

IBM PL/I for MVS & VM
Programming Guide

Release 1.1

Document Number SC26-3113-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xii.

Second Edition (June 1995)

This edition applies to Version 1 Release 1.1 of IBM PL/I for MVS & VM (named IBM SAA AD/Cycle PL/I MVS & VM for Release
1.0), 5688-235, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you
are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1964, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xii
Programming Interface Information . xii
Trademarks . xii

Part 1. Introduction . xiii

About this book . xiv
| Run-time Environment for PL/I for MVS & VM xiv
| Debugging Facility for PL/I for MVS & VM . xiv

Using Your Documentation . xiv
Where to Look for More Information . xiv

What Is New in PL/I for MVS & VM . xv
Notation Conventions Used in this Book . xvii

Conventions Used . xviii
How to Read the Syntax Notation . xviii
How to Read the Notational Symbols . xix

Part 2. Compiling your program . 1

Chapter 1. Using Compile-Time Options and Facilities 5
Compile-Time Option Descriptions . 5

AGGREGATE . 8
ATTRIBUTES . 8
CMPAT . 8
COMPILE . 10
CONTROL . 10
DECK . 10
ESD . 11
FLAG . 11
GONUMBER . 11
GOSTMT . 12
GRAPHIC . 12
IMPRECISE . 12
INCLUDE . 13
INSOURCE . 13
INTERRUPT . 13
LANGLVL . 14
LINECOUNT . 14
LIST . 14
LMESSAGE . 15
MACRO . 15
MAP . 15
MARGINI . 16
MARGINS . 16
MDECK . 17
NAME . 17
NEST . 18
NOT . 18
NUMBER . 18

 Copyright IBM Corp. 1964, 1995 iii

OBJECT . 19
OFFSET . 19
OPTIMIZE . 20
OPTIONS . 20
OR . 21
SEQUENCE . 21
SIZE . 22
SMESSAGE . 23
SOURCE . 23
STMT . 23
STORAGE . 23
SYNTAX . 24
SYSTEM . 24
TERMINAL . 25
TEST . 26
XREF . 27

Input Record Formats . 28
Specifying Options in the %PROCESS or *PROCESS statements 28
Using the Preprocessor . 29

Invoking the Preprocessor . 29
Using the %INCLUDE Statement . 30
Using the PL/I Preprocessor in Program Testing 31

Using % Statements . 32
Invoking the Compiler from an Assembler Routine 32

Option List . 33
DDNAME List . 33
Page Number . 33

Using the Compiler Listing . 33
Heading Information . 34
Options Used for the Compilation . 34
Preprocessor Input . 34
SOURCE Program . 34
Statement Nesting Level . 36
ATTRIBUTE and Cross-Reference Table . 36
Aggregate Length Table . 38
Storage Requirements . 39
Statement Offset Addresses . 40
External Symbol Dictionary . 41
Static Internal Storage Map . 43
Object Listing . 44
Messages . 44
Return Codes . 45

Chapter 2. Using PL/I Cataloged Procedures under MVS 46
IBM-Supplied Cataloged Procedures . 46

Compile Only (IEL1C) . 47
Compile and Link-Edit (IEL1CL) . 48
Compile, Link-Edit, and Run (IEL1CLG) . 50
Compile, Load and Run (IEL1CG) . 51

Invoking a Cataloged Procedure . 52
Specifying Multiple Invocations . 52
Link-Editing Multitasking Programs . 53

Modifying the PL/I Cataloged Procedures . 54
EXEC Statement . 54

iv PL/I for MVS & VM Programming Guide

DD Statement . 55

Chapter 3. Compiling under MVS . 56
Invoking the Compiler under TSO . 56

Allocating Data Sets . 57
Using the PLI Command . 59
Compiler Listings . 62
Running Jobs in a Background Region . 63

Using JCL during Compilation . 64
EXEC Statement . 64
DD Statements for the Standard Data Sets 64
Temporary Workfile (SYSUT1) . 66
Listing (SYSPRINT) . 67
Source Statement Library (SYSLIB) . 67
Example of Compiler JCL . 67
Specifying Options . 68
Specifying Options in the EXEC Statement 68
Compiling Multiple Procedures in a Single Job Step 69
SIZE Option . 69
NAME Option . 69
Return Codes in Batched Compilation . 70
Job Control Language for Batched Processing 70
Examples of Batched Compilations . 71

 Correcting Compiler-Detected Errors . 71
| The PL/I Compiler and MVS/ESA . 71

Compiling for CICS . 72

Chapter 4. Compiling under VM . 73
Using the PLIOPT Command . 73

Compiler Output and Its Destination . 73
Compile-Time Options . 74
Files Used by the Compiler . 74
PLIOPT Command Options . 75
PL/I Batched Compilation . 78

Correcting Compiler-Detected Errors . 78

Chapter 5. Link-Editing and Running . 80
Selecting Math Results at Link-Edit Time . 80

VM Run-Time Considerations . 80
Separately Compiled PL/I MAIN Programs 81
Using Data Sets and Files . 81
Restrictions Using PL/I under VM . 85
PL/I Conventions under VM . 86

MVS Run-Time Considerations . 89
Formatting Conventions for PRINT Files . 89
Changing the Format on PRINT Files . 89
Automatic Prompting . 90
Punctuating Long Input Lines . 91
Punctuating GET LIST and GET DATA Statements 91
ENDFILE . 92

SYSPRINT Considerations . 92

 Contents v

Part 3. Using I/O facilities . 95

Chapter 6. Using Data Sets and Files . 99
Associating Data Sets with Files . 99

Associating Several Files with One Data Set 101
Associating Several Data Sets with One File 102
Concatenating Several Data Sets . 102

Establishing Data Set Characteristics . 102
Blocks and Records . 103
Record Formats . 103
Data Set Organization . 106
Labels . 107
Data Definition (DD) Statement . 107
Associating PL/I Files with Data Sets . 109
Specifying Characteristics in the ENVIRONMENT Attribute 110
Data Set Types Used by PL/I Record I/O 121

Chapter 7. Using Libraries . 123
Types of libraries . 123
How to Use a Library . 123

Creating a Library . 124
SPACE Parameter . 124

Creating and Updating a Library Member . 125
Examples . 125

Extracting Information from a Library Directory 128

Chapter 8. Defining and Using Consecutive Data Sets 129
Using Stream-Oriented Data Transmission . 129

Defining Files Using Stream I/O . 130
Specifying ENVIRONMENT Options . 130
Creating a Data Set with Stream I/O . 132
Accessing a Data Set with Stream I/O . 136
Using PRINT Files with Stream I/O . 138
Using SYSIN and SYSPRINT Files . 142

Controlling Input from the Terminal . 143
Controlling Output to the Terminal . 145

Example of an Interactive Program . 146
Using Record-Oriented Data Transmission . 149

Defining Files Using Record I/O . 150
Specifying ENVIRONMENT Options . 150
Creating a Data Set with Record I/O . 156
Accessing and Updating a Data Set with Record I/O 157

Chapter 9. Defining and Using Indexed Data Sets 163
Indexed Organization . 163
Using keys . 163
Using Indexes . 166

Defining Files for an Indexed Data Set . 169
Specifying ENVIRONMENT Options . 169

Creating an Indexed Data Set . 172
Essential Information . 172
Name of the Data Set . 175
Record Format and Keys . 175

vi PL/I for MVS & VM Programming Guide

Overflow Area . 177
Master Index . 178

Accessing and Updating an Indexed Data Set 179
Using Sequential Access . 180
Using Direct Access . 181

Reorganizing an Indexed Data Set . 184

Chapter 10. Defining and Using Regional Data Sets 185
Defining Files for a Regional Data Set . 188

Specifying ENVIRONMENT Options . 188
Using Keys with REGIONAL Data Sets . 190

Using REGIONAL(1) Data Sets . 190
Creating a REGIONAL(1) Data Set . 191
Accessing and Updating a REGIONAL(1) Data Set 192

Using REGIONAL(2) Data Sets . 195
Using Keys for REGIONAL(2) and (3) Data Sets 195
Creating a REGIONAL(2) Data Set . 197
Accessing and Updating a REGIONAL(2) Data Set 198

Using REGIONAL(3) Data Sets . 202
Creating a REGIONAL(3) Data Set . 202
Accessing and Updating a REGIONAL(3) Data Set 204

Essential Information for Creating and Accessing Regional Data Sets 208

Chapter 11. Defining and Using VSAM Data Sets 211
Using VSAM Data Sets . 211

How to Run a Program with VSAM Data Sets 211
VSAM Organization . 212

Keys for VSAM Data Sets . 215
Choosing a Data Set Type . 216

Defining Files for VSAM Data Sets . 218
Specifying ENVIRONMENT Options . 219
Performance Options . 223

Defining Files for Alternate Index Paths . 223
Using Files Defined for non-VSAM Data Sets 224

CONSECUTIVE Files . 224
INDEXED Files . 224
Using the VSAM Compatibility Interface . 225
Adapting Existing Programs for VSAM . 225
Using Several Files in One VSAM Data Set 226
Using Shared Data Sets . 227

Defining VSAM Data Sets . 227
Entry-Sequenced Data Sets . 228

Loading an ESDS . 229
Using a SEQUENTIAL File to Access an ESDS 229

Key-Sequenced and Indexed Entry-Sequenced Data Sets 232
Loading a KSDS or Indexed ESDS . 234
Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS 236
Using a DIRECT File to Access a KSDS or Indexed ESDS 236
Alternate Indexes for KSDSs or Indexed ESDSs 239

Relative-Record Data Sets . 247
Loading an RRDS . 249
Using a SEQUENTIAL File to Access an RRDS 251
Using a DIRECT File to Access an RRDS 252

 Contents vii

Chapter 12. Defining and Using Teleprocessing Data Sets 255
Message Control Program (MCP) . 255
TCAM Message Processing Program (TCAM MPP) 256
Teleprocessing Organization . 256
Essential Information . 257

Defining Files for a Teleprocessing Data Set 257
Specifying ENVIRONMENT Options . 257

Writing a TCAM Message Processing Program (TCAM MPP) 258
Handling PL/I Conditions . 260
TCAM MPP Example . 261

Part 4. Improving your program . 263

Chapter 13. Examining and Tuning Compiled Modules 265
Activating Hooks in Your Compiled Program Using IBMBHKS 265

The IBMBHKS Programming Interface . 265
Obtaining Static Information about Compiled Modules Using IBMBSIR 266

The IBMBSIR Programming Interface . 267
Obtaining Static Information as Hooks Are Executed Using IBMBHIR 271

The IBMBHIR Programming Interface . 271
Examining Your Program's Run-Time Behavior 272

Sample Facility 1: Examining Code Coverage 272
Sample Facility 2: Performing Function Tracing 284
Sample Facility 3: Analyzing CPU-Time Usage 288

Chapter 14. Efficient Programming . 305
Efficient Performance . 305

Tuning a PL/I Program . 305
Tuning a Program for a Virtual Storage System 307

Global Optimization Features . 308
Expressions . 309
Loops . 312
Arrays and Structures . 313
In-Line Code . 314
Key handling for REGIONAL data sets . 314
Matching Format Lists with Data Lists . 315
Run-time Library Routines . 315
Use of Registers . 315

Program Constructs that Inhibit Optimization 315
Global Optimization of Variables . 316
ORDER and REORDER Options . 316
Common Expression Elimination . 318
Condition Handling for Programs with Common Expression Elimination . . 320
Transfer of Invariant Expressions . 321
Redundant Expression Elimination . 322
Other Optimization Features . 322

Assignments and Initialization . 323
Notes about Data Elements . 323
Notes about Expressions and References . 326
Notes about Data Conversion . 329
Notes about Program Organization . 331
Notes about Recognition of Names . 332
Notes about Storage Control . 332

viii PL/I for MVS & VM Programming Guide

Notes about Statements . 334
Notes about Subroutines and Functions . 338
Notes about Built-In Functions and Pseudovariables 338
Notes about Input and Output . 339
Notes about Record-Oriented Data Transmission 340
Notes about Stream-Oriented Data Transmission 341
Notes about Picture Specification Characters 343
Notes about Condition Handling . 344
Notes about multitasking . 345

Part 5. Using interfaces to other products . 347

Chapter 15. Using the Sort Program . 348
Preparing to Use Sort . 348

Choosing the Type of Sort . 349
Specifying the Sorting Field . 352
Specifying the Records to be Sorted . 354
Determining Storage Needed for Sort . 355

Calling the Sort Program . 355
Determining Whether the Sort Was Successful 358
Establishing Data Sets for Sort . 358

Sort Data Input and Output . 360
Data Input and Output Handling Routines . 360

E15 — Input Handling Routine (Sort Exit E15) 361
E35 — Output Handling Routine (Sort Exit E35) 364
Calling PLISRTA Example . 365
Calling PLISRTB Example . 366
Calling PLISRTC Example . 367
Calling PLISRTD Example . 368
Sorting Variable-Length Records Example 369

Part 6. Specialized programming tasks . 371

Chapter 16. Parameter Passing and Data Descriptors 373
PL/I Parameter Passing Conventions . 373
Passing Assembler Parameters . 374

Passing MAIN Procedure Parameters . 376
Options BYVALUE . 378
Descriptors and Locators . 380

Aggregate Locator . 381
Area Locator/Descriptor . 381
Array Descriptor . 382
String Locator/Descriptor . 383
Structure Descriptor . 384
Arrays of Structures and Structures of Arrays 385

Chapter 17. Using PLIDUMP . 386
PLIDUMP Usage Notes . 387

Chapter 18. Retaining the Run-Time Environment for Multiple
Invocations . 389

Preinitializable Programs . 389

 Contents ix

The Interface for Preinitializable Programs 390
Preinitializing a PL/I Program . 393
Invoking an Alternative MAIN Routine . 398
Using the Service Vector and Associated Routines 402
User Exits in Preinitializable Programs . 419
The SYSTEM Option in Preinitializable Programs 419
Calling a Preinitializable Program under VM 419
Calling a Preinitializable Program under MVS 419

Establishing an Language Environment for MVS & VM-Enabled Assembler
Routine as the MAIN Procedure . 421

Retaining the Run-Time Environment Using Language Environment for MVS &
VM-Enabled Assembler as MAIN . 421

Chapter 19. Multitasking in PL/I . 422
PL/I Multitasking Facilities . 422
Creating PL/I Tasks . 423

The TASK Option of the CALL Statement 423
The EVENT Option of the CALL Statement 423
The PRIORITY Option of the CALL Statement 424

Synchronization and Coordination of Tasks . 424
Sharing Data between Tasks . 425
Sharing Files between Tasks . 425
Producing More Reliable Tasking Programs 426
Terminating PL/I Tasks . 426
Dispatching Priority of Tasks . 427
Running Tasking Programs . 428
Sample Program 1: Multiple Independent Processes 428

Multiple Independent Processes: Nontasking Version 429
Multiple Independent Processes: Tasking Version 430

Sample Program 2: Multiple Independent Computations 432
Multiple Independent Computations: Nontasking Version 433
Multiple Independent Computations: Tasking Version 434

Chapter 20. Interrupts and Attention Processing 436
Using ATTENTION ON-Units . 437
Interaction with a Debugging Tool . 437

Chapter 21. Using the Checkpoint/Restart Facility 438
Requesting a Checkpoint Record . 439

Defining the Checkpoint Data Set . 440
Requesting a Restart . 440

Automatic Restart after a System Failure 440
Automatic Restart within a Program . 441
Getting a Deferred Restart . 441
Modifying Checkpoint/Restart Activity . 441

Part 7. Appendix . 443

Appendix. Sample Program IBMLSO1 . 444

Bibliography . 500
PL/I for MVS & VM Publications . 500
Language Environment for MVS & VM Publications 500

x PL/I for MVS & VM Programming Guide

PL/I for OS/2 Publications . 500
CoOperative Development Environment/370 500
IBM Debug Tool . 500
Softcopy Publications . 500
Other Books You Might Need . 500

Glossary . 502

Index . 516

 Contents xi

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service can be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM might be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM might have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to

| these patents. You can send license inquiries, in writing, to the IBM Director of
| Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Programming Interface Information
This book is intended to help the customer write programs using IBM PL/I for MVS
& VM. This book documents General-use Programming Interface and Associated
Guidance Information provided by IBM PL/I for MVS & VM.

General-use programming interfaces allow the customer to write programs that
obtain the services of IBM PL/I for MVS & VM.

Macros for Customer Use
IBM PL/I for MVS & VM provides no macros that allow a customer installation to
write programs that use the services of IBM PL/I for MVS & VM.

Warning: Do not use as programming interfaces any IBM PL/I for MVS & VM
macros.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

3090
AD/Cycle
CICS
VM
COBOL/370
DB2
IBM
Language Environment
MVS/DFP

MVS/ESA
MVS/SP
MVS/XA
OS/2
Presentation Manager
SAA
System/390
VM/ESA
VM/XA

xii Copyright IBM Corp. 1964, 1995

 Part 1. Introduction

About this book . xiv
| Run-time Environment for PL/I for MVS & VM xiv
| Debugging Facility for PL/I for MVS & VM . xiv

Using Your Documentation . xiv
Where to Look for More Information . xiv

PL/I Information . xiv
Language Environment Information . xv

What Is New in PL/I for MVS & VM . xv
Notation Conventions Used in this Book . xvii

Conventions Used . xviii
How to Read the Syntax Notation . xviii
How to Read the Notational Symbols . xix

Example of Notation . xx

 Copyright IBM Corp. 1964, 1995 xiii

About this book

This book is for PL/I programmers and system programmers. It helps you
understand how to use PL/I for MVS & VM to compile PL/I programs. It also
describes the operating system features that you might need to optimize program
performance or handle errors.

| Run-time Environment for PL/I for MVS & VM
| PL/I for MVS & VM uses Language Environment as its run-time environment. It
| conforms to Language Environment architecture and can share the run-time
| environment with other Language Environment-conforming languages.

| Language Environment provides a common set of run-time options and callable
| services. It also improves interlanguage communication (ILC) between high-level
| languages (HLL) and assembler by eliminating language-specific initialization and
| termination on each ILC invocation.

| Debugging Facility for PL/I for MVS & VM
| PL/I for MVS & VM uses the IBM Debug Tool as its debugging facility on MVS and
| VM. Debug Tool utilizes the common run-time environment, Language
| Environment, to provide the ILC debugging capability among Language
| Environment-conforming languages. It also provides debugging capability under
| CICS. Debug Tool is compatible with INSPECT for C/370 and PL/I debugging
| facility. It provides equivalent functions that PLITEST as for OS PL/I Debug Tool
| provides the compatibility support for OS PL/I Version 2 and the same level of
| toleration that PLITEST used to provide for OS PL/I Version 1.

Using Your Documentation
The publications provided with PL/I for MVS & VM are designed to help you do PL/I
programming under MVS or VM. Each publication helps you perform a different
task.

Where to Look for More Information
| The following tables show you how to use the publications you receive with PL/I for
| MVS & VM and Language Environment. You'll want to know information about
| both your compiler and run-time environment. For the complete titles and order
| numbers of these and other related publications, such as the IBM Debug Tool, see
| the “Bibliography” on page 500.

 PL/I Information
Table 1 (Page 1 of 2). How to Use Publications You Receive with PL/I for MVS & VM

To... Use...

Understand warranty information Licensed Programming Specifications

Plan for, install, customize, and maintain PL/I Installation and Customization under MVS
Program Directory under VM

xiv Copyright IBM Corp. 1964, 1995

Table 1 (Page 2 of 2). How to Use Publications You Receive with PL/I for MVS & VM

To... Use...

Understand compiler and run-time changes and adapt
programs to PL/I and Language Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference
Reference Summary

Diagnose compiler problems and report them to IBM Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment Information
Table 2. How to Use Publications You Receive with Language Environment for MVS & VM

To... Use...

Evaluate Language Environment Fact Sheet
Concepts Guide

Understand warranty information Licensed Program Specifications

Understand the Language Environment program models
and concepts

Concepts Guide
Programming Guide

| Plan for, install, customize, and maintain Language
| Environment on MVS
| Installation and Customization under MVS
| Program Directory under VM

| Migrate applications to Language Environment| Run-Time Migration Guide
| Your language migration guide

| Find syntax for run-time options and callable services| Programming Reference

| Develop your Language Environment-conforming
| applications
| Programming Guide and your language
| programming guide

| Find syntax for run-time options and callable services| Programming Reference

| Develop interlanguage communication (ILC)
| applications
| Writing Interlanguage Communication
| Applications

Debug your Language Environment-conforming
application and get details on run-time messages

Debugging Guide and Run-Time Messages

Diagnose problems with Language Environment Debugging Guide and Run-Time Messages

Find information in the Language Environment library
quickly

Master Index

What Is New in PL/I for MVS & VM
PL/I for MVS & VM enables you to integrate your PL/I applications into Language
Environment for MVS & VM. In addition to PL/I's already impressive features, you
gain access to Language Environment's rich set of library routines and enhanced
interlanguage communication (ILC) with COBOL for MVS & VM, C/370, and C/C++

for MVS/ESA. Differences between OS PL/I and Language Environment's support
of PL/I for MVS & VM are described in the PL/I for MVS & VM Compiler and
Run-Time Migration Guide.

PL/I for MVS & VM Release 1.1 provides the following enhancements:

� Language Environment support of the PL/I multitasking facility

� Language Environment compatibility support for the following OS PL/I features:

 About this book xv

– OS PL/I PLICALLA entry support extended to OS PL/I applications that
have been recompiled with PL/I for MVS & VM

– OS PL/I PLICALLB entry support with some differences in handling storage

� Object and/or load module support for OS PL/I expanded to Version 1 Release
3.0-5.1 with some restrictions

� Support for OS PL/I load modules invoking PLISRTx

� Expanded support and rules for OS PL/I Shared Library

� OS PL/I coexistence with Language Environment

� Enhanced SYSPRINT support

� OS PL/I-Assembler clarifications

� Compatibility for location of heap storage

� Help to relink your object and load modules with Language Environment

� Help to relink your OS PL/I-COBOL ILC load modules with Language
Environment

� Help to relink your OS PL/I load modules using PLISRTx with Language
Environment

� Help to relink your OS PL/I Shared Library

� Enhanced ILC support for PL/I and C/370

Release 1.0 provided the following functions:

� IBM Language Environment for MVS & VM support including:

– ILC support with COBOL for MVS & VM and C/370.

- Object code produced by PL/I for MVS & VM Version 1 Release 1

- Object code produced by all releases of OS PL/I Version 2 and Version
1 Release 5.1

- Object code produced by LE/370-conforming compilers (all releases)

- PL/I load modules can be fetched by COBOL/370 and C/370 load
modules

- Load modules from other LE/370 Version 1 Release 1 and Release 1.1
conforming languages. Some load module support for
non-LE/370-conforming languages See the PL/I for MVS & VM
Compiler and Run-Time Migration Guide for details.

- Object code from VS COBOL II Version 1 Release 3 and C/370
Version 1 and Version 2 as provided by each respective Language
Environment-conforming products)

Note: PL/I for MVS & VM does not support ILC with FORTRAN or OS/VS
COBOL.

– Support for PL/I and C/370 ILC is enhanced.

- Pointer data type now supports the null value used by C/370 and
programs via the SYSNULL built-in function.

– Under VM, the source listings for PL/I compilations can now be directed to
the printer by modifying an IBM-supplied EXEC.

xvi PL/I for MVS & VM Programming Guide

– CEESTART is the entry point for all environments (including CICS).

– Support for FETCH in CICS and VM.

– Procedure OPTIONS option FETCHABLE can be used to specify the
procedure that gets control within a fetched load module.

– Implicit LE/370 enclave is created if the PL/I load module containing a
MAIN procedure is fetched or is dynamically called.

– CEETDLI is supported in addition to PLITDLI, ASMTDLI, and EXEC DLI.

– By default, only user-generated output is written to SYSPRINT. All run-time
generated messages are written to MSGFILE.

– Automatic storage can now be above the 16-megabyte line.

– All PL/I MVS & VM Version 1 Release 1 resident library routines are in a
LIBPACK, and packaged with LE/370. The transient routines remain
transient and are not packaged as part of the LIBPACK.

– At link-edit time, you have the option of getting math results that are
compatible with LE/370 or with OS PL/I.

� Support for DFP Version 3 system-determined blocksize.

� DATETIME and TIME return milliseconds in all environments, including VM and
CICS.

� VM terminal I/O is unblocked and immediate.

� ERROR conditions now get control of all system abends. The PL/I message is
issued only if there is no ERROR on-unit or if the ERROR on-unit does not
recover from the condition via a GOTO.

� Selected items from OS/2 PL/I are implemented to allow better coexistence
with PL/I Package/2.

– Limited support of OPTIONS(BYVALUE and BYADDR)

– Limited support of EXTERNAL(environment-name) allowing alternate
external name

– Limited support of OPTIONAL arguments/parameters

– Support for %PROCESS statement

– NOT and OR compiler options

� Installation enhancements are provided to ease product installation and
migration.

Note: You cannot use INSPECT for C/370 and PL/I or PLITEST with PL/I for MVS
& VM

Notation Conventions Used in this Book
This book uses the conventions, diagramming techniques, and notation described
in “Conventions Used” on page xviii and “How to Read the Notational Symbols” on
page xix to illustrate PL/I and non-PL/I programming syntax.

 About this book xvii

 Conventions Used
Some of the programming syntax in this book uses type fonts to denote different
elements:

� Items shown in UPPERCASE letters indicate key elements that must be typed
exactly as shown.

� Items shown in lowercase letters indicate user-supplied variables for which you
must substitute appropriate names or values. The variables begin with a letter
and can include hyphens, numbers, or the underscore character (_).

� The term digit indicates that a digit (0 through 9) should be substituted.

� The term do-group indicates that a do-group should be substituted.

� Underlined items indicate default options.

� Examples are shown in monocase type.

� Unless otherwise indicated, separate repeatable items from each other by one
or more blanks.

Note: Any symbols shown that are not purely notational, as described in “How to
Read the Notational Symbols” on page xix, are part of the programming syntax
itself.

For an example of programming syntax that follows these conventions, see
“Example of Notation” on page xx.

How to Read the Syntax Notation
Throughout this book, syntax is described using the following structure:

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following table shows the meaning of symbols at the
beginning and end of syntax diagram lines.

� Required items appear on the horizontal line (the main path).

55──STATEMENT──required–item───5%

� Optional items appear below the main path.

55──STATEMENT─ ──┬ ┬─────────────── ──5%
 └ ┘─optional–item─

� Keywords appear in uppercase (for example, STATEMENT). They must be
spelled exactly as shown. Variables appear in all lowercase letters and in
italics (for example, item). They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or other symbols are
shown, you must enter them as part of the syntax.

Symbol Indicates

55─── the syntax diagram starts here

───5 the syntax diagram is continued on the next line

5─── the syntax diagram is continued from the previous line

───5% the syntax diagram ends here

xviii PL/I for MVS & VM Programming Guide

� When you can choose from two or more items, the items appear vertically, in a
stack. If you must choose one of the items, one item of the stack appears on
the main path. The default, if any, appears above the main path and is chosen
by the compiler if you do not specify another choice. In some cases, the
default is affected by the system in which the program is being run or the
environmental parameters specified.

Because choice 1 appears on the horizontal bar, one of the items must be
included in the statement. If you don't specify either choice 1 or choice 2, the
compiler implements the default for you.

 ┌ ┐─default–item─
55──STATEMENT─ ──┼ ┼─choice 1───── ───5%
 └ ┘─choice 2─────

If choosing one of the items is optional, the entire stack appears below the
main path.

55──STATEMENT─ ──┬ ┬─────────────────── ──5%
 ├ ┤─optional–choice 1─
 └ ┘─optional–choice 2─

� An arrow returning to the left above the main line is a repeat arrow, and it
indicates an item that can be repeated.

 ┌ ┐───────────────────
55──STATEMENT─ ───

6
┴─repeatable–item─ ──5%

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

� If there is a comma as part of the repeat arrow, you must use a comma to
separate items in a series.

 ┌ ┐─,───────────────
55──STATEMENT─ ───

6
┴─repeatable–item─ ──5%

If the comma appears below the repeat arrow line instead of on the line as
shown in the previous example, the comma is optional as a separator of items
in a series.

� A syntax fragment is delimited in the main syntax diagram by a set of vertical
lines. The corresponding meaning of the fragment begins with the name of the
fragment followed by the syntax, which starts and ends with a vertical line.

55──STATEMENT──┤ fragment ├──5%

fragment:
├──syntax items───┤

How to Read the Notational Symbols
Some of the programming syntax in this book is presented using notational
symbols. This is to maintain consistency with descriptions of the same syntax in
other IBM publications, or to allow the syntax to be shown on single lines within a
table or heading.

� Braces , { }, indicate a choice of entry. Unless an item is underlined, indicating
a default, or the items are enclosed in brackets, you must choose at least one
of the entries.

 About this book xix

� Items separated by a single vertical bar , |, are alternative items. You can
select only one of the group of items separated by single vertical bars. (Double
vertical bars, ||, specify a concatenation operation, not alternative items. See
the PL/I for MVS & VM Language Reference for more information on double
vertical bars.)

� Anything enclosed in brackets , [], is optional. If the items are vertically
stacked within the brackets, you can specify only one item.

� An ellipsis , ..., indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

Example of Notation
The following example of PL/I syntax illustrates the notational symbols described In
“How to Read the Notational Symbols” on page xix:

DCL file-reference FILE STREAM

INPUT | {OUTPUT [PRINT]}

 ENVIRONMENT(option ...);

Interpret this example as follows:

� You must spell and enter the first line as shown, except for file-reference, for
which you must substitute the name of the file you are referencing.

� In the second line, you can specify INPUT or OUTPUT, but not both. If you
specify OUTPUT, you can optionally specify PRINT as well. If you do not
specify either alternative, INPUT takes effect by default.

� You must enter and spell the last line as shown (including the parentheses and
semicolon), except for option ..., for which you must substitute one or more
options separated from each other by one or more blanks.

xx PL/I for MVS & VM Programming Guide

Part 2. Compiling your program

Chapter 1. Using Compile-Time Options and Facilities 5
Compile-Time Option Descriptions . 5

AGGREGATE . 8
ATTRIBUTES . 8
CMPAT . 8
COMPILE . 10
CONTROL . 10
DECK . 10
ESD . 11
FLAG . 11
GONUMBER . 11
GOSTMT . 12
GRAPHIC . 12
IMPRECISE . 12
INCLUDE . 13
INSOURCE . 13
INTERRUPT . 13
LANGLVL . 14
LINECOUNT . 14
LIST . 14
LMESSAGE . 15
MACRO . 15
MAP . 15
MARGINI . 16
MARGINS . 16
MDECK . 17
NAME . 17
NEST . 18
NOT . 18
NUMBER . 18
OBJECT . 19
OFFSET . 19
OPTIMIZE . 20
OPTIONS . 20
OR . 21
SEQUENCE . 21
SIZE . 22
SMESSAGE . 23
SOURCE . 23
STMT . 23
STORAGE . 23
SYNTAX . 24
SYSTEM . 24
TERMINAL . 25
TEST . 26
XREF . 27

Input Record Formats . 28
Specifying Options in the %PROCESS or *PROCESS statements 28
Using the Preprocessor . 29

Invoking the Preprocessor . 29

 Copyright IBM Corp. 1964, 1995 1

Using the %INCLUDE Statement . 30
Using the PL/I Preprocessor in Program Testing 31

Using % Statements . 32
Invoking the Compiler from an Assembler Routine 32

Option List . 33
DDNAME List . 33
Page Number . 33

Using the Compiler Listing . 33
Heading Information . 34
Options Used for the Compilation . 34
Preprocessor Input . 34
SOURCE Program . 34
Statement Nesting Level . 36
ATTRIBUTE and Cross-Reference Table . 36

Attribute Table . 37
Cross-Reference Table . 37

Aggregate Length Table . 38
Storage Requirements . 39
Statement Offset Addresses . 40
External Symbol Dictionary . 41

ESD Entries . 42
Static Internal Storage Map . 43
Object Listing . 44
Messages . 44
Return Codes . 45

Chapter 2. Using PL/I Cataloged Procedures under MVS 46
IBM-Supplied Cataloged Procedures . 46

Compile Only (IEL1C) . 47
Compile and Link-Edit (IEL1CL) . 48
Compile, Link-Edit, and Run (IEL1CLG) . 50
Compile, Load and Run (IEL1CG) . 51

Invoking a Cataloged Procedure . 52
Specifying Multiple Invocations . 52
Link-Editing Multitasking Programs . 53

Modifying the PL/I Cataloged Procedures . 54
EXEC Statement . 54
DD Statement . 55

Chapter 3. Compiling under MVS . 56
Invoking the Compiler under TSO . 56

Allocating Data Sets . 57
Using the PLI Command . 59

Example 1 . 61
Example 2 . 62

Compiler Listings . 62
Using %INCLUDE under TSO . 62
Allocating Data Sets in %INCLUDE . 63

Running Jobs in a Background Region . 63
Using JCL during Compilation . 64

EXEC Statement . 64
DD Statements for the Standard Data Sets 64

Input (SYSIN or SYSCIN) . 65
Output (SYSLIN, SYSPUNCH) . 65

2 PL/I for MVS & VM Programming Guide

Temporary Workfile (SYSUT1) . 66
Statement Lengths . 66

Listing (SYSPRINT) . 67
Source Statement Library (SYSLIB) . 67
Example of Compiler JCL . 67
Specifying Options . 68
Specifying Options in the EXEC Statement 68
Compiling Multiple Procedures in a Single Job Step 69
SIZE Option . 69
NAME Option . 69
Return Codes in Batched Compilation . 70
Job Control Language for Batched Processing 70
Examples of Batched Compilations . 71

 Correcting Compiler-Detected Errors . 71
| The PL/I Compiler and MVS/ESA . 71

Compiling for CICS . 72

Chapter 4. Compiling under VM . 73
Using the PLIOPT Command . 73

Compiler Output and Its Destination . 73
Compile-Time Options . 74
Files Used by the Compiler . 74
PLIOPT Command Options . 75

%INCLUDE Statement . 75
Example of Using %INCLUDE . 76
PLIOPT Command Format . 76
Examples: . 76
Special Action Will Be Required: . 77

PL/I Batched Compilation . 78
Correcting Compiler-Detected Errors . 78

Chapter 5. Link-Editing and Running . 80
Selecting Math Results at Link-Edit Time . 80

VM Run-Time Considerations . 80
Separately Compiled PL/I MAIN Programs 81
Using Data Sets and Files . 81

Using VM Files — Example . 82
Using VSAM Data Sets — Example . 83
Using OS Data Sets — Example . 84

Restrictions Using PL/I under VM . 85
Using Record I/O at the Terminal . 85

PL/I Conventions under VM . 86
Formatting onventions for PRINT Files . 86
Changing the Format on PRINT Files . 86
Automatic Prompting . 86
Punctuating Long Input Lines . 87
Punctuating GET LIST and GET DATA Statements 88
ENDFILE . 88
DISPLAY and REPLY under VM . 89

MVS Run-Time Considerations . 89
Formatting Conventions for PRINT Files . 89
Changing the Format on PRINT Files . 89
Automatic Prompting . 90
Punctuating Long Input Lines . 91

 Part 2. Compiling your program 3

Punctuating GET LIST and GET DATA Statements 91
ENDFILE . 92

SYSPRINT Considerations . 92

4 PL/I for MVS & VM Programming Guide

Chapter 1. Using Compile-Time Options and Facilities

This chapter describes the options that you can use for the compiler, along with
| their abbreviations and IBM-supplied defaults. It's important to remember that PL/I
| requires access to Language Environment run time when you compile your
| applications.

Most compile-time options have a positive and negative form. The negative form is
the positive with 'NO' added at the beginning (as in TEST and NOTEST). Some
options have only a positive form (as in SYSTEM).

Your installation can change the IBM-supplied defaults when this product is
installed. Therefore, the defaults listed in this chapter might not be the same as
those chosen by your installation. You can override most defaults when you
compile your PL/I program.

Compile-Time Option Descriptions
There are three types of compile-time options:

1. Simple pairs of keywords: a positive form that requests a facility, and an
alternative negative form that inhibits that facility (for example, NEST and
NONEST).

2. Keywords that allow you to provide a value list that qualifies the option (for
example, FLAG(W)).

3. A combination of 1 and 2 above (for example, NOCOMPILE(E)).

Table 3 lists all compile-time options with their abbreviated syntax and their
IBM-supplied default values. Table 4 on page 7 lists the options by function so that
you can, for example, determine the preprocessing options.

The paragraphs following Table 3 and Table 4 describe the options in alphabetical
order. In the accompanying syntax diagrams, defaults are not highlighted because
that information is provided Table 3. For those options that specify that the
compiler is to list information, only a brief description is included; the generated
listing is described under “Using the Compiler Listing” on page 33.

Note: Under VM, use only the abbreviated form of the compile-time option if the
option name is longer than eight characters.

Table 3 (Page 1 of 2). Compile-Time Options, Abbreviations, and IBM-Supplied Defaults

Compile-time option Abbreviated name MVS default TSO default VM default

AGGREGATE|NOAGGREGATE AG|NAG NAG NAG NAG

ATTRIBUTES[(FULL|SHORT)]|
 NOATTRIBUTES

A[(F|S)]|NA NA [(FULL)]1 NA [(FULL)]1 NA [(FULL)]1

CMPAT(V1|V2) CMP(V1|V2) CMP(V2) CMP(V2) CMP(V2)

COMPILE|NOCOMPILE[(W|E|S)] C|NC[(W|E|S)] NC(S) NC(S) NC(S)

CONTROL('password') − − − −

DECK|NODECK D|ND ND ND ND

ESD|NOESD − NOESD NOESD NOESD

FLAG[(I|W|E|S)] F[(I|W|E|S)] F(I) F(W) F(W)

GONUMBER|NOGONUMBER GN|NGN NGN NGN NGN

 Copyright IBM Corp. 1964, 1995 5

Table 3 (Page 2 of 2). Compile-Time Options, Abbreviations, and IBM-Supplied Defaults

Compile-time option Abbreviated name MVS default TSO default VM default

GOSTMT|NOGOSTMT GS|NGS NGS NGS NGS

GRAPHIC|NOGRAPHIC GR|NGR NGR NGR NGR

IMPRECISE|NOIMPRECISE IMP|NIMP NIMP NIMP NIMP

INCLUDE|NOINCLUDE INC|NINC NINC NINC NINC

INSOURCE|NOINSOURCE IS|NIS IS NIS NIS

INTERRUPT|NOINTERRUPT INT|NINT NINT NINT NINT

LANGLVL({OS,SPROG|NOSPROG}) − LANGLVL
(OS,NOSPROG)

LANGLVL
(OS,NOSPROG)

LANGLVL
(OS,NOSPROG)

LINECOUNT(n) LC(n) LC(55) LC(55) LC(55)

LIST[(m[,n])]|NOLIST − NOLIST NOLIST NOLIST

LMESSAGE|SMESSAGE LMSG|SMSG LMSG LMSG LMSG

MACRO|NOMACRO M|NM NM NM NM

MAP|NOMAP − NOMAP NOMAP NOMAP

MARGINI('c')|NOMARGINI MI('c')|NMI NMI NMI NMI

MARGINS(m,n[,c]) MAR(m,n[,c]) MAR
F-format: (2,72)
V-format: (10,100)

MAR
F-format: (2,72)
V-format: (10,100)

MAR
F-format: (2,72)
V-format: (10,100)

MDECK|NOMDECK MD|NMD NMD NMD NMD

NAME('name') N('name') − − −

NOT − NOT('¬') NOT('¬') NOT('¬')

NEST|NONEST − NONEST NONEST NONEST

NUMBER|NONUMBER NUM|NNUM NNUM NUM NUM

OBJECT|NOOBJECT OBJ|NOBJ OBJ OBJ OBJ

OFFSET|NOOFFSET OF|NOF NOF NOF NOF

OPTIMIZE(TIME|0|2)|NOOPTIMIZE OPT(TIME|0|2)|NOPT NOPT NOPT NOPT

OPTIONS|NOOPTIONS OP|NOP OP NOP NOP

OR − OR('|') OR('|') OR('|')

SEQUENCE(m,n)|NOSEQUENCE SEQ(m,n)|NSEQ SEQ
F-format: (73,80)
V-format: (1,8)

SEQ
F-format: (73,80)
V-format: (1,8)

SEQ
F-format: (73,80)
V-format: (1,8)

SIZE([-]yyyyyyyy|[-]yyyyyK|MAX) SZ([-]yyyyyyyy|
 [-]yyyyyK|MAX)

SZ(MAX) SZ(MAX) SZ(MAX)

SOURCE|NOSOURCE S|NS S NS NS

STMT|NOSTMT − STMT NOSTMT NOSTMT

STORAGE|NOSTORAGE STG|NSTG NSTG NSTG NSTG

SYNTAX|NOSYNTAX[(W|E|S)] SYN|NSYN[(W|E|S)] NSYN(S) NSYN(S) NSYN(S)

SYSTEM(CMS|CMSTPL|MVS|TSO|
 CICS|IMS)

 − MVS MVS VM

TERMINAL[(opt-list)]|NOTERMINAL TERM[(opt-list)]|NTERM NTERM TERM TERM

TEST[([ALL|BLOCK|NONE|PATH|
 STMT][,SYM|,NOSYM])]|NOTEST

 − NOTEST
[(NONE,SYM)]2

NOTEST
[(NONE,SYM)]2

NOTEST
[(NONE,SYM)]2

XREF[(FULL|SHORT)]|NOXREF X[(F|S)]|NX NX [(FULL)]1 NX [(FULL)]1 NX [(FULL)]1

Notes:

1. FULL is the default suboption if the suboption is omitted with ATTRIBUTES or XREF.
2. (NONE,SYM) is the default suboption if the suboption is omitted with TEST.

6 PL/I for MVS & VM Programming Guide

Table 4 (Page 1 of 2). Compile-Time Options Arranged by Function

Options for use when
testing or debugging

TEST specifies which debugging tool capabilities are available for testing programs.

Listing options
Control listings produced

 Improve readability
of source listing

Control lines per page

AGGREGATE lists aggregates and their size.

ATTRIBUTES lists attributes of identifiers.

ESD lists external symbol dictionary.

FLAG suppresses diagnostic messages below a certain severity.

INSOURCE lists preprocessor input.

LIST lists object code produced by compiler.

MAP lists offsets of variables in static control section and DSAs.

OFFSET lists statement numbers associated with offsets.

OPTIONS lists options used.

SOURCE lists source program or preprocessor output.

STORAGE lists storage used.

XREF lists statements in which each identifier is used.

MARGINI highlights any source outside margins.

NEST indicates do-group and block level by numbering in margin.

LINECOUNT specifies number of lines per page on listing.

Input options GRAPHIC specifies that shift codes can be used in source.

MARGINS identifies position of PL/I source and a carriage control character.

NOT used to specify up to seven alternate symbols for the logical NOT operator.

OR used to specify up to seven alternate symbols for the logical OR operator and
the string concatenation operator.

SEQUENCE specifies the columns used for sequence numbers.

Options to prevent
unnecessary processing

COMPILE stops processing after errors are found in syntax checking.

SYNTAX stops processing after errors are found in preprocessing.

Options for preprocessing INCLUDE allows secondary input to be included without using preprocessor.

MACRO allows preprocessor to be used.

MDECK produces a source deck from preprocessor output.

Option to improve
performance

OPTIMIZE improves run-time performance or specifies faster compile time.

Options to use when
producing an object module

CMPAT controls level of compatibility with previous releases.

DECK produces an object module in punched card format.

OBJECT produces object code.

NAME specifies the TEXT file will be given a particular external name.

SYSTEM specifies the parameter list format that is passed to the main procedure.

Option to control storage SIZE controls the amount of storage used by the compiler.

Options to improve usability at
a terminal

LMESSAGE/SMESSAGE specifies full or concise message format.

TERMINAL specifies how much of listing is transmitted to terminal.

Options to specify statement
numbering system

NUMBER & GONUMBER numbers statements according to line in which they start.

STMT & GOSTMT numbers statements sequentially.

Option to control effect of
attention interrupts

INTERRUPT specifies that the ATTENTION condition will be raised after an interrupt is
caused.

Option for use on imprecise
interrupt machines

IMPRECISE allows imprecise interrupts to be handled correctly.

Option to control compile-time
options

CONTROL specifies that any compile-time options previously deleted are available.

 Chapter 1. Using Compile-Time Options and Facilities 7

Table 4 (Page 2 of 2). Compile-Time Options Arranged by Function

Option to control language
level

LANGLVL defines the level of language supported.

 AGGREGATE

 ┌ ┐─NOAGGREGATE─
55─ ──┴ ┴─AGGREGATE─── ───5%

The AGGREGATE option specifies that the compiler includes an aggregate-length
table that gives the lengths of all arrays and major structures in the source program
in the compiler listing.

 ATTRIBUTES

 ┌ ┐─NOATTRIBUTES────────────────────
55─ ──┴ ┴ ─ATTRIBUTES─ ──┬ ┬───────────────── ───5%
 │ │┌ ┐─FULL──
 └ ┘ ─(─ ──┴ ┴─SHORT─ ─)─

The ATTRIBUTES option specifies that the compiler includes a table of
source-program identifiers and their attributes in the compiler listing. If you include
both ATTRIBUTES and XREF, the two tables are combined. However, if the
SHORT and FULL suboptions are in conflict, the last option specified is used. For
example, if you specify ATTRIBUTES(SHORT) XREF(FULL), FULL applies to the
combined listing.

FULL
All identifiers and attributes are included in the compiler listing. FULL is the
default.

SHORT
Unreferenced identifiers are omitted, making the listing more manageable.

 CMPAT

 ┌ ┐─V2─
55──CMPAT──(─ ──┴ ┴─V1─ ─)──5%

The CMPAT option specifies whether object compatibility with OS PL/I Version 1 is
maintained for those programs sharing arrays, AREAs, or aggregates.

CMPAT(V1)
If you use CMPAT(V1), you can use arrays, AREAs, and aggregates in exactly
the same way that they were used in OS PL/I Version 1 as long as other
external procedures sharing them are not compiled with CMPAT(V2).

8 PL/I for MVS & VM Programming Guide

If any procedures in an application load module (MAIN or FETCHed) are
recompiled (and therefore relink-edited), object code compatibility with OS PL/I
Version 1 Release 5.1 is provided under the following guidelines:

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 object code and PL/I MVS & VM object code, PL/I MVS &
VM compilations must use CMPAT(V1).

� If arrays, aggregates, or AREAs are to be shared between PL/I MVS & VM
object code only, PL/I MVS & VM compilations must use either CMPAT(V1)
or CMPAT(V2), but not both.

� Using CMPAT(V2) is required for larger arrays, aggregates, or AREAs and
is recommended even if you do not use larger arrays, aggregates, or
AREAs.

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 object code only, no precautions need to be taken.

CMPAT(V2)
In general, you should compile PL/I programs with CMPAT(V2).

CMPAT(V2) does not provide object compatibility with OS PL/I Version 1.
Therefore, if you are migrating OS PL/I Version 1 applications or OS PL/I
Version 2 applications compiled with CMPAT(V1), you must make code
changes if:

� You want to use fullword subscripts.

� You have any expressions that rely on precision and scale values returned
from the BUILTIN functions HBOUND, LBOUND, DIM, or ALLOCATION.

If you do not have either of the above requirements you do not need to make
code changes to use CMPAT(V2) as long as all external procedures sharing
the same array or aggregate are also compiled with CMPAT(V2).

If all of your existing object code was produced by OS PL/I Version 2 with the
compiler option CMPAT(V2), your object code is fully compatible with object
code produced by PL/I MVS & VM, provided you continue to use CMPAT(V2)
compiler option. (Other factors can affect object code compatibility. For a list
of these factors, see PL/I for MVS & VM Compiler and Run-Time Migration
Guide.)

If some or all of your existing object code was produced by OS PL/I Version 2
with the compiler option CMPAT(V1) or by OS PL/I Version 1 Release 5.1, the
following considerations apply when mixing with object code produced by PL/I
MVS & VM:

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 or OS PL/I Version 2 (compiled with CMPAT(V1)) object
code and PL/I MVS & VM object code, PL/I MVS & VM compilations must
use CMPAT(V1).

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
2 (compiled with CMPAT(V2)) object code and PL/I MVS & VM object
code, PL/I MVS & VM compilations must use CMPAT(V2).

Using CMPAT(V2) is required for larger arrays, aggregates, or AREAs and
is recommended even if you do not use larger arrays, aggregates, or
AREAs.

 Chapter 1. Using Compile-Time Options and Facilities 9

 COMPILE

 ┌ ┐ ─NOCOMPILE─ ──┬ ┬─────────────
 │ ││ │┌ ┐─S─
 │ │└ ┘ ─(─ ──┼ ┼─W─ ─)─
 │ │└ ┘─E─
55─ ──┴ ┴─COMPILE──────────────────── ──5%

The COMPILE option specifies that the compiler compiles the source program
unless it detects an unrecoverable error during preprocessing or syntax checking.
Whether the compiler continues or not depends on the severity of the error
detected, as specified by the NOCOMPILE option in the list below. The
NOCOMPILE option specifies that processing stops unconditionally after syntax
checking.

NOCOMPILE(W)
No compilation if a warning, error, severe error, or unrecoverable error is
detected.

NOCOMPILE(E)
No compilation if an error, severe error, or unrecoverable error is detected.

NOCOMPILE(S)
No compilation if a severe error or unrecoverable error is detected.

If the compilation is terminated by the NOCOMPILE option, the cross-reference
listing and attribute listing can be produced; the other listings that follow the source
program will not be produced.

 CONTROL

55──CONTROL─ ─(─ ─'──password──'──)──5%

The CONTROL option specifies that any compile-time options deleted for your
installation are available for this compilation. Using the CONTROL option alone
does not restore compile-time options you have deleted from your system. You still
must specify the appropriate keywords to use the options. The CONTROL option
must be specified with a password that is established for each installation. If you
use an incorrect password, processing will be terminated. If you use the
CONTROL option, it must be specified first in the list of options.

password
is a character string not exceeding eight characters.

Under VM: You cannot use a right or left parenthesis or include lower case
characters on a password if you use CONTROL in the PLIOPT command.

 DECK

 ┌ ┐─NODECK─
55─ ──┴ ┴─DECK─── ──5%

The DECK option specifies that the compiler produces an object module in the form
| of 80-character records and store it in the SYSPUNCH data set. Columns 73-76 of

each record contain a code to identify the object module. This code comprises the

10 PL/I for MVS & VM Programming Guide

first four characters of the first label in the external procedure represented by the
object module. Columns 77-80 contain a 4-digit decimal number: the first record is
numbered 0001, the second 0002, and so on.

 ESD

 ┌ ┐─NOESD─
55─ ──┴ ┴─ESD─── ───5%

The ESD option specifies that the external symbol dictionary (ESD) is listed in the
compiler listing.

 FLAG

55──FLAG─ ──┬ ┬───────────── ───5%
 └ ┘ ─(─ ──┬ ┬─I─ ─)─
 ├ ┤─W─
 ├ ┤─E─
 └ ┘─S─

The FLAG option specifies the minimum severity of error that requires a message
listed in the compiler listing.

FLAG(I)
List all messages.

FLAG(W)
List all except information messages. If you specify FLAG, FLAG(W) is
assumed.

FLAG(E)
List all except warning and information messages.

FLAG(S)
List only severe error and unrecoverable error messages.

 GONUMBER

 ┌ ┐─NOGONUMBER─
55─ ──┴ ┴─GONUMBER─── ──5%

The GONUMBER option specifies that the compiler produces additional information
that allows line numbers from the source program to be included in run-time
messages.

Alternatively, these line numbers can be derived by using the offset address, which
is always included in run-time messages, and the table produced by the OFFSET
option. (The NUMBER option must also apply.)

The GONUMBER option implies NUMBER, NOSTMT, and NOGOSTMT. If
NUMBER applies, GONUMBER is forced by the ALL, STMT, and PATH suboptions
of the TEST option. The OFFSET option is separate from these numbering options
and must be specified if required.

 Chapter 1. Using Compile-Time Options and Facilities 11

 GOSTMT

 ┌ ┐─NOGOSTMT─
55─ ──┴ ┴─GOSTMT─── ──5%

The GOSTMT option specifies that the compiler produces additional information
that allows statement numbers from the source program to be included in run-time
messages.

These statement numbers can also be derived by using the offset address, which is
always included in run-time messages, and the table produced by the OFFSET
option. (The STMT option must also apply.)

The GOSTMT option implies STMT, NONUMBER, and NOGONUMBER. If STMT
applies, GOSTMT is forced by the ALL, STMT, and PATH suboptions of the TEST
option. The OFFSET option is separate from these numbering options and must be
specified if required.

 GRAPHIC

 ┌ ┐─NOGRAPHIC─
55─ ──┴ ┴─GRAPHIC─── ───5%

Using GRAPHIC option specifies that the source program can contain double-byte
characters. The hexadecimal codes '0E' and '0F' are treated as the shift-out and
shift-in control codes, respectively, wherever they appear in the source program.
This includes occurrences in comments and string constants.

The GRAPHIC compile-time option must be specified if the source program uses
any of the following:

 � DBCS identifiers
� Graphic string constants
� Mixed string constants
� Shift codes anywhere else in the source

For more information see the discussion of the DBCSOS Ordering Product and the
SIZE option on page 22.

 IMPRECISE

 ┌ ┐─NOIMPRECISE─
55─ ──┴ ┴─IMPRECISE─── ───5%

The IMPRECISE option specifies that the compiler includes extra text in the object
module to localize imprecise interrupts when executing the program with an IBM
System/390 Model 165 or 195. This extra text is generated for ON statements (to
ensure that the correct ON-units are entered if interrupts occur), for null statements,
and for ENTRY statements. The correct line or statement numbers do not
necessarily appear in run-time messages. If you need more accurate identification
of the statement in error, insert null statements at suitable points in your program.

12 PL/I for MVS & VM Programming Guide

 INCLUDE

 ┌ ┐─NOINCLUDE─
55─ ──┴ ┴─INCLUDE─── ───5%

The INCLUDE option specifies that %INCLUDE statements are handled without
using the full preprocessor facilities and incurring more overhead. This method is
faster than using the preprocessor for programs that use the %INCLUDE statement
but no other PL/I preprocessor statements. The INCLUDE option has no effect if
preprocessor statements other than %INCLUDE are used in the program. In these
cases, the MACRO option must be used.

If you specify the MACRO option, it overrides the INCLUDE option.

 INSOURCE

55─ ──┬ ┬─INSOURCE─── ──5%
 └ ┘─NOINSOURCE─

The INSOURCE option specifies that the compiler should include a listing of the
source program before the PL/I macro preprocessor translates it. Thus, the
INSOURCE listing contains preprocessor statements that do not appear in the
SOURCE listing. This option is applicable only when the MACRO option is in
effect.

 INTERRUPT

 ┌ ┐─NOINTERRUPT─
55─ ──┴ ┴─INTERRUPT─── ───5%

This option determines the effect of attention interrupts when the compiled PL/I
program runs under an interactive system. (If specified on a batch system,
INTERRUPT can cause an abend.)

The INTERRUPT option causes the compiled program to respond to attention
requests (interrupts). If you have written a program that relies on raising the
ATTENTION condition, you must compile it with the INTERRUPT option.

The INTERRUPT option allows attention interrupts to become an integral part of
programming. This gives you considerable interactive control of the program.

If you specify the INTERRUPT option, an established ATTENTION ON-unit gets
control when an attention interrupt occurs. When the execution of an ATTENTION
ON-unit is complete, control returns to the point of interrupt unless directed
elsewhere by means of a GOTO statement. If you do not establish an ATTENTION
ON-unit, the attention interrupt is ignored.

If you specify NOINTERRUPT, an attention interrupt during a program run does not
give control to any ATTENTION ON-units.

If you require the attention interrupt capability purely for testing purposes, you need
not use the INTERRUPT option. The TEST option provides this capability. For
more information See “TEST” on page 26.

 Chapter 1. Using Compile-Time Options and Facilities 13

See Chapter 20, “Interrupts and Attention Processing” on page 436 for more
information about the INTERRUPT option.

 LANGLVL

 ┌ ┐ ─OS─ ──┬ ┬───────────────
 │ ││ │┌ ┐─, NOSPROG─
 │ │└ ┘──┴ ┴─, SPROG───
55──LANGLVL──(─ ──┼ ┼─NOSPROG─ ──┬ ┬─────── ─── ─)─────────────────────────────────────5%
 │ │└ ┘ ─,──OS─
 └ ┘ ─SPROG─ ──┬ ┬─────── ─────
 └ ┘ ─,──OS─

The LANGLVL option specifies the level of PL/I language supported, including
whether pointers in expressions are to be supported.

OS
specifies the level of PL/I language the compiler is to support. OS is the only
level currently supported.

NOSPROG
specifies that the compiler is not to allow the additional support for pointers
allowed under SPROG.

SPROG
specifies that the compiler is to allow extended operations on pointers,
including arithmetic, and the use of the POINTERADD, BINARYVALUE, and
POINTERVALUE built-in functions.

For more information on pointer operations, see the PL/I for MVS & VM
Language Reference book.

 LINECOUNT

55──LINECOUNT──(──n──)───5%

The LINECOUNT option specifies the number of lines included in each page of the
compiler listing, including heading lines and blank lines.

n is the number of lines. It must be in the range 1 through 32,767, but only
headings are generated if you specify less than 7. When you specify less than
100, the static internal storage map and the object listing are printed in double
column format. Otherwise, they are printed in single column format.

 LIST

 ┌ ┐─NOLIST──────────────────────────
55─ ──┴ ┴ ─LIST─ ──┬ ┬─────────────────────── ───5%
 └ ┘ ─(──m─ ─── ───┬ ┬────── ─)─
 └ ┘ ─,─ ─n─

The LIST option specifies that the compiler includes a listing of the object module
(in a syntax similar to assembler language instructions) in the compiler listing. If
both m and n are omitted, the compiler produces a listing of the whole program.

m is the number of the first, or only, source statement for which an object listing is
required.

14 PL/I for MVS & VM Programming Guide

n is the number of the last source statement for which an object listing is
required. If n is omitted, only statement m is listed.

If the option NUMBER applies, m and n must be specified as line numbers. If the
STMT option applies, m and n must be statement numbers.

If you use LIST in conjunction with MAP, it increases the information generated by
MAP. (See “MAP” for more information on the MAP compile-time option.)

Under TSO: Use the LIST(m[,n]) option to direct a listing of particular statements to
the terminal in either of the following ways:

� Use the LIST option, with no statement numbers, within the TERMINAL option.
� Use the PRINT(*) operand in the PLI command.

 LMESSAGE

 ┌ ┐─LMESSAGE─
55─ ──┴ ┴─SMESSAGE─ ──5%

The LMESSAGE and SMESSAGE options produce messages in a long form
(specify LMESSAGE) or in a short form (specify SMESSAGE).

 MACRO

 ┌ ┐─NOMACRO─
55─ ──┴ ┴─MACRO─── ───5%

The MACRO option specifies that the source program is to be processed by the
preprocessor. MACRO overrides INCLUDE if both are specified.

 MAP

 ┌ ┐─NOMAP─
55─ ──┴ ┴─MAP─── ───5%

The MAP option specifies that the compiler produces tables showing the
organization of the static storage for the object module. These tables show how
variables are mapped in the static internal control section and in DSAs, thus
enabling STATIC INTERNAL and AUTOMATIC variables to be found in PLIDUMP.
If LIST (described under “LIST” on page 14) is also specified, the MAP option
produces tables showing constants, control blocks and INITIAL variable values.
LIST generates a listing of the object code in pseudo-assembler language format.

If you want a complete map, but not a complete list, you can specify a single
statement as an argument for LIST to minimize the size of the LIST. For example:

%PROCESS MAP LIST(1);

 Chapter 1. Using Compile-Time Options and Facilities 15

 MARGINI

 ┌ ┐─NOMARGINI──────────────
55─ ──┴ ┴ ─MARGINI─ ─(─ ─'──c──'──)─ ──5%

The MARGINI option specifies that the compiler includes a specified character in
the column preceding the left-hand margin, and also in the column following the
right-hand margin of the listings that the compiler produces when you use the
INSOURCE and SOURCE options. The compiler shifts any text in the source input
that precedes the left-hand margin left one column. It shifts any text that follows
the right-hand margin right one column. Thus you can easily detect text outside the
source margins.

c is the character to be printed as the margin indicator.

 MARGINS

55──MARGINS──(──m──,──n─ ──┬ ┬────── ─)───5%
 └ ┘ ─,─ ─c─

The MARGINS option specifies which part of each compiler input record contains
PL/I statements, and the position of the ANS control character that formats the
listing, if the SOURCE and/or INSOURCE options apply. The compiler does not
process data that is outside these limits, but it does include it in the source listings.

The PL/I source is extracted from the source input records so that the first data
byte of a record immediately follows the last data byte of the previous record. For
variable records, you must ensure that when you need a blank you explicitly insert
it between margins of the records.

m is the column number of the leftmost character (first data byte) that is
processed by the compiler. It must not exceed 100.

n is the column number of the rightmost character (last data byte) that is
processed by the compiler. It should be greater than m, but not greater than
100.

For variable-length records, n is interpreted as the rightmost column, or the last
data byte if the record has less than n data bytes. Thus, the last character of a
variable-length record is usually a nonblank character and is immediately
followed (without any intervening blank) by the first data byte (m) of the next
record. If you do not intend to have continuation, be sure that at least one
blank occurs at the beginning (m) of the next record.

c is the column number of the ANS printer control character. It must not exceed
100 and should be outside the values specified for m and n. A value of 0 for c
indicates that no ANS control character is present. Only the following control
characters can be used:

(blank) Skip one line before printing
0 Skip two lines before printing
− Skip three lines before printing
+ No skip before printing
1 Start new page

16 PL/I for MVS & VM Programming Guide

Any other character is an error and is replaced by a blank.

Do not use a value of c that is greater than the maximum length of a source
record, because this causes the format of the listing to be unpredictable. To
avoid this problem, put the carriage control character to the left of the source
margins for variable length records.

Specifying MARGINS(,,c) is an alternative to using %PAGE and %SKIP
statements (described in the PL/I for MVS & VM Language Reference).

The IBM-supplied default for fixed-length records is MARGINS(2,72). For
variable-length and undefined-length records, the IBM-supplied default is
MARGINS(10,100). This specifies that there is no printer control character.

Use the MARGINS option to override the default for the primary input in a program.
The secondary input must have either the same margins as the primary input if it is
the same type of record, or default margins if it is a different type. (See “Input
Record Formats” on page 28.)

 MDECK

 ┌ ┐─NOMDECK─
55─ ──┴ ┴─MDECK─── ───5%

The MDECK option specifies that the preprocessor produces a copy of its output on
the file defined by the SYSPUNCH DD statement. The MDECK option allows you
to retain the output from the preprocessor as a file of 80-column records.

The compiler ignores MDECK if NOMACRO is in effect.

 NAME

55─ ─NAME─ ─(─ ─'──name──'──)───5%

The NAME option specifies that the TEXT file created by the compiler is given the
specified external name that you specify. This allows you to create more than one
TEXT file while doing batched compilation. It also allows you to produce text files
that can be included in a text library. You can also use the NAME option to cause
the linkage editor to substitute a new load module for an existing load module with
the same name in the library.

name
has from one through eight characters, and begins with an alphabetic
character. NAME has no default.

For more uses of the NAME option, see either “Compiling a Program to be Placed
in a TXTLIB” on page 77 for compiling under VM, or “NAME Option” on page 69
for compiling under MVS.

 Chapter 1. Using Compile-Time Options and Facilities 17

 NEST

 ┌ ┐─NONEST─
55─ ──┴ ┴─NEST─── ──5%

You can use the NEST option to specify that the listing resulting from the SOURCE
option indicates the block level and the do-group level for each statement.

 NOT

 ┌ ┐────────
55──NOT──(─ ──' ───

6
┴─char─ ' ─)──5%

The NOT option specifies up to seven alternate symbols, any one of which can be
used as the logical NOT operator.

char
is a single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in the PL/I for MVS & VM Language Reference, except for
the logical NOT symbol (¬).

If you specify the NOT option, the standard NOT symbol is no longer
recognized unless you specify it as one of the characters in the character
string.

For example, NOT('˜') means that the tilde character, X'A1', will be
recognized as the logical NOT operator, and the standard NOT symbol, '¬',
X'5F', will not be recognized. Similarly, NOT('˜¬') means that either the tilde
or the standard NOT symbol will be recognized as the logical NOT operator.

The IBM-supplied default code point for the NOT symbol is X'5F'. The logical
NOT sign might appear as a logical NOT symbol (¬) or a caret symbol (^) on your
keyboard.

 NUMBER

55─ ──┬ ┬─NUMBER─── ──5%
 └ ┘─NONUMBER─

The NUMBER option specifies that numbers in the sequence fields in the source
input records are used to derive the statement numbers in the listings resulting from
the AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE and XREF options.

You can specify the position of the sequence field in the SEQUENCE option.
Otherwise the following default positions are assumed:

� First eight columns for undefined-length or variable-length source input records

� Last eight columns for fixed-length source input records

Note: The preprocessor output has fixed-length records regardless of the format
of the primary input. The sequence numbers are in columns 73-80 in the source
listing.

18 PL/I for MVS & VM Programming Guide

The compiler calculates the line number from the five right-hand characters of the
sequence number (or the number specified, if less than five). These characters are
converted to decimal digits if necessary. Each time the compiler finds a line
number that is not greater than the preceding line number, it forms a new line
number by adding the minimum integral multiple of 100,000 to produce a line
number that is greater than the preceding one. The compiler issues a message to
warn you of the adjustment, except when you specify the INCLUDE option or the
MACRO option.

If there is more than one statement on a line, the compiler uses a suffix to identify
the actual statement in the messages. For example, the second statement
beginning on the line numbered 40 is identified by the number 40.2. The maximum
value for this suffix is 31. Thus the thirty-first and subsequent statements on a line
have the same number.

If the sequence field consists only of blanks, the compiler forms the new line
number by adding 10 to the preceding one. The maximum line number allowed by
the compiler is 134,000,000. Numbers that would normally exceed this are set to
this maximum value. Only eight digits print in the source listing; line numbers of
100,000,000 or over print without the leading 1 digit.

If you specify NONUMBER, STMT and NOGONUMBER are implied. NUMBER is
implied by NOSTMT or GONUMBER.

 OBJECT

 ┌ ┐─OBJECT───
55─ ──┴ ┴─NOOBJECT─ ──5%

The OBJECT option specifies that the compiler creates an object module and
stores it in a TEXT file (VM) or in a data set defined by the DD statement with the
name SYSLIN (MVS).

 OFFSET

 ┌ ┐─NOOFFSET─
55─ ──┴ ┴─OFFSET─── ──5%

The OFFSET option specifies that the compiler prints a table of statement or line
numbers for each procedure with their offset addresses relative to the primary entry
point of the procedure. You can use this table to identify a statement from a
run-time error message if the GONUMBER or GOSTMT option is not in effect.

If GOSTMT applies, the run-time library includes statement numbers, as well as
offset addresses, in run-time messages. If GONUMBER applies, the run-time
library includes line numbers, as well as offset addresses, in run-time messages.

For more information on determining line numbers from the offsets given in error
messages, see “Statement Offset Addresses” on page 40.

 Chapter 1. Using Compile-Time Options and Facilities 19

 OPTIMIZE

 ┌ ┐─NOOPTIMIZE───────────────
55─ ──┴ ┴─OPTIMIZE──(─ ──┬ ┬─TIME─ ─)─ ──5%
 ├ ┤─ð────
 └ ┘─2────

The OPTIMIZE option specifies the type of optimization required:

OPTIMIZE(TIME)
specifies that the compiler optimizes the machine instructions generated to
produce a more efficient object program. This type of optimization can also
reduce the amount of main storage required for the object module. The use of
OPTIMIZE(TIME) could result in a substantial increase in compile time over
NOOPTIMIZE. During optimization the compiler can move code to increase
run-time efficiency. As a result, statement numbers in the program listing
cannot correspond to the statement numbers used in run-time messages.

OPTIMIZE(0)
is the equivalent of NOOPTIMIZE.

OPTIMIZE(2)
is the equivalent of OPTIMIZE(TIME).

NOOPTIMIZE
specifies fast compilation speed, but inhibits optimization.

For a full discussion of optimization, see Chapter 14, “Efficient Programming” on
page 305.

 OPTIONS

55─ ──┬ ┬─OPTIONS─── ───5%
 └ ┘─NOOPTIONS─

The OPTIONS option specifies that the compiler includes a list showing the
compile-time options to be used during this compilation in the compiler listing. This
list includes all options applied by default, those specified in the PARM parameter
of an EXEC statement or in the invoking command (PLI or PLIOPT), and those
specified in a %PROCESS statement.

Under TSO: If the PRINT(*) operand of the PL/I command applies, the list of
options prints at the terminal. This can show the negative forms of the options that
cause listings to be produced, even where the positive forms apply. The positive
form is shown within the TERMINAL option. This is because the PRINT(*) operand
is implemented by generating a TERMINAL option containing a list of options
corresponding to those listings that are printed at the terminal. Specifying the
TERMINAL option after the PRINT(*) operand overrides the TERMINAL option
generated by the PRINT(*) operand.

20 PL/I for MVS & VM Programming Guide

 OR

 ┌ ┐────────
55──OR──(──'─ ───

6
┴─char─ ─'──)───5%

The OR option specifies up to seven alternate symbols, any one of which is
interpreted as the logical OR operator (|). These symbols are also used as the
concatenation operator, which is defined as two consecutive logical OR symbols.

char
is a single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in the PL/I for MVS & VM Language Reference, except for
the logical OR symbol (|).

If you specify the OR option, the standard OR symbol is no longer recognized
unless you specify it as one of the characters in the character string.

For example, OR('\') means that the backslash character, X'E0', will be
recognized as the logical OR operator, and two consecutive backslashes will be
recognized as the concatenation operator. The standard OR symbol, '|',
X'4F', will not be recognized as either operator. Similarly, OR('\|') means that
either the backslash or the standard OR symbol will be recognized as the
logical OR operator, and either symbol or both symbols Can be used to form
the concatenation operator.

The IBM-supplied default code point for the OR symbol (|) is X'4F'.

 SEQUENCE

 ┌ ┐─SEQUENCE──(──m──,──n──)─
55─ ──┴ ┴─NOSEQUENCE────────────── ───5%

The SEQUENCE option defines the section of the input record from which the
compiler takes the sequence numbers. These numbers are included in the source
listings produced by the INSOURCE and SOURCE option.

The compiler uses sequence numbers to calculate statement numbers if the
NUMBER option is in effect. The compiler does not sort the input lines or records
into the specified sequence.

m specifies the column number of the left-hand margin.

n specifies the column number of the right-hand margin.

The extent specified should not overlap with the source program (as specified in
the MARGINS option).

The IBM-supplied default for fixed-length records is SEQUENCE (73,80); for
variable-length and undefined-length records. The default is SEQUENCE (1,8).

If the SEQUENCE option is used, an external procedure cannot contain more than
32,767 lines. To Compile an external procedure containing more than 32,767 lines,
you must specify the NOSEQUENCE option. Because NUMBER and GONUMBER
imply SEQUENCE, you should not specify the SEQUENCE or NOSEQUENCE
options.

 Chapter 1. Using Compile-Time Options and Facilities 21

You can use the SEQUENCE option to override the default margin positions that
are set up during compiler installation by the FSEQUENCE and VSEQUENCE
options (see “Input Record Formats” on page 28).

The FSEQUENCE default applies to F-format records and the VSEQUENCE
default applies to V-format or U-format records. Only one of these defaults is
overridden by the SEQUENCE option. If the first input record to the compiler is
F-format, the FSEQUENCE default is overridden. If the first input record is a
V-format or a U-format record, the VSEQUENCE default is overridden. The
compiler assumes default values if it encounters a record with a different type of
format. The compiler includes numbers that it finds in the sequence field in the
source listings produced by the FORMAT, INSOURCE, and SOURCE options.

Under VM: Note: The preprocessor output has F-format records regardless of
the format of the primary input. The sequence numbers are in columns 73-80 in
the source listing.

 SIZE

 ┌ ┐─MAX─────────────
55──SIZE──(─ ──┼ ┼──┬ ┬─── ─yyyyyyyy─ ─)──5%
 │ │└ ┘─-─
 └ ┘ ──┬ ┬─── ─yyyyyK───
 └ ┘─-─

You can use this option to limit the amount of main storage the compiler uses.
This is of value, for example, when dynamically invoking the compiler, to ensure
that space is left for other purposes. There are five forms of the SIZE option:

SIZE(yyyyyyyy)
specifies that yyyyyyyy bytes of main storage are requested. Leading zeros
are not required.

SIZE(yyyyyK)
specifies that yyyyyK bytes of main storage are requested (1K=1024). Leading
zeros are not required.

SIZE(MAX)
specifies that the compiler obtains as much main storage as it can.

SIZE(-yyyyyy)
specifies that the compiler obtains as much main storage as it can, and then
releases yyyyyy bytes to the operating system. Leading zeros are not required.

SIZE(-yyyK)
specifies that the compiler obtains as much main storage as it can, and then
releases yyyK bytes to the operating system (1K=1024). Leading zeros are not
required.

The IBM-supplied default, SIZE(MAX), allows the compiler to use as much main
storage in the region as it can.

The negative forms of SIZE can be useful when a certain amount of space must be
left free and the maximum size is unknown, or can vary because the job is run in
regions of different sizes.

22 PL/I for MVS & VM Programming Guide

Under MVS: If you use the DBCSOS Ordering Product under MVS (a utility to sort
DBCS characters), you must reserve storage for the operating system to load it.
Specify SIZE(-n) to reserve sufficient storage, where n is at least 128K. See
“ATTRIBUTE and Cross-Reference Table” on page 36.

| Note: Specifying both a region size that gives the job or job step all the available
| storage below the line and the compile-time option SIZE(MAX) can cause storage
| problems.

Under TSO: 10K to 30K bytes of storage must be reserved for the operating
system to load TSO routines. The exact amount of storage required depends on
which routines are in the link pack area. Specify SIZE(-n) to reserve sufficient
storage space, where n is at least 10K bytes. For TSO edit mode, n must be at
least 30K bytes.

Under VM: You should always use SIZE(MAX) in VM unless it is essential to limit
the space used. If you set a limit in the SIZE option, the value used exceeds that
which is specified. That is because storage is handled by a VM/compiler interface
routine and not directly by the compiler.

 SMESSAGE
The LMESSAGE and SMESSAGE options produce messages in a long form
(specify LMESSAGE) or in a short form (specify SMESSAGE). See “LMESSAGE”
on page 15 for the syntax.

 SOURCE

55─ ──┬ ┬─SOURCE─── ──5%
 └ ┘─NOSOURCE─

The SOURCE option specifies that the compiler includes a listing of the source
program in the compiler listing. The source program listed is either the original
source input or, if the MACRO option applies, the output from the preprocessor.

 STMT

55─ ──┬ ┬─STMT─── ──5%
 └ ┘─NOSTMT─

The STMT option specifies that statements in the source program are counted, and
this statement number is used to identify statements in the compiler listings
resulting from the AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE, and
XREF options. STMT is implied by NONUMBER or GOSTMT. If NOSTMT is
specified, NUMBER and NOGOSTMT are implied.

 STORAGE

 ┌ ┐─NOSTORAGE─
55─ ──┴ ┴─STORAGE─── ───5%

The STORAGE option specifies that the compiler includes a table giving the main
storage requirements for the object module in the compiler listing.

 Chapter 1. Using Compile-Time Options and Facilities 23

 SYNTAX

 ┌ ┐ ─NOSYNTAX─ ──┬ ┬─────────────
 │ ││ │┌ ┐─S─
 │ │└ ┘ ─(─ ──┼ ┼─W─ ─)─
 │ │└ ┘─E─
55─ ──┴ ┴─SYNTAX──────────────────── ───5%

The SYNTAX option specifies that the compiler continues into syntax checking after
preprocessing when you specify the MACRO option, unless an unrecoverable error
has occurred. Whether the compiler continues with the compilation depends on the
severity of the error, as specified by the NOSYNTAX option.

NOSYNTAX
Processing stops unconditionally after preprocessing.

NOSYNTAX(W)
No syntax checking if a warning, error, severe error, or unrecoverable error is
detected.

NOSYNTAX(E)
No syntax checking if the compiler detects an error, severe error, or
unrecoverable error.

NOSYNTAX(S)
No syntax checking if the compiler detects a severe error or unrecoverable
error.

If the SOURCE option applies, the compiler generates a source listing even if it
does not perform syntax checking.

If the NOSYNTAX option terminates the compilation, the compiler does not produce
the cross-reference listing, attribute listing, and other listings that follow the source
program.

You can use this option to prevent wasted runs when debugging a PL/I program
that uses the preprocessor.

 SYSTEM

55──SYSTEM──(─ ──┬ ┬─CMS──── ─)───5%
 ├ ┤─CMSTPL─
 ├ ┤─MVS────
 ├ ┤─TSO────
 ├ ┤─CICS───
 └ ┘─IMS────

The SYSTEM option specifies the format used to pass parameters to the MAIN PL/I
procedure, and generally indicates the host system under which the program runs.
MVS, CMS, CMSTPL, CICS, IMS, and TSO are the subparameters recognized.
This option allows a program compiled under one system to run under another.
For example, a program compiled under VM can run under MVS, and parameters
are passed according to MVS conventions.

Table 5 on page 25 shows the type of parameter list you can expect, and how the
program runs under the specified host system. It also shows the implied settings of
NOEXECOPS.

24 PL/I for MVS & VM Programming Guide

Table 5. SYSTEM Option Table

SYSTEM option

Type of parameter list

Program runs
as

NOEXECOPS
implied

For more
information

SYSTEM(MVS) Single varying character string
or no parameters.

MVS application
program

NO See Language Environment for
MVS & VM Programming Guide.

Otherwise, arbitrary
parameter list.

YES

SYSTEM(CMS) Single varying character string
or no parameters.

VM application
program

NO See Language Environment for
MVS & VM Programming Guide.

Otherwise, arbitrary
parameter list.

YES

SYSTEM(CMSTPL) Single varying character string
or no parameters.

VM application
program

NO See Language Environment for
MVS & VM Programming Guide.

SYSTEM(CICS) Pointer(s) CICS
transaction

YES See Language Environment for
MVS & VM Programming Guide.

SYSTEM(IMS) Pointer(s) IMS application
program

YES See Language Environment for
MVS & VM Programming Guide.

SYSTEM(TSO) Pointer to CCPL TSO command
processor

YES See Language Environment for
MVS & VM Programming Guide.

 TERMINAL

55─ ──┬ ┬ ─TERMINAL─ ──┬ ┬──────────────────── ──5%
 │ │└ ┘ ─(─ ─── ──opt-list─ ─)─
 └ ┘─NOTERMINAL───────────────────────

The TERMINAL option is applicable only in a conversational environment. It
specifies that a subset of, or all of, the compiler listing produced during compilation
prints at the terminal. If you specify TERMINAL without an argument, the compiler
prints diagnostic and information messages at the terminal. You can add an
argument, which takes the form of an option list, to specify other parts of the
compiler listing that the compiler prints at the terminal.

The listing at the terminal is independent of that written on SYSPRINT for TSO, or
the LISTING file for VM. However, if you associate SYSPRINT in TSO, or LISTING
in VM, with the terminal, only one copy of each option requested is printed.

opt-list
You can specify the following option keywords, their negative forms, or their
abbreviated forms, in the option list:

AGGREGATE OFFSET
ATTRIBUTES OPTIONS
ESD SOURCE
INSOURCE STORAGE
LIST XREF
MAP

The other options that relate to the listing (FLAG, GONUMBER, GOSTMT,
LINECOUNT, LMESSAGE/SMESSAGE, MARGINI, NEST, NUMBER, and the
SHORT and FULL suboptions of ATTRIBUTES and XREF) are the same as for
the SYSPRINT listing.

 Chapter 1. Using Compile-Time Options and Facilities 25

 TEST

 ┌ ┐─NOTEST──
55─ ──┴ ┴ ─TEST─ ──┬ ┬─────────────────────────────────────── ─────────────────────────5%
 │ │┌ ┐─NONE──
 └ ┘ ─(─ ──┬ ┬ ──┼ ┼─BLOCK─ ──┬ ┬────────────── ─)─
 │ │├ ┤─STMT── │ │┌ ┐─SYM───
 │ │├ ┤─PATH── └ ┘ ─,─ ──┴ ┴─NOSYM─
 │ │└ ┘─ALL───
 │ │┌ ┐─SYM───
 └ ┘ ──┴ ┴─NOSYM─ ──┬ ┬──────────────
 │ │┌ ┐─NONE──
 └ ┘ ─,─ ──┼ ┼─BLOCK─
 ├ ┤─STMT──
 ├ ┤─PATH──
 └ ┘─ALL───

The TEST option specifies the level of testing capability that the compiler generates
as part of the object code. It allows you to control the location of test hooks and to
control whether or not the symbol table will be generated.

The TEST option can imply GONUMBER or GOSTMT, depending on whether
NUMBER or STMT is in effect.

Because the TEST option can increase the size of the object code and can affect
performance, you might want to limit the number and placement of hooks.

BLOCK
tells the compiler to insert hooks at block boundaries (block entry and block
exit).

STMT
Specifies that the compiler inserts hooks at statement boundaries and block
boundaries. STMT causes a statement table to be generated.

PATH
tells the compiler to insert hooks:

� Before the first statement enclosed by an iterative DO statement

� Before the first statement of the true part of an IF statement

� Before the first statement of the false part of an IF statement

� Before the first statement of a true WHEN or OTHERWISE statement of a
SELECT group

� Before the statement following a user label

� At CALLs or function references—both before and after control is passed to
the routine

� At block boundaries.

When PATH is specified, the compiler generates a statement table.

ALL
tells the compiler to insert hooks at all possible locations and to generate a
statement table.

NONE
tells the compiler not to put hooks into the program.

26 PL/I for MVS & VM Programming Guide

SYM
tells the compiler to create a symbol table that will allow you to examine
variables by name.

NOSYM
tells the compiler not to generate a symbol table.

NOTEST
suppresses the generation of all testing information.

Any TEST option other than NOTEST and TEST(NONE,NOSYM) will automatically
provide the attention interrupt capability for program testing.

If the program has an ATTENTION ON-unit that you want invoked, you must
compile the program with either of the following:

� The INTERRUPT option
� A TEST option other than NOTEST or TEST(NONE,NOSYM).

 XREF

 ┌ ┐─NOXREF────────────────────
55─ ──┴ ┴ ─XREF─ ──┬ ┬───────────────── ───5%
 │ │┌ ┐─FULL──
 └ ┘ ─(─ ──┴ ┴─SHORT─ ─)─

The XREF option specifies that the compiler includes a cross-reference table of
names used in the program together with the numbers of the statements in which
they are declared or referenced in the compiler listing. (The only exception is that
label references on END statements are not included. For example, assume that
statement number 20 in the procedure PROC1 is END PROC1;. In this situation,
statement number 20 does not appear in the cross reference listing for PROC1.)

FULL
is the default suboption. All identifiers and attributes are included in the
compiler listing.

SHORT
Unreferenced identifiers are omitted from the compiler listing.

For a description of the format and content of the cross-reference table, see
“Cross-Reference Table” on page 37.

For more information about sorting identifiers and storage requirements with DBCS
Ordering Support Product, see “ATTRIBUTE and Cross-Reference Table” on
page 36.

If the suboption SHORT is specified, unreferenced identifiers are omitted.

The default suboption FULL means that FULL applies if you specify the option with
no suboption.

If you specify both the XREF and ATTRIBUTES options, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage is
determined by the last option specified. For example, ATTRIBUTES(SHORT)
XREF(FULL) results in the FULL option for the combined listing.

 Chapter 1. Using Compile-Time Options and Facilities 27

Input Record Formats
The compiler accepts both F-format and V-format records; the primary and
secondary input data sets can have different formats.

The compiler determines the positions, within each record, of the PL/I source code
and the sequence numbers from the following options:

You can set the values of FMARGINS, FSEQUENCE, VMARGINS and
VSEQUENCE only when you install the compiler. If you do not set values at this
time, the IBM-supplied default values apply. You can specify MARGINS and
SEQUENCE when you invoke the compiler. When specified, they override either
FMARGINS and FSEQUENCE or VMARGINS and VSEQUENCE, depending on
whether the first input data set read by the syntax-checking stage of the compiler is
F-format. The overriding values also apply if the compiler reads records of the
same format as secondary input. If the records of the other format are read as the
compiler installation values, the values for that format apply.

Option Specifying IBM-supplied default

FMARGINS Positions of source and sequence FMARGINS(2,72)
FSEQUENCE Numbers for F-format records FSEQUENCE(73,80)
VMARGINS Positions of source text and sequence VMARGINS(10,100)
VSEQUENCE Numbers for V-format records VSEQUENCE(1,8)
MARGINS Overriding values for above options —
SEQUENCE Overriding values for above options —

Specifying Options in the %PROCESS or *PROCESS statements
The compiler uses the %PROCESS statement to identify the start of each external
procedure and to allow compile-time options to be specified for each compilation.
The options you specify in adjacent %PROCESS statements apply to the
compilation of the source statements to the end of input, or the next %PROCESS
statement.

To specify options in the %PROCESS statement, code as follows:

 %PROCESS options;

where options is a list of compile-time options. You must end the list of options
with a semicolon, and the options list should not extend beyond the default
right-hand source margin. The asterisk must appear in the first data byte of the
record. If the records are F format, the asterisk must be in column 1. If the
records are V or U format, the asterisk must be as far left as possible, that is
column 1 if possible, or immediately following the sequence numbers if these are
on the extreme left. The keyword %PROCESS can follow in the next byte (column)
or after any number of blanks. You must separate option keywords by a comma or
at least one blank.

The number of characters is limited only by the length of the record. If you do not
wish to specify any options, code:

 %PROCESS;

If you find it necessary to continue the %PROCESS statement onto the next record,
terminate the first part of the list after any delimiter, and continue on the next
record. You can split option keywords or keyword arguments when continuing onto

28 PL/I for MVS & VM Programming Guide

the next record, provided that the keyword or argument string terminates in the
right-hand source margin, and the remainder of the string starts in the same column
as the asterisk. You can continue a %PROCESS statement on several lines, or
start a new %PROCESS statement. An example of multiple adjacent %PROCESS
statements is as follows:

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;

%PROCESS LIST TEST ;

For information about using the %PROCESS statement with batched compilation,
see “Compiling Multiple Procedures in a Single Job Step” on page 69.

Compile-time options, their abbreviated syntax, and their IBM-supplied defaults are
shown in Table 3 on page 5 and Table 4 on page 7. Your site might have
changed the IBM-supplied defaults or deleted options. Be sure to check for any
changes before using compile-time option defaults. You can reinstate deleted
compile-time options for a compilation by using the CONTROL compile-time option.

Using the Preprocessor
The preprocessing facilities of the compiler are described in the PL/I for MVS & VM
Language Reference. You can include statements in your PL/I program that, when
executed by the preprocessor stage of the compiler, modify the source program or
cause additional source statements to be included from a library. The following
discussion provides some illustrations of the use of the preprocessor and explains
how to establish and use source statement libraries.

Invoking the Preprocessor
If you specify the compile-time option MACRO, the preprocessor stage of the
compiler is executed. The compiler and the preprocessor use the data set defined
by the DD statement with the name SYSUT1 during processing. They also use this
data set to store the preprocessed source program until compilation begins. The
IBM-supplied cataloged procedures for compilation include a DD statement with the
name SYSUT1.

The format of the preprocessor output is given in Table 6.

Table 6. Format of the Preprocessor Output

Column 1 Printer control character, if any, transferred from the position specified in
the MARGINS option.

Columns 2-72 Source program. If the original source program used more than 71
columns, additional lines are included for any lines that need continuation.
If the original source program used fewer than 71 columns, extra blanks
are added on the right.

Columns 73-80 Sequence number, right-aligned. If either SEQUENCE or NUMBER
applies, this is taken from the sequence number field. Otherwise, it is a
preprocessor generated number, in the range 1 through 99999. This
sequence number will be used in the listing produced by the INSOURCE
and SOURCE options, and in any preprocessor diagnostic messages.

Column 81 blank

Columns 82, 83 Two-digit number giving the maximum depth of replacement by the
preprocessor for this line. If no replacement occurs, the columns are
blank.

Column 84 E signifying that an error occurred while replacement was being attempted.
If no error occurred, the column is blank.

 Chapter 1. Using Compile-Time Options and Facilities 29

Three other compile-time options, MDECK, INSOURCE, and SYNTAX, are
meaningful only when you also specify the MACRO option. For more information
about these options, see MDECK on page 17, INSOURCE on page 13, and
SYNTAX on page 24.

A simple example of the use of the preprocessor to produce a source deck is
shown in Figure 1. According to the value assigned to the preprocessor variable
USE, the source statements will represent either a subroutine (CITYSUB) or a
function (CITYFUN). The DSNAME used for SYSPUNCH specifies a source
program library on which the preprocessor output will be placed. Normally
compilation would continue and the preprocessor output would be compiled.

 //OPT4#8 JOB

 //STEP2 EXEC IEL1C,PARM.PLI='MACRO,MDECK,NOCOMPILE,NOSYNTAX'

 //PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,CATLG),UNIT=SYSDA,

 // SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=4ðð)

 //PLI.SYSIN DD \

/\ GIVEN ZIP CODE, FINDS CITY \/

%DCL USE CHAR;

%USE = 'FUN' /\ FOR SUBROUTINE, %USE = 'SUB' \/ ;

%IF USE = 'FUN' %THEN %DO;

CITYFUN: PROC(ZIPIN) RETURNS(CHAR(16)) REORDER; /\ FUNCTION \/

 %END;

 %ELSE %DO;

CITYSUB: PROC(ZIPIN, CITYOUT) REORDER; /\ SUBROUTINE \/

DCL CITYOUT CHAR(16); /\ CITY NAME \/

 %END;

DCL (LBOUND, HBOUND) BUILTIN;

DCL ZIPIN PIC '99999'; /\ ZIP CODE \/

DCL 1 ZIP_CITY(7) STATIC, /\ ZIP CODE - CITY NAME TABLE \/

2 ZIP PIC '99999' INIT(

95141, 95ð14, 95ð3ð,

95ð51, 95ð7ð, 95ðð8,

ð), /\ WILL NOT LOOK AT LAST ONE \/

2 CITY CHAR(16) INIT(

'SAN JOSE', 'CUPERTINO', 'LOS GATOS',

'SANTA CLARA', 'SARATOGA', 'CAMPBELL',

'UNKNOWN CITY'); /\ WILL NOT LOOK AT LAST ONE \/

DCL I FIXED BIN(31);

DO I = LBOUND(ZIP,1) TO /\ SEARCH FOR ZIP IN TABLE \/

HBOUND(ZIP,1)-1 /\ DON'T LOOK AT LAST ELEMENT \/

WHILE(ZIPIN ¬= ZIP(I));

 END;

%IF USE = 'FUN' %THEN %DO;

RETURN(CITY(I)); /\ RETURN CITY NAME \/

 %END;

 %ELSE %DO;

CITYOUT=CITY(I); /\ RETURN CITY NAME \/

 %END;

 END;

Figure 1. Using the preprocessor to Produce a Source Deck That Is Placed on a Source
Program Library

Using the %INCLUDE Statement
The PL/I for MVS & VM Language Reference describes how to use the %INCLUDE
statement to incorporate source text from a library into a PL/I program. (A library is
an MVS partitioned data set or a VM MACLIB that can be used to store other data
sets called members.) Source text that you might want to insert into a PL/I
program using a %INCLUDE statement must exist as a member within a library.
“Source Statement Library (SYSLIB)” on page 67 further describes the process of
defining a source statement library to the compiler.

30 PL/I for MVS & VM Programming Guide

The statement:

%INCLUDE DD1 (INVERT);

specifies that the source statements in member INVERT of the library defined by
the DD statement with the name DD1 are to be inserted consecutively into the
source program. The compilation job step must include appropriate DD statements.

If you omit the ddname, the ddname SYSLIB is assumed. In such a case, you
must include a DD statement with the name SYSLIB. (The IBM-supplied cataloged
procedures do not include a DD statement with this name in the compilation
procedure step.)

A %PROCESS statement in source text included by a %INCLUDE statement
results in an error in the compilation.

Figure 2 shows the use of a %INCLUDE statement to include the source
statements for FUN in the procedure TEST. The library HPU8.NEWLIB is defined
in the DD statement with the qualified name PLI.SYSLIB, which is added to the
statements of the cataloged procedure IEL1CLG for this job. Since the source
statement library is defined by a DD statement with the name SYSLIB, the
%INCLUDE statement need not include a ddname.

It is not necessary to invoke the preprocessor if your source program, and any text
to be included, does not contain any macro statements. Under these
circumstances, you can obtain faster inclusion of text by specifying the INCLUDE
compile-time option.

 //OPT4#9 JOB

 //STEP3 EXEC IEL1CLG,PARM.PLI='INC,S,A,X,NEST'

 //PLI.SYSLIB DD DSN=HPU8.NEWLIB,DISP=OLD

 //PLI.SYSIN DD \

TEST: PROC OPTIONS(MAIN) REORDER;

DCL ZIP PIC '99999'; /\ ZIP CODE \/

DCL EOF BIT INIT('ð'B);

ON ENDFILE(SYSIN) EOF = '1'B;

GET EDIT(ZIP) (COL(1), P'99999');

 DO WHILE(¬EOF);

PUT SKIP EDIT(ZIP, CITYFUN(ZIP)) (P'99999', A(16));

GET EDIT(ZIP) (COL(1), P'99999');

 END;

 %PAGE;

 %INCLUDE FUN;

 END; /\ TEST \/

 //GO.SYSIN DD \

 95141

 95ð3ð

 941ð1

 //

Figure 2. Including Source Statements from a Library

Using the PL/I Preprocessor in Program Testing
You can use the %INCLUDE PL/I preprocessor statement to include
program-testing statements from the source statement library in your program when
you test it. You can use these statements in conjunction with program checkout
statements to help track your program's operation and handle errors that occur.

 Chapter 1. Using Compile-Time Options and Facilities 31

Using % Statements
Statements that direct the operation of the compiler, begin with a percent (%)
symbol. These statements must not have label or condition prefixes, and cannot
be a “unit” of a compound statement.

The % statements allow you to control the source program listing and to include
external strings in the source program. These control statements, %INCLUDE,
%PRINT, %NOPRINT, %PAGE, and %SKIP, are listed below and described fully in
the PL/I for MVS & VM Language Reference.

%INCLUDE Directs the compiler to incorporate external strings of characters
and/or graphics into the source program.

%PRINT Directs the compiler to resume printing the source and insource
listings.

%NOPRINT Directs the compiler to suspend printing the source and insource
listings until a %PRINT statement is encountered.

%PAGE Directs the compiler to print the statement immediately after a
%PAGE statement in the program listing on the first line of the next
page.

%SKIP Specifies the number of lines to be skipped.

Note: You should place each % statement on a line by itself.

Invoking the Compiler from an Assembler Routine
You can invoke the compiler from an assembler language program by using one of
the macro instructions ATTACH, CALL, LINK, or XCTL. The following information
supplements the description of these macro instructions given in the supervisor and
data management manual.

You cannot dynamically invoke the compiler under VM from an assembler routine
running in a user area.

To invoke the compiler specify IEL1AA as the entry point name.

You can pass three address parameters to the compiler:

1. The address of a compile-time option list
2. The address of a list of ddnames for the data sets used by the compiler
3. The address of a page number that is to be used for the first page of the

compiler listing on SYSPRINT

These addresses must be in adjacent fullwords, aligned on a fullword boundary.
Register 1 must point to the first address in the list, and the first (left-hand) bit of
the last address must be set to 1, to indicate the end of the list.

Note: If you want to pass parameters in an XCTL macro instruction, you must use
the execute (E) form of the macro instruction. Remember also that the XCTL
macro instruction indicates to the control program that the load module containing
the XCTL macro instruction is completed. Thus the parameters must be
established in a portion of main storage outside the load module containing the
XCTL macro instruction, in case the load module is deleted before the compiler can
use the parameters.

32 PL/I for MVS & VM Programming Guide

The format of the three parameters for all the macro instructions is described
below.

 Option List
The option list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). The
remainder of the list can comprise any of the compile-time option keywords,
separated by one or more blanks, a comma, or both of these.

 DDNAME List
The ddname list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each
entry in the list must occupy an 8-byte field; the sequence of entries is given in
Table 7.

If a ddname is shorter than 8 bytes, fill the field with blanks on the right. If you omit
an entry, fill its field with binary zeros; however, you can omit entries at the end of
the list entirely.

Table 7. Entry Dequence in the
DDNAME List

Entry Standard DDNAME

1 SYSLIN
2 not applicable
3 not applicable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 not applicable
10 not applicable
11 not applicable
12 not applicable
13 not applicable
14 SYSCIN

 Page Number
The compiler adds 1 to the last page number used in the compiler listing and put
this value in the page-number field before returning control to the invoking routine.
Thus, if the compiler is invoked again, page numbering is continuous.

Using the Compiler Listing
During compilation, the compiler generates a listing, most of which is optional, that
contains information about the source program, the compilation, and the object
module. It places this listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). In a conversational environment,
you can also request a listing at your terminal (using the TERMINAL option). The
following description of the listing refers to its appearance on a printed page.

The first part of Table 4 on page 7 shows the components that can be included in
the compiler listing. The rest of this section describes them in detail.

 Chapter 1. Using Compile-Time Options and Facilities 33

Of course, if compilation terminates before reaching a particular stage of
processing, the corresponding listings do not appear.

The listing comprises a small amount of standard information that always appears,
together with those items of optional information specified or supplied by default.
The listing at the terminal contains only the optional information that has been
requested in the TERMINAL option.

 Heading Information
The first page of the listing is identified by the product number, the compiler version
number, and the date and the time compilation commenced. This page and
subsequent pages are numbered.

Near the end of the listing you will find either a statement that no errors or warning
conditions were detected during the compilation, or a message that one or more
errors were detected. The format of the messages is described under “Messages”
on page 44. The second to the last line of the listing shows the CPU time taken
for the compilation. The last line of the listing is “END OF COMPILATION OF xxxx”
where “xxxx” is the external procedure name. If you specify the NOSYNTAX
compile-time option, or the compiler aborts early in the compilation, the external
procedure name “xxxx” is not included and the line truncates to “END OF
COMPILATION.”

The following paragraphs describe the optional parts of the listing in the order in
which they appear.

Options Used for the Compilation
If the option OPTIONS applies, a complete list of the options specified for the
compilation, including the default options, appears on the first page.

 Preprocessor Input
If both the options MACRO and INSOURCE apply, the compiler lists input to the
preprocessor, one record per line, each line numbered sequentially at the left.

If the preprocessor detects an error, or the possibility of an error, it prints a
message on the page or pages following the input listing. The format of these
messages is the same as the format for the compiler messages described under
“Messages” on page 44.

 SOURCE Program
If the option SOURCE applies, the input to the compiler is listed, one record per
line. If the input records contain printer control characters or %SKIP or %PAGE
statements, the lines are spaced accordingly. You can use %NOPRINT and
%PRINT statements to stop and restart the printing of the listing.

If the MACRO option applies, the source listing shows the included text in place of
the %INCLUDE statements in the primary input data set.

If the MACRO option does not apply but the INCLUDE option does, the included
text is bracketed by comments indicating the %INCLUDE statement that caused the
text to be included. Each nested %INCLUDE has the comment text indented two
positions to the right.

34 PL/I for MVS & VM Programming Guide

Assume the following source input on SYSIN:

MAIN: PROC REORDER;

 %INCLUDE MEMBER1;

 END;

and the following content of MEMBER1:

 J=K;

 %INCLUDE DSALIB1(DECLARES);

 L=M;

and the following content of DECLARES:

DCL (NULL,DATE) BUILTIN;

produces in the source listing:

MAIN: PROC REORDER;

/\BEGIN %INCLUDE SYSLIB (MEMBER1)\\\\\\\\/

 J=K;

/\\\BEGIN %INCLUDE DSALIB1 (DECLARES)\\\\\\/

DCL (NULL,DATE) BUILTIN;

/\\\END %INCLUDE DSALIB1 (DECLARES)\\\\\\/

 L=M;

 /\END %INCLUDE SYSLIB (MEMBER1)\\\\\\\\/

 END;

If the STMT compile-time option applies, the statement numbers are derived from a
count of the number of statements in the program after %INCLUDEs have been
processed.

If the NUMBER option applies, the compiler derives statement numbers from the
sequence numbers of the statements in the source records after %INCLUDE
statements have been processed. Normally the compiler uses the last five digits as
statement numbers. If, however, this does not produce a progression of statements
with successively higher numbers, the compiler adds 100000 to all statement
numbers starting from the one that would otherwise be equal to or less than its
predecessor.

For instance, if a V-format primary input data set had the following lines:

 ðððð1ððð A:PROC;

ðððð2ððð %INCLUDE B;

 ðððð3ððð END;

and member B contained:

 ðððð1ððð C=D;

 ðððð2ððð E=F;

 ðððð3ððð G=H;

 Chapter 1. Using Compile-Time Options and Facilities 35

then the source listing would be as follows:

 SOURCE LISTING

 NUMBER

 1ððð ðððð1ððð A:PROC;

ðððð2ððð /\BEGIN %INCLUDE SYSLIB (B)\\\\\\/

 1ð1ððð ðððð1ððð C=D;

 1ð2ððð ðððð2ððð E=F;

 1ð3ððð ðððð3ððð G=H;

 /\END %INCLUDE SYSLIB (B)\\\\\\/

 2ð3ððð ðððð3ððð END;

The additional 100000 has been introduced into the statement numbers at two
points:

1. Beginning at the first statement of the included text (the statement C=D;)

2. Beginning with the first statement after the included text (the END statement)

If the source statements are generated by the preprocessor, columns 82-84 contain
diagnostic information, as shown in Table 6 on page 29.

Statement Nesting Level
If the option NEST applies, the block level and the DO-level are printed to the right
of the statement or line number under the headings LEV and NT respectively, for
example:

STMT LEV NT

 1 ð A: PROC OPTIONS(MAIN);

 2 1 ð B: PROC;

3 2 ð DCL K(1ð,1ð) FIXED BIN (15);

4 2 ð DCL Y FIXED BIN (15) INIT (6);

5 2 ð DO I=1 TO 1ð;

6 2 1 DO J=1 TO 1ð;

7 2 2 K(I,J) = N;

 8 2 2 END;

 9 2 1 BEGIN;

 1ð 3 1 K(1,1)=Y;

 11 3 1 END;

 12 2 1 END B;

 13 1 ð END A;

ATTRIBUTE and Cross-Reference Table
If the option ATTRIBUTES applies, the compiler prints an attribute table containing
a list of the identifiers in the source program together with their declared and
default attributes. In this context, the attributes include any relevant options, such
as REFER, and also descriptive comments, such as:

 /\STRUCTURE\/

If the option XREF applies, the compiler prints a cross-reference table containing a
list of the identifiers in the source program together with the numbers of the
statements in which they appear. If both ATTRIBUTES and XREF apply, the two
tables are combined. If the suboption SHORT applies, unreferenced identifiers are
not listed.

36 PL/I for MVS & VM Programming Guide

If the following conditions apply:

� GRAPHIC compile-time option is in effect
� Compilation is being done under MVS
� At least one DBCS identifier is found in the compilation unit
� ATTRIBUTES and/or XREF are in effect

then the PL/I compiler uses the DBCS Ordering Support Product to perform the
sorting of the DBCS identifiers for the XREF listing.

The types of ordering available are the Total Stroke Count (KS), Radical Stroke
Count (KR), and the IBM Unique Pronunciation (KU). The default is KU. To select
the other types you must supply a special AKSLDFLT CSECT specifying the
desired ordering type.

All sorted DBCS identifiers appear in the listing before the SBCS identifiers, which
are sorted in collating sequence.

The DBCSOS Ordering Product requires 128K of free storage. For information
about reserving storage, see the SIZE option, “Under MVS” on page 23.

 Attribute Table
If you declare an identifier explicitly, the compiler lists the number of the DECLARE
statement. The compiler indicates an undeclared variable by asterisks. (The
compiler also lists undeclared variables in error messages.) It also gives the
statement numbers of statement labels and entry labels.

The compiler never includes the attributes INTERNAL and REAL. You can assume
them unless the respective conflicting attributes, EXTERNAL and COMPLEX,
appear.

For a file identifier, the attribute FILE always appears, and the attribute EXTERNAL
appears if it applies; otherwise, the compiler only lists explicitly declared attributes.

The compiler prints the dimension attribute for an array first. It prints the bounds as
in the array declaration, but it replaces expressions with asterisks. Structure levels
other than base elements also have their bounds replaced by asterisks.

For a character string or a bit string, the compiler prints the length, preceded by the
word BIT or CHARACTER, as in the declaration, but it replaces an expression with
an asterisk.

 Cross-Reference Table
If you combine the cross-reference table with the attribute table, the numbers of the
statements or lines in which a name appears follow the list of attributes for the
name. The order in which the statement numbers appear is subject to any
reordering of blocks that has occurred during compilation. In general, the compiler
gives the statement numbers for the outermost block first, followed on the next line
by the statement numbers for the inner blocks.

The compiler expands and optimizes PL/I text before it produces the
cross-reference table. Consequently, some names that appear only once within a
source statement can acquire multiple references to the same statement number.
By the same token, other names can appear to have incomplete lists of references,

 Chapter 1. Using Compile-Time Options and Facilities 37

while still others can have references to statements in which the name does not
appear explicitly.

For example:

� Duplicate references can be listed for items such as do-loop control variables,
and for some aggregates.

� Optimization of certain operations on structures can result in incomplete listings
in the cross-reference table. The numbers of statements in which these
operations are performed on major or minor structures are listed against the
names of the elements, instead of against the structure names.

� No references to PROCEDURE or ENTRY statements in which a name
appears as a parameter are listed in the cross-reference table entry for that
name.

� References within DECLARE statements to variables that are not being
declared are not listed. For example, in the statements:

 DCL ARRAY(N);

DCL STRING CHAR(N);

no references to these statements would appear in the cross-reference table
entry for N.

� The number of a statement in which an implicitly pointer-qualified based
variable name appears is included not only in the list of statement numbers for
that name, but also in the list of statement numbers for the pointer implicitly
associated with it.

� The statement number of an END or LEAVE statement that refers to a label is
not listed in the entry for the label.

� Automatic variables declared with the INITIAL attribute have a reference to the
PROCEDURE or BEGIN statement for the block containing the declaration
included in the list of statement numbers.

Aggregate Length Table
An aggregate length table is obtained by using the AGGREGATE option. The table
shows how the compiler maps each aggregate in the program. It contains the
following information:

� The statement number in which the aggregate is declared.

� The name of the aggregate and the element within the aggregate.

� The level number of each item in a structure.

� The number of dimensions in an array.

� The byte offset of each element from the beginning of the aggregate. (The
compiler does not give bit offsets for unaligned bit-string data). As a word of
caution, be careful when interpreting the data offsets indicated in the data
length table. An odd offset does not necessarily represent a data element
without halfword, fullword, or even double word alignment. If you specify or
infer the aligned attribute for a structure or its elements, the proper alignment
requirements are consistent with respect to other elements in the structure,
even though the table does not indicate the proper alignment relative to the
beginning of the table.

� The length of each element.

38 PL/I for MVS & VM Programming Guide

� The total length of each aggregate, structure, and substructure.

If there is padding between two structure elements, a /*PADDING*/ comment
appears, with appropriate diagnostic information.

The table is completed with the sum of the lengths of all aggregates that do not
contain adjustable elements.

The statement or line number identifies either the DECLARE statement for the
aggregate, or, for a controlled aggregate, an ALLOCATE statement for the
aggregate. An entry appears for each ALLOCATE statement involving a controlled
aggregate, as such statements can have the effect of changing the length of the
aggregate during run time. Allocation of a based aggregate does not have this
effect, and only one entry, which is that corresponding to the DECLARE statement,
appears.

When passing an aggregate to a subroutine, the length of an aggregate might not
be known during compilation, either because the aggregate contains elements
having adjustable lengths or dimensions, or because the aggregate is dynamically
defined. In these cases, the compiler prints the word adjustable or defined in the
offset column and param for parameter in the element length and total length
columns. Because the compiler might not know the length of an aggregate during
compilation, it does not print padding information.

An entry for a COBOL mapped structure has the word COBOL appended. COBOL
mapped structures are structures into which a program reads or writes a COBOL
record, or a structure that can be passed between PL/I programs and COBOL
programs. The COBOL entry appears if the compiler determines that the COBOL
and PL/I mapping for the structure is different, and the creation of a temporary
structure mapped according to COBOL synchronized structure rules is not
suppressed by NOMAP, NOMAPIN, or NOMAPOUT.

If a COBOL entry does appear it is additional to the entry for the PL/I mapped
version of the structure.

The compiler makes a separate entry in the aggregate table for every aggregate
dummy argument or COBOL mapped structure.

 Storage Requirements
If the option STORAGE applies, the compiler lists the following information under
the heading Storage Requirements on the page following the end of the aggregate
length table:

� The length of the program control section. The program control section is the
part of the object that contains the executable part of the program.

� The length of the static internal control section. This control section contains all
storage for variables declared STATIC INTERNAL.

� The storage area in bytes for each procedure.

� The storage area in bytes for each begin-block.

� The storage area in bytes for each ON-unit.

� The dynamic storage area in bytes for each procedure, begin-block, and
ON-unit. The dynamic storage area is acquired at activation of the block.

 Chapter 1. Using Compile-Time Options and Facilities 39

Statement Offset Addresses
If the option LIST applies, the compiler includes a pseudo-assembler listing in the
compiler listing. You can use the offset given in run-time error messages to
discover the erroneous statement, because the offsets in both run-time messages
and the pseudo-assembler listing are relative to the start of the external procedure.
Simply match the offset given in the error message with the offset in the listing to
find the erroneous statement.

In the example shown in Figure 3, compile unit offset +17E occurs in the object
listing under statement 6. Statement 6 is the erroneous statement.

 SOURCE LISTING

 1 M:PROC OPTIONS(MAIN);

 2 CALL A2;

 3 A1:PROC;

 4 N=3;

 5 A2:ENTRY;

 6 N=N/ð;

 7 END;

 8 END;

- OBJECT LISTING

 \ STATEMENT NUMBER 6

 ððð16C 58 7ð D ðCð L 7,192(ð,13)

 ððð17ð 48 6ð 3 ð2A LH 6,42(ð,3)

 ððð174 48 8ð 7 ðB8 LH 8,N

 ððð178 1B 99 SR 9,9

 ððð17A 8E 8ð ð ð1ð SRDA 8,16

 ððð17E 1D 86 DR 8,6

 ððð18ð 12 99 LTR 9,9

 ððð182 47 Bð 2 ð2A BNM CL.13

 ððð186 5A 9ð 3 ð34 A 9,52(ð,3)

ððð18A CL.13 EQU \

 ððð18A 8A 9ð ð ð1ð SRA 9,16

 ððð18E 4ð 9ð 7 ðB8 STH 9,N

Message:

IBMð3ð1S ONCODE=32ð The ZERODIVIDE condition was raised.

From compile unit M at entry point A2 at compile

unit offset +ððððð17E at address ððð2ð1FE.

Figure 3. Finding Statement Number from a Compile Unit Offset in an Error Message

If the OFFSET option applies, the compiler lists for each primary entry point the
offsets at which statements occur. This information is found in the compiler listing
under the heading, “Table of Offsets and Statement Numbers.”

Entry offsets given in dump and on-unit SNAP error messages can be compared
with this table and the erroneous statement discovered. The statement is identified
by finding the section of the table that relates to the block named in the message
and then finding the largest offset less than or equal to the offset in the message.
The statement number associated with this offset is the one needed.

If a secondary entry point is used, first find the name of the block that contains this
entry and the corresponding section of the offset table that relates to this name.
Next, add the offset given in the message to the offset of the secondary entry point
in the table. This will convert the message offset so that it is relative to the primary
entry point versus the secondary entry point, which was entered during execution.

40 PL/I for MVS & VM Programming Guide

Use this converted offset to search the section of the offset table for the largest
offset as described above.

In the example in Figure 4, secondary entry point P2 is contained in procedure
block P1 at offset X'78'. Adding X'78' to the message entry offset of X'44'
yields a value of X'BC'. The largest offset table entry less than or equal to X'BC'

is X'B4', which corresponds to statement number 7.

 SOURCE LISTING

 STMT

1 Q: PROC OPTIONS(MAIN);

2 ON ERROR SNAP GOTO L;

 3 CALL P2;

 4 P1: PROC;

 5 N=1;

 6 P2: ENTRY;

 7 SIGNAL ERROR;

 8 END;

 9 L: END;

TABLE OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE Q

OFFSET (HEX) ð A8 Cð CA

STATEMENT NO. 1 2 3 9

WITHIN PROCEDURE P1

OFFSET (HEX) ð 78 A8 B4 BE

STATEMENT NO. 4 6 5 7 8

 Messages:

'ERROR' condition was raised

Traceback of user routines:

 Compile Unit Entry Statement CU offset Entry offset Address

 Q P2 +ððððð1Að +ðððððð44 ððð2ð22ð

 Q Q +ððððððCC +ððððððC8 ððð2ð14C

Figure 4. Finding Statement Number from an Entry Offset in an Error Message

External Symbol Dictionary
If the option ESD applies, the compiler lists the contents of the external symbol
dictionary (ESD).

The ESD is a table containing all the external symbols that appear in the object
module. (The machine instructions in the object module are grouped together in
control sections; an external symbol is a name that can be referred to in a control
section other than the one in which it is defined.) The contents of an ESD appear
under the following headings:

SYMBOL An 8-character field that identifies the external symbol.

TYPE Two characters from the following list to identify the type of entry:

SD Section definition: the name of a control section within the
object module.

CM Common area: a type of control section that contains no data
or executable instructions.

 Chapter 1. Using Compile-Time Options and Facilities 41

ER External reference: an external symbol that is not defined in
the object module.

WX Weak external reference: an external symbol that is not
defined in this module and that is not to be resolved unless an
ER entry is encountered for the same reference.

PR Pseudoregister: a field used to address files, controlled
variables, and FETCHed procedures.

LD Label definition: the name of an entry point to the external
procedure other than that used as the name of the program
control section.

ID Four-digit hexadecimal number: all entries in the ESD, except LD-type
entries, are numbered sequentially, beginning with 0001.

ADDRESS Hexadecimal representation of the address of the external symbol.

LENGTH The hexadecimal length in bytes of the control section (SD, CM and
PR entries only).

 ESD Entries
The external symbol dictionary usually starts with the standard entries shown in
Figure 5, which assumes the existence of an external procedure called NAME.

SYMBOL TYPE ID ADDRESS LENGTH

CEESTART SD ððð1 ðððððð ðððð8ð

\\\NAME1 SD ððð2 ðððððð ððððA8

\\\NAME2 SD ððð3 ðððððð ðððð5C

CEEMAIN WX ððð4 ðððððð

CEEMAIN SD ððð5 ðððððð ðððð1ð

IBMRINP1 ER ððð6 ðððððð

CEEFMAIN WX ððð7 ðððððð

CEEBETBL ER ððð8 ðððððð

CEEROOTA ER ððð9 ðððððð

CEESGð1ð ER ðððA ðððððð

NAME LD ððððð8

Figure 5. External Symbol Dictionary

***name1
SD-type entry for the program control section (the control section that contains
the executable instructions of the object module). This name is the first label of
the external procedure, padded on the left with asterisks to 7 characters if
necessary, and extended on the right with the character 1.

***name2
SD-type entry for the static internal control section (which contains main
storage for all variables declared STATIC INTERNAL). This name is the first
label of the external procedure, padded on the left with asterisks to 7
characters if necessary, and extended on the right with the character 2.

CEESTART
SD-type entry for CEESTART. This control section transfers control to
CEEROOTA, the initialization routine for the library environment. When
initialization is complete, control passes to the address stored in the control
section CEEMAIN. (Initialization is required only once while a PL/I program is
running, even if it calls another external procedure. In such a case, control

42 PL/I for MVS & VM Programming Guide

passes directly to the entry point named in the CALL statement, and not to the
address contained in CEEMAIN.)

CEEROOTA, CEESG010, CEEBETBL, IBMRINP1
These ER-type entries are generated to support environment initialization for
the program.

The other entries in the external symbol dictionary vary, but can include the
following:

� SD-type entry for the control section CEEMAIN, which contains the address of
the primary entry point to the external procedure. This control section is
present only if the procedure statement includes the option MAIN. A WX-type
entry for CEEMAIN is always generated to support environment initialization for
the program.

� Reference to a number of control sections as follows:

CEEFMAIN A control section used in fetch processing. It indicates the
presence of a fetchable entry point within the load module.

IBMSEATA A module in the PL/I library used to set the attention exit for
use in procedures compiled with the INTERRUPT option.
This is an ER type entry if the procedure was compiled with
the INTERRUPT option.

CEEUOPT A control section that contains the run-time options specified
at compile time.

PLIXOPT Run-time options string control section.

� LD-type entries for all names of entry points to the external procedure.

� ER-type entries for all the library subroutines and external procedures called by
the source program.

� CM-type entries for variables declared STATIC EXTERNAL without the INITIAL
attribute.

� SD-type entries for all other STATIC EXTERNAL variables and for external file
names.

� PR-type entries for all file names. For external file names, the name of the
pseudoregister is the same as the file name; for internal file names, the
compiler generates pseudoregister names.

� PR-type entries for all controlled variables. For external variables, the name of
the variable is used for the pseudoregister name; for internal variables, the
compiler generates names.

� PR-type entries for fetched entry names.

Static Internal Storage Map
The MAP option produces a Variable Offset Map. This map shows how PL/I data
items are mapped in main storage. It names each PL/I identifier, its level, its offset
from the start of the storage area in both decimal and hexadecimal form, its storage
class, and the name of the PL/I block in which it is declared.

If the LIST option is also specified a map of the static internal and external control
sections is also produced.

 Chapter 1. Using Compile-Time Options and Facilities 43

For more information about the static internal storage map and an example, see the
Language Environment for MVS & VM Debugging Guide and Run-Time Messages.

 Object Listing
If the option LIST applies, the compiler generates a listing of the machine
instructions of the object module, including any compiler-generated subroutines, in
a form similar to assembler language.

For more information about the object listing and an example, see the Language
Environment for MVS & VM Debugging Guide and Run-Time Messages.

 Messages
If the preprocessor or the compiler detects an error, or the possibility of an error,
they generate messages. Messages generated by the preprocessor appear in the
listing immediately after the listing of the statements processed by the
preprocessor. You can generate your own messages in the preprocessing stage
by use of the %NOTE statement. Such messages might be used to show how
many times a particular replacement had been made. Messages generated by the
compiler appear at the end of the listing. All messages are graded according to
their severity, as follows:

I An information message that calls attention to a possible inefficiency in the
program or gives other information generated by the compiler.

W A warning message that calls attention to a possible error, although the
statement to which it refers is syntactically valid.

E An error message that describes an error detected by the compiler for which
the compiler applied a fix-up with confidence. The resulting program will run,
and it will probably give correct results.

S A severe error message that specifies an error detected by the compiler for
which the compiler cannot apply a fix-up with confidence. The resulting
program will run but will not give correct results.

U An unrecoverable error message that describes an error that forces
termination of the compilation.

The compiler only lists messages that have a severity equal to or greater than that
specified by the FLAG option, as shown in Table 8 on page 45.

Each message is identified by an eight-character code of the form IELnnnnI, where:

� The first three characters IEL identify the message as coming from the
compiler.

� The next four characters, nnnn, are a four-digit message number.

� The last character, I, is an operating system code for the operator indicating
that the message is for information only.

The text of each message, an explanation, and any recommended programmer
response, are given in the PL/I for MVS & VM Compile-Time Messages and Codes.

44 PL/I for MVS & VM Programming Guide

Table 8. Using the FLAG Option To
Select the Lowest Message Severity
Listed

Type of Message Option

Information FLAG(I)
Warning FLAG(W)
Error FLAG(E)
Severe Error FLAG(S)
Unrecoverable Error Always listed

 Return Codes
For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved. For
MVS, this code appears in the end-of-step message that follows the listing of the
job control statements and job scheduler messages for each step. The meaning of
the codes are given in Table 9.

Table 9. Return Codes from Compilation of a PL/I Program

Return
code Description

0000 No error detected; compilation completed, successful execution anticipated.

0004 Warning; possible error detected; compilation completed, execution probable.

0008 Error detected; compilation completed; successful execution probable.

0012 Severe error detected; compilation not necessarily completed; successful execution
improbable.

0016 Unrecoverable error detected; compilation terminated abnormally; successful execution
impossible.

 Chapter 1. Using Compile-Time Options and Facilities 45

Chapter 2. Using PL/I Cataloged Procedures under MVS

This chapter describes the standard cataloged procedures supplied by IBM for use
with the IBM PL/I for MVS & VM compiler. It explains how to invoke them, and

| how to temporarily or permanently modify them. You must be linked to Language
| Environment befor using any of the catalogued procedures described in this
| chapter.

A cataloged procedure is a set of job control statements stored in a library. A
cataloged procedure includes one or more EXEC statements, each of which can be
followed by one or more DD statements. You can retrieve the statements by
naming the cataloged procedure in the PROC parameter of an EXEC statement in
the input stream.

You can use cataloged procedures to save time and reduce Job Control Language
errors. If the statements in a cataloged procedure do not match your requirements
exactly, you can easily modify them or add new statements for the duration of a
job. You should review these procedures and modify them to obtain the most
efficient use of the facilities available and to allow for your own conventions.

IBM-Supplied Cataloged Procedures
The PL/I cataloged procedures supplied for use with the IBM PL/I for MVS & VM
are:

IEL1C Compile only
IEL1CL Compile and link-edit
IEL1CLG Compile, link-edit, and run
IEL1CG Compile, load and run

The information in this section describes the procedure steps of the different
cataloged procedures. For a description of the individual statements for compiling
and link editing, see “Using JCL during Compilation” on page 64 and the Language
Environment for MVS & VM Programming Guide. These cataloged procedures do
not include a DD statement for the input data set; you must always provide one.
The example shown in Figure 6 on page 47 illustrates the JCL statements you
might use to invoke the cataloged procedure IEL1CLG to compile, link-edit, and run
a PL/I program.

Note: The IBM PL/I for MVS & VM requires a minimum REGION size of 512K.
Large programs require more storage. If you do not specify REGION on the EXEC
statement that invokes the cataloged procedure you are running, the compiler uses
the default REGION size for your site. The default size might or might not be
adequate, depending on the size of your PL/I program. For an example of
specifying REGION on the EXEC statement, see Figure 6 on page 47.

46 Copyright IBM Corp. 1964, 1995

 //COLEGO JOB

 //STEP1 EXEC IEL1CLG, REGION.PLI=1M

 //PLI.SYSIN DD \

 .

 .

 .

(insert PL/I program to be compiled here)

 .

 .

 .

 /\

Figure 6. Invoking a Cataloged Procedure

Compile Only (IEL1C)
This cataloged procedure, shown in Figure 7 on page 48, includes only one
procedure step, in which the options specified for the compilation are OBJECT and
NODECK. (IEL1AA is the symbolic name of the compiler.) In common with the
other cataloged procedures that include a compilation procedure step, IEL1C does
not include a DD statement for the input data set; you must always supply an
appropriate statement with the qualified ddname PLI.SYSIN.

The OBJECT option causes the compiler to place the object module, in a syntax
suitable for input to the linkage editor, in the standard data set defined by the DD
statement with the name SYSLIN. This statement defines a temporary data set
named &&LOADSET on a sequential device; if you want to retain the object module
after the end of your job, you must substitute a permanent name for &&LOADSET
(that is, a name that does not start with &&) and specify KEEP in the appropriate
DISP parameter for the last procedure step that used the data set. You can do this
by providing your own SYSLIN DD statement, as shown below. The data set name
and disposition parameters on this statement will override those on the IEL1C
procedure SYSLIN DD statement. In this example, the compile step is the only
step in the job.

//PLICOMP EXEC IEL1C

//PLI.SYSLIN DD DSN=MYPROG,DISP=(MOD,KEEP)

 //PLI.SYSIN DD ...

The term MOD in the DISP parameter in Figure 7 on page 48 allows the compiler
to place more than one object module in the data set, and PASS ensures that the
data set is available to a later procedure step providing a corresponding DD
statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 250 eighty-byte
records and, if necessary, 15 further allocations of 100 records (a total of 1750
records).

 Chapter 2. Using PL/I Cataloged Procedures under MVS 47

//IEL1C PROC LNGPRFX='IEL.V1R1M1',LIBPRFX='CEE.V1R4Mð', ððð1ðððð

// SYSLBLK=32ðð ððð2ðððð

//\ ððð3ðððð

//\\ ððð4ðððð

//\ \ ððð5ðððð

//\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ðððð

//\ \ ððð7ðððð

//\ 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 \ ððð8ðððð

//\ ALL RIGHTS RESERVED \ ððð9ðððð

//\ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, \ ðð1ððððð

//\ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA \ ðð11ðððð

//\ ADP SCHEDULE CONTRACT WITH IBM CORP. \ ðð12ðððð

//\ \ ðð13ðððð

//\ SEE COPYRIGHT INSTRUCTIONS \ ðð14ðððð

//\ \ ðð15ðððð

//\\ ðð16ðððð

//\ ðð17ðððð

//\ IBM PL/I FOR MVS & VM ðð18ðððð

//\ ðð19ðððð

//\ COMPILE A PL/I PROGRAM ðð2ððððð

//\ ðð21ðððð

//\ RELEASE LEVEL: ð1.ð1.ð1 (VERSION.RELEASE.MODIFICATION LEVEL) ðð22ðððð

//\ ðð23ðððð

//\ PARAMETER DEFAULT VALUE USAGE ðð24ðððð

//\ LNGPRFX IEL.V1R1M1 PREFIX FOR LANGUAGE DATA SET NAMES ðð25ðððð

//\ LIBPRFX CEE.V1R4Mð PREFIX FOR LIBRARY DATA SET NAMES ðð26ðððð

//\ SYSLBLK 32ðð BLKSIZE FOR OBJECT DATA SET ðð27ðððð

//\ ðð28ðððð

//PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K ðð29ðððð

//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR ðð3ððððð

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð31ðððð

//SYSPRINT DD SYSOUT=\ ðð32ðððð

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, ðð33ðððð

// SPACE=(8ð,(25ð,1ðð)),DCB=(BLKSIZE=&SYSLBLK) ðð34ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, ðð35ðððð

// SPACE=(1ð24,(2ðð,5ð),,CONTIG,ROUND),DCB=BLKSIZE=1ð24 ðð36ðððð

Figure 7. Cataloged Procedure IEL1C

Compile and Link-Edit (IEL1CL)
This cataloged procedure, shown in Figure 8 on page 49, includes two procedure
steps: PLI, which is identical to cataloged procedure IEL1C, and LKED, which
invokes the linkage editor (symbolic name IEWL) to link-edit the object module
produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC statement LKED specifies that this
procedure step should be bypassed if the return code produced by the compiler is
greater than 8 (that is, if a severe or unrecoverable error occurs during
compilation).

48 PL/I for MVS & VM Programming Guide

//IEL1CL PROC LNGPRFX='IEL.V1R1M1',LIBPRFX='CEE.V1R4Mð', ððð1ðððð

// SYSLBLK=32ðð,GOPGM=GO ððð2ðððð

//\ ððð3ðððð

//\\ ððð4ðððð

//\ \ ððð5ðððð

//\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ðððð

//\ \ ððð7ðððð

//\ 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 \ ððð8ðððð

//\ ALL RIGHTS RESERVED \ ððð9ðððð

//\ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, \ ðð1ððððð

//\ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA \ ðð11ðððð

//\ ADP SCHEDULE CONTRACT WITH IBM CORP. \ ðð12ðððð

//\ \ ðð13ðððð

//\ SEE COPYRIGHT INSTRUCTIONS \ ðð14ðððð

//\ \ ðð15ðððð

//\\ ðð16ðððð

//\ ðð17ðððð

//\ IBM PL/I FOR MVS & VM ðð18ðððð

//\ ðð19ðððð

//\ COMPILE AND LINK EDIT A PL/I PROGRAM ðð2ððððð

//\ ðð21ðððð

//\ RELEASE LEVEL: ð1.ð1.ð1 (VERSION.RELEASE.MODIFICATION LEVEL) ðð22ðððð

//\ ðð23ðððð

//\ PARAMETER DEFAULT VALUE USAGE ðð24ðððð

//\ LNGPRFX IEL.V1R1M1 PREFIX FOR LANGUAGE DATA SET NAMES ðð25ðððð

//\ LIBPRFX CEE.V1R4Mð PREFIX FOR LIBRARY DATA SET NAMES ðð26ðððð

//\ SYSLBLK 32ðð BLKSIZE FOR OBJECT DATA SET ðð27ðððð

//\ GOPGM GO MEMBER NAME FOR LOAD MODULE ðð28ðððð

//\ ðð29ðððð

//PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K ðð3ððððð

//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR ðð31ðððð

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð32ðððð

//SYSPRINT DD SYSOUT=\ ðð33ðððð

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, ðð34ðððð

// SPACE=(8ð,(25ð,1ðð)),DCB=(BLKSIZE=&SYSLBLK) ðð35ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, ðð36ðððð

// SPACE=(1ð24,(2ðð,5ð),,CONTIG,ROUND),DCB=BLKSIZE=1ð24 ðð37ðððð

//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=512K ðð38ðððð

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR ðð39ðððð

//SYSPRINT DD SYSOUT=\ ðð4ððððð

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) ðð41ðððð

// DD DDNAME=SYSIN ðð42ðððð

//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSDA, ðð43ðððð

// SPACE=(1ð24,(5ð,2ð,1)) ðð44ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð)), ðð45ðððð

// DCB=BLKSIZE=1ð24 ðð46ðððð

//SYSIN DD DUMMY ðð47ðððð

Figure 8. Cataloged Procedure IEL1CL

The linkage editor always places the load modules it creates in the standard data
set defined by the DD statement with the name SYSLMOD. This statement in the
cataloged procedure specifies a new temporary library &&GOSET, in which the
load module will be placed and given the member name GO (unless you specify
the NAME compile-time option for the compiler procedure step). In specifying a
temporary library, the cataloged procedure assumes that you will run the load
module in the same job; if you want to retain the module, you must substitute your
own statement for the DD statement with the name SYSLMOD.

The SYSLIN DD statement in Figure 8 shows how to concatenate a data set
defined by a DD statement named SYSIN with the primary input (SYSLIN) to the
linkage editor. You could place linkage editor control statements in the input
stream by this means, as described in the Language Environment for MVS & VM
Programming Guide.

 Chapter 2. Using PL/I Cataloged Procedures under MVS 49

Compile, Link-Edit, and Run (IEL1CLG)
This cataloged procedure, shown in Figure 9, includes three procedure steps: PLI,
LKED, and GO. PLI and LKED are identical to the two procedure steps of IEL1CL,
and GO runs the load module created in the step LKED. The GO step is executed
only if no severe or unrecoverable errors occurred in the preceding procedure
steps.

Input data for the compilation procedure step should be specified in a DD statement
with the name PLI.SYSIN, and for the GO step in a DD statement with the name
GO.SYSIN.

//IEL1CLG PROC LNGPRFX='IEL.V1R1M1',LIBPRFX='CEE.V1R4Mð', ððð1ðððð

// SYSLBLK=32ðð,GOPGM=GO ððð2ðððð

//\ ððð3ðððð

//\\ ððð4ðððð

//\ \ ððð5ðððð

//\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ðððð

//\ \ ððð7ðððð

//\ 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 \ ððð8ðððð

//\ ALL RIGHTS RESERVED \ ððð9ðððð

//\ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, \ ðð1ððððð

//\ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA \ ðð11ðððð

//\ ADP SCHEDULE CONTRACT WITH IBM CORP. \ ðð12ðððð

//\ \ ðð13ðððð

//\ SEE COPYRIGHT INSTRUCTIONS \ ðð14ðððð

//\ \ ðð15ðððð

//\\ ðð16ðððð

//\ ðð17ðððð

//\ IBM PL/I FOR MVS & VM ðð18ðððð

//\ ðð19ðððð

//\ COMPILE, LINK EDIT AND RUN A PL/I PROGRAM ðð2ððððð

//\ ðð21ðððð

//\ RELEASE LEVEL: ð1.ð1.ð1 (VERSION.RELEASE.MODIFICATION LEVEL) ðð22ðððð

//\ ðð23ðððð

//\ PARAMETER DEFAULT VALUE USAGE ðð24ðððð

//\ LNGPRFX IEL.V1R1M1 PREFIX FOR LANGUAGE DATA SET NAMES ðð25ðððð

//\ LIBPRFX CEE.V1R4Mð PREFIX FOR LIBRARY DATA SET NAMES ðð26ðððð

//\ SYSLBLK 32ðð BLKSIZE FOR OBJECT DATA SET ðð27ðððð

//\ GOPGM GO MEMBER NAME FOR LOAD MODULE ðð28ðððð

//\ ðð29ðððð

//PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K ðð3ððððð

//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR ðð31ðððð

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð32ðððð

//SYSPRINT DD SYSOUT=\ ðð33ðððð

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, ðð34ðððð

// SPACE=(8ð,(25ð,1ðð)),DCB=(BLKSIZE=&SYSLBLK) ðð35ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, ðð36ðððð

// SPACE=(1ð24,(2ðð,5ð),,CONTIG,ROUND),DCB=BLKSIZE=1ð24 ðð37ðððð

//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=512K ðð38ðððð

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR ðð39ðððð

//SYSPRINT DD SYSOUT=\ ðð4ððððð

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) ðð41ðððð

// DD DDNAME=SYSIN ðð42ðððð

//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSDA, ðð43ðððð

// SPACE=(1ð24,(5ð,2ð,1)) ðð44ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð)), ðð45ðððð

// DCB=BLKSIZE=1ð24 ðð46ðððð

//SYSIN DD DUMMY ðð47ðððð

//GO EXEC PGM=\.LKED.SYSLMOD,COND=((9,LT,PLI),(9,LT,LKED)), ðð48ðððð

// REGION=2ð48K ðð49ðððð

//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð5ððððð

//SYSPRINT DD SYSOUT=\ ðð51ðððð

//CEEDUMP DD SYSOUT=\ ðð52ðððð

//SYSUDUMP DD SYSOUT=\ ðð53ðððð

Figure 9. Cataloged Procedure IEL1CLG

50 PL/I for MVS & VM Programming Guide

Compile, Load and Run (IEL1CG)
This cataloged procedure, shown in Figure 10, achieves the same results as
IEL1CLG but uses the loader instead of the linkage editor. However, instead of
using three procedure steps (compile, link-edit, and run), it has only two (compile
and load-and-run). The second procedure step runs the loader program. The
loader program processes the object module produced by the compiler and runs
the resultant executable program immediately. Input data for the compilation
procedure step requires the qualified ddname PLI.SYSIN.

The use of the loader imposes certain restrictions on your PL/I program; before
using this cataloged procedure, see Language Environment for MVS & VM
Programming Guide, which explains how to use the loader.

//IEL1CG PROC LNGPRFX='IEL.V1R1M1',LIBPRFX='CEE.V1R4Mð', ððð1ðððð

// SYSLBLK=32ðð ððð2ðððð

//\ ððð3ðððð

//\\ ððð4ðððð

//\ \ ððð5ðððð

//\ LICENSED MATERIALS - PROPERTY OF IBM \ ððð6ðððð

//\ \ ððð7ðððð

//\ 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 \ ððð8ðððð

//\ ALL RIGHTS RESERVED \ ððð9ðððð

//\ US GOVERNMENT USERS RESTRICTED RIGHTS - USE, \ ðð1ððððð

//\ DUPLICATION OR DISCLOSURE RESTRICTED BY GSA \ ðð11ðððð

//\ ADP SCHEDULE CONTRACT WITH IBM CORP. \ ðð12ðððð

//\ \ ðð13ðððð

//\ SEE COPYRIGHT INSTRUCTIONS \ ðð14ðððð

//\ \ ðð15ðððð

//\\ ðð16ðððð

//\ ðð17ðððð

//\ IBM PL/I FOR MVS & VM ðð18ðððð

//\ ðð19ðððð

//\ COMPILE, LOAD AND RUN A PL/I PROGRAM ðð2ððððð

//\ ðð21ðððð

//\ RELEASE LEVEL: ð1.ð1.ð1 (VERSION.RELEASE.MODIFICATION LEVEL) ðð22ðððð

//\ ðð23ðððð

//\ PARAMETER DEFAULT VALUE USAGE ðð24ðððð

//\ LNGPRFX IEL.V1R1M1 PREFIX FOR LANGUAGE DATA SET NAMES ðð25ðððð

//\ LIBPRFX CEE.V1R4Mð PREFIX FOR LIBRARY DATA SET NAMES ðð26ðððð

//\ SYSLBLK 32ðð BLKSIZE FOR OBJECT DATA SET ðð27ðððð

//\ GOPGM GO MEMBER NAME FOR LOAD MODULE ðð28ðððð

//\ ðð29ðððð

//PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K ðð3ððððð

//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR ðð31ðððð

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð32ðððð

//SYSPRINT DD SYSOUT=\ ðð33ðððð

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, ðð34ðððð

// SPACE=(8ð,(25ð,1ðð)),DCB=(BLKSIZE=&SYSLBLK) ðð35ðððð

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, ðð36ðððð

// SPACE=(1ð24,(2ðð,5ð),,CONTIG,ROUND),DCB=BLKSIZE=1ð24 ðð37ðððð

//GO EXEC PGM=LOADER,PARM='MAP,PRINT',COND=(9,LT,PLI), ðð38ðððð

// REGION=2ð48K ðð39ðððð

//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR ðð4ððððð

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR ðð41ðððð

//SYSPRINT DD SYSOUT=\ ðð42ðððð

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) ðð43ðððð

//SYSLOUT DD SYSOUT=\ ðð44ðððð

//CEEDUMP DD SYSOUT=\ ðð45ðððð

//SYSUDUMP DD SYSOUT=\ ðð46ðððð

Figure 10. Cataloged Procedure IEL1CG

For more information on other cataloged procedures, see the Language
Environment for MVS & VM Programming Guide.

 Chapter 2. Using PL/I Cataloged Procedures under MVS 51

Invoking a Cataloged Procedure
To invoke a cataloged procedure, specify its name in the PROC parameter of an
EXEC statement. For example, to use the cataloged procedure IEL1C, you could
include the following statement in the appropriate position among your other job
control statements in the input stream:

//stepname EXEC PROC=IEL1C

You do not need to code the keyword PROC. If the first operand in the EXEC
statement does not begin PGM= or PROC=, the job scheduler interprets it as the
name of a cataloged procedure. The following statement is equivalent to that given
above:

//stepname EXEC IEL1C

If you include the parameter MSGLEVEL=1 in your JOB statement, the operating
system will include the original EXEC statement in its listing, and will add the
statements from the cataloged procedure. In the listing, cataloged procedure
statements are identified by XX or X/ as the first two characters; X/ signifies a
statement that was modified for the current invocation of the cataloged procedure.

You might be required to modify the statements of a cataloged procedure for the
duration of the job step in which it is invoked, either by adding DD statements or by
overriding one or more parameters in the EXEC or DD statements. For example,
cataloged procedures that invoke the compiler require the addition of a DD
statement with the name SYSIN to define the data set containing the source
statements. Also, whenever you use more than one standard link-edit procedure
step in a job, you must modify all but the first cataloged procedure that you invoke
if you want to run more than one of the load modules.

Specifying Multiple Invocations
You can invoke different cataloged procedures, or invoke the same cataloged
procedure several times, in the same job. No special problems are likely to arise
unless more than one of these cataloged procedures involves a link-edit procedure
step, in which case you must take the following precautions to ensure that all your
load modules can be run.

When the linkage editor creates a load module, it places the load module in the
standard data set defined by the DD statement with the name SYSLMOD. In the
absence of a linkage editor NAME statement (or the NAME compile-time option), it
uses the member name specified in the DSNAME parameter as the name of the
module. In the standard cataloged procedures, the DD statement with the name
SYSLMOD always specifies a temporary library &&GOSET with the member name
GO.

If you use the cataloged procedure IEL1CLG twice within the same job to compile,
link-edit, and run two PL/I programs, and do not name each of the two load
modules that the linkage editor creates, the first load module runs twice, and the
second one not at all.

52 PL/I for MVS & VM Programming Guide

To prevent this, use one of the following methods:

� Delete the library &&GOSET at the end of the GO step. In the first invocation
of the cataloged procedure at the end of the GO step, add a DD statement with
the syntax:

//GO.SYSLMOD DD DSN=&&GOSET,

 // DISP=(OLD,DELETE)

� Modify the DD statement with the name SYSLMOD in the second and
subsequent invocations of the cataloged procedure so as to vary the names of
the load modules.
For example:

//LKED.SYSLMOD DD DSN=&&GOSET(GO1)

and so on.

� Use the NAME compile-time option to give a different name to each load
module and change each job step EXEC statement to specify the running of
the load module with the name for that job step.

� Use the NAME linkage editor option to give a different name to each load
module and change each job step EXEC statement to specify the running of
the load module with the name for that job step.

Note: To assign a membername to the load module, you can use either the
compile-time or linkage editor NAME option with the DSNAME parameter on the
SYSLMOD DD statement. When you use this procedure, the membername must
be identical to the name on the NAME option if the EXEC statement that runs the
program refers to the SYSLMOD DD statement for the name of the module to be
run.

Another option is to give each program a different name by using GOPGM on the
EXEC procedure statement. For example:

 // EXEC IEL1CLG,GOPGM=GO2

Link-Editing Multitasking Programs
When you use a cataloged procedure to link-edit a multitasking program, the load

| module must include the multitasking versions of the PL/I library subroutines.

| To ensure that the multitasking library (SYS1.SIBMTASK) is searched before the
| base library, include the parameter LKLBDSN='SYS1.SIBMTASK' in the EXEC

statement that invokes the cataloged procedure.

For example:

| //STEPA EXEC IEL1CLG,LKLBDSN='SYS1.PLITASK'

In the standard cataloged procedures the DD statement SYSLIB is always followed
by another, unnamed, DD statement that includes the parameter

| DSNAME=SYS1.SCEELKED. The effect of this statement is to concatenate the
| base library with the multitasking library. When LKLBDSN=SYS1.SIBMBASE is

specified, the second DD statement has no effect.

 Chapter 2. Using PL/I Cataloged Procedures under MVS 53

Modifying the PL/I Cataloged Procedures
You can modify a cataloged procedure temporarily by including parameters in the
EXEC statement that invokes the cataloged procedure, or by placing additional DD
statements after the EXEC statement. Temporary modifications apply only for the
duration of the job step in which the procedure is invoked. They do not affect the
master copy of the cataloged procedure in the procedure library.

Temporary modifications can apply to EXEC or DD statements in a cataloged
procedure. To change a parameter of an EXEC statement, you must include a
corresponding parameter in the EXEC statement that invokes the cataloged
procedure. To change one or more parameters of a DD statement, you must
include a corresponding DD statement after the EXEC statement that invokes the
cataloged procedure. Although you cannot add a new EXEC statement to a
cataloged procedure, you can always include additional DD statements.

 EXEC Statement
If a parameter of an EXEC statement that invokes a cataloged procedure has an
unqualified name, the parameter applies to all the EXEC statements in the
cataloged procedure. The effect on the cataloged procedure depends on the
parameters, as follows:

� PARM applies to the first procedure step and nullifies any other PARM
parameters.

� COND and ACCT apply to all the procedure steps.

� TIME and REGION apply to all the procedure steps and override existing
values.

For example, the statement:

//stepname EXEC IEL1CLG,PARM='SIZE(MAX)',REGION=512K

� Invokes the cataloged procedure IEL1CLG.

� Substitutes the option SIZE(MAX) for OBJECT and NODECK in the EXEC
statement for procedure step PLI.

� Nullifies the PARM parameter in the EXEC statement for procedure step LKED.

� Specifies a region size of 512K for all three procedure steps.

To change the value of a parameter in only one EXEC statement of a cataloged
procedure, or to add a new parameter to one EXEC statement, you must identify
the EXEC statement by qualifying the name of the parameter with the name of the
procedure step. For example, to alter the region size for procedure step PLI only in
the preceding example, code:

//stepname EXEC PROC=IEL1CLG,PARM='SIZE(MAX)',REGION.PLI=512K

A new parameter specified in the invoking EXEC statement overrides completely
the corresponding parameter in the procedure EXEC statement.

You can nullify all the options specified by a parameter by coding the keyword and
equal sign without a value. For example, to suppress the bulk of the linkage editor
listing when invoking the cataloged procedure IEL1CLG, code:

//stepname EXEC IEL1CLG,PARM.LKED=

54 PL/I for MVS & VM Programming Guide

 DD Statement
To add a DD statement to a cataloged procedure, or to modify one or more
parameters of an existing DD statement, you must include a DD statement with the
form “procstepname.ddname” in the appropriate position in the input stream. If
“ddname” is the name of a DD statement already present in the procedure step
identified by “procstepname,” the parameters in the new DD statement override the
corresponding parameters in the existing DD statement; otherwise, the new DD
statement is added to the procedure step. For example, the statement:

//PLI.SYSIN DD \

adds a DD statement to the procedure step PLI of cataloged procedure IEL1C and
the effect of the statement:

//PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement SYSPRINT (causing the compiler listing to
be transmitted to the system output device of class C).

Overriding DD statements must appear after the procedure invocation and in the
same order as they appear in the cataloged procedure. Additional DD statements
can appear after the overriding DD statements are specified for that step.

To override a parameter of a DD statement, code either a revised form of the
parameter or a replacement parameter that performs a similar function (for
example, SPLIT for SPACE). To nullify a parameter, code the keyword and equal
sign without a value. You can override DCB subparameters by coding only those
you wish to modify; that is, the DCB parameter in an overriding DD statement does
not necessarily override the entire DCB parameter of the corresponding statement
in the cataloged procedures.

 Chapter 2. Using PL/I Cataloged Procedures under MVS 55

Chapter 3. Compiling under MVS

This chapter describes how to invoke the compiler under TSO and the job control
| statements used for compiling under MVS. You must be linked to Language
| Environment before you can compile your program.

