Program
Offering

SH20-6168-2

Pascal/VS

Language Reference Manual

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in VS1, MVS
and VM/CMS. Originally designed as a high level pro-
gramming language to teach computer programming by
Professor Niklaus Wirth (circa 1968), Pascal has
emerged as an influential and well accepted user lan-
guage in today’s data processing environment. Pascal
provides the user with the ability to produce very reli-
able code by performing many error detection checks
automatically.

The compiler adheres to the currently ANSI and ISO
(Level 0) standard (with minor deviations) and includes
many important extensions. The language extensions
include: separate compilation, dynamic character strings
and extended I/O capabilities. The implementation fea-
tures include: fast compilation, optimization and a sym-
bolic terminal oriented debugger that allows the user to
debug a program quickly and efficiently.

This manual describes the implementation of the lan-
guage by this compiler, and is intended as a reference
guide for the Pascal programmer.

.||Il

PROGRAM SERVICES

During a specified number of months immediately following initial availability of each licensed program, the
customer may submit documentation to the designated IBM location below when he/she encounters a problem
which his/her diagnosis indicates is caused by a defect in the licensed program. During this period only, IBM,
through the program sponsor(s), will, without additional charge, respond to an error in the current unaltered
release of the licensed program by issuing known error correction information to the customer reporting the
problem and/or issuing corrected or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected. Any onsite program services or
assistance may be provided at a charge.

WARRANTY

THE LICENSED PROGRAM DESCRIBED IN THIS MANUAL IS DISTRIBUTED ON AN “AS IS”
BASIS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Ave.
P.O. Box 50020
San Jose, CA 95150
Attn: Luis Tan
IBM Tieline: 8/543-4392
Telephone: (408) 463-4392

Note: Non-US customers should contact their designated support group in their country.

Information concerning Program Services for this Program Offering
can be found in Availability Notice G320-6387.

Third Edition (February, 1985)

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available outside the United States.

A form for readers’ comments has been provided at the back of this publication. If

this form has been removed, address comments to: The Central Service Location.

IBM may use or distribute whatever information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, and 1985.

PREFAGE

This document is the reference manual to the Pascal/V5 programming language. The
Pascal/V¥S Programmer's Guide, SH20-6162, is also available from IBM to halp write
programs in Pascal/Vs.

It is assumed that yvou are already familiar with Pascal and programming in a high
level programming language. There are many text books available on Pascal; the fol-
lowing list of books was taken from the Pascal llser's Group Pascal News, December
1978 NUMBER 13 and September 1979 NUMBER 15. You may wish to check later editions of
Pascal News and your library for more recent books.

° The Design of Well-Structured and Correct Programs by S. Alagic and M.A. Arbib,
Springer-Varlag, New York, 1978, 292 pp.

° Microcomputer Problem Solving by K.L. Bowles, Springer-Verlag, New York, 1977,
563 pp.

° A_Structured Programming Approach to Data by D. Coleman, MacMillan Press Ltd,
London, 1978, 222 pp.

U A Primer on Pascal by R.W. Conway, D. Gries and E.C. Zimmerman, Winthrop Pub-
lishers Inc., Cambridge Mass., 1976, 433 pp.

° PASCAL: An Introduction to Methodical Programming by W. Findlay and D. Watt,
Computer Science Press, 1978, 306 pp.; UK Edition by Pitman International Text,
1978.

° Programming in PASCAL by Peter Grogono, Addison-Wesley, Reading Mass., 1978,
357pp.

U Pascal Users Manual and Report by K. Jensen and N. Wirth, Springer-Verlag, New
York, 1978, 170 pp.

° Structured Programming and Problem-Solving with Pascal by R.B. Kieburtz, Pren-
tice-Hall Inc., 1978, 365 pp.

‘ U Programming via Pascal by J.S5. Rohl and Barrett, Cambridge University Press.

. An__Introduction to Programming and Problem-Solving with Pascal by G.M.
Schneider, S.W. Weingart and D.M. Perlman, Wiley & Sons Inc., New York, 394 pp.

. Introduction to Pascal by C.A.G. Webster, Heyden, 1976, 129 pp.

° Introduction to Pascal by J. Welsh and J. Elder, Prentice-Hall Inc., Englewood
Cliffs, 220 pp.

. A Practical Introduction to Pascal by I.P. Wilson and A.M. Addyman,
Springer-Verlag New York, 1978, 145pp; MacMillan, London, 1978.

* Systematic Programming: An Introduction by N. Wirth, Prentice-Hall Inc., Engle-
wood Cliffs, 1973 169 pp.

. Algorithms + Data Structures = Programs by N. Wirth, Prentice-Hall Inc., Engle-
wood Cliffs, 1976 366 pp.

| This reference manual considers ANSI/IEEE770X3.97-1983 as the Pascal Standard.

STRUCTURE OF THIS MANUAL

This manual is divided into the following major topics
Chapter 1 is a summary of the language.
Chapter 2 is a description of the basic units (lexical) of Pascal/Vs.
Chapters 3 through 9 are a top-down presentation of the language.

(Chapter 10 describes the I/0 procedures and functions.

Preface iii

Chapter 11 daescribes the predefined procedures and functions.
Chapter 12 describes the compiler directives.

Appendices provide supplemental information about Pascal/Vs.

PASCAL/VS SYNTAX DIAGRAMS

The syntax of Pascal/VS will be described with the aid of syntax diagrams. These
diagrams are essentially "road maps"; by traversing the diagram in the direction of
the arrows yvou can identify every possible legal Pascal/VS program.

Within the syntax diagram, the names of other diagrams are printed in lower case and
surrounded by braces ("{}"). When you traverse the name of another diagram vou can
consider it a subroutine call (or more precisely a "subdiagram call"). The names of
reserved words are alwavs in lower case. Special symbols (i.e. semicolons, commas,
operators, ete.) appear as they appear in a Pascal/VS program.

The diagram traversal starts at the upper left and completes with the arrow on the
right. Every horizontal line has an arrowhead to show the direction of the trav-
ersal on that line. The direction of traversal on the vertical lines can be deduced
by looking at the horizontal lines to which it connects. Dashed lines (i.e. "———-")
indicate constructs which are unique to Pascal/V$S and are not found in standard Pas-
cal.

Identifiers may be classified according to how they are declared. For the sake of
clarity, a reference in the syntax diagram for {id} is further specified with a one
or two word description indicating how the identifier was declared. The form of the
reference is "{id:descriptionl}". For example {id:type} references an identijifier
declared as a type; {id:function} references an identifier declared as a function
name.

REVISION CODES

The convention used in this document is that all changes in the current version from
the previous edition are flagged with a vertical bar in the left margin.

Extensions to Pascal are marked with a plus sign in the margin.

iv Pascal/VS Reference Manual

SUMMARY OF AMENDMENTS

RELEASE 2.2

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.2.

° The interactive debugger now supports 32 breakpoints.

° Two new predefined constants have been added to the compiler: MINREAL and MAX-
REAL.

. The LANGLVL(STDRES) compiler option has been added to allow the user to use the
non—-standard Pascal/VS reserved words as identifiers.

. A new predefined function, ADDR, accepts a variable name and returns the
location of that variable in storage.

. Structured array constants may now be passed as the source arrays to PACK and
UNPACK.

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

. A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at the
outermost nesting level of a module has been removed.

. Two new options may be applied to files when they are opened: UCASE and NOCC.

U Rules have been relaxed in passing fields of packed records by var to a routine.

. The "STACK"™ and "HEAP" run time options have been added to control the amount by
which the stack and heap are extended when an overflow occurs.

° The syntax of a "structured constant" which contains non-simple constituents has
been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.0.

U Pascal/V¥S now supports single precision floating point (32 bit) as well as dou-
ble precision floating point (64 bit).

