.I --i

BITS0-2 TOOL BYTE 3 BIT 0 ------------------~,
TOOL BYTE 3 BIT 1

TOOL BYTE 3 BIT 2 --1
BITS H. ID NUMBER ------------------~. . ..
EXP EXT BIT 3 and ·ExP EXl; BIT 4 ~------------.;_ _____ ;_ __ ..J ___ _.

TODCTRS0-7

EXP EXT BIT 3 and
INotl EXP EXT BIT 4.----------------1

TOD CTRS 32-39

IFA/TO.D ASM

OR

IFAITOD ASM BYTES 0-3 BITS0-7

IFA BYTES 0-3 BITS 0-7 -----------

INOTI EXP EXT BIT 3 and
CNOtl EXP EXT BIT 4 ---------------------_J

TOOL output contailW zeros.

GATED LOGL ADDR Bytes0-38i1S0-7 ------------------------

INOTI EXP EXT BIT 3 and
EXPEXTBIT4 -------------~------------..J

TOD Circuit Card L4 and Related Logic

I

I

ClRCUIT CARO LOCATION: A 1 L2 I
LOGIC/ALO PAGE:

CT011
Osc Drive

CIRCUIT CARO LOCATION: AlN2 I
LOGIC/ALO PAG1::

CT111
Time-of-Day Counter Adllllnce Controls

. Interval Timer Osc Drive

CT112
TOO Co.unter Set Controls
Condition Codes
Identification
IF A/TOO ASM BYTE 2 BITS 2·3 f• •

CT113
Error Detection

CT114
TOO Ctn 18-19
TODCtn50-51
TOD Asm Byre 2 Bits 2·3

CT115
Lock-Load Timing Generation

I Cl.RCUIT CARD LOCATION: A1P2 I
LOGIC/ALO PAGE:

CT211
TOD Ctn 0-1·2
TCO Ctn 32·33-34
TOO Asm Byte 0 Bits 0-1 ·2

CT'212
TOD Ctn 3-4-5
TOO Ctrs :JS-36-37

CT212 Continued

TOO Asm Byte 0 Bits 3-4·5

CT213
TOO Ctrs 6'7·8
TOO Ctrs 38-39-40
TOO Asm Byte 0 Bits 6-7
TOO Asm Byte 1 Bits 0

CT214

CT215

IFA/TOO Asm Byte 0 Bits 0 through 7
IFA/TOO Asm Byte 1 BitO
Gating C •.1trols

Parity
Parity Predict
Parity Asm for Byte O

CT216
TOD Termination

I CIRCUIT CARD LOCATION: A1Q2 I
LOGIC/ALO PAGE:

CT221
TOD Ctrs 9·10·17
TOD Ctrs 41-42-49
TOO Asm Byte 1 Bits 1·2
TOO Asm Byte 2 Bit 1

CT222
TOD Ctrs 11-12·13
TOO Ctrs 43-44-46
TOD Asm Byte 1 Bits 3-4·5

CT223
TOO Ctrs 14-15·16
TOO Ctrs 46-47-48
- •. D Alm Byte 1 Bits 6-7
TOO Asm Byte 2 Bit 0

CT224
IFA/TOO Asm Byte 1 Bits 1 thru 7
IFA/TOD Asm Byte 2 Bits 0.1

CT225
Parity
Parity Predict
Parity Asm for Byte 1

CT226
TOD Termination

I CIRCUIT CARD LOCATION: A1R2 I
LOGIC/ALO PAGE:

CT311

CT312

CT313

TOD Ctrs 20-21·22
I FA/TOO Asm Byte 2 Bits 4-5-6

TOD Ctn 23·24·25
IFA/TOD Asm Byte 2 Bit7
IFA/TOO Asm Byte 3 Bits 0-1

TOD Ctn 26-27·211
I FA/TOD Asm Byte 3 Bits 2·3-4

CT314
TOD Ctn 29·30·31
IFA/TOO Asm Byte 3 Bits 5-6-7

CT315
Parity Asm for Bytes 2and 3
Gate Buffers

CT316
Parity Predict for TOO Bytes 2 end 3

CT317
TOD Alm Byte 3 Bits 3-4-5-6-7
CPU Identification Number

3145 TM CPU 113

INTERVAL TIMER
The interval timer provides program interruption on a program
controlled time basis. Interval timer applications include:

• Job accounting

• Monitoring for perpetual program loops

• Time stamping

• Polling at timed intervals
I

The storage area allocated for the interval timer feature is in
main storage locations 50-53 hex. If the interval timer
switch is set to NORM (normal), any value stored at this
location is decremented by the hardware.

The program being processed can be interrupted by an
external interruption (if PSW bit 7 and control register 0
bit 24 are on) when the interval timer word changes from
a positive to a negative value. The interruption is identified
by the appropriate external interrupt register bit.

Description
• Has a 32-position counter

• Stores last timer value in MS 50

• Contained on 3 cards:

A-B2K4 Controls ALO CH031-032
A-Cl T2 and A-Cl U2 Timer ALO CH211·225

• Uses same oscillator as TOD clock (High Resolution Timer 75.46-
KHz oscillator}

Interval Timer Operation

Enabie or disable timer

Decrement timer

Set timer

Read timer

Display Timer

Interval timer interrupt

INTERVAL TIMER BLOCK DIAGRAM

A
Register

A-Byte
Assembler

SDBI

Interval
Timer
Control
Circuits

ToSUQgl

ExtSD80 --x

Hardwwe
Timer

0
BYO

x

BY2

23
24

BY3•

31

ExtSDBO/
Loc50

Assembler

x

SDBO
Preaaembly

To SDBO Assembler

*Set from SDBI by diagnostic controls only

STANDARD FEATURES CPU 114

Enable Timer

To enable the interval timer: '.
1. Set interval timer switch to NORMAL.

2. Set rate switch to PROCESS, and

3. Execute a return word (RTN with Br Lo = 111) to set the timer
run latch.

Decrement Tim;,,

The ~rdware circuits gate a signal to the counter. This sign~I is
synchronized with the oscillator which has a 13-us. time interval.
At 45 to 135-time in the CPU clock cycle at the start of .the 13-us.

interval counter position 31 is decremented. This update is
inhibited each time the interval timer is being set to a new value.

Position 23 of the counter Is decrementt?d every 3.3 ms; To
obtai.n this degree of resalution, .the ability to store in byte 3 ·
(positions 24-311 is inhibited !)y the timer hardware. Therefore,
these positions an1 used functionaily to assure that position 23
is updated each 3.3 ms by a signal which is developed every
13 us. . ,

Whenever an interrupt occurs, the timer value is stored in main
storage location BO. If interrupts occur at time intervals greater
than 2.048 ms the TOD clock carry-out of bit position 41

.forces a branch~ the section of microprogram (GICM> that

. t,ransf8!S the timer value to main storage location 80.

Disable Timer

"" ~The inte..Vat timer is disabled when:

1. The interval timer 5Witch is in DISABLf:

2. The rate switch is nbt in PROCESS

3. A timer error ocCl.irs. ·

Set Timer

The timer value is '8t into the hardware and main storage loca
tion 80 ·at O to 45-time of the storage-2 c.ycle of a storage word
that specifies:

1. A not k-addressable storage W<>rd, and

2, A store word into location 80.

Read Timer'

· : . ·The contents of the counter cannot be displayed directly.
To enable the timer value to be checked the timer contents

···.are transferred by the 370 microprogram D

Dhplay Timer

The manual display of location 80 shows the timer vatue of the
last update.

lntwftl Timer Switch

NORMAL
This Mitch position eiwblft ttie intlmll timer control circuhs,
which allows U.. lw..,.1D m dlcnrnenbd centinuelly.

DISABLE

This switch position disables the interval timer control circuits.
Regardless of the interval-timer switch position, a store/display

of location 80 displays only the contents of main stcrage loca-
tion 80. ·

Interval Timer l~terrupt
Once enabled, the timer decrements continually, The instant
that the value changes from positive to negative, an interrupt
condition is indicated. The interrupt routine (GICM) tests for
this timer value change in LS Y (LS 16). When LS 16 bit'O'
changes from zero to one, the microprogram branches
when YO bit O= 1 ID and sets El the External Interrupt register
bit 0 (Ext 12, byte 0 bit 01 on.

During program execution, whenever both PSW bit 7 and
MSKA bit 0 are on, the timer Interrupt request is gated to the
interrupt latch. The system uses this to execute the interrupt
handling routine. ·

Sample Routine:

Lebel Ne>rt Label Statement Comments

PXO, OE, 52 Set P for interrupt routine
VC = O+ K50 v = 0000050

RDWY DM,50 D Read timer hardware

RDW~V,NOf'fJ Read location 8Cf
Y3= X3 Preserve byte 3

TIMR 1,eom
. STW y OM, 50 ·11 Update location 80

II TIMR 00
YO Current value negative?

TIMR 1,0 EXTIN.T, OR, K80 Set timer interrupt request
TIMR 10 MISCB1 SYS1 Continue'GICM
TIMR 11 TIMR 80,0 XO Was last value negative?

Notes: 1. The'8 statements 1.1 are found at the beginning of the GICM routine.

2. The timer update ID occurs only when either a system interrupt or a
TOD forced interrupt occurs.

..,.. _________ UserProgrmm ------------~

I 2.048ms I
Macroinstruction~..+ Macroinstruction+oinstruction ~Macroinstruction

1 1 1 1 1 1 1 1 1 , , 1 1 , 1 1 s~ 1 1 , 1 1 1 1 , 1 1 1 1 1 1 1

/_,~
, .. STORE TIMERJt I

(Storage Word
Control Wordl
(hlrdw1r•l
K•dclre...-.., -•-4, -......

A
I

GICM Routine
(System lnterruptl

(location 80, byte 3)

IStormga Word Control
Word) not K .. ddr
lble, reld byte,
i..aiOR l:J

1\

(Storage Word
Control Word)
K«fdreuable, store

word, location 80

3145 TM CPU 115

OS/DOS COMPATIBILITY
Introduction

• Consists of the OS/DOS emulator program and the hardware
and miaoprogramming needed for execution.

• Two new instructions: Execute Local (EXL) and Adjust CON
String (ACCWI, are used by the emulator-program.

• The DOS Emulator and the DOS system being emulated are
located in main storage above the OS area.

• The minimum storage area needed for the DOS emulator and
the DOS system is 38K bytes.

• The OS/DOS emulator operates in the same manner as any
OS job.

When operating in l~al mode (DOS programs being executed),
all addresses pertaining to the DOS area are adjusted by the
address-adjustment hardware.

When local mode is terminated, addressing is performed in the
standard manner.

Refer "OS/DOS Functional Units", and "Real Address
Computation Example" for an explanation of the address·
adjustment hardware.

Address translation is needed for DOS emulation because
the addresses of the DOS supervisor (SVI are basically fixed
and the DOS supervisor. is .located in an area of storage not
normally used by DOS SV. All references to the fixed addresses
of the DOS SV must be adjusted to reflect the real location of
these fixed areas.

The EXL instruction operates with the LEX List, which is
a table that the emulator program loads before the execution
of the DOS area. This list is located in the emulator area and
is used to handle entry to and exit from the local mode of
operation.

The ACCW instruction operates with the Adjust CCW list
(ACCW Listi. The ACCW list is loaded and maintained by the
emulator program for use in the adjustment of CCW data addresses.

The OS/DOS emulator and the DOS system being emulated
IDOS supervisor and up to three processing program partitions)
execute together in an MFT partition or MVT region, which must
be a minimum of 38K. The OS/DOS emulator program and tables
require 22K plus another 4K if 1/0 staging is used. Additional
OS/DOS emulator program storage may be required, depending
on the 1/0 devices used. Up to ten 1/0 devices are supported in
22K; and 250 bytes are required for each additional device. The
1/0 staging requirement of 4K supports unblocked reader, printer,
and punch records and residence of the required QSAM routines
in the OS/DOS emulator partition or region.

The DOS system being emulated can be 16K, 24K, or 32K and
up, in 4K increments. The OS/DOS emulator is scheduled to
operate in the same manner as any other OS job, Several OS/DOS
emulator jobs can execute concurrently with OS jobs if enough
1/0 devi.ces and processor storage are available. In addition, the
Model 145 OS 1401/1440/1460 and 1410/7010 Emulator pro
grams can execute concurrently with the OS/DOS emulator if
enough resources a~esent.

STANDARD FEATURES· CPU11~
EXAMPLE STORAGE ASSIGNMENT for 256K MODEL 145

03FFFF

.QSJOBS

030000

OSAM Routines and 1/0
buffers for 1/0 staging

DOS F 1 partition

DOS Area-Local Mode
DOS F2 partition

DOS BG partition

DOS Supervisor

015000

Add_ress·Adjustment Factor
DOS Emulator and tables

010000

-r---
015000 -----~~~~~~~~~~~~~~

os-sv
000000

_L _______ ___,

OS/DOS Functional Un'P"
Translate Look-Aside Buffer (TLBI

• Eight 26-bit registers contain the local and real addresses
used during the accessing of the local area when operating
in local mode.

• The ·local address occupies bytes O (bits 0-71 and byte 1
(bits 0-3) of the TLB.

• The local address is gated to the registers from PAA.

• The real address occupies byte 2 (bits 0-7) and byte 3
(bits 0-3) of the TLB.

• The real address is gated to the registers from EBI.

• The register to be loaded. is .addressed by the LRU.

• The TLB ca~ be displayedthr'ou~h EXT 2E with switch H
selecting 1 of 8 registers. .

Least Recently Used (LRU) Matrix

• The LAU is an address matrix that keeps track of the use of
the translate look-aside buffer,

• The LAU addresses the leastrecently used translate loo~·aside
buffer whenever a computed real address must be loaded. .,.

• ··Composed of 28 latches and as5ociated circuits.

• The LRU is reset to zero before the OS/DOS operation.

• The LAU can be displayed through EXT OS byte 2.

t.'

When a mi~match occurs between the local address portion of the
PAA and the local address portion of the TLB, the LAU determines
the register to be loaded with the computed real address. In the
GGST microroutine, the computed real address is loaded into TLB
bytes 2 and 3 and the local address causing the mismatch is loaded
into TLB bytes 0 and 1 addressed by the LAU.

The status of the LRU is changed each time a match occurs be
tween the local address portion of the PAA and the local address
frOm the translate look-aside buffer. This constant changing
aaures that the least recently used register is addressed when a
mismatcr ~Ru ffLRU Operation Example.''

,,i

Match Circuits

• Perform the comparison of the local address portion of the
PAA and the local address portion of the translate look-aside
buffer bytes 0 and 1.

• Output of the match circuits sets and resets specified
C?mbinations of the LRU.

• The match circuit can be displayed through EXT 08 byte 3.
When displaying the match circuits, the PAA must contain
valid information.

There is a match circuit for each translate look-aside buffer.
When a match occurs, the corresponding LAU row is set to ones
and the corresponding column is reset to zeros. The resul~ing
status of the LRU provides the means of addressing the least
recently used register.

'· v. w-------.

3

"--------------x-to M2 bits 4-7

A
D
D

~------+--..i R
E
s
s

EBI M3bit10-7
IPAA + ADJ Factor)

DATA

I ------t-----
1 -----r-- ---
• local - l.- Real

Addreis l Address
Bvtes0-1 -r- Bvtes2·3

I -----T-----
. I -----t------

1 -----t------1

Translate look-Aside
Buffer

local
Address

Match
Circuits

~A;;;•::.1 --x- to M1bits0-7
ress M2 bits G-3

Match

~No;;..;.;.Ma;;;.t:,;:;ch;;_ ___ Trap DSOC

Ito loadTLBI

3145 · TM CPU 117

LRU Operatianal Eumple

Fl RST STORAGE ACCESS ATTEMPT

Real Local
Addr Addr
Bytes Bytes Match
2,3 0, 1

0 015 001
1 016 002
2 017 003
3 018 004 ~
4 019 005
5 01A 006
6 018 007
7 01C 008

·Translate Look-Aside Buffer

PAA local address (OOA)

SUCCESSFUL EXECUTION OF STORAGE WORD

Real Local
Addr Addr
Bytes Bytes
2, 3 0, 1

0 015 001
1 016 002
2 017 003
3 018 004
4 OlE OOA
5 01A 006
6 018 007
7 01C 008

Translate look-Aside Buffer

PAA local address (OOA)

Match
Circuits

match on 4
Setrow4
Reset column 4

LRU
7 6 5 4 3 2 1 0

0 1 1 0 0 0
1 1 0 0
2 1 t
3 1
4 0 0 .1_i~ast recently used

5 (row 4=0s and column 4z1s)

6
7

LAU

7 6 5 4 3 2 1 0
0 1 1
1 1 1
2
3
4
5 1
6 0
1·

6 now least recently used

(row 6=0s and column 6=1sl

Assume:

Objectives:

Descrii;.tion:

Storage access attempted for local address OAOOO.

Adjustment factor .. 14000

Translate look·aside buffers are set to values indicated.

Table buffer Regs are set to'~afues indicated.,

Provide a real address to the M-register to access
the focal area specified as address OAOOO.
When the storage access is attempted in local mode,
the local address portion of the PAA and the focal
address portion of the translate look-aside buffers
are compared~

A no-match condition results from the match
circuits. This no-match condition causes a trap
to control-storage address DBOC. The GGST
microroutine is executed. The GGST microroutine:

Computes the real address by adding the local
address and the adjustment factor,

Re-executes recently used of the translate
look-aside buffers with the real and local
address.

Re-executes the storage word that caused the
mismatch.

Re-executing the storage word causes a match to
occur from the number 4 TLB. the number 4 TLB
was loaded in the GGST microroutine.

The match line from the number 4 register sets
row 4 and resetnolumn 4 of the LAU. The status
of the LAU now indicates that TLB 6 is the least
recently used. Should a mismatch occur on the
next storage access, the computed real address is
loaded into TLB 6. ' ·

STANDARD FEATURES CPU 118

New lnstructio~ for ~OS Emulator

• The new instructions are Execute Local (EXL), and Adjust • • •
CON string (ACCW).

• The Op code for both these instructions is B2.

• The immediat~ ~Y~~ cletermines which of thll' ~ instructions
is to be executed. · .

Execu ... Local I 82 I OE 81 01 (EXL>

• This instruction addresses the LEX list, performs certain
initialization functions, and sets local mode for system
operation.

When the EX L instruCtion is executed, the condition code, program
mask. and instruction address in the current PSW are replaced by
values from the LEX list. General registers 14 and 15 are loaded
from the LEX list and the CPU is placed in Local mode.

During the exel?Jtion of the EXL instruction. the modified
PSW is not checked for program interruptions .. Any such checks
occur as part of the ne~.t instruction execution ..

Condition Code

• U~n i:ompletion of thelxt lnsfru.Ction. the condition code is
set aC:cording to the condition code loaded from the LEX list.

Program lnterrUptions

Addressing: The address of the LEX list is invalid. The address
formed by the addition of the origin address and
the local .address exceeds the maximum address
allocated to the emulator program.

The operation is suppressed.
Operation: The instruction is not installed. The operation is

suppressed.
Protection: ·The LEX list is protected for fetching or storing.

The operation is suppressed.
Specification: The first operand address does not specify a 64- •

byte boundary.

Special

The origin address is not a multiple of 4096.
The local limit address is not one less than a

multiple of 4096.
The operation is suppressed.

Operations: If the EXL instruction, the ACCIN instruction,
the Monitor Call instruction, or the emulator
instruction is encountered while in local mode,
the operation is suppressed. The interruption
is reflected in the LEX list of the program
that placed the CPU in local mode.

A privileged operation is 1ny privileged instruction encountered
while in local mode. '

3146 TM CPU 119

Local Lilt Formet ind Dllfinition

BvtesO, 1

Bytes2. 3

Bytes o-3

Reserved for emulator program use. This area is
not addressed by the EXL instruction.

Upon termination of local mode by a program or
supervisor call interruption, the 16·bit interruption·
code describing the interruption is placed in this
field.

Programming Use lnterruption COdt

Bvt• 4-7
Prog.

Mask
Local Instruction Address

Bvt• 8-11 General Register 14 . .,... 12-15 General Register 15

8Vt11 16-19 Origin Addreu

'Bytes 20-23 Local Limit Address

Bvtes 24-27 Last Instruction Address

Bvtes 28-31 SVC Interruption Address

BVtes 32·35 Program Interruption Address

Bvtes 36-39

Bytes 36-39 When local mode is terminated by an asynchro
nous interruption (external, 1/0, or rnachine
check), the address located in bytes 37-39 is placed
in the PSW. The high-order byte is reserved and
should be set to zero. The adjusted PSW is stored
in the corresponding low storage old PSW and an
interrupt is taken to the OS supervisor.

Updates the current PSW when the EXL instruction
is executed. The instruction address in bytes 5-7 is
the address of the next instruction within the DOS
area. Whenever local mode is terminated by an inter·

r';Jption, this area is updated. The I LC field is al.'·• ;i
unpredictable when local mode is terminated by a~\
asynchronous interrupt ion.

The value in this field is loaded into general register
14 when the EXL instruction is executed. When
local mode is terminated by an interruption, the
current contents of general register 14 are stored
into this field.

The value in this field is lo?rled into general
register 15 when the EXL ,;1struction is executed.
When local mode is terminated by an interrup
tion, the current contents of general register 15
are stored into this field.

The address rontained in bytes 17-19 correspontf:··
to the address adjustment factor and points to the
zero address of the emulated DOS supervisor. This
address must be a multiple of 4096, or a specifica
tion interrupt occurs. The high-order byte of this
field is reserved and should be set to zero.

The addre5S contained in bytes 21-23 specifies the
upper address of the emulated environment:. The
address must specify one less th~n a 4096 · . .
boundary, or a specification interrupt occurs. The
high-order byte of this field is reserved and should
be set to zero. ·

When local mode is terminated by a program or

supervisor call interruption, this address points to
the instruction causing the interruption. This ,
address is within the boundary of the emulafor
program. If the instruction causing the interrup
tion was the object of an Execute instruction, the
address placed in this ,field would be the address of
the Execute instruction.

The contents of the addresS field are unpre
dictable when local mode is terminated by an
asynchronous interruption. The high-order byte of
this field is set to zero.

When local mode is terminated by a supervisor
call interrupt, the address located in bytes 29·.31
placed in the PSW. This address is within the , .
boundary of the emulator program. The high·
order byte is reserved and should be set to zero.

Whe~ local mode is terminated by a program
interrupt, the 11ddress located in bytes 33-35 is
placed in the PSW. This address is within the
boundary of the emulator program. The high,, '·
order byte is reserved and should be set to. zero.

STANDARD FEATURES . CPU 120

EXL.EXAMPLE: EXECJm° and LOCAL MODE OPERATION START .. '
820E EXL Sets Local Mode

EXI,.. Points to LEX list

Progra":imi!"!i.Uie. Interruption Code

Bytes 4·7 Local Instruction Address

Bytes 8-11 General Register 14

Bytes 12·1$ General Register 15

Bytes 16-19 Origin Address

Bytes 20-23 Local Limit Address

8yt..S 24-21 Last Instruction Address

Bytes 28-31 SVC Interruption Address

Bytes32-35 Program Interruption Address

Byies36-39 Asynchronous Interruption Address ,

LEX List

Update
from
LEX
List

CurrentPSW

Address

Gen Reg 14

GenRll!l15

ADO
Addresses

Compare

Real
Address

._---Address Exception

All address adjustments, whlle ln local
mode, are handled by tha addr•SH4ustment
her~•.

Local Area

3145 TM CPU 121

EXL Instruction

ls2 OE 81 011

·~~

LRUMATRiX

AAume: All registert haw been initialized.

Adju-nt Factor• 14000

Local
Addrea
Bytes0, 1

CURRENTPSW

001000

T
I-REGISTER I 001000 I .__..,......,

R•I
Addrest
Bytes 2,3

4

TRANSLATE LOOK-ASIDE BUFFER

Initially the local addresses and the
parity bits are set to zero. The first
time the TLB is accessed, a mismatch
occurs.

STANDARD FEATURES '<' CPU 122

Local R•I
Addrea Addrea Match occun; to •How M.,19 set up c.nd cycle LRU).

o L--,oor'--i==o:::1-:s=':::J I
I . M-REG

I l~Mt I ·. . 5 M2 Read......__ of-"'___,, __ ...__
I . · · o ---- .. ,..._ " -..-.
L-------:------"'.""i g M3

TRANSLATE LOOK-ASIDE BUFFER

AFTER TRAP ROUTINE

No Match

Trap to OBOC

Freeze I, V, W, TR. and PAA ..

Trap routine GGST
001 Compute real addreas, load real eddreu

and local address into TLB 0,
Re-execute the storage word that caused
the mismatch.

LOCllladdreu
Adjustment factor

Real eddre11
!..!!!!

015

When the EXL instruction has been exec:Uted and control is ·
passed to the current PSW, the address-adjustment circuits are
activated.

In local mode, each time an access is made to main storage, with
an ADJ storage word, the local address portion of the PAA is
checked against the local address area of all eight TLBs. When a
match is detected, the real address from the TLB causing the matCh
is gated to the M-register. The displacement value from fAA is also ,·,:, ... :
gated to the M-Reg to make up the complete real address of the
location to be acce::sed.

When a no-match condition occurs, a trap is forced and the
GGST microroutine is executed. The real address is formed, and
the real address and local address are loaded into the least recently
used TLB. The storage word causing the mismatch is re-executed.
The resulting match condition gates the real-address to the M
register for a main-storage access and updates the LAU matrix.

Adjust ccw S1rint 01

• The operand address designates the Adjust CCW (.ACCWI list.' •'

• With the information from the ACCW list, this instruction
addresses CCWs and performs adjustment on the data addresses
of the CCWs.

The AC<::N instruction interprets successive doublewords as CCWs
and adjusts their data addresses by algebraically adding the adjust·
ment factor to them. This process continues until:

The last CCW ~djU$ted did not specify chaining, or

A CCW whose command code specifies TIC has been adjusted, or

A CCW whose data address points outside the emulated
environment is encountered, or

The address of the next CCW is outside the limits of the emulated
environment or does not si;>ecif~ a doubleword boundary.

Any of these conditions terminates the instruction and sets
the proper condition code to specify the reason for termina·
tion~

When the ACCW instruction is completed, the address of the
tast CCW adjusted +8 is stored in bytes 17-19 of the ACCW list
for condition codes O. 1, or 2. For condition code 3, the address
stored is CCW + 0. If data chaining was in progress, the command
code and the address of the CCW oontaining the command code
are set in the operation byte and operation pointer fi~ds,
respectively.

If the last CCW adjusted ~pecified transfer in channel, bytes
21-23 of the ACCW list contain the unadjusted tllata address from
the TIC CCW. If the TIC CCW is encountered in a data-chaining
sequence, the operation byte and operation pointer of the ACCW
list cont.ain the values set from the first CCW of the chain. When
the TIC is not data-chained, the operation byte in the ACCW list
is set to zero. The CCW address field in the ACCW list is set to
the address +8 of the TIC CCW.

Condition Code

0 End of the CCW string. The last CCW adjusted specified neither
data chaining nor command chaining.
A TIC CCW was the last CCW adjusted.

2 An adjusted data address was encountered that fell outside the·
area of the emulated environment. . . .

:. 3. The address of the n~xt CCW to be adjusted did not specify a
· :;;: doubleword boundary or fell outside 1he ... of the emulated

·environment.

Program Interruptions

Addressing: The address of the ACCW list is outside available
storage. The operation is suppressed.
The address of a CCW is outside available storage.
The operation is terminated ..

Operation: The instruction is not installed. The operation is
suppressed.

Protection: The ACCW list is protected for storing or fetching.
The operation is suppressed.
A CCW is protected for fetching or storing. The
operation is terminated.

Specification: The first operand address does not specify a 64-
byte boundary; the signed adjustment factor is

Special
Operation:

not a multiple of 4096; the local limit address is
not one less than a multiple of 4096. The operation
is suppressed.

The ACCW instruction was encountered while in
local mode. The operation is suppressed. The
interruptir .. 1 is reflected to the program that placed

the CPU in local mode by an address in the local
mode or by an address in the local list.

3145 TM CPU 123

Adjust CCW Litt Form11t and D.tlnition

Bvt• .0-3 Signed Adjustment Factor

Bvtes 4-7 local limit Address

Bytes 8·11 Reserved

Bytes 12-15 Operation Pointer

Bvtes 16-19 CCWAddress

" .Bvtes 20·23 TIC Data Address

Operation Byte

The signed binary number located in this field is
added to the data address of the CCW addressed ·
by bytes 16· 19 of the ACCW list. The 24 low-order
bits of the result are set into the data address field
of the CCW. The CCW data address, which is local
to the emulated environment, is compared against
the local limit address: If the comparison indicates
that the local address is above the local limit ad·
dress, a program interruption occurs.

The address contained ·:n bytes 5-7 specifies the
upper address of the emulated environment. The
address must specify one less than a 4096
boundary, or a specification interrupt occurs. The
local limit address is compared with the local CCW
address, and the extreme local address of the
storage area defined for each CCW by the data ad·
dress, command code, and unit, to assure that the
local address is within the limits of the storage
area assigned to the emulated environment.

The operation byte (byte 11 l carries the command
code for CCWs that are data-chained, The opera·
tion byte is set to zero if the CCW being pro
cessed is not data'.chained. When the operation

. byte is fetched from the ACCW list, the high-order
'·t-vtes of this field are ignored. When the operation
byte is stored in the ACCW list, the high-order
bytes are set to zero. A nonzero operation byte
encountered upon initiation of the instruction
indicates that the first CCW to be adjusted is part
of a data-chained sequence. ·

This field contains the address of the CCW that
originated the operation byte for the last non-TIC
CCW adjusted. When this address is fetched from
the ACCW list, the high-order byte is ignored.
When the address is stored in the ACCW list, the
high-order byte is set to zero.

The address contained in this field is the address of
the first CCW of a string when the ACCW instruc·
tion is encountered. When the ACCW is completed,
this address points to the doubleword above the
last CCW adjusted when terminated with condi·
tion 0, 1, or 2. When terminated with condition
code 3, the address points to the CCW causing
termination. When this address is fetched from
the ACCW list, the high-order byte is ignored.
When the address is stored in the ACCW list, the
high-order byte is set to zero.

Contains the unadjusted data address from .the
CCW whose command specifies transfer in
channel. The high-order byte is set to zero.

STANDARD.FEATURES CPU124

OPERATION EXAMP-ACCW INSTRUCTION

ACCW lnstructiOf'I

01

Bytes 0:3

TIC Data Address

Local Address

Operation Byte

Command
Code

CCW1

Data
Address

Compare

(Local Addresses only)

The operand address of the ACCW instruction points to the
ACCWlist.

The CCW address from the ACCW list points to the first CCW
to be adjusted.

The operation byte contains the command code from the first
CCW in a data-chaining sequence.

The operation pointer contains the address of the CCW that
provided the operation byte.

Each CCW in the chain is addressed from the ACCW list.
The data address from the CCW is added with the signed ad

justment factor from the ACCW list. The local CCW address is
compared with the local limit address. If the comparison indi·
cates a valid local address, the operation continues. If the com
parison indicates an invalid local address, the operation is termi·
nated and a condition code of 3 is set. The extreme local add1'81S
of the storage area defined for each CCW by the data address,
command code, and count are compared with the local limit
address and zero. If the comparisons indicate a valid local
storage area, the adjusted data address is placed in the data
address field of the CCW. If the address compare is invalid, the
operation is terminated and a condition code of 2 is set

The CCW address in the ACCW list is updated +8 to point to
the next CCW to be adjusted. When the last CCW in the string has
been adjusted, the CCW address points to the next sequential
doubleword.

3146 TM CPU 126

E>CL _.. ACCW Instruction Exeadion

START

GAAi 11 Cyclesl

Decode B2 Op.
First Operand
address set in
V-register.

GGB2 INVOP 01

No

Specification

Exception; go

toGICMfor

interrupt.

Set the 0-Reg
to the proper
eddress for
entry to the
GHYP routine.

Return using
Q as link Reg.

\'es Yes

Special Operation
Exception; go to
GICM routine for
interrupt.

No

RDWOADJ, V+4

V now points to the
loc:el limit address
in the ACCW list.

RDWY ADJ, V+4

V now points to the
operation byte field
in the ACCW list.

a- OOOOXX3B for EXL
0 • OOOOXX3C for ACCW

No

GHYP OPRBND11

Place signed adjustment

factor In Q..Reg.

Place local limit
address in Y·Reg.

'OHYP RELBND10

Do CCW adjust ls
described for ACCW
instruction.

GHYP

Store 10:.111st
pointer at FF28 •.

Set local list
pointer to the
origin location.

GHVP OPRBND 11

Place origin
address in O·Reg.

Place local limit
address in Y·Reg.

Check addresses.

If valid, continue; If

not, take specification

exception and branch to

GICM for Interrupt,

RDWOADJ, V+4 ___ ... _ V now points to 1-1
limit 8ddresl location
in the loc:el_ list. ,

EXL

RDWY ADJ, V +4

V now points to last
instruction address
location in the loc:el lilt.

RELBN~:A»

1xcaption and
brand! to GICM

; . fot interruPt· . . l

. SI~ l~I poin~~
beck to start of
local list.
Set registers_ for
local execution.
Set local mod• and
return to l-cyct11.

STANDARD FEATURES CPU126

Interruptions

Any interrupt removes the CPU from local mode.

