IBM System/370
Principles of Operation

GA22-7000-7
File No. $370-01

IBM System/370
Systems Principles of Operation

Eighth Edition (March 1981)

This major revision obsoletes GA22-7000-6. Considerable material
has been added to Chapters 5 and 10, and a number of changes have
been made to Chapters 3, 6, and 12 and to Appendix D. Except for
Chapter 12, the majority of these additions and changes were made
to incorporate information about architectural facilities of the
3033 extension feature, principally the dual-address-space (DAS)
facility. This facility, together with the cross-memory services
of the MVS/System Product, helps to satisfy user virtual-storage
requirements and to improve data isolation.

In addition to DAS, which introduces 12 new instructions, two
other new instructions (BRANCH AND SAVE and TEST BLOCK) are
described, and an external-interruption condition called "service
signal" is defined.

Chapter 12, "Input/Output Operations," has been revised for
clarity and to reflect the current definition of the recently
updated IBM System/360 and System/370 I/O Interface Channel to
Control Unit OEMI, GA22-6974-5. A nev command, sense ID, has
been defined, and a new definition of the ready-to-not-ready
transition status has been included.

Except for minor style alterations, changes are identified by a
vertical bar in the left margin.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Dept. B98, PO
Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.

C)Copyright International Business Machines Corporation 1970, 1972,
1973, 1974, 1980, 1981

This publication provides, for reference
purposes, a detailed definition of the
machine functions performed by System/370.

The publication describes each function to
the level of detail that must be understood
in order to prepare an assembler-language
program that relies on that function. It
does not, however, describe the notation
and conventions that must be employed in
preparing such a program, for which the
user must instead refer to the appropriate
assembler~language publication, such as the

0S/VS-DOS/VSE-VM/370 Assembler Langquage,
GC33~4010.

The information in this publication 1is
provided principally for use by
assembler-language programnmers, although
anyone concerned with the functional

details of System/370 will find it useful.

Note that this publication is written as a
reference document and should not be
considered an introduction or a textbook
for System/370. It assumes the user has a
basic knovledqge of data processing systenms
and, specifically, the System/370, such as
can be derived from the Introduction to IBM
Data Processing Systems, GC20-1684, and the
IBM System/370 System Summary: Processors,
GA22~7001. All publications relating to
System/370 are listed and described in the

IBY System/370 and 4300 Progessors
Bibliography, GC20-0001.
All facilities discussed in this

publication are not necessarily available
on every model of System/370. Furthermore,
in some instances the definitions have been
structured to allow for some degree of

extensibility, and therefore certain
capabilities may be described or implied
that are not offered on any model.
Examples of such capabilities are the

provisions for the number of channel-mask
bits in the control register, for the size

of the CPU address, and for the number of
CPUs sharing main storage. The allovance
for this type of extensihility should not

be construed as implying any intention by
IBM to provide such capakilities. For
information about the characteristics and
availability of features on a specific
System/370 model, use the functional
characteristics publication for that model.
The availability of features on System/370
mrodels is summarized in the IBM System/370
System Summary: Processors, GA22-~7001.°

largely because the publication is arranged
for reference purposes, certain words and
phrases appear, of necessity, earlier in

the publication than the principal
discussions explaining them. The reader
who encounters a problem of this sort
should refer to the index, which indicates
the location of the key description.

The information presented in this
publication is grouped in 13 chapters and
several aprendixes:

some of the major

Introductiop highlights
features of System/370.

Organization describes the major groupings
within the system—-the central processing
unit (CPU), storage, and input/output--with
some attention given to the composition and
characteristics of those groupings.

the information formats,

Storage explains

the types of addresses used to access
storage, and the facilities for storage
protection. It also deals with dynamic
address translation (DAT), which, coupled

with special programming support, makes the

use of a virtual storage possible in
System/370. DAT eliminates the need to
assign a program to a fixed location in

reduces the
systen and

real storage and thus

addressing constraints on
problem programs.
Control describes in depth the facilities
for the switching of system status, for
special externally initiated operations,
and for debugging and timing the systen.
It deals specifically with CPU states,
control modes, the program-status word
(PSW), control registers, program-event
recording, timing facilities, resets, store
status, and initial program loading.

Progranm explains the role of
instructions in program execution, looks in
detail at instruction formats, and
describes briefly the use of the program
status vword (PSW), of branching, and of
interruptions. It <contains the principal
description of the dual-address-space (DAS)
facility. It also details the aspects of
program execution on one CPU as observed by
channels or another CPU.

Execution

Interruptions details the System/370
mechanism that permits the CPU to change

its state as a result of conditions
external to the system, within the systen,

or within the CPU itself. Six classes of
interruptions are identified and described:
machine-check interruptions, program
interruptions, supervisor-call interrup-

tions, external interruptions, input/output
interruptions, and restart interruptions.

iii

General Instructions contains detailed
descriptions of all unprivileged
instructions, except for the decimal and

floating-point instructions.
Decimal Instructions describes in detail
the decimal instructions, which, together
with the general instructions, make up the
commercial instruction set.

Floating-Point Instructions contains
detailed descriptions of the instructions
provided by the floating-point feature and

by the extended-precision floating-point
feature.
Control nstructions contains detailed

descriptions of all of the semiprivileged
and privileged instructions, except for the
I/0 instructions.

Machine-Check Handling describes the
System/370 mechanisnm for detecting,
correcting, and reporting machine
malfunctions.

Input/Output Operations explains the

programmed control of I/0 devices by the

channel and by the CPU. It includes
detailed descriptions of the I/0
instructions, channel-command words, and

other I/0O-control formats.

Operator Facilities describes the basic
manual functions and controls available for
operating and controlling the systenm.

. Information about number

representation
° Instruction-use examples

. Lists of the instructions arranged in
several sequences

. summary of condition-code settings

iv

. A 1list of the System/370 facilities
and an indication of their
availability as features on models
that implement the Systemn/370
architecture.

. A table of the powers of 2

. Tabular information helpful in dealing
with hexadecimal numbers

. An EBCDIC chart

- A discussion of changes affecting
compatibility between System/360 and
System/370

. A discussion of changes affecting

compatibility within System/370

SIZE NOTATION

The letters K and M denote the multipliers
210 and 220, respectively. Although the
letters are borrowved from the decimal
system and stand for kilo (103) and mega
(10¢), they do not have the decimal meaning
but instead represent the povwer of 2
closest to the corresponding power of 10.

Their meaning in this ©publication is as
follows:

r Ll A

| Symbol | Value |

[1]

T T 1

| K (kilo) | 1,024 = 210 |

| | |

| M (mega) | 1,048,576 = 220 |

L 1 J

The following are some examples of the use
of K and M:

2,048 is expressed as 2K.
4,096 is expressed as UK.
65,536 is expressed as 64K (not 65K).
224 js expressed as 16M.

When the words "thousand" and "million" are
used, no special pover-of-2 meaning 1is
assigned to then.

The abbreviations used often in this
publication and their meanings are given in
the following list. Instruction mnemonics

are listed in Appendix C-.under "Instruc-

tions Arranged by Mnemonic."

AFT ASN first table

AFTO ASN-first-table origin

AFX ASN-first-table index

AKM authorization key mask

ASN address-space number

AST ASN second table

ASTE AST entry

ASTO AST origin

ASX ASN-second-table index

AT authority table

ATL authority-table length

ATO authority-table origin

AX authority index

BC basic control (a mode bit in the
PSW)

CAI channel-available interruption

CAW channel-address word

CBC checking-block code

CCwW channel-command word

CPU central processing unit

CSW channel-status word

DAS dual address space (facility)

DAT dynamic address translation

EC extended control (a mode bit in
the PSW)

EKM entry key mask

ET entry table

ETL entry-table length

ETO entry-table origin

EX entry index or execute

hex
ID
IDAW
ILC
INML
1/0
IOEL

IPL

LT

LTD
LTL
LTO

LX

PASN
PC
PC-cp
PC-ss

PCI

PER
PFRA
PRM
PSTD
PSTL
PSTO
PSW
PT

PT-cp

PT-ss

ABBREVIATIONS

hexadecimal

identifier; identification
indirect-data-address word
instruction-length code

initial microprogram loading
input/output

I/0 extended logout

initial program load

1,024 (bytes)

linkage table

linkage-table designation
linkage-table length
linkage-table origin

linkage index

1,048,576 (bytes)

primary ASN

program call

program call to current primary
program call with space switching

program-controlled interruption
(flag in CCW or function)

program-event recording
page-frame real address

PSW-key mask

primary segment-table designation
primary segment-table length
primary segment-table origin
program-status word

program transfer

program transfer to current
primary

program transfer with space
svitching

PTL
PTO
PX

RR

RRE

RS

RX

SASN

SI

SLIY

vi

page-table length
page-table origin
page index

register—-and-register instruction
format (or operation)

register-and-register instruction
format (or operation) using an
extended operation code

register-and-storage instruction
format (or operation)

register-and-indexed-storage in-
struction format (or operation)

implied-operand-and-storage in-
struction format (or operation)

secondary ASN

storage~-and-immediate-operand in-
struction format (or operation)

suppress length indication (flag
in CCW)

SS

SSAR

SSAR-CP

SSAR-ss

SSE

SSTD

SSTL
SSTO
STD
STL
STO
TLB

TOD

storage-and-storage instruction
format (or operation)

set secondary ASN

set secondary ASN to current
primary

set secondary ASN with space
sv¥itching

storage—and-storage instruction
format (or operation) using an
extended operation code

secondary segment-table designa-
tion

secondary segment-table length
secondary segment-table origin
segment~-table designation
segment-table length
segment-table origin
translation-lookaside buffer

time of day

CONTENTS

CHAPTER 1. INTRODUCTION « o« o« «
General-Purpose Desigqn . « <« . . .
Compatibility.

Compatibility Among System/370 Models.

Compatibility Between System/360
System/370. ¢ ¢ ¢ o ¢ o o o o @
System Program « « « o « o o o o« @
Availability « « ¢ & ¢ ¢ o o o o @

CHAPTER 2. ORGANIZATION « « « «
Main StOorage « « « o o o « o « o @
Central Processing Unite « « « «
program-Status Word. . « <« « . .
General Registers. « « « « « « =«
Floating-Point Registers
Control Registers. « « o« « o « «
Input and Output « « .« . « « « o« @
Channel Sets & o« « « o « « o o =
Channels . « ¢« ¢ o « o = o o « «
Input/Output Devices and Control
UNitS o o « o « o o o « « o « =
Operator Facilities. . . . « « «

CHAPTER 3. STORAGE. « o « o o o «
Storage Addressing « « « o « o - .
Information Formats. « « . . . «
Integral BoundarieS. . « « « « «
Byte-Oriented-Operand Feature. .
Address TYPESe « « o o o o o« o o «
Absolute Address . « « ¢ o o .
Real Address « « « « o« o o o «
Effective AddressS. « « « « o« =«
Virtual Address. . « « « « « .
Primary Vvirtual Address. . . .
Secondary Virtual Address. . .
Logical AQAreSS. « « « o « o o
Instruction Address. «
Storage Key. « « o o o o o o o o o
Protection . ¢« ¢ ¢ o o o o o o o @
Key-Controlled Protection. . . .
Low-Address Protection
Reference Recording. . « « o« « « «
Change Recording « « « « o« « o« « «
PrefiXinge o« o« o« o o o o ¢ o o o @
AddresSs SPACeS « o « o « o o o « =
Dynamic Address Translation. . . .
Translation Control. « «
DPSWe o o o o o o
Control Register
Control Register
Control Register 7 . « . « « «
Translation Tables . « . « « . .
Segment-Table Entries.
Page-Table Entries . . « . .
Summary of Dynamic Address
Translation Formats . « « . « «
Translation Process. - « « « . .
Effective Segment-Table
Designation . « « « ¢ « <« . .
Inspection of Control Register
Segment-Table Lookup
Page-Table Lookup. « « « « « &

a0
.
.
.
.
.
.

and

.
NNNNNDNDNDNDNDN
|
A EFWWWN a2

.
NN
|
o))

1
VvV UNUILNNUUUNEEFEFEFEFWNN A

.
luwwwwuwuww*wwuwwwwwww

o
- —h
—

3-17
3-20
3-20
3-20

Formation of the Real Address. . .
Recognition of Exceptions During
Translation . . e o o o o ® o o
Translatlon—Looka51de Buffer
Use of the Translation-Lookaside
Buffer. . « « . . . e o o o @
Modification of Translatlon Tables
Address SUMMATLYe « « « o o o o o « o o
Addresses Translated « « « « o « « «
Handling of AddresseS. « « « « « « o
Assigned Storage Locations . «
Assigned Real-Storage Locations. . .
Assigned Absolute Storage locations.

CHAPTER 4. CONTROL. o« « 2 o o o o o
Stopped, Operating, Load, and
Check-Stop States = « ¢« ¢« ¢« o o o « =«
Stopped State. « ¢« ¢« ¢ o ¢ o o o o @
Operating Stat€e « « o o o o o o « o
Load State <« « o « ¢ o o o o o o o o
Check-Stop State « « ¢« « ¢ ¢« ¢« « « .
Program—-Status Word. « « « « o o « « o
EC and BC ModesS. « « « « « « « = o =«
Program-Status-Word Format in EC
Program-Status-Word Format in BC
Control RegisSterSe. « « o« « « « o « o @
DAS Tracinge « « « « « o o o o o« « o
Trace-Table-Entry-Header Origin. . .
Trace-Table-Entry Header
Applicable Controls. « « « « « «
Trace Entry¥e ¢« o o o o o o o o « o =
Program-Event Recording.
Control-Register Allocation.
OperatioNe « o« o o o « o o o « o« o =
Identification of Cause. . « « « =«
Priority of Indication
Storage-Area Designation
PER EVenNtsS ¢« o« o ¢ o o o o o o o o o
Successful Branching « . « « . . .
Instruction Fetching
Storage Alteration . .« <« « « . . .
General-Register Alteration. . . .
Indication of Events Concurrently
with Other Interruption Conditions.
Direct Control . « ¢ o« o o o « o « o =
Read-Write-Direct Facility
External-Signal Facility
Timing « « « « « e o @ © o o s o o @
Time-of-Day Clock. e o o o o o o o
Format « ¢« ¢ o ¢ ¢ @ o @ o o o o o
States o e e e o o o
Changes in Clock State « o o o o o
Setting and Inspecting the
TOD-Clock Synchronization.
Clock Comparator « « « « o « o« o « «
CPU TiME@Le o « « o o o o « « o« o o« &«
Interval Timer . « « « o« « o o « « =
Externally Initiated Functions
| Service Signal . « <« ¢ ¢ ¢ o o o o
Resets « « . . .
CPU ReS€t. o « « o o « o « =« o o« =
Initial CPU Reset. « « o « « « o =
Subsystem Reset. . . . « « & « .« .
Program Reset. « « ¢ « ¢ o o o o«
Initial Program Reset. . . « . . .
Clear ReSe€t. o« « o « « « « o o o« @
Power-0On Reset « « « o o o ¢ o o o
Initial Program Loading. . «
Store Status .« ¢« ¢ ¢ ¢ « ¢ ¢ & o o @

3-21

3-21
3-21

3-22
3-25
3-27
3-27
3-28
3-29
3-29
3-32

Multiprocessinge « « o« « « o o o « o @
Shared Main Storage. . « « « « o« « =
CPU-Address Identification

CPU Signaling and ResponsSe . « « « « «
Signal-Processor Orders. « « « « « o
Conditions Determining Response. . .

