


Systems 

GA22·7000·7 
File No. S370·01 

IBM System/370 
Principles of Operation 

--- ------ ----- ---- - ---- -- ----------_.-



This major revision obsoletes GA22-7000-6. Considerable material 
has been added to Chapters 5 and 10, and a number of changes have 
been made to Chapters 3, 6, and 12 and to Appendix D. Except for 
Chapter 12, the majority of these additions and changes were made 
to incorporate information about architectural facilities of the 
3033 extension feature, principally the dual-address-space (DAS) 
facility. This facility, together with the cross-memory services 
of the MVS/System product, helps to satisfy user virtual-storage 
requirements and to improve data isolation. 

In addition to DAS, which introduces 12 new instructions, two 
other new instructions (ERANCH AND SAVE and TEST BLOCK) are 
described, and an external-interruption condition called "service 
signal" is defined. 

Chapter 12, "Input/Output Operations," has been revised for 
clarity and to reflect the current definition of the recently 
updated IBM SystemL36Q ~nE SystemL370 ILO Interf~£~ Chgnnel 1Q 
QQnttQl Qni! ~MI, GA22-6974-5. A new command, sense ID, has 
been defined, and a new definition of the ready-to-not-ready 
transition status has been included. 

Except for minor style alterations, changes are identified by a 
vertical bar in the left margin. 

Chanqes are periodically made to the information herein; before 
using this publication in connection with the operation of IBM 
equipment, refer to the latest I!U1 ~stm!!a70 and ,glOO Proce.§l!Q£'§ 
~bliQgraBhY, GC20-0001, for the editions that are applicable and 
current. 

It is possible that this material may contain reference to, or 
information about, IBM products (machines and programs), 
programming, or services that are not announced in your country. 
Such references or information must not be construed to mean that 
IBM intends to announce such IBM products, programming, or 
services in your country. 

publications are not stocked at the address given below; requests 
for IBM publications should be made to your IBM representative or 
to the IBM branch office serving your locality. 

A form for reader's comments is provided at the back of this 
publication. If the form has been removed, comments may be 
addressed to IBM Corporation, Product Publications, Dept. B98, PO 
Box 390, poughkeepsie, NY, U. S. A. 12602. IBM may use or 
distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation whatever. 

~Copyright International Business Machines CorForation 1970, 1972, 
1973, 1974, 1980, 1981 

J 



This publication provid~s, for reference 
purposes, a detqiled definition of the 
machine functions performed by System/370. 

The publication describes each function to 
the level of de~ail that must be underst9qd 
in order to prepare an assembler-language 
program that relies on that function. It 
does not, however, describe the notation 
and conventions that must be employ~d in 
preparing such a prqgram, for which the 
user must instead refer to the appropriate 
assembler-languaqe publication, such as the 
Q§LXa~~Q§L~~-VMLJIQ j~~~~I lAllgy!9~' 
GC33-4010. 

The information in this publication is 
provided principally for use by 
assembler-languaqe programmers, althouqh 
anyone concerned with the func~ional 
details of system/370 will find it useful. 

Note that this publication is written as a 
reference document and should not be 
considered an introduction or a textbook 
for system/370. It assumes the user has a 
basic knowledge ot data processing systems 
and, specifically, the Sy~tem/370, such as 
can be derived from the IntIQ~¥£1jQ~ t2 I~ 
Q~ta R~Qgl~§!ng §I§!~!~, GC20-1'84, and the 
IB" .§I§SnLJl9, SysS~ .§m~I.Y: EI,Q~U2t!, 
GA22-7001. All publications relating to 
System/370 are listed and described in the 
~~ ~~2tgmL170 ~9 !JQQ E~~§!Q!§ 
~i2gI2Ehl' GC20-0001. 

All faci~ities disGussed in this 
publication are not necessarily available 
on every model of system/370. FUrthermore, 
in some instances the definitions have been 
structured to allow for some degree of 
e~tensibility, and therefore certain 
capabilities may be described or implied 
that are not offered on any model. 
Example s of such ~apabilities are the 
provisions for the number of channel-m~sk 
bits in the cont;ol register, for the size 
of the CPO address, and for the number of 
CPUS sharing main storaqe. The allowance 
for this type of extensil;!;i.:l.ity should not 
be construed as implying any intention by 
IBM to provide such capabilities. Por 
information about the characteristics and 
availability of features on a ~pecific 
system/370 model, use the functional 
characteristics publication for that lIIodel. 
rhe availability of features on System/37Q 
models is summari~ed in the ~ §~£!!!LJ1Q 
~u~m §!lHi!I= FroS~I!' GA22-7001.' 

Largely because the publication is arranged 
for reference purposes, certain words and 
phrase~ appear, of necessity, earlier in 

the publication than the principal 
discussions explaining them. The reader 
who encounters a problem of this sort 
should refer to the index, which indicates 
the location of the key description. 

The information presented 
publication is grouped in 13 
sE;lveral appendixes: 

in this 
cha pters and 

!niI2S~s~j2n hiqhlights some of the major 
features of System/370. 

QIgA~izatiQn describes the major groupings 
within the system--the central processing 
unit (CPU), storage, and input/output--with 
some attention given to the composition and 
characteristics of those qroupinqs. 

~~ explains the information formats, 
the types of addresses used to access 
storage, and the facilities for storage 
protection. It also deals with dynamic 
address translation (DAT), which, coupled 
with special programming support, makes the 
use of a virtual storage possible in 
System/370. DAT eliminates the need to 
assign a program to a fixed location in 
re~l storage and thus reduces the 
addressing constraints on system and 
problem ~roqrams. 

Control describes in depth the facilities 
for the switching of system status, for 
special externally initiated operations, 
and for debuqging and timinq the system. 
It deals specifically with CPU states, 
control modes, the proqram-status word 
(PSi), control registers, proqram-event 
recording, timing fa cilities, resets, store 
status, and initial proqram loadinq. 

fIQSI~ ~~$£~~i2~ explains the role of 
instructions in proqram execution, looks in 
detail at instruction formats, and 
describes briefly the use of the program 
status ~ord (PSi), of branching, and of 
interruptions. It contains the principal 
description of the dual-address-space (DAS) 
facility. It also details the a spects of 
program execution on one CPU as observed by 
channels or another cpu. 

InterrYE~iQD§ details the System/370 
mechanism that permits the cpu to change 
its state as a result of conditions 
external to the system, within the system, 
or within the CPU itself. Six classes of 
inte~ruptions are identified and described: 
machine-check interruptions, proqram 
interruptions, supervisor-call interrup­
tions, external interruptions, input/output 
interruptions, and restart interruptions. 

iii 



General Instructions contains detailed 
descrIptions of--- all unprivileged 
instructions, except for the decimal and 
floatinq-?oint instructions. 

Decimal Instructions describes in detail 
the decima~-instructions, which, together 
with the general instructions, make up the 
commercial instruction set. 

FIQati~g=poini lnstryctiQ~2 contains 
detailed descriptions of the instructions 
provided by the floating-point feature and 
by the extended-precision floating-point 
feature. 

Control Instructions contains detailed 
descrIptions-~ll-of the semiprivileged 
and privileged instructions, except for the 
I/O instructions. 

Machine-Check 
systeiii/37 0---

HandlinE describes the 
mechanism for detectinq, 

correct inq , 
malfunctions. 

and reporting machine 

InputLQ~ip~i Operations explains the 
proqrammed control of I/O devices by the 
channel and by the cpu. It includes 
detailed descriptions of the I/O 
instructions, channel-command words, and 
other I/O-control formats. 

Q2~iQ~ Facilities describes the basic 
manual functions and controls available for 
operating and controlling the system. 

• Information 
representation 

about number 

• Instruction-use examples 

• 

• 

iv 

Lists of the instructions arranged in 
several sequences 

Summary of condition-code settings 

• 

• 

• 

• 
• 

• 

A list of the System/370 
and an indication 
availability as features 
that implement the 
architecture. 

A table of the powers of 2 

facili ties 
of their 

on models 
Svstem/370 

Tabular information helpful in dealing 
with hexadecimal numbers 

An EBCDIC chart 

A discussion 
compa tibilit y 
System/370 

of changes affecting 
between system/360 and 

A discussion of changes affecting 
compatibility within System/370 

SIZ E NOTA TION 

The letters K and M denote the multipliers 
210 and 220 , respectively. Although the 
letters are borrowed from the decimal 
system and stand for kilo (10 3 ) and mega 
(10.), they do not have the decimal meaning 
but instead represent the power of 2 
closest to the corresponding power o~ 10. 
Their meaning in this publication is as 
follows: 

Symbol Value 

K (kilo) 1,024 = 2 10 

1'1 (mega) 1,048,576 2 20 

The following are some examples of the use 
of K and Ii: 

2,048 is expressed as 2K. 
4,096 is expressed as 4K. 
65,536 is expressed as 64K (not 65K). 
22 • is expressed as 161'1. 

When the words "thousand" and "million" are 
used, no special power-of-2 meaning is 
assigned to them. 



The abbreviations used often in this 
publication and their meanings are given in 
the following list. Instruction mnemonics 
are listed in Appendix C·under "Instruc­
tions Arranged by Mnemonic." 

AFT 

!PTO 

APX 

AKM 

ASN 

AST 

ASTE 

ASTO 

ASX 

AT 

ATL 

ATO 

AX 

BC 

ASN first table 

ASN-first-table origin 

ASN-first-table index 

authorization key mask 

address-space number 

ASN second table 

AST entry 

AST origin 

ASN-second-table index 

authority table 

authority-table length 

authority-table origin 

authority index 

basic control (a mode bit in the 
PSW) 

CAl channel-available interruption 

CAW channel-address word 

CBC 

CCI 

CPU 

CSW 

DAS 

DAT 

EC 

checkinq-block code 

channel-command word 

central processing unit 

channel-status word 

dual address space (facility) 

dynamic address translation 

extended control (a mode bit in 
the PSW) 

EKM entry key mask 

ET entry table 

ETL entry-table length 

ETO entry-table origin 

EX entry index or execute 

hex 

ID 

IDA" 

ILC 

IML 

I/O 

rOEL 

IPL 

K 

LT 

LTD 

LTL 

LTD 

LX 

!! 

PASN 

PC 

PC-cp 

PC-ss 

pcr 

PER 

PPRA 

PKM 

PSTD 

PSTL 

PSTO 

hexadecimal 

identifier; identification 

indirect-data-address word 

instruction-length code 

initial microprogram loading 

input/output 

I/O extended logout 

initial program load 

1,024 (bytes) 

linkage table 

linkage-table designation 

linkage-table length 

linkage-table origin 

linkage index 

1,048,576 (bytes) 

primary ASN 

program call 

program call to current primary 

program call with space switching 

program-controlled interrupti on 
(flag in CCI or function) 

program-event recording 

page-frame real address 

P SW- key mask 

primary segment-tab le de sig na tion 

primary segment-table length 

primary segment-table origin 

PSI program-status word 

PT program transfer 

PT-cp 

PT-ss 

program transfer to current 
primary 

program transfer with space 
switching 

v 



PTL page-table length 

PTO paqe-table origin 

PX page index 

RR 

RRE 

RS 

RX 

S 

SASN 

S1 

SL1 

vi 

register-and-register instruction 
format (or operat ion) 

register-and-register instruction 
format (or operation) usinq an 
extended operation code 

reqister-and-storage instruction 
format (or operation) 

register-and-indexed-storage in­
struction format (or operation) 

implied-operand-and-storage in­
struction format (or operation) 

secondary ASN 

storage-and-immediate-operand in­
struction format (or operation) 

suppress length indication (flag 
in CCW) 

SS 

SSA~ 

storage-and-storaqe instruction 
format (or operation) 

set secondary ASN 

SSAR-cp set secondary ASN to current 
primary 

SSAR-ss set secondary ASN with space 
switching 

SSE storage-and-storage instructi on 
format (or operation) usinq an 
extended operation code 

SSTD secondary segment-table designa­
tion 

SSTL secondary segment-table length 

SSTO secondary segment-table origin 

STD segment-table desig na tion 

STL segment-table length 

STO segment-table origin 

TLB translation-lookaside buffer 

TOD time of day 



L' 

CHAPTER 1. INTRODUCTION..... .1-1 
General-purpose Design. • .1-2 
Compatibility. • • • • • • • • • • .1-3 

Compatibility Among System/370 Models. 1-3 
Compatibility Between System/360 and 

system/370. • • ••• 
System program • • • • 
Availability • 

CHAPTER 2. ORGANIZATION. 
Main storage • • • • • • • • • • • 
Central Processing Unit. • • • • • 

1?roqram-Status Word ••••••• 
General Registers .••• 
Floating-Point Registers • 
Control Reaisters. 

Input and Output 
Channel Sets 
Channels • • 
Input/Output Devices and Control 

Units 
Operator Facilities. • 

.1-3 
• • • 1-4 
• •• 1-4 

• •• 2-1 
.2-1 
.2-2 

• •• 2-3 
.2-3 
.2-3 

• .2-4 
.2-4 
.2-6 
.2-6 

.2-6 

.2-6 

CHAPTER 3. STORAGE. 
storage Addressing • • 

Information Formats. 

• • • • • • • 3- 1 

Inteqral Boundaries. 
Byte-Oriented-Operand Feature. • 

Address Types. • • • • • ••• 
Absolute Address • 
Real Address • • • 

.3-2 

.3-2 

.3-3 

.3-4 
• • .3-4 

• .3-4 
.3-5 

Effective Address. • • • • • • • 3-5 
Virtual Address •• 
Primary Virtual Address. 
Secondary virtual Address. • 
Logical Address. • •••••• 
Instruction Address •• 

Storage Key .••••••••••• 
protection • • • • • • • • 

Key-Controlled Protection. 
Low-Address Protection 

Reference Recording.. • ••• 
Change Recording •••••• 
prefixing ••••••••••••• 
Address Spaces • • • • • • 
Dynamic Address Translation. 

Translation Control. 
P Sw. • • • • • • • 

.3-5 

.3-5 

.3-5 

.3-5 

.3-5 

.3-6 

.3-6 

.3-6 

.3-8 
• •• 3-8 

.3-9 

.3-9 
• 3-10 

3-11 
3-12 
3-12 

Control Register 0 
Control Register 1 
Control Register 7 

••• 3-14 
3-14 
3-15 

Translation Tables • 
Segment-Table Entries. 
page-Table Entries •• 

Summary of Dynamic Address 
Translation Formats • • • 

Translation Process. • • • 
Effective Segment-Table 

• 3-15 
3-15 
3-16 

3-16 
• 3-17 

Designation. • • • • • • 3-17 
Inspection of Control Register 0 • 3-20 
Segment-Table Lookup • • 3-20 
page-Table Lookup ••••••••• 3-20 

Formation of the Real Address. • • 3-21 
Recognition of Exceptions During 
Translation • • • • • • • • • • • 3-21 

Translation-Lookaside Buffer • • • • 3-21 
Use of the Translation-Lookaside 
Buffer •••••••••••••• 3-22 

Modification of Translation Tables 3-25 
Address Summary. • • • • • 3-27 

Addresses Translated. • • • •• 3-21 
Handling of Addresses. • • 3-28 

Assigned Storage Locations. • • 3-29 
Assigned Real-Storage Locations. 3-29 
Assigned Absolute storage Locations. 3-32 

CHAPTER 4. CONTROL...... .4-1 
Stopped, Operating, Load, and 
Check-Stop States. .4-2 

Stopped State. • • • • • • • •• 4-2 
Operating State. • .4-2 
Load State • • • • • .4-3 
Check-Stop State. • • • • • .4-3 

Program-Status Word. .4-3 
EC and BC Modes. • .4-4 
Proqram-Status-Word Format in EC Mode.4-6 
Program-Status-Word Format in BC Mode.4-8 

Control Registers •••••••••••• 4-9 
DAS Tracing. • • • • • • • • 4-11 

Trace-Table-Entry-Header Origin. • • 4-12 
Trace-Table-Entry Header • • • 4-12 

Applicable Controls. • • • 4-13 
Trace Entry. • • • • • • • • 4-13 

Program-Event Recording. • • 4-14 
control-Register Allocation. 4-15 
Operation. • • • • • • • • 4-15 

Identification of Cause. • 4-16 
Priority of Indication. 4-16 

Storage-Area Designation • • • 4-11 
PER Events • • • • • • • •••• 4-11 

Successful Branching • • • • 4-11 
Instruction Fetching • • • 4-18 
Storage Alteration. • • • 4-18 
General-Register Alteration. 4-18 

Indication of Events Concurrently 
with Other Interruption Conditions. 4-19 

Direct Control • • • • • • • • • 4-22 
Read-Write-Direct Facility • 4-22 
External-Signal Facility • • • 4-22 

Timing • • • • • • • • • • • • 4-22 
Time-of-Day Clock. • • 4-22 

Format • • • • • • • 4-22 
States • • • • • • • • • • 4-23 
Changes in Clock State • • ~ 4-24 
Setting and Inspecting the Clock • 4-24 

TOD-Clock Synchronization. • • • • • 4-25 
Clock Comparator • • • • • • • • • • 4-26 
CPU Timer. • • • • • • • • • 4-21 
Interval Timer • • • • • • • 4-28 

Externally Initiated Functions • 4-29 
Service Signal • 4-29 
Resets • • • • • • • • 4-29 

CPU Reset. • • • • • • • • 4-32 
Ini tial CPU Reset. • 4-32 
Subsystem Reset. • • • 4-33 
Program Reset. • • • • 4-33 
Initial Program Reset. • 4-33 
Clear Reset. • • • • • • 4-33 
Power-On Reset • • • • • • 4-34 

Initial Program Loading. • 4-34 
Store Status • • • • • • • • • 4-35 

vii 



Multiprocessinq. • • • • • • 
Shared Main Storaqe •••• 
CPU-Address Identification 

CPU Siqnalinq and Response • • 
Siqnal-processor Orders. • 
Condit ions Determining Response •• 

• 4-36 
• 4-36 

4-36 
4-36 
4-37 

• 4-38 
Conditions Precluding 
Interpretation of the 

status Bits. • • • 
Channel-Set switchinq. 

Order Code. 4-38 
4-39 
4-41 

CHAPTER 5. PROGRAM EXECUTION. 
Instructions •••• 

.5-1 

.5-2 

.5-2 Operands • • • • • • 
Instruction Format • 

Register Operands. 
• 5-3 
• 5-4 
.5-4 
.5-4 
.5-5 

Immediate Operands • 
Storaqe Operands • • • 

Address Generation •• • • • • 
Sequential Instruction-Address 
Generation •••••••• 

Operand-Address Generation ••• 
Branch-Address Generation. • • • 

• 5- 5 
.5-5 
.5-5 
.5-6 
.5-6 
.5-6 
.5-6 
.5-8 
.5-8 
.5-8 
.5-8 

Instruction Execution and Sequencinq • 
Decision-Makinq. • 
Loop Control • • • 
Subroutine Linkaqe • 
Interruptions. • • • 
Types of Instruction Ending. 
Interruptible Instructions •• 

Point of Interruption ••••• 
Execution of Interruptible 
Instructions. • • • • • • • .5-9 

Exceptions to Nullification and 
Suppression • • • • • • • • • • .5-9 
storage Chanqe and Restoration for 

DAT-Associated Access Exceptions. 5-10 
~lodification of DAT-Table Entries. 5-10 
Trial Execution for TRANSLATE and 

EDIT. • ••••••••••••• 5-10 
Interlocked Update for 
Nullification and Suppression •• 5-10 

Dual-Address-Space Control. • •• 5-11 
Summary. • • • • • • • • • • 5-11 
DAS Functions. • • • • • • 5-12 

Using Two Address Spaces 5-12 
Chanqinq to Other Spaces • • • 5-12 
Movinq Data Between Spaces 5-13 
Transferring Program Control • 5-14 
Handling Storage Keys and the PSW 

Key ••••••••••••••• 5-14 
Program-Problem Analysis. • 5-15 

DAS Authorization Mechanisms. • • 5-15 
Extraction-Authority Control ••• 5-15 
PSW-Key Mask • • • • • • • • • 5-15 
Secondary-space Control •••••• 5-16 
Subsystem-Linkage Control. • 5-16 
ASN-Translation Control. 5-16 
Authorization Index. • • • • 5-16 
Space-Switch-Event Bit • • 5-17 

PC-Number Translation. • • • • 5-18 
PC-Number Translation Control. • 5-19 
PC-Number Translation Tables. • 5-19 

Linkage-Table Entries. • • • • 5-19 
Entry-Table Entries. • • • • 5-19 

?C-Number-Translation Process. 5-20 
Linkage-Table Lookup • • • • 5-21 
Entry-Table Lookup • • • • • 5-22 
Recognition of Exceptions During 

viii 

PC-Number Translation • • • • • • 5-22 
ASN Translation. • • • • • • • 5-22 

ASN-Translation Controls •••••• 5-22 
ASN-Translation Tables • • 5-23 

ASN-First-Table Entries. • 5-23 
ASN-Second-Table Entries ••••• 5-23 

ASN-Translation Process ••••••• 5-24 
ASN-First-Table Lookup. 5-25 
ASN-Second-Table Lookup. 5-26 
Recognition of Exceptions During 

ASN Translation • • • • 
ASN Authorization. • • • • • • • 

ASN-Authorization Controls 
Control Register 4 • • • 
ASN-Second-Table Entry • 
Authority-Table Entries • 

ASN-Authorization Process. 
Authority-Table LOOKUp. 
Recognition of Exceptions During 

ASN Authorization • • • • • 
Sequence of Storage References •• 

Interlocks for Virtual-Storage 

• 5-26 
• 5-26 
• 5-26 

5-26 
5-26 

• 5-27 
• 5-27 
• 5-28 

5-29 
5-29 

References. • • • • • • •••• 5-30 
Instruction Fetching. • • 5-31 
DAT-Table Fetches. • • • • • 5-32 
Storage-Key Accesses • • • • • • 5-32 
Storage-Operand References • 5-33 

Storage-Operand Fetch References • 5-33 
Storage-Operand Store References • 5-33 
storage-operand Update References. 5-34 

Storage-Operand Consistency. • • 5-35 
Single-Access References • • • 5-35 
Multiple-Access Operands • • • 5-35 
Block-Concurrent References •••• 5-35 
consistency Specification ••••• 5-35 

Relation Between Operand Accesses •• 5-36 
Other Storaqe References • 5-37 

Serialization. • • • • • • 5-37 
CPU Serialization. • • • • • • • • • 5-37 
Channel Serialization. • • 5-38 

CHAPTER 6. INTERRUPTIONS •• .6-1 
Interruption Action. • • .6-2 

Source Identification ••••••••• 6-5 
Enabling and Disabling • • .6-5 
Handling of Floating Interruption 

Conditions •••••••• 
Instruction-Length Code ••••• 

Zero ILC • • • • • • • • • • 
ILC on Instruction-Fetching 

.6-6 

.6-6 

.6-6 

Exceptions. • • • • • • • • • .6-7 
Exceptions Associated with the PSW •• 6-8 

Early Exception Recognition. • .6-8 
Late Exception Recognition •• 6-8 

External Interruption. • • ••••• 6-9 
Clock Comparator • 6-10 
CPU Timer. • • • • • • • • 6-10 
Emergency Signal • • •••• 6-10 
External Call. • • 6-11 
External Signal. • • • • • • 6-11 
Interrupt Key. • • • • • • • 6-11 
Interval Timer. • • • 6-11 
Malfunction Alert. • 6-12 
Service Signal • • • 6-12 
TOD-Clock Sync Check. • 6-12 

Input/Output Interruption. • • • • • • 6-13 
Machine-Check Interruption • • 6-13 
Program Interruption • • • • • •• 6-14 

Program-Interruption Conditions ••• 6-14 



Addressing Exception · · · · · · · 6-14 CONVERT TO BINARY. · · · · · 7-17 

L 
AFX-Translation Exception. · · 6-16 CONVERT TO DECI l!AL · · · · · · · 7-17 
ASN-Translation-specification DIVIDE · · · · · · · · · · · 7-18 
Exception · · · · · · · · 6-16 EXCLUSIVE OR · · · 7-18 

ASX-Trans lation Exception. · 6-16 EXECUTE. · · · · · · · 7-19 
Data Exception · · · · · · · · · · 6-16 INSERT CHARACTER · · 7-20 
Dec imal-Divide Exception · · 6-17 INSERT CHARACTERS UNDER MASK · · 7-20 
Decimal-Overflow Exception · · 6-17 LOAD · · · · · · · · · · · · · · 7-21 
Execute Exception. · · · · · · 6-17 LOAD ADDRESS · · · · · · · · 7-21 
Exponent-Overflow Exception. 6-17 LOAD AND TEST. · · · 7-21 
Exponent-Underflow Exception · · · 6-17 LOAD COMPLEl!ENT. · · · · · · · 7-22 
EX-Translation Exception · · · 6-17 LOAD HALFWORD. · · · · · 7-22 
Fixed-Point-Divide Exception · 6-18 LOAD MULTIPLE. · · · · · · 7-22 
Fixed-Point-overflow Exception 6-18 LOAD NEGATIVE. · · · · · 7-23 
Floating-Point-Divide Exception. · 6-18 LOAD POSITIVE. · · · · · · · · · 7-23 
LX-Translation Exception · · · · · 6-18 MONITOR CALL · · · · · · 7-23 
Monitor Event. · · · · · · · · · · 6-18 MOVE · · · · · 7-24 
Operation Exception. · · · · · 6-19 l!OVE INVERSE · · · · · · 7-24 
Page-Translation Exception · 6-19 l!OVE LONG. · · · · · · · 7-25 
PC-Translation-Specification l!OVE NUl!ERICS. · 7-27 

Exception · · · · · · · · · · 6-20 l!OVE WITH OFFSET · · 7-28 
PER Event. · · · · · · · · · 6-20 MOVE ZONES · · · · · · · · · · · 7-28 
primary-Authority Exception. · 6-20 MULTIPLY · · · · · · · · · · 7-29 
privileged-operation Exception · · 6-20 I'IULTIPLY HA LFWORD. 7-29 
protection Exception · · · · · 6-21 OR . · · · · · · 7-30 
Secondary-Authority Exception. 6-21 PACK · · · · · · · · · · · · 7-31 
Segment- Tr anslation Exception. · · 6-21 SET PROGRAl! MASK · · 7-31 
significance Exception · · · 6-22 SHIFT LEFT DOUBLE. · 7-32 
Space-Switch Event · · · · · · 6-22 SHIFT LEFT DOUBLE LOGICAL. · 7-32 
Special-Operation Exception. · · · 6-22 SHIFT LEFT SINGLE. · · · · · 7-33 
specification Exception. · · · · · 6-22 SHIFT LEFT SINGLE LOGICAL. · 7-33 
Translation-speci ficat ion SHIFT RIGHT DOUBLE · · · · · 7-34 

Exception · · · · · · · · · · 6-23 SHIFT RIGHT DOUBLE LOGICAL · 7-34 

L 
I Collective proqram-Interruption SHIFT RIGHT SINGLE · · · · · · 7-34 

Names · · · · · · · · · · · · · · · 6-24 SHIFT RIGHT SINGLE LOGICAL · 7-35 
Recognition of Access Exceptions · · 6-24 STORE. · · · · · · · · · 7-35 
Mul tiple Proqram-Interruption STORE CHARACTER. · · · · · · 7-35 
Conditions. · · · · · · · · · 6- 2 4 STORE CHARACTERS UNDER MASK. · · 7-35 

Access Exceptions. · · · · · · 6-28 STORE CLOCK. · · 7-36 
ASN-Translation Exceptions · · · · 6-29 STORE HALFWORD · · · · · 7-37 
Trace Exceptions · · · · 6-29 STORE l!ULTIPLE · · 7-37 

Restart Interruption · · · · 6-29 SUBTRACT · · · · · 7-37 
Superv isor- Call Int err uption · · · 6-30 SUBTRACT HALFWORD. · 7-38 
Prioritv of Interruptions. · 6-30 SUBTRACT LOGICAL · · 7-38 

SUPERVISOR CALL. · · · · · · 7-39 
CHAPTER 7. GENERAL INSTRUCTIONS · .7-1 TEST AND SET · · · · 7-39 
Data Format. · · · · · · · · · · · .7-2 TEST UNDER MASK. · · · · · 7-39 
Binary-Integer Representation. · .7-2 TRANSLATE. · · · · · · · · · · · · · 7-40 
Signed and Unsigned Binary Arithmetic. .7-3 TRANSLATE AND TEST · · · 7-41 
Signed and Logical comparison. .7-4 UNPACK · · · · · · · · · · · 7-41 
Instructions · · · · · .7-4 

ADD. . · · · · · · · · .7-7 CHAPTER 8. DECIl!AL INSTRUCTIONS · .8-1 
ADD HALFWORD · · · · · .7-7 Decimal-Number Formats · .8-1 
ADD LOGICAL. · · · · .7-8 Zoned Format · · · · .8-1 
AND. . .7-8 Packed Format. · · · .8-1 
BRANCH AND LINK. · · · · · .7-9 Decimal Codes. · · · · · · · .8-2 
BRANCH AND SAVE. · · · · · .7-9 Decimal Operations · · · · · · .8-2 
BRA NCH ON CONDITION. · · · · · · 7-10 Decimal-Arithmetic Instructions. .8-2 
BRA NCH ON COUNT. · · · · · 7-11 Editing Instructions · · · · · · · · .8-3 
BRANCH ON INDEX HIGH · · · · · 7-11 Execution of Decimal Instructions. · .8-3 
BRANCH ON INDEX LOW OR EQUAL · · 7-11 Other Instructions for Decimal 
COMPARE. · · · · · · 7-12 Operands. · · · · .8-3 
COMPARE AND SWAP · 7-12 Instructions · · · · · · · · .8-3 
COMPARE DOUBLE AND SWAP. · · · · 7-12 ADD DECIl!AL. · · · .8-5 
COMPARE HALFWORD · · · · · 7-14 COI'IPARE DECIMAL. .8-5 

~ 
COMPARE LOGICAL. · · · · · · 7-14 DIVIDE DECIMAL · · · · · · · · · .8-5 
COMPARE LOGICAL CHARACTERS UNDER EDIT · · · · · · · .8-6 

MASK. · · · · · · · · · · 7-15 EDIT AND MARK. · · · 8-10 
COMPARE LOGICAL LONG · · · · · · · · 7-15 I'IULTIPLY DECIl!AL · · · 8-10 

ix 



SHIFT AND ROUND DECIMAL. · · · 8-11 SET SECONDARY ASN to Current 
SUBTRACT DECIMAL · · 8-12 Primary (SSAR-cp) · · · · · · · .10-38 

J ZERO AND ADD · · · · · · · · 8-12 SET SECONDARY ASN with Space 
Switching (SSAR-ss) · · · · .10-38 

CHAPTER 9. FLOATING-POINT INSTRUCTIONS.9-1 SET STORAGE KEY. · · .10-41 
Floating-Point Number Representation · .9-1 SET SYSTEM MA SK. · · · · · .10-41 
Normalization. · · · · · · .9-2 SIGNAL PROCESSOR · · · · .10-42 
Floating-Point-Data Format · .9-2 STORE CLOCK COMPARATOR .10-43 
Instructions · · · · · · · · .9-4 STORE CONTROL. · · · .10-43 

ADD NORMALIZED · .9-6 STORE CPU ADDRESS. · · .10-44 
ADD UNNORMALIZED · · · · · · .9-7 STORE CPU ID · · · · .10-44 
COMPARE. · · · · · .9-8 STORE CPU TIMER. · · .10-45 
DIVIDE · · · · · .9-9 STORE PREFIX · · · · • 10-45 
HALVE. · · · · · · · · · · 9-10 STORE THEN AND SYSTEM MASK .10-45 
LOAD · 9-10 STORE THEN OR SYSTEM MA SK. · · .10-46 
LOAD AND TEST. · · 9-11 TEST BLOCK · · · · · · • 10-46 
LOAD COMPLEMENT. · 9-11 TEST PROTECTION. · · · .10-48 
LOAD NEGATIVE. · 9-12 WRITE DIRECT · · · · · · · .10-49 
LOAD POSITIVE. · 9-12 
LOAD ROU~!DED · · 9-12 CHAPTER 11. MACHINE-CHECK HANDLING. · 11-1 
MULTIPLY · · · · · · · 9-13 Machine-Check Detection. · · · · · · · 11-2 
STORE. · · · · · · 9-14 Correction of Machine Malfunctions · · 11-2 
SUBTRACT NORMALIZED. · 9-15 Error Checking and Correction. · 11-2 
SUBTRACT UNNORMALIZEr:. · · · 9-15 CPU Retry. · · · · · · · · · · 11-3 

Effects of CPU Retry ••• · · 11-3 
CHAPTER 10. CONTROL IN STRUC'IIONS. 10-1 Checkpoint Synchronization · 11-3 

CONNECT CHANNEL SET. · · 10-5 Handling of Machine Checks During 
DIAGNOSE · · · · · · · · 10-5 Checkpoint Synchronization. · · · 11-3 
DISCONNECT CHANN EL SET · 10-6 Checkpoint-Synchronization 
EXTRACT PRIMARY ASN. · · · · · · · · 10-6 Operations. • • • • • • • · · · · 11-4 
EXTRACT SECONDARY ASN. · 10-7 Checkpoint-Synchronization Ac ti on. 11-4 
INSERT ADDRESS SPACE CONTROL · 10-7 Unit Deletion. · · · · · · · 11-4 
INSERT PSi KEY · · · · 10-8 Handling of Machin e C hec ks · · 11-5 
INSERT STOR AGE KEY · · · · · · · 10-9 Validation · · · · · · · · · · · · · 11-5 

J INSERT VIRTUAL STORAGE KEY · · 10-9 Invalid CBC in Storage · · · · · · · 11-6 
INVALI DATE PAGE TABLE ENTRY. · · .10-10 Programmed Validation of Storage · 11-6 
LOAD ADDRESS SPACE PARAMETERS. · · .10-11 Invalid CBC in Storage Keys. · 11-7 

PASN Translation · · · · .10-12 Invalid CBC in Registers · · · · · · 11-9 
SASN Translation · · · · · .10-12 Check-Stop State · · · · · · · · · · .11-10 
SASN Authorization · · · · · .10-12 System Check Stop. · · · · · · · .11-11 
Control-Register Loading · · • 10- 12 Mach ine-C heck Interruption · .11-11 
Other Conditions · · · · · · .10-13 Exigent Conditions · · · · .11-11 
Summary. · · · · · · · · · · .10-13 Repressible conditions · · · · .11-12 

LOAD CONTROL · · · · · · · · · .10-16 Interruption .Action. · · · · .11-12 
LOAD PSi · · · · · · · · · · .10-17 Point of Interruption. · · · .11-14 
LOAD REAL ADDRESS. .10-17 Machine-Check-Interruption Code. · · .11-15 
MOVE TO PRIMARY. · · · · · · · · · .10-18 Subclass . · · · · · · · · · .11-16 
MOVE TO SECONDARY. · · · .10-18 System Damage. · · · · · · · · · .11-16 
MOVE WITH KEY. .10-20 Instruction-Processing Damage. · • 11-17 
PROGRAM CALL · · · .10-21 System Recovery. · · · · · .11-17 

PROGRAM CALL to Current primary In terval- Timer Damage. · .11-17 
(PC-cp) · · · · · · · · · · · · .10-22 Timing-Facility Damage · .11-17 

PROGRAM CALL with Space Switching External Damage. · · .11-18 
(PC-S5) · · · · · · · · .10-22 Degradation. · · · .11-18 

PROGRAM TRANSFER · · · · · · · .10-28 Warning. · · · · · · · · · .11-18 
PROGPAM TRANSFER to Current Time of Interruption Occurrence. · .11-18 
Primary (PT-cp) · · · · · · · · .10- 28 Backed Up. · · · · · .11-18 

PROG RAM TRANSFER with Space Delayed. · · · · · .11-18 
SW itching (PT-ss) · .10- 28 Synchronous Machine-Check 

PURGE TLB. · · · · · .10-33 Interruption Conditions · · .11-18 
READ DIRECT. · · · · · · · · · .10- 33 Processing Backup. · · · · .11-19 
RESET REFERENCE BIT. · · .10- 34 Processing Damage. · · · .11-19 
SET ADDRESS SPACE CONTROL. .10-34 Storage-Error Type · · · · .11-19 
SET CLOCK. · · · · · · · · · · .10-35 Storage Error Uncorrected. · .11-19 
SET CLOCK COMPARATOR · · .10-36 Storage Error Corrected. · · · · .11-19 
SET CPU TIMER. · · · .10-36 Storage-Key Error Uncorrected. · .11-20 
SET PREFIX · · · · · · · .10- 36 Machin e-C heck Interruption-Code ..) SET PSi KEY FROM ADDRESS · · · .10-37 Validity Bits · · · · .11-20 
SET SECONDARY ASN. · · · · · · · · .10-38 PSH-EMiP Validity. · · · · · · · .11-20 

x 



PSi Mask and Key Validity ••••• 11-20 
PSi Program-Mask and 
Condition-Code Validity ••••• 11-20 

PSW-Instruction-Address Validity .11-20 
Failing-Storage-Address Validity .11-20 
Region-Code validity ••••••• 11-21 
External-Damage-Code Validity ••• 11-21 
Floating-Point-Register Validity .11-21 
General-Register Validity. • .11-21 
control-Pegister validity. • .11-21 
Logout Validity •••••••••• 11-21 
Storage Logical validity. • .11-21 
CPU-Timer Validity. • • • • .11-21 
Clock-comparator Validity ••••• 11-21 
Machine-Check Extended-logout 

Length •••••••••••••• 11-22 
Machine-Check Extended Interruption 
Information • • • • • 

Register-save Areas. 
External-Damage Code 
Failing-storage Address. 
Region Code. • • • • • • • 

.11-22 
• •• 11-22 
• • • 11-22 

Handling of Machine-Check Conditions 
Floating Interruption Conditions • 

Floating Machine Check 
Interruption Conditions 

.11-2" 

.11-2" 

.11-25 

.11-25 

.11-25 

.11-25 

.11-26 

.11-26 

.11-26 

Machine-Check Masking •••• 
Check-stop Control • • • 
Recovery-Report Mask • • 
Degradation-Report Mask. 
External-Damage-Report Mask •• 
Warning Mask • • • • • • • • 

Machine-Check Logout • • • • • • 
Loqout Controls. • • • • • •• 

Synchronous Machine-Check 
Extended-Logout Control • • 

Input/Output Extended-logout 
Control • • • • • • • • • • 

• .11-26 
.11-26 
.11-26 
.11-27 

.11-27 

.11-27 
Asynchronous Machine-Check 
Extended-Logout Control ••••• 11-27 

Asynchronous Fixed-logout control.11-27 
Machine-Check Extended-Logout 

Address • . • • • • • • • • • .11-27 
summary of Machine-Check Masking and 

Logout •••••••••••••••• 11-28 

CHAPTER 12. INPUT/OUTPUT OPERATIONS. 
Attachment of Input/Output Devices • • 

Input/Output Devices 
Control units •••• 
Channels • • • • • • 

Modes of Operation 
Types of Channels. 

I/O-System Operation 
Compatibility of Operation •• 

Control of Input/Output Devices. • 
Input/Output Device Addressing 
states of the Input/Output System. • 
Resetting of the Input/Output 

12-1 
12-2 
12-2 
12-3 
12-3 
12-" 
12-" 
12-6 
12-7 
12-8 
12-8 
12-9 

System. • • • • • • • • • ••• 
I/O-Svstem Peset • • • • • • 
I/O Selective Reset •••••• 
Effect of Reset on a Working 

• • 12-11 
.12-11 

Device •••••••• 
Reset Upon Malfunction 

Condition Code • • • 
Instruction Formats. 
Instructions • • • • • • 
CLEAR CHANNEL •••• 

• • 12-11 

.12-12 
• • 12-12 

• • • 12-12 
.12-15 
• 12-15 

• • • • • • 12-16 

CLEAR I/O. • 
HALT DEVICE. 
HALT I/O •• 
START I/O ••• 
START I/O FAST RELEASE 
STORE CHANNEL 10 • • • 

.12-17 
• • • • • 12-19 

••• 12-22 
.12-25 

••• 12-25 
.12-28 

TEST CHANNEL ••••• ••••••• 12-29 
TEST I/O • • • • • • • 
Input/Output-Instruction-Exception 

.12-29 

Handling •••••••••••••• 12-32 
Execution of Input/Output Operations .12-32 

Blocking of Data • • • • .12-33 
Channel-Address Word. • .12-33 
Channel-Command Word. .12-33 
Command Code. • .12-34 
Designation of Storage Area. • .12-35 
Chaining. • • • • • .12-36 

Data Chaining. • • •••• 12-38 
Command Chaining. .12-39 

Skipping. • • • • • • • • .12-39 
Program-Controlled Interruption ••• 12-40 
Channel Indirect Data Addressing •• 12-41 
Commands. • • • • • • • • .12-42 

write. • • • • • • •••••• 12-43 
Read. • • • • • .12-43 
Read Back ward. • • • • • • • .12-"4 
Control. • • 12 -44 
Sense. • • • • • • •••••• 12-45 
Sense 10 • • • • • .12-46 
Transfer in Channel. .12-47 

Command Retry. • • • • • •••• 12-47 
Conclusion of Input/Output Operations.12-48 

Types of Conclusion. • • • .12-48 
Conclusion at Operation 
Initiation ••••••• 

Immediate Operations •• 
Conclusion of Data Transfer. 
Termination by HALT I/O or HALT 

• .12-48 
.12-49 
.12-50 

DEVICE. • • • • • • • • • • .12-51 
Termination by CLEAR I/O ••••• 12-52 
Termination Due to Equipment 
Malfunction. • • • • • • .12-52 

Input/Output Interruptions ••••• 12-52 
Interruption Conditions •••••• 12-52 
Channel-Available Interruption •• 12-54 

Priority of Interruptions •••••• 12-54 
Interruption Action. • • ••• 12-54 

Channel-Status Word. • .12-55 
Unit Status. • • .12-56 

Attention. • .12-56 
Status Modifier. • .12-56 
Control-Unit End .12-57 
Busy. • •• • • • • • •• 12-57 
Channel End. .12-60 
Device End. • •••• 12-60 
Unit Check. • •• 12-61 
Unit Exception. • • .12-62 

Channel Status. • • • • • • .12-62 
Program-Controlled Interruption •• 12-62 
Incorrect Len gt h • • • • 12-62 
Program Check. • • .12-63 
Protection Check. .12-63 
Channel-Data Check .12-64 
Channel-Control Check. • • •• 12-64 
Interface-Control Check.. • .12-64 
Chaining Check. • • • • • .12-65 

Contents Of Channel-Status Word ••• 12-65 
Information Provided by 
Channel-Status Word • • • .12-65 

xi 



Subchannel Key .12-66 Exclusive Or (XI) • · · · · · A-16 
CCW Address. · · .12-66 EXECUTE (EX) · · · · · · · · · · · · A-17 

J Count. · · · · .12-67 INSERT CHARACTERS UNDER MASK (IC M) · A-17 
Status · · · · · · · · · · · · · .12-68 LOAD (L, LR) · · · · A-18 

Channel Loqout • · · · · · · · .12-69 LOAD ADDRESS (LA) • · A-18 
I/O-Communication Area · '. · · · · · • 12-71 LOAD HALFWORD (LH) · · · A-19 

MOVE (!'IYC, MVI) • · · A-19 
CHAPTER 13. OPERATOR FACILITIES · 13-1 Move (MYC) · · · · A-19 
Manual Operation · · · · · · 13-1 Move (MVI) · · · · A-20 
Basic Operator Facilities. · 13-2 MOVE LONG (KYCL) · · · · · · · · A-20 

Address-Compare Controls · 13-2 KOVE NUMERICS (!'IVN) • · · A-21 
Alter-and-Display Controls 13-2 MOVE WITH OFFSET (KVO) A-21 
Check Control. · · · 13-2 MOVE ZONES (KVZ) · · · · A-22 
Check-Stop Indicator · · 13-3 KULTIPLY (M, KR) · · · · A-22 
I i'lL Controls · · · · · · 13-3 KULTIPLY HALFWORD (I'!H) · A-23 
Interrupt Key. · · · · · 13-3 OR (0, OR, 01, OC) · · · · A-23 
Interval-Timer Control · 13-3 Or (OI) • · · · · · · A-23 
Load Indicator · · · · · 13-3 PACK (PACK) • · · · · '. · A-23 
Load-Clear Key · · · · 13-4 SHIFT LEFT DOUBLE (SLDA) A-24 
Load-Normal Key. · · · · 13-4 SHIFT LEFT SINGLE (511) • · · A-24 
Load-Un it-Address Controls 13-4 STORE CHARACTERS UNDER KASK (STC M) · A-25 
Kanual Indicator 13-4 STORE !'IULTIPLE (STK) · · · · A-25 
Power Controls · · · · · · 13-4 TEST UNDER KASK (TK) · · · · A-25 
Rate Control · · · · · 13-4 TRANSLAT~ (TR) · · · · · · A-26 
Restart Key. · · · · · 13-4 TRANSLATE AND TEST (TRT) · A-26 
Start Key. · 13-5 UNPACK (UNPK) • · · · A-28 
stop Key · · · · · · · 13-5 Decimal Instructions · · · A-29 
Store-Status Key · · · · 13-5 ADD DECIKAL (AP) · · · · · · · A-29 
system-Reset-Clear Key · 13-5 COKPARE DECIKAL (CP) · A-29 
System-Reset-Normal Key. · 13-5 DIVIDE DECIKAL (DP) • · · A-29 
Test Indicator · · · · · 13-5 EDIT (ED) • · · · · · · A-30 
TOD-clock Control. · · · · 13-6 EDIT AND KARK (EDKK) · A-31 
Wait Indicator · · · · · · · 13-6 MULTIPLY DECIKAL (KP) • · A-32 

Multiprocessinq configurations · 13-6 SHIFT AND ROUND DECIKAL (SRP) • · A-32 

J Decimal Left Shift · · · · · · 1\-32 
APPENDIX A: NUMBER REPRESENTATION AND Decimal Right Shift. · · · · · A-33 

INSTRUCTION-USE EXAMPLES. .A-1 Decimal Right Shift and Round. · · A-33 
Number Representation. · · · .A-2 Kultiplying by a Variable Power of 

Binary Integers. · · · · · · .A-2 10. . · · · · · · · · · · · A-33 
signed Binary In teqers · · • A-2 ZERO AND ADD (ZAP) · · · · · · A-34 
Unsigned Binary Integers · .A-4 Floating-Point Instructions. · · · · · A-34 

Decimal Integers · · · · .A-5 ADD NORIULIZED (AD, ADR, AE, A~R, 

Float ing-Point Numbers. • A-5 AXR) • . · · · · · · · · · · · · · · A-34 
Conversion Example · · · · .A-7 ADD UNNORKALIZED (AU, AUR, AW, AWR) • A-35 

Instruct ion - Use Examples. · · • A-7 COKPARE (CD, CDR, CE, CER) · · · · · A-35 
Machine Format · · .A-7 Floating-Point-Number Conversion · · A-35 
Assembler-Language Format. · · .A-7 Fixed Point to Floating Point. · · A-35 

General Instructions · • A-8 Floatinq Point to Fixed Point • · · A-36 
ADD HALFWORD (AR) • · · · · · .A-8 Kultiprogramminq and Mul tiprocessi nq 
AND (N, NR, NI, NC) • · · · · · · .A-8 Examples. · · · · · · · · · · · · · · A-37 

And (NI) · · · · · · · · · .A-8 Example of a Program Failure Using 
BRANCH AND LINK (BAL, BAIR). · • A-8 OR Immediate • · · · · · · · A-37 
BRANCH ON CONDITION (EC, ECR) • · · · .A-9 COI'IPAR E AND SWAP (CS, CDS) · A-37 
BRANCH ON COUNT (BCT, BCTR). .A-9 Setting a Single Bit · · A-37 
BRANCH ON INDEX HIGH (BXH) · · · A-10 Updating Counters. · · · · · A-38 
BRANCH ON INDEX LOW OR EQUAL (BXLE) • A-11 Bypassing POST AND WAIT. · 1\-39 
COI'!PARE HALFWORD (CH) • · · · · A-11 BYPASS POST Routine. · · · A-39 
COMPARE LOGICAL (CL, CLC, ClI, CLR) • A-11 BYPASS WAIT Routine. · · · A-39 

Compare Logical (ClC) • · A-11 LOCK/UNLOCK. · · · · · · A-39 
Compare Loqical (Cl I) • · A-12 LOCK/UNLOCK with LIFO Queuing for 
Compare Logical (CLR) • · · · A-12 Contentions · · · · · · · · · · · A-40 

COKPARE LOGICAL CHARACTERS UNDER LOCK/UNLOCK with FIFO Queuing for 
MASK (ClM) • · · · · · · · · · · · · A-12 Contentions · · · · · · · · · A-41 

COMPARE LOGICAL LONG (CLCl) • · · A-13 Free-Pool Kanipulation · · · · · · · A-42 
CONVERT TO BINARY (CVB) • · · · A-14 
CONVERT TO DECIMAL (CVD) · · · A-14 APPENDIX B. LISTS OF INSTRUCTIONS .B-1 

J DIVIDE (D, DR) · · · A-15 Explanation of symbols in 
EXCLUSIVE OR (X, XC, XI, XR) · · · · A-15 "Characteristics" and "Op Code" 

Exclusive Or (XC) • · · · A-15 Columns · · · · · · · · · · · · · .B-1 

xii 



APPEN DIX C. CONDITION-CODE SETTINGS •• C-1 

APPEN DIX D. FACIL ITIES. 
Commercial Instruction Set • 
Floating-Point Feature 
Universal Instruction Set. 
Extended-Precision Floating-Point 
Feature • • • • • • • • • • • • 

External-Signal Feature. • • • • 
Direct-Control Feature ••••• 
Translation Feature ••••••• 
CPU-Timer and Clock-Comparator 
Feature • • • • • • • • • • • 

Conditional-swapping Feature 
PSw-Key-Handling Feature 
Move-Inverse Feature •• 
Multiprocessing Feature ••••• 
Dual-Address-Space (DAS) Facility •• 
Service-Signal Feature • 

• D-1 
.D-1 
.D-1 
.D-2 

• D-2 
.D-2 
.D-2 
.D-2 

.D-2 

.D-2 
• D-2 
.D-2 
.D-2 
.D-3 
.D-lj 

Test-Block Feature • • • • • • • • 
Branch-and-Save Feature. 

•• D-lj 

Extended Facility •••••••• 
Recovery-Extension Feature • 
Channel-Set-switching Feature •• 
Fast-Release Feature • • • • • • 
Clear-I/O Feature. • • • • ••• 
Channel-Indirect-Data-Addressing 

Feature • • • • • • • • • • • • 
Command-Retry Feature. • • • • • 
Limited-Channel-Logout Feature. 
I/O-Extended-Logout Feature. • 

.D-lj 

.D-lj 
• D-lj 
.D-lj 
.D-lj 
.D-lj 

.D-lj 

.D-lj 

.D-lj 

.D-5 

Availability of Features •••• 
Features Not Described in the 
Principles of Operation •• 

.D-5 

• .D-7 

APPENDIX E. TABLE OF POWERS OF 2 •••• E-1 

APPENDIX F. HEXADECIMAL TABLES • 

APPENDIX G. EBCDIC CHART. • • • 

APPENDIX H. CHANGES AFFECTING 
COMPATIBILITY BETWEEN SYSTEM/360 AND 

• • F-1 

• .G-1 

SYSTEM/370. • • • • • • • • • • • .H-1 
Removal of USASCII-8 Mode. • • • .H-1 
Operation Code for Halt Device and 

for Clear Channel • • • ••••• H-1 
Logout • • • • • • • • • .H-1 
Command Retry. • • • • • ••••• H-1 
Channel Prefetching. • .H-2 
Validity of Data. • • .H-2 

APPENDIX I. CHANGES AFFECTING 
COMPATIBILITY WITHIN SYSTEM/370 • 

READ DIR ECT an d WRITE DIRECT • 
.I-1 
.1-1 

.... .. I-1 Store Accesses • • • • • • 
Fetch Access • • • • • • • 
Operand-Access Consistency. 
Change Bit 
Suhchannel Interruption State •• 

INDEX. • • • 

.1-1 

.1-1 
• .1-2 

.I-2 

• X-1 

xiii 





General-purpose Design •••••••••••••••••••••••••••••••••••••••••• 1-2 
Compatibility ••••••••••••••••••••••••••••••••••••••••••••••••••• 1-3 

Compatibility Among System/370 Models ••••••••••••••••••••••••• 1-3 
Compatibility Between System/360 and System/370 ••••••••••••••• 1-3 

System Program •••••••••••••••••.•••••••.•••••••••••••••••••••••• 1-4 
Availability ••••••••••••••••••••••••••••••••••••••••••• ~ •••••••• 1-4 

This publication describes the IBM 
system/370 architecture. The architecture 
of a machine defines its attributes as seen 
by the programmer, that is, the conceptual 
structure and functional behavior of the 
machine, as distinct from the organization 
of the data flow, the logical design, the 
physical design, and the performance of any 
particular implementation. Several 
dissimilar machine implementations may 
conform to a single architecture. When 
programs running on different machine 
implementations produce the results that 
are defined by a single architecture, the 
implementations are considered to be 
compa tible. 

IBM System/370 is a product of the 
experience gained in developing and using a 
few generations of compatible general­
purpose systems. Starting with System/360 
as a base, it incorporates a number of new 
facilities, which are described below. 

• 

• 

~Y.!!~l!!i£ ~ddr~§ translnj.2.!! mAT) is a 
facility that eliminates the need to 
assign a program to fixed locations in 
real main storage and thus reduces the 
addLessing constraints on both system 
and problem programs, provides greater 
freedom in program design. DAT 
permits a more efficient and effective 
utilization of main storage. When one 
of the operating systems for virtual 
storage is used, dynamic address 
translation allows the use of up to 
16,777,216 bytes of virtual storage. 
Two page sizes (2K and 4K bytes) and 
two segment sizes (64K and 1M bytes) 
are provided, although some models 
offer only the 64K-byte-segment size. 
Extensions to this facility include 
the common-segment tit, the use of 
which increases the effective size of 
the translation-lookaside buffer and 
thus improves CPU performance, and the 
instruction INVALIDATE PAGE TABLE 
ENTPY, which improves CPU performance 
in a demand-paging environment. 

Channel indirect data ~ddressing, a 
companIon facilIty to- dynamic address 

• 

• 

• 

• 

• 

translation, provides assistance in 
translating data addresses for 1/0 
opera tions. I t permits a single 
channel-command word to control the 
transmission of data that spans 
noncontiguous areas of real main 
storage. 

Mul1ipro£~in9 provides for the 
interconnection of CPUs to enhance 
system availability and share data and 
resources. It includes faci Ii ties for 
shared main storage, for programmed 
and special machine signaling between 
CPUs, and for the programmed 
reassignment of the first 4,096 bytes 
of real storage for each cpu. 

Channel-set §~jtchjDg permits the 
collectIon- of channels in a channel 
set to be connected to any cpu in a 
multiprocessing configuration. 

1.il!!ing facilities include a TOD clock, 
a clock comparator, and a CPU timer, 
along with an interval timer that is 
also available in system/360. The TOD 
clock provides a measure of elapsed 
time suitable for the indication of 
date and time; it has a cycle of 
approximately 143 years and a 
resolution such that the incrementing 
rate is comparable to the 
instruction-execution rate of the 
model. The clock comparator provides 
for an interruption when the TOD clock 
reaches a program-specified value. 
The CPU timer is a high-resolution 
timer that initiates an interruption 
upon being decremented past zero. 

]xt~nd~g-pr~ci§ion flgat!pg ~oi.!!! 
includes the facilities for addition, 
subtraction, and multiplication of 
floating-point numbers with a fraction 
of 28 he xadecima 1 digits. I ncl uded in 
the feature are instructions for 
rounding from extended to long and 
from long to short formats. 

~~g~~=event r~g~ging 
program interruptions on a 

provides 
selective 

Chapter 1. Introduction 1-1 



• 

• 

• 

• 

• 

• 

• 

basis as an aid in program debugging. 

The instruction MONITOR £AL1 provides 
for -passing-control -to a monitoring 
program when selected indicators are 
reached in the monitored program. It 
can be used, for example, in analyzing 
which programs get executed, how 
often, and in what length of time. 

Bg£Qyg~y extgnsions include (1) the 
CLEAR CHANNEL instruction, for 
performing an I/O-system reset on a 
channel and on the associated I/O 
interface, (2) provisions for a 
detailed indication of the cause of 
external damage, and (3) logout 
indications of whether the I/O 
interface is operative and the logout 
valid. 

protection extensions include 
("-low-address protectIon, the use of 
which increases the protection of 
storage locations 0 through 511, which 
are vital to the system control 
program, and (2) the TEST PROTECTION 
instruction, which can be used to 
perform tests for potential protection 
violations without causing program 
interruptions for protection 
except ions. 

The Qual=add!:,g.2.§.=~iPace (DAS) facilin 
provides for the support of 
semiprivileged programs, which are 
executed in the problem state but 
which, when allowed bv authorization 
controls, are also permitted to use 
additional capabilities previously 
available only through the assistance 
of supervisor-state programs. The 
capabilities include (1) a PSW-key 
mask that controls the PSW keys which 
can be set by t he program, (2) a 
second address space, called the 
secondary address spaCE, together with 
an address-space-control bit in the 
PSW that permits the program to switch 
between the primary and secondary 
address spaces, and (3) a table-based 
linkage mechanism which permits a 
proaram with one authority to call a 
program with greater authority. 

The service.=§ignal external 
inig~~~tiQn provides the program with 
a signal that the service processor 
has completed a function that was 
reguested by means of the DIAGNOSE 
instruction. 

The instruction l]ST ]10£! permits the 
program to test the usability of a 
block of storage. 

The instruction BRANCH AND SAVE may be 
used in place of BRANCH AND LINK when 
it is desirable to obtain the 

1-2 System/370 principles of Operation 

instruction address without the 
instruction-length code, program mask, 
and condition code. 