Invoking the Compiler under TSO
The usual method of invoking the compiler is with the PLI command. In its simplest
form the command consists of the keyword and the name of the TSO data set
holding the PL/I source program. For example:

 PLI CALTROP

In addition to the data set name, you can specify the PRINT operand to control the
compiler listings, and the LIB operand to specify secondary input data sets for the
%INCLUDE statements. You can also specify compile-time options as operands of
the PLI command.

The command processor for the PLI command is a program known as the PL/I
prompter. When you enter the command, this program checks the operands and
allocates the data sets required by the compiler. Then, it passes control to the
compiler and displays a message.

If the source data set has a conventional TSO data set name, you can use the
simple name, as in the example above. If not, you need to specify the full name
and enclose it in single quotation marks:

 PLI 'DIANTHUS'

or

 PLI 'JJONES.ERICA.PLI'

The compiler translates the source program into object modules, which it stores on
external data sets. You can link-edit and run these object modules
conversationally.

If you use an unqualified data set name, as in the example at the start of this
section, the system generates a name for the object module data set. It takes the
simple name of the source data set—CALTROP in the example—and adds your
user-identification and the descriptive qualifier OBJ. Hence, if the user who entered
the example PLI command had the identification WSMITH, the object module would
be written onto a data set called WSMITH.CALTROP.OBJ.

You can make your own choice of name for the object module data set by including
the OBJECT compile-time option as an operand of the PLI command. For
example:

PLI CALTROP OBJECT(TRAPA)

The system adds the same qualifiers to this name as it does to the source data set
simple name, so the object module is written onto a data set, in this example,
called WSMITH.TRAPA.OBJ.

56 Copyright IBM Corp. 1964, 1995

You can specify the full name of the object module data set by enclosing it in
quotation marks. For example:

PLI CALTROP OBJECT('NATANS')

The system in this case adds no qualifiers, so the object module is stored on a
data set called NATANS.

You can specify a full name to store the object module with another user's
user-identification. For instance, the following command would store the object
module using the user-identification JJONES:

PLI CALTROP OBJECT('JJONES.CALTROP.OBJ')

An alternative to the PLI command is the RUN command or subcommand.

Allocating Data Sets
The compiler requires the use of a number of data sets in order to process a PL/I
program. These are listed in Table 10 on page 58. The following data sets are
always required by the compiler:

� The data set holding the PL/I program
� A data set for the compiler listing.

Up to six data sets, including the above two, can be required, depending on which
compile-time options have been specified.

These data sets must be allocated before the compiler can use them. If you use
the PLI command or the RUN command or subcommand, you invoke the compiler
via the prompter, and the prompter allocates the necessary data sets. If you invoke
the compiler without the prompter, you must allocate the necessary data sets
yourself.

When the prompter allocates compiler data sets, it uses ddnames generated by
TSO rather than the ddnames that are used in batch mode. Table 10 on page 58
includes the batch-mode ddnames of the data sets. If the compiler is invoked via
the prompter, you cannot refer to the data sets by these names. To control the
allocation of compiler data sets, you need to use the appropriate operand of the PLI
command. For instance, to allocate the standard output file (ddname SYSPRINT in
batch mode) to the terminal, you should use the PRINT(*) operand of the PLI
command. You cannot make the allocation by using the ALLOCATE command with
FILE(SYSPRINT) and DATASET(*) operands. Table 10 on page 58 shows which
operands to use for those data sets whose allocation you can control.

When the prompter is not invoked, the batch-mode ddnames are recognized as
referring to the compiler data sets.

 Chapter 3. Compiling under MVS 57

Table 10. Compiler Data Sets

Data set (and
batch-mode
ddname)

When required Where to
specify data
set in PLI
command

Descriptive
qualifier

Allocated
by

Parameters
used by
prompter 1

SPACE=2

Parameters
used by
prompter 1

DISP=3

Primary input
(SYSCIN or
SYSIN)

Always 1st operand PLI Prompter —4 SHR

Temporary work
data set (SYSUT1)

When large
program spills
internal text
pages

Cannot
specify

— Prompter (1024,(60,60)) (NEW,DELETE)

Compiler listing
(SYSPRINT)

Always Argument of
PRINT
operand

LIST Prompter (629,(n,m)) (OLD,KEEP) or5

(NEW,CATLG)

Object module
(SYSLIN)

When OBJECT
option applies

1st
argument of
OBJECT
operand

OBJ Prompter,
when
required6

(400,(50,50)) (OLD,KEEP) or
(NEW,CATLG)

Object module or
preprocessor
output in card
format
(SYSPUNCH)

When either
DECK or
MACRO and
MDECK
options apply

Argument of
MDECK
DECK
operand

DECK or
MACRO
and
MDECK

Prompter,
when
required6

(400,(50,50)) (OLD,KEEP) or
(NEW,CATLG)

Secondary input to
preprocessor
(SYSLIB)7

When
&INCLUDE
files are used

Arguments
of LIB
operand

INCLUDE
or MACRO

Prompter,
when
required

—7 SHR

Notes:

1. Unit is determined by entry in User Attribute Data Set.

2. These space allocations apply only if the data set is new. The first argument of the SPACE parameter establishes the block
size. For the SYSUT1, SYSPRINT, SYSLIN, and SYSPUNCH data sets, the record format, record length, and number of buffers
are established by the compiler when it opens the data sets.

3. The prompter first tries to allocate the SYSPRINT, SYSLIN, and SYSPUNCH data sets with DISP=(OLD,KEEP). This will cause
any existing data set (or partitioned data set member) with the same name to be replaced with the new one. If the data set
name cannot be found in the system catalog, the data set is allocated with DISP=(NEW,CATLG).

4. The data set already exists; therefore, SPACE (and also UNI T) are already established.

5. DISP parameter used only if PRINT(dsname) operand applies. Otherwise, prompter supplies the following parameters:

TERM=TS if PRINT(*) operand applies
DUMMY if NOPRINT operand applies
SYSOUT if SYSPRINT operand applies.

6. Except when the associated option has been specified by means of a %PROCESS statement. In this case, the data set(s) must
be allocated by the user.

7. If any ddnames are specified in %INCLUDE statements, allocate the data sets with the ALLOCATE statement.

58 PL/I for MVS & VM Programming Guide

Using the PLI Command
Use the PLI command to compile a PL/I program. The command invokes the PL/I
prompter to process the operands and call the compiler, according to the syntax
shown in the following table:

data-set-name
specifies the name of the primary input data set for the compiler.
This can be either a fully qualified name (enclosed in single
quotation marks) or a simple name (for which the prompter adds
the identification qualifier, and the descriptive qualifier PLI). This
must be the first operand specified.

option-list specifies one or more compile-time options that apply for this
compilation.

The compile-time options that you can specify in a TSO
environment are described later in this section. Programmers
familiar with batch processing should note that defaults are altered
for TSO, and that the DECK, MDECK, and OBJECT options are
extended to allow specific names of data sets onto which the
output is written.

Separate the options by at least one blank or one comma; you can
add any number of extra blanks. The order of the options is
unimportant. In fact, the PRINT/NOPRINT and LIB operands can
be interspersed in the option-list since they are recognized by their
keywords. If two contradictory options are specified, the last is
accepted and the first ignored.

Options specified in the PLI command can be overridden by
options specified on the %PROCESS compiler control statements
in the primary input. If the DECK, MDECK, and OBJECT options
are required for any program in a batched compilation, the option
should be specified in the PLI command so that the prompter
allocates the required data sets. The negative forms can then be
used on the %PROCESS statements for the programs that do not
require the option. The options are described below.

DECK[(dsname)]: This can be a fully qualified name (enclosed in
single quotation marks) or a simple name (to which the user
identification and descriptive qualifier DECK is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier DECK is added. If dsname is not specified and
the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated

Table 11. Syntax of the PLI Command

COMMAND OPERANDS

PLI data-set-name

[option-list]

 PRINT[(\)|

 (dsname[,[n][,m]])]

 SYSPRINT[(sysout-class[,[n][,m]])]

 NOPRINT

[LIB(dslist)]

 Chapter 3. Compiling under MVS 59

data set name is based on the name of the partitioned data set.
For more information on this option see DECK on page 10.

MDECK[(dsname)]: This can be a fully qualified name (enclosed
in single quotation marks) or a simple name (to which the user
identification and descriptive qualifier MDECK is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier MDECK are added. If dsname is not specified
and the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated
data set name is based on the name of the partitioned data set.
For more information on this option, see MDECK on page 17.

OBJECT [(dsname)]: This can be a fully qualified name (enclosed
in single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier OBJ is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier OBJ are added. If dsname is not specified and
the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated
data set name is based on the name of the partitioned data set.
For more information on this option, see OBJECT on page 19.

PRINT(*) specifies that the compiler listing, on the SYSPRINT file, is written
at the terminal; no other copy will be available. The PRINT(*)
operand is implemented by generating a TERMINAL option with a
list of options which correspond to the listings printed at the
terminal. If you specify the TERMINAL option after the PRINT(*)
operand, this overrides the TERMINAL option generated by the
PRINT(*) operand.

PRINT(dsname[,[n][,m]])
specifies that the compiler listing, on the SYSPRINT file, is written
on the data set named in parentheses. This can be either a fully
qualified name (enclosed in single quotation marks) or a simple
name (for which the prompter adds the identification qualifier, and
the description qualifier LIST).

If you do not specify a dsname argument for the PRINT operand,
the prompter adds the identification and descriptive qualifiers to the
data set name specified in the first operand, producing a data set
name of the form:

 user-identification.user-supplied-name.LIST

If dsname is not specified and the first operand of PLI specifies a
member of a partitioned data set, the member name is
ignored—the generated data set name is based on the name of the
partitioned data set.

In this command, n and m specify the space allocation in lines for
the listing data set. They should be used when the size of the
listing has caused a B37 abend during compilation.

n specifies the number of lines in the primary allocation.

m specifies the number of lines in the secondary allocation.

60 PL/I for MVS & VM Programming Guide

If n is omitted, the preceding comma must be included. For
example, to enter only the size of the secondary allocation and
accept the default for the primary, you would enter:

 PRINT(printds,,5ðð)

The space allocation used if n and m are not specified is the
allocation specified during compiler installation.

SYSPRINT [(sysout-class[,[n][,m]])]
specifies that the compiler listing, on the SYSPRINT file, is to be
written to the sysout class named in parentheses. If no class is
specified, the output is written to a default sysout class. The
IBM-supplied standard for this default is class A. For an
explanation of the n and m see the “PRINT” operand above.

NOPRINT specifies that the compiler listing is not produced on the SYSPRINT
file. You can still get most of the listing written at the terminal by
using the TERMINAL compile-time option.

LIB(dslist) specifies one or more data sets that are used as the secondary
input to the preprocessor. These data sets are concatenated in the
order specified and then associated with the ddname in the
%INCLUDE statement in the PL/I program. You must allocate the
data sets associated with that ddname yourself.

The data set names can be either fully qualified (each enclosed in
single quotation marks) or simple names (for which the prompter
adds the identification qualifier, but no descriptive qualifier).

Separate the data set names by at least one blank or one comma;
you can add any number of extra blanks.

If you use the LIB operand, either the INCLUDE or the MACRO
compile-time option must also apply.

The following examples give an operation to be performed and the
known variables, and show you how to enter the command to
perform that particular function.

 Example 1

Operation: Invoke the compiler to process a PL/I program.

Known: – User-identification is ABC.

– Data set containing the program is named

 ABC.UPDATE.PLI.

– SYSPRINT file is to be directed to the terminal.

– Default options and data set names are to be used.

Command: PLI UPDATE PRINT(\)

 Chapter 3. Compiling under MVS 61

 Example 2

Operation: Invoke the compiler to process a PL/I program.

Known: – User-identification is XYZ.

– Data set containing the program is named

 ABC.MATRIX.PLI.

– SYSPRINT file is to be written on a data set named

 MATLIST.

– MACRO and MDECK options are required, with the

associated output to be written on a data set named

 MATCARD.

– Secondary input to preprocessor to be read from

a library named XYZ.SOURCE.

– Otherwise default options and data set names

are to be used.

Command: PLI 'ABC.MATRIX.PLI' +

 PRINT('MATLIST'),MACRO,MDECK('MATCARD'), +

 LIB(SOURCE)

 Compiler Listings
In conversational mode, as in batch mode, compile-time options control which
listings the compiler produces (see Chapter 1, “Using Compile-Time Options and
Facilities” on page 5). You can specify the options as operands of the PLI
command.

In addition to specifying which listings are to be produced, you need to indicate
where they are to be transmitted. If you wish to have them displayed at the
terminal, you can specify either the PRINT(*) operand, which allocates the compiler
listing file to the terminal, or the TERMINAL option. The latter should contain a list
of the options corresponding to the listings you require at the terminal. For
instance, to produce a source listing at the terminal, you could enter either:

PLI CALTROP PRINT(\) SOURCE

or:

PLI CALTROP TERM(SOURCE)

Compiler listings can be directed to a data set by specifying the PRINT operand
with the data set's name, or to a SYSOUT class by specifying the SYSPRINT
operand. For further details see “Using the Compiler Listing” on page 33 and
“Listing (SYSPRINT)” on page 67.

Using %INCLUDE under TSO
In conversational mode, as in batch mode, you can incorporate PL/I source code
into your program by means of the %INCLUDE statement. This statement names
members of partitioned data sets that hold the code to be included. You can create
these secondary input data sets either under TSO or in batch mode.

To use %INCLUDE you must specify the MACRO or INCLUDE compile-time option.

62 PL/I for MVS & VM Programming Guide

The %INCLUDE statement can specify simply the name of the data set member
that holds the text to be included. For instance:

 %INCLUDE RECDCL;

It can also specify a ddname that is associated with the member. For example:

%INCLUDE STDCL (F726);

STDCL is the ddname, and F726 is the member name. A single %INCLUDE
statement can specify several data set members, and can contain both forms of
specification. For example:

 %INCLUDE SUBA(READ5),SUBC(REPORT1),DATEFUNC;

Allocating Data Sets in %INCLUDE
All data sets containing secondary input must be allocated before the compiler is
invoked. If a data set member is specified in an %INCLUDE statement without a
ddname, the data set can be allocated by specifying the data set name in the LIB
operand of the PLI command. (This operand is the equivalent of the batch-mode
SYSLIB DD statement.) The necessary allocation is made by the PL/I prompter.

If a ddname has been specified in the %INCLUDE statement, the corresponding
data set must be allocated by means of either an ALLOCATE command or the
logon procedure.

Suppose the data set members specified in the %INCLUDE statements in the
preceding section are held on data sets as follows (the ddname used in the
%INCLUDE statement is also shown):

Member: Data Set Name: DDNAME:

RECDCL LDSRCE none

 F726 WPSRCE STDCL

 READ5 JESRCE SUBA

REPORT GHSRCE SUBC

 DATEFUNC DRSRCE none

Then the necessary data sets could be allocated by the following commands:

ALLOCATE FILE(STDCL) DATASET(WPSRCE)

ALLOCATE FILE(SUBA) DATASET(JESRCE)

ALLOCATE FILE(SUBC) DATASET(GHSRCE)

PLI MNTHCOST LIB(LDSRCE,DRSRCE) INCLUDE

Running Jobs in a Background Region
If you have the necessary authorization, you can submit jobs for processing in a
background region. Your installation must record the authorization in your UADS
(User Attribute Data Set) entry.

 Chapter 3. Compiling under MVS 63

Jobs are submitted by means of the SUBMIT command. The command must
include the name of the data set holding the job or jobs to be processed, and the
data set must contain the necessary Job Control Language statements. Jobs will
run under the same version of the operating system as is used for TSO. Output
from the jobs can be manipulated from your terminal.

Further details about submitting background jobs are given in the manual TSO
Terminal User's Guide.

Using JCL during Compilation
Although you will probably use cataloged procedures rather than supply all the job
control required for a job step that invokes the compiler, you should be familiar with
these statements so that you can make the best use of the compiler and, if
necessary, override the statements of the cataloged procedures.

The IBM-supplied cataloged procedures that include a compilation procedure step
are:

IEL1C Compile only
IEL1CL Compile and link-edit
IEL1CLG Compile, link-edit, and run
IEL1CG Compile, load and run

The following paragraphs describe the job control statements needed for
compilation. The IBM-supplied cataloged procedures described in “IBM-Supplied
Cataloged Procedures” on page 46 contain these statements. Therefore, you need
to code them yourself only if you are not using the cataloged procedures.

 EXEC Statement
The basic EXEC statement is:

//stepname EXEC PGM=IEL1AA

512K is required for the REGION parameter of this statement. The PARM
parameter of the EXEC statement can be used to specify one or more of the
optional facilities provided by the compiler. These facilities are described under
“Specifying Options in the EXEC Statement” on page 68. See Chapter 1, “Using
Compile-Time Options and Facilities” on page 5 for a description of the options.

DD Statements for the Standard Data Sets
The compiler requires several standard data sets, the number of data sets depends
on the optional facilities specified. You must define these data sets in DD
statements with the standard ddnames which are shown, together with other
characteristics of the data sets, in Table 12 on page 65. The DD statements
SYSIN, SYSUT1, and SYSPRINT are always required.

You can store any of the standard data sets on a direct-access device, but you
must include the SPACE parameter in the DD statement. This parameter defines
the data set to specify the amount of auxiliary storage required. The amount of
auxiliary storage allocated in the IBM-supplied cataloged procedures should suffice
for most applications.

64 PL/I for MVS & VM Programming Guide

Table 12. Compiler Standard Data Sets

Standard
DDNAME

Contents of
data set

Possible
device
classes 1

Record
format
(RECFM)2

Record
size
(LRECL)3

BLKSIZE

SYSIN (or
SYSCIN)4

Input to the compiler SYSSQ F,FB,U
VB,V

<101(100)
<105(104)

—

SYSLIN Object module SYSSQ FB 80 80

SYSPUNCH Preprocessor output,
compiler output

SYSSQ
SYSCP

FB 80 80

SYSUT1 Temporary workfile SYSDA F 4051 —

SYSPRINT Listing, including
messages

SYSSQ VBA 125 129

SYSLIB Source statements
for preprocessor

SYSDA F,FB,U
V,VB

<101
<105

—

Notes:

The only value for compile-time SYSPRINT that can be overridden is BLKSIZE.

1. The possible device classes are:

SYSSQ Sequential device
SYSDA Direct-access device
SYSCP Card-punch device.

Block size can be specified except for SYSUT1. The block size and logical record length for
SYSUT1 is chosen by the compiler.

2. If the record format is not specified in a DD statement, the default value is provided by the compiler.
(Default values are shown in italics.)

3. The numbers in parentheses in the “Record Size” column are the defaults, which you can override.

4. The compiler will attempt to obtain source input from SYSCIN if a DD statement for this data set is
provided. Otherwise it will obtain its input from SYSIN.

Input (SYSIN or SYSCIN)
Input to the compiler must be a data set defined by a DD statement with the name
SYSIN or SYSCIN. This data set must have CONSECUTIVE organization. The
input must be one or more external PL/I procedures. If you want to compile more
than one external procedure in a single job or job step, precede each procedure,
except possibly the first, with a %PROCESS statement. For further detail, see
“Compiling Multiple Procedures in a Single Job Step” on page 69.

80-byte records are commonly used as the input medium for PL/I source programs.
The input data set can be on a direct-access device, magnetic tape, or some other
sequential media. The input data set can contain either fixed-length records
(blocked or unblocked), variable-length records (coded or uncoded), or
undefined-length records. The maximum record size is 100 bytes.

When data sets are concatenated for input to the compiler, the concatenated data
sets must have similar characteristics (for example, block size and record format).

Output (SYSLIN, SYSPUNCH)
Output in the form of one or more object modules from the compiler can be stored
in either of two data sets. You can store it in the data set SYSLIN (if you specify
the OBJECT compile-time option) or in the data set SYSPUNCH (if you specify the
DECK compile-time option). Both of these data sets are defined by the DD
statement. You can specify both the OBJECT and DECK options in one program,
if the output will be stored in both data sets.

 Chapter 3. Compiling under MVS 65

The object module is always in the form of 80-byte fixed-length records, blocked or
unblocked. The data set defined by the DD statement with the name SYSPUNCH
is also used to store the output from the preprocessor if you specify the MDECK
compile-time option.

Temporary Workfile (SYSUT1)
The compiler requires a data set for use as a temporary workfile. It is defined by a
DD statement with the name SYSUT1, and is known as the spill file. It must be on
a direct-access device, and must not be allocated as a multi-volume data set.

The spill file is used as a logical extension to main storage and is used by the
compiler and by the preprocessor to contain text and dictionary information. The
LRECL and BLKSIZE for SYSUT1 is chosen by the compiler based on the amount
of storage available for spill file pages.

The DD statements given in this publication and in the cataloged procedures for
SYSUT1 request a space allocation in blocks of 1024 bytes. This is to insure that
adequate secondary allocations of direct-access storage space are acquired.

 Statement Lengths
The compiler has a restriction that any statement must fit into the compiler's work
area. The maximum size of this work area varies with the amount of space
available to the compiler. The maximum length of a statement is 3400 characters.

The DECLARE statement is an exception in that it can be regarded as a sequence
of separate statements, each of which starts wherever a comma occurs that is not
contained within parentheses. For example:

DCL 1 A,

2 B(1ð,1ð) INIT(1,2,3,...),

2 C(1ð,1ðð) INIT((1ððð)(ð)),

(D,E) CHAR(2ð) VAR,...

In this example, each line can be treated by the compiler as a separate DECLARE
statement in order to accommodate it in the work area. The compiler will also treat
the INITIAL attribute in the same way when it is followed by a list of items
separated by commas that are not contained within parentheses. Each item can
contain initial values that, when expanded, do not exceed the maximum length.
The above also applies to the use of the INITIAL attribute in a DEFAULT
statement.

If a DECLARE statement cannot be compiled, the following techniques are
suggested to overcome this problem:

� Simplify the DECLARE statement so that the compiler can treat the statement
in the manner described above.

66 PL/I for MVS & VM Programming Guide

� Modify any lists of items following the INITIAL attribute so that individual items
are smaller and separated by commas not contained in parentheses. For
example, the following declaration is followed by an expanded form of the same
declaration. The compiler can more readily accommodate the second
declaration in its work area:

1. DCL Y (1ððð) CHAR(8)

INIT ((1ððð) (8)'Y');

2. DCL Y (1ððð) CHAR(8) INIT

 ((25ð)(8)'Y',(25ð)(8)'Y',

 (25ð)(8)'Y',(25ð)(8)'Y');

 Listing (SYSPRINT)
The compiler generates a listing that includes all the source statements that it
processed, information relating to the object module, and, when necessary,
messages. Most of the information included in the listing is optional, and you can
specify those parts that you require by including the appropriate compile-time
options. The information that can appear, and the associated compile-time options,
are described under “Using the Compiler Listing” on page 33.

You must define the data set, in which you wish the compiler to store its listing, in a
DD statement with the name SYSPRINT. This data set must have CONSECUTIVE
organization. Although the listing is usually printed, it can be stored on any
sequential or direct-access device. For printed output, the following statement will
suffice if your installation follows the convention that output class A refers to a
printer:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes of main storage (129 bytes each) for two
buffers for this data set. However, you can specify a block size of more than 129
bytes, provided that sufficient main storage is available to the compiler. (For further
details of the SIZE compile-time option, see SIZE on page 22.)

Source Statement Library (SYSLIB)
If you use the preprocessor %INCLUDE statement to introduce source statements
into the PL/I program from a library, you can either define the library in a DD
statement with the name SYSLIB, or you can choose your own ddname (or
ddnames) and specify a ddname in each %INCLUDE statement. (For further
information on the preprocessor, see “Using the Preprocessor” on page 29.)

If the statements are included from a SYSLIB, they must have a form that is similar
to the %INCLUDE statement. For example, they must have the same record
format (fixed, variable, undefined), the same logical record length, and matching left
and right margins.

The BLOCKSIZE of the library must be less than or equal to 32,760 bytes.

Example of Compiler JCL
A typical sequence of job control statements for compiling a PL/I program is shown
in Figure 11 on page 68. The DECK and NOOBJECT compile-time options,
described below, have been specified to obtain an object module as a card deck
only.

 Chapter 3. Compiling under MVS 67

 //OPT4#4 JOB

 //STEP EXEC PGM=IEL1AA,PARM='DECK,NOOBJECT'

 //STEPLIB DD DSN=IEL.V1R1M1.SIELCOMP,DISP=SHR

 // DD DSN=CEE.V1R2Mð.SCEERUN,DISP=SHR

 //SYSPUNCH DD SYSOUT=B

 //SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(6ð,6ð),,CONTIG)

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD \

 /\

Figure 11. Job Control Statements for Compiling a PL/I Program Not Using Cataloged
Procedures

 Specifying Options
For each compilation, the IBM-supplied or installation default for a compile-time
option applies unless it is overridden by specifying the option in a %PROCESS
statement or in the PARM parameter of an EXEC statement.

An option specified in the PARM parameter overrides the default value, and an
option specified in a %PROCESS statement overrides both that specified in the
PARM parameter and the default value.

Note: When conflicting attributes are specified either explicitly or implicitly by the
specification of other options, the latest implied or explicit option is accepted. No
diagnostic message is issued to indicate that any options are overridden in this
way.

Specifying Options in the EXEC Statement
To specify options in the EXEC statement, code PARM= followed by the list of
options, in any order (except that CONTROL, if used, must be first) separating the
options with commas and enclosing the list within single quotation marks, for
example:

//STEP1 EXEC PGM=IEL1AA,PARM='OBJECT,LIST'

Any option that has quotation marks, for example MARGINI('c'), must have the
quotation marks duplicated. The length of the option list must not exceed 100
characters, including the separating commas. However, many of the options have
an abbreviated syntax that you can use to save space. If you need to continue the
statement onto another line, you must enclose the list of options in parentheses
(instead of in quotation marks) enclose the options list on each line in quotation
marks, and ensure that the last comma on each line except the last line is outside
of the quotation marks. An example covering all the above points is as follows:

//STEP1 EXEC PGM=IEL1AA,PARM=('AG,A',

 // 'C,ESD,F(I)',

 // 'M,MI(''X''),NEST,STG,X')

If you are using a cataloged procedure, and want to specify options explicitly, you
must include the PARM parameter in the EXEC statement that invokes it, qualifying
the keyword PARM with the name of the procedure step that invokes the compiler.
For example:

//STEP1 EXEC IEL1CLG,PARM.PLI='A,LIST,ESD'

68 PL/I for MVS & VM Programming Guide

Compiling Multiple Procedures in a Single Job Step
Batched compilation allows the compiler to compile more than one external PL/I
procedure in a single job step. The compiler creates an object module for each
external procedure and stores it sequentially either in the data set defined by the
DD statement with the name SYSPUNCH, or in the data set defined by the DD
statement with the name SYSLIN. Batched compilation can increase compiler
throughput by reducing operating system and compiler initialization overheads.

To specify batched compilation, include a compiler %PROCESS statement as the
first statement of each external procedure except possibly the first. The
%PROCESS statements identify the start of each external procedure and allow
compile-time options to be specified individually for each compilation. The first
procedure might require a %PROCESS statement of its own, because the options
in the PARM parameter of the EXEC statement apply to all procedures in the
batch, and can conflict with the requirements of subsequent procedures.

Note: The options specified in the %PROCESS statement override those specified
in the PARM parameter of the EXEC statement.

The method of coding a %PROCESS statement and the options that can be
included are described under “Specifying Options in the %PROCESS or
*PROCESS statements” on page 28. The options specified in a %PROCESS
statement apply to the compilation of the source statements between that
%PROCESS statement and the next %PROCESS statement. Options other than
these, either the defaults or those specified in the PARM field, will also apply to the
compilation of these source statements. Two options, the SIZE option and the
NAME option have a particular significance in batched compilations, and are
discussed below.

Note: OBJECT, MDECK, and DECK can cause problems if they are specified on
second or subsequent compilations but not on the first. This is because they
require the opening of SYSLIN or SYSPUNCH and there might not be room for the
associated data management routines and control blocks. When this happens,
compilation ends with a storage abend.

 SIZE Option
In a batched compilation, the SIZE specified in the first procedure of a batch (by a
%PROCESS or EXEC statement, or by default) is used throughout. If SIZE is
specified in subsequent procedures of the batch, it is diagnosed and ignored.

 NAME Option
The NAME option specifies that the compiler places a linkage editor NAME
statement as the last statement of the object module. The use of this option in the
PARM parameter of the EXEC statement, or in a %PROCESS statement,
determines how the object modules produced by a batched compilation are handled
by the linkage editor. When the batch of object modules is link-edited, the linkage
editor combines all the object modules between one NAME statement and the
preceding NAME statement into a single load module. It takes the name of the
load module from the NAME statement that follows the last object module that is
included. When combining two object modules into one load module, the NAME
option should not be used in the EXEC statement. An example of the use of the
NAME option is given in Figure 12 on page 70.

 Chapter 3. Compiling under MVS 69

 // EXEC IEL1C,PARM.PLI='LIST'

 .

 .

 .

 % PROCESS NAME('A');

ALPHA: PROC OPTIONS(MAIN);

 .

 .

 .

 END ALPHA;

 % PROCESS;

 BETA: PROC;

 .

 .

 .

 END BETA;

 % PROCESS NAME('B');

 GAMMA: PROC;

 .

 .

 .

 END GAMMA;

Figure 12. Use of the NAME Option in Batched Compilation

Compilation of the PL/I procedures ALPHA, BETA, and GAMMA, results in the
following object modules and NAME statements:

OBJECT MODULE FOR ALPHA

NAME A (R)

OBJECT MODULE FOR BETA

OBJECT MODULE FOR GAMMA

NAME B (R)

From this sequence of object modules and control statements, the linkage editor
produces two load modules, one named A containing the object module for the
external PL/I procedure ALPHA, and the other named B containing the object
modules for the external PL/I procedures BETA and GAMMA.

Note: You should not specify the option NAME if you intend to process the object
modules with the loader. The loader processes all object modules into a single
load module. If there is more than one name, the loader recognizes the first one
only and ignores the others.

Return Codes in Batched Compilation
The return code generated by a batched compilation is the highest code that is
returned if the procedures are compiled separately.

Job Control Language for Batched Processing
The only special consideration relating to JCL for batched processing refers to the
data set defined by the DD statement with the name SYSLIN. If you include the
option OBJECT, ensure that this DD statement contains the parameter
DISP=(MOD,KEEP) or DISP=(MOD,PASS). (The IBM-supplied cataloged
procedures specify DISP=(MOD,PASS).) If you do not specify DISP=MOD,
successive object modules will overwrite the preceding modules.

70 PL/I for MVS & VM Programming Guide

Examples of Batched Compilations
If the external procedures are components of a large program and need to be run
together, you can link-edit them together and run them in subsequent job steps.
Cataloged procedure IEL1CG can be used, as shown in Figure 13.

 //OPT4#13 JOB

 //STEP1 EXEC IEL1CG

 //PLI.SYSIN DD \

First PL/I source program

 % PROCESS;

Second PL/I source program

 % PROCESS;

Third PL/I source program

 /\

 //GO.SYSIN DD \

Data processed by combined

 PL/I programs

 /\

Figure 13. Example of Batched Compilation, Including Execution

If the external procedures are independent programs to be invoked individually from
a load module library, cataloged procedure IEL1CL can be used. For example, a
job that contains three compile and link-edit operations can be run as a single
batched compilation, as shown in Figure 14.

 //OPT4#14 JOB

 //STEP1 EXEC IEL1CL,

 // PARM.PLI='NAME(''PROG1'')',

 // PARM.LKED=LIST

 //PLI.SYSIN DD \

First PL/I source program

 % PROCESS NAME('PROG2');

Second PL/I source program

 % PROCESS NAME('PROG3');

Third PL/I source program

 /\

 //LKED.SYSLMOD DD DSN=PUBPGM,

 // DISP=OLD

Figure 14. Example of Batched Compilation, Excluding Execution

Correcting Compiler-Detected Errors
At compile time, both the preprocessor and the compiler can produce diagnostic
messages and listings. For information on correcting errors, see “Correcting
Compiler-Detected Errors” on page 78 in Chapter 4, “Compiling under VM.”

| The PL/I Compiler and MVS/ESA
Care should be taken when using large region sizes with the SIZE(MAX) compiler
option. SIZE(MAX) indicates that the compiler obtains as much main storage in the
region as it can. Since the compiler runs below the line, the storage obtained will
be below the line. This can cause unpredictable problems as there will not be
enough storage left for the system to use.

 Chapter 3. Compiling under MVS 71

Compiling for CICS
When coding a CICS transaction in PL/I, prior to compiling your transaction, you
must invoke the CICS Command Language Translator. You can find information
on the CICS Command Language Translator in the CICS/ESA Application
Programmer's Reference Manual. After the CICS translator step ends, compile
your PL/I program with the SYSTEM(CICS) option. NOEXECOPS is implied with
this option. For a description of the SYSTEM compile-time option, see “SYSTEM”
on page 24.

72 PL/I for MVS & VM Programming Guide

Chapter 4. Compiling under VM

This chapter explains how to use the PLIOPT command to compile your program
| under VM. You must be linked to Language Environment before using PLIOPT, or
| your program will not compile. Language Environment must always be present
| when the PL/I compiler is active. The information in the chapter includes where the

compiler stores its output, the types of files the compiler uses, and how to use the
compile-time options. There is also information on special cases. The chapter
describes how to include previously written PL/I statements with your program,
compile your program to be run under MVS, and how to have your output placed in
a TXTLIB. At the end of the chapter there are examples of PL/I batched
compilation and information on compiler-detected errors.

To compile a program under VM, use the PLIOPT command followed by the name
of the file that contains the source program. If the file type is not PLIOPT or PLI,
you must specify the file type. If the file is not on the A disk, you must also specify
the filemode naming the disk where the file is stored.

“PLIOPT Command Format” on page 76 shows the syntax for the PLIOPT
command. If you want to specify any compile-time or PLIOPT options, these must
follow the file name, file type, or file mode, whichever is the last you specified. You
must put a left parenthesis before these options. Options are separated from each
other by blanks, and you should use the abbreviated form of options.

During compilation, two new disk files are produced with the file types TEXT and
LISTING and the same file name as the file specified in the PLIOPT command.
The TEXT file contains the object code. The LISTING file contains the listings
produced during compilation. Any error messages produced are transmitted to your
terminal and contained in your listing.

If compilation reveals source program errors, you can alter the PLIOPT file that
contains the source by use of the VM editor. You can then reissue the PLIOPT
command. This results in the creation of new TEXT and LISTING files
corresponding to the newly edited source programs. If previous versions were
available they are overwritten. When you have a satisfactory compilation, you can
run the program, which is now in the form of a TEXT file.

Using the PLIOPT Command
Invoke the compiler by issuing the PLIOPT command. The compiler creates two
output files. One file contains the object code, and the other file contains the
listing. Refer to Table 3 on page 5 for a listing of compile-time options and their
IBM-supplied defaults.

Compiler Output and Its Destination
The compiler creates two new files and places them on VM disks by default.
These files have the same file name as the file that contains the source type TEXT
and the listing has the file type LISTING. Thus, if you compiled a PLIOPT file
called ROBIN you would, by default, create two more files called ROBIN TEXT
which contains the object code and ROBIN LISTING which contains the listing
information. These files would be placed on your VM disks according to the rules

 Copyright IBM Corp. 1964, 1995 73

shown in Table 13. (The relationship between VM disks is explained in the
VM/ESA: CMS User's Guide.)

It is possible to specify a name for the TEXT file other than that of the file compiled
in the PLIOPT command by specifying a filename with the OBJECT option.

The creation of the LISTING file can be suppressed by use of the NOPRINT option
of the PLIOPT command. (See “PLIOPT Command Options” on page 75.) The
creation of the TEXT file can be suppressed by use of the NOOBJECT option of
the PLIOPT command.

Table 13. The disks on Which the Compiler Output Is Stored

If the disk that contains the
PL/I source file is accessed...

then the disk that contains the
output files (TEXT, LISTING) is:

Read/Write... the disk that holds the PL/I source.

as an extension of a Read/Write disk... the Read/Write Disk.

as an extension of a Read-only Disk and the A-disk
is accessed Read/Write...

the A-disk.

as an extension of a Read-only Disk and the A-disk
is accessed Read Only...

ERROR DMSPLI006E — program terminates.

 Compile-Time Options
The PLIOPT command expects all options to be a maximum of eight characters
long. You should always use the abbreviated form of the options. All options and
suboptions must be separated by blanks. Parentheses need not be separated from
options or suboptions even if the option has a total length of more than eight
characters. Thus TERMINAL(XREF) is acceptable, although the total length is
greater than eight characters.

Where options of the PLIOPT command contradict those of the %PROCESS
statement, the options in the %PROCESS statement override those in the PLIOPT
command. For options whose length is greater than eight characters, the
abbreviation for that option must be used in the PLIOPT command.

Files Used by the Compiler
During compilation the compiler uses a number of files. These files are allocated
by the interface module that invokes the compiler. The files used are shown in
Table 14. At the end of the compilation, the interface module will issue a
FILEDEF * CLEAR command to clear the definition of these files. As a result, all
your file definitions without the PERM option active prior to the compilation will also
be cleared.

Table 14 (Page 1 of 2). Files That Can Be Used by the Compiler

FILE TYPE FUNCTION DEVICE TYPE WHEN REQUIRED

PLIOPT or PLI Input DASD, magnetic tape,
card reader

Always

LISTING Print DASD, magnetic tape,
printer

Optional

TEXT Object module
output

DASD, magnetic tape When object module is to be created

74 PL/I for MVS & VM Programming Guide

Table 14 (Page 2 of 2). Files That Can Be Used by the Compiler

FILE TYPE FUNCTION DEVICE TYPE WHEN REQUIRED

SYSPUNCH System punch DASD, magnetic tape,
card punch

When MDECK and/or DECK is in effect

SYSUT1 Spill DASD When insufficient main storage is
available

MACLIB Preprocessor
%INCLUDE

DASD When %INCLUDE is used from VM
disks

SYSLIB Preprocessor
%INCLUDE

DASD When %INCLUDE is used from PL/I
Library

PLIOPT Command Options
The PLIOPT command compiles a PL/I program or a series of PL/I programs into
machine language object code. If the file type is missing, the file type defaults to
PLIOPT or PLI.

The following options are applicable only to the PLIOPT command and cannot
appear on the %PROCESS statement in the PL/I source file.

� PRINT—The listing file is directed to the PRINTER and is not placed on a disk.

� DISK—The listing file is placed on a disk. To determine which disk, see
Table 13 on page 74.

� TYPE—The listing file is displayed at your terminal and is not placed on a disk.

� NOPRINT—A listing file is not produced.

� OBJECT—An additional facility, OBJECT[(file name)], allows you to specify a
different file name for your file.

In the OBJECT option specification, (file name) is the name that will be given to
the text file. If it is omitted, the text file will be given the same name as the file
specified in the PLIOPT command. The TEXT file will be placed on one of
your disks in accordance with the rules shown in Table 13 on page 74.

 %INCLUDE Statement
If you want to use the %INCLUDE statement within your PL/I program, you must
take the following steps:

� Create the file that you want to INCLUDE into your PL/I program. The file type
must be COPY.

� Put the COPY file into an existing or new macro library (MACLIB).

� Use the %INCLUDE statement in your PL/I program.

� Issue a FILEDEF for the MACLIB that contains the COPY file you want
included.

� If you have only %INCLUDE and no other preprocessor statements, compile
your program using the compile-time option INC. If you have other
preprocessor statements, use the compile time option MACRO.

The syntax of %INCLUDE is:

%INCLUDE DDNAME(member name);

The following example demonstrates the use of the %INCLUDE statement.

 Chapter 4. Compiling under VM 75

Example of Using %INCLUDE
The COPY file called PLIXOPT COPY is created:

DCL PLIXOPT CHAR(255) VAR STATIC EXTERNAL

 INIT ('STACK(4K),HEAP(4K),RPTSTG(ON)');

The COPY file PLIXOPT is added to the MACLIB called MYLIB:

MACLIB ADD MYLIB PLIXOPT

If a MACLIB does not exist, use the command MACLIB GEN instead of MACLIB
ADD. This will generate a MACLIB called MYLIB.

In the PL/I source file, the following %INCLUDE statement is included:

 %INCLUDE PLICOPY(PLIXOPT);

A FILEDEF is issued for the ddname specified in the %INCLUDE statement to tell
PL/I where to obtain the member PLIXOPT within a library:

FILEDEF PLICOPY DISK MYLIB MACLIB

The PL/I program is compiled. The program has no other preprocessor statements,
so the INC option is used:

PLIOPT EXAMPLE (INC

For complete information on the VM Commands which are used above, see the
VM/ESA: CMS Command Reference.

PLIOPT Command Format
The format of the PLIOPT command is:

PLIOPT filename[filetype[filemode]] [(options-list [)]]

where filename[filetype[filemode]] is the identification of the file that contains
the PL/I source program. If filetype is omitted, a search will be made first for
PLIOPT files of the specified filename and then for PLI files of the specified
filename. If filemode is omitted, A will be assumed.

If the options list is (option1 option2 option3... then the options must be
separated from each other by at least one blank. The right hand parenthesis is
optional. If contradicting options are specified, the rightmost option applies. See
Table 3 on page 5 for information on options and their correct syntax.

 Examples:
To compile a PLIOPT or PLI file called RABBIT on the A-disk with the OPTIONS
and SOURCE options:

PLIOPT RABBIT (OPTIONS SOURCE

To compile a file with the name RABBIT and the type FORMAT on the B-disk with
the options PRINT, XREF, and ATTRIBUTES:

PLIOPT RABBIT FORMAT B (PRI X A

Note that the abbreviations are used for these options.

76 PL/I for MVS & VM Programming Guide

Special Action Will Be Required:
1. If your source uses the %INCLUDE statement to incorporate secondary input

text.

2. If you intend to run your program under MVS.

3. If you want to place the compiled program into a TXTLIB. You might want to
do this if you want to use separately compiled subroutines.

The following paragraphs describe the actions required in each of these
circumstances.

Using %INCLUDE under VM: If your program uses %INCLUDE statements to
include previously written PL/I statements or procedures, the libraries on which they
are held must be made available to VM before issuing the PLIOPT command. To
do this you must insert the statements into a VM MACLIB using the MACLIB
command. You then issue a GLOBAL command taking the form “GLOBAL
MACLIB filename.”

For example, if your secondary input text was held in MACLIB called “MYLIB” you
would enter:

GLOBAL MACLIB MYLIB

before issuing the PLIOPT command. The PLIOPT command must specify either
the INCLUDE or the MACRO option.

If your %INCLUDE statement takes the form %INCLUDE MYLIB (CUCKOO), as
opposed to %INCLUDE CUCKOO, you will also need to specify a FILEDEF
command for MYLIB. This should take the form:

FILEDEF MYLIB DISK MYLIB MACLIB

If in the MACLIB the LRECL is not 80 and the BLOCKSIZE not 400, format
information must be included in the FILEDEF command.

Compiling a Program to Run under MVS: If you intend to run your program
under MVS, you should specify the SYSTEM(MVS) option:

PLIOPT RABBIT (SYSTEM(MVS)

An attempt to run a program compiled without the SYSTEM(MVS) option under
MVS results in an OS linkage editor error of severity level 8.

Compiling a Program to be Placed in a TXTLIB: If you intend to include the
compiled TEXT file as a member of a TXTLIB it is necessary to use the NAME
option when you specify the PLIOPT command. This is because members of a
TXTLIB file are given the name of their primary entry point if they have no external
name. The primary entry point of every TEXT file produced by the compiler is the
same, consequently only one compiled program can be included in a TXTLIB if the
NAME option is not used. (The NAME option gives the TEXT file an external
name.)

Commands required to create a TEXT file suitable for including in a TXTLIB are
shown below. This code gives the file the external name used in the PLIOPT
command. However, any other name can be used provided that it does not exceed
six characters.

Note: If the name exceeds six characters, the NAME option is ignored.

 Chapter 4. Compiling under VM 77

The commands below compile a PLIOPT file RABBIT with the external name
RABBIT and add it to an existing text library called BIOLIB.

PLIOPT RABBIT (NAME('RABBIT'

[compiler messages etc.]

TXTLIB ADD BIOLIB RABBIT

If the BIOLIB TXTLIB does not exist yet, use the command TXTLIB GEN instead of
TXTLIB ADD.

PL/I Batched Compilation
An example of VM batched compilation is shown in Figure 15.

PLIOPT FIRST

where FIRST and SECND are a single file that looks like:

 first: proc;

 .

 .

 .

 end;

%process;

 secnd:proc;

 .

 .

 .

 end;

Figure 15. Example of Batched Compilation under VM

Correcting Compiler-Detected Errors
At compile time, both the preprocessor and the compiler can produce diagnostic
messages and listings according to the compile-time options selected for a
particular compilation. The listings and the associated compile-time options are
discussed in Chapter 1, “Using Compile-Time Options and Facilities” on page 5.
The diagnostic messages produced by the compiler are identified by a number with
an “IEL” prefix. These diagnostic messages are available in both a long form and a
short form. The short messages are obtained by specifying the SMESSAGE
compiler option. Each message is listed in PL/I for MVS & VM Compile-Time
Messages and Codes. This publication includes explanatory notes, examples, and
any action to be taken.

Always check the compilation listing for occurrences of these messages to
determine whether the syntax of the program is correct. Messages of greater
severity than warning (that is, error, severe error, and unrecoverable error) should
be acted upon if the message does not indicate that the compiler has been able to
“fix” the error correctly. You should be aware that the compiler, in making an
assumption as to the intended meaning of any erroneous statement in the source
program, can introduce another, perhaps more severe, error which in turn can
produce yet another error, and so on. When this occurs, the compiler produces a
number of diagnostic messages which are all caused either directly or indirectly by
the one error.

78 PL/I for MVS & VM Programming Guide

Other useful diagnostic aids produced by the compiler are the attribute table and
cross-reference table. The attribute table, specified by the ATTRIBUTES option, is
useful for checking that program identifiers, especially those whose attributes are
contextually and implicitly declared, have the correct attributes. The
cross-reference table is requested by the XREF option, and indicates, for each
program variable, the number of each statement that refers to the variable.

To prevent unnecessary waste of time and resources during the early stages of
developing programs, use the NOOPTIMIZE, NOSYNTAX, and NOCOMPILE
options. The NOOPTIMIZE option suppresses optimization unconditionally, and the
remaining options suppress compilation, link-editing, and execution if the
appropriate error conditions are detected.

 Chapter 4. Compiling under VM 79

Chapter 5. Link-Editing and Running

After compilation, your program consists of one or more object modules that
contain unresolved references to each other, as well as references to the Language
Environment for MVS & VM run-time library. These references are resolved during
link-editing or during execution (dynamically).

So after you compile your PL/I program, the next step is to link and run your
program with test data to verify that it produces the results you expect.

Language Environment for MVS & VM provides the run-time environment and
services you need to execute your program. For instructions on linking and running
PL/I and all other Language Environment for MVS & VM-conforming language
programs, refer to the Language Environment for MVS & VM Programming Guide.
For information about migrating your existing PL/I programs to Language
Environment for MVS & VM, see the PL/I for MVS & VM Compiler and Run-Time
Migration Guide.

This chapter contains the following sections:

Selecting math results at link-edit time
VM run-time considerations
MVS run-time considerations

 SYSPRINT Considerations

Selecting Math Results at Link-Edit Time
You can select math results that are compatible with Language Environment for
MVS & VM or with OS PL/I. When you link your load module, you select the math
results by linking in the stubs for the Language Environment for MVS & VM math
routines or the OS PL/I math routines. You select the results on a load module
basis; a load module that uses the Language Environment for MVS & VM results
can fetch a load module that uses the OS PL/I results.

Because the Language Environment for MVS & VM routines are defaults, if you
relink an OS PL/I application, you receive the Language Environment for MVS &
VM results. To maintain the OS PL/I results, you need to ensure that the stubs for
the PL/I math routines are linked into the application. You can do so by overriding
the linkedit library SYSLIB data set name with the name of the PL/I math link-edit
library data set, SIBMMATH.

Use the following JCL or equivalent:

//SYSLIB DD DSN=CEE.V1R2Mð.SIBMMATH,DISP=SHR

// DD DSN=CEE.V1R2Mð.SCEELKED,DISP=SHR

VM Run-Time Considerations
Various special topics are covered in this section, including PL/I restrictions under
VM.

80 Copyright IBM Corp. 1964, 1995

Separately Compiled PL/I MAIN Programs
You can load separately compiled procedures with the MAIN option into one
executable program in PL/I. The PL/I procedure that you want to receive control
first must be specified first on the LOAD command. For example, if you have two
MAIN PL/I procedures CALLING and CALLED (see Figure 16 and Figure 17) and
you want CALLING to receive control first, you issue these VM commands:

global txtlib plilib sceelked cmslib /\ make the libraries available \/

Ready;

pliopt calling (system(cms) /\ compile the one of the procs \/

Ready;

pliopt called (system(cms) /\ compile the other one \/

Ready;

global loadlib sceerun /\ make the libraries available \/

load calling called (nodup /\ CALLING will receive control \/

Ready; /\ ...first. NODUP suppresses \/

/\ ...duplicate identifier msgs \/

start /\ invoke the program \/

Ready;

%PROCESS F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE LIST ;

 Calling: Proc Options(Main);

 Dcl Sysprint File Output;

 Dcl Called External Entry;

Put Skip List ('CALLING - started');

 Call Called;

Put Skip List ('CALLING - Ended');

 END Calling;

Figure 16. PL/I Main Calling Another PL/I Main

%PROCESS F(I) AG A(F) ESD MAP OP STG TEST X(F) SOURCE LIST ;

 Called: Proc Options(Main);

 Dcl Sysprint File ;

Put Skip List ('CALLED - started');

Put Skip List ('CALLED - ended');

 END Called;

Figure 17. PL/I Main Called by Another PL/I Main

Using Data Sets and Files
VM files and other OS data sets can be written and read by programs run under
VM, with varying restrictions.

VM files are completely accessible for read, write, and update to programs running
under VM. You can make these files available to a number of virtual machines, but
they are not accessible from outside the VM system except by copying and
recreation.

Only sequential OS data sets are available, on a read-only basis, to VM programs.

 Chapter 5. Link-Editing and Running 81

Within a program, a file is identified by the declared name or the name given in the
title option. Outside the program, the FILEDEF command, or the DLBL command
for VSAM, binds a file name to a particular data set.

VSAM data sets are different from other types of files because their management is
handled by a set of programs known as Access Method Services. The services are
available to the VM user by the AMSERV command. This command uses a
previously created file containing Access Method Services statements to specify the
required services.

VM uses the DOS data management routines which must be installed during VM
program installation. Your program is not affected by the use of DOS routines, but
certain OS Access Method Services functions are not available for data set
handling. Full details of this and other aspects of VM VSAM are given in the
VM/ESA CMS User's Guide.

To test programs that create or modify OS data sets, you can write “OS-Simulated
data sets.” These are VM files that are maintained on VM disks in OS format,
rather than in VM format. You can perform any VM file operation on these files.
However, since they are in the OS-Simulated format, files with variable-blocked
records can contain block and record descriptor words, so that the access methods
can manipulate the files properly. If you specify the filemode number as 4, VM
creates a file that is in OS-Simulated data set format.

The following three examples show the PL/I statements and the CMS commands
necessary to access VM files, VSAM data sets, and non-VSAM OS data sets,
respectively.

Using VM Files — Example
To access a VM file, issue a FILEDEF command associating a PL/I file name with
particular VM file(s).

In the example that follows, the PL/I program reads the file known in the program
as “OLDFILE”. This refers to the VM file “INPUT DATA B”. The program creates
the file known in the program as “NEWFILE”, which corresponds to the VM file
“OUTPUT DATA A”. A third file, PL/I file “HISTORY”, is assigned to the virtual
printer.

PL/I Program Statements

DCL OLDFILE FILE RECORD INPUT ENV (F RECSIZE(4ð)),

NEWFILE FILE RECORD OUTPUT ENV (F RECSIZE(4ð)),

HISTORY FILE STREAM PRINT;

82 PL/I for MVS & VM Programming Guide

 VM Commands

The full syntax of the FILEDEF and other commands is given in VM/ESA CMS
Command Reference.

filedef oldfile disk input data b Associates OLDFILE with the file INPUT
DATA B.

filedef newfile disk output data a Associates NEWFILE with the file OUTPUT
DATA A.

filedef history printer Associates the file HISTORY with the virtual
printer.

Using VSAM Data Sets — Example
VSAM data sets differ from other data sets because they are always accessed
through a catalog and because they have their routine management performed by
Access Method Services. Use the AMSERV command to invoke Access Method
Services functions and the DLBL command to associate an actual VSAM data set
with the file identifier in a PL/I program.

To use the AMSERV command, a file of the filetype AMSERV must be created that
contains the necessary Access Method Services commands. An AMSERV
command, specifying the name of this file, is then issued and the requested Access
Method Services are performed. Such services must always be used for cataloging
and formatting purposes before creating a VSAM data set. They are also used for
deleting, renaming, making portable copies, and other routine tasks.

For VSAM data sets, catalog entries are created by the DEFINE statement of
Access Method Services. They contain information such as the space used or
reserved for the data set, the record size, and the position of a key within the
record. The catalog entry also contains the address of the data set.

To use a VSAM data set, you must identify the catalog to be searched and
associate the PL/I file with the VSAM data set. The DLBL command is used for
both these purposes. Where the data set is being newly created, you must specify
the AMSERV command to catalog and define the data set before the PL/I program
is executed. Details of how to use VSAM under VM are given in the VM/ESA CMS
User's Guide.

The relevant PL/I statements and VM commands to access an existing VSAM data
set and to create a new VSAM data set are shown in the example that follows.

The PL/I program reads the file OLDRAB from the VSAM data set called RABBIT1
on the VM B-disk. It writes the file NEWRAB onto the data set RABBIT2, also on
the VM B-disk. RABBIT2 is defined using an AMSERV command. In the example,
this master catalog is already assigned and the VSAM space is also already
assigned.

PL/I File Declaration

DCL OLDRAB FILE RECORD SEQUENTIAL KEYED INPUT ENV(VSAM);

DCL NEWRAB FILE RECORD SEQUENTIAL KEYED OUTPUT ENV(VSAM);

VM Commands: A file with the filetype of AMSERV must be created with the
appropriate Access Method Services commands, and is named 'AMSIN
AMSERV'. For this example, the file must contain the following information:

 Chapter 5. Link-Editing and Running 83

DEFINE CLUSTER(NAME(RABBIT2.C) VOL(VOLSER)) -

DATA (CYL(4,1) KEYS(5,5) RECSZ(23,23) -

 FREESPACE(2ð,3ð)) -

 INDEX(CYL(1,1))

The VM commands that you need to issue are:

Notes:

1. The closing parenthesis is optional in VM commands but required in Access
Method Services commands.

2. PL/I MVS & VM programs with files declared with ENV(INDEXED) can, in
certain instances, operate correctly if the data set being accessed is a VSAM
data set.

dlbl ijsyscat b dsn mastca (perm Issue a DLBL for the master catalog. Note that
this need only be done once for terminal session
if PERM is specified.

amserv amsin Execute statements in the AMSERV file to
catalog and format data set.

dlbl oldrab b dsn rabbit1 (vsam)

dlbl newrab b dsn rabbit2 (vsam)

Issue DLBL commands to associate PL/I files
with the VSAM data sets.

Using OS Data Sets — Example
Before you can access an OS data set that resides on an OS formatted disk, it
must be made available to your virtual machine. Using the ACCESS command,
you can access the OS formatted disk as one of your VM minidisks. Once this has
been done, you can use a FILEDEF command to access the disk in the usual
manner.

In the example that follows, the PL/I file OLDRAB is used to access the OS data
set RABBIT.OS.DATA. The disk containing the data set has been mounted and is
known to the user as virtual disk number 196.

 PL/I Statement

DCL OLDRAB FILE RECORD ENV (F RECSIZE(4ð));

 VM Commands

Using Tapes with Standard Labels: VM assumes that tapes do not have
standard labels. If you want to process a standard label tape, you can use the VM
commands LABELDEF, FILEDEF, and/or TAPE. More information can be found in
the VM/ESA CMS Command Reference.

access 196 g

DMSACP723I G (196) R/O

Connect disk containing data set to your virtual
machine.

filedef oldrab g dsn rabbit os data Associate PL/I file OLDRAB with OS data set
RABBIT.OS.DATA.

84 PL/I for MVS & VM Programming Guide

Restrictions Using PL/I under VM
PL/I features that are not available under VM are:

� ASCII data sets
� BACKWARDS attribute with magnetic tapes
� INDEXED Files (except for use with VSAM)
� PL/I checkpoint restart facilities (PLICKPT)

 � Tasking
� Regional(2) and Regional(3) files
� Teleprocessing* files (TCAM)
� VS or VBS record formats.

PL/I features that have restricted use under VM are:

Regional(1) files Regional(1) files can be used with the following restrictions:

� More than one regional file with keys cannot be open at the
same time.

� KEY(TRACKID/REGION NUMBER) must not be
incremented unless 255 records are written on the first
logical track, and 256 records on each subsequent logical
track.

� Files must not be written with a dependency on the
physical track length of a direct access device.

� When a file is created, the XTENT option of the FILEDEF
command must be specified, and it must be equal to the
number of records in the file to be created.

READ This can only be used if the NCP parameter is included in the
ENVIRONMENT option of the PL/I file.

Blanks Blanks cannot be passed in the parameter string to the main
procedure using SYSTEM(CMSTPL). The blanks are removed
from the string and the items separated by them are
concatenated. Use of SYSTEM(CMS) does not have this
restriction.

TIME The TIME built-in function returns values calculated to the
nearest second.

VSAM VSAM data sets can be used only if DOS/VS VSAM was
incorporated into VM during PL/I VM installation. DOS VSAM
is used and any features not available to DOS VSAM cannot
be used. CMS/DOS must also be generated into VM. For
details of how to do this, see VM/ESA Installation.

Environment options: SIS cannot be used, SKIP cannot be
used on ESDS.

Using Record I/O at the Terminal
There is no provision for input prompting or synchronization of output for RECORD
files assigned to the terminal. Terminal interaction logic is generally easier to write
using stream I/O, but when you use record I/O at the terminal, keep the following
points in mind:

 Chapter 5. Link-Editing and Running 85

Output: Output files should be declared with BUFFERS(1) if you must
synchronize input with output.

Use V-format records; otherwise trailing blanks are transmitted.

Input: Use V-format records, as doing otherwise raises the RECORD condition
unless the record is filled out with trailing blanks. Note than when V-format records
are used and the data is read into a fixed length string, the string is not padded
with blanks. By default, RECORD files assigned to the terminal are given F-format
records with the record length the same as the linesize for the terminal.

PL/I Conventions under VM
Two types of conventions apply to PL/I when used under VM. The first type is
adopted to make input/output simpler and more efficient at the terminal. The
second type results from the terminal being considered as the console of a virtual
machine. These affect the DISPLAY statement and the REPLY option.

Stream I/O Conventions at the Terminal: To simplify input/output at the terminal,
various conventions have been adopted for stream files that are assigned to the
terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input.

Formatting onventions for PRINT Files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time. The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

� PAGE options or format items result in three lines being skipped.

� SKIP options or format items large than SKIP (2) result in three lines being
skipped. SKIP (2) or less is treated in the usual manner.

� The ENDPAGE condition is never raised.

Changing the Format on PRINT Files
If you want normal spacing to apply to output from a PRINT file at the terminal, you
must supply your own tab table for PL/I. This is done by declaring an external
structure called PLITABS in the program and initializing the element PAGELENGTH
to the number of lines that can fit on your page. This value differs from
PAGESIZE, which defines the number of lines you want to be printed on the page
before ENDPAGE is raised. (See Figure 18 and Figure 19 on page 90 in “MVS
Run-Time Considerations.”)

 Automatic Prompting
When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input, as follows:

 :

(space for entry of your data)

This type of prompt is referred to as a primary prompt.

86 PL/I for MVS & VM Programming Guide

Overriding Automatic Prompting: It is possible to override the primary prompt
by making a colon the last item in the request for the data. The secondary prompt
cannot be overridden. For example, the two PL/I statements:

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);

GET EDIT (PERITIME) (A(1ð));

result in the terminal printing:

ENTER TIME OF PERIHELION

 : (automatic prompt)

(space for entry of data)

However, if the first statement has a colon at the end of the output, as follows:

PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence is:

ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating Long Input Lines
Line Continuation Character: To transmit data that requires 2 or more lines of
space at the terminal as one data-item, type an SBCS hyphen as the last character
in each line except the last line. For example, to transmit the sentence “this data
must be transmitted as one unit.” you enter:

 :

'this data must be transmitted -

 :

as one unit.'

Transmission does not occur until you press ENTER after “unit.'” The hyphen is
removed. The item transmitted is called a “logical line.”

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the next
line.

 Chapter 5. Link-Editing and Running 87

For example:

 xyz--

(press ENTER only, on this line)

Punctuating GET LIST and GET DATA Statements
For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omitted it. Thus there
is no need to enter blanks or commas to delimit items if they are entered on
separate logical lines. For the PL/I statement GET LIST(A,B,C); you can enter at
the terminal:

 :

 1

 +:

 2

 +:

 3

This rule also applies when entering character-string data. A character string must
therefore transmit as one logical line. Otherwise, commas are placed at the break
points. For example, if you enter:

 :

'COMMAS SHOULD NOT BREAK

 +:

UP A CLAUSE.'

the resulting string is “COMMAS SHOULD NOT BREAK, UP A CLAUSE.” The
comma is not added if a hyphen was used as a line continuation character.

Automatic Padding for GET EDIT: For a GET EDIT statement, there is no need
to enter blanks at the end of the line. The data will be padded to the specified
length. Thus, for the PL/I statement:

GET EDIT (NAME) (A(15));

you can enter the 5 characters SMITH. The data will be padded with ten blanks so
that the program receives the fifteen characters:

 'SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for Terminal Input: All uses of SKIP for input are interpreted as
SKIP(1) when the file is allocated to the terminal. SKIP(1) is treated as an
instruction to ignore all unused data on the currently available logical line.

 ENDFILE
The end-of-file can be entered at the terminal by keying in a logical line that
consists of the two characters “/*”. Any further attempts to use the file without
closing it result in the ENDFILE condition being raised.

88 PL/I for MVS & VM Programming Guide

DISPLAY and REPLY under VM
Because your terminal is the console of the virtual machine, you can use the
DISPLAY statement and the REPLY option to create conversational programs. The
DISPLAY statement transmits the message to your terminal, and the REPLY option
allows you to respond. For example, the PL/I statement:

DISPLAY ('ENTER NAME') REPLY (NAME);

results in the message “ENTER NAME” being printed at your terminal. The
program then waits for your response and places your data in the variable NAME
after you press ENTER. The terminal display looks like:

 ENTER NAME

 Esther Summers

The reply can contain DBCS characters but they must be processable as a mixed
string.

Note: File I/O can be buffered if the file is directed to the terminal. If you are
using I/O directed to the terminal as well as the DISPLAY statement, the order of
the lines written cannot be the same as the program intended.

MVS Run-Time Considerations
To simplify input/output at the terminal, various conventions have been adopted for
stream files that are assigned to the terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input.

Note: No prompting or other facilities are provided for record I/O at the terminal,
so you are strongly advised to use stream I/O for any transmission to or from a
terminal.

Formatting Conventions for PRINT Files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time. The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

� PAGE options or format items result in three lines being skipped.

� SKIP options or format items larger than SKIP (2) result in three lines being
skipped. SKIP (2) or less is treated in the usual manner.

� The ENDPAGE condition is never raised.

Changing the Format on PRINT Files
If you want normal spacing to apply to output from a PRINT file at the terminal, you
must supply your own tab table for PL/I. This is done by declaring an external
structure called PLITABS in the program and initializing the element PAGELENGTH
to the number of lines that can fit on your page. This value differs from
PAGESIZE, which defines the number of lines you want to print on the page before
ENDPAGE is raised (see Figure 19 on page 90). If you require a PAGELENGTH
of 64 lines, declare PLITABS as shown in Figure 18 on page 90. For information
on overriding the tab table, see “Overriding the Tab Control Table” on page 140.

 Chapter 5. Link-Editing and Running 89

DCL 1 PLITABS STATIC EXTERNAL,

(2 OFFSET INIT (14),

 2 PAGESIZE INIT (6ð),

 2 LINESIZE INIT (12ð),

 2 PAGELENGTH INIT (64),

 2 FILL1 INIT (ð),

 2 FILL2 INIT (ð),

 2 FILL3 INIT (ð),

 2 NUMBER_OF_TABS INIT (5),

 2 TAB1 INIT (25),

 2 TAB2 INIT (49),

 2 TAB3 INIT (73),

 2 TAB4 INIT (97),

 2 TAB5 INIT (121)) FIXED BIN (15,ð);

Figure 18. Declaration of PLITABS. This declaration gives the standard page size, line size
and tabulating positions

 ┌─────────────────────────────┐ ─┐

 │ │ │

┌─ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

PAGESIZE ─┤ │ ─────────────────────── │ ├─ PAGELENGTH

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

│ │ ─────────────────────── │ │

└─ │ ─────────────────────── │ │

 │ │ │

 │ ──────────19 │ │

 └─────────────────────────────┘ ─┘

PAGELENGTH: the number of lines that can be printed on a page

PAGESIZE: the number of lines that will be printed on a page

before the ENDPAGE condition is raised

Figure 19. PAGELENGTH and PAGESIZE. PAGELENGTH defines the size of your paper,
PAGESIZE the number of lines in the main printing area.

 Automatic Prompting
When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input, as follows:

 :

(space for entry of your data)

This type of prompt is referred to as a primary prompt.

Overriding Automatic Prompting: You can override the primary prompt by
making a colon the last item in the request for the data. You cannot override the
secondary prompt. For example, the two PL/I statements:

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);

GET EDIT (PERITIME) (A(1ð));

result in the terminal displaying:

90 PL/I for MVS & VM Programming Guide

ENTER TIME OF PERIHELION

 : (automatic prompt)

(space for entry of data)

However, if the first statement has a colon at the end of the output, as follows:

PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence is:

ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating Long Input Lines
Line Continuation Character: To transmit data that requires 2 or more lines of
space at the terminal as one data-item, type an SBCS hyphen as the last character
in each line except the last line. For example, to transmit the sentence “this data
must be transmitted as one unit.” you enter:

:'this data must be transmitted -

+:as one unit.'

Transmission does not occur until you press ENTER after “unit.'”. The hyphen is
removed. The item transmitted is called a “logical line.”

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the next
line. For example:

 xyz--

(press ENTER only, on this line)

Punctuating GET LIST and GET DATA Statements
For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omits it. Thus there is
no need to enter blanks or commas to delimit items if they are entered on separate
logical lines. For the PL/I statement GET LIST(A,B,C); you can enter at the
terminal:

 :1

 +:2

 +:3

This rule also applies when entering character-string data. Therefore, a character
string must transmit as one logical line. Otherwise, commas are placed at the
break points. For example, if you enter:

:'COMMAS SHOULD NOT BREAK

+:UP A CLAUSE.'

the resulting string is: “COMMAS SHOULD NOT BREAK, UP A CLAUSE.” The
comma is not added if a hyphen was used as a line continuation character.

Automatic Padding for GET EDIT: For a GET EDIT statement, there is no need
to enter blanks at the end of the line. The data will be padded to the specified
length. Thus, for the PL/I statement:

GET EDIT (NAME) (A(15));

 Chapter 5. Link-Editing and Running 91

you can enter the 5 characters SMITH. The data will be padded with ten blanks so
that the program receives the fifteen characters:

 'SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for Terminal Input: All uses of SKIP for input are interpreted as
SKIP(1) when the file is allocated to the terminal. SKIP(1) is treated as an
instruction to ignore all unused data on the currently available logical line.

 ENDFILE
The end-of-file can be entered at the terminal by keying in a logical line that
consists of the two characters “/*”. Any further attempts to use the file without
closing it result in the ENDFILE condition being raised.

 SYSPRINT Considerations
The PL/I standard SYSPRINT file is shared by multiple enclaves within an
application. You can issue I/O requests, for example STREAM PUT, from the
same or different enclaves. These requests are handled using the standard PL/I

| SYSPRINT file as a file which is common to the entire application. The SYSPRINT
file is implicitly closed only when the application terminates, not at the termination
of the enclave.

The standard PL/I SYSPRINT file contains user-initiated output only, such as
STREAM PUTs. Run-time library messages and other similar diagnostic output are
directed to the Language Environment MSGFILE. See the Language Environment
for MVS & VM Programming Guide for details on redirecting SYSPRINT file output
to the Language Environment MSGFILE.

To be shared by multiple enclaves within an application, the PL/I SYSPRINT file
must be declared as an EXTERNAL FILE constant with a file name of SYSPRINT
and also have the attributes STREAM and OUTPUT as well as the (implied)
attribute of PRINT, when OPENed. This is the standard SYSPRINT file as
defaulted by the compiler.

There exists only one standard PL/I SYSPRINT FILE within an application and this
file is shared by all enclaves within the application. For example, the SYSPRINT
file can be shared by multiple nested enclaves within an application or by a series
of enclaves that are created and terminated within an application by the Language
Environment preinitialization function. To be shared by an enclave within an
application, the PL/I SYSPRINT file must be declared in that enclave. The
standard SYSPRINT file cannot be shared by passing it as a file argument between
enclaves. The declared attributes of the standard SYSPRINT file should be the

| same throughout the application, as with any EXTERNALly declared constant. PL/I
does not enforce this rule.

Having a common SYSPRINT file within an application can be an advantage to
applications that utilize enclaves that are closely tied together. However, since all
enclaves in an application write to the same shared data set, this might require
some coordination among the enclaves.

92 PL/I for MVS & VM Programming Guide

The SYSPRINT file is opened (implicitly or explicitly) when first referenced within an
enclave of the application. When the SYSPRINT file is CLOSEd, the file resources
are released (as though the file had never been opened) and all enclaves are
updated to reflect the closed status.

If SYSPRINT is utilized in a multiple enclave application, the LINENO built-in
function only returns the current line number until after the first PUT or OPEN in an
enclave has been issued. This is required in order to maintain full compatibility with

| old programs.

The COUNT built-in function is maintained at an enclave level. It always returns a
value of zero until the first PUT in the enclave is issued. If a nested child enclave
is invoked from a parent enclave, the value of the COUNT built-in function is
undefined when the parent enclave regains control from the child enclave.

When opened, the TITLE option can be used to associate the standard SYSPRINT
file with different operating system data sets. This association is retained across
enclaves for the duration of the open.

PL/I condition handling associated with the standard PL/I SYSPRINT file retains its
current semantics and scope. For example, an ENDPAGE condition raised within a
child enclave will only invoke an established on-unit within that child enclave. It
does not cause invocation of an on-unit within the parent enclave.

The tabs for the standard PL/I SYSPRINT file can vary when PUTs are done from
different enclaves, if the enclaves contain a user PLITABS table.

OS PL/I I/O FETCH/RELEASE restrictions continue to apply to the SYSPRINT file.
If SYSPRINT is declared as a file constant in a load module, the declared
SYSPRINT file information is statically and locally bound to that load module and

| the following rules apply:

� If the load module has been released from storage, explicit use of this file
| constant by the user program can cause unpredictable results.

� If file comparison or I/O on-units are involved, the use of these language
features is scoped to the load module.

For example, if SYSPRINT is declared in load module A and also in load
module B, a file comparison of the two SYSPRINTs will not compare equal.
Similarly, if an ENDPAGE on-unit for SYSPRINT is established in load module
A and a PUT is done in load module B, the ENDPAGE on-unit might not gain
control if the PUT overflows a page.

The scoping rules for file comparison and I/O units can be avoided if you declare
SYSPRINT as a file constant in a particular load module and use a file variable
parameter to pass that SYSPRINT declaration to other load modules for file
comparison or PUTs. In this case, the load module boundary scoping rules do not
apply.

| When the PL/I SYSPRINT file is used with the PL/I multitasking facility, the
| task-level file-sharing rules apply. This maintains full compatibility for old PL/I
| multitasking programs.

 Chapter 5. Link-Editing and Running 93

If the PL/I SYSPRINT file is utilized as a RECORD file or as a STREAM INPUT file,
PL/I supports it at an individual enclave or task level, but not as a sharable file
among enclaves. If the PL/I SYSPRINT file is open at the same time with different
file attributes (e.g. RECORD and STREAM) in different enclaves of the same
application, results are unpredictable.

94 PL/I for MVS & VM Programming Guide

Part 3. Using I/O facilities

Chapter 6. Using Data Sets and Files . 99
Associating Data Sets with Files . 99

Associating Several Files with One Data Set 101
Associating Several Data Sets with One File 102
Concatenating Several Data Sets . 102

Establishing Data Set Characteristics . 102
Blocks and Records . 103
Record Formats . 103

Fixed-Length Records . 104
Variable-Length Records . 104
Undefined-Length Records . 106

Data Set Organization . 106
Labels . 107
Data Definition (DD) Statement . 107

Use of the Conditional Subparameters 108
Data Set Characteristics . 108

Associating PL/I Files with Data Sets . 109
Specifying Characteristics in the ENVIRONMENT Attribute 110
Data Set Types Used by PL/I Record I/O 121

Chapter 7. Using Libraries . 123
Types of libraries . 123
How to Use a Library . 123

Creating a Library . 124
SPACE Parameter . 124

Creating and Updating a Library Member . 125
Examples . 125

Extracting Information from a Library Directory 128

Chapter 8. Defining and Using Consecutive Data Sets 129
Using Stream-Oriented Data Transmission . 129

Defining Files Using Stream I/O . 130
Specifying ENVIRONMENT Options . 130

CONSECUTIVE . 130
Record format options . 130
RECSIZE . 131
Defaults for Record Format, BLKSIZE, and RECSIZE 131
GRAPHIC Option . 132

Creating a Data Set with Stream I/O . 132
Essential Information . 132
Examples . 133

Accessing a Data Set with Stream I/O . 136
Essential Information . 136
Record Format . 137
Example . 137

Using PRINT Files with Stream I/O . 138
Controlling Printed Line Length . 139
Overriding the Tab Control Table . 140

Using SYSIN and SYSPRINT Files . 142
Controlling Input from the Terminal . 143

 Copyright IBM Corp. 1964, 1995 95

Using Files Conversationally . 143
Format of Data . 143
Stream and Record Files . 144
Capital and Lowercase Letters . 145
End-of-File . 145
COPY Option of GET Statement . 145

Controlling Output to the Terminal . 145
Format of PRINT Files . 145
Stream and Record Files . 146
Capital and Lowercase Characters . 146
Output from the PUT EDIT Command 146

Example of an Interactive Program . 146
Using Record-Oriented Data Transmission . 149

Using Magnetic Tape without Standard Labels 150
Specifying Record Format . 150

Defining Files Using Record I/O . 150
Specifying ENVIRONMENT Options . 150

CONSECUTIVE . 151
TOTAL . 151
CTLASA|CTL360 . 152
LEAVE|REREAD . 153
ASCII . 154
BUFOFF . 155
D-Format and DB-Format Records . 155

Creating a Data Set with Record I/O . 156
Essential Information . 156

Accessing and Updating a Data Set with Record I/O 157
Essential Information . 159
Example of Consecutive Data Sets . 159

Chapter 9. Defining and Using Indexed Data Sets 163
Indexed Organization . 163
Using keys . 163
Using Indexes . 166

Dummy Records . 167
Defining Files for an Indexed Data Set . 169

Specifying ENVIRONMENT Options . 169
ADDBUFF Option . 169
INDEXAREA Option . 170
INDEXED Option . 170
KEYLOC Option — Key Location . 170
NOWRITE Option . 172

Creating an Indexed Data Set . 172
Essential Information . 172
Name of the Data Set . 175
Record Format and Keys . 175
Overflow Area . 177
Master Index . 178

Accessing and Updating an Indexed Data Set 179
Using Sequential Access . 180
Using Direct Access . 181

Essential Information . 181
Example . 182

Reorganizing an Indexed Data Set . 184

96 PL/I for MVS & VM Programming Guide

Chapter 10. Defining and Using Regional Data Sets 185
Defining Files for a Regional Data Set . 188

Specifying ENVIRONMENT Options . 188
REGIONAL Option . 188

Using Keys with REGIONAL Data Sets . 190
Using REGIONAL(1) Data Sets . 190

Dummy Records . 190
Creating a REGIONAL(1) Data Set . 191

Example . 191
Accessing and Updating a REGIONAL(1) Data Set 192

Sequential Access . 193
Direct Access . 193
Example . 193

Using REGIONAL(2) Data Sets . 195
Using Keys for REGIONAL(2) and (3) Data Sets 195

Dummy Records . 196
Creating a REGIONAL(2) Data Set . 197

Example . 197
Accessing and Updating a REGIONAL(2) Data Set 198

Sequential Access . 199
Direct Access . 199
Example . 199

Using REGIONAL(3) Data Sets . 202
Dummy Records . 202

Creating a REGIONAL(3) Data Set . 202
Example . 203

Accessing and Updating a REGIONAL(3) Data Set 204
Sequential Access . 204
Direct Access . 205
Example . 205

Essential Information for Creating and Accessing Regional Data Sets 208

Chapter 11. Defining and Using VSAM Data Sets 211
Using VSAM Data Sets . 211

How to Run a Program with VSAM Data Sets 211
Pairing an Alternate Index Path with a File 211

VSAM Organization . 212
Keys for VSAM Data Sets . 215

Keys for Indexed VSAM Data Sets . 216
Relative Byte Addresses (RBA) . 216
Relative Record Numbers . 216

Choosing a Data Set Type . 216
Defining Files for VSAM Data Sets . 218

Specifying ENVIRONMENT Options . 219
BKWD Option . 220
BUFND Option . 220
BUFNI Option . 220
BUFSP Option . 221
GENKEY Option . 221
PASSWORD Option . 221
REUSE Option . 221
SIS Option . 222
SKIP Option . 222
VSAM Option . 223

 Part 3. Using I/O facilities 97

Performance Options . 223
Defining Files for Alternate Index Paths . 223
Using Files Defined for non-VSAM Data Sets 224

CONSECUTIVE Files . 224
INDEXED Files . 224
Using the VSAM Compatibility Interface . 225
Adapting Existing Programs for VSAM . 225

CONSECUTIVE Files . 226
INDEXED Files . 226
REGIONAL(1) Files . 226

Using Several Files in One VSAM Data Set 226
Using Shared Data Sets . 227

Defining VSAM Data Sets . 227
Entry-Sequenced Data Sets . 228

Loading an ESDS . 229
Using a SEQUENTIAL File to Access an ESDS 229

Defining and Loading an ESDS . 230
Updating an Entry-Sequenced Data Set 231

Key-Sequenced and Indexed Entry-Sequenced Data Sets 232
Loading a KSDS or Indexed ESDS . 234
Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS 236
Using a DIRECT File to Access a KSDS or Indexed ESDS 236
Alternate Indexes for KSDSs or Indexed ESDSs 239

Unique Key Alternate Index Path . 239
Nonunique Key Alternate Index Path . 240
Detecting Nonunique Alternate Index Keys 242
Using Alternate Indexes with ESDSs . 242
Using Alternate Indexes with KSDSs . 243

Relative-Record Data Sets . 247
Loading an RRDS . 249
Using a SEQUENTIAL File to Access an RRDS 251
Using a DIRECT File to Access an RRDS 252

Chapter 12. Defining and Using Teleprocessing Data Sets 255
Message Control Program (MCP) . 255
TCAM Message Processing Program (TCAM MPP) 256
Teleprocessing Organization . 256
Essential Information . 257

Defining Files for a Teleprocessing Data Set 257
Specifying ENVIRONMENT Options . 257

TP Option . 257
RECSIZE Option . 258
BUFFERS Option . 258

Writing a TCAM Message Processing Program (TCAM MPP) 258
Handling PL/I Conditions . 260
TCAM MPP Example . 261

98 PL/I for MVS & VM Programming Guide

Chapter 6. Using Data Sets and Files

Your PL/I programs process and transmit units of information called records. On
MVS systems, a collection of records is called a data set. On VM, a collection of
records is called a file. Data sets, and VM files, are physical collections of
information external to PL/I programs; they can be created, accessed, or modified
by programs written in PL/I or other languages or by the utility programs of the
operating system.

Your PL/I program recognizes and processes information in a data set by using a
symbolic or logical representation of the data set called a file. (Yes, in VM there
are files defined within your program that are symbolic representations of files
external to your program.) This chapter describes how to associate data sets or
VM files with the files known within your program. It introduces the five major types
of data sets, how they are organized and accessed, and some of the file and data
set characteristics you need to know how to specify.

Associating Data Sets with Files
A file used within a PL/I program has a PL/I file name. The physical data set
external to the program has a name by which it is known to the operating system:
under MVS or TSO it is a data set name or dsname, and on VM it is a VM file
name. In some cases the data set or file has no name; it is known to the system
by the device on which it exists.

The operating system needs a way to recognize which physical data set is referred
to by your program, so you must provide a statement, external to your program,
that associates the PL/I file name with a dsname or a VM file name:

� Under MVS batch, you must write a data definition or DD statement. For
example, if you have the following file declaration in your program:

DCL STOCK FILE STREAM INPUT;

you should create a DD statement with a data definition name (ddname) that
matches the name of the PL/I file. The DD statement specifies a physical data
set name (dsname) and gives its characteristics:

//GO.STOCK DD DSN=PARTS.INSTOCK, . . .

You'll find some guidance in writing DD statements in this manual, but for more
detail refer to the job control language (JCL) manuals for your system.

� Under TSO, you must write an ALLOCATE command. In the declaration
shown above for the PL/I file STOCK, you should write a TSO ALLOCATE
statement that associates the PL/I file name with the MVS data set name:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK)

� Under VM, you must write a FILEDEF command. For the same STOCK file
declaration, a VM FILEDEF should look something like this:

FILEDEF STOCK DISK INSTOCK PARTS fm

There is more than one way to associate a data set with a PL/I file. You associate
a data set with a PL/I file by ensuring that the ddname of the DD statement that
defines the data set is the same as either:

 Copyright IBM Corp. 1964, 1995 99

� The declared PL/I file name, or

� The character-string value of the expression specified in the TITLE option of
the associated OPEN statement.

You must choose your PL/I file names so that the corresponding ddnames conform
to the following restrictions:

� If a file is opened implicitly, or if no TITLE option is included in the OPEN
statement that explicitly opens the file, the ddname defaults to the file name. If
the file name is longer than 8 characters, the default ddname is composed of
the first 8 characters of the file name.

� The character set of the job control language does not contain the break
character (_). Consequently, this character cannot appear in ddnames. Do not
use break characters among the first 8 characters of file names, unless the file
is to be opened with a TITLE option with a valid ddname as its expression.
The alphabetic extender characters $, @, and #, however, are valid for
ddnames, but the first character must be one of the letters A through Z.

Since external names are limited to 7 characters, an external file name of more
than 7 characters is shortened into a concatenation of the first 4 and the last 3
characters of the file name. Such a shortened name is not, however, the name
used as the ddname in the associated DD statement.

Consider the following statements:

 1. OPEN FILE(MASTER);

 2. OPEN FILE(OLDMASTER);

3. READ FILE(DETAIL) ...;

When statement number 1 is run, the file name MASTER is taken to be the same
as the ddname of a DD statement in the current job step. When statement number
2 is run, the name OLDMASTE is taken to be the same as the ddname of a DD
statement in the current job step. (The first 8 characters of a file name form the
ddname. If OLDMASTER is an external name, it will be shortened by the compiler
to OLDMTER for use within the program.) If statement number 3 causes implicit
opening of the file DETAIL, the name DETAIL is taken to be the same as the
ddname of a DD statement in the current job step.

In each of the above cases, a corresponding DD statement or an equivalent TSO
allocate or VM FILEDEF must appear in the job stream; otherwise, the
UNDEFINEDFILE condition is raised. The three DD statements could start as
follows:

 1. //MASTER DD ...

2. //OLDMASTE DD ...

 3. //DETAIL DD ...

If the file reference in the statement which explicitly or implicitly opens the file is not
a file constant, the DD statement name must be the same as the value of the file
reference. The following example illustrates how a DD statement should be
associated with the value of a file variable:

100 PL/I for MVS & VM Programming Guide

DCL PRICES FILE VARIABLE,

 RPRICE FILE;

PRICES = RPRICE;

 OPEN FILE(PRICES);

The DD statement should associate the data set with the file constant RPRICE,
which is the value of the file variable PRICES, thus:

//RPRICE DD DSNAME=...

Use of a file variable also allows you to manipulate a number of files at various
times by a single statement. For example:

DECLARE F FILE VARIABLE,

 A FILE,

 B FILE,

 C FILE;

 .

 .

 .

 DO F=A,B,C;

READ FILE (F) ...;

 .

 .

 .

 END;

The READ statement reads the three files A, B, and C, each of which can be
associated with a different data set. The files A, B, and C remain open after the
READ statement is executed in each instance.

The following OPEN statement illustrates use of the TITLE option:

OPEN FILE(DETAIL) TITLE('DETAIL1');

For this statement to be executed successfully, you must have a DD statement in
the current job step with DETAIL1 as its ddname. It could start as follows:

//DETAIL1 DD DSNAME=DETAILA,...

Thus, you associate the data set DETAILA with the file DETAIL through the
ddname DETAIL1.

Associating Several Files with One Data Set
You can use the TITLE option to associate two or more PL/I files with the same
external data set at the same time. This is illustrated in the following example,
where INVNTRY is the name of a DD statement defining a data set to be
associated with two files:

OPEN FILE (FILE1) TITLE('INVNTRY');

OPEN FILE (FILE2) TITLE('INVNTRY');

If you do this, be careful. These two files access a common data set through
separate control blocks and data buffers. When records are written to the data set
from one file, the control information for the second file will not record that fact.
Records written from the second file could then destroy records written from the
first file. PL/I does not protect against data set damage that might occur. If the
data set is extended, the extension is reflected only in the control blocks associated
with the file that wrote the data; this can cause an abend when other files access
the data set.

 Chapter 6. Using Data Sets and Files 101

Associating Several Data Sets with One File
The file name can, at different times, represent entirely different data sets. In the
above example of the OPEN statement, the file DETAIL1 is associated with the
data set named in the DSNAME parameter of the DD statement DETAIL1. If you
closed and reopened the file, you could specify a different ddname in the TITLE
option to associate the file with a different data set.

Use of the TITLE option allows you to choose dynamically, at open time, one
among several data sets to be associated with a particular file name. Consider the
following example:

 DO IDENT='A','B','C';

 OPEN FILE(MASTER)

 TITLE('MASTER1'||IDENT);

 .

 .

 .

 CLOSE FILE(MASTER);

 END;

In this example, when MASTER is opened during the first iteration of the do-group,
the associated ddname is taken to be MASTER1A. After processing, the file is
closed, dissociating the file name and the ddname. During the second iteration of
the do-group, MASTER is opened again. This time, MASTER is associated with
the ddname MASTER1B. Similarly, during the final iteration of the do-group,
MASTER is associated with the ddname MASTER1C.

Concatenating Several Data Sets
Under MVS, for input only, you can concatenate two or more sequential or regional
data sets (that is, link them so that they are processed as one continuous data set)
by omitting the ddname from all but the first of the DD statements that describe
them. For example, the following DD statements cause the data sets LIST1,
LIST2, and LIST3 to be treated as a single data set for the duration of the job step
in which the statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=OLD

 // DD DSNAME=LIST2,DISP=OLD

 // DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program, the concatenated data sets need not be on the
same volume. You cannot process concatenated data sets backward.

Establishing Data Set Characteristics
A data set consists of records stored in a particular format which the operating
system data management routines understand. When you declare or open a file in
your program, you are describing to PL/I and to the operating system the
characteristics of the records that file will contain. You can also use JCL, TSO
ALLOCATEs, or CMS FILEDEFs, to describe to the operating system the
characteristics of the data in data sets or in the PL/I files associated with them.

You do not always need to describe your data both within the program and outside
it; often one description will serve for both data sets and their associated PL/I files.
There are, in fact, advantages to describing your data's characteristics in only one
place. These are described later in this chapter and in following chapters.

102 PL/I for MVS & VM Programming Guide

To effectively describe your program data and the data sets you will be using, you
need to understand something of how the operating system moves and stores data.

Blocks and Records
The items of data in a data set are arranged in blocks separated by interblock gaps
(IBG). (Some manuals refer to these as interrecord gaps.)

A block is the unit of data transmitted to and from a data set. Each block contains
one record, part of a record, or several records. You can specify the block size in
the BLKSIZE parameter of the DD, ALLOCATE, or FILEDEF statement or in the
BLKSIZE option of the ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program. You can specify the
record length in the LRECL parameter of the DD, ALLOCATE, or FILEDEF
statement or in the RECSIZE option of the ENVIRONMENT attribute.

When writing a PL/I program, you need consider only the records that you are
reading or writing; but when you describe the data sets that your program will
create or access, you must be aware of the relationship between blocks and
records.

Blocking conserves storage space in a magnetic storage volume because it
reduces the number of interblock gaps, and it can increase efficiency by reducing
the number of input/output operations required to process a data set. Records are
blocked and deblocked by the data management routines.

Information Interchange Codes: The normal code in which data is recorded is
the Extended Binary Coded Decimal Interchange Code (EBCDIC). However, for
magnetic tape only, the operating system accepts data recorded in the American
Standard Code for Information Interchange (ASCII). You use the ASCII and
BUFOFF options of the ENVIRONMENT attribute if your program will read or write
data sets recorded in ASCII.

A prefix field up to 99 bytes in length might be present at the beginning of each
block in an ASCII data set. The use of this field is controlled by the BUFOFF
option of the ENVIRONMENT attribute. For a full description of the ASCII option,
see “ASCII” on page 154.

Each character in the ASCII code is represented by a 7-bit pattern and there are
128 such patterns. The ASCII set includes a substitute character (the SUB control
character) that is used to represent EBCDIC characters having no valid ASCII
code. The ASCII substitute character is translated to the EBCDIC SUB character,
which has the bit pattern 00111111.

 Record Formats
The records in a data set have one of the following formats:

 Fixed-length
 Variable-length
 Undefined-length.

Records can be blocked if required. The operating system will deblock fixed-length
and variable-length records, but you must provide code in your program to deblock
undefined-length records.

 Chapter 6. Using Data Sets and Files 103

You specify the record format in the RECFM parameter of the DD, ALLOCATE, or
FILEDEF statement or as an option of the ENVIRONMENT attribute.

 Fixed-Length Records
You can specify the following formats for fixed-length records:

 F Fixed-length, unblocked
 FB Fixed-length, blocked

FS Fixed-length, unblocked, standard
FBS Fixed-length, blocked, standard.

In a data set with fixed-length records, as shown in Figure 20, all records have the
same length. If the records are blocked, each block usually contains an equal
number of fixed-length records (although a block can be truncated). If the records
are unblocked, each record constitutes a block.

Unblocked records (F─format):

 ┌────────┐ ┌────────┐ ┌────────┐

│ Record │ IBG │ Record │ ... IBG │ Record │

 └────────┘ └────────┘ └────────┘

Blocked records (FB─format):

 ┌───────────Block──────────┐

 ┌────────┬────────┬────────┐ ┌────────┬────────┬────────┐

│ Record │ Record │ Record │ IBG │ Record │ Record │ Record │ ...

 └────────┴────────┴────────┘ └────────┴────────┴────────┘

Figure 20. Fixed-Length Records

Because it bases blocking and deblocking on a constant record length, the
operating system processes fixed-length records faster than variable-length records.

The use of “standard” (FS-format and FBS-format) records further optimizes the
sequential processing of a data set on a direct-access device. A standard format
data set must contain fixed-length records and must have no embedded empty
tracks or short blocks (apart from the last block). With a standard format data set,
the operating system can predict whether the next block of data will be on a new
track and, if necessary, can select a new read/write head in anticipation of the
transmission of that block. A PL/I program never places embedded short blocks in
a data set with fixed-length records. A data set containing fixed-length records can
be processed as a standard data set even if it is not created as such, providing it
contains no embedded short blocks or empty tracks.

 Variable-Length Records
You can specify the following formats for variable-length records:

 V Variable-length, unblocked
 VB Variable-length, blocked

VS Variable-length, unblocked, spanned
VBS Variable-length, blocked, spanned
D Variable-length, unblocked, ASCII
DB Variable-length, blocked, ASCII.

V-format allows both variable-length records and variable-length blocks. A 4-byte
prefix of each record and the first 4 bytes of each block contain control information
for use by the operating system (including the length in bytes of the record or

104 PL/I for MVS & VM Programming Guide

block). Because of these control fields, variable-length records cannot be read
backward. Illustrations of variable-length records are shown in Figure 21 on
page 105.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record. The first 4 bytes of the block contain block
control information, and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate. The first 4 bytes of the block contain
block control information, and a 4-byte prefix of each record contains record control
information.

V─format:

 ┌──┬──┬────────────┐ ┌──┬──┬──────────┐ ┌──┬──┬───

│C1│C2│ Record 1 │ IBG │C1│C2│ Record 2 │ IBG │C1│C2│

│ │ │ │ │ │ │ │ │ │ │

 └──┴──┴────────────┘ └──┴──┴──────────┘ └──┴──┴───

VB─format:

 ┌──┬──┬──────────┬──┬───────────┐ ┌──┬──┬────────────

│C1│C2│ Record 1 │C2│ Record 2 │ IBG │C1│C2│ Record 3

│ │ │ │ │ │ │ │ │

 └──┴──┴──────────┴──┴───────────┘ └──┴──┴────────────

VS─format:
 ┌────────────────────Spanned record───────────────┐

 ┌──┬──┬──────────┐ ┌──┬──┬─────────────────┐ ┌──┬──┬────────────────┐

│C1│C2│ Record 1 │ IBG │C1│C2│ Record 2 │ IBG │C1│C2│ Record 2 │ IBG

│ │ │ (entire) │ │ │ │ (first segment) │ │ │ │ (last segment) │

 └──┴──┴──────────┘ └──┴──┴─────────────────┘ └──┴──┴────────────────┘

VBS─format:
 ┌────────────────────Spanned record───────────────┐

 ┌──┬──┬──────────┬──┬─────────────────┐ ┌──┬──┬────────────────┬──┬───────────

│C1│C2│ Record 1 │C2│ Record 2 │ IBG │C1│C2│ Record 2 │C2│ Record 3

│ │ │ (entire) │ │ (first segment) │ │ │ │ (last segment) │ │

 └──┴──┴──────────┴──┴─────────────────┘ └──┴──┴────────────────┴──┴───────────

C1: Block control information

C2: Record or segment control information

Figure 21. Variable-Length Records

Spanned Records: A spanned record is a variable-length record in which the
length of the record can exceed the size of a block. If this occurs, the record is
divided into segments and accommodated in two or more consecutive blocks by
specifying the record format as either VS or VBS. Segmentation and reassembly
are handled by the operating system. The use of spanned records allows you to
select a block size, independently of record length, that will combine optimum use
of auxiliary storage with maximum efficiency of transmission.

VS-format is similar to V-format. Each block contains only one record or segment
of a record. The first 4 bytes of the block contain block control information, and the
next 4 contain record or segment control information (including an indication of
whether the record is complete or is a first, intermediate, or last segment).

With REGIONAL(3) organization, the use of VS-format removes the limitations on
block size imposed by the physical characteristics of the direct-access device. If

 Chapter 6. Using Data Sets and Files 105

the record length exceeds the size of a track, or if there is no room left on the
current track for the record, the record will be spanned over one or more tracks.

VBS-format differs from VS-format in that each block contains as many complete
records or segments as it can accommodate; each block is, therefore,
approximately the same size (although there can be a variation of up to 4 bytes,
since each segment must contain at least 1 byte of data).

ASCII Records: For data sets that are recorded in ASCII, use D-format as
follows:

� D-format records are similar to V-format, except that the data they contain is
recorded in ASCII.

� DB-format records are similar to VB-format, except that the data they contain is
recorded in ASCII.

 Undefined-Length Records
U-format allows the processing of records that do not conform to F- and V-formats.
The operating system and the compiler treat each block as a record; your program
must perform any required blocking or deblocking.

Data Set Organization
The data management routines of the operating system can handle a number of
types of data sets, which differ in the way data is stored within them and in the
allowed means of access to the data. The three main types of non-VSAM data
sets and the corresponding keywords describing their PL/I organization1 are as
follows:

The compiler recognizes a fourth type, teleprocessing, by the file attribute
TRANSIENT.

A fifth type, partitioned, has no corresponding PL/I organization.

PL/I also provides support for three types of VSAM data organization: ESDS,
KSDS, and RRDS. For more information about VSAM data sets, see Chapter 11,
“Defining and Using VSAM Data Sets” on page 211.

In a sequential (or CONSECUTIVE) data set, records are placed in physical
sequence. Given one record, the location of the next record is determined by its
physical position in the data set. Sequential organization is used for all magnetic
tapes, and can be selected for direct-access devices.

An indexed sequential (or INDEXED) data set must reside on a direct-access
volume. An index or set of indexes maintained by the operating system gives the

Type of data set PL/I organization
 Sequential CONSECUTIVE
 Indexed sequential INDEXED
 Direct REGIONAL

1 Do not confuse the terms “sequential” and “direct” with the PL/I file attributes SEQUENTIAL and DIRECT. The attributes refer to
how the file is to be processed, and not to the way the corresponding data set is organized.

106 PL/I for MVS & VM Programming Guide

location of certain principal records. This allows direct retrieval, replacement,
addition, and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct-access volume. The
records within the data set can be organized in three ways: REGIONAL(1),
REGIONAL(2), and REGIONAL(3); in each case, the data set is divided into
regions, each of which contains one or more records. A key that specifies the
region number and, for REGIONAL(2) and REGIONAL(3), identifies the record,
allows direct-access to any record; sequential processing is also possible.

A teleprocessing data set (associated with a TRANSIENT file in a PL/I program)
must reside in storage. Records are placed in physical sequence.

In a partitioned data set, independent groups of sequentially organized data, each
called a member, reside in a direct-access data set. The data set includes a
directory that lists the location of each member. Partitioned data sets are often
called libraries. The compiler includes no special facilities for creating and
accessing partitioned data sets. Each member can be processed as a
CONSECUTIVE data set by a PL/I program. The use of partitioned data sets as
libraries is described under Chapter 7, “Using Libraries” on page 123.

 Labels
The operating system uses internal labels to identify magnetic-tape and
direct-access volumes, and to store data set attributes (for example, record length
and block size). The attribute information must originally come from a DD
statement or from your program.

Magnetic-tape volumes can have IBM standard or nonstandard labels, or they can
be unlabeled. IBM standard labels have two parts: the initial volume label, and
header and trailer labels. The initial volume label identifies a volume and its owner;
the header and trailer labels precede and follow each data set on the volume.
Header labels contain system information, device-dependent information (for
example, recording technique), and data-set characteristics. Trailer labels are
almost identical with header labels, and are used when magnetic tape is read
backward.

Direct-access volumes have IBM standard labels. Each volume is identified by a
volume label, which is stored on the volume. This label contains a volume serial
number and the address of a volume table of contents (VTOC). The table of
contents, in turn, contains a label, termed a data set control block (DSCB), for each
data set stored on the volume.

Data Definition (DD) Statement
A data definition (DD) statement is a job control statement that defines a data set to
the operating system, and is a request to the operating system for the allocation of
input/output resources. If the data sets are not dynamically allocated, each job step
must include a DD statement for each data set that is processed by the step.

Your MVS/ESA JCL User's Guide describes the syntax of job control statements.
The operand field of the DD statement can contain keyword parameters that
describe the location of the data set (for example, volume serial number and
identification of the unit on which the volume will be mounted) and the attributes of
the data itself (for example, record format).

 Chapter 6. Using Data Sets and Files 107

The DD statement enables you to write PL/I source programs that are independent
of the data sets and input/output devices they will use. You can modify the
parameters of a data set or process different data sets without recompiling your
program.

The following paragraphs describe the relationship of some operands of the DD
statement to your PL/I program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow you to use
the DISP parameter to control the action taken when the end of a magnetic-tape
volume is reached or when a magnetic-tape data set is closed. The LEAVE and
REREAD options are described under “LEAVE|REREAD” on page 153, and are
also described under “CLOSE Statement” in PL/I for MVS & VM Language
Reference.

Write validity checking, which was standard in PL/I Version 1, is no longer
performed. Write validity checking can be requested through the OPTCD
subparameter of the DCB parameter of the JCL DD statement. See the OS/VS2
TSO Command Language Reference and OS/VS2 Job Control Language manuals.

Use of the Conditional Subparameters
If you use the conditional subparameters of the DISP parameter for data sets
processed by PL/I programs, the step abend facility must be used. The step abend
facility is obtained as follows:

1. The ERROR condition should be raised or signaled whenever the program is to
terminate execution after a failure that requires the application of the conditional
subparameters.

2. The PL/I user exit must be changed to request an ABEND.

Data Set Characteristics
The DCB (data control block) parameter of the DD statement allows you to
describe the characteristics of the data in a data set, and the way it will be
processed, at run time. Whereas the other parameters of the DD statement deal
chiefly with the identity, location, and disposal of the data set, the DCB parameter
specifies information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in your MVS/ESA JCL User's
Guide.

The DCB parameter contains subparameters that describe:

� The organization of the data set and how it will be accessed (CYLOFL,
DSORG, LIMCT, NCP, NTM, and OPTCD subparameters)

� Device-dependent information such as the recording technique for magnetic
tape or the line spacing for a printer (CODE, DEN, FUNC, MODE, OPTCD=J,
PRTSP, STACK, and TRTCH subparameters)

� The record format (BLKSIZE, KEYLEN, LRECL, RECFM, and RKP
subparameters)

� The number of buffers that are to be used (BUFNO subparameter)

� The ASA control characters (if any) that will be inserted in the first byte of each
record (RECFM subparameter).

108 PL/I for MVS & VM Programming Guide

You can specify BLKSIZE, BUFNO, LRECL, KEYLEN, NCP, RECFM, RKP, and
TRKOFL (or their equivalents) in the ENVIRONMENT attribute of a file declaration
in your PL/I program instead of in the DCB parameter.

You cannot use the DCB parameter to override information already established for
the data set in your PL/I program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied are ignored.

An example of the DCB parameter is:

 DCB=(RECFM=FB,BLKSIZE=4ðð,LRECL=4ð)

which specifies that fixed-length records, 40 bytes in length, are to be grouped
together in a block 400 bytes long.

Associating PL/I Files with Data Sets
Opening a File: The execution of a PL/I OPEN statement associates a file with a
data set. This requires merging of the information describing the file and the data
set. If any conflict is detected between file attributes and data set characteristics,
the UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control block for the data set.
They use the file attributes from the DECLARE and OPEN statements and any
attributes implied by the declared attributes, to complete the data control block as
far as possible. (See Figure 22 on page 110.) They then issue an OPEN macro
instruction, which calls the data management routines to check that the correct
volume is mounted and to complete the data control block.

The data management routines examine the data control block to see what
information is still needed and then look for this information, first in the DD
statement, and finally, if the data set exists and has standard labels, in the data set
labels. For new data sets, the data management routines begin to create the
labels (if they are required) and to fill them with information from the data control
block.

Neither the DD statement nor the data set label can override information provided
by the PL/I program; nor can the data set label override information provided by the
DD statement.

When the DCB fields are filled in from these sources, control returns to the PL/I
library subroutines. If any fields still are not filled in, the PL/I OPEN subroutine
provides default information for some of them. For example, if LRECL is not
specified, it is provided from the value given for BLKSIZE.

 Chapter 6. Using Data Sets and Files 109

DCL MASTER FILE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FILE(MASTER);

//MASTER DD UNIT=2400
VOLUME=SER= 1791,
DSNAME=LIST,
D CB = (BU F N O = 3 ,
R E C F M = F,
BLKSIZE=400,
LRECL=100)

Record format=F
Record length=100
Blocking factor=4
Recording density=1600

Record format

Block size

Record length

Device type

Number of buffers

Recording density

DATA CONTROL BLOCK

FB

400

40

2400

3

1600

PL/I PROGRAM

DD STATEMENT

DATA SET LABEL

Note: Information from the PL/I program overrides that from the DD statement and the data set label.
Information from the DD statement overrides that from the data set label.

Figure 22. How the Operating System Completes the DCB

Closing a File: The execution of a PL/I CLOSE statement dissociates a file from
the data set with which it was associated. The PL/I library subroutines first issue a
CLOSE macro instruction and, when control returns from the data management
routines, release the data control block that was created when the file was opened.
The data management routines complete the writing of labels for new data sets and
update the labels of existing data sets.

Specifying Characteristics in the ENVIRONMENT Attribute
You can use various options in the ENVIRONMENT attribute. Each type of file has
different attributes and environment options, which are listed below.

The ENVIRONMENT Attribute: You use the ENVIRONMENT attribute of a PL/I
file declaration file to specify information about the physical organization of the data
set associated with a file, and other related information. The format of this
information must be a parenthesized option list.

55──ENVIRONMENT──(──option-list──)───5%

Abbreviation: ENV

You can specify the options in any order, separated by blanks or commas.

The following example illustrates the syntax of the ENVIRONMENT attribute in the
context of a complete file declaration (the options specified are for VSAM and are
discussed in Chapter 11, “Defining and Using VSAM Data Sets” on page 211).

110 PL/I for MVS & VM Programming Guide

DCL FILENAME FILE RECORD SEQUENTIAL

INPUT ENV(VSAM GENKEY);

Table 15 summarizes the ENVIRONMENT options and file attributes. Certain
qualifications on their use are presented in the notes and comments for the figure.
Those options that apply to more than one data set organization are described in
the remainder of this chapter. In addition, in the following chapters, each option is
described with each data set organization to which it applies.

Table 15 (Page 1 of 2). Attributes of PL/I File Declarations

Data set
type

S
t
r
e
a
m

Record

Legend:

C Checked for VSAM

D Default

I Must be specified or implied

N Ignored for VSAM

O Optional

S Must be specified

- Invalid

File
Type

C
o
n
s
e
c
u
t
i
v
e

Sequential Direct

Consecutive Regional T
e
l
e
p
r
o
c
e
s
s
i
n
g

I
n
d
e
x
e
d

V
S
A
M

R
e
g
i
o
n
a
l

I
n
d
e
x
e
d

V
S
A
M

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

File attributes 1 Attributes implied

File I I I I I I I I I I I
Input1 D D D D D D D D D D D File
Output O O O O O O O O O O O File
Environment I I I S S S S S S S S File
Stream D - - - - - - - - - - File
Print1 O - - - - - - - - - - File stream output
Record - I I I I I I I I I I File
Update2 - O O O O - O O O O O File record
Sequential - D D D D - D D - - D File record
Buffered - D - D - I D D - - S File record
Unbuffered - - S - S - - S D D D File record
Backwards3 - O O - - - - - - - - File record sequential input
Transient - - - - - I - - - - - File
Keyed4 - - - O O I O O I I O File record
Direct - - - - - - - S S S S File record keyed
Exclusive - - - - - - - - O O - File record direct keyed update

ENVIRONMENT options Comments

F|FB|FS|FBS|V|
 VB||VS|VBS|U

I

S

S

-

-

-

-

N

-

-

N

VS and VBS are invalid with STREAM

F|FB|D|DB|U S S - - - - - N - - N ASCII data sets only
F|V|VS|U - - - S S - - N S - N Only F for REGIONAL(1) and (2)
F|FB|V|VB - - - - - - S N - S N VS invalid with UNBUF
RECSIZE(n) I I I I I S I C I I C RECSIZE and/or BLKSIZE must be specified
BLKSIZE(n) I I I I I - I N I I N for consecutive, indexed, and regional files
NCP(n) - O O O O - O N O O N NCP>1 for VSAM specifies ISAM compatibility
TRKOFL - O O O O - - - O - - Invalid for REGIONAL(3)
KEYLENGTH(n) - - - S S - S C S S C For REGIONAL(2) and (3) OUTPUT ONLY
COBOL - O O O O - O O O O O
BUFFERS(n) I I - I - I I N - - N
SCALARVARYING - O O O O - O O O O O Invalid for ASCII data sets
CONSECUTIVE D D D - - - - O - - O Allowed for VSAM ESDS
TOTAL - O - - - - - - - - -
LEAVE O O O - - - - - - - -
REREAD O O O - - - - - - - -
ASCII O O - - - - - - - - -
BUFOFF(n) O O - - - - - - - - -
CTLASA|CTL360 - O O - - - - - - - - Invalid for ASCII data sets
GRAPHIC O - - - - - - - - - -
TP({M|R}) - - - - - S - - - - -
INDEXED - - - - - - S O - S O Allowed for VSAM ESDS
KEYLOC(n) - - - - - - O - - O -
INDEXAREA(n) - - - - - - - - - O -
ADDBUFF - - - - - - - - - O -
NOWRITE - - - - - - - - - O - UPDATE files only
GENKEY - - - - - - O O - O O INPUT or UPDATE files only; KEYED is required
REGIONAL({1|2|3}) - - - S S - - - S - -
VSAM - - - - - - - S - - S

 Chapter 6. Using Data Sets and Files 111

Table 15 (Page 2 of 2). Attributes of PL/I File Declarations

Data set
type

S
t
r
e
a
m

Record

Legend:

C Checked for VSAM

D Default

I Must be specified or implied

N Ignored for VSAM

O Optional

S Must be specified

- Invalid

File
Type

C
o
n
s
e
c
u
t
i
v
e

Sequential Direct

Consecutive Regional T
e
l
e
p
r
o
c
e
s
s
i
n
g

I
n
d
e
x
e
d

V
S
A
M

R
e
g
i
o
n
a
l

I
n
d
e
x
e
d

V
S
A
M

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

PASSWORD - - - - - - - O - - O
SIS - - - - - - - - - - O
SKIP - - - - - - - O - - -
BKWD - - - - - - - O - - O
REUSE - - - - - - - O - - O OUTPUT file only
BUFND(n) - - - - - - - O - - O
BUFNI(n) - - - - - - - O - - O
BUFSP(n) - - - - - - - O - - O

Notes:

1. A file with the INPUT attribute cannot have the PRINT attribute.
2. UPDATE is invalid for tape files.
3. BACKWARDS is valid only for input tape files.
4. Keyed is required for INDEXED and REGIONAL output.

Data Set Organization Options: The options that specify data set organization
are:

55─ ──┬ ┬─CONSECUTIVE─────────── ───5%
 ├ ┤─INDEXED───────────────
 ├ ┤ ─REGIONAL──(─ ──┬ ┬─1─ ─)─
 │ │├ ┤─2─
 │ │└ ┘─3─
 ├ ┤ ─TP──(─ ──┬ ┬─M─ ─)───────
 │ │└ ┘─R─
 └ ┘─VSAM──────────────────

Each option is described in the discussion of the data set organization to which it
applies.

If you don't specify the data set organization option in the ENVIRONMENT
attribute, it defaults in the following manner when the file is opened:

� If merged attributes from DECLARE and OPEN statements do not include
TRANSIENT, the default is CONSECUTIVE.

� If the attributes include TRANSIENT, the default is TP(M).

112 PL/I for MVS & VM Programming Guide

Other ENVIRONMENT Options: You can use a constant or variable with those
ENVIRONMENT options that require integer arguments, such as block sizes and
record lengths. The variable must not be subscripted or qualified, and must have
attributes FIXED BINARY(31,0) and STATIC.

Some of the information that can be specified in the options of the ENVIRONMENT
attribute can also be specified—when TOTAL is not specified—in the
subparameters of the DCB parameter of a DD statement. The list of equivalents
for ENVIRONMENT options and DCB parameters are:

ENVIRONMENT option DCB subparameter

Record format RECFM1

RECSIZE LRECL
BLKSIZE BLKSIZE
BUFFERS BUFNO
CTLASA|CTL360 RECFM
NCP NCP
TRKOFL RECFM
KEYLENGTH KEYLEN
KEYLOC RKP
ASCII ASCII
BUFOFF BUFOFF

Note: 1VS must be specified as an ENVIRONMENT option, not in the DCB.

Record Formats for Record-Oriented Data Transmission: Record formats
supported depend on the data set organization.

55─ ──┬ ┬─F─── ───5%
 ├ ┤─FB──
 ├ ┤─FS──
 ├ ┤─FBS─
 ├ ┤─V───
 ├ ┤─VB──
 ├ ┤─VS──
 ├ ┤─VBS─
 ├ ┤─D───
 ├ ┤─DB──
 └ ┘─U───

 Chapter 6. Using Data Sets and Files 113

Records can have one of the following formats:

When U-format records are read into a varying-length string, PL/I sets the length of
the string to the block length of the retrieved data.

These record format options do not apply to VSAM data sets. If you specify a
record format option for a file associated with a VSAM data set, the option is
ignored.

You can only specify VS-format records for data sets with consecutive or
REGIONAL(3) organization.

Record Formats for Stream-Oriented Data Transmission: The record format
options for stream-oriented data transmission are discussed in “Using
Stream-Oriented Data Transmission” on page 129.

RECSIZE Option: The RECSIZE option specifies the record length.

55──RECSIZE──(──record-length──)───5%

For files other than TRANSIENT files and files associated with VSAM data sets,
record-length is the sum of:

1. The length required for data. For variable-length and undefined-length records,
this is the maximum length.

2. Any control bytes required. Variable-length records require 4 (for the
record-length prefix); fixed-length and undefined-length records do not require
any.

For a TRANSIENT file, it is the sum of:

1. The four V-format control bytes
2. One flag byte
3. Eight bytes for the key (origin or destination identifier)
4. The maximum length required for the data.

For VSAM data sets, the maximum and average lengths of the records are
specified to the Access Method Services utility when the data set is defined. If you
include the RECSIZE option in the file declaration for checking purposes, you
should specify the maximum record size. If you specify RECSIZE and it conflicts
with the values defined for the data set, the UNDEFINEDFILE condition is raised.

Fixed-length F
FB
FS
FBS

unblocked
blocked
unblocked, standard
blocked, standard

Variable-length V
VB
VS
VBS
D
DB

unblocked
blocked
spanned
blocked, spanned
unblocked, ASCII
blocked, ASCII

Undefined-length U (cannot be blocked)

114 PL/I for MVS & VM Programming Guide

You can specify record-length as an integer or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets): 32760

V-format, and VS- and VBS-format with UPDATE files: 32756

| VS- and VBS-format with INPUT and OUTPUT files: 16777215

ASCII data sets: 9999

VSAM data sets: 32761 for unspanned records. For spanned records, the
maximum is the size of the control area.

Note: For VS- and VBS-format records longer than 32,756 bytes, you must
specify the length in the RECSIZE option of ENVIRONMENT, and for the DCB

| subparameter of the DD statement you must specify LRECL=X. If RECSIZE
| exceeds the allowed maximum for INPUT or OUTPUT, either a record
| condition occurs or the record is truncated.

Zero value:
A search for a valid value is made first:

� In the DD statement for the data set associated with the file, and second
� In the data set label.

If neither of these provides a value, default action is taken (see “Record
Format, BLKSIZE, and RECSIZE Defaults” on page 117).

Negative Value:
The UNDEFINEDFILE condition is raised.

BLKSIZE Option: The BLKSIZE option specifies the maximum block size on the
data set.

55──BLKSIZE──(──block-size──)──5%

block-size is the sum of:

1. The total length(s) of one of the following:

� A single record
� A single record and either one or two record segments

 � Several records
� Several records and either one or two record segments
� Two record segments
� A single record segment.

For variable-length records, the length of each record or record segment
includes the 4 control bytes for the record or segment length.

The above list summarizes all the possible combinations of records and record
segments options: fixed- or variable-length blocked or unblocked, spanned or
unspanned. When specifying a block size for spanned records, you must be
aware that each record and each record segment requires 4 control bytes for
the record length, and that these quantities are in addition to the 4 control bytes
required for each block.

 Chapter 6. Using Data Sets and Files 115

2. Any further control bytes required.

� Variable-length blocked records require 4 (for the block size).
� Fixed-length and undefined-length records do not require any further control

bytes.

3. Any block prefix bytes required (ASCII data sets only).

block-size can be specified as an integer, or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
32760 (or 9999 for an ASCII data set for which BUFOFF without a prefix-length
value has been specified).

In regional 3 files, the maximum declared block size must not exceed 32,680
bytes. This is because the 32,760 byte maximum for block size consists of the
declared block size plus the key length plus the length of the IOCB. If you
declare “BLKSIZE=32760”, when the keylength and IOCB length are added to
it, the maximum is exceeded and an “UNDEFINED FILE” error message is
issued.

Zero value:
If you set BLKSIZE to 0, under MVS, the Data Facility Product sets the block
size. For an elaboration of this topic, see “Record Format, BLKSIZE, and
RECSIZE Defaults” on page 117. BLKSIZE defaults.

Negative value:
The UNDEFINEDFILE condition is raised.

The relationship of block size to record length depends on the record format:

FB-format or FBS-format:
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. Four control bytes.

VS-format or VBS-format:
The block size can be less than, equal to, or greater than the record length.

DB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. The length of the block prefix (if block is prefixed).

Notes:

� Use the BLKSIZE option with unblocked (F-, V-, or D-format) records in either
of the following ways:

– Specify the BLKSIZE option, but not the RECSIZE option. Set the record
length equal to the block size (minus any control or prefix bytes), and leave
the record format unchanged.

116 PL/I for MVS & VM Programming Guide

– Specify both BLKSIZE and RECSIZE and ensure that the relationship of
the two values is compatible with blocking for the record format you use.
Set the record format to FB, VB, or DB, whichever is appropriate.

� If for FB-format or FBS-format records the block size equals the record length,
the record format is set to F.

� For REGIONAL(3) data sets with VS format, record length cannot be greater
than block size.

� The BLKSIZE option does not apply to VSAM data sets, and is ignored if you
specify it for one.

Record Format, BLKSIZE, and RECSIZE Defaults: If you do not specify either
the record format, block size, or record length for a non-VSAM data set, the
following default action is taken:

Record format:
A search is made in the associated DD statement or data set label. If the
search does not provide a value, the UNDEFINEDFILE condition is raised,
except for files associated with dummy data sets or the foreground terminal, in
which case the record format is set to U.

Block size or record length:
If one of these is specified, a search is made for the other in the associated
DD statement or data set label. If the search provides a value, and if this
value is incompatible with the value in the specified option, the
UNDEFINEDFILE condition is raised. If the search is unsuccessful, a value is
derived from the specified option (with the addition or subtraction of any control
or prefix bytes).

If neither is specified, the UNDEFINEDFILE condition is raised, except for files
associated with dummy data sets, in which case BLKSIZE is set to 121 for
F-format or U-format records and to 129 for V-format records. For files
associated with the foreground terminal, RECSIZE is set to 120.

If you are using MVS with the Data Facility Product system-determined block
size, DFP determines the optimum block size for the device type assigned. If
you specify BLKSIZE(0) in either the DD assignment or the ENVIRONMENT
statement, DFP calculates BLKSIZE using the record length, record format,
and device type.

BUFFERS Option: A buffer is a storage area that is used for the intermediate
storage of data transmitted to and from a data set. The use of buffers can speed
up processing of SEQUENTIAL files. Buffers are essential for blocking and
deblocking records and for locate-mode transmission.

 Chapter 6. Using Data Sets and Files 117

Use the BUFFERS option in the ENVIRONMENT attribute to specify buffers to be
allocated for CONSECUTIVE and INDEXED data sets, according to the following
syntax:

55──BUFFERS──(──n──)───5%

where n is the number of buffers you want allocated for your data set, not to
exceed 255 (or such other maximum as is established for your PL/I installation).

If you specify zero, PL/I uses two buffers. A REGIONAL data set is always
allocated two buffers.

In teleprocessing, the BUFFERS option specifies the number of buffers available for
a particular message queue; that is, for a particular TRANSIENT file. The buffer
size is specified in the message control program for the installation. The number of
buffers specified should, if possible, be sufficient to provide for the longest message
to be transmitted.

The BUFFERS option is ignored for VSAM; you use the BUFNI, BUFND, and
BUFSP options instead.

GENKEY Option — Key Classification: The GENKEY (generic key) option
applies only to INDEXED and VSAM key-sequenced data sets. It enables you to
classify keys recorded in a data set and to use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to their key
classes.

55──GENKEY───5%

A generic key is a character string that identifies a class of keys; all keys that begin
with the string are members of that class. For example, the recorded keys “ABCD”,
“ABCE”, and “ABDF” are all members of the classes identified by the generic keys
“A” and “AB”, and the first two are also members of the class “ABC”; and the three
recorded keys can be considered to be unique members of the classes “ABCD”,
“ABCE”, and “ABDF”, respectively.

The GENKEY option allows you to start sequential reading or updating of a VSAM
data set from the first record that has a key in a particular class, and for an
INDEXED data set from the first nondummy record that has a key in a particular
class. You identify the class by including its generic key in the KEY option of a
READ statement. Subsequent records can be read by READ statements without
the KEY option. No indication is given when the end of a key class is reached.

Although you can retrieve the first record having a key in a particular class by using
a READ with the KEY option, you cannot obtain the actual key unless the records
have embedded keys, since the KEYTO option cannot be used in the same
statement as the KEY option.

118 PL/I for MVS & VM Programming Guide

In the following example, a key length of more than 3 bytes is assumed:

DCL IND FILE RECORD SEQUENTIAL KEYED

UPDATE ENV (INDEXED GENKEY);

 .

 .

 .

READ FILE(IND) INTO(INFIELD)

 KEY ('ABC');

 .

 .

 .

NEXT: READ FILE (IND) INTO (INFIELD);

 .

 .

 .

GO TO NEXT;

The first READ statement causes the first nondummy record in the data set whose
key begins with “ABC” to be read into INFIELD; each time the second READ
statement is executed, the nondummy record with the next higher key is retrieved.
Repeated execution of the second READ statement could result in reading records
from higher key classes, since no indication is given when the end of a key class is
reached. It is your responsibility to check each key if you do not wish to read
beyond the key class. Any subsequent execution of the first READ statement
would reposition the file to the first record of the key class “ABC”.

If the data set contains no records with keys in the specified class, or if all the
records with keys in the specified class are dummy records, the KEY condition is
raised. The data set is then positioned either at the next record that has a higher
key or at the end of the file.

The presence or absence of the GENKEY option affects the execution of a READ
statement which supplies a source key that is shorter than the key length specified
in the KEYLEN subparameter. This KEYLEN subparameter is found in the DD
statement that defines the indexed data set. If you specify the GENKEY option, it
causes the source key to be interpreted as a generic key, and the data set is
positioned to the first nondummy record in the data set whose key begins with the
source key. If you do not specify the GENKEY option, a READ statement's short
source key is padded on the right with blanks to the specified key length, and the
data set is positioned to the record that has this padded key (if such a record
exists). For a WRITE statement, a short source key is always padded with blanks.

Use of the GENKEY option does not affect the result of supplying a source key
whose length is greater than or equal to the specified key length. The source key,
truncated on the right if necessary, identifies a specific record (whose key can be
considered to be the only member of its class).

NCP Option — Number of Channel Programs: The NCP option specifies the
number of incomplete input/output operations with the EVENT option that can be
handled for the file at any one time.

55──NCP──(──n──)───5%

 Chapter 6. Using Data Sets and Files 119

For n you specify an integer in the range 1 through 99. If you do not specify
anything, n defaults to 1.

For consecutive and regional sequential files, it is an error to allow more than the
specified number of events to be outstanding.

For indexed files, any excess operations are queued, and no condition is raised.
However, specifying the number of channel programs required can aid optimization
of I/O with an indexed file. The NCP option has no effect with a regional direct file.

A file declared with ENVIRONMENT(VSAM) can never have more than one
incomplete input/output operation at any one time. If you specify the NCP option
for such a file, it is ignored. For information about the NCP option for VSAM with
the ISAM compatibility interface, see “Using the VSAM Compatibility Interface” on
page 225.

TRKOFL Option — Track Overflow: Track overflow is a feature of the operating
system that can be incorporated at PL/I installation time; it requires the record
overflow feature on the direct-access storage control unit. Track overflow allows a
record to overflow from one track to another. It is useful in achieving a greater
data-packing efficiency, and allows the size of a record to exceed the capacity of a
track.

55──TRKOFL───5%

Track overflow is not available for REGIONAL(3) or INDEXED data sets.

COBOL Option — Data Interchange: The COBOL option specifies that
structures in the data set associated with the file will be mapped as they would be
in a COBOL compiler. The COBOL structures can be synchronized or
unsynchronized; it is your responsibility to ensure that the associated PL/I structure
has the equivalent alignment stringency; that is, it must be ALIGNED or
UNALIGNED, respectively.

55──COBOL──5%

The following restrictions apply to the handling of a file with the COBOL option:

� You can only use a file with the COBOL option for READ INTO, WRITE FROM,
and REWRITE FROM statements.

� You cannot pass the file name as an argument or assign it to a file variable.

� You must subscript any array variable to be transmitted.

� If a condition is raised during the execution of a READ statement, you cannot
use the variable named in the INTO option in the ON-unit. If the completed
INTO variable is required, there must be a normal return from the ON-unit.

� You can use the EVENT option only if the compiler determines that the PL/I
and COBOL structure mappings are identical (that is, all elementary items have
identical boundaries). If the mappings are not identical, or if the compiler
cannot tell whether they are identical, an intermediate variable is created to
represent the level-1 item as mapped by the COBOL algorithm. The PL/I

120 PL/I for MVS & VM Programming Guide

variable is assigned to the intermediate variable before a WRITE statement is
executed, or assigned from it after a READ statement has been executed.

SCALARVARYING Option — Varying-Length Strings: You use the
SCALARVARYING option in the input/output of varying-length strings; you can use
it with records of any format.

55──SCALARVARYING──5%

When storage is allocated for a varying-length string, the compiler includes a 2-byte
prefix that specifies the current length of the string. For an element varying-length
string, this prefix is included on output, or recognized on input, only if
SCALARVARYING is specified for the file.

When you use locate mode statements (LOCATE and READ SET) to create and
read a data set with element varying-length strings, you must specify
SCALARVARYING to indicate that a length prefix is present, since the pointer that
locates the buffer is always assumed to point to the start of the length prefix.

When you specify SCALARVARYING and element varying-length strings are
transmitted, you must allow two bytes in the record length to include the length
prefix.

A data set created using SCALARVARYING should be accessed only by a file that
also specifies SCALARVARYING.

You must not specify SCALARVARYING and CTLASA/CTL360 for the same file, as
this causes the first data byte to be ambiguous.

KEYLENGTH Option: Use the KEYLENGTH option to specify the length of the
recorded key for KEYED files where n is the length. You can specify KEYLENGTH
for INDEXED or REGIONAL(3) files.

55──KEYLENGTH──(──n──)───5%

If you include the KEYLENGTH option in a VSAM file declaration for checking
purposes, and the key length you specify in the option conflicts with the value
defined for the data set, the UNDEFINEDFILE condition is raised.

Data Set Types Used by PL/I Record I/O
Data sets with the RECORD attribute are processed by record-oriented data
transmission in which data is transmitted to and from auxiliary storage exactly as it
appears in the program variables; no data conversion takes place. A record in a
data set corresponds to a variable in the program.

Table 16 on page 122 shows the facilities that are available with the various types
of data sets that can be used with PL/I Record I/O.

The following chapters describe how to use Record I/O data sets for different types
of data sets:

� Chapter 8, “Defining and Using Consecutive Data Sets” on page 129
� Chapter 9, “Defining and Using Indexed Data Sets” on page 163

 Chapter 6. Using Data Sets and Files 121

� Chapter 10, “Defining and Using Regional Data Sets” on page 185
� Chapter 11, “Defining and Using VSAM Data Sets” on page 211
� Chapter 12, “Defining and Using Teleprocessing Data Sets” on page 255

Table 16. A Comparison of Data Set Types Available to PL/I Record I/O

 VSAM
KSDS

VSAM
ESDS

VSAM
RRDS

INDEXED

CONSECUTIVE

REGIONAL
(1)

REGIONAL
(2)

REGIONAL
(3)

SEQUENCE Key
order

Entry
order

Num-
bered

Key
order

Entry
order

By
region

By
region

By
region

DEVICES DASD DASD DASD DASD DASD, tape,
card, etc.

DASD DASD DASD

ACCESS
1 By key
2 Sequential
3 Backward

123

123

123

12

2
3 tape only

12

12

12

Alternate
index
 access
 as above

123

123

No

No

No

No

No

No

How
extended

With
new
keys

At
end

In
empty
slots

With
new
keys

At
end

In
empty
slots

With
new
keys

With
new
keys

SPANNED
RECORDS

Yes Yes No Yes Yes No No Yes

DELETION
1 Space

reusable
2 Space

not
reusable

Yes, 1

No

Yes, 1

Yes, 2

No

Yes, 2

Yes, 2

Yes, 2

122 PL/I for MVS & VM Programming Guide

 Chapter 7. Using Libraries

Within the MVS operating system, the terms “partitioned data set” and “library” are
synonymous and refer to a type of data set that can be used for the storage of
other data sets (usually programs in the form of source, object or load modules). A
library must be stored on direct-access storage and be wholly contained in one
volume. It contains independent, consecutively organized data sets, called
members. Each member has a unique name, not more than 8 characters long,
which is stored in a directory that is part of the library. All the members of one
library must have the same data characteristics because only one data set label is
maintained.

You can create members individually until there is insufficient space left for a new
entry in the directory, or until there is insufficient space for the member itself. You
can access members individually by specifying the member name.

Use DD statements or their conversational mode equivalent to create and access
members.

You can delete members by means of the IBM utility program IEHPROGM. This
deletes the member name from the directory so that the member can no longer be
accessed, but you cannot use the space occupied by the member itself again
unless you recreate the library or compress the unused space using, for example,
the IBM utility program IEBCOPY. If you attempt to delete a member by using the
DISP parameter of a DD statement, it causes the whole data set to be deleted.

PL/I does not support VM MACLIBS as libraries.

Types of libraries
You can use the following types of libraries with a PL/I program:

� The system program library SYS1.LINKLIB or its equivalent. This can contain
all system processing programs such as compilers and the linkage editor.

� Private program libraries. These usually contain user-written programs. It is
often convenient to create a temporary private library to store the load module
output from the linkage editor until it is executed by a later job step in the same
job. The temporary library will be deleted at the end of the job. Private
libraries are also used for automatic library call by the linkage editor and the
loader.

� The system procedure library SYS1.PROCLIB or its equivalent. This contains
the job control procedures that have been cataloged for your installation.

How to Use a Library
A PL/I program can use a library directly. If you are adding a new member to a
library, its directory entry will be made by the operating system when the
associated file is closed, using the member name specified as part of the data set
name.

If you are accessing a member of a library, its directory entry can be found by the
operating system from the member name that you specify as part of the data set
name.

 Copyright IBM Corp. 1964, 1995 123

More than one member of the same library can be processed by the same PL/I
program, but only one such output file can be open at any one time. You access
different members by giving the member name in a DD statement.

Creating a Library
To create a library include in your job step a DD statement containing the
information given in Table 17. The information required is similar to that for a
consecutively organized data set (see “Defining Files Using Record I/O” on
page 150) except for the SPACE parameter.

Table 17. Information Required When Creating a Library

Information
required

Parameter of
DD statement

Type of device that will be used UNIT=

Serial number of the volume that will contain the library VOLUME=SER

Name of the library DSNAME=

Amount of space required for the library SPACE=

Disposition of the library DISP=

 SPACE Parameter
The SPACE parameter in a DD statement that defines a library must always be of
the form:

 SPACE=(units,(quantity,increment,directory))

Although you can omit the third term (increment), indicating its absence by a
comma, the last term, specifying the number of directory blocks to be allocated,
must always be present.

The amount of auxiliary storage required for a library depends on the number and
sizes of the members to be stored in it and on how often members will be added or
replaced. (Space occupied by deleted members is not released.) The number of
directory blocks required depends on the number of members and the number of
aliases. You can specify an incremental quantity in the SPACE parameter that
allows the operating system to obtain more space for the data set, if such is
necessary at the time of creation or at the time a new member is added; the
number of directory blocks, however, is fixed at the time of creation and cannot be
increased.

For example, the DD statement:

//PDS DD UNIT=SYSDA,VOL=SER=3412,

 // DSNAME=ALIB,

 // SPACE=(CYL,(5,,1ð)),

 // DISP=(,CATLG)

requests the job scheduler to allocate 5 cylinders of the DASD with a volume serial
number 3412 for a new library name ALIB, and to enter this name in the system
catalog. The last term of the SPACE parameter requests that part of the space
allocated to the data set be reserved for ten directory blocks.

124 PL/I for MVS & VM Programming Guide

Creating and Updating a Library Member
The members of a library must have identical characteristics. Otherwise, you might
later have difficulty retrieving them. Identical characteristics are necessary because
the volume table of contents (VTOC) will contain only one data set control block
(DSCB) for the library and not one for each member. When using a PL/I program
to create a member, the operating system creates the directory entry; you cannot
place information in the user data field.

When creating a library and a member at the same time, your DD statement must
include all the parameters listed under “Creating a Library” on page 124 (although
you can omit the DISP parameter if the data set is to be temporary). The DSNAME
parameter must include the member name in parentheses. For example,
DSNAME=ALIB(MEM1) names the member MEM1 in the data set ALIB. If the
member is placed in the library by the linkage editor, you can use the linkage editor
NAME statement or the NAME compile-time option instead of including the member
name in the DSNAME parameter. You must also describe the characteristics of the
member (record format, etc.) either in the DCB parameter or in your PL/I program.
These characteristics will also apply to other members added to the data set.

When creating a member to be added to an existing library, you do not need the
SPACE parameter. The original space allocation applies to the whole of the library
and not to an individual member. Furthermore, you do not need to describe the
characteristics of the member, since these are already recorded in the DSCB for
the library.

To add two more members to a library in one job step, you must include a DD
statement for each member, and you must close one file that refers to the library
before you open another.

 Examples
The use of the cataloged procedure IEL1C to compile a simple PL/I program and
place the object module in a new library named EXLIB is shown in Figure 23 on
page 126. The DD statement that defines the new library and names the object
module overrides the DD statement SYSLIN in the cataloged procedure. (The PL/I
program is a function procedure that, given two values in the form of the character
string produced by the TIME built-in function, returns the difference in milliseconds.)

The use of the cataloged procedure IEL1CL to compile and link-edit a PL/I program
and place the load module in the existing library HPU8.CCLM is shown in
Figure 24 on page 126.

 Chapter 7. Using Libraries 125

 //OPT1ð#1 JOB

 //TR EXEC IEL1C

//PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPU8.EXLIB(ELAPSE),

 // SPACE=(TRK,(1,,1)),DISP=(NEW,CATLG)

 //PLI.SYSIN DD \

 ELAPSE: PROC(TIME1,TIME2);

DCL (TIME1,TIME2) CHAR(9),

H1 PIC '99' DEF TIME1,

M1 PIC '99' DEF TIME1 POS(3),

MS1 PIC '99999' DEF TIME1 POS(5),

H2 PIC '99' DEF TIME2,

M2 PIC '99' DEF TIME2 POS(3),

MS2 PIC '99999' DEF TIME2 POS(5),

ETIME FIXED DEC(7);

IF H2<H1 THEN H2=H2+24;

 ETIME=((H2\6ð+M2)\6ðððð+MS2)-((H1\6ð+M1)\6ðððð+MS1);

 RETURN(ETIME);

 END ELAPSE;

 /\

Figure 23. Creating New Libraries for Compiled Object Modules

 //OPT1ð#2 JOB

 //TRLE EXEC IEL1CL

 //PLI.SYSIN DD \

MNAME: PROC OPTIONS(MAIN);

 .

 .

 .

 program

 .

 .

 .

 END MNAME;

 /\

//LKED.SYSLMOD DD DSNAME=HPU8.CCLM(DIRLIST),DISP=OLD

Figure 24. Placing a Load Module in an Existing Library

To use a PL/I program to add or delete one or more records within a member of a
library, you must rewrite the entire member in another part of the library. This is
rarely an economic proposition, since the space originally occupied by the member
cannot be used again. You must use two files in your PL/I program, but both can
be associated with the same DD statement. The program shown in Figure 26 on
page 127 updates the member created by the program in Figure 25 on page 127.
It copies all the records of the original member except those that contain only
blanks.

126 PL/I for MVS & VM Programming Guide

 //OPT1ð#3 JOB

 //TREX EXEC IEL1CLG

 //PLI.SYSIN DD \

 NMEM: PROC OPTIONS(MAIN);

DCL IN FILE RECORD SEQUENTIAL INPUT,

OUT FILE RECORD SEQUENTIAL OUTPUT,

 P POINTER,

IOFIELD CHAR(8ð) BASED(P),

EOF BIT(1) INIT('ð'B);

OPEN FILE(IN),FILE (OUT);

ON ENDFILE(IN) EOF='1'B;

READ FILE(IN) SET(P);

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);

WRITE FILE(OUT) FROM(IOFIELD);

READ FILE(IN) SET(P);

 END;

 CLOSE FILE(IN),FILE(OUT);

 END NMEM;

 /\

 //GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.ALIB(NMEM),

 // DISP=(NEW,CATLG),SPACE=(TRK,(1,1,1)),

 // DCB=(RECFM=FB,BLKSIZE=36ðð,LRECL=8ð)

 //GO.IN DD \

 MEM: PROC OPTIONS(MAIN);

/\ this is an incomplete dummy library member \/

Figure 25. Creating a Library Member in a PL/I Program

 //OPT1ð#4 JOB

 //TREX EXEC IEL1CLG

 //PLI.SYSIN DD \

UPDTM: PROC OPTIONS(MAIN);

DCL (OLD,NEW) FILE RECORD SEQUENTIAL,

EOF BIT(1) INIT('ð'B),

 DATA CHAR(8ð);

ON ENDFILE(OLD) EOF = '1'B;

OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE('OLD');

READ FILE(OLD) INTO(DATA);

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);

IF DATA=' ' THEN ;

ELSE WRITE FILE(NEW) FROM(DATA);

READ FILE(OLD) INTO(DATA);

 END;

 CLOSE FILE(OLD),FILE(NEW);

 END UPDTM;

 /\

 //GO.OLD DD DSNAME=HPU8.ALIB(NMEM),DISP=(OLD,KEEP)

Figure 26. Updating a Library Member

 Chapter 7. Using Libraries 127

Extracting Information from a Library Directory
The directory of a library is a series of records (entries) at the beginning of the data
set. There is at least one directory entry for each member. Each entry contains a
member name, the relative address of the member within the library, and a variable
amount of user data.

User data is information inserted by the program that created the member. An
entry that refers to a member (load module) written by the linkage editor includes
user data in a standard format, described in the systems manuals.

If you use a PL/I program to create a member, the operating system creates the
directory entry for you and you cannot write any user data. However, you can use
assembler language macro instructions to create a member and write your own
user data. The method for using macro instructions to do this is described in the
data management manuals.

128 PL/I for MVS & VM Programming Guide

Chapter 8. Defining and Using Consecutive Data Sets

This chapter covers consecutive data set organization and the ENVIRONMENT
options that define consecutive data sets for stream and record-oriented data
transmission. It then covers how to create, access, and update consecutive data
sets for each type of transmission.

In a data set with consecutive organization, records are organized solely on the
basis of their successive physical positions; when the data set is created, records
are written consecutively in the order in which they are presented. You can retrieve
the records only in the order in which they were written, or, for RECORD I/O only,
also in the reverse order when using the BACKWARDS attribute. See Table 15 on
page 111 for valid file attributes and ENVIRONMENT options for consecutive data
sets.

VM supports consecutive data set organization, and you can use PL/I to access
these types of files. The examples in this chapter are given using JCL. However,
the information presented in the JCL examples is applicable to the FILEDEF VM
command you issue. For more information on the FILEDEF command, see the
VM/ESA CMS Command Reference and the VM/ESA CMS User's Guide.

Using Stream-Oriented Data Transmission
This section covers how to define data sets for use with PL/I files that have the
STREAM attribute. It covers the ENVIRONMENT options you can use and how to
create and access data sets. The essential parameters of the DD statements you
use in creating and accessing these data sets are summarized in tables, and
several examples of PL/I programs are included to illustrate the text.

Data sets with the STREAM attribute are processed by stream-oriented data
transmission, which allows your PL/I program to ignore block and record
boundaries and treat a data set as a continuous stream of data values in character
or graphic form.

You create and access data sets for stream-oriented data transmission using the
list-, data-, and edit-directed input and output statements described in the PL/I for
MVS & VM Language Reference.

For output, PL/I converts the data items from program variables into character form
if necessary, and builds the stream of characters or graphics into records for
transmission to the data set.

For input, PL/I takes records from the data set and separates them into the data
items requested by your program, converting them into the appropriate form for
assignment to program variables.

You can use stream-oriented data transmission to read or write graphic data.
There are terminals, printers, and data-entry devices that, with the appropriate
programming support, can display, print, and enter graphics. You must be sure
that your data is in a format acceptable for the intended device, or for a print utility
program.

 Copyright IBM Corp. 1964, 1995 129

Defining Files Using Stream I/O
You define files for stream-oriented data transmission by a file declaration with the
following attributes:

DCL filename FILE STREAM

INPUT | {OUTPUT [PRINT]}

 ENVIRONMENT(options);

Default file attributes are shown in Table 15 on page 111; the FILE attribute is
described in the PL/I for MVS & VM Language Reference. The PRINT attribute is
described further in “Using PRINT Files with Stream I/O” on page 138. Options of
the ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options
Table 15 on page 111 summarizes the ENVIRONMENT options. The options
applicable to stream-oriented data transmission are:

 CONSECUTIVE

 F|FB|FS|FBS|V|VB|D|DB|U

 RECSIZE(record-length)

 BLKSIZE(block-size)

 BUFFERS(n)

 GRAPHIC

 LEAVE

 REREAD

 ASCII

 BUFOFF[(n)]

BLKSIZE and BUFFERS are described in Chapter 6, “Using Data Sets and Files,”
beginning on page 115. LEAVE, REREAD, ASCII, and BUFOFF are described
later in this chapter, beginning on page 153. Descriptions of the rest of these
options follow immediately below.

 CONSECUTIVE
STREAM files must have CONSECUTIVE data set organization; however, it is not
necessary to specify this in the ENVIRONMENT options since CONSECUTIVE is
the default data set organization. The CONSECUTIVE option for STREAM files is
the same as that described in “Data Set Organization” on page 106.

55──CONSECUTIVE──5%

Record format options
Although record boundaries are ignored in stream-oriented data transmission,
record format is important when creating a data set. This is not only because
record format affects the amount of storage space occupied by the data set and the
efficiency of the program that processes the data, but also because the data set
can later be processed by record-oriented data transmission.

130 PL/I for MVS & VM Programming Guide

Having specified the record format, you need not concern yourself with records and
blocks as long as you use stream-oriented data transmission. You can consider
your data set a series of characters or graphics arranged in lines, and you can use
the SKIP option or format item (and, for a PRINT file, the PAGE and LINE options
and format items) to select a new line.

55─ ──┬ ┬─F─── ───5%
 ├ ┤─FB──
 ├ ┤─FBS─
 ├ ┤─FS──
 ├ ┤─V───
 ├ ┤─VB──
 ├ ┤─D───
 ├ ┤─DB──
 └ ┘─U───

Records can have one of the following formats, which are described in “Record
Formats” on page 103.

Blocking and deblocking of records are performed automatically.

Fixed-length F
FB
FBS
FS

unblocked
blocked
blocked, standard
unblocked, standard

Variable-length V
VB
D
DB

unblocked
blocked
unblocked ASCII
blocked ASCII

Undefined-length U (cannot be blocked)

 RECSIZE
RECSIZE for stream-oriented data transmission is the same as that described in
“Specifying Characteristics in the ENVIRONMENT Attribute” on page 110.
Additionally, a value specified by the LINESIZE option of the OPEN statement
overrides a value specified in the RECSIZE option. LINESIZE is discussed in the
PL/I for MVS & VM Language Reference.

Additional record-size considerations for list- and data-directed transmission of
graphics are given in the PL/I for MVS & VM Language Reference.

Defaults for Record Format, BLKSIZE, and RECSIZE
If you do not specify the record format, BLKSIZE, or RECSIZE option in the
ENVIRONMENT attribute, or in the associated DD statement or data set label, the
following action is taken:

Input files:
Defaults are applied as for record-oriented data transmission, described in
“Record Format, BLKSIZE, and RECSIZE Defaults” on page 117.

Output files:

Record format:
Set to VB-format, or if ASCII option specified, to DB-format.

 Chapter 8. Defining and Using Consecutive Data Sets 131

Record length:
The specified or default LINESIZE value is used:

 PRINT files:
F, FB, FBS, or U: line size + 1
V, VB, D, or DB: line size + 5

 Non-PRINT files:
F, FB, FBS, or U: linesize
V, VB, D, or DB: linesize + 4

 Block size:
F, FB, or FBS: record length
V or VB: record length + 4
D or DB: record length + block prefix

(see “Information Interchange Codes” on page 103)

 GRAPHIC Option
You must specify the GRAPHIC option of the ENVIRONMENT attribute if you use
DBCS variables or DBCS constants in GET and PUT statements for list- and
data-directed I/O. You can also specify the GRAPHIC option for edit-directed I/O.

55──GRAPHIC──5%

The ERROR condition is raised for list- and data-directed I/O if you have graphics
in input or output data and do not specify the GRAPHIC option.

For edit-directed I/O, the GRAPHIC option specifies that left and right delimiters are
added to DBCS variables and constants on output, and that input graphics will have
left and right delimiters. If you do not specify the GRAPHIC option, left and right
delimiters are not added to output data, and input graphics do not require left and
right delimiters. When you do specify the GRAPHIC option, the ERROR condition
is raised if left and right delimiters are missing from the input data.

For information on the graphic data type, and on the G-format item for edit-directed
I/O, see the PL/I for MVS & VM Language Reference.

Creating a Data Set with Stream I/O
To create a data set, you must give the operating system certain information either
in your PL/I program or in the DD statement that defines the data set. The
following paragraphs indicate the essential information, and discuss some of the
optional information you can supply.

 Essential Information
You must supply the following information, summarized in Table 18 on page 133,
when creating a data set:

� Device that will write your data set (UNIT, SYSOUT, or VOLUME parameter of
DD statement).

� Block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE option of the OPEN statement) or in the
DD statement (BLKSIZE subparameter). If you do not specify a record length,

132 PL/I for MVS & VM Programming Guide

unblocked records are the default and the record length is determined from the
block size. If you do not specify a record format, U-format is the default
(except for PRINT files when V-format is the default; see “Controlling Printed
Line Length” on page 139).