All synchronous interrupts that occur while in 1.ocal mode '
are handled bv the emulator program.

All asynchronous interrupts that occur while in local mode are
first handled by the OS supervisor.

If a supervisor call, program, External, 1/0, or recoverable
machine-check interruption ocrurs while the CPU is in local
mode, the following actions take place:

The 16-bit interruption code associated with the supervisor call
or program interruption is stored in the interruption code field
of the LEX list. The contents of this field after an external, 1/0,
or machine-check interruption are unpredictable.

The ILC, CC, program mask, and instruction address of the '
current PSW are stored in the bytes 4-7 of the LEX list. The value
of the I LC after an asynchronous interruption is unpredictable.

The current contents of general registers 14 and 15 are stored
into byte5 8-15 of the LEX list.

If the interrup-.: is a supervisor call or program interrupt, the
local address of the instruction causing the interruption is stored
into bytes 25-27 of the LEX list. If the in5truction causing the .
interrupt was the object of an Execute instruction. the local
address of the Execute instruction is stored. -

The address of the corresponding interrupt (SVC, program, or
asynchronous) is loaded into the current PSW from the LEX list.

If the interrupt is an asynchronous interrupt, (1/0, external,· or
machine-check) the adjusted current P$W is stored in tile cor~
responding low storage old PSW and interrupt is then sent t~ -•
the OS supervisor. · - - - '

The CPU is removed from local mode,

LEX LIST AFTER PROGRAM INTERRUPT

Bytes 0-3 · Prog,amming Use Program Interrupt Code

Bytes 4-1 Local Instruction Address

Bytes

Bytes

Bvt• 16-19

Bytes 2o-23

Byt• 24-27

8Y1ll 28-31

Bytes 32-35 Program Interruption Address

Bytes ; 36-39 Asynchronous Interruption Address

LEX LIST AFTER SVC INTERRUPT

Bytes 0-3 Programminq Use .J SVC Interrupt Code
L= -"--

Bytes 4-7 I IC I Program
~ c Mask

Local Instruction Address

Bytes 8-11 General Register 14

Bytes 12-15 General Register 15

Bytes 16-19
~;·;;..,, ~eseived ·· -'~·; ".';';? Origin Address
!:::.---'--

Bytes 2o-23
..

.:

i;{ Reserve(! __:_i;
Local Limit Address

Bytes 24·27 !i. Reserved)) SVC or Execute Address

Bytes 28·31 Reserved ,,~ SVC Interruption Address

Bytes 32.35
:1

~·
Reserved ... Program Interruption Address

Bytes 36-39 f
·.· -..

Reser~~ Asynchronous Interruption Address

When the interruption is a specification exception due to an Odd
address, the I LC is unpredictable. The Last instruction field
contains the odd address.

LEX LIST AFTER AN ASYNCHRONOUS INTERRUPT

Bytes 0.3

Bytes 4-7 Local Instruction Address

Bvtes~11 General Register 14

Bytes 12-15 General Register 15

Bytes 16-19

- .. " ... I
~i-_.- R~erved '<;'1 Local Limit Address

G: Reserved ·I UNPREDICTABLE

Reserved -.·I SVC Interruption Address

Reserved Program Interruption Address

Reserved Asynchronous Interruption Address

•tLC Is unpredictable.

UNPREDICTABLE

3145 TM CPU 127

SVC INTERRUPTION EXAMPLE

Bytes G-3

8vt• 4-7

8ytes 8-11

~ ~vtes 12·15

Bytes 16-19 Ae£erved

Bytes :Z0.23 R"<erved

Bytes 24-27

Bytes 28-31

Bytes 32.35

Bytes 36-39

Local Instruction Address

G.-ral Register t4

General Register 15

Origin Address

Local Limit Addr-

Last Instruction Addr-

SVC Interruption Address

Program Interruption Addr8S$

Asynchronous Interruption Address

LEX List

Store SVC interruption code.
Loc:ll mode is l'llet by th• interruption

CumntPSW .
ILC . ; cc : Proe M•k Addl'lle

AddreaofSVC

This eddrea polnu to thfl SVC handling
routine within the emulator program.

Gen Reg 14

Gen Reg 15

Th• SVC routine in the emulator prOQram decodls
the. Information carried in the SVC instruction to
determine the DOS SV address to branch to.

This type of interrupt has no PSW swaps.

Once the DOS return addr.Ss has been computed,
an EXL Instruction ii executed, loi:at mode is set,
and a return Is made to en address in the DOS SV.

STANDARD FEATURES CPU 128

DI

m
ID

II

The DOS superv.rates in problem state. When a Start 1/0
instruction (privil ~ instruction) is executed in the DOS super·
visor, the DOS emulator intercepts the program interruf't'causing
the following to be performed by the 3145 microprogram
(Emulator Interrupts GHYI).

1. The privileged operation interruption code is set into bytes 2
and. 3 of the LEX list.

2. The selected current PSW instruction" address is loaded into
bytes 4~7 of the LEX list;

3. The address of the Start 1/0 instruction is stored into bytes
25-27 of the LEX list.

4. The current values of general registers 14 and 15 are stored
into bytes 8-15 of the LEX list.

5. The program interruption address, bytes 33-35 of the LEX
list, is placed into the current PSW.

6. The CPU is removed from LEX Mode. -

The DOS emulator co~mences i~struction execution at the
the address specified by the program interruption address and
performs the following:

1. The ACCW instruction is executed to adjust the CCW data
addreSSllS to their values in the emulator program.

2~. Control is transferred to the OS SV to handle,the Start 1/0.

When the OS SV has handled the Start 1/0, a return is made
to the DOS Emulator; The EXL instruction i54then executed
to restore information prior to restarting the DOS SV at the
point of interruption. Refer to "EXL Example: Execution."

Upon completion of the 1/0 operatklrt. another ACCW instruc
tion is executed to restore the CCW1dat11 addresses to their local
value$.

START 1/0 INTERRUPTION EXAMPLE

Start 1/0 from DOS Supervisor

m
Program Interruption
Leave local mode

Adjust CCWs - - -- IJ

DOSSV
Start 1/0

DOS Emulator
ACCW

ossv
Starts 1/0

Resume execution
Set local mode

II

RTN ID

3145 TM CPU 129

MONITOR CALL

The monitor call feature allows the programmer to place a trace
on his prO!J'am operation. The monitor call instruction is inserted
as desired, throughout the program to cause program interrupt
when that point is reached. The conditions can be made selective
by segregating them into up to sixteen classes. These classes can
be masked to allow interrupts only for specific conditions. A code
number placed in the operand field of the instruction is reported
along with the monitor class number during each interruption.

Monitor Call Instruction

MC SI

AF 12 . 01

0 8 16 20

12 Bits 8-11 must be zero.
Bits 12· 15 contains one of sixteen monitor class numbers in

binary notation for the test.

81 General register to used in determining the monitor code
along with 01.

31

01 This field, along with the register defined by 61, is added to
produce the monitor code. (01 can identify 256
codes without the use of the register.)

The monitor class number specified in the 12 field of the
instruction is tested against the monitor class mask in control ··
register 8. The sixteen bit mask identifies the monitor classes
with bit 16 for class 0 and bit 31 for class 16. If the mask allows
the class, a program interrupt is initiated. When a class is inhibited,
the monitor call instruction passes as a No-Op.

Control Register 8

1~~1 Monitor Class Msk

0 16 31

When the instruction initiates an interrupt, the monitor class
number specified by the instruction is posted in permanent storage
byte location 95. The class is posted as a binary number in the low
order with the high-order set to zero. The computed monitor code

AF

is set into permanent storage word location 156 with byte 0 set to ,.,"~· .. ,.,.
zero.

Permanent Storage 94

I 00000000 I MonCL # I PER Code I 00000000 I
0 8 16 24 31

Permanent Storage 9C

Monitor Code

0 8 31

Execute next

Instruction

0400

Match Instruction 12 field value

with epproprillte bit in monitor

mask (value 04 match with mask

blt41.

CONTROL REGISTER 8

Yes

Monitor Mask

Set Prowam Interrupt
code 40 at address BE

Set 12 field bit& 12·15 into

Compute 81 and 01

address and store as

monitor code at

address9C.

Take monitor call

program interrupt

MONITOR CALL CPU130

EXTENDED CONTR<JllllODE

Introduction

The extended control (EC) feature of the 3145 tnitiates and re-·
ports a number of System/370 functions. The CPU can still oper·
ate in basic control (BC) mode to accomm~ate programs written
for System/360. A new PSW format is used along with control
registers and extensions to the permanent assigned storage to
implement EC mode.

Bit 12 of both the old and new formats of the PSW has a
common notation for identification. When the bit is set to 0, the
CPU reads the PSW as BC mode, If the bit is set to 1, .the PSW is
read as EC mode. The .change from one mode to the other can be
made with any PSW interchange. An 1/0 operation can be started
in one mode and continued to an ending in the other mode. EC
mode is required in order to perform most of the System/370
features.

Feature Mask

The changes to the basic PSW are'~~deto satisfy requireme~ts of
. the EC feature. An expanded system mask controls additional
features.

Mask bits for the new features replace the system (1/01 mask of
the BC mode PSW. The system mask is moved to the control reg
isters. The condition code and program mask fields have been
moved to bits 18 • 23 of the EC mode PSW. The lLC and the
interruption codes have been moved to an area of the permanently
assigned storage.

EC mode activates the following features on the 3145.
System Mask bits on 1 allow the indicated features to function.

R Program Event Recording (PER) - This feature allows the
programmer to debug his programs by identifying instruc·
tions that could cause trouble in operation. These include
branch conditions, instruction fetch, storage alterations, '
and general register alterations. The recognition of one of
these conditions causes a program interruption with the
instruction address and code posted in a permanent storage
location. '

T Dynamic Address Translation (OAT) -This feature allows
conversion of programs expressed in virtual address to real
address in main storage. The translation does not occur for

110 addresses or for permaMntly ass9l9d addresses "* by
,., CPU. The 1/0 countef'J)art is the Indirect Dau AddnlSling
. (IDA) feature that is not masked and is lllowed in BC

mOde.

1/0 Input/Output Mask - The 1/0 mask that allows interrup·
tions for the 1/0 channels selectively is located in control

register 2. The mask bit in the EC mode PSW represents a master
mask.

E External Mask - The External mask that allows interrup·
tions for the external devices selectively is located in con·

trot regist~ O. The mask bit in the EC mode PSW represents a

master mask.

The diagram shows the related mask bit, feature and con:
trot: egisters. Greater detail of the feature is defined under the

feature name.

BC and EC PSW formats

BCPSW

Sys Mask

Chan 1E
Mask I

0

ECPSW

Sys Mask
OROOOTl/OE

Program
Event
Recording

Ctrl Reg 9

Ctrl Reg 11

I
Key 10MWP Interruption Code

. ,,6

I I I
Key I 1 MWP 00 IC I Prog 00000000

' C Mask

Translate
Mode

Ctrl Reg 0

Ctrl Reg 1

Input
Output
Mask

Ctrl Reg 2

00000000

External
Mask

40

Ctrl Reg 0

Instruction Address

4B 54

Instruction Address

Machine
Check
Mask

Wait
State

63

Ctrl Reg 14

Control Mode
O=BC mode
1=ECmode

Problem

State

3145 TM CPU 131

Control Registers

The 3145 has sixteen one-word control registers that provide
an extension to the EC mode PSW. The control registers are located
in control storage at addresses F480 through F4BF; Three of these
control registers also function with BC mode for external mask
and machine check controls. Details of the register assignments
are contained in the sections of this manual that discuss the
features.

The registers are loaded to standard masking and address values
during system clear. The registers can be loaded from main storage
with the load control instruction (LCTL). The information in the
registers can be transferred to main storage with the store control
instruction (STCTL). When using the load and store instructions, the
unused registers must be considered in the main storage area specified.

CONTROL REGISTER ASSIGNMENTS

System Translate External Interrupt
0 Control Control Masks

Segment Segment Table Origin Addres.s Table Length

2 Channel Masks

3 Reserved
'-

4 Reserved
.::

5 Reserved

6 Unassigned

7 Unassigned

8 Monitor Mask

PER Event
00000000

PER General Register
Masks Alteration Mask 9

10 00000000 PER Starting Address

11 00000000 PER Ending Address

12 Unassigned

13 Unassigned

Error Recovery
Control and Masks 14

15 00000000 MCEL Address
~- f

0 8 16 24 31

CONTROL REGISTER 0

Bits

Reset to 00 00 00 EO

CONTROL REGISTER 1

System
Control

Bits 01234567

Segment Table Length

Reset to 00 00 00 00

CONTROL REGISTER 2

Bits

. Reset to FF FF FF FF

01=2K

10a4K
00=64K

10=1M
Translate

Control

EXTENDED CONTROL MOOE CPU1~

15 16 17 18

External Interrupt Masks

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Segment Table Address 000000

13 14 15 16

1/0 Masks

Note: Initial Value of unassigned positions in 81119gistert
is unpredictable but is as~umed to be~. ·

...

CONTROL REGISTER 8

PER Control

Reset to 00 00 00 00

CONTROL REGISTER 10

Bits 012345

00000000

Reset to 00 00 00 00

00000000 General Register Mask

28 29 30 31

CONTROL REGISTER 11

Sits O 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00000000

. Reset to 00 00 00 00

PER Ending Address

3145 TM CPU 133

Permanent Storage Assignments
System/370 assigns the first 128 bytes of main storage as
fixed operation-addresses and adds assignments to much of the
•ea up to 256 bytes. It also resenies the main storage addresses
between 256 and 512 for feature use and an option for logout
starting at address 512.

Most of the new area between address 80 and 100 is used
only by EC mode operation and features. BC mode operations
do not develop the interruption codes and logging information
that is stored here. The features added with EC mode also post
their result codes and addresses in this new area.

An 1/0 interruption posting area located between addresses
AC and. CO allows greater error definition in EC mode, than in
BC mode. A portion of this posting area is also posted by BC
mode operations to allow for combinations of EC/BC mode.
The BC mode program cannot always handle the information
automatically. Details of t~e permanent storage assignments are
in the manual sections that discuss the features.

DEC

0
0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
68

72

76

80

84

88
92

96
100

104
108

112
116

120
124

HEX

00
00
04

08
oc

10
14

18
lC

20
24

28
2C

30
34

38
3C

40
44

48

4C

50

54

58
5C

60
64

68
6C

70
74

7B
7C

PERMANENT STORAGE ASSIGNMENT DEC

128

Initial Prog Load PSW or 132
PSW Restart New PSW

136
Initial Prog Load CCW1 or

PSW Restart Old PSW
140

Initial Prog Load CCW2
144

148

External Old PSW 152

156
Supervisor Call Old PSW 160

164
Program Old PSW 168

172
Machine Check Old PSW

176

Input/Output Old PSW 180

1B4

Channel Status Word 188

192
Channel Address Word 196

Unassigned 200
204

Timer 20B
Unassigned 212

External New PSW 216
220

Supervisor Call New PSW 224
228

Program New PSW 232
236

Machine Check New PSW 240
244

Input/Output New PSW 248

252

256

EXTENDED CONTROL MODE CPU 134

HEX PERMANENT STORAGE ASSIGNMENT

80 Unassigned

84 0000000000000000 Ext lntp Code

88 0000000000000 I LC SCV lntp Code

SC 0000000000000 I LC Prog lntp Code

90 00000000 Translation Excpt Addr

94 00000000 Monitor
PER Code}oooo~~6o Class No~

9B 00000000 PER Prog Event Addr

9C 00000000 Monitor Code

AO . Unassigned
A4 ·.

AB Channel ID

AC 00000000 IOEL Pointer

BO Limited Channel Logout (ECSW}

B4 Unit St Chan St Count

BB Key~ Flag 1/0 Address

BC CCW Address

co Unassigned
C4
CB
cc
DO
04 ··:_··
08 CPU Timer
DC · ... ~
EO Clock Comparator Reserved
E4

EB Machine Check lntp Code
EC

FO Unassigned
F4

F8 00000000 Failing Storage Addr

FC Region Code ·,

100 CPU Independent Log :

PSW Interchange Sequence
When starting an interruption sequence. the current PSW is stored
as the old PSW for that class of interruption. The new PSW for
the interruption class is then read in and set as the current PSW
for the interruption routine. The sequence is similar in both BC
and EC mode. The differences result from the allowable features.
A similar sequence is taken at the end of the interruption when
the old PSW is returned from storage to fill the current PSW in
order to continue the problem program.

• Before leaving the GICM routine, the EC interruption code is
stored in the assigned permanent storage location, and the
first word of the entered PSW is returned from control storage
FF38.

• After branching tQ the GIPW routine, the CC and the program
mask from the UO register are set in byte-2 of the first word of
thePSW.

• The I LC is not stored in the old PSW for EC mode but is
stored with the interruption code when required.

• If the control mode is changing from BC to EC, the 1/0 mask
from control register 2 is moved to the MSKB register.

• If the new PSW does not call for translate mode, the translate
tables and the mode bit are reset to ensure that the mode is
off.

• The EC system mask is moved to the EPSWA register for
operation.

ec
GICM

Store EC lntp Code
Enter HiAh Old PSW
Control Storage FF 38

GIPW

Assembly CC,PM;UO

Set CR2 into MSKB

Reset Translate Tables

Test for lntr Cond.
Develop Code
Dev CS PSW Addr
Dev lntp Code Addr

GIPW

Assembly Inst Addr; I
Store High Old PSW
Store Low Old PSW
Enter High New PSW
Enter low New PSW
Move Inst Addr to I

Set System Mask,EPSWA

A

BC

Assembly ILC,CC,PM,UO

Assembly Sys Msk;MSKB
Assembly OMWP;ESPWB
Assembly Key;IO

Reset Translate Tables
Reset Translate Mode

GIPW

Set 1/0 Master Mask

EXTENDED CONTROL MODE

• When a pending interruption is recognized following the com·
pletion of an instruction, the PSW interchange is started in the
GICM routine.

• The interruption code is developed, and the addresses required
for EC mode operation are developed before testing for the
control mode.

• Before leaving the GICM routine, the ILC, the CC, and the
'.Jrogram mask are entered from the UO register and set as
byte-0 of the second word of the PSW.

• After branching to the GIPW routine, the system mask (1/0)
from the MSKB register is set as byte-0 of the first PSW word.

• For byte-1 of the first word the OMWP is entered from the
EPSWt; register and the protection key is entered from the
the I 0 register.

• The low-order three bytes of the I-register are set as bytes 1,
2, and 3 of the second word of the PSW.

• The two assembled PSW words are stored in the1appropriate
old PSW storage location.

• The two new PSW words are entered from their permanent
storage location, and the instruction iddress is moved to the
I-register.

The BC mode system mask is the 1/0 mask, and is moved to
the MSKB register.

• If the previous operation was in EC mode with tranSlate mode,
the translate tables and the mode bit are reset.

• The master 1/0 and external mask bits in the EPSWA register
are set if bits are set in the MSKB register.

CPU 136

• With each change in PSW, the previous PER setting must be
tested against the new requirements.

GIPW

• When the new control mode is EC, but no PER control is set, H
routine is branched to the BC sequence to reset PER.

• If PEA control bits are set in control register 9, the PER latch
(Sys l Bit 4) is set. This forces the return link function at
the end of the execute cycle. G,..c_c-.R..._ _ __,..._ __,

• The RTN LNK address is set to B500 to cause returns to go :: ~:S~ ~~~ !;o"
through the PER routine.

Develop Address for CR9
Enter LNK Address

No

BC

• BC mode does not allow PER mode.

• Before testing the nevi mode, the address of control· register 9
is developed and the RTN LNK address is entered.

G ... C_C_R-'-"-'-'--'-1;...:..--. _ __, H ·. Set RTN LNK,B400
Set Sys 1 Bit 4, off

If the new control mode is BC or EC mode without PER con
trol set, the ATN LNK is set to address B400.

The PER latch {Sys 1 Bit 4) is reset to identify the condition.

GIPW l {
- ___ ---· Load XMWP in EPSWB

Returning to the GIPW routine, both modes move the XMWP
into the EPSWB register for operation.

'
mask values are set into the UO register.

Set High Addr in R3

• A test i~ made for PSW validity before all;wing the operation ~:: ~~~ ~~·~n UO
to continue. Test EC PSW Validity

Store Hi PSW in FF38

EC

• The Key is set into the 10 register, and the CC and program H GIPW

• The first new PSW word is stored in control storage FF38 for ----....-----'
backup and use when storing old PSW.

B500

PER ROUTINE

BC

GIPW H • For a new BC mode, the PSW Key is set into 10 register.

:: ~~ ;~ 1~ uo • The new CC and program mask values are set into the UO
-----...------...... register.

With the completion of the exchange routine, the operation is
branched to the RTN LNK address.

Depending on the RTN LNK address, the operation goes to the
normal instruction return or to the PER routine.

3145 TM CPU 137

Interrupt Codes

INTERRUPT
ADDRESS

CLASS CODE BC EC

External 1005 1A 86
1004
0040
0080

(Note 1) ooxx

Supervisor Call (Note 2) xxxx 22 SA

Program 01-0F 2A BE

10
11
12
40
80

Machine Check 32 ES

1/0 (Note 3) xxxx 3A BA

Note 1 Code is bit significant by external interrupt signals.

Note 2 Code is dependent on the I-field of the supervisor _call
instruction.

Note 3 Code is dependent on 1/0 device address.

Note 4 PER interrupt concurrent with another program interrupt
ORs the value 80 with another interrupt code to yield a
resultant interrupt code.

FUNCTION

CPU Timer
Clock Comparator
External Interrupt Key
Interval Timer
Direct Control

(See System/370 Principles of Operation,
GA22-7000.l
Segment Translation Exception
Page Translation Exception
Translation Specification
Monitor Call
PER (Note 4)

See Error Handling (Machine Check Logout) j

Store Th~n Mask Instructions
The two store then mask instructions can adjust the system mask
during the program sequence. The AND instruction removes
mask bits from the mask. The OR instruction adds bitS to the
mask. In either case the current mask is stored at the address
specified for later recall, when required. If control register 0
bit 1 = 1, the instructions are not executed.

Store Then AND System Mask

STNSM SI

AC I Mask I 81 I 01 I
0 8 16 20 31

Store Then OR System Mask

STOSM SI

I AO I Mask I B1 I 01 I
0 8 16 20 31

The store then mask instructions are performed in supervisor
mode for either BC or EC mode. The first eight bits of the current
PSW are stored at the specified first operand address in main stor·
age. The current system mask bits are then logically ANOed or
ORed with the immediate operand of the instruction and the re
sults returned to the operating register. In BC mode, the 1/0
mask stored in the MSKB external register is stored and adjusted.
For EC mode the new system mask stored in the EPSWA external
register is stored and adjusted. No other changes are made to the
operation.

EXTENDED CONTROL MODE CPU 138

DYNAMIC AOORE9'tANSLATION

• DAT !dynamic address translation) is a combination of $0ft.V"are,
hiirdware. and microprogramming.

• No special programming conventions are required by the prob·
lem programs to utilize the DAT feature.

• The Supervisor program handles the problel\1 programs by
dividing them into unique blocks, and moving these blocks
in and out of real storage as needed.

Introduction

The DAT feature enables the storage capabilities of the 3145 to
be e1<tended beyond the real storage size. This is accomplished by
locating programs and data on an e1<ternal direct access storage
device (disk, drum, etc.I. This is referred to as virtual storage.
The information resides in virtual storage until the controlling pro·
gram requires it. At this time, control is transferred to a super·
visor program which uses 1/0 routines to move the needed infor~
mation into main storage. Control is returned to the program
requiring the information tci complete the interrupted operatiori.

. AJTlaximulll of :;ixtee:. million' bytes (16M) may be_ used as virtual
storage by the 3145. · ·

'The supervisor program controls data movements from or to
virtual storage by dividing it into increments designated as seg
ments and pages. A segment is the largest division of virtual
storage and may be either 1M or 64k bytes in size. The page
is a subdivision of the segment and may be either 4k or 2k bytes .
in size> Segment and page size are parameters set up in. the super'.
visor programai::c.o~ding t9the customer operational needs. The
movement of data between real storage and virtual storage is
always in payes of 4k· or 2k·byte increments depending on which
size the supervisor is using. To control this data movement. the
supervisor program initially builds segment and page tables when
the real and virtual storages are loaded. These tables are con·
tinuously bei.ng updated to reflect the current location of data
as it is being used by problem programs and moved between
storages by the supervisor.

DAT is a hardware addressing function. The software super·
visor manipulates data between storages and sets up and main·
tains the tables and control used by the hardware. DAT uses the
hardware assigned for the OS DOS Compatability feature. Both
the DAT and OS DOS features can be active at the same time.
Handling of the address adjustment factor for both is accom:
plished by the (3GST ~icro ro':'tine. ·

'~>-:>·

.. Addresses Su~jecl tci .. Tran~iation ·•

when the System/370 microprogram handles addresses that are
Subject to translation, the storage control word using that address,
specifies the ADJ function. The ADJ decode enables the address
adjumnent hardware. If address adjustment is designated by the
EPSW. the translation process takes place.

The following addresses are maintained, interpreted, or stored
as virtual addresses, and are subject to translation:

1. Instruction address in PSW
2. Branch addresses
3. Operand addresses when that instruction uses the address

to refer to a main storage location. This excludes Set
Storage Key, Insert Storage Key, and Reset Reference Bit
Addresses.

4. Address stored in register 1 by Translate and Test and Edit
and Mark.

5. Address stored at location Hex 90 on a translation e><cep·
tion interruption.

6. Address stored at location Hex 98 on ;. program event re·
cording (PER) interruption.

7. PER starting address in .control register 10.
8. PER ending address in control register 11.

,, ··,,,···

Examples of ~torag~ words desi~~ating addres~ transiation:

?DW . Q
STW X

AOJ;W+4
ADJ, V

Addresses Not To Be Translated
Address that are not to be translated are handled by storage con·
trol words that do not specify the ADJ function: When a storage
control word without A~J is executed, the AOR ADJ trap latch
cannot be set.'lno mis·match trap can occur), and no addressing
of the translation lookaside buffers takes place.

The following addresses are not translated by the CPU or
channel.

1. Segment table origin address.
2. Page table origin address.
3. Machine check extended log pointer in control register 15.
4. 1/0 extended log pointer at location Hex AC.
5. Address stored at location Hex F8 (failing storage addressl

on machine check interruption.
6. Region code stored at location Hex FC on machine check

interruption.
7. PSW addresses.
8. Address used by .hardware to update location Hex 59

timer.
9. Address for command address word for Start 1/0 or Start·

1/0 Fast Release Hex 48.
10 .. Addresses for channel command words .
11. Addresses for fetching or storing data by the channel.
12. Address for channel status word during execution of an

1/0 instruction or <luring an interruption.
13. Address of PSW used during an IPL.

Examples of storage words not designating address translation:

ROW R W+4
STW Q V·4

64Kor 1M

Seq men ts

VIRTUAL STORAGE
2K or 4K

DAT

.--------.~

-----1 _,'
Supenis0<

I
I
I

I

3145 TM CPU 139

Basic Operation of Dynamic Address Translation

Address Match

Match the virtual address
portion of the PAA with
the virtual address in all of
the translation lookaside
buffers !TLB). Does the
address match?

!No

I
I
I
I
I
I

Take a trap to the DAT
trap routine GGST. Is
the page that contains
the address in real storage? No

I ·. Compute the real address
and load the least recently
used TLB .with the real
and virtual address. Re
turn to. the storage control
word t~at cau$ed the trap.

Gate the real address por·
tion of the TLB, and the
displacement portion of
the PAA to the M-register
and access main storage.

Turn control over to the
Supervisor program by an
interrupt. The Supervisor
finds the page In virtual
storage and loads it Into
real storage. Return to
the I-cycles routine GAAi

· and start the Instruction
decode again.

PAA

DYNAMIC ADORESS TRANSLATION CPU 140

TLB1

Reel Address

Vlrtual Address i--1111111--~To Display Assembler

Displacement

Develop Address

Ma~ch the v1:-tua1 addre$S

oort1on ol the PAA with
t~ v:rrua! addt-':'Ss tn aff

of the table lookas•de buf
fers. Doe. the addre.s

match'

Take a trap to the D"T.
trap routine GGST,. Is

·· the·page that contains
the address in real stor·
age?

Yes

Compute the real address

and load the teast recentlv
used TLBwith the real
ar.d virtual add,..~ss.. Re

turn to tf"!e storage con

tr61 ~1ord that caused the
'trap:

y~ t------:

!!a ___ _

Gate the real address p0r

tion of the TLB. and the
displacement portion ol
the PAA ·to the M-register
and access main storage.

Turn confrol over to the
supervisor program by
means of an interrupt.
The superv1Sor finds the
page in virtual storage
and loads it into real
storage. Return to the
I-cycle. routine GAAi
and start the instruction

decode again.

To address the segment table. the segment address portion of
the virtual address is added to the Segment Table Origin. The
segment table origin is contained in control register .1. Control
register 1 is set up by the supervisor program when the segment
table is setup and stored into main storage.

Once the segment table is addressed, the entry is used to ad·
dress the page table. The page table origin from the segment
table entry is added to the page address portion of the virtual
address. The result is used to address the page table entry re·
quired.

The page table entry contains the ml address of the page
being icc:eSsed- ' :- .· .• , .

.. ·~ .. ·.' .;:..; .;,;"" ' - .:i.~;-.:~·~ '

GGST Micro Routine

PAA

Example: 64k segment I I
4kpage ~-Seg __ m_en_t_N_u_m_be_r__,.__P_ag_e_N_u_m_be __ r __ ...__o_;s_p_l•_ce_me __ n_t__,

15 16 19 20 31

CONTROL REGISTER 1

Segment Table Origin Address Multiply x4

8 25 26-31 ~000000

Multiplyx2

SEGMENT TABLE ENTRY

Page Table Origin Address

28

PAGE TA
0

BLE ENTRY

·--c. AN,..,...,_ , ,,.,,~ buf,oi.
Return to Control word and begin execution .

3145 TM CPU 141

Address Paging

Match the virtual address
partion of the PAA with
the virtual addren in all

of the table lookas1de
buffers. Does the address
match1

T
I No

Take a trap to the DAT
Hap routine GGST. Is

the page that contains
the address in real st or·
age?

I Yes

I
I
I
I

Compute the real address
and load the least recently
used Table Lookasode Buffer
with the Reaf and Vortual
address. Return to the
storage control word lhat

caused the trap.

Yes 1------

No

Gate the real address por·
t1on of the Table TLB, and
the d1splacemllnt portion
of the PAA ID the M·
reg is tr.r and access main
storage.

Turn control over to thr.
sunerv1~or program b\•

means of an interrupt.
The supervisor finds the
page in virtual storagP.
and loads ot onto real
storaqP. Return to thu

I-cycles routine GAA 1
and start the 1nstruct1on

d~code agarn.

Real Stonge ----II -

0 An attempt is made to use an address that is not iii real storage.
A program interrupt transfers control to the paging supervisor. '·

rJ Paging supervisor_ interrogates page status by examining storage
protect keys (reference and chang11 hits), t_o find a page that can
he replaced.

El Supervisor finds the needed page in virtual storage.

II Page out the real storage page if required ..

Iii Pag11 in the virtual pa!Je to the real storage_ location.

l!I ~et ur~ to I ·cycles routine G AA I to exccu~e th~ inuruction the
trap was initiated from.

DYNAMIC ADDRESS TRANSLATION CPU1

Segment and Page Sizes

VIRTUAL STORAGE "' 16 MILLION BYTES

Segment 15

Segment 14

Segment 13

Segment 12

Segment 11

Segment 10

Segment 9

Segment 8

Segment 7

Segment 6

Segment 5

Segment 4

Segment 3

Segment 2

Segment 1

Segment 0

VIRTUAL STORAGE = 16 MILLION BYTES

Segment 15

Segment 14

Segment 13

Segment 12

Segment 11

Segment 10

Segment 9

Segment 8

Segment 7

Segment 6

Segment 5

Segment 4

Segment 3

Segment 2

Segment 1

Segment 0

Segment and page tables are located in main
storage by the supervisor program.

p~
tM Segments, 4k Pages

sffi~
~·b:

One Segment t;;ble entry
for each segment of
virtual storage.

~

One page table for each segment
table entry. One page table entry
for each page within the segment.

PAA

Byte 1

DYNAMIC ADDRESS TRANSLATION

Control register 0 bits 8, 9,_ 1.1, and 12 are ·'· .
set in.the followi119 manner te> JMi~,e ~ ··. ·
segment aM page sizes: .. 1

• • ..

8=1-···· 4k Page size
9=0
11=1 ······lM Segment size
12=0

NP2 bit 3=1········· lM Segment
NP2 bit 4= t---------4k Page size

Byte2 Byte3

0 1 2 3 4 5 6 7 0123456 01234567

Segment and page tables are located in main
storage by the supervisor program.

Segment No. I

1M Segments, 2k Pages Page Table

r:1~d+i7''~r:~ l
EB One page table for each segment

0

1 table entry. One page table entry
for each page within the segment.

One Segment table entry
for each segment of
virtual storage.

PAA

Byte 1

'0123456

I Segment No. I

Page No.

Page No.

