

An Introduction to Structured Programming
in PL/I

This text, intended for programmers, describes and illus
trates the use of structured programming. The technique
and its supporting practices are generally described in
one chapter. A reference chapter illustrates the imple
mentation of the technique in PL/I and is followed by
a chapter presenting three sample programs. A knowl
edge of PL/I is assumed.

GC20-1777-1

Preface

Second Edition (June 1977)

This text describes and illustrates the use of structured programming, a recently
formalized programming style in which the structure of a program is made as
clear as possible.

Intended for programmers, the publication consists of three chapters:
1. An expository chapter describing the technique, its supporting practices, and

its use. General suggestions on getting started are also included.

2. A reference chapter illustrating the implementation of the technique in PL/I.
This chapter may be used as a starting point for establishing your own
structured programming guidelines.

3. A chapter containing three sample programs written according to the
techniques presented earlier.

Familiarity with programming concepts is necessary for the expository chapter,
and knowledge of PL/I is needed for the reference and sample program chapters.

TIlls edition is a major revision and obsoletes the previous edition. Changes
have been made throughout including those to reflect the availability of
Release 3 of the OS/PL/I Optimizing Compiler (5734-PLl), Optimizing
Compiler and Libraries (5734-PL3), and Checkout Compiler (5734-PL2),
and Release 5 of ~he DOS PL/I Optimizing Compiler (5736-PLl) and
Optimizing Compiler and libraries (5736-PL3). All of these compilers
offer additional support for structured programming techniques.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, address comments concerning the contents of this
publication to IBM Corporation, Technical Publications/Systems, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604.

©COpyright International Business Machines Corporation 1975,1977

Contents

Chapter 1: An Overview of Structured Programming
Introduction
DefInitions
Potential Advantages
Relationship of Structured Programming to Other Imptoved
Programming Technologies

Structured Programming Theory
The Structure Theorem

Additional Control Logic Structures
The DOUNTIL Structure
The CASE Structure

Labels and GO TO Statements
Segmentation
Indentation
Establishing Indentation Guidelines
Creating a Structured Program
Documentation .. .
Efficiency Considerations
Getting Started in Structured Programming

Chapter 2: Implementing Structured Programming in PL/I .•••......
Introduction
Control Logic Structures

Sequence
IFTHENELSE ••.•.......•.......•••.•....••••••••....
DOWHILE ••••••••..•.•••.......••••..•••.••••••••....
DOUNTIL •....•.••.•••.........••.••••••••••••••..•.

CASE '" " .•••.•••.•••••.••.•..•.....•...•.•....•••
The LEAVE Statement, "

1
1
1
2

2
3
3
5
5
6
6
9
9

10
10
12
12
13

14
14
14
14
14
15
17
18
19

Program Organization 20
Indentation Guidelines , 20
Names
Comments
Special Conditions•.

21
21
21

Chapter 3: Three Illustrative Programs 23
A Two-level Control Total Program 23
An Inquiry Response Program 30
Solving a System of Simultaneous Equations by the

Gauss-Seidel Method•......... 42

Bibliography .. 51

J

J

List of mustrations

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Flowchart for the control logic structure sequence
Two proper programs in sequence
Flowchart for the control logic structure selection
Flowchart for the control logic structure iteration, the
DOWHILE
An example of the combination of two control logic
structures, in which the function controlled by a DOWHILE
is an IFTHENELSE
An example of the combination of control logic structures
in which a sequence and an iteration are controlled by a
selection ;

Figure 7. Another example of the combination of control logic

Figure 8.

Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

structures
Flowchart for the control logic structures iteration, the
DOUNTIL
Flowchart for the CASE control logic structure
A nested IF statement, with and without identation
Flowchart for the IFTHENELSE
Flowchart for the DOWHILE
Flowchart for the DOUNTIL
Flowchart for the CASE control logic structure
Detailed design level.HIPO diagram for a two-level control
total processing application

Figure 16. Pseudocode for a two-level control total processing
application

Figure 17 a. Flowchart for the mainline processing portion of a two-level
control total processing application

Figure 17b. Flowchart for the record processing portion of a two-level
control total processing application

Figure 18. Structured program for a two-level control total processing

3
4
4

4

5

6

7

8
8 .

10
14
16
17
18

24

25

26

27

application 28
Figure 19. Illustrative output from the two-level control total program

of Figure 18
Figure 20. Detailed design level visual table of contents for the inquiry

response application
Figure 21. A HIPO diagram for the inquiry response application
Figure 22a. Flowchart of the mainline processing for an inquiry

response application
Figure 22b. Flowchart of the transaction processing logic for an inquiry

response application
Figure 22c. Flowchart for the validation portion of an inquiry response

application
Figure 22d. Flowchart of the logic for preparing a response in an

inquiry response application
Figure 22e. Flowchart of the logic for printing heading and detail lines

in an inquiry response application
Figure 23. Structured program for an inquiry response application
Figure 24. Illustrative master me for the inquiry response program

of Figure 23
Figure 25. Illustrative transaction file for the inquiry response program

29

30
31

32

33

34

35

36
37

41

of Figure 23 41

Figure 26. Output of the program of Figure 23 when run with the
illustrative mes of Figure 24 and 25 41

Figure 27. Pseudocode for a solution of simultaneous equations
by the Gauss-Seidel method 44

Figure 28. A structured program to solve simultaneous equations
by the Gauss-Seidel method 48

Figure 29. The output of the program of Figure 28 when it was
run with sample data corresponding to the system of
simultaneous equations shown in the text 50

J

Chapter 1: An Overview of Structured Programming

Introduction

Definitions

This chapter contains various items of background infonnation about structured
programming that should be useful. The topics include:
Defmitions
A summary of the potential advantages of structured programming
The relationship of structured programming to other improved programming

technologies
A sketch of the theoretical foundation of structured programming
The basic control logic structures
Additional control logic structures
The GO TO question
Segmentation
Indentation
Documentation considerations
Efficiency considerations
Getting started in structured programming

After you have read the material in this overview, you will be ready to study the
reference material in Chapter 2 to see how structured programming can be done in
PL/I, and to see some of the ideas illustrated in three sample programs in
Chapter 3.

Structured programming is a style of programming in which the structure of a
program (that is,the interrelationship of its parts) is made as clear as possible by
usingjust three control logic structures:
1. Simple sequence of functions
2. Selection of functions (IFTHENELSE)
3. Loop control, or iteration

These three types of control logic structures may be combined to produce programs
to handle any information processing task. Statements controlled by the selection
and loop structures are indented to make obvious the scope of influence of the
structure.

A structured program is composed of segments, which may range from a few
statements up to about a page of code. Each segment has just one
entry and one exit. Such a segment, assumilig it has no infmite loops ~d no
unreachable code, is called a proper program. When proper programs are combined
using the three basic control logic structures (sequence, selection, and iteration),
the result is also a proper program.

An important characteristic of a structured program is that it can be read in
sequence, from top to bottom, without a great deal of the "skipping around"
through the program that is typical of other programming styles. This is important
because it is much easier to comprehend fully what a function does if all the
statements that influence its action are physically close by. Top-down readability is
one consequence of using only three control logic structures, and of avoiding the
GO TO statement except in very special circumstances, such as the simulation of a
control logic structure in a programming language that lacks it.

A program written according to these principles not only has a structure, it clearly
exhibits it.

1

Potential Advantages

Relationship of
Structured Programming
to Other Improved Pro
gramming Technologies

2

A program written in this style tends to be much easier to understand than
programs written in other styles. Easier understandability can facilitate code checking
and thus may reduce the program testing and debugging time. This is true partly
because structured programming concentrates on one of the most error-prone
factors in programming, the logic.

A program that is easy to read and which is composed of well-defined segments
tends to be simpler, faster, and less expensive to maintain. These benefits can derive
in part from the fact that since the program is to a significant extent its own docu
mentation, the documentation tends to always be up to date; this may not be true
with conventional methods,

Structured programming offers these benefits, but it should not be thought of as a
panacea. Program development is still a demanding task requiring skill, effort, and
creativity.

Structured programming is compatible with, and supportive of, other improved
programming technologies, although distinct from them. Other technologies and
the relationship of structured programming to them may be sketched briefly.

Top-down program development involves writing and testing the highest-level
segments of a program first, in contrast to the more common method in the past,
bottom-up development. This approach has the potential benefits of giving
the critical top segments the most testing, of giving earlier warning of
problems with the interfaces between segments, and of spreading the
debugging and testing over a greater part of the development cycle.

Structured programming and top-down program development both emphasize the
importance of segments that interact in precisely understood ways. Both involve
looking at a program as a hierarchy of segments that are related to each other in a
tree-like fashion.

Hierarchy plus Input-Process-Output (H [PO) is an approach to functional specifica
tion and documentation of programs. Each function is designed using a HIPO

diagram, in which inputs and outputs are listed and the processing that is to be
carried out is specified. A visual table of contents diagram points to the HIPO

diagrams in the package and therefore shows the functions and subfunctions to be
carried out by the various parts of a program, and the relationship between them.
At the detailed design level, it also shows the hierarchy of segments.

Structured programming, as the term is used in this publication, refers primarily
to the coding phase rather than the design phase of the program development cycle.
H1PO is one good way to approach the design task, and one that is complementary
to structured programming.

A structured walkthrough is a review session in which the originator of program
design material or code explains it to colleagues. The intent is to detect errors
(which are corrected after the walkthrough) as early in the process as pOSSible,
when they should be least expensive to correct.

Structured programming, with its emphasis on easy readability of programs,
increases the effectiveness of structured walkthroughs.

Structured Programming
Theory

The Structure Theorem

A development support library consists of a machine-readable library which con
tains the current versions of all project programming data. It also consists of
external library binders which contain current listings of all1ibrary members and
archives consisting of recently superseded listings. Besides providing easy
accessibility of materials, this helps assure that the latest versions of programs are
always used.

Structured programming, with its insistence on segmentation of programs, fits in
well with development support libraries, although such libraries are useful with any
style of programming.