. Files may be opened for updating with the UPDATE procedure.

. Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT} so
that I/0 may take place directly to the user's terminal without going through
the DDNAME interface.

. The MAIN directive permits vou to define a procedure that may be invoked from a
non-Pascal environment. A procedure that uses this directive is not reentrant.

. The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

. A new predefined type, STRINGPTR, has been added that permits you to allocate
strings ?itqlthe NEW procedure whose maximum size is not defined until the invo-
cation of NEW.

Summary of Amendments v

vi

A new parameter passing machanism is provided that allows strings to be passed
into a procedure or function without requiring vou to specify the maximum size
of the string on the formal parameter.

The maximum siza of a string has been increased to 32767 characters.

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not modi-
fied.

Pascal/VS programs may contain source lines up to 100 characters in length.
Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascal/VS will flag extensions when the option "LANGLVL(STD}" is used.

A mechanism has been provided so that Pascal/VS routines may be called from oth-
er languages.

All record formats acceptable to QSAM are now supported by the Pascals/Vs I/0
facilities.

A procedure or function may now be exited by means of the 90to statement.
You may now declare an array variable where each element of the array is a file.
You may define a file to be a field of a record structure.

Files may now be allocated in the heap (as a dynamic variable) and accessed via a
pointer.

You may now defina a subrange of INTEGER which is allocated to 3 bytes of
storage. Control over signed or unsigned values is determined by the subrange.

Variables may be declared in the outermost scope of a SEGMENT. These variables
are defined to overlay the variables in the outermost scope of the main program.

The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

The PDSOUT procedure opens a member of a library file (partitioned dataset) for
output.

A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

The CPAGE percent (%) statement conditionally does a page eject if less than a
speci fied number of lines remain on the current listing page.

The MAXLENGTH function returns the maximum length that a string variable can
assume.

The %CHECK TRUNCATE option enables (or disables) the checking for truncation of
strings.

The PASCALVS exec for invoking the compiler under CMS has been modified so that
the specification of the operands allows greater flexability.

New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

The catalogued procedures for invoking Pascal/VS in 05 Batch have been simpli-
fied.

The format of the output listing has been modified so that longer source lines
may be accomodated.

Multiple debugger commands may be entered on a single line by using a semicolon
(;) as a separator,

Pascal/VS Reference Manual

<

J

The format of the Pascal File Control Block has been modified.
Support is now provided for ANSI and machine control characters on output files.

Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are being
exited.

The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

The Equate command of the debugger has been enhanced.

The debugger will print "uninitialized" when displaying a variable that has not
been assigned.

New run time options are provided: SETMEM, ERRCOUNT, and ERRFILE.

Summary of Amendments vii

This page intentionally left blank

viii Pascal/VS Referance Manual

~

+ + +

—

(SR RS]

(S, S, |

wmonu:n

[S, 00 B U, BRI - PR R R P K) w NN N

Mmoo~ UIosTUUNUTLIUIULIPALILTULILIULIN — O NNV O o NI LN O 2 e o = b d b b b = b e b b bt = =t s e e 2 O

.1

ROV ~NOUDWN

L el e e e T e e e e e e

The

The
The
The
The
The
The
The

NNNN
J\MND—-

The
The

\l\l\l\l\l o vunuiuonon

e e o o =de =—fe o o 2

UI-L\UIND-‘TD-‘D'UIJ\UNH
o

The
The

.10.1

Introduction to Pascal/vs o o .
Pascal Language Summary

Syntax

Modules

Declarations
Data-Types

Parameters

Statements

Expressions

Operands

Special Symbols
Identifiers

The Not Operator .
Multiplving Operators
Adding Operators
Relational Operators
Reserved Words
Predefined Constants
Predefined Types
Predefined Variables
Predefined Functions
Predefined Procedures
% Statements

Base Vocabulary e e e o o

Identifiers .

Lexical Scope of Ident1f1er5
Reserved Words .
Special Symbols

Comments .

Constants .

Structured Constants

structure of a Module e e o s .

Pascal/Vvs Declarations e e . .

Label Declaration
Const Declaration
Tvype Declaration
Var Declaration
Static Declaration
Def/Ref Declaration
Value Daeclaration

Types . e e e e s e e
A Note about Str1n95 e e e e .
TVpe Compatibility

Implicit Type Conver51on
Same Types .

Compatible Types

Assignment Compat1ble Types
Enumerated Scalar . .
Subrange Scalar

Predefined Scalar Types

The Type INTEGER
Thae Type CHAR

The Type BOOLEAN
The Type REAL

The Type SHORTREAL
Array Type

Array Subscr1pt1ng
Record Type . .
Naming of a F1eld
Fixed Part .
Variant Part
Packed Records

0ffset Qual1f1cat1on of Fmelds'

Set Type
File Type

0 Predefined Struéture Types

The Type STRING

TABLE OF CONTENTS

Table of Contents

VOO NN UVIUT DN WNWNN P P

-
—_o

e
00 ~J ON U1 (Wi S

NN
W o

WL NN
ek =RV-Ne -RNE N §T,]

Vunmuune,rDpPPPRPPRDPPRPPRPRDDLPDUUEHGUEUHWUHWUWWW
NUHNOOPOINOODPUNFOOOIOPDDPUHUWW

+ + + +

+ 4+ ++++

5.
5.
5.
1
1
1

5.
5.
5.
6.
6
6

(=}

.
i RO NOVNRUNHO ~NAOVRPUWUNFRO SURNFHO UPDPOCCOORORUARIARARORRNRRO

HPORNOUPUWUNEFO UVIRAUNRO

=t s et et S e s e e et A e e R e OOV OOV OOV OOV OOOO0O 00RO ~NNN~NS] OO
© b e e s e e s e e s e NN . e .

OCOO0OODOO0O0O0O0OO0O0OCOOOO

X

The Typa ALFA

The Type ALPHA

The Type TEXT

1 The Pointer Type

2 The Type STRINGPTR e e e e
3 Storage, Packing, and Alignment

-
ooa
-L\UIN

Routines e e e e s s s s e
Routine Declarat1on
Routine Parameters
Pass by Value Parameters
Pass by Var Paramaters
Pass by Const Parameters
Formal Routine Parameters
Conformant String Parameters
utine Composition
Internal Routines
FORWARD Routines
EXTERNAL Routines
FORTRAN Routines
MAIN Procedures .
REENTRANT Procedures
Examples of Routines
Funct1on Results
Predefined Procedures and Functlons

R

UUJUUUUU NN
\JOUIJ-\UJNHO NN -

Variables . e e e e e .
Subscripted Var1able .
Field Referencing

Pointer Referencing

File Referencing

Expressions e e e e e e e e e e .
Operators .

Constant Express1on5

Boolean Expressions

Logical Expressions

Function Call

Scalar Conversions

Sat Constructor

Statements .o . e e e s e e
The Assert Statement .
The Assignment Statement
The Case Statement .
The Compound Statement
The Continue Statement
The Empty Statement

The For Statement

The Goto Statement

The If Statement

The Leave Statement

Tha Procedure Call

Tha Rapeat Statement

The Return Statemant

The While Statement

The With Statement

I/0 Facilities e o s e e e s o e
RESET Procedure
REWRITE Procedura
TERMIN Procedure
TERMOUT Procedura
PDSIN Procedure
PDSOUT Procedure
UPDATE Procedure
CLOSE Procedure
GET Procedure

0 PUT Procedure

.11 SEEK Procedura

.12 EOF Function

.13 READ and READLN (TEX? F1le5)
.14 READ (Non-TEXT Files) .