Conditions Precluding
Interpretation of the Order Code.
Status BitsS. o« o & o ¢ o o o < &

Channel-Set Switching.

CHAPTER 5.

PROGRAM EXECUTION.

INStructionsS « « o« o « « o o « o a = =
Operands . « « o« « @ o« @« o« © « o 2
Instruction Format .« « « « « « o « &

Register Operands. . « . « « « « -«
Inmediate Operands . . « « « « . .
Storage Operands .« « « « o o o « o

Address Generation < . & . .
Sequential Instruction-Address

GeneratioN. « « « « o o = o« o o « =

Operand-Address Generation
Branch-Address Generation.
Instruction Execution and Sequencing .
Decision-Making. . « « « & o & o o
Loop Control « ¢« « o e « « o o o @« =
Subroutine Linkage . « « « &« o & o .
Interruptions. « « « « o« o o o o« « o
Types of Instruction Ending.
Interruptible Instructions

Point of Interruption.
Execution of Interruptible
Instructions. « . « « o o ¢ « o &

Exceptions to Nullification and

SUPPLEeSSiOoN v« o « o o o « a « o o« =

Storage Change and Restoration for
DAT-Associated Access Exceptions.
Modification of DAT-Table Entries.
Trial Execution for TRANSLATE and
EDIT. . . e o @ o ® o o o @
Interlocked Update for
Nullification and Suppression . .

Dual-Address-Space Control
SUMMATY e o« o o o o o« o o o o « o o =
DAS FUNCtiONS. « « o o o o « o « o =

DAS

Using Two Address Spaces . « .« « =«
Changing to Other Spaces
Moving Data Between Spaces . . .
Transferring Program Control . -
Handling Storage Keys and the PSW
K€Y « v o o« a o o « o o« s o o« o @
Program—-Problem Analysis
Authorization Mechanisms
Extraction-Authority Control . . .
PSW-Key Mask « « o o o« o o = o o =
Secondary-Space Control.
Subsystem-Linkage Control.
ASN-Translation Control.
Authorization Index. . « « « o« o .
Space-Switch-Event Bit

PC-Number Translation. . . . «
pC-Number Translatiom Control. . . .

PC-Number Translation Takbkles . .

PC-Number-Translation Process. .

viii

Linkage-Table Entries.
Entry-Table Entries. « « . . .

Linkage-Table Lookup
Entry-Table Lookup « « « « « « « &
Recognition of Exceptions During

4-36
4-36
4-36
4-36
4-37
4-38

4-38

L]
uoununnunoaon
[}
NEEFTFWNN=

L
oo n
)
OO0

5-19
5-20
5-21
5-22

CHAPTER 6.
Interruption Action.

PC-Number Translation

ASN TranslationN. « « « o« o o « « « @

ASN-Translation Controls
ASN-Translation Tables « «
ASN-First-Table Entries.
ASN-Second-Table Entries
ASN-Translation Process. . . « « =«
ASN-First-Table Lookup
ASN-Second-Table Lookup.
Recognition of Exceptions During
ASN Translation . « « « « « « =

ASN Authorization. « . « « « « . . .

ASN-Authorization Controls
Control Register 4
ASN-Second-Table Entry
Authority-Table Entries.

ASN-Authorization Process.
Authority-Table Lookup
Recognition of Exceptions During

ASN Authorization

Sequence of Storage References . . .

Interlocks for Virtual-Storage
References. « o« « « o« o « o o o «
Instruction Fetching
DAT-Table Fetches. . . « . « . . .
Storage-Key ACCESSES o « o o o «
Storage-Operand References
Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References
Storage-Operand Consistency. . . .
Single-Access References
Multiple-Access Operands
Block-Concurrent References. . .
Consistency Specification. . . .
Relation Between Operand Accesses.
Other Storage References

Serialization. « « « o o o o o o o &

CPU Serialization. . « « « « « . &
Channel Serialization.

INTERRUPTIONS.

Source Identification.
Enabling and Disabling . . . - .
Handling of Floating Interruptlon
ConditionS. « ¢« « o « o o o « o o
Instruction-Length Code.
Zero ILC o« ¢ o o o o o o = s o =
ILC on Instruction-Fetching
Exceptions. . « . . e e e
Exceptions Associated wlth the PSW
Early Exception Recognition. . .
Late Exception Recognition . . .

External Interruption.

Clock Comparator « « « « « o « o «
CPU TiM€Te o« « o o« o o = = 2 « = =
Emergency Signal . . <« « « « « . «
External Call. « « « « ¢ =« = o o« «
External Signal. « « « « ¢ o« « « =
Interrupt Keye « « o ¢« o o« o«
Interval Timer . « « « o o o &«

Malfunction Alert. « « « o« « « «
Service Signal « « <« « ¢ ¢ . o

TOD-Clock Sync Check « « . « . «

Input/Output Interruption.
Machine-Check Interruption
Program Interruption

Program-Interruption Conditions. .

5-22
5-22
5-22
5-23

5-33
5-34
5-35
5-35
5-35

Addressing Exception
AFX-Translation Exception. . .
ASN-Translation-Specification
Exception . . <
ASX-Translation Exception. . .
Data Exception
Decimal-Divide Exception . . .
Decimal-Overflow Exception . .
Execute Exception.
Exponent-Overflow Exception. .
Exponent-Underflow Exception .
EX-Translation Exception . . .
Fixed-Point-Divide Exception .
Fixed-Point-Overflow Exception
Floating-Point-Divide Exception
LX-Translation Exception . . .
Monitor Event. <« . .
Operation Exception.
Page-Translation Exception . .
PC-Translation-Specification
Exception « ¢ ¢ o ¢ ¢ ¢ < o .
PER Event. « « ¢« ¢ « ¢ o« o o o
Primary-Authority Exception. .
privileged-Operation Exception
Protection Exception
Secondary-Authority Exception.
Segment-Translation Exception.
Significance Exception
Space-Switch Event
Special-Operation Exception. .
specification Exception. . . .
Translation-Specification
Exception . . .« <« . ¢ ¢ < . .
Collective Program-Interruption
NAMES o « o o o o o o o o o« o o
Recognition of Access Exceptions
Multiple Program-Interruption
conditions. <« « ¢ @ ¢ ¢ < o o o
Access Exceptions.
ASN-Translation Exceptions . .
Trace Exceptions
Restart Interruption
Supervisor-Call Interruption . . .
Priority of Interruptions.

CHAPTER 7. GENERAL INSTRUCTIONS .
Data Format. « « « e o o ¢ o o o «
Binary-Integer Representation. . .

Signed and Unsigned Binary Arithmetic.

Signed and lLogical Comparisom. . .
InsStructions « « ¢ « o ¢ ¢ o ¢ o @
ADDe e o o o o @ o o o e« o o « @
ADD HALFWORD « ¢ o o « o o« o o o
ADD LOGICAL. « « o o « o« o o o @
ANDe « o o o o« o o o o « o o o« =
BRANCH AND LINK:. o « o o« o o o «
BRANCH AND SAVE. e e o o o o @
BRANCH ON CONDITION. e e o o o o
BRANCH ON COUNTe « o o o « o o «
BRANCH ON INDEX HIGH e o o @
BRANCH ON INDEX LOW OR EQUAL o o
COMPARE. . « ¢ o e o « o o o o o
COMPARE AND SWAP o« &« o o o o o =«
COMPARE DOUBLE AND SWAP.
COMPARE HALFWORD ¢« o« o« ¢ o o o« «
COMPARE LOGICAL. « « =« « « o e
COMPARE LOGICAL CHARACTERS UNDER
MASKe ¢ o o « @« « o o o @ o = @
COMPARE LOGICAL LONG . « « o « o

6-14
6-16

6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-18
6-19
6-19

6-20
6-20
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-22

6-23

6-24
6-24

6-24
6-28
6-29
6-29
6-29
6-30

T
w
(=]

.

|
S OVVOININIEEFEWNON

I NN NNNESNNNNNN
|

\ITI\I'
P |

CHAPTER 8.

CONVERT TO BINARY.
CONVERT TO DECIMAL
DIVIDE « « . « « «
EXCLUSIVE OR . . .
EXECUTE. . . . -
INSERT CHARACTER .

INSERT CHARACTERS UNDER HASK .

LOAD . . . « e e
LOAD ADDRESS « o e
LOAD AND TEST. . .
LOAD COMPLEMENT. .
LOAD HALFWORD. . .
LOAD MULTIPLE. . .
LOAD NEGATIVE. . .
LOAD POSITIVE. . .
MONITOR CALL . . .
MOVE« <« « .
MOVE INVERSE . . .
MOVE LONG. . . . «
MOVE NUMERICS. -
MOVE WITH OFFSET -
MOVE ZONES
MOLTIPLY .«
MULTIPLY HALFWORD.
OR ¢ o ¢ o o o o «
PACK -
SET PROGRAM MASK -
SHIFT LEFT DOUBLE.

SHIFT LEFT DOUBLE LOGICAL . .

SHIFT LEFT SINGLE.

SHIFT LEFT SINGLE LOGICAL. . .

SHIFT RIGHT DOUBLE
SHIFT RIGHT DOUBLE
SHIFT RIGHT SINGLE
SHIFT RIGHT SINGLE
STORE. « « o « o« &
STORE CHARACTER. .

STORE CHARACTERS UNDER

STORE CLOCK. . . .
STORE HALFWORD . .
STORE MULTIPLE . .
SUBTRACT o«
SUBTRACT HALFWORD.
SUBTRACT LOGICAL .
SUPERVISOR CALL. .
TEST AND SET . . .
TEST UNDER MASK. .
TRANSLATE. . . .

TRANSLATE AND TEST
UNPACK « « « o« o« «

Zoned Format . . .
Packed Format. . .
Decimal Codes. . .

Decimal Operations .

Decimal-Arithmetic

LOGICAL . .

e @ o e

LOGICAL . .

Instructions.

Editing Instructions .

Execution of Decimal Instructions.

Other Instructions
Operands. « « « «

Instructions

ADD DECIMAL. . . .
COMPARE DECIMAL. .
DIVIDE DECIMAL . .
EDIT . &« « o« o o «
EDIT AND MARK. . .
MULTIPLY DECIMAL .

for

e e o o

MASK. .

DECIMAL INSTRUCTIONS
Decimal-Number Formats .

Decimal

~
|

=~

-

. .
[|

moocoooolooooooooo

[}
WWRNNN A @ ama

« ¢ s 0

.8-5
.8-6

ix

SHIFT AND ROUND DECIMAL.
SUBTRACT DECIMAL . . « « o o« o« « « &«
ZERO AND ADD -« & =« o o o o o o o o« «

8-11
8-12
8-12

CHAPTER 9. FLOATING-POINT INSTRUCTIONS.9-1
Floating-Point Number Representation « «9-1
Normalization. . . . - e e o o o o «9-2
Floating-Point-Data Format e« e e e o « «9-2
Instructions . « ¢ ¢ ¢ ¢ o ¢ ¢ e e . . 9-U
ADD NORMALIZED = « « « « « « « o « o« «9-6
ADD UNNORMALIZED . = « « « « « « « « «9-7
COMPARE. . ¢ ¢« ¢« « o o « ¢ « o« « « « -9-8
DIVIDE . . 2 « « o « « o « o o« o« « « 29-9
HALVE. ¢ « & « « o « =« « =« o =« « =« « 9-10
LOAD & «¢ v o « o« o « « =« « o« o « « « 9-10
LOAD AND TEST. « o « o o o « o« « « « 9-11
LOAD COMPLEMENT. . 2« 2 « « 2 « « « o 9-11
LOAD NEGATIVE. v v o« « o o « =« « « « 9-12
LOAD POSITIVE. =« « « o « o « « « o « 9-12
LOAD ROUNDED « =« o o « « « « « =« « « 9-12
MULTIPLY . ¢ o« ¢ o o o e o « o« « o« « 9-13
STORE. v « « 2 « = o o « o « =« « « « 9-14
SUBTRACT NORMALIZED. « « « « =« « « - 9-15
SUBTRACT UNNORMALIZEL. « . . « « « « 9-15
CHAPTER 10. CONTROL INSTRUCTIONS. . . 10-1
CONNECT CHANNEL SET. « = « « « =« « « 10-5
DIAGNOSE . . - e e o« « « o o 10-5
DISCONNECT CHANNEL SET e« e e« « « « « 10-6
EXTRACT PRIMARPY ASK. . ¢« = -« « « - « 10-6
EXTRACT SECONDARY ASN. . e« o o o « 10-7
INSERT ADDRESS SPACE CONTROL e e« -« « 10-7
INSERT PSW KEY = = ¢ ¢ « « =« « « « o 10-8
INSERT STORAGE KEY « = « « « « « « « 10-9
INSERT VIRTUAL STORAGE KEY 10-9
INVALIDATE PAGE TABLE ENTRY. - . .10 10
LOAD ADDRESS SPACE PARAMETERS. e « «10-11
PASN Translation10-12
SASN Translation10-12
SASN Authorization10-12
Control-Register Loading10-12
Other Conditions « . <« <« « o o . .10-13
SUMMATY « o « o o « « « © o « « « «10-13
LOAD CONTROL . o « « o o « « « « « -10-16
LOAD PSW o ¢ o « o o o o « o « « « «10-17
LOAD REAL ADDRESS. o o o o « « « « «10-17
MOVE TO PRIMARY. . « « « « « « « « .10-18
MOVE TO SECONDARY. « « « « « « « « -10-18
MOVE WITH KEY. =« 2« 2« 2 « « « « « « «10-20
PROGRAM CALL - e o « «10-21
PROGRAM CALL to Current Prlmary
(PC=CP) o o o « o =« - e o o «10-22
PROGRAM CALL with Space Swltchlng
(PC=SS) « « « o o o« « =« « « « « «10-22
PROGRAM TRANSFER « . « o « « « « « «10-28
PROGRAM TRANSFER to Current
Primary (PT-CP) « « « « « « « « .10-28
PROGRAM TRANSFER with Space
Switching (PT-SS) « « « « « « « .10-28
PURGE TLB. 2« « « o « « « « « « « « 210-33
READ DIRECT. = « « « « « « « « « « «10-33
RESET REFERENCE BIT. . . = « « - - -10-34
SET ADDRESS SPACE CONTROL.10-34
SET CLOCK. ¢ « « « « « « =« =« « « « 210-35
SET CLOCK COMPARATOR . -« . « « . . .10-36
SET CPU TIMER. « ¢ <« « « « « « « « «10-36
SET PREFPIX . o o« « « o« o « « o« « « «10-36
SET PSW KEY FROM ADDRESS «.10-37
SET SECONDARY ASN. . . =« <« « « « « -10-38