The chief programmer team concept involves programming with teams of at least
three members: chief programmer, backup programmer, and program librarian.
The team may also include other programmers, nonprogramming analysts, and end
users. The chief programmer is responsible for the design and coding of all programs
produced by the team, either writing or personally checking every piece of code.
The program librarian maintains the development support library.

Structured programming is well-suited to chief programmer team methods, since it
facilitates one key element, that of code review by the chief programmer.

The structure theorem states that any proper program can be written using only the
control logic structures of sequence, selection (IFTHENELSE), and iteration.

A proper program is defined as one that meets the following two requirements:
1. It has exactly one entry point and exactly one exit point for program control.

2. There are paths from the entry to the exit that lead through every part of the
program; this means that there are no infinite loops and no unreachable code.
This requirement is, of course, no restriction, but simply a statement that the
structure theorem applies only to meaningful programs.

The three basic control logic structures are defined as follows:

Sequence is simply a formalization of the idea that unless otherwise stated, program
statements are executed in the order in which they appear in the program. This is
true of all commonly used programming languages; it is not always realized that
sequence is in fact a control logic structure. In flowchart terms, sequence is
represented by one function after the other, as shown in Figure 1.

Figure I. Flowchart for the control logic structure sequence

A and B are anything from single statements up to complete modules; the concern
is only with the abstract idea of a proper program, regardless of its size and internal
complexity. A and B must both be proper programs in the sense just defined (one
entry and one exit). The combination of A followed by B is also a proper program,
since it too has one entry and one exit. This can be shown pictorially, as in Figure 2,
where the outer box is meant to suggest that the combination of A followed by B
can be treated as a single unit for control purposes.

3

4

.. A .. B

Figure 2. Two proper programs in sequence

Selection is the choice between two actions based on a predicate,' this is called the
IFTHENELSE structure. In PL/I it is implemented with the IF statement, and
the predicate is called the element expression. The usual flowchart notation for
selection is shown in Figure 3, where p is the predicate and A and B are the two
functions.

A

T

F

B

Figure 3. Flowchart for the control logic structure selection

..

The iteration structure, used for repeated execution of code while a condition is
true (also called loop control), is the DOWHILE. In the flowchart in Figure 4, pis
the predicate and A is the controlled code. In PL/I, the DOWHILE is imple
mented with the DO statement with the WHILE option, as discussed in Chapter 2.

A

T

F

Figure 4. Flowchart for the control logic structure iteration, the OOWHILE

Additional Control Logic
Structures

The DOUNTlL Structure

A fundamental idea is that anywhere a function box appears, any of the three basic
structures may be substituted and still have a proper program. For example, the
function box in Figure 4 could be replaced with selection, producing the flowchart
of Figure S. The dotted lines show where another structure has been substituted
for a function. Or, one function in a selection might be replaced with three
functions in sequence, and the other replaced with an iteration, producing the
flowchart of Figure 6. Flowcharts of arbitrary complexity can be built up in this
way. Figure 7 shows a flowchart with several control logic structures, drawn this
time in top-to-bottom fashion. Three other examples appear in Chapter 3.

r- -- -- -- - -- -- --,

I I
I X I
I T I
I I
I I
I I y

I I
L --------- _J

T

Figure S. An example of the combination of two control logic structures, in which the function
controned by a OOWHILE is an IF1lIENELSE

The ability to substitute control logic structures for functions and still have a proper
program is basic to structured programming. This may also be called the nesting of
structures.

Although all programs can be written using only the three basic structures, it is
sometimes helpful to utilize a few others.

The basic iteration structure is the DOWHILE, but there is a closely related
structure, DOUNTIL, that is sometimes used, depending on the procedure that is to
be expressed and on availability of appropriate language features. The flowchart is
shown in Figure 8.

The difference between the DOWHILE and DOUNTIL structures is that with the
DOWHI LE the predicate is tested before executing the function; if the predicate is
false, the function is not executed at all. With the DOUNTIL, the predicate is tested
after executing the function; the function will always be executed at least once,
regardless of whether the predicate is true or false.

5

,- - -- - ---- ---- --
~

I R S T I
I I
L -- -- - -- -- -- -- -- -- -- ..J

T

F

r- -- -- -- -- -- --- - ---- -- I
I z I
I T I
I

F I
I

L -- -- -- -- -- -- -- -- - ---- J
Figure 6. An example of the combination of control logic structures in which a sequence and an iteration are controlled by a selection

The CASE Structure

Labels and GO TO
Statements

6

It is sometimes helpful - from both readability and efficiency standpoints - to
have some way to express a multiway branch, commonly referred to as the CASE
structure. For example, if it is necessary to execute appropriate routines based on a
two· digit decimal code, it certainly is possible to write 100 IF statements, or a
compound statement with 99 ELSE IF'S, but common sense suggests that there is
no reason to adhere so rigidly to the three basic structures.

The CASE structure uses the value of a variable to determine which of several
routines is to be executed. The flowchart is shown in Figure 9. Observe that
DOUNTIL and CASE are both proper programs.

Efficiency and convenience dictate reasonable use of language elements that may
carry out logic functions in ways slightly different from those of the three basic
structures. PL/I examples include the use of the DO statement with a control
variable. This verb is discussed in Chapter 2 under "DOWHILE".

Structured programming has occasionally been referred to as "GO TO-less pro
gramming". Although it is true that well-structured programs have few if any GO
TO statements, assuming an appropriate programming language, the absence of
GO TO's can be misinterpreted. It may be well to pause for a moment to put this
issue in context. J

A

F T

B

F

T
D c,

E

Figure 7. Another example of the combination of control logic structures

7

8

F

T
A

Figure 8. Flowchut for the control logic structure iteration, the DOUNllL

•
•
•

Figure 9. Flowchart for the CASE control logic structure

A well-structured program gains an important part of its easy readability from the
fact that it can be read in sequence, without "skipping around" from one part of
the program to another. This characteristic is a consequence of the use of only the
standard control logic structures (GO TO is not a standard control logic structure).
This "sequential readability", or "top-down readability", is beneficial because
there is a defmite limit to how much detail the human mind can encompass at once.
It is far easier to grasp completely what a statement does if its function can be
understood in terms of just a few other statements, all of which are physically close
by. The trouble with GO TO statements is that they generally defeat this purpose;
in extreme cases they can make a program essentially incomprehensible.

J

Segmentation

Indentation

No special effort is required to "eliminate GO TO'S", which has sometimes been
misunderstood as the goal of structured programming. There are indeed good
reasons for not wanting to use them, but no extra effort is required to "avoid"
them: they just never occur when the standard control logic structures are used.
Naturally, if the chosen programming language lacks essential control logic
structures, they have to be simulated, and that involves GO TO's. But even this
can be done in carefully controlled ways.

There are uncommon situations where the use of GO TO's may improve readability
compared with other ways of expressing a procedure. Such examples are excep
tional, however, and do not usually occur in everyday programming. The impact
of deviations from installation guidelines, such as using GO TO's in other than
prescribed ways, should be given careful consideration before such deviations are
permitted.

Easy program readability requires that it not be necessary to turn a lot of pages to
understand how something works. A practical rule is that a segment (previously
defmed as consisting of control logic structures and having only one entry and one
exit) should not exceed a page of code, about 50 lines. In PL/I terms a segment
can consist of one or more external and/or internal procedures, or code incorpor
ated with a %INCLUDE. (The term segment as used here has nothing to do with
the different meanings of the term in connection with the functions of operating
systems or data base management systems.)

But segme:Q.tation is more than just breaking a program into page-size pieces. What
characterizes good program segmentation? Three features can be identified:
1. The segmentation should reflect the division of the program into pieces that

relate to each other in a hierarchy, that is, a tree structure. This organization,
which may be displayed with a HIPO hierarchy chart, makes it simpler to
understand how the segments relate to each other. Further, the segments at the
top of the hierarchy should contain high-level control functions, whereas the
segments at the bottom should contain detailed functions.

2. A well-designed segment carries out a single function or multiple functions that
are closely related. This makes it easier to understand and therefore easier to
assure that it does what it is meant to do. It also means that when changes have
to be made, either during original programming or in maintenance, there is less
chance of disturbing portions of the program that do not change.

3. A well-designed segment communicates with other segments only in carefully
controlled ways. Some proponents of structured programming urge that
segments always consist of procedures and that the only communication
between them be through parameter lists; this reduces the chance that segments
will interact in unintended and undesirable ways.

The use of indentation is important because consistent indentation enhances
readability so that the finished program exhibits in a pictorial way the relationships
among statements. The basic idea is that all the statements controlled by a control
logic structure should be indented by a consistent amount, to show the scope of
control of the structure. In PL/I this means that the statements between the IF
and the ELSE should be indented a consistent amount, and similarly for the
statements between the ELSE and the next sentence. likewise, in PL/I, the code
controlled by a DO group or a BEGIN block should be indented to display the
scope of control of the DO or the BEG IN.

Indentation can be a major benefit, as the skeleton programs in Figure 10 show.
Both do the same processing, but the second is far easier to understand and, there
fore, to verify for correctness.

9

Establishing Indentation
Guidelines

Creating a Structured
Program

10

IF P IF P

THEN THEN

B = A + B B = A + B

IF Q IF Q

THEN THEN

C = 12 C = 12

ELSE ELSE

C = 36 C = 36

ENDIF ENDIF

IF R IF R

THEN THEN

Y = X + y y X + y

ELSE ELSE

Z = X + Z Z = X + Z

ENDIF ENDIF

ELSE ELSE

A = A + B A A + B

ENDIF ENDIF

Figure 10. Nested IF pseudocode statement, with and without indentation

Guidelines for indentation in PL/I programs are suggested in Chapter 2. It should be
understood, however, that these are only guidelines. Each installation will need to
establish local conventions; variation from the suggested guidelines is not important,
so long as the installation conventions are followed consistently. For example, it
is not of fundamental importance whether the statements controlled by an IF are
indented four spaces, or three, or two. Arguments can be made for each, but there
is no one way that is absolutely right. Within anyone installation, however, some
set of rules should be foUowed, or the value of indentation will be lost.

