

Machine Requirements

The minimum machine requirements for the
PL/I Checkout Compiler are an IBM
System/360 Model 40, with a main storage
capacity of 128K bytes, of which at least
80K bytes must be available for the
compiler. For fully efficient use, the
compiler requires a minimum of lOOK bytes.
The central processing unit must have the
decimal and floating-point instruction sets
and, if timing information is required, it
must have the timer feature.

If the conversational features of the
compiler are to be used, the time sharing
option (TSO) of the operating system must
be available. This has a minimum
requirement of an IBM system/360 Model 50
with a main storage capacity of 5l2K bytes.

Compiler Residence

The compiler will occupy approximately 700K
bytes of direct-access storage space. In
addition, 75K bytes will be required for
the transient library used by the compiler.

Working storage

The compiler requires direct-access storage
space for overflow storage areas. The
amount of space required depends on the
size of the program and the amount of main
storage available to the compiler. The
data set identified by SYSUT2 is used for
this auxiliary storage. In addition, the
compiler may require direct-access storage
space for the work files SYSUT3, SYSUT4,
and SYSUT5, the functions of which are
described below.

Input/Output Devices

During translation and interpretation,
devices are required for the following
types of input/output:

Source program input-

Printed listings

Chapter 4: System Requirements

output of interpret able code .from
translator �(�i�n�p�~�t� to interpreter).

The ddnames associated with particular
functions, and the permitted device types
for each, are shown in Table 1.

Operating System Requirements and Facilities

The PL/I Checkout Compiler is a component
of the IBM System/360 Operating System.
The control programs that the compiler will
run under, and the data management
facilities which may be required, are
detailed below.

control Programs

The checkout compiler can be used under the
following control programs.

Multiprogramming with a Fixed number of
Tasks (MFT): The number of tasks that can
be processed at anyone time is determined
by the number of partitions (segments of
main storage) that exist at that time.
Each task is associated with one partition,
and receives a share of the available
resources.

Multiprogramming with a variable number of
Tasks (MVT): The number of tasks that can
be processed at anyone time is determined
by the number of regions (segments of main
storage) plus the number of tasks created
dynamically in all the regions. Each
region is associated with a task and with
all the subtasks it creates dynamically.
Each task receives a share of the
resources; subtasks use the resources
allocated to the task that created them.

Other operating system options under
which the compiler can run are:

Time Sharing option (TSO): this option
must be available if the conversational
features of the compiler are to be used.
It provides:

The system commands that allow
interaction with a PL/I program during
translation and interpretation.

Chapter 4: System Requirements 25

Table 1. Compiler Input/Output Devices
r---------------------------T-----------T-------------------T---------------------------,
I Function I ddname I Device Type I When ReguiIed I
~---------------------------+-----------+-------------------+---------------------------~
I Source program inpu~ and, ISYSCIN IDASD Isee note telow I
loptionally, data I IMagnetic tape I I
I I I card reader I I
I I IPaper tape reader I I
I I I Terminal I I
t---------------------------+-----------f-------------------f---------------------------~
I Printed outf:ut I SYSPRINT I DASD IAly;ays I
I I I Magnetic taf e I I
i I I Fr in t er I I
I I l'Ierminal I I
r---------------------------+-----------+-------------------+---------------------------~
IWork file ISYSUT2 IDASD IAllhays I
~---------------------------+-----------f-------------------+--~------------------------~
IOutput from translaLor; ISYSUT3 IDASD IIf production of an object I
linput to inter[.Ie-cer I I Irrodule is Sfecified I
~---------------------------f-----------f-------------------+---------------------------~
IWork file used to retain ISYSUT4 ItASD IIf a formatted source I
I formatted source f:Iog Iam I I Ilisting is sI=ecified I
lafter transla-cion I I I I
r---------------------------f-----------f-------------------+---------------------------~
IWork file fOI I SYSUT5 I DASD I If prefrccessing is I
I preprocessor I I I specified I
t---------------------------+-----------f-------------------+---------------------------~
ISouIce program inrut ISYSIN las SYSCIN Isee note below I
I and/or data I I I I
r---------------------------+-----------+-------------------+---------------------------~
lout~ut to linkage ISYSLIN IDASD IIf producticn of an ctject I
I editor I I~agnetic tare Imodule is specified I
t---------------------------~-----------~-------------______ i ___________________________ ~

I Note: Source rIogram input to the compiler may be on SYSCIN or SYSIN. If I
I translation and interpretation are included in the same jot step, hClheveI, the I
I following conventions must be otserved. I
I If SYSCIN is used for the source program, data for processing by the translated I
I SOUIce program may either follow the source prograrr. en SYSCIN or it may te on SYSIN. I
I If SYSIN is used for the source program, data for processing by the tIanslated I
I source program may also be on SYSIN (following the source program), tut SYSCIN must I
I not be used. I L ___ J

• Facilities for several users to share a
region of main storage for the
concurrent execution of their programs.
Each terminal in session is granted
exclusive use of the region for a

'series of short time slices.

Multiprocessing (M65MP): provides support
for multiprocessing with two System/360
Mudel 65s.