SET SECONDARY ASN to Current

Primary (SSAR-CP) « « « « « « . -10-38
SET SECONDARY ASN with Space
Switching (SSAR-sS) « « « « « « -10-38
SET STORAGE KEYe ¢ ¢ o o o « « « « «10-41
SET SYSTEM MASK. . « « « ¢ « « « « -10-41
SIGNAL PROCESSOR -« . « « « « « « « -10-42
STORE CLOCK COMPARATOR . . -« « . - .10-43
STORE CONTROL. « « « « « « « « « = «10-43
STORE CPU ADDRESS. « « « « « « « « «10-U44
STORE CPU ID 2« « « « o « « o « « « <10-U44
STORE CPU TIMER. -« « « « « « « « « -10-U45
STORE PREFIX e« o o o «10-U5
STORE THEN AND SYSTEH HASK e o« o« « «10-45
STORE THEN OR SYSTEM MASK.10-46
TEST BLOCK -« « 2 2 o « « « « « « « 210-U46
TEST PROTECTION. « « « « « « « « « -10-48
WRITE DIRECT . « « « « « =« « « « « «10-49
CHAPTER 11. MACHINE-CHECK HANDLING. . 11-1
Machine-Check Detection. 11-2
Correction of Machine Malfunctions . . 11-2
Error Checking and Correction. . . . 11-2
CPU REtILYe « o o o o o o « o o « « o« 11-3
Effects of CPU Retry - « « 11-3
Checkpoint Synchronization 11-3
Handling of Machine Checks During
Checkpoint Synchronization. . . . 11-3
Checkpoint-Synchronization
Operations. « « o« « =« « o« « « « « 11-4
Checkpoint-Synchronization Action. 11-4
Unit Deletion. . . « ¢« &« &« &« ¢ & « < 11-4
Handling of Machine Checks 11-5
Validation « « « ¢« « « « o« « « « « « 11-5
Invalid CBC in Storage . « « « « « . 11-6
Programmed Validation of Storage . 11-6
Invalid CBC in Storage Keys. 11-7
Invalid CBC in Registers 11-9
Check-Stop State . « . ¢« ¢ « ¢« « . . .11-10
System Check Stop. « « « « « « « .11-11
Machine-Check Interruption11-11
Exigent Conditions «11-11
Repressible Conditions11-12
Interruption Action.11-12
Point of Interruption.11-14
Machine-Check-Interruption Code. . . .11-15
SUbDClasSs o o« o o o« o o « o « o« « « «11-16
System Damage. « « « ¢ « < « o . -.11-16
Instruction-Processing Damage. . .11-17
System Recovery. . « « « « « « « .11-17
Interval-Timer Damage. « « « « - .11-17
Timing-Facility Damage11-17
External Damage. . « . « « « « . -11-18
Degradation. « « « ¢« &« ¢ « &« « - .11-18
Harning. « « « ¢« « o « « « « « « -11-18
Time of Interruption Occurrence. . .11-18
Backed Up. = « « « « « « « =« « « «11-18
Delayed. « « « o « ¢ « « « & o « -11-18
Synchronous Machine-Check
Interruption Conditions11-18
Processing Backup. « « « « « « . .11-19
Processing Damage. . « « « « « « -11-19
Storage—-Error Type « « « « « « « « -11-19
Storage Error Uncorrected.11-19
Storage Error Corrected.11-19
Storage-Key Error Uncorrected. . .11-20
Machine-Check Interruption-Code
Validity Bits « ¢« ¢ ¢ ¢ ¢« ¢ « « « «11-20
PSW-EMWP Validity.« . . .11-20

PSH Mask and Key Validity.11-20
PSW Program-Mask and

Condition-Code Validity . . . « +11-20
PSW-Instruction-Address Validity .11-20
Failing-Storage-Address Validity .11-20
Region-Code Validity « « « « « « -11=21
External-Damage-Code Validity. . .11-21
Floating-Point-Register Validity .11-21
General-Register Validity.11-21
Control-Pegister Vvalidity. . . . 11-21
Logout Validity. « « ¢« « « « « o «11-21
Storage Logical Vvalidity11-21
CPU-Timer Validity « « « o « « « «11=21
Clock-Comparator Validity.11-21
Machine-Check Extended-logout

Lengthe o ¢ ¢ ¢ ¢ ¢ ¢ o o o o « «11-22

Machine-Check Extended Interruption

Information ¢« ¢« ¢« o o ¢ ¢ @ o o o o <11-22
Register-Save AT€aSe. « « « « « « « «11=22
External-Damage Code . . . « « « . 11-22
Failing-Storage Address. . « « « « «11=-24

Region Code. . . . « «11-24

Handling of Machlne—check Condltions .11-25

Floating Interruption Conditions . .11-25
Floating Machine Check

Interruption Conditions11-25
Machine-Check Masking. « . . « « . . .11-25
Check-Stop Control .« . « « « « « .11-26
Recovery-Report Mask . « . . « . .11-26
Degradation-Report Mask. « « « . .11-26
External-Damage-Report Mask. . . .11-26
Warning Mask « « &« ¢ ¢ ¢ ¢ o o « «11=-26
Machine-Check Logout . . « .« . « « « .11=-26
Logout CONtTolS. « « 2 « = « o o« « «11-27

Synchronous Machine-Check
Extended-Logout Control11=-27
Input/Output Extended-logout
CONtTOol o v« o o o o o o o o o o« «11=27
Asynchronous Machine-Check
Extended-Loqout Control . « . . +11-27
Asynchronous Fixed-logout Control.11-27
Machine-Check Extended-Logout
Address . « « o o o e o o o o o «11=27
Summary of Machine- Check Masking and
LOGOUt. o o o « o o o o o« o o o « =« «11-28

CHAPTER 12. INPUT/OUTPUT OPERATIONS . 12-1
Attachment of Input/Output Devices . . 12-2

Input/Output Devices .« « « « ¢« « « o 12=2
Control UnitSe. « ¢« « o« o o o o o « « 12-3
Channels . « ¢« o« o o « o o « « = « « 12-3
Modes of Operation . « « <« . « « « 12-4
Types of Channels. « « « « « « « « 12-4
I/0-System Operation . « « « « « « « 12-6
Compatibility of Operation 12=7
Control of Input/Output Devices. . . . 12-8
Input/Output Device Addressing . . . 12-8

States of the Input/Output System. . 12-9
Resetting of the Input/Output
SYSteMe « « o o o o o « o o o « . 12-11
I1/0-System Reset . o« o« o« « - . 12=-11
I1/0 Selective Reset. « « « « « - 12=-11
Effect of Reset on a Working

DEVICE. o ¢ o o o o o « o o« « o «12=-12
Reset Upon Malfunction « « « « « .12-12
Condition Code « « o« o ¢ o @ o « « «12=-12
Instruction Formats. « « « « « « « -12=15
INStructions . « o« « « 2 o = o « « «12=-15
CLEAR CHANNEL. ¢ « © 2 « o « =« o « «12=-16

CLEAR I/0c v o o o o o o o o « o o «12-
HALT DEVICE. « « o o « = o « o« o« « 12-
HALT I/0 ¢ v o « o o o o o o o o o o12-
START I/0c v « o o « o o o o « o « 12-
START I/O0 FAST RELEASE . « o o . . .12-
STORE CHANNEL ID v o« « « o « o o « 12—
TEST CHANNEL v v v o o o « o o o « 12—

TEST T/0 e o o o o o o o o« o o o o o12-

Input/Output-Instruction-Exception

Handling. « « « o « o « = o o « o« «12=-
Execution of Input/Output Operations .12-

Blocking of Data « « « « ¢ o o « o o12-
Channel-Address Word « « « « « « « «12-
Channel-Command WOord « « « « « « « <12
Command Code « « « 2 o o « o « o o« «12-
Designation of Storage Area.12-
Chaining . ¢« o« o« « o o « o « @ o « o12-
Data Chaining. « « &« ¢« ¢ ¢ &« o« o .12-
Command Chaining . « « « o &« o« « o12-
SKkipping . ¢ o« ¢ ¢ ¢ o @ o o o o o o12-
Program-Controlled Interruption. . .12
Channel Indirect Data Addressing . .12
Commands « « « « « « « e o o o o o12-
Write. « ¢« o o o o @ e« e o o o o12-
Read « « « « « o o @ 12-
Read Backward. . . .« . . 12-
Control. . . « « . « . .12

Sénse. « o o o o o o .

Sense ID « . . . - -
Transfer in Channel. . .12-
Command Retry. « « « « ¢ « o .« . .12
Conclusion of Input/Output Operatlons 12-
Types of Conclusion. « « « « « « o o12-

Conclusion at Operation

¢ 8 8 o s s & 0
.
e & o o s &
.
¢ s 8 s o

Initiation. « « « o« ¢« &« o« « &« o <12-
Immediate Operations « « .12-
Conclusion of Data Transfer. . . .12-

Termination by HALT I/O or HALT

DEVICE. . . e o o o o o o o o <12-
Termination by CLEAR I/012-

Termination Due to Equipment

Malfunction « « « « « o « o« o o o12-
Input/Output Interruptions12-

Interruption Conditions.12-
Channel-Available Interruption . .12-
Priority of Interruptions.12-
Interruption Action. . . .«12-
Channel-Status Word. « « « « « o « o12-
Onit StatuSe « « « o « o e o o o o« «12-
Attention. . &« ¢ ¢ ¢ ¢ o o o o « <12-
Status Modifier. « « « « « « « . .12-
Control-Unit End - =« « « « & « « 12—
BUSY o « o o o o o « o « o o o o o12-
Channel Ende « « o ¢ o « o « » « «12-
Device End « « o o o o o o o o o «12-
Unit Check « o« o o o o o o o « o o12-
Unit Exception « -« ¢« ¢« ¢« « ¢ & « <12-
Channel Status « « « « o « o o « « o12-
Program-Controlled Interruption. .12-
Incorrect Length « « « ¢« « ¢« ¢« o 12—
Program Checke « ¢ ¢ o o o o o « o12-
Protection Check « « o « o o o o «12-
Channel-Data Check « « « « o . . .12-
Channel-Control Check. « «12-
Interface-Control Check.12-
Chaining Check e e o o o12-
Contents Of Channel- Status Word. . .12-

Information Provided by

Channel-Status Word « . .12-

17
19
22
25
25
28
29
29

32
32
33
33

-33

34
35
36
38
39
39

-40
-41

42
43
43
)

-44
«12-
< 12-

45
46
u7
u7
48
48

48
49
50

51
52

52
52
52
54
54
54
55
56
56
56
57
57
60
60
61
62
62
62
62
63
63
6u
64
64
65
65

65

xi

Subchannel Key « « ¢ o « o « o«
CCW AddresSSe. « « o o o o o
Count.e . ¢ ¢ o o o @
Status . « « o o o
Channel Logout
I/0-Communication Area .

CHAPTER 13. OPERATOR FACILITIES
Manual Operation .« « « « o« « o &
Basic Operator Facilities. .
Address-Compare Controls .
Alter-and-Display Controls
Check Control. « « « « «
Check-Stop Indicator . . .
IML Controls « « « « «
Interrupt Key. « « « <«
Interval-Timer Control .
Load Indicator
Load-Clear Key « « « .« «
Load-Normal Key. « . . «
Load-Unit-Address Controls
Manual Indicator
Power Controls
Rate Control .
Restart Key. .
Start Key. . .
Stop Key . . <« .
Store-Status Key
System-Reset-Clear

F O

ey .
System-Reset-Normal Key. .
Test Indicator
TOD-Clock Control.
Wait Indicator

Multiprocessing Configuration

S

APPENDIX A: NUMBER REPRESENTATION
INSTRUCTION-USE EXAMPLES. . . «
Number Representation. . . .
Binary Integers. « . « « «
Signed Binary Integers .
Unsigned Binary Integers
Decimal Integers
Floating-Point Numbers . .
Conversion Example
Instruction-Use Examples . .
Machine Format
Assembler-Language Format
General Instructions
ADD HALFWORD (AH).
AND (N, NR, NI, NC). . . .
And (NI) « ¢« ¢ o o « o« «
BRANCH
BRANCH
BRANCH

AND LINK (BAL, BAIR). .
ON CONDITION (EC, EBECR).
ON COUNT (BCT, BCTR). .
BRANCH ON INDEX HIGH (BXH) . .
BRANCH ON INDEX LOW OR EQUAL (BXL
COMPARE HALFWORD (CH)« « « « «
COMPARE LOGICAL (CL, CLC, CLI,
Compare Logical (CLC). . . .
Compare Logical (CLI). . . .
Compare Logical (CLR). « . «
COMPARE LOGICAL CHARACTERS UNDE
MASK (CLM) e « o « « « . . .
COMPARE LOGICAL LONG (CLCL)
CONVERT TO BINARY (CVB). .
CONVERT TO DECIMAL (CVD) .
DIVIDE (D, DR) « o « o« « -
EXCLUSIVE OR (X, XC, XI, XR
Exclusive Or (XC). . . .

'.cnunownnlnuxunnnnouuuabnnnul-l

¢ =3 s 0

xii

-12-66
. 12-66
- 12-67
.12-68
.12-69
. 12-71

AND

[
wlmnlll
~

¢ & o & 8 o s o o

13-1
13-1
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-3
13-3
13-4
13-4
13-4
13-4
13-4
13-4
13-4

Exclusive OF (XI)e o« o o o o o &
EXECUTE (EX) . .
INSERT CHARACTERS UNDER HASK
LOAD (L, LR) . « « «
LOAD ADDRESS (LA). .
LOAD HALFWORD (LH) .
MOVE (MVC, MVI). . .

Move (MVC) . . .
Move (MVI) . . .
MOVE LONG (MVCL) .
MOVE NUMERICS (MVN). .
MOVE WITH OFFSET (MVO)
MOVE ZONES (MVZ) . . .
MULTIPLY (M, MR) . . .
MULTIPLY HALFWORD (MH)
OR (O, OR, 0I, OC) . .
OF (OI)e « o « o o« «
PACK (PACK) . o« o « & .
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA).
STORE CHARACTERS UNDER MA
STORE MULTIPLE (STM) . .
TEST UNDER MASK (TM) . .
TRANSLATE (TR) . . - -
TRANSLATE AND TEST (TRT)
UNPACK (UNPK) e « « o « « « «
Decimal Instructions . .
ADD DECIMAL (AP) . . .
COMPARE DECIMAL (CP) .

K (

¢ & s N & s 8 a2 e

DIVIDE DECIMAL (DP).
EDIT (ED) e « « « &
EDIT AND MARK (EDHK)
MULTIPLY DECIMAL (MP).
SHIFT AND ROUND DECIMAL (SR)
Decimal Left Shift
Decimal Right Shift.
Decimal Right Shift and Round. .

P

Multiplying by a variable Power of

10 ¢ ¢ ¢ o o o o o o o o o o @

ZERO AND ADD (ZAP) e o o o o« o o =«
Floating-Point Instructions.
ADD NORMALIZED (AD, ADR, AE, AER,

AXR) e o o @ o o o« o o« o o o o o @

ADD UNNORMALIZED (AU, AUR, AW, AWR).