Structured programming, as the term is used in this publication, refers to the coding
portion of the total program development cycle. It may help to sketch the cycle,
indicating how structured programming relates to each phase.

The program development process can begin when, in response to a statement of
requirements, a specification is developed that states the objectives of the application.
Then, initial design takes place, during which each major function is iden tified and
then subdivided into lower level functions. HIPO diagrams are a design aid and
documentation tool at this stage. It is important in initial design not to become
enmeshed in low level details; the strategy is to manage complexity by attacking the
problem one level of detail at a time.

J

It is not to be expected that program design will proceed in a straight-line fashion.
The HIPO hierarchy chart may have to be drawn several times, as the expected
segment size or the implications of logic flow become clearer. The basic idea is
to begin with a top-level attack, with little detail, then fIn in the successive levels,
refIning original plans as necessary until the design is complete.

Once the initial design is complete, programmers refine the design to add the
details necessary for the coding process. In detailed program design, additional
HIPO diagrams are created to specify further detail about each process. If flow
charts are used to express logic flow, they should include only the basic structures.
Another technique used in the detailed design phase is pseudocode, an informal
means of expressing logic. Although HIPO diagrams can reduce the need for other
documentation of logic flow, flowcharts and pseudocode can be used with HIPO

diagrams.

In pseudocode, the basic control logic structures and indentation are used in a
carefully controlled way, but everything else is at the discretion of the programmer:
elements of programming languages may be utilized, or mathematical notation if
it is appropriate to the application, etc. Pseudocode is similar to a programming
language, but it is not compilable, and it is not bound by formal syntactical rules.
Pseudocode is used to depict detailed logic while avoiding the distractions of the
details of programming language requirements; it is easier to modify than program
ming language statements. When detailed program design is finished, the trans
lation from pseudocode to the chosen programming language should be
straightforward, since what is normally the most difftcult part (the logic)
is finished. Examples of pseudocode appear in the illustrations in Chapter 3.

In the coding stage of program development, the techniques that have become
identifted with structured programming, as the term is used here, come into
greatest prominence. Program statements implementing control logic structures
are used, and they are indented to show the scope of influence of the structures;
thus, the details of code are clearly related to the structure of the design. For ease
of understanding, no structure is allowed to extend over a page boundary.
Meaningful data and procedure names are used, perhaps following conventions
that suggest the functions of the data and procedures. Program segments are proper
programs (one entry, one exit), and can be read in sequence from top to bottom.

It is becoming increasingly common for completed code to be checked by another
programmer, either in a structured walkthrough or in some other kind of code
reading process. During test program errors are located and it is verified that the
program performs according to specifIcations. With structured programs this stage
may tend to take less time than before because errors can be located and corrected
more rapidly in the more readable structured code.

Finally, the program has to be maintained over the period of its use. SpecifIcations
change, equipment confIgurations are modifIed, and coding errors are discovered;
these may require program modiftcations. Over the life of a major program, main
tenance may require more effort than the original program development.

Structured programming facilitates program maintenance for much the same reason
that it facilitates program testing: the progl'am can be easier to understand. Whether
the original programmer or a different maintenance programmer is involved,
changes can be easier to make and be less likely to cause undesired effects elsewhere
in the program.

11

Documentation

Efficiency Considerations

12

In summary, program development consists of requirements specification, initial
design, detailed design, coding, test, and maintenance. The most difficult task
normally is design, which properly should receive the most attention and effort,
since errors generally are least costly to correct at this stage.

How much documentation of a program's logic is needed in addition to the program
itself! In the past it has sometimes been argued that the logic of a program should
be documented with a complete set of flowcharts. This contention may need to
be reevaluated for structured programs, which can display their own logic
better than conventional programs.

To reduce the need for documentation oflogic, the code should follow certain
guidelines of good programming practice that for many years have been charac
teristic of the best programmers. Data names and labels should be as indicative
as possible of the functions of the data items and program elements, even if this
tends to lengthen the names. "Tricky" coding should always be avoided.

When these and other common-sense principles have been followed, and the program
has been written according to the principles of structured programming (only a few
control logic structures, indentation, top-down readability), there should be little need
for documentation of the logic flowchart type. (The need for documentation of func
tion provided by HIPO heirarchy charts and HIPO diagrams, such traditional docu
mentation as data layout charts, as well as data preparation instructions, etc., is
not affected by structured programming.)

Programmers are sometimes concerned that structured programming techniques
may lead to object programs which run slowly or which create problems in a virtual
storage system. There is nothing inherent in the structured programming approach
that leads to inefficiency; the use of a restricted set of control logic structures and
of segmentation does not automatically carry any time or space penalty.

Although no systematic study of many users has been made, some users have
reported that structured programming techniques usually lead to no performance
penalties. Problems, when and if they occur, should be seen in context of the full
range of considerations that determine the effectiveness of a data processing opera
tion. For instance, the ability to create programs on time may be much more
important than a small object program speed penalty. Or, it may be noted that a
"highly efficient" program that is very difficult to maintain is not really efficient
in the context of total cost. Finally, efficiency always relates to a specific
environment of compilers, hardware, and user code.

If object program speed does become a problem, however, the following approaches
may be considered.

Identify those portions of the program that are most heavily used; various analysis
programs may be helpful in doing so, such as by providing counts of statement
executions. It will usually be found that a rather small part of the program has a
large influence on speed. Concentrate on those few segments. It may be necessary
to recode procedures to inline code, or to "unwind" short, heavily used loops.
Attention should be given to the possibility of avoiding certain data conversions
or language features that may adversely affect performance. Since usually only a
small part of the program needs to be modified, this modification should
not take a great deal of effort.

Getting Started in
Structured Programming

If excessive paging in a virtual storage system is a problem, the basic solution is to
place procedures that are used together in the same virtual storage page. Again,
analysis programs can be a help. Structured programming can actually be a benefit
in this kind of tuning, since procedures are never entered except by a reference to
their names. Of course, the scope of the data references must be considered.
Further, performance problems, whatever coding techniques are used, can seldom
be predicted in advance. Because of the ease of maintaining (changing) structured
programs, the likelihood is that performance problems can be more easily corrected.

One way to evaluate structured programming in an installation is the following:
• Management authorizes the use of structured programming in a project. The

first structured programming project should be neither trivial nor extremely
difficult, but rather one that would be considered of normal size and level of
difficul ty. At least two programmers should be assigned to the project so that
they can check each other's code.

• Programmers assigned to the project familiarize themselves with the subject.
Some installations have implemented structured programming on their own;
others have found that attending a class was necessary. Experienced PL/I
programmers may be unfamiliar with or reluctant to use the following PL/I
language facilities required or permitted in structured PL/I programs:

- Nested IF's
- DOWHILE, DO UNTIL
- Compound conditions for nested IF's, DOWHILE, and DOUNTIL

Therefore, it may be advisable for programmers implementing structured program
ming in PL/I without attending a class to review these PL/I statements in the
appropriate reference manual.

• A set of guidelines for the initial effort should be established. Those in Chapter 2
on PL/I implementation could be used; many installations will prefer to establish
their own. The guidelines for the first project should avoid extending the permis
sible control logic structures; uncontrolled extensions can easily destroy the
value of structured programming. Some programmers find it helpful to sum
marize the guidelines in the form of a checklist or a simple illustrative program.

• After creating the HIPO diagrams and visual table of contents, pseudocode or
flowcharts can be used for detailed logic, if appropriate. The code is then
written and the program tested.

The evaluation process can be repeated and the guidelines modified until the pro
grammers have sufficient experience with structured programming. At this time
structured programming guidelines can be incorporated into the installation's
standards.

13

Chapter 2: Implementing Structured Programming in PL/I

Introduction

Control Logic Structures

SEQUENCE

IFTHENELSE

14

Once the principles of structured progranuning are understood, writing structured
programs in PL/I is a matter of habitually following a few simple rules. All control
logic structures can be expressed in PLfI.

The subject can be approached in terms of three major considerations:
1. P L/I implementation of the control logic structures.
2. Organization of a structured PLfI program
3. Indentation conventions

Also of interest are some pointers on naming conventions, use of comments, and
special conditions.

This chapter assumes the use of one of the following; Release 3 of the OS/PLI
Optimizing Compiler (5734-PLl), Optimizing Compiler and Libraries (5734-PL3),
or Checkout Compiler (5734-PL2), and Release 5 of the DOS PL/I Optimizing
Compiler (5736-PLl) or Optimizing Compiler and Libraries (5736-PL3). All of
these compilers offer additional support for structured programming techniques.

Sequencing is implemented in the PL/I language simply by writing statements in
succession.

The IFTHENELSE structure tests an element expression to determine which of
two function blocks will be executed.

Theflowchart of the IFTHENELSE structure is shown in Figure 11.

statement-l

T

F

statement-2

Figure 11. Flowchart for the IFTHENELSE

J

DO WHILE

The pseudocode of the IFTHENELSE is:

IF condition-p

THEN

statement-l

ELSE

statement-2

ENDIF

The PL/I IF statement format for the IFTHENELSE may be shown in two common
variations:

IF P
THEN

DO;
statement-l;

END;

IF P
THEN

DO;
statement-l;

END;
ELSE

DO;
statement-n;

END:

The THEN and ELSE are vertically aligned with the IF. The statements controlled
by the TH EN and ELSE portions are indented to show the span of control of the
logic figure.

It is recommended that a DO group be used in the IF statement even when only a
few statements are controlled. The compiler's syntax checking will reveal any logic
errors caused by missing END's on DO's and BEGIN's.

The DOWHILE structure tests a predicate and executes a function so long as the
predicate is true. The flowchart is shown in Figure 12.

15

16

function

Figure 12. Flowchart for the DOWHILE.