Data Management Facilities

Object programs compiled by the checkou~
compiler make use of the operating system
data management facilities. These
facilities include:

26

Basic Sequential Access Method (BSA~)

Queued sequential Access Method (QSAM)

Basic Partitioned Access Method (BPAM)

Basic Indexed Sequential Access Method
(BISAM)

Queued Indexed Sequential Access Method
(QISAM)

Basic Direct Access ~ethod (BrA~)

Telecommunication Access Methcd (teAM)

Appendix A: Summary of Keywords

The following is a complete list of the PL/I and implementation-defined keywords
implemented by the checkout compiler. Each of these keywords is described in detail in
the publication IBM system/360 Operating System: PL/I Language Reference Manual
(Preliminary), which also lists the keyword abbreviations.

Keyword

ABS(x)
ACOS(x)
%ACTIVATE
ADD (x, y , P [, q])
ADDBUFF(n)
ADDR(x)
ALIGNED
ALL
ALL (x)

ALLOCATE
ALLOCATION (x)
ANY (x)

AREA
AREA [(size)]
ASIN(x)
ATAN (x (r y])
ATAND(x[,y])
ATANH(x)
AUTOMATIC
BACKWARDS
BASED[(locator-expression)]
BEGIN
BINARY
BINARY (x [r p [, q]])
BIT[(length)]
BIT(expression[,size])
BLKSIZE(expression)
BOOL(X,y,w)
BUFFERED
BUFFERS(n)
BUILTIN
BY
BY NAME
CALL
CEIL(x)
CHAR(expression[,size])
CHARACTER[(length)]
CHECK [(name-list)]
CHECK
CLOSE
COBOL

COLUMN(w)
COMPLETION (event-name)
COMPLEX
COMPLEX (a,b)
CONDITION (name)
CONJG(x)
CONNECTED
CONSECUTIVE
CONTROLLED
CONVERSION
COpy
COS (x)
COSD(x)

Use of Keyword

Built-in function
Built-in function
Preprocessor statement
Built-in function
Option of ENVIRONMENT attribute
Built-in function
Attribute
Option of PUT statement
Built-in function
statement
Built-in function
Built-in function
Condition
Attribute
Built-in function
Built-in function
Built-in function
Built-in function
Attribute
Attribute, option of OPEN statement
Attribute
statement
Attribute
Built-in function
Attribute
Built-in function
Option of ENVIRONMENT attribute
Built-in function
Attribute
Option of ENVIRONMENT attribute
Attribute
Clause of DO statement
Option of the assignment statement
Statement, or option of INITIAL attribute
Built-in function
Built-in function
Attribute
condition
statement
statement
option of ENVIRONMENT attribute, or the OPTIONS

option/attribute
Format item
Built-in function, pseudo-variable
Attribute
Built-in function, pseudo-variable
Condition
Built-in function
Attribute
Option of ENVIRONMENT attribute
Attribute
Condition
Option of GET statement
Built-in function
Built-in function

Appendix A: Summary of Keywords 27

Keyword
COSH Cx)
COUNTCfile-expression)
CTLASA
CTL360
DATA
DATAFIELD
DATE
% DEACTIVATE
DECIMAL
DECIMALCx[,p[,q]])
DECLARE
%DECLARE
DEFAULT
DEFINED
DELAYCn)
DELETE
DESCRIPTORS
DIMCx,n)
DIRECT
DISPLAY
DIVIDECx,y,p[,q])
DO
%DO
EDIT
ELSE
%ELS}~
}-:;MPTY
END
%END
ENDFILECfile-expression)
ENDPAGECfile-expression)
ENTRY
ENVIRONMENT
ERFCx)
ERFCCx)
ERROR
EVENT
EVENTCevent-name)

EXCLUSIVE
EXIT
EXPCx)
EXTERNAL
F
FB
FBS
FILE
FILECfile-2xpression)
FINISH
FIXED
FIXED Cx [, p [, q]])
FIXEDOVERFLOW
FLOAT
FLOAT C x [, p])
FLOORCx)
FLOW
FORMATCformat-list)
FORTRAN
FREE
FROMCvariable)
GENERIC
GENKEY
GET
GO TO
%GO TO
HALT
HBOUNDCx,n)

28

Use of Keyword
Built-in function
Built-in function
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
STREAM I/O transmission mode
Built-in function
Built-in function
Preprocessor statement
Attribute
Built-in function
Statement
Preprocessor statement
statement
Attribute
Statement
statement
Option of DEFAULT statement
Built-in function
Attribute
statement
Built-in function
statement
Preprocessor statement
STREAM I/O transmission mode
Clause of IF statement
Clause of %IF statement
Built-in function
statement
Preprocessor statement
Condition
Condition
Attribute or statement
Attribute
Built-in function
Built-in function
Condition
Attribute
Option of CALL, DELETE, DISPLAY, READ, REWRITE,
and WRITE statements
Attribute
Statement
Built-in function
Attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Attribute
Option of I/O statements
Condition
Attribute
Built-in function
Condition
Attribute
Built-in function
Built-in function
statement, and option of PUT statement
Statement
Option of the OPTIONS option/attribute
Statement
Option of WRITE and REWRITE statements
Attribute
Option of ENVIRONMENT attribute
statement
statement
Preprocessor statement
Statement
Built-in function

Keyword
HIGH(i)
IF
%IF
IGNORECn)
I MAG (x)

INCarea)
%INCLUDE
INDEX (string, config)
INDEXAREA[(size)]
INDEXED
INITIAL (expression)
INPU'!'
INTER
INTERNAL
INTO (variable)
IRREDUCIBLE
KEY (file-expression)
KEY (x)

