
Installed
User
Program

SH20-6162-1

PascalNS
Programmer's Guide

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level programming
language to teach computer programming by N. Wirth
(circa 1968), Pascal has emerged as an influential and well
accepted user language in today's data processing environ
ment. Pascal provides the user with the ability to produce
very reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many inlportant extensions. The
language extensions include: separate compilation,
dynamic character strings and extended I/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual is a guide to the use fo the compiler in the
MVS and VM/CMS operating environments.

--- ------ - ---- ---- -- ---- - - ----------_.-

TNL SN20-4607 (9 December 1983) to SH20-6162-1

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontin uance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail
ability of corrected code. However, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Anyon-site program service or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA 95150
Attention: Mr. Luis C. Tan
Telephone: (408)463-4392
IBM Tieline: 8/543-4392

IBM Corporation
Informations Systems Group
Department 873
1241 Stamford, CT 06902
Attention: Mr. Keith 1. Warltier
Telephone: (203)359-7261
IBM Tieline: 8/772-7261

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler (IUP Program Number 5796-PNQ).

References in this publication to lllM products, programs, or services do not imply that
lllM intends to make these available outside the United States.

Publications are not stocked at the address given below; requests for copics of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at the back of this pUblication. If
this fOfm has been rcmoved. address commcnts to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1980, 1981

J

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

I. Pascal/VS Language Reference Manual, order number SH20-6168. Thi 5 manual
describes the Pascal/VS language.

• IBM Virtual Machine Facility/370: CMS Command and Macro Reference, order num
ber GC20-1818. This manual describes the commands of the Conversational Moni
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage.

• IBM Virtual Machine Facility/370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facility/370.

• OS/VS2 TSO Command Language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of OS/VS2.

• OS/VS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of OS/VS2.

• OS/VS Linkage Editor and Loader, order number GC26-3813.
describes how to use the OS/VS2 linkage editor and loader.

This manual

• Time Sharing Option Display Support and Structured Programming Facility Ver
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu
al is required to install the Pascal/VS SPF menus and procedures.

• OS/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu
al describes the various data set access methods utilized by OS/VS2 and the OS
simulation of eMS - VM/370.

• Pascal/VS Reference Summary, order number GX20-2365. This reference summary contains basic information
from the Pascal/VS Reference Manual and Pascal/VS Programmer's Guide.

Preface iii

iv

(.;

TNL SN20-444S (31 December 1981) to SH20-6162·1

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

• A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

• Two new options may be applied to files when they are opened: UCASE and NOeC.

• Rules have been relaxed in passing fields of packed records by var to a rou
tine.

• The "STACK" and "HEAP" run time options have been added to control the amount
at which the stack and heap are extended when an overflow occurs.

• The syntax of a "structured constant" which contains non-simple constituents
has been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

• Pascal/VS now supports single precIsIon floating point (32 bit) as well as
double precision floating point (64 bit).

• Fi les may be opened for updati ng wi th the UPDATE procedure.

• Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT)
so that I/O may take place directly to the user's terminal without going
through the DDNAME interface.

• The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen
trant.

• The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen
trant.

• A new predefined type. STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

• A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

•
•
•

•
•
•
•
•

The maximum size of a string has been increased to 32767 characters.

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not
modified.

Pascal/VS programs may contain source lines up to 100 characters in length.

Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascal/VS will flag extensions when the option "lANGlVl(STD)" is used.

Summary of Amendments v

TNL SN204445 (31 December 1981) to SH20~162-1

•

•

A mechanism has been provided so that Pascal/VS routines may be called from
other languages.

All record formats acceptable to QSAM are now supported by the Pascal/VS I/O
facilities.

• A procedure or function may now be exited by means of the gate statement.

• You may now declare an array variable where each element of the array is a
file.

• You may define a file to be a field of a record structure.

• Files may now be allocated in the heap (as a dynamic variable) and accessed
via a pointer.

• You may now defi ne a subrange of INTEGER whi ch is allocated to 3 bytes of stor
age. Control over signed or unsigned values is determined by the subrange.

• Variables may be declared in the outermost scope of a SEGMENT. These vari
ables are defined to overlay the variables in the outermost scope of the main
program.

• The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

• The PDSOUT procedure opens a member of a library file (partitioned dataset)
for output.

• A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

• The CPAGE percent(~) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

• The MAXlENGTH function returns the maximum length that a string variable can
assume.

• The ~CHECK TRUNCATE option enables (or disables) the checking for truncation
of strings.

• The PASCALVS exec for invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

• Hew compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LAHGLVL.

• The catalogued procedures for invoking Pascal/VS in OS Batch have been simpli
fied.

• The format of the output listing has been modified so that longer source lines
may be accomodated.

• Multiple debugger commands may be entered on a single line by using a semico
lon (;) as a separator.

• The format of the Pascal File Control Block has been modified.

• Support is now provi ded for ANSI and machi ne control characters on output
files.

• Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

• The debugger now supports breakpoints at the end of a procedure or function.

• The Trace mode in the debugger provides information on when procedures are
being exited.

• The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

• The Equate command of the debugger has been enhanced.

vi Pascal/VS Programmer's Guide

J

TNL SN20-4607 (9 December 1983) to SH20-6162-1

TABLE OF CONTENTS

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Introduction •••••••••••••••••••••••••• 1
1
1
2
2
4
5
5
6
6
7
7

Invoking the Compiler under CMS: PASCAlVS EXEC
Building a load Module under CMS: PASCMOD EXEC
Invoking the load Module under CMS
Invoking the Compiler under TSO: PASCAlVS ClIST ••••
Building a load Module under TSO: PASCMOD ClIST •
Invoking the load Module under TSO: The CAll command
Interactive Debugger •••• _
Compiler Options
Run Time Options .
Cataloged Procedures
Sample Batch Job

2.0 Running a Program under CHS
2.1 How to Compile a Program

2.1.1 Invoking the Compiler
2.1.2 The PASCAlVS Command
2.1.3 The ~INClUDE Maclibs
2.1.4 Passing Compiler Options
2.1.5 The Compiler listing
2.1.6 Compiler Diagnostics
2.1.7 Sample Compilation

2.2 How to Build a load Module
2.2.1 Module Generation Options
2.2.2 Run time libraries

2.3 How to Define Files
2.4 How to Invoke the Load Module

3.0 Running a Program under TSO
3.1 How to compile a program

3.1.1 Invoking the Compiler ..
3.1.2 Using the ~IHClUDE Facility
3.1.3 Compiler Diagnostics

3.2 How to Build a Load Module
3.3 How to Define Files
3.4 Invoking the load Module
3.5 Sample TSO Session

4.0 Running a Program under OS Batch
4.1 Job Control language ••.•.•
4.2 How to Compile and Execute a Program
4.3 Cataloged Procedures •.•.•••
4.4 IBM Supplied Cataloged Procedures

4.4.1 Compile Only (PASCC) • _ ..•.
4.4.2 Compile, load, and Execute (PASCCG)
4.4.3 Compile and link Edit (PASCCl)
4.4.4 Compile, link Edit, and Execute (PASCClG)

4.5 How to Access an ~IHCLUDE Library .•••
4.6 How to Access Data Sets
4.7 Example of a Batch Job

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Compiler options
CHECK/HOCHECK
DEBUG/HODEBUG
GOSTMT/NOGOSTMT
LAHGLVLO
LIHECOUHHn)
LIST/HOLIST
MARGIHSCm,n) ..
OPTIMIZE/HOOPTIMIZE
PAGEWIDTHCn)

PXREF/HOPXREF
SEQCm,n)/HOSEQ
SOURCE/HOSOURCE
WARNIHG/HOWARHIHG
XREF/HOXREF

6.0 Run Time options

7.0 How to Read Pascal/VS Listings
7.1 Source Listings

9
9
9
9

10
10
10
10
11
12
12
12
13
13

15
15
15
17
17
18
20
20
21

23
23
23
24
24
25
26
27
28
29
29
30

31
31
32
32
32
32
32
32
33
33
33
33
33
33
33

35

37
37

Table of Contents vii

TNL SN20-4607 (9 December 1983) to SH20-6162-1

7.1.1 Page Headers ...•..
7.1.2 Hesting Information ..••
7.1.3 Statement Numbering
7.1.4 Page Cross Reference Field
7.1.5 Error Summary
7.1.6 Option list
7.1.7 Compilation Statistics

7.2 Cross-reference listing
7.3 Assembly Listing
7.4 External Symbol Dictionary
7.5 Instruction Statistics

8.0 Using Input/output Facilities
8.1 I/O Implementation
8.2 DDNAME Association .
8.3 Data Set DCB Attributes
8.4 Text Files
8.5 Record Files•
8.6 Opening a File for Input - RESET
8.7 Opening a File for Interactive Input
8.8 Opening a file for output - REWRITE
8.9 Terminai Input/Output
8.10 Opening a File for UPDATE
8.11 Procedure GET

8.11.1 GET operation on text files
8.11.2 GET operation on record files

8.12 PUT procedure
8.12.1 PUT Operation on Text Files
8.12.2 PUT Operation on Record Files

8.13 Text File Processing
8.13.1 Text File READ
8.13.2 The READLN Procedure
8.13.3 Text File WRITE
8.13.4 The WRITElN Procedure
8.13.5 The PAGE Procedure
8.13.6 End of Line Condition ••••..
8.13.7 End of File Condition - text files

8.14 Record File Processing
8.14.1 Record File READ .•..•.
8.14.2 Record File WRITE ..•.•
8.14.3 End of File Condition - Record Files

8.15 Closing a File
8.16 Relative Record Access
8.17 Partitioned Data Sets

8.17.1 Opening a Partitioned Data Set
8.17.2 PDS Access in a CMS Environment

8.18 The Open Options
8.19 Appending to a File

9.0
9.1
9.2
9.3
9.4
9.5

Runtime Error Reporting
Reading a Pascal/VS Trace Back
Run Time Checking Errors
Execution Error Handling •
User Handling of Execution Errors ••••
Symbolic Variable Dump .••.

10.0 Pascal/VS Interactive Debugger
10.1 Qualification
10.2 Commands ••..

10.2.1 BREAK Command
10.2.2 CLEAR Command
10.2.3 CMS Command
10.2.4 DISPLAY Command ..
10.2.5 DISPLAY BREAKS Command
10.2.6 DISPLAY EQUATES Command
10.2.7 END Command
10.2.8 EQUATE Command
10.2.9 GO Command
10.2.10 Help Command
10.2.11 lISTVARS Command ..
10.2.12 Qualification Command
10.2.13 QUIT Command
10.2.14 RESET Command
10.2.15 SET ATTR Command
10.2.16 SET COUNT Command

vi i i Pascal/VS Programmer's Gui de

38
38
38
38
38
39
39
40
42
43
43

4S
45
45
45
46
46
46
46
47
47
47
48
48
48
49
49
49
49
49
51
52
53
53
53
54
54 J 54
54
54
55
55
56
56
56
56

58.1

S9
59
61
61
62
63

6S
65
65
66
66
67
67
68
68
69
69
70
71
71
72
72
73
73
74

TNL SN20-4607 (9 December 1983) to SH20-6162-1

10.2.17 SET TRACE Command
10.2.18 TRACE Command .
10.2.19 Viewing Variable~
10.2.20 Viewing Memory
10.2.21 WALK Command ..

10.3 Debug Terminal Ses~ion

11.0 storage Happing
11.1 Automatic Storage .
11.2 Internal Static Storage
11.3 DEF storage ..•.•.
11.4 Dynamic Storage ..•..
11.5 RECORD Fields ..•••..•.
11.6 Data Size and Boundary Alignment

11.6.1 The Predefined Type~
11.6.2 Enumerated Scalar
11.6.3 Subrange Scalar
11. 6.4 RECORDs
11.6.5 ARRAYs
11.6.6 FILEs
11.6.7 SETs
11.6.8 SPACEs

12.0 Code Generation for the 18H/370
12.1 Linkage Convention~
12.2 Register Usage
12.3 Dynamic Storage Area
12.4 Routine Invocation
12.5 Parameter Passing

12.5.1 Passing by Read/Write Reference
12.5.2 Passing by Read-Only Reference
12.5.3 Passing by Value ...•...•.•.
12.5.4· Passing Procedure or Function Parameter~
12.5.5 Function Results •..

12.6 Procedure/Function Format
12.7 PCWA•...
12.8 PCB - Pascal file Control Block

13.0 Inter Language communication ••••••••
13.1 Linking to Assembler Routines•.....

13.1.1 Writing Assembler Routine with Minimum Interface
13.1.2 Writing Assembler Routine with General Interface
13.1.3 Receiving Parameters From Routines
13.1.4 Calling Pascal/VS Routine from Assembler Routine
13.1.5 Sample Assembler Routine ..•......•.•.••.
13.1.6 Calling a Pascal/VS Main Program from Assembler Routine

13.2 Pascal/VS and FORTRAN•.. . ••.
13.2.1 Pascal/VS as the Caller to FORTRAN .•.•..•.•.
13.2.2 FORTRAN as the Caller to Pascal/VS . . •. . ••.

13.3 Pascal/VS and COBOL•.•. ••.
13.3.1 Pascal/VS as the Caller to COBOL ..•.•.••••
13.3.2 COBOL as the Caller to Pascal/VS ..•.

13.4 Pascal/VS and PL/I •.......
13.4.1 Pascal/VS as the Caller to PL/I
13.4.2 PL/I as the Caller to Pascal/VS

13.5 Data Types Comparison

n.o
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15.0
15.1
15.2
15.3

Runtime Environment overview
Program Initialization
The Main Program
Execution Support Routines
Input/Output Routines
Error Handling
Conversion Routines
Mathematical Routines
String Routines ..
Memory Management Routines

Comparison to Pascal
Pascal/VS Restrictions
Modified Features
Hew Features

16.0 Implementation Specifications
16.1 System Description

74
75
75
76
71
78

87
87
87
87
87
87
87
87
88
88
88
88
89
89
90

91
91
91
92
94
95
95
95
95
96
96
97
98

101

103
104
104
105
107
107
107
109
112
112
113
114
114
115
116
116
117
118

121
121
121
121
122
123
123
124
124
125

127
127
127
127

129
129

Table of Contents ix

TNL SN20-4607 (9 December 1983) to SH20-6162-1

Figure 72. Passing by value · · · · · · · · · · · · · 95
Figure 73. Passing routine parameters · · · · · 96
Figure 74. Function results · · · · · · · · . 96
Figure 75. Routine format . · · · · · 97

~ Figure 76. Pascal Communications Work Area · · · · · · · · . 98
Figure 77. Pascal file Control Block (PCB) format · · · · · · · 101
Figure 78. Inter language Communication · · · · · 103
Figure 79. Minimum interface to an Assembler routine · · · · 104
Figure 80. PROLOG/EPILOG macros · · · · · · · · · · 105
Figure 81. General interface to an Assembler routine · · · · 106
Figure 82. Pascal/YS description of Assembler routine · · · · 108
Figure 83. Sample Assembler routine · · · · · · · · · · · · · · · · · 108
Figure 84. Example of calling a Pascal/VS program from an Assembler routine 109
Figure 85. Example of Assembler as the caller to Pascal/YS · · · · · 110
Figure 86. Example of Pascal/VS as the caller to Assembler 111
Figure 87. Example of Pascal/VS as the caller to FORTRAN · · · · · · · · 112
Figure 88. Example of FORTRAN as the caller to Pascal/VS 113
Figure 89. Example of Pascal/VS as the caller to COBOL 114
Figure 90. Example of COBOL as the caller to Pascal/VS · · · · 115
Figure 91. Example of Pascal/VS as the caller to Pl/I · · · · 116
Figure 92. Example of Pl/I as the caller to Pascal/VS 117
Figure 93. Example of Pl/I as the caller to Pascal/VS 118
Figure 94. Data Type Comparisons · · · · · · · · · · · · · · 119
Figure 95. Characteristics of System/370 floating point arithmetic 130
Figure 96. Sample JCl to retrieve first file of distribution tape. 168
Figure 97. Sample installation job · · · · · · · · · · · · · · 169
Figure 98. Sample i nstallati on job · · · · · · · · · · · · · 170
Figure 99. Sample installation job · · · · · · · · · · · · · · 171
Figure 100. li sti ng of the JCl to copy source files from tape 173
Figure 101. li sti ng of the JCl to copy source files from tape 174
Figure 102. Examples of using the PICTURE function · · · · · · · · 178.1
Figure 103. CMS Command Summary · · · · · · · · · · · 178.4
Figure 104. Pascal/VS Modules Needed for Downloading · · · 178.6
Figure 105. CMS Commands to Download Pascal/VS From a local Session 178.6
Figure 106. CMS Commands to Access Pascal/VS From a local Session as a 178.7

xii Pascal/VS Programmer's Guide

L

1.0 INTRODUCTION

The Pascal/VS compiler is a processing program which translates Pascal/VS source
programs, diagnosing errors as it does 50, into IBM System/370 machine
instructions.

The compiler may be executed under the following operating system environments!

I • 05/370 Batch CVSl and VS2 R3.7)

• Time Sharing Option (TSO) of OS/VS2

I · Conversational Monitor System (eMS) of Virtual Machine Facility/370 (VM/370)
Release 5 PlC 2 and latter.

1.1 INVOKING THE COMPILER UNDER CMS: PASCALVS EXEC

PASCALVS

fn

ft

fm

maclf bs

options

PRINT

HOPRINT

DISK

CONSOLE

NOOBJ

fn [ft [fm]] [([options] [PRINT]
NOPRINT
DISK

is the fi Ie name of the source program.

[LIB(maclibs)]
[CONSOLE] [)]
[NOOBJ] 1

is the fi Ie type of the source program; the assumed fi Ie type is
"PASCAL".

is the fi Ie mode of the source program.

are optional macro libraries required by the YoIHCLUDE facility. Up to
eight libraries may be specified.

are compiler options.

specifies that the listing is to be spooled to the virtual printer.

specifies that the listing is to be suppressed.

speci fi es that the 1 i st i ng is to be stored as a fi Ie named "fn
LISTING". This is the default.

specifies that the console messages produced by the compiler are be
stored as a file named "fn CONSOLE". If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCMOD EXEC

PASCHOD main [names •••] [(options ••• [)]]

matn is the name of the main program module.

names... are the names of segment modules and text libraries (TXTLIB's) which
are to be included.

Introduction 1

options ••• is a list of options.

The resulting load module will be given the name "main MODULE A". The load map of
the module will be stored in "main MAP A".

The following are recognized as options to the PASCMOD command.

DEBUG links the debugging routines into the load module 50 that the interac
tive debugger can be used.

NAME name specifies an alternate name for the load module. The resulting load
module and map will have the name "name MODULE A" and "name HAP A".

1.3 INVOKING THE LOAD MODULE UNDER CMS

A Fascal/VS load module is invoked as follows:

modname t [rtparms ••• /] [parms ••• l

where "modname" is the name of the load module; "rtparms" are run time options
(separated by blanks); and "parms" are the parameters (if any) being passed.

1.4 INVOKING THE COMPILER UNDER TSO: PASCALVS CLIST

CLIST NAME OPERANDS

PASCALVS data-set-name
[coMPiler-options-list]

[OBJECTldsname)] NOOBJECT

[PRINTOO] PRINTldsname)
SYSPRINTlsysout-c1ass)
NOPRINT

[CONSOLEl~)] CONSOLE(dsnameJ

[LIBldsname-1istJ] NOLIB

data-set-name is the name of the primary input data set.

co~piler-opt;ons-l;st is one or more compiler options separated by blanks

OBJECTldsname) specifies the data set to contain the object module.

NOOBJECT specifies that no object module is to be produced.

PRINTl~J specifies that the compiler listing is to be displayed on the ter
minal.

PRINT(dsname) specifies the data set to contain the compiler listing.

SYSPRINT(SYSout-classJ specifies the sysout class to where the compiler listing
is to be produced.

NOPRINT

CONSOLE(~J

suppresses the compiler listing.

specifies that compiler messages are to be displayed on the termi
nal.

2 Pascal/VS Programmer's Guide

J

CONSOLE(dsname) specifies the data set to contain compiler messages.

LIB('dsname-list') specifies a list of %INCLUDE libraries.

NOLIB specifies that no %INCLUDE libraries are required.

Introduction 3

1.5 BUILDING A lOAD MODULE UNDER TSO: PASCMOD ClIST

CLIST NAME

PASCMOD

data-set-name

OPERANDS

data-set-name or *
[OBJECT('dsname-1ist')]
[DEBUG]
[lOAD(dsname)]

[PRINT£lE)] PRINT(dsname) [lET] [XCAL] NOF'RINT NOLET NOXCAl

[lIB('dsname-1ist')] [FORTLIB] [COB LIB]

[MAP] [NCAl] [lIST] Not1AP NONCAl NOlIST

[XREF] [REUS] [REFR] NOXREF NOREUS NOREFR

[SCTR] [OVlY] [RENT] NOSCTR NOOVlY NORENT

[NE] [OL] [DC] NONE NOOl NODC

[TEST] [NOTERM] NOT EST TERM

[SIZE('integer1 integer2')]
[DCBS(b1ocksize)]
[AC(authorization-code)]

is the data set containing a Pascal/VS object module and/or link
age editor control cards.

OBJECT('dsname-list') specifies a list of data sets which-contain additional
object modules to be included in the link-edit.

LIB('dsname-ligt') specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TSO Command Language Reference Manual.

4 Pascal/VS Programmer's Guide

J

~ ..

TNL SN20444S (31 December 1981) to SH20-6162·1

1.6 INVOKING THE LOAD MODULE UNDER T50: THE CALL COMMAND

CALL dsname[(member)] ['[options'] [parms],]

dsname(member) specifies the name of a partitioned data set and the member where
the load module to be invoked is stored.

options

parms

is one or more run time options separated by either a comma or a
blank.

a parameter string which is to be passed to the program.

The total length of the quoted string (options plus parms) must not exceed 100
characters.

1.7 INTERACTIVE DEBUGGER

In order to use Debug, you must follow these four steps:

• Compile the module to be debugged with the DEBUG option.

• When link-editing your program, include the debug library.

• When executing the load module, specify 'DEBUG' as a run time option.

Command name

?
,variable
Break
CLEAR
Cms
Display
Display Breaks
Display Equates

END
Equate
Go
L i stvars

Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
Trace
Walk

Description (Abbreviation in capital letters)

List all debug commands
Display the value of a variable
Set a break point
Remove all break points
Enter CMS subset mode
Display status
Display the location of all break points
Display all equate symbols with their current

definitions
Terminate the program (same as QUIT)
Define an equate symbol
Begin or resume execution of probram
List the values of all variables that are local

to the active routine
Redefine the "current" qualification
Terminate the program (same as END)
Remove a break point
Display attributes when variables are viewed
Initiate/terminate statement counting
Activate/deactive program tracing
Display a trace back
Execute a single statement and then prompt for

another command

Introduction 5

TNL SN20-444S (31 December 1981) to SH20~162·1

1.S COMPILER OPTIONS

Compiler option Abbreviated Name Def;ult

CHECK/NOCHECK --- CHECK
DEBUG/NODEBUG --- NODEBUG
GOS TMT/NOGOS TMT GS/NOGS GOSTMT
LINECOUNTC n) LC LINECOUNT(60)
LIST/NOLIST --- NOLIST
LANGLVLCSTD/EXTEND) --- LANGLVLCEXTEND)
MARGINSCm,n) MARCm,n) MARGINSCl,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTHCn) Pl~ PAGEWIDTH(128)
PXREF/NOPXREF --- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSeQ SEQUENCEC73,SO)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/NOW WARNING
XREF/NOXREF X/NOX XREFC SHORT>

1.9 RUN TIME OPTIONS

The following options enable features in the Pascal/VS run time environment in
which your program will be executing.

COUNT generates a statement count table and writes it to OUTPUT.

DEBUG activates the interactive debugger.

SETMEM initializes local storage of a routine to a specific value on each invoca
tion of the routine.

NOSPIE suppresses the interception of program exceptions.

NOCHECK causes all checking errors to be ignored.

ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT = number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program. The default number is 20.

STACK = number specifies the number of kilobytes by which the run time stack is to
be extended when a stack overflow occurs.

HEAP = number specifies the number of kilobytes by which the heap is to be extended
when a heap overflow occurs.

6 Pascal/VS Programmer's Guide

J

1.10 CATALOGED PROCEDURES

PASCC Compile only -- step name: PASC

PASCCG Compile, load and execute -- step names: PASC, GO

PAscel Compile and link-edit -- step name: PASC, LKED

PASCCLG Compile, link-edit, and execute -- step names: PASC, LKED, GO

Data set description stepname.ddname

source program input PASC.SYSHP
%IHCLUDE library (POS) PASC.SYSLIB
source listing,

cross-reference listing, PASC.SYSPRIHT
pseudo assembly listing and
external symbol table listing

object module PASC.SYSLIH
load module LKED.SY5LMOD
linkage-editor control cards LKED.SYSIHI
linkage-editor load library LKED. SYSLIB
loader input GO.SYSLIH
loader library GO.SYSLIB
fi Ie OUTPUT GO.OUTPUT

1 This DDname is not defaulted and must be
explicitly defined.

1.11 SAMPLE BATCH JOB

//jobnrlme JOB
//STEP! EXEC PASCCLG,OPTIONS='XREF(LONG),LIST'
//PASC.SYSIN DO *

{Program to be compiled goes here}

PA.
//LKED.SYSIN CD *

EflTRY PASCALVS
/~

//GO.INPUT CD •••

Introduction 7

J

J

L

L

This section applies only to those who
are using Pascal/VS under the Conversa
tional Monitor System (CMS) of Virtual
Machine Facility/370 (VM/370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota
t i on used to descr i be commands, see
"Command Syntax Notation" on page 163.

There are four steps to running a
Pascal/VS program under CMS.

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com
mand;

4. The load module is invoked.

PASCALVS fn [ft [fm]] [DISK]
[options •••] PRINT [CONSOLE] [NOOBJ]

HOPRINT

[LIB(mac1ibs •••)]

Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1.1 Invoking the compiler

The standa rd method of i nvok i ng
Pascal/VS compiler under CMS is
means of an EXEC-called PASCALVS.

the
by

To compi 10 a Pascal/VS program, the
EXEC may be invoked in its si mplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro
gram. If the file type is not explic
itly specified, the type "PASCAL" will
be assumed.

The compiler translates a source pro
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its fi Ie type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL",
the command would be:

PASCALVS SORT

If the compilation completes without
errors, then the file named "SORT TEXT"
will contain the resulting object code.

2.1.2 The PASCALVS Command

The generalized form of the PASCALVS
command is illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the fi Ie name, fi Ie type, and
file mode of the source program.
The fi Ie type and fi Ie mode are
optional. The default file type is
"PASCAL" and the default file mode
is "lE".

maclibs •••
are optional macro libraries
required by the Y.INCLUDE facility.
Up to eight may be specified.

options •••
are compiler options, see "Compil
er Options" on page 31.

The command opt ions DISP, PRINT, and
NOPRINT specify where the compiler
listing is to be placed.

DISK
specifies that the listing is to be
stored as a fi Ie on your A di sk.

Running a Program under CMS 9

The fi Ie is named "fn LISTING",
where "fn" is the file name of the
source program. Thi s opti on is the
default.

PRINT
specifies that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing is to be
suppressed. This option automati
cally forces the following three
compiler options to become active:

- NOSOURCE
- NOXREF
- NOLlS T

CONSOLE
speci fi es that the console mes
sages produced by the compiler are
be stored as a file on your A disk.
The name assigned to the file is
"fn COHSOLE". If CONSOLE is not
specified, then the messages will
be displayed on your terminal con
sole.

NOOBJ
suppresses the product i on of an
object module by disabling the code
generation phase of the compiler.
This option is useful when you are
usi ng the compi ler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes
produced from the EXEC, see "Messages
from PASCAlVS exec" on page 159.

2.1.3 The %INCLUDE Maclibs

The macro lib"'1ries (maclibs) that may
be specified I~hen invoking the PASCAlVS
command are those required by the
%INCLUDE facility. When the compiler
encounters an %INCLUDE statement with
in your program it wi 11 search the
macl i bs (i n the order in ... Jhi ch they
were specified in the PASCAlVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%INCLUDE statement).

The default maclib named PASCAlVS need
not be specified. It is always implic
itly provided as the last maclib in the
search order.

10 Pascal/VS Programmer's Guide

2.1.4 Passing compiler options

Compile time options (see "Compiler
Opt ions" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compiler options may be specified in
the PASCAlVS parameter I i st. The
options list must be preceded by a left
parenthesis "(".

For instance, to compi Ie the program
"TEST PASCAL" wi th the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST (DEBUG NOXREF

2.1.5 The Compiler Listing

The compiler generates a listing of the
source program with such information as
the lexi cal nesti ng structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source listings" on page 37.

2.1.6 Compiler Diagnostics

Any compi lar-detected errors in your
program will be displayed on your ter
minal console (or written to a disk
file if the CONSOLE options ;s speci
fied). The errors will also be indi
cated on your source 1 i st i ng at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com
piler is displayed on your console.
Immedi ately underneath the pri nted
line a dollar symbol ('l') is placed at
each location where an error was detec
ted. This symbol serves as a pointer
to the approximate location where the
error occurred wi thi n the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol
lowing line of your console a diagnos
tic message is produced for each error
number.

For a synopsis of the compiler-gener
ated messages see "Pascal/VS Compiler
Messages" on page 131.

J

2.1.7 sample compilation

edit copy pascal
NEW FILE:

program copy;
var

infile,
outfile : text;
buffer : string;

begin
reset(i nfi Ie) ;
rewrite(outfile);
while not eof(infile) do

begin
readln(infile,buffer);
writeln(outfile buffer)

end;
end.

EDIT:

file
FILE SAVED

R; T=0.25/0.62 06:56:44

pascalvs copy

INVOKING PASCAL/VS R2.0

WRITELN(OUTFILE BUFFER)
$41

ERROR 41: Comma ',' expected
1 ERROR DETECTED.

SOURCE LINES: 16; COMPILE TIME: 0.16 SECONDS; COMPILE RATE: 6109 LPM

RETURN CODE: S
R(OOOOSl; T=0.34/0.67 06:56:59

Figure 2. Sample compilation under CMS

Running a Program under eMS 11

2.2 HOW TO BUILD A LOAD MODULE

PASCMOD main [names ••.] [(options ••• [)]]

Figure 3. The PASCMOD command: generates a Pascal/VS load module.

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consi sts of just one source
module (that is, you have no segment
modules), a load module can be genera
ted by simply invoking PASCMOD with the
name of the program. For example, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCHOD SORT

The resul t i ng
"SORT MODULE".
"SORT MAP".

module would be called
A load map is stored in

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the ma in program
module.

names .••
are the names of segment modules
and text libraries <TXTLIB's)
which are to be included. If a
name "n" is spec if i ed and there are
two files named n TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB wi 11 be
searched. --

options •••
is a list of options. (see "Module
Generation Options.")

The resulting load module will be given
the name "main MODULE A". The load map
of the module will be stored in "main
MAP A".

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

As an example, let us build a load mod
ule for a pre-compi led program whi ch
resides in three source modules: MAIN,
ASEG, and I3SEG. Thi s program calls
routines that reside in a txtlib called
UTILITY. The followi ng command I-Jould
generate a load module called MAIN
tIODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation options

The following are recognized as options
to the PASCMOD command.

DEBUG
specifies that the debugging rou
tines are to be linked into the
load module so tha+ the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger"
on page 65.)

NAME name
specifies an alternate name for the
load module. The resulting load
module and map will have the name
"name MODULE A" and "name MAP A".

2.2.2 Run time Libraries

Routines which make up the Pascal/VS
runt i me env ironment resi de ina text
library called "PASCAL VS TXTl IB". It
must be present in order to resolve the
1 i nkages from the program bei ng pre
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTlIB". (see "Pascal/VS Interact i ve
Debugger" on page 65 for a description
of Debug).

J

L
2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA
FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF OUTPUT TERMINAL (RECFM F LRECL 80
FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Figure 4. Examples of CMS file definition commands

Before you invoke the generated load
module, you must first define the files
that your program requi res. Thi sis
done with the FILEDEF command.

The fi rst parameter of the FIL EDEF com
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari
ables declared within the Pascal decla
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFI L E

TEXT;
file of

INTEGER;

If a parti cular fi Ie is to be opened
for input, attr i butes such as LRECL,
BLKSIZE, and RECFM are obtai ned from
the (presumably) already existing
file. Ilote: A file that is being
defined to the terminal requires you to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes"
on page 45.

The FILEDEF commands required for each
of the three fi Ie vari abIes in the

example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.4 HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the files defined, you are ready to
execute the program. Thi sis done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms .•• l

where "modnama" is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program wi 11 read (via the PARMS
function), the runtime parameter list
must be termi nated t<li th a slash "/".
The program parameters, if any, must
follot>J the "/".

modname [[rtparms ... /] [parms ••• l 1

For a description of the run time
options see "Run Time Options" on page
35.

Running a Program under CMS 13

J

J

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option (TSO) of
OS/VS2. If ~'ou are not using TSO to
run the compi ler, you may skip thi s
section.

Refer to "Command Syntax Notation" on
page 163 for a description of the syn
tax notation used to describe commands.

There are four steps to running a
Pascal/VS program.

3.1 HOW TO COMPILE A PROGRAM

CLI5T NAt1E

3.0 RUNNING A PROGRAM UNDER T50

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro
gram are allocated;

4. The load module is invoked.

OPERANDS

PASCALVS data-set-name

[compiler-options-listl

[

[

[

[
Figure 5. PASCALVS CLIST syntax.

3.1.1 Invoking the Compiler

The Pascal/VS compiler is invoked under
TSO by means of a CLIST. A sample
CLIST named PASCALVS is provi ded to
compile a Pascal/VS program.

data-set-n~me
specifies the name of the primary
input data set in which contains
the source program to be
compiled. This can be either a
fully qualified name (enclosed
in single quotation marks) or a
simple name (to which the user

OBJECT(dsname)] NOOBJECT

PRINT(3EJ
PRINT(dsname)

1 SYSPRINT(sysout-class)
NOPRINT

CONSOLE(*)
CONSOLE(dsname)]
lIB(dsname-listl] NOlIB

identification will be prefixed
and the qualifier "PASCAL" will
be suffi xed) . Thi s must be the
first operand specified.

compiler-options-list
speci fi es one or more compi ler
options. See "Compiler Options"
on page 31.

OBJECT(dsnamel
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. Thi s can be
ei ther a fully qual i fi ed name

Running a Program under TSO 15

(enclosed wi thi n tri pIe quota
tion marks "' ... "')1 or a
simple name (to which the iden
tification qualifier will be
prefixed and the qualifier "OBJ"
suffixed) .

HOOBJECT
specifies that no object module
is to be produced. The compiler
will diagnose errors only.

If neither OBJ nor NOOBJ is spec
ified then object module
produced by the compiler will be
written to a default data set.
If the data set specified in the
first operand contains a
descriptive qualifier of
"PASCAL", the CLIST loJi 11 form a
data set name for the object mod
ule by replacing the descriptor
qualifier of the input data set
wi th "OBJ". If the descri pt i ve
qualifier is not "PASCAL", then
you will be prompted for the
object module data set name.

If the first operand of PASCALVS
specifies the member of a parti
tioned data set, then the name of
the associated object module
will be generated as just
described. If the object module
data set is a partitioned data
set, then the object module will
become a member wi thi n the PDS
and wi 11 have the same name as
the member name of the input data
set.

As an example, gi ven that the
user identification is ABC, the
followi ng commands wi 11 produce
object modules with the name
shol-ln.

PRINT(lE)

PASCALVS SORT
obj ect module: 'ABC. SORT. OBJ'

PASCAlVS 'DEF.PDS.PASCAl(MAIN)'
object module:

'DEF.PDS.OBJeMAIH)'

PASCAlVS 'ABC.PROG.PAS'
user prompted for object
module name

specifies that the compiler
listing is to be displayed on the
terminal; no other copy will be
available.

PRINT(dsname)
specifies that the compiler
listing is to be written on the

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
"' ... ",)2 or a simple name (to
which the identification qual
ifier will be prefixed and the
qualifier "LIST" suffixed).

SYSPRINT(sysout-class)
specifies that the compiler
listing is to be written to the
Sysout class named in parenthe
ses.

NOPRINT
specifies that the compiler
1 i st i ng is not to be produced.
This operand activates the fol
lowing compiler options:

HOSOURCE, HOXREF, HOLIST

CONSOlEClEl
specifies that the compiler gen
erated messages are to be di s
played on the terminal console.
This is the default.

CONSOlECdsnamel
specifies that the compiler gen
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
"' ... "') or a simple name (to
which the identification qual
ifier loJill be prefixed and the
qualifier "COHSOLE" suffixed).

lIB(dsname-listl

NOlIB

specifies that the %INClUDE
facility is being utilized.
Within the parentheses is a list
of the names of one or more par
titioned data sets that are to be
searched for members to be
included within the input
stream.

If the 1 i st contai ns more than
one name. the entire list must be
enclosed within quotes. Any ful
ly qualified name within the
quoted list must be enclosed in
double quotes" "

See "Using the
Facility" on page 17.

specifies that no
libraries are required.
the default.

%IHCLUDE

%INClUDE
This is

Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

2 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

16 Pascal/VS Programmer's C,uide

J

J

EXell!'\ple 1

Operation: Invoke the Pascal/VS com-
pi ler to process a
Pascal/VS program

Known: User-identification is ABC

Data set containing the pro
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINTCA)

Operation: Invoke the Pascal/VS com-
pi ler to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TE5TLIST.LIST.

The long version of the cross
reference 1 i st i ng is pre
ferr"ed.

Default options and data set
names are to be used for the
rest.

PASCALVS 'ABC.TEST.PASCAL' +
XREFCLONG),PRINTCTESTLIST)

3.1.2 using the %INCLUDE Facility

If the %IHCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called 3

"SYSl.PASCALVS.t1ACLIB"

This library must be specified in the
LIB list if your program conta ins an
%IHCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%IHCLUDE statement wi thi n the source
program, it will search the partitioned

data setCs) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue reading from
the previous input stream immediately
following the %IHCLUDE statement.

Example 1

Operation: Invoke the
pi ler to
Pascal/VS
utilizes
facility.

Pascal/VS com
process a

program which
the %INCLUDE

Known: User-identification is P123

Data set containing the pro
gram is named

'PI23.MAIN.PASCAL'

The source to be included is
stored in two part it i oned
data sets by the names of

'PI23.PASLIB'
'SYSI.PASCALVS.MACLIB'.

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIBC'PASLIB,+
"SYS1.PASCALVS.MACLIB"')

By default, compiler diagnostics are
di splayed on your termi nal. If the
COHSOLE(dsname) operand appears on the
PASCALVS command, then the diagnostics
will be stored in a data set. The
errors will also be indicated on your
source listing at the lin~s where the
errors were detected. The diagnostics
are summarized at the end of the list
ing.

When an error is detected, the source
line that was being scanned by the com
piler is printed on your terminal Cor
to the CONSOLE data set). Immediately
underneath the pri nted line, a dollar
symbol C'$') is placed at each location
where an error was detected. This sym
bol serves as a pointer to indicate the
approxi mate locati on where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol
lowing line of your console a diagnos
tic message is produced for each error
number.

3 The high-level qualifier name (SYSl) may be different at your
installation.

Running a Program under T50 17

For a synopsis of the compiler genera
ted messages see "Pascal/VS Compi ler
Messages" on page 131.

3.2 HOW TO BUILD A LOAD MODULE

CLlST NAME OPERANDS

PASCHOD dC1ta-set-name or *

[OBJECT('dsname-list')]
[DEBUG]
[LOAD(dsname)]

[PRINT(*)] PRINT(dsname) [LET] [XCAL] HOPRINT NOLET NOXCAL

[LIB('dsname-list')] [FORTLIB] [COBLIB]

[HAP] [NCAL] [LIST]
t~ot'AP NONCAL NOLlST

[XREF] [REUS] [REFR]
~OXREF NOREUS NOREFR

[SCTR] [OVLY] [RENT] NOSCTR NOOVLY NoRENT

[NE] [OL] [DC] NONE NOD.!,. NODC

[TEST] [NOTERM] NOT EST TERM

[SIZE('integerl integer2')]
[DCBS(blocksize)]
[AC(authorization-code)]

Figure 6. The TSO PASCMOD CLIST description.