• The block-~~ltlplezg~ £h!~ng1, which 
permits concurrent processing of 
multiple channel programs, provides an 
efficient means of handling I/O 
devices that transfer data on the I/O 
interface at a high data rate but have 
relatively long periods of channel 
inactivity between transfers. 

system/370 is a general-purpose system that 
can readily be tailored for a variety of 
applications. A commercial instruction set 
provides the basic processing ca pabili ties 
of the system. If the floating-point 
feature is installed with the commercial 
instruction set, a universal instruction 
set is obtained. Adding other features, 
such as the extended-precision floating­
point feature or the conditional-swapping 
feature, extends the processing 
capabilities of the system still further. 

system/370 has the capability of addressing 
a main storage of 16,777,216 bytes, and the 
System/370 translation feature, used with 
appropriate programming support, can 
provide a user this maximum address space 
even when a lesser amount of real storage 
is attached. This feature and this support 
permit a System/370 model with limited real 
storage to be used for a much wider set of 
applications, and they make many 
applications with reguirements for 
extensive storage practical and convenient. 
Additionally, for many system/370 models, 
the speed of accessing storage is improved 
by the use of a cache. The cache is a 
buffer--not apparent to the user--that 
often provides information requested from 
storage without the delay associated with 
accessinq storage itself. 

Another major aspect of the general-purpose 
design of System/370 is the capability 
provided to attach a wide variety of I/O 
devices through a selector channel and two 
types of multiplexing channels. System/370 
has a byte-multiplexer channel for the 
attachment of unbuffered devices and of a 
large number of communications devices. 
Additionally, it offers a block-multiplexer 
channel, which is particularly well-suited 
for the attachment of buffered devices and 
high-speed cyclic devices. 

An individual System/370 installation is 
obtained by selecting the system components 
best suited to the applications from a wide 
variety of alternatives in internal 
performance, functional ability, and 

J 



input/output. 

COMPATIBILITY AMONG SYSTEM/370 MODELS 

Although models of System/370 differ in 
implementation and physical capabilities, 
logically they are upward and downward 
cOIDoatible. Compatibility provides for 
simplicity in education, availability of 
svstem backup, and ease in system growth. 
Specifically, anv program gives identical 
results on any model, provided that it: 

1. Is not time-dependent. 

2. Does not depend on system facilities 
(such as storage capacity, I/O 
equipment, or optional features) being 
present when the facilities are not 
included in the configuration. 

3. Does not depend on system facilities 
being absent when the facilities are 
included in the configuration. For 
example, the program should not depend 
on interruptions caused by the use of 
operation codes or command codes that 
in some models are not assigned or not 
installed. Also, it must not use or 
depend on fields associated with 
uninstalled facilities. For example, 
data should not te placed in an area 
used bV another model for logout. 
Similarly, the program must not use or 
depend on unassigned fields in machine 
formats (control registers, 
instruction formats, etc.) that are 
not explicitly made available for 
program use. 

4. Does not depend on results or 
functions that are defined in this 
publication to be unpredictable or 
model-dependent, or on special-purpose 
functions (such as emulators) that are 
not described in this publication. 
This includes the reguirement that the 
program should not depend on the 
assignment of I/O addresses and CPU 
addresses. 

5. Does not depend on results or 
functions that are defined in the 
functional-characteristics publication 
for a particular model to be 
deviations from this publication. 

6. Takes into account those changes made 
to the original System/370 
architectural definition that affect 

compatibility among System/370 models. 
These changes are described in 
Appendix Ie 

COMPATIBILITY 
SYSTEM/370 

BETWEEN SYSTEM/360 AND 

System/370 is 
System/360. A 
System/360 will 
provided that it: 

forward-compa tible from 
program written for the 

run on the System/370, 

1. Observes the limitat ions described in 
the preceding section. 

2. Does not use PSW bit 12 as a n ASCII 
bit (a special case of the second rule 
in the preceding section). 

3. Does not use or depend on main-storage 
locations assigned specifically for 
System/370, such as the interruption­
code areas, the machine-check save 
areas, and the extended-logout area (a 
special case of the third rule in the 
preceding section) • 

4. Takes into account other changes made 
to the System/360 arChitectural 
definition that affect compatibility 
between System/360 and System/370. 
These changes are described in 
Appendix H. 

This publication assigns meanings to 
various operation codes, to bit positions 
in instructions, channel-command words, 
registers, and table entries, and to fixed 
locations in the low 512 bytes of storage 
(addresses 0-511). Other operation codes, 
bit positions, and low-storage locations 
are specifically noted as being available 
for programming use. The remaining ones 
are unassigned and reserved for future 
assignment to new facilities a nd other 
extensions of the architecture. 

To ensure that existing programs run if and 
when such new facilities are installed, 
programs should not depend on an indication 
of an exception as a result of invalid 
values that are currently defined as being 
checked. If a value must be placed in 
unassigned positions that are not checked, 
the program should enter zeros. When the 
machine provides a code or field, the 
program should take into account that new 
codes and bits may be assigned in the 
future. The program should not use 
unassigned low-storage locations for 
keeping information since these locations 

Chapter 1. Introduction 1-3 



may be assigned in the future in such a way 
that the machine causes this location to be 
changed. 

The system is desiqned to operate with a 
supervisory program that coordinates the 
use of system resources and executes all 
I/O instructions, handles exceptional 
conditions, and supervises scheduling and 
execution of multiple programs. 

~vailability is the capability of a system 
to accept and successfully process an 
individual job. System/370 permits 
substantial availability by (1) allowing a 
large number and broad range of jobs to be 
processed concurrently, thus making the 
system readily accessible to any particular 
job, "and (2) limiting the effect of an 
error and identifying more precisely its 
cause, with the result that the number of 
jobs affected by errors is minimized and 
the correction of the errors facilitated. 

Several design aspects make this possible. 

• A program is checked for the 
correctness of instructions and data 
as the program is executed, and 
program errors are indicated separate 
from eguipment errors. Such checking 
and reporting assists in locating 
failures and isolating effects. 

• The protection facilities, in 
conjunction with dynamic address 
translation, permit the protection of 
the contents of storage from 
destruction or misuse caused by 
erroneous or unauthorized storing or 
fetching by a program. This provides 
increased security for the user, thus 
permitting applications with different 
security requirements to be processed 
concurrently with other applications. 

• Dynamic address translation allows 
isolation of one application from 
another, still permitting them to 
share common resources. ~lso, it 

1-4 System/370 principles of Operation 

• 

• 

• 

• 

• 

• 

permits the implementation of virtual 
machines, which may be used in the 
design and testing of new versions of 
operating systems along with the 
concurrent processing of application 
programs. Additionally, it provides 
for the concurrent operation of 
incompatible operating systems. 

Multiprocessing and channel-set 
sWitching permit better use of storage 
an d processin g ca pab iIi tie s, more 
direct communication between CPUs, and 
duplication of resources, thus aiding 
in the continuation of system 
operation in the event of machine 
failures. 

MONITOR CALL, program-event recording, 
and the timing facilities permit the 
testing and debugging of programs 
without manual intervention and with 
little effect on the concurrent 
processing of other programs. 

Emulation is performed under 
supervisory program control, thus 
making it possible to perform 
emUlation concurrently with other 
applications. 

On most models, error checking and 
correction (ECC) in main storage, 
instruction retry, and command retry 
provide for circumventing intermittent 
equipment malfunctions, thus reducing 
the number of equipment failures. 

~n enhanced machine-check handling 
mechanism provides model-independent 
fault isolation, which reduces the 
number of programs impacted by 
uncorrected errors. Additionally, it 
provides model-independent recording 
of machine-status information. This 
leads to greater machine-check 
handling compatibility between models 
and improves the capability for 
loading and running a program on a 
different model when a system failure 
occurs. 

A small number of manual controls are 
required for basic system operation, 
permitting most operator-system 
interaction to take place ~i~ a unit 
operating as an I/O device and thus 
reducing the possibility of accidental 
operator errors. 



Main Storage ••••••••••••••.•..•••••••••••••••••••••••••••••••••• 2-1 
central processing Unit ••••••••••••••••••••••••••••••••••••••••• 2-2 

Program-Status Word ••••••••••••••••••••••••••••••••••••••••••• 2-3 
General Registers ••••••••••••••••••••••••••••••••••••••••••••• 2-3 
Floating-Point Registers •••••••••••••••••••••••••••••••••••••• 2-3 
Control Registers ••••••••.•.•••••••••••••••••••••••••••••••••• 2-4 

Input and Output •••••••••••••••••••••••••••••••••••••••••••••••• 2-4 
Channel Sets •••..•.•..•••••••••••••••••••••••.••••••••••••.••• 2-6 
Channels •..•••.•.•••••••••••••••.••••••.•••••••••••••••••••••• 2-6 
Input/Output Devices and Control Units ••••••••••••••• _ •••••••• 2-6 

Operator Pacilities ••.••.••••••••••••••••••••••••••••••••••••••• 2-6 

Logically, System/370 consists of main 
storage, one or more central processing 
ubits (CPUs), operator facilities, 
channels, and input/output devices. 
Input/output devices are usually attached 
to channels through control units. The 
physical identity of these functions may 
vary among implementations, called 
"models." The figure "Logical Structure" 
depicts the logical structure for a 
single-CPU system and for a two-CPU 
multiprocessing system. 

Specific processors may differ in their 
internal characteristics, the number and 
types of channels, the size of main 
storage, and the representation of the 
OPerator facilities. The differences in 
internal characteristics are apparent to 
the observer only as differences in machine 
performance. 

Model-dependent configuration controls may 
b~ provided to change the amount of main 
storage and the number of CPUs. In some 
instances, the configuration controls may 
be used to partition a single system into 
multiple systems. Each of the systems so 
configured has the same structure, that is, 
main storage, one or more CPUs, and 
channels. Each system is isolated from the 
other in that the main storage in one 
system is not directly addressable by the 
CPUs and channels in the other. It is, 
however, possible for one system to 
COmmunicate with another by means of shared r,o devices or a channel~to-channel 
adapter. At anyone time, the storage, 
CPUs, and channels connected together in a 
system are referred to as being in the 
configuration. Each CPU and storage 
lQcation can be in only one configuration 
at a time. 

Main storage provides the system with 
directly addressable fast-access storage. 
Both data and programs must be loaded into 
main storage from input devices before they 
can be processed. The amount of main 
storage available on the system depends on 
the model, and, depending on the model, the 
amount in the configuration may be under 
control of model-dependent configuration 
controls. The storage is available in 
multiples of 2,048-byte blocks. At anyone 
time, each block of storage in the 
configuration is addressed with the same 
absolute addresses by all CPUs and channels 
in the configuration. Each block of 
storage is accessible to all CPUs and 
channels in the configuration. 

Main storage may be either physically 
integrated with a CPU or constructed as 
standalone units. Additionally, main 
storage may be composed of large-volume 
storage and a faster-access buffer storage, 
sometimes called a cache. Each CPU may 
have an associated cache. The effects, 
except on performance, of the ph ysical 
construction and the use of distinct 
storage media are not observable by the 
program. 

Chapter 2. Organization 2-1 



,-----, 
I I I 
I Main I 
I storage I 

~I 
I 

I~-~'--------~I Main r---------r-----~I 
IStoragel 

I I 
~----l 

I 
I 
I 
I 
I 

CPU 

1------1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I I / I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I , 

,..----'-,---.., 

I 1-1 
I I I 
I I I 

I 
I 

CPU 

I I L.' ------.... 

I I I L ___ ---, 

I 
L_--, 

I 
I 
I 

CPU I 
I 
I 
I 
I 
I 
I 

,-------I 
I 
I 
I 

I I 

r ,--.L....L-.., ~_L--. r 'i 

I I 
IChannel1 

I I 
I Channell 

I I 
IChannel1 

I I 
IChannel1 

I I 
I Channell 

I I 
IChannel1 

I I I I I I I I I I I I 
I I I I I I I I I I I I 
L-r-----' 

I 
I 
I 
I 
I 

r L,~ __ ... 

I...-.-~ 
I I I 

L--.~~I~I II I r 
I I I 
I I I 
o 0 0 

I I I 
o 0 0 

I I I 
I I I 
o 0 0 

'--~I I 

I I I 
I I I 
0 0 0 

Loqical Structure 

CENTRA1 g.RQCE~SINg 

I r 
I I 
I I 
0 0 

UN11 

I 

I 
I 
0 

rI 
I 
I 
0 

II I 

I I 
I I 
o 0 

The central processing unit (CPU) is the 
controlling center of the system. It 
contains the sequencing and processing 
facilities for instruction execution, 
interruption action, timing functions, 
initial program loading, and other 
machine-related functions. 

The physical makeup of the CPU may differ 
among models, but the logical function 
remains the same. The result of executing 
a valid instruction is the same for each 
model. 

The CPU, in executing instructions, can 

2-2 System/370 Principles of Operation 

i i • i 

I I I I 
I I I I 
o 0 0 0 

L-T'--T,-~,-~,--",,---r,l 
I I I I I I 
I I I I I I 
o 0 0 000 

process binary integers and floating-point 
numbers of fixed length, decimal integers 
of variable length, and logical information 
of either fixed or variable length. 
Processing may be in parallel or in series; 
the width of the processing ele lie nt s, the 
multiplicity of the shifting paths, and the 
degree of simultaneity in performinq the 
different types of arithmetic differ from 
one CPU to another without affecting the 
logical results. 

Instructions which the CPU executes fall 
into five classes: general, decimal, 
floating-point, control, and input/output 
instructions. The general instructions are 
used in performing fixed-point arithmetic 
operations and logical, branching, and 



other nonarithmetic operations. The 
decimal instructions operate on data in the 
decimal format, and the floating-point 
instructions on data in the floating-point 
format. The control instructions and the 
input/output instructions are privileged 
instructions that can be executed only when 
the CPU is in the supervisor state. 

To perform its functions, the CPU may use a 
certain amount of internal storage. 
Although this internal storage may use the 
same physical storage aedium as main 
storage, it is not considered part of main 
storage and is not addressable by programs. 

The CPU provides registers which are 
available to programs but do not have 
addressable representations in main 
storage. They include the current 
program-status word (PSi), the general 
registers, the floating-point registers, 
the control reqisters, the prefix register, 
and the reqisters for the TOD clock, the 
clock comparator, and the CPU timer. The 
instruction operation code determines which 
type of register is to be used in an 
operation. See the figure "General, 
Floating-Point, and Control Registers" 
later in this chapter for the format of 
those registers. 

PROGRAM-STATUS WORD 

The proqram-status word (PSW) includes the 
instruction address, condition code, and 
other information used to control 
instruction sequencing and to determine the 
state of the CPU. The active or 
controlling PSW is called the current PSW. 
It governs the proqram currently being 
executed. 

The CPU has an interruption capability, 
which permits the CPU to switch rapidly to 
another proqram in response to exceptional 
conditions and external stimuli. When an 
interruption occurs, the CPU places the 
current PSW in an assigned storage 
location, called the old-PSW location, for 
the particular class of interruption. The 
CPU fetches a new PSi from a second 
assiqned storage location. This new PSW 
determines the next program to be executed. 
When it has finished processing the 
interruption, the interrupting proqram 
reloads the old PSi, making it again the 
current PSi, so that the interrupted 
program can continue. 

There are six classes of interruption: 
external, I/O, machine check, pr ogram, 
restart, and supervisor call. Each class 
has a distinct pair of old-PSi and new-PSi 
locations permanently assigned in storage. 

GENERAL REGISTERS 

Instructions may designate information in 
one or more of 16 general registers. The 
general registers may be used as 
base-address registers and index registers 
in address arithmetic and as accumulators 
in general arithmetic and loqical 
operations. Each register contains 32 
bits. The general registers are identified 
by the numbers 0-15 and are designated by a 
four-bit R field in an instruction. Some 
instructions provide for addressinq 
mul tiple general registers by ha vinq 
several R fields. For some instructions, 
the use of a specific general register is 
implied rather than explicitly designated 
by an R field of the instruction. 

For some operations, two adjacent general 
registers are coupled, providing a 6~-bit 
format. In these operations, the proqram 
must designate an even-numbered register, 
which contains the leftmost (high-order) 32 
bits. The next higher-numbered register 
contains the rightmost (low-order) 32 bits. 

In addition to their use as accumulators in 
general arithmetic and logical operations, 
15 of the 16 general registers are also 
used as base-address and index registers in 
address generation. In these cases, the 
registers are designated by a four-bit B 
field or X field in an instruction. A 
value of zero in the B or X field specifies 
that no base or index is to be applied, 
and, thus, general register 0 cannot be 
designated as containing a base address or 
index. 

FLOATING-POINT REGISTERS 

Four floating-point registers are available 
for floating-point operations. They are 
identified by the numbers 0, 2,~, and 6. 
Each floating-point reqister is 6~ bits 
long and can contain either a short 
(32-bit) or a long (6~-bit) floating-point 
operand. A short operand occupies the 
leftmost bit positions of a floating-point 
register. The rightmost portion of the 
register is ignored and remains unchanged 
in arithmetic operations that call for 
short operands. Two pairs of adjacent 
floating-point registers can be used for 
extended operands: registers 0 and 2, and 
registers 4 and 6. Each of these pairs 
provides for a 128-bit format. 

Chapter 2. organization 2-3 



CONTFOL REGISTERS 

The CPU has provisions for 16 control 
reqisters, each having 32 tit positions. 
The bit positions in the registers are 
assiqned to particular facilities in the 
system, such as program-event recordinq, 
and are used either to specify that an 
operation can take place or to furnish 
special information required by the 
facility. 

The control registers are identified by the 
numbers 0-15 and are designated by four-bit 

2-ij System/370 principles of Operation 

R fields in the instructions LOAD CONTROL 
and STORE CONTROL. Multiple control 
registers can be addressed by these 
instructions. 

Input/output (I/O) operations involve the 
transfer of information between main 
storage and an I/O device. I/O devices and 
their control units attach to channels, 
which control this data transfer. 

J 



R Register Control Registers General Registers Floating-Point Registers 
Field Number 

1 1 1 1 1 1 
1<-32 bits->1 1<-32 bits->I 1<---64 bits >1 
1 1 1 1 1 1 

r-. r-. 
0000 0 1 1 1 

1 • 
1 
1 

0001 1 
L-. 

r-. .. 
0010 2 1 1 1 

1 L L-. 

1 
1 

0011 3 1 
L-' 

r-r- r-. 
0100 4 1 1 

1 • 
1 
1 

0101 5 1 
L-. 

r- .. 
0110 6 1 1 

1 
, L-. 

1 

• 1 
0111 7 1 1 

L L-' 

r-. 
1000 8 1 1 

1 • 
1 , 1 

1001 9 1 1 
I L-I 

r-I 
1010 10 1 1 

1 I 

1 
1 

1011 11 1 
L-I 

r-. 
1100 12 1 1 

1 I 

1 
1 

1101 13 1 
L-I 

.-. 
1110 14 1 1 

1 L-

1 
---, 1 

1111 15 I 1 
L-I 

1!Q!og: The brackets indicate that the tvo registers may be coupled as a double-register 
pair, designated by specifying the lover-numbered register in the R field. For 
example, the general-register pair 0 and 1 is designated in the R field by the number O. 

General, Floating-Point, and Control Registers 

Chapter 2. Organization 2-5 



CHANNEL SETS 

The group of channels which connects to a 
particular CPU is called a channel set. 
ijhen channel-set switching is installed in 
a multiprocessing system, the program can 
control which CPU is connected to a 
particular channel set. A CPU can be 
connected to only one channel set at a 
time, and a channel set can be connected to 
only one CPU at a time. 

CHANNELS 

A channel relieves the CPU of the burden of 
communicating directly with I/O devices and 
permits data processing to proceed 
concurrently with I/O operations. A 
channel is connected with main storage, 
with control units, and with a CPU. 

A channel may be an independent unit, 
complete with the necessary logical and 
internal-storage capabilities, or it may 
time-share CPU facilities and te physically 
integrated with the CPU. In either case, 
the functions performed by a channel are 
identical. The maximum data-transfer rate 
may differ, however, depending on the 
implementation. 

There are three types of channels: 
multiplexer, block-multiplexer, 
selector channels. 

byte­
and 

2-6 System/370 Principles of Operation 

INPUT/OUTPUT DEVICES AND CONTROL UNITS 

Input/output devices include such equipment 
as card readers and punches, magnetic-tape 
units, direct-access storage, displays, 
keyboards, printers, teleprocessing 
devices, communications controllers, and 
sensor-based equipment. Many 1/0 devices 
function with an external medium, such as 
punched cards or magnetic tape. Some I/O 
devices handle only electrical signals, 
such as those found in sensor-based 
networks. In either case, I/O-device 
operation is regula ted by a control uni t. 
In all cases, the control-unit function 
provides the logical and buffering 
capabilities necessary to operate the 
associated I/O device. From the 
programming point of view, most 
control- uni t functions merge wi th 
I/O-device functions. The control-unit 
function may be housed with the 1/0 device 
or in the CPU, or a separate control unit 
may be used. 

The operator facilities provide the 
functions necessary for operator control of 
the machine. Associated with the operator 
facilities may be an operator-console 
device, which may also be used as an I/O 
device for communicating with the program. 

The main functions provided by the operator 
facilities include resetting, clearing, 
ini tial program loading, start, stop, 
alter, and display. 



storage Addressing •••••••••••••••••••••••••••••••••••••••••••••• 3-2 
Information Formats ••••••••••••••••••••••••••••••••••••••••••• 3-2 
Integral Boundaries ••••••••••••••••••••••••••••••••••••••••••• 3-3 
Byte-Oriented-Operand Feature ••••••••••••••••••••••••••••••••• 3-4 

Address Types ••••••••••••••••••••••••••••••••••••••••••••••••••• 3-4 
Absolute Address •••••••••••••••••••••••••••••••••••••••••••• 3-4 
Real Address •••••••••••••••••••••••••••••••••••••••••••••••• 3-5 
Effecti ve Address ••••••••••••••••••••••••••••••••.••••••••••• 3- 5 
Virtual Address ••••••••••••••••••••••••••••••••••••••••••••• 3-5 
Primary virtual Address ••••••••••••••••••••••••••••••••••••• 3-5 
Secondary Virtual Address ••••••••••••••••••••••••••••••••••• 3-5 
Logical Address ••••••••••••••••••••••••••••••••••••••••••••• 3-5 
Instruction Address ••••••••••••••••••••••••••••••••••••••• ~.3-5 

Storage Key •••••••••••••••••••••••••••••••••••••••.•••••••••••••• 3-6 
Protection •••••••••••••••••••••••••••••••••••••••••••••••••••••• 3-6 

Key-Controlled protection ••••••••••••••••••••••••••••••••••••• 3-6 
Low-Address protection •••••••••••••••••••••••••••••••••••••••• 3-8 

Reference Recording ••••••••••••••••••••••••••••••••••••••••••••• 3-8 
change Recording •••••••••••••••••••••••••••••••••••••••••••••••• 3-9 
Prefixinq ••.•••••••••••••••••••••••••••••••••••••.•.•••••••••••• 3-9 
Address Spaces •••••••••••••••••••••••••••••••••••••••••••••••••• 3-10 
Dynamic Address Translation ••••••••••••••••••••••••••••••••••••• 3-11 

Translation Control •••••••••••••••••••••••••••••••••••••••••• ~3-12 
PSW ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 3-12 
Control Register 0 •••••••••••••••.•••••••••••••••••••••••••• 3-14 
Control Register 1 •••••••••••••••••••••••••••••••••••••••••• 3-14 
control Register 7 •.•••••••••••••••••••••••••••••••••••.•••• 3-15 

Translation Tatles •••••••••••••••••••••••••••••••••••••••••••• 3-15 
Segment-Table Entries ••••••••••••••••••••••••••••••••••••••• 3-15 
Paqe-Table Entries •••••••••••••••••••••••••••••••••••••••••• 3-16 

Summary of Dynamic Address Translation Formats •••••••••••••••• 3-16 
Translation Process ••••••••••••••••••••••••••••••••••••••••••• 3-17 

Effective segment-Table Designation ••••••••••••••••••••••••• 3-17 
Inspection of Control Register 0 •••••••••••••••••••••••••••• 3-20 
Segment-Table lookup •••••••••••••••••••••••••••••••••••••••• 3-20 
Page-Table Lookup ••••••••••••••••••••••••••••••••••••••••••• 3-20 
Formation of the Real Address ••••••••••••••••••••••••••••••• 3-21 
Recognition of Exceptions During Translation •••••••••••••••• 3-21 

Translation-lookaside Buffer •••••••••••••••••••••••••••••••••• 3-21 
Use of the Translation-lookaside Buffer ••••••••••••••••••••• 3-22 
Modification of Translation Tables •••••••••••••••••••••••••• 3-25 

Address Summary ••••••••••••••••••••••••••••••••••••••••••••••••• 3-27 
Addresses Translated •••••••••••••••••••••••••••••••••••••••••• 3-27 
Handling of Addresses ••••••••••••••••••••••••••••••••••••••••• 3-28 

Assigned Storage locations •••••••••••••••••••••••••••••••••••••• 3-29 
Assigned Real-Storage Locations ••••••••••••••••••••••••••••••• 3-29 
Assiqned Absolute storage Locations •••••••••••.•••••••••••••••• 3-32 

This chapter discusses the representation 
of information in storage, how information 
is addressed, address transformations, and 
protection. The chapter also contains a 
list of permanently assigned storage 
locations. 

The aspects of addressing which are covered 
include describing the format of addresses, 
introducing the concept of address spaces, 
defining the various types of addresses, 

and specifying the manner in which one type 
of address is translated to another type of 
address. Also presented are the mechanisms 
for selectively protecting portions of 
storage, the operation of change and 
reference recording, and lists of storage 
locations having permanently assigned uses. 

The term 
storage") 
which is 

"main storage" (or "absolute 
is used to describe that storage 

addressable by means of an 

Chapter 3. Storage 3-1 



absolute address. This distinguishes 
fast-access storage from auxiliary storage, 
such as direct-access storage devices. 
Because most references to main storage 
apply to virtual storage, the abbreviated 
term "storage" is used in place of "v irtual 
storage," and it is also used in place of 
"absolute storage" when the meaning is 
clear. 

Main storage provides the system with 
directly addressable fast-access storage of 
data. Both data and programs must be 
loaded into main storage (from input 
devices) before they can be processed. 

Main storage may consist of standalone 
units or be. integrated with a CPU. 
Additionally, main storage may be composed 
of large-volume storage and a faster access 
buffer storage, sometimes called a cache. 
Each CPU may have an associated cache. The 
effects, except on performance, of the 
physical construction and the use of 
distinct storage media are not observable 
by the program. 

Fetching and storing of data by the CPU are 
not affected by any concurrent IIO data 
transfer or by concurrent reference to the 
same storage location by another CPU. When 
concurrent reguests to a main-storage 
location occur, access normally is granted 
in a sequence that assigns highest priority 
to references by channels and that 
alternates priority between CPUs. If a 
reference changes the contents of the 
location, any subsequent storage fetches 
obtain the new contents. 

Main storage may be volatile or 
nonvolatile. If it is volatile, the 
contents of main storage are not preserved 
when power is turned off. If it is 
nonvolatile, turning power off and then 
back on does· not affect the contents of 
main storage, provided the CPU is in the 
stopped state and no references are made to 
main storage by channels when power is 
turned off. In both types of main storage, 
the contents of the keys in storage are not 
necessarily preserved when the power for 
main storage is turned off. 

storage is viewed as a long horizontal 
string of bits. For most operations, 
accesses to storage proceed in a 
left-to-right sequence. The string of bits 
is subdivided into units of eight bits. An 
eight-bit unit is called a byte, which is 
the basic building block of all information 
formats. 

Each byte location in storage is identified 

3-2 system/370 Principles of Operation 

by a unique nonnegative integer, which is 
the address of that byte location or, 
simply, the byte address. Adjacent byte 
locations have consecutive addresses, 
starting with 0 on the left and proceeding 
in a left-to-right sequence. Addresses are 
24-bit unsigned binary integers, which 
provide 16,777,216 (224 or 16M) byte 
addresses. 

The CPU performs address generation when it 
forms an operand or instruction address, or 
when it generates the address of a table 
entry from the appropriate table origin and 
index. It also performs address generation 
when it increments an address to access 
successive bytes of a field. Similarly, 
the channel generates an address when it 
increments an address to fetch a channel­
command word (CCW) from a CCW list, to 
fetch an indirect-da ta-address word (IDAW) 
from an IDAW list, or to transfer data. 

When, during address generation, an address 
is obtained that exceeds 224 - 1, the carry 
out of the high-order bi t position of the 
address is ignored. This handling of an 
address of excessive size is called 
wraparound. 

The effect of wraparound is to make the 
sequence of addresses appear circular; that 
is, address 0 appears to follow the maximum 
byte address, 16,777,215. Address 
ari thmetic and wra paround occur before 
transformation, if any, of the address by 
DAT or prefixing. In 16M-byte storage, 
information may be located partially in the 
last and partially in the first locations 
of storage and is processed without any 
special indication of crossing the 
maximum-address boundary. 

INFORMATION FORMATS 

Information is transmitted between storage 
and the CPU or a channel one byte, or a 
group of bytes, at a time. Unless 
otherwise specified, a group of bytes in 
storage is addressed by the leftmost byte 
of the group. The number of bytes in the 
group is either implied or explicitly 
specified by the operation to be performed. 
When used in a CPU operation, a group of 
bytes is called a field. 

Within each group of bytes, bits are 
numbered in a left-to-right sequence. The 
leftmost bits are sometimes referred to as 
the "high-order" bits and the riqhtmost 
bits as the "low-order" bits. Bit numbers 
are not storage addresses, however. Only 
bytes can be addressed. To operate on 
individual bits of a byte in storage, it is 
necessary to access the entire byte. 

J 



The bits in a byte are numbered 0 through 
7, from left to right. 

The bits in an address are numbered 8 
through 31. within any other fixed-length 
format of multiple l>ytes, the bits making 
up the format are consecutively numbered 
starting from o. 

For purposes of error detection, and in 
some models for correction, one or more 
check bits may be transmitted with each 
byte or with a qroup of bytes. Such check 
bits are generated automatically by the 
machine and cannot be directly controlled 
by the program. References in this 
publication to the length of data fields 
and registers exclude mention of the 
associated check bits. All storage 
capacities are expressed in number of 
bytes. 

When the length of an operand field is 
implied by the operation code of an 
instruction, the field is said to have a 
fixed length, which can be one, two, four, 
or eight bytes. Larger fields may be 
implied for control blocks associated with 
some instructions. 

When the length of an operand field is not 
implied but is stated explicitly, the field 
is said to have variable length. 
Variable-length operands can vary in length 
by increments of one byte. 

When information is placed in storage, the 
contents of only those byte locations are 
replaced that are included in the 
designated field, even though the widt h of 

the physical path to storage may be greater 
than the length of the field being stored. 

INTEGRAL BOUNDARIES 

certain units of information must be 
located in storage on an integral boundary. 
A boundary is called integral for a unit of 
information when its storage address is a 
multiple of the length of the unit in 
bytes. Special names are given to fields 
of two, four, and eight bytes when they are 
located on an integral boundary. A 
ha1fword is a group of two consecuti ve 
bytes on a two-byte boundary and is the 
basic building block of instructions. A 
word is a group of four consecutive bytes 
on a four-byte boundary. A doub1eword is a 
group of eight consecutive bytes on an 
eight-byte boundary. (See the figure 
"Integra1 Boundaries with storage 
Addresses. II) 

When storage addresses designate ha1fwords, 
words, and doub1ewords on integral 
boundaries, the binary representation of 
the address contains one, two, or three 
rightmost zero bits, respectively. 

Instructions must appear on two-byte 
integral boundaries, and channel-command 
words and the storage operands of certain 
instructions must appear on other integral 
boundaries. The storage operands of most 
instructions do not have boundary-alignment 
reguiremen ts. 

Chapter 3. Storage 3-3 



------> Storage Addresses 

Bvtes o , 2 3 4 5 6 7 8 

Halfwords o 2 4 6 8 
L-__ ~ __ ~ __ ~ __ ~~ __ L-__ ~ __ ~ __ -L_.--L-

words o 4 

Doublewords o 

Integral Boundaries with Storage Addresses 

BYTE-ORIENTED-OPERAND FEATURE 

The bvte-oriented-operand feature is 
standard on Svstem/370. This feature 
permits storage operands of most 
unprivileged instructions to appear on any 
byte boundarv. 

The feature does not pertain to instruction 
addresses or to the operands for COMPARE 
AND SWAP (CS) and CCMPARE DOUBLE AND SWAP 
(CDS). Instructions must appear on 
two-byte integral boundaries. The 
low-order bit of a branch address must be 
zero, and the instruction EXECUTE must 
designate the target instruction at an even 
byte address. COMPARE AND SWAP must 
designate a four-byte integral boundary, 
and COMPARE DOUBLE AND SWAP must designate 
an eight-byte integral boundary. 

For fixed-field-length operations with 
field lengths that are a power of 2, 
significant performance degradation is 
possible when storage operands are not 
positioned at addresses that are integral 
multiples of the operand length. To 
improve performance, frequently used 
storage operands should be aligned on 
integral boundaries. 

3-4 system/370 Principles of Cperation 

8 

8 

For purposes of addressing main storage, 
three basic types of addresses are 
recognized: absolute, real, and virtual. 
The addresses are distinguished on the 
basis of the transformations that are 
applied to the address during a storage 
access. In addition to the three basic 
types, additional types are defined which 
are treated as one or another of the three 
basic types, depending on the i nstruc tion 
and the current mode. 

An absolute address is the address assigned 
to a main-storage location. An absolute 
address is used for a storage access 
without anv transformations performed on 
it. 

All CPUs and channels refer to a shared 
main-storage location by using the same 
absolute address. Available main storage 
is usually assigned contiguous absolute 
addresses starting at 0, and the addresses 
are always assigned in complete 2K-byte 
blocks. An exception is recognized when an 
attempt is made to use an absolute address 
in a 2K-byte block which has not been 
assigned to physical locations. On some 
models, storage-configuration controls may 
be provided which permit the operator to 
change the correspondence between absolute 
addresses and physical locations. However, 



at anyone time, a physical location is not 
associated with more than one absolute 
address. 

Main storage consisting of byte locations 
sequenced according to their absolute 
addresses is referred to as absolute 
storage. 

A real address identifies a location in 
real storage. When a real address is used 
for an access to main storaqe, it is 
converted, by means of prefixing, to an 
absolute address. 

At any instant there is one real-address to 
absolute-address mapping for each CPU in 
the system. When a real address is used by 
a CPU to access main storage, it is 
converted to an absolute address by 
prefixinq. The particular transformation 
is defined by the value in the prefix 
register for the CPU. 

Main storage consisting of byte locations 
seguenced accordinq to their real addresses 
is referred to as real storaqe. 

In some situations, it is convenient to use 
the term "effective address." An effective 
address is the address which results from 
address arithmetic, before address 
translation, if anv, is performed. Address 
arithmetic is the addition of the base and 
displacement or of the base, index, and 
displacement. Address translation converts 
virtual to real, and prefixing converts 
real to absolute. 

A virtual address identifies a location in 
virtual storage. When a virtual address is 
used for an access to main storage, it is 
translated by means of dynamic address 
translation to a real address, which is 
then further converted to an absolute 
address. 

A primary virtual address is a virtual 
address which is to be translated by means 

of the primary segment-table designation. 
Without DAS, all logical addresses are 
treated as primary virtual when OAT is on. 
With DAS, loqical addresses and instruction 
addresses are treated as primary virtual 
when in primary-space mode. The 
first-operand address of MOVE TO J:lFIMARY 
and the second-operand address of MOVE TO 
SECONDARY are always treated as primary 
virtual. 

Secondary Virtual Addre§§ 

A secondary virtual address is a virtual 
address which is to be translated by means 
of the secondary segment-table designation. 
without DAS, secondary virtual addresses do 
not occur. With DAS, loqical addresses are 
treated as secondary virtual when in 
secondarv-space mode. The second-operand 
address of KOVE TO PRIMARY and the 
first-operand address of MOVE TO SECONDARY 
are always treated as secondary virtual. 

Most addresses specified by the program are 
logical addresses. without DAS, loqical 
addresses are treated as real addresses 
when DAT is off and as virtual addresses 
when DAT is on. with DAS, a loqical 
address is treated as real in real mode, 
treated as primary virtual in primary-space 
mode, and treated as secondary virtual in 
secondary-space mode. The storaqe-operand 
addresses for most instructions are loqical 
addresses. However, some instructions have 
storage-operand addresses or storage 
accesses associated with the instruction 
which do not follow the rules for loqical 
addresses. In all such cases, the 
instruction definition contains a 
definition of the type of address. 

I Instruction !gdress 

without DAS, instruction addresses are the 
same as logical addresses. With DAS, an 
instruction address is treated as real in 
real mode, treated as primary virtual in 
primary-space mode, and treated as either 
primary virtual or secondary virtual in 
secondary-space mode. The branch address 
for all branch instructions and the target 
of EXECUTE are instruction addresses. 

When the CPU is in the secondary-space 
mode, it is unpredictable whether 
instructions, and the target of EXECUTE, 
are fetched from the primary address space 

Chapter 3. Storage 3-5 



or the second~ry address space. However, 
when the CPU is in secondary-space mode, 
all copies of an instruction used in a 
single execution are fetched from a single 
address space, and the machine can change 
to or from interpreting instruction 
addresses as primary virtual or secondary 
virtual only between instructions and only 
by issuing a checkpoint-synchronizing 
fUnct ion. 

1. predictable program operation is 
ensured in secondary-space mode only 
when the instructions are fetched from 
virtual-address locations which 
translate to the same real address by 
means of both the primary and 
secondary seqment tables. Thus, a 
program should not enter 
secondary-space mode if it is not 
aware of the virtual-to-real address 
mapping in both the primary and 
secondary address spaces. 

2. The requirement limiting when the CPU 
can change from fetching instructions 
to or from the primary address space 
or secondary address space avoids 
problems with CPU retry, OAT 
pretesting, and trial execution of 
instructions for the purposes of 
determining PER events. 

A storage 
2,048-byte 
provided. 

key is 
block 

associated 
of storage 

with 
that 

each 
is 

i , I 

I A CC I FIR I C I 
L- I I L ..J 

o 4 6 

The bit positions in the storage key are 
allocated as follows: 

Access-Control ~ii§ a££): The four 
access=controI bits, bits 0-3, are matched 
with the four-bit access key whenever 
information is stored, or whenever 
information is fetched from a location that 
is protected against fetching. 

Fetch-protection Bii (!): The 
fetch=protectIon bit, bit 4, controls 
whether key-controlled protection applies 
to fetch-type references: a zero indicates 
that only store-type references are 
monitored and that fetching with any access 
key is permitted; a one indicates that 

3-6 System/370 Principles of Operation 

protection applies both to fetching and 
storing. No distinction is made between 
the fetching of instructions and o~ 
operands. 

Ref~~~ ~it (]): The reference bit, bit 
5, normally is set to one each time a 
location in the corresponding storage block 
is referred to either for storinq or tOl: 
fetching of information. 

Change ~it (£) : 
set to one each 
at a location in 
block. 

The change bit, bit 6, is 
time inforaation is stored 
the corresponding storage 

Storage keys are not part of addressable 
storage. The entire storage key is set by 
SET STORAGE KEY and inspected by INSERT 
STORAGE KEY. Additionally, the instruction 
RESET REFERENCE BIT provides a means of 
inspectinq the reference and change bits 
and of setting the reference bit to zero. 

Two protection facilities are provided to 
protect the contents of main storage from 
destruction or misuse by erroneous or 
unauthorized programs: key-controlled 
protection and low-address protection. The 
protection facilities are applied 
independently; access to main storage is 
only permitted when none of the facilities 
prohibit the access. 

Key-controlled protection affords 
protection against 1mproper storing Or 
against both improper storing and fetchin9, 
but not against improper fetching alone. 

KEY-CONTROLLED PROTECTION 

When key-controlled protection applies to a 
storage access, a store is permitted only 
when the storaqe key matches the access key 
associated with the request for storage 
access; a fetch is permitted when the keys 
match or when the fetch-protection bit af 
the storage key is zero. 

The keys are said to match when the four 
access-control bits of the storage key are 
equal to the access key, or when the access 
key is zero. 

The protection action is summarized in the 
figure" Summary of Protection Action." 

J 

J 



Condi tions Is Access to 
Storage Permitted? 

IFetch-Protection 
I Bit of 
I Storage Key 
I 

o 
o 
1 
1 

Key Relation 

Match 
Mismatch 
Match 
Mismatch 

Fetch 

Yes 
Yes 
Yes 
No 

Store 

Yes 
No 
Yes 
No 

.------~----------~ 

Match The four access-control bits of the storaqe 
key are equal to the access key, or the access 
key is zero. 

Yes Access is permitted. 

No Access is not permitted. On fetchinq, the 
information is not made available to the 
program; on storing, the contents of the 
storage location are not chanqed. 

Summary of Protection Action 

When the access to storage is initiated by 
the CPU, and key-controlled protection 
applies, the PSW key is the access key 
which is used as the compare value. The 
PSW key occupies bit positions 8-11 of the 
current PSW. 

When the reference is made by a channel, 
and key-controlled protection applies, the 
subchannel key associated with the 1/0 
operation is the access key which is used 
as the compare value. The subchannel key 
is specified for an I/O operation in bit 
positions 0-3 of the channel-address word 
~AW); the subchannel key is later placed 
in bit positions 0-3 of the channel-status 
word (CSW) that is stored as a result of 
the I/O operation. 

When a CPU access is prohibited because of 
protection, the operation is suppressed or 
terminated, and a program interruption for 
a protection exception takes place. When a 
channel access is prohibited, protection 
check is indicated in the CSW stored as a 
result of the operation. 

When a store access is prohibited because 
of key-controlled protection, the contents 
of the protected location remain unchanged. 
When a fetch access is prohibited, the 
protected information is not loaded into a 
reqister, moved to another storage 
location, or provided to an I/O device. 
For a prohibited instruction fetch, the 
instruction is suppressed and an arbitrary 
instruction-length code is indicated. 

Key-controlled protection is always active, 

regardless of whether the CPU is in the 
problem or supervisor state, and reqardless 
of the type of CPU instruction or 
channel-command word being executed. 

All accesses to storage locations that are 
explicitly designated by the proqram and 
that are used by the CPU to store or fetch 
information are subject to key-controlled 
protection. 

All storage accesses by a channel to fetch 
a CCW or to access a data area designated 
during the execution of a CCW are subject 
to key-controlled protection. However, if 
a ccw or output data is prefetched, a 
protection check is not indicated until the 
CCW is due to be executed or the data is 
due to be written. 

Key-controlled protection is not applied to 
accesses that are implicitly made by the 
CPU or channel for any of such sequences 
as: 

• An interruption 

• 
• 

• 
• 

• 

• 

Updating the interval timer 

Logout 

Dynamic-address translation 

A store-status function 

Fetching the CAW during the execution 
of an I/O instruction 

Storing of the CSW by an I/O 

Chapter 3. Storage 3-7 



• 

• 

instruction or interruption 

Storing channel identification during 
the execution of STORE CHANNEL ID 

Limited channel logout 

• Initial program loading 

Similarly, protection does not apply to 
accesses initiated via the operator 
facilities for altering or displaying 
information. However, when the program 
explicitly designates these locations, they 
are subject to protection. 

LOW-ADDRESS PROTECTION 

The low-address-protection facility 
provides protection against the destruction 
of main-storage information used by the CPU 
during interruption processing, by 
prohibiting instructions from storing using 
addresses in the range 0 through 511. The 
rang·e criterion is applied before dynamic 
translation f if any, and before prefixing. 

Low-address protection is under control of 
bit 3 of control register 0, the low­
address-protection-control bit. When the 
bit is zero, low-address protection is off; 
when the bit is one, low-address protection 
is on. 

If an access is prohibited because of 
low-address protection, the contents of the 
protected location remain unchanged, a 
program interruption for a protection 
exception takes place, and the operation is 
suppressed or terminated. 

Any attempt by the program to store using 
effective addresses in the range 0 through 
511 are subject to low-address protection. 
Low-address protection is applied to the 
store accesses of instructions whose 
operand addresses are logical, virtual, or 
real. Thus it applies to the operands of 
IPTE, RElD DIRECT, TEST BLOCK, MOVE TO 
PRIMARY, and MOVE TO SECONDARY and to the 
store-type operands of instructions with 
logical addresses. Low-address protection 
is also applied to the trace table. 

Low-address protection is not applied to 
accesses made by the CPU or channel for 
such sequences as interruptions, logout, 
and the initial-program-Ioading and 
store-status functions, nor is it applied 
to data stores during I/O data transfer. 
However ,eKplicit stores by a program at 
any of these locations are subject to 
protection. 

3-8 System/370 principles of Cperation 

Programming ligte 

Low-address protection and 
protection apply to the 
accesses, except that: 

key-controlled 
same store 

• 

• 

Low-address protection does not apply 
to storing performed by a channel, 
whereas key-controlled protection 
does. 

Key-controlled protection does not 
apply to the operands of TEST BLOCK, 
whereas low-address protection does. 

Reference recording provides information 
for use in selecting pages for replacement. 
Reference recording uses the reference bit, 
bit 5 of the storage key. A reference bit 
is provided in each storage key when 
dynamic address translation is installed. 
The reference bit is set to one each time a 
location in the corresponding storage block 
is referred to either for fetching or 
storing information, regardless of whether 
the CPU is in the EC mode or BC mode or 
whether DAT is on or off. 

Reference recording is always acti ve and. 
takes place for all storage accesses, 
including those made by any CPU, I/O, or 
operator facility. It takes place for 
implicit accesses made by the machine, such 
as those which are part of interruptions 
and I/O-instruction execution. 

Reference recording does not 
operand accesses of the 
instructions since they directly 
storage key without accessing 
location: 

INSERT STORAGE KEY 
INSERT VIRTUAL STORAGE KEY 

occur for 
following 

refer to a 
a storage 

RESET REFERENCE BIT (reference bit is 
set to zero) 

SET STORAGE KEY (reference bit is set 
to a specified value) 

The record provided by the reference bi t is 
substantially accurate. The reference bit 
may be set to one by fetching data or 
instructions that are neither designated 
nor used by the program, and, under certain 
conditions, a reference may be made without 
the reference bit being set to one. Under 
certain unusual circumstances, a reference 
bit may be set to zero by other than 
explicit program action. 

J 



Chanqe recording provides information as to 
which pages have to be saved in auxiliary 
storage when they are replaced in main 
storage. Change recording uses the change 
bit, bit 6 of the storage key. A change 
bit is provided in each storage key when 
dynamic address translation is installed. 

The change bit is set to one each time a 
store access causes the contents in the 
correspondinq storage block to be changed. 
A store access that does not change the 
contents of storage mayor may not set the 
change bit to one. 

The change bit is not set to one for an 
attempt to store if the access is 
prohibited. In particular: 

1. For the CPU, a store access is 
prohibited whenever an access 
exception exists for that access, or 
whenever an exception exists which is 
of higher priority than the priority 
of an access exception for that 
access. 

2. For 1/0, a store access is prohibited 
whenever a key-controllEd-protection 
condition exists for that access. 

Change recording is always active and takes 
place for all store accesses to storage, 
including those made by any CPU, 1/0, or 
operator facility. It takes place for 
implicit references made by the machine, 
such as those which are part of 
interruptions. 

Change recording does not take place for 
the operands of the fcllowing instructions 
since they directly modify a storage key 
without modifying a storage location: 

RESET REFERENCE BIT 
SET STORAGE KEY (change tit is set to 

a specified value) 

change bits are not necessarily restored on 
CPU retry ~ee the section "CPU Retry" in 
Chapter 11, "Machine-Check Handling"). See 
the section "Exceptions to Nullification 
and Suppression" in Chapter 5, "Program 
Execution," for a description of the 
handling of the change bit in certain 
unusual situations. 

Prefixing provides the ability to assign 
the range of real addresses 0-4095 (the 
prefix area) to a different block in 
absolute main storage for each CPU, thus 

permitting more than one CPU sharing main 
storage to operate concurrently with a 
minimu.m of interference, especially in the 
processing of interruptions. 

Prefixing causes real addresses in the 
range 0-4095 to correspond to the block of 
4K absolute addresses identified by the 
prefix register for the CPU, and the block 
of real addresses starting with the prefix 
value to correspond to absolute addresses 
0-4095. The remaining real addresses are 
the same as the corresponding absolute 
addresses. This transformation allows each 
CPU to access all of absolute main storage, 
including the first 4K bytes and the 
locations designated by the prefix 
reg isters of t he other CP Us. 

The relationship between real and absolute 
addresses is graphically depicted in the 
figure "Relationship between Real and 
Absolute Addresses." 

The prefix is a 12-bit quantity located in 
the prefix register. The register has the 
following format: 

I I 

1111111111 Prefix I1111111111111 
, I I I 

o 8 20 31 

The contents of the register can be set and 
inspected by the privileged instructions 
SET PREFIX and STORE PREFIX, respectively. 
On setting, bits corresponding to bit 
positions 0-7 and 20-31 of the prefix 
reg ister are ignored. On stori ng, zeros 
are provided for these bit positions. When 
the contents of the prefix register are 
changed, the change is effective for the 
next sequential instruction. 

When prefixing is applied, the real address 
is transformed into an absolute address 
using one of the followinq rules, depending 
on bits 8-19 of the real address: 

1. Bits 8-19 of the address, if all 
zeros, are replaced with bits 8-19 of 
the prefix. 

2. Bits 8-19 of the address, if equal to 
bits 8-19 of the pref ix, are re placed 
with zeros. 

3. Bits 8-19 of the address, if not all 
zeros and not equal to bits 8-19 of 
the prefix, remain unchanged. 

In all cases, bits 20-31 of the address 
remain unchanged. 

Only the address presented to storaqe is 
translated by prefixinq. The contents of 
the source of the address remain unchanqed. 

The distinction between real and absolute 

Chapter 3. Storage 3-9 



addresses is made even when the prefix 
register contains all zeros, in which case 
a real address and its corresponding 
absolute address are identical. 

An address space is a consecutive sequence 
of integer numbers (or virtual addresses), 
together with the specific transformation 
~arameters which allow each number to be 

associa ted with a byte location in storage. 
The sequence starts at zero and proceeds 
left to right. 

When a virtual address is used by a CPU to 
access main storage, it is first converted, 
by means of dynamic address translation 
(DAT), into a real address, and then into 
an absolute address. DAT uses two levels 
of tables (a segment table and page tables) 
as transformation parameters. The address 
of the seg.ent table is found in a control 
register. 

Prefixing Prefixing 

I 
I 
I 
1 

I I ~® I ®{ 
~ I \ Q 
~ I "\ 

I ~ 

1 

K!---....,..,-No Changa-*--___ +-__ _ 

I ca. I 
yAddreSs I \L 
J~~~ I { 
_Add~ess L __________ I 

Address I 
4096 

<l ___ I;--.--
_Add~'SS L ________ -.J 

Real Addresses 
for CPU A 

Absolute 
Addresses 

CD Real addresses in which the high·order 12 bits ara aqual to the prefix for this CPU (A or BI, 

(]) Absolute addresses of the block that contaim, for this CPU (A or BI, the assigned locations 
in real storage, 

Relationship between Real and Absolute Addresses 

3-10 System/370 principles of Operation 

Address 
4096 

_Address 
o 

Real Addresses 
for CPU B 

J 



with DAS, each address space is assigned an 
address-space number (ASN) • An 
ASN-translation mechanism is provided with 
DAS, which, given an ASN, can locate (by 
usinq a two-level table lookup) the segment 
table which defines the address space and 
load its address into the appropriate 
control register. 

without DAS, the CPU can translate virtual 
addresses for one address space--the 
primary address space. With DAS, at any 
instant a CPU can translate virtual 
addresses from two address spaces--the 
primary address space and the secondary 
address space. The segment table defining 
the primary address translation is 
specified by control register 1 and that 
defining the secondary by control register 
7. 

By using the ASN-trans1ation mechanism, any 
one of up to 64K address spaces can be 
selected to become the primary or secondary 
address space. 

Virtual storage comprising byte 
ordered according to their 
addresses in an address space is 
referred to as storaqe. 

locations 
virtual 
usually 

Dynamic address translation (DAT) provides 
the ability to interrupt the execution of a 
program at an arbitrary moment, record it 
and its data in auxiliary storage, such as 
a direct-access storage device, and at a 
later time return the program and the data 
to different main-storage locations for 
resumption of execution. The transfer of 
the program and its data between main and 
auxiliary storage may be performed 
piecemeal, and the return of the 
information to main storage may take place 
in response to an attempt by the CPU to 
access it at the time it is needed for 
execution. These functions may be 
performed without change or inspection of 
the program and its data, do not require 
any explicit programming convention for the 
relocated program, and do not disturb the 
execution of the program except for the 
time delay involved. 

With appropriate support by an operating 
system, the dynamic-address-translation 
facility may be used to provide to a user a 
system wherein main storage appears to be 
larger than the installed main storage. 
This apparent main storage is referred to 
as virtual storage, and the addresses used 
to designate locations in the virtual 
storage are referred to as virtual 
addresses. The virtual storage of a user 
may far exceed the size of the physical 

main storage of the installation and 
normally is maintained in auxiliary 
storage. The translation occurs in blocks 
of addresses, called pages. Only the most 
recently referred-to pages of the virtual 
storage are assigned to occupy blocks of 
physical main storage. As the user refers 
to pages of virtual storage that do not 
appear in main storage, they are brought in 
to replace pages in main storage that are 
less likely to be needed. The swapping of 
pages of storage may be performed by the 
operating system without the user's 
knowledge. 

The sequence of virtual addresses 
associated with a virtual storage is called 
an address space. With appropriate support 
by an operating system, the dynamic­
address-translation facility may be used to 
provide a number of address spaces. These 
address spaces may be used to provide 
deqrees of isolation between users. such 
support can consist of a completely 
different address space for each user, thus 
providing complete isolation, or a shared 
area may be provided by mapping a portion 
of each address space to a single common 
storage area. Also, with DAS, instructions 
are provided which permit the 
semiprivileged program to access more than 
one such address space. Dynamic address 
translation with DAS provides for the 
translation of virtual addresses from two 
different address spaces without requ1r1ng 
that the translation parameters in the 
control registers be changed. These two 
address spaces are called the primary 
address space and the secondary address 
space. 

In the process of replacing blocks of main 
storage by new information from an external 
medium, it must be determined which block 
to replace and whether the block being 
replaced should be recorded and preserved 
in auxiliary stora gee To aid in this 
decision process, a reference bit and a 
change bit are associated with the storage 
key. 

Dynamic address translation may be 
specified for instruction and data 
addresses generated by the CPU but is not 
available for the addressing of data and of 
control words in I/O operations. The 
channe1-indirect-data-addressing feature is 
provided to aid I/O operations in a 
virtual-storage environment. 

The dynamic- address-transla tion facili ty 
includes the instructions LOAD REAL 
ADDRESS, RESET REFERENCE BIT, and PURGE 
TLB. It makes use of control register 1 
and bits 8-12 in control register o. 

The dynamic-address-translation facility 
includes the handling of 2K-byte and 
4K- byte pages and 64K-byte and 1 M-byte 

Chapter 3. Storage 3-11 



segments. On some models, the 
1M-byte-segment size may not be offered. 

Dvnamic address translation is enhanced by 
that part of the extended facility that 
includes the instruction INVALIDATE PAGE 
TABLE ENTRY and the common-segment 
facility. On some models, the common­
segment facility permits improvement of TLB 
utilization by means of a common-segment 
bit in the segment-table entry. On other 
models, this bit is ignored, with no 
performance improvement. 

Dvnamic address translation is the process 
of translating a virtual address during a 
storage reference into the corresponding 
real address. without DAS, when DAT is on, 
a logical address is treated as a virtual 
address and is translated during a storage 
reference into the corresponding real 
address. When DAT is off, the logical 
address is treated as a real address. With 
DAS, the virtual address may be either a 
primary virtual address or a secondary 
virtual address. primary virtual addresses 
are translated by means of the primary 
segment-table designation and secondary 
virtual addresses by means of the secondary 
segment-table designation. After selection 
of the appropriate segment-table 
designation, the translation process is the 
same for both types of virtual addresses. 

In the process of translation, two types of 
units of information are recognized: 
segments and pages. A segment is a block 
of sequential addresses spanning 65,536 
(64K) or 1,048,576 (1M) bytes and beginning 
at an address that is a multiple of its 
size. A page is a block of sequential 
addresses spanning 2,048 (2K) or 4,096 (4K) 
bytes and beginning at an address that is a 
multiple of its size. !he size of the 
segment and page is controlled by bits 8-12 
in control register O. 

The virtual address, accordingly, is 
divided into a segment-index (SX) field, a 
paqe-index (PX) field, and a byte-index 
field. The size of these fields depends on 
the seqment and page size. 

The segment index starts with bit 8 of the 
virtual address and extends through bit 15 
for a 64K-byte segment size and through bit 
11 for a 1M-bvte segment size. The page 
index starts with the bit following the 
segment index and extends through bit 19 
for a 4K-byte page size and through bit 20 
for a 2K-byte page size. The byte index 
consists of the rema~n1ng 11 or 12 
low-order bits of the virtual address. The 
formats of the virtual address are as 
follows: 

3-12 system/370 Principles of Operation 

For 64K-byte segments and 4K-byte pages: 

• l' 

I11111111I SX PX Byte Index 
L-______ ~~ ______ ~~. __ _L _____________ J 

o 8 16 20 31 

For 64K-byte segments and 2K-byte pages: 

, i 

I11111111I SX 

o 8 

PX 

16 21 

, 
Byte Indexl 

31 

For 1M-byte segments and 4K-byte pages: 

i i 

I11111111I SX PX Byte Index 

o 8 12 20 31 

For 1M-byte segments and 2K-byte pages: 

, , 
I11111111I SX 

o 8 12 

PX 

21 

, 
Byte Indexl 

31 

Virtual addresses are translated into real 
addresses by means of two translation 
tables, a segment table and a page table, 
which reflect the current assignment of 
real storage. The assignment of real 
storage occurs in units of pages, the real 
locations being assigned contiguously 
within a page. The pages need not be 
adjacent in real stora qe eve n though 
assigned to a set of sequential virtual 
addresses. 

TRANSLATION CONTROL 

Without DAS, address translation is 
controlled by the DAT-mode bit in the PSW 
and by a set of bits, referred to as the 
translation parameters, in control 
registers 0 and 1. With DAS, an addi tional 
bit in the PSW is included, and control 
register 7 is included as part of the 
translation parameters Additional controls 
are located in the translation tables. 

When the dynamic-address-translation 
facility is installed without DAS, the CPU 
can operate with DAT either on or off. The 
mode of operation is controlled by bit 5 of 
the EC-mode PSi, the DAT-mode bit. When 



~. 

this bit is one, DAT is on, and logical 
addresses are treated as virtual addresses; 
when this bit is zero or the BC mode is 
specified, DAT is off, and logical 
addresses are used as real addresses. 