KEYED
KEYFROM(x)
KEYLENGTH(n)
KEYLOC(n)
KEYTO(variable)
LABEL
LENGTH (string)
LBOUND(x,n)
LEAVE
LIKE
LINECw)
LINENOCfile-expression)
LINESIZE
LIST
LOCATE
LOG (x)
LOG 2 (x)
LOG10 (x)

LOW(i)
MAIN
MAX(X1,Xa,···xn)
MIN(x1,x2,.··xn)
MOD(x1,x2)
MULTIPLY(x1,xa,P[,Q])
NAME (file-expression)
NCP(n)
NOCHECK[(name-list)]
NOCONVERSION
NO FIXEDOVER FLOW
NOFLOW
NOLoeK
NOMAP
NOMAPIN
NOMA POUT
NOOVERFLOW
NORESCAN
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOsUBsCRIPTRANGE
NOUNDERFLOW
NOWRITE
NOZERODIVIDE
NULL
OFFSET (area-name)
OFFSET (p,a)
ON
ONCHAR
ONCODE

Use of Keyword
Built-in function
Statement
Preprocessor statement
Option of READ statement
Built-in function, pseudo-variable
Option of ALLOCATE and FREE statements
Preprocessor statement
Built-in function
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Attribute
Attribute, option of OPEN statement
Option of the OPTIONS option/attribute
Attribute
Option of READ statement
Attribute
Condition
Option of READ, DELETE, and REWRITE statements
Attribute, option of OPEN statement
Option of WRITE statement
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Option of READ statement
Attribute
Built-in function
Built-in function
Option of ENVIRONMENT attribute
Attribute
Format item, option of PUT statement
Built-in function
Option of OPEN statement
STREAM I/O transmission mode
Statement
Built-in function
Built-in function
Built-in function
Built-in function
option of the OPTIONS option
Built-in function
Built-in function
Built-in function
Built-in function
Condition
Option of ENVIRONMENT attribute
condition prefix identifier, statement
Condition prefix identifier
Condition prefix identifier
Statement
Option of READ statement
Option of the OPTIONS option/attribute
Option of the OPTIONS option/attribute
Option of the OPTIONS option/attribute
Condition prefix identifier
Option of %ACTIVATE statement
Condition prefix identifier
Condition prefix identifier
Condition prefix identifier
condition prefix identifier
Condition prefix identifier
Option of ENVIRONMENT attribute
Condition prefix identifier
Built-in function
Attribute
Built-in function
Statement
Built-in function, pseudo-variable
Built-in function

Appendix A: Summary of Keywords 29

Keyword
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)
ORDER
OUTPUT
OVERFLOW
PAGE
PAGESIZE(w)
PENDING (file-expression)
PICTURE
POINTER
POINTER (n,a)
POLY(a,x)
POSITION (expression)
PRECISION(x,pL,q]}
PRIN'I'
PRIORITY (x)
PRIORITY (task-name)
PROCEDURE
% PROCEDURE
PROD (x)
PUT
RANGE
READ
REAL
REAL (x)
RECORD
RECORD (file-expression)
RECSIZE(expression)
RECURSIVE
REDUCIBLE
REENTRANT
REFER
REGIONAL (11213)
REORDER
REPEAT(string,i}
REPLY (c)
REREAD
RESCAN
RETURN
RETURNS
REVERT
REWRITE
ROUND (exp,n)
SCALAR VARYING
SEQUENTIAL
SET (pointer-variable)
SIGN (x)
SIGNAL
SIN(x}
SIND(x}
SINH (x)

SIZE
SKIP [(x)]
SNAP
SQRT (x)
STATIC
STATUS[(event-name}]
STOP
STREAM
STRING (x)
STRING (string-name)
STRINGRANGE

30

Use of Keyword
Built-in function
Built-in function
Built-in function
Bui~t-in function
Built-in function, pseudo-variable
statement
Option of PROCEDURE statement, attribute
option of PROCEDURE and BEGIN statements
Attribute, option of OPEN statement
Condition
Format item, option of PUT statement
Option of OPEN statement
Condition
Attribute
Attribute
Built-in function
Built-in function
Attribute
Built-in function
Attribute, option of OPEN statement
Option of CALL statement
Built-in function
Statement
Preprocessor statement
Built-in function
statement
Option of DEFAULT statement
Statement
Attribute
Built-in function, pseudo-variable
Attribute, option of OPEN statement
Condition
Option of ENVIRONMENT attribute
Option of PROCEDURE statement
Attribute
option of PROCEDURE statement
Option of BASED attribute
Option of ENVIRONMENT attribute
Option of PROCEDURE and BEGIN statements
Built-in function
Option of DISPLAY statement
Option of ENVIRONMENT attribute
Option of %ACTIVATE statement
statement
Attribute, option of PROCEDURE statement
Statement
Statement
Built-in function
Option of ENVIRONMENT attribute
Attribute
Option of ALLOCATE, LOCATE, and READ statements
Built-in function
Statement
Built-in function
Built-in function
Built-in function
Conditi.on
Format item, option of GET and PUT statements
Option of ON and PUT statements
Built-in function
Attribute
Built-in function, pseudo-variable
Statement
Attribute, option of OPLN statement
Built-in function, pseudo-variable
Option of GET and PUT statements
Condition