COMPARE (CD, CDR, CE, CER) « . . .
Floating-Point-Number Conversion .
Fixed Point to Floating Point. .
Floating Point to Fixed Point. .
Multiprogramming and Multiprocessing
EXampleSe o o o o o o o o o« « o o =
Example of a Program Failure Using
OR Immediate. « « o o o o o o o &
COMPARE AND SWAP (CS, CDS)
Setting a Single Bit . .
UOpdating Counters. . . .
Bypassing POST AND WAIT. .
BYPASS POST Routine. « . . .«
BYPASS WAIT Routine.
LOCK/UNLOCKe = o « o o .

LOCK/UNLOCK with LIFO Queulnq for

Contentions - .

LOCK/UNLOCK with FIFO Queulnq for

Contentions . ¢« « ¢ ¢ ¢ ¢ o o .
Free-Pool Manipulation

APPENDIX B. LISTS OF INSTRUCTIONS .
Explanation of Symbols in
"Characteristics"™ and "Op Code"
CoOlUMNS 2 o 2 « « o « o = o « =

A-16
A-17
A-17
A-18
A-18
A-19
A-19
A-19
A-20
A-20
A-21
A-21
A-22
A-22
A-23
A-23
A-23
A-23
A-24
A-24
A-25
A-25
A-25
A-26
A-26
A-28
A-29
A-29
A-29
A-29

A-31
A-32

C

APPENDIX C. CONDITION-CODE SETTINGS

APPENDIX D. FACILITIES. « « o o o o
Commercial Instruction Set
Floating-Point Feature . . « « . .
Universal Instruction Set. . .
Extended-Precision Floating- P01nt

FEatUre . « ¢« o« o o o o o o o o «
External-Signal Feature.
Direct-Control Feature . . « « « «
Translation Feature. . « « « « «
CPU-Timer and Clock-Comparator

FEAtUre . « o o o o o o o o« o o
Conditional-Swapping Feature . . .
PSW-Key-Handling Feature
Move-Inverse Feature . « « « « «
Multiprocessing Feature.
Dual-Address-Space (DAS) Facility.
Service-Signal Feature . « « « « «
Test-Block Feature « « « « « « o «
Branch—-and-Save Feature. . « « « «
Extended Facility. « « « ¢ o« « o« &«
Recovery-Extension Feature
Channel-Set-Switching Feature. . .
Fast-Release Feature « « « « « « o«
Clear-I/0 FeatlUre€. « « « « « o o =
Channel-Indirect-Data-Addressing

FEAtUTe o« o o o o o o o o o« o o
Command-Retry Feature. « « « « « «
Limited-Channel-Logout Feature . .
I/0-Extended-Logout Feature. . . .

Availability of Features
Features Not Described in the
Principles of Operation

APPENDIX E. TABLE OF POWERS OF 2. . .

APPENDIX F. HEXADECIMAL TABLES.
APPENDIX G. EBCDIC CHART. . . .

APPENDIX H. CHANGES AFFECTING

COMPATIBILITY BETWEEN SYSTEM/360 AND

SYSTEM/370. . . . « o
Removal of USASCII 8 uode. .« .
Operation Code for Halt Device

for Clear Channel . . « « . .
Logout ¢« ¢« ¢ ¢ ¢ o o« o ¢ o o o
Command Retry. « « « ¢« o« o <« «
Channel Prefetching.
Validity of Data . « « « « . .

APPENDIX I. CHANGES AFFECTING
COMPATIBILITY WITHIN SYSTEM/370
READ DIRECT and WRITE DIRECT .
Store ACCeSSEeS « o« « o o « o «
Fetch Access « « ¢« o ¢ o o o @
Operand-Access Consistency . .
Change Bit o« « o o« o o o « -
Subchannel Interruption State.

INDEXe o o o o o o o o @ o o o o

and

xiii

CHAPTER 1. INTRODUCTION

General-Purpose DeSigN cceececccccacaccsccccccacccacsacccccccccsccse I=2
Compatibility ceeceececececccccecccacccnccccacccaccccnnsncsccccsasss -3
Compatibility Among System/370 MOde€lS cceccecccecccccnccncccccesl=3
Compatibility Between System/360 and System/370 ccececcececcccccecasl=3
SYStem PrOQraAMl cecescescsccesccscssscsacascscscscsascsccsaccccccccnceas -l
AVailability ceeceeecececcccccasccccccccsaccccasccsccncneancacncoaces =l

This publication describes t he IBM
System/370 architecture. The architecture
of a machine defines its attributes as seen
by the programmer, that 1is, the conceptual
structure and functional behavior of the
machine, as distinct from the organization
of the data flow, the logical design, the
physical design, and the performance of any

particular implementation. Several
dissimilar machine implementations may
conform to a single architecture. When
programs running on different machine

implementations produce the results that
are defined by a single architecture, the
implementations are considered to be
compatible.

IBM System/370 is a product of the
experience gained in developing and using a
few generations of compatible general-
purpose systems. Starting with System/360
as a base, it incorporates a number of new
facilities, which are described below.

. Dynamic address translation (DAT) is a
facility that eliminates the need to
assign a program to fixed locations in
real main storage and thus reduces the
addressing constraints on both systen
and problem programs, provides dreater
freedom in program design. DAT
permits a more efficient and effective
utilization of main storage. When one
of the operating systems for virtual
storage is used, dynamic address
translation allows the use of up to
16,777,216 bytes of virtual storage.
Two page sizes (2K and 4K bytes) and
two segment sizes (64K and 1M bytes)
are provided, although some models
offer only the 64K-byte-segment size.
Extensions to this facility include
the common-segment Lkit, the use of
which increases the effective size of
the translation-lookaside buffer and
thus improves CPU performance, and the
instruction INVALIDATE PAGE TABLE
ENTPY, which improves CPU performance
in a demand-paging environment.

. Channel indirect data addressing, a
companion facility to dynamic address

translation, provides assistance in
translating data addresses for 1I/0
operations. It permits a single
channel-command word to control the
transmission of data that spans
noncontiguous areas of real main
storage.

Multiprocessing provides for the
interconnection of CPUs to enhance
system availability and share data and
resources. It includes facilities for
shared main storage, for programmed
and special machine signaling between
CPUs, and for the programmed
reassignment of the first 4,096 bytes
of real storage for each CPU.

Channel-set switching permits the
collection of channels in a channel
set to be connected to any CPU in a
multiprocessing configuration.

Timing facilities include a TOD clock,
a clock comparator, and a CPU timer,
along with an interval timer that is
also available in System/360. The TOD
clock provides a measure of elapsed
time suitable for the indication of
date and time; it has a cycle of
approximately 143 years and a
resolution such that the incrementing
rate is comparable to the
instruction-execution rate of the
model. The clock comparator provides
for an interruption when the TOD clock
reaches a program-specified value.
The CPU timer is a high-resolution
timer that initiates an interruption
upon being decremented past zero.

Extended-precision floating point
includes the facilities for addition,
subtraction, and multiplication of
floating-point numbers with a fraction
of 28 hexadecimal digits. Included in
the feature are instructions for
rounding from extended to long and
from long to short formats.

Program-event recording provides
program interruptions on a selective

Chapter 1. Introduction 1-1

1-2

basis as an aid in program debugging.

The instruction MONITCR
for passing control
proaram when selected indicators are
reached in the monitored program. It
can be used, for example, in analyzing
which programs get executed, how
often, and in what length of time.

CALL provides
to a monitoring

Recovery extensions include (1) the
CLEAR CHANNEL instruction, for
performing an I/O-system reset on a
channel and on the associated 1I/O
interface, (2) provisions for a
detailed indication of the cause of
external damage, and (3) logout
indications of whether the I/0
interface is operative and the logout
valid.

Protection extensions include
(1) low-address protection, the use of
which increases the protection of
storage locations 0 through 511, which
are vital to the system control
program, and (2) the TEST PROTECTION
instruction, which can be used to
perform tests for potential protection

violations without causing program
interruptions for protection
exceptions.

The dual-address-space (DAS) facility

provides for the support of
semiprivileged ©programs, which are
executed in the ©problem state but
which, when allowed by authorization
controls, are also permitted to use
additional capatilities previously

available only through the assistance

of supervisor-state programs. The
capabilities include (1) a PSW-key
mask that controls the PSW keys which
can be set by the program, (2) a
second address space, called the
secondary address space, together with
an address-space-control bit in the

PSW that permits the program to switch
between the primary and secondary
address spaces, and (3) a table-based
linkage mechanism which permits a
proagram with one authority to call a
program with greater authority.

The service-signal external
interruption provides the program with

a signal that the service processor
has completed a function that was
requested by means of the DIAGNOSE

instruction.

The instruction TEST BLOCK permits the
program to test the wusability of a
block of storage.

The instruction BRANCH ANL SAVE may be
used in place of EBRANCH AND LINK when
it is desirable to obtain the

System/370 Principles of Operation

instruction address without the
instruction-length code, program mask,
and condition code.

. The block-multiplexer channel, which
permits concurrent processing of
multiple channel programs, provides an
efficient means of handling I/0
devices that transfer data on the I/O0
interface at a high data rate but have
relatively 1long periods of channel
inactivity between transfers.

GENERAL-PURPOSE DESIGN

System/370 is a general-purpose system that
can readily be tailored for a variety of
applications. A commercial instruction set
provides the basic processing capabilities
of the systen. If the floating-point
feature is installed with the commercial
instruction set, a universal instruction
set 1is obtained. Adding other features,
such as the extended-precision floating-
point feature or the conditional-swapping
feature, extends the processing
capabilities of the system still further.

System/370 has the capability of addressing
a main storage of 16,777,216 bytes, and the
System/370 translation feature, used with
appropriate programming support, can
provide a user this maximum address space
even when a lesser amount of real storage
is attached. This feature and this support
permit a System/370 model with limited real
storage to be used for a much wider set of
applications, and they ma ke many
applications with requirements for
extensive storage practical and convenient.
Additionally, for many System/370 models,
the speed of accessing storage is improved
by the use of a cache. The cache is a
buffer--not apparent to the user--that
often provides information requested from
storage without the delay associated with
accessing storage itself.

Another major aspect of the general-purpose
design of System/370 1is the capability
provided to attach a wide variety of 1I/0
devices through a selector channel and two
types of multiplexing channels. System/370
has a byte-multiplexer channel for the
attachment of unbuffered devices and of a
large number of communications devices.
Additionally, it offers a block-multiplexer
channel, which is particularly well-suited
for the attachment of buffered devices and
high-speed cyclic devices.

An individual System/370 installation is
obtained by selecting the system components
best suited to the applications from a wide
variety of alternatives in internal
performance, functional ability, and

input/output.

COMPATIBILITY

COMPATIBILITY AMONG SYSTEM/370 MODELS

Although
implementation
logically

compatible.
simplicity
system backup,
Specifically, any

models of System/370 differ in
and physical «capabilities,
they are wupward and downward
Compatibility provides for

in education, availability of
and ease in system growth.
program gives identical

results on any model, provided that it:

1.

2.

Is not time-dependent.

Does not depend on system facilities
(such as storage capacity, 1I/0
equipment, or optional features) being
present when the facilities are not
included in the configuration.

Does not depend on system facilities
being absent when the facilities are
included in the configuration. For

example, the program should not depend
on interruptions caused by the use of
operation codes or command codes that
in some models are not assigned or not
installed. Also, it must not use or
depend on fields associated with
uninstalled facilities. For example,
data should not te placed in an area
used by another model for 1logout.
Similarly, the program must not use or
depend on unassigned fields in machine
formats (control registers,
instruction formats, etc.) that are
not explicitly made available for
program use.

Does not depend on results or
functions that are defined in this
publication to be unpredictable or
model-dependent, or on special-purpose
functions (such as emulators) that are
not described in this publication.
This includes the requirement that the

program should not depend on the
assignment of I/0 addresses and CPU
addresses.

Does not depend on results or
functions that are defined in the
functional-characteristics publication
for a particular model to be
deviations from this publication.

Takes into account those changes made
to the original System/370
architectural definition that affect

compatibility among System/370 models.
These changes are described in
Appendix I.

COMPATIBILITY
SYSTEM/370

BETWEEN SYSTEM/360 AND

System/370 is forward-compatible from
System/360. A program written for the
System/360 will run on the System/370,
provided that it:

1. Observes the limitations described in

the preceding section.

2. Does not use PSW bit 12 as an ASCII
bit (a special case of the second rule
in the preceding section).

3. Does not use or depend on main-storage
locations assigned specifically for
System/370, such as the interruption-
code areas, the machine-check save
areas, and the extended-logout area (a
special case of the third rule in the
preceding section).

4. Takes into account other changes made

to the System/360 architectural
definition that affect compatibility
between System/360 and System/370.

These changes are described in

Appendix H.

Programming Note

This publication assigns meanings to
various operation codes, to bit positions
in instructions, channel-command words,
registers, and table entries, and to fixed
locations in the low 512 bytes of storage
(addresses 0-511). Other operation codes,
bit positions, and 1low-storage 1locations

are specifically noted as being available

for programming use. The remaining ones
are unassigned and reserved for future
assignment to new facilities and other

extensions of the architecture.

To ensure that existing programs run if and
when such new facilities are installed,
programs should not depend on an indication
of an exception as a result of invalid
values that are currently defined as being
checked. If a value must be placed 1in
unassigned positions that are not checked,

the program should enter zeros. When the
machine provides a c¢ode or field, the
program should take into account that new
codes and bits may be assigned in the
future. The progranm should not use
unassigned low-storage locations for

keeping information since these 1locations

Chapter 1. Introduction 1-3

may be assigned in the future in such a way
that the machine causes this location to be
changed.

SYSTEM PROGRAM

The system 1is desiqgned to operate with a
supervisory program that coordinates the
use of system resources and executes all
I/0 instructions, handles exceptional
conditions, and supervises scheduling and
execution of multiple programs.

AVAILABILITY

Availability is the capability of a system
to accept and successfully process an
individual job. System/370 permits
substantial availability by (1) allowing a
large number and broad range of jobs to be
processed concurrently, thus making the
system readily accessible to any particular
job, /and (2) limiting the effect of an
error and identifying more precisely its
cause, with the result that the number of
jobs affected by errors is minimized and
the correction of the errors facilitated.

Several design aspects make this possible.

.)\ program is checked for the
correctness of instructions and data
as the program is executed, and
program errors are indicated separate
from equipment errors. Such checking
and reporting assists in 1locating
failures and isolating effects.

. The protection facilities, in
conjunction with dynamic address
translation, permit the protection of
the contents of storage from
destruction or nmisuse caused by
erroneous or unauthorized storing or
fetching by a program. This provides
increased security for the user, thus
permitting applications with different
security requirements to be processed
concurrently with other applications.

. Dynamic address translation allows
isolation of one application from
another, still ©permitting them to
share common Tresources. Also, it

1-4 System/370 Principles of Operation

permits the implementation of virtual
machines, which may be wused in the
design and testing of new versions of
operating systems along with the
concurrent processing of application
programs. Additionally, it provides
for the concurrent operation of
incompatible operating systems.