The pseudocode for the DOWHILE is:

DOWHILE P

function

ENDDO

The basic PLII format for the DOWHILE is:

DO WHILE (p) i
statement-l i

ENDi

One form of the D OWHILE with indexing, as permitted in PLII is:

F

DO variable = expression-l TO expression-2 BY
expression-3

WHILE (p) i
statement-Ii

ENDi

The REPEAT option provides an alternative method of specifying successive values
of the control variable as in:

DO variable = expression-l REPEAT (expression-2)
WHILE (p)i

ENDi

Another variation leaves the predicate implicit in the indexing parameters:

DO variable = expression-l TO express·ion-2 BY
expression-3;

statement-I;

ENDi

Many other forms of indexing are possible, as explained in the PLII language
reference manuals.

DO UNTIL The DOUNTIL structure executes a function and then tests a predicate to determine
whether to repeat it again. The flowchart is shown in Figure 13.

function

Figure 13. Flowchart for the DOUNTIL

The pseudocode for the DOUNTIL is:

DOUNTIL P

function

ENDDO

The basic PL/I format for the DOUNTIL is:

DO UNTIL (p) i
statement-I;

END;

F

T

As with the DOWHILE, variations of the DOUNTIL are permitted in PL/I. And,
the DOWHILE and DOUNTIL can be combined in PL/I as in:

DO WHILE (A = B) UNTIL (X = 10);

17

CASE

18

The CASE structure selects one of a set of functions for execution, based on the
value of a parameter. The flowchart notation is shown in Figure 14. In PL/I, the
CASE structure is implemented with a case-selection unit which has the following
form:

SELECT (E);
WHEN (El)
WHEN (E2)

action 1;
action-2;

OTHERWISE action n;
END;
next statement;

In this example, E, El, etc., are expressions. When control reaches the SELECT

statement, the expression E is evaluated and its value saved. The expression in the
first WHEN clause is then evaluated, and its value compared with the value of E.
If the two values are equal, the action specified by action _1 is performed; if they
are not equal, the expression in the next WHEN clause is similarly evaluated and
compared. If none of the expressions in the WHEN clauses is equal to the ex
pression in the SELECT statement, the action specified in the OTHERWISE clause
is executed unconditionally.

After the action specified in a WHEN or OTHERWISE clause has been performed,
control passes to the first executable statement following the END statement,
unless the normal flow is changed by the specified action.

In-house

Contract

Subcontract

New-business

Case-error

Figure 14. Flowchart for the CASE control logic structure

The LEA VE Statement

The example of Figure 14 could be coded as follows:

SELECT (CODE) ;
WHEN (CODE = 'B') CALL IN HOUSE PROC:
WHEN (CODE = '7') CALL CONTRACT-PROC;.
WHEN (CODE 'C') CALL SUBCONTRACT_PROC;
WHEN (CODE = 'D') CALL NEW_BUSINESS PROC;
OTHERWISE CALL CASE ERROR PROC:

END:

The LEAVE statement is used to transfer control from within a do-group to the
first executable statement following the END statement that delimits the group.
For example,

DO •••• I

LEAVE:

END:
next statement

If the LEAVE statement contains a reference to a statement label (for example,
LEAVE A), control is transferred to the statement following the END statement

. that closes the do-group whose DO statement has the specified label. For example:

A:
DO I = 1 to 10:

DO J = 1 to 5:
IF X(I,J)=O
THEN

LEAVE A;
ELSE

........ ,
END:
statement within group A;

END:
statement after group A:

A LEAVE statement cannot cause control to leave a block.

When evaluating the use of a LEAVE statement that references a statement
label, installations might consider that some users have questioned whether its
use is appropriate in a structured programming environment.

19

Program Organization

Indentation Guidelines

20

A structured PL/I source program is organized into segments. (A segment, in
structured programming terminology, has been previously defined as consisting of
control logic structures and having only one entry and one exit. The term as used
here has nothing to do with the different meanings of the term in connection with
the functions of operating systems or data base management systems.)

As previously discussed, a segment in PL/I terms, can consist of one or more ex
ternal and/or internal procedures, or code incorporated from a library with a
%INCLUDE statement.

The first segment of the program contains the MAIN procedure. Other segments
may contain data declarations, executable code, or commentary blocks. In each
case the segment should be complete -- one or more complete DECLARE state
ments; a set of comments opened and closed within the segment; or exactly one
procedure, BEGIN-block, or DO-group.

The %PAGE listing control statement can be used to place each segment on a separate
page of the program listing. If a program contains many short segments, paper
conservation becomes a consideration, and it may be preferable to use the %SKIP
statement to place a few blank lines between segments rather than putting each one
on a separate page. A segment should still not extend over a page boundary.

The following are only suggestions. No standardization of indentation conventions
has developed so far, and there seems to be little pressure for it so long as consistent
standards are followed within anyone organization. The reasons given for the
suggestions that follow will be a guide in developing installation standards.
The sample programs in Chapter 3 illustrate many of the guidelines.

The key idea in devising helpful indentation guidelines is the production of programs
in which the visual layout of the program elements aids the reader in understanding
program relationships and functioning.

Following are some ways this may be done:
• Labels stand out better if they always begin in column 2 and appear on a

separate line.

• Consistency is obtained by starting all statements in column 4, unless other
indentation rules dictate some column to the right of column 4.

• The characteristics of information are better displayed if the attributes in
DECLARE statements are vertically aligned.

• The free use of blank lines can exhibit more clearly that relationships exist
among items so grouped in the declarations.

• Statements are much easier to locate and to change if no more than one
statement is written on a line.

• The scope of control of IFTHENELSE statements, DO groups, and BEGIN
blocks is made clearer if the statements controlled by these elements are
indented by some consistent amount. Three columns is suggested as a starting
guideline, but the number is not critical so long as consistency is maintained
within anyone organization. An indentation unit of two spaces results in less
unused space at the left end of lines; an indentation unit of four columns makes
the structure more apparent. Three is a reasonable compromise.

Names

Comments

Special Conditions

• Statements are easier to locate if the second and following lines of a continued
statement are indented by some consistent amount, such as twice the normal
indentation unit.

• BEGIN blocks and DO groups can be indented according to the same guidelines.
The BEGIN or DO starts in whatever column is determined by previous state
ments. Statements within the block are indented by three columns from the
BEGIN or DO. The END statement is always used and is aligned with the
BEGIN or DO.

• When several files are being opened with one OPEN statement (and all files
should be explicitly opened and closed), the file names can be vertically aligned:

OPEN FILE (TRANFIL),

FILE (MASTFIL),

FILE (SYSPRINT);

Many other opportunities can be found to use formatting of the source program to
enhance ease of understanding, which, to repeat, is the primary goal of all indenta
tion conventions.

Considerable care should be exercised in devising names for data and labels to
make them as helpful as possible to the reader in understanding the function
and structure of the parts of the program. Therefore, installations should con-
sider adopting conventions that encourage the use of meaningful names. An
example of such a convention would be to preftx the names of transaction file
items with T, old master file items with M, and new master me items with NM.

Another possible convention, not consistent with the first, is that data name qualifi
cation be used consistently to convey information about data organization. Another
would be that file names must contain the word FILE and record names the word
RECORD or perhaps REC. A possible convention for labels would be to require
that all labels suggest the procedure's function and begin with numbers denoting
sequence of hierarchy in the program. Many other such conventions are possible.
Once learned, their use involves little extra effort.

Experience has shown that well-structured PL/I code can be largely self-documenting,
assuming the use of descriptive data and paragraph names. It is recommended that
an attempt be made to write programs without comments. If comments are used,
however, they should be organized and formatted so that they do not interfere
with the readability of the program. Free use of blank lines will make comments
stand out from associated code.

Most programming environments allow for specified unusual conditions to interrupt
the normal flow of processing and activate exception-handling routines. Common
examples are end-of-file conditions and arithmetic overflow. Whether the structure
theorem applies to programs containing such elements depends on whether they
violate the one-entry, one-exit principle and thus fail to be proper programs. Certain
types of interrupts always break the normal flow; others mayor may not, depending
on how the program is written.

21

22

ON -units can be used to specify the desired processing for events such as data set
label processing, input/output error routines, and various other asynchronous
operations. The blocks of code in ON-units are "out-of-line" and therefore involve
an interruption of sequential control. This is usually considered undesirable in
structured programming. However, since this is PL/I's method of handling these
essential functions, no attempt has been made to restrict the use of these features.
The violation of the spirit of structured programming is lessened if the ON-unit
contains no GO TO statements, since control then automatically returns to the
statement following the one that caused the interrupt. However, this is not always
possible depending on the type of ON-unit.

Occasionally, it is not feasible to handle certain conditions within a series of state
ments_ This situation may arise either within conditional statements or during
normal processing, for example, when errors are detected in data editing which
prevent further processing. The programmer has at least two methods of handling
such situations. One is to set a flag and then return control to the next-higher level
routine for further action. This technique usually works well, and there are no
violations of structured programming conventions. If, however, the error is detected
within the innermost level of many nested levels, many tests may be required (one
at each level) to return control up through the nested structures to the point where
the error can be handled. Another alternative is to allow the use of GO TO to leave
such disabling error routines. Good judgment should be used to determine whether
the maintainability of the program is improved by using a few GO TO'S in this case.

Chapter 3: Three Illustrative Programs

A Two-Level Control
Total Program

The best way to get a quick idea of what any programming technique is all about
is to see examples of programs that employ it. In that spirit, three illustrative
programs are presented that have been written following the principles discussed
eaiIier. The IBM OS PL/I Checkout Compiler (5734-PL2) Version 1 Release 3
Modification 0 was used to compile the examples in this chapter. The programs
were executed under VM/370 Version 3 Level O.

One of the most common data processing operations is the preparation of a summary
report providing totals broken down by several levels of control, as well as a final
total. A two-level control total report illustrates the basic ideas, and can easily be
extended to any number of levels. In this example, it is assumed that the only report
needed is the summary; extension of the program to include other processing and
the printing of a detail line for each input record would involve no conceptual
difficul tie s.