To generate a load module from a
Pascal/VS object module, you may use
either the TSO LINK command or a CLlST
named "PASCMOD" (Figure 6). The CLIST
performs the same function as the LINK
command except that it will automati
cally include the Pascal/VS runtime
library in generating the load module.
Al so, if the debugger is to be
utilized, the CllST will include the
PascaUVS debug library. (A complete
description of the LINK command is con
tained in the TSO Command Language
Reference Manual.)

Every Pascal/VS object module contains
references to the runtime support rou
tines. These routines are stored in a
library called 4

"SYSl.PASCALV5.l0AD"

This library must be linked into a
Pascal/VS object module in order to
resolve all external references prop
er'ly. If the PASCMOD CllST is used,
this library is included
automaticallY.

If the i nteracti ve debugger is to be
utilized, then the library containing
the debug environment must be included
in the linking. The name of this
library is4

"SYSl.PASDEBUG.lOAD"

This library must appear ahead of the
runtime library in search order. If
the PASCMOD CLIST is used, this library

4 The high-level qualifier name (SYSl) may be different at your
installation.

18 Pascal/VS Programmer's Guide

will be included if the option DEBUG is
specified.

If more than one object module is being
Ii ni<ed together. then an entry poi nt
should be specified by means of a link
age editor control card. The name of
the entry point for any Pascal/VS pro
gram is PASCALVS.

data-set-name
speci fi es the name of a data set
containing a Pascal/VS object mod
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (*>
for the data set name to indicate
that you will enter control state
ments from your terminal. The sys
tem wi 11 prompt you to enter the
control statements. A null line
indicates the end of your control
statements.

OBJECT('dsname-list')
specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list
must be enclosed in single quotes;
fully qualified names within the
list must be enclosed in double
qu 0 t e s (" ... ").

LIB('dsname-list')
specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
bei ng processed, that is, to
resol ve external references. The
name of the Pascal/VS runtime
library is implicitly appended to
the end of this list; you need not
specify it.

Because of CLIST restrictions, the
list must be enclosed in si ngle

quotes; fully qual i fi ed names
within the list must be enclosed in
double quotes (" ... ").

DEBUG
specifies that the Pascal/VS
interactive debugger is to be uti
lized on the resultant load module.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD CLIST
are identical to their counterparts in
the L INK command as descr i bed in the
TSO Command Language Referencp Manual.

Example

Operation: Create a load module from
a compiled Pascal/VS pro
gram consi sti ng of three
object modules.

Known: User-identification is ABC.
Data set s conta in i ng the
three object modules:

ABC.SORT.OBJ
ABC.SEG1.0BJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a d~ta set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the system replies are
high-lighted.)

pascmod * load(progs(sort» +
object('sort,segl,seg2')

ENTER CONTROL CARDS
entry pascalvs

READV

Running a Program under TSO 19

3. 3 HOI~ TO DEFINE FI LES

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAME(INPUT.DATA) SHR
ALlOC DDNAMECSYSPRINT) SYSOUTCA)
AllOC DDNAMECOUTPUTFI) DSHAMECOUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
ALlOC DDNAMECOUTPUT) DSNAME(M) USING(F80)
AllOC DDNAME(INPUT) DSNAME(M) USING(F80)

Figure 7. Examples of TSO data set allocation commands

Before you invoke the generated load
module, you must first define the files
that your program requi res. Thi sis
done with the ALLOC command.

The ddname to be associated with a par
ticular file variable in your program
is normally the name of the vari able
itself, truncated to eight characters.

For example, the ddnames for the vari
ables declared within the Pascal decla
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT
OUTPUTFILE

TEXT;
file of

INTEGER;

3.4 INVOKING THE LOAD MODULE

For the case of files to be opened for
output, the lRECl, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 45.

The ALLOe commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

CALL dsname[(member)] ['[options/] [parms],]

Figure 8. The TSO CALL command to invoke a load module

After the module has been created and
the files defined, you are ready to
execute the program. This is done by
the CALL command (see Figure 8), The
operands of the CAL L command are as
follo~~s.

name of a partitioned
the member where the
to be invoked is

the member name is

dsname(member)
specifies the
data set and
load module
stored. If
omitted,
"TEMPNAME"
invoked.

then the member
will be the load module

dsn~me may be either a simple name
(to which the user identification
is prefixed and the qualifier
"LOAD" is suffi xed), or a fully
qualified name in quotes.

20 Pascal/VS Programmer's Guide

options
specifies one or more run time
options separated by either a comma
er a blank. (See "Run Time Options"
on page 35.) .

parms
specifies a parameter string which
is to be pa ssed to the program.
The parameter string i~ retrieved
from within the program by the
PARHS function.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

J

3.5 SAMPLE TSO SESSION

READY

pascalvs lander sysprintCa) list

I~VOKING PASCAL/VS R2.0
NO COflPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

pascmod lander load(programsClander»
READY

alloc ddnameCinput) dsname(*>
READY

alloc ddname(output) dsname(*>
READY

call programs(lander) 'parms go here'

Figure 9. Sample TSO session of a compile, link-edit, and execution.

Figure 9 is an example of a TSO session
l~hich compiles an already existing
source module, link edits it, and exe
cutes it. The commands entered from

the terminal are in lower case; those
produced by the system are in upper
case and high-lighted.

Running a Program under TSO 21

J

J

This section describes how to compile
and execute Pascal/VS programs in an OS
Batch envi ronment. If you are not
using the compiler under OS Batch then
you may skip this section.

4.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operat i ng s~/stem; it
allows you to descri be the work ~'ou
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

• JOB statement, which identifies
the start of the job.

• EXEC statement, which identifies a
job step and, in particular, speci-

//EXAtlPLE JOB
//STEP! EXEC PASCCG,PARM='LIST'
//PASC.SYSIN DO *

program EXAMPlECINPUT,OUTPUT);
var

A, B: REAL;
begin

RESET(INPUT>;
while not EOFCINPUT)

begin
READltHA,B);

do

WRITELN(' SUM = ',A+B);
WRITELN(' PRODUCT = ',A*B);

end
end.

/*
//GO. INPUT DO ~

3.0 4.0
3.14159 1.414
1.0E-10 2.0E-IO
-10.0 102.0

•

4.0 RUNNING A PROGRAM UNDER OS BATCH

fi es the program to be executed,
ei ther di rectly or by means of a
cataloged procedure (described
subsequently) .

DD (data definition) statement,
wh i ch defi nes the input/output
facilities required by the program
executed in the job step.

• /* (delimiter) statement, which
separates data in the input stream
from the job control statements
that follow this data.

A full description of job control lan
guage is given in the publication
OS/VS2 JCL (GC28-0692).

4.2 HOW TO COMPILE AND EXECUTE A PRO
GRAM

Figure 10. Sample JCL to run a Pascal/VS program

The job control statements shol>m in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
the standard fi les INPUT and OUTPUT.
For a more generalized description of
input/output refer to "How to Access
Data Sets" on page 29 and "Using
Input/Output Facilities" on page 45.

Any options to be passed to the compil
er are placed within the PARM string of
the EXEC statement.

In the sample JeL, "EXAMPLE" is the
name of the job. The job name identi
fies the job within the operating sys
tem; it is essential. The parameters
required in the JOB statement depend on
the convent ions establ i shed for your
i nstallati on.

The EXEC statement invokes the IBM sup
plied cataloged procedure named
PASCCG. When the operating system
encounters thi s name, it replaces the

Running a Program under OS Batch 23

EXEC statement with a set of JCL state
ments that have been written previously
and cataloged in a system library. The
cataloged procedure contains two
steps:

PAse

GO

invokes the Pascal/VS compiler
to produce an object module.

invokes the LOADER to process
the object module by loading it
into memory and including the
appropriate runtime library
routines. The resulting exe
cutable program is immediately
executed.

The DD statement named "PASC.SYSIN"
indicates that the program to be proc
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or dev ice on
which it expects to find the program.

The del i mi ter statement 1* i ndi cates
the end of the data.

The DD statement named "GO.INPUT" indi
cates that the data to be processed by
the program (in procedure step GO) fol
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged proc!'!dure cornpr i ses one or
more job steps (though it is not a job,
because it must not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state
ment instead of the name of a program.

Several IBM-supplied cataloged proce
dures are avai lable for use wi th the
PascallVS compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre
quently used sets of job control state
ments. If the statements ina
cataloged procedure do not match your
requi rements exactlv, vou can easi Iv
modifv them or add new statements for
the duration of a job.

It is recommended that each installa
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal/VS Programmer's Guide

4.4 IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup
plied for use with the Pascal/VS com
piler are:

PASCC Compile only

PASCCG Compile, load-and-execute

PASCCl Compile and link edit

PASCClG Compi Ie, Ii nk edi t, and exe
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set is
SYSIN; the procedure step n<:lme whi ch
reads the input data set is PASCo For
eXClmple, the JCL statements that you
might use to compile, link edit, and
execute a Pascal/VS program is as fol
lows:

IIJOBNAME JOB
IISTEPl EXEC PASCCLG
IIPASC.SYSIN DD *

(insert Pascal/VS program here
to be compiled)

The listings and diagnostics produced
by the compi ler are di rected to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce
dure routes DDname·SYSPRINT to the out
put class where the system messages are
produced (SYSOUT=*).

The object module produced from a com
pilation is normally placed in a tempo
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSLIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"Tl23.S0RT.PASCAl"

and to store the resulting object mod
ule in a data set named

"Tl23.S0RT.OBJ"

the following JCl might be employed:

IIJOBHAME JOB
IISTEPl EXEC PASCC
IIPASC.SYSIH DO DSH=Tl23.S0RT.PASCAl,
II DISP=SHR
IIPASC.SYSlIH DO DSH=T123.S0RT.OBJ,
II UNIT=TSOPACK,
II DISP=(HEW,CATlG)

J

4.4.1 Compile Only (PASCC)

IIPASCC PROC
11*
11* INVOKE
11*
IIPASC EXEC
IIOUCODE DO
IIOUTPUT DO
IISTEPLIB DO
IISYSLIB DO
II DO
IISYSLIN DO
II
II
IISYSLIST DO
II
IISYSMSGS DO
IISYSOIN DO
II
IISYSPRINT DO
IISYSTERM DD
IISYSTIN DO
II
I ISYSU T1 DD
II
II
IISYSUT2 DD
II
II
IISYSXREF DO
II
IIUCODE DO

SYSOUT='*',INCLLIB='SYS1.PASCALVS.MACLIB'

PASCAL/VS COMPILER

PGM=PASCALI,PARM=,REGION=512K
SYSOUT=&SYSOUT
SYSOUT=&SYSOUT
DSN=SYS1.PASCALVS.LINKLIB,DISP=SHR
DSN=&INCLLIB,DISP=SHR
DSN=SYS1.PASCALVS.MACLIB,DISP=SHR
DSNAME=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
5PACE=(TRK,(2,5»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,5»
DSN=SYSl.PASCALVS.MESSAGES,DISP=SHR
UNIT=SYSDA,DISP=(NEW,OELETE),
SPACE=(TRK,(2,5»
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
DUMMY
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,S»
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,S»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,S»,
DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(TRK,(2,S»
SYSOUT=&SYSOUT

Figure 11. Cataloged procedure PASCC

This cataloged procedure (Figure 11)
compi les one Pascal/VS source module
and produces an object module. It con
sists of one step, PASC, which is com
mon to all of the cataloged procedures
described in this chapter.

Step PAse reads in the source module,
diagnoses errors, produces a listing,
and generates an object module to the
data set associated with DDname SYSLIN.

The DO statement for the object module
defines a temporary data set named
&&LOADSET. The term MOD is specified
in the DISP parameter and as a result,
if the procedure PASCe is invoked
several times in succession for differ
ent source modules, &&LOADSET will
contain a concatenation of object mod
ules. The linkage edi tor and loader
will accept such a data set as input.

Running a Program under OS Batch 25

4.4.2 Compile, Load, and Execute
(PASCCGJ

//PASCCG PROC
//
//
//PASC EXEC

SYSOUT=*,INCllIB='SYS1.PASCAlVS.MAClIB',
lKlBDSN='SYS1.PASCAlVS.lOAD',
lINKlIB='SYS1.PASCAlVS.LINKlIB'
PGM=PASCAlI,PARM=,REGION=512K

(this step is identical to the PASC step in procedure PASCC)

//GO
//OUTPUT

EXEC
DD
DD
DD
DD

/ /SYSLIB
//
//SYSLIN
//SYSLOUT
//SYSPRINT

PGM=LOADER,COND=(8,lE,PASC),PARM='EP=PASCALVS'
SYSOUT=&SYSDUT,DCB=(RECFM=VBA,lRECL=133,BLKSIZE=685)
DSN=&LKLBDSN,DISP=SHR
DSN=SYS1.PASCAlVS.lOAO,DISP=SHR
DSN=&&LOADSET,DISP=(OLO,OELETE)

DD
DD

SYSOUT=&SYSOUT
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,lRECl=133)

Figure 12. Cataloged procedure PASCCG

In this cataloged procedure
(Figure 12), the first tL.Jo steps com
pile a Pascal/VS source module to
produce an obj ect modul e. In the thi rd
step (named GO), the loader is
executed; thi s progra'Tl processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
GO describes the libraries from which
external references are to be resolved.
If you have a library of your own from
whi ch you would like external refer
ences to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compila
tions may also be included in the load
er's input stream by concatenating them
in the SYSlIN DD statement.

26 Pascal/VS Programmer's Guide

As an example, a program in a data set
named "DOE.SEARCH.PASCAL" needs to be
compiled and then loaded with an object
module named "DOE.SORT.OBJ". In addi
tion, several external routines are
called from l.Jithin the program which
reside in a library named
"DOE.MISC.OBJLIB". The following JCL
statements would compi Ie the program
and execute it.

//OOE JOB
/ISTEPl EXEC PASCCG,
II LKLBDSN='DOE.MISC.OBJLIB'
IIPASC.SYSIN DD DSN=DOE SEARCH.PASCAL,
II DISP=SHR
IIGO.SYSLIN DO
II DD DSN=DOE.SORT.OBJ,
II DISP=SHR

J

4.4.3 Co~pile and Link Edit (PASCClJ

//PASCCL
//
//
//PASC

PROC SYSOUT=*,INCLLIB='SYS1.PASCALVS.MACLIB',
LKLBDSN='SYSI.PASCALVS.LOAD',
LINKLIB='SYS1.PASCALVS.LINKLIB'

EXEC PGM=PASCALI,PARM=,REGION=512K

(this step is identical to the PASC step in procedure PASCC)

//*
//* L KED
//)(
//LKED
//SYSLIB
//
//SYSLIN
//
//SYSLMOO

EXEC
DD
DD
DO
DD
DD

PGM=IEWL,PARM='LIST,MAP',CONO=(8,LE,PASC)
OSN=&LKLBDSN,OISP=SHR
DSN=SYS1.PASCALVS.LOAO,OISP=SHR
DSN=&&LOADSET,DISP=(OLD,OELETE)

//

DDt~AME=S YS I N
DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
SPACE=(TRK,(S,3,1»

//SYSPRINT DO
//SYSUTl DO

SYSOUT=&SYSOUT
UNIT=SYSDA,SPACE=(CYL,(I,I»

Figure 13. Cataloged procedure PASCCL

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DO statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defi ned by the OD statement wi th
the name SYSLMOO. Thi s statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module wi 11 be placed and gi ven
the member name GO.

In specifying a temporary library, it
is assumed that you wi 11 execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOO.

When linking multiple modules
together, you must supply an entry
point. The name of the entry point may

be either the name of your main
program, or the name PASCALVS. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor. This may be done
conveniently with a DD statement named
SYSIN for step LKED which references
i nstream data:

//LKEO.SYSIN DO *
ENTRY PASCALVS

/*

Multiple invocations of the PASCC cata
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven
iently in one job. The JCL shown in
Fi gure 14 on page 28 compi les three
source modules and then link edits them
to produce a single load module. With
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAl.SRClIB1".

The member names are MAIN, SEG1, and
SEG2. The resulting load module is to
be placed ina preallocated 1 i brary
named "DOE.PROGRAI'lS.l0AD" as a member
named MAIN.

Running a Program under OS Batch 27

//JOBNAME JOB (DOE),'JOHN DOE'
//STEPl EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAl.SRClIB1CMAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(SEGl),DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBl(SEG2),DISP=SHR
//lKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=OLD
//LKED.SYSIN DD *

ENTRY PASCAlVS
/*

Figure 14. Sample JCL to perform multiple compiles and a link edit.

4.4.4 Compile, link Edit, and Execute
(PASCCLGl

//PASCCLG PROC SYSOUT=*,INCLLIB='SYSl.PASCALVS.MACLIB',
// lKLBDSN='SYSl.PASCALVS.LOAD',
// lINKlIB='SYS1.PASCALVS.LINKLIB'
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K

... (this step is identical to the PASC step in procedure PASCC)

//LKED EXEC PGM=IEWL,PARM='LIST,MAP',COND=(8,LE,PASC)

... (this step is identical to the LKED step in procedure PASCCL)

//GO EXEC PGM=*.LKED.SYSLMOD,COND=«S,lE,PASC),(S,lE,lKED»
//OUTPUT DD SYSOUT=&SYSOUT,DCB={RECFM=VBA,lRECl=133,BlKSIZE=685)
//SYSPRINT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,lRECl=133)

Figure 15. Cataloged procedure PASCClG

This cataloged procedure (Figure 15)
performs a compilation, invokes the
linkage editor to form a load module
from the resulting object module, then
the load module is executed.

28 Pascal/VS Programmer's Guide

The first two steps of this procedure
are i dent i cal to those of the PASCCl
procedure. An addi ti onal thi rd step
(named GO) executes your program.

J

J

4.5 HOW TO ACCESS AN ~INCLUDE LIBRARY

The DO statement named SYSlIB
dure step PASC defi nes the
from which included source
retrieved.

in proce
libraries
is to be

When the compi ler encounters an "IN
CLUDE statement within the source mod
ule, it wi 11 search the 1 i brary or
libraries specified by SYSlIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compi ler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an Y.INClUDE library by
means of the INCllIB parameter of the
cataloged procedures, or by overriding
the SYSlIB DO statement by specifying a
DD statement with the name PASC.SYSlIB.

Example

//JOBNAME JOB
// EXEC PASCCG
//PASC.SYSlIB DO DSN= ... ,DISP=SHR
//PASC.SYSIH DD lE

/lE

4.6 HOW TO ACCESS DATA SETS

Every fi Ie vari able operated upon in
your program must have an associated DD

TNL SN20444S (31 December 1981) to SH20-6162·1

statement for the GO step whi ch exe
cutes your program. The DDname to be
associated with a particular file vari
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari
ables declared within the Pascal decla
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
OUTPUTFIlE: file of

INTEGER;

The file named OUTPUT need not be
explicitly defined by you if you use
the cataloged procedures. Both cata
loged procedures whi ch execute a
Pascal/VS program (PASCCG and PASCClG)
contain a DO statement for OUTPUT.
OUTPUT is assigned to the output class
where the system messages and compiler
listings are produced (SYSOUT=lE).

If the Pascal/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assi gn default values to the
DCB as described in "Data Set DCB
Attributes" on page 45. If you prefer
not to rely on the defaults, then the
lRECl, BlKSIZE, and RECFM should be
explicitly specified in the DeB operand
of the associated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under OS Batch 29

TNL SN204445 (31 December 1981) to SH20-6162-1

4.7 EXAMPLE OF A BATCH JOB

//JOBNAME JOB
//STEPl EXEC PASCC,PARM='NOXREF'
//PASC.SYSIN DD ~
program COPYFILE;
type

F8D = file of
packed array[I •. 8D] of CHAR;

var
INFILE. OUTFILE: F80;

procedure COPY(var FIN,FOUT: F8D);
external;

begin
RESETCINFILE);
REWRITE(OUTFILE);
COPY(INFILE,OUTFILE);

end.
/~

//STEP2 EXEC PASCCLG,PARM='NOXREF'
//PASC.SYSIN DD ~
segment 10;
type

F8D = file of
packed array[I .. 8D] of CHAR;

procedure COPY(var FIN,FOUl: F80);
external;

procedure COPY;
begin

while not EOF(FIN) do
begin

FOUTGI := FINGI;
PUT(FOUT);
GETCFIN)

end
end;.
/~

//LKED.SYSIN DD ~
ENTRY PASCALVS

/~

//GO.INFILE DD ~

(data to be copied into data set goes here)

/l/i
//GO.OUTFILE
//
//
//

Figure 16.

DD DSN=P123456.TEMP.DATA,UNIT=TSOUSER,
DISP=(NEW,CATLG1,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=31201,
SPACE=(3120,(1,111

Example of a batch job

30 Pascal/VS Programmer's Guide

L
Compile time options indicate what fea
tures are to be enabled or di sabled
when the compiler is invoked. The fol-

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their
default values.

Compiler Option Abbreviated Name Default

CHECK/NOCHECK --- CHECK
DEBUG/NODEBUG --- NODEBUG
GOsTMUNOGOsTMT Gs/NOGs GOsTMT
LANGLVL(sTANDARO)/ LANGLVUsTD)/ lANGlVL(EXTENDEO)

LANGLVl(EXTENDED) LANGLVU EXT>
LINECOUtH(n) lC(n) LINECOUNH60)
LIsUNOLIsT --- NOLIsT
MARGINs(m,n) MAR(m,n) MARGINs(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTH(128)
PXREF/NOPXREF --- PXREF
SEQUENCE(m,n)/NOsEQUENCE SEQ(m,n)/NOsEQ sEQUENCE03,80)
SOURCE/NO SOURCE S/NOS
WARNING/NOWARNING W/NOW
XREF/NOXREF X/NOX

5.1 CHECK/NOCHECK

If the CHECK opt ion is enabled, the
Pascal/Vs compiler will generate
i nl i ne code to perform runt i me error
check i ng. The %CHECK feature can be
used to enable or di sable parti cular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
which may be checked are listed as fol
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val
ues.

Function routines
A call to a function routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a po inter vari able is
checked to make sure that the
po inter does not have the value
ni 1.

subrange scalars
Vari abIes whi ch are declared as
subrange scalars are tested when
they are assigned a value to guar
antee that the value 1 i es wi thi n
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

SOURCE
WARNING
XREF(SHORT>

statement or i mmedi ately after a
routine call in which the variable
was passed as a var parameter.
(This latter case also includes a
call to the READ procedure).

For the sake of efficiency, the
comp i 1 er may suppress check i ng
when it is able to determine that
it is semantically unnecessary.
For example, the-compiler will not
generate code to check the fi rst
three assignment statements below;
however, the last three wi 11 be
checked.

var
A : -10 .. 10;
B : O •• 20;

A .- B - 10; PEno checklE)
B := ABs(A); (lEno checklE)
A := B DIV 2; (lEno checklE)

A • - B;
B .- MHO;
A := -B;

(lEcheck
(lEcheck
(lEcheck

lE)
lE)
lE)

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables; however,
to help you detect such errors, the
sETMEM runtime option has been pro
vi ded (see "Run Time Opt ions" on
page 35).

Subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that thei r values 1 i e
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

Compiler Options 31

string truncation
Assi gnments to varyi ng length
stri ngs are checked to make sure
that the destination string vari
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnostic message. will be displayed on
your terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from OS Batch, the diagnostic
message and traceback will be sent to
the data set or device associated with
DDname SYSPRItH. You may di rect the
error diagnostics to any file of your
chnice with the "ERRFIlE" option (see
"Run Time Options" on page 35>'

See "Reading a Pascal/VS Trace Back" on
page 59 for an example of a traceback
due to a checking error.

"User Handling of Execution Errors" on
page 62 describes how checking errors
may be intercepted by your program.

5.2 DEBUG/NODEBUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Pascal/VS
Interact i ve Debugger" on page 65. If
the option DEBUG is enabled, the com
piler will produce the necessary infor
mat i on that Debug needs in order to
operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GOSTMT/NOGOSTMT

The GOSTMT option enables the inclusion
of a statement table. within the object
code. The entries within this table
allow the run-time environment to iden
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breal<points based on source
statement numbers. For a description
of the debugger see "Pascal/VS Interac
tive Debugger" on page 65.

The i nclusi on of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated.

32 Pascal/VS Programmer's Guide

5.4 LANGLVL()

If lANGlVL(STANDARD) is specified, the
compiler will diagnose all constructs
and features whi ch do not conform to
"standard" Pascal. Violations of the
standard will appear as warnings. In
addition, many of the predeclared iden
tifiers which are unique to Pascal/VS
will not be recognized when
lANGlVl(STANDARD) is specified.

LANGlVLCEXTENDED), which is the
default, specifies that the full
Pascal/VS language is to be supported.

5.5 LINECOUNT(N)

The LINECOUNT option specifies the num
ber of lines to appear on each page of
the output listing. The maximum number
of lines to fi t on a page depends on
the form to which the output is being
printed.

The default is 60 lines to the page.

5.6 LIST/NOLIST

The LIST/NOLIST option controls the
generation or suppression of the trans
lator pseudo-assembler listing (see
"Assembly listing" on page 42>'

Note: The NOlIST option will cause any
%LIST statement within the source pro
gram to be ignored.

5.7 MARGINS(M,N)

The MARGINSCm,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro
gram starting at column m and ending at
column n. Any data outside these mar
gin limits is ignored. The maximum
right margin allowed is 100 The speci
fied margins must not overlap the
sequence field.

The default is MARGINS(1,72).

Note: When the PASCALVS clist is being
invoked under TSO, the 5ubparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINSC'1,72')

5.8 OPTIMIZE/NOOPTIMIZE ters of the SEQ opt; on must be
enclosed ;n quotes. For example,

The OPTIMIZE option indicates that the SEQ('73,80')
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.9 PAGEWIDTH(N)

The PAGEWIDTH option specifies the max
i mum number of characters 5 that may
appear on a single line of the output
1 i st i ng. Thi s nLlmber depends on the
page form and the pr inter model.

The default page width is 128 charac
ters.

5.10 PXREF/NOPXREF

The PXREF option specifies that the
right margin of the output listing is
to contain cross reference entries (see
"Page Cross Reference Fi eld" on page
38). NOPXREF suppresses these entr i es.

5.11 SEQ(M,N)/NO~

The SEQ(m,n) option specifies which
columns wi thi n the program bei ng com
piled are reserved for a sequence
field. The starting column of the
sequence field is m; the last column of
the field is n.

The compiler 'does not process sequence
fields; but serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler
wi 11 insert ali ne number in the cor
responding area in the source listing.

NOSEQ indicates that there is to be no
sequence fi eld.

The default is SEQC73,80).

NOTES:

•

•

The sequence field must not overlap
the source margins.

When the PASCAL VS cl i st is bei ng
invoked under TSO, the subparame-

5.12 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generat i on or suppressi on of the
compiler source listing.

Note: The NOSOURCE opt i on wi 11 cause
any %PRINT statement within the source
program to be ignored.

5.13 WARNING/NOWARNING

This option controls the generation or
suppressi on of warni ng messages. The
NOWARNING specification will suppress
warning messages from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF opti on controls the
generation or suppression of the
cross-reference portion of the source
1 i st i ng. (See "Cross-reference L i st
i ng" on page 40).

Either a short or long cross-reference
list i ng can be generated. A long
cross-reference list i ng conta i ns all
identifiers declared in the program. A
short 1 i st i ng consi sts of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF speci fi cat i on and
enclosed wi thi n parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica
tion

XREFCLONG)

would cause a long cross-reference
table to be generated.

Note: I f the PASCALVS cl i st is bei ng
invoked under TSO, a subparameter
(SHORT or LONG) must be specified with
the XREF option; there are no defaults.

The number specified in the PAGEWIDTH option does not include carriage
control characters.

Compiler Options 33

Features within the Pascal/VS run time
environment may be enable or disabled
by passi ng opt ions to the Pascal/VS
program. These options are passed to a
Pascal/VS program through the parame
ter passing mechanism. To distinguish
run time opt ion s from the pa rameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi
nated with a slash ("/").

The followi ng is a 11 st of supported
run time opti ons.

COUNT
specifies that instruction fre
quency i nformati on is to be col
lected during program execution.
After the program is completed,
this information is written to file
OUTPUT.

This option will only have an
effect if the program was both com
piled and link-edited with the
DEBUG option.

DEBUG
speci fi es that the interact i ve
debugger (see "Pascal/VS Interac
tive Debugger" on page 65) is to
gain initial control when you
invoke your program. Note: thi s
option is valid only if the load
module was generated wi th the DEBUG
opt ion (see "r-lodule Generat ion
Options" on page 12).

ERRCOUNT=n

ERRCOUNT(n)
specifies how many non-fatal
errors are allowed to occur before
the program is abnormally termi
nated. The default is 20.

Note to CMS users: due to the
8-character tokenization conven
tion of CMS, a blank must precede
the '=' symbol in the ERRCOUNT spe
cification.

Example:

modname ERRCOUNT =1/

ERRFILE=ddname

ERRFILE(ddname)
specifies the DDname of the file to
which all run time diagnostics are
to be written. Under CMS and TSO,
diagnostics are di splayed on your
terminal by default. Under OS

TNL SN20-4445 (31 December 1981) to SH20-6162-1

6.0 RUN TIME OPTIONS

batch, the default error file is
SYSPRINT.

Note to CMS users: due to the
8-character tokenization conven
tion of CMS, the '=' symbol must be
surrounded with blanks.

Example:

modname ERRFIlE = OUTPUT/

HEAP = n
specifies the number of kilobytes!
that the heap is to be "extended"
each time the heap overflows. The
heap is where memory is allocated
when the procedure NEW is called.
When the end of the heap is
reached, the GETMAIN supervisor
call is invoked to allocate more
memory for the heap. If the length
of the space being required by NEW
is greater than "n", then the
amount to be allocated will be the
length of the space rounded up to
the next kilobyte (1024 bytes).

There is a sign if i cant overhead
penalty for each invocation of GET
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affected. If "n" is too large,
the heap will contain memory that
is never used.

The default HEAP attri bute is 12
kilobytes.

I1AINT
specifies that when a run time
error occurs, the trace back is to
list active run time support rou
tines. These routines begin with a
AMP prefix and are normally sup
pressed from the trace back
1 i sti ng. Thi s opti on is used to
locate bugs within the run time
environment.

NOCHECK
specifies that any checking errors
detected within the program are to
be ignored.

NOSPIE
speci fi es that the Pascal/VS run
time enviroment is not to issue a
SPIE request and therefore wi 11 not
intercept program interrupts.

STACK = n
specifies the number of kilobytes 5

that the run time stack is to be
"extended" each time the stack
overflows. The run time stack is

I 5 A "kilobyte" is defined as 1024 bytes in the context of this manual.

TNL SN204445 (31 December 1981) to SH20-<i162-1

where the dynamic storage area
(DSA) of a routine is allocated
when the routine is invoked. When
the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n", then the amount to be allo
cated will be the length of the DSA
rounded up to the next ki lobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will

36 Pascal/VS Programmer's Guide

be affected. If "n" is too large,
the stack will occupy more memory
than is necessary.

The default STACK attribute is 12
kilobytes.

SETMEM
specifies that upon entry to each
Pascal/VS routine, each byte of
memory in which the routine's local
vari abIes are allocated wi 11 be set
to a speci fi c value, namely 'FE'
(hexadecimal). This option aids in
locat i ng the source of i ntermi t
tent errors which occur because of
the use of uninitialized
variables.

J

TNL SN204445 (31 December 1981) to SH20-6162·1

7.0 HOW TO READ PASCAL/VS LISTINGS

7.1 SOURCE LISTINGS

PASCAL/VS RELEASE 2.0 UTILITY: 01/27/81 14:48:54 PAGE 5

B P C I smT It SOURCE PROGRAM PAGE XREF
INCLUDE 1 FROM SYSLIB (GLOBALS)

V---+----1----+----2----+----3---//--7-V SEQ NO
, 00000100
'type 00000200 R

1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :
1 :

, NAMEPTR = ~NAMEREC; 00000300 * *
I NAMEREC = 00000400 *
I record 00000500 R
, NAME STRING(30); 00000600 * P
I LEFT_LINK, 00000700 *
, RIGHT LINK: NAMEPTR; 00000800 * 5
, end; - 00000900 R
I 00001000
Idef 00001100 R
I TREETOP: NAMEPTR; 00001200 * 5
, 00000180

1
1
1
1

'procedure SEARCH(00000190 R *
, const ID: STRING; 00000200 R * P
, var PTR: NAMEPTR); 00000210 R * 5
'EXTERNAL; 00000220 *
I 00000221

1 Iprocedure SEARCH; 00000222 R *
1 Ivar 00000230 R
1 I LPTR = NAMEPTR; 00000240 * 5

==========ERROR=> $17
1 Ibegin
1 1 I PTR:= nil;
1 2' LPTR: = TREETOP;
1 1 3' while LPTR <> nil do
1 1 I begin

1 1 1 4 I wi th LPTR~ do
1 1 1 1 5 , if NAME = ID then
1 1 1 1 I beg in
2 1 1 1 6 , PTR : = LPTR
2 1 1 1 7 I return

==========ERROR=> $8
1 1 1 1 I end
1 1 1 1 I else
1 1 2 1 8 I ; f ID < NAME then
1 1 2 1 9 , LPTR := LEFT_LINK
1 1 2 1 I el se
1 1 2 1 10 I LPTR := RIGHT_LINK

1 1 I end C*while*)
lend;.

NUMBER OF ERRORS DETECTED: 2

DIAGNOSTIC MESSAGES ON PAGECS): 5

ERROR
ERROR

8: SEMICOLON ";" EXPECTED
17: ":" EXPECTED

PARAMETERS PASSED: DISK NOXREF LIB C MACLIB)

00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340

R
5
5
R
R
R
R
R

P
5
5 P R

5 R
5 5 R

5 5
R

5 5 R
5

00000350 R
00000360 R
00000370 R
00000380 5
00000390 R
00000400 5 5
00000410 R
00000420 R

OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), LINECOUNT(60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING

SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 lPM

Figure 17. Sample source listing

How to Read Pascal/VS Listings 37

TNL SN20444S (31 December 1981) to SH20-6162-1

The source U sti ng contai ns i nforma
tion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page He~ders

The first line of every page contains
the title, if one exists. The title is
set with the %TITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
wi 11 be blank.

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa
tion in the following order.

1. The PROGRAM/SEGMENT name is gi ven
before a colon. This name becomes
the name of the control secti on
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defi
nition which was being compiled
when the page boundary occurred.

3. The time and date of the compile.

4. The page number.

The third line contains column
headings. If the source being compiled
came from a library (i .e. %INCLUDE),
then the last line of the heading iden
tifies the library and member.

7.1.2 Ncst;ng Information

The left margin contains nesting infor
mation about the program. The depth of
nest i ng is represented by a number.
The headi ng over thi s margi n is:

B P C I STMT

B i ndi cates the depth of 'B' EGIN
block nest i ng.

P - indicates the depth of 'P'rocedure
nesting.

C indicates the nesting of
'C'onditional statements. Conditional
statements are if and CClse.

I indicates the nesting of
'I'terative statements. Iterative
statements are for, repeat and while.

STMT is the headi ng of a column that
numbers the executable statements of
each routine. If the source line orgi
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon (':') pl"ecede the
statement number.

7.1.3 statemmnt Nu~herin9

Pascal/VS numbers the statements of a
routine. These numbers are referenced
when a run time error occurs (see
"Readi ng a Pascal/VS Trace Back" on
page 59) and when break poi nts are spe
cified in the interactive debugger (see
"Pascal/VS Interactive Debugger" on
page 65).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
.ia numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.4 Page Cross Reference F;eld

If the PXREF compiler option is active,
the right margin of the listing con
tains a cross reference field. This
fi eld conta ins an i ndi cator for each
identifier that appears in the associ
ated line. The i ndi cators have the
following meanings:

• A number indicates a page number on
which the corresponding identifier
was declared.

• A '*' indicates that the correspon
ding identifier is being declared.

•

•

•

A 'PI indicates that the correspon
ding identifier is predefined.

A 'R' indicates that the correspon
ding identifier is a reserved key
word.

A I?' indicates that the correspon
ding identifier is either unde
clared, or will be declared further
on in the program. Th is latter
occurrence arises often in pointer
type definitions.

7.1.5 Error summary

Toward the end of the li~l;ng is th~
error summar"y. It contains the diag
nosti c messages correspondi n9 to the
compilation errors detected in the pro
gram.

J

IN name
If the identifier is a record
field, then this attribute speci
fi es the n<:lme of the re.cord in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:

CONSTANT declared constant

CaNST PARAMETER

DEF VAR

pass-by-const parame
ter

external def variable

ENTRY FUNCTION
function routine
declared as an ENTRY
point

ENTRY PROCEDURE
procedure routine
declared as an ENTRY
point

EXTERNAL FUNCTION
external function rou
tine

EXTERNAL PROCEDURE
external
routine

procedure

FIELD record field

FORMAL Fm~CTION
function passed
parameter

FORMAL PROCEDURE
procedure passed
parameter

FORTRAN FUNCTION
external FORTRAN
tion

FORTRAN SUBROUTINE
external FORTRAN
routine

FUNCTION a user-defined
standard function

statement label

as a

as a

fUnc-

sub-

or

LABEL

LOCAL VAR automatic variable

PROCEDURE a user-defi ned or
standard procedure

REF VAR external ref variable

STATIC VAR static variable

TYPE type identifier

VAR PARAMETER pass-by-var parame
ter

UNDECLARED undeclared identifier

TYPE = type
This attributes gives the type of
the identifier:

ARRAY an array type

BOOLEAN boolean type

CHAR character

FILE a fi Ie type

INTEGER fixed point numeric

POINTER a po inter type

REAL floating point numeric

RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a stri ng type

OFFSET = n
This attribute specifies the byte
offset (in decimal) within the
dynamic storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
wi thi n the associ ated record; or,
the offset in the static area of a
static variable.

LENGTH = n
This attribute specifies the byte
length of a variable or the storage
required for an instance of a type.

VALUE = n
This attribute specifies the
ordinal value of an integer or enu
merated scalar constant.

How to Read Pascal/VS Listings 41

7.3 ASSEMBLY LISTING

PASCAL/VS RELEASE 2.0 UTILITY 01/27/81 10:18:00 PAGE 2

LOC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING

* LPI := FHEAD;
000090 5830 0090 8 L 03,144(,13)
000094 5840 3000 9 L 04,0(,03)
000098 5040 0094 10 ST 04,148(,13)

* LP2 := NIL;
00009C IB33 11 SR 03,03
00009E 5030 0098 12 ST 03,152(, 13)

* WHILE LPI <> NIL DO
0000A2 13 0)4L1 OS OH
0000A2 5830 0094 14 L 03,148(,13)
0000A6 1233 15 LTR 03,03
0000A8 4780 **** 16 BE ;;)4L2

* WITH LPI-> DO
OOOOAC 45EO C860 17 BAL 14,2144(,12)
OOOOBO 5030 DOAO 18 ST 03,160('13)

* BEGIN
* LP3 := NEXT;

0000B4 5840 3010 19 L 04,16(,03)
0000B8 5040 D09C 20 ST 04,156(,13)

* NEXT := LP2;
OOOOBC 5850 0098 21 L 05,152(,13)
OOOOCO 5050 3010 22 ST 05,16(,03)

* LP2 :: LPl;
0000C4 5030 0098 23 ST 03,152(,13)

* LPI :: LP3;
0000C8 5040 0094 24 ST 04,148(,13)
ooooce 47FO 2016 25 B 4l4L1
000000 26 ;;)4L2 OS OH

* END;
* FHEAD . - LP2;

000000 5830 D090 27
000004 5840 0098 28
000008 5040 3000 29

Figure 19. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if you specify
the LIST option. The information pro
vided in this listing include:

LaC
location relative to the beginning
of the module in bytes
(hexadecimal> .

OBJECT CODE
up to 6 bytes per line of the gen
erated text. If the line refers to
a symbol or literal not yet
encountered in the listing (for-

42 Pascal/VS Programmer's Guide

L 03,144(,13)
L 04,152(,13)
ST 04,0(,03)

ward reference) the base displace
ment format of the instruction is
shown as four asterisks ('****').

PSEUDO ASSEMBLY
basic assembly language
descr i pt i on of generated i nstruc
tion.

Annotation
intermixed with the assembly
instructions is the source line
from whi ch the instruct ions were
generated. The source lines appear
as comments in the listing.