If you want to keep a magnetic-tape or direct-access data set (that is, you do not
want the operating system to delete it at the end of your job), the DD statement
must name the data set and indicate how it is to be disposed of (DSNAME and
DISP parameters). The DISP parameter alone will suffice if you want to use the
data set in a later step but will not need the data set after the end of your job.

When creating a data set on a direct-access device, you must specify the amount
of space required for it (SPACE parameter of DD statement).

If you want your data set stored on a particular magnetic-tape or direct-access
device, you must indicate the volume serial number in the DD statement (SER or
REF subparameter of VOLUME parameter). If you do not supply a serial number
for a magnetic-tape data set that you want to keep, the operating system will
allocate one, inform the operator, and print the number on your program listing.

If your data set is to follow another data set on a magnetic-tape volume, you must
use the LABEL parameter of the DD statement to indicate its sequence number on
the tape.

Table 18. Creating a data set with stream I/O: essential parameters of the DD statement

Storage device

When required

What you must
state

Parameters

All Always Output device

Block size1

UNIT= or SYSOUT=
or VOLUME=REF=

DCB=(BLKSIZE=...)

Direct access only Always Storage space
required

SPACE=

Magnetic tape only Data set not first in volume and
for magnetic tapes that do not
have standard labels

Sequence
number

LABEL=

Direct access and
standard labeled
magnetic tape

Data set to be used by another
job step but not required at end
of job

Data set to be kept after end of
job

Data set to be on particular
volume

Disposition

Disposition

Name of data set

Volume serial
number

DISP=

DISP=

DSNAME=

VOLUME=SER or
VOLUME=REF=

1Alternatively, you can specify the block size in your PL/I program by using either the ENVIRONMENT
attribute or the LINESIZE option.

 Examples
The use of edit-directed stream-oriented data transmission to create a data set on a
direct access storage device is shown in Figure 27 on page 134. The data read
from the input stream by the file SYSIN includes a field VREC that contains five
unnamed 7-character subfields; the field NUM defines the number of these
subfields that contain information. The output file WORK transmits to the data set

 Chapter 8. Defining and Using Consecutive Data Sets 133

the whole of the field FREC and only those subfields of VREC that contain
information.

 //EX7#2 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM OUTPUT,

 1 REC,

 2 FREC,

3 NAME CHAR(19),

3 NUM CHAR(1),

3 PAD CHAR(25),

2 VREC CHAR(35),

EOF BIT(1) INIT('ð'B),

IN CHAR(8ð) DEF REC;

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(WORK) LINESIZE(4ðð);

GET FILE(SYSIN) EDIT(IN)(A(8ð));

DO WHILE (¬EOF);

PUT FILE(WORK) EDIT(IN)(A(45+7\NUM));

GET FILE(SYSIN) EDIT(IN)(A(8ð));

 END;

 CLOSE FILE(WORK);

 END PEOPLE;

 /\

 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(NEW,CATLG),UNIT=SYSDA,

 // SPACE=(TRK,(1,1))

 //GO.SYSIN DD \

 R.C.ANDERSON ð 2ð2848 DOCTOR

 B.F.BENNETT 2 771239 PLUMBER VICTOR HAZEL

 R.E.COLE 5 698635 COOK ELLEN VICTOR JOAN ANN OTTO

 J.F.COOPER 5 418915 LAWYER FRANK CAROL DONALD NORMAN BRENDA

 A.J.CORNELL 3 237837 BARBER ALBERT ERIC JANET

 E.F.FERRIS 4 158636 CARPENTER GERALD ANNA MARY HAROLD

 /\

Figure 27. Creating a Data Set with Stream-Oriented Data Transmission

Figure 28 on page 135 shows an example of a program using list-directed output
to write graphics to a stream file. It assumes that you have an output device that
can print graphic data. The program reads employee records and selects persons
living in a certain area. It then edits the address field, inserting one graphic blank
between each address item, and prints the employee number, name, and address.

134 PL/I for MVS & VM Programming Guide

 //EX7#3 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 % PROCESS GRAPHIC;

 XAMPLE1: PROC OPTIONS(MAIN);

DCL INFILE FILE INPUT RECORD,

OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);

/\ GRAPHIC OPTION MEANS DELIMITERS WILL BE INSERTED ON OUTPUT FILES. \/

 DCL

 1 IN,

3 EMPNO CHAR(6),

3 SHIFT1 CHAR(1),

 3 NAME,

5 LAST G(7),

5 FIRST G(7),

3 SHIFT2 CHAR(1),

 3 ADDRESS,

5 ZIP CHAR(6),

5 SHIFT3 CHAR(1),

5 DISTRICT G(5),

5 CITY G(5),

5 OTHER G(8),

5 SHIFT4 CHAR(1);

DCL EOF BIT(1) INIT('ð'B);

DCL ADDRWK G(2ð);

ON ENDFILE (INFILE) EOF = '1'B;

READ FILE(INFILE) INTO(IN);

 DO WHILE(¬EOF);

 DO;

 IF SUBSTR(ZIP,1,3)¬='3ðð'

 THEN LEAVE;

 L=ð;

 ADDRWK=DISTRICT;

DO I=1 TO 5;

IF SUBSTR(DISTRICT,I,1)= < >

THEN LEAVE; /\ SUBSTR BIF PICKS UP \/

END; /\ THE ITH GRAPHIC CHAR \/

L=L+I+1; /\ IN DISTRICT \/

 SUBSTR(ADDRWK,L,5)=CITY;

DO I=1 TO 5;

IF SUBSTR(CITY,I,1)= < >

 THEN LEAVE;

 END;

 L=L+I;

 SUBSTR(ADDRWK,L,8)=OTHER;

PUT FILE(OUTFILE) SKIP /\ THIS DATA SET \/

EDIT(EMPNO,IN.LAST,FIRST,ADDRWK) /\ REQUIRES UTILITY \/

(A(8),G(7),G(7),X(4),G(2ð)); /\ TO PRINT GRAPHIC \/

 /\ DATA \/

END; /\ END OF NON-ITERATIVE DO \/

READ FILE(INFILE) INTO (IN);

END; /\ END OF DO WHILE(¬EOF) \/

 END XAMPLE1;

 /\

 //GO.OUTFILE DD SYSOUT=A,DCB=(RECFM=VB,LRECL=121,BLKSIZE=129)

 //GO.INFILE DD \

 ABCDEF< >3ððð99< 3 3 3 3 3 3 3 >

 ABCD < >3ððð11< 3 3 3 3 >

 /\

Figure 28. Writing Graphic Data to a Stream File

 Chapter 8. Defining and Using Consecutive Data Sets 135

Accessing a Data Set with Stream I/O
A data set accessed using stream-oriented data transmission need not have been
created by stream-oriented data transmission, but it must have CONSECUTIVE
organization, and all the data in it must be in character or graphic form. You can
open the associated file for input, and read the records the data set contains; or
you can open the file for output, and extend the data set by adding records at the
end.

To access a data set, you must identify it to the operating system in a DD
statement. Table 19 summarizes the DD statement parameters needed to access
a consecutive data set.

The following paragraphs describe the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

Table 19. Accessing a Data Set with Stream I/O: Essential Parameters of the DD Statement

When required What you must state Parameters

Always Name of data set

Disposition of data set

DSNAME=

DISP=

If data set not cataloged (all devices) Input device UNIT= or VOLUME=REF=

If data set not cataloged (standard
labeled magnetic tape and direct access)

Volume serial number VOLUME=SER=

Magnetic tape (if data set not first in
volume or which does not have standard
labels)

Sequence number LABEL=

If data set does not have standard labels Block size1 DCB=(BLKSIZE=.

1Or you could specify the block size in your PL/I program by using either the ENVIRONMENT attribute
or the LINESIZE option.

 Essential Information
If the data set is cataloged, you need supply only the following information in the
DD statement:

� The name of the data set (DSNAME parameter). The operating system locates
the information describing the data set in the system catalog, and, if necessary,
requests the operator to mount the volume containing it.

� Confirmation that the data set exists (DISP parameter). If you open the data
set for output with the intention of extending it by adding records at the end,
code DISP=MOD; otherwise, opening the data set for output results in it being
overwritten.

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and, for magnetic-tape and direct-access devices, give the serial
number of the volume that contains the data set (UNIT and VOLUME parameters).

If the data set follows another data set on a magnetic-tape volume, you must use
the LABEL parameter of the DD statement to indicate its sequence number on the
tape.

136 PL/I for MVS & VM Programming Guide

Magnetic Tape without IBM Standard Labels: If a magnetic-tape data set has
nonstandard labels or is unlabeled, you must specify the block size either in your
PL/I program (ENVIRONMENT attribute) or in the DD statement (BLKSIZE
subparameter). The DSNAME parameter is not essential if the data set is not
cataloged.

PL/I includes no facilities for processing nonstandard labels, which appear to the
operating system as data sets preceding or following your data set. You can either
process the labels as independent data sets or use the LABEL parameter of the
DD statement to bypass them. To bypass the labels, code LABEL=(2,NL) or
LABEL=(,BLP)

 Record Format
When using stream-oriented data transmission to access a data set, you do not
need to know the record format of the data set (except when you must specify a
block size); each GET statement transfers a discrete number of characters or
graphics to your program from the data stream.

If you do give record-format information, it must be compatible with the actual
structure of the data set. For example, if a data set is created with F-format
records, a record size of 600 bytes, and a block size of 3600 bytes, you can access
the records as if they are U-format with a maximum block size of 3600 bytes; but if
you specify a block size of 3500 bytes, your data will be truncated.

 Example
The program in Figure 29 on page 138 reads the data set created by the program
in Figure 27 on page 134 and uses the file SYSPRINT to list the data it contains.
(For details on SYSPRINT, see “Using SYSIN and SYSPRINT Files” on page 142.)
Each set of data is read, by the GET statement, into two variables: FREC, which
always contains 45 characters; and VREC, which always contains 35 characters.
At each execution of the GET statement, VREC consists of the number of
characters generated by the expression 7*NUM, together with sufficient blanks to
bring the total number of characters to 35. The DISP parameter of the DD
statement could read simply DISP=OLD; if DELETE is omitted, an existing data set
will not be deleted.

 Chapter 8. Defining and Using Consecutive Data Sets 137

 //EX7#5 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM INPUT,

 1 REC,

 2 FREC,

3 NAME CHAR(19),

3 NUM CHAR(1),

3 SERNO CHAR(7),

3 PROF CHAR(18),

2 VREC CHAR(35),

IN CHAR(8ð) DEF REC,

EOF BIT(1) INIT('ð'B);

ON ENDFILE(WORK) EOF='1'B;

 OPEN FILE(WORK);

GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7\NUM));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT(IN)(A);

GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7\NUM));

 END;

 CLOSE FILE(WORK);

 END PEOPLE;

 /\

 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Figure 29. Accessing a Data Set with Stream-Oriented Data Transmission

Using PRINT Files with Stream I/O
Both the operating system and the PL/I language include features that facilitate the
formatting of printed output. The operating system allows you to use the first byte
of each record for a print control character. The control characters, which are not
printed, cause the printer to skip to a new line or page. (Tables of print control
characters are given in Figure 33 on page 153 and Figure 34 on page 153.)

In a PL/I program, the use of a PRINT file provides a convenient means of
controlling the layout of printed output from stream-oriented data transmission. The
compiler automatically inserts print control characters in response to the PAGE,
SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file, even if you do
not intend to print the associated data set directly. When a PRINT file is
associated with a magnetic-tape or direct-access data set, the print control
characters have no effect on the layout of the data set, but appear as part of the
data in the records.

The compiler reserves the first byte of each record transmitted by a PRINT file for
an American National Standard print control character, and inserts the appropriate
characters automatically.

138 PL/I for MVS & VM Programming Guide

A PRINT file uses only the following five print control characters:

Character Action
Space 1 line before printing (blank character)

0 Space 2 lines before printing
− Space 3 lines before printing
+ No space before printing
1 Start new page

The compiler handles the PAGE, SKIP, and LINE options or format items by
padding the remainder of the current record with blanks and inserting the
appropriate control character in the next record. If SKIP or LINE specifies more
than a 3-line space, the compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the absence of a print
control option or format item, when a record is full the compiler inserts a blank
character (single line space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE, SKIP, and LINE
options will never cause more than 3 lines to be skipped, unless formatted output is
specified. (For information about TSO see “Using the PLI Command” on page 59,
and for information about VM see “PLIOPT Command Options” on page 75.)

Controlling Printed Line Length
You can limit the length of the printed line produced by a PRINT file either by
specifying a record length in your PL/I program (ENVIRONMENT attribute) or in a
DD statement, or by giving a line size in an OPEN statement (LINESIZE option).
The record length must include the extra byte for the print control character, that is,
it must be 1 byte larger than the length of the printed line (5 bytes larger for
V-format records). The value you specify in the LINESIZE option refers to the
number of characters in the printed line; the compiler adds the print control
character.

The blocking of records has no effect on the appearance of the output produced by
a PRINT file, but it does result in more efficient use of auxiliary storage when the
file is associated with a data set on a magnetic-tape or direct-access device. If you
use the LINESIZE option, ensure that your line size is compatible with your block
size. For F-format records, block size must be an exact multiple of (line size+1);
for V-format records, block size must be at least 9 bytes greater than line size.

Although you can vary the line size for a PRINT file during execution by closing the
file and opening it again with a new line size, you must do so with caution if you
are using the PRINT file to create a data set on a magnetic-tape or direct-access
device. You cannot change the record format that is established for the data set
when the file is first opened. If the line size you specify in an OPEN statement
conflicts with the record format already established, the UNDEFINEDFILE condition
is raised. To prevent this, either specify V-format records with a block size at least
9 bytes greater than the maximum line size you intend to use, or ensure that the
first OPEN statement specifies the maximum line size. (Output destined for the
printer can be stored temporarily on a direct-access device, unless you specify a
printer by using UNIT=, even if you intend it to be fed directly to the printer.)

Since PRINT files have a default line size of 120 characters, you need not give any
record format information for them. In the absence of other information, the
compiler assumes V-format records. The complete default information is:

 Chapter 8. Defining and Using Consecutive Data Sets 139

 BLKSIZE=129

 LRECL=125

 RECFM=VBA.

Example: Figure 30 on page 141 illustrates the use of a PRINT file and the
printing options of stream-oriented data transmission statements to format a table
and write it onto a direct-access device for printing on a later occasion. The table
comprises the natural sines of the angles from 0° to 359° 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the bottom of
each page, and set up the headings for the following page.

The DD statement defining the data set created by this program includes no
record-format information. The compiler infers the following from the file declaration
and the line size specified in the statement that opens the file TABLE:

Record format = V
(the default for a PRINT file).

Record size = 98
(line size + 1 byte for print control character + 4 bytes for
record control field).

Block size = 102
(record length + 4 bytes for block control field).

The program in Figure 36 on page 162 uses record-oriented data transmission to
print the table created by the program in Figure 30 on page 141.

Overriding the Tab Control Table
Data-directed and list-directed output to a PRINT file are aligned on preset tabulator
positions. See Figure 18 on page 90 and Figure 31 on page 142 for examples of
declaring a tab table. The definitions of the fields in the table are as follows:

OFFSET OF TAB COUNT:
Halfword binary integer that gives the offset of “Tab count,” the field
that indicates the number of tabs to be used.

PAGESIZE:
Halfword binary integer that defines the default page size. This page
size is used for dump output to the PLIDUMP data set as well as for
stream output.

LINESIZE: Halfword binary integer that defines the default line size.

PAGELENGTH:
Halfword binary integer that defines the default page length for printing
at a terminal. For TSO and VM, the value 0 indicates unformatted
output.

FILLERS: Three halfword binary integers; reserved for future use.

TAB COUNT:
Halfword binary integer that defines the number of tab position entries
in the table (maximum 255). If tab count = 0, any specified tab
positions are ignored.

140 PL/I for MVS & VM Programming Guide

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;

%PROCESS LIST;

 SINE: PROC OPTIONS(MAIN);

DCL TABLE FILE STREAM OUTPUT PRINT;

DCL DEG FIXED DEC(5,1) INIT(ð); /\ INIT(ð) FOR ENDPAGE \/

 DCL MIN FIXED DEC(3,1);

 DCL PGNO FIXED DEC(2) INIT(ð);

 DCL ONCODE BUILTIN;

 ON ERROR

 BEGIN;

ON ERROR SYSTEM;

DISPLAY ('ONCODE = '|| ONCODE);

 END;

 ON ENDPAGE(TABLE)

 BEGIN;

 DCL I;

IF PGNO ¬= ð THEN

PUT FILE(TABLE) EDIT ('PAGE',PGNO)

 (LINE(55),COL(8ð),A,F(3));

IF DEG ¬= 36ð THEN

 DO;

PUT FILE(TABLE) PAGE EDIT ('NATURAL SINES') (A);

IF PGNO ¬= ð THEN

PUT FILE(TABLE) EDIT ((I DO I = ð TO 54 BY 6))

 (SKIP(3),1ð F(9));

PGNO = PGNO + 1;

 END;

 ELSE

PUT FILE(TABLE) PAGE;

 END;

OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);

 SIGNAL ENDPAGE(TABLE);

PUT FILE(TABLE) EDIT

((DEG,(SIND(DEG+MIN) DO MIN = ð TO .9 BY .1) DO DEG = ð TO 359))

(SKIP(2), 5 (COL(1), F(3), 1ð F(9,4)));

PUT FILE(TABLE) SKIP(52);

 END SINE;

Figure 30. Creating a Print File Via Stream Data Transmission. The example in Figure 36
on page 162 will print the resultant file.

Tab1–Tabn:
n halfword binary integers that define the tab positions within the print
line. The first position is numbered 1, and the highest position is
numbered 255. The value of each tab should be greater than that of
the tab preceding it in the table; otherwise, it is ignored. The first data
field in the printed output begins at the next available tab position.

You can override the default PL/I tab settings for your program by causing the
linkage editor to resolve an external reference to PLITABS. To cause the reference
to be resolved, supply a table with the name PLITABS, in the format described
above.

There are two methods of supplying the tab table. One method is to include a PL/I
structure in your source program with the name PLITABS, which you must declare
to be STATIC EXTERNAL. An example of the PL/I structure is shown in Figure 31
on page 142. This example creates three tab settings, in positions 30, 60, and 90,
and uses the defaults for page size and line size. Note that TAB1 identifies the
position of the second item printed on a line; the first item on a line always starts at

 Chapter 8. Defining and Using Consecutive Data Sets 141

the left margin. The first item in the structure is the offset to the NO_OF_TABS
field; FILL1, FILL2, and FILL3 can be omitted by adjusting the offset value by –6.

The second method is to create an assembler language control section named
PLITABS, equivalent to the structure shown in Figure 31, and to include it when
link-editing your PL/I program.

DCL 1 PLITABS STATIC EXT,

2 (OFFSET INIT(14),

 PAGESIZE INIT(6ð),

 LINESIZE INIT(12ð),

 PAGELENGTH INIT(ð),

 FILL1 INIT(ð),

 FILL2 INIT(ð),

 FILL3 INIT(ð),

 NO_OF_TABS INIT(3),

 TAB1 INIT(3ð),

 TAB2 INIT(6ð),

TAB3 INIT(9ð)) FIXED BIN(15,ð);

Figure 31. PL/I Structure PLITABS for Modifying the Preset Tab Settings

Using SYSIN and SYSPRINT Files
If you code a GET statement without the FILE option in your program, the compiler
inserts the file name SYSIN. If you code a PUT statement without the FILE option,
the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler gives the file the attribute PRINT in
addition to the normal default attributes; the complete set of attributes will be:

FILE STREAM OUTPUT PRINT EXTERNAL

Since SYSPRINT is a PRINT file, the compiler also supplies a default line size of
120 characters and a V-format record. You need give only a minimum of
information in the corresponding DD statement; if your installation uses the usual
convention that the system output device of class A is a printer, the following is
sufficient:

//SYSPRINT DD SYSOUT=A

Note: SYSIN and SYSPRINT are established in the User Exit during initialization.
IBM-supplied defaults for SYSIN and SYSPRINT are directed to the terminal.

You can override the attributes given to SYSPRINT by the compiler by explicitly
declaring or opening the file. For more information about the interaction between
SYSPRINT and the Language Environment for MVS & VM message file option, see
the Language Environment for MVS & VM Programming Guide.

The compiler does not supply any special attributes for the input file SYSIN; if you
do not declare it, it receives only the default attributes. The data set associated
with SYSIN is usually in the input stream; if it is not in the input stream, you must
supply full DD information.

| For more information about SYSPRINT, see “SYSPRINT Considerations” on
| page 92.

142 PL/I for MVS & VM Programming Guide

Controlling Input from the Terminal
You can enter data at the terminal for an input file in your PL/I program if you:

1. Declare the input file explicitly or implicitly with the CONSECUTIVE
environment option (all stream files meet this condition), and

2. Allocate the input file to the terminal.

You can usually use the standard default input file SYSIN because it is a stream
file and can be allocated to the terminal. In TSO, you can allocate SYSIN to the
terminal in your logon procedure. In VM, SYSIN is allocated to the terminal by the
IBM-supplied User Exit.

You are prompted for input to stream files by a colon (:). You will see the colon
each time a GET statement is executed in the program. The GET statement
causes the system to go to the next line. You can then enter the required data. If
you enter a line that does not contain enough data to complete execution of the
GET statement, a further prompt, which is a plus sign followed by a colon (+:), is
displayed.

By adding a hyphen to the end of any line that is to continue, you can delay
transmission of the data to your program until you enter two or more lines. The
hyphen is an explicit continuation character in TSO.

If you include output statements that prompt you for input in your program, you can
inhibit the initial system prompt by ending your own prompt with a colon. For
example, the GET statement could be preceded by a PUT statement such as:

PUT SKIP LIST('ENTER NEXT ITEM:');

To inhibit the system prompt for the next GET statement, your own prompt must
meet the following conditions:

1. It must be either list-directed or edit-directed, and if list-directed, must be to a
PRINT file.

2. The file transmitting the prompt must be allocated to the terminal. If you are
merely copying the file at the terminal, the system prompt is not inhibited.

Using Files Conversationally
TSO allows you to interact conversationally with your own programs, as well as the
computing system as a whole. You can perform nearly all your operations from a
terminal in TSO: compile PL/I source programs, print the diagnostic messages at
the terminal, and write the object modules onto a data set. These object modules
can then be conversationally link-edited and run.

While the object modules are running, you can use the terminal as an input and
output device for consecutive files in the program. Conversational I/O needs no
special PL/I code, so any stream file can be used conversationally.

Format of Data
The data you enter at the terminal should have exactly the same format as stream
input data in batch mode, except for the following variations:

� Simplified punctuation for input: If you enter separate items of input on
separate lines, there is no need to enter intervening blanks or commas; the
compiler will insert a comma at the end of each line.

 Chapter 8. Defining and Using Consecutive Data Sets 143

For instance, in response to the statement:

 GET LIST(I,J,K);

your terminal interaction could be as follows:

 :

 1

 +:2

 +:3

with a carriage return following each item. It would be equivalent to:

 :

 1,2,3

If you wish to continue an item onto another line, you must end the first line
with a continuation character. Otherwise, for a GET LIST or GET DATA
statement, a comma will be inserted, and for a GET EDIT statement, the item
will be padded (see next paragraph).

� Automatic padding for GET EDIT: There is no need to enter blanks at the end
of a line of input for a GET EDIT statement. The item you enter will be padded
to the correct length.

For instance, for the PL/I statement:

 GET EDIT(NAME)(A(15));

you could enter the five characters:

 SMITH

followed immediately by a carriage return. The item will be padded with 10
blanks, so that the program receives a string 15 characters long. If you wish to
continue an item on a second or subsequent line, you must add a continuation
character to the end of every line except the last; the first line transmitted would
otherwise be padded and treated as the complete data item.

� SKIP option or format item: A SKIP in a GET statement asks the program to
ignore data not yet entered. All uses of SKIP(n) where n is greater than one
are taken to mean SKIP(1). SKIP(1) is taken to mean that all unused data on
the current line is ignored.

Stream and Record Files
You can allocate both stream and record files to the terminal. However, no
prompting is provided for record files. If you allocate more than one file to the
terminal, and one or more of them is a record file, the output of the files will not
necessarily be synchronized. The order in which data is transmitted to and from
the terminal is not guaranteed to be the same order in which the corresponding
PL/I I/O statements are executed.

Also, record file input from the terminal is received in upper case letters because of
a TCAM restriction. To avoid problems you should use stream files wherever
possible.

144 PL/I for MVS & VM Programming Guide

Capital and Lowercase Letters
For stream files, character strings are transmitted to the program as entered in
lowercase or uppercase. For record files, all characters become uppercase.

 End-of-File
The characters /* in positions one and two of a line that contains no other
characters are treated as an end-of-file mark, that is, they raise the ENDFILE
condition.

COPY Option of GET Statement
The GET statement can specify the COPY option; but if the COPY file, as well as
the input file, is allocated to the terminal, no copy of the data will be printed.

Controlling Output to the Terminal
At your terminal you can obtain data from a PL/I file that has been both:

1. Declared explicitly or implicitly with the CONSECUTIVE environment option. All
stream files meet this condition.

2. Allocated to the terminal.

The standard print file SYSPRINT generally meets both these conditions.

Format of PRINT Files
Data from SYSPRINT or other PRINT files is not normally formatted into pages at
the terminal. Three lines are always skipped for PAGE and LINE options and
format items. The ENDPAGE condition is normally never raised. SKIP(n), where n
is greater than three, causes only three lines to be skipped. SKIP(0) is
implemented by backspacing, and should therefore not be used with terminals that
do not have a backspace feature.

You can cause a PRINT file to be formatted into pages by inserting a tab control
table in your program. The table must be called PLITABS, and its contents are
explained in “Overriding the Tab Control Table” on page 140. You must initialize
the element PAGELENGTH to the length of page you require—that is, the length of
the sheet of paper on which each page is to be printed, expressed as the maximum
number of lines that could be printed on it. You must initialize the element
PAGESIZE to the actual number of lines to be printed on each page. After the
number of lines in PAGESIZE has been printed on a page, ENDPAGE is raised, for
which standard system action is to skip the number of lines equal to
PAGELENGTH minus PAGESIZE, and then start printing the next page. For other
than standard layout, you must initialize the other elements in PLITABS to the
values shown in Figure 18 on page 90. You can also use PLITABS to alter the
tabulating positions of list-directed and data-directed output. You can use PLITABS
for SYSPRINT when you need to format page breaks in ILC applications. Set
PAGESIZE to 32767 and use the PUT PAGE statement to control page breaks.

Although some types of terminals have a tabulating facility, tabulating of
list-directed and data-directed output is always achieved by transmission of blank
characters.

 Chapter 8. Defining and Using Consecutive Data Sets 145

Stream and Record Files
You can allocate both stream and record files to the terminal. However, if you
allocate more than one file to the terminal and one or more is a record file, the files'
output will not necessarily be synchronized. There is no guarantee that the order in
which data is transmitted between the program and the terminal will be the same
as the order in which the corresponding PL/I input and output statements are
executed. In addition, because of a TCAM restriction, any output to record files at
the terminal is printed in uppercase (capital) letters. It is therefore advisable to use
stream files wherever possible.

Capital and Lowercase Characters
For stream files, characters are displayed at the terminal as they are held in the
program, provided the terminal can display them. For instance, with an IBM 327x
terminal, capital and lowercase letters are displayed as such, without translation.
For record files, all characters are translated to uppercase. A variable or constant
in the program can contain lowercase letters if the program was created under the
EDIT command with the ASIS operand, or if the program has read lowercase
letters from the terminal.

Output from the PUT EDIT Command
The format of the output from a PUT EDIT command to a terminal has different
forms depending on whether the TSO session manager is on or off. Decide
whether you want to have it on or off, because if you are using the PUT EDIT
command, and change output devices, you will have to rewrite the output
procedure. The results of setting TSO session manager on or off are:

ON PUT EDIT is converted to full screen TPUTs. The output looks exactly the
same as on a disk data set or SYSOUT file.

OFF PUT EDIT is converted to line mode TPUTs. “Start of field” and “end of
field” characters are added which appear as blanks on the screen.

Note: If TSO session manager is not available, format of output will be the same
as session manager being off.

Example of an Interactive Program
The example program in Figure 32 on page 148 prints a report based on
information retrieved from a database. The content of the report is controlled by a
list of parameters that contains the name of the person requiring the report and a
set of numbers indicating the information that is to be printed. In the example, the
parameters are read from the terminal. The program includes a prompt for the
name parameter, and a message confirming its acceptance. The report is printed
on a system output device.

The program uses four files:

SYSPRINT Standard stream output file. Prints prompt and confirmation at the
terminal.

PARMS Stream input file. Reads parameters from terminal.

INBASE Record input file. Reads database, namely, member MEM3 of data
set BDATA.

REPORT Sends report to SYSOUT device.

146 PL/I for MVS & VM Programming Guide

SYSPRINT has been allocated to the terminal by the logon procedure. The other
three files are allocated by ALLOCATE commands entered in TSO submode.

The example program in Figure 32 is called REPORTR, and it is held on a
conventionally named TSO data set whose user-supplied name is REPORTER.
The compiler is invoked with the SOURCE option to provide a list of the PL/I
source code.

 Chapter 8. Defining and Using Consecutive Data Sets 147

READY

pli reporter print(\) source “print(\)” allocates

source listing to terminal

15668-91ð IBM OS PL/I OPTIMIZING COMPILER VER 2 REL 2 MOD ð

OPTIONS SPECIFIED

S;

 SOURCE LISTING

NUMBER

1ð ðððððð1ð REPORTR: PROC OPTIONS(MAIN);

 .

 .

18ð ððððð18ð ON ENDFILE(PARMS) GO TO READER;

 .

 .

1ððð ðððð1ððð PUT LIST('ENTER NAME:'); print prompt at terminal

1ð1ð ðððð1ð1ð GET FILE(PARMS) LIST(NAME); read name parameter from

 . terminal

 .

1ð5ð ðððð1ð5ð PUT LIST('NAME ACCEPTED'); confirmation message

 .

 .

2ððð ðððð2ððð GET FILE(PARMS) LIST((A(I) DO I=1 TO 5ð));

. read other parameters

 . from terminal

2ð1ð ðððð2ð1ð READER:

ðððð2ð2ð READ FILE(INBASE) INTO(B);

 . read database

 .

4ð1ð ðððð4ð1ð PRINTER:

ðððð4ð2ð PUT FILE(REPORT) EDIT(HEAD1||NAME)(A);

. print line of report

. on system printer

5ððð ðððð5ððð END REPORTR;

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME ð.3ð MINS SPILL FILE: ð RECORDS, SIZE 4ð51

END of COMPILATION of REPORTR

READY

alloc file(parms) dataset(\) file to read parameters

READY from terminal

alloc file(inbase) dataset('bdata(mem3)') old file to read database

READY

alloc file(report) sysout file to print report on

READY system printer

loadgo reporter plibase

ENTER NAME: 'F W Williams' prompt & name parameter

NAME ACCEPTED confirmation message

: automatic prompt for

 parameters

1 3 5 7 1ð 14 15 19 parameters entered

+:/\ prompt for further

 parameters

READY end-of-file entered

Figure 32. Example of an Interactive Program

148 PL/I for MVS & VM Programming Guide

Using Record-Oriented Data Transmission
PL/I supports various types of data sets with the RECORD attribute (see Table 23
on page 156). This section covers how to use consecutive data sets.

Table 20 lists the statements and options that you can use to create and access a
consecutive data set using record-oriented data transmission.

Table 20. Statements and Options Allowed for Creating and Accessing Consecutive Data
Sets

File declaration 1 Valid statements, 2 with
Options you must specify

Other options you
can specify

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)

SEQUENTIAL INPUT
BUFFERED3

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL INPUT
UNBUFFERED3

READ FILE(file-reference)
INPUT(reference);

READ FILE(file-reference)
IGNORE(expression);

EVENT(event-reference)

EVENT(event-reference)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference); FROM(reference)

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD and ENVIRONMENT.

2. The statement READ FILE (file-reference); is a valid statement and is equivalent to READ
FILE(file-reference) IGNORE (1);

3. You can specify the BACKWARDS attribute for files on magnetic tape.

 Chapter 8. Defining and Using Consecutive Data Sets 149

Using Magnetic Tape without Standard Labels
If a magnetic-tape data set has nonstandard labels or is unlabeled, you must
specify the block size either in your PL/I program (ENVIRONMENT attribute) or in
the DD statement (BLKSIZE subparameter). The DSNAME parameter is not
essential if the data set is not cataloged.

PL/I includes no facilities for processing nonstandard labels which to the operating
system appear as data sets preceding or following your data set. You can either
process the labels as independent data sets or use the LABEL parameter of the
DD statement to bypass them. To bypass the labels, code LABEL=(2,NL) or
LABEL=(,BLP).

Specifying Record Format
If you give record-format information, it must be compatible with the actual structure
of the data set. For example, if you create a data set with FB-format records, with
a record size of 600 bytes and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of 3600 bytes. If you
specify a block size of 3500 bytes, your data is truncated.

Defining Files Using Record I/O
You define files for record-oriented data transmission by using a file declaration
with the following attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 SEQUENTIAL

BUFFERED | UNBUFFERED

 [BACKWARDS]

 ENVIRONMENT(options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options
The ENVIRONMENT options applicable to consecutive data sets are:

 F|FB|FS|FBS|V|VB|VS|VBS|D|DB|U

 RECSIZE(record-length)

 BLKSIZE(block-size)

 SCALARVARYING

 COBOL

 BUFFERS(n)

 NCP(n)

 TRKOFL

 CONSECUTIVE

 TOTAL

 CTLASA|CTL36ð

 LEAVE|REREAD

 ASCII

 BUFOFF[(n)]

The options above the blank line are described in “Specifying Characteristics in the
ENVIRONMENT Attribute” on page 110, and those below the blank line are
described below. D- and DB-format records are also described below.

150 PL/I for MVS & VM Programming Guide

See Table 15 on page 111 to find which options you must specify, which are
optional, and which are defaults.

 CONSECUTIVE
The CONSECUTIVE option defines a file with consecutive data set organization,
which is described in this chapter and in “Data Set Organization” on page 106.

55──CONSECUTIVE──5%

CONSECUTIVE is the default when the merged attributes from the DECLARE and
OPEN statements do not include the TRANSIENT attribute.

 TOTAL
In general, run-time library subroutines called from object code perform I/O
operations. Under certain conditions, however, the compiler can, when requested,
provide in-line code to carry out these operations. This gives faster execution of
the I/O statements.

Use the TOTAL option to aid the compiler in the production of efficient object code.
In particular, it requests the compiler to use in-line code for certain I/O operations.
It specifies that no attributes will be merged from the OPEN statement or the I/O
statement or the DCB parameter; if a complete set of attributes can be built up at
compile time from explicitly declared and default attributes, in-line code will be used
for certain I/O operations.

55──TOTAL──5%

The UNDEFINEDFILE condition is raised if any attribute that was not explicitly
declared appears on the OPEN statement, or if the I/O statement implies a file
attribute that conflicts with a declared or default attribute.

You cannot specify the TOTAL option for device-associated files or files reading
Optical Mark Read data.

The use of in-line I/O code can result in reduced error-handling capability. In
particular, if a program-check interrupt or an abend occurs during in-line I/O, the
error message produced can contain incorrect offset and statement number
information. Also, execution of a GO TO statement in an ERROR ON-unit for such
an interrupt can cause a second program check.

There are some differences in the optimized code generated under OS PL/I Version
1 Release 5 and later releases. The implementation of these releases generates
code to call modules in the run-time library so that mode-switching can be
performed if necessary. This implementation results in a longer instruction path
than it does with prior releases, but it is still faster than not using the TOTAL option.

Table 21 on page 152 shows the conditions under which I/O statements are
handled in-line.

When in-line code is employed to implement an I/O statement, the compiler gives
an informational message.

 Chapter 8. Defining and Using Consecutive Data Sets 151

Table 21. Conditions under Which I/O Statements Are Handled In-Line (TOTAL Option
Used)

Statement 1 Record variable
requirements

File attribute 3 or
ENVIRONMENT option
requirements 4

READ SET None Not BACKWARDS for record types
U, V, VB

READ INTO Length known at compile time,
maximum length for a varying
string or area.2

RECSIZE known at compile time.5

SCALARVARYING option if varying
string.

WRITE FROM
(fixed string)

Length known at compile time. RECSIZE known at compile time.5

WRITE FROM (varying
string)

 RECSIZE known at compile time.5

SCALARVARYING option used.

WRITE FROM Area2 RECSIZE known at compile time.5

LOCATE A Length known at compile time,
maximum length for a varying
string or area.2

RECSIZE known at compile time.5

SCALARVARYING if varying string.

Notes:

1. All statements must be found to be valid during compilation. File parameters or file variables are
never handled by in-line code.

2. Including structures wherein the last element is an unsubscripted area.

3. File attributes are SEQUENTIAL BUFFERED, INPUT, or OUTPUT.

4. Data set organization must be CONSECUTIVE; allowable record formats are F, FB, FS, FBS, U, V,
or VB.

5. You can specify BLKSIZE instead of RECSIZE for unblocked record formats F, FS, V, and U.

 CTLASA|CTL360
The printer control options CTLASA and CTL360 apply only to OUTPUT files
associated with consecutive data sets. They specify that the first character of a
record is to be interpreted as a control character.

55─ ──┬ ┬─CTLASA─ ──5%
 └ ┘─CTL36ð─

The CTLASA option specifies American National Standard Vertical Carriage
Positioning Characters or American National Standard Pocket Select Characters
(Level 1). The CTL360 option specifies IBM machine-code control characters.

The American National Standard control characters, listed in Figure 33 on
page 153, cause the specified action to occur before the associated record is
printed or punched.

The machine code control characters differ according to the type of device. The
IBM machine code control characters for printers are listed in Figure 34 on
page 153.

152 PL/I for MVS & VM Programming Guide

Code Action
Space 1 line before printing (blank code)

0 Space 2 lines before printing
− Space 3 lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W Select stacker 2

Figure 33. American National Standard Print and Card Punch Control Characters (CTLASA)

Print and Act immediately
Then Act Action (no printing)

Code byte Code byte
00000001 Print only (no space) —
00001001 Space 1 line 00001011
00010001 Space 2 lines 00010011
00011001 Space 3 lines 00011011
10001001 Skip to channel 1 10001011
10010001 Skip to channel 2 10010011
10011001 Skip to channel 3 10011011
10100001 Skip to channel 4 10100011
10101001 Skip to channel 5 10101011
10110001 Skip to channel 6 10110011
10111001 Skip to channel 7 10111011
11000001 Skip to channel 8 11000011
11001001 Skip to channel 9 11001011
11010001 Skip to channel 10 11010011
11011001 Skip to channel 11 11011011
11100001 Skip to channel 12 11100011

Figure 34. IBM Machine Code Print Control Characters (CTL360)

 LEAVE|REREAD
The magnetic tape handling options LEAVE and REREAD allow you to specify the
action to be taken when the end of a magnetic tape volume is reached, or when a
data set on a magnetic tape volume is closed. The LEAVE option prevents the
tape from being rewound. The REREAD option rewinds the tape to allow
reprocessing of the data set. If you do not specify either of these, the action at
end-of-volume or on closing of a data set is controlled by the DISP parameter of
the associated DD statement.

55─ ──┬ ┬─LEAVE── ──5%
 └ ┘─REREAD─

 Chapter 8. Defining and Using Consecutive Data Sets 153

If a data set is first read or written forward and then read backward in the same
program, specify the LEAVE option to prevent rewinding when the file is closed (or,
with a multivolume data set, when volume switching occurs).

You can also specify LEAVE and REREAD on the CLOSE statement, as described
in the PL/I for MVS & VM Language Reference.

The effects of the LEAVE and REREAD options are summarized in Table 22.

Table 22. Effect of LEAVE and REREAD Options

ENVIRONMENT
option

DISP
parameter

Action

REREAD — Positions the current volume to reprocess the data set.
Repositioning for a BACKWARDS file is at the physical
end of the data set.

LEAVE — Positions the current volume at the logical end of the data
set. Repositioning for a BACKWARDS file is at the
physical beginning of the data set.

Neither
REREAD
nor
LEAVE

PASS

DELETE

KEEP,
CATLG,
UNCATLG

Positions the volume at the end of the data set.

Rewinds the current volume.

Rewinds and unloads the current volume.

 ASCII
The ASCII option specifies that the code used to represent data on the data set is
ASCII.

55──ASCII──5%

You can create and access data sets on magnetic tape using ASCII in PL/I. The
implementation supports F, FB, U, D, and DB record formats. F, FB, and U
formats are treated in the same way as other data sets; D and DB formats, which
correspond to V and VB formats in other data sets, are described below.

Only character data can be written to an ASCII data set; therefore, when you create
the data set, you must transmit your data from character variables. You can give
these variables the attribute VARYING as well as CHARACTER, but you cannot
transmit the two length bytes of varying-length character strings. In other words,
you cannot use a SCALARVARYING file to transmit varying-length character strings
to an ASCII data set. Also, you cannot transmit data aggregates containing
varying-length strings.

Since an ASCII data set must be on magnetic tape, it must be of consecutive
organization. The associated file must be BUFFERED. You can also specify the
BUFOFF ENVIRONMENT option for ASCII data sets.

If you do not specify ASCII in either the ENVIRONMENT option or the DD
statement, but you specify BUFOFF, D, or DB, then ASCII is the default.

154 PL/I for MVS & VM Programming Guide

 BUFOFF
You need not concern yourself with the BUFOFF option unless you are dealing with
ASCII data sets.

The BUFOFF (buffer offset) option specifies a block prefix field n bytes in length at
the beginning of each block in an ASCII data set, according to the following syntax:

55─ ─BUFOFF─ ──┬ ┬───────── ───5%
 └ ┘─(──n──)─

n is either:

� An integer from 0 to 99
� A variable with attributes FIXED BINARY(31,0) STATIC having an

integer value from 0 to 99.

When you are accessing an ASCII data set for input to your program, specifying
BUFOFF and n identifies to data management how far into the block the beginning
of the data is. Specifying BUFOFF without n signifies to data management that the
first 4 bytes of the data set comprise a block-length field.

When you are creating an ASCII data set for output from your program, PL/I does
not allow you to create a prefix field at the beginning of the block using BUFOFF,
unless it is for data management's use as a 4-byte block-length indicator. In this
case, you do not need to specify the BUFOFF option anyway, because for D- or
DB-formats PL/I automatically sets up the required field. You can code BUFOFF
without n (though it isn't needed), but that is the only explicit specification of the
BUFOFF option that PL/I accepts for output. Therefore, by not coding the BUFOFF
option you allow PL/I to set the default values needed for creating your output
ASCII data set (4 for D- and DB-formats, 0 for other acceptable formats).

D-Format and DB-Format Records
The data contained in D- and DB-format records is recorded in ASCII. Each record
can be of a different length. The two formats are:

D-format:
The records are unblocked; each record constitutes a single block. Each
record consists of:

Four control bytes
 Data bytes.

The four control bytes contain the length of the record; this value is inserted by
data management and requires no action by you. In addition, there can be, at
the start of the block, a block prefix field, which can contain the length of the
block.

DB-format:
The records are blocked. All other information given for D-format applies to
DB-format.

 Chapter 8. Defining and Using Consecutive Data Sets 155

Creating a Data Set with Record I/O
When you create a consecutive data set, you must open the associated file for
SEQUENTIAL OUTPUT. You can use either the WRITE or LOCATE statement to
write records. Table 20 on page 149 shows the statements and options for
creating a consecutive data set.

When creating a data set, you must identify it to the operating system in a DD
statement. The following paragraphs, summarized in Table 23, tell what essential
information you must include in the DD statement and discuss some of the optional
information you can supply.

Table 23. Creating a Consecutive Data Set with Record I/O: Essential Parameters of the DD Statement

Storage device When required What you must state Parameters

All Always Output device

Block size1

UNIT= or SYSOUT=
or
VOLUME=REF=

DCB=(BLKSIZE=...

Direct access only Always Storage space required SPACE=

Magnetic tape only Data set not first in volume and for magnetic tapes
that do not have standard labels

Sequence number LABEL=

Direct access and
standard labeled
magnetic tape

Data set to be used by another job step but not
required at end of job

Data set to be kept
after end of job

Data set to be on particular device

Disposition

Disposition

Name of data set

Volume serial number

DISP=

DISP=

DSNAME=

VOLUME=SER= or
VOLUME=REF=

1Or you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

 Essential Information
When you create a consecutive data set you must specify:

� The device that will write your data set (UNIT, SYSOUT, or VOLUME
parameter of DD statement): A data set with consecutive organization can
exist on any type of auxiliary storage device.

� The block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute) or in the DD statement (BLKSIZE subparameter). If
you do not specify a record length, unblocked records are the default and the
record length is determined from the block size. If you do not specify a record
format, U-format is the default. If you specify a record size and either specify a
block size of zero or omit a specification for it, under MVS/ESA, DFP calculates
a block size.

If you want to keep a magnetic-tape or direct-access data set (that is, you do not
want the operating system to delete it at the end of your job), the DD statement
must name the data set and indicate how it is to be disposed of (DSNAME and
DISP parameters). The DISP parameter alone will suffice if you want to use the
data set in a later step but will not need it after the end of your job.

156 PL/I for MVS & VM Programming Guide

When creating a data set on a direct-access device, you must specify the amount
of space required for it (SPACE parameter of DD statement).

If you want your data set stored on a particular magnetic-tape or direct-access
device, you must specify the volume serial number in the DD statement (SER or
REF subparameter of VOLUME parameter). If you do not specify a serial number
for a magnetic-tape data set that you want to keep, the operating system will
allocate one, inform the operator, and print the number on your program listing.

If your data set is to follow another data set on a magnetic-tape volume, you must
use the LABEL parameter of the DD statement to indicate its sequence number on
the tape.

The DCB subparameters of the DD statement that apply to consecutive data sets
are listed below. They are described in your MVS/ESA JCL User's Guide.
Table 15 on page 111 shows which options of the ENVIRONMENT attribute you
can specify for consecutive data sets.

Subparameter Specifies

BLKSIZE Maximum number of bytes per block

BUFNO Number of data management buffers

CODE Paper tape: code in which the tape is punched

DEN Magnetic tape: tape recording density

FUNC Card reader or punch: function to be performed

LRECL Maximum number of bytes per record

MODE Card reader or punch: mode or operation (column binary or
EBCDIC and Read Column Eliminate or Optical Mark Read)

OPTCD Optional data-management services and data-set attributes

PRTSP Printer line spacing (0, 1, 2, or 3)

RECFM Record format and characteristics

STACK Card reader or punch: stacker selection

TRTCH Magnetic tape: tape recording technique for 7-track tape

Accessing and Updating a Data Set with Record I/O
Once you create a consecutive data set, you can open the file that accesses it for
sequential input, for sequential output, or, for data sets on direct-access devices,
for updating. See Figure 35 on page 160 for an example of a program that
accesses and updates a consecutive data set. If you open the file for output, and
extend the data set by adding records at the end, you must specify DISP=MOD in
the DD statement. If you do not, the data set will be overwritten. If you open a file
for updating, you can only update records in their existing sequence, and if you
want to insert records, you must create a new data set. Table 20 on page 149
shows the statements and options for accessing and updating a consecutive data
set.

When you access a consecutive data set by a SEQUENTIAL UPDATE file, you
must retrieve a record with a READ statement before you can update it with a
REWRITE statement; however, every record that is retrieved need not be rewritten.
A REWRITE statement will always update the last record read.

 Chapter 8. Defining and Using Consecutive Data Sets 157

Consider the following:

READ FILE(F) INTO(A);

 .

 .

 .

READ FILE(F) INTO(B);

 .

 .

 .

REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record that was read by the second READ
statement. The record that was read by the first statement cannot be rewritten
after the second READ statement has been executed.

The operating system does not allow updating a consecutive data set on magnetic
tape except by adding records at the end. To replace or insert records, you must
read the data set and write the updated records into a new data set.

You can read a consecutive data set on magnetic tape forward or backward. If you
want to read the data set backward, you must give the associated file the
BACKWARDS attribute. You cannot specify the BACKWARDS attribute when a
data set has V-, VB-, VS-, VBS-, D-, or DB-format records.

To access a data set, you must identify it to the operating system in a DD
statement. Table 24 summarizes the DD statement parameters needed to access
a consecutive data set.

The following paragraphs indicate the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

Table 24. Accessing a Consecutive Data Set with Record I/O: Essential Parameters of the
DD Statement

When required What you must state Parameters

Always Name of data set

Disposition of data set

DSNAME=

DISP=

If data set not cataloged (all devices) Input device UNIT= or VOLUME=REF=

If data set not cataloged (standard
labeled magnetic tape and direct
access)

Volume serial number VOLUME=SER=

Magnetic tape (if data set not first in
volume or which does not have
standard labels)

Sequence number LABEL=

If data set does not have standard
labels

Block size1 DCB=(BLKSIZE=.

1Or you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

158 PL/I for MVS & VM Programming Guide

 Essential Information
If the data set is cataloged, you need to supply only the following information in the
DD statement:

� The name of the data set (DSNAME parameter). The operating system will
locate the information describing the data set in the system catalog, and, if
necessary, will request the operator to mount the volume containing it.

� Confirmation that the data set exists (DISP parameter). If you open the data
set for output with the intention of extending it by adding records at the end,
code DISP=MOD; otherwise, opening the data set for output will result in it
being overwritten.

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and, for magnetic-tape and direct-access devices, give the serial
number of the volume that contains the data set (UNIT and VOLUME parameters).

If the data set follows another data set on a magnetic-tape volume, you must use
the LABEL parameter of the DD statement to indicate its sequence number on the
tape.

Example of Consecutive Data Sets
Creating and accessing consecutive data sets are illustrated in the program in
Figure 35 on page 160. The program merges the contents of two data sets, in the
input stream, and writes them onto a new data set, &&TEMP; each of the original
data sets contains 15-byte fixed-length records arranged in EBCDIC collating
sequence. The two input files, INPUT1 and INPUT2, have the default attribute
BUFFERED, and locate mode is used to read records from the associated data
sets into the respective buffers. Access of based variables in the buffers should
not be attempted after the file has been closed; in MVS/XA DFP has released the
buffer, and a protection error might result.

 Chapter 8. Defining and Using Consecutive Data Sets 159

 //EXAMPLE JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 %PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;

 %PROCESS LIST;

MERGE: PROC OPTIONS(MAIN);

DCL (INPUT1, /\ FIRST INPUT FILE \/

INPUT2, /\ SECOND INPUT FILE \/

OUT) FILE RECORD SEQUENTIAL; /\ RESULTING MERGED FILE\/

DCL SYSPRINT FILE PRINT; /\ NORMAL PRINT FILE \/

DCL INPUT1_EOF BIT(1) INIT('ð'B); /\ EOF FLAG FOR INPUT1 \/

DCL INPUT2_EOF BIT(1) INIT('ð'B); /\ EOF FLAG FOR INPUT2 \/

DCL OUT_EOF BIT(1) INIT('ð'B); /\ EOF FLAG FOR OUT \/

DCL TRUE BIT(1) INIT('1'B); /\ CONSTANT TRUE \/

DCL FALSE BIT(1) INIT('ð'B); /\ CONSTANT FALSE \/

DCL ITEM1 CHAR(15) BASED(A); /\ ITEM FROM INPUT1 \/

DCL ITEM2 CHAR(15) BASED(B); /\ ITEM FROM INPUT2 \/

DCL INPUT_LINE CHAR(15); /\ INPUT FOR READ INTO \/

DCL A POINTER; /\ POINTER VAR \/

DCL B POINTER; /\ POINTER VAR \/

ON ENDFILE(INPUT1) INPUT1_EOF = TRUE;

ON ENDFILE(INPUT2) INPUT2_EOF = TRUE;

 ON ENDFILE(OUT) OUT_EOF = TRUE;

OPEN FILE(INPUT1) INPUT,

 FILE(INPUT2) INPUT,

 FILE(OUT) OUTPUT;

READ FILE(INPUT1) SET(A); /\ PRIMING READ \/

READ FILE(INPUT2) SET(B);

DO WHILE ((INPUT1_EOF = FALSE) & (INPUT2_EOF = FALSE));

IF ITEM1 > ITEM2 THEN

 DO;

WRITE FILE(OUT) FROM(ITEM2);

PUT FILE(SYSPRINT) SKIP EDIT('1>2', ITEM1, ITEM2)

 (A(5),A,A);

READ FILE(INPUT2) SET(B);

 END;

 ELSE

 DO;

WRITE FILE(OUT) FROM(ITEM1);

PUT FILE(SYSPRINT) SKIP EDIT('1<2', ITEM1, ITEM2)

 (A(5),A,A);

READ FILE(INPUT1) SET(A);

 END;

 END;

Figure 35 (Part 1 of 2). Merge Sort—Creating and Accessing a Consecutive Data Set

160 PL/I for MVS & VM Programming Guide

DO WHILE (INPUT1_EOF = FALSE); /\ INPUT2 IS EXHAUSTED \/

WRITE FILE(OUT) FROM(ITEM1);

PUT FILE(SYSPRINT) SKIP EDIT('1', ITEM1) (A(2),A);

READ FILE(INPUT1) SET(A);

 END;

DO WHILE (INPUT2_EOF = FALSE); /\ INPUT1 IS EXHAUSTED \/

WRITE FILE(OUT) FROM(ITEM2);

PUT FILE(SYSPRINT) SKIP EDIT('2', ITEM2) (A(2),A);

READ FILE(INPUT2) SET(B);

 END;

CLOSE FILE(INPUT1), FILE(INPUT2), FILE(OUT);

PUT FILE(SYSPRINT) PAGE;

OPEN FILE(OUT) SEQUENTIAL INPUT;

READ FILE(OUT) INTO(INPUT_LINE); /\ DISPLAY OUT FILE \/

DO WHILE (OUT_EOF = FALSE);

PUT FILE(SYSPRINT) SKIP EDIT(INPUT_LINE) (A);

READ FILE(OUT) INTO(INPUT_LINE);

 END;

 CLOSE FILE(OUT);

 END MERGE;

 /\

 //GO.INPUT1 DD \

 AAAAAA

 CCCCCC

 EEEEEE

 GGGGGG

 IIIIII

 /\

 //GO.INPUT2 DD \

 BBBBBB

 DDDDDD

 FFFFFF

 HHHHHH

 JJJJJJ

 KKKKKK

 /\

 //GO.OUT DD DSN=&&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,

 // DCB=(RECFM=FB,BLKSIZE=15ð,LRECL=15),SPACE=(TRK,(1,1))

Figure 35 (Part 2 of 2). Merge Sort—Creating and Accessing a Consecutive Data Set

The program in Figure 36 on page 162 uses record-oriented data transmission to
print the table created by the program in Figure 30 on page 141.

 Chapter 8. Defining and Using Consecutive Data Sets 161

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;

%PROCESS LIST;

 PRT: PROC OPTIONS(MAIN);

DCL TABLE FILE RECORD INPUT SEQUENTIAL;

DCL PRINTER FILE RECORD OUTPUT SEQL

ENV(V BLKSIZE(1ð2) CTLASA);

 DCL LINE CHAR(94) VAR;

DCL TABLE_EOF BIT(1) INIT('ð'B); /\ EOF FLAG FOR TABLE \/

DCL TRUE BIT(1) INIT('1'B); /\ CONSTANT TRUE \/

DCL FALSE BIT(1) INIT('ð'B); /\ CONSTANT FALSE \/

ON ENDFILE(TABLE) TABLE_EOF = TRUE;

 OPEN FILE(TABLE),

 FILE(PRINTER);

READ FILE(TABLE) INTO(LINE); /\ PRIMING READ \/

DO WHILE (TABLE_EOF = FALSE);

WRITE FILE(PRINTER) FROM(LINE);

READ FILE(TABLE) INTO(LINE);

 END;

 CLOSE FILE(TABLE),

 FILE(PRINTER);

 END PRT;

Figure 36. Printing Record-Oriented Data Transmission

162 PL/I for MVS & VM Programming Guide

Chapter 9. Defining and Using Indexed Data Sets

This chapter describes indexed data set organization (ISAM), data transmission
statements, and ENVIRONMENT options that define indexed data sets. It then
describes how to create, access, and reorganize indexed data sets. Use of ISAM
is discouraged for new data sets because VSAM gives better performance with
PL/I. ISAM is retained for compatibility with existing data sets.

Under VM, PL/I supports the use of Indexed Data Sets through VSAM. See “Using
Data Sets and Files” on page 81 for more information on VSAM data sets under
VM.

 Indexed Organization
A data set with indexed organization must be on a direct-access device. Its
records can be either F-format or V-format records, blocked or unblocked. The
records are arranged in logical sequence, according to keys associated with each
record. A key is a character string that can identify each record uniquely. Logical
records are arranged in the data set in ascending key sequence according to the
EBCDIC collating sequence. Indexes associated with the data set are used by the
operating system data-management routines to locate a record when the key is
supplied.

Unlike consecutive organization, indexed organization does not require you to
access every record in sequential fashion. You must create an indexed data set
sequentially; but once you create it, you can open the associated file for
SEQUENTIAL or DIRECT access, as well as INPUT or UPDATE. When the file
has the DIRECT attribute, you can retrieve, add, delete, and replace records at
random.

Sequential processing of an indexed data set is slower than that of a corresponding
consecutive data set, because the records it contains are not necessarily retrieved
in physical sequence. Furthermore, random access is less efficient for an indexed
data set than for a regional data set, because the indexes must be searched to
locate a record. An indexed data set requires more external storage space than a
consecutive data set, and all volumes of a multivolume data set must be mounted,
even for sequential processing.

Table 25 on page 164 lists the data-transmission statements and options that you
can use to create and access an indexed data set.

 Using keys
There are two kinds of keys—recorded keys and source keys. A recorded key is a
character string that actually appears with each record in the data set to identify
that record. The length of the recorded key cannot exceed 255 characters and all
keys in a data set must have the same length. The recorded keys in an indexed
data set can be separate from, or embedded within, the logical records. A source
key is the character value of the expression that appears in the KEY or KEYFROM
option of a data transmission statement to identify the record to which the
statement refers. For direct access of an indexed data set, you must include a
source key in each transmission statement.

 Copyright IBM Corp. 1964, 1995 163

Note: All VSAM key-sequenced data sets have embedded keys, even if they have
been converted from ISAM data sets with nonembedded keys.

Table 25 (Page 1 of 2). Statements and Options Allowed for Creating and Accessing
Indexed Data Sets

File
declaration 1

Valid statements, with
options you must include

Other options you can
include

SEQUENTIAL
OUTPUT

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL
INPUT

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

SEQUENTIAL
UPDATE

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

FROM(reference)

KEY(expression)

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

EVENT(event-reference)

DIRECT UPDATE READ FILE(file reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);2

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

164 PL/I for MVS & VM Programming Guide

The use of embedded keys avoids the need for the KEYTO option during
sequential input, but the KEYFROM option is still required for output. (However,
the data specified by the KEYFROM option can be the embedded key portion of
the record variable itself.) In a data set with unblocked records, a separate
recorded key precedes each record, even when there is already an embedded key.
If the records are blocked, the key of only the last record in each block is recorded
separately in front of the block.

During execution of a WRITE statement that adds a record to a data set with
embedded keys, the value of the expression in the KEYFROM option is assigned to
the embedded key position in the record variable. Note that you can declare a
record variable as a structure with an embedded key declared as a structure
member, but that you must not declare such an embedded key as a VARYING
string.

For a REWRITE statement using SEQUENTIAL files with indexed data set
organization, you must ensure that the rewritten key is the same as the key in the
replaced record.

For a LOCATE statement, the KEYFROM string is assigned to the embedded key
when the next operation on the file is encountered.

Table 25 (Page 2 of 2). Statements and Options Allowed for Creating and Accessing
Indexed Data Sets

File
declaration 1

Valid statements, with
options you must include

Other options you can
include

DIRECT UPDATE
EXCLUSIVE

READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);2

UNLOCK FILE(file-reference)
KEY(expression)

EVENT(event-reference)
and/or
NOLOCK

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT. If
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED
in the file declaration. The attribute BUFFERED is the default, and UNBUFFERED is ignored for
INDEXED SEQUENTIAL and SEQUENTIAL files.

2. Use of the DELETE statement is invalid if you did not specify OPTCD=L (DCB subparameter) when
the data set was created or if the RKP subparameter is 0 for FB records, or 4 for V and VB records.

 Chapter 9. Defining and Using Indexed Data Sets 165

 Using Indexes
To provide faster access to the records in the data set, the operating system
creates and maintains a system of indexes to the records in the data set.

The lowest level of index is the track index. There is a track index for each cylinder
in the data set. The track index occupies the first track (or tracks) of the cylinder,
and lists the key of the last record on each track in the cylinder. A search can then
be directed to the first track that has a key that is higher than or equal to the key of
the required record.

If the data set occupies more than one cylinder, the operating system develops a
higher-level index called a cylinder index. Each entry in the cylinder index identifies
the key of the last record in the cylinder.

To increase the speed of searching the cylinder index, you can request in a DD
statement that the operating system develop a master index for a specified number
of cylinders. You can have up to three levels of master index.

Figure 37 illustrates the index structure. The part of the data set that contains the
cylinder and master indexes is termed the index area.

 ┌───┬───┬────┐

 │45ð│9ðð│2ððð│

 └─┬─┴─┬─┴──┬─┘

 │ │ │

 │ │ │

 ┌────┬────┬────┬────┐ │ │ │

│ │ │ │ │ │ │ │

┌───────────────────┤ 2ðð│ 3ðð│ 375│ 45ð│%─────────────┘ │ │

│ ├────┼────┼────┼────┤ │ │

│ │ │ │ │ │ │ │

│ │ 5ðð│ 6ðð│ 7ðð│ 9ðð│%─────────────────┘ │

│ ├────┼────┼────┼────┤ │

│ │ │ │ │ │%──────────────────────┘

│ │1ððð│12ðð│15ðð│2ððð├──────────────────┐

│ └────┴────┴──┬─┴────┘ │

│ │ │

│ │ │

│ │ Cylinder 11 │ Cylinder 12

│ ┌────┬────┬────┬────┐ │ ┌────────────┬────┐ │ ┌────────────┬────┐

│ │ │ │ │ │ Track │ │ │ │ │ │ │ │

└─5│ 1ðð│ 1ðð│ 2ðð│ 2ðð│ Index └─5│ │15ðð│ └─5│ │2ððð│

 ├────┼────┼────┼────┤ ├────────────┴────┤ ├────────────┴────┤

 │Data│Data│Data│Data│ Prime │ │ │ │

│ 1ð│ 2ð│ 4ð│ 1ðð│ Data │ │ │ │

 ├────┼────┼────┼────┤ ├─────────────────┤ ├─────────────────┤

 │Data│Data│Data│Data│ Prime │ │ │ │

│ 15ð│ 175│ 19ð│ 2ðð│ Data │ │ │ │

 ├────┴────┴────┴────┤ ├─────────────────┤ ├─────────────────┤

 │ │ │ │ │ │

 │ │ Overflow │ │ │ │

 └───────────────────┘ └─────────────────┘ └─────────────────┘

Figure 37. Index Structure of an Indexed Data Set

166 PL/I for MVS & VM Programming Guide

When you create an indexed data set, all the records are written in what is called
the prime data area. If you add more records later, the operating system does not
rearrange the entire data set; it inserts each new record in the appropriate position
and moves up the other records on the same track. Any records forced off the
track by the insertion of a new record are placed in an overflow area. The overflow
area can be either a number of tracks set aside in each cylinder for the overflow
records from that cylinder (cylinder overflow area), or a separate area for all
overflow records (independent overflow area).

Records in the overflow area are chained together to the track index so as to
maintain the logical sequence of the data set. This is illustrated in Figure 38 on
page 168. Each entry in the track index consists of two parts:

� The normal entry, which points to the last record on the track

� The overflow entry, which contains the key of the first record transferred to the
overflow area and also points to the last record transferred from the track to the
overflow area.

If there are no overflow records from the track, both index entries point to the last
record on the track. An additional field is added to each record that is placed in the
overflow area. It points to the previous record transferred from the same track.
The first record from each track is linked to the corresponding overflow entry in the
track index.

 Dummy Records
Records within an indexed data set are either actual records, containing valid data,
or dummy records. A dummy record, identified by the constant (8)'1'B in its first
byte, can be one that you insert or it can be created by the operating system. You
insert dummy records by setting the first byte to (8)'1'B and writing the records in
the usual way. The operating system creates dummy records by placing (8)'1'B in
a record that is named in a DELETE statement.

When creating an indexed data set, you might want to insert dummy records to
reserve space in the prime data area. You can replace dummy records later with
actual data records having the same key.

The operating system removes dummy records when the data set is reorganized,
as described later in this section, and removes those forced off the track during an
update.

If you include the DCB subparameter OPTCD=L in the DD statement that defines
the data set when you create it, dummy records will not be retrieved by READ
statements and the operating system will write the dummy identifier in records
being deleted.

 Chapter 9. Defining and Using Indexed Data Sets 167

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐

│ 1ðð │ Track │ 1ðð │ Track │ 2ðð │ Track │ 2ðð │ Track │ Track

│ │ 1 │ │ 1 │ │ 2 │ │ 2 │ Index

└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘

 ───────────

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 1ð │ 2ð │ 4ð │ 1ðð │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘ Prime

 Data

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 15ð │ 175 │ 19ð │ 2ðð │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘

 ───────────

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ │ │ │ │ Overflow

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐

│ 4ð │ Track │1ðð │Track 3 │ 19ð │ Track │ 2ðð │Track 3 │ Track

│ │ 1 │ │record 1│ │ 2 │ │record 2│ Index

└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘

 ───────────

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 1ð │ 2ð │ 25 │ 4ð │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘ Prime

 Data

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 1ð1 │ 15ð │ 175 │ 19ð │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘

 ───────────

┌──────┬────────┬──────┬────────┬────────────────┬───────────────┐

│ 1ðð │ Track │ 2ðð │ Track │ │ │ Overflow

│ │ 1 │ │ 2 │ │ │

└──────┴────────┴──────┴────────┴────────────────┴───────────────┘

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐

│ 26 │ Track │ 1ðð │Track 3 │ 19ð │ Track │ 2ðð │Track 3 │ Track

│ │ 1 │ │record 3│ │ 2 │ │record 4│ Index

└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘

 ───────────

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 1ð │ 2ð │ 25 │ 26 │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘ Prime

 Data

┌───────────────┬───────────────┬────────────────┬───────────────┐

│ 1ð1 │ 15ð │ 175 │ 19ð │

│ │ │ │ │

└───────────────┴───────────────┴────────────────┴───────────────┘

 ───────────

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐

│ 1ðð │ Track │ 2ðð │ Track │ 4ð │Track 3 │ 199 │Track 3 │ Overflow

│ │ 1 │ │ 2 │ │record 1│ │record 2│

└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘

Figure 38. Adding Records to an Indexed Data Set

168 PL/I for MVS & VM Programming Guide

Defining Files for an Indexed Data Set
You define a sequential indexed data set by a file declaration with the following
attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 SEQUENTIAL

 BUFFERED

 [KEYED]

 ENVIRONMENT(options);

You define a direct indexed data set by a file declaration with the following
attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 DIRECT

 UNBUFFERED

 KEYED

 [EXCLUSIVE]

 ENVIRONMENT(options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options
The ENVIRONMENT options applicable to indexed data sets are:

 F|FB|V|VB

 RECSIZE(record-length)

 BLKSIZE(block-size)

 SCALARVARYING

 COBOL

 BUFFERS(n)

 KEYLENGTH(n)

 NCP(n)

 GENKEY

 ADDBUFF

 INDEXAREA[(index-area-size)]

 INDEXED

 KEYLOC(n)

 NOWRITE

The options above the blank line are described in “Specifying Characteristics in the
ENVIRONMENT Attribute” on page 110, and those below the blank line are
described below.

 ADDBUFF Option
Specify the ADDBUFF option for a DIRECT INPUT or DIRECT UPDATE file with
indexed data set organization and F-format records to indicate that an area of
internal storage is used as a workspace in which records on the data set can be
rearranged when new records are added. The size of the workspace is equivalent
to one track of the direct-access device used.

 Chapter 9. Defining and Using Indexed Data Sets 169

You do not need to specify the ADDBUFF option for DIRECT INDEXED files with
V-format records, as the workspace is automatically allocated for such files.

55──ADDBUF───5%

 INDEXAREA Option
With the INDEXAREA option you improve the input/output speed of a DIRECT
INPUT or DIRECT UPDATE file with indexed data set organization, by having the
highest level of index placed in main storage.

55──INDEXAREA──(──index-area-size──)───5%

index-area-size enables you to limit the amount of main storage allowed for an
index area. The size you specify must be an integer or a variable with attributes
FIXED BINARY(31,0) STATIC from 0 to 64,000 in value. If you do not specify
index-area-size, the highest level index is moved unconditionally into main storage.
If you do specify index-area-size, the highest level index is held in main storage,
provided that its size does not exceed that specified. If you specify a size less than
0 or greater than 64,000, unpredictable results will occur.

 INDEXED Option
Use the INDEXED option to define a file with indexed organization (which is
described above). It is usually used with a data set created and accessed by the
Indexed Sequential Access Method (ISAM), but you can also use it in some cases
with VSAM data sets (as described in Chapter 11, “Defining and Using VSAM Data
Sets”).

55──INDEXED──5%

KEYLOC Option — Key Location
Use the KEYLOC option with indexed data sets when you create the data set to
specify the starting position of an embedded key in a record.

55──KEYLOC───5%

The position, n, must be within the limits:

1 ≤ n ≤ recordsize − keylength + 1

That is, the key cannot be larger than the record, and must be contained
completely within the record.

If the keys are embedded within the records, either specify the KEYLOC option, or
include the DCB subparameter RKP in the DD statement for the associated data
set.

If you do not specify KEYLOC, the value specified with RKP is used. If you specify
neither, then RKP=0 is the default.

170 PL/I for MVS & VM Programming Guide

The KEYLOC option specifies the absolute position of an embedded key from the
start of the data in a record, while the RKP subparameter specifies the position of
an embedded key relative to the start of the record.

Thus the equivalent KEYLOC and RKP values for a particular byte are affected by
the following:

� The KEYLOC byte count starts at 1; the RKP count starts at 0.

� The record format.

For example, if the embedded key begins at the tenth byte of a record variable, the
specifications are:

Fixed-length: KEYLOC(1ð)

RKP=9

Variable-length: KEYLOC(1ð)

RKP=13

If KEYLOC is specified with a value equal to or greater than 1, embedded keys
exist in the record variable and on the data set. If KEYLOC is equal to zero, or is
not specified, the RKP value is used. When RKP is specified, the key is part of the
variable only when RKP≥1. As a result, embedded keys might not always be
present in the record variable or the data set. If you specify KEYLOC(1), you must
specify it for every file that accesses the data set. This is necessary because
KEYLOC(1) cannot be converted to an unambiguous RKP value. (Its equivalent is
RKP=0 for fixed format, which in turn implies nonembedded keys.) The effect of
the use of both options is shown in Table 26.

If you specify SCALARVARYING, the embedded key must not immediately precede
or follow the first byte; hence, the value specified for KEYLOC must be greater
than 2.

If you include the KEYLOC option in a VSAM file declaration for checking purposes,
and the key location you specify in the option conflicts with the value defined for the
data set, the UNDEFINEDFILE condition is raised.

Table 26. Effect of KEYLOC and RKP Values on Establishing Embedded Keys in
Record Variables or Data Sets

KEYLOC(n)

RKP

Record
variable

Data set
unblocked
records

Data set
blocked
records

n>1 RKP equivalent
= n−1+C1

Key Key Key

n=1 No equivalent Key Key2 Key

n=0
or not specified

RKP=C1

RKP>C1

No Key

Key

No Key

Key

Key3

Key

Notes:

1. C = number of control bytes, if any:
C=0 for fixed-length records.
C=4 for variable-length records.

2. In this instance the key is not recognized by data management .
3. Each logical record in the block has a key.

 Chapter 9. Defining and Using Indexed Data Sets 171

 NOWRITE Option
Use the NOWRITE option for DIRECT UPDATE files. It specifies that no records
are to be added to the data set and that data management modules concerned
solely with adding records are not required. Thus, it allows the size of the object
program to be reduced.

55──NOWRITE──5%

Creating an Indexed Data Set
When you create an indexed data set, you must open the associated file for
SEQUENTIAL OUTPUT, and you must present the records in the order of
ascending key values. (If there is an error in the key sequence, the KEY condition
is raised.) You cannot use a DIRECT file for the creation of an indexed data set.

Table 25 on page 164 shows the statements and options for creating an indexed
data set.

You can extend an indexed data set consisting of fixed-length records by adding
records sequentially at the end, until the original space allocated for the prime data
is filled. You must open the corresponding file for SEQUENTIAL OUTPUT and you
must include DISP=MOD in the DD statement.

You can use a single DD statement to define the whole data set (index area, prime
area, and overflow area), or you can use two or three statements to define the
areas independently. If you use two DD statements, you can define either the
index area and the prime area together, or the prime area and the overflow area
together.

If you want the entire data set to be on a single volume, there is no advantage to
be gained by using more than one DD statement except to define an independent
overflow area (see “Overflow Area” on page 177). But, if you use separate DD
statements to define the index and/or overflow area on volumes separate from that
which contains the prime area, you will increase the speed of direct-access to the
records in the data set by reducing the number of access mechanism movements
required.

When you use two or three DD statements to define an indexed data set, the
statements must appear in the order: index area; prime area; overflow area. The
first DD statement must have a name (ddname), but the name fields of a second or
third DD statement must be blank. The DD statements for the prime and overflow
areas must specify the same type of unit (UNIT parameter). You must include all
the DCB information for the data set in the first DD statement. DCB=DSORG=IS
will suffice in the other statements.

 Essential Information
To create an indexed data set, you must give the operating system certain
information either in your PL/I program or in the DD statement that defines the data
set. The following paragraphs indicate the essential information, and discuss some
of the optional information you can supply.

172 PL/I for MVS & VM Programming Guide

You must supply the following information when creating an indexed data set:

� Direct-access device that will write your data set (UNIT or VOLUME parameter
of DD statement). Do not request DEFER.

� Block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE option) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

� Space requirements: Include space for future needs when you specify the size
of the prime, index, and overflow areas. Once you have created an indexed
data set, you cannot change its specification.

If you want to keep a direct-access data set (that is, you do not want the operating
system to delete it at the end of your job), the DD statement must name the data
set and indicate how it is to be disposed of (DSNAME and DISP parameters). The
DISP parameter alone will suffice if you want to use the data set in a later step but
will not need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
specify the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not specify a serial number for a data set that
you want to keep, the operating system will allocate one, inform the operator, and
print the number on your program listing. All the essential parameters required in a
DD statement for the creation of an indexed data set are summarized in Table 27.
Table 28 on page 174 lists the DCB subparameters needed. See the MVS/370
JCL User's Guide for a description of the DCB subparameters.

You must request space for the prime data area in the SPACE parameter. You
cannot specify a secondary quantity for an indexed data set. Your request must be
in units of cylinders unless you place the data set in a specific position on the
volume (by specifying a track number in the SPACE parameter). In the latter case,
the number of tracks you specify must be equivalent to an integral number of
cylinders, and the first track must be the first track of a cylinder other than the first
cylinder in the volume.

You can also use the SPACE parameter to specify the amount of space to be used
for the cylinder and master indexes (unless you use a separate DD statement for
this purpose). If you do not specify the space for the indexes, the operating system
will use part of the independent overflow area. If there is no independent overflow
area, it will use part of the prime data area.

Table 27 (Page 1 of 2). Creating an Indexed Data Set: Essential Parameters of DD
Statement

When required What you must state Parameters

Always Output device

Storage space required

Data control block
information: see Table 28 on
page 174

UNIT= or
VOLUME=REF=

SPACE=

DCB=

 Chapter 9. Defining and Using Indexed Data Sets 173

Table 27 (Page 2 of 2). Creating an Indexed Data Set: Essential Parameters of DD
Statement

When required What you must state Parameters

More than one DD statement Name of data set and area
(index, prime,
overflow)

DSNAME=

Data set to be used in another
job step but not required at end
of job

Disposition DISP=

Data set to be kept
after end of job

Disposition

Name of data set

DISP=

DSNAME=

Data set to be on
particular volume

Volume serial number VOLUME=SER= or
VOLUME=REF=

Table 28. DCB Subparameters for an Indexed Data Set

When required To specify Subparameters

These are always required2 Record format1

Block size1

Data set organization

Key length1

RECFM=F, FB, V, or VB

BLKSIZE=

DSORG=IS

KEYLEN=

Include at least one of these if
overflow is required

Cylinder overflow
area and number of
tracks per cylinder
for overflow records

Independent overflow area

OPTCD=Y and
CYLOFL=

OPTCD=I

These are optional Record length1

Embedded key
(relative key position)1

Master index

Automatic processing
of dummy records

Number of data
management buffers1

Number of tracks in
cylinder index for each master
index entry

LRECL=

RKP= 2

OPTCD=M

OPTCD=L

BUFNO=

NTM=

Notes:

Full DCB information must appear in the first, or only, DD statement. Subsequent statements require
only DSORG=IS.

1. Or you could specify BUFNO in the ENVIRONMENT attribute.

2. RKP is required if the data set has embedded keys, unless you specify the KEYLOC option of
ENVIRONMENT instead.

174 PL/I for MVS & VM Programming Guide

You must always specify the data set organization (DSORG=IS subparameter of
the DCB parameter), and in the first (or only) DD statement you must also specify
the length of the key (KEYLEN subparameter of the DCB parameter) unless it is
specified in the ENVIRONMENT attribute.

If you want the operating system to recognize dummy records, you must code
OPTCD=L in the DCB subparameter of the DD statement. This will cause the
operating system to write the dummy identifier in deleted records and to ignore
dummy records during sequential read processing. Do not specify OPTCD=L when
using blocked or variable-length records with nonembedded keys. If you do this,
the dummy record identifier (8)'1'B will overwrite the key of deleted records.

You cannot place an indexed data set on a system output (SYSOUT) device.

Name of the Data Set
If you use only one DD statement to define your data set, you need not name the
data set unless you intend to access it in another job. But if you include two or
three DD statements, you must specify a data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement that defines an indexed data set not
only gives the data set a name, but it also identifies the area of the data set to
which the DD statement refers:

 DSNAME=name(INDEX)
 DSNAME=name(PRIME)
 DSNAME=name(OVFLOW)

If you use one DD statement to define the prime and index or one DD statement to
define the prime and overflow area, code DSNAME=name(PRIME). If you use one
DD statement for the entire file (prime, index, and overflow), code
DSNAME=name(PRIME) or simply DSNAME=name.

Record Format and Keys
An indexed data set can contain either fixed- or variable-length records, blocked or
unblocked. You must always specify the record format, either in your PL/I program
(ENVIRONMENT attribute) or in the DD statement (RECFM subparameter).

The key associated with each record can be contiguous with or embedded within
the data in the record.

If the records are unblocked, the key of each record is recorded in the data set in
front of the record even if it is also embedded within the record, as shown in (a)
and (b) of Figure 39 on page 176.

If blocked records do not have embedded keys, the key of each record is recorded
within the block in front of the record, and the key of the last record in the block is
also recorded just ahead of the block, as shown in (c) of Figure 39.

When blocked records have embedded keys, the individual keys are not recorded
separately in front of each record in the block: the key of the last record in the
block is recorded in front of the block, as shown in (d) of Figure 39.

 Chapter 9. Defining and Using Indexed Data Sets 175

a) Unblocked records, nonembedded keys

┌──────────┬──────┐ ┌──────────┬──────┐ ┌──────────┬──────┐

│ Recorded │ Data │ │ Recorded │ Data │ │ Recorded │ Data │

│ Key │ │ │ Key │ │ │ Key │ │

└──────────┴──────┘ └──────────┴──────┘ └──────────┴──────┘

b) Unblocked records, embedded keys

 ┌─────logical record─────┐ ┌─────logical record─────┐

┌──────────┬──────┬──────────┬──────┐ ┌──────────┬──────┬──────────┬──────┐

│ Recorded │ Data │ Embedded │ Data │ │ Recorded │ Data │ Embedded │ Data │

│ Key │ │ Key │ │ │ Key │ │ Key │ │

└──────────┴──────┴──────────┴──────┘ └──────────┴──────┴──────────┴──────┘

 & &

 └─────same key─────┘

c) Blocked records, nonembedded keys

┌───1st record───┬───2nd record───┬───last record──┐

┌──────────┬─────────┬──────┬─────────┬──────┬─────────┬──────┐ ┌──────────┬─────────┬────

│ Recorded │ Key │ Data │ Key │ Data │ Key │ Data │ │ Recorded │ Key │

│ Key │ │ │ │ │ │ │ │ Key │ │

└──────────┴─────────┴──────┴─────────┴──────┴─────────┴──────┘ └──────────┴─────────┴────

 & &

 └──────────────────same key──────────────────┘

d) Blocked records, embedded keys

┌───────1st record───────┬───────2nd record───────┬───────last record──────┐

┌──────────┬──────┬──────────┬──────┬──────┬──────────┬──────┬──────┬──────────┬──────┐ ┌──────────┬──────┬────

│ Recorded │ Data │ Embedded │ Data │ Data │ Embedded │ Data │ Data │ Embedded │ Data │ │ Recorded │ Data │

│ Key │ │ Key │ │ │ Key │ │ │ Key │ │ │ Key │ │

└──────────┴──────┴──────────┴──────┴──────┴──────────┴──────┴──────┴──────────┴──────┘ └──────────┴──────┴────

 & &

 └──────────────────────────────same key──────────────────────────────┘

e) Unblocked variable─length records, RKP>4

┌─────┬──┬──┬──────┬─────┬──────┐

│ Key │BL│RL│ Data │ Key │ Data │

└─────┴──┴──┴──────┴─────┴──────┘

 & &

 └─────same key─────┘

f) Blocked variable─length records, RKP>4

┌─────┬──┬──┬──────┬─────┬──────┬──┬──────┬─────┬──────┬──┬──────┬─────┬──────┐

│ Key │BL│RL│ Data │ Key │ Data │RL│ Data │ Key │ Data │RL│ Data │ Key │ Data │

└─────┴──┴──┴──────┴─────┴──────┴──┴──────┴─────┴──────┴──┴──────┴─────┴──────┘

 & &

 └────────────────────────────same key────────────────────────────┘

g) Unblocked variable─length records, RKP=4

┌─────┬──┬──┬─────┬──────┐

│ Key │BL│RL│ Key │ Data │

└─────┴──┴──┴─────┴──────┘

 & &

 └─same key──┘

f) Blocked variable─length records, RKP=4

┌─────┬──┬──┬─────┬──────┬──┬─────┬──────┬──┬─────┬──────┐

│ Key │BL│RL│ Key │ Data │RL│ Key │ Data │RL│ Key │ Data │

└─────┴──┴──┴─────┴──────┴──┴─────┴──────┴──┴─────┴──────┘

& & BL = Block length

└─────────────────same key──────────────────┘ RL = Record length

Figure 39. Record Formats in an Indexed Data Set

176 PL/I for MVS & VM Programming Guide

If you use blocked records with nonembedded keys, the record size that you
specify must include the length of the key, and the block size must be a multiple of
this combined length. Otherwise, record length and block size refer only to the
data in the record. Record format information is shown in Figure 40.

If you use records with embedded keys, you must include the DCB subparameter
RKP to indicate the position of the key within the record. For fixed-length records
the value specified in the RKP subparameter is 1 less than the byte number of the
first character of the key. That is, if RKP=1, the key starts in the second byte of
the record. The default value if you omit this subparameter is RKP=0, which
specifies that the key is not embedded in the record but is separate from it.

For variable-length records, the value you specify in the RKP subparameter must
be the relative position of the key within the record plus 4. The extra 4 bytes take
into account the 4-byte control field used with variable-length records. For this
reason, you must never specify RKP less than 4. When deleting records, you must
always specify RKP equal to or greater than 5, since the first byte of the data is
used to indicate deletion.

For unblocked records, the key, even if embedded, is always recorded in a position
preceding the actual data. Consequently, you do not need to specify the RKP
subparameter for unblocked records.

RECORDS RKP LRECL BLKSIZE

Blocked Not zero R R \ B

Zero or R + K B\(R+K)

 omitted

Unblocked Not zero R R

 Zero or R R

 omitted

R = Size of data in record

K = Length of keys (as specified in KEYLEN subparameter)

B = Blocking factor

Example: For blocked records, nonembedded keys, 1ðð bytes of

data per record, 1ð records per block, key length = 2ð:

 LRECL=12ð,BLKSIZE=12ðð,RECFM=FB

Figure 40. Record Format Information for an Indexed Data Set

 Overflow Area
If you intend to add records to the data set on a future occasion, you must request
either a cylinder overflow area or an independent overflow area, or both.

For a cylinder overflow area, include the DCB subparameter OPTCD=Y and use
the subparameter CYLOFL to specify the number of tracks in each cylinder to be
reserved for overflow records. A cylinder overflow area has the advantage of a
short search time for overflow records, but the amount of space available for
overflow records is limited, and much of the space might be unused if the overflow
records are not evenly distributed throughout the data set.

 Chapter 9. Defining and Using Indexed Data Sets 177

For an independent overflow area, use the DCB subparameter OPTCD=I to
indicate that overflow records are to be placed in an area reserved for overflow
records from all cylinders, and include a separate DD statement to define the
overflow area. The use of an independent area has the advantage of reducing the
amount of unused space for overflow records, but entails an increased search time
for overflow records.

It is good practice to request cylinder overflow areas large enough to contain a
reasonable number of additional records and an independent overflow area to be
used as the cylinder overflow areas are filled.

If the prime data area is not filled during creation, you cannot use the unused
portion for overflow records, nor for any records subsequently added during
direct-access (although you can fill the unfilled portion of the last track used). You
can reserve space for later use within the prime data area by writing dummy
records during creation (see “Dummy Records” on page 167).

 Master Index
If you want the operating system to create a master index for you, include the DCB
subparameter OPTCD=M, and indicate in the NTM subparameter the number of
tracks in the cylinder index you wish to be referred to by each entry in the master
index. The operating system will create up to three levels of master index, the first
two levels addressing tracks in the next lower level of the master index.

The creation of a simple indexed data set is illustrated in Figure 41 on page 179.
The data set contains a telephone directory, using the subscribers' names as keys
to the telephone numbers.

178 PL/I for MVS & VM Programming Guide

 //EX8#19 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),

 CARD CHAR(8ð),

NAME CHAR(2ð) DEF CARD,

NUMBER CHAR(3) DEF CARD POS(21),

 IOFIELD CHAR(3),

EOF BIT(1) INIT('ð'B);

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(DIREC) OUTPUT;

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

 IOFIELD=NUMBER;

WRITE FILE(DIREC) FROM(IOFIELD) KEYFROM(NAME);

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

 END;

 CLOSE FILE(DIREC);

 END TELNOS;

 /\

 //GO.DIREC DD DSN=HPU8.TELNO(INDEX),UNIT=SYSDA,SPACE=(CYL,1),

 // DCB=(RECFM=F,BLKSIZE=3,DSORG=IS,KEYLEN=2ð,OPTCD=LIY,

 // CYLOFL=2),DISP=(NEW,KEEP)

 // DD DSN=HPU8.TELNO(PRIME),UNIT=SYSDA,SPACE=(CYL,1),

 // DISP=(NEW,KEEP),DCB=DSORG=IS

 // DD DSN=HPU8.TELNO(OVFLOW),UNIT=SYSDA,SPACE=(CYL,1),

 // DISP=(NEW,KEEP),DCB=DSORG=IS

 //GO.SYSIN DD \

 ACTION,G. 162

 BAKER,R. 152

 BRAMLEY,O.H. 248

 CHEESEMAN,D. 141

 CORY,G. 336

 ELLIOTT,D. 875

 FIGGINS,S. 413

 HARVEY,C.D.W. 2ð5

 HASTINGS,G.M. 391

 KENDALL,J.G. 294

 LANCASTER,W.R. 624

 MILES,R. 233

 NEWMAN,M.W. 45ð

 PITT,W.H. 515

 ROLF,D.E. 114

 SHEERS,C.D. 241

 SUTCLIFFE,M. 472

 TAYLOR,G.C. 4ð7

 WILTON,L.W. 4ð4

 WINSTONE,E.M. 3ð7

 /\

Figure 41. Creating an Indexed Data Set

Accessing and Updating an Indexed Data Set
Once you create an indexed data set, you can open the file that accesses it for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. In the case
of F-format records, you can also open it for OUTPUT to add records at the end of
the data set. The keys for these records must have higher values than the existing
keys for that data set and must be in ascending order. Table 25 on page 164
shows the statements and options for accessing an indexed data set.

Sequential input allows you to read the records in ascending key sequence, and in
sequential update you can read and rewrite each record in turn. Using direct input,

 Chapter 9. Defining and Using Indexed Data Sets 179

you can read records using the READ statement, and in direct update you can read
or delete existing records or add new ones. Sequential and direct-access are
discussed in further detail below.

Using Sequential Access
You can open a sequential file that is used to access an indexed data set with
either the INPUT or the UPDATE attribute. You do not need to include source keys
in the data transmission statements, nor do you need to give the file the KEYED
attribute. Sequential access is in order of ascending recorded-key values. Records
are retrieved in this order, and not necessarily in the order in which they were
added to the data set. Dummy records are not retrieved if you include the
subparameter OPTCD=L in the DD statement that defines the data set.

Except that you cannot use the EVENT option, rules governing the relationship
between the READ and REWRITE statements for a SEQUENTIAL UPDATE file
that accesses an indexed data set are identical to those for a consecutive data set
(described in Chapter 8, “Defining and Using Consecutive Data Sets” on
page 129).

You must not alter embedded keys in a record to be updated. The modified record
must always overwrite the update record in the data set.

Additionally, records can be effectively deleted from the data set. Using a DELETE
statement marks a record as a dummy by putting (8)'1'B in the first byte. You
should not use the DELETE statement to process a data set with F-format blocked
records and either KEYLOC=1 or RKP=0, or a data set with V- or VB-format
records and either KEYLOC=1 or RKP=4. (The code (8)'1'B would overwrite the
first byte of the recorded key.) Note that the EVENT option is not supported for
SEQUENTIAL access of indexed data sets.

You can position INDEXED KEYED files opened for SEQUENTIAL INPUT and
SEQUENTIAL UPDATE to a particular record within the data set by using either a
READ KEY or a DELETE KEY operation that specifies the key of the desired
record. Thereafter, successive READ statements without the KEY option access
the next records in the data set sequentially. A subsequent READ statement
without the KEY option causes the record with the next higher recorded key to be
read (even if the keyed record has not been found).

Define the length of the recorded keys in an indexed data set with the
KEYLENGTH ENVIRONMENT option or the KEYLEN subparameter of the DD
statement that defines the data set. If the length of a source key is greater than
the specified length of the recorded keys, the source key is truncated on the right.

The effect of supplying a source key that is shorter than the recorded keys in the
data set differs according to whether or not you specify the GENKEY option in the
ENVIRONMENT attribute. In the absence of the GENKEY option, the source key is
padded on the right with blanks to the length you specify in the KEYLENGTH
option of the ENVIRONMENT attribute, and the record with this padded key is read
(if such a record exists). If you specify the GENKEY option, the source key is
interpreted as a generic key, and the first record with a key in the class identified
by this generic key is read. (For further details, see “GENKEY Option — Key
Classification” on page 118.)

180 PL/I for MVS & VM Programming Guide

Using Direct Access
You can open a direct file that is used to access an indexed data set with either the
INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute.

You can use a DIRECT UPDATE file to retrieve, add, delete, or replace records in
an indexed data set according to the following conventions:

Retrieval If you include the subparameter OPTCD=L in the DD statement that
defines the data set, dummy records are not made available by a
READ statement (the KEY condition is raised).

Addition A WRITE statement that includes a unique key causes a record to
be inserted into the data set. If the key is the same as the recorded
key of a dummy record, the new record replaces the dummy record.
If the key is the same as the recorded key of a record that is not
marked as deleted, or if there is no space in the data set for the
record, the KEY condition is raised.

Deletion The record specified by the source key in a DELETE statement is
retrieved, marked as deleted, and rewritten into the data set. The
effect of the DELETE statement is to insert the value (8)'1'B in the
first byte of the data in a record. Deletion is possible only if you
specify OPTCD=L in the DD statement that defines the data set
when you create it. If the data set has F-format blocked records with
RKP=0 or KEYLOC=1, or V-format records with RKP=4 or
KEYLOC=1, records cannot be deleted. (The code (8)'1'B would
overwrite the embedded keys.)

Replacement
The record specified by a source key in a REWRITE statement is
replaced by the new record. If the data set contains F-format
blocked records, a record replaced with a REWRITE statement
causes an implicit READ statement to be executed unless the
previous I/O statement was a READ statement that obtained the
record to be replaced. If the data set contains V-format records and
the updated record has a length different from that of the record
read, the whole of the remainder of the track will be removed, and
can cause data to be moved to an overflow track.

 Essential Information
To access an indexed data set, you must define it in one, two, or three DD
statements. The DD statements must correspond with those used when the data
set is created. The following paragraphs indicate the essential information you
must include in each DD statement. Table 29 on page 182 summarizes this
information.

 Chapter 9. Defining and Using Indexed Data Sets 181

If the data set is cataloged, you need supply only the following information in each
DD statement:

� The name of the data set (DSNAME parameter). The operating system will
locate the information that describes the data set in the system catalog and, if
necessary, will request the operator to mount the volume that contains it.

� Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify the device that will
process the data set and give the serial number of the volume that contains it
(UNIT and VOLUME parameters).

Table 29. Accessing an Indexed Data Set: Essential Parameters of DD Statement

When required What you must state Parameters

Always Name of data set

Disposition of
data set

Data control block
information

DSNAME=

DISP=

DCB=

If data set not cataloged Input device

Volume serial number

UNIT= or
VOLUME=REF=

VOLUME=SER=

 Example
The program in Figure 42 on page 183 updates the data set of the previous
example (Figure 41 on page 179) and prints out its new contents. The input data
includes the following codes to indicate the operations required:

A Add a new record.
C Change an existing record.
D Delete an existing record.

182 PL/I for MVS & VM Programming Guide

 //EX8#2ð JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(INDEXED),

NUMBER CHAR(3),NAME CHAR(2ð),CODE CHAR(1),ONCODE BUILTIN,

EOF BIT(1) INIT('ð'B);

ON ENDFILE(SYSIN) EOF='1'B;

ON KEY(DIREC) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('NOT FOUND:',NAME)(A(15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('DUPLICATE:',NAME)(A(15),A);

 END;

OPEN FILE(DIREC) DIRECT UPDATE;

GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)

 (COLUMN(1),A(2ð),A(3),A(1));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)

 (A(1),A(2ð),A(1),A(3),A(1),A(1));

 SELECT (CODE);

WHEN('A') WRITE FILE(DIREC) FROM(NUMBER) KEYFROM(NAME);

WHEN('C') REWRITE FILE(DIREC) FROM(NUMBER) KEY(NAME);

WHEN('D') DELETE FILE(DIREC) KEY(NAME);

OTHERWISE PUT FILE(SYSPRINT) SKIP

 EDIT('INVALID CODE:',NAME)(A(15),A);

 END;

GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)

 (COLUMN(1),A(2ð),A(3),A(1));

 END;

 CLOSE FILE(DIREC);

PUT FILE(SYSPRINT) PAGE;

OPEN FILE(DIREC) SEQUENTIAL INPUT;

 EOF='ð'B;

ON ENDFILE(DIREC) EOF='1'B;

READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER)(A);

READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);

 END;

 CLOSE FILE(DIREC); END DIRUPDT;

 /\

 //GO.DIREC DD DSN=HPU8.TELNO(INDEX),DISP=(OLD,DELETE),

 // VOL=SER=nnnnnn,UNIT=SYSDA

 // DD DSN=HPU8.TELNO(PRIME),DISP=(OLD,DELETE),

 // VOL=SER=nnnnnn,UNIT=SYSDA

 // DD DSN=HPU8.TELNO(OVFLOW),DISP=(OLD,DELETE),

 // VOL=SER=nnnnnn,UNIT=SYSDA

 //GO.SYSIN DD \

 NEWMAN,M.W. 516C

 GOODFELLOW,D.T. 889A

 MILES,R. D

 HARVEY,C.D.W. 2ð9A

 BARTLETT,S.G. 183A

 CORY,G. D

 READ,K.M. ðð1A

 PITT,W.H.

 ROLF,D.E. D

 ELLIOTT,D. 291C

 HASTINS,G.M. D

 BRAMLEY,O.H. 439

 /\

Figure 42. Updating an Indexed Data Set

 Chapter 9. Defining and Using Indexed Data Sets 183

Reorganizing an Indexed Data Set
It is necessary to reorganize an indexed data set periodically because the addition
of records to the data set results in an increasing number of records in the overflow
area. Therefore, even if the overflow area does not eventually become full, the
average time required for the direct retrieval of a record will increase. The
frequency of reorganization depends on how often you update the data set, on how
much storage is available in the data set, and on your timing requirements.

Reorganizing the data set also eliminates records that are marked as “deleted” but
are still present within the data set.

There are two ways to reorganize an indexed data set:

� Read the data set into an area of main storage or onto a temporary
consecutive data set, and then recreate it in the original area of auxiliary
storage.

� Read the data set sequentially and write it into a new area of auxiliary storage.
You can then release the original auxiliary storage.

184 PL/I for MVS & VM Programming Guide

Chapter 10. Defining and Using Regional Data Sets

This chapter covers regional data set organization, data transmission statements,
and ENVIRONMENT options that define regional data sets. How to create and
access regional data sets for each type of regional organization is then discussed.

A data set with regional organization is divided into regions, each of which is
identified by a region number, and each of which can contain one record or more
than one record, depending on the type of regional organization. The regions are
numbered in succession, beginning with zero, and a record can be accessed by
specifying its region number, and perhaps a key, in a data transmission statement.

Regional data sets are confined to direct-access devices.

Regional organization of a data set allows you to control the physical placement of
records in the data set, and to optimize the access time for a particular application.
Such optimization is not available with consecutive or indexed organization, in
which successive records are written either in strict physical sequence or in logical
sequence depending on ascending key values; neither of these methods takes full
advantage of the characteristics of direct-access storage devices.

You can create a regional data set in a manner similar to a consecutive or indexed
data set, presenting records in the order of ascending region numbers; alternatively,
you can use direct-access, in which you present records in random sequence and
insert them directly into preformatted regions. Once you create a regional data set,
you can access it by using a file with the attributes SEQUENTIAL or DIRECT as
well as INPUT or UPDATE. You do not need to specify either a region number or
a key if the data set is associated with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT attribute, you can retrieve, add,
delete, and replace records at random.

Records within a regional data set are either actual records containing valid data or
dummy records. The nature of the dummy records depends on the type of regional
organization; the three types of regional organization are described below.

The major advantage of regional organization over other types of data set
organization is that it allows you to control the relative placement of records; by
judicious programming, you can optimize record access in terms of device
capabilities and the requirements of particular applications.

Direct access of regional data sets is quicker than that of indexed data sets, but
regional data sets have the disadvantage that sequential processing can present
records in random sequence; the order of sequential retrieval is not necessarily that
in which the records were presented, nor need it be related to the relative key
values.

Table 30 on page 186 lists the data transmission statements and options that you
can use to create and access a regional data set.

 Copyright IBM Corp. 1964, 1995 185

Table 30 (Page 1 of 2). Statements and options allowed for creating and accessing
regional data sets

File
declaration 1

Valid statements, 2 with options
you must include

Other options you
can also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FROM(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression); EVENT(event-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

KEYTO(reference)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

EVENT(event-reference)
and/or
KEYTO(reference)

EVENT(event-reference)

SEQUENTIAL UPDATE3

BUFFERED
READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)
and/or
KEYTO(reference)

EVENT(event-reference)

EVENT(event-reference)

DIRECT OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

EVENT(event-reference)

186 PL/I for MVS & VM Programming Guide

Regional(1) files are supported under VM with the following restrictions:

� More than one regional file with keys cannot be open at the same time.

� You must not increment KEY(TRACKID/REGION NUMBER) unless 255 records
are written on the first logical track, and 256 records on each subsequent
logical track.

� You must not write files with a dependency on the physical track length of a
direct access device.

� When you create a file, you must specify the XTENT option of the FILEDEF
command and it must be equal to the number of records in the file to be
created.

The examples in this chapter are given using JCL. However, the information
presented in the JCL examples is applicable to the FILEDEF VM command you

Table 30 (Page 2 of 2). Statements and options allowed for creating and accessing
regional data sets

File
declaration 1

Valid statements, 2 with options
you must include

Other options you
can also include

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

DIRECT UPDATE
EXCLUSIVE

READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

UNLOCK FILE(file-reference)
KEY(expression);

EVENT(event-reference)
and/or
NOLOCK

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

3. The file must not have the UPDATE attribute when creating new data sets.

 Chapter 10. Defining and Using Regional Data Sets 187

issue. For more information on the FILEDEF command, see the VM/ESA CMS
Command Reference and the VM/ESA CMS User's Guide.

Defining Files for a Regional Data Set
Use a file declaration with the following attributes to define a sequential regional
data set:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 SEQUENTIAL

BUFFERED | UNBUFFERED

 [KEYED]

 ENVIRONMENT(options);

To define a direct regional data set, use a file declaration with the following
attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 DIRECT

 UNBUFFERED

[EXCLUSIVE] (cannot be used with INPUT or OUTPUT)

 ENVIRONMENT(options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options
The ENVIRONMENT options applicable to regional data sets are:

 REGIONAL({1|2|3})

 F|V|VS|U

 RECSIZE(record-length)

 BLKSIZE(block-size)

 SCALARVARYING

 COBOL

 BUFFERS(n)

 KEYLENGTH(n)

 NCP(n)

 TRKOFL

 REGIONAL Option
Use the REGIONAL option to define a file with regional organization.

55──REGIONAL──(─ ──┬ ┬─1─ ─)──5%
 ├ ┤─2─
 └ ┘─3─

1 | 2 | 3
specifies REGIONAL(1), REGIONAL(2), or REGIONAL(3), respectively.

REGIONAL(1)
specifies that the data set contains F-format records that do not have recorded
keys. Each region in the data set contains only one record; therefore, each

188 PL/I for MVS & VM Programming Guide

region number corresponds to a relative record within the data set (that is,
region numbers start with 0 at the beginning of the data set).

Although REGIONAL(1) data sets have no recorded keys, you can use
REGIONAL(1) DIRECT INPUT or UPDATE files to process data sets that do
have recorded keys. In particular, to access REGIONAL(2) and REGIONAL(3)
data sets, use a file declared with REGIONAL(1) organization.

REGIONAL(2)
specifies that the data set contains F-format records that have recorded keys.
Each region in the data set contains only one record.

REGIONAL(2) differs from REGIONAL(1) in that REGIONAL(2) records contain
recorded keys and that records are not necessarily in the specified region; the
specified region identifies a starting point.

For files you create sequentially, the record is written in the specified region.

For files with the DIRECT attribute, a record is written in the first vacant space
on or after the track that contains the region number you specify in the WRITE
statement. For retrieval, the region number specified in the source key is
employed to locate the specified region. The method of search is described
further in the REGIONAL(2) discussion later in this chapter.

REGIONAL(3)
specifies that the data set contains F-format, V-format, VS-format, or U-format
records with recorded keys. Each region in the data set corresponds with a
track on a direct-access device and can contain one or more records.

REGIONAL(3) organization is similar to REGIONAL(2) in that records contain
recorded keys, but differs in that a region for REGIONAL(3) corresponds to a
track and not a record position.

Direct access of a REGIONAL(3) data set employs the region number specified
in a source key to locate the required region. Once the region has been
located, a sequential search is made for space to add a record, or for a record
that has a recorded key identical with that supplied in the source key.

VS-format records can span more than one region. With REGIONAL(3)
organization, the use of VS-format removes the limitations on block size
imposed by the physical characteristics of the direct-access device. If the
record length exceeds the size of a track, or if there is no room left on the
current track for the record, the record will be spanned over one or more tracks.

REGIONAL(1) organization is most suited to applications where there are no
duplicate region numbers, and where most of the regions will be filled (reducing
wasted space in the data set). REGIONAL(2) and REGIONAL(3) are more
appropriate where records are identified by numbers that are thinly distributed over
a wide range. You can include in your program an algorithm that derives the
region number from the number that identifies a record in such a manner as to
optimize the use of space within the data set; duplicate region numbers can occur
but, unless they are on the same track, their only effect might be to lengthen the
search time for records with duplicate region numbers.

The examples throughout this chapter illustrate typical applications of all three types
of regional organization.

 Chapter 10. Defining and Using Regional Data Sets 189

Using Keys with REGIONAL Data Sets
There are two kinds of keys, recorded keys and source keys. A recorded key is a
character string that immediately precedes each record in the data set to identify
that record; its length cannot exceed 255 characters. A source key is the character
value of the expression that appears in the KEY or KEYFROM option of a data
transmission statement to identify the record to which the statement refers. When
you access a record in a regional data set, the source key gives a region number,
and can also give a recorded key.

You specify the length of the recorded keys in a regional data set with the
KEYLENGTH option of the ENVIRONMENT attribute, or the KEYLEN subparameter
on the DD statement. Unlike the keys for indexed data sets, recorded keys in a
regional data set are never embedded within the record.

Using REGIONAL(1) Data Sets
In a REGIONAL(1) data set, since there are no recorded keys, the region number
serves as the sole identification of a particular record. The character value of the
source key should represent an unsigned decimal integer that should not exceed
16777215 (although the actual number of records allowed can be smaller,
depending on a combination of record size, device capacity, and limits of your
access method. For direct regional(1) files with fixed format records, the maximum
number of tracks which can be addressed by relative track addressing is 65,536.)
If the region number exceeds this figure, it is treated as modulo 16777216; for
instance, 16777226 is treated as 10. Only the characters 0 through 9 and the
blank character are valid in the source key; leading blanks are interpreted as zeros.
Embedded blanks are not allowed in the number; the first embedded blank, if any,
terminates the region number. If more than 8 characters appear in the source key,
only the rightmost 8 are used as the region number; if there are fewer than 8
characters, blanks (interpreted as zeros) are inserted on the left.

 Dummy Records
Records in a REGIONAL(1) data set are either actual records containing valid data
or dummy records. A dummy record in a REGIONAL(1) data set is identified by
the constant (8)'1'B in its first byte. Although such dummy records are inserted in
the data set either when it is created or when a record is deleted, they are not
ignored when the data set is read; your PL/I program must be prepared to
recognize them. You can replace dummy records with valid data. Note that if you
insert (8)'1'B in the first byte, the record can be lost if you copy the file onto a data
set that has dummy records that are not retrieved.

190 PL/I for MVS & VM Programming Guide

Creating a REGIONAL(1) Data Set
You can create a REGIONAL(1) data set either sequentially or by direct-access.
Table 30 on page 186 shows the statements and options for creating a regional
data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, the opening of
the file causes all tracks on the data set to be cleared, and a capacity record to be
written at the beginning of each track to record the amount of space available on
that track. You must present records in ascending order of region numbers; any
region you omit from the sequence is filled with a dummy record. If there is an
error in the sequence, or if you present a duplicate key, the KEY condition is
raised. When the file is closed, any space remaining at the end of the current
extent is filled with dummy records.

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement might raise the ERROR condition.

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is filled with dummy records when the file is opened. You
can present records in random order; if you present a duplicate, the existing record
will be overwritten.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

 Example
Creating a REGIONAL(1) data set is illustrated in Figure 43 on page 192. The
data set is a list of telephone numbers with the names of the subscribers to whom
they are allocated. The telephone numbers correspond with the region numbers in
the data set, the data in each occupied region being a subscriber's name.

 Chapter 10. Defining and Using Regional Data Sets 191

 //EX9 JOB

 //STEP1 EXEC IEL1CLG,PARM.PLI='NOP,MAR(1,72)',PARM.LKED='LIST'

//PLI.SYSIN DD \

 CRR1: PROC OPTIONS(MAIN);

/\ CREATING A REGIONAL(1) DATA SET - PHONE DIRECTORY \/

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(1));

DCL SYSIN FILE INPUT RECORD;

DCL SYSIN_REC BIT(1) INIT('1'B);

 DCL 1 CARD,

2 NAME CHAR(2ð),

2 NUMBER CHAR(2),

 2 CARD_1 CHAR(58);

DCL IOFIELD CHAR(2ð);

ON ENDFILE (SYSIN) SYSIN_REC = 'ð'B;

 OPEN FILE(NOS);

READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);

IOFIELD = NAME;

WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);

PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

READ FILE(SYSIN) INTO(CARD);

 END;

 CLOSE FILE(NOS);

 END CRR1;

 /\

 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)

 //GO.NOS DD DSN=NOS,UNIT=SYSDA,SPACE=(2ð,1ðð),

 // DCB=(RECFM=F,BLKSIZE=2ð,DSORG=DA),DISP=(NEW,KEEP)

 //GO.SYSIN DD \

 ACTION,G. 12

 BAKER,R. 13

 BRAMLEY,O.H. 28

 CHEESNAME,L. 11

 CORY,G. 36

 ELLIOTT,D. 85

 FIGGINS,E.S. 43

 HARVEY,C.D.W. 25

 HASTINGS,G.M. 31

 KENDALL,J.G. 24

 LANCASTER,W.R. 64

 MILES,R. 23

 NEWMAN,M.W. 4ð

 PITT,W.H. 55

 ROLF,D.E. 14

 SHEERS,C.D. 21

 SURCLIFFE,M. 42

 TAYLOR,G.C. 47

 WILTON,L.W. 44

 WINSTONE,E.M. 37

 /\

Figure 43. Creating a REGIONAL(1) Data Set

Accessing and Updating a REGIONAL(1) Data Set
Once you create a REGIONAL(1) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
open it for OUTPUT only if the existing data set is to be overwritten. Table 30 on
page 186 shows the statements and options for accessing a regional data set.

192 PL/I for MVS & VM Programming Guide

 Sequential Access
To open a SEQUENTIAL file that is used to process a REGIONAL(1) data set, use
either the INPUT or UPDATE attribute. You must not include the KEY option in
data transmission statements, but the file can have the KEYED attribute, since you
can use the KEYTO option. If the target character string referenced in the KEYTO
option has more than 8 characters, the value returned (the 8-character region
number) is padded on the left with blanks. If the target string has fewer than 8
characters, the value returned is truncated on the left.

Sequential access is in the order of ascending region numbers. All records are
retrieved, whether dummy or actual, and you must ensure that your PL/I program
recognizes dummy records.

Using sequential input with a REGIONAL(1) data set, you can read all the records
in ascending region-number sequence, and in sequential update you can read and
rewrite each record in turn.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(1) data set are identical
to those for a consecutive data set. Consecutive data sets are discussed in detail
in Chapter 8, “Defining and Using Consecutive Data Sets” on page 129.

 Direct Access
To open a DIRECT file that is used to process a REGIONAL(1) data set you can
use either the INPUT or the UPDATE attribute. All data transmission statements
must include source keys; the DIRECT attribute implies the KEYED attribute.

Use DIRECT UPDATE files to retrieve, add, delete, or replace records in a
REGIONAL(1) data set according to the following conventions:

Retrieval All records, whether dummy or actual, are retrieved. Your program
must recognize dummy records.

Addition A WRITE statement substitutes a new record for the existing
record (actual or dummy) in the region specified by the source key.

Deletion The record you specify by the source key in a DELETE statement
is converted to a dummy record.

Replacement The record you specify by the source key in a REWRITE
statement, whether dummy or actual, is replaced.

 Example
Updating a REGIONAL(1) data set is illustrated in Figure 44 on page 194. Like
the program in Figure 42 on page 183, this program updates the data set and lists
its contents. Before each new or updated record is written, the existing record in
the region is tested to ensure that it is a dummy; this is necessary because a
WRITE statement can overwrite an existing record in a REGIONAL(1) data set
even if it is not a dummy. Similarly, during the sequential reading and printing of
the contents of the data set, each record is tested and dummy records are not
printed.

 Chapter 10. Defining and Using Regional Data Sets 193

 //EX1ð JOB

 //STEP2 EXEC IEL1CLG,PARM.PLI='NOP,MAR(1,72)',PARM.LKED='LIST'

//PLI.SYSIN DD \

ACR1: PROC OPTIONS(MAIN);

/\ UPDATING A REGIONAL(1) DATA SET - PHONE DIRECTORY \/

DCL NOS FILE RECORD KEYED ENV(REGIONAL(1));

DCL SYSIN FILE INPUT RECORD;

DCL (SYSIN_REC,NOS_REC) BIT(1) INIT('1'B);

 DCL 1 CARD,

2 NAME CHAR(2ð),

 2 (NEWNO,OLDNO) CHAR(2),

2 CARD_1 CHAR(1),

2 CODE CHAR(1),

 2 CARD_2 CHAR(54);

DCL IOFIELD CHAR(2ð);

DCL BYTE CHAR(1) DEF IOFIELD;

ON ENDFILE(SYSIN) SYSIN_REC = 'ð'B;

OPEN FILE (NOS) DIRECT UPDATE;

READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);

 SELECT(CODE);

 WHEN('A','C') DO;

IF CODE = 'C' THEN

DELETE FILE(NOS) KEY(OLDNO);

READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);

IF UNSPEC(BYTE) = (8)'1'B

THEN WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);

ELSE PUT FILE(SYSPRINT) SKIP LIST ('DUPLICATE:',NAME);

 END;

WHEN('D') DELETE FILE(NOS) KEY(OLDNO);

OTHERWISE PUT FILE(SYSPRINT) SKIP LIST ('INVALID CODE:',NAME);

 END;

READ FILE(SYSIN) INTO(CARD);

 END;

 CLOSE FILE(SYSIN),FILE(NOS);

PUT FILE(SYSPRINT) PAGE;

OPEN FILE(NOS) SEQUENTIAL INPUT;

ON ENDFILE(NOS) NOS_REC = 'ð'B;

READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 DO WHILE(NOS_REC);

IF UNSPEC(BYTE) ¬= (8)'1'B

THEN PUT FILE(SYSPRINT) SKIP EDIT (NEWNO,IOFIELD)(A(2),X(3),A);

PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);

READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 END;

 CLOSE FILE(NOS);

 END ACR1;

 /\

 //GO.NOS DD DSN=J44PLI.NOS,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn

 //GO.SYSIN DD \

 NEWMAN,M.W. 564ð C

 GOODFELLOW,D.T. 89 A

 MILES,R. 23 D

 HARVEY,C.D.W. 29 A

 BARTLETT,S.G. 13 A

 CORY,G. 36 D

 READ,K.M. ð1 A

 PITT,W.H. 55

 ROLF,D.F. 14 D

 ELLIOTT,D. 4285 C

 HASTINGS,G.M. 31 D

 BRAMLEY,O.H. 4928 C

 /\

Figure 44. Updating a REGIONAL(1) Data Set

194 PL/I for MVS & VM Programming Guide

Using REGIONAL(2) Data Sets
In a REGIONAL(2) data set, each record is identified by a recorded key that
immediately precedes the record. The actual position of the record in the data set
relative to other records is determined not by its recorded key, but by the region
number that you supply in the source key of the WRITE statement that adds the
record to the data set.

When you add a record to the data set by direct-access, it is written with its
recorded key in the first available space after the beginning of the track that
contains the region specified. When a record is read by direct-access, the search
for a record with the appropriate recorded key begins at the start of the track that
contains the region specified. Unless it is limited by the LIMCT subparameter of
the DD statement that defines the data set, the search for a record or for space to
add a record continues right through to the end of the data set and then from the
beginning until the entire data set has been covered. The closer a record is to the
specified region, the more quickly it can be accessed.

Using Keys for REGIONAL(2) and (3) Data Sets
The character value of the source key can be thought of as having two logical
parts—the region number and a comparison key. On output, the comparison key is
written as the recorded key; for input, it is compared with the recorded key.

The rightmost 8 characters of the source key make up the region number, which
must be the character representation of a fixed decimal integer that does not
exceed 16777215 (although the actual number of records allowed can be smaller,
depending on a combination of record size, device capacity, and limits of your
access method). If the region number exceeds this figure, it is treated as modulo
16777216; for instance, 16777226 is treated as 10. You can only specify the
characters 0 through 9 and the blank character; leading blanks are interpreted as
zeros. Embedded blanks are not allowed in the number; the first embedded blank,
if any, terminates the region number. The comparison key is a character string that
occupies the left hand side of the source key, and can overlap or be distinct from
the region number, from which it can be separated by other nonsignificant
characters.

Specify the length of the comparison key either with the KEYLEN subparameter of
the DD statement for the data set or the KEYLENGTH option of the
ENVIRONMENT attribute. If the source key is shorter than the key length you
specify, it is extended on the right with blanks. To retrieve a record, the comparison
key must exactly match the recorded key of the record. The comparison key can
include the region number, in which case the source key and the comparison key
are identical; or, you can use only part of the source key. The length of the
comparison key is always equal to KEYLENGTH or KEYLEN; if the source key is
longer than KEYLEN+8, the characters in the source key between the comparison
key and the region number are ignored.

 Chapter 10. Defining and Using Regional Data Sets 195

When generating the key, you should consider the rules for conversion from
arithmetic to character string. For example, the following group is incorrect:

DCL KEYS CHAR(8);

DO I=1 TO 1ð;

 KEYS=I;

WRITE FILE(F) FROM (R)

 KEYFROM (KEYS);

 END;

The default for I is FIXED BINARY(15,0), which requires not 8 but 9 characters to
contain the character string representation of the arithmetic values. In this example
the rightmost digit is truncated.

Consider the following examples of source keys (the character “b” represents a
blank):

 KEY ('JOHNbDOEbbbbbb12363251')

The rightmost 8 characters make up the region specification, the relative number of
the record. Assume that the associated DD statement has the subparameter
KEYLEN=14. In retrieving a record, the search begins with the beginning of the
track that contains the region number 12363251, until the record is found having
the recorded key of JOHNbDOEbbbbbb.

If the subparameter is KEYLEN=22, the search still begins at the same place, but
since the comparison and the source key are the same length, the search would be
for a record having the recorded key 'JOHNbDOEbbbbbb12363251'.

 KEY('JOHNbDOEbbbbbbDIVISIONb423bbbb34627')

In this example, the rightmost 8 characters contain leading blanks, which are
interpreted as zeros. The search begins at region number 00034627. If
KEYLEN=14 is specified, the characters DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED BINARY(21) and NAME is declared
CHARACTER(15). You could specify the key like so:

KEY (NAME || COUNTER)

The value of COUNTER will be converted to a character string of 11 characters.
(The rules for conversion specify that a binary value of this length, when converted
to character, will result in a string of length 11—three blanks followed by eight
decimal digits.) The value of the rightmost eight characters of the converted string
is taken to be the region specification. Then if the keylength specification is
KEYLEN=15, the value of NAME is taken to be the comparison specification.

 Dummy Records
A REGIONAL(2) data set can contain dummy records. A dummy record consists of
a dummy key and dummy data. A dummy key is identified by the constant (8)'1'B
in its first byte. The first byte of the data contains the sequence number of the
record on the track.

The program inserts dummy records either when the data set is created or when a
record is deleted. The dummy records are ignored when the program reads the
data set.

However, you can replace dummy records with valid data.

196 PL/I for MVS & VM Programming Guide

Creating a REGIONAL(2) Data Set
You can create a REGIONAL(2) data set either sequentially or by direct-access. In
either case, when the file associated with the data set is opened, the data set is
initialized with capacity records specifying the amount of space available on each
track. Table 30 on page 186 shows the statements and options for creating a
regional data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, you must
present records in ascending order of region numbers; any region you omit from
the sequence is filled with a dummy record. If you make an error in the sequence,
including attempting to place more than one record in the same region, the KEY
condition is raised. When the file is closed, any space remaining at the end of the
current extent is filled with dummy records.

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement can raise the ERROR condition.

If you use a DIRECT OUTPUT file to create the current extent of a data set, the
whole primary extent allocated to the data set is filled with dummy records when
the file is opened. You can present records in random order, and no condition is
raised by duplicate keys. Each record is substituted for the first dummy record on
the track that contains the region specified in the source key; if there are no dummy
records on the track, the record is substituted for the first dummy record
encountered on a subsequent track, unless the LIMCT subparameter specifies that
the search cannot reach beyond this track. (Note that it is possible to place
records with identical recorded keys in the data set).

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

 Example
The use of REGIONAL(2) data sets is illustrated in Figure 45 on page 198,
Figure 46 on page 200, and Figure 47 on page 201. The programs in these
figures perform the same functions as those given for REGIONAL(3), with which
they can be compared.

The programs depict a library processing scheme, in which loans of books are
recorded and reminders are issued for overdue books. Two data sets,
SAMPL.STOCK and SAMPL.LOANS are used. SAMPL.STOCK contains
descriptions of the books in the library, and uses the 4-digit book reference
numbers as recorded keys; a simple algorithm is used to derive the region numbers
from the reference numbers. (It is assumed that there are about 1000 books, each
with a number in the range 1000–9999.) SAMPL.LOANS contains records of books
that are on loan; each record comprises two dates, the date of issue and the date
of the last reminder. Each reader is identified by a 3-digit reference number, which
is used as a region number in SAMPL.LOANS; the reader and book numbers are
concatenated to form the recorded keys.

Figure 45 on page 198 shows the creation of the data sets SAMPL.STOCK and
SAMPL.LOANS. The file LOANS, which is used to create the data set
SAMPL.LOANS, is opened for direct output to format the data set; the file is closed
immediately without any records being written onto the data set. Direct creation is

 Chapter 10. Defining and Using Regional Data Sets 197

also used for the data set SAMPL.STOCK because, even if the input data is
presented in ascending reference number order, identical region numbers might be
derived from successive reference numbers.

 //EX11 JOB

 //STEP1 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'

 //PLI.SYSIN DD \

 %PROCESS MAR(1,72);

 /\ CREATING A REGIONAL(2) DATA SET - LIBRARY LOANS \/

 CRR2: PROC OPTIONS(MAIN);

 DCL (LOANS,STOCK) FILE RECORD KEYED ENV(REGIONAL(2));

 DCL 1 BOOK,

2 AUTHOR CHAR(25),

 2 TITLE CHAR(5ð),

 2 QTY FIXED DEC(3);

 DCL NUMBER CHAR(4);

 DCL INTER FIXED DEC(5);

 DCL REGION CHAR(8);

 DCL EOF BIT(1) INIT('ð'B);

/\ INITIALIZE (FORMAT) LOANS DATA SET \/

OPEN FILE(LOANS) DIRECT OUTPUT;

 CLOSE FILE(LOANS);

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(STOCK) DIRECT OUTPUT;

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

DO WHILE (¬EOF);

INTER = (NUMBER-1ððð)/9; /\ REGIONS ð TO 999 \/

REGION = INTER;

WRITE FILE(STOCK) FROM (BOOK) KEYFROM(NUMBER||REGION);

PUT FILE(SYSPRINT) SKIP EDIT (BOOK) (A);

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

 END;

 CLOSE FILE(STOCK);

 END CRR2;

 /\

 //GO.LOANS DD DSN=SAMPL.LOANS,UNIT=SYSDA,SPACE=(12,1ððð),

 // DCB=(RECFM=F,BLKSIZE=12,KEYLEN=7),

 // DISP=(NEW,CATLG)

 //GO.STOCK DD DSN=SAMPL.STOCK,UNIT=SYSDA,SPACE=(77,1ð5ð),

 // DCB=(RECFM=F,BLKSIZE=77,KEYLEN=4),

 // DISP=(NEW,CATLG)

 //GO.SYSIN DD \

 '1ð15' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1

 '1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1

 '3ð79' 'G.FLAUBERT' 'MADAME BOVARY' 1

 '3ð83' 'V.M.HUGO' 'LES MISERABLES' 2

 '3ð85' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2

 '4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1

 '5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3

 '6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1

 '8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1

 '9795' 'H.G.WELLS' 'THE TIME MACHINE' 3

 /\

Figure 45. Creating a REGIONAL(2) Data Set

Accessing and Updating a REGIONAL(2) Data Set
Once you create a REGIONAL(2) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. It cannot
be opened for OUTPUT. Table 30 on page 186 shows the statements and options
for accessing a regional data set.

198 PL/I for MVS & VM Programming Guide

 Sequential Access
To open a SEQUENTIAL file that is used to process a REGIONAL(2) data set, use
either the INPUT or UPDATE attribute. The data transmission statements must not
include the KEY option, but the file can have the KEYED attribute since you can
use the KEYTO option. With the KEYTO option you specify that the recorded key
only is to be assigned to the specified variable. If the character string referenced in
the KEYTO option has more characters than are specified in the KEYLEN
subparameter, the value returned (the recorded key) is extended on the right with
blanks; if it has fewer characters than specified by KEYLEN, the value returned is
truncated on the right.

Sequential access is in the physical order in which the records exist on the data
set, not necessarily in the order in which they were added to the data set. The
recorded keys do not affect the order of sequential access. Dummy records are
not retrieved.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(2) data set are identical
with those for a CONSECUTIVE data set (described above).

 Direct Access
To open a DIRECT file that is used to process a REGIONAL(2) data set, use either
the INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute. The
search for each record is commenced at the start of the track containing the region
number indicated by the key.

Using direct input, you can read any record by supplying its region number and its
recorded key; in direct update, you can read or delete existing records or add new
ones.

Retrieval Dummy records are not made available by a READ statement. The
KEY condition is raised if a record with the recorded key you
specify is not found.

Addition A WRITE statement substitutes the new record for the first dummy
record on the track containing the region specified by the source
key. If there are no dummy records on this track, and you allow an
extended search by the LIMCT subparameter, the new record
replaces the first dummy record encountered during the search.

Deletion The record you specify by the source key in a DELETE statement is
converted to a dummy record.

Replacement The record you specify by the source key in a REWRITE statement
must exist; a REWRITE statement cannot be used to replace a
dummy record. If it does not exist, the KEY condition is raised.

 Example
The data set SAMPL.LOANS, described in “Example” on page 197, is updated
directly in Figure 46 on page 200. Each item of input data, read from a source
input, comprises a book number, a reader number, and a code to indicate whether
it refers to a new issue (I), a returned book (R), or a renewal (A). The date is
written in both the issue-date and reminder-date portions of a new record or an
updated record.

 Chapter 10. Defining and Using Regional Data Sets 199

A sequential update of the same program is shown in the program in Figure 47 on
page 201. The sequential update file (LOANS) processes the records in the data
set SAMPL.LOANS, and a direct input file (STOCK) obtains the book description
from the data set SAMPL.STOCK for use in a reminder note. Each record from
SAMPL.LOANS is tested to see whether the last reminder was issued more than a
month ago; if necessary, a reminder note is issued and the current date is written in
the reminder-date field of the record.

 //EX12 JOB

 //STEP2 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'

//PLI.SYSIN DD \

 %PROCESS MAR(1,72);

DUR2: PROC OPTIONS(MAIN);

 /\ UPDATING A REGIONAL(2) DATA SET DIRECTLY - LIBRARY LOANS\/

DCL LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(2));

 DCL 1 RECORD,

 2 (ISSUE,REMINDER) CHAR(6);

DCL SYSIN FILE RECORD INPUT SEQUENTIAL;

DCL SYSIN_REC BIT(1) INIT('1'B) STATIC;

 DCL 1 CARD,

2 BOOK CHAR(4),

 2 CARD_1 CHAR(5),

 2 READER CHAR(3),

 2 CARD_2 CHAR(7),

2 CODE CHAR(1),

 2 CARD_3 CHAR(1),

2 DATE CHAR(6), /\ YYMMDD \/

 2 CARD_4 CHAR(53);

DCL REGION CHAR(8) INIT(' ');

ON ENDFILE(SYSIN) SYSIN_REC = 'ð'B;

OPEN FILE(SYSIN), FILE(LOANS);

READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);

SUBSTR(REGION,6) = CARD.READER;

ISSUE,REMINDER = CARD.DATE;

PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

 SELECT(CODE);

WHEN('I') WRITE FILE(LOANS) FROM(RECORD) /\ NEW ISSUE \/

 KEYFROM(READER||BOOK||REGION);

WHEN('R') DELETE FILE(LOANS) /\ RETURNED \/

 KEY (READER||BOOK||REGION);

WHEN('A') REWRITE FILE(LOANS) FROM(RECORD) /\ RENEWAL \/

 KEY (READER||BOOK||REGION);

OTHERWISE PUT FILE(SYSPRINT) SKIP LIST /\ INVALID CODE \/

 ('INVALID CODE:',BOOK,READER);

 END;

READ FILE(SYSIN) INTO(CARD);

 END;

 CLOSE FILE(SYSIN),FILE(LOANS);

 END DUR2;

 /\

 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)

 //GO.LOANS DD DSN=SAMPL.LOANS,DISP=(OLD,KEEP)

 //GO.SYSIN DD \

 5999 ðð3 I 781221

 3ð83 ð91 I 79ð1ð4

 1214 ð49 I 79ð2ð5

 5999 ðð3 A 79ð212

 3ð83 ð91 R 79ð212

 3517 ð95 X 79ð213

 /\

Figure 46. Updating a REGIONAL(2) Data Set Directly

200 PL/I for MVS & VM Programming Guide

 //EX13 JOB

//STEP3 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST',PARM.GO='/79ð3ð8'

//PLI.SYSIN DD \

 %PROCESS MAR(1,72);

SUR2: PROC OPTIONS(MAIN);

/\ UPDATING A REGIONAL(2) DATA SET SEQUENTIALLY - LIBRARY LOANS \/

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(2));

DCL LOANS_REC BIT(1) INIT('1'B) STATIC;

 DCL 1 RECORD,

 2 (ISSUE,REMINDER) CHAR(6);

DCL LOANKEY CHAR(7),

READER CHAR(3) DEF LOANKEY,

BKNO CHAR(4) DEF LOANKEY POS(4);

DCL STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(2));

 DCL 1 BOOK,

 2 AUTHOR CHAR(25),

 2 TITLE CHAR(5ð),

 2 QTY FIXED DEC(3);

DCL TODAY CHAR(6); /\ YY/MM/DD \/

DCL INTER FIXED DEC(5);

DCL REGION CHAR(8);

 TODAY = '79ð21ð';

 OPEN FILE(LOANS),

 FILE(STOCK);

ON ENDFILE(LOANS) LOANS_REC = 'ð'B;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);

X = 1;

 DO WHILE(LOANS_REC);

PUT FILE(SYSPRINT) SKIP EDIT

(X,'REM DATE ',REMINDER,' TODAY ',TODAY) (A(3),A(9),A,A(7),A);

X = X+1;

IF REMINDER < TODAY THEN /\ ? LAST REMINDER ISSUED \/

DO; /\ MORE THAN A MONTH AGO\/

INTER = (BKNO-1ððð)/9; /\ YES, PRINT NEW REMINDER\/

REGION = INTER;

READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);

REMINDER = TODAY; /\ UPDATE REMINDER DATE \/

PUT FILE(SYSPRINT) SKIP EDIT

('NEW REM DATE',REMINDER,READER,AUTHOR,TITLE)

 (A(12),A,X(2),A,X(2),A,X(2),A);

REWRITE FILE(LOANS) FROM(RECORD);

 END;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);

 END;

 CLOSE FILE(LOANS),FILE(STOCK);

 END SUR2;

 /\

 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)

 //GO.LOANS DD DSN=SAMPL.LOANS,DISP=(OLD,KEEP)

 //GO.STOCK DD DSN=SAMPL.STOCK,DISP=(OLD,KEEP)

 /\

Figure 47. Updating a REGIONAL(2) Data Set Sequentially

 Chapter 10. Defining and Using Regional Data Sets 201

Using REGIONAL(3) Data Sets
A REGIONAL(3) data set differs from a REGIONAL(2) data set (described above)
only in the following respects:

� Each region number identifies a track on the direct-access device that contains
the data set; the region number should not exceed 32767. A region in excess
of 32767 is treated as modulo 32768; for example, 32778 is treated as 10.

� A region can contain one or more records, or a segment of a VS-format record.

� The data set can contain F-format, V-format, VS-format, or U-format records.
You can create dummy records, but a data set that has V-format, VS-format, or
U-format records is not preformatted with dummy records because the lengths
of records cannot be known until they are written; however, all tracks in the
primary extent are cleared and the operating system maintains a capacity
record at the beginning of each track, in which it records the amount of space
available on that track.

Source keys for a REGIONAL(3) data set are interpreted exactly as those for a
REGIONAL(2) data set are, and the search for a record or space to add a record is
conducted in a similar manner.

 Dummy Records
Dummy records for REGIONAL(3) data sets with F-format records are identical to
those for REGIONAL(2) data sets.

You can identify V-format, VS-format, and U-format dummy records because they
have dummy recorded keys ((8)'1'B in the first byte). The four control bytes in
each V-format and VS-format dummy record are retained, but the contents of
V-format, VS-format, and U-format dummy records are undefined. V-format,
VS-format, and U-format records convert to dummy records only when a record is
deleted, and you cannot reconvert them to valid records.

Creating a REGIONAL(3) Data Set
You can create a REGIONAL(3) data set either sequentially or by direct-access. In
either case, when the file associated with the data set is opened, the data set is
initialized with capacity records specifying the amount of space available on each
track. Table 30 on page 186 shows the statements and options for creating a
regional data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, you must
present records in ascending order of region numbers, but you can specify the
same region number for successive records. For F-format records, any record you
omit from the sequence is filled with a dummy record. If you make an error in the
sequence, the KEY condition is raised. If a track becomes filled by records for
which the same region number was specified, the region number is incremented by
one; an attempt to add a further record with the same region number raises the
KEY condition (sequence error).

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement can raise the ERROR condition.

202 PL/I for MVS & VM Programming Guide

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is initialized when the data set is opened. For F-format
records, the space is filled with dummy records, and for V-format, VS-format, and
U-format records, the capacity record for each track is written to indicate empty
tracks. You can present records in random order, and no condition is raised by
duplicate keys or duplicate region specifications. If the data set has F-format
records, each record is substituted for the first dummy record in the region (track)
specified on the source key; if there are no dummy records on the track, and you
allow an extended search by the LIMCT subparameter, the record is substituted for
the first dummy record encountered during the search. If the data set has
V-format, VS-format, or U-format records, the new record is inserted on the
specified track, if sufficient space is available; otherwise, if you allow an extended
search, the new record is inserted in the next available space.

Note that for spanned records, space might be required for overflow onto
subsequent tracks.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

 Example
A program for creating a REGIONAL(3) data set is shown in Figure 48. This
program is similar to creating a REGIONAL(2) data set, discussed in “Example” on
page 197 and illustrated in Figure 45 on page 198. The only important difference
is that in REGIONAL(3) the data set SAMPL.STOCK is created sequentially. In
REGIONAL(3) data sets, duplicate region numbers are acceptable, because each
region can contain more than one record.

 //EX14 JOB

 //STEP1 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'

 //PLI.SYSIN DD \

 %PROCESS MAR(1,72);

/\ CREATING A REGIONAL(3) DATA SET - LIBRARY LOANS \/

 CRR3: PROC OPTIONS(MAIN);

 DCL LOANS FILE RECORD KEYED ENV(REGIONAL(3));

 DCL STOCK FILE RECORD KEYED ENV(REGIONAL(3));

 DCL 1 BOOK,

 2 AUTHOR CHAR(25),

 2 TITLE CHAR(5ð),

 2 QTY FIXED DEC(3);

 DCL NUMBER CHAR(4);

 DCL INTER FIXED DEC(5);

 DCL REGION CHAR(8);

 DCL EOF BIT(1) INIT('ð'B);

Figure 48 (Part 1 of 2). Creating a REGIONAL(3) Data Set

 Chapter 10. Defining and Using Regional Data Sets 203

/\ INITIALIZE (FORMAT) LOANS DATA SET \/

OPEN FILE(LOANS) DIRECT OUTPUT;

 CLOSE FILE(LOANS);

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(STOCK) SEQUENTIAL OUTPUT;

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

DO WHILE (¬EOF);

INTER = (NUMBER-1ððð)/225ð; /\ REGIONS = ð,1,2,3,4 FOR A DEVICE \/

/\ HOLDING 2ðð (OR MORE) BOOKS/TRACK\/

REGION = INTER;

WRITE FILE(STOCK) FROM(BOOK) KEYFROM(NUMBER||REGION);

PUT FILE(SYSPRINT) SKIP EDIT (BOOK) (A);

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

 END;

 CLOSE FILE(STOCK);

 END CRR3;

 /\

 //GO.LOANS DD DSN=SAMPL.LOANS,UNIT=SYSDA,SPACE=(TRK,3),

 // DCB=(RECFM=F,BLKSIZE=12,KEYLEN=7),

 // DISP=(NEW,CATLG)

 //GO.STOCK DD DSN=SAMPL.STOCK,UNIT=SYSDA,SPACE=(TRK,5),

 // DCB=(RECFM=F,BLKSIZE=77,KEYLEN=4),

 // DISP=(NEW,CATLG)

 //GO.SYSIN DD \

 '1ð15' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1

 '1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1

 '3ð79' 'G.FLAUBERT' 'MADAME BOVARY' 1

 '3ð83' 'V.M.HUGO' 'LES MISERABLES' 2

 '3ð85' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2

 '4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1

 '5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3

 '6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1

 '8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1

 '9795' 'H.G.WELLS' 'THE TIME MACHINE' 3

 /\

Figure 48 (Part 2 of 2). Creating a REGIONAL(3) Data Set

Accessing and Updating a REGIONAL(3) Data Set
Once you create a REGIONAL(3) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
only open it for OUTPUT if the entire existing data set is to be deleted and
replaced. Table 30 on page 186 shows the statements and options for accessing
a regional data set.

 Sequential Access
To open a SEQUENTIAL file that is used to access a REGIONAL(3) data set, use
either the INPUT or UPDATE attribute. You must not include the KEY option in the
data transmission statements, but the file can have the KEYED attribute since you
can use the KEYTO option.

With the KEYTO option you can specify that the recorded key only is to be
assigned to the specified variable. If the character string referenced in the KEYTO
option has more characters than you specify in the KEYLEN subparameter, the
value returned (the recorded key) is extended on the right with blanks; if it has
fewer characters than you specify by KEYLEN, the value returned is truncated on
the right.

204 PL/I for MVS & VM Programming Guide

Sequential access is in the order of ascending relative tracks. Records are
retrieved in this order, and not necessarily in the order in which they were added to
the data set. The recorded keys do not affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(3) data set are identical
with those for a CONSECUTIVE data set (described above).

 Direct Access
To open a DIRECT file that is used to process a REGIONAL(3) data set, use either
the INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute.

Using direct input, you can read any record by supplying its region number and its
recorded key; in direct update, you can read or delete existing records or add new
ones.

Retrieval Dummy records are not made available by a READ statement. The
KEY condition is raised if a record with the specified recorded key is
not found.

Addition In a data set with F-format records, a WRITE statement substitutes
the new record for a dummy record in the region (track) specified by
the source key. If there are no dummy records on the specified
track, and you use the LIMCT subparameter to allow an extended
search, the new record replaces the first dummy record
encountered during the search. If the data set has V-format,
VS-format, or U-format records, a WRITE statement inserts the new
record after any records already present on the specified track if
space is available; otherwise, if you allow an extended search, the
new record is inserted in the next available space.

Deletion A record you specify by the source key in a DELETE statement is
converted to a dummy record. You can re-use the space formerly
occupied by an F-format record; space formerly occupied by
V-format, VS-format, or U-format records is not available for reuse.

Replacement The record you specify by the source key in a REWRITE statement
must exist; you cannot use a REWRITE statement to replace a
dummy record. When a VS-format record is replaced, the new one
must not be shorter than the old.

Note: If a track contains records with duplicate recorded keys, the record farthest
from the beginning of the track will never be retrieved during direct-access.

 Example
Updating REGIONAL(3) data sets is shown in the following two figures, Figure 49
on page 206 and Figure 50 on page 207. These are similar to the REGIONAL(2)
figures, Figure 46 on page 200 and Figure 47 on page 201.

You should note that REGIONAL(3) updating differs from REGIONAL(2) updating in
only one important way. When you update the data set directly, illustrated in
Figure 49 on page 206, the region number for the data set SAMPL.LOANS is
obtained simply by testing the reader number.

 Chapter 10. Defining and Using Regional Data Sets 205

Sequential updating, shown in Figure 50 on page 207, is very much like Figure 47
on page 201, the REGIONAL(2) example.

 //EX15 JOB

//STEP2 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'

//PLI.SYSIN DD \

 %PROCESS MAR(1,72);

DUR3: PROC OPTIONS(MAIN);

/\ UPDATING A REGIONAL(3) DATA SET DIRECTLY - LIBRARY LOANS \/

DCL LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(3));

 DCL 1 RECORD,

 2 (ISSUE,REMINDER) CHAR(6);

DCL SYSIN FILE RECORD INPUT SEQUENTIAL;

DCL SYSIN_REC BIT(1) INIT('1'B);

 DCL 1 CARD,

 2 BOOK CHAR(4),

 2 CARD_1 CHAR(5),

 2 READER CHAR(3),

 2 CARD_2 CHAR(7),

2 CODE CHAR(1),

 2 CARD_3 CHAR(1),

2 DATE CHAR(6),

 2 CARD_4 CHAR(53);

DCL REGION CHAR(8);

ON ENDFILE(SYSIN) SYSIN_REC= 'ð'B;

 OPEN FILE(SYSIN),FILE(LOANS);

READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);

ISSUE,REMINDER = DATE;

 SELECT;

WHEN(READER < 'ð34') REGION = 'ðððððððð';

WHEN(READER < 'ð67') REGION = 'ððððððð1';

OTHERWISE REGION = 'ððððððð2';

 END;

 SELECT(CODE);

WHEN('I') WRITE FILE(LOANS) FROM(RECORD)

 KEYFROM(READER||BOOK||REGION);

WHEN('R') DELETE FILE(LOANS)

 KEY (READER||BOOK||REGION);

WHEN('A') REWRITE FILE(LOANS) FROM(RECORD)

 KEY (READER||BOOK||REGION);

OTHERWISE PUT FILE(SYSPRINT) SKIP LIST

('INVALID CODE: ',BOOK,READER);

 END;

PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

READ FILE(SYSIN) INTO(CARD);

 END;

 CLOSE FILE(SYSIN),FILE(LOANS);

 END DUR3;

 /\

 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)

 //GO.LOANS DD DSN=SAMPL.LOANS,DISP=(OLD,KEEP)

 //GO.SYSIN DD \

 5999 ðð3 I 781221

 3ð83 ð91 I 79ð1ð4

 1214 ð49 I 79ð2ð5

 5999 ðð3 A 79ð212

 3ð83 ð91 R 79ð212

 3517 ð95 X 79ð213

 /\

Figure 49. Updating a REGIONAL(3) Data Set Directly

206 PL/I for MVS & VM Programming Guide

 //EX16 JOB

//STEP3 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST',PARM.GO='/79ð3ð8'

//PLI.SYSIN DD \

 %PROCESS MAR(1,72);

SUR3: PROC OPTIONS(MAIN);

/\ UPDATING A REGIONAL(3) DATA SET SEQUENTIALLY - LIBRARY LOANS \/

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(3));

DCL LOANS_REC BIT(1) INIT('1'B);

 DCL 1 RECORD,

 2 (ISSUE,REMINDER) CHAR(6);

DCL LOANKEY CHAR(7),

READER CHAR(3) DEF LOANKEY,

BKNO CHAR(4) DEF LOANKEY POS(4);

DCL STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(3));

 DCL 1 BOOK,

 2 AUTHOR CHAR(25),

 2 TITLE CHAR(5ð),

 2 QTY FIXED DEC(3);

DCL TODAY CHAR(6);/\YYMMDD\/

DCL INTER FIXED DEC(5),

 REGION CHAR(8);

TODAY = '79ð21ð';

OPEN FILE (LOANS), FILE(STOCK);

ON ENDFILE(LOANS) LOANS_REC = 'ð'B;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);

X = 1;

 DO WHILE(LOANS_REC);

PUT FILE(SYSPRINT) SKIP EDIT

(X,'REM DATE ',REMINDER,' TODAY ',TODAY) (A(3),A(9),A,A(7),A);

X = X+1;

IF REMINDER < TODAY THEN

 DO;

INTER = (BKNO-1ððð)/225ð;

REGION = INTER;

READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);

REMINDER = TODAY;

PUT FILE(SYSPRINT) SKIP EDIT

('NEW REM DATE',REMINDER,READER,AUTHOR,TITLE)

 (A(12),A,X(2),A,X(2),A,X(2),A);

REWRITE FILE(LOANS) FROM(RECORD);

 END;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);

 END;

 CLOSE FILE(LOANS),FILE(STOCK);

 END SUR3;

 /\

 //GO.LOANS DD DSN=SAMPL.LOANS,DISP=(OLD,KEEP)

 //GO.STOCK DD DSN=SAMPL.STOCK,DISP=(OLD,KEEP)

Figure 50. Updating a REGIONAL(3) Data Set Sequentially

 Chapter 10. Defining and Using Regional Data Sets 207

Essential Information for Creating and Accessing Regional Data Sets
To create a regional data set, you must give the operating system certain
information, either in your PL/I program or in the DD statement that defines the
data set. The following paragraphs indicate the essential information, and discuss
some of the optional information you can supply.

You must supply the following information when creating a regional data set:

� Device that will write your data set (UNIT or VOLUME parameter of DD
statement).

� Block size: You can specify the block size either in your PL/I program (in the
BLKSIZE option of the ENVIRONMENT attribute) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

If you want to keep a data set (that is, you do not want the operating system to
delete it at the end of your job), the DD statement must name the data set and
indicate how it is to be disposed of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to use the data set in a later step but do not
need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
indicate the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not supply a serial number for a data set that
you want to keep, the operating system allocates one, informs the operator, and
prints the number on your program listing. All the essential parameters required in
a DD statement for the creation of a regional data set are summarized in Table 31
on page 209; and Table 32 on page 210 lists the DCB subparameters needed.
See your MVS/ESA JCL User's Guide for a description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT) device.

In the DCB parameter, you must always specify the data set organization as direct
by coding DSORG=DA. You cannot specify the DUMMY or DSN=NULLFILE
parameters in a DD statement for a regional data set. For REGIONAL(2) and
REGIONAL(3), you must also specify the length of the recorded key (KEYLEN)
unless it is specified in the ENVIRONMENT attribute; see “Using Keys for
REGIONAL(2) and (3) Data Sets” on page 195 for a description of how the
recorded key is derived from the source key supplied in the KEYFROM option.