For concreteness, it is assumed that the major control is a sales district, and that the
minor control is the salesman number. Each record contains a district number, a
salesman number, and a dollar amount. The transaction file has already been sorted
into sequence on salesman within the district. To keep things simple, the printing of
headings and the counting of lines on the pages will be ignored; these matters are
considered in the second sample program.

Figure 15 is a HIPO diagram for this processing. A pseudocode representation is

shown in Figure 16. Notice how the logic is clearly exhibited by the use of indenta
tion with the basic control structures of sequence, selection, and loop control. The
DOWHILE is used for the loop control with the controlled code shown inline. The
same logic is shown in flowchart form in Figures 17a and 17b. Working either from
the pseudocode or the flowchart, the PL/I program in Figure 18 is not difficult to
prepare.

Among general features to be observed are the use of blank lines for readability, the
vertical alignment of the attributes in DECLARE statements, and the consistent use
of an indentation unit of three spaces. Notice how the procedure can be read in
top-down fashion. Its readability makes it unnecessary to explain the program
further, assuming that the reader is familiar with the data processing ideas involved.

This program was run with a small sample of test data, and it produced the output
shown in Figure 19.

Naturally, the program is quite rudimentary, since it does not include printing of
headings, counting of lines, checking for sequence or other errors in the data, or any
processing of the records other than the accumulation of totals. All of these opera
tions can be included readily while still following structured programming concepts.
Some of these operations are handled in the example that follows.

23

Author: ______________ Sy.IOm/Pr"".m: ___________________ 0';10: _____ p ... :_,_ 01 __ '_

DiII".m 10: 1.0 N_: PREPARE·SAlES·REPORT DOKription :

Input
from
operating Output

I REPORT· FilE

SAlES·FllE

SALESMAN

DISTRICT

SALES·
DOllARS

'V'i.
1. Open files & read lst record

2. Initialize district fields
PREVIOUS·
DISTRICT

DISTRICT·
TOTAL 3. Perform until the district changes or there is <~_--"'T------T-""";/'~

no more data: ~ ,....::=======:'"
•. Initialize the salesman's field

b. Accumulate the salesman's total until the ./

PREVIOUS·
SALESMAN

SALESMAN·
TOTAL salesman changes I I ~

c. ReadtheSALES·FllE ~-L;:""''''''------
d. When the .. Ie,mln chlnges print total & ~ ~;::::::::::::::~:::;

add to di,trict total ..., I I
., • REPORT·FILE

4. When the district changes or there is no more ___ L.-----==:J"o,::>1
data <: /' DISTRICT·TOTAl

•. Print district total

-
b. Accumulate final total :~~~~~~~~~I~~~~~~~~~j=~~~~~=J FINAL·TOTAl

5. When there is no more data print final total <
.;:. ===L---_--l---J ":>! REPORT.FILE

6. Close the files

~J to -yo

I ~ operating ~ __________________________________ ~ ~dem L-____________________ ~

Figure IS. Detailed design level IDPO diagram for a two-Ievel control total processing application

24

J

Open files

Get a sales record; on endfile indicate no more sales data

Zero final total

DOWHILE there is more sales data

Zero district total

PREVIOUS DISTRICT = DISTRICT

DOWHILE DISTRICT = PREVIOUS DISTRICT and there is more sales data

Zero salesman total

PREVIOUS SALESMAN = SALESMAN

DOWHILE DISTR1CT

and SALESMAN

PREVIOUS DISTRICT

PREVIOUS SALESMAN

and there is more sales data

Accumulate salesman's total

Get a sales record; on endfile indicate no more sales data

ENDDO

Print salesman's total

Accumulate district total

ENDDO

Print district total

Accumulate final total

ENDDO

Print final total

Close files

Figure 16. Pseudocode for a two-level control total processing application

25

Open
files

Read

SALES FILE

Zero
FINAL-TOTAL

Print
FINAL-TOTAL

Close
files

T

Add
DISTRICT-TOTAL
to
FINAL-TOTAL

Print
DISTRIC.T
TOTAL

SALES-TOTAL

Process
salesman
totals

Move
DISTRICT to
Previous
DISTRICT

Zero
DISTRICT
-TOTAL

Figure 17a. Flowchart fot the mainline processing portion of a two-level control total processing application

26

Add
S-TOTAL to
D-TOTAL

Print
S-TOTAL

SALESMAN=P-SALESMAN

< and ~T~ ____________ ~

DISTRICT=P-DISTRICT

Move
SALESMAN
to
P-SALESMAN

Zero
S-TOTAL

Abbreviations

Add
S-DOLLARS

Read
SALES-FILE

S-TOTAL = SALESMAN-TOTAL
D-TOTAL = DISTRICT -TOTAL
P-SALESMAN = PREVIOUS-SALESMAN
S-DOLLARS = SALES-DOLLARS
P-DISTRICT = PREVIOUS-DISTRICT
SALES-TOTAL=

SALESMAN-TOT AL-PROC ESSI NG

Figure 17b. Flowchart for the record processing portion of a t\ro-Ievel control total processing application

27

'!'WOLVL:

START:

PROCEDURE OPTIONS (MAIN);
DECLARE

SALESMAN
PREVIOUS_SALESMAN
DISTRICT
PREVIOUS DISTRICT
FINAL_ToTAL
DISTRICT TOl'AL
SALESMAN TOl'AL
SALES DOLLARS
THERE=IS_MORE SALES DATA

DECLARE
SYSIN
SYSPRINT

OPEN FILE (SYSIN),
FILE (SYSPRINT):

FIXED DECIMAL (5),
FIXED DECIMAL (5),
FIX ED DEC T.MAL (5),
FIXED DECIMAL (5),
FIXED DECIMAL (10, 2),
FIXED DECIMAL (10, 2),
FIXED DECIMAL (10, 2),
FIXED DECIMAL (7, 2),
BIT (1) ALIGNED:

FILE mpUT,
FILE OUTPUT;

THERE IS MORE SALES DATA = 'liB;
ON ENDFILE (SYSIN) -

THERE_IS_MORE_SALES_DATA = 'O'B:

GET FILE (SYSIN) EDIT
(SALESMAN, DISTRICT, SALES DOLLARS)
(F (5), F (3), F (7, 2»:

FI NlIL TOl'AL = 0;
00 WHlLE (THERE IS MORE SALES DATA):

DISTRICT_TOTAL ~ 0; - -
PREVIOUS DISTRICT = DISTRICT:
DO WHlLE-((DISTRICT = PREVIOUS DISTRICT) •

THERE IS MORE SALES DATA):
SALESMAN TOTAL =-0: - -
PREVIOUS-SALESMAN = SALESMAN;
DO WHILE-((DISTRICT = PREVIOUS DISTRICT) •

(SALESMAN = PREVIOUS-SALESMAN) •
THERE IS MORE SALES DATA):

SALESMAN TOTAL = -SALESMAN TOTAL + SALES DOLLARS;
GET FILE-(SYSIN) EDIT - -

(SALESMAN, DISTRICT, SALES DOLLARS')
(SKIP, F<S), FU), F(7, 2>">:

END:
PUT FILE (SYSPRINT) EDIT

(PREVIOUS SALESMAN, SALESMAN TOTAL)
(SKIP, F(S), P'BBB$$$,$$$,$$9V.99'):

DISTRICT_TOTAL = DISTRICT_TOTAL + SALE~_'IOTAL:
END;
PUT FILE (SYSPRINT) EDIT

(PREVIOUS DISTRICT, DISTRICT TOTAL)
(SKIP, COLUMN(31), F(3), P"BBB$$$,$$$,$$9V.9S'):

FlNAL_TOl'AL = FINAL_TOTAL + DISTRICT_TOTAL;
END:
PUT FILE (SYSPRINT) EDIT

(FINAL TOTAL)
(SKIP,-COLU~N(59), p'$$$,$$$,$$9V.99'):

CLOSE FILE (SYSIN),
FILE (SYSPRINT);

END /* TWOLVL */:

Figure 18. Structured program for a two-level control total processing application

28

"1 $203.37
52 $110.00
69 $13".65

1 $""8.02
18 $207.69
32 $185.60

2 $393.29
36 $19".15
39 $121."0
50 $51.80

3 $367.35
$1,208.66

Figure 19. Illustrative output from the two-level control total program of Figure 18

'- --, I Process
valid I transaction

~OCESSFA~

I~-l
Read rd,,-e-

' I I transaction I transaction
GET-VALlD- VALIDATE·

L~N~ -.J L~NS_ --.J
LEGEND

r I HIPO function

I I no HIPO diagram
included in

L ~ package

--
C > Data movement

arrow

• Control arrow

I
I
L

Answer inquiries
ANSWER-
INQUIRIES

1.0

I Prepare
-,

I response I PREPARE·
L R.ESPONSE --.J
1-

J_
I '""~ -, I ?----, Print nnt

line I I matching I I line I LINE-OUT master LINE-OUT

- - -.J ~EAD-MASTE~ L __ ...J

Figure 20. Detailed design level visual table of contents for the inquiry response application

29

An Inquiry Response
Program

30

In this second example, the structured programming ideas are carried further.

A transaction file is in sequence on stock number; each record also contains a date
limit in the form YYDDD. A master file is also in sequence on stock number, with
each record containing a description of the product, a unit price, the quantity on
hand, and the date of last activity. It is required, for each transaction record, to
perform certain error checking, and then, if there has been activity since the trans
action date, to produce an inquiry response consisting of the master record contents
plus the value of the stock on hand; this is just the product of the quantity and the
unit price. (It might be more realistic to assume an interactive environment, in
which case the transactions would not be in sequence, and the master file would
probably have indexed organization. The sequential organization was chosen to
permit this example to display at least a small part of the logic of sequential file
processing.)

A HIPO visual table of contents is shown in Figure 20 and a HIPO detail diagram
in Figure 21. Observe in Figure 21 how the flow of data from input, through proc
essing, to output, is presented visually. The flowchart, in five sections, is shown in
Figure 22, and the program in Figure 23.