J

J

7.4 EXTERNAL SYMBOL DICTIONARY

PA5CAl/VS RELEASE 2.0 AMPLXREF:

E X T E R N A l 5 Y M

NAME TYPE 10 ADDR LENGTH

AMPLXREF SD 1 000000 002EOC
XREFEOF LO 0 0008D8 000001
XREFREF LD a 000A80 000001
~STATIC PC 2 000000 000009
M1PXPUT ER 4 000000
CHARPTR CM 6 000000 000004
BOOLPTR CM 8 000000 000004
INCLLEVE eM 10 000000 000004
PROC? CM 12 000000 000004
L HIECOUN eM 14 000000 000004
A~1PXGET ER 16 000000
SYSPRINT CM 18 000000 000040
M'PXl~CHR ER 20 000000
OPTION CM 22 000000 000014
TRIM ER 24 000000

Figure 20. Sample ESO table

The External Symbol Dictionary (ESO)
provides one entry for each name in the
generated program that is an external.
Thi s i nformat ion is requ i red by the
linker/loader to resolve inter-module
linkages. The information in this ta
ble is:

NAME the name of the symbol.

TYPE the classification of the

ID

symbol:

SO - Symbol Definition

LD - Local Definition

ER - External Reference

eM - Common

PC - Private Code.

is the number provi ded to the
loader in order to relocate
address constants correctly.

B 0

01/27/80 13:07:27 PAGE 1

L 0 I C T I 0 N A R Y

NAME TYPE ID AODR LENGTH

XREFDUMP lD a 000FC4 000001
XREFINCL LO a 000964 000001
XREFLIST LD 0 002C40 000001
SYSXREF CM 3 000000 000040
INTPTR CM 5 000000 000004
REALPTR eM 7 000000 000004
PAGENO CM 9 000000 000002
INCLNUMB CM 11 000000 000001
AMPXRSET ER 13 000000
Ai1PXNEW ER 15 000000
PAGEHEAD ER 17 000000
AMPXl-JLIN ER 19 000000
AMPXlHXT ER 21 000000
AMPXWINT ER 23 000000
AMPXt~STR ER 25 000000

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the SD or
eM entry.

The SO classification corresponds to
the name of the module; the LO classi
fications are entry routines; ER names
are external routines; CM names corre
spond to def variables. The private
code section is where static variables
are located.

7.S INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa
rize the usage of 370 instructions gen
erated by the compiler. The table is
sorted by frequency of occurrence.

How to Read Pascal/VS Listings 43

J

J

J

8.1 I/O IMPLEMENTATION

Pascal/VS employs OS access methods to
implement its input/output facilities.
Pascal/VS fi Ie vari abIes are associ
ated ~Ji th a data set by means of a
DDname. The Queued Sequential Access
Method (QSAM) is used for sequential
data sets. The Basic Partitioned
Access Method (BPAM) is used for parti
t i oned data sets UolACL IBs in CMS
terminology). The Basic Direct Access
Method (BDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac
ters of the identifier's name serves as
the DDname of the file. As a conse
quence, the first eight characters of
all file variables declared within a
module should be uni que. You must also
be careful not to allow one of the
first eight characters to be an under
score (' ') since this is not a valid
character to appear ina DDNAME.

An expl i ci t DDname may be associ ated
wi th a fi Ie vari able by means of the
DDNAME option when the file is opened.
(see "The Open Opt ions" on page 56).

OOnames should be explicitly specified
for files whicWare elements of arrays.
fields of records. or pointer
qualifi{'!d. If the ODname is not
explicitly specified for such files, a
ODname of the form "PASCAlnn" will be
assigned to the file. where "nn" is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every
Pascal/VS file variable is a Data Con
trol Block (DCB) which contains infor
mation describing specific attributes
of the associated data set. Among
these attri butes are

• the logical record length (lRECl);

• the physical block size (BlKSIZE);

• the record format (RECFM).

Pascal/VS supports all of the record
formats that are supported by QSAM,
such as, F, V. U, FB. VB, FBA. VBM.
etc.

8.0 USING INPUT/OUTPUT FACILITIES

A Pascal/VS program will process a file
that contains ANSI or machine control
characters at the beginning of each
logical record (in which case the
record format would be speci fi ed as
RECFM= ... A or RECFM= ... M). Any read
operation on such files will begin at
the second character position of each
record. Each logical record written to
such fi les wi 11 be prefixed with the
appropriate control character. Thus,
the fi rst charClcter posi t i on of each
r{'!cord is not directly accessable from
the Pascal/VS program; however, the
PAGE procedure may be used to insert a
page eject. (see "The PAGE Procedure"
on page 53)

Newly allocated (empty) data sets, that
is. data sets intended for output might
not have these attributes assigned. As
far as Pascal/VS is concerned, there
are two ways to specify the DCB attri
butes for such data sets:

• by being specified in the associ
ated DDname definition (in CMS: the
FILEDEF command; in TSO: the
ALlOC/ATTR commands; in OS batch:
the DO card);

• by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attri butes are unas
si gned for a parti cular data set to
which a Pascal/VS program will be writ
i ng, the Pascal/VS 110 manager wi 11
assi gn defaults accordi ng to It-Jhether
the data set is be; ng managed as a fi Ie
of type "TEXT" or as a non-text fi Ie.

For the case of text files. if neither
LRECl, BlKSIZE, nor RECFM are
specified, then the following defaults
wi 11 apply:

• LRECl=256

• BLKSIZE=260

• RECFM=V

For the case of non-text fi les, if nei
ther lRECL, BlKSIZE, nor RECFM are
specified then the following defaults
wi 11 apply.

• lRECl="length of file component"

• BlKSIZE=lRECl

• RECFM=F

If some of the attributes are specified
and some are not then defaults will be
applied using the following criteria:

Using Input/Output Facilities 45

•

•

•

RECFM of V is preferred over F for
text files.

RECFM of F is preferred over V for
non-text files.

If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

• If RECFM is V then the BLKSIZE is
to be at least four bytes greater
than the LRECL.

8.4 TEXT FILES

Text files contain character data
grouped into logi cal records. From a
Pascal/VS language viewpoint, the log
ical records are lines of characters.
Pascal/VS supports both fixed length
and variable length record formats for
text files. Characters are stored in
EBCDIC.

The predefined type text is used to
declare a text fi Ie vari able in
Pascal/VS. The pointer associated with
each file variable points to positions
within a physical I/O buffer.

8.5 RECORD FILES

All non-text fi les in Pascal/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base component; oth
erwise, an execution time error will
occur when the fi Ie is opened. For
example, a fi Ie variable declared as
'file of INTEGER' will require the
associated physical fi Ie to have a log
i cal record length of at least 4 bytes.

If a fi Ie has fi xed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
fi les component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To expl i ci tly open a fi Ie for input,
the procedure RESET is used. A call to
RESET has the forms:

46 Pascal/VS Programmer's Guide

RESET(f)
or

RESEHf,options)

where "f" is a file variable and
"opt ions" is a str i ng whi ch conta ins
the open opt ions (see "The Open
Opt ions" on page 56). The "opt ions"
parameter may be omitted.

Normally, RESET allocates a buffer,
reads in the fi rst logi cal record of
the file into the buffer, and positions
the file pointer at the beginning of
the buffer. Therefore, given a text
file F, the execution of the statement
"RESEH F)" would imply that "FOl" would
reference the fi rst character of the
fi Ie.

If a RESET operation is performed on an
open file, the file is closed and then
reopened.

program EXAMPLE;
var

SYSHI : TEXT;
C : CHARi

begin
(*open SYSIN for input *)
RESEHSYSIN) ;
(*get first character of file*>
C := SYSINOli

end.

Figure 21. Using RESET on a text
file

8.7 OPENING A FILE FOR INTERACTIVE
.INPUT

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
For example, if the file being opened
is assigned to your terminal, you will
be prompted for data when the file is
opened. This may not be preferable if
your program is suppose to wri te out
prompting messages prior to reading.

To alleviate this problem, a file may
be opened for interactive input by
speci fyi ng "INTERACTIVE" in the
options string of RESET. No initial
read operati on is performed on fi les
opened in thi s manner. The fi Ie po i nt
er has the value ni I unt i 1 the the
fi rst fi Ie operat i on is performed
(namely GET or READ). The end-of-line
condition (see "End of Line Condition"
on page 53) is initially set to TRUE.

J

program EXAMPLE;
var

SYSIH : TEXT;
DATA : STRING(80)j

begin
(*open SYSIN for interactive *)
(*input *)
RESET(SYSIN,'INTERACTIVE');
(*prompt for response *)
C*read in response *)
WRITELNC' ENTER DATA: ');
READLN(SYSIH,DATA)j

end.

Figure 22. Opening a file for
interactive input

8.8 OPENING A FILE FOR OUTPUT -
REWRITE

The procedure REWRITE is used to open a
file for output. A call to the proce
dure has the forms:

REWRITE(f)
or

REWRITECf,options)

where "f" is a file variable and
"options" is a string which contains
the open opt ions (see "The Open
Options" on page 56). The "options"
parameter may be omitted.

REWRITE positions the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
var

SYSPRIHT : TEXT;
begin

REWRITECSYSPRINT)j
WRITELH(SYSPRINT,'MESSAGE');

end.

Figure 23. Opening a text file
wi th REWRITE

program EXAMPLE;
vear

OUTFILE : file of INTEGER;
I : ItHEGERi

begin
REWRITECOUTFILE,
'BLKSIZE=1600,LRECL=4,RECFM=F');

OUTFILEO) := Ii
PUTCOUTFILE) ;

end.

Figure 24. Opening a record file
wi th REWRITE

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to your ter
minal without going through the normal
DDname interface. Calls to these pro
cedures have the forms:

TERMIN(f) or TERMIN(f,options)
TERMOUT(f) or TERMOUTCf,options)

where "f" is a text file variable and
"options" is a string which contains
the open opt ions (see "The Open
Opt ions" on page 56). The "opt ions"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi
nal. likewise, the TERMOUT procedure
opens a text file for terminal output.

Note: The TERMIN procedure opens the
file with the INTERACTIVE attribute as
was described in "Opening a File for
Interactive Input" on page 46.

program EXAMPLE;
vOIr

TTYIN, TTYOUT: text;
I : INTEGER;

begin
TERMIN(TTYIH)j TERMOUT(TTYOUT);
WRITELN(TTYOUT,'ENTER DATA:');
READLN (TTYIN, I);

end.

Figure 25. Terminal input/output
example.

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. In
thi s mode, records may be read, modi
fied' and then replaced. A call to the
procedure has the forms:

UPDATE(f)
or

UPDATE(f,options)

where "f" is a record file variable and
"opt ions" is a stri ng whi ch contai ns
the open opt ions (see "The Open
Opti ons" on page 56>' The "options"
parameter may be omitted.

Upon calling UPDATE, a file buffer is
allocated and the first record of the
file is read into it. If a subsequent
PUT operation is performed on the file,

Using Input/Output Facilities 47

---------- --- - --

the contents of the buffer wi 11 be
stored back into the file at the
location from which it was read.

Each GET ope rat i on reads in the next
subsequent record of the fi Ie. A PUT
operation will ~jrite the record back
from where the last GET operation
obtained it. If the next operation is
another PUT, the next subsequent record
will be overwritten.

pr'ogram EXAMP L E;
vOIr

F fHe of
record

begin
UPDATECF);

NAME: STRIHG(30);
AGE O •• 99;

end;

(*update each record *)
<* by incrementing age *)
while not EOFCF) do

begin
F~.AGE :: F~.AGE + 1;
PUTCF);
GETCF)

end;
end.

Figure 26. Updating a record file

8.11 PROCEDURE GET

The GET procedure is the means by which
a basic read operation is performed on
a fi Ie. A call to the procedure has
the form:

GETCf)

where "f" is a fi Ie variable.

8.11.1 GET operation on text files

When applied to an input text file, GET
causes the fi Ie po inter to be i ncre
mented by one character position. If
the file pointer is positioned at the
last position of a logical record, the
GET operat i on wi 11 cause the end-of
line condition to become true (see "End
of Line Condition" on page 53) and the
file pointer will be positioned to a
blank. If, prior to the call, the
end-of-line condition is true, then the
file pointer will be positioned to the
beginning of the next logical record.

If, prior to the call to GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
which case the end-of-line condition
will be true) then the end-of-file
condition will become true. (See "End

48 Pascal/VS Programmer's Gui de

of File Condition - text files" on page
54).

If GET is attempted on a text file that
has not been opened, it will be implic
itly opened for input (as if RESET had
been called).

program EXAMPLE;
vOIr

INFILE text;
CI,C2 : CHAR;

begin
(*get first char of file*)
RESETCIHFILE)j
C 1 :: I H F IL E~ ;
(*get second char of file*)
GETCIHFILE);
C2 :: INFILE41;

end.

Figure 27. Using GET on a text
file

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer referenced by
the fi Ie poi nter. The end-of-fi Ie
condition will become true if there are
no more records within the file, in
which case, the file pointer will be
set to ni 1.

A record file must be opened for input
or update prior to executing a GET
operation, otherwise, a runtime diag
nostic will be generated.

program EXAMPLE;
vOIr

F : file of
record

NAME: STRING(25)j
AGE : O •• 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

end;
begin

RESETCF)j
while not EOF(F) do

begin

end.

WRITE(' Name : "
FGI.NAME);

WRITE(' Age : "
F41.AGE:3);

WRITELH;
GET(F)

end

Figure 28. Using GET on record
files

J

8.12 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a file. A call to the procedure has
the form:

PUTCf)

where "f" is a file variable.

The file must be opened for output or
update prior to calling PUT';
otherwi se, a runt i me di agnost i c wi 11
occur.

8.12.1 PUT Operation on Text Files

The PUT procedu re, when appl i ed to a
text file opened for output, causes the
file pointer to be incremented by one
character position. If, pr'ior to the
call, the number of characters in the
current logical record is equal to the
file's logical record length (LRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's p~ysical block size
(BLKSIZE) .

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 53).

program EXAMPLE;
var

OUTFILE text;
C : CHAR;

begin
REWRITE(OUTFILE);

OUTFILEO) := C;
(*Write out value of c*)
PUT<OUTFILE) ;

end.

Figure 29. Using PUT on a text
file

8.12.2 PUT Operation on Record Files

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var

F : file of
record

NAME: STRIHG(2S);
AGE : O •• 99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)

end;
begin

REWRITE(F);
FO).NAME .- 'John F. Doe';
FO).AGE .- 36;
FO).WEIGHT := 160.0;
FO).SEX := MALE;
PUT< F);

end.

Figure 30. Using PUT on record
files

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

READ(f,v)
or

READ(f,v:n)

where "f" is a file variable and "v" is
a variable which must be of one of the
following types:

CHAR (or a subrange thereof)

INTEGER (or a subrange thereof)

packed array[] of CHAR

REAL (or SHORTREAL)

6 Prior to a PUT operation, the associated output buffer must contain the
data to be written. If the file is not open when the PUT operation is
attempted, then no output buffer exists. (The file pointer will have the
value ni 1.)

Using Input/Output Facilities 49

STRING

"n" is an opti onal fi eld length (an
integer expressi on). The fi Ie vari able
"f" may be omitted, in which case, the
file INPUT is assumed.

A call of the form

READ(f,v1,v2, ... vn)

is executed as

begin
READ(f,v1);
READ(f,v2);

READCf,vn);
end

If READ is called for a closed fi Ie,
the fi Ie is opened for input by an
implicit call to RESET.

Upon executing READ, if the file point
er is not yet set, an initial GET oper
ation is performed. This case occurs
when a file is opened INTERACTIVEly.
(see "Opening a File for Interactive
Input" on page 46.)

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a non blank character is dete
cted, an error diagnostic will be
produced.

Integer data begins with an optional
sign ('+' or '-') followed by all dig-

50 Pascal/VS Programmer's Guide

its up to, but not including, the first
non-digit or up to the end of the log
ical record.

For example, given an input file posi
tioned at the beginning of a logical
record with the following contents:

95123SAN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first '5' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi
tioned at the beginning of a logical
record with the following contents:

3.14159/2

a floating point read operation would
bring in the floating point value
3.14159. After the read, the file
pointer would be positioned to the '/'
character.

If a field length value is specified,
as many characters as are indicated by
the value will be consumed by the read
operation. The variable will be
assigned from the beginning of the
field. If the field is not exhausted
after the variable has been assigned
the data, the rest of the field will be
skipped.

program EXAMPLE;
Vc:lr

ZIP 0 .. 99999;
MAN : 0 .. 999999;
BALANCE: REAL;

begin
READ(ZIP:5,MAN:6,BALANCE:9);
WRITELN('ZIP = ',ZIP);
WRITELN('MAN = ',MAN);
WRITELN('BALANCE = ',BALANCE:8:2)

end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP =
Mi\N =
BALANCE =

95123
999999

1000.00

Immediately after the READ state
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 31. Using READ with length
qualifiers.

When reading data into variables
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

•

•

I ·

the variable is filled to its
declared capacity;

an end-of-line condition is detec
ted;

the field length (if specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

program DOREAD;
var

INFILE
R

I

text;
array[1 .. 10] of

record
NAME: STRING(25);
AGE: O •• 99;
WEIGHT: REAL

end;
1. .10 ;

begin
RESEHINFILE) ;
for I := 1 to 10 do

wi th R [I] do

end.

begin
READCINFILE,NAME,AGE);
READCINFILE,WEIGHT);
READLN C INFIL E)

end;

Figure 32. Using
files.

READ on text

8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been re3d, all remaining characters
within the logical record are skipped.
The procedure is appl i cable to text
fi le5 only.

Normally, READLN causes the next log
ical record to be read (unless the
end-of-fi Ie is reached) and the fi Ie
pointer is positioned to the beginning
of the buffer that contains the record .

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-l i ne condi ti on is true
for an interactive file prior to a call
to READLN and the condition was not the
resul t of a prev i ous call to READLN,
then the call is ignored. Two call s to
READLN in succession will cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,
the file is opened implicitly for input
as though RESET had been called.

Using Input/Output Facilities 51

program COpy;
VClr

IHFILE,
OUTFIl E : text;
BUF : STRIHG(lOO);

begin
RESEHINFILE);
REWRITE(OUTFILE);
while not EOF(INFILE) do

end.

begin
READ(INFILE,BUF);
WRITELN(OUTFILE,BUF);
(*ignore characters after

column 100 in each line *)
READLN(INFILE)

end

Figure 33. Using the procedure
READLN

8.13.3 Text File WRITE

The WRITE procedure wri tes data to a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

WRITE(f, e)
or

WRITE(f, e: n)
or

WRITE(f,e:nl:n2)

where "f" is a file variable and He" is
an expression which must be of one of
the following types:

BOOLEAN

CHAR (or a subrange thereof)

INTEGER (or a subrange thereof)

packed array[] of CHAR

REAL (or SHORTREAL)

STRING

"n","nl", and "n2" are optional field
lengths (integer expressions). The
fi Ie variable "f" may be omitted, in
which case, the file OUTPUT is assumed.

A call of the form

WRITECf,el,e2, •.. en)

i s executed as

begin
WRITE(f,el) ;
WRITECf,e2) ;

WRITECf,en) ;
end

52 Pascal/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out
put.

If during a call to WRITE, the length
of the logical record bei ng produced
becomes equal to the logi cal record
length (LRECL) of the text fi Ie, the
record is completed and the remaining
data is placed on a new record.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is negative, the data
will appear left justified. (The field
wi dth wi 11 be the absolute value of the
specified length.)

String data that is being written with
a specified field length will be trun
cated on the right if the field length
is too small.

If no field length is specified, a
defaul t wi 11 be used that depends on
the data's type:

data type
BOOLEAN
CHAR
INTEGER
REAL
SHORTREAL

default field length
10

1
12
20
20

In addition, expressions of type STRING
have a defaul t fi eld length equal to
their current length. Fixed length
strings (packed array of CHAR) have a
default equal to their declared length.

program DOWRITE;
var

OUTFILE text;
R

I

array[1. .10] of
record

NAME: STRING(2S);
AGE: 0 .. 99;
WEIGHT: REAL

end;
1. .10;

begin
REWRITECOUTFILE);

for I := 1 to 10 do

end.

with R[Il do
begin

WRITE(OUTFILE,NAME:-30,
AGE:3,' ');

WRITECOUTFILE,WEIGHT:3:0);
WRITELN(OUTFILE)

end;

Figure 34. Using WRITE on text
fi les

J

8.13.4 The WRITELN Procedure

The WRITELN procedure is appl i cable
only to text files intended for output.
It causes the current logi cal record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the fi Ie is
fixed (RECFM=F), WRITELN will fill the
rema i nder of the current record wi th
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out
put.

program DOUBLESPACE;
var

FIL ElN,
FIL EOUT : text;
BUF : STRING;

begin
REWRITECFILEOUT);
RESEHFILEIN);
while not EOFCFILEIN) do

begin
READLNCFILEIN,BUF);
WRITELNCFILEOUT,BUF);
(*insert blank line *)
WRITELNCFILEOUT>

end;
end.

Figure 35. Using the
procedure

8.13.5 The PAGE Procedure

WRITElN

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer Cor to
a di sk fi Ie whi ch wi 11 eventually be
printed). A call to the procedure has
the following form:

PAGECf)

where "f" is a variable of type TEXT
which has been opened for output.

If a logical record is partially
filled, an implicit WRITELN will be
performed prior to the page eject.

For this procedure to produce any
affect, the fi rst character of each
logi cal record of the fi Ie must be
reserved for carriage control. This is
done by specifying either A CANSI con
trol) or M Cmachine control) in the
RECFM attribute for the file.

If the record format specifies ANSI
control, then the character '1' will be
inserted in the first character posi
tion of the record. For machine con
trol, a single record is written that
contains the hexadecimal value of '8B'
in its first character position.

program EXAMPLE;
var

PRINT: text;
begin

C*start new page*)
PAGECPRINT> ;

end.

Figure 36. Using the
procedure

8.13.6 End of Line Condition

PAGE

The end-of-line condition occurs on a
text fi Ie opened for input when the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi
tioned at the last character of a log
i cal record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character C in EBCDIC, hexadeci
mal 40) when the end-of-line condition
occurs.

The EOLN function is only applicable to
text files.

program EXAMPLE;
var

SYSIN: text;
CNT : O •• 32767;

begin
(* compute length of first

logical record of SYSIN *)
RESEHSYSIN) ;
CNT := 0;
while not EOLN(SYSIN) do

begin
CNT := CNT + 1;
GEHSYSIN) ;

end;
WRITELNCCNT>

end.

Figure 37. Using the EOLN func
tion

Using Input/Output Facilities 53

8.13.7 End of File Condition - text
files

The end-of-file condition becomes true
for a text file when one of the foll
owing occurs:

•

•
•

•

RESET is called and the fi Ie is
empty.

The file is open for output.

GET is called when the file pointer
is posi t i oned at the end of the
last logical record of the file (in
whi ch case the e.nd-of-l i ne. cond
i ti on is true).

READ is called and all characters
of the last logi cal record Nere
consumed.

When the end-of-file condition occurs,
the file pointer has the value nil.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will be ignored.

program EXAMPLE;
var

SYSIN: TEXT;
CNT : O •. 32767;

begin
(* compute number of logical

records in file SYSIN *)
RESET< SYSIN);
CNT := 0;
Hhile not EOF(SYSIN) do

begin
CNT := CNT + 1;
READLNCSYSIN)

end;
WRIT ELN C CNI)

end.

Figure 38. Using the EOF function
on a text file

8.14 RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READ(F,V)

is equivalent to

54 Pascal/VS Programmer's Guide

begin
V : = FO'l;
GET< F)

end

where F and V are declared as folloNs:

var F: file of t;
V: t;

If file F is not open Nhen READ is
called, it will be opened implicitly
for input.

8.14.2 Record File WRITE

As documented in the language manual,
the statement

WRITE(F, V)

is equi valent to

begin
FOl : = V;
PUT<F)

end

where F and V are declared as follows:

var F: file of t;
V: t;

If file F
called, it
for output.

is not open when WRITE is
will be opened implicitly

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

end;
var

INFIl E,
OUTFIl E:

STRING(25);
O •• 99;
(MALE. FEMALE)

file of REC;
BUFFER : REC;

begin
RESET< INFIl E);
REWRITECOUTFILE);
while not EOFCINFILE) do

begin
READ(INFILE,BUFFER);
WRITE(OUTFILE,BUFFER)

end
end.

Figure 39. Using READ and WRITE
on record files.

8.14.3 End of File Condition - Record
Files

The end-of-file condition becomes true

J

for a record file when:

• RESET is called for an empty file.

• The file is opened for output.

• GET is executed for a file in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has the value nil. To
test for this condition, the EOF func
ti on is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will produce an error diagnostic.

8.1S CLOSING A FILE

The procedure CLOSE is provided to
close a file explicitly. A call to
thi s procedure has the form

CLOSECf)

where "f" is a file variable.

All open files which are declared in
the body of a routine as simple vari
ables are closed implicitly l-Jhen the
routine returns to its invoker. All
files which are open when the program
termi nates, l-Ji 11 be closed automat i
cally by the Pascal/VS runtime
environment.

If the variable associated with an open
file is destroyed prior to program ter
mination, the results could be disas
trous when Pascal/VS attempts to close
the fi Ie. Thi s problem could occur in
the following cases:

•

•

•

the file variable is an element of
an array.

the file variable is a field of a
record.

the file variable is pointer quali
fied (exists on the heap).

• a routine which contains local file
variables is exited with a goto
statement.

In these cases, the fjle variable must
be closed explicitly with a call to
CLOSE.

program EXAMPLE;
type
var

FSTK array[l .. 8] of
TEXT;

DDNAME: STRING(8);
I 1. .8;

begin

RESETCFSTK[I], 'DDNAME=' IIDDNAME);

for I := 1 to 8 do
CLOSECFSTK[I]);

end.

Figure 40. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascal/VS permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEK(f,n)

where "f" is a record fi Ie that was
previously opened with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number.

A subsequent call to GET or PUT wi 11
operate on the "nth" record of the
fi Ie. Each call to GET or PUT there
after l.Ji 11 operate on subsequent
records. SEEK does not perform an I/O
operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran
dom access using the Basic Direct
Access Method (BDM". The fi Ie that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attri bute for the fi Ie
must be "F".

Under TSO and OS Batch, the first SEEK
operation on a file opened with REWRITE
will cause dummy records to be written
to the associated data set unti 1 the
fi rst extent is fi !led. The record
number speci fi ed must not exceed the
size of the first extent.

Using Input/Output Facilities 55

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

end;
lOX = record

RECNO:
end

var

STRING(25);
O •• 99;
(MALE,FEMALE)

O .. MAXINT;

RECFILE: file of REC;
IOXFILE: file of lOX;

begin
RESETC IOXFILE);
RESETCRECFILE) ;
(*write out names in order of

index *)
while .not EOF(IOXFILE) do

begin
SEEK(RECFILE,IOXFILE~.RECNO);
GETCRECFILE) ;
WRITELN(OUTPUT,RECFILE~.NAME)
GET(IOXFIlE);

end
end.

Figure 41. Example of using SEEK
to access records
randomly

8.17 PARTITIONED DATA SETS

8.17.1 Opening a Partitioned Data Set

To open a partitioned data set (POS)?,
the procedures POSIN and POSOUT are
prov i ded. Ca lIst 0 these procedu res
are of the form

POSItHf,options)
POSOUT(f,options)

where "F" is a file variable and
"options" is a string expression which
contains open options (see "The Open
Options"). Unlike the other procedures
which open files, the options string is
required and must specify a member name
(MEMBER=name).

POSIN opens the specified member in the
P~S for input. As in the case of
RESET, the fi Ie po inter is made to
point to a buffer containing the first
logical record of the file.

POSOUT creates a member in the POS and
opens it for output. If the member
already exists, it will be erased and
then recreated.

See Figure 43 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a eMS Environment

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the OS simulation facili
ti es. A OOname is assi gned to the
MACLIB file with the FILEOEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a
Pascal/VS program, the followi ng com
mands would be executed prior to exe
cuting the program.

FILEDEF LIB OISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEOEF com
mand. For example, in order to access
the MACLIBs "M!", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed ,..lrior to executing
the Pascal/VS program.

FILEDEF LIB DISK Ml MACLIB A
FILEDEF LIB DISK M2 MACLIB A (CONCAT
FILEDEF LIB DISK M3 MACLIB A (CONCAT
GLOBAL MACLIB Ml M2 M3

8.18 THE OPEN OPTIONS

All Pascal/VS. procedures which open
files are defined with an optional
stri ng parameter whi ch contai ns
options pertaining to the file being
opened. These opt ions determi ne how
the fi Ie is to be opened and what
attributes it is to have.

The data in the stri ng parameter has
the syntax shown in the following fig
ure:

All operations that may be applied to "partition data sets" under OS may
be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

J

J

J

option-string:

option:

--~---> DDNAME = name ------>
------> > BLKSIZE = n

> LRECL = n -------->

> RECFM = c ------->

> INTERACTIVE ------->

> MEMBER=name ------->
> HAME=fn.ft.fm --------->

Figure 42. Syntax of open options

Hot all of these options ~pply to all
open procedures. If the option is
specified for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
opti on and the context in whi ch it
applies.

DDNAHE=name
This attribute signifies that the
physical file to be associated with
the fi Ie variable has the DDname
i ndi cated by "name". Thi s new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a file open rout i ne wi th the
DDNAHE attribute specified.

If this option is not specified,
then the DDname to be assoc i ated
with the file is derived according
to the following rules:

•

•

If the file variable is a sim
ple variable then the default
DDname will be the name of the
variable itself, truncated to
8 characters.

If the file variable is an ele
ment of an array, a field of a
record, or is pointer quali
fied, then a DDname will be
generated of the followi ng
form: PASCALnn, where "nn" is a
two digit integer.

The DDNAHE option is applicable to
the following procedures:

RESET, REWRITE, UPDATE, POSIN, and
POSOUT.

BLKSIZE=n
This attribute is used to specify a
physical block size to be associ
ated with an output file. This
value (indicated by "n") will over
ride a BLKSIZE specification on the
DDname definition.

Thi s opt ion is appl i cable to the
procedure REWRITE only.

LRECL=n
This attribute is used to specify a
logical record length to be associ
ated with an output file. This
value (indicated by "n") will over
ride a LRECL specification on the
DDname definition.

This attribute may also be used in
the TERMIN and TERMOUT procedures
to speci fy the length of the I/O
buffer. (Thi s wi 11 determi ne the
maximum length of the line to be
read from, or written to, your ter
mi nal.)

Thi s opt ion is ilppl i cable to the
procedures REWRITE, TERMIN, and
TERMOUT.

RECFH=e
This attribute is used to specify a
record format to be associated with
an output file. This specification
(indicated by "e") will override a
RECFM specification on the DDname
definition.

Pascal/VS supports all record for
mats that QSAM supports:

U [T]

B
S

F T
BS

V BT
BST

[~]

[~]

D [B] [A]

For an explanation of each of these
record formats, consult the publi
cation OS/VS2 MVS Data Management
Services Guide (order number
GC26-387S).

The RECFH specification applies to
procedure REWRITE.

INTERACTIVE
This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a Fi Ie for Interacti ve Input" on
page 46 for a description of inter
active files.

Using Input/Output Facilities 57

This option applies to the proce
dures RESET and PDSIN. (Thi s
attribute is implied for TERMIN.)

t1Et1BER=name
This attribute specifies a member
name of a partitioned data set
(PDS) . The member to be accessed
is indicated by "name".

The t1EMBER specification is
required for the procedures PDSIN
and PDSOUT Csee "Partitioned Data
Sets" on page 56).

NAt1E=fn.ft.fm

program EXAMPLE;
var

PDS TEXT;
MEMBER: STRING(8);
BUF : packed array[I .. 80]

begin
RESETCINPUT,'INTERACTIVE');

of CHARi

This attribute specifies the name
of a eMS file which is to associ
ated with the file variable. This
option has no affect if the program
is not runn i ng under eMS.

"fn", "ft", "fm" are the file name,
fi Ie type and fi Ie mode, respec
tively, of the eMS file. Each must
be separated by a period C'.'). A
file mode of '*' is permitted.

The NAt1E specification is applica
ble to the followi ng procedures:
RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

C*open INPUT for interactive *)
C* input. *)

READLNCMEMBER); C*read 1st member name *)
while not EOF(INPUT) do (*loop until no more members *)

end.

begin (*open member for input *)
PDSIN(PDS,'DDNAME=SYSLIB,MEMBER=' I I MEMBER);
while not EOF(FDS) do C*copy each line of the

begin
READLN(PDS,BUF);
WRITELN(BUF) i

end;
READLtHMEMBER)

end

(* member to file OUTPUT

(*read next member name

Figure 43. Using the open options

58 Pascal/VS Programmer's Guide

J

J

8.19 APPENDING TO A FILE

Data may be appended to an exi st i ng
fi Ie by openi ng it fo ... output wi th a
call to REWRITE and specifying a dispo
sition of "MOD" on the co esponding
DDname definition.

The follow; ng examples illustrate how
such a disposition is specified under
the va ... ious ope ... ating system envi ... on-

TNL SN20444S (31 December 1981) to SHlO.(i162·1

ments. The DDname of the filp. is
"lOG"; the file name is "lOG.DATA".

CMS:
FILEDEF lOG DISK lOG DATA (DISP MOD

TSO:
Alloe DDN(lOG) DSNClOG.DATA) MOD

OS Batch:
IllOG DD DSN=ABC.lOG.DATA,DISP=MOD

Using Input/Output Facilities 58.1

TNL SN20-444S (31 Decem1?er 1981).toSH20~162·1

J

58.2 Pasca!/VS Programmer's Guida

9.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace facility provides
useful information lo,lhile debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa
tion is given.

• The name of the rout i ne.

• The statement number of the last
statement to be executed in the
routine (i .e. the statement number
of the call to the next routine in
the chai n).

• The address in storage where the
generated code for the statement
begins.

• The name of the module in which the
routine is declared.

The t race rout i ne may be invoked in
four di fferent ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An eXClmple is given in
Figure 44 on page 60. In the example
start i ng at the bottom we see that
Pascal/VS called the user's main pro
gram in the module named HASHASEG.
statement 24 of the main program con
tains the call to READ 10, statement 3
of READ ID conta ins - the call to
SEARCH I If, and so on.

A trace will be produced when a program
error occurs. An example is gi ven in

9.0 RUNTIME ERROR REPORTING

Fi gure 45 on page 60. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check
i ng error occurs. A check i ng error
occurs when code produced by the com
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NO CHECK" on page 31 for a
description of compiler generated
checks.) Figure 46 on page 60 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace wi 11 be produced when an I/O
error occurs. Figure 47 on page 60 is
an example of thi s. In thi s case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a
runtime error occurs. the statement
number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen
erated.

Runtime Error Reporting 59

Trace back
Routine
TRACE
HASHKEY
GET HASH PTR
SEARCH 10
READ 10
<MAIN-PROGRAM>
PASCAl/VS

of called
stmt at

4
9
2
9
3

24

routines
address in
02028C
02018C
021208
0213C8
021550
020278
02048C

Figure 44. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Routine stmt at address in
FACTORIAL 3 02014C
FACTORIAL 3 02014C
FACTORIAL 3 02014C
<MAIN-PROGRAM> 17 020298
PASCAL/VS 02048C

Figure 45. Trace call due to program error

AMPX032E High Bound Checking Error
routines

module
AMPXSENV
HASHCSEG
HASHBSEG
HASHBSEG
HASHBSEG
HASHASEG

module
TEST
TEST
TEST
TEST

Trace back
Routine
TRANSLATE

of called
stmt at

4
address in module

TO ASCII
<MAIN-PROGRAM>
PASCAL/VS

10
17

020154 CONVERT
02024C CONVERT
020338 CONVERT
02048C

Figure 46. Trace call due to checking error

AMPX0401S File
Trace back

Routine
INITIALIZE
<MAIN-PROGRAM>
PASCAL/VS

could not
of called

stmt at
3
2

Figure 47. Trace call due to I/O error

60 Pascal/VS Programmer's Guide

be opened:
routines
address in
020154
020218
02048C

SYSIN

module
COPY
COpy

J

J

J

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
check i ng errors that may occur ina
Pascal/VS program at run time.

Low bound
Either the value of an array sub
script, or the value being assigned
to a subrange type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub
script, or the value being assigned
to a subrange type variable is
greater than the maximum allowed
for the subscript or subrange.

Ni 1 pointer
an attempt was made to reference a
variable from a pointer which has
the value ni 1.

Case label
the expression of a case-statement
has a value other than any of the
specified case labels and there is
no otherwise clause.

string truncation
the concatenation of two strings
resul ts ina str i ng greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char
acters than the maximum length of
the string.

Assertion failure
an assert statement was executed in
which its, associated boolean
expression evaluated to the value
FALSE.

string subscript out of bounds
there was an indexing operation on
a stri ng whi ch was greater than the
current length of the string.

Function value
a function routine returned to its
invoker wi thout bei ng assi gned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon
detection of an error, the Pascal/VS

runtime library will provide error han
dli ng.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro
tection exception. When a fatal error
occurs the following happens:

1. Pascal/VS produces a message
descri bi ng the error; the message
is displayed on your terminal if
you are executing in VM/CMS or TSO,
or written to DDname SYSPRINT oth
erwise.

2. A trace back is displayed.

3. The program execut ion is termi
nated.

other errors such as check i ng errors
wi 11 not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
results. Pascal/VS performs the fol
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut
i ng in VM/CMS or TSO, or wri tten to
DDname SYSPRIHT otherwise.

2. A trace back is generated.

3. If the program was compi led and
linked with the 'DEBUG' option and
the program Nas not executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experi enci ng the
error will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TSO, or
written to DDname SYSPRIHT other
wise.

4. If the program was compi led and
linked with the 'DEBUG' option and
the program ~ executed with the
'DEBUG' run time option then the
interactive symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific number
of non-fatal errors to occur before the
program is terminated. This number is
set by the ERRCOUNT run time opt i on
(see "Run Time Opt ions" on page 35).
The default is 20.

Runtime Error Reporting 61

9.4 USER HANDLING OF EXECUTION ERRORS

(***)
<* *)
(* RUNTIME ERROR INTERCEPTION ROUTINE *)
(* *)
(***)

type
ERRORTYPE = 1 .. 90; <*number of execution errors *)
ERRORACTIONS = ((*action to be performed *)

XHAlT, (*terminate program *)
XPMSG, (*print pascal diagnostic . *)
XUMSG, <*print user's message *)
XTRACE, <*produce a trace back *)
XDEBUG, <*invoke the debugger *)
XDECERR, <*decr error counter *)
XRESERVED6, <*RESERVED *)
XRESERVED7, < *RESERVED *)
XRESERVED8, <*RESERVED *)
XRESERVED9, (*RESERVED *)
XRESERVEDA, (*RESERVED *)
XRESERVEDB, (*RESERVED *)
XRESERVEDC, (*RESERVED *)
XRESERVEDD, (*RESERVED *)
XRESERVEDE, (*RESERVED ,0
XRESERVEDF) ; (*RESERVED *)

ERRORSET = set of ERRORACTIONS;

procedure ONERROR<
const FERROR ERRORTYPE; <*ERROR NUMBER *)
const FMODNAME ALPHA; <*MODULE NAME WHERE OCCURRED *)
const FPROCNAME ALPHA; <*PROCEDURE WHERE OCCURRED *)
const FSTMTNO INTEGER; (*STATEMENT NO *)
var FRETMSG STRING; (*RETURNED USER'S MESSAGE *)
var FACTION ERRORSET) ; <*ACTIONS TO BE PERFORMED *)

EXTERNAL;

Figure 48. Contents of '~INCLUDE ONERROR'

Pascal/VS provides a mechanism for you
to gain control when an execution time
error occurs. When such an error
occurs, a procedure called 'ONERROR' is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascal/VS library which does noth
ing.

You may write your own version of
ONERROR and declare it as an EXTERNAL
procedure. The procedure wi 11 be
invoked when an error occurs; thus you
may decide how the error should be han
dled. Figure 48 shows the contents of
the IBM-supplied include file that con
tains the information relevant to
producing your own ONERROR routine.

Upon entry to ONERROR the parameter
FERROR contains the number of the error
that has been enco1Jntered. See "Exe
cution Time Messages" on page 150 to
determi ne the message number corres
ponding to a particular error. 8

FMODNAME, FPROCNAME, and FSTMTNO con
tain the name of the module, the name
of the routine, and the source state
ment number, respect i vely, of the
location where the error occurred.