Keyword
STRINGSIZE
iSUB
SUBSCRIPTRANGE
SUBSTR(string,i[,j])
SUM(x)
SYSIN
SYSPRINT
SYSTEM
TANtx)
TAND(x)
TANH (x)
TASK
TASK (task-name)
THEN
%THEN
TIME
TITLE (x)
TO
TP(MIR)
TRANSIENT
TRANSLATE (string,
replacement, [position])

TRANSMIT (file-expression)
TRKOFL
TRUNC(x)
U
UNALIGNED
UNBUFFERED
UNDEFINEDFILE(file-expression)
UNDERFLOW
UNLOCK
UNSPEC(x)
UPDATE
V
VALUE
VARIABLE
VARYING
VB
VBS
VERIFY (string1, string2)
VS
WAIT
WHEN
WHILE
WRITE
ZERODIVIDE

Use of Keyword
Condition
Dummy variable of DEFINED attribute
Condition
Built-in function, pseudo-variable
Built-in function
Name of standard system input file
Name of standard system output file
Option of ON and DECLARE statements
Built-in function
Built-in function
Built-in function
Attribute
option of CALL statement and OPTIONS option
Clause of IF statement
Clause of %IF statement
Built-in function
Option of OPEN statement
Clause of DO statement
Option of ENVIRONMENT attribute
Attribute
Built-in function

condition
Option of ENVIRONMENT attribute
Built-in function
Option of ENVIRONMENT attribute
Attribute
Attribute, option of OPEN statement
Condition
condition
Statement
Built-in function, pseudo-variable
Attribute, option of OPEN statement
Option of ENVIRONMENT attribute
Clause of DEFAULT statement
Attribute
Attribute
Option of ENVIRONMENT attribute
Option of ENVIRONMENT attribute
Built-in function
Option of ENVIRONMENT attribute
statement
Used in GENERIC declaration
Clause of DO statement
Statement
Condition

Appendix A: Summary of Keywords 31

32

Appendix B: Compatibility with the PL/I (F) Compiler

Features of the PL/I Checkout Compiler
implementation which are incompatible with
the PL/I (F) compiler implementation are
listed alphabetically below. In every
case, the description given is of the
checkout compiler implementation. Programs
which were written for the (F) compiler and
which use any of ·these features should be
reviewed before compiling them with the
checkout compiler to ensure that they will
return the same results.

ALLOCATION Built-In Function

The ALLOCATION built-in function returns a
fixed-binary value giving the number of
generations of the argument that exist in
the current task.

Array Dimensions

The maximum number of dimensions in an
array is 15.

Arrays of Pictures

Defined items in arrays of pictures i:lUSt
match the base elements exactly. The PL/I
(F) Compiler requires only that the base
elements should be pictures of character
strings.

~uilt-In Functions

Built-in functions are recognized on the
basis of context only, so that all
programmer-defined external procedures must
be declared explicitlye Built-in functions
without arguments, such as TIME and DATE,
must be also declared explicitly with the
BUIL'IIN attribute, or contextually with a
null argument list, for example: TIME ().

DISPLAY statement

The maximum length of the string to be
displayed is 72 characters.

ENTRY Attribute

The maximum depth of nesting in a
descriptor list in the ENTRY attribute is
2.

ENTRY Declarations

EN'IRY declarations for internal procedures
are not allowed.

Entry Names as Arguments

An entry name argument in parentheses, or
an entry name without arguments, causes a
dummy variable to be created; for the
fUnction to be invoked, a null argument
list is required. (In the PL/I (F)
Compiler an entry name argument in
parentheses, or an entry name without
arguments, is taken to be a function
statement.)

Error Correction

The error correction logic differs from
that used by the PL/I (F) compiler.
Invalid programs that are compiled by and
corrected by the (F) compiler may not give
the same results on the checkout compiler.

Expressions in Parameter Extents

Expressions in parameter extents for
variables that do not have the CONTROLLED
attribute are not allowed.

File Parameters

A file parameter can be declared with the
FILE attribute only; all other attributes
are inherited from the argument. If
additional attributes are declared, they
are ignored and an informatory message is
issued.

Appendix B: compatibility with the PL/I (F) Compiler 33

GENERIC Attribute

When using the GENERIC attribute, the entry
must be declared explicitly and the keyword
WHEN must also be specified.

KEY Option

If READ ••• KEY is used with a sequential
data set and no record with the specified
key exists in the data set, the KEY
condition is raised and the file is
positioned at the next record in ascending
sequence.

KEYFROM Option

If an embedded key in a record is not
identical to that specified in a
WRITE ••• KEYFROM or LOCATE statement, the
latter is moved into the record.

Labels on DECLARE statements

A label on a DECLARE statement is treated
as if it were on a null statement.

Link-Editing of Object Modules

Object modules produced by the checkout
compiler cannot be link-edited with object
modules produced by the PL/I (F) Compiler.

ONKEY Built-In Function

When using REGIONAL(l) organization, the
value returned by the ONKEY built-in
function for a specification error consists
of the last eight bytes of the source key,
padded on the right with blanks if
necessary. This value is returned for all
I/O conditions ·other than ENDFILE, or other
than ERROR raised as standard system action
for an I/O condition.

In a RECORD I/O statement with the KEY
or KEYFROM option, the ONKEY built-in
function returns a null string when the
ERROR condition is raised.