4k Page Size

Control register 0 b'i~s 8, 9, 11, and 12 are
set in the folla..ving manner to indicate the
segment and page 1sizes:

8=0
9=1;····.·:2k Page size
11=1····--lM Segment Size
12=0

NPl bit 3=1········:1M Segment
NP2 bit 4=0---------2k Page size

Byte 2 Byte3

2 3 4 5 6 0 1 2 3 4 5 6

2k Page Size

CPU 144

VIRTUAL STORAGE "' 16 MILLION BYTES . •.
Segment 255

Segment 254

Segment 253

Segment 252

Segment 251

Segment 250

~" ...
Segment 6

Segment 5

Segment 4

Segmenl ~

Segment 2

Segment 1

Segment 0

VIRTUAL STORAGE= 16 MILLION BYTES

Segment 255

Segment 254

Segme11t 253

Segment 252 ·

Segment 251

Segment 250
,i;r ..&,

.;egment 2

Segment 1
SegmentO

· Segment and page Tables are l~n main
storage by the supervisor program. Page Table

.···)~ 64k Segments, 4k PaL· ·. ·. . .··. •:··.··.··.··.· .·.·" ;-·.·.· ... ~ •• ~.·~.;;i.····: ~

T~tf~L.:Jttj
One segment table entry
for each segment of
virtual storage.

One page table for each segment
table entry. One page table entry
for each page within the segment.

PAA

Control register 0 bits B, 9, 11, and 12 are
set in the following manner to indicate the
segment and page sizes:

B=1····'.···4k Page size
9-0
11=0
12= O··· 64k Segment size

NP2 bit 3=0·······- 64k Segment size
NP2 bit 4=l····-··· 4k Page size

Byte 1 Byte 2 Byte 3

0 234567 01234567 0123456

Segment No.

Segment and page Tables are located in main
storage by the supervisor program.

64 k Segments, 2k Pages

Segment Table

1

0

;

,.,

One segment table entry
for each segment of
virtu11t storage.

One page table for each segment
table entry. One page table entry
for each page within the segme11t.

PAA

Byte 1

0 2 3 4 5 6 7

Segment No.

4kPageSize

Control register 0 bits 8, 9, 11, and 12 are
set in the following manner to indicate the
segment and page sizes:

B=O
9=1·······-2k Page size
11=0
12=0····-64k Segment size

NP2 bit 3=0······-64k Segment size
NP2 bit 4=0---···2k Page size

B te 2 B te 3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Page No. 2k Page Size

3145 TM CPU 145

Segment Table Entries

• A segment size of lM has 16 segment table entries.

• A segment size of 64k has 2~ segment table entries.

• Each entry in the segment table designates the length, avail
ability, and the origin of the corresponding page table. _

Entries in the segment table have the format:

length ! I Page Table Origin Address

0 3 4 7 8 28 29 30 31

length: Bits 0-3 specify the length of the page table in incre·
ments that are equal to a sixteenth of the maximum
size of the table. This code is compared against the
4 high-order bits of the page number to determine
whether the page address designates an entry within
the page table.

EXAMPLE

PAA

Byte 1 Byte 2 Byte 3 <"

lo 2 3 ! 4 5 6 1 I 0 1 2 - _-; 2 3 4 5 6 110
Segment no. Page no.

~,._;

64k Segment size
4k Page size

64k Segment size
2k Page size

1 M Segment size
4k Page size

1 M Segment size
2k Page size

,_c.:::- - - - - -l

lo 1 2 Jj4 5 e 1 a
Length

0 = one entry one six·
teenth of the table
size or 4k (minimum).

F sixteen entries of 4k
-increments or 4k x 16=
64k table size or equal
to one segment (Maxi
mum).

0 = 2 entries

F 32 entries

0

F

0

F

16 entries

256 entries

32 entries

512 entries

If the address is not within the page table, a page transl•
tion error is recognized (Prog lntr code 11).

Page
Table
Origin: Bits 8-28 with three zeros, gated as bits 29-31, form a

24-bit real address that desig~ates the origin of the page
table.

(Invalid):
Bit 31 controls the availability of the segment. When
bit 31=0, address translation proceeds. When bit 31•1,
a segment translation exception is recognized, and con
trol is passed to the supervisor (Prog lntr code 101.

PAGE TABLE ENTRIES

• Each entry in the page table designates the availability of the
page and contains the high-order bits of the real page addr5'.

The page table entries are 2 bytes in length and are divided into
fields:

Page Address ! I ! a , , I for 2k page

a 12 13 14 15

Page Address I I ! a I 0 i for4k page

0 11 12 13 14 1~

Page Address:
Bits 0 to 11 or 0 to 12, depending on the page size, provide
the high-order bits of th~ real storage address.

(Invalid):
Bit 12 or 13, depending on the page size, specifies the avail·
ability of the page associated with the page entry. When
the bit is zero, address translation proceeds. When the bit
is one, a page translation exception is recognized (Prog lntr
code 11);

Bit .14 (for 2k page) and bits 13 and 14 (for 4k page) are set
to zero when the.page entries are formed by the supervisor
program. If these bits are not 00 whenever the page entries -
are accessed, a translation specification exception is
recognized (Prag lntr code 121.

DYNAMIC ADDRESS TRANSLATION CPU 146

OS DOS Compatability~AT Active

When both of these features are active and the local area of thj ,
DOS emulated environment is being accessed, the adjustment fac
tor is added to the DOS address. The result is the virtual address
that is handled by the DAT mechanism .. A normal DAT transla·
tion is performed with this virtual address. Byte 0,and 1 of the
TLBs is the virtual address without adjustment. Bytes 2 and 3 con
tain the real address entry of the page ac:ceswd by the adjusted

address.

DOS Limit Address L

DOS Address 0000

Adjustment factor A
is the virtual address
of DOS address 0000.

-

T
-

A

1_

\

'

VIRTUAL STORAGE

Programs and Data

2K or 4K page of DOS

' 2K or 4K page of DOS
T \

\ ' \ \
\ \
~\

T
\ \

\ \ ' \ \ \
\ '

\ '

t---R

~'

Virtual Real ' ' ',' '.:: .. o ..._ __ A __ _,_ __ ;..;.R _ __,

The virtual addresses and the
calculated real address are
loaded into the translation
lookaside buffers in the
GGST routine.

.... , DOS Addr . X t-________ _,_ ________ -'

2
1-----------+---------~ 3

4
1-----------+---------~ 5 ..._ ________ _,_ ________ -'

6
.-----------+----------'

Translation Lookaside Buffers

REAL STORAGE

3145 TM CPU 147

Associated Hardware

Control Regimr o

=00 64k Segment
=01 Invalid
=10 ·lM Segment
=11

10=0 specifies a page entry of 2 bytes.

Examples:

This bit must be 0. If not, a
translation specification results.
(Prog lntr code 121.

Invalid

Byte 0 j Byte 1 Byte2

~r:
80
50
90

64 k segment 2 k page
64 k segment 4 k page
1 M segment 2 k page
1M segment 4k page

Note: These are the only valid combinations for byte 1.
Remaining combinations result in a translation
specification. (Prog lntr code 12).

Byte3

DYNAMIC ADDRESS TRANSLATION

Control Register 1

0 1 2 3 4 5 6 7 8---------25 26----31

(000000)

Bits 8 through 25 form the real address that designates the origin
of the segment table. Bits 26 through 31 must be 0.

Bits 0 through 7 designate the length of t.i;; segment table in units of
sixteen entries. This code is used to determine whether the entry
specified by the segment number falls within the segment table.
If not, a segment translation exception results (Prog lntr code 10).

Segment Table Lengths

1M 00 in the segment table length specifies
16 entries in the segment table. This is
the only valid entry for 1M segments.

64 k 00 specifies 16 entries in the segment
table.

64k OF specifies 256 entries in the
segment table.

CPU 148

load DAT Control Regi~I
This routine sets~ contents of control register 0 and control
register 1 into hardware and into control storage.

s.
Enter ·load control
routine from l·cvcles
of Load Control
Instruction

Invalid

Set X2 biu 1 and 7
.!\·~··~t transtate invatid

&l"ld reset TLB

Valid(OI

Reset Translation Invalid
X2bit 1

Set X2 bits I and 7 to
set translate invalid

Move SO (segment ori·
gin) register to work area

Valid

0

X-register contents are
destined to NP2

Set page size X2 bit 4.
Q"'.2K, 1=4K

Set X2 bit 7 reset
TLB

Test control register 0 bit 10
for O 2 Bvte pege table entrv

X2 bit 4 ii NP2 bit 4

Alter SO work area to
new value

No

Store control register 1
in control storage

Update SO register from
SO Work area

Set X2 into NP2, reset
NP2 bit 7 if on

Set SO byte O into SS2
(segment length)

Return Link

Set X2 bit 7 to reset
TLB

Invalid

Set X2 bit 1 and 7 to set
translate invalid and re·
setTLB

X-register contents are
destined to NP2

NP2 Bit designations

Set X2 bit 7 to reset
TLB

Set external mask in
MSKA

Stora control register 0
in control storage

Bit 1 Translate Invalid
Bit 3 1 M segment
Bit4 4Kpage
Bit 7 reset LRU and TLB

Valid

Yes

Set segment size X2 bit 3.
0=64K, 1=1M

No

X2bit 3 #NP2bit 3

3145 TM CPU 149

Reference and Change Bit Recording

• With the DAT feature installed, 2 additional bits in the storage
protect key are activated.

• Bits 0-4 of the storage protect key are used in the standard
manner.

• Bit 5 becomes the reference bit and is set each time the as
sociated 2 k block is accessed from real storage for a read or
store operation.

• Bit 6 becomes the change bit and is set each time a 2 k block
is accessed for a store operation. This indicates to the super
visor that the page has been altered and must be written back
or updated in virtual storage to reflect the change.

• Reference and change recording is active in either EC or BC
mode, and whether DAT is active or inactive.

7 Bit Key

101234561
~-__.,I I

Protection Key _________ j l I
Fetch Protect --------------' I
Reference Bit ----------------J I
Change Bit ------------------J

Note: Reference and change recording operates on 2048-byte
blocks (storage protect blocks) regardless of page size.

The paging supervisor uses the status of the reference and
change bits to keep track of the areas in real storage that are
avialable for use.

Whenever a page is referenced that is not located in the real
storage, the paging supervisor must fetch this page from virtual
storage and place it in an available page location in real storage.
By interrogating the storage protect keys, the supervisor deter
mineswhich page in real storage may be replaced with the page
from virtual storage. If possible, a page is selected that has not
been accessed. If all pages have been accessed, the paging super·
visor selects a page that has been referenced only. If all pages
have been modified, the paging supervisor selects a page in real
storage, pages it out to the virtual storage device, and pages in
the required new page to the vacated area.

DYNAMIC ADDRESS TRANSLATION CPU 150

Translation Lookaside Bu~ Bl

TLB REGISTERS 0-7. B~~ND 1
I

Bvtes 0 and 1 of the TLB registers contain the virtual address
portion of the page addresses that have been accessed b'I(the cur;
rent program. The virtual addresses are loaded into the TLBs
during the execution of the DAT trap routine GGST.

The virtual address is gated from byte 1 and by~e 2 (Bits 0-3
for 4K page; bits 04 for 2K page) of the PAA' by the destine
table line and the active LAU line.

The destine table line is activated by the decode of the DK
expanded local storage address. After the segment and page
table addresses have been formed in the GGST routine, the con
trol word ROH DK WK, NOP is executed. TheWK register con
tains the page table entry address which in turn contains the
REAL address that is associated with the virtual address causing
the DAT trap. This real address is gated to bytes 2 and 3 of the
TLB selected. At the same time, the yirtual address from the
PAA is gated to bytes 0 and 1 of the TLB selected.

Whenever bit 7 of NP2 is set, the reset table line brings up
Reset Reg 0. This is done when the Purge Table instruction is
executed, and when a bad page or invalid page is detected in the

TLB REGISTERS 0-7. BYTES 2 AND 3

'.

Bytes 2 and 3 are set with the real address from the page table
entry that is accessed in the translation trap routine GGST. After
the segment and_ page table addresses are formed in the GGST rou
tine, the control word ROH DK WK. NOP is executed. The WK
register contains the page table entry address which contains the
REAL address associated with the virtual address that caused the •
translation trap. The REAL address is gated on the EBI to bytes
2 and 3 of the selected TLB.

The OK function brings up the destine table line. This. when
ANDed with the LRU line results'in Set Reset Address Adj Reg O
which gates the real address to the proper TLB.

The output of the selected TLB is gated to the real address
assembler to the M-register. The displacement value from the

execution of the GGST routine. All bits including parity are
reset.

The output of the TLBs is gated to the MATCH circuits
whenever a translatable address is gated to the PAA. When a
match occurs between the virtual address from the TLBs and
the PAA, a match line is activated. This match line gates the
set and reset function for the LAU matrix.

The virtual address is also gated to the display assembler
whenever the external address 2E is used in a display operation.
Switch H determines the register to be displayed. The match
register can be displayed through external 08.

Note: TLB registers may be valid with either odd or even parity.

·PAA
Byte 1 Byte 2

34567 POl 23 41557

4k TLB _____.J J
2k TLB ~ ::::::::-------

PAA is gated to the M-register and forms the low-order portion
of the full real address.

Bytes 2 and 3 of the TLBs are displayed in the byte 2 and 3
position of the external display when the external address 2E is
used in the display operation.

Switch H determines which register (0-7) is to be displayed.

Example

Real Address
Byte3

5 6 7 p 0 2341567

TLB Byte 2 and 3

PAA BYTE 1 BITS P·7, BYTE 2 BITS P-4

LRUO

Desune Table

RESET REG 0

INVALIDATE TLB

EBT BYTE 2 BITS P-7, BYTE 3 BITS P-4

SET RESET ADDRESS ADJ REG 0

GATE REGO

TLB REG 0 BYTE 0+1

FL

FL

MT311 ·344

BYTE 0 BITS 2-7
__ ...

BYTE 2 BITS P-3
MATCH

EV1-------'

TLB REG 0 BYTE 2+3

PH

PH

MT111 -132

MATCH REGO

VIRTUAL ADDA BYTE 0 ·BIT 0

VIRTUAL ADDA BYTE 0 - BIT 1

VIRTUAL ADDA BYTE 1 - BIT 4

REAL ADDA BIT 0

REAL ADDA BIT 1

REAL ADOR BIT 13

3145 TM CPU 151

LRUMatrix

• Used to address the least recently used TLB when an address
is to be loaded into the TLBs.

e Set and reset by the match circuit or by the microprogram.

Whenever a storage word with address adjust specified is exe
cuted, a match of the virtual address from the PAA and the TLB5
is attempted. When a match is made, the real address from the
TLB causing the match is gated to the M-register along with the
displacement from the PAA.

The column in the LRU corresponding to the TLB causing
the match is reset. The row in the LRU corresponding to the
TLB causing the match is set. This causes the LRU output to

Resets all LRU latches -------t
Resets a .;elective column

Match Reg 0-7 Buffered

point to the next TLB that has been least recently used. The
output of the LRU matrix is only used when the TLBs are
being used as a destination.

Whenever the TLBs are reset, the LRU is reset. The line
(reset tables) is brought up by bit 7 of NP2. This bit is set by
the microprogram when the reset is necessary. The control
word, normally used to set bit 7 of NP2, is a branch word-
NP2, OR, KOL This word is generally followed by NP2, A-,
KOl. The second branch word resets bit 7 of NP2 enabling
the TLBs and LRU to be used for address translation. The
LRU is displayed in external 08 byte 2.

LRUMATPIX

MT 216-216

DYNAMIC ADDRESS TBANSLATION CPU 15~

The LRU output is used to gate the virtual address from the
PAA ~nd the real address from EBI into the selected TLB .when
the DK function is used as a destination in a control word. The
X and Y lines for the OK function bring up the destine table tine,
which is ANDed with the output of the ~RU matrix to access the
proper TLB.

PAA EBI ___ ._! __ -,-_x
TLBO

Vortual Address Rea• Aadress

T!i TLBs 1-7

LRU0-7

Working Register IWKI

The working register is used as the destination of the computed
segment table entry addr~ or the computed page table entry ad
dreu.

The segment table entry address is formed by the con.trol word:
WK=SN+SO.

The WK register is then used as the addr~ source register in
the storage control word that acc~es the segment tilble entry:
ROW RW WK, NOP. This word places the page table origin ad
dress into the RW register.

The page table entry address is formed by the control word:
WK=PN•RW;

The WK register is then used as the address source register in
the storage control word that accesses the page table entry:
ROH DK .WK, NOP. This word gates the real address from the
page table entry to the TLB, and also gates the virtual address
from the PAA to the TLB.

When the page number is added to the
page table origin WK=PN+RW, NPt bits
2, 3 (for 4K pagel or bits 3,4 (for 2K page)
are gated directly to bits 5,6 of WK3.

.. '

Exp-LS Dest BY 1, 2, 3

Exp-LS Liest YO, 1, 2

I
I

I
I

Whenever SN, PN, or WK is destined, the
WK register becomes the destination.

Work In Bit
5,6,P

5,6,P

Oest Wk Reg
Bvte 1, 2,3

A

Working
Reg

BYt-3

Working BY1-3 Bit P, 0-7

Exp-LS Decode Y2 or Y4
"' Gate Working 1, 2, 3

MT022,023
MT024,036

3145 TM CPU 153

NPO and NP1 Registers

NPO and NP1 registers may be set from either the EBI or the
PAA. When NPO or NPl are specified as the destination by any
control word except a storage word, the data setting these reg
isters is gated from the EBI. When a storage word with ADA
ADJ active is executed, the address from PAA bytes 1 and 2 is
gated to NPO and NPl.

NPO and NPl are displayed in the byte 0 and 1 positions of
expanded local storage using address 78.

EBI BYO Bit P, 0-7/BVI Bit P, G-4 NSP

Pre Adr Asm BV1 Bit P. G-7 -o--i A PH
.Pr_e_A_d_r ,.As_m_.BY_2_.Bi.;.t ..;p•.;.G-_4 _________ _,n:f"...,;-...1-- OR BY O·I

l BY2 Bit 4 ~ 1---'~L-

J
A BY2 4 •

B;;...1-.oc ... k...;1 ____ -f

Spec Parity Asm p

Stg Wd Adr-Adj Mode Gate Adr To

Good or Corr Data lnJ A __ I ___ N_SP_R_e..;.g ____ _,

,......,

MT031
r--1 (023

'-----

Stg-2 Cycle
A a....;0;..;.e;;...st..:..N;.;;;SP--'-Re..::g...;B'"-Y-0..:..' _1 -

135 to !BO Time

Exp-LS Oest Adr X7

E;;xP-_L;;;;S;..;.O;;_e_st'-'A...;.d;;_r...;Y...;;3 ____ --1 A _Oe_st_N_S_P _R....;;eg;..;.B_Y_0...;..,_1 __,
Exp-LS Oest Byte 0, 1

DYNAMIC ADDRESS TRANSLATION CPU 154

When SN is addressed as a source, the output of NPO is gated
to bytes 2 and 3 of the address adjust entry. Bit shifting between
NPO and the address adjust entry depends on the segment size ·
specified. i'_

When NP is used as a source.for a control word, the output
of NPO and NPl is gated to the address adjust entry bytes 0
and 1.

I ...
I ,

BY1 Bit G-7

7
I

I
I
I
I
I
I
I
I

I

A G-7

BY1 BitG-3&1---11

~
Block 2 A

~

'

Block 2 NO G-7

Blk 2
r--

0,1 BY 2 Bit P
~ ev

I--
2-7

EV
BY 3 Bit P

t--

Mr'ii34io4 t

'

/

NSP BY1 Bit P,0..7
//,,

NSP BY2 Bit P,0-4

.... e; ... LS Decode V3= A BY
0

•
1

' Gate NSP·2

-....., ' MT'ii3si037

' ' ' ' ' ,,
\ \.
\ \

~ \ \
0,1,P \ \

\ ' A ,_ _ sy2 Bit 6,7J>

...- l
2-7,P 1-- I

+
EXP-LS DEC YO
GATE Bt.,K 2-2,3

A 1-----1 BY3 Bit 0.6,P
\o

.__
MT022-024

Block 2 NO 0-7 ----------._Bv_1_si_t _4-_1 _ __.r--
0.3 Blk 1 NO 0-8 0 1 D - -:...::._ - - -

._ __ ,..._ ____ __... A t-----r-------...-----~.,..._;;.:.•;.:.';.._---1..- BY2 Bit- I- The segment number is gated to the
segmept number compare circuits to
determine whether the segment number
is within the range of the segment length Block 2

BY1Bit4.7

J;:;"L A t-!:!-
&--+-B-Y-2 -Bi_t _0 --1~ 1---

..... -1------1
A~

._s ... v..;2;..;Bo..it_o.,..,3 __ _.1--

0, 1
I-- EV

2-6
t--EV

.__

Block NO

BY 2 Bit P

BY 3 Bit P
Exp-LS Dec Yl
Gate, Blk1·1·2

2-6,P I code.

r-- A t--6-,7-,P-

1
...

1--

A .~. BY3 Bit 0-4,P

\ I .__ \
MT022-024 \ I

Blk NO 7,B \ I

. r;:i A~ l \~

For a 2K page, bits 3, 4 of NPl

BY2 Sit 1-4 IT I-- I \ l

Block! A~ // . ___ - --- - ~\ Whenpagenumberisaddressedasasource,theoutputsof
--------------.... -------!~ ._ - -;... ..,..._ - -- - - - - - - - - NPOandNPl aregatedtobyte52and3oftheaddressadjust are gated directly to bits 5, 6 of WK3.

For a 4K page, bits 2, 3 of NPl
are gat~irectly to bits 5, 6 of WK3. ---------------------- __ - - - entry. Bit shifting between NPO and NPl and the address ad-

• ~ just entry depends on the segment and page sizes.

NP2 and NP3 Registers

NP2 is loaded from the EBI whenever NP2 is addressed as a dat~ •.
destination. The outputs of the NP2 register are used for various
controls throughout the DAT hardware.

When NP2 is addressed as a source, it is gated 'out to byte 2 of.
the address adjust entry. Bit 6 (Segment Number Invalid) is sam·
pied directly from the segment number compare circuit to bit 6
of byte 2 address adjust entry.

NP3 bits 0, 1, and 3 are set from the EBI by the gating shown
in the diagram. NP3 bit 2 is set directly from the page number
compare circuits. The outputs of these latches are gated to byte 3
of the address adjust entry when NP3 is addressed as a source.

NP2 and NP3 are displayed in the byte 2 and 3 positions of
the external display using expanded local storage address 78.

NP2

GIPW ROUTINE
ADDRESS ADJUST MOOE BITO

IECPSW BIT 51

GCCR ROUTINE TRANSLATE INVALID

{Load Control Registersl
BIT 1

lNot Used!
BIT 2

GCCR ROUTINE
BIT 3

tMSEGMENT

(Control register O Bit 11)

GCCR ROUTINE BIT4 4K PAGE

(Control register 0 Bits 8 & 91

BIT5
EMULATOR FEATURE MOOE

552 LARGER THAN SEGMENT NO. SEGMENT NO. INVALID

1552 Compared to four high bits in 'PAA)
BITS

=

=

ACTIVATES OAT
HARDWARE

INVALID p,..·;;E OR
SEGMENT SIZE IN
GCCR ROUTINE

1 ~ 1 M SEGMENT
0 ~ 64K SEGMENT

1=4K PAGE
0 = 2K PAGE

SEGMENT NUMBER
TOO LARGE

= RESETS TLB 0 AND 1 GGST A.'110 GCCR ROUTINE RESET TABLES
BIT 7

.._ _____________ ANDLRU

NP3

INVALID BIT ON IN PAGE TABLE
SITO

PAGE INVALID INTERRUPT CODE 11

'B•i 12 or 13. depending on page s1zel

INVALID BIT OFF IN SEGMENT

TABLE <B•t 31 off in tabtel
BIT 1

SEGMENT VALID INTERRUPT CODE 10 !Note 11

Length field in segment table comp.
to PAA page no. PAGE TOO LARGE

SIT2
INTERRUPT CODE 11

BIT 1-4 IN PAGE TABLE 0 0
BIT3

PAGE FORMAT INVALID ------------= INTE.~RUPT CODE 12
lfor 2K page. and bits 13 and 14 to
for 4K pagel

Note 1: Results in• interrupt if the bit is not on.

Bits 4·7 not used

.nt Number Compare

The SS2 latches 4-7 are set in the GCCR routine by the
arithmetic word SS2=SOO, OE, 0. The SS2 latches now con
tain the four low-order bits of the segment length code. The
high bit latch is set if any of the high-order bits of the segment

SEGMENT NO.

EBI BYTE 2 BIT 4 SS2

BIT 0-3

DESTINE SEG. LENGTH REG.

TRANSLATE INVALID

Page Number Compare

The page number from NPO or NPl is compared with the
page table length code from the segment table entry. For a 1 M

EBI BYTE 0

NPO BIT 4

A

NP1 BITO

6

1MSEGMENT _...;... ______ ~.---tN.,._ ___ ,.._

BIT

length code are on.

A comparison is made between the SS2 latches and the seg
ment number from NPO. For a 64K segment, bits 4.7 of NPO
are used in the compare operation. For a 1M segment, bits 0-3
of NPO are used in the comparison, SS2 is in Exp LS 70 but there
are no display facilities for this location.

SEG. NO. INVALID

segment, bits 4.7 of NPO are compared with the page table length
coc,ie. For a 64K segment, bits 0·3 of NP1 are compared with the
page table length code.

ompare PAGE NO. TOO LARGE
Logic

3145 TM CPU 156

DAT Functional Operations

DAT Basic Operation

Load TLB register
selected by LAU

Return to execute
control word

No

Trap to dynamic address
translation routine oeoc

Perform table tookup
to load TLB

Normal handling of
program check, PER or
Monitor call inte!rupt

Return to supervisor

No

Start

A storage word with ad·
just is executed in Trans·
late mode

Match PAA with TLBs
bytes 0 & 1 {segment and
page no.I

Detailed operation is contained on
OAT trap flowchart.

Yes

No

Program interrupt and
Translation exception

Detailed operation is contained on OAT
match nd match flowchart.

Yes

Gate TLB bytes 2 & 3
and PAA displacement
to M-register

Continue to next
control word

Read required page
frame in to real storage

Update tables and reset,
affected reference and
change bits

Return to execute
interrupted instruction.

No

Translation Specification

Exit to Terminate
program

Change

Write selected page out
to virtual storage

DYNAMIC ADDRESS TRANSLATION

Checking is performed by load DAT
control registers fGCCAl flowchart.

CPU 156

DAT Match-No Match

Match PAA byte 10·7)
and byte 2I0·3) to TBL
reg byte 010-7i and
byte 1 I0-31

Allow B-reg to M-reg
transfer for correct

parity

.Activat~ PAA lorc;e block
storage destination

lmtiate DAT trap to
OSOC IGGSTI

4k

No

Check Translate mode

Gate PAA segment no
and page no. to NP0&1

Yes

No

2k

.Yes

Start

Storage word with ADJ
active

Match PAA byte 110·71
and byte 2(0-4) to TBL
reg byte 0(0· 71 and
byte 1 l0-41

No

Normal storage word
execution

Continue to next
control word

Update LAU

Gate real address from
matched TLB register
byte 2(0·71 byte 3(0·3)

Gate PAA byte 214-71
and byte 3(0· 71 to the
M-reg for displacement

Continue to next
control word

2k

Gate real address from
matched TLB register
byte 2(0· 71 byte 3(0-41

Gate PAA byte 2(5-71
and byte 310-71 to the
M-reg for displacement

3145 TM CPU 157

DAT Trap Routine GGST

Add Adjustment
Factor to Virtual
Address

Replace Mode Bits

Go to the GICM
routine to handle
the interruption

DB LR CT 01. 00

Turn on A and 8
Hooks. Store Real
Address at FF1C

Load TLBs

Return to word that
caused trap

No

No

Trap Entry DBOC

Add Adjustment
Factor to Virtual
Address

Add Segment number
to Segment table origin

Read Segment Table

Add Paga number to
Page Table origin

Local Mode indicates that the OS/DOS
emulator is operating in the emulated
DOS area

Add Segment number
to Segment table origin

111 Too Large

Check NP2 bit 6

Format Valid
NP3 bit 3=0

Return to the word
that caused the trap

Check NP2 bit 1

NP3 bit 2•1 hge too i.rge
NP3 bit 1•1 Segment valid

01

Load a TLB register
from the EBI. Thi•
is the translated address

01

Check NP3 bit and page
table bits 5 and 6

Format Invalid
NP3bit3=1

Set a value of 12 into
the WK register. Reset
Table Registers

GGSX SEGTRX

Move interrupt code
to the X·register

Interruption Code
10=Segment Translation Exception
11 =Page Translation Exception
12"Translation Specificatic>n

00,10,H

DYNAMIC ADDRESS TRANSLATION CPU 15

10
00

Seta value of 10 into
the WK register

GGSX HOOK
Move interrupt code
to the X -register

Place virtual address
in the WK register

Store the virtual
address in main
storage location

00090

Drop PAA force. Re·
place mode bits in
NP2. Zero X·register

Move link address
fromOTX toO

Go toGICM
CHKGPR

Real Address Fo~

E ><AMPLE: 64 k SEGMENT 4 k PAGE Byte 1 Byte 2 Byte 3

PAA

STG WORD ADR ADJ MODE . I
~~---i:-i x
GOOD OR CORR DATA L.:J

NP ByteO

(not) 1 M SEGMENT

01234567 01234567 Byte 1
Exp LS7B

,···~· Ll1J'

A no-match trap has occurred, the PAA is frozen to retain
the virtual address that caused the trap,
The GGST routine is entered, and the segment and page
addresses are gated to the NP-register.

The segment portion of •t.e NP-register is added to the
segment table origin. The result is the real address of the
segment table entry required. The result is placed in the
WK-register for use in the storage control word that follows.

I f I · <. · 124 WK= SN+ SO
'ADRAOJOl234567 01234567 .Byte3 .· ·.•·· ,_,,.,- ----- Byte1 Byte2
~., ENTRY, • e LS78 ..,....-

B.vt_.e_s_O,_, 1_-o_f_A_D_R_A_D_J_E_N_T_R_v _____ ~~:.~ · .. ·. .. X
7

~0 --------i
Byte'2 Byte 3 LS3B

x '

ALU

SEGMENT TABLE

31

B·REG

The WK-register is used as the address source register in the
read storage word. The segment table entry is read from the
segment table and placed in the RW-register.

NP to ADR ENTRY gating for lM Segment

NP ByteO lo1234567,012345671 Bytet

Byte2 101234567,012345671 Byte3

ADR ADJ ENTRY

3145 TM CPU 159

Byte 0 Byte 1

NP 1012345671012345671 hpLS7B ~N+RW
X7Y1 · · \ 4k Page
Exp LS X7 y 3

Bits 2, 3 to bits 5, 6 of WK3 LS

AORAOJ
ENTRY

Byte 2 0 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 Byte 3
Exp LS79

Bytes 0, 1 of ADR ADJ ENTRY

NP to AOR ADJ ENTRY Gating

Byte 0 Byte 1

NP lo 12345671012345671

1 M Segment ---i-"I._., To Bits 5, 6 of WKJ
2 k Page _:J__
Byte2,01234567,012345671 Byte3

Byte 0 Byte 1

NP I 0 1 2 3 4 5 6 1I0 1 2 3 4 5 6 1 I
lM Segment -rT.. • . . . · __
4 k Page .:J._ To Bits 5, : of WK3

Byte2jo1234567jo1234567j Byte3.

Byte 0 Byte 1

NP I 0 1 2 3 4 5 6 1I0 1 2 3 4 5 6 7 I
64K Segment T 1
2k Page ; 'l L...... To Bits 5, 6of WKJ

Byte 2 IO 1 2 3 4 5 6 1 j O 1 2 3 4 5 6 1 j Byte 3

ALU

M·REG

PAGE TABLE

EBI

PAA

LRU TLB
LAU Gate Virtual Real

Address Address

Execute storage word that caused the trap. If a
Match occurs, the M-register is set from TLB and PAA.

DYNAMIC ADDRESS TRANSLATION· CPU 160

The page table origin, l~cated in the AW-register, is added to
the page nymber. The result, which is the real address of the
page table entry required, is placed in the WK-register.

31

Page Table Origin RWREG

Exp LS 7A

Real Address from TLB

The WK register, which contains the real address of the page table entry,
is used as the address source register by the read storage word. The page
table entry contains the real address Portion of the page originally being
accessed by the word causing the trap. "

·The DK address deoode gates the EBI and the PAA to the TLB that is
addressed by the LRU.
The storage word causing the trap is now re-executed, a match of the virtual
address from the PAA and the TLS occurs, and the M-register is set from the.
TLB and the PAA.

6
7

M2
0

6

lnstru~ions Associat.h DAT

Load Real Address IRX)

LAA

Bl Al

0 8 12

X2 82

16 20

The real address of the second operand is inserted in the general
·register specified by the A 1 field. The remaining high-order bits of
the general register are set to zero.

The virtual address specified by the X2. B2. and 02 fields is
translated by the address translation facility reg~rdless of the.,
setting of the translation bit in the PSW. The 24-bit real addres5'
~ i.nserted in bit positions 8-31 of the general register specified by
the A1 field, and bits 0-7 are set to zero. The translated address is

not inspected for re~olutio":·,,~rotec;tion, or validi~y:

The conditic)n CQde is s~t to' O When t~ansl~tion ca~ ~~ com
pleted; that is, the entry in each.table is within the specified
limits and the invalid bits are zero.