Multiprocessing and channel-set
switching permit better use of storage
and processing capabilities, more

direct communication between CPUs, and
duplication of resources, thus aiding
in the continuation of systen
operation in the event of machine
failures.

MONITOR CALL, program-event recording,
and the timing facilities permit the
testing and debugging of programs
without manual intervention and with
little effect on the concurrent
processing of other programs.

Emulation is performed under
supervisory program control, thus
making it possible to perform
emulation concurrently with other
applications.

On most models, error checking and
correction (ECC) in main storage,
instruction retry, and command retry
provide for circumventing intermittent
equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check handling
mechanism provides model-independent
fault isolation, which reduces the
number of programs impacted by
uncorrected errors. Additionally, it
provides model-independent recording
of machine-status information. This
leads to greater machine-check
handling compatibility between models
and improves the capability for
loading and running a program on a
different model when a system failure
occurs.

A small number of manual controls are
required for basic system operation,
permitting most operator-system
interaction to take place via a unit
operating as an I/O device and thus
reducing the possibility of accidental
operator errors.

CHAPTER 2. ORGANIZATION

Main StOTAgE ececeacecccscscscscscaccscsccscsscccsacncaccscccccncsccccsacsacsanaasne 21
Central Processing UNit cececececcccecccecsccncsccacsccacccanscancncccel 2
Program-Status WOrd cccecececccccccccscccccscccscsasccccannnsccscncaccel 3
General REQiSterS cececcecceccccccccscscscsaccnccanassccscansccccsssel 3
Floating-Point REgiSterS c.cceccecccccccsccccscsccccccsacacacnscaceasl 3
CONtrol REgiStErS ceccececcecccsccccccasccsacscscacsccsssannccncccccassldl
Input and OUtPUL cececceccccencoscecscacccacccncncacnascscacansnccacces 2l
Channel SetS ccececcecccccaccccssccecccocsccscccnccascscccnscncncccccccalb
ChanNNelsS cccecececccccccccccnccscsacscccccscccasacsccsccccsccccnaseslb
Input/Output Devices and Control UNitS cecececceccccccnacccacceasl=b
Operator FacCilitieS ceeececceccscccccsccscccccccccccancascanascascccancnsdb

Logically, System/370 consists of main
storage, one or more central processing
uhits (CrUs), operator facilities,
channels, and input/output devices.
Input/output devices are usually attached
to channels through control units. The
physical identity of these functions may
vary among implementations, called
"models." The figqgure "Logical Structure"
depicts the 1logical structure for a
single-CcPuU system and for a two-CPU
multiprocessing system.

Specific processors may differ in their
internal characteristics, the number and
types of channels, the size of main
storage, and the representation of the
operator facilities. The differences 1in
internal characteristics are apparent to

the observer only as differences in machine
performance.

Model-dependent configuration
be provided to change

storage and the number
instances, the configuration controls may
be used to partition a single system into
miltiple systenms. Each of the systems so
configured has the same structure, that is,
main storage, one oOr more CPUs, and
channels. Each system is isolated from the

controls may
the amount of main
of CPUs. In some

other in that the main storage in one
system is not directly addressable by the
CvUs and channels in the other. It is,
however, possible for one systenm to

communicate with another by means of shared
/0 devices or a channel-to-channel
adapter. At any one time, the storage,
CPUs, and channels connected together in a
system are referred to as being in the
configuration. Each CPU and storage
location can be in only one configuration
at a time.

MAIN STORAGE

Main storage provides the system with
directly addressable fast-access storage.
Both data and programs must be loaded into
main storage from input devices before they
can be processed. The amount of main
storage available on the system depends on
the model, and, depending on the model, the
amount in the confiquration may be under
control of model-dependent configuration
controls. The storage 1is available in
multiples of 2,048-byte blocks. At any one
time, each block of storage in the
confiquration is addressed with the same
absolute addresses by all CPUs and channels
in the configuration. Each block of
storage is accessible to all CPUs and
channels in the configuration.

Main storage nmay be
integrated with a CPU or constructed as
standalone units. Additionally, main
storage may be composed of large-volume
storage and a faster-access buffer storage,
sometimes called a cache. Each CPU may
have an associated cache. The effects,
except on performance, of the physical
construction and the use of distinct
storage media are not observable by the
progranm.

either physically

Chapter 2. Organization 2-1

| a—] 0
Storage						Storage		
—				—				
	l							
				r 1)				
1 1 R 1 l								
CPU p——~+ —+/ /+——+——- CPU		CPU }—rt —+/						
I I [I I I I		I I						
	[I I I	l I I 1					
—_	1 [I O O —_		[
I 1	[I	1						
[1 1l t— —	1							
I P11								
(I 1 I t—	I — 1							
1 [1 [1 1								
[[[[I 1							
[11 1	1							
r 1 i1 } rl i \ r 1 1 o] r 1 A _i '] L '} 1 1								
		1						
Channel		Channel	[Channel		Channel]		Channel]	Channel]
				1				
L1] L T] [} - .	L .j i ¥] [] T 1							
/[rvr—v—/		/v						
[l	[
[I	I		I					
0O 0 O O O O		o 0 O						
(
L LB v L] L] 1 LN T/ /f L LN L] AR L 4 L AL L] 1 L) L] T/
[I Y I I I I I I A
[D R I e [| [[[N R I I R
O 0O 0O O O o o 0O 0O 0O 0O 0O o O 0 0O 0 O o
Logical Structure
CENTRAL PROCESSING UNIT process binary integers and floating-point
numbers of fixed length, decimal integers
of variable length, and logical information
The central processing unit (CPU) is the of either fixed or variable length.
controlling center of the systen. It Processing may be in parallel or in series;
contains the sequencing and processing the width of the processing elements, the
facilities for instruction execution, multiplicity of the shifting paths, and the
interruption action, timing functions, degree of simultaneity in performing the
initial program loading, and other different types of arithmetic differ from
machine-related functions. one CPU to another without affecting the
logical results.
The physical makeup of the CPU may differ
among models, but the 1logical function Instructions which the CPU executes fall
remains the same. The result of executing into five classes: general, decinmal,
a valid instruction is the same for each floating-point, control, and input/output
model. instructions. The general instructions are
used in performing fixed-point arithmetic
The CPU, in executing instructions, «can operations and 1logical, branching, and
2-2 System/370 Principles of Operation

C

other nonarithmetic operations. The
decimal instructions operate on data in the
decimal format, and the floating-point
instructions on data in the floating-point
format. The <control instructions and the
input/output instructions are privileged
instructions that can be executed only when
the CPU is in the supervisor state.

To perform its functions, the CPU may use a
certain amount of internal storage.
Although this internal storage may use the
same physical storage medium as main
storage, it is not considered part of main
storage and is not addressable by progranms.

The CPU provides registers which are
available to programs but do not have
addressable representations in main
storage. They include the current
program-status word (PSW), the general
registers, the floating-point registers,
the control registers, the prefix register,
and the registers for the TOD clock, the
clock comparator, and the CPU timer. The
instruction operation code determines which
type of register is to be used in an
operation. See the fiqure "General,
Floating-Point, and Control Registers"
later in this chapter for the format of
those registers.

PROGRAM-STATUS WORD

The program-status word
instruction address, condition code, and
other information used to control
instruction sequencing and to determine the
state of the CPU. The active or
controlling PSW is called the current PSW.

(PSW) includes the

It governs the program currently being
executed.
The CPU has an interruption capability,

which permits the CPU
another program in

to switch rapidly to
response to exceptional
conditions and external stimuli. When an
interruption occurs, the CPU places the
current PSW in an assigned storage
location, called the o01d-PSW location, for
the particular class of interruption. The
CPU fetches a new PSW from a second
assigqned storage location. This new PSW
determines the next program to be executegd.
When it has finished processing the

interruption, the interrupting progranm
reloads the o01ld PSW, making it again the
current PSW, so that the interrupted
program canh continue.

There are six classes of interruption:
external, I/0, machine check, progranm,

restart, and supervisor call. Each class
has a distinct pair of 0l1ld-PSW and new-PSW
locations permanently assigned in storage.

GENERAL REGISTERS

Instructions may designate information in
one or more of 16 general registers. The
general registers may be used as
base-address registers and index registers
in address arithmetic and as accumulators
in general arithmetic and logical
operations. Each register contains 32
bits. The general registers are identified
by the numbers 0-15 and are designated by a
four-bit R field in an instruction. Some
instructions provide for addressing
multiple general registers by having
several R fields. For some instructions,
the use of a specific general register is
implied rather than explicitly designated
by an R field of the instruction.

For some operations, two adjacent general
registers are coupled, providing a 64-bit
format. In these operations, the program
must designate an even-numbered register,
which contains the leftmost (high-order) 32
bits. The next higher-numbered register
contains the rightmost (low-order) 32 bits.

In addition to their use as accumulators in
general arithmetic and 1logical operations,
15 of the 16 general registers are also
used as base-address and index registers in
address generation. In these cases, the
registers are designated by a four-bit B
field or X field in an instruction. A
value of zero in the B or X field specifies
that no base or index is to be applied,
and, thus, general register 0 cannot be
designated as containing a base address or
index.

FLOATING-POINT REGISTERS

Four floating-point registers are available
for floating-point operations. They are
identified by the numbers 0, 2, 4, and 6.
Each floating-point register is 64 bits
long and can contain either a short
(32-bit) or a long (64-bit) floating-point

operand. A short operand occupies the
leftmost bit positions of a floating-point
register. The rightmost portion of the

register is ignored and
in arithmetic operations that call for
short operands. Two pairs of adjacent
floating-point registers can be used for
extended operands: registers 0 and 2, and
registers 4 and 6. Each of these pairs
provides for a 128-bit format.

remains unchanged

Chapter 2. Organization 2-3

CONTROL REGISTERS

The CPU has ©provisions for 16 control
registers, each having 32 kit positions.

The bit positions in the registers are
assigned to particular facilities in the
system, such as program-event recording,

either to specify that an
take place or to furnish
required by the

and are used
operation can
special information
facility.

The control registers are identified by the
numbers 0-15 and are designated by four-bit

2-4 System/370 Principles of Operation

R fields in the instructions LOAD CONTROL
and STORE CONTROL. Multiple control
registers can be addressed by these

instructions.

INPUT AND OUTPUT

Input/output (I/0) operations involve the
transfer of information between main
storage and an I/0 device. TI/0 devices and
their control units attach to channels,
which control this data transfer.

R Register Control Registers General Registers Floating—Point Registers

Field Number
[[! I [) [
| <——32 bits—>| |<—32 bits—>| | {——64 bits——>|
| l | | | |
r] ~—r) —r 1
0000 0 | | [| (| |
[3 | ¢] | b]
| |
r 1 | r 3l |
0001 1 | | I 1 | |
[J | —] J I
|
r 1 —r al l r 1
0010 2 | | [| I |
w] | [J [— J
|
r 1 l v)
0011 3 | | [|
L) —L]
r il —r Al —r Bl
0100 4 | | [| Il |
L I | ¢] |]
| |
r) | ¢ M |
0101 5 | | I 1 | |
L] j — | J |
|
r 1 —r 1 | r 1
0110 6 | | 1 | [|
L 1 | 1 L)
|
r al | r al
0111 7 | | 1 |
L Il —t]
0 8 r 1 —r nl
0
- ! o !
|
r L] I r Al
1001 9 | | [|
t I —L]
r 1 —re a
1010 10 1 | [|
L ’ |]
|
r pl | al
1011 1 | | I 1 |
[] —_t '
r Bl —r al
1100 12 | | I 1 |
L [] I L J
|
r 1 | r 1
1101 13 | | 11 |
L J —L]
r Bl —r al
1110 14 | | 1 |
L] | L (]
|
r A | v L]
1111 15 | | I |
[1 —L 3

Note: The brackets indicate that the two registers may be coupled as a double-register
pair, designated by specifying the lower—numbered register in the R field. For
; example, the general-register pair 0 and 1 is designated in the R field by the number 0.

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-5

CHANNEL SETS

The group of channels which connects to a
particular CPU is called a channel set.
When channel-set switching is installed in
a multiprocessing system, the program can

control which CPU 1is connected to a
particular channel set. A CPU can be
connected to only one channel set at a

time, and a channel set can be connected to
only one CPU at a time.

CHANNELS

A channel relieves the CPU of the burden of
communicating directly with I/0 devices and
permits data processing to proceed
concurrently with I/0 operations. A
channel 1is connected with main storage,
with control units, and with a CPU.

A channel may be an independent unit,
complete with the necessary 1logical and
internal-storage <capabilities, or it may
time-share CPU facilities and te physically
integrated with the CPU. In either case,
the functions performed by a channel are
identical. The maximum data-transfer rate

may differ, however, depending on the
implementation.

There are three types of channels: byte-
multiplexer, block-multiplexer, and

selector channels.

2-6 System/370 Principles of Operation

INPUT/OUTPUT DEVICES AND CONTROL UNITS

Input/output devices include such equipment
as card readers and punches, magnetic-tape

units, direct-access storage, displays,
keyboards, printers, teleprocessing
devices, communications controllers, and

sensor-based equipment. Many I/0 devices
function with an external medium, such as
punched cards or magnetic tape. Some I/0
devices handle only electrical signals,
such as those found in sensor-based
networks. In either case, I/0-device
operation is requlated by a control unit.
In all cases, the control-unit function
provides the logical and buffering
capabilities necessary to operate the
associated I/0 device. From the
programming point of view, most
control-unit functions merge with
I/0-device functions. The control-unit
function may be housed with the I/0 device
or in the CPU, or a separate control unit
mavy be used.

OPERATOR FACILITIES

The operator facilities provide the
functions necessary for operator control of
the machine. Associated with the operator
facilities may be an operator-console
device, which may also be used as an I/0
device for communicating with the program.

The main functions provided by the operator
facilities include resetting, clearing,
initial ©program loading, start, stop,
alter, and display.