In a RECORD I/O statement referring to a
KEYED file (b~t with no KEY, KEYFROM, or

34

KEYTO option specified) the ONKEY built-in
function returns the recorded key.

Picture Characters

The field of a drifting picture charac~er
will be blank when a zero is assigned to
it.

Preprocessor Variables

A parameter descriptor list is not allowed
in the declaration of a preprocessor
variable with the ENTRY attribute.

PROD Built-In Function

The PROD built-in function accepts
arguments that are arrays of either
fixed-point or floating-point elements.
The value returned has the same scale as
the argument given, except that for
fractional fixed-point arguments the result
is in floating point.

statements

The approximate maximum number of
statements in a program is 10,000.

sterling Pictures

sterling picture data is not implemented.
Therefore the following picture characters
are not allowed: G, H, M, F, 6, 7, 8.

structures

The maximum depth of a structure is 15.

SUM Built-In Function

The SUM built-in function accepts arguments
that are arrays of either fixed-point or
floating-point elements. The value
returned has the same scale as the argument
given.

operating system Facilities

The operating system facilities for
sorting, for checkpoint/restart, for
generating a return code, and for obtaining
a storage dump are all invoked by means of
a CALL statement with the appropriate
entr¥-point name; for example, CALL
PLISORT. The entry-point names, which are
listed below, have the BUILTIN attribute
,and need not be declared explicitly.

Facility

Sort
Checkpoint/Restart
Return Code
D~p

Entry-Point Name

PLISORT
PLICKPT
PLIRETC
PLIDUMP

The checkout compiler does not recognize
the entry names used by the PL/I (F)
Compiler, that is, IHESRTx, IHECKPT,
IHESARC, IHEDUMx.

Appendix B: Compatibility with the PL/I (F) Compiler 35

36

Appendix C: Complementary Use of the PL/I Checkout and Optimizing
Compilers

The PL/I Checkout Compiler and the OS PL/I
Optimizing Compiler (Program Product
5734-PL1) have been designed as a pair.
They are compatible, and, because of their
entirely different approaches, they offer
many complementary advantages.

The primary aim of the checkout compiler
is to reduce tile time and effort spent on
program checkout. The primary aim of the
optimizing compiler is to increase system
throughput when the program is in
production use. Thus, used together, the
two compilers can increase the efficiency
of both programmer effort and machine
usage.

Compatible Features

Source language: The same language is
implemented by the two compilers, except
that:

1. The conversational features of the
PL/I language will be diagnosed for
syntax errors, but otherwise ignored
by the optimizing compiler.

2. The optimization feature of the PL/I
language will be diagnosed for syntax
errors, but otherwise ignored by the
checkout compiler.

Object modules: The object modules
produced by the two compilers can be
link-edited and executed together as a
single program.

Compiler options: The same option list can
be specified for the two compilers. Any
options which are not relevant to a
particular compiler are recognized by it,
but ignored.

Program results: The same results will be
produced by a program irrespective of
whether it is processed on the checkout or
the optimizing compiler.

Execution trace: The same statement number
trace can be performed with both compilers.

CompJementary Features

Checkout compiler: The time and cost of
developing a program is divided between

programmer and roachine. The checkout
compiler aims to reduce substantially the
programmer time and cost by providing a
higher level of diagnostic information.
This might sometimes result in a moderate
increase in machine time and cost, caused
by the interpretive style of processing
necessary to achieve this higher level of
diagnostic information.

Optimizing compiler: When a program has
reached operational status, reduction of
machine time and cost is of primary
importance. The optimizing compiler
reduces machine time and cost by producing
a high performance object program. This
high performance is achieved by the use of
extensive optimization.

Review of Compiler Use

The following is a review of the advantages
of the two compilers for program checkout
and production use.

Program Checkout

The checkout compiler simplifies and speeds
up program checkout in the following ways:

It produces more diagnostic information
for syntax, global, and in particular,
execution-time errors. In most cases,
this will considerably reduce the time
required to remove errors. In fact, in
conversational mode, many programs will
be fully debugged in one session at the
terminal.

It can translate a source program
several times faster than the
optimizing compiler can compile it.

For some installations and programs, it
may be advantageous to transfer to the
optimizing compiler before checkout is
complete, as it takes several times longer
to interpret the text produced by the
translation process of the checkout
compiler than it does to execute the
optimized code produced by the optimizing
compiler. However, the following four
compensating factors should be taken into
consideration.

Appendix C: Complementary Use of the PL/I Checkout and Optimizing Compilers 37

1. The checkout compiler will usually
reduce the number of executions needed
to debug the program. Thus, the
difference in total machine time will
not be as great as a strict comparison
of performance would indicate.

2. The time required to perform an I/O
operation is approximately the same
irrespective of which compiler is
used. Thus, the greater the number of
I/O operations performed by the
program, so the smaller the
difference, proportionally, in elapsed
time.

3. Link-editing or loading is not
normally required before the
interpretation of a module produced by
the checkout compiler, but one of
these is required before the execution
of a module produced by the optimizing
compiler. Thus, the time for this
system overhead can be saved when
using the checkout compiler.

4. The checkout compiler's ability to
translate and execute several programs
in one job step can result in a
significant saving of system overhead
time.

Production Use

The optimizing compiler will normally be
used to generate the object program that
will be used in a production environment.
This is because the code produced by the
optimizing compiler can be executed several
times faster than the checkout compiler can
interpret the text produced by the
translation process.