FACTION is a set variable which deter
mines what action is to be taken. Upon
i nvocati on of ONERROR, FACTION wi 11
describe the default action that will
take place after ONERROR returns. You
should examine this information and
decide whether you would like to handle

8 Each error intercepted by the Pascal/VS run time environment consists of a
unique 3 digit number. A diagnostic message corresponding to the error
will begin with the error number prefixed with the characters AMPX and
suffixed with the character 'I', 'E' or'S' (Informational, Error, Severe
error) .

62 Pascal/VS Programmer's Guide

J

the error or let the default acti on
take place.

You may modify the FACTION parameter as
you desire. If you set the XUMSG mem-

% INCLUDE ONERROR;
procedure ONERROR;
begin

ber of FACTION then you must also set
FRETMSG with the text of the message.
Figure 49 is an example of a user
interception of execution time errors.

<*do nothing if fixed, decimal or floating divide by zero *)
<*and diagnose fixed-point overflow in procedure HASHFNC *)
if FERROR in [19, 21, 25] then

FACTION : = []
else

end;

if (FERROR = 18) & (FPROCNAME = 'HASHFNC') then
begin

FACTION .- [XUMSG];
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

end;

Figure 49. Example of User Error Handling

9.5 SYMBOLIC VARIABLE DUMP • The Pascal/VS debug 1 i brary was
included in the generation of the
associated load module.

When a program error or checking error
occurs, a symbol i c dump of all vari
abIes which are local to the routine in
whi ch the error occurred may be
produced. Thi s dump wi 11 be produced
if two conditions are met:

• The source module containing the
code from which the error occurred
was compiled with the DE3UG option.

The variable dump
terminal if you are
or TSO, or written
otherwise.

is placed on your
executing in VM/CMS
to DDname SYSPRINT

Runtime Error Reporting 63

J

J

The Pascal/VS interactive debugger is a
tool that allows programmers to quickly
debug Pascal/VS programs without hav
ing to write debug statements directly
into their source code. Basic func
tions include tracing program
execution, viewing the runtime values
of program variables, breaking at
intermediate points of execution, and
di splayi ng statement frequency count
i ng i nformat ion. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TSO and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct
ly to your terminal. If the debugger
is being run in OS batch, then the
input is read from DDname SYSIN; the
output is sent to SYSPRINT.

In order to use the debugger, you must
follow these three steps:

•

•

•

In
may

Compile the module to be debugged
with the DEBUG option. Modules
that have been campi led wi th the
DEBUG opt i on can be linked with
modules that have not been compiled
with the DEBUG option.

When link editing your program,
include the debug library. (It
must be located ahead of the
runtime library in search order).9

When executing the load module,
specify 'DEBUG' as a run time
option. 10 This will cause the debug
erwironment to become active and
you will be immediately prompted
for a debugger command.

the debugger env ironment the user
issue debug commands and exami ne

10.0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10.1 QUALIFICATION

A qualification consists of a module
name and a routine name. The debugger
uses the current gualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger ga i ned
control.

At the start of a debug sessi on, the
current qualification is the name of
the module containing the main program,
and the main program itself.

10. 2 COHt1ANDS

This section describes the commands
that a user may issue wi th the debug
facility. Every command may be abbre
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets ('['
and ')') are used in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi
ple commands on each line.

Under CMS, the debug library is included if the DEBUG option is specified
when invoking PASCMOD. (see "How to Build a load Module" on page 12.)

I 10

Under TSO, the debug library is included by specifying the DEBUG keyword
operand when invoking the PASCMOD clist. (see "How to Build a load
Module" on page 18.)
Run time options must be terminated with a slash ('/'). See "Run Time
Options" on page 35.

Pascal/VS Interactive Debugger 65

10.2.1 BREAK Command 10.2.2 CLEAR Command

Command Format:
Command Format:

CLEAR
[stmt] BREAK [[module/] [routine)/]

END
Minimum Abbreviation:

CLEAR
[stmt] B [[module/) [routine]/]

END
There are no operands.

B

where: The CLEAR command is used to remove all
breakpoints.

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

END is a keyword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the i ndi cated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit
ted in whi ch case the defaul ts are tak
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break
point is to occur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 8 breakpoints may be set
at anyone time. The following table
illustrates the meaning of the various
forms.

Input
B S
B IS
B PIS
B MIlS
B M/P/S

Where:

Module
current
current
current
M
M

Procedure
current
melin program
P
main program
P

current - means currently qualified
module or procedure,

M,P - are the names of a module
or procedure

S - is either a statement
number or END

66 Pascal/VS Programmer's Guide

J

L

L

10.2.3 CMS Command

Command Format:

CMS

Minimum Abbreviation:

C

There are no operands.

This command activates the CMS subset
mode. If the program is not being run
under eMS, the command is ignored.

10.2.4 DISPLAY Command

Command Format:

DISPLAY

Minimum Abbreviation:

D

The DISPLAY
information
sessi on at
information

command is used to display
about the current debugger
the user's terminal. The
displayed is:

• the current qualification,

• where the user's program will
resume execution upon the GO com
mand,

• the current status of Counts,

• the current status of Tracing.

Pascal/VS Interactive Debugger 67

10.2.5 DISPLAY BREAKS Command

Command Format:

DISPLAY BREAKS

Minimum Abbreviation:

D B

There are no operands.

The DISPLAY BREAKS command is used to
produce a list of all breakpoints which
are currently set.

68 Pascal/VS Programmer's Guide

10.2.6 DISPLAY EQUATES Command

Command Format:

DISPLAY EQUATES

Minimum Abbreviation:

D E

There are no operands.

The DISPLAY EQUATE command is used to
produce ali st of all equate symbols
and their current definitions.

J

J

10.2.7 EHD Comman~

Command Format:

EHD

Minimum Abbreviation:

END

The END command causes the program to
immediately terminate. This command is
synonymous with QUIT.

10.2.8 EQUATE Command

Command Format:

EQUATE identifier [data]

Minimum Abbreviation:

E identifier [data]

Where:

identifier is a Pascal/VS
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi
er name to a data stri ng. When the
identifier name appears in a command,
it lo,Ii11 be expanded inline prior to
executing the command.

As an example, the command

EQUAT EX, B [I]

will cause the variable "B[I]" to be
viewed when "X" is entered as a
command. The commands

EQUATE V Ra.F[61.J
,B[V)

will cause the variable "B[R~.F[6].J]"
to be vieloJed.

A semicolon may not terminate the
EQUATE command; a semi colon wi 11 be
treated as part of the data string.
For example, the command

EQUATE Z GO;LISTVARS

will cause the "GO" and "LISTVARS" com
mands to be executed in succession when
"Z" is entered as a command.

An equate command may be used to rede
fined the mean i ng of a debugger
command: 11

EQUATE GO WALK

makes the command "GO" function as the
command "WALK".

An equate command may be cancelled by
equating the previously defined iden
tifier to an empty data string:

EQUATE Z

I 11 There is one exception: the name EQUATE <and its abbreviations) may not be
equated to a data string.

Pascal/VS Interactive Debugger 69

removes the symbol "l"
debugger's equate table.

from the

Equates may be equated to strings which
conta in other equates. All subst i
tution will take place after expansion.
The commands

EQUATE A Pel.I
EQUATE B ,XYZ[Al

will cause the symbol
expanded to ",XYl[P~.I]".

"B" to be

70 Pascal/VS Progr~mmer's Guide

10.2.9 GO Comm~nd

Command Format:

GO

Minimum Abbreviation:

G

There are no operands.

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

• breakpoint

• program error

• normal program exit

A breakpoint or program error will
return the user to the Debug environ
ment.

L

L

10.2.10 Help Command

Command Format:

?

Minimum Abbreviation:

?

There are no operands.

The Help command lists all Debug com
mands.

10.2.11 LISTVARS Command

Command Format:

LISTVARS

Minimum Abbreviation:

L

There are no operands.

Thi s command di splays the values of all
variables which are local to the cur
rently active routine.

Pascal/VS Interactive Debugger 71

10.2.12 Qualification Command

Command Format:

QUAL [module I] [routine]

Minimum Abbreviation:

Q [module I] [routine]

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are C:lpplied as follows:

• the module name defaults to the
current qualification.

• the routine defaults to the main
program if the associated module is
a program module, or to the outer
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viel.Jing variables. The
current qualification provides the
basis on which program names are
resolved. If there is no activation of
the routine available (no invocations)
the user may not di splay local vari
abIes for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali
fication is automatically set to the
module and the routine in which the
breakpoint was set.

72 Pascal/VS Programmer's Guide

10.2.13 QUIT Command

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

J

J

lO.2.l~ RESET Command

Command Format:

RESET [[modu1e/] [routine]/] [stmt]
END

Minimum Abbreviation:

[stmt] R [[module/] [routine]/]
END

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmt i5 a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

10.2.15 SET ATTR Command

Command Format:

SET ATTR [ON

OFF
]

Minimum Abbreviation:

S A [ON

OFF
]

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter speci fi e5 that variable
attribute information will not be dis
played by default. The default may be
overridden on the variable viewing com
mand.

Pascal/VS Interactive Debugger 73

10.2.16 SET COUNT Command

Command Format:

SET COUNT [ON

OFF
]

Minimum Abbreviation:

S C [ON

OFF
]

The SET COUNT command is used to initi
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is executed duri ng program
execution. The summary is produced at
the end of program execut i on and is
written to the standard file OUTPUT.
Statement counting may also be initi
ated with the runtime COUNT option.

74 Pascal/VS Programmer's Guide

10.2.17 SET TRACE Command

Command Format:

SET TRACE [ON]
OFF
TO ddname

Minimum Abbreviation:

S T [
Where:

ON
OFF
TO ddname

]

ddname is the name of a DDname
whore the trace output is to be
sent.

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user wi th ali st of ev.ery statement
executed in the the program. Thi sis
useful for following the execution flow
during execution.

The output from the program trace nor
mally wi 11 go to your termi nal, by
using the TO option you may direct the
output to a specific file.

J

J

J

10.2.18 TRACE Command

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca
tion chain are listed along with the
most recently executed statement 1n
each.

10.2.19 Viewing Variables

Command Format:

, variable [(option [)]]

Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/VS
Reference Manual for the
syntax of a variable.

option is either ATTR or HOATTR.

This command allows the user to obtain
the contents of a variable during pro
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified varietble. If the var
iable is found to be a valid reference,
then its vCllue is di splayed. If the
name cannot be resolved within the cur
rent qualification, the user is
informed that the name l s not found.
If the name resolves to lin automatic
variable for which no activation cur
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam
ples, array elements. record fi elds,
and dynamic variables may all be
vi ~wed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are di s
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or HOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is HOATTR. If the user gives
ATTR as an option, attributes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: a subscripting expression may
only be a variable or constant; that
is, it may contai n no operators. Thus,
such a reference as

,a[bG'l[j]]

is valid (at least syntactically), but
the reference

,a[i+3]

Pascal/VS Interactive Debugger 75

is not a val i d reference because the
subscripting expression IS not a vari
able or constant.

Examples

,a
,pOl
,pOl.b
,b[l,x].int (ATTR
, pOl [x , y] . bOl . a [1]

If the variable being viewed has not
been assigned a value then the results
depend on the variable's type:

•

•

If the variable is of a simple type
(integer, char, real, etc.), then
the loJord "uninitialized" will be
printed.

If the variable is of a structured
type (array, record), then the con
tents wi 11 be pr i nted in
hexadecimal; each byte of the the
variable which is uninitialized
wi 11 have the value 'FE'
(hexadecimal) .

76 Pascal/VS Programmer's Guide

10.2.20 viewing Memory

Command Format:

, hex-string [: length]

Where:

hex-string is a number in
hexadecimal notation.

length is an integer.

Thi s command is used to di splay the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex stri ng is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is In both hex and character for
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '35D05'XL The
length is specified in decimal.

Examples

,'20000'X
,'46cfO'X 100

J

J

J

10.2.21 WALK Command

Command Format:

WALK

Minimum Abbreviation:

There are no operands.

This command causes the program to
either start executing or resume exe
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin
gle stepping through a section of code.

Pascal/VS Interactive Debugger 77

10.3 DEBUG TERMINAL SESSION

I
I

I
I
I

1 I
I

2 I
I

3 I
4 I
5 I

6
7

8

1
2
3
4
5

6

7

8
9

10

11

12
13

14

I

program Primgen;
type

PrimeRange = 1 .. 100;

var
Pri me array[PrimeRange 1 of

NotUsed
Savelndex

TestNumber

PrimeRange;
PrimeRange;

Integer;

function IsPrime(Testval
var

Quotient,
Remainder
Primelndex

begin

Integer;
PrimeRange;

INTEGER)

PrimeIndex := Lowest(PrimeRange);
repeat

PrimeIndex := Succ(PrimeIndex);

(*Specify limits for the
(* number of prime numbers

Integer;

*)
*>

(*This array stores the result*)
(*Used test preceeding primes *)
(*Used to remember last used *)
(* spot in Prime *)
(*Test value for primeness *>

BOOLEAN;

(*Testval div prime *)
(*Test value for primeness *)
(*Used test preceeding primes *)
(*IsPrime *)

(*Test each previous prime *)
(*Starting with the first one *)
(*Get next prime *)

(*Compute relative primeness of Testval and a known prime
Quotient := Testval div Prime[PrimeIndexl;
Remainder := Testval - Quotient * Prime[PrimeIndexl

until (Remainder=O) I (Quotient <= Prime[PrimeIndex]);

if Remainder = 0 then
IsPrime .- FALSE

else
IsPrime .- TRUE;

end;

begin
Prime[l] · - 2;
Prime[2] · - 3 ;
Pri me[3] · - 5;
TestNumber · - 5 ;
Savelndex · - 3 ;

repeat
TestNumber := TestHumber + 2;

if IsPrime(TestNumber> then
begin

SaveIndex:= Succ(SaveIndex);
Prime[SaveIndexl := TestHumber

end

(*If the number was divided by*)
(*any known Prime, then this *)
(*is not prime *)

(*IsPrime

(*First three primes
(* ditto
(* ditto
(*Start canidates at 5
(*Last used prime entry

(*Test each odd number
(* starting with the first
(*If canidate is a prime
(*Save it in the next entry
(* of the prime table

*)

*>
*)
*)
*)
*)

until SaveIndex = Highest(PrimeRange);

(*Print results at ten to a line
for PrimeIndex := Lowest(PrimeRange)

begin

end.

Write(Prime[PrimeIndex]:7);
if (PrimeIndex mod 10) = 0 then

Writeln
end;

to Highest(PrimeRange) do

(*Print one prime number
(*If ten have been printed
(* then skip to next line

(*Primgen

~o
~o

*)

Figure 50. Sample program for Debug session

The following series of figures is a
sample Debug terminal session that dem
onstrates breakpoints, viewing vari
ables and other DEBUG commands. User

78 Pascal/VS Programmer's Guide

I commands are high 1 i qhted and under
lined. The program being executed is
shown in Figure 50.

J

~_sca 1 vLP-r i!:'!9~n (d~bu9
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines: 62; Total time: 1.20 seconds; Total rate:
R; T=1.73/3.05 16:13:54

PI' i m9~r:LQE!buLcount /
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 51. Compiling, linking and executing a program with DEBUG

'>
Name

?
(abbreviation is in capital letters)

,
Break
CLEAR
Cms
Display
Display
Display
END
Equate
Go
Listvars
Qual
QUIT
Reset
Set Attr

This command list
Display a variable
Set a breakpoint
Remove all breakpoints
Enter CMS subset mode
Display currently resume point

Break Display currently set breakpoints
Equate Display currently set equates

Halt your program
Set an identifier to a literal value
Continue executing your program
List all variables
Set default module/routine
Halt your program
Remove a specific breakpoint

Set Count
Set Trace
Trace

Set default viewing information ON/OFF
Turn statement counting ON/OFF
Turn tracing ON/OFF/TO fileid
Display invocation chain of routines
Execute one statement of current routine Walk

Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 52. The HELP command of DEBUG

3092 LPM

Pascal/VS Interactive Debugger 79

bruk 8
P"RIMGEtV<MAIH-PROGRAM>/8

DebugCPRIMGEH <MAIN-PROGRAM»:

9Q
Stopped at PRIMGEN/<MAIH-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

wall<
-Stopped at PRIMGEN/<MAIH-PROGRAM>/9

Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/lO
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 53. Setting Breakpoints and Statement Walking

listvars
Variables for procedure: <MAIN-PROGRAM>

PRIME
(0003CA28)
000000 00000002 00000003 00000005 FEFEFEFE ,
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '
(00000020 through 0000018F is the same as above)

NOTUSED = uninitialized
SAVEHIDEX = 3
TESTNU~'BER = 7

Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 54. The lISTVARS command - list all variables

80 Pascal/VS Programmer's Guide

J

J

~et trace on
Progr~m trace in on -- output to '<TERMINAL>'
DebugCPRIMGEN <MAIN-PROGRAM»:

gQ
Resuming PRIMGEN <MAIH-PROGRAM>
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6
======> 7
Returning from ISPRIME
Resuming PRIMGEH <MAIN-PROGRAM>
======> 10
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6
======> 8
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 55. The Trace Mode of DEBUG

Pasca!/VS Interactive Debugger 81

9.Q
======>
======>
Executing
======>
======>
======>
======>
======>

10
6-7
PRIMGEH
1
2-5
2-5
6
8

ISPRIME

Returning from ISPRIME
Resuming PRIMGEH <MAIN-PROGRAM>
==:;:===> 8-9
Stopped at PRIMGEH/<MAIH-PROGRAM>/8
DebugCPRIMGEH <MAIN-PROGRAM»:

walk
S-topped at PRIMGEN/<MAIN-PROGRAM>19

Debug(PRIMGEH <MAIN-PROGRAM»:

walk
-======> 10

Stopped at PRIMGENI<MAIH-PROGRAM>/10
DebugCPRIMGEN <MAIN-PROGRAM»:

!!i!l k
======> 6-7
Stopped at PRIMGEN/<MAIN-PROGRAM>/6
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Stopped at PRIMGENI<MAIN-PROGRAM>/7
Debug(PRIMGEN <MAIN-PROGRAM»:

walk
Executing PRIMGEH ISPRIME
======> 1
======> 2-5
===:;:==> 6
======> 7
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 10
Stopped at PRIMGENI<MAIN-PROGRAM>/IO
Debug(PRIMGEH <MAIN-PROGRAM»:

9.Q
Stopped at PRIMGENI<MAIN-PROGRAM>/8
Debug(PRIMGEH <MAIN-PROGRAM»:

Figure 56. Walking when the Trace Mode is On

82 Pascal/VS Programmer's Guide

J

J

d;~~~y gual;f;cat;on
Currently qualified to PRIMGEN <MAIH-PROGRAM>
Will resume at PRIMGEH <MAIN-PROGRAM> 8
Counts are on
Trace is on
Trace output to <TERMINAL>
Debug(PRIMGEN <MAIN-PROGRAM»:

~; ~tl~y breaks
1'1odule
PRH1GEN
DebugCPRIMGEN

Routine
<MAIN-PROGRAM>

<MA I N-PROGRA~'» :

!!.guate tn , testnum~er
Debug(PRIMGEN <MAIN-PROGRAM»:

tn
:-TESTNUMBER

TES TNUMBER = 19
Debug(PRIMGEH <MAIH-PROGRAM»:

d;?~laJl....J1guate
TN ==> ,TESTNUMBER
Debug(PRIMGEN <MAIN-PROGRAM»:

set tracp. off
Program trace is off
Debug(PRIMGEH <MAIN-PROGRAM»:

Stmt
8

Figure 57. Miscellaneous DEBUG Commands

~~? t!:).Y~!1e r
TESnWMBER = 19

Debug(PRIMGEN <MAIN-PROGRAM»:

, testnumber (attr
DATA TYPE: IHTEGER

MEMORY CLASS : LOCAL AUTOMATIC
DECLARED IN : <MAIN-PROGRAM>
TESTNU~1BER = 19

Debug(PRIMGEN <MAIN-PROGRAM»:

.LEti!!,e[lO]
PRIME[10] = uninitialized

Debug(PRIMGEH <MAIN-PROGRAM»:

.u:!.!:l~g~.l
PRIME[5] = 11

Debug(PRIMGEN <MAIH-PROGRAM»:

Figure 58. Commands to Display a Variable

Pascal/VS Interactive Debugger 83

brg~_k i spr i II!g/en!;t
PRIMGEN/ISPRIME/END
DebugCPRIMGEN <MAIN-PROGRAM»:

9Q
Stopped at PRIMGEN/ISPRIME/END
DebugCPRIMGEN ISPRIME):

Trace back
Routine
ISPRIME
<i'lA IN-PROGRAM>
PASCAl/VS

of called
stmt at

8
7

Debug(PRIMGEN ISPRIME):

set trace on

routines
address in module
020138 PRIMGEN
020260 PRIMGEN
02055A

Program trace in on -- output to '<TERMINAL>'
DebugCPRIMGEN ISPRIME):

gquate n~xt qo;l;stvars
DebugCPRIMGEN ISPRIME):

next
GOiLrS TVARS

PRIMGEN
8-9

Resuming
======>
======>
======>
Executing

10

======>
======>
======>
======>

6-7
PRIMGEN
1
2-5
6
7

<MAIN-PROGRAM>

ISPRIME

Returning from ISPRIME
Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME

PRHlEINDEX = 2
QUOTI ENT = 13
REMAINDER = 0
TESTVAL = 39

DebugCPRIMGEN ISPRIME):

set trace off
Program trace is off

Debug(PRIMGEN <MAIN-PROGRAM»:

Figure 59. Using Multiple commands on one line and other commands

84 Pascal/VS Progr~mmer's Guide

J

J

reset 8
-Sreakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed

DebugCPRIMGEN <MAIN-PROGRAM»:

9.9
Stopped at PRIMGEN/ISPRIME/END
DebugCPRIMGEN ISPRIME):

listvars
variables for procedure: ISPRIME

PRHlEINDEX = 2
QUOT! ENT = 11
REMAINDER = 0
TESTVAL = 33

DebugCPRIMGEN ISPRIME):

reset end
~reakpolnt at PRIMGEN/ISPRIME/END has been removed

Debug(PRIMGEN ISPRIME):

9.Q
2 3 5 7 11 13

31 37 41 43 47 53
73 79 83 89 97 101

127 131 137 139 149 151
179 181 191 193 197 199
233 239 241 251 257 263
233 293 307 311 313 317
353 359 367 373 379 383
419 421 431 433 439 443
467 479 487 491 499 503

Figure 60. The Reset Breakpoint Command

PASCAL/VS STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIME(S)

17
59

103
157
211
269
331
389
449
509

FROM-TO:CDUNT FROM-TO:COUNT FRDM-TO:COUNT
1--5 :1 6-7 :268 8-9 :97

11 :1 12-13 :100 14 :10

ISPRIME IN PRIMGEN CALLED 268 TIMECS)
FROM-TO:CDUNT FRDM-TO:COUNT FROM-TO:CQUNT

1 :268 2-5 :910 6 :268
8 : 97

Figure 61. Statement Counting Summary

19 23 29
61 67 71

107 109 113
163 167 173
223 227 229
271 277 281
337 347 349
397 401 409
457 461 463
521 523 541

PAGE 1

FROM-TO:COUNT
10 :268

FROM-TO:CQUNT
7 : 171

Pasca!/VS Interactive Debugger 85

J

J

This section describes the rules that
the Pascal/VS compiler employs in map
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off
sets within the routine's dynamic stor
age <lrea (DSA) . There is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo
cated when the routine is called and is
deallocated when the routine returns.

11.2 INTERNAL STATIC STORAGE

For source modules that contain va
riables declared STATIC, a single
unnamed control section ('private
code') is associated with the source
module in the resulting text deck.
Each variable decl<lred via the STATIC
construct, regardless of its scope, is
assigned a unique offset within this
control ~ection.

11.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control section
(csect>. Each def variable which is
not initialized will generate a named
COMMON section. 12 The name of the sec
tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variable~ are allo
cated dynamically from heap storage by
the procedure 'NEL4'. Such variables
are always aligned on a doubleword
boundary.

11.5 RECORD FIELDS

Fields of records are assigned con sec
ut i ve offsets wi thi n the record ina
sequential manner, padding where nec
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/VS
source module is assigned storage and
aligned according to its declared type.

11.6.1 The Predefined Types

The table in Fi gure 62 di splays the
storage occupancy and boundary align
ment of variables declared with a pre
defined type.

STORAGE MAPPING OF DATA

DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

AlFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRINGOen) len+2 HALF WORD
STRINGPTR 8 FULL WORD

Figure 62. Storage mapping for predefined types

Each def variable becomes a named COMMON block which may be used to commu
nicate with FORTRAN subroutines.

storage Mapping 87

Jl.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu
py a half word and will be aligned on a
half word boundary.

11.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed wi 11 be mapped exactly the
same Nay as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 63.
Given a type definition T as:

type
T = packed i .. j;

and

canst
1= ORD(i);
J = ORD(j);

Range of
I .. J

O •• 255

-128 .. 127

-32768 .. 32767

O •• 65535

O •• 16777215

-8388608 .. 8388607

otherwise

SIZE in ALIGNMENT
bytes

1 BYTE

1 BYTE

2 HALF WORD

2 HALF WORD

3 BYTE

3 BYTE

4 FULL WORD

Figure 63. Storage mapping of
subrange scalars

Each entry in the first column in the
above table is meant to include all
possi ble sub-ranges wi thi n the spec
ified range. For example, the range
100 .. 250 would be mapped in the same
WCly as the rClnge O .. 255.

11.6.4 RECORDs

An unpacked record is Ell i gned on a
boundary in such Cl WCly that every field
of the record is properly aligned on

88 PClscal/VS Programmer's Guide

its required boundary. That is,
records are al i gned on the boundary
required by the field with the largest
boundary requirement.

For example, record A below wi 11 be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of
type REAL; record C will be aligned on
a byte.

type
A= record OEfull word aligned*>

Al INTEGER;
A2 : CHAR

end;

B= record (*double word aligned*)
Bl A;
B2 REALi
B3 : BOOLEAN

endi

C= record ()(byte aligned)()
Cl packed O •. 255 i
C2 ALPHA

end;

Figure 64. Alignment of records

Packed records are always aligned on a
byte boundary;

11.6.5 ARRAYs

Consider the followi ng
definition:

type
A = array [s] of t

where type s is a simple scalar
and t is any type.

type

A variable declClred with this type
definition would be aligned on the
boundary requ i red for data type 't'.
With the exception noted below, the
amount of storClge occupi ed by thi s var
iable is computed by the following
expression:

(ORD(HIGHEST(s»-ORD(LOWEST(s»+l)
)(SIZEOFCt)

The above expression is not necessarily
appl i cable if' t' represents an
unpacked reco rd type. In th is CClse,
padding will be added, if necessary,
between each element so that each ele
ment w;Il be aligned on a bOlJndary
whi ch meets the requi rements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev
er inserted between elements.

A multi-dimensional array is mapped as
an array of array(s). For ~xample the
following two array definitions would
be mapped identically in storage.

array

array
array

i .. j, m .. n] of t

i .. j] of
m •• n] of t

11.6.6 FILEs

File variables occupy 64 bytes and are
aligned on a full word boundary.

11.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped. two terms wi 11 need to be
defined: The ba!3~~ is the tvpe to
which all members of the set must
belong. The f..undt)m~ntJll ___ Qas~~l.E.g
represents the non-subrimge scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0' .. ' 9 '

has the base type defined by '0' .. '9';
and a fundamental base type of CHAR.

Any two unpacked sets whi ch have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S = set of s.
T = set of t;

where s is a non-subrange
and t IS a subrange of s:
wi 11 have the same length
aligned in the same manner.

scalar type
both Sand T
and wi 11 be

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though thi s value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contai n
the largest value of the fundi9mental
Q~~.!'=..!. Packed sets occupy the mi n
i mum number of bytes to conta i n the
largest valid value of the base type.
Thus, variables A and B below will both
occupy 256 bits.

var
A : set of CHAR;
B : set of '0' .. '9';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
C set of (Cl,C2,C3,C4,CS,C6,

C7,C8,C9,CIO,Cl1,C12
CI2,C13,C14,C15,C16);

o : set of C1 .. C8;
E : packed set of Cl .. C8;

A set tvpe with a fundamental base type
of INTEGER is restri cted 50 that the
largest member to be contained in the
set may not exceed the value 255;
therefore, such a set l.Jill occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bit s ; va ria b I e X wi 11 0 c c u py 32
bi ts.

var
U set of 0 •• 255;
V set of 10 .. 20;
W packed set of 10 .. 20;
X packed set of O .. 31;

Gi ven that Mis the number of bi ts
required for a particular set, the
table in Figure 65 indic<1tes how the
set will be mapped in storage.

Range of SIZE
M BYTES

1 <= M <= 8 1

9 <= M <= 16 2

17 <= M <= 24 3

25 <= M <= 32 4

33 <= M <= 256 (M+7)
div

Figure 65. Storage
SETS

ALIGNMENT

BYTE

HALF WORD

BYTE

FULL WORD

BYTE
8

mapping of

Storage Mapping 89

11. 6.8 SPACEs

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes i ndi cated in the

90 Pascal/VS Programmer's Guide

length specifier of
definition. For example,
5 declared below occupies
storage.

the type
the variable

1000 bytes of

var s: space [1000] of INTEGER;

J

J

12.1 LINKAGE CONVENTIONS

Pascal/VS uses standard OS linkage con
ventions with several additional
restrictions. The result is that
Pascal/VS may call an).! program that
requires standard conventions and may
be called b~>, an).! program that adheres
to the addi t i onal Pascal/VS restri c
tions.

On entry to a Pascal/VS routi ne the
contents of relevant registers are as
follows:

• Register 1 - points to the parame
ter list

•

•

•
•

Register
Pascal/VS
(PCWA)

12 po i nts to the
Communication Work Area

Regi ster 13 - po i nts to the save
area provided by the caller

Register 14 - return address

Register 15 - entry point of called
routine

Pascal/VS requires that the parameter
register (R1) be pointing into the
D).!nami c Storage Area (DSA) stack in
such a wa).! that 144 bytes prior to the
R1 address is an ava i lable save area.

12.0 CODE GENERATION FOR THE IBM/370

12.2 REGISTER USAGE

The table in Figure 66 describes how
each general register is used within a
Pascal/VS program. The floating point
registers are used for computation on
data of t).!pe REAL.

regi sterC s) purpose(s)

0,1
- temporar).! work registers

for the compiler
- standard linkage usage

on calls

3,4,5,6,7,8,9

2,10

11

12

13

14,15

- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

- address of the DSA of the
main program

- always points to Pascal/VS
Communication Work Area

- always points to the local
DSA

- temporary work registers
for the compiler

- standard linkage usage
on calls

Figure 66. Register usage

Code Generation for the IBM/370 91

12.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of m~mory called a Dynamic StoraQe
Area (DSA) is allocated. This area is
used to contain save areas, local vari
ables and compi ler generated tempo
raries. A Pascal/VS routine requires a
DSA of at least 144 bytes; if the rou
tine has parameters or local variables,
more space is needed.

regi ster 13--> ,-------------.,
0:

72:

-80:

r- -84:

- - -88:-

92:

96 :

100 :

112 :

144:

'----->

>

>

Register
Save area

//////////////////

1/////////

reserved for
error handling

floating point
registers
FO F6

parameter
list

local variables
and compiler
temporaries

144

translator
temporaries

byte save area

parameter list
to be bu i It here

144 byte save area

16 byte rte parms

The first 72 bytes are generally used
according to standard OS linkage con
ventions. The first word is used to
copy the previous data base register at
the current procedure nesting level.

Figure 67 illustrates the structure of
the DSA. Fi gure 68 on page 93 shows
the DSECT expi:lnsi on of the DSA. (A
copy of this DSECT may be found in mem
ber DSA of the standard include
librarylJ.)

reserved for future use

po i nt.er to translator temporaries

pointer to parameter list build area

pointer to the end of the DSA

pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

The following areas only in last DSA
for the next routine to be called

for runtime environment in case of
error

room for parameters if required by
error recovery

//// = indicates that the field is not presently used.

I 1:S

Figure 67. DSA format

Under MVS, the name of this library is sys1.PASCALVS.MACLIB. Under CMS,
it is PASCAlVS MAClIB.

92 Pascal/VS Programmer's Guide

J

J

DSA
DSASDIS
OSAlSVA

DSARETA
DSAEPAD
DSARGO
DSAPREG
DSACODE
DSARG3
DSARG4
DSARG5
OSARG6
OSARG7
OSARG8
DSARC,i
DSACOD2
DSAllB
DSAPC~JA
DSAAKEY
OSARES4
DSATPTR
DSAPPTR
OSARPTR
OSACNTS
OSARAIO
OS A FUt~X
DSARESI
DSACKSAI
DSACKSA2
DSACKSA3
OSAFlO
DSAFL2
DSAFL4
DSAFL6
OSAlEN

DSAPRM1
DSAPRM2
DSAPRM3
DSAPRr14
OSAPRM5
DSADATA

OSECT
DS
OS
OS
OS
OS
OS
OS
OS
OS
OS
DS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
OS
DS
DS
05
OS
OS
EQU
SPACE
OS
OS
OS
DS
DS
DS

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
X
X
2X
F
F
F
D
D
D
D
lE-DSA
1
F
F
F
F
OF
F

Save space for display level
Pointer to last save area
(reserved for future use)
Return address
Entry point address
Save area for register 0
Save area for parameter list pointer (reg 1)
Save area for base register for code (reg 2)
Save area for register 3
Save area for register 4
Save area for register 5
Save area for register 6
Save area for register 7
Save area for register 8
Save area for register 9
Save area for 2nd base register for code (reg 10)
Save area for register 11 (main OSA address)
Save area for register 12 (PCWA pointer)
Used by attention processor
Reserved
Address of temporary section of OSA
Address of parameter list build area
Address of runtime parameter list build area
Address of count table
Interactive debugger flags
Function assignment check flag
Reserved
Save area utilized by error recovery
Save area utilized by error recovery
Save area utilized by error recovery
Save area for floating point register 0
Save area for floating point register 2
Save area for floating point register 4
Save area for floating point register 6
Length of OSA header

Start of parameters and/or local variables

Figure 68. OSA OSECT: anchored off of register 13.

Code Generation for the IBM/370 93

12.4 ROUTINE INVOCATION

Each invocation of a Pascal/VS routine
must acqu ire a dynami c storage area
(DSA) (see "Dynamic Storage Area" on
page 92). Thi s storage is allocated
and deallocated ina LIFO (last
i n/fi rst out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which
storage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
Pascal/VS for a save area. The rou
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon entering a routine, register 1
points 144 bytes into the routine's
DSA, which is where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. Thi s
portion of storage is actually an
extension of the caller's DSA.

,--R_E_G_l_3_-,I-->

'--R_E_G_l_----'I-->

top of stack ---->

caller's save area

local save area
(144 bytes)

Parameters

In general. the DSA of a routine con
sists of five sections:

1. The local save area (144 bytes).

2. Parameters passed in by the caller.

3. Local vari abIes requi red by the
routine.

4. A save area required by any routine
that will be called.

5. storage for the largest parameter
Ii st to be bui It for a call.

Sections I and 2 are allocated by the
calling routine; sections 3, 4. and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation. register 13 points to
the base of the DSA of the caller.
which is where the caller's save area
is located. The new value of register
13 may be computed by subtracting 144
from the value in register 1.
Figure 69 illustrates the condition of
the stack and relevant registers imme
diately at the start of a routine.

start of DSA of caller

start of DSA of called routine

144 bytes into DSA

r---------------------l storage yet to be allocated

r-~~;-1----1---->
1 set here ,
I for calls' L __________ J

next stack top -->

1 local variables 1
1 1
1---------------------1
I save area 1
1 of any routines I
1 yet to be invoked 1
1---------------------1
1 parameter list to 1
1 be built for calls'
, to other routines'
1 , L _____________________ J

start of DSA of routine yet
to be called

144 bytes into this DSA

Figure 69. Snapshot of stack and relevant registers at start of routine

94 Pascal/VS Programmer's Guide

J

J

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
di fferent ways dependi ng on hOl<l the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter Ii st is ali gned on a
doubleword boundary and each parameter
is aligned on its proper boundary.
Addresses are aligned on word bounda
ries.

12.5.1 Passing by Read/Write Refer
ence

This mechanism is indicated by use of
the reserved word var in the rout i ne
heading. Actual par<lmeters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:INTEGER);

Routine Invocation:

PROC(J);

Parameter list:

address of J

Figure 70. Passing by Read/Write
reference

12.5.2 Passing by Read-only Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
thi s way may not be modi fi ed by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(const I: INTEGER);

Routine Invocation:

PROC(J+5);

Parameter list:

address of a memory location
which contains the value of
J+5.

Figure 71. Passing by Read-only
reference

12.5.3 passing by Value

This mechanism is the default way in
whi ch parameters are passed. Parame
ters passed in this way are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the call er. If the actua I
parameter is a scalar, pointer, or set,
then the parameter list wi 11 conta in
the value of the actual parameter. If
the actual parameter is an array,
record, space, or string, then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure wi 11 copy
the parameter into its local storage.

Routine Heading:

procedure PRoce
I INTEGER;
A : ALPHA);

Routine Invocation:

PROCeJ,'alpha');

Parameter list:

value of J
address of 'alpha

Figure 72. Passing by value

Code Generation for the IBM/370 9S

12.5.4 passing Procedure or Function
Parameters

For procedures or functions which are
bei ng passed as parameters, the address
of the routine is placed in the parame
ter list.

Note: As a Pascal/VS restriction, a
routine passed as a parameter must not
be nested within another routine.

Routin~ Heading:

procedure PROC(
function X(Y: REAL): REAL);

Routine Invocation:

PROC(COS);

Parameter list:

address of COS routine

Figure 73. Passing
parameters

routine

96 Pascal/VS Programmer's Guide

12.5.5 Function Results

Pascal/VS functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the funct ion resul tis to be
placed.

Routine Heading:

function FUHC(C: CHAR):IHTEGER;

Routine Invocation:

I := FUHC('L');

Parameter list:

- address of returned integer
result

- value of character 'L'

Figure 74. Function results

J

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function
is arrangQd in the order sho~·m below.
Regi ster 2 is the code base regi ster
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, regi ster 10 is used as
the code base register for the second
4K bytes. If a routine exceeds 8K
bytes of storage, the compi ler wi 11
diagnose it as a terminal error.