This chapter
of information in
is addressed, address
protection.
of permanently

Storage AQAreSSiNg cceecececcaccccccscccsssscscsascsscscscsscssccsancscse3—2
Information FOIMAtS ececececccccscsccascccsccccccacaceccncscsscccsssce3—2
Integral Boundari€S ceeccecccccacccsccacssccaacasccasacsccaccccneces3—3
Byte-Oriented-Orerand FeaQtUre .ccccceccccccccccccsccnccccaceaces3—l

AJATeSS TYPES ecccacccccsccscsscsccccccscsoscsaccscacsscccscssccncnccsscces3—l

AbsOlute AQAr eSS ecececececsccccccscesnscccacaccncccscsacnscccsccse 33—l
Real AQAr eSS cccecccccccccscecsscsccoscscacccscssascanccscscccsccccsces3I—)d
Effective AAAreSS ceccecccsccaccccccccccaccsascsacacsccacsacscannsce3—D
Virtual AJATr €SS cecececeaccscscscsccscccccssccscacaccccccacsccssscase3—)d
Primary Virtual AQAIeSS cceccecccccccccccsaccscccscscccccccacnsnes3—d
Secondary Virtual AQAreSS cccecccccccccscsccascccsascsacscccscncen3—5
10gical AAATr €SS cceccceccaccccccsacncsascsacscsccsacaccscacsscannassae3—d
Instruction RAJAreSS cecececccccccccccccscscecsccncscccncacsscncceae3—5

StOTAge KEY ccececccceaccccescecccaccasscscsascscscscsscccsccccascccsce3—b

ProteCtiON cceecececccccscccccscscaccscnsscascscsascsscsscccaccscsccnscss3—6
Key-Controlled ProtectioOn cccecececceccecccscccccsccccsccscscscscncacecaecss3—b6
Low—-Address ProtecCtioN ececececeeccccccscscccacsaccscaasanccccscanscnccscs3—8

Reference RECOTdAiNg ccecececececcscsccscsasccscscscsccaacnaaccscacaaccscanss3—B

Change RECOTAINg ccececccccsccccscccscsscsccacaccsacscsscsaasacscsanncsasces3—9

PrefiXing ceceececccscesccccscsascsccsasccscscaccsacsccscsaccacacssccccases3—9

AdAresSS SPACES cececccccaccscccccccsssacsaccsscseassacnaccscsasssssccscesss3—10

Dynamic Address Translation cccecececceccccscccccccccscccnccccacceces3—11
Translation CONtrOl .cccecceccccccccacccceccccncnccscscaccscacsscee3—12

PSW cececceccaccccscccacscaccscsscsscasssccscccacscscascaaasscscse3—12
Control R€gister 0 ..eccccececcccaccscsaccsccaccscaccassnccasasad—1l
Control Register 1 .ccecceceeccecccaceccccccaaccsacnsccsnccccacas3—1l
COontrol REgiSter 7 c.ceececaccccccccasncaccccmcccccnnscsssasas3—15
Translation TaAlleS .cccecececcccascccsacccasccscacsaccacscsnaccanmasnscesss3—15
Segment-Table ENtrieS ccceececcccccasccsascacsacsccccsasccncanansnscsee3d—15
Page-Table ENtrieS cueecececceccccccccccnccscscsccccscncscccscscnsscae3d—16
Summary of Dynamic Address Translation FOrmats ccececececececececcecss3-16
TransSlatioN PrOCESS ceccececcacccccsscscsccsascccccsancccccasanscscae3—17
Effective Segment-Table DesignatioN ceecceceececcecccecccanncea3d=17
Inspection of Control Register 0 .ccceececccccscccccsassacacess3—20
Segment-Tabl€e LOOKUP ccececcccecacecccnascccccancccsancsnscanscasce3—20
Page-Table LOOKUD ccccecccccceccccsccsacccascacccscccccnccscnsssn3—20
Formation of the Real AQAIeSS ececcccaccacscscacscccnanasaaccnseas3=21
Recognition of Exceptions During Translation ..ceceececeeccececess3=21
Translation-lookaside BUffer .c.ccecceccccscsccccccccacscsascccannas3—21
Use of the Translation-Lookaside BUffer eccecececcccccccccaaa3=22
Modification of Translation TableS eecccececcccacsccasscsccnass3—25

AddressS SUMMATLY cceccecccccceccccncscsccscscsscsscsccancacccscsaascnaasne3—27
Addresses Translat€d ccceecccecesscscccscccccsccasccsacsncccanansse3=27
Handling Of AQAr€SSEeS cecececccccccccccccscnscscsascanancsnnccsccasnas3—28

Assigned Storage l1oCatiONS eccecececccsscsccasccccccacecscssancacsses3—29
Assigned Real-Storage LOCAtiONS eceecesceccscccccascacacancsces3—29
Assigned Absolute Storage LOCatiONS cceceececcccccavcccaaacanees3—=32

discusses the representation
storage, how information
transformations, and
The chapter

address.
also contains a for selectively protecting
assigned storage storage, the operation of

and specifying the manner in which one type
of address is translated to another type of
Also presented are the mechanisms
portions of

locations.

The aspects of addressing which are covered
include describing the format of addresses,
introducing the concept of address spaces,
defining the various types of addresses,

reference recording, and lists of storage
locations having permanently assigned uses.

The term "main storage" (or "absolute

storage") is used to describe that storage
which |is addressable by means of an

Chapter 3. Storage 3-1

absolute address. This distinguishes
fast-access storage from auxiliary storage,

such as direct-access storage devices.
Because most references to main storage
apply to virtual storage, the abbreviated

term "storage'" is used in place of "virtual
storage," and it is also used in place of
"absolute storage" when the meaning is
clear.

Main storage ©provides the system with
directly addressable fast-access storage of
data. Both data and programs must be
loaded into main storage (from input
devices) before they can be processed.

Main storage may consist of standalone
units or be integrated with a CPU.
Additionally, main storage may be composed
of large-volume storage and a faster access
buffer storage, sometimes called a cache.
Each CPU may have an associated cache. The
effects, except on performance, of the
physical construction and the use of
distinct storage media are not observable
by the program.

Fetching and storing of data by the CPU are
not affected by any concurrent I/0 data
transfer or by concurrent reference to the
same storage location bty another CPU. VWhen
concurrent requests to a main-storage
location occur, access normally is granted
in a sequence that assigns highest priority
to references by channels and that
alternates priority between CPUs. If a
reference changes the contents of the
location, any subsequent storage fetches
obtain the new contents.
Main storage may be volatile or
nonvolatile. 1f it is volatile, the
contents of main storage are not preserved
wvhen power is turned off. If it is
nonvolatile, turning power off and then
back on does not affect the contents of
main storage, provided the CPU is in the
stopped state and no references are made to
main storage by channels when power is
turned off. In both types of main storage,
the contents of the keys in storage are not
necessarily preserved when the power for
main storage is turned off.

STORAGE ADDRESSING

Storage is viewed as a 1long horizontal
string of Dbits. For most operations,
accesses to storage proceed in a
left-to-right sequence. The string of bits
is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is
the basic building block of all information
formats.

Each byte location in storage is identified

3-2 System/370 pPrinciples of Operation

by a unique nonnegative integer, which is
the address of that byte 1location or,
simply, the byte address. Adjacent byte
locations have consecutive addresses,
starting with 0 on the left and proceeding
in a left-to-right sequence. Addresses are

24-bit unsigned binary integers, which
provide 16,777,216 (224 or 16M) Dbyte
addresses.

The CPU performs address generation when it
forms an operand or instruction address, or
when it generates the address of a table
entry from the appropriate table origin and

index. It also performs address generation
when it increments an address to access
successive bytes of a field. Similarly,

the channel generates an address when it
increments an address to fetch a channel-
command word (CCW) from a CCW list, to
fetch an indirect-data-address word (IDAW)
from an IDAW list, or to transfer data.

When, during address generation, an address
is obtained that exceeds 224 - 1, the carry

out of the high-order bit position of the
address is ignored. This handling of an
address of excessive size 1is called

wraparound.

The effect of wraparound is to make the
sequence of addresses appear circular; that
is, address 0 appears to follow the maximunm
byte address, 16,777,215, Address
arithmetic and wraparound occur before
transformation, if any, of the address by
DAT or prefixing. In 16M-byte storage,
information may be located partially in the
last and ©partially in the first locatiomns
of storage and is processed without any
special indication of crossina the
maximum-address boundary.

INFORMATION FORMATS

Information is transmitted between storage

and the CPU or a channel one byte, or a
group of bytes, at a time. Unless
otherwise specified, a group of bytes in

addressed by the leftmost byte
of the group. The number of bytes in the
group is either implied or explicitly
specified by the operation to be performed.
When used in a CPU operation, a group of
bytes is called a field.

storage is

group of bytes, bits are
numbered in a left-to-right sequence. The
leftmost bits are sometimes referred to as
the "high-order" bits and the rightmost
bits as the "low-order" bits. Bit numbers
are not storage addresses, howvwever. Only
bytes can be addressed. To operate on
individual bits of a byte in storage, it is
necessary to access the entire byte.

Within each

The bits in a byte are numbered
7, from left to right.

0 through

an address are numbered 8
through 31. Within any other fixed-length
format of multiple bytes, the bits making
up the format are consecutively numbered
starting from O.

The bits in

For purposes of error detection, and in
some models for <correction, one or more
check bits may be transmitted with each
byte or with a qroup of bytes. Such check
bits are generated automatically by the

machine and cannot be directly controlled

by the program. References in this
publication to the length of data fields
and registers exclude mention of the
associated check bits. All storage
capacities are expressed in number of
bytes.

when the length of an
implied by the operation code of an
instruction, the field is said to have a
fixed length, which can be one, two, four,
or eight Dbytes. Larger fields may be
implied for control blocks associated with
some instructions.

operand field is

When the length of an operand field is not
implied but is stated explicitly, the field
is said to have variable length.
Variable-length operands can vary in length
by increments of one byte.

When information is placed
contents of only those byte 1locations are
replaced that are included in the
designated field, even though the width of

in storage, the

the physical path to storage may be greater
than the length of the field being stored.

INTEGRAL BOUNDARIES

Certain wunits of information must be
located in storage on an integral boundary.
A boundary is called integral for a unit of
information when its storage address 1is a
multiple of the 1length of the wunit in
bytes. Special names are given to fields
of two, four, and eight bytes when they are
located on an integral boundary. A
halfword 1is a group of two consecutive
bytes on a two-byte boundary and is the
basic building block of instructions. A
word is a group of four comnsecutive bytes
on a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an
eight-byte boundary. (See the figure
"ITntegral Boundaries with Storage
Addresses.")

When storage addresses designate halfwords,
words, and doublewords on integral
boundaries, the binary representation of
the address contains one, two, or three
rightmost zero bits, respectively.

Instructions must appear on two-byte
integral boundaries, and channel-command
words and the storage operands of certain
instructions must appear on other integral
boundaries. The storage operands of most
instructions do not have boundary-alignment
requirements.

Chapter 3. Storage 3-3

. ——> Storage Addresses

1) v v L v L v Ly v v
Bytes 0O 11 21 3141 5161 7] 8]

L —i A 1 A 1 ' [} 4

r Ll L] v v L] v v Ll L
Halfwords |1 O | 2 | 4 | 6 | 8

| — i | 1 1 A IR i A N 1

r v v v] LE v Ll Al v
Words () | 4 | 8

L i i A 1 A 1 A A 1

1 v Ll v v v v L] v v
Doublewords | 0 | 8

L 1 1 1 A4 N 1 A 1 AL L

Inteqral Boundaries with Storage Addresses

BYTE-ORIENTED-OPERAND FEATURE

The byte-oriented-operand feature is
standard on System/370. This feature
permits st orage operands of most

unprivileged instructions to
byte boundary.

appear on any

The feature does not pertain to instruction
addresses or to the operands for COMPARE
AND SWAP (CS) and CCMFARE DOUBLE AND SWAP
(CDS) . Instructions must appear on
two-byte inteqgral boundaries. The
low-order bit of a branch address must be
zero, and the instruction EXECUTE must
designate the target instruction at an even
byte address. COMPARE AND SWAP nmust
designate a four-byte integral boundary,
and COMPARE DOUBLE AND SWAP must designate
an eight-byte integral toundary.

Programming Note

with
2,

For fixed-field-length operations
field 1lengths that are a power of
significant performance degradation is
possible when storage operands are not
positioned at addresses that are integral
multiples of the operand length. To
improve performance, frequently used
storage operands should be aligned on
integral boundaries.

3-4 System/370 Principles of Cperation

ADDRESS TYPES

For purposes of
three basic
recognized:
The
basis
applied

addressing main storage,
types of addresses are
absolute, real, and virtual.
addresses are distinguished on the
of the transformations that are

to the address during a storage
access. In addition to the three basic
types, additional types are defined which
are treated as one or another of the three
basic types, depending on the instruction
and the current mode.

Absolute Address

An absolute address is the address assigned
to a main-storage 1location. An absolute
address 1is used for a storage access
without any transformations performed on
it.

to a shared
the same

All CPUs and channels refer
main-storage 1location by using
absolute address. Available main storage
is usually assigned contiguous absolute
addresses starting at 0, and the addresses
are always assigned in complete 2K-byte
blocks. An exception is recognized when an
attempt is made to wuse an absolute address
in a 2K-byte block which has not been
assigned to physical 1locations. On some
models, storage-configuration controls may
be provided which permit the operator to
change the correspondence between absolute
addresses and physical locations. However,

C

at any one time,
associated with
address.

a physical location is not
more than one absolute

Main storage consisting of byte locations

sequenced according to their absolute
addresses is referred to as absolute
storage.

Real Address

A real address 4identifies a location in
real storage. When a real address is used
for an access to main storage, it is
converted, by means of prefixing, to an
absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in
the system. When a real address is used by
a CPU to access main storage, it is
converted to an absolute address by
prefixing. The particular transformation
is defined by the value in the prefix

register for the CPU.
Main storage consisting of byte locations

sequenced according to their real addresses
is referred to as real storaaqe.

Effective Address

it is convenient to use
"effective address." An effective
address is the address which results €from
address arithmetic, before address
translation, if any, is performed. Address
arithmetic is the addition of the base and
displacement or of the base, index, and
displacement. Address translation converts
virtual to real, and prefixing converts
real to absolute.

In some situationms,
the term

Virtual Address

a location in
When a virtual address is

A virtual address identifies
virtual storage.

used for an access to main storage, it is
translated by means of dynamic address
translation to a real address, which is
then further converted to an absolute
address.

Primary Virtual Address

A primary virtual address is a virtual

address which is to be translated by means

designation.
addresses are
wvhen DAT is on.

of the primary segment-table
Without DAS, all 1logical
treated as primary virtual

With DAS, logical addresses and instruction
addresses are treated as primary virtual
when in primary-space mode. The
first-operand address of MOVE TO PRIMARY
and the second-operand address of MOVE TO
SECONDARY are alvays treated as vprimary
virtual.

Secondary Virtual Address

A secondary virtual address is a virtual

address which is to be translated by means
of the secondary segment-table designation.
Without DAS, secondary virtual addresses do
not occur. With DAS, logical addresses are

treated as secondary virtual wvhen in
secondary-space mode. The second-operand
address of MOVE TO PRIMARY and the

first-operand address of MOVE TO SECONDARY
are always treated as secondary virtual.

Logical Address

Most addresses specified by the program are
logical addresses. Without DAS, logical
addresses are treated as real addresses
when DAT is off and as virtual addresses
vhen DAT is on. With DAS, a 1logical
address is treated as real in real mode,
treated as primary virtual in primary-space
mode, and treated as secondary virtual in
secondary-space mode. The storage-operand
addresses for most instructions are logical
addresses. However, some instructions have
storage-operand addresses or storage
accesses associated with the instruction

which do not follow the rules for logical
addresses. In all such cases, the
instruction definition contains a

definition of the type of address.

Instruction Address

Without DAS, instruction addresses are the
same as logical addresses. With DAS, an
instruction address is treated as real in
real mode, treated as primary virtuval in
primary-space mode, and treated as either
primary virtual or secondary virtual in
secondary-space mode. The branch address
for all branch instructions and the target
of EXECUTE are instruction addresses.