For REGIONAL(2) and REGIONAL(3), if you want to restrict the search for space to
add a new record, or the search for an existing record, to a limited number of
tracks beyond the track that contains the specified region, use the LIMCT
subparameter of the DCB parameter. If you omit this parameter, the search
continues to the end of the data set, and then from the beginning of the data set
back to the starting point.

208 PL/I for MVS & VM Programming Guide

To access a regional data set, you must identify it to the operating system in a DD
statement. The following paragraphs indicate the minimum information you must
include in the DD statement; this information is summarized in Table 33 on
page 210.

If the data set is cataloged, you only need to supply the following information in
your DD statement:

� The name of the data set (DSNAME parameter). The operating system locates
the information that describes the data set in the system catalog and, if
necessary, requests the operator to mount the volume that contains it.

� Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and give the serial number of the volume that contains the data
set (UNIT and VOLUME parameters).

Unlike indexed data sets, regional data sets do not require the subparameter
OPTCD=L in the DD statement.

When opening a multiple-volume regional data set for sequential update, the
ENDFILE condition is raised at the end of the first volume.

Table 31. Creating a regional data set: essential parameters of the DD statement

When required What you must state Parameters

Always Output device1

Storage space required2

Data control block
information: see Table 32 on
page 210

UNIT= or
VOLUME=REF=

SPACE=

DCB=

Data set to be used in another
job step but not required in
another job

Disposition DISP=

Data set to be kept
after end of job

Disposition

Name of data set

DISP=

DSNAME=

Data set to be on
particular volume

Volume serial number VOLUME=SER= or
VOLUME=REF=

1Regional data sets are confined to direct-access devices.

2For sequential access, the data set can have up to 15 extents, which can be on more than one
volume. For creation with DIRECT access, the data set can have only one extent.

 Chapter 10. Defining and Using Regional Data Sets 209

Table 32. DCB subparameters for a regional data set

When required To specify Subparameters

These are always required Record format1

Block size1

Data set organization

Key length
(REGIONAL(2) and (3) only)1

RECFM=F or
RECFM=V2 REGIONAL(3)
only, or
RECFM=U REGIONAL(3)
only

BLKSIZE=

DSORG=DA

KEYLEN=

These are optional Limited search for a
record or space to add
a record (REGIONAL(2)
and (3) only)

Number of data management
buffers1

LIMCT=

BUFNO=

1Or you can specify the block size in the ENVIRONMENT attribute.

2RECFM=VS must be specified in the ENVIRONMENT attribute for sequential input or update.

Table 33. Accessing a regional data set: essential parameters of the DD statement

When required What you must state Parameters

Always Name of data set

Disposition of data set

DSNAME=

DISP=

If data set not
cataloged

Input device

Volume serial number

UNIT= or
VOLUME=REF=

VOLUME=SER=

210 PL/I for MVS & VM Programming Guide

Chapter 11. Defining and Using VSAM Data Sets

This chapter covers VSAM (the Virtual Storage Access Method) organization for
record-oriented data transmission, VSAM ENVIRONMENT options, compatibility
with other PL/I data set organizations, and the statements you use to load and
access the three types of VSAM data sets that PL/I supports—entry-sequenced,
key-sequenced, and relative record. The chapter is concluded by a series of
examples showing the PL/I statements, Access Method Services commands, and
JCL statements necessary to create and access VSAM data sets.

For additional information about the facilities of VSAM, the structure of VSAM data
sets and indexes, the way in which they are defined by Access Method Services,
and the required JCL statements, see the VSAM publications for your system.

PL/I supports the use of VSAM data sets under VM. VSAM under VM has some
restrictions. See the VM/ESA CMS User's Guide for those restrictions.

Using VSAM Data Sets

How to Run a Program with VSAM Data Sets
Before you execute a program that accesses a VSAM data set, you need to know:

� The name of the VSAM data set
� The name of the PL/I file
� Whether you intend to share the data set with other users

Then you can write the required DD statement to access the data set:

 //filename DD DSNAME=dsname,DISP=OLD|SHR

For example, if your file is named PL1FILE, your data set named VSAMDS, and
you want exclusive control of the data set, enter:

 //PL1FILE DD DSNAME=VSAMDS,DISP=OLD

To share your data set, use DISP=SHR.

For a PL/I program originally written for ISAM data sets that requires a simulation of
ISAM data-set handling, you need to use the AMP parameter of the DD statement.
You might also want to use it to optimize VSAM's performance.

To optimize VSAM's performance by controlling the number of VSAM buffers used
for your data set, see the VSAM publications.

Pairing an Alternate Index Path with a File
When using an alternate index, you simply specify the name of the path in the
DSNAME parameter of the DD statement associating the base data set/alternate
index pair with your PL/I file. Before using an alternate index, you should be aware
of the restrictions on processing; these are summarized in Table 35 on page 218.

 Copyright IBM Corp. 1964, 1995 211

Given a PL/I file called PL1FILE and the alternate index path called PERSALPH,
the DD statement required would be:

 //PL1FILE DD DSNAME=PERSALPH,DISP=OLD

 VSAM Organization
PL/I provides support for three types of VSAM data sets:

� Key-sequenced data sets (KSDS)
� Entry-sequenced data sets (ESDS)
� Relative record data sets (RRDS).

These correspond roughly to PL/I indexed, consecutive, and regional data set
organizations, respectively. They are all ordered, and they can all have keys
associated with their records. Both sequential and keyed access are possible with
all three types.

Although only key-sequenced data sets have keys as part of their logical records,
keyed access is also possible for entry-sequenced data sets (using relative-byte
addresses) and relative record data sets (using relative record numbers).

All VSAM data sets are held on direct-access storage devices, and a virtual storage
operating system is required to use them.

The physical organization of VSAM data sets differs from those used by other
access methods. VSAM does not use the concept of blocking, and, except for
relative record data sets, records need not be of a fixed length. In data sets with
VSAM organization, the data items are arranged in control intervals, which are in
turn arranged in control areas. For processing purposes, the data items within a
control interval are arranged in logical records. A control interval can contain one
or more logical records, and a logical record can span two or more control intervals.
Concern about blocking factors and record length is largely removed by VSAM,
although records cannot exceed the maximum specified size. VSAM allows access
to the control intervals, but this type of access is not supported by PL/I.

VSAM data sets can have two types of indexes—prime and alternate. A prime
index is the index to a KSDS that is established when you define a data set; it
always exists and can be the only index for a KSDS. You can have one or more
alternate indexes on a KSDS or an ESDS. Defining an alternate index for an
ESDS enables you to treat the ESDS, in general, as a KSDS. An alternate index
on a KSDS enables a field in the logical record different from that in the prime
index to be used as the key field. Alternate indexes can be either nonunique, in
which duplicate keys are allowed, or unique, in which they are not. The prime
index can never have duplicate keys.

Any change in a data set that has alternate indexes must be reflected in all the
indexes if they are to remain useful. This activity is known as index upgrade, and
is done by VSAM for any index in the index upgrade set of the data set. (For a
KSDS, the prime index is always a member of the index upgrade set.) However,
you must avoid making changes in the data set that would cause duplicate keys in
the prime index or in a unique alternate index.

212 PL/I for MVS & VM Programming Guide

Before using a VSAM data set for the first time, you need to define it to the system
with the DEFINE command of Access Method Services, which you can use to
completely define the type, structure, and required space of the data set. This
command also defines the data set's indexes (together with their key lengths and
locations) and the index upgrade set if the data set is a KSDS or has one or more
alternate indexes. A VSAM data set is thus “created” by Access Method Services.

The operation of writing the initial data into a newly created VSAM data set is
referred to as loading in this publication.

Use the three different types of data sets according to the following purposes:

� Use entry-sequenced data sets for data that you primarily access in the order
in which it was created (or the reverse order).

� Use key-sequenced data sets when you normally access records through keys
within the records (for example, a stock-control file where the part number is
used to access a record).

� Use relative record data sets for data in which each item has a particular
number, and you normally access the relevant record by that number (for
example, a telephone system with a record associated with each number).

You can access records in all types of VSAM data sets either directly by means of
a key, or sequentially (backward or forward). You can also use a combination of
the two ways: Select a starting point with a key and then read forward or backward
from that point.

You can create alternate indexes for key-sequenced and entry-sequenced data
sets. You can then access your data in many sequences or by one of many keys.
For example, you could take a data set held or indexed in order of employee
number and index it by name in an alternate index. Then you could access it in
alphabetic order, in reverse alphabetic order, or directly using the name as a key.
You could also access it in the same kind of combinations by employee number.

Figure 51 on page 214 and Table 34 on page 215 show how the same data could
be held in the three different types of VSAM data sets and illustrates their
respective advantages and disadvantages.

 Chapter 11. Defining and Using VSAM Data Sets 213

FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

ANDY

FRED

JANE

SUZAN

empty space for 73

empty space for 74

empty space for 76

empty space for 71

Data component

Data component

Data component

Prime
Index

Alternate Indexes
By Birthdate (unique)

69

70

72

75

F

M

empty space

ANDY

FRED

empty space

empty space

JANE

SUZAN

70 M

69 M

75 F

72 F

Relative byte
addresses can be
accessed and used
as keys

Alternate Indexes
Alphabetically by name
(unique)

ANDY

FRED

JANE

SUZAN

F

M

FRED

ANDY

SUZAN

JANE

69 M

70 M

72 F

75 F

By sex (non-unique)

By sex (non-unique)

FRED

ANDY

SUZAN

JANE

69 M

70 M

72 F

75 F

No Alternate IndexesRelative record
numbers can be
accessed and
used as keys

1

2

3

4

5

6

7

8

Slot

Each slot corresponds to a year

VALERIE SUZIE ANN MORGAN (1967)
ANDREW M SMITH &

The diagrams show how the information contained in the family tree below could
be held in VSAM data sets of different types.

Figure 51. Information Storage in VSAM Data Sets of Different Types

214 PL/I for MVS & VM Programming Guide

Table 34. Types and Advantages of VSAM Data Sets

Data set type Method of loading Method of reading Method of updating Pros and cons

Key-Sequenced Sequentially in order or
prime index which
must be unique

KEYED by specifying
key of record in prime
or unique alternate
index

SEQUENTIAL
backward or forward in
order of any index

Positioning by key
followed by sequential
reading either
backward or forward

KEYED specifying a
unique key in any
index

SEQUENTIAL
following positioning by
unique key

Record deletion
allowed

Record insertion
allowed

Advantages
Complete access and
updating

Disadvantages
Records must be in order
of prime index before
loading

Uses
For uses where access
will be related to key

Entry-Sequenced Sequentially (forward
only)

The RBA of each
record can be obtained
and used as a key

SEQUENTIAL
backward or forward

KEYED using unique
alternate index or RBA

Positioning by key
followed by sequential
either backward or
forward

New records at end
only

Existing records
cannot have length
changed

Access can be
sequential or KEYED
using alternate index

Record deletion not
allowed

Advantages
Simple fast creation

No requirement for a
unique index

Disadvantages
Limited updating facilities

Uses
For uses where data will
primarily be accessed
sequentially

Relative Record Sequentially starting
from slot 1

KEYED specifying
number of slot

Positioning by key
followed by sequential
writes

KEYED specifying
numbers as key

Sequential forward or
backward omitting
empty records

Sequentially starting at
a specified slot and
continuing with next
slot

Keyed specifying
numbers as key

Record deletion
allowed

Record insertion into
empty slots allowed

Advantages
Speedy access to record
by number

Disadvantages
Structure tied to
numbering sequences

No alternate index

Fixed length records

Uses
For use where records
will be accessed by
number

Keys for VSAM Data Sets
All VSAM data sets can have keys associated with their records. For
key-sequenced data sets, and for entry-sequenced data sets accessed via an
alternate index, the key is a defined field within the logical record. For
entry-sequenced data sets, the key is the relative byte address (RBA) of the record.
For relative-record data sets, the key is a relative record number.

 Chapter 11. Defining and Using VSAM Data Sets 215

Keys for Indexed VSAM Data Sets
Keys for key-sequenced data sets and for entry-sequenced data sets accessed via
an alternate index are part of the logical records recorded on the data set. You
define the length and location of the keys when you create the data set.

The ways you can reference the keys in the KEY, KEYFROM, and KEYTO options
are as described under “KEY(expression) Option,” “KEYFROM(expression) Option,”
and “KEYTO(reference) Option” in Chapter 12 of the PL/I for MVS & VM Language
Reference See also “Using keys” on page 163.

Relative Byte Addresses (RBA)
Relative byte addresses allow you to use keyed access on an ESDS associated
with a KEYED SEQUENTIAL file. The RBAs, or keys, are character strings of
length 4, and their values are defined by VSAM. You cannot construct or
manipulate RBAs in PL/I; you can, however, compare their values in order to
determine the relative positions of records within the data set. RBAs are not
normally printable.

You can obtain the RBA for a record by using the KEYTO option, either on a
WRITE statement when you are loading or extending the data set, or on a READ
statement when the data set is being read. You can subsequently use an RBA
obtained in either of these ways in the KEY option of a READ or REWRITE
statement.

Do not use an RBA in the KEYFROM option of a WRITE statement.

VSAM allows use of the relative byte address as a key to a KSDS, but this use is
not supported by PL/I.

Relative Record Numbers
Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record. You can use these relative record
numbers as keys for keyed access to the data set.

Keys used as relative record numbers are character strings of length 8. The
character value of a source key you use in the KEY or KEYFROM option must
represent an unsigned integer. If the source key is not 8 characters long, it is
truncated or padded with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8, with leading zeros
suppressed.

Choosing a Data Set Type
When planning your program, the first decision to be made is which type of data
set to use. There are three types of VSAM data sets and five types of non-VSAM
data sets available to you. VSAM data sets can provide all the function of the other
types of data sets, plus additional function available only in VSAM. VSAM can
usually match other data set types in performance, and often improve upon it.
However, VSAM is more subject to performance degradation through misuse of
function.

The comparison of all eight types of data sets given in Table 16 on page 122 is
helpful; however, many factors in the choice of data set type for a large installation
are beyond the scope of this book.

216 PL/I for MVS & VM Programming Guide

Figure 51 on page 214 shows you the possibilities available with the types of
VSAM data sets. When choosing between the VSAM data set types, you should
base your choice on the most common sequence in which you will require your
data. The following is a suggested procedure that you can use to help ensure a
combination of data sets and indexes that provide the function you require.

1. Determine the type of data and how it will be accessed.

a. Primarily sequentially — favors ESDS.
b. Primarily by key — favors KSDS.
c. Primarily by number — favors RRDS.

2. Determine how you will load the data set. Note that you must load a KSDS in
key sequence; thus an ESDS with an alternate index path can be a more
practical alternative for some applications.

3. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you require an alternate index path,
determine whether the alternate index will have unique or nonunique keys.
Use of nonunique keys can limit key processing. However, it might also be
impractical to assume that you will use unique keys for all future records; if you
attempt to insert a record with a nonunique key in an index that you have
created for unique keys, it will cause an error.

4. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported. Figure 52 on page 218
and Table 35 on page 218 might be helpful.

Do not try to access a dummy VSAM data set, because you will receive an error
message indicating that you have an undefined file.

Table 36 on page 228, Table 37 on page 232, and Table 39 on page 247 show
the statements allowed for entry-sequenced data sets, indexed data sets, and
relative record data sets, respectively.

 Chapter 11. Defining and Using VSAM Data Sets 217

 SEQUENTIAL KEYED SEQUENTIAL DIRECT

INPUT ESDS ESDS KSDS

 KSDS KSDS RRDS

 RRDS RRDS Path(U)

 Path(N) Path(N)

 Path(U) Path(U)

OUTPUT ESDS ESDS KSDS

 RRDS KSDS RRDS

 RRDS Path(U)

UPDATE ESDS ESDS KSDS

 KSDS KSDS RRDS

 RRDS RRDS Path(U)

 Path(N) Path(N)

 Path(U) Path(U)

Key: ESDS Entry-sequenced data set

KSDS Key-sequenced data set

RRDS Relative record data set

Path(N) Alternate index path with nonunique keys

Path(U) Alternate index path with unique keys

You can combine the attributes on the left with those at the top of the

figure for the data sets and paths shown. For example, only an ESDS and

an RRDS can be SEQUENTIAL OUTPUT.

PL/I does not support dummy VSAM data sets.

Figure 52. VSAM Data Sets and Allowed File Attributes

Table 35. Processing Allowed on Alternate Index Paths

Base
cluster type

Alternate index
key type

Processing Restrictions

KSDS Unique key

Nonunique key

As normal KSDS

Limited keyed access

Cannot modify key of access.

Cannot modify key of access.

ESDS Unique key

Nonunique key

As KSDS

Limited keyed access

No deletion.
Cannot modify key of access.

No deletion.
Cannot modify key of access.

Defining Files for VSAM Data Sets
You define a sequential VSAM data set by using a file declaration with the following
attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 SEQUENTIAL

 BUFFERED

 [KEYED]

 ENVIRONMENT(options);

218 PL/I for MVS & VM Programming Guide

You define a direct VSAM data set by using a file declaration with the following
attributes:

DCL filename FILE RECORD

INPUT | OUTPUT | UPDATE

 DIRECT

 UNBUFFERED

 [KEYED]

 ENVIRONMENT(options);

Table 15 on page 111 shows the default attributes. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Some combinations of the file attributes INPUT or OUTPUT or UPDATE and
DIRECT or SEQUENTIAL or KEYED SEQUENTIAL are allowed only for certain
types of VSAM data sets. Figure 52 on page 218 shows the compatible
combinations.

Specifying ENVIRONMENT Options
Many of the options of the ENVIRONMENT attribute affecting data set structure are
not needed for VSAM data sets. If you specify them, they are either ignored or are
used for checking purposes. If those that are checked conflict with the values
defined for the data set, the UNDEFINEDFILE condition is raised when an attempt
is made to open the file.

The ENVIRONMENT options applicable to VSAM data sets are:

 BKWD

 BUFND(n)

 BUFNI(n)

 BUFSP(n)

 COBOL

 GENKEY

 PASSWORD(password-specification)

 REUSE

 SCALARVARYING

 SIS

 SKIP

 VSAM

COBOL, GENKEY, and SCALARVARYING options have the same effect as they
do when you use them for non-VSAM data sets.

The options that are checked for a VSAM data set are RECSIZE and, for a
key-sequenced data set, KEYLENGTH and KEYLOC. NCP has meaning when you
are using the ISAM compatibility interface. Table 15 on page 111 shows which
options are ignored for VSAM. Table 15 on page 111 also shows the required and
default options.

For VSAM data sets, you specify the maximum and average lengths of the records
to the Access Method Services utility when you define the data set. If you include
the RECSIZE option in the file declaration for checking purposes, specify the
maximum record size. If you specify RECSIZE and it conflicts with the values
defined for the data set, the UNDEFINEDFILE condition is raised.

 Chapter 11. Defining and Using VSAM Data Sets 219

 BKWD Option
Use the BKWD option to specify backward processing for a SEQUENTIAL INPUT
or SEQUENTIAL UPDATE file associated with a VSAM data set.

55──BKWD───5%

Sequential reads (that is, reads without the KEY option) retrieve the previous record
in sequence. For indexed data sets, the previous record is, in general, the record
with the next lower key. However, if you are accessing the data set via a
nonunique alternate index, records with the same key are recovered in their normal
sequence. For example, if the records are:

A B C1 C2 C3 D E

where C1, C2, and C3 have the same key, they are recovered in the sequence:

E D C1 C2 C3 B A

When a file with the BKWD option is opened, the data set is positioned at the last
record. ENDFILE is raised in the normal way when the start of the data set is
reached.

Do not specify the BKWD option with either the REUSE option or the GENKEY
option. Also, the WRITE statement is not allowed for files declared with the BKWD
option.

 BUFND Option
Use the BUFND option to specify the number of data buffers required for a VSAM
data set.

55──BUFND──(──n──)───5%

n specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Multiple data buffers help performance when the file has the SEQUENTIAL attribute
and you are processing long groups of contiguous records sequentially.

 BUFNI Option
Use the BUFNI option to specify the number of index buffers required for a VSAM
key-sequenced data set.

55──BUFNI──(──n──)───5%

n specifies an integer, or a variable with the attributes FIXED BINARY(31)
STATIC.

Multiple index buffers help performance when the file has the KEYED attribute.
Specify at least as many index buffers as there are levels in the index.

220 PL/I for MVS & VM Programming Guide

 BUFSP Option
Use the BUFSP option to specify, in bytes, the total buffer space required for a
VSAM data set (for both the data and index components).

55──BUFSP──(──n──)───5%

n specifies an integer, or a variable with the attributes FIXED BINARY(31)
STATIC.

It is usually preferable to specify the BUFNI and BUFND options rather than
BUFSP.

 GENKEY Option
For the description of this option, see “GENKEY Option — Key Classification” on
page 118.

 PASSWORD Option
When you define a VSAM data set to the system (using the DEFINE command of
Access Method Services), you can associate READ and UPDATE passwords with
it. From that point on, you must include the appropriate password in the
declaration of any PL/I file that you use to access the data set.

55─ ─PASSWORD──(──password-specification──)───────────────────────────────────────5%

password-specification
is a character constant or character variable that specifies the password for the
type of access your program requires. If you specify a constant, it must not
contain a repetition factor; if you specify a variable, it must be level-1, element,
static, and unsubscripted.

The character string is padded or truncated to 8 characters and passed to VSAM
for inspection. If the password is incorrect, the system operator is given a number
of chances to specify the correct password. You specify the number of chances to
be allowed when you define the data set. After this number of unsuccessful tries,
the UNDEFINEDFILE condition is raised.

The three levels of password supported by PL/I are:

 � Master
 � Update
 � Read.

Specify the highest level of password needed for the type of access that your
program performs.

 REUSE Option
Use the REUSE option to specify that an OUTPUT file associated with a VSAM
data set is to be used as a work file.

55──REUSE──5%

 Chapter 11. Defining and Using VSAM Data Sets 221

The data set is treated as an empty data set each time the file is opened. Any
secondary allocations for the data set are released, and the data set is treated
exactly as if it were being opened for the first time.

Do not associate a file that has the REUSE option with a data set that has alternate
indexes or the BKWD option, and do not open it for INPUT or UPDATE.

The REUSE option takes effect only if you specify REUSE in the Access Method
Services DEFINE CLUSTER command.

 SIS Option
The SIS option is applicable to key-sequenced data sets accessed by means of a
DIRECT file.

55──SIS──5%

If you use mass sequential insert for a VSAM data set (that is, if you insert records
with ascending keys), a KEYED SEQUENTIAL UPDATE file is normally
appropriate. In this case, however, VSAM delays writing the records to the data set
until a complete control interval has been built. If you specify DIRECT, VSAM
writes each record as soon as it is presented. Thus, in order to achieve immediate
writing and faster access with efficient use of disk space, use a DIRECT file and
specify the SIS option.

The SIS option is intended primarily for use in online applications.

It is never an error to specify (or omit) the SIS option; its effect on performance is
significant only in the circumstances described.

 SKIP Option
Use the SKIP option of the ENVIRONMENT attribute to specify that the VSAM
OPTCD “SKP” is to be used wherever possible. It is applicable to key-sequenced
data sets that you access by means of a KEYED SEQUENTIAL INPUT or UPDATE
file.

55──SKIP───5%

You should specify this option for the file if your program accesses individual
records scattered throughout the data set, but does so primarily in ascending key
order.

Omit this option if your program reads large numbers of records sequentially
without the use of the KEY option, or if it inserts large numbers of records at
specific points in the data set (mass sequential insert).

It is never an error to specify (or omit) the SKIP option; its effect on performance is
significant only in the circumstances described.

222 PL/I for MVS & VM Programming Guide

 VSAM Option
Specify the VSAM option for VSAM data sets, unless you also intend to use the file
to access non-VSAM data sets (if this is the case, see “Using the VSAM
Compatibility Interface” on page 225).

55──VSAM───5%

 Performance Options
SKIP, SIS, BUFND, BUFNI, and BUFSP are options you can specify to optimize
VSAM's performance. You can also specify the buffer options in the AMP
parameter of the DD statement; they are explained in your Access Method Services
manual.

Defining Files for Alternate Index Paths
VSAM allows you to define alternate indexes on key sequenced and entry
sequenced data sets. This enables you to access key sequenced data sets in a
number of ways other than from the prime index. This also allows you to index and
access entry sequenced data sets by key or sequentially in order of the keys.
Consequently, data created in one form can be accessed in a large number of
different ways. For example, an employee file might be indexed by personnel
number, by name, and also by department number.

When an alternate index has been built, you actually access the data set through a
third object known as an alternate index path that acts as a connection between the
alternate index and the data set.

Two types of alternate indexes are allowed—unique key and nonunique key. For a
unique key alternate index, each record must have a different alternate key. For a
nonunique key alternate index, any number of records can have the same alternate
key. In the example suggested above, the alternate index using the names could
be a unique key alternate index (provided each person had a different name). The
alternate index using the department number would be a nonunique key alternate
index because more than one person would be in each department. An example of
alternate indexes applied to a family tree is given in Figure 51 on page 214.

In most respects, you can treat a data set accessed through a unique key alternate
index path like a KSDS accessed through its prime index. You can access the
records by key or sequentially, you can update records, and you can add new
records. If the data set is a KSDS, you can delete records, and alter the length of
updated records. Restrictions and allowed processing are shown in Table 35 on
page 218. When you add or delete records, all indexes associated with the data
set are by default altered to reflect the new situation.

In data sets accessed through a nonunique key alternate index path, the record
accessed is determined by the key and the sequence. The key can be used to
establish positioning so that sequential access can follow. The use of the key
accesses the first record with that key. When the data set is read backwards, only
the order of the keys is reversed. The order of the records with the same key
remains the same whichever way the data set is read.

 Chapter 11. Defining and Using VSAM Data Sets 223

Using Files Defined for non-VSAM Data Sets
In most cases, if your PL/I program uses files declared with ENVIRONMENT
(CONSECUTIVE) or ENVIRONMENT(INDEXED) or with no ENVIRONMENT, it can
access VSAM data sets without alteration. If your program uses REGIONAL files,
you must alter it and recompile before it can use VSAM data sets. PL/I can detect
that a VSAM data set is being opened and can provide the correct access, either
directly or by use of a compatibility interface.

If your PL/I program uses REGIONAL(1) files, it cannot be used unaltered to
access VSAM relative-record data sets.

The aspects of compatibility that affect your usage of VSAM if your data sets or
programs were created for other access methods are as follows:

� The recreation of your data sets as VSAM data sets. The Access Method
Services REPRO command recreates data sets in VSAM format. This
command is described in the MVS/DFP Access Method Services manual.

� All VSAM key-sequenced data sets have embedded keys, even if they have
been converted from ISAM data sets with nonembedded keys.

� JCL DD statement changes.

� The unaltered use of your programs with VSAM data sets. This is described in
the following section.

� The alteration of your programs to allow them to use VSAM data sets. A brief
discussion of this is given later in this section.

 CONSECUTIVE Files
For CONSECUTIVE files, compatibility depends on the ability of the PL/I routines to
recognize the data set type and use the correct access method.

You should realize, however, that there is no concept of fixed-length records in
VSAM. Therefore, if your program relies on the RECORD condition to detect
incorrect length records, it will not function in the same way using VSAM data sets
as it does with non-VSAM data sets.

 INDEXED Files
Complete compatibility is provided for INDEXED files. For files that you declare
with the INDEXED ENVIRONMENT option, the PL/I library routines recognize a
VSAM data set and will process it as VSAM.

However, because ISAM record handling differs in detail from VSAM record
handling, use of VSAM processing might not always give the required result. To
ensure complete compatibility with PL/I ENV(INDEXED) files, VSAM provides the
compatibility interface—a program that simulates ISAM-type handling of VSAM data
sets.

Because VSAM does not support EXCLUSIVE files, your program will not be
compatible on VSAM and ISAM if it relies on this feature.

224 PL/I for MVS & VM Programming Guide

Using the VSAM Compatibility Interface
The compatibility interface simulates ISAM-type handling on VSAM key-sequenced
data sets. This allows compatibility for any program whose logic depends on
ISAM-type record handling. The VSAM compatibility interface is VSAM supplied
(See the VSAM publications.)

The compatibility interface is used when you specify the RECFM or OPTCD
keyword in a DD statement associated with a file declared with the INDEXED
ENVIRONMENT option, or when you use an NCP value greater than 1 in the
ENVIRONMENT option. These conditions are taken by the PL/I library routines to
mean that the compatibility interface is required. Choose the RECFM value, either
F, V, or VS, to match the type of record that would be used by an ISAM data set.
Use the OPTCD value “OPTCD=I,” which is the default, if you require complete
ISAM compatibility (see 3 below).

You cannot use the compatibility interface for a data set having a nonzero RKP
(KEYLOC) and RECFM=F. If your program uses such files you must recompile to
change the INDEXED file declaration to VSAM.

You need the compatibility interface in the following circumstances:

1. If your program uses nonembedded keys.

2. If your program relies on the raising of the RECORD condition when an
incorrect-length record is encountered.

3. If your program relies on checking for deleted records. In ISAM, deleted
records remain in the data set but are flagged as deleted. In VSAM, they
become inaccessible to you, and their space is available for overwriting.

Note on Deletion: If you want the compatibility interface but want deletion of
records handled in the VSAM manner, you must use 'OPTCD=IL' in the DD
statement.

An example of DD statements that would result in the compatibility interface being
used when accessing a VSAM data set is:

//PLIFILE DD DSNAME=VSAM1,

 // DISP=OLD,AMP='RECFM=F'

or, to use the compatibility interface with VSAM-type deletion of records:

//PLIFILE DD DSNAME=VSAM1,

 // DISP=OLD,AMP='OPTCD=IL'

Adapting Existing Programs for VSAM
You can readily adapt existing programs with indexed, consecutive, or
REGIONAL(1) files for use with VSAM data sets. As indicated above, programs
with consecutive files might not need alteration, and there is never any necessity to
alter programs with indexed files unless you wish to avoid the use of the
compatibility interface or if the logic depends on EXCLUSIVE files. Programs
with REGIONAL(1) data sets require only minor revision. Programs with
REGIONAL(2) or REGIONAL(3) files need restructuring before you can use them
with VSAM data sets.

 Chapter 11. Defining and Using VSAM Data Sets 225

 CONSECUTIVE Files
If the logic of the program depends on raising the RECORD condition when a
record of an incorrect length is found, you will have to write your own code to check
for the record length and take the necessary action. This is because records of
any length up to the maximum specified are allowed in VSAM data sets.

 INDEXED Files
You need to change programs using indexed (that is, ISAM) files only if you wish to
avoid using the compatibility interface.

You should remove dependence on the RECORD condition, and insert your own
code to check for record length if this is necessary.

Also remove any checking for deleted records.

 REGIONAL(1) Files
You can alter programs using REGIONAL(1) data sets to use VSAM relative record
data sets.

Remove REGIONAL(1) and any other non-VSAM ENVIRONMENT options from the
file declaration and replace them with ENV(VSAM).

Also remove any checking for deleted records, because VSAM deleted records are
not accessible to you.

Using Several Files in One VSAM Data Set
You can associate multiple files with one VSAM data set in the following ways:

� Use a common DD statement. You can use the TITLE option of the OPEN
statement for this purpose, as described on page spotref refid=assfile..

� Use separate DD statements, ensure that the DD statements reference the
same data set name, or a path accessing the same underlying VSAM data set.
PL/I OPEN specifies the VSAM MACRF=DSN option, indicating that VSAM is
to share control blocks based on a common data set name.

In both cases, PL/I creates one set of control blocks—an Access Method Control
Block and a Request Parameter List (RPL)—for each file and does not provide for
associating multiple RPLs with a single ACB. These control blocks are described in
the VSAM publications. and normally need not concern you.

226 PL/I for MVS & VM Programming Guide

Multiple files can perform retrievals against a single data set with no difficulty.
However, if one or more files perform updates, the following can occur:

� There is a risk that other files will retrieve down-level records. You can avoid
this by having all files open with the UPDATE attribute.

� When more than one file is open with the UPDATE attribute, retrieval of any
record in a control interval makes all other records in that control interval
unavailable until the update is complete. This raises the ERROR condition with
condition code 1027 if a second file tries to access one of the unavailable
records. You could design your application to retry the retrieval after
completion of the other file's data transmission, or you can avoid the error by
not having two files associated with the same data set at one time.

� When one or more of the multiple files is an alternate index path, an update
through an alternate index path might update the alternate index before the
data record is written, resulting in a mismatch between index and data.

Using Shared Data Sets
PL/I does not support cross-region or cross-system sharing of data sets.

Defining VSAM Data Sets
Use the DEFINE CLUSTER command of Access Method Services to define and
catalog VSAM data sets. To use the DEFINE command, you need to know:

� The name and password of the master catalog if the master catalog is
password protected

� The name and password of the VSAM private catalog you are using if you are
not using the master catalog

� Whether VSAM space for your data set is available

� The type of VSAM data set you are going to create

� The volume on which your data set is to be placed

� The average and maximum record size in your data set

� The position and length of the key for an indexed data set

� The space to be allocated for your data set

� How to code the DEFINE command

� How to use the Access Method Services program.

When you have the information, you are in a position to code the DEFINE
command and then define and catalog the data set using Access Method Services.

 Chapter 11. Defining and Using VSAM Data Sets 227

Entry-Sequenced Data Sets
The statements and options allowed for files associated with an ESDS are shown in
Table 36.

Table 36 (Page 1 of 2). Statements and Options Allowed for Loading and Accessing
VSAM Entry-Sequenced Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)
and/or
KEYTO(reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

EVENT(event-reference)
and/or either
KEY(expression)3

KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

KEYTO(reference)

FROM(reference)
and/or
KEY(expression)3

228 PL/I for MVS & VM Programming Guide

Table 36 (Page 2 of 2). Statements and Options Allowed for Loading and Accessing
VSAM Entry-Sequenced Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)
and/or either
KEY(expression)3 or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

EVENT(event-reference)
and/or
KEYTO(reference)

EVENT(event-reference)
and/or
KEY(expression)3

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use either of the options KEY or KEYTO, it must also include the attribute KEYED.

2. The statement “READ FILE(file-reference);” is equivalent to the statement “READ
FILE(file-reference) IGNORE (1);.”

3. The expression used in the KEY option must be a relative byte address, previously obtained by
means of the KEYTO option.

Loading an ESDS
When an ESDS is being loaded, the associated file must be opened for
SEQUENTIAL OUTPUT. The records are retained in the order in which they are
presented.

You can use the KEYTO option to obtain the relative byte address of each record
as it is written. You can subsequently use these keys to achieve keyed access to
the data set.

Using a SEQUENTIAL File to Access an ESDS
You can open a SEQUENTIAL file that is used to access an ESDS with either the
INPUT or the UPDATE attribute. If you use either of the options KEY or KEYTO,
the file must also have the KEYED attribute.

Sequential access is in the order that the records were originally loaded into the
data set. You can use the KEYTO option on the READ statements to recover the
RBAs of the records that are read. If you use the KEY option, the record that is
recovered is the one with the RBA you specify. Subsequent sequential access
continues from the new position in the data set.

For an UPDATE file, the WRITE statement adds a new record at the end of the
data set. With a REWRITE statement, the record rewritten is the one with the
specified RBA if you use the KEY option; otherwise, it is the record accessed on
the previous READ. You must not attempt to change the length of the record that
is being replaced with a REWRITE statement.

The DELETE statement is not allowed for entry-sequenced data sets.

 Chapter 11. Defining and Using VSAM Data Sets 229

Defining and Loading an ESDS
In Figure 53 on page 231, the data set is defined with the DEFINE CLUSTER
command and given the name PLIVSAM.AJC1.BASE. The NONINDEXED
keyword causes an ESDS to be defined.

The PL/I program writes the data set using a SEQUENTIAL OUTPUT file and a
WRITE FROM statement. The DD statement for the file contains the DSNAME of
the data set given in the NAME parameter of the DEFINE CLUSTER command.

The RBA of the records could have been obtained during the writing for subsequent
use as keys in a KEYED file. To do this, a suitable variable would have to be
declared to hold the key and the WRITE...KEYTO statement used. For example:

DCL CHARS CHAR(4);

WRITE FILE(FAMFILE) FROM (STRING)

 KEYTO(CHARS);

Note that the keys would not normally be printable, but could be retained for
subsequent use.

The cataloged procedure IEL1CLG is used. Because the same program (in
Figure 53 on page 231) can be used for adding records to the data set, it is
retained in a library. This procedure is shown in the next example.

230 PL/I for MVS & VM Programming Guide

 //OPT9#7 JOB

 //STEP1 EXEC PGM=IDCAMS,REGION=512K

 //SYSPRINT DD SYSOUT=A

//SYSIN DD \

DEFINE CLUSTER -

 (NAME(PLIVSAM.AJC1.BASE) -

 VOLUMES(nnnnnn) -

 NONINDEXED -

RECORDSIZE(8ð 8ð) -

 TRACKS(2 2))

 /\

 //STEP2 EXEC IEL1CLG

 //PLI.SYSIN DD \

CREATE: PROC OPTIONS(MAIN);

 DCL

FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),

IN FILE RECORD INPUT,

 STRING CHAR(8ð),

EOF BIT(1) INIT('ð'B);

ON ENDFILE(IN) EOF='1'B;

READ FILE(IN) INTO (STRING);

DO I=1 BY 1 WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);

WRITE FILE(FAMFILE) FROM (STRING);

READ FILE(IN) INTO (STRING);

 END;

PUT SKIP EDIT(I-1,' RECORDS PROCESSED')(A);

 END;

 /\

//LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP=(NEW,CATLG),

 // UNIT=SYSDA,SPACE=(CYL,(1,1,1))

 //GO.FAMFILE DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD

 //GO.IN DD \

 FRED 69 M

 ANDY 7ð M

 SUZAN 72 F

 /\

Figure 53. Defining and Loading an Entry-Sequenced Data Set (ESDS)

Updating an Entry-Sequenced Data Set
Figure 54 shows the addition of a new record on the end of an ESDS. This is
done by executing again the program shown in Figure 53. A SEQUENTIAL
OUTPUT file is used and the data set associated with it by use of the DSNAME
parameter specifying the name PLIVSAM.AJC1.BASE specified in the DEFINE
command shown in Figure 53.

 //OPT9#8 JOB

 //STEP1 EXEC PGM=PGMA

//STEPLIB DD DSN=HPU8.MYDS(PGMA),DISP=(OLD,KEEP)

 // DD DSN=CEE.V1R2Mð.SCEERUN,DISP=SHR

 //SYSPRINT DD SYSOUT=A

//FAMFILE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR

 //IN DD \

 JANE 75 F

 //

Figure 54. Updating an ESDS

You can rewrite existing records in an ESDS, provided that the length of the record
is not changed. You can use a SEQUENTIAL or KEYED SEQUENTIAL update file

 Chapter 11. Defining and Using VSAM Data Sets 231

to do this. If you use keys, they can be the RBAs or keys of an alternate index
path.

Delete is not allowed for ESDS.

Key-Sequenced and Indexed Entry-Sequenced Data Sets
The statements and options allowed for indexed VSAM data sets are shown in
Table 37. An indexed data set can be a KSDS with its prime index, or either a
KSDS or an ESDS with an alternate index. Except where otherwise stated, the
following description applies to all indexed VSAM data sets.

Table 37 (Page 1 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Indexed Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED3

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL OUTPUT
UNBUFFERED3

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

EVENT(event-reference)
and/or either
KEY(expression) or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference)5

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

FROM(reference) and/or
KEY(expression)

KEY(expression)

232 PL/I for MVS & VM Programming Guide

Table 37 (Page 2 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Indexed Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference)
FROM(reference);

DELETE FILE(file-reference);5

EVENT(event-reference)
and/or either
KEY(expression) or
KEYTO(reference)

EVENT(event-reference)
and/or IGNORE(expression)

EVENT(event reference)

EVENT(event-reference)
and/or KEY(expression)

KEY(expression) and/or
EVENT(event-reference)

DIRECT4 INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

DIRECT4 INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

EVENT(event-reference)

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

DIRECT4 UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);5

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

 Chapter 11. Defining and Using VSAM Data Sets 233

Table 37 (Page 3 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Indexed Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

DIRECT4 UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);5

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED in the declaration.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files, the UNLOCK statement for DIRECT
UPDATE files, or the NOLOCK option of the READ statement for DIRECT INPUT files are ignored if
you use them for files associated with a VSAM KSDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

3. Do not associate a SEQUENTIAL OUTPUT file with a data set accessed via an alternate index.

4. Do not associate a DIRECT file with a data set accessed via a nonunique alternate index.

5. DELETE statements are not allowed for a file associated with an ESDS accessed via an alternate
index.

Loading a KSDS or Indexed ESDS
When a KSDS is being loaded, you must open the associated file for KEYED
SEQUENTIAL OUTPUT. You must present the records in ascending key order,
and you must use the KEYFROM option. Note that you must use the prime index
for loading the data set; you cannot load a VSAM data set via an alternate index.

If a KSDS already contains some records, and you open the associated file with the
SEQUENTIAL and OUTPUT attributes, you can only add records at the end of the
data set. The rules given in the previous paragraph apply; in particular, the first
record you present must have a key greater than the highest key present on the
data set.

Figure 55 on page 235 shows the DEFINE command used to define a KSDS. The
data set is given the name PLIVSAM.AJC2.BASE and defined as a KSDS because
of the use of the INDEXED operand. The position of the keys within the record is
defined in the KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used with a
WRITE...FROM...KEYFROM statement. The data is presented in ascending key
order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement which uses the name
given in the DEFINE command as the DSNAME parameter.

234 PL/I for MVS & VM Programming Guide

 //OPT9#12 JOB

 // EXEC PGM=IDCAMS,REGION=512K

//SYSPRINT DD SYSOUT=A

 //SYSIN DD \

DEFINE CLUSTER -

 (NAME(PLIVSAM.AJC2.BASE) -

 VOLUMES(nnnnnn) -

 INDEXED -

TRACKS(3 1) -

KEYS(2ð ð) -

 RECORDSIZE(23 8ð))

 /\

 // EXEC IEL1CLG

 //PLI.SYSIN DD \

TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),

 CARD CHAR(8ð),

NAME CHAR(2ð) DEF CARD POS(1),

NUMBER CHAR(3) DEF CARD POS(21),

OUTREC CHAR(23) DEF CARD POS(1),

EOF BIT(1) INIT('ð'B);

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(DIREC) OUTPUT;

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

DO WHILE (¬EOF);

WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

 END;

 CLOSE FILE(DIREC);

 END TELNOS;

 /\

//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD

//GO.SYSIN DD \

 ACTION,G. 162

 BAKER,R. 152

 BRAMLEY,O.H. 248

 CHEESEMAN,D. 141

 CORY,G. 336

 ELLIOTT,D. 875

 FIGGINS,S. 413

 HARVEY,C.D.W. 2ð5

 HASTINGS,G.M. 391

 KENDALL,J.G. 294

 LANCASTER,W.R. 624

 MILES,R. 233

 NEWMAN,M.W. 45ð

 PITT,W.H. 515

 ROLF,D.E. 114

 SHEERS,C.D. 241

 SUTCLIFFE,M. 472

 TAYLOR,G.C. 4ð7

 WILTON,L.W. 4ð4

 WINSTONE,E.M. 3ð7

 //

Figure 55. Defining and Loading a Key-Sequenced Data Set (KSDS)

 Chapter 11. Defining and Using VSAM Data Sets 235

Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS
You can open a SEQUENTIAL file that is used to access a KSDS with either the
INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are recovered in
ascending key order (or in descending key order if the BKWD option is used). You
can obtain the key of a record recovered in this way by means of the KEYTO
option.

If you use the KEY option, the record recovered by a READ statement is the one
with the specified key. Such a READ statement positions the data set at the
specified record; subsequent sequential reads will recover the following records in
sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
without respect to the position of any previous access. If you are accessing the
data set via a unique index, the KEY condition is raised if an attempt is made to
insert a record with the same key as a record that already exists on the data set.
For a nonunique index, subsequent retrieval of records with the same key is in the
order that they were added to the data set.

REWRITE statements with or without the KEY option are allowed for UPDATE files.
If you use the KEY option, the record that is rewritten is the first record with the
specified key; otherwise, it is the record that was accessed by the previous READ
statement. When you rewrite a record using an alternate index, do not change the
prime key of the record.

Using a DIRECT File to Access a KSDS or Indexed ESDS
You can open a DIRECT file that is used to access an indexed VSAM data set with
the INPUT, OUTPUT, or UPDATE attribute. Do not use a DIRECT file to access
the data set via a nonunique index.

If you use a DIRECT OUTPUT file to add records to the data set, and if an attempt
is made to insert a record with the same key as a record that already exists, the
KEY condition is raised.

If you use a DIRECT INPUT or DIRECT UPDATE file, you can read, write, rewrite,
or delete records in the same way as for a KEYED SEQUENTIAL file.

Figure 56 on page 237 shows one method by which a KSDS can be updated
using the prime index.

236 PL/I for MVS & VM Programming Guide

 //OPT9#13 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(VSAM),

 ONCODE BUILTIN,

 OUTREC CHAR(23),

NUMBER CHAR(3) DEF OUTREC POS(21),

NAME CHAR(2ð) DEF OUTREC,

 CODE CHAR(1),

EOF BIT(1) INIT('ð'B);

ON ENDFILE(SYSIN) EOF='1'B;

ON KEY(DIREC) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

('NOT FOUND: ',NAME)(A(15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('DUPLICATE: ',NAME)(A(15),A);

 END;

OPEN FILE(DIREC) DIRECT UPDATE;

GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)

 (COLUMN(1),A(2ð),A(3),A(1));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)

 (A(1),A(2ð),A(1),A(3),A(1),A(1));

 SELECT (CODE);

WHEN('A') WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);

WHEN('C') REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);

WHEN('D') DELETE FILE(DIREC) KEY(NAME);

OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT

('INVALID CODE: ',NAME) (A(15),A);

 END;

GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)

 (COLUMN(1),A(2ð),A(3),A(1));

 END;

Figure 56 (Part 1 of 2). Updating a KSDS

 Chapter 11. Defining and Using VSAM Data Sets 237

 CLOSE FILE(DIREC);

PUT FILE(SYSPRINT) PAGE;

OPEN FILE(DIREC) SEQUENTIAL INPUT;

 EOF='ð'B;

ON ENDFILE(DIREC) EOF='1'B;

READ FILE(DIREC) INTO(OUTREC);

 DO WHILE(¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT(OUTREC)(A);

READ FILE(DIREC) INTO(OUTREC);

 END;

 CLOSE FILE(DIREC);

 END DIRUPDT;

 /\

 //GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD

 //GO.SYSIN DD \

 NEWMAN,M.W. 516C

 GOODFELLOW,D.T. 889A

 MILES,R. D

 HARVEY,C.D.W. 2ð9A

 BARTLETT,S.G. 183A

 CORY,G. D

 READ,K.M. ðð1A

 PITT,W.H.

 ROLF,D.F. D

 ELLIOTT,D. 291C

 HASTINGS,G.M. D

 BRAMLEY,O.H. 439C

 /\

Figure 56 (Part 2 of 2). Updating a KSDS

A DIRECT update file is used and the data is altered according to a code that is
passed in the records in the file SYSIN:

A Add a new record
C Change the number of an existing name
D Delete a record

At the label NEXT, the name, number, and code are read in and action taken
according to the value of the code. A KEY ON-unit is used to handle any incorrect
keys. When the updating is finished (at the label PRINT), the file DIREC is closed
and reopened with the attributes SEQUENTIAL INPUT. The file is then read
sequentially and printed.

The file is associated with the data set by a DD statement that uses the DSNAME
PLIVSAM.AJC2.BASE defined in the Access Method Services DEFINE CLUSTER
command in Figure 55 on page 235.

Methods of Updating a KSDS: There are a number of methods of updating a
KSDS. The method shown using a DIRECT file is suitable for the data as it is
shown in the example. If the data had been presented in ascending key order (or
even something approaching it), performance might have been improved by use of
the SKIP ENVIRONMENT option. For mass sequential insertion, use a KEYED
SEQUENTIAL UPDATE file. This gives faster performance because the data is
written onto the data set only when strictly necessary and not after every write
statement, and because the balance of free space within the data set is retained.

238 PL/I for MVS & VM Programming Guide

Statements to achieve effective mass sequential insertion are:

DCL DIREC KEYED SEQUENTIAL UPDATE

 ENV(VSAM);

WRITE FILE(DIREC) FROM(OUTREC)

 KEYFROM(NAME);

The PL/I input/output routines detect that the keys are in sequence and make the
correct requests to VSAM. If the keys are not in sequence, this too is detected and
no error occurs, although the performance advantage is lost. VSAM provides three
methods of insertion as shown in Table 38.

SKIP means that you must follow the sequence but that you can omit records. You
do not need to maintain absolute sequence or order if SEQ or SKIP is used. The
PL/I routines determine which type of request to make to VSAM for each statement,
first checking the keys to determine which would be appropriate. The retention of
free space ensures that the structure of the data set at the point of mass sequential
insertion is not destroyed, enabling you to make further normal alterations in that
area without loss of performance. To preserve free space balance when you
require immediate writing of the data set during mass sequential insertion, as it can
be on interactive systems, use the SIS ENVIRONMENT option with DIRECT files.

Table 38. VSAM Methods of Insertion into a KSDS

Method

Requirements

Freespace

When written onto
data set

PL/I attributes
required

SEQ Keys in
sequence

Kept Only when
necessary

KEYED SEQUENTIAL
UPDATE

SKP Keys in
sequence

Used Only when
necessary

KEYED SEQUENTIAL
UPDATE
ENV(VSAM SKIP)

DIR Keys in any
order

Used After every
statement

DIRECT

DIR(MACRF=SIS) Keys in any
order

Kept After every
statement

DIRECT
ENV(VSAM SIS)

Alternate Indexes for KSDSs or Indexed ESDSs
Alternate indexes allow you to access KSDSs or indexed ESDSs in various ways,
using either unique or nonunique keys.

Unique Key Alternate Index Path
Figure 57 on page 240 shows the creation of a unique key alternative index path
for the ESDS defined and loaded in Figure 53 on page 231. Using this path, the
data set is indexed by the name of the child in the first 15 bytes of the record.

Three Access Method Services commands are used. These are:

DEFINE ALTERNATEINDEX
defines the alternate index as a data set to VSAM.

BLDINDEX
places the pointers to the relevant records in the alternate index.

DEFINE PATH
defines an entity that can be associated with a PL/I file in a DD statement.

 Chapter 11. Defining and Using VSAM Data Sets 239

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX
and for the sort files. Make sure that you specify the correct names at the various
points.

 //OPT9#9 JOB

//STEP1 EXEC PGM=IDCAMS,REGION=512K

//SYSPRINT DD SYSOUT=A

 //SYSIN DD \

DEFINE ALTERNATEINDEX -

 (NAME(PLIVSAM.AJC1.ALPHIND) -

 VOLUMES(nnnnnn) -

TRACKS(4 1) -

KEYS(15 ð) -

RECORDSIZE(2ð 4ð) -

 UNIQUEKEY -

 RELATE(PLIVSAM.AJC1.BASE))

 /\

//STEP2 EXEC PGM=IDCAMS,REGION=512K

 //DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR

 //DD2 DD DSNAME=PLIVSAM.AJC1.ALPHIND,DISP=SHR

 //SYSPRINT DD SYSOUT=\

 //SYSIN DD \

BLDINDEX INFILE(DD1) OUTFILE(DD2)

DEFINE PATH -

 (NAME(PLIVSAM.AJC1.ALPHPATH) -

 PATHENTRY(PLIVSAM.AJC1.ALPHIND))

 //

Figure 57. Creating a Unique Key Alternate Index Path for an ESDS

Nonunique Key Alternate Index Path
Figure 58 on page 241 shows the creation of a nonunique key alternate index path
for an ESDS. The alternate index enables the data to be selected by the sex of the
children. This enables the girls or the boys to be accessed separately and every
member of each group to be accessed by use of the key.

The three Access Method Services commands and the DD statement are as
described in “Unique Key Alternate Index Path” on page 239. The fact that the
index has nonunique keys is specified by the use of the NONUNIQUEKEY
operand. When creating an index with nonunique keys, be careful to ensure that
the RECORDSIZE you specify is large enough. In a nonunique alternate index,
each alternate index record contains pointers to all the records that have the
associated alternate index key. The pointer takes the form of an RBA for an ESDS
and the prime key for a KSDS. When a large number of records might have the
same key, a large record is required.

240 PL/I for MVS & VM Programming Guide

 //OPT9#1ð JOB

 //STEP1 EXEC PGM=IDCAMS,REGION=512K

 //SYSPRINT DD SYSOUT=A

//SYSIN DD \

/\care must be taken with record size \/

DEFINE ALTERNATEINDEX -

 (NAME(PLIVSAM.AJC1.SEXIND) -

 VOLUMES(nnnnnn) -

TRACKS(4 1) -

KEYS(1 37) -

 NONUNIQUEKEY -

 RELATE(PLIVSAM.AJC1.BASE) -

 RECORDSIZE(2ð 4ðð))

 /\

 //STEP2 EXEC PGM=IDCAMS,REGION=512K

 //DD1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD

 //DD2 DD DSNAME=PLIVSAM.AJC1.SEXIND,DISP=OLD

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD \

BLDINDEX INFILE(DD1) OUTFILE(DD2)

DEFINE PATH -

 (NAME(PLIVSAM.AJC1.SEXPATH) -

 PATHENTRY(PLIVSAM.AJC1.SEXIND))

 //

Figure 58. Creating a Nonunique Key Alternate Index Path for an ESDS

Figure 59 on page 242 shows the creation of a unique key alternate index path for
a KSDS. The data set is indexed by the telephone number, enabling the number to
be used as a key to discover the name of person on that extension. The fact that
keys are to be unique is specified by UNIQUEKEY. Also, the data set will be able
to be listed in numerical order to show which numbers are not used. Three Access
Method Services commands are used:

DEFINE ALTERNATEINDEX
defines the data set that will hold the alternate index data.

BLDINDEX
places the pointers to the relevant records in the alternate index.

DEFINE PATH
defines the entity that can be associated with a PL/I file in a DD statement.

DD statements are required for the INFILE and OUTFILE of BLDINDEX and for the
sort files. Be careful not to confuse the names involved.

 Chapter 11. Defining and Using VSAM Data Sets 241

 //OPT9#14 JOB

 //STEP1 EXEC PGM=IDCAMS,REGION=512K

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD \

DEFINE ALTERNATEINDEX -

 (NAME(PLIVSAM.AJC2.NUMIND) -

 VOLUMES(nnnnnn) -

TRACKS(4 4) -

KEYS(3 2ð) -

 RELATE(PLIVSAM.AJC2.BASE) -

 UNIQUEKEY -

 RECORDSIZE(24 48))

 /\

 //STEP2 EXEC PGM=IDCAMS,REGION=512K

 //SYSPRINT DD SYSOUT=A

//DD1 DD DSN=PLIVSAM.AJC2.BASE,DISP=OLD

//DD2 DD DSN=PLIVSAM.AJC2.NUMIND,DISP=OLD

//SYSIN DD \

BLDINDEX INFILE(DD1) OUTFILE(DD2)

DEFINE PATH -

 (NAME(PLIVSAM.AJC2.NUMPATH) -

 PATHENTRY(PLIVSAM.AJC2.NUMIND))

 //

Figure 59. Creating an Alternate Index Path for a KSDS

When creating an alternate index with a unique key, you should ensure that no
further records could be included with the same alternative key. In practice, a
unique key alternate index would not be entirely satisfactory for a telephone
directory as it would not allow two people to have the same number. Similarly, the
prime key would prevent one person having two numbers. A solution would be to
have an ESDS with two nonunique key alternate indexes, or to restructure the data
format to allow more than one number per person and to have a nonunique key
alternate index for the numbers. See Figure 57 on page 240 for an example of
creation of an alternate index with nonunique keys.

Detecting Nonunique Alternate Index Keys
If you are accessing a VSAM data set by means of an alternate index path, the
presence of nonunique keys can be detected by means of the SAMEKEY built-in
function. After each retrieval, SAMEKEY indicates whether any further records
exist with the same alternate index key as the record just retrieved. Hence, it is
possible to stop at the last of a series of records with nonunique keys without
having to read beyond the last record. SAMEKEY (file-reference) returns '1'B if
the input/output statement has completed successfully and the accessed record is
followed by another with the same key; otherwise, it returns '0'B.

Using Alternate Indexes with ESDSs
Figure 60 on page 244 shows the use of alternate indexes and backward reading
on an ESDS. The program has four files:

BASEFLE reads the base data set forward.
BACKFLE reads the base data set backward.
ALPHFLE is the alphabetic alternate index path indexing the children by name.
SEXFILE is the alternate index path that corresponds to the sex of the children.

There are DD statements for all the files. They connect BASEFLE and BACKFLE
to the base data set by specifying the name of the base data set in the DSNAME
parameter, and connect ALPHFLE and SEXFLE by specifying the names of the
paths given in Figure 57 on page 240 and Figure 58 on page 241.

242 PL/I for MVS & VM Programming Guide

The program uses SEQUENTIAL files to access the data and print it first in the
normal order, then in the reverse order. At the label AGEQUERY, a DIRECT file is
used to read the data associated with an alternate index key in the unique alternate
index.

Finally, at the label SPRINT, a KEYED SEQUENTIAL file is used to print a list of
the females in the family, using the nonunique key alternate index path. The
SAMEKEY built-in function is used to read all the records with the same key. The
names of the females will be accessed in the order in which they were originally
entered. This will happen whether the file is read forward or backward. For a
nonunique key path, the BKWD option only affects the order in which the keys are
read; the order of items with the same key remains the same as it is when the file
is read forward.

Deletion: At the end of the example, the Access Method Services DELETE
command is used to delete the base data set. When this is done, the associated
alternate indexes and paths will also be deleted.

Using Alternate Indexes with KSDSs
Figure 61 on page 246 shows the use of a path with a unique alternate index key
to update a KSDS and then to access and print it in the order of the alternate
index.

The alternate index path is associated with the PL/I file by a DD statement that
specifies the name of the path (PLIVSAM.AJC2.NUMPATH, given in the DEFINE
PATH command in Figure 59 on page 242) as the DSNAME.

In the first section of the program, a DIRECT OUTPUT file is used to insert a new
record using the alternate index key. Note that any alteration made with an
alternate index must not alter the prime key or the alternate index key of access of
an existing record. Also, the alteration must not add a duplicate key in the prime
index or any unique key alternate index.

In the second section of the program (at the label PRINTIT), the data set is read in
the order of the alternate index keys using a SEQUENTIAL INPUT file. It is then
printed onto SYSPRINT.

 Chapter 11. Defining and Using VSAM Data Sets 243

 //OPT9#15 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

READIT: PROC OPTIONS(MAIN);

DCL BASEFLE FILE SEQUENTIAL INPUT ENV(VSAM),

/\File to read base data set forward \/

BACKFLE FILE SEQUENTIAL INPUT ENV(VSAM BKWD),

/\File to read base data set backward \/

ALPHFLE FILE DIRECT INPUT ENV(VSAM),

/\File to access via unique alternate index path \/

SEXFILE FILE KEYED SEQUENTIAL INPUT ENV(VSAM),

/\File to access via nonunique alternate index path \/

STRING CHAR(8ð), /\String to be read into \/

1 STRUC DEF (STRING),

2 NAME CHAR(25),

2 DATE_OF_BIRTH CHAR(2),

2 FILL CHAR(1ð),

2 SEX CHAR(1);

DCL NAMEHOLD CHAR(25),SAMEKEY BUILTIN;

DCL EOF BIT(1) INIT('ð'B);

/\Print out the family eldest first\/

ON ENDFILE(BASEFLE) EOF='1'B;

PUT EDIT('FAMILY ELDEST FIRST')(A);

READ FILE(BASEFLE) INTO (STRING);

 DO WHILE(¬EOF);

PUT SKIP EDIT(STRING)(A);

READ FILE(BASEFLE) INTO (STRING);

 END;

 CLOSE FILE(BASEFLE);

 PUT SKIP(2);

/\Close before using data set from other file not

necessary but good practice to prevent potential

 problems\/

 EOF='ð'B;

ON ENDFILE(BACKFLE) EOF='1'B;

PUT SKIP(3) EDIT('FAMILY YOUNGEST FIRST')(A);

READ FILE(BACKFLE) INTO(STRING);

 DO WHILE(¬EOF);

PUT SKIP EDIT(STRING)(A);

READ FILE(BACKFLE) INTO (STRING);

 END;

 CLOSE FILE(BACKFLE);

 PUT SKIP(2);

/\Print date of birth of child specified in the file

 SYSIN\/

ON KEY(ALPHFLE) BEGIN;

PUT SKIP EDIT

(NAMEHOLD,' NOT A MEMBER OF THE SMITH FAMILY') (A);

GO TO SPRINT;

 END;

Figure 60 (Part 1 of 2). Alternate Index Paths and Backward Reading with an ESDS

244 PL/I for MVS & VM Programming Guide

 AGEQUERY:

 EOF='ð'B;

ON ENDFILE(SYSIN) EOF='1'B;

GET SKIP EDIT(NAMEHOLD)(A(25));

 DO WHILE(¬EOF);

READ FILE(ALPHFLE) INTO (STRING) KEY(NAMEHOLD);

PUT SKIP (2) EDIT(NAMEHOLD,' WAS BORN IN ',

 DATE_OF_BIRTH)(A,X(1),A,X(1),A);

GET SKIP EDIT(NAMEHOLD)(A(25));

 END;

 SPRINT:

 CLOSE FILE(ALPHFLE);

 PUT SKIP(1);

/\Use the alternate index to print out all the females in the

 family\/

ON ENDFILE(SEXFILE) GOTO FINITO;

PUT SKIP(2) EDIT('ALL THE FEMALES')(A);

READ FILE(SEXFILE) INTO (STRING) KEY('F');

PUT SKIP EDIT(STRING)(A);

 DO WHILE(SAMEKEY(SEXFILE));

READ FILE(SEXFILE) INTO (STRING);

PUT SKIP EDIT(STRING)(A);

 END;

 FINITO:

 END;

 /\

//GO.BASEFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR

//GO.BACKFLE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR

//GO.ALPHFLE DD DSN=PLIVSAM.AJC1.ALPHPATH,DISP=SHR

//GO.SEXFILE DD DSN=PLIVSAM.AJC1.SEXPATH,DISP=SHR

 //GO.SYSIN DD \

 ANDY

 /\

 //STEP2 EXEC PGM=IDCAMS,REGION=512K

//SYSPRINT DD SYSOUT=A

 //SYSIN DD \

 DELETE -

 PLIVSAM.AJC1.BASE

 //

Figure 60 (Part 2 of 2). Alternate Index Paths and Backward Reading with an ESDS

 Chapter 11. Defining and Using VSAM Data Sets 245

 //OPT9#16 JOB

 //STEP1 EXEC IEL1CLG,REGION.GO=256K

 //PLI.SYSIN DD \

ALTER: PROC OPTIONS(MAIN);

DCL NUMFLE1 FILE RECORD DIRECT OUTPUT ENV(VSAM),

NUMFLE2 FILE RECORD SEQUENTIAL INPUT ENV(VSAM),

IN FILE RECORD,

 STRING CHAR(8ð),

NAME CHAR(2ð) DEF STRING,

NUMBER CHAR(3) DEF STRING POS(21),

DATA CHAR(23) DEF STRING,

EOF BIT(1) INIT('ð'B);

ON KEY (NUMFLE1) BEGIN;

PUT SKIP EDIT('DUPLICATE NUMBER')(A);

 END;

ON ENDFILE(IN) EOF='1'B;

READ FILE(IN) INTO (STRING);

 DO WHILE(¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);

WRITE FILE(NUMFLE1) FROM (STRING) KEYFROM(NUMBER);

READ FILE(IN) INTO (STRING);

 END;

 CLOSE FILE(NUMFLE1);

 EOF='ð'B;

ON ENDFILE(NUMFLE2) EOF='1'B;

READ FILE(NUMFLE2) INTO (STRING);

 DO WHILE(¬EOF);

PUT SKIP EDIT(DATA)(A);

READ FILE(NUMFLE2) INTO (STRING);

 END;

PUT SKIP(3) EDIT('\\\\SO ENDS THE PHONE DIRECTORY\\\\')(A);

 END;

 /\

 //GO.IN DD \

 RIERA L 123

 /\

 //NUMFLE1 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD

 //NUMFLE2 DD DSN=PLIVSAM.AJC2.NUMPATH,DISP=OLD

 //STEP2 EXEC PGM=IDCAMS,COND=EVEN

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD \

 DELETE -

 PLIVSAM.AJC2.BASE

 //

Figure 61. Using a Unique Alternate Index Path to Access a KSDS

246 PL/I for MVS & VM Programming Guide

Relative-Record Data Sets
The statements and options allowed for VSAM relative-record data sets (RRDS) are
shown in Table 39.

Table 39 (Page 1 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Relative-Record Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYFROM(expression) or
KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference);

EVENT(event-reference)
and/or either
KEYFROM(expression) or
KEYTO(reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

EVENT(event-reference) and/or
either
KEY(expression) or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

KEYFROM(expression) or
KEYTO(reference)

FROM(reference)
and/or
KEY(expression)

KEY(expression)

 Chapter 11. Defining and Using VSAM Data Sets 247

Table 39 (Page 2 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Relative-Record Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-expression);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference)
FROM(reference);

DELETE FILE(file-reference);

EVENT(event-reference)
and/or either
KEY(expression) or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

EVENT(event-reference)
and/or either
KEYFROM(expression) or
KEYTO(reference)

EVENT(event-reference)
and/or KEY(expression)

EVENT(event-reference)
and/or KEY(expression)

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT OUTPUT
UNBUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

DIRECT INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

DIRECT INPUT
UNBUFFERED

READ FILE(file-reference)
KEY(expression);

EVENT(event-reference)

DIRECT UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

248 PL/I for MVS & VM Programming Guide

Table 39 (Page 3 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Relative-Record Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

DIRECT UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

EVENT(event-reference)

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, your declaration must also include the attribute KEYED.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files, the UNLOCK statement for DIRECT
UPDATE files, or the NOLOCK option of the READ statement for DIRECT INPUT files are ignored if
you use them for files associated with a VSAM RRDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

Loading an RRDS
When an RRDS is being loaded, you must open the associated file for OUTPUT.
Use either a DIRECT or a SEQUENTIAL file.

For a DIRECT OUTPUT file, each record is placed in the position specified by the
relative record number (or key) in the KEYFROM option of the WRITE statement
(see “Keys for VSAM Data Sets” on page 215).

For a SEQUENTIAL OUTPUT file, use WRITE statements with or without the
KEYFROM option. If you specify the KEYFROM option, the record is placed in the
specified slot; if you omit it, the record is placed in the slot following the current
position. There is no requirement for the records to be presented in ascending
relative record number order. If you omit the KEYFROM option, you can obtain the
relative record number of the written record by means of the KEYTO option.

If you want to load an RRDS sequentially, without use of the KEYFROM or KEYTO
options, your file is not required to have the KEYED attribute.

It is an error to attempt to load a record into a position that already contains a
record: if you use the KEYFROM option, the KEY condition is raised; if you omit it,
the ERROR condition is raised.

In Figure 62 on page 250, the data set is defined with a DEFINE CLUSTER
command and given the name PLIVSAM.AJC3.BASE. The fact that it is an RRDS
is determined by the NUMBERED keyword. In the PL/I program, it is loaded with a
DIRECT OUTPUT file and a WRITE...FROM...KEYFROM statement is used.

 Chapter 11. Defining and Using VSAM Data Sets 249

If the data had been in order and the keys in sequence, it would have been
possible to use a SEQUENTIAL file and write into the data set from the start. The
records would then have been placed in the next available slot and given the
appropriate number. The number of the key for each record could have been
returned using the KEYTO option.

The PL/I file is associated with the data set by the DD statement, which uses as
the DSNAME the name given in the DEFINE CLUSTER command.

 //OPT9#17 JOB

 //STEP1 EXEC PGM=IDCAMS,REGION=512K

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD \

DEFINE CLUSTER -

 (NAME(PLIVSAM.AJC3.BASE) -

 VOLUMES(nnnnnn) -

 NUMBERED -

TRACKS(2 2) -

 RECORDSIZE(2ð 2ð))

 /\

 //STEP2 EXEC IEL1CLG

 //PLI.SYSIN DD \

 CRR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(VSAM),

 CARD CHAR(8ð),

NAME CHAR(2ð) DEF CARD,

NUMBER CHAR(2) DEF CARD POS(21),

 IOFIELD CHAR(2ð),

EOF BIT(1) INIT('ð'B);

ON ENDFILE (SYSIN) EOF='1'B;

 OPEN FILE(NOS);

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

 IOFIELD=NAME;

WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);

GET FILE(SYSIN) EDIT(CARD)(A(8ð));

 END;

 CLOSE FILE(NOS);

 END CRR1;

Figure 62 (Part 1 of 2). Defining and Loading a Relative-Record Data Set (RRDS)

250 PL/I for MVS & VM Programming Guide

 /\

 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD

 //GO.SYSIN DD \

 ACTION,G. 12

 BAKER,R. 13

 BRAMLEY,O.H. 28

 CHEESNAME,L. 11

 CORY,G. 36

 ELLIOTT,D. 85

 FIGGINS.E.S. 43

 HARVEY,C.D.W. 25

 HASTINGS,G.M. 31

 KENDALL,J.G. 24

 LANCASTER,W.R. 64

 MILES,R. 23

 NEWMAN,M.W. 4ð

 PITT,W.H. 55

 ROLF,D.E. 14

 SHEERS,C.D. 21

 SURCLIFFE,M. 42

 TAYLOR,G.C. 47

 WILTON,L.W. 44

 WINSTONE,E.M. 37

 //

Figure 62 (Part 2 of 2). Defining and Loading a Relative-Record Data Set (RRDS)

Using a SEQUENTIAL File to Access an RRDS
You can open a SEQUENTIAL file that is used to access an RRDS with either the
INPUT or the UPDATE attribute. If you use any of the options KEY, KEYTO, or
KEYFROM, your file must also have the KEYED attribute.

For READ statements without the KEY option, the records are recovered in
ascending relative record number order. Any empty slots in the data set are
skipped.

If you use the KEY option, the record recovered by a READ statement is the one
with the relative record number you specify. Such a READ statement positions the
data set at the specified record; subsequent sequential reads will recover the
following records in sequence.

WRITE statements with or without the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
regardless of the position of any previous access. For WRITE with the KEYFROM
option, the KEY condition is raised if an attempt is made to insert a record with the
same relative record number as a record that already exists on the data set. If you
omit the KEYFROM option, an attempt is made to write the record in the next slot,
relative to the current position. The ERROR condition is raised if this slot is not
empty.

You can use the KEYTO option to recover the key of a record that is added by
means of a WRITE statement without the KEYFROM option.

 Chapter 11. Defining and Using VSAM Data Sets 251

REWRITE statements, with or without the KEY option, are allowed for UPDATE
files. If you use the KEY option, the record that is rewritten is the record with the
relative record number you specify; otherwise, it is the record that was accessed by
the previous READ statement.

DELETE statements, with or without the KEY option, can be used to delete records
from the dataset.

Using a DIRECT File to Access an RRDS
A DIRECT file used to access an RRDS can have the OUTPUT, INPUT, or
UPDATE attribute. You can read, write, rewrite, or delete records exactly as
though a KEYED SEQUENTIAL file were used.

Figure 63 on page 253 shows an RRDS being updated. A DIRECT UPDATE file
is used and new records are written by key. There is no need to check for the
records being empty, because the empty records are not available under VSAM.

In the second half of the program, starting at the label PRINT, the updated file is
printed out. Again there is no need to check for the empty records as there is in
REGIONAL(1).

The PL/I file is associated with the data sets by a DD statement that specifies the
DSNAME PLIVSAM.AJC3.BASE, the name given in the DEFINE CLUSTER
command in Figure 63 on page 253.

At the end of the example, the DELETE command is used to delete the data set.

252 PL/I for MVS & VM Programming Guide

 //\ NOTE: WITH A WRITE STATEMENT AFTER THE DELETE FILE STATEMENT,

 //\ A “DUPLICATE” MESSAGE IS EXPECTED FOR CODE 'C' ITEMS

 //\ WHOSE NEWNO CORRESPONDS TO AN EXISTING NUMBER IN THE LIST,

 //\ FOR EXAMPLE, ELLIOT.

 //\ WITH A REWRITE STATEMENT AFTER THE DELETE FILE STATEMENT,

 //\ A “NOT FOUND” MESSAGE IS EXPECTED FOR CODE 'C' ITEMS

 //\ WHOSE NEWNO DOES NOT CORRESPOND TO AN EXISTING NUMBER IN

 //\ THE LIST, FOR EXAMPLE, NEWMAN AND BRAMLEY.

 //OPT9#18 JOB

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 ACR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD KEYED ENV(VSAM),NAME CHAR(2ð),

(NEWNO,OLDNO) CHAR(2),CODE CHAR(1),IOFIELD CHAR(2ð),

BYTE CHAR(1) DEF IOFIELD, EOF BIT(1) INIT('ð'B),

 ONCODE BUILTIN;

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(NOS) DIRECT UPDATE;

ON KEY(NOS) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('NOT FOUND:',NAME)(A(15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('DUPLICATE:',NAME)(A(15),A);

 END;

GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)

 (COLUMN(1),A(2ð),A(2),A(2),A(1));

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NEWNO,OLDNO,' ',CODE)

 (A(1),A(2ð),A(1),2(A(2)),X(5),2(A(1)));

 SELECT(CODE);

WHEN('A') WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);

 WHEN('C') DO;

DELETE FILE(NOS) KEY(OLDNO);

WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);

 END;

WHEN('D') DELETE FILE(NOS) KEY(OLDNO);

OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT

('INVALID CODE: ',NAME)(A(15),A);

 END;

Figure 63 (Part 1 of 2). Updating an RRDS

 Chapter 11. Defining and Using VSAM Data Sets 253

GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)

 (COLUMN(1),A(2ð),A(2),A(2),A(1));

 END;

 CLOSE FILE(NOS);

 PRINT:

PUT FILE(SYSPRINT) PAGE;

OPEN FILE(NOS) SEQUENTIAL INPUT;

 EOF='ð'B;

ON ENDFILE(NOS) EOF='1'B;

READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

DO WHILE (¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);

READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 END;

 CLOSE FILE(NOS);

 END ACR1;

 /\

 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD

 //GO.SYSIN DD \

 NEWMAN,M.W. 564ðC

 GOODFELLOW,D.T. 89 A

 MILES,R. 23D

 HARVEY,C.D.W. 29 A

 BARTLETT,S.G. 13 A

 CORY,G. 36D

 READ,K.M. ð1 A

 PITT,W.H. 55

 ROLF,D.F. 14D

 ELLIOTT,D. 4285C

 HASTINGS,G.M. 31D

 BRAMLEY,O.H. 4928C

 //STEP3 EXEC PGM=IDCAMS,REGION=512K,COND=EVEN

 //SYSPRINT DD SYSOUT=A

//SYSIN DD \

 DELETE -

 PLIVSAM.AJC3.BASE

 //

Figure 63 (Part 2 of 2). Updating an RRDS

254 PL/I for MVS & VM Programming Guide

Chapter 12. Defining and Using Teleprocessing Data Sets

Teleprocessing in PL/I is supported by record-oriented data transmission using the
Telecommunications Access Method (TCAM) and PL/I files declared with the
TRANSIENT attribute. A teleprocessing data set is a queue of messages
originating from or destined for remote terminals (or application programs). A PL/I
TRANSIENT file allows a PL/I program to access a teleprocessing data set as an
INPUT file for retrieving messages or as an OUTPUT file for writing messages.

In a teleprocessing system using TCAM, the user must write a message control
program (MCP) and can write one or more message processing programs (TCAM
MPPs). The MCP is part of TCAM and must be written in assembler language
using macros supplied by TCAM. The TCAM MPPs are application programs and
can be written in PL/I.

This section briefly covers the message control program (MCP) and the message
processing program (TCAM MPP). It also covers teleprocessing organization,
ENVIRONMENT options for teleprocessing, and condition handling for
teleprocessing.

A TCAM overview is given in OS/VS TCAM Concepts and Applications. If you
want more detailed information about TCAM programming facilities, see the ACF
TCAM Application Programmer's Guide.

TCAM is not available under VM using PL/I.

Message Control Program (MCP)
A TCAM message control program (MCP) controls the routing of messages
originating from and destined for the remote terminals and message processing
programs in your TCAM installation. Each origin or destination associated with a
message is identified by a name known in the MCP, and carried within the
message. The MCP routes messages to and from message processing programs
and terminals by means of in-storage queues. The queues can also be on disk
storage when the in-storage queue is full. This support is provided by TCAM.
TCAM queues can also be simulated by sequential data sets on direct-access
devices; however, the data sets cannot be accessed by your PL/I program, since
PL/I supports only the use of queues.

A message can be transmitted in one of several formats, only two of which are
supported by PL/I. You specify the message format in the MCP, and also in your
PL/I program by means of the ENVIRONMENT attribute, described later in this
section.

Note for System Programmers: Of the several message formats allowed by a
TCAM MCP, PL/I supports those represented by:

� DCBOPTCD=WUC,DCBRECFM=V for PL/I ENVIRONMENT option TP(M)
� DCBOPTCD=WC,DCBRECFM=V for PL/I ENVIRONMENT option TP(R).

 Copyright IBM Corp. 1964, 1995 255

TCAM Message Processing Program (TCAM MPP)
A message processing program (TCAM MPP) is an application program that
retrieves messages from TCAM queues and/or writes messages to TCAM queues.
A TCAM MPP allows you to provide data to a problem program from a terminal and
to receive output from the program with a minimum of delay. You can write TCAM
MPPs in PL/I; they can perform other data processing functions in addition to
teleprocessing.

A TCAM MPP for reading or writing TCAM queues is not mandatory for
teleprocessing installations. If the messages you transmit are not processed,
because they are simply switched between terminals, then a TCAM MPP is not
required.

The following sections describe PL/I teleprocessing data sets and the PL/I language
features that you use to write TCAM MPPs.

 Teleprocessing Organization
A teleprocessing data set is a queue of messages that constitutes the input to a
PL/I message processing program. You write and retrieve the messages
sequentially. You use keys to identify the terminal or application associated with
the message. Include the TRANSIENT attribute in the PL/I file declaration to
specify access type. TRANSIENT indicates that the contents of the data set
associated with the file are reestablished each time the data set is accessed. You
can continually add records to the data set with one program while another
program is running that continually removes records from the data set. Thus the
data set can be considered to be a continuous first-in/first-out queue through which
the records pass in transit between the message control program and the message
processing program.

A data set associated with a TRANSIENT file differs from one associated with a
DIRECT or SEQUENTIAL file in the following ways:

� Its contents are dynamic. Reading a record removes it from the data set.

� The ENDFILE condition is not defined for a TRANSIENT file. Instead, the
PENDING condition is raised when the input queue is empty. This does not
imply the queue will remain empty since records can be continually added.

In addition to TRANSIENT access, you can access a teleprocessing queue for input
as a SEQUENTIAL file with consecutive organization (unless you use a READ
statement option, such as EVENT, that is invalid for a TRANSIENT file). This
support is provided by TCAM when it detects a request from a sequential access
method (BSAM or QSAM). Your program is unaware of the fact that a TCAM
queue is the source of input. You will not receive terminal identifiers in the
character string referenced in the KEYTO option of the READ statement and the
PENDING condition will not be raised. You can create a teleprocessing data set
only by using a file with TRANSIENT access.

256 PL/I for MVS & VM Programming Guide

 Essential Information
To access a teleprocessing data set, the file name or value of the TITLE option on
the OPEN statement must be the name of a DD statement that identifies the
message queue in the QNAME parameter. For example:

//PLIFILE DD QNAME=process name

“process name” is the symbolic name of the TPROCESS macro, coded in your
MCP, that defines the destination queue through which your messages will be
routed. Your system programmer can provide the queue names to be used for
your application.

For TRANSIENT OUTPUT files, the element expression you specify in the
KEYFROM option must have as its value a terminal or program identifier known to
your MCP. If you specify the TP(R) ENVIRONMENT option, indicating
multiple-segment messages, you must indicate the position of record segments
within a message, as described above.

Defining Files for a Teleprocessing Data Set
You define a teleprocessing file with the attributes shown in the following
declaration:

DCL filename FILE TRANSIENT RECORD

INPUT | OUTPUT

 BUFFERED KEYED

 ENVIRONMENT(option-list);

The file attributes are described in the PL/I for MVS & VM Language Reference.
Required attributes and defaults are shown in Table 15 on page 111.

Specifying ENVIRONMENT Options
For teleprocessing applications, the ENVIRONMENT options that you can specify
are TP(M|R), RECSIZE(record-length), and BUFFERS(n).

 TP Option
Use TP to specify that the file is associated with a teleprocessing data set. A
message can consist of one logical record or several logical records on the
teleprocessing data set.

55──TP──(─ ──┬ ┬─M─ ─)──5%
 └ ┘─R─

TP(M)
specifies that each data transmission statement in your PL/I program transmits
a complete message (which can be several logical records) to or from the data
set.

TP(R)
specifies that each data transmission statement in your PL/I program transmits
a single logical record, which is a segment of a complete message.

One or more PL/I data transmission statements are required to completely
transmit a message. On input, your PL/I application program must determine
the end of a message by its own means; for example, this can be from

 Chapter 12. Defining and Using Teleprocessing Data Sets 257

information embedded in the message. On output, your PL/I program must
provide, for each logical record, its segment position within the message.

You indicate the position by a code in the first byte of the KEYFROM value,
preceding the destination ID. The valid codes and their meanings are:

1 First segment of a message
blank Intermediate segment of a message
2 Last segment in a message
3 Only segment in a message.

Selection of TP(M) or TP(R) is dependent on the message format you specify in
your MCP. Your system programmer can tell you which code to use.

 RECSIZE Option
Use the RECSIZE option to specify the size of the record variable (or input or
output buffer, for locate mode) in your PL/I program. If you use the TP(M) option,
this size should be equal to the length of all the logical records that constitute the
message. If it is smaller, part of the message will be lost. If it is greater, the
contents of the last part of the variable (or buffer) are undefined. If you specify the
TP(R) option, this size must be the same as the logical record length.

You must specify RECSIZE.

 BUFFERS Option
Use the BUFFERS option to specify the number of intermediate buffers required to
contain the longest message to be transmitted. The buffer size is defined in the
message control program. If a message is too long for the buffers you specified,
extra buffers must be obtained before processing can continue, which increases run
time. The extra buffers are obtained by the operating system; you need not take
any action.

Writing a TCAM Message Processing Program (TCAM MPP)
You can access a TRANSIENT file with READ, WRITE, and LOCATE statements.
You cannot use the EVENT option.

Use the READ statement for input, with either the INTO option or the SET option.
You must give the KEYTO option. The origin name is assigned to the variable
referenced in the KEYTO option. If the origin name is shorter than the character
string referenced in the KEYTO option, it is padded on the right with blanks. If the
KEYTO variable is a varying-length string, its current length is set to that of the
origin name. The origin name should not be longer than the KEYTO variable (if it
is, it is truncated), but in any case will not be longer than 8 characters. The data
part of the message or record is assigned to the variable referenced in the INTO
option, or the pointer variable referenced in the SET option is set to point to the
data in the READ SET buffer.

A READ statement for the file will take the next message (or the next record from
the current message) from the associated queue, assign the data part to the
variable referenced in the READ INTO option (or set a pointer to point to the data
in a READ SET buffer), and assign the character string origin identifier to the
variable referenced in the KEYTO option. The PENDING condition is raised if the
input queue is empty when a READ statement is executed.

258 PL/I for MVS & VM Programming Guide

You can use either the WRITE or the LOCATE statement for output. Either
statement must have the KEYFROM option—for files declared with the TP(M)
option, the first 8 characters of the value of the KEYFROM expression are used to
identify the destination, which must be a recognized terminal or program identifier.
For files declared with the TP(R) option, indicating multiple-segment messages, the
first character of the value you specify in the KEYFROM expression must contain
the message segment code as discussed above. The next 8 characters of the
value are used to identify the destination. The data part of the message is
transmitted from the variable referenced in the FROM option of the WRITE
statement, or, in the case of LOCATE, a pointer variable is set to point to the
location of the data in the output buffer.

The statements and options allowed for TRANSIENT files are given in Table 40.
Some examples follow the figure.

The following example illustrates the use of move mode in teleprocessing
applications:

DECLARE (IN INPUT,OUT OUTPUT) FILE

TRANSIENT ENV(TP(M) RECSIZE(124)),

(INREC, OUTREC) CHARACTER(12ð)

VARYING, TERM CHARACTER(8);

READ FILE(IN) INTO(INREC) KEYTO(TERM);

 .

 .

 .

WRITE FILE(OUT) FROM(OUTREC)

 KEYFROM(TERM);

The files IN and OUT are given the attributes KEYED and BUFFERED because
TRANSIENT implies these attributes. The TP(M) option indicates that a complete
message will be transmitted. The input buffer for file IN contains the next message
from the input queue.

Table 40. Statements and Options Allowed for TRANSIENT Files

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

TRANSIENT
INPUT

READ FILE(file-reference)
INTO(reference)
KEYTO(reference);

READ FILE(file-reference)
SET(pointer-reference)
KEYTO(reference);

TRANSIENT
OUTPUT

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE(based-variable)
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, KEYED, BUFFERED, and
the ENVIRONMENT attribute with either the TP(M) or the TP(R) option.

 Chapter 12. Defining and Using Teleprocessing Data Sets 259

The READ statement moves the message or record from the input buffer into the
variable INREC. The character string identifying the origin is assigned to TERM. If
the buffer is empty when the READ statement is executed (that is, if there are no
messages in the queue), the PENDING condition is raised. The implicit action for
the condition is described under “Handling PL/I Conditions.”

After processing, the message or record is held in OUTREC. The WRITE
statement moves it to the output buffer, together with the value of TERM (which still
contains the origin name unless another name has been assigned to it during
processing). From the buffer, the message is transmitted to the correct queue for
the destination, as specified by the value of TERM.

The next example is similar to the previous one, except that locate mode input is
used.

DECLARE (IN INPUT,OUT OUTPUT) FILE

TRANSIENT ENV(TP(M) RECSIZE(124)),

MESSAGE CHARACTER(12ð) VARYING

 BASED(INPTR),

 TERM CHARACTER(8);

READ FILE(IN) SET(INPTR) KEYTO(TERM);

 .

 .

 .

WRITE FILE(OUT) FROM(MESSAGE)

 KEYFROM(TERM);

The message data is processed in the input buffer, using the based variable
MESSAGE, which has been declared with the pointer reference INPTR. (The
variable MESSAGE will be aligned on a double word boundary.) The WRITE
statement moves the processed data from the input to the output buffer; otherwise
its effect is as described for the WRITE statement in the first example.

The technique used in this example would be useful in applications where the
differences between processed and unprocessed messages were relatively simple,
since the maximum size of input and output messages would be the same. If the
length and structure of the output message could vary widely, depending on the
text of the input message, locate mode output could be used to advantage. After
the input message had been read in, a suitable based variable could be located in
the output buffer (using the LOCATE statement), where further processing would
take place. The message would be transmitted immediately before execution of the
next WRITE or LOCATE statement for the file.

Handling PL/I Conditions
The conditions that can be raised during teleprocessing transmission are
TRANSMIT, KEY, RECORD, ERROR, and PENDING.

The TRANSMIT condition can be raised on input or output, as described for other
types of transmission. In addition, for a TRANSIENT OUTPUT file, TRANSMIT can
be raised in the following circumstances:

� The destination queue is full—TCAM rejected the message.

� For a file declared with the TP(R) ENVIRONMENT option, message segments
were presented out of sequence.

260 PL/I for MVS & VM Programming Guide

The RECORD condition is raised under the same circumstances as for other types
of transmission. The messages and records are treated as V-format records.

The ERROR condition is raised as for other types of transmission. It is also raised
when the expression in the KEYFROM option is missing or invalid.

The KEY condition is raised if the expression in the KEYFROM option is
syntactically valid but does not represent an origin or a destination name
recognized by the MCP.

The PENDING condition is raised only during execution of a READ statement for a
TRANSIENT file. When the PENDING condition is raised, the value returned by
the ONKEY built-in function is a null string. The PL/I implicit action for the
PENDING condition is as follows:

� If there is no ON-unit for the PENDING condition, the PL/I transmitter module
waits for a message.

� If there is an ON-unit for the PENDING condition, and it executes a normal
return, the transmitter waits for a message.

� If there is an ON-unit for the PENDING condition, and it does not return
normally, the next execution of a READ statement again raises PENDING if no
records have been added to the queue.

There is no PL/I condition associated with the occurrence of the last segment of a
message. When you specify the TP(R) option, indicating multiple-segment
messages, you are responsible for arranging the recognition of the end of the
message.

TCAM MPP Example
An example of a TCAM MPP and the job control language required to run it is
shown in Figure 64 on page 262. The EXEC statement in the first part of the
figure invokes the cataloged procedure IEL1CL to compile and link-edit the PL/I
message processing program. The load module is stored in the library
SYS1.MSGLIB under the member name MPPROC.

 Chapter 12. Defining and Using Teleprocessing Data Sets 261

 Part 1. Compiling and link-editing the TCAM MPP

 //JOBNAME JOB

// EXEC IEL1CL

 //PLI.SYSIN DD \

MPPROC: PROC OPTIONS(MAIN);

DCL INMSG FILE RECORD KEYED TRANSIENT ENV(TP(M) RECSIZE(1ðð)),

OUTMSG FILE RECORD KEYED TRANSIENT ENV(TP(M) RECSIZE(5ðð)),

 INDATA CHAR(1ðð),

 OUTDATA CHAR(5ðð),

 TKEY CHAR(6);

 .

 .

 .

OPEN FILE(INMSG) INPUT,FILE(OUTMSG) OUTPUT;

 .

 .

 .

READ FILE(INMSG) KEYTO(TKEY) INTO(INDATA);

 .

 .

 .

WRITE FILE(OUTMSG) KEYFROM(TKEY) FROM(OUTDATA);

 .

 .

 .

 ENDTP: CLOSE FILE(INMSG),FILE(OUTMSG);

 END MPPROC;

 /\

 //LKED.SYSLMOD DD DSNAME=SYS1.MSGLIB(MPPROC),DISP=OLD

 Part 2. Executing the TCAM MPP

 //JOBNAME JOB ...

 //JOBLIB DD DSNAME=SYS1.MSGLIB(MPPROC),DISP=SHR

 // EXEC PGM=MPPROC

 //INMSG DD QNAME=(INQUIRY)

//OUTMSG DD QNAME=(RESPONSE)

Figure 64. PL/I Message Processing Program

In the PL/I program, INMSG is declared as a teleprocessing file that can process
messages up to 100 bytes long. Similarly, OUTMSG is declared as a
teleprocessing file that can process messages up to 500 bytes long.

The READ statement gets a message from the queue. The terminal identifier,
which is passed as a key by TCAM, is inserted into TKEY, the character string
referenced in the KEYTO option. The record is placed in the INDATA variable for
processing. The appropriate READ SET statement could also have been used
here. The statements that process the data and place it in OUTDATA are omitted
to simplify the example.

The WRITE statement moves the data from OUTDATA into the destination queue.
The terminal identifier is taken from the character string in TKEY. An appropriate
LOCATE statement could also have been used.

The TCAM MPP is executed in the second part of the example. The INMSG and
OUTMSG DD statements associate the PL/I files TCAM MPP and OUTMSG with
their respective main storage queues, that is, INQUIRY and RESPONSE.

262 PL/I for MVS & VM Programming Guide

Part 4. Improving your program

Chapter 13. Examining and Tuning Compiled Modules 265
Activating Hooks in Your Compiled Program Using IBMBHKS 265

The IBMBHKS Programming Interface . 265
Obtaining Static Information about Compiled Modules Using IBMBSIR 266

The IBMBSIR Programming Interface . 267
Obtaining Static Information as Hooks Are Executed Using IBMBHIR 271

The IBMBHIR Programming Interface . 271
Examining Your Program's Run-Time Behavior 272

Sample Facility 1: Examining Code Coverage 272
Overall Setup . 272
Output Generated . 272
Source Code . 273

Sample Facility 2: Performing Function Tracing 284
Overall Setup . 284
Output Generated . 284
Source Code . 284

Sample Facility 3: Analyzing CPU-Time Usage 288
Overall Setup . 288
Output Generated . 288
Source Code . 290

Chapter 14. Efficient Programming . 305
Efficient Performance . 305

Tuning a PL/I Program . 305
Tuning a Program for a Virtual Storage System 307

Global Optimization Features . 308
Expressions . 309

Common Expression Elimination . 309
Redundant Expression Elimination . 310
Simplification of Expressions . 310
Replacement of Constant Expressions 311

Loops . 312
Transfer of Expressions from Loops . 312
Special Case Code for DO Statements 313

Arrays and Structures . 313
Initialization of Arrays and Structures . 313
Structure and Array Assignments . 313
Elimination of Common Control Data . 313

In-Line Code . 314
In-line Code for Conversions . 314
In-line Code for Record I/O . 314
In-line Code for String Manipulation . 314
In-line Code for Built-In Functions . 314

Key handling for REGIONAL data sets . 314
REGIONAL(1) . 314
REGIONAL(2) and REGIONAL(3) . 314

Matching Format Lists with Data Lists . 315
Run-time Library Routines . 315
Use of Registers . 315

Program Constructs that Inhibit Optimization 315

 Copyright IBM Corp. 1964, 1995 263

Global Optimization of Variables . 316
ORDER and REORDER Options . 316

ORDER Option . 316
REORDER Option . 316

Common Expression Elimination . 318
Condition Handling for Programs with Common Expression Elimination . . 320
Transfer of Invariant Expressions . 321
Redundant Expression Elimination . 322
Other Optimization Features . 322

Assignments and Initialization . 323
Notes about Data Elements . 323
Notes about Expressions and References . 326
Notes about Data Conversion . 329
Notes about Program Organization . 331
Notes about Recognition of Names . 332
Notes about Storage Control . 332
Notes about Statements . 334
Notes about Subroutines and Functions . 338
Notes about Built-In Functions and Pseudovariables 338
Notes about Input and Output . 339
Notes about Record-Oriented Data Transmission 340
Notes about Stream-Oriented Data Transmission 341
Notes about Picture Specification Characters 343
Notes about Condition Handling . 344
Notes about multitasking . 345

264 PL/I for MVS & VM Programming Guide

Chapter 13. Examining and Tuning Compiled Modules

This chapter discusses how to obtain static information about your compiled
program or other object modules of interest either during execution of your program
or at any time. Specifically, it discusses:

� How to turn hooks on prior to execution by calling IBMBHKS (see “Activating
Hooks in Your Compiled Program Using IBMBHKS”)

� How to call the Static Information Retrieval service IBMBSIR to retrieve static
information about compiled modules (see “Obtaining Static Information about
Compiled Modules Using IBMBSIR” on page 266)

� How to call the Hook Information Retrieval service IBMBHIR to obtain static
information relative to hooks that are executed during your program's run (see
“Obtaining Static Information as Hooks Are Executed Using IBMBHIR” on
page 271)

� How to use IBMBHKS, IBMBSIR, and IBMBHIR via the hook exit in CEEBINT
to examine your program's run-time behavior (see “Examining Your Program's
Run-Time Behavior” on page 272).

These services are useful if you want to do any of the following:

� Examine and fine tune your program's run-time behavior by, for example,
checking which statements, blocks, paths, labels, or calls are visited most

� Perform function tracing during your program's execution

� Examine CPU timing characteristics of your program's execution

� Find out information about any object module such as:

– What options it was compiled with
 – Its size

– The number and location of blocks in the module
– The number and location of hooks in the module
– The number and addresses of external entries in the module

These services are available in batch, PL/I multitasking, and CICS environments.

For information on how to establish the hook exit in CEEBINT, see the Language
Environment for MVS & VM Programming Guide.

Activating Hooks in Your Compiled Program Using IBMBHKS
The callable service IBMBHKS is provided to turn hooks on and off without the use
of a debugging tool. It is available in batch, PL/I multitasking, and CICS
environments.

The IBMBHKS Programming Interface
You can declare IBMBHKS in a PL/I program as follows:

DECLARE IBMBHKS EXTERNAL ENTRY(FIXED BIN(31,ð), FIXED BIN(31,ð));

and invoke it with the following PL/I CALL statement:

CALL IBMBHKS(Function_code, Return_code);

 Copyright IBM Corp. 1964, 1995 265

The possible function codes are:

 1 Turn on statement hooks
-1 Turn off statement hooks
 2 Turn on block entry hooks
-2 Turn off block entry hooks
 3 Turn on block exit hooks
-3 Turn off block exit hooks
 4 Turn on path hooks
-4 Turn off path hooks
 5 Turn on label hooks
-5 Turn off label hooks
 6 Turn on before-call hooks
-6 Turn off before-call hooks
 7 Turn on after-call hooks
-7 Turn off after-call hooks.

The possible return codes are:

 0 Successful
12 The debugging tool is active
16 Invalid function code passed.

Note: Turning on or off statement hooks or path hooks also turns on or off
respectively block entry and block exit hooks. The reverse, however, is not true.

 Warning

This service is meant to be used with the hook exit. It is an error to use
IBMBHKS to turn on hooks when a hook exit has not been established in
CEEBINT, and unpredictable results will occur in this case.

For examples of possible uses of IBMBHKS see “Examining Your Program's
Run-Time Behavior” on page 272.

Obtaining Static Information about Compiled Modules Using IBMBSIR
IBMBSIR is a Static Information Retrieval module that lets you determine static
information about PL/I modules compiled with the TEST option. You can use it to
interrogate static information about a compiled module (to find out, for example,
what options it was compiled with), or you can use it recursively as part of a
run-time monitoring process.

It is available in batch, PL/I multitasking, and CICS environments.

266 PL/I for MVS & VM Programming Guide

The IBMBSIR Programming Interface
You invoke IBMBSIR with a PL/I CALL passing the address of a control block
containing the following elements:

 DECLARE

 1 SIR_DATA BASED,

2 SIR_FNCCODE FIXED BIN(31), /\ Function code \/

2 SIR_RETCODE FIXED BIN(31), /\ Return code \/

2 SIR_ENTRY ENTRY, /\ Entry variable for module \/

2 SIR_MOD_DATA POINTER, /\ Addr of module_data \/

2 SIR_A_DATA POINTER, /\ Addr of data for fnc code \/

 2 SIR_END CHAR(ð);

where:

SIR_FNCCODE
specifies what type of information is desired, according to the following
definitions:

1 Fill in the compile-time options information and the count of blocks in the
module information control block (see the MODULE_OPTIONS array and
MODULE_BLOCKS in Figure 65 on page 269).

2 Same function as 1 but also fill in the module's size, MODULE_SIZE, in the
module information control block.

3 Fill in all information specified in the module information control block;
namely, compile-time options, count of blocks, module size, and counts of
statements, paths, and external entries declared explicitly or implicitly.

Before invoking IBMBSIR with a function code of 4, you must have already
invoked it with one of the first three function codes:

4 Fill in the information specified in the block information control block. The
layout of this control block is given in Figure 66 on page 270.

BLOCK_NAME_LEN can be zero for unlabeled begin-blocks.

Before you invoke IBMBSIR with this function code, you must allocate the
area for the control block and correctly set the fields BLOCK_DATA and
BLOCK_COUNT.

Before invoking IBMBSIR with any of the following function codes, you must
have already invoked it with a function code of 3:

5 Fill in the hook information block for all statement hooks. The layout of this
control block is given in Figure 67 on page 270.

Note that statement hooks include block entry and exit hooks.

Before you invoke IBMBSIR with this function code, you must allocate the
area for the control block and correctly set the fields HOOK_DATA and
HOOK_COUNT.

HOOK_IN_LINE will be zero for all programs compiled with the STMT
compile-time option, and for programs compiled with the NUMBER
compile-time option, it will be nonzero only when a statement is one of a
multiple in a source line.

HOOK_OFFSET is always the offset of the hook from the primary entry point
for the module, not the offset of the hook from the primary entry point for
the block in which the hook occurs.

 Chapter 13. Examining and Tuning Compiled Modules 267

6 Fill in the hook information control block (see Figure 67 on page 270) for
all path hooks.

Before you invoke IBMBSIR with this function code, you must allocate the
area for the control block and correctly set the fields HOOK_DATA and
HOOK_COUNT.

7 Fill in the external entry information control block. The layout of this control
block is given in Figure 68 on page 270.

Before you invoke IBMBSIR with this function code, you must allocate the
area for the control block and correctly set the fields EXTS_DATA and
EXTS_COUNT.

EXTS_EPA will give the entry point address for a module declared explicitly
or implicitly in the program. It will be zero if the module has not been
resolved at link-edit time.

Note: For all of the function codes you must also supply the SIR_ENTRY and
SIR_MOD_DATA parameters described below.

For function codes 4, 5, 6, and 7 you must supply the SIR_A_DATA

parameter described below.

SIR_RETCODE
is the return code:

 0 Successful.
 4 Module not compiled with appropriate TEST option.
 8 Module not PL/I or not compiled with TEST option.
12 Invalid parameters passed.
16 Unknown function code.

SIR_ENTRY
is the main entry point to your module.

SIR_MOD_DATA
is a pointer to the module information control block, shown in Figure 65 on
page 269.

SIR_A_DATA
is a pointer to the block information control block, the hook information control
block, or the external entries information control block, depending on which
function code you are using.

The following figures show the layout of the control blocks:

Figure 66 on page 270 shows the block information control block.
Figure 67 on page 270 shows the hook information control block.
Figure 68 on page 270 shows the external entries information control
block.

268 PL/I for MVS & VM Programming Guide

This field must be zero if you specify a function code of 1, 2, or 3. If you
specify function codes 4, 5, 6, or 7, this field must point to the applicable
control block:

Function Set
Code Pointer to
4 Block information control block
5 or 6 Hook information control block
7 External entries information control block.

 DECLARE

 1 MODULE_DATA BASED,

 /\ \/

2 MODULE_LEN FIXED BIN(31), /\ = Stg(Module_data) \/

 /\ \/

2 MODULE_OPTIONS, /\ Compile time options \/

 /\ \/

 3 MODULE_GENERAL_OPTIONS, /\ \/

4 MODULE_STMTNO BIT(ð1), /\ Stmt number table does \/

 /\ not exist \/

4 MODULE_GONUM BIT(ð1), /\ Table has GONUMBER form \/

4 MODULE_CMPATV1 BIT(ð1), /\ compiled with CMPAT(V1) \/

4 MODULE_GRAPHIC BIT(ð1), /\ compiled with GRAPHIC \/

4 MODULE_OPT BIT(ð1), /\ compiled with OPTIMIZE \/

4 MODULE_INTER BIT(ð1), /\ compiled with INTERRUPT \/

 4 MODULE_GEN1X BIT(ð2), /\ Reserved \/

 /\ \/

 3 MODULE_GENERAL_OPTIONS2, /\ \/

 4 MODULE_GEN2X BIT(ð8), /\ Reserved \/

 /\ \/

 3 MODULE_TEST_OPTIONS, /\ \/

4 MODULE_TEST BIT(ð1), /\ compiled with TEST \/

 4 MODULE_STMT BIT(ð1), /\ with STMT suboption \/

 4 MODULE_PATH BIT(ð1), /\ with PATH suboption \/

4 MODULE_BLOCK BIT(ð1), /\ with BLOCK suboption \/

 4 MODULE_TESTX BIT(ð3), /\ Reserved \/

4 MODULE_SYM BIT(ð1), /\ with SYM suboption \/

 /\ \/

 3 MODULE_SYS_OPTIONS, /\ \/

4 MODULE_CMS BIT(ð1), /\ SYSTEM(CMS) \/

 4 MODULE_CMSTP BIT(ð1), /\ SYSTEM(CMSTPL) \/

4 MODULE_MVS BIT(ð1), /\ SYSTEM(MVS) \/

4 MODULE_TSO BIT(ð1), /\ SYSTEM(TSO) \/

 4 MODULE_CICS BIT(ð1), /\ SYSTEM(CICS) \/

4 MODULE_IMS BIT(ð1), /\ SYSTEM(IMS) \/

 4 MODULE_SYSX BIT(ð2), /\ Reserved \/

 /\ \/

2 MODULE_BLOCKS FIXED BIN(31), /\ Count of blocks \/

2 MODULE_SIZE FIXED BIN(31), /\ Size of module \/

2 MODULE_SHOOKS FIXED BIN(31), /\ Count of stmt hooks \/

2 MODULE_PHOOKS FIXED BIN(31), /\ Count of path hooks \/

2 MODULE_EXTS FIXED BIN(31), /\ Count of external entries \/

 2 MODULE_DATA_END CHAR(ð);

Figure 65. Module Information Control Block

 Chapter 13. Examining and Tuning Compiled Modules 269

 DECLARE

 1 BLOCK_TABLE BASED,

2 BLOCK_DATA POINTER, /\ Addr of BLOCK_INFO \/

2 BLOCK_COUNT FIXED BIN(31), /\ Count of blocks \/

2 BLOCK_INFO(BLOCKS REFER(BLOCK_COUNT)),

3 BLOCK_OFFSET FIXED BIN(31), /\ Offset of block entry \/

3 BLOCK_SIZE FIXED BIN(31), /\ Size of block \/

3 BLOCK_LEVEL FIXED BIN(15), /\ Block nesting level \/

3 BLOCK_PARENT FIXED BIN(15), /\ Index for parent block \/

3 BLOCK_CHILD FIXED BIN(15), /\ Index for first child \/

3 BLOCK_SIBLING FIXED BIN(15), /\ Index for next sibling \/

3 BLOCK_NAME_LEN FIXED BIN(15), /\ Length of block name \/

3 BLOCK_NAME_STR CHAR(34), /\ Block name \/

 2 BLOCK_TABLE_END CHAR(ð);

Figure 66. Block Information Control Block

 DECLARE

 1 HOOK_TABLE BASED,

2 HOOK_DATA POINTER, /\ Addr of HOOK_INFO \/

2 HOOK_COUNT FIXED BIN(31), /\ Count of hooks \/

2 HOOK_INFO(HOOKS REFER(HOOK_COUNT)),

2 HOOK_OFFSET FIXED BIN(31), /\ Offset of hook \/

2 HOOK_NO FIXED BIN(31), /\ Stmt number for hook \/

2 HOOK_IN_LINE FIXED BIN(15), /\ Stmt number within line \/

2 HOOK_RESERVED FIXED BIN(15), /\ Reserved \/

2 HOOK_TYPE FIXED BIN(15), /\ Hook type (=%PATHCODE) \/

2 HOOK_BLOCK FIXED BIN(15), /\ Block number for hook \/

 2 HOOK_TABLE_END CHAR(ð);

Figure 67. Hook Information Control Block

 DECLARE

 1 EXTS_TABLE BASED,

2 EXTS_DATA POINTER, /\ Addr of EXTS_INFO \/

2 EXTS_COUNT FIXED BIN(31), /\ Count of entries \/

2 EXTS_INFO(EXTS REFER(EXTS_COUNT)),

2 EXTS_EPA POINTER, /\ EPA for entry \/

 2 EXTS_TABLE_END CHAR(ð);

Figure 68. External Entries Information Control Block

For examples of possible uses of IBMBSIR see “Examining Your Program's
Run-Time Behavior” on page 272.

270 PL/I for MVS & VM Programming Guide

Obtaining Static Information as Hooks Are Executed Using IBMBHIR
IBMBHIR is a Hook Information Retrieval module that lets you determine static
information about hooks executed in modules compiled with the TEST option. It is
available in batch, PL/I multitasking, and CICS environments.

The IBMBHIR Programming Interface
You invoke IBMBHIR with a PL/I CALL passing, in order, the address of the control
block shown below, the value of register 13 when the hook was executed, and the
address of the hook that was executed. (These last two items are also the last two
items passed to the hook exit.)

 DECLARE

 1 HIR_DATA BASED(HIR_PARMS),

2 HIR_STG FIXED BIN(31), /\ Size of this control block \/

2 HIR_EPA POINTER, /\ Addr of module entry point \/

2 HIR_LANG_CODE BIT(8), /\ Language code \/

2 HIR_PATH_CODE BIT(8), /\ Path code for hook \/

2 HIR_NAME_LEN FIXED BIN(15), /\ Length of module name \/

2 HIR_NAME_ADDR POINTER, /\ Addr of module name \/

2 HIR_BLOCK FIXED BIN(31), /\ Block count \/

 2 HIR_END CHAR(ð);

These parameters, upon return from IBMBHIR, supply:

� Information about the module in which the hook was executed:

HIR_EPA
the primary entry point address of the module (you could use this value as
a parameter to IBMBSIR to obtain more data)

HIR_LANG_CODE
the programming language used to compile the module ('0A'BX
representing PL/I, and '03'BX representing C)

HIR_NAME_LEN
the length of the name of the module

HIR_NAME_ADDR
the address of a nonvarying string containing the module name

� Information about the block in which the hook was executed:

HIR_BLOCK
the block number for that block

� Information about the hook itself:

HIR_PATH_CODE
the %PATHCODE value associated with the hook.

The next section contains an example of one of the possible uses of IBMBHIR.

 Chapter 13. Examining and Tuning Compiled Modules 271

Examining Your Program's Run-Time Behavior
This section shows some practical ways of using the services discussed in the first
part of this chapter (IBMBHKS, IBMBSIR, and IBMBHIR) via the hook exit in
CEEBINT to monitor your program's run-time behavior. In particular, three sample
facilities are presented, which demonstrate, respectively, how you can:

� Examine code coverage (see “Sample Facility 1: Examining Code Coverage”)

� Perform function tracing (see “Sample Facility 2: Performing Function Tracing”
on page 284)

� Analyze CPU-time usage (see page “Sample Facility 3: Analyzing CPU-Time
Usage” on page 288).

For each facility, the overall setup is outlined briefly, the output is given, and the
source code for the facility is shown.

Sample Facility 1: Examining Code Coverage
The following example programs show how to establish a rather simple hook exit to
report on code coverage.

 Overall Setup
This facility consists of two programs: CEEBINT and HOOKUP. The CEEBINT
module is coded so that:

� A hook exit to the HOOKUP program is established
� Calls to IBMBHKS are made to set hooks prior to execution.

At run time, whenever HOOKUP gains control (via the established hook exit), it
calls IBMBSIR to obtain code coverage information on the MAIN procedure and
those linked with it.

Note: The CEEBINT routine uses a recursive routine Add_Module_to_List to
locate and save information on the MAIN module and all the modules linked with it.
Before this routine is recursively invoked, a check should be made to see if the
module to be added has already been added. If such a check is not made, the
subroutine could call itself endlessly.

The SPROG suboption of the LANGLVL compile-time option is specified in order to
enable the adding to a pointer that takes place in CEEBINT and the comparing of
two pointers that takes place in HOOKUP.

 Output Generated
The output given in Figure 69 on page 273 is generated during execution of a PL/I
program called KNIGHT. The KNIGHT program's function is to determine the
moves a knight must make to land on each square of a chess board only once.

The output is created by the HOOKUP program as employed in this facility.

272 PL/I for MVS & VM Programming Guide

 Post processing

 Data for block KNIGHT

 Statement Type Visits Percent

 1 block entry 1 ð.ð264

 14 before call 1 ð.ð264

 14 after call 1 ð.ð264

21 start of do loop 63 1.6662

23 start of do loop 5ð4 13.3298

 25 if-true 229 6.ð565

 25 if-true 91 2.4ð67

 29 if-false 138 3.6498

 3ð if-false 275 7.2732

 32 if-true 63 1.6662

33 start of do loop 5ð4 13.3298

 34 if-true 224 5.9243

 35 if-false 28ð 7.4ð54

 42 if-false ð ð.ðððð

44 start of do loop 8 ð.2115

 65 block exit 1 ð.ð264

 Data for block INITIALIZE_RANKINGS

 Statement Type Visits Percent

 48 block entry 1 ð.ð264

5ð start of do loop 12 ð.3173

51 start of do loop 144 3.8ð85

 52 if-true 8ð 2.1158

 53 if-false 64 1.6926

56 start of do loop 8 ð.2115

57 start of do loop 64 1.6926

58 start of do loop 512 13.5413

 59 if-true 176 4.6548

 6ð if-false 336 8.8865

 64 block exit 1 ð.ð264

Figure 69. Code Coverage Produced by Sample Facility 1

 Source Code
The source code for Sample Facility 1 follows (CEEBINT in Figure 70, and
HOOKUP in Figure 71 on page 280).

 Chapter 13. Examining and Tuning Compiled Modules 273

%PROCESS FLAG(I) GOSTMT STMT SOURCE;

%PROCESS OPT(2) TEST(NONE,NOSYM) LANGLVL(SPROG);

 CEEBINT: Proc(Number, RetCode, RsnCode, FncCode, A_Main,

UserWd, A_Exits)

 options(reentrant) reorder;

Dcl Number fixed bin(31); /\ Number of args = 7 \/

Dcl RetCode fixed bin(31); /\ Return Code = ð \/

Dcl RsnCode fixed bin(31); /\ Reason Code = ð \/

Dcl FncCode fixed bin(31); /\ Function Code = 1 \/

Dcl A_Main pointer; /\ Address of Main Routine \/

Dcl UserWd fixed bin(31); /\ User Word \/

Dcl A_Exits pointer; /\ A(Exits list) \/

 Declare A_exit_list pointer;

 Declare

 1 Exit_list based(A_exit_list),

 2 Exit_list_count fixed bin(31),

 2 Exit_list_slots,

 3 Exit_for_hooks pointer,

 2 Exit_list_end char(ð);

 Declare

 1 Hook_exit_block based(Exit_for_hooks),

 2 Hook_exit_len fixed bin(31),

 2 Hook_exit_rtn pointer,

 2 Hook_exit_fnccode fixed bin(31),

 2 Hook_exit_retcode fixed bin(31),

 2 Hook_exit_rsncode fixed bin(31),

2 Hook_exit_userword pointer,

 2 Hook_exit_ptr pointer,

2 Hook_exit_reserved pointer,

 2 Hook_exit_dsa pointer,

 2 Hook_exit_addr pointer,

 2 Hook_exit_end char(ð);

 Declare

 1 Exit_area based(Hook_exit_ptr),

 2 Exit_bdata pointer,

 2 Exit_pdata pointer,

 2 Exit_epa pointer,

 2 Exit_mod_end pointer,

 2 Exit_a_visits pointer,

 2 Exit_prev_mod pointer,

 2 Exit_area_end char(ð);

 Declare (Addr,Entryaddr) builtin;

 Declare (Stg,Sysnull) builtin;

Declare IBMBHKS external entry(fixed bin(31), fixed bin(31));

Dcl HksFncStmt fixed bin(31) init(1) static;

Dcl HksFncEntry fixed bin(31) init(2) static;

Dcl HksFncExit fixed bin(31) init(3) static;

Dcl HksFncPath fixed bin(31) init(4) static;

Dcl HksFncLabel fixed bin(31) init(5) static;

Dcl HksFncBCall fixed bin(31) init(6) static;

Dcl HksFncACall fixed bin(31) init(7) static;

 Dcl HksRetCode fixed bin(31);

Figure 70 (Part 1 of 6). Sample Facility 1: CEEBINT Module

274 PL/I for MVS & VM Programming Guide

 /\\/

 /\ \/

/\ Following declares are used in setting up HOOKUP as the exit \/

 /\ \/

 /\\/

 Declare HOOKUP external entry;

Declare IBMBSIR external entry(pointer);

 Declare

 1 Sir_data,

 /\ \/

2 Sir_fnccode fixed bin(31), /\ Function code \/

/\ 3: supply data for module \/

/\ 4: supply data for blocks \/

/\ 5: supply data for stmts \/

/\ 6: supply data for paths \/

 /\ \/

2 Sir_retcode fixed bin(31), /\ Return code \/

 /\ ð: successful \/

/\ 4: not compiled with \/

/\ appropriate TEST opt. \/

/\ 8: not PL/I or not \/

/\ compiled with TEST \/

/\ 12: unknown function code \/

 /\ \/

2 Sir_entry entry, /\ Entry var for module \/

 /\ \/

 2 Sir_mod_data pointer, /\ A(module_data) \/

 /\ \/

2 Sir_a_data pointer, /\ A(data for function code) \/

 /\ \/

 2 Sir_end char(ð); /\ \/

 Declare

 1 Module_data,

 /\ \/

2 Module_len fixed bin(31), /\ = STG(Module_data) \/

 /\ \/

2 Module_options, /\ Compile time options \/

 /\ \/

 3 Module_general_options, /\ \/

 /\ \/

4 Module_stmtno BIT(ð1), /\ Stmt number table does \/

 /\ not exist \/

4 Module_gonum BIT(ð1), /\ Table has GONUMBER format \/

4 Module_cmpatv1 BIT(ð1), /\ compiled with CMPAT(V1) \/

4 Module_graphic BIT(ð1), /\ compiled with GRAPHIC \/

4 Module_opt BIT(ð1), /\ compiled with OPTIMIZE \/

4 Module_inter BIT(ð1), /\ compiled with INTERRUPT \/

 4 Module_gen1x BIT(ð2), /\ Reserved \/

 /\ \/

 3 Module_general_options2, /\ \/

 /\ \/

 4 Module_gen2x BIT(ð8), /\ Reserved \/

 /\ \/

 3 Module_test_options, /\ \/

4 Module_test BIT(ð1), /\ compiled with TEST \/

4 Module_stmt BIT(ð1), /\ STMT suboption is valid \/

4 Module_path BIT(ð1), /\ PATH suboption is valid \/

4 Module_block BIT(ð1), /\ BLOCK suboption is valid \/

 4 Module_testx BIT(ð3), /\ Reserved \/

4 Module_sym BIT(ð1), /\ SYM suboption is valid \/

 /\ \/

Figure 70 (Part 2 of 6). Sample Facility 1: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 275

 3 Module_sys_options, /\ \/

 4 Module_cms BIT(ð1), /\ SYSTEM(CMS) \/

 4 Module_cmstp BIT(ð1), /\ SYSTEM(CMSTP) \/

 4 Module_mvs BIT(ð1), /\ SYSTEM(MVS) \/

 4 Module_tso BIT(ð1), /\ SYSTEM(TSO) \/

 4 Module_cics BIT(ð1), /\ SYSTEM(CICS \/

 4 Module_ims BIT(ð1), /\ SYSTEM(IMS) \/

 4 Module_sysx BIT(ð2), /\ Reserved \/

 /\ \/

2 Module_blocks fixed bin(31), /\ Count of blocks \/

 /\ \/

2 Module_size fixed bin(31), /\ Size of module \/

 /\ \/

2 Module_shooks fixed bin(31), /\ Count of stmt hooks \/

 /\ \/

2 Module_phooks fixed bin(31), /\ Count of path hooks \/

 /\ \/

2 Module_exts fixed bin(31), /\ Count of external entries \/

 /\ \/

 2 Module_data_end char(ð);

 Declare

 1 Block_table based(A_block_table),

 2 Block_a_data pointer,

 2 Block_count fixed bin(31),

2 Block_data(Blocks refer(Block_count)),

 3 Block_offset fixed bin(31),

 3 Block_size fixed bin(31),

 3 Block_level fixed bin(15),

 3 Block_parent fixed bin(15),

 3 Block_child fixed bin(15),

 3 Block_sibling fixed bin(15),

 3 Block_name char(34) varying,

 2 Block_table_end char(ð);

 Declare

 1 Stmt_table based(A_stmt_table),

 2 Stmt_a_data pointer,

 2 Stmt_count fixed bin(31),

 2 Stmt_data(Stmts refer(Stmt_count)),

 3 Stmt_offset fixed bin(31),

 3 Stmt_no fixed bin(31),

 3 Stmt_lineno fixed bin(15),

 3 Stmt_reserved fixed bin(15),

 3 Stmt_type fixed bin(15),

 3 Stmt_block fixed bin(15),

 2 Stmt_table_end char(ð);

 Declare

 1 Path_table based(A_path_table),

 2 Path_a_data pointer,

 2 Path_count fixed bin(31),

 2 Path_data(Paths refer(Path_count)),

 3 Path_offset fixed bin(31),

 3 Path_no fixed bin(31),

 3 Path_lineno fixed bin(15),

 3 Path_reserved fixed bin(15),

 3 Path_type fixed bin(15),

 3 Path_block fixed bin(15),

 2 Path_table_end char(ð);

 Declare Blocks fixed bin(31);

 Declare Stmts fixed bin(31);

 Declare Paths fixed bin(31);

 Declare Visits fixed bin(31);

Figure 70 (Part 3 of 6). Sample Facility 1: CEEBINT Module

276 PL/I for MVS & VM Programming Guide

 Declare A_block_table pointer;

 Declare A_path_table pointer;

 Declare A_stmt_table pointer;

 Declare

 1 Hook_table based(Exit_a_visits),

 2 Hook_data_size fixed bin(31),

2 Hook_data(Visits refer(Hook_data_size)),

 3 Hook_visits fixed bin(31),

 2 Hook_data_end char(ð);

 Declare A_visits pointer;

 Declare A_type pointer;

Declare Previous_in_chain pointer;

 /\\/

 /\ \/

/\ Following code is used to set up the hook exit control block \/

 /\ \/

 /\\/

 Allocate Exit_list;

Exit_list_count = 1;

A_Exits = A_exit_list;

 Allocate Hook_exit_block;

Hook_exit_len = Stg(Hook_Exit_block);

 /\\/

 /\ \/

/\ Following code sets up HOOKUP as the hook exit \/

 /\ \/

 /\\/

Hook_exit_rtn = Entryaddr(HOOKUP);

Previous_in_chain = Sysnull();

Call Add_module_to_list(A_main);

Call IBMBHKS(HksFncEntry, HksRetCode);

Call IBMBHKS(HksFncExit, HksRetCode);

Call IBMBHKS(HksFncPath, HksRetCode);

Figure 70 (Part 4 of 6). Sample Facility 1: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 277

 /\\/

 /\ \/

/\ Following subroutine retrieves all the static information \/

/\ available on the MAIN routine and those linked with it \/

 /\ \/

 /\\/

Add_module_to_list: Proc(In_epa) recursive;

 Dcl In_epa pointer;

 Dcl Next_epa pointer;

 Dcl Inx fixed bin(31);

 Declare

 1 Exts_table based(A_exts_table),

 2 Exts_a_data pointer,

 2 Exts_count fixed bin(31),

 2 Exts_data(Exts refer(Exts_count)),

 3 Exts_epa pointer,

 2 Exts_table_end char(ð);

 Declare Exts fixed bin(31);

 Declare A_exts_table pointer;

Sir_fnccode = 3;

Entryaddr(Sir_entry) = In_epa;

Sir_mod_data = Addr(Module_data);

Module_len = Stg(Module_data);

 Call IBMBSIR(Addr(Sir_data));

If (Sir_retcode = ð)

& (Module_path) then

 Do;

Sir_fnccode = 4;

Blocks = Module_blocks;

 Allocate Block_table;

Block_a_data = ADDR(Block_data);

Sir_a_data = A_block_table;

 Call IBMBSIR(Addr(Sir_data));

Sir_fnccode = 6;

Paths = Module_phooks;

 Allocate Path_table;

Path_a_data = Addr(Path_data);

Sir_a_data = A_path_table;

 Call IBMBSIR(Addr(Sir_data));

/\ Allocate areas needed \/

 Allocate Exit_area;

Exit_prev_mod = Previous_in_chain;

Previous_in_chain = Hook_exit_ptr;

Exit_pdata = A_path_table;

Exit_bdata = A_block_table;

Exit_epa = In_epa;

Exit_mod_end = Exit_epa + module_size;

Figure 70 (Part 5 of 6). Sample Facility 1: CEEBINT Module

278 PL/I for MVS & VM Programming Guide

Visits = Paths;

Allocate Hook_table Set(Exit_a_visits);

Hook_visits = ð;

If Module_exts = ð then;

 Else

 Do;

Sir_fnccode = 7;

Exts = Module_exts;

 Allocate Exts_table;

Exts_a_data = Addr(Exts_data);

Sir_a_data = A_exts_table;

 Call IBMBSIR(Addr(Sir_data));

If Sir_retcode = ð then

 Do;

Do Inx = 1 to Exts;

Next_epa = A_exts_table->Exts_epa(Inx);

Call Add_module_to_list(Next_epa);

 End;

 Free Exts_table;

 End;

 Else;

 End;

 End;

 Else;

 End Add_module_to_list;

 End;

Figure 70 (Part 6 of 6). Sample Facility 1: CEEBINT Module

.

 Chapter 13. Examining and Tuning Compiled Modules 279

%PROCESS FLAG(I) GOSTMT STMT SOURCE;

%PROCESS OPT(2) TEST(NONE,NOSYM) LANGLVL(SPROG);

 HOOKUP: Proc(Exit_for_hooks) reorder;

Dcl Exit_for_hooks pointer; /\ Address of exit list \/

 Declare

 1 Hook_exit_block based(Exit_for_hooks),

 2 Hook_exit_len fixed bin(31),

 2 Hook_exit_rtn pointer,

 2 Hook_exit_fnccode fixed bin(31),

 2 Hook_exit_retcode fixed bin(31),

 2 Hook_exit_rsncode fixed bin(31),

2 Hook_exit_userword pointer,

 2 Hook_exit_ptr pointer,

2 Hook_exit_reserved pointer,

 2 Hook_exit_dsa pointer,

 2 Hook_exit_addr pointer,

 2 Hook_exit_end char(ð);

 Declare

 1 Exit_area based(Module_data),

 2 Exit_bdata pointer,

 2 Exit_pdata pointer,

 2 Exit_epa pointer,

 2 Exit_last pointer,

 2 Exit_a_visits pointer,

 2 Exit_prev_mod pointer,

 2 Exit_area_end char(ð);

 Declare

 1 Path_table based(Exit_pdata),

 2 Path_a_data pointer,

 2 Path_count fixed bin(31),

 2 Path_data(32767),

 3 Path_offset fixed bin(31),

 3 Path_no fixed bin(31),

 3 Path_lineno fixed bin(15),

 3 Path_reserved fixed bin(15),

 3 Path_type fixed bin(15),

 3 Path_block fixed bin(15),

 2 Path_table_end char(ð);

 Declare

 1 Block_table based(Exit_bdata),

 2 Block_a_data pointer,

 2 Block_count fixed bin(31),

 2 Block_data(32767),

 3 Block_offset fixed bin(31),

 3 Block_size fixed bin(31),

 3 Block_level fixed bin(15),

 3 Block_parent fixed bin(15),

 3 Block_child fixed bin(15),

 3 Block_sibling fixed bin(15),

 3 Block_name char(34) varying,

 2 Block_table_end char(ð);

 Declare

 1 Hook_table based(Exit_a_visits),

 2 Hook_data_size fixed bin(31),

 2 Hook_data(32767),

 3 Hook_visits fixed bin(31),

 2 Hook_data_end char(ð);

Figure 71 (Part 1 of 4). Sample Facility 1: HOOKUP Program

280 PL/I for MVS & VM Programming Guide

 Declare Ps fixed bin(31);

 Declare Ix fixed bin(31);

 Declare Jx fixed bin(31);

 Declare Total float dec(ð6);

 Declare Percent Fixed dec(6,4);

 Declare Col1 char(33);

 Declare Col2 char(14);

 Declare Col3 char(1ð);

 Declare Sysnull Builtin;

 Declare Module_data pointer;

Module_data = Hook_exit_ptr;

 /\\/

 /\ \/

/\ Search for hook address in chain of modules \/

 /\ \/

 /\\/

Do While (Hook_exit_addr < Exit_epa | Hook_exit_addr > Exit_last)

Until (Module_data = Sysnull());

Module_data = Exit_prev_mod;

 End;

 /\\/

 /\ \/

/\ If not, found \/

 /\ IBMBHIR could be called to find address of entry point \/

 /\ for the module \/

 /\ IBMBSIR could then be called as in CEEBINT to add \/

 /\ module to the chain of known modules \/

 /\ \/

 /\\/

If Module_data = Sysnull() then;

 Else

 Do;

Ps = Hook_exit_addr - Exit_epa;

 /\\/

 /\ \/

/\ A binary search could be done here and such a search \/

/\ would be much more efficient for large programs \/

 /\ \/

 /\\/

Do Ix = 1 to Path_count

While (Ps ¬= Path_offset(Ix));

 End;

If (Ix > ð) & (Ix <= Path_count) then

Hook_visits(Ix) = Hook_visits(Ix) + 1;

 Else;

Figure 71 (Part 2 of 4). Sample Facility 1: HOOKUP Program

 Chapter 13. Examining and Tuning Compiled Modules 281

 /\\/

 /\ \/

/\ If hook type is for block exit \/

 /\ AND \/

/\ block being exited is the first block in a procedure \/

 /\ AND \/

/\ that procedure is the MAIN procedure, then \/

/\ invoke the post processing routine \/

 /\ \/

/\ Note that these conditions might never be met, for \/

/\ example, if SIGNAL FINISH were issued or if an \/

/\ EXEC CICS RETURN were issued \/

 /\ \/

 /\\/

If Path_type(Ix) = 2

& Path_block(Ix) = 1

& Exit_prev_mod = Sysnull() then

 Do;

Put skip list (' ');

Put skip list (' ');

Put skip list ('Post processing');

Module_data = Hook_exit_ptr;

Do Until (Module_data = Sysnull());

 Call Report_data;

Module_data = Exit_prev_mod;

 End;

 End;

 Else;

 End;

Hook_exit_retcode = 4;

Hook_exit_rsncode = ð;

 Report_data: Proc;

Total = ð;

Do Jx = 1 to Path_count;

Total = Total + Hook_visits(Jx);

 End;

Put skip list (' ');

Do Jx = 1 to Path_count;

If Path_type(Jx) = 1 then

 do;

Put skip list (' ');

Put skip list ('Data for block ' ||

 Block_name(Path_block(Jx)));

Put skip list (' ');

Col1 = ' Statement Type';

Col2 = ' Visits';

Col3 = ' Percent';

Put skip list (Col1 || ' ' || Col2 || ' ' || Col3);

Put skip list (' ');

 end;

 Else;

Figure 71 (Part 3 of 4). Sample Facility 1: HOOKUP Program

282 PL/I for MVS & VM Programming Guide

Select (Path_type(Jx));

When (1)

Col1 = Path_no(Jx) || ' block entry';

When (2)

Col1 = Path_no(Jx) || ' block exit';

When (3)

Col1 = Path_no(Jx) || ' label';

When (4)

Col1 = Path_no(Jx) || ' before call';

When (5)

Col1 = Path_no(Jx) || ' after call';

When (6)

Col1 = Path_no(Jx) || ' start of do loop';

When (7)

Col1 = Path_no(Jx) || ' if-true';

When (8)

Col1 = Path_no(Jx) || ' if-false';

 Otherwise

Col1 = Path_no(Jx);

 End;

Col2 = Hook_visits(Jx);

Percent = 1ðð \ (Hook_visits(Jx)/Total);

Put skip list (Col1 || ' ' || Col2 || ' ' || Percent);

 End;

Put skip list (' ');

Put skip list (' ');

Put skip list (' ');

 End Report_data;

 End;

Figure 71 (Part 4 of 4). Sample Facility 1: HOOKUP Program

 Chapter 13. Examining and Tuning Compiled Modules 283

Sample Facility 2: Performing Function Tracing
The following example programs show how to establish a rather simple hook exit to
perform function tracing.

 Overall Setup
This facility consists of two programs: CEEBINT and HOOKUPT. The CEEBINT
module is coded such that:

� A hook exit to the HOOKUPT program is established
� Calls to IBMBHKS are made to set hooks prior to execution.

At run time, whenever HOOKUPT gains control (via the established hook exit), it
calls IBMBHIR to obtain information to create a function trace.

 Output Generated
The output given in Figure 72 below is generated during execution of a PL/I
program called KNIGHT. The KNIGHT program's function is to determine the
moves a knight must make to land on each square of a chess board only once.

The output is created by the HOOKUPT program as employed in this facility.

 Entry hook in KNIGHT

 Exit hook in KNIGHT

Figure 72. Function Trace Produced by Sample Facility 2

Note: In a more complicated program, many more entry and exit messages would
be produced.

 Source Code
The source code for Sample Facility 2 follows (CEEBINT in Figure 73, and
HOOKUPT in Figure 74 on page 287).

284 PL/I for MVS & VM Programming Guide

%PROCESS FLAG(I) GOSTMT STMT SOURCE;

%PROCESS OPT(2) TEST(NONE,NOSYM) LANGLVL(SPROG);

 CEEBINT: Proc(Number, RetCode, RsnCode, FncCode, A_Main,

UserWd, A_Exits)

 options(reentrant) reorder;

Dcl Number fixed bin(31); /\ Number of args = 7 \/

Dcl RetCode fixed bin(31); /\ Return Code = ð \/

Dcl RsnCode fixed bin(31); /\ Reason Code = ð \/

Dcl FncCode fixed bin(31); /\ Function Code = 1 \/

Dcl A_Main pointer; /\ Address of Main Routine \/

Dcl UserWd fixed bin(31); /\ User Word \/

Dcl A_Exits pointer; /\ A(Exits list) \/

 Declare A_exit_list pointer;

 Declare

 1 Exit_list based(A_exit_list),

 2 Exit_list_count fixed bin(31),

 2 Exit_list_slots,

 3 Exit_for_hooks pointer,

 2 Exit_list_end char(ð);

 Declare

 1 Hook_exit_block based(Exit_for_hooks),

 2 Hook_exit_len fixed bin(31),

 2 Hook_exit_rtn pointer,

 2 Hook_exit_fnccode fixed bin(31),

 2 Hook_exit_retcode fixed bin(31),

 2 Hook_exit_rsncode fixed bin(31),

2 Hook_exit_userword pointer,

 2 Hook_exit_ptr pointer,

2 Hook_exit_reserved pointer,

 2 Hook_exit_dsa pointer,

 2 Hook_exit_addr pointer,

 2 Hook_exit_end char(ð);

 Declare

 1 Exit_area based(Hook_exit_ptr),

 2 Exit_bdata pointer,

 2 Exit_pdata pointer,

 2 Exit_epa pointer,

 2 Exit_mod_end pointer,

 2 Exit_a_visits pointer,

 2 Exit_prev_mod pointer,

 2 Exit_area_end char(ð);

 Declare (Addr,Entryaddr) builtin;

 Declare (Stg,Sysnull) builtin;

Declare IBMBHKS external entry(fixed bin(31), fixed bin(31));

Dcl HksFncStmt fixed bin(31) init(1) static;

Dcl HksFncEntry fixed bin(31) init(2) static;

Dcl HksFncExit fixed bin(31) init(3) static;

Dcl HksFncPath fixed bin(31) init(4) static;

Dcl HksFncLabel fixed bin(31) init(5) static;

Dcl HksFncBCall fixed bin(31) init(6) static;

Dcl HksFncACall fixed bin(31) init(7) static;

 Dcl HksRetCode fixed bin(31);

Figure 73 (Part 1 of 2). Sample Facility 2: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 285

 /\\/

 /\ \/

/\ Following code is used to set up the hook exit control block \/

 /\ \/

 /\\/

 Allocate Exit_list;

Exit_list_count = 1;

A_Exits = A_exit_list;

 Allocate Hook_exit_block;

Hook_exit_len = Stg(Hook_Exit_block);

 /\\/

 /\ \/

/\ Following code sets up HOOKUPT as the hook exit \/

 /\ \/

 /\\/

 Declare HOOKUPT external entry;

Hook_exit_rtn = Entryaddr(HOOKUPT);

Call IBMBHKS(HksFncEntry, HksRetCode);

Call IBMBHKS(HksFncExit, HksRetCode);

 End;

Figure 73 (Part 2 of 2). Sample Facility 2: CEEBINT Module

286 PL/I for MVS & VM Programming Guide

%PROCESS FLAG(I) GOSTMT STMT SOURCE;

%PROCESS OPT(2) TEST(NONE,NOSYM) LANGLVL(SPROG);

 HOOKUPT: Proc(Exit_for_hooks) reorder;

Dcl Exit_for_hooks pointer; /\ Address of exit list \/

 Declare

 1 Hook_exit_block based(Exit_for_hooks),

 2 Hook_exit_len fixed bin(31),

 2 Hook_exit_rtn pointer,

 2 Hook_exit_fnccode fixed bin(31),

 2 Hook_exit_retcode fixed bin(31),

 2 Hook_exit_rsncode fixed bin(31),

2 Hook_exit_userword pointer,

 2 Hook_exit_ptr pointer,

2 Hook_exit_reserved pointer,

 2 Hook_exit_dsa pointer,

 2 Hook_exit_addr pointer,

 2 Hook_exit_end char(ð);

 Declare

 1 Hook_data,

 2 Hook_stg fixed bin(31),

 2 Hook_epa pointer,

 2 Hook_lang_code aligned bit(8),

 2 Hook_path_code aligned bit(8),

 2 Hook_name_len fixed bin(15),

 2 Hook_name_addr pointer,

 2 Hook_block_count fixed bin(31),

 2 Hook_reserved fixed bin(31),

 2 Hook_data_end char(ð);

 Declare IBMBHIR external entry;

 Declare Chars char(256) based;

 Declare (Addr,Substr) builtin;

Call IBMBHIR(Addr(Hook_data), Hook_exit_dsa, Hook_exit_addr);

If Hook_block_count = 1 then

Select (Hook_path_code);

When (1)

Put skip list('Entry hook in ' ||

 Substr(Hook_name_addr->Chars,1,Hook_name_len));

When (2)

Put skip list('Exit hook in ' ||

 Substr(Hook_name_addr->Chars,1,Hook_name_len));

 Otherwise

 ;

 End;

 Else;

 End;

Figure 74. Sample Facility 2: HOOKUPT Program

 Chapter 13. Examining and Tuning Compiled Modules 287

Sample Facility 3: Analyzing CPU-Time Usage
This facility extends the code-coverage function of Sample Facility 1 to also report
on CPU-time usage.

 Overall Setup
This facility consists of four programs: CEEBINT, HOOKUP, TIMINI, and TIMCPU.
The CEEBINT module is coded so that:

� A hook exit to the HOOKUP program is established
� Calls to IBMBHKS are made to set hooks prior to execution.

At run time, whenever HOOKUP gains control (via the established hook exit), it
calls IBMBSIR to obtain code coverage information on the MAIN procedure and
those linked with it. This is identical to the function of Sample Facility 1.

In addition, this HOOKUP program makes calls to the assembler routines TIMINI
and TIMCPU to obtain information on CPU-time usage.

The SPROG suboption of the LANGLVL compile-time option is specified in order to
enable the adding to a pointer that takes place in CEEBINT and the comparing of
two pointers that takes place in HOOKUP.

 Output Generated
The output given in Figure 75 on page 289 is generated during execution of a
sample program named EXP98 under CMS or MVS. The main procedure was
compiled with the TEST(ALL) option.

The output is created by the HOOKUP program as employed in this facility.

288 PL/I for MVS & VM Programming Guide

Data for block EXP98

Statement Type --- Visits --- --- CPU Time ---

 Number Percent Milliseconds Percent

1 block entry 1 ð.ð2ð1

16 start of do loop 24 ð.4832 83.768 ð.6ð36

26 start of do loop 38 ð.7652 1ð7.254 ð.7729

27 start of do loop 38 ð.7652 1ð2.159 ð.7362

28 if true 38 ð.7652 1ð3.ð66 ð.7427

3ð start of do loop 456 9.1824 1233.827 8.8915

31 before call 456 9.1824 1237.831 8.92ð3

31 after call 456 9.1824 1238.4ðð 8.9244

41 before call 38 ð.7652 1ð2.491 ð.7385

41 after call 38 ð.7652 1ð3.ð38 ð.7425

49 start of do loop 38 ð.7652 1ð2.ð29 ð.7352

5ð if true ð ð.ðððð ð.ððð ð.ðððð

51 if true ð ð.ðððð ð.ððð ð.ðððð

52 if true ð ð.ðððð ð.ððð ð.ðððð

54 start of do loop 3ð4 6.1216 827.971 5.9667

55 if true 76 1.53ð4 2ð6.831 1.49ð5

56 if true ð ð.ðððð ð.ððð ð.ðððð

57 if true 38 ð.7652 1ð4.351 ð.752ð

61 block exit 1 ð.ð2ð1 2.7ð3 ð.ð194

Totals for block 2ð4ð 41.ð79ð 5555.719 4ð.ð364

Data for block V1B

Statement Type --- Visits --- --- CPU Time ---

 Number Percent Milliseconds Percent

32 block entry 456 9.1824

33 start of do loop 456 9.1824 1251.487 9.ð187

34 if true 456 9.1824 1251.125 9.ð161

35 if true 456 9.1824 15ð1.528 1ð.82ð6

36 if true ð ð.ðððð ð.ððð ð.ðððð

37 if true 456 9.1824 1275.ð72 9.1887

39 block exit 456 9.1824 1256.781 9.ð569

Totals for block 2736 55.ð944 6535.993 47.1ð1ð

Data for block V1C

Statement Type --- Visits --- --- CPU Time ---

 Number Percent Milliseconds Percent

42 block entry 38 ð.7652

43 start of do loop 38 ð.7652 1ð5.529 ð.76ð4

44 if true 38 ð.7652 1ð6.233 ð.7655

45 if true ð ð.ðððð ð.ððð ð.ðððð

46 if true 38 ð.7652 1ð6.481 ð.7673

48 block exit 38 ð.7652 1ð4.547 ð.7534

Totals for block 19ð 3.826ð 422.79ð 3.ð466

Figure 75. CPU-Time Usage and Code Coverage Reported by Sample Facility 3

The performance of this facility depends on the number of hook exits invoked.
Collecting the data above increased the CPU time of EXP98 by approximately
forty-four times. Each CPU-time measurement indicates the amount of virtual CPU
time that was used since the previous hook was executed. Note that the previous
hook is not necessarily the previous hook in the figure.

In the above data, the percent columns for the number of visits and the CPU time
are very similar. This will not always be the case, especially where hidden code
(like library calls or supervisor services) is involved.

 Chapter 13. Examining and Tuning Compiled Modules 289

 Source Code
The source code for Sample Facility 3 is shown in the following figures:

CEEBINT Figure 76
HOOKUP Figure 77 on page 297
TIMINI (MVS) Figure 78 on page 302
TIMINI (CMS) Figure 79 on page 302
TIMCPU (MVS) Figure 80 on page 303
TIMCPU (CMS) Figure 81 on page 304.