.15 WRITE and WRITELN (TEXT F11e5)
.16 WRITE (Non-TEXT Files)

PascalsVS Reference Manual

56
57
58
59
60
61

63
64
64
64
64
64
64
64
65
65
65
65
65
66
66

67
67

69
69
70
70
71

73
76
78
79
80
81
82
83

85
86
87
88
90
91
92
93
95
96
97
98
99
100
101
102

105
105
106
106
107

el ol ol ol el el e
e el el s ===
00 ~J

PSPUFHRFRPOOWVO®

[
—
o

— 4+ +

-+ o+

+ +

+ + + +

PO OO O G G GO

10.17
10.18
10.19
11.0
11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.2 Da
11.2.1
11.2.2
11.3 Da
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.4 Co
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.4.6
11.4.7
11.5 Ma
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
11.5.8
11.5.9
11.5.10
11.5.11
11.5.12
11.5.13
11.5.1¢4
11.6 STR
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8
11.6.9
11.6.190
11.6.11
11.7 Gen
11.7.1
11.7.2
11.8 Sy
11.8.1
11.8.2
11.8.3
11.8.4
12.0 The
12.1 The
12.2 The
12.3 The
12.4 The
12.5 The
12.6 The
12.7 The
12.8 The
12.9 The

EOLN function
PAGE Procedure
COLS Function

Execution Library Facilities
Memory Management Routines

MARK Procedure

RELEASE Procedure
NEW Procedure .
DISPOSE Procedure

ta Movement Routines

PACK Procedure
UNPACK Procedure

ta Access Routines

LOWEST Function

HIGHEST Function
LBOUND Function

HBOUND Function

SIZEOF Function

ADDR Function

nversion Routines

ORD Function

CHR Function
Scalar Conversion
FLOAT Function
TRUNC Function
ROUND Function
STR Function

thematical Routines

MIN Function
MAX Function
PRED Function
SUCC Function
0DD Function
ABS Function
SIN Function
C0S Function
ARCTAN Function
EXP Function
LN Function
SQRT Function
SQR Function
RANDOM Function

ING Routines

LENGTH Function
MAXLENGTH Function
SUBSTR Function
DELETE Function
TRIM Function
LTRIM Function
COMPRESS Function
INDEX Function
TOKEN Procedure
READSTR ..
WRITESTR

eral Routines

TRACE Procedure
HALT Procedure

stem Interface Routinés‘

DATETIME Procedure
CLOCK Function
PARMS Function
RETCODE Procedure

% Feature e e e .
%ZINCLUDE Statement
%CHECK Statement
%PRINT Statement
%LIST Statement
%PAGE Statement
%CPAGE Statement
%TITLE Statement
%SKIP Statement
%MARGINS statement

Table of Contents

117
117
118

119
120
120
120
121
123
124
124
124
125
125
125
126
126
127
127
128
128
128
129
129
130
130
131
132
132
132
133
133
134
134
135
135
136
136
137
137
138
138
139
139
139
140
140
141
141
142
142
143
143
144
145
145
145
146
146
146
147
147

149
150
150
150
150
151
151
151
151
151

xi

+ + +

APPENDIXES e s e s s & s s & o e s e e & e o e o o 6 e o s e s = e e s e 153
Appendix A. The Space Type e e e e o & & & e e o 4 4 s 6 e e e e e 8 o e @ 155
A.1 The Space Declaration e 155
A.2 Space Referencing e 155
Appendix B. Standard Identifiers in Pascal/vs e e e e e e e e e e e e e 157
Appendix €. sSyntax Diagrams e e e s a e e s s e e e e e e e e e e e e e 159
Appendix D. Index to Syntax Diagrams e o 4 & s s & s & o 4 & o 2 e s e o s 171
Appendix E. Glossary e s e s e e s e e s e e e e e e e e e e e e e e e e 173

Index e 6 s s e & s s s e & e & s s e e 8 s o e e e e 8 o 6 o e o o o o 175

xii Pascal/VS Reference Manual

"The language Pascal was designed by
Professor Niklaus Wirth to satisfy two
principal aims:

° to make available a language suit-
able for teaching programming as a
systematic discipline based on cer-
tain fundamental concepts clearly
and naturally reflected by the lan-
guage.

. to define a language whose implemen-
tations could be both reliable and
efficient on then available comput-
ers."

(Pascal Draft Proposal ISO/TC 97/SC 5
N595, January, 1981)

Pascals/VS is an extension to standard
Pascal. The purpose of extending Pascal
is to facilitate application program-
ming requirements. Among the extensions
are such features as separately compil-
able external routines, internal and
external static data, and varying length
character strings.

Pascal 1is of interest as a high level

programming language for the following
reasons:

1.1 PASCAL LANGUAGE SUMMARY

.0 INTRODUCTION TO PASCAL/VS

It provides constructs for defining
data structures in a clear manner.

It is suitable for applying struc-
tured programming techniques.

The language is
machine-independent.

relatively

Its syntax and semantics allow
extensive error diagnostics during
compilation.

A program written in the language
can have extensive execution time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

This section of the manual is meant to be a capsule summary of Pascal/VS. It should

serve as a brief outline of the language.

of this document.

1.1, synta

The details are explained in the remainder

The syntax is described with an example-like format that summarizes the important
features of the item. The following rules are the conventions used.

cooe indicates that the item preceding this symbol may be repeated an

arbitrary number of times.

=
|

encloses items which are optional.

[1 denote the standard square brackets of Pascal.

item-comma-list indicates that the item may be repeated, separating each occurrence

with a comma.

digit-list

refers to a sequence of one or more digits ("0".,."9"),

binary-digits refers to a sequence of one or more binary digits ("0" or "1"),

hex-digits refers to a sequence of one or more hexadecimal digits ("0".."9" or
"A" .. "F") .

id refers to an identifier.

label refers to either an identifier or an integer number in the range

0..9999.

Introduction to Pascal/V$s 1

directive

field-list

1.1.2 Modules

program

SEGMENT

refers to any one of: FORWARD, EXTERNAL, FORTRAN, MAIN, or
REENTRANT.

rafers to the list of fields that compose the body of a record data
type.

is a self-contained and independently executable unit of code.

program id [(id-comma-list) 1 ;
declaration...
compound-statement

is a shell in which procedures and functions may be separately com-
piled.

SEGMENT id ;
declaration...

1.1.3 Dpeclarations

labhel

const

type

var

def

ref

static

value

is used to declare a label in a program, procedure or function.

label
label-comma-list ;

declares an identifier that becomes synonymous with a compile time
computable value.

const
id = constant-expression ;
[id = constant-expression ; 1...

declares an identifier which is a usar-defined data type.

type
id = data-type ;
[id = data-type ; 1.

declares a local variable.
var
id-comma-list : data-type ;
L id-comma-list : data-type ; 1...

declares a variable which is defined in one module and may be rafer-

enced in other modules.

def
id-comma-list : data-type ;
I id-comma-list : data-type ; 1.

declares a variable which is defined in another module.
ref
id-comma-list : data-type ;
[id-comma-list : data-type ; 1.

declares a variable which persists for the entire execution of the
program.

static
id-comma-list : data-type ;
I id-comma-list : data-type ; 1...

assigns a value to a def or static variable at compile time.

2 Pascal/VS Reference Manual

value
variable = constant-assignment-statement ;
[variable := constant-assignment-statement ; 1.

procedure defines a unit of a module which may be invoked as a statement.
procedure id [(parameter [; parameterl...) 1 ;
directive ;
or
procedure id [(parameter [; parameterl...) 1 ;

declaration...
compound-statement ;

function defines a unit of a module which may be invoked and returns a value.
function id [(parameter [; parameterl...) 1 @ id ;
directive ;
or
function id [(parameter [; parameterl...) 1 : id ;

declaration...
compound-statement ;

1.1.4 Data-Types

id is an identifier that was previously declared as a type.
enumeration isalist of constants of a user-defined scalar data typa.

(id—-comma-list)

subrange is a continuous range of a scalar type.
I packed 1 constant .. constant-expression
array is a data structure composed of a list of homogeneous elements.