When the CPU is 1in the secondary-space
mode, it is unpredictable wvhether
instructions, and the target of EXECUTE,

are fetched from the primary address space

Chapter 3. Storage 3-5

or the secondary address
when the CPU is in secondary-space mode,
all copies of an instruction used in a
single execution are fetched from a single
address space, and the machine can change
to or from interpreting instruction
addresses as primary virtual or secondary
virtual only between instructions and only
by issuing a checkpoint-synchronizing
function.

space. However,

Programming Notes

1. Predictable progranm operation is
ensured in secondary-space mode only
when the instructions are fetched from
virtual-address locations which
translate to the same real address by

means of both the primary and
secondary segment tables. Thus, a
program should not enter

secondary-space mode if it is not
aware of the virtual-to-real address
mapping in both the primary and
secondary address spaces.

when the CPU
fetching instructions

2. The requirement limiting
can change from

to or from the primary address space
or secondary address space avoids
problems with CPU retry, DAT

execution of
purposes of

pretesting, and trial
instructions for the
determining PER events.

STORAGE KEY

A storage key 1is associated with each
2,048-byte block of storage that is
provided.

T T

|ACC |FIRICI|

| I T —

0 4 6

The bit positions in the storage key are
allocated as follows:

Access-Control Bits (ACC): The four
access-control bits, bits 0-3, are matched
with the four-bit access key whenever
information is stored, or wvhenever

information is fetched from a location that
is protected against fetching.

Fetch-Protection Bit (F) : The
fetch-protection bit, bit 4, controls
whether key-controlled protection applies
to fetch-type references: a zero indicates
that only store-type references are
monitored and that fetching with any access
key 1is permitted; a one indicates that

3-6 System/370 Principles of Operation

protection applies both to fetching and
storing. No distinction is made between
the fetching of instructions and of
operands.

Reference Bit (R): The reference bit, bit
5, normally is set to one each time a
location in the corresponding storage block
is referred to either for storing or for
fetching of information.

Change Bit (C): The change bit, bit 6, is
set to one each time information is stored
at a location in the corresponding storage
block.

Storage keys are not part of addressable
storage. The entire storage key is set by
SET STORAGE KEY and inspected by INSERT
STORAGE KEY. Additionally, the instruction
RESET REFERENCE BIT provides a means of
inspecting the reference and change bits
and of setting the reference bit to zero.

PROTECTION

Two protection facilities are
protect the contents of main
destruction or misuse by erroneous or
unauthorized programs: key-controlled
protection and low-address protection. The
protection facilities are applied
independently; access to main storage is
only permitted when none of the facilities
prohibit the access.

provided to
storage from

Key-controlled protection affords
protection against improper storing or
against both improper storing and fetching,
but not against improper fetching alone.

KEY-CONTROLLED PROTECTION

When key-controlled protection applies to a
storage access, a store is permitted only
when the storage key matches the access key
associated with the request for storage
access; a fetch is permitted when the keys

match or when the fetch-protection bit of
the storage key is zero.
The keys are said to match when the four

access-control bits of the storage key are
equal to the access key, or when the access
key is zero.

The protection action is summarized in the
figure "Summary of Protection Action."

9

<

L v
| Conditions | Is Access to
F Y 4 Storage Permitted?
|Fetch—Protection| F T
| Bit of | | |
| Storage Key | Key Relation | Fetch | Store
— 1 { }
0 | Match | Yes | Yes
0 | Mismatch | Yes | No
1 | Match | Yes | Yes
1 | Mismatch | No | No
1 A A
Explanation:
The four access—control bits of the storage

key are equal to the access key,
key is zero.

Yes Access is permitted.
No Access is not permitted.

program;
storage location are not changed.

or the access

Oon fetching, the
information is not made available to the
on storing, the contents of the

SR U S S —— U — . ——— S Mg

Summary of Protection Action

When the access to storage is initiated by
the CPU, and key-controlled protection
applies, the PSW key 1is the access key
which is used as the compare value. The
PSW key occupies bit positions 8-11 of the
current PSW.

When the reference is made by
and key-controlled protection applies, the
subchannel key associated with the 1I/0
operation is the access key which is used
as the compare value. The subchannel key
is specified for an I/O0 operation in bit
positions 0-3 of the channel-address word

a channel,

(CAW) ; the subchannel key is 1later placed
in bit positions 0-3 of the channel-status
word (CSW) that is stored as a result of

the I/0 operation.

When a CPU access 1is prohibited because of
protection, the operation is suppressed or
terminated, and a program interruption for
a protection exception takes place. When a
channel access is prohibited, protection
check is indicated in the CSW stored as a
result of the operation.

When a store access is prohibited because
of key-controlled protection, the contents
of the protected location remain unchanged.
when a fetch access 1is prohibited, the
protected information is not 1loaded into a
reqgister, moved to another storage
location, or provided to an I/0 device.
For a prohibited instruction fetch, the
instruction is suppressed and an arbitrary
instruction-length code is indicated.

Key-controlled protection is always active,

regardless of whether the CPU is in the
problem or supervisor state, and regardless
of the type of CPU instruction or
channel-command word being executed.

All accesses to storage locations that are
explicitly designated by the program and
that are used by the CPU to store or fetch
information are subject to key-controlled
protection.

All storage accesses by a channel to fetch
a CCW or to access a data area designated
during the execution of a CCW are subject
to key-controlled protection. However, if
a CCW or output data 1is prefetched, a
protection check is not indicated until the
CCW is due to be executed or the data is
due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made by the
CPU or channel for any of such sequences
as:

. An interruption

° Updating the interval timer

(] Logout

. Dynamic-address translation

. A store-status function

. Fetching the CAW during the execution
of an I/0 instruction

o Storing of the CSW by an I/0

Chapter 3. Storage 3-7

instruction or interruption

D) Storing channel identification during
the execution of STORE CHANNEL ID

. Limited channel logout
. Initial program loading

Similarly, protection does not
accesses initiated via the operator
facilities for altering or displaying
information. However, when the program
explicitly designates these locations, they
are subject to protection.

apply to

LOW-ADDRESS PROTECTION

The low-address-protection facility
provides protection against the destruction
of main-storage information used by the CPU
during interruption processing, by
prohibiting instructions from storing using
addresses in the range O through 511. The
range criterion is applied before dynamic
translation, if any, and before prefixing.

Low-address protection is under control of
bit 3 of control register 0, the 1low-
address-protection-control bit. When the
bit is zero, low-address protection is off;
when the bit is one, low-address protection
is on.

If an access 1is prohibited because of
low-address protection, the contents of the
protected location remain unchanged, a
program interruption for a protection
exception takes place, and the operation is
suppressed or terminated.

Any attempt by the program to store using
ef fective addresses in the range 0 through
511 are subject to low-address protection.
low-address protection is applied to the
store accesses of instructions whose
operand addresses are logical, virtual, or
real. Thus it applies to the operands of
IPTE, READ DIRECT, TEST BLOCK, MOVE TO
PRIMARY, and MOVE TO SECONDARY and to the
store-type operands of instructions with
logical addresses. Low-address protection
is also applied to the trace table.

low-address protection is not applied to
accesses made by the CPU or channel for
such sequences as interruptions, 1logout,
and the initial-program-loading and
store-status functions, nor is it applied
to data stores during I/0 data transfer.
However, explicit stores by a program at
any of these locations are subject to
protection.

3-8 System/370 Principles of Cperation

Programming Note

Low-address protection and key-controlled

protection apply to the same store
accesses, except that:

. Low-address protection does not apply
to storing performed by a channel,
whereas key-controlled protection
does.

° Key-controlled protection does not
apply to the operands of TEST BLOCK,
whereas low-address protection does.

REFERENCE RECORDING

Reference recording provides information
for use in selecting pages for replacement.
Reference recording uses the reference bit,
bit 5 of the storage key. 1A reference bit
is provided in each storage key when
dynamic address translation is installed.
The reference bit is set to one each time a
location in the corresponding storage block
is referred to either for fetching or
storing information, regardless of whether
the CPU 1is in the EC mode or BC mode or
whether DAT is on or off.

Reference recording is
takes place for all storage accesses,
including those made by any CPU, I/O, or
operator facility. It takes place for
implicit accesses made by the machine, such
as those which are part of interruptions
and I/O-instruction execution.

always active and

Reference recording does not occur for
operand accesses of the following
instructions since they directly refer to a
storage key without accessing a storage
location:

INSERT STORAGE KEY

INSERT VIRTOUOAL STORAGE KEY

RESET REFERENCE BIT (reference bit is
set to zero)

SET STORAGE KEY (reference
to a specified value)

bit is set

The record provided by the reference bit is
substantially accurate. The reference bit
may be set to one by fetching data or
instructions that are neither designated
nor used by the program, and, under certain
conditions, a reference may be made without
the reference bit being set to one. Under
certain unusual circumstances, a reference
bit may be set to zero by other than
explicit program action.

CHANGE RECORDING

Change recording provides information as to
which pages have to be saved in auxiliary
storage when they are replaced in main
storage. Change recording uses the change
bit, bit 6 of the storage key. A change
bit is provided in each storage key when
dynamic address translation is installed.

The change bit is set to one each time a
store access causes the <contents in the
corresponding storage block to be changed.
A store access that does not change the
contents of storage may or may not set the
change bit to one.

The change bit is not set to one for an
attempt to store if the access is
prohibited. 1In particular:
1. For the CPU, a store access 1is
prohibited whenever an access
exception exists for that access, or

whenever an exception exists which is

of higher priority than the priority
of an access exception for that
access.

2. For I/0, a store access is prohibited
whenever a key-controlled-protection
condition exists for that access.

Change recording is always active and takes
place for all store accesses to storage,
including those made by any CPU, 1I/0, or

operator facility. It takes place for
implicit references made by the machine,
such as those which are part of
interruptions.

Change recording does not take place for
the operands of the fcllowing instructions
since they directly modify a storage key
without modifying a storage location:

RESET REFERENCE BIT
SET STORAGE KEY (change
a specified value)

it is set to

Change bits are not necessarily restored on
CPU retry (see the section "CPU Retry" in
Chapter 11, "Machine-Check Handling"). See
the section "Exceptions to Nullification

and Suppression" in Chapter 5, "Program
Execution," for a description of the
handling of the change bit in <certain
unusual situationmns.

PREFIXING

Prefixing provides the ability to assign
the range of real addresses 0-4095 (the
prefix area) to a different block in

absolute main storage for each CPU, thus

than one CPU sharing main
storage to operate concurrently with a
minimum of interference, especially in the
processing of interruptioms.

permitting more

Prefixing causes real addresses 1in the
range 0-4095 to correspond +to the block of
4K absolute addresses identified by the
prefix register for the CPU, and the block
of real addresses starting with the prefix
value to correspond to absolute addresses
0-4095. The remaining real addresses are
the same as the corresponding absolute
addresses. This transformation allows each
CPU to access all of absolute main storage,
including the first UK bytes and the
locations designated by the prefix
registers of the other CPUs.

The relationship between real and absolute
addresses 1is graphically depicted in the
figure "Relationship between Real and
Absolute Addresses."

The prefix is a 12-bit quantity located in
the prefix register. The register has the
following format:

{r////////i Prefix i////////////]

0 8 20 31

The contents of the register can be set and
inspected by the privileged instructions
SET PREFIX and STORE PREFIX, respectively.
On setting, bits corresponding to bit
positions 0-7 and 20-31 of the prefix
register are ignored. On storing, =zeros
are provided for these bit positions. When
the contents of the prefix register are
changed, the change is effective for the
next sequential instruction.

When prefixing is applied, the real address
is transformed into an absolute address
using one of the following rules, depending
on bits 8-19 of the real address:

1. Bits 8-19 of the address, if all
zeros, are replaced with bits 8-19 of
the prefix.

2. Bits 8-19 of the
bits 8-19 of the
with zeros.

address, if equal to
prefix, are replaced

3. Bits 8-19 of the address, if not all
zeros and not equal to bits 8-19 of
the prefix, remain unchanged.

In all cases, bits 20-31 of the address

remain unchanged.

Only the address presented to storage is
translated by prefixing. The contents of
the source of the address remain unchanged.

The distinction between real and absolute

Chapter 3. Storage 3-9

addresses 1is made even when the prefix
register contains all zeros, in which case
a real address and its corresponding

absolute address are identical.

ADDRESS SPACES

An address space is

a consecutive sequence
of integer numbers

(or virtual addresses),

associated with a byte location in storage.
The sequence starts at =zero and proceeds
left to right.

When a virtual address is
access main storage, it is first converted,
by means of dynamic address translation
(DAT), into a real address, and then into
an absolute address. DAT uses two levels
of tables (a segment table and page tables)
as transformation parameters. The address
of the segment table is found in a control

used by a CPU to

together with the specific transformation register.
parameters which allow each number to be
. _ Prefixing ,_____’"iﬁ_""ﬁ___j
| | | |
| No Change T D1 T | I
i I ’1: l No Change ‘
’ I ’ ll |
l
| L | | =
i T 1
| no I
\ | %
§ \ I L | 1
T | T R : T
| |
1 l 2, J, No Change JI i
| | |
1 | [| $ |
| | 8 |
b | a -
Address ‘ Address | < I Address
1% 4096 | Ll 4086 | ‘ ["‘('4095
1 Jo—Address L __________ | [1l Add‘;‘“ L_ ________ _J t(Address

0

Real Addresses
for CPU A

®

Absolute
Addresses

0

Real Addresses
for CPU B

Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or B).

@ Absolute addresses of the block that contains, for this CPU (A or B), the assigned locations

in real storage.

Relationship between Real and Absolute Addresses

3-10 System/370 Principles of Operation

With DAS, each address space is assigned an

address-space number (ASN) . An
ASN-translation mechanism is provided with
DAS, which, given an ASN, can 1locate (by

using a two-level table lookup) the segment
table which defines the address space and
load its address into the appropriate
control register.

Without DAS, the CPU «can translate virtual
addresses for omne address space--the
primary address space. With DAS, at any
instant a CPU can translate virtual
addresses from two address spaces--the
primary address space and the secondary
address space. The segment table defining
the primary address translation is
specified by control register 1 and that

defining the secondary by control register

7.
By using the ASN-translation mechanism, any
one of up to 64K address spaces can be

selected to become the primary or secondary
address space.

Virtual storage comprising byte 1locations
ordered according to t heir virtual
addresses in an address space is usually

referred to as storage.

DYNAMIC ADDRESS TRANSLATION

Dynamic address translation (DAT) provides
the ability to interrupt the execution of a
program at an arbitrary moment, record it
and its data in auxiliary storage, such as
a direct-access storage device, and at a
later time return the program and the data
to different main-storage 1locations for
resumption of execution. The transfer of
the program and its data between main and
auxiliary storage may be performed
piecemeal, and the return of the
information to main storage may take place
in response to an attempt by the CPU to
access it at the time it 1is needed for
execution. These functions may be
performed without <change or inspection of
the program and its data, do not require
any explicit programming convention for the
relocated program, and do not disturb the
execution of the program except for the
time delay involved.