Entry ~>
Reg 2

This must be
<= 8192

---->

DEBUG control
block

entry prologue

body
of

routine

exit epilogue

literals!
ACONS, VCONS,
and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
(i f present>

Figure 75. Routine format

Code G~neration for the IBM/370 97

12.7 PCtM

PCWA =
I'ecord

INTEGER;
INTEGER;
INTEGER;

(*Ptr to end of current stack *)
(*Ptr to start of current stack *)
(*Self identifing flag 'PCWA' *)
(*compiler runtime flag flags *)
<*Return code *)
(*pointer to open files *)
(*parms string *)
(*module header chain <debugger)*)
<*ptr to external save area *)

PCWAENDS
PCWACURS
PWASELF
PCWAFL2
pn'JARC(16)
PCL-JA FIL E
PCWAPARM
PCWMlODS
PC1·JAESAP
PCJ..JADI SP
PCLJADH1P
PCWARHlP
PCWARO
PCl·JA2231
PCWAMASK
PCL~AMFIX
PCJ..JASAVE
PCLoJAPLST
PCL·JAFIN
PWAALLC
PWADLLC
PCvJADFL T
PCl·JACHKR
PCL~ADSAS
PCL~M1EMF
PCWAFLAG
PCWAPICA
PCWASEED
PCI>JAXEtW
PCWAECNT
PCLoJACHK
PCL·JACMEM
PCL~ASTAX
PC1·JAEOPN
PCWADINT
PC1~ATSO

PCWA FLG SET;
INTEGER;
PCBP;
SYSPARMP;
DBCBP;
INTEGER;
array[O .. 7J
INTEGER;
REAL;

of DSAP;(*DISPLAY *)

PCWAA TTN
PCWAFCNT
PC1~ASIZE
PCWADINA
PWABOPA
PCWABBA
PCL~AERAD
PCWAFSTK
P CI·JA ENDA
PCWAPROC(1200)
PCWAUSER(1264)
PCJ..JAEOUT(1328)
PCWAOUT(1392)
P Cl~ A I N (1456)
PCWAPDA T(1520)
PCWAERSA(I776)
PCWAPIE
PCWASPIE
PCWAMEMA (1984)

REAL;
REAL;
ALFA;
AL FA;
array[l. .36]
array[l. .16]
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
ALFA;
II'lTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[20] of
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[64] of
space[64] of
TEXT;
PCB;
PCB;
STRING(254);
SPIEDSA;
PSW;
INTEGER;

<*Debugger temporary *)
(*floating point temporary *)
(*'4EOOOOOOOOOOOOOO'X *)
<*'4EOOOOOOIOOOOOOO'X *)
(*'8040201008040201'X *>
(*t~mp for first 8 bytes of DSA *)

of INTEGER; C*Extra save area *)
of INTEGER; (*parm list build *)

(*Pointer to the HALT address *)
(*address of memory allocator *)
(*address of memory deallocator *)
(*default allocation size *)
C*address of checker routine *)
(*size of DSA in bytes (144) *)
<*addr of memory fixup routine *)
(*Inter-Ianguage communication *)
(*PICA save area *)
(*seed of 'RANDOM' function *)
(*end of stack for SETMEM *)
<*error count until abend *)
(*address of check routine *)
(*current memory in use *)

CHAR;(*STAX list form *)
(*TRUE if PCWAEOUT is open *>
(*TRUE if debugger initializied *)
(*TRUE if TSO environment *)
(*reserved *)
<*address of attn handling *)
(*cnt of files without DDnames *)
<*size of initial alloc for pcwa*)
(*Address of AMPDINIT or nil *)
(*Address of AMPDIBOP or nil *)
(*Address of AMPDIBB or nil *)
(*Error address - CHKR or DIAG *>
(*Chain of free dsa stack elems *)
(*Address of AMPDEPIL or nil *)

CHAR;(*Work area for PROCESS *)
CHAR;(*Area reserved for user *)

(*ERROR OUTPUT PCB *)
(*OUTPUT PCB *)
(*INPUT PCB *)
(*actual parm list after format *>
(*savearea for error routines *)
(*PSW from PIE *)

array[MEM_LEVELS] of SPACE DESC;
(*space for memory allocator *>

end;

Figure 76. Pascal Communications Work Area

The Pascal Communications Work Area is
always addressable from regi ster 12.
This area of memory is used to contain

98 Pascal/VS Programmer's Guide

I global information about the execution
of the program.

J

The area is divided into two parts,
each is 2048 bytes in length. The
first part contains data that needs to
be addressable; the second is composed
of the small routines used to augment
the generated code (such as string con
catenati on). Fi gure 76 on page 98
shows the structure of the first half
of the peWA. Each field is described
below:

pctJAE~ms
a pointer to the end of the current
DSA stack.

PCWACURS
a pointer to the top of the current
DSA stack.

PCWASELF
a self defining field that is set
to 'peWA'.

PCWAFL2
flags used to enable runtime fea
tures.

PCWARC
the value assigned by the last exe
cution of RETCODE or zero if
RETCODE has not been called.

PCWAFILE
a pointer
that has
closed.

PCWAPARH

to the first file (PCB)
been opened but not

a pointer to the parameter string
passed to the program.

PCWAHODS
a pointer to the head of a chain
that links modules together as
requ i red by the interact i ve
debugger.

PCWAESAP
contains the pointer to the save
area for the caller of the Pascal
program.

PCWADISP
the runtime display - a stack of 8
base regi sters that conta ins the
address of the DSAs that are ava i 1-
able to the executing routine.

PCWADTMP
a temporary used by the interactive
debugger.

PCWARTMP
a temporary used in conversion
between floating point numbers and
integers.

PCWARO
a constant that contains the float
ing point value zero.

PCWA2231

a constant that contains the float
ing point value of 2 raised to the
31 power minus 1 in an unnormalized
form.

PCWAHASK
eight bytes that contain masks
which are used in set operations.

PCWAHFIX
a temporary used during runtime
error recovery.

PCWASAVE
used as a regi ster save area when a
program error or checki ng error
occurs.

PCWAPLST
used when a program error or check
i ng error occurs to bui Id a parame
ter list in order to invoke a
recovery procedure.

PCWAFIN
address of a procedure which termi
nates the program no matter what
state it is in. This procedure is
normally HAL T.

PCWAALLC
address of a system dependent rou
tine which is responsible for allo
cating blocks of storage.

PCWADLLC
address of a system dependent rou
tine which releases blocks of stor
age.

PCWADFLT
the default number of bytes of
storage that the allocation rou
tine will allocate when called.

PClJACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCWADSAS
the size of the smallest DSA. Its
value is 144.

PCWAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflows.

PCWAFLAG
a flag used when communicating
between different languages.

PCWAPICA
is used for a save area for the
PICA.

PCWASEED
contains the current seed for the
RANDOM function.

PCWAXEND
contains the true end
rent stack, PCWAENDS
correct, PCWAENDS is

of the cur
may not be
made incor-

Code Generation for the IBM/370 99

rect in order to force a call to
AMPXMEMF so that a DSA may be ini
tialized (if SETMEM option is ena
bled) .

PC~IAECNT
conted ns the number of non-fatal
errors which will be tolerated
before the program will be abended.

PCWACHK
conta ins the address of the rout i ne
which gains control when a checking
error occurs. This routine is nor
miJlly AMPXCHKR.

PCWACtlEM
defines which heap is in use. nor
mally the value is one. which indi
cates that the users heap is
available.

PCWASTAX
contains the list form of the STAX
macro.

PCWAEOPN
a flag that indicates whether the
error fi Ie, PCWAEOUT has been
opened.

PCWADINT
is a flag indicating whether
AMPDCOM (debugger common area) has
been initialized yet.

PC~lATSO
is a flag indicating whether we are
executing in a TSO environment.

PCWAATTN
contains the address of the termi
nal attention routine.

PCUAFCNT
conta ins the number of the next
generated DDname.

PCUASIZE
contains the size of the initial
allocation of the peWA.

PCUADINA
contains the address of the
AMPDINIT routine, which initial
izes the interactive debugger.

PCUABOPA
contains
AMPDIBOP
at each
debugger

the address of the
routine. which is invoked
procedure entry when the
is active.

100 Pascal/VS Programmer's Guide

PCWABBA
contai ns the address of the AMPDIBB
routine. which is invoked at each
basic block of code when the
debugger is active.

PCWAERAD
contains the offending address
when a checking error or a program
error occurs.

PCWAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCWAEUDA
address of the
I-Jhi ch is invoked
of each routine
is active.

PCWAPROC

AMPDEPIL routine,
from the epilogue

when the debugger

reserved for future use.

PC~IAUSER
reserved for Pascal/VS users.

PCWAEOUT
the file (PCB) to where execute
time error diagnostics is sent.

PCHAOUT
the PCB for the standard file OUT
PUT.

PCIJAIN
the PCB for the standard file
INPUT.

PCIJAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

PCIJAERSA
a small save area used when a SPIE
exit is invoked.

PCWAPIE
a place to save certain information
from the SPI E.

PCIJASPIE
spi e work area

PCIJAMEMA
descriptors used to control the
allocat i on and deallocat i on pol i
c i es of dynam i c storage and I/O
buffers.

J

J

L

12.8 PCB - PASCAL FILE CONTROL BLOCK

PCB =
record

PCBFIlEP
PCBFlAGS
PCBELEM
PCBtlAME
PCBCODE
PCBBUFIDX:
PCBBUFLEN:
PCBBUFP
PCBOPTP
PCBLAST
PCBNEXT
PCBICBP
PCBSTART
PCBSTAT

end;

BUFFERP;
FIlEFLAGS;
HALFWORD;
ALFA;
MegicNumber;
HALFWORO;
HALFI.JORO;
BUFFERP;
OPTP;
PCBP;
PCBP;
ICBP;
HALFWORO;
IOSTATUS;
CHAR;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

(MPascal Control Block M)

(*file pointer *)
(Mfile flags *>
(Mlength of file component *)
<Mfile-variable name M>
(Minitialization test *)
(Mbuffer index M)
(*buffer length *)
(Mpointer to start of buffer M)
(Mptr to OPTIONs descriptor M)
(Mlink to last PCB of chain M>
(Mlink to next PCB of chain M)
(Mptr to Implem. Ctrl Block M)
(Minitial value of PCBBUFIDX M)
(Mstatus of last open M)
(M<not-used> M>
(M<not-used> M)
(*<not-used> *)
(M<not-used> M)
(M<not-used> M)

Figure 77. Pascal file Control Block (PCB) format

Every Pascal/VS file is represented by
a Pascal control block (PCB) An PCB is
composed of 64 bytes of space.

The fi elds are defi ned as:

PCBFILEP
poi nts to the current element of
the file.

PCBFLAGS
set of file flags (16 bits).
flags are:

The

FINPUT i ndi cates that
open for input.

file is

FOUTPUT indicates that file
open for output.

is

FTEXT the fi Ie is of type TEXT.

FEOLN end-of-line condition is
true.

FEOF end-of-file condition is
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an
interactive file.

FSTATUS the user wi 11 check

FFEOL

PCBSTAT and report the
errors.

end-of-line condition is
true, but not as a result
of REAOLN.

FOPTS

PCBELEM

an options string was
specified in the last
open.

the length of one component of the
fi Ie.

PCBNAt1E
the OONAME of the file.

PCB CODE
an encoded value that is used to
test whether the PCB has been ini
tialized; this is not required for
fi les which ar'e local variables but
is needed for files that are allo
cated dynamically (NEW).

PCBEUFIDX
byte index into the I/O buffer
(PCBBUFP> .

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address of the begi nn i ng of the
buffer.

PCBOPTP
address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce
dures whi ch open a fi Ie and pass an
options string are: RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
POSIN or PDSOUT.

PCBLAST

Code Generation for the IBM/370 101

back chain of currently open PCBs.

PCBNEXT
forward chain of currently open
PCBs.

PCBICBP
points to a system dependent con
trol block to be used by the lowest
level of interface to the 10 access
methods.

102 Pascal/VS Programmer's Guide

PCBSTART
contains the initial value of
PCBBUF1DX, which is used to deter
mine if the current buffer contains
any data that needs processing pri
or to closing the file.

PCBSTAT
status of the file.

J

L

L

TNL SN20444S (31 December 1981) to SH20~162·1

13.0 INTER LANGUAGE COMMUNICATION

It is sometimes desirable to invoke
subprograms (procedures) written in
other programmi ng langauges: thi sis
useful to obtain services not available
directly in Pascal/VS. It is also
desirable to have a Pascal/VS procedure
called from a non-Pascal program: this
would allow you to take advantage of
Pascal in an existing application with
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

We can divide inter-language communi
cation into two classes:

FORTRAN

Assembler

COBOL

PUI

• The Pascal procedure is the calling
procedure and the non-Pascal pro
cedure is being called.

• The Pascal procedure is called from
a non-Pascal calling procedure.

Your options
Figure 78.

are summarized in

Pascal as the calling language

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you to
call a subprogram written in
FORTRAN.

Define procedures and functions
in Pascal using the FORTRAN or
the EXTERNAL directive. If you
use EXTERNAL you will be able to
specify an arbitary Pascal
parameter list.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
COBOL. You may desire to call
ILBOSTPO prior to calling a
COBOL program. Consult the
COBOL Programmer's guide for
details.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
PL/I. You should define the PL/I
procedure with the FORTRAN
option. Consult the PL/I OS
Programmer's guide for further
details.

Pascal as the called language

Use a call statement in FORTRAN
to call the Pascal procedure.
The Pascal procedure must be
defined with the MAIN directive.
After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).

Use a V-type constant in the
Assembler routine to define the
Pascal entry point. You must
define the Pascal procedure as
EXTERNAL, MAIN, or REENTRANT.
After the last call to a Pascal
procedure you must call PSCLHX.

Use a call statement in COBOL
to call the Pascal procedure.
COBOL should be compiled with
the 'NODYNAM' option and the
call must be a call of a
literal. The Pascal procedure
must be defined with the MAIN
directive. After the last call
to a Pascal procedure you must
call PSCLHX.

Use a call statement in PL/I to
call a Pascal procedure. The
PL/I procedure should specify the
Pascal as an EXTERNAL. After the
last call to a Pascal procedure
you must call PSCLHX.

Figure 78. Inter Language Communication

Inter language Communication 103

TNL SN204445 (31 December 1981) to SH20-6162·1

The details of Pascal/VS linkage con
ventions are discussed in the chapter
"Code Generati on for the IBM/370" on
page 91. You should familiarize your
self with this section - especially if
you plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Writing an Assembler language routine
for Pascal/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea
sons for the need for these
conventions:

1. Pascal/VS parameter passi n9 con
ventions: As described in "Parame
ter Passing" on page 95. Pascal/VS
parameters are passed in a variety
of ways. depending on their attri
butes.

2. The Pascal/VS environment: This is
an arrangement of regi sters and
control blocks used by Pascal/VS to
handle storage management and run
time error recovery. (sea "Regis
ter Usage" on page 91.)

13.1.1 Writing Assembler Routine with
Minimum Interface

Writing an Assembler routine with the
minimum interface requires the least
knowledge of the runt i me envi ronment.
However. such a routine has the follow
ing deficiencies:

anyname CSECT

•

•
•

It may not
routine;

call a

It must be non-recursive;

Pascal/VS

If a program error should occur
(such as divide by zero). the Pas
cal/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
Assembler language rout i net regi ster
14 contains the return address and reg
ister 15 contains the starting address
of the routine. The routine must fol
low the System/370 linkage conventions
and save the regi sters that wi 11 be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine. register 13
will contain the address of the regis
ter save area provided by the caller.
and register 1 will point to the first
of a list of parameters being passed
(i f such ali st exi sts). Once the reg
ister values are stored in the caller's
save area, the save area address (reg
ister 13) must be stored in the
backchain word in a save area defined
by the Assembler routine itself.
Before returning to the Pascal/VS rou
tine. the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 79,
your Assembler routine can be called
from a Pascal/VS routine and you need
have no knowledge of the Pascal/VS
environment.

ENTRY procname declare routine name as an entry point
procname DS OH entry point to routine

STM 14,12,12(13) save Pascal/VS registers in Pascal/VS save area
BALR basereg,O establish base register
USING *,basereg
ST 13,SAVEAREA+4 store Pascal/VS save area address
LA 13,SAVEAREA load address of local save area

body of Assembler routine

* restore the floating point registers if
* they were saved

L 13.4(13) restore Pascal/VS registers
LM 14.12.12(13)
BR 14 return to Pascal/VS

SAVEAREA DC 20F'O' local save area
END

Figure 79. Minimum interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

104 Pascal/VS Programmer's Guide

J

1NL SN20-4445 (31 December 1981) to SH20~162·1

13.1.2 writing Assembler Routine with General Interface

procname PROLOG LASTREG=r,VARS=n,PARMS=p

EPILOG DROP=[YES]
NO

where:

procname is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

VARS is the number of bytes required for any local data. including
passed-in parameters.

PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2 is to be dropped as a base regis
ter after the epilogue is executed.

defaults:
LASTREG=12
VARS=O
PARMS=O

DROP=YES

Figure 80. PROLOG/EPILOG macros

If an Assembler routi ne has at least
one of the followi ng characteri sti cs.
the general interface must be used:

•
•
•

It calls a Pascal/VS routine;

It is recursi va;

Program errors must be intercepted
and diagnosed by the Pascal/VS run
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epilogue of an Assembler routine
with a general Pascal/VS interface.
The macro names are PROLOG and EPILOG
and thei I'" forms are descri bed in the
fi gure above.

The PROLOG macro preserves any regis
ters that are to be modified and allo
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

• Register 1 - address of the parame
ter list built by the caller, which

•

•

•

is 144 bytes into the DSA to be
used by the called routine.

Register 12 - address of the Pascal
Communication Work Area (PCWA).

Register 13 - address of the DSA of
the calling routine.

Register 14 - return address.

• Register 15 - address of the start
of the called routine.

Upon execut i ng the code generated by
the PROLOG macro. the registers are as
follows:

• Register 0 - unchanged

•

•

•
•
•

Register 1 - address of an area of
storage in whi ch parameter 1 i sts
may be built to pass to other rou
tines.

Register 2 - basQ register for the
first 4096 bytes of code within the
invoked routine.

Registers 3 through 11 - unchanged.

Register 12 - unchanged

Register 13 - address of the local
DSA of the routi ne just invoked.
The first 144 bytes is the register

Inter language Communication 105

TNL SN20-4445 (31 Decell11Jer 1981) to SH20-6162-1

•
•

save area for the invoked routine.
Followi ng the save area is where
the parameters passed in by the
caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter list build area.

Register 14 - unchanged .

Register 15 - unpredictable .

established by the prologue, The macro
will cause register 2 to be dropped as
a base register unless DROP=NO is spec
ified.

The contents of the floating point reg
isters are not saved by the PROLOG mac
ro. If the floating point registers
are modified, they must be restored to
thei r ori gi nal contents pri or to
returning from the routine.

The EPILOG macro restores the saved
regi sters, then branches back to the
calling routine. In order for the epi
logue to execute properly, register 13
must have the same contents as was

A skel eton of a genera 1- interface
Assembler language routine which may be
called by a Pascal/VS program is given
below.

* The following names have the indicated meaning * 'csectnam' is the name of the csect in which the routine resides * 'procname' is the name of the routine. * 'parmsize' is the length of the passed-in parameters * 'varsize' is the storage required for the local variables * 'lastreg' is the highest register (up to 12) which will be modified * 'plist' is the length of the largest parameter list required for calls * to other routines from "procname"

* csectnam CSECT

* procname PROLOG LASTREG=lastreg,VARS=varsize+parmsize,PARMS=plist

EPILOG
END

<== insert code here

Figure 81. General interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

106 Pascal/VS Programmer's Guide

J

13.1.3 Receiving Parameters From Rou
tines

Parameters recei ved from a Pascal/VS
routine are mapped within a list in the
manner descri bed in "Parameter
Passing" on page 95. At invocation
regi ster 1 conta ins the address of thi s
list.

If the general interface (see "Writing
Assembler Routi ne wi th General Inter
face" on page 105) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 Ca11in, Pasc,l/VS ~putine from
Assembler Rout1ne

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

• the general Pascal/VS interface
was incorporated within the Assem
bler routine, and

• the Pascal/VS routine to be called
is declared as external.

See Figure 83 on page 108 as
example.

If the Assembler routine was
invoked from a Pascal/VS routine,
the Pascal/VS run time environment
be set up prior to entering
Pascal/VS routine. To do this,

an

not
then
must

the
the

1NL SN20444S (31 December 1981) to SH20.(i162·1

Pascal procedure must be declared with
the MAIN or REENTRANT directive. (See
Figure 85 on page 110 for an example.)
When such a procedure is invoked for
the first time, a minimum environment
is created. On subsequent calls, this
environment is restored prior to exe
cuting the procedure. To remove the
environment (free stack space, etc.),
the procedure PSCLHX is provided.

Prior to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate di splacements from regi s
ter 1 as described in "Parameter
Passing" on page 95.

At the point of call, register 12 must
contain the address of the Pascal Com
munications Work Area (PCWAL This
will be the case if the Assembler rou
tine was invoked from a Pascal/VS rou
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into regi ster 15 and then the
instruction 'BALR 14,15' is executed.

13.1.5 Sample Assembler Routine

In Figure 82 on page 108 and Figure 83
on page 108, a sample Assembler routine
is listed whi ch may be called from a
Pascal/VS program. Thi 5 routi ne exe
cutes an OS TPUT macro to write a line
of text to a user's term; nal.

Inter Language Communication 107

TNL SN20444S (31 DeceIJlber 1981).to SH20-6162-1

type
BUFINDEX = 0 .. 80;
BUFFER = packed array[I .. 80] of CHARi

(*this routine is in assembly language*)

procedure TPUTC
canst BUF : BUFFER;

LEN : BUFINDEX);
EXTERNAL;

(*this routine is called from the assembly language routine*)
procedure ERROR(

RETCODE: INTEGER;
canst MESSAGE: STRING);

ENTRY;
begin

WRITELN(OUTPUT, MESSAGE,' RETURN CODE =' RETCODE)
endi

Figure 82. Pascal/VS description of Assembler routine: the Assembler rou
tine is shown in Figure 83.

CSECT TIOSEG
TPUT PROLOG LASTREG=4,VARS=8 only registers 3 and 4 are modified

*

*

L
L
TPUT
LTR
BZ

ST
LA
ST
L
BALR

TPUTRET EPILOG
* TPUTMSG DC
TPUTTEXT DC

END

3,144(13)
4,148(13)
(3),(4)
15,15
TPUTRET

15,0(1)
3,TPUTMSG
3,4(1)
15,=V(ERROR)
14,15

FlL2CL'TPUTTExn
C'TPUT ERROR'

load address of 'BUF' parameter
laod value of 'LEN' parameter
write content of 'BUF' to terminal
check return code
if no error then return
build parm list for call to 'ERROR'
assign to 'RETCODE' parameter
load address of message
assign to 'MESSAGE' parameter
load address of 'ERROR' procedure
call 'ERROR'

halfword length of string
message text

Figure 83. Sample Assembler routine: this routine is invoked by a
Pascal/VS routine and, within itself, invokes a Pascal/VS rou
tine.

108 Pascal/VS Programmer's Guide

J

13.1.6 c~lling a Pascal/VS Main Pro
gram from-Ass~nbler Routine

A Pascal/VS program may be invoked from
an assembler language routine by load
i ng a V-type address constant of the
main program n~me into register 15 and
executing a BALR instruction with 14 as
the return register.

Program to be called:

program test;

begin

end.

The convention employed in passing
parameters to a program is dependent on
~Jhether you are runn i ng under CMS or
under TSO (or OS Batch). Both con
ventions require that register 1 be set
to the address of the parameter data.

Assembler instructions to perform the call under CMS:

LA l,PLIST
L 15,=VCTEST)
BALR 14,15

PLIST OS OF
DC CL8'TEST'
DC CL8'token 1 '
DC CL8'token 2'

DC CL8'token n'
DC 8X'FF'

Assembler instructions to perform the call under VS2 (and TSO):

LA l,PLIST
L 15,=VCTEST)
BALR 14,15

PLIST DS
DC
DC

OF
Xll'80'
AL3(PARMS)

set first bit of address

PARMS DC
DC

FL2'length' length of parameter string
C'parm string goes here'

Figure 84. Example of calling a Pascal/VS program from an assembler routine

Inter Language Communication 109

TOSQ

SEGMENT SQUARE;
procedure SQUARE(var X

MAIN;
procedure SQUARE;

begin
X := X * X

end; .

CSECT
USING
STt1
ST
BALR
USING
LA
LA
L
BALR
LA
L
BALR
L
LM
BR

*,15
14,12,12(13)
13,SAVEAREA+4
2,0
*,2
13,SAVEAREA
l,PLISll
15,=V(SQUARE)
14,15
1,PLIST2
15,=V(PSCLHX)
14,15
13, SAVEAREA+4
14,12,12(13)
14

PLIST! DC A(X)
X
PLIST2
ZERO
SAVEAREA

DC
DC
DC
DS
END

0'4.0'
A(ZERO)
F' 0 '
18F

REAL);

establish addressabi1ity
save callers registers
save address of callers save area

establish addressability
set new save area
REG 1 POINTS TO PARAMETER LIST
load address of Pascal procedure
call SQUARE
REG 1 POINTS TO PARAMETER LIST
LOAD ADDRESS OF PASCAL PROCEDURE
call SQUARE
return

PARAMETER LIST

PARAMETER LIST

Figure 85. Example of Assembler as the caller to Pascal/VS

110 Pascal/VS Programmer' 5 Gui de

J

SUM

program FROMPSCL;
procedure SUM(var I

const J
FORTRAN;

var
I,J :INTEGER;

begin
I : = 0;

do

INTEGER;
ItHEGER);

(lEPascal program heading

(lEOefine two local variables

(lESet running sum to zero
(lEloop through ten values for J := 1 to 10

begin
SUM(I,J);
WRITELN('The

end;

(lEcompute the next sum
current running sum is ',1:0);

end (lEFROMPSCL

CSECT
USING lE,15 establish addressability
STM 14,12,12(13) save callers registers
ST 13, SAVEAREA+4 save address of callers save area
BALR 5,0
USING lE,5 establish addressability
LA 13,SAVEAREA set new save area
L 2,0(1) get address of I
L 3,0(2) get I
L 4,4(1) get address of J
A 3,0(4) I = I + J
ST 3,0(2) return the new value of I
L 13,SAVEAREA+4 return
LM 14,12,12(13)
BR 14

SAVEAREA OS 18F
END

Figure 86. Example of Pascal/VS as the caller to Assembler

lE>
lE>

lE)

lE>

Inter language Communication 111

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and
Pascal/VS is accomplished by us~ of the
MAIN directive (FORTRAN to Pascal/VS)
and the FORTRAN directive (Pascal/VS to
FORTRAN) .

13.2.1 Pascal/VS as the Caller to
FORTRAN

program FROMPSCL;
procedure SUM(var I

const J
FORTRAN;

var
I,J :INTEGER;

begin
I : = 0;
for J := 1 to 10

begin
do

INTEGER;
INTEGER);

Data may be passed between FORTRAN and
Pascal/VS through the parameter list or
FORTRAN COMMON. If you choose to COM
MON speci fy the name of the COMi10N
block as a Pascal/VS d~f variable.

(*Pascal program heading

(*Define two local variables

(*Set running sum to zero
(*loop through ten values

5U1'H 1, J) ;
L~RITELN('The

end;

(*compute the next sum
current running sum is ',1:0);

end

SUBROUTINE SUM(I,J)
I = I + J
RETURN
END

(*FROMPSCL

Figure 87. Example of Pascal/VS as the caller to FORTRAN

The FORTRAN di recti ve instructs
Pascal/VS to utilize exactly the same
calling conventions employed by
FORTRAN. This restricts the form of
the parameter list, namely you may not
pass a parameter by value; you may pass
a parameter by var or by const. If you
choose the latter machani sm, the
FORTRAN subprogram must not modify the
parameter.

112 Pascal/VS Programmer's Guide

Execution errors that occur during the
execution of the FORTRAN program will
be handled by the Pascal runtime sup
port routines. If you desire to enable
the error handling of FORTRAN you
should invoke "VSCOM#" at the appropri
ate entry poi nt. Consult the VS
FORTRAN Appli cat ion Pro9ramm i n9 Gu ide
SC26-3985 for details

J

13.2.2 FORTRAN as the Caller to Pas
cal/VS

TNL SN204445 (31 December 1981) to SH20-6162·1

Pascal/VS procedure to be called from FORTRAN program:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);

MAIN;
procedure SQUARE;

begin
X := X * X

end; .

FORTRAN program that invokes Pascal procedure:

AREAL = 4.0
CAll SQUARECAREAl)
PRINT 1, AREAL
CAll SQUARECAREAl)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL

1 FOR~lAT CFI0.4)
C TERMINATE PASCAL ENVIRONMENT

CALL PSClHX(O)
STOP
END

Figure 88. Example of FORTRAN as the caller to Pascal/VS

Pascal/VS permits a FORTRAN program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ
ment for its execution. Subsequent

calls wi 11 use the same envi ronment
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter language Communication 113

TNL 8N20444S (31 December 1981) to 8H20-6162·1

13.3 PASCAL/VS AND COBOL

Communication between COBOL and
PascaUVS is accompli shed by use of the

13.3.1 Pascal/VS as the Ca11e~ to
COBOL

MAIN directive (COBOL to Pascal/VS) and
the FORTRAN directive (Pascal/VS to
COBOL).

Pascal program that calls a COBOL subprogram:

p~og~am FROMPSCl;
p~ocedu~e SUMX(va~ I : INTEGER;

const J : INTEGER);
FORTRAN;

va~

(*Pascal program heading

I,J :INTEGER; (*Define two local variables lE)
beg;n

I := 0; (lESet running sum to zero lE)
fo~ J := 1 to 10 do (lEloop through ten values lE)

beg;n
SUMX(I,J)j (lEcompute the next sum lE)
WRITElN('The current running sum is ',1:1);

end;
end •

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
lINKAGE SECTION.

(lEFROMPSCl

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.
PROCEDURE DIVISION USING I J.

ADD J TO I.
GOBACK.

Figure 89. Example of Pascal/VS as the caller to COBOL

The FORTRAN di rect i ve instructs
Pascal/VS to utilize exactly the same
call i ng conventi ons employed by FOR
TRAN which is also equivalent to COBOL.
This restricts the form of the parame
ter list. namely you may not pass a
parameter by value; you may pass a
parameter by va~ or by const. If you
choose the latter machanism. the COBOL
subprogram must not modify the parame
ter.

Execution errors that occur during the
execution of the COBOL program will be
handled by the Pascal runtime support

114 Pascal/VS Programmer's Guide

routines. Pascal will not issue a call
to IlBOSTPO (whi ch sets up the COBOL
error recovery). You may call thi s
routi ne if you would Ii ke the "STOP
RUN" statement of COBOL to treat the
Pascal calling procedure as a main
entry poi nt of a COBOL program. Con
sult the OS/VS COBOL Compiler and
Library Programmer's Gui de, SC28-6483
for detai Is.

A COBOL program which is communicating
with Pasca!/VS must n2! use the dynamic
loading feature.

J

13.3.2 COBOL as the Caller to
Pasca!/VS

TNL SN204445 (31 December 1981) to SH20~162-1

Pascal procedure that is to be called from COBOL:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);

MAIN;
procedure SQUARE;

begin
X := X * X

end; .

COBOL program which calls a Pascal procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE 2 TO AREAL.
CALL "SQUARE" USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 90. Example of COBOL as the caller to Pascal/VS

Pascal/VS permi ts a COBOL program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establ ish the appropr i ate env i ron
ment for its execution. Subsequent

calls wi 11 use the same envi ronment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
i nvok i ng the procedure "PSCLHX". If
Pascal is not the mai n program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

TNL SN20444S (31 December 1981) to SH20-6162-1

13.4 PASCAL/VS AND PL/I

Communication between PL/I and
Pascal/VS is accomplished by use of the
MAIN directive (PL/I to Pascal/VS) and
the FORTRAN directive (Pascal/VS to

13.4.1 Pasca1/VS as the caller to
PL/I

PL/l). In addi ti on, you may use the
REENTRANT directive instead of the MAIN
dIrective in order to develop a REEN
TRANT call to Pascal.

Pascal program which calls a PL/I procedure:

program FROMPSCL;
procedure SUM(var I

const J
FORTRAN;

var

INTEGER;
INTEGER);

(*Pascal program heading

I,J :INTEGER; <*Define two local variables *>
begin

I := 0; <*Set running sum to zero *)
for J := 1 to 10 do (*loop through ten values *)

begin
SUM(I,J); (*compute the next sum *)
WRITELN('The current running sum is ',1:0);

end;
end (*FROMPSCL

PL/I procedure that is invoked from Pascal:

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCL (I,J) FIXED BINARY(31,0);
I = I + J;
RETURN;
END;

Figure 91. Example of Pascal/VS as the caller to PL/I

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by FOR
TRAN. PL/I will employ FORTRAN calling
conventions if "FORTRAN" is specified
in the OPTIONS clause. Consult the
PL/I Programmer's Guide,
SC33-0037(CMS) and SC33-0006(OS) for
details.

116 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list, namely you
may not pass a parameter by value; you
may pass a parameter by either var or
const. If you choose to latter mech
anism, the PL/l procedure must not
modify the parameter.

J

J

13.4.2 PL/I as the Caller to
Pascal/VS

Pascal procedure which is called from PL/I:

SEGMENT SQUARE;
procedure SQUARECvar X : REAL);

MAINi
procedure SQUARE;

begin
X := X * X

end; .

TNL SN20444S (31 December 1981) to SH20-6162·1

PL/I program which calls a Pascal procedure:

TOSQ: PROC OPTIONSCMAIN);
DCL SQUARE ENTRY EXTERNAL;
DCL PSClHX ENTRYCFIXED BINARYC31,O» EXTERNAL;
DCl ZERO FIXED BINARY(31,0);
AREAL = 4.0;
CAll SQUARE(AREAL);
PUT LIST(AREAl);
CALL SQUARECAREAl);
PUT LIST(AREAl);
CALL SQUARE(AREAL);
PUT LIST(AREAL>;
CALL SQUARECAREAl);
PUT LISHAREAL>;
ZERO = 0;
CALL PSCLHXCZERO);
END;

Figura 92. Example of Pl/I as the caller to Pascal/VS

Inter Language Communication 117

TNL SN20444S (31 December 1981) to SH20~162-1

Pascal procedure which is called from a reentrant PL/I program:

SEGMENT SQUARE;
procedure SQUARECvar E : INTEGER; var X : REAL);

REENTRANT;
procedure SQUARE;

begin
X := X * X

end; .

Reentrant PL/I program which invokes a Pascal procedure:

TOSQ: PROC OPTIONSCMAIN REENTRANT);
DCL SQUARE ENTRY EXTERNAL;
DCL PSCLHX ENTRYCFIXED BINARY(31,O» EXTERNAL;
DCL SAVE FIXED BINARYC31,O);
AREAL = 4.0;
SAVE = 0;
CALL SQUARECSAVE,AREAL);
PUT LISTCAREAL);
CALL SQUARECSAVE,AREAL);
PUT LIST(AREAL>;
CALL SQUARECSAVE,AREAL);
PUT LIST(AREAL>;
CALL SQUARECSAVE,AREAL);
PUT LISHAREAL);
CALL PSCLHXCSAVE);
END;

Figure 93. Example of PL/I as the caller to Pascal/VS: Use of the REEN
TRANT directive

Pascal/VS permi ts a PL/I program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc
tive.

The first invocation of any procedure
that has a MAIN di rective associated
with it will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSCLHX wi 11 di spose of the
Pascal environment and release all mem
ory that it utilizes.

The Pascal/VS run ti me support wi 11
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro
gram must be reentrant. In thi s case
you must ass; st Pascal/VS in keepi ng
track of the location of the Pascal/VS
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parameter, a FIXED BIN(31,O) var
iable which has been set to the value
zero. Upon return from the first call,

118 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas
cal/VS envi ronment. Thi s vari able
should be passed unaltered to subse
quent calls so that the Pascal/VS
environment may be reentered.

To terminate the Pascal/VS environment
that was set up by the REENTRANT proce
dure, the "PSClHX" should be called
with the variable that contains the
address. See Figure 93 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for whi ch the language was intended.
When passing data between programs
written in different languages you must
be aware which data types are the same
and where there is no equivalent repre
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
however, you can often create new user
data types in Pascal that will simulate
some of the data types found in other
languages. For example, you could
define a record type that is identical
to FORTRAN's COMPL EX type. -

J

Fi gure 94 compares Pascal data types
with the equivalent in FORTRAN, COBOL
and PUI.

Pascal/VS makes no attempt to remap any
storage when an inter-language call is

TNL SN204445 (31 December 1981) to SH20-6162-1

made. This means that beause FORTRAN
stores its arrays in column-major order
and Pascal stores its arrays in
row-major order, a call between FORTRAN
and Pascal/VS procedures appears to
transpose the array.

Data Type Equivalences Between Different Langauges

Pascal/VS

CHAR

BOOLEAN

INTEGER

packed
-32768 .. 32767

packed
0 .• 65536

packed -128 .. 127

packed 0 .. 255

REAL

SHORTREAL

packed
array[1. • n] of

CHAR

STRINGCm)

set of O •• n

Ol i d

array

record

space

FORTRAN

CHARACTER*1

LOGICAL*1

INTEGER*4

INTEGER*2

na

na

na

REAL*8

REAL*4

CHARACTER*n

na

na

na

dimensioned
variable

na

na

Figure 94. Data Type Comparisons

COBOL PL/I

PIC X CHAR

na FIXED BINARYCl, 0)

PIC S999999999 FIXED BINARYC31,0)
USAGE IS COMP

PIC S9999 USAGE FIXED BINARYCl5,0)
IS COMPUTATIONAL

na na

na FIXED BINARYC7. 0)

na na

COMPUTATIONAL-2 REAL FLOAT DECCl6)

COMPUTATIONAL-1 REAL FLOAT DEC(6)

PIC XCn) or CHARCn)
PIC X OCCURS n

TIMES

na CHARCm) VARYING

na BIHn+l>

na POINTER

OCCURS dimensioned
variable

record structure

na AREA

Inter Language Communication 119

14.0 RUNTIME ENVIRONMENT OVERVIEW

14.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab
lishing the Pascal/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated.

2.

4. The main program is called.

5. Upon return from the main program
any open fi les are closed.

6. Acqu i red memory is freed.

7. Control is returned to the system.

14.2 THE MAIN PROGRAM

3.

The Pascal Communication Work Area
(PCWA) is created and initialized.

An environment is set up to inter
cept program interrupts (fi xed
point overflow, divide by zero,
etc.)

The main program is called
nary procedure from the
setup routi ne (PASCAlVS).
point name of the main
Ar'lPXB EGN .

as an ordi
environment

The entry
program IS

14.3 EXECUTION SUPPORT ROUTINES

Procedure name

AMPXBCLK
AMPXCHKS
AMPXCLCK
AMPXCRTE
AMPXDATE
AMPXDA TI
AMPXDBCB
M1PXECLK
Ar1PXGOTO
AMPXGTOK
AMPXG12
AMPXGl3
M1PXHAL T
AMPXINIT
AMPXMAIN
AI1PXMOVE
AMPXMUS
AMPXNAME
AMPXPAD
AMPXPARM
AMPXRETC
AMPXSETV
AMPXSPAR
AMPXTERM
AMPXTOK
A~lPXTRAC
AMPZABND
AMPZCVD
eMS
PASCALVS
PSCLHX

Execution Support Routines

Action Performed

Initializes the execution clock
Checks a set for membership
Interogate the execution clock
Initialize the peWA
DATETIME procedure
System date and time
Obtains a procedures DnCB pointer
Ends the the execution clock
Handles goto out of block
Obtains a token from user's execution parameter~
Returns the contents of register 12
Returns the contents of register 13
HALT procedure
Initializes prior to execution of a Pascal program
Interface for calling Pascal for other languages
Memory to memory move
Adds elements to a set
Obtains a procedures name
Memory fill memory with blanks
P A R~lS funct ion
RETCODE procedure
Memory fill of with a value
Intialize for PARMS function
Termination after execution of a Pascal program
TOKEN procedure
TRACE procedure
Abnormal termination routine
Convert to decimal
CMS procedure
Main entry point for a Pascal/VS main program
Terminates execution for interlanguage calls

These rout i nes prov ide mi 5cellanaou5
functions such as program initializa-

ti on and low level routi nes such as
fast memory move.

Runtime Environment Overview 121

14.4 INPUT/OUTPUT ROUTINES

Procedure name

Af'1PXCLOS
AMPXCOLS
AMPXGET
AMPXGETR
M1PXOPEN
M1PXOPNl
M1PXOPN2
AMPXPARS
AMPXPCBC
M1PXPDS
AMPXPUT
Ar1PXRCHR
Ar'lPXRINT
Ar1PXRL IN
AMPXRR
AMPXRRDY
Af'1PXRREC
AMPXRSTR
AMPXRTXT
M1PXSEEK
M1PXSTAT
Ar1PXTIO
Ar1PXL·JB
AMPXWCHR
AI'1PXWCHS
Ar'lPXWINT
AMPX~JLIN
Af'1PXL~R
AMPXWRDY
AMPXWREC
M1PXl'JS TR
Af'1PXWTXT
AMPYCLOS
AMPYDFLT
AMPYGET
M1PYOPEN
AMPYPAGE
M1PYPDS
AMPYPUT
Ar'1PYS EEK
Ar'lPZDAMR
AMPZDAMW
AMPZDCBC
AMPZDCBO
AMPZFIND
AMPlGET
AMPZPUT
AMPZPUTX
AMPZSAMR
Af'lPZSAMW
AMPZSTOW
AMPZTGET
AMPZTPUT

Internal Input/Output Routines

Action Performed

CLOSE procedure
COLS function
GET procedure (TEXT files)
GET procedure
RESET, REWRITE or UPDATE procedures
Initiali2es a PCB prior to opening
Sets a PCB after opening
Analyze the optional string on RESET or REWRITE
Closes a file (PCB)
PDS support routines (PDSIN and PDSOUT)
PUT procedure
Reads into a CHAR
Reads into an INTEGER
Reads to end of line (TEXT file)
Reads a REAL value
Prepares a TEXT file for input
Reads one record (non TEXT files)
Reads into a STRING
Reads into an array of CHAR
SEEK procedure
Obtains the status of a file
Terminate I/O processing
Writes a BOOLEAN value
Moves data to an I/O output buffer
Writes a CHAR to a TEXT file
Writes an INTEGER to a TEXT file
Writes an end-of-line to a TEXT file
Writes a REAL value
Prepares a TEXT file for output
Writes one record (non TEXT files)
Writes a string to a TEXT file
Writes an array of CHAR to a TEXT file
System dependent QSAM close
Applies System dependent defaults to a file
System dependent get procedure
System dependent QSAM open
PAGE procedure
System dependent PDS interface
System dependent put procedure
System dependent seek procedure
Issues a READ for a BDAM data set
BDAM write procedure
Close on an as DCB
Open on an OS DCB
I ssues OS FIND
Issues a QSAM GET
Issues a QSAM PUT
Issues a QSAM PUTX
Issues a READ for a BSAM data set
BSAM write procedure
Issues'OS STOW
Issues a TGET (aS) or RDTERM (CMS)
Issues a TPUT (aS) or WRTERM (CMS)

The I/O operati ons (whi ch appear as
calls to predefined procedures in
Pascal/VS) are implemented as calls to

internal procedures within the runtime
environment.