The declarations are more extensive this time, but the concepts should be familiar
to most PLjI programmers. RECORD input is used to show that handling it with
structured programming involves no problems. The built-in function HIGH is used
in the ON -unit for the master file to place in the stock number for that file the
largest possible character in the machine's collating sequence, so that when the end
of the master file has been reached, any remaining transactions will be correctly
flagged as having no matching master. The built-in function VE RI FY is used in the
internal procedure named GET _ VALID _ TRANS to determine whether the trans
action contains any nonnumeric characters.

The label PROG RAM _ LOO P is included to increase readability; there is never a
transfer to it. Just before this point, note the call of GET ":VALID _ TRANS; this
gets the first transaction before entering the processing loop. Once a valid transaction
has been found, a DOWHILE seeks the matching master. Observe that ifthere are
multiple transactions for the same stock number, this DOWH ILE will not read
the master file for transactions after the first one in a group.

In GET _ VALID _ TRANS, observe,the use of redundant parentheses in the condition
of the DOWHILE to reduce the possibility of (human) misunderstanding. The
VERIFY function takes two arguments, and returns a zero if all characters of the
first argument are found in the characters of the second argument; as used here, a
nonzero result indicates a nonnumeric transaction.

LINE ~ OUT handles printing report lines, and, if a counter indicates the necessity,
prints a heading line with a page number.

Figure 24 shows a sample master file and Figure 25 a sample transaction file for
this program. Figure 26 shows the output produced when the program was run
with these data files.

Authot: ____________ Sy ... m' m: _________________ Dat.: ____ :_'_ of_
'
_

Oiogr_ID: 1.0 NIl : ANSWER-INQUIRIES Deocription: Process Stock Transactions

Input

TRANS-FILE

MASTER-FILE

REPORT-FILE

from
operating
system

1. Opon the lil.s

Output

rT.:.R~A:N~S~-F~I~L;E:::~~;;J-J------L~2. For each transaction in the l_il_. ________ ______J ,. ______ -,

I TRANS-RECORD 8. Validate the transaction _________ -. ______, :::::,tr8nsaction

2_

DATE-LIMIT

STOCK·NUMBER

MASTER-FILE

STOCK-NUMBEP

LAST·ACTIVITY
DATE

UNIT-PRICE

QUANTITY-ON
HAND

NoIoI

2L All lields num.ric. do .. I •• than 70,001

Print

3.

3L

Print

3. For each valid transaction REPORT· FILE

8. Get a matching ma.ter reoord --------r------.,--...... 1
No matching
master message

b. If there is a matching master then calculate
the cost of stock on hand if the transaction
date is less than the master activity date else
there is no activity.

4. Close the liles

........ ph Ref_ No ..

PROC-TRANS

GET-VALID-TRANS

VALIDATE-TRANSACTION

LINE-OUT

PREPARE· RESPONSE

READ-MASTER

LINE-OUT

'-------'

STOCK-NUMBER

DATE-LIMIT

DESCRIPTION

QUANTITY-ON
HAND

COST-OF-STOCK

LAST-ACTIVITY
DATE

No activity
message

Par

Figure 21. A mpo diagram for the inquiry response application

Ref.

31

Open files

PROC-TRANS

Process
transactions

F

Close files

Figure 22a. Flowchart of the mainline processing for an inquily response application

32

F

Move 'No'
to VALlD-T

F

T

VALIDATE·TRANS

Validate
transaction

Read TRANS
at end move
'NO'to
MORE·TRANS

F

PREPARE·RESP

Prepare
response

Abbreviations

VALlD·T = VALID-TRANS-FLAG
TRANS=TRAN~RECORD

MORE-TRANS = MORE-TRANS-FLAG
NO-MORE-T = NO-MORE-TRANS

Figure 22b. Flowchart of tile transaction processing logic for an inquiry response application

33

F T

Abbreviations

VALlD-T ~ VALID-TRANS-FLAG
TRANS-TRANSRECORD
MORE-TRANS ~ MORE-TRANS-FLAG
NO-MORE-T ~ NO-MORE-TRANS

F

Move 'yes'
to VALlD-T

Set up
DATE LIMIT
message

Print
lines

Move 'no'
to VALlD-T

T

Fipre 22c. Flowchart for the validation portion of an inquiry response application

34

Set up
not-numeric
message

LINE-OUT

Print
lines

Move 'no'
to VALlD-T

Set up no
matching
master
message

F

LINE-OUT

Print
lines

F

T

Set up
inquiry
response

Read master;
at end move
HIGH-VALUES
to MASTER·
STOCK- NUMBER

Figure 22d. Flowchart of the logic for preparing a response in an inquiry response application

Set up
no activity
message

35

Add 1
to LINE·
NUMBER

F

F

Write
detail
line

T

T

Write head
and two
blank lines

Move 4
to
LINE·
NUMBER

Add 1
to PAGE·
NUMBER

Move 1
to LINE·
NUMBER

Figure 22e. Flowchart of the logic for printing heading and detail lines in an inquiry response application

36

INQRESP:
PROCEDURE OPTIONS (MAIN);
DECLARE

MAS~FIL FILE RECORD SEQUENTIAL
ENVIRONMENT (TOTAL F RECSIZE

TRANFIL FILE RECORD SEQUENTIAL
ENVIRONMENT (TOTAL F RECSIZE

SYSPRINT FILE OUTPUT;

(80)),

(80)),

DECLARE
1 TRANS,

2 STOCK NUMBER
2 DATE LIMIT
2 FILL-

DECLARE
1 MASTER,

2 STOCK NUMBER
2 DE;SCRIPTION
2 UNIT PRICE
2 QOH -
"2 LAST ACTIVITY DATE,

3 YEAR -

2
DECLARE

3 DAY
FILL

1 RESPCNSE FIELDS,
2 STOCK-NUMBER
2 FILL r
2 DATE-LIMIT
2 FILL-2
2 DESCRIPTION
2 FILL 3
2 UNIT-PRICE
2 FILL-4
2 QOH -
2 FILL 5
2 TarAr: COST
2 FILL '6
2 LAST-ACTIVITY DATE,

3 YEAR -
3 FILL 7
3 DAY -

DECLARE

CHARACTER (6),
CHARACTER (5),
CHARACTER (69);

CHARACTER (6) INITIAL
CHARACTER (20),
PICTURE '99999V99',
PICTURE '99999V99',

CHARACTER (2),
CHARACTER (3),
CHARACTER (35);

CHARACTER (6),

(. '),

CHARACTER (3) INITIAL (. '),
CHARACTER (5),
CHARACTER (5) INITIAL (. '),
CHARACTER (20),
CHARACTER (3) INITIAL (.. '),
PICTURE '$$$,$$9V.99',
CHARACTER (3) INITIAL (. '),
PICTURE' ZZZZ9V. 99';,
CHARACTER (3) INITIAL (. '),
PICTURE '$$,$$$,$$9V.99',
CHARACTER (5) INITIAL (II 1.9') ;

CHARACTER (2),
CHARACTER (3) INITIAL (. '),
CHARACTER (3);

INQUIRY RESPONSE DEFINED RESPONSE FIELDS CHARACTER (92);
DECLARE -

MORE TRANS REMAIN SW BIT (1) ALIGNED INITIAL ('1 'B);
D ECL ARE- - -

NO ACTIVITY MSG CHARACTER (50) INITIAL
- ('NO ACTIVITY FOR THIS ITEM SINCE DATE IN INQUIRY');

DECLARE
NO MATCHING MAS~ER MSG CHARACTER (50) INITIAL

- ('NO MASTER FOR THIS STOCK NUMBER');
DECLARE

HIGH
VERIFY

BUILTIN,
BUILTIN;

Figure 23. Structured program for an inquiry response application (1 of 4)

37

ON ENDFILE (MASTFIL)
MASTER.STOCK NUMBER = HIGH (6);

OPEN FILE (TRANFIL),
FILE (MASTFIL),
FILE (SYSPRINT);

CALL GET VALID TRANS (TRANS, MORE_TRANS_REMAIN_SW);
PROGRAM LOOP: - -

DO WHILE ·(MORE TRANS REMAIN SW);
00 WHILE (MASTER. STOCK NUMBER < TRANS. STOCK NUMBER';

READ FILE (MASTFIL)-INTO (MASTER); -
END;
IF MASTER. STOCK_NUMBER = TRANS. STOCK_NUMBER
THEN

00;
IF TRANS.DATE LIMIT >= MASTER. YEAR I I MASTER. DAY
THEN

CALL LINE_OUT (TRANS.STOCK_NUtllBERII' , II

ELSE
DO;

TRANS. DATE_LIMIT I I' 'IINO_ACTIVITY_MSG);

RESPONSE FIELDS = MASTER, BY NAME;
RESPONSE=FIELDS.DATE_LIMIT = TRANS.DATE_LIMIT;
RESPONSE FIELDS. TOTAL COST =

MASTER. UNIT PRICE * MASTER.QOH;
CALL LINE_OUT (INQUIRY_RESPONSE);

END;
END;

ELSE
CALL LINE OUT (TRANS. STOCK_NUMBER I I ' "II

TRANS • DATE_LIMIT II' , I I NO_MATCHING_MASTER_MSG);
CALL GET_VALID TRANS (TRANS, MORE_TRANS_R:EMAIN"':SW);

END PRCGRAM_LCOP;

CLOSE FILE (TRANFIL),
FILE (MASTFIL),
FILE (SYSPRINT);

RETURN /* TO OPERATING SYSTEM */;

Figure 23. Structured program for an inquiry response application (2 of 4)

38

GET VALID TRANS: - -
PROCEDURE (TRANS, MORE_TRANS_REMAIN_SW);
DECLARE

1 TRANS,
2 STOCK NUMBER
2 DATE LIMIT
2 FILL-

DECLARE

CHARACTER (6),
CHARACTER (5),
CHARACTER (69);

MORE TRANS REMAIN SW
VALID TRANS SW -

DECLARE - -

BIT (1) ALIGNED,
BIT (1) ALIGNED;

EARLIEST DATE ALLOWED STATIC CHARACTER (5)
INITIAL ("70001");