When DAS is installed, two bits in the 
EC-mode PSW control dynamic address 
translation: bit 5, the DAT-mode bit, and 
bit 16, the address-space-control bit. 
When aBC-mode PSW is specified, or, when 
in an Ee-mode PSi the DAT-mode bit is zero, 
DAT is off, the CPU is said to be in real 

mode, and instruction and logical addresses 
are treated as real. When, in an EC-mode 
PSW, the DAT-mode bit is one (DAT is on) 
and the address-space-control bit is zero, 
the CPU is said to be in primary-space 
mode, and instruction and logical addresses 
are treated as primary virtual. When, in 
an EC-mode PSi, DAT is on and the 
address-space-control bit is one, the CPU 
is said to be in secondary-space mode, and 
logical addresses are treated as secondary 
virtual. The various modes are shown in 
the following table: 

r------~-----~~--------------------~~-----------------------, 

1 1 Handling of Addresses 1 
1 PSW Bit 1 I I 
I---r~ Logical 1 Instructionl 
1 5 112 1 DAT Mode Addresses 1 Addresses 1 
I-----'- 1 1 1 
1 0 1 Off Real mode (BC mode) Real 1 Real 1 
1 0 1 1 Off Real mode Real 1 Real 1 
1 1 1 1 On Primary-space mode Primary I Primary 1 
1 I virtual 1 virtual 1 

Translation ~odes without DAS 

r---- • I 

1 I Handling of Addresses 1 
1 PSW Bit I • I 
1 • i -I Logical 1 Instructionl 
1 5 112 116 1 DAT Mode Addresses 1 Addresses I 
I-----'- 1 I 1 
1 0 1 Off Real mode (BC mode) Real 1 Real 1 
I 0 1 1 Off Real mode Real 1 Real 1 
I 1 1 0 1 On primary-space mode Primary 1 Primary 1 
1 I virtual 1 virtual 1 
1 1 1 1 I On Secondary-space mode Secondary 1 See note 1 
1 I virtual 1 1 

I 

Tr ans la tion Modes with DAS 

Chapter 3. storage 3-13 



When the CPU is in secondary-space mode, it 
is unpredictable whether instruction 
addresses are treated as primary virtual or 
secondary virtual. However, when the CPU 
is in secondary-space mode, all copies of 
an instruction used in a single execution 
are fetched from a single space, and the 
machine can change the interpretation of 
instruction addresses as primary virtual or 
secondary virtual only ret ween instructions 
and only by issuing a checkpoint­
synchronizing function. 

Without DAS, five bits are provided in 
control reqister 0 which are used in 
controlling dynamic address translation. 
With DAS, a sixth bit is provided. The 
bits are assigned as follows: 

~--,-----~--

I DI TF 
__ ~I~I~~ _____ L--

5 8 13 

Bit 5 of control register 0 is the 
secondary-space-control bit (D). This bit 
is provided as part of DAS. When this bit 
is zero and the instructions SET ADDRESS 
SPACE CONTROL, MOVE TO PRIMARY, and MOVE TO 
SECONDARY are executed, a special-operation 
exception is recognized. This bit also 
controls whether the secondary segment 
table is attached while operating in 
primary-space mode. 

Bits 8-12 of control register 0 are called 
the translation format, which controls the 
page size and segment size. On models 
which implement the 1M-byte-segment size, 
four combinations of the five control bits 
are valid; all other combinations are 
invalid. On models which do not implement 
the 1M-byte-segment size, two combinations 
are valid. The encoding of the control 
bits is defined in the following table. 

3-14 System/370 principles of Operation 

r 
I Bits of I 
I Control I 
I Register 0 Page Seg ment I 
~T---Y-' • , Size Size , 
I 81 91101111121 (Bytes) (Bytes) I 
I I • • I , , 
I 0 1 0 0 0/2,048 (2K) I 65,536 (64 K) , 
I 0 1 0 1 012,048 (2K) 11,048,576 (1 M) *' 
I 1 0 0 0 014,096 (4K) I 65,536 (64K) I 
I 1 0 0 1 014,096 (14K) 11,048,576 (1 M) * I 
I All others I Invalid I Invalid I 
I 

, , 
I *On those models which do not implement , 
I the 1M-byte-segment size, the codes I 
I 01010 and 10010 are invalid. I 
• I 

When an invalid bit combination is detected 
in bit positions 8-12, a translation­
specification exception is recognized as 
part of the execution of an instruction 
using address translation, and the 
operation is suppressed. 

Control register 1 contains the primary 
segment-taole designation (PSTD). The 
register has the following format: 

r---------r·------------------~r----~ 

I Primary Segment- I I 
I PSTL Table Origin IXI 

, J 

o 8 26 31 

Prim~~ ~g~ent-Table Leng!E (R~~1): Bits 
0-7 of control register 1 designate the 
length of the primary segment table in 
units of 64 bytes, thus making the length 
of the segment table variable in multiples 
of 16 entries. The length of the primary 
segment table, in units of 64 bytes, is 
egual to one more than the value in bit 
positions 0-7. The contents of the length 
field are used to establish whether the 
entry designated by the segment-index 
portion of the primary virtual address 
falls within the primary segment table. 
without DAS, this field is sometimes 
referred to as the segment-table length. 

Primary Segm~nt-Tablg Origl~: Bits 8-25 of 
control register 1, with six low-order 
zeros appended, form a 24-bit real address 
that designates the beginning of the 
primary segment table. Without DAS, this 
field is sometimes referred to as the 
segment-table origin. 