[packed] array [data-type 1 of data-type
record is a data structure composed of a list of heterogeneous fields.

[packed 1 record
[id-comma-list : data-type ; J1..
[case [id :] id of

constant-comma-list : (field-list 3} ;
[constant-comma-list : (field-list) ; 1... 1
end
set is a collection of zero or more scalar values.
L packed] set of data-type
file is a sequence of data to be read or written by a Pascal program.
file of data-type
pointer is a reference to a variable that is created by the programmer.
? id
1.1.5 Parameters
value designates a pass-by-value parameter.
id-comma-list : id
var designates a pass—-by-reference (read/urite) parameter.
var id-comma-list : id

- - Introduction to PascalsV$s

const

procedure

function

designates a pass-by-reference (read-only) parameter.
const id-comma-list : id

is the mechanism whereby a procedure may be passed to the called
procedure (function) and executed from there.

procedure id [(parameter [; parameterl...) 1 ;

is the mechanism whereby a function may be passed to the called pro-
cedure (function) and executed from there.

function id [(parameter [; parameterl...) 1 : id ;

1.1.6 statements

Every statement may be preceded with one label:

[label:] statement

assert

assignment

case

compound

continue

empty

for

goto

if

tests a condition that should be true and if not causes a runtime
error to be produced.

assert bool-expression
assigns a value to a variable.

variable = expression

causes any one of a list of statements to be exacuted based upon the
value of an expression.

case expression of

[constant-comma-list : statement ; 1..
I otheruise
statement [; statement J1... 1
end

is a series of statements enclosed within begin/end brackets.

begin

statement [; statement 1...

end
resumes execution of the next iteration of the innermost loop. The
termination condition is tested to determine if the loop should con-
tinue.

continue

contains no executable code.

is a loop statement that modifies a control variable for each itar-
ation of the loop.

expression to0o expression do

for variable
statement

or

for variable
statement

expression oWNto expression do

changes the flow of your program.
goto label

causes one of two statements to be executed based on the evaluation
of an expression.

if bool-expression then
statement

I else
statement]

% Pascal/VS Raference Manual

C

leave terminates the execution of the innermost loop. Execution resumes
as if the loop termination condition were true.

leave

call invokes a procedure. At the conclusion of the procedure, execution
continues at the next statement.

id [(expression-comma-list) 1

repeat is a loop statement with the termination test occurring at the end
of the loop.

repeat
statement [; statement 1...
until bool-expression

return terminates the executing procedure (function) and returns control
to the caller.
return
While is a loop statement with the termination test occurring at the

beginning of the loop.

while bool-expression do
statement

With permits complicated references to fields within a record to be
treated as simple variables within a statement.

With variable-comma-list do
statement

1.1.7 Expressions

An expression is composed of operands combined with operators. The operators have
the following precedence:

not operator (highest)
multiplying operators

adding operators

relational operators (lowest)

1.1.8 Operands

variable represents a unit of storage which may be referenced and altered.
simple variable: id
array: variable [expression 1
field: variable . id
pointer: variable a
constant represents a literal value.
INTEGER digit-list

' hex-digits 'X
' binary-digits 'B

REAL digit-list . digit-list [E+/- digit-listl
' hex-digits 'XR
BOOLEAN FALSE/TRUE
CHAR EBCDIC character in single quotes
string EBCDIC characters in single auotes
' hex-digits 'XC
array id (expression [: expressionl
L , expression [: expressionl] 1...)
record id (expression [, expressionl...)

sat-constructor refers to an operand that describes the values of a set.

Introduction to Pascal/Vs 5

[expression [.. expression 1
[, expression [.. expression 1 1... 1

fungtion-call refers to the invocation of a function.
id [(expression-comma-list) 1
paranthesized-expression is used to override the normal precedence of operators.

(expression)

1.1.9 special Symbols

symbol meaning

addition and set union operator

subtraction and set difference operator

multiplication and set intersection operator

division operator, REAL results only

BOOLEAN not, one's complement on INTEGER

or set complement

BOOLEAN or, logical or on INTEGER

BOOLEAN and, logical and on INTEGER

BOOLEAN xor operator, logical xor on INTEGER
and set exclusive union

equality operator

less than operator

less than or equal operator

greater than or equal operator

greater than operator

or == not equal operator

right logical shift on INTEGER

left logical shift on INTEGER

catenation operator

assignment symbol

period to end a module

field separator in a record

comma, used as a list separator

colon, used to specify a daefinition

semicolon, used as a statement separator

subrange notation

quote, used to begin and end string constants

or —-> pointer symbol

left parenthesis

right parenthesis

or (. left square bracket

or .) right square bracket

or (X comment left brace (standard)

or) comment right braca (standard)

comment left brace (alternate form)

comment right brace (alternate form)

G —AVAVVAAI f— 1 NX I +
H—A Vv "o o

e o o

~e

KN Hmdarins M) =

N X

1.1,10 Identifiers

Identifiers are composed of the letters "a" through "2", the digits "0" through "9V
and the special characters "_" and "$". An identifier must begin with a letter or
"$" and must be unique in the first 16 positions. There is no distinction between
the an upper case letter and its lower case equivalent.

6 Pascal/sVS Reference Manual

C

1.1.11 The

Not Operator

operator oparation operands result

- (not) boolean not BOOLEAN BOOLEAN

- (not) logical one's INTEGER INTEGER

complement
- (hot) complement set of t st of t
1.1.12 Multiplying Operators

operator operation operands result

* multiplication INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

/ real division INTEGER REAL
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

div integer division INTEGER INTEGER

mod modulo INTEGER INTEGER

& (and) boolean and BOOLEAN BOOLEAN

& (and) logical and INTEGER INTEGER

* set intersection set of ¢ set of t

[string catenation STRING STRING

<< logical left shift| INTEGER INTEGER

>> logical right INTEGER INTEGER

shift
1.1.13 Adding Operators

operator operation operands result

+ addition INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

+ set union set of t sat of t

- subtraction INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

- set difference sat of t set of t

| ¢ord boolean or BOOLEAN BOOLEAN

| tor) logical or INTEGER INTEGER

&& (xar) boolean xor BOOLEAN BOOLEAN

&& (xor) logical xor INTEGER INTEGER

&& (xar) exclusive union sat of t set of t

Introduction to Pascal/VS

7

1.1.14 Relational Operators

operator operation operands result
= compare equal any set, scalar, pointer BOOLEAN
or string
<> (-=) not equal any set, scalar, pointer BOOLEAN
or string
< less than scalar type or string BOOLEAN
<= compare < or = scalar type or string BGOLEAN
<= subset sat of t BOOLEAN
> compare greater scalar type or string BOOLEAN
>= compare > or = scalar type or string BOOLEAN
>z’ superset set of t BOOLEAN
in set membership t and set of t BOOLEAN
1.1.15 Reserved Words

and end of space

array file or static

assert for otheruise then

bagin function packed to

casea goto procedure type

const if program until
continue in range value

def lahel record var

div leave raf while

do mod repaat KWith

dounto nil return xor

alse not sat

1.1.16 Predefined Constants

ALFALEN
ALPHALEN
FALSE
MAXINT
MAXREAL
MININT
MINREAL
TRUE

length of type ALFA, value is 8

length of type ALPHA, valua is 16

constant of type BOOLEAN, FALSE < TRUE

maximum value of type INTEGER: 21647483647

maximum value of type REAL:

"7FFFFFFFFFFFFFFF'XR

minimum value of type INTEGER: -2147483648

minimum non-zero value of type REAL: '0010000000000000"XR
constant of type BOOLEAN, TRUE > FALSE

1.1.17 Predefined Types

ALFA
ALPHA
BOOLEAN
CHAR

8 Pascal/VS Reference Manual

packed arrayl 1..ALFALEN 1 of CHAR
packed arrayl 1..ALPHALEN 1 of CHAR
data type composed of the values FALSE and TRUE

character data type

INTEGER
REAL
SHORTREAL
STRING

STRINGPTR

TEXT

integer data type
floating point represented in a 6% bit value

floating point represented in a 32 bit value

an array of CHAR whose length varies during execution up to a speci-

fied maximum

is a predefined type that points to a STRING whose maximum length is

determined when the STRING is allocated with NEW
file of CHAR

1.1.18 Predefined Variables

INPUT
CUTPUT

default input file
default output file

1.1.19 Predefined Functions

The following symbols represent parameters in the descriptions
of the predefined functions and procedures.