DECLARE
NOT NUMERIC MSG STATIC CHARACTER (50) INITIAL

(. ALL-ITEMS IN INQUIRY MUST BE NUMERIC I);
DECLARE

DATE LIMIT MSG STATIC CHARACTER (50) INITIAL
('DATE-LIMIT MUST NOT BE LESS THAN 70001");

ON ENDFILE (TRANFIL)
MORE TRANS REMAIN_SW = "O"B;

VALID TRANS SW = "0' B;
00 WHILE (<VALID 'IRANS SW = "O"B) & MORE_TRANS_REMAIN_SW);

READ FILE (TRANFIL) INTO (TRANS):
IF MORE_TRANS_REMAIN_SW
THEN

END;

00;
VALID TRANS SW = "l"B;
IF VERIFY (TRANS. STOCK_NUMBER I ITRANS.DATE_LIMIT,

"0123456789") ,= 0
THEN

DO;
CALL LINE_OUT (TRANS • STOCK_NUMBER I'l" I II

TRANS. DATE_LIt-lITII • 'II
NOT NUMERIC MSG);

VALID_TRANS_SW = 'O"B;
END;

ELSE
IF TRANS.DATE LIMIT < EARLIEST DATE ALLOWED
THEN - -

00;
CALL LINE_OUT (TRANS. STOCK_NUHBERII··II

TRANS. DATE_LIMITII I "I-I
DATE LIHIT MSG);

VALID_TRANS_SW =-"O"B;
END;

END;

END /* GET_VALID_TRANS */;

Figure 23. Structured program for an inquiry response application (3 of 4)

39

LINE OUT:

E

END

- PROCEDURE
DECLARE

LINE
DECLARE

HEAD

(LINE) ;

CHARACTER (*);

CHARACTER (91) INITIAL
c- TRANSACTION DESCRIPTION

QOH TOTAL COST LAST ACTIVITY') ;
DECLARE

UNI'!' PRIC

LINE NUMB:ER
PAGE _ NU MBER
SYSPRI.Nl'

STATIC FIXED DECIMAL (3) INITIAL (1),
STATIC FIXED DECIMAL (3) INITIAL (1),
FILE OUTPUT;

IF LINE NUMBER = 1
THEN

DO;
PUT FILE (SYSPRINT) EDIT

(HEAD, PAGE NUl,mER)
(PAGE, A, P'(6)Z9");

PUT FILE (SYSPRINT) EDIT
(LINE)
(SKIP(3), A);

LINE NUMBER = 4;
PAGE:NUMBER = PAGE_NU~lliER +'1;

END;
ELSE

PUT FILE (SYSPRINT) EDIT
(LINE)
(SKIP, A);

IF LINE_NUMBER >= 55
THEN

LINE NUMBER = 1;
ELSE

LINE NUMBER = LINE NUMBER + 1;
/* LINE_OUT */;

END /* INQRESP */;

Figure 23. Structured program for an inquiry response application (4 of 4)

40

-

000108DESK 0018500000160075010
000115CHAIR, FOLDING 0001810001270075100
000180~MP, FLOOR 0003750000120075180
000181~MP, DESK 0002200001170075093
000200TYPEWRITER STAND 0002490000400074350
000309 BOOKCASE, 5 SHELF 0004125000200075105
000310BOOKCASE, 4 SHELF 0003650000310075090
000311BOOKCASE, 3 SHELF 0002800000170075110
000480FILE CABINET, 4 DWR 0006180001000075130
000481FILE CABINET, 2 DWR 0003990000500075150
010684WASTEBASKET, GREEN 0000417000120075190
010686WASTEBASKET, GRAY 0000417001900075120
010687WASTEBASKET, BLUE 0000417000570075182
021732S0FA, LEATHER, BROWN0035620000290075070
021739S0FA, LEATHER, RED 0035620000370075040

Figure 24. illustrative master me for the inquiry response program of Figure 23

-

00010875001
00018075001
00020075001
00025075001
000310 75001
00031075001
00048075140
00048175140
010.68575140
01069075150
02173975030
03194075150

Figure 25. illustrative transaction me for the inquiry response program of Figure 23

-

TRANSACTION DESCRIPTION UNIT PRICE QOH TOTAL COST LAST ACTIVITY

000108 75001 DESK $185.00 16.00 $2,960.00 1975 010
000180 75001 LAMP, FLOOR $37.50 12.00 $450.00 1975 180
000200 75001 NO ACTIVITY FOR THIS ITEM SINCE DATE IN INQUIRY
000250 75001 NO MASTER FOR THIS STOCK NUMBER
000310 7500 ALL ITEMS IN INQUIRY MUST BE NUMERIC
000310 75001 BOOKCASE, 4 SHELF $36.50 31.00 $1,131.50 1975 090
000480 75140 NO ACTIVITY FOR THIS ITEM SINCE DATE IN INQUIRY
000481 75140 FILE CABINET, 2 DWR $39.90 50.00 $1,995.00 1975 150
010.68 57514 ALL ITEMS IN INQUIRY MUST BE NUMERIC
010690 75150 NO MASTER FOR THIS STOCK NUMBER
021739 75030 SOFA, LEATHER, RED $356.20 37.00 $13,179.40 1975 040
031940 75150 NO MASTER FOR THIS STOCK NUMBER

-
Figure 26. Output of the program of Figure 23 when run with the illustrative files of Figures 24 and 25

41

Solving a System of
Simultaneous Equations by
The Gauss-Seidel Method

42

This example is for the benefit of readers more concerned with technical applica
tions. It assumes some familiarity with simultaneous linear algebraic equations
and with their iterative solution by the Gauss-Seidel method.

As many as 80 equations in 80 unknowns are to be permitted; the actual size N,
which may be smaller than 80, is read from the first data card. This card also
specifiesMAx_ITERATIONS, the maximum number of iterations to be permitted,
the convergence criterion EPSILON, and the largest absolute value permitted of an
element in the system array, BIGGEST. The array is initialized to zero, so that only
nonzero elements need be read; row and column numbers are checked for validity
as the data cards are read. All data values are checked and errors reported, but the
solution is not attempted if any errors are found.

Not all systems of simultaneous equations can be solved by the Gauss-Seidel method.
After the coefficients and constant terms have been read, a check is made to deter
mine that the main diagonal element in each row is larger in absolute value than the
sum of the absolute values of the other coefficients in the row. If not, the error is
reported and the solution is not attempted.

The actual solution proceeds in a succession of sweeps. Starting with all zeros for
the unknowns, new values for all unknowns are computed in one sweep. A variable
named RESIDUAL holds the largest difference between the old and new values of
unknowns. When this residual is found to be less than the convergence criterion,
the system has been solved. If convergence cannot be achieved in the specified
maximum number of iterations, the non convergence is reported.

If all data values are acceptable and the system is suitable for solution by the Gauss
Seidel method, and if the solution converges, then the values of the N unknowns
are printed as the solution.

Figure 27 shows pseudocode for the method of solution that is to be used. Observe
how the logic of the solution is displayed, without distracting details. For example,
the precise form of switch-setting is left to be detailed in the program. Likewise,
in the procedure for reading the data, we find the line "IF data card invalid", which
conveys the meaning clearly but does not specify exactly what tests are to be made;
those details can be found in the program specifications and in the program. Note,
too, that a summation sign denotes this commonly used mathematical function,
which in the program will become a simple DO loop. If it were necessary to keep
the pseudocode in machine-readable form, which is sometimes the practice, the
Greek symbols would naturally have to be represented in some transliteration, or
the loop could be shown in detail.

The program is shown in Figure 28. The mainline logic, according to which the
various tests are made to determine at each stage what further actions are possible,
is made clear by the use of meaningful data names, simple IFTHENELSE logic, and
consistent indentation.

The internal procedure READ _DAT A obtains the data and tests the validity of
each element separately. The choice of how much testing to do is a design decision
that is taken for granted here; if further tests, such as the reasonableness of the
value N, were desired, they could be incorporated easily.

The'- procedure V ALID A TE _ SYSTEM is called into play if it is determined that the
individual elements are acceptable. This function could, of course, have been made
part of READ_DATA, which might then have been renamed READ_DATA_AND_

VALIDATE_SYSTEM, or READ_DAT A could have called this procedure. The
form chosen was picked because it gives the clearest picture of the logic at the top
level.

The actual solution of the system, if it is found to be potentially solvable, is done
with the procedure named SOL VE _SY STEM. It involves no unusual concepts.
Note, however, the use of the built-in function M AX to establish whether the newly
computed difference between the old and new values of an unknown is greater than
the previous value of RESIDUAL; this could, naturally, also have been done with
an I F statement.

After the program had been tried with various erroneous data to check the error-
detection handling, it was tested with the following system:

12.063 Xl + 1. 018 x 2 - 4.200 x3 + 0.110 x 4 3.013

1. 934 x 2 + 1. 011 x3 - 0.500 x 4 = 1.165

-0.110 Xl + 0.901 x 2 + 6.914 x3 + 0.100 x 4 = 18.429

-1.952 Xl + 2.139 x3 + 5.000 x 4 -15.500

Using a convergence criterion (EPSILON) of 0.01, the method found the solution
shown in Figure 29.