%PROCESS TEST(NONE,NOSYM) LANGLVL(SPROG);

 CEEBINT: PROC(Number, RetCode, RsnCode, FncCode, A_Main,

UserWd, A_Exits)

 OPTIONS(REENTRANT) REORDER;

DCL Number FIXED BIN(31); /\ Number of args = 7 \/

DCL RetCode FIXED BIN(31); /\ Return Code = ð \/

DCL RsnCode FIXED BIN(31); /\ Reason Code = ð \/

DCL FncCode FIXED BIN(31); /\ Function Code = 1 \/

DCL A_Main POINTER; /\ Address of Main Routine \/

DCL UserWd FIXED BIN(31); /\ User Word \/

DCL A_Exits POINTER; /\ A(Exits list) \/

 /\\/

/\ This routine gets invoked at initialization of the MAIN \/

/\ Structures and variables for use in establishing a hook exit \/

 /\ \/

 /\\/

 DECLARE A_exit_list POINTER;

 DECLARE Based_ptr POINTER BASED;

 DECLARE Entry_var ENTRY VARIABLE;

 DECLARE Entryaddr BUILTIN;

 DECLARE (Stg,Sysnull) BUILTIN;

 DECLARE

 1 Exit_list BASED(A_exit_list),

 2 Exit_list_count FIXED BIN(31),

 2 Exit_list_slots,

 3 Exit_for_hooks POINTER,

 2 Exit_list_end CHAR(ð);

 DECLARE

 1 Hook_exit_block BASED(Exit_for_hooks),

 2 Hook_exit_len FIXED BIN(31),

 2 Hook_exit_rtn POINTER,

 2 Hook_exit_fnccode FIXED BIN(31),

 2 Hook_exit_retcode FIXED BIN(31),

 2 Hook_exit_rsncode FIXED BIN(31),

2 Hook_exit_userword FIXED BIN(31),

 2 Hook_exit_ptr POINTER,

2 Hook_exit_reserved POINTER,

 2 Hook_exit_dsa POINTER,

 2 Hook_exit_addr POINTER,

 2 Hook_exit_end CHAR(ð);

 DECLARE

 1 Exit_area BASED(Hook_exit_ptr),

 2 Exit_bdata POINTER,

 2 Exit_pdata POINTER,

 2 Exit_epa POINTER,

 2 Exit_xtra POINTER,

 2 Exit_area_end CHAR(ð);

Figure 76 (Part 1 of 7). Sample Facility 3: CEEBINT Module

290 PL/I for MVS & VM Programming Guide

 DECLARE

 1 Hook_table BASED(Exit_xtra),

 2 Hook_data_size FIXED BIN(31),

2 Hook_data(Visits REFER(Hook_data_size)),

 3 Hook_visits FIXED BIN(31),

 2 Hook_data_end CHAR(ð);

/\ the name of the routine that gets control at hook exit \/

DECLARE HOOKUP EXTERNAL ENTRY (POINTER);

 /\\/

 /\ \/

/\ End of structures and variables for use with hook exit \/

 /\ \/

 /\\/

 /\\/

 /\ \/

/\ Structures and variables for use in invoking IBMBSIR \/

 /\ \/

 /\\/

 DECLARE

 1 Sir_data,

 /\ \/

2 Sir_fnccode FIXED BIN(31), /\ Function code \/

/\ 1: supply data for module \/

/\ 2: supply data for blocks \/

/\ 3: supply data for stmts \/

/\ 4: supply data for paths \/

 /\ \/

2 Sir_retcode FIXED BIN(31), /\ Return code \/

 /\ ð: successful \/

/\ 4: not compiled with \/

/\ appropriate TEST opt. \/

/\ 8: not PL/I or not \/

/\ compiled with TEST \/

/\ 12: unknown function code \/

 /\ \/

2 Sir_entry ENTRY, /\ Entry var for module \/

 /\ \/

 2 Sir_mod_data POINTER, /\ A(module_data) \/

 /\ \/

2 Sir_a_data POINTER, /\ A(data for function code) \/

 /\ \/

 2 Sir_end CHAR(ð); /\ \/

 /\ \/

 DECLARE

 1 Module_data,

 /\ \/

2 Module_len FIXED BIN(31), /\ = STG(Module_data) \/

 /\ \/

2 Module_options, /\ Compile time options \/

 /\ \/

 3 Module_general_options, /\ \/

 /\ \/

4 Module_stmtno BIT(ð1), /\ Stmt number table does \/

 /\ not exist \/

Figure 76 (Part 2 of 7). Sample Facility 3: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 291

4 Module_gonum BIT(ð1), /\ Table has GONUMBER format \/

4 Module_cmpatv1 BIT(ð1), /\ compiled with CMPAT(V1) \/

4 Module_graphic BIT(ð1), /\ compiled with GRAPHIC \/

4 Module_opt BIT(ð1), /\ compiled with OPTIMIZE \/

4 Module_inter BIT(ð1), /\ compiled with INTERRUPT \/

 4 Module_gen1x BIT(ð2), /\ Reserved \/

 /\ \/

 3 Module_general_options2, /\ \/

 /\ \/

 4 Module_gen2x BIT(ð8), /\ Reserved \/

 /\ \/

 3 Module_test_options, /\ \/

4 Module_test BIT(ð1), /\ compiled with TEST \/

4 Module_stmt BIT(ð1), /\ STMT suboption is valid \/

4 Module_path BIT(ð1), /\ PATH suboption is valid \/

4 Module_block BIT(ð1), /\ BLOCK suboption is valid \/

 4 Module_testx BIT(ð3), /\ Reserved \/

4 Module_sym BIT(ð1), /\ SYM suboption is valid \/

 /\ \/

 3 Module_sys_options, /\ \/

 4 Module_cms BIT(ð1), /\ SYSTEM(CMS) \/

 4 Module_cmstp BIT(ð1), /\ SYSTEM(CMSTP) \/

 4 Module_mvs BIT(ð1), /\ SYSTEM(MVS) \/

 4 Module_tso BIT(ð1), /\ SYSTEM(TSO) \/

 4 Module_cics BIT(ð1), /\ SYSTEM(CICS \/

 4 Module_ims BIT(ð1), /\ SYSTEM(IMS) \/

 4 Module_sysx BIT(ð2), /\ Reserved \/

2 Module_blocks FIXED BIN(31), /\ Count of blocks \/

 /\ \/

2 Module_size FIXED BIN(31), /\ Size of module \/

 /\ \/

2 Module_shooks FIXED BIN(31), /\ Count of stmt hooks \/

 /\ \/

2 Module_phooks FIXED BIN(31), /\ Count of path hooks \/

 /\ \/

 2 Module_data_end CHAR(ð);

 DECLARE

 1 Block_table BASED(A_block_table),

 2 Block_a_data POINTER,

 2 Block_count FIXED BIN(31),

2 Block_data(Blocks REFER(Block_count)),

 3 Block_offset FIXED BIN(31),

 3 Block_size FIXED BIN(31),

 3 Block_level FIXED BIN(15),

 3 Block_parent FIXED BIN(15),

 3 Block_child FIXED BIN(15),

 3 Block_sibling FIXED BIN(15),

 3 Block_name CHAR(34) VARYING,

 2 Block_table_end CHAR(ð);

 DECLARE

 1 Stmt_table BASED(A_stmt_table),

 2 Stmt_a_data POINTER,

 2 Stmt_count FIXED BIN(31),

 2 Stmt_data(Stmts REFER(Stmt_count)),

 3 Stmt_offset FIXED BIN(31),

 3 Stmt_no FIXED BIN(31),

 3 Stmt_lineno FIXED BIN(15),

 3 Stmt_reserved FIXED BIN(15),

 3 Stmt_type FIXED BIN(15),

 3 Stmt_block FIXED BIN(15),

 2 Stmt_table_end CHAR(ð);

Figure 76 (Part 3 of 7). Sample Facility 3: CEEBINT Module

292 PL/I for MVS & VM Programming Guide

 DECLARE

 1 Path_table BASED(A_path_table),

 2 Path_a_data POINTER,

 2 Path_count FIXED BIN(31),

 2 Path_data(Paths REFER(Path_count)),

 3 Path_offset FIXED BIN(31),

 3 Path_no FIXED BIN(31),

 3 Path_lineno FIXED BIN(15),

 3 Path_reserved FIXED BIN(15),

 3 Path_type FIXED BIN(15),

 3 Path_block FIXED BIN(15),

 2 Path_table_end CHAR(ð);

 DECLARE Blocks FIXED BIN(31);

 DECLARE Stmts FIXED BIN(31);

 DECLARE Paths FIXED BIN(31);

 DECLARE Visits FIXED BIN(31);

 DECLARE A_block_table POINTER;

 DECLARE A_stmt_table POINTER;

 DECLARE A_path_table POINTER;

 DECLARE Addr BUILTIN;

Declare IBMBHKS external entry(fixed bin(31), fixed bin(31));

Dcl HksFncStmt fixed bin(31) init(1) static;

Dcl HksFncEntry fixed bin(31) init(2) static;

Dcl HksFncExit fixed bin(31) init(3) static;

Dcl HksFncPath fixed bin(31) init(4) static;

Dcl HksFncLabel fixed bin(31) init(5) static;

Dcl HksFncBCall fixed bin(31) init(6) static;

Dcl HksFncACall fixed bin(31) init(7) static;

 Dcl HksRetCode fixed bin(31);

DECLARE IBMBSIR EXTERNAL ENTRY (POINTER);

 /\\/

 /\ \/

/\ End of structures and variables for use in invoking IBMBSIR \/

 /\ \/

 /\\/

Figure 76 (Part 4 of 7). Sample Facility 3: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 293

 /\\/

 /\ \/

/\ Sample code for invoking IBMBSIR \/

 /\ \/

/\ IBMBSIR is first invoked to get the block and hook counts. \/

 /\ \/

/\ If that invocation is successful, the block table is allocated \/

/\ and IBMBSIR is invoked to fill in that table. \/

 /\ \/

/\ If that invocation is also successful, the path hook table is \/

/\ allocated and IBMBSIR is invoked to fill in that table. \/

 /\ \/

 /\\/

Sir_fnccode = 3;

/\- If counts are to be obtained from a non-MAIN routine -\/

/\- then put comments around the “Entryaddr(Sir_entry) = -\/

/\- A_Main” statement and remove the comments from -\/

/\- around the DCL and the “Sir_entry = Pðð” statements -\/

/\- and change Pðð (both places to the name of the -\/

/\- non-MAIN routine: -\/

Entryaddr(Sir_entry) = A_main;

 /\- DCL Pðð External entry; -\/

 /\- Sir_entry = Pðð; -\/

Sir_mod_data = Addr(Module_data);

Call IBMBSIR(Addr(Sir_data));

If Sir_retcode = ð then

 Do;

Sir_fnccode = 4;

Blocks = Module_blocks;

 Allocate Block_table;

Block_a_data = Addr(Block_data);

Sir_a_data = A_block_table;

Call IBMBSIR(Addr(Sir_data));

If Sir_retcode = ð then

 Do;

Sir_fnccode = 6;

Paths = Module_phooks;

 Allocate Path_table;

Path_a_data = Addr(Path_data);

Sir_a_data = A_path_table;

Call IBMBSIR(Addr(Sir_data));

 End;

 Else

 Do ;

Put skip list('CEEBINT MSG_2: Sir_retcode was not zero');

Put skip list('CEEBINT MSG_2: Sir_retcode = ',Sir_retcode);

Put skip list('CEEBINT MSG_2: Path table not allocated');

 End;

 End;

Figure 76 (Part 5 of 7). Sample Facility 3: CEEBINT Module

294 PL/I for MVS & VM Programming Guide

 Else

 Do ;

Put skip list('CEEBINT MSG_1: Sir_retcode was not zero');

Put skip list('CEEBINT MSG_1: Sir_retcode = ',Sir_retcode);

Put skip list('CEEBINT MSG_1: Block table not allocated');

Put skip list('CEEBINT MSG_1: Path table not allocated');

 End;

 /\\/

 /\ \/

/\ End of sample code for invoking IBMBSIR \/

 /\ \/

 /\\/

 /\\/

 /\ \/

/\ Sample code for setting up hook exit \/

 /\ \/

/\ The first two sets of instructions merely create an exit list \/

/\ containing one element and create the hook exit block to which \/

/\ that element will point. Note that the hook exit is enabled \/

/\ by this code, but it is not activated since Hook_exit_rtn = ð. \/

 /\ \/

 /\\/

 Allocate Exit_list;

A_Exits = A_exit_list;

Exit_list_count = 1;

 Allocate Hook_exit_block;

Hook_exit_len = Stg(Hook_Exit_block);

Hook_exit_userword = UserWd;

Hook_exit_rtn = Sysnull();

Hook_exit_ptr = Sysnull();

 /\\/

 /\ \/

 /\ \/

/\ The following code will cause the hook exit to invoke a \/

/\ routine called HOOKUP that will keep count of how often each \/

/\ path hook in the MAIN routine is executed. \/

 /\ \/

/\ First, the address of HOOKUP is put into the slot for the \/

/\ address of the routine to be invoked when each hook is hit. \/

 /\ \/

/\ Then, pointers to the block table and the path hook table \/

/\ obtained from IBMBSIR in the sample code above are put into \/

/\ the exit area. Next, the address of the routine being \/

/\ monitored, in this case the MAIN routine, is put into the \/

/\ exit area. Additionally, a table to keep count of the number \/

/\ of visits is created, and its address is also put into the \/

/\ exit area. \/

 /\ \/

/\ Finally IBMBHKS is invoked to turn on the PATH hooks. \/

 /\ \/

 /\\/

If Sir_retcode = ð then

 Do;

Entry_var = HOOKUP;

Hook_exit_rtn = Addr(Entry_var)->Based_ptr;

 Allocate Exit_area;

Figure 76 (Part 6 of 7). Sample Facility 3: CEEBINT Module

 Chapter 13. Examining and Tuning Compiled Modules 295

Exit_bdata = A_block_table;

Exit_pdata = A_path_table;

/\- If counts are to be obtained from a non-MAIN -\/

/\- routine then replace “A_Main” in the following -\/

/\- statement with the name of the non-MAIN routine -\/

/\- (the name declared earlier as EXTERNAL ENTRY). -\/

Exit_epa = A_main;

Visits = Paths;

 Allocate Hook_table;

Hook_visits = ð;

Call IBMBHKS(HksFncPath, HksRetCode);

 End;

 Else

 Do ;

Put skip list('CEEBINT MSG_1: Sir_retcode was not zero');

Put skip list('CEEBINT MSG_1: Sir_retcode = ',Sir_retcode);

Put skip list('CEEBINT MSG_1: Exit area not allocated');

Put skip list('CEEBINT MSG_1: Hook table not allocated');

 End;

 /\\/

 /\ \/

/\ End of sample code for setting up hook exit \/

 /\ \/

 /\\/

 /\\/

 /\ \/

/\ Place your actual user code here \/

 /\ \/

 /\\/

Put skip list('CEEBINT: At end of CEEBINT initialization');

 END CEEBINT;

Figure 76 (Part 7 of 7). Sample Facility 3: CEEBINT Module

296 PL/I for MVS & VM Programming Guide

%PROCESS TEST(NONE,NOSYM) LANGLVL(SPROG);

 Hookup : PROC(exit_for_hooks);

DECLARE Exit_for_hooks Pointer;

 DECLARE

 1 Hook_exit_block BASED(Exit_for_hooks),

 2 Hook_exit_len FIXED BIN(31),

 2 Hook_exit_rtn POINTER,

 2 Hook_exit_fnccode FIXED BIN(31),

 2 Hook_exit_retcode FIXED BIN(31),

 2 Hook_exit_rsncode FIXED BIN(31),

2 Hook_exit_userword POINTER,

 2 Hook_exit_ptr POINTER,

2 Hook_exit_reserved POINTER,

 2 Hook_exit_dsa POINTER,

 2 Hook_exit_addr POINTER,

 2 Hook_exit_end CHAR(ð);

 DECLARE

 1 Exit_area BASED(Hook_exit_ptr),

 2 Exit_bdata POINTER,

 2 Exit_pdata POINTER,

 2 Exit_epa POINTER,

 2 Exit_a_visits POINTER,

 2 Exit_area_end CHAR(ð);

 DECLARE

 1 Block_table BASED(exit_bdata),

 2 Block_a_data POINTER,

 2 Block_count FIXED BIN(31),

2 Block_data(Blocks REFER(Block_count)),

 3 Block_offset FIXED BIN(31),

 3 Block_size FIXED BIN(31),

 3 Block_level FIXED BIN(15),

 3 Block_parent FIXED BIN(15),

 3 Block_child FIXED BIN(15),

 3 Block_sibling FIXED BIN(15),

 3 Block_name CHAR(34) VARYING,

 2 Block_table_end CHAR(ð);

 DECLARE

 1 Path_table BASED(exit_pdata),

 2 Path_a_data POINTER,

 2 Path_count FIXED BIN(31),

 2 Path_data(Paths REFER(Path_count)),

 3 Path_offset FIXED BIN(31),

 3 Path_no FIXED BIN(31),

 3 Path_lineno FIXED BIN(15),

 3 Path_reserved FIXED BIN(15),

 3 Path_type FIXED BIN(15),

 3 Path_block FIXED BIN(15),

 2 Path_table_end CHAR(ð);

 DECLARE

 1 Hook_table BASED(Exit_a_visits),

 2 Hook_data_size FIXED BIN(31),

2 Hook_data(Visits REFER(Hook_data_size)),

 3 Hook_visits FIXED BIN(31),

 2 Hook_data_end CHAR(ð);

 DECLARE Ps FIXED BIN(31);

 DECLARE Ix FIXED BIN(31);

 DECLARE Jx FIXED BIN(31);

Figure 77 (Part 1 of 5). Sample Facility 3: HOOKUP Program

 Chapter 13. Examining and Tuning Compiled Modules 297

/\ ---------- Notes on cpu timing ----------------------- \/

 /\ \/

/\ TIMCPU is an assembler routine (TIMCPUVM is the CMS \/

/\ filename) which uses DIAG to get the cpu time in \/

/\ microseconds since the last system reset. Since \/

/\ only the low order 31-bits is returned to this \/

/\ procedure it is possible that a negative number may \/

/\ result when subtracting the after_time from the \/

 /\ before time. \/

/\ -------------- Declares for cpu timing --------------- \/

DCL TIMINI ENTRY OPTIONS (ASSEMBLER INTER);

DCL TIMCPU ENTRY OPTIONS (ASSEMBLER INTER);

 DCL Decimal BUILTIN;

DCL cpu_visits FIXED BIN(31) STATIC; /\ = visits \/

 DCL Hook_cpu_visits Pointer STATIC ;

DCL exe_mon FIXED BIN(31) EXTERNAL;

/\ exe_mon <=ð no cpu timing data is printed \/

/\ exe_mon =1 only block data is obtained - default \/

/\ exe_mon >=2 all hooks are timed \/

 DECLARE

 1 Hook_time_table BASED(Hook_cpu_visits),

 2 Hooksw,

 3 BLK_entry_time FIXED BIN(31,ð),

 3 Before FIXED BIN(31,ð),

 3 After FIXED BIN(31,ð),

 3 Temp_cpu FIXED BIN(31,ð),

 2 Hook_time_data_size FIXED BIN(31),

2 Hook_time_data(cpu_visits Refer(Hook_time_data_size)),

 3 Hook_time Fixed Bin(31),

 2 Hook_time_data_end Char(ð);

/\ ---------- END Declares for cpu timing --------------- \/

/\ compute offset \/

ps = hook_exit_addr - exit_epa;

/\ search for hook \/

do ix = 1 to path_count

while (ps ¬= path_offset(ix));

 end;

/\ if hook found - update table \/

if (ix > ð) & (ix <=path_count) then do;

hook_visits(ix) = hook_visits(ix) + 1;

/\ -------- this SELECT gets the cpu timings -------- \/

 Select;

When(path_type(ix)=1 & ix=1) do; /\ external block entry \/

exe_mon = 1; /\ default can be overridden in Main \/

cpu_visits = hook_data_size; /\ number of hooks \/

allocate hook_time_table; /\ cpu time table \/

hook_time = ð; /\ initialize the table \/

call TIMINI; /\ initialize timers \/

call TIMCPU (BLK_entry_time); /\ get block entry time \/

hooksw.before = BLK_entry_time; /\ block entry \/

hooksw.after = BLK_entry_time; /\ block entry \/

end; /\ end of the When(1) do \/

Figure 77 (Part 2 of 5). Sample Facility 3: HOOKUP Program

298 PL/I for MVS & VM Programming Guide

 Otherwise do;

if (exe_mon > ð) then do;

/\ collect cpu time data \/

/\ get CPU time in microseconds since last call \/

call TIMCPU (hooksw.after);

temp_cpu = hooksw.after - hooksw.before;

hook_time(ix) = hook_time(ix) + temp_cpu;

hooksw.before = hooksw.after;

end; /\ end of the if exe_mon > ð then do \/

end; /\ end of the otherwise do \/

End; /\ end of the Select \/

/\ ---End of the SELECT to get the cpu timings -------- \/

end; /\ end of the if (ix > ð) & (ix <=path_count) then do \/

 else;

/\ if exit from external (main), report \/

if path_type(ix) = 2 & path_block(ix) = 1 then

 Do;

 call post_hook_processing;

 free hook_time_table;

 End;

 else;

/\ don't invoke the debugging tool \/

hook_exit_retcode = 4;

hook_exit_rsncode = ð;

/\ -- \/

 Post_hook_processing: Procedure;

/\ -- \/

 DECLARE Total_v_count FLOAT DEC(ð6);

 DECLARE Total_c_count FLOAT DEC(ð6);

 DECLARE Tot_vst_per_blk FIXED BIN(31,ð);

 DECLARE Tot_v_pcnt_per_blk FIXED DEC(6,4);

 DECLARE Tot_cpu_per_blk FIXED BIN(31,ð);

 DECLARE Tot_c_pcnt_per_blk FIXED DEC(6,4);

 DECLARE Percent_v FIXED DEC(6,4);

 DECLARE Percent_c FIXED DEC(6,4);

 DECLARE Col1 CHAR(3ð);

 DECLARE Col2 CHAR(14);

 DECLARE Col2_3 CHAR(3ð);

 DECLARE Col3 CHAR(1ð);

 DECLARE Col4 CHAR(14);

 DECLARE Col5 CHAR(14);

 DECLARE Col4_5 CHAR(28);

 DECLARE Millisec_out FIXED DEC(1ð,3);

total_v_count = ð;

total_c_count = ð;

do jx = 1 to path_count; /\ get total hook_visits \/

total_v_count = total_v_count + hook_visits(jx);

total_c_count = total_c_count + hook_time (jx);

 end;

do Jx = 1 to path_count;

if path_type(jx) = 1 then

do; /\ at block entry so print (block) headers \/

put skip list(' ');

put skip list('Data for block ' ||

 block_name(path_block(jx)));

put skip list(' ');

 col1 = ' Statement Type';

col2_3 = ' --- Visits ---';

if exe_mon > ð

then col4_5 = '--- CPU Time ---';

else col4_5 = ' ';

put skip list(col1 || ' ' || col2_3 || ' ' || col4_5);

Figure 77 (Part 3 of 5). Sample Facility 3: HOOKUP Program

 Chapter 13. Examining and Tuning Compiled Modules 299

col1 = ' ';

col2 = ' Number';

col3 = ' Percent';

if exe_mon > ð then

 do;

col4 = ' Milliseconds';

col5 = ' Percent';

 end;

 else

 do;

col4 = ' ';

col5 = ' ';

 end;

put skip list(col1 || ' ' || col2 || ' ' || col3 ||

' ' || col4 || col5);

put skip list(' ');

 end;

 else;

Select (path_type(jx));

when (1)

col1 = Substr(char(path_no(jx)),4,11) || ' block entry';

when (2)

col1 = Substr(char(path_no(jx)),4,11) || ' block exit';

when (3)

col1 = Substr(char(path_no(jx)),4,11) || ' label';

when (4)

col1 = Substr(char(path_no(jx)),4,11) || ' before call';

when (5)

col1 = Substr(char(path_no(jx)),4,11) || ' after call';

when (6)

col1 = Substr(char(path_no(jx)),4,11) || ' start of do loop';

when (7)

col1 = Substr(char(path_no(jx)),4,11) || ' if true';

when (8)

col1 = Substr(char(path_no(jx)),4,11) || ' if false';

 otherwise

col1 = Substr(char(path_no(jx)),4,11);

end; /\ end of the select \/

col2 = hook_visits(jx);

percent_v = 1ðð\ (hook_visits(jx)/total_v_count) ;

percent_c = 1ðð\ (hook_time (jx)/total_c_count) ;

/\ ------ print out the cpu timings ------ \/

if exe_mon <= ð then /\ no cpu time wanted \/

put skip list (col1 || ' ' || col2 || ' ' || percent_v);

else do; /\ compute and print cpu times \/

 Select;

When (path_type(jx) = 1 & jx = 1) Do;

/\ at external block entry \/

/\ initialize block counters \/

tot_vst_per_blk = hook_visits(jx);

tot_v_pcnt_per_blk = percent_v;

 tot_cpu_per_blk = ð;

tot_c_pcnt_per_blk = ð;

/\ no CPU time on ext block entry line \/

put skip list (col1 || ' ' || col2 || ' ' || percent_v);

End; /\ End of the When (... = 1 & jx = 1) \/

Figure 77 (Part 4 of 5). Sample Facility 3: HOOKUP Program

300 PL/I for MVS & VM Programming Guide

When (path_type(jx) = 2) Do;

/\ @ block exit so print cpu summary line \/

/\ write the "block exit" line \/

tot_vst_per_blk = tot_vst_per_blk + hook_visits(jx);

tot_v_pcnt_per_blk = tot_v_pcnt_per_blk + percent_v;

tot_cpu_per_blk = tot_cpu_per_blk + hook_time (jx);

tot_c_pcnt_per_blk = tot_c_pcnt_per_blk + percent_c;

if exe_mon > 1 then do;

millisec_out = Decimal(hook_time(jx),11,3)/1ððð;

put skip list (col1 || ' ' || col2 || ' ' || percent_v

|| ' ' || millisec_out || ' ' || percent_c);

 end;

Else do; /\ only want cpu time on summary line \/

put skip list (col1 || ' ' || col2 || ' ' || percent_v);

 end;

/\ write the "Totals for Block" line \/

col1 = ' Totals for block';

col2 = tot_vst_per_blk;

millisec_out = Decimal(tot_cpu_per_blk,11,3) / 1ððð;

put skip list (col1 || ' '|| col2 || ' ' ||

tot_v_pcnt_per_blk || ' ' || millisec_out || ' ' ||

 tot_c_pcnt_per_blk);

End; /\ End of the When (path_type(jx) = 2) \/

Otherwise do; /\ cpu hook timing \/

if path_type(jx) = 1 then do;

/\ at internal block entry \/

/\ initialize block counters \/

tot_vst_per_blk = hook_visits(jx);

tot_v_pcnt_per_blk = percent_v;

 tot_cpu_per_blk = hook_time(jx);

tot_c_pcnt_per_blk = percent_c;

 end;

 else do;

/\ not at block entry \/

tot_vst_per_blk = tot_vst_per_blk + hook_visits(jx);

tot_v_pcnt_per_blk = tot_v_pcnt_per_blk + percent_v;

tot_cpu_per_blk = tot_cpu_per_blk + hook_time (jx);

tot_c_pcnt_per_blk = tot_c_pcnt_per_blk + percent_c;

 end;

if exe_mon > 1 then do;

millisec_out = Decimal(hook_time(jx),11,3)/1ððð;

put skip list (col1 || ' ' || col2 || ' ' || percent_v

|| ' ' || millisec_out || ' ' || percent_c);

end; /\ end of the if exe_mon > 1 then do \/

else /\ only want total cpu time for the block \/

put skip list (col1 || ' ' || col2 || ' ' || percent_v);

End; /\ End of the Otherwise Do \/

End; /\ End of the Select \/

end; /\ end of the else do \/

end; /\ end of the do Jx = 1 to path_count \/

put skip list(' ');

 END post_hook_processing;

 END Hookup;

Figure 77 (Part 5 of 5). Sample Facility 3: HOOKUP Program

 Chapter 13. Examining and Tuning Compiled Modules 301

TIMINI CSECT

\ MVS Version

\ This program will initialize the interval timer for

\ measuring the task execution (CPU) time so that calls to

\ the TIMCPU routine will return the proper result. Reg ð

\ will contain the value of ð at exit of this program.

\ No arguments are passed to this program.

\

\ STANDARD PROLOGUE

STM 14,12,12(13) Save caller's registers

LR 12,15 Get base address

 USING TIMINI,12 Establish addressability

ST 13,SAVE+4 Forward link of save areas

LA 1ð,SAVE Our save area address

ST 1ð,8(,13) Backward link of save areas

LR 13,1ð Our save area is now the current one

STIMER TASK,MICVL=TIME Set interval timer (MVS)

\

\ STANDARD EPILOG

EXIT L 13,4(,13) Get previous save area address

L 14,12(,13) Restore register 14

LM 1,12,24(13) Restore regs 1 - 12

SR ð,ð Return value = ð

 MVI 12(13),X'FF' Flag return

SR 15,15 Return code = ð

BR 14 Return to caller

 DS ðD

TIME DC XL8'ððððð7FFFFFFFððð' Initial interval timer

\ time (MVS)

SAVE DS 18F'ð' Our save area

 END TIMINI

Figure 78. Sample Facility 3: TIMINI Module for MVS

TIMINI CSECT

\

SR ð,ð Return value = ð

SR 15,15 Return code = ð

BR 14 Return to caller

\

 END TIMINI

Figure 79. Sample Facility 3: TIMINI Module for VM

302 PL/I for MVS & VM Programming Guide

TIMCPU CSECT

\ MVS version

\ This program will get the amount of time, in microseconds,

\ remaining in the interval timer that has been previously

\ set by the TIMINI routine. The result is placed in the

\ full-word argument that is passed to this program.

\

\ STANDARD PROLOGUE

STM 14,12,12(13) Save caller's registers

LR 12,15 Get base address

 USING TIMCPU,12 Establish addressability

ST 13,SAVE+4 Forward link of save areas

LA 1ð,SAVE Our save area address

ST 1ð,8(,13) Backward link of save areas

LR 13,1ð Our save area is now the current one

\

L 5,ð(,1) Get address of parameter

TTIMER ,MIC,CPU Get the remaining time and save it

\

L 2,CPU Get high order part ...

L 3,CPU+4 and low order part ...

SLDL 2,2ð and only keep time (no date)

L ð,INITTIME Get initial timer value

SR ð,2 Subtract to get elapsed CPU time

ST ð,ð(,5) Put CPU time into parameter

\

\ STANDARD EPILOG

EXIT L 13,4(,13) Get previous save area address

L 14,12(,13) Restore register 14

LM 1,12,24(13) Restore registers 1 - 12

\ (rð has time)

 MVI 12(13),X'FF' Flag return

SR 15,15 Return code = ð

BR 14 Return to caller

 DS ðD

CPU DS CL8 Area to store remaining time

INITTIME DC XL4'7FFFFFFF' Initial timer value

SAVE DS 18F'ð' Our save area

 END TIMCPU

Figure 80. Sample Facility 3: TIMCPU Module for MVS

 Chapter 13. Examining and Tuning Compiled Modules 303

TIMCPU CSECT

\ CMS version

\ This program will get the amount of time, in microseconds,

\ remaining in the interval timer that has been previously

\ set by the TIMINI routine and will return the result to

\ the calling routine. The calling routine calls this

\ routine as a procedure, passing one fullword argument.

\

\ STANDARD PROLOGUE

STM 14,12,12(13) Save caller's registers

LR 12,15 Get base address

 USING TIMCPU,12 Establish addressability

ST 13,SAVE+4 Forward link save areas

LA 1ð,SAVE Our save area address

ST 1ð,8(,13) Backward link save areas

LR 13,1ð Our save area is now the current one

\

L 5,ð(,1) Get address of parameter

\

LA 1,DATETIME Address of CMS pseudo timer info

DIAG 1,ð,X'C' Get the time from CMS

L ð,CPU+4 and low order part

ST ð,ð(,5) Put CPU time into parameter

\

\ STANDARD EPILOG

EXIT L 13,4(,13) Get previous save area address

L 14,12(,13) Restore register 14

LM 1,12,24(13) Restore registers 1 - 12

\ (rð has time)

SR 15,15 Return code = ð

BR 14 Return to caller

 DS ðD

DATETIME DS ðCL32 CMS date and time info

DATE DS CL8 Date mm/dd/yy

TOD DS CL8 Time of day HH:MM:SS

CPU DS CL8 Virtual CPU time

TOTCPU DS CL8 Total CPU time

SAVE DS 18F'ð' Our save area

 END TIMCPU

Figure 81. Sample Facility 3: TIMCPU Module for VM

304 PL/I for MVS & VM Programming Guide

 Chapter 14. Efficient Programming

This chapter describes methods for improving the efficiency of PL/I programs.

The section titled “Efficient Performance” suggests how to tune run-time
performance of PL/I programs.

The “Global Optimization Features” section discusses the various types of global
optimization performed by the compiler when OPTIMIZE(TIME) is specified. The
section also contains some hints on coding PL/I programs to take advantage of
global optimization.

Finally, pages 323 through 345 cover performance-related topics. Each of these
sections has a title that begins “Notes about... .” They cover the following topics:

 � Data elements
� Expressions and references

 � Data conversion
 � Program organization
� Recognition of names

 � Storage control
 � General statements
� Subroutines and functions
� Built-in functions and pseudovariables
� Input and output
� Record-oriented data transmission
� Stream-oriented data transmission
� Picture specification characters

 � Condition handling.
| � Multitasking.

 Efficient Performance
Because of the modularity of the PL/I libraries and the wide range of optimization
performed by the compiler, many PL/I application programs have acceptable
performance and do not require tuning.

This section suggests ways in which you can improve the performance of programs
that do not fall into the above category. Other ways to improve performance are
described later in this chapter under the notes for the various topics.

It is assumed that you have resolved system considerations (for example, the
organization of the PL/I libraries), and also that you have some knowledge of the
compile-time and run-time options (see Chapter 1, “Using Compile-Time Options
and Facilities” and Language Environment for MVS & VM Programming Guide).

Tuning a PL/I Program
Remove all debugging aids from the program.

The overhead incurred by some debugging aids is immediately obvious because
these aids produce large amounts of output. However, debugging aids such as the
SUBSCRIPTRANGE and STRINGRANGE condition prefixes which produce output

 Copyright IBM Corp. 1964, 1995 305

only when an error occurs, also significantly increase both the storage requirements
and the execution time of the program.

You should also remove PUT DATA statements from the program, especially those
for which no data list is specified. These statements require control blocks to
describe the variables and library modules to convert the control block values to
external format. Both of these operations increase the program's storage
requirements.

Using the GOSTMT or GONUMBER compile-time option does not increase the
execution time of the program, but will increase its storage requirements. The
overhead is approximately 4 bytes per PL/I statement for GOSTMT, and
approximately 6 bytes per PL/I statement for GONUMBER.

Specify run-time options in the PLIXOPT variable, rather than as parameters
passed to the program initialization routines. It might prove beneficial to alter
existing programs to take advantage of the PLIXOPT variable, and to recompile
them. For a description of using PLIXOPT, see the Language Environment for
MVS & VM Programming Guide.

After removing the debugging aids, compile and run the program with the RPTSTG
run-time option. The output from the RPTSTG option gives the size that you
should specify in the STACK run-time option to enable all PL/I storage to be
obtained from a single allocation of system storage. For a full description of the
output from the RPTSTG option, see the Language Environment for MVS & VM
Programming Guide.

Manipulating Source Code: Many operations are handled in-line. You should
determine which operations are performed in-line and which require a library call,
and to arrange your program to use the former wherever possible. The majority of
these in-line operations are concerned with data conversion and string handling.
(For conditions under which string operations are handled in-line, see Table 41 on
page 328. For implicit data conversion performed in-line, see Table 42 on
page 330. For conditions under which string built-in functions are handled in-line,
see “In-Line Code” on page 314.)

In PL/I there are often several different ways of producing a given effect. One of
these ways is usually more efficient than another, depending largely on the method
of implementation of the language features concerned. The difference might be
only one or two machine instructions, or it might be several hundred.

You can also tune your program for efficient performance by looking for alternative
source code that is more efficiently implemented by the compiler. This will be
beneficial in heavily used parts of the program.

It is important to realize, however, that a particular use of the language is not
necessarily bad just because the correct implementation is less efficient than that
for some other usage; it must be reviewed in the context of what the program is
doing now and what it will be required to do in the future.

306 PL/I for MVS & VM Programming Guide

Tuning a Program for a Virtual Storage System
The output of the compiler is well suited to the requirements of a virtual storage
system. The executable code is read-only and is separate from the data, which is
itself held in discrete segments. For these reasons there is usually little cause to
tune the program to reduce paging. Where such action is essential, there are a
number of steps that you can take. However, keep in mind that the effects of
tuning are usually small.

The object of tuning for a virtual storage system is to minimize the paging; that is,
to reduce the number of times the data moves from auxiliary storage into main
storage and vice-versa. You can do this by making sure that items accessed
together are held together, and by making as many pages as possible read-only.

When using the compiler, you can write the source program so that the compiler
produces the most advantageous use of virtual storage. If further tuning is
required, you can use linkage editor statements to manipulate the output of the
compiler so that certain items appear on certain pages.

By designing and programming modular programs, you can often achieve further
tuning of programs for a virtual storage system.

To enable the compiler to produce output that uses virtual storage effectively, take
care both in writing the source code and in declaring the data. When you write
source code, avoid large branches around the program. Place statements
frequently executed together in the same section of the source program.

When you declare data, your most important consideration should be the handling
of data aggregates that are considerably larger than the page size. You should
take care that items within the aggregate that are accessed together are held
together. In this situation, the choice between arrays of structures and structures of
arrays can be critical.

Consider an aggregate containing 3000 members and each member consisting of a
name and a number. If it is declared:

DCL 1 A(3ððð),

2 NAME CHAR(14),

2 NUMBER FIXED BINARY;

the 100th name would be held adjacently with the 100th number and so they could
easily be accessed together.

However, if it is declared:

DCL 1 A,

2 NAME(3ððð) CHAR(14),

2 NUMBER(3ððð) FIXED BINARY;

all the names would be held contiguously followed by all the numbers, thus the
100th name and the 100th number would be widely separated.

When choosing the storage class for variables, there is little difference in access
time between STATIC INTERNAL or AUTOMATIC. The storage where both types
of variable are held is required during execution for reasons other than access to
the variables. If the program is to be used by several independent users
simultaneously, declare the procedure REENTRANT and use AUTOMATIC to
provide separate copies of the variables for each user. The storage used for based

 Chapter 14. Efficient Programming 307

or controlled variables is not, however, required and avoiding these storage classes
can reduce paging.

You can control the positioning of variables by declaring them BASED within an
AREA variable. All variables held within the area will be held together.

A further refinement is possible that increases the number of read-only pages. You
can declare STATIC INITIAL only those variables that remain unaltered throughout
the program and declare the procedure in which they are contained REENTRANT.
If you do this, the static internal CSECT produced by the compiler will be made
read-only, with a consequent reduction in paging overhead.

The compiler output is a series of CSECTs (control sections). You can control the
linkage editor so that the CSECTs you specify are placed together within pages, or
so that a particular CSECT will be placed at the start of a page. The linkage editor
statements you need to do this are given in your Linkage Editor and Loader
publication.

The compiler produces at least two CSECTs for every external procedure. One
CSECT contains the executable code and is known as the program CSECT; the
other CSECT contains addressing data and static internal variables and is known
as the static CSECT. In addition, the compiler produces a CSECT for every static
external variable. A number of other CSECTs are produced for storage
management. A description of compiler output is given in Language Environment
for MVS & VM Debugging Guide and Run-Time Messages.

You can declare variables STATIC EXTERNAL and make procedures external, thus
getting a CSECT for each external variable and a program CSECT and a static
internal CSECT for each external procedure. It is possible to place a number of
variables in one CSECT by declaring them BASED in an AREA that has been
declared STATIC EXTERNAL.

When you have divided your program into a satisfactory arrangement of CSECTs,
you can then analyze the use of the CSECTs and arrange them to minimize
paging. You should realize, however, that this can be a difficult and
time-consuming operation.

Global Optimization Features
The PL/I compiler attempts to generate object programs that run rapidly. In many
cases, the compiler generates efficient code for statements in the sequence written
by the programmer. In other cases, however, the compiler might alter the
sequence of statements or operations to improve the performance, while producing
the same result.

The compiler carries out the following types of optimization:

 � Expressions:
– Common expression elimination
– Redundant expression elimination
– Simplification of expressions.

 � Loops:
– Transfer of expressions from loops
– Special-case code for DO statements.

308 PL/I for MVS & VM Programming Guide

� Arrays and structures:
 – Initialization
 – Assignments

– Elimination of common control data.
� In-line code for:

 – Conversions
 – RECORD I/O
 – String manipulation
 – Built-in functions.

 � Input/output:
– Key handling for REGIONAL data sets
– Matching format lists with data lists.

 � Other:
 – Library subroutines

– Use of registers
– Analyzing run-time options during compile time (the PLIXOPT variable).

PL/I performs some of these types of optimization even when the NOOPTIMIZE
option is specified. PL/I attempts full optimization, however, only when a
programmer specifies the OPTIMIZE (TIME) compile-time option.

 Expressions
The following sections describe optimization of expressions.

Common Expression Elimination
A common expression is an expression that occurs more than once in a program,
but is intended to result in the same value each time it is evaluated. A common
expression is also an expression that is identical to another expression, with no
intervening modification to any operand in the expression. The compiler eliminates
a common expression by saving the value of the first occurrence of the expression
either in a temporary (compiler generated) variable, or in the program variable to
which the result of the expression is assigned. For example:

X1 = A1 \ B1;
...

Y1 = A1 \ B1;

Provided that the values of A1, B1, and X1 do not change between the processing
of these statements, the statements can be optimized to the equivalent of the
following PL/I statements:

X1 = A1 \ B1;
...

Y1 = X1;

 Chapter 14. Efficient Programming 309

Sometimes the first occurrence of a common expression involves the assignment of
a value to a variable that is modified before it occurs in a later expression. In this
case, the compiler assigns the value to a temporary variable. The example given
above becomes:

Temp = A1 \ B1;

X1 = Temp;
...

X1 = X1 + 2;
...

Y1 = Temp;

If the common expression occurs as a subexpression within a larger expression,
the compiler creates a temporary variable to hold the value of the common
subexpression. For example, in the expression C1 + A1 * B1, a temporary variable
contains the value of A1 * B1, if this were a common subexpression.

An important application of this technique occurs in statements containing
subscripted variables that use the same subscript value for each variable. For
example:

PAYTAX(MNO)=PAYCODE(MNO)\WKPMNT(MNO);

The compiler computes the value of the subscript MNO only once, when the
statement processes. The computation involves the conversion of a value from
decimal to binary, if MNO is declared to be a decimal variable.

Redundant Expression Elimination
A redundant expression is an expression that need not be evaluated for a program
to run correctly. For example, the logical expression:

(A=D)|(C=D)

contains the subexpressions (A=D) and (C=D). The second expression need not
be evaluated if the first one is true. This optimization makes using a compound
logical expression in a single IF statement more efficient than using an equivalent
series of nested IF statements.

Simplification of Expressions
There are two types of expression simplification processes explained below.

Modification of Loop Control Variables: Where possible, the
expression-simplification process modifies both the control variable and the iteration
specification of a do-loop for more efficient processing when using the control
variable as a subscript. The compiler calculates addresses of array elements faster
by replacing multiplication operations with addition operations. For example, the
loop:

Do I = 1 To N By 1;

A(I) = B(I);

End;

assigns N element values from array B to corresponding elements in array A.
Assuming that each element is 4 bytes long, the address calculations used for each
iteration of the loop are:

310 PL/I for MVS & VM Programming Guide

Base(A)+(4*I) for array A, and

Base(B)+(4*I) for array B,

where Base represents the base address of the array in storage. The compiler can
convert repeated multiplication of the control variable by a constant (that represents
the length of an element) to faster addition operations. It converts the optimized
DO statement above into object code equivalent to the following statement:

Do Temp = 4 By 4 To 4\N;

The compiler converts the element address calculations to the equivalent of:

Base(A) + Temp for array A, and

Base(B) + Temp for array B.

This optimization of a loop control variable and its iteration can occur only when the
control variable (used as a subscript) increases by a constant value. Programs
should not use the value of the control variable outside the loop in which it controls
iteration.

Defactorization: Where possible, a constant in an array subscript expression is
an offset in the address calculation. For example, PL/I calculates the address of a
4-byte element:

A(I+1ð)

as:

(Base(A)+4\1ð)+I\4

Replacement of Constant Expressions
Expression simplification replaces constant expressions of the form A+B or A*B,
where A and B are integer constants, with the equivalent constant. For example,
the compiler replaces the expression 2+5 with 7.

Replacement of Constant Multipliers and Exponents: The
expression-simplification process replaces certain constant multipliers and
exponents. For example:

A\2 becomes A+A,

and

A\\2 becomes A\A.

Elimination of Common Constants: If a constant occurs more than once in a
program, the compiler stores only a single copy of that constant. For example, in
the following statements:

Week_No = Week_No + 1;

Record_Count = Record_Count + 1;

the compiler stores the 1 only once, provided that Week_No and Record_Count
have the same attributes.

Code for Program Branches: The compiler allocates base registers for branch
instructions in the object program in accordance with the logical structure of the
program. This minimizes the occurrence of program-addressing load instructions in
the middle of deeply nested loops.

 Chapter 14. Efficient Programming 311

Also, the compiler arranges the branch instructions generated for IF statements as
efficiently as possible. For example, a statement such as:

IF condition THEN GOTO label;

is defined by the PL/I language as being a test of condition followed by a branch on
false to the statement following the THEN clause. However, when the THEN
clause consists only of a GOTO statement, the statement compiles as a branch on
true to the label specified in the THEN clause.

 Loops
In addition to the optimization described in “Modification of Loop Control Variables”
on page 310, PL/I provides optimization features for loops as described in the
following sections.

Transfer of Expressions from Loops
Where it is possible to produce an error-free run without affecting program results,
optimization moves invariant expressions or statements from inside a loop to a
point that immediately precedes the loop. An expression or statement occurring
within a loop is said to be invariant if the compiler can detect that the value of the
expression or the action of the statement would be identical for each iteration of the
loop. A loop can be either a do-loop or a loop in a program detectable by
analyzing the flow of control within the program. For example:

Do I = 1 To N;

B(I) = C(I) \ SQRT(N);

P = N \ J;

End;

This loop can be optimized to produce object code corresponding to the following
statements:

Temp = SQRT(N);

P = N \ J;

DO I = 1 TO N;

B(I) = C(I) \ Temp;

End;

If programmers want to use this type of optimization, they must specify REORDER
for a BEGIN or PROCEDURE block that contains the loop. If a programmer does
not specify the option, the compiler assumes the default option, ORDER, which
inhibits optimization.

Programming Considerations: The compiler transfers expressions from inside to
outside a loop on the assumption that every expression in the loop runs more
frequently than expressions immediately outside the loop. Occasionally this
assumption fails, and the compiler moves expressions out of loops to positions in
which they run more frequently than if they had remained inside the loop. For
example:

Do I = J To K While(X(I)=ð);

X(I) = Y(I) \ SQRT(N);

End;

The compiler might move the expression SQRT(N) out of the loop to a position in
which it is possible for the expression to be processed more frequently than in its

312 PL/I for MVS & VM Programming Guide

original position inside the loop. This undesired effect of optimization is prevented
by using the ORDER option for the block in which the loop occurs.

The compiler detects loops by analyzing the flow of control. The compiler can fail
to recognize a loop if programmers use label variables because of flowpaths that
they know are seldom or never used. Using label variables can inadvertently inhibit
optimization by making a loop undetectable.

Special Case Code for DO Statements
Where possible for a do-loop, the compiler generates code in which the value of
the control variable, and the values of the iteration specification, are contained in
registers throughout loop execution. For example, the compiler attempts to
maintain in registers the values of the variables I, K, and L in the following
statement:

Do I = A To K By L;

This optimization uses the most efficient loop control instructions.

Arrays and Structures
PL/I provides optimization for array and structure variables as described in the
following sections.

Initialization of Arrays and Structures
When arrays and some structures that have the BASED, AUTOMATIC, or
CONTROLLED storage class are to be initialized by a constant specified in the
INITIAL attribute, the compiler initializes the first element of the variable by the
constant. The remainder of the initialization is a single move that propagates the
value through all the elements of the variable. For example, for the following
declaration:

DCL A(2ð,2ð) Fixed Binary Init((4ðð)ð);

the compiler initializes array A using this method.

Structure and Array Assignments
The compiler implements structure and array assignment statements by single
move instructions whenever possible. Otherwise, the compiler assigns values by
the simplest loop possible for the operands in the declaration. For example:

DCL A(1ð),B(1ð), 1 S(1ð), 2 T, 2 U;

 A=B;

 A=T;

The compiler implements the first assignment statement by a single move
instruction, and the second by a loop. This occurs because array T is interleaved
with array U, thereby making a single move impossible.

Elimination of Common Control Data
The compiler generates control information to describe certain program elements
such as arrays. If there are two or more similar arrays, the compiler generates this
descriptive information only once.

 Chapter 14. Efficient Programming 313

 In-Line Code
To increase efficiency, the PL/I compiler produces in-line code (code that it
incorporates within programs) as a substitute for calls to generalized subroutines.

In-line Code for Conversions
The compiler performs most conversions by in-line code, rather than by calls to the
Library. The exceptions are:

� Conversions between character and arithmetic data

� Conversions from numeric character (PICTURE) data, where the picture
includes characters other than 9, V, Z, or a single sign or currency character

� Conversions to numeric character (PICTURE) data, where the picture includes
scale factors or floating point picture characters.

For example, the compiler converts data to PICTURE 'ZZ9V99' with in-line code.

In-line Code for Record I/O
For consecutive buffered files under certain conditions, in-line code implements the
input and output transmission statements READ, WRITE, and LOCATE rather than
calls to the Library.

In-line Code for String Manipulation
In-line code performs operations on many character strings (such as concatenation
and assignment of adjustable, varying-length, and fixed-length strings). In-line code
performs similar operations on many aligned bit strings that have a length that is a
multiple of 8.

In-line Code for Built-In Functions
The compiler uses in-line code to implement many built-in functions. INDEX and
SUBSTR are examples of functions for which the compiler usually generates in-line
code. TRANSLATE, VERIFY, and REPEAT are examples where the compiler
generates in-line code for simple cases.

Key handling for REGIONAL data sets
In certain circumstances, avoiding unnecessary conversions between fixed-binary
and character-string data types simplifies key handling for REGIONAL data sets, as
follows:

 REGIONAL(1)
If the key is a fixed binary integer with precision (12,0) through (23,0), there is no
conversion from fixed binary to character string and back again.

REGIONAL(2) and REGIONAL(3)
If the key is in the form K||I, where K is a character string and I is fixed binary with
precision (12,0) through (23,0), the rightmost eight (8) characters of the resultant
string do not reconvert to fixed binary. (This conversion would otherwise be
necessary to obtain the region number.)

314 PL/I for MVS & VM Programming Guide

Matching Format Lists with Data Lists
Where possible, the compiler matches format and data lists of edit-directed
input/output statements at compile time. This is possible only when neither list
contains repetition factors at compile time that are expressions with unknown
values. This allows in-line code to convert to or from the data list item. Also, on
input, PL/I can take the item directly from the buffer or, on output, place it directly
into the buffer. This eliminates Library calls, except when necessary to transmit a
block of data between the input or output device and the buffer. For example:

DCL (A,B,X,Y,Z) CHAR(25);

Get File(SYSIN) Edit(X,Y,Z) (A(25));

Put File(SYSPRINT) Edit(A,B) (A(25));

In this example, format list matching occurs at compile time; at run time, Library
calls are required only when PL/I transmits the buffer contents to or from the input
or output device.

Run-time Library Routines
Language Environment for MVS & VM and PL/I library routines are packaged as a
set, in such a manner that a link-edited object program contains only stubs that
correspond to these routines. This packaging minimizes program main storage
requirements. It can also reduce the time required for loading the program into
main storage.

Use of Registers
The compiler achieves more efficient loop processing by maintaining in registers
the values of loop variables that are subject to frequent modification. Keeping
values of variables in registers, as the flow of program control allows, results in
considerable efficiency. This efficiency is a result of dispensing with
time-consuming load-and-store operations that reset the values of variables in their
storage locations. When, after loop processing, the latest value of a variable is not
required, the compiler does not assign the value to the storage location of the
variable as control passes out of the loop.

Specifying REORDER for the block significantly optimizes the allocation of
registers. However, because the latest value of a variable can exist in a register
but not in the storage location of that variable, the values of variables reset in the
block might not be the latest assigned values when a computational interrupt
occurs. Specifying ORDER impedes optimizing the allocation of registers but
guarantees that all values of variables are reset in the block, thereby immediately
assigning values to their storage locations.

Program Constructs that Inhibit Optimization
The following sections describe source program constructs that can inhibit
optimization.

 Chapter 14. Efficient Programming 315

Global Optimization of Variables
The compiler considers 255 variables in the program for global optimization. It
considers the remainder solely for local optimization.

The compiler considers explicitly declared variables for global optimization in
preference to contextually declared variables, and then gives preference to
contextually declared variables over implicitly declared variables. The highest
preference is given to those variables declared in the final DECLARE statements in
the outermost block.

If your program contains more than 255 variables, you can benefit most from the
global optimization of arithmetic variables—particularly do-loop control variables and
subscripting variables. You will gain little or no benefit from the optimization of
string variables or program control data.

You should declare arithmetic variables in the final DECLARE statements in the
outermost block rather than implicitly. You can benefit further if you eliminate
declared but unreferenced variables from the program.

ORDER and REORDER Options
ORDER and REORDER are optimization options specified for a procedure or
begin-block in a PROCEDURE or BEGIN statement.

ORDER is the default for external procedures. The default for internal blocks is to
inherit ORDER or REORDER from the containing block.

 ORDER Option
Specify the ORDER option for a procedure or begin-block if you must be sure that
only the most recently assigned values of variables modified in the block are
available for ON-units, which are entered because of computational conditions
raised during the execution of statements and expressions in the block.

In a block with the ORDER option specified, the compiler might eliminate common
expressions, causing fewer computational conditions to be raised during execution
of the block than if common expressions had not been eliminated. But if a
computational condition is raised during execution of an ORDER block, the values
of variables in statements that precede the condition are the most recent values
assigned when an ON-unit refers to them for the condition.

You can use other forms of optimization in an ORDER block, except for forward or
backward move-out of any expression that can raise a condition. Since it would be
necessary to disable all the possible conditions that might be encountered, the use
of ORDER virtually suppresses any move-out of statements or expressions from
loops.

 REORDER Option
The REORDER option allows the compiler to generate optimized code to produce
the result specified by the source program, when error-free execution takes place.
Move-out is allowed for any invariant statements and expressions from inside a
loop to a point in the source program, either preceding or following such a loop.
Thus, the statement or expression is executed once only, either before or after the
loop.

316 PL/I for MVS & VM Programming Guide

More efficient execution of loops can be achieved by maintaining, in registers, the
values of variables that are subject to frequent modification during the execution of
the loops. When error-free execution allows, values can be kept in registers. This
dispenses with time-consuming load-and-store operations needed to reset the
values of variables in their storage locations. If the latest value of a variable is
required after a loop has been executed, the value is assigned to the storage
location of the variable when control passes out of the loop.

You can more significantly optimize register allocation if you specify REORDER for
the block. However, the values of variables that are reset in the block are not
guaranteed to be the latest assigned values when a computational condition is
raised, since the latest value of a variable can be present in a register but not in
the storage location of the variable. Thus, any ON-unit entered for a computational
condition must not refer to variables set in the reorder block. However, use of the
built-in functions ONSOURCE and ONCHAR is still valid in this context.

A program is in error if during execution there is a computational or system action
interrupt in a REORDER block followed by the use of a variable whose value is not
guaranteed.

Because of the REORDER restrictions, the only way you can correct erroneous
data is by using the ONSOURCE and ONCHAR pseudovariables for a
CONVERSION ON-unit. Otherwise, you must either depend on the implicit action,
which terminates execution of the program, or use the ON-unit to perform error
recovery and to restart execution by obtaining fresh data for computation. The
second approach should ensure that all valid data is processed, and that invalid
data is noted, while still taking advantage of any possible optimization. For
example:

ON OVERFLOW PUT DATA;

DO J = 1 TO M;

DO I = 1 TO N;

X(I,J) = Y(I) + Z(J) \L + SQRT(W);

P = I\J;

 END;

 END;

When the above statements appear in a reorder block, the source code compiled is
interpreted as follows:

ON OVERFLOW PUT DATA;

TEMP1 = SQRT(W);

DO J = 1 TO M;

TEMP2 = J;

DO I = 1 TO N;

X(I,J) = Y(I) +Z(J)\L+TEMP1;

 P=TEMP2;

 TEMP2=TEMP2+J;

 END;

 END;

TEMP1 and TEMP2 are temporary variables created to hold the values of
expressions moved backward out of the loops, and the statement P=I*J can be
simplified to P=N*M. If the OVERFLOW condition is raised, the values of the
variables used in the loops cannot be guaranteed to be the most recent values

 Chapter 14. Efficient Programming 317

assigned before the condition was raised, since the current values can be held in
registers, and not in the storage location to which the ON-unit must refer.

Although this example does not show it, the subscript calculations for X, Y, and Z
are also optimized.

Common Expression Elimination
Common expression elimination is inhibited by:

� The use in expressions of variables whose values can be reset in either an
input/output or computational ON-unit.

� If a based variable is, at some point in the program, overlaid on top of a
variable used in the common expression, assigning a new value to the based
variable in between the two occurrences of the common expression, inhibits
optimization.

For instance, the common expression X+Z, in the following example, is not
eliminated because the based variable A which, earlier in the program, is
overlaid on the variable X, is assigned a value in between the two occurrences
of X+Z.

DCL A BASED(P);

 P=ADDR(X);

 .

 .

 .

 P=ADDR(Y);

 .

 .

 .

 B=X+Z;

 P->A=2;

 C=X+Z;

� The use of aliased variables. An aliased variable is any variable whose value
can be modified by references to names other than its own name. Examples
are variables with the DEFINED attribute, variables used as the base for
defined variables, parameters, arguments, and based variables.

Variables whose addresses are known to an external procedure by means of
pointers that are either external or used as arguments are also assumed to be
aliased variables.

The effect of an aliased variable does not completely prevent common
expression elimination, but inhibits it slightly. For all aliased variables, the
compiler builds a list of all variables that could possibly reference the aliased
variable. The list is the same for each member of the list, and in a given
program there can be many such lists.

When an expression containing an aliased variable is checked for its use as a
common expression, the possible flow paths along which related common
expressions could occur are also searched for assignments. The search is not
only for the variable referenced in the expression, but also for all the members
of the alias list to which that variable belongs. If the program contains an
external pointer variable, it is assumed that this pointer could be set to all
variables whose addresses are known to external procedures; that is, all
external variables, all arguments passed to external procedures, and all
variables whose addresses could be assigned to the external pointer. Thus,

318 PL/I for MVS & VM Programming Guide

variables addressed by the external pointer, or by any other pointer that has a
value assigned to it from the external pointer, are assumed to belong to the
same alias list as the external variables.

� The form of an expression. If the expression B+C could be treated as a
common expression, the compiler would not be able to detect it as a common
expression in the following statement:

 D=A+B+C;

The compiler processes the expression A+B+C from left to right.
Consequently, it only recognizes the expressions A+B and (A+B)+C. However,
by coding the expression D=A+(B+C), you can ensure that it is recognized.

� The scope of a common expression. In order to determine the presence of
common expressions, the program is analyzed and the existence of flow units
is determined. A flow unit is a unit of object code that can only be entered at
the first instruction and left at the last instruction. A flow unit can contain
several PL/I source statements; conversely, a single PL/I source statement can
comprise several flow units. Common expressions are recognized across
individual flow units. However, if the program flow paths between flow units are
complex, the recognition of common expressions is inhibited across flow units.

Common expression elimination is assisted by these points:

� Variables in expressions should not be external, associated with external
pointers, or arguments to ADDR built-in functions.

� The source program should not contain external procedures, external label
variables, or label constants known to external procedures.

� Variables in expressions should not be set or accessed in ON-units, if possible.

� Expressions to be commoned or transferred must be arithmetic (for example,
A+B) or string (for example, E||F or STRING(G)) rather than compiler
generated.

The type of source program construct discussed below could cause common
expression elimination to be carried out when it should not be.

A PL/I block can access any element of an array or structure variable if the variable
is within the block's name scope, or if it has been passed to the block. When using
BASED or DEFINED variables, or pointer arithmetic under the control of the
LANGLVL(SPROG) compile-time option, be careful not to access any element that
has not been passed to the block, and whose containing structure or array has not
been passed to the block and is not within the block's name scope. Any such
attempt is invalid and might lead to unpredictable results.

In the following example, procedure X passes only the address of element A.C to
procedure Y. The first assignment statement in procedure Y makes a valid change
to A.C. However, other statements in procedure Y are invalid because they
attempt to change the values of A.B and A.D, which procedure Y cannot legally
access.

Because neither the containing structure A nor its elements B, D, and E are passed
to procedure Y, elements B, D, and E are not aliased for use by procedure Y.
Therefore, the compiler cannot detect that their values might change in procedure
Y, so it performs common expression elimination on the expression “B + D + E” in

 Chapter 14. Efficient Programming 319

procedure X. Changing the values of A.B and A.D in procedure Y would then
cause unpredictable results.

The GOTO statement in procedure Y is another error. It causes a flow of control
change between blocks that is hidden from the compiler because neither A.F nor its
containing variable A are passed to procedure Y. This invalid change in the flow of
control can also cause unpredictable results.

X: PROCEDURE OPTIONS(MAIN);

DECLARE Y ENTRY(POINTER) EXTERNAL;

 DECLARE

 1 A,

2 B FIXED BIN(31) INIT(1),

2 C FIXED BIN(31) INIT(2),

2 D FIXED BIN(31) INIT(3),

2 E FIXED BIN(31) INIT(4),

2 F LABEL VARIABLE INIT(L1);

N = B + D + E;

 CALL Y(ADDR(C));

L1: M = B + D + E;

 END X;

Y: PROCEDURE (P);

 DECLARE

 (P,Q) POINTER,

XX FIXED BIN(31) BASED;

 DECLARE

 1 AA BASED,

2 CC FIXED BIN(31),

2 DD FIXED BIN(31),

2 EE FIXED BIN(31),

2 FF LABEL VARIABLE;

P->XX = 17; /\ valid change to A.C \/

Q = P - 4; /\ invalid \/

Q->XX = 13; /\ invalid change to A.B \/

P->DD = 11; /\ invalid change to A.D \/

GOTO P->FF; /\ invalid flow to label L1 \/

 END Y;

Condition Handling for Programs with Common Expression
Elimination

The order of most operations in each PL/I statement depends on the priority of the
operators involved. However, for sub-expressions whose results form the operands
of operators of lower priority, the order of evaluation is not defined beyond the rule
that an operand must be fully evaluated before its value can be used in another
operation. These operands include subscript expressions, locator qualifier
expressions, and function references. Therefore, ON-units associated with
conditions raised during the evaluation of such sub-expressions can be entered in
an unpredictable order. Consequently, an expression might have several possible
values, according to the order of, and action taken by, the ON-units that are
entered. When a computational ON-unit is entered:

� The values of all variables set by the execution of previous statements are
guaranteed to be the latest values assigned to the variables, and can be used
by the ON-unit. For instance the PUT DATA statement can be used to record
the values of all variables on entry to an ON-unit.

320 PL/I for MVS & VM Programming Guide

� The value of any variable set in an ON-unit resulting from a computational
interrupt is guaranteed to be the latest value assigned to the variable, for any
part of the program.

Where there is a possibility that variables might be modified as the result of a
computational interrupt, either in the associated ON-unit, or as the result of the
execution of a branch from the ON-unit, common expression elimination is inhibited.
For example:

ON ZERODIVIDE B,C=1;

 .

 .

 .

 X=A\B+B/C;

 Y=A\B+D;

The compiler normally attempts to eliminate the reevaluation of the subexpression
A*B in the second assignment statement. However, in this example, if the
ZERODIVIDE condition is raised during the evaluation of B/C, the two values for
A*B would be different. Common expression elimination is inhibited to allow for this
possibility.

The above discussion applies only when the optimization option ORDER is
specified or defaulted. If you do not require the guarantees described above, you
can specify the optimization option REORDER. In this case, common expression
elimination is not inhibited.

Transfer of Invariant Expressions
Transfer of invariant expressions out of loops is inhibited by:

� ORDER specified for the block. However, transfer is not entirely prevented by
the ORDER option. It is only inhibited for operations that can raise
computational conditions. Such operations do not include array subscript
manipulation where the subscripts are calculated with logical arithmetic which
cannot raise OVERFLOW.

� The use of variables whose values can be set or used by input or output
statements.

� The use of variables whose values can be set in input/output or computational
ON-units, or which are aliased variables.

� A complicated program flow, involving external procedures, external label
variables, and label constants.

� The use of a WHILE option in a repetitive DO statement. An invariant
expression can be moved out of a do-group only if it appears in a statement
that would have been executed during every repetition of the do-group. The
appearance of a WHILE option in the DO statement of a repetitive do-group
effectively causes each statement in the do-group to be considered “not always
executed,” since it might prevent the do-group from being executed at all. (You
could, instead, have an equivalent do-group using an UNTIL option.)

� The appearance in an expression of a variant term or sub-expression preceding
an invariant term or sub-expression. For example, assume that V is variant,
and that NV1 and NV2 are invariant, in a loop containing the following
statement:

 Chapter 14. Efficient Programming 321

X = V \ NV1 \ NV2;

The appearance of V preceding the sub-expression NV1*NV2 prevents the
movement of the evaluation of NV1*NV2 out of the loop. (You could, instead,
write X = NV1 * NV2 * V; getting the same result while allowing the
sub-expression to be moved out of the loop.)

� The appearance in an expression of a constant that is not of the same data
type as subsequent invariant elements in the expression. For example,
assume that NV1 and NV2 are declared FLOAT DECIMAL, and are invariant in
a loop containing the following statement:

X = 1ðð \ NV1 \ NV2;

The constant 100 has the attributes FIXED DECIMAL. For technical reasons
beyond the scope of this discussion, this mismatch of attributes prevents the
movement of the entire expression. (You could, instead, write the constant as
100E0, which has the attributes FLOAT DECIMAL.)

You can assist transfer by specifying REORDER for the block.

Redundant Expression Elimination
Redundant expression elimination is inhibited or assisted by the same factors as for
transfer of invariant expressions, described above.

Other Optimization Features
Optimized code can be generated for the following items:

� A do-loop control variable, except when its value can be modified either
explicitly or by an ON-unit during execution of a do-loop.

� Do-loops that do not contain other do-loops. This applies only if the scope of
the control variable extends beyond the block containing the do-loop, it is given
a definite value after the do-loop and before the end of the block.

� Assignment of arrays or structures, unless noncontiguous storage is used.

� Array initialization where the same value is assigned to each element, unless
the array occupies noncontiguous storage.

� In-line conversions, unless they involve complicated picture or
character-to-arithmetic conversions.

� In-line code for the string built-in functions SUBSTR and INDEX, unless the
on-conditions STRINGSIZE or STRINGRANGE are enabled.

� Register allocation and addressing schemes, unless the program flow is
complicated by use of external procedures, external label variables, or label
constants known to external procedures. Optimized register usage is also
inhibited by the use of aliased variables and variables that are referenced or
set in an ON-unit.

322 PL/I for MVS & VM Programming Guide

Assignments and Initialization
When a variable is accessed, it is assumed to have a value which was previously
assigned to it, and which is consistent with the attributes of the variable. If this
assumption is incorrect, the program either proceeds with incorrect data or raises
the ERROR condition. Invalid values can result from failure to initialize the
variable, or it can occur as a result of the variable being set in one of the following
ways:

� By the use of the UNSPEC pseudovariable

� By record-oriented input

� By overlay defining a picture on a character string, with subsequent assignment
to the character string and then access to the picture

� By passing as an argument an incompatible value to an external procedure,
without matching the attributes of the parameter by an appropriate
parameter-descriptor list

� By assignment to a based variable with different attributes, but at the same
location.

Failure to initialize a variable results in the variable having an unpredictable value
at run time. Do not assume this value to be zero.

Failure to initialize a subscript can be detected by enabling SUBSCRIPTRANGE,
when debugging the program (provided the uninitialized value does not lie within
the range of the subscript).

Referencing a variable that has not been initialized can raise a condition. For
example:

DCL A(1ð) FIXED;

 A(1)=1ð;

PUT LIST (A);

The array should be initialized before the assignment statement, thus:

 A=ð;

Notes about Data Elements
� Take special care to make structures match when you intend to move data

from one structure to another. This avoids conversion and also allows the
structure to be moved as a unit instead of element by element.

� Use pictured data rather than character data if possible. For example, if a
piece of input data contains 3 decimal digits, and neither ONSOURCE nor
ONCHAR is used to correct invalid data:

DCL EXTREP CHARACTER(3),

INTREP FIXED DECIMAL (5,ð);

ON CONVERSION GOTO ERR;

INTREP = EXTREP;

is less efficient than:

 Chapter 14. Efficient Programming 323

DCL EXTREP CHARACTER(3),

PICREP PIC '999' DEF EXTREP,

INTREP FIXED DECIMAL (5,ð);

 IF VERIFY(EXTREP,'ð123456789')

¬= ð THEN GOTO ERR;

INTREP = PICREP;

� Declare the FIXED BINARY (31,0) attribute for internal switches and counters,
and variables used as array subscripts.

� Exercise care in specifying the precision and scale factor of variables that are
used in expressions. Using variables that have different scale factors in an
expression can generate additional object code that creates intermediate
results.

� You should, if possible, specify and test bit strings as multiples of eight bits.
However, you should specify bit strings used as logical switches according to
the number of switches required. In the following examples, (a) is preferable to
(b), and (b) is preferable to (c):

Example 1:

Single switches

(a) DCL SW BIT(1) INIT('1'B);

IF SW THEN...

(b) DCL SW BIT(8) INIT('1'B);

IF SW THEN...

(c) DCL SW BIT(8) INIT ('1'B);

IF SW = '1ððððððð'B THEN...

Example 2:

Multiple switches

(a) DCL B BIT(3);

B = '111'B;

 .

 .

 .

IF B = '111'B THEN DO;

(b) DCL B BIT(8);

B = '111ððððð'B;

 .

 .

 .

IF B = '111ððððð'B THEN DO;

(c) DCL (SW1,SW2,SW3) BIT(1);

SW1, SW2, SW3 = '1'B;

 .

 .

 .

IF SW1&SW2&SW3 THEN DO;

� If bit-string data whose length is not a multiple of 8 is to be held in structures,
you should declare such structures ALIGNED.

324 PL/I for MVS & VM Programming Guide

� Varying-length strings are generally less efficient than fixed-length strings.

Fixed-length strings are not efficient if their lengths are not known at compile
time, as in the following example:

DCL A CHAR(N);

� When storage conservation is important, use the UNALIGNED attribute to
obtain denser packing of data, with a minimum of padding.

� The precision of complex expressions follows the rules for expression
evaluation. For example, the precision of 1 + 1i is (2,0).

� Do not use control characters in a source program for other than their defined
meanings, such as delimiting a graphic string. (Control characters are those
characters whose hexadecimal value is in the range from 00 to 3F, or is FF.)
Although such use is not invalid, it can make it impossible for the source
program to be processed by products (both hardware and software) that
implement functions for the control characters.

For example, you might write a program to edit data for a device that
recognizes hexadecimal FF embedded in the data as a control character meant
to suppress display. Then, if you write:

DCL SUPPRESS CHAR(1) STATIC INIT(' ');

where the INIT value is hexadecimal FF, your program is not displayed on that
device, because the control character is recognized and suppresses all
displaying after the INIT.

Or, suppose you are creating a record that requires 1-byte numeric fields and
you choose to code the following:

DCL Xð1 CHAR(1) STATIC INIT(' '); /\ HEXADECIMAL'ð1' \/

Your program can fail if it is processed by a product that recognizes control
characters.

To avoid these problems, represent control character values by using X
character string constants. For example:

DCL SUPPRESS CHAR(1) INIT('FF'X);

DCL Xð1 CHAR(1) INIT('ð1'X);

Thus you have the values required for execution without having control
characters in the source program, you are not dependent on the bit
representation of characters, and the values used are “visible” in your source
program.

� In the case of unaligned fields, code is sometimes generated to move data to
aligned fields. Thus, if you correctly align your data and specify the ALIGNED
attribute you will avoid extraneous move instructions and improve execution
speed for aligned data.

| � If you test a read-only bit field in protected storage such that modification of
| that field would result in a protection exception, certain coding should be
| avoided. For example:

| Dcl bitfld bit(64) based(p); /\ Multiple of 8 bits \/

| If bitfld then ... /\ NC hardware instruction \/

| where bitfld is a whole number of bytes and is byte aligned. To test whether
| bitfld is zeros, the compiler attempts to generate efficient code and so executes

 Chapter 14. Efficient Programming 325

| an NC hardware instruction, which ANDs the bitfld to itself and sets the
| appropriate hardware condition code. The field is unchanged by this operation.
| However, if the field is not modifiable (read-only at a hardware level), a
| protection exception will occur.

| To avoid such a protection exception, you should explicitly test for a non=zero
| bit string, as shown in the following example:

| Dcl bitfld bit(64) based(p);

| Dcl bð bit(ð) static;

| If bitfld¬=bð then ...

Notes about Expressions and References
� Do not use operator expressions, variables, or function references where

constants can be substituted.

For example:

 DECLARE A(8);

is more efficient than

 DECLARE A(5+3);

and

 VERIFY(DATA,'ð123456789')...;

is more efficient than

DCL NUMBERS CHAR(1ð) STATIC INIT('ð123456789');

 VERIFY(DATA,NUMBERS)...;

The preprocessor is very effective in allowing the source program to be
symbolic, with expression evaluation and constant substitution taking place at
compile time. The examples above could be:

% DCL DIMA FIXED;

% DIMA = 5+...;

 DCL A(DIMA);

and

% DCL NUMBERS CHAR;

 % NUMBERS='''ð123456789''';

 VERIFY(DATA,NUMBERS)...;

� Use additional variables to avoid conversions. For example, consider a
program in which a character variable is to be regularly incremented by 1:

DECLARE CTLNO CHARACTER(8);

CTLNO = CTLNO + 1;

326 PL/I for MVS & VM Programming Guide

This example requires two conversions (one of which involves a library call),
while:

DECLARE CTLNO CHARACTER(8), DCTLNO FIXED DECIMAL;

DCTLNO = DCTLNO + 1;

CTLNO = DCTLNO;

requires only one conversion.

� You must ensure that the lengths of the intermediate results of string
expressions do not exceed 32767 bytes for CHARACTER strings, 32767 bits
for BIT strings, or 16383 double-byte characters for GRAPHIC strings. Take
special care with VARYING strings, because the length used in intermediate
results is the maximum possible length of the VARYING string.

For example, the following code is incorrect because the concatenation
operation in the PUT statement requires an intermediate CHARACTER string
length greater than 32767 bytes. The compiler will not diagnose this error, but
if the code were executed, the results would be unpredictable.

 DECLARE

 BITSTR BIT(32767) VARYING,

 LEN_B FIXED BIN(31,ð);

BITSTR = 'ðððððððððððððððððððððððððð1ððð1ð'B;

 LEN_B = LENGTH(BITSTR);

PUT SKIP LIST (SUBSTR(BITSTR,1,LEN_B) ||

 SUBSTR(BITSTR,1,LEN_B));

For this reason, avoid declaring strings with lengths close to the limit. And if
you use such strings, be especially careful not to exceed the limit when you
manipulate these strings.

� Avoid mixed mode arithmetic, especially the use of character strings in
arithmetic calculations.

� Concatenation operations on bit-strings are time-consuming.

� The string operations performed in-line are shown in Table 41 on page 328.

� X>Y|Z is not equivalent to X>Y|X>Z, but is equivalent to (X>Y)|Z.

� You can use parentheses to modify the rules of priority. You might also want
to use redundant parentheses to explicitly specify the order of operations.

� Array arithmetic is a convenient way of specifying an iterative computation. For
example:

 DCL A(1ð,2ð);

 A=A/A(1,1);

has the same effect as:

 DCL A(1ð,2ð);

DO I=1 TO 1ð;

DO J=1 TO 2ð;

 A(I,J)=A(I,J)/A(1,1);

 END; END;

The effect is to change the value of A(1,1) only, since the first iteration
produces a value of 1 for A(1,1) if A(1,1) is not equal to zero. If you want to
divide each element of A by the original value of A(1,1), you can write:

 Chapter 14. Efficient Programming 327

 B=A(1,1);

 A=A/B;

or:

 DCL A(1ð,2ð),

 B(1ð,2ð);

 B=A/A(1,1);

� Array multiplication does not affect matrix multiplication. For example:

DCL (A,B,C) (1ð,1ð);

 A=B\C;

is equivalent to:

DCL (A,B,C) (1ð,1ð);

DO I=1 TO 1ð;

DO J=1 TO 1ð;

 A(I,J)=B(I,J)\C(I,J);

 END; END;

Table 41. Conditions under Which String Operations Are Handled In-Line

String
operation

Comments and conditions

Source Target Comments

Assign Nonadjustable,
ALIGNED,
fixed-length bit
string

Nonadjustable,
ALIGNED, bit string

No length restriction if
OPTIMIZE(TIME) is
specified; otherwise
maximum length of 8192
bits

Adjustable or
VARYING,
ALIGNED bit string

Nonadjustable,
ALIGNED bit string
of length ≤2048

Only if OPTIMIZE(TIME) is
specified

Nonadjustable,
fixed-length
character string

Nonadjustable
character string

Adjustable or
VARYING
character string

Nonadjustable
character string of
length ≤256

'and',
'not', 'or'

As for bit string assignments but no adjustable or varying-length operands
are handled

Compare As for string assignment with the two operands taking the roles of source
and target, but no adjustable or varying-length operands are handled

Concatenate As for string assignments, but no adjustable or varying-length source strings
are handled

STRING
built-in
function

When the argument is an element variable, or a nonadjustable array or
structure variable in connected storage

Note: If the target is fixed-length, the maximum length is the target length. If the target is
VARYING, the maximum length is the lesser of the operand lengths.

328 PL/I for MVS & VM Programming Guide

Notes about Data Conversion
The data conversions performed in-line are shown in Table 42 on page 330. A
conversion outside the range or condition given is performed by a library call.

Not all the picture characters available can be used in a picture involved in an
in-line arithmetic conversion. The only ones allowed are:

� V and 9
� Drifting or nondrifting characters $ S and +
� Zero suppression characters Z and *
� Punctuation characters , . / and B.

For in-line conversions, pictures with this subset of characters are divided into three
types:

Picture type 1:
Pictures of all 9s with an optional V and a leading or trailing sign. For example:

'99V999', '99', 'S99V9', '99V+', '$999'

Picture type 2:
Pictures with zero suppression characters and optional punctuation characters
and a sign character. Also, type 1 pictures with punctuation characters. For
example:

'ZZZ', '\\/\\9', 'ZZ9V.99', '+ZZ.ZZZ', '$///99', '9.9'

Picture type 3:
Pictures with drifting strings and optional punctuation characters and a sign
character. For example:

'$$$$', '-,--9', 'S/SS/S9', '+++9V.9', '$$$9-'

Sometimes a picture conversion is not performed in-line even though the picture is
one of the above types. This might be because:

� SIZE is enabled and could be raised.

� There is no correspondence between the digit positions in the source and
target. For example, DECIMAL (6,8) or DECIMAL (5,-3) to PIC '999V99' will
not be performed in-line.

� The picture can have certain characteristics that make it difficult to handle
in-line. For example:

– Punctuation between a drifting Z or a drifting * and the first 9 is not
preceded by a V. For example:

 'ZZ.99'

– Drifting or zero suppression characters to the right of the decimal point.
For example:

'ZZV.ZZ' or '++V++'

 Chapter 14. Efficient Programming 329

Table 42 (Page 1 of 2). Implicit Data Conversion Performed In-Line

Conversion
Comments and conditions

Source Target

FIXED BINARY

FIXED BINARY None.

FIXED DECIMAL None.

FLOAT Long or short FLOAT target.

Bit string
String must be fixed-length, ALIGNED, and with
length less than or equal to 2048. STRINGSIZE
condition must be disabled.

Character string
or Numeric
picture

Via FIXED DECIMAL. String must be fixed-
length with length less than or equal to 256 and
STRINGSIZE disabled. Picture types 1, 2, or 3
when SIZE disabled.

FIXED DECIMAL

FIXED BINARY None.

FIXED DECIMAL None.

FLOAT
If q1+p1 less than or equal to 75. Long or
short-FLOAT target.

Bit string
String must be fixed-length, ALIGNED, and with
length less than or equal to 2048. STRINGSIZE
condition must be disabled.

Character string

If precision = scale factor, it must be even.
String must be fixed-length and length less than
or equal to 256. STRINGSIZE must be
disabled.

Numeric picture Picture types 1, 2, and 3.

FLOAT (Long or
 Short)

FIXED BINARY None.

FIXED DECIMAL Scale factor less than 80.

FLOAT
Source and target can be single or double
length.

Bit string
String must be fixed-length, ALIGNED, and with
length less than or equal to 2048. STRINGSIZE
condition must be disabled.

Bit string

FIXED BINARY
Source string must be fixed-length, ALIGNED,
and with length less than or equal to 32.

FIXED DECIMAL
and FLOAT

Source must be fixed-length, ALIGNED, and
with length less than 32.

Character string
Source must be fixed-length, ALIGNED, and
length 1 only.

Character

Bit string None.

FIXED DECIMAL
Source length 1 only. CONVERSION condition
must be disabled.

FLOAT None.

FIXED BINARY None.

Character picture
Character string

String must be fixed-length with length less or
equal to 256.

Character picture Pictures must be identical.

330 PL/I for MVS & VM Programming Guide

Table 42 (Page 2 of 2). Implicit Data Conversion Performed In-Line

Conversion
Comments and conditions

Source Target

Numeric picture
type 1 and 2

FIXED BINARY Via FIXED DECIMAL. SIZE condition disabled.

FIXED DECIMAL
Type 2 picture without * or embedded
punctuation. SIZE condition disabled.

FLOAT Via FIXED DECIMAL. Size condition disabled.

Numeric picture
Picture types 1, 2, or 3. SIZE condition
disabled.

Locator Locator None.

Notes about Program Organization
� Although you can write a program as a single external procedure, it is often

desirable to design and write the program as a number of smaller external
procedures, or modules. In PL/I, the basic units of modularity are the
procedure and the begin-block.

Some of the advantages of modular programming are:

– Program size affects the time and space required for compilation.
Generally, compilation time increases more than linearly with program size,
especially if the compiler has to spill text onto auxiliary storage. Also, the
process of adding code to a program and then recompiling it leads to
wasteful multiple-compilation of existing text. Modular programming
eliminates the above possibilities.

– If you design a procedure to perform a single function it needs to contain
only the data areas for that function. Because of the nature of
AUTOMATIC storage, there is less danger of corruption of data areas for
other functions.

– If you design a procedure to perform a single function, you can more easily
replace it with a different version. Also, you can use the same procedure in
several different applications.

– Storage allocation for all the automatic variables in a procedure occurs
when the procedure is invoked at any of its entry points. If you reduce the
number of functions performed by a procedure, you can often reduce the
number of variables declared in the procedure. This in turn can reduce the
overall demand for storage for automatic variables.

More important (from the efficient programming viewpoint) are the following
considerations:

– The compiler has a limitation on the number of variables that it can
consider for global optimization. (The number of variables does not affect
other forms of optimization.)

– The compiler has a limitation on the number of flow units that it can
consider for flow analysis and, subsequently, for global optimization.

– If the static CSECT or the DSA exceeds 4096 bytes in size, the compiler
has to generate additional code to address the more remote storage.

 Chapter 14. Efficient Programming 331

– If the object code for a procedure exceeds 4096 bytes in size, the compiler
might have to repeatedly reset base registers.

Extra invocation of procedures increases run time, but the use of modular
programming often offsets the increase, because the additional optimization
can cause significantly fewer instructions to be executed.

� Avoid unnecessary program segmentation and block structure. This includes
all procedures, ON-units, and begin-blocks that need activation and termination.
The initialization and program management for these carry an overhead.

You should assess this recommendation in conjunction with the notes on
modular programming given earlier in this section.

� The procedure given initial control at run time must have the OPTIONS(MAIN)
attribute. If more than one procedure has the MAIN option, the first one
encountered by the linkage editor receives control.

� Under the compiler, attempting the recursive use of a procedure that was not
given the RECURSIVE attribute can result in the ERROR condition after exit
from the procedure. This occurs if reference is made to automatic data from an
earlier invocation of the procedure.

Notes about Recognition of Names
Separate external declarations for the same variable must not specify conflicting
attributes (CONTROLLED EXTERNAL variables are an exception), either explicitly
or by default. If this occurs, the compiler is not able to detect the conflict.

Notes about Storage Control
� Using self-defining data (the REFER option) enables data to be held in a

compact form; it can, however, produce less-than-optimum object code. For
example, with the structure:

DCL 1 STR BASED(P),

 2 N,

 2 BEFORE,

2 ADJUST (NMAX REFER(N)),

 3 BELOW,

 2 AFTER;

a reference to BEFORE requires one instruction to address the variable,
whereas a reference to AFTER or BELOW requires approximately 18
instructions, plus a call to a resident library module.

You can organize a self-defining structure more efficiently by ensuring that the
members whose lengths are known appear before any adjustable members,
and that the most frequently used adjustable members appear before those
that are less frequently used. The previous example could thus be changed to:

DCL 1 STR BASED(P),

 2 N,

 2 BEFORE,

 2 AFTER,

2 ADJUST (NMAX REFER(N)),

 3 BELOW;

332 PL/I for MVS & VM Programming Guide

� PL/I does not allow the use of the INITIAL attribute for arrays that have the
attributes STATIC and LABEL, because the environmental information for the
array does not exist until run time.

However, when compiling procedures containing STATIC LABEL arrays, you
might improve performance by specifying the INITIAL attribute, provided that
the number of elements in the array is less than 512. What happens under
these conditions is:

– The compiler diagnoses the invalid language (STATIC, LABEL, and
INITIAL) and produces message IEL0580I, but it accepts the combination
of attributes.

– If OPT(TIME) is in effect, the compiler checks GO TO statements that refer
to STATIC LABEL variables to see whether the value of the label variable
is a label constant in the same block as the GO TO statement. If the value
is a label constant in the same block, the compiler replaces the normal
interpretative code with direct branching code. If it is not, the compiler
produces message IEL0918I and the interpretative code remains
unchanged.

– If OPT(0) is in effect, or if message IEL0918I is produced, or if the array is
larger than 512 elements, execution is liable to terminate with an interrupt,
or go into a loop, or produce other unpredictable results.

� AUTOMATIC variables are allocated at entry to a block; sequences of the
following type allocate B with the value that N had on entry to the block (not
necessarily 4):

 A: PROC;

 N=4;

DCL B(N) FIXED;

 .

 .

 .

 END;

� If you specify the INITIAL attribute for an external noncontrolled variable, you
must specify it, with the same value, on all the declarations for that variable.
An exception to this rule is that an INITIAL attribute specified for an external
variable in a compiled procedure need not be repeated elsewhere.

� String lengths, area sizes, and array bounds of controlled variables can be
recomputed at the time of an ALLOCATE statement. As a result, even if the
declaration asserts that a structure element (for example, X) is
CHARACTER(16) or BIT(1), PL/I treats the declaration as CHARACTER(*) or
BIT(*). Thus, library subroutines manipulate these strings. The compiler
allocates and releases the temporary space needed for calculations (for
instance, concatenation) using these strings each time the calculation is
performed, since the compiler does not know the true size of the temporary
space.

An alternate way of declaring character strings of known length is to declare
PICTURE '(16)X' to hold a 16-character string. Because the number “16” is
not subject to change at ALLOCATE time, better code results.

| � A variable with adjustable size that is defined on an external variable cannot be
| passed as an argument to a procedure.

 Chapter 14. Efficient Programming 333

Notes about Statements
� If a GOTO statement references a label variable, it is more efficient if the label

constants that are the values of the label variable appear in the same block as
the GOTO statement.

� When storage conservation is important, avoid the use of iterative do-groups
with multiple specifications. The following is inefficient in terms of storage
requirements:

DO I = 1,3,-5,15,31;

 .

 .

 .

 END;

� A repetitive do-group is not executed if the terminating condition is satisfied at
initialization:

 I=6;

DO J=I TO 4;

 X=X+J;

 END;

This group does not alter X, since BY 1 is implied. Iterations can step
backwards, and if BY -1 was specified, three iterations would take place.

� Expressions in a DO statement are assigned to temporaries with the same
characteristics as the expression, not the variable. For example:

DCL A DECIMAL FIXED(5,ð);

 A=1ð;

DO I=1 TO A/2;

 .

 .

 .

 END;

This loop is not executed, because A/2 has decimal precision (15,10), which,
on conversion to binary (for comparison with I), becomes binary (31,34).

Five iterations result if the DO statement is replaced by:

 ITEMP=A/2;

DO I=1 TO ITEMP;

or:

DO I=1 TO PREC(A/2,6,1)

� Upper and lower bounds of iterative do-groups are computed only once, even if
the variables involved are reassigned within the group. This applies also to the
BY expression.

Any new values assigned to the variables involved take effect only if the
do-group is started again.

� In a do-group with both a control variable and a WHILE option, the evaluation
and testing of the WHILE expression is carried out only after determination
(from the value of the control variable) that iteration can be performed. For
example, the following group is executed at most once:

334 PL/I for MVS & VM Programming Guide

DO I=1 WHILE(X>Y);

 .

 .

 .

 END;

� If the control variable is used as a subscript within the do-group, ensure that
the variable does not run beyond the bounds of the array dimension. For
instance:

 DECLARE A(1ð);

DO I = 1 TO N;

 .

 .

 .

A(I) = X;

 .

 .

 .

 END;

If N is greater than 10, the assignment statement can overwrite data beyond
the storage allocated to the array A. A bounds error can be difficult to find,
particularly if the overwritten storage happens to contain object code. You can
detect the error by enabling SUBSCRIPTRANGE.

For CMPAT(V2), you should explicitly declare the control variable as FIXED
BIN (31,0), because the default is FIXED BIN (15,0) which cannot hold fullword
subscripts.

� If a Type 2 DO specification includes both the WHEN and UNTIL options, the
DO statement provides for repetitive execution, as defined by the following:

LABEL: DO WHILE (expression1)

 UNTIL (expression2)

 statement-1

 .

 .

 .

 statement-n

 END;

NEXT: statement /\ STATEMENT FOLLOWING THE DO GROUP \/

The above is exactly equivalent to the following expansion:

LABEL: IF (expression 1) THEN; ELSE

GO TO NEXT;

 statement-1

 .

 .

 .

 statement-n

LABEL2: IF (expression2) THEN; ELSE

GO TO LABEL;

NEXT: statement /\ STATEMENT FOLLOWING THE DO GROUP \/

The statement GO TO LABEL; replaces the IF statement at label LABEL2 in
the expansion if the UNTIL option is omitted.

A null statement replaces the IF statement at label LABEL Note that, if the
WHILE option is omitted, statements 1 through n are executed at least once.

 Chapter 14. Efficient Programming 335

� If the Type 3 DO specification includes the TO and BY options, the action of
the do-group is defined by the following:

 LABEL: DO variable=

 expression1

 TO expression2

 BY expression3

 WHILE (expression4)

 UNTIL(expression5);

 statement-1

 .

 .

 .

 statement-m

 LABEL1: END;

 NEXT: statement

For a variable that is not a pseudovariable, the above action of the do-group
definition is exactly equivalent to the following expansion, in which 'p' is a
compiler-created pointer, 'v' is a compiler-created based variable based on a 'p'
and with the same attributes as 'variable,' and 'en' (n=1, 2, or 3) is a
compiler-created variable: For example:

 LABEL: p=ADDR(variable);

 e1=expression1;

 e2=expression2;

 e3=expression3;

 v=e1;

LABEL2: IF (e3>=ð)&(v>e2)│

 (e3<ð)&(v<e2)

THEN GO TO NEXT;

IF (expression4) THEN;

ELSE GO TO NEXT;

 statement-1

 .

 .

 .

 statement-m

LABEL1: IF (expression5) THEN

GO TO NEXT;

 LABEL3: v=v+e3;

GO TO LABEL2;

 NEXT: statement

336 PL/I for MVS & VM Programming Guide

If the specification includes the REPEAT option, the action of the do-group is
defined by the following:

 LABEL: DO variable=

 expression1

 REPEAT expression6

 WHILE (expression4)

 UNTIL(expression5);

 statement-1

 .

 .

 .

 statement-m

 LABEL1: END;

 NEXT: statement

For a variable that is not a pseudovariable, the above action of the do-group
definition is exactly equivalent to the following expansion:

 LABEL: p=ADDR(variable);

 e1=expression1;

 v=e1;

 LABEL2: ;

IF (expression4) THEN;

ELSE GO TO NEXT;

 statement-1

 .

 .

 .

 statement-m

LABEL1: IF (expression5) THEN

GO TO NEXT;

 LABEL3: v=expression6;

GO TO LABEL2;

 NEXT: statement

Additional rules for the above expansions follow:

– The above expansion only shows the result of one specification. If the DO
statement contains more than one specification, the statement labeled
NEXT is the first statement in the expansion for the next specification. The
second expansion is analogous to the first expansion in every respect.
Note, however, that statements 1 through m are not actually duplicated in
the program.

– Omitting the WHILE clause also omits the IF statement immediately
preceding statement-1 in each of the expansions.

| – Omitting the UNTIL clause also omits the IF statement immediately
| following statement-m in each of the expansions.

 Chapter 14. Efficient Programming 337

Notes about Subroutines and Functions
� You should consider the precision of decimal constants when such constants

are passed. For example:

 CALL ALPHA(6);

 ALPHA:PROCEDURE(X);

DCL X FIXED DECIMAL;

 END;

If ALPHA is an external procedure, the above example is incorrect because X
is given default precision (5,0), while the decimal constant, 6, is passed with
precision (1,0).

� When a procedure contains more than one entry point, with different parameter
lists on each entry, do not make references to parameters other than those
associated with the point at which control entered the procedure. For example:

 A:PROCEDURE(P,Q);

 P=Q+8; RETURN;

 B: ENTRY(R,S);

R=P+S; /\ THE REFERENCE TO P IS AN ERROR \/

 END;

When an EXTERNAL ENTRY is declared with no parameter descriptor list or with
no parameters, no matching between parameters and arguments will be done.
Therefore, if any arguments are specified in a CALL to such an entry point, no
diagnostic message will be issued.

If one of the following examples is used:

DECLARE X ENTRY EXTERNAL;

or

DECLARE X ENTRY() EXTERNAL;

any corresponding CALL statement, for example:

 CALL X(parameter);

will not be diagnosed, although it might be an error.

Notes about Built-In Functions and Pseudovariables
For efficiency, do not refer to the DATE built-in function more than once in a run.
For example, instead of:

 PAGEA= TITLEA||DATE;

 PAGEB= TITLEB||DATE;

it is more efficient to write:

 DTE=DATE;

 PAGEA= TITLEA||DTE;

 PAGEB= TITLEB||DTE;

Table 43 on page 339 shows the conditions under which string built-in functions
are performed in-line.

338 PL/I for MVS & VM Programming Guide

Assignments made to a varying string by means of the SUBSTR pseudovariable do
not set the length of the string. A varying string initially has an undefined length, so
that if all assignments to the string are made using the SUBSTR pseudovariable,
the string still has an undefined length and cannot be successfully assigned to
another variable or written out.

When UNSPEC is used as a pseudovariable, the expression on the right is
converted to a bit string. Consequently, the expression must not be invalid for such
conversion. For example, if the expression is a character string containing
characters other than 0 or 1, a conversion error will result.

If both operands of the MULTIPLY built-in function are FIXED DECIMAL and have
precision greater than or equal to 14, unpredictable results can occur if SIZE is
enabled.

If an array or structure, whose first element is an unaligned bit string that does not
start on a byte boundary, is used as an argument in a call to a subroutine or a
built-in function, the results are unpredictable.

Table 43. Conditions under Which String Built-In Functions Are Handled In-Line

String function Comments and conditions

BIT Always

BOOL The third argument must be a constant. The first two arguments must
satisfy the conditions for 'and', 'or', and 'not' operations in
Table 41 on page 328.

CHAR Always

HIGH Always

INDEX Second argument must be a nonadjustable character string less than
256 characters long.

LENGTH Always

LOW Always

REPEAT Second argument must be constant.

SUBSTR STRINGRANGE must be disabled.

TRANSLATE First argument must be fixed-length; second and third arguments must
be constant.

UNSPEC Always

VERIFY First argument must be fixed-length:

� If CHARACTER it must be less than or equal to 256 characters,
� If BIT it must be ALIGNED, less than or equal to 2048 bits.

Second argument must be constant.

Notes about Input and Output
� Allocate sufficient buffers to prevent the program from becoming I/O bound,

and use blocked output records. However, consider the impact on other
programs executing within the system.

� When creating or accessing a data set having fixed-length records, specify FS
or FBS record format, whenever possible.

 Chapter 14. Efficient Programming 339

� When a number of data sets are accessed by a single statement, use of a file
variable rather than the TITLE option can improve program efficiency by
allowing a file for each data set to remain open for as long as the data set is
required by the program. Using the TITLE option requires closing and
reopening a file whenever the statement accesses a new data set.

� The OPEN statement is executed by library routines that are loaded
dynamically at the time the OPEN statement is executed. Consequently, run
time could be improved if you specify more than one file in the same OPEN
statement, since the routines need be loaded only once, regardless of the
number of files being opened. However, opening multiple files can temporarily
require more internal storage than might otherwise be needed.

As with the OPEN statement, closing more than one file with a single CLOSE
statement can save run time, but it can require the temporary use of more
internal storage than would otherwise be needed.

Notes about Record-Oriented Data Transmission
� If you declare a file DIRECT with the INDEXED option of the ENVIRONMENT

attribute, you should also apply the ENVIRONMENT options INDEXAREA,
NOWRITE, and ADDBUFF if possible.

� When you create or access a CONSECUTIVE data set, use file and record
variable declarations that generate in-line code, if possible. Details of the
declarations are given in Chapter 8, “Defining and Using Consecutive Data
Sets” on page 129.

� Conversion of source keys for REGIONAL data sets can be avoided if the
following special cases are observed:

– For REGIONAL(1): When the source key is a fixed binary element variable
or constant, use precision in the range (12,0) to (23,0).

– For REGIONAL(2) and (3): When the source key is of the form (character
expression||r), where r is a fixed binary element variable or constant, use
precision in the range (12,0) to (23,0).

� Direct update of an INDEXED data set slows down if an input/output operation
on the same file intervenes between a READ and a REWRITE for the same
key. This can cause the REWRITE statement to issue an extra READ.

� A pointer set in READ SET or LOCATE SET is not valid beyond the next
operation on the file, or beyond a CLOSE statement. In OUTPUT files, you
can mix WRITE and LOCATE statements freely.

� When you need to rewrite a record that was read into a buffer (using a READ
SET statement that specifies a SEQUENTIAL UPDATE file) and then updated,
you can use the REWRITE statement without a FROM option. A REWRITE
after a READ SET always rewrites the contents of the last buffer onto the data
set.

340 PL/I for MVS & VM Programming Guide

For example:

3 READ FILE (F) SET (P);

 .

 .

 .

5 P->R = S;

 .

 .

 .

7 REWRITE FILE (F);

 .

 .

 .

11 READ FILE (F) INTO (X);

 .

 .

 .

15 REWRITE FILE (F);

 .

 .

 .

19 REWRITE FILE (F) FROM (X);

Statement 7 rewrites a record updated in the buffer.

Statement 15 does not change the record on the data set at all.

Statement 19 raises the ERROR condition, since there is no preceding READ
statement.

� There is one case where it is not possible to check for the KEY condition on a
LOCATE statement until transmission of a record is attempted. This is when
there is insufficient room in the specified region to output the record on a
REGIONAL(3) V- or U-format file. Neither the record raising the condition nor
the current record is transmitted.

If a LOCATE is the last I/O statement executed before the file closes, the
record is not transmitted and the condition can be raised by the CLOSE
statement.

Notes about Stream-Oriented Data Transmission
� A common programming practice is to put the format list used by edit-directed

input/output statements into a FORMAT statement. The FORMAT statement is
then referenced from the input/output statement by means of the R-format item.
For example:

DECLARE NAME CHARACTER(2ð), MANNO DEC FIXED(5,ð);

 .

 .

 .

PUT EDIT (MANNO,NAME)(R(OUTF));

 .

 .

 .

 OUTF:FORMAT(F(8),X(5),A(2ð));

 Chapter 14. Efficient Programming 341

Programming in this way reduces the level of optimization that the compiler is
able to provide for edit-directed input/output. If the format list repeats in each
input/output statement:

PUT EDIT (MANNO,NAME) (F(8),X(5),A(2ð));

the compiler is able to generate more efficient object code which calls fewer
library modules, with a consequent saving in run time and load module size.

� In STREAM input/output, do as much as possible in each input/output
statement. For example:

PUT EDIT ((A(I) DO I = 1 TO 1ð))(...;

is more efficient than:

DO I = 1 TO 1ð;

PUT EDIT (A(I))(...

 END;

� Use edit-directed input/output in preference to list- or data-directed input/output.

� Consider the use of overlay defining to simplify transmission to or from a
character string structure. For example:

DCL 1 IN,

2 TYPE CHAR(2),

 2 REC,

3 A CHAR(5),

3 B CHAR(7),

3 C CHAR(66);

GET EDIT(IN) (A(2),A(5),A(7),A(66));

In the above example, each format-item/data-list-item pair is matched
separately, code being generated for each matching operation. It would be
more efficient to define a character string on the structure and apply the GET
statement to the string:

DCL STRNG CHAR(8ð) DEF IN;

GET EDIT (STRNG) (A(8ð));

� When an edit-directed data list is exhausted, no further format items will be
processed, even if the next format item does not require a matching data item.
For example:

DCL A FIXED(5),

 B FIXED(5,2);

GET EDIT (A,B) (F(5),F(5,2),X(7ð));

The X(70) format item is not processed. To read a following card with data in
the first ten columns only, the SKIP option can be used:

GET SKIP EDIT (A,B) (F(5), F(5,2));

� The number of data items represented by an array or structure name appearing
in a data list is equal to the number of elements in the array or structure; thus if
more than one format item appears in the format list, successive elements will
be matched with successive format items.

342 PL/I for MVS & VM Programming Guide

For example:

DCL 1 A,

2 B CHAR(5),

2 C FIXED(5,2);

 .

 .

 .

PUT EDIT (A) (A(5),F(5,2));

B is matched with the A(5) item, and C is matched with the F(5,2) item.

� If the ON statement:

ON ERROR PUT DATA;

is used in an outer block, you must remember that variables in inner blocks are
not known and, therefore, are not dumped. You might wish, therefore, to
repeat the ON-unit in all inner blocks during debugging.

� When you use PUT DATA without a data-list, every variable known at that point
in the program is transmitted in data-directed output format to the specified file.
Users of this facility, however, should note that:

– Uninitialized FIXED DECIMAL data might raise the CONVERSION
condition or the ERROR condition.

– Unallocated CONTROLLED data causes arbitrary values to print and, in the
case of FIXED DECIMAL, can raise the CONVERSION condition or the
ERROR condition.

� An output file generated with PUT LIST contains a blank after the last value in
each record. If the file is edited with an edit program that deletes trailing
blanks, then values are no longer separated and the file cannot be processed
by GET LIST statements.

Notes about Picture Specification Characters
� In a PICTURE declaration, the V character indicates the scale factor, but does

not in itself produce a decimal point on output. The point picture character
produces a point on output, but is purely an editing character and does not
indicate the scale factor. In a decimal constant, however, the point does
indicate the scale factor. For example:

DCL A PIC'99.9',

 B PIC'99V9',

 C PIC'99.V9';

 A,C=45.6;

 B=7.8;

PUT LIST (A,B,C);

This puts out the following values for A, B, and C, respectively:

 ð4.5 ð78 45.6

If these values were now read back into the variables by a GET LIST
statement, A, B, and C would be set to the following respective values:

 ðð4 78ð 45.6

 Chapter 14. Efficient Programming 343

If the PUT statement were then repeated, the result would be:

 ðð.4 78ð 45.6

� Checking of a picture is performed only on assignment into the picture variable:

DCL A PIC'999999',

B CHAR(6) DEF A,

 C CHAR(6);

 B='ABCDEF';

C=A; /\ WILL NOT RAISE CONV CONDITION \/

A=C; /\ WILL RAISE CONV \/

Note also (A, B, C as declared above):

A=123456; /\ A HAS VALUE 123456 \/

/\ B HAS VALUE '123456' \/

C=123456; /\ C HAS VALUE 'bbb123' \/

C=A; /\ C HAS VALUE '123456' \/

Notes about Condition Handling
� Even though a condition was explicitly disabled by means of a condition prefix,

a lot of processing can be required if the condition is raised. For example,
consider a random number generator in which the previous random number is
multiplied by some factor and the effects of overflow are ignored:

DECLARE (RANDOM,FACTOR) FIXED BINARY(31,ð);

 (NOFOFL):RANDOM=RANDOM\FACTOR;

If the product of RANDOM and FACTOR cannot be held as FIXED
BINARY(31,0), a hardware program-check interrupt occurs. This has to be
processed by both the operating system interrupt handler and the PL/I error
handler before it can be determined that the FIXEDOVERFLOW condition was
disabled.

� If possible, avoid using ON-units for the FINISH condition. These increase the
time taken to terminate a PL/I program, and can also cause loops, abends, or
other unpredictable results.

� After debugging, disable any normally disabled conditions that were enabled for
debugging purposes by removing the relevant prefixes, rather than by including
NO-condition prefixes. For instance, disable the SIZE condition by removing
the SIZE prefix, rather than by adding a NOSIZE prefix. The former method
allows the compiler to eliminate code that checks for the condition, whereas the
latter method necessitates the generation of extra code to prevent the checks
being carried out.

� If the specified action is to apply when the named condition is raised by a given
statement, the ON statement must be executed before that statement. The
statements:

GET FILE (ACCTS) LIST (A,B,C);

ON TRANSMIT (ACCTS) GO TO TRERR;

result in the ERROR condition being raised in the event of a transmission error
during the first GET operation, and the required branch is not taken (assuming
that no previous ON statement applies). Furthermore, the ON statement is
executed after each execution of the GET statement.

344 PL/I for MVS & VM Programming Guide

� At normal exit from an AREA ON-unit, the implicit action is to try again to make
the allocation. As a result, the ON-unit is entered again, and an indefinite loop
is created. To avoid this, you should modify the amount allocated in the
ON-unit, for example, by using the EMPTY built-in function or by changing a
pointer variable.

� Do not use ON-units to implement the program's logic; use them only to
recover from truly exceptional conditions. Whenever an ON-unit is entered,
considerable error-handling overhead is incurred. To implement the logic, you
should perform the necessary tests, rather than use the compiler's
condition-detecting facilities.

For example, in a program using record-oriented output to a keyed data set,
you might wish to eliminate certain keys because they would not fit into the
limits of the data set. You can rely on the raising of the KEY condition to
detect unsuitable keys, but it is considerably more efficient to test each key
yourself.

| � The SIZE condition might not be raised if a floating-point variable with a value
| between 2,147,483,648 and 4,294,967,295 is assigned to a fixed-decimal
| variable with less than 10 digits.

Notes about multitasking
The use of bit strings in a multitasking program can occasionally cause incorrect
results. When the program references the bit string, it might be necessary for a
PL/I library routine to access adjacent storage, as well as the string itself. If
another task modifies this adjacent storage at the same time, the results can be
unpredictable. The problem is less likely to occur with aligned bit strings than
unaligned.

 Chapter 14. Efficient Programming 345

346 PL/I for MVS & VM Programming Guide

Part 5. Using interfaces to other products

Chapter 15. Using the Sort Program . 348
Preparing to Use Sort . 348

Choosing the Type of Sort . 349
Specifying the Sorting Field . 352
Specifying the Records to be Sorted . 354

Maximum Record Lengths . 354
Determining Storage Needed for Sort . 355

Main Storage . 355
Auxiliary Storage . 355

Calling the Sort Program . 355
Example 1 . 357
Example 2 . 357
Example 3 . 357
Example 4 . 357
Example 5 . 357

Determining Whether the Sort Was Successful 358
Establishing Data Sets for Sort . 358

Sort Work Data Sets . 359
Input Data Set . 359
Output Data Set . 359
Checkpoint Data Set . 360

Sort Data Input and Output . 360
Data Input and Output Handling Routines . 360

E15 — Input Handling Routine (Sort Exit E15) 361
E35 — Output Handling Routine (Sort Exit E35) 364
Calling PLISRTA Example . 365
Calling PLISRTB Example . 366
Calling PLISRTC Example . 367
Calling PLISRTD Example . 368
Sorting Variable-Length Records Example 369

 Copyright IBM Corp. 1964, 1995 347

Chapter 15. Using the Sort Program

The compiler provides an interface called PLISRTx (x = A, B, C, or D) that allows
you to make use of the IBM-supplied Sort programs in MVS and VM.

To use the MVS or VM Sort program with PLISRTx, you must:

1. Include a call to one of the entry points of PLISRTx, passing it the information
on the fields to be sorted. This information includes the length of the records,
the maximum amount of storage to use, the name of a variable to be used as a
return code, and other information required to carry out the sort.

2. Specify the data sets required by the Sort program in JCL DD statements or by
use of the ALLOCATE command on TSO and FILEDEF commands on VM.

When used from PL/I, the Sort program sorts records of all normal lengths on a
large number of sorting fields. Data of most types can be sorted into ascending or
descending order. The source of the data to be sorted can be either a data set or
a user-written PL/I procedure that the Sort program will call each time a record is
required for the sort. Similarly, the destination of the sort can be a data set or a
PL/I procedure that handles the sorted records.

Using PL/I procedures allows processing to be done before or after the sort itself,
thus allowing a complete sorting operation to be handled completely by a call to the
sort interface. It is important to understand that the PL/I procedures handling input
or output are called from the Sort program itself and will effectively become part of
it.

PL/I can operate with DFSORT or a program with the same interface. DFSORT is
a release of the program product 5740-SM1. PL/I can also operate with
DFSORT/CMS. DFSORT has many built-in features you can use to eliminate the
need for writing program logic (for example, INCLUDE, OMIT, OUTREC and SUM
statement plus the many ICETOOL operators). See DFSORT Application
Programming Guide for details and Getting Started with DFSORT for a tutorial.

Note: None of your routines should have the name SORT if you are using
DFSORT/CMS.

The following material applies to DFSORT. Because you can use programs other
than DFSORT, the actual capabilities and restrictions vary. For these capabilities
and restrictions, see DFSORT Application Programming Guide, or the equivalent
publication for your sort product.

To use the Sort program you must include the correct PL/I statements in your
source program and specify the correct data sets in your JCL, or in your TSO
ALLOCATE or VM FILEDEF commands.

Preparing to Use Sort
Before using Sort, you must determine the type of sort you require, the length and
format of the sorting fields in the data, the length of your data records, and the
amount of auxiliary and main storage you will allow for sorting.

348 Copyright IBM Corp. 1964, 1995

To determine the PLISRTx entry point that you will use, you must decide the
source of your unsorted data, and the destination of your sorted data. You must
choose between data sets and PL/I subroutines. Using data sets is simpler to
understand and gives faster performance. Using PL/I subroutines gives you more
flexibility and more function, enabling you to manipulate or print the data before it is
sorted, and to make immediate use of it in its sorted form. If you decide to use an
input or output handling subroutine, you will need to read “Data Input and Output
Handling Routines” on page 360.

The entry points and the source and destination of data are as follows:

Having determined the entry point you are using, you must now determine the
following things about your data set:

� The position of the sorting fields; these can be either the complete record or
any part or parts of it

� The type of data these fields represent, for example, character or binary

� Whether you want the sort on each field to be in ascending or descending
order

� Whether you want equal records to be retained in the order of the input, or
whether their order can be altered during sorting

Specify these options on the SORT statement, which is the first argument to
PLISRTx. After you have determined these, you must determine two things about
the records to be sorted:

� Whether the record format is fixed or varying
� The length of the record, which is the maximum length for varying

Specify these on the RECORD statement, which is the second argument to
PLISRTx.

Finally, you must decide on the amount of main and auxiliary storage you will allow
for the Sort program. For further details, see “Determining Storage Needed for
Sort” on page 355.

Entry point Source Destination

PLISRTA Data set Data set

PLISRTB Subroutine Data set

PLISRTC Data set Subroutine

PLISRTD Subroutine Subroutine

Choosing the Type of Sort
If you want to make the best use of the Sort program, you must understand
something of how it works. In your PL/I program you specify a sort by using a
CALL statement to the sort interface subroutine PLISRTx. This subroutine has four
entry points: x=A, B, C, and D. Each specifies a different source for the unsorted
data and destination for the data when it has been sorted. For example, a call to
PLISRTA specifies that the unsorted data (the input to sort) is on a data set, and
that the sorted data (the output from sort) is to be placed on another data set. The
CALL PLISRTx statement must contain an argument list giving the Sort program
information about the data set to be sorted, the fields on which it is to be sorted,

 Chapter 15. Using the Sort Program 349

the amount of space available, the name of a variable into which Sort will place a
return code indicating the success or failure of the sort, and the name of any output
or input handling procedure that can be used.

The sort interface routine builds an argument list for the Sort program from the
information supplied by the PLISRTx argument list and the choice of PLISRTx entry
point. Control is then transferred to the Sort program. If you have specified an
output- or input-handling routine, this will be called by the Sort program as many
times as is necessary to handle each of the unsorted or sorted records. When the
sort operation is complete, the Sort program returns to the PL/I calling procedure
communicating its success or failure in a return code, which is placed in one of the
arguments passed to the interface routine. The return code can then be tested in
the PL/I routine to discover whether processing should continue. Figure 82 on
page 351 is a simplified flowchart showing this operation.

350 PL/I for MVS & VM Programming Guide

 ┌──────────────┐

 │ │

│ CALL PLISRTx │

 │ │

 └──┬──┬──┬──┬──┘

│ │ │ │

┌────────────────────────────┘ │ │ └────────────────────────────┐

 │ ┌─────────┘ └─────────┐ │

 6 6 6 6

 PLISRTA PLISRTB PLISRTC PLISRTD

 │ │ │ │

 6 6 6 6

┌───────────┴─────────────────────┴──────────────────────┴─────────────────────┴───────────┐

│ SORT PROGRAM │

├───────────┬─────────────────────┬──────────────────────┬─────────────────────┬───────────┤

│ 6 6 6 6 │

│ ┌─────────┴────────┐ ┌─────────┴─────────┐ ┌─────────┴────────┐ ┌─────────┴─────────┐ │

│ │ Get records from │ │ Call PL/I sub─ │ │ Get records from │ │ Call PL/I sub─ │ │

│ │ data set till │ │ routine receiving │ │ data set till │ │ routine receiving │ │
│ │ end of file │ │ one record on │ │ end of file │ │ one record on │ │

│ │ │ │ each call │ │ │ │ each call │ │

│ └─────────┬────────┘ └─────────┬─────────┘ └─────────┬────────┘ └─────────┬─────────┘ │

│ │ │ │ │ │

│ │ └─────────┐ ┌─────────┘ │ │

│ └────────────────────────────┐ │ │ ┌────────────────────────────┘ │

│ │ │ │ │ │

│ 6 6 6 6 │

│ ┌──┴──┴──┴──┴──┐ │

│ │ │ │

│ │ Sort records │ │

│ │ │ │

│ └──┬──┬──┬──┬──┘ │

│ │ │ │ │ │

│ ┌────────────────────────────┘ │ │ └────────────────────────────┐ │

│ │ ┌─────────┘ └─────────┐ │ │

│ │ │ │ │ │

│ 6 6 6 6 │

│ ┌─────────┴────────┐ ┌─────────┴─────────┐ ┌─────────┴────────┐ ┌─────────┴─────────┐ │

│ │ Place sorted │ │ Place sorted │ │ Call PL/I sub─ │ │ Call PL/I sub─ │ │

│ │ records on │ │ records on │ │ routine passing │ │ routine passing │ │

│ │ data set │ │ data set │ │ one record on │ │ one record on │ │

│ │ │ │ │ │ each call │ │ each call │ │

│ └─────────┬────────┘ └─────────┬─────────┘ └─────────┬────────┘ └─────────┬─────────┘ │

│ │ │ │ │ │

│ │ └─────────┐ ┌─────────┘ │ │

│ └────────────────────────────┐ │ │ ┌────────────────────────────┘ │

│ │ │ │ │ │

│ 6 6 6 6 │

│ ┌──────┴──┴──┴──┴──────┐ │

│ │ Set up return code │ │

│ │ to indicate success │ │

│ │ or failure of sort │ │

│ └──────────┬───────────┘ │

│ │ │

└──┼───┘

 │

 6

 ┌───────┴───────┐

│ Continue with │

│ PL/I program │

 └───────────────┘

Figure 82. Flow of Control for Sort Program

Within the Sort program itself, the flow of control between the Sort program and
input- and output-handling routines is controlled by return codes. The Sort program
calls these routines at the appropriate point in its processing. (Within the Sort
program, and its associated documentation, these routines are known as user exits.
The routine that passes input to be sorted is the E15 sort user exit. The routine
that processes sorted output is the E35 sort user exit.) From the routines, Sort
expects a return code indicating either that it should call the routine again, or that it
should continue with the next stage of processing.

 Chapter 15. Using the Sort Program 351

The important points to remember about Sort are: (1) it is a self-contained program
that handles the complete sort operation, and (2) it communicates with the caller,
and with the user exits that it calls, by means of return codes.

The remainder of this chapter gives detailed information on how to use Sort from
PL/I. First the required PL/I statements are described, and then the data set
requirements. The chapter finishes with a series of examples showing the use of
the four entry points of the sort interface routine.

Specifying the Sorting Field
The SORT statement is the first argument to PLISRTx. The syntax of the SORT
statement must be a character string expression that takes the form:

 'bSORTbFIELDS=(start1,length1,form1,seq1,

 ...startn,lengthn,formn,seqn)[,other options]b'

For example:

' SORT FIELDS=(1,1ð,CH,A) '

b represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

start,length,form,seq
defines a sorting field. You can specify any number of sorting fields, but there
is a limit on the total length of the fields. If more than one field is to be sorted
on, the records are sorted first according to the first field, and then those that
are of equal value are sorted according to the second field, and so on. If all
the sorting values are equal, the order of equal records will be arbitrary unless
you use the EQUALS option. (See later in this definition list.) Fields can
overlay each other.

| For DFSORT (5740-SM1), the maximum total length of the sorting fields is
| restricted to 4092 bytes and all sorting fields must be within 4092 bytes of the
| start of the record. Other sort products might have different restrictions.

start is the starting position within the record. Give the value in bytes except
for binary data where you can use a “byte.bit” notation. The first byte in
a string is considered to be byte 1, the first bit is bit 0. (Thus the
second bit in byte 2 is referred to as 2.1.) For varying length records
you must include the 4-byte length prefix, making 5 the first byte of
data.

length is the length of the sorting field. Give the value in bytes except for
binary where you can use “byte.bit” notation. The length of sorting
fields is restricted according to their data type.

352 PL/I for MVS & VM Programming Guide

form is the format of the data. This is the format assumed for the purpose of
sorting. All data passed between PL/I routines and Sort must be in the
form of character strings. The main data types and the restrictions on
their length are shown below. Additional data types are available for
special-purpose sorts. See the DFSORT Application Programming
Guide, or the equivalent publication for your sort product.

Code Data type and length
CH character 1–4096
ZD zoned decimal, signed 1–32
PD packed decimal, signed 1–32
FI fixed point, signed 1–256
BI binary, unsigned 1 bit to 4092 bytes
FL floating-point, signed 1–256
FS floating-sign, 1–16

The sum of the lengths of all fields must not exceed 4092 bytes.

seq is the sequence in which the data will be sorted as follows:

A ascending (that is, 1,2,3,...)
D descending (that is, ...,3,2,1)

Note: You cannot specify E, because PL/I does not provide a method
of passing a user-supplied sequence.

other options
You can specify a number of other options, depending on your Sort program.
You must separate them from the FIELDS operand and from each other by
commas. Do not place blanks between operands.

FILSZ=y
specifies the number of records in the sort and allows for optimization by
Sort. If y is only approximate, E should precede y.

SKIPREC=y
specifies that y records at the start of the input file are to be ignored before
sorting the remaining records.

CKPT or CHKPT
specifies that checkpoints are to be taken. If you use this option, you must
provide a SORTCKPT data set and DFSORT's 16NCKPT=NO installation
option must be specified.

EQUALS|NOEQUALS
specifies whether the order of equal records will be preserved as it was in
the input (EQUALS) or will be arbitrary (NOEQUALS). You could improve
sort performance by using the NOEQUALS. The default option is chosen
when Sort is installed. The IBM-supplied default is NOEQUALS.

DYNALLOC=(d,n)
(OS/VS Sort only) specifies that the program dynamically allocates
intermediate storage.

d is the device type (3380, etc.).
n is the number of work areas.

 Chapter 15. Using the Sort Program 353

Specifying the Records to be Sorted
Use the RECORD statement as the second argument to PLISRTx. The syntax of
the RECORD statement must be a character string expression which, when
evaluated, takes the syntax shown below:

 'bRECORDbTYPE=rectype[,LENGTH=(L1,[,,L4,L5])]b'

For example:

' RECORD TYPE=F,LENGTH=(8ð) '

b represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

TYPE
specifies the type of record as follows:

F fixed length
V varying length EBCDIC
D varying length ASCII

Even when you use input and output routines to handle the unsorted and
sorted data, you must specify the record type as it applies to the work data sets
used by Sort.

If varying length strings are passed to Sort from an input routine (E15 exit), you
should normally specify V as a record format. However, if you specify F, the
records are padded to the maximum length with blanks.

LENGTH
specifies the length of the record to be sorted. You can omit LENGTH if you
use PLISRTA or PLISRTC, because the length will be taken from the input data
set. Note that there is a restriction on the maximum and minimum length of the
record that can be sorted (see below). For varying length records, you must
include the four-byte prefix.

11 is the length of the record to be sorted. For VSAM data sets sorted as
varying records it is the maximum record size+4.

,, represent two arguments that are not applicable to Sort when called from
PL/I. You must include the commas if the arguments that follow are
used.

14 specifies the minimum length of record when varying length records are
used. If supplied, it is used by Sort for optimization purposes.

15 specifies the modal (most common) length of record when varying length
records are used. If supplied, it is used by Sort for optimization
purposes.

Maximum Record Lengths
The length of a record can never exceed the maximum length specified by the
user. The maximum record length for variable length records is 32756 bytes, for
fixed length records it is 32760 bytes, and for spanned records it is 32767 bytes.

The minimum block length for tape work units (which should be avoided for
performance reasons) is 18 bytes; the minimum record length is 14 bytes.

354 PL/I for MVS & VM Programming Guide

Determining Storage Needed for Sort

 Main Storage
Sort requires both main and auxiliary storage. The minimum main storage for
DFSORT is 88K bytes, but for best performance, more storage (on the order of 1
megabyte or more) is recommended. DFSORT can take advantage of storage
above 16M virtual or extended architecture processors. Under MVS/ESA, DFSORT
can also take advantage of expanded storage. You can specify that Sort use the
maximum amount of storage available by passing a storage parameter in the
following manner:

DCL MAXSTOR FIXED BINARY (31,ð);

 UNSPEC(MAXSTOR)='ðððððððð'B||UNSPEC('MAX');

 CALL PLISRTA

(' SORT FIELDS=(1,8ð,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 MAXSTOR,

 RETCODE,

 'TASK');

If files are opened in E15 or E35 exit routines, enough residual storage should be
allowed for the files to open successfully.

 Auxiliary Storage
Calculating the minimum auxiliary storage for a particular sorting operation is a
complicated task. To achieve maximum efficiency with auxiliary storage, use direct
access storage devices (DASDs) whenever possible. For more information on
improving program efficiency, see the DFSORT Application Programming Guide,
particularly the information about dynamic allocation of workspace which allos
DFSORT to determine the auxiliary storage needed and allocate it for you.

If you are interested only in providing enough storage to ensure that the sort will
work, make the total size of the SORTWK data sets large enough to hold three sets
of the records being sorted. (You will not gain any advantage by specifying more
than three if you have enough space in three data sets.)

However, because this suggestion is an approximation, it might not work, so you
should check the sort manuals. If this suggestion does work, you will probably
have wasted space.

Calling the Sort Program
When you have determined the points described above, you are in a position to
write the CALL PLISRTx statement. You should do this with some care; for the
entry points and arguments to use, see Table 44.

Table 44 (Page 1 of 2). The Entry Points and Arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTA
Sort input: data set
Sort output: data set

(sort statement,record statement,storage,return code
[,data set prefix,message level, sort technique])

PLISRTB
Sort input: PL/I subroutine
Sort output: data set

(sort statement,record statement,storage,return code,input routine
[,data set prefix,message level,sort technique])

 Chapter 15. Using the Sort Program 355

Table 44 (Page 2 of 2). The Entry Points and Arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTC
Sort input: data set
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,output routine
[,data set prefix,message level,sort technique])

PLISRTD
Sort input: PL/I subroutine
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,input routine,output routine[,data set
prefix,message level,sort technique])

Sort statement Character string expression containing the Sort program SORT statement. Describes sorting fields
and format. See “Specifying the Sorting Field” on page 352.

Record statement Character string expression containing the Sort program RECORD statement. Describes the
length and record format of data. See “Specifying the Records to be Sorted” on page 354.

Storage Fixed binary expression giving maximum amount of main storage to be used by the Sort program.
Must be >88K bytes for DFSORT. See also “Determining Storage Needed for Sort.”

Return code Fixed binary variable of precision (31,0) in which Sort places a return code when it has completed.
The meaning of the return code is:

 0=Sort successful
 16=Sort failed

20=Sort message data set missing

Input routine (PLISRTB and PLISRTD only.) Name of the PL/I external or internal procedure used to supply the
records for the Sort program at sort exit E15.

Output routine (PLISRTC and PLISRTD only.) Name of the PL/I external or internal procedure to which Sort
passes the sorted records at sort exit E35.

Data set prefix Character string expression of four characters that replaces the default prefix of 'SORT' in the
names of the sort data sets SORTIN, SORTOUT, SORTWKnn and SORTCNTL, if used. Thus if
the argument is “TASK”, the data sets TASKIN, TASKOUT, TASKWKnn, and TASKCNTL can be
used. This facility enables multiple invocations of Sort to be made in the same job step. The four
characters must start with an alphabetic character and must not be one of the reserved names
PEER, BALN, CRCX, OSCL, POLY, DIAG, SYSC, or LIST. You must code a null string for this
argument if you require either of the following arguments but do not require this argument.

Message level Character string expression of two characters indicating how Sort's diagnostic messages are to be
handled, as follows:

NO No messages to SYSOUT
AP All messages to SYSOUT
CP Critical messages to SYSOUT

SYSOUT will normally be allocated to the printer, hence the use of the mnemonic letter “P”. Other
codes are also allowed for certain of the Sort programs. For further details on these codes, see
DFSORT Application Programming Guide. You must code a null string for this argument if you
require the following argument but you do not require this argument.

Sort technique (This is not used by DFSORT; it appears for compatibility reasons only.) Character string of length
4 that indicates the type of sort to be carried out, as follows:

 PEER Peerage sort
 BALN Balanced
 CRCX Criss-cross sort
 OSCL Oscillating
 POLY Polyphase sort

Normally the Sort program will analyze the amount of space available and choose the most
effective technique without any action from you. You should use this argument only as a bypass
for sorting problems or when you are certain that performance could be improved by another
technique. See DFSORT Application Programming Guide for further information.

The examples below indicate the form that the CALL PLISRTx statement normally
takes.

356 PL/I for MVS & VM Programming Guide

 Example 1
A call to PLISRTA sorting 80-byte records from SORTIN to SORTOUT using
1048576 (1 megabyte) of storage, and a return code, RETCODE, declared as
FIXED BINARY (31,0).

CALL PLISRTA (' SORT FIELDS=(1,8ð,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576,

 RETCODE);

 Example 2
This example is the same as example 1 except that the input, output, and work
data sets are called TASKIN, TASKOUT, TASKWK01, and so forth. This might
occur if Sort was being called twice in one job step.

CALL PLISRTA (' SORT FIELDS=(1,8ð,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576,

 RETCODE,

 'TASK');

 Example 3
This example is the same as example 1 except that the sort is to be undertaken on
two fields. First, bytes 1 to 10 which are characters, and then, if these are equal,
bytes 11 and 12 which contain a binary field, both fields are to be sorted in
ascending order.

CALL PLISRTA (' SORT FIELDS=(1,1ð,CH,A,11,2,BI,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576,

 RETCODE);

 Example 4
This example shows a call to PLISRTB. The input is to be passed to Sort by the
PL/I routine PUTIN, the sort is to be carried out on characters 1 to 10 of an 80 byte
fixed length record. Other information as above.

CALL PLISRTB (' SORT FIELDS=(1,1ð,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576,

 RETCODE,

 PUTIN);

 Example 5
This example shows a call to PLISRTD. The input is to be supplied by the PL/I
routine PUTIN and the output is to be passed to the PL/I routine PUTOUT. The
record to be sorted is 84 bytes varying (including the length prefix). It is to be
sorted on bytes 1 through 5 of the data in ascending order, then if these fields are
equal, on bytes 6 through 10 in descending order. (Note that the 4-byte length
prefix is included so that the actual values used are 5 and 10 for the starting
points.) If both these fields are the same, the order of the input is to be retained.
(The EQUALS option does this.)

 Chapter 15. Using the Sort Program 357

CALL PLISRTD (' SORT FIELDS=(5,5,CH,A,1ð,5,CH,D),EQUALS ',

' RECORD TYPE=V,LENGTH=(84) ',

 1ð48576,

 RETCODE,

PUTIN, /\input routine (sort exit E15)\/

PUTOUT); /\output routine (sort exit E35)\/

Determining Whether the Sort Was Successful
When the sort is completed, Sort sets a return code in the variable named in the
fourth argument of the call to PLISRTx. It then returns control to the statement that
follows the CALL PLISRTx statement. The value returned indicates the success or
failure of the sort as follows:

0 Sort successful
16 Sort failed
20 Sort message data set missing

You must declare the variable to which the return code is passed as FIXED
BINARY (31,0). It is standard practice to test the value of the return code after the
CALL PLISRTx statement and take appropriate action according to the success or
failure of the operation.

For example (assuming the return code was called RETCODE):

IF RETCODE¬=ð THEN DO;

 PUT DATA(RETCODE);

 SIGNAL ERROR;

 END;

If the job step that follows the sort depends on the success or failure of the sort,
you should set the value returned in the Sort program as the return code from the
PL/I program. This return code is then available for the following job step. The
PL/I return code is set by a call to PLIRETC. You can call PLIRETC with the value
returned from Sort thus:

 CALL PLIRETC(RETCODE);

You should not confuse this call to PLIRETC with the calls made in the input and
output routines, where a return code is used for passing control information to Sort.

Establishing Data Sets for Sort
If DFSORT was installed in a library not know to the system, you must specify the
DFSORT library in a JOBLIB or STEPLIB DD statement.

358 PL/I for MVS & VM Programming Guide

When you call Sort, certain sort data sets must not be open. These are:

SORTLIB
This library is only required if your work data sets (see below) are on magnetic
tape (which is not recommended for performance reasons). You must get the
name of this data set from your system programmer.

SYSOUT
A data set (normally the printer) on which messages from the Sort program will
be written.

Sort Work Data Sets

SORTWK01–SORTWK32

Note: If you specify more than 32 sort work data sets, DFSORT will only use
the first 32.

****WK01–****WK32
From 1 to 32 working data sets used in the sorting process. These can be
direct-access or on magnetic tape. For a discussion of space required and
number of data sets, see “Determining Storage Needed for Sort” on page 355.

**** represents the four characters that you can specify as the data set prefix
argument in calls to PLISRTx. This allows you to use data sets with prefixes
other than SORT. They must start with an alphabetic character and must not
be the names PEER, BALN, CRCX, OSCL, POLY, SYSC, LIST, or DIAG.

Input Data Set

SORTIN

****IN
The input data set used when PLISRTA and PLISRTC are called.

See ****WK01–****WK32 above for a detailed description.

Output Data Set

SORTOUT

****OUT
The output data set used when PLISRTA and PLISRTB are called.

See ****WK01–****WK32 above for a detailed description.

 Chapter 15. Using the Sort Program 359

Checkpoint Data Set

SORTCKPT

Data set used to hold checkpoint data, if CKPT or CHKPT option was used in
the SORT statement argument and DFSORT's 16NCKPT=NO installation
option was specified. For information on this program DD statement, see
DFSORT Application Programming Guide.

DFSPARM
SORTCNTL

Data set from which additional or changed control statements can be read
(optional). For additional information on this program DD statement, see
DFSORT Application Programming Guide.

See ****WK01–****WK32 above for a detailed description.

Sort Data Input and Output
The source of the data to be sorted is provided either directly from a data set or
indirectly by a routine (Sort Exit E15) written by the user. Similarly, the destination
of the sorted output is either a data set or a routine (Sort Exit E35) provided by the
user.

PLISRTA is the simplest of all of the interfaces because it sorts from data set to
data set. An example of a PLISRTA program is in Figure 86 on page 365. Other
interfaces require either the input handling routine or the output handling routine, or
both.

Data Input and Output Handling Routines
The input handling and output handling routines are called by Sort when PLISRTB,
PLISRTC, or PLISRTD is used. They must be written in PL/I, and can be either
internal or external procedures. If they are internal to the routine that calls
PLISRTx, they behave in the same way as ordinary internal procedures in respect
of scope of names. The input and output procedure names must themselves be
known in the procedure that makes the call to PLISRTx.

The routines are called individually for each record required by Sort or passed from
Sort. Therefore, each routine must be written to handle one record at a time.
Variables declared as AUTOMATIC within the procedures will not retain their values
between calls. Consequently, items such as counters, which need to be retained
from one call to the next, should either be declared as STATIC or be declared in
the containing block.

360 PL/I for MVS & VM Programming Guide

E15 — Input Handling Routine (Sort Exit E15)
Input routines are normally used to process the data in some way before it is
sorted. You can use input routines to print the data, as shown in the Figure 87 on
page 366 and Figure 89 on page 368, or to generate or manipulate the sorting
fields to achieve the correct results.

The input handling routine is used by Sort when a call is made to either PLISRTB
or PLISRTD. When Sort requires a record, it calls the input routine which should
return a record in character string format, with a return code of 12. This return
code means that the record passed is to be included in the sort. Sort continues to
call the routine until a return code of 8 is passed. A return code of 8 means that all
records have already been passed, and that Sort is not to call the routine again. If
a record is returned when the return code is 8, it is ignored by Sort.

The data returned by the routine must be a character string. It can be fixed or
varying. If it is varying, you should normally specify V as the record format in the
RECORD statement which is the second argument in the call to PLISRTx.
However, you can specify F, in which case the string will be padded to its
maximum length with blanks. The record is returned with a RETURN statement,
and you must specify the RETURNS attribute in the PROCEDURE statement. The
return code is set in a call to PLIRETC. A flowchart for a typical input routine is
shown in Figure 83 on page 362.

Skeletal code for a typical input routine is shown in Figure 84 on page 363.

 Chapter 15. Using the Sort Program 361

I n p u t H a n d l i n g S u b r o u t i n e O u t p u t H a n d l i n g S u b r o u t i n e

S T A R T S T A R T

E N D

E N D

L A S T
R E C O R D

A L R E A D Y
S E N T

Y o u r c o d e t o
p r o c e s s r e c o r d

C A L L
P L I R E T C (1 2)

R E T U R N
R E C O R D

R E C E I V E
R E C O R D
P A R A M E T E R

Y o u r c o d e t o
p r o c e s s r e c o r d

C A L L
P L I R E T C (4)

C A L L
P L I R E T C (8)

Y E S

N O

Figure 83. Flowcharts for Input and Output Handling Subroutines

362 PL/I for MVS & VM Programming Guide

E15: PROC RETURNS (CHAR(8ð));

 /\---\/

/\RETURNS attribute must be used specifying length of data to be \/

/\ sorted, maximum length if varying strings are passed to Sort. \/

 /\---\/

DCL STRING CHAR(8ð); /\--\/

/\A character string variable will normally be\/

/\ required to return the data to Sort \/

 /\--\/

IF LAST_RECORD_SENT THEN

 DO;

 /\---\/

/\A test must be made to see if all the records have been sent, \/

/\if they have, a return code of 8 is set up and control returned\/

 /\to Sort \/

 /\---\/

 CALL PLIRETC(8); /\---\/

/\ Set return code of 8, meaning last record \/

/\ already sent. \/

 /\---\/

 GOTO FINAL;

 END;

 ELSE

 DO;

 /\--\/

/\ If another record is to be sent to Sort, do the\/

/\ necessary processing, set a return code of 12 \/

/\ by calling PLIRETC, and return the data as a \/

/\ character string to Sort \/

 /\--\/

\\\\(The code to do your processing goes here)

CALL PLIRETC (12); /\--------------------------------------\/

/\ Set return code of 12, meaning this \/

/\ record is to be included in the sort \/

 /\--------------------------------------\/

RETURN (STRING); /\Return data with RETURN statement\/

 END;

FINAL:

END; /\End of the input procedure\/

Figure 84. Skeletal Code for an Input Procedure

Examples of an input routine are given in Figure 87 on page 366 and Figure 89 on
page 368.

In addition to the return codes of 12 (include current record in sort) and 8 (all
records sent), Sort allows the use of a return code of 16. This ends the sort and
causes Sort to return to your PL/I program with a return code of 16–Sort failed.

Note: A call to PLIRETC sets a return code that will be passed by your PL/I
program, and will be available to any job steps that follow it. When an output
handling routine has been used, it is good practice to reset the return code with a
call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero completion
code. By calling PLIRETC with the return code from Sort as the argument, you can
make the PL/I return code reflect the success or failure of the sort. This practice is
shown in Figure 88 on page 367.

 Chapter 15. Using the Sort Program 363

E35 — Output Handling Routine (Sort Exit E35)
Output handling routines are normally used for any processing that is necessary
after the sort. This could be to print the sorted data, as shown in Figure 88 on
page 367 and Figure 89 on page 368, or to use the sorted data to generate
further information. The output handling routine is used by Sort when a call is
made to PLISRTC or PLISRTD. When the records have been sorted, Sort passes
them, one at a time, to the output handling routine. The output routine then
processes them as required. When all the records have been passed, Sort sets up
its return code and returns to the statement after the CALL PLISRTx statement.
There is no indication from Sort to the output handling routine that the last record
has been reached. Any end-of-data handling must therefore be done in the
procedure that calls PLISRTx.

The record is passed from Sort to the output routine as a character string, and you
must declare a character string parameter in the output handling subroutine to
receive the data. The output handling subroutine must also pass a return code of 4
to Sort to indicate that it is ready for another record. You set the return code by a
call to PLIRETC.

The sort can be stopped by passing a return code of 16 to Sort. This will result in
Sort returning to the calling program with a return code of 16–Sort failed.

The record passed to the routine by Sort is a character string parameter. If you
specified the record type as F in the second argument in the call to PLISRTx, you
should declare the parameter with the length of the record. If you specified the
record type as V, you should declare the parameter as adjustable, as in the
following example:

DCL STRING CHAR(\);

Figure 90 on page 369 shows a program that sorts varying length records.

A flowchart for a typical output handling routine is given in Figure 83 on page 362.
Skeletal code for a typical output handling routine is shown in Figure 85.

E35: PROC(STRING); /\The procedure must have a character string

parameter to receive the record from Sort\/

DCL STRING CHAR(8ð); /\Declaration of parameter\/

 (Your code goes here)

CALL PLIRETC(4); /\Pass return code to Sort indicating that the next

sorted record is to be passed to this procedure.\/

END E35; /\End of procedure returns control to Sort\/

Figure 85. Skeletal Code for an Output Handling Procedure

You should note that a call to PLIRETC sets a return code that will be passed by
your PL/I program, and will be available to any job steps that follow it. When you
have used an output handling routine, it is good practice to reset the return code
with a call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero
completion code. By calling PLIRETC with the return code from Sort as the
argument, you can make the PL/I return code reflect the success or failure of the
sort. This practice is shown in the examples at the end of this chapter.

364 PL/I for MVS & VM Programming Guide

Calling PLISRTA Example
After each time that the PL/I input- and output-handling routines communicate the
return-code information to the Sort program, the return-code field is reset to zero;
therefore, it is not used as a regular return code other than its specific use for the
Sort program.

For details on handling conditions, especially those that occur during the input- and
output-handling routines, see Language Environment for MVS & VM Programming
Guide.

 //OPT14#7 JOB ...

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

EX1ð6: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,ð);

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576

 RETURN_CODE);

 SELECT (RETURN_CODE);

WHEN(ð) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE ð') (A);

WHEN(16) PUT SKIP EDIT

('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2ð) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT (

'INVALID SORT RETURN_CODE = ', RETURN_CODE) (A,F(2));

END /\ select \/;

 CALL PLIRETC(RETURN_CODE);

/\set PL/I return code to reflect success of sort\/

 END EX1ð6;

 //GO.SORTIN DD \

 ðð3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD

 ðð2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY

 ðð3ð77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR

 ð59334HOOK E.H. 1ð9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON

 ð73872HOME TAVERN, WESTLEIGH

 ððð931FOREST, IVER, BUCKS

 /\

 //GO.SYSPRINT DD SYSOUT=A

 //GO.SORTOUT DD SYSOUT=A

 //GO.SYSOUT DD SYSOUT=A

 //GO.SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,2)

 /\

Figure 86. PLISRTA—Sorting from Input Data Set to Output Data Set

 Chapter 15. Using the Sort Program 365

Calling PLISRTB Example

 //OPT14#8 JOB ...

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 EX1ð7: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,ð);

CALL PLISRTB (' SORT FIELDS=(7,74,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576

 RETURN_CODE,

 E15X);

 SELECT(RETURN_CODE);

WHEN(ð) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE ð') (A);

WHEN(16) PUT SKIP EDIT

('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2ð) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT

('INVALID RETURN_CODE = ',RETURN_CODE)(A,F(2));

END /\ select \/;

 CALL PLIRETC(RETURN_CODE);

/\set PL/I return code to reflect success of sort\/

E15X: /\ INPUT HANDLING ROUTINE GETS RECORDS FROM THE INPUT

STREAM AND PUTS THEM BEFORE THEY ARE SORTED\/

PROC RETURNS (CHAR(8ð));

DCL SYSIN FILE RECORD INPUT,

 INFIELD CHAR(8ð);

ON ENDFILE(SYSIN) BEGIN;

PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT')(A);

CALL PLIRETC(8); /\ signal that last record has

already been sent to sort\/

 GOTO ENDE15;

 END;

READ FILE (SYSIN) INTO (INFIELD);

PUT SKIP EDIT (INFIELD)(A(8ð)); /\PRINT INPUT\/

CALL PLIRETC(12); /\ request sort to include current

record and return for more\/

 RETURN(INFIELD);

 ENDE15:

 END E15X;

 END EX1ð7;

 /\

 //GO.SYSIN DD \

 ðð3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD

 ðð2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY

 ðð3ð77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR

 ð59334HOOK E.H. 1ð9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON

 ð73872HOME TAVERN, WESTLEIGH

 ððð931FOREST, IVER, BUCKS

 /\

 //GO.SYSPRINT DD SYSOUT=A

 //GO.SORTOUT DD SYSOUT=A

 //GO.SYSOUT DD SYSOUT=A

 //\

 //GO.SORTCNTL DD \

 OPTION DYNALLOC=(338ð,2),SKIPREC=2

 /\

Figure 87. PLISRTB—Sorting from Input Handling Routine to Output Data Set

366 PL/I for MVS & VM Programming Guide

Calling PLISRTC Example

 //OPT14#9 JOB ...

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 EX1ð8: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,ð);

CALL PLISRTC (' SORT FIELDS=(7,74,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576

 RETURN_CODE,

 E35X);

 SELECT(RETURN_CODE);

WHEN(ð) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE ð') (A);

WHEN(16) PUT SKIP EDIT

('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2ð) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT

('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));

END /\ select \/;

CALL PLIRETC (RETURN_CODE);

/\set PL/I return code to reflect success of sort\/

E35X: /\ output handling routine prints sorted records\/

 PROC (INREC);

DCL INREC CHAR(8ð);

PUT SKIP EDIT (INREC) (A);

CALL PLIRETC(4); /\request next record from sort\/

 END E35X;

 END EX1ð8;

 /\

 //GO.STEPLIB DD DSN=SYS1.SORTLINK,DISP=SHR

 //GO.SYSPRINT DD SYSOUT=A

 //GO.SYSOUT DD SYSOUT=A

 //GO.SORTIN DD \

 ðð3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD

 ðð2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY

 ðð3ð77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR

 ð59334HOOK E.H. 1ð9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON

 ð73872HOME TAVERN, WESTLEIGH

 ððð931FOREST, IVER, BUCKS

 /\

 //GO.SORTCNTL DD \

 OPTION DYNALLOC=(338ð,2),SKIPREC=2

 /\

Figure 88. PLISRTC—Sorting from Input Data Set to Output Handling Routine

 Chapter 15. Using the Sort Program 367

Calling PLISRTD Example

 //OPT14#1ð JOB ...

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

 EX1ð9: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,ð);

CALL PLISRTD (' SORT FIELDS=(7,74,CH,A) ',

' RECORD TYPE=F,LENGTH=(8ð) ',

 1ð48576

 RETURN_CODE,

 E15X,

 E35X);

 SELECT(RETURN_CODE);

WHEN(ð) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE ð') (A);

WHEN(2ð) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT

('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));

END /\ select \/;

 CALL PLIRETC(RETURN_CODE);

/\set PL/I return code to reflect success of sort\/

E15X: /\ Input handling routine prints input before sorting\/

 PROC RETURNS(CHAR(8ð));

DCL INFIELD CHAR(8ð);

ON ENDFILE(SYSIN) BEGIN;

PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. ',

'SORTED OUTPUT SHOULD FOLLOW')(A);

CALL PLIRETC(8); /\ Signal end of input to sort\/

 GOTO ENDE15;

 END;

GET FILE (SYSIN) EDIT (INFIELD) (A(8ð));

PUT SKIP EDIT (INFIELD)(A);

CALL PLIRETC(12); /\Input to sort continues\/

 RETURN(INFIELD);

 ENDE15:

 END E15X;

 E35X: /\ Output handling routine prints the sorted records\/

 PROC (INREC);

DCL INREC CHAR(8ð);

PUT SKIP EDIT (INREC) (A);

NEXT: CALL PLIRETC(4); /\ Request next record from sort\/

 END E35X;

 END EX1ð9;

 /\

//GO.SYSOUT DD SYSOUT=A

//GO.SYSPRINT DD SYSOUT=A

//GO.SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,1)

//GO.SORTWKð2 DD UNIT=SYSDA,SPACE=(CYL,1)

//GO.SORTWKð3 DD UNIT=SYSDA,SPACE=(CYL,1)

//GO.SYSIN DD \

ðð3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD

ðð2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY

ðð3ð77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR

ð59334HOOK E.H. 1ð9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON

ð73872HOME TAVERN, WESTLEIGH

ððð931FOREST, IVER, BUCKS

/\

Figure 89. PLISRTD—Sorting from Input Handling Routine to Output Handling Routine

368 PL/I for MVS & VM Programming Guide

Sorting Variable-Length Records Example

 //OPT14#11 JOB ...