122 Pascal/VS Programmer's Guide

14.5 ERROR HANDLING

Error Handling

Procedure name Action Performed

Ar1PXCHKR Intercepts execution time checking errors
M1PXDIAG Intercepts program exceptions
M1PXERR General execution time error handler
Ar1PXIOER I/O error intercept routine
ONERROR Default ONERROR procedure

When the runtime environment detects an
error condition, it calls a routine to
handle the error. There are several
different routines, one routine for
each of class of error (e.g. I/O error,
program except i on etc). The rout i ne

AMPXERR is the central routine, it is
always called from the other routines:
it then call s O~IERROR, the user pro
vided error handler, and then completes
the error handling.

14.6 CONVERSIOH ROUTINES

Conversion Routines

Procedure name Action Performed

AMPTTOR Converts a REAL (EBCDIC) to REAL
AMPXBTOS BOOLEAN to string conversion
A~lPXCTOS Converts a CHAR to a string
AMPXGTOS Converts a string to a string
AMPXITOS Converts an INTEGER to a string
AMPXOTOS Converts an offset in a procedure to a statement number
AMPXPACK PACK procedure
AMPXRTOS Conversion for a REAL to a STRING
AMPXSTOC Conversion for a STRING to a CHAR
A1'1PXSTOG Conversion for a STRING to a STRING
AMPXSTOI Conversion for a STRING to an INTEGER
AMPXSTOR Converts a REAL (EBCDIC) to REAL
AMPXSTOT Conversion for a STRING to an array of CHAR
AMPXTTOS Appends an array of CHAR to a string
AMPXUCAS Lower case to upper case conversion
A~'PXUNPK UNPACK procedure
ITOHS Integer to hexadecimal string conversion

There are several places where
Pascal/VS must perform data conver
si ons. They take place when you are

doi ng 1/0 on TEXT fi les and when you
use READSTR and WRITESTR.

Runtime Environment Overview 123

14.7 MATHEMATICAL ROUTINES

Mathematical Routines

Procedure name Action Performed

AMPXATAN ARCTAN function
AMPXCOS COS function
AMPXEXP EXP function
AMPXLN LN function
AMPXRAND RANDOM procedure
AMPXSIN SIN function
AMPXSQRT SQRT

The predefined functions are provided
as Pascal/VS functions. The Pascal/VS
compiler changes the user provided name

14.8 STRING ROUTINES

String

Procedure name Action Performed

AMPX$COM COMPRESS function

(e.g. SIN) to an internal name (e.g.
AMPXSIN).

Routines

(long strings)
Ar-lrX$DEL DElETE function (long strings)
MlrX$ L TR LTRIM procedure (long strings)
M1PX$SUB SUBSTR function (long strings)
AMPX$TRI TRIM function (long strings)
AMPXCAT Concatenates 2 to 9 strings
AMPXCO~lr CO~1PR ESS function (short strings)
AMPXDELE DELETE function (short strings)
M1PXINDX INDEX procedure
AMPXLTRI LTRIM procedure (short strings)
AMPXSUBS SUBSTR function (short strings)
Ar1PXTRIM TRIM function (short
LPAD LPAD procedure
RPAD RPAD procedure

The predefined functions and proce
dures are provided as Pascal/VS func
tions and procedures. The Pascal/VS
compiler changes the user provided name
(e.g. SUBSTR) to an internal name (e.g.
AMPXSUBS). Several routi nes are pro
vided in two forms: long and short.
The short form is always used if possi-

124 Pascal/VS Programmer's Guide

strings)

ble. In order to use the short form
the Pascal/VS compiler must determine
that the resulting string will be less
than 1000 bytes long. If the size
can't be limited by compiler analysis,
the compiler uses the long form which
passes the resul ts through the heap.

J

J

14.9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines

Procedure name Action Performed

AMPXALOC Basic storage allocator
AMPXDISP DISPOSE procedure
AMPXFREE Basic storage de-allocator
AMPXIDSP Dispose for the I/O routines
AMPXINEW Ne~" for the I/O routines
AMPXMARK MARK procedure
AMPXNEW NEl-l procedure
AMPXRLSE RELEASE procedure
AMPXTMEM Termination processing for memory management

The NEW procedure generates a call to
the internal procedure AMPXNEL.J. Thi s
procedure allocates storage wi thi n a
heap. If a heap has not yet been cre
ated, NEW wi 11 obtai n memory from the
operating system to create a heap.

The DISPOSE procedure generates a call
to the procedure AMPXDISP. This proce
dure deal locates the heap storage
acquired by a preceding call to
AMPXt~EW .

The MARK procedure generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from whi ch subse-

quent calls to AMPXNEW will obtain
storage.

The RELEASE procedure generates a call
to the procedure AMPXRLSE. Thi s proce
dure frees a heap that was previously
created via the AMPXMARK procedure.
Subsequent calls to AMPXNEW will obtain
storage from the heap which was active
prior to the call of AMPXMARK.

The I/O rout i nes have access to a sepa
rate heap is controlled with the rou
tines AMPXINEW and AMPXIDSP. Thus, I/O
buffers and file control blocks are in
a distinct area from the users area.

Runtime Environment Overview 125

J

J

Release 2.1 of Pasca1/VS has several
differences from 'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have su i table
facilities.

15.1 PASCAL/VS RESTRICTIONS

Pascal/VS contains the
restrictions that are not
Pascal.

followi ng
in standard

Conformant array parameters
The conformant array mechanism for
passi ng array vari abIes to rou
tines is not supported.

Note: In Release 2.0, procedures which
are passed as parameters were
restri cted to the outer most nesti ng
level. In Release 2.1, thi s restri c
tion was removed.

15.2 MODIFIED FEATURES

Pascal/VS has modi fi ed the meani ng of a
negative length field qualifier on an
operand within the WRITE statement.

15.3 NEW FEATURES

Pascal/VS provides a number of exten
si ons to Pascal.

•

•

•

•

•

•

Separately compi lable modules are
supported wi th the SEGMENT defi
nition.

'internal static' data is sup
ported by means of the static dec
larations.

'external static' data is sup
ported by means of the def and ref
declarations.

Stati c and external data may be
initialized at compile time by
means of the value declaration.

Constant expressions are permitted
wherever a constant is permi tted
except as the lower bound of a 5ub
range type definition.

The keyword "range" may be prefixed
to a subrange type defi ni ti on to
permit the lower value to be a con
stant expression.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TNL SN20-4445 (31 December 1981) to SH20-6162·1

15.0 COMPARlSON TO PASCAL

A varyi ng length character stri ng
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, L TRIM, COM
PRESS and INDEX.

A new predefi ned type, STRINGPTR,
has been added that permits you to
allocate strings with the NEW pro
cedure whose maxi mum si ze is not
defined until the invocation of
NEW.

A new parameter passi ng mechani sm
is provided that allows strings to
be passed into a procedure or func
tion without requiring you to spec
ify the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari
able can assume.

Call s to FORTRAN subrout i nes and
functions are provided for.

The MAIN directive permits you to
define a procedure that may be
invoked from a non Pascal environ
ment. A procedure that uses this
directive is not reentrant.

The REENTRANT directive permits
you to define a procedure that may
be invoked from a non Pascal envi
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures:
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PDSOUT.

The parameters of the text
READ procedure may
length-qualified.

file
be

Fi les may be opened for updati ng
with the UPDATE procedure.

Input files may be opened as "IN
TERACTIVE" so that I/O may be done
conveniently from a terminal.

Fi les may be opened for termi nal
input (TERMIN) and terminal output
(TERMOUT) so that I/O may take
place directly to the user's termi
nal without going through the
DDname interface.

Comparison to Pascal 127

TNL SN20444S (31 December 1981) to SH20-6162·1

•

•

•

•
•

Files may be accessed based on rel
ative record number (random
access).

The POSIN procedure opens a parti
tioned dataset (or MACLIB) for
input. The POSOUT procedure opens
a partitioned dataset (or MACLIB)
for output. A string parameter is
required to set the member name.

The space structure is provided for
processing packed data.

Records may be packed to the byte.

The tagfield in the variant part of
a record may be anywhere within the
fixed part of the record.

• Fi elds of a record may be unnamed.

•

•

•

•

•

•

Tag specifications on record vari
ants may be ranges (x .. y).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators 'I', '&', '&&' and
,~, may be applied to data of type
integer. When appl i ed to i nh~gers,
the operators act on a bit by bit
basis. Shift operations on data
are also provided.

Integer constants may be expressed
in hexadecimal digits.

• Real constants (floating point)
may be expressed in hexadecimal
digits.

128 Pascal/VS Programmer's Guide

•

•

•

•

•

•

•

•

•

•

•

•

stri ng constants may be expressed
in hexadecimal digits.

The ~INClUDE facility provides a
means to include source code from a
library.

A parameter passi ng mechani sm
(const) has been defined which
guarantees that the actual parame
ter is not modi fi ed yet does not
require the copy overhead of a pass
by value mechanism.

leave, continue and return are new
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val
ue or an identifier.

case statements
notat i on on the
ments.

may have a range
component state-

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permi ts run
time checks to be compiled into the
program.

The followi ng system interface
procedures are supported: HALT,
CLOCK. and OATETIME.

Constants may be of a structured
type (namely arrays and records).

To control the compiler listing.
the following listing directives
are supported: ~PAGE, ~SKIP, and
~TITLE.

J

16.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and 43xx
computers providing one of the follow
ing operating environments:

•
•

VM/CMS

OS/VS2 TSO

• OS/VS2 Batch

16.2 MEMORY REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro
gram can be performed ina 256K CMS
machine.

The compiler requires a minimum region
size of 512K under VS2 (MVS). A com
piled and link-edited program can exe
cute in a 128K region.

The compi ler is reentrant and may be
loaded ina shared area in MVS or
mapped to a shared segment in CMS.

16.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions
Pascal/VS "short ci rcui ts" boo
lean expressions involving the
and and or operators. For exam
ple, given that A and B are boo
lean expressions and X is a
boolean variable, the evaluation
of

X := A or B or C

would be performed as

if A then
X := TRUE

else
if B then

X := TRUE
else

X := C

The evaluation of

X := A and Band C

TNL SN20-444S (31 December 1981) to SH20~162-1

16.0 IMPLEMENTATION SPECIFICATIONS

would be performed as

if "'A then
X := FALSE

else
if ... B then

X := FALSE
else

X := C

See the section entitled "Boole
an Expressions" in the Pascal/VS
Language Reference Manual for
more detai Is.

Floating-paint
Some commonly requi red charac
teri sti cs of System/370 float
ing-point arithmetic are shown
in Figure 95 on page 130.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a lon
ger name, it will ignore that
portion of the name longer than
16 characters.

Names of external vari abIes and
external routines must be unique
wi thi n the fi rst 8 characters.
Such names may not conta in an
underscore' , within the first 8
characters.

Integers
The largest integer that may be
represented is 2147483647. 16

This is the value of the prede
fined constant MAXINT.

The most negati ve integer that
may be represented is
-2147483648. Thi sis the value
of the predefi ned constant MIN
INT.

Rout i ne nest i ng
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The followi ng standard routi nes
may not be passed as parameters
to another routine:

ABS, CHR, CLOSE, DISPOSE, EOF,
EOLN, FLOAT, GET, HBOUND, HIGH
EST, LBOUND, LENGTH, LOWEST,
MARK, MAX, NEW, ODD, ORO, PACK,
PAGE, PDSIN, PDSOUT, PRED, PUT,
READ, READLN, READSTR, RELEASE,
RESET, REWRITE, ROUND, SIZEOF,
SQR, STR, SUCC, TERMIN, TERMOUT,
TRUNC, UNPACK, UPDATE, WRITE,
WRITELN, WRITESTR

16 This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 129

TNL SN20-4445 (31 December 1981) to SH20-{)162-1

Floating-point Characteristics

Characteristic Decimal approximation Exact Representation1

Maxreal 2 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR

Minreal:3 5.39760534693403E-79 'OOlOOOOOOOOOOOOO'XR

Epsilon 4 1.38777878078145E-17 '3310000000000000'XR

1 The syntax • ••• 'XR is the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the
Pascal/VS language Reference Manual.

2 Maxreal is the largest finite floating-point number that may be
represented.

:3 Minreal is the smallest positive finite floating-point number that
may be represented.

4 Epsilon ; s the smallest positive floating-point number such that the
following condition holds:

1.0+epsilon > 1.0

This value is often needed in numerical computations involving con-
verging series.

Figure 95. Characteristics of System/370 floating point arithmetic

Sets

A FORTRAN function or subroutine
may not be passed as a parameter
to a Pascal/VS routine.

Given a set type of the form

set of a .. b

where "an and "b" express the
lower and upper bounds of the
base scalar type, the followi ng
conditions must hold:

130 Pascal/VS Programmer's Guide

•
•

ORDeal >= 0

ORDCb) <= 255

Size limitations
The size of a single procedure or
funct i on must not exceed 8192
bytes of generated code. 8192
bytes represent approxi mately
400 Pascal statements, depending
on the complexity of the state
ments. The compi ler wi 11
generate a diagnostic if this
limit is reached.

17.0 PASCAL/VS MESSAGES

17.1 PASCAL/VS COMPILER MESSAGES

NO. Message and Explcmat i on

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 Source continues after end of program

The compiler detected text Clfter the logical end of the program.
This error is often caused by mismatched begin/end brackets.

3 "EtlO" expected

4 Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displayable EBCDIC character. If the string 1 s printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character is intended, then the string should be
represented 1 n hexadecimal form.

S Symbol invalid or out of context

The indicated symbol is not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

6 EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program 1-laS detected. This error is often caused by
mismatched begin/end brackets.

7 "BEGIW' expected

8 semicolon ' . , expected ,

11 Ambiguous procedure/function specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

4 12 Multiply declared label

The indicated label has been previously declared within the sur-
rounding routine.

13 Label identifier expected

Within the indicated label definition, a label identifier 1 s
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

Pascal/VS Messages 131

14 The characters '$, and , , are not valid in standard Pascal -
This is a warning message that can occur when the LANGLVL(STANDARD)
compile option is specified. An identifier is being declared which J
has a name containing characters which are not recognizable in
"standard" Pascal.

15 '= ' expected

16 Identifier required to be a type in tag field specification

Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represent the tag field's
type was not declared as a type.

17 ' : ' expected

18 Parameters on forwarded routine not necessary

A routine declaration which has been previously declared as FORWARD
or EXTERNAL must not specify any formal parameters. Any formal
parameters are assumed to have been specified previously on the
associated declaration that contained the FORWARD/EXTERNAL direc-
tive.

19 Files passed by value not permitted

The indicated formal value parameter is of a file type. A file var-
iable may be passed to a routine only by the var or const mechanism;
never by value.

20 String literal constant is too long: exceeds 3190

Because of an implementation restriction, a string constant may not
exceed 3190 characters in length.

21 ') , expected

22 Forwarded routine class conflict

A procedure declaration was previously declared as a forwarded func-
tion; or a function declaration was previously declared as a for-
wardprl procedure.

-
23 Routine nesting exceeds maximum

The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

24 Too many nested WITH statements or RECORD definitions

This error occurs when to many lexical scopes are active. This can
occur is multiply nested with statements and record definitions.

25 Type not needed on forwarded function

A function declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORWARD directive.

26 Hissing type specification for function

The indicated function header did not specify a return type.

132 Pascal/VS Programmer's Guide

27 PROCEDURE/FUNCTION previously FORWARDed

The indicated routine declaration that contains the FORWARD or
EXTERNAL directive was already previously forwarded.

28 Additional errors in this line were not diagnosed

The indicated construct contained more errors, but were not diag-
nosed due to space considerations.

29 I llega I hexadecimal or binary digit

An invalid hexadecimal digit was detected within a hexadecimal con-
stant specification of the form

,
••• I X, I ••• I XC, or , ... 'XR;

or, an invalid binary digit was detected within a binary constant
specification of the form

, ... 'B.

The followi ng characters are valid hexadecimal digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
a, b, c, d, e, f

The followi ng characters are valid binary digits:

o , 1

30 Unidentifiable character

The indicated character is not recognized as a valid token.

31 Digit expected

A decimal digit was expected but missing at the indicated location.

32 Real constant has too many digits

The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, please
notify the compiler maintenance group at IBM.

33 Integer constant too large

The indicated integer constant is not within the range -2147483647
to 2147483647.

34 End of string not seen

A string constant may not cross a line boundary. This error is
often the result of mismatched quotes.

If a string constant is too large to fit on one line, it must be
broken up into multiple strings and concatenated with the II opera-
tor. (Concatenation of string constants is performed at compile
time).

35 Hexadecimal integer constant may not exceed 8 digits

The indicated hexadecimal constant exceeds the maximum allowed num-
ber of digits.

36 Char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-

L
stants are concatenated.

Pascal/VS Messages 133

37 standard routines not permitted as parameters

Standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou
tines:

ASS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
ODD, ORO, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN,
PDSIN, PDSOUT, READSTR, TERMIN, TERMOUT, UPDATE, WRITESTR

38 variable must be of type file

The indicated variable is required to be of a file type.

39 Must be of type TEXT

The indicated variable is required to have been declared with the
predefined type TEXT.

40 Required parameters are missing

The indicated READ or WRITE statement contains no parameter from
which to reference data.

41 Comma ',' exp~cted

42 User defined scalars not permitted

Expressions which are of a user defined enumerated type may not be
directly read from or written to a text file.

43 Operand of READ/WRITE not of a valid type

Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:

- INTEGER
REAL
SHORTREAL
CHAR
BOOLEAN
STRING
p~cked array[1 .. n] of CHAR
where n is a positive integer constant.

44 Field length must be integer

The indicated length qualifier expression in a READ or WRITE state
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.

4S set contains constant member(s) which are out of range

The indicated set constant contains members which are not valid for
the set variable to which the constant is being assigned.

For example,

var S : set of 10 .. 20;
begin

5 .- [1,2]; (*<== this statement would produce error 45*>
end;

This error may also occur when a set constant is being passed as a
parameter.

134 Pascal/VS Programmer's Guide

J

46 2nd field length applicable only to REAL data

In the procedure WRITE (text file ca se) , only expressions of type
REAL are permitted to have two length field qualifications.

47 Array reference contains too many subscripts

An array variable of dimension 'n' i s being subscripted with more
than ' n' number of subscripts.

48 Associated variable of subscript must be of an array type

An attempt is being made to subscript a variable which was not
declared as an array.

49 Expression must be of a simple scalar type

The indicated expression should be of a simple scalar type within
the context in which it is being used.

50 No mClX length specified on STRWG type - 255 assumed

A type definition of the form "STRING" does not contain a length
specification to indicate the maximum length of the string variable.
255 i s the default length.

51 Variable must be of a pointer type

The indicated variable is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

52 Corresponding variant declat'at i on missing

Within a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fa i Is to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

53 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

54 Expression must be numeric

Expressions which are prefixed with a sign (, + ' or ' -,) must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expression must be of type real

The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

56 Expression must be of type integer

The indicated expression must be of a type that is compatible with
INTEGER.

57 Parameter type does not match formal parameter

Within a procedure or function call, an expression or variable is
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 Expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-Var parameter.

Pascal/VS Messages 135

59 Number of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required. J

60 ' (, expected

61 Constant expected

62 Type specification expected

At the place indicated, a type definition is expected but is
missing.

63 , , expected ..
64 Expression's type is incorrect or incompatible within context

This error is caused by a number of reasons:

• A unary or binary operator is being applied to an expression
which IS of a type that is not valid for the operator.

• Two expressions being joined by a binary operator are of Incom-
patible t~/pes .

• The parameters of the MIN/MAX functions are not of consistent
types.

• Members of a set constructor have inconsistent types.

65 Subrange lower bound > upper bound

66 Assignment to ptr qualified variant record invalid J
The indicated statement attempts to assign to the l'Jho 1 e of a pointer
qualified record wi th variant fields. Such an assignment is not
valid under Pascal/VS. This rc:::>striction is necessary because the
pointer qualified record may have been allocated wi th a size that is
specific to its active variant.

Example of violation:

type
R = record

case BOOLEAN of
TRUE: (C:CHAR);
FALSE: (A: ALPHA)

end;
var P : OlR;

RR : R;
begin

NEW(P,TRUE);
POI . - RR <lE<===invalid assi gnmentlO

end

67 Real type not valid here

The indicated expression is of type REAL. An expression of this
type is not val i d within the associated context.

68 "OF" expected

J
136 Pascal/VS Programmer's Guide

69 Tag constant does not match tag field type

Within a record definition. a variant tag is being defined which is
of a type that is not compatible with the corresponding tag field
type.

Within a call to NEW or SIZEOF. a tag value is specified which is of
a type that is not compatible with the corresponding tag field type
of an associated record variable.

70 Duplicate variant field

Within a record definition. a variant tag is being defined more than
once.

71 Not applicable to "PACKED" qualifier

The indicated type definition was qualified with the word "packed".
Such a qualification within the associated context is not valid.

72 ' [, expected

73 Array has too many elements

The length of the indicated array definition exceeds the address-
ability of the computer.

74 ' 1 ' expected

76 File of files not supported

77 Illegal reference of function name

The indicated identifier is the name of a function. It is being
used 1 n a way that is incorrect.

78 Subscript type not compatible with index type

The indicated subscript expression i s not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record type.

A variable associated wi th the indicated statement or expression is
required to be of a record type according to context; but such is
not the case.

80 Record field qualifier not defined

The indicated record field does not exist for the associated record.

81 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 Associated variable must be of a pointer or file type

The indicated arrow qualified variable is not of a pointer or file
type.

83 set element out of range

The indicated set member of a set constructor exceeds the allowed
range for the set.

Pascal/VS Messages 137

84 Expression must be of a set type

The indicated expression is required to be of a set type in the con-
text in which it is being used.

85 Must be positive integer constant

The indicated expression fails to evaluate to a positive integer
constant, which i s required in the context in which it is being
used.

86 LEAVE/CONTINUE not within loop

The indicated leave or continue statement fa i Is to reside within a
loop construct.

87 ' : = ' expected

89 TEXT files mClY not be updated

An attempt was made to open a text file for updating. Only record
files may be updated.

90 Label not declared

The indicated label did not appear in a label declaration.

92 "THEU" expected

93 Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

94 Required length expression missing for dynamic string allocation

A pointer variable declared with the type STRINGPTR i s be i ng allo-
cated wi th the NEW procedure, but the required length expression is
missing.

9S "UNTIL" expected

96 "DO" expected

97 FOR-loop index must be simple local variable

A for-loop variable must be declared as a simple automatic (val')
variable, locCll to the routine in whi ch the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "TO" expected

99 Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

138 Pascal/VS Programmer's Guide

91

L

L

TNL SN20444S (31 December 1981) to SH20-6162·1

Max length of string vnriab1e does not match formal parameter

A string variable is being passed to a procedure "by var" and the
corresponding formal parameter is declared with an explicit length.
This error occurs when the declared length of the variable being
passed does not match that of the formal parameter.

Example:

procedure XYZ(var S: STRIHG(lOO»; EXTERNAL;
var T: STRING(50);
begin

XYZ(T); (*ERROR: declared length of T does *)
(* not match that of parameter S *)

end

Pascal/VS Messages 138.1

J

J

J

TNL SN20444S (31 December 1981) to SH20.o162-1

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compi ler error.

103 Expression must be of type BOOLEAN

The indicated expression which is associated with an if, assert.
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAH. The indicated expres-
sion failed to meet this criteria.

104 constant out of range

The indicated constant expression evaluated to a value which is out-
side the required range of its context.

lOS Identifier was previously declared

The indicated identifier within a declaration was previously
declared within the same lexical scope.

106 Undeclared identifier

The indicated identifier being referenced was not declared.

107 Identifier is not in proper context

The indicated identifier is being used in a way that is not consist-
ent with how it was declared.

108 Notify compiler maintenance group

If this error should occur. then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

109 Case label tag of wrong type

The value of the indicated case statement label is not of a type
that is conformable to the case statement indexing expression.

110 Loop will never execute

The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi-
ti onally true.

111 Loop range exceeds range of index

The indexing variable used for the indicated for loop was declared
wi th a subrange that does not include the range indicated by the
initial and final index values.

:-

112 'PROGRAM' header missing

113 pending comment not terminated

A comment starting symbol was detected within a pending comment.
-

114 Percent "~" statement not found

A ' " ' symbol was detected, but with no identifier following.

11S Percent ,,~" identifier" not recognized

A identifier followi ng the ,:'., symbol is not recognized as a valid
compiler directive.

Pascal/VS Messages 139

TNL SN20-4445 (31 December 1981) to SH20-6162-1

116 "ON" or "OFF" expected

117 Unrecogniznble option in n%CHECl(" J
118 M~gnitude of floating point constant too large or too small

The indicated floating point constant has a magnitude that is out-
side the range of tha rn~V370 double precision representation. The
largest floating point magnitude that can be represented is

7.23700557733226E75

The smallest is

5.39160534693403E-19

119 First parameter of READSTR/'-lRITESTn must be of type STRING

120 string constant requires truncation

The indicated string constant. which is being assigned to a variable
or being passed to a routine. requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.

121 Declaration out of ordar: LABEL,COHST,TYPE,VAR,routine

This is a l.Jarning message that may be produced when the
LANGLVL(STAHDARD) compiler option is specified. One or more declara-
tion constructs are not in the order required by standard Pascal.
Standard Pascal requires identifiers to be declared in the follol"i ng
order:

Labels
Constants (canst)
Types (type)
VariCibles (vc:r)
Routi nas (procedure/function)

122 "OTHEr-WISE" clause loli thout associated CASE statem::!nt

The indicated otherwise statement is not within the context of a
ca!;e statement.

123 Maximum string length exceeded

The indicated exprassion produced a varying length string which
exceeds 32767 characters in length. 32167 is the maximum allowed
length for a varying length string.

124 Construct or operation is not in standard Pascal

This is a loJarning message that may be produced when the
LAHGLVLCSTAHDARD) compiler option is speci fi ed. The indicated lan-
guage construct ora r i t hm e tic operation is not supported in "stand-
ard" Pascal, but is a Pascal/VS language extension.

125 Real to integer conversion not valid

The indicated expression is of type real. but acc6'rding to its con-
text, it is required to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 Types nat conformable in' C2SS i gnmant

The indicated assignment statement attempts to assign an expression
of a particular type to a vad able of an incompatible type. ._ ..

127 File variable assignment not permitted

The left side of the indicated assignment statement is a variable of J
a file type. Assignment to file variables is not permitted.

140 Pascal/VS Programmer's Guide

TNL SN20444S (31 December 1981) to SH20~162-1

128 Not compile-time computable

The indicated expression fails to be a constant expression that can
be evaluated at compile time.

129 Assignment to "CaNST" parameter invalid

The indicated variable declared as a formal const parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid

The indicated vari able that i s being used as a for loop index may
'not be modified by an assignment within the for loop statement.

131 Passing "CONST" parameter by VAR invalid

The indicated variable declared as a formal const parameter may not
be modified by being passed as an actual val' parameter to a routine.

132 Passing FOR-loop index by VAR invalid

T.he indicated variable that is being used as a for loop index may
not be modified by being passed as an actual val' parameter to a rou-
tine.

133 Refer-back tagfield must not b5! typed

The indicated tag field specification within a record definition was
found to reference a previous field within the record. Such
refer-back references may not contain a type reference.

137 p~ssing packed record field by VAR not valid

This is a warning message that may be produced when the
lANGlVLCSTANDARD) compiler option is specified. The indicated field
of a packed record is being passed as an actual val' parameter to a
routine. Passing fields of packed records as val' parameters is not
valid in standard Pascal.

138 Passing SPACE component by VAR not Valid

This is a warning message that may be produced when the
lANGLVlCSTANDARD) compiler option is specified. Standard Pascal
requires that actual val' parameter's be properly aligned which is not
necessarily the case with a space component. The indicated parame-
ter is a component of a space variable which is bei ng passed as a
vc:r parameter.

139 Passing packed array element by VAR not valid

This is a warning message that may be produced when the
LANGlVlCSTANDARD) compiler option is specified. The indicated sub-
scripted var~able is bei ng passed as an actual val' parameter to a
routine. The variable being subscripted is a packed array. Passing
elements of packed arrays as val' parameters is not valid in standard
Pascal.

140 Scalar PACKing does not match corresponding VAR parameter

The indicated variable that is being passed as a val' parameter is of
a compatible type, but has a different length than the corresponding
formal parameter. This was caused by one being packed and the other
unpacked.

141 symbol not recognizable in standard Pascal

This is a warning message that may result when the LANGLVlCSTANDARD)
compiler option is specified. The indicated symbol (or o'perator) is
not supported in "standard" Pascal. The symbol is part of a con-
struct which i 5 a Pascal/VS language extension.

Pascal/VS Messages 141

TNL SN20444S (31 December 1981) to SH20-6162-1

1~2 variable must be an array variable

The indicated variable is required to be of an array type. but such
is not the case.

1~3 Offset qualified field not on proper boundary

The indicated field in a record definition is qualified with an off
set which is not consistant with the boundary requirement of the
field's type.

144 Offset qualification value is too small

The indicated field in a record definition is qualified with an off
set which causes an overlap with a previous field within the record.

1~5 Type must be CHAR or PACKED ARRAY OF CHAR

The indicated expression is required by its context to be of type
CHAR or packed array[l .. n] of CHAR.

1~6 Variables of type POINTER are not permitted

The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function

The indicated identifier is used as though it is a function name.
but is not declared as such.

148 Missing period '.' assumed

149 Not a valid comparison operation

The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings. variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
'=', '<>', '<=', and '>='.

150 Entry routines must be at the outermost nesting level

A routine which is to be called from another module is nested within
another routine which is not permitted. Such routines must be
declared at the outermost nesting level.

151 Fixed Point overflow or divide-by-zero

An integer expression consisting of constant operands causes a pro
gram error to occur when it is evaluated_

152 Checking error will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
error.

This error may occur at an assignment or at a routine call in which
parameters are passed_ It indicates that the range of the source
expression (a scalar> does not overlap the declared range of the
target. For example. the following assignment would cause this
error to occur:

var I: 1..10;
J: 10 •. 20.

I .- J+l. (*target's range: 1 •• 10; source's range: 11 •• 21 *>

142 Pascal/VS Programmer's Guide

J

TNL SN20444S (31 December 1981) to SH20-6162-1

153 LBOUND/HBOUND dim2nsion number is invalid for variable

154 Low bound of subscript rc'lnge is too large in magnituda

The indicated array definition has an illegal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET ~cmbers must lie within 0 •• 255

The ordinal value of any valid set member may not be less than 0 nor
greater than 255.

156 Length fields not applicable to non-TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non-text file I/O.

Pascal/VS Messages 142.1

J

J

157 STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Routin~s passed as par«m~ter must be at outermost nesting level

An attempt is being made to pass a routine as a parameter, but the
routine being passed is nested within another. As a Pascal/VS
restriction, routines being passed as parameters must not be nested
within another routine.

159 Recursive type reference is not permitted

The compiler detected a degenerate type declaration of one of the
following forms:

I. type X = Xi
II. type X = @X;

III. type X = record

F: Xi

end

160 This SET operation will always produce the NULL set

Two disjoint sets are being intersected. The result will always be
the null set [J. For example,

var 51: set of O .. 10;
52: set of 11 .. 20i
S3: set of 0 .. 20;

begin

53 .- 51 * 52; (M <-- always produces the NULL set M)

end

161 ELSE clause without associated IF statement

A else symbol was detected that is not part of an if statement.
This error often occurs when the preceding then clause of an if
statement is terminated with a semicolon (;).

162 Must be an unPACKED array

The indicated array variable 1S erroneously declared as packed when
the context requires it to be unpacked.

163 Must be a PACKED array

The indicated array variable should have been declared as packed,
but was not.

164 Unrecognizable procedure/function directive

The indicated identifier was interpreted as a procedure or function
directive but was not recognizable. The following are the only
recognizable directives:

- FORWARD
- EXTERNAL
- FORTRAN
- MAIN
- REENTRANT

Pascal/VS Messages 143

1165
-

I
i' 166

~- ~ .. -~-~~- --" .-~ 1

FORTRAH subroutines m)y not be passed (is

Only Pasca!/VS routin2s
tine'S mi.1~l not.

be passed c\o; 'op IR "" ""b' "'.- I

I
One l-j" Y to z:; p t: a r' 0 un d t Ii i 5 pro b 1 em i 5 to d~· fill e a P i'1 sea 11 '/ 'I n roc e
du~e l·Jhich does nothing rnore t.h8n call the FORTRAN ~:d)I-(Jut: ,p The
P85cal/VS proceciur-e t-JOuld then be pa5s{?d in plClce of trw F 0::'-. Rj\,N
subroutine. I ,,--,1 .. __ . __ ._----- ~~-"'~--,-----.. -,-----.-- ... ~ -~,-~ - ~,,-...... -, -~,,--- ~-.~---.--.- --~- --~-.. -.-~--.

FORTRAN subroutine paramsters mny not be passed by valu2

All formal parameters of a FORTRAN subroutine must re f-~

~167'--;-:-~-' ~-:-;-t:~-:-' u-
i t-~-~·:~~~~~---;~>·~~~~~~~!~: :~:: . sc a 1 a r va 1 u~~--- -- --.-- -.-.--

I
---.- -·-·---1

A FORTRAN functi on mi:l\f 0I1J\1 n?turn values that arC' :;{:;:lliH'~i (i nclud- I
ing floating point).

1
-----1--- ,'---~--------.-.--~ -~~ , ,,'.-.' -.. " .~ ,----.------.--~--- ----... . -~- .. ,-. -.--.. -.... -~ ... --... ------.. --1

16& ~~INCLlJDE mf?r.1bc:r" not found 1 n 1 i brary i
! !
I I The libra:'y lriPinber ~~hlCh ~'J')5 to be incluclPd into the sourc(~ pr~oqT;ifTi

1691- : :~:~;~~;;;{'~~:puta ti Dna ,--;;:;,~;----~-----------
I Thp,nciiCc:;\::cd floCiting point expr'ession causes a progril1i1 c,rror l0hf'n

i7~~ ~; ~ "::; :I;~~ . ,,;;;,;o5-;dt"-;;~~b ii i t~-~i ;;-.~'~i ;j~--------- .
,1he memory !'equlr,,,cI to contain all declared vc1t-iilblp:. ,,.lithir 1'! rou-

-.-~--

171.

172:

173

-~-"".-.-

174

175

176

1 i·~ n:xc~~dl~<1i ~ ~:~~;~~,:~~:~:::~~ ... _~~,e c:pa~~.~~_~_~ __ .~h= .. ::~.'~;r'uh,r'; tlVlt i s'_J
-------_ ... ,,--

I
I
I ~~~::;~ ~;~;~c~~, ~:h i ~:: i_~: i ~:~ t_~:~::: d_":" j_F_t_~:, I,

·~ss is not compile-time computable ~

only STATIC/DE

The only clas5
are d:!f and st

.. __ ._._------
Velriah1e'5 <lad!

The i :)d i cclb"d /alue assignment could not be performed. In orcie,-
a vc1r-iable T f) be initialized at compile-time, its i'irld!'e<,~c~' ::~lJst n .-
compile tiiYlf2 c Ginputabl e.

--.-~---.-- ---.--

Array stl'Ut.:tw e has too many elements

The indici'tpc/ arr-ay st.r'ucture cont<Jins more element,,; 1,11<.; ,,);.

declclt'(·d for t i -. ; eat' ray t ~! P e .
~---~- ~--- .-----.. ----.---.. ~.------------ .. -.-------~ ... ~~ .. --------.. --~-.... ~- ~

Repetition

Wi thi n a
r'epet it ion

fat;

a.r
fae

tor applicable to const~nts only !
only a constant may be qualified with a
f'xpreS5 i on may not.

!
I
I
i

No correspond1

-_ " .. ----.. ---- .----,-.. -.-.----".--------------,-.-,-.. --.-~--.. -,---- .. --.-----..... ---- ·~·1
n9 record field !

The lndlCi.l1:pd
fields ~j i til in

This identifie

An attempt w
name.

record structure contains more elements than there are
the record type,

r is a reserved name

as Made to declare an identifier which i5 a reserved

144 Pascal/VS Programmer's Guide

J

J

>_~" ".< " ___ ._. __ "u· "_'_.~~ __ ,, .• ____ ._,_~. __ ~_., ____ , __ .,,~,,~_ _, <. ____ • _____ • ______ ~ _____ • ___ "_ --_". __ ~.~. ___ ~ ___ _

II 171-;. "::~ ~ C~~~~'~~5~:~~~~~~~ __ r_~_ .. _9_9_9_9_ •. _______ . ___ ~ __ ---1

178 i Id~~tifier wns previously referenced illegally

i [he ir,dicated idEntifier th0t was just declared W0S referenced pre-
I II \' i ot.lsiy I.Ji thi n the C1 "soc i i1ted tout: i ne. P<1scal/VS r (~qu i res an i den-I tifier to I)p cieclan.'d I)rio~ to ltS use.

1-- 179'l-R~~~~~~i-~i.~~:·eferen~~-~jtl~·i .. ~·~~~tC1nt decl;rat i on

ii I t, COlistclnr dE~clarcltion of onp of thp foJlol'Jing forms I·jas detected:
c.anst X - x;

or
C'1I1St X - "some expression involving X"

~---.. -
Such recut'sion t<Jithin a constant declar<1tion 1S not permitted.

- .. --.-----... - ... --.--------.. ---.. ---.-.. ---.. ---.-.-------------_._-----1

I

180 Repetition factor not applicable to record structures

The
fied

indlC<'1\-ed record structul'e contains a component which is quali
with ~ repetition factor. Only nrray structures are permitted

to hav(' repetition factors.
"'j--"""- _-- .. _ ----_ ... __ _ __ _. __ _----_ .. -_._----_. __ ._-----_._-----j

181 i Label Ple'liollsly referenced from a GOTO invalidly
I

I
i

Til" lnril(;;:-1ted 1<"lh,,1 (·us previously referenced in a goto statement
t h ;1\: i::' Il 0 t a (; I) (~ s tit u e n t Q f the 5 tat e In e n t ", Q que f) c e i n I·J h i c h the
1 cl b 0 1 i s d", f j n e cI _

b'::~J 1 n
SlDto L;\B[lli
for- I : ~ 1 to 1 (1 dQ

b1.'J I n
LA.BELl· f,lIi : = 0; IM<~=label was previously referenced invalidlyM)

I I [.-. __ _ .. -.1 - ... -.. . ." _ ______ • ____ . __ . __ • ____ .. __ . ___ . _ .. _ ••• ___ ... ___________ _

! 182 I A care m~y not reference a label within a separate stmt sequence

I II The i ndi Gdted gato statf'l>lent r0ferenCf?5 a lilbel l..Jhi ch WdS previ ously
, defirh'd l..Jitf,in a c,tc1te l l]Cnt sequence of which the gata is not a con-

I::~,::;~ l 'uth 0 '" f p,once ; 5 not pe,md tod

biC il i n
fOI' I :c: 1 to 10 do

b02:Jin
LABELl· A[l] ···0;

end;
g~to IABELI; CM<==invalid reference of label *)

end
---- --_ - .----.. --- -.... -----.. ------------------------------------1

183 CASE label outside range of indexing expression

The indicated
i 5 0 U t :=. i d~: the

V<H' 1: V .. I0;
b(~g i n

case label within a c~se statement has a value which
range of the indexing expression_ For example,

Ccl52 IM2 of (Mrange of index is 0 ... 20 ~)
0:
1. .20:
3D: (M<== this label is nu ")' range of index*)

end
end

...... -._ .. -.... _----------------'

Pasca!/VS Messages 145

184 Second operand of MOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer. J

185 Routine is not defined in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. The indicated call statement refers to a pre-
defined Pascal/VS routine which does not exist in standard Pascal.