02

31

When the invlalid bit in the segment table entry is on, the con·
dition code is set to 1 and the real address of the segment table
entry is placed in the general register specified by the Rl field.

When the invalid bit in the page table entry is on, the condi
tion code is set to 2 and the real address of the page table entry
is placed in the general register specified by the R1 field.

When either segment table entr.y or the page table entry is out·
side the table, the condition code is set to 3.aOd the register .
designated by the, A ffield ci:mtains the address of the entry that
would have been referred to if the length violation h.ad not
ocurred. · . '

' . -: •' ·: ~

L«*I Real Address Routine (GGSLJ
(From GARS)

On Entry: V a S. + Displacement
l • l!ldex Regim.. Numl!ef

01

GGSL INDEX

SUBRTN
Move RW1 to NPO
Move RW2 to NP1

Add Segment number to

Go to GICM end call for
. Translation Specification.

Result to the V ·register. V • Logical address to tie trensl1ted.

Bit 1 = 1 Format Check
Bit 6 = 1 Segment number too large

00• Invalid

Resulting Condition Code

0 Translation available
1 Segment table entry invalid
2 Page table entry invalid
3 Segment or page table length violation

Program Interruptions

Operation:

Privileged
Operation:

Addressing:

Translation
Specification:

The DAT feature is not installed.
The operation is suppressed.

The CPU is in the problem state.
The operation is suppressed.

The address of the segment table
entry designates a location outside
the available main storage. The op
eration is suppressed.

Bits 8-12 of control register 0 con·
tain ~n invalid code, or the page
table entry has a format error. The

· · operation is suppressed ..

11 •Page too

Page Invalid

Add Page number and

Page Origin, place result in

WK.

Read Page entry into AW.

Translation Complete:

Align Real address. Com

bine Real address and Page

byte.

Return to I-Cycles

00, 01 •Segment Invalid

Store WK in AW

Set condition code 1.

Move RWtoV.

Return to I-Cycles

Condition c:ode 0 is set to indicate Translation -liable.

3146 TM CPU 181

Reset Reference Bit

RRB

B2l3 B1 01

0 16 20 31

The reference bit in the storage key associated with the operand
address 1s set to zero.

No other access to the key is permitted between the moment t1f
fetching and the moment of storing the key. The remaining bits of
the key are not affr.cted by this instruction.

The operand addr.ess designates a location in real storage and is
not subject to address translation. Protection does not apply to
this reference.

The condition code is set to reflect the status of the reference
and change bits prior to the setting of the reference bit to zero.

~ulting Condition Codi:_

0 Reference bit 0, change bit 0
1 Reference bit 0, change bit 1
2 Reference bit .1, change bit 0
3 Reference bit 1, change bit 1

Program Interruptions

Operation:

Pri.yileged Op·
eration:

Purge TLB

PTLB

The DAT feature is not installed.
The operation is suppressed.

The CPU is in the problem state. ,
The operation is suppressed.

All information in thP. translation lookaside buffers is made in·
11alid. No changes are made to the contents of addressable storage
or .other registers. The contents.of bits 16·31 of this instruction
are ignored.

Condition Code

The code remains unchanged.

Program Interruption~

Operation: The OAT feature is not installed.
The operation is suppressed.

Privileged Op· The CPU is in problem state.
eration: The operation is suppressed.

DYNAMIC ADDRESS TRMSLATION

Hardware Error Checking

Adr X·Late LRU lnval (Address Translate LAU Invalid)

The LRU should have only one active line at any time. The ADR X·Late LAU Invalid error indicates that an even number of
lines are active which differs from the normal odd number condition. This error indicates a

1
failure of the LAU hardware.

LRU 0 · 7

STOA 2 CYCLE

Adr X·Late Mult Match (Address Translate Multiple Match)

During OAT translation operations, the ADJ storage words cause a comparison of the PAA (virtual) address to the eight TLB
registers (bytes 0 & 11. Either a no-match condition results and a trap to GGST routing is performed to load the TLB, or a suc'.
cessful match results in gating the selected TLB (bytes 2 & 31 to the M-register. This error indicates a failure of the LRU, TLB.
or match circuit resulting in the PAA matching more than one TLB register. ·

MATCH REG 0 · 7

STG WD ADA ADJ MODE
ADA ADJ MOOE
GOOD OR CORR DATA

1/0 OPERAT10N

Adr X·Late No Match (Address Translate No Match)

When a TLB register is loaded (with a storage word of the form "ROH OK WK"). a match is made via the normal match
hardware. The absence of this match signal during the execution of this storage word indicates a hardware failure in the '
LRU, TLB registers, or match circuits and allows MCKBl bit.4 to be set.

DESTINE TLB

ADA ADJ SAVE PAA SET ELIMINATE !NO MATCH)
(MCKB BYTE 1 BIT 4)

FORCE LAU INVALID (DIAGNOSTIC)
(DIAGNOSTIC)

ADA ADJ MATCH ...

CPU 162

DYNAMIC ADDRESS TRANSLATION CPU 164
DAT Exercise · This exercise may be used to verify-the operation of the address translation hardware and microprograms.

By altering the loop that is entered and the microprogram, scoping procedures may be formed for detailed
checks of hardware oi>erations.

Assume that the DAT feature is installed and that the System/370 microprogram is loaded.

Step 1
AM600
50605100

Step 2
AGS
00104000

Step 3
AG6
cocococo
Step 4
AM 604
47F00600

Step 5
ACO
00900000

Step 6
AC 1
00000500

Step 7
AM 500

PR·KB ENTRY

00000800 00000700 00000001 00000001 00000001 00000001 00000001 00000001
00000001 00000001 OQOOOOOl . 00000001 00000001 00000001 00000001 . 00000001

Step 8
AM 800
00000008 00080008 00080008 00080008 00080008 00080008 00080008 00080008

Step9
AM 700
00080008 00080008 00200008 00080008 00080008 00080008 00080008 00080008

Step 10
AMO
04080000 00000600

Step 11
AM 68
040AOOOO 00001234

Step 12
DV 104100 = 002100
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XX······

Step 13
DV 000600 = 000600
5050511 4700600 xxxxxxxx

Step 14

Press the restart key. The address 600 from the PSW is gated to the
I-register and the I-Cycles routine is entered. EC and translate mode
are set and the system should run with the EC mode and ADR X·
LATE indicators on. If the WAIT indicator is on and the address
1234 is displayed continually in the A· Register display indicators, in·
terrogate the interruption code in the PSW located at address BC.

DESCRIPTION

Load an RX Store instruction with an R1 field of 6, 82 field of 5, and a displacement of 100, at location 600.

RX Store OP Rl X2 82 Displacement
5 0 6 0 5 0 0

Load general register 5 with the base number to be used in calculating the effective address of the second operand for the Store instruction. ; i· ' : ·,; .<,/ · .. ·· ·.· .. · ·
During I-cycles, the second operand effective address is formed by adding the contents of general register 5 with the displacement value; The result is the virtual address 104100. This ad·

dress is beyond the real storage range of any Model 145 system. Therefore, this address must be translated to form a real address. The real address is loaded into a TLB by the address trans·
lation trap routine GGST. For the purpose of this exercis~ the real address is a known value and is loa~ed into the page table later in.this procedure.

Load general register 6 with the value to be stored at the second operand real addre~'

Load an RX Branch on condition instruction, with a mask field of F (branch unconditionally). and a displacement of 600, at location 604. This instruction branches to the Store inStruc·
tion to form a two-instruction loop. ·

RX Branch on Condition OP Ml X2 82 Displacement
4 7 F 0 0 6 0 0

Load control register 0 with bits 11, 12 = 10 to specify a lM segment, and bits 8, 9 = 10 to specify a 4K page.

Load control register 1 with a segment length code of 0 (byte 0 = 001. and a segment table origin address of 500.

Load the segment table, located at address 500, with 16 entries as specified by the segment length code of 0. The first enty contains the pa,ge table origin address 800. The page table lo·
cated at 800 is associated with the instruction addresses, which are located in the same 4K page of real storage. ·

The second entry contains the page table origin address 700 which is associated with the second operand address of the store instructron.
The remaining 14 entries are.loaded with the invalid bits set.
The.page table length codes in both the first and second entries of the segment table, are 0, indicating a page table length of 16 entries.

Load the first entry of the page table located at address 800 with 0000. This is the high-order portion of the real address for both instruction addresses. Load the remaining 15 entries in
this page table with the invalid bits set.

Load the fifth page table entry of the page table located at address 700, with 0020. This is the high-order portion of the real address of the second operand of the store instruction. Load
the remaining entries with the invalid bits set. · ·•·· • . ..; , '.>' ··. ·.·•· • ·· · '.

Load the initial program PSW with bit 5 (translate model. and bit 12 (EC mod~.1 set. Place the add_ress 600 in the instruction address field.

Load the Program new PSW with bits 5, 12, and 14 (wait state) on. Place the address 1234 in the instruction address field. This address. is used to !deniify any program interrupts that
may occur.

Perform the display virtual storage function. This operation causes the real address (right of the equal sign) to be calculated by the address translation routine GGST. The GGST routine
is branched from the alter display routine. 104100 is the effective virtual address of the second operand of the Store instruction.

Displaying the virtual address of the Store instruction, reveals that the virtual and real address for the instruction are equal.

OAT EXERCISE FUNCTIONAL DIAGRAM

Segment table entry

Length 0000 01 3 4 8

C.ontrol Register 1

0 0 0 0 0 5 0 0

Segment Table Entries
Main Storage 500

0 0 0 0 0 8 0 0
0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 1

?
0 0 0 0 0 0 0 1

Page Table Origin Address

Length code of 0 specifies 16 entries
in the segment table.

00 I

28 31

/
Invalid Bit

Control Register 0

0 0 9 0 0 0 0 0

I \
1001
I \

lM seg 4K page

Page Table for
segment 0

Main Storage 800

0000
0008

0008

Page Table for

0008
0020
0008

~
0008

Page Table Entry 4K Page

Page Address l I I 0 0 l
0 11 12 15 .·

I
Invalid Bit

DYNAMIC ADDRESS TRANSLATION CPU 166

Virtual Storage in 1M segments

Each Segment has 256 4K pages

Seg 16

Segments 2-15

"'
,,,,

Real Storage 112K .through 512K

104100-contents of general -- 2100 Contents of reg 5

-
Seg 1

register 5. 800 fage table for seg 0

1qo Page table for seg 1

604 BCF 600 600 BCF 600
600 ST5 104100 600 ST5 104100

Seg 0

500 Segment Table

DAT EXERCISE FUNCTl°f IAGRAM !ConUn""'I

t.

Control Register 1 PAA

looosoo

_ _,..____ .. __lT
Segment Table

Main Storage 500

0 0 0 0 0 8 0 0
0 0 0 0 0 7 0 ()
0 9 0 0 () 0 0

)
o o·o o o o o 1

Sfigment arid page
from PAA ------.....

0008

0 0 (>

Note: 'A match condition gates 'the real address .from the TLB. and
'· , displacement value from the .PAA to the M·register.·r> , > '

.,, • .. ;' ;;: ,A r~inat~ condition causes a translation trap to be taken.:' Afte1 th~ •..
~:;~,.' . ·~; ~rap routinf! has loaded the TLB with the real address; the storage word

' : 'Causing th.e t~ap is executed again and a match occurs. · ' · ·

Control Register 1 PAA
I , o 4 , o o o o o o o 5. ·o o

500+4 = 504 . ·j T
---X4 X2

0

Segment Table
Main Storage 500

0 0 0 0 8 0 0
0 0 0 0 0 7 0 0
0 0 0 0 0 0 0

l
0 0 0 0 0 0 0 1

Segment and page

from PAA

Page Table at 700

0008
0008
0008

700+8 = 708 0008
0020 .,
0008 I

odo8

I
I
I
I
I
I

104 I
I
I

TLB 1 O 4 010 O 2 0

Match

Translation Trap
No Match

m

· 3145 TM CPU 167

Check Execution

The following procedure verifies execution and DAT register
loading.

1. Place address 600 in the address switches, Address Compare
switch in I-COUNTER LOGICAL, Address Compare Control
switch in STOP, Storage Select switch to MAIN STORAGE,
System should stop.

2. Place address 104100 in the address switches, Address Com·
pare switch to ANY LOGICAL, Storage Select switch to
MAIN STQRAGE, Address Compare Control switch in
STOP. System should stop.

3. Place address 600 in the address switches, Address Compare ''
switch in I-COUNTER REAL, Storage Select switch to
MAIN STORAGE, Address Compare Control switch in
STOP .. System should stop.

4. Place address 2100. in the address switches, Address Com·
pare switch in ANY or DATA STORE, Address Compare
Control switch in STOP, Storage Se lect Switch to MAIN
STORAGE. System should stop.

If a program check occurs, display Program Interrupt Codes at
location BC.

Main Storage
Byte 3

00000000 00010000

00000000 00010001

00000000 00010010

Display DAT Registers

10 - Segment Translation Exception
Caused by: Segment invalid bit

on, or Segment
length code error.

.11 ..,.. Page Translation Exception
Caused by: Page invalid bit on,

· or Page length code
error.·

12...;. Translation Specification
Caused by: Page table bits iJ,

.14 not equal to zero,
or Segment table bits
29, 30 not equal to
zero.
Control reg 0 Bit 10
not=O. Invalid com·
bination of page and
segment bits in con·
trol reg 0 bits 8, 9
and 11, 12.

1. Display TLB 0 (External)
Word address 2E in switches F, G
Switch H to position 0
Storage Select switch to EXT REGS

The virtual address (bytes 0, 1) and the real address (bytes 2,3)
are zero with the parity bits on. Parity bits on indicate that
this TLB was ~aded by the microprogram.

2. Display TLB 1 (External)
Word address 2E in switches F, G
Switch H to position 1
Storage Select switch to EXT REGS

Byte 0 = 10 Virtual address
Byte 1=40
Byte 2 = 00 Real address
Byte 3 = 20

Place switch Hin any position 2·7, Bytes O artd 1 have not
been accessed and are blank with no parity bits. TLBs 2·7
could contain residual data.

3. Display the LAU (Exter.nal)
Word address 08 in switches F, G
Storage Select switch to EXT REGS

The LAU, located in byte 2 of the display, should have bit 2
on. This indicates that TLB 2 is the least recently used and is
to be loaded next.

4. Display the NP register (Expanded Local Storagel
Word address 78 in switches F, G
Storage Select switch to EXP LS

Byte 0 = 10
Byte 1=40
Byte 2 = 98
Byte 3 = 40

5. Control register 0 is located at control storage address F480.
Control register 0 = 00 90 00 00
Control register 1 is located at control storage address F484:
Control register 1 = 00 00 05 00

6. To modify the exercise for.a scope loop, modify as follows:

AM 604
82000000
AM60A
47F00600

DYNAMIC ADDRESS TRANSLATION CPU1~

CHANNEL INDIRECT DATA ADDRESS (CIDA)

Introduction

The CIDA feature can extend the address adjustment of the dy
namic address translation (OAT) feature to the 1/0 channels. A
contiguous set of virtual addresses can be mapped into a non
contiguous set of pages in real storage. Because only a single data
address need be in effect at a time for a channel, using the DAT
hardware to handle the adjustment with each access is not neces
sary. The adjustment factor is applied by the program, and the
real address is stored for the Cl DA controls. These adjusted ad
dresses are stored as an IOA list (IDALI for each CCW. Each
word of the list is referred to as an IDA list word (IOALW).

The operation of the CIOA feature is selective and can be
used in either BC or EC mode. An CIOA flag in the flag byte of
the channel CCW functions is the indirect addressing switch.
When the CIDA flag = 1, the normal data address of the CCW is
the address of an IOAL in main storage. This list contains one or
more addresses of main storage on page boundaries that can be
used in sequence for the CCW operation. The first address is not
required to be on a page (2Kl boundary to permit filling a partial
page. All remaining addresses in the list must be for the starting
address of a page in main storage. The operation need not fill the
last page used.

In operation the hardware must recognize the end of a page
and enter the next address (IDALW) from the IDAL. For all op·
erations except read backward, the end of the page is recognized
by the change of the low-order eleven address bits from ones to
zeros. For the read·backward operation, the change is from zeros
to ones. The low·order eleven bits of an address must be zeros (2K
boundry) for a forward operation.

The change is detected by testing for an inversion of byte 2 bit 4
of the data address. Any address in the IDAL other than the first
that is not on page boundary. or that contains information in
byte 0, causes a program check indication and the operation is
terminated.

Byte Multiplexer Channel

For the byte-multiplexer channel, the CIDA feature requires a
fourth word in each assigned UCW. This word holds the IDAL
address for the assigned device. During the entry of the CCW, the
CIDA flag bit is tested to determine the use of the data address
field. A CIDA flag causes the address to be stored in the fourth
word of the UCW, and then uses that address to enter the first
IOALW to store as the data address in the UCW.

With each use of the data address for data transfer, a test is
made for the updated address crossing a 2K boundary. This test is
made by comparing byte 2 bit 4 of the address before and after
the update. Any change represents the cross of a 2K boundary.
When a change is detected, the IDAL address is entered from the
UCW to fetch the next IDALW for the new data address. In CIDA
command chaining, each CCW is tested for the IDA flag: either
the normal data address or the CIOA addressing routine.

COMMAND CODE= WRITE
IDA=1

The data address in the CCW provides the address of which in
turn provides the data address.

CCW WT

Storage Location

2048

Data
Address

Data Address 1

Data Address 2

Data Address 3

4096

Count

6144 8192 10240 12288

A + 2048 + B = Count

The data addressing for console printers is the same as for
the multiplexer channel. The CIDA feature applies only to op
erations initiated by the Start 1/0 instruction. Alter and display
operation do not translate addresses.

Selector Block-Multiplexer Channels and IFA

With the CIDA feature, the selector and block-multiplexer chan
nels operate in the same manner. A block-multiplexer chann.;I
can only disconnect at the completion of a command and, there
fore, does not require storing the CIDA information in the UCW.
Upon entry of a CCW either on initial selection or subsequent
command chaining, the CIDA flag is tested. When the fhg is
present, the address in the CCW is not entered into the GOAL
register. Instead, the address is that of the IDAL to be used for
entering an IDALW into the GDRL register for the data address.
The next IDALW is immediately read into the GDBRL register to
back up the GORL register. The updated IDAL address is re
tained in the GD register.

When the data address in the GDRL register has been either
incremented or decremented until it crosses a 2K boundary, the
hardware transfers the contents of the GDBRL register into the
GDRL register and requests a CIDA data trap (DlOC). When the

trap is honored, the IDAL address is used to enter the next
IDALW into the GOBRL register. The addresses entering the
GDBRL register contain only bytes 1and2 because they contain
no key and because the low·order byte must be either 00 or FF.
The data transfer stops in the normal manner at the end of the
record or in the case of an error.

The IFA functions in the same manner as the selector channel
for CIDA operations that use share cycles to transfer data to or
from main storage. Fcir control, sense. and operations that use
microprogram to transfer data, the hardware forces the address
ing to use the FOAL register when the FD register is addressed.
The Cl DA data trap request uses the I FA gated-attention trap
(0120) and branches to the IOALW entry routine when no gated·
attention condition is found.

CHANNEL INDIRECT DATA ADDRESSING CPU 170

• $

CIDA Data Address eomr,p

EBI ByteO
Bits 0-3. P

(Not} Stg 2 Cycle
Byte Line 0
YOOO

Exp LS Oest Addr XS

EBIBytet-&.--4 ---..----1
Bits 0-7. P

EBI Bvte 2-"-i----+--t
Bits CH, P

EBI Byte 3-1--------+------+--~--j~-1
Biu<H.P

Exp LS Source xs-1.-----.f.----t
Exp LS Decode YO

Y001
Eap LS Oest Addr XS
Byte Line3

Ex;o LS Oest Addr· XS
Byte Limt 3

YOOO
, 0-fimeOly

' ;. INotl Oiag FunctiOll

GW103

GW013
I IFA Sq 2 Cyc Adr-Adj

SX1 or IFA Shire 2
SX1 or IFA 0-Ad* Llh
Page End

GW131

O·Time
!Delayed)

O·Time

SX 1 or IFA 0 Addr Lth

69 Full

Chan Key
llits0-3, P

ExpChnl DA 1
Biu0-7,P

Exp Chnl DA 2
Bits 0-7, P

ExpChnl DA 3
Bits0-7, P

SX 1 OAddr.
Trap Reg

P...-End Detection

Chan Byte 2 Bit 4

cs Share 2 Cyc
(Not) St0t.,ge 2 Cycle
(Not) Stg lnlk Cycle
0-Time

Error Detection

EBI Byte 0 Bit 0
EBI Byte 0 Bit 1
EBI Byte 0 Bit 2
EBI Byte 0 Bit 3
EBI Byte 0 Bit 4
EBI Byte 0 Bit 5
EBI Byte 0 Bit 6
EBI Byte 0 Bit 7

GW014

Y101
INoteJ 11-Bit Error --- •

Y001

Seir Share B+C Cycle
IF A Stw Cyc 2 Adr-Adj
IFA Stw Cyc 1 Adr·Adj

GW141

2-Time

ProgCkSX1

GW015

0-Time

1-Time Dly

Stg 2 Share
IFA Stw Cyc 2 Adr·Adj

Set 68 Byte 3

Hou: '11-bit error' it the result of testing the eleven low·
order bits for all Os for 1 forwerd trensfer end all 1 t for a beckward
transfer.

GW015

GW141

EBI Byte 1 Perity

Page End

Bit End Delly

68Adr Er

FL

3146 TM

GaProt
CkSX1

CPU 171

Basic Selector Channel Addressing

The selector channel data addresses supplied by the CCW define
the starting address in main storage to be used for the operation.
The data address is initially set into the GD register in local stor·

age. This same data address is also set into the expanded local
storage GDRL register for use in addressing by the share cycle.
The share cycle hardware actually addresses the GD register but
raises the B-register addressing gate to enter the GDRL register.
During the second cycle count update, the address gate is
dropped so that the GD address 1 enters the GC register. The
address in the GD register is not used for the data movement.

Basic IF A Addressing

The IFA addressing is similar to the selector channel addressing
but involves some exceptions because of the hardware integration
of the control unit. The share cycle transfers between the file

and main storage are identical but use the FD and FDRL registers.

Share cycle transfers between the file and control storage involve
the FA register for data address and the B-register address gate is
not raised. The transfers of control, sense, and data information
between control or local storage and main storage do not use the
share cycle controls. The main storage address is set into the
FDRL register and the B·register addressing gate is forced by the
hardware condition.

The data address from the CCW is entered into both the FD
local storage register and the GDRL expanded local storage regis·
ter. The address for any control storage area involved is entered
into the local storage FA register by the microprogram. The
share cycle controls address either the FD or the FA register for
the data address depending on whether main storage or control
storage is affected. When the FD register is used, the B-register
addressing gate is raised to enter the FDRL expanded local stor·
age register.

The IFA data transfers that do not use the share cycle controls
force a three-step clocking sequence to gate the two-cycle storage
word. During the second cycle count update, the gate is dropped
and the count is entered from the data register and incremented

by 1 for either the FC or the FB register. When transferring in·
formation between main and control storage, both of these ad·
dressing systems are used but without the share cycle controls.

The microprogram controls the addressing with the gate being
forced through hardware.

CIOA Backup Control

When the CIDA flag is set, byte 2 bit 4 of the address sets a
polarity-hold latch. After the address has been updated as the re·
suit of the transfer, the same bit is i:ompared with the polarity·
hold latch to determine whether the level has been changed. A

change represents the cross of a 2K boundary. The address
backup register (GDBRU bytes 1 and 2 are transferred into the
GDRL register to continue the operation. Byte 3 of the GDRL
register now stands at either all zeros or all ones that represent
the 2K boundary fo; forward or backward transfers. Byte 0 of the

GOAL register contains the protect key and does not change for
the new address.

When-the backup register is transferred, a request is made. for a
CIDA data trap to enter the next IDALW. When this trap is
honored, the IDAL address in the GD register is used to enter the
next IDALW into the GDBRL register. All IDAL words except
the first are tested for 2K boundary. A part of the zero-count de
tection circuits is used to test the 11 low·order bits. These are all

zeros for a forward transfer and all ones for a backward transfer.
The read backward line reverses the bit levels through OE logic
circuits to test for ones in the zero test circuit.

If this hardware detects a program violation in the CIDA list,
the hardware forces on the highest-order address bit when the bad
list entry is moved into the backup data address register (GDBRL).
If data transfer continues until this entry of the list is needed, an
address check occurs which results in a channel program check
through the normal address check mechanism. If the data trans
fer is concluded before the bad entry is needed, no check is indi·
cat ed.

If other activity on the system prevents honoring the CIDA
trap before the data transfer exhausts the contents of both GDRL
and GDBRL, a line is sent to the channel hardware. This prevents
further share cycles from that channel until the CIDA trap has

been honored. Note that this is a highly unlikely event because it
requires that a one megabyte device has its trap request locked
out for two milliseconds.

CHANNEL INDIRECT DATA ADDRESSING CPU 172

PROGRAM EVENT9t>RDING (PER)

The program event recording feature provides a means for de· , •
bugging new programs or revisions. PER can alert the programmer
when these events occur.

• Successful exeeution of a branch instruction.

• Alterations of the contents of designated mai!1·storage loca
tions.

• Alteration of the contents of a specified general register.

• Fetching of an instruction from designated main·storage loca·
tions.

Introduction

The program has control over the conditions that are considered
events in the program sequence. These events can be selectively
monitored to aid in program a11alysis. When an event occurs, a
program interruption is initiated if the masking conditions allow.
An interruption for an event does not remain pending: if the in·
terruption is masked. the information is lost. Information con·
cerning the events is reported through the interruption codes.
The PER feature QPerates only in EC mode.

Program Event Operation$

PER operations are initiated by setting one or more PE.R control
bits to a t iii control register 9 and setting the PER mask

. -~ECPS\"J bit 1). The program to be scanned is performed in the
normal manner.

Addresses defined in control registers 10 and 11 apply to both
the 'instruction fetch' and the 'storage alteration' events. When
the star~ing address is smaller than the ending address, the event
area is from the starting address through the ending address. If
the ending address is smaller than the starting address, the ev~nt
area is from the starting address to the end of storage and from
address zero through the ending address. A single storage address
is defined when the starting and ending addresses are the same.

Wi1h thP. PER fP.attJrP. alfowP.d IECPSW bit 1 = 1) and when an
event is n•cog11i1t•d, the interrupt is taken with the appropriate
indicatiqns stored in the PER interrupt information in main stor·
age words 94 and 98. If the PER mask bit is not set, the event
conditions are lost.

Control Register Allocation

Control registers 9. 10, and 11 are used to define the events to be
monitored and the limitations imposed for the PER operation.

PER Control Bits

Bits Q. 7 of control register 9 specify the events to be monitored.
When a bit = 1 the event is monitored.

10 11 12 13 14

00000000 General Register Mask

CONTROL REGISTER 10

Bits 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 PER Sta~ting Address

CONTROL REGISTER 11

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BitO
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

00000000

Successful Branch Instruction
Instruction Fetching
Storage Alteration
General Register Alteration
Unassigned
Unassigned
Unassigned
Unassigned

PER GR Alteration Masks

Bits 16·31 of control register 9 specify which general registers are
to be monitored for alteration of their contents. The 16 bits are
assigned in the order of their ascending bit numbers to the 16
registers. When a bit = 1 · he register is monitored.

PER Starting Address

Bits 8·31 of control register 10 define the first address of the
main storage area to be monitored.

PER Ending Address

Bits 8·31 of control register 11 defines the last address of the
main storage area to be monitored.

PER Ending Addre55

Extended Interrupt Code

A detected event condition is reported in the extended inter·
ruption code during the effected program interrupt for EC mode.
The program interruption code of 80 defines PER as the cause.
The PER conditions are reported in main storage words 94 and

98.

PER Code

Bits 16-23 ~I main storage word 94 specify event or events
causing the interruption, These bits are arranged in the same re·
lation as the control bits in control register 9. When a bit = t, the
nent was detected.

BitO
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Successful Branch Instruction
Instruction Fetching
Storage Alteration
General Register Alteration
Unassigned
Unassigned
Unassigned
llna$5igned

Program Event Address

Bits 8-31 of main storage word 98 specify the address associated
with the recognized event. This is normally the address of the in·
struction causing the event except an execute initiated instruction
when the execute instruction address is stored.

Word 94

PER CODE oooooooof
0 8 16 24 31

Word 98

loooooooo l PROGRAM EVENT ADDRESS

0 8 16 24 31

·3145 TM CPU 173

Successful Branch Instruction

When the PER control bit 0 = 1, the operation sequence tests for
a successful branch event following the execution of each branch
instruction. A successful branch resulu from branchi~g the in·
struction flow to the branch address of the instruction. The
branch at the end of the load·PSW instruction is not considered a
successful branch because that is the normal instruction flow.

When bit 0 of the PER code is set to 1, the program event ad·
dress is set to the address of the branch instruction unless it was
initiated by an 'execute' instruction that stores the instruction
address. The address to which the instruction branched is stored
as the instruction address in the old PSW.

Instruction Fetching

When the PER control bit = 1, the operation sequence tests that
the initial byte of the instruction falls within the monitored area
of main storage. When an instruction is performed as the result of
the 'e)(ecute' instruction, the initial bytes of both instructions
are tested. The event is recognized if either byte falls within the
monitored area.

When bit 1 of the PER code is set to 1. the program event ad·
dress is set to that of the fetched instruction. If the fetched in·
struction is the object of an 'execute' instruction, that instruction
address is stored. The next instruction address is stored as the in·
struction address of the old PSW.

Storage Alteration

When the PER control bit 2 = 1, the operation sequence tests that
the information is destined to an address within the monitored
area of main storage. This does not include addresses initiated by
the CPU for permanent storage and logout assignments. The stor·
age is considered altered when the instruction could change the
information, even if the value is modified by zero.

When bit 2 of the PER code is set to 1, the program event ad·
dress is set to that of the instruction causing the reference. If the
'execute' instruction initiated the reference instruction, the ad·
dress of the execute instruction is stored. The next instruction ad·
dress of the old PSW.

General Register Alteration

When the PER control bit 3 = 1, the operation sequence tests
that the information is destined to a general purpose register de·
fined by the alter mask in control register 9. The register is con·
sidered to be altered, even when the value is unchanged, if the in·
struction could have changed the value. The register oould have
been transferred to itself or the value modified by zero. If the in·
struction involves multiple registers, the event is reported when
any one of the group is defined by the alter mask.

When bit 3 of the PER code is set to 1, the program event ad
dress is set to the address of the reference instruction except
when it was initiated by the execute instruction when that ad
dress is stored. The next instruction address is stored as the in
struction address of the old PSW.

PER Operations Introduction

At the end of each instruction, if the PER control is active, the
operation is branched to the entry of the PER routine (GOER).
The normal RTN LNK statement performs the branch_ because
the link address has been altered during the setup to the 85
module. Of interest in this routine is the successful branch ending
because this is one of the events being monitored. When the
entry is through the branch leg, a test is made for the load-PSW
instruction that is not included in the event test. If the PER con
trol bit 0 is set, the routine posts the PER code bit 0 as the m·
dicator in the PM register byte 1. One or more of the remaining
PER code bits may have been posted by the routine before the
instruction was performed. Any bits in this byte indicated that a
PER interrupt is pending and the operation branches t-. the GICM
routine to post the interrupt conditions. If no PER interrupt is
pending, a test is made for other interrupts pending. In which
case, the information for the one of highest priority is posted.

After posting the interrupt information for an interrupt, the
operation branches to the GIPW routine to store the current PSW
as the old PSW and enter the appropriate new PSW to process the
interrupt. The exchange of PSWs normally results in masking the
PER feature (PSW bit 1 l for the interrupt sequence. The ex·
change may require additional setup operations for a change in
the control mode. Before returning to the I-cycle hardware to
start the first instruction of the interrupt program, the tests for
PER events must be made on that addres if PER is masked on in
the new PSW.

When no interrupt conditions are involved upon entry into the
GOER routine or with the return from the GIPW routine, the
three events involving addressing are tested. The address of the
next instruction in the I-register is stored in control storage FFDO
for use in posting an interrupt after the instruction operation.
The PER starting address and the PER ending address are entered
to define the monitored main storage area. The two addresses are
compared to determine whether the monitored area wraps star·
age which is considered acceptable. After determining that the
instruction-fetch event is to be monitored, the instruction ad·
dress in the !·register is compared to the starting and ending ad
dresses to determine whether it falls within the monitored area.
When it does, the PER code bit 1 is posted to indicate.

Further event testing requires the entry of the instruction op·
code. This op-code is masked to determine whether it is the exe·
cute instruction. In which case, the object instruction address
must also be tested for possible location within the monitored

area. The operation sequence enters the object op-code becau$8 it
is this operation that involves the operand address. A test is also
made for a possible execute-execute sequence that is invalid.

Following the instruction-fetch event test, the op-code digits
are used to address the F3 module of control storage. The byte
thus entered contains a PER control mask and four control bits
that define unit:1ue conditions for the op-code. The PER control
mask is ANDed with the PER control bits to remove those events
that cannot occur. A bit remaining in the modified PER control
byte indicates that the operand is considered changed. The four
low·order bits are defined as follows:

Bit 4
Bit 5
Bit 6
Bit 7

Special Instructions (B2 and EA)
Insert Char under Mask (BF)
Loaci Multiple (98)
Long Operation (2 GPRs).