ABS(x)
ADDR(V)
ARCTAN(x)
CHR(n)
CLOCK
coLs(f)
COMPRESS(S)
€0Ss(x)

an array variable

any expression

a file variable

a positive integer expression
pointer valued variable

a string expression

a type name or variable name
a variable

any arithmetic expression

X<AunTSHDO
[O O T I T AR TR T

computes the absolute value "x"

returns the address of variable "v"

returns the arctangent of "x"

returns the EBCDIC character whose ordinal value is "n"
returns the number of micro-seconds of execution
returns current column of file "f"

replaces multiple blanks in "s" with one blank

returns the cosine of "x"

DELETE(s,nl[,n2]) returns "s" with the "n2" characters starting at position

EOF(f)
EOLN(f)
EXP(x)
FLOAT(n)
HBOUND(a[l,nl)
HIGHEST(t)
INDEX(s1,52)
LBOUND(al,nl)

removed
tests file "f" for end-of-file condition

tests file "f" for end-of-line condition

"nl"

computes the base of the natural log (e) raised to to the power "x"

converts "n" to a floating point value

determines the upper bound of array "a"

determines the maximum value the type of a scalar "t"
returns the location, if present, of "s2" in "sl"

determines the lower bound of array "a"

Introduction to Pascal/V$s

LENGTH(sS)
LN(x)
LOWEST(t)
LTRIM(s)
MAX(x[,x1...)
MAXLENGTH(s)
MIN(x[,x1...)
ODD[q)

ORD(x)

PARMS

PRED(x)
RANDOM(n)
ROUND(x)
SIN(x)
SIZEOF(t)
SQRT(x)
SQR(X)

STR(a)

determines the current length of string "s"

returns the natural logarithm of the "x"

determines the minimum value the type of a scalar "t"

returns "s" with leading blanks removed

determines the maximum value of a list of scalar expressions
determines the maximum length of string "s"

determines the minimum value of a list of scalar expressions
returns TRUE if integer "n" is odd

converts a scalar value "x" to an intager

returns the system dependent invocation parameters

obtains the predecessor of scalar expression "x"

returns a pseudo-random number, "n" is the seed value or zero
converts a floating point value to an integer value by rounding
returns the sine of "x"

determines the memory size of a variable or type "t"

returns the square root of "x"

returns the square of "x"

converts array of characters "a" to a string

SUBSTR(s,nl1l,n2]) returns the substring of "s" starting at "nl" with length "n2"

sUCC(x)
TRIM(S)
TRUNC(x)

obtains the successor of scalar "x"
returns "s" with trailing blanks removed

converts floating point expression "x" to an integer by truncating

1.1.20 Predefined Procedures

CLOSE(F)
DATETIME(al, a2)
DISPOSE(p)
GET(f)

HALT

MARK(p)
NEW(p,[,x]...]
PACK(al,x,a2)
PAGEL(F)]
PDSIN(f,s)

PDSOUT(f,s)

PUT(F)

—

closes a file

returns the current date in "al" and time of day in "a2"
deallocates a dynamic variable

advances file pointer to the next element of input file "f"
halts the programs execution

creates a new heap, "p" designates tha heap

allocates a dynamic variable from the most recent heap
copies array "al" starting at index "n" to packed array "a2"
skips to the top of the next page

opens file "f" for input, where "s" designates the open options
which must specify the member name

opens file "f" for output, where "s" designates the open options
which must specify the member name

advances the file pointer to the next element of output file "f"

10 Pascal/VS Reference Manual

READ(Lf,]vI,v]...) reads data from file "f" into variable "v"

READLN([f,]vI,v]...) reads variable "v" and then skips to end-of-line of TEXT file

"-f"

READSTR(s,vI[,v]...) reads data from string "s" into variable "v"

RELEASE(p)

RESET(fL[,s])
RETCODE(n)
REWRITE(fIL,s1)
SEEK(f,n)

TERMIN(fL,s])

TERMOUT(f[,s1)

TOKEN(s,Vv)
TRACE(f)
UNPACK(al,a2,n)
UPDATE(f[,s])

destroys one or more heaps, "p" designates the last heap to be
destroyed

opens file "f" for input, "s" designates the optional open options
sets the system return code

opens file "f" for output, "s" designates the optional open options
modifies the current position of file "f' so that next GET (or PUT)
reads (or writes) record number "n", where record 1 is the first

record of the file

opens file "f" for input from the users terminal, "s" designates the
optional open options

opens file "f" for output from the users terminal, "s" designates
the optional open options

extracts tokens from string "s" updating starting position "v"
writes the procedure and function invocation history to file "f"
copies packed array "al" to array "a2" beginning at index "n"

opans file "f" for update —-- a PUT immediately following a GET of a

record of the file replaces that record; "s" designates the optional
open options

WRITE([f,lel,el...) writes the value of "x" to file "f"

WRITELN(If,]el,e]l...) writaes the value of "x" and then writes an end-of-line to TEXT

file "f"

WRITESTR(s,el,el...) writes the value of "e" to string "s"

1.1.21 % Statements

%CHECK
%CPAGE n

%INCLUDE
%LIST ON/OFF
%MARGINS m n

%PAGE

%PRINT ON/OFF
%SKIP n
4ZTITLE

enables or disables execution time checking features.

skips to the next page if less than "n" lines remain on the current
page

includes source code from a library.
enables or disables the pseudo-assembler listing.

resets the left margin of the source program to "m" and the right
margin to "n".

forces the source listing to start on a new page.
enables or disables the source listing.
inserts "n" blank lines into the source listing.

specifies a title for the listing.

Introduction to Pascal/V$s 11

This page intentionally left blank

12 Pascal/VS Reference Manual

C

2.1 IDENTIFIERS

2.0 THE BASE VOCABULARY

Syntax:
id:
>
——>{digit}——>
—>{letter} >{letter}——————>}———>
[---->{underscore}-->]
<
where:
{letter} is 'A', 'B', ..., 'Z2',%a','b', 'z2'" or '$!
{digit) is '0', "1', ..., '9!
underscore is '_"
Identifiers are names given to vari- external routines. You must make sure

ables, data types, procedures, func-
tions, named constants and modules.

correct: incorrect:
I 5K
K9 NEW JERSEY
New_York
AMOUNTS

Valid and Invalid Identifiers

Pascal/VS permits identifiers of up to
16 characters in length. You may use
longer names but Pascal/VS will ignore
the portion of the name longer than 16
characters. You must assure identifiers
are unicque within the first 16
positions.

There is no distinction between lower
and upper case letters within an identi-
fier name. For example, the names 'AL-
PHA?', 'alpha', and 'Alpha' are
equivalent.

There is an implementation restrictions
on the naming of external variables and

that identifiers used as external names
are unique in the first 8 characters.

2.2 LEXICAL SCOPE OF IDENTIFIERS

The area of the module where a partic-
ular identifier can be referenced is
called the lexical scope of the identi-
fier (or simply scope).