However, in some cases, the number of
executions may be so small that it does not

38

justify recompiling a program after
checkout on the checkout compiler.

Mixing Checkout-Compiled and
Optimizing-Compiled Procedures

With programs constructed by the modular
principle, it is likely that during
development some external procedures will
become suitable for optimizing earlier than
others. These can be recompiled with the
optimizing compiler and then executed with
the procedures which are still in
checkout-compiled form. The different
procedures can be link-edited in the normal
way.

Program control: The checkout compiler
must be available to control the execution.
Only one program can be executed in a job
step. Either type of procedure can be the
main procedure.

PL/I Resident Library: The user can avoid
the inclusion of routines from the PL/I
Resident Library (Program Product 5734-LM4)
at execution time by specifying SYS1.PLIMIX
in the SYSLIB DD statement for the linkage
editor step. PLIMIX is a library of
'bootstrap' routines. They are included by
the linkage editor with the optimized
procedures instead of the full routines.
They invoke the checkout compiler with a
request to execute its corresponding
routine.

Execution trace: An execution trace will
be performed for procedures that have been
compiled with the FLOW option.

Job control statements: Apart from the
optional use of SYS1.PLIMIX, described
above, the same job control statements are
required as if the procedures were not of
mixed types.

Index

Where more than one page reference is given, the major reference is first.

ABOVE command 12-14
ACOS built-in fUncc ion 24
%ACTIVATE statement 20,21
ac~ive procedure listing 19
aggregates (see arrays; structures)
ALL opLion of PUT statement 19
ALLOCATION built-in function 33
arc cosine 24
arc sine 24
area size, default 20
arrays

assignm':;n"Cs 22
dim\::::nsions 33
expressions 22
FORTRAN 11
pictures 33
SUBSCRIPTRANGE condition 19

ASIN built-in func~ion 24
AT command 12-14
A'I unit 14
attention key 12-14
attributes 19,20,23

listing 7,10
auxiliary storage 25,26

background ~roc€Ssing 5,6
based variables 21,22
Basic Direct Access Method (BDA~) 26
Basic Indexed Sequential Access Method

(BISAM) 26
Basic Partitioned Access Method (BPAM) 26
Basic sequential Access Method (BSAM) 26
batch processing 7-9

definition 6
batched com~ilation 8
BDAr1 (Basic Direct Access f.iJethod) 26
BEGIN statem6nt 18
BISAM (Basic Indexed Sequential Access

Method) 26
BLKSIZE option 21
block, program

immediate PL/I 18,19
inactive, branches into 10
level, on listings 7,9
scope of identifiers 14,18,19

blocking records 21
BPAM (Basic Partitioned Access Method) 26
branching

ABOVE command 13,14
AT command 13,14
illegal 10
immedia1:e PLiI 19
listing branches and targets 8,15,18,19
target identification 19

breakpoints 12,14
BSAM (Basic sequential Access Method) 26

buil"C-in functions 23,24,33
BUILTIN attribute 33
CALL corr.mand 12
CALL statement 11,23
card reader 26
central processing unit (CPU) 25
character-set option 7
CHECK condition 19
CHECK statement 18
checking

checkout philosoPlY 37,38
ccm~iler facilities 7-11
PL/I facilities 18,19

checkpoint/restart 35
COBOL 11
corrmands 12,6
communication with cther languages 11
corrparison of labels 24
compatibility

with PL/I (F) Compiler 33-35,11
with PL/I Cptirrizing Compiler 37,38
of ~ointers 10

compile-time processing (se~ preprocessing)
compiler

(see also PL/I (F) Compiler; PL/I
Cptimizing Compiler)

~onversational features 12-16
general description 7-11
invoca tion 12,15
opticns 7,8
phases 6
residence 25
system requirements 25,26

complementary use of checkoul:. and
optimizing compilers 37,38

configuration, rrachine 25
CONNECTED attritute 22,23,21
constants, number of 7
contiguous storage 22
control programs 25
cont rol (at terminal) 12- 16, 18
conversational processing

definiti'on 6
main discussion 12-16,9
job control language 8
PL/I 18,19
system requirements 25

core storage (~ storage)
CPU (Central Processing Unit) 25
cross-reference listing 8,10

DASD (Direct-Access Storage Device) 26
data

aggregates (see arrays; structures)
attributes 19,20,23
management 26

Index 39

data (continued)
program input 26
types 17

data set
creation
ddnames
labels

12
26

21
member name 15
organizations 21
partitioned 12
updating 12

DATE built-in function 33
DD statements 8,21
ddnames 26
%DEACTIVATE statement 20
debugging (see checking)

(see also diagnostic messages; modifying
program)

decimal instruction sets 25
DECLARE statement 18,34
default attributes 18-20,23
DEFAULT statement 18-20
defined variables 10,22,33
defining, overlay 22
depth of structure, maximum 34
descriptor lists (see parameter descriptor
lists)

DESCRIPTORS option 20
device types 25,26
diagnostic messages

compiler options 7,8
conversational processing 13,14
full text 7,14
output arrangements 8-10
severity 7
short text 7

differences, implementation 33-35,11
direct-access storage 25,26
direct-access storage device (DASD) 26
DISPLAY statement 33
DO groups

checking 9
illegal branches 10
listing 7

dump 8,35

EDIT command 12,9,10
efficiency

batched compilation 8
machine usage 37,38
main storage requirements 25
progr~aer 37,38
statement grouping 15