PROGRAM EVENT RECORDING CPU 174

The modified PER ~e is tested for bit 2 to determine
whether the storage-alter event is to be considered. To mpke the
test. the operand address information of the instruction must be' •
entered and the address developed. This address is compared with
the previously entered PER starting and ending addres1es defining

. tl'\e monitored area of main storage. If the operand address falls
within this area, the PER code bit 2 is set.

When the modified PER control byte contains bit 3, a test is
made.with the GPR·alter mask to determine whether the altered
register is monitored. Bits 4, 5, 6, and 7 of the modified control
byte represent·special conditions to be considered in testing. Bit
4 identifies the 82 and EA instructions that are not tested. Bit 5
indicates an insert ct>aracter under mask instruction that does not
represent an alter when the mask is zero. Bit 6 indicates a load·
multiple instruction in which a series of GPRs are altered. Bit 7
identifies a long operation instruction in which two GPRs are
altered.

The address for a GPR is in binary notation in the instruction
and must be encoded into a bit identification to compare with the
GPA alter mask in control register 9. For a load-multiple opera·
_tion, the instruction de!ines the first and last register involved and
the bit identification for each register must be encoded. For a
long operation the two consecutive registers are encoded~ The
identification bits are assembled into bytes 2 and 3 of a working
rt-gister to be ANDed with bytes 2 and 3 of control register 9.
Any matching bit condition results il'l a non-zero result to indicate
that the event has taken place. The operation defines that a mon
itored register has been altered but does ndt indicate which one
or whether more than one was altered. The P~ R code bit 3 is 5et
to indicate the GPR·alter event.

Following the tests for PER for the next instruction, the op
eration returns to hardware I-cycles to process the next instruc·
tion. This instruction is the first instruction of the interrupt
routine if the PSWs were exchanged.

Post PER Code 3

RETURN to 1-CVdes

3145 TM CPU 175

DOCUMENTATION PLAN

YOL30

Alphabetical subject index of documaitation con·

l ____ IN_D_e_x ____ f ::::' --........

!
Documentation plan defines the organization of

l the manual and the contents of major sections.

....
---------' Includes legend pages describing manual symbology. _ PLAN

Presents high level description of the CPU. Shows •l r data and control flow, plus a brief description of

INTRoduction j major functional area._ ___________,.

r, Describes the working relationship of the functional

l units that make up the CPU. Uses unit data flows,
operational diagrams, text, and second level diagrams

CPU Hardware where necessary._ ________ __,

VOL 31

Contains microprogram information needed to read

l f the microlisting (microprogram source document).
Describes the control words that make up the micro-

MIC roprogram programs, and contains microprogram instruction_ ________ ,, examples.

Presents a high level description of the Console File

l J and a detailed description of the Console-File
attachment circuits.

Console- File Actapte~

Presents a detailed description of the 3210 and 3215
Console Printer-Keyboards and associated attachment
circuitry. Includes microprogram operation and pro·
gramming information.

YOL.32 VOL34

Describes motor-generator concepts and CPU power Provides descriptions of keys, lights, end Mitd*

l f system. Includes sequencing, distribution, service l f on the system oPer8tOr console. lnclucMd ..

ch~s, removal and replacement, and preventive ...,_!'_ltlm __ ~-~~-~-'-.,, console operating proc:9dur• end applications. _ Po W eR _ maintenance. _ _
...._ ________ _

Presents high level description of Phase 21 tech·

l f nology, Describes the storage areas and functions
which include: addressing, BSM data flow, and

..., ____ ST_O_R_· _age ___ ,,, timings. Explains the use of Error Checking and
Correction (ECCi in detecting and correcting
data errors.

YOL33

Provides a detailed description of th• Model 145

l f 1/0 Qiannels: BYte-Multiplexer, Selector, and
Block-Multiplexer. Included are operational

_ CHa Nne Ls _ ~and flow diagrams with related text.
-------------- Defines the standard interface with expansions.

Covss the details of the adapter data flow, l r ... _ .. , "'.,,,. ""
I F A

tional units, and interrupt handling.
ntegrated ile dapts

Optional FEAT urea

Covers optional features that are not covered in
related sections. Included are descriptions of .
IBM 1401/1440/1460 and 1410/7010 Compati
bility, Direct Control, and Channel·to·Channal
Adapter.

r Describn har~ware and programs involved in

l detecting and handling of machine malfunctions.

RECovery Features
______________ ...,.

DIAG nostic Functions

Describn the diagnostic hardware end programs
used in the Model 14& •

r Contains a summary of data that. is useful to the

l--------- MrVk:e repr...utiva when trOUblahootlftf. _ REFerence

· ..
3141 TM PLAN 1

PLAN2

ABBREVIATIONS . •, m
A and function
AAR A-address register brd board conv convenience OL data length
ABM advanced bi-polar monolithic (stota~) BS byte source, bit select corr correction dly delay
ABRTY A and B retry register BSM basic storage module CP circuit protector 0-Mod 0-modifier
ac alternating current bwd backward CPK console printer-keyboard Doc documentary CIOnlOle
ACB address check boundary BWF branch if W<>rdmark or zone equal cpmt complement DOS disk operating system
ACBR address check boundary regist• BYTOST byte destination CPU central processing unit dply display
ACR automatic carrier return CPURTY central processing unit retry register dsbld disabled
AID alter/display CR control register dup duplicate
ADDA address cs control storage
adj adjust m csw channel status word
Adr-1 address-in CTCA channel-to-channel adapter
Adr-0 address-out c count

CTCAX channel-to-channel adapter X system II
adv advance CA control address

CTCAY channel-to-channel adapter Y system EBCDIC extended binary coded decimal
ALO automated logic diagram CAR cylinder address register

ctr counter interchange code
A-LS A-1~ storage CAW channel address word

ctr I control EBI external bus.in
alt alter CB circuit breaker

cu control unit EBO external bus-out
AltiOisp Alter/!::>isple / cc condition cov, chain command,

CUA control unit address EC external control, engineering change
ALU arithmetic logic unit ;ycliccode

CUB control unit busy extended control
AM address mark CCC channel control check

CUE control unit end ECC error checking and correction
amp amplifier, ampere CCH channel check handler

cycle ECCL error checking and correction logic
channel command word eye

ANUM add numeric ccw
cyl cylinder ECNT error count register

appndg appendage co chain data time-of-day clock
ECSW extended channel status word

APR alternate path retry COA chained data
ED external damage

arith Arithmetic CDC channel data check
EOBI external data bus-in

ASCII american standard code information CE customer engineer m EOBO external data bus-out
interchange CF console file 0 data

EM external damage report mask
ASCP automatic system checkout pr0gram CFC console-file checking DA data address

env envelope
asm assembler CFDA console-file disk address OAT dynamic address translation EOF end of file
AT attention (file) CFDR console-file data register DASO direct access storage device EOL end of line
ATTN attention chan channel dbl double EP emergency pull (switch)
avl available char character DC di:~ct control EPO emergency power off chk check de direct current

EPSW extended PSW chng change OCBI direct control bus-in
equal chnl channel DCBO direct control bus-out

eq
EROS environmental recording data set m CIDA channel indirect data address

DCC disconnect command chaining
EREP environment recording edit and BAL branch and link ck check OCHI direct control hold-in

BAR B-address register CKD count. key, and data DCPL De-coupler
print program

ERP error recovery procedure BBE branch on bit equal elk clock DOR dynamic device reconfiguration
err error BC basic ceintrol CM current module DE device-end ev even BCA bit cour.t appendage cmd command dee decode, decimal, decrement exc exception BCA basic channel adapter Cmd-0 command-out OED double error detect
EXCA external control assembler BCAI basic channel adapter interface cmnd command Del 'delay
EXE CPL T execute complete BCD binary coded decimal encl cancel dest destination

expanded BCE branch on character equal end condition det detect exp

BOIL branch and do int•pretive loop cnsl console OF disk file EXP LS expanded local storage

ext external bfr buffer cnt count diag diagnostic
external assembler branch on invalid flag cntr counter di ff difference ext asm Bl FLAG

ext dst extl!f'nal register destination bin binary coax coaxial cable OIL do interpretive loop
external interrupt blk block co convenience outlet Dir-In direct control bus·in ext int

&LS B-local storage comp compare Dir-Out direct control bus-out
BMF block multiplexer feature COn<On contingent connection Disc-I disconnect-in
BR bit ring cond COf'!dltion dist distribution
BR branch cons console div division

if interface LS 1ocal storage m II IFA integrated file adapter LSCA local storage control assembler
OBR outbOard recorder

LSCS local storage control storage oc over current
f ;e IFCC interface control check

LSOST local store destination
OE exclusive OR

FBAK "·- backup external word
IFCU integrated file control unit

Ith latch
OP operation

FBO file but-0ut
IL incorrect length

OP·I operational· in
FCH file count register !ligh

ILC instruction length code

CPL operational
FCL file count register low

IM input/output extended logout mask
FCNO file conditions external word

IMPL initial microprogram program loading II OP·O operational-out
OS operating system

fdbck feed baek
INB in backward

mach machine
oscillator

FDR file data register
M·register back up osc inc increment

MB
av over voltage

FERR file error external word
ind indicator

MBO multiplexer bus-out FM file mask
INF in forward

MC machine check FF flip flop
inh inhibit

MCAR machine.check analysis and recording

II
FLS feature local storage

inst instruction, instruct
MCEL machine-check extended logout FM file mask

instr instruction MCH machine-check handler PAA pre-address assembler FOP file operation register
intf interface MCK machine-check register P-Bit parity bit FSTAT file status external word
intlk interlock MCKB machine-check a.register

PCI program-controlled interrupt FTAG file tags external word
intr interrupt MCIC machine-check interruption code

PD instructiOl'I processing damage FTC flush through checking
intv interval MCKA machine·check A-register

PD~R program damage assessment and rep1ir fwd forward
intvn intervention MCPU move data in CPU

PE print emitter invld invalid MCRR machine-check recovery recorder
PER program event recording invrt invert MFE magnetic feedback emitter
Pf power frame m 1/0 input or output MFT multiple fixed tasks
PG power gate gen generate, generator

IOCA input/output communications area MG motor generator
PGA . power gate A GM group mark

IOEL input/output extended logout Mid-Pac middle power package regulator
PGB power gate B gnd ground

IPL initial program load MIO move data for I /0
PH polarity hold GR general registers

ISC integrated storage control misc miscellaneous
PIR priority interrupt register grp group

ISK insert storage key MLC machine level control
PIRM priority interrupt register mask GSTAT selector channel status external word

mod module
mono monolithic POH power-on hours

POR power:On reset D MOP mini operation register
pos position m JCL job control language MP matrix printer
prev previous home address MPX multiplexer HA
PA·KB printer-keyboard HOV halt device MRTY M·retry register
proc process millisecond hdwr hardware 13. ms
prog program hexadecimal us. microsecond
prot protect

hex
K kilo, relay, key

MS main storage
PSW program natus word

hi high
KO key and data

MSF main.storage frame HIO halt input/output
pt point H and M retry registers keybd keyboard

MST monolithic systems technology .
PTLB page table lookaside.buffer

HMRTY
KL key length

MTO multiplexer tags-out HS hard stop

multiplexer tags.in ptr printer hwd hardware MTI
pty parity hertz II MUA multiple unit address
pwr power

Hz

MVT multip'e variable task L length
LC lower case

D LCTL load control
IAR instruction address register LO line driver m 18 interrupt buffer LEX local execute mode

II r register IBU I-register backup LO low
RO record zero instruction counter Log I logical n inverter IC

ICC interface control check LH L-register high half NA next address R1 record 1 ·
RAC remoti analysis center incomplete LHM left-hand margin NIL new line
RAS reliability availability .viceability

icplt

L-register low n/o normally open 1-cy instruction cycle LL
RCNT retry count register NOP no operation id identifier In!< link
RCS r~loadable control storage LR line receiver norm normal IDA indirect data address

!DAL indirect data address list LRA load real address NPL new product language f!Q read
IDALW indirect data address list word LRU least recently used ns nanoseconds RDK reset diagnostic key

3145 TM PLAN3

PLAN4

ready· so segment origin m rdy
special recovery spec

UC upper case
rec .. ' SPTL s. P. T and L--f'egisters recal reca.librate
ref reference SPTLB SPTL back-up word for SPTL ucw unit control word
reg regulator. register registers U/L upper or lower

us. microsecond , ,[&Q request SR system recovery
reqd required S/R set or reset
Req-1 request-in SSK set storage key
rw reverse st start

m RHM right-hand margin Stat-I status-in
RM record mark STCTL store control

v volts RMS recovery management system std standard
vac volts alternating current rms root mean square stg storage
val validate RR record ready recovery report STI status-in
vdc volts direct current RRB reset reference bit

STIDC store identification channel
VFO variable frequency oscillator Rst reset, restart S1 'JP store identification pr~r
VMA virtual machine assist feature rtn return stkd stacked
VOM volt/ohm meter rty retry

stor storage
rtY fig retry flag

stp stop

m SUA single unit address
supp suppress B Sup-0 suppress-out

WB word bottom SAR storage address register
SUT system unavailable time

wd word SCAMPART storage console approaches, manual
SVC supervisor call

WK working register procedures.and reference timings
SVI service-in

WLR wrong length record SCF storage and control frame
SW switch WM word mark sch search
sx selector /block-multiplexer channel

Wr write SCP system control panel
sync synchronize ws word separator. word source SCR silicon controlled rectifier
synd syndrome

WT· ·word-top $ct sector
sys system

WTC World Jrade .. Corp, SD system damage
SDBI storage data bus-in
SDBO storage data bus-out
soc suppress data check

13 SOK set diagnostic key a SOR storage data register, statistical
XFer ., .insfer data recorder TB terminal block X-Late translate sec secondary TCH test channel

sect sector TO timer damage, time delay
sel select temp temporary, temperature

basic micro-diagnostic group
seld selected

term terminator *BAS Set-I select-in
tfmr transformer µ micro Sel-0 select-out

selr selector TH T-register high µpm microprogram
microsecond therm thermal p.s

4> phase
seq sequence

thld threshold
4cR phase control regulator

serdes seriali zer /deserial izer
thru through SE REP system error record editing program

Serv-1 service-in TIC transfer in channel

Ser'v-0 service-out TIO test input/output

sht short TLB translation lookaside buffer
SI system incidents TOD time of day
SIO start input/output TODH time-of-day high word
SIOF start 110 fast release TOOL time-of-day low word
SIL sense preamplifier and data latch TP timing pulse
SLI suppress length indication TR transformer-rectifier, trap
SLT solid logic technology T/R tilt or rotate

SM synchronous mask tgr trigger

tng single TSBO timing signal bus-out

LEGEND

'"f
0

,..------- •'""
! r
'--.,,,_, __ .,.,..?

Byte number

lnput---f

$et

Cl•r
IRewtl

I
0

3

! Number of bit lln•
.. ,_, ""_.·6:..6!1'!<••::7:-· dll!)i>)'

·"'.llt'P' ~

Register Name
1 I 2

7
1
P

3

Displayable

!Seti~ IOn/11

!Reset) ti COff/01
AC 123

fllipUtdl

Input sidl ii dlnOted by heavy line.
Circuit muldples ~by numerals in
iow.- rieht corner. ALD reference page
may be shown beneath.

~

I
2 1 -,--

i
l$etl rJ: COn/11 FF

1Compl1111811tl . Input side b denoted by heavy Una.
Shift si9nel is shown by a P or N.

R._ister,Counter

Input side Is denoted by heavy line.
Deta flow lines are heavy weight;
control lines are light weight.

+1 ..

ruBl-

·~ YR !Reset) -Counter

3 2 1 0

j-•use+forup
• forctown

Shift Registers

The Shift Registers are commonly
used to serialize and deserialiie
data information. Input sid• is
denoted b'l'-tM-thiek-line; A partial
transfer of contents is shovwi _by
numbered input/output lin~s.

I _..;P ""-.

IResetl . · · IOff/Ol

(Data) Lr !Output) PaWny Hold PH
!Control) Input sid9 is denoted by heavy line.

IOI earl

~
t:@----t

~-··

~

~

Parity Chec:k on
Data Flow Lina

Anet

Even

Exclusive OR

Negat0r (Inverter)

i.•~rltv Generate on
Data flow Line

--El--

Shift Input

ITlrnel

J-PEJ--t
(Time I

~
(Frequency)

t};

(Time)

r&

-

l Singlelhot

Oscillator "\

TlmeDelay

lndi•tOI' Lamp

Identifies displayable bus, rtlgisttr. latch, etc.

such as:

Displayebla bus with number of bus linea lnctii:ated.

Wired Pluggable
or
Switchable

Displayable Flip Latch

Amptlfier

XX AbllreviatioM
CD • Cora Drlvtr
DF • Differentiel
HD • Head Orlvtr
ID • Indicator Driver
LD • Line Driver
I. T "' Line Terminetor
MD•. Magnet Ori'*'
V • Voltage

~b~ """~"°'-'• T•od"

~
a.

IGateJ · .. · oo.oo Numera~ faainst pte avmbol give ""9 or...,..
n11rn0er of gatlnt cir.cult. ·

PLANS

TIMING CHARTS

3---~_,

No

I Major Functions or Events

Function 0t Proc. Detailed El-here

Indicate in blockwhere the detailed. flow ch8rt of the proee91

is located. .

Flow chart block where action is indicetable.
(Use and placement of indicator is optional)

Flow chart block whare condition branched on Is lndicatab ...
!Use and placement of indicator is optional.)

T•minlll

F ·. ,tndicates betiM!na or end of flow pem. --··-·.i

. GENERAL

Oiag1·2

,,

DeciliOtt
I ndlcates a pplnt In a flow chart wllef" a branch to alternate

paths Is "f~'9·

On-Page Connactor

Indicates connection between two parts of the same
diagram. Arrow leaving symbol points (llne-of-slghtl
to correspondingly numbered symbol.

~n-Pap Connector

Indicates connection between two parts of the same
diagram. Alphameric grid coordinate of complementary
connector shown beneath.

Off.Page Connactor

Indicates connaction between diagrams located on separate
pages. Location of correspondingly • lettered symbol shown
adjacent. Alpharnarlc grid coordinate mav be Included,

3145 TM PLAN 7

INDEX

Et
A-byte assembler CPU 89
A.gate layouts STOR S-6
A-ii rotary switch functions CNSL 30
A-local storage data flow CPU 12
A-register

description CPU 88
introduction INTR 10
use STOR 3

A-register. 8-register and AW CPU 88
A-register display

data !low C~SL 16
indkators (lower roller) CNSL 14

AB backup REC 11
AB retry fABRTY) REC 11
AB~I array card. 16 and 32k STOR 26.1
AB~t storage decodes STOR 32.1
ac (automJtic configuration) REC 18
accable,IFAi2319 IFA98
acidc module, removal and replacement

Models FED- I PWR 58
Models H2--K2 PWR 127

ac (voltage)
blowers

Modeh FED-I PWR 8
Models H2-K2 PWR 100

convenience outlets
Models FED-I PWR 8
Models H2-K2 PWR 104

distribution

ACB

Models FED-I PWR 8
Models H2-K2 PWR 104

control circuits CPU 37
examples CPU 36
register description CPU 3S
settings CPU 3S

accelerate latch CPK 45
accessing (storage) STOR 3
active cap

adjustment PWR S2
bias voltage check PWR S4
check PWR 52
ripple check PWR S4

addition of external storage STOR 107
address _

adjust (see OS/DOS compatibility)
adjust, introduction INTR 11
buffer card STOR 3
ch«k bounlbry (see ACB) . 1 :

checking (SAR) STOR 22
· compare control,' switch CNSL 32
compare, switch··,~CNSL I8
compare switch,,1bgkdiagram CNSL 18
formation,·next c'ontr61 word · MIC 16
mark '''·«· ,.,

·AM bytes·' IPA 11'
detect logie 'IFA'I 7· i..i ; : ;

-detecdin1ing , IFAIS ,i
· • d·etection ''lFA 1:6· :·' , • .,: 1'• /BC ;;,-

address, mark (continued)
restart IF A 17
sync byte IFA 17

address-in CHNL 4
address interface (storage)

advanced bi-polar STOR 29
phase 21 STOR 28

address-out CHNL 4
address translation CPU I 39
addresses trap (retry) REC IS
addressing

BSM STOR22
local storage scoping procedure CPU 17

adjustments
active-cap PWR 52
data separator IFA IS
delay line IFA 15
error detector IFA IS
gate generator IFA IS
MG output voltage

Models FED-I PWR S6
Models H2-K2 (see 3047 Power Unit TM)

MG regulator overvoltage
Models FED-I PWR SS
Models H2-K2 (see 3047 Power Unit TM)

regulators, power service checks
Models FED-I PWR SO
Models H2-K2 PWR 124

reset pulse PWR 5 3
singleshot VFO IFA IS
storage STOR 73-7S
uro detector IF A IS

adn:omp match, indicator CNSL 6
adr X·Iate

LRU invalid, indicator CNSL S
multi-match, indicator CNSL S
mode, indicatot: CNSL 5
no match; indic~ior CNSL S

advance head trap IFA 77
advanced bi-polar ad,d,r.~ti and data interface

.. (illustration) S'TOR 18
advanced bi-polar BSM-ECCL-CPU interface

(illustration) STQR JS
advanced bi-polar i~nt~ol lines

BSM reset STOR 26
BSM select STOR 26

m, achine reset· · S,T.·Oll··.· .ft8; ; , .

write (U/L) . STOR~ ,
advanced bi-polar ~tOiage ·

addressing configuration STOR 82
boards STOR 106

. ~~pi~~ ,S~pR 102
· ,, ~DR card' STOR lOS

~rite timing STOR 11 O
advanced checkpoint/restart REC 26
aids;(see service aids)
alarm ' '

audible CPK 61
. . · . lrtdicator CPK .6. ' ".reset s\Yitch ': CPK 6

I,

ALD references (power)
Models FED-I PWR 6
Models H2-K2 PWR 102

allow CE mode, switch IFA 86
alter/display

mode indicator CPK 6
operations CPK 54
switch CPK6

ALD references (power)
AM (address mark) bytes IFA 17
AM (asynchronous machine check logout mask) REC 17
analysis, machine check REC 24
arithmetic and logic unit (ALU)

description CPU 93
gating (A/B) CPU 91
introduction INTR IO
K-assembler CPU 92
shift gating CPU 92

arithmetic control word
byte operation· MIC 76
description MIC 68
fullword

bit format MIC 70
indirect byte operation MIC 78
operation MIC 80
shift operation MIC 82
type 10 bit format MIC 70
type 11 bit format MIC 70

arithmetic word types (ABCK) MIC 70
array card population chart (PF) STOR 9 and 67
array card storage elements (illustration) STOR 10
array card structure STOR 26.1
array cards (PF) STOR 68
array module STOR IS
array module and chip selection (phase 2I) STOR IS
assembler instructions MIC 70
attachment, 3210 PR-KB CPK 14
attachment, 3215 PR-KB CPK 33
attention (status bit 0) CPK 61
autotransformer (WTC)

m
Models FED-I PWR 8
Models H2-K2 PWR 104

B (backup) REC 18 , 1
B-byte assembler CPU 90 !

8-gate layouts STOR 4 • : 'l
B-local storage, data flow· CPU I 4
8-LS source direct address CPU IS
8-register

description CPU 98.> /' i ··! ·

introduction :INTR Ut , u ; I '. i-g' l -' ·
use STOR 3 , · ' <~:-i:-'1' ~ ~

backup and retry .register$ '
introduction INTR 10
use REC 10 . '•

backward seek test . IF~· 94 :
basic ; ; i r : .
·, · .• · control command! ~is.ecution • · 1tFA 40

data command execution IFA 41

basic (continued)
IFA operations IFA 3S
logic sYmbology REF 4

basic BSMs STOR 7
basic diagnostic group (storage) STOR 70
bias voltage

amplitude PWR IS
check PWR 67
ripple amplitude PWR IS
ripple frequency PWR IS
waveform (waveshape) PWR IS

bias voltage supply description PWR 15
bit assignments, lFA externals IFA 11
bit cell

(illustration) STOR 16
operation (phase 21) STOR 16
selection (description-phase 21) STOR 23

bit count appendage (BCA) IFA 24 .
bit ring logic IF A 19
bit ring timing IF A 19
bit select (BS) STOR 16
block-multiplexer channel

charts, objectives CHNL 98
operations CHNL 89
selector channel INTR 17
semidynamic UCW address assignment CHNL 92
shared UCW assignment CHNL 91
store/load UCW traps CHNL 95
ucw

address pointer tables CHNL 92
assignment CHNL 91
assignment registers CHNL 92
pool CHNL93

blower troubleshooting aid PWR 64
blowers

ac
Models FED-I PWR 8
Models H2-K2 PWR 104

off, switch CE3
location PWR 28
description PWR 29

off, switch (Models H2-K2) PWR 110
removal and replacement

Models FED-I PWR 59
• · Models H2-K2 PWR 128

board decoupling capacitors PWR 22
boa select STOR IS
branch and link control word example MIC 34
branch and link or return word

· · bit format MIC 32
- description MIC 30

branch and module switch
bit format MIC I 9

·.. description _MIC 18·
example MIC 20

branch word .
. , .,.. bit format MIC 24
1 r- · •• 4escription ' ·MIC <22
;.. , · ,. . example MIC 26

bran.:h word. special ino'dute switch function MIC 28
branch svmbols~'contror word . ~lf<i 89
br:m.:lti~g .:ir.:uiutmidoprograni)' 'CPU 104
BS'.J addressing {advanced bf.pblar)

buffer regist~f .(M~). <:;P.lP 03
' ' bulbs (see in,di~;nors). ;,;

bulk vol~~ge . ·

addre;s arid'.:ontrol interface (text and illustration)
address <:ciritrol lines; chait' StOR 26 i'i:•~ ',
address flow exam.pie .: STOR 27 . '; ',;;,;<
addressing'drcuits · STOR 25

STOR26
amplitude P\\'.R I 4 , .
check PWR 66

addressing illustration· STOR 25 1 ,.

85'1 decode· STOR 25 · · :·
ss-.1 decode chart (PF storage'iange) STOR 25

es-.1 clock STOR 19
es-.1 configuration (addressing and data)

advanced bi-polar storage STOR 29
phase 21 storage STOR 28

es..i data flow
ad\·anced bi-polar

description STOR 42
illustration STOR 42

advanced bi-polar data-bit location chart STOR 43
data and check-bit cabling

ad\·anced bi-polar STOR 42
phase 21 STOR 40

phase 21
data-bit location chart STOR 41
description STOR 40
illustration STOR 40

BS-.1-ECCL-CPC interface (phase 21) STOR 17
BS'.1-ECCL data flow (description) STOR 19
BS'.I functions STOR 19
BS'.I interfa.:e timing. charts

advan.::ed bi-polar STOR 36
phase 21 STOR 36

BS'.I internal timine:. charts
advanced bi-polar STOR 39
phase 21 STOR 38

BS\! terminators STOR 3
BS'.ls

addressing STOR 22
addressing ranges STOR 4-6 and 6.1
advanced bi-polar STOR 10
array cards

phase 21 STOR 8
population chart (advanced bi-polar) STOR 9

bit capacity STOR 7
board layout STOR 10
board sele.::t STOR 22
cabling (data and check bits) STOR 4042
.:omparison 'phase 21 to advanced bi·polilr) STOR 7
con.::eptual STOR I 1·12
configurations STOR 28-29
CPC STOR 8
data bit lo.:ation chart STOR 41
data flow STOR 40.42
interf~ce STOR 28-29
interface timing STOR 36-37
internal timing STOR 38-39
locations STOR 4-6 and 6.1
phase 21 STOR 2
power frame tPF) STOR 9
sizes

advanced bi-polar STOR 9
phase 21 STOR 8

tenninator STOR 11-12

description PWR. J 4 . , . , , .
ripple

amplitude PWR 14 ~ , ,,
frequency · PWRJ,4 :;, 1. •

table PWR 14
troubleshooting . PWR.6.6 ..
waveform (waveshape) rwR,14

bulk voltage supply description, .PWR 14
burst mode (see channel) ·
bus-in CHNL 4
bus-out CHNL 4
bus-c" t check (PR·KB) CPK 62
buses (power)

flat-wire
Models FED-I PW)f~ .. "'
Models H2-K2 PWR: IP8 · '

Ulaminar . · ., _.,.,'.'. ..
Models FED-I F'. R 3
Modt'~s H2-,K2 . P\\'.R:l,08

voltage measurement charts
Models FED-I PWR 46

buses (storage)
SDBI STOR3
SDBO STOR 3

busy
circuit (phase 21, ABM) STOR 94
indicator (ECC check) CNSL S
status bit (PR-KB) CPK 62

BYTDST REC 11
byte assembler

A CPU 89
B CPU 90

byte counter
console file CF A I 5
indicator CNSL 7
use IFA 22

byte count logic, IF A IF A 22
byte-mark register

description STOR 48
second-level diagram STOR 48

byte-mark register (storage) STOR 48
byte marks STOR 48
byte multiplexer channel (MPX)

catalog numbers CHNL 37
channel log REC 20

:·,•':'-'!'-

channel machine dependent log REC 20
command chaining CHNL 43
CSW store CHNL 34
data chaining CHNL 43
data handling CHNL 21
ending procedure CHNL 31
ending status and interruption handling CHNL 30
error handling and logout CHNL 37
error logout CHNL 38
external facilities CHNL 15
functional units CHNL 13
halt deVice · CHNL 22
halt 1/0 CHNL 22

,,,,;:··w;..,tr. •n··11 If.:¥ ·.ti
byte multiplexer· channel ·(~~}(6'drttl'n~tfllf ,,f~
• 1/0 device and UCW addressing CHNL 12

initial selection routine £HNL 26
interface control check CHNL 26
Interruptions . '1 ;1 .

normal primary endil)g status CHNL 32
normal secondary ending status CHNL 33
prograin-controlledJnter.r11pt (PCI) CHNL 35

IPL (Initial program load) tHNL 45
local storage CHNL 18
logout CHNL 36 ·. l. , · l ~

MBI (multiplexer bus-in) - CHNIJlS'
MBO (multiplexer bus-oui) · CHNL 15
MTI (multiplexer tags-in)· CHNL 15
MTO (multiplexer tags-out) CHNL 15
operations CHNL 19
second-level diagram CHNL 16
share trap

data handling CHNL 21 ·
request CHNL 28

start 1/0 (SlO)
description CHNL·22
detailed flowcharts CHNL 24
status intemipt CHNL 31
stop after log CHNL 36
store and load PSW CHNL 44
test channel CHNL 42
test lfO (TIO) CHNL 22
unit control word format CHNL 13

byte-multiplexer channel interruption CHNL 33
byte selection (SDBO) CPU 8

m
C-register

description CPU 98
force !FA 30
introducti:-.1 INTR 9
use STOR 3

cable
ac IFA 98
mixer board de IF A 98
R/W wax and selected IF A 98
simplex IF A 98

cancel
key (PR-KB) CPK 6
latch (PR-KB) CPK 15

CB trip, indicator
Models FED-I PWR 28
ModelsH2-K2 PWR 110

CDs PWR 6-11
CCW entry and decode IFA 45
CD (time-of-day clock damage) REC 18
CE (::ustomer engineer)

error light IF A 86
mode indicator IF A 86

CE panel
IFA/2319 IFA 86.
sequence

Models FED-I PWR 28
Models H2-K2 PWR 110

CF commamk', "fJF A ·llll : "
CF pwr on: fudicator CNSL 6-
CFDAR register·· ,.. · -i

description - CF A 6
use CPU 34

chaining check (PR-KB) CPK 61
channel

address word (CAW) CHNL 3
available interruption CHNL 89
block multiplexer CHNL 89
burst mode

defined CHNL 2
operation CHNL 9

bus-in CHNL 4
bus-out CHNL 4
byte-mode operation CHNL 9
byte-multiplexer data flow CHNL 10
check handler routine REC 23
clear 1/0 CHNL 3
command word (CCW), defined CHNL 3
commands for lF A IF A 8
commands for PR-KB CPK 60
configurations CHNL 2
control check (PR-KB) CPK 61
control words CH~L 3
data check (PR-KB) CPK 61
data rates l~TR 16
dependent logout REC 20
end (CE, status bit 4, PR-KB) CPK 61
general description

block-multiplexer feature INTR 17
byte-multiplexer INTR 16
data rates INTR 16
integrated file adapter INTR 17
selector INTR 16

halt device (HDV)
multiplexer CHNL 22
selector CHNL 68

halt 1/0 (HIO)