186 Directive only applies to procedure, not to a function

The indicated procedure directive ("MAIN" or "REENTRANT") is being
applied to a function declaration. The directive is not slJpported
for functions.

188 First parameter of REENTRANT procedure must be an integer by var

The indicated procedure declaration 1 n which the directive
"REENTRANT" was specified, fa i 1 ed to comply wi th the parameter 1 i st
requirement for such a procedure: the first parameter of a
"REENTRANT" procedure must be a pass-by-reference (specified wi th
the var reserved word) integer in which a pointer to the Pascal/VS
environment is saved between calls.

191 Simple constant required

A constant expression which required compile-time computation was
found l~he re a simple constant is required. This 1 s often a warning
message that mC\y be produced when the LANGLVL(STANDARD) compiler
option is specified.

192 %Percent directives are not recognized in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. All compiler directives which appear in the
source program l~ i th the percent (%) prefix are Pascal/VS extensions
Clnd are not supported in standard Pascal. J

193 FOR- or UI~ILE-loop has no statements ~Jithin its body

This is a warning message to indicate that a for-statement or
while-statement loops on an empty statement. Such a case is often
not the programmer's intent.

Examples

while A > 0 do;

for I . - 1 to J do ;

194 PACKED subranges not supported in standard Pascal

This wClrning may be produced when the LANGLVL(STANDARD) compiler
option is specified. Subrange type definitions may not be "packed"
in standard Pascal. This feature is a Pascal/VS language extension.

146 Pascal/VS Programmer's Guide

TNL SN20444S (31 December 1981) to SH20-6162·1

195 variable is not properly aligned

The indicated variable is being passed as a var parameter and the
compiler has detected that its address may not be properly aligned.
(For example, passing a full word integer which has an address that
is not on a word boundary.)

On most models of the 370 series, the manipulation of objects which
are not properly align will result in a penalty in execution speed.

This warning will be produced even if the variable is just poten
tially missaligned (as in the case of a subscripted variable).

500 Recursion detected in "%INCLUDE" processing lib(maml

Source text which was included from member "mem" in library "lib" by
means of the a XINCLUDE directive contains in itselfaXIHCLUDE
directive which directly or indirectly references the same member
recursively. This error causes immediate termination of the compi
lation.

Example

Source program:

program EXAMPLE;
type

%include TYPES;
bogin

end.

Member TYPES:

REC = record
NAME: STRING(IO);
AGE: O •• 99;

end
Xinclude TYPES; (*<===ERROR 500*)

501 Too many nasting levels in "%I~CLUDE" processing lib(meml

502

A XINCLUDE directive was detected which is nested 8 levels deep
within a stack of "includes". "Included" source text may not be
nested beyond 8 levels. This error causes immediate termination of
the compilation.

Unable to opcn "%INCLUDE" 1 i brary: Ii bname

The include library named "libname" could not be opened. Possible
causes are that the DDname was not assigned or the DCB attributes of
the library are not correct. This error causes immediate termi
nation of the compilation.

600 Identifier used in type definition at line nnn is out of context: xxx x

The identifier 'xxxx' appeared in a pointer type
form '->xxxx' at line 'nnn', but the identifier
declared as something other than a type.

Example:

type X = ->Y;

definrtion of the
was subsequently

var Y: INTEGER; C* <=== would cause error 600 to be generated *)

601 Type identifier referenced at line nnn is undoclared: xxxx

The identifier 'xxxx' appeared in a pointer type definition of the
form '->xxxx' at line 'nnn', but the identifier was not subsequently
declared.

602 Label xxxx was declared and/or referenced but was not defined

603

The label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

procedure/function xxxx was forwarded but not resolved

The procedure or function named 'xxxx'
tive 'FORWARD', but the body of the
declared.

was declared with the direc
routine was not subsequently

Pascal/VS Messages 147

TNL SN204445 (31 December 1981) to SH20~162-1

No.

AHPOOOlS

AHPTOG1E

AHPT002E

AMPT003E

AMPT005E

AMPT006E

Message and Explanation

Routine 'name' is too large to compile at stmt n

The indicated routine has too many statements to compile; a
fixed-length table of the compiler has overflowed. The last
statement that was successfully processed was statement "n".
The routine should be divided into two or more separate rou
tines.

Inevitable NIL pointer error will occur

The code optimizer of the compiler has determined that a nil
pointer checking error will inevitably occur at execution time
at the specified routine and statement. Example:

begin
P .- nil
WRITElN(PO'I.D;

end;
(*<===AMPTOOIE - inevitable error*)

Inevitable high bound error wfll occur

The code optimizer of the compiler has determined that a high
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

val'" I : 1. .10;
J : INTEGER;

begin
J .- 11;
I . - J;

end;
(*<===AMPT002E - inevitable error*>

Inevitable low bound error wtll occur

The code optimizer of the compiler has determined that a low
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

val'" I : 1..10;
J : INTEGER;

begin
J • - 0;
I . - J;

end;
(*<===AMPT003E - inevitable error*)

Function routine does not return a value

The code optimizer of the compiler has determined that the spe
cified function routine does not return a result. Example:

funct~on (val'" I: INTEGER): INTEGER;
begin

READlN(l);
end; (*<===AMPT005 function did not return a result*>

Expression is too complicated at stmt nnn of routine xxxxxxxx

The expression in statement "nnn" of routine "xxxxxxxx" is too
complex to compile and should be broken up into multiple state
ments. If the indicated statement contains a relatively simple
expre~~ion, then the Pascal/VS support group should be
notified.

143 Pa~cal/VS Programmer's Guide

J

TNL SN20444S (31 December 1981) to SH20-6162·1

...
AMPT700S Routine "name" contains too many statements. Max=n

The statement table being generated overflowed in the specified
routine. The routine should be divided into two or more rou-
tines.

AMPT701I Record type contains too many fields

The DEBUG compiler option was specified and a record type defi-
nition was compiled that contains too many fields to be accomo-
dated in the debugger type table. If this error should occur,
the resulting code may not work properly when the interactive
debugger is enabled.

AMPT702S Rout i ne "mIme" exceeds 8K limit at stmt n

The specified routine caused more than 8192 bytes of code to be
generated starting at statement number "n". Since Pascal/VS
only reserves two base registers to address code, 8192 bytes is
the limit. The indicated routine should be divided into two or
more separate routines.

AMPT70JI Field name space pool overflowed

The DEBUG compiler option was specified and a large number of
record type definitions were compiled. The debugger table
which contains the record field names overflowed. If this
error should occur, the resulting code may not work properly
when the interactive debugger is enabled.

AMPT7041 Type table overflo~. Debug is disabled

The module being compiled with the DEBUG option contains more
than 256 unique data types. The type table being generated for
the interactive debugger may contain no more than 256 entries.
The interactive debugger may not be used on this module.

AMPL999S Compiler error notify Pascal/VS support

An error was detected in the first pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMP0999S Notify Pascal/VS Support - optimizer Error

An error was detected in the second pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMPT999S Notify Pascal/VS support - Translation error

An error was detected in the third pass of the compiler. If
this error should occur, pleaTie notify Pascal/VS support at
IBM.

Pascal/VS MQssagQs 149

TNL SN20-444S (31 December 1981) to SH20-6162-1

17.2 EXECUTION TIME MESSAGES J
No. Message and Explanation

AMPXOllE operation exception

An operation exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program or due to a 'wild' assignment through an uninitial-
ized pointer.

AMPX012E Privileged exception

A privileged exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AI1PX013E Execute exception

An execute exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX014E Protection exception

A protection exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AMPX01SE Addressing exception

An addressing exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AI1PX016E specification exception

A specification exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX017E Data exception

A data exception occurred in the program. The error is probably
in a non-Pascal routine linked with a Pascal program.

AI1PX018E Fixed point overflow exception

A fixed-point overflow exception occurred in the program. The
error is probably due to an addition. subtraction. or multipli-
cation that resulted in an integer with a magnitude which
exceeds MAXINT.

AI1PX019E Fixed point divida by zero exception

A fixed point divide by zero exception occurred in the program.
The error is due to a div operation in which the second operand
(the divisor) has the value zero.

AMPX020E Decimal overflow exception

A decimal overflow exception occurred in the program. The error
is probably occurred in a non-Pascal routine linked to the Pas-
cal program.

150 Pascal/VS Programmer's Guide

AHPX021E Decim<ll divide by zero exception

A decimal divide by zero exception occurred in the program.
The error probably occurred in a non-Pascal routine linked to
the Pascal progt'am.

AMPX022E Exponent overflow exception

An exponent overflow exception occurred in the program. The
error is pr'obably due to a floating point multiplication or
division which produces a result wi th a magnitude greater than
7.23700557733226E75.

ANPX023E Exponent underflow exception

An exponent underflow exception occurred 1 n the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude less than
5.39760534693403E-79.

ANPX024E Sign it i cance exception

This exception is not intercepted by the PascallVS run time
environment. If it should occur, then the PascallVS run time
environment may have been locally modified. Contact your local
system support.

At1PX02SE Floating point divide by zero exception

A floating point divide by zero exception occurred in the pro-
gram. The error is caused by an attempt to divide by zero.

AMPX026E Segment translation exception

This is a system error, run the program again and if the error
persists contact PascallVS Development for assistance.

AMPX027E Page translation exception

This is a system error, run the program again and if the error
persists contact PascallVS Development for assistance.

AtlPX028E Trcmslclt i on specification exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AHPx029E Special operation exception

This is a system error, run the program again and if the error
persists contact PascallVS Development for assistance.

AMPX030E Terminal aUent i on except ton

An attention was signaled from the users termi nal.

At1PX03lE Low bound checking error

Either the value of an array subscript, or the value be; ng
assigned to a subrange type variable is less than the minimum
allowed for the subscript or subrange. This error may also
result if the Irod operation is attempted for which the second
operand (the divisor) is less than or equal to zero.

ANPX032E High bound checking error

Either the value of an array subscript, or the value being
assigned to a subrange type variable is greater than the maxi-
mum allowed for the subscript or subrange.

Pasca!/VS Messages 151

I 'MPXOJ3E

--------- --
Nil po i nte!~ checking error

1\ n attempt t·k15 mad8 to reference a dynclrni c variable from a
pointer I~hl eh hils the value nil.

r- ANPX034E

_____ • ____ w ____ ·._ •

Case label cliecking error

The expr'ess ion of a c ase- stcltemen t has a value other than any
of the specified CC1se labels and there is no ottlen~ i se clause. _._-_._._._--, .-----

AHPX03SE Function value checking error'

A function routine returned to its i nvo~{f.;!r without being
Llssigned a re'C,ult.

~--- .--~---.. --------- .. --,------.--.----
AMPX036E Assertion fa i lure checking error

The expression of an assert statement computed to the value
FALSE.

.-----------,-~---,---.-.--.-

P.NPX037E String subscript out of bounds checking errOl'

The subscript on a STRING Wi:lS not 1 n the range O •• LENGTH(s),
l-lhere s 1 s the STRING being subscripted.

-
AtlPX038E Error 38 not assigned

This error number has not been assigned a meaning.
-- ----------------- --

AtlPX039E string truncation checking errol'

An a5signernent into a STRING variable could not be performed
because the length of the source string is longer than the max-
imum length of the destination string.

ANPX04lS File could not be opened: DDNAt1E

An error occur'red when an attempt was made to open the fi 1 e
t~ i th the indicated DDni:lme. The most probable cause of this
er'r'or is a missing DDname definition. Under U1S, this error
wi 11 occur VJhen attempting to open a file that does not have a
record format of 'F' or ' V ' •

AMPX042E Lrecl size too small for file DDNAME

The logical record length of the file with the indicated DDNAME
1 S not large enough to contain a single fi Ie component.

1------- -----
ANPX043E File is not ODen for- output: DDNAME

An output operation !-Jas attempted on a file open for input.

AMPX044E File is not open for input: DDHAME

An input operation I>Jas attempted on a file open for output.
-.. - .. -

M1PX04SE Logical record is too small in input file

The logical record length of a particular record within a vari-
able record length file is not large enough to contain a file
component.

ANPX046E Data larger th;m lrecl for file

The logical record length of a file 15 too small to contain the
file's component.

~- ---- ..

152 Pascal/VS Programmer's Guide

TNL SN20-444S (31 December 1981) to SH20-6162-1

AMPX047E Invalid Input/Output option: xxxxx •••

The options string passed to the procedure contains an incor-
rect or invalid option.

AMPX048E Missing member in file: member library

The indicated member could not be fO'und in the partitioned data
set.

AMPX049E Floating point overflow/underflow

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

AMPXOSOE BLKSIZE exceeds 32760 in file DDNAME

A block size was specified that exceeds 32760 which is the max-
imum length of a block.

AMPXOS1E LRECL > BLKSIZE-4 in V format file: DDNAME

The logical record size was too large to permit at least one
record to be fit in a block.

AMPXOS2E BLKSIZE not integer multiple of LRECL in DDNAME

The specified block size for a fixed-length record file is not
an integer multiple of logical records.

AMPXOS3E component length of file exceeds 32760 in DDNAME

A single element must fit in one logical record, therefore its
length is restricted to 32760 bytes.

AMPXOS4E GET or READ called after end-of-file in DDNAME

An attempt was made to advance the file beyond the end-of-file.

AMPXOSSE Integer READ operation failed for file DDNAME

An attempt was made to read an integer from a text fi Ie, but
either the end-of-file occurred, or unrecognizable character
were detected where the integer should have been.

AMPXOS6E Overflow/underflow detected in integer READ: DDNAME

An attempt was made to read an integer which has a value that
does not lie within the range -2147483648 •. 2147483647.

AMPXOS7E Invalid run time option:

An invalid option was specified when invoking a Pasca1/VS pro-
gram. A runtime option is specified preceeding a slash '/ '
when invoking the program.

AMPXOS8I OPEN and INTERACTIVE are no longer supported, use READ/WRITE

The procedures OPEN and INTERACTIVE are not supported in Real-
ease 2.0. The Pascal/VS Programmer's Guide SH20-6162-1 and the
Pasca1/VS Reference Manual SH20-6168-1 describes the equivalent
operations.

Pascal/VS Messages 153

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPX059E Text exceeds logical record length in file "name" J
A line of data is being written to the text file whose DDname
is "name" and the line exceeded the logical record length of
the file. As a recovery, the line is terminated at the end of
the logical record and the remaining text of the line is placed
in the next logical record.

For each file being written. this error will be diagnosed only
on the first occurrence; subsequent violations wi 11 not be
diagnosed.

AMPX060E Operand to RELEASE does not correspond to MARK

The parameter passed to RELEASE did not have the value returned
by a call to MARK.

AMPX061E Operand to DISPOSE not allocated with NEW

A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPX063E Operand to DISPOSE already deallocated

An attempt was made to perform a DISPOSE operation on a pointer
whi ch referenced heap storage which had been previously
released.

AMPX064E Insufficient space to do NEW

There was not enough storage available to perform the NEW pro-
cedure. You should execute the program in a larger region (OS)
or in a larger virtual machine (eMS). Also. you may not be
calling DISPOSE for storage you no longer need.

AMPX06SE storage has been incorrectly assigned prior to DISPOSE J
The pointer being disposed of was used incorrectly. namely, the
pointer caused the heap to be modified beyond the size of the
dynamic variable. This could happen if the dynamic variable
was a record that was allocated by specifing tag values and
then it was later used to assigning to a different variant.

AMPX066E Operand to DISPOSE is NIL or undefined.

The operand is not valid for DISPOSE.

AMPX067E Heap incorrect due to previous invalid assignment using a pointer

The heap has been damaged, the cause of the damage was probably
due to a pointer being used incorrectly.

AMPX070E LN: argument <= 0.0

The natural logarithm function UN) was called wi th a 0 or neg-
ative argument.

AMPX071E SQRT: argument < 0.0, zero returned as result

The square root function (SQRT)· was called with a negative
argument.

AMPX072E EXP: argument too large, exceeds 174.67309

The argument of the EXP function i!5 too large; the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

154 Pascal/VS Programmer's Gui de

TNL SN20-4445 (31 December 1981) to SH20-6162·1

ANPX073E RANDOM: seed is out of range

The function RANDOM was called with an argument which is either
negative or greater than 1048575 (which is the allowed
maxi mum).

AMPX074E SIN/COS: argument too large. exceeds (PI/2HuESO

A call to SIN or COS was made with an argument that is too
large for an accurate result to be computed.

AMPX07SE SEEK called for a file not opened for DIRECT access

AHPX076E SEEK: bad relative record address

The record number in an invocation of SEEK has an invalid
value.

AHPX077E Direct access file does not have fixed unblocked records: DDNAHE

An attempt was made to perform direct access (relative record)
operations on a file that was either not fixed or not
unblocked. The required record format for a file to be manipu-
lated with SEEK is RECFM=F.

AHPX078E Target string filled to maximum length in WRITESTR ca 11

The target STRING (first parameter) in a call to WRITESTR was
fi lled to capacity before the data being assigned into the
STRING was exhausted.

AMPX079E Source string exhausted in READSTR call

Prior to reading all data from the the source string (first
parameter), the end of the string was encountered.

AHPX081E LPAD: PADDING exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter) .

AHPX082E DELETE: Length parameter less than zero

AMPX083E DELETE: starting index is less than 1

AMPX084E DELETE: substring not contained within source string

AMPX08SE set operation out of bounds

An attempt to perform a set operation in which the resulting
set contained members which are outside the range of a target
set. This can occur in a set assignment in which the source
set contains members which are not valid for the declared type
of the target set.

AMPX086E SUBSTR: Length parameter less than zero

AHPX087E SUBSTR: starting index is less than I

AHPX088E SUBSTR: substring not contained within source string

L

155

TNL SN204445 (31December 1981).to SH20~162-1

AMPX089E RPAD: padding exceeds maximum length of st ... ing

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AMPX200I The module must be linked with DEBUG fo ... debugge ... featu ... es

An attempt was made to invoke the interactive debugger on a
module that was not linked with the debugger library.

AMPX201I The module must be linked with DEBUG fo ... symbolic dump

An execution time error occurred and a symbolic dump of the
offending routine was attempted, but the module in which the
routine is located was not compiled with the DEBUG option.

AMPX203I E o ... occu ed while executing ONERROR ... outine

An execution time error h,as occurred while ON ERROR was execut-
ing. ON ERROR is a user provided procedure to diagnose exe-
cution errors and determine the correct course of action.

AMPX999S NOTIFY PASCAL/VS SUPPORT: RECURSIVE ERROR IN RUNTIME ENVIRONMENT

A second error was encountered while Pascal/VS was recovering
from the first error. The program is terminated because any
further processing would probably result in a CPU bound loop.
You should notifiy Pascal/VS Development if this error
persists.

156 Pascal/VS Programmer's Guide

17.3 MESSAGES FROM DEBUG

No. Message and Explanation

AtIPDSOO Current module not compiled with Debug option

AtlPDSOl No statement *** in

ANPDS02 There is no routine named lE in module

AtlPDS03 Inva Ii d qualification specification:

AMPDS04 Missing qualification specification

ANPDSOS Module name must be specified

AnPDS06 BrcClkpoint is already set

MIPDS07 Maximum number of breakpoints have been set

ANPDS08 specified breakpoint does not exist

AMPDS09 is an automatic variable local to a non-active routine

ANPDSIO Field qualified variable is not a record

AMPDSll is not a valid record field

AMPDSl2 subscripted variable is not an array

At1PDSl3 Array subscript is not a scalar

At1PDSl4 Invalid symbol:

AMPDSIS Array subscript is out of bounds:

AMPDSl6 Missing symbol:

AMPDSl7 Associated variable is not a pointer

AMPDSl8 Pointer variable does not contain valid address

At1PDSl9 not found in symbol table

AMPDS20 Equate substitution is in infinite recursion

L
Pascal/VS Messages 157

AMPD52l EQUATE expansion causes command truncation(exceeds 255 characters

AMPD522 You are not in Cf1S, command not valid

ANPDS23 Debug command not recognized:

ANPDS24 Invalid character in hexadecimal string:

ANPDS25 Invalid hexadecimal string

AHPD526 Routine is not actiVE!

AtlPD527 Qualification set to module

ANPD528 The word "EQUATE" may not be redefined

ANPD529 Naximum number of EQUATE' 's have been set

AMPDS30 There are no EQUATE"s currently set

ANPDS3l statement table missing

Trace requires GOSTMT option

ANPD533 There are no active variables

ANPD534 Routine is not active: J

158 Pasca!/VS Programmer's Guide

17.4 MESSAGES FROM PASCALVS EXEC

The following messages are given by the
PASCAlVS EXEC of eMS to indicate the
status of the compiler invocation.

RC t1~s5age • .llnd Explanation

1 Fi Ie nelm!:! is missing

They are shown below with their associ
ated return codes.

The exec was invoked ~"i thout specifying a fi Ie name.

2 Unable to find Ifni PASCAL

The speci fi ed file name could not be found.

16 Unable to find the 'name' HACLIB

The specified maclib file could not be found.

32 r10re than 8 m~clibs specified

The maximum number of MAClIBS that may be specified when invoking
the PASCALVS EXEC is eight.

Pascal/VS Messages 159

J

J

TNL SN20-4607 (9 December 1983) to SH20-6162-1

APPENDIXES

• wAppendix A. Command Syntax Notationw on page 163

• wAppendix B. Installation Instructions" on page 165

• wAppendix C. Additional library Procedures and Functionsw on page 175

I. "Appendix D. VM/PC Pascal/VS User's Guide" on page 178.3

APPENDIXES 161

L

The syntax notation used to illustrate
TSO commands is explained in the manual
TSO Com~and Languag~ Reference
(GC28-0646). The notation used to
illustrate CMS commands is explained in
the manual VM/370: CMS Command and Mac
ro Reference (GC20-1818).

Briefly, the conventions used by both
notati ons are as follows.

• Items in brackets [] are optional.
If more than one item appears in
brackets, then no more than one of
them may be speci fi ed; they are
mutually exclusive.

•

•

•

•

A.O COMMAND SYNTAX NOTATION

Items in capi tal letters are
keywords. The command name and
keywords must be spelled as shown.

Items in lowercase letters must be
replaced by appropr i ate names or
values.

Items which are underlined repre
sent defaults.

The special characters' () * must
be included where shown.

Command Syntax Notation 163

L

This section describes how to install
Pascal/VS under OS/VS2 and CMS-VM/370
from the distribution tape.

All VS2 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili
ty program. VS2 sequential data sets
were stored by using the IEBGENER util
i ty program.

The CMS version of the package is
located at file 12 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con
tain the following data sets.

File 1: INSTALL.CNTL
A sample of the job control lan
guage (JCL) requi red to install
Pascal/VS under OS/VS2 (MVS).

File 2: LOADSRC.CNTL
A sample of the job control lan
guage (JCL) required to load the
Pascal/VS source from the di s
tribution tape.

File 3: PASCALYS.CONTENTS
A sequential data set which lists
the contents of the Pascal/VS
package.

File 4: PASCALYS.LINKLIB
A partitioned data set which con
tains the modules of the
compiler.

File 5: PASCALYS.LOAD
A partitioned data set which con
tains the Pascal/VS run time
library.

File 6: PASDEBUG.LOAD
A partitioned data set which con
tains the Pascal/VS debug
library.

File 7: PASCALYS.MACLIB
The standard includa library.

File 8: PASCALYS.CLIST
A pa rt it i oned data set conta i n
ing two clists: PASCALVS and
PASCMOD.

File 9: PASCALYS.PROCLIB
A partitioned data set which con
tai ns the JCL cataloged proce
dures for runni ng the compi ler as
a batch job under MVS.

File 10: SAMPLE. PASCAL
A part it i oned data set conta i n
ing sample programs.

TNL SN20-444S (31 December 1981) to SH20-6162-1

APPENDIX B. INSTALLATION INSTRUCTIONS

File 11: PASCALYS.MESSAGES
A sequential data set which con
tains the compiler massages.

File 12: CMS dump of the entire
Pascal/YS package:

- PASCALYS CONTENTS
A listing of the contents of
the Pascal/VS package.

PASCALS MODULE
A program that issues all
necessary FILEDEF commands
to CMS prior to invoking the
compiler.

- PASCALL MODULE
The first pass of the compil
er.

- PASCALO MODULE
The second pass of the com
piler.

- PASCALT MODULE
The thi rd pass of the compi 1-
are

- PASCALL TXTLIB
the txt! i b from whi ch PAS
CALL MODULE was generated.

- PASCALO TXTLIB
the txtlib from which PASCA
LO MODULE was generated.

- PASCALT TXTLIB
the txt! i b from whi ch PAS
CALT MODULE was generated.

- PASCALYS TXTLIB
The PascaUVS
library.

- PAS DEBUG TXT LIB

run time

The Pascal/VS debug library.

- PASCALYS MACLIB
The standard XINCLUDE
library.

- PASCALYS EXEC
CMS EXEC whi ch invokes the
compiler

- PASCALYS CMSHELP
Help fi Ie that is accessed
when "PASCALVS ?" is
invoked.

- PASCMOD EXEC
CMS EXEC which creates a load
module from a compi led Pas
cal/VS program.

- PASCALYS MESSAGES
List of the compi ler mes
sages.

Appendix B. Installation Instructions 165

TNL SN204445 (31 December 1981) to SH20-6162-1

- LOADSRC EXEC
An EXEC which will load the
source of the compiler from
the tape.

- SAMPLE PASCAL
A sample program.

- PRIMGEN PASCAL
A sample program.

File 13: PASCALL.PASCAL
The source of the first pass of
the compi ler.

File 14: PASCALO.PASCAL
The source of the second pass of
the compi ler.

File 15: PASCALT.PASCAL
The source of the third pass of
the compiler.

File 16: PASCALD.PASCAL
The source of the interactive
debugger.

File 17: PASCALX.PASCAL
The source of the runtime library
routines.

File 18: PASCALX.ASM
The source of the operating sys
tem interface routines.

File 19: MACLIBL.PASCAL
Include library for first pass of
the compi ler.

File 20: MACLIBO.PASCAL
Include 1 i brary for second pass
of the compi ler.

File 21: MACLIBT.PASCAL
Include Ii brary for thi rd pass of
the compi ler.

File 22: MACLIBD.PASCAL
Include 1 i brary for i nteracti ve
debugger.

File 23: MACLIBX.PASCAL
Include library for runtime rou
tines.

B.1 INSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under CMS perform
the followi ng:

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is done with the CP
LINK command. The mi ni -di sk must
have at least 2300 blocks of free
storage 17 •

3.

4.

Access thi s di sk wi th the ACCESS
command.

Execute the
commands:

TAPE FSF 11
TAPE LOAD * * m

followi ng two

where "mIt is the si ngle letter fi Ie
mode of the disk that was accessed in
the previous step.

B.1.1 Regenerating compiler Modules

To fix bugs that are discovered in the
compiler often requires modules of the
compiler to be recompiled. 18 To replace
a compiled module (a text deck) of the
compi ler, execute the followi ng two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

where "PASCALx" is either PASCALL, PAS
CALO, or PASCALT, depending on which
phase of the compiler is being fixed;
"AMPxcccc" is the module name bei ng
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To
regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIH PASCALL (NAME PASCALL

To regenerate PASCALO MODULE, execute
the followi ng:

PASCMOD AMPOMAIN PASCALO (NAME PASCALO

To regenerate PASCALT MODULE, execute
the followi ng:

PASCMOD AMPTMAIN PASCALT (NAME PASCALT

17 800 byte blocks are assumed. This amount is equivalent to 9 cylinders on
a 3330 disk.

18 The Pascal/VS compiler is written entirely in Pascal/VS and is self-compi-
11 ng.

166 Pascal/VS Programmer's Guide

J

TNL SN20-4445 (31 December 1981) to SH20-6162-1

//JOBNAME JOB ,REGION=50K
//STEPI EXEC PGM=IEBGENER
//SYSPRINT OD SYSOUT=*
//SYSUTI DD DSN=PASCALYS.INSTALL.CNTL,
// VOL=SER=TAPEVOL,
// UNIT=TAPE,LABEL=(l,NL),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
// OISP=OLO --
//SYSUT2 DO DSN=XXXXXXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
// UNIT=3330,YOL=SER=DISKVOL,
// SPACE=(TRK,(I,l»
//SYSIN DD DUMMY

Figure 96. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an OS/VS2 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/VS under VS2
(MVS) is stored as the fi rst file of
the distribution tape. To retrieve
this data set, the utility program IEB
GENER must be used. The JCL shown in
Figure 96 may serve as a model job to
retrieve this file. DD operands which
are high-Ughted will require modifi
cation to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL" appears in the DD
card named SYSUrr:-

The data set name (OSN=) in the DD card
named SYSUT2 is arbi trary. It is the
name of the data set where the fi rst
file on the tape is to be stored. The
appropriate UNIT and volume serial num
ber for disk storage must be specified
for DD SYSUT2.

Fi gure 97 on page 168, Fi gure 98 on
pa'Qe 169, and Figure 99 on page 170
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

• The name "TAPEVOL" must be replaced
wi th the volume seri al number of
the di stri but i on tape in the DD
statement named SYSUTI in job step
STEP1.

168 Pascal/VS Programmer's Guide

•

•

•

•

•

•

The UNIT speci fi cat i on for tapes
has been given the generic name of
"TAPE"; thi s should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropri ate speci fi cati on at
your installation.

The disk volume on which Pascal/VS
is to be installed must be speci
fied where indicated ("DISKVOL")
in the following DD statements:

in STEP1: SYSUT2
in STEP2: SYSUT2
in STEP3: D54, DS5, DS6,

DS7, DS8, DS9,
DS10

in STEP4: SYSUT2

The DD statements named 5Y5UT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener
i c name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
densi ty of 1600 BPI. If your di s
tri but i on tape is at some other
density, then the DEN operands
should be changed accordingly.

The hi gh level quali fi er of data
set names that are to be cataloged
should be mo-di fi ed to follow
installation conventions. (The
examples in thi s manual assume a
hi gh level quali fi er of "SYSl".)

J

L

IIINSTALL JOB ,REGION=128K
II*-
II*- FILE 2 -- SOURCE INSTALLATION JOB
11lI<
IISTEPI EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=*
IISYSUTI DO DSN=LOADSRC.CNTL,
II VOL=(,RETAIN,SER=TAPEVOL),
II UNIT=TAPE,LABEL=(Z,NL),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEH=3>,
II DISP=(OLD, PASS) --
IISYSUT2 DO DSN=SYSl.LOADSRC.CNTL,DISP=(NEW,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120).
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=C3l20.(1.1»
IISYSIN DO DUMMY
II*-
II*- FILE 3 -- PASCALVS CONTENTS
II*-
IISTEP2 EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=*-
IISYSUTI DO DSN=PASCALVS.CONTENTS.
II VOL=REF=*-.STEPl.SYSUTl.
II UNIT=TAPE,LABEL=(3,NL),
II DCB=(LRECL=80,RECFM=VB.BLKSIZE=3120.DEH=3).
II DISP=(OLD,PASS) --
IISYSUT2 DD DSN=SYSl.PASCALVS.CONTENTS,DISP=(NEW,CATLG),
II DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=(3120,(l,l»
IISYSIN DD DUMMY
II*-
II*
II*
II*
II*
II*
II*
II*

FIL E 4
FILE 5
FIL E 6
FIL E 7
FILE 8
FIL E 9
rUE 10

PASCALVS. LINKLIB
PASCALVS.LOAD
PASDEBUG.LOAD
PASCALVS.MACLIB
PASCALVS.CLIST
PASCALVS. PROCLIB
SAMPLE. PASCAL

II*
IISTEP3
IIDS4
II
II
II
IIFILE4
II
II
II
II
IIOS5
II
II
II
IIFILE5
II
II
II
II
11056
II
II
II

EXEC PGM=IEBCOPY
DD DSN=SYSl.PASCALVS.LINKLIB,DISP=(NEW,CATLG),

DCB=(SLKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOL=SER=DISKVOL,
SPACE=ffRK,(SO,lO,3»

DO D5N=PASCALV5.LINKLIB,
VOL=REF=*-.STEPl.SYSUTl,
UNIT=TArE,LABEL=(4,NL),
DCB=BLKSlzE=13030,
DISP=(OLD,PASS)

DD OSN=SYSl.PASCALVS.LOAD,DIS~=(NEW,CATlG),
DCB=TsLKSIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOL=SER=DISKVOL,
SPA CE =-T1' R K, (1 4 , 1 0 , 36))

DO DSN=PASCALVS.lOAD,
VOL=REF=*-.STEPl.SYSUT1,
DCB=BLKSIZE=13030,
UNIT=TAPE,lABEl=(S,NL),
DISP=COLD,PASS)

DD DSN=SYSl.PASDEBUG.LOAD,DI5P=(NEW,CATLG),
DCB=TBCRsIZE=13030,RECFM=U,DSORG=PO),
UNIT=3330,VOL=SER=DISKVDL,
SPA C E = (IRK, (9 , 1, 7))

Figure 97. Sample installation job: (continued in Figure 98 on page 170)

Installation Instructions 169

//FILE6 DD DSH=PASDEBUG.LOAD,
// VOL=REF=*.STEPl.SYSUT1,
// DCB=BLKSIZE=13030,
// UHIT=TAPE,LABEL=(6,NL),
// DISp=TOrD,PASS)
//DS7 DD DSN=SYSl.PASCALVS.MACLIB,DISP=(NEW,CATLG),
// DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(2S,2,3)
//FILE7 DO OSN=PASCALVS.MACLIB,
// VOL=REF=*.STEP1.SYSUT1,
// UNIT=TAPE,LABEL=(7,Hl),
// DCB=BI"KSIZE=3120,
// DISP=(OLO,PASS)
//DS8 DO DSN=SYSl.PASCALVS.CLIST,DISP=(HEW,CATLG),
// DCB=CBLK5IZE=3120,RECFM=VB,LRECl=255,050RG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=(TRK,(3,l,S)}
//FILE8 DO OSN=PASCAlVS.CLIST,
// VOl=REF=*.STEPl.SYSUTl,
// DCB=BLKSIZE=3120,
// UNIT=TAPE,LABEl=(8,Nl),
// DISP=(OID,PASS)
//DS9 DD DSN=SYSl.PASCALVS.PROCLIB,DISP=(NEW,CATLG),
// DCB=(BLKSIZE=3120,RECFM=FB,lRECL=80,DSORG=PO),
// UNIT=3330,VDL=SER=DISKVOL,
// SPACE=(TRK,(2,2,2»
//FILE9 DO DSN=PASCALVS.PROCLIB,
// VOL=REF=*.STEP1.SYSUTl,
// UNIT=TAPE,LABEL=(9,NL),
// DCB=BLKSf'ZE=3120,
// DISP=(OlD,PASS)
//D510 DO DSN=SYSl.SAMPLE.PASCAL,DISP=(NEW,CATLG),
// DCB=(STKSIZE=3120,RECFM=FB,LRECL=80,OSORG=PO),
// UNIT=3330,VOl=SER=DISKVOL,
// SPACE=TfRK,(S,2,2»
//FILE10 DO DSN=SAMPLE.PASCAL,
// VOL=REF=*.STEP1.SYSUTl,
// UNIT=TAPE,LABEl=(10,Nl),
// DCB=BLKSlZE=3120,
// DISP=(OLD,PASS)
//SYSPRINT DD SYSOUT=*
//SYSUT3 DO UNIT=SYSDA,SPACE=(TRK,(l»
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(l»
//SYSIN DO * -----

COPY OUTDO=OS4,INDO=FIlE4
COPY OUTDO=DSS,INDD=FIlE5
COPY OUTDD=DS6,INDO=FILE6
COPY OUTDD=DS7,INDD=FILE7
COPY DUTOD=DS8,INDD=FILE8
COPY OUTDO=DS9,INOD=FILE9
COpy QUTDD=DSIO,INDD=FIlEIO

Figur~ 98. Sampl~ installation job: (continu~d in Figure 99 on page 171)

170 Pascal/VS Programmer's Guide

J

TNL SN20-444S (31 December 1981) to SH20~162-1

11*
11* FILE 11-- PASCALVS MESSAGES
11* (Must be stored unblocked because of BDAM access requirements)
II*.
IISTEP4 EXEC PGM=IEBGENER
IISYSPRINT DO SYSOUT=*'
IISYSUTI DD DSN=PASCALVS.MESSAGES,
II VOL=REF=*.STEPl.SYSUTl,
II UNIT=TAPE,LABEL=(II,NL),
II DCB=(LRECL=64,RECFM=FB,BLKSIZE=3200,DEN=l),
II DISP=(OLD,PASS)
IISYSUT2 DD DSN=SYSl.PASCALVS.MESSAGES,DISP=(NEW,CATLG),
II DCB=(LRECL=64,RECFM=F,BLKSIZE=64),
II UNIT=l330,VOL=SER=DISKVOL,
II SPACE=(TRK,(I,I»
IISYSIN DD DUMMY

Figure 99. Sample installation job: (continued from Figure 97 on page 168
and Figure 98)

B.2.2 The T50 Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.ClIST (file 8 of the dis
tribution tape).

These ClISTs should be stored in a pub
lic ClIST library that is accessable to
TSO users through DDname SYSPROC.

Each CLIST must be modified so that the
correct high level qualifier name is
used to reference the Pascal/VS data
sets. In PASCAlVS, the symbol named
"FIRSTNAME" should be set to the appro
priate name. In PASCMOD, the symbols
named "LIBRARY" and "DEBUGLIB" should
be set to the names of the Pascal/VS
run time library and the debug library,
respectively.

B.2.l Cataloged P~ocedu~es

Distributed with the compiler are four
cataloged procedures for invoking the
compi ler from a batch job: PASCC,
PASCCG, PASCCL, and PASCCLG. These
procedures reside in the partitioned
data set PASCAL VS. PROCLIB (fi Ie 9 of
the distribution tape).

These procedures shoUld be stored in a
cataloged procedure 1 i brary, so that
the names will be recognized when ref
erenced from a batch job.

Each procedure must be customi zed to
reflect the data set naming convention
chosen at your installation. For a

listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 24.

B.l LOADING THE SOURCE UNDER CMS

The compi ler source is stored on the
distribution tape beginning at file 13;
that is, 12 tape marks from the begin
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for
mat. To read such a format under CMS,
the TAPPDS command must be utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per
form the following:

1. Have the distribution tape mounted
'at address 181.

2. Access the di sk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 35 free cylinders of 3330 stor
age. 19

3. Make sure that there is the equiv
alent of at least 2 free cylinders
of 3330 storage on your "A" disk.

4. Invoke the LOADSRC EXEC as follows:

LOADSRC fm

where "fm" is the si ngle letter
file mode of the disk to where the
source files are to be placed. The
EXEC will print out messages as it
processes the tape.

19 This is roughly 9400 800-byte blocks. Once the source files have been
installed, you may find it desirable to pack them in order to save disk
storage.

Appendix B. Installation Instructions 171

TNL SN20444S (31December 1981) to SH20-6162-1

B.4 LOADING THE SOURCE UNDER VS2

The compi ler source is stored on the
distribution tape beginning at file 13.
It consists of nine tape files stored
in the IEBUPDTE format.

Fi Ie 2 of the di stri buti on tape con
tains the JCL which copies the source
fi les to di sk storage. Thi s fi Ie is
unloaded when the compiler is installed
and has been given the name
"LOADSRC.CNTL".

Prior to submitting the job, it must be
customized as follows:

• In ddname SYSIN of jobstep STEP1,
the volume serial number of the
distribution tape should be placed
where the name TAPEVOL is shown.

• The UNIT speci fi cat i on for tapes
has been gi ven the generi c name
"TAPE"; this should be changed to
t~appropri ate generi c at your
installation.

172 Pascal/VS Programmer's Guida

•

•

•

•

•

The UNIT specification for disk
storage has been specified as
"3330"; thi s should be changed to
the appropriate specification at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DD state
ment named SYSUT2 in each job step.

The high level qualifier for the
data set names to be cataloged is
arbitrary. In the supplied JCL,
the name "SOURCE" is used.