J 

~~~.!itch::.Even! ~~sk (.x): with DA S, bi t j' 
31 controls whether a space-switch-event 
program interruption occurs when a PROGRAM 
CALL with space switching (PC-s~ or a 



PROGRAM TRANSFER 
(PT~ss) is issued. 
is ignor-ed. 

with space 
Without DAS, 

switching 
this bit 

Bits 26-30 of control register 1 are not 
assigned and are ignored. 

When DAS is inst~lled, control register 7 
contains the secondary seqment-table 
designation (SSTD). The register has the 
fo~lowing format: 

o 

1) i 

,secondary Segment-I 
SSTL I Table Origin 

~--------_~.~I------~ 
8 26 31 

~~Q~~Y ~gg~ent~~bl~ !£D31n (~ST1): 
Bits 0-7 of contJ;'ol register 7 designate 
the length of the secondary segment table 
in units of 64 bytes, thus making the 
length of the segment table viriable in 
multiples of 16 entries. The length of the 
segment table, in units of 64 bytes, is 
equal to one more than the value in bit 
positions 0-7. The contents of the length 
field are used to establish whether the 
entry designated by the segment-index 
portion of the secondary virtual address 
falls within the secondary segment table. 

SeconQ~~Y ~~g~ent-TgEle Qrigis: Bits 8-25 
of control register 7, with six zeros 
appended on the r~ght, form a 24-bit real 
address that designates the beginning of 
the secondary segment table. 

Bits 26-31 of control register 7 are not 
assigned and are ignored. 

1. The validity of the information loaded 
into a control register,· including 
that pertaining to dynamic address 
translation, is not checked at the 
time the register is loaded. This 
information i~ checked and the program 
exception, if any, is indicated at the 
time the information is used. 

2. The lDformation pertaining to dynamic 
add .. u~·s:s translation is considered to 
be used when an instruction is 
executed with DAT on or when LOAD REAL 
ADDRESS is executed. The information 
is c,t considered to be used when the 
PSi specifies translation, but an I/O, 
extsrnal, restart, or machine-check 

interruption 
instruction is 
case when the 
state. 

occurs before an 
executed, including the 
PSW specifies the wait 

TRANSLATION TABLES 

The translation process 
two-level lookup using 
segment table and a page 
tables reside in storage. 

consists in a 
two tables: a 

table. These 

Segment-Table ~~§ 

The entry fetched from the segment table 
designates the length, availability, and 
origin of the corresponding page table. 

An entry in the segment table has the 
following format: 

, , i , , .-, 

IPTL 100001 Page-Table Origin 10lCIII 
, I , I I 

o 8 29 31 

The fields in the segment-table entry are 
allocated as follows: 

Paqe-Table 1en3!h (PT1): Bits 0-3 
designate the length of the page table in 
increments that are equal to 1/16 of the 
maximum size of the table, the maximum size 
depending on the size of segments and 
pages. The length of the page table, in 
units 1/16 of the maximum size, is egual to 
one more than the value in bit positions 
0-3. The length field is compared against 
the high-order four bits of the page-index 
portion of the logical address to determine 
whether the page index designates an entry 
within the page table. 

Paqe-Tag!~ Origin: Bits 8-28, 
low-order zeros appended, form 
real address that designates the 
of the page table. 

with three 
a 24-bi t 
beginning 

Common-S~~~n! Bit (~): Bit 30, with the 
common-segment facility installed, controls 
the use of translation-lookaside-buffer 
copies of the segment-table entry and of 
the page table which it designates. A zero 
identifies a private segment; in this case, 
the segment-table entry and the page table 
that the entry designates may be used only 
in association with the seqment-table 
origin which designates the segment table 
in which the segment-table entry resides. 
A one identifies a common segment; in this 
case, the segment-table entry and the page 
table that the entry designates may 
continue to be used for translating 

Chapter 3. Storage 3-15 



addresses corresponding to the segment 
index, even though a different segment 
table is selected by changing the 
segment-table origin in control register 1. 
In some models, bit 30 in the segment-table 
entry is ignored, and all segments are 
treated as private. 

The common-segment bit is used only for 
controlling the loading and use of 
translation-Iookaside-buffer copies. When 
the common-segment facility is installed, 
the common-segment bit is ignored for 
explicit translation and for implicit 
translation not using the translation 
lookaside buffer. 

segment.=Inyg.!!g ~i1 (1) : Bit 31 controls 
whether the segment associated with the 
segment-table entry is available. When bit 
position 31 contains a zero, address 
translation proceeds using the designated 
page table. When the bit is a one, a 
segment-translation exception is 
recognized, and the unit of operation is 
nullified. 

The handling of bit positions 4-7 and 29-30 
of the segment-table entry depends on the 
model. Normally a translation­
specification exception is recognized and 
the unit of operation is suppressed when 
these bits are not zeros; however, on some 
models the contents of these bit positions 
may be ignored. On machines with the 
common-segment facility installed, bit 30 
is interpreted as defined or is ignored. 

The entry fetched from the page table 
indicates the availability of the page and 
contains the high-order bits of the real 
address. The format of the page-table 
entry depends on page size, as follows: 

Page-table entry with 4K-byte pages: 

r------------~I~I-,,-,i~l 

I PFRA 1110101/1 
I I I I 

o 12 15 

Page-table entry with 2K-byte pages: 

r---------------,,-,,-,,~' 

I PFRA 11101/1 
L---- I I I J 

o 13 15 

The fields in the page-table entry are 
allocated as follows: 

3-16 System/310 Principles of Operation 

fag:~-Frg.!!!~ R~al !dd!,~'§'§ (fl~!): Bits 0-11 
or bits 0-12, depending on the page size, 
provide the leftmost 12 or 13 bits of a 
24-bit real storage address. When these 
bits are concatenated with the contents of 
the byte-index field of the virtual address 
on the right, the real storage address is 
obtained. 

Page-Invalid Bit (1): Bit 12 or 13, 
depending on the page size, controls 
whether the page associated with the 
page-table entry is available. When the 
bit is zero, address translation proceeds 
using the table entry. When the bit is 
one, a page-translation exception is 
recognized, and the unit of operation is 
nullified. 

Except for the rightmost bit position of 
the entry, the bit positions to the right 
of the page-invalid bit must contain zeros; 
otherwise, a translation-specification 
exception is recognized as part of the 
execution of an instruction using that 
entry for address translation, and the unit 
of operation is suppressed. 

SUMMARY OF DYNAMIC 
FORMATS 

ADDRESS TRANSLATION 

The first table summarizes the possible 
combinations of the page-address and 
byte-index fields in the formation of a 
real storage address. 

The eight-bit length field in control 
register 1 provides for a maximum length 
code of 255 and permits designating a 
segment table of 16,384 bytes, or 4,096 
entries, which is more than can be referred 
to for translation purposes by the virtual 
address. With 1M-byte segments, only 16 
segments can be addressed, requiring a 
segment table of 64 bytes. A table of 64 
bytes is specified by a length code of 0 
and is the smallest table that can be 
specified. With 64K-byte segments, up to 
256 segments can be addressed, requiring at 
the most a segment table of 1,024 bytes and 
a length code of 15. These relations are 
summarized in the second table. 

The third table lists the maximum sizes of 
the page table and the increments in which 
the size of the page table can be 
controlled. 

J 



L 
r----,--

I I Real storage Address I 
I ~ --r I 
I I Page Address I Byte Index I 
I I --+ i I 
I Size I Bit I Bit I I 
I of ,positions No. , Positions, No. I , Page lin Page- I of I in Virtuall of I 
I (Bytes) I Table EntrYIBitsl Address IBits, , , I I I I 
I 2K I 0-12 I 13 I 21-31 I 11 I 
I 4K , 0-11 I 12 , 20-31 I 12 , 
L-__ ~ 

r-- I I I i 

I ISegmentlNumber Max Segm Tbl I I 
,Size 'Index I of I i ISegment- I 
I of ,Field IAddress-1 IUsablel Table I 
ISegmentl Size I able ,Size ILengthlIncrementl 
I (Bytes) ,(Bits) ,Segmentsl (Bytes) I Code I (Bytes) I 
I I -+----+- , I 
, 64 K I 8 , 256 I 1,024 1 5 I 64 I 
I 1!1 I 4 I 16 I 64 0 I 64 I 
I I " ,t 

r----------------~------~---------ri---------------Ti----------, 

I Page I Max Page Tbl I 
I Size of Index I Number I i ---i Page-
~---r- Field lof Pages I IUsablel Table I 
,Segment, page ,Size I in I Size ILengthlIncrement, 
I (Bytes), (Bytes) I (Bits) ISegment I (Bytes) I Code I (Bytes) I 
r-----4------+I------+I------~I------I~----~I------~1 
I 64K I 2K I 5 I 32 I 64 I 15 I 4 I 
I 64K I 4K , 4 I 16 I 32 I 15 I 2 I 
11M I 2K I 9 I 512 I 1,024 I 15 I 64 I 
I 1M , 4K I 8 I 256 I 512 I 15 I 32 I 
L----~ ______ ~~ ______ -L-

The low-order bit position of a page-table 
entry is unassigned and is not checked for 
zero; thus, it is available for programming 
use. 

TRANSLATION PROCESS 

"'his section describes the translation 
process as it is performed implicitly 
before a virtual address is used to access 
main storage. The process of translating 
the operand address of LOAD REAL ADDRESS 
and TEST PROTECTION is the same, except 
that segment-translation and page­
translation exceptions do not cause a 
program interruption but instead are 
indicated in the condition code. 
Translation of the operand address of LOAD 
REAL ADDRESS also differs in that the 
translation-lookaside buffer is not used. 

Translation of an address is performed by 
means of a segment table and a page table, 

both of which reside in main storage. It 
is controlled by the DAT-mode bit in the 
PSW and by the translation parameters in 
control registers 0 and 1. with DAS, 
translation is also controlled by the 
address-space-control bit in the PSW, and 
the translation parameters also include 
control register 7. 

The segment-table designation used for a 
particular address translation is called 
the effective segment-table designation. 
Accordingly, when a primary virtual address 
is translated, control register 1 is used 
as the effective segment-table designation, 
and when a secondary virtual address is 
translated, control register 7 is used as 
the effective segment-table designation. 
Wi thout DA S, the term "effective segmen t­
table designation" is synonymous with 
"primary segment-table designation." 

The segment-index portion of the vi rtual 
address is used to select an entry from the 

Chapter 3. Storage 3-17 



segment table, the starting address and 
length of which are specified by the 
effective segment-table designation. This 
entrv designates the page table to be used. 

The page-index 
address is used 
paqe table. 
high-order bits 
represents the 
address. 

portion of the virtual 
to select an entry from the 
This entry contains the 
of the real address that 

translation of the virtual 

The byte-index field of the virtual address 
is used unchanged for the rightmost bit 
posit ions of the real address. 

If the I bit is one in either the 
segment-table entry or the page-table 
entry, the entry is invalid, and the 
translation process cannot be completed for 
this virtual address. A segment­
translation or a paqe-translation exception 
is recognized, and the unit of operation is 

3-18 System/370 Principles of Operation 

nullified. 

In order to avoid the delay associated with 
references to translation tables in main 
storage, the information fetched from the 
tables normally is placed also in a special 
buffer, the translation-lookaside buffer 
(TLB) , and subsequent translations 
involving the same table entries may be 
performed using the information recorded in 
the TLB. The opetation of the TLB is 
described in the section "Transla tion­
Lookaside Buffer" in this chapter. 

Whenever access to main storage is made 
during the address-translation process for 
the purpose of fetching an entry from a 
seqlllent table or page table, key-controlled 
protection does not apply. 

The translation proces~, incluainq the 
effect of the TLB, is shown qn i )1,i .~ally in 
the figure "Translation Process, J; 

J 



control Register Control Register 7 Virtual Address 

..-. 

- PSTD 
I 

r 
- SSTD 

I r, --------------1 

" r-"1 

, 
ISegment 1 page I Byte Index 
I Index -IIndex -I • 
L------~I~I----~I·~·+I-----~ 

I I 
I I 

141 "--------------------r-------------------------------~ 1 
I Y , 

1 ..-. 
r-->I+I I 

Y I r-I I 
I 1131 , 
I ~,-~---~~~~ ~ ..-. 
L->I > I + I r .,----~~r_---~-+-~ , YI 

I I 
I I 
L)I 

Segment Table 1 
(in II ain storage) 1 

I 
i 

1 
1 
I 1 
I I 
1 I , , 

, / 
T 

I 
I 
I r i 

1 I I 
I I I 
I I I 
I I i 1 I 
I r-.' '--4 

i 

I......, 
1131 
, L.J 

- 1 
1 
1 
I , 

Page Table 
(in main storage) 

I 
I 

r-"1 I 
131 I 
L...J I , 

I 
1..-. 
1131 

>1 - - I -4-----------------------------" IL--I 

......, 
11, 
L.-I 

\ I 
I I 
I I 

Transla tion-Lookas ide 
Bu tfer (TLB) 

,il~----~'r'---'___. 
I L-->_(----I I • I 

Real Address 

111 Information, which lIay include portions of the virtual address and the effective segment­
L...J table origin, is used to search the TLB • 

..-. 
121 If match exists, the address froll the TLB is used in forming the real address. 
L.J 

r-"1 
131 If no match exists, table entries in main storage are fetched to translate the address. 
L-l The resulting value, in conjunction with the search information, may be used to form an 

entry in the TLB. 

" 141 Control reqister 1 provides the primary segment-table designation for translation of a 
L...J primary virtual address, and, when DAS is installed, control register 7 provides the 

secondary segment-table designaticn for translation of a secondary virtual address. 

I Translation Process 

Chapter 3. Storaqe 3-19 



The interpretation of the virtual address 
for translation purposes is controlled by 
the translation format, bits 8-12 of 
control register O. If bits 8-12 contain 
an invalid code, a translation­
specification exception is recognized, and 
the operation is suppressed. 

The segment-index portion of the virtual 
address is used to select a segment-table 
entry that designates the page table to be 
used in arriving at the real address. The 
address of the segment-table entry is 
obtained by appending six zeros to the 
riqht of bits 8-25 of the effective 
segment-table designation and adding the 
segment index to this value, with the 
rightmost bit position of the segment index 
aligned with bit position 29 of the 
address. 

As part of the segment-table-lookup 
process, the segment index is compared 
against the segment-table length, bits 0-7 
of the effective segment-table designation 
to establish whether the addressed entry is 
within the table. with 1M-byte segments, 
entries for all addressable segments are 
contained in a table of m1n1mum length 
(length code of 0). With 64K-byte 

segments, four zeros are appended to the 
left of bits 8-11 of the virtual address, 
and this extended value is compared against 
the eight-bit seqment-table length. If the 
value in the seqment-table-length field is 
less than the value in the corresponding 
bit positions of the virtual address, a 
segment-translation exception is 
recognized, and the unit of operation is 
nullified. 

All four bytes of the segment-table entry 
are fetched concurrently. The fetch access 
is not subject to protection. When the 
storage address generated for fetching the 
segment-table entry refers to a location 
which is not provided, an addressing 
exception is recognized, and the unit of 
operation is suppressed. 

Bit 31 of the entry fetched from the 
segment table specifies whether the 
corresponding segment is available. This 
bit is inspected, and, if it is one, a 
seqment-translation exception is 
recognized, with the unit of operation 
nullified. Handling of bit positions 4-7 
and 29-30 of the segment-table entry 
depends on the model: normally a 
translation-specification exception is 
indicated and the unit of operation 

3-20 System/370 principles of Operation 

~-~-----

suppressed when they do not contain zeros; 
however, on some models they may be 
ignored. 

On machines with the common-segment 
facility, a one in bit position 30 does not 
cause an exception. Bit 30 may be retained 
with the entry in the TLB, or it may be 
iqnored. 

When no exceptions are recoqnized in the 
process of segment-table lookup, the entry 
fetched from the segment table designates 
the length and beginning of the 
corresponding page table. 

Page-Table Logkup 

The page- index portion of the virtual 
address, in conjunction with the page-table 
address derived from the seqment-table 
entry, is used to select an entry from the 
page table. The address of the page-table 
entry is obtained by appending three zeros 
to the right of bits 8-28 of the 
segment-table entry and adding the page 
index to this value. The addition is 
performed with the rightmost bit of the 
page index aligned with bit 30 of the 
address. 

As part of the page-table-lookup process, 
the four leftmost bits of the page index 
are compared against the page-table length, 
bits 0-3 of the segment-table entry, to 
establish whether the addressed entry is 
within the table. I f the value in the 
page-table-length field is less than the 
value in the four leftmost bit positions of 
the page-index field, a paqe-translation 
exception is recognized, and the unit of 
operation is nullified. 

The two bytes of the page-table entry are 
fetched concurrently. The fetch access is 
not subject to protection. When the 
storage address generated for fetchinq the 
page-table entry refers to a location which 
is not provided, an addressing exception is 
recognized, and the unit of operation is 
suppressed. 

The entry fetched from the page table 
indicates the availability of the page and 
contains the leftmost bits of the 
page-frame real address. The paqe-invalid 
bit is inspected to establish whether the 
corresponding page is available. If this 
bit is one, a page-translation exception is 
recognized, and the unit of operation is 
nullified. If bit positions 13-14 for 
4K-byte pages or bit position 14 for 
2K-byte pages contains a one, a 
translation-specification exception is 
recognized, and the unit of operation is 
suppressed. 

J 



When no exceptions in the trans lation 
process are encountered, the page-frame 
real address obtained from the page-table 
entry and the byte-index portion of the 
virtual address are concatenated, with the 
page-frame real address forming the 
leftmost part. The result is the real 
storage address. 

Recoq!!.!.!!Q.!! 
1r anslat.!Q!! 

Invalid addresses and invalid formats can 
cause exceptions to be recognized during 
the translation process. Exceptions are 
recognized when information contained in 
control registers or table entries is used 
for translation and is found to be 
incorrect. 

The information pertaining to DAT is 
considered to be used when an instruction 
is executed with DAT on or when LOAD REAL 
ADDRESS is executed. The information is 
not considered to be used when the PSW 
specifies DAT on but an I/O, external, 
restart, or machine-check interruption 
occurs before an instruction is executed, 
including the case when the PSW specifies 
the wait state. Only that information 
required to translate a virtual address is 
considered to be in use during the 
translation of that address, and, in 
particular, addressing exceptions that 
would be caused by the use of the PSTD or 
the SSTD are not recognized when the 
translation of an address uses only the 
SSTD or only the PSTD, respectively. 

A list of translation exceptions, with the 
action taken for each exception and the 
priority in which the exceptions are 
recognized when more than one is 
applicable, is, provided in the section 
"Recognition of Access Exceptions" in 
Chapter 6, "Interruptions." 

TRANSLATION-LOOKASIDE EUFFER 

To enhance performance, the dynamic­
address-translation mechanism normally is 
implemented such that some of the 
information specified in the segment and 
page tables is maintained in a special 
buffer, referred to as the translation­
lookaside buffer (TLB) • The CPU 
necessarily refers to a DAT-table entry in 
main storage only for the initial access to 
that entry. This information subsequently 
may be maintained in the TLB, and 

subsequent translations may be performed 
using the information recorded in the TLB. 
The presence of the TLB affects the 
translation process to the extent that a 
modification of the contents of a table 
entry in main storage does not necessarily 
have an immediate, if any, effect on the 
translation. 

The size and the structure of the TLB 
depend on the model. For instance, the TLB 
may be implemented such as to contain only 
a few entries pertaining to the currently 
designated segment table, each entry 
consisting of the high-order portions of a 
virtual address and its corresponding real 
address; or it may contain arrays of values 
where the real page address is selected on 
the basis of the current segment-table 
origin, the translation format, and the 
high-order bits of the virtual address. 
Entries within the TLB are not explicitly 
addressable by the program. 

The description of the logical structure of 
the TLB covers all implementations by 
System/310 models. The TLB entries are 
considered as being of two types: TLB 
segment-table entries and TLB page-table 
entries. A TLB entry is considered as 
containing wi thin it both the i nf orma tion 
obtained from the table entry in storage 
and the attributes used to fetch the entry 
from storage. Thus, a TLB segment-table 
entry would contain the following fields: 

I 

TF ISTO SX I PTO I PTL C 
~ __ -L __ --L--__ ~ ____ L-__ ~ ____ ~ 

TF The translation format in effect when 
the entry was formed 

STO The segment-table origin in effect 
when the entry was formed 

SX 

PTO 

The segment index used to select the 
entry 

The page-table or1g1n fetched from 
the segment-table entry in storage 

PTL The page-table length fetched from 
the segment-table entry in storage 

C 

TF 

I 

The common bit fetched from the 
segment-table entry in storage; when 
the common-segment facility is not 
installed, this field is not i ncl uded 
in the TLB 

A TLB page-table entry would contain 
the following fields: 

i i 

TF IPTO PX IPFRAI 

The translation format in effect when 

Chapter 3. storage 3-21 



PTO 

PX 

the entry was formed 

The page-table origin in effect when 
the entry was formed 

The page index used to select the 
entry 

PFRA The page-frame real ad dress fetched 
from the entry in storage 

Depending on the implementation, not all of 
the above items are required in the TLB. 
For example, if the implementation combines 
into a single TLB entry (1) the information 
obtained from a page-table entry and 
(2) the attributes of both the page-table 
entry and the segment-table entry, then the 
page-table-origin and page-table-Iength 
fields are not required. If the 
implementation purges the TLB when the 
translation parameters are changed, then 
the seqment-table origin and translation 
format are not required. 

Noi~: The following sections describe the 
conditions under which information may be 
placed in the TLB and information from the 
TLB may be used for address translation, 
and they describe how changes to the 
translation tables affect the translation 
process. Information is not necessarily 
retained in the TLB under all conditions 
for which such retention is permissible. 
Furthermore, information in the TLB may be 
purged under conditions additional to those 
for which purginq is mandatory. 

The formation of TLB entries and the effect 
of any manipulation of the contents of a 
table entry by the program depend on 
whether the entry is valid, on whether the 
entry is attached, on whether a copy of the 
entry can be placed in the TLB, and on 
whether a copy in the TLB of the entry is 
usable. 

The Y~lig state of a table entry denotes 
that the segment or page associated with 
the table entry is available. An entry is 
valid when the segment-invalid bit or 
page-invalid bit in the entry is zero. The 
atta£ned state of a table entry denotes 
that the CPU can attempt to use the table 
entry for implicit address translation. 
The Y~~Q!~ state of a TIB entry denotes 
that the CPU can attempt to use the TLB 
entry for implicit address translation. 

A segment-table entry or a page-table entry 
may be placed in the TLE only when the 
entry is attached and valid and would not 
cause a translation-specification exception 
if used for translation. Except for these 
restrictions, the entry may be placed in 

3-22 System/370 principles of Operation 

the TLB at any time. 

A segment-table entry is attached to a CPU 
by means of the primary segment-table 
designation when all of the following 
conditions are met: 

1. The current PSW specifies DAT on. 

2. 

3. 

4. 

5. 

The current PSW contains no errors 
which would cause an early exception 
to be recognized. 

The current translation format, bits 
8-12 in control register 0, is valid. 

The entry is within the segment table 
specified by the primary segment-table 
designation in control register 1. 

The entry can be selected 
segment-index portion of a 
ad.dress. 

by the 
vi rtual 

Condition 2 does not necessarily apply on 
models without DAS. 

A segment-table entry is attached to a CPU 
by means of the secondary segment-table 
designation when all of the following 
conditions are met: 

1. The current PSW specifies DAT on. 

2. The current PSW contains no errors 
which would cause an early exception 
to be recognized. 

3. 

4. 

The current translation format, bits 
8-12 in control register 0, is valid. 

The entry is within the segment table 
specified by the secondary segment­
table designation in control register 
7 and either of the following 
requirements are met: 

• The CPU is 
mode. 

in secondary-space 

• The secondary-space control, bit 5 
of control register 0, is one. 

A page-table entry is attached to a CPU 
when it is within the page table designated 
by either a usable TLB segment-table entry 
or by an attached and valid segment-table 
entry which would not cause a 
translation-specification exception if used 
for translation. 

A TLB segment-table entry is in the usable 
state when all of the following conditions 
are met: 

1. The current PSW specifies DAT on. 

2. The current 
which would 

PSW contains no errors 
cause an early exception 



to be recognized. 

3. The translation-format field in the 
TLB segment-table entry is the same as 
the current translation format. 

4. The current translation for.at, bits 
8-12 in control register 0, is valid. 

5. The TLB-segment-table entry meets at 
least one of the following 
requirements: 

• The common bit is one in the TLB 
entry, or 

• 

• 

The segment-table-origin field in 
the TLB entry is the same as the 
current PSTO, or 

The segment-table-origin field in 
the TLB entry is the same as the 
current SSTO and either PSW bit 16 
is one or bit 5 of control 
register 0 is one. 

Condition 2 does not 
without DAS. 

apply on models 

A TLB segment-table entry may be used for 
implicit address translation only when the 
entry is in the usable state and the 
segment index of the entry matches the 
segment index of the virtual address to be 
translated. 

A TLB page-table 
state when all of 
are met: 

entry is in the usable 
the following conditions 

1. The TLB page-table entry is selected 
by a usable TLB segment-table entry or 
by an attached and valid segment-table 
entry which would not cause a 
translation-specification exception if 
used for translation. 

2. 

3. 

The page-table-origin field in the 
matches 

field in 
which selects 

TLB 
t~ 

the 
page-table entry 
page-table-origin 
segment-table entry it. 

The page-index 
page-table entry 
permitted by the 
field in the TLB 
which selects it. 

field in the TLB 
is within the range 
segment-tab Ie-length 
segment-table entry 

4. The translation-format field in the 
TLB page-table entry is the same as 
the current translation format. 

A TLB page-table entry may be used for 
implicit address translation only when the 
TLB entry is in the usable state as 
selected by the TLB segment-table entry 
being used and only when the page index of 
the TLB page-table entry matches the page 
index of the virtual address being 

translated. 

The operand address of LOAD REAL ADDRESS is 
translated without the use of the TLB 
contents. Translation in this case is 
performed by the use of the designated 
tables in main storage. 

Selected page-table entries are purged from 
the TLB by means of the INVALIDATE PAGE 
TABLE ENTRY instruction. All information 
in the TLB is necessarily cleared only by 
execution of PURGE TLB, SET PREFIX, or CPU 
reset. 

1. Although a copy of a table entry may 
be placed in the TLB only when the 
entry is both valid and attached, the 
copy may remain in the TLB even when 
the entry itself is no longer valid or 
attached. 

2. No entries can be placed in the TLB 
when DAT is off because the table 
entries at this time are not attached. 
In particular, translation of the 
operand address of LOAD REAL ADDRESS, 
with DAT off, does not cause entries 
to be placed in the TLB. 

conversely, when DAT is on, 
information may be loaded into the TLB 
from all translation-table entries 
that could be used for address 
translation, given the current 
translation parameters. The loading 
of the TLB does not depend on whether 
the entry is used for translation as 
part of the execution of the current 
instruction, and such loading can 
occur when the wait state is 
specified. Similarly, information 
from a segment-table or page-table 
entry having a format error may be 
recorded in the TLB. 

3. More than one copy of a table entry 
may exist in the TLB. For example, 
some implementations may cause a copy 
of a valid table entry to be placed in 
the TLB for each segment-table origin 
by which the entry becomes attached. 

4. The segment size controls how many 
segment-table entries can be referred 
to for translation. Both the page 
size and segment size control the 
selection of page-table entries and 
hence may affect whether or not an 
entry is attached. 

5. The states and use of the DAT entries 
in both storage and in the TLB are 
summarized in the figure "Summary of 
DAT Entries." 

Chapter 3. Storage 3-23 



r----
state or Function 

STE is attached by means 
of PSTD (applies only to 
STE in storage) 

STE is attached by means 
of SSTD (applies only to 
STE in storage) 

STE in storage is usable 
for a particular instance 
of implicit translation 

STE can be placed in TLB 

STE in TLB is usable 

STE in TLB is usable for 
a particular instance of 
implicit translation 

PTE is attached (applies 
only to PTE in storage) 

PTE in storage is usable 
for a particular instance 
of implicit translation 

Conditions To Be ~et 

• DAT on 
• No early PSi exception* 
• TF valid 
• STE in segment table defined by 

PSTD in CR1 
• STE selectable by a 24-bit ad­

dress 

• DAT on 
• No early PSi exceptions 
• TF valid 
• STE in segment table defined by 

SSTD in CR7 
• STE selectable by a 24-bit ad­

dress 
• PSi bit 16 one or bit 5 of CRO 

one 

• STE in segment table defined and 
attached by STD being used for 
the translation 

• STE selected by SX 

• STE attached 
• STE I bit zero 
• No TS 

• DAT on 
• No early PSi exceptions* 
• TF matches 
• STE can be selected by an STD 

C bit one, or 
STO matches PSTO, or 
STO matches SSTO and PSi bit 
16 one or bit 5 of CRO one 

• DAT on 
• No early PSi exceptions* 
• TF matches 
• STE selected by STD being used 

for the translation, that is, 
- STO matches, or 
- C bit one 

• SX matches 

• PTE in page table defined by 
usable STE in the TLB or defined 
by an STE that can be placed in 
the TLB 

• PTE in page table defined by STE 
being used for the translation 

• PTE selected by PX 
~----------------------------~--------------.----------------------~ 

, Summary of DAT Entries (Part 1 of 2) 

3-24 System/370 principles of Operation 



I State or Function conditions To Be Met 
r-----------------

PTE can be placed in TLB • PTE attached 
• PTE I bit zero 
• No TS 

PTE in TLB is usable • PTE selected by a usable STE in 
the TLB or by an STE that can 
be placed in the TLB 

PTO matches, and 
PX within PTL, and 
TF matches 

PTE in TLB is usable for 
a particular instance of 
implicit translation 

• PTE selected by STE being used 
for the translation 

PTO matches, and 
- PX within PTL, and 
- TF matches 

• PX matches 
r-------------------

* Condition does not necessarily apply on models 
which do not have DAS installed 

C bit 
I bit 
PSTD 
PSTO 
PTE 
PTL 
PTO 
PX 
SSTD 
SSTO 
STD 
STE 
STO 
SX 

Common-segment bit in STE 
Invalid bit in table entry 
Primary segment-table designation 
Primary segment-table origin 
page-table entry 
page-table length 
Page-table oriqin 
Page index 
Secondary seqment-table designation 
secondary segment-table origin 
segment-table designation 
segment-table entry 
Segment-table origin 
segment index 

TF 
TS 

Translation format (control register 0, bits 8-12) 
Translation-specification exception 

Summary of DAT Entries (Part 2 of 2) 

when an attached and invalid table entry is 
made valid and no usable entry for the 
associated virtual address is in the TLB, 
the change takes effect no later than the 
end of the current unit of operation. 
Similarly, when an unattached and valid 
table entry is made attached and no usable 
entry for the associated virtual address is 
in the TLB, the change takes effect no 
later than the end of the current unit of 
operation. 

When a valid and attached table entry is 
changed, and when, before the TLB is 
purged, an attempt is made to refer to 
storage using a virtual address requiring 
that entry for translation, unpredictable 
results may occur, to the following extent. 
The use of the new value may begin between 

instructions or during the execution of an 
instruction, including the instruction that 
caused the change. Moreover, until the TLB 
is purged, the TLB may contain both the old 
and the new values, and it is unpredictable 
whether the old or new value is selected 
for a particular access. If both old ani 
new values of a segment-table entry are 
present in the TLB, a page-table entry may 
be fetched using one value and placed in 
the TLB associated with the other value. 
If the new value of the entry is a vall 
which would cause an exception, the 
exception mayor may not cause an 
interruption to occur. If an interruption 
does occur, the result fields of the 
instruction may be changed even though the 
exception would normally cause suppression 
or nullification. 

When LOAD CONTROL changes the transla tion 
format, segment-table oriqi n, or 

Chapter 3. Storaqe 3-25 



segment-table length, the values of these 
fields at the start of the operation are in 
effect for the duration of the operation. 

Entries are deleted from the TLB in 
accordance with the following rules: 

1 • All entries are deleted from 
by PURGE TLB, SET PREFIX, 
reset. 

the TLB 
and CPU 

2. Selected entries are deleted from the 
TLB by the execution of INVALIDATE 
PAGE TABLE ENTRY or by receipt of an 
INVALIDATE PAGE TABLE ENTRY broadcast 
from another cpu. 

3. Some or all TLB entries may be purged 
at times other than those required by 
PURGE TLB and INVALIDATE PAGE TABLE 
ENTRY. 

1. Entries in the TLB may continue to be 
used for translation after the table 
entries from which they have been 
formed have become unattached or 
invalid. These TLB entries are not 
necessarily removed unless explicitly 
purged from the TLB. 

A change made to an attached and valid 
entry or a change made to a table 
entry that causes the entry to become 
attached and valid is reflected in the 
translation process for the next 
instruction, or earlier than the next 
instruction, unless a TLB entry 
qualifies for sUbstitution of that 
table entry. However, a change made 
to a table entry that causes the entry 
to become unattached or invalid is not 
necessarily reflected in the 
translation process until the TLB is 
purged of entries which qualify for 
sUbstitution for that table entry. 

2. Exceptions associated with dynamic 
address translation may be established 
bV a pretest for operand accessibility 
that is performed as part of the 
initiation of the execution of the 
instruction. Conseguently~ a segment­
translation or page-translation 
exception may be indicated when a 
table entry is invalid at the start of 
execution even if the instruction 
would have validated the table entry 
it uses and the tatle entry would have 
appeared valid if the instruction was 
considered to process the operands one 
byte at a time. 

3. A chanqe made to an attached table 
entry, except to set the I bit to one 

3-26 System/370 principles of operation 

or zero, may produce unpredictable 
results if that entry is used for 
translation before the TLB is purged. 
The use of the new value may begin 
between instructions or during the 
execution of an instruction, including 
the instruction that caused the 
change. When an instruction, such as 
MOVE (MVC), makes a change to an 
attached table entry, including a 
change that makes the entry invalid, 
and subsequently uses the entry for 
translation, a changed entry is being 
used without a prior purging of the 
TLB, and the associa ted 
unpredictability of result values and 
of exception recognition applies. 

Manipulation of attached table entries 
may cause spurious table-entry values 
to be recorded in a TLB. For example, 
if changes are lade piecemeal, 
modification of a valid attached entry 
may cause a partially updated entry to 
be recorded, or, if an intermediate 
value is introduced in the process of 
the change, a supposedly invalid entry 
may temporarily appear valid and may 
be recorded in the TLB. Such an 
intermediate value may be introduced 
if the change is made by an I/O 
operation that is retried, or if an 
intermediate value is introduced 
during the execution of a single 
instruction. 

As another example, if a seq ment-table 
entry is changed to designate a 
different page table and used without 
purging the TLB, then the new page­
table entries may be fetched and 
associated with the old page-table 
or1g1n. In such a case, the 
instruction INVALIDATE PAGE TABLE 
ENTRY (IPTE) designating the 
page-table origin will not necessarily 
purge the page-table entries fetched 
from the new page table. 

4. To facilitate the manipulation of 
translation tables, IPTE is provided, 
which sets the I bit in a page-table 
entry to one and purges all system 
TLBs of entries formed from that table 
entry. 

IPTE is useful for setting the I bi t 
to one in a page-table entry and 
causing TLB copies of the entry to be 
purged from the TLB of each CPU in the 
configuration. The followi nq aspects 
of the TLB operation should be 
considered when using IPTE. (See also 
the programming notes following IPTE.) 

a. IPTE should be issued before 
making any change to a page-table 
entry other than changing the 
low-order bit; otherwise, the 

J 



selective purging portion of IPTE 
may not purge the TLB copies of 
the entry. 

b. Invalidation of all the page-table 
entries within a page table by 
means of IPTE does not necessarily 
purge the TLB of the copies, if 
any, of the segment-table entry 
designating the page table. When 
it is desired to invalidate and 
purge a segment-table entry, the 
rules in note 5 below must be 
followed. 

c. When a large number of page-table 
entries are to be invalidated at a 
single time, the overhead involved 
in using PTLB and in following the 
rules in note 5 below may be less 
than in issuing an IPTE for each 
page-table entry. 

5. For cases other than the Use of IPTE 
for invalidating a page-table entry, 
manipulation of table entries should 
be in accordance with the following 
rules. If these rules are observed, 
translation is performed as if the 
table entries from main storage were 
always used in the translation 
process. 

a. An entry must not be changed while 
it is being used by a CPU except 
either to invalidate the entry, 
using PURGE TLB (PTLB) or IPTE, or 
to alter bit 15 of a page-table 
entry. 

b. When any change is made to a table 
entry other than a change to the 
low-order bit of a page-table 
entry, each CPU which may have a 
TLB entry formed from that entry 
must issue PTLB after the change 
occurs and prior to the use of 
that entry for translation by that 
CPU, except that the purge is 
unnecessary if the change was made 
using IPTE or was made to bit 15 
of a page-table entry. 

c. When any change is made to an 
invalid entry in such a way as to 
cause intermediate valid values to 
appear in the entry, each CPU to 
which the entry is attached must 
issue PTLB after the change occurs 
and prior to the use of the entry 
for implicit address translation 
by that CPU. 

d. When any change is made to a 
segment-table or page-table 
length, each CPU to which that 
table has been attached must issue 
PTLB after the length has been 
changed but before that table 

becomes attached again to the CPU. 

Note that when an invalid page-table 
entry is made valid without 
introducing intermediate valid values, 
the TLB need not be purged in a CPU 
which does not have any usable TLB 
copies for that entry. Similarly, when 
an invalid segment-table entry is made 
valid without introducing intermediate 
valid values, the TLB need not be 
purged in a CPU which does not have 
any usable TLB copies for that 
segment-table entry and which does not 
have any usable TLB copies for the 
page-table entries attached by it. 

Execution of PTLB may have an adverse 
effect on the performance of some 
models. Use of this i nstruc tion 
should, therefore, be minimized in 
conformity with the above rules. 

ADDRESSES TRANSLATED 

Most addresses that are explicitly 
specified by the program and are used by 
the CPU to refer to storage for an 
instruction or an operand are loqical 
addresses and are subject to translation 
when DAT is on. Analoqously, the 
corresponding addresses indicated to the 
program on an interruption or as the result 
of executing an instruction are logical. 

Translation is not a pplied to aua nti ties 
that are formed as storage addresses from 
the values designated in the Band D fields 
of an instruction but that are not used to 
address storage. This includes operand 
addresses in LOAD ADDRESS, MONITOR CALL, 
and the shifting and I/O instruction. This 
also includes the addresses in control 
registers 10 and 11 designating the 
starting and ending locations for PER. 

with the exception of INSERT VIRTUAL 
STORAGE KEY, the addresses explicitly 
designating storage keys (operand addresses 
in SET STORAGE KEY, INSERT STORAGE KEY, and 
RESET REFERENCE BIT) are real addresses. 
Similarly, the addresses implicitly used by 
the CPU or channel for such seguences as 
interruptions, updating the interval timer 
at location 80, DAT-table references, and 
logout, including the machine-check­
extended-logout address in control register 
15, are real addresses. 

The addresses used by channels to transfer 

Chapter 3. Storage 3-27 





• Addresses of PSWs, interruption codes, and associated in­
formation used during interruption 

• Address used by CPU to update interval timer at real loca­
tion 80 

• Address of CAW, CSW, and other locations used during an IIO 
interruption or during execution of an IIO instruction, in­
cluding STORE CHANNEL ID 

• Prefix value 
• CCW address in CAW 
• Data address in CCW 
• Address of the indirect-data-address list in a CCW speci-

fying indirect-data addressing 
• CCW address in a CCW specifying transfer in channel 
• Data address in indirect-data-address words 
• IOEl address at real location 172 
• Failing-storage address stored in the word at real location 

248 
• CCW address in CSW 

• Addresses of PSW and first two CCWs used for initial pro­
gram loading 

• Addresses used for the store-status function 

• PER starting address in control register 10 
• ~ER ending address in control register 11 
• The address stored in the word at real location 156 for a 

monitoring event 
• Address in shift instructions and other instructions speci­

fied not to use the address to reference storage 
• Parameter stored in the word at real location 128 for a 

service-signal external interruption 

Handling of Addresses (Part 2 of 2) 

8-15 R~§!s~! Qld £SW: The current PSW 
is stored as the old PSW at 
locations 8-15 during a restart 
interruption. 

ASSIGNED REAL-STORAGE lOCATIONS 

The figure "Assigned locations in Real 
storage" shows the format and extent of the 
assigned locations in real storage. In a 
multiprocessing system, real storage 
addresses are transformed to absolute 
addresses by means of prefixing. The 
locations are used as follows. Unless 
specifically noted, the usage applies to 
both the BC and EC modes. 

0-7 Restart New PSW: The new PSW is 
fetched from locations 0-7 during a 
restart interruption. 

24- 31 

32- 39 

40-IJ7 

IJa-55 

External Old PSW: The current psw 
is-stored as the old PSW at 
locations 2IJ-31 during a n ext(~rnal 
interruption. 

2.!!pervisor=fsll Q1S! £~~: The 
current PSi is stored as the old 
PSW at locations 32-39 durinq a 
supervisor-call interruption. 

£~Qg~sID Qld PSW: The current PSW 
is stored as the old PSW at 
locations 40-47 during a program 
interruption. 

!'lachine-Check Old PSW: 
PSW is stored--as-the 
locations IJa-55 

The curren t 
old ~s W at 

durinq a 

Chapter 3. Storaqe 3-29 



56-63 

64-71 

72-75 

80-83 

84-87 

machine-check interruption. 

InputLOutput £ld i~!: The current 
PSi is stored as the old PSi at 
locations 56-63 during an I/O 
interruption. 

CSi: The channel-status word (CSW) 
1S stored at locations 64-71 durinq 
an I/O interruption. Part or all 
of it may be stored during the 
execution of START I/O, START I/O 
FAST RELEASE, TEST I/O, CLEAR I/O, 
HALT I/O, or HALT DEVICE, in which 
case condition code 1 is set. 

~!!: The channel-address word 
(CAW) is fetched from locations 
72-75 during the execution of START 
I/O and START I/O FAST RELEASE. 

Interval Timer: Locations 80-83 
contaIn the - interval timer. The 
interval timer is updated whenever 
the CPU is in the operating state 
and the manual interval-timer 
control is set to enable. 

Address Qf l'.il.f~~bl~ Header: The 
address of the control block which 
defines the trace table used by DAS 
tracinq and by the System/370 
extended facility is provided in 
this location. 

88-95 ~~ternal N~~ iSW: The new PSi is 
fetched from locations 88-95 during 
an external interruption. 

96-103 ~~per!iso£=Ca!! ]~! iSW: The new 
PSi is fetched from locations 
96-103 during a supervisor-call 
int erruption. 

104-111 groq~~m Ng~ i~!: The new PSW is 
fetched from locations 104-111 
during a program interruption. 

112-119 Machine-Check New PSi: The new PSi 
is-fetche~~rom-locations 112-119 
durinq a machine-check 
interruption. 

120-127 In~1LOut~1 ]~! PSi: The new PSi 
is fetched from locations 120-127 
during an I/O interruption. 

128-131 EXig£nal-In1~rr~11Q~ Pa~~~te~: 
During an external interruption due 
to service signal, the parameter 
associated with the interruption is 
stored at locations 128-131. 

132-133 CPU Address: During an external 
Interruption due to malfunction 
alert, emergency siqnal, or 
external call, the CPU address 
associated with the source of the 
interruption is stored at locations 

3-30 Svstem/370 principles of Operation 

132-133. For all other 
external-interruption conditions, 
zeros are stored at locations 
132-133 when the old PSW specified 
the EC mode, and the field remains 
unchanged when the old PSW 
specified the BC mode. 

134-135 Exi~na1-In1~~~E1iQ~ £~g: During 
an external interruption in the EC 
mode, the interruption code is 
stored at locations 134-135. 

136-139 ~~~~viso~-Call-I~1g~~]E1!Q~ IQ§n= 
tification: During a supervisor­
call interruption in the EC mode, 
the instruction-length code is 
stored in bit positions 5 and 6 of 
location 137, and the interruption 
code is stored at locations 
138-139. Zeros are stored at 
location 136 and in the remaining 
bit positions of 137. 

140-143 f~Qg~~m-Int§~rup1iQ~ IQ§~1ifi£~= 
1iQ~: During a program interrup­
tion in the EC mode, the 
instruction-length code is stored 
in bit positions 5 and 6 of 
location 141, and the interruption 
code is stored at locations 
142-143. Zeros are stored at 
location 140 and in the remaininq 
bit positions of 141. 

144-147 1'.£~~§!ation-Ex~E1iQ~ IQ§~1ifi£~= 
1iQn: During a program interrup­
tion due to a segment-translation 
exception or a paqe-translation 
exception, the virtual address 
beinq translated is stored at 
locations 144-147. This address is 
sometimes referred to as the 
translation-exception address. 
Bits 1-7 of location 144 are set to 
zeros. With DAS, bit 0 of location 
144 is set to zero if the 
translation was relative to the 
primary segment table desiqnated by 
control register 1, and set to one 
if the translation was rela ti ve to 
the secondary segment table 
designed bV control register 7. 
Without DAS, bit 0 of location 144 
is set to zero. 

During a program interruption due 
to an AFx-translation, ASX­
translation, primary-authority, or 
secondary-authority exception, the 
ASN being translated is stored at 
locat ions 146-147. Loca tion s 
144-145 are set to zeros. 

During a program interruption for a 
space-switching event, the old 
PASN, Which appears in the right 
half of control register 4 before 
the execution of a space-switching 

J 



PC or PT instruction, is stored at 
locations 146-147. Locations 
144-145 are set to zeros. 

During a program interruption due 
to an Lx-translation or EX­
translation exception, the PC 
number is stored in bit positions 
12-31 of the word at location 144. 
Bits 0-11 are set to zeros. 

148-149 112ni!.or-Cl.!~ Numg:£: During a 
program interruption due to a 
monitor event, the monitor-class 
number is stored at location 149, 
and 2eros are stored at 148. 

150-151 .f]]! £Qg~: During a program 
interruption due to a PER event, 
the PER code is stored in bit 
positions 0-3 of location 150, and 
zeros are stored in hit positions 
4-7 and at location 151. This 
field cart be stored only when the 
instruction causing the PER 
condition was executed under the 
control of a PSi specifying the EC 
mode. 

152-155 .f]~ !£~~e§: During a program 
interruption due to a program 
event, the PER address is stored at 
locations 153-155, and zeros are 
stored at location 152. This field 
can be stored only when the 
instruction causing the PER 
condition was executed under the 
control of a PSW specifying the EC 
mode. 

156-159 MonitQ:£ f.Qg~: During a 
interruption due to a 
event, the monitor code 
at locations 1$7-159, and 
stored at location 156. 

program 
monitor 

is stored 
zeros are 

161-163 11!.f1: Address 
used by the 
facility. 

of a control block 
System/370 extended 

168-171 Channel 1~: The four-byte channel­
identification information is 
stored at iocations 168-171 during 
the execution of STORE CHANNEL 10. 

172-175 IQEL Addrg§§: The 1/0-extended­
logout address is fetched from 
locations 172-175 during the 1/0-
extended-logout operation. 

176-179 1imit~~ ~hann~ 1oqout: The 
limited-Channel-logout information 
is stored at locat ions 176 .... 179. 
This field may te stored only when 
the CSW or a portion of the CSW is 
stored. 

185-187 ILQ During an 1/0 

216-223 

interruption in the EC mode, the 
two-byte 1/0 address is stored at 
locations 186-187, and zeros are 
stored at location 185. 

Machine-C heck CPU-Timer 
During--a--machine=check 
tion, the contents of 
timer, if installed, are 
locations 216-223. 

2~!~ ll!!:: 
intertllp'" 

the CPU 
stored at 

224-231 l1~£hi~e-£Eec~ Cl2£~=£~~E~:£~!2:£ l!~ 
!:£~~: During a machine-cHeck 
interruption, the contents of 'the 
clock comparator, if installed, are 
stored at location 224-231. 

232-239 

244-247 

248-251 

252-255 

256-351 

352-383 

384-447 

448- 511 

Machine-£Eeck-Int~:£:£~i2~ ~~~; 
During a machine-check interruption 
the machine- check- interrupti on ~ode 
is stored at locations 232-239. 

External-Damag~ ~Q~~: Durinq a 
machine-check interruption due; to 
certain external-damage conditidns, 
depending on the model, an 
external-damage code may be stdl:Etd 
in these locations. 

1.!il~nq-storaqe !~dr~E§: Duriri, a 
machine-check interruption,' , .. a 
failing-storage address, if any~.is 
stored at locations 249-251, .lnd 
zeros are stored at location 24~~ 

B.ggi21l £.Qg~: During a lIachhe­
check interruption, model-depencl.n;t 
information may be stored ~t 
locations 252-255. J 

'~ 
Fi.!~g=Loqout Ar~~: Depending /jOn 
the model, logout information jay 
be placed in this area durinq~ a 
machine-check interruptitm. 
Additionally, the contents . .of 
locations 256-351 maybe changed»at 
any time, subject to ;~e 
asynchronous-fixed-logout-contrG\ 
bit in control register 14. : 

~~chi~e-c he.f! 
R e.!li&i~:£ 2g~ 
machine-check 
contents of 
registers are 
352-383. 

F lO~J:i~q=f.di;t­
Area: Durinq ~'\a 

interruption, the 
the floating-point 
stored at locations 

'"i.-: 

l 
Machine-Check ~~1l~~~1-R~gi§!~:£ ~i!! 
!:£~~:----OUring a machine-cl~k 
interruption, the contents of !.e 
general registers are stored U';at 
locations 384-447. 

~g£hi~e-Ch~.f~ COlltr2l-Reqi§!~:£ ~!~~ 
Ar~~: During a machine-clieck 
interruption, the contents of the 
control registers are stored at 
locations 448-511. 

Chapter 3. Storaqe j-31 



ASSIGNED ABSOLUTE STORAGE LOCATIONS 

The figure "Assiqned Locations in Absolute 
Storaqe" shows the format and extent of the 
assigned locations in aisolute storage. 
The locations are as follows, and the usage 
applies to both the BC and EC modes. 

0-7 IR1 PSi: The first eight bytes 
read -during the IPl initial read 
operation are stored at locations 
0-7. The contents of these 
locations are used as the new PSi 
at the completion of the IPL 
operation. These locations may 
also be used for temporary storage 
at the initiation of the IPL 
operation. 

8-15 IR1 ~~JU: Bytes 8-15 read during 
the IPL initial read operation are 
stored at locations 8-15. The 
contents of these locations are 
ordinarily used as the next CCi in 
an IPL CCi chain after completion 
of the IPL initial-read operation. 

16-23 IP1 ~~i2: Bytes 16-23 read during 
the IPL initial read operation are 
stored at locations 16-23. The 
contents of these locations may be 
used as another CCi in the 1PL cei 
chain to follow IPL cei1. 

216-223 Store-Status ~PU-Tim~~ ~av~ !~g: 
During-~he execution of the 
store-status operation, the 
contents of the CPU timer, if 
installed, are stored at locations 
216-223. 

3-32 System/370 Principles of Operat ion 

!~ea: During the execution of the 
store-status operation, the 
contents of the clock comparator, 
if installed, are stored at 
location 224-231. 

256-263 Store-Status PSi Save !~~~: During 
the execution--of-the store-status 
operation, the contents of the 
current PSi are stored at location 
256-263. 

264-267 store-Status Prefix Save Area: 
During---the execution---of --the 
store-status operation, the 
contents of the prefix register, if 
installed, are stored at location 
264-267. 

268-271 ~!Q~~-Stgtus Mod~l=DeE~~g~~! ~g~~ 
!~~g: During the execution of the 
store-status operation, model­
dependent information may be stored 
at locations 268-271. 

352-383 Store-Status Floa!i~g=~9in!= 
~ii!§!er -save !~~g: During the 
execution of the store-status 
operation, the contents of the 
floating-point registers are stored 
at locations 352-383. 

384-447 Store-Status ~~ne~gl=E~gi§!~~ Sa~~ 
!~~i:-During the execution of the 
store-status operation, the 
contents of the qeneral registers 
are stored at locations 384-447. 

448-511 ~!Q~~=stgtus Coni~Ql-R~gi§!~~ Sa~~ 
!~~g: During the execution of the 
store-status operation, the 
contents of the control reqisters 
are stored at locations 448-511. 



Hex Dec 

o 0 

4 4 

8 8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

80 

84 

88 

5C 92 

60 96 

64 100 

68 104 

6C 108 

70 112 

74 116 

78 120 

7C 124 

80 128 

84 132 

88 136 

8C 140 

90 144 

94 148 

98 152 

9C 156 

AO 160 

A4 164 

A8 168 

AC 17 2 

80 176 

84 180 

88 184 

Restart New PSW 

Restart Old PSW 

External Old PSW 

Supervisor Call Old PSW 

Program Old PSW 

Machine-Check Old PSW 

Input/Output Old PSW 

Channel Status Word 

Channel Address Word 

Interval Timer 

Address of Trace Table Header 

External New PSW 

Supervisor Call New PSW 

Program New PSW 

Machine-Check New PSW 

Input/Output New PSW 

External-Interruption Parameter 

CPU Address External-I nterruption Code 

OOOOOOOOOOOOOlllClo Superv -Call-Irptn Code 

OOOOOOOOOOOOOlllC~ Program-I nterruption Code 

Translation-Exception Identification 

00000000 MonitorCI # PERC 1000000000000 

00000000 PER Address 

00000000 Monitor Code 

MAPL Address 

Channel I D 

10El Address 

limited Channel logout 

00000000 I/O Address 

Assigned Locations in Real storage 

, 

Hex De c 

BC 188 

CO 192 

C4 196 

C8 200 

CC 204 

DO 208 

D4 21 2 

D8 216 Machine-Check CPU-Timer Save Area 

DC 220 

EO 22 4 Machine-Check Clock-Comparator Save Area 

E4 22 8 

E8 23 2 Machine-Check I nterruption Code 

EC 23 6 

FO 24 0 

F4 24 4 External-Damage Code 

F8 24 8 000000001 Failing-Storage Address 

FC 25 2 

100 25 

104 26 

108 26 

10C 268 

6 

0 

4 

...-l-

-~ 
154 340 

158 344 

Region Code 

Fixed Logout Area 

-'-

15C 3481--________________ ---.1 

160 352 Machine-Check Floating-Point Register Save Area 

164 356 

168 360 

16C 364 

170 368 

174 372 

178 376 

17C 380I--________________ ~ 

180 384 

184 388 

188 392 

18C 396 

lF4 

1F8 

1FC 

Machine-Check General-rlegister Save Area 

Machine-Check Control-Register Save Area 

Chapter 3. storaqe 3-33 



Hex Dec 

0 0 Initial Program Loading PSW 

4 4 

8, 8 Initial Program Loading CCWl 

C 12 

10 16 Initial Program Loading CCW2 

14': 20 

18 24 

lC 28 

20 - 32 

24 36 

28, 40 

2C -, 44 

30 ;48 
34 ; 52 

38 56 

3C 60 

40 64 

44 68 

48 72 

4C 76 

50 80 

54 84 

58 ,88 

5C '92 

60 96 

64 100 

68: ~04 

6C ~08 

70 112 

74 '16 

78 120 

7C 124 

80 128 

84 132 

88 136 

8C 140 

90 144 

94 148 

98 152 

9C 156 

AO !160 

A4 164 

AS 168 

AC 172 

80 176 

84 180 

B8 184 

Be 188 

A$~igned Locations in Absolute storage 

Hex 

CO 

C4 

C8 

CC 

DO 

D4 

08 

DC 

EO 

E4 

E8 

EC 

FO 

F4 

F8 

FC 

100 

104 

108 

10C 

110 

158 

15C 

160 

164 

168 

16C 

170 

174 

178 

17C 

180 

184 

188 

18C 

184 

lB8 

lBC 

lCO 

lC4 

lC8 

lCC 

1 F4 

lF8 

lFC 

3-34 Svstem/370 principles of Operation 

Dec 

192 

196 

200 

204 

208 

212 

216 Store-Status CP\J Timer Save Area 

220 

224 Store-Status Clock-Comparator Save Area 

228 

232 

236 

240 

244 

248 

252 

256 Store-Status PSW Save Area 

260 

264 Store-Status Prefix Save Area 

268 Store-Status MOdel-Dependent Save Area 

272 

~::l ~ 
344 

348 

352 Store·Status Floating-Point Register Save Area 

356 

360 

364 

368 

372 

376 

380 

384 Store-Status General-Register Save Area 

388 

392 

396 

~ ~ 

436 

440 

444 

448 Store-Status Control-Register Save Area 

452 

456 

460 
, 

:ll---__ I 



stopped, Operating, Load, and Check-Stop states ••••••••••••••••• 4-2 
Stopped State ••••••••••••••••••••••••••••••••••••••••••••••••• 4-2 
Operatinq State ••••••••••••••••••••••••••••••••••••••••••••••• 4-2 
Load State •••••••••••••••••••••••••••••••••••••••••••••••••••• 4-3 
Check-Stop state •••••••••••••••••••••••••••••••••••••••••••••• 4-3 

program-Status Word ••••••••••••••••••••••••••••••••••••••••••••• 4-3 
EC and BC Modes ••••••••••••••••••••••••••••••••••••••••••••••• 4-4 
Proqram-Status-Word Format in EC Mode ••••••••••••••••••••••••• 4-6 
Proqram-Status-Word Format in BC Mode ••••••••••••••••••••••••• 4-8 

Control Registers ••••••••••••••••••••••••••••••••••••••••••••••• 4-9 
DAS Tracing ••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-11 

Trace-Table-Entry-Header origin ••••••••••••••••••••••••••••••• 4-12 
Trace-Table-Entry Header •••••••••••••••••••••••••••••••••••••• 4-12 

Applicable Controls ••••••••••••••••••••••••••••••••••••••••• 4-13 
Trace Entry ••••••••••••••••••••••••••••••••••••••••••••••••••• 4-13 

program-Event Recording ••••••••••••••••••••••••••••••••••••••••• 4-14 
Control-Register Allocation ••••••••••••••••••••••••••••••••••• 4-15 
Operation ••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-15 

Identification of Cause ••••••••••••••••••••••••••••••••••••• 4-16 
Priority of Indication •••••••••••••••••••••••••••••••••••••• 4-16 

Storaqe-Area Designation •••••••••••••••••••••••••••••••••• 4-17 
PER Events •••••••••••••••••••••••••••••••••••••••••••••••••••• 4-17 

Successful Branching •••••••••••••••••••••••••••••••••••••••• 4-17 
Instruction Fetching •••••••••••••••••••••••••••••••••••••••• 4-18 
Storage Alteration •••••••••••••••••••••••••••••••••••••••••• 4-18 
General-Register Alteration ••••••••••••••••••••••••••••••••• 4-18 

Indication of Events Concurrently with Other Interruption 
Conditions •••••••••••••••••••••••••••••••••••••••••••••••••••• 4-19 

Direct Control •••••••••••••••••••••••••••••••••••••••••••••••••• 4-22 
Read-Write-Direct Facility •••••••••••••••••••••••••••••••••••• 4-22 
External-Signal Facility •••••••••••••••••••••••••••••••••••••• 4-22 

Timinq •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-22 
Time-of-Day Clock ••••••••••••••••••••••••••••••••••••••••••••• 4-22 

Form at •••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-22 
States •••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-23 
Changes in Clock State •••••••••••••••••••••••••••••••••••••• 4-24 
Settinq and Inspecting the Clock •••••••••••••••••••••••••••• 4-24 

TOD-ClocK Synchronization ••••••••••••••••••••••••••••••••••••• 4-25 
Clock Comparator •••••••••••••••••••••••••••••••••••••••••••••• 4-26 
CPU Timer ••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-27 
Interval Timer •••••••••••••••••••••••••••••••••••••••••••••••• 4-28 

Externally Initiated Functions •••••••••••••••••••••••••••••••••• 4-29 
Service Signal.............. • •••••••••••••••••••••••••••• 4-29 
Resets •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4-29 

CPU Reset ••••••••••••••••••••••••••••••••••••••••••••••••••• 4-32 
Initial CPU Reset ••••••••••••••••••••••••••••••••••••••••••• 4-32 
Subsystem Reset •••••••••••••••• • •••••••••••••••••••••••• 4-33 
Program Reset ••••••••••••••••••••••••••••••••••••••••••••••• 4-33 
Initial program Reset ••••••••••••••••••••••••••••••••••••••• 4-33 
Clear Reset ••••••••••••••••••••••••••••••••••••••••••••••••• 4-33 
Power-On Reset •••••••••••••••••••••••••••••••••••••••••••••• 4-34 

Initial Program Loading ••••••••••••••••••••••••••••••••••••••• 4-34 
Store Status •••••••••••••••••••••••••••••••••••••••••••••••••• 4-35 

Multiprocessing ••••••••••••••••••••••••••••••••••••••••••••••••• 4-36 
Shared Main Storage ••••••••••••••••••••••••••••••••••••••••••• 4-36 
CPU-Address Identification •••••••••••••••••••••••••••••••••••• 4-36 

CPU Signaling and Response •••••••••••••••••••••••••••••••••••••• 4-36 
Siqnal-Processor Orders ••••••••••••••••••••••••••••••••••••••• 4-37 
Conditions Determining Response ••••••••••••••••••••••••••••••• 4-38 

Conditions Precluding Interpretation of the Order Code •••••• 4-38 
Status Bits ••••••••••••••••••••••••••••••••••••••••••••••••• 4-39 

Channel-Set Switching ••••••••••••••••••••••••• _ ••••••••••••••••• 4-41 

Chapter 4. Control 4-1 



This chapter 
facilities for 
recording the 
C1?Us. 

describes in 
controlling, 
operation of 

detail the 
measuring, and 

one or more 

The stopped, operating, load, and 
check-stop states are four mutually 
exclusive states of the CPU. When the CPU 
is in the stopped state, instructions and 
interruptions, other than the restart 
interruption, are not executed. In the 
rmerati.ng state, the CPU executes 
instructions and takes interruptions, 
subject to the control of the 
program-status word (PSW) and control 
registers, and in the manner specified by 
the settina of the operator-facility rate 
control. The CDU is in the load state 
during the initial-program-loading 
operation. The CPU enters the check-stop 
state only as the result of machine 
mal fu net ions. 

A chanqe between these four CPU states can 
be effected by use of the operator 
facilities or by acceptance of certain 
SIGNAL PROCESSOR orders addressed to that 
CDU. The states are not controlled or 
identified by bits in the PSi. The 
stopped, load, and check-stop states are 
indicated to the operator by means of the 
manual indicator, load indicator, and 
check-stop indicator respectively. These 
three indicators are off when the CPU is in 
the operatina state. 

The CPU timer is updated when the CPU is in 
the operating state or the load state. The 
TOD clock is updated whenever power is on. 
The interval timer is updated only when the 
CDU is in the operating state. 

STOPPED STATE 

The state of the CPU is changed from 
operatina to stopped by the stop function. 
The stop function is performed when: 

• 

• 

• 

The stop key is activated while the 
CplJ is in the operating state. 

The CPU accepts a stop or 
stop-and-store-status order specified 
by a SIGNAL PROCESSOR instruction 
addressed to this CPU while it is in 
the operating state. 

The CPU has finished the execution of 
a unit of operation initiated by 
performing the start function with the 

4-2 system/370 principles of Cperation 

rate control set to instruction step. 

When the stop function is performed, the 
transition from the operating to the 
stopped state occurs at the end of the 
current unit of operation. When the 
wait-state bit of the PSW is one, the 
transition takes place immediately, 
provided no interruptions are pending for 
which the CPU is enabled. In the case of 
interruptible instructions, the amount of 
data processed in a unit of operation 
depends on the particular instruction and 
may depend on the model. 

Before entering the stopped state, all 
pending allowed interruptions are taken 
while the CPU is still in the operating 
state. They cause the old PSW to be stored 
and the new PSi to be fetched before the 
stopped state is entered. When the CPU is 
in the stopped state, interruption 
conditions remain pending. 

The CPU is also placed in the stopped 
sta te: 

• When a reset is completed, except when 
the reset operation is performed as 
part of initial program loading, and 

• When an address comparison indicates 
equality and stopping on the match is 
specified 

The execution of resets is described in the 
section "Resets" in this chapter, and 
address comparison is described in the 
section "Address-Compare Controls" in 
Chapter 13, "Operator Facilities." 

If the CPU is in the stopped state when an 
INVALIDATE PAGE T~BLE ENTRY instruction is 
executed on another CPU in the 
configUration, the invalidation may be 
performed immediately or may be delayed 
until the CPU leaves the stopped state. 

OPERATING ST~TE 

The state of the CPU is chanaed from 
stopped to operating when the start 
function is performed or when a restart 
interruption (see Chapter 6) occurs. 

The start function is performed if the CPU 
is in the stopped state and (1) the start 
key associated with that CPU is activated 
or (2) that CPU accepts the start order 
specified by a SIGNAL PROCESSOR instruction 
addressed to that CPU. The effect of 
performing the start function is 
unpredictable when the stopped state was 
entered by means of a reset. 

When the wait-state bit is one and the rate 

J 

J 



control is set to instruction step, the 
start function causes no instruction to be 
executed, but all pending allowed 
interruptions are taken before the CPU 
returns to the stopped state. 

LOAD STATE 

The CPU enters the load state when the 
load-normal or load-clear key is activated 
~ee the section "Initial Program Loading" 
in this chapter). When the initial­
proqram-loading operation is completed 
successfully, the CPU state changes from 
load to operating, provided the rate 
control is set to process; if the rate 
control is set to instruction step, the CPU 
state changes from load to stopped. 

CHECK-STOP STATE 

The check-stop state, which the CPU enters 
on certain types of machine malfunction, is 
described in Chapter 11, "Machine-Check 
Handling." 

1. Except for the relationship between 
execution time and real time, the 
execution of a program is not affected 
by stopping the CPU. 

2. When, because of a machine 
malfunction, the CPU is unable to end 
the execution of an instruction, the 
stop function is ineffective, and a 
reset function has to be invoked 
instead. A similar situation occurs 
when an unending string of 
interruptions results from a PSW with 
a PSW-format error of the type that is 
recognized early, or from a persistent 
interruption condition, such as one 
due to the CPU timer. 

3. Input/output operations continue to 

completion after the CPU ente rs the 
stopped state. The interruption 
conditions due to completion of I/O 
operations remain pendinq when the CPU 
is in the stopped state. 

PROGRAM-STATUS ]ORD 

The current program-status word (PSi) 
contains information required for the 
execution of the currently active proqram. 
The PSi is 64 bits in length and includes 
the instruction address, condition code, 
and other control fields. In general, the 
PSi is used to control instruction 
sequencing and to hold and indicate much of 
the status of the CPU in relation to the 
program currently being executed.. 
Additional control and status information 
is contained in control registers ana 
permanently assigned storage locations. 

Control is switched during an interruption 
of the CPU by storinq the current PSi, so 
as to preserve the status of the CPU, and 
then loadinq a new PSi. 

The status of the CPU can be changed by 
loading a new PSi or part of a PSi. 

The instruction LOAD PSi introduces a new 
PSi. The instruction address is updated by 
sequential instruction execution and 
replaced by successful branches. other 
instructions are provided which operate on 
a portion of the PSi. The figure 
"operations on System Mask, PSi Ke y, and 
Program Mask" summarizes these 
instructions. 

A new or modified PSi becomes active (that 
is, the information introduced into the 
current PSi assumes control over the CPU) 
when the interruption or the execution of 
an instruction that chanqes the PSi is 
completed. The interruption for PER 
associated with an instruction that chanqes 
the PSi occurs under control of the PEB 
mask that is effective at the beqinninq of 
the operation. 

Bits 0-7 of the PSi are collectively 
referred to as the system mask. 

Chapter 4. Control 4-3 



I I I Condition 
I I System Mask, PSi Key , Code and 
I , (PSi Bits , (PSi Bits , Program , , 0-7) , 8-11) , Mask. 
I , , 

I I I , Instruction ,Saved Set ISaved, Set I Saved' Set , I , , , , 
,BRANCH AND LINK , No No , No , No , Yes , No 
,INSERT PSi KEY , No No , Yes , No , No , No 
,SET PROGRAM MASK , No No , No , No , No , Yes 
,SET PSi KEY FROM ADDRESS , No No , No , Yes , No , No 
,SET SYSTEM MASK , No Yes , No , No , No , No 
,STORE THEN AND SYSTEM MASK, Yes ANDs, No , No , No , No 
!STORE THEN OR SYSTEM MASK , Yes DRs , No , No , No , No 
I--

~!£la!!~iion: 

* PSi bits 18-23 in EC mode; PSi bits 34-40 in BC mode. 

ANDs The loqical AND of the immediate field in the instruc-
tion and the current system mask replaces the current 
system mask. 

DRs The loqical OR of the immediate field in the instruc­
tion and the current system mask replaces the current 
system mask. L----______________________ _ 

Operations on System Mask, PSi Key, and program Mask 

J 

EC AND BC MODES 

Two control modes are provided for the 
formatting and use of control and status 
information: the extended-control (EC) 
mode and the basic-control (BC) mode. 
Certain functions available in the EC mode, 
such as PER, are not available in the BC 
mode. The mode currently in effect is 
specified by PSi bit 12. Bit 12 is one for 
the EC mode and zero for the BC mode. 

instruction-length code are stored at J 
various permanently assigned storage 
locations according to the class of 
interruptions. In the BC mode, the 
interruption code and instruction-length 

Bit 6 of the PSi, in both the BC and EC 
modes, is the summary-mask bit for 
controllinq I/O interruptions. In 
addition, I/O interruptions can be 
controlled individually for up to 32 
channels. In the Ee mode, the individual 
control is provided by the 32 mask bits in 
control reqister 2, and the summary-mask 
bit in the PSW applies to all 32 channels. 
In the Be mode, channels 6 and up are 
indiv idually controlled by the 
corresponding bits of control register 2, 
as well as the summary-mask bit, bit 6 of 
the PSi. In the BC mode, channels 0-5 are 
controlled separately by bits 0-5 of the 
PSi and are not subject to the summary mask 
or to mask bits in control register 2. 

When interruptions occur in the Ee mode, 
the interruption code and 

4-4 System/370 Principles of Cperation 

code are placed in the PSi for all except 
machine-check interruptions. 

The program-mask and condition-code fields 
in the PSi are allocated to different bit 
positions in the two control modes. 

The instruction INSERT STORAGE KEY provides 
the reference and change bits when in the 
EC mode but produces zeros in the 
corresponding bit pOSitions when in the BC 
mode. 

1. The Be mode provides a PSi format that 