ID

multiplexer CHNL 22
selector CHNL 68

IFA !FA 4
multiplexer CHNL 36
selector CHNL 77

identification REC 19
indirect data address

block-multiplexer CPU 170
byte-multiplexer CPU 170
CIDA backup control CPU 172
controls CPU 171
IF A addressing CPU 172
page end detection CPU 171
selector CPU 170
selector channel addressing CPU 172

initial selection sequence CHNL 8
instructions CHNL 3
interruption, available CHNL 89
introduction CHNL 2
logout

multiplexer CHNL 36
selector CHNL 77

3145 TM X·2

channel (continued)
mark O.in CHNL 4
metering controls CHNL 6
multiplexer mode CHNL 2
retry

description REC 10
introduction IJl.'TR 14

selection controls CHNL 4
sequence codes

multiplexer CHNL 36
selector CIP.'JL 37

short CSW CHNL ~6
standard interface Cm.IL 4
status byte (PR-KBJ CPK 61
status bytes (IFAJ IF A 74
status word (CSW). defined CHNL 3
tags-in CH~L 4
tags-out CHNL 4
test 1/0 (TIOJ

multiplexer CHNL 22
selector CHNL 65

unit control word
multiplexer CHNL 13
selector CHNL 50

channel chec:ks CHNL 71
channel indirect data address CPU 170
channel logout

multiplexer CHNL 36
selector CHNL 77

channel-to-channel adapter feature (CTCA)
address compare and data flow X FEAT 28
control command FEAT 20
controls CNSL 36
data tlow FEAT 20
des.:ription FEAT 20
disable and compatibility FEAT 29
functional units FEAT 28
halt 1/0 FEAT 27
liO interfa.:e isolation FEAT 26
no operation FEAT 23
on-line/off-line modes FEAT 26
operational characteristics FEAT 20
programming notes FEAT 27
read or read backward FEAT 23
select priority, mode selection and bypass FEAT 29
selection and reset X FEAT 28
sense adapter state FEAT 23
sense command byte FEAT 23
sequence and control X FEAT 28
status. sense. and input B bus-in X FEAT 29
system or selective reset FEAT 24
test liO FEAT 23
write FEAT 23
write end of file FEAT 23

charts
address control lines

advanced bi-polar STOR 26
phase 21 STOR 23

array card population advanced bi-polar STOR 67
BSM decode chart advanced bi-polar STOR 25
data-bit location

advanced bi-polar STOR 43
check, bit ,antt error correction (at ECCL board) STOR SO

charts (continued)
phase 21 STOR 41
segment addressing chart phase 21 STOR 22
syndrome decoder STOR 52
system storage capacities STOR 2

check
chaining

channels CHNL 71
PR-KB CPK 61

channel control
channels CHNL 71
IFA IFA 74
PR-KB CPK61

channel data
channels CHNL 71
IFA IFA 74
PR-KB CPK61

console-file data
even-odd CFA 14
extra bit CFA 14
out-of-sync CFA 14
missing bit CFA 14
shift register CFA 14

data parity (PR-KB) CPK 43
flush through

external CPU 10
local storage CPU 29

GB parity CHNL 85
hardware (storage)

address STOR 72
byte STOR 72
data STOR 72
hardware check STOR 71
store control line parity STOR 72

interface control
channels CHNL 71
IFA IFA 75
PR-KB CPK61

machine REC 8
multiplex CHNL 37
power (see power checks)
print emitter sync CPK 43
program

channels CHNL 71
IFA IFA 74
PR-KB CPK61

protection
channels CHNL 71
IFA !FA 74
PR-KB CPK61

retry REC 10
service

CPU (clock) CPU 100
console file CFA 18
delay line adjustments(storage) STOR 73-75

PR-KB (see PR-KB Theory-Maintenance Manual)
timing (storage) STOR 73-75

unit IFA 74
check bit and error correction chart STOR 50
check·bit correction, description STOR 54
check bit examples STOR 83
checking circuits

- first sequence Models FED-I
stage l PWR 40

checking circ:uits, ftrst sequence (continued)
stage 2 PWR 42

first sequence Models H2-K2
stage 1 PWR 118
stage 2 PWR 120

second sequence Models FED-I
stage 1 PWR 41
stage 2 PWR 43

second sequence Models H2-K2
stage l PWR 119
stage 2 PWR 121

checkpoint/restart REC 26
check reset (CK reset, CE2) switch

description
Models FED-I PWR 29
Models H2-K2 PWR 112

locatiora
Models FED-I PWR 28
Models H2-K2 PWR 110

chip (selection) STOR 15
clock

comparator (see clock comparator and CPU timer)
CPU (see CPU clock)
damage REC 18
IFA

logic IFA 16
share cycle logic IF A 31
timing IFA 18

logic diagram, storage STOR 30-31
stop, indicator CNSL 6
storage STOR 22
sync, indicator CNSL 4
time-of·day (see TOD clock)

clock comparator and CPU timer
instructions FEAT 31
manual mode conditions FEAT 36
set and manual operations FEAT 35
store operations FEAT 34
timer hardware FEAT 32
timer operation FEAT 31
update operation FEAT 33

clock-out CHNL S
CM (configuration report mask) REC 17
cmnd reg indicart:Jr CNSL 7
cntr match, indicator CNSL 7
codes

printer tilt/rotate (T/R) CPK 8
T/R and keyboa1d, table CPK 9
translation, 3210 PR-KB CPK 10
3210 keyboard CPK 7
3210 transmission CPK 9

colon
printing the punctuation character

3210 CPK 11
3215 CPK 31

command chart, console file CFA 12
command execution

IF A control cmd IF A 40
IFA data cmd IFA 41

command-out CHNL 4
command reject "'"J

IFA IFA 46
PR-KB CPK62

command retry ,
1/0 interface sequence CHNL 80
introduction INTR 14
operation REC I 0

command retry feature CHNL 80
common region, 1400 compatibility FEAT 4
comparator, clock (see clock comparator)
compare circuits IF A 26
compatibility exceptions INTR 14
compatibility feature, 1400/1410

ANUM instruction FEAT 11
BIFLAG instruction FEAT 12
common region FEAT 4
COMP instruction FEAT 11
control byte charts FEAT 10
control storage assignment FEAT 2
DIL and BDIL instruction FEAT 10
EA instruction FEAT 10
local storage assignment FEAT 2
main storage assignment FEAT 2
MCPU instruction FEAT 11
MIO instruction FEAT 11
op-code chart 1401/1460 FEAT 6
op-code chart 1410/7010 FEAT7
op-codes, 1440 FEAT 8
program debugging inforamtion FEAT 12

compatibility feature 1401/1440/1460 FEAT 2
compatibility feature 1410/7010 FEAT 2
component

labeling (component Id)
Models FED-I PWR 3
Models H2-K2 PWR 100

locations
Models FED~I PWR 5
Models H2-K2 PWR 102

removal
Models FED-I PWR 57
Models H2-K2 PWR 126

replacement
Models FED-I PWR S7
Models H2-K2 PWR 126

component locations
Models FED-I PWR 6
Models H2-K2 PWR 102

condensed data flow, 321 S CPK 33
condition code validity REC 18
configurations

advanced bi-polar STOR 82
B.SM

address aild control interface STOR 28-29
basic STOR 7
PR-KB CPK 3

3145 STOR 80
3345 STOR 80

console file
adapter CF A 2
byte control CF A 6

·byte counter description CFA 6
byte counter indicator CFA IS
byte format CF A 4 , ,
~FDA track/selector tllble CFA 4

•clock CFA 8 '

console file (continued)
command byte .. CFA.4,
command cqart CF A 12 , , .,
command register

des.:ripti;n. CF A 6
indkator CFA 15

commands CFA 11
compare circuits CF A 6
control commands CFA 11
CPL' do.:k start CFA IS
data and clock bit timing CFA 4
data byte CF A 4
data checks CFA 14
data t1ow CFA I
data register (CFDRJ CF A 6
disk address bvte CF A 4
disk-address r;gister CF A 15
disk address register KFDAR) CFA 6
disk format CF A 4
error checks CF A 14
e\'en-odd check CFA 14
extra bit check CFA 14.
head control and track accessing CF A 6
)\IPL example CFA 16
indicators C:'.\SL 7
introduction CF A 2
operation commands CFA 11
out-of-sync:missing bit check CFA 14
pause CFA 15
register display switch CNSL 7
registers, indicators CSSL 7
remo\·al and replacement CFA 18
sector ionnat CFA 4
sector ready latch CFA 10
shift register

des.-:ription CF A 6
parity error CF A 14
timing CFA 9

timing charts, shift register CF A 9
voltages

stage I PWR 47
stage 2 PWR 49

console-t1le register display CNSL 31
console layout C:'.\SL 2
continuing scan commands IF A 70
control address set. key C:'.\SL 32
control and data flow(PR-KB)

3:10 CPK 15
3:?15 CPK 34

control command execution IF A 49
conuol commands IFA 50
control. data transfer (PR-KB) CPK 49
control keys and indicators CPK 6
control mode (see extended control mode)
control. new line. 3210 CPK 23
control panel (see CE sequence panel)
control, read.'write cycle. 3210 CPK 23
conuol register

assignments CPU 106
decodes. I-cycles CPU 64
description CPU I 06
machine check REC 17
valid REC 18

'.
control register (contiilued)- · ~~· ·

0 CPU 107
2 CPU 107
8

bit assignment CPU 107
uses CPU 130

14(CR 14) REC 17
15 (CR 15) REC 17
3210 CPK 15.
3215 . CPK 33

control, stepper motor CPK 44
control storage

IFA assignments IFA 12
physical description STOR 19

control-unit end (status bit 2, PR-KB) CPK 61
control word

access MIC 4
address generation MIC 12
bit definition

arithmetic indirect byte MIC 73
arithmetic type JO byte MIC 70
arithmetic type 10 fullword MIC 71
arithmetic type 11 MIC 72
branch and link or return word MIC 32
branch and module switch MIC 19
branch word MIC 24
indirect byte MIC 73
storage word (K-addressable) MIC SO
storage word (non K-addressable) MIC 48
word-move word MIC 40

branch MIC 24
branch and linlc or return word MIC 30
branch and module switch MIC 19
branch symbols MIC 12
descriptions MIC 15
examples

arithmetic, byte operation MIC 76
arithmetic fullword MIC 80
arithmetic indirect byte MIC 75
arithmetic, indirect-byte operation MIC 78
aritlunetic, shift operation MIC 82
branch and link MIC 34
branch and module switch MIC 20
branch word, set/reset function ·MIC 26
branch word, module switch function MIC 28
return word MIC 36
storage read halfword MIC 52
storage word, direct control MIC 60
storage word, star~ · .nder mask and

dee ·~ment count MIC 64
storage word, TB function MIC 56
word-move word MIC 42

functions MIC 15
next address generation MIC 12
stat set symbols MIC 84
storage word MIC 44
storage word forms MIC 46
types MIC 15
word-move word MIC 38

controls and indicators
power

Models FED-I PWR 28
Models H2-K2 PWR 110

controls and indicators (continued)
PR-KB keys (switches) CPK 6
system control panel (see CNSL section)

convenience outlet voltages
Models FED-I PWR 8
Models H2-K2. PWR 104

conversion
emitter pulse CPK 40
power PWR.8

cooling
Models FED-I PWR 3
Models H2-K2 PWR 100

core (see storage)
correction

check-bit STOR 54
count controls IFA 22
count externals IF A 22
count field IFA 22
counter decode IF A 22
counter logic IF A 22
counts

PE timing pulse CPK 41
print emiuer timing CPK 41
retry REC 12

single-bit STOR 52
CPU

A and B gate voltages
stage I PWR 46
stage 2 PWR 48

ac distribution PWR 8
ac-to-dc conversion

Models FED-I PWR 10
Models H2-K2, stage I PWR 105
Models H2-K2, stage 2 PWR 106

BSM (interface) STOR 17-18
configuration INTR 13
cycle times (see CPU clock)
dependent logout REC 19
external word CPU 34
frame electrical components

Models FED-I PWR 6
Models H2-K2 PWR 102

gate labeting
Models FED-I PWR 10
Models H2-K2 PWR 102

hardware CPU I 03
high priority CPU 42
identification REC 19
independent logout REC 18
indicator CNSL 4
indicator (power check)

Models FED-I PWR 28
Models H2-K2 PWR 110

status, indicators CNSL 6
thennal checks PWR 69

CPU ac-to-dc conversion
Models H2-K2, stage I PWR IOS
Models H2-K2, stage 2 PWR 106
stage I PWR 10
stage 2 PWR 11

CPU clock
card locations CPU I 00
checks and adjustments CPU 100

CPU clock (continued)
delay card plugging CPU 101
start indicator CNSL 7

CPU de outputs for A- and:B-gates, stage 1
Models FED-I PWR 46 .
Models H2-K2 PWR 124

CPU de outputs for A-gate, stage 2 flat-wire bus version
Models FED-I PWR 48
Models H2-K2 PWR 124

CPU de outputs for A-gate, stage 2 U laminar bus Yenion
Models FED-I PWR 48
Models H2-K2 PWR 124

CPU de outputs for B-gate main storage
Models H2-K2 PWR 124
stage I PWR 46
stage 2 PWR 48

CPU diagnostic hardware
block A local storage DIAG 20
enable generate address DIAG 28
enable generate controls DIAG 28
invert Z-reg parity bits DIAG 20
stop on machine check DIAG 20

CPU select pulse
adjustment STOR 73
description STOR 33
ECCL board T0 relatiomhip STOR33

CPU storage STOR 2
CPU to ECCL interface (advanced bi-polar) STOR 18
CPU timer (see clock comparator)
CPURTY REC 11
CR (control registers valid) REC 18
CS adr, indicator CNSL 6
CSW CHNL 3
cycle control, 3210 read/write CPK 22
cyclic check IFA 25

controls IF A 24
logic IFA 24

cyclic-code
hardware register IF A 25
register IF A 24

cylinder

m

address register test IF A 29
concept IFA 4
select switch IFA 86

D-register
description CPU 95
introduction INTR 10

damage
external REC 18
instruction processing REC 18
interval timer REC 16
report REC 8
report mask REC 17
system

machine check int~rrupt REC 16
subclass REC 18

damage (continued)
time-of-day clock

mach:: e check interrupt REC 16
subclass REC 18

timer REC 18
DAT (Jee dynamic address translation)
data

bit location chart STOR 41
check STOR 72
command execution IFA 41
field IFA 6
indicator C'SSL 7
late CPK 47
length (DLi IF A 6
parity .::he~k (PR-KB) CPK 43
parity control IF A 23
rates channels INTR 16
records IF A 7
registers, 3215 CPK 33
request controls IFA 28
storage IF A 4
transfer clock IFA 26

data and check bit cabling STOR 40-42
data and control registers, 3210 CPK IS
data chaining (illustration) STOR 18
data flow

basiclFA IFA4
condensed, 3215 CPK 33
ECCL data flow STOR 21
fetch operation STOR 59
storage

fetch operation STOR 59
main storage-to-ECC STOR 21
read description STOR 46
store operation STOR 61
write description STOR 46

store operation STOR 61
3145 l~TR 7
3210 CPK 15
3215 CPK 34

data handling routine CHNL 31

data-in (interface line)
description CHNL 4
introduction lNTR IS

data interface (storage)
advanced bi-polar STOR 29
phase 21 STOR 28

data-out (interface line)
des.:ription CHNL 4
introdu.:tion INTR 15

data-transier control
!FA IFA 23
PR-KB CPK49

de profile PWR 65

de voltage
adjustments

Models H2-K2 PWR 124
stage l PWR 46
stage 2 PWR 48

checks (see power checks)

de voltage (continued)
conversion

CPU PWR 10
CPU (Models H2-K.2), stage I PWR 105
~PU (Models H2-K2), stage 2 PWR 106
PF PWR 12
PF (Models H2-K2) PWR 107

distribution
CPU PWR 10
CPU (Models H2-K2) stage 1 PWR 105
CPU (Models H2-K2), stage 2 PWR 106
PF PWR 12
PF (Models H2-K2) PWR 107

indicators (regulator)
Models H2-K2 PWR 110
stage I PWR 28
stage 2 PWR 30

measurements
Models H2-K2 PWR 124
stage I PWR 46
stage 2 PWR 48

profile PWR 65
ripple check PWR 66
service checks

Models H2-K2 PWR 124
stage 1 PWR 46
stage 2 PWR 48

decode CCW entry IFA 45
delay line

adjustments and checks STOR 73-7S
description STOR 19

delay line cards
card No. I STOR 73-75
card No. 2 STOR 73-75
TD jumpering examples STOR 73-75

delay lines l and 2 card layouts STOR 73-75
delta 200 ns index IF A 32
dependent logout REC 19
destination addressing (LS) CPU 11
destination control diagram EXPLS CPU 28
destination look ahead (L/S) CPU 11
device-end (DE status bit 5 PR-KB) CPK 62
diag (external word) CPU 34
diag stop, indicator CNSL 4
diagO register DIAG 12
diagl register DIAG 15
diagnose instruction

control storage full-recording mode REF 7
control storage threshold mode REF 7
control storage quiet mode REF 7
load patch words REF 7
main storage

full-recording mode REF 7
quiet mode REF 7 ·

PSW restart REF 7
diagnostic addresses 0-6 IF A 11
diagnostic control SAR DIAG 21
diagnostic/console-file controls rotary switch CNSL 28
diagnostic hardware

ABRTY group 1 DIAG 15
ABRTY group 2 DIAG 22
ABRTY group 3 DIAG 26
diagnostic pa~ity DIAG 18

diagnostic hardware (continued)
diagnostic ripple DIAG 19
early delay function DIAG 26

general information DIAG 2
inhibit print DIAG 38
matrix printer lines to TI DIAG 37
MPX diagnostic control DIAG 17
PE envelope

diagnostic indicators IF A 11
diagnostic key DIAG 12
dia6fiostic local storage assignment DIAG 3S
diagnostic procedure (MST regulators) PWR 66
diagnostic registers DIAG 12
diagnostic service signal (GA, A·, KOD) DIAG 32
diagnostie strobe CPK 18
diagnostic tests

BABS DIAG 5
BEA6 DIAG6
EGE7 DIAG 8
EJDS DIAG 33
lFA inline

indicators !FA 87
test decode IF A 88
trap !FA 74
unsafe condition test IFA 91

diagram legend IF A 34
direct byte addressing definition MIC 16
direct control feature

data flow and controls FEAT 17
flow chart, write and read direct FEAT 18
general information FEAT 14
interface lines FEAT 14
read-direct instruction FEAT 14
signals originating outside the CPU FEAT 16
signals originating within the CPU FEAT IS

timings FEAT 19
write direct instruction FEAT 14

direct word addressing definition MIC 16
disconnect in (interface line)

description CHNL 4
introduction INTR S

disk adr reg, indicator CNSL 7
disk drive, 23 FD CF A 2
disk pack, IF A/2319 IF A 4
disk speed diag test IF A 90
disk storage select logic IF A 33
display assembler out indicator CNSL 12
display, key CNSL 32
display operations CPK 54
DK-register (EXPLS-7C) CPU 22
DOS

error-recovery procedures REC 25
recovery management support REC 24
restart facilities REC 26
RMS REC 24

DOS-checkpoint/restart REC 26
DOS-emulator (see OS/DOS compatibility)
double-bit error isolation STOR 99
double-bit errors STOR 52
downshift, (stepper) motor CPK 46
dual-le~el ·

MST regulator operation PWR 21 ·
MST regulator purpose PWR 21

dual-level (continued)
phase-controlled regulator adjustment and scoping

procedure PWR 54
phase-controlled regulator scoping procedure PWR S7

dual-level supply removal and replacement PWR 32
dynamic address translation (DAT) CPU 139

II

address match
basic CPU 140
match-no-match CPU 157

address paging CPU 142
basic operation (flowchart) CPU 156
change bits CPU 150
control registers 0, I CPU 148
develop address CPU 141
errors CPU 162 ·
exercise CPU 164
GGST routine CPU 158
introduction CPU 139
load DAT control reg (flowchart) CPU 149
load real address CPU 161
LRU matrix CPU 152
NP regs CPU 154
OS/DOS compatibility and DAT active CPU 147
page number compare CPU 155
page table entry CPU 146
real address formation CPU 1S9
reference bits CPU ISO
reset reference bit CPU 162
segment and page size CPU 144
segment number compare CPU ISS
segment table entry CPU 146
translation Jookaside buffer (TLB) CPU 151
working reg CPU 153

EBCDIC
for 3210.graphics CPK 10
matrix code translation tilt/rotate location table CPK 11

ECC (error check and correctian)
busy, indicator CNSL 5
check bit and error correction chart STOR SO
DBL bit, indicator CNSL 5
hdw, indicator CNSL 5
indicators (see CNSL section)
introduction STOR 3
logic diagram STOR 49
operation STOR 48

ECCL (see error check and correction)
ECCL and BSM timing, description STOR 33
ECCL board layouts

0IB-A3 (CPU) STOR 56
03A-A3 (PFI STOR 57

ECCL board external (3145/3345) STOR 108
ECCL check bit and error correction chart STOR SO
ECCL compare, erro~ detect, and decode (second level) STOR.49
ECCL data flow STOR 21
ECCL delay Jines

advanced bi-polar
description STOR 35
ECCL board timing chart STOR 35

• i hardware service aid (FL and AR) STOR 35
second level STOR 35

3145 TM X-5
:r

ECCL delay lines (continued)
phase 21

description STOR 34
ECCL board timing chart STOR 34
second level STOR 34

ECCL to BS~ interface (advanced bi-polar) STOR 18
ECCL-to-ECCL interface STOR 18
ECCL to storage interface (phase 21) STOR 17 •
ED (external damage) REC 18
EM (external damage report mask) REC 17
emergency power off

emergency pull switch CNSL 35
EPO sequence PWR 38
function

Models H2-K2. PWR 113
stage l PWR 29
stage 2 PWR 31

mechanical reset PWR 38
operation C~SL 35
3047 (see 3047 Power Unit Theory-Maintenance Manual)

einitter pulse conversion CPK 40
enable system dear, key CNSL 32
end switch (PR-KB) CPK 6
ending an alter/display operation CPK 54
ending operation II;A 74
ending sequence IF A 76
emironment recording edit and print program REC 2
EPO PWR38
EPSWA external CPU 34
equipment check (PR-KBJ CPK 62
erase command IFA 57
erase gate · IF A 27
EREP REC 26
error

dete.::tor, IFA VFO IFA 14
disable, switch IFA 86
display. IFA ~319 IFA 86
handling

cham1el retry INTR 14
command retry INTR 14
detection STOR 20
error checking and correction (ECC) INTR 14
handling STOR 20
introduction REC 2
logging STOR 20
microprogram instruction retry

description REC 9
introduction INTR 14

error check and correction
comparison and error correction, description STOR 48
data !low STOR 21
data flow concept STOR 48
description STOR 48
ECCL check bit and error correction chart STOR 50
functional areas, description STOR 48
read and write generators. description STOR 48
second level STOR 49
syndrome decode. description STOR 48
syndrome decoder chart STOR 52

error checking and correction (ECC)
board layout· STOR 56-57
check bit and error correction chart STOR SO
check-bit correction STOR 54

'.
error checking and correction (ECC) (continued)

data flow concepts STOR 48
double-bit errors STOR 52
error-type decode STOR 53
functional areas STOR 48
introduction INTR 14 ·
parity correction STOR 52
read and write g~nerators STOR 48
single-bit error correction STOR 52
single-bit errors STOR S2
syndrome decoder chart STOR 52

error correction. description
check-bit STOR 54
double-bit STOR 52
parity STOR 52
single-bit STOR 52

error detection, description STOR 52
double-bit STOR 52
single-bit STOR 52

error handling (description) STOR 20
error isolation, dou!:>le-bit STOR 99
error logging (description) STO!>, 20
error messages (PR-KB) CPK 54
error override switch (CE2)

location
Models H2-K2 PWR 110
stage 1 PWR 28
stage 2 PWR 30

description
Models H2-K2 PWR 112
stage I PWR 29
stage 2 PWR 31

error-recovery procedures REC 25
error retry description REC 8
error retry timing REC 15
error trap

sequence IF A 78
test lFA 96

error type decode STOR 35
error type decoder

description STOR 19
se ;'Ind level STOR 53-54

exe cplt. indicator CNSL 6
execute phase (I-cycles) CPU 82
expanded external assembler diagram CPU 31
expanded local storage (EXPLS) CPU 19

destination control diagram CPU 28
destinations CPU 27
gating CPU 20
general information INTR 11
map CPU 21
source gating CPU 23
source gating diagram CPU 24
source gating examples CPU 25

EXTDST REC 11
extended control mode

controlregisters CPU 131
EC PSW CPU 131
feature mask CPU 131
interrupt codes CPU 138
permanent storage assignments CPU 134
PSW interchange CPU 136
store then mask instructions CPU 138

extended diagnostic group (storage) STOR 70
extended interruption information REC 19
extended logout

IFA IFA 75
length REC 18
mask REC 17
i;ointer REC 17

external
address formation MIC 17
assembler diagram CPU 30
facilities

assignment and index CPU 32
description CPU 29
general information INTR 13

external storage considerations STOR 104
external words (see registers)
externals

II

IFA IFA 11
map CPU 32

F-gate (mixer board) PWR 59
FA (failing storage address valid) REC 18
FCH-register IFA 22
FCL-register IFA 22
FDR-register IF A 23
features

3145 Models GE-I INTR 3
3145 Models H2-K2 INTR 4

fetch operation
data flow STOR 59
description STOR 19

fetch sequence CPU 69
field-count controls IF A 22
file data coax IF A 33
file-data register IF A 23
file-mask

algorithm IF A 50
bit assignment IF A 12

filter installation precaution PWR 64
filters

location
Models FED-I PWR 59
Models H2-K2 PWR 128

removal
Models FED-I PWR 59
Models H2-K2 PWR 128

replacement
Models FED-I PWR 59
Models H2-K2 PWR 128

firing circuits, 3215 print magnet CPK 42
fix, microprogram temporary MIC 85
flat-wire bus

Models FED-I PWR 26
Models H2-K2 PWR 108

floating ground PWR 73
floating-point registers valid REC 18
flow charts, IF A

CCW entry IF A 45
cylinder address reg test IF A 89
diag error trap IF A 96

flow charts, IF A (continued)
diag test decode IF A 88
diag unsafe test IF A 91
disk speed test IF A 90
ending sequence IF A 76
error trap IF A 78
halt 1/0 IF A 84
index trap IF A 77
initial selection IF A 42
interrupt IF A 80
load IPL IF A 66
micromonitor control DIAG JS
read data IF A 65
read HA IF A 64
read/write diagnostic IF A 92
recalibrate IF A 54
scan IFA 73
search ID IF A 71
search KD IF A 73
search key IFA 72
seek commands IF A 52
seek tests IF A 94
sense IFA 48
set file mask !FA 51
space count IF A 55
storage (see data flow)
test 1/0 IF A 82
write CKD IFA 60
write data IFA 59
write HA IF A 58

flush-through check (FTC) INTR 10
FM (asynchronous fixed logout mask) REC 17
FMOD-register IF A 33 .
FOP-register IFA 21
force count (odd)

register L/S CPU J 5
forward operation

multiple characters CPK 52
single character CPK SI

forward seek test IF A 94
FP (floating point registers vclid) REC 18
frame ground PWR 72
FTC register CPU 96
flow charts (see data flow)
functional areas (storage)

address control line chart (phase 21) STOR 23
addressing circuits STOR 22
array card logical addressing STOR 22
array module chip selects STOR 22
bit-cell selection (phase 21) STOR 23
board select STOR 22
BSM addressing (phase 21) STOR 22
description STOR 22
SAR address checking STOR 22
storage address register (SAR) STOR 22

functional operations, description
fetch

control storage STOR 58
data flow STOR 59
main storage STOR 58

store
data flow STOR 61

3145 TM X-6

functional operations, description (continued)
operation STOR 60

functional units

m

A- and 8-registers CPU 88 .
arithmetic and logic unit CPU 88
backup and retry registers CPU 103
C-register CPU 98
console file (see CF A section)
console printer-keyboard (see CPK section)
D-register CPU 95
expanded local storage CPU 19
extemJ.I facilities CPU 29
H-register CPU 41
I-cycle hardware CPU 47
IF A I.see lF A section)
introduction l~TR 6
local storage CPU 10
M-register CPU 102
MB-register CPU 103
N-register CPU 103
SDBO assembler CPU 8
SPTL-registers CPU 4
storage (see STOR section)
Z-register CPU 94

GA functions, branch word MIC 25
GA set/reset functions IFA 13
gap se~sor, VFO IF A 14
gate generator, VFO IFA 14
gate layouts-storage STOR 4
gated attention trap IF A 74
gating. Tl register input 3215 CPK 35
GCL register CH~L 88
GDRL (EXPLS) CPU 22
GDRL register CIDIL 88
general de:..:ription IF A 4

3145 !:\TR'.!
general information

power
Models FED-I PWR 3
Models H2-K2 PWR 101

storage
control storage (size) STOR 2
CPU models STOR 2
storage gates STOR 2
storage sizes STOR 2

general-purpose registers CPU 16
general registers (GR) valid REC 18
generators {storage logic)

parity-out (description) STOR 19
read (description) STOR 19
syndrome (description) STOR 19
write (description) STOR 19

ground loop check PWR 74
grounding principles PWR 74

m
H-register

bit functions CPU 41
detailed description CPU 38
general information INTR 10

halt device IF A 84
IFA IFA 84
multiplexer CHNL 22
selector CHNL 68

halt 1/0 operation IF A 84
IFA IFA 84
multiplexer CHNL 22
selector CHNL 22

halt word selection (SDB.O) CPU 8
hard machine checks

interrupts REC 16
softward recovery REC 25

hardware checks-storage
byte check STOR 72
data check STOR 72
hardward check. STOR 71
storage-control-line parity check STOR 72

hardware functions, I-cycle CPU 49
hardware recovery logic REC 3
hardware test, 3215 CPK 32
hdw indicator (ECC check) CNSL 5
head control and track accessing CFA 6
heads extended control line IF A 97
heads extended indicator PWR 28
head-select switch IFA 86
high trap IFA 74
HM backup REC 11
HM retry (HMRTY) REC 11
hold-out CHNL 5
home-address field IF A 6
HS{hardstop) REC17

D
I-buffers, introduction lNTR 11
I-cycles

adder CPU 62
adder carry logic CPU 62
address generation CPU 63
address generation and control decode CPU 65
ALO references CPU 56
align routine

entry CPU 73
exit CPU 75

alignment CPU 54
alignment (purpose) CPU 74
branch loop timing chart CPU 80
calculate operand addresses CPU 54
control register bits CPU 64
control register decodes CPU 64
control-word DFOC (hardware functions) CPU 78
control-word forced functions CPU 64
CPU low request (during I-cycles) CPU 66
data flow chart CPU 58
entry CPU 53

I-cycles (continued)
error conditions CPU 66
fetch sequence CPU 69
functions CPU 48
further fetch (example) CPU 69
further fetch sequence CPU 69
general description CPU 68
hardware

control line generation CPU 64
description CPU 57
functions CPU 49
indicator CNSL S
locations CPU 56

I-buffers CPU 59
IBU-register CPU 61
IMM byte register CPU 60
indicator CNSL 6
initial addresses CPU 53
instruction

RR-ADD instruction CPU 81
RX-add with double indexing and alignment CPU 83
RX·execute instruction CPU 86
SS·MVC instruction CPU 84

introduction CPU 47
I-phase/E-phase objectives CPU 52
I-register CPU 62
key register CPU 61
microcode

control hardware loading of I-buffers CPU 53
flow charts CPU 53
hardware functions CPU 50
micro module assignment CPU 52
op-register CPU 60
pre fetching (example) CPU 69
perform prefetches CPU 54
program modification CPU 76
RR instruction sequence CPU 70
RX instruction sequence CPU 71
RX, RS, SI instruction sequence CPU 71
share cycle (during I-cycles) CPU 66
SS instruction sequence CPU 72
storage correction cycle (durine I-cycles) CPU 66
storage fetch operations (examples) CPU 69
timing chart (I, IBU, TR, updating) CPU 62
timings CPU 67
TR-register CPU 62
U-register CPU 60
V-register CPU 61
W-register CPU 61

I-register (EXPLS 50)
description CPU 21
use CPU 62

IA (instruction address validity) REC 18
IBU register (EXPLS-54)

description CPU 21
use CPU 61

JCS-register (EXPLS-56) CPU 21
IFA

abbreviation list IF A 3
adjustments (IFA)

stage l PWR 47
stage 2 PWR 49

basic operations IF A 35

IFA (continued)
cables

ac IFA 98
mixer board de IF A 98
R/W coax and selected IF A 98
simplex IF A 98

CE panel IF A 86
channel ID IFA 4
checks (see check)
clock and bit ring IFA 18
commands IF A 8
configurations IF A 2
control-storage assignments If A 12
data flow IF A 4
data-flow index IFA 10
description

basic IFA 4
power IFA 97

diagnostic functions
approach DIAG 44
CE panel tests DIAG 54
FAT byte assembler DIAG 46
GA microword decode DIAG 44
hardware DIAG 45
lines and latches gate to diagnostic addresses DIAG 46
record format DIAG 51-52
VFO adjustable delay cards(2319-A01) DIAG 53
wrap tests DIAG 54

diagnostic indications IF A 11
extended log REC 21
externals

diagnostic address (FAT) IF A 11
diagnostic bit assignment IF A 11
diagnostic FAT assembler DIAG 46

GA set/reset functions
controls IFA 13
GA function charts DIAG 44

halt 1/0 operation IFA 84
heads extended IF A 97
high priority. CPU 43
interface, 2319 IF A 98
interrupt routine IFA 80
introduction IF A l
local-storage assignments IFA 12
low trap CPU 43
mini-op control IF A 8
power supplies IF A 97
sense bytes

bus-out parity check IF A 46
command reject IF A 46
cyclic code check . IF A 46
data check IF A 46
data check-count field IF A 46
end·of·cylinder IF A 46
equipment check IF A 46
file protected • IF A 46
format IF A 46
intervention required IFA 46
Invalid sequence IF A 46 ·