 //STEP1 EXEC IEL1CLG

 //PLI.SYSIN DD \

/\ PL/I EXAMPLE USING PLISRTD TO SORT VARIABLE-LENGTH

 RECORDS \/

 EX13ð6: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,ð);

CALL PLISRTD (' SORT FIELDS=(11,14,CH,A) ',

' RECORD TYPE=V,LENGTH=(84,,,24,44) ',

/\NOTE THAT LENGTH IS MAX AND INCLUDES

4 BYTE LENGTH PREFIX\/

 1ð48576

 RETURN_CODE,

 PUTIN,

 PUTOUT);

 SELECT(RETURN_CODE);

WHEN(ð) PUT SKIP EDIT (

'SORT COMPLETE RETURN_CODE ð') (A);

WHEN(16) PUT SKIP EDIT (

'SORT FAILED, RETURN_CODE 16') (A);

WHEN(2ð) PUT SKIP EDIT (

'SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT (

'INVALID RETURN_CODE = ', RETURN_CODE)

 (A,F(2));

END /\ SELECT \/;

 CALL PLIRETC(RETURN_CODE);

/\SET PL/I RETURN CODE TO REFLECT SUCCESS OF SORT\/

PUTIN: PROC RETURNS (CHAR(8ð) VARYING);

/\OUTPUT HANDLING ROUTINE\/

/\NOTE THAT VARYING MUST BE USED ON RETURNS ATTRIBUTE

WHEN USING VARYING LENGTH RECORDS\/

DCL STRING CHAR(8ð) VAR;

ON ENDFILE(SYSIN) BEGIN;

PUT SKIP EDIT ('END OF INPUT')(A);

 CALL PLIRETC(8);

 GOTO ENDPUT;

 END;

 GET EDIT(STRING)(A(8ð));

I=INDEX(STRING||' ',' ')-1;/\RESET LENGTH OF THE\/

STRING = SUBSTR(STRING,1,I); /\ STRING FROM 8ð TO \/

/\ LENGTH OF TEXT IN \/

/\ EACH INPUT RECORD.\/

Figure 90 (Part 1 of 2). Sorting Varying-Length Records Using Input and Output Handling
Routines

 Chapter 15. Using the Sort Program 369

PUT SKIP EDIT(I,STRING) (F(2),X(3),A);

 CALL PLIRETC(12);

 RETURN(STRING);

 ENDPUT: END;

 PUTOUT:PROC(STRING);

/\OUTPUT HANDLING ROUTINE OUTPUT SORTED RECORDS\/

DCL STRING CHAR (\);

/\NOTE THAT FOR VARYING RECORDS THE STRING

PARAMETER FOR THE OUTPUT-HANDLING ROUTINE

SHOULD BE DECLARED ADJUSTABLE BUT CANNOT BE

 DECLARED VARYING\/

PUT SKIP EDIT(STRING)(A); /\PRINT THE SORTED DATA\/

 CALL PLIRETC(4);

 END; /\ENDS PUTOUT\/

 END;

 /\

 //GO.SYSIN DD \

 ðð3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD

 ðð2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY

 ðð3ð77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR

 ð59334HOOK E.H. 1ð9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON

 ð73872HOME TAVERN, WESTLEIGH

 ððð931FOREST, IVER, BUCKS

 /\

 //GO.SYSPRINT DD SYSOUT=A

 //GO.SORTOUT DD SYSOUT=A

 //GO.SYSOUT DD SYSOUT=A

 //GO.SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,1)

 //GO.SORTWKð2 DD UNIT=SYSDA,SPACE=(CYL,1)

 //\

Figure 90 (Part 2 of 2). Sorting Varying-Length Records Using Input and Output Handling
Routines

370 PL/I for MVS & VM Programming Guide

Part 6. Specialized programming tasks

Chapter 16. Parameter Passing and Data Descriptors 373
PL/I Parameter Passing Conventions . 373
Passing Assembler Parameters . 374

Passing MAIN Procedure Parameters . 376
Options BYVALUE . 378
Descriptors and Locators . 380

Aggregate Locator . 381
Area Locator/Descriptor . 381
Array Descriptor . 382
String Locator/Descriptor . 383
Structure Descriptor . 384
Arrays of Structures and Structures of Arrays 385

Chapter 17. Using PLIDUMP . 386
PLIDUMP Usage Notes . 387

Chapter 18. Retaining the Run-Time Environment for Multiple
Invocations . 389

Preinitializable Programs . 389
The Interface for Preinitializable Programs 390

Using the Extended Parameter List (EPLIST) 390
Preinitializing a PL/I Program . 393
Invoking an Alternative MAIN Routine . 398
Using the Service Vector and Associated Routines 402

Using the Service Vector . 402
Load Service Routine . 403
Delete Service Routine . 406
Get-Storage Service Routine . 408
Free-Storage Service Routine . 409
Exception Router Service Routine . 409
Attention Router Service Routine . 412
Message Router Service Routine . 416

User Exits in Preinitializable Programs . 419
The SYSTEM Option in Preinitializable Programs 419
Calling a Preinitializable Program under VM 419
Calling a Preinitializable Program under MVS 419

Establishing an Language Environment for MVS & VM-Enabled Assembler
Routine as the MAIN Procedure . 421

Retaining the Run-Time Environment Using Language Environment for MVS &
VM-Enabled Assembler as MAIN . 421

Chapter 19. Multitasking in PL/I . 422
PL/I Multitasking Facilities . 422
Creating PL/I Tasks . 423

The TASK Option of the CALL Statement 423
Example . 423

The EVENT Option of the CALL Statement 423
Examples . 423

The PRIORITY Option of the CALL Statement 424
Examples . 424

 Copyright IBM Corp. 1964, 1995 371

Synchronization and Coordination of Tasks . 424
Sharing Data between Tasks . 425
Sharing Files between Tasks . 425
Producing More Reliable Tasking Programs 426
Terminating PL/I Tasks . 426
Dispatching Priority of Tasks . 427
Running Tasking Programs . 428
Sample Program 1: Multiple Independent Processes 428

Multiple Independent Processes: Nontasking Version 429
Multiple Independent Processes: Tasking Version 430

Sample Program 2: Multiple Independent Computations 432
Multiple Independent Computations: Nontasking Version 433
Multiple Independent Computations: Tasking Version 434

Chapter 20. Interrupts and Attention Processing 436
Using ATTENTION ON-Units . 437
Interaction with a Debugging Tool . 437

Chapter 21. Using the Checkpoint/Restart Facility 438
Requesting a Checkpoint Record . 439

Defining the Checkpoint Data Set . 440
Requesting a Restart . 440

Automatic Restart after a System Failure 440
Automatic Restart within a Program . 441
Getting a Deferred Restart . 441
Modifying Checkpoint/Restart Activity . 441

372 PL/I for MVS & VM Programming Guide

Chapter 16. Parameter Passing and Data Descriptors

This chapter describes PL/I parameter passing conventions and also special PL/I
control blocks that are passed between PL/I routines at run time. The most
important of these control blocks, called locators and descriptors, provide lengths,
bounds, and sizes of certain types of argument data.

Assembler routines can communicate with PL/I routines by following the parameter
passing techniques described in this chapter. This includes assembler routines that
call PL/I routines and PL/I routines that call assembler routines.

For additional information about LE/370 run-time environment considerations, other
than parameter passing conventions, see the Language Environment for MVS &
VM Programming Guide. This includes run-time environment conventions and
assembler macros supporting these conventions,

PL/I Parameter Passing Conventions
PL/I passes arguments using two methods:

� By passing the address of the arguments in the argument list
� By imbedding the arguments in the argument list

This section discusses the first method. For information on the second method,
see “Options BYVALUE” on page 378.

When arguments are passed by address between PL/I routines, register 1 points to
a list of addresses that is called an argument list. Each address in the argument
list occupies a fullword in storage. The last fullword in the list must have its
high-order bit turned on for the last argument address to be recognized. If a
function reference is used, the address of the returned value or its control block is
passed as an implicit last argument. In this situation, the implicit last argument is
marked as the last argument, using the high-order bit flagging.

If no arguments are passed in a CALL statement, register 1 is set to zero.

When arguments are passed between PL/I routines, what is passed varies
depending upon the type of data passed. The argument list addresses are the
addresses of the data items for scalar arithmetic items. For other items, where the
receiving routines might expect information about length or format in addition to the
data itself, locators and descriptors are used. For program control information such
as files or entries, other control blocks are used.

Table 45 on page 374 shows the argument address that is passed between PL/I
routines for different data types. The table also includes the effect of the
ASSEMBLER option. This option is recommended. See “Passing Assembler
Parameters” on page 374 for additional details.

 Copyright IBM Corp. 1964, 1995 373

Table 45. Argument List Addresses

Data type passed Address passed

Arithmetic items Arithmetic variable

Array or structure Array or structure variable, if OPTIONS(ASM)
Otherwise, aggregate locator1

String or area String or area variable, if OPTIONS(ASM)2

Otherwise, locator/descriptor1

File constant/variable File variable3

Entry Entry variable4

Label Label variable5

Pointer Pointer variable

Offset Offset variable

Notes:

1. Locators and descriptors are described below in “Descriptors and Locators” on page 380.
2. With options ASSEMBLER: When an unaligned bit string is involved, the address passed points to

the byte that contains the start of the bit string. For a VARYING length string, the address passed
points to the 2-byte field specifying the current length of the string that precedes the string.

3. A file variable is a fullword holding the address of file control data.
4. An entry variable consists of two words. The first word has the address of the entry. The second

word has the address of the save area for the immediately statically encompassing block or zero, if
none.

5. A label variable consists of two words. The first word has the address of a label constant. The
second word has the address of the save area of the block that owns the label at the time of
assignment. A label constant consists of two words. The first word has the address of the label in
the program. The second word has program control data.

Passing Assembler Parameters
If you call an assembler routine from PL/I, the ASSEMBLER option is
recommended in the declaration of the assembler entry name. For example,

DCL ASMRTN ENTRY OPTIONS(ASSEMBLER);

DCL C CHAR(8ð);

 CALL ASMRTN(C);

When the ASSEMBLER option is specified, the addresses of the data items are
passed directly. No PL/I locators or descriptors are involved. In the example
above, the address in the argument list is that of the first character in the 80-byte
character string.

For details about how argument lists are built, see “PL/I Parameter Passing
Conventions” above.

An assembler routine whose entry point has been declared with the ASSEMBLER
option can only be invoked by means of a CALL statement. You cannot use it as a
function reference. You can avoid the use of function references by passing the
returned value field as a formal argument to the assembler routine.

An assembler routine can pass back a return code to a PL/I routine in register 15.
If you declare the assembler entry with the option RETCODE, the value passed
back in register 15 is saved by the PL/I routine and is accessed when the built-in

374 PL/I for MVS & VM Programming Guide

function PLIRETV is used. If you do not declare the entry with the option
RETCODE, any register 15 return code is ignored.

Figure 91 shows the coding for a PL/I routine that invokes an assembler routine
with the option RETCODE.

 P1: PROC;

DCL A FIXED BIN(31) INIT(3);

DCL C CHAR(8) INIT('ASM2 RTN');

 DCL AR(3) FIXED BIN(15);

DCL ASM2 ENTRY EXTERNAL OPTIONS(ASM RETCODE);

DCL PLIRETV BUILTIN;

/\ Invoke entry ASM2. \/

/\ The argument list has three pointers. \/

/\ The first pointer addresses a copy of variable A. \/

/\ The second pointer addresses the storage for C. \/

/\ The third pointer addresses the storage for AR. \/

 CALL ASM2((A),C,AR);

/\ Check register 15 return code passed back from assembler \/

 /\ routine. \/

IF PLIRETV¬=ð THEN STOP;

 END P1;

Figure 91. A PL/I Routine That Invokes an Assembler Routine with the Option RETCODE

If an assembler routine calls a PL/I procedure, the use of locators and descriptors
should be avoided. Although you cannot specify ASSEMBLER as an option in a
PROCEDURE statement, locators and descriptors can be avoided if the procedures
do not directly receive strings, areas, arrays, or structures as parameters. For
example, you can pass a pointer to these items instead. If a length, bound, or size
is needed, you can pass these as a separate parameter. If your assembler routine
is invoking a PL/I MAIN procedure, see “Passing MAIN Procedure Parameters” on
page 376 for additional considerations involving MAIN procedure parameters.

Figure 92 on page 376 shows a PL/I routine that is invoked by an assembler
routine, which is assumed to be operating within the Language Environment
environment.

 Chapter 16. Parameter Passing and Data Descriptors 375

 ASMR CSECT

 .

 .

 \

\ Invoke procedure P2 passing four arguments.

 \

LA 1,ALIST Register 1 has argument list

L 15,P2 Set P2 entry address

BALR 14,15 Invoke procedure P2

 .

 .

 \

\ Argument list below contains the addresses of 4 arguments.

 \

ALIST DC A(A) 1st argument address

DC A(P) 2nd argument address

DC A(Q) 3rd argument address

DC A(R+X'8ððððððð') 4th argument address

 \

A DC F'3' Fixed bin(31) argument

P DC A(C) Pointer (to C) argument

Q DC A(AR) Pointer (to AR) argument

R DC A(ST) Pointer (to ST) argument

 \

C DC CL1ð'INVOKE P2 ' Character string

AR DC 4D'ð' Array of 4 elements

 ST DC F'1' Structure

 DC F'2'

 DC D'ð'

P2 DC V(P2) Procedure P2 entry address

 END ASMR

 -

/\ This routine receives four parameters from ASMR. \/

/\ The arithmetic item is received directly. \/

/\ The character string, array and structure are \/

/\ received using a pointer indirection. \/

 P2: PROC(A,P,Q,R);

DCL A FIXED BIN(31);

DCL (P,Q,R) POINTER;

DCL C CHAR(1ð) BASED(P);

DCL AR(4) FLOAT DEC(16) BASED(Q);

DCL 1 ST BASED(R),

2 ST1 FIXED BIN(31),

2 ST2 FIXED BIN(31),

2 ST3 FLOAT DEC(16);

 .

 .

 .

 END P2;

Figure 92. A PL/I Routine That Is Invoked by an Assembler Routine

If you choose to code an assembler routine that passes or receives strings, areas,
arrays or structures that require a locator or descriptor, see “Descriptors and
Locators” on page 380 for their format and construction. Keep in mind, however,
that doing so might affect the migration of these assembler routines in the future.

Passing MAIN Procedure Parameters
The format of a PL/I MAIN procedure parameter list is controlled by the SYSTEM
compiler option and the NOEXECOPS procedure option. The kind of coding
needed also depends upon the type of parameter received by the MAIN procedure.

If the MAIN procedure receives no parameters or a single varying character string:

� It is recommended that the MAIN procedure be compiled with SYSTEM(MVS).

376 PL/I for MVS & VM Programming Guide

� If the assembler routine needs to pass run-time options for initializing the
run-time environment, the NOEXECOPS option should not be specified or
defaulted. Otherwise, NOEXECOPS should be specified.

� The MAIN procedure must be coded to have no parameters or a single
parameter, consisting of a varying character string. For example:

MAIN: PROC(C) OPTIONS(MAIN);

DCL C CHAR(1ðð) VARYING;

� The assembler routine must invoke the MAIN procedure passing a varying
length character string, as shown in Figure 93. The string has the same format
as that passed in the PARM= option of the MVS EXEC statement, when an
Language Environment program is executed. The string consists of optional
run-time options, followed by a slash (/), followed by optional characters to be
passed to the MAIN procedure.

R1 ──> ┌────────────────────────────┐ ┌────┬────────────────┐

│'1'B A(varying_len_string) │ ──────> │ LL │ string │

 └────────────────────────────┘ └────┴────────────────┘

├────── LL ──────┤

Figure 93. Assembler Routine Invoking a MAIN Procedure

If NOEXECOPS is specified, run-time options and the accompanying slash
should be omitted. If run-time options are provided in the string, they will have
no effect on environment initialization.

If a MAIN procedure receives no parameters, the argument list should be built
as shown in Figure 93 but a null string should be passed by setting the length
LL to zero.

If the MAIN procedure receives a character string as a parameter, the
locator/descriptor needed for this string is built by PL/I run-time services before
the MAIN procedure gains control.

If a MAIN procedure receives more than one parameter or a parameter that is not a
single varying character string:

� It is recommended that the MAIN procedure be compiled with SYSTEM(MVS).

� NOEXECOPS is always implied. There is no mechanism to receive and parse
run-time options from the assembler routine for initializing the run-time
environment.

� The assembler routine should build its argument list so it corresponds to the
parameters expected by the MAIN procedure. The assembler argument list is
passed through as is to the MAIN procedure. If strings, areas, arrays or
structures need to be passed, consider passing pointers to these items instead.
This avoids the use of locators and descriptors.

Figure 94 on page 378 illustrates this technique.

 Chapter 16. Parameter Passing and Data Descriptors 377

 ASMð CSECT

 .

 .

 .

 \

\ Invoke MAINP passing two arguments.

 \

LA 1,ALIST Register 1 has argument list

LINK EP=MAINP Invoke MAINP load module,

\ giving control to entry CEESTART

 .

 .

 .

 \

\ The argument list below contains the addresses of two

\ arguments, both of which are pointers.

 \

ALIST DC A(P) First argument address

DC A(Q+X'8ððððððð') Second argument address

 \

P DC A(C) Pointer (to 1st string) argument

Q DC A(D) Pointer (to 2nd string) argument

 \

C DC C'Character string 1 '

D DC C'Character string 2 '

 END ASMð

 -

 %PROCESS SYSTEM(MVS);

/\ This procedure receives two pointers as its parameters. \/

MAINP: PROCEDURE(P,Q) OPTIONS(MAIN);

DCL (P,Q) POINTER;

DCL C CHAR(2ð) BASED(P);

DCL D CHAR(2ð) BASED(Q);

/\ Display contents of character strings pointed to by \/

/\ pointer parameters. \/

 DISPLAY(C);

 DISPLAY(D);

 END MAINP;

Figure 94. Assembler Routine That Passes Pointers to Strings

� An assembler routine can choose to pass strings, areas, arrays or structures to
a MAIN procedure. If so, locators and descriptors as described in “Descriptors
and Locators” on page 380 must be provided by the assembler routine.

Assembler routines should not invoke MAIN procedures compiled by PL/I MVS &
VM that specify SYSTEM(IMS) or SYSTEM(CICS). Assembler routines can invoke
MAIN procedures compiled with other SYSTEM options. However, these interfaces
generally involve specialized usage.

 Options BYVALUE
PL/I supports the BYVALUE option for external procedure entries and entry

| declarations. The BYVALUE option specifies that variables are passed by copying
| the value of the variables into the argument list. This implies that the invoked
| routine cannot modify the variables passed by the caller.

BYVALUE arguments and returned values must have a scalar data type of either
POINTER or REAL FIXED BINARY(31,0). Consequently, each fullword slot in the
argument list consists of either a pointer value or a real fixed binary(31,0) value. If

378 PL/I for MVS & VM Programming Guide

you need to pass a data type that is not POINTER or REAL FIXED BINARY(31,0),
consider passing the data type indirectly using the POINTER data type.

Values from function references are returned using register 15.

| With the BYVALUE argument passing convention, PL/I does not manipulate the
| high-order bit of BYVALUE POINTER arguments, even if last in the argument list.
| Further, the high-order bit is neither turned off for incoming nor set for outgoing
| BYVALUE arguments.Figure 95 shows an assembler routine ASM1 that invokes a

procedure PX passing three arguments BYVALUE, which in turn invokes an
assembler routine ASM2 (not shown). The assembler routines are assumed to be
operating in the Language Environment for MVS & VM environment.

 ASM1 CSECT

 .

 .

 .

 \

\ Invoke procedure PX passing three arguments BYVALUE.

 \

LA 1,ALIST Register 1 has argument list

L 15,PX Set reg 15 with entry point

BALR 14,15 Invoke BYVALUE procedure

LTR 15,15 Checked returned value

 .

 .

 \

\ The BYVALUE argument list contains three arguments.

\ The high order bit of the last argument is \not\ specially

\ flagged when using the BYVALUE passing convention.

 \

ALIST DC A(A) 1st arg is pointer value

DC A(C) 2nd arg is pointer value

DC F'2' 3rd arg is arithmetic value

 \

 A DC 2D'ð' Array

 C DC C'CHARSTRING' Character string

 \

 \

PX DC V(PX) Entry point to be invoked

 END ASM1

 -

PX: PROCEDURE(P,Q,M) OPTIONS(BYVALUE) RETURNS(FIXED BIN(31));

DCL (P,Q) POINTER;

DCL A(2) FLOAT DEC(16) BASED(P);

 DCL C CHAR(1ð) BASED(Q);

DCL M FIXED BIN(31);

DCL ASM2 ENTRY(FIXED BIN(31,ð)) OPTIONS(BYVALUE ASM);

 M=A(1);

/\ ASM2 is passed variable M byvalue, so it can not alter \/

/\ the contents of variable M. \/

 CALL ASM2(M);

 RETURN(ð);

 END PX;

Figure 95. Assembler Routine Passing Arguments BYVALUE

 Chapter 16. Parameter Passing and Data Descriptors 379

Descriptors and Locators
PL/I supports locators and descriptors in order to communicate the lengths, bounds,
and sizes of strings, areas, arrays and structures between PL/I routines. For
example, the procedure below can receive the parameters shown without explicit
knowledge of their lengths, bounds or sizes at compilation time.

 P: PROCEDURE(C,D,AR);

 DCL C CHAR(\),

 D AREA(\),

 AR(\,\) CHAR(\);

The use of locators and descriptors is not recommended for assembler routines,
because the migration of these routines might be affected in the future. In addition,
portability to other platforms can be adversely affected. See “Passing Assembler
Parameters” on page 374 for techniques to avoid the use of these control blocks.

The major control blocks are:

Descriptors These hold the extent of the data item such as string lengths,
array bounds, and area sizes.

Locators These hold the address of a data item. If they are not
concatenated with the descriptor, they hold the descriptor's
address.

Locator/descriptor
This is a control block consisting of a locator concatenated with a
descriptor.

When received as parameters or passed as arguments, locators and descriptors
are needed for strings, areas, arrays, and structures. For strings and areas, the
locator is concatenated with the descriptor and contains only the address of the
variable. For structures and arrays, the locator is a separate control block from the
descriptor and holds the address of both the variable and the descriptor.

Figure 96 on page 381 gives an example of the way in which data is related to its
locator and descriptor.

380 PL/I for MVS & VM Programming Guide

PL/I Statement: DCL TABLE(1ð) FLOAT DECIMAL(6);

 Aggregate ┌───────────────────────────────┐

Locator │ Address of TABLE ├────────┐

 ├───────────────────────────────┤ │

│ Address of descriptor ├───┐ │

 └───────────────────────────────┘ │ │

 │ │

 │ │

 │ │

 Array ┌───────────────────────────────┐%──┘ │

Descriptor │ Relative Virtual Origin = 4 │ │

 ├───────────────────────────────┤ │

│ Multiplier = 4 │ │

 ├───────────────────────────────┤ │

│ Upperbound = 1ð │ │

 ├───────────────────────────────┤ │

│ Lowerbound = 1 │ │

 └───────────────────────────────┘ │

 │

 │

 │

 ┌───────────────────────────────┐%───────┘

│ TABLE (1) │

 ├───────────────────────────────┤

 │ . │

 │ . │

 Array TABLE(1ð) │ . │

 ├───────────────────────────────┤

│ TABLE (9) │

 ├───────────────────────────────┤

│ TABLE (1ð) │

 └───────────────────────────────┘

Figure 96. Example of Locator, Descriptor, and Array Storage

 Aggregate Locator
The aggregate locator holds this information:

� The address of the start of the array or structure
� The address of the array descriptor or structure descriptor

Figure 97 shows the format of the aggregate locator.

 ┌───┐

ð │ Address of the start of the array or structure │

 ├───┤

4 │ Address of the array descriptor or structure descriptor │

 └───┘

Figure 97. Format of the Aggregate Locator

The array and structure descriptor are described in subsequent sections.

 Area Locator/Descriptor
The area locator/descriptor holds this information:

� The address of the start of the area
� The length of the area

Figure 98 on page 382 shows the format of the area locator/descriptor.

 Chapter 16. Parameter Passing and Data Descriptors 381

 ┌───┐

ð │ Address of area variable │

 ├───┤

4 │ Length of area variable │

 └───┘

Figure 98. Format of the Area Locator/Descriptor

The area variable consists of a 16-byte area variable control block followed by the
storage for the area variable.

The area descriptor is the second word of the area locator/descriptor. It is used in
structure descriptors when areas appear in structures and also in array descriptors,
for arrays of areas.

 Array Descriptor
The array descriptor holds this information:

� The relative virtual origin (RVO) of the array
� The multiplier for each dimension
� The high and low bounds for the subscripts in each dimension

When the array is an array of strings or areas, the string or area descriptor is
concatenated at the end of the array descriptor to provide the necessary additional
information. String and area descriptors are the second word of the
locator/descriptor word pair.

The CMPAT(V2) format of the array descriptor differs from the CMPAT(V1) level,
but holds the same information. After the first fullword (RVO) of the array
descriptor, each array dimension is represented by three words (CMPAT(V2)) or
two words (CMPAT(V1)) that contain the multiplier and bounds for each dimension.

Figure 99 shows the format of the CMPAT(V2) array descriptor.

 ┌───┐

ð │ RVO (Relative Virtual Origin) │

 ├───┤

4 │ Multiplier for this dimension │

 ├───┤

8 │ High bound for this dimension │

 ├───┤

C │ Low bound for this dimension │

 ├───┤

 │ . │

 │ . │

 │ . │

│ Three fullwords containing multiplier and high and low │

│ bounds are included for each array dimension. │

 │ . │

 │ . │

 │ . │

 └───┘

 ┌───┐

 │ │

│ Concatenated string or area descriptor, if this is an │

│ array of strings or areas. │

 │ │

 └───┘

Figure 99. Format of the Array Descriptor for a Program Compiled with CMPAT(V2)

Figure 100 on page 383 shows the format of the CMPAT(V1) array descriptor.

382 PL/I for MVS & VM Programming Guide

 ┌───┐

ð │ RVO (Relative Virtual Origin) │

 ├───┤

4 │ Multiplier for this dimension │

 ├───┤

8 │ High bound this dimension | Low bound this dimension │

 ├───┤

 │ . │

 │ . │

 │ . │

│ Two fullwords containing multiplier and high and low │

│ bounds are included for each array dimension. │

 │ . │

 │ . │

 │ . │

 └───┘

 ┌───┐

 │ │

│ Concatenated string or area descriptor, if this is an │

│ array of strings or areas. │

 │ │

 └───┘

Figure 100. Format of the Array Descriptor for a Program Compiled with CMPAT(V1)

RVO (Relative virtual origin)
This is held as a byte value except for bit string arrays, in which
case this is a bit value. For bit string arrays, the bit offset from the
byte address is held in the string descriptor.

Multiplier The multiplier is held as a byte value, except for bit string arrays in
which case they are bit values.

High bound The high subscript for this dimension

Low bound The low subscript for this dimension.

 String Locator/Descriptor
The string locator/descriptor holds this information:

� The byte address of the string
� The (maximum) length of the string
� Whether or not it is a varying string
� For a bit string, the bit offset from the byte address

Figure 101 shows the format of the string locator/descriptor.

 ┌───┐

ð │ Byte address of string │

 ├───┤

4 │ Allocated length |F1| Not Used | F2 │

 └───┘

Figure 101. Format of the String Locator/Descriptor

For VARYING strings, the byte address of the string points to the half-word length
prefix, which precedes the string.

Allocated length is held in bits for bit strings and in bytes for character strings.
Length is held in number of graphics for graphic strings.

 Chapter 16. Parameter Passing and Data Descriptors 383

F1 = First bit in second halfword:

'ð'B Fixed length string

 '1'B VARYING string

F2 = Last 3 bits in second halfword:

Used for bit strings to hold offset from byte address of

first bit in bit string.

The string descriptor is the second word of the string locator/descriptor. It is used
in structure descriptors when strings appear in structures and also in array
descriptors, for arrays of strings.

 Structure Descriptor
The structure descriptor is a series of fullwords that give the byte offset of the start
of each base element from the start of the structure. If a base element has a
descriptor, the descriptor is included in the structure descriptor, following the
appropriate fullword offset.

Structure descriptor format:
Figure 102 shows the format of the structure descriptor. For each base
element in the structure, a fullword field is present in the structure descriptor
that contains the byte offset of the base element from the start of the storage
for the structure. If the base element is a string, area, or array, this fullword is
followed by a descriptor, which is followed by the offset field for the next base
element. If the base element is not a string, area, or array, the descriptor field
is omitted.

 ┌───┐

ð │ Base element offset from the start of the structure │

 ├───┤

4 │ Base element descriptor (if required) │

 ├───┤

 │ . │

 │ . │

 │ . │

│ For every base element in the structure, an entry is │

│ made consisting of a fullword offset field and, │

│ if the element requires a descriptor, a descriptor. │

 │ . │

 │ . │

 │ . │

 └───┘

Figure 102. Format of the Structure Descriptor

Base element offsets are held in bytes. Any adjustments needed for bit-aligned
addresses are held in the respective descriptors.

Major and minor structures themselves, versus the contained base elements, are
not represented in the structure descriptor.

384 PL/I for MVS & VM Programming Guide

Arrays of Structures and Structures of Arrays
When necessary, an aggregate locator and a structure descriptor are generated for
both arrays of structures and structures of arrays.

The structure descriptor has the same format for both an array of structures and a
structure of arrays. The difference between the two is the values in the field of the
array descriptor within the structure descriptor. For example, take the array of
structures AR and the structure of arrays ST, declared as follows:

The structure descriptor for both AR and ST contains an offset field and an array
descriptor for B and C. However, the values in the descriptors are different,
because the array of structures AR consists of elements held in the order:

 B,C,B,C,B,C,B,C,B,C,B,C,B,C,B,C,B,C,B,C

but the elements in the structure of arrays ST are held in the order:

 B,B,B,B,B,B,B,B,B,B,C,C,C,C,C,C,C,C,C,C.

Array of structures Structure of arrays
DCL 1 AR(1ð),

 2 B,

 2 C;

DCL 1 ST,

 2 B(1ð),

 2 C(1ð);

 Chapter 16. Parameter Passing and Data Descriptors 385

 Chapter 17. Using PLIDUMP

This section provides information about dump options and the syntax used to call
PLIDUMP, and describes PL/I-specific information included in the dump that can
help you debug your routine.

| Note: PLIDUMP conforms to National Language Support standards.

Figure 103 shows an example of a PL/I routine calling PLIDUMP to produce an
Language Environment for MVS & VM dump. In this example, the main routine
PLIDMP calls PLIDMPA, which then calls PLIDMPB. The call to PLIDUMP is made
in routine PLIDMPB.

%PROCESS MAP GOSTMT SOURCE STG LIST OFFSET LC(1ð1); ðððð1ððð

 PLIDMP: PROC OPTIONS(MAIN) ; ðððð2ððð

 ðððð3ððð

 Declare (H,I) Fixed bin(31) Auto; ðððð4ððð

 Declare Names Char(17) Static init('Bob Teri Bo Jason'); ðððð5ððð

H = 5; I = 9; ðððð6ððð

Put skip list('PLIDMP Starting'); ðððð7ððð

 Call PLIDMPA; ðððð8ððð

 ðððð9ððð

 PLIDMPA: PROC; ððð1ðððð

Declare (a,b) Fixed bin(31) Auto; ððð11ððð

a = 1; b = 3; ððð12ððð

Put skip list('PLIDMPA Starting'); ððð13ððð

 Call PLIDMPB; ððð14ððð

 ððð15ððð

 PLIDMPB: PROC; ððð16ððð

 Declare 1 Name auto, ððð17ððð

 2 First Char(12) Varying, ððð18ððð

 2 Last Char(12) Varying; ððð19ððð

First = 'Teri'; ððð2ðððð

 Last = 'Gillispy'; ððð21ððð

Put skip list('PLIDMPB Starting'); ððð22ððð

Call PLIDUMP('TBFC','PLIDUMP called from procedure PLIDMPB');ððð23ððð

 Put Data; ððð24ððð

 End PLIDMPB; ððð25ððð

 ððð26ððð

 End PLIDMPA; ððð27ððð

 ððð28ððð

 End PLIDMP; ððð29ððð

Figure 103. Example PL/I Routine Calling PLIDUMP

The syntax and options for PLIDUMP are shown below.

 Syntax

55──PLIDUMP──(──character-string-expression 1──,────────────────────5

5──character-string-expression 2──)────────────────────────────────5%

where:

character-string-expression 1
is a dump options character string consisting of one or more of the following:

A Requests information relevant to all tasks in a multitasking program.

B BLOCKS (PL/I hexadecimal dump).

386 Copyright IBM Corp. 1964, 1995

C Continue. The routine continues after the dump.

E Exit from current task of a multitasking program. Program continues
to run after requested dump is completed.

F FILES.

H STORAGE.

Note: A ddname of CEESNAP must be specified with the H option
to produce a SNAP dump of a PL/I routine.

K BLOCKS (when running under CICS). The Transaction Work Area
is included.

NB NOBLOCKS.

NF NOFILES.

NH NOSTORAGE.

NK NOBLOCKS (when running under CICS).

NT NOTRACEBACK.

O Only information relevant to the current task in a multitasking
program.

S Stop. The enclave is terminated with a dump.

T TRACEBACK.

T, F, and C are the default options.

character-string-expression 2
is a user-identified character string up to 80 characters long that is printed as
the dump header.

PLIDUMP Usage Notes
If you use PLIDUMP, the following considerations apply:

� If a routine calls PLIDUMP a number of times, use a unique user-identifier for
each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

� A DD statement with the ddname PLIDUMP, PL1DUMP, or CEEDUMP; a
FILEDEF command in VM; or an ALLOCATE command in TSO can be used to
define the data set for the dump.

� The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement
should specify a logical record length (LRECL) of at least 133 to prevent dump
records from wrapping.

� When you specify the H option in a call to PLIDUMP, the PL/I library issues an
OS SNAP macro to obtain a dump of virtual storage. The first invocation of
PLIDUMP results in a SNAP identifier of 0. For each successive invocation,
the ID is increased by one to a maximum of 256, after which the ID is reset to
0.

� Support for SNAP dumps using PLIDUMP is only provided under VM and MVS.
SNAP dumps are not produced in a CICS environment.

 Chapter 17. Using PLIDUMP 387

– If the SNAP is not successful, the CEE3DMP DUMP file displays the
message:

Snap was unsuccessful

– If the SNAP is successful, CEE3DMP displays the message:

Snap was successful; snap ID = nnn

where nnn corresponds to the SNAP identifier described above. An
unsuccessful SNAP does not result in an incrementation of the identifier.

If you want to ensure portability across system platforms, use PLIDUMP to
generate a dump of your PL/I routine.

388 PL/I for MVS & VM Programming Guide

Chapter 18. Retaining the Run-Time Environment for Multiple
Invocations

If an assembler routine is to invoke either a number of PL/I routines or the same
PL/I routine repeatedly, the creation and termination of the run-time environment for
each invocation will be unnecessarily inefficient. The solution is to create the
run-time environment only once for use by all invocations of PL/I procedures. This
can be achieved by several techniques which include:

� Preinitializing the PL/I program
� Establishing a Language Environment for MVS & VM-enabled assembler

routine as the MAIN procedure
� Retaining the run-time environment using Language Environment for MVS &

VM-enabled assembler as MAIN

Each of these techniques is discussed below.

 Preinitializable Programs
To call a PL/I program multiple times, you can establish the run-time environment
and then repeatedly invoke the PL/I program using the already-established run-time
environment. You incur the overhead of initializing and terminating the run-time
environment only once instead of every time you invoke the PL/I program.

Because PL/I detects preinitializable programs dynamically during initialization, you
do not have to recompile or relink-edit a program. However, this facility assumes
that the PL/I MAIN procedure is compiled with the OS PL/I Version 2 or the PL/I for
MVS & VM compiler.

Note: PL/I-defined preinitialization support does not include support for ILC. The
support provided is slightly different from that provided by OS PL/I Version 2. Refer
to the PL/I for MVS & VM Compiler and Run-Time Migration Guide for information
about these differences.

To maintain the run-time environment, invoke the program with the PL/I entry
PLISTART if you are using OS PL/I Version 2, or with CEESTART if you are using
PL/I for MVS & VM, and pass a special Extended Parameter List (EPLIST) that
indicates that the program is to be preinitialized.

parameter list when you pass it:

INIT
Initialize the run-time environment, return two tokens that represent the
environment, but do not run the program.

CALL
Run the PL/I program using the environment established by the INIT request,
and leave the environment intact when the program completes. CALL uses the
two tokens that were returned by the INIT request so that PL/I can recognize
the proper environment.

You can also initialize and call a PL/I program by passing the CALL parameter
with two zero tokens. PL/I will service this request as an INIT followed by a
CALL. You can still call the program repeatedly.

 Copyright IBM Corp. 1964, 1995 389

TERM
Terminate the run-time environment but do not run the program.

EXECUTE
Perform INIT, CALL, and TERM in succession.

In order for a program to be preinitialized it must perform the following tasks:

� Explicitly close all files, including SYSPRINT.
� Explicitly free all controlled variables.
� Explicitly release all fetched modules.

Different programs can use the same run-time environment if the programs do not
use files, controlled variables, or fetched procedures. stream-oriented output to
SYSPRINT, and SYSPRINT must be declared as EXTERNAL FILE.

| Note: You cannot preinitialize a PL/I program under CICS or in conjunction with
| PL/I multitasking.

The Interface for Preinitializable Programs
The interface for preinitializable programs is shown below:

 ┌───────────────────────┐ ┌────┬────┬─────────┬────────┐

R1 ─5│"X'8ððððððð' + address"├─5│ LL │ ðð │ Request │ EPLIST │

 └───────────────────────┘ └────┴────┴─────────┴────────┘

The “LL” field must The following halfword must contain zeros.

The “Request” field is a field of eight characters that can contain

 'INIT '

 'CALL '

 'TERM '

 'EXECUTE '

No other values are allowed.

The “EPLIST” field is a pointer to the extended parameter list, which is described in
the following section.

Using the Extended Parameter List (EPLIST)
You can use the facilities made possible through the extended parameter list to
support PL/I programs that run in nonproblem-state environments. These new
environments include, but are not limited to:

 Supervisor state
 Cross-memory mode

System request block (SRB) mode

390 PL/I for MVS & VM Programming Guide

 Warning

The code that uses the preinitialization interface described in this chapter
(that is, the preinitialization “director” or “driver” module) is responsible
for maintaining MVS integrity . PL/I as shipped does not prevent the
operation of nonproblem-state programs in the environment described in this
section, nor does it provide any means of manipulating PSW keys. Therefore,
your preinitialization director code must ensure that all data areas and
addresses passed as parameters to a nonproblem-state PL/I program are
accessible for reading and/or writing as needed by that PL/I program in the
PSW key under which the program is given control. The director code is also
responsible for checking any parameters passed by the problem-state caller to
ensure that the caller has the read and/or write authority needed in its PSW
protect key.

The “EPLIST” field serves as a means of communication between the caller and
the run-time environment. It points to the EPLIST, a vector of fullwords that The
items must occur in the following order:

1. The length of the extended parameter list.

2. First token for the run-time environment.

3. Second token for the run-time environment.

4. Pointer to a parameter list Use a fullword of zeros if your code does not expect
a parameter.

5. Pointer to a character string of your run-time options.

If you need them, you can optionally include the following additional fullword slots
after those listed above:

6. Pointer to an alternative MAIN PL/I routine you wish to invoke. If you do not
want to use this slot but wish to specify the seventh slot, use a fullword of
zeros.

7. Pointer to a service vector defined by you through which you designate
alternative routines to perform certain services, like loading and deleting.

The defined constants area of the assembler module in Figure 104 on page 394
shows an example of how you could set up the extended parameter list.

The use of each field in the extended parameter list is described below.

Length of EPLIST: Includes the four bytes for itself. Valid decimal values are 20,
24, and 28.

First and Second Run-Time Environment Tokens: These tokens are
automatically returned during initialization. Or, you can use zeros for them when
requesting a preinitialized CALL and the effect is that both an INIT and a CALL are
performed.

Pointer to Your Program Parameters: These parameters should be as your
object code expects. If your object code expects a character string as its
parameter, use the following structure:

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 391

 ┌────────────────────────┐ ┌────┬──────────────────┐

│ "X'8ððððððð' + address"├──5│ LL │ Run-Time Options │

 └────────────────────────┘ └────┴──────────────────┘

where “LL” is a halfword containing the length of the character string.

Use a value of zero as a place holder for this slot if your program does not expect
any parameters.

When parameters are passed to a preinitialized program, the parameter list must
consist of one address for each parameter. The high-order bit must be turned on
for the address of the last parameter.

Without knowledge of PL/I descriptors, the only data types that you can pass to a
PL/I preinitialized program are pointers and numeric scalars. Numeric scalars can
have any base, mode, scale, or precision.

For example, to pass the REAL FIXED BIN(31) values 5 and 6 to a preinitialized
program, the parameter list could be declared as:

PARMS DC A(BIN_PARM1)

 DC A(X'8ððððððð'+BIN_PARM2)

BIN_PARM1 DC F'5'

BIN_PARM2 DC F'6'

To pass the two strings “pre” and “init” to a preinitialized program that receives
them as varying strings, you should pass the parameters indirectly via pointers.
The parameter list could be declared as:

PARMS DC A(PTR_PARM1)

 DC A(X'8ððððððð'+PTR_PARM2)

PTR_PARM1 DC A(STR_PARM1)

PTR_PARM2 DC A(STR_PARM2)

STR_PARM1 DC H'3'

 DC CL8'pre'

STR_PARM2 DC H'4'

 DC CL16'init'

The preinitialized PL/I program would declare its incoming parameters as pointers
which could be used as locators for varying strings. The actual code might look
like the following:

 PIPISTR: Proc(String1_base, String2_base) options(main noexecops);

Declare (String1_base, String2_base) pointer;

Declare String1 char(ð8) varying based(String1_base);

Declare String2 char(16) varying based(String2_base);

Pointer to Your Run-Time Options: To point to the character string of run-time
options, use the structure shown in the diagram under “Pointer to Your Program
Parameters” above. The run-time options provided are merged as the
command-level options.

Pointer to an Alternative Main: If you place an address in this field and your
request is for a preinitialized CALL, that address is used as the address of the
compiled code to be invoked.

392 PL/I for MVS & VM Programming Guide

Note: When using this function, the alternative mains you invoke cannot use
FETCH and RELEASE, cannot use CONTROLLED variables, and cannot use any
I/O other than stream-oriented output to SYSPRINT, which must be declared as
EXTERNAL FILE.

For an example of how to use this facility, see “Invoking an Alternative MAIN
Routine” on page 398.

Pointer to the Service Vector: If you want certain services like load and delete to
be carried out by some other code supplied by you (instead of, for example, the
Language Environment for MVS & VM LOAD and DELETE services), you must use
this field to point to the service vector. For a description of the service vector and
interface requirements for user-supplied service routines, see “Using the Service
Vector and Associated Routines” on page 402. Sample service routines are shown
for some of the services.

Note: Besides interfaces and rules defined here for these services, you also might
need to follow additional rules. That is, each service that you provide must follow
rules defined here and rules defined for the corresponding service in the Language
Environment for MVS & VM preinitialization. For detailed rules for services in
Language Environment for MVS & VM-defined preinitialization, see the Language
Environment for MVS & VM Programming Guide.

Preinitializing a PL/I Program
Figure 104 on page 394 demonstrates how to:

� Establish the run-time environment via an INIT request

� Pass run-time parameters to the PL/I initialization routine

� Set up a parameter to the PL/I program which is different for each invocation of
the program

� Repeatedly invoke a PL/I program via the CALL request

� Perform load and delete services using your own service routines instead of
Language Environment for MVS & VM-provided services

� List out names of all modules loaded and deleted during the run

� Communicate from the PL/I program to the driving program via PLIRETC

� Terminate the PL/I program via the TERM request

The PL/I program itself is very simple. The parameter it expects is a fullword
integer. If the parameter is the integer 3, PLIRETC is set to 555. For an example,
see Figure 105 on page 398.

The assembler program which drives the PL/I program establishes the run-time
environment, repeatedly invokes the PL/I program passing a parameter of 10, 9, 8,
and so on. If the return code set by the PL/I program is nonzero, the assembler
program terminates the run-time environment and exits.

Figure 108 on page 404 and Figure 109 on page 407 show the load and delete
routines used in place of the usual Language Environment for MVS & VM-provided
services. These are examples of user-supplied service routines that comply with
the interface conventions discussed in “Using the Service Vector and Associated
Routines” on page 402. These particular routines list out the names of all modules
loaded and deleted during the run.

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 393

Note: This program does not include the logic that would verify the correctness of
any of the invocations. This logic is imperative for proper operations.

TITLE 'Preinit Director Module'

\ \

\ Function:Demonstrate the use of the Preinitializable Program Facility

\ Preinit Requests : INIT, CALL, TERM

\

\ Parm to Prog : Fixed Bin(31)

\ Output : Return Code set via PLIRETC

\

\ \

NEWPIPI CSECT

 EXTRN CEESTART

EXTRN LDMPIPI User's load routine

EXTRN DLMPIPI User's delete routine

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R12,R15 Set module Base

 USING NEWPIPI,R12

\

 LA R1ð,SAVAREA

 ST R1ð,8(R13) Forward Chain

 ST R13,4(R1ð) Back Chain

 LR R13,R1ð

\

MAINCODE EQU \

\ ===

\ Setup the Request list specifying 'INIT'.

\ ===

\

WTO 'Prior to INIT request'

\

MVC PRP_REQUEST,INIT Indicate the INIT request

\

LA R1,EXEC_ADDR Get the parm addr list

ST R1,EPL_EXEC_OPTS Save in EPL

\

\ Setup R1 to point to the Parm list

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

WTO 'After INIT request'

\

Figure 104 (Part 1 of 4). Director Module for Preinitializing a PL/I Program

394 PL/I for MVS & VM Programming Guide

\ ===

\ The run-time environment is now established. PL/I object code

\ has not yet been executed. We will now repeatedly invoke

\ the PL/I object code until the PL/I object code sets

\ a non-zero return code.

\ ===

\ Setup the Request list specifying 'CALL'.

\ ===

\

DO_CALL EQU \

\

WTO 'Prior to CALL request'

\

MVC PRP_REQUEST,CALL Indicate the CALL request

\

LA R1,PARMS Get the parm addr list

ST R1,EPL_PROG_PARMS Save in EPL

\

\ Setup R1 to point to the Parm list

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

LTR R15,R15 Zero PL/I return code?

BNZ DO_TERM No. We are done

\

L R5,PARAMETER Change the parm ...

BCTR R5,ð ... passing one less ...

ST R5,PARAMETER ... each time

\

LTR R5,R5 Don't loop forever

 BNZ DO_CALL

\

\ ===

\ The request now is 'TERM'

\ ===

\

DO_TERM EQU \

\

ST R15,RETCODE SAVE PL/I RETURN CODE

\

WTO 'Prior to TERM request'

\

MVC PRP_REQUEST,TERM Indicate a TERM command

\

LA R1,ð No parm list is present

ST R1,EPL_PROG_PARMS Save in EPL

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

WTO 'After TERM request'

\

Figure 104 (Part 2 of 4). Director Module for Preinitializing a PL/I Program

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 395

\==

\ Return to the System - Bye

\==

SYSRET EQU \

\

 L R13,SAVAREA+4

 L R14,12(R13)

 L R15,RETCODE

 LM Rð,R12,2ð(R13)

BR R14 Return to your caller

 EJECT

 EJECT

\

\ CONSTANTS AND WORKAREAS

\

SAVAREA DS 2ðF

\

RETCODE DC F'ð'

PARM_EPL DC A(X'8ððððððð'+IBMBZPRP) Parameter Addr List

PSTART DC A(CEESTART)

\ ===

\ Request strings allowed in the Interface

\ ===

INIT DC CL8'INIT' Initialize the program envir

CALL DC CL8'CALL' Invoke the appl - leave envir up

TERM DC CL8'TERM' Terminate Environment

EXEC DC CL8'EXECUTE' INIT, CALL, TERM - all in one

\

\ ===

 SPACE 1

\ Parameter list passed by a Pre-Initialized Program

\ Addressed by Reg 1 = A(A(IBMBZPRP))

\ See IBMBZEPL DSECT.

 SPACE 1

IBMBZPRP DS ðF

PRP_LENGTH DC H'16' Len of this PRP passed (16)

PRP_ZERO DC H'ð' Must be zero

PRP_REQUEST DC CL8' ' 'INIT' - initialize PL/I

\ 'CALL' - invoke application

\ 'TERM' - terminate PL/I

\ 'EXECUTE' - init, call, term

\

PRP_EPL_PTR DC A(IBMBZEPL) A(EPL) - Extended Parm List

\ ===

 SPACE 1

\ Parameter list for the Pre-Initialized Programs

 SPACE 1

IBMBZEPL DS ðF

EPL_LENGTH DC A(EPL_SIZE) Length of this EPL passed

EPL_TOKEN1 DC F'ð' First env token

EPL_TOKEN2 DC F'ð' Second env token

EPL_PROG_PARMS DC F'ð' A(Parm address List) ...

EPL_EXEC_OPTS DC A(EXEC_ADDR) A(Execution time optns) ...

EPL_ALTMAIN DC F'ð' A(Alternate Main)

EPL_SERVICE_VEC DC A(IBMBZSRV) A(Service Routines Vector)

EPL_SIZE EQU \-IBMBZEPL The size of this block

\

Figure 104 (Part 3 of 4). Director Module for Preinitializing a PL/I Program

396 PL/I for MVS & VM Programming Guide

\---

\

\ Service Routine Vector

\

IBMBZSRV DS ðF

SRV_SLOTS DC F'4' Count of slots defined

SRV_USERWORD DC A(SRV_UA) user word

SRV_WORKAREA DC A(SRV_WA) A(workarea)

SRV_LOAD DC A(LDMPIPI) A(Load routine)

SRV_DELETE DC A(DLMPIPI) A(Delete routine)

SRV_GETSTOR DC F'ð' A(Get storage routine)

SRV_FREESTOR DC F'ð' A(Free storage routine)

SRV_EXCEP_RTR DC F'ð' A(Exception router service)

SRV_ATTN_RTR DC F'ð' A(Attention router service)

SRV_MSG_RTR DC F'ð' A(Message router service)

SRV_END DS ðF

\

\

\ Service Routine Userarea

\

SRV_UA DS 8F

\

\ Service Routine Workarea

\

SRV_WA DS ðD

DC F'256' Length of workarea

 DS 63F Actual workarea

\

\---

\ Setup the parameter to be passed to the PL/I Init and Program

\---

\

PARMS DC A(X'8ððððððð'+PARAMETER)

PARAMETER DC F'1ð'

\

EXEC_ADDR DC A(X'8ððððððð'+EXEC_LEN)

EXEC_LEN DC AL2(EXEC_OLEN)

EXEC_OPTS DC C'NATLANG(ENU)'

EXEC_OLEN EQU \-EXEC_OPTS

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 104 (Part 4 of 4). Director Module for Preinitializing a PL/I Program

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 397

The program in Figure 105 shows how to use the preinitializable program.

%PROCESS LIST SYSTEM(MVS) TEST;

 /\ \/

 /\ Function : To demonstrate the use of a preinitializable program \/

 /\ Action : Passed an argument of 3, it sets the PL/I return \/

 /\ code to 555. \/

 /\ \/

 /\ Input : Fullword Integer \/

 /\ Output : Return Code set via PLIRETC \/

 /\ \/

 /\ \/

 PLIEXAM: Proc (Arg) Options(MAIN);

Dcl Sysprint File Output;

Dcl Arg Fixed Bin(31);

Dcl Pliretc Builtin;

 Open File(Sysprint);

Put Skip List ('Hello' || Arg);

If (Arg = 3) Then

 Do;

Put Skip List ('Setting a nonzero PL/I return Code.');

 Call Pliretc(555);

 End;

 Close File(Sysprint);

 END PLIEXAM;

Figure 105. A Preinitializable Program

Invoking an Alternative MAIN Routine
This section shows a sample director module (see Figure 106 on page 399) much
like the one in the “Preinitializing a PL/I Program” on page 393, except that instead
of invoking the same PL/I program repeatedly, it invokes the original program only
once, and all subsequent invocations go to an alternative MAIN program.

For simplicity, the alternative MAIN (see Figure 107 on page 402) is the same
program as the original one except that it has been given another name. It expects
a fullword integer as its parameter, and sets PLITREC to 555 if the parameter
received is the integer 3.

Note: When using this function, the alternative MAINs you invoke cannot use
FETCH and RELEASE, cannot use CONTROLLED variables, and cannot
use any I/O other than stream-oriented output to SYSPRINT, which must be
declared as EXTERNAL FILE.

The following director module does not include the logic that would verify
the correctness of any of the invocations. This logic is imperative for proper
operations.

398 PL/I for MVS & VM Programming Guide

TITLE 'Preinit Director Module'

\ \

\ Invoke PL/I program using Preinit Xaction. \

\ \

PIALTEPA CSECT

PIALTEPA RMODE ANY

PIALTEPA AMODE ANY

 EXTRN CEESTART

 EXTRN ALTMAIN

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R12,R15 Set module Base

 USING PIALTEPA,R12

\

 LA R1ð,SAVAREA

 ST R1ð,8(R13) Forward Chain

 ST R13,4(R1ð) Back Chain

 LR R13,R1ð

\

MAINCODE EQU \

\ ===

\ Setup the Request list specifying 'INIT'.

\ ===

\

WTO 'Prior to INIT request'

\

MVC PRP_REQUEST,INIT Indicate the INIT request

\

LA R1,EXEC_ADDR Get the parm addr list

ST R1,EPL_EXEC_OPTS Save in EPL

\

\ Setup R1 to point to the Parm list

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

WTO 'After INIT request'

\

\ ===

\ Setup the Request list specifying 'CALL'.

\ ===

\

DO_CALL EQU \

\

WTO 'Prior to CALL request'

\

MVC PRP_REQUEST,CALL Indicate the CALL request

\

LA R1,PARMS Get the parm addr list

ST R1,EPL_PROG_PARMS Save in EPL

\

\ Setup R1 to point to the Parm list

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

LTR R15,R15 Zero PL/I return code?

BNZ DO_TERM No. We are done

\

L R5,PARAMETER Change the parm ...

BCTR R5,ð ... passing one less ...

ST R5,PARAMETER ... each time

Figure 106 (Part 1 of 3). Director Module for Invoking an Alternative MAIN

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 399

\ ---

\ Following code causes subsequent invocations to go to

\ alternative MAIN

\ ---

 L R15,PSTART2

 ST R15,EPL_ALTMAIN

\

LTR R5,R5 Don't loop forever

 BNZ DO_CALL

\

\ ===

\ The request now is 'TERM'

\ ===

\

DO_TERM EQU \

\

ST R15,RETCODE SAVE PL/I RETURN CODE

\

WTO 'Prior to TERM request'

\

MVC PRP_REQUEST,TERM Indicate a TERM command

\

LA R1,ð No parm list is present

ST R1,EPL_PROG_PARMS Save in EPL

\

LA R1,PARM_EPL R1 --> Pointer --> Request list

L R15,PSTART PL/I Entry addr

 BALR R14,R15 Invoke PL/I

\

WTO 'After TERM request'

\

SYSRET EQU \

\

 L R13,SAVAREA+4

 L R14,12(R13)

 L R15,RETCODE

 LM Rð,R12,2ð(R13)

BR R14 Return to your caller

 EJECT

 EJECT

\ CONSTANTS AND WORKAREAS

\

SAVAREA DS 2ðF

\

RETCODE DC F'ð'

PARM_EPL DC A(X'8ððððððð'+IBMBZPRP) Parameter Addr List

PSTART DC A(CEESTART)

PSTART2 DC A(ALTMAIN)

\ ===

\ Request strings allowed in the Interface

\ ===

INIT DC CL8'INIT' Initialize the program envir

CALL DC CL8'CALL' Invoke the appl - leave envir up

TERM DC CL8'TERM' Terminate Environment

EXEC DC CL8'EXECUTE' INIT, CALL, TERM - all in one

\

\ ===

 SPACE 1

Figure 106 (Part 2 of 3). Director Module for Invoking an Alternative MAIN

400 PL/I for MVS & VM Programming Guide

\ Parameter list passed by a Pre-Initialized Program

\ Addressed by Reg 1 = A(A(IBMBZPRP))

\ See IBMBZEPL DSECT.

 SPACE 1

IBMBZPRP DS ðF

PRP_LENGTH DC H'16' Len of this PRP passed (16)

PRP_ZERO DC H'ð' Must be zero

PRP_REQUEST DC CL8' ' 'INIT' - initialize PL/I

\ 'CALL' - invoke application

\ 'TERM' - terminate PL/I

\ 'EXECUTE' - init, call, term

\

PRP_EPL_PTR DC A(IBMBZEPL) A(EPL) - Extended Parm List

\ ===

 SPACE 1

\ Parameter list for the Pre-Initialized Programs

 SPACE 1

IBMBZEPL DS ðF

EPL_LENGTH DC A(EPL_SIZE) Length of this EPL passed

EPL_TOKEN_TCA DC F'ð' A(TCA)

EPL_TOKEN_PRV DC F'ð' A(PRV)

EPL_PROG_PARMS DC F'ð' A(Parm address List) ...

EPL_EXEC_OPTS DC A(EXEC_ADDR) A(Execution time optns) ...

EPL_ALTMAIN DC A(ð) A(alternate MAIN)

EPL_SERVICE_VEC DC A(ð) A(Service Routines Vector)

EPL_SIZE EQU \-IBMBZEPL The size of this block

\

\

\---

\ Setup the parameter to be passed to the PL/I Init and Program

\---

\

PARMS DC A(X'8ððððððð'+PARAMETER)

PARAMETER DC F'1ð'

\

EXEC_ADDR DC A(X'8ððððððð'+EXEC_LEN)

EXEC_LEN DC AL2(EXEC_OLEN)

EXEC_OPTS DC C'NATLANG(ENU)'

EXEC_OLEN EQU \-EXEC_OPTS

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 106 (Part 3 of 3). Director Module for Invoking an Alternative MAIN

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 401

%PROCESS A(F) X(F) NIS S FLAG(I);

%PROCESS TEST(NONE,SYM);

%PROCESS SYSTEM(MVS);

| ALTMAIN: Proc (Arg) options (main);

 Dcl Arg Fixed Bin(31);

 Dcl Pliretc Builtin;

 Dcl Oncode Builtin;

 Dcl Sysprint File Output Stream;

 On Error Begin;

On error system;

Put Skip List ('ALTMAIN - In error On-unit. OnCode = '||Oncode);

 End;

 Put Skip List ('ALTMAIN - Entering Pli');

 Put Skip List (' Arg = ' || Arg);

 If Arg = 3 Then

 do;

Put Skip List ('Setting a nonzero PL/I return code');

 Call Pliretc(555);

 end;

 Else;

 Put skip List ('ALTMAIN - Leaving Pli');

 END;

Figure 107. Alternative MAIN Routine

Using the Service Vector and Associated Routines
This section describes the service vector, which is a list of addresses of various
user-supplied service routines. Also described are the interface requirements for
each of the service routines that you can supply, including sample routines for
some of the services.

Note: These services must be AMODE(ANY) and RMODE(24). You must also
follow further rules defined for services that Language Environment for MVS &
VM-defined preinitialization provides.

Using the Service Vector
If you want certain services like load and delete to be carried out by some other
code supplied by you (instead of, for example, the Language Environment for MVS
& VM LOAD and DELETE services), you must place the address of your service
vector in the seventh fullword slot of the extended parameter list (see “Using the
Extended Parameter List (EPLIST)” on page 390). You must define the service
vector according to the pattern shown in the following example:

SRV_COUNT DS F Count of slots defined

SRV_USER_WORD DS F User-defined word

SRV_WORKAREA DS A Addr of work area for dsas etc

SRV_LOAD DS A Addr of load routine

 SRV_DELETE DS A Addr of delete routine

SRV_GETSTOR DS A Addr of get-storage routine

SRV_FREESTOR DS A Addr of free-storage routine

SRV_EXCEP_RTR DS A Addr of exception router

SRV_ATTN_RTR DS A Addr of attention router

SRV_MSG_RTR DS A Addr of message router

402 PL/I for MVS & VM Programming Guide

Although you do not need to use labels identical to those above, you must use the
order above. That is, the address of your free-storage routine is seventh, the
address of your load routine is fourth, and so on.

Some other constraints apply:

� When you define the service vector, you must fill all the slots in the template
that precede the last one you specify. You can, however, supply zeros for the
slots that you want ignored.

� The slot count does not count itself. The maximum value is therefore 9.

� You must specify an address in the work area slot if you specify addresses in
any of the subsequent fields.

� This work area must begin on a doubleword boundary and start with a fullword
that specifies its length. The length must be at least 256 bytes.

� For the load and delete routines, you cannot specify one of the pair without the
other; if one of these two slots contains a value of zero, the other is
automatically ignored.

� For the get-storage and free-storage routines, you cannot specify one of the
pair without the other; if one of these two slots contains a value of zero, the
other is automatically ignored.

� If you specify the get- and free-storage services, you must also specify the load
and delete services.

For an example of a service vector definition, see the defined constants area of the
assembler module in Figure 104 on page 394.

You are responsible for supplying any service routines pointed to in your service
vector. These service routines, upon invocation, can expect:

� Register 13 to point to a standard 18-fullword save area
� Register 1 to point to a list of addresses of parameters available to the routine
� The third parameter in the list to be the address of the user word you specified

in the second slot of the service vector

The parameters available to each routine, and the return and reason codes each
routine is expected to use are given in the following sections. The parameter
addresses are passed in the same order as the order in which the parameters are
listed.

Load Service Routine
The load routine is responsible for loading named modules. This is the service
typically obtained via the LOAD macro.

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 403

The parameters passed to the load routine are:

The name length must not be zero. You can ignore the reserved field: it will
contain zeros. For additional rules about the LOAD service, see the Language
Environment for MVS & VM Programming Guide.

The return/reason codes that the load routine can set are:

0/0 successful
0/4 successful—found as a VM nucleus extension
0/8 successful—loaded as a VM shared segment
0/12 successful—loaded using SVC8
4/4 unsuccessful—module loaded above line when in AMODE(24)
8/4 unsuccessful—load failed
16/4 unsuccessful—uncorrectable error occurred

Figure 108 shows a sample load routine that displays the name of each module as
it is loaded.

Parameter PL/I attributes Type

Address of module name POINTER Input
Length of name FIXED BIN(31) Input
User word POINTER Input
(Reserved field) FIXED BIN(31) Input
Address of load point POINTER Output
Size of module FIXED BIN(31) Output
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

TITLE 'Preinit Load Service Routine'

\ \

\ Load service routine to be used by preinit under MVS \

\ \

LDMPIPI CSECT

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R3,R15 Set module Base

 USING LDMPIPI,R3

\

LR R2,R1 Save parm register

 USING SRV_LOAD_PLIST,R2

 USING SRV_PARM,R4

Figure 108 (Part 1 of 3). User-Defined Load Routine

404 PL/I for MVS & VM Programming Guide

\

L R4,SRV_LOAD_A_USERWORD Get a(userword)

 L R1,SRV_PARM_VALUE Get userword

MVC ð(12,R1),WTOCTL Move in WTO skeleton

L R4,SRV_LOAD_A_NAME Get a(a(module name))

L R15,SRV_PARM_VALUE Get a(module name)

\ the following assumes the name is 8 characters

MVC 12(8,R1),ð(R15) Move in name

 SVC 35

\

L R4,SRV_LOAD_A_NAME Get a(a(module name))

L Rð,SRV_PARM_VALUE Get a(module name)

\

 LOAD EPLOC=(ð)

\

 L R4,SRV_LOAD_A_LOADPT Get a(a(loadpt))

ST Rð,SRV_PARM_VALUE Set a(module) in parmlist

L R4,SRV_LOAD_A_SIZE Get a(a(size))

ST R1,SRV_PARM_VALUE Set l(module) in parmlist

SR Rð,Rð Get zero for codes

 L R4,SRV_LOAD_A_RETCODE Get a(retcode)

ST Rð,SRV_PARM_VALUE Set retcode = ð

 L R4,SRV_LOAD_A_RSNCODE Get a(rsncode)

ST Rð,SRV_PARM_VALUE Set rsncode = ð

\

 LM R14,R12,12(R13)

BR R14 Return to your caller

\

\

WTOCTL DS ðH

WTOWLEN DC AL2(WTOEND-WTOCTL)

WTOFLG DC X'8ððð'

WTOAREA DC CL8'LOAD'

WTONAME DS CL8

WTOEND DS ðX

WTOLEN EQU \-WTOCTL

 EJECT

\ ===

\

\ Declare to de-reference parameter pointers

\

 SPACE 1

SRV_PARM DSECT

SRV_PARM_VALUE DS A Parameter value

\

\

Figure 108 (Part 2 of 3). User-Defined Load Routine

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 405

\ Parameter list for LOAD service

\

 SPACE 1

SRV_LOAD_PLIST DSECT

SRV_LOAD_A_NAME DS A A(A(module name))

SRV_LOAD_A_NAMELEN DS A A(Length of name)

SRV_LOAD_A_USERWORD DS A A(User word)

SRV_LOAD_A_RSVD DS A A(Reserved - must be ð)

SRV_LOAD_A_LOADPT DS A A(A(module load point))

SRV_LOAD_A_SIZE DS A A(Size of module)

SRV_LOAD_A_RETCODE DS A A(Return code)

SRV_LOAD_A_RSNCODE DS A A(Reason code)

\

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 108 (Part 3 of 3). User-Defined Load Routine

Delete Service Routine
The delete routine is responsible for deleting named modules. This is the service
typically obtained via the DELETE macro.

The parameters passed to the delete routine are:

The name length must not be zero. You can ignore the reserved field: it will
contain zeros. Every delete must have a corresponding load, and the task that
does the load must also do the delete. Counts of deletes and loads performed
must be maintained by the service routines themselves.

The return/reason codes that the delete routine can set are:

0/0 successful
8/4 unsuccessful—delete failed
16/4 uncorrectable error occurred

Parameter PL/I attributes Type

Address of module name POINTER Input
Length of name FIXED BIN(31) Input
User word POINTER Input
(Reserved field) FIXED BIN(31) Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

406 PL/I for MVS & VM Programming Guide

Figure 109 on page 407 shows a sample delete routine that displays the name of
each module as it is deleted.

TITLE 'Preinit Delete Service Routine'

\ \

\ Delete service routine to be used by preinit under MVS \

\ \

DLMPIPI CSECT

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R3,R15 Set module Base

 USING DLMPIPI,R3

\

LR R2,R1 Save parm register

 USING SRV_DELE_PLIST,R2

 USING SRV_PARM,R4

\

L R4,SRV_DELE_A_USERWORD Get a(userword)

 L R1,SRV_PARM_VALUE Get userword

MVC ð(12,R1),WTOCTL Move in WTO skeleton

L R4,SRV_DELE_A_NAME Get a(a(module name))

L R15,SRV_PARM_VALUE Get a(module name)

\ the following assumes the name is 8 characters

MVC 12(8,R1),ð(R15) Move in name

 SVC 35

\

L R4,SRV_DELE_A_NAME Get a(a(module name))

L Rð,SRV_PARM_VALUE Get a(module name)

\

 DELETE EPLOC=(ð)

\

SR Rð,Rð Get zero for codes

 L R4,SRV_DELE_A_RETCODE Get a(retcode)

ST Rð,SRV_PARM_VALUE Set retcode = ð

 L R4,SRV_DELE_A_RSNCODE Get a(rsncode)

ST Rð,SRV_PARM_VALUE Set rsncode = ð

\

 LM R14,R12,12(R13)

BR R14 Return to your caller

\

\

WTOCTL DS ðH

WTOWLEN DC AL2(WTOEND-WTOCTL)

WTOFLG DC X'8ððð'

WTOAREA DC CL8'DELETE'

WTONAME DS CL8

WTOEND DS ðX

WTOLEN EQU \-WTOCTL

 EJECT

\ ===

\

\ Declare to dereference parameter pointers

\

 SPACE 1

SRV_PARM DSECT

SRV_PARM_VALUE DS A Parameter value

\

Figure 109 (Part 1 of 2). User-Defined Delete Routine

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 407

\

\ Parameter list for DELETE service

\

 SPACE 1

SRV_DELE_PLIST DSECT

SRV_DELE_A_NAME DS A A(A(module name))

SRV_DELE_A_NAMELEN DS A A(Length of name)

SRV_DELE_A_USERWORD DS A A(User word)

SRV_DELE_A_RSVD DS A A(Reserved - must be ð)

SRV_DELE_A_RETCODE DS A A(Return code)

SRV_DELE_A_RSNCODE DS A A(Reason code)

\

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 109 (Part 2 of 2). User-Defined Delete Routine

Get-Storage Service Routine
The get-storage routine is responsible for obtaining storage. This is the service
typically obtained via the GETMAIN, DMSFREE, or CMSSTOR macros.

The parameters passed to the get-storage routine are:

The return/reason codes for the get-storage routine are:

0/0 successful
16/4 unsuccessful—uncorrectable error occurred

All storage must be obtained conditionally by the service routine. Bit 0 in the flags
is on if storage is wanted below the line. The other bits are reserved and might or
might not be zero.

Parameter PL/I attributes Type

Amount desired FIXED BIN(31) Input
Subpool number FIXED BIN(31) input
User word POINTER Input
Flags BIT(32) Input
Address of gotten storage POINTER Output
Amount obtained FIXED BIN(31) Output
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

408 PL/I for MVS & VM Programming Guide

Free-Storage Service Routine
The free-storage routine is responsible for freeing storage. This is the service
typically obtained via the FREEMAIN, DMSFRET, or CMSSTOR macros.

The parameters passed to the free-storage routine are:

The return/reason codes for the free-storage service routine are:

0/0 successful
16/0 unsuccessful—uncorrectable error occurred

Parameter PL/I attributes Type

Amount to be freed FIXED BIN(31) Input
Subpool number FIXED BIN(31) Input
User word POINTER Input
Address of storage POINTER Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

Exception Router Service Routine
The exception router is responsible for trapping and routing exceptions. These are
the services typically obtained via the ESTAE and ESPIE macros.

The parameters passed to the exception router are:

During initialization, if the TRAP(ON) option is in effect, the Language Environment
for MVS & VM library puts the address of the common library exception handler in
the first field of the above parameter list, and sets the environment token field to a
value that will be passed on to the exception handler. It also sets abend and check
flags as appropriate, and then calls your exception router to establish an exception
handler.

Parameter PL/I attributes Type

Address of exception handler POINTER Input
Environment token POINTER Input
User word POINTER Input
Abend flags BIT(32) Input
Check flags BIT(32) Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 409

The meaning of the bits in the abend flags are given by the following declare:

 dcl

 1 abendflags,

 2 system,

3 abends bit(1), /\ control for system abends desired \/

3 rsrv1 bit(15), /\ reserved \/

 2 user,

3 abends bit(1), /\ control for user abends desired \/

3 rsrv2 bit(15); /\ reserved \/

The meaning of the bits in the check flags is given by the following declare:

 1 checkflags,

 2 type,

 3 reserved3 bit(1),

 3 operation bit(1),

 3 privileged_operation bit(1),

 3 execute bit(1),

 3 protection bit(1),

 3 addressing bit(1),

 3 specification bit(1),

 3 data bit(1),

 3 fixed_overflow bit(1),

 3 fixed_divide bit(1),

 3 decimal_overflow bit(1),

 3 decimal_divide bit(1),

 3 exponent_overflow bit(1),

 3 exponent_underflow bit(1),

 3 significance bit(1),

 3 float_divide bit(1),

 2 reserved4 bit(16);

The return/reason codes that the exception router must use are:

0/0 successful
4/4 unsuccessful—the exit could not be (de-)established
16/4 unrecoverable error occurred

When an exception occurs, the exception router must determine if the established
exception handler is interested in the exception (by examining abend and check
flags). If the exception handler is not interested in the exception, the exception
router must treat the program as in error, but can assume the environment for the
thread to be functional and reusable. If the exception handler is interested in the
exception, the exception router must invoke the exception handler, passing the
following parameters:

Parameter PL/I attributes Type

Environment token POINTER Input
SDWA POINTER Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

410 PL/I for MVS & VM Programming Guide

The return/reason codes upon return from the exception handler are as follows:

0/0 Continue with the exception. Percolate the exception taking whatever action
would have been taken had it not been handled at all. In this case, your
exception router can assume the environment for the thread to be functional
and reusable.

0/4 Continue with the exception. Percolate the exception taking whatever action
would have been taken had it not been handled at all. In this case, the
environment for the thread is probably unreliable and not reusable. A forced
termination is suggested.

4/0 Resume execution using the updated SDWA. The invoked exception
handler will have already used the SETRP RTM macro to set the SDWA for
correct resumption.

During termination, your exception router is invoked with the exception handler
address (first parameter) set to zero in order to de-establish the exit—if it was
established during initialization.

For certain exceptions, the common library exception handler calls your exception
router to establish another exception handler exit, and then makes a call to
de-establish it before completing processing of the exception. If an exception
occurs while the second exit is active, special processing is performed. Depending
on what this second exception is, either the first exception will not be retried, or
processing will continue on the first exception by requesting retry for the second
exception.

If the common library exception handler determines that execution should resume
for an exception, it will set the SDWA with SETRP and return with return/reason
codes 4/0. Execution will resume in library code or in user code, depending on
what the exception was.

Your exception router must be capable of restoring all the registers from the SDWA
when control is given to the retry routine. This is required for PL/I to resume
execution at the point where an interrupt occurred for the ZERODIVIDE,
OVERFLOW, FIXEDOVERFLOW, and UNDERFLOW conditions, and certain
instances of the SIZE condition. The ESPIE and ESTAE services are capable of
accomplishing this. The SETFRR service will not restore register 15 to the
requested value. If you cannot restore all the registers, unpredictable results can
occur for a normal return from an ON-unit for one of these conditions.
Unpredictable results can also occur if any of these conditions are disabled by a
condition prefix. In addition, unpredictable results can occur for the implicit action
for the UNDERFLOW condition.

To avoid unpredictable results in PL/I programs when not all of the registers can be
restored, you must code an ON-unit for UNDERFLOW that does not return
normally. For the other conditions, the implicit action is to raise the error condition,
which is a predictable result. If you use an ON-unit for one of these conditions, you
should guarantee that the ON-unit will not return normally.

In using the exception router service, you should also be aware that:

� Your exception router should not invoke the Language Environment for MVS &
VM library exception handler if active I/O has been halted and is not restorable.

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 411

� You cannot invoke any Language Environment for MVS & VM dump services
including PLIDUMP.

� This service requires an ESA* environment.

� This service is not supported under VM.

If an exception occurs while the exception handler is in control before another
exception handler exit has been stacked, your exception router should assume that
exception could not be handled and that the environment for the program (thread)
is damaged. In this case, your exception router should force termination of the
preinitialized environment.

Attention Router Service Routine
The attention router is responsible for trapping and routing attention interrupts.
These are the services typically obtained via the STAX macro.

The parameters passed to the attention router are:

The return/reason codes upon return from the attention router are as follows:

0/0 successful
4/4 unsuccessful—the exit could not be (de-)established
16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the attention
handler using the address in the attention handler field, passing the following
parameters:

The return/reason codes upon return from the attention handler are as follows:

0/0 attention has been (will be) handled

If an attention interrupt occurs while in the attention handler or when an attention
handler is not established at all, your attention router should ignore the attention
interrupt.

Figure 110 on page 413 shows a sample attention router.

Parameter PL/I attributes Type

Address of attention handler POINTER Input
Environment token POINTER Input
User word POINTER Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

Parameter PL/I attributes Type

Environment token POINTER Input
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

412 PL/I for MVS & VM Programming Guide

TITLE 'Preinit Attention Router Service Routine'

\ \

\ Attention service routine to be used by preinit \

\ \

ATAPIPI CSECT

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R3,R15 Set module Base

 USING ATAPIPI,R3

\

LR R2,R1 Save parm register

 USING SRV_ATTN_PLIST,R2

 USING SRV_PARM,R4

\

L R4,SRV_ATTN_A_USERWORD Get A(userword)

L R11,SRV_PARM_VALUE Get userword -- storage area

 USING ZSA,R11

WTO 'In attn router'

\

 L R4,SRV_ATTN_A_HANDLER Get a(a(handler))

ICM R5,X'F',SRV_PARM_VALUE Get a(handler)

BZ CANCEL_STAX A(ð) means cancel

\

 L R4,SRV_ATTN_A_TOKEN Get a(a(token))

 L R6,SRV_PARM_VALUE Get a(token)

\

ST R5,ZHANDLER Set handler in user parm list

ST R6,ZTOKEN Set token in user parm list

LA R5,ZHANDLER Address user parm list for STAX

\

LA R4,RETPOINT Address attention exit routine

\

XC ZSTXLST(STXLTH),ZSTXLST Clear STAX work area

\

\ Set appropriate SPLEVEL

\

SPLEVEL SET=2 Get XA or ESA version of macro

 STAX (R4),REPLACE=YES, C

 USADDR=(R5),MF=(E,ZSTXLST)

\

 B EXIT_CODE

\

CANCEL_STAX DS ðH

\

 STAX

\

EXIT_CODE DS ðH

\

SR Rð,Rð Get zero for codes

 L R4,SRV_ATTN_A_RETCODE Get a(retcode)

ST Rð,SRV_PARM_VALUE Set retcode = ð

 L R4,SRV_ATTN_A_RSNCODE Get a(rsncode)

ST Rð,SRV_PARM_VALUE Set rsncode = ð

\

 LM R14,R12,12(R13)

BR R14 Return to your caller

 EJECT

Figure 110 (Part 1 of 4). User-Defined Attention Router

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 413

\

RETPOINT DS ðH

\

\ This is the attention exit routine, entered after an

\ attention interrupt.

\

 STM 14,12,12(13) Save registers

BALR R3,ð Set module base

 USING \,R3

LR R2,R1 Save parm register

\

WTO 'In stax exit'

\

 USING ZAXP,R2

L R11,ZAUSA Get A(User area) -- our storage

\

 L R14,ZTOKEN Get A(token)

ST R14,SRV_AHND_TOKEN Set in its place

 LA R14,SRV_AHND_TOKEN Get...

LA R15,SRV_AHND_RETCODE ..addresses...

 LA Rð,SRV_AHND_RSNCODE ..of parms

STM R14,Rð,SRV_AHND_A_TOKEN Set parms for handler

\

LA R14,ZSSA Get A(save area)

 ST R13,4(,R14) Set chain

LR R13,R14 Set new save area

\

LA R1,SRV_AHND_PLIST Reg 1 to parameter list

 L R15,ZHANDLER Get A(handler)

BALR R14,R15 Invoke PL/I's handler

\

L R13,4(,R13) Restore save area

\

 LM R14,R12,12(R13)

BR R14 Return to your caller

\

\

\

ZSA DSECT

\ user address points to here on STAX invocation

ZHANDLER DS F A(handler)

ZTOKEN DS F A(token)

\ end of information needed when Attention occurs

ZSSA DS 18F Save area

ZSTXLST DS ðF STAX Plist

SPLEVEL SET=2 Get XA or ESA version of macro

 STAX ð,MF=L

 DS ðD ALIGN

STXLTH EQU \-ZSTXLST LENGTH

\

Figure 110 (Part 2 of 4). User-Defined Attention Router

414 PL/I for MVS & VM Programming Guide

\ Parameter list for Attention Handler routine

\

SRV_AHND_PLIST DS ðF

SRV_AHND_A_TOKEN DS A A(Token)

SRV_AHND_A_RETCODE DS A A(Return code)

SRV_AHND_A_RSNCODE DS A A(Reason code)

\ end of parameter list

SRV_AHND_TOKEN DS A Token

SRV_AHND_RETCODE DS A Return code

SRV_AHND_RSNCODE DS A Reason code

\

\ ===

\

ZAXP DSECT Attention exit Plist

ZATAIE DS F A(Terminal attention

\ interrupt element - TAIE)

ZAIBUF DS F A(Input buffer)

ZAUSA DS F A(User area)

\

\ Declare to dereference parameter pointers

\

 SPACE 1

SRV_PARM DSECT

SRV_PARM_VALUE DS A Parameter value

\

\

\ Parameter list for Attention Router service

\

 SPACE 1

SRV_ATTN_PLIST DSECT

SRV_ATTN_A_HANDLER DS A A(Handler)

SRV_ATTN_A_TOKEN DS A A(Token)

SRV_ATTN_A_USERWORD DS A A(User word)

SRV_ATTN_A_RETCODE DS A A(Return code)

SRV_ATTN_A_RSNCODE DS A A(Reason code)

SRV_ATTN_HANDLER DS A Handler

SRV_ATTN_TOKEN DS A Token

SRV_ATTN_USERWORD DS A User word

SRV_ATTN_RETCODE DS A Return code

SRV_ATTN_RSNCODE DS A Reason code

\

Figure 110 (Part 3 of 4). User-Defined Attention Router

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 415

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 110 (Part 4 of 4). User-Defined Attention Router

Message Router Service Routine
The message router is responsible for routing messages generated during
execution. This is the service typically obtained via the WTO and other macros.

The parameters passed to the message router are:

If the address of the message is zero, your message router is expected to return
the size of the line to which messages are written (in the line length field). This
allows messages to be formatted correctly—that is, broken at blanks, etc.

The return/reason codes that the message router must use are as follows:

0/0 successful
16/4 unrecoverable error occurred

Figure 111 on page 417 shows a sample message router.

Parameter PL/I attributes Type

Address of message POINTER Input
Message length in bytes FIXED BIN(31) Input
User word POINTER Input
Line length FIXED BIN(31) Output
Return code FIXED BIN(31) Output
Reason code FIXED BIN(31) Output

416 PL/I for MVS & VM Programming Guide

TITLE 'Preinit Message Service Routine'

\ \

\ Message service routine to be used by preinit \

\ \

MSGPIPI CSECT

\

 DS ðH

 STM 14,12,12(13) Save registers

LR R3,R15 Set module Base

 USING MSGPIPI,R3

\

LR R2,R1 Save parm register

 USING SRV_MSG_PLIST,R2

 USING SRV_PARM,R4

\

 L R4,SRV_MSG_A_ADDR Get a(a(message))

 L R5,SRV_PARM_VALUE Get a(message)

\

\ If the address of the message is zero then

\ return the message line length (the maximum

\ length a message should be)

\

 LTR R5,R5 a(message) zero?

BNZ WRT_MSG if not, go write msg

\

LA R5,72 buffer length = 72

L R4,SRV_MSG_A_LRECL set message lrecl = 72

 ST R5,SRV_PARM_VALUE

 B DONE

\

WRT_MSG DS ðH

 L R4,SRV_MSG_A_USERWORD Get a(userword)

 L R1,SRV_PARM_VALUE Get userword

MVC ð(12,R1),WTOCTL Move in WTO skeleton

MVI 13(R1),C' ' Blank out the

 MVC 14(71,R1),13(R1) message buffer

\

 L R4,SRV_MSG_A_ADDR Get a(a(message))

 L R5,SRV_PARM_VALUE Get a(message)

L R4,SRV_MSG_A_LEN Get a(message length)

L R6,SRV_PARM_VALUE Get message length

BCTR R6,ð subtract 1 from length for EX

EX R6,MOVE Move in the message

\

SVC 35 Use WTO to display message

\

DONE DS ðH

SR Rð,Rð Get zero for codes

 L R4,SRV_MSG_A_RETCODE Get a(retcode)

ST Rð,SRV_PARM_VALUE Set retcode = ð

 L R4,SRV_MSG_A_RSNCODE Get a(rsncode)

ST Rð,SRV_PARM_VALUE Set rsncode = ð

\

 LM R14,R12,12(R13)

BR R14 Return to your caller

\

Figure 111 (Part 1 of 2). User-Defined Message Router

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 417

MOVE MVC 12(ð,R1),ð(R5)

WTOCTL DS ðH

WTOWLEN DC AL2(WTOEND-WTOCTL)

WTOFLG DC X'8ððð'

WTOAREA DC CL8'MESSAGE'

WTOMSG DS CL72

WTOEND DS ðX

WTOLEN EQU \-WTOCTL

 EJECT

\ ===

\

\ Declare to dereference parameter pointers

\

 SPACE 1

SRV_PARM DSECT

SRV_PARM_VALUE DS A Parameter value

\

\

\ Parameter list for Message service

\

 SPACE 1

SRV_MSG_PLIST DSECT

SRV_MSG_A_ADDR DS A A(A(message))

SRV_MSG_A_LEN DS A A(message length)

SRV_MSG_A_USERWORD DS A A(User word)

SRV_MSG_A_LRECL DS A A(line length)

SRV_MSG_A_RETCODE DS A A(Return code)

SRV_MSG_A_RSNCODE DS A A(Reason code)

\

\

 LTORG

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 111 (Part 2 of 2). User-Defined Message Router

418 PL/I for MVS & VM Programming Guide

User Exits in Preinitializable Programs
The user exits are invoked when initialization and termination is actually performed
according to the user exit invocation rules defined by Language Environment for
MVS & VM. That is, the user exit is invoked for initialization during the INIT
request or the CALL with the zero token request. Similarly, the user exit is called
for termination only during the TERM request.

The SYSTEM Option in Preinitializable Programs
PL/I honors the SYSTEM compile-time option when evaluating the object code's
parameter, except for the SYSTEM(CMS) and SYSTEM(CMSTPL) options. To
invoke a preinitialized program under VM, the program must have been compiled
using the SYSTEM(MVS) compile-time option. Preinitializable programs are not
allowed for programs compiled with SYSTEM(CMS) or SYSTEM(CMSTPL) .

For the remaining SYSTEM options (MVS, CICS, TSO, and IMS), PL/I will interpret
the object code's parameter list as dictated by the SYSTEM option.

Note: PL/I-defined preinitialization is not supported under CICS.

To preinitialize programs in the VM environment, you must compile with the
SYSTEM(MVS) option and drive the PL/I program via an assembler program.

Calling a Preinitializable Program under VM
The following series of VM commands runs programs shown in Figure 104 on
page 394 and Figure 105 on page 398:

PLIOPT PLIEXAM (SYSTEM (MVS

HASM PREPEXAM

LOAD PREPEXAM PLIEXAM (RESET PREPEXAM

START \

Figure 112. Commands for Calling a Preinitializable PL/I Program under VM

Calling a Preinitializable Program under MVS
Figure 113 on page 420 is a skeleton JCL which runs the example of a
preinitializable program in an MVS environment.

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 419

 //PREINIT JOB

 //\ \

 //\ Assemble the driving assembler program

 //\ \

 //ASM EXEC PGM=IEV9ð,PARM='OBJECT,NODECK'

 //SYSPRINT DD SYSOUT=A

 //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

 //SYSLIN DD DSN=&&OBJ1,DISP=(,PASS),UNIT=SYSDA,

 // DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=312ð),SPACE=(CYL,(2,1))

 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(1,1))

 //SYSIN DD \

\\\\\\\\\ ASSEMBLER PROGRAM GOES HERE \\\\\\\\\\

 //\ \

 //\ Compile the PL/I program

 //\ \

 //PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K

//STEPLIB DD DSN=IEL.V1R1M1.SIELCOMP,DISP=SHR

 // DD DSN=CEE.V1R2Mð.SCEERUN,DISP=SHR

 //SYSPRINT DD SYSOUT=\

 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,

 // SPACE=(8ð,(25ð,1ðð)),DCB=(BLKSIZE=312ð)

 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

 // SPACE=(1ð24,(2ðð,5ð),,CONTIG,ROUND),DCB=BLKSIZE=1ð24

 //SYSIN DD \

\\\\\\\\\ PLIEXAM PLIOPT PROGRAM GOES HERE \\\\\\\\\\

 //\\\

 //\ Link-edit the program

 //\\\

 //LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=512K

 //SYSLIB DD DSN=CEE.V1R2Mð.SCEELKED,DISP=SHR

 //SYSPRINT DD SYSOUT=\

 //SYSLIN DD DSN=&&OBJ1,DISP=(OLD,DELETE)

 // DD DSN=&&LOADSET,DISP=(OLD,DELETE)

 // DD \

ENTRY name of preinit csect

//SYSLMOD DD DSN=&&GOSET(GOPGM),DISP=(MOD,PASS),UNIT=SYSDA,

 // SPACE=(1ð24,(5ð,2ð,1))

 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ð)),

 // DCB=BLKSIZE=1ð24

 //\\

 //\ Execute the preinitializable program

 //\\

 //GO EXEC PGM=\.LKED.SYSLMOD,COND=((9,LT,PLI),(9,LT,LKED)),

 // REGION=2ð48K

//STEPLIB DD DSN=CEE.V1R2Mð.SCEERUN,DISP=SHR

 //SYSPRINT DD SYSOUT=\

//CEEDUMP DD SYSOUT=\

 //SYSUDUMP DD SYSOUT=\

Figure 113. JCL for Running a Preinitializable PL/I Program under MVS

420 PL/I for MVS & VM Programming Guide

Establishing an Language Environment for MVS & VM-Enabled
Assembler Routine as the MAIN Procedure

For information about compatibility of an assembler routine as the MAIN procedure,
see the PL/I for MVS & VM Compiler and Run-Time Migration Guide.

Retaining the Run-Time Environment Using Language Environment for
MVS & VM-Enabled Assembler as MAIN

For information about retaining the environment for better performance, see the
Language Environment for MVS & VM Programming Guide.

 Chapter 18. Retaining the Run-Time Environment for Multiple Invocations 421

Chapter 19. Multitasking in PL/I

You can use PL/I multitasking to exploit multiprocessors or to synchronize and
coordinate tasks in a uniprocessor. Multitasking allows data and files to be shared.
This involves task creation, tasking rules, tasking program control data, attributes,
options, and built-in functions.

In general, a task is a unit of work that competes for the resources of the
computing system. A task can be independent of, or dependent on, other tasks in
the system. In MVS, a task is associated with a TCB (Task Control Block) which
describes the resources of the task.

In MVS you usually have one application task per address space. However, you
can create multiple tasks which:

� Complete a piece of work in shorter elapsed time. You could use this in batch
applications that process accumulated data.

� Use computing system resources that might be idle. This includes I/O devices
as well as the CPUs.

� Effectively utilize multiprocessor complexes such as the 3090*. However, you
do not need a multiprocessing system to use multitasking.

� Implement real-time multi-user applications where the response time is critical,
and each task can be processed independently as resources become available.

� Isolate independent pieces of work for reliability. This means that you can
isolate the failure of a part of a job while still processing other independent
parts.

PL/I Multitasking Facilities
PL/I Multitasking facilities are simple extensions to the nontasking language which
you can use only when running programs under MVS (excluding the IMS and CICS
subsystems) on any 390 processor. The DB2 SQL statements from multiple tasks
not under IMS or CICS are supported. You also must have OpenEdition Release 2
installed and activated before you can run your multitasking applications.

The run-time environment uses the POSIX multithreading services to support PL/I
multitasking. Because of the differences in this environment, you might experience

| a different timing in your application. Also, you cannot invoke any POSIX functions
while you are using the the PL/I multitasking facility. If you attempt to use the

| multitasking facility while you are using the POSIX-defined multithreading
| environment, your program will abend. See the Language Environment for MVS &
| VM Debugging Guide and Run-Time Messages for a description of message

IBM0581I.

For details of the run-time environment needed for using the PL/I multitasking
facility, see Language Environment for MVS & VM Programming Guide.

422 Copyright IBM Corp. 1964, 1995

Creating PL/I Tasks
| You must initiate multitasking in your main procedure (initial enclave). If it is found
| in a nested enclave, your program will be terminated and IBM0576S error message
| issued. See Language Environment for MVS & VM Debugging Guide and
| Run-Time Messages for information on this error message.

| When you create (attach) a task in PL/I, you must use the CALL statement with at
least one of the options TASK, EVENT, or PRIORITY. When you use one of these
options, you attach a task and create a subtask. You can attach other tasks to this
attached task, creating more subtasks.

| Use the WAIT statement to synchronize your tasks. If the subtask synchronously
invokes any procedures or functions (that is, without the TASK, EVENT, or
PRIORITY options), they become part of that subtask too.

The TASK Option of the CALL Statement
Use the TASK option of the CALL statement to specify a TASK variable. This
variable is associated with the attached task and can control the dispatching priority
of the attached task. You can use the task variable to interrogate or change the
dispatching priority of the current task or any other task.

 Example
CALL INPUT TASK(T1);

This call attaches a task by invoking INPUT. It names the task T1. T1 is the TASK
variable.

The EVENT Option of the CALL Statement
You can use the EVENT option to specify an EVENT variable which another task
can use to WAIT for the completion of the attached task.

 Examples
The following CALL statement creates an unnamed task:

CALL INPUT EVENT(E4);

The EVENT option indicates that this unnamed task will be finished when EVENT
E4 is completed.

The following CALL statement with the TASK option creates task T4:

CALL INPUT TASK(T4) EVENT(E5);

The EVENT option allows the attaching task (or another task) to wait until event E5
is completed.

Also see the last example under “The PRIORITY Option of the CALL Statement” on
page 424.

 Chapter 19. Multitasking in PL/I 423

The PRIORITY Option of the CALL Statement
You can use the PRIORITY option to set the initial dispatching priority of the
attached task. This priority is only relative to the attaching task's priority. The
attached task can have a priority higher than, lower than, or equal to the priority of
the attaching task. The actual priority can range between zero and the MVS-
allowed maximum.

If you do not use the PRIORITY option, or you set it to zero, the attached task's
initial dispatching priority is the same as the attaching task's.

 Examples
The following CALL statement creates an unnamed task:

CALL INPUT PRIORITY(2);

It runs at a dispatching priority of two more than that of the attaching task.

The following CALL statement with the TASK option creates task T2:

CALL INPUT TASK(T2) PRIORITY(-1);

The PRIORITY option makes the actual dispatching priority of task T2 to be one
less than that of the attaching task, but not less than zero.

The following CALL statement with the TASK option creates task T3:

CALL INPUT TASK(T3) PRIORITY(1) EVENT(E3);

The PRIORITY option makes the actual dispatching priority of task T3 to be one
more than that of the attaching task, but not more than the MVS-allowed maximum.
The EVENT option says the status and completion values of event E3 are set when
task T3 terminates. This allows synchronization of other tasks with task T3.

Synchronization and Coordination of Tasks
You can synchronize and coordinate the execution of tasks by using the EVENT
option. The completion and status values control the EVENT option. The BIT(1)
completion value can be '1'B which indicates the EVENT is complete or '0'B
which indicates that the EVENT is not complete. The FIXED BIN(15,0) status value
can be zero which shows that the EVENT has normal completion or any other
number which shows that the EVENT has abnormal completion.

These values can be set by:

� The termination of a task (END, RETURN, EXIT)
� The COMPLETION pseudovariable for the completion value
� The STATUS pseudovariable for the status value
� The assignment of both EVENT variable values simultaneously
� A Statement with the EVENT option.

In addition to these conditions, you can also change the values by using a WAIT
statement for an I/O or DISPLAY statement event or a CLOSE statement for a FILE
having an active EVENT I/O operation.

However, while you are using these tools, you must be careful not to reset or reuse
an EVENT variable already associated with an active task or I/O operation.

424 PL/I for MVS & VM Programming Guide

If you want to test the value of the EVENT variable, you can use the BUILTIN
functions for the completion and status values. You can also reassign the EVENT
variables to test both values (completion and status) simultaneously. You can also
test using the WAIT statement, which waits for the completion of the event.

Sharing Data between Tasks
If you want data to be shared between tasks you must be sure that the STATIC
and current AUTOMATIC variables are known in the attaching block at the time the
subtask is attached.

You must use only the latest generation of CONTROLLED variables. Subsequent
generations will be known only to the allocating task (attaching or attached). Be
sure that a task does not free a CONTROLLED variable shared by more than one
task.

Your BASED allocations can be in AREAs shared between multiple tasks but all
other BASED allocations are task local. Also, any variable of any storage class can
be shared via a BASED reference as long it is allocated and is not freed until none
of the tasks are using it.

When you update shared data, be sure that multiple concurrent updates are not
lost. In order to do this, you must use EVENTs to coordinate updating.

Sharing Files between Tasks
You can share any file subject to the following rules:

1. An attached task can share any file opened by the attaching task before the
attached task is called.

2. The file must not be closed by the attaching task while it is being used by any
attached task.

| If the file is closed by the attaching task, results are unpredictable if an attempt
| is made to reference the file in any attached task, which had previously shared
| the file.

| 3. The file must not be closed by a task that did not open it.

4. Sharing must be coordinated between the sharing tasks. Most access methods
do not allow simultaneous use of a file by multiple tasks. Therefore you must
provide some form of interlocking. You can use WAIT and COMPLETION for
interlocking in the PL/I environment.

| In order to avoid the error condition associated with concurrent access,
| interlocking is required for files with a limit of one I/O operation. VSAM files
| and both SEQUENTIAL and DIRECT UNBUFFERED files not using the ISAM
| compatibility interface, have a limitation of one I/O operation.

To avoid competition between tasks using SYSPRINT, PL/I provides
serialization for STREAM PUT statements for the STREAM file SYSPRINT
only.

5. Use the EXCLUSIVE attribute to guarantee multiple updates of the same
record for DIRECT UPDATE files.

 Chapter 19. Multitasking in PL/I 425

You cannot share files if they are opened by the attaching task after an attached
task is called. Also, attached task files are not shared by the attaching task. If you
use several files to access one data set, see “Associating Several Files with One
Data Set” on page 101.

Producing More Reliable Tasking Programs
You will be able to produce more reliable tasking programs if you take note of the
following:

� Use PROC OPTIONS(REENTRANT) on all external procedures.

� Do not modify STATIC (INTERNAL and EXTERNAL) storage.

| � If the MSGFILE(SYSPRINT) run-time option is specified, the standard
| SYSPRINT file must be opened before any subtasks are created. Output lines
| from STREAM PUT statements might be interwoven with run-time messages.

� Be sure to avoid task interlocks, such as Task A waiting for Task B and Task B
waiting for Task A. For more information on this, see the PL/I for MVS & VM
Language Reference

� If you use COBOL ILC, only one task at a time can use it.

� You might not need to explicitly include certain Library routines in the PL/I Main
| load module if a FETCHed procedure is attached as a task (see Language
| Environment for MVS & VM Programming Guide for detailed information).

Terminating PL/I Tasks
| Termination is normal when the initial procedure of the task reaches an END or a
| RETURN statement. Abnormal terminations can occur:

� When control in the attached task reaches an EXIT statement.
� When control in any task reaches a STOP statement.
� When the attaching task or attaching block (calling PROCEDURE or BEGIN)

terminates.
� As a result of implicit action or action on normal return for ERROR.

When a task terminates normally or abnormally, PL/I will:

� Set all incomplete I/O EVENTs to abnormal status so the results of I/O
operations are undefined.

� Close all files opened by the task, disabling all I/O conditions so no I/O
conditions are raised.

� Free all CONTROLLED allocations and BASED allocations (except in AREAs
owned by other tasks) done by the task.

� Terminate all active blocks and subtasks.

� Post the EVENT variable on the attaching CALL statement complete.

� Unlock all records locked by the task.

426 PL/I for MVS & VM Programming Guide

Dispatching Priority of Tasks
You can determine the dispatching priority of tasks in two ways while MVS can
determine them in several ways. You can use the PRIORITY option to set the
initial dispatching priority, as shown in the above examples. Or you can explicitly
declare the actual priority as in:

DCL T1 TASK

In MVS, a task can change its own or any other task's priority. A TASK's priority
value can be set or changed by:

� The PRIORITY option of CALL
� The PRIORITY pseudovariable
� TASK variable assignment to an inactive TASK variable.

You can test a TASK's priority value by using the PRIORITY built-in function.
However, the PRIORITY built-in function might not return the same value as was
set by the PRIORITY pseudovariable. For more information, see the PL/I for MVS
& VM Language Reference

| A task hierarchy example is shown in the following program:

MAIN: PROC OPTIONS(MAIN REENTRANT);

CALL TA TASK(TA1);

CALL TA TASK(TA2);

CALL TX TASK(TX1);

 TA: PROC;

CALL TX TASK(TX2);

 END;

 END;

| where the hierarchy is:

 ┌───────┐

 │ MAIN │

 └───┬───┘

 │

 ┌────────────────────┼────────────────────┐

│ │ │

│ │ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐

│ TA ─ TASK TA1 │ │ TA ─ TASK TA2 │ │ TX ─ TASK TX1 │

└───────┬───────┘ └───────┬───────┘ └───────────────┘

 │ │

 │ │

┌───────┴───────┐ ┌───────┴───────┐

│ TX ─ TASK TX2 │ │ TX ─ TASK TX2 │

│ Subtask of TA1│ │ Subtask of TA2│

└───────────────┘ └───────────────┘

 Chapter 19. Multitasking in PL/I 427

Running Tasking Programs
When you run your tasking programs, first compile external procedures and link edit
the object code, being sure to place SIBMTASK ahead of SCEELKED in SYSLIB

| DD statement. This rule applies to the main load module, but not to a FETCHed
| subroutine load module.

Note: Linking the main load module of an application that does not use the
multitasking facility, with SIBMTASK or PLITASK, causes a loss in performance
during initialization and termination.

| Language Environment provides HEAP, THREADHEAP, NONIPSTACK, and
| PLITASKCOUNT run-time options to support PL/I multitasking. For a description of
| these options, see Language Environment for MVS & VM Programming Guide.
| You can also use PLIDUMP's multitasking options which are described in

Chapter 17, “Using PLIDUMP” on page 386.

Sample Program 1: Multiple Independent Processes
Figure 114 on page 429 is a nontasking version of a program that processes an
input file consisting of transactions that can be processed independent of one
another. Following that is Figure 115 on page 430, which is a tasking version of
the same program.

428 PL/I for MVS & VM Programming Guide

Multiple Independent Processes: Nontasking Version

 /\ PROC - MULTIPLE INDEPENDENT PROCESSES (NONTASKING VERSION) \/

 PROC: PROC OPTIONS(MAIN REENTRANT) REORDER;

DCL INPUT FILE;

DCL RECORD CHAR(8ð),

REQUEST CHAR(8) DEF(RECORD);

DCL EOF BIT INIT('ð'B);

ON ENDFILE(INPUT) EOF='1'B;

READ FILE(INPUT) INTO(RECORD);

 DO WHILE(¬EOF);

 SELECT(REQUEST);

WHEN('REPORT') CALL REPORT; /\ PRODUCE A REPORT \/

WHEN('COPY') CALL COPY; /\ COPY RECORDS TO "OUTPUT" FILE \/

OTHERWISE CALL ERROR; /\ INVALID \/

 END;

READ FILE(INPUT) INTO(RECORD);

 END;

 REPORT: PROC REORDER;

 /\\\/

/\ PROCESS EACH RECORD TO PRODUCE A REPORT \/

 /\\\/

DCL FREPORT FILE OUTPUT;

WRITE FILE(FREPORT) FROM(RECORD);

 END;

 COPY: PROC REORDER;

 /\\\/

/\ COPY RECORDS TO "OUTPUT" FILE \/

 /\\\/

DCL FCOPY FILE OUTPUT;

WRITE FILE(FCOPY) FROM(RECORD);

 END;

 ERROR: PROC REORDER;

 /\\\/

/\ INVALID REQUEST - WRITE RECORD TO THE ERROR FILE \/

 /\\\/

DCL FERROR FILE OUTPUT;

WRITE FILE(FERROR) FROM(RECORD);

 END;

 END; /\ MAIN \/

Figure 114. Nontasking Version of Multiple Independent Processes

 Chapter 19. Multitasking in PL/I 429

Multiple Independent Processes: Tasking Version

 /\ PROCT - MULTIPLE INDEPENDENT PROCESSES (TASKING VERSION) \/

 PROCT: PROC OPTIONS(MAIN REENTRANT) REORDER;

DCL INPUT FILE INPUT;

DCL RECORD CHAR(8ð),

REQUEST CHAR(8) DEF(RECORD);

DCL EOF BIT(1) INIT('ð'B);

DCL (TASK_ENDED, WORK_READY, WORK_DONE)(3) EVENT;

DCL REC_PTR(3, /\ A LIST OF RECORDS ... \/

1ð) /\ FOR EACH TASK \/

PTR INIT((3ð) NULL());

 DCL

REC_AREA(3, /\ RECORD AREA (FOR EACH REC_PTR)\/

1ð) CHAR(8ð); /\ FOR EACH TASK \/

 DCL

TASK_REC_PTR#(3) FIXED BIN INIT((3)ð);/\ INDEX INTO REC_PTR AND

REC_AREA WHERE THE LAST RECORD

WAS PLACED FOR EACH OF THE

 TASKS \/

DCL REC_PTR# FIXED BIN;

DCL TASKS(3) ENTRY INIT(REPORT,COPY,ERROR);

DCL (FREPORT,FCOPY,FERROR) FILE OUTPUT;

DCL OUT_FILE(3) FILE INIT(FREPORT,FCOPY,FERROR);

DCL REC_TYPE FIXED BIN INIT(ð);

DCL LIST_SEARCHED BIT(1);

 /\\\/

/\ START ALL TASKS AND LET THEM INITIALIZE \/

 /\\\/

STATUS(WORK_READY)=ð; /\ DO WORK - DON'T TERMINATE \/

DO I=LBOUND(TASKS,1) TO HBOUND(TASKS,1);

 CALL TASKS(I)(OUT_FILE(I),WORK_READY(I),WORK_DONE(I),(I))/\

MUST HAVE A TEMPORARY FOR "I" \/

 EVENT(TASK_ENDED(I));

 END;

 /\\\/

/\ PROCESS RECORDS \/

 /\\\/

ON ENDFILE(INPUT) EOF='1'B;

READ FILE(INPUT) INTO(RECORD);

 I=LBOUND(REC_PTR,1);

 DO WHILE(¬EOF);

I=REC_TYPE; /\ JUST PROCESSED REC TYPE IF ANY\/

 SELECT(REQUEST);

 WHEN('REPORT') REC_TYPE=1;

 WHEN('COPY') REC_TYPE=2;

 OTHERWISE REC_TYPE=3;

 END;

IF REC_TYPE¬=I /\ CURRENT TYPE NOT SAME & WE'RE \/

&I¬=ð THEN /\ NOT HERE FOR FIRST TIME \/

COMPLETION(WORK_READY(I))='1'B;/\ GET THAT TASK

GOING IN CASE IT'S WAITING \/

 LIST_SEARCHED='ð'B;

Figure 115 (Part 1 of 3). Tasking Version of Multiple Independent Processes

430 PL/I for MVS & VM Programming Guide

 PLACE_REC:

DO REC_PTR#=TASK_REC_PTR#(REC_TYPE)+1 REPEAT REC_PTR#+1;

 /\\\/

/\ IF LIST IS ALL FULL, WAIT FOR APPROPRIATE TASK TO BE \/

/\ READY FOR WORK. OTHERWISE PLACE RECORD JUST READ IN AN \/

/\ AVAILABLE SLOT ON THE APPROPRIATE LIST. \/

 /\\\/

IF REC_PTR#>HBOUND(REC_PTR,2) THEN

 DO;

REC_PTR#=LBOUND(REC_PTR,2); /\ RESET LOOP COUNTER \/

IF LIST_SEARCHED THEN

 DO;

 /\\\/

/\ ALL REC_PTR LIST IS EMPTY (FOR THIS REC TYPE). \/

/\ WAIT FOR APPROPRIATE TASK TO GET READY FOR WORK \/

 /\\\/

 WAIT(WORK_DONE(REC_TYPE));

 COMPLETION(WORK_DONE(REC_TYPE))='ð'B;

COMPLETION(WORK_READY(REC_TYPE))='1'B;/\ GET THAT TASK

GOING IN CASE IT'S WAITING \/

 END;

 ELSE

LIST_SEARCHED='1'B; /\ WE'LL DO AT LEAST ONE COMPLETE

SCAN OF LIST \/

 END;

IF REC_PTR(REC_TYPE,REC_PTR#)=NULL() THEN

 DO;

REC_AREA(REC_TYPE,REC_PTR#)=RECORD;/\ PUT RECORD IN

RECORD AREA LIST \/

 REC_PTR(REC_TYPE,REC_PTR#)=ADDR(REC_AREA(REC_TYPE,REC_PTR#)

); /\ SET PTR \/

TASK_REC_PTR#(REC_TYPE)=REC_PTR#;/\ REMEMBER THIS INDEX \/

 LEAVE PLACE_REC;

 END;

 END;

READ FILE(INPUT) INTO(RECORD);

 END;

 /\\\/

/\ AT END OF JOB (END OF FILE), TELL ALL TASKS TO FINISH AND WAIT\/

/\ FOR THEM ALL TO FINISH \/

 /\\\/

STATUS(WORK_READY)=4; /\ FINISH REMAINING WORK & QUIT \/

 COMPLETION(WORK_READY)='1'B;

 WAIT(TASK_ENDED);

Figure 115 (Part 2 of 3). Tasking Version of Multiple Independent Processes

 Chapter 19. Multitasking in PL/I 431

 /\\\/

/\ REPORT/COPY/ERROR TASKS \/

 /\\\/

 REPORT: COPY: ERROR:

 PROC(OUT_FILE,WORK_READY,WORK_DONE,MY_LIST) REORDER;

 /\\\/

/\ PROCESS "INPUT FILE" AND PRODUCE A REPORT FOR EVERY REQUEST \/

 /\\\/

DCL OUT_FILE FILE;

DCL (WORK_READY, WORK_DONE) EVENT;

DCL MY_LIST FIXED BIN;

DCL RECORD CHAR(8ð) BASED;

DCL LIST_SEARCHED BIT(1) INIT('ð'B);

DCL J FIXED BIN;

 /\\\/

/\ DO INIT, OPEN FILES, ETC. \/

 /\\\/

 ;

DO J=1 REPEAT J+1;

 /\\\/

/\ PROCESS NEXT AVAILABLE RECORD \/

 /\\\/

IF REC_PTR(MY_LIST,J)¬=NULL() THEN

 DO;

 /\\\/

/\ PROCESS RECORD ... \/

 /\\\/

WRITE FILE(OUT_FILE) FROM(REC_PTR(MY_LIST,J)->RECORD);

REC_PTR(MY_LIST,J)=NULL();/\ RECORD PROCESSED \/

 END;

IF J=HBOUND(REC_PTR,2) THEN

 DO;

J=LBOUND(REC_PTR,2)-1; /\ RESET LOOP \/

IF LIST_SEARCHED THEN

 DO;

 /\\\/

/\ ALL REC_PTR LIST IS EMPTY (FOR THIS REC TYPE). WAIT \/

/\ FOR MORE WORK OR REQUEST TO TERMINATE IF NOT ALREADY\/

/\ ASKED TO TERMINATE \/

 /\\\/

IF STATUS(WORK_READY) = 4 THEN RETURN;

COMPLETION(WORK_DONE)='1'B;/\ FINISHED WITH

WHAT I HAVE \/

WAIT(WORK_READY); /\ WAIT FOR MORE WORK OR

FOR REQUEST TO FINISH \/

 COMPLETION(WORK_READY)='ð'B;

 LIST_SEARCHED='ð'B;

 END;

 ELSE

LIST_SEARCHED='1'B; /\ WE'LL DO AT LEAST ONE COMPLETE

SCAN OF LIST LIST \/

 END;

 END;

END; /\ REPORT ... \/

 END; /\ MAIN \/

Figure 115 (Part 3 of 3). Tasking Version of Multiple Independent Processes

Sample Program 2: Multiple Independent Computations
Figure 116 on page 433 is a nontasking version of a program that processes an
input file and performs independent computations. Figure 117 on page 434 follows
that. It is the tasking version of the same program.

432 PL/I for MVS & VM Programming Guide

Multiple Independent Computations: Nontasking Version

 /\ COMP - INDEPENDENT COMPUTATIONS (NONTASKING VERSION) \/

 COMP: PROC OPTIONS(MAIN REENTRANT) REORDER;

DCL (AR1, AR2, AR3, A)(1ðð,1ðð,1ðð) FLOAT BIN;

DCL (BR1, BR2, BR3, X)(1ðð,1ðð,1ðð) FLOAT BIN;

DCL EOF BIT(1) INIT('ð'B),

(B, Y) FLOAT BIN;

 DO WHILE(¬EOF);

 /\\\/

/\ READ FILE ... \/

 /\\\/

 /\\\/

/\ 2 INDEPENDENT COMPUTATIONS FOLLOW \/

 /\\\/

 /\\\/

/\ INDEPENDENT COMPUTATION NUMBER 1 \/

 /\\\/

DO I=LBOUND(AR1,1)+3 TO HBOUND(AR1,1);

DO J=LBOUND(AR1,2)+2 TO HBOUND(AR1,2);

DO K=LBOUND(AR1,3)+1 TO HBOUND(AR1,3);

 AR1(I,J,K)=A(I,J,K)+B;

 AR2(I,J,K)=AR1(I,J,K)+AR3(I-3,J-2,K-1);

 END;

 END;

 END;

 /\\\/

/\ INDEPENDENT COMPUTATION NUMBER 1 \/

 /\\\/

DO I=LBOUND(BR1,1)+3 TO HBOUND(BR1,1);

DO J=LBOUND(BR1,2)+2 TO HBOUND(BR1,2);

DO K=LBOUND(BR1,3)+1 TO HBOUND(BR1,3);

 BR1(I,J,K)=X(I,J,K)+Y;

 BR2(I,J,K)=BR1(I,J,K)+BR3(I-3,J-2,K-1);

 END;

 END;

 END;

 END;

 END;

Figure 116. Nontasking Version of Multiple Independent Computations

 Chapter 19. Multitasking in PL/I 433

Multiple Independent Computations: Tasking Version

 /\ COMPT - INDEPENDENT COMPUTATIONS (TASKING VERSION) \/

 COMPT: PROC OPTIONS(MAIN REENTRANT) REORDER;

DCL (AR1, AR2, AR3, A)(1ðð,1ðð,1ðð) FLOAT BIN;

DCL (BR1, BR2, BR3, X)(1ðð,1ðð,1ðð) FLOAT BIN;

DCL EOF BIT(1) INIT('ð'B),

(B,Y) FLOAT BIN;

DCL (AR_WORK_READY, AR_WORK_DONE) EVENT;

DCL (BR_WORK_READY, BR_WORK_DONE) EVENT;

DCL (AR_TASK, BR_TASK) EVENT;

 STATUS(AR_WORK_READY),

STATUS(BR_WORK_READY)=ð; /\ DO WORK - DON'T TERMINATE \/

CALL AR EVENT(AR_TASK); /\ ATTACH PARALLEL \/

CALL BR EVENT(BR_TASK); /\ TASKS \/

 DO WHILE(¬EOF);

 /\\\/

 /\ \/

/\ READ FILE ... \/

 /\ \/

 /\\\/

 COMPLETION(AR_WORK_READY),

COMPLETION(BR_WORK_READY)='1'B;/\ GO DO IT \/

WAIT(AR_WORK_DONE,BR_WORK_DONE);/\ WAIT FOR BOTH TASKS TO BE

 READY AGAIN \/

 COMPLETION(AR_WORK_DONE),

 COMPLETION(BR_WORK_DONE)='ð'B;

 END;

 /\\\/

/\ AT END OF JOB (END OF FILE) \/

 /\\\/

 STATUS(AR_WORK_READY),

STATUS(BR_WORK_READY)=4; /\ NO MORE WORK - JUST TERMINATE \/

 COMPLETION(AR_WORK_READY),

COMPLETION(BR_WORK_READY)='1'B; /\ TERMINATE \/

WAIT(AR_TASK,BR_TASK); /\ WAIT FOR BOTH TO TERMINATE \/

Figure 117 (Part 1 of 2). Tasking Version of Multiple Independent Computations

434 PL/I for MVS & VM Programming Guide

 /\\\/

/\ INDEPENDENT TASK FOR COMPUTATION 1 \/

 /\\\/

 AR: PROC REORDER;

DO WHILE('1'B); /\ DO FOREVER \/

 WAIT(AR_WORK_READY);

 COMPLETION(AR_WORK_READY)='ð'B;

IF STATUS(AR_WORK_READY)=4 THEN

 RETURN;

DO I=LBOUND(AR1,1)+3 TO HBOUND(AR1,1);

DO J=LBOUND(AR1,2)+2 TO HBOUND(AR1,2);

DO K=LBOUND(AR1,3)+1 TO HBOUND(AR1,3);

 AR1(I,J,K)=A(I,J,K)+B;

 AR2(I,J,K)=AR1(I,J,K)+AR3(I-3,J-2,K-1);

 END;

 END;

 END;

COMPLETION(AR_WORK_DONE)='1'B;/\ READY FOR MORE WORK \/

 END;

 END; /\ AR \/

 /\\\/

/\ INDEPENDENT TASK FOR COMPUTATION 2 \/

 /\\\/

 BR: PROC REORDER;

DO WHILE('1'B); /\ DO FOREVER \/

 WAIT(BR_WORK_READY);

 COMPLETION(BR_WORK_READY)='ð'B;

IF STATUS(BR_WORK_READY)=4 THEN

 RETURN;

DO I=LBOUND(BR1,1)+3 TO HBOUND(BR1,1);

DO J=LBOUND(BR1,2)+2 TO HBOUND(BR1,2);

DO K=LBOUND(BR1,3)+1 TO HBOUND(BR1,3);

 BR1(I,J,K)=X(I,J,K)+Y;

 BR2(I,J,K)=BR1(I,J,K)+BR3(I-3,J-2,K-1);

 END;

 END;

 END;

COMPLETION(AR_WORK_DONE)='1'B;/\ READY FOR MORE WORK \/

 END;

 END; /\ BR \/

 END; /\ MAIN \/

Figure 117 (Part 2 of 2). Tasking Version of Multiple Independent Computations

 Chapter 19. Multitasking in PL/I 435

Chapter 20. Interrupts and Attention Processing

To enable a PL/I program to recognize attention interrupts, two operations must be
possible:

� You must be able to create an interrupt. This is done in different ways
depending upon both the terminal you use and the operating system (such as
VM or TSO).

� Your program must be prepared to respond to the interrupt. You can write an
ON ATTENTION statement in your program so that the program receives
control when the ATTENTION condition is raised.

Note: If the program has an ATTENTION ON-unit that you want invoked, you
must compile the program with either of the following:

– The INTERRUPT option.
– A TEST option other than NOTEST or TEST(NONE,NOSYM).

Compiling this way causes INTERRUPT(ON) to be in effect, unless
you explicitly specify INTERRUPT(OFF) in PLIXOPT.

You can find the procedure used to create an interrupt in the IBM instruction
manual for the operating system and terminal that you are using. For TSO, see the
information on the TERMINAL command and its INPUT subparameter in the
OS/VS2 TSO Command Language Reference. For VM, see the information on the
ATTN command and the discussion of external interrupts in the VM/SP CMS
Command Reference.

There is a difference between the interrupt (the operating system recognized your
request) and the raising of the ATTENTION condition.

An interrupt is your request that the operating system notify the running program. If
a PL/I program was compiled with the INTERRUPT compile-time option,
instructions are included that test an internal interrupt switch at discrete points in
the program. The internal interrupt switch can be set if any program in the load
module was compiled with the INTERRUPT compile-time option.

The internal switch is set when the operating system recognizes that an interrupt
request was made. The execution of the special testing instructions (polling) raises
the ATTENTION condition. If a debugging tool hook (or a CALL PLITEST) is
encountered before the polling occurs, the debugging tool can be given control
before the ATTENTION condition processing starts.

If any program in the load module was compiled with the INTERRUPT option,
polling also takes place in all stream I/O statements to and from the terminal.
Polling ensures that the ATTENTION condition is raised between PL/I statements,
rather than within the statements.

436 Copyright IBM Corp. 1964, 1995

Figure 118 shows a skeleton program, an ATTENTION ON-unit, and several
situations where polling instructions will be generated. In the program polling will
occur at:

 � LABEL1
� Each iteration of the DO
� The ELSE PUT SKIP ... statement
� Block END statements

%PROCESS INTERRUPT;

 .

 .

 .

 ON ATTENTION

 BEGIN;

DCL X FIXED BINARY(15);

PUT SKIP LIST ('Enter 1 to terminate, ð to continue.');

GET SKIP LIST (X);

IF X = 1 THEN

 STOP;

 ELSE

PUT SKIP LIST ('Attention was ignored');

 END;

 .

 .

 .

 LABEL1:

IF EMPNO ...

 .

 .

 .

DO I = 1 TO 1ð;

 .

 .

 .

 END;

 .

 .

 .

Figure 118. Using an ATTENTION ON-Unit

Using ATTENTION ON-Units
You can use processing within the ATTENTION ON-unit to terminate potentially
endless looping in a program.

Control is given to an ATTENTION ON-unit when polling instructions recognize that
an interrupt has occurred. Normal return from the ON-unit is to the statement
following the polling code.

Interaction with a Debugging Tool
If the program has the TEST(ALL) or TEST(ERROR) run-time option in effect, then
an interrupt causes the debugging tool to receive control the next time a hook is
encountered. This might be before the program's polling code recognizes that the
interrupt occurred.

Later, when the ATTENTION condition is raised, the debugging tool receives
control again for condition processing.

 Chapter 20. Interrupts and Attention Processing 437

Chapter 21. Using the Checkpoint/Restart Facility

This chapter describes the PL/I Checkpoint/Restart feature which provides a
convenient method of taking checkpoints during the execution of a long-running
program in a batch environment.

Note: You cannot use Checkpoint/Restart in a TSO or VM environment.

At points specified in the program, information about the current status of the
program is written as a record on a data set. If the program terminates due to a
system failure, you can use this information to restart the program close to the point
where the failure occurred, avoiding the need to rerun the program completely.

This restart can be either automatic or deferred. An automatic restart is one that
takes place immediately (provided the operator authorizes it when requested by a
system message). A deferred restart is one that is performed later as a new job.

You can request an automatic restart from within your program without a system
failure having occurred.

PL/I Checkpoint/Restart uses the Advanced Checkpoint/Restart Facility of the
operating system. This facility is described in the books listed in “Bibliography” on
page 500.

To use checkpoint/restart you must do the following:

� Request, at suitable points in your program, that a checkpoint record is written.
This is done with the built-in subroutine PLICKPT.

� Provide a data set on which the checkpoint record can be written.

� Also, to ensure the desired restart activity, you might need to specify the RD
parameter in the EXEC or JOB statement (see the publication MVS/ESA JCL
Reference).

Note: You should be aware of the restrictions affecting data sets used by your
program. These are detailed in the “Bibliography” on page 500.

438 Copyright IBM Corp. 1964, 1995

Requesting a Checkpoint Record
Each time you want a checkpoint record to be written, you must invoke, from your
PL/I program, the built-in subroutine PLICKPT.

55──CALL──PLICKPT─ ──┬ ┬── ───5%
 └ ┘ ─(─ ─ddname─ ──┬ ┬────────────────────────────────────── ─)─
 └ ┘ ─,──check-id─ ──┬ ┬─────────────────────
 └ ┘ ─,──org─ ──┬ ┬─────────
 └ ┘ ─,──code─

The four arguments are all optional. If you do not use an argument, you need not
specify it unless you specify another argument that follows it in the given order. In
this case, you must specify the unused argument as a null string (''). The
following paragraphs describe the arguments.

ddname
is a character string constant or variable specifying the name of the DD
statement defining the data set that is to be used for checkpoint records. If you
omit this argument, the system will use the default ddname SYSCHK.

check-id
is a character string constant or variable specifying the name that you want to
assign to the checkpoint record so that you can identify it later. If you omit this
argument, the system will supply a unique identification and print it at the
operator's console.

org
is a character string constant or variable with the attributes CHARACTER(2)
whose value indicates, in operating system terms, the organization of the
checkpoint data set. PS indicates sequential (that is, CONSECUTIVE)
organization; PO represents partitioned organization. If you omit this argument,
PS is assumed.

code
is a variable with the attributes FIXED BINARY (31), which can receive a return
code from PLICKPT. The return code has the following values:

0 A checkpoint has been successfully taken.

4 A restart has been successfully made.

8 A checkpoint has not been taken. The PLICKPT statement should be
checked.

12 A checkpoint has not been taken. Check for a missing DD statement, a
hardware error, or insufficient space in the data set. A checkpoint will fail if
taken while a DISPLAY statement with the REPLY option is still
incomplete.

16 A checkpoint has been taken, but ENQ macro calls are outstanding and
will not be restored on restart. This situation will not normally arise for a
PL/I program.

 Chapter 21. Using the Checkpoint/Restart Facility 439

Defining the Checkpoint Data Set
You must include a DD statement in the job control procedure to define the data
set in which the checkpoint records are to be placed. This data set can have either
CONSECUTIVE or partitioned organization. You can use any valid ddname. If you
use the ddname SYSCHK, you do not need to specify the ddname when invoking
PLICKPT.

You must specify a data set name only if you want to keep the data set for a
deferred restart. The I/O device can be any magnetic-tape or direct-access device.

To obtain only the last checkpoint record, then specify status as NEW (or OLD if
the data set already exists). This will cause each checkpoint record to overwrite
the previous one.

To retain more than one checkpoint record, specify status as MOD. This will cause
each checkpoint record to be added after the previous one.

If the checkpoint data set is a library, “check-id” is used as the member-name.
Thus a checkpoint will delete any previously taken checkpoint with the same name.

For direct-access storage, you should allocate enough primary space to store as
many checkpoint records as you will retain. You can specify an incremental space
allocation, but it will not be used. A checkpoint record is approximately 5000 bytes
longer than the area of main storage allocated to the step.

No DCB information is required, but you can include any of the following, where
applicable:

OPTCD=W, OPTCD=C, RECFM=UT, NCP=2, TRTCH=C

These subparameters are described in the MVS/ESA JCL User's Guide.

Requesting a Restart
A restart can be automatic or deferred. You can make automatic restarts after a
system failure or from within the program itself. The system operator must
authorize all automatic restarts when requested by the system.

Automatic Restart after a System Failure
If a system failure occurs after a checkpoint has been taken, the automatic restart
will occur at the last checkpoint if you have specified RD=R (or omitted the RD
parameter) in the EXEC or JOB statement.

If a system failure occurs before any checkpoint has been taken, an automatic
restart, from the beginning of the job step, can still occur if you have specified
RD=R in the EXEC or JOB statement.

After a system failure occurs, you can still force automatic restart from the
beginning of the job step by specifying RD=RNC in the EXEC or JOB statement.
By specifying RD=RNC, you are requesting an automatic step restart without
checkpoint processing if another system failure occurs.

440 PL/I for MVS & VM Programming Guide

Automatic Restart within a Program
You can request a restart at any point in your program. The rules for the restart
are the same as for a restart after a system failure. To request the restart, you
must execute the statement:

 CALL PLIREST;

To effect the restart, the compiler terminates the program abnormally, with a
system completion code of 4092. Therefore, to use this facility, the system
completion code 4092 must not have been deleted from the table of eligible codes
at system generation.

Getting a Deferred Restart
To ensure that automatic restart activity is canceled, but that the checkpoints are
still available for a deferred restart, specify RD=NR in the EXEC or JOB statement
when the program is first executed.

55─ ─RESTART──═──(──stepname─ ──┬ ┬────────── ─)─────────────────────────────────────5%
 ├ ┤─,────────
 └ ┘─check-id─

If you subsequently require a deferred restart, you must submit the program as a
new job, with the RESTART parameter in the JOB statement. Use the RESTART
parameter to specify the job step at which the restart is to be made and, if you
want to restart at a checkpoint, the name of the checkpoint record.

For a restart from a checkpoint, you must also provide a DD statement that defines
the data set containing the checkpoint record. The DD statement must be named
SYSCHK. The DD statement must occur immediately before the EXEC statement
for the job step.

Modifying Checkpoint/Restart Activity
You can cancel automatic restart activity from any checkpoints taken in your
program by executing the statement:

 CALL PLICANC;

However, if you specified RD=R or RD=RNC in the JOB or EXEC statement,
automatic restart can still take place from the beginning of the job step.

Also, any checkpoints already taken are still available for a deferred restart.

You can cancel any automatic restart and the taking of checkpoints, even if they
were requested in your program, by specifying RD=NC in the JOB or EXEC
statement.

 Chapter 21. Using the Checkpoint/Restart Facility 441

442 PL/I for MVS & VM Programming Guide

 Part 7. Appendix

Appendix. Sample Program IBMLSO1 . 444

 Copyright IBM Corp. 1964, 1995 443

Appendix. Sample Program IBMLSO1

This appendix is a PL/I program that illustrates all the components of the listings
produced by the compiler and the linkage editor. You can use this sample program
to verify that PL/I has been installed correctly on your system.

The listings themselves are described in the chapters on compiling.

The program has comments to document both the preprocessor input and the
source listing. These comments are the lines of text preceded by /* and followed
by */. Note that the /* does not appear in columns 1 and 2 of the input record,
because /* in those columns is understood as a job control end-of-file statement.

In addition to the /* comments lines, most pages of the listing contain brief notes
explaining the contents of the pages.