is compatible with the PSW of 
System/360. 

2. The choice between the Ee and Be modes 
affects only those aspects of 
operation that are specifically 
defined to be different for the two 
modes. It does not affect the..); 
operation of any functions that are 
not associated with the PSi con trol 
bits provided only in the Ee mode, and 



it does not affect the validity of any 
instructions. The instructions SET 
SYSTEM MASK, STOEE THEN AND SYSTEM 
MASK, and STORE THEN OE SYSTEM MASK 
perform the specified function on the 
leftmost byte of the PSW regardless of 

the mode specified by the current psw. 
On the other hand, the instruction SET 
PROGRAM MASK introduces a new proqram 
mask regardless of the PSW bit 
positions occupied by the mask.· 

Chapter 4. Control 4-5 



PROGRA~-STATUS-WORD FORMAT IN EC MODE 

,-,-,-------r_r-~,_----~i~i·~~-,i---,r------~----------------~ , , , , 
I I I 
101 RIO 0 

I IIIEI 
01 TI 01 XI Key 

I I I I I I I I Prog I I 
IEIMIWIPISIOIC CI Mask 10 0 0 0 0 0 0 01 

I I I I ~..I.-L...' I I 

0 5 8 12 16 18 20 24 31 

r--
I I 
10 o 0 0 o 0 0 01 Instruction Address 

32 40 

PSi Format in EC Mode 

The following is a summary of the functions 
of the PSW fields in the EC mode. (See the 
figure "PSW Format in FC Mode.") 

PEB ~~2~ (B): Bit 1 controls whether the 
CPU is enabled for interruptions associated 
with program-event recording (PER). When 
the bit is zero, no PER event can cause an 
interruption. When the bit is one, 
interruptions are permitted subject to the 
PER-event-mask bits in control register 9. 

DAT Mode (1): Bit 5 controls whether 
I;plicIt- dynamic address translation of 
storage addresses by the use of segment and 
paqe tables takes place. When the bit is 
zero, DAT is off, and storage addresses are 
not translated. When the bit is one, DAT 
is on, and the dynamic-address-translation 
mechanism is invoked. 

ILQ ~~2~ (lQ): Bit 6 controls whether the 
CPU is enabled for I/O interruptions. When 
the bit is zero, an I/O interruption cannot 
occur. When the bit is one, I/O 
interruptions are subject to the 
channel-mask bits in control register 2; 
when a channel-mask bit is zero, the 
associated channel cannot cause an I/O 
interruption; when the channel-mask bit is 
one, an interruption condition at the 
channel can cause an interruption. 

]xteru~l ~~sk (]X): Bit 7 controls whether 
th., CPU is enabled for interruption by 
conditions included in the external class. 
When the bit is zero, an external 
interruption cannot occur. When the bit is 
one, an external interruption is subject to 
the corresponding external subclass-mask 
bits in control register 0; when the 
subclass-mask bit is zero, conditions 
associated with the subclass cannot cause 
an interruption; when the SUbclass-mask bit 
is one, an interruption in that subclass 
can occur. 

~-6 System/370 ?rinciples of Operation 

63 

PSi I~: Bits 8-11 form the access key for 
storage references by the CPU. This PSW 
key is matched with a storage key whenever 
information is stored, or whenever 
information is fetched from a location that 
is protected against fetching. 

EC Modg (]): Bit 12, which controls the 
format of the PSW and the mode of operation 
of the CPU, is one when the CPU is in the 
extended-control (EC) mode. 

Machine-Ch~£~ Mask (~): Bit 13 controls 
whether the CPU is enabled for interruption j" 
by machine-check conditions. When the bit 
is zero, a machine-check interruption 
cannot occur. When the bit is one, 
machine-check interruptions due to system 
damage and instruction-processing damage 
are permitted, but interruptions due to 
other machine-check-subclass conditions are 
subject to the subclass-mask bits in 
control register 14. 

Rait St~l~ (R): When bit 14 is one, the 
CPU is waiting; that is, no instructions 
are processed by the CPU, but interruptions 
may take place. When bit 14 is zero, 
instruction fetching and execution occur in 
the normal manner. The wait indicator is 
on when the bit is one. 

Problem stgl~ (g): When bit 15 is one, the 
CPU is in the problem state. When bit 15 
is zero, the CPU is in the supervisor 
state. In the supervisor state, all 
instructions are valid. In the problem 
state, only those instructions are valid 
that cannot affect system integrity. The 
instructions that are not valid in the 
problem state are called privileged 
instructions. When a CPU in the problem 
state attempts to execute a privileged 
instruction, a priVileged-operation 
exception is recognized, and a program 
interruption takes place. Another g roup of 
instructions is called semipri vileged. .~ 
Semiprivileged instructions are only '-" 
executed by a CPU in the problem sta te if 



specific authority tests are met; 
otherwise, a privileged-operation exception 
is recognized, and a program interruption 
takes place. 

Addre§.§.=.§Eacg control (~) : Bit 16, in 
conjunction with PSi bit 5, controls the 
address-space mode. This bit is provided 
with DAS. See the discussion of the PSW 
under "Translation Control" in Chapter 3, 
"Stor age." 

Co!!ditio!! Codg ~,!;;): Bits 18 and 19 are 
the two bits of the condition code. The 
condition code is set to 0, 1, 2, or 3, 
depending on the result obtained in 
executing certain instructions. Most 
arithmetic and logical operations, as well 
as some other operations, set the condition 
code. The instruction BRANCH ON CONDITION 
can specify any selection of the 
condition-code values as a criterion for 
branching. A table in Appendix C 
summarizes the condition-code values that 
may be set for all instructions which set 
the condition code of the PSi. 

Proqr~ ~~sk: Bits 20-23 are the four 
program-mask bits. Each bit is associated 
with a program exception, as follows: 

r-------------~-----------------------__, 
Program­
Mask Bit 

20 
21 
22 
23 

I 
Program Exception I 

I 
Fixed-point overflow I 
Decimal overflow I 
Exponent underflow I 
Significance I 

I 

When the mask bit is one, the exception 
results in'an interruption. When the mask 
bit is zero, no interruption occurs. The 
setting of the exponent-underf low-mask bit 
or the significance-mask bit also 
determines the manner in which the 
operation is completed when the 
corresponding exception occurs. 

Instruction 
instruction 
designates 
byte of the 

Address: Bits 40-63 
address. This 

the loca tion of the 
next instruction. 

form the 
address 

leftmost 

Bit positions 0, 2-4, 16, 17, and 24-39 are 
unassigned and must contain zeros. A 
specification exception is recognized when 
these bit positions do not contain zeros. 

Chapter 4. Control 4-7 



PROGRAM-STATUS-WORD FORMAT IN BC MODE 

r- i i i i I i I i 

IChan Masks I II EI I I I I , 
I 0-5 101 XI Key IEIMIWIPI Interruption Code 
L-- I I I I I I I 

0 6 8 12 16 31 

I I 
IILCICC 

prog 
Mask Instruction Address 

L---L~ ________ L-______________________________________________ ~ 

32 34 36 40 

PSW Format in BC Mode 

The following is a summary of the functions 
of the PSW fields in the BC mode. (See the 
figure "PSW Format in BC Mode.") 

Channel Masks 0-2: Bits 0-5 control 
whether the-- CPU is enabled for I/O 
interruptions from channels 0-5, 
respectively. When a bit is zero, the 
associated channel cannot cause an I/O 
interruption. When the bit is one, an 
interruption condition at the channel can 
cause an I/O interruption. 

ILQ ~g§~ (lQ): Bit 6 controls whether the 
CPU is enabled for I/O interruptions from 
channels 6 and higher. When the bit is 
zero, these channels cannot cause I/O 
interruptions. When the bit is one, I/O 
interruptions are subject to the 
channel-mask bits of the corresponding 
channels in control register 2: when a 
channel-mask bit is zero, the associated 
channel cannot cause an I/O interruption; 
when the channel-mask bit is one, an 
interruption condition at the channel can 
cause an interruption. 

External ~gsk (EX): Bit 7 controls whether 
the CPU is enabled for interruption by 
conditions included in the external class. 
The meaning is the same as in the EC mode. 

PS~ ~gy: Bits 8-11 form the access key for 
storage references bV the cPU. The meaning 
is the same as in the EC mode. 

EC Mogg (]): Bit 12, which controls the 
format of the PSW and the mode of operation 
of the CPU, is zero when the ~PU is in the 
basic-control (BC) mode. 

.Hgching=Chgck .Hask un: Bit 
whether the CPU is enabled for 
by machine-check conditions. 
is the same as in the EC mode. 

13 controls 
interruption 
The meaning 

Wait ~taig (~) : 
CPU is waiting. 
in the EC mode. 

When bit 14 is one, the 
The meaning is the same as 

4-8 System/370 Principles of Operation 

63 

Problem St~te (R): When bit 15 is one, the 
CPU is in the problem state. When bit 15 
is zero, the CPU is in the supervisor 
state. The meaning is the same as in the 
EC mode. 

InterruEtiQll £ode: Bits 16-31 in the old 
PSW, which is stored during a program, 
supervisor-call, external, or I/O 
interruption, identify the cause of the 
interruption. This field is not used or 
checked in the current PSW. When a new PSW 
is introduced, the contents of this field 
are ignored. 

Instruction-Lengih Cogg (1~): Bit 
positions 32 and 33 of the old PSW 
indicates the length of the 
last-interpreted instruction when a program 
or supervisor-call interruption occurs. 
See the section "Instruction-Length Code" 
in chapter 6, "Interruptions." When a new 
PSW is introduced, the contents of this 
field are ignored. 

Condition Codg (CC): Bits 34 and 35 are 
the two bits of the condition code. The 
meaning is the same as in the EC mode. 

Program ~A§~: Bits 36-39 are the four 
program-mask bits. Each bit is associated 
with a program exception, as follows: 

Program­
Mask Bit 

36 
37 
38 
39 

Program Exception 

Fixed-point overflow 
Decimal overflow 
Exponent underflow 
Significance 

When the mask bit is one, the exception 
results in an interruption. When the mask 
bit is zero, no interruption occurs. The 
setting of the exponent-underflow-mask bit 
or the significance-mask bit also 
determines the manner in which the 

J 

J 



operation is completed when the 
correspondinq exception occurs. 

Instruction 
instruction 
designates 
byte of the 

Address: Bits 40-63 
---address. This 
the location of the 
next instruction. 

form the 
address 

leftmost 

The control registers provide a means for 
maintaining and manipulating control 
information that resides outside the PSW. 
There may be up to sixteen 32-bit control 
registers. 

One or more specific bit positions in 
control registers are assigned to each 
facility requ1r1ng such register space. 
When the facility is installed, the bits 
perform the defined control function. 

The LOAD CONTROL instruction loads 
information from storage into 
registers, whereas the STORE 
instruction transfers information 
control reqisters to storage. 

control 
control 
CONTROL 

from 

The instruction LOAD CONTROL causes all 
register positions, within those registers 
designated by the instruction, to be 
loaded. Information loaded into the 
control registers becomes active (that is, 
assumes control over the system) at the 
completion of the instruction causing the 
information to be loaded. 

At the time the registers are loaded, the 
information is not checked for exceptions, 
such as invalid translation-format code or 
an address designating an unavailable or a 
protected location. The validity of the 
information is checked and the exceptions, 
if any, are indicated at the time the 
information is used. 

When STORE CONTROL is executed, it returns 
the current value in each register 
position. Values corresponding to 
unassigned or uninstalled register 
positions are unpredictable. 

Only the general structure of control 
registers is described here; a definition 
of the register positions appears with the 
description of the facility with which the 
register position is associated. The 
figure "Assignment of Control-Register 
Fields" shows the control-register 
positions which are assigned and the 
initial value of the field upon execution 
of reset. 

programming ~~te 

To ensure that existing programs run if and 
when new facilities using additional 
control-register positions are installed, 
the program should load zeros in unassiqned 
control-register positions. Although STORE 
CONTROL may provide zeros in the bit 
positions corresponding to unassigned 
register positions, the program should not 
depend on such zeros. It is permissible, 
however, for the program to load into the 
control registers, by LOAD CONTROL, any 
information previously stored by means of 
STOR E CONTROL. 

Chapter 4. Control 4-9 



r---~--T------------------ -----------------~---_, 

ICtr11 I 1Initiall 
IBeg IBits I Name of Field I Associated with I Value I 
~----+--+---------------------_+_-----------------+_-__i 

o 0 Block-multiplexing control IBlock-multiplexing channels 0 I 
o 1 SSM-suppressicn ccntrcl ISET SYSTEM MASK 0 I 
o 2 TOD-clock-sync control I Multiprocessing 0 I 
o 3 Low-address-protection control ILow-address protection 0 I 
o 4 Extraction-authcrity centrcl IDual-address-space control 0 I 
C 5 Secondary-space contrel IDual-address-space control 0 I 
o 8-12 Translation format IDynamic address translatien 0 I 
o 16 Malfunction-alert .ask Iltultiprocessing 0 I 
(I 17 Emergency-signal mask Iltultiprocessing 0 I 
(I 18 External-call mask Iltultiprocessing 0 I 
o 19 TOD-clock-sync-check mask IItUltiprocessing 0 I 
(I 20 Clock-comparator mask IClock comparator 0 I 
o 21 CPU-timer mask ICPU tiaer 0 I 
o 22 Iservice-signal mask IService signal 0 I 
o 24 IInterval-timer mask IInterval timer 1 I 
o 25 IInterrupt-key mask IInterrupt key 1 I 
o 26 IExternal-signal mask IExternal signal 1 I 

I--+--_+_ +- -I I 
I 1 I 0-7 IPrimary-segment-table length IDynamic address translation I 0 I 
I 1 I 8-25IPrimary-segment-table origin IDynamic address translation I 0 I 
I 1 I 31 ISpace-switch-eveDt bit IDual-address-space control I 0 I 
I--+--+- ------1 I I 
I 2 1 0-311 Channel masks I Channels I 1 I 
\---+----t----------------+--- - .. I 
I 3 I 0-15IPSW-key mask IDual-address-space control I 0 I 
I 3 116-31lSecondary ASN IDual-address-space control I 0 I 
1---+---+-- ----+--------- 1--1 
I 4 I 0-15lAuthorization index IDual-address-space control I 0 I 
I 4 116-31lPrimary ASN IDual-address-space control I 0 I 
1---+--+------------- +-----------------+ I 
I 5 I 0 ISubsystem-linkage centlel IDual-address-space control I 0 I 
I 5 I 8-24ILinkage-table origin IDual-address-space control I 0 I 
I 5 125-31ILinkage-takle length IDual-address-space control I 0 I 
~---+--+---------- I -+----1 
I 7 I 0-7 ISecondary-segment-tabIE length IDual-address-space control I 0 I 
I 7 I 8-25ISecondary-segment-table origin IDual-addrEss-spaee control I 0 I 
I--+---+-- -_+_-------------------_+_-~ 
I 8 116-311 Moni tor Masks I MON ITOR CALL I 0 I 
\----+---+_ --------_+_-------- I I 
I 9 I 0 ISuccessful-branching-Event masklProgram-event rEcording I 0 I 
I 9 I 1 IInstruction-fetching-EvEnt masklProgram-event rEcording I 0 I 
I 9 I 2 Istorage-alteration-event mask IProgram-event recording I 0 I 
I 9 131GB-alteration-evEnt mask IProgral-event rEcording I 0 I 
I 9 116-311PEB general-register masks IProgram-event recording I 0 I 
I---t-- I +----------------+-----1 
I 10 I 8-311PEB starting addrEss IProgram-event recording I 0 I 
I---+-- ~ +_---------------+--~ 
I 11 I 8-311PER ending address IProgram-event recording I 0 I 
\---t---+--------------------+----------- I I 
I 14 I 0 ICheck-stop centrel Iltachine-check handling I 1 I 
I 14 I 1 ISynchronous-MCEL eentrcl Iltachine-check handling I 1 I 
I 14 I 2 II/O-extended-logcut eentrol II/O extended logout I 0 I 
I 14 I 4 IBecovery-report mask Iltachine-check handling I 0 I 
I 14 I 5 IDegradation-rEport mask Iltachine-check handling I 0 I 
I 14 I 6 IExternal-damage-report mask IMachine-check handling I 1 I 
I 14 I 7 IWarning mask IMachine-check handling I 0 I 
I 14 I 8 IAsynchronous-MCEL contlol Iltachine-check handling I 0 I 
I 14 I 9 IAsynchronous-fixEd-log control Iltachine-check handling I 0 I 
I 14 I 12 IAsN-translation contrel IDual-address-space control I 0 I 
I 14 120-31IASN-first-table origin I Dual-address-space control I 0 I 
l---+--+---------- +_-------. ---f------i 
I 15 I 8-28IMCEL address IMachine-check handling I 512~ I 
I-_.L-~_______________ I ---------------'------i 
1~I~l!~!!i2n: I 
I I 
I The fields not listed are unassigned. I 
I ~ Bit 22 is set to one, with all other bits set to zeros, thus yielding a I 
I decimal byte address of 512. I 1-______________________ ---_________________ , 

Assignment of Control-Register Fields 

4-10 System/370 Principles of Operation 

J 



Three DAS instructions optionally store 32 
bytes of information about the 
circumstances under which the instructions 
are executed. This action is called DAS 
tracing and is performed by placing 
information in a 32-byte block, called a 
trace entry, in an area called a trace 
table. DAS tracing assists in problem 
determination for system and semiprivileged 
problems by providing an on-going record in 
storage of significant events. The trace 
table and the location of the last-used 
entry are described by a control block 
called the trace-table-entry header. The 
origin of the header is specified in the 
word at location 84 (hex 54). These 
relationships are illustrated in the figure 
"DAS Tracing." 

DAS tracing is controlled by bit 0 of 
location 84, called the DAS-trace-control 
bit. When the bit is one, a trace entry is 
made each time PROGRAM CALL (PC), PROGRAM 
TRANSFER (PT), and SET SECONDARY ASN (SSA~ 
are executed. 

~ I Location 84 (hex 54) 

iii f , 

I I I Trace-table-entryl I 
IAIIIII header origin 10001 
'--'-- , 
0 31 
8-byte I 

boundary I 
I Trace-table-entry header 
I 

A 0: 

A = 1 : 

111 locations associated with DIS tracing 
are treated as logical addresses whose 
handling depends on the DAT-mode and 
address-space-control bits of the PSW. For 
PROGRAM CALL and PROGRAM TRANSFER, the 
addresses are translated by usinq the old 
primary segment-table designation. For SET 
SECONDARY ASN, the addresses are translated 
by using either the old primary segmen t­
table designation or the old secondary 
segment-table designation depending on 
whether PSi bit 16 specifies primary or 
secondary mode. 

Bits 8-27 of location 84 provide the origin 
of the three-word trace-table-entry header. 
Conceptually, the header defines a table of 
32-byte elements, called trace entries. 
The second and third words of the header 
designate, respectively, the beginning and 
end of this table. When DAS tracing is on, 
the first word of the header, called the 
current-entry control, is updated in 
conjunction with the execution of the 
instruction to be traced. The trace entry 
designated by the updated contents of the 
current-entry control is used to contain 
the trace information about the instruction 
being traced. Updating is interlocked to 
ensure that distinct entries are produced 
when a common table is used for tracing by 
two CPUs. 

Tracing off 

Tracing on 

L--->r , I 

ICurrent-entry ctrl IFirst-entry ctrl ILast-entry ctrl , , 

o I 32 64 95 
I 
I 
I 
I , 
I Trace table (32-byte boundary) , 
I L-->rr----------------------------------------~ 
, ,First (or wrap) entry , ~.--------------------------------~ , I , , 
L---->~.--------------------------------------~ 

I current entry .. 
I 

>~.------------------------------------~ 
ILocation after the last entry 

I DAS Tracing 

Chapter 4. Control 4-11 



Updating the current-en try-control word of 
the header normally consists in advancing 
the contents of the current-entry-control 
word by 32. However, if the advanced value 
equals or exceeds the value in the last­
entry-control word of the header, the 
contents of the first-entry-control word 
replaces the contents of the current-entry­
control word. Thus, the dynamic filling of 
successive entries wraps from the last 
entry to the first entry, with no special 
recognition accorded this event. 

The references to location 84, to the 
trace-table-entry header, and to a trace 
entry for the purpose of DAS tracing are 
not subject to key-controlled protection. 
Low-address protection does apply, however, 
to the store into the current-entry-control 
word of the header and into a trace entry. 

The details of the trace-table-header 
origin, trace-table-entry header, and the 
trace entry are contained in the following 
section. 

I TRACE-TABLE-ENTRY-HEADER ORIGIN 

The origin of the trace-table-entry header 
is contained in the word at location 84 
(hex 54). Location 84 is considered to be 
a logical address. Access to location 84 
for DAS tracing is not subject to 
key-controlled protection. The format of 
this word is: 

r-o--------r- ,--., 
I I I Trace-table-entry-header I I 
IAI///////lorigin (logical) 10001 
L-L--______ L-__________ __ 

o 8 29 31 

Bii Q (]k~=tr~~ £ontrol) controls whether 
implicit tracing is performed for PC, PT, 
and SSAR. When this bit is zero, no 
tracing is performed during execution of 
these instructions. When the bit is one, a 
trace entry is made each time one of these 
instructions is executed. 

Bits 1=1 are reserved and should be zeros. 
They are ignored during implicit tracing. 

Bii~ ~=28 (trace-table-entry-head~ 
origin), with three low-order zeros 
appended, constitute the logical address of 
a control block called the t~ace-table­
entry header. When the address designates 
a location in the range 0-511 and both 
low-address protection and tracing are 
activated, a protection exception is 
recognized. 

4-12 Svstem/370 Principles of Operation 

Bits 29=]1 must be zeros; otherwise, a 
specification exception is recognized, and 
instruction execution is suppressed. 

I TRACE-TABLE-ENTRY HEADER 

The trace-table-entry header defines a 
table of 32-byte entries. One entry is 
filled with information for each traced 
instruction. After updating, the first 
word of the header designates the entry 
into which information is placed about the 
current instruction. The second and third 
words of the header designate the beginning 
and end of the table. The format of the 
header is: 

r-------------~,-----------~.------------_, 

ICurrent-entrYI First-entry I Last-entry 
Icontrol I control I control 

o 32 64 95 

Bits 0-31 (cur~l-enl~Y £oni£Q1) are 
updated-to contain the origin of the trace­
table entry used for the current 
instruction. 

To update the field, a 32-bit intermediate 
quantity called the next-entry designator 
is formed by the logical addition of 32 to 
the contents of bit positions 0-31, with 
overflow out of bit 0 ignored and lost. 
The next-entry designator is then logically 
compared with the contents of bits 64-95. 
The designator replaces the contents of 
bits 0-31 if the designator is less than 
the contents of the last-entry-control 
field. If the designator is equal to or 
greater than the contents of the last­
entry-control field, then the contents of 
bits 32-63 replace the contents of bit 
positions 0-31. Instruction execution is 
suppressed and a specification exception is 
recognized if the new value of bits 27-31 
would not be zero. 

Bits 0-31 are replaced under an 
interlocked-for-update control. The field 
is not updated until it is determined that 
no exceptions will be encountered before 
the filling of the current trace entry is 
completed or before the current instruction 
is completed. 

The new contents of bits 8-26 (called the 
current-entry origin), with five zero bi ts 
appended on the right, constitute the 
logical address of the trace entry for the 
current instruction. For the purpose of 
determining the address of the current 
entry, the first word of the header has 
this format: 

J 



~ 
1 I Curren t-en try 1 I 
1111111111 origin (logical) 1000001 

0 8 27 31 

The second and third words of the header 
are used as follows: 

Bits Jl=63 (first-entr.! ~ontrol) replace 
the contents of bit positions 0-31 when the 
last-entry control disallows tracing in the 
location following the last-used trace 
entry. 

Bits 64-95 (las!=~try ~ontrol) are 
compared--;Ith a derived 32-bit guantity 
called the next-entry designator. 
Depending on whether the designator is 
(1) less than, or (2) equal to or greater 
than bits 64-95, bits 0-31 are replaced 
under an interlocked-for-update control 
either by (1) the designator or (2) the 
contents of bit positions 32-63. 

Applicable ContrQls 

Key-controlled protection does not apply to 
references to the fields of the header. 
Low-address protection does apply, however, 
to the store reference to update the first 
word of the header. The store reference is 
also monitored for a PER storage-alteration 
event. Change and reference recording are 
performed as usual. A serialization and 
checkpoint-synchronization function is 
performed before and after updating the 
first word of the header. 

The current-entrv-control word is changed 
under a word-concurrent interlocked-for­
update control. The fetches of the first­
entry-control and last-entry words are 
word-concurrent and are made without regard 
to when the interlock on the current-entry­
control word is established. 

During tracing, the fetches of the first­
entry-control word and of the last-entry­
control word that are performed in 
conjunction with updating the current 
entry-control word are not necessarily 
interlocked to prevent subsequent storing 
into these words by I/O or other CPUs. 

1. The last-entry-control word should be 
thought of as designating the location 
beyond the last entry in the table. 
This is because an equal comparison 
with the last-entry-control value 
results in wrapping to the first 

2. 

entry. 

The high-order byte of each word of 
the header should be set to zero; 
otherwise, unexpected results can 
occur. This is because 32 bits 
participate in the comparison and 
replacement actions but only 24 bits 
are used to address the trace entry. 
Thus, a trace table may wrap from high 
storage locations to low storage 
locations, and, depending on 
high-order bit values, not wrap to the 
intended beginning of the table. 

3. Because current trace information is 
placed in the location designated by 
the updated contents of current-en try­
control word, the entry designated 
before updating occurs is not used 
initially, although it may 
subsequently be used if it is in the 
range of the table after wrapping. 

I TRACE ENTRY 

A trace entry consists of 32 bytes 
beginning on a 32-byte boundary. The 
trace-entry address for the current 
instruction is formed from bits 8-26 of the 
updated current-entry-control word of the 
trace-table-entry-header table. It is 
treated as a logical address. Access to an 
entry is subject to low-address protection 
but is not subject to key-controlled 
protection. Store accesses are monitored 
for PER storage-alteration events, and 
change and reference recording is performed 
as usual. 

The store-type reference to a trace entry 
is not necessarily a single-access 
reference. During the execution of an 
implicitly traced instruction, it may 
appear to another CPU or to I/O that an 
entry, or portions of an entry, are stored 
more than once. The inter media te results 
observed mayor may not correspond to the 
final results. All accesses are 
byte-concurrent. 

The format of an entry for the instructions 
PROGRAI!I CALL (PC), PROGRAM TRANSFER (PT), 
and SET SECONDARY ASN (SSAR) is shown in 
the figure "Trace-Entry Formats." 

Chapter 4. Control 4-13 



r---- .~----------------------------------------------------------, 
I Decimal (Hex) I contents of Trace Entry I 
I Offsets within ~ I 
I Trace Entry I For PC I For PT I For SSAR I 
~ --------------~I~·--------------+I--------------~I----------------~ 
I Bytes 0-1 ,New PSi, bytes 0-11New PSi, bytes 0-11New PSi, bytes 0-1' 
~ I 1 1 ~ 
1 Byte 2 1 Hex 90 1 1 Hex AOI 1 Hex BOt 1 
, 1 1 1 ~ 
1 Bytes 3-7 INew PSi, bytes 3-71 New PSi, bytes 3-7lNew PSi, bytes 3-71 
~ 1 1 1 ~ 
I Bytes 8-9 ,New PASN 1 New PASN , PASN 1 
, , I , of 
, Bytes 10-11 (A-B) ,New SASN 1 0 I New SASN , 
r- I , I 1 
,Bytes 12-13 (C-D) ,GR14 1 Old PASN , 0 I 
, -i ~ , of 
I Bytes 14-15 (E-F) ,After I 0 I Old SASH 1 
~ , 1 1 I 
,Bytes 16-19 (10-13) 1 0 I 0 I 0 , 
~. 1 1 , I 
IByte I Bits 0-1 1 ILC2 1 ILC2 1 ILC2 1 
120 IBits 2-3 1 CC 1 cc 1 CC 1 
1(14) 1 Bits 4-7 1 PM 1 PM 1 PM 1 
\-- 1 1 1 ~ 
IByte 21 (15) I CPU Address 3 I CPU Address 3 1 CPU Address 3 1 
, 1 , 1 1 
I Bytes 22-23 (16-17) 1 0 I 0 1 0 I 
~ 1 , I I 
IBytes 24-27 (18-1B) 1 Operand 2 (PC ,)41 0 l 0 1 
I 1 I 1 I 
IBytes 28-31 (1C-1F) 1 TOD clock, I TOD clock, 1 TOD clock, 1 
I I bytes 3-6 1 bytes 3-6 I bytes 3-6 1 
1 !! ~ 

1 Byte 2 contains the entry-type identifier value. This position is used to 
uniquely identify the type of event for which the entry is made. 

2 Byte 20 (hex 14) contains the instruction-length count (ILC), condition code 
(CC), and program mask (PM) of the old PSi. The ILC is always binary 10, in­
cluding when the traced instruction is the target of an EXECUTE instruction. 

3 Byte 21, "CPU Address," is interpreted as the CPU address of the CPU which 
executed the instruction for which the trace entry is made. This quantity 
is obtained from logical location 795 (hex 31B) • 

4 Bytes 24-27 for the PC instruction, "Operand 2 (PC t)," contain 32 bits, 
consisting of eight high-order zero bits appended to the 24-bit effective 
address specified by the PROGRAM CALL instruction. The low-order 20 bits 
constitute the PC number. 

Trace-Entry Formats 

The purpose of the program-event-recording 
(PER) facility is to ass ist in debugging 
programs. It permits the program to be 
alerted to the following types of PER 
events: 

• 

• 

Execution of 
instruction. 

Fetching of an 

a successful branch 

instruction from the 

4-14 System/370 Principles of Operation 

• 

• 

designated storage area. 

Alteration of the contents of the 
designated storage area. 

Alteration of the contents of 
designated general registers. 

The program can selectively specify one or 
more of the above types of events to be 
monitored. The information concerning a 
PER event is provided to the program by 
means of a program interruption, with the 



cause of the interruption being identified 
in the interruption code. PER is only 
available in the EC mode. 

CONTROL-REGISTER ALLOCATION 

The information for controlling PER resides 
in control registers 9, 10, and 11 and 
consists of the following fields: 

Control Register 9: 

• EM IGen.-Reg. Masks L-__ ~ ____ • ________ --L 

o 4 16 31 

Control Register 10: 

Starting Address 

o 8 31 

Control Register 11: 

Ending Address 

o 8 31 

PEg-EY~i Mas~§ (~~): Bits 0-3 of control 
register 9 specify which types of events 
are monitored. The bits are assigned as 
follows: 

Bit 0: 
Bit 1: 
Bit 2: 
Bit 3: 

successful-branching event 
Instruction-fetching event 
storage-al teration event 
General-register-alteration 
event 

Bits 0-3, when ones, 
corresponding types 
monitored. When a 
corresponding type 
monitored. 

specify that 
of events 

bit is zero, 
of event is 

the 
are 
the 
not 

PEB General-Register Masks: Bits 16-31 of 
control register 9 specify which general 
registers are monitored for replacement of 
their contents. The 16 bits, in the 
sequence of ascending bit numbers, 
correspond one for one with the 16 
registers, in the sequence of ascending 
register numbers. ihen a bit is one, the 
associated register is monitored for 
replacement; if zero, the register is not 
monitored. 

PER ~ta£iing Address: Bits 8-31 of control 
register 10 --a;e--the address of the 
beginning of the monitored storage area. 

PER Endi~g Address: Bits 8-31 of control 
register 11 are the address of the end of 
the monitored storage area. 

Programming !Qte 

Models may operate at reduced performance 
while the CPU is enabled for PER events. 
To ensure that CPU performance is not 
degraded because of the operation of the 
PER facility, programs that do not use it 
should disable the facility by s@ttinq the 
PER mask in the EC-mode PSi to zero. No 
degradation due to PER occurs in the BC 
mode or when the PER mask in the EC-mode 
PSi is zero. Disabling of PER in the EC 
mode by means of the masks in control 
register 9 does not necessarily prevent 
performance degradation due to the 
facility. 

OPERATION 

PER is under control of bit 1 of the 
EC-mode PSi, the PER mask. ihen the mask 
is zero, no PER event can cause an 
interruption. ihen the mask is one, a 
monitored event, as specified by the 
contents of control registers 9, 10, and 
11, causes a program interruption. In BC 
mode, PER is disabled. 

An interruption due to a PER event is taken 
after the execution of the instruction 
responsible for the event. The occurrence 
of the event does not affect the execution 
of the instruction, which may be either 
completed, terminated, suppressed, or 
nullified. 

ihen the CPU is disabled for a particular 
PER event at the time it occurs, either by 
the mask in the PSi or by the masks in 
control register 9, the event is not 
recognized. 

A change to the PER maSK in the PSW or to 
the PER control fields in control registers 
9, 10, and 11 affects PER starting with the 
execution of the very next instruction. If 
the CPU is enabled for some PER event but 
an instruction causes the CPU to be 
disabled for that particular event, the 
event causes a PER condition to be 
recognized if it occurs during the 
execution of the instruction. 

When LOAD PSi or SUPERVISOR CALL causes a 
PER condition and at the sa me time changes 
CPU operation from the EC mode to the BC 
mode, the PER interruption is taken with 
the old PSi specifying the BC mode and with 
the interruption code stored in the old 

Chapter 4. Control 4-15 



PSW. The additional informa tion 
identifying the PER condition is stored in 
its regular format at locations 150-155. 

PER applies to emulation instructions in 
the following way. Emulation instructions 
indicate all events that have occurred and 
may additionally indicate events that did 
not occur and were not called for in the 
instruction, provided monitoring was 
enabled for the type of event by the PER 
mask in the PSi and the PER-event masks, 
bits 0-3 in control register 9. In such 
cases, the contents of the rema~n~ng 
positions in control registers 9, 10, and 
11 may be ignored. Thus, for example, an 
emulation instruction may cause 
general-register alteration to be indicated 
even though no general registers are 
altered and even though bits 16-31 of 
control register 9 are all zeros. 

A program interruption for PER sets bit 8 
of the interruption code to one and places 
identifying information in storage 
locations 150-155. The format of the 
information stored at locations 150-155 is 
as follows: 

Locations 150-151: 

i I 

PC 10000000000001 

o 4 15 

Locations 152-155: 

I , 

1000000001 PER Address 

o 8 31 

The event causing a PER interruption is 
identified by a one in one of bit positions 
0- 3 of location 150, the PER code (PC), 
with the rest of the bits in the code set 
to zeros. The bit position in the PER code 
for a particular event is the same as the 
bit position for that event in the PER 
event-mask field in control register 9. 

The PER address at locations 153-155 is the 
address of the instruction causing the 
event. When the instruction is executed by 
means of EXECUTE, the address of the 
location containing the EXECUTE instruction 
is placed in the PER-address field. In 
either case, the address of the instruction 
to be executed next is placed in the PSi. 
Zeros are stored in bit positions 4-1 of 
location 150 and at locations 151 and 152. 

4-16 system/310 principles of Operation 

priori~ of Indication 

When a PER interruption occurs and more 
than one designated PER event has been 
recognized, all recognized PER events are 
concurrently indicated in the PER code. 
Addi tionally, if a not her program 
interruption condition concurrently exists, 
the interruption cod e f or a program 
interruption indicates both the PER 
condition and the other condition. 

Except as listed below, a PER event 
not cause premature interruption of 
interruptible instruction, and the 
condition is held pending until 
completion of the instruction. 

does 
the 
PER 
the 

• When the execution of an interruptible 
instruction is due to be interrupted 
by an I/O, external, or repressible 
machine-check condition, an 
interruption for a pending PER 
condition occurs first, and the I/O, 
external, or machine-check 
interruption is subsequently subject 
to the control of mask bits in the new 
PSi. 

• Similarly, when the CPU is placed in 
the stopped state during the execution 
of an interruptible instruction, an 
interruption for a pending PER 
condition occurs before the stopped 
state is entered. 

• 

• 

ihen any program exception is 
encountered, the pending PER condition 
is indicated concurrently. 

Depending on the model, in certain 
situations, a PER condition may cause 
the execution of an interruptible 
instruction to be interrUpted without 
an associated asynchronous condi tion 
or program exception. 

In the case of an instruction-fetching 
event for SUPERVISOR CALL, the PER 
interruption occurs immediately after the 
supervisor-call interruption. 

1. In the following cases, an instruction 
can both cause a program interruption 
for a PER event and change the value 
of masks controlling an interruption 
for PER events. The original mask 
values determine whether a program 
interruption takes place for the PER 
event. 

a. The instructions LOAD PSi, SET 
SYSTEM MASK, STORE THEN AND SYSTEM 



MASK, and SUPERVISOR CALL can 
cause an instruction-fetching 
event and disable the CPU for PER 
interruptions. Additionally, 
STORE THEN AND SYSTEM MASK can 
cause a storage-alteration event 
to be indicated. In all these 
cases, the program old PSW 
associated with the program 
interruption for the PER event may 
indicate that the CPU was disabled 
for that type of PER event. 

b. An instruction-fetching event may 
be recognized during execution of 
a LOAD CONTROL instruction which 
also changed the value of the 
PER-event masks in control 
register 9 or the addresses in 
control registers 10 and 11 
controlling indication of 
instruction-fetching events. 

2. No instructions can both change the 
values of general-register-alteration 
masks and cause a general-register­
alteration event to be recognized. 

3. When a PER interruption occurs dUring 
the execution of an interruptible 
instruction, the ILC indicates the 
length of that instruction or EXECUTE, 
as appropriate. When a PER 
interruption occurs as a result of 
LOAD PSW or SUPERVISOR CALL, the ILC 
indicates the length of these 
instructions or EXECUTE, as 
appropriate, unless a concurrent 
specification exception on LOAD PSW 
calls for an ILC of O. 

4. When a PER interruption is caused by 
branching, the PER address identifies 
the branch instruction (or EXECUTE, as 
appropriate), whereas the old PSW 
points to the next instruction to be 
executed. When the interruption 
occurs during the execution of an 
interruptible instruction, the PER 
address and the instruction address in 
the old PSW are the same. 

STORAGE-AREA DESIGNATION 

Two of the PER events--instruction fetching 
and storage alteration--involve the 
designation of an area in storage. The 
storage area monitored for the references 
starts at the location designated by the 
starting address in control register 10 and 
extends up to and including the location 
designated by the ending address in control 
register 11. The area extends to the right 
of the starting address. 

An instruction-fetching event occurs 

I whenever the first byte of an instruction 
I or the first byte of the target of an 
I EXECUTE instruction is fetched from the 
,designated area. A storage-alteration 
I event occurs when a store access is made to 
, the designated area by using an operand 
I address that is defined to be a logical or 
I a virtual address. A storage-alteration 
I event does not occur for a store access 
I made with an operand address defined to be 
I a real address. 

The set of addresses monitored for 
instruction-fetching and storage-alteration 
events wraps around at address 16,777,215; 
that is, address 0 is considered to follow 
address 16,777,215. When the starting 
address is less than the ending address, 
the area is contiguous. When the starting 
address is greater than the ending address, 
the set of locations monitored includes the 
area from the starting address to address 
16,777,215 and the area from address 0 to, 
and including, the ending address. When 
the starting address is equal to the ending 
address, only the location designated by 
that address is monitored. 

The monitoring of storage alteration and 
instruction fetching is performed by 
c om paring all 24 bits of the moni tored 
address with the starting and ending 
addresses. 

PER EVENTS 

Execution of a successful branch operation 
causes a program-event interruption if bit 
o of the PER-event-mask field is one and 
the PER mask in the PSW is one. 

A successful branch occurs whenever one of 
the following instructions causes control 
to be passed to the instruction designated 
by the branch address: 

BRANCH A ND LINK 
BRANCH AND SAlE 
BRANCH ON CONDITION 
BRANCH ON COUNT 
BRANCH ON INDEX HIGH 
BRANCH ON INDEX LOW OR EQUAL 
PROGRAM CALL 
PROGRAM TRANSFER 

The branch event is also indicated by an 
emulation instruction when the emulation 
instruction itself causes a branch. That 
is, the branch event is indicated when the 
location of the next instruction executed 

Chapter 4. Control 4-17 



by the CPU after leaving emulation mode 
does not immediately follow the location of 
the emulation instruction. 

The event is indicated by setting bit 0 of 
the PER code to one. 

Fetching the first byte of an instruction 
from the storage area designated by the 
contents of control registers 10 and 11 
causes a prograa-event interruption if bit 
1 of the PER-event-mask field is one and 
the PER mask in the PSi is one. 

A PER event for instruction fetching is 
recognized whenever the CPU executes an 
instruction whose initial byte is located 
within the monitored area. ihen the 
instruction is executed by means of 
EXECUTE, a PER event is recognized when the 
first byte of the EXECUTE instruction or 
the target instruction or both is located 
in the monitored area. 

The event is indicated by setting bit 1 of 
the PER code to one. 

Storing of data by the CPU in the storage 
area designated by the contents of control 
registers 10 and 11 causes a program-event 
interruption if bit 2 of the PER-event-mask 
field is one and the PER mask in the PSi is 
one. 

The contents of storage are considered to 
have been altered whenever the CPU executes 
an instruction that causes all or part of 
an operand to be stored within the 
monitored area of storage. Alteration is 
considered to take place whenever storing 
is considered to take place for purposes of 
indicating protection exceptions. (See the 
section "Recognition of Access Exceptions" 
in Chapter 6, "Interruptions.") Storing 
constitutes alteration for PER purposes 
even if the value stored is the same as the 
original value. 

Implied locations that are referred to by 
the CPU in the process of (1) interval­
timer updating, (2) interruptions, and 
(3) execution of I/O instructions are not 
monitored. Such locations include the 
interval-timer, PSi, and CSW locations. 
These locations, however, are monitored 
when information is stored there explicitly 
by an instruction. Similarly, monitoring 
does not apply to storing of data by a 
channel. 

4-18 System/310 Principles of operation 

Storage alteration does not apply to 
instructions whose operands are specified 
to be real addresses. Thus, storage 
alteration does not apply to SET STORAGE 
KEY, RESET REFERENCE BIT, TEST BLOCK, and 
INVALIDATE PAGE TABLE ENTRY. When 
INVALIDATE PAGE TABLE ENTRY is installed, 
the operand address of READ DIRECT is a 
real address and storage alteration does 
not apply. When INVALIDATE PAGE TABLE 
ENTRY is not installed, the operand address 
of READ DIRECT is a logical address, and 
storage alteration does apply. 

The instructions CO"PARE AND SWAP and 
CO"PARE DOUBLE AND SWAP are considered to 
alter the second-operand location only when 
storing actually occurs. 

The instruction STORE CHARACTERS UNDER "ASK 
is not considered to alter the storage 
location when the mask is zero. 

The event is indicated by setting bit 2 of 
the PER code to one. 

General-Register Alteration 

Alteration of the contents of a general 
register causes a PER interruption if bit 3 
of the PER-event-mask field is one, the 
alteration mask corresponding to that 
general register is one, and the PER mask 
in the PSi is one. 

The contents of a general register are 
considered to have been altered whenever a 
new value is placed in the register. 
Recognition of the event is not contingent 
on the new value being different from the 
previous one. The execution of an 
RR-format arithmetic or movement 
instruction is considered to fetch the 
contents of the register, perform the 
indicated operation, if any, and then 
replace the value in the register. The 
register can be designated implici tly, such 
as in TRANSLATE AND TEST and EDIT AND "ARK, 
or explicitly by an RR, RX, or RS 
instruction, including BRANCH AND LINK, 
BRANCH ON COUNT, BRANCH ON INDEX HIGH, and 
BRANCH ON INDEX LOW OR EQUAL. 

The instructions EDIT AND "ARK and 
TRANSLATE AND TEST are considered to have 
altered the contents of general register 1 
only when these instructions have caused 
information to be placed in the register. 

The instructions KOVE LONG and CO"PARE 
LOGICAL LONG are always considered to alter 
the contents of the four registers 
specifying the two operands, including the 
cases where the padding byte is used, when 
both operands have zero length, or when 
condition code 3 is set for "OVE LONG. 



The instruction INSERT CHARACTERS UNDER 
MASK is not considered to alter the general 
register when the mask is zero. 

The instructions COMPARE AND SlAP and 
COMPARE DOUBLE AND SlAP are considered to 
alter the general register, or 
general-register pair, designated by R~, 
only when the contents are actually 
replaced, that is, when the first and 
second operands are not equal. 

The event is indicated by setting bit 3 of 
the PER code to one. 

The following are some examples of 
general-register alteration: 

1. Register-to-register load instructions 
are considered to alter the register 
contents even when both operand 
addresses designate the same register. 

2. Addition or subtraction of zero and 
multiplication or division by one are 
considered to constitute alteration. 

3. Logical and fixed-point shift 
operations are considered to alter the 
register contents even for shift 
amounts of zero. 

4. The branching instructions BRANCH ON 
INDEX HIGH and BRINCH ON INDEX LOI OR 
EQUAL are considered to alter the 
first operand even when zero is added 
to its value. 

INDICATION OF EVENTS CONCURRENTLY 11TH 
OTHER INTERRUPTION CONDITIONS 

The following rules govern the indication 
of PER events caused by an instruction that 
also causes a program exception, a .onitor 
event, or a supervisor-call interruption. 

1. The indication of an instruction­
fetching event does not depend on 
whether the execution of the 
instruction was completed, terminated, 
suppressed, or nullified. The event, 
however, is not indicated when an 
access exception prohibits access to 
the first byte of the instruction. 
When the first ha Ifword of the 
instruction is accessible but an 
access exception applies to the second 
or third halfword of the instruction, 
it is unpredictable whether the 
instruction-fetching event is 
indicated. 

2. When the operation is co.pleted, the 
event is indicated regardless of 
whether any program exception or the 
monitoring event is recognized. 

3. Successful branching, storage 
alteration, and general-register 
alteration are not indicated for an 
operation or, in case the instruction 
is interruptible, for a unit of 
operation that is suppressed or 
nullified. 

4. When the execution of the instruction 
is terminated, general-register or 
storage alteration is indicated 
whenever the event has occurred, and a 
model may indicate the event if the 
event would have occurred had the 
execution of the instruction been 
completed, even if altering the 
contents of the result field is 
contingent on operand values. 

5. When LOAD PSI or SUPERVISOR CALL 
causes a PER condition and at the same 
time introduces a new PSI with the 
type of PSW-for.at error that is 
recognized immediately after the PSI 
becomes active, the interruption code 
identifies both the PER condition and 
the specification e xcepti on. Ihen 
these instructions introduce a 
PSI-format error of the type that is 
recognized as part of the execution of 
the following instruction, the PSi is 
stored as the old PSI without the 
specification exception being 
recognized. 

The indication of PER events concurrently 
with other program-interruption conditions 
is summarized in the figure "Indication of 
PER Events." 

Chapter 4. Control 4-19 



I I PER Event I J I I i i ----. 
I I Type IStoragelGR I 
I I of I IInstr IAlter- I Alter-I 
I Exception IEndinglBranchlFetch I ation I ation I 
I I I , , , 
operation S Xl 
Privileged operation S Xl 
Execute S Xl 
protection 
Instruction S _1 

Operand S or T X X+ X+ 
Addressing 

DAT entry for instruction S _1 

address 
Instruction S _1 

DAT entry for operand ad- S X X2 X2 
dress 

Operand S or T X X+ X+ 
Specification 

Odd instruction address S 
Invalid PSi format C X 
Other S X 

Data 
Invalid sign S X 
Other T X X+ X+ 

Fixed-point overflow C X X 
Fixed-point divide 

Division S X 
Conversion C X X 

Decimal overflow C X X 
Decimal divide S X 
Exponent overflow C X 
Exponent underflow C X 
Significance C X 
Floating-point divide S X 
Segment translation 
Instruction-address trans- N _1 

lation 
Page translation 
Instruction-address trans- N _1 

lation 
Operan d-address translation N X X2 X2 

Translation specification 
Instruction-address trans- S _1 

lation 
Operan d-address translation S X X2 X2 

special operation S X 
Moni tor event C X 

-'---

Indication of PER Events (Part 1 of 2) 

4-20 system/370 principles of Operation 



Explanat.!~m: 

C The operation or, in the case of the interruptible 
instructions, the unit of operation is completed. 

N The operation or, in the case of the interruptible 
instructions, the unit of operation is nullified. The 
instruction address in the old PSW has not been updated. 

S The operation or, in the case of the interruptible 
instructions, the unit of operation is suppressed. 

T The execution of the instruction is terminated. 

X The event is indicated with the exception if the event 
has occurred; that is, the contents of the monitored 
storage location or general register were altered, or an 
attempt was made to execute an instruction whose first 
byte is located in the monitored area. 

+ A model is permitted, but not required, to indicate the 
event if the event would have occurred had the operation 
been completed but did not take place because the execu­
tion of the instruction was terminated. 

1 

2 

The event is not indicated. 

When an access exception applies to the second or third 
halfword of the instruction but the first halfword is 
accessible, it is unpredictable whether the instruction­
fetching event is indicated. 

This condition may occur in the case of the interrupt­
ible instructions when the event is recognized in the 
unit of operation that is completed and when the excep­
tion causes the next unit of operation to be suppressed 
or nullified. 

Indication of PER Events (Part 2 of 2) 

initial execution or a resumption. 

1. The execution of the interruptible 
instructions MOVE LONG (MVCL) and 
COMPARE LOGICAL LONG (CLCL) can cause 
events for qeneral-register alteration 
and instruction fetching. 
Additionally, MVCL can cause the 
storage-alteration event. 

since the execution of MTCL and CLCL 
can be interrupted, a program event 
may be indicated more than once. It 
may be necessary, therefore, for a 
proqram to remove the redundant event 
indications from the PER data. The 
following rules govern the indication 
of the applicable events during 
execution of these two instructions: 

a. The instruction-fetching event is 
indicated whenever the instruction 
is fetched for execution, 
regardless of whether it is the 

b. The general-register-alteration 
event is indicated on the initial 
execution and on each resumption 
and does not depend on whether or 
not the register actually is 
changed. 

c. The storage-alteration event is 
indicated only when data has been 
stored in the monitored area by 
the portion of the operation 
starting with the last initiation 
and ending with the last byte 
transferred bet ore the 
interruption. No special 
indication is provided on 
premature interruptions as to 
whether the event will occur again 
upon the resumption of the 
operation. When the storage area 
designates a single byte location, 
a storage-alteration event can be 
recognized only once in the 

Chapter ij. Control ij-21 



execution of MOVE LONG. 

2. The following is an outline of the 
general action a program must take to 
delete the redundant entries in the 
PER data for MOVE LONG and COMPARE 
LOGICAL LONG so that only one entry 
for each complete execution of the 
instruction is obtained: 

a. Check to see if the PER address is 
equal to the instruction address 
in the old PSII' and if the last 
instruction executed was MVCL or 
CLCL. 

b. If both conditions are met, delete 
instruction-fetching and 
register-alteration events. 

c. If both conditions are met and the 
event is storage alteration, 
delete the event if some part of 
the remaining destination operand 
is within the monitored area. 

The direct-control feature provides (1) a 
read-write-direct facility, consisting of 
the two instructions READ DIRECT and WRITE 
DIRECT and an associated 27-line interface, 
and (2) an external-signal facility with 
six siqnal-in lines. These facilities 
operate independent of the facilities that 
perform I/O operations. 

READ-WRITE-DIRECT FACILITY 

The READ DIRECT and WRITE DIRECT 
instructions use the 27-line interface to 
provide timing signals and to transfer a 
single byte of information, normally for 
controlling and synchronizing purposes, 
between CPUs or between a CPU and an 
external device. The 27 lines are: 

Numbe!: 
]g.!!!g of 1in~ Di~ction 

write out 1 Output 
Read out 1 Output 
Hold 1 Input 
Siqnal out 8 Output 
Direct out 8 Output 
Direct in 8 Input 

4-22 system/370 Principles of Operation 

EXTERNAL-SIGNAL FACILITY 

The external-signal facility consists of 
six signal-in lines and an external-signal 
mask, which is bit 26 of control register 
o. Each of the six signal- in line s, when 
pulsed, se ts up the cond i tion f or one of 
six distinct interruptions (see the section 
"External Signal" in Chapter 6, 
"Interruptions"). 

Note: Some models 
external-signal facility 
feature (without the READ 
DIRECT instructions) • 

provide the 
as a separate 
DIRECT and WRITE 

For a detailed description, see the 
System/360 ~nd ~yst~.!!!LJIQ Qirg£~ £Q~1!:Ql 
and Exter~al InterruptiQ~ Featu!g§==Qrig= 
inal EquiE~!!~ l'Ianufacture!~ I!!f..Q!".!!!g1!on, 
GA22-6845. 

The timing facilities include four 
facilities for measuring time: the TOD 
clock, the clock comparator, the CPU timer, 
and the interval timer. 

In a multiprocessing system, a single TaD 
clock may be shared by more than one CPU, 
or each CPU may have a separate TOD clock. 
However, each CPU has a separate clock 
comparator, CPU timer, and interval timer. 

TII'IE-OF-DAY CLOCK 

The time-of-day (TOD) clock 
high-resolution measure of 
suitable for the indication 
time of day. The cycle of 
approximately 143 years. 

provides a 
real time 

of date and 
the clock is 

In a configuration with more than one CPU, 
each CPU may have a separate TOD clock, or 
more than one CPU may share a clock, 
depending on the model. In all cases, each 
CPU has access to a single clock. 

Format 

The TOD clock is a binary counter with the 
format shown in the following illustration. 
The bit positions of the clock are numbered 
o to 63, corresponding to the bit positions 
of a 64-bit unsigned binary integer. 



L 
,-1 microsecond , 

.-- -r- • 
I I I 

I I 

0 51 63 

In the basic form, the TOO clock is 
incremented by adding a one in bit position 
51 every microsecond. In models having a 
higher or lower resolution, a different bit 
position is incremented at such a frequency 
that the rate of advancing the clock is the 
same as if a one were added in bit position 
51 every microsecond. The resolution of 
the TOO clock is such that the incrementing 
rate is comparable to the 
instruction-execution rate of the model. 

When more than one TOO 
configured system, the 
synchronized such that 
the configuration are 
exactly the same rate. 

clock exists 
stepping rates 
all TOO clocks 

incremented 

in a 
are 
in 
at 

When incrementing of the clock causes a 
carry to be propagated out of bit position 
0, the carry is ignored, and counting 
continues from zero on. The program is not 
alerted, and no interruption condition is 
generated as a result of the overflow. 

The operation of the clock is not affected 
by any normal activity or event in the 
system. Incrementing of the clock does not 
depend on whether the wait-state bit of the 
PSW is one or whether the CPU is in the 
stopped, operating, or load state. Its 
operation is not affected by CPU, 
initial-CPU, program, initial-program, or 
clear resets or by initial program loading. 
Operation of the clock is also not affected 
by the setting of the rate control or by an 
initial-microprogram-loading operation. 
Depending on the model and the 
configuration, a TOO clock mayor may not 
be powered independent of a CPU that 
accesses it. 

The following states are distinguished for 
the TOO clock: set, not set, stopped, 
error, and not operational. The state 
determines the condition code set by 
execution of STORE CLOCK. The clock is 
incremented, and is said to be running, 
when it is in either the set state or the 
not-set state. 

]ot-~~i State: When the power for the 
clock is turned on, the clock is set to 
zero, and the clock enters the not-set 
state. The clock is incremented when in 
the not-set state. Incrementing begins at 
zero. 

When the clock is in the not- se t sta te, 
execution of STORE CLOCK causes condition 
code 1 to be set and the current value of 
the running clock to be stored. 

Stopped stgi~: The clock enters the 
stopped state when SET CLOCK is executed on 
a CPU accessing that clock and the clock is 
set. This occurs when SET CLOCK is 
executed without encountering any 
exceptions and any manual TOO-clock control 
in the configuration is set to the 
enable-set position. The clock can be 
placed in the stopped state from the set, 
not-set, and error states. The clock is 
not incremented while in the stopped state. 

When the clock is in the stopped state, 
execution of STORE CLOCK on a CPU accessing 
that clock causes condition code 3 to be 
set and the value of the stopped clock to 
be stored. 

Set State: The clock enters the set state 
only from the stopped state. The change of 
state is under control of the TOD-clock­
sync-control bit, bit 2 of control register 
0, in the CPU which caused that clock to 
enter the stopped state. When the bit is 
zero, or the TOD-clock-synchronization 
facility is not installed, that clock 
enters the set state at the completion of 
execution of SET CLOCK. When the bit is 
one, it remains in the stopped state until 
either the bit is set to zero on the CPU 
tha t placed that clock in the stopped 
state, or until any other. clock in the 
configured system is incremented to a value 
of all zeros in bit positions 32-63. If 
any clock is set to a value of all zeros in 
bit positions 32-63 and enters the set 
state as the result of a signal from 
another clock, the updating of bits 32-63 
of the two clocks is in synchronism. 

Incrementing of the clock begins with the 
first stepping pulse after the clock enters 
the set state. 

When the clock is in the set state, 
execution of STORE CLOCK causes condition 
code 0 to be set and the current value of 
the running clock to be stored. 

Error State: The clock enters the error 
state when- a malfunction is detected that 
is likely to have affected the validity of 
the clock value. A timing-facility-damage 
machine-check-interruption condition is 
generated on each CPU which has access to 
that clock whenever it enters the error 
state. 

When STORE CLOCK is executed and the clock 
accessed is in the error state, condition 
code 2 is set, and the value stored is 
unpredictable. 

Chapter 4. Control 4-23 



Not-O~£ational state: The clock is in the 
not-operational state when its power is off 
or when it is disabled for maintenance. It 
depends on the model if the clock can be 
placed in this state. Whenever the clock 
enters the not-operational state, a 
timing-facility-damage machine check is 
generated on each CPU that has access to 
that clock. 

When the clock is in the not-operational 
state, execution of STORE CLOCK causes 
condition code 3 to be set, and zero is 
stored. 

When the TaD clock accessed by a CPU 
changes value or changes state, 
interruption conditions pending for the 
TOD-clock sync check, clock comparator, and 
CPU timer mayor may not be recognized for 
a period of time up to 1.048576 seconds 
(2 20 microseconds) after the change. 

The clock can be set to a specific value by 
execution of SET CLOCK if the manual 
TaD-clock control of any configured CPU is 
set to the enable-set position. Setting 
the clock replaces the values in all bit 
positions from bit position 0 through the 
rightmost position that is incremented when 
the clock is running. However, on some 
models, the low-order bits starting at or 
to the right of bit 52 of the specified 
value are ignored, and zeros are placed in 
the corresponding positions of the clock. 

The TOD clock can be inspected by executing 
STORE CLOCK, which causes a 64-bit value to 
be stored. Two executions of STORE CLOCK, 
possibly on different CPUs in the same 
configuration, always store different 
values if the clock is running, or, if 
separate clocks are accessed, both clocks 
are running and are synchronized. 

The values stored for a running clock 
always correctly imply the sequence of 
execution of STORE CLOCK on one or more 
CPUs for all cases where the sequence can 
be established by means of the program. 
Zeros are stored in positions to the right 
of the bit position that is incremented. 
In a configuration with more than one CPU, 
however, when the value of a running clock 
is stored, nonzero values may be stored in 
positions to the right of the right.ost 
position that is incremented. This ensures 
that a unique value is stored. 

4-24 system/370 Principles of Operation 

In a system where more than one CPU 
accesses the same clock, SET CLOCK is 
interlocked such that the entire contents 
appear to be updated at once; that is, if 
SET CLOCK instructions are issued 
simultaneously by two CPUs, the final 
result is either one or the other value. 
If SET CLOCK is issued on one CPU and STORE 
CLOCK on the other, the result obtained by 
STORE CLOCK is either the entire old value 
or the entire new value. When SET CLOCK is 
issued by one CPU, a STORE CLOCK issued on 
another CPU may find the clock in the 
stopped state even when the TOD-clock-sync­
control bit is zero. The-TOD-clock-sync­
control bit is bit 2 of control register O. 
Since the clock enters the set state before 
incrementing, the first STORE CLOCK issued 
after the clock enters the set state may 
still find the original value introduced by 
SET CLOCK. 

programming Iotes-

1. Bit position 31 of the clock is 
incremented every 1.048576 seconds; 
for some applications, reference to 
the leftmost 32 bits of the clock may 
provide sufficient resolution. 

2. Communication between systems is 
facilitated by establishing a standard 
time origin, or standard epoch, which 
is the calendar date and time to which 
a clock value of zero corresponds. 
January 1, 1900, 0 Aft Greenwich Mean 
Time (GftT) is recommended as the 
standard epoch for the clock. 

3. A program using the clock value as a 
time-of-day and calendar indication 
must be consistent wi th the 
programming support under which the 
program is to run. If the programming 
support uses the standard epoch, bit 0 
of the clock remains one through the 
years 1972-2041. Ordinarily, testing 
the high-order bit for a one is 
sufficient to determine if the clock 
value is in the standard epoch. 

In converting to or from the current 
date or time, the programming support 
assumes each da y to be 86,400 sec onds. 
It does not take into account "leap 
seconds" inserted or deleted because 
of time-correction standards. 

4. Because of the limited accuracy of 
manually setting the clock value, the 
rightmost bit positions of the clock, 
expressing fractions of a second, are 
normally not valid as indications of 
the time of day. However, they permit 
elapsed-time measurements of high 
resolution. 



5. 

6. 

7. 

The following chart shows the time 
interval between instants at which 
various bit positions of the TOD clock 
are stepped. This time value may also 
be considered as the weighted time 
value that the bit, when one, 
represents. 

I TOD­
IClock 
I Bit , 

I stepping Interval 
I • • I 

I Daysl Hours' Minutesl , Seconds I , 
51 
47 
43 

39 
35 
31 

27 
23 
19 

15 
11 

7 
3 

19 
12 17 

203 14 
3257 19 

4 
11 

5 
25 
43 
29 

0.000 
0.000 
0.000 

001 
016 
256 

0.004 096 
0.065 536 
1.048 576 

16.777 216 
28.435 456 
34.967 296 

19.476 736 
11.627 776 
6.044 416 

36.710 656 

The following chart shows the clock 
setting at the start of various years. 
The clock settings, expressed in 
hexadecimal notation, correspond to 
o AM Greenwich Mean Time on January 1 
of each year. 

Year Clock Setting (Hex) 

1900 0000 0000 0000 0000 
1976 8853 BAFO B400 0000 
1980 8F80 9FD3 2200 0000 
1984 96AD 84B5 9000 0000 
1988 9DDA 6997 FEOO 0000 
1992 A507 4E7A 6COO 0000 
1996 AC34 335C DAOO 0000 
2000 B361 183F 4800 0000 

The stepping value of TOD-clock bit 
position 63, if implemented, is 2-12 
microseconds, or approximately 244 
picoseconds. This value is called a 
clock unit. 

The following chart shows various time 
intervals in clock units expressed in 
hexadecimal notation. 

Interval Clock Units (Hex) 

, 1 microsecond 
I 1 millisecond 
I 1 second 
I 1 minute 
I 1 hour 
, 1 day 
I 365 days 
, 366 days 
I 1 , 461 days 1 

~ 

1 
1CA 
1CC 
72C 

39 
D69 

41DD 
E8C1 
2A9E 
E4E2 

3E 
F424 
3870 
3A40 
7600 
3EOO 
B400 
6EOO 

11 Number of days in four years, 
I including a leap year. 
I 

1000 
8000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

8. On a multiprocessing system, after the 
TOD clock is set and begins running, 
the program should delay activity for 
2 20 microseconds (1.048576 seconds) to 
ensure that the cPU-timer, 
clock-comparator, and TOD-clock-sync­
check interruption conditions are 
recognized by the CPU. 

TOD-CLOCK SYNCHRONIZATION 

In a configuration with more than one CPU, 
each CPU may have a separate TOD clock, or 
more than one CPU may share a TOD clock, 
depending on the model. In all cases, each 
CPU has access to a single clock. 

The TOD-clock-synchronization facility 
provides the functions that make it 
possible to provide, in con junction with a 
supervisor clock-synchronization program, 
only one TOD clock, in effect, in a 
multiprocessing system. The result is such 
that, to all programs storing the clock 
value, it appears that all CPUs read the 
same clock. The TOD-clock-synchronization 
facility provides these functions in such a 
way that even though the number of clocks 
in a multiprocessing system is 
model-dependent, a single model-independent 
clock-synchronization routine can be 
written. The following functions are 
provided: 

• 

• 

• 

• 

Synchronizing the stepping rates for 
all TOD clocks in the configuration. 
Thus, if all clocks are set to the 
same value, they stay in synchronism. 

Comparing the rightmost 32 bits of 
each clock in the configuration. An 
unequal condition is signaled by an 
external interruption indicating the 
TOD-clock-sync-check condition. 

setting a TOD clock in the stopped 
state. 

causing a stopped clock to start 

Chapter 4. Control 4-25 



incrementing in response to a signal 
from a running clock. 

• Causing a stopped clock, with the 
TOD-c10ck-sync-contro1 bit set to one, 
to start incrementing when bits 32-63 
of any running clock in the 
configuration are incremented to zero. 
This permits the program to 
synchronize all clocks to any 
particular clock without requir1ng 
special operator action to select a 
"master clock" as the source of the 
clock-synchronization pulses. 

1. TOD-clock synchronization provides for 
checking and synchronizing only the 
rightmost bits of the TOD clock. The 
program must check for synchronization 
of the leftmost bits and must 
communicate the leftmost-bit values 
from one CPU to another in order to 
correctly set the TOD-c1ock contents. 

2. The TOD-c10ck-sync-check external 
interruption can be used to determine 
the number of TOD clocks in the 
configuration. 

CLOCK COMPARATOR 

The clock comparator provides a means of 
causing an interruption when the TOD-clock 
value exceeds a value specified by the 
program. 

In a multiprocessing system, each CPU has a 
separate clock comparator. 

The clock comparator has the same format as 
the TOD clock. In the basic form, the 
clock comparator consists of bits 0-47, 
which are compared with the corresponding 
bits of the TOD clock. In some models, 
higher resolution is obtained by providing 
more than 48 bits. The bits in positions 
provided in the clock comparator are 
compared with the corresponding bits of the 
clock. When the resolution of the clock is 
less than that of the clock comparator, the 
contents of the clock comparator are 
compared with the clock value as this value 
would be stored by executing STORE CLOCK. 

The clock comparator causes an external 
interruption with the interruption code 
1004 (hex). A request for a 
clock-comparator interruption exists 
whenever either of the following conditions 
exists: 

4-26 system/370 Principles of Operation 

1. The TOD clock is running and the value 
of the clock comparator is less than 
the value in the compared portion of 
the clock, both values being 
considered unsigned binary integers. 
comparison follows the rules of 
unsigned binary arithmetic. 

2. The TOD clock is in the error state or 
the not-operational state. 

A request for a c1ock-compa rator 
interruption does not remain pending when 
the value of the clock comparator is made 
equal to or greater than that of the TOD 
clock or when the value of the TOD clock is 
made less than the clock-comparator value. 
The latter may occur as a result of the TOD 
clock either being set or wrapping to zero. 

The clock comparator can be inspected by 
executing the instruction STORE CLOCK 
COMPARATOR and can be set to a specific 
value by executing the SET CLOCK COMPARATOR 
instruction. 

The contents of the clock c ompa ra tor are 
ini tialized to zero by initial CPU reset. 

programming Iotes 

1. An interruption request for the clock 
comparator persists as long as the 
clock-comparator value is less than 
that of the TOD clock or as long as 
the TOD clock is in the error or 
not-operational state. Therefore, one 
of the following actions must be taken 
after an external interruption for the 
clock comparator has occurred and 
before the CPU is again enabled for 
external interruptions: the value of 
the clock comparator has to be 
replaced, the TOD clock has to be set, 
or the c1ock-comparator-subclass mask 
has to be set to zero. Otherwise, 
loops of external interruptions are 
formed. 

2. The instruction STORE CLOCK may store 
a value which is greater than that in 
the clock comparator, even though the 
CPU is enabled for the 
clock-comparator interruption. This 
is because the TOD clock may be 
incremented one or more times between 
when instruction execution is begun 
and when the clock value is accessed. 
In this situation, the ~nterruption 
occurs when the execution of STORE 
CLOCK is completed. 

J 



CPU TIMER 

The CPU timer provides a means for 
measuring elapsed CPU time and for causing 
an interruption when a prespecified amount 
of time has elapsed. 

In a multiprocessing system, each CPU has a 
separate CPU timer. 

The CPU timer is a binary counter with a 
format which is the same as that of the TOD 
clock, except that bit 0 is considered a 
sign. In the basic form, the CPU timer is 
decremented by subtracting a one in bit 
position 51 every microsecond. In models 
having a higher or lower resolution, a 
different bit position is decremented at 
such a frequency that the rate of 
decrementing the CPU timer is the same as 
if a one were subtracted in bit position 51 
every microsecond. The res elution of the 
CPU timer is such that the stepping rate is 
comparable to the instruction-execution 
rate of the model. 

The CPU timer requests an external 
interruption with the interruption code 
1005 (hex) whenever the CPU-timer value is 
negative (bit 0 of the CPU timer is one). 
The request does not remain pending when 
the CPu-timer value is changed to a 
nonnegative value. 

when both the CPU timer and the TOD clock 
are running, the stepping rates are 
synchronized such that both are stepped at 
the same rate. Normally, decrementing the 
CPU timer is not affected by concurrent IIO 