In general, scopes are dependent on the
structure of routine declarations.
Since routines may be nested within oth-
er routines, a lexical level is associ-
ated with each routine. In addition,
record definitions define a lexical
scope for the fields of the record.
Within a lexical level, each identifier
can be defined only once. A program
module is at level 0, routines defined
Wwithin the module are at level 1; in
general, a routine defined in level i
would be at level (i+l). The following
diagram illustrates a nesting
structure.

The Base Vocabulary 13

program M (level 0)

procedure A (level 1)

procedure B (level 2)

type

record
R1:...
R2:...

end;

function C
(lavel 3)

procedura D (level 2)

function X (level 1)

procedure Y (level 2)

procedure Z (level 2)

The scope of an identifier is the entire
routine (or module) in which it was
declared; this includes all routines
defined within the routine. The follow-
ing table references the preceding dia-
gram.

14 Pascal/VS Reference Manual

identifiers

declared in: are accessible in:

Module M
procedure A
procedure B
type R
function C
procedure D
function X
procedure Y
procedure Z

N<XXoOOww»>X3X

If an identifier is declared in a rou-
tine which is nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the identifier declared at the
innermost level is the one accessible.

The scope of a field identifier defined
within a record definition is limited to
the record itself. The scope of a
record may be accessed by either field
referencing (see "Field Referencing” on
page 70) or with the with-statement (see
"The With Statement"” on page 102).

The Pascal/V$s compiler effectively
inserts a prelude of declaratiuns at the
beginning of every module it compiles.
These declarations consist of the prede-
fined types, constants, and routines.
The scope of the prelude encompasses the
entire module. You may re-declare any
identifier that 1s predefined if wvyou
would like to use the name for another
purpose.

2. RESERVED WORDS

Reserved Words
and end of + space
array file or + static
+ assert for otheruise then
begin function packed to
case goto procedure type
const if program until
+ continue in range + value
+ def label record var
div + leave ref While
do mod repeat With
dounto nil return + xor
else not sat
Note: Those words marked by '+' are not reserved in standard Pascal
and may be used as identifiers when using LANGLVL(STDRES).

Pascal/V$S reserves the identifiers
shown above for expressing the syntax of
the language. These reserved words may
never be declared by vyou. Reserved
words must be separated from other
reserved words and identifiers by a spe-

cial symbol, a comment, or at least one

blank.

A lower case letter is treated as equiv-
the corresponding upper case
letter in a reserved word.

alent +to

The Base Vocabulary

15

2.% SPECIAL SYMBOLS

Special Symbols

symbol meaning

addition and set union operator

subtraction and set difference operator
multiplication and set intersection operator
division operator, REAL result only

NX U+

BOOLEAN not, one's complement on INTEGER or set complement
BOOLEAN or, logical or on INTEGER

BOOLEAN and, logical and on INTEGER

& BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union

20 Q0 — J

equality operator

< less than operator
<= less than or equal operator
>= greater than or equal operator
> greater than operator
<> or == not equal operator
>> right logical shift on INTEGER
<< left logical shift on INTEGER
[] catenation operator
H assignment symbol
period to end a module
. field separator in a record
’ comma, used as a list separator

colon, used to specify a definition
H semicolon, used as a statement separator
subrange notation

' quote, used to begin and end string constants

a or -> pointer symbol

(left parenthesis

) right parenthesis

[or (. left square bracket

]l or .) right square bracket

{ or (% comment left brace (standard)

} or %) comment right brace (standard)

/¥ comment left brace (alternate form)

X/ comment right brace (alternate form)

Symbol Reserved Word

Special symbols used by Pascal/VS are - not
listed above. Several special symbols | or
may also be written as a reserved word. & and
These symbols are shown in the following && xor
table.

16 Pascal/VS Reference Manual

2.5 COMMENTS

Pascal/VS$s supports two forms of
comments: '{ ... }' and '/%...%/'. The
curved braces are the standard comment
symbol in Pascal. The symbols '(¥' and
'¥)' are considered by the compiler to
identical to left and right braces. The
form of comment using '/¥%' and '¥/'" is
considered to be distinct from the form
using braces.

When the compiler encounters the symbol
*{', it will bypass all characters,
including end-of-line, until the symbol
'}' is encountered. Likewise, all char-
acters following '/%' will be bypassed
until the symbol '¥/' is detected. As a

result, either form may be used to
enclose the other; for example
7%, .. { }...%¥/ is one comment. One use

of these two forms of comments is to use

one for ordinary comments and use the
other to block out temporary sections of
code: a '"/X%...%/' comment could be used
to indicate a temporary piece of code,
or perhaps debugging statements.

A comment may be placed anvyvwhere in a
module where a blank would be
acceptable.

Va3
if A = 10 then { this statement is
for program
debugging }
WRITEC'A IS EQUAL TO TEN');
¥/

Example of a nested Comment

The Base Vocabulary 17

+ + + +

+ +

2.6 CONSTANTS

Syntax:
unsigned-integer:
){digit} I
[(
—==> 0 —more - >{bi digit}=—-7-=- > 'B --->
I T o2 fbinary digit}-—77 B
T oIz thexndigitd Toopmomy X mmm e >
real-number:
—T==> ' ———y-—- >{hex-digit}---1--- > 'XR —-==--——m oo >
oo thexcdigitt-—- T 1
>{digit} > . >{digit}
L | [L
< |
Qg d
<
> E > [>{digit} T >
—> + —)J <
> - —
unsigned-number:
>{unsigned-integer}——>
___E:::>{real-number}————————>
string:
> ! > 0
| L<———{character}<———J
k> 1 ——-I———>{hex—digit}—-—I-——> 'XC -————- >4
(_________________
unsigned-constant:
——>{unsigned-number}
——>{string}—m >
—>{id:constant}———>
——> nil >
constant:
———T———>{un5igned-constant}
> + >{unsigned-number‘}———->-I
L 3.
where:
{binary-digit} is '0' or '1',
{digit} is '0' through '9';
{hex-digit} is '0' through '9' and 'A' through 'F';
{character} is any EBCDIC character.
Constants can be divided into several character in length, it will conform to
categories according to the predefined the type CHAR.

type to which they belong. An unsigned

number will conform to either a REAL or If a single quote
an INTEGER. Strings will conform to the string, then the quote must be written
type STRING or packed arrayll..n] of twice. Lower case and upper case let-
CHAR. In addition, if the string is one ters are distinct within

stants. String literals

18 Pascal/VS Reference Manual

is to be used within a

string con-

)

++++++F A+

permitted to extend past the end of line
of a source line. Longer strings can be
formed by catenating shorter strings.

Nil is of a special type which will con-
form to any pointer type. It represents
a uhique pointer value which is not a
valid address.

The constants TRUE and FALSE are prede-
fined in the language and are of the
standard type BOOLEAN.

hexadecimal constants are
enclosed in quotes and suffixed wWwith an
'X' or 'x'. Integer binary constants
are enclosed in quotes and suffixed with
a 'B' or 'b'.

Integer

Hexadecimal constants may be used in any

context where an integer constant is
appropriate. If you do not specify 8
hexadecimal digits (i.e. 4 bytes), Pas-

cal/VS assumes that the digits not sup-

plied are zeros on the left. For
example, 'F'x is the value 15.
Floating point hexadecimal constants

are enclosed in quotes and suffixed with

an 'XR' or '"xr'. Such constants may be
used in any context where a real con-
stant is appropriate. If you do not
specify 16 hexadecimal digits (i.e. 8
bytes), Pascal/VS assumes that the dig-

its not supplied are zeros on the right.
For example, '4110'xr is the same as
'411000000000000"xr.

hexadecimal constants are
enclosed in quotes and suffixed with an
'XC' or 'xc'. Such constants may be
used in any context where a string con-
stant is appropriate. There must be an

String

+ 4+ + +

+

even number of digits within a hexadeci-
mal string constant; that i=s, vou must

specify each character fully that is to
be in the string.