43

Open files

Initialize bad data switch off

Clear arrays

Read data

IF no errors in data

THEN

Validate system

IF system is valid

THEN

Attempt to solve system

IF solution converges

THEN

Print results

ELSE

Print 'did not converge'

ENDIF

ELSE

Print 'cannot solve this sytem by Gauss-Seidel'

ENDIF

ELSE

Print 'bad data'

ENDIF

Close files

Figure 27. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (l of 4)

44

Read data:

Get N, maximum iterations, epsilon, biggest

More data switch = yes

Dm'lHILE more data remains

Get a card

IF more data remains

THEN

IF data card invalid

THEN

Print data values and error message

Set bad data switch on

ELSE

Store element in array

ENDIF

ENDIF

ENDDO

Figure 27. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (2 of 4)

45

Validate system:

DO I = 1 to N

WHILE no bad rows have been found

SUM =~..,l., a .. ,
lrJ lJ

IF I a i j I < SUM

THEN

Set bad row switch on

ENDIF

ENDDO

Figure 27. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (3 of 4)

46

J

Solve system:

Iterations = 1

DOUNTIL iterations> max iterations or residual < epsilon

Residual = 0

DO I = 1 to N

Sum = ~
i;;ij

a .. x.
lJ J

Temporary = (a. +1 - Sum) la ..
l,n 11

Residual = max(residual, abs(temporary - x.))
1

x. = temporary
1

ENDDO

Add 1 to iterations

If iterations> maximum permitted

THEN

Set no-converge switch on

ENDIF

ENDDO

Figure 27. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (4 of 4)

47

SIMEQ:
PROCEDURE OPl'IONS (MAIN);

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

(N, MAX ITERATIONS)
(A(SOr-S1), X(SO))
(EPSILON r BIGGEST)

BAD DATA SW
- -

VALID SYSTEM SW
CONVERGE SW
SYSIN
SYSPRINr

FIXED BINARY;
FLOAT;

FLOAT;
BIT (1) ALIGNED;
BIT (1) ALIGNED;
BIT (1) ALIGNED;
FILE INPUT;
FILE OUTPUT;

OPEN FILE (SYSIN),
FILE (SYSPRINT);

A = 0;
X = 0;
BAD_DATA_SW = 'O'B;
CALL READ_DATA (A, N, MAX_ITERATIONS, EPSILON r BIGGEST,

BAD DATA SW);
IF BAD DATA SW-= "oeB
THEN

00;
VALID_SYSTEM SW = 'liB;
CALL VALIDATE SYSTEM (A, N, VALID_SYSTEM_SW);
IF VALID SYSTEM SW = 'liB
THEN -

DO;
CONVERGE_SW = 'liB;
CALL SOLVE SYSTEM (A, X, N,

EPSILON, MAX ITERATIONS, CONVERGE_SW);
IF CONVERGE SW = 'liB
THEN -

PUT FILE (SYSPRINT) EDIT

ELSE

((I, X (1) DO I = 1 TO N»
(SKIP, F (2), E (15,6)) ;

PUT FILE (SYSPRINT) EDIT
('SYSTEM DID NOT CX>NVERGE IN I;,

MAX ITERATIONS, I ITERATIONS·)
(SKIP, A,-F(2), A);

END;
ELSE

PUT FILE (SYSPRINT) EDIT
('CANNOT SOLVE THIS SYSTEM BY GAUSS-SEIDEL-)
(SKIP, A);

END;
ELSE

PUT FILE (SYSPRINT) EDIT
("BAD DATA JOB ABORTED")
(SKIP, A);

CLOSE FILE (SYSIN),
FILE (SYSPRINT);

RETURN;

Figure 28. A structured program to solve simultaneous equations by the Gauss-Seidel method (1 of 3)

48

"PAGE:
READ DATA:

PROCEDURE (A, N, MAX_ITERATIONS, EPSILON, BIGGEST,
BAD_DATA_SW) ;

DeL
DCL
DeL
DeL
DCL

(I, J, N, MAX ITERATIONS)
A(80, 81)
(EPSILON, BIGGEST, TEMPORARY)
MORE DATA REMAINS SW - -BAD DATA SW

ON ENDFILE (SYSIN)
MORE_DATA_REMAINS SW = "O"B:

GET FILE (SYSIN) EDIT

FIXED BINARY;
FLOAT:
FLOAT;
BIT (1) ALIGNED;
BIT (1) ALIGNED:

(N, MAX ITERATIONS, EPSILON, BIGGEST)
(2 F(2)~ 2 F(10»:

MORE DATA REMAINS SW = "l"B:
00 WHILE (MORE DATA REMAINS SW);

GET FILE (SYSIN)-EDIT -
(I, J, TEMPORARY)
(SKIP, 2 F(2), F(10»:

IF MORE DATA REMAINS SW
THEN

DO:

- - -

IF <I < 1) I (I > N) I (J < 1) I (J > N 14- 1)

I ABS (TEMPORARY) > BIGGEST
THEN

DO:
PUT FILE (SYSPRINT) EDIT

(I ERROR IN CARD WITH I = ", 1', I J = ", J,
VALUE = ", TEMPORARY)

END;
ELSE

(SKIP, A, F(2), A, F(2), A, E~15,~»:
BAD_DATA_SW = "l"B:

A(I, J) = TEMPORARY:
END:

END:
END / * READ DATA */:

Figure 28. A structured program to solve simultaneous equations by the Gauss-Seidel method (2 of 3)

49

%PAGE;
VALIDATE SYSTEM:

PROCEDURE (A, N, VALID_SYSTEM_SW);

DCL <I, J, N)
DeL (A(80, 81), X(80))
DCL SUM
DCL VALID SYSTEM SW
DCL MAX

DO I = 1 TO N

FIXED BINARY;
FLOAT;
FLOAT;
BIT (1) ALIGNED;
BUILTIN;

WHILE (VALID SYSTEM SW = 'l'B);
SUM = 0;
DO J = 1 TO I - 1, I + 1 TO N;

SUM = SUM + ABS (A(I, J»;
END;
IF ABS (A(I, I» <= SUM
THEN

VALID SYSTEM SW = 'O'B;
END;

END /* VALIDATE SYSTEM */;

%PAGE;
SOLVE SYSTEM:

PROCEDURE (A, X, N, EPSILON, MAX ITERATIONS, CONVERGE SW»)
DCL (I, J, ITERATIONS, t-lAX ITERATIONS, N) FIXED BINARY;
DCL (RESIDUAL, SUM, TEMPORARY) FLOAT;
DCL (A(80, 81), X(80)) FLOAT;
DCL CONVERGE_SW BIT (1) ALIGNED;

DO ITERATIONS = 1 TO MAX ITERATIONS
UNTIL (RESIDUAL <= -EPSILON) ;

RESIDUAL = 0;
DO I = 1 TO N;

SUM = 0;
00 J = 1 TO I - 1, I + 1 TO N;

SUM = SUM + AU, J) * X(J);
END;
TEMPORARY = (A(I, N+l) - SUM) / A(I, I);
RESIDUAL = MAX(RESIDUAL, ABS(X(I) - TEMPORARY));
XCI) = TEMPORARY;

END;
END;
IF ITERATIONS > MAX_ITERATIONS
THEN

CONVERGE SW = 'O'B;
END /* SOLVE_SYSTEM */;

END /* SIMEQ */;

Figure 28. A structured program to solve simultaneous equations by dIe Gauss·Seidel method (3 of 3)

1 1. 493188E+00
2 -1.947272E+00
3 2.997915E+00
4 -3.799566E+00

Figure 29. The output of the program of Figure 28 when it was run with sample data corresponding to the system of simultaneous
equations shown in the text

50

Bibliography

Baker, F.T. System Quality through Structured Programming. Proceedings
ofFJCC. December 1972.

Bohm, Corrado and J acopini, Giuseppe (1966) Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules. Comm. ACM
Vol. 9 No.5 May 1966.

Dijkstra, Edsger W. Go To Statement Considered Harmful. Letter to
Editor, Comm. ACM Vol. 11 No.3 March 1968.

Dijkstra, Edsger W. The Humble Programmer. Comm. ACM Vol. 15 No. 10.
October 1972.

Stay, J.F. HIPO and Integrated Program Design. IBM Systems Journal,
Vol. 15 No.2 1976. (Reprints are available under order number G321.5031.)

Stevens, W.P. and Myers, G.J. and Constantine, L.L. Structured Design.
IBM Systems Journal Vol. 13 No.2 1974. (Reprints are available under order
number G320·5323.)

HIPO - A Design Aid and Documentation Technique. IBM Corporation,
GC20·1851.

HIPODRA W - Installed User Program 5896-PFF Availability Notice.
IBM Corporation, G320·5546.

Improved Programming Technologies - An Overview. IBM Corporation,
GC20·1850.

An Introduction to Structured Programming in COBOL. IBM Corporation,
GC20·1776.

An Introduction to Structured Programming in PL/I. IBM Corporation,
GC20-1777.

Structured Programming (Independent Study Program) Textbook. IBM
Corporation, SR20-7149.

Structured Programming (Independent Study Program) Workbook. IBM
Corporation, SR20·7150.

51

...; E c
II> 0 E
Co .!!!
::J .I::.
CT
II> (ij
C> II>
C '" .;:; 0
0 II>
'" Co

(II
(II
E "0

II>
"0 E II> E (II

E ::J
Cl

0
::J II>
(II .I::.

.I::. 0
(;

~
';:
'"

II>

E .2!
II> 'iii
:0 c
0 II>

a. '" Q.)

II>
....

'" ::J
::J '" '" (II Q.)
(.)
C Co
(II II>
(.) '"
'"

::J
Q.) II> a. '" (II
(II Q.)

ci) a:

Q.)
0

• Z

An Introduction to Structured Programming in PL/I

Systems Management Manual

GC20-1777-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate with
out incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? _________________ ---,-________ _

Number of latest Newsletter associated with this publication: --------------
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

GC20-1777-1

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 824
1133 Westchester Avenue
White Plains, New York 10604

Fold and tape

--..- ~(R) ----- --------- -- -~-- - - _ ... ------
-~-.-

International Business Machines Corporation
Data Processing Division

Please Do Not Staple

1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N.Y .. U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y .• U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
()

~
g
."
0
c:
l>
0"
::l J
\C

[(f)
-< ::l en

CD ...
(I)

3
en

s:
II>
:l
II>
(Q
(I)

3
(I)

:l
s:
II>
:l
c:
~

»
:l

:l,
0
c.
c:
n
~.
0
:l ...
0
(f),
c:
n ...
c: ...,
(I)

C.
-0 ...,
0

(Q ...,
II>

3
3
:l

(Q

:l

-0
r
:::::
-0
~.
:l ...
(I)

C.

:l

C
(f)

~
G)
(")

"" <;:>
'-oJ
'-oJ
';-I