activity. However, in some models the CPU 
timer may stop during extreme IIO activity 
and other similar interference situations. 
In these cases, the time recorded by the 
CPU timer provides a more accurate measure 
of the CPU time used by the program than 
would have been recorded had the CPU timer 
continued to step. 

The CPU timer is decremented when the CPU 
is in the operating state or the load 
state. When the manual rate control is set 
to instruction step, the CPU timer is 
decremented only during the time in which 
the CPU is actually performing a unit of 
operation. However, depending on the 
model, the CPU timer mayor may not be 
decremented when the TOD clock is in the 
error, stopped, or not-operational state. 

Depending on the model, the CPU timer may 
or may not be decremented when the CPU is 
in the check-stop state. 

The CPU timer can be inspected by executing 
the instruction STORE CPU TIMER and can be 
set to a specific value by executing the 
SET CPU TIMER instruction. 

The CPU timer is set to zero by initial CPU 
reset. 

1. The CPU timer in association with a 
program may be used both to measure 
CPU-execution time and to signal the 
end of a time interval on the CPU. 

2. The time measured for the execution of 
a sequence of instructions may depend 
on the effects of such thing s as IIO 
interference, page faults, and 
instruction retry. Hence, repeated 
measurements of the same sequence on 
the same installation may differ. 

3. The fact that a CPU-timer interruption 
does not remain pending when the CPU 
timer is set to a posi ti ve val ue 
eliminates the problem of an undesired 
interruption. This would occur if, 
between the time when the old value is 
stored and a new value is set, the CPU 
is disabled for CPU-timer 
interruptions and the CPU timer value 
goes from positive to negative. 

4. The fact that CPU-timer interruptions 
are requested whenever the CPU timer 
is negative (rather than just when the 
CPU timer goes from positive to 
negative) eliminates the requirement 
for testing a value to ensure that it 
is positive before setting the CPU 
timer to that value. 

As an example, a program being timed 
by the CPU timer is interrupted for a 
cause other than the CPU timer, 
external interruptions are disallowed 
by the new PSi, and the CPU-timer 
value is then saved by STORE CPU 
TIMER. This value could be negative 
if the CPU timer went from posi ti ve to 
negative since the interruption. 
Subsequently, when the proqram being 
timed is to continue, the CPU timer 
may be set to the saved value by SET 
CP U TIMER. A CPu-t imer interrUption 
occurs immediately after external 
interruptions are again enabled if the 
saved value was negative. 

The persistence of the CPU-timer­
interruption request means, however, 
that after an external interruption 
for the CPU timer has occurred, either 
the value of the CPU timer has to be 
replaced or the Cpo-timer-subclass 
mask has to be set to zero before the 
CPU is again enabled for external 
interruptions. Otherwise, loops of 
external interruptions are formed. 

Chapter 4. Control 4-21 



5. The instruction STORE CPU TIMER may 
store a negative value even though the 
CPU is enabled for the interruption. 
This is because the CPU-timer value 
may be decremented one or more times 
between the instants when instruction 
execution is begun and when the CPU 
timer is accessed. In this situation, 
the interruption occurs when the 
execution of STORE CPU TIMER is 
completed. 

INTERVAL TIMER 

The interval timer is a binary counter that 
occupies a word at real storage location 80 
and has the following format: 

i , 

IS I 

o 24 31 

The interval timer is treated as a 32-bit 
signed binary integer. In the basic form, 
the contents of the interval timer are 
reduced by one in bit position 23 every 
1/300 of a second. Higher resolution of 
timing may be obtained in some models by 
counting with higher frequency in one of 
the positions 24 through 31. In each case, 
the freguency is adjusted to cause 
decrementing in bit position 23 at the rate 
of 300 times per second. The cycle of the 
interval timer is approximately 15.5 hours. 

The interval timer causes an external 
interruption, with bit 8 of the 
interruption code set to one and bits 0-7 
set to zeros. Bits 9-15 of the 
interruption code are zeros unless set to 
ones for another condition that is 
concurrently indicated. 

A request for an interval-timer 
interruption is generated whenever the 
interval-timer value is decremented from a 
positive or zero number to a negative 
number. The request is preserved and 
remains pending in the CPU until it is 
cleared by an interval-timer interruption 
or a CPU reset. The overflow occurring as 
the interval-timer value is decremented 
from a large negative number to a large 
positive number is ignored. 

The interval timer is not necessarily 
synchronized with the TaD clock. 

The interval-timer contents are updated at 
the appropriate frequency whenever other 
machine activity permits. The updating 
occurs only between instruction executions, 
except that the interval timer may be 
updated between units of operation of an 
interruptible instruction, such as MOVE 

4-28 System/370 principles of Operation 

LONG. An updated interval-timer value is 
normally available at the end of each 
instruction execution. When the execution 
of an instruction or other machine activity 
causes updating to be delayed by more than 
one period, the contents of the interval 
timer may be reduced by more than one unit 
in a single updating cycle. Interval-timer 
upda ting may be omitted when 1/0 data 
transmission approaches the limit of 
storage capability, or when a channel 
sharing CPU equipment and operating in 
burst mode causes CPU activity to be locked 
out. The program is not alerted when 
omission of updating causes the real-time 
count to be lost. 

When the contents of the interval timer are 
fetched by a channel or by another cPu, or 
when they are used as the source of an 
instruction, the result is unpredictable. 
Similarly, storing by the channel, or by 
another CPU, at location 80 causes the 
contents of the interval timer to be 
unpredictable. 

The interval timer is not decremented when 
the manual interval-timer control is set to 
disable. The interval timer is also not 
decremented when the CPU is not in the 
operating state or when the manual rate 
control is set to instruction step. 

Depending on the model, the interval timer 
mayor may not be decremented when the TaD 
clock is in the error, stopped, or 
not-operational state. 

When the TOD clock accessed by a CPU is set 
or changes state, interruption conditions 
pending for the interval timer mayor may 
not be recognized for a period of time up 
to 1.048576 seconds after the change. 

1. The value of the interval timer is 
accessible by fetching the word at 
location 80 as an operand, provided 
the location is not protected aqainst 
fetching. It may be changed at any 
time by storing a word at location 80. 
When location 80 is protected, any 
attempt by the program to change the 
value of the interval timer causes a 
program interruption for protection 
exception. 

2. The value of the interval timer may be 
changed without losing the real-time 
count by storing the new value at 
locations 84-87 and then shifting 
bytes 80-87 to locations 76-83 by 
means of the instruction MOVE (MVC). 
Thus, in a single operation, the new 
interval-timer value is placed at 
location 80, and the old value is made 



~ 
available at location 76. 

If any means other than the 
instruction MOVE (MlC) are used to 
interrogate and then replace the value 
of the interval timer, including MOTE 
LONG or two separate instructions, the 
program may lose a time increment when 
an updating cycle occurs between 
fetching and storing. 

Location 84 is used as the trace­
table-entry-header origin by DAS 
tracing. If the above means for 
updating the interval timer are used 
in a system which also uses the DAS 
tracing, then the program must restore 
the contents of the word at location 
84 after updating the interval timer. 

3. When the value of the interval timer 
is to be recorded on an IIO device, 
the program should first store the 
interval-timer value in a temporary 
storage location to which the IIO 
operation subsequently refers. ihen 
the channel fetches the interval-timer 
value directly from location 80, the 
value obtained is unpredictable. 

SERVICE SIGNAL 

The service-signal facility permits the 
service processor to communicate with the 
CPU. Communications to the service 
processor are model-dependent and are 
accomplished by means of the DIAGNOSE 
instruction. When the service processor 
has completed all or part of a function 
requested by means of the DIAGNOSE 
instruction, a service-signal external 
interruption is generated. The 
service-signal external interruption is a 
floating interruption condition and can be 
accepted by any CPU in the configuration. 
The service-signal request causes an 
external interruption with the interruption 
code 2401 (hex). A 32-bit parameter is 
also stored at location 128. The subclass 
mask for service signal is bit 22 of 
control register O. 

RESETS 

Seven reset functions are provided: 

• CPU reset 

• Initial CPU reset 

• Subsystem reset 

• Program reset 

• Initial program reset 

• Clear reset 

• Power-on reset 

CPU reset provides a means of clearing 
equipment-check indications and any 
resultant unpredictability in the CPU state 
with the least amount of information 
destroyed. In particular, it is used to 
clear check conditions when the CPU state 
is to be preserved for analysis or 
resumption of the operation. 

Initial CPU reset provides the functions of 
CPU reset together with initialization of 
the current PSi, CPU timer, clock 
comparator, prefix, and control registers. 

Subsystem 
clearing 
and for 
as well 

reset provides a means for 
floating interruption conditions 

resetting channel-set connections 
as for invoking I/O-system reset. 

program reset and in it ia I program reset 
cause CPU reset and initial CPU reset, 
respectively, to be performed and cause 
I/O-system reset to be performed (see the 
section "I/O-System Reset" in Chapter 12, 
"Input/Output Operations"). 

Clear reset causes initial CPU reset and 
subsystem reset to be performed and, 
additionally, clears or initializes all 
storage locations and registers in all CPUs 
in the configuration, with the exception of 
the TOD clock. such clearing is useful in 
debugging programs and in ensuring user 
privacy. Clearing does not affect external 
storage, such as direct-access storage 
devices used by the control program to hold 
the contents of unaddressable pages. 

The power-on-reset sequences for the TOD 
clock, main storage, and channels may be 
included as part of the CPU power-on 
sequence, or the power-on sequence for 
these units may be initiated separately. 

CPU reset, subsystem reset, and clear reset 
are initiated manually by using the 
operator facilities (see Chapter 13, 
"Operator Facilities"). Initial CPU reset 
is part of the initial-program-Ioading 
function. The figure "Manual Initiation of 
Resets" summarizes how these four resets 
are manually initiated. Power-on reset is 
performed as part of turning power on. The 
reset actions are tabulated in the figure 
"Summary of Reset Actions." For 
information concerning what resets can be 
performed by the SIGNAL PROCESSOR 
instruction, see the section "Signal­
Processor Orders" in this chapter. 

Chapter 4. Control 4-29 



I 
I 
I 

Function Performed ont 

I Key Activated 
CPU on which Key 

was Activated 
Other CPUs 
in Config 

Remainder of 
Configuration 

~ 
System-reset-normal 
key 

• without store­
status facility 

• with store­
status facility 

Initial CPU reset * Subsystem reset 

CPU reset CPU reset Subsystem reset 

System-reset-clear Clear reset 2 

key 
Clear reset 2 Clear reset3 

Load-normal key Initial-CPU reset, CPU reset 
followed by IPL 

Subsystem reset 

Load-clear key Clear reset2 , fol- Clear reset 2 Clear reset 3 

lowed by IPL 
r---------------~~--------------~-----------L------------~ 
]xpla!!~1.!on: 

* This situation cannot occur, since the store-status facility is 
provided in a CPU equipped for multiprocessing. 

1 Activation of a system-reset or load key may change the config­
uration, including the connection with I/O, storage units, and 
other CPUs. 

2 Only the CPU elements of this reset apply. 

3 Only the non-CPU elements of this reset apply. 

Manual Initiation of Resets 

4-30 System/370 Principles of operation 



L 
.-, , Reset Function , 
, I I , , 
I , Sub- , I Ini tial Initiall Power-, , ,system CPU ,Program, CPU Program, Clear on , Area Affected , Reset Reset , Reset , Reset Reset , Reset Reset 
I--- , , , , 
,CPU , U S S SI S SI S 
, PSW2 , U U/V U/V C*1 c* C*l c* 
, Pr.efix , U U/V U/V C C C C 
,CPU timer , U U/V U/V C C C C 
,Clock comparator I U U/V U/V C C C C 
,Control reqisters , U U/V U/V I I I I 
,General registers I U U/' U/V U/V U/V CIT C/X 
IFloating-point registers , U U/V U/V U/V U/V CIT C/X 
,Storage keys I U U U U U C C/X4 
,Volatile main storage I U U U U U C C/X4 
,Nonvolatile main storage , U U U U U C U 
,TOD clock I U3 0 3 0" U3 U3 0 3 T4 
, Channel-set connection I I U U U U I IS 
, Floating interruption con di t ions I C U U U U C C4 
,Configured channels , RA 0 RC 0 RC RA RA4 
I---
l!xpl~nat!.Q'!p 

S The CPU is reset; current operations, if any, are terminated; interruption 
conditions in the CPU are cleared; and the CPU is placed in the stopped state. 

RA I/O-system reset is performed in all the channels in the configuration and pending 
I/O-interruption conditions are cleared. As part of this reset, system reset is 
signaled to the I/O control units and devices configured to the channels being 
reset. 

RC I/O-system reset is performed in those channels connected to the CPU performinq the 
program reset or initial-program reset. As part of this reset, system reset is 
siqnaled to the I/O control units and devices configured to the channels beinq 
reset. 

U The state, condition, or contents of the field remain unchanged. However, the 
resulting value is unpredictable if an operation is in progress that changes the 
state, condition, or contents of the field at the time of reset. 

, , , , , , , , , , , 
1 , , , , , , , 

O/V The contents remain unchanged, provided the field is not being accessed at the time 
the reset function is performed. However, on some models the checking-block code 1 
of the contents may be made valid. The subsequent contents of a field are unpre­
dictable if it is accessed at the time of the reset. 

C The condition or contents are cleared. If the area affected is a field, the con­
tents are cleared to zero with valid checking-block code. 

C/V The checking-block code of the contents is made valid. The contents normally are 
cleared to zeros but in some models may be left unchanged. 

C/X The checking-block code of the contents is made valid. The contents normally are 
cleared to zeros but in some models may be left unpredictable. 

I The state or contents are initialized. If the area affected is a field, the con­
tents are set to their initial values with valid checking-block code. 

T The TOD clock is initialized to zero and validated; it enters the not-set state. 

Summary of Reset Actions (Part 1 of 2) 

Chapter 4. Control 4-31 



* Clearing the contents of the PSi to zero causes the CPU to assume the BC-mode for­
mat. 

1 When the IPL sequence follows the reset function on that CPU, the CPU does not 
enter the stopped state, and the PSi is not necessarily cleared to zeros. 

2 For aBC-mode PSW, the ILC and interruption-code fields are unpredictable in the 
current PSW. 

3 Access to the TOD clock by means of STORE CLOCK at the time a reset function is 
performed does not cause the value of the TOD clock to be affected. 

• When these units are separately powered, the action is performed only when the 
power for the unit is turned on. 

5 When these units are separately powered, the action is model-dependent. 

Summary of Reset Actions (Part 2 of 2) 

CPU reset causes the following actions: 

1. The execution of the current 
instruction or other processing 
sequence, such as an interruption, is 
terminated, and all program-
interruption and supervisor-call-
interruption conditions are cleared. 

2. Any pending external-interruption 
conditions which are local to the CPU 
are cleared. Floating external­
interruption conditions are not 
cleared. 

3. Any pending machine-check-interruption 
conditions and error indications which 
are local to the CPU and any 
check-stop states are cleared. 
Floating machine-check-interruption 
conditions are not cleared. A 
broadcast machine check which has been 
made pending to a CPU is said to be 
local to the CPU. 

4. All copies of prefetched instructions 
or operands are cleared. 
Additionally, any results to be stored 
because of the execution of 
instructions in the current checkpoint 
interval are cleared. 

5. The translation-lookaside 
cleared of entries. 

buffer is 

6. The CPU is placed in the stopped state 
after actions 1-5 have been completed. 

Registers, storage contents, and the state 
of conditions external to the CPU remain 
unchanged by CPU reset. However, the 
subseguent contents of the register, 

4-32 System/370 Principles of Operation 

location, or state are unpredictable if an 
operation is in progress that changes the 
contents at the time of the reset. 

When the reset function in the CPU is 
initiated at the time the CPU is executing 
an I/O instruction or is in the process of 
taking an I/O interruption, the current 
operation between the CPU and the channel 
mayor may not be completed, and the 
resultant state of the associated channel 
may be unpredictable. 

Most operations which would change a state, 
a condition, or the contents of a field 
cannot occur when the CPU is in the stopped 
state. However, some signal-processor 
functions and some operator functions may 
change these fields. To eliminate the 
possibility of losing a field when CPU 
reset is issued, the CPU should be stopped, 
and no operator functions should be in 
progress. 

Initial CPU reset combines the CPU reset 
fUnctions with the following clearinq and 
initializing functions: 

1. The contents of the current PSi, 
prefix, CPU timer, and clock 
comparator are set to zero. 

2. All assigned control-register 
positions are set to their initial 
values. 



L 

These clearing and initializing functions 
include validation. 

setting the current PSI to zero causes the 
PSi to assume the BC-mode format. The 
instruction-length code and interruption 
code are unpredictable, because these 
values are not retained when a new PSi is 
introduced. 

Subsystem reset operates only on those 
elements of the configuration which are not 
CPUs. It performs the following actions 
for the remainder of the configuration. 

1. I/o-system reset is performed in each 
channel in the configuration. 

2. All floating interruption conditions 
in the configuration are cleared. 

3. Channel-set connections are 
initialized to connect each channel 
set to its home CPU if one exists, or 
to make the channel set disconnected 
if no home CPU exists. 

As part of the I/O-system reset performed 
in each channel, pending I/O-interruption 
conditions are cleared, and system reset is 
signaled to all control units and devices 
configured to the channel (see the section 
"I/O-system Reset" in Chapter 12, 
"Input/Output Operations"). The effect of 
system reset on I/O control units and 
devices and the resultant control-unit and 
device state are described in the 
appropriate publication on the control unit 
or device. A system reset, in general, 
resets only those functions in a shared 
control unit or device that are associated 
with the particular channel signaling the 
reset. 

For program reset, CPU reset is performed, 
and I/O-system reset is performed in each 
channel connected to this CPU. 

As part of the I/O-system reset performed 
(see the section "I/O-System Reset" in 
Chapter 12, "Input/Output Operations"), 
pending I/O-interruption conditions are 
cleared, and system reset is signaled to 
all control units and devices configured to 
the channel. The effect of system reset on 
I/O control units and devices and the 
resultant control-unit and device state are 
described in the appropriate publication on 
the control unit or device. A system 

reset, in general, resets only those 
fUnctions in a shared control unit or 
device that are associated with the 
particular channel signaling the reset. 

Initial PrQg~am Rese! 

Initial program reset combines the 
program-reset functions with the clearing 
and initializing functions of initial CPU 
reset. 

Clear reset combines the initial-CPU-reset 
function with an initializing function 
which causes the following actions: 

1. In most models, the contents of the 
general and floating-point reqisters 
are set to zero, but in some models 
the contents may be left unchanged 
except that the checking-block code is 
made valid. 

2. The contents of the main storage and 
the storage keys in the configuration 
are set to zero wi th valid 
checking-block code. 

3. A subsystem reset is performed. 

Validation is included in setting registers 
and in clearing storage. 

1. For the CPU-reset or program-reset 
operation not to affect the contents 
of fields that are to be left 
unchanged, the CPU must not be 
executing instructions and must be 
disabled for all interruptions at the 
time of the reset. Except for the 
operation of the TOD clock, interval 
timer, and CPU timer and for the 
possibility of taking a machine-check 
interruption, all CPU activity can be 
quiesced by placing the CPU in the 
wait state and by disabling it for I/O 
and external interruptions. To avoid 
the possibility of causing a reset at 
the time the timing facilities are 
being updated or a machine-check 
interruption occurs, the CPU must be 
in the stopped state. 

2. CPU reset, initial CPU reset, program 
reset, initial program reset, and 
clear reset do not affect the value 

Chapter 4. Control 4-33 



and state of the TOD clock. 

3. The conditions under which the CPU 
enters the check-stop state are 
model-dependent and include 
malfunctions that preclude the 
completion of the current operation. 
Hence, if CPU reset, initial CPU 
reset, program reset, or initial 
program reset is executed while the 
CPU is in the check-stop state, the 
contents of the PSi, registers, and 
storage locations, including the 
storage keys and the storage location 
accessed at the time of the error, may 
have unpredictable values, and, in 
some cases, the contents may still be 
in error after the check-stop state is 
cleared by these resets. In such a 
case, a clear reset is required to 
clear the error. 

4. Clear reset causes all bit positions 
of the interval timer to be cleared to 
zeros. 

The power-on-reset function for a component 
of the system is performed as part of the 
power-on sequence for that component. 

The power-on sequences for the TOD clock, 
main storage, and channels may be included 
as part of the CPU power-on sequence, or 
the power-on sequence for these units may 
be initiated separately. The following 
sections describe the power-on resets for 
the CPU, TOD clock, main storage, and I/O. 
See also Chapter 12, "I/O Operat ions," and 
the appropriate System Library (SL) 
publication for channels, control units, 
and I/O dev ices. 

CPU Power-On Beset: The power-on reset 
causes-initial CPU reset to be performed 
and mayor may not cause I/O-system reset 
to be performed in the channel. The 
contents of general registers and 
floating-point registers normally are 
cleared to zeros, but in some models may be 
left unpredictable, with valid 
checking-block code. 

TOD-C10ck Power-On Reset: The power-on 
reset-causes the value-of the TOD clock to 
be set to zero and causes the clock to 
enter the not-set state. 

Main-StQ~!l~ Rower::.On Rese.!: For volatile 
main storage (one that does not preserve 
its contents when power is down) and for 
storage keys, power-on reset causes valid 
checking-block code to te placed in these 
fields. In most models, the contents are 
cleared to zeros, but, in some models, the 

4-34 Systea/370 principles of Operation 

contents may be left unpredictable except 
for the checking-block code. The contents 
of nonvolatile main storage, including the 
checking-block code, remain unchanged. 

I/O fow~~::.On Reset: The I/O power-on reset 
causes I/O-system reset to be performed 
(see the section "I/O-System Beset" in 
Chapter 12, "Input/Output Operations"). 

INITIAL PROGRAM LOADING 

Initial program loading (IPt) is provided 
to initiate processing when the contents of 
storage or of the PSI are not suitable for 
processing. 

Initial program loading is initiated 
manually by designating an input device 
with the 10ad-unit-address controls and 
subsequently activating the load-normal or 
load-clear key. The load-normal key causes 
an initia1-program-reset operation to be 
performed, and the load-clear key causes a 
clear-reset operation to be performed. The 
CPU enters the load state. Subsequently, a 
read operation is initiated from the 
selected input device. The CPU does not 
necessarily enter the stopped state during 
the execution of the reset operation. The 
load indicator is on while the CPU is in 
the load state. 

The read operation is performed as if a 
STABT I/O instruction were executed that 
specified the channel, subchanne1, and I/O 
device designated by the 10ad-unit-address 
controls. The operation uses an implied 
channel-address word (CAl) containing a 
subchanne1 key of zero, and a 
channe1-command-word (CCi) address of 0, 
but the CAl location in storage, location 
72, is not accessed. The 10ad-unit-address 
controls provide the 12 rightmost bits of 
the I/O address; zeros are implied for the 
leftmost bits. 

Although the location of the first CCI to 
be executed is specified by the CCI address 
as 0, the first CCI actually executed is an 
implied CCI, containing, in effect, a read 
command with the modifier bits set to 
zeros, a data address of 0, a byte count of 
24, the chain-command flag set to one, the 
stI flag set to one, the chain-data flag 
set to zero, the skip flag set to zero, and 
the PCI flag set to zero. The CCI fetched, 
as a result of command chaining, from 
storage location 8 or 16, as well as any 
subsequent CCI in the IPt sequence, is 
interpreted the same as a CClf in any I/O 
operation, except that any PCI flags that 
are specified in CCls used for the IPt 
sequence are ignored. 

When the I/O device provides channel-end 



status for the last operation of the 1PL 
chain and no exceptional conditions are 
detected in the operation, a new PSi is 
obtained from storage locations 0-7. ihen 
this PSi specifies the EC mode, the 1/0 
address that was used for the IPL operation 
is stored at locations 186-187, and zeros 
are stored at location 185; when the BC 
mode is specified, the 1/0 address is 
stored at locations 2-3. The CPU leaves 
the load state and enters the operating 
state, with CPU operation proceeding under 
the control of the new PSi, provided the 
rate control is set to process; if the rate 
control is set to instruction step, the CPU 
enters the stopped state after the new PSi 
has been obtained. 

ihen channel-end status for the IPL 
operation is presented, either separate 
from or along with device-end status, no 
I/O-interruption condition is generated. 
Similarly, any PCI flags specified by the 
program in the CCis used for the IPL 
sequence are ignored. If the device-end 
status for the IPL operation is provided 
separately after channel-end status, it 
causes an 1/0 interruption condition to be 
generated. 

If the IPL 1/0 operation or the PSi loading 
is not completed satisfactorily, the CPU 
remains in the load state, and the load 
indicator remains on. This occurs when the 
device designated by the load-unit-address 
controls is not operational, when the 
device or channel signals any condition 
other than channel end, device end, or 
status modifier during or at the completion 
of the IPL 1/0 operation, or when the PSW 
loaded from location 0 has a PSi-format 
error that is recognized during the loading 
procedure. The address of the 1/0 device 
used in the IPL operation is not stored. 
The contents of storage locations 0-7 are 
unpredictable. The contents of other 
storage locations remain unchanged, except 
possibly for those locations due to be 
changed by the read operations. 

When fewer 
locations 
location 
operation 

than eight bytes are read 
0-7, the PSi fetched 

o at the conclusion of the 
is unpredictatle. 

into 
from 

1PL 

1. The information read and placed at 
locations 8-15 and 16-23 may be used 
as CCWs for reading additional 
information during the 1PL sequence: 
the CCW at location 8 may specify 
reading additional CCWs elsewhere in 
storage, and the CCii at location 16 
may specify the transfer-in-channel 
command, causing transfer to these 

CCWs. 

The status-modifier bit has its normal 
effect during the IPL operation, 
causing the channel to fetch and chain 
to the CCW whose address is 16 higher 
than that of the current CCii. This 
applies also to the initial chaining 
that occurs after completion of the 
read operation specified by the 
implici t CCii. 

The PSi that is loaded at the 
completion of the IPL procedure may be 
provided by the first eight bytes of 
the IPL 1/0 operation or may be placed 
at locations 0-7 by a subsequent CCi. 

2. When the PSi in location 0 has bit 14 
set to one, the CPU is placed in the 
wait state after the IPL procedure is 
completed; at that point, the load and 
manual indicators are off, and the 
wait indicator is on. 

3. Activating the load-normal key permits 
an IPL program to be loaded with a 
minimum disturbance of storage 
contents. This function may be usef ul 
in debugging. ihen the power is 
turned on or the load-clear key is 
activated, the IPL program starts with 
a cleared machine in a known state, 
except that information on external 
storage remains uDchanged. 

STOR E STA TUS 

The store-status facility includes: 

1. A change to the operation of the 
system-reset-normal key. iith the 
store-status facility installed, 
activating the system-reset-normal key 
causes a CPU-reset operation and a 
subsystem-reset operation to be 
performed; without this facility, an 
initial-CPU-reset operation and 
subsystem-reset operation are 
performed. 

2. An operator-initiated 
function. 

store-status 

The store-status operation places the 
contents of the CPU registers, except for 
the TOO clock, in assigned storage 
locations. The information provided for 
unassigned control-register positions is 
unpredictabl e. 

The figure "Assigned 
Store Status" lists 
stored, their length, 
main storage. 

Storage Locations for 
the fields tha tare 
and their location in 

Chapter 4. Control 4-35 



I I Length 
I Field I Bytes 
~ I 
ICPU timer I 8 
,Clock comparator I 8 
ICurrent PSW I 8 
IPrefix 1 4 
IModel-dependent feat. 1 4 
1 Fl-pt registers 0-6 I 32 
IGeneral registers 0-151 64 
IControl registers 0-151 64 

• I 

iniAbsolutei 
IAddress 
I 

216 
224 
256 
264 
268 
352 
384 
448 

Assiqned storage Locations for store status 

The word beginning at absolute location 268 
is reserved for storing additional status 
as required by certain model-dependent 
features. If no feature regu1r1ng this 
location is installed, the contents of the 
field remain unchanged upon execution of 
the store-status function. 

The contents of the registers are not 
changed. If an error is encountered during 
the operation, the CPU enters the 
check-stop state. 

The store-status operation can be initiated 
manually by use of the store-status key 
(see Chapter 13, "Operator Facilities"). 
The store-status operation can also be 
initiated at the addressed CPU by executing 
SIGNAL PROCESSOR, specifying the stop-and­
store-status order. 

The multiprocessing feature provides for 
the interconnection of CPUs, via a common 
main storage, in order to enhance system 
availability and to share data and 
resources. The multiprocessing feature 
includes the following facilities: 

• Shared main storage 

• TOD-clock synchronization 

• Prefixing 

• CPU-address identification 

• CPU signaling and response 

TOD-clock synchronization is described 
earlier in this chapter. Prefixing is 
described in Chapter 3, "Storage." Shared 
main storaqe, CPU-address identification, 
and CPU signaling and response are 
described in the sections which follow. 

Associated with 
extensions to 

these facilities are four 
the external interruption 

4-36 system/370 principles of operation 

(external call, emergency signal, 
TOD-clock-sync check, and malfunction 
alert), which are described in Chapter 6, 
"Interruptions"; control-register positions 
for the TOD-clock-sync-control bit and for 
the masks for the external-interruption 
conditions, which are listed in the section 
"Control Registers" in this Chapter; and 
the instructions SET PREFIX, SIGNAL 
PROCESSOR, STORE CPU ADDRESS, and STORE 
PREFIX, which are described in Chapter 10, 
"Control Instructions." 

Channels in a multiprocessing system are 
connected to a particular CPU. Only that 
CPU which is connected to a channel can 
initiate I/O operations at that channel, 
and all interruption conditions are 
directed to that CPU. When channel-set 
switching is installed, the channel-CPU 
connection can be changed by means of the 
program. 

SHARED MAIN STORAGE 

The shared-main-storage facility permits 
more than one CPU to have access to common 
main-storage locations. All CPUs ha vinq 
access to a common main-storage location 
have access to the entire 2,048-byte block 
containing that location and to the 
associated storage key. All CPUs and all 
channels refer to a shared main-storage 
location using the same absolute address. 

CPU-ADDRESS IDENTIFICATION 

Each CPU in a multiprocessing configuration 
has a number assigned, called its CPU 
address. A CPU address uniguely identifies 
one CPU within a configuration. The CPU is 
designated by specifying this address in 
the CPU-address field of a SIGNAL PROCESSOR 
instruction. The CPU signaling a 
malfunction alert, emergency signal, or 
external call is identified by storinq this 
address in the CPU-address field with the 
interruption. The CPU address is assigned 
during system installation and is not 
changed as a result of configuration 
changes. The program can determine the 
address of the CPU by means of the 
instruction STORE CPU ADDRESS. 

The CPU-signaling-and-response facility 
consists of the instruction SIGNAL 
PROCESSOR and a mechanism to interpret and 
act on several order, codes. The facility 



provides for communications among CPUs, 
including transmitting, rece1v1ng, and 
decoding a set of assigned order codes; 
initiating the specified operation; and 
responding to the signaling CPU. If a CPU 
has the CPU-signaling-and-response facility 
installed, it can address the SIGNAL 
PROCESSOR instruction to itself. The 
SIGNAL PROCESSOR instruction is described 
in Chapter 10, "Control Instructions." 

SIGNAL-PROCESSOR ORDERS 

The signal-processor orders are specified 
in bit positions 2q-31 of the second­
operand address of SIGNAL PROCESSOR and are 
encoded as shown in the figure "Encoding of 
Orders. " 

r----.--~r----------------------------, 
I Code Order 
r-----~----------------------~ 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 

OD-FF 

Unassigned 
Sense 
External call 
Emergency signal 
Start 
stop 
Restart 
Initial program reset 
Program reset 
stop and store status 
Initial microprogram load 
Initial CPU reset 
CPU reset 
Unassigned 

Encoding of Orders 

The orders are defined as follows: 

Sen§g: The addressed CPU presents its 
status to the issuing CPU (see the section 
"Status Bits" in this chapter for a 
definition of the bits). No other action 
is caused at the addressed CPU. The 
status, if not all zeros, is stored in the 
general register designated by the R~ 
field, and condition code 1 is set; if all 
status bits are zeros, condition code 0 is 
set. 

Exter~l ~gll: An external-call external­
interruption condition is generated at the 
addressed CPU. The interruption condition 
becomes pending during the execution of the 
SIGNAL PROCESSOR instruction. The 
associated interruption occurs when the CPU 
is enabled for that condition and does not 
necessarily occur during the execution of 
the SIGNAL PROCESSOR instruction. The 
address of the CPU sending the signal is 
provided with the interruption code when 

the interruption occurs. Only one 
external-call condition can be kept pending 
in a CPU at a time. 

Emerqen~~ ~iqnal: An emergency-signal 
external-interruption condition is 
generated at the addressed CPU. The 
interruption condi tion becomes pending 
during the execution of the SIGNAL 
PROCESSOR instruction. The associated 
interruption occurs when the CPU is enabled 
for that condition and does not necessarily 
occur during the execution of the SIGNAL 
PROCESSOR instruction. The address of the 
CPU sending the signal is provided with the 
interruption code when the interruption 
occurs. At anyone time the receiving CPU 
can keep pending one emergency-signal 
condition for each CPU of the 
multiprocessing system, including the 
receiving CPU itself. 

Start: The addressed CPU performs the 
start function (see the section "Stopped, 
Operating, Load, and Check-Stop States" in 
this chapter). The order is effective only 
when the addressed CPU is in the stopped 
state, and the effect is unpredictable when 
the stopped state has been entered by 
reset. The CPU does not necessarily enter 
the operating state during the execution of 
the SIGNAL PROCESSOR instruction. 

Stop: The addressed CPU performs the stop 
function (see the section "Stopped, 
Operating, Load, and Check-stop Sta tes" in 
this chapter) • The CPU does not 
necessarily enter the stopped state during 
the execution of the SIGNAL PROCESSOR 
instruction. No action is caused at the 
addressed CPU if that CPU is in the stopped 
state when the order code is accepted. 

Restarl: The addressed CPU performs the 
restart operation (see the section "Restart 
Interruption" in Chapter 6, 
"Interruptions") • The CPU does not 
necessarily perform the operation during 
the execution of the SIGNAL PROCESSOR 
instruction. 

Ini tial PrQg.Iam Re§~l: The addressed CPU 
performs initial program reset (see the 
section "Resets" in this chapter). The 
execution of the reset does not affect 
other CPUs. The reset operation is not 
necessarily completed during the execution 
of the SIGNAL PROCESSOR instruction. 

Proq~ Re§et: The addressed CPU performs 
program reset (see the section "Resets" in 
this chapter). The execution of the reset 
does not affect other CPUs. The reset 
operation is not necessarily com pleted 
during the execution of the SIGNAL 
PROCESSOR instruction. 

Chapter 4. Control 4-37 



~toE ~nQ store ~taty~: The addressed CPU 
performs the stop function, followed by the 
store-status function (see the section 
"Store status" in this chapter). The CPU 
does not necessarily complete the 
operation, or even enter the stopped state, 
during the execution of the SIGNAL 
PROCESSOR instruction. 

Initi~! .Microproq~l!! Loag (IM,1) : The 
addressed CPU performs initial program 
reset and then initiates the IML fUnction. 
The latter fUnction is the same as that 
which is performed as part of manual 
initial microprogram loading. If the IKL 
function is not provided on the addressed 
CPU, the order code is treated as 
unassigned and invalid. The operation is 
not necessarily completed during the 
execution of the SIGNAL PROCESSOR 
instruction. 

Init!~! f£Q Res~1: The addressed CPU 
performs initial CPU reset (see the section 
"Resets" in this chapter). The execution 
of the reset does not affect other CPUs and 
does not cause I/O to be reset. If the 
initial-CPU-reset order is not provided on 
the addressed CPU, the order is treated as 
unassigned and invalid. The reset 
operation is not necessarily completed 
during the execution of the SIGNAL 
PROCESSOR instruction. 

fRQ ]~§~!: The addressed CPU performs CPU 
reset (see the section "Resets" in this 
chapter). The execution of the reset does 
not affect other CPUs and does not cause 
I/O to be reset. If the CPU-reset order is 
not provided on the addressed CPU, the 
order is treated as unassigned and invalid. 
The reset operation is not necessarily 
completed during the execution of the 
SIGNAL PROCESSOR instruction. 

CONDITIONS DETERMINING RESPONSE 

The following situations preclude the 
initiation of the order. The sequence in 
which the situations are listed is the 
order of priority for indicating 
concurrently existing situations: 

1. The access path to the addressed CPU 
is busy because a concurrently issued 
SIGNAL PROCESSOR instruction is using 
the cPU-signaling-and-response 
facility. The concurrently issued 
instruction mayor may not have been 

4-38 System/370 principles of Operation 

2. 

3. 

issued by or to 
mayor may not 
this CP U. The 
Condi tion code 2 

the addressed CPU and 
have been issued to 
order is rejected. 

is set. 

The addressed CPU is not operational; 
that is, the addressed CPU is not 
installed, is not configured to the 
issuing CPU, is in certain 
customer-engineer test modes, or does 
not have power on. The order is 
rejected. Condition code 3 is set. 
This condition cannot arise as a 
result of a SIGP by a CPU addressing 
itself. 

One of the following conditions exists 
at the addressed CPU: 

a. A previously issued start, stop, 
restart, or stop-and-store-status 
order has been accepted by the 
addressed CPU, and execution of 
the function requested by the 
order has not yet been completed. 

b. A manual start, stop, restart, or 
store-status function has been 
initiated at the addressed CPU, 
and the function has not yet been 
completed. This condition cannot 
arise as a result of a SIGP by a 
CPU addressing itself. 

c. A manual initial-program-load 
function has been initiated at the 
addressed CPU, and the reset 
portion, but not the program-load 
portion, of the function has been 
completed. This condition cannot 
arise as a result of a SIGP by a 
CPU addressing itself. 

If the currently specified order is 
sense, external call, emergency 
signal, start, stop, restart, or 
stop-and-store-status, then the order 
is rejected, and condition code 2 is 
set. If the currently specified order 
is an IML, one of the reset orders, or 
an unassigned or not-implemented 
order, the order code is interpreted 
as described in the section "Status 
Bits" in this chapter. 

4. One of the following conditions exists 
at the addressed CPU: 

a. A previously issued initial­
program-reset, prog ram-reset, IML, 
initial-CPU-reset, or CPU-reset 
order has been accepted by the 
addressed CPU, and execution of 
the function requested by the 
order has not yet been completed. 

b. A manual-reset or lKL function has 
been initiated at the addressed 
CPU, and the function has not yet 



been completed. The term 
"manual-reset function" includes 
the reset portion of IPL. This 
condition cannot arise as a result 
of a SIGP by a CPU addressing 
itself. 

If the currently specified order is 
sense, external call, emergency 
signal, start, stop, restart, or 
stop-and-store-status, then the order 
is rejected, and condition code 2 is 
set. If the currently specified order 
is an IML, one of the reset orders, or 
an unassigned or not-implemented 
order, either the order is rejected 
and condition code 2 is set or the 
order code is interpreted as described 
in the section "status Bits" in this 
chapter. 

When any of the conditions described in 
items 3 and 4 exists, the addressed CPU is 
referred to as "busy." Busy is not 
indicated if the addressed CPU is in the 
check-stop state or when the 
operator-intervening condition exists. A 
CPU-busy condition is normally of short 
duration; however, the conditions described 
in item 3 may last indefinitely because of 
a string of interruptions or because of an 
invalid address in the prefix register. In 
this situation, however, the CPU does not 
appear busy to any of the reset orders or 
to an IKL. 

When the conditions described in items 1 
and 2 above do not apply and 
operator-intervening and receiver-check 
status conditions do not exist at the 
addressed CPU, reset orders may be accepted 
regardless of whether the addressed CPU has 
completed a previously accepted order. 
This may cause the previous order to be 
lost when it is only partially completed, 
making unpredictable whether the results 
defined for the lost order are obtained. 
However, some reset operations cannot 
themselves be overridden, as described in 
the section "Resets" in this chapter. 

various status conditions are defined 
whereby the issuing and addressed CPUs can 
indicate their response to the designated 
order. The status conditions and their bit 
positions in the general register 
designated by the R~ field of the SIGNAL 
PROCESSOR instruction are shown in the 
figure "Status Conditions." 

Bit Position 

o 
1-23 
24 
25 
26 
27 
28 
29 
30 
31 

status Conditions 

status Condition 

Equipment check 
Unassigned; zeros stored 
External-call pending 
Stopped 
Opera tor interve ning 
Check stop 
Not ready 
Unassigned; zero stored 
Inva lid order 
Receiver check 

The status condition assigned to bit 
position 0 is generated by the CPU 
executing the SIGNAL PROCESSOR instruction. 
The remal.nl.ng status conditions are 
generated by the addressed CPU. 

When the equipment-check condition exists, 
bit 0 of the general register designated by 
the R~ field of the SIGNAL PROCESSOR 
instruction is set to one, unassigned bits 
of the status register are set to zeros, 
and the contents of other status bits are 
unpredictable. In this case, condition 
code 1 is set independent of whether the 
access path to the addressed CPU is busy 
and independent of whether the addressed 
CPU is not operational, is busy, or has 
presented zero status. 

When the access path to the addressed CPU 
is not busy and the addressed CPU is 
operational and does not indicate busy to 
the currently specified order, the 
addressed CPU presents its status to the 
issuing CPU. These status bits are of two 
types: 

1. Sta tus bits 24-28 indicate the 
presence of the corresponding 
conditions in the addressed CPU at the 
time the order code is received. 
Except in response to the sense order, 
each condition is indicated only when 
the condition precludes the successful 
execution of the designated order. In 
the case of sense, all existing status 
conditions are indicated; the 
operator-intervening and not-ready 
conditions each are indicated if these 
conditions preclude the execution of 
any installed order. 

2. Status bits 30 and 31 indicate that 
the corresponding conditions were 
detected by the addressed CPU during 
reception of the order. 

If the presented status is all zeros, the 
addressed CPU has accepted the order, and 
condition code 0 is set at the issuing CPU; 
if the presented status is not all zeros, 

Chapter 4. Control 4-39 



the order has been rejected, the status is 
stored at the issuing CPU in the general 
register designated by the R~ field of the 
SIGNAL PROCESSOR instruction, zeros are 
stored in the unassigned bit positions of 
the register, and condition code 1 is set. 

The status 
follows: 

conditions are defined as 

~Y!R~~~i Check: This condition exists 
when the CPU executing the instruction 
detects equipment malfunctioning that has 
affected only the execution of this 
instruction and the associated order. The 
order code mayor may not have been 
transmitted and mayor may not have been 
accepted, and the status bits provided by 
the addressed CPU may be in error. 

External Call pending: This condition 
existS-when--an external-call interruption 
condition is pending in the addressed CPU 
because of a previously issued SIGNAL 
PROCESSOR instruction. The condition 
exists from the time an external-call order 
is accepted until the resultant external 
interruption has been completed. The 
condition may be due to the issuing CPU or 
another CPU. The condition, when present, 
is indicated only in response to sense and 
to external call. 

~~g: This condition exists when the 
addressed CPU is in the stopped state. The 
condition, when present, is indicated only 
in response to sense. This condition 
cannot be reported as a result of a SIGP by 
a CPU addressing itself. 

~raiQ~ Interv~inE: This condition 
exists when the addressed CPU is executing 
certain operations initiated from local or 
remote operator facilities. The particular 
manually initiated operations that cause 
this condition to be present depend on the 
model and on the order specified. On 
machines which do not implement the IKL 
order, the conditions described under "Not 
Ready" may be indicated as an 
operator-intervening condition. The 
operator-intervening condition, when 
present, can be indicated in response to 
all orders. Operator intervening is 
indicated in response to sense if the 
condition is present and precludes the 
acceptance of any of the installed orders. 
The condition may also be indicated in 
response to unassigned or uninstalled 
orders. This condition cannot arise as a 
result of a SIGP by a CPU addressing 
itself. 

Check ~iQR: This condition exists when the 
addressed CPU is in the check-stop state. 
The condition, when present, is indicated 
only in response to sense, external call, 
emergency siqnal, start, stop, restart, and 
stop and store status. The condition may 

4-40 System/370 principles of Operation 

also be indicated in response to unassigned 
or uninstalled orders. This condition 
cannot be reported as a result of a SIGP by 
a CPU addressing itself. 

Not Rea!!: This condition exists when the 
addressed CPU uses reloadable control 
storage to perform an order and the 
required microprogram is not loaded. The 
not-ready condition may be indicated in 
response to all orders except IKL. This 
condition cannot arise as a result of a 
SIGP by a CPU addressing itself. 

Invalid Order: This condition exists 
during thecommunications associated with 
the execution of SIGNAL PROCESSOR when an 
unassigned or uninstalled order code is 
decoded. 

Receiver Ch~~: This condition exists when 
the addressed CPU detects malfunctioning of 
equipment during the communications 
associated with the execution of SIGNAL 
PROCESSOR. When this condition is 
indicated, the order has not been 
initiated, and, since the malfunction may 
have affected the generation of the 
remaining receiver status bits, these bits 
are not necessarily valid. A machine-check 
condition mayor may not have been 
generated at the addressed CPU. 

The following chart summarizes which status 
conditions are presented to the issuing CPU 
in response to each order code. 

Receiver check" , 
Invalid order 
Not ready 
Check stop 

-------------------------, I 

Operator intervening' 
, Stopped 

External call 

Sense 

pending-, I 
I I 
I I 
X X 

External call 
Emergency signal 
Start 
Stop 
Restart 
Initial program reset 
Program reset 
stop and store status 
IML* 
Initial CPU reset* 
CPU reset* 
Unassigned order 

Explanation: 

X 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

I 
I I 
I I 
I I 
I I 
X X 
X X 
X X 
X X 
X X 
X X 
X 0 
X 0 
X X 
X 0 
X 0 
X 0 
X O/X 

I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
X 0 X 
o 0 X 
X 0 X 
X 0 X 
X 1 X 

o A zero is presented in this bit 
position regardless of the current 
state of this condition. 

1 A one is presented in this bit 
position. 



x 

O/X 

# 

* 

A zero or a one is presented in 
this bit position, reflecting the 
current state of the corresponding 
condition. 

Either a zero or the current state 
of the corresponding condition is 
indicated. 

The current state of the· 
operator-intervening condition may 
depend on the order code that is 
beinq interpreted. 

If a one is presented in the 
receiver-check bit position, the 
values presented in the other bit 
positions are not necessarily 
valid. 

If the order code is implemented, 
use the line entry for the order 
code; if the order code is not 
implemented, use the line entry 
labeled "Unassigned Order." 

If the presented status bits are all zeros, 
the order has been accepted, and the 
issuing CPU sets condition code O. If one 
or more ones are presented, the order has 
been rejected, and the issuing CPU stores 
the status in the general register 
specified by the R~ field of the SIGP 
instruction and sets condition code 1. 

1. A CPU can obtain the 
functions by addressing 
PROCESSOR to itself: 

following 
SIGNAL 

a. Sense indicates whether an 
external-call condition is 
pending. 

b. ~xte!:nal .£al! and ~merqency si.Q1!al 
cause the corresponding 
interruption conditions to be 
generated. External call can be 
rejected because of a previously 
generated external-call condition. 

c. 2i~!:i sets condition code 0 and 
has no other effect. 

d. 2i2£ causes 
condition code 
interruptions 
enabled, an d 
state. 

the 
0, 

f.)r 
enter 

CPU 
take 

which 
the 

to set 
pending 
it is 

stopped 

e. Rest~rt provides a means to store 
the current PSW. 

f. 2i2£ and 
machine 

st2!:~ §tatu§ 
to stop and 

causes the 
store all 

current status. 

2. Two CPUs can simultaneously execute 
SIGNAL PROCESSOR instructions, with 
each CPU addressing the other. When 
this occurs, one CPU, but not both, 
can find the access path busy because 
of the transmission of the order code 
or status bits associated with the 
SIGNAL PROCESSOR instruction that is 
being executed by the other CPU. 
Alternatively, both CPUs can find the 
access path available and transmit the 
order codes to each other. In 
particular, two CPUs can 
simultaneously stop, restart, or reset 
each other. 

The channel-set-switching feature permits a 
collection of channels to be switched from 
one CPU to another. The collection of 
channels which are switched as a group is 
called a channel set. A CPU can be 
connected to only one cha nnel set at a 
time, and a channel set can be connected to 
only one CPU at a time. The switching 
operation controls only the execution of 
I/O instructions and I/O interruptions. 
Other channel activity, such as chaining 
and data-transfer operations, is not 
controlled by the switching. 

When a channel set is switched to a 
particular CPU, it is said to be connected 
to that cPU. Channel-set switching permits 
any channel set in the configuration to be 
connected to any CPU in the configuration. 
However, a channel set can be connected to 
no more than one CPU at a time, and vice 
versa. When a channel set is not connected 
to a CPU, it is said to be disconnected. 
On a particular CPU, all I/O instructions 
executed address only the channels within 
the channel set which is currently 
connected to that CPU. Initial program 
reset and program reset issued to a CPU 
result in the resetting of the CPU and of 
only those channels which are currently 
connected to that CPU. Similarly, I/O 
interruptions caused by a channel which is 
part of a particular channel set occur on 
the cPU to which the channel set is 
currently connected. chaining and 
data-transfer operations by the channel 
continue, independent of whether the 
channel set is connected to a CPU. 

Channel sets can be connected and 
disconnected by means of two instructions, 
CONNECT CHANNEL SET (CONCS) and DISCONNECT 
CHANNEL SET (DISCS), which are defined in 
Chapter 10, "Control Instructions." These 
instructions select a particular channel 
set by means of a 16-b it channel-set 

Chapter 4. Control 4-41 



address. When the addressed channel set is 
not operational, execution of these 
instructions results in a setting of 
condition code 3. A channel set is not 
operational when it is not provided in the 
system, is not in the configuration, or is 
in certain customer-engineer test modes. 
Depending on the model, a channel set may 
be not operational when all of the channels 
in the channel set are not operational. 

When a channel set is connected to a CPU 
and the CPU becomes not operational, the 
channel set may also become not 
operational, or it may become disconnected 
and remain in the configuration. A CPU can 
become not operational because of certain 
customer-engineer test modes being set, 
because it is configured out of the 
configuration, or because its power is off. 

The number of CPUs and channel sets in a 
particular configuration is not necessarily 
the same. 

When system reset normal, system reset 
clear, load normal, or load clear is 
activated on any CPU in the configuration, 
in the absence of any override by 
model-dependent configuration controls, 
then: 

• All channels within all channel sets 
in the configuration perform system 
reset, 

4-42 System/370 Principles of Operation 

• Each channel set which has a home CPU 
is connected to its home CPU, and 

• Each channel set which does not have a 
home CPU is disconnected. 

By definition, the CPU to which a channel 
set is connected a fter system reset is 
called the home CPU for that channel set. 
The address of the channel set mayor may 
not be the same as the address of its home 
CPU. 

When no channel set is connected to a 
particular CPU, the execution of any I/O 
instruction results in a setting of 
condition code 3. When a channel set is 
connected to a particular CPU, condition 
code 3 to an I/O instruction normally 
indicates that the addressed channel or 
device is not operational. The I/O 
instructions are described in Chapter 12, 
"Input/Output Operations." The connection 
or disconnection of a channel set is not 
considered to be a change in the channel 
state for purposes of setting to one the 
machine-check external-damage-code bit 3, 
channel not operational. The setting of 
this bit, even when a channel set is 
disconnected, indicates only those changes 
from the operational state to the 
not-operational state which would be seen 
if the channel set were connected to a CPU. 

J 

J 



Instructions •••••••••••••••••••••••••••••••••••••••••••••••••••• 5-2 
Operands •••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-2 
Instruction Format •••••••••••••••••••••••••••••••••••••••••••• 5-3 

Register Operands ••••••••••••••••••••••••••••••••••••••••••• 5-4 
Immediate Operands •••••••••••••••••••••••••••••••••••••••••• 5-4 
storage Operands •••••••••••••••••••••••••••••••••••••••••••• 5-4 

Address Generation •••••••••••••••••••••••••••••••••••••••••••••• 5-5 
sequential Instruction-Address Generation ••••••••••••••••••••• 5-5 
Operan d- Ad dres s Ge ner at ion •••••••••••••••••••••••• ' •••••••••••• 5-5 
Branch-Address Generation ••••••••••••••••••••••••••••••••••••• 5-5 

Instruction Execution and Sequencing •••••••••••••••••••••••••••• 5-6 
Decision-Making ••••••••••••••••••••••••••••••••••••••••••••••• 5-6 
LOop Control •••••••••••••••••••••••••••••••••••••••••••••••••• 5-6 
Subroutine Linkage •••••••••••••••••••••••••••••••••••••••••••• 5-6 
Interruptions •••••• i •••••••••••••••••••••••••••••••••••••••••• 5-8 
Types of Instruction Ending ••••••••••••••••••••••••••••••••••• 5-8 
Interruptible Instructions •••••••••••••••••••••••••••••••••••• 5-8 

Point of Interruption ••••••••••••••••••••••••••••••••••••••• 5-8 
Execution of Interruptible Instructions ••••••••••••••••••••• 5-9 

Exceptions to Nullification and Suppression ••••••••••••••••••• 5-9 
Storaqe Change and Restoration for DAT-Associated 
Access Exceptions ••••••••••••••••••••••••••••••••••••••••••• 5-10 
Modification of DAT-Table Entries ••••••••••••••••••••••••••• 5-10 
Trial Execution for TRANSLATE and EDIT •••••••••••••••••••••• 5-10 
Interlocked Update for Nullification and Suppression •••••••• 5-10 

Dual-Address-Space Control •••••••••••••••••••••••••••••••••••••• 5-11 
Summary ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5-11 
DAS Functions •••••••••••••••••••• , ••••••••••••••••••••••••••••• 5-12 

using Two Address Spaces •••••••••••••••••••••••••••••••••••• 5-12 
changing to ether Spaces •••••••••••••••••••••••••••••••••••• 5-12 
Moving Data Between Spaces •••••••••••••••••••••••••••••••••• 5-13 
Transferring Program Control •••••••••••••••••••••••••••••••• 5-14 
Handling Storage Keys and the PSW Key ••••••••••••••••••••••• 5-14 
Program-Problem Analysis •••••••••••••••••••••••••••••••••••• 5-15 

DAS Authorization Mechanisms •••••••••••••••••••••••••••••••••••• 5-15 
Extraction-Authority Control •••••••••••••••••••••••••••••••• 5-15 
PSW-Key Mask •••••••••••••••••••••••••••••••••••••••••••••••• 5-15 
Secondary-Space Control ••••••••••••••••••••••••••••••••••••• 5-16 
Subsystem-Linkage Control ••••••••••••••••••••••••••••••••••• 5-16 
ASN-Translation Control ••••••••••••••••••••••••••••••••••••• 5-16 
Authorization Index ••••••••••••••••••••••••••••••••••••••••• 5-16 
Space-Switch-Event Bit •••••••••••••••••••••••••••••••••••••• 5-17 

PC-Number Translation ••••••••••••••••••••••••••••••••••••••••••• 5-18 
PC-Number Translation Control ••••••••••••••••••••••••••••••••• 5-19 
PC-Number Translation Tables •••••••••••••••••••••••••••••••••• 5-19 

Linkage-Table Entries ••••••••••••••••••••••••••••••••••••••• 5-19 
Entry-Ta1:le Entries •••••••••••••••• , ••••••••••••••••••••••••• 5-19 

PC-Number-Translation Process ••••••••••••••••••••••••••••••••• 5-20 
Linkage-Table Lookup •••••••••••••••••••••••••••••••••••••••• 5-21 
Entry-Tarle lookup •••••••••••••••••••••••••••••••••••••••••• 5-22 
Recognition of Exceptions During PC-Number Translation •••••• 5-22 

ASN Translation ••••••••••••••••••••••••••••••••••••••••••••••••• 5-22 
ASN-Translation Controls •••••••••••••••••••••••••••••••••••••• 5-22 
ASN-Translation Tables •••••••••••••••••••••••••••••••••••••••• 5-23 

ASN-First-Tarle Entries ••••••••••••••••••••••••••••••••••••• 5-23 
ASN-Second-Table Entries •••••••••••••••••••••••••••••••••••• 5-23 

ASN-Translation Process ••••••••••••••••••••••••••••••••••••••• 5-24 
ASN-First-Table Lookup •••••••••••••••••••••••••••••••••••••• 5-25 
ASN-Second-Table Lookup ••••••••••••••••••••••••••••••••• , •••• 5-26 
Recognition of Exceptions During ASN Translation •••••••••••• 5-26 

ASN Authorization ••••••••••••••••••••••••••••••••••••••••••••••• 5-26 
ASN-Authorization Controls •••••••••••••• , ••••••••••• ' ••••••••••• 5-26 

Control Register 4 •••••••••••••••••••••••••••••••••••••••••• 5-26 

Chapter 5. Program Execution 5-1 



calculated from a base address, index, and 
displacement, designated by the B, X, and D 
fields, respectively, in the instruction. 

To describe the execution 
operands are designated as 
operands and, in some 
operands. 

of instructions, 
first and second 

cases, third 

In general, two operands participate in an 
instruction execution, and the result 
replaces the first operand. An exception 
is instructions with "store" in the 
instruction name, other than STORE THEN AND 
SYSTEM MASK and STORE THEN OR SYSTEM MASK, 
where the result replaces the second 
operand. Except when otherwise stated, the 
contents of all registers and storage 
locations participating in the addressing 
or execution part of an operation remain 
unchanged. 

• 

o 

SSE denotes a 
operation having 
field. 

I 
op Codel R~ 

I 

8 12 15 

storage-and-storage 
an extended op-code 

r------------------,Ir--------,Ir----r---_, 
Op Code I11111111I R~ R2 I 

o 16 24 28 31 

i _, 

Op Code I R~ 12 B2 D2 I 
INSTRUCTION FORMAT I _J 

An instruction is one, two, or three 
halfwords in length and must be located in 
storage on a halfword boundary. Each 
instruction is in one of eight basic 
formats: RR, RRE, RX, RS, SI, S, SSE, and 
SS, with two variations of SS. (See the 
figure "Basic Instruction Formats.") 

Some instructions contain fields that vary 
slightly from the basic format, and in some 
instructions the operation performed does 
not follow the qeneral rules stated in this 
section. All of these exceptions are 
explicitly identified in the individual 
instruction descriptions. 

The format names indicate, in general 
terms, the classes of operands which 
participate in the operation: 

• 

• 

• 

• 

• 

RH denotes 
operation. 

a register-and-register 

RRE denotes a 
operation having 
field. 

register-and-register 
an extended op-code 

RX denotes a register-and-indexed­
storage operation. 

RS denotes a 
operation. 

SI denotes 
operation. 

a 

register-and-storage 

storage-and-immediate 

• S denotes an operation using an 
implied operand and storage. 

• SS denotes 
operation. 

a storage-and-storage 

o 8 12 16 20 31 

r-------~I·~r----r----~-----------_, 

Op Codel R~ I R3 B2 D2 I L-______ ~L_ __ ~ ____ _L ____ ~ ____________ _J 

o 8 12 16 20 31 

r-----~----------r----,r---·--------_, 

I Op Code I 12 Bs. Ds. I L-______ ~L _________ _L ____ ~ ___________ _J 

o 8 16 20 31 

r--------------------r----~------------_, 

Op Code I 
~ __________________ -L ____ ~____________J 

o 16 20 31 

r--------,Ir---------~----r--I--,_--~r---I--, 
op Codel L B~ Ds. B2 D2 I 

L--____ ~ I I---.J 
o 8 16 20 32 36 47 

r--------ir----r----r----r--I--~--_r---I--, 
Op Codel L~ L2 Bs. Ds. B2 D2 I 
~ ______ ~ __ ~ ____ ~ __ -L __ I I---.J 
o 8 12 16 20 32 36 47 

Chapter 5. Program Execution 5-3 



the first operand, except for the following 
instructions: EDIT, EDIT AND KARK, 
TRANSLATE, and TRANSLATE AND TEST. 

Execution of instructions 
involves qeneration of the 
instructions and operands. 

by the CPU 
addresses of 

SEQUENTIAL INSTRUCTION-ADDRESS GENERATION 

When an instruction is fetched from the 
location designated by the current PSW, the 
instruction address is increased by the 
number of bytes in the instruction, and the 
instruction is executed. The same steps 
are then repeated by using the new value of 
the instruction address to fetch the next 
instruction in the sequence. 

Instruction addresses wrap around, with the 
halfword at location 22 .-2 being followed 
by the halfword at location O. Thus, any 
carry out of PSi bit position 40, as a 
result of updating the instruction address, 
is lost. 

OPERAND-ADDRESS GENERATION 

An operand address that refers to storage 
either is contained in a register 
designated by an R field in the instruction 
or is calculated from the sum of three 
binary numbers: base address, index, and 
displacement. 

The base address (B) is a 24-bit number 
contained in a general register specified 
by the program in a four-bit field, called 
the B field, in the instruction. Base 
addresses can be used as a means of 
independently addressing each program and 
data area. In array-type calculations, it 
can specify the location of an array, and, 
in record-type processing, it can identify 
the record. The base address provides for 
addressing the entire storage. The base 
address may also be usea for indexing. 

The index (X) is a 24-bit number contained 
in a general register designated by the 
program in a four-bit field, called the X 
field, in the instruction. It is included 
only in the address specified by the RX 
instruction format. The RX format 
instructions permit double indexing; that 
is, the index can be used to provide the 
address of an element within an array. 

The displacement (D) is a 12-bit number 
contained in a field, called the D field, 
in the instruction. The displacement 
provides for relative addressinq of up to 
4,095 bytes beyond the location desiqnated 
by the base address. In array-type 
calculations, the displacement can be used 
to specify one of many items associated 
with an element. In the processinq of 
records, the displacement can be used to 
identify items within a record. 

In forming the address, the base address 
and index are treated as 24-bit unsiqned 
binary integers. The displacement is 
similarly treated as a 12-bit unsiqned 
binary integer, and 12 zeros are appended 
on the left. The three are added as 24-bit 
binary numbers, ignoring overflow. The sum 
is always 24 bits long. The bits of the 
generated address are numbered 8-31, 
corresponding to the numbering of the 
base-address and index bits in the general 
register. 

A zero in any of the B~, B2 , or X2 fields 
indicates the absence of the corresponding 
address component. For the absent 
component, a zero is used in forming the 
address, regardless of the contents of 
general register O. A displacement of zero 
has no special significance. 

When an instruction description specifies 
that the contents of a general register 
designated by an R field are used to 
address an operand in storage, bit 
positions 8-31 of the register provide the 
operand address. 

An instruction can designate the same 
general register both f or address 
computation and as the location of an 
operand. Address computation is completed 
prior to the execution of the operation. 

Unless otherwise indicated in an individual 
instruction definition, the generated 
operand address designates the leftmost 
byte of an operand in storage. 

Negative values may be used in index and 
base-address registers. Bits 0-1 of these 
values are always ignored. 

BRANCH-ADDRESS GENERATION 

For branch instructions, the address of the 
next instruction to be executed when the 
branch is taken is called the branch 
address. Depending on the branch 

Chapter 5. Program Execution 5-5 



~ 

addressing mode, and address space. The PT 
instruction also permits a reduction in 
PSW-key-mask authority and a change from 
supervisor to problem state. In general, 
the PT instruction is used to transfer 
control from one program to another of 
equal or lower authority. The PT 
instruction can be used to return from a 
program called by the PC instruction. 

The operation of the PC instruction is 
controlled by means of an entry-table 
entry, which is located as part of a 
table-lookup process during the execution 
of the instruction. The PC instruction 
causes the primary address space to be 
changed only when the ASN in the 
entry-table entry is nonzero. When the 
primary address space is changed, the 
operation is called PROGRAM CALL with space 

..--

switching (PC-ss). When the primary 
address space is not changed, the operation 
is called PROGRAM CALL to current primary 
(PC-cp) • 

The PT instruction specifies an address 
space which is to become the new primary 
address space. When the primary address 
space is changed, the operation is called 
PROGRAM TRANSFER with space switching 
(PT-ss). When the primary address space is 
not changed, the operation is called 
PROGRAM TRANSFER to current primary 
(PT-cp) • 

The linkage instructions provided and the 
functions performed by each are summarized 
in the figure "Linkage-Instruction 
Summary." 

I Instruction 
I I Address 
I I PSW Bits QO-63 

problem 
state 

PSi Bit 15 

PASN 
CRQ 

Bits 16-31 
PSi-Key 

Mask 
Changed 
in CR3 

I I , 
IInstructionlFormatl Save set Save Set Save Set 
\-- I I 

BALR* RR Yes Ra l 

BAL* RX Yes Yes 

BAsa RF Yes Ra l 

BAS RX Yes Yes 

PC-cp S Yes Yes Yes Yes "OR" EKM 

PC-ss S Yes Yes Yes Yes Yes Yes "OR" EKM 

PT-cp RRE Ra "AND" R20 

PT-ss RRE Ra Yes 

SVC RF Yes Yes Yes Yes 

~~lanati~: 

* 

** 

No 

The action takes place only if the R field in the instruction is 
not zero. 

BAL and BALR also save the instruction-length code, condition code, 
and program mask. 

A change from s~pervisor to problem state is permissible; a 
privi1eged-operation exception is recognized when a change from 
problem to supervisor state is specified. 

Linkage-Instruction Summary 

Chapter 5. Program Executi on 5-1 



The execution of an interruptible 
instruction is completed when all units of 
operation associated with that instruction 
are completed. When an interruption occurs 
after completion, nullification, or 
suppression of a unit of operation, all 
preceding units of operation have been 
completed. 

On completion of a unit of operation other 
than the last one (and on nullification of 
any unit of operation), the instruction 
address in the old PSW designates the 
interrupted instruction, and the operand 
parameters are adjusted such that the 
execution of the interrupted instruction is 
resumed from the point of interruption when 
the old PSW stored on the interruption is 
made the current PSW. It depends on the 
instruction how the operand parameters are 
adjusted. 

When a unit of operation is suppressed, the 
instruction address in the old PSW 
designates the next sequential instruction. 
The operand parameters, however, are 
adjusted so as to indicate the extent to 
which instruction execution has been 
completed. If the instruction is 
reexecuted after the conditions causing the 
suppression have been removed, the 
execution is resumed from the point of 
interruption. As in the case of completion 
and nullification, it depends on the 
instruction how the operand parameters are 
adjusted. 

When an exception which causes termination 
occurs as part of a unit of operation of an 
interruptible instruction, the entire 
operation is terminated, and the contents, 
in general, of any fields due to be changed 
by the instruction are unpredictable. On 
such an interruption, the instruction 
address in the old PSW designates the next 
sequential instruction. 

1. Any interruption, other than 
supervisor call and some program 
interruptions, can occur after a 
partial execution of an interruptible 
instruction. In particular, 
interruptions for external, I/O, 
machine-check, restart, and program 
interruptions for access exceptions 
and PER events can occur between units 
of operation. 

2. The amount of data processed in a unit 
of operation of an interruptible 