The symbol 'E' or 'e' when used in a
real—-numbar expresses ‘ten to the power
of'.

Pascal/VS permits constant expressions
in places where the Pascal standard only

permits constants. Constant expres-
sions are evaluated and replaced by a
single result at compile time. See

"Constant Expressions'" on page 78 for a
description of constant expressions.

constant matches standard type
0 INTEGER
-500 INTEGER
1.0 REAL
314159E-5 REAL
0EO REAL
1.0E10 REAL
TRUE BOOLEAN
'FF'X INTEGER
AT CHAR
'ABC! STRING
'C1C2C2'"xc STRING
'4E800000FFFFFFFF'xr REAL
'abe! STRING
Tt STRING
ryery CHAR
v CHAR
vt STRING
'Thats''s all ! STRING

Examples of Constants

The Base Vocabulary 19

B N AR R R PR TR T I U U i i R A AR S SR R R AR IR R R T O T I T T S R S e S S S S S S R S S E

+ 4+ +

2.7 STRUCTURED CONSTANTS

Syntax:

structured-constant:

--->{array-structurae}--->

record-structure:

Note: the repetition must evaluate to

——-I--->{record—structure}——-I ——— >

--=->{id:typel-——-—-> (——=—7-—-- I———>(constant-expr}———I —————— D >
D — |
Cmmmmmmmm— e , Cmmmm—m———————
array-structure:
-—=>{id:typel---> (—-->]
< ___________________
--r--7-->{constant-exprl--1--> {repetition}--v—-y--7--->) -—-----—-—- >
T [002 0 (repetition- T
——— > |
L e L y Cm - 4
repetition:
-—->{constant-exprl}-———=-cremmmrm e e e >

positive integer.

constants
The

constants are
of a structured type.

Structured
which are

type of the constant is determined by
the type identifier which is used in its
definition. These constants may be used

in constant declarations, value decla-
rations or in executable statements.

There are two kinds of structured con-
stants: one is used for arrays and the
second 15 used to specify records.

Array constants are specified by a list
of constant expressions where each

expression defines one element of the
array. See "Constant Expressions" on
page 78 for a description

of constant expressions. You may omit
an element of the array within the list
in which case the value of that element
is not defined. Elements may be omitted
at the end of the array in which case
the value of those elements are also not
defined. You may follow the constant
expression with a colon and a repetition
expression; this is used to specify that
the first constant expression is to bhe
repeated.

The second kind of structured constant
is used to specify records. Record con-

1 If the tag field

+++++++ bbb+

stants are specified by a list of con-
stant expressions where each expression
defines one field of the record in the
order declared. You may omit a field of
the record within the list by specifying

nothing between two commas, 1n which
case the value of that field is not
defined.

Values within the list may correspond to
fields of a record's variant part. In
order for the compiler to know which
variant is being referenced, the tag
field value must be specified immediate-
ly prior to those values which are to be
assigned to the variant fields. (See the
examples below.) The tag field must be
specified even if it does not exist as a
field. (This occurs when only a tag type
is specified.)!?

The type identifier that begins a struc-
tured constant may be omitted if the
structured constant is imbedded within
another structured constant. This sim-
plifies the syntax for structured con-

stants which are multidimensional
arrays or records with structured
fields.

is a "refer-back" type (see "Variant Part" on page 47) then

it will need to be specified twice in the list: once to be assigned a value,
and again to identify the variant being referenced.

20 Pascal/VS Reference Manual

9

++++++ bbb+

type
COMPLEX = record
RE,IM: REAL
end;
VECTOR = arrayll..7] of INTEGER:;
CARRAY = arrayl0..9] of COMPLEX;
TETRA = arrayl1..3,1..2,1..41
of INTEGER;
const
{ Structured Constants }
THREEFOUR = COMPLEX(3.0,4.0);
VECTOR_1 = VECTOR(7,0:5,1);
VECTOR_2 = VECTOR(2,3,,4);
ZEROTETRA =
TETRA(
C (0:64):2),
((0:4),(0:4)),
¢ ¢0,0,0,0),¢0,0,0,0)));

{the following two declarations
are equivalent
VECTOR_3 = CARRAY(
COMPLEX
COMPLEX
COMPLEX
VECTOR_4 = CARRAY(
(1.0

(1.0
(0.0

.0,0.0)
.0,1.0):
0,1.0)

laXaXal
O

Examples of Structured Constants

+++++ b+

type

FORM = (FCHAR,FINTEGER, FREAL,
FSTRING);

KONST =

record

SIZE: INTEGER;
case F: FORM of

FCHAR: (C: CHAR);
FINTEGER: (I: INTEGER);
FREAL: (R: REAL);
FSTRING: (
case BOOLEAN of
TRUE: (

LEN: packed 0..32767;
A : ALPHA);
FALSE:(S: STRING(16));

const

end

A = KONST(1,FCHAR,'A");

PI = KONST(8,FREAL,3.14159);
BLANK =

KONST(1,FSTRING,FALSE,"' ");
STARS =
KONST(4,FSTRING, TRUE, &, "%¥%x');

Structured constants with
variant record fields

The Base Vocabulary 21

This page intentionally left hlank

22 Pascal/VS Reference Manual

++ + + +

—t et FF A F A F A+

3.0 STRUCTURE OF A MODULE

Syntax:

———T———>{program-module}

module:

-->{segment-module}--->

program—-module:

]

—> program —>{id} | > (L<_>_(:d}) | >~|
L e e e >d
< ; <
F<
>(declaration}———;]
>{compound-statement} L___i _____ >J
declaration:
>{1abel-dc1}———————>1
>{constant-decl} >
>{type-dcl}——>
—>{var-dcl}———>1
—-->{def-decl}--------- >
H--->{static-dcl}------ >
F--->{value-dcl}------- >
—>{routine-dcl} >
segment-module:
-—=> SEGMENT --->{id}---> ; --->
B)
F--->{constant-dcl}---->1
F-—-->{type-dcl}-------- >
F-~-->{var-dcl}----—----- >4
F--->{def-dcl}--------- >
r--->(static*dcl} ------ >
--->{value-dcl}------- >
F-—->{routine-dcl}----- >
e >

Structure of a Module

23

++++ A+

A module is an independently compilable
unit of code. There are two types of
modules in Pascal/VS: the program module
and the segment module.

The program is the module which gains
initial control when the compiled pro-
gram is invoked from the system loader.
It is effectively a procedure that the
loader invokes. The body of a program
module is identical to the body of a
procedure.

A segment module may be compiled as a’
unit independent of the program module.
It consists of routines that are to be
linked into the final program prior to
execution. Data is passed to routines
through parameters and external vari-
ables. Segments are useful in breaking
up large Pascal/VS programs into smaller
units.

The olobal automatic variables of the
program module may be accessed in a seg-
ment module. See "The Var Declaration"
on page 28 for an explanation.

+H++

The identifier following the reserved
word "program" must be a unique external
name. The identifiar following the word
"SEGMENT" may be the same as one of the
EXTERNAL routines in the segment or may
be a unique external name. Thus, a
function called SIN could be in a seg-

Pascal/VS program

ment called SIN. An external name is an
identifier for a program, segment, def
or ref variable, EXTERNAL routine, MAIN
procedure or a REENTRANT procedure.

The optional identifier list following
the program identifier is not used by
Pascal/Vs. The identifiers will be
ignored.

A program is formed by linking a program
module with segment modules (if any) and
with the Pascal/VS execution library and
libraries that you may supply.

Pascal/VS allows declarations to be giv-
en in any order. This is an extension
to Pascal and is provided primarily to
permit source that is INCLUDEd during
compilation to be independent of any
ordering already established in the mod-
ule. The standard ordering for
declarations is shown in the diagram for
declarations. (For a description of the
INCLUDE facility see "The %INCLUDE
Statement™ on page 150.)