END command 14,16
END statement checking 9
entry

(see also parameter descriptor lists>
arguments 33
constants 23
ENTRY attribute 23,33,34
ENTRY statement 18,23
generic names 23,24
immediate PL/I 18
internal procedures 33
labels 23
preprocessing 34
variables 23

ENVIRONMENT attribute 21
environment, current 14
ERROR condition 12
error correction logic 33

(see also checking; diagnostic messages;
modifying' program)

error messages (~ diagnostic messages)
example of conversational processing 15,16
exclamation point 12
EXEC statement 8
execution-time tables 10
expressions, parameter extents 33
extended precision floating point 23
external procedures 33

(see also entry)
external symbol dictionary listing 7

(F) compiler
compatibility 33-35,11
language level 33-35,17,18
performance comparison 5
subroutine library 11

F option of ENVIRONMENT attribute 21
FE option of ENVIRONMENT attribute 21
FES option of ENVIRONMENT attribute 21
FILE attribute 33
FILE option 22
files 22,33
floating-point instruction set 23,25
FLOW compiler option 38
FLOW option of PUT statement 19
FLOW statement 18
foreground 6,8
FORMAT statement 18
formatted source listing 9,26
FORTRAN 11
FROM option 21,22
functions 23,24,33

G option of ENVIRONMENT attribute 21
GENERIC attribute 23,24,34
global checking 6,9,10
GO TO statement 19
GO TO 0 statement 15,11

HALT statement 18
hardware (see machine)
HELP command 14

identifiers, number of 7
IHECKPT 35
IHEDUMx 35
IHESARC 35
IHESRTx 35
immediate PL/I

definition 6
language restrictions 18,19
processing example 15,16

implementation differences 33-35,11
incompatibilities 33-35,11
INDEX built-in function 21
initialization of variables 10,11,23

40 Main page references are those listed first

input/output
batch mode 8
conversational mode 9,12-16
ddnames 26
devices 25,26,9,21
record-oriented 21,22,34
summary of I/O types available 17,18
at terminal 9,12-16

instruction sets 25
extended precision floating point 23

INTER option 11
interlanguage communication 11
interpretation

checking 10
definition 6
messages 13
speed 7,5

interrupt handling, FORTRAN 11
INTO option 21,22
invoking

the compiler 12,15
the linkage editor 8,12

iSUB variables 19

job 8
job control language 8,21,38

KEY option 34
KEYED attribute 34
KEYFROM option 34
keys 34
KEYTO option 34
keywords, list of 27-31

labels
comparisons 24
data set 21
DECLARE statements 34
entry name 23
immediate PL/I 18,19
misuse 10

language
implemented 17-24
interlanguage communication 11
keyword list 27-31

LENGTH built-in function 21
length, string, default 20
library

concept 5
PL/I (r) 11
Resident 38
Transient 5,25

line numbers 8
linkage editor

invocation 8,12
LINK command 12
NAME statemen~ 8
object module mixing 37,38,11,10
object module production 8,10,26
processing without link-editing 5,38

listings 7-10,19
loader 12,38
LOADGO command 12

locator variables 21
LOGOFF command 12
LOGON command 12

machine
efficient usage 37,38
requirements 25

macro processing (see preprocessing)
magnetic tape 26
main storage (see storage)
margins, source statement 7
mathematical built-in functions 24
member name, data set 15
memory (~ storage)
messages

compiler options 7,8
conversational processing 13,14
full t.ext 7,14
output arrangements 8-10
severity 7
short text 7

MFT (Multiprogramming with a Fixed number
of Tasks) 25

mixing object modules 37,38,11,10
modifying program 12-16,18,19
modules, object (see object modules)
MONITOR command 1"4'
Multiprocessing (M65MP) 26
Multiprogramming with a Fixed number of

Tasks (MFT) 25
Multiprogramming with a Variable number of

Tasks (MVT) 25
MVT (Multiprogramming with a Variable

number of Tasks) 25
M65MP (Multiprocessing) 26

name resolution 14
NAME statement 8
nesting, parameter descriptor lists 33
NOCHECK statement 18
NOFLOW statement 18
NOMAP option 11
NOMAPIN option 11
NOMAPOUT option 11
NOMONITOR command 14
NORESCAN option 20

object modules
data sets 26
mixing 37,38,11,10
production of 8,10,26

OFr command 14
offset variables 8,21
ON-code 10
ON statement 18
ONCHAR built-in function 19
ONCODE built-in function 10,19
ONCOUNT built-in function 19
ONFILE built-in function 19
ONKEY built-in function 19,34
ONLOC built-in function 19
ONSOURCE built-in function 19
operating system 25,26,35
optimizing compiler 37,38
options, compiler 7,8

Main page references are those listed first Index 41

OPTIONS option 11
other languages 11
output (see input/output)
overflow storage 25
overhead time

saving 5,8,38
translation 7

overlay defining 22

pair of compilers 37,38
paper tape reader 26
parameter descriptor lists

defaults 19,20
GENERIC 23,24
nesting limitation 33
preprocessing 34

parameter extents, expressions in 33
partitioned data set 12

member name 15
partitions, storage 9,25
passing control to terminal 12-16,18
performance 7,5