instruction depends on the model and 
may depend on the type of condi tion 
which causes the execution of the 
instruction to be interrupted or 
stopped. Thus, when an interruption 
occurs at the end of the current unit 
of operation, the length of the unit 
of operation may be different for 
different types of interruptions. 
Also, when the stop function is 
requested during the execution of an 
interruptible instruction, the CPU 
enters the stopped state at the 
completion of the execution of the 
current unit of operation. Similarly, 
in the instruction-step mode, only a 
sinqle unit of operation is performed, 
but the unit of operation f or the 
various cases of stoppinq may be 
different. 

EXCEPTIONS TO NULLIFICATION AND SUPPRESSION 

In certain unusual situations, the result 
fields of an instruction ha vinq a 
store-type operand are changed in spi te of 
the occurrence of an exception which would 
normally result in nullification or 
suppression. These situations are 
exceptions to the general rule that the 
operation is treated as a no-operation when 
an exception requiring nullification or 
suppression is recognized. Each of these 
situations may result in the turninq on of 
the change. bit associated with the store­
type operand, even though the final result 
in storage may appear unchanged. Dependinq 
on the particular situation, additional 
effects may be observable the extent of 
which is described for each of the 
situations. 

All of these situations are limited to the 
extent that a store access does not occur 
and the change bit is not set when the 
store access is prohibited. For the CPU, a 
store access is prohibited whenever an 
access exception exists for that access, or 
whenever an exception exists which is of 
higher priority than the priority of an 
access exception for that access. 

When, in these si tua tions, an interruption 
for an exception requ1r1nq sUppression 
occurs, the instruction address in the old 
PSW designates the next sequential 
instruction. When an interruption for an 
exception requiring nullification occurs, 
the instruction address in the old PSW 
designates the instruction causing the 
exception even though partial results may 
have been stored. 

Chapter 5. Program Execution 5-9 



for an instruction with a store-type 
operand, an interlocked update which does 
not change the contents of the location may 
occur for that portion of the store-type 
operand, if any, for which no access 
exception exists. The interlocked update 
can occur only if the priority of the 
exception is equal to or lower than the 
priority of an access exception for the 
store-type operand. 

When the exception is a specification 
exception for a store-type operand which 
requires alignment on integral boundaries, 
the interlocked update which may occur is 
limited to the single byte at the location 
specified by the operand address. 

Examples of when an interlocked update may 
occur to the destination-operand location 
in storage are: 

• Decimal-divide exception for DIVIDE 
DECI!UL 

• specification exception for an odd 
register number for COMPARE DOUBLE AND 
SWAP 

• Data exception for an invalid decimal 
sign for ADD DECIMAL 

The dual-address-space (DAS) facility 
consists of a number of interrelated 
functions. Many of these functions are 
described in this chapter, specifically in 
these sections: "DAS-Authorization 
Mechanisms," "PC-Number Translation," "ASN 
Translation," and "ASN Authorization." 
Additionally, address spaces are described 
in Chapter 3, "Storage"; interruptions in 
Chapter 6, "Interruptions"; and the 
instructions in Chapter 10, "Control 
Instructions. " 

A complete list of the functions, control­
register fields, and instructions which are 
part of DAS is included in Appendix D, 
"Facilities ." 

These major functions are provided: 

1. Two address spaces for immediate use 
by the program 

2. Means for changing to other spaces 

3. Instructions for moving data between 
spaces 

4. A table-based-subroutine linkage 

5. The use of multiple access keys for 
key-controlled protection by problem 
programs 

6. Aids for program-problem analysis 

Addi tionally, 
mechanisms are 
these functions. 

control and 
incorporated 

authority 
to control 

These functions are intended for use by 
programs considered to be semipri vileged, 
that is, programs which are executed in the 
problem state but which may be authorized 
to use additional capabilities. With these 
authorization controls, a hierarchy of 
programs may be established, with proqrams 
at a higher level having a greater degree 
of privilege or authority than proqrams at 
a lower level. The range of functions 
available at each level, and the ability to 
transfer control from a lower to a hiqher 
level, are prescribed in tables which are 
managed by the control program. 

The semiprivileged instructions are 
described in Chapter 10, "Control 
Instructions." The instructions are: 

EXTRACT PRIMARY ASN (EPAR) 
EXTRACT SECONDARY ASN (ESAR) 
INSERT ADDRESS SPACE CONTROL (lAC) 
INSERT VIRTUAL STORAGE KEY (IVS~ 

LOAD ADDRESS SPACE PARAMETERS (LASP) 
MOTE TO PRIMARY (MTCP) 
MOTE TO SECONDARY (MVCS) 
MOVE WITH KEY (MVCK) 
PROGRAM CALL (PC) 
PROGRAM TRANSFER (PT) 
SET ADDRESS SPACE CONTROL (SAC) 
SET SECONDARY ASN (SSAR) 

In addition, when DAS is 
instructions which are not 
changed to operate in the 
These instructions are: 

INSERT PSi KEY (IPK) 

installed, two 
part of DAS are 
prob le m sta teo 

SET PSi KEY FROM ADDRESS (SPKA) 

These instructions remain compatible, 
however, because the changes are under the 
control of mode bits in the PSW or in 
control registers. Furthermore, whenever a 
program in the problem state issues one of 
these instructions at a time when the 
required control registers have not been 
set up, the program exception which is 
indicated is an exception which is also 
available on machines without DAS. 

Chapter 5. Program Execution 5-11 



ASI translation. 

To obtain the seq.ent-table designation and 
other inforaation for the new address 
space, the ASI is translated by using a set 
of tables whose origin is contained in 
control register 14. A two-level lookup is 
used. The ASI value is partitioned into 
two indexes. The first index selects an 
entry in the table designated by cQntrol 
re~ister 14, called the ASI first table, or 
AFT. This entry designates another table, 
called the ASI second table, or 1ST, an 
entry of which is selected by the second 
index. An entry in the second table 
contains several parameters about the new 
address space. The information in a 
second-table entry includes: 

• A validity indicator, generally used 
to indicate whether the associated 
address space is im.ediately 
accessible. This is useful for 
managing unassigned numbers and 
swapped-out spaces. 

• The origin and length of a table which 
provides control over whether three of 
the instructions are authorized to use 
the new ASI. This table is called the 
authority table (AT). 

• 

• 

• 

• 

The authority index (AX), or leVel, of 
the nett space. 

The origin and length of the segment 
table to be used by DAT when the new 
address space is accessed. 

1 control over whether a signal, in 
the form of a space~switch-event 
prograa interruption, is given for two 
of the instructions after a change to 
a new primary address space is 
coapleted. 

The origin of a set of tables which 
describe the entry points associated 
with a new priaary space. These 
tables are used by the linkage 
mechanism provided with DAS. A 
two-level table structure is provided. 
The first level is the linkage table 
(tT) , whose entries provide the 
origins of entry tables (ET). 

~AD,ging .th~ seco1lllary ~~: The 
instruction SET SECONDARY ASI (SSlR) causes 
the secondary space to be changed to the 
space associated with the ASI speCified by 
the instruction. The ASI itself is placed 
in control register 3 and is called the 
secondary 151, or SASI. The ASI is 
translated to obtain the or1g1n of the 
segment table for the space. This orgin is 
placed in control register 7 as the 
secondary segment-table origin, or SSTO. 
Instruction execution is disallowed if the 
translation is not authorized. The 

translation is authorized by a bit in the 
authority table at an offset determined by 
the authority index in control register 4. 
The instrUction LOAD ADDRESS SPACE 
PlRAIIETERS also can change the secondary 
space. 

DAS prOVides three instructions for moving 
information under the control of two access 
keys. 

The instrUction KOYE WITH KEY gives a 
semiprivileged program the capability of 
moving information to (or from) a caller-
specified area from (or to) a 
semiprivl1eged-program area. The 
instruction UseS the PSI key for the store 
accesses associated with the first operand 
and uses a program-specified key for the 
fetch aooesses associated with the second 
operand. Thus, a program may set up the 
PSI key and specify the source key so as to 
provide appropriate authority checking on a 
caller-specified address whether it be a 
source or a target. 

The instructions KOTE TO PRIKARY and KOVE 
TO SECOIDARY permit the program to move 
data from either of the two current address 
spaces to the other. These instructions 
have the same general format as KOVE WITH 
KEY and are defined such that a second 
access key can be specified in addition to 
the PSI key. The PSW key in these two 
instruotions is used as the access key for 
the storage references to the primary 
address space. Accesses to the secondary 
address space are made by using a key 
specified in a general register designated 
by the.iostruction. Thus, the proqram can 
use the instruction to move data to (or 
frOm) a calling program area from (or to) 
the semiprivileged-program area and to 
specify the appropriate key to be used in 
each area. 

A third aove instruction is used for movinq 
data between differently protected areas, 
but with both operands appearing in the 
same address space. 

For all three move instructions, the number 
of bytes to be moved is expressed as a true 
length. A zero length is allowed, with no 
movement performed. up to 256 bytes are 
aoved each time one of these instructions 
is exeCUted, and a condition code is set to 
indicate whether the number of bytes moved 
did or did not exhaust the true length. 
These capabilities make the instructions 
suitable for use in a Simple proqram to 
aove a number of bytes from zero up. This 
is particularly useful when the number of 
bytes to be moved is calculated dynamically 

Chapter 5. Program Execution 5-13 



called program may be 
keys which are not 
caller. 

authorized to 
authorized to 

have 
the 

The IVSK instruction is also useful to a 
supervisor program since the instruction 
uses a virtual rather than a real address. 
The sequence LOAD REAL ADDRESS followed by 
INSERT STORAGE KEY does not necessarily 
produce a valid result if the program is 
enabled or running in a multiprocessing 
system. This is true because, in a 
multiprocessing system, an INVALIDATE PAGE 
TABLE ENTRY, followed by a reassignment of 
the page on the other CPU, may occur. 

The SET PSi KEY FROM ADDRESS (SPKA), which 
is changed by DAS to operate in the problem 
state, provides the program in the problem 
state with the capability of changing the 
PSi key, under control of the PSi-key mask, 
and thus permits the program to access 
different data areas protected by different 
keys. Its use, in conjunction with the 
PSi-key mask, permits the program to 
operate with more than one key without 
havin g authorization to all keys. 

Increased flexibility in key handling is 
controlled by a 16-bit PSi-key mask in 
control register 3. This mask controls the 
problem-program use of keys in the move 
instructions and in the SET PSW KEY FROM 
ADDRESS instruction. Each bit position 
corresponds to a key value. The bit in the 
mask must be one in order for the 
corresponding key to be used. 

To aid program-problem analysis, the option 
is provided of having a trace entry made 
implicitly for three instructions. ihen 
tracing is activated, a trace entry is made 
each time PROGRAM CALL, PROGRAM TRANSFER, 
or SET SECONDARY ASN is executed. 

As a further analysis aid, PROGRAM CALL and 
PROGRAM TRANSFER are also recognized for 
PER purposes as successful branching 
events. Additionally, for these two 
instructions, a bit called the space­
switch-event bit is provided both in 
control register 1 and in the second-table 
entry used during ASN translation. When 
either bit is one, a program interruption 
for a space-switch event occurs at the 
completion of the instruction. The effect 
is to provide for an interruption when a 
primary-space switch occurs, allowing 
recognition that a space has been entered, 
left, or both. 

The authorization mechanisms which are 
provided by DAS are as follows. (A summary 
of the authorization mechanisms is given in 
the figure II Summary of DAS Authorization 
Mechanisms. II) 

The extraction-authority-control bit is 
located in bit position 4 of control 
register o. This bit controls whether the 
following instructions are authorized in 
the problem state. 

EXTRACT PRIMARY ASN (EPAR) 
EXTRACT SECONDARY ASN (ESAR) 
INSERT ADDRESS SPACE CONTROL (lAC) 
INSERT P SW KEY (IPK) 
INSERT VIRTUAL STORAGE KEY (IVSK) 

When the extraction-authority-control bit 
is a one, the instructions can be executed 
in the problem state. When the bit is zero 
and any of the above instructions are 
encountered in the prob lem state, a 
privileged-operation exception is 
recognized, and the operation is 
suppressed. The extraction-authority-
control bit is not examined in the 
supervisor state. 

PSW-Key Mask 

The PSW-key mask consists of bits 0-15 in 
control register 3. These bits are used in 
the problem state to control what keys and 
entry points are authorized for the 
program. The PSW-key mask is modified by 
PROGRAM CALL and PROGRAM TRANSFER and is 
loaded by LOAD ADDRESS SPACE PARAMETERS. 
The PSW-key mask is used in the problem 
state to control the following. 

• The PSW-key values that can be set by 
means of the instruction SET PSi KEY 
FROM ADDRESS. 

• The PSi-key values that are valid for 
the three move instructi ons that 
specify a second access key: MOTE 
WITH KEY, MOVE TO PRIMARY, and MOVE TO 
SECONDARY. 

• The entry points which can be called 
by means of PROGRAM CALL. In this 
case, the PSW-key mask is A NDed .wi th 
the authorization key mask in the 
entry-table entry, and, if the result 
is zero, the program is not 
authorized. 

Chapter 5. Program Execution 5-15 



The instruction PROGRAM CALL with space 
switching causes a new authorization index 
to be loaded from the ASN-second-table 
entry. This permits the program which is 
called to be given an authorization index 
which authorizes it to access more address 
spaces than those authorized for the 
calling program. 

Bit 31 of control register 1 is the space­
switch-event bit. This bit is loaded into 
control register 1, along with the 
remaining bits of the primary-segment-table 
desiqnation, whenever control register 1 is 
loaded. If control register 1 is loaded as 
a result of a PC-ss or PT-ss operation and 
either the old or new value of the space­
switch-event bit is one or both values are 
ones, then a space-switch-event program 
interruption occurs after the operation has 
been completed. A space-switch-event 

program interruption is also indicated at 
the completion of a PC-ss or PT-ss if any 
PER event is indicated. 

The space-switch event permits the control 
program to gain control whenever a program 
enters or leaves a particular address 
space. Bit 95 of the ASN-second-table 
entry (ASTE) is loaded into bit position 31 
of control register 1 as part of the PC-ss 
and PT-ss operations. If bit 95 of the 
ASTE for a particular address space is set 
to one, then a space-switch event is 
recognized when a program enters the 
address space by means of either a PC-ss or 
a PT-ss. 

The space-switch event 
causing additional trace 
recorded or in enabling 
CPU for PER or tracing. 

may be useful in 
information to be 
or disabling the 

Chapter 5. Program Execution 5-17 



I linkage-table entry. 

I PC-NUMBER TRANSLATION CONTROL 

PC-number translation is controlled by 
means of the linkage-table designation in 
control register 5. The register has the 
followinq format: 

I I 
IVI 

o 1 8 

Linkage-Table 
origin 

25 31 

SubsY2iem=Linkaq§ Cont~ol (!): Bit 0 is 
the subsystem-linkage-control bit. When 
this bit is zero, PROGRAM CALL and PROGRAM 
TRANSFER are not authorized; a 
special-operation exception is recognized, 
and the operation is suppressed. 

1inkaq~=Ta~1~ Origin: Bits 8-24, with 
seven zeros appended on the right, form a 
24-bit real address that designates the 
beginning of the linkage table. 

1inkag§-Ta~le Leggin (LT1') : Bits 25-31 
designate the length of the linkage table 
in units of 128 bytes, thus making the 
length of the linkage table variable in 
multiples of 32 four-byte entries. The 
length of the linkage table, in units of 
128 bytes, is one more than the value in 
bit positions 25-31. The linkage-table 
length is compared against the leftmost 
seven bits of the linkage-index portion of 
the PC number to determine whether the 
linkage index designates an entry within 
the linkage table. 

I PC-NUMBER TRANSLATION TABLES 

~: 

The PC-number translation process consists 
in a two-level lookup using two tables: a 
linkage table and an entry ta~le. These 
tables reside in real storage. 

The linkage-index portion of the PC number 
is used to select a linkage-table entry. 
The entry fetched from the linkage table 
designates the availability, or1g1n, and 
length of the corresponding entry table. 

An entry in the linkage 
following format: 

table has the 
I 
I 

~,-rl--------r-------------------or------, 

1 1 I 
11100000001 

Entry-Table 
Origin 

I 
ETL I 

L-L-______ -L __________ . ________ ~~ _____ J 

o 1 8 26 31 

The fields in the linkaqe-table entry are 
allocated as follows: 

LX Invalid ~ii (!): Bit 0 controls whether 
the entry table associated with the 
linkage-table entry is available. 

When the bit is zero, PC-number translation 
proceeds by using the linkage-table entry. 
When the bit is one, an LX-translation 
exception is recognized, and the operation 
is nullified. 

Entry-Table Origin: Bits 8-25, with six 
zeros appended on the right, form a 24-bit 
real address that designates the beqinninq 
of the entry table. 

Entry-Tgl!le Length O~.'r1): Bits 26-31 
designate the length of the entry table in 
units of 64 bytes, thus makinq the entry 
table variable in multiples of four 16-byte 
entries. The length of the entry table, in 
uni ts of 64 bytes, is one more than the 
value in bit positions 26-31. The 
entry-table length is compared against the 
leftmost six bits of the entry index to 
determine whether the entry index 
designates an entry within the entry table. 

Bits 1-7 of the linkage-table entry must be 
zeros; otherwise, a PC-translation­
specification exception is recognized, and 
the operation is suppressed. 

The entry 
16 bytes 
format: 

fetched from the entry table is 
in length and has the following 

r----------------~r-----------------, 

I Auth Key Mask ASN 
L-________________ ~_____________----J 

o 16 31 

I i I 1 
100000000 I Entry Instr Addr I PI 
I • I 

32 40 63 

Entry Parameter 

64 95 

i I 

Entry Key Mask I1111111111111111I I L ________________ -L ________________ ~ 

I 96 112 127 

Chapter 5. Program Execution 5-19 



i i 

CR5 IVI 
I , 

I 

LTO ILTL I , 
I 
I 
I 
I 

PC 
r 
I 
L 

Number 

• LX I 

• 
I 

I (x4) 
• I r------------·--------------~ 

I I 
I , Linkage Table 
I ~ r 
1--)1 +1 I I 

Y I I 
L--)~~T1------~ 
R 1110 I ETO IETLI 

" ~ I I 
I I , 

EX 

(x16) 

I r----------------
I I 
I , Entry Table 
I ,-, 
1--)1+1 I 

Y I I 
l..-) r---'-...,.------""T"----T' • i ,I 
F I AKM ASN 0 IA IPI PARM EKM I111111I 

~I __ ----~----~~~------~'~'~---------L------~----~I 
I I 
I I l..-_____________________________________________________ ~, I 

I II 
~ R: Address is real 

I 
I 
I 
I 
I 
I 

~: 
I 

PC-Number Translation 

The linkage-index (LX) portion of the PC 
number is used to select an entry from the 
linkage table. The real address of the 
linkage-table entry is obtained by 
appending seven zeros on the right to the 
contents of bit positions 8-24 of control 
register 5 and adding the linkage index to 
this value. For this addition, the linkage 
index is extended with two rightmost and 10 
leftmost zeros. 

A carry, if any, into bit position 7 is 
ignored, and the result is a 24-bit real 
address. 

As part of the linkage-table-lookup 
process, the leftmost seven bits of the 
linkage index are compared against the 
linkage-table length, bits 25-31 of control 
register 5, to establish whether the 
addressed entry is within the linkage 
table. If the value in the 
linkage-table-length field is less than the 
value in the seven leftmost bits of the 
linkage index, an LX-translation exception 

is recognized, and 
nullified. 

t he opera ti on is 

All four bytes of the linkage-table entry 
are fetched concurrently. The fetch access 
is not subject to protection. When the 
storage address which is generated for 
fetching the linkage-table entry refers to 
a location which is not provided, an 
addressing exception is recognized, and the 
operation is suppressed. 

Bit 0 of the linkage-table entry specifies 
whether the entry table corresponding to 
the linkage index is available. This bit 
is inspected, and, if it is one, an 
LX-translation exception is recognized, and 
the operation is nullified. 

When no exceptions are recognized in the 
process of linkage-table lookup, the entry 
fetched from the linkage table designates 
the origin and length of the corresponding 
entry table. 

Chapter 5. Program Execution 5-21 



I 

~: 
I 
I 
I 
I 

12 is one, 
performed. 

ASN translat ion can be 

1SN-Fir~!=Table .Qrigj,!! (AFTO): Bits 20-31 
of control register 14, with 12 zeros 
appended on the right, form a 24-bit real 
address that designates the beginning of 
the ASN first table. 

I ASN-TRANSLATION TABLES 

The ASN-translation process consists in a 
two-level lookup using two tables: an ASN 
first table and an ASN second table. These 
tables reside in real storage. 

The entry fetched from the ASN first table 
(AFT) designates the availability and 
origin of the corresponding ASN second 
table. 

An entry in the ASN first table has the 
following format: 

I iii (..,! ~I I ~OOOOOO I 8 
ASTO 

. , 
100001 

28 31 

The fields in the entry are allocated as 
follows: 

AFI-Invalid Bit (1): Bit 0 controls 
whether--the ASN second table associated 
with the ASN-first-table entry is 
available. When bit position 0 contains a 
zero, ASN translation proceeds by using the 
designated ASN second table. When it 
contains a one, an AFI-t ranslation 
exception is recognized, and the operation 
is nullified. 

ASH-SeconQ-Ta!1le .Qrigin (1.§TO): Bits 8-27, 
with four zeros appended on the right, are 
used to form a 31-bit real address that 
designates the beginning of the ASN second 
table. 

Bits 1-7 and 28-31 of the AFT entry must be 
zeros; if they are not zeros, an 
ASN-translation-specification exception is 
recognized as part of the execution of the 
instruction using that entry for ASH 
translation, and the operation is 
suppressed. 

I ASN-Second-Table Ent~j,es 

The entry fetched from the ASH second table 
indicates the availability of the address 
space and contains the address-space­
control parameters if the address space is 
available. 

The ASH second-table entry 
following format: 

r-T i , i 

11100000001 ATO 100 I 

o 8 31 

has the 

I r 
I AX 

I , 

ITL [00001 
[ 

I 32 48 60 63 

I r----------------STD--------------~ 

I ii' 

I STL STO 11/11111 
[ '--______ --''--______________ ..&.. ---1--1 

I 64 72 90 95 

r-------------~LTD--------------. 

r-T I 

IVIOOOOOOOI LTO 
, I 

96 104 

The fields in the 
follows: 

LTL 

121 127 

entry are allocated as 

ASI-Invalid !!it CD: Bit 0 con troIs 
whether the address space associated with 
the AST entry is available. When bit 
position 0 contains a zero, ASN translation 
proceeds. When the bit is a one, an 
ASI-translation exception is recoqnized, 
and the operation is nullified. 

Authorit~-Ta!1le Origj,!! (!1.Q): Bits 8-29, 
with two zeros appended on the right, are 
used to form a 24-bit real address that 
designates the beginning of the authority 
table. 

Authorization Index (AI): Bits 32-47 are 
used as--a-result--of a successful primary 
ASH translation by PROGRAM CALL and PROGRAM 
TRANSFER. The AI field is ignored for 
secondary ASH translation in SET SECONDARY 
ASH. 

Authorii~::.Ta.Q.1~ 1~gi.h (!11): Bits 48-59 
specify the length of the authority table 
in units of four bytes, thus making the 
authority table variable in multiples of 16 
entries. The length of the authority 
table, in units of four bytes, is one more 
than the ATL value. The contents of the 
ATL field are used to establish whether the 
entry designated by a particular AX falls 
within the authority table. 

Chapter 5. Program Execution 5-23 



L 

L 

ASN 

• • , r-
CR 14 I VI IAFTOI I AFX ASX 

L--_--L-L • i ---I 

I (x 4096) 
I 

I 
I .-
I I (x 4) 
I , 
I r--. ASN First Table 
L-_> I + I r- , 

Lr' I I 
I I I 
L-->~ • ~ 
R I II 0 ASTO 101 

~ Y 
I I 
I I 
L--

r--
I 
I 
I 
I 
I 
I r-
I I (x 16 ) 
I I 
I , 
I ,-, ASN Second Table 
L-_>I + I r 

Lr' I 
I I 
I I 
L-->I • --r-. 
R I II 0 ATO 101 AX ATL 

I --L-L-

I 
I 

I R: Address is real 

I ASN Translation 

The AFX portion of the ASN is used to 
select an ASN-first-table entry that 
designates the second table (ASN second 
table) to be used for the second lookup. 
The 24-bit real address of the ASN first 
table is obtained by appending 12 zeros on 
the right to the AFT origin contained in 
bit positions 20-31 of control register 14. 
The real address of the AFT entry is 
obtained by appending two rightmost zeros 
and 12 leftmost zeros to the AFX and adding 
this 24-hit value to the real address of 
the AFT, ignorinq any carry into bit 
position 7. All four bytes of the 
ASN-first-table entry are fetched 
concurrently. The fetch access is not 

I 
I 
I 

• • • • • • • I 
10lSTLI STO I XI VI 0 LTO ILTLI 
i I I I • I 

I 
I 

subject to protection. When the storage 
address which is generated for fetchinq the 
ASN-first-table entry refers to a location 
which is not provided, an addressinq 
exception is recognized, and the operation 
is suppressed. 

Bit 0 of the four-byte AFT entry specifies 
whether the corresponding AST is available. 
If this bit is one, an AFI-translation 
exception is recognized, and the operation 
is nullified. If bit positions 1-7 and 
28-31 of the AFT entry do not contain 
zeros, an ASN-translation-specification 
exception is recognized, a nd the operation 
is suppressed. When no exceptions are 
recognized, the entry fetched from the AFT 
is used to access the AST. 

Chapter 5. Program Execution 5-25 



I 
I 
I 

~ 

table. 

AuthQI.i!y=Tablg 1ength (!TL): Bits IJa-59 
designate the length of the authority table 
in units of four bytes, thus making the 
authority table variable in multiples of 16 
entries. The length of the authority 
table, in units of four bytes, is equal to 
one more than the ATL value. The contents 
of the length field are used to establish 
whether the entry designated by the 
authorization index falls within the 
authority table. 

The authority table consists of entries of 
two bits each; accordingly, each byte of 
the authority table contains four entries: 

IPSIPSIPSIPSI 

o 7 

The fields are allocated as follows: 

PrimElI.r Authori!Y (f): The left bit of an 
authority-table entry controls whether the 
program with the authorization index 
corresponding to the entry is permitted to 
load the address space as a primary address 
space by using PROGRAM TRANSFER. If the P 
bit is one, the access is permitted. If 
the P bit is zero, the access is not 
permitted; a primary-authority exception is 
recognized, and the operation is nullified. 

Secondary Authority (~): The right bit of 
an authority-table entry controls whether 
the program with the corresponding 
authorization index is permitted to load 
the address space as a secondary address 
space using SET SECONDARY ASN. If the 5 
bit is one, the access is permitted. If 
the 5 bit is zero, the access is not 
permitted; a secondary-authority exception 
is recognized, and the operation is 
nulli fied. 

Programming !Qte 

The primary- and secondary-authority 
exceptions cause nullification to permit 
dynamic modification of the authority 
table. Thus, when an address space is 
created or "swapped in," the authority 
table can first be set to all zeros and the 
appropriate authority bits set to one only 
when required. 

I ASN-AUTHORIZATION PROCESS 

The ASN-authorization process is performed 
by using the authorization index currently 
in control register IJ, in conjunction with 
the authority-table origin and length from 
the A5T entry, to select an authority-table 
entry. 

The ASN-authorization process is performed 
by using the authorization index to select 
an entry from the authority table. The 
entry is fetched, and either the primary­
or secondary-authority bit is examined, 
depending on whether the primary- or 
secondary-authorization process is being 
performed. The A5N-authorization process 
is shown in the figure "ASN Authorization." 

Chapter 5. Program Execution 5-27 



I 

~ 
selected from the byte as a function of 
bits 14 and 15 of the AX in CR4 and the 
instruction PROGFAM TRANSFER (PT-ss) or SET 
SECONDARY ASN (SSAR-ss). 

I 
I 
I 
I CR4 Bits 
I 
I H 15 
I--
I 0 0 
I 
I 0 1 
I 
I 0 
I 
I 1 

-----_.--, 
I Bit Selected from 
IAuthority-Table Byte 
I for Test 
I 

P Bit 
(PT-ss) 

o 

2 

4 

6 

I S Bit 
I (SSAR-ss) 
I 

3 

5 

7 

If the selected bit is one, the ASN 
translation is authorized, and the 
appropriate address-space-control 
parameters from the AST entry are loaded 
into the appropriate control registers. If 
the selected bit is zero, the ASN 
translation is not authorized, and a 
primary-authority exception or 
secondary-authority exception is recognized 
for PT-ss or SSAR-ss, respectively. 

The exceptions associated with the primary­
and secondary-AsN authorization processes 
are called primary-authorization­
translation exceptions and secondary­
authorization-translation exceptions, 
respectively. A list of these exceptions 
and their priorities are given in Chapter 
6, "Interruptions." 

conceptually, the CPU processes 
instructions one at a time, with the 
execution of one instruction preceding the 
execution of the following instruction. 
The execution of the instruction specified 
by a successful branch follows the 
execution of the branch. Similarly, an 
interruption takes place between 
instructions or, for interruptible 
instructions, between units of operation of 
such instructions. 

The sequence of events implied by the 
processing just described is sometimes 
called the conceptual sequence. 

Each operation appears to the program to be 
performed sequentially, with the current 
instruction being fetched after the 
preceding operation is completed and before 
the execution of the current operation is 
begun. This appearance is maintained, even 
though the storage-implementation 
characteristics and overlap of instruction 
execution with storage accessing may cause 
actual processing to be different. The 
results generated are those that would have 
been obtained had the operations been 
performed in the conceptual sequence. 
Thus, it is possible for an instruction to 
modify the next succeeding instruction in 
storage. 

In simple models in which operations are 
not overlapped, the conceptual and actual 
sequences are essentially the same. 
However, in more complex machines, 
overlapped operation, buffering of operands 
and results, and execution times which are 
comparable to the propagation delays 
between units can cause the actual sequence 
to differ considerably from the conceptual 
sequence. In these machines, special 
circuitry is employed to detect 
dependencies between operations and ensure 
that the results obtained are those that 
would have been obtained if the operations 
had been performed in the conceptual 
sequence. However, other CPUs and channels 
may, unless otherwise constrained, observe 
a sequence that differs from the conceptual 
sequence. Also, in certain situations 
involvinq dynamic address translation where 
different virtual addresses map to the same 
real address, the effect of overlapped 
operation may be observable. 

It can normally be assumed that the 
execution of each instruction occurs as an 
indivisible event. However, in actual 
operation, the execution of an instruction 
consists in a series of discrete steps. 
Depending on the instruction, operands may 
be fetched and stored in a piecemeal 
fashion, and some delay may occur between 
fetching operands and storing results. As 
a consequence, a channel or another CPU may 
be able to observe intermediate or 
partially completed results. 

When the program on the CPU inte rac ts with 
a program on a channel or on another CPU, 
the programs may have to take in to 
consideration that a sinqle operation may 
consist in a series of storage references, 
that a storage reference may in turn 
consist in a series of accesses, and that 
the conceptual and actual sequences of 
these accesses may differ. storage 
references associa ted with instruction 
execution are of the followi ng types: 
instruction fetches, DAT-table fetches, 
storage-key accesses, and storage-operand 
references. 

Chapter 5. Program Execution 5-29 



IJ. 

5. 

6. 

7. 

8. 

Accesses to storage for the purpose of 
storing and fetching information for 
interruptions is performed by means of 
real addresses, whereas accesses by 
the proqram may be by means of virtual 
addresses. 

The real-to-absolute mapping may be 
changed by means of the instruction 
SET PREFIX. 

A location may be accessed by 1/0 by 
means of an absolute address and by 
the CPU by means of a real or a 
virtual address. 

A location may be accessed by 
CPU by means of one type of 
and by this CPU by means 
different type of address. 

another 
address 

of a 

The CPU updates the interval timer by 
means of a real address, and the 
proqram may access the location by 
means of a virtual address. 

The primary purpose of this section is to 
describe the effects caused by case 1 
above. 

For case 2, the effect is not observable, 
since prefetched instructions are discarded 
and the effect of delayed stores is not 
observable to the CPU itself. 

For case 3, those instructions which fetch 
by usinq real addresses (for example, LOAD 
REAL ADDRESS), no effect is observable. 
This is because the only effect across 
instructions is the pre fetching of 
instructions, and instructions which fetch 
by usinq real addresses thus have no 
special effect. All instructions which 
store by using a real address cause 
prefetched instructions to be discarded, 
and no effect is observable. 

Cases 4 and 5 are situations which are 
defined to cause serialization, with the 
result that prefetched instructions are 
discarded. In these cases, no effect is 
observable. 

The handlinq of cases 6 and 7 involves 
accesses as observed by channels and other 
CPUs and is covered in the following 
sections in this chapter. 

For case 8, the effect of updating the 
interval timer is observable only if an 
instruction is fetched from location 80 by 
usinq a virtual address Which is not 80 but 
maps to 80. 

INSTRUCTION FETCHING 

Instruction fetching consists in fetching 
the one, two, or three halfwords specified 
by the instruction address in the current 
PSi. The immediate field of an instruction 
is accessed as part of an instruction 
fetch. If, however, an instruction 
specifies a storage operand at the location 
occupied by the instruction itself, the 
location is accessed both as an instruction 
and as a storage operand. The fetch of the 
target instruction of EXECUTE is considered 
to be an instruction fetch. 

The bytes of an instruction may be fetched 
piecemeal and are not necessarily accessed 
in a left-to-right direction. The 
instruction may be fetched multi pIe times 
for a single execution; for example, it may 
be fetched for testing the addressability 
of operands or for inspection of PER 
events, and it may be refetched for actual 
execution. 

Instructions are not necessarily fetched in 
the sequence in which they are conceptually 
executed and are not necessarily fetched 
for each time the! are executed. In 
particular, the fetching of an instruction 
may precede the stora1e-operand references 
for an instruction that is conceptually 
earlier. The instruction fetch occurs 
prior to all storage-operand references for 
all instructions that are conceptually 
later. 

An instruction may be prefetched by using a 
virtual address only when the associated 
DAT table entries are attached and valid. 
Instructions which are prefetched may be 
interpreted for execution only for the same 
virtual address for which the instruction 
was prefetched. 

There is no limit established as to the 
number of instructions which may be 
prefetched, and multiple copies of the 
contents of a single storage location may 
be fetched. As a result, the instruction 
executed is not necessarily the most 
recently fetched copy. Storing caused by 
channels or by other CPUs does not 
necessarily change the copy of prefetched 
instructions. However, if a store that is 
conceptually earlier occurs on the same CPU 
using the same logical address as that by 
which the instruction is subsequently 
fetched, the updated information is 
obtained. 

All copies of pref':ltched instructions are 
discarded when: 

• A serializing f'lnction is performed 

• The CPU entp.rs the operating state 

Chapter 5. Proqram Execution 5-31 



q. The instruction INSERT STORAGE KEY 
provides a consistent image of the 
field, which consists of all seven 
bits of the storage key. The access 
to the storage key for INSERT STORAGE 
KEY follows the sequence rules for 
storaqe-operand fetch references and 
is a single-access reference. 

5. The instruction RESET REFERENCE BIT 
modifies only the reference bit. All 
other bits of the storage key remain 
unchanged. The reference bit and 
change bit are examined concurrently 
to set the condition code. The access 
to the storage key for RESET REFERENCE 
BIT follows the sequence rules for 
storage-operand update references. 
The reference bit is the only bit 
which is updated. 

The record of references provided by the 
reference bit is not necessarily accurate, 
and the handling of the reference bit is 
not subject to the concurrency rules. 
However, in the majority of situations, 
reference recording approximately coincides 
with the storage reference. 

The change bit may be set in cases when no 
storing has occurred. See the section 
"Change Recordinq" in Chapter 3, "Storage." 

STORAGE-OPERAND REFERENCES 

A storage-operand reference is the fetching 
or storing of the explicit operand or 
operands in the storage locations specified 
by the instruction. 

During the execution of an instruction, all 
or some of the storage operands for that 
instruction may be fetched, intermediate 
results may be maintained for subsequent 
modification, and final results may be 
temporarily held prior to placing them in 
storage. stores caused by channels do not 
necessarily affect these intermediate 
results. Storage-operand references are of 
three types: fetches, stores, and updates. 

When the bytes of a storage operand 
participate in the instruction execution 
only as a source, the operand is called a 
fetch-type operand, and the reference to 
the location is called a storage-operand 
fetch reference. A fetch-type operand is 
identified in individual instruction 
definitions by indicatinq that the access 

exception is for fetch. 

All bits within a single byte of a fetch 
reference are accessed concurrently. When 
an operand consists of more than one byte, 
the bytes may be fetched from storage 
piecemeal, one byte at a time. Unless 
otherwise specified, the bytes are not 
necessarily fetched in any particular 
sequence. 

When the bytes of a storage operand 
participate in the instruction execution 
only as a destination, to the extent of 
being replaced by the result, the operand 
is called a store-type operand, and the 
reference to the location is called a 
storage-operand store reference. A 
store-type operand is identified in 
individual instruction definitions by 
indicating that the access exception is for 
store. 

All bits within a single byte of a store 
reference are accessed concurrently. When 
an operand consists of more than one byte, 
the bytes may be placed in storage 
piecemeal, one byte at a time. Unless 
otherwise specified, the bytes are not 
necessarily stored in any particular 
sequence. 

The CPU may delay placing results in 
storaqe. There is no defined limit on the 
length of time that results may remain 
pending before they are stored. 

This delay does not affect the sequence in 
which results are placed in storaqe. The 
results of one instruction are placed in 
storage after the results of all preceding 
instructions have been placed in storage 
and before any results of the succeeding 
instructions are stored as observed by 
channels. The results of anyone 
instruction are stored in the sequence 
specified for that instruction. 

The CPU does not fetch operands or 
DAT-table entries from a storaqe location 
until all information destined for that 
location by the CPU has been stored. 
prefetched instructions may appear to be 
updated before the information appears in 
storage. 

The stores are necessarily completed only 
as a result of a serializing operation and 
before the CPU enters the stopped state. 

Chapter 5. Program Execution 5-33 



lost, both CPUs must use an 
instruction providing an interlocked 
update. It is possible, however, for 
a channel to make an access to the 
same storage location between the 
fetch and store portions of an 
interlocked update. 

STORAGE-OPERAND CONSISTENCY 

A fetch reference is said to be a 
single-access reference if the value is 
fetched in a sinqle access to each byte of 
the data field. In the case of overlappinq 
operands, the location may be accessed once 
for each operand. A store-type reference 
is said to be a single-access reference if 
a single store access occurs to each byte 
location within the data field. An update 
reference is said to be single-access if 
both the fetch and store accesses are each 
single-access. 

Excent for the accesses associated with 
multiple-access operands and the stores 
associated with storage change and 
restoration for DAT-associated access 
exceptions, storage-operand references are 
single-access references. 

For some instructions, multiple 
may be made to all or some of the 
a storaqe operand. The following 
those storage-operand references 
be multiple-access ones. 

accesses 
bytes of 

cases are 
which may 

1. The storage references associated with 
the decimal operands of the following 
instructions are not necessarily 
single-access references: the decimal 
instructions and the instructions 
CONVERT TO BINARY, CONVERT TO DECIMAL, 
MOVE WITH OFFSET, PACK, and UNPACK. 

2. The operands of MOVE INVERSE. 

3. The stores into that portion of the 
first operand of MOVE LONG which is 
filled with padding bytes. 

q. TEST BLOCK. 

When a storage-operand store reference to a 
location is not a single-access reference, 
the contents placed at a byte location are 

not necessarily the same for each store 
access; thus, intermediate results in a 
single-byte location may be observed by 
channels and other CPUs. 

Programming Botes 

1. When multiple fetch accesses are made 
to a single byte that is being changed 
by a channel or another CPU, the 
result is not necessarily limi ted to 
that which could be obtained by 
fetching the bits individually. For 
example, the execution of MULTIPLY 
DECIMAL may consist in repetitive 
additions and subtractions each of 
which causes the second operand to be 
fetched from storage. 

2. When CPU instructions are used to 
modify storage locations being 
accessed by a channel simultaneously, 
multiple store accesses to a single 
byte by the CPU may result in 
intermediate values being observed by 
a channel. To avoid these 
intermediate values (especially when 
modifying a CCW chain) , only 
instructions making single-access 
references should be used. 

Block-~Qn£Y~~nt References 

For some references, the accesses to all 
bytes within a halfword, word, or 
doubleword are specified to be concurrent 
as observed by other CPUs. These accesses 
do not necessarily appear to a channel to 
include more than a byte at a time. The 
halfword, word, or doubleword is referred 
to in this section as a block. When a 
fetch-type reference is specified to be 
concurrent within a block, no store access 
to the block by another CPU is permitted 
during the time that bytes contained in the 
block are being fetched. I/O accesses to 
the bytes within the block may occur 
between the fetches. When a store-type 
reference is specified to be concurrent 
within a block, no access to the block, 
either fetch or store, is permitted during 
the time that the bytes within the block 
are being stored. I/O accesses to the 
bytes in the block may occur between the 
stores. 

The 
with 

storage-operand references associated 
all S-format instructions and all 

Chapter 5. Program Execution 5-35 



necessarily fetched from storage. 

The independent fetching of a single 
location for each of two operands may 
affect the program execution in the 
following situation. 

When the same storage location is 
designated by two operand addresses of an 
instruction, and a channel or another CPU 
causes the contents of the location to 
change during execution of the instruction, 
the old and new values of the location may 
be used simultaneously. For example, 
comparison of a field to itself may yield a 
result other than equal, or EXCLUSIVE-oRing 
of a field to itself may yield a result 
other than zero. 

OTHER STORAGE REFERENCES 

The restart, program, SVC, external, I/O, 
and machine-check PSWs are accessed 
doubleword-concurrent as observed by other 
CPUs. These references occur after the 
conceptually previous unit of operation and 
before the conceptually subsequent unit of 
operation. The relationship between the 
new-PSi fetch, the old-PSW store, and the 
interruption-code store is unpredictable. 

Store accesses for interruption codes not 
stored within the old PSW are not 
necessarily single-access stores. The 
external and SVC interruption-code stores 
occur between the conceptually previous and 
conceptually subseguent operations. The 
program interruption-code store accesses 
may precede the storage-operand references 
associated with the instruction which 
results in the program interruption. 

The CSW and I/O-communication-area stores 
occur within the conceptual limits of the 
interruption or I/O instruction with which 
they are associated. 

Updating of the interval timer occurs after 
storage-operand references for the 
conceptually previous instruction and 
before storage-operand references for the 
conceptually subsequent instruction. 
Interval-timer updates can also occur 
within an interruptible instruction between 
units of operation. 

SERIALIZATION 

The sequence of functions performed by a 
CPU is normally independent of the 
functions performed by channels. 
Similarly, the sequence of functions 
performed by a channel is normally 
independent of the functions performed by 
other channels and by the CPU. However, at 
certain points in its execution, 
serialization of the CPU occurs. 
Serialization also occurs at certain points 
for channels. 

CPU S ER IAL IZA TION 

All interruptions and the execution of 
certain instructions cause a serialization 
of CPU operations. A serialization 
operation consists in completing all 
conceptually previous storage accesses by 
the CPU, as observed by channels and other 
CPUs, before the conceptually subsequent 
storage accesses occur. Serialization 
affects the sequence of all CPU accesses to 
storage and to the storage keys, except for 
those associated with DAT-table-entry 
fetching. 

Serialization is performed by 
interruptions and by the execution 
following instructions: 

all 
of the 

1. The general instructions BRANCH ON 
CONDITION (BCR) with the M~ and Ra 
field containing all ones and all 
zeros, respectively, and COMPARE AND 
SWAP, COMPARE DOUBLE AND SWAP, STOFE 
CLOCK, SUPERVISOR CALL, and TEST AND 
SET. 

2. LOAD PSW and SET STORAGE KEY. 

3. All I/O instructions. 

Q. PURGE TLB and SET PREFIX, which also 
cause the translation-lookaside buffer 
to be purged. 

5. SIGNAL PROCESSOR, READ DIRECT, and 
WRITE DIRECT. 

6. INVALIDATE PAGE TABLE ENTRY. 

7. TEST BLOCK. 

8. MOVE TO PRIMARY, MOVE TO SECONDARY, 
PROGRAM CALL, PROGRAM TRANSFER, SET 
ADDRESS SPACE CONTROL, and SET 
SECONDARY ASN. 

9. The ASN-tracing function causes 
serialization to be performed before 
the trace action and after completion 
of the trace action. 

Chapter 5. Program Execution 5-37 



Interruption Action ••••••••••••••••••••••••••••••••••••••••••••• 6-2 
Source Identification ••••••••••••••••••••••••••••••••••••••••• 6-5 
Enabling and Disabling •••••••••••••••••••••••••••••••••••••••• 6-5 
Handling of Floating Interruption Conditions •••••••••••••••••• 6-6 
Instruction-Length Code ••••••••••••••••••••••••••••••••••••••• 6-6 

Zero ILC ••••••••••••••••••••.••••••••••••••••••••••••••••••• 6-6 
ILC on Instruction-Fetching Exceptions •••••••••••••••••••••• 6-7 

Exceptions Associated with the PSi •••••••••••••••••••••••••••• 6-8 
Early Exception Recognition ••••••••••••••••••••••••••••••••• 6-8 
Late Exception Recognition •••••••••••••••••••••••••••••••••• 6-8 

External Interruption ••••••••••••••••••••••••••••••••••••••••••• 6-9 
Clock Comparator •••••••••••••• , •••••••••••••••••••••••••••••••• 6-10 
CP U Ti m er ••••••••••••••••••••••••••• ' ••••••••••••••••••.••••••• • 6-10 
Emergency Signal •••••••••••••••••••••••••••••••••••••••••••••• 6-10 
External Call ••••••••••••••••••••••••••••••••••••••••••••••••• 6-11 
External Signal ••••••••••••••••••••••••••••••••••••••••••••••• 6-11 
Interrupt Key ••••••••••••••••••••••••••••••••••••••••••••••••• 6-11 
Interval Timer ., ••••••••••••••••••••••••••••••••••••••••••••••• 6-11 
Malfunction Alert ••••••••••••••••••••••••••••••••••••••••••••• 6-12 
Service Signal •••••••••••••••••••••••••••••••••••••••••••••••• 6-12 
TOD-Clock Sync Check •••••••••••••••••••••••••••••••••••••••••• 6-12 

Input/Output Interruption ••••••••••••••••••••••••••••••••••••••• 6-13 
Machine-Check Interruption •••••••••••••••••••••••••••••••••••••• 6-13 
Program Interruption •••••••••••••••••••••••••••••••••••••••••••• 6-14 

Program-Interruption Conditions ••••••••••••••••••••••••••••••• 6-14 
Addressing Exception •••••••••••••••••••••••••••••••••••••••• 6-14 
AFX-Translat ion Exception •••••••••• ' ••••••••••••••••••••••••• 6-16 
ASN-Translation-Specification Exception ••••••••••••••••••••• 6-16 
ASX-Translation Exception ••••••••••••••••••••••••••••••••••• 6-16 
Data Exception •••••••••••••••••••••••••••••••••••••••••••••• 6-16 
Decimal-Divide Exception •••••••••••••••••••••••••••••••••••• 6-17 
Decimal-Cverflow Exception •••••••••••••••••••••••••••••••••• 6-17 
Execu t e Except io n ••••••••••••••••••••••••••••••••••••••••••• 6-17 
Exponent-Cverflow Exception ••••••••••••••••••••••••••••••••• 6-17 
Exponent-Underflow Exception •••••••••••••••••••••••••••••••• 6-17 
EX-Translation Exception •••••••••••••••••••••••••••••••••••• 6-17 
Fixed-point-Divide Exception •••••••••••••••••••••••••••••••• 6-18 
Fixed-Point-Overflow Exception •••••••••••••••••••••••••••••• 6-18 
Floating-Point-Divide Exception ••••••••••••••••••••••••••••• 6-18 
LX-Translation Exception •••••••••••••••••••••••••••••••••••• 6-18 
Monitor Event ••••••••••••• • •••••••••••••••••••••••••••• 6-18 
Operation Exception ••••••••••••••••••••••••••••••••••••••••• 6-19 
Page-Translation Exception •••••••••••••••••••••••••••••••••• 6-19 
PC-Translation-Specification Exception •••••••••••••••••.••••• 6-20 
PER Event ••••••••••••••••••••• _ ••••••••••••••••••••••••••••• 6-20 
Primary-Authority Exception ••••••••••••••••••••••••••••••••• 6-20 
Privileged-Operation Exception •.••••••••••••••••••••••••••••• 6-20 
Protection Exception •••••••••••••••••••••••••••••••••••••••• 6-21 
Secondary-Authority Exception ••••••••••••••••••••••••••••••• 6-21 
Seqment-Translation Exception ••••••••••••••••••••••••••••••• 6-21 
Siqnificance Exception •••••••••••••••••••••••••••••••••••••• 6-22 
Space-Switch Event •••••••••••••••••••••••••••••••••••••••••• 6-22 
Special-Operation Exception •••••••••••••••••.••••••••••••••• 6-22 
Specification Exception ••••••••••••••••••••••••••••••••••••• 6-22 
Translation-Specification Exception ••••••••••••••••••••••••• 6-23 

Collective Proqram-Interruption Names ••••••••••••••••••••••••• 6-24 
Recognition of Access Exceptions •••••••••••••••••••••••••••••• 6-24 
Multiple Program-Interruption Conditions •••••••••••••••••••••• 6-24 

Access Exceptions ••••••••••••••••••••••••••••••••••••••••••• 6-28 
ASN-Translation Exceptions •••••••••••••••••••••••••••••••••• 6-29 
Trace Exceptions •••••••••••••••••••••••••••••••••••••••••••• 6-29 

Restart Interruption ••••••••••••••••••••••••••••••••••••.•.••••• 6-29 
Supervisor-Call Interruption •• • •••••••••••••••••••••••••••• 6-30 
Priority of Interruptions •••••••••.••••••••••••••••••••••••••••• 6-30 

Chapter 6. Interruptions 6-1 



• I I • 

~ 
1 I IPSW- lI'fask Bitsl I 
I I IMask I in Ctrl I I Execution of 
I I IBits I Registers I I Instruction 
I Source I Interruption I , I ILe I Identified 
1 Identification I Code IEC BCI Reg, Bit I Set I by Old PSi 
r-- ~ I I I I 
I MACHINE CHECK Locations 232-239 1 1 I I 
I (old PSi 48, I I I 
I new PSi 112) I I I 
I I I I 
IExigent condition 113 13 I x I term ina ted or nullified 2 

IRepressible cond 113 13 14, 4-1 I x I unaffected 2 

~ I I I 
I SUPERVISOR CALL Locations 138-139 I I I 
I (old PSi 32, in EC mode and I I I 
I new PSi 96) 34-35 in BC mode I I I 
I I I I 
I Instruction bits 00000000 ssssssss I I 1,2 I completed 
I I I I 
I PROGRAM Locations 142-143 
I (old PSi 40, in EC mode and 
I new PSi 104) 42-43 in BC mode 
I 
Operation 00000000 pOOOOO01 1,2,3 suppressed 
Privileged oper 00000000 pOOOO010 1,2 suppressed 
Execute 00000000 pOOOOO 11 2 suppressed 
Protection 00000000 pOOO0100 0,1,2,3 suppressed or terminated 
Addressinq 00000000 pOOO0101 0,1,2,3 suppressed or terminated 
Specification 00000000 pOOOO 110 0,1,2,3 suppressed or completed 
Data 00000000 pOOO0111 2,3 suppressed or terminated 
Fixed-pt overflow 00000000 pOO01000 20 36 1,2 completed 
Fixed-point divide 00000000 pOO01001 1,2 suppressed or completed 
Decimal overflow 00000000 pOO01010 21 31 2,3 completed 
Decimal divide 00000000 pOO01011 2,3 suppressed 
Exponent overflow 00000000 pOO01100 1,2 completed 

lExponent underflow 00000000 pOO01101 22 38 1,2 completed 
I significance 00000000 pOO01110 23 39 1,2 completed 
I Floating-pt divide 00000000 pOO01111 1,2 suppressed 
ISegment transl 00000000 p0010000 1,2,3 nullified 
lPage translation 00000000 p0010001 1,2,3 nullified 
lTranslation spec 00000000 p0010010 1,2,3 suppressed 
Special operation 00000000 p0010011 0, 1 2 suppressed 
ASN-transl spec 00000000 p0010111 2 suppressed 
space-switch event 00000000 p0011100 1 , 31 2 completed 
pc-transl spec 00000000 p0011111 2 suppressed 
AFX translation 00000000 p0100000 2 nullified 
ASX translation 00000000 p0100001 2 nullified 
LX translation 00000000 p0100010 2 nullified 
EX translation 00000000 p0100011 2 nullified 
primary authority 00000000 p0100100 2 nullified 
Secondary auth 00000000 p0100101 2 nullified 
Monitor event 00000000 p1000000 8, 16+ 2 completed 
PER event 00000000 1nnnnnnn3 * 9, 0-3 0,1,2,3 completed· 

Interruption Action (Part 1 of 2) 

Chapter 6. Interruptions 6-3 



SOURCE IDENTIFICATION 

The six classes of interruptions (external, 
I/O, machine check, program, restart, and 
supervisor call) are distinguished by the 
storage locations at which the old PSi is 
stored and from which the new PSi is 
fetched. For most classes, the causes are 
further identified by an interruption code 
and, for some classes, by additional 
information placed in permanently assigned 
storage locations during the interruption. 
(See also the section "Assigned Storage 
Locations" in Chapter 3, "storage.") For 
external, I/O, program, and supervisor-call 
interruptions, the interruption code 
consists of 16 bits. 

For external interruptions in the EC mode, 
the interruption code is stored at 
locations 134-135. In the BC mode, the 
interruption code is placed in the old PSW. 

For I/O interruptions in the EC mode, the 
interruption code, which contains the I/O 
address, is stored at locations 186-187. 
In the BC mode, the interruption code is 
placed in the old PSi. Additional 
information is provided by the contents of 
the channel-status word (CSi) stored at 
location 64. Further information may be 
provided by the limited channel logout 
stored at location 176 and by the I/O 
extended logout. 

For machine-check interruptions, the 
interruption code consists of 64 bits and 
is stored at locations 232-239. Additional 
information for identifying the cause of 
the interruption and for recovering the 
state of the machine may be provided by the 
contents of the machine-check logout and 
save areas. (See Chapter 11, "Machine­
Check Handling.") 

For program interruptions in the EC mode, 
the interruption code is stored at 
locations 142-143, and the instruct ion­
length code is stored in bit positions 5 
and 6 of location 141. In the BC mode, the 
interruption code and instruction-length 
code are placed in the old PSi. Further 
information may be provided in the form of 
the translation-exception address, monitor­
class number, monitor code, PER code, and 
PER address, which are stored at locations 
144-159. 

For restart interruptions in the 
no interruption code is stored. 
mode, an interruption code of 
placed in the old PSi. 

EC mode, 
In the BC 

zero is 

For supervisor-call interruptions in the EC 
mode, the interruption code is stored at 
locations 138-139, and the instruction­
length code is stored in bit positions 5 
and 6 of location 137. In the BC mode, the 

interruption code and instruction-length 
code are placed in the old PSi. 

ENABLING AND DISABLING 

By means of mask bits in the current PSi 
and in control registers, the CPU may be 
enabled or disabled for all external, I/O, 
and mach ine- check interruptions a nd for 
some program interruptions. When a mask 
bit is one, the CPU is enabled f or the 
corresponding class of interruptions, and 
these interruptions can take place. 

When a mask bit is zero, the CPU is 
disabled for the corresponding 
interruptions. The conditions that cause 
I/O interruptions rema in pending. 
External-interruption conditions either 
remain pending or persist until the cause 
is removed. Machine-check-interruption 
conditions, depending on the type, are 
ignored, remain pending, or cause the CPU 
to enter the check-stop sta teo The 
disallowed program-interruption conditions 
are ignored, except that some causes are 
indicated also by the setting of the 
condi tion code. 

Program interruptiond for which mask bits 
are not provided, as well a s the 
SUpervisor-call and restart interruptions, 
are always taken. 

The mask bits may allow or disallow all 
interruptions within the class, or they may 
selectively allow or disallow interruptions 
for particular causes. This control may be 
provided by mask bits in the PSi that are 
assigned to particular causes, such as the 
bits assigned to the four ma skab Ie proq ram­
interruption conditions. Alternatively, 
there may be a hierarchy of masks, where a 
mask bit in the PSi control saIl 
interruptions within a type, and mask bits 
in a control register provide more detailed 
control over the sources. 

When the mask bit is one, the CPU is 
enabled for the corresponding interrup­
tions. When the mask bit is zero, these 
interruptions are disallowed. Interrup­
tions that are controlled by a hierarchy of 
masks are allowed only when all controlling 
mask bits are ones. 

1. Mask bits in the PSi provide a means 
of disallowing all maskable 
interruptions; thus, subsequent 
interruptions can be disallowed by the 
new PSi introduced by an interruption. 

Chapter 6. Interruptions 6-5 



exception due to a psw-format error is 
recognized as part of early exception 
recognition and the PSW has been introduced 
by LOAD PSW or an interruption. (See the 
section "Exceptions Associated with the 
psw" later in this chapter.) In the case 
of LOAD PSW, the address of the instruction 
has been replaced by the instruction 
address of the new PSi. When the invalid 
PSi is introduced by an interruption, the 
PSW-format error cannot be attributed to an 
instruction. 

On some models without the translation 
feature, an ILC of zero occurs also when an 
addressing exception or a protection 
exception is recognized for a store-type 
reference. In these cases, the 
interruption due to the exception is 
deliyed, the length of time or number of 
instructions of the delay being 
unpredictable. Neither the location of the 
instruction causing the exception nor the 
length of the last-executed instruction is 
made available to the program. This type 
of interruption is sometimes referred to as 
an imprecise program interruption. 

In the case of LOAD PSW and the 
supervisor-call interruption, a PER event 
may be indicated concurrently with a 
specification exception having an ILC of O. 

When a program interruption occurs because 
of an exception that prohibits access to 
the instruction, the instruction-length 
code cannot be set on the basis of the 
first two bits of the instruction. As far 
as the significance of the ILC for this 
case is concerned, the following two 
situations are distinguished: 

1. When an odd instruction address causes 
a specification exception to be 
recognized or when an addressing, 
protection, or translation­
specification exception is encountered 
on fetching an instruction, the ILC is 
set to 1, 2, or 3, indicating the 
multiple of 2 by which the instruction 
address has been incremented. It is 
unpredictable whether the instruction 
address is incremented by 2, 4, or 6. 
By reducing the instruction address in 
the old PSW by the number of halfword 
locations indicated in the ILC, the 
address originally appearing in the 
PSW may be obtained. 

2. when a segment-translation or page­
translation exception is recognized 
while fetching an instruction, 
including the target instruction of 
EXECUTE, the ILC is arbitrarily set to 

1, 2, or 3. 
operation is 
instruction 
incremented. 

In this case, 
nullified, and 
address is 

the 
the 
not 

The ILC is not necessarily related to the 
first two bits of the instruction when the 
first half word of an instruction can be 
fetched but an access exception is 
recognized on fetching the second or third 
halfword. The ILC may be arbitrarily set 
to 1,2, or 3 in these cases. The 
instruction address is or is not updated, 
as described in situations 1 and 2 above. 

When any exceptions other than segment 
translation or page translation are 
encountered on fetching the target 
instruction of EXECUTE, the ILC is 2. 

Programming !otes 

1. A nonzero instruction-length code for 
a program interruption indicates the 
number of halfword locations by which 
the instruction address in the old PSi 
must be reduced to obtain the address 
of the last instruction executed, 
unless one of the following situations 
exists: 

a. The interruption is caused 
exception resulting 
nullification. 

by an 
in 

b. An interruption for a PER event 
occurs before the execution of an 
interruptible instruction is 
ended. 

c. The interruption is caused by a 
PER event due to LOAD PSi or a 
branch or linkage instruction, 
including SUPERVISOR CALL. 

d. The interruption is caused by an 
access exception encountered in 
fetching an instruction, and the 
instruction address has been 
introduced into the PSW by a means 
other than sequential operation 
(by a branch instruction, LOAD 
PSi, or an interruption). 

e. The interruption is caused by a 
specification exception because of 
an odd instruction address. 

f. The interruption is caused by an 
early specification exception or 
by an access exception encountered 
in fetching an instruction, and 
changes have been made to the 
parameters that control the 
relation between the logical and 
real instruction address. The 

Chapter 6. Interruptions 6-7 



L 

one) • 

• An access exception (addressing, page­
translation, protection, segment­
translation, or translation­
specification) is associated with the 
location designated by the instruction 
address or with the location of the 
second or third halfword of the 
instruction starting at the designated 
address. 

The instruction-length code and instruction 
address stored in the proqram old PSW under 
these conditions are discussed in the 
section "ILC on Instruction-Fetching 
Exceptions" in this chapter. 

If the invalid PSW causes the CPU to be 
enabled for a pending 110, external, or 
machine-check interruption, the 
corresponding interruption occurs, and the 
PSW invalidity is not recognized. 
Similarly, the specification or access 
exception is not recognized in a PSW 
specifying the wait state. 

1 • 

2. 

3. 

The execution of LeAD PSW, SET SYSTEM 
MASK, STORE THEN AND SYSTEM MASK, and 
STORE THEN OR SYSTEM MASK is 
suppressed 
protection 
program old 
concerning 
exception. 

on an address ing or 
exception, and hence the 

PSW provides information 
the program causing the 

When the first halfword of an 
instruction can be fetched but an 
access exception is recognized on 
fetching the second or third halfword, 
the ILC is not necessarily related to 
the operation code. 

If the new PSW introduced by an 
interruption contains a PSW-format 
error, a string of interruptions 
occurs. (See the section "Priority of 
Interruptions" in this chapter.) 

The external interruption provides a means 
by which the CPU responds to various 
signals originating either from within or 
from without the system. 

An external interruption causes the old PSW 
to be stored at location 24 and a new PSW 
to be fetched from location 88. 

The source of the interruption is 

identified in the interruption code. When 
the old PSW specifies the EC mode, the 
interruption code is stored at locations 
134-135. When the old PSW specifies the BC 
mode, the interruption code is placed in 
bit positions 16-31 of the old PSW, and the 
instruction-length code is unpredictable. 

Additionally, for the malfunction-alert, 
emergency-signal, and external-call 
conditions, a 16-bit CPU address is 
associated with the source of the 
interruption and is stored at locations 
132-133 in both the EC and BC modes. When 
the CPU address is stored, bit 6 of the 
interruption code is set to one. For all 
other conditions, no CPU address is stored, 
and bit 6 of the interruption code is set 
to zero. When bit 6 is zero and the old 
PSi specifies the EC mode, zeros are stored 
at locations 132-133. When bit 6 is zero 
and the old PSW specifies the Be mode, the 
contents of locations 132-133 remain 
unchanged. 

For the service-signal interruption, a 
32-bit parameter is associa ted with the 
interruption and is stored at locations 
128-131 in both EC and BC modes. Bit 2 of 
the external-interruption code indicates 
that a parameter has been stored. 

External-interruption conditions are of two 
types: those for which an interruption 
request condition is held pending, and 
those for which the condition directly 
requests the interruption. Clock 
comparator, CPU timer, and TaD-clock sync 
check are conditions which directly request 
external interruptions. If a condition 
which directly requests an external 
interruption is removed before the request 
is honored, the request does not remain 
pending, and no interruption occurs. 
conversely, the request is not cleared by 
the interruption, and if the condition 
persists, more than one interruption may 
result from a single occurrence of the 
condition. 

When several interruption requests for a 
single source are generated before the 
interruption is taken, and the interruption 
condition is of the type which is held 
pending, only one request for that source 
is preserved and remains pending. 

An external interruption for a particular 
source can occur only when the CPU is 
enabled for interruption by that source. 
The external interruption occurs at the 
completion of a unit of operation. Whether 
the CPU is enabled for external 
interruption is controlled by the external 
mask, PSW bit 7, and external subclass mask 
bits in control register O. Each source 
for an external interruption has a subclass 
mask bit assigned to it, and the source can 
cause an interruption only when the 

Chapter 6. Interruptions 6-9 



separate emergency-signal reguest pending 
in the receiving CPU for each configured 
CPU, including the receiving CPU itself. 

The emergency signal condition is indicated 
by an external-interruption code of 1201 
(hex). The address of the CPU that issued 
the SIGNAL PROCESSOR instruction is stored 
at locations 132-133. 

The subclass-mask bit is in bit position 17 
of control register o. This bit is 
initialized to zero. 

EXTERNAL CALL 

An interruption request for an external 
call is generated when the CPU accepts the 
external-call order specified by a SIGNAL 
PROCESSOR instruction addressing this cPU. 
The instruction may have been executed by 
this CPU or by another CPU configured to 
this CPU. The request is preserved and 
remains pending in the receiving CPU until 
it is cleared. The pending request is 
cleared when it causes an interruption and 
by CPU reset. 

only one external-call request, along with 
the processor address, may be held pending 
in a CPU at a time. 

The external-call condition is indicated by 
an external-interruption code of 1202 
(hex). The address of the cPU that issued 
the SIGNAL PROCESSOR instruction is stored 
at locations 132-133. 

The subclass~mask bit is in bit position 18 
of control register o. This bit is 
initialized to zero. 

EXTERNAL SIGNAL 

An interruption request for an external 
signal is generated when a signal is 
received on one or more of the signal-in 
lines. Up to six signal-in lines may be 
connected, providing for external signal 2 
through external signal 7. The request is 
preserved and remains pending in the CPU 
until it is cleared. The pending request 
is cleared when it causes an interruption 
and by CPU reset. 

Facilities are provided 
separate external-signal 
for each of the six lines. 

for holding a 
request pending 

External signals 2-7 are indicated by 
setting to one interruption-code bits 
10-15, respectively. Bits 0-7 are set to 
zeros, and any other bits in the rightmost 

byte are set to zeros unless set to ones 
for other conditions that are concurrently 
indicated. 

All external signals are subject to control 
by the subclass-mask bit in bit position 26 
of control register O. This bit is 
initialized to one. 

External signaling is independent of 1/0 
operations and interruptions. 

programming !Qte 

The pattern presented in bit positions 
10-15 of the interruption code depends on 
the pattern received before the 
interruption is taken. Because of circuit 
skew, all simultaneously generated external 
signals do not necessarily arrive at the 
same time, and some may not be included in 
the external interruption resultinq from 
the earliest signals. These late siqnals 
may cause another interruption to be taken. 

INTERRUPT KEY 

An interruption request for the interrupt 
key is generated when the operator 
activates that key. The reguest is 
preserved and remains pending in the CPU 
until it is cleared. The pending request 
is cleared when it causes an interruption 
and by CPU reset. 

When the interrupt key is activated while 
the CPU is in the load state, it depends on 
the model whether an interruption request 
is generated or the condition is lost. 

The interrupt-key condition is indicated by 
setting bit 9 in the interruption code to 
one and by setting bits 0-7 to zeros. Bits 
8 and 10-15 are zeros unless set to ones 
for other conditions that are concurrently 
indicated. 

The subclass-mask bit is in bit position 25 
of control register o. This bit is 
initialized to one. 

INTERVAL TIMER 

An interruption request for the interval 
timer is generated when the interval timer 
is decremented from a positive number or 
zero to a negative number. The request is 
preserved and remains pending in the CPU 
until it is cleared. The pending request 
is cleared when it causes an interruption 

Chapter 6. Interruptions 6-11 



condition. 

The TOD-clock-sync-check condition is 
indicated by an external-interruption code 
of 1003 (hex). 

The subclass-mask bit is in bit position 19 
of control register o. This bit is 
initialized to zero. 

INPUTLQUT~UT INTERRUPTION 

The input/output (I/O) interruption 
provides a means by which the CPU responds 
to conditions in I/O devices and channels. 

A request for an I/O interruption may occur 
at any time, and more than one request may 
occur at the same time. The requests are 
preserved and remain pending in channels or 
devices until accepted by the cpu. The I/O 
interruption occurs at the completion of a 
unit of operation. Priority is established 