5688-235 IBM PL/I for MVS & VM Ver 1 Rel 1 Mod 1 29 JAN 95 1ð:ð3:24 PAGE 1

OPTIONS SPECIFIED

 ────┐

 │

%PROCESS OPTIONS INSOURCE SOURCE NEST MACRO MAP STORAGE; │ ððð1ðððð

%PROCESS AGGREGATE, ESD, OFFSET; │ .1/ ððð15ððð

%PROCESS LIST(4ð,45) FLAG(I) MARGINS(2,72,1) MARGINI('|'); │ ððð2ðððð

%PROCESS OPT(2) TEST(ALL,SYM) ATTRIBUTES(FULL) XREF(SHORT); │ ððð3ðððð

 ────┘

OPTIONS USED

 ──────────┐

AGGREGATE NODECK ATTRIBUTES(SHORT) │

ESD NOGOSTMT NOCOMPILE(S) │

GONUMBER NOGRAPHIC CMPAT(V2) │ ┌─────────────────────────────────────┐

INSOURCE NOIMPRECISE FLAG(I) │ │ Start of the compiler listing │

LMESSAGE NOINCLUDE LANGLVL(OS,SPROG) │ │ │

MACRO NOINTERRUPT LINECOUNT(55) │ │ .1/ List of options specified in │

MAP NOMDECK LIST(4ð,45) │ │ %PROCESS statements. │

NEST NOSTMT MARGINI('|') | .2/ │ │

NUMBER MARGINS(2,72,1) │ │ .2/ List of options used, whether │

OBJECT OPTIMIZE(TIME) │ │ obtained by default or by being │

OFFSET SEQUENCE(73,8ð) │ │ specified explicitly. │

OPTIONS SIZE(2ð54856) │ └─────────────────────────────────────┘

SOURCE NOSYNTAX(S) │

STORAGE SYSTEM(CMS) │

 TEST(ALL,SYM) │

 XREF(SHORT) │

 TERMINAL(NOAGRAGATE, │

 NOATTRIBUTES, │

 NOESD, │

 NOINSOURCE, │

 NOLIST, │

 NOMAP, │

 NOOFFSET, │

 NOOPTIONS, │

 NOSOURCE, │

 NOSTORAGE, │

 NOXREF) │

 ───────────────┘

444 Copyright IBM Corp. 1964, 1995

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 2

 PREPROCESSOR INPUT

 .2/
 LINE .3/

1 |/\ PL/I Sample Program: Used to verify product installation .1/ \/|ððð4ðððð

3 |/\=== SAMPLE ==\/|ððð6ðððð ┌───────────────────────┐

4 |/\===\/|ððð7ðððð │ Source statements for │

5 |/\== ==\/|ððð8ðððð │ the sample program as │

6 |/\== This is the PL/I sample program that is intended to be ==\/|ððð9ðððð │ they appear in the │

7 |/\== used to verify the product's complete installation. ==\/|ðð1ððððð │ input stream. These │

8 |/\== It is expected to execute and to provide some output. ==\/|ðð11ðððð │ statements form the │

9 |/\== Although “results” are created by the program it is only ==\/|ðð12ðððð │ input data for the │

1ð |/\== to verify that representative I/O services are operable -- ==\/|ðð13ðððð │ preprocessor. Pre- │

11 |/\== the results are verified (internally) by the program. ==\/|ðð14ðððð │ processor statements │

12 |/\== ==\/|ðð15ðððð │ are identified by the │

13 |/\== The program is intended to read a data file and count ==\/|ðð16ðððð │ % symbol. │

14 |/\== the number of occurrences of each PL/I statement type. ==\/|ðð17ðððð │ │

15 |/\== The results are displayed at the end of execution. ==\/|ðð18ðððð │ .1/ The first line of │
16 |/\== If any count does not match the value that is expected ==\/|ðð19ðððð │ the input is in- │

17 |/\== a warning message is displayed. ==\/|ðð2ððððð │ cluded as part of │

18 |/\== ==\/|ðð21ðððð │ the heading for │

19 |/\== When the program is executed this source program file will ==\/|ðð22ðððð │ all the pages of │

2ð |/\== be used as the input file. The filename or DDNAME is ==\/|ðð23ðððð │ the preprocessor │

 21 |/\== SOURCE. ==\/|ðð24ðððð │ and compiler │

 22 |/\== ==\/|ðð25ðððð │ listing. │

23 |/\== NOTE: Compilation of this program should cause preprocessor ==\/|ðð26ðððð │ │

24 |/\== message: ==\/|ðð27ðððð │ .2/ Each input record │
 25 |/\== ==\/|ðð28ðððð │ is numbered │

26 |/\== IEL225ðI I 14ð The WORD_TABLE was successfully declared. ==\/|ðð281ððð │ sequentially. │

 27 |/\== ==\/|ðð282ððð │ │

28 |/\== Two compiler messages will be produced as well: ==\/|ðð283ððð │ .3/ If an input │

29 |/\== ==\/|ðð284ððð │ record has a │

3ð |/\== IELð533I I NO 'DECLARE' STATEMENT(S) FOR 'INDEX'. ==\/|ðð285ððð │ sequence number, │

31 |/\== IELð871I I 62 RESULT OF BUILTIN FUNCTION 'SUM' WILL BE ==\/|ðð286ððð │ this number is │

32 |/\== EVALUATED USING FIXED POINT ARITHMETIC ==\/|ðð287ððð │ printed. │

 33 |/\== OPERATIONS. ==\/|ðð288ððð └───────────────────────┘

 34 |/\== ==\/|ðð289ððð

 35 |/\===\/|ðð29ðððð

 36 |/\===\/|ðð3ððððð

38 |SAMPLE: PROCEDURE OPTIONS(MAIN) REORDER; |ðð32ðððð

 Appendix. Sample Program IBMLSO1 445

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 3

 LINE

 4ð | %/\---\/;|ðð34ðððð

41 | %/\ The services of the PL/I Preprocessor will be used by this \/;|ðð35ðððð

42 | %/\ program. Since some of its variables are global (their use \/;|ðð36ðððð

43 | %/\ crosses macros) they must be defined early in the source \/;|ðð37ðððð

 44 | %/\ program. \/;|ðð38ðððð

45 | %/\ Notice that these lines start with a percent sign and \/;|ðð39ðððð

46 | %/\ end with a semicolon. Notice also that they do not appear \/;|ðð4ððððð

47 | %/\ on the program SOURCE listing. \/;|ðð41ðððð

 48 | %/\---\/;|ðð42ðððð

49 | %DCL BIG_LIST CHAR; |ðð43ðððð

5ð | %BIG_LIST = ''; |ðð44ðððð

 51 | %; |ðð45ðððð

52 | %DCL SIZE_WORD_LIST FIXED; |ðð46ðððð

53 | %SIZE_WORD_LIST = ð; |ðð47ðððð

 54 | %; |ðð48ðððð

55 | %DCL MAX_WORD_LENGTH FIXED; |ðð49ðððð

56 | %MAX_WORD_LENGTH = ð; |ðð5ððððð

 57 | %; |ðð51ðððð

58 | %DCL CURRENT_POSITION FIXED; |ðð52ðððð

59 | %CURRENT_POSITION = ð; |ðð53ðððð

 6ð | %; |ðð54ðððð

61 | %DCL FIRST_WORD_INDICES CHAR; |ðð55ðððð

62 | %FIRST_WORD_INDICES = ''; |ðð56ðððð

 63 | %DCL LAST_INDEX FIXED; |ðð57ðððð

64 | %LAST_INDEX = ð; |ðð58ðððð

 65 | %; |ðð59ðððð

66 | %ACTIVATE ADD_TO_LIST, END_OF_LIST; |ðð6ððððð

 67 | %/\---\/;|ðð61ðððð

68 | %/\ End of the global Preprocessor variable declarations \/;|ðð62ðððð

 69 | %/\---\/;|ðð63ðððð

 7ð | /\===\/|ðð64ðððð

71 | /\ Non-Preprocessor data variables are declared here. Only the \/|ðð65ðððð

72 | /\ variables that are used in the main block (or in more than one \/|ðð66ðððð

73 | /\ of the contained blocks) are defined here. \/|ðð67ðððð

 74 | /\===\/|ðð68ðððð

 75 | |ðð69ðððð

 76 | /\---\/|ðð7ððððð

77 | /\ Declare the source program input file and its accoutrements. \/|ðð71ðððð

 78 | /\---\/|ðð72ðððð

 79 | DECLARE SOURCE FILE RECORD; |ðð73ðððð

 8ð | DECLARE RECORD CHARACTER(121) VARYING; |ðð74ðððð

 81 | DECLARE RECORD_READ BIT(1) INIT(FALSE); |ðð75ðððð

82 | DECLARE LAST_CHAR_POSN FIXED BINARY(15); |ðð76ðððð

 83 | DECLARE DISCREPANCY_OCCURRED BIT(1) INIT(FALSE); |ðð77ðððð

 84 | |ðð78ðððð

 85 | /\---\/|ðð79ðððð

86 | /\ Declare the left- and right-margins of the input dataset. \/|ðð8ððððð

 87 | /\---\/|ðð81ðððð

88 | DECLARE LEFT_MARGIN FIXED BINARY(15) INIT('2'); |ðð82ðððð

89 | DECLARE RIGHT_MARGIN FIXED BINARY(15) INIT('72'); |ðð83ðððð

 9ð | |ðð84ðððð

446 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 4

 LINE

 91 | /\---\/|ðð85ðððð

92 | /\ Declare '1'B as TRUE and 'ð'B as FALSE. \/|ðð86ðððð

 93 | /\---\/|ðð87ðððð

 94 | DECLARE TRUE BIT(1) INIT('1'B); |ðð88ðððð

 95 | DECLARE FALSE BIT(1) INIT('ð'B); |ðð89ðððð

 96 | |ðð9ððððð

 97 | /\---\/|ðð91ðððð

98 | /\ Declare which characters are acceptable as the first character \/|ðð92ðððð

99 | /\ of a word -- then declare acceptable succeeding characters. \/|ðð93ðððð

 1ðð | /\---\/|ðð94ðððð

1ð1 | DECLARE WORD_FIRST_CHARACTERS CHAR(29) STATIC |ðð95ðððð

 1ð2 | INIT('ABCDEFGHIJKLMNOPQRSTUVWXYZ@#$'); |ðð96ðððð

 1ð3 | DECLARE WORD_NEXT_CHARACTERS CHAR(3ð) STATIC |ðð97ðððð

1ð4 | INIT('ABCDEFGHIJKLMNOPQRSTUVWXYZ_@#$'); |ðð98ðððð

 1ð5 | |ðð99ðððð

 1ð6 | /\---\/|ð1ðððððð

1ð7 | /\ Declare a place to hold words extracted from program text. \/|ð1ð1ðððð

 1ð8 | /\---\/|ð1ð2ðððð

 1ð9 | DECLARE WORD CHAR(31) VARYING; |ð1ð3ðððð

 11ð | DECLARE WORD_INDEX FIXED BINARY(15); |ð1ð4ðððð

 111 | |ð1ð5ðððð

 112 | /\---\/|ð1ð6ðððð

113 | /\ Declare the use of SYSPRINT and all of the builtin functions. \/|ð1ð7ðððð

 114 | /\---\/|ð1ð8ðððð

 115 | DECLARE SYSPRINT FILE STREAM, |ð1ð9ðððð

116 | PLIXOPT CHAR(1ðð) VAR STATIC EXT INIT('MSGFILE(SYSPRINT)'); |ð1ð95ððð

117 | DECLARE (HIGH, SUBSTR, SUM, UNSPEC, VERIFY) BUILTIN; |ð11ððððð

 118 | DECLARE ONCODE BUILTIN; |ð111ðððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 5

 LINE

 119 | /\===\/|ð112ðððð

12ð | /\ PL/I statement keywords are collected using the ADD_TO_LIST \/|ð113ðððð

121 | /\ macro. They are put into a table, WORD_TABLE, by the \/|ð114ðððð

122 | /\ END_OF_LIST macro. That macro also creates an index, \/|ð115ðððð

123 | /\ WORD_TABLE_INDEX, into the WORD_TABLE. \/|ð116ðððð

 124 | /\ \/|ð117ðððð

125 | /\ Finally, a table, WORD_COUNT, is created that has a counter \/|ð118ðððð

126 | /\ that corresponds to each word. Whenever that word is \/|ð119ðððð

127 | /\ encountered in the input stream the appropriate WORD_COUNT \/|ð12ððððð

128 | /\ element is incremented. \/|ð121ðððð

 129 | /\ \/|ð122ðððð

13ð | /\ Notice that there are no semicolons in the macro statements. \/|ð123ðððð

 131 | /\===\/|ð124ðððð

 132 | ADD_TO_LIST ('ALLOCATE,BEGIN') |ð126ðððð

 133 | ADD_TO_LIST ('CALL,CLOSE,DCL,DECLARE,DEFAULT,DISPLAY') |ð127ðððð

 134 | ADD_TO_LIST ('DO') |ð128ðððð

 135 | ADD_TO_LIST ('ELSE,END,ENTRY,FREE,GENERIC,GET,GO,GOTO,IF') |ð129ðððð

 136 | ADD_TO_LIST ('LEAVE,LIST,LOCATE,ON,OPEN') |ð13ððððð

 137 | ADD_TO_LIST ('PROC,PROCEDURE') |ð131ðððð

 138 | ADD_TO_LIST ('READ,RETURN,REVERT,REWRITE,SELECT,SIGNAL') |ð132ðððð

 139 | ADD_TO_LIST ('STOP,THEN,WAIT,WHEN,WRITE') |ð133ðððð

 14ð | END_OF_LIST |ð134ðððð

 141 | |ð135ðððð

 142 | /\---\/|ð136ðððð

143 | /\ This is the table containing the results when THIS program \/|ð137ðððð

144 | /\ is the input dataset. There is an intentional error on the \/|ð138ðððð

145 | /\ IF count so that an error message can be produced. \/|ð139ðððð

 146 | /\---\/|ð14ððððð

147 | DECLARE CONTROLLED_SET(SIZE_WORD_LIST) FIXED BINARY(15) |ð141ðððð

148 | INIT(ð, 3, |ð142ðððð

149 | ð, 1, 13, 24, ð, 2, |ð143ðððð

 15ð | 14, |ð144ðððð

151 | 13, 23, ð, ð, ð, ð, 1, ð, 14, |ð145ðððð

152 | ð, 7, ð, 4, 1, |ð146ðððð

 153 | 2, 3, |ð147ðððð

154 | 2, 4, ð, ð, 1, ð, |ð148ðððð

155 | 2, 13, ð, 2, ð); |ð149ðððð

 Appendix. Sample Program IBMLSO1 447

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 6

 LINE

 157 | /\===\/|ð151ðððð

158 | /\= SAMPLE will perform the following tasks: =\/|ð152ðððð

159 | /\= 1) OPEN the input dataset =\/|ð153ðððð

16ð | /\= 2) READ each record and, for each record, =\/|ð154ðððð

161 | /\= a) Extract a character string that meets the PL/I =\/|ð155ðððð

162 | /\= definition of a word. =\/|ð156ðððð

163 | /\= b) If the word also appears in the list of interesting =\/|ð157ðððð

164 | /\= words, record its presence by incrementing a counter. =\/|ð158ðððð

165 | /\= 3) Report on the number of appearances of the words that =\/|ð159ðððð

166 | /\= actually appeared in the dataset. =\/|ð16ððððð

167 | /\= 4) DISPLAY a message if the count does not match the count =\/|ð161ðððð

168 | /\= of PL/I statement keywords in this program. =\/|ð162ðððð

 169 | /\===\/|ð163ðððð

 17ð | |ð164ðððð

 171 | /\---\/|ð165ðððð

172 | /\ Describe the action to take on selected exceptional conditions. \/|ð166ðððð

 173 | /\---\/|ð167ðððð

 174 | |ð168ðððð

 175 | /\---\/|ð169ðððð

176 | /\ If the file has not been properly defined, tell them about it. \/|ð17ððððð

 177 | /\---\/|ð171ðððð

 178 | ON UNDEFINEDFILE(SOURCE) |ð172ðððð

 179 | BEGIN; |ð173ðððð

18ð | DISPLAY ('The input data set has not been defined.'); |ð174ðððð

 181 | STOP; |ð175ðððð

 182 | END; |ð176ðððð

 183 | |ð177ðððð

 184 | /\---\/|ð178ðððð

185 | /\ When the file has been processed indicate “no record read” \/|ð179ðððð

 186 | /\---\/|ð18ððððð

 187 | ON ENDFILE(SOURCE) |ð181ðððð

 188 | BEGIN; |ð182ðððð

189 | RECORD_READ = FALSE; |ð183ðððð

 19ð | END; |ð184ðððð

 191 | |ð185ðððð

 192 | /\---\/|ð186ðððð

193 | /\ If any other errors occur, write a message and terminate. \/|ð187ðððð

 194 | /\---\/|ð188ðððð

 195 | ON ERROR |ð189ðððð

 196 | BEGIN; |ð19ððððð

197 | ON ERROR SYSTEM; |ð191ðððð

198 | DISPLAY ('Unspecified error occurred. ONCODE=' || ONCODE); |ð192ðððð

 199 | STOP; |ð193ðððð

 2ðð | END; |ð194ðððð

 2ð1 | |ð195ðððð

 2ð2 | /\---\/|ð196ðððð

2ð3 | /\ Prepare the input dataset for processing -- mark it as open. \/|ð197ðððð

 2ð4 | /\---\/|ð198ðððð

2ð5 | OPEN FILE(SOURCE) INPUT; |ð199ðððð

448 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 7

 LINE

 2ð6 | /\===\/|ð2ðððððð

2ð7 | /\ Count the use of PL/I statements in each record of the \/|ð2ð1ðððð

2ð8 | /\ input data set. \/|ð2ð2ðððð

 2ð9 | /\===\/|ð2ð3ðððð

 21ð | |ð2ð4ðððð

 211 | /\---\/|ð2ð5ðððð

212 | /\ Read the first record of the input dataset. \/|ð2ð6ðððð

 213 | /\---\/|ð2ð7ðððð

214 | RECORD_READ = TRUE; |ð2ð8ðððð

215 | READ FILE(SOURCE) INTO (RECORD); |ð2ð9ðððð

 216 | |ð21ððððð

 217 | /\---\/|ð211ðððð

218 | /\ Process the first and all succeeding records. \/|ð212ðððð

 219 | /\---\/|ð213ðððð

22ð | DO WHILE (RECORD_READ); |ð214ðððð

 221 | |ð215ðððð

222 | /\ Set the “last character” position to the left margin \/|ð216ðððð

223 | LAST_CHAR_POSN = LEFT_MARGIN; |ð217ðððð

224 | /\ Use NEXT_WORD to extract the first word from this record. \/|ð218ðððð

225 | WORD = NEXT_WORD(RECORD); |ð219ðððð

 226 | |ð22ððððð

 227 | /\---\/|ð221ðððð

228 | /\ Extract words from this record until no more remain. \/|ð222ðððð

 229 | /\---\/|ð223ðððð

23ð | DO WHILE (WORD ¬= ''); |ð224ðððð

231 | /\ Use LOOKUP_WORD to find its position in the table. \/|ð225ðððð

232 | WORD_INDEX = LOOKUP_WORD(WORD); |ð226ðððð

 233 | |ð227ðððð

 234 | /\---\/|ð228ðððð

235 | /\ If the word is in the list, count it. \/|ð229ðððð

 236 | /\---\/|ð23ððððð

237 | IF WORD_INDEX ¬= ð THEN |ð231ðððð

238 | WORD_COUNT(WORD_INDEX) = WORD_COUNT(WORD_INDEX) + 1; |ð232ðððð

 239 | ELSE; |ð233ðððð

24ð | /\ Get the next word from the record. \/|ð234ðððð

241 | WORD = NEXT_WORD(RECORD); |ð235ðððð

 242 | END; |ð236ðððð

 243 | |ð237ðððð

 244 | /\---\/|ð238ðððð

245 | /\ Read the next record from the input data set. \/|ð239ðððð

 246 | /\---\/|ð24ððððð

247 | READ FILE(SOURCE) INTO (RECORD); |ð241ðððð

 248 | END; |ð242ðððð

 249 | |ð243ðððð

 25ð | /\---\/|ð244ðððð

251 | /\ Input from the data set is exhausted. CLOSE it. \/|ð245ðððð

 252 | /\---\/|ð246ðððð

 253 | CLOSE FILE(SOURCE); |ð247ðððð

 Appendix. Sample Program IBMLSO1 449

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 8

 LINE

 255 | /\===\/|ð249ðððð

256 | /\= The report that details and summarizes the use of word in the =\/|ð25ððððð

257 | /\= WORD_TABLE is prepared in this section. =\/|ð251ðððð

 258 | /\===\/|ð252ðððð

 259 | |ð253ðððð

26ð | PUT SKIP LIST (' \\\\\\\\\\\\\\\\\\\\\\\ '); |ð254ðððð

261 | PUT SKIP LIST (' \\\ Word-use Report \\\ '); |ð255ðððð

262 | PUT SKIP LIST (' \\\\\\\\\\\\\\\\\\\\\\\ '); |ð256ðððð

263 | PUT SKIP LIST (' -count- --word-- '); |ð257ðððð

 264 | |ð258ðððð

 265 | /\---\/|ð259ðððð

266 | /\ Review the activity for each word in the list. \/|ð26ððððð

 267 | /\---\/|ð261ðððð

268 | DO WORD_INDEX = 1 TO SIZE_WORD_LIST; |ð262ðððð

 269 | |ð263ðððð

 27ð | /\---\/|ð264ðððð

271 | /\ If the word was used then display the word and its use-count. \/|ð265ðððð

 272 | /\---\/|ð266ðððð

273 | IF WORD_COUNT(WORD_INDEX) > ð THEN |ð267ðððð

274 | PUT SKIP EDIT (WORD_COUNT(WORD_INDEX), |ð268ðððð

 275 | WORD_TABLE(WORD_INDEX)) |ð269ðððð

 276 | (F(6), X(6),A); |ð27ððððð

 277 | ELSE; |ð271ðððð

 278 | |ð272ðððð

 279 | /\---\/|ð273ðððð

28ð | /\ If there was a discrepancy between what was counted and what \/|ð274ðððð

281 | /\ was expected then display a warning message and remember that \/|ð275ðððð

282 | /\ it had occurred. \/|ð276ðððð

 283 | /\---\/|ð277ðððð

284 | IF WORD_COUNT(WORD_INDEX) ¬= CONTROLLED_SET(WORD_INDEX) THEN |ð278ðððð

 285 | DO; |ð279ðððð

286 | PUT SKIP EDIT ((12)'-', |ð28ððððð

287 | 'The previous value should have been', |ð281ðððð

 288 | CONTROLLED_SET(WORD_INDEX)) |ð282ðððð

289 | (A, A, F(6)); |ð283ðððð

29ð | DISCREPANCY_OCCURRED = TRUE; |ð284ðððð

 291 | END; |ð285ðððð

 292 | ELSE; |ð286ðððð

 293 | END; |ð287ðððð

 294 | |ð288ðððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 9

 LINE

 295 | /\===\/|ð289ðððð

296 | /\ Summarize word activity on this input dataset. \/|ð29ððððð

 297 | /\===\/|ð291ðððð

 298 | |ð292ðððð

299 | PUT SKIP(2) LIST ('There were ' || SUM(WORD_COUNT) |ð293ðððð

3ðð | || ' references to ' || SIZE_WORD_LIST |ð294ðððð

3ð1 | || ' words.'); |ð295ðððð

 3ð2 | |ð296ðððð

 3ð3 | /\---\/|ð297ðððð

3ð4 | /\ If a discrepency between one of the counts and the expected \/|ð298ðððð

3ð5 | /\ counts occured then display a warning message. \/|ð299ðððð

 3ð6 | /\---\/|ð3ðððððð

3ð7 | IF DISCREPANCY_OCCURRED THEN |ð3ð1ðððð

3ð8 | PUT SKIP(2) LIST ('There was a discrepancy in at least one of' |ð3ð2ðððð

3ð9 | || ' the word-counts.'); |ð3ð3ðððð

 31ð | ELSE; |ð3ð4ðððð

450 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 1ð

 LINE

311 | /\=== NEXT_WORD ===\/|ð3ð5ðððð

 312 | /\===\/|ð3ð6ðððð

 313 | /\== ==\/|ð3ð7ðððð

 314 | /\== Extract a word from the argument string that is passed. ==\/|ð3ð8ðððð

 315 | /\== Return it as CHAR(31) VARYING. ==\/|ð3ð9ðððð

 316 | /\== ==\/|ð31ððððð

 317 | /\== Ignore PL/I comments and constants (strings surrounded by ==\/|ð311ðððð

 318 | /\== single quotes ('). Comments and constants can not be ==\/|ð312ðððð

 319 | /\== continued but must be complete in the argument string. ==\/|ð313ðððð

 32ð | /\== ==\/|ð314ðððð

 321 | /\== If no more words exist then a null character string will ==\/|ð315ðððð

 322 | /\== be returned. ==\/|ð316ðððð

 323 | /\== ==\/|ð317ðððð

 324 | /\===\/|ð318ðððð

 325 | /\===\/|ð319ðððð

 326 | |ð32ððððð

327 | NEXT_WORD: PROCEDURE(DATA_RECORD) RETURNS(CHAR(31) VARYING); |ð321ðððð

 328 | |ð322ðððð

 329 | DECLARE DATA_RECORD CHAR(\) VARYING; |ð323ðððð

 33ð | DECLARE DATA_WORD CHAR(31) VARYING; |ð324ðððð

 331 | DECLARE NEXT_CHARACTER CHAR(1); |ð325ðððð

 332 | DECLARE LENGTH_OF_STRING FIXED BINARY(15); |ð326ðððð

 333 | |ð327ðððð

 334 | DECLARE NEXT_CHAR_POSN FIXED BINARY(15); |ð328ðððð

 335 | |ð329ðððð

 336 | /\===\/|ð33ððððð

337 | /\= LAST_CHAR_POSN remembers, from call to call, the point where=\/|ð331ðððð

338 | /\= the search for additional words will start. Management of =\/|ð332ðððð

339 | /\= its value is a key concern to this function. =\/|ð333ðððð

 34ð | /\= =\/|ð334ðððð

341 | /\= Comments and constants in the argument string will be =\/|ð335ðððð

342 | /\= ignored. If a character is found that is a legitimate PL/I =\/|ð336ðððð

343 | /\= “first-character” then a word is assumed to follow. It =\/|ð337ðððð

344 | /\= will be built by concatenating (suffixing) additional, =\/|ð338ðððð

345 | /\= legitimate “next-characters.” =\/|ð339ðððð

 346 | /\===\/|ð34ððððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 11

 LINE

 347 | /\===\/|ð341ðððð

348 | /\= Scan each character in the record. Start at the position =\/|ð342ðððð

349 | /\= where scanning last terminated (LAST_CHAR_POSN) and =\/|ð343ðððð

35ð | /\= continue until the end of a word or the end of the record =\/|ð344ðððð

351 | /\= is reached. =\/|ð345ðððð

 352 | /\===\/|ð346ðððð

 353 | |ð347ðððð

354 | DATA_WORD = ''; |ð348ðððð

355 | DO NEXT_CHAR_POSN = LAST_CHAR_POSN TO RIGHT_MARGIN |ð349ðððð

356 | WHILE (DATA_WORD = ''); |ð35ððððð

357 | NEXT_CHARACTER = SUBSTR(DATA_RECORD, NEXT_CHAR_POSN, 1); |ð351ðððð

 358 | SELECT (NEXT_CHARACTER); |ð352ðððð

 359 | |ð353ðððð

 36ð | WHEN ('/') |ð354ðððð

 361 | |ð355ðððð

 362 | /\---\/|ð356ðððð

363 | /\ If this turns out to be a comment then skip over it. \/|ð357ðððð

 364 | /\---\/|ð358ðððð

 365 | DO; |ð359ðððð

366 | IF SUBSTR(DATA_RECORD, NEXT_CHAR_POSN, 2) = '/\' THEN |ð36ððððð

367 | NEXT_CHAR_POSN = NEXT_CHAR_POSN + 3 |ð361ðððð

368 | + INDEX(SUBSTR(DATA_RECORD,NEXT_CHAR_POSN+2),'\/'); |ð362ðððð

 369 | ELSE; |ð363ðððð

 37ð | END; |ð364ðððð

 371 | |ð365ðððð

 372 | WHEN ('''') |ð366ðððð

 373 | |ð367ðððð

 374 | /\---\/|ð368ðððð

375 | /\ Skip over the constant. \/|ð369ðððð

 376 | /\---\/|ð37ððððð

377 | NEXT_CHAR_POSN = NEXT_CHAR_POSN |ð371ðððð

 378 | + INDEX(SUBSTR(DATA_RECORD,NEXT_CHAR_POSN+1),'''');|ð372ðððð

 Appendix. Sample Program IBMLSO1 451

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 12

 LINE

 379 | /\===\/|ð373ðððð

38ð | /\= This may be the start of a word. Extract it if so. =\/|ð374ðððð

 381 | /\===\/|ð375ðððð

 382 | |ð376ðððð

 383 | OTHERWISE |ð377ðððð

 384 | |ð378ðððð

 385 | /\---\/|ð379ðððð

386 | /\ This may be the start of a word. \/|ð38ððððð

 387 | /\---\/|ð381ðððð

 388 | DO; |ð382ðððð

 389 | |ð383ðððð

 39ð | /\---\/|ð384ðððð

391 | /\ If the next character is not acceptable as the first \/|ð385ðððð

392 | /\ character of a word then do nothing further -- our \/|ð386ðððð

393 | /\ enclosing DO will step to the next character for \/|ð387ðððð

394 | /\ further checking. \/|ð388ðððð

 395 | /\---\/|ð389ðððð

396 | IF INDEX(WORD_FIRST_CHARACTERS, NEXT_CHARACTER) = ð THEN; |ð39ððððð

 397 | ELSE |ð391ðððð

 398 | |ð392ðððð

 399 | /\---\/|ð393ðððð

4ðð | /\ This is the start of a word. Collect the rest of it\/|ð394ðððð

 4ð1 | /\---\/|ð395ðððð

 4ð2 | |ð396ðððð

 4ð3 | DO; |ð397ðððð

4ð4 | DATA_WORD = NEXT_CHARACTER; |ð398ðððð

 4ð5 | |ð399ðððð

 4ð6 | /\---\/|ð4ðððððð

4ð7 | /\ Build up DATA_WORD by iteratively appending \/|ð4ð1ðððð

4ð8 | /\ characters from the input argument string. Do it \/|ð4ð2ðððð

4ð9 | /\ as long as the characters are acceptable PL/I \/|ð4ð3ðððð

 41ð | /\ “next=characters.” \/|ð4ð4ðððð

 411 | /\---\/|ð4ð5ðððð

 412 | |ð4ð6ðððð

413 | DO NEXT_CHAR_POSN = NEXT_CHAR_POSN+1 TO RIGHT_MARGIN |ð4ð7ðððð

 414 | WHILE (INDEX(WORD_NEXT_CHARACTERS, |ð4ð8ðððð

415 | SUBSTR(DATA_RECORD, NEXT_CHAR_POSN,1)) ¬= ð); |ð4ð9ðððð

416 | DATA_WORD = DATA_WORD |ð41ððððð

417 | || SUBSTR(DATA_RECORD, NEXT_CHAR_POSN,1);|ð411ðððð

 418 | END; |ð412ðððð

419 | LAST_CHAR_POSN = NEXT_CHAR_POSN + 1; |ð413ðððð

 42ð | END; |ð414ðððð

 421 | END; |ð415ðððð

422 | END; /\ End of the SELECT (NEXT_CHARACTER) statement \/|ð416ðððð

423 | END; /\ End of the DO that tries to find a word \/|ð417ðððð

 424 | |ð418ðððð

 425 | RETURN (DATA_WORD); |ð419ðððð

 426 | END; |ð42ððððð

452 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 13

 LINE

427 | /\=== LOOKUP_WORD ===\/|ð421ðððð

 428 | /\===\/|ð422ðððð

 429 | /\== ==\/|ð423ðððð

 43ð | /\== Find the word in the WORD_TABLE that matches the ==\/|ð424ðððð

 431 | /\== argument string (CHAR(\) VARYING) and return the ==\/|ð425ðððð

 432 | /\== position of that word (its subscript) to the ==\/|ð426ðððð

 433 | /\== invoker (FIXED BINARY(15)). ==\/|ð427ðððð

 434 | /\== ==\/|ð428ðððð

 435 | /\== If the word does not exist in the list a ð will be ==\/|ð429ðððð

 436 | /\== returned. ==\/|ð43ððððð

 437 | /\== ==\/|ð431ðððð

 438 | /\===\/|ð432ðððð

 439 | /\===\/|ð433ðððð

 44ð | |ð434ðððð

441 | LOOKUP_WORD: PROCEDURE(DATA_WORD) RETURNS(FIXED BINARY(15)); |ð435ðððð

 442 | |ð436ðððð

 443 | DECLARE DATA_WORD CHAR(\) VARYING; |ð437ðððð

444 | DECLARE WORD_NUMBER FIXED BINARY(15); |ð438ðððð

 445 | |ð439ðððð

 446 | /\===\/|ð44ððððð

447 | /\= A sequential search is used to locate the required word. =\/|ð441ðððð

448 | /\= WORD_INDEX_TABLE is used to start the search at the first =\/|ð442ðððð

449 | /\= word in the list that has the same first character. =\/|ð443ðððð

 45ð | /\===\/|ð444ðððð

451 | WORD_NUMBER = WORD_INDEX_TABLE /\ Subscript is on next line \/ |ð445ðððð

452 | (INDEX (WORD_FIRST_CHARACTERS, SUBSTR(DATA_WORD,1,1)));|ð446ðððð

 453 | |ð447ðððð

 454 | /\---\/|ð448ðððð

455 | /\ Search words in the WORD_TABLE until the word is found or is \/|ð449ðððð

456 | /\ determined to be not a part of the list -- its index number \/|ð45ððððð

457 | /\ (WORD_NUMBER) is zero. \/|ð451ðððð

 458 | /\---\/|ð452ðððð

459 | DO WORD_NUMBER = WORD_NUMBER BY 1 |ð453ðððð

46ð | UNTIL (WORD_TABLE(WORD_NUMBER) = DATA_WORD |ð454ðððð

461 | | WORD_NUMBER = ð); |ð455ðððð

 462 | |ð456ðððð

 463 | /\---\/|ð457ðððð

464 | /\ If the word in the WORD_TABLE is alphabetically greater \/|ð458ðððð

465 | /\ than the argument word then a match cannot be found. Set \/|ð459ðððð

466 | /\ the WORD_NUMBER to ð to indicate a non=match situation. \/|ð46ððððð

 467 | /\---\/|ð461ðððð

468 | IF WORD_TABLE(WORD_NUMBER) > DATA_WORD THEN |ð462ðððð

469 | WORD_NUMBER = ð; |ð463ðððð

 47ð | ELSE; |ð464ðððð

 471 | END; |ð465ðððð

 472 | |ð466ðððð

 473 | RETURN (WORD_NUMBER); |ð467ðððð

 474 | END; |ð468ðððð

 475 | %; |ð469ðððð

 476 | %/\===\/;|ð47ððððð

 477 | %/\===\/;|ð471ðððð

 Appendix. Sample Program IBMLSO1 453

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 14

 LINE

 478 | %/\= =\/;|ð472ðððð

479 | %/\= Submit a list of words that are to be included in the =\/;|ð473ðððð

48ð | %/\= WORD_TABLE. They must be in alphabetic order. The list =\/;|ð474ðððð

481 | %/\= must be within parentheses and cannot contain any blanks =\/;|ð475ðððð

 482 | %/\= =\/;|ð476ðððð

 483 | %/\===\/;|ð477ðððð

 484 | %/\===\/;|ð478ðððð

485 | %ADD_TO_LIST: PROC(WORD_LIST) RETURNS(CHAR); |ð479ðððð

 486 | DCL WORD_LIST CHAR; |ð48ððððð

 487 | DCL EXTRACTED_WORD CHAR; |ð481ðððð

488 | DCL THIS_INDEX_CHAR CHAR; |ð482ðððð

 489 | DCL THIS_INDEX FIXED; |ð483ðððð

 49ð | DCL COMMA FIXED; |ð484ðððð

491 | DCL (INDEX, LENGTH, SUBSTR) BUILTIN; |ð485ðððð

 492 | |ð486ðððð

493 | /\ Remove the leading and trailing apostrophes \/|ð487ðððð

494 | WORD_LIST = SUBSTR(WORD_LIST,2,LENGTH(WORD_LIST)-2); |ð488ðððð

 495 | |ð489ðððð

 496 | /\---\/|ð49ððððð

497 | /\ Extract each word from the argument data string. Put each \/|ð491ðððð

498 | /\ word onto the end of a growing string that will eventually \/|ð492ðððð

499 | /\ be used in the INITIAL clause of the declaration of \/|ð493ðððð

5ðð | /\ the WORD_TABLE. \/|ð494ðððð

 5ð1 | /\---\/|ð495ðððð

 5ð2 | PARSE_LOOP: |ð496ðððð

5ð3 | /\ Keep track of the size of the word list. \/|ð497ðððð

5ð4 | SIZE_WORD_LIST = SIZE_WORD_LIST + 1; |ð498ðððð

5ð5 | THIS_INDEX = INDEX('ABCDEFGHIJKLMNOPQRSTUVWXYZ', |ð499ðððð

5ð6 | SUBSTR(WORD_LIST,1,1)); |ð5ðððððð

 5ð7 | |ð5ð1ðððð

 5ð8 | /\---\/|ð5ð2ðððð

5ð9 | /\ Is this is the first time that this initial character has \/|ð5ð3ðððð

51ð | /\ been encountered? If so, the table of indices into \/|ð5ð4ðððð

511 | /\ WORD_TABLE must be updated. \/|ð5ð5ðððð

 512 | /\---\/|ð5ð6ðððð

513 | IF THIS_INDEX ¬= LAST_INDEX THEN |ð5ð7ðððð

 514 | DO; |ð5ð8ðððð

 515 | |ð5ð9ðððð

 516 | /\---\/|ð51ððððð

517 | /\ Update the “initial character index” for all characters \/|ð511ðððð

518 | /\ between the last one and this one. \/|ð512ðððð

 519 | /\---\/|ð513ðððð

 52ð | |ð514ðððð

521 | DO LAST_INDEX = LAST_INDEX+1 TO THIS_INDEX; |ð515ðððð

 522 | /\---\/|ð516ðððð

523 | /\ If the last character processed and this character are \/|ð517ðððð

524 | /\ are not alphabetically adjacent then a zero (no word \/|ð518ðððð

525 | /\ having such a first character is acceptable) must be \/|ð519ðððð

526 | /\ appended to the list of indices. The list will be \/|ð52ððððð

527 | /\ used later in the INITIAL clause of the declaration \/|ð521ðððð

528 | /\ of WORD_TABLE_INDEX. \/|ð522ðððð

454 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 15

 LINE

 529 | /\---\/|ð523ðððð

53ð | IF LAST_INDEX < THIS_INDEX THEN |ð524ðððð

531 | FIRST_WORD_INDICES = FIRST_WORD_INDICES || ', ð'; |ð525ðððð

 532 | ELSE |ð526ðððð

533 | FIRST_WORD_INDICES = FIRST_WORD_INDICES||','||SIZE_WORD_LIST;|ð527ðððð

 534 | END; |ð528ðððð

535 | LAST_INDEX = LAST_INDEX - 1; |ð529ðððð

 536 | END; |ð53ððððð

 537 | ELSE; |ð531ðððð

 538 | |ð532ðððð

539 | COMMA = INDEX(WORD_LIST,','); |ð533ðððð

 54ð | |ð534ðððð

 541 | /\---\/|ð535ðððð

542 | /\ Is there a comma after this word? \/|ð536ðððð

 543 | /\---\/|ð537ðððð

544 | IF COMMA = ð THEN |ð538ðððð

 545 | DO; |ð539ðððð

 546 | |ð54ððððð

 547 | /\---\/|ð541ðððð

548 | /\ Since this word is not followed by a comma it is the \/|ð542ðððð

549 | /\ last one in the list. \/|ð543ðððð

 55ð | /\---\/|ð544ðððð

551 | BIG_LIST = BIG_LIST || '''' || WORD_LIST || ''', '; |ð545ðððð

 552 | |ð546ðððð

 553 | /\---\/|ð547ðððð

554 | /\ Keep track of the longest word in the list. \/|ð548ðððð

 555 | /\---\/|ð549ðððð

556 | IF LENGTH(WORD_LIST) > MAX_WORD_LENGTH THEN |ð55ððððð

557 | MAX_WORD_LENGTH = LENGTH(WORD_LIST); |ð551ðððð

 558 | ELSE; |ð552ðððð

 559 | RETURN(''); |ð553ðððð

 56ð | END; |ð554ðððð

 561 | ELSE |ð555ðððð

 562 | DO; |ð556ðððð

 563 | |ð557ðððð

 564 | /\---\/|ð558ðððð

565 | /\ Extract the next word and remove it from the input. \/|ð559ðððð

 566 | /\---\/|ð56ððððð

567 | EXTRACTED_WORD = SUBSTR(WORD_LIST,1,COMMA-1); |ð561ðððð

568 | BIG_LIST = BIG_LIST || '''' |ð562ðððð

569 | || EXTRACTED_WORD || ''', '; |ð563ðððð

 57ð | |ð564ðððð

 571 | /\---\/|ð565ðððð

572 | /\ Keep track of the longest word in the list. \/|ð566ðððð

 573 | /\---\/|ð567ðððð

574 | IF LENGTH(EXTRACTED_WORD) > MAX_WORD_LENGTH THEN |ð568ðððð

575 | MAX_WORD_LENGTH = LENGTH(EXTRACTED_WORD); |ð569ðððð

 576 | ELSE; |ð57ððððð

577 | /\ Remove this word and the comma from the input string. \/|ð571ðððð

578 | WORD_LIST = SUBSTR(WORD_LIST,COMMA+1); |ð572ðððð

 579 | END; |ð573ðððð

 Appendix. Sample Program IBMLSO1 455

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 16

 LINE

58ð | GO TO PARSE_LOOP; |ð574ðððð

 581 | %END; |ð575ðððð

 582 | %; |ð576ðððð

 583 | %/\===\/;|ð577ðððð

 584 | %/\===\/;|ð578ðððð

 585 | %/\= =\/;|ð579ðððð

586 | %/\= All words contained in the search list have been submitted. =\/;|ð58ððððð

587 | %/\= Create the DECLAREs for the WORD_TABLE, WORD_COUNT vector =\/;|ð581ðððð

588 | %/\= and the WORD_INDEX_TABLE. =\/;|ð582ðððð

 589 | %/\= =\/;|ð583ðððð

 59ð | %/\===\/;|ð584ðððð

 591 | %/\===\/;|ð585ðððð

592 | %END_OF_LIST: PROC RETURNS(CHAR); |ð586ðððð

593 | DCL TABLE_DCL CHAR; |ð587ðððð

 594 | |ð588ðððð

 595 | /\---\/|ð589ðððð

596 | /\ Create the DECLARE for the WORD_TABLE \/|ð59ððððð

 597 | /\---\/|ð591ðððð

598 | TABLE_DCL = 'DECLARE ' |ð592ðððð

599 | || 'WORD_TABLE(' || (SIZE_WORD_LIST+1) || ') ' |ð593ðððð

6ðð | || 'CHAR(' || MAX_WORD_LENGTH || ')' |ð594ðððð

6ð1 | || 'INIT(' || BIG_LIST |ð595ðððð

6ð2 | || 'HIGH(' || MAX_WORD_LENGTH || '));' ; |ð596ðððð

 6ð3 | |ð597ðððð

 6ð4 | /\---\/|ð598ðððð

6ð5 | /\ Append the DECLARE for the WORD_COUNT array. \/|ð599ðððð

 6ð6 | /\---\/|ð6ðððððð

6ð7 | TABLE_DCL = TABLE_DCL |ð6ð1ðððð

6ð8 | || 'DECLARE WORD_COUNT(' || SIZE_WORD_LIST || ') ' |ð6ð2ðððð

6ð9 | || 'FIXED BINARY(15) INIT((' || SIZE_WORD_LIST || ')ð);' ;|ð6ð3ðððð

 61ð | |ð6ð4ðððð

 611 | /\---\/|ð6ð5ðððð

612 | /\ Append the DECLARE for the WORD_INDEX_TABLE array. \/|ð6ð6ðððð

 613 | /\---\/|ð6ð7ðððð

614 | TABLE_DCL = TABLE_DCL |ð6ð8ðððð

615 | || 'DECLARE WORD_INDEX_TABLE(26) FIXED BINARY(15) INIT(' ;|ð6ð9ðððð

616 | TABLE_DCL = TABLE_DCL || SUBSTR(FIRST_WORD_INDICES,5); |ð61ððððð

 617 | |ð611ðððð

 618 | /\---\/|ð612ðððð

619 | /\ If the last word started with a Z then the initial values \/|ð613ðððð

62ð | /\ for the index table is complete. If not then some zeroes \/|ð614ðððð

621 | /\ have to be added to account for all 26 array items. \/|ð615ðððð

 622 | /\---\/|ð616ðððð

623 | IF SIZE_WORD_LIST = 26 THEN |ð617ðððð

624 | TABLE_DCL = TABLE_DCL || ')' ; |ð618ðððð

 625 | ELSE |ð619ðððð

626 | TABLE_DCL = TABLE_DCL || ',(' || 26-LAST_INDEX || ')ð);'; |ð62ððððð

627 | NOTE ('The WORD_TABLE was successfully declared.',ð); |ð62ð5ððð

 628 | RETURN(TABLE_DCL); |ð621ðððð

 629 | %END; |ð622ðððð

 63ð |END; |ð623ðððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 17

PREPROCESSOR DIAGNOSTIC MESSAGES

 .1/ .2/ .3/
ERROR ID L LINE MESSAGE DESCRIPTION ┌──┐

│ Diagnostic messages generated by the preprocessor. │

│ All messages generated by the compiler │

│ (including the preprocessor) are documented in the │

PREPROCESSOR INFORMATORY MESSAGES │ publication PL/I MVS & VM Compile-Time │

│ Messages and Codes. │

IEL225ðI I 14ð The WORD_TABLE was successfully declared. │ │

│ .1/ ERROR ID identifies the message originating │

END OF PREPROCESSOR DIAGNOSTIC MESSAGES │ from the compiler (IEL) and gives the message │

 │ number. │

 │ │

│ .2/ L indicates the severity level of the message. │

 │ │

│ .3/ LINE lists the number of the line in which the │

 │ error occurred. │

 └──┘

456 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 18

 SOURCE LISTING .4/
STMT LEV NT R

|/\ PL/I Sample Program: Used to verify product installation \/|ððð4ðððð

|/\=== SAMPLE ==\/|ððð6ðððð

 |/\===\/|ððð7ðððð

 |/\== ==\/|ððð8ðððð

|/\== This is the PL/I sample program that is intended to be ==\/|ððð9ðððð ┌──────────────────────┐

|/\== used to verify the product's complete installation. ==\/|ðð1ððððð │Source listing. This │

|/\== It is expected to execute and to provide some output. ==\/|ðð11ðððð │is the output from │

|/\== Although “results” are created by the program it is only ==\/|ðð12ðððð │the preprocessor and │

|/\== to verify that representative I/O services are operable -- ==\/|ðð13ðððð │the input to the com- │

|/\== the results are verified (internally) by the program. ==\/|ðð14ðððð │piler. All the pre- │

 |/\== ==\/|ðð15ðððð │processor statements │

|/\== The program is intended to read a data file and count ==\/|ðð16ðððð │have been executed │

|/\== the number of occurrences of each PL/I statement type. ==\/|ðð17ðððð │and all preprocessor │

|/\== The results are displayed at the end of execution. ==\/|ðð18ðððð │comments have been │

|/\== If any count does not match the value that is expected ==\/|ðð19ðððð │deleted. │

|/\== a warning message is displayed. ==\/|ðð2ððððð │ │

|/\== ==\/|ðð21ðððð │.4/ Numbers in this │

|/\== When the program is executed this source program file will ==\/|ðð22ðððð │column of the listing │

|/\== be used as the input file. The filename or DDNAME is ==\/|ðð23ðððð │indicate the maximum │

|/\== SOURCE. ==\/|ðð24ðððð │depth of replacement │

|/\== ==\/|ðð25ðððð │of preprocessor state-│

|/\== NOTE: Compilation of this program should cause preprocessor ==\/|ðð26ðððð │ments. │

 |/\== message: ==\/|ðð27ðððð └──────────────────────┘

 |/\== ==\/|ðð28ðððð

|/\== IEL225ðI I 14ð The WORD_TABLE was successfully declared. ==\/|ðð281ððð

 |/\== ==\/|ðð282ððð

|/\== Two compiler messages will be produced as well: ==\/|ðð283ððð

 |/\== ==\/|ðð284ððð

|/\== IELð533I I NO 'DECLARE' STATEMENT(S) FOR 'INDEX'. ==\/|ðð285ððð

|/\== IELð871I I 62 RESULT OF BUILTIN FUNCTION 'SUM' WILL BE ==\/|ðð286ððð

|/\== EVALUATED USING FIXED POINT ARITHMETIC ==\/|ðð287ððð

 |/\== OPERATIONS. ==\/|ðð288ððð

 |/\== ==\/|ðð289ððð

 |/\===\/|ðð29ðððð

 |/\===\/|ðð3ððððð

1 ð |SAMPLE: PROCEDURE OPTIONS(MAIN) REORDER; |ðð32ðððð

 Appendix. Sample Program IBMLSO1 457

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 19

STMT LEV NT R

 | /\===\/|ðð64ðððð

| /\ Non-Preprocessor data variables are declared here. Only the \/|ðð65ðððð

| /\ variables that are used in the main block (or in more than one \/|ðð66ðððð

| /\ of the contained blocks) are defined here. \/|ðð67ðððð

 | /\===\/|ðð68ðððð

 | |ðð69ðððð

 | /\---\/|ðð7ððððð

| /\ Declare the source program input file and its accoutrements. \/|ðð71ðððð

 | /\---\/|ðð72ðððð

2 1 ð | DECLARE SOURCE FILE RECORD; |ðð73ðððð

3 1 ð | DECLARE RECORD CHARACTER(121) VARYING; |ðð74ðððð

4 1 ð | DECLARE RECORD_READ BIT(1) INIT(FALSE); |ðð75ðððð

5 1 ð | DECLARE LAST_CHAR_POSN FIXED BINARY(15); |ðð76ðððð

6 1 ð | DECLARE DISCREPANCY_OCCURRED BIT(1) INIT(FALSE); |ðð77ðððð

 | |ðð78ðððð

 | /\---\/|ðð79ðððð

| /\ Declare the left- and right-margins of the input dataset. \/|ðð8ððððð

 | /\---\/|ðð81ðððð

7 1 ð | DECLARE LEFT_MARGIN FIXED BINARY(15) INIT('2'); |ðð82ðððð

8 1 ð | DECLARE RIGHT_MARGIN FIXED BINARY(15) INIT('72'); |ðð83ðððð

 | |ðð84ðððð

 | /\---\/|ðð85ðððð

| /\ Declare '1'B as TRUE and 'ð'B as FALSE. \/|ðð86ðððð

 | /\---\/|ðð87ðððð

9 1 ð | DECLARE TRUE BIT(1) INIT('1'B); |ðð88ðððð

1ð 1 ð | DECLARE FALSE BIT(1) INIT('ð'B); |ðð89ðððð

 | |ðð9ððððð

 | /\---\/|ðð91ðððð

| /\ Declare which characters are acceptable as the first character \/|ðð92ðððð

| /\ of a word -- then declare acceptable succeeding characters. \/|ðð93ðððð

 | /\---\/|ðð94ðððð

11 1 ð | DECLARE WORD_FIRST_CHARACTERS CHAR(29) STATIC |ðð95ðððð

 | INIT('ABCDEFGHIJKLMNOPQRSTUVWXYZ@#$'); |ðð96ðððð

12 1 ð | DECLARE WORD_NEXT_CHARACTERS CHAR(3ð) STATIC |ðð97ðððð

| INIT('ABCDEFGHIJKLMNOPQRSTUVWXYZ_@#$'); |ðð98ðððð

 | |ðð99ðððð

 | /\---\/|ð1ðððððð

| /\ Declare a place to hold words extracted from program text. \/|ð1ð1ðððð

 | /\---\/|ð1ð2ðððð

13 1 ð | DECLARE WORD CHAR(31) VARYING; |ð1ð3ðððð

14 1 ð | DECLARE WORD_INDEX FIXED BINARY(15); |ð1ð4ðððð

 | |ð1ð5ðððð

 | /\---\/|ð1ð6ðððð

| /\ Declare the use of SYSPRINT and all of the builtin functions. \/|ð1ð7ðððð

 | /\---\/|ð1ð8ðððð

15 1 ð | DECLARE SYSPRINT FILE STREAM, |ð1ð9ðððð

| PLIXOPT CHAR(1ðð) VAR STATIC EXT INIT('MSGFILE(SYSPRINT)'); |ð1ð95ððð

16 1 ð | DECLARE (HIGH, SUBSTR, SUM, UNSPEC, VERIFY) BUILTIN; |ð11ððððð

17 1 ð | DECLARE ONCODE BUILTIN; |ð111ðððð

458 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 2ð

STMT LEV NT R

 | /\===\/|ð112ðððð

| /\ PL/I statement keywords are collected using the ADD_TO_LIST \/|ð113ðððð

| /\ macro. They are put into a table, WORD_TABLE, by the \/|ð114ðððð

| /\ END_OF_LIST macro. That macro also creates an index, \/|ð115ðððð

| /\ WORD_TABLE_INDEX, into the WORD_TABLE. \/|ð116ðððð

 | /\ \/|ð117ðððð

| /\ Finally, a table, WORD_COUNT, is created that has a counter \/|ð118ðððð

| /\ that corresponds to each word. Whenever that word is \/|ð119ðððð

| /\ encountered in the input stream the appropriate WORD_COUNT \/|ð12ððððð

| /\ element is incremented. \/|ð121ðððð

 | /\ \/|ð122ðððð

| /\ Notice that there are no semicolons in the macro statements. \/|ð123ðððð

 | /\===\/|ð124ðððð

 | |ð126ðððð 1

 | |ð127ðððð 1

 | |ð128ðððð 1

 | |ð129ðððð 1

 | |ð13ððððð 1

 | |ð131ðððð 1

 | |ð132ðððð 1

 | |ð133ðððð 1

18 1 ð | DECLARE WORD_TABLE(37) CHAR(9)INIT('ALLOCATE', 'BEGIN', |ð134ðððð 1

|'CALL', 'CLOSE', 'DCL', 'DECLARE', 'DEFAULT', 'DISPLAY', 'DO', 'ELSE', |ð134ðððð 1

|'END', 'ENTRY', 'FREE', 'GENERIC', 'GET', 'GO', 'GOTO', 'IF', 'LEAVE', |ð134ðððð 1

|'LIST', 'LOCATE', 'ON', 'OPEN', 'PROC', 'PROCEDURE', 'READ', 'RETURN', |ð134ðððð 1

|'REVERT', 'REWRITE', 'SELECT', 'SIGNAL', 'STOP', 'THEN', 'WAIT', 'WHEN'|ð134ðððð 1

19 1 ð |, 'WRITE', HIGH(9));DECLARE WORD_COUNT(36) FIXED BINARY(15|ð134ðððð 1

2ð 1 ð |) INIT((36)ð);DECLARE WORD_INDEX_TABLE(26) FIXED BINARY(15) INIT(|ð134ðððð 1

| 1, 2, 3, 5, 1ð, 13, 14, ð, 18|ð134ðððð 1

|, ð, ð, 19, ð, ð, 22, 24, ð, 26, 3ð, 33, |ð134ðððð 1

 |ð, ð, 34,(3)ð); |ð134ðððð 1

 | |ð135ðððð

 | /\---\/|ð136ðððð

| /\ This is the table containing the results when THIS program \/|ð137ðððð

| /\ is the input dataset. There is an intentional error on the \/|ð138ðððð

| /\ IF count so that an error message can be produced. \/|ð139ðððð

 | /\---\/|ð14ððððð

21 1 ð | DECLARE CONTROLLED_SET(36) FIXED BINARY(15) |ð141ðððð 1

| INIT(ð, 3, |ð142ðððð

| ð, 1, 13, 24, ð, 2, |ð143ðððð

 | 14, |ð144ðððð

| 13, 23, ð, ð, ð, ð, 1, ð, 14, |ð145ðððð

| ð, 7, ð, 4, 1, |ð146ðððð

 | 2, 3, |ð147ðððð

| 2, 4, ð, ð, 1, ð, |ð148ðððð

| 2, 13, ð, 2, ð); |ð149ðððð

 Appendix. Sample Program IBMLSO1 459

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 21

STMT LEV NT R

 | /\===\/|ð151ðððð

| /\= SAMPLE will perform the following tasks: =\/|ð152ðððð

| /\= 1) OPEN the input dataset =\/|ð153ðððð

| /\= 2) READ each record and, for each record, =\/|ð154ðððð

| /\= a) Extract a character string that meets the PL/I =\/|ð155ðððð

| /\= definition of a word. =\/|ð156ðððð

| /\= b) If the word also appears in the list of interesting =\/|ð157ðððð

| /\= words, record its presence by incrementing a counter. =\/|ð158ðððð

| /\= 3) Report on the number of appearances of the words that =\/|ð159ðððð

| /\= actually appeared in the dataset. =\/|ð16ððððð

| /\= 4) DISPLAY a message if the count does not match the count =\/|ð161ðððð

| /\= of PL/I statement keywords in this program. =\/|ð162ðððð

 | /\===\/|ð163ðððð

 | |ð164ðððð

 | /\---\/|ð165ðððð

| /\ Describe the action to take on selected exceptional conditions. \/|ð166ðððð

 | /\---\/|ð167ðððð

 | |ð168ðððð

 | /\---\/|ð169ðððð

| /\ If the file has not been properly defined, tell them about it. \/|ð17ððððð

 | /\---\/|ð171ðððð

22 1 ð | ON UNDEFINEDFILE(SOURCE) |ð172ðððð

 | BEGIN; |ð173ðððð

23 2 ð | DISPLAY ('The input data set has not been defined.'); |ð174ðððð

24 2 ð | STOP; |ð175ðððð

25 2 ð | END; |ð176ðððð

 | |ð177ðððð

 | /\---\/|ð178ðððð

| /\ When the file has been processed indicate “no record read.” \/|ð179ðððð

 | /\---\/|ð18ððððð

26 1 ð | ON ENDFILE(SOURCE) |ð181ðððð

 | BEGIN; |ð182ðððð

27 2 ð | RECORD_READ = FALSE; |ð183ðððð

28 2 ð | END; |ð184ðððð

 | |ð185ðððð

 | /\---\/|ð186ðððð

| /\ If any other errors occur, write a message and terminate. \/|ð187ðððð

 | /\---\/|ð188ðððð

29 1 ð | ON ERROR |ð189ðððð

 | BEGIN; |ð19ððððð

3ð 2 ð | ON ERROR SYSTEM; |ð191ðððð

31 2 ð | DISPLAY ('Unspecified error occurred. ONCODE=' || ONCODE); |ð192ðððð

32 2 ð | STOP; |ð193ðððð

33 2 ð | END; |ð194ðððð

 | |ð195ðððð

 | /\---\/|ð196ðððð

| /\ Prepare the input dataset for processing -- mark it as open. \/|ð197ðððð

 | /\---\/|ð198ðððð

34 1 ð | OPEN FILE(SOURCE) INPUT; |ð199ðððð

460 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 22

STMT LEV NT R

 | /\===\/|ð2ðððððð

| /\ Count the use of PL/I statements in each record of the \/|ð2ð1ðððð

| /\ input data set. \/|ð2ð2ðððð

 | /\===\/|ð2ð3ðððð

 | |ð2ð4ðððð

 | /\---\/|ð2ð5ðððð

| /\ Read the first record of the input dataset. \/|ð2ð6ðððð

 | /\---\/|ð2ð7ðððð

35 1 ð | RECORD_READ = TRUE; |ð2ð8ðððð

36 1 ð | READ FILE(SOURCE) INTO (RECORD); |ð2ð9ðððð

 | |ð21ððððð

 | /\---\/|ð211ðððð

| /\ Process the first and all succeeding records. \/|ð212ðððð

 | /\---\/|ð213ðððð

37 1 ð | DO WHILE (RECORD_READ); |ð214ðððð

 | |ð215ðððð

| /\ Set the “last character” position to the left margin \/|ð216ðððð

38 1 1 | LAST_CHAR_POSN = LEFT_MARGIN; |ð217ðððð

| /\ Use NEXT_WORD to extract the first word from this record. \/|ð218ðððð

39 1 1 | WORD = NEXT_WORD(RECORD); |ð219ðððð

 | |ð22ððððð

 | /\---\/|ð221ðððð

| /\ Extract words from this record until no more remain. \/|ð222ðððð

 | /\---\/|ð223ðððð

4ð 1 1 | DO WHILE (WORD ¬= ''); |ð224ðððð

| /\ Use LOOKUP_WORD to find its position in the table. \/|ð225ðððð

41 1 2 | WORD_INDEX = LOOKUP_WORD(WORD); |ð226ðððð

 | |ð227ðððð

 | /\---\/|ð228ðððð

| /\ If the word is in the list, count it. \/|ð229ðððð

 | /\---\/|ð23ððððð

42 1 2 | IF WORD_INDEX ¬= ð THEN |ð231ðððð

| WORD_COUNT(WORD_INDEX) = WORD_COUNT(WORD_INDEX) + 1; |ð232ðððð

43 1 2 | ELSE; |ð233ðððð

| /\ Get the next word from the record. \/|ð234ðððð

44 1 2 | WORD = NEXT_WORD(RECORD); |ð235ðððð

45 1 2 | END; |ð236ðððð

 | |ð237ðððð

 | /\---\/|ð238ðððð

| /\ Read the next record from the input data set. \/|ð239ðððð

 | /\---\/|ð24ððððð

46 1 1 | READ FILE(SOURCE) INTO (RECORD); |ð241ðððð

47 1 1 | END; |ð242ðððð

 | |ð243ðððð

 | /\---\/|ð244ðððð

| /\ Input from the data set is exhausted. CLOSE it. \/|ð245ðððð

 | /\---\/|ð246ðððð

48 1 ð | CLOSE FILE(SOURCE); |ð247ðððð

 Appendix. Sample Program IBMLSO1 461

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 23

STMT LEV NT R

 | /\===\/|ð249ðððð

| /\= The report that details and summarizes the use of word in the =\/|ð25ððððð

| /\= WORD_TABLE is prepared in this section. =\/|ð251ðððð

 | /\===\/|ð252ðððð

 | |ð253ðððð

49 1 ð | PUT SKIP LIST (' \\\\\\\\\\\\\\\\\\\\\\\ '); |ð254ðððð

5ð 1 ð | PUT SKIP LIST (' \\\ Word-use Report \\\ '); |ð255ðððð

51 1 ð | PUT SKIP LIST (' \\\\\\\\\\\\\\\\\\\\\\\ '); |ð256ðððð

52 1 ð | PUT SKIP LIST (' -count- --word-- '); |ð257ðððð

 | |ð258ðððð

 | /\---\/|ð259ðððð

| /\ Review the activity for each word in the list. \/|ð26ððððð

 | /\---\/|ð261ðððð

53 1 ð | DO WORD_INDEX = 1 TO 36; |ð262ðððð 1

 | |ð263ðððð

 | /\---\/|ð264ðððð

| /\ If the word was used then display the word and its use-count. \/|ð265ðððð

 | /\---\/|ð266ðððð

54 1 1 | IF WORD_COUNT(WORD_INDEX) > ð THEN |ð267ðððð

| PUT SKIP EDIT (WORD_COUNT(WORD_INDEX), |ð268ðððð

 | WORD_TABLE(WORD_INDEX)) |ð269ðððð

 | (F(6), X(6),A); |ð27ððððð

55 1 1 | ELSE; |ð271ðððð

 | |ð272ðððð

 | /\---\/|ð273ðððð

| /\ If there was a discrepancy between what was counted and what \/|ð274ðððð

| /\ was expected then display a warning message and remember that \/|ð275ðððð

| /\ it had occurred. \/|ð276ðððð

 | /\---\/|ð277ðððð

56 1 1 | IF WORD_COUNT(WORD_INDEX) ¬= CONTROLLED_SET(WORD_INDEX) THEN |ð278ðððð

 | DO; |ð279ðððð

57 1 2 | PUT SKIP EDIT ((12)'-', |ð28ððððð

| 'The previous value should have been', |ð281ðððð

 | CONTROLLED_SET(WORD_INDEX)) |ð282ðððð

| (A, A, F(6)); |ð283ðððð

58 1 2 | DISCREPANCY_OCCURRED = TRUE; |ð284ðððð

59 1 2 | END; |ð285ðððð

6ð 1 1 | ELSE; |ð286ðððð

61 1 1 | END; |ð287ðððð

 | |ð288ðððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 24

STMT LEV NT R

 | /\===\/|ð289ðððð

| /\ Summarize word activity on this input dataset. \/|ð29ððððð

 | /\===\/|ð291ðððð

 | |ð292ðððð

62 1 ð | PUT SKIP(2) LIST ('There were ' || SUM(WORD_COUNT) |ð293ðððð

 | || ' references to ' || 36 |ð294ðððð 1

 | || ' words.'); |ð295ðððð

 | |ð296ðððð

 | /\---\/|ð297ðððð

| /\ If a discrepency between one of the counts and the expected \/|ð298ðððð

| /\ counts occured then display a warning message. \/|ð299ðððð

 | /\---\/|ð3ðððððð

63 1 ð | IF DISCREPANCY_OCCURRED THEN |ð3ð1ðððð

| PUT SKIP(2) LIST ('There was a discrepancy in at least one of' |ð3ð2ðððð

 | || ' the word-counts.'); |ð3ð3ðððð

64 1 ð | ELSE; |ð3ð4ðððð

462 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 25

STMT LEV NT R

| /\=== NEXT_WORD ===\/|ð3ð5ðððð

 | /\===\/|ð3ð6ðððð

 | /\== ==\/|ð3ð7ðððð

| /\== Extract a word from the argument string that is passed. ==\/|ð3ð8ðððð

| /\== Return it as CHAR(31) VARYING. ==\/|ð3ð9ðððð

 | /\== ==\/|ð31ððððð

| /\== Ignore PL/I comments and constants (strings surrounded by ==\/|ð311ðððð

| /\== single quotes ('). Comments and constants can not be ==\/|ð312ðððð

| /\== continued but must be complete in the argument string. ==\/|ð313ðððð

 | /\== ==\/|ð314ðððð

| /\== If no more words exist then a null character string will ==\/|ð315ðððð

| /\== be returned. ==\/|ð316ðððð

 | /\== ==\/|ð317ðððð

 | /\===\/|ð318ðððð

 | /\===\/|ð319ðððð

 | |ð32ððððð

65 1 ð | NEXT_WORD: PROCEDURE(DATA_RECORD) RETURNS(CHAR(31) VARYING); |ð321ðððð

 | |ð322ðððð

66 2 ð | DECLARE DATA_RECORD CHAR(\) VARYING; |ð323ðððð

67 2 ð | DECLARE DATA_WORD CHAR(31) VARYING; |ð324ðððð

68 2 ð | DECLARE NEXT_CHARACTER CHAR(1); |ð325ðððð

69 2 ð | DECLARE LENGTH_OF_STRING FIXED BINARY(15); |ð326ðððð

 | |ð327ðððð

7ð 2 ð | DECLARE NEXT_CHAR_POSN FIXED BINARY(15); |ð328ðððð

 | |ð329ðððð

 | /\===\/|ð33ððððð

| /\= LAST_CHAR_POSN remembers, from call to call, the point where=\/|ð331ðððð

| /\= the search for additional words will start. Management of =\/|ð332ðððð

| /\= its value is a key concern to this function. =\/|ð333ðððð

 | /\= =\/|ð334ðððð

| /\= Comments and constants in the argument string will be =\/|ð335ðððð

| /\= ignored. If a character is found that is a legitimate PL/I =\/|ð336ðððð

| /\= “first-character” then a word is assumed to follow. It =\/|ð337ðððð

| /\= will be built by concatenating (suffixing) additional, =\/|ð338ðððð

| /\= legitimate “next-characters.” =\/|ð339ðððð

 | /\===\/|ð34ððððð

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 26

STMT LEV NT R

 | /\===\/|ð341ðððð

| /\= Scan each character in the record. Start at the position =\/|ð342ðððð

| /\= where scanning last terminated (LAST_CHAR_POSN) and =\/|ð343ðððð

| /\= continue until the end of a word or the end of the record =\/|ð344ðððð

| /\= is reached. =\/|ð345ðððð

 | /\===\/|ð346ðððð

 | |ð347ðððð

71 2 ð | DATA_WORD = ''; |ð348ðððð

72 2 ð | DO NEXT_CHAR_POSN = LAST_CHAR_POSN TO RIGHT_MARGIN |ð349ðððð

| WHILE (DATA_WORD = ''); |ð35ððððð

73 2 1 | NEXT_CHARACTER = SUBSTR(DATA_RECORD, NEXT_CHAR_POSN, 1); |ð351ðððð

74 2 1 | SELECT (NEXT_CHARACTER); |ð352ðððð

 | |ð353ðððð

75 2 2 | WHEN ('/') |ð354ðððð

 | |ð355ðððð

 | /\---\/|ð356ðððð

| /\ If this turns out to be a comment then skip over it. \/|ð357ðððð

 | /\---\/|ð358ðððð

 | DO; |ð359ðððð

76 2 3 | IF SUBSTR(DATA_RECORD, NEXT_CHAR_POSN, 2) = '/\' THEN |ð36ððððð

| NEXT_CHAR_POSN = NEXT_CHAR_POSN + 3 |ð361ðððð

| + INDEX(SUBSTR(DATA_RECORD,NEXT_CHAR_POSN+2),'\/'); |ð362ðððð

77 2 3 | ELSE; |ð363ðððð

78 2 3 | END; |ð364ðððð

 | |ð365ðððð

79 2 2 | WHEN ('''') |ð366ðððð

 | |ð367ðððð

 | /\---\/|ð368ðððð

| /\ Skip over the constant. \/|ð369ðððð

 | /\---\/|ð37ððððð

| NEXT_CHAR_POSN = NEXT_CHAR_POSN |ð371ðððð

 | + INDEX(SUBSTR(DATA_RECORD,NEXT_CHAR_POSN+1),'''');|ð372ðððð

 Appendix. Sample Program IBMLSO1 463

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 27

STMT LEV NT R

 | /\===\/|ð373ðððð

| /\= This may be the start of a word. Extract it if so. =\/|ð374ðððð

 | /\===\/|ð375ðððð

 | |ð376ðððð

8ð 2 2 | OTHERWISE |ð377ðððð

 | |ð378ðððð

 | /\---\/|ð379ðððð

| /\ This may be the start of a word. \/|ð38ððððð

 | /\---\/|ð381ðððð

 | DO; |ð382ðððð

 | |ð383ðððð

 | /\---\/|ð384ðððð

| /\ If the next character is not acceptable as the first \/|ð385ðððð

| /\ character of a word then do nothing further -- our \/|ð386ðððð

| /\ enclosing DO will step to the next character for \/|ð387ðððð

| /\ further checking. \/|ð388ðððð

 | /\---\/|ð389ðððð

81 2 3 | IF INDEX(WORD_FIRST_CHARACTERS, NEXT_CHARACTER) = ð THEN; |ð39ððððð

82 2 3 | ELSE |ð391ðððð

 | |ð392ðððð

 | /\---\/|ð393ðððð

| /\ This is the start of a word. Collect the rest of it\/|ð394ðððð

 | /\---\/|ð395ðððð

 | |ð396ðððð

 | DO; |ð397ðððð

83 2 4 | DATA_WORD = NEXT_CHARACTER; |ð398ðððð

 | |ð399ðððð

 | /\---\/|ð4ðððððð

| /\ Build up DATA_WORD by iteratively appending \/|ð4ð1ðððð

| /\ characters from the input argument string. Do it \/|ð4ð2ðððð

| /\ as long as the characters are acceptable PL/I \/|ð4ð3ðððð

 | /\ “next=characters.” \/|ð4ð4ðððð

 | /\---\/|ð4ð5ðððð

 | |ð4ð6ðððð

84 2 4 | DO NEXT_CHAR_POSN = NEXT_CHAR_POSN+1 TO RIGHT_MARGIN |ð4ð7ðððð

 | WHILE (INDEX(WORD_NEXT_CHARACTERS, |ð4ð8ðððð

| SUBSTR(DATA_RECORD, NEXT_CHAR_POSN,1)) ¬= ð); |ð4ð9ðððð

85 2 5 | DATA_WORD = DATA_WORD |ð41ððððð

| || SUBSTR(DATA_RECORD, NEXT_CHAR_POSN,1);|ð411ðððð

86 2 5 | END; |ð412ðððð

87 2 4 | LAST_CHAR_POSN = NEXT_CHAR_POSN + 1; |ð413ðððð

88 2 4 | END; |ð414ðððð

89 2 3 | END; |ð415ðððð

9ð 2 2 | END; /\ End of the SELECT (NEXT_CHARACTER) statement \/|ð416ðððð

91 2 1 | END; /\ End of the DO that tries to find a word \/|ð417ðððð

 | |ð418ðððð

92 2 ð | RETURN (DATA_WORD); |ð419ðððð

93 2 ð | END; |ð42ððððð

464 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 28

STMT LEV NT R

| /\=== LOOKUP_WORD ===\/|ð421ðððð

 | /\===\/|ð422ðððð

 | /\== ==\/|ð423ðððð

| /\== Find the word in the WORD_TABLE that matches the ==\/|ð424ðððð

| /\== argument string (CHAR(\) VARYING) and return the ==\/|ð425ðððð

| /\== position of that word (its subscript) to the ==\/|ð426ðððð

| /\== invoker (FIXED BINARY(15)). ==\/|ð427ðððð

 | /\== ==\/|ð428ðððð

| /\== If the word does not exist in the list a ð will be ==\/|ð429ðððð

| /\== returned. ==\/|ð43ððððð

 | /\== ==\/|ð431ðððð

 | /\===\/|ð432ðððð

 | /\===\/|ð433ðððð

 | |ð434ðððð

94 1 ð | LOOKUP_WORD: PROCEDURE(DATA_WORD) RETURNS(FIXED BINARY(15)); |ð435ðððð

 | |ð436ðððð

95 2 ð | DECLARE DATA_WORD CHAR(\) VARYING; |ð437ðððð

96 2 ð | DECLARE WORD_NUMBER FIXED BINARY(15); |ð438ðððð

 | |ð439ðððð

 | /\===\/|ð44ððððð

| /\= A sequential search is used to locate the required word. =\/|ð441ðððð

| /\= WORD_INDEX_TABLE is used to start the search at the first =\/|ð442ðððð

| /\= word in the list that has the same first character. =\/|ð443ðððð

 | /\===\/|ð444ðððð

97 2 ð | WORD_NUMBER = WORD_INDEX_TABLE /\ Subscript is on next line \/ |ð445ðððð

| (INDEX (WORD_FIRST_CHARACTERS, SUBSTR(DATA_WORD,1,1)));|ð446ðððð

 | |ð447ðððð

 | /\---\/|ð448ðððð

| /\ Search words in the WORD_TABLE until the word is found or is \/|ð449ðððð

| /\ determined to be not a part of the list -- its index number \/|ð45ððððð

| /\ (WORD_NUMBER) is zero. \/|ð451ðððð

 | /\---\/|ð452ðððð

98 2 ð | DO WORD_NUMBER = WORD_NUMBER BY 1 |ð453ðððð

| UNTIL (WORD_TABLE(WORD_NUMBER) = DATA_WORD |ð454ðððð

| | WORD_NUMBER = ð); |ð455ðððð

 | |ð456ðððð

 | /\---\/|ð457ðððð

| /\ If the word in the WORD_TABLE is alphabetically greater \/|ð458ðððð

| /\ than the argument word then a match cannot be found. Set \/|ð459ðððð

| /\ the WORD_NUMBER to ð to indicate a non=match situation. \/|ð46ððððð

 | /\---\/|ð461ðððð

99 2 1 | IF WORD_TABLE(WORD_NUMBER) > DATA_WORD THEN |ð462ðððð

| WORD_NUMBER = ð; |ð463ðððð

1ðð 2 1 | ELSE; |ð464ðððð

1ð1 2 1 | END; |ð465ðððð

 | |ð466ðððð

1ð2 2 ð | RETURN (WORD_NUMBER); |ð467ðððð

1ð3 2 ð | END; |ð468ðððð

1ð4 1 ð |END; |ð623ðððð

 Appendix. Sample Program IBMLSO1 465

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 29

 .1/ .3/ ATTRIBUTE AND CROSS-REFERENCE TABLE (SHORT)

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

21 CONTROLLED_SET .4/ (36) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 .5/ 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,338ðððð,34ððððð

66 DATA_RECORD /\ PARAMETER \/ UNALIGNED CHARACTER(\) VARYING

 411ðððð,42ððððð,42ððððð,426ðððð,467ðððð,47ððððð

95 DATA_WORD /\ PARAMETER \/ UNALIGNED CHARACTER(\) VARYING

 5ð5ðððð,513ðððð,522ðððð

67 DATA_WORD AUTOMATIC UNALIGNED CHARACTER (31) VARYING

 4ð8ðððð,4ð9ðððð,458ðððð,47ððððð,47ððððð,479ðððð

6 DISCREPANCY_OCCURRED AUTOMATIC UNALIGNED INITIAL BIT (1)

 32ðððð,344ðððð,361ðððð

1ð FALSE AUTOMATIC UNALIGNED INITIAL BIT (1)

 32ðððð,32ðððð,32ðððð,243ðððð

16 HIGH BUILTIN

 .2/ 1ð4ðððð

\\\\\\\\ INDEX BUILTIN

 42ððððð,426ðððð,45ððððð,467ðððð,5ð5ðððð

5 LAST_CHAR_POSN AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 277ðððð,4ð9ðððð,473ðððð

7 LEFT_MARGIN AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 32ðððð,277ðððð

94 LOOKUP_WORD ENTRY RETURNS(BINARY FIXED (15,ð))

 286ðððð

7ð NEXT_CHAR_POSN AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 4ð9ðððð,4ð9ðððð,411ðððð,42ððððð,42ððððð,42ððððð,42ððððð,426ðððð,426ðð ðð,

 426ðððð,467ðððð,467ðððð,467ðððð,467ðððð,47ððððð,473ðððð

68 NEXT_CHARACTER AUTOMATIC UNALIGNED CHARACTER (1)

 411ðððð,412ðððð,45ððððð,458ðððð

65 NEXT_WORD ENTRY RETURNS(CHARACTER (31) VARYING)

 279ðððð,295ðððð

 ┌──┐

│ Attribute and cross-reference table │

 │ │

│ .1/ Number of the statement in the │

│ source listing in which the identi- │

│ fier is explicitly declared. │

 │ │

│ .2/ Asterisks indicate an undeclared │

│ identifier: all of its attributes │

│ are implied or supplied by default. │

 │ │

│ .3/ All identifiers used in the program │

│ are listed in ascending order │

│ according to their binary value. │

 │ │

│ .4/ Declared and default attributes │

│ are listed. This list also includes │

 │ descriptive comments. │

 │ │

│ .5/ Cross references: these are the │

│ numbers of all other statements │

│ in which the identifier appears. │

 └──┘

466 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 3ð

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

17 ONCODE BUILTIN

 31

3 RECORD AUTOMATIC UNALIGNED CHARACTER (121) VARYING

 36,39,44,46

4 RECORD_READ AUTOMATIC UNALIGNED INITIAL BIT (1)

 1,35,37

 27

8 RIGHT_MARGIN AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,72,84

2 SOURCE EXTERNAL FILE RECORD

 22,26,34,36,46,48

16 SUBSTR BUILTIN

 73,76,76,79,84,85,97

16 SUM BUILTIN

 62

15 SYSPRINT EXTERNAL FILE STREAM

 49,5ð,51,52,54,57,62,63

9 TRUE AUTOMATIC UNALIGNED INITIAL BIT (1)

 1,35,58

13 WORD AUTOMATIC UNALIGNED CHARACTER (31) VARYING

 39,4ð,41,44

19 WORD_COUNT (36) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,42,42,54,54,56,62

11 WORD_FIRST_CHARACTERS STATIC UNALIGNED INITIAL CHARACTER (29)

 81,97

14 WORD_INDEX AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 41,42,42,42,53,53,54,54,54,56,56,57

2ð WORD_INDEX_TABLE (26) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,97

12 WORD_NEXT_CHARACTERS STATIC UNALIGNED INITIAL CHARACTER (3ð)

 84

96 WORD_NUMBER AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 97,98,98,98,98,98,99,99,1ð2

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 31

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

18 WORD_TABLE (37) AUTOMATIC UNALIGNED INITIAL CHARACTER (9)

 1,

 54,98,99

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 32

AGGREGATE LENGTH TABLE

.1/ .2/ .3/
DCL NO. IDENTIFIER LVL DIMS OFFSET ELEMENT TOTAL

 LENGTH LENGTH

21 CONTROLLED_SET 1 2 72

19 WORD_COUNT 1 2 72

2ð WORD_INDEX_TABLE 1 2 52

18 WORD_TABLE 1 9 333

.4/ SUM OF CONSTANT LENGTHS 529

 ┌──┐

│ Aggregate length table │

 │ │

│ .1/ Number of the statement in which the aggregate │

│ is declared, or, for a controlled aggregate, │

│ the number of the associated ALLOCATE statement. │

 │ │

│ .2/ The elements of the aggregate as declared. │

 │ │

│ .3/ Length of each element of the aggregate. │

 │ │

│ .4/ Sum of the lengths of aggregates whose lengths │

 │ are constant. │

 └──┘

 Appendix. Sample Program IBMLSO1 467

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 33

 STORAGE REQUIREMENTS

 .5/ .6/ .7/ .8/
BLOCK, SECTION OR STATEMENT TYPE LENGTH (HEX) DSA SIZE (HEX)

\SAMPLE1 PROGRAM CSECT 4444 115C

\SAMPLE2 STATIC CSECT 288ð B4ð

SAMPLE PROCEDURE BLOCK 2298 8FA 12ð8 4B8

BLOCK 2 STMT 22 ON UNIT 17ð AA 2ð8 Dð

BLOCK 3 STMT 26 ON UNIT 162 A2 216 D8

BLOCK 4 STMT 29 ON UNIT 3ð4 13ð 288 12ð

NEXT_WORD PROCEDURE BLOCK 1ð56 42ð 368 17ð

LOOKUP_WORD PROCEDURE BLOCK 448 1Cð 256 1ðð

 ┌──┐

│ Storage requirements. This table gives the main storage │

│ requirements for the program. These quantities do not │

│ include the main storage required by the library subroutines │

│ that will be included by the linkage editor or loaded │

│ dynamically during execution. │

 │ │

│ .5/ Name of the block, section, or number of the statement │

│ in the program. │

 │ │

│ .6/ Description of the block, section, or statement. │

 │ │

│ .7/ Length in bytes of the storage areas in both decimal │

│ and hexadecimal notation. │

 │ │

│ .8/ Length in bytes of the dynamic storage area (DSA) in │

│ both decimal and hexadecimal notation. │

 └──┘

468 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 34

EXTERNAL SYMBOL DICTIONARY

.1/ .2/ .3/ .4/ .5/
 SYMBOL TYPE ID ADDR LENGTH

CEESTART SD ððð1 ðððððð ðððð8ð ┌───┐

\SAMPLE1 SD ððð2 ðððððð ðð115C │External symbol dictionary │

\SAMPLE2 SD ððð3 ðððððð ðððB4ð │ │

CEEMAIN WX ððð4 ðððððð │ .1/ List of all the external symbols that make │

CEEMAIN SD ððð5 ðððððð ðððð1ð │ up the object module. │

 IBMRINP1 ER ððð6 ðððððð │ │

CEEFMAIN WX ððð7 ðððððð │ .2/ Type of external symbol, as follows: │

 CEEBETBL ER ððð8 ðððððð │ CM Common area │

 CEEROOTA ER ððð9 ðððððð │ ER External reference │

 CEEOPIPI ER ðððA ðððððð │ LD Label definition │

 CEESGð1ð ER ðððB ðððððð │ PR Pseudo-register │

 IBMSEATA ER ðððC ðððððð │ SD Section definition │

IELCGOG SD ðððD ðððððð ððððAE │ WX Weak external reference │

IELCGOH SD ðððE ðððððð ððððAð │ Full definitions of all these terms are │

IELCGOC SD ðððF ðððððð ðððð7C │ given in “External symbol dictionary” in │

IELCGMY SD ðð1ð ðððððð ððððA4 │ the main text. │

IELCGCY SD ðð11 ðððððð ðððð7E │ │

IBMSSIOA ER ðð12 ðððððð │ .3/ All entries, except LD type entries, are │

IBMSASCA ER ðð13 ðððððð │ identified by a hexadecimal number. │

 IBMSCEDB ER ðð14 ðððððð │ │

IBMSCHFD ER ðð15 ðððððð │ .4/ Address (in hexadecimal) of LD type entries.│
 IBMSCHXH WX ðð16 ðððððð │ │

IBMSCWDH ER ðð17 ðððððð │ .5/ Length in bytes (in hexadecimal) of SD, CM, │
IBMSEOCA ER ðð18 ðððððð │ and PR type entries. │

 IBMSJDSA ER ðð19 ðððððð └───┘

 IBMSOCLA ER ðð1A ðððððð

 IBMSOCLC WX ðð1B ðððððð

 IBMSRIOA ER ðð1C ðððððð

 IBMSSEOA ER ðð1D ðððððð

 IBMSSIOE WX ðð1E ðððððð

 IBMSSIOT WX ðð1F ðððððð

 IBMSSLOA ER ðð2ð ðððððð

 IBMSSPLA ER ðð21 ðððððð

 IBMSSXCA ER ðð22 ðððððð

 IBMSSXCB WX ðð23 ðððððð

 IBMSSIST WX ðð24 ðððððð

CEEUOPT SD ðð25 ðððððð ððð4Dð

PLIXOPT SD ðð26 ðððððð ðððð66

PLIXOPT\ SD ðð27 ðððððð ðððð2C

 PLIXOPT+ LD ððððð4

 PLIXOPT- LD ðððð2ð

 PLIXOPT- ER ðð28 ðððððð

 SAMPLE LD ððððð8

 SAMPLE ER ðð29 ðððððð

SAMPLE\ SD ðð2A ðððððð ðððð2ð

 SAMPLE+ LD ðððððð

 SOURCE SD ðð2B ðððððð ðððð1C

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 35

 SOURCE PR ðð2C ðððððð ððððð4

SOURCE\ SD ðð2D ðððððð ðððð2ð

 SOURCE+ LD ðððððð

SYSPINT SD ðð2E ðððððð ðððð2ð

SYSPINT\ SD ðð2F ðððððð ðððð2ð

 SYSPINT+ LD ðððððð

 Appendix. Sample Program IBMLSO1 469

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 36

 .1/ .2/ .3/
STATIC INTERNAL STORAGE MAP ððððC8 6ðððððð6 FED

 .1/ .2/ .3/ ððððCC 58ððððð9 FED

ðððððð EððððB38 PROGRAM ADCON ððððDð 58ðððððC FED

ððððð4 ððððððð8 PROGRAM ADCON ððððD4 58ðððð23 FED

ððððð8 ððððððFC PROGRAM ADCON ððððD8 28ðð DED..WORD

ðððððC ððððð34C PROGRAM ADCON ððððDA 24ð1 DED..FALSE

ðððð1ð ððððð8FC PROGRAM ADCON ððððDC ððð2 CONSTANT

ðððð14 ððððð96E PROGRAM ADCON ððððDE ðð48 CONSTANT

ðððð18 ððððð9A8 PROGRAM ADCON ððððEð ðððð CONSTANT

ðððð1C ðððððA1A PROGRAM ADCON ððððE2 ððð1 CONSTANT

ðððð2ð ðððððA24 PROGRAM ADCON ððððE4 ððð3 CONSTANT

ðððð24 ðððððA4C PROGRAM ADCON ððððE6 ððð5 CONSTANT

ðððð28 ðððððAD8 PROGRAM ADCON ððððE8 ðððA CONSTANT

ðððð2C ðððððB88 PROGRAM ADCON ððððEA ðððD CONSTANT

ðððð3ð ðððððC1A PROGRAM ADCON ððððEC ðððE CONSTANT

ðððð34 ðððððC4ð PROGRAM ADCON ððððEE ðð12 CONSTANT

ðððð38 ðððððFA8 PROGRAM ADCON ððððFð ðð13 CONSTANT

ðððð3C ðððð1ð32 PROGRAM ADCON ððððF2 ðð16 CONSTANT

ðððð4ð ðððð1ð3C PROGRAM ADCON ððððF4 ðð18 CONSTANT

ðððð44 ðððð1ð3C PROGRAM ADCON ððððF6 ðð1A CONSTANT

ðððð48 ðððð1ð3C PROGRAM ADCON ððððF8 ðð1E CONSTANT

ðððð4C ðððð1ð3C PROGRAM ADCON ððððFA ðð21 CONSTANT

ðððð5ð ðððð1ð3C PROGRAM ADCON ððððFC ðð22 CONSTANT

ðððð54 ðððð1ð3C PROGRAM ADCON ððððFE ðð17 CONSTANT

ðððð58 ðððð1ð3C PROGRAM ADCON ððð1ðð ððð7 CONSTANT

ðððð5C ðððððððð A..IELCGOG ððð1ð2 ððð4 CONSTANT

ðððð6ð ðððððððð A..IELCGOH ððð1ð4 ðð24 CONSTANT

ðððð64 ðððððððð A..IELCGOC ððð1ð6 ððð9 CONSTANT

ðððð68 ðððððððð A..IELCGMY ððð1ð8 4ð4ð4ð2ð2ð2ð2ð2ð CONSTANT

ðððð6C ðððððððð A..IELCGCY 2ð2ð2ð2ð212ð

ðððð7ð ðððððððð A..IBMSASCA ððð116 ðð1C CONSTANT

ðððð74 ðððððððð A..IBMSCEDB ððð118 ðð1D CONSTANT

ðððð78 ðððððððð A..IBMSCHFD ððð11A

ðððð7C ðððððððð A..IBMSCHXH ððð12ð ððððððððððððð1B4 LOCATOR..CONTROLLED_SET

ðððð8ð ðððððððð A..IBMSCWDH ððð128 ððððððððððððð1C4 LOCATOR..WORD_INDEX_TABLE

ðððð84 ðððððððð A..IBMSEOCA ððð13ð ððððððððððððð1D4 LOCATOR..WORD_TABLE

ðððð88 ðððððððð A..IBMSJDSA ððð138 ðððððððððð1F8ððð LOCATOR..WORD

ðððð8C ðððððððð A..IBMSOCLA ððð14ð ððððð535ðð1Eðððð LOCATOR..WORD_NEXT_CHARACTERS

ðððð9ð ðððððððð A..IBMSOCLC ððð148 ððððð518ðð1Dðððð LOCATOR..WORD_FIRST_CHARACTERS

ðððð94 ðððððððð A..IBMSRIOA ððð15ð ððððððððððð1ðððð LOCATOR..FALSE

ðððð98 ðððððððð A..IBMSSEOA ððð158 ðððððððððð798ððð LOCATOR..RECORD

ðððð9C ðððððððð A..IBMSSIOE ððð16ð ðððððððððððð8ððð LOCATOR..DATA_RECORD

ððððAð ðððððððð A..IBMSSIOT ððð168 ðð8ððððð911ð2ððð CONSTANT

ððððA4 ðððððððð A..IBMSSLOA ððð17ð ððððððððð2ðððð7B RECORD DESCRIPTOR

ððððA8 ðððððððð A..IBMSSPLA ððð178 ððððð3D8ðð19ðððð LOCATOR

ððððAC ðððððððð A..IBMSSXCA ððð18ð ððððð3F1ðð19ðððð LOCATOR

ððððBð ðððððððð A..IBMSSXCB ððð188 ððððð4ðAðð14ðððð LOCATOR

ððððB4 ðððððððð A..STATIC ððð19ð ðððððððððð34ðððð LOCATOR

ððððB8 B4ðððAðð DED..NEXT_WORD ððð198 ðððððððððð3Bðððð LOCATOR

ððððBC 2ððð DED ððð1Að ððððð4AEðð28ðððð LOCATOR

ððððBE ðððððF8ð DED..WORD_COUNT ððð1A8 ðððððððððð2Dðððð LOCATOR

ððððC2 5ðððððð6ðð8ð FED ððð1Bð 91Eð91Eð CONSTANT

 ┌──┐

│ Static internal storage map. │

│ This is a storage map of the static control │

│ section for the program. This control section │

│ is the third standard entry in the external │

│ symbol dictionary. │

 │ │

│ .1/ Six-digit offset (in hexadecimal) │

 │ │

│ .2/ Text (in hexadecimal) │

 │ │

│ .3/ Comment indicating type of item │

│ to which the text refers. A comment │

│ appears only against the first line of │

│ the text for an item. │

 │ │

 └──┘

470 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 37

ððð1B4 ððððððð2ððððððð2 DESCRIPTOR 4ð

 ðððððð24ððððððð1 ððð2A6 C3C1D3D34ð4ð4ð4ð CONSTANT

ððð1C4 ððððððð2ððððððð2 DESCRIPTOR 4ð

 ðððððð1Aððððððð1 ððð2AF C3D3D6E2C54ð4ð4ð CONSTANT

ððð1D4 ððððððð9ððððððð9 DESCRIPTOR 4ð

 ðððððð25ððððððð1 ððð2B8 C4C3D34ð4ð4ð4ð4ð CONSTANT

 ððð9ðððð 4ð

ððð1E8 ððððððð1 CONSTANT ððð2C1 C4C5C3D3C1D9C54ð CONSTANT

ððð1EC ðð1ððððððð6ð18ðð CONSTANT 4ð

 ðððððððð ððð2CA C4C5C6C1E4D3E34ð CONSTANT

ððð1F8 ððððððð2 CONSTANT 4ð

ððð1FC ððððððð3 CONSTANT ððð2D3 C4C9E2D7D3C1E84ð CONSTANT

ððð2ðð ðððððð1F CONSTANT 4ð

ððð2ð4 ðððððððð A..PLIXOPT ððð2DC C4D64ð4ð4ð4ð4ð4ð CONSTANT

ððð2ð8 ðððððððð A..DCLCB 4ð

ððð2ðC ðððððððð A..DCLCB ððð2E5 C5D3E2C54ð4ð4ð4ð CONSTANT

ððð21ð ððððð1E8 A..CONSTANT 4ð

ððð214 ðððððððð A..DCLCB ððð2EE C5D5C44ð4ð4ð4ð4ð CONSTANT

ððð218 ððððð1EC A..CONSTANT 4ð

ððð21C ðððððððð OMITTED ARGUMENT ððð2F7 C5D5E3D9E84ð4ð4ð CONSTANT

ððð22ð ðððððððð OMITTED ARGUMENT 4ð

ððð224 8ððððððð OMITTED ARGUMENT ððð3ðð C6D9C5C54ð4ð4ð4ð CONSTANT

ððð228 ðððððððð A..DCLCB 4ð

ððð22C ððððð168 A..CONSTANT ððð3ð9 C7C5D5C5D9C9C34ð CONSTANT

ððð23ð ðððððððð A..RD 4ð

ððð234 ðððððððð OMITTED ARGUMENT ððð312 C7C5E34ð4ð4ð4ð4ð CONSTANT

ððð238 ðððððððð OMITTED ARGUMENT 4ð

ððð23C 8ððððððð OMITTED ARGUMENT ððð31B C7D64ð4ð4ð4ð4ð4ð CONSTANT

ððð24ð ðððððððð A..LOCATOR 4ð

ððð244 8ððððððð A..TEMP ððð324 C7D6E3D64ð4ð4ð4ð CONSTANT

ððð248 ðððððððð A..LOCATOR 4ð

ððð24C 8ððððððð A..WORD_INDEX ððð32D C9C64ð4ð4ð4ð4ð4ð CONSTANT

ððð25ð ððððð1E8 A..CONSTANT 4ð

ððð254 ðððððððð A..DCLCB ððð336 D3C5C1E5C54ð4ð4ð CONSTANT

ððð258 8ððððððð OMITTED ARGUMENT 4ð

ððð25C ðððððððð A..DCLCB ððð33F D3C9E2E34ð4ð4ð4ð CONSTANT

ððð26ð ðððððððð A..TEMP 4ð

ððð264 8ðððð1E8 A..CONSTANT ððð348 D3D6C3C1E3C54ð4ð CONSTANT

ððð268 ðððððððð A..DCLCB 4ð

ððð26C ðððððððð A..TEMP ððð351 D6D54ð4ð4ð4ð4ð4ð CONSTANT

ððð27ð 8ðððð1F8 A..CONSTANT 4ð

ððð274 ðððððððð A..LOCATOR ððð35A D6D7C5D54ð4ð4ð4ð CONSTANT

ððð278 ððððððE2 A..CONSTANT 4ð

ððð27C ððððððBE A..DED..WORD_COUNT ððð363 D7D9D6C34ð4ð4ð4ð CONSTANT

ððð28ð ðððððððð A..TEMP 4ð

ððð284 8ðððððEð A..CONSTANT ððð36C D7D9D6C3C5C4E4D9 CONSTANT

ððð288 8ðððð1Að A..CONSTANT C5

ððð28C ðD8ððððð CONSTANT ððð375 D9C5C1C44ð4ð4ð4ð CONSTANT

ððð29ð 8ððððððð A..TEMP 4ð

ððð294 C1D3D3D6C3C1E3C5 CONSTANT ððð37E D9C5E3E4D9D54ð4ð CONSTANT

 4ð 4ð

ððð29D C2C5C7C9D54ð4ð4ð CONSTANT ððð387 D9C5E5C5D9E34ð4ð CONSTANT

 Appendix. Sample Program IBMLSO1 471

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 38

 4ð 96A34ð828585954ð

ððð39ð D9C5E6D9C9E3C54ð CONSTANT 848586899585844B

 4ð ððð4D6 4ð4ð2ð2ð2ð2ð2ð21 CONSTANT

ððð399 E2C5D3C5C3E34ð4ð CONSTANT 2ð

 4ð ððð4DF E495A29785838986 CONSTANT

ððð3A2 E2C9C7D5C1D34ð4ð CONSTANT 8985844ð85999996

 4ð 994ð968383A49999

ððð3AB E2E3D6D74ð4ð4ð4ð CONSTANT 85844B4ð4ðD6D5C3

 4ð D6C4C57E

ððð3B4 E3C8C5D54ð4ð4ð4ð CONSTANT ððð5ð3 615C CONSTANT

 4ð ððð5ð5 5C61 CONSTANT

ððð3BD E6C1C9E34ð4ð4ð4ð CONSTANT ððð5ð7 7D CONSTANT

 4ð ððð5ð8 ðC16ðððððððððA4C STATIC ONCB

ððð3C6 E6C8C5D54ð4ð4ð4ð CONSTANT ððð51ð ðC96ðððððððððððð STATIC ONCB

 4ð ððð518 C1C2C3C4C5C6C7C8 INITIAL VALUE..WORD_FIRST_CHAR

ððð3CF E6D9C9E3C54ð4ð4ð CONSTANT C9D1D2D3D4D5D6D7

 4ð D8D9E2E3E4E5E6E7

ððð3D8 4ð5C5C5C5C5C5C5C CONSTANT E8E97C7B5B

 5C5C5C5C5C5C5C5C ððð535 C1C2C3C4C5C6C7C8 INITIAL VALUE..WORD_NEXT_CHARA

 5C5C5C5C5C5C5C5C C9D1D2D3D4D5D6D7

 4ð D8D9E2E3E4E5E6E7

ððð3F1 4ð5C5C5C4ðE69699 CONSTANT E8E96D7C7B5B

846ðA4A2854ðD985 ððð558 ðððððððð SYMBOL TABLE ELEMENT

 979699A34ð5C5C5C ððð55C ðððððððð CONSTANT

4ð ððð56ð ðððððððð SYMBOL TABLE ELEMENT

ððð4ðA 4ð6ð8396A495A36ð CONSTANT ððð564 ððððð6ð4 SYMBOL TABLE ELEMENT

4ð4ð4ð6ð6ðA69699 ððð568 ððððð624 SYMBOL TABLE ELEMENT

846ð6ð4ð ððð56C ððððð648 SYMBOL TABLE ELEMENT

ððð41E 6ð6ð6ð6ð6ð6ð6ð6ð CONSTANT ððð57ð ððððð664 SYMBOL TABLE ELEMENT

6ð6ð6ð6ð ððð574 8ððððððð SYMBOL TABLE ELEMENT

ððð42A E388854ð979985A5 CONSTANT ððð578 ððððð68ð SYMBOL TABLE ELEMENT

8996A4A24ðA58193 ððð57C ððððð69C SYMBOL TABLE ELEMENT

A4854ðA28896A493 ððð58ð ððððð6B4 SYMBOL TABLE ELEMENT

844ð8881A5854ð82 ððð584 ððððð6DC SYMBOL TABLE ELEMENT

858595 ððð588 ððððð7ð4 SYMBOL TABLE ELEMENT

ððð44D E3888599854ðA685 CONSTANT ððð58C ððððð71C SYMBOL TABLE ELEMENT

99854ð ððð59ð ððððð734 SYMBOL TABLE ELEMENT

ððð458 4ð99858685998595 CONSTANT ððð594 ððððð754 SYMBOL TABLE ELEMENT

8385A24ðA3964ð ððð598 ððððð774 SYMBOL TABLE ELEMENT

ððð467 4ð4ð4ðF3F6 CONSTANT ððð59C ððððð79C SYMBOL TABLE ELEMENT

ððð46C 4ðA6969984A24B CONSTANT ððð5Að ððððð7BC SYMBOL TABLE ELEMENT

ððð473 E3888599854ðA681 CONSTANT ððð5A4 ððððð7DC SYMBOL TABLE ELEMENT

A24ð814ð8489A283 ððð5A8 ððððð8Dð SYMBOL TABLE ELEMENT

998597819583A84ð ððð5AC ððððð8EC SYMBOL TABLE ELEMENT

89954ð81A34ð9385 ððð5Bð ðððððððð SYMBOL TABLE ELEMENT

81A2A34ð9695854ð ððð5B4 ðððððððð SYMBOL TABLE ELEMENT

 96864ðA388854ðA6 ððð5B8 ðððððððð CONSTANT

9699846ð8396A495 ððð5BC ððððð558 SYMBOL TABLE ELEMENT

 A3A24B ððð5Cð ðððððððð CONSTANT

ððð4AE E388854ð899597A4 CONSTANT ððð5C4 ððððð564 SYMBOL TABLE ELEMENT

 A34ð8481A3814ðA2 ððð5C8 ðððððððð CONSTANT

85A34ð8881A24ð95 ððð5CC ððððð564 SYMBOL TABLE ELEMENT

472 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 39

ððð5Dð ðððððððð CONSTANT ððð4E3D9E4C5ðððð

ððð5D4 ððððð564 SYMBOL TABLE ELEMENT ððð734 85ððððð1ððððððBE SYMBOL TABLE..RIGHT_MARGIN

ððð5D8 ððððð7F4 SYMBOL TABLE ELEMENT ððððð11Aðððððððð

ððð5DC ððððð814 SYMBOL TABLE ELEMENT ðððCD9C9C7C8E36D

ððð5Eð ððððð838 SYMBOL TABLE ELEMENT D4C1D9C7C9D5ðððð

ððð5E4 ððððð858 SYMBOL TABLE ELEMENT ððð754 85ððððð1ððððððBE SYMBOL TABLE..LEFT_MARGIN

ððð5E8 ððððð874 SYMBOL TABLE ELEMENT ððððð11Cðððððððð

ððð5EC ðððððððð CONSTANT ðððBD3C5C6E36DD4

ððð5Fð ððððð564 SYMBOL TABLE ELEMENT C1D9C7C9D5ðððððð

ððð5F4 ððððð894 SYMBOL TABLE ELEMENT ððð774 81ððððð1ððððððDA SYMBOL TABLE..DISCREPANCY_OCCU

ððð5F8 ððððð8B4 SYMBOL TABLE ELEMENT ððððððF8ðððððððð

ððð5FC ðððððððð CONSTANT ðð14C4C9E2C3D9C5

ððð6ðð ððððð564 SYMBOL TABLE ELEMENT D7C1D5C3E86DD6C3

ððð6ð4 81ððð1ð1ððððððBE SYMBOL TABLE..CONTROLLED_SET C3E4D9D9C5C4ðððð

 ððððððCððððððððð ððð79C 85ððððð1ððððððBE SYMBOL TABLE..LAST_CHAR_POSN

 ðððEC3D6D5E3D9D6 ððððð11Eðððððððð

 D3D3C5C46DE2C5E3 ðððED3C1E2E36DC3

ððð624 81ððð1ð1ððððððBE SYMBOL TABLE..WORD_INDEX_TABLE C8C1D96DD7D6E2D5

 ððððððC8ðððððððð ððð7BC 81ððððð1ððððððDA SYMBOL TABLE..RECORD_READ

 ðð1ðE6D6D9C46DC9 ððððð1ðððððððððð

 D5C4C5E76DE3C1C2 ðððBD9C5C3D6D9C4

 D3C5ðððð 6DD9C5C1C4ðððððð

ððð648 81ððð1ð1ððððððBE SYMBOL TABLE..WORD_COUNT ððð7DC 81ððððð1ððððððD8 SYMBOL TABLE..RECORD

 ððððððDððððððððð ððððð1ð8ðððððððð

 ðððAE6D6D9C46DC3 ððð6D9C5C3D6D9C4

 D6E4D5E3 ððð7F4 85ððððð2ððððððBE SYMBOL TABLE..NEXT_CHAR_POSN

ððð664 81ððð1ð1ððððððBC SYMBOL TABLE..WORD_TABLE ððððððDððððððððð

 ððððððD8ðððððððð ðððED5C5E7E36DC3

 ðððAE6D6D9C46DE3 C8C1D96DD7D6E2D5

 C1C2D3C5 ððð814 85ððððð2ððððððBE SYMBOL TABLE..LENGTH_OF_STRING

ððð68ð 85ððððð1ððððððBE SYMBOL TABLE..WORD_INDEX ððððððD2ðððððððð

 ððððð118ðððððððð ðð1ðD3C5D5C7E3C8

 ðððAE6D6D9C46DC9 6DD6C66DE2E3D9C9

 D5C4C5E7 D5C7ðððð

ððð69C 81ððððð1ððððððD8 SYMBOL TABLE..WORD ððð838 81ððððð2ððððððBC SYMBOL TABLE..NEXT_CHARACTER

 ððððððEððððððððð ððððððB8ðððððððð

 ððð4E6D6D9C4ðððð ðððED5C5E7E36DC3

ððð6B4 ð1ððððððððððððBC SYMBOL TABLE..WORD_NEXT_CHARAC C8C1D9C1C3E3C5D9

 ððððð14ððððððððð ððð858 81ððððð2ððððððD8 SYMBOL TABLE..DATA_WORD

 ðð14E6D6D9C46DD5 ððððððCððððððððð

 C5E7E36DC3C8C1D9 ððð9C4C1E3C16DE6

 C1C3E3C5D9E2ðððð D6D9C4ðð

ððð6DC ð1ððððððððððððBC SYMBOL TABLE..WORD_FIRST_CHARAððð874 A1ððððð2ððððððD8 SYMBOL TABLE..DATA_RECORD

 ððððð148ðððððððð ððððð1ðððððððððð

 ðð15E6D6D9C46DC6 ðððBC4C1E3C16DD9

 C9D9E2E36DC3C8C1 C5C3D6D9C4ðððððð

 D9C1C3E3C5D9E2ðð ððð894 85ððððð2ððððððBE SYMBOL TABLE..WORD_NUMBER

ððð7ð4 81ððððð1ððððððDA SYMBOL TABLE..FALSE ððððððCððððððððð

 ððððððE8ðððððððð ðððBE6D6D9C46DD5

 ððð5C6C1D3E2C5ðð E4D4C2C5D9ðððððð

ððð71C 81ððððð1ððððððDA SYMBOL TABLE..TRUE ððð8B4 A1ððððð2ððððððD8 SYMBOL TABLE..DATA_WORD

 ððððððFððððððððð ððððððDððððððððð

 Appendix. Sample Program IBMLSO1 473

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 4ð

 ððð9C4C1E3C16DE6

 D6D9C4ðð ðððððð 1Dð2ðððððððððð18 SYMBOL TABLE..SAMPLE

ððð8Dð ðDð2ððð1ððððððB8 SYMBOL TABLE..NEXT_WORD ðððððððððððððððð

 ðððððB88ðððððððð ððð6E2C1D4D7D3C5

 ððð9D5C5E7E36DE6 ðððð18 B4ðððAðð SYMTAB DED..SAMPLE

 D6D9C4ðð

ððð8EC ðDð2ððð1ððððððB8 SYMBOL TABLE..LOOKUP_WORD ðððððð 1Dððððð1ðððððð18 SYMBOL TABLE..SOURCE

 ðððððFA8ðððððððð ðððððððððððððððð

 ðððBD3D6D6D2E4D7 ððð6E2D6E4D9C3C5

 6DE6D6D9C4ðððððð ðððð18 B8ðð SYMTAB DED..SOURCE

 ðððððð 1Dððððð1ðððððð1C SYMBOL TABLE..SYSPRINT

 ðððððððððððððððð

 ððð8E2E8E2D7D9C9

STATIC EXTERNAL CSECTS D5E3ðððð

 ðððð1C B8ðð SYMTAB DED..SYSPRINT

ðððððð FFFFFFFC41ðððððð DCLCB

 ð2C7ðFðððððððððð

 ðððððð14ððð8E2E8

 E2D7D9C9D5E3ðððð

ðððððð ððððððððð2ðððððð DCLCB

 ð1ðð1ððððððððððð

 ðððððð14ððð6E2D6

 E4D9C3C5

ðððððð ðð11D4E2C7C6C9D3 CSECT FOR EXTERNAL VARIABLE

 C54DE2E8E2D7D9C9

 D5E35Dðððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððð

ðððððð 28ðð SYMTAB DED..PLIXOPT

ððððð2 ðððð

ððððð4 19ðððððððððððððð SYMBOL TABLE..PLIXOPT

 ðððððð24ðððððððð

 ððð7D7D3C9E7D6D7

 E3ðððððð

ðððð2ð 8ðððððð4 SYMBOL TABLE ELEMENT

ðððð24 ðððððððððð648ððð LOCATOR..PLIXOPT

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 41

VARIABLE STORAGE MAP

IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

CONTROLLED_SET 1 296 128 AUTO SAMPLE

WORD_INDEX_TABLE 1 368 17ð AUTO SAMPLE

WORD_COUNT 1 42ð 1A4 AUTO SAMPLE

WORD_TABLE 1 65ð 28A AUTO SAMPLE

WORD_INDEX 1 28ð 118 AUTO SAMPLE

WORD 1 492 1EC AUTO SAMPLE

WORD_NEXT_CHARACTERS 1 1333 535 STATIC SAMPLE

WORD_FIRST_CHARACTERS 1 13ð4 518 STATIC SAMPLE

FALSE 1 288 12ð AUTO SAMPLE

TRUE 1 289 121 AUTO SAMPLE

RIGHT_MARGIN 1 282 11A AUTO SAMPLE

LEFT_MARGIN 1 284 11C AUTO SAMPLE

DISCREPANCY_OCCURRED 1 29ð 122 AUTO SAMPLE

LAST_CHAR_POSN 1 286 11E AUTO SAMPLE

RECORD_READ 1 291 123 AUTO SAMPLE

RECORD 1 526 2ðE AUTO SAMPLE

NEXT_CHAR_POSN 2 2ð8 Dð AUTO NEXT_WORD

LENGTH_OF_STRING 2 21ð D2 AUTO NEXT_WORD

NEXT_CHARACTER 2 212 D4 AUTO NEXT_WORD

DATA_WORD 2 216 D8 AUTO NEXT_WORD

WORD_NUMBER 2 192 Cð AUTO LOOKUP_WORD

474 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 42

TABLES OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE SAMPLE

OFFSET (HEX) ð 348 358 368 37ð 37E 388 39E 3AE 3BA 41ð 432 462 48A 492

STATEMENT NO. 1 22 26 29 34 35 36 37 38 39 4ð 41 42 43 44

OFFSET (HEX) 4E8 4Fð 5ð6 5ðE 51C 55C 59C 5DC 61C 62E 63A 642 6DA 6E2 6FA

STATEMENT NO. 45 46 47 48 49 5ð 51 52 53 54 53 54 55 56 57

OFFSET (HEX) 78A 794 79C 7A4 7A8 7B4 7CC 7CC 86E 8D2 8DA

STATEMENT NO. 58 59 6ð 61 54 61 53 62 63 64 1ð4

WITHIN ON UNIT BLOCK 2

OFFSET (HEX) ð 76 84 92

STATEMENT NO. 22 23 24 25

WITHIN ON UNIT BLOCK 3

OFFSET (HEX) ð 8ð 8A

STATEMENT NO. 26 27 28

WITHIN ON UNIT BLOCK 4

OFFSET (HEX) ð 9ð 98 1ðA 118

STATEMENT NO. 29 3ð 31 32 33

WITHIN PROCEDURE NEXT_WORD

OFFSET (HEX) ð BC C8 1ðð 11A 124 134 1Cð 1C8 1Dð 24C 254 292 29A 2AC

STATEMENT NO. 65 71 72 73 74 75 76 77 78 79 8ð 81 82 83 84

OFFSET (HEX) 328 386 38A 38E 3A4 3B8 3BC 3Cð 3Cð 3C4 3DC 414

STATEMENT NO. 85 86 84 86 87 88 89 9ð 9ð 91 92 93

WITHIN PROCEDURE LOOKUP_WORD

OFFSET (HEX) ð 98 DA E2 132 13A 13E 146 148 15E 176 182 184 18C 19ð

STATEMENT NO. 94 97 98 99 1ðð 1ð1 98 1ð1 98 1ð1 98 1ð1 98 1ð1 1ð2

OFFSET (HEX) 1B4

STATEMENT NO. 1ð3

 Appendix. Sample Program IBMLSO1 475

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 43

 OBJECT LISTING

\ STATEMENT NUMBER 44

.1/ ððð49A CL.17 EQU \

\ STATEMENT NUMBER 4ð .2/ ððð49A 44 ðð C 1AC EX ð,HOOK..STMT

ððð418 44 ðð C 1AC .3/ EX ð,HOOK..STMT ððð49E 41 7ð D 1ð8 LA 7,264(ð,13)

ððð41C CL.48 EQU \ ððð4A2 5ð 7ð 3 24ð ST 7,576(ð,3)

ððð41C 48 9ð 3 ðEð LH 9,224(ð,3) ððð4A6 D2 ð7 D 484 3 138 MVC 1156(8,13),312(3)

ððð42ð 48 7ð D 1EC LH 7,WORD ððð4AC 41 8ð D 462 LA 8,1122(ð,13)

ððð424 41 8ð 3 294 LA 8,66ð(ð,3) ððð4Bð 5ð 8ð D 484 ST 8,1156(ð,13)

ððð428 41 6ð D 1EE LA 6,WORD+2 ððð4B4 41 7ð D 484 LA 7,1156(ð,13)

ððð42C 58 Fð 3 ð6C L 15,A..IELCGCY ððð4B8 5ð 7ð 3 244 ST 7,58ð(ð,3)

ððð43ð ð5 EF BALR 14,15 ððð4BC 96 8ð 3 244 OI 58ð(3),X'8ð'

ððð432 47 8ð 2 1AC BE CL.15 ððð4Cð 18 5D LR 5,13

ððð436 44 ðð C 1C8 EX ð,HOOK..DO ððð4C2 41 1ð 3 24ð LA 1,576(ð,3)

ððð4C6 58 Fð 3 ð2C L 15,A..NEXT_WORD

ððð4CA 44 ðð C 1Cð EX ð,HOOK..PRE-CALL

\ STATEMENT NUMBER 41 ððð4CE 47 ð1 4 ððA NOP HOOK..INFO

ððð43A 44 ðð C 1AC EX ð,HOOK..STMT ððð4D2 ð5 EF BALR 14,15

ððð43E 41 7ð D ðEð LA 7,224(ð,13) ððð4D4 44 ðð C 1C4 EX ð,HOOK..POST-CALL

ððð442 5ð 7ð 3 248 ST 7,584(ð,3) ððð4D8 D2 ðð D 1EC D 462 MVC WORD(1),1122(13)

ððð446 41 7ð D 118 LA 7,WORD_INDEX ððð4DE 48 Fð D 462 LH 15,1122(ð,13)

ððð44A 5ð 7ð 3 24C ST 7,588(ð,3) ððð4E2 44 Fð 2 19E EX 15,CL.72

ððð44E 96 8ð 3 24C OI 588(3),X'8ð' ððð4E6 47 Fð 2 1A4 B CL.73

ððð452 18 5D LR 5,13 ððð4EA CL.72 EQU \

ððð454 41 1ð 3 248 LA 1,584(ð,3) ððð4EA D2 ðð D 1ED D 463 MVC WORD+1(1),1123(13)

ððð458 58 Fð 3 ð38 L 15,A..LOOKUP_WORD ððð4Fð CL.73 EQU \

ððð45C 44 ðð C 1Cð .3/ EX ð,HOOK..PRE-CALL

ððð46ð 47 ð1 4 ððA NOP HOOK..INFO

ððð464 ð5 EF BALR 14,15 \ STATEMENT NUMBER 45

ððð466 44 ðð C 1C4 .3/ EX ð,HOOK..POST-CALL ððð4Fð 44 ðð C 1AC EX ð,HOOK..STMT

ððð4F4 47 Fð 2 ðDð B CL.48

ððð4F8 CL.15 EQU \

\ STATEMENT NUMBER 42

ððð46A 44 ðð C 1AC EX ð,HOOK..STMT

ððð46E 48 9ð D 118 LH 9,WORD_INDEX ┌───┐

ððð472 49 9ð 3 ðEð CH 9,224(ð,3) │ Object listing. This is a partial listing of the │

ððð476 47 8ð 2 146 BE CL.16 │ machine instructions generated by the compiler │

ððð47A 44 ðð C 1CC EX ð,HOOK..IF-TRUE │ from the PL/I source program. │

ððð47E 89 9ð ð ðð1 SLL 9,1 │ │

ððð482 48 69 D 1A2 LH 6,VO..WORD_COUNT(9 │ .1/ Machine instructions (in hexadecimal) │

) │ │

ððð486 4A 6ð 3 ðE2 AH 6,226(ð,3) │ .2/ Assembler-language form of the machine instruction │

ððð48A 4ð 69 D 1A2 STH 6,VO..WORD_COUNT(9 │ │

) │ .3/ HOOK indicates a location where the debugging tool │

ððð48E 47 Fð 2 14E B CL.17 │ could get control. │

 └───┘

\ STATEMENT NUMBER 43

ððð492 CL.16 EQU \

ððð492 44 ðð C 1AC EX ð,HOOK..STMT

ððð496 44 ðð C 1Dð EX ð,HOOK..IF-FALSE

476 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 44

COMPILER DIAGNOSTIC MESSAGES

 .1/ .2/ .3/
ERROR ID L STMT MESSAGE DESCRIPTION

COMPILER INFORMATORY MESSAGES

IELð533I I NO 'DECLARE' STATEMENT(S) FOR 'INDEX'.

IELð871I I 62 RESULT OF BUILTIN FUNCTION 'SUM' WILL BE EVALUATED USING FIXED POINT ARITHMETIC OPERATIONS.

END OF COMPILER DIAGNOSTIC MESSAGES

 .4/ .5/
COMPILE TIME ð.ð1 MINS SPILL FILE: ð RECORDS, SIZE 4ð51

END OF COMPILATION OF SAMPLE

┌───┐

│ Diagnostic messages and an end-of-compile-step message generated │

│ by the compiler. All diagnostic messages generated by the compiler │

│ are documented in the publication PL/I MVS & VM Compile-Time │

│ Messages and Codes. │

│ │

│ .1/ ERROR ID identifies the message as originating from the PL/I │

│ compiler (IEL), and gives the message number. │

│ │

│ .2/ L indicates the severity level of the message. │

│ │

│ .3/ STMT gives the number of the statement in which the error │

│ occurred. │

│ │

│ .4/ Compile time in minutes. This time includes the preprocessor. │

│ │

│ .5/ Number of records “spilled” into auxiliary storage and the size │

│ in bytes of the spill file records. │

└───┘

 Appendix. Sample Program IBMLSO1 477

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 45

 MVS/DFP VERSION 3 RELEASE 3 LINKAGE EDITOR 1ð:ð3:27 FRI JAN 29, 1993

 JOB IEL11IVP STEP IVP PROCEDURE LKED

 INVOCATION PARAMETERS - XREF,LIST .1/
 ACTUAL SIZE=(31744ð,79872)

 OUTPUT DATA SET SYS93ð29.T1ðð323.RAððð.IEL11IVP.GOSET IS ON VOLUME PUBðð2

.2/ CROSS REFERENCE TABLE

 .3/
 CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

CEESTART ðð 8ð

 CEEMAIN 8ð 1ð

 SYSPINT 9ð 2ð

 SOURCE Bð 1C

 CEEUOPT Dð 4Dð

PLIXOPT 5Að 66

 PLIXOPT\ 6ð8 2C

 PLIXOPT+ 6ðC PLIXOPT- 628

SAMPLE\ 638 2ð

 SAMPLE+ 638

SOURCE\ 658 2ð

 SOURCE+ 658

 SYSPINT\ 678 2ð

 SYSPINT+ 678

┌───┐

│ Linkage editor listing. │

│ │

│ .1/ Statement identifying the version and level of the linkage editor │

│ and giving the options as specified in the PARM parameter of the │

│ EXEC statement that invokes the linkage editor │

│ │

│ .2/ Cross reference table, consisting of a module map and the cross │

│ reference table │

│ │

│ .3/ The module map shows each control section and its associated │

│ entry points, if any, listed across the page. An asterisk in │

│ column 9 after a name beginning with “IBM” indicates a library │

│ subroutine obtained by automatic library call. │

│ │

│ .4/ The cross reference table gives all the locations in a control │

│ section at which a symbol is reference. UNRESOLVED(W) identifies │

│ a weak external reference that has not been resolved. │

│ │

└───┘

\SAMPLE2 698 B4ð

 IELCGOG 11D8 AE

 IELCGOH 1288 Að

 IELCGOC 1328 7C

 IELCGMY 13A8 A4

 IELCGCY 145ð 7E

\SAMPLE1 14Dð 115C

 SAMPLE 14D8

 CEEBETBL\ 263ð 1C

 CEEOPIPI\ 265ð 2ð8

 CEEROOTA\ 2858 268

 CEESGð1ð\ 2ACð 64

 IBMRINP1\ 2B28 24

 IBMSASCA\ 2B5ð 14

 IBMBASCA 2B5ð

 IBMSCEDB\ 2B68 14

 IBMBCEDB 2B68

 IBMSCHFD\ 2B8ð 14

 IBMBCHFD 2B8ð

 IBMSEATA\ 2B98 14

478 PL/I for MVS & VM Programming Guide

 IBMBEATA 2B98

 IBMSSIOA\ 2BBð 14

 IBMBSIOA 2BBð

 IBMSCHXH\ 2BC8 14

 IBMBCHXH 2BC8

 IBMSCWDH\ 2BEð 14

 IBMBCWDH 2BEð

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

 IBMSEOCA\ 2BF8 14

 IBMBEOCA 2BF8

 IBMSJDSA\ 2C1ð 14

 IBMBJDSA 2C1ð

 IBMSOCLA\ 2C28 14

 IBMBOCLA 2C28

 IBMSRIOA\ 2C4ð 14

 IBMBRIOA 2C4ð

 IBMSSEOA\ 2C58 14

 IBMBSEOA 2C58

 IBMSSIOE\ 2C7ð 14

 IBMBSIOE 2C7ð

 IBMSSIOT\ 2C88 14

 IBMBSIOT 2C88

 IBMSSLOA\ 2CAð 14

 IBMBSLOA 2CAð

 CEEARLU \ 2CB8 14ð

 CEEBINT \ 2DF8 8

 CEEBLLST\ 2Eðð 5C

 CEELLIST 2E1ð

 CEEBTRM \ 2E6ð 18ð

 CEEP#CAL\ 2FEð 12ð

 CEEP#INT\ 31ðð 34ð

 CEEP#TRM\ 344ð 21ð

 IBMSOCLC\ 365ð 14

 IBMBOCLC 365ð

 IBMSSPLA\ 3668 14

 IBMBSPLA 3668

 IBMSSXCA\ 368ð 14

 IBMBSXCA 368ð

 CEEBPIRA\ 3698 2Eð

CEEINT 3698 CEEBPIRB 3698 CEEBPIRC 3698

 IBMSCEDF\ 3978 14

 IBMBCEDF 3978

 IBMSCEDX\ 399ð 14

 IBMBCEDX 399ð

 IBMSCEFX\ 39A8 14

 IBMBCEFX 39A8

 IBMSCEZB\ 39Cð 14

 IBMBCEZB 39Cð

 IBMSCEZF\ 39D8 14

 IBMBCEZF 39D8

 IBMSCEZX\ 39Fð 14

 IBMBCEZX 39Fð

 IBMSCHFE\ 3Að8 14

 IBMBCHFE 3Að8

 CEEPMATH\ 3A2ð 18

 IBMSMATH 3A2ð

 IBMSSXCB\ 3A38 14

 IBMBSXCB 3A38

 IBMSCHFH\ 3A5ð 14

 IBMBCHFH 3A5ð

 Appendix. Sample Program IBMLSO1 479

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

 IBMSCHFP\ 3A68 14

 IBMBCHFP 3A68

 IBMSCHFY\ 3A8ð 14

 IBMBCHFY 3A8ð

 IBMSCHXD\ 3A98 14

 IBMBCHXD 3A98

 IBMSCHXE\ 3ABð 14

 IBMBCHXE 3ABð

 IBMSCHXF\ 3AC8 14

 IBMBCHXF 3AC8

 IBMSCHXP\ 3AEð 14

 IBMBCHXP 3AEð

 IBMSCHXY\ 3AF8 14

 IBMBCHXY 3AF8

 IBMSSIOB\ 3B1ð 14

 IBMBSIOB 3B1ð

 IBMSSIOC\ 3B28 14

 IBMBSIOC 3B28

 IBMSCWZH\ 3B4ð 14

 IBMBCWZH 3B4ð

 IBMSJDSB\ 3B58 14

 IBMBJDSB 3B58

 IBMSOCLB\ 3B7ð 14

 IBMBOCLB 3B7ð

 IBMSOCLD\ 3B88 14

 IBMBOCLD 3B88

 IBMSRIOB\ 3BAð 14

 IBMBRIOB 3BAð

 IBMSRIOC\ 3BB8 14

 IBMBRIOC 3BB8

 IBMSRIOD\ 3BDð 14

 IBMBRIOD 3BDð

 IBMSSIOD\ 3BE8 14

 IBMBSIOD 3BE8

 IBMSSLOB\ 3Cðð 14

 IBMBSLOB 3Cðð

 IBMSSPLB\ 3C18 14

 IBMBSPLB 3C18

 IBMSSPLC\ 3C3ð 14

 IBMBSPLC 3C3ð

 IBMSSXCC\ 3C48 14

 IBMBSXCC 3C48

 IBMSSXCD\ 3C6ð 14

 IBMBSXCD 3C6ð

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

2C CEEMAIN CEEMAIN 68 CEEFMAIN .4/ $UNRESOLVED(W)

 74 CEEBETBL CEEBETBL 78 CEEROOTA CEEROOTA

 84 \SAMPLE1 \SAMPLE1 88 IBMRINP1 IBMRINP1

 62C PLIXOPT PLIXOPT 64ð SAMPLE \SAMPLE1

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

 66ð SOURCE SOURCE 68ð SYSPINT SYSPINT

 69C \SAMPLE1 \SAMPLE1 6Að \SAMPLE1 \SAMPLE1

 6A4 \SAMPLE1 \SAMPLE1 6A8 \SAMPLE1 \SAMPLE1

 6AC \SAMPLE1 \SAMPLE1 6Bð \SAMPLE1 \SAMPLE1

 6B4 \SAMPLE1 \SAMPLE1 6B8 \SAMPLE1 \SAMPLE1

 6BC \SAMPLE1 \SAMPLE1 6Cð \SAMPLE1 \SAMPLE1

 6C4 \SAMPLE1 \SAMPLE1 6C8 \SAMPLE1 \SAMPLE1

 6CC \SAMPLE1 \SAMPLE1 6Dð \SAMPLE1 \SAMPLE1

 6D4 \SAMPLE1 \SAMPLE1 6D8 \SAMPLE1 \SAMPLE1

 6DC \SAMPLE1 \SAMPLE1 6Eð \SAMPLE1 \SAMPLE1

 6E4 \SAMPLE1 \SAMPLE1 6E8 \SAMPLE1 \SAMPLE1

480 PL/I for MVS & VM Programming Guide

 6EC \SAMPLE1 \SAMPLE1 6Fð \SAMPLE1 \SAMPLE1

 6F4 IELCGOG IELCGOG 6F8 IELCGOH IELCGOH

 6FC IELCGOC IELCGOC 7ðð IELCGMY IELCGMY

 7ð4 IELCGCY IELCGCY 7ð8 IBMSASCA IBMSASCA

 7ðC IBMSCEDB IBMSCEDB 71ð IBMSCHFD IBMSCHFD

 714 IBMSCHXH IBMSCHXH 718 IBMSCWDH IBMSCWDH

 71C IBMSEOCA IBMSEOCA 72ð IBMSJDSA IBMSJDSA

 724 IBMSOCLA IBMSOCLA 728 IBMSOCLC IBMSOCLC

 72C IBMSRIOA IBMSRIOA 73ð IBMSSEOA IBMSSEOA

 734 IBMSSIOE IBMSSIOE 738 IBMSSIOT IBMSSIOT

 73C IBMSSLOA IBMSSLOA 74ð IBMSSPLA IBMSSPLA

 744 IBMSSXCA IBMSSXCA 748 IBMSSXCB IBMSSXCB

 89C PLIXOPT PLIXOPT 8Að SYSPINT SYSPINT

 8A4 SOURCE SOURCE 8AC SOURCE SOURCE

 8Cð SOURCE SOURCE 8EC SOURCE SOURCE

 8F4 SYSPINT SYSPINT 9ðð SYSPINT SYSPINT

 BA4 \SAMPLE1 \SAMPLE1 BFð SAMPLE\ SAMPLE\

 CðC PLIXOPT- PLIXOPT\ C48 SOURCE\ SOURCE\

 C4C SYSPINT\ SYSPINT\ F7ð \SAMPLE1 \SAMPLE1

 F8C \SAMPLE1 \SAMPLE1 FA8 \SAMPLE1 \SAMPLE1

 1ð6C \SAMPLE1 \SAMPLE1 1ð8C \SAMPLE1 \SAMPLE1

 1ðA8 \SAMPLE1 \SAMPLE1 1ðCC \SAMPLE1 \SAMPLE1

 1164 \SAMPLE1 \SAMPLE1 11D4 CEESTART CEESTART

 132ð IBMSSIST $UNRESOLVED(W) 1324 IBMSSEOA IBMSSEOA

 139C IBMSSXCB IBMSSXCB 13Að IBMSSIST $UNRESOLVED(W)

 14Eð \SAMPLE2 \SAMPLE2 14E8 \SAMPLE2 \SAMPLE2

 14EC \SAMPLE2 \SAMPLE2 151ð \SAMPLE2 \SAMPLE2

 1DD4 \SAMPLE2 \SAMPLE2 1DDC \SAMPLE2 \SAMPLE2

 1DEð \SAMPLE2 \SAMPLE2 1E8ð \SAMPLE2 \SAMPLE2

 1E88 \SAMPLE2 \SAMPLE2 1E8C \SAMPLE2 \SAMPLE2

 1F24 \SAMPLE2 \SAMPLE2 1F2C \SAMPLE2 \SAMPLE2

 1F3ð \SAMPLE2 \SAMPLE2 2ð6ð \SAMPLE2 \SAMPLE2

 2ð68 \SAMPLE2 \SAMPLE2 2ð6C \SAMPLE2 \SAMPLE2

 248ð \SAMPLE2 \SAMPLE2 2488 \SAMPLE2 \SAMPLE2

 248C \SAMPLE2 \SAMPLE2 264ð CEEUOPT CEEUOPT

 2634 CEEBXITA $UNRESOLVED(W) 2638 CEEBINT CEEBINT

 263C CEEBLLST CEEBLLST 2644 CEEBTRM CEEBTRM

 26F4 CEEP#INT CEEP#INT 275C CEEP#INT CEEP#INT

 2798 CEEP#INT CEEP#INT 274ð CEEP#CAL CEEP#CAL

 276C CEEP#CAL CEEP#CAL 277C CEEP#TRM CEEP#TRM

 27F4 CEEP#TRM CEEP#TRM 29F8 CEEARLU CEEARLU

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

 2Að4 CEEINT CEEBPIRA 29E8 CEEFMAIN $UNRESOLVED(W)

 29EC CEEMAIN CEEMAIN 29Fð PLIMAIN $UNRESOLVED(W)

 29F4 IBMSEMNA $UNRESOLVED(W) 29FC CEESGð1ð CEESGð1ð

 2Aðð CEEOPIPI CEEOPIPI 2Að8 CEEROOTB $UNRESOLVED(W)

 2B1C CEEBETBL CEEBETBL 2B2ð IBMSMATH CEEPMATH

 2AD4 CEEMAIN CEEMAIN 2B1ð CEEFMAIN $UNRESOLVED(W)

 2BðC PLISTART $UNRESOLVED(W) 2AF4 PLIXOPT PLIXOPT

 2AF8 IBMBPOPT $UNRESOLVED(W) 2AD8 SYSPINT SYSPINT

 2AEð PLITABS $UNRESOLVED(W) 2Bðð IBMBEATA IBMSEATA

 2ADð PLIMAIN $UNRESOLVED(W) 2B38 CEESTART CEESTART

 2B3C CEEBETBL CEEBETBL 2B28 CEEMAIN CEEMAIN

 2B34 CEEMAIN CEEMAIN 2E1ð CEESGððð $UNRESOLVED(W)

 2E14 CEESGðð1 $UNRESOLVED(W) 2E18 CEESGðð2 $UNRESOLVED(W)

 2E1C CEESGðð3 $UNRESOLVED(W) 2E2ð CEESGðð4 $UNRESOLVED(W)

 2E24 CEESGðð5 $UNRESOLVED(W) 2E28 CEESGðð6 $UNRESOLVED(W)

 2E2C CEESGðð7 $UNRESOLVED(W) 2E3ð CEESGðð8 $UNRESOLVED(W)

 2E34 CEESGðð9 $UNRESOLVED(W) 2E38 CEESGð1ð CEESGð1ð

 2E3C CEESGð11 $UNRESOLVED(W) 2E4ð CEESGð12 $UNRESOLVED(W)

 2E44 CEESGð13 $UNRESOLVED(W) 2E48 CEESGð14 $UNRESOLVED(W)

 2E4C CEESGð15 $UNRESOLVED(W) 2E5ð CEESGð16 $UNRESOLVED(W)

 Appendix. Sample Program IBMLSO1 481

LOCATION 3C REQUESTS CUMULATIVE PSEUDO REGISTER LENGTH

 PSEUDO REGISTERS

 NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME ORIGIN LENGTH

 SOURCE ðð 4

 TOTAL LENGTH OF PSEUDO REGISTERS 4

 ENTRY ADDRESS ðð

 TOTAL LENGTH 3C78

 \\ GO DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE 31

 \\ LOAD MODULE HAS RMODE ANY

 \\ AUTHORIZATION CODE IS ð.

 \\\\\\\\\\\\\\\\\\\\\\\

 \\\ Word-use Report \\\ .1/
 \\\\\\\\\\\\\\\\\\\\\\\

 -count- --word--

 3 BEGIN ┌───────────────────────────────────────┐

1 CLOSE │ Sample program output. │

 13 DCL │ │

24 DECLARE │ .1/ Program output header │

 2 DISPLAY │ │

14 DO │ .2/ The apparent error is intentional │
 13 ELSE └───────────────────────────────────────┘

 23 END

 1 GO

 13 IF

------------The previous value should have been 14 .2/
 7 LIST

 4 ON

 1 OPEN

 2 PROC

 3 PROCEDURE

 2 READ

 4 RETURN

 1 SELECT

 2 STOP

 13 THEN

 2 WHEN

There were 148 references to 36 words.

There was a discrepancy in at least one of the word-counts. .2/

482 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 29

 .1/ .3/ ATTRIBUTE AND CROSS-REFERENCE TABLE (SHORT)

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

21 CONTROLLED_SET .4/ (36) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 .5/ 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,

 32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,32ðððð,338ðððð,34ððððð

66 DATA_RECORD /\ PARAMETER \/ UNALIGNED CHARACTER(\) VARYING

 411ðððð,42ððððð,42ððððð,426ðððð,467ðððð,47ððððð

95 DATA_WORD /\ PARAMETER \/ UNALIGNED CHARACTER(\) VARYING

 5ð5ðððð,513ðððð,522ðððð

67 DATA_WORD AUTOMATIC UNALIGNED CHARACTER (31) VARYING

 4ð8ðððð,4ð9ðððð,458ðððð,47ððððð,47ððððð,479ðððð

6 DISCREPANCY_OCCURRED AUTOMATIC UNALIGNED INITIAL BIT (1)

 32ðððð,344ðððð,361ðððð

1ð FALSE AUTOMATIC UNALIGNED INITIAL BIT (1)

 32ðððð,32ðððð,32ðððð,243ðððð

16 HIGH BUILTIN

 .2/ 1ð4ðððð

\\\\\\\\ INDEX BUILTIN

 42ððððð,426ðððð,45ððððð,467ðððð,5ð5ðððð

5 LAST_CHAR_POSN AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 277ðððð,4ð9ðððð,473ðððð

7 LEFT_MARGIN AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 32ðððð,277ðððð

94 LOOKUP_WORD ENTRY RETURNS(BINARY FIXED (15,ð))

 286ðððð

7ð NEXT_CHAR_POSN AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 4ð9ðððð,4ð9ðððð,411ðððð,42ððððð,42ððððð,42ððððð,42ððððð,426ðððð,426ðð ðð,

 426ðððð,467ðððð,467ðððð,467ðððð,467ðððð,47ððððð,473ðððð

68 NEXT_CHARACTER AUTOMATIC UNALIGNED CHARACTER (1)

 411ðððð,412ðððð,45ððððð,458ðððð

65 NEXT_WORD ENTRY RETURNS(CHARACTER (31) VARYING)

 279ðððð,295ðððð

 ┌──┐

│ Attribute and cross-reference table │

 │ │

│ .1/ Number of the statement in the │

│ source listing in which the identi- │

│ fier is explicitly declared. │

 │ │

│ .2/ Asterisks indicate an undeclared │

│ identifier: all of its attributes │

│ are implied or supplied by default. │

 │ │

│ .3/ All identifiers used in the program │

│ are listed in ascending order │

│ according to their binary value. │

 │ │

│ .4/ Declared and default attributes │

│ are listed. This list also includes │

 │ descriptive comments. │

 │ │

│ .5/ Cross references: these are the │

│ numbers of all other statements │

│ in which the identifier appears. │

 └──┘

 Appendix. Sample Program IBMLSO1 483

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 3ð

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

17 ONCODE BUILTIN

 31

3 RECORD AUTOMATIC UNALIGNED CHARACTER (121) VARYING

 36,39,44,46

4 RECORD_READ AUTOMATIC UNALIGNED INITIAL BIT (1)

 1,35,37

 27

8 RIGHT_MARGIN AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,72,84

2 SOURCE EXTERNAL FILE RECORD

 22,26,34,36,46,48

16 SUBSTR BUILTIN

 73,76,76,79,84,85,97

16 SUM BUILTIN

 62

15 SYSPRINT EXTERNAL FILE STREAM

 49,5ð,51,52,54,57,62,63

9 TRUE AUTOMATIC UNALIGNED INITIAL BIT (1)

 1,35,58

13 WORD AUTOMATIC UNALIGNED CHARACTER (31) VARYING

 39,4ð,41,44

19 WORD_COUNT (36) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,42,42,54,54,56,62

11 WORD_FIRST_CHARACTERS STATIC UNALIGNED INITIAL CHARACTER (29)

 81,97

14 WORD_INDEX AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 41,42,42,42,53,53,54,54,54,56,56,57

2ð WORD_INDEX_TABLE (26) AUTOMATIC ALIGNED INITIAL BINARY FIXED (15,ð)

 1,97

12 WORD_NEXT_CHARACTERS STATIC UNALIGNED INITIAL CHARACTER (3ð)

 84

96 WORD_NUMBER AUTOMATIC ALIGNED BINARY FIXED (15,ð)

 97,98,98,98,98,98,99,99,1ð2

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 31

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

18 WORD_TABLE (37) AUTOMATIC UNALIGNED INITIAL CHARACTER (9)

 1,

 54,98,99

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 32

AGGREGATE LENGTH TABLE

.1/ .2/ .3/
DCL NO. IDENTIFIER LVL DIMS OFFSET ELEMENT TOTAL

 LENGTH LENGTH

21 CONTROLLED_SET 1 2 72

19 WORD_COUNT 1 2 72

2ð WORD_INDEX_TABLE 1 2 52

18 WORD_TABLE 1 9 333

.4/ SUM OF CONSTANT LENGTHS 529

 ┌──┐

│ Aggregate length table │

 │ │

│ .1/ Number of the statement in which the aggregate │

│ is declared, or, for a controlled aggregate, │

│ the number of the associated ALLOCATE statement. │

 │ │

│ .2/ The elements of the aggregate as declared. │

 │ │

│ .3/ Length of each element of the aggregate. │

 │ │

│ .4/ Sum of the lengths of aggregates whose lengths │

 │ are constant. │

 └──┘

484 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 33

 STORAGE REQUIREMENTS

 .5/ .6/ .7/ .8/
BLOCK, SECTION OR STATEMENT TYPE LENGTH (HEX) DSA SIZE (HEX)

\SAMPLE1 PROGRAM CSECT 4444 115C

\SAMPLE2 STATIC CSECT 288ð B4ð

SAMPLE PROCEDURE BLOCK 2298 8FA 12ð8 4B8

BLOCK 2 STMT 22 ON UNIT 17ð AA 2ð8 Dð

BLOCK 3 STMT 26 ON UNIT 162 A2 216 D8

BLOCK 4 STMT 29 ON UNIT 3ð4 13ð 288 12ð

NEXT_WORD PROCEDURE BLOCK 1ð56 42ð 368 17ð

LOOKUP_WORD PROCEDURE BLOCK 448 1Cð 256 1ðð

 ┌──┐

│ Storage requirements. This table gives the main storage │

│ requirements for the program. These quantities do not │

│ include the main storage required by the library subroutines │

│ that will be included by the linkage editor or loaded │

│ dynamically during execution. │

 │ │

│ .5/ Name of the block, section, or number of the statement │

│ in the program. │

 │ │

│ .6/ Description of the block, section, or statement. │

 │ │

│ .7/ Length in bytes of the storage areas in both decimal │

│ and hexadecimal notation. │

 │ │

│ .8/ Length in bytes of the dynamic storage area (DSA) in │

│ both decimal and hexadecimal notation. │

 └──┘

 Appendix. Sample Program IBMLSO1 485

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 34

EXTERNAL SYMBOL DICTIONARY

.1/ .2/ .3/ .4/ .5/
 SYMBOL TYPE ID ADDR LENGTH

CEESTART SD ððð1 ðððððð ðððð8ð ┌───┐

\SAMPLE1 SD ððð2 ðððððð ðð115C │External symbol dictionary │

\SAMPLE2 SD ððð3 ðððððð ðððB4ð │ │

CEEMAIN WX ððð4 ðððððð │ .1/ List of all the external symbols that make │

CEEMAIN SD ððð5 ðððððð ðððð1ð │ up the object module. │

 IBMRINP1 ER ððð6 ðððððð │ │

CEEFMAIN WX ððð7 ðððððð │ .2/ Type of external symbol, as follows: │

 CEEBETBL ER ððð8 ðððððð │ CM Common area │

 CEEROOTA ER ððð9 ðððððð │ ER External reference │

 CEEOPIPI ER ðððA ðððððð │ LD Label definition │

 CEESGð1ð ER ðððB ðððððð │ PR Pseudo-register │

 IBMSEATA ER ðððC ðððððð │ SD Section definition │

IELCGOG SD ðððD ðððððð ððððAE │ WX Weak external reference │

IELCGOH SD ðððE ðððððð ððððAð │ Full definitions of all these terms are │

IELCGOC SD ðððF ðððððð ðððð7C │ given in “External symbol dictionary” in │

IELCGMY SD ðð1ð ðððððð ððððA4 │ the main text. │

IELCGCY SD ðð11 ðððððð ðððð7E │ │

IBMSSIOA ER ðð12 ðððððð │ .3/ All entries, except LD type entries, are │

IBMSASCA ER ðð13 ðððððð │ identified by a hexadecimal number. │

 IBMSCEDB ER ðð14 ðððððð │ │

IBMSCHFD ER ðð15 ðððððð │ .4/ Address (in hexadecimal) of LD type entries.│
 IBMSCHXH WX ðð16 ðððððð │ │

IBMSCWDH ER ðð17 ðððððð │ .5/ Length in bytes (in hexadecimal) of SD, CM, │
IBMSEOCA ER ðð18 ðððððð │ and PR type entries. │

 IBMSJDSA ER ðð19 ðððððð └───┘

 IBMSOCLA ER ðð1A ðððððð

 IBMSOCLC WX ðð1B ðððððð

 IBMSRIOA ER ðð1C ðððððð

 IBMSSEOA ER ðð1D ðððððð

 IBMSSIOE WX ðð1E ðððððð

 IBMSSIOT WX ðð1F ðððððð

 IBMSSLOA ER ðð2ð ðððððð

 IBMSSPLA ER ðð21 ðððððð

 IBMSSXCA ER ðð22 ðððððð

 IBMSSXCB WX ðð23 ðððððð

 IBMSSIST WX ðð24 ðððððð

CEEUOPT SD ðð25 ðððððð ððð4Dð

PLIXOPT SD ðð26 ðððððð ðððð66

PLIXOPT\ SD ðð27 ðððððð ðððð2C

 PLIXOPT+ LD ððððð4

 PLIXOPT- LD ðððð2ð

 PLIXOPT- ER ðð28 ðððððð

 SAMPLE LD ððððð8

 SAMPLE ER ðð29 ðððððð

SAMPLE\ SD ðð2A ðððððð ðððð2ð

 SAMPLE+ LD ðððððð

 SOURCE SD ðð2B ðððððð ðððð1C

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 35

 SOURCE PR ðð2C ðððððð ððððð4

SOURCE\ SD ðð2D ðððððð ðððð2ð

 SOURCE+ LD ðððððð

SYSPINT SD ðð2E ðððððð ðððð2ð

SYSPINT\ SD ðð2F ðððððð ðððð2ð

 SYSPINT+ LD ðððððð

486 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 36

 .1/ .2/ .3/
STATIC INTERNAL STORAGE MAP ððððC8 6ðððððð6 FED

 .1/ .2/ .3/ ððððCC 58ððððð9 FED

ðððððð EððððB38 PROGRAM ADCON ððððDð 58ðððððC FED

ððððð4 ððððððð8 PROGRAM ADCON ððððD4 58ðððð23 FED

ððððð8 ððððððFC PROGRAM ADCON ððððD8 28ðð DED..WORD

ðððððC ððððð34C PROGRAM ADCON ððððDA 24ð1 DED..FALSE

ðððð1ð ððððð8FC PROGRAM ADCON ððððDC ððð2 CONSTANT

ðððð14 ððððð96E PROGRAM ADCON ððððDE ðð48 CONSTANT

ðððð18 ððððð9A8 PROGRAM ADCON ððððEð ðððð CONSTANT

ðððð1C ðððððA1A PROGRAM ADCON ððððE2 ððð1 CONSTANT

ðððð2ð ðððððA24 PROGRAM ADCON ððððE4 ððð3 CONSTANT

ðððð24 ðððððA4C PROGRAM ADCON ððððE6 ððð5 CONSTANT

ðððð28 ðððððAD8 PROGRAM ADCON ððððE8 ðððA CONSTANT

ðððð2C ðððððB88 PROGRAM ADCON ððððEA ðððD CONSTANT

ðððð3ð ðððððC1A PROGRAM ADCON ððððEC ðððE CONSTANT

ðððð34 ðððððC4ð PROGRAM ADCON ððððEE ðð12 CONSTANT

ðððð38 ðððððFA8 PROGRAM ADCON ððððFð ðð13 CONSTANT

ðððð3C ðððð1ð32 PROGRAM ADCON ððððF2 ðð16 CONSTANT

ðððð4ð ðððð1ð3C PROGRAM ADCON ððððF4 ðð18 CONSTANT

ðððð44 ðððð1ð3C PROGRAM ADCON ððððF6 ðð1A CONSTANT

ðððð48 ðððð1ð3C PROGRAM ADCON ððððF8 ðð1E CONSTANT

ðððð4C ðððð1ð3C PROGRAM ADCON ððððFA ðð21 CONSTANT

ðððð5ð ðððð1ð3C PROGRAM ADCON ððððFC ðð22 CONSTANT

ðððð54 ðððð1ð3C PROGRAM ADCON ððððFE ðð17 CONSTANT

ðððð58 ðððð1ð3C PROGRAM ADCON ððð1ðð ððð7 CONSTANT

ðððð5C ðððððððð A..IELCGOG ððð1ð2 ððð4 CONSTANT

ðððð6ð ðððððððð A..IELCGOH ððð1ð4 ðð24 CONSTANT

ðððð64 ðððððððð A..IELCGOC ððð1ð6 ððð9 CONSTANT

ðððð68 ðððððððð A..IELCGMY ððð1ð8 4ð4ð4ð2ð2ð2ð2ð2ð CONSTANT

ðððð6C ðððððððð A..IELCGCY 2ð2ð2ð2ð212ð

ðððð7ð ðððððððð A..IBMSASCA ððð116 ðð1C CONSTANT

ðððð74 ðððððððð A..IBMSCEDB ððð118 ðð1D CONSTANT

ðððð78 ðððððððð A..IBMSCHFD ððð11A

ðððð7C ðððððððð A..IBMSCHXH ððð12ð ððððððððððððð1B4 LOCATOR..CONTROLLED_SET

ðððð8ð ðððððððð A..IBMSCWDH ððð128 ððððððððððððð1C4 LOCATOR..WORD_INDEX_TABLE

ðððð84 ðððððððð A..IBMSEOCA ððð13ð ððððððððððððð1D4 LOCATOR..WORD_TABLE

ðððð88 ðððððððð A..IBMSJDSA ððð138 ðððððððððð1F8ððð LOCATOR..WORD

ðððð8C ðððððððð A..IBMSOCLA ððð14ð ððððð535ðð1Eðððð LOCATOR..WORD_NEXT_CHARACTERS

ðððð9ð ðððððððð A..IBMSOCLC ððð148 ððððð518ðð1Dðððð LOCATOR..WORD_FIRST_CHARACTERS

ðððð94 ðððððððð A..IBMSRIOA ððð15ð ððððððððððð1ðððð LOCATOR..FALSE

ðððð98 ðððððððð A..IBMSSEOA ððð158 ðððððððððð798ððð LOCATOR..RECORD

ðððð9C ðððððððð A..IBMSSIOE ððð16ð ðððððððððððð8ððð LOCATOR..DATA_RECORD

ððððAð ðððððððð A..IBMSSIOT ððð168 ðð8ððððð911ð2ððð CONSTANT

ððððA4 ðððððððð A..IBMSSLOA ððð17ð ððððððððð2ðððð7B RECORD DESCRIPTOR

ððððA8 ðððððððð A..IBMSSPLA ððð178 ððððð3D8ðð19ðððð LOCATOR

ððððAC ðððððððð A..IBMSSXCA ððð18ð ððððð3F1ðð19ðððð LOCATOR

ððððBð ðððððððð A..IBMSSXCB ððð188 ððððð4ðAðð14ðððð LOCATOR

ððððB4 ðððððððð A..STATIC ððð19ð ðððððððððð34ðððð LOCATOR

ððððB8 B4ðððAðð DED..NEXT_WORD ððð198 ðððððððððð3Bðððð LOCATOR

ððððBC 2ððð DED ððð1Að ððððð4AEðð28ðððð LOCATOR

ððððBE ðððððF8ð DED..WORD_COUNT ððð1A8 ðððððððððð2Dðððð LOCATOR

ððððC2 5ðððððð6ðð8ð FED ððð1Bð 91Eð91Eð CONSTANT

 ┌──┐

│ Static internal storage map. │

│ This is a storage map of the static control │

│ section for the program. This control section │

│ is the third standard entry in the external │

│ symbol dictionary. │

 │ │

│ .1/ Six-digit offset (in hexadecimal) │

 │ │

│ .2/ Text (in hexadecimal) │

 │ │

│ .3/ Comment indicating type of item │

│ to which the text refers. A comment │

│ appears only against the first line of │

│ the text for an item. │

 │ │

 └──┘

 Appendix. Sample Program IBMLSO1 487

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 37

ððð1B4 ððððððð2ððððððð2 DESCRIPTOR 4ð

 ðððððð24ððððððð1 ððð2A6 C3C1D3D34ð4ð4ð4ð CONSTANT

ððð1C4 ððððððð2ððððððð2 DESCRIPTOR 4ð

 ðððððð1Aððððððð1 ððð2AF C3D3D6E2C54ð4ð4ð CONSTANT

ððð1D4 ððððððð9ððððððð9 DESCRIPTOR 4ð

 ðððððð25ððððððð1 ððð2B8 C4C3D34ð4ð4ð4ð4ð CONSTANT

 ððð9ðððð 4ð

ððð1E8 ððððððð1 CONSTANT ððð2C1 C4C5C3D3C1D9C54ð CONSTANT

ððð1EC ðð1ððððððð6ð18ðð CONSTANT 4ð

 ðððððððð ððð2CA C4C5C6C1E4D3E34ð CONSTANT

ððð1F8 ððððððð2 CONSTANT 4ð

ððð1FC ððððððð3 CONSTANT ððð2D3 C4C9E2D7D3C1E84ð CONSTANT

ððð2ðð ðððððð1F CONSTANT 4ð

ððð2ð4 ðððððððð A..PLIXOPT ððð2DC C4D64ð4ð4ð4ð4ð4ð CONSTANT

ððð2ð8 ðððððððð A..DCLCB 4ð

ððð2ðC ðððððððð A..DCLCB ððð2E5 C5D3E2C54ð4ð4ð4ð CONSTANT

ððð21ð ððððð1E8 A..CONSTANT 4ð

ððð214 ðððððððð A..DCLCB ððð2EE C5D5C44ð4ð4ð4ð4ð CONSTANT

ððð218 ððððð1EC A..CONSTANT 4ð

ððð21C ðððððððð OMITTED ARGUMENT ððð2F7 C5D5E3D9E84ð4ð4ð CONSTANT

ððð22ð ðððððððð OMITTED ARGUMENT 4ð

ððð224 8ððððððð OMITTED ARGUMENT ððð3ðð C6D9C5C54ð4ð4ð4ð CONSTANT

ððð228 ðððððððð A..DCLCB 4ð

ððð22C ððððð168 A..CONSTANT ððð3ð9 C7C5D5C5D9C9C34ð CONSTANT

ððð23ð ðððððððð A..RD 4ð

ððð234 ðððððððð OMITTED ARGUMENT ððð312 C7C5E34ð4ð4ð4ð4ð CONSTANT

ððð238 ðððððððð OMITTED ARGUMENT 4ð

ððð23C 8ððððððð OMITTED ARGUMENT ððð31B C7D64ð4ð4ð4ð4ð4ð CONSTANT

ððð24ð ðððððððð A..LOCATOR 4ð

ððð244 8ððððððð A..TEMP ððð324 C7D6E3D64ð4ð4ð4ð CONSTANT

ððð248 ðððððððð A..LOCATOR 4ð

ððð24C 8ððððððð A..WORD_INDEX ððð32D C9C64ð4ð4ð4ð4ð4ð CONSTANT

ððð25ð ððððð1E8 A..CONSTANT 4ð

ððð254 ðððððððð A..DCLCB ððð336 D3C5C1E5C54ð4ð4ð CONSTANT

ððð258 8ððððððð OMITTED ARGUMENT 4ð

ððð25C ðððððððð A..DCLCB ððð33F D3C9E2E34ð4ð4ð4ð CONSTANT

ððð26ð ðððððððð A..TEMP 4ð

ððð264 8ðððð1E8 A..CONSTANT ððð348 D3D6C3C1E3C54ð4ð CONSTANT

ððð268 ðððððððð A..DCLCB 4ð

ððð26C ðððððððð A..TEMP ððð351 D6D54ð4ð4ð4ð4ð4ð CONSTANT

ððð27ð 8ðððð1F8 A..CONSTANT 4ð

ððð274 ðððððððð A..LOCATOR ððð35A D6D7C5D54ð4ð4ð4ð CONSTANT

ððð278 ððððððE2 A..CONSTANT 4ð

ððð27C ððððððBE A..DED..WORD_COUNT ððð363 D7D9D6C34ð4ð4ð4ð CONSTANT

ððð28ð ðððððððð A..TEMP 4ð

ððð284 8ðððððEð A..CONSTANT ððð36C D7D9D6C3C5C4E4D9 CONSTANT

ððð288 8ðððð1Að A..CONSTANT C5

ððð28C ðD8ððððð CONSTANT ððð375 D9C5C1C44ð4ð4ð4ð CONSTANT

ððð29ð 8ððððððð A..TEMP 4ð

ððð294 C1D3D3D6C3C1E3C5 CONSTANT ððð37E D9C5E3E4D9D54ð4ð CONSTANT

 4ð 4ð

ððð29D C2C5C7C9D54ð4ð4ð CONSTANT ððð387 D9C5E5C5D9E34ð4ð CONSTANT

488 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 38

 4ð 96A34ð828585954ð

ððð39ð D9C5E6D9C9E3C54ð CONSTANT 848586899585844B

 4ð ððð4D6 4ð4ð2ð2ð2ð2ð2ð21 CONSTANT

ððð399 E2C5D3C5C3E34ð4ð CONSTANT 2ð

 4ð ððð4DF E495A29785838986 CONSTANT

ððð3A2 E2C9C7D5C1D34ð4ð CONSTANT 8985844ð85999996

 4ð 994ð968383A49999

ððð3AB E2E3D6D74ð4ð4ð4ð CONSTANT 85844B4ð4ðD6D5C3

 4ð D6C4C57E

ððð3B4 E3C8C5D54ð4ð4ð4ð CONSTANT ððð5ð3 615C CONSTANT

 4ð ððð5ð5 5C61 CONSTANT

ððð3BD E6C1C9E34ð4ð4ð4ð CONSTANT ððð5ð7 7D CONSTANT

 4ð ððð5ð8 ðC16ðððððððððA4C STATIC ONCB

ððð3C6 E6C8C5D54ð4ð4ð4ð CONSTANT ððð51ð ðC96ðððððððððððð STATIC ONCB

 4ð ððð518 C1C2C3C4C5C6C7C8 INITIAL VALUE..WORD_FIRST_CHAR

ððð3CF E6D9C9E3C54ð4ð4ð CONSTANT C9D1D2D3D4D5D6D7

 4ð D8D9E2E3E4E5E6E7

ððð3D8 4ð5C5C5C5C5C5C5C CONSTANT E8E97C7B5B

 5C5C5C5C5C5C5C5C ððð535 C1C2C3C4C5C6C7C8 INITIAL VALUE..WORD_NEXT_CHARA

 5C5C5C5C5C5C5C5C C9D1D2D3D4D5D6D7

 4ð D8D9E2E3E4E5E6E7

ððð3F1 4ð5C5C5C4ðE69699 CONSTANT E8E96D7C7B5B

846ðA4A2854ðD985 ððð558 ðððððððð SYMBOL TABLE ELEMENT

 979699A34ð5C5C5C ððð55C ðððððððð CONSTANT

4ð ððð56ð ðððððððð SYMBOL TABLE ELEMENT

ððð4ðA 4ð6ð8396A495A36ð CONSTANT ððð564 ððððð6ð4 SYMBOL TABLE ELEMENT

4ð4ð4ð6ð6ðA69699 ððð568 ððððð624 SYMBOL TABLE ELEMENT

846ð6ð4ð ððð56C ððððð648 SYMBOL TABLE ELEMENT

ððð41E 6ð6ð6ð6ð6ð6ð6ð6ð CONSTANT ððð57ð ððððð664 SYMBOL TABLE ELEMENT

6ð6ð6ð6ð ððð574 8ððððððð SYMBOL TABLE ELEMENT

ððð42A E388854ð979985A5 CONSTANT ððð578 ððððð68ð SYMBOL TABLE ELEMENT

8996A4A24ðA58193 ððð57C ððððð69C SYMBOL TABLE ELEMENT

A4854ðA28896A493 ððð58ð ððððð6B4 SYMBOL TABLE ELEMENT

844ð8881A5854ð82 ððð584 ððððð6DC SYMBOL TABLE ELEMENT

858595 ððð588 ððððð7ð4 SYMBOL TABLE ELEMENT

ððð44D E3888599854ðA685 CONSTANT ððð58C ððððð71C SYMBOL TABLE ELEMENT

99854ð ððð59ð ððððð734 SYMBOL TABLE ELEMENT

ððð458 4ð99858685998595 CONSTANT ððð594 ððððð754 SYMBOL TABLE ELEMENT

8385A24ðA3964ð ððð598 ððððð774 SYMBOL TABLE ELEMENT

ððð467 4ð4ð4ðF3F6 CONSTANT ððð59C ððððð79C SYMBOL TABLE ELEMENT

ððð46C 4ðA6969984A24B CONSTANT ððð5Að ððððð7BC SYMBOL TABLE ELEMENT

ððð473 E3888599854ðA681 CONSTANT ððð5A4 ððððð7DC SYMBOL TABLE ELEMENT

A24ð814ð8489A283 ððð5A8 ððððð8Dð SYMBOL TABLE ELEMENT

998597819583A84ð ððð5AC ððððð8EC SYMBOL TABLE ELEMENT

89954ð81A34ð9385 ððð5Bð ðððððððð SYMBOL TABLE ELEMENT

81A2A34ð9695854ð ððð5B4 ðððððððð SYMBOL TABLE ELEMENT

 96864ðA388854ðA6 ððð5B8 ðððððððð CONSTANT

9699846ð8396A495 ððð5BC ððððð558 SYMBOL TABLE ELEMENT

 A3A24B ððð5Cð ðððððððð CONSTANT

ððð4AE E388854ð899597A4 CONSTANT ððð5C4 ððððð564 SYMBOL TABLE ELEMENT

 A34ð8481A3814ðA2 ððð5C8 ðððððððð CONSTANT

85A34ð8881A24ð95 ððð5CC ððððð564 SYMBOL TABLE ELEMENT

 Appendix. Sample Program IBMLSO1 489

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 39

ððð5Dð ðððððððð CONSTANT ððð4E3D9E4C5ðððð

ððð5D4 ððððð564 SYMBOL TABLE ELEMENT ððð734 85ððððð1ððððððBE SYMBOL TABLE..RIGHT_MARGIN

ððð5D8 ððððð7F4 SYMBOL TABLE ELEMENT ððððð11Aðððððððð

ððð5DC ððððð814 SYMBOL TABLE ELEMENT ðððCD9C9C7C8E36D

ððð5Eð ððððð838 SYMBOL TABLE ELEMENT D4C1D9C7C9D5ðððð

ððð5E4 ððððð858 SYMBOL TABLE ELEMENT ððð754 85ððððð1ððððððBE SYMBOL TABLE..LEFT_MARGIN

ððð5E8 ððððð874 SYMBOL TABLE ELEMENT ððððð11Cðððððððð

ððð5EC ðððððððð CONSTANT ðððBD3C5C6E36DD4

ððð5Fð ððððð564 SYMBOL TABLE ELEMENT C1D9C7C9D5ðððððð

ððð5F4 ððððð894 SYMBOL TABLE ELEMENT ððð774 81ððððð1ððððððDA SYMBOL TABLE..DISCREPANCY_OCCU

ððð5F8 ððððð8B4 SYMBOL TABLE ELEMENT ððððððF8ðððððððð

ððð5FC ðððððððð CONSTANT ðð14C4C9E2C3D9C5

ððð6ðð ððððð564 SYMBOL TABLE ELEMENT D7C1D5C3E86DD6C3

ððð6ð4 81ððð1ð1ððððððBE SYMBOL TABLE..CONTROLLED_SET C3E4D9D9C5C4ðððð

 ððððððCððððððððð ððð79C 85ððððð1ððððððBE SYMBOL TABLE..LAST_CHAR_POSN

 ðððEC3D6D5E3D9D6 ððððð11Eðððððððð

 D3D3C5C46DE2C5E3 ðððED3C1E2E36DC3

ððð624 81ððð1ð1ððððððBE SYMBOL TABLE..WORD_INDEX_TABLE C8C1D96DD7D6E2D5

 ððððððC8ðððððððð ððð7BC 81ððððð1ððððððDA SYMBOL TABLE..RECORD_READ

 ðð1ðE6D6D9C46DC9 ððððð1ðððððððððð

 D5C4C5E76DE3C1C2 ðððBD9C5C3D6D9C4

 D3C5ðððð 6DD9C5C1C4ðððððð

ððð648 81ððð1ð1ððððððBE SYMBOL TABLE..WORD_COUNT ððð7DC 81ððððð1ððððððD8 SYMBOL TABLE..RECORD

 ððððððDððððððððð ððððð1ð8ðððððððð

 ðððAE6D6D9C46DC3 ððð6D9C5C3D6D9C4

 D6E4D5E3 ððð7F4 85ððððð2ððððððBE SYMBOL TABLE..NEXT_CHAR_POSN

ððð664 81ððð1ð1ððððððBC SYMBOL TABLE..WORD_TABLE ððððððDððððððððð

 ððððððD8ðððððððð ðððED5C5E7E36DC3

 ðððAE6D6D9C46DE3 C8C1D96DD7D6E2D5

 C1C2D3C5 ððð814 85ððððð2ððððððBE SYMBOL TABLE..LENGTH_OF_STRING

ððð68ð 85ððððð1ððððððBE SYMBOL TABLE..WORD_INDEX ððððððD2ðððððððð

 ððððð118ðððððððð ðð1ðD3C5D5C7E3C8

 ðððAE6D6D9C46DC9 6DD6C66DE2E3D9C9

 D5C4C5E7 D5C7ðððð

ððð69C 81ððððð1ððððððD8 SYMBOL TABLE..WORD ððð838 81ððððð2ððððððBC SYMBOL TABLE..NEXT_CHARACTER

 ððððððEððððððððð ððððððB8ðððððððð

 ððð4E6D6D9C4ðððð ðððED5C5E7E36DC3

ððð6B4 ð1ððððððððððððBC SYMBOL TABLE..WORD_NEXT_CHARAC C8C1D9C1C3E3C5D9

 ððððð14ððððððððð ððð858 81ððððð2ððððððD8 SYMBOL TABLE..DATA_WORD

 ðð14E6D6D9C46DD5 ððððððCððððððððð

 C5E7E36DC3C8C1D9 ððð9C4C1E3C16DE6

 C1C3E3C5D9E2ðððð D6D9C4ðð

ððð6DC ð1ððððððððððððBC SYMBOL TABLE..WORD_FIRST_CHARAððð874 A1ððððð2ððððððD8 SYMBOL TABLE..DATA_RECORD

 ððððð148ðððððððð ððððð1ðððððððððð

 ðð15E6D6D9C46DC6 ðððBC4C1E3C16DD9

 C9D9E2E36DC3C8C1 C5C3D6D9C4ðððððð

 D9C1C3E3C5D9E2ðð ððð894 85ððððð2ððððððBE SYMBOL TABLE..WORD_NUMBER

ððð7ð4 81ððððð1ððððððDA SYMBOL TABLE..FALSE ððððððCððððððððð

 ððððððE8ðððððððð ðððBE6D6D9C46DD5

 ððð5C6C1D3E2C5ðð E4D4C2C5D9ðððððð

ððð71C 81ððððð1ððððððDA SYMBOL TABLE..TRUE ððð8B4 A1ððððð2ððððððD8 SYMBOL TABLE..DATA_WORD

 ððððððFððððððððð ððððððDððððððððð

490 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 4ð

 ððð9C4C1E3C16DE6

 D6D9C4ðð ðððððð 1Dð2ðððððððððð18 SYMBOL TABLE..SAMPLE

ððð8Dð ðDð2ððð1ððððððB8 SYMBOL TABLE..NEXT_WORD ðððððððððððððððð

 ðððððB88ðððððððð ððð6E2C1D4D7D3C5

 ððð9D5C5E7E36DE6 ðððð18 B4ðððAðð SYMTAB DED..SAMPLE

 D6D9C4ðð

ððð8EC ðDð2ððð1ððððððB8 SYMBOL TABLE..LOOKUP_WORD ðððððð 1Dððððð1ðððððð18 SYMBOL TABLE..SOURCE

 ðððððFA8ðððððððð ðððððððððððððððð

 ðððBD3D6D6D2E4D7 ððð6E2D6E4D9C3C5

 6DE6D6D9C4ðððððð ðððð18 B8ðð SYMTAB DED..SOURCE

 ðððððð 1Dððððð1ðððððð1C SYMBOL TABLE..SYSPRINT

 ðððððððððððððððð

 ððð8E2E8E2D7D9C9

STATIC EXTERNAL CSECTS D5E3ðððð

 ðððð1C B8ðð SYMTAB DED..SYSPRINT

ðððððð FFFFFFFC41ðððððð DCLCB

 ð2C7ðFðððððððððð

 ðððððð14ððð8E2E8

 E2D7D9C9D5E3ðððð

ðððððð ððððððððð2ðððððð DCLCB

 ð1ðð1ððððððððððð

 ðððððð14ððð6E2D6

 E4D9C3C5

ðððððð ðð11D4E2C7C6C9D3 CSECT FOR EXTERNAL VARIABLE

 C54DE2E8E2D7D9C9

 D5E35Dðððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððððððð

 ðððððððððððð

ðððððð 28ðð SYMTAB DED..PLIXOPT

ððððð2 ðððð

ððððð4 19ðððððððððððððð SYMBOL TABLE..PLIXOPT

 ðððððð24ðððððððð

 ððð7D7D3C9E7D6D7

 E3ðððððð

ðððð2ð 8ðððððð4 SYMBOL TABLE ELEMENT

ðððð24 ðððððððððð648ððð LOCATOR..PLIXOPT

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 41

VARIABLE STORAGE MAP

IDENTIFIER LEVEL OFFSET (HEX) CLASS BLOCK

CONTROLLED_SET 1 296 128 AUTO SAMPLE

WORD_INDEX_TABLE 1 368 17ð AUTO SAMPLE

WORD_COUNT 1 42ð 1A4 AUTO SAMPLE

WORD_TABLE 1 65ð 28A AUTO SAMPLE

WORD_INDEX 1 28ð 118 AUTO SAMPLE

WORD 1 492 1EC AUTO SAMPLE

WORD_NEXT_CHARACTERS 1 1333 535 STATIC SAMPLE

WORD_FIRST_CHARACTERS 1 13ð4 518 STATIC SAMPLE

FALSE 1 288 12ð AUTO SAMPLE

TRUE 1 289 121 AUTO SAMPLE

RIGHT_MARGIN 1 282 11A AUTO SAMPLE

LEFT_MARGIN 1 284 11C AUTO SAMPLE

DISCREPANCY_OCCURRED 1 29ð 122 AUTO SAMPLE

LAST_CHAR_POSN 1 286 11E AUTO SAMPLE

RECORD_READ 1 291 123 AUTO SAMPLE

RECORD 1 526 2ðE AUTO SAMPLE

NEXT_CHAR_POSN 2 2ð8 Dð AUTO NEXT_WORD

LENGTH_OF_STRING 2 21ð D2 AUTO NEXT_WORD

NEXT_CHARACTER 2 212 D4 AUTO NEXT_WORD

DATA_WORD 2 216 D8 AUTO NEXT_WORD

WORD_NUMBER 2 192 Cð AUTO LOOKUP_WORD

 Appendix. Sample Program IBMLSO1 491

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 42

TABLES OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE SAMPLE

OFFSET (HEX) ð 348 358 368 37ð 37E 388 39E 3AE 3BA 41ð 432 462 48A 492

STATEMENT NO. 1 22 26 29 34 35 36 37 38 39 4ð 41 42 43 44

OFFSET (HEX) 4E8 4Fð 5ð6 5ðE 51C 55C 59C 5DC 61C 62E 63A 642 6DA 6E2 6FA

STATEMENT NO. 45 46 47 48 49 5ð 51 52 53 54 53 54 55 56 57

OFFSET (HEX) 78A 794 79C 7A4 7A8 7B4 7CC 7CC 86E 8D2 8DA

STATEMENT NO. 58 59 6ð 61 54 61 53 62 63 64 1ð4

WITHIN ON UNIT BLOCK 2

OFFSET (HEX) ð 76 84 92

STATEMENT NO. 22 23 24 25

WITHIN ON UNIT BLOCK 3

OFFSET (HEX) ð 8ð 8A

STATEMENT NO. 26 27 28

WITHIN ON UNIT BLOCK 4

OFFSET (HEX) ð 9ð 98 1ðA 118

STATEMENT NO. 29 3ð 31 32 33

WITHIN PROCEDURE NEXT_WORD

OFFSET (HEX) ð BC C8 1ðð 11A 124 134 1Cð 1C8 1Dð 24C 254 292 29A 2AC

STATEMENT NO. 65 71 72 73 74 75 76 77 78 79 8ð 81 82 83 84

OFFSET (HEX) 328 386 38A 38E 3A4 3B8 3BC 3Cð 3Cð 3C4 3DC 414

STATEMENT NO. 85 86 84 86 87 88 89 9ð 9ð 91 92 93

WITHIN PROCEDURE LOOKUP_WORD

OFFSET (HEX) ð 98 DA E2 132 13A 13E 146 148 15E 176 182 184 18C 19ð

STATEMENT NO. 94 97 98 99 1ðð 1ð1 98 1ð1 98 1ð1 98 1ð1 98 1ð1 1ð2

OFFSET (HEX) 1B4

STATEMENT NO. 1ð3

492 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 43

 OBJECT LISTING

\ STATEMENT NUMBER 44

.1/ ððð49A CL.17 EQU \

\ STATEMENT NUMBER 4ð .2/ ððð49A 44 ðð C 1AC EX ð,HOOK..STMT

ððð418 44 ðð C 1AC .3/ EX ð,HOOK..STMT ððð49E 41 7ð D 1ð8 LA 7,264(ð,13)

ððð41C CL.48 EQU \ ððð4A2 5ð 7ð 3 24ð ST 7,576(ð,3)

ððð41C 48 9ð 3 ðEð LH 9,224(ð,3) ððð4A6 D2 ð7 D 484 3 138 MVC 1156(8,13),312(3)

ððð42ð 48 7ð D 1EC LH 7,WORD ððð4AC 41 8ð D 462 LA 8,1122(ð,13)

ððð424 41 8ð 3 294 LA 8,66ð(ð,3) ððð4Bð 5ð 8ð D 484 ST 8,1156(ð,13)

ððð428 41 6ð D 1EE LA 6,WORD+2 ððð4B4 41 7ð D 484 LA 7,1156(ð,13)

ððð42C 58 Fð 3 ð6C L 15,A..IELCGCY ððð4B8 5ð 7ð 3 244 ST 7,58ð(ð,3)

ððð43ð ð5 EF BALR 14,15 ððð4BC 96 8ð 3 244 OI 58ð(3),X'8ð'

ððð432 47 8ð 2 1AC BE CL.15 ððð4Cð 18 5D LR 5,13

ððð436 44 ðð C 1C8 EX ð,HOOK..DO ððð4C2 41 1ð 3 24ð LA 1,576(ð,3)

ððð4C6 58 Fð 3 ð2C L 15,A..NEXT_WORD

ððð4CA 44 ðð C 1Cð EX ð,HOOK..PRE-CALL

\ STATEMENT NUMBER 41 ððð4CE 47 ð1 4 ððA NOP HOOK..INFO

ððð43A 44 ðð C 1AC EX ð,HOOK..STMT ððð4D2 ð5 EF BALR 14,15

ððð43E 41 7ð D ðEð LA 7,224(ð,13) ððð4D4 44 ðð C 1C4 EX ð,HOOK..POST-CALL

ððð442 5ð 7ð 3 248 ST 7,584(ð,3) ððð4D8 D2 ðð D 1EC D 462 MVC WORD(1),1122(13)

ððð446 41 7ð D 118 LA 7,WORD_INDEX ððð4DE 48 Fð D 462 LH 15,1122(ð,13)

ððð44A 5ð 7ð 3 24C ST 7,588(ð,3) ððð4E2 44 Fð 2 19E EX 15,CL.72

ððð44E 96 8ð 3 24C OI 588(3),X'8ð' ððð4E6 47 Fð 2 1A4 B CL.73

ððð452 18 5D LR 5,13 ððð4EA CL.72 EQU \

ððð454 41 1ð 3 248 LA 1,584(ð,3) ððð4EA D2 ðð D 1ED D 463 MVC WORD+1(1),1123(13)

ððð458 58 Fð 3 ð38 L 15,A..LOOKUP_WORD ððð4Fð CL.73 EQU \

ððð45C 44 ðð C 1Cð .3/ EX ð,HOOK..PRE-CALL

ððð46ð 47 ð1 4 ððA NOP HOOK..INFO

ððð464 ð5 EF BALR 14,15 \ STATEMENT NUMBER 45

ððð466 44 ðð C 1C4 .3/ EX ð,HOOK..POST-CALL ððð4Fð 44 ðð C 1AC EX ð,HOOK..STMT

ððð4F4 47 Fð 2 ðDð B CL.48

ððð4F8 CL.15 EQU \

\ STATEMENT NUMBER 42

ððð46A 44 ðð C 1AC EX ð,HOOK..STMT

ððð46E 48 9ð D 118 LH 9,WORD_INDEX ┌───┐

ððð472 49 9ð 3 ðEð CH 9,224(ð,3) │ Object listing. This is a partial listing of the │

ððð476 47 8ð 2 146 BE CL.16 │ machine instructions generated by the compiler │

ððð47A 44 ðð C 1CC EX ð,HOOK..IF-TRUE │ from the PL/I source program. │

ððð47E 89 9ð ð ðð1 SLL 9,1 │ │

ððð482 48 69 D 1A2 LH 6,VO..WORD_COUNT(9 │ .1/ Machine instructions (in hexadecimal) │

) │ │

ððð486 4A 6ð 3 ðE2 AH 6,226(ð,3) │ .2/ Assembler-language form of the machine instruction │

ððð48A 4ð 69 D 1A2 STH 6,VO..WORD_COUNT(9 │ │

) │ .3/ HOOK indicates a location where the debugging tool │

ððð48E 47 Fð 2 14E B CL.17 │ could get control. │

 └───┘

\ STATEMENT NUMBER 43

ððð492 CL.16 EQU \

ððð492 44 ðð C 1AC EX ð,HOOK..STMT

ððð496 44 ðð C 1Dð EX ð,HOOK..IF-FALSE

 Appendix. Sample Program IBMLSO1 493

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 44

COMPILER DIAGNOSTIC MESSAGES

 .1/ .2/ .3/
ERROR ID L STMT MESSAGE DESCRIPTION

COMPILER INFORMATORY MESSAGES

IELð533I I NO 'DECLARE' STATEMENT(S) FOR 'INDEX'.