Every identifier must be predefined or
declared by vyou before it is used.
There is one exception to this rule: a
definition of a pointer may refer to an
identifier before it is declared. The
identifier must be declared later or a
compile-time' diagnostic will be pro-
duced.

modules

[

program-module segmen

t-modules

1:

execution-library

program EXAMPLE;
var
I : INTEGER;
begin
for I:=0 to 1000 do
if I mod 7 = 0 then
WRITELNC I:5,
" IS DIVISIBLE BY SEVEN')
end.

Example of a Program Module

24 Pascal/VS Reference Manual

SEGMENT COSINE;
function COSINE
(X : REAL) : REAL; EXTERNAL;

function COSINE;
var S: REAL;
begin

S = SIN(X);

COSINE := SQRT(1.0 - SxS)
end;

Example of a Segment Module

»

6.0 PASCAL/VS DECLARATIONS

Pascal/VS provides you with 10 types of + e def
declarations: +
+ o ref
L label +
+ o static
. const +
+ o value
U type
° procedure
U var
U function
4.1 THE LABEL DECLARATION
Syntax:
label-dcl:
—> label ———Tf——>(label} > ; >
< , < |
label:
>{unsigned-integer} >
LS {idyoonoo—fo2220 >
Note: the values of the unsigned integer must be in the subrange 0..9999.

A label declaration is used to declare
labels which will appear in the routine
and Wwill be referenced by a goto state-

ment within the routine. All labels label
defined within a routine must be 10,
declared in a label declaration within Label_A,
the routine. 1,
2,
A label may be either an unsigned inte- Error_exit;
ger or an identifier. If the value is
an unsigned integer it must be in the A Label Declaration

range 0 to 9999.

Pascal/VS Declarations 25

6.2 THE CONST DECLARATION

Syntax:

constant-dcl:

+ —> const ———[———>(id}———> = —>{constant-expr}—>
<

.
’

A constant declaration allows you to
+ assign identifiers that are to be used
+ as synonyms for constant expressions.
The type of a constant identifier is
determined by the type of the expression
in the declaration.

26 Pascal/V5 Reference Manusl

const
BLANK
BLANKS
FIFTY
A
B
C_SQUARED
ORD_OF_A
PI
MASK
ALFALEN
ALPHALEN
LETTERS
MAXREAL

!';

] ';

50;

FIFTY;

FIFTY % 10/(3+2);

AXA + B¥B;

ORDC'A);
3.164159265358;
'8000'X | '0400'X;

8;

165

[TAr..12',%ar. .2]
"7FFFFFFFFFFFFFFF 'xr;

Constant Declarations

.3 THE TYPE DECLARATION

Syntax:

type-decl:®

—> type ———I———>{id}———> = —>{type} > >
<

A type declaration allows you to define
a data type and associate a name to that

type. Once declared, such a name may be type
used in the same way as a predefined
type name. { all of the following types 1}

{ are predefined in Pascal’/Vs }

INTEGER = MININT..MAXINT;

BOOLEAN = (FALSE,TRUE);

ALFA = packed arrayll..ALFALENI]
of CHAR;

ALPHA = packed arrayll..ALPHALEN]
of CHAR;

TEXT = file of CHAR;

Type Declarations

Pascal/VS Declarations 27

%.% THE VAR DECLARATION

Syntax:

var-dcl:

—> var >{id} >
Trf_ i
<

>{typel} > >

The var declaration is used to declare
automatic variables, Automatic vari-
ables are allocated when the routine is
invoked, and are de-allocated when the
corresponding return is made. If the
routine is invoked a second time, before
an initial invocation completes (a
recursive call), the 1local automatic
variables will be allocated again in a
stack-like manner. The variables allo-
cated for the first invocation become
inaccessible until the recursive call
completes.

Commas are used in the declaration to
separate two or more identifiers that
are being declared of the same type.
This 1is a shorthand notation for two
separate declarations.

var
I : INTEGER;
SYSIN TEXT;
X,
Y,
Z : REAL;
CARD :
record
RANK 1..13;
3UIT (SPADE,HEART,DIAMOND,CLUB)
end;

Example of a Var Declaration

Variables which are to be accessed
across modules should be declared as def
variables (see "The Def/Ref
Declaration™ on page 30), but if reen-
trancy is required, then a mechanism is
required that does not rely on static
storage.

2 That is,
nesting level of the main program.
3 That 15)

no way of checking the integrity.

28 Pascal/VS Reference Manual

The global automatic variables of the
main program?® may be accessed from a
segment module. The storage for auto-
matic variables declared in the outer-
most level of a segment are mapped
directly on top of the main program glo-
bal variables. Therefore, to access the
main program globals, a segment module
must have an identical copy of the main
program's variable declarations. This
mechanism is not as safe3 and as conven-
ient as using def variables.

If the variables of the main program are
to be accessable across modules then the
%INCLUDE facility should be incorpo-
rated so that identical copies of the
variable's declarations can be included
in all modules. (See "The X%INCLUDE
Statement® on page 150).

program MAIN;

var

I * INTEGER;
X,

Y ¢ REAL;

J : INTEGER;
. {remainder of program module}

SEGMENT SEG;

var

I ¢ INTEGER;
X,

Y : REAL;

J ¢ INTEGER:;
.. {remainder of segment module}

Example of a Var Declarations
Shared between Programs and Segments

those variables declared with the var construct in the outermost

unpredictable errors can occur when the variables declared in a
segment do not match those in the associated main program.

The compiler has

o ko o o i i o e e e e e T i 2 2k ks 2k 2 2 2 T it o

%.5 THE STATIC DECLARATION

Data in static variables that are local
to a routine will be preserved over saep-
arate invocations of the routine. -Such

Example of a Static Declaration

Syntax:

static-dcl:

---> static ---7--- I-__>{id} ------ > --=>{type}---> ; -y >
[T
g .!

The static declaration is used to + Static variables may be initialized at
declare static variables. The variables + compile-time by the use of a value dec-
declared in this way are allocated prior + laration.
to program execution and exist for the +
life of the program's execution. + Programs which modify static variables
+ are not reentrant.
Static variables can be referenced +
according to the lexical scoping rules. +
Two static variables in different scopes +
are different variables even though they + static
have the same name. + SYSPRINT TEXT;
+ X,Y: REAL;
+
+
+
+

a routine called recursively will access
the same
abla.

instance of each static vari-

Pascal/VS Declarations 29

B O ok b O ok T S S S S S S S S AR T o o s o it S T S I S S S S i e S S S S S T i ol ol i

4.6 THE DEF/REF DECLARATION

Syntax:

def-dcl:

—————— > def ----p---p-—-—7--->{id}---p--->
-[__..) ref ___)]- ‘lr -[(___ : ____]-

The def/ref declarations are used to

declare external variables. External
variables are allocated prior to exe-
cution and can be accessed from more

than one module. All identifiers that
are to be used as external names must be
unique in the first eight characters.

If an external variable with a partic-

ular name is declared in several
modules, a single common storage
location will be associated with each
such variable. An external variable

must be declared with identical types in
each module; the programmer is responsi-
ble for assuring that the types are the
same.

The def declaration specifies that the
program loader is responsible for gener-
ating the common storage for the vari-
able. The ref declaration specifies
that storage for the variable is defined
in another module (or in the runtime
environment). Ref declared variables
will remain unresolved until the encom-
passing module is compiled and linked
with a module in which the variable is
declared as a def variable or defined in
a non-Pascal CSECT or in an assembly
language COM. The expected use of ref
variables is to access external data
declared in non-Pascal/VS programs such
as those written in assembly language.

A def or ref variable may be declared
local to a routine; the same scope rules
apply as for any other declared identi-
fier. Howevear, if the name of the vari-
able is declared