(see also efficiency)
phases, compiler 6
pictures 33,34
PL/I (F) Compiler

compatibility 33-35,11
language level 33-35,17,18
performance comparison 5
subroutine library 11

PL/I Optimizing Compiler 37,38
PL/I prompter 12
PL/I Resident Library 38
PL/I Transient Library 5,25
PLI command 12,15
PLICKP'l' 35
PLIDUMP 35
PLIMIX 38
PLIRETC 35
PLISORT 35
pOinter variables 8,10,21
precision

default 20,23
extended 23

preprocessing
compiler options 8
device requirements 26
PL/I 20,21,34

printer 26
PROCEDURE statement 18,23
procedures

(see also entry)
active, listing 19
external 33
immediate PL/I 18
internal 23,33
main, in mixed object modules 38

processing mode 8,9
PROD built-in function 34
program

(see also input/output)
checkout (see checking)
data 26
listings 7-9,19
margins, source statement 7
modifying 12-16,18,19

program <continued)
name 15
size 7
status 13,18,19
structure (see block, program;
branching)-

programmer efficiency 37,38
progress messages 13
prompter, PL/I 12
PUT statement 19

QISAM (Queued Indexed sequential Access
Method) 26

QSAM (Queued Sequential Access Method) 26
QUALIFY command 14,19
Queued Indexed Sequential Access Method

(QISAM) 26
Queued Sequential Access Method (QSAM) 26

R option of ENVIRONMENT attribute 21
RANGE option 20
range specification 20
reader, card 26
record

format 21
input/output 21,22,34

(see also input/output)
size 21
variables 21,22

RECSIZE option 21
REFER option 21
regions, storage 9,25
REREAD option 21
RESCru~ option 20
resident library 38
resolution of names 14
restart, checkpoint 35
restrictions

immediate PL/I 18
initialization of variables 10

return code 35
REVERT statement 18
REWIND option 21
RUN command 12

scope 14,18,19
semantic (global) checking 6,9,10
sequence of events 15,16
session 12-16
severity, diagnostic messages 7
signing on 12
SNJI.P option 19
sort 35
source program (~ program)
specification error 34
speed 7,5
statement numbers

in GO TO statements 19
in listings 8,15,19
numbering method 8,13,15

statements
maximum in program 7
number executed 8,13,15

42 Main page references are those listed first

STEP command 15
sterling pictures 34
storage

auxiliary 25,26
available to compiler 8
based 21
CONNECTED attribute 22,23,21
contiguous 22
direct-access 25,26
dump 8,35
overflow 25
partitions 9,25
regions 9,25
requirements 25
swapping 6,~

stringency of checking 8
strings

length, default 20
overlay defining 22
STRINGSIZE condition 22
VARYING attribute 22

STRINGSIZE condition 22
structures

COBOL 11
CONNECTED attribute 22
maximum depth 34
operations 22
REFER option 21

subcommands 13-15,6
SUBMIT command 5
subroutines 5,23,24

(see also library)
SUBSCRIPTRANGE condition 19
subtasks 25
SUM built-in function 34
swapping 6,9
symbols, number of 7
syntax checking 6,9
SYSCIN 26
SYSIN 26,5
SYSLIB DD statement 38
SYSLIN 26
SYSPRINT 26
system

facilities 35
message 13
overhead (see overhead time)
requirements 25,26

SYSUT2 25,26
SYSUT3 25,26
SYSUT4 25,26
SYSU'l'5 25,26
SYS1.PLIMIX 38

tables, execution-time 10
tape devices 26
targets (~ branching)
task 8,25

TCAM (Telecommunications Access Method) 26
Telecommunications Access Method (TeAM) 26
teleprocessing 21
terminal 12-16,26
termination

dump 8,35
execution 14
session 12

terminology 5,6
throughput, increasing 37,38
TIME built-in function 33
Time Sharing Option (TSO)

definitions 6
commands 12
features 25
requirements 25
subcommands 13-15

time slices 26
timer 25
TP(M) option of ENVIRONMENT attribute 21
TP(R) option of ENVIRONMENT attribute 21
trace 19,38
TRANSIENT attribute 21
transient library 5,25
translation

definition 6
messages 13
speed 7,5

TSO (~ Time Sharing Option)

U option of ENVIRONMENT attribute 21
uninitialized variables 10,11

V option of ENVIRONMENT attribute 21
VALUE clause 20
variables

based 21,22
defined 10,22
entry name 23
in ENVIRONMENT options 21
initialization 10,11,23
locator 21
offset 8,21
pointer 8,10,21
record 21,22

VARYING attribute 22
VB option of ENVIRONMENT attribute 21
VBS option of ENVIRONMENT attribute 21
VS option of ENVIRONMENT attribute 21

WHEN clause 23,24,34
work files 25,26

48-character set 7
60-character set 7

Main page references are those listed first Index 43

READER'S COMMENT FORM

IBM System/360 Operating System
PL/I Checkout Compiler
General Information

• How did you use this publication?

As a reference source
As a classroom text .
As a self-study text

o
o
o

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is -your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Order No. GC33-0003

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC33-0003-0

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your I BM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

fold fold

("')

S
»
0'
:l

c.c
r s·
CD

...

BUSINESS REPLY M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

fold

POSTAGE WILL BE PAID BY ..

IBM Corporation

112 East Post Road

White Plains, N.Y. 10601

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N.Y.

fold