IELð871I I 62 RESULT OF BUILTIN FUNCTION 'SUM' WILL BE EVALUATED USING FIXED POINT ARITHMETIC OPERATIONS.

END OF COMPILER DIAGNOSTIC MESSAGES

 .4/ .5/
COMPILE TIME ð.ð1 MINS SPILL FILE: ð RECORDS, SIZE 4ð51

END OF COMPILATION OF SAMPLE

┌───┐

│ Diagnostic messages and an end-of-compile-step message generated │

│ by the compiler. All diagnostic messages generated by the compiler │

│ are documented in the publication PL/I MVS & VM Compile-Time │

│ Messages and Codes. │

│ │

│ .1/ ERROR ID identifies the message as originating from the PL/I │

│ compiler (IEL), and gives the message number. │

│ │

│ .2/ L indicates the severity level of the message. │

│ │

│ .3/ STMT gives the number of the statement in which the error │

│ occurred. │

│ │

│ .4/ Compile time in minutes. This time includes the preprocessor. │

│ │

│ .5/ Number of records “spilled” into auxiliary storage and the size │

│ in bytes of the spill file records. │

└───┘

494 PL/I for MVS & VM Programming Guide

5688-235 IBM PL/I for MVS & VM /\ PL/I Sample Program: Used to verify product installation \/PAGE 45

 MVS/DFP VERSION 3 RELEASE 3 LINKAGE EDITOR 1ð:ð3:27 FRI JAN 29, 1993

 JOB IEL11IVP STEP IVP PROCEDURE LKED

 INVOCATION PARAMETERS - XREF,LIST .1/
 ACTUAL SIZE=(31744ð,79872)

 OUTPUT DATA SET SYS93ð29.T1ðð323.RAððð.IEL11IVP.GOSET IS ON VOLUME PUBðð2

.2/ CROSS REFERENCE TABLE

 .3/
 CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

CEESTART ðð 8ð

 CEEMAIN 8ð 1ð

 SYSPINT 9ð 2ð

 SOURCE Bð 1C

 CEEUOPT Dð 4Dð

PLIXOPT 5Að 66

 PLIXOPT\ 6ð8 2C

 PLIXOPT+ 6ðC PLIXOPT- 628

SAMPLE\ 638 2ð

 SAMPLE+ 638

SOURCE\ 658 2ð

 SOURCE+ 658

 SYSPINT\ 678 2ð

 SYSPINT+ 678

┌───┐

│ Linkage editor listing. │

│ │

│ .1/ Statement identifying the version and level of the linkage editor │

│ and giving the options as specified in the PARM parameter of the │

│ EXEC statement that invokes the linkage editor │

│ │

│ .2/ Cross reference table, consisting of a module map and the cross │

│ reference table │

│ │

│ .3/ The module map shows each control section and its associated │

│ entry points, if any, listed across the page. An asterisk in │

│ column 9 after a name beginning with “IBM” indicates a library │

│ subroutine obtained by automatic library call. │

│ │

│ .4/ The cross reference table gives all the locations in a control │

│ section at which a symbol is reference. UNRESOLVED(W) identifies │

│ a weak external reference that has not been resolved. │

│ │

└───┘

\SAMPLE2 698 B4ð

 IELCGOG 11D8 AE

 IELCGOH 1288 Að

 IELCGOC 1328 7C

 IELCGMY 13A8 A4

 IELCGCY 145ð 7E

\SAMPLE1 14Dð 115C

 SAMPLE 14D8

 CEEBETBL\ 263ð 1C

 CEEOPIPI\ 265ð 2ð8

 CEEROOTA\ 2858 268

 CEESGð1ð\ 2ACð 64

 IBMRINP1\ 2B28 24

 IBMSASCA\ 2B5ð 14

 IBMBASCA 2B5ð

 IBMSCEDB\ 2B68 14

 IBMBCEDB 2B68

 IBMSCHFD\ 2B8ð 14

 IBMBCHFD 2B8ð

 IBMSEATA\ 2B98 14

 Appendix. Sample Program IBMLSO1 495

 IBMBEATA 2B98

 IBMSSIOA\ 2BBð 14

 IBMBSIOA 2BBð

 IBMSCHXH\ 2BC8 14

 IBMBCHXH 2BC8

 IBMSCWDH\ 2BEð 14

 IBMBCWDH 2BEð

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

 IBMSEOCA\ 2BF8 14

 IBMBEOCA 2BF8

 IBMSJDSA\ 2C1ð 14

 IBMBJDSA 2C1ð

 IBMSOCLA\ 2C28 14

 IBMBOCLA 2C28

 IBMSRIOA\ 2C4ð 14

 IBMBRIOA 2C4ð

 IBMSSEOA\ 2C58 14

 IBMBSEOA 2C58

 IBMSSIOE\ 2C7ð 14

 IBMBSIOE 2C7ð

 IBMSSIOT\ 2C88 14

 IBMBSIOT 2C88

 IBMSSLOA\ 2CAð 14

 IBMBSLOA 2CAð

 CEEARLU \ 2CB8 14ð

 CEEBINT \ 2DF8 8

 CEEBLLST\ 2Eðð 5C

 CEELLIST 2E1ð

 CEEBTRM \ 2E6ð 18ð

 CEEP#CAL\ 2FEð 12ð

 CEEP#INT\ 31ðð 34ð

 CEEP#TRM\ 344ð 21ð

 IBMSOCLC\ 365ð 14

 IBMBOCLC 365ð

 IBMSSPLA\ 3668 14

 IBMBSPLA 3668

 IBMSSXCA\ 368ð 14

 IBMBSXCA 368ð

 CEEBPIRA\ 3698 2Eð

CEEINT 3698 CEEBPIRB 3698 CEEBPIRC 3698

 IBMSCEDF\ 3978 14

 IBMBCEDF 3978

 IBMSCEDX\ 399ð 14

 IBMBCEDX 399ð

 IBMSCEFX\ 39A8 14

 IBMBCEFX 39A8

 IBMSCEZB\ 39Cð 14

 IBMBCEZB 39Cð

 IBMSCEZF\ 39D8 14

 IBMBCEZF 39D8

 IBMSCEZX\ 39Fð 14

 IBMBCEZX 39Fð

 IBMSCHFE\ 3Að8 14

 IBMBCHFE 3Að8

 CEEPMATH\ 3A2ð 18

 IBMSMATH 3A2ð

 IBMSSXCB\ 3A38 14

 IBMBSXCB 3A38

 IBMSCHFH\ 3A5ð 14

 IBMBCHFH 3A5ð

496 PL/I for MVS & VM Programming Guide

 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

 IBMSCHFP\ 3A68 14

 IBMBCHFP 3A68

 IBMSCHFY\ 3A8ð 14

 IBMBCHFY 3A8ð

 IBMSCHXD\ 3A98 14

 IBMBCHXD 3A98

 IBMSCHXE\ 3ABð 14

 IBMBCHXE 3ABð

 IBMSCHXF\ 3AC8 14

 IBMBCHXF 3AC8

 IBMSCHXP\ 3AEð 14

 IBMBCHXP 3AEð

 IBMSCHXY\ 3AF8 14

 IBMBCHXY 3AF8

 IBMSSIOB\ 3B1ð 14

 IBMBSIOB 3B1ð

 IBMSSIOC\ 3B28 14

 IBMBSIOC 3B28

 IBMSCWZH\ 3B4ð 14

 IBMBCWZH 3B4ð

 IBMSJDSB\ 3B58 14

 IBMBJDSB 3B58

 IBMSOCLB\ 3B7ð 14

 IBMBOCLB 3B7ð

 IBMSOCLD\ 3B88 14

 IBMBOCLD 3B88

 IBMSRIOB\ 3BAð 14

 IBMBRIOB 3BAð

 IBMSRIOC\ 3BB8 14

 IBMBRIOC 3BB8

 IBMSRIOD\ 3BDð 14

 IBMBRIOD 3BDð

 IBMSSIOD\ 3BE8 14

 IBMBSIOD 3BE8

 IBMSSLOB\ 3Cðð 14

 IBMBSLOB 3Cðð

 IBMSSPLB\ 3C18 14

 IBMBSPLB 3C18

 IBMSSPLC\ 3C3ð 14

 IBMBSPLC 3C3ð

 IBMSSXCC\ 3C48 14

 IBMBSXCC 3C48

 IBMSSXCD\ 3C6ð 14

 IBMBSXCD 3C6ð

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

2C CEEMAIN CEEMAIN 68 CEEFMAIN .4/ $UNRESOLVED(W)

 74 CEEBETBL CEEBETBL 78 CEEROOTA CEEROOTA

 84 \SAMPLE1 \SAMPLE1 88 IBMRINP1 IBMRINP1

 62C PLIXOPT PLIXOPT 64ð SAMPLE \SAMPLE1

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

 66ð SOURCE SOURCE 68ð SYSPINT SYSPINT

 69C \SAMPLE1 \SAMPLE1 6Að \SAMPLE1 \SAMPLE1

 6A4 \SAMPLE1 \SAMPLE1 6A8 \SAMPLE1 \SAMPLE1

 6AC \SAMPLE1 \SAMPLE1 6Bð \SAMPLE1 \SAMPLE1

 6B4 \SAMPLE1 \SAMPLE1 6B8 \SAMPLE1 \SAMPLE1

 6BC \SAMPLE1 \SAMPLE1 6Cð \SAMPLE1 \SAMPLE1

 6C4 \SAMPLE1 \SAMPLE1 6C8 \SAMPLE1 \SAMPLE1

 6CC \SAMPLE1 \SAMPLE1 6Dð \SAMPLE1 \SAMPLE1

 6D4 \SAMPLE1 \SAMPLE1 6D8 \SAMPLE1 \SAMPLE1

 6DC \SAMPLE1 \SAMPLE1 6Eð \SAMPLE1 \SAMPLE1

 6E4 \SAMPLE1 \SAMPLE1 6E8 \SAMPLE1 \SAMPLE1

 Appendix. Sample Program IBMLSO1 497

 6EC \SAMPLE1 \SAMPLE1 6Fð \SAMPLE1 \SAMPLE1

 6F4 IELCGOG IELCGOG 6F8 IELCGOH IELCGOH

 6FC IELCGOC IELCGOC 7ðð IELCGMY IELCGMY

 7ð4 IELCGCY IELCGCY 7ð8 IBMSASCA IBMSASCA

 7ðC IBMSCEDB IBMSCEDB 71ð IBMSCHFD IBMSCHFD

 714 IBMSCHXH IBMSCHXH 718 IBMSCWDH IBMSCWDH

 71C IBMSEOCA IBMSEOCA 72ð IBMSJDSA IBMSJDSA

 724 IBMSOCLA IBMSOCLA 728 IBMSOCLC IBMSOCLC

 72C IBMSRIOA IBMSRIOA 73ð IBMSSEOA IBMSSEOA

 734 IBMSSIOE IBMSSIOE 738 IBMSSIOT IBMSSIOT

 73C IBMSSLOA IBMSSLOA 74ð IBMSSPLA IBMSSPLA

 744 IBMSSXCA IBMSSXCA 748 IBMSSXCB IBMSSXCB

 89C PLIXOPT PLIXOPT 8Að SYSPINT SYSPINT

 8A4 SOURCE SOURCE 8AC SOURCE SOURCE

 8Cð SOURCE SOURCE 8EC SOURCE SOURCE

 8F4 SYSPINT SYSPINT 9ðð SYSPINT SYSPINT

 BA4 \SAMPLE1 \SAMPLE1 BFð SAMPLE\ SAMPLE\

 CðC PLIXOPT- PLIXOPT\ C48 SOURCE\ SOURCE\

 C4C SYSPINT\ SYSPINT\ F7ð \SAMPLE1 \SAMPLE1

 F8C \SAMPLE1 \SAMPLE1 FA8 \SAMPLE1 \SAMPLE1

 1ð6C \SAMPLE1 \SAMPLE1 1ð8C \SAMPLE1 \SAMPLE1

 1ðA8 \SAMPLE1 \SAMPLE1 1ðCC \SAMPLE1 \SAMPLE1

 1164 \SAMPLE1 \SAMPLE1 11D4 CEESTART CEESTART

 132ð IBMSSIST $UNRESOLVED(W) 1324 IBMSSEOA IBMSSEOA

 139C IBMSSXCB IBMSSXCB 13Að IBMSSIST $UNRESOLVED(W)

 14Eð \SAMPLE2 \SAMPLE2 14E8 \SAMPLE2 \SAMPLE2

 14EC \SAMPLE2 \SAMPLE2 151ð \SAMPLE2 \SAMPLE2

 1DD4 \SAMPLE2 \SAMPLE2 1DDC \SAMPLE2 \SAMPLE2

 1DEð \SAMPLE2 \SAMPLE2 1E8ð \SAMPLE2 \SAMPLE2

 1E88 \SAMPLE2 \SAMPLE2 1E8C \SAMPLE2 \SAMPLE2

 1F24 \SAMPLE2 \SAMPLE2 1F2C \SAMPLE2 \SAMPLE2

 1F3ð \SAMPLE2 \SAMPLE2 2ð6ð \SAMPLE2 \SAMPLE2

 2ð68 \SAMPLE2 \SAMPLE2 2ð6C \SAMPLE2 \SAMPLE2

 248ð \SAMPLE2 \SAMPLE2 2488 \SAMPLE2 \SAMPLE2

 248C \SAMPLE2 \SAMPLE2 264ð CEEUOPT CEEUOPT

 2634 CEEBXITA $UNRESOLVED(W) 2638 CEEBINT CEEBINT

 263C CEEBLLST CEEBLLST 2644 CEEBTRM CEEBTRM

 26F4 CEEP#INT CEEP#INT 275C CEEP#INT CEEP#INT

 2798 CEEP#INT CEEP#INT 274ð CEEP#CAL CEEP#CAL

 276C CEEP#CAL CEEP#CAL 277C CEEP#TRM CEEP#TRM

 27F4 CEEP#TRM CEEP#TRM 29F8 CEEARLU CEEARLU

 LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

 2Að4 CEEINT CEEBPIRA 29E8 CEEFMAIN $UNRESOLVED(W)

 29EC CEEMAIN CEEMAIN 29Fð PLIMAIN $UNRESOLVED(W)

 29F4 IBMSEMNA $UNRESOLVED(W) 29FC CEESGð1ð CEESGð1ð

 2Aðð CEEOPIPI CEEOPIPI 2Að8 CEEROOTB $UNRESOLVED(W)

 2B1C CEEBETBL CEEBETBL 2B2ð IBMSMATH CEEPMATH

 2AD4 CEEMAIN CEEMAIN 2B1ð CEEFMAIN $UNRESOLVED(W)

 2BðC PLISTART $UNRESOLVED(W) 2AF4 PLIXOPT PLIXOPT

 2AF8 IBMBPOPT $UNRESOLVED(W) 2AD8 SYSPINT SYSPINT

 2AEð PLITABS $UNRESOLVED(W) 2Bðð IBMBEATA IBMSEATA

 2ADð PLIMAIN $UNRESOLVED(W) 2B38 CEESTART CEESTART

 2B3C CEEBETBL CEEBETBL 2B28 CEEMAIN CEEMAIN

 2B34 CEEMAIN CEEMAIN 2E1ð CEESGððð $UNRESOLVED(W)

 2E14 CEESGðð1 $UNRESOLVED(W) 2E18 CEESGðð2 $UNRESOLVED(W)

 2E1C CEESGðð3 $UNRESOLVED(W) 2E2ð CEESGðð4 $UNRESOLVED(W)

 2E24 CEESGðð5 $UNRESOLVED(W) 2E28 CEESGðð6 $UNRESOLVED(W)

 2E2C CEESGðð7 $UNRESOLVED(W) 2E3ð CEESGðð8 $UNRESOLVED(W)

 2E34 CEESGðð9 $UNRESOLVED(W) 2E38 CEESGð1ð CEESGð1ð

 2E3C CEESGð11 $UNRESOLVED(W) 2E4ð CEESGð12 $UNRESOLVED(W)

 2E44 CEESGð13 $UNRESOLVED(W) 2E48 CEESGð14 $UNRESOLVED(W)

 2E4C CEESGð15 $UNRESOLVED(W) 2E5ð CEESGð16 $UNRESOLVED(W)

498 PL/I for MVS & VM Programming Guide

LOCATION 3C REQUESTS CUMULATIVE PSEUDO REGISTER LENGTH

 PSEUDO REGISTERS

 NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME ORIGIN LENGTH NAME ORIGIN LENGTH

 SOURCE ðð 4

 TOTAL LENGTH OF PSEUDO REGISTERS 4

 ENTRY ADDRESS ðð

 TOTAL LENGTH 3C78

 \\ GO DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE 31

 \\ LOAD MODULE HAS RMODE ANY

 \\ AUTHORIZATION CODE IS ð.

 \\\\\\\\\\\\\\\\\\\\\\\

 \\\ Word-use Report \\\ .1/
 \\\\\\\\\\\\\\\\\\\\\\\

 -count- --word--

 3 BEGIN ┌───────────────────────────────────────┐

1 CLOSE │ Sample program output. │

 13 DCL │ │

24 DECLARE │ .1/ Program output header │

 2 DISPLAY │ │

14 DO │ .2/ The apparent error is intentional │
 13 ELSE └───────────────────────────────────────┘

 23 END

 1 GO

 13 IF

------------The previous value should have been 14 .2/
 7 LIST

 4 ON

 1 OPEN

 2 PROC

 3 PROCEDURE

 2 READ

 4 RETURN

 1 SELECT

 2 STOP

 13 THEN

 2 WHEN

There were 148 references to 36 words.

There was a discrepancy in at least one of the word-counts. .2/

 Appendix. Sample Program IBMLSO1 499

 Bibliography

PL/I for MVS & VM Publications
� Licensed Program Specifications, GC26-3116

� Installation and Customization under MVS,
SC26-3119

� Compiler and Run-Time Migration Guide,
SC26-3118

� Programming Guide, SC26-3113

� Language Reference, SC26-3114

� Reference Summary, SX26-3821

� Compile-Time Messages and Codes, SC26-3229

� Diagnosis Guide, SC26-3149

Language Environment for MVS
& VM Publications
� Fact Sheet, GC26-4785

� Concepts Guide, GC26-4786

� Licensed Program Specifications, GC26-4774

� Installation and Customization under MVS,
SC26-4817

� Programming Guide, SC26-4818

� Programming Reference, SC26-3312

� Debugging Guide and Run-Time Messages,
SC26-4829

| � Writing Interlanguage Communication Applications,
| SC26-8351

� Run-Time Migration Guide, SC26-8232

 � Master Index,SC26-3427

PL/I for OS/2 Publications
� Programming Guide, SC26-8001

� Language Reference, SC26-8003

� Reference Summary, SX26-3832

� Built-In Functions, SC26-8089

 � Installation, SX26-3833

� Messages and Codes, SC26-8002

� License Information, GC26-8004

� WorkFrame/2 Guide, SC26-8000

 CoOperative Development
Environment/370
� Fact Sheet, GC09-1861

� General Information, GC09-2048

 � Installation, SC09-1624

� Licensed Program Specifications, GC09-1898

� User's Guide and Reference, SC09-1623

� Using CODE/370 with VS COBOL II and OS PL/I,
SC09-1862

� Self-Study Guide, SC09-2047

IBM Debug Tool
� User's Guide and Reference, SC09-2137

 Softcopy Publications

Online publications are distributed on CD-ROMs and
can be ordered from Mechanicsburg through your IBM
representative. PL/I books are distributed on the
following collection kit:

� Application Development Collection Kit, SK2T-1237

Other Books You Might Need

CICS/ESA

� Application Programming Reference, SC33-0676

DFSORT

� Application Programming Guide, SC33-4035

DFSORT/CMS

� User's Guide, SC26-4361

IMS

� IMS/ESA V4 Application Programming: Database
Manager, SC26-3058

� IMS/ESA V4 Application Programming: Design
Guide, SC26-3066

� IMS/ESA V4 Application Programming: Transaction
Manager, SC26-3063

� IMS/ESA V4 Application Programming: EXEC DL/I
Commands for CICS and IMS, SC26-3062

MVS/DFP

500 Copyright IBM Corp. 1964, 1995

� Access Method Services, SC26-4562

MVS/ESA 4.3 MVS Support for OpenEdition Services
Feature

� Introducing OpenEdition MVS, GC23-3010

� OpenEdition MVS POSIX.1 Conformance
Document, GC23-3011

� OpenEdition MVS User's Guide, SC23-3013

� OpenEdition MVS Command Reference,
SC23-3014

MVS/ESA

� JCL User's Guide, GC28-1473

� JCL Reference, GC28-1479

� System Generation, CG28-1825

� System Programming Library: Initialization and
Tuning Guide, GC28-1451

� System Messages Volume 1, GC28-1480

� System Messages Volume 2, GC28-1481

� System Messages Volume 3, GC28-1482

� System Messages Volume 4, GC28-1483

� System Messages Volume 5, GC28-1484

OS/VS2

� TSO Command Language Reference, GC28-0646

� TSO Terminal User's Guide, GC28-0645

� Job Control Language, GC28-0692

� Message Library: VS2 System Codes, GC38-1008

SMP/E

� User's Guide, SC28-1302

� DBIPO Dialogs User's Guide, SC23-0538

 � Reference, SC28-1107

� Reference Summary, SX22-0006

TCAM

� ACF TCAM Application Programmer's Guide,
SC30-3233

� OS/VS TCAM Concepts and Applications,
GC30-2049

TSO/E

� Command Reference, SC28-1881

VM/ESA

� CMS User's Guide, SC24-5460

� CMS Command Reference, SC24-5461

� CMS Application Development Guide, SC24-5450

� XEDIT User's Guide, SC24-5463

� XEDIT Command and Macro Reference,
SC24-5464

� CP Command and Utility Reference, SC24-5519

 � Installation, SC24-5526

� Service Guide, SC24-5527

� System Messages and Codes, SC24-5529.

 Bibliography 501

 Glossary

This glossary defines terms for all platforms and releases of PL/I. It might contain terms that
this manual does not use. If you do not find the terms for which you are looking, see the
index in this manual or IBM Dictionary of Computing, SC20-1699.

A
access . To reference or retrieve data.

action specification . In an ON statement, the ON-unit
or the single keyword SYSTEM, either of which
specifies the action to be taken whenever the
appropriate condition is raised.

activate (a block) . To initiate the execution of a block.
A procedure block is activated when it is invoked. A
begin-block is activated when it is encountered in the
normal flow of control, including a branch. A package
cannot be activated.

activate (a preprocessor variable or preprocessor
entry point) . To make a macro facility identifier eligible
for replacement in subsequent source code. The
%ACTIVATE statement activates preprocessor variables
or preprocessor entry points.

active . (1) The state of a block after activation and
before termination. (2) The state in which a
preprocessor variable or preprocessor entry name is
said to be when its value can replace the corresponding

| identifier in source program text. (3) The state in which
| an event variable is said to be during the time it is
| associated with an asynchronous operation. (4) The
| state in which a task variable is said to be when its
| associated task is attached. (5) The state in which a
| task is said to be before it has been terminated.

actual origin (AO) . The location of the first item in the
array or structure.

additive attribute . A file description attribute for which
there are no defaults, and which, if required, must be
stated explicitly or implied by another explicitly stated
attribute. Contrast with alternative attribute.

adjustable extent . The bound (of an array), the length
(of a string), or the size (of an area) that might be
different for different generations of the associated
variable. Adjustable extents are specified as
expressions or asterisks (or by REFER options for
based variables), which are evaluated separately for
each generation. They cannot be used for static
variables.

aggregate . See data aggregate.

aggregate expression . An array, structure, or union
expression.

aggregate type . For any item of data, the specification
whether it is structure, union, or array.

allocated variable . A variable with which main storage
is associated and not freed.

allocation . (1) The reservation of main storage for a
variable. (2) A generation of an allocated variable.
(3) The association of a PL/I file with a system data set,
device, or file.

alignment . The storing of data items in relation to
certain machine-dependent boundaries (for example, a
fullword or halfword boundary).

alphabetic character . Any of the characters A through
Z of the English alphabet and the alphabetic extenders
#, $, and @ (which can have a different graphic
representation in different countries).

alphameric character . An alphabetic character or a
digit.

alternative attribute . A file description attribute that is
chosen from a group of attributes. If none is specified,
a default is assumed. Contrast with additive attribute.

ambiguous reference . A reference that is not
sufficiently qualified to identify one and only one name
known at the point of reference.

area. A portion of storage within which based variables
can be allocated.

argument . An expression in an argument list as part
of an invocation of a subroutine or function.

argument list . A parenthesized list of zero or more
arguments, separated by commas, following an entry
name constant, an entry name variable, a generic
name, or a built-in function name. The list becomes the
parameter list of the entry point.

arithmetic comparison . A comparison of numeric
values. See also bit comparison, character comparison.

502 Copyright IBM Corp. 1964, 1995

arithmetic constant . A fixed-point constant or a
floating-point constant. Although most arithmetic
constants can be signed, the sign is not part of the
constant.

arithmetic conversion . The transformation of a value
from one arithmetic representation to another.

arithmetic data . Data that has the characteristics of
base, scale, mode, and precision. Coded arithmetic
data and pictured numeric character data are included.

arithmetic operators . Either of the prefix operators +
and −, or any of the following infix operators: + − * / **

array . A named, ordered collection of one or more
data elements with identical attributes, grouped into one
or more dimensions.

array expression . An expression whose evaluation
yields an array of values.

array of structures . An ordered collection of identical
structures specified by giving the dimension attribute to
a structure name.

array variable . A variable that represents an
aggregate of data items that must have identical
attributes. Contrast with structure variable.

ASCII. American National Standard Code for
Information Interchange.

assignment . The process of giving a value to a
variable.

asynchronous operation . (1) The overlap of an
input/output operation with the execution of statements.
(2) The concurrent execution of procedures using
multiple flows of control for different tasks.

attachment of a task . The invocation of a procedure
and the establishment of a separate flow of control to
execute the invoked procedure (and procedures it
invokes) asynchronously, with execution of the invoking
procedure.

attention . An occurrence, external to a task, that could
cause a task to be interrupted.

attribute . (1) A descriptive property associated with a
name to describe a characteristic represented. (2) A
descriptive property used to describe a characteristic of
the result of evaluation of an expression.

automatic storage allocation . The allocation of
storage for automatic variables.

automatic variable . A variable whose storage is
allocated automatically at the activation of a block and
released automatically at the termination of that block.

B
base . The number system in which an arithmetic value
is represented.

base element . A member of a structure or a union
that is itself not another structure or union.

base item . The automatic, controlled, or static variable
or the parameter upon which a defined variable is
defined.

based reference . A reference that has the based
storage class.

based storage allocation . The allocation of storage
for based variables.

based variable . A variable whose storage address is
provided by a locator. Multiple generations of the same
variable are accessible. It does not identify a fixed
location in storage.

begin-block . A collection of statements delimited by
BEGIN and END statements, forming a name scope. A
begin-block is activated either by the raising of a
condition (if the begin-block is the action specification
for an ON-unit) or through the normal flow of control,
including any branch resulting from a GOTO statement.

binary . A number system whose only numerals are 0
and 1.

binary digit . See bit.

binary fixed-point value . An integer consisting of
binary digits and having an optional binary point and
optional sign. Contrast with decimal fixed-point value.

binary floating-point value . An approximation of a
real number in the form of a significand, which can be
considered as a binary fraction, and an exponent, which
can be considered as an integer exponent to the base
of 2. Contrast with decimal floating-point value.

bit . (1) A 0 or a 1. (2) The smallest amount of space
of computer storage.

bit comparison . A left-to-right, bit-by-bit comparison of
binary digits. See also arithmetic comparison, character
comparison.

bit string constant . (1) A series of binary digits
enclosed in and followed immediately by the suffix B.
Contrast with character constant. (2) A series of
hexadecimal digits enclosed in single quotes and
followed by the suffix B4.

bit string . A string composed of zero or more bits.

 Glossary 503

bit string operators . The logical operators not and
exclusive-or (¬), and (&), and or (|).

bit value . A value that represents a bit type.

block . A sequence of statements, processed as a unit,
that specifies the scope of names and the allocation of
storage for names declared within it. A block can be a
package, procedure, or a begin-block.

bounds . The upper and lower limits of an array
dimension.

break character . The underscore symbol (_). It can
be used to improve the readability of identifiers. For
instance, a variable could be called
OLD_INVENTORY_TOTAL instead of
OLDINVENTORYTOTAL.

built-in function . A predefined function supplied by
the language, such as SQRT (square root).

built-in function reference . A built-in function name,
which has an optional argument list.

| built-in name . The entry name of a built-in subroutine.

| built-in subroutine . Subroutine that has an entry
| name that is defined at compile-time and is invoked by
| a CALL statement.

buffer . Intermediate storage, used in input/output
operations, into which a record is read during input and
from which a record is written during output.

C
call . To invoke a subroutine by using the CALL
statement or CALL option.

character comparison . A left-to-right,
character-by-character comparison according to the
collating sequence. See also arithmetic comparison, bit
comparison.

character string constant . A sequence of characters
enclosed in single quotes; for example,
'Shakespeare''s “Hamlet”'.

character set . A defined collection of characters. See
language character set and data character set. See
also ASCII and EBCDIC.

character string picture data . Picture data that has
only a character value. This type of picture data must
have at least one A or X picture specification character.
Contrast with numeric picture data.

closing (of a file) . The dissociation of a file from a
data set or device.

coded arithmetic data . Data items that represent
numeric values and are characterized by their base
(decimal or binary), scale (fixed-point or floating-point),
and precision (the number of digits each can have).
This data is stored in a form that is acceptable, without
conversion, for arithmetic calculations.

combined nesting depth . The deepest level of
nesting, determined by counting the levels of
PROCEDURE/BEGIN/ON, DO, SELECT, and
IF...THEN...ELSE nestings in the program.

comment . A string of zero or more characters used for
documentation that are delimited by /* and */.

commercial character .

� CR (credit) picture specification character
� DB (debit) picture specification character

comparison operator . An operator that can be used
in an arithmetic, string locator, or logical relation to
indicate the comparison to be done between the terms
in the relation. The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
¬= (not equal to)
¬> (not greater than)
¬< (not less than).

compile time . In general, the time during which a
source program is translated into an object module. In
PL/I, it is the time during which a source program can
be altered, if desired, and then translated into an object
program.

compiler options . Keywords that are specified to
control certain aspects of a compilation, such as: the
nature of the object module generated, the types of
printed output produced, and so forth.

complex data . Arithmetic data, each item of which
consists of a real part and an imaginary part.

composite operator . An operator that consists of
more than one special character, such as <=, **, and /*.

compound statement . A statement that contains
other statements. In PL/I, IF, ON, OTHERWISE, and
WHEN are the only compound statements. See
statement body.

concatenation . The operation that joins two strings in
the order specified, forming one string whose length is
equal to the sum of the lengths of the two original
strings. It is specified by the operator ||.

504 PL/I for MVS & VM Programming Guide

condition . An exceptional situation, either an error
(such as an overflow), or an expected situation (such as
the end of an input file). When a condition is raised
(detected), the action established for it is processed.
See also established action and implicit action.

condition name . Name of a PL/I-defined or
programmer-defined condition.

condition prefix . A parenthesized list of one or more
condition names prefixed to a statement. It specifies
whether the named conditions are to be enabled or
disabled.

connected aggregate . An array or structure whose
elements occupy contiguous storage without any
intervening data items. Contrast with nonconnected
aggregate.

connected reference . A reference to connected
storage. It must be apparent, prior to execution of the
program, that the storage is connected.

connected storage . Main storage of an uninterrupted
linear sequence of items that can be referred to by a
single name.

constant . (1) An arithmetic or string data item that
does not have a name and whose value cannot change.
(2) An identifier declared with the VALUE attribute.
(3) An identifier declared with the FILE or the ENTRY
attribute but without the VARIABLE attribute.

constant reference . A value reference which has a
constant as its object

contained block, declaration, or source text . All
blocks, procedures, statements, declarations, or source
text inside a begin, procedure, or a package block. The
entire package, procedure, and the BEGIN statement
and its corresponding END statements are not
contained in the block.

containing block . The package, procedure, or
begin-block that contains the declaration, statement,
procedure, or other source text in question.

contextual declaration . The appearance of an
identifier that has not been explicitly declared in a
DECLARE statement, but whose context of use allows
the association of specific attributes with the identifier.

control character . A character in a character set
whose occurrence in a particular context specifies a
control function. One example is the end-of-file (EOF)
marker.

control format item . A specification used in
edit-directed transmission to specify positioning of a
data item within the stream or printed page.

control variable . A variable that is used to control the
iterative execution of a DO statement.

controlled parameter . A parameter for which the
CONTROLLED attribute is specified in a DECLARE
statement. It can be associated only with arguments
that have the CONTROLLED attribute.

controlled storage allocation . The allocation of
storage for controlled variables.

controlled variable . A variable whose allocation and
release are controlled by the ALLOCATE and FREE
statements, with access to the current generation only.

conversion . The transformation of a value from one
representation to another to conform to a given set of
attributes. For example, converting a character string to
an arithmetic value such as FIXED BINARY (15,0).

cross section of an array . The elements represented
by the extent of at least one dimension of an array. An
asterisk in the place of a subscript in an array reference
indicates the entire extent of that dimension.

current generation . The generation of an automatic or
controlled variable that is currently available by referring
to the name of the variable.

D
DDM file . A &system. file that is associated with a
remote file that is accessed using DDM. The DDM file
provides the information needed for a local (source)
system to locate a remote (target) system and to
access the file at the target system where the requested
data is stored.

data . Representation of information or of value in a
form suitable for processing.

data aggregate . A data item that is a collection of
other data items.

data attribute . A keyword that specifies the type of
data that the data item represents, such as FIXED
BINARY.

data-directed transmission . The type of
stream-oriented transmission in which data is
transmitted. It resembles an assignment statement and
is of the form:

name = constant

data item . A single named unit of data.

data list . In stream-oriented transmission, a
parenthesized list of the data items used in GET and
PUT statements. Contrast with format list.

 Glossary 505

data set . (1) A collection of data external to the
program that can be accessed by reference to a single
file name. (2) A device that can be referenced.

data specification . The portion of a stream-oriented
transmission statement that specifies the mode of
transmission (DATA, LIST, or EDIT) and includes the
data list(s) and, for edit-directed mode, the format list(s).

data stream . Data being transferred from or to a data
set by stream-oriented transmission, as a continuous
stream of data elements in character form.

data transmission . The transfer of data from a data
set to the program or vice versa.

data type . A set of data attributes.

DBCS. In the character set, each character is
represented by two consecutive bytes.

deactivated . The state in which an identifier is said to
be when its value cannot replace a preprocessor
identifier in source program text. Contrast with active.

debugging . Process of removing bugs from a
program.

decimal . The number system whose numerals are 0
through 9.

decimal digit . One of the digits 0 through 9.

decimal digit picture character . The picture
specification character 9.

decimal fixed-point constant . A constant consisting
of one or more decimal digits with an optional decimal
point.

decimal fixed-point value . A rational number
consisting of a sequence of decimal digits with an
assumed position of the decimal point. Contrast with
binary fixed-point value.

decimal floating-point constant . A value made up of
a significand that consists of a decimal fixed-point
constant, and an exponent that consists of the letter E
followed by an optionally signed integer constant not
exceeding three digits.

decimal floating-point value . An approximation of a
real number, in the form of a significand, which can be
considered as a decimal fraction, and an exponent,
which can be considered as an integer exponent to the
base of 10. Contrast with binary floating-point value.

decimal picture data . See numeric picture data.

declaration . (1) The establishment of an identifier as
a name and the specification of a set of attributes

(partial or complete) for it. (2) A source of attributes of
a particular name.

default . Describes a value, attribute, or option that is
assumed when none has been specified.

defined variable . A variable that is associated with
some or all of the storage of the designated base
variable.

delimit . To enclose one or more items or statements
with preceding and following characters or keywords.

delimiter . All comments and the following characters:
percent, parentheses, comma, period, semicolon, colon,
assignment symbol, blank, pointer, asterisk, and single
quote. They define the limits of identifiers, constants,
picture specifications, iSUBs, and keywords.

descriptor . A control block that holds information
about a variable, such as area size, array bounds, or
string length.

digit . One of the characters 0 through 9.

dimension attribute . An attribute that specifies the
number of dimensions of an array and indicates the
bounds of each dimension.

disabled . The state of a condition in which no interrupt
occurs and no established action will take place.

do-group . A sequence of statements delimited by a
DO statement and ended by its corresponding END
statement, used for control purposes. Contrast with
block.

do-loop . See iterative do-group.

dummy argument . Temporary storage that is created
automatically to hold the value of an argument that
cannot be passed by reference.

dump . Printout of all or part of the storage used by a
program as well as other program information, such as
a trace of an error's origin.

E
EBCDIC. (Extended Binary-Coded Decimal
Interchange Code). A coded character set consisting of
8-bit coded characters.

edit-directed transmission . The type of
stream-oriented transmission in which data appears as
a continuous stream of characters and for which a
format list is required to specify the editing desired for
the associated data list.

506 PL/I for MVS & VM Programming Guide

element . A single item of data as opposed to a
collection of data items such as an array; a scalar item.

element expression . An expression whose evaluation
yields an element value.

element variable . A variable that represents an
element; a scalar variable.

elementary name . See base element.

enabled . The state of a condition in which the
condition can cause an interrupt and then invocation of
the appropriate established ON-unit.

entry constant . (1) The label prefix of a
PROCEDURE statement (an entry name). (2) The
declaration of a name with the ENTRY attribute but
without the VARIABLE attribute.

entry data . A data item that represents an entry point
to a procedure.

entry expression . An expression whose evaluation
yields an entry name.

entry name . (1) An identifier that is explicitly or
contextually declared to have the ENTRY attribute
(unless the VARIABLE attribute is given) or (2) An
identifier that has the value of an entry variable with the
ENTRY attribute implied.

entry point . A point in a procedure at which it can be
invoked. primary entry point and secondary entry point.

entry reference . An entry constant, an entry variable
reference, or a function reference that returns an entry
value.

entry variable . A variable to which an entry value can
be assigned. It must have both the ENTRY and
VARIABLE attributes.

entry value . The entry point represented by an entry
constant or variable; the value includes the environment
of the activation that is associated with the entry
constant.

environment (of an activation) . Information
associated with and used in the invoked block regarding
data declared in containing blocks.

environment (of a label constant) . Identity of the
particular activation of a block to which a reference to a
statement-label constant applies. This information is
determined at the time a statement-label constant is
passed as an argument or is assigned to a
statement-label variable, and it is passed or assigned
along with the constant.

established action . The action taken when a
condition is raised. See also implicit action and
ON-statement action.

epilogue . Those processes that occur automatically at
the termination of a block or task.

evaluation . The reduction of an expression to a single
value, an array of values, or a structured set of values.

| event . An activity in a program whose status and
| completion can be determined from an associated event
| variable.

| event variable . A variable with the EVENT attribute
| that can be associated with an event. Its value indicates
| whether the action has been completed and the status
| of the completion.

explicit declaration . The appearance of an identifier
(a name) in a DECLARE statement, as a label prefix, or
in a parameter list. Contrast with implicit declaration.

exponent characters . The following picture
specification characters:

1. K and E, which are used in floating-point picture
specifications to indicate the beginning of the
exponent field.

2. F, the scaling factor character, specified with an
integer constant that indicates the number of
decimal positions the decimal point is to be moved
from its assumed position to the right (if the
constant is positive) or to the left (if the constant is
negative).

expression . (1) A notation, within a program, that
represents a value, an array of values, or a structured
set of values; (2) A constant or a reference appearing
alone, or a combination of constants and/or references
with operators.

extended alphabet . The upper and lower case
alphabetic characters A through Z, $, @ and #, or those
specified in the NAMES compiler option.

extent . (1) The range indicated by the bounds of an
array dimension, by the length of a string, or by the size
of an area (2) The size of the target area if this area
were to be assigned to a target area.

external name . A name (with the EXTERNAL
attribute) whose scope is not necessarily confined only
to one block and its contained blocks.

external procedure . (1) A procedure that is not
contained in any other procedure. (2) A level-2
procedure contained in a package that is also exported.

extralingual character . Characters (such as $, @,
and #) that are not classified as alphanumeric or

 Glossary 507

special. This group includes characters that are
determined with the NAMES compiler option.

F
factoring . The application of one or more attributes to
a parenthesized list of names in a DECLARE statement,
eliminating the repetition of identical attributes for
multiple names

field (in the data stream) . That portion of the data
stream whose width, in number of characters, is defined
by a single data or spacing format item.

field (of a picture specification) . Any character-string
picture specification or that portion (or all) of a numeric
character picture specification that describes a
fixed-point number.

file . A named representation, within a program, of a
data set or data sets. A file is associated with the data
set(s) for each opening.

file constant . A name declared with the FILE attribute
but not the VARIABLE attribute.

file description attributes . Keywords that describe
the individual characteristics of each file constant. See
also alternative attribute and additive attribute.

file expression . An expression whose evaluation
yields a value of the type file.

file name . A name declared for a file.

file variable . A variable to which file constants can be
assigned. It has the attributes FILE and VARIABLE and
cannot have any of the file description attributes.

fixed-point constant . See arithmetic constant.

floating-point constant . See arithmetic constant.

flow of control . Sequence of execution.

format . A specification used in edit-directed data
transmission to describe the representation of a data
item in the stream (data format item) or the specific
positioning of a data item within the stream (control
format item).

format constant . The label prefix on a FORMAT
statement.

format data . A variable with the FORMAT attribute.

format label . The label prefix on a FORMAT
statement.

format list . In stream-oriented transmission, a list
specifying the format of the data item on the external
medium. Contrast with data list.

fully qualified name . A name that includes all the
names in the hierarchical sequence above the member
to which the name refers, as well as the name of the
member itself.

function (procedure) . (1) A procedure that has a
RETURNS option in the PROCEDURE statement.
(2) A name declared with the RETURNS attribute. It is
invoked by the appearance of one of its entry names in
a function reference and it returns a scalar value to the
point of reference. Contrast with subroutine.

function reference . An entry constant or an entry
variable, either of which must represent a function,
followed by a possibly empty argument list. Contrast
with subroutine call.

G
generation (of a variable) . The allocation of a static
variable, a particular allocation of a controlled or
automatic variable, or the storage indicated by a
particular locator qualification of a based variable or by
a defined variable or parameter.

generic descriptor . A descriptor used in a GENERIC
attribute.

generic key . A character string that identifies a class
of keys. All keys that begin with the string are
members of that class. For example, the recorded keys
“ABCD,” “ABCE,” and “ABDF,” are all members of the
classes identified by the generic keys “A” and “AB,” and
the first two are also members of the class “ABC”; and
the three recorded keys can be considered to be unique
members of the classes “ABCD,” “ABCE,” “ABDF,”
respectively.

generic name . The name of a family of entry names.
A reference to the generic name is replaced by the
entry name whose parameter descriptors match the
attributes of the arguments in the argument list at the
point of invocation.

group . A collection of statements contained within
larger program units. A group is either a do-group or a
select-group and it can be used wherever a single
statement can appear, except as an on-unit.

508 PL/I for MVS & VM Programming Guide

H
hex . See hexadecimal digit.

hexadecimal . Pertaining to a numbering system with a
base of sixteen; valid numbers use the digits 0 through
9 and the characters A through F, where A represents
10 and F represents 15.

hexadecimal digit . One of the digits 0 through 9 and
A through F. A through F represent the decimal values
10 through 15, respectively.

I
identifier . A string of characters, not contained in a
comment or constant, and preceded and followed by a
delimiter. The first character of the identifier must be
one of the 26 alphabetic characters and extralingual
characters, if any. The other characters, if any, can
additionally include extended alphabetic, digit, or the
break character.

IEEE. Institute of Electrical and Electronics Engineers.

implicit . The action taken in the absence of an explicit
specification.

implicit action . The action taken when an enabled
condition is raised and no ON-unit is currently
established for the condition. Contrast with
ON-statement action.

implicit declaration . A name not explicitly declared in
a DECLARE statement or contextually declared.

implicit opening . The opening of a file as the result of
an input or output statement other than the OPEN
statement.

infix operator . An operator that appears between two
operands.

inherited dimensions . For a structure, union, or
element, those dimensions that are derived from the
containing structures. If the name is an element that is
not an array, the dimensions consist entirely of its
inherited dimensions. If the name is an element that is
an array, its dimensions consist of its inherited
dimensions plus its explicitly declared dimensions. A
structure with one or more inherited dimensions is
called a nonconnected aggregate. Contrast with
connected aggregate.

input/output . The transfer of data between auxiliary
medium and main storage.

insertion point character . A picture specification
character that is, on assignment of the associated data
to a character string, inserted in the indicated position.
When used in a P-format item for input, the insertion
character is used for checking purposes.

integer . (1) An optionally signed sequence of digits or
a sequence of bits without a decimal or binary point.
(2) An optionally signed whole number, commonly
described as FIXED BINARY (p,0) or FIXED DECIMAL
(p,0).

integral boundary . A byte multiple address of any
8-bit unit on which data can be aligned. It usually is a
half-word, full-word, or double-word (2-, 4-, or 8-byte
multiple respectively) boundary.

interleaved array . An array that refers to
nonconnected storage.

interleaved subscripts . Subscripts that exist in levels
other than the lowest level of a subscripted qualified
reference.

internal block . A block that is contained in another
block.

internal name . A name that is known only within the
block in which it is declared, and possibly within any
contained blocks.

internal procedure . A procedure that is contained in
another block. Contrast with external procedure.

interrupt . The redirection of the program's flow of
control as the result of raising a condition or attention.

invocation . The activation of a procedure.

invoke . To activate a procedure.

invoked procedure . A procedure that has been
activated.

invoking block . A block that activates a procedure.

iteration factor . (1) In an INITIAL attribute
specification, an expression that specifies the number of
consecutive elements of an array that are to be
initialized with the given value. (2) In a format list, an
expression that specifies the number of times a given
format item or list of format items is to be used in
succession.

iterative do-group . A do-group whose DO statement
specifies a control variable and/or a WHILE or UNTIL
option.

 Glossary 509

K
key . Data that identifies a record within a direct-access
data set. See source key and recorded key.

keyword . An identifier that has a specific meaning in
PL/I when used in a defined context.

keyword statement . A simple statement that begins
with a keyword, indicating the function of the statement.

known (applied to a name) . Recognized with its
declared meaning. A name is known throughout its
scope.

L
label . (1) A name prefixed to a statement. A name on
a PROCEDURE statement is called an entry constant; a
name on a FORMAT statement is called a format
constant; a name on other kinds of statements is called
a label constant. (2) A data item that has the LABEL
attribute.

label constant . A name written as the label prefix of a
statement (other than PROCEDURE, ENTRY,
FORMAT, or PACKAGE) so that, during execution,
program control can be transferred to that statement
through a reference to its label prefix.

label data . A label constant or the value of a label
variable.

label prefix . A label prefixed to a statement.

label variable . A variable declared with the LABEL
attribute. Its value is a label constant in the program.

leading zeroes . Zeros that have no significance in an
arithmetic value. All zeros to the left of the first nonzero
in a number.

level number . A number that precedes a name in a
DECLARE statement and specifies its relative position
in the hierarchy of structure names.

level-one variable . (1) A major structure or union
name. (2) Any unsubscripted variable not contained
within a structure or union.

lexically . Relating to the left-to-right order of units.

list-directed . The type of stream-oriented transmission
in which data in the stream appears as constants
separated by blanks or commas and for which
formatting is provided automatically.

locator . A control block that holds the address of a
variable or its descriptor.

locator/descriptor . A locator followed by a descriptor.
The locator holds the address of the variable, not the
address of the descriptor.

locator qualification . In a reference to a based
variable, either a locator variable or function reference
connected by an arrow to the left of a based variable to
specify the generation of the based variable to which
the reference refers. It might be an implicit reference.

locator value . A value that identifies or can be used to
identify the storage address.

locator variable . A variable whose value identifies the
location in main storage of a variable or a buffer. It has
the POINTER or OFFSET attribute.

locked record . A record in an EXCLUSIVE DIRECT
UPDATE file that has been made available to one task
only and cannot be accessed by other tasks until the
task using it relinquishes it.

logical level (of a structure or union member) . The
depth indicated by a level number when all level
numbers are in direct sequence (when the increment
between successive level numbers is one).

logical operators . The bit-string operators not and
exclusive-or (¬), and (&), and or (|).

loop . A sequence of instructions that is executed
iteratively.

lower bound . The lower limit of an array dimension.

M
main procedure . An external procedure whose
PROCEDURE statement has the OPTIONS (MAIN)
attribute. This procedure is invoked automatically as
the first step in the execution of a program.

major structure . A structure whose name is declared
with level number 1.

member . A structure, union, or element name,
possibly dimensioned, in a structure or union.

minor structure . A structure that is contained within
another structure or union. The name of a minor
structure is declared with a level number greater than
one and greater than its parent structure or union.

mode (of arithmetic data) . An attribute of arithmetic
data. It is either real or complex.

multiple declaration . (1) Two or more declarations of
the same identifier internal to the same block without
different qualifications. (2) Two or more external
declarations of the same identifier.

510 PL/I for MVS & VM Programming Guide

multiprocessing . The use of a computing system with
two or more processing units to execute two or more
programs simultaneously.

multiprogramming . The use of a computing system to
execute more than one program concurrently, using a
single processing unit.

multitasking . A facility that allows a program to
execute more than one PL/I procedure simultaneously.

N
name . Any identifier that the user gives to a variable
or to a constant. An identifier appearing in a context
where it is not a keyword. Sometimes called a
user-defined name.

nesting . The occurrence of:

� A block within another block

� A group within another group

� An IF statement in a THEN clause or in an ELSE
clause

� A function reference as an argument of a function
reference

� A remote format item in the format list of a
FORMAT statement

� A parameter descriptor list in another parameter
descriptor list

� An attribute specification within a parenthesized
name list for which one or more attributes are being
factored.

nonconnected storage . Storage occupied by
nonconnected data items. For example, interleaved
arrays and structures with inherited dimensions are in
nonconnected storage.

null locator value . A special locator value that cannot
identify any location in internal storage. It gives a
positive indication that a locator variable does not
currently identify any generation of data.

null statement . A statement that contains only the
semicolon symbol (;). It indicates that no action is to be
taken.

null string . A character, graphic, or bit string with a
length of zero.

numeric-character data . See decimal picture data.

numeric picture data . Picture data that has an
arithmetic value as well as a character value. This type
of picture data cannot contain the characters “A” or “X.”

O
object . A collection of data referred to by a single
name.

offset variable . A locator variable with the OFFSET
attribute, whose value identifies a location in storage
relative to the beginning of an area.

ON-condition . An occurrence, within a PL/I program,
that could cause a program interrupt. It can be the
detection of an unexpected error or of an occurrence
that is expected, but at an unpredictable time.

ON-statement action . The action explicitly established
for a condition that is executed when the condition is
raised. When the ON-statement is encountered in the
flow of control for the program, it executes, establishing
the action for the condition. The action executes when
the condition is raised if the ON-unit is still established
or a RESIGNAL statement re-establishes it. Contrast
with implicit action.

ON-unit . The specified action to be executed when the
appropriate condition is raised.

opening (of a file) . The association of a file with a
data set.

operand . The value of an identifier, constant, or an
expression to which an operator is applied, possibly in
conjunction with another operand.

operational expression . An expression that consists
of one or more operators.

operator . A symbol specifying an operation to be
performed.

option . A specification in a statement that can be used
to influence the execution or interpretation of the
statement.

P
package constant . The label prefix on a PACKAGE
statement.

packed decimal . The internal representation of a
fixed-point decimal data item.

padding . (1) One or more characters, graphics, or bits
concatenated to the right of a string to extend the string
to a required length. (2) One or more bytes or bits
inserted in a structure or union so that the following
element within the structure or union is aligned on the
appropriate integral boundary.

 Glossary 511

parameter . A name in the parameter list following the
PROCEDURE statement, specifying an argument that
will be passed when the procedure is invoked.

parameter descriptor . The set of attributes specified
for a parameter in an ENTRY attribute specification.

parameter descriptor list . The list of all parameter
descriptors in an ENTRY attribute specification.

parameter list . A parenthesized list of one or more
parameters, separated by commas and following either
the keyword PROCEDURE in a procedure statement or
the keyword ENTRY in an ENTRY statement. The list
corresponds to a list of arguments passed at invocation.

partially qualified name . A qualified name that is
incomplete. It includes one or more, but not all, of the
names in the hierarchical sequence above the structure
or union member to which the name refers, as well as
the name of the member itself.

picture data . Numeric data, character data, or a mix
of both types, represented in character form.

picture specification . A data item that is described
using the picture characters in a declaration with the
PICTURE attribute or in a P-format item.

picture specification character . Any of the
characters that can be used in a picture specification.

PL/I character set . A set of characters that has been
defined to represent program elements in PL/I.

point of invocation . The point in the invoking block at
which the reference to the invoked procedure appears.

pointer . A type of variable that identifies a location in
storage.

pointer value . A value that identifies the pointer type.

pointer variable . A locator variable with the POINTER
attribute that contains a pointer value.

precision . The number of digits or bits contained in a
fixed-point data item, or the minimum number of
significant digits (excluding the exponent) maintained for
a floating-point data item.

prefix . A label or a parenthesized list of one or more
condition names included at the beginning of a
statement.

prefix operator . An operator that precedes an
operand and applies only to that operand. The prefix
operators are plus (+), minus (−), and not (¬).

preprocessor . A program that examines the source
program before the compilation takes place.

preprocessor statement . A special statement
appearing in the source program that specifies the
actions to be performed by the preprocessor. It is
executed as it is encountered by the preprocessor.

primary entry point . The entry point identified by any
of the names in the label list of the PROCEDURE
statement.

| priority . A value associated with a task, that specifies
| the precedence of the task relative to other tasks.

problem data . Coded arithmetic, bit, character,
graphic, and picture data.

problem-state program . A program that operates in
the problem state of the operating system. It does not
contain input/output instructions or other privileged
instructions.

procedure . A collection of statements, delimited by
PROCEDURE and END statements. A procedure is a
program or a part of a program, delimits the scope of
names, and is activated by a reference to the procedure
or one of its entry names. See also external procedure
and internal procedure.

procedure reference . An entry constant or variable. It
can be followed by an argument list. It can appear in a
CALL statement or the CALL option, or as a function
reference.

program . A set of one or more external procedures or
packages. One of the external procedures must have
the OPTIONS(MAIN) specification in its procedure
statement.

program control data . Area, locator, label, format,
entry, and file data that is used to control the
processing of a PL/I program.

prologue . The processes that occur automatically on
block activation.

pseudovariable . Any of the built-in function names
that can be used to specify a target variable. It is
usually on the left-hand side of an assignment
statement.

Q
qualified name . A hierarchical sequence of names of
structure or union members, connected by periods,
used to identify a name within a structure. Any of the
names can be subscripted.

512 PL/I for MVS & VM Programming Guide

R
range (of a default specification) . A set of identifiers
and/or parameter descriptors to which the attributes in a
DEFAULT statement apply.

record . (1) The logical unit of transmission in a
record-oriented input or output operation. (2) A
collection of one or more related data items. The items
usually have different data attributes and usually are
described by a structure or union declaration.

recorded key . A character string identifying a record
in a direct-access data set where the character string
itself is also recorded as part of the data.

record-oriented data transmission . The transmission
of data in the form of separate records. Contrast with
stream data transmission.

recursive procedure . A procedure that can be called
from within itself or from within another active
procedure.

reentrant procedure . A procedure that can be
activated by multiple tasks, threads, or processes
simultaneously without causing any interference
between these tasks, threads, and processes.

REFER expression . The expression preceding the
keyword REFER, which is used as the bound, length, or
size when the based variable containing a REFER
option is allocated, either by an ALLOCATE or LOCATE
statement.

REFER object . The variable in a REFER option that
holds or will hold the current bound, length, or size for
the member. The REFER object must be a member of
the same structure or union. It must not be
locator-qualified or subscripted, and it must precede the
member with the REFER option.

reference . The appearance of a name, except in a
context that causes explicit declaration.

relative virtual origin (RVO) . The actual origin of an
array minus the virtual origin of an array.

remote format item . The letter R followed by the label
(enclosed in parentheses) of a FORMAT statement.
The format statement is used by edit-directed data
transmission statements to control the format of data
being transmitted.

repetition factor . A parenthesized unsigned integer
constant that specifies:

1. The number of times the string constant that follows
is to be repeated.

2. The number of times the picture character that
follows is to be repeated.

repetitive specification . An element of a data list that
specifies controlled iteration to transmit one or more
data items, generally used in conjunction with arrays.

restricted expression . An expression that can be
evaluated by the compiler during compilation, resulting
in a constant. Operands of such an expression are
constants, named constants, and restricted expressions.

returned value . The value returned by a function
procedure.

RETURNS descriptor . A descriptor used in a
RETURNS attribute, and in the RETURNS option of the
PROCEDURE and ENTRY statements.

S
scalar variable . A variable that is not a structure,
union, or array.

scale . A system of mathematical notation whose
representation of an arithmetic value is either fixed-point
or floating-point.

scale factor . A specification of the number of
fractional digits in a fixed-point number.

scaling factor . See scale factor.

scope (of a condition prefix) . The portion of a
program throughout which a particular condition prefix
applies.

scope (of a declaration or name) . The portion of a
program throughout which a particular name is known.

secondary entry point . An entry point identified by
any of the names in the label list of an entry statement.

select-group . A sequence of statements delimited by
SELECT and END statements.

selection clause . A WHEN or OTHERWISE clause of
a select-group.

self-defining data . An aggregate that contains data
items whose bounds, lengths, and sizes are determined
at program execution time and are stored in a member
of the aggregate.

separator . See delimiter.

| shift . Change of data in storage to the left or to the
| right of original position.

 Glossary 513

| shift-in . Symbol used to signal the compiler at the end
| of a double-byte string.

| shift-out . Symbol used to signal the compiler at the
| beginning of a double-byte string.

sign and currency symbol characters . The picture
specification characters. S, +, −, and $ (or other national
currency symbols enclosed in < and >).

simple parameter . A parameter for which no storage
class attribute is specified. It can represent an
argument of any storage class, but only the current
generation of a controlled argument.

simple statement . A statement other than IF, ON,
WHEN, and OTHERWISE.

| source . Data item to be converted for problem data.

source key . A key referred to in a record-oriented
transmission statement that identifies a particular record
within a direct-access data set.

source program . A program that serves as input to
the source program processors and the compiler.

source variable . A variable whose value participates
in some other operation, but is not modified by the
operation. Contrast with target variable.

standard default . The alternative attribute or option
assumed when none has been specified and there is no
applicable DEFAULT statement.

standard file . A file assumed by PL/I in the absence
of a FILE or STRING option in a GET or PUT
statement. SYSIN is the standard input file and
SYSPRINT is the standard output file.

standard system action . Action specified by the
language to be taken for an enabled condition in the
absence of an on-unit for that condition.

statement . A PL/I statement, composed of keywords,
delimiters, identifiers, operators, and constants, and
terminated by a semicolon (;). Optionally, it can have a
condition prefix list and a list of labels. See also
keyword statement, assignment statement, and null
statement.

statement body . A statement body can be either a
simple or a compound statement.

statement label . See label constant.

static storage allocation . The allocation of storage for
static variables.

static variable . A variable that is allocated before
execution of the program begins and that remains
allocated for the duration of execution.

stream-oriented data transmission . The transmission
of data in which the data is treated as though it were a
continuous stream of individual data values in character
form. Contrast with record-oriented data transmission.

string . A contiguous sequence of characters, graphics,
or bits that is treated as a single data item.

string variable . A variable declared with the BIT,
CHARACTER, or GRAPHIC attribute, whose values can
be either bit, character, or graphic strings.

structure . A collection of data items that need not
have identical attributes. Contrast with array.

structure expression . An expression whose
evaluation yields a structure set of values.

structure of arrays . A structure that has the
dimension attribute.

structure member . See member.

structuring . The hierarchy of a structure, in terms of
the number of members, the order in which they
appear, their attributes, and their logical level.

subroutine . A procedure that has no RETURNS
option in the PROCEDURE statement. Contrast with
function.

subroutine call . An entry reference that must
represent a subroutine, followed by an optional
argument list that appears in a CALL statement.
Contrast with function reference.

subscript . An element expression that specifies a
position within a dimension of an array. If the subscript
is an asterisk, it specifies all of the elements of the
dimension.

subscript list . A parenthesized list of one or more
subscripts, one for each dimension of the array, which
together uniquely identify either a single element or
cross section of the array.

| subtask . A task that is attached by the given task or
| any of the tasks in a direct line from the given task to
| the last attached task.

synchronous . A single flow of control for serial
execution of a program.

514 PL/I for MVS & VM Programming Guide

T
| target . Attributes to which a data item (source) is
| converted.

target reference . A reference that designates a
receiving variable (or a portion of a receiving variable).

target variable . A variable to which a value is
assigned.

| task . The execution of one or more procedures by a
| single flow of control .

| task name . An identifier used to refer to a task
| variable.

| task variable . A variable with the TASK attribute
| whose value gives the relative priority of a task.

termination (of a block) . Cessation of execution of a
block, and the return of control to the activating block by
means of a RETURN or END statement, or the transfer
of control to the activating block or to some other active
block by means of a GO TO statement.

| termination (of a task) . Cessation of the flow of
| control for a task.

truncation . The removal of one or more digits,
characters, graphics, or bits from one end of an item of
data when a string length or precision of a target
variable has been exceeded.

type . The set of data attributes and storage attributes
that apply to a generation, a value, or an item of data.

U
undefined . Indicates something that a user must not
do. Use of a undefined feature is likely to produce
different results on different implementations of a PL/I
product. In that case, the application program is
considered to be in error.

union . A collection of data elements that overlay each
other, occupying the same storage. The members can
be structures, unions, elementary variables, or arrays.
They need not have identical attributes.

union of arrays . A union that has the DIMENSION
attribute.

upper bound . The upper limit of an array dimension.

V
value reference . A reference used to obtain the value
of an item of data.

variable . A named entity used to refer to data and to
which values can be assigned. Its attributes remain
constant, but it can refer to different values at different
times.

variable reference . A reference that designates all or
part of a variable.

virtual origin (VO) . The location where the element of
the array whose subscripts are all zero are held. If
such an element does not appear in the array, the
virtual origin is where it would be held.

Z
zero-suppression characters . The picture
specification characters Z and *, which are used to
suppress zeros in the corresponding digit positions and
replace them with blanks or asterisks respectively.

 Glossary 515

 Index

Special Characters
*PROCESS, specifying options in 28
%INCLUDE statement, incorporating source code into

program 62
%PATHCODE value associated with hook,

querying 271
%PROCESS, specifying options in 28

A
abbreviation

compile-time option 5
abend

ABEND80A 69
during in-line input/output 151

access
ESDS 231
indexed data set 179

direct access 181
sequential access 180

regional data set 208
REGIONAL(1) data set 192, 194

direct access 193
sequential access 193

REGIONAL(2) data set 198
direct access 199
directly 200
sequential access 199
sequentially 201

REGIONAL(3) data set 204
direct access 205
directly 206
sequential access 204
sequentially 207

relative-record data set 252
access method service

AMSERV command 83
accessing data sets by a single statement 340
ACCT EXEC statement parameter 54
activating hooks

in compiled programs 265—266
using IBMBHKS 265—266

actual
task hierarchy 427

ADDBUFF option
ENVIRONMENT option 111
indexed data set 169

adding records for indexed data set 168
ADDR

ESD heading 42

address parameter 32
addresses

area length 381
area starting 381
argument list 373
array descriptor 381
start of the array or structure 381
strings 383
structure descriptor 381

aggregate
AGGREGATE option 8
length table 38

aggregate locators
array descriptor addresses 381
array starting addresses 381
contents of 381
format of 381
structure descriptor addresses 381
structure starting addresses 381

aggregates, locator 381
aliased variables

inhibiting optimization 318
optimization, inhibiting 318

ALIGNED attribute 325
ALL option

hooks location suboption 26
ALLOCATE statement 39
allocating, registers, effect of REORDER option 315,

317
allocation

base register for branch instructions 311
data sets for compilation 57
of buffers 339

alternate index path
KSDS 242, 246
nonunique key 240

ESDS 241
VSAM 242

unique key
VSAM 240

VSAM 223
ESDS 242, 243
KSDS 243
process 218

alternative MAIN, invocation of 398
American National Standard (ANS) control

characters 16
AMP parameter 211
AMSERV command 83
analyzing CPU-time usage (example)

discussion of programs 288
output from 288—289

516 Copyright IBM Corp. 1964, 1995

analyzing CPU-time usage (example) (continued)
setup for 288
source code for 290—304

apparent task hierarchy 427
applications

tuning
for virtual storage system 307, 308
source code 305

area descriptors
concatenation with array descriptor 382
in structure descriptors 382

area locator/descriptors
area length addresses 381
area starting addresses 381
area variables in 382
contents of 381
format of 382

AREA ON-unit, avoiding indefinite loop 345
area variables

in area locator/descriptors 382
areas

length addresses 381
locator/descriptor 381
overflow 167
prime data 167
starting addresses 381

argument lists
addresses of 373
storage for 373

arguments
data descriptors 373
passing 373
sort program 355

array descriptors
bounds components 383
concatenation of string or area descriptor with 382
contents of 382
format of

with CMPAT(V1) option 382
with CMPAT(V2) option 382

multiplier components 383
relative virtual origin component 383

array elements
inhibiting optimization 319
multiplication operations

loop optimization 310, 312
optimization by repeated addition 310, 312

optimization of subscript expressions 311
array of areas

concatenation of area descriptor with array
descriptor 382

array of strings
concatenation of string descriptor with array

descriptor 382
array subscripts

FIXED BINARY data type 324

array subscripts (continued)
optimization of constants in expressions 311

arrays
array arithmetic 327
array descriptors, contents of 382
assignments, optimization of 313
base element offsets 384
common control data, elimination of 313
dimension multiplier 382
element assignments 313
elimination of common control data 313
initialization, optimization of 313
names in data list 342
of structures

aggregate locators for 385
structure descriptors for 385

optimization of
element assignments 313
initialization 313

relative virtual origin (RVO) 382
restriction on INITIAL attribute 333
storage location 381

arrays, first element of, unaligned bit string
restriction 339

ASCII 154
ENVIRONMENT option 111
option of ENVIRONMENT

comparison with DCB subparameter 113
for stream I/O 130

records 106
assembler routines

argument list addresses
table of 373
with OPTIONS(ASSEMBLER) attribute 374
without OPTIONS(ASSEMBLER) attribute 374

calls from PL/I to 374
descriptors 373
invoking 374
invoking the compiler 32

ddname list 33
option list 33
page number 33

locators 373
OPTIONS(ASSEMBLER) attribute 374
passing arguments and receiving parameters 374
passing pointers 375
recursive 332
simulating a function reference 374

assignments
array and structure, optimized 313

associating
data sets with files 99
data sets with one file 102
files with one data set 101

ATTACH macro instruction 32

 Index 517

attention handler, return code 412
attention interrupt

effect under interactive system 13
ATTENTION ON-units 437
attention processing

ATTENTION ON-units 437
debugging tool 437
main description 436
passing control to PLITEST 437

attention router
preinitialized program 413

example of 413
return/reason codes 412

attention router service routine
preinitialized program 412

attribute table 37
attribute table description 79
ATTRIBUTES option 8
automatic

padding 88, 91
restart

after system failure 440
checkpoint/restart facility 438
within a program 441

variable location 15
automatic prompting

overriding 87, 90
using 86, 90

AUTOMATIC variables, allocation of 333
automatic variables, storage allocation for 331
auxiliary storage for sort 355

B
background region 63
background region, running jobs in 63
backward reading with ESDS
BACKWARDS attribute 158
base register allocation for branch instructions 311
based and controlled variables, assigning storage

classes for a virtual storage system 307
based variables

inhibiting optimization 318
optimization, inhibiting 318

batched compilation
examples of 71
JCL 70
MVS 55, 64
problems with OBJECT, MDECK, and DECK 69
return code 70
storage abend 69
VM 78

BEGIN statement 38
begin-blocks, effect of ORDER option on 316
BINARYVALUE 14

bit string arrays
bit offset of 383

bit strings
eight-bit multiples 324
used as logical switches 324

BKWD option 111, 220
BLKSIZE 108, 115

consecutive data sets 156, 157
DCB subparameter

indexed data set 174
ENVIRONMENT 111

for record I/O 115
option of ENVIRONMENT

comparison with DCB subparameter 113
for stream I/O 130

BLOCK hooks location suboption 26
block information control block

layout of 270
specifying pointer to 268

block size 116
consecutive data sets 156
indexed data sets 173
object module 65
PRINT files 139
record length 116
regional data sets 209
specifying 103

blocks
nested, declaring arithmetic variables 316
querying block number 271

blocks and records 103
branch instructions, base register allocation 311
BUFFERS 130
BUFFERS option 111, 117, 258

comparison with DCB subparameter 113
for stream I/O 130

buffers, allocation of 339
BUFND option 220
BUFND option of ENVIRONMENT 111
BUFNI option 220
BUFNI option of ENVIRONMENT 111
BUFNO DCB subparameter

consecutive data set 157
indexed data set 174

BUFNO subparameter 108
BUFOFF 155
BUFOFF option of ENVIRONMENT 111

comparison with DCB subparameter 113
for stream I/O 130

BUFSP option 221
BUFSP option of ENVIRONMENT 111
built-in functions

in-line code for 314
BY expression

bounds of, computation 334
computation of bounds 334

518 PL/I for MVS & VM Programming Guide

BYVALUE option 378

C
CALL extended parameter list request 389
CALL macro instruction 32
CALL statement

multitasking 423
EVENT option 423
PRIORITY option 424
TASK option 423

callable services
IBMBHKS 265
IBMBSIR 267
IBMHSIR 271

calling
sort program 355

establishing data sets 358
capacity record

REGIONAL(1) 191
REGIONAL(2) 197
REGIONAL(3) 202

case for record files 146
case for stream files 145
cataloged procedure

multitasking 53
cataloged procedures

compile and link-edit 48
compile only 47
compile, input data for 50
compile, link-edit, and run 50
compile, load and run 51
description of 46
invoking 52
listing 52
modifying

DD statement 55
EXEC statement 54

multiple invocations 52
under MVS

IBM-supplied 46
to invoke 52
to modify 54

CEEBINT
analyzing CPU-time usage example

source code for 290—296
uses of 288

code coverage example
source code for 274—279
uses of 272

function trace example
source code for 285—286
uses of 284

use with IBMBHIR 265, 272
use with IBMBHKS 265, 272
use with IBMBSIR 265, 272

CEEBINT (continued)
using hook exit in 265, 272

CEEFMAIN
control section 43

CEESTART
ESD entry 42

character string attribute table 37
checkpoint data set for sort 360
checkpoint data, defining, PLICKPT built-in

suboption 440
checkpoint record, PLICKPT built-in subroutine 439
checkpoint/restart

CALL PLIREST statement 441
checkpoint data set 440
deferred restart 441
description of 438
modify activity 441
PLICANC statement 441
PLICKPT built-in subroutine 438
request checkpoint record 439
request restart 440
RESTART parameter 441
return codes 439

CHKPT sort option 353
choosing type of sort 349
CICS, compiling transactions in PL/I 72
CKPT sort option 353
CLOSE statement 424
CLOSE statements, specifying more than one file 340
CMPAT

compile-time option 8
CMPAT(V1) option

format of array descriptor with 382
CMPAT(V2) option

declaring control variables 335
format of array descriptor with 382

COBOL
COBOL option 120
data interchange 120
map structure 39
mapped structure, compiler listing 39
option of the ENVIRONMENT attribute 111

VSAM data sets 219
structures in aggregate length table 39

code
coverage, checking via the hook exit 272
for program branches 311
in-line

for built-in functions 314
for conversions 314
for record I/O 314
for string manipulation 314

CODE subparameter 108
consecutive data set 157

common area ESD entry 41

 Index 519

common constants
elimination of 311
optimization of 311

common control data
elimination of 313

common expression
definition of 309
elimination of 309
example of 309

common expression elimination 309, 318, 319, 320
compatibility

arrays, AREAS, aggregates
using CMPAT 8

fullword subscript 8
object 8
version 1 8
VSAM interface 225

compilation, and size of programs 331
compile and link-edit, input data for 48
COMPILE option 10
compile-time options

abbreviations 5
AGGREGATE 8
ATTRIBUTES 8
CMPAT 8
COMPILE 10
CONTROL 10
DECK 10
default 5
description of 5
ESD 11
FLAG 11
GONUMBER 11
GONUMBER, storage requirements for 306
GOSTMT 12
GOSTMT, storage requirements for 306
GRAPHIC 12
IMPRECISE 12
INCLUDE 13
INSOURCE 13
INTERRUPT 13
LANGLVL 14
LINECOUNT 14
LIST 14
LMESSAGE 15
MACRO 15
MAP 15
MARGINI 16
MARGINS 16
MDECK 17
NAME 17
NEST 18
NUMBER 18
OBJECT 19
OFFSET 19
OPTIMIZE 20

compile-time options (continued)
OPTIONS 20
SEQUENCE 21
SIZE 22
SMESSAGE 23
SOURCE 23
STMT 23
STORAGE 23
SYNTAX 24
SYSTEM 24
TERMINAL 25
TEST 26
XREF 27

compiler
% statements

description of 32
using 32

check out program option 78
correcting errors 71, 78
data sets 58
DBCS identifier 12
ddname list 33
descriptions of options 5
error correction 78
EXEC statement 64
from an assembler routine 32
general description of 55
graphic string constant 12
input record format 28
input record limit 16
invoking from an assembler routine 32
JCL statements, using 64
limit storage size 22
listing

aggregate length table 38
attribute table 37
block level 36
COBOL mapped structure 39
cross-reference table 37
DO-level 36
error messages 11
external symbol dictionary (ESD) 41
heading information 34
include source program 13
input to compiler 34
input to preprocessor 34
main storage requirement 23
messages 44
number of lines per page 14
object module 44
printing options 62, 67
return codes 45
SOURCE program 23, 34
statement offset addresses 40
static internal storage map 43
storage requirements 39
SYSPRINT 67

520 PL/I for MVS & VM Programming Guide

compiler (continued)
listing (continued)

TSO 55, 62
using 33
variable offset map 43

minimum region size
mixed string constant 12
option list 33
passing address parameters to 32
PLIOPT command 73
preprocessor 29
PROCESS statement 28
reduce storage requirement 20
reinstate options deleted from installation 10
severity of error condition 10
suppressing in the case of error 79
temporary workfile (SYSUT1) 66
under MVS 56
under MVS batch 64
under TSO 56
under VM 73
VM to run under MVS 77

compiler listings
directing to data set 62
source listing at terminal 62

compiler page numbering 33
compiler, MVS/XA 71
compiling

CICS transactions in PL/I 72
under TSO

data sets 57
PLI command 56, 59

complex expressions, rules for precision 325
concatenating

data sets 102
external references 100

COND EXEC statement parameter 54
condition handling

common expression elimination 320
performance improvement 344
teleprocessing data sets 260

conditional
compilation 10
subparameter 108

conditions
disabled, required processing 344
disabling debugging 344
teleprocessing 260

consecutive data sets
controlling input from the terminal

capital and lowercase letters 145
conditions format 143
COPY option of GET statement 145
end-of-file 145
format of data 143
stream and record files 144
using files conversationally 143

consecutive data sets (continued)
controlling output to the terminal

capital and lowercase letters 146
conditions 145
example of 146
format of PRINT files 145
output from the PUT EDIT command 146
stream and record files 146

defining and using 129
input from the terminal 143
output to the terminal 145
record-oriented data transmission

accessing and updating a data set 157
creating a data set 156
defining files 150
specifying ENVIRONMENT options 150
statements and options allowed 149

record-oriented I/O 149
stream-oriented data transmission 129

accessing a data set 136
creating a data set 132
defining files 130
specifying ENVIRONMENT options 130
using PRINT files 138
using SYSIN and SYSPRINT files 142

CONSECUTIVE data sets, generating in-line code 340
CONSECUTIVE file

adapting for VSAM 226
compatibility with VSAM 224

CONSECUTIVE option 130, 151
constant exponents, replacement of 311
constant expressions

optimization of 311
replacement of 311

constant multipliers, replacement of 311
constants

common
elimination of 311
optimization of 311

exponents, optimization of 311
expressions

optimization of 311
transferring outside of loops 312

multipliers, optimization of 311
optimization of common constants 311
optimization of constant exponents 311
optimization of constant expressions 311
optimization of constant multipliers 311
statements, transferring outside of loops 312

continuation line for compile-time options 68
control

areas 212
characters 138
CONTROL option

compile-time 10
EXEC statement 68

 Index 521

control (continued)
intervals 212

control blocks
descriptors 380
locators 380

control characters, restriction on use 325
control data, common, elimination of 313
controlled variables

area sizes of 333
array bounds of 333
string lengths of 333

conversational
using files 143

conversational programs, creating 89
conversions

avoiding, use of additional variables for 326
conversions, in-line code for 314
coordination for multitasking 424
COPY option

GET statement 145
correcting error conditions, effect of REORDER option

on 317
corresponding data sets 106
creating

REGIONAL(1) data set 191, 192
REGIONAL(2) data set 197, 198
REGIONAL(3) data set 202, 203

cross-reference table 36, 37
description of 79

CTLASA and CTL360 152
ENVIRONMENT option 111

comparison with DCB subparameter 113
for consecutive data sets 152
SCALARVARYING 121

cylinder
index 166
overflow area 167, 177

CYLOFL subparameter 108
indexed data set 174
overflow area 177

D
D option of ENVIRONMENT

for stream I/O 130
D-format and DB-format records 155
D-format records 155
data

conversion for performance improvement 329
declarations, external 332
descriptors

data element descriptors 380
descriptors and locators 380
passing arguments and returned values 373
terminology 380

elements for performance improvement 323

data (continued)
external declarations 332
relation to locators and descriptors 380
share between tasks 425
sort program 360

description of 348
PLISRT(x) command 365

sorting 348
data conversions

arithmetic, allowable picture characters for in-line
operations 329

in-line operations for
allowable picture characters for arithmetic 329
table of 329

performed in-line 329
table of 329

data lists, matched with format lists in edit-directed
transmission 315

data sets
adapt existing program

CONSECUTIVE file 226
INDEXED file 226
REGIONAL(1) file 226

allocating for compilation 57
alternate index path with a file 211
ASCII 106
associating data sets with files 99
associating one data set with several files 101
associating PL/I files with

closing a file 110
opening a file 109
specifying characteristics in the ENVIRONMENT

attribute 110
associating several data sets with one file 102
blocks 103
blocks and records 103
checkpoint 440

defining 440
closing 110
concatenating several 102
conditional subparameter characteristics 108
consecutive 129
consecutive stream-oriented data 129
containing secondary input, allocating 63
data set control block (DSCB) 107
data sets

alternate index paths 223
blocking 212
choosing a type 216
defining files for 218
dummy data set 217
file attribute 218
keys for 215
performance options 223
running a program with 211
specifying ENVIRONMENT options 219
types of 214

522 PL/I for MVS & VM Programming Guide

data sets (continued)
ddnames 64
defining data sets 99
defining for dumps

DD statement 387
logical record length 387

defining relative-record 249
direct 106, 107
dissociating from a file 110
dissociating from PL/I file 102
establishing characteristics 102
files defined for non-VSAM data set

adapting existing programs 225
compatibility interface 225
CONSECUTIVE files 224
INDEXED files 224
several files in one VSAM data set 226
shared data sets 227

independent overflow area 177
indexed 172

defining and using 163
master index 178
name 175
overflow area 177
record format 175
sequential 106

indexed data set
load statement and options 232

information interchange codes 103
input in cataloged procedures 46
label modification 109
labels 107

in library data sets 123
libraries

extracting information 128
SPACE parameter 124
types of 123
updating 125
use 123

mass sequential insert 238
master index 178
organization

conditional subparameters 108
data definition (DD) statement 107
labels 107
types of 106

OS-simulated 82
partitioned 123
PLI command to name 59
record format defaults 113
record formats

fixed-length 104
undefined-length 106
variable-length 104

records 103
regional 185

data sets (continued)
REGIONAL, key handling optimization 314
REGIONAL(1) 190

accessing and updating 192
creating 191

REGIONAL(2) 195
accessing and updating 198
creating 197
keys 195

REGIONAL(3) 202
accessing and updating 204
creating 202

relative-record data set 249
sequential 106
sort program 358

checkpoint data set 360
input data set 359
output data set 359
sort work data set 359
SORTWK 355

source statement library 67
SPACE parameter 64
stream files 129
teleprocessing

define file 257
ENVIRONMENT options 257

temporary 66
to establish characteristics 102
TRANSIENT 107, 256
types of

comparison 122
organization 106
used by PL/I record I/O 121

unlabeled 107
using 99
VSAM

data set type 216
defining 227
defining files 218
keys 215
running a program 211
several files in one data set 226

VSAM option 223
DATE built-in function 338
DB option of ENVIRONMENT

for stream I/O 130
DB-format records 155
DBCS identifier compilation 12
DBCSOS ordering product 37

under MVS 23
under VM 22

DCB subparameter 110, 113
consecutive data sets 157
equivalent ENVIRONMENT options 113
indexed data set 174
main discussion of 108

 Index 523

DCB subparameter (continued)
overriding in cataloged procedure 55
regional data set 210

DD statement 107, 133, 136
%INCLUDE 31
add to cataloged procedure 55
AMP parameter 211
cataloged procedure, modifying 55
checkpoint/restart 439
create a library 124
indexed data set 173, 175, 182
input data set in cataloged procedure 46
JOBLIB 262
modify cataloged procedure 55
modifying cataloged procedure 54
MVS batched compilation 64
OPTCD keyword 225
parameters for stream I/O 132
RECFM keyword 225
regional data set 208
separate, for index, prime, and overflow areas 172
standard data set 64

input (SYSIN or SYSCIN) 65
output (SYSLIN, SYSPUNCH) 65

ddname
%INCLUDE 31
list 33
standard data sets 64

deblocking of records 103
debugging aids, effect on storage consumption and

execution time 305
decimal constants, precision of 338
DECK option 10

problems in batched compilation 69
declaration of files 99
declarations, external 332
DECLARE statement 38
DECLARE statements, global optimization of

variables 316
defactorization 311
default

compile-time option 5
deferred restart 441
define data set 99, 109

associating several data sets with one file 102
associating several files with one data set 101
closing a file 110
concatenating several data sets 102
ENVIRONMENT attribute 110
ESDS 230
opening a file 109
specifying characteristics 110

define file 99, 109, 169
associating several data sets with one file 102
associating several files with one data set 101
closing a file 110

define file (continued)
concatenating several data sets 102
ENVIRONMENT attribute 110
indexed data set

ENV options 169
opening a file 109
regional data set 188

ENV options 188
keys 190

specifying characteristics 110
VSAM data set 218

delete routine, return code 406
delete service routine 406

user-defined
example of 407

DEN subparameter 108
consecutive data set 157

depth of replacement maximum 29
descriptors

base elements of structures 384
contents 380
data types and structures for 380
description of 380

DFSORT 348
DFSORT VM 348
diagnostic messages

compiler, detecting errors 78
preprocessor, detecting errors 78

dimension multiplier 382
direct access

indexed data set 181
REGIONAL(1) data set 193
REGIONAL(2) data set 199
REGIONAL(3) data set 205

direct data sets 106, 107
DIRECT file

indexed ESDS with VSAM
accessing data set 236
updating data set 238

RRDS
access data set 252

disabled conditions, required processing 344
disabling debugging conditions 344
DISK PLIOPT command option 75
disks for compiler output 74
DISP parameter

batch processing 70
consecutive data sets 159
for consecutive data sets 156
for stream I/O 133
to delete a data set 123

DISPLAY statement 424
DISPLAY, under VM 89
DO specifications, TO and BY options 336
DO statements

expressions in, temporary variables 334

524 PL/I for MVS & VM Programming Guide

DO statements (continued)
repetitive execution of 335
special case code 313

do-groups
and storage conservation 334
bounds of, computation 334
computation of bounds 334
evaluating WHILE expressions 334
terminating condition of 334

do-loop, special case code 313
DSA, size of 331
DSCB (data set control block) 107, 125
DSNAME parameter

for consecutive data sets 156, 159
for indexed data sets 175
for retaining data sets 133
stream I/O 136

DSORG subparameter 108
indexed data set 174

dummy records
indexed data set 167
REGIONAL(1) data set 190
REGIONAL(2) data set 196
REGIONAL(3) data set 202
VSAM 217

dumps
calling PLIDUMP 386
defining data sets for

DD statement 387
logical record length 387

identifying beginning of 387
PLIDUMP built-in function 386
producing Language Environment for MVS & VM

dumps 386
SNAP 387

DYNALLOC sort option 353

E
E compiler message 44
E15 input handling routine 361
E35 output handling routine 364
EBCDIC (Extended Binary Coded Decimal Interchange

Code) 103
edit-directed transmission

matching format lists with data lists 315
efficient programming

assignments and initialization 323
condition handling 344
data conversion 329
data elements 323
efficient performance 305, 308
expressions and references 326
general statements 334
global optimization features 308
input and output 339

efficient programming (continued)
picture specification characters 343
program organization 331
recognition of names 332
record-oriented data transmission 340
storage control 332
stream-oriented data transmission 341
subroutines and functions 338

elimination of common constants 311
elimination of common control data 313
embedded keys 165, 180
END statement 38
ENDFILE

MVS, entering at terminal 92
VM, entering at terminal 88

entry point
sort program 355

entry point address of module, querying primary 271
ENTRY statement 38
entry variable, storage format 374
entry-sequenced data set

defining 231
updating 231
VSAM 213

loading an ESDS 229
SEQUENTIAL file 229
statements and options 228

ENVIRONMENT attribute, INDEXED option 340
ENVIRONMENT options 130, 150

ASCII 154
BUFFERS 117
BUFOFF 155
CONSECUTIVE 130, 151
CTLASA and CTL360 152
D-format and DB-format records 155
ENVIRONMENT attribute 110

organization options 112
other ENVIRONMENT options 113
summary table 111

equivalent DCB subparameters 113
GRAPHIC option 132
indexed data set 169

ADDBUFF option 169
INDEXAREA option 170
INDEXED option 170
KEYLOC option 170
NOWRITE option 172

LEAVE|REREAD 153
record format options 130
RECSIZE 131
regional data set 188
teleprocessing data set

BUFFERS option 258
RECSIZE option 258
TP option 257

TOTAL 151

 Index 525

ENVIRONMENT options (continued)
VSAM

BKWD option 220
BUFND option 220
BUFNI option 220
BUFSP option 221
GENKEY option 221
PASSWORD option 221
REUSE option 221
SIS option 222
SKIP option 222
VSAM option 223

EPLIST 389, 390
use of fields 391

EQUALS sort option 353
ER-type ESD entry 43
error conditions, correcting, effect of REORDER option

on 317
errors

compiler-detected 71
correcting compiler-detected 78
correction by compiler 78
message severity option 11
severity of error compilation 10

ESD (external symbol dictionary)
compile-time option 11

ESDS (entry-sequenced data set)
defining 231
updating 231
VSAM 213

loading 229
statements and options 228

establishing hook exits
for code coverage reporting 272—283
for function tracing 284

EVENT option 423
examining code coverage (example)

discussion of programs 272
output from 272—273
setup for 272
source code, CEEBINT 274
source code, HOOKUP 280—283

examples
analyzing CPU-time usage 288—304
calling PLIDUMP 386
examining code coverage 272—283
performing function tracing 284
relation of data to locators and descriptors 380
structure descriptors 385
verification program (IEL1MSO1) 444

exception handler
return/reason codes 411

exception router
return/reason codes 410

exception router service routine
preinitialized program 409

EXCLUSIVE files, noncompatibility with VSAM 224
EXEC statement

cataloged procedure, modifying 54
compiler 64
introduction 64
maximum length of option list 68
minimum region size 64
modify cataloged procedure 54
MVS batched compilation 55, 64
PARM parameter 68
to specify options 68

EXECUTE extended parameter list request 390
execution

suppressing in the case of error 79
VSAM 211

Exit (E15) input handling routine 361
Exit (E35) output handling routine 364
expressions

common, effect of scope on optimization 319
form of, inhibiting optimization 319
optimization of

base register allocation for branch
instructions 311

branch instructions 311
common constants 311
common expression elimination 309, 318, 319,

320
constant exponents 311
constant expressions 311
constant multipliers 311
constants in array subscripts 311
defactorization 311
elimination of common constants 311
inhibiting common expression elimination 318,

319, 320
modification of loop control variables 310
redundant expression elimination 310
replacement of constant exponents 311
replacement of constant expressions 311
replacement of constant multipliers 311
simplification of expressions 310, 311

precision of variables in 324
scale factor of variables in 324
transferring constant outside of loops 312

expressions, for performance improvement 326
extended binary coded decimal interchange code

(EBCDIC) 103
extended parameter list 389, 390

use of fields 391
example of 394

EXTERNAL attribute 37
external declarations 332
external entries information control block

layout of 270
specifying pointer to 268

526 PL/I for MVS & VM Programming Guide

external procedures, designing and writing 331
external references

concatenation of names 100
ESD entry 41

external symbol dictionary (ESD)
compiler listing 41
ESD entries 42

F
F option of ENVIRONMENT

for record I/O 113
for stream I/O 130

F-format records 104
FB option of ENVIRONMENT

for record I/O 113
for stream I/O 130

FB-format records 104
FBS option of ENVIRONMENT

for record I/O 113
for stream I/O 130

FBS-format records 104
field for sort 352
FILE attribute 37
file variable, storage format 374
files

associating data sets with files 99
closing 110
defining data sets 99
establishing characteristics 102
share between tasks 425
TRANSIENT 107, 256
used by the compiler 74

FILLERS tab set table field 140
FILSZ sort option 353
FINISH condition, avoiding the use of ON-units 344
fixed-length records 104
fixed-length records, record format 339
FLAG option 11
flowchart for sort 362
FMARGINS

input record option 28
format items, termination of processing 342
format lists

contained in FORMAT statements 341
matched with data lists in edit-directed

transmission 315
format notation, rules for xviii
format of PLIOPT command 76
FORMAT statements, containing format list 341
FORTRAN

map structure 39
free-storage routine, return code 409
free-storage service routine

preinitialized program 409

FS option of ENVIRONMENT
for record I/O 113
for stream I/O 130

FS-format records 104
FSEQUENCE 21
fullword subscript compatibility 8
FUNC subparameter 108

consecutive data set 157
function reference and passing parameters 373
function tracing 272
functions for performance improvement 338

G
generating an Language Environment for MVS & VM

dump using PLIDUMP 386, 388
GENKEY option 111, 118, 221

VSAM 219
get-storage routine

preinitialized program 408
return code 408

global optimization of variables 316
GONUMBER option 11

storage requirements for 306
GOSTMT option

compile-time option 12
storage requirements for 306

GOTO statements, referencing label variables 334
graphic data 129
GRAPHIC option 132

compile-time option 12
ENVIRONMENT option 111
stream I/O 130

graphic string constant compilation 12

H
handling routines

data for sort
input (sort exit E15) 361
output (sort exit E35) 364
PLISRTB 366
PLISRTC 367
PLISRTD 367
to determine success 358
variable length records 369

header label 107
heading information for compiler list 34
hexadecimal

address representation 42
HIR_BLOCK (parameter of IBMBHIR) 271
HIR_EPA (parameter of IBMBHIR) 271
HIR_LANG_CODE (parameter of IBMBHIR) 271
HIR_NAME_ADDR (parameter of IBMBHIR) 271
HIR_NAME_LEN (parameter of IBMBHIR) 271

 Index 527

HIR_PATH_CODE (parameter of IBMBHIR) 271
hook exits

establishing to perform function tracing 284
establishing to report on code coverage 272—283
using 272

hook information
control block

layout of 270
specifying pointer to 268

obtaining 271
retrieval module 271
using IBMBHIR 271

hook services
activating hooks 265—266
IBMBHIR 271
IBMBHKS 265—266
IBMBSIR 266
IBMHSIR 271
obtaining hook information 271
obtaining static information on compiled

modules 266
purpose of activating 265
supported environments 265

hooks
activating 265
location suboptions 26
querying %PATHCODE value 271
retrieving information about 271

HOOKUP (sample program) 272
output from 273, 289
source code for 280—283, 297—304

HOOKUPT (sample program) 272
output from 284
source code for 287

I
I compiler message 44
IBMBHIR

discussion of 271
HIR_BLOCK (parameter) 271
HIR_EPA (parameter) 271
HIR_LANG_CODE (parameter) 271
HIR_NAME_ADDR (parameter) 271
HIR_NAME_LEN (parameter) 271
HIR_PATH_CODE (parameter) 271
primary entry point address of module 271
programming language used to compile

module 271
use of 271

IBMBHKS
declaring 265
discussion of 265—266
examples of use 274—279
function codes 266
instead of debugging tool 265

IBMBHKS (continued)
invoking 265
programming interface 265, 266
return codes 266
using 265, 266
warning about 266

IBMBSIR
block information control block

layout of 270
specifying pointer to 268

control block elements 267
discussion of 266
external entries information control block

specifying pointer to 268
external entries information control block, layout

of 270
function codes for 267—268
hook information control block

layout of 270
specifying pointer to 268

invoking 267
module information control block

layout of 269
specifying pointer to 268

programming interface 267
return codes for 268
SIR_A_DATA (parameter) 268
SIR_ENTRY (parameter) 268
SIR_FNCCODE (parameter) 267
SIR_MOD_DATA (parameter) 268
SIR_RETCODE (parameter) 268
specifying main entry point for 268
specifying pointers

block information control block 268
external information control block 268
hook information control block 268
module information control block 268

specifying type of static information 267
uses of 266

IBMHSIR
invoking 271
programming interface 271
returned information

about blocks 271
about hooks 271
about modules 271

ID ESD heading 42
identifiers

not referenced 8
source program 8

IEL1C cataloged procedure 47
IEL1CG cataloged procedure 51
IEL1CL cataloged procedure 48
IEL1CLG cataloged procedure 50
IEL1MSO1 (sample program) 444

528 PL/I for MVS & VM Programming Guide

IF statement
branching optimized 311
improving efficiency by compound expression 310

imprecise interrupt localization 12
IMPRECISE option 12
in-line code

for built-in functions 314
for conversions 314
for record I/O 314
for string manipulation 314
string built-in functions 339

%INCLUDE
allocating data sets 63
compiler 30
source statement library 67
TSO 62, 63
VM 75, 77
without full preprocessor 13

INCLUDE option 13
independent overflow area 167, 177
index

cylinder 166
master 166
track 166
upgrade 212

index area 166
INDEXAREA option 111, 170
INDEXED data set, direct update of 340
indexed data sets

accessing and updating 179
creating 172, 179
DD statement 174
defining files for 169
direct access 181
dummy records 167
index area separate DD statement 172
index structure 166
indexed sequential data set 106
indexes 166
master index 178
name of 175
organization 163
overflow area 177
record format and keys 175
reorganizing 184
REWRITE statement 165
sequential access 180
SEQUENTIAL files 165
specifying ENVIRONMENT options 169
SYSOUT device restriction 175
updating 183
using indexes 166
using keys 163

indexed ESDS (entry-sequenced data set)
alternate indexes 239
DIRECT file 236

indexed ESDS (entry-sequenced data set) (continued)
loading 234
SEQUENTIAL file 236

INDEXED file with VSAM 224, 226
INDEXED option 111, 170
information interchange codes 103
inhibiting optimization

accessing array elements 319
common expression elimination 318, 319, 320
condition handling 320
for loops 313
form of expressions 319
limit on global optimization of variables 316
on variables 316
ORDER option 316
REORDER option 316
scope of common expressions 319
using ORDER option 313, 315

inhibiting reordering, using ORDER option 313
INIT extended parameter list request 389
INITIAL attribute 38
INITIAL attribute, array restriction 333
INITIAL attribute, on external noncontrolled

variable 333
initial volume label 107
initialization

arrays 313
for performance improvement 323
of arrays and structures 313
propagating values 313
structures 313

input
compiler

data sets 65
input record limit 16
record format 28

data for sort 360
PLISRTA 365

defining data sets for stream files 130
in cataloged procedures 47
MVS, punctuating long lines 91
performance improvement 339
routines for sort program 360
SEQUENTIAL 156
skeletal code for sort 363, 364
sort data set 359
specify input record section 21
VM, punctuating long lines 87

input data, compile and link-edit 48
input/output

inhibiting optimization 318
optimization, inhibiting 318

INSOURCE option 13
insufficient storage 22
interactive program 146

attention interrupt 13

 Index 529

interblock gap (IBG) 103
interchange codes 103
interface

preinitialized program 390
INTERNAL attribute 37
internal switches and counters, FIXED BINARY data

type 324
INTERRUPT option 13
interrupt, debugging tool 437
interrupts

attention interrupts under interactive system 13
ATTENTION ON-units 437
debugging tool 437
imprecise interrupts localization 12
main description 436
passing control to PLITEST 437

invoke
cataloged procedures 52

link-editing multitasking programs 53, 54
multiple invocations 52

preprocessor 29
invoking an alternative MAIN 398
ISAM data set considerations 211

J
JCL

batched processing 70
for the compiler 67
improving efficiency 46
reducing errors 46

JOBLIB DD statement 262

K
KEY condition on LOCATE statements 341
key handling for REGIONAL data sets 314
key indexed VSAM data set 216
key-sequenced data sets

accessing with a DIRECT file 236
accessing with a SEQUENTIAL file 236
alternative indexes for 239
loading 234
statements and options for 232

KEYLEN subparameter 108
indexed data set 174

KEYLENGTH option 111, 121
comparison with DCB subparameter 113
sequential access for indexed data sets 180

KEYLOC option 111, 170
comparison with DCB subparameter 113

KEYLOC value 171
effect on embedded keys 171
indexed data set 170, 174, 177

keys
indexed data set 163

keys (continued)
optimizing handling for REGIONAL data sets 314
REGIONAL(1) data set 190

dummy records 190
REGIONAL(2) and (3) data sets 195

dummy records 196
VSAM

indexed data set 216
relative byte address 216
relative record number 216

KEYTO option
REGIONAL (2) data set 199
REGIONAL (3) data set 204
under VSAM 229

KSDS (key-sequenced data set)
define and load 235
unique key

ESDS 240
update 237
VSAM

alternate indexes 239
DIRECT file 236
loading 234
methods of insertion 239
SEQUENTIAL file 236

L
LABEL attribute, restriction on INITIAL attribute 333
label constant, storage format of 374
LABEL parameter 133

for magnetic tape 157
for stream I/O 133
stream I/O 136

label register ESD entry 42
label variables

effect on optimization of loops 313
referenced in GOTO statements 334
storage format of 374

labeling volumes 107
labels for data sets 107
labels, standard, and VM 84
LANGLVL compile-time option

NOSPROG suboption 14
SPROG suboption 14

Language Environment for MVS & VM library xv
LD-type ESD entry 43
LEAVE and REREAD options 154
LEAVE option 111, 153

for stream I/O 130
LEAVE statement 38
LENGTH

ESD heading 42
RECORD option for sort 354

LIB(dslist) command 61

530 PL/I for MVS & VM Programming Guide

libraries
compiled object modules 126
creating a data set library 124
creating a member 127
creating and updating a library member 125
creating, examples of 125
directory 124
extracting information from a library directory 128
general description of 107
how to use 123
information required to create 124
multitasking with cataloged procedure 53
placing a load module 126
source statement library 55, 67
SPACE parameter 124
structure 128
system procedure (SYS1.PROCLIB) 123
types of 123
updating a library member 127
using 123

library calls, in-line code substitution 314
library routines

Language Environment for MVS & VM 315
PL/I for MVS & VM 315
run-time 315

library stubs 315
LIMCT subparameter 108, 209
limit on global optimization of variables 316
line length 139
line numbers in messages 11
LINE option 131, 139
LINECOUNT option 14
lines in compiler list 14
LINESIZE option

OPEN statement 131
tab set table field 140

LINK macro instruction 32
link-edit, selecting math results 80
link-editing, description of 80
linkage editor

suppress link-editing 79
LIST

compile-time option 14
listing

cataloged procedures 52
check out program listings 78
compiler 62
compiler listing 33

aggregate length table 38
ATTRIBUTE and cross-reference table 36
attribute table 37
cross-reference table 37
ddname list 5, 33
ESD entries 42
external symbol dictionary 41
heading information 34
messages 44

listing (continued)
compiler listing (continued)

object listing 44
options 34
preprocessor input 34
return codes 45
SOURCE program 34
statement nesting level 36
statement offset addresses 40
static internal storage map 43
storage requirements 39
TSO 55, 62

MVS batched compilation 55, 67
object module 44
source program 23
statement offset address 40
static internal control section 44
SYSPRINT 67

LMESSAGE option 15
load module

to name 70
to substitute 17

load service routine
example of 404
parameters passed to 403

loader program, using 51
local optimization of variables 316
localization of imprecise interrupts 12
LOCATE statements, KEY condition on 341
locator

contents 380
data types and structures for 380

locator/descriptors
contents 380
data types and structures for 380
description of 380

locators
aggregate locators

array descriptor addresses 381
array starting addresses 381
contents of 381
structure descriptor addresses 381
structure starting addresses 381

area locator/descriptor 381
array descriptors

bounds components 383
concatenation of string or area descriptor

with 382
contents of 382
multiplier components 383
relative virtual origin component 383

arrays of structures 385
description of 380
string locator/descriptor 383
structure descriptors 384
structures of arrays 385

 Index 531

logical not 18
logical or 21
loop control variables, modification of 310, 312
loops

constant expressions, transferring 312
constant statements, transferring 312
effect of REORDER option on 316
label variables and optimization 313
optimization of

effect of label variables 313
inhibiting 313
maintaining control values in registers 313
modification of loop control variables 312
transfer of expressions from 312
transferring constant expressions 312
transferring constant statements 312
unrecognizable 313

optimization, modification of control variable 310,
312

recognition of optimization purposes, transfer of
expressions 312

special case code 313
transfer of expressions from 312
transferring constant expressions or statements 312
undesired effect of optimization 312
unrecognizable for optimization 313
use of registers for modified values 315

LRECL subparameter 103, 108
consecutive data set 157
indexed data set 174

M
MACRO option 15
magnetic tape 137, 150

LABEL parameter 157
MAIN procedure parameter list, format of 376
MAIN procedure parameters, passing 376
main storage for sort 355
MAP option 15
MARGINI option 16
MARGINS

compile-time option
and input records 16
variable records 16

MARGINS option 16
mass sequential insert 238
master index 166, 178
matching format lists with data lists 315
math results, selecting at link-edit 80
maximum

block-size 116
record length 115
sort record length 354

MDECK option 17
problems in batched compilation 69

message
check out program messages 78
compiler error severity option 11
compiler list 44
control program (MCP) 255
printed format 142
processing (TCAM MMP) 256, 262
run-time message line numbers 11
statement numbers in run-time messages 12
to specify length 15

message router
return code 416
service routine

example of 417
preinitialized program 416

minimizing paging 307, 308
minimum region size
mixed string constant compilation 12
MODE subparameter 108

consecutive data set 157
modify

cataloged procedures 54
DD statement 55
EXEC statement 54

modifying loop control variables 310, 312
modular programming

advantages of 331
and optimization 331

module information control block
layout of 269
specifying pointer to 268

modules
create and store object module 19
name a load module during compilation 70
object module identification code 10
querying

address of name 271
length of name 271
programming language used to compile 271

retrieving information about 266
substitute file name 17

moving expressions out of loops
undesired effect

multiple
procedures 69

multiple independent
computations 432

nontasking 433
tasking 434

processes 428
nontasking 429
tasking 430

multiple invocations
cataloged procedures 52
cataloged procedures, environment 52

preinitialized program 389

532 PL/I for MVS & VM Programming Guide

multiple invocations (continued)
run-time environment

CALL extended parameter list request 389
description of 389
EXECUTE extended parameter list request 390
INIT extended parameter list request 389
preinitializable program 389
preinitializable programs extended 389
TERM extended parameter list request 390

multiplication operations
loop optimization 310, 312
optimization by repeated addition 310, 312

MULTIPLY built-in function 339
multitasking

create tasks 423
independent computations 432
independent processes 428
library (SYS1.SIBMTASK) 53
options in PLIDUMP 386
performance improvement 345
priority 427
reliability 426
running 428
sharing data 425
sharing files 425
synchronization and coordination 424
tasking facilities 422
terminating 426

MVS
attention router 412, 413

example of 413
batch compilation 64

batched processing JCL 70
compiler JCL 67
DD statement 64
examples of 71
EXEC statement 64, 68
listing (SYSPRINT) 67
multiple procedures/single job step 69
NAME option 69
return codes 70
SIZE option 69
source statement library (SYSLIB) 67
specifying options 68
temporary workfile (SYSUT1) 66

calling preinitialized program under MVS 419
delete service routine 406, 407

example of 407
exception router service routine 409
free-storage service routine 409
general compilation 55, 56
get-storage routine 408
interface for 390
invoking an alternative MAIN 398
load service routine 403, 404

example of 404

MVS (continued)
message router service routine 416

example of 417
minimum region size
preinitialized program 419
using service vector 402
using, example of 398

MVS integrity 390
MVS/XA, compiler 71

N
NAME

compile-time option 17
MVS compilation 69

name indexed data set 175
names recognition 332
NCP subparameter 108, 119

comparison with DCB subparameter 113
ENVIRONMENT option 111

negative value
block-size 116
record length 115

NEST option 18
nested blocks, declaring arithmetic variables 316
NOEQUALS sort option 353
NOINTERRUPT 13
NOMAP option 39
NONE

hooks location suboption 26
NOPRINT

noprint 32
NOPRINT command 61
PLIOPT command option 75

NOSPROG suboption of LANGLVL 14
NOSYNTAX option 24
NOT option 18
note statement 44
NOWRITE option 172

ENVIRONMENT option 111
NTM subparameter 108

creating a master index 178
indexed data set 174

null statements, replacing IF statements 335
NUMBER option 18

O
object

compatibility 8
listing 44
module

create and store 19
identification code 10
record size 65

OBJECT option 19
batched compilation 69

 Index 533

object (continued)
OBJECT option (continued)

PLIOPT command 75
object code

and self-defining data 332
for procedures, size of 332

object program, library stubs 315
obtaining denser packing of data 325
obtaining hook information on compiled modules 271
obtaining static information on compiled modules 266
offset

address list 19
OFFSET compile-time option 19
offset of tab count 140
table 40

ON statements, execution order 344
ON-units

effect of ORDER option on 316, 320
effect of REORDER option on 317
inhibiting optimization 318
optimization, inhibiting 318
priority of operands 320
recommended use of 345

OPEN statement 109
OPEN statements, specifying more than one file 340
OPTCD subparameter 108

consecutive data set 157
DD statement 225
indexed data set 174
overflow area 177

optimization
arrays 322
do-loops 322
global on variables 316
in-line code 322
in-line conversions 322
inhibiting

accessing array elements 319
common expression elimination 318, 319, 320
condition handling 320
for loops 313
form of expressions 319
limit on global optimization of variables 316
on variables 316
ORDER option 316
REORDER option 316
scope of common expressions 319
using ORDER option 313, 315

limitation on flow analysis 331
local on variables 316
loops, maintaining control values in registers 313
overview of types 308
register allocation and addressing 322
structures 322
types of 315

array assignments 313
base register allocation for branch

instructions 311

optimization (continued)
types of (continued)

branch instructions 311
common constants 311
common expression elimination 309, 318, 319,

320
constant exponents 311
constant expressions 311
constant expressions in loops 312
constant multipliers 311
constant statements in loops 312
constants in array subscript expressions 311
data lists matched with format lists 315
defactorization 311
elimination of common constants 311
for expressions 309, 312
format lists matched with data lists 315
in-line code for built-in functions 314
in-line code for conversions 314
in-line code for record I/O 314
in-line code for string manipulation 314
initialization of arrays 313
initialization of structures 313
key handling for REGIONAL data sets 314
matching format lists with data lists 315
modification of loop control variables 310, 312
redundant expression elimination 310
register allocation 315
register usage for loops 315
replacement of constant exponents 311
replacement of constant expressions 311
replacement of constant multipliers 311
simplification of expressions 310, 311
structure assignments 313
transfer of expressions from loops 312
transferring constant expressions or statements

outside of loops 312
optimization features

global 315
common expression elimination 318, 319, 320
condition handling 320
ORDER and REORDER options
ORDER option 316
REORDER option 316
transfer of invariant expressions 321
variables 316

optimized code 322
other optimization features 322
redundant expression elimination 322

OPTIMIZE option 20
optimization features of 308, 315
optimization features of, for expressions 309, 312

optimized code 322
optimized, format list with data list
options

for compilation 34

534 PL/I for MVS & VM Programming Guide

options (continued)
for creating regional data set 186
indexed data sets 164
option list

address parameter 32
compiler 33
PLI command 59

reinstate options deleted from installation 10
to specify for compilation 68

OPTIONS option 20
OPTIONS(ASSEMBLER) attribute, and argument list

addresses 374
OPTIONS(MAIN) attribute 332
OR option 21
ORDER option 321

effect on begin-blocks 316
effect on ON-units 316, 320
effect on procedures 316
inhibiting loop optimization 313
inhibiting optimization 316
inhibits loop optimization
optimization and register allocation 315
when to specify 316

organization
indexed data set 163
modular programming 331
program performance improvement 331
teleprocessing 256

OS-simulated data set 82
output

data for sort 360
PLISRTA 365

defining data sets for stream files 130
from the compiler 73
limit preprocessor output 17
performance improvement 339
punched card 10
routines for sort program 360
SEQUENTIAL 156
skeletal code for sort 364
sort data set 359
SYSLIN 65
SYSPUNCH 65

output files, blank after last value 343
overflow area 167

indexed data set 177
main discussion of 177
separate DD statement 172

overlay defining 342

P
page

ENVIRONMENT option 131
page 32
page number

compiler list 33

page (continued)
PAGELENGTH tab set table field 140
PAGESIZE tab set table field 140

paging
items accessed together 307
minimizing 307, 308
read-only pages 307

pairing alternate index path with a file 211
parameters, passing 373
PARM parameter 54

specify options 68
passing arguments 373
passing MAIN procedure parameters 376
passing parameters 373
password

PASSWORD option 221
PATH

hooks location suboption 26
pending condition 256
% statements 32
performance improvement

tuning a program 305, 306, 308
virtual storage system 307, 308

assigning storage classes for based and
controlled variables 307

avoiding large branches in source code 307
controlling the positioning for variables 308
designing and programming modular

programs 307
handling aggregates larger than page size 307
making static internal CSECT read-only 308
minimizing paging 307
placing CSECTs within pages 308
placing variables within CSECTs 308

VSAM options 223
performing function tracing (example)

discussion of programs 284
output from 284
setup for 284
source code for 284—287

picture specification characters 343
allowable for in-line arithmetic data conversion 329

PICTURE specifications
checking picture data 344
point picture character 343
scale factor 343
V character 343

PL/I for MVS & VM library xiv
PLI command

data set name 59
LIB(dslist) 61
main discussion of 59
NOPRINT 61
option list 59
PRINT 60
PRINT(*) 60

 Index 535

PLI command (continued)
SYSPRINT 61
TSO 55, 59

PLICANC statement, and checkpoint/request 441
PLICKPT built-in subroutine 438

arguments 439
requesting a checkpoint record 439

PLIDUMP
calling to produce an Language Environment for

MVS & VM dump 386
converting to CEE3DMP options
example of 386
H option 387
options 386
syntax of 386
user-identifier 387

PLIOPT command
format 76
options 75

%INCLUDE statement 75
%INCLUDE under VM 77
format 76
TXTLIB 77
VM compilation to run under MVS 77

special requirements 77
use 73

batched compilation 78
compile-time options 74
compiler output 73
files 74
PLIOPT command options 75

PLIREST statement 441
PLIRETC built-in subroutine

return codes for sort 358
PLISRTA 365

example of 365
PLISRTB 366

example of 366
PLISRTC 367

example of 367
PLISRTD 367

example of 368
PLISRTx 355

arguments 349
entry points 348, 355

PLITABS
control section 141, 142
declaration 89

PLITEST
attention processing 437
to specify available capabilities 26

PLIXOPT variable, use in tuning 306
POINTERADD 14
pointers

passing 375
set in READ SET or LOCATE 340

pointers (continued)
use in expressions 14
validity of setting 340

POINTERVALUE 14
precision of decimal constants 338
preinitialized program

attention router 412, 413
example of 413

calling preinitialized program under MVS 419
calling preinitialized program under VM 419
delete service routine 406, 407

example of 407
exception router service routine 409
free-storage service routine 409
get-storage routine 408
interface for 390
invoking an alternative MAIN 398
load service routine 403, 404

example of 404
message router service routine 416

example of 417
MVS 419
preinitializing a program 393, 394
SYSTEM option 419
user exit 419
using service vector 402
using the preinitialized program 398
using, example of 398
VM 419

preinitialized program interface
extended parameter list 391

use of fields 391
preparation for sort 348

determining storage 355
sorting field 352
specify records 354
type of sort 349

preprocessor
%INCLUDE statement 30
description of 29
discussion of 29
for program testing 31
input 34
invoking 29
limit output to 80 bytes 17
output format 29
program testing 31
source program 15
with MACRO 15

primary entry point address of module, querying 271
prime data area 167

separate DD statement 172
print

PLIOPT command option 75
print 32
PRINT file

format 145

536 PL/I for MVS & VM Programming Guide

print (continued)
PRINT file (continued)

line length 139
stream I/O 138

PRINT files
changing format, input 86
formatting conventions 89
punctuating output 89

PRINT(*) command 60
printer control character 29
record I/O 162

priority
apparent and actual 427
tasks 427

priority of operands, effect on ON-units 320
PRIORITY option 424
procedures

cataloged, using under MVS 46
compile and link-edit (IEL1CL) 48
compile only (IEL1C) 47
compile, link-edit, and run (IEL1CLG) 50
compile, load and run (IEL1CG) 51
containing more than one entry point 338
effect of ORDER option on 316
entry points, containing more than one 338
external, designing and writing 331
given initial control 332
object code, size of 332
PROCEDURE statement 38

PROCESS statement 28
override option defaults 68

processing jobs in the background 63
program branch code 311
program control

control section 42
program organization 331
program testing, using preprocessor 31
programming interfaces

IBMBHKS 265
IBMBSIR 267
IBMHSIR 271

programming language used to compile module,
querying 271

programs 284, 288
conversational, creating 89
designing and writing 331
external procedure for 331
modular programming 331
size of 331
tuning

for virtual storage system 307, 308
source code 305

prompting
automatic, overriding 90
automatic, using 90

protection exception, avoiding 325
PRTSP subparameter 108

consecutive data set 157
pseudoregister ESD entry 42
punctuating

MVS
continuation character 91
GET DATA statement 91
GET LIST statement 91

VM
continuation character 87
GET DATA statement 88
GET LIST statement 88

punctuation
automatic prompting

overriding 90
using 90

MVS
automatic padding for GET EDIT 91
entering ENDFILE at terminal 92
long input lines 91
SKIP 92

output from PRINT files 89
VM

automatic padding for GET EDIT 88
entering ENDFILE at terminal 88
long input lines 87
SKIP 88

PUT DATA statement, using without a data list 343
PUT EDIT command 146

Q
queues 255

R
REAL attribute 37
RECFM subparameter 108

compatibility interface 225
consecutive data set 157
indexed data set 174

record
checkpoint 439

data set 440
deblocking 103
maximum size for compiler input 65
sort program 354
specify compiler input record limit 16
specify input record section 21

record format 103, 137, 175
fixed-length records 104
indexed data set 175, 176, 177
options 130
to specify 150
undefined-length records 106

 Index 537

record format (continued)
variable-length records 104

record I/O 113, 149
data set

access 157
consecutive data sets 159
create 156
types of 121

ENVIRONMENT option 150
file

define 150
in-line code for 314
magnetic tape without standard labels 137, 150
performance improvement 340
record format 150

record length 115
indexed data set 173
regional data sets 185
specify 103
variable 177

RECORD statement 354
recorded key 190

indexed data sets 163
KEYTO option 204

RECSIZE option 114, 258
comparison with DCB subparameter 113
consecutive data set 131
defaults 131
for stream I/O 130—131
syntax 114

recursive assembler routine
RECURSIVE attribute 332

reduce storage requirement 20
redundant expression

definition of 310
elimination of 310
example of 310

redundant expression elimination 310, 322
REFER option (self-defining data) 332
references for performance improvement 326
referencing functions and passing parameters 373
region

background region for TSO 55, 63
REGION parameter 54
region size

EXEC statement 64
minimum

REGION size, minimum required 46
regional data sets

avoiding conversion of source keys 340
DD statement

accessing 210
creating 209

defining files for 188
specifying ENVIRONMENT options 188
using keys 190

regional data sets (continued)
key handling optimization

for REGIONAL(1) 314
for REGIONAL(2) 314
for REGIONAL(3) 314

key handling optimized
operating system requirement 208
REGIONAL(1) data set 190

accessing and updating 192
creating 191
using 190

REGIONAL(2) data set 195
accessing and updating 198
creating 197
keys for 195
using 195

REGIONAL(3) data set 202
accessing and updating 204
creating 202
keys for 195
using 202

source keys, avoiding conversion of 340
VSAM 226

REGIONAL option 188
register usage for loops 315
registers, allocating, effect of REORDER option 315,

317
relative byte address (RBA) 216
relative record number 216
relative virtual origin (RVO) of arrays 382
relative-record data sets

accessing with a DIRECT file 252
accessing with a SEQUENTIAL file 251
loading 249
statements and options for 247

reliability of tasking programs 426
REORDER option

effect in correcting error conditions 317
effect on loops 316
effect on ON-units 317
effect on register allocation 315, 317
for loop optimization 312
inhibiting optimization 316
when to specify 316

reordering, inhibiting using ORDER option 313
reorganizing indexed data set 184
REPEAT option

in-line code for 314
replacement maximum 29
replacement of constant expressions 311
replacement of constant multipliers and exponents 311
REPLY, under VM 89
reporting on CPU-time usage (example) 288—304
REREAD option of ENVIRONMENT 111

for stream I/O 130

538 PL/I for MVS & VM Programming Guide

restart
RESTART parameter 441
to request 440

automatic after system failure 440
automatic within a program 441
deferred restart 441
to cancel 440
to modify 441

retaining environment for multiple invocations
preinitialized program 389

retrieving hook information using IBMBHIR 271
retrieving information on compiled modules 265
retrieving static information using IBMBSIR 266
return code

checkpoint/restart routine 439
PLIRETC 358

return codes
attention handler 412
attention router 412
batched compilation 70
delete routine 406
exception handler 411
exception router 410
free-storage routine 409
get-storage routine 408
in compiler listing 45
message router 416

REUSE option 111, 221
rewriting records contained in buffers 340
RKP subparameter 108, 171

effect on embedded keys 171
indexed data set 170, 174, 177

RPTSTG run-time option 306
RRDS (relative record data set)

define 250
load statements and options 247
load with VSAM 249
update 254
VSAM

DIRECT file 252
loading 249
SEQUENTIAL file 251

run-time
message line numbers 11

run-time considerations
VM

automatic prompting 86
changing PRINT file format 86
formatting conventions 86
input restrictions 86
OS data sets 84
output restrictions 86
PL/I conventions 86
record I/O at terminal 85
restrictions 85
separately compiled procedures 81
stream I/O conventions 86

run-time considerations (continued)
VM (continued)

using data sets and files 81
run-time library routines 315
run-time options

RPTSTG 306
STACK 306

run-time tuning 265, 304
run-time, VM considerations 80
running

tasking programs 428

S
S compiler message 44
SAMEKEY built-in function 242
sample program IEL1MSO1 444
SBCS-line continuation character 87
SCALARVARYING option 121
SCALARVARYING option of ENVIRONMENT 219
section definition ESD entry 41
self-defining data (REFER option) 332
sequence number 21
SEQUENCE option 21
sequential access

REGIONAL(1) data set 193
REGIONAL(2) data set 199
REGIONAL(3) data set 204

sequential data set 106
SEQUENTIAL file

ESDS with VSAM
defining and loading 230
updating 231

indexed ESDS with VSAM
access data set 236

RRDS
access data set 251

serial number volume label 107
service routines, user supplied

using service vector 402
restrictions 402

service vector, using 402
shared

between tasks
data 425
files 425

VSAM data set 227
shift code compilation 12
simplification of expressions 310, 311
SIR_A_DATA (parameter of IBMBSIR) 268
SIR_ENTRY (parameter of IBMBSIR) 268
SIR_FNCCODE (parameter of IBMBSIR) 267
SIR_MOD_DATA (parameter of IBMBSIR) 268
SIR_RETCODE (parameter of IBMBSIR) 268
SIS option 111, 222

 Index 539

SIZE
compile-time option 22
MVS compilation 69

SKIP
MVS, using for terminal input 92
VM, using for terminal input 88

SKIP option 222
ENVIRONMENT option 111
in stream I/O 131
skip 32

SKIPREC sort option 353
SMESSAGE option 23
sort program

assessing results 358
calling 355
CHKPT option 353
choosing type of sort 349
CKPT option 353
data input and output 360
description of 348
DYNALLOC option 353
E15 input handling routine 361
EQUALS option 353
FILSZ option 353
maximum record length 354
PLISRT 348
PLISRTA(x) command, examples 365—370
preparation 348
RECORD statement 361
RETURN statement 361
SKIPREC option 353
SORTCKPT 360
SORTCNTL 360
SORTIN 359
sorting field 352
SORTLIB 359
SORTOUT 359
SORTWK 355, 359
storage

auxiliary 355
main 355

write input/output routines 360
sorting data 348
source code, incorporating into program 62
source key

in REGIONAL(1) data sets 190
in REGIONAL(2) data sets 195
in REGIONAL(3) data sets 202
indexed data sets 163

source listing
location 16
statement numbers 18

SOURCE option 23
source program

compiler list 34
data set 65

source program (continued)
identifiers 8
included in compiler list 13
list 23
position within record 28
preprocessor 15
to shift outside text 16

source statement library 67
SPACE parameter

for stream I/O 133
library 124
standard data sets 64
stream I/O 136

spanned records 105
special case code for DO statement 313
spill file 66
SPROG suboption of LANGLVL 14
STACK run-time option 306
STACK subparameter 108

consecutive data set 157
standard data set 64
statement

lengths 66
nesting level 36
numbers

run-time messages 12
offset addresses 40

statements, transferring constant outside of loops 312
static

internal control section length 42
internal control section list 44
internal storage map 43
internal variable location 15
storage

list 15
show organization 15

STATIC attribute, restriction on INITIAL attribute 333
static CSECT, size of 331
static information

on compiled modules 265, 270
compiled with TEST option 266
IBMBSIR 265
obtaining 265, 266
specifying type of 267
using IBMBSIR 266

on hooks 265
IBMBHIR 265
in modules compiled with TEST option 271
obtaining 265

retrieval module 266, 270
step abend 108
STMT

compile-time option 23
hooks location suboption 26

storage
ABEND80A during compilation 69

540 PL/I for MVS & VM Programming Guide

storage (continued)
blocking print files 139
control 332
DBCSOS ordering product 22
indexed data sets 163, 173
insufficient 22
library data sets 124
list object module storage requirement 23
requirements for compiler list 39
sort program 355

auxiliary storage 355
main storage 355

standard data sets 64
static storage

list 15
show organization 15

STORAGE option 23
to reduce requirement 20
TRANSIENT files 107

storage allocation for automatic variables 331
storage classes

AUTOMATIC
initialization of array elements 313
initialization of structure elements 313

BASED
initialization of array elements 313
initialization of structure elements 313

CONTROLLED
initialization of array elements 313
initialization of structure elements 313

for based and controlled variables on a virtual
storage system 307

INITIAL attribute
initialization of array elements 313
initialization of structure elements 313

stream and record files 144, 146
STREAM attribute 129
stream I/O 114, 129

data set
access 136
create 132
record format 137

DD statement 134, 138
ENVIRONMENT options 130
file

define 130
PRINT file 138
SYSIN and SYSPRINT files 142

performance improvement 341
STREAM-oriented data transmission, maximizing

input/output statements 342
string

overlay defining 342
string built-in functions, conditions for handling

in-line 339

string descriptors
bit offset component 383
concatenation with array descriptor 382

string expressions, lengths of the intermediate
results 327

string handling, in-line operations for 328
string locator/descriptors

allocated length component 383
bit offset 383
contents of 383
format of 383
in structure descriptors 384
string address 383
string length 383
varying marker 383

string manipulation, in-line code for 314
strings

addresses 383
bit offset 383
graphic string constant compilation 12
length 383
locator/descriptors 383
STRINGRANGE condition, prefix 305
varying marker 383

strings, efficiency of 325
structure and array assignments 313
structure descriptors

contents of 384
descriptor components 384
example of 385
format of 384, 385
offset components 384

structures
assignments, optimization of 313
base element offsets 384
base elements of, descriptors of 384
declaring, for bit-string data 324
descriptors 384
element assignments 313
initialization, optimization of 313
matching 323
names in data list 342
of arrays

aggregate locators for 385
structure descriptors for 385

optimization of
element assignments 313
initialization 313

SUB control character 103
SUBMIT command, description of 64
subscript compatibility 8
SUBSCRIPTRANGE condition, prefix 305
subscripts

optimization of constants in expressions 311
uninitialized, detecting 323
using common expressions 310

 Index 541

SUBSTR pseudovariable, varying string
assignments 339

success in sorting 358
SYMBOL ESD heading 41
symbol table 26
symbolic parameter in cataloged procedure 53
synchronization for multitasking 424
SYNTAX option 24
syntax, diagrams, how to read xviii
SYS1.PROCLIB (system procedure library) 123
SYS1.SIBMTASK (multitasking) 53
SYSCHK default 439, 440
SYSCIN 65
SYSIN 65
SYSIN and SYSPRINT files 142
SYSLIB

%INCLUDE 31
multitasking programs 53
preprocessing 67

SYSLIN 65
SYSOUT 132, 359
SYSPRINT

compiler command 61
run-time considerations

SYSPUNCH 65
system

failure 440
restart after failure 440
SYSTEM compile-time options

NOEXECOPS 24
SYSTEM(CICS) 24
SYSTEM(CMS) 24
SYSTEM(CMSTPL) 24
SYSTEM(IMS) 24
SYSTEM(MVS) 24
SYSTEM(TSO) 24
type of parameter list 24

SYSTEM option 419
SYSUT1

compiler data set 66

T
tab control table 140
TASK option 423
tasking facilities 422
TCAM message processing program 260, 261
teleprocessing data sets

condition handling 260
defining files for 257
message control program (MCP) 255
specifying ENVIRONMENT options 257
TCAM message processing program

discussion of 256
example of 261
writing 258

teleprocessing data sets (continued)
teleprocessing organization 256
TRANSIENT file attribute 256

temporary workfile
statement length 66
SYSUT1 66

TERM extended parameter list request 390
terminal

input 143
capital and lowercase Letters 145
COPY option of GET statement 145
end of file 145
format of data 143
stream and record files 144
using files conversationally 143

output 145
capital and lowercase characters 146
format of PRINT files 145
interactive program 146
output from PUT EDIT command 146
stream and record files 146

TERMINAL option 25
termination

compilation 10
tasks 426

test
preprocessor 31

TEST option
compile-time option 26
use in static information retrieval 266, 271

testing, program, preprocessor 31
TEXT file name 17
TIME parameter 54
TITLE option 93, 100, 257, 340
TOTAL option 111, 151
TP option 257
tracing flow of control 272
track index 166
trailer label 107
transfer

invariant expressions 321
transfer of expressions from loops 312
transferring constant expressions or statements outside

of loops 312
transferring expressions out of loops, undesired

effects 312
TRANSIENT file 256, 259
TRKOFL option 111, 113, 120
TRTCH subparameter 108

consecutive data set 157
TSO

compiling 56
allocating data sets 57
background region 63
compiler listing 62
PLI command 59

542 PL/I for MVS & VM Programming Guide

TSO (continued)
minimum region size

tuning a PL/I program
decreasing storage requirements

avoiding GOSTMT and GONUMBER 306
removing debugging aids 305
removing PUT DATA statements 306

items to remove
debugging aids 305
PUT DATA statements 306

looking for alternative source code 306
specifying run-time options 306
using in-line operations 306
using RPTSTG run-time option 306

tuning a program 305
tuning a program for a virtual storage system

assigning storage classes for based and controlled
variables 307

avoiding large branches in source code 307
controlling the positioning for variables 308
designing and programming modular programs 307
handling aggregates larger than page size 307
making static internal CSECT read-only 308
minimizing paging 307
placing CSECTs within pages 308
placing variables within CSECTs 308

tuning run-time behavior 265—304
TXTLIB

compiling program for
description of 77
required commands 77

TYPE
ESD heading 41
PLIOPT command option 75
RECORD option for sort 354

type of sort, choosing 349

U
U compiler message 44
U option of ENVIRONMENT

for record I/O 113
for stream I/O 130

UNALIGNED attribute 325
unaligned data fields 325
unblocked records for indexed data set 177
undefined-length records 106
UNDEFINEDFILE condition

BLKSIZE error 116
DD statement error 100
line size conflict in OPEN 139
OPEN error 151

UNIT parameter
accessing data set 132
consecutive data sets 159
for consecutive data sets 156

UNIT parameter (continued)
stream I/O 133, 136

unreferenced identifiers 8
UNSPEC pseudovariable, expression conversion 339
update

ESDS 231
indexed data set 179

direct access 181
sequential access 180

REGIONAL(1) data set 194
REGIONAL(2) data set

directly 200
sequentially 201

REGIONAL(3) data set
directly 206
sequentially 207

relative-record data set 252
use of additional variables to avoid conversions 326
user exit

preinitialized program 419
sort 351

using cataloged procedures, MVS 46
using during compilation 64

V
V option of ENVIRONMENT

for record I/O 113
for stream I/O 130

V picture specification 343
variable-length records 104, 105

ASCII records 106
sort program 369
spanned records 105

variables
aliased, inhibiting optimization 318
arithmetic, declaring in nested blocks 316
automatic, storage allocation for 331
based, inhibiting optimization 318
optimization of

global 316
local 316

precision of 324
scale factor of 324
unpredictable values 323

VB option of ENVIRONMENT
for record I/O 113
for stream I/O 130

VB-format records 104
VBS option of ENVIRONMENT

for record I/O 113
VBS-format records 104
virtual storage system 307

tuning a program for 307, 308
assigning storage classes for based and

controlled variables 307
avoiding large branches in source code 307

 Index 543

virtual storage system (continued)
tuning a program for (continued)

controlling the positioning for variables 308
designing and programming modular

programs 307
handling aggregates larger than page size 307
making static internal CSECT read-only 308
minimizing paging 307
placing CSECTs within pages 308
placing variables within CSECTs 308

VM
calling preinitialized program under VM 419
commands 83
compiling 73
files, example of 82
minimum region size
PLIOPT command 73
preinitialized program 419
run-time considerations

automatic prompting 86
changing PRINT file format 86
description of 80
formatting conventions 86
input restrictions 86
OS data sets 84
output restrictions 86
PL/I conventions 86
record I/O at terminal 85
restrictions 85
stream I/O conventions 86
using data sets and files 81

VSAM data sets, example of 83
VMARGINS

input record option 28
VOLUME parameter

consecutive data sets 133, 159
for consecutive data sets 156
for creating a data set 132
for stream I/O 133
stream I/O 136

volume serial number 107
consecutive data sets 133, 157
indexed data sets 173
regional data sets 208

VS option of ENVIRONMENT
for record I/O 113

VS-format records 104
VSAM (virtual storage access method)

adapt existing program
CONSECUTIVE file 226
INDEXED file 226
REGIONAL(1) file 226

alternate index path with a file 211
data sets

alternate index paths 223
blocking 212
choosing a type 216

VSAM (virtual storage access method) (continued)
data sets (continued)

defining 227
defining files for 218
dummy data set 217
entry-sequenced 228
file attribute 218
key-sequenced and indexed

entry-sequenced 232
keys for 215
organization 212
performance options 223
relative record 247
running a program with 211
specifying ENVIRONMENT options 219
types of 214
using 211
using with VM 83

defining files 218
ENV option 219
for alternate index paths 223
performance option 223

files defined for non-VSAM data set 224
adapting existing programs 225
compatibility interface 225
CONSECUTIVE files 224
INDEXED files 224
several files in one VSAM data set 226
shared data sets 227

indexed data set
load statement and options 232

mass sequential insert 238
relative-record data set 249
VSAM option 223

VSEQUENCE 21
VTOC 107

W
W compiler message 44
WAIT statement 424
warning, about IBMBHKS 266
weak external reference ESD entry 42
WHILE option of DO statement 321
work data sets for sort 359

X
XCTL macro instruction 32
XREF option 27
XTENT option 187

Z
zero value 115—118

544 PL/I for MVS & VM Programming Guide