· missing address mark
0

1F A 46
~multi-module select IF A 47

' no record found IF A 46

3145 TM X·7

IFA, sense bytes fcontinued)

online IFA 47
O\Wflow in.:omplete IF A 46
overrun !FA 46
pack ;,;hang.e IFA 47
ready IFA 47
seek check IF A 46
5eek incomplete IFA 47
selected status IF A 46
sense bvte 0 IF A 46
sense b) te 1 IF A 46
sense b\te 2 IF A 46
sense b;.te 3 IF A 47
sense byte4 !FA 47
sense bne 5 IFA 47
SE RD ES check IF A 46
track condition IF A 46
track overrun IF A 46
unsafe IF A 46
unselected status IF A 46
write current sense IFA 47

share-cycle controls IF A 30
start L 0 operation IF A 42
status indications IFA 9
test I 0 operation IF A 82
transier in channel (TIC) IF A 8
voltages

stage 1 PWR 47
stage 2 PWR 49

ILC CPL' 47
IM (input output extended logout mask) REC 17
IM\I byte register CPC 60
IMPL

.::he.:k indicator I ISC) CNSL 37
control storage load STOR 2
exam?le CFA 16
operation C:\SL 34
370 microprogram load REF 15

l~IPL req'd indicator C'.'SL 6
I~ (intnruptl externll word CPU 34
incorrect length (IL PR-KB) CPK 61
independent logout REC 18
index

control logic IF A 32
.:untrnls IFA 32
trap IFA 74
trap to advan.::e head IF A 77

indicatahle ke\s
power-on key CNSL 34
start console-file key CNSL 32

indi.::atur byte IF A 24
indkatur~

A-register display CNSL 14
adr comp match C~SL 6
adr x·late mode CNSL 6
ai;um CPK 6
alter.'display mode CPK 6
bus}'lECC check) CNSL S
byte cntr CNSL 7
cancel CPK6
CB trip

Models H2-K2 PWR 110

indicators, CB trip (continued)

' • stage I PWR 28
stage 2 PWR 30

CE error (!FA) IF A 86
CE mode (IF.A) !FA 86
CF power on CNSL 6
clock stop . CNSL 6
clock sync CNSL 4
cmnd reg CNSL 7
cntr match CNSL 7
console-file registers (Q. 7) CNSL 7
corr cycle CNSL 6
CPU

power check PWR 28
power check (Models H2-J2) PWR 110
system check CNSL 4

CPU clock start CNSL 7
CS adr CNSL6
data CNSL 7
dbl-bit (ECC check) CNSL S
diag stop CNSL 4
disk adr reg CNSL 7
dply asmblr out CNSL 10
error display (Q.7) IFA 86
exe cplt CNSL 6
heads extended (PF) PWR 28
hdw (ECC check) CNSL S
I-cycle CNSL 6
I-cycle hdw (system check) CNSL ·s
1/0 infc dsbld CNSL 36
IMPL req'd CNSL 6
intvn read CPK 6
load CNSL 8
log pres CNSL 6
LRU inval (adr x-late check) CNSL 5
M-reg lamp CNSL 4
man CNSL 8
MG check

Models H2-K2 PWR 110
stage 1 PWR 28
~tage 2 PWR 30

M~: (storage and control frame indicator)
. stage I PWR 28 .

stage 2 PWR 20
multi-match (adr x-late check) CNSL S
no match (adr x-late check) CNSL S
pause CNSL 7
PF

Models i:f2-K2 PWR 111)
stage I PWR 28
stage 2 PWR 30

power check
Models H2-K2 PWR 110
stage I PWR 28
stage 2 PWR 30

power-on complete
Models H2-K2 PWR 110
stage I PWR 28

stage 2 PWR 30
power on (PR-KB) CPK 6
power on start

indicators, power on start (continued)

Models H2-K2 PWR 110
stage 1 PWR 28
stage 2 PWR 30

11ower (system check) CNSL S
probe(IFA) IFA 86
proceed CPK 86
regulators

CPU PWR 28
CPU (Models H2-K2) PWR 110
MSF PWR 28
PF PWR 28

PF (Models H2-K2) PWR 110
request pending CPK 6
retry CNSL4
SAR (parity check) CNSL 4
SDBI (parity check) CNSL 4
SDBO (parity check) CNSL 4
set chan (system check) CNSL 4
share cycle CNSL 6
sng ECC CSSL 6
sng ECC thld CNSL 6
st or byte marks (parity check) CNSL 4
stor control lines (parity check) CNSL 4
stor ctrl lines (parity check) CNSL 4
stor prot (paiity check) CNSL 4
stor I cycle CNSL 6
sys CNSL8
test CNSL 8
therm check PWR 28
therm (system check) CNSL 5
TOD clock invld CNSL 31
trap I cycle CNSL 6
trap 2 cycle CNSL 6
wait CNSL 8

indire.:t addressing (LS) CPU 13
indirect byte 3ddrcssing definition MIC 16
indirect word addressing definition MIC 16
initial microprogram program load (imp!) CF A 2
initial power-on sequence

description
l'lil'dcls FED-I PWR 34
Models H2-K2 PWR 114

operation
Models FED-I PWR 34
Models H2-K2 PWR 114

initial regulator voltage adjustment PWR 40
initial selection IF A 42
inline diagnostics IF A 87
inlinc test sequence IFA 87
input/output

logout mask REC 17
RMS REC 26

insert storage key STOR 63
instruction

address validity REC 18
cycles (see I-cycles)
diagnose REF 7
formats CPU 47
length codes CPU 47
monitor call CPU 130

instruction (continued)
processing damage REC 16
store channel ID REC 19
store CPU ID REC 19

instructions
channel CHNL 3
load control REC 17
retry, microprogram REC 8
store control REC 17

INT A-register CPU 34
INTB-register CPU 34
interface

A and B switches (ISC) CNSL 37
cabling ground wires PWR 72
control check (PR-KB) CPK 6
CTCA CNSL 36
IFA/2319 !FA 98
ISC CNSL 37
operation summary CHNL 8
standard INTR 15

integrated file adapter (see IFA)
integrated storage control

features FEAT 37
functional details FEAT 37
switches and indicators CNSL 3

interlocking (cycle) CPK 49
interrupt

code
machine check REC 18
summary REC 22
table CPU 138

key CNSL 34
routine lfA80

interruptions
cause REC 16
machine check REC 16
occurrence REC 18

interval timer
damage REC 16
description CPlJ 114
interrupt CPll 114
switch

description CNSL 31
use CPU 114

intvn req'd CPK 6
invalid address (PR-KB) CPK 54
invalid character (PR-KB) CPK 54
1/0

communications area CHNL 36
device and UCW addressing CHNL 12
extended logout mask REC 17
extended logout pointer

multiplexer CHNL 36
selector CHNL 77

hold, switch (CES)
description PWR 29
description (Models H2-K2) PWR 112
location PWR 28
location (Models H2-K2) PWR 110

INFC DSBLD, indicator (CTCA) CNSL 36

3145 TM X-8

1/0 (continued)

D

interface
A and B switches (ISC) CNSL 37
CTCA CNSL36
ISC CNSL36

INTFS DSBLD indicator (ISC) CNSL 37
ISC feature switches and indicators CNSL 37
ISK (insert storage key) STOR 63
off, ~itch (CE5)

description PWR 29
description (Models H2-K2) PWR 112
lo..:ation PWR ::?8
location (Models H2-K2) PWR 110

J-K latch operation CPK 48

13
K·assembler, ALU CPU 92
KE (key in storage error uncorrected) REC 18
key (see storage protect)
key field IF A 6
key in storage error uncorrected REC 18
key length (KL) IFA 6
key register CPU 61
key switch (CE key switch) CNSL 3S
keyboard

EBCDIC location table CPK 11
data to Tl DIAG 36
read operation, 3215 CPK 38
test (T) mode CPK 54
3210 CPK 7
3215 CPK 27

keys (see switches)
keys-store and display CNSL 32

II
L-register CPU 7
lamp test, switch

console CNSL 31
IF A (CE panel) IF A S6
PF (CE panel)

Models H2-,K2 PWR 110
stage 1 PWR 2S
stage 2 PWR 30

lamps (see indicators)
latch

accelerate CPK 45
J-K operation CPK 48
shift CPK 45
stop CPK 46
stop latch buffered CPK 46

late data CPK 47
legend,IFA diagrams IFA 34
LG (logout valid) REC 18
lights (see indicators)
limited channel logout

multiplexer CHNL 36
selector CHNL 37

line ge~eration, PE 1-7 CPK 41

load
control instruction REC 17
indicator CNSL 8
IPL operation IF A 66
key CNSL34

loading I-buffers CPU 53
local storage

address formation MIC 7
data checking CPU 10
data flow INTR 7
destination addressing CPU 11
destination look ahead CPU 11
introduction INTR 11
maps CPU 16
operation CPU IO
scoping procedure CPU 17
timing chart CPU 11

local storage A
A-addressing from console CPU 13
data flow CPU 12
indirect addressing CPU 13
LSCS mode (addressing) CPU 13
source direct address CPU 13

local storage address formation chart MIC 17
local storage assignments IFA 12
local storage B

addressing from console CPU IS
addressing from console file CPU IS
data flow CPU 14
force count address CPU IS
indirect addressing CPU 15
source direct address CPU IS

local storage/expanded LS source gating diagram CPU 24
local storage/external address formation MIC 16
local-storage map CPU 16
location(s)

character, F9XX translate CPK 30
CPU electrical components

Models FED-I PWR 6
Models H2-K2 PWR 102

current PSW CPU 16
1:cycle hardware CPU 56
power frame

Models FED-I PWR 6
Models H2-K2 PWR 102

storage STOR 66
log pres, indicator CNSL 6
logic and storage timings charts

fast control access STOR 112
read control storage STOR 113
read main storage STOR 114
read operation STOR 116
store main storage STOR 11 S
store operation STOR 116

logic, basic symbology REF 4
logout

areas REC lS
channel dependent REC 20
CPU dependent REC 19
CPU independent REC l S
IFA extended IFA 75
length REC 18
machine check REC 17

logout (continued)
mask REC 17
multiplexer channel CHNL 36
pointer REC 17
selector channel CHAN 77
valid REC 18

low trap IFA IFA 74
low trap request IFA 40
lower roller,A-register display CNSL 14-lS
LRTY REC 11
LRU inval indicator (adr x·late check) CNSL S
LSCS mode (addressing) CPU 13
LSDST REC II
lubrication (MG)

Models FED-I PWR 60
Models H2-K2 (see 3047 Power Unit·~•~)

II
M-register

bit decode advanced bi-polar decode PWR 27
bit decode phase 21 decoik PWR 24
comp, indicator CNSL 4
description CPU 102
gating (traps) CPU 45
introduction INTR 9
use STOR 3

machine check
analysis and recording REC 24
code validity bits REC 18
control registers REC 17
description REC S
extended interruption information REC 19
extended logout (MCEL)

handler REC 23
handling REC 22
hard, description REC 18
hard, software recovery REC 23
interruption code REC 18
interruption codes (old PSW) REC 22
interruptions REC 16
length REC 18
logout REC 17
logout mask. REC 17
mask REC 17
pointer REC 17
priority CPU 42
registers REC 8
soft,description REC 16
soft, software recovery REC 23
trap CPU 42

main and control storage areas STOR 19
main storage

access MIC 5
description STOR 19
sizes INTR S

maintenance aids
blocking prefetch CNSL 19

·channel REF 9
console-file byte counter CNSL 29
console printer-keyboard REF 10
control word address trap CNSL 19
CPU REFS

. maintenance aids (continued)
data compare trap CNSL 18
I-cycle branch loop CPU 80
IFA REF 12
motor generator ·

Models FED-I PWR 62
Models H2-K2 (see 3047 Power Unit TM)

major functional unit, card assignments REF 16
MAN (manual), indicator CNSL 8
manual storage procedure STOR 78
manual storing procedure STOR 79
maps

control storage MIC 13
expanded local storage CPU 21
externals CPU 32, 33
local storage CPU 16

mark O·in (interface line)
description CHNL 4
introduction INTR 15

MAS assembler instructions MIC 10
mask

asynchronous fixed logout REC 17
asynchronous machine-check logout REC 17
configuration report REC 17
damage report REC 17
external damage report REC 17
1/0 logout REC 17
input/output extended logout REC 17
recovery report REC 17
synchronous machine-check extended logout REC 17
warning REC 17

masks and key validity REC 18
MB-registers description CPU 103
MB-registers purpose INTR 9
MCKA REC8
MCKB RECS
memory (Sef storage)
meter, usage CNSL 35
metering-in CHNL S
metering-out CHNL S
MG (see motor generator)
microcode-hardware functions (I.cycles) CPU SO
microdiagnostics

basic tests
listings DIAG SS
microprogram example BGA8 DIAG 19
sample listing DIAG 5
test BABS (console-file mode) DIAG 4
test BEA6 Qocal·store control store mode) DIAG 6
troubleshooting DIAG 4

extended tests
I-cycle microprogram example (EDBO) DIAG 2~
test EGE? DIAG 8
test listings DIAG 56-60
testing philosophy . DIAG 2
troubleshooting DIAG 8

micromonitor control DIAG 35
microprogram

assembler
instructions MIC 10

. '
3145 TM X-9

microprogram. assembler (continued)

output ~llC 7
bran.:h svmbols MIC 84
branchi~g circuits CPU I 04
control word 'IIC 15
control-word functions INTR 13
des'cription 'llC 12
index (370) REF 23
instruction retry REC 10
listin.?. fields defined 'llC 8
listing (370 sample) MIC 6
mi~roroutines (sample) MIC 3
operation CPK 57
patch procedure MIC 85
principles

description MIC 2
introduction INTR 12

references material MIC 84
rem REC 13
retr}· intro l~TR 14
temporary fix 'llC 85
temporary fix procedure MJC 85
temporary fix routine MIC 85
370 \llC 3

mid-pa.: regulator removal and replacement PWR 32
mini-op control IFA 9
mini-ops IF A 9

codes IFA 21
control IF A 9
modifiers IFA 21
no-op IFA 36
read data IF A 37
trap IFA 74
write data IFA 38
write gap IF A 29

mixer bo;ird blower and filter PWR 59
mnemonics CPK 54
mode

extended control CPU 131
quiet REC 5
re.:ording REC 5
reltister

- description CPU 34
use REC 5

threshold REC 5
module

selection IF A 33
storage STOR 10
swit.::h. IF A IFA 33

monitor ,an CPU 130
MOP-register IFA 21
motor control logic CPK 45
motor downshift CPK 46
motor-generator (MG)

adjustments (o\·ervoltage and output) PWR 55
check indicator (PF)

des.:ription PWR 29
location PWR 28

control (see motor-generator regulator)
drive motor P\llR 4
enclosure (housing) PWR 4
exciter (ac) PWR 4

'.
motor-generator (MG) (continued)

faults PWR 70
general information PWR 3
hold, switch (CE3)

description PWR 29
location PWR 28

lubrication PWR 60
output faults PWR 70
output voltage adjustment PWR 56
overvoltage adjustment PWR 55
overvoltage (OV) check PWR 71

· power-off controlled, switch (CE3)
description PWR 29
location PWR 28

preventive maintenance charts PWR 60
regulator

general information PWR 3
overvoltage adjustment PWR·55
removal and replacement PWR 57
service aid charts PWR 62
thermal PWR 45
thermal check PWR 70
troubleshooting ~· · ide PWR 62

3047 <~~e 3047 Power Unit Theory-Maintenance
Manual)

motor-generator output voltage adjustment
Models FED-I PWR 56
Models H2-K2 (see 3047 Power Unit Theory-Maintenance
Manual)

motor-generator regulator overvoltage adjustment
Models FED-I PWR 55
Models H2-K2 (see 3047 Power Unit Theory-Maintenance
Manual)

motor-generator troubleshooting guide PWR 62
MPX (see byte-multiplexer channel)
MRTY REC II
MS (PSW masks and key validity) REC 18
MSF indicator

stage 1 PWR 28
stage 2 PWR 30

MSKA external CPU 34
MSKB external CPU 34
MST regulators

bias voltage PWR 15
bulk voltage PWR 14
component location PWR 77
diagnostic procedure PWR 66
dual-level PWR 20
sequencing

first sequence PWR 17
second sequence PWR I 7

single-levt;I PWR 20
start line PWR 20
tri·level PWR 22
types PWR 20

multi-match indicator (adr x-late check) CNSL 5
multi· track operations, IF A

read IFA 63 ·
search IF A 69

multi-unit addressing CHNL 12
multiplex cable, IF A/2319 IF A 98
multiplexer channel INTR 16

multiplexer channel logout CHNL 36
multiplexer trap CPU 43
MULTIT AG switch CNSL 37

m
N-register

description CPU 103
introduction INTR 9

new line control, 3210 CPK 23
next control word address formation MIC 16
no match, indicator (adr x-late check) CNSL S
no-op

command IF A 50
mini-op IF A 36
(no operation) CPK 60

NOREG (external word) CPU 34
NORM test flow, common routine

common setup and entry to common routines DIAG 48
diagnostic "common routine,. description DIAG 48

not ready switch CPK 6
NP-register (EXPLS· 78) CPU 22

m
OBR REC 25
off/keyboard, switch (3215) CPK 32
op-register CPU 60
op-register logic IFA 21
open flat-wire bus solution PWR 74
operating mode (CTCA)

oflline CNSL 36
online CNSL 36

operation
MST regulator PWR 20
phase-controlled regulator PWR 18

operation mti~ters IF A 21
operational-in CHNL 5
operational-out CHNL 5
operations

basic IFA 35
priority CPU 41

operator's console, PR-KB description CPK 5
optimized character arrangement, 3210 print element CPK 8
optional features INTR 4 _
OS

checkpoint/restart REC 26
error-recovery procedures REC 25
1/0 recovery management support REC 26
recovery management support REC 23
restart facilities REC 26
RMS REC 23
warm start REC 26

OS/DOS compatibility
address adjustment example CPU 122
adjust CCW instruction CPU 123

example CPU 125
adjust CCW list CPU 124
execute local instruction example CPU 121
functional units CPU 117
general description CPU 116

OS/DOS compatibility (continued)
instruction, execute local (exl) CPU 119
interrupt handling CPU I 27 ·
local list (lex list) CPU 120
LRU

(least recently used) CPU 117 ·
operational example CPU I 18

3145 TM X-10

microprogram flow chart (LEX, ACCW instructions) CPU 126
SIO example CPU 128
SVC interrupt example CPU 128
table buffer registers CPU 117

OS/DOS functional units CPU I 17
outboard recorder REC 25
outlets (convenience)

Models H2-K2 PWR 104
stage 1 PWR 8
stage 2 PWR 9

output voltage adjustment (MG)
Models FED-I PWR 56
Models H2-K2 (see 3047 Power Unit Theory-Maintenance
Manual)

overall data flow INTR 6
overvoltagc adjustment (MG)

Models FED-I PWR 55
Models H2-K2 (see 3047 Power Unit Theory-Maintenance
Manual)

overvoltageiovercurrent detection
Models FED-I PWR 44
Models H2-K2 PWR I 22

overvoltage (OY) trip circuit
basic operation PWR 68
troubleshooting

El

overvoltage protection disabled PWR 68
overvoltage protection operational PWR 68

P-register CPU 6
panel (see CE panel)
parity control, data IFA 23
parity correction STOR 52
parity generator STOR 19
parity generator (conceptual) STOR 52
patch procedure, microprogram MIC.85

. pause, indicator CNSL 7
PD (instruction processing damage) REC 18
PE timing counter CPK 41
PE 1-7 line generation CPK 41
PER CPU 173
PF indicator (PF) PWR 28
PGA, PGB, CHIP and control bits, selection STOR 32
phase rotation detection circuit

Models FED-I PWR 34
Models H2-K2 PWR 114

phase-controlled regulator
active cap PWR I 8
active cap adjustment PWR 52
component location PWR 77
components PWR 18
control section operation PWR 18

phase-control regulator (continued)
input PWR 16
operation PWR 18
regulator removal and replacement PWR 57
start line condition PWR 77

phase 21
address and control interface STOR 23
address and data interface (illustration) STOR 17
address llow, example STOR 24
BS!.t-ECCL.CPU interface (illustration) STOR 17
control lines

board a.:tive STOR 23
board select STOR 23
machine reset STOR 23
reset STOR 23
write STOR :?3

photographs (see troubleshooting aids)
physical configuration

general INTR 3
storage gates STOR 2

plug (jumper) cards
blo..:k-multiplexer channel feature plug cards. REF 18
inemory select plug card REF 20 .
microprogram temporary fix plug card REF 20
selector channel feature plug card REF 20
serial number. EC and feature plug card REF 21
standard clock cards REF 20

PM (program mask and condition code validity) REC 18
PN-register CPU 22
pointer, machine-check extended logout REC 17
power

CE panel
Models H2-K2 PWR 110
stage 1 PWR 28
stage 2 PWR 30

check htdicators
CE panel (~todels H2-K2) PWR 110
CE panel (stage I) PWR 28
CE panel (stage 2) PWR 30
operator console CNSL 5

checking dn:uits
Models FED-I PWR 40
Models H2-K2 PWR 118

component locations
Models FED-I PWR 6
Models H2-K2 PWR 102

console file
stage 1 PWR 46
stage 2 PWR 48

control switches
Modds H2-K2 PWR 112
stage I PWR 29
stage 2 PWR 31

conversion (ac-to-dc)
CPU. Models H2-K2 stage l PWR 105
CPU. Models H2-K2 stage 2 PWR 106
CPU, stage I PWR 110
CPU, stage 2 PWR 111
PF, Models H:?-K2 PWR' 108
PF, stage I PWR 12
PF, stage 2 PWR 13

power (continued)
CPU A-gate

ModelsH2-K2 PWR 124
stage I PWR 46
stage 2 PWR 48

CPU B-gate
Models H2-K2 PWR 124
stage 1 PWR 46
stage 2 PWR 48

de distribution
Models H2-K2, stage I PWR 105
Models H2-K2, stage 2 PWR 106
stage 1 PWR8
stage 2 PWR 9

distribution (gate)
CPU, stage I PWR 24
CPU, stage 2 PWR 25
PF A· and B·gate PWR 108

frame locations
Models FED-I PWR 6
Models H2-K2 PWR 102

general information
Models FED-I PWR 6
Models H2-K2 PWR 100

IFA
stage 1 PWR 46
stage 2 PWR 48

motor generator
Models FED-I PWR 4
Models H2-K2 (see 3047 Power Unit Theory-Maintezwice
Manual)

off switch (CE4)
description PWR 29
description (Models H2-K2) PWR 112
location PWR 28
location (Models H2-K2) PWR I IO

off switch
console CNSL 34
PR-KB CPK6

protection circuits
Models FED-I PWR 40
Models H2-K2 PWR 118

PF regulators
Models H2-K2 PWR 107
stage 1 PWR 46 ·
stage 2 PWR 48

preventive maintenance
Models FED-I PWR 60
Models H2-K2 PWR 125

printer-keyboard
stage 1 PWR 46
stage 2 PWR 48

safety
Models FED-I PWR 3
Models H2-K2 PWR 100

service aids
motor generator troubleshooting guide PWR 62

supplies (see regulators)
thermals

Models H2-K2 PWR 123
stage 1 PWR 45

power, the~s(continued)
stage 2 PWR 46

visual index (ALD references)
Models FED-I PWR 6
Models H2-K2 PWR 102

voltage adjustments
stage I PWR 46
stage 2 PWR 48

power checks
CE panel indicators

Models H2-K2 PWR 110
stage I PWR 28
stage 2 PWR 30

protection and checking circuits
Models FED-I PWR 40
Models H2-K2 PWR 118

power fa::!! detection block diagram PWR 80
power frame ac-to-dc conversion

Models H2-K2 PWR 107
stage 1 PWR 12
stage 2 PWR 13

power frame regulators
Models H2-K2 PWR 107
stage l PWR 46
stage 2 PWR 48

power frame, storage STOR 2
power gate A (PGA) STOR 20
power gate B (PGB) STOR 20
power off

CE panel (CE4 switch)
Models H2-K2 PWR 112
stage 1 PWR 29
stage 2 PWR 31

console, key CNSL 34
emergency, key PWR 38
sequence

CPU PWR38
CTCA CNSL36

power on
CE panel (CEl switch)

description PWR 29
description (Models H2-K2) PWR 112
location PWR 28
location (Models H2-K2) PWR 110

complete, indicator
Models H2-K2 PWR 110, 111
stage 1 PWR 28
stage 2 r'WR 30

console, key CNSL 34
indicator (PR·KB) CPK 6
sequence (CPU)

Models FED-I PWR 35
Models H2-K2 PWR 115

sequence (CTCA) CNSL 36
start, indicator

Models FED-I PWR 28
Models H2-K2 PWR 110

switch
console CNSL 34
PR-KB CPK6

power on (continued)
switch (CEI)

description PWR 29
description (Models H2-K2) PWR 112
location PWR 28
location (Models H2-K2) PWR 110

power-on sequencing
Models FED-I PWR 34
Models H2-K2 PWR 114

power panel, CE
Models FED-I PWR 28
Models H2-K2 PWR 112

power sequence and control circuitry
Models FED-I PWR 36
Models H2-K2 PWR 116

power supplies IF A 97
preventive maintenance (PM)

general information
Models FED-I PWR 60
Models H2-K2 PWR 125

motor-generator
• Models FED-I PWR 60

Models H2-K2 (see 3047 J;>ower Unit Theory·
Maintenance)

motor-generator chart PWR 60
regulators

Models FED-I PWR 60
Models H2-K2 PWR 125

previous op algorithm IF A 12
primary power box, components

Models FED-I PWR 6
Models H2-K2 PWR 102

print element (type head) character layout CPK 8
print emitter ·

sync check CPK 43
timing counter CPK 41

print magnet firing circuits, 3215 CPK 42
print operation, 3215 CPK 27
printed circuit board PWR 73
printer

3210 CPK 8
3215 CPK 27

printer tilt/rotate codes CPK 8
printing the punctuation character, colon (:)

3210 CPK 11
3215 CPK 31

priority
conuols diagram CPU 44
operation cycles CPU 40
operations CPU 41
operations (H-register) CPU 39

PR-KB code translation CPK 10
probe light IF A 86
proceed, indicator CPK 6
processing damage REC 18
program

check (PR-KB) CPK 61
controlled interrupt (PCI PR-KB) CPK 61
mask validity REC 18
status word (PSW), defined CHNL 3

progr1m event recording (PER) CPU 173
programming information (PR-KB) CPK 60
protected dual-level regulator (MST) PWR 21

3145 TM X-11

PR-KB alter display infonnatfon REF 8
protection check (PR-KB) CPK 61
PSW location CPU 16
PSWCTL, external word CPU 34
pushbutton switches (see switches)

m
quiet mode REC 5

m
rate, rotarv S'hitch OISL 24
RC(regio~ code valid) REC 18
read

fetch STOR 58
generator STOR 48
IFA

commands IF A 63
data command IF A 65
data delay, VFO IFA 14
data mini-op IF A 37
diagnostic tests IF A 92
full cylinder test IF A 92
gate· IFA ~7
HA command IF A 64
IPL command IF A 66
share request IF A 29
single track test IF A 29

read commands IF A 57
re.ad. keyboard. operation

3;:10. CPK 25
3;:15 CPK 38

read. main storage operation STOR 58
read operation timing STOR 116
read,'writ~

controls IFA ;:7
gate logic IFA 27
c)·cle control, 3210 CPK 22

readout cantrol word MIC 4
readout main storage MIC 5
ready switch CPK 6
real address computation example CPU 122
recalibrate command IF A 54
record fields

count IFA 6
data IFA 7
home address IF A Ii
identifier IF A 69
key IFA 6
mode RECS
zero(RO) IFA 6

recording
machine check REC 24
modes REC 5

recovery
hardware logic REC 3
management support (RMS) REC 23
procedures REC 25
report REC 8
software REC 2

description REC 23

recovery, software (continued)
introduction REC 4

' • system REC 18
.reference manuals REF 6
references, IF A latches REF 13
region code (RC) REC 19 ·
region code valid REC 18
register

A
description CPU 88
use STOR 3

ABRTY REC 11
B CPU 88
backup REC 11
c

description CPU 88
use STOR 3

CFDAR CPU 34
CPURTY REC 11
D CPU9S
DK (EXPLS-7C) CPU 22
EPSWA (external) CPU 34 ·
EPSWB (external) CPU 34
FA

assignment table IF A 12
initial selection - IF A 43
seek command IF A S2
SIO-CC IFA 52

FAT
assignment table IF A 11
use IFA 33

FB IFA 12
FBAK

assignment table IF A 11
initial selection IF A 43

FBO

FC

assignment table IF A 11
use IFA 27

assignment table IF A 12
initial selection IFA 43

'"'.'"'H
assignment table IF A 11
no-op IFA 36
read data !FA 37
write data JF A 38
write gap IF A 39

FCL
assignment table IF A 11
no-op IFA 36
read data IF A 37
write data IF A 38
write gap IF A 39

FCS
assignment table IF A 11
error trap sequence IFA 96
halt 1/0 or halt device IF A 85
Initial selection IF A 43

FCND IFA 11
FD IFA 12
FDR

register, FDR (continued)
assignment table If A 11
read commands IF A 63
read data IF A 37
read operation IF A 29
search commands IF A 68
seek operation IF A 28
write commands IF A 57
write data IF A 38
write operation IFA 28

FDS
assignment table IF A 11
diagnostic chaining test IF A 88
error trap sequence IF A 96
sense command ff A 48

FED
assignment table IF A 11
diagnostic chaining test IF A 88
diagnostic unsafe condition test IF A 59

FERR IFA 11
FFL IFA II
FGL IFA II
FGT

assignment table IF A 11
error trap sequence IF A 96

FHC IFA 11
FM

assignment table IF A 12
cylinder address register test IF A 89
diagnostic unsafe condition test IFA 91

FMOD
assignment table IFA 11
sense command IF A 48
use IFA 33

FOP
assignment table IF A 11
cylinder address register test IFA 89
diagnostic chaining test IFA 88
diagnostic unsafe condition test IFA 91
no-op IFA 36
read data IFA 37
read/write diagnostic test IF A 92
write data .IF A 38
write gap IFA 39

FS IFA 12
FSB

assignment table IFA 11
error trap sequence IF A 96

FST
assignment table IF A 11
use IFA 33

FSTAT IFA 11
FTAG IFA II
FTC CPU96
FTI IFA 11
FTO IFA 11
FTS IFA 11
FW

assignment table IFA 12
initial selection IF A 43

GBD CHNLSI

register (continued)
GDF CHNL 51
GBUF CHNL Sl
GBI CHNLSI
GB2 CHNL Sl
GB3 CHNLSl
GCL CHNL88
GCT CHNL51
GDRL

description CPU 22
use CHNL 88

GE CHNL SI
GF CHNL SI
GL CHNL 51
GO CHNL Sl
GR CHNL 51
GS CHNLSI
GSP CHNL SI
GTI CHNLSI
GTO CHNLSI
H (priority) CPU 38
HMRTY REC 11
I (EXPLS-50)

description CPU 21
use CPU 62

IBU (EXPLS-54)
description CPU 21
use CPU61

JCS (EXPLS-56) CPU 21
IMM byte CPU 60
INT A (interrupt A) CPU 34
INTB (interrupt B) CPU 34
key CPU 61
L CPU7
M

description CPU 102
use STOR 3

MB CPU 103
MDI CHNL IS
MBO CHNL 16
mode REC 34
MOP

no-op IFA 36
read data IF A 37
write data IFA 38
write gap IF A 39

MSKA (external) CPU 34
MSKB (external) CPU 34
MTI CHNL 17
MTO CHNL 17
N CPU 103
NP (EXPLS-78) CPU 22
OP CPU60
p. CPU 6·
PN (EXPLS-79) CPU 22
S CPU4
SAR STOR3
save area REC 19
SOR STOR 3
SN (EXPLS-78) CPU 22
SPTL

description INTR I 0

3145 TM X-12

register, SPTL (continued)
detail CPU 3
introduction INTR 7
use CPU 59

SPTLB REC 11
storage byte mark STOR 48
SYS (system register) CPU 38
T CPU6
TA

3210 CPK 16
3215 CPK 33

table buffer CPU 17
TE

3210 CPK I 17
3215 CPK 33

Tl. 3210 CPK 18
TODH CPU 109
TOOL CPU 109
TR <EXPLS-55)

description CPU 21
use CPU 62

TT, 3215 CPK 33
U (EXPLS-53)

description CPU 21
use CPU 61

V (EXPLS-51)
description CPU 21
use CPU 61

W (EXPLS-52)
description CPU 21
use. CPU 61

WKIEXPLS-7A) CPU 22
word 1 CPK 33
word 1 and word 2 CPK 33
Z CPU 94

regulator
initial voltage adjustment procedure PWR 50
overvoltage adjustment (MG)

Models FED--1 PWR 56
Models H2-K2 (see 3047 Power Unit Theory
Maintenance Manual)

symptom-fix table PWR 82
regulator test switch (CE6)

description
Models FED-I PWR 29
Models H2-K2 PWR 112

location
Models FED-I PWR 28
Models H2-K2 PWR 110

regulators
adjustments

~lodels H2-K2 PWR 124
stage 1 PWR 46
stage 2 PWR 48

blowers and filters PWR 59
CE panel, indicators

~lodels H2-K2 PWR 100
stage 1 PWR ::!8
stage 2 PWR 30

cooling
Models FED-I PWR 3
Models H2-K2 PWR 100

regulators (continued)