With appropriate support by an operating
systen, the dynamic-address-translation
facility may be used to provide to a user a
system wherein main storage appears to be
larger than the installed main storage.
This apparent main storage is referred to
as virtual storage, and the addresses used

to designate 1locations in the virtual
storage are referred to as virtual
addresses. The virtual storage of a user
may far exceed the size of the physical

main storage of the installation and
normally is maintained in auxiliary
storage. The translation occurs in blocks

of addresses, called pages.
recently referred-to pages of the virtual
storage are assigned to occupy blocks of
physical main storage. As the user refers
to pages of virtual storage that do not
appear in main storage, they are brought in
to replace pages in main storage that are
less likely to be needed. The swapping of

Only the most

pages of storage may be performed by the
operating system without the user's
knowledge.

The sequence of virtual addresses

associated with a virtual storage is called
an address space. With appropriate support
by an operating systen, the dynamic-
address-translation facility may be used to
provide a number of address spaces. These
address spaces may be used to provide
degrees of 1isolation between users. Such
support can consist of a completely
different address space for each user, thus
providing complete isolation, or a shared
area may be provided by mapping a portion
of each address space to a single common
storage area. Also, with DAS, instructions
are provided which permit the
semiprivileged program to access more than
one such address space. Dynamic address
translation with DAS provides for the
translation of virtual addresses from two
different address spaces without requiring
that the translation parameters in the
control registers be changed. These two
address spaces are called the vprimary
address space and the secondary address
space.

In the process of replacing blocks of main
storage by new information from an external
medium, it must be determined which block
to replace and whether the block being
replaced should be recorded and preserved
in auxiliary storage. To aid in this
decision process, a reference bit and a
change bit are associated with the storage
key.

Dynamic address translation may be
specified for instruction and data
addresses generated by the CPU but is not
available for the addressing of data and of
control words in I/0 operations. The
channel-indirect-data-addressing feature is
provided to aid I/0O operations in a
virtual-storage environment.

The dynamic-address-translation
includes the instructions
ADDRESS, RESET REFERENCE BIT, and PURGE
TLB. It makes use of control register 1
and bits 8-12 in control register 0.

facility
LOAD REAL

The dynamic-address-translation
includes the handling of
4K-byte pages and 6UK-byte

facility
2K-byte and
and 1M-byte

Chapter 3. Storage 3-11

segments. On some the

1M-byte-segment size may not

models,
ke offered.

Dynamic address translation is enhanced by

that part of the extended facility that
includes the instruction INVALIDATE PAGE
TABLE ENTRY and the common-segment
facility. Oon some models, the common-

segment facility permits improvement of TLB

utilization by means of a common-segment
bit in the segment-talkle entry. On other
models, this bit is ignored, with no

per formance improvement.

Dynamic address translation
of translating
storage

is the process
a virtual address during a
reference into the corresponding
real address. Without DAS, when DAT is on,
a logical address is treated as a virtual
address and is translated during a storage
reference into the corresponding real
address. When DAT is off, the 1logical
address is treated as a real address. With
DAS, the virtual address may be either a
primary virtual address or a secondary
virtual address. Primary virtual addresses
are translated by means of the primary
segment-table designation and secondary
virtual addresses by means of the secondary
segment-table designation. After selection
of the appropriate segment-table
designation, the translation process is the
same for both types of virtual addresses.

In the process of translation,
units of information are
segments and pages. A segment is a block
of sequential addresses spanning 65,536
(p4K) or 1,048,576 (1M) bytes and beginning
at an address that is a multiple of its
size. A page 1is a block of sequential
addresses spanning 2,048 (2K) or 4,096 (4K)
bytes and beginning at an address that is a
multiple of its size. The size of the
seqment and page is controlled by bits 8-12
in control register 0.

tvo types of
recognized:

The virtual address, accordingly, is
divided into a segment-index (SX) field, a
page-index (PX) field, and a byte-index
field. The size of these fields depends on
the segment and page size.

The segment index starts with bit 8 of the
virtual address and extends through bit 15
for a 64K-byte segment size and through bit
11 for a 1M-byte segment size. The page
index starts with +the bit following the
segment index and extends througqh bit 19
for a UK-byte page size and through bit 20

for a 2K-byte page size. The byte index
consists of the remaining 11 or 12
low-order bits of the virtual address. The
formats of the virtual address are as
follows:

3-12 System/370 Principles of Operation

For 64K-byte segments and 4K-byte pages:

v Al
PX | Byte Index |

/77777771
0 8

+
SX |
L
1

6 20 31

For 64K—byte segments and 2K-byte pages:

/77777771 SX PX

0 8

1 Al
| Byte Index|
]]

- f—

6 21 31

For 1M-byte segments and 4K-byte pages:

al
Byte Index |

0 31

/77777771 SX PX

N -

|
L
1

0 8 2

For 1M-byte segments and 2K-byte pages:

/77777771 SX PX

0 8

1
Byte Index|
|

N -

LB
|
I 1
12 1 31
Virtual addresses are translated into real
addresses by means of two translation
tables, a segment table and a page table,
which reflect the current assignment of
real storage. The assignment of real
storage occurs in units of pages, the real
locations being assigned contiguously
within a page. The pages need not be
adjacent in real storage even though
assigned to a set of sequential virtual
addresses.

TRANSLATION CONTROL

Without DAS, address translation is
controlled by the DAT-mode bit in the PSW
and by a set of bits, referred to as the
translation parameters, in control
registers 0 and 1. With DAS, an additional
bit in the PSW is included, and control
register 7 1is 1included as part of the
translation parameters Additional controls

are located in the translation tables.

SW

When the dynamic-address-translation
facility is installed without DAS, the CPU
can operate with DAT either on or off. The
mode of operation is controlled by bit 5 of
the EC-mode PSW, the DAT-mode bit. When

this bit is one, DAT is on, and logical
addresses are treated as virtual addresses;
when this bit is <2zero or the BC mode is
specified, DAT is off, and logical
addresses are used as real addresses.

When DAS is
EC-mode PSW

two bits in the
control dynamic address
translation: bit 5, the DAT-mode bit, and
bit 16, the address-space-control bit.
When a BC-mode PSW is specified, or, when

installed,

mode, and instruction and logical addresses
are treated as real. When, in an EC-mode
PSW, the DAT-mode bit is one (DAT is on)
and the address-space-control bit is zero,
the CPU is said to be in primary-space
mode, and instruction and logical addresses

are treated as primary virtual. When, in
an EC-mode PSW, DAT is on and the
address-space-control bit is one, the CPU

is said to be 1in secondary-space mode, and
logical addresses are treated as secondary

in an EC-mode PSW the DAT-mode bit is zero, virtual. The various modes are shown in
DAT is off, the CPU is said to be in real the following table:
r L} v v L
| | | | Handling of Addresses |
|PSW Bit| | o T |
— | | Logical |[|Instruction]|
| 5 112 | DAT | Mode | Addresses | Addresses |
F . + + + + |
— 0	0Off	Real mode (BC mode)	Real	Real
O 1	0Off	Real mode	Real	Real
1 11 On	Primary-space mode	Primary	Primary	
			virtual	virtual
L L L L A J				
Translation Modes Without DAS				
L v hJ L al				
			Handling of Addresses	
PSW Bit		+ v		
A		Logical	Instruction	
5112	16	DAT	Mode	Addresses
—t L + -+ + 1 4				
— 0 —	0Off	Real mode (BC mode)	Real	Real
O 1 —	0Off	Real mode	Real	Real
1 1 1 0	On	Primary-space mode	Primary	Primary
			virtual	virtual
1 1 1	On	Secondary—space mode	Secondary	See note
			virtual	
— A L. L 1 (]
Translation Modes With DAS

Chapter 3. Storage 3-13

Note

when the CPU is in secondary-space mode, it
is unpredictable whet her instruction
addresses are treated as primary virtual or
secondary virtual. Hovwever, when the CPU
is in secondary-space mode, all copies of
an instruction used in a single execution
are fetched from a single space, and the
machine can change the interpretation of
instruction addresses as primary virtual or
secondary virtual only fketween instructions

and only by issuing a checkpoint-
synchronizing function.
Control Register 0
Without DAS, five bits are ©provided in
control register 0 which are used in
controlling dynamic address translation.
With DAS, a sixth bit 1is provided. The
bits are assigned as follows:
L v

IDI | TF |

i 1 A AL

5 8 13
Bit 5 of control register 0 is the
secondary-space-control bit (D). This bit
is provided as part of DAS. When this bit
is zero and the instructions SET ADDRESS

SPACE CONTROL, MOVE TO PRIMARY, and MOVE TO
SECONDARY are executed, a special-operation

exception 1is recognized. This bit also
controls whether the secondary segment
table is attached while operating in

primary-space mode.

Bits 8-12 of control register 0 are called
the translation format, which controls the
page size and segment size. On models
which implement the 1M-byte-sedgment size,
four combinations of the five control bits
are valid; all other combinations are
invalid. oOn models which do not implement
the 1M-byte-segment size, two combinations
are valid. The encoding of the control
bits is defined in the following table.

3-14 System/370 Principles of Operation

1

*0n those models which do not implement
the 1M-byte—segment size, the codes |
01010 and 10010 are invalid. |
]

\B LE v Bl
| Bits of | | 1
| Control | | |
| Register 0 | Page | Segment |
—r——r— Size | Size |
| 81 9110111112 (Bytes) | (Bytes) |
1 — t + 4
|0 1 0 0 012,048 (2K)1 65,536 (64K)|
10 1 0 1 012,048 (2K)|1,048,576 (1M)*|
11 0 0 0 014,096 (4K)	65,536 (64K)	
11 0 0 1 O0	4,096 (4K)	1,048,576 (1M) x
All others	Invalid	Invalid
F

|

|

|

1

When an invalid bit combination is detected
in bit positions 8-12, a translation-
specification exception is recognized as
part of the execution of an instruction
using address translation, and the
operation is suppressed.

Control Register 1

Control register 1 contains the
segment-table designation (PSTD).
register has the following format:

primary
The

Primary Segment—
Table Origin

b

I
— —

r
|
| PSTL
L
0

>4
- e —

8 26 3

Primary Segqment-Table Length (PSTL): Bits
0-7 of control register 1 designate the
length of the primary segment table in
units of 64 bytes, thus making the length
of the segment table variable in multiples
of 16 entries. The length of the primary
seqment table, in wunits of 64 bytes, is
equal to one more than the value in bit
positions 0-7. The contents of the length
field are used to establish whether the
entry designated by the segment-index
portion of the primary virtual address
falls within the primary segment table.
Without DAS, this field is sometimes
referred to as the segment-table length.

Primary Segment-Table Origin: Bits 8-25 of
control register 1, with six 1low-order
zeros appended, form a 24-bit real address
that designates the beginning of the
primary segment table. Without DAS, this
field is sometimes referred to as the
segqment-table origin.

Space-Switch~Event Mask (X): With DAS, bit
31 controls whether a space-switch-event
program interruption occurs when a PROGRAM
CALL with space switching (PC-ss) or a

PROGRAM T
(PT-ss) is
is ignored.

RANSFER
issued.

with space
Without DAS,

switching
this bit

Bits 26-30 of control register 1
assigned and are iqgnored.

are not

Control Register 7

When DAS 1is installed, control
contains the secondary
designation (SSTD).

following format:

register 7
segment—-table
The register has the

Bl L il
Secondary Segment—|
Table Origin |

A

8 26 3

|
SSTL
L

O = — -
PG S

Secondary Segment-Table Iength (SSTL):

Bits 0-7 of control register 7 designate
the length of the secondary segment table
in units of 64 bytes, thus making the
length of the segment table variable in

multiples of 16 entries. The length of the

segqment table, in units of 64 bytes, is
equal to one more than the value in bit
positions 0-7. The contents of the length
field are used to establish whether the
entry designated by the segment-index
portion of the secondary virtual address

falls within the secondary segment table.
Secondary Segment-Table Origin: Bits 8~25
of control register 7, with six zeros
appended on the right, form a 24-bit real
address that designates the beginning of
the secondary segment table.

Bits 26-31 of control register 7 are not

assigned and are ignored.

Programming Notes

1. The validity of the information loaded

intc a control register, including
that pertaining to dynamic address
translation, is not checked at the
time the register is loaded. This

information is checked and the program
exception, if any, is indicated at the
time the information is used.

2. The information pertaining to dynamic
address translation is considered to
be used when an instruction is
executed with DAT on or when LOAD REAL
ADDRESS is executed. The information
is not considered to be used when the
PSW =specifies translation, but an I/O,
external, restart, or machine-check

interruption occurs before an
instruction is executed, including the
case when the PSW specifies the wait
state.

TRANSLATION TABLES

The translation process consists in a
two-level 1lookup using two tables: a
segment table and a page table. These
tables reside in storage.

Seqment~Table Entries

The entry fetched from the segment table
designates the length, availability, and

origin of the corresponding page table.

An entry in the segment table has the
following format:

v L] v \J LR Al

|PTL |0000| Page-Table Origin |O0|C|I|

| A L A A L 1

0 4 8 29 31

The fields in the segment-table
allocated as follows:

entry are

Page-Table Length (PTL) : Bits 0-3

designate the 1length of the page table in
increments that are egual to 1/16 of the
maximum size of the table, the maximum size
depending on the size of segments and
pages. The 1length of the page table, in
units 1/16 of the maximum size, is egual to
one more than the value in bit positions
0-3. The length field is compared against
the high-order four bits of the page-index
portion of the logical address to determine
wvhether the page index designates an entry
within the page table.

Page-Table Origin:
low-order zeros

real address that
of the page table.

Bits 8-28, with three
appended, form a 24-bit
designates the beginning

Common-Seqment Bit (C): Bit 30, with the
common-segment facility installed, controls
the use of translation-lookaside-buffer
copies of the segment-table entry and of
the page table which it designates. A zero
identifies a private segment; in this case,
the segment-table entry and the page table
that the entry designates may be used only
in association with the segment-table
origin which designates the segment table
in which the segment-table entry resides.
A one identifies a common segment; in this
case, the segment-table entry and the page

table that the entry designates may
continue to be used for translating
Chapter 3. Storage 3-15

addresses corresponding to the
index, even though a different segment
table is selected by changing the
segment-table origin in control register 1.
In some models, bit 30 in the segment-table
entry is iqnored, and all segments are
treated as private.

segment

The common-segment bit is wused only for
controlling the loading and use of
translation-lookaside-buffer copies. When
the common-segment facility is installed,
the common-segment bit is ignored for
explicit translation and for implicit
translation not using the translation
lookaside buffer.

31 controls
with the

Segment-Invalid Bit (I): Bit
whether the segment associated
segmnent-table entry is available. When bit
position 31 contains a zero, address
translation proceeds wusing the designated
page table. When the bit 1is a one, a
segment-translation exception is
recognized, and the unit of operation is
nullified.

The handling of bit positions 4-7 and 29-30
of the segment-table entry depends on the
model. Normally a translation-
specification exception is recognized and
the unit of operation 1is suppressed when
these bits are not <zeros; however, on some
models the contents of these kit positions
may be ignored. On machines with the
common-segment facility installed, bit 30
is interpreted as defined or is ignored.

Page-Table Entries

The entry fetched from the page table
indicates the availability of the page and
contains the high-order bits of the real
a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>