If you do not want a listing of the
source, then DDname SYSPRINT
should be assigned to DUMMY in each
of the job steps.

The tape density is specified with
in the DEN suboperand of the DCB
attri butes. In the JCL, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other densi ty, then
the DEN operands should be changed
accordingly.

J

J

J

IILOADSRC JOB ,REGION=SOK
II*.
II*. FILE 13 -- PASCALL PASCAL - PASS 1 SOURCE (COMPILER)
II*.
IISTEP1 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DO DSN=SDURCE.PASCALL.PASCAL,DISP=(NEW,CATLG),
II UtlIT=3:f30;DCB=(LRECL=80, BLKSIZE=3120, RECFM=FB),
II VOL=SER=OISKVDL,SPACE=CTRK,C132,43,S»
I IS Y SIN D DUN IT = TAP E, VOL = (, RET A IN, S E R = TAP EVO l) , LAB E L = (13, N L) ,
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
IISYSPRINT DD SYSDUT=*' ----
II*.
11* FILE 14 -- PASCALO PASCAL - PASS 2 SOURCE (OPTIMIZER)
II*.
IISTEP2 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.PASCALO.PASCAL,DISP=(NEW,CATLG),
I I UN IT="333o,DCB = (LRECL =80, BLKSIZE=3120, RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(40,10,S»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=<I4,NL),
II DISP=COLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
IISYSPRINT DD SYSOUT=*'
11*
11* FILE 15 -- PASCALT PASCAL - PASS 3 SOURCE (TRANSLATOR)
11*
IISTEP3 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SQURCE.PASCALT.PASCAL,DISP=(NEW,CATLG),
II UNIT=3330~DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VDL=SER=OISKVOL,SPACE=(TRK,(117,39,S»
IISYSIN DD UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEL=(IS,NL),
II DISP=(OLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
IISYSPRINT DD SYSOUT=*'
11*
II*. FILE 16 -- PASCALD PASCAL - DEBUG SOURCE
II*.
IISTEP4 EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SQURCE.PASCALD.PASCAL,DISP=(NEW,CATLG),
II UNIT=33JO:DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(33,9,S»
IISYSIN DD UNIT=TArE:VOL=REF=*.STEP1.SYSIN,LABEL=(16,Nl),
II DISP=(OLD,PASS),
II DCB=(lRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
IISYSPRINT DD SYSOUT=* ----
1/*
II*. FILE 17 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE
II*.
IISTEPS EXEC PGM=IEBUPDTE,PARM=NEW
IISYSUT2 DD DSN=SOURCE.PASCALX.PASCAL,DISP=(NEW,CATlG),
II UNIT=~330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
II VOL=SER=DISKVOL,SPACE=(TRK,(69,24,5»
IISYSIN DD UNIT=TAPE",VOL=REF=*.STEP1.SYSIN,LABEL=<I7,NL),
II DISP=COLD,PASS),
II DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
IISYSPRINT DD SYSOUT=*'

Figure 100. Listing of the JeL to copy source files from tape: this job is
stored as file 2 of the distribution tape. Ccontinued in
Figure 101 on page 174).

Installation Instructions 173

//*
//* FILE 18 -- PASCALZ ASM - RUN TIME ENVIRONMENT SOURCE
//*
//STEP6 EXEC PGM=IEBUPOTE,PARM=NEW
//SYSUT2 DO OSN=SOURCE.PASCALZ.ASM,OISP=(NEW,CATLG),
// UNIT=3330~OCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
// VOl=SER=DISKVOL,SPACE=(TRK,(16,1,4»
//SYSIN DO UNIT=TAPE,VOl=REF=*.STEP1.SYSIN,LABEL=(18,Nl),
// DISP=(OlO,PASS),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=*
//*
//* FILE 19 -- MAClIBL PASCAL - %INClUDE lIBRARY FOR COMPILER
//*
//STEP7 EXEC PGM=IEBUPOTE,PARM=NEW
//SYSUT2 DO OSN=SOURCE.MAClIBl.PASCAL,DISP=(NEW,CATLG),
// UNIT=333~OCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
// VOl=SER=DISKVOL,SPACE=(TRK,(21,7,4»
//SYSIN Dn UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEl=(19,NL),
// DISP=(5ID,PASS),
// OCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT OD SYSOUT=* --
//*
//* FILE 20 -- MACLIBO PASCAL - %INCLUOE LIBRARY FOR OPTIMIZER
//*
//STEP8 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.MACLIBO.PASCAL,DISP=(NEW,CATLG),
// UNIT=3330;DCB=(lRECL=80,BLKSIZE=3120,RECFM=FB),
// VOL=SER=DISKVOL,SPACE=CTRK,(S,2,3»
//SYSIN DO UNIT=TAPE~OL=REF=*.STEP1.SYSIN,LABEL=(20,NL),
/ / DISP= (OL"D, PASS),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
//SYSPRINT DO SYSOUT=*
//*
//* FILE 21 -- MACLIBT PASCAL - %INCLUDE LIBRARY FOR TRANSLATOR
//*
//STEP9 EXEC
//SYSUT2 DO
//

PGM=IEBUPDTE,PARM=NEW
DSH=SOURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),
U~nT=3330~"OCB=(LRECL=80, BLKSIZE=3120, RECFM=FB),
VOL=SER=DISKVOL,SPACE=(TRK,(19,7,4» //

//SYSIN
//
//

DO UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=(21,NL),
OISP="fOLD,PASS),
DCB=(LRECL=BO,BLKSIZE=3120,RECFM=FB,DEH=3)

//*
//* FILE 22 -- MACLIBD PASCAL - %INCLUDE LIBRARY FOR DEBUG
//*
//STEP10 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.MACLIBD.PASCAL,DISP=(NEW,CATLG),
// UNIT=333~DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
// VOL=SER=OISKVOL,SPACE=(TRK,(2,1,1»
//SYSIN DO UNIT=TAPE,VOL=REF=*.STEPl.SYSIN,LABEL=(22,NL),
// DISP=COLD,PASS),
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DO SYSOUT=* ---
//*
//* FILE 23 -- MACLIBX PASCAL - %INCLUDE/MACRO LIBRARY FOR RUN TIME
//* ENVIRONMENT
//*
//STEP11 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DO OSN=SOURCE.MACLIBX.PASCAL,DISP=(NEW,CATLG),
// UNIT=3330~OCB=(LRECL=80,BlKSIZE=3120,RECFM=FB),
// VOL=SER=DISKVOL,SPACE=(TRK,(9,1,2»
//SYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=(23,NL),
// DISP=OlD,
// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEH=3)
//SYSPRINT DO SYSOUT=* --

Figure 101. Listing of the JCL to copy source files from tape: (continued
from Figure 100)

174 Pascal/VS Programmer's Guide

J

J

TNL SN204445 (31 December 1981) to SH20"()162-1

APPENDIX C. ADDITIONAL LIBRARY PROCEDURES AND FUNCTIONS

In addition to the routines described
in Pascal/VS Reference Manual, order
number SH20-6168-1, there are several
other routines which are not predefined
but are provided in the Pascal/VS exe
cution library. These routines are:

• ITOHS Procedure

• eMS Procedure

• LPAD Procedure

• RPAD Procedure

I. PICTURE Function

Appendix C. Additional library Procedures and Functions 175

TNL SN20-4445 (31 December 1981) to SH20~162-1

C.l CMS PROCEDURE

Invoke a CMS Command

Definition:

procedure CMS(
const S
v~r RC
EXTERNAL;

Where:

STRING;
INTEGER);

S is a STRING that is to be
executed.

RC is the return code.

The STRING specified by S will be
passed to CMS (via SVC 202) to be exe
cuted; the command must be executable
in the transi ent area or ina shared
segment. You must code the declaration
as shown above. or use the INCLUDE mem
ber named "CMS" which is provided in
the Pascal/VS library. This procedure
is applicable under CMS only.

%INCLUDE CMS

CMS('Q T'. RET>;

176 Pascal/VS Programmer's Guide

C.2 ITOHS FUNCTION

Convert an INTEGER to a hex string

Definition:

function ITOHS(
I INTEGER)

STRING(8);
EXTERNAL;

Where:

I is the value to be converted.

This function converts the parameter I
into a STRING that contains the hexade
c i mal representat i on of the integer.
You must code the declaration as shown
above. or use the INCLUDE member named
"CONVERT" which is provided in the Pas
cal/VS library.

%INCLUDE CONVERT

WRITELN('The value '.1:0.
, is '. ITOHS(I>.
, in hexadecimal.');

J

J

C.l LPAD PROCEDURE

Pads or truncates a string on the left

Definition:

procedure
val' S

LPAD(

L
C

EXTERNAL;

Where:

STRING;
INTEGER;

: CHAR);

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure LPAD pads or truncates
string variable S on the left. If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
left. If LENGTH(S) is less than L,
then the effect is to extend S with the
character C on the left. You must code
the declaration as shown above, or use
the INCLUDE member named "STRING" which
is provided in the Pascal/VS library.

YoINCLUDE STRING;

S:= 'ABCDEF';
LPAD(S, 10, '$');

produces '$$$$ABCDEF' in S

S := 'ABCDEF';
LPAD(S, 5, '$');

produces 'BCDEF' in S

TNL SN204445 (31 December 1981) to SH20-6162-1

C.4 RPAD PROCEDURE

Pads or truncates a string on the
right

Definition:

procedure
val' S

L

RPAD(

C
EXTERNAL;

Where:

STRING;
INTEGER;
CHAR);

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure RPAD pads or truncates
stri ng vari able S on the ri ght. If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
right. If LENGTH(S) is less than L,
then the effect is to extend S with the
character C on the ri ght. You must
code the declaration as shown above, or
use the INCLUDE member named "STRING"
which is provided in the Pascal/VS
library.

YoINCLUDE STRING

S:= 'ABCDEF';
RPAD(S, 10, '$');

produces 'ABCDEF$$$$' in S

S := 'ABCDEF';
RPAD(S, 5, '$');

produces 'ABCDE' in S

Appendix C. Additional library Procedures and Functions 177

TNL SN20-4445 (31 December 1981) to SH20-6162·1

C.s PICTURE FUNCTION

Formats a floating point value
according to a "picture" format

Definition:

function PICTURE(
canst P : STRING;

R : REAL): STRING(100);
EXTERNAL;

Where:

P is a picture specification;
R is the number to be formatted.

The function PICTURE returns the string
representation of a real number format
ted according to a "picture" specifica
tion. The characters that make up the
picture specification are similar to
those found in PL/I and COBOL.

A declaration for PICTURE may be
obtained by including the member CON
VERT from the Pascal/VS library.

A picture specification may consist of
two fi elds: a deci mal fi eld and an
exponent field. The latter is optional;
the first one is always required.

The deci ma I
subfields:
fractional
optional.

field may consist of two
the integer part and the
part. The latter is

Example of picture specifications:

S9999.V99
9V.999ES99
$ZZZ,ZZZ.ZZ9V.99

A picture character may be grouped into
the followi ng categori es. Pi cture
characters may be speci fi ed in lower
case.

• Digit and decimal-point specifier

9 speci fi es that the associated
position in the data item is to
contain a decimal digit.

V divides the decimal field into
two parts: the integer part and
the fractional part. This char
acter spec i f"i es that a dec i ma I
point is assumed at this posi
tion in the associated data
item. However. it does not spec
ify that an actual decimal point
is to be inserted. The integer
and fractional parts of the
assi gned value are al i gned on
the V character; therefore. an
assigned value may be truncated
or extended with zero digits at

178 Pascal/VS Programmer's Guide

ei ther end. (User beware!)· If
no V character appears, a V is
assumed at the right end of of
the decimal field.

• Zero suppression characters

•

Z specifies a conditional digit
position 1n the character
stri ng value and may cause a
leading zero to be replaced with
a blank.

• specifies a conditional digit
position in the character
stri ng value and may cause a
leading zero to be replaced with
an asterisk ('*').

leading zeros are those that occur
in the leftmost digit positions of
the integer part of floating point
numbers.

Insertion character

Insertion characters are inserted
into corresponding positions in
the output stri ng provi ded that
zero suppression is not taking
place. If zeros are being sup
pressed when an insertion
character is encountered, a blank
or an asterisk will be inserted in
the corresponding place in the out
put stri ng, dependi ng on whether
the zero-suppressi on character is
a Z or an asteri sk 00.

causes a comma to be inserted
into the associated position of
the output string.

causes a po i nt (•) to be
inserted into the associated
position of the output string.
The character never causes
po i nt al i gnment in the number.
That function is served soley by
the character V.

B causes a blank to be inserted
into the associated position of
the output string.

• Signs and currency symbol

The si gn and currency characters
(, S ' , , + ' , , -, , '$ ') may be used i n
either a static or a drifting man
ner. The static use specifies that
a si gn. a currency symbol, or a
blank always appears in the associ
ated position. The drifting use
specifies that leading zeros are to
be suppressed.

A drifting character is specified
by multiple use of that character
in a picture field.

+ specifies a plus sign character
(+) if the number is >=0. other
wise it specifies a blank.

•

speci fi es a mi nus si gn charac
ter (-) if the number is <0,
otherwise it specifies a blank.

S specifies a plus sign character
(+) if the number is >=0, other
wise it specifies a minus sign
character (-).

$ specifies a dollar sign charac
ter ($).

Exponent specifiers

The characters 'E' and 'K' delimit
the exponent fi eld of a pi cture

P R

'99999' 123.0
'ZZZZ9' 123.0
'****9' 123.0
'ZZZZ9' 0.0
'ZZZZZ' 0.0
'****9' o • 0
'*****' o . 0
'59999' 123.0
'+9999' 123.0
'+9999' -123.0
'999.99' -123.456
'999V.99' 123.456
'ZZZ,ZZZ,ZZ9' 123456.0
'***,***,**9' 123456.0
'-ZZ,ZZZ,ZZ9' -123456.0
'---,---,--9' -123456.0
'$**,***,**9V.99' 123456.78
'$$$,$$$,$$9V.99' 123456.78
'S9V.9999ES99' 1.23456
'59V.9999K599' 1.23456
'-999.999,V99' 1234.567
'-9.999E9' -1234.567
'9B9B9B9B9B9' 123456.0
'9.9.9.9.9.9' 12345.0
'999995' -12345.0
'999+' -123.45
'999+' +123.45
'ZZZ.V99' 0.12
'ZZZV.99' 0.12
'-9V.999ES9' 1. 23E4
'59999VESZ9' -123456.0
'-V.999E-99' 123456.0

TNL SN204445 (31 December 1981) to SH20'{;162·1

specification. The exponent field
must always be the last field.

E speci fi es that the associ ated
position contains the letter E,
which indicates the start of the
exponent field.

K speci fi es that the exponent
fi eld appears to the ri ght of
the associated position. It
does not speci fy a character
data item.

See Figure 102 for examples.

PICTURE(P,R)

'00123' , 123'
'**123' , 0' , ,
'****0'
'****lE'
'+0123'
'+0123' , 0123'
'001.23'
'123.46' , 123,456'
'****123,456' ,- 123,456' , -123,456'
'$***123,456.78' , $123,456.78'
'+1.2346E+00'
'+1.2346+00'
'-001.234,57'
'-1.235E3'
' 1 2 3 4 5 6'
'0.1.2.3.4.5'
'12345-'
'123 ,
'123+' , 12' , .12 ' , 1.230E+4'
'-1235E+ 2' , .123E 06'

Figure 102. Examples of using the PICTURE function

Appendix C. Additional library Procedures and Functions 178.1

Vi rtual Machi ne/Personal Computer
(VM/PC) is an IBM licensed program that
runs on the IBM XT/370 Personal Comput
er. VM/PC gives you an interactive sys
tem that has the characteristics of a
VM/SP Release 2 system.

This appendix gives only the basic
information needed to use the Pascal/VS
programming language under VM/PC. You
wi 11 also need one of the following
manuals: Pascal/VS Reference Manual
and the Pascal/VS Programmer's Guide;
the order numbers are SH20-6168 and
SH20-6162 respectively.

It is assumed that the user has a gen
eral knowledge of the VM/PC operating
environment, and that the VM/PC system
has been installed and configured.
Refer to the VM/PC User's Guide for
more i nformati on regardi r.g the VM/PC
system.

D.l INTRODUCING V"/PC FOR PASCAL/VS

This appendix describes how to use the
IBM Pascal/VS programmi ng language
under VM/PC.

VM/PC is an IBM licensed program that
runs on the IBM XT/370 Personal Comput
er, as an IBM Personal Computer Di sk
Operating System application. VM/PC
gi ves you an i nteracti ve system that
has the characteristics of a VM/SP
Release 2 system: command entry, com
mand formats, messages, screen
formats, file naming conventions, key
functions and application interfaces.

To use the Pascal/VS programming lan
guage under VM/PC, a host system must
be available; this is because you must
copy (download) the Pascal/VS compiler
and library from the host system into
your local VM/PC storage. Once you have
done thi s. you can use the product
e1 ther independently of the host
system, or in connection with the host.

VM/PC lets you set up a local 370 envi
ronment in which to do your work, known
as a local session. Once you have down
loaded the Pascal/VS compiler and
1 i brary into your local storage, you
can use that product in local sessions.

VM/PC also lets you set up a 3277 or
3101 connection with a host system on a
remote computer, so that your personal
computer acts as a terminal on the host
system; such a connection is known as a

TNL SN20-4607 (9 December 1983) to SH20-6162-1

APPENDIX D. V"/PC PASCAL/VS USER'S GUIDE

remote session. You can use the product
in remote sessions as well as in local
sl1ssions. (However. see "Licensing
Considerations.")

To develop Pascal/VS programs with
VM/PC, you'll use both types of ses
sions. You can use a remote session to
create and process programs on a host
system, or to copy (download) the Pas
cal/VS compiler and library into your
local VM/PC storage. Once the Pascal/VS
compiler is available in local storage,
you create and compile P~scal/VS pro
grams in local sessions.

You can also mix local and remote ses
sions in any combination that you find
efficient. For example, you could cre
ate and edi t your programs in local
sessions, then copy (upload) them into
the host system for compi lat i on and
execution. Or you could create and com
pile your programs on the host system
in remote sessions, and then download
the object program for execution in
local sessions.

The performance of Pascal/VS on VM/PC
is dependent upon the nature of the
specific job stream, and you may find
that the performance of the Pascal/VS
compi ler is affected by the storage and
paging constraint~ imposed by the VM/PC
hardware. Therefore, as compared to a
typical Pascal/VS compile, you may
exper i ence extended processing times
in the VM/PC environment.

D.2 LICENSING CONSIDERATIONS

You can
Pascal/VS
session.
apply:

execute a host-resident
compiler from a local

The following considerations

1. When you execute the Pascal/VS com
piler in a local session, the com
pi ler must be 1 i censed for your
XT/370 machine (whether or not you
have downloaded the compi ler into
XT/370 disk storage).

2. A license is not required to exe
cute a compi led Pascal/VS object
program (that was compiled and
link-edited on a host system) in a
local session.

3. When you use a remote sessi on to
execute Pascal/VS object programs
that were compiled on the host sys
tem, a license is not required.

Appendix D. VM/PC Pascal/VS User's Guide 178.3

TNL SN20-4607 (9 December 1983) to SH20-6162-1

D.l USING Vtll'PC •

Under VM/PC, you use VM/SP-CMS commands
to create, modify, compile, link-edit,
load, execute, debug, and test your
Pascal/VS programs.

LINK: which makes a device associ
ated wi th another vi rtual machi ne
ava i lable to your vi rtual machi ne
configuration, based upon informa
tion in the user's VM/SP directory
entry.

•
The commands most useful to you in per
forming these tasks are briefly
described in Figure 103.

SPOOL: which modifies the spooling
control options in effect for one
or more virtual spooling devices_

You wi 11 also fi nd the followi ng CP
commands useful:

Command

ACCESS

EXEC

FILEDEF

GLOBAL

INCLUDE

LISTFILE

LOAD

PRINT

RENAME

SET

5TART

TYPE

XEDIT

How Used

Activates a virtual disk for use

Executes a file that consists of one or
more CMS commands

Defines a file and its input/output
devices

Specifies text libraries to be searched
to resolve external references in a
program being loaded

Specifies additional text files for use
during program execution

Displays a list of your files

Places a text file in storage and
establishes the linkages for execution

Prints a file on the off-line printer

Changes the filename, filetype, and/or
filemode of a file

Establishes, turns off, or resets a particular
function of the CMS virtual machine

Begins execution of a previously loaded
and link-edited program file

Displays all or part of a file at the
terminal

Puts you in edit mode to create and
edit source program and data files and
lets you use the XEDIT subcommands

Figure 103. CMS Command Summary

178.4 Pascal/VS Programmer's Guide

J

•

L

D.. "ETHODS OF USING PASCAL/VS UNDER
V"/PC

There are two different ways in which
you use Pascal/VS under VM/PC:

1. Copy (download) the Pascal/VS com
piler modules into local disk
files, and then invoke Pascal/VS in
local sessions. (You need to down
load only when you fi rst access
Pascal/VS, when a new maintenance
update is appl i ed, or when a new
release has been installed on the
host system.)

2. Link to the host system minidisk
contai ni ng Pascal/VS compi ler and
Ii brary. and then access it from
the local session as a remote mini
disk. (You must do this after every
Initial Program Load (IPL) of eMS.
or whenever the link to the host
system is severed.>

Dependi ng on your link wi th the
system, and on the system load,
this is often not an efficient way
to operate.

Note: As noted under "Licensing Consid
erati ons" above, your VM/PC must be
licensed for Pascal/VS if you are to
execute the compi ler ina local
session. This is true even if you do
not download the compi ler into your
local VM/PC storage.

D.S DOWNLOADING THE PASCAL/VS INTO
V"/PC

To use Pascal/VS under VM/PC, you can

copy
into
must
page

TNL SN20-4607 (9 December 1983) to SH20-6162-1

(download) the Pascal/VS modules
your local files. The modules you
copy are listed in Figure 104 on
178.6.

Downloading is necessary only when you
first access Pascal/VS, or after a new
release or a mai ntenance update had
been installed on the host system.

80th the virtual storage and minidisk
storage must be allocated wi th approxi
mately 1. OM bytes. These storage
requirements are for the Pascal/VS com
piler and library only; additional sto
rage is needed for the source and/or
object program files.

Figure 105 on page 178.6 shows you the
commands you must issue. The procedure
is as follows:

1. Link (if necessary) and access the
local minidisk that is the target
minidisk for the copy operation. If
the target minidisk is your own
minidisk, the link is not required.

2. Link and access the host minidisk
that contains the Pascal/VS mod
ules.

3. Copy the Pascal/VS modules from the
host mini disk to the local
minidisk. (This is known as down
loading.)

4. Release the host Pascal/VS mlnl
disk; it is no longer required.

Appendix D. VM/PC Pascal/VS User's Guide 178.5

TNL SN20-4607 (9 December 1983) to SH20-6162-1

PASCALS
PASCALL
PASCALO
PASCALT
PASCALVS
PASDEBUG
PASCALVS
PASCALVS
PASCMOD
PASCALVS
PASCALVS

MODULE
MODULE
MODULE
MODULE
TXTlIB
TXTlIB
MAClIB
EXEC
EXEC
MESSAGES
CMSHElP

Figure 104. Pascal/VS Modules Needed for Downloading

**
* * 1) Link and access the target VM/PC minidisk.

* CP LINK vm/pc-id ttt aaa W write-password
ACCESS aaa filemodel

* * 2) Link and access the host mini disk that contains the Pascal/VS * compiler and library.

* CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemode2

* * 3) COpy the files you need.

* COPYFILE filename filetype filemode2 = = filemodel

* * 4) Release the Pascal/VS host minidisk.

* RELEASE filemode2 (DET

* * Where: * ttt - is the virtual address of the local target mini disk that * will store the Pascal/VS modules. * aaa - is an unused virtual address on the local VM/PC machine. * hhh - is the virtual address of the host minidisk that contains * the Pascal/VS modules. * bbb - is the virtual disk address you use to refer to the host
* disk. * filemodel - is the filemode of the target minidisk on the local * VM/PC machine. * filemode2 - is the filemode of the host minidisk that contains * the Pascal/VS modules.

* **

Figure 105. CMS Commands to Download Pascal/VS From a Local Session

178.6 Pascal/VS Programmer's Guide

J

J

L

D.6 ACCESSING THE PASCAL/VS COMPILER
ON THE HOST

The other way to use Pascal/VS under
VM/PC is to 1 i nk to the host system
minidisk containing the Pascal/VS com
piler and library, and then access it
from the local sessi on as a remote
minidisk.

Linking and accessing are necessary
whenever there is a an Initial Program
Load CIPU of CMS, and whenever the
link to the host system is severed.
Dependi ng on your 1 i nk wi th the host
system and on the system load, this is

TNL SN20-4607 (9 December 1983) to SH20-6162-1

often not an efficient way to operate
compared to downloading.

The virtual storage requirement is
approximately 1.0M bytes, but there is
no additional VM/PC minidisk storage
requirement for the Pascal/VS compiler
and 1 i brary 5; nce it resi des in the
host system m;nid;sk storage area. How
ever, additional storage is needed for
the source and/or object program files.

Figure 106 shows you the commands you
must issue to link and access the host
m; n; di sk that conte; ns the PascaUVS
modules.

**
* * Link and access the host minidisk that contains the Pascal/VS * compiler and library.

* CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemodel

* * ~ Where:
* hhh-

*
is the virtual address of the host minidisk that contains
the Pascal/VS modules.

* * *
bbb - is the virtual disk address you use to refer to the host

disk.
filemode1 - is the filemode of the local VM machine

* **

Figure 106. CMS Commands to Access Pascal/VS From a Local Session as a
Remote Minidisk

D.7 INVOKING PASCAL/VS UNDER YM/PC

You must first make Pasca!/VS available
on a mi ni di sk you can access. For
example:

CP LINK userid aaa aaa RR read-password
ACCESS aaa 1ilemodel

If Pascal/VS is stored on your A-disk,
or another disk you can access, you can
omit the LINK and ACCESS commands. (If
you must issue these commands each time
you log on to VM/PC, you can put them
into your PROFILE EXEC, which issues
them for you.)

Next, you can invoke Pasca!/VS through
the following command:

PASCALYS 1n [1t [1m]] [(options ••• [)JJ

where "fn" is the name of the Pascal/VS
program, "ft" is PASCAL if omitted,and

"opti ons" let you modi fy the default
compiler options in force for your
organization.

To build a load module. issue the fol
low; ng command:

PASCMOD main [1ns ••• J [(options ••• [)]]

where "main" is the name of the main
program module. "fns" are the names of
segment modules and text libraries
(TXTLIB's) which are to be included,
and "opti ons" allow you to overri de
default options.

To invoke the load module. issue the
following command:

modname [[rtparms ••• /] [parms •••]]

where "modname" is the name of the load
module, "rtparms" are the run time
options, and "parms" are the parameters
(i f any) bei ng passed to the Pascal
program.

Appendix D. VM/PC Pasca!/VS User's Guide 178.7

TNL SN20-4607 (9 December 1983) to SH20-6162-1

0.8 VM/PC PROCESSING RESTRICTIONS ON
PASCAL/VS

The fo 11 owi ng processi ng capabi lit i es
are not available when you are execut
ing an object program in a local VM/PC
session:

1. Any Pascal/VS restri ct ions on eMS
processi ng apply for VM/PC as well.

2. Magnetic tape file processing is
not available: this means that you
cannot define (FIlEDEF) a
Pascal/VS sequential file to a mag
netic tape medium.

178.8 Pascal/VS Programmer's Guide

0.9 PASCAL/VS PROGRAMMING TIPS

You can improve processing time if you
specify the NOPRINT Pascal/VS compiler
option that suppresses the generation
of a program listing (if a listing is
not requi red). HOPRIHT automat i cally
forces the following three compiler
options to become active:

• HOSOURCE

•
•

NOXREF

NOLIST

access methods 45
BDAM 45
BPAM 45
QSAM 45

appending to a file 58.1
arrays

storage mapping of 88
Assembler routines, linking
to 104-119

calling Pascal/VS main program
from 109

calling Pascal/VS routines
from 107

general interface 105-106
minimum interface 104
receiving parameters 107

assembly listing 42
automatic variables

storage mapping of 87

batch
See OS batch

BDAM 45
BLKSIZE 45, 57
block size attribute

See BLKSIZE
BPAM 45

CAll
command of TSO 20

cataloged procedures 24
PASCC 25
PASCCG 26
PASCCL 27
PASCCLG 28

CHECK compiler option 31
as it applies to

CASE statements 31
function routines 31
pointers 31
string truncation 31
subranges 31
subscripts 31

checking errors at run time 61
CLOSE procedure 55
closing a file 55
CMS 9-13

building load module 12
compiling under 9-11
defining files under 13
invoking load module 13

CMS procedure 176
COBOL 114

calling from Pascal/VS 114
calling Pascal/VS from 115

code generation 91-102
See also DSA,

TNL SN20-4607 (9 December 1983) to SH20-6162-1

linkage conventions
parameter passing,
PCB,
PCWA,
register usage,
routine format,
routine invocation

command syntax 163
compilation

under CMS 9-11
under OS batch 23-30
under TSO 15-17

compiler diagnostics
under CMS 10
under TSO 17

compiler listings 37-43
assembly

See assembly listing
cross-reference

See cross-reference listing
ESD

See ESD table
source

See source listing
compiler messages

See messages, compiler
compiler options 31-33

See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LANGLVL compiler option,
LINECOUNT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOPXREF compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
PAGEWIDTH compiler option,
PXREF compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option

console input/output 47
CONSOLE option

of PASCALVS CLIST 16
of PASCALVS EXEC 10

COUNT run time option 35
cross-reference listing 40-41

data set attributes 45
See also LRECL, RECFM, BLKSIZE

data set definitions
See file definitions

DCB attri butes
See data set attributes

DDname
OPEN specification 57

DDname association 45

Index 179

TNL SN20-4607 (9 December 1983) to SH20-6162-1

DEBUG compiler option 32
debug facility 65-85

commands 65-77
break 66
clear 66
CMS 67
display 67
display breaks 68
display equates 68
end 69
equate 69
go 70
help 71
listvars 71
qualify 72
quit 72
reset 73
set attr 73
set count 74
set trace 74
trace 75
view memory 76
view variable 75
walk 77

input to 65
output from 65
qualification 65

DEBUG option
of PASCMOD CLIST 19
of PASCMOD EXEC 12
of run time 35

debugging a program
interactive debugger

See debug facility
traceback facility 59

DEF variables
storage mapping of 87

default
BLKSIZE 45
LRECL 45
RECFM 45

DISK option
of PASCALVS EXEC 9

DSA (dynamic storage area) 92
dump

symbolic variable 63
dynamic storage area

See DSA
dynamic variables

storage mapping of 87

end-of-file condition
for record files 54
for text file 54

end-of-line condition 53
enumerated scalar

storage mapping of 88
EOF function 54
EOLN function 53
EPILOG Assembler macro 105
ERRCOUNT run time option 35
ERRFILE run time option 35
errors

execution time
intercepting 62

ESD table 43
executing a program

under OS batch 23-30
execution error handling 61
execution errors

180 Pascal/VS Programmer's Guide

intercepting 62
external symbol dictionary

See ESD table

file control block
See PCB

file definitions
under CMS 13
under OS batch 29
under TSO 20

files
See also input/output facilities
See also record files
See also text files
storage mapping of 89

FORTRAN 112
calling from Pascal/VS 112
calling Pascal/VS from 113

function invocation
See routine invocation

GET procedure 48
record files 48
text files 48

GOSTMT compiler option 32
GS compiler option

See GOSTMT compiler option

HEAP run time option 35

I/O facilities
See input/output facilities

~INCLUDE facility
under CMS 10
under OS batch 29
under TSO 17

input/output facilities 45-58.1
implementation 45
record files

See record files
text files

See text files
installation instructions 165-173

compiler source
under CMS 170
under VS2 171

for CMS 166
for OS/VS2 167-170

cataloged procedures 170
CLIST customizing 170
loading compiler 167-170

regenerating compiler under
CMS 166

interactive files 46, 51
INTERACTIVE open option 46, 58

J

J

\..,. ..

intercepting execution errors 62
interlanguago communication 103-119

Assembler 104
COBOL 114
data type equivalencing 118
FORTRAN 112
PL/I 116

ITOHS function 176

0
JCL 23
job control language 23

~
LANGLVL compiler option 32
LC compiler option

See LINECOUNT compiler option
LIB option

of PASCALVS CLIST 16
of PASCMOD CLIST 19

LINECOUNT compiler option 32
linkage conventions 91
LIST compiler option 32
Ii sti ng

See compiler listings
load module

creating under CMS 12
creating under TSO 18
invoking under CMS 13
invoking under TSO 20

logical record length
See LRECL

LPAD procedure 177
LRECL 45, 57

MACLIB access
See partitioned data set

MAIN directive 107, 112, 113, 114,
115, 116, 118

MAINT run time option 35
MARGINS compiler option 32
MEMBER open option 58
messages 131-159

compiler 131-151
DEBUG 157
execution time messages 152
PASCALVS exec 159

MVS batch
See OS batch

NAME open option 58
NAME option

of PASCMOD EXEC 12
NOCC open option 57
NO.CHECK compi ler opti on 31
NOCHECK run time option 35
NODEBUG compiler option 32

TNL SN20-4607 (9 December 1983) to SH20-6162-1

NOGOSTMT compiler option 32
NOGS compiler option

See NOGOSTMT compiler option
NOLI8 option

of PASCALVS CLIST 16
NOLIST compiler option 32
non-text files

See record files
NOOBJ option

of PASCALVS EXEC 10
NOOBJECT option

of PASCALVS CLIST 16
NOOPT compiler option

See NOOPTIMIZE compiler option
NOOPTIMIZE compiler option 33
NOPRINT option

of PASCALVS CLIST 16
of PASCALVS EXEC 10

NOPXREF compiler option 33
NOS compiler option

See NOSOURCE compiler option
NOSEQ compiler option

See NOSEQUENCE compiler option
NOSEQUENCE compiler option 33
NOSOURCE compiler option 33
NOSPIE run time option 35
NOWARNING compiler option 33
NOX compiler option

See NOXREF compiler option
NOXREF compiler option 33

OBJECT option
of PASCALVS CLIST 15
of PASCMOD CLIST 19

open options 56
INTERACTIVE 46

opening a file
for input 46
for interactive input 46
for output 47
for terminal I/O 47
for update 47

OPT compiler option
See OPTIMIZE compiler option

OPTIMIZE compiler option 33
OS batch 23-30

cataloged procedures 23
compiling under 23
executing under 23

Page cross reference 33
PAGE procedure 53
PAGEWIDTH compiler option 33
parameter passing 95-96

by value 95
function results 96
read-only reference (CaNST) 95
read/write reference (VAR) 95
routine parameters 96

partitioned data set 56, 58
access under CMS 56
opening 56

Pascal communication work area
See PCWA

Pascal, standard

Index 181

TNL SN20-4607 (9 December 1983) to SH20-6162-1

extensions 127
modified features 127
restrictions over 127

PASCAlVS
CLIST of TSO 15
DEBUG messages

See messages, PASCAlVS exec
exec messages

See messages, PASCAlVS exec
exec of CMS 9-10

PASCC cataloged procedure
PASCCG cataloged procedure
PASCCl cataloged procedure
PASCClG cataloged procedure
PASCMOD

CLIST of TSO 18
EXEC of eMS 12

PCB 101
PCWA 98
PDS

See partitioned data set
PDSIN procedure 56
PDSOUT procedure 56
PICTURE Function 178
Pl/I 116

25, 27
26
27

28

calling from Pascal/VS 116
calling Pascal/VS from 117

PRINT option
of PASCAlVS ClIST 16
of PASCAlVS EXEC 10

procedure invocation
See routine invocation

PROLOG Assembler macro 105
PSClHX directive 118
PSClHX procedure 107, 113, 115, 118
PUT procedure 49

record files 49
text files 49

PW compiler option
See PAGEWIDTH compiler option

PXREF compiler option 33

QSAM 45

READ procedure
for record file 54
text file 49

integer data 50
length qualifier 50
real data 50
strings 51

READlN procedure 51
RECFM 45, 57
record fields

storage mapping of 87
record files 46

closing 55
GET operation 48
opening for input 46
opening for output 47
processing of 54-55
PUT operation 49
updating 47

record format
See RECFM

182 Pascal/VS Programmer's Guide

records
storage mapping of 88

REENTRANT directive 107, 116, 118
regenerating compiler under CMS 166
register usage 91
RESET procedure 46
REWRITE procedure 47
routine format 97
routine invocation 94
RPAD procedure 177
run time errors

intercepting 62
run time libraries

under CMS 12
run time options 35
runtime environment 121-125

main program 121
memory management 125
program initialization 121

S compiler option
See SOURCE compiler option

SEQ compiler option
See SEQUENCE compiler option

SEQUENCE compiler option 33
SETMEM run time option 36
sets

storage mapping of 89
SOURCE compiler option 33
source listing 37-39

compilation statistics 39
error summary 38
nesting information 38
option list 39
page cross reference field 38
page header 38
statement numbering 38

spaces
storage mapping of 90

STACK run time option 35
standard Pascal

See Pascal
static variables

storage mapping of 87
storage mapping 87-90

arrays 88
automatic storage 87
boundary alignment 87-90
data size 87-90
DEF storage 87
dynamic storage 87
enumerated scalar 88
files 89
predefined types 87
record fields 87
records 88
sets 89
spaces 90
static storage 87
subrange scalar 88

subrange scalar
storage mapping of 88

symbolic variable dump 63
syntax notation 163
SYSLIB 27, 29
SYSlIH DDname 24
5YSlMOD 27
SYSPRINT DDname 24
SYSPRINT option

of PASCAlVS ClIST 16

J

-,

TERMIN procedure 47
terminal input/output 47
TERMOUT procedure 47
text files 46

closing 55
GET operation 48
interactive input 46
opening for input 46
opening for output 47
processing of 49-54
PUT operation 49

traceback facility 59-61
TSO 15-21

building load module 18
compiling under 15-17
defining files under 20
invoking load module 20

UCASE open option 58
UPDATE procedure 47

variable dump 63
VM/PC User's Guide 178.3

Accessing Pascal/VS on the
Host 178.7

Downloading Pascal/VS 178.5
Introducing VM/PC 178.3

TNL SN20-4607 (9 December 1983) to SH20-6162-1

Invoking Pascal/VS 178.7
Licensing Considerations 178.3
Methods of Using Pascal/VS 178.5
Pascal/VS Programming Tips 178.8
Using VM/PC 178_4
VM/PC Processing
Restrictions 178.8

VS2 batch
See OS batch

W compiler option
See WARNING compiler option

WARNING compiler option 33
WRITE procedure 52

for record file 54
WRITElN procedure 53

X compiler option
See XREF compiler option

XREF compiler option 33

Index 183

J

c

J

,.

J

§ : :~,~feChnical Newsletter

PASCAL/VS
Programmer's Guide

Program Number: 5796-PNQ

This Newsletter No. SN 2 0-4445
Date 31 December 1981

Base Publication No. SH20-6162-1
File No.

Prerequisite Newsletters SN20-4117

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover
v/vi
vii/viii
ix/x
5/6
29/30
35/36
37 -40
45 - 58
58.1/58.2
103 - 108
113 - 120
127 - 130
138.1/138.2
139 - 142
142.1/142.2
147 - 150
153-156
165 - 168
171/172
175 - 178
178.1/178.2

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plain., N.Y. 10604

Printed in U.S.A.

J

§ ::,§~ ~eChnical Newsletter ~/ I

Pascal/VS
Programmer's Guide

Program Number: 5796-PNQ

This Newsletter No. SN20-445 0
Date 19 Feb 82

Base Publication No. SH20-6162-1
File No.

Prerequisite Newsletters
SN20-4445

This Technical Newsletter provides replacement pages for the subject
publication. Pages to be replaced are listed below.

Cover - Inside Cover

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

PASCAL/VS
Programmer's Guide

Program Number: 5796-PNQ

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

This Technical Newsletter provides replacement pages for the subject
publication. Pages to be replaced are listed below.

Cover - Inside Cover
vii - x
xi - xii
161 - 162
178.3 - 178.8
179 -183

Note: File this cover page at the back of the manual to provide a record of changes.

SN20-4607
9 December 1983

SH20-6162-1

SN20-444S

IBM Corporation, Technical Publications, Dept. 824,1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

-----.\