IFA
adjustments (stage 1) PWR 47
adjustments (stage 2) PWR 49
locations IF A 97

indicators (seq I and 2)
Models H2-K2 PWR 110
stage l PWR 28
stage 2 PWR 30

located in PF
Models FED-I PWR 47
Models H2-K2 PWR 103

maintenance approach PWR 60
mid-pac PWR 3
MST

bias voltage PWR 15
bulk voltage PWR 14
component location PWR 77
diagnostic procedure PWR 66
dual-level PWR 20
information .. PWR 3
sequencing PWR 17
single-level PWR 20
start line PWR 16
tri-level PWR 22
types PWR 20

overvoltage/overcurrcnt detection
Models FED-I PWR 44
Models H2-K2 PWR 122

phase-controlled PWR 3
active cap PWR 18
component location PWR 77
components PWR 18
control section operation .PWR 18
information PWR 3
input PWR 16
operation PWR 18
start line condition PWR 17

protection and checking circuits
Models FED-I PWR 40
Models H2-K2 PWR 118 ·

removal and replacment
Models FED-I PWR 57
ModelsH2-K2 PWR 126

seq l
Models H2-K2 PWR 107
stage 1 PWR 28
stage 2_ PWR 30

seq 2
Models H2-K2 PWR 107
stage 1 PWR 28
stage 2 PWR 30

series operation PWR 20
shunt operation PWR 20
service aid PWR 62
therll'!als (locations)

Models FED-1 PWR 45
Modds H2-K2 PWR 123

undervoltage sensing system
Models H2-K2, stage 1 PWR 118
Models H2-K2, stage 2 PWR 120
stage I PWR 40
stage 2 PWR 4.2

regulators (continued)
voltage measurements

Models H2-K2 PWR 124
stage I PWR 46
stage 2 PWR 48

remote sense leads (lines) PWR 20
removal and replacement

console file CF A 18
functional unit assignments REF 16
power

ac/dc modules PWR 58
ac/dc modules (Models H2-K2) PWR 126
blowers and filters (regulators) PWR 59
blowers and filters (Models H2-K2) PWR 128
dual-level supplies PWR 32
dual-level phase controlled PWR S'i
motor generator (MG) PWR 58
MST series regulators PWR 57

request-in CHNL S
request pending indicator CPK 6
request switch CPK 6 ·
reset offline switch(3215) CPK 32
reset pulse adjustment PWR 52
reset reference bit (RRB) STOR 63
resistance table (K20, time delay) PWR 78
restart

address mark IF A 17
key CNSL33
procedures for PR-KB CPK 62
restore command IF A 50
restore seek test IF A 94

retry
channel REC 11
command REC 11
counter REC 12
error REC 8
errors REC 15
hardware REC 11
indicator CNSL 4
instruction REC 11
introduction

channel INTR 16
command lNTR 16
error checking and correction (ECC) INTR 14
microprogram instruction INTR 14

microprogram REC 11
microroutine REC 12
operation REC 11
priority CPU 42
registers REC 11
timings REC 14
traps REC 15

return word example MIC 36
reverse operation, multiple characters CPK 53
ripple check PWR 66
RM (recovery report mask) REC 17
RMS REC 23
rotary switches A · H CNSL 28
RRB, reset reference bit STOR 63
RTYFLG REC 11
R/W coax-cable, IFA/2319 IFA 98

S-register bit description CPU 4
safety

Models FED-I PWR 3
Models H2-K2 PWR 100

SAR STOR22
SAR and storage clock (second-level diagrams)

advanced bi-polar storage STOR 31
phase 21 storage STOR 30

SAR bits
advanced bi-polar decoding STOR '27
phase 21 decoding STOR 24

SAR parity check, indicator CNSL 4
save area REC 19
SC (storage error corrected) REC 18
SCAMP ART STOR 78
SCR PWR44
scan commands IF A 70
scan compare IF A .::!6
scan equal command IF A 73
schematic diagram (power sequencing)

Models FED-I PWR 36
Models H2-K2 PWR 116

SD (system damage) REC 18
SDBI STOR3
SDBI parity check, indicator CNSL 4
SDBO

array card waveshapes (phase 21 only) STOR 97
assembler INTR 9
data flow

description CPU 9
overall INTR 6
use STOR 3

parity check 'indicator CNSL 4
parity check (phase 21, ABM) STOR 96
pre asm CPU 8

SDR (statistical data recorder) REC 25
SDR, (see storage data register)
SE (storage error uncorrected) REC 18
search, IF A

commands IFA 69
ID command IFA 71
KD command IFA 73
key command IF An
share request IF A '28

second levels, IF A
address-mark detection IFA 17
bit ring IFA 19
byte counter and decode If A 22
C-register force IFA 30
clock !FA 16
compare circuits IF A 26
cyclic check IFA 24
data request IF A 28
data transfer clocK IFA 28
index IFA 32
module select IF A 33
op register and decode If A 21
read/write gates IF A 27
SE RD ES and write data IF A 23
share cycle IFA 30
share cycle clock IF A 31
share request gates lFA 29

3145 TM X-13

se.:ond le\'els. (If A){ .:ontinued)
\'ari~ble frequency osc IF A 14
1.1.rite data IFA ~O
zero detection IF A 16

secH,r readv CFA 10
seek addre~ IFA 50
seek ;;ommand IF A 5'.?
seek diagnostic tests IF A 94
segment CPU 139
select block address, line · STOR 35
\ele.;tion control; CHSL 5
sele.:tor d1.tnnel

block-multiplexer
channel IPL CHNL 81
error k'gout CHNL 78
trap CPL' 43

buffer forward,'backward assembler CHNL 85
buffer share request generation CHNL 86
dependent log REC 21
dia2iiostic controls DIAG 31
'GA° diawo:.1ic iunctions DIAG 31
general i~formation INTR 16
indicator C'.\SL 4
log REC ~I
lo;out CH~l 77
w~rd buffer CH!'\L 83

selector channels
address mis.:ompare latch CHNL SS
addre~:,-out lat1.:h CH:\L 55
addressing principles CHSL 49
ba;ic data flow CH!\L 46
bran.:-h word GA function CH~L 48
buffer bvte counter CH~L 8S
buiier sl;ift controls CH~L 84
catalog numbers CH'.\l 78
ch3nnd ID CH'.\l 77
channel-loaded (3tch CH~L 54
channel logout CHSL 77
char.nel-prlmed latch CHSL SS
check facilities CH'.\L 71
command-out latch CHNL 55, 56
control <;1orage map CH]'l;l 47
count-read\· latch CHNL 55
de\ice-initi~ted polling controls CHNL S6
di.i.:nosti<.: .::ontrols DIAG 31
err~r routine CHNL 79
exceptional status trap CHNL 73
external word address and bit assignments CHNL SI
functional units CHNL 48
GA diagnostic function DIAG 31
GC L re1rister CH'.'L 88
GDRL ;egi~ter CH:\L 88
halt devi.:e t HOV) CH~L 68
hllt I 0 'HIOI CH~L 68
hold-go-for-compare latch CHNL 55
I 0 c0mmuni..:ations area CHNL 77
initial ~election polling controls CHNL 54
initialization CH'.\L 62
interruption handling CHNL 7S
local-storage assignments CHNL SO
locations CHNL 47
logout CHNL 77

'. selector channels (continued)
microprogram example (EJDS) DIAG 33
memory flag register CHNL 88
operational overview CH.NL 61
operations CHNL 60
poll-control latch CHNL 54
polling clock CHNL 54
recirculate latch CHNL 55
retry-holdup latch CHNL SS
select-out latch

description CHNL 55
timing CHNL 61

service.out latch CHNL 55
share cycle

clock CHNL 59
controls CHNL S7
input operation with buffer CHNL 87

share request priority controls CHNL 58
standard interface CHNL 4
start 1/0 (SIO) CHNL 62
status handling CHNL 73
status latch CHNL SS
status store CHNL 76
test 1/0 CHNL 6S
typical buffer position CHNL 84
word buffer CHNL 83

·sense bit error cond IF A 47
sense byte for PR-KB CPK 62 •
sense bytes (see IF A sense bytes)
sense command IF A 46
sense indications IF A 9
sense operation IFA 48
sense point caps PWR 2S
separated clock/data IFA 14
sequencing (power)

circuitry schematic
Models FED-I PWR 36
Models H2-K2 PWR 116

description
Models FED-I PWR 34

· Models H2-K2 PWR 114
EPO PWR38
operation

Models FED-I PWR 34
Models H2-K2 PWR 114

power check PWR :'IR
power off PWR 38 ·
power on PWR 35

sequential seek test IF A 94
SERDES logic IF A 23
SERDES output timing IFA 23
serial/deserial register (SERDES) IF A 23
series regulator operation PWR 20
service aid

blocking prefetch CNSL 19
CE panel (switches and indicators)

Models H2-K2 PWR 110
stage I PWR 28
stage 2 PWR 30

console-fde byte counter CNSL 29
control word address .trap CNSL 19
data compare traps CNSL I 9

service aid (continued)
diagnostics STOR 48
hardware checks STOR 71
I-cycle branch loop CPU 80
local storage addressing scope procedure CPU 17
locations (CPU) STOR 66
MG-fault isolalion charts

Models FED-I PWR 62
Models H2-K2 (see 3047 Theory-Maintenance Manual)

service checks
Models li2-K2 PWR 124
stage 1 PWR 46
stage 2 PWR 48

time delay card jumpering example STOR 73
timing adjustments and checks STOR 73-75

service aids, storage (see servicing information)
service-in CHNL 4
service-out CHNL 4
service tips PWR 76
set clock (SCK) CPU 111
set file-mask command IF A S l
set IC key CNSL 32
set/reset controls IFA 13
setting the word registers CPK 43
share cycle, lFA

clock logic IF A 31
gate logic IFA 30
indicator CNSL 6
priority CPU 42
timings IFA 31

share request controls IF A 28
share request gate logic IFA 29
shift cycle operation, 3210 CPK 26
shift gating, ALU CPU 92
shift latch CPK 45
shunt regulator

bias and ripple check PWR 54
operation PWR 20

silicon-controlled rectifier (SCR) PWR 44
simplex cables, IFA/2319 IFA 98
single-level regulator (MST)

inpuls i>WR 20
operation PWR 20

single-level supply removal and replacement
Models FED-I PWR 57
Models H2-K2 PWR 127

singleshot
chopped forward or reverse CPK 45
SS2 adjustment CPK 46

single unit addressing CHNL 12
six·pac

Installation REF 22
removal REF 22

SM (synchronous machine-check extended logout mask) REC 17
SN-register (expls-78) CPU 22
SNGECC

CHK indicator CNSL 6
thld, indicator CNSL 6

soft machine checks
description REC 16
recovery REC 23

software recovery
description REC 23
introduction REC 4

source gating (expls) CPU 23
space count command IFA SS
special voltage distribution chart REF 3
SPTL

backup (SPTLB) REC 11
register

description INTR I 0
detail CPU 3
introduction INTR 7
use CPU S9

SR(system recovery) REC 18
SRTY REC I 1
SSK, set storage key STOR 63
ST (storage logic validity) REC 18
standard features INTR 4
standard index IF A 32
standard interface

description CHNL 4
introduction INTR IS

start console·file key CNSL 32
start 1/0 operation

IFA IFA 42
multiplexer CHNL 22
selector CHNL 62

start, key C'NSL 33
start line check PWR 67
start lines

definition PWR 16
equivalent circuit PWR 16
first sequence PWR I 7
first sequence diagram PWRl6
purpose PWR 16
second sequence PWR 17
troubleshooting _ PWR 67

stat bits S-register CPU 4
stat set svmbols MIC 84
statisticai data recorder REC 2S
status byte !FA 74
status byte for PR-KB CPK 61
status CE indications IFA 87
status-in CHNL 4
status indicators IFA 87
status modifier (status bit PR-KB) CPK 61
stepper motor control CPK 44
stepping switch

operation · PWR 32
sequencing PWR 32

stop after log
multiplexer CHNL 36
recovery procedures REC 22
selector C.HNL 77

stop key CNSL 33
stop latch . CPK 46
stop latch buffered CPK 46
stop latch set conditions CPK 47
stopping (3215) CPK 46
storage .

A and B gates STOR 4-6

3146 TM X·14

ABM address buffer card (Part No. 8231509 or ·
8238201) STOR 103

storage (continued)
ABM address buffer card to storage board

interface STOR I 04 .
ABM address buffer (03A-B3, 84, C3, C4) location A2,
component side STOR 102

ABM error hold circuit STOR J 18
ABM, 03A-B3, 84, C3, C4 board wiring address and
controls STOR 105

ABM, 03A-83, 84, C3, C4 board data wiring
(verti.:all STOR IOb

accessing STOR 3
address assignment (ABM) STOR JOO
addms .::heck STOR 47
address check circuit STOR 117
address interface STOR 28-29
addressing

advanced bi-polar STOR 14
phase :?I STOR 13

adjustments and checks STOR 73-75
allo..:ations, compatibility features FEAT 2
any error retain latch STOR 118
array card breakdown STOR 10
array, module and chip selection

by storage size STOR 32
simplified logic example STOR 15

bit-cell STOR 16
board (ABM) STOR 101, llO
board capacitor layout chart STOR 118
board selection STOR 22
Bmt (see BS~t)
BSM address and control interface connections STOR 28-29
BS~I address range STOR 4-6
BSM interiace timing diagram STOR 36-37
BS.\f internal timing diagrams STOR 38-39
BS.\I reset line .:hecks STOR 117
BS.\1-to-ECCL interface STOR 17-18
BSMs STOR 1
byte check STOR 72
byte mark register STOR 48
byte marks parity checks, indicator CNSL 4
cabling, data and check bits STOR 40-42
capacities (phase :?I and advanced bi-poW) STOR 2
clock STOR 22
clock logic STOR 30-31
configurations STOR 4-6 and 6.1
controls STOR 13 ·
control line generation (PGA, PGB, chip, add J 2,
CTRL) STOR 32
control word (see control word)
CPU select pulse STOR 33
CPU-to-ECCL interface lines STOR J7-18
ctr! lines p:irity check, indicator CNSL 4
data bit lo.:ation chart STOR 41
data-bus--0ut-pre-assembler CPU 8
data check STOR 72
data flow

fetch STOR 48
ECCL STOR 21
store STOR 48

data interface STOR 28-29
data register (SOR)

de;,cription STOR 46

storage, data register (continued)
use STOR3

diagnostics STOR 70
ECC STOR48
ECC-board-to-CPU timing diagram STOR 33
ECC decoder chart STOR SO
ECC logic diagram STOR 49
ECCL board (ABM) STOR 109
ECCL board layout STOR 56-57
ECCL-to-BSM interface lines STOR 17-J8
ECCL troubleshooting circuit aids (ABM) STOR 118
error corrected REC 18
error detection and correction STOR 52
error handling STOR 20
error type REC 18
error-type decode logic diagram STOR 53
external, addition of STOR 107
fetch operation data flow STOR 46
functional operations STOR 58
functional units STOR 19-10
gate layout (by addresses) STOR 4-6 and 6.1
general information STOR 2
hardware check logic diagram STOR 71
interface address and control STOR 28-29
interface BSM-to-CPU STOR 17-18
introduction concepts INTR 8
introduction, hardware description STOR 2
jumpering and trilead swapping requirements (OJ BA3) foi
upgrading storage above 256k STOR I 07.l
logging (error) STOR 20
main/control selection STOR 13
miscellaneous maintenance information STOR J 17
module and chip selection STOR 15
MST board layout STOR 11-12
operations read control operation STOR 58
PGA, PGB, chip and control bits selection STOR 32
protect

description INTR 9
feature hardware description STOR 62
functional units STOR 63
insert storage key (!SK) STOR 63
introduction INTR 9
indicator (parity check) CNSL 4
logic diagram STOR 64-65
overview STOR 20
set storage key (SSK) STOR 63

protection STOR 20
read control STOR 113
read halfword example MIC 52
read main storage STOR 58
SAR (storage address register) STOR 22
SAR bit transposition checks STOR 117
SAR line checking STOR 117
SDR description STOR 44-46
SDR use STOR 3
select, rotary switch CNSL 22
sizes STOR 2
store operation STOR 60
syndrome decoder chart STOR 52
tie-up or tie-down application STOR 117
timing STOR 33
timing and adjustments STOR 73.75

storage (continued)
timing chart, CPU select pulse STOR 33
timing checks of storage related timing cards
(CPU, PF) STOR 117
trilead checks STOR J 17
upgrading STOR 107.1
virtual CPU 139
word example (see control word)
word forms (see control word)
write/store operation STOR 60
24K BSM configuration STOR 8
48K BSM configuration STOR 8

storage address register (SAR) STOR 19
storage boards (see BSM)
storage checking procedures

manual storage STOR 78
word from switches STOR 86

storage configurations STOR 4-6 and 6.1
storage console approaches, manual procedures and reference
timings (SCAMPART) STOR 78

storage data bus-in STOR 3
storage data bus-out STOR 3
storage data register

advanced bi-polar storage
description STOR 46
second-level diagram STOR 47

data flow, read STOR 46
data flow, write STOR 46
general description STOR J 9
phase 21 storage, description STOR 44

storage interface
advanced bi-polar STOR 12
phase 21 STOR 11

5torage timing and adjustments STOR 73-75
5torage protect

-condition codes STOR 63
description STOR 20
functional description STOR 63
hardware location STOR 63
high level diagrams

storage capacities, l 12-5 l 2k bytes STOR 64
storage capacities, 768 or l024k bytes STUR 65

instruction format (ISK, SSK, RRB) STOR 63
key, description STOR 63
overview STOR 62
servicing information STOR 69
stock, description STOR 63
storage instructions

insert storage key (ISK) STOR 63
reset reference bit (RRB) STOR 63
set storage key (SSK) STOR 63

storage selection STOR 13
storage servicing information

card swapping
CPU STOR66
power frame STOR 67

diagnostics
basic g1oup (*BAS) STOR 70 .
extended group (*EXT) STOR 70
introduction STOR 70
MBAO run-time chart STOR 70

hardware checks

storage servicing information, hardware checks (continued)
address check STOR 72
byte check STOR 72
data check STOR 72
hardware check STOR 71
second-level diagrams STOR 71-72
storage-control-line p.i.rity check STOR 72

locations
CPU STOR66
power frame STOR 67

storage protect (03AA4)
ALO page references STOR 69
card function chart STOR 69
card socket diagram STOR 69
timing chart STOR 69

supplementary packaging information STOR 100
storage timings (see logic and storage timing charts,
and timing chart, storage)
storage to ECCL (phase 21) STOR J7
store

channel ID instruction REC 19
clock (STCK) CPU 111
control instruction REC J 7
CPUID instruction REC 19
key CNSL 32
status CPK 54

store operation STOR 20
store operation timings STOR I J6
store (write) STOR 60
store I cycle indicator c·NSL 6
strobe ..

diagnostic CPK 17
keyboard, 3210 description CPK 7
keyboard,3210 use CPK IS

subchannels CHNL 3
subclass REC 18
supplies (see regulators)
supply response to overvoltage/overcurrent conditions PWR 23
suppress-out CHNL 4
SW external word CPU 34
switch

address compare CNSL J 8
address compare control CNSL 31
alarm reset CPK 6
allow CE mode IF A 86
alter/display CPK 6
blower off (CE3)

Models FED-I PWR 28
Models H2-K2 PWR 110

check control CNSL 26
check reset CNSL 32
CK reset (CE2)

Models FED-I PWR 29
Models H2-K2 PWR 112

console-file register display CNSL 31
control address set CNSL 32
cylinder select/head select (IFA) IFA 86
diagnostic/console-file control CNSL 28
display CNSL 32
emergency pull CNSL 35

•enable system clear CNSL 32
end CPK 6
error disable IFA 86

3145 TM X·15

switch I continued)
error override (CE2)

~todels FED-I PWR 29
ModelsH>K2 PWR 112

1/0 hold (CES)
Models FED-I PWR 29
Models H>K2 PWR 112

l,'O interface CNSl 36
I/Ooif

Models FED-I PWR 29
Mode'ls H2-K2 PWR 112

interrupt CNSL 34
interval timer CNSl 31
lamp test ,

CE6 PWR 29
CE6 (~lode!S H2-K2) PWR 112
console CNSL 31
IF:\ IF:\ 86

load CNSl 34
MG hold (CE3)

Models FED-I' PWR 29
~todels H:>K2 l'WR 112

MG pwr off controlled (LE3)
Models FED-I PWR 29
Models H2-K2 PWR 112

not read\· CPK 6
off/keyboard (3215) CPK 32
power off

console CNSl 34
CE-l PWR :9
CE4 (~fodels H2-K2) PWR ll2
PR-KB CPK6

power on
console CNSl 34
CE! PWR29
CE I (~1odels H2-K2) PWR 112
PR-KB CPK6

rate C'.\SL 24
ready CPK 6
reg test (CE6)

~lodels FED-I PWR 29
~lodels H2-K2 PWR I J 2

request CPK 6
reset olt1ine 13215) CPK 32
restart CNSL 33
rotary, A-H CNSl 30
set IC C'.'iSL 32
start C~SL 33
start console file CNSL 32
stepping P\VR 32
stop CNSL 33
storage select CNSL 22
store CNSl 32
svstem reset CNSl 33
test onitest off (3215) CPK 32
test select IF A 86
TOD elk CNSL 31

symbolic microprogram MIC 6
sync byte If A 17
sync jack IF A 86
syndrome decoder chart STOR 52
syndrome latches, variable set to (ECl40239 only) STOR 92

sys indicator CNSL 8
t •system

indicator CNSL 8
check, indicators CNSL 8
control panel CNSL 2
damage REC 16
indicators CNSL 8
recovery REC 16
reset, key CNSL 33

System/360, System/370 compatibility exceptions INTR 14
symptom-fix

D

information PWR 82
table (regulators) PWR 82

T-mode (keyboard test) CPK 54
T-register CPU 6
TA-register

3210 CPK 16
3215 CPK33

table
EBCDIC fo, 3210 graphics CPK 10
EBCDIC to tilt/rotate locations CPK 11
F9XX CPK30
F9XX character locations CPK 30
keyboard-tilt/rotate codes CPK 8
keyboard to EBCDIC storage locations CPK 11
3215 7 x 7 matrix codes CPK 28

tags-iri CHNL 4
tags-out CHNL 4
TD(timerdamage) REC 18
TE-register

3210 CPK 17
3215 CPK 33

temperature limits (thermals)
Models FED-I PWR 45
Models H2~K2 PWR 123

temperature sensing
Models FED-I PWR 45
Models H2-K2 PWR 123

temporary fix. microprogram MIC 85
test 1/0 operation

lFA IFA82
multiplexer CHNL 22
selector CHNL 65

test, indicator CNSL 8
test select switch IF A 86
testing

basic tests DIAG 2
data flow DIAG 3
extended tests DIAG 2
philosophy DIAG 2

thermal
checks PWR 69
indicator CNSL S
operation PWR 69
sensing and locations

Models FED-I PWR 45
Models H7-K2 PWR 123

therm check indicator
Models FED-I PWR 28
Models H2-K2 PWR 110

threshold mode REC S '
Tl-register

input gating, 3215 CPK 35
3210 CPK 18

tilt/rotate codes CPK 8
time-of-day clock (see TOD clock)
time-of-interruption occurrence REC 18
timeout circuit CPK 20
timing

charts, !FA
address-mark detection IFA 17
bit ring IFA 19
clock IFA 18
index IFA 32
read share IF A 28
search share IFA 28
share cycle IFA 31
variable frequency osc IFA 14
write share IFA 28
zeros clocking IFA 16

counter, PE pulse CPK 41
CPU clock (see CPU clock)
I-cycle CPU 6 7
I-cycle branch loop CPU 28
retry REC 14

timing, chart (storage)
advanced bi-polar, main storage STOR 33
phase 21

control storage STOR 33
main storage STOR 33

timing (ECCL and BSM)
BSM interface STOR 36-37
BSM internal STOR 38·39
charts STOR 33
CPU to ECCL STOR 33
ECCL delay 1 .. 1es STOR 34-35

TOD clock
ALO references CPU 113
bit definition CPU I 01)
card locations CPU 113
clock damage REC 16
clock-setting sequence CPU 110
clock-update sequence CPU 110
enable switch CPU I 09
error detection CPU I 10
H-register CPU 109
instructions CPU 110
inval-indicator CPU 109
L-register CPU 109
manual set CPU 110
operation CPU 109
output assembler CPU 112
physical description CPU 109
security switch CPU 109
set clock instruction CPU 111
store clock instruction CPU 111
switch CNSL 31
validity indicator CPU I 09

'

TR-register (EXPLS-55)
description CPU 21
use CPU 62

TR special de power requirements
stage I PWR 46
stage 2 PWR 48

TRs
CPU

stage 1 PWR I 0
stage 1 (Models H2-K2) PWR 105
stage 2 PWR 11
stage 2 (Models H2-K2) PWR 106

power frame
Models H2-K2 PWR 107
stage l PWR 12
stage 2 PWR 13

track format IFA 6
transfer in channel IF A 8
transfer in channel (TIC) CPK 60
transformers

CPU
Models H2-K2, stage l PWR 105
Models H2-K2, stage 2 PWR 106
stage 1 PWR 8
stage 2 PWR 9
stage I (400-Hz) PWR 10
stage 2 (400-Hz) PWR 11

PF PWR 107
translating from EBCDIC to matrix code CPK 29
translation

3210 PR-KB code CPK 10
3215 PR-KB code CPK 28

trap
address descriptions CPU 41
address list CPU 41
addresses (retry) REC IS
controls diagram CPU 44
CPU high CPU 43
CPU low CPU 43
cycles CPU 40
IF A high CPU 43
IF A hiw rru 43
machine check CPU 42
operation CPU 39
retry CPU 42
routines IF A 74
scan/clear CPU 43
store display CPU 43
I-cycle, indicator CNSL 6
2-cycle, indicator CNSL 6

traps
M-register gating diagram CPU 45
retry REC 15

TRTY REC 11

in-level regulat~r (MST), stage 1
components PWR 22
inputs PWR 22
operation PWR 22

tri-level regulator, stage 2
components PWR 23
sequencing PWR 23

3145 TM X-16

troubleshooting aids
bias voltage check PWR 67
blowers PWR 64
bulk voltage check PWR 66
CPU thermals PWR 69
de profile PWR 65
de voltage profile PWR 65
de ripple check PWR 66
filters PWR 64
ground loop check PWR 74
grounding principles PWR 72
Models H:!- K2 (see troubleshooting PWR)
MG

che1.:ks PWR 70
faults PWR 70
01:ervolt:m~ che.:k PWR 71

MST regul3t0~s PWR 66
open t1at-wire bus PWR 74
overvoltage trip PWR 68
photographs (location)

AC/DC module PWR 77
bias transformer PWR 77
bulk transformer PWR 77
MST regulators PWR 76
phast"-Controlled dual regulator PWR 77
transformer {TR I 08/TR408) PWR 77

service tips PWR 76
start line che1.:k PWR 67

TT-register
3210 CPK 20
3215 CPK 33

two volt phase-controlled regulator adjustment and scoping
procedure PWR 50

two-rnlt phase-.:onrrolled regulator scoping procedure PWR SO
tw0-rnlt regulator adjustment PWR SO
two-volt regulator scoping procedure PWR SO
To STOR33

m
U-laminar bus

A-gate PWR 24
B-gate · PWR 24
PF PWR 108

U-register (EXPI.S 53)
description CPU 21
use CPU 66

undervoltage sensing
stage I PWR 40
stage 2 PWR 42
Models H2-K2 PWR 118

uru1 check (stJtus bit 6 PR-KB) CPK 62
unit control words (UCWs) CHNL 4
uni1 data !low

A-local storage CPU 12
A-register display CNSL 16
address compare switch CNSL 18
ALU CPU 93
8-local storage CPU 14
display assembler out CNSL 10
I-cycle address generation CPU 63

unit data flow (continued)

m

i:cycle address generation and control decode CPU 6S
I-cycles CPU 58
local storage CPU 12
SDBQ pre·asm CPU 9
storage functional units STOR 22
unit exception (status bit 7 PR-KB) CPK 62
unit status byte IFA 74
unsafe indications IF A 87
upper roller, display assembler out CNSL 10
usage meters CNSL 3S

V-register (EXPLS·S I)
data flow CPU 61
storage location CPU 21

validate function DIAG 19
validity bits, machine-check code REC 18
variable frequency oscillator (see VFO)
VFO

adjustments IFA 14
logic IFA 14
timing IF A 14
trigger IFA 14
zeros clocking !FA 16

virtual storage CPU 139
visual index (power) ALD reference pages

Models FED-I PWR 6
Models H2-K2 PWR 102

voltage
console file

stage I PWR 47
stage 2 PWR 49

convenience outlet
Models FED-I PWR 8
Models H2-K2 PWR 104

CPU A and B gates
. stage I PWR 46

stage 2 PWR 48
CPU B-gate main storage

stage I PWR 46
stage 2 PWR 48

distribution
flat-wire bus PWR 26
gate (de) PWR 24
general information PWR 8
Models H2-K2 PWR 104
U-laminar bus PWR 24

flat-wire bus chart PWR 48

IFA
stage 1 PWR 4 7
stage 2 PWR 49

laminar bus chart PWR 48
measurements and adjustments

Models H2-K2 PWR 124
stage I PWR 46
stage 2 PWR 48

PF regulators
stage 1 PWR 47

voltage, PF regulators (continued)

stage 2 PWR 49
printer-keyboard

stage 1 PWR 47
stage 2 PWR 49

TR special de power
stage 1 PWR 47
stage 2 PWR 49

voltage distribution
CPU

Models FED-I PWR 8
Models H2-K2 PWR 104

PF

m

Models FED-I PWR 8
Models H2-K2 PWR 104

w (warning) REC 18
W-register (EXPLS-52)

description CPU 21
use CPU 61

wait indicator CNSL 8
warm start facility for OS REC 26
wire color codes (grounding) PWR 73
wire fire data to Tl DIAG 37
WK-register (EXPLS· 7 A) CPU 22
WM (warning mask) REC 17
word

buffer, selector CHNL 83
move word

bit format MIC 40
description MIC 38
example MIC 42

registers, setting the CPK 43
selection (SDBO) CPU 8
I and 2 register (321 S) CPK 33

word top, word bottom (storage) STOR 16
WP (PSW MWP validity) REC 18
write

ACR CPK60
data (word I and word 2) registers CPK 31
IFA

CKD command IFA 60
clock/data generation IFA 20
clock gate IFA27
commands IFA 57
data command If A 59
data mini·op IF A 38
diagnostic tests IF A 92
full cylinder test IFA 92
gap mini-op IF A 39
gate IFA 27
gate logic IFA 27
HA command IFA 56
oscillator IF A IS
share request IF A 28
single; track test IF A 92
special command IPA 57

write (continued)
operation

3210 CPK23
3215 CPK36

store operation, storage · STOR 60
wrc autotransformer

Models FED-I PWR 8
Models H2-K2 PWR 104

B
Z-register

introduction INTR 10
description CPU 14

zeros
clocking chart IF A 16
clocking IF A 16
detect logic IFA 14
detection, IFA VFO If A 14

NUMERIC INDEX
23 FD (see console file)

370
microprogram index REF 23
microporgram list MIC 16
microporgram listing

destinations MIC 8
samples MIC 6

1400/1440 compatibility feature instruction EA FEAT 10
2312 disk drive IFA 4
2313 disk drive IFA 4
2316 disk drive IFA 4.
2318 disk drive IFA 4 .
2319 disk facility IFA 4
3046 power interlock description PWR 34
3145 addressing configuration, example STOR 80
314S reference manual REF 6
3210

console printer-keyboards, description CPK 4
control and data !low CPK IS
data and control registers CPK IS
keyboard CPK 7
keyboard codes CPK 7
keyboard (read) operation CPK 25
power distribution PWR 8 ·
PR-KB code translation CPK 10
PR·KB integrated attachment CPK 14
printer CPK 8
shift-cycle operation CPK 26
voltage chart

stage I PWR 47
stage 2 PWR 49

write operation CPK 24
3215

attachment data flow DIAG 36
condensed data flow· CPK 33
console printer-keyboard CPK 27

. console printer-keyboard, description CPK S
control and data flow CPK 34
data and control registers CPK 33
diagnostic functions DIAG 36

· ..

3215 (continued)

diagnostic hardware DIAG 36
kevboard CPK 27
ke}·board operation (read) CPK 38
power distribution PWR 8
PR·KB rnde translation CPK 28
PR-KB integrated attachment CPK 33
print magnet firing circuits CPK 42
print operation CPK 27
printer CPK n
TE-register CPK 33
tests-des.:ription DIAG 39-42
TT-register CPK 33

wltage chart, stage I PWR 47.
¥Oltage chart, stage 2 PWR 49
write operation CPK 36
7 x 1 matrix. codes, cable CPK 28
3345 addressing configuation, example STOR 80
3345 storage and control frame PWR 6

3146 TM X·18

s.

	001
	002
	01-01_INTR
	01-02
	01-03
	01-04
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	02-001_CPU
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-164
	02-166
	02-167
	02-169
	02-170
	02-171
	02-172
	02-173
	02-174
	02-175
	03-01_PLAN
	03-02
	03-03
	03-04
	03-06
	03-07
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18