among requests so that only one 
interruption request is processed at a 
time. For more details, see the section 
"Input/Output Interruptions" in Chapter 12, 
"Input/Output Operations." 

When the CPU becomes enabled for I/O 
interruptions and a channel has established 
priority for a pending I/O-interruption 
condition, the interruption occurs at the 
completion of the instruction execution or 
interruption that causes the enabling. 

An I/O interruption causes the old PSi to 
be stored at location 56, a channel status 
word to be stored at location 64, and a new 
PSW to be fetched from location 120. Upon 
detection of equipment errors, additional 
information may be stored in the form of a 
limited channel logout at location 176 and 
in the form of an I/O extended logout 
starting at the location designated by the 
contents of locations 173-175. 

When the old PSW specifies the EC mode, the 
I/O address identifying the channel and 
device causing the interruption is stored 
at locations 186-187, and zeros are stored 
at location 185. When the old PSi 
specifies the BC mode, the interruption 
code in PSW bit positions 16-31 contains 
the I/O address, and the instruction-length 
code in the PSi is unpredictable. 

An I/O interruption can occur only while 
the CPU is enabled for interruption by the 
channel presenting the request. Mask bits 
in the PSW and channel masks in control 
register 2 determine whether the CPU is 
enabled for interruption by a channel; the 
method of control depends on whether the 
current PSW specifies the EC or BC mode. 

The channel-mask bits in control register 2 
start at bit position 0 and extend for as 
many contiguous bit positions as the number 
of channels provided. The assiqnment is 
such that a bit is assigned to the channel 
whose address is equal to the position of 
the bit in control reqister 2. 
Channel-mask bits for installed channels 
are initialized to one. The state of the 
channel-mask bits for unavailable channels 
is unpredictable. 

When the current PSi specifies the EC mode, 
each channel is controlled by the I/O-mask 
bit, PSW bit 6, and by the corresponding 
channel-mask bit in control register 2; the 
channel can cause an interruption only when 
the 1/0- mask bi t is one a nd the 
corresponding channel-mask bit is one. 

When the current PSi specifies the BC mode, 
interruptions from channels 6 and up are 
controlled by the I/O-mask bit, PSW bit 6, 
in conjunction with the corresponding 
channel-mask bit: the channel can cause an 
interruption only when the I/O-mask bit is 
one and the corresponding channel-mask bit 
is one. Interruptions from channels 0-5 
are controlled by channel-mask bits 0-5 in 
the PSi: an interruption can occur only 
when the mask bit corresponding to the 
channel is one. In the BC mode, bits 0-5 
in control register 2 do not participate in 
controlling I/O interruptions; they are, 
however, preserved in the control register 
if the corresponding channels are 
installed. 

The machine-check interruption is a means 
for reporting to the program the occurrence 
of equipment malfunctions. Information is 
provided to assist the proqram in 
determining the location of the fault and 
extent of the damage. 

A machine-check interruption causes the old 
PSi to be stored at location 48 and a new 
PSi to be fetched from location 112. When 
the old PSW specifies the BC mode, the 
contents of the interruption-code and ILC 
fields in the old PSW are unpredictable. 

The cause and severity of the malfunction 
are identified by a 64-bit machine-check­
interruption code stored at locations 
232-239. Further information identifying 
the cause of the interruption and the 
location of the fault may be stored at 
locations 216-511 and in the area starting 
with the location designated by the 
contents of control register 15. 

The interruption action and 
the associated information 

the storinq of 
are under the 

Chapter 6. Interruptions 6-13 



of the instruction that caused the 
reference. However, on some models without 
the translation feature, an ILC of zero 
occurs when an addressing exception is 
recognized for a store-type reference. 

When the exception occurs during the 

fetching of an instruction or during the 
fetching of a OAT table entry associated 
with an instruction fetch, it is 
unpredictable whether the ILC is 1, 2, or 
3. When an addressing exception is 
associated with fetching the target of 
EXECUTE, the ILC is 2. 

I I Action on I 
I \- I I I 
I IOAT-Table- IInstruction I I 
IException IEntry Fetchl Fetch I Operand Reference I 
I I I I I 
I Addressing I Suppress I Suppress ISuppress for LPSW, SCKC, I 
lexception I I ISPT, SPX, SSM, STNSM, I 
I I I I STOSM, and TPROT. I 
I I I I I 
I I I ITerminate for all others11 
I--- I +- I I 
I Protection I Suppress ISuppress for LPSW, SCKC, I 
lexception I ISPT, SPX, SSM, STNSM, andl 
I for key- I I STOSM. I 
I controlled I I I 
Iprotection I ITerminate for all others1 I 
I--- I I I 
IProtectionl ISuppress for STNSM and I 
lexception I ISTOSK. I 
Ifor low- I I I 
laddress I I I 
Iprotection I I Terminate for all othersl I 
I ~ I 

Explanation: 

Not applicable 

1 For termination, changes may occur only to result 
fields. In this context, "result field" includes 
condition code, registers, and storage locations, if 
any, which are designated to be changed by the 
instruction. However, no change is made to a 
storage location or a key in storage when the refer­
ence causes an access exception. Therefore, if an 
instruction is due to change only the contents of a 
field in main storage, and every byte of that field 
would cause an access exception, the operation is 
suppressed. L----_____________________________________________________________ --J 

Summary of Action for Addressing and Protection Exceptions 

Chapter 6. Interruptions 6-15 



two conditions are met: 

a. 

b. 

The invalid sign of the 
field is not located 
numeric portion of the 
field. 

source 
in the 
result 

The sign code appears in a 
position specified by the 
instruction to b€ checked for a 
valid sign. (This condition 
excludes the first operand of ZERO 
AND ADD and both operands of EDIT 
and EDIT AND MARK.) 

A decimal-divide exception is recognized 
when in decimal division the divisor is 
zero or the quotient exceeds the specified 
data-field size. 

The decimal-divide exception is indicated 
only if the sign codes of both the divisor 
and dividend are valid and only if the 
digit or diqits used in establishing the 
exception are valid. 

The operation is suppressed. 

The instruction-length code is 2 or 3. 

A decimal-overflow exception is recognized 
when one or more significant high-order 
digits are lost because the destination 
field in a decimal operation is too short 
to contain the result. 

The interruption may be disallowed by PSW 
bit 21 in the EC mode and by PSW bit 37 in 
the BC mode. 

The operation is completed. The result is 
obtained by ignorinq the overflow 
information, and condition code 3 is set. 

The instruction-length code is 2 or 3. 

The execute exception is recognized when 
the target instruction of EXECUTE is 
another EXECUTE. 

The operation is suppressed. 

The instruction-length code is 2. 

Exponent-Overflow Exception 

An exponent-overflow exception is 
recognized when the result characteristic 
in floatinq-point addition, subtraction, 
multiplication, or division exceeds 127 and 
the result fraction is not zero. 

The operation is completed. The fraction 
is normalized, and the sign and fraction of 
the result remain correct. The result 
characteristic is made 128 smaller than the 
correct characteristic. 

The instruction-length code is 1 or 2. 

An exponent-underflow exception is 
recognized when the result characteristic 
in floating-point addition, subtraction, 
multiplication, halving, or division is 
less than zero and the result fraction is 
not zero. 

The interruption may be disallowed by PSW 
bit 22 in the EC mode and by PSW bit 38 in 
the BC mode. 

The operation is completed. The 
exponent-underflow mask also affects the 
result of the operation. When the mask bit 
is zero, the sign, characteristic, and 
fraction are set to zero, making the result 
a true zero. When the mask bit is one, the 
fraction is normalized, the characteristic 
is made 128 larger than the correct 
characteristic, and the sign and fraction 
remain correct. 

The instruction-length code is 1 or 2. 

I EX-Translation Ex£~liQB 

An EX-translation exception is recognized 
during the PC-number translation in PROGRAM 
CALL when the entry-table entry indicated 
by the entry-table index part of the PC 
number is beyond the length of the entry 
table as designated by the linkaqe-table 
entry. 

The PC number is stored in bit positions 
12-31 of the word at location 144, and the 
high-order 12 bits of the word are set to 
zeros. 

The operation is nullified, and 
instruction-length code is 2. 

the 

Chapter 6. Interruptions 6-17 



(. 

are stored at location 148. The address 
specified by the B~ and D~ fields of the 
instruction forms the monitor code, which 
is stored at locations 157-159. Zeros are 
stored at location 156. 

The operation is completed, and the 
instruction-length code is 2. 

An operation exception is recognized when 
the CPU encounters an instruction with an 
invalid operation code. The operat ion code 
may not be assigned, or the instruction 
with that operation code may not be 
available on the CPU. 

For the purpose of checking the operation 
code of an instruction, the operation code 
is defined as follows: 

1. When the first eight bits of an 
instruction have the value B2 or E5 
(hex) , the first 16 bits form the 
operation code. 

2. In all other cases, the first eight 
bits alone form the operation code. 

The operation is suppressed. 

The instruction-length code is 1, 2, or 3. 

1. Some models may offer instructions not 
described in this publication, such as 
those provided for emulation or as 
part of special or custom features. 
Consequently, operation codes not 
described in this publication do not 
necessarily cause an operation 
exception to be recognized. 
Furthermore, these instructions may 
cause modes of operation to be set up 
or may otherwise alter the machine so 
as to affect the execution of 
subsequent instructions. To avoid 
causinq such an operation, an 
instruction with an operation code not 
described in this publication should 
be issued only when the specific 
function associated with the operation 
code is desired. 

2. The operation code 00, with a tWo-byte 
instruction format, currently is not 
assigned. It is improtable that this 
operation code will ever be assigned. 

3. In the case of I/O instructions with 
the values 9C, 9D, 9E, and 9F in bit 

positions 0-7, the value of bit 15 is 
used to distinguish between two 
instructions. Bits 8-14, however, are 
not checked for zeros, and these 
operation codes never cause an 
operation exception to be recognized. 

To ensure that presently written 
programs run if and when the I/O 
operation codes (9C, 9D, 9E, and 9F) 
are extended further to provide for 
new functions, only zeros should be 
placed in the unused bit positions in 
the second op-code byte. In 
accordance with these recommendations, 
the operation codes for the I/O 
instructions are shown as 9COO, 9C01, 
9DOO, etc. 

A page-translation exception is recognized 
when: 

1. The page-table entry indicated by the 
page-index portion of a virtual 
address is outside the page table. 

2. The page-invalid bit is one. 

The exception is recognized as part of the 
execution of the instruction that needs the 
page-table entry in the translation of 
either the instruction or operand address, 
except for the operand address in LOAD REAL 
ADDRESS and TEST PROTECTION, in which case 
the condition is indicated by the setting 
of the condition code. 

The unit of operation is nullified. 

The segment-and-page portion of the virtual 
address causing the exception is stored at 
locations 145-147. With DiS, bit 0 of 
location 144 is set to zero if the virtual 
address was relative to the primary address 
space, and it is set to one if it was 
relative to the secondary address space. 
Without DAS, bit 0 of location 144 is set 
to zero. Bits 1-7 of location 144 are set 
to zeros. When 2K-byte pages are used, the 
low-order 11 bits of the address are 
unpredictable; when 4K-byte pages are used, 
the low-order 12 bits of the address are 
unpredictable. 

When the exception occurs durinq a 
reference to an operand location, the 
instruction-length code (ILC) is 1, 2, or 3 
and indicates the length of the instruction 
causing the exception. 

When the exception occurs during fetching 
of an instruction, it is unpredictable 
whether the ILC is 1, 2, or 3. When the 
exception occurs during a reference to the 

Chapter 6. Interruptions 6-19 



A protection exception is recognized in the 
following situations: 

1. Key-coni~olled Protection: The CPU 
attempts to access--a-Storage location 
that is protected against the type of 
reference, and the access key does not 
match the storage key. 

2. Lo~=!ddress Protection: The CPU 
attempts a store-that--is subject to 
low-address protection, the address is 
in the range 0-511, and bit 3 of 
control register 0 is one. 

The execution of an instruction is 
suppressed when the location of the 
instruction, including the location of the 
target instruction of EXECUTE, is protected 
against fetching. 

Except for some specific instructions whose 
execution is suppressed, the operation is 
terminated when a protection exception is 
encountered during a reference to an 
operand location. See the figure "Summary 
of Action for Protection and Addressing 
Exceptions," which is included in the 
section "Addressing Exception" in this 
chapter. 

On fetching, the protected information is 
not loaded into an addressable register nor 
moved to another storage location. When a 
part of an operand is protected against 
storing and part is not, storing may be 
performed in the unprotected part. 
However, the contents of a protected 
location remain unchanged. 

For a protected operand location, the 
instruction-length code CILC) is 1, 2, or 
3, designating the length of the 
instruction that caused the reference. 
However, on some models without the 
translation feature, an ILC of zero occurs 
when a protection exception is recognized 
for a store-type reference. When the 
exception occurs during fetching of an 
instruction, it is unpredictable whether 
the ILC is 1, 2, or 3. 

A secondary-authority exception is 
recognized during ASN authorization in the 
SET SECONDARY ASN CSSAR-ss) operation when 
either: 

1. The authority-table entry indicated by 
the authority index in control 

register 4 is beyond the length of the 
authority table designated by the 
ASN-second-table entry. 

2. The secondary-authority mask bit 
indicated by the authority index is 
zero. 

The ASN being translated is stored at 
locations 146-147, and locations 144-145 
are set to zeros. 

The operation is nullified, and 
instruction-length code is 2. 

Segment-Translation ExceptiQ~ 

A segment-translation exception 
recognized when: 

the 

is 

1. The segment-table entry indicated by 
the segment-index portion of a virtual 
address is outside the segme nt table. 

2. The segment-invalid bit is one. 

The exception is recognized as part of the 
execution of the instruction that needs the 
segment-table entry in the transla ti on of 
either the instruction or operand address, 
except for the operand address in LOAD REAl, 
ADDRESS and TEST PROTECTION, in which case 
the condition is indicated by the settinq 
of the condition code. 

The unit of operation is nullified. 

The segment-and-page port ion of the virtual 
address causing the exception is stored at 
locations 145-147. With DAS, bit 0 of 
location 144 is set to zero if the virtual 
address was relative to the primary address 
space, and it is set to one if it was 
relative to the secondary address space. 
Without DAS, bit 0 of location 144 is set 
to zero. Bits 1-7 of location 144 are set 
to zeros. When 2K-byte pages are used, the 
low-order 11 bits of the address are 
unpredictable; when 4K-byte pages are used, 
the low-order 12 bits of the address are 
unpredictable. 

When the exception occurs durinq a 
reference to an operand location, the 
instruction-length code CILC) is 1, 2, or 3 
and indicates the length of the instruction 
causing the exception. 

When the exception occurs during fetching 
of an instruction, it is unpredictable 
whether the ILC is 1, 2, or 3. When the 
exception occurs during the fetching of the 
target of EXECUTE, the ILC is 2. 

Chapter 6. Interruptions 6-21 



specified for an extended operand. 

6. The multiplier or divisor in decimal 
arithmetic exceeds 15 digits and sign. 

7. The length of the first-operand field 
is less than or equal to the length of 
the second-operand field in decimal 
multiplication or division. 

8. Bit positions 8-11 of MONITOR CALL do 
not contain zeros. 

9. A one is introduced into an unassigned 
bit position of an EC-mode PSi (that 
is, any of bit positions 0, 2-4, 17, 
or 24-39, or bit position 16 when DAS 
is not installed). This is called an 
early PSi specification exception. 

10. A PSi is introduced in which the EC 
mode is specified (PSi bit 12 is one) 
in a CPU that does not have the EC 
facility installed. 

11. 

12. 

13. 

14. 

A one is introduced into an EC-mode 
PSi bit position, other than in the 
program-mask field, specifying a mode 
or facility that is not installed in 
the CPU. For example, bit 16 is one, 
and DAS is not installed. This is 
called an early PSi specification 
exception. 

Bits 20-22 
address of 

of the 
SET ADDRESS 

are not zeros. 

second-operand 
SPACE CONTROL 

The high-order eight bits of the 
general register specified by the R2 
field of PROGRAM TRANSFER are not 
zeros. 

The instruction PROGRAM CALL, PROGRAM 
TRANSFER, or SET SECONDARY ASN is 
encountered with tracing enabled and 
(1) the address of the trace-header 
address in location 84 does not 
specify a doubleword boundary, or 
(2) the trace-entry address in the 
trace header does not specify a 
32-byte boundary. 

The execution of the instruction identified 
by the old PSW is suppressed. However, for 
early PSi specification exceptions (causes 
9-11), the operation that introduces the 
new PSi is completed, but an interruption 
occurs immediately thereafter. 

Except as noted below, the ILC is 1, 2, or 
3, designating the length of the 
instruction causing the exception. 

when the instruction address is odd (cause 
1), it is unpredictable whether the ILC is 
1, 2, or 3. 

ihen the exception is recognized because of 

an early PSi specification exception and 
the exception has been introduced by LOAD 
PSW or an interruption, the ILC is o. When 
the exception is introduced by SET SYSTEM 
MASK or STORE THEN OR SYSTEM MASK, the ILC 
is 2. 

See the section "Exceptions Associated wi th 
the PSi" in this chapter for a discussion 
of when the exceptions associated with the 
PSW are recognized. 

A translation-specification exception is 
recognized when: 

1. Bit positions 8-12 of control register 
o do not contain one of the codes 
01000, 01010, 10000, or 10010. 

2. Bit positions 
segment-table 
zeros. (On 
positions are 
for zeros.) 

4-7 and 29-30 in a valid 
entry do not contain 

some models, these bit 
ignored and not checked 

3. Bit position 14, when 2K-byte pages 
are used, or bit positions 13-14, when 
4K-byte pages are used, in a valid 
page-table entry do not contain zeros. 

The exception is recognized only as part of 
the execution of an instruction using 
address translation; that is, when DAT is 
on and an instruction encounters a logical 
address, instruction address, or virtual 
address, or when LOAD REAL ADDRESS is 
executed. Cause 1 is recognized on any 
translation attempt; causes 2 and 3 are 
recognized only for table entries that are 
actually used. 

The unit of operation is suppressed. 

ihen the exception occurs ~uring a 
reference to an operand location, the 
instruction-length code (ILC) is 1, 2, or 3 
and indicates the length of the instruction 
causing the excp.ption. 

When the exception occurs during fetching 
of an instruction, it is unpredictable 
whether the ILC is 1, 2, or 3. When the 
exception occurs during the fetching of the 
target of EXECUTE, the ILC is 2. 

When a translation-specification exception 
is recognized in the process of translating 
an instruction address, the operation is 
suppressed. In this case, the 

Chapter 6. Interruptions 6-23 



r-------------------------------------------r----------------.'�------------------~,------------------, 
I ITranslation of ITranslation of , 
, ITranslation of IVirtual Address I Logical Address, 
, ,Logical Addresslfor LRA Ifor TPROT , 
, ~ I I ---.- ~ 
, Condition IIndic Action IIndic Action IIndic I Action, 
I- I' I I , 
l~ont£Q!-rggi~ter-Q ~2nten!21 I 
IInvalid encoding of bits 8-12 Suppress, TS Suppress TS Suppress TS , , 
,~eqm~i=tab!g entTI , 
I segment-table-length violation Com plete I ST Nullify cc3 Complete cc3 
IEntry protected against fetching or I 
I storing I 
IInvalid address of entry Suppressl A Suppress A Suppress A 
II bit on Completel ST Nullify cc1 Complete cc3 
lOne in an unassigned bit position2 Suppressl TS Suppress TS Suppress TS 
I I 
I~aqe=i~£le entry I 
IPage-table-length violation Completel PT Nullify cc3 Complete cc3 
I Entry protected for fetching or storing I 
IInvalid address of entry Suppressl A Suppress A Suppress A 
II bit on Completel PT Nullify cc2 Complete cc3 
lOne in an unassigned bit position2 Suppressl TS Suppress TS Suppress TS 
I I 
I!ccg~ fo£ instruction fetc.!! I 
ILocation protected P Suppress I 
I Invalid address A Suppressl I 
I I I 
I Acce~ f2£ operands I I 
ILocation protected P Term.* I cc set 3 Complete I 
IInvalid address A Term.* I A Suppressl 
I I 

TS Translation-specification exception. 
ST segment-translation exception. 
PT Page-translation exception. 
A Addressing exception. 
P Protection exception. 
cc1 Condition code 1 set. 
cc2 Condition code 2 set. 
cc3 Condition code 3 set. 

The condition does not apply. 
* Action is to terminate except where otherwise specified in this publication. 

1 A translation-specification exception for an invalid code in control register 0, bitl 
positions 8-12, is recognized as part of the execution of the instruction usinq ad- I 
dress translation; when DAT is on, it is recognized during translation of the in- I 
struction address, and, when DAT is off, it is only recognized during translation I 
of the operan d address of LRA. I 

I 
2 A translation-specification exception for a format error in a table entry is recoq- 1 

nized only when the execution of an instruction requires the entry for the transla- I 
tion of an address. I 

I 
3 The condition code is set as follows: I 

o Operand locat ion not protected I 
1 Fetches permitted, but stores not permitted I 
2 Neither fetches or stores permitted I 

L-- J 

Handling of Access Exceptions 

with two conditions of the same priority, 
it is unpredictable which is indicated. In 
particular, the priority of access 
exceptions associated with the two parts of 

an operand that crosses a paqe or 
protection boundary is unpredictable and is 
not necessarily related to the sequence 
specified for the a ccess of bytes wi thin 

Chapter 6. Interruptions 6-25 



S.A Specification exception due to conditions other than those included in 2, 5, 
and 7.D above. 

S.B- Access exceptions for an access to an operand in storage. 5 

S.C- Access exceptions for any other access to an operand in main storage. 5 

S.D Data exception.· 

S.E Decimal-divide exception. 7 

9. Fixed-point divide, floating-point divide, and conditions, other than PER 
events, which result in completion. Either these conditions are mutually ex­
clusive or their priority is specified in the corresponding definitions. 

Numbers indicate priority, with "1" being the highest priority; letters indicate no 
priority. 

PSW errors which cause an immediate interruption may be introduced by a new PSW 
loaded as a result of an interruption or by the instructions LPSW, SSM, and STOSM. 
The priority shown in the chart is for a PSW error introduced by an interruption 
and may also be considered as the priority for a PSW error introduced by the pre­
vious instruction. The error is introduced only if the instruction encounters no 
other exceptions. The resulting interruption has a higher priority than any in­
terruption caused by the instruction which would have been executed next; it has a 
lower priority, however, than any interruption caused by the instruction which 
introduced the erroneous PSW. 

2 Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities starting 
with 6 are for the target instruction. When no EXECUTE is encountered, priorities 
3, 4, and 5 do not apply. 

3 Separate accesses may occur for each halfword of an instruction. The second in­
struction halfword is accessed only if bits 0-1 of the instruction are not both 
zeros. The third instruction halfword is accessed only if bits 0-1 of the in­
struction are both ones. Access exceptions for one of these halfwords are not nec­
essarily recognized if the instruction can be completed without use of the con­
tents of the halfword or if an exception of priority 8 or 9 can be determined 
without the use of the halfword. 

- As in instruction fetching, separate accesses may occur for each portion of an 
operand. Each of these accesses is of equal priority, and the two entries S.B 
and S.C are listed to represent the relative priorities of exceptions associated 
with any two of these accesses. Access exceptions for INSERT STORAGE KEY, SET 
STORAGE KEY, RESET REFERENCE BIT, and LOAD REAL ADDRESS are also included in 8.B. 

5 For MOVE LONG and COMPARE LOGICAL LONG, an 
operand can be indicated only if the 
even-numbered register. 

access exception for a particular 
R field for that operand designates an 

• The exception can be indicated only if the sign, digit, or digits responsible for 
the exception were fetched without encountering an access exception. 

7 The exception can be indicated only if the digits used in establishing the excep­
tion, and also the signs, were fetched without encountering an access exception, 
and only if the digits used in establishing the exception are valid. 

priority of Program-Interruption Conditions (Part 2 of 2) 

, 

Chapter 6. Interruptions 6-27 



The ASN-trans1ation exceptions are those 
exceptions which are common to the process 
of translating an ASN in the instructions 
PROGRAM CALL, PROGRAM TRANSFER, and SEt 
SECONDARY ASN. The exceptions and the 
priority in which they are detected are 
shown in the following figure. 

1. 

2. 

3. 

Addressing exception for access 
to ASN-firs~-table entry. 

AFI-trans1ation exception due to 
I bit (bit 0) in ASN-first-table 
entry having the value one. 

ASN-trans1ation-specification 
exception due to invalid Ones 
(bits 1-7, 28-31) in ASN-first­
table entry. 

4. Addressing exception for access 
to A SN-secon d-tal:1e entry. 

5. ASI-trans1ation exception due to 
I bit (bit 0) in ASN-second­
table entry having the value one. 

6. ASN-translation-specification 
exception due to invalid ones 
(bits 1-7, 30,31, 60-63, 97-103) 
in ASN-second-tab1e entry. 

I Priority of ASN-Trans1ation Exceptions 

The trace exceptions are those exceptions 
which can be encountered while performing 
the implicit tracing function. The 
exceptions, except for PER storage 
alteration, and their priority are shown in 
the fo1lowinq chart. PER storage 
alteration is presented only if the 
instruction is completed. 

1. 

2. 

3.A 

3.B 

5. 

Access exceptions (except for pro­
tection) for logical address 84. 

Specification exception due to . 
trace-header address in location 
84 not designating a doub1eword 
boundary. 

Access exceptions (inc1udi ng low­
address protection) for first 
doub1eword of trace header. 

Access exceptions (except for pro­
tection) for third word of trace 
header. 

Specification exception due to 
trace-entry address in trace 
header not designating a 32-byte 
boundary. 

Access exceptions (including low­
address protection for the trace 
entry. 

Priority of Trace Exceptions 

The restart interruption provides a means 
for the operator or another CPU to invoke 
the execution of a specified program. The 
CPU cannot be disabled for this 
interruption. 

A restart interruption causes the old PSi 
to be stored at location 8 and a new PSi, 
specifying the start of the proqram to be 
executed, to be fetched from location o. 
The instruction-length code and 
interruption code are not stored in the Ee 
mode. In the BC mode, the 
instruction-length code in the PSi is 
unpredictable, and zeros are stored in the 
interruption-code field. 

If the CPU is in the operating state, the 
exchange of the PSis occurs at the 
completion of the current unit of operation 
and after all pend ing interruption 
conditions for which the CPU is enabled 
have been taken. In this case, it depends 
on the model if the CPU temporarily enters 
the stopped state as part of the execution 
of the restart operation. If the CPU is in 
the stopped state, the CPU enters the 
operating state and exchanges the PSis 
without first taking any pending 
interruptions. 

The restart interruption 
activating the restart 

is i ni tia ted 
key. In 

by 
a 

Chapter 6. Interruptions 6-29 



has an odd instruction address or causes an 
access exception to be recognized, another 
program interruption occurs. Since this 
second interruption introduces the same 
unacceptable psw, a string of interruptions 
is established. These program exceptions 
are recognized as part of the execution of 
the following instruction, and the string 
may be broken by an external, I/O, 
machine-check, or restart interruption or 
by the stop function. 

If the new PSi for a program interruption 
contains a one in an unassigned bit 
position of an EC-mode PSW, or if it 
specifies the EC mode in a CPU that does 
not have the EC mode, or if it specifies 
any other facility that is not installed on 
the CPU, another program interruption 
occurs. This condition is of higher 
priority than restart, I/O, external, or 
repressible machine-check conditions, or 
the stop fUnction, and CPU reset has to be 
used to break the string of interruptions. 

A string of interruptions for other 
interruption classes can also exist if the 
new PSi is enabled for the interruption 
just taken. These include machine-check 
interruptions, external interruptions, and 
I/O interruptions due to PCI conditions 
generated because of CCis which form a 
loop. Furthermore, a string of 
interruptions involving more than one 
interruption class can exist. For example, 
assume that the CPU timer is negative and 
the CPU-timer subclass mask is one. If the 
external new PSi has a one in an unassigned 
bit position in the EC mode, and the 
program new PSi is enabled for external 
interruptions, then a string of 
interruptions occurs, alternating between 
external and program. Even more complex 
strings of interruptions are possible. As 
long as more interruptions must be 
serviced, the string of interruptions 
cannot be broken by employing the stop 
function; CPU reset is required. 

Similarly, CPU reset has to be invoked to 
terminate the condition that exists when an 
interruption is attempted with a prefix 
value designating a storage location that 
is not available to the CPU. 

On some models, when an excessive string of 
consecutive interruptions is detected which 
cannot be broken by means of the stop 
functiofi, the CPU enters a special state 
that can be exited only by use of CPU 
reset. 

Interruptions for all requests for which 
the CPU is enabled are taken before the CPU 
is placed in the stopped state. When the 
CPU is in the stopped state, restart has 
the highest priority. 

The order in which concurrent interruption 
requests are honored can be changed to some 
extent by masking. 

Chapter 6. Interruptions 6-31 



Data Format ••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-2 
Binary-Integer Representation ••••••••••••••••••••••••••••••••••• 7-2 
signed and unsigned Binary Arithmetic ••••••••••••••••••••••••••• 7-3 
signed and logical comparison ••••••••••••••••••••••••••••••••••• 7-4 
Instructions •••••••••••••••••••••••••••••••••••••••••••••••••••• 7-4 

ADD ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-7 
AtD 
ADD 

HALFWORt •••••••••••••••••••••••••••••••••••••••••••••••••• 7-7 
LOGICAL ••••••••••••••••••••••••••••••••••••••••••••••••••• 7-8 

AND ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-8 
BRANCH AND LINK ••••••••••••••••••••••••••••••••••••••••••••••• 7-9 
BRANCH AND SAVE ••••••••••••••••••••••••••••••••••••••••••••••• 7-9 
BRANCH ON CONDITION ••••••••••••••••••••••••••••••••••••••••••• 7-10 
BRANCH ON COUNT 
BRANCH ON INDEX 
BRANCH ON INDEX 

••••••••••••••••••••••••••••••••••••••••••••••• 7-11 
HIGH •••••••••••••••••••••••••••••••••••••••••• 7-11 
ICW OR EQUAL •••••••••••••••••••••••••••••••••• 7-11 

COMPARE ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-12 
COMPARE AND SWAP •••••••••••••••••••••••••••••••••••••••••••••• 7-12 
COMPARE 
COMPARE 
COMPARE 
COMPA RE 
COMPARE 
CO~TVERT 

CONVERT 
DIVIDE 

DOUBLE AND SWAP •••••••••• ••••••••••••••••••••••••••••• 7-12 
HAIF~ORD •••••••••••••••••••••••••••••••••••••••••••••• 7-14 
LOGICAL ••••••••••••••••••••••••••••••••••••••••••••••• 7-14 
LOGICAL CHARACTERS UNDER MASK ••••••••••••••••••••••••• 7-15 
LOGICAL lONG •••••••••••••••••••••••••••••••••••••••••• 7-15 
TO 
TO 

BINARy •••••••••••••••• ••••••••••••••••••••••••••••• 7-17 
DECIMAL •••••••••••••••••••••••••••••••••••••••••••• 7-17 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-18 
EXCLUSIVE OR •••••••••••••••••••••••••••••••••••••••••••••••••• 7-18 
EXECUTE ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-19 
INSERT CHARACTER •••••••••••••••••••••••••••••••••••••••••••••• 7-20 
INSERT CHARACTERS UNDER MASK •••••••••••••••••••••••••••••••••• 7-20 
LOAD •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-21 
LOAD 
LOAD 

ADDRESS •••••••••••••••••••••••••••••••••••••••••••••••••• 7-21 
AND TEST ••••••••••••••••••••••••••••••••••••••••••••••••• 7-21 

LOAD COMPLE!ENT ••••••••••••••••••••••••••••••••••••••••••••••• 7-22 
LOAD 
LOAD 
LOAD 

HALFWCRD 
MULTIPLE 
NEGATIVE 

••••••••••••••••••••••••••••••••••••••••••••••••• 7-22 
••••••••••••••••••••••••••••••••••••••••••••••••• 7-22 
••••••••••••••••••••••••••••••••••••••••••••••••• 7-23 

LOAD POSITIVE ••••••••••••••••••••••••••••••••••••••••••••••••• 7-23 
MONITOR CAll •••••••••••••••••••••••••••••••••••••••••••••••••• 7-23 
MOVE ••••••••••••.•.•••••••.•••••••••••••••••.••••••••.•••••••• 7-24 
MOVE 
MOVE 
MOVE 
MOVE 

INVERSE •••••••••••••••••••••••••••••••••••••••••••••••••• 7-24 
••••••••••••••••••••••••••••• 7-25 LONG 

NUMERICS 
WITH OFFSET 

••••••••••••••••••••••••••••••••••••••••••••••••• 7-27 
•••••••••••••••••••••••••••••••••••••••••••••• 7-28 

•••••••••••••••••••••••.• 7-28 MOVE ZONES 
MULTIPLY •••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-29 
MULTIPLY HALFWCRD ••••••••••••••••••••••••••••••••••••••••••••• 7-29 
OR •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-30 
PACK •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-31 
SET PROGRAM MASK •••••••••••••••••••••••••••••••••••••••••••••• 7-31 
SHIFT LEFT DOUELE ••••••••••••••••••••••••••••••••••••••••••••• 7-32 
SHIFT LEFT DOUEIE LOGICAL ••••••••••••••••••••••••••••••••••••• 7-32 
SHIFT LEFT SINGLE ••••••••••••••••••••••••••••••••••••••••••••• 7-33 
SHIFT LEFT SINGLE LOGICAL ••••••••••••••••••••••••••••••••••••• 7-33 
SHIFT RIGHT DOUBLE •••••••••••••••••••••••••••••••••••••••••••• 7-34 
SHIFT RIGHT DOUBLE LOGICAL •••••••••••••••••••••••••••••••••••• 7-34 
SHIFT RIGHT SINGLE •••••••••••••••••••••••••••••••••••••••••••• 7-34 
SHIFT RIGHT SINGLE LOGICAL •••••••••••••••••••••••••••••••••••• 7-35 
STORE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 7-35 
STORE CHARACTER ••••••••••••••••••••••••••••••••••••••••••••••• 7-35 
STORE CHARACTERS UNDER MASK ••••••••••••••••••••••••••••••••••• 7-35 
STORE CLOCK ••••••••••••••••••••••••••••••••••••••••••••••••••• 7-36 
STORE HALFWORD •••••••••••••••••••••••••••••••••••••••••••••••• 7-37 
STORE MULTIPLE •••••••••••••••••••••••••••••••••••••••••••••••• 7-37 

Chapter 7. General Instructions 7-1 



complement of the maximum negative number, 
the result is the maximum negative number, 
and a fixed-point-overflow exception is 
recognized. An overflow does not result, 
however, when the maximum negative number 
is complemented as an intermediate result 
but the final result is within the 
representable range. An example of this 
case is a subtraction of the maximum 
negative number from minus one. The 
product of two maximum negative numbers is 
representable as a double-length positive 
number. 

In discussions of signed binary integers in 
this publication, a signed binary integer 
includes the sign bit. Thus, the 
expression "32-bit signed binary integer" 
denotes an integer with 31 numeric bits and 
a sign bit, and the expression "64-bit 
signed binary integer" denotes an integer 
with 63 numeric bits and a sign bit. 

In some operations, the result is achieved 
by the use of the one's complement of the 
number. The one's complement of a number 
is obtained by inverting each bit of the 
number. 

In an arithmetic operation, a carry out of 
the numeric field of a signed binary 
integer changes the sign. However, in 
algebraic left-shifting the sign bit does 
not change even if significant high-order 
bits are shifted out. 

1. An alternate way of forming the two's 
complement of a signed binary integer 
is to invert all bits to the left of 
the rightmost one bit, leaving the 
riqhtmost one bit and all zero bits to 
the riqht of it unchanged. 

2. The numeric bits of a signed binary 
integer may be considered to represe nt 
a positive value, with the sign 
representing a value of either zero or 
the maximum negative number. 

Addition of signed binary integers is 
performed by adding all bits of each 
operand, including the sign bits. When one 
of the operands is shorter, the shorter 
operand is considered to be extended on the 
left to the length of the longer operand by 
propagating the sign-bit value. If the 
carry out of the sign-bit position and the 
carry out of the high-order numeric bit 
position disagree, an overflow occurs. The 

sign bit is not changed after the overflow. 

subtraction is performed by adding the 
one's complement of the second operand and 
a low-order one to the first operand. 

signed addition and subtraction produce an 
overflow when the result is outside the 
range of representation for signed binary 
integers. Specifica lly, f or ADD and 
SUBTBACT, which operate on 32-bit signed 
binary integers, there is an overflow when 
the proper result would be greater than or 
egual to +2 31 or less than -2 31 • The 
actual result placed in the general 
register after an overflow differs from the 
proper result by 232 • An overflow causes a 
program interruption for fixed-point 
overflow if it is allowed. 

Addition of unsigned binary integers is 
performed by adding all bits of each 
operand. When one of the operands is 
shorter, the shorter operand is considered 
to be extended on the left with zeros. 
unsigned binary arithmetic is used in 
address arithmetic for adding the X, B, and 
D fields. It is also used to obtain the 
addresses of the function bytes in the 
instructions TBANSLATE and TRANSLATE AND 
TEST. Furthermore, unsigned binary 
arithmetic is used on 32-bit unsigned 
binary integers by the instructions ADD 
LOGICAL and SUBTBACT LOGICAL. Given the 
same two operands, ADD and ADD LOGICAL 
produce the same 32-bit result. The 
instructions differ only in the 
interpretation of this result. ADD 
interprets the result as a signed binary 
integer and inspects it for sign, 
magnitude, and overflow to set the 
condition code accordingly. ADD LOGICAL 
interprets the result as an unsigned binary 
integer and sets the condition code 
according to whether the result is zero and 
whether there was a carry out of the 
high-order bit position. such a carry is 
not necessarily considered an overflow, and 
no program interruption can occur for ADD 
LOGICAL • 

SUBTBACT LOGICAL differs from ADD LOGICAL 
in that the one's complement of the second 
operand and a low-order one are added to 
the first operand. 

1. Logical addition and SUbtraction may 
be used to program multiple-precision 
arithmetic. Thus, for multiple­
precision binary-integer addition, ADD 
LOGICAL is used to add the 
corresponding lower- order parts of the 
operands. If the condition code 
indicates a carry, a one is added to 

Chapter 7. General Instructions 7-3 



r-
I IMne- I lOp I 
I Name I monicl Characteristics I Code I 
I I I I i I I -I 
IADD IAR IRR C I I IF I R IH I 
IADD IA I RX C I A I IF I R 15A I 
IADD HALFWORD I AH IRX C I A I IF I R 14A I 
IADD LOGICAL IALR IRR C I I I R 11E I 
IADD LOGICAL IAL IRX C I A I I R 15E I 
I--- I I I I I I I 
lAND INR IRR C I I I R 114 
lAND IN IRX C I A I I R 154 
I AND (character) INC ISS C I A I I STID4 
I AND (immediate) I NI lSI C I A I I STI94 
IBRANCH AND LINK I BALR I RR I I IB R 105 , I I I I I I 
I BRANCH AND LINK I BAL IRX I I IB R 145 
I BRANCH AND SAVE I BASR IRR BSI I IB R 100 
I BRANCH AND SAVE IBAS IRX BSI I IB R 140 
I BRANCH ON CONDITION I BCR IRR I I tp!1 IB 107 
I BRANCH ON CONDITION IBC IRX I I IB 147 
I--- I I I I I I --I 
I BRANCH ON COUNT IBCTR IRR I I IB R 106 
I BRANCH ON COUNT IBCT IRX I I IB R 146 
I BRANCH ON INDEX HIGH I BXH IRS I I IB R 186 
I BRANCH ON INDEX LOW OR EQUAl IBXLE IRS I I IB R 187 
I COMPARE ICR IRR C I I I I 19 , I I I I I I 
I CO!'lPARE IC IRX C I A I I 159 
I COKP.ARE AND SWAP I CS IRS C Slfl A SPI $ I R STIBA 
ICOMPARE DOUBLE AND SWAP ICDS IRS C Slfl A SPI $ I R STIBB 
ICOMPARE HALFWORD I CH IRX C I A I I 149 
ICOMPARE LOGICAL ICLR I RR C I I I 115 
I--- I I I I I I -I 
ICOMPARE LOGICAL ICL IRX C I A I 155 I 
I COMPARE LOGICAL (character) I CLC ISS C I A I IDS I 
ICOMPARE LOGICAL (immediate) ICLI lSI C I A I 195 I 
ICOMPARE LOGICAL CHARACTERS UNDER MASKICLM IRS C I A I I BD I 
ICOMPARE LOGICAL LONG ICLCL IFR C I A SP I II R 10F I 
I--- I I I I I --I 
ICONVERT TO BINARY I CVB RX I A 10 IK R 14F I 
ICONVERT TO DECIMAL I CVD RX I A I STI4E I 
I DIVI DE lOR FR I SP I IK R 110 I 
I DIVIDE 10 RX I A SPI IK R 150 I 
IEXCLUSIVE OR IXR FR C I I R 117 I 
I--- I I I I I I 
IEXCLUSIVE OR IX RX C I A I I R 157 I 
I EXCLUSIVE OR (character) IXC SS C I A I I STI07 I 
IEXCLUSIVE OR (immediate) I XI SI C I A I I STI97 I 
IEXECUTE I EX RX I AI SPI EXI 144 I 
IINSERT CHARACTER IIC RX I A I I R 143 I 
I--- I -+- I I I I --I 
IINSERT CHARACTERS UNDER MASK IICM IRS C I A I I F I BF I 
ILOAD ILR IFR I I I R 118 I 
I LOAO IL IRX I A I I R 158 I 
ILOAD ADDRESS ILA IRX I I I R I 41 I 
ILOAD AND TEST I LTR IFR C I I I R I 12 I 
L--- ~ .J 

Summary of General Instructions (Part 1 of 3) 

Chapter 7. General Instructions 7-5 



I IMne- I lOp 
I Name Imonici Characteristics ICode I 
�r-------------------------------~I----~Ir_------T-------._---------._----~I--~ 
ITRA!l'SLATE AND TEST ITRT ISS CAR IDD I 
IUNPACK IUNPK ISS A STIF3 I 
I --~----~--~ 

I ~xpl~!!.g tiQ'!!: 
A Access exceptions for logical addresses 
AI Access exceptions for instruction address 
B PER branch event 
BS Branch-and-save feature 
C Condition code is set 
D Data exception 
EX Execute exception 
IF Fixed-point-overflow exception 
II Interruptible instruction 
IK Fixed-point-divide exception 
L New condition code loaded 
MI Move-inverse feature 
MO Monitor event 
R PER general-register-alteration event 
RR RR instruction format 
RS RS instruction format 
RX RX instruction format 
S S instruction format 
SI SI instruction format 
SP Specification exception 
SS SS instruction format 
ST PER storage-alteration event 
sw conditional-swappinq feature 
$ Causes serialization 
( Causes serialization and checkpoint synchronization 
(1 Causes serialization and checkpoint synchronization when the M1 and Ra 

fields contain all ones and all zeros, respectively L----____________________________________________________________________________________ _ 

Summary of General Instructions (Part 3 of 3) 

ADD 

AR R1 ,R a [RR 1 

--,--
, 1 A' I R1 Ra 

L-

a 8 12 1S 

A R1 ,Da (Xa,Ba) [RX] 

~ , 
'SA' I R1 Xa Ba Da I 

I 

a 8 12 16 20 31 

The second operand is added to the first 
operand, and the sum is placed in the 
first-operand location. The operands and 
the sum are treated as 32-rit signed binary 
integers. 

An overflOW causes a program interruption 
when the fixed-point-overflow mask bit is 
one. 

a Sum is zero 
1 Sum is less than zero 
2 Sum is greater than zero 
3 Overflow 

Program ]~ceE1ions: 

Access (fetch, operand 2 of A only) 
Fixed-Point Overflow 

ADD HALFWORD 

AH ( RX] 

r-------~r---~'-·~----,------------_, 

, 4A ' R1 I Xa Ba Da I 
I ~ 

o 8 12 16 

The second operand is 
operand, and the sum 
first-operand location. 
is two bytes in length 

20 31 

added to the first 
is placed in the 

The second operand 
and is treated as a 

Chapter 7. General Instructions 7-7 



L 

1. An example of the use of the AND 
instruction is given in Appendix A. 

2. The instruction AND may be used to set 
a bit to zero. 

3. Accesses to the first operand of NI 
and NC consist in fetching a 
first-operand byte from storage and 
subsequently storing the updated 
value. These fetch and store accesses 
to a particular byte do not 
necessarily occur one immediately 
after the other. Thus, the 
instruction AND cannot be safely used 
to update a location in storage if the 
possibility exists that another CPU or 
a channel may also be updating the 
location. An example of this effect 
is shown for the instruction OR (01) 
in the section "Multiprogramminq and 
Multiprocessing Examples" in Appendix 
A. 

BRANCH AND LINK 

BALR R:L,Ra [RE] 

105 1 R:L Ra 
'---
0 8 12 15 

BAt R:L, Da (Xa , B a) r FX] 

-,-- -r-~-

145 1 I F1 Xa I Ba I Da 
.1.-

0 8 12 16 20 31 

Information from the current PSW, including 
the updated instruction address, is loaded 
as link information in the general register 
designated by R:L. Sutseguently, the 
in~truction address is replaced by the 
br4nch address. 

In the RX format, the second-operand 
address is used as the branch address. In 
the RB format, bits 8-31 of the general 
register designated by R? are used as the 
branch address; however, when theda field 
Gontains zeros, the operation is performed 
without branching. The branch address is 
computed before the link information is 
loaded. 

The link information consists of the 
instruction-length code (ILC) , the 
condition code (CC), the program mask bits, 
and the updated instruction address, 

arranged in the following format: 

I I IProg 
IILCICCll'Jask Instruction Address 
L-__ ~~ ______ 4-_______________________~ 

o 2 4 8 31 

The instruction-length code is or 2. 

££ngitiQn £Qde: 
unchanged. 

The code remains 

1. An example of the use of BRANCH AND 
LINK is given in Appendix A. 

2. When the Ra field in the RR format 
contains all zeros, the link 
information is loaded wi thout 
branching. 

3. When BRANCH AND LINK is the target 
instruction of EXECUTE, the 
instruction-length code is 2. 

4. The format and the contents of the 
link information do not depend on 
whether the PSW specifies the EC or BC 
mode. In both modes, the link 
information is in the format of the 
rightmost 32 bit positions of the 
BC-mode PSi. 

I BRANCH AND SA VE 

BASR R:L,R a [ RR] 

, OD' R:L Ra 

0 8 12 15 

BAS R:L ,Da (Xa ,Ba) [ RX] 

T --, 
, 40 1 I R:L Xa Ba Da I 

I --' 
0 8 12 16 20 31 

The updated instruction address, with eight 
high-order zeros appended, is saved as link 
information in the general register 
designated by R:L. Subsequently, the 
instruction address is replaced by the 
branch address. 

In the RX format, the second-operand 

Chapter 7. General Instructions 7-9 



L 

4. Execution of BCR 15,0 (that is, an 
instruction with a value of 07FO hex) 
may result in significant performance 
deqradation. To ensure optimum 
performance, the program should avoid 
use of BCR 15,0 except in cases when 
the serialization or the 
checkpoint-synchronization function is 
actually required. 

5. Note that the relation between the RR 
and RX formats in tranch-address 
specification is not the same as in 
operand-address specification. For 
branch instructions in the RX format, 
the branch address is the address 
specified by X2 , B2 , and D2 ; in the RR 
format, the branch address is 
contained in the register specified by 
R2 • For operands, the address 
specified by X2 , B2 , and D2 is the 
operand address, but the register 
specified by R2 contains the operand 
itself • 

BFANCH ON COUNT 

BCTR Rs.,R 2 [RR] 

106' Rs. R2 

0 8 12 15 

BCT Rs., D2 (X 2t B2 ) r RX J 

---. 
146 1 Rs. X2 B2 I D2 

I 

0 8 12 16 20 31 

A one is subtracted from the first operand, 
and the result is placed 1n the 
first-operand location. The first operand 
and result are treated as 32-bit binary 
integers, with overflow ignored. When the 
result is zero, normal instruction 
sequencing proceeds with the updated 
instruction address. When the result is 
not zero, the instruction address in the 
current PSi is replaced by the branch 
address. 

In the RX format, the second-operand 
address is used as the branch address. In 
the RR format, the contents of bit 
positions 8-31 of the general register 
specified by R2 are used as the branch 
address; however, when the R2 field 
contains zeros, the operation is performed 
without branching. 

The branch address is computed before the 
countinq operation. 

ConditiQn £Qde: The code remains 
unchanged. 

1. An example of the use of BRANCH ON 
COUNT is given in Appendix A. 

2. The first operand and result can be 
considered as either signed or 
unsigned binary integers since the 
result of a binary subtraction is the 
same in both cases. 

3. An initial count of one results in 
zero, and no branching takes place; an 
initial count of zero results in -1 
and causes bra nching to be executed; 
an initial count of -1 results in-2 
and causes branching to be executed; 
and so on. In a loop, branching takes 
place each time the instruction is 
executed until the result is again 
zero. Note that, because of the 
number range, an initial count of -2 31 

results in a positive value of 
231 - 1. 

q. Counting is performed without 
branching when the R2 field in the RR 
format contains zero. 

BRANCH ON INDEX HIGH 

BXH [ RS] 

r-------~r_--~-----r-.~------------. 

'86' B2 I 

o 8 12 16 20 31 

BRANCH ON INDEX LOW OR EQUAL 

BXLE [ RS] 

"I --, 

'87' IRs. R3 B2 D2 I 
I 

o 8 12 16 20 31 

An increment is added to the first operand, 
and the sum is compared with a com pare 
value. The result of the comparison 
determines whether branching occurs. 
Subsequently, the SUm is placed in the 

Chapter 7. General Instructions 7-11 



For CS, the first and third operands are 32 
bits in length, with each operand occupying 
a general register. The second operand is 
a word in storaqe. 

For CDS, the first and third operands are 
64 bits in length, with each operand 
occupyinq an even-odd pair of general 
registers. The second operand is a 
doubleword in storage. 

When the result of the comparison is 
unequal, the second-operand location 
remains unchanged. However, on some 
models, the value may be fetched and 
subseguently stored back into the 
second-operand location. No access by 
another CPU to the second-operand location 
is permitted between the moment that the 
second operand is fetched for comparison 
and it is stored. 

when an egual comparison occurs, no access 
by another CPU to the second-operand 
location is permitted between the moment 
that the second operand is fetched for 
comparison and the moment that the third 
operand is stored at the second-operand 
location. 

serialization is performed before the 
operand is fetched, and again after the 
operation is completed. CPU operation is 
delayed until all previous accesses by this 
CPU to· storage have been completed, as 
observed by channels and other CPUs, and 
then the second operand is fetched. No 
subsequent instructions or their operands 
are accessed by this CPU until the 
execution of this instruction is completed, 
including placing the result value, if any, 
in storage, as observed by channels and 
other CPUs. 

The second 
on a word 
for CDS 
register, 
must be 
boundary. 
exception 

operand of CS must be designated 
boundary. The R~ and R3 fields 
must each designate an even 

and the second operand for CDS 
designated on a doubleword 
otherwise, a specification 

is recognized. 

o First and second operands equal, 
second operand replaced by third 
operand 

2 
3 

First and second operands unequal, 
first operand replaced by second 
operand 

PrQg£am Exceptions: 

Access (fetch and store, operand 2) 
Operation (if the conditional-swapping 

feature is not installed) 
Specification 

1. Several examples of the use of the 
COMPARE AND SWAP and COMPARE DOUBLE 
AND SWAP instructions are given in 
Appendix A. 

2. The instruction 
programs sharing 
in either a 
mul ti processing 
examples are: 

CS can be used by 
common storage areas 
multiprogramming or 
environment. Two 

a. By performing the following 
procedure, a program can modify 
the contents of a storage location 
even though the possibility exists 
that the program ma y be 
interrupted by another program 
that will update the loca ti on or 
even though the possibility exists 
that another CPU may sim u1 ta­
neously update the location. 
First, the entire word containinq 
the byte or bytes to be updated is 
loaded into a general register. 
Next, the updated value is 
computed and placed in another 
general register. Then the 
instruction CS is executed with 
the R~ field designating the 
register that contains the 
original value and the R3 field 
designating the register that 
contains the updated value. If 
condition code 0 is set, the 
update has been successful. If 
condition code 1 is set, the 
storage location no longer 
contains the oriqina1 value, the 
update has not been successful, 
and the general register 
designated by the R~ field of the 
CS instruction contains the new 
current value of the storage 
location. When condition code 1 
is set, the program can repeat the 
procedure using the new current 
val ue. 

b. The instruction CS can be used for 
controlled sharing of a common 
storage area in a manner similar 
to that described in the 
programming note under TEST AND 
SET, but it provides the added 
capability of leaving a message 
when the common area is in use. 
To accomplish this, a word in 
storage can be used as a control 
word, with a zero value in the 
word indicating that the common 
area is not in use, a negative 
value indicating that the area is 
in use, and a nonzero posi ti ve 
value indicating that the common 
area is in use and that the value 
is the address of the most recent 

Chapter 7. General Instructions 1-13 



CLC [55] 

r--------.r--------,-----~/---~~/___, 
'DS' L B1. I D1. I B2 I D2 I 

L-______ ~ ________ ~_ ~I ~/~ 

o 8 16 20 32 36 47 

The first operand is compared with the 
second operand, and the result is indicated 
in the condition code. 

The comparison proceeds left to right, byte 
by byte, and ends as soon as an ineguality 
is found or the end of the fields is 
reached. For CL and ClC, access exceptions 
mayor may not be recognized for the 
portion of a storage operand to the right 
of the first unequal byte. 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Access (fetch, operand 2, CL and CLC; 
fetch, operand 1, ClI and ClC) 

1. Examples of the use of the COMPARE 
LOGICAL instructions are given in 
Appendix A. 

2. The COMPARE lOGICAL instructions treat 
all bits of each operand alike as part 
of a field of unstructured logical 
data. For ClC, the comparison may 
extend to field lengths of 2S6 bytes. 

COMPARE LOGICAL CHARACTERS ONDER MASK 

CUI [RS] 

IBD' 

o 8 12 16 20 

The first operand is compared 
second operand under control of a 
the result is indicated in the 
code. 

31 

with the 
mask, and 
condition 

The contents of the M3 field are used as a 
mask. These four bits, left to right, 
correspond one for one with the four bytes, 
left to right, of the general register 
designated by the Ri. field. The byte 

positions corresponding to ones in the mask 
are considered as a contiguous field and 
are compared with the second operand. The 
second operand is a contiguous field in 
storage, starting at the second-operand 
address and equal in length to the number 
of ones in the mask. The bytes in the 
general register corresponding to zeros in 
the mask do not participate in the 
operation. 

The comparison proceeds left to right, byte 
by byte, and ends as soon as an inequality 
is found or the end of the fields is 
reached. 

When the mask is not zero, exceptions 
associated with storage-operand access are 
recognized for no more than the number of 
bytes specified by the mask. Access 
exceptions mayor may not be recoqnized for 
the portion of a storage operand to the 
right of the first unequal byte. When the 
mask is zero, access exceptions are 
recognized for one byte. 

o Selected bytes are equal, or mask 
is zero 
Selected field of first operand is 
low 

2 Selected field of first operand is 
high 

3 

Access (fetch, operand 2) 

An example of the use of COMPARE LOGICAL 
CHARACTERS ONDER MASK is qiven in Appendix 
A. 

COMPARE lOGICAL LONG 

CLCL Ri.,R 2 [RR] 

I 
, OF' I Ri. R2 

I 

0 8 12 1S 

The first operand is compared with the 
second operand, and the result is indicated 
in the condition code. The shorter operand 
is considered to be extended on the right 
with padding bytes. 

The Ri. and R2 fields each specify an 

Chapter 7. General Instructions 7-1S 



reqisters having the same contents are 
specified, and, in the absence of 
dynamic modification of the operand 
area by another CPU or a channel, 
condition code 0 is set. However, it 
is unpredictable whether access 
exceptions are recognized for the 
operand since the operation can be 
completed without storage being 
accessed. 

3. Other programming notes concerning 
interruptible instructions are 
included in the section "Interruptible 
Instructions" in Chapter 5, "Program 
Execution." 

4. Special precautions should be taken 
when COMPARE LOGICAL LONG is made the 
target of EXECUTE. See the program­
ming note concerning interruptible 
instructions under EXECUTE. 

CONVERT TO BINARY 

CVB r IlX ] 

'4F' 

o 8 12 16 20 31 

The second operand is changed from decimal 
to binary, and the result is placed in the 
first-operand location. 

The second operand occupies eight bytes in 
storage and is treated as packed decimal 
data, as described in Chapter 8, "Decimal 
Instructions." It is checked for valid 
sign and digit codes, and a data exception 
is recognized when an invalid code is 
detected. 

The result of the conversion is a 32-bit 
signed binary integer, which is placed in 
the general register specified by R~. The 
maximum positive number that can be 
converted and still be contained in a 
32-bit reqister is 2,147,483,647; the 
maximum negative number (the negative 
number with the qreatest absolute value) 
that can be converted is -2,147,483,648. 
For any decimal number outside this range, 
the operation is completed by placing the 
32 low-order bits of the binary result in 
the register, and a fixed-point-divide 
exception is recognized. 

ConditiQn .fode: 
unchanged. 

The code 

Access (fetch, operan a 2) 

remains 

Data 
Fixed-Point Divide 

1. An example of the use of CONVERT TO 
BINARY is given in Appendix A. 

2. When the second operand is nega ti ve, 
the result is in two's-complement 
notation. 

CONVERT TO DECIMAL 

[RI] 

, 4E' Ia Ba Da L-______ ~~ __ ~ ____ -L ____ L ____________ _J 

o 8 12 16 20 31 

The first operand is changed from binary to 
decimal, and the result is stored at the 
second-operand location. The first operand 
is treated as a 32-bit signed binary 
integer. 

The result occupies eight bytes in storage 
and is in the format for packed decimal 
data, as described in Chapter 8, "Decimal 
Instructions." The low-order four bits of 
the result represent the sign. A positive 
sign is encoded as 1100; a negative sign is 
encoded as 1101. 

.fQnditig~ ~Qde: 
unchanged. 

The code 

Access (store, operand 2) 

remains 

1. An example of the use of CONVERT TO 
DECIMAL is given in Appendix A. 

2. The number to be con ve rted is a 3 2-bi t 
signed binary integer obtained from a 
general register. Since 15 decimal 
digits are available for the result, 
and the decimal equivalent of 31 bits 
requires at most 10 decimal digits, an 
overflow cannot occur. 

Chapter 7. General Instructions 7-17 



1. An example of the use of EXCLUSIVE OR 
is given in Appendix A. 

2. The instruction EXCLUSIVE OR may be 
used to invert a bit, an operation 
particularly useful in testing and 
setting programmed binary bit 
switches. 

3. A field EXCLUSIVE-ORed with itself 
becomes all zeros. 

4. For XR, the sequence A EXCLUSIVE-OR B, 
B EXCLUSIVE-OR A, A EXCLUSIVE-OR B 
results in the exchange of the 
contents of A and B without the use of 
an additional general register. 

5. Accesses to the first operand of XI 
and XC consist in fetching a 
first-operand byte from storage and 
subseguently storing the updated 
value. These fetch and store accesses 
to a particular byte do not 
necessarily occur one immediately 
after the other. Thus, the 
instruction EXCLUSIVE OR cannot be 
safely used to update a location in 
storage if the possibility exists that 
another CPU or a channel may also be 
updating the location. An example of 
this effect is shown for the 
instruction OR (01) in the section 
"Multiprogramming and Multiprocessing 
Examples" in Appendix A. 

EXECUTE 

EX [RX] 

'44' 

o 8 12 16 20 31 

The single instruction at the 
second-operand address is modified by the 
contents of the general register specified 
by R~, and the resulting target instruction 
is executed. 

When the R~ field is not zero, bits 8-15 of 
the instruction designated by the 
second-operand address are ORed with bits 
24-31 of the register specified by R1 • The 
DRing does not change either the contents 
of the register specified by R~ or the 
instruction in storage, and it is effective 
only for the interpretation of the 
instruction to be executed. When the R20 
field is zero, no ORing takes place. 

instruction may be two, four, or 
in length. The execution and 

The target 
six bytes 
exception 
instruction 
ins truction 
sequential 
instruction 
length code. 

handling of the tarqet 
are exactly as if the target 

were obtained in normal 
operation, except for the 
address and the instruction-

The instruction address of the current PSW 
is increased by the length of EXECUTE. 
This updated address and the 
instruction-length code of EXECUTE are 
used, for example, as part of the link 
information when the target instruction is 
BRANCH AND LINK. When the target 
instruction is a successful branching 
instruction, the instruction address of the 
current PSW is replaced by the branch 
address specified by the target 
instruction. 

target instruction is in turn an When the 
EXECUTE, 
recognized. 

an execute exception is 

The effective address of EXECUTE must be 
even; otherwise, a specification exception 
is recognized. When the target instruction 
is two or three halfwords in length but can 
be executed without fetching its second or 
third halfword, it is unpredictable whether 
access exceptions are recognized for the 
unused halfwords. Access exceptions are 
not recognized for the second-operand 
address when the address is odd. 

The second-operand address of EXECUTE is 
treated as an instruction address rather 
than a logical address; thus, when DAS is 
installed and the CPU is in secondary-space 
mode, it is unpredictable whether the 
target instruction is fetched from the 
primary space or the secondary space. When 
DAS is not installed, an instruction 
address is treated the same as a loqical 
address. 

Condition Code: The code may be set by the 
target-rnstruction. 

Access (fetch, target instruction) 
Execute 
Specification 

1. An example of the use of EXECUTE 
given in Appendix A. 

2. The ORing of eight bits from the 
general register with the designated 
instruction permits indirect length, 
index, mask, immediate-data, and 

Chapter 7. General Instructions 7-19 



1 • Examples 
CHARACTERS 
Appendix A. 

of the use of INSERT 
UNDER MASK are given in 

2. The condition code for INSERT 
CHARACTERS UNDER MASK (IC~ is defined 
such that, when the mask is 1111, the 
instruction causes the same condition 
code to be set as for LOAD AND TEST. 
Thus, the instruction may be used as a 
storage-to-register load-and-test 
operation. 

3. An rCM instruction with a mask of 1111 
or 0001 performs a function similar to 
that of a LOAD (L) or INSERT CHARACTER 
(IC), respectively, with the exception 
of the condition-code setting. 
However, the performance of ICM may be 
slower. 

LOAD 

LR [RRl 

r------~---,----, 

I ' 1 8' I Ri. 

o 8 

L 

'58' Ri. 

o 8 

12 15 

[RX 1 

--r----~--T 

X2 I B2 I 

12 16 20 

The second operand is placed 
the first-operand location. 

31 

unchanged in 

CondiiiQn ~Qde: 
unchanged. 

'I he code remains 

Access (fetch, operand 2 of L only) 

An example of the use of lOAD is given in 
Appendix A. 

LOAD A DDRE SS 

LA [ RX] 

r---------T-----~--~r----,-------------_, 

, 111 ' Ri. 
~ ________ L-____ L_ __ ~~ __ ~. _____________ ~ 

o 8 12 16 20 31 

The address specified by the X2 , B2 , and D2 
fields is placed in bit positions 8-31 of 
the general register specified by the Ri. 
field. Bits 0-7 of the register are set to 
zeros. The address computation follows the 
rules for address arithmetic. 

No storage references for operands take 
place, and the address is not inspected for 
access exceptions. 

Condition ~Qde: 
unchanged. 

The code remains 

1. 

2. 

An example of the use of the LOAD 
ADDRESS instruction is given in 
Appendix A. 

The same general register may be 
specified by the Ri., X2 , and B2 
fields, except that general register 0 
can be specified only by the Ri. ¥ield. 
In this manner, it is possible to 
increment the low-order 211 bits of a 
general register, other than register 
0, by the contents of the D2 field of 
the instruction. The register to be 
incremented should be specified by Ri. 
and by either X2 (with B2 set to zero) 
or B2 (with X2 set to zer~. 

LOAD AND TEST 

LTR [ RR] 

, 12' 

o 8 12 15 

The second operand is placed unchanged in 
the first-operand location, and the sign 
and magnitude of the second operand, 
treated as a 32-bit signed binary integer, 
are indicated in the condition code. 

Chapter 7. General Instructions 7-21 



All combinations of register numbers 
specified by R~ and R3 are valid. When the 
register numbers are equal, only four bytes 
are transmitted. When the number specified 
by R~ is less than the number specified by 
R~, the register numbers wrap around from 
15 to o. 

LOAD NEGATIVE 

[RRl 

r------~----,----, 

, 11 ' I R~ , 
o 8 12 15 

The two's complement of 
of the second operand 
first-operand location. 
and result are treated 
binary integers. 

o Result is zero 

the 
is 
The 

absolute value 
placed in the 
seco nd opera nd 

as 32-bit signed 

1 Result is less than zero 
2 
3 

The operation complements positive numbers; 
negative numbers remain unchanged. The 
number zero remains unchanged. 

LOAD POSITIVE 

LPR r RR] 

.----_.---,-
, 10' I R,. R:oI 

I 

o 8 12 15 

The absolute value of the second operand is 
placed in the first-operand location. The 
second operand and the result are treated 
as 32-bit siqned binary integers. 

An overflow causes a program interruption 
when the fixed-point-overflow mask bit is 
one. 

o Result is zero 
1 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Fixed-Point Overflow 

Programming Note 

The operation complements negative numbers; 
positive numbers and zero remain unchanged. 
An overflow condition occurs when the 
maximum negative number is complemented; 
the number remains unchanged. 

MONITOR CALL 

[SI] 

r---------r---------r----,_------------~ 
I 'AF' Ia B~ 'L ________ ~ ________ ~ ____ L_ ____________ ~ 

o 8 16 20 31 

A program interruption is caused if the 
appropriate monitor-mask bit in control 
register 8 is one. 

The monitor-mask bits are in bit positions 
16- 3 1 of cont rol reg ister 8 , which 
correspond to monitor classes 0-15, 
respectively. 

Bit positions 12-15 in the 12 field contain 
a binary number specifying one of 16 
monitoring classes. When the moni tor-ma sit 
bit corresponding to the class specified by 
the 12 field is one, a monitor-event 
program interruption occurs. The contents 
of the 12 field are stored at location 149, 
with zeros stored at location 148. Bit 9 
of the program-interruption code is set to 
one. 

The first-operand address is not used to 
address data; instead, the address 
specified by the B,. and D,. fields forms the 
monitor code, which is placed in the word 
at location 156. Address computation 
follows the rules of address arithmetic; 
bits 0-7 are set to zeros. 

When the monitor-mask bit corresponding to 
the class specified by bits 12-15 of the 
instruction is zero, no interruption 
occurs, and the instruction is executed as 
a no-operation. 

Chapter 7. General Instructions 7-23 



location 0 to location 16,777,215. The 
first operand may wrap around from location 
16,777,215 to location o. 
When the operands overlap by more than one 
byte, the contents of the overlapped 
portion of the result field are 
unpredictable. 

Condition ~gg~: 
unchanged. 

The code 

Access (fetch, operand 
operand 1) 

Operation (if move-inverse 
not installed) 

remains 

2; store, 

feature is 

1. The contents of each byte moved remain 
unchanged. 

2. MOVE INVERSE is the only SS-format 
instruction for which the second­
operand address designates the 
rightmost, instead of the leftmost, 
byte of the second operand. 

MOVE LONG 

MVCL [RR) 

r------~--~----, 

tOE' I R20 R2 
L- I 

o 8 

The second 
first-operand 
overlapping of 
affect the 
first-operand 
rightmost byte 
first-operand 
padding bytes. 

12 15 

operand is placed in the 
locatio n, provided 

operand locations does not 
final contents of the 
location. The rema1n1ng 
positions, if any, of the 

location are filled with 

fields each specify an 
general registers and must 

even-numbered register; 
specification exception is 

The R20 and R2 
even-odd pair of 
designate an 
otherwise, a 
recognized. 

The location of the leftmost byte of the 
first operand and second operand is 
designated by bits 8-31 of the general 
registers specified by the R20 and R2 
fields, respectively. The number of bytes 
in the first-operand and second-operand 
locations is specified by bits 8-31 of 
general registers Rs.+1 and R2+1, 

respectively. Bit positions 0-7 of 
register R2+1 contain the padding byte. 
The contents of bit positions 0-7 of 
registers Rs., R2 , and Rs.+1 are ignored. 

Graphically, the contents of the registers 
just described are as follows: 

i I -. 

I11111111I First-Operand Address I 

o 8 31 

r---------r-------------------------, 
R2o+1 I11111111I First-Operand Length 

o 8 31 

I , --, 
R2 I11111111I Secon d-Opera nd Addressl 

I I 

0 8 31 

, 
R2+ 1 Pad Second-Opera nd Length I 

--' 
0 8 31 

The movement starts at the left end of both 
fields and proceeds to the right. The 
operation is ended when the number of bytes 
specified by bit positions 8-31 of register 
R2o+1 have been moved into the first-operand 
location. If the second operand is shorter 
than the first operand, the rema1n1ng 
rightmost bytes of the first-operand 
location are filled with the padding byte. 

As part of the execution of the 
instruction, the values of the two length 
fields are compared for the setting of the 
condition code, and a check is made for 
destructive overlap of the operands. 
Operands are said to overlap destructively 
when the first-operand location is used as 
a source after data has been moved into it, 
assuming the inspection for overlap is 
performed by the use of logical operand 
addresses. When the operands overlap 
destructively, no movement takes place, and 
condition code 3 is set. 

Operands do not overlap destructi vel y, and 
movement is performed, if the leftmost byte 
of the first operand does not coincide with 
any of the second-operand bytes 
participating in the operation other than 
the leftmost byte of the second operand. 
When an operand wraps around from location 
16,777,215 to location 0, operand bytes in 
locations up to and including 16,777,215 
are considered to be to the left of bytes 
in locations from 0 up. 

When the length specified by bit positions 
8-31 of register Rs.+1 is zero, no movement 
takes place, and condition code 0 or 1 is 
set to indicate the relative values of the 
lengths. 

Chapter 7. General Instructions 7-25 



~ 
Similarly, in the case of 
reconfiqurable storage, an 
addressing exception on a block 
does not necessar ily suppress 
processing of subsequent blocks 
which are addressable. 

b. The model may update the general 
registers only when an I/O 
interruption occurs or when a 
proqram interruption occurs which 
is required to nullify or 
suppress. Thus, if after a move 
into several blocks of the first 
operand, an addressing or 
protection exception occurs, the 
registers remain unchanged. 

4. When the first-operand length is zero, 
the operation consists in setting the 
condition code and setting the 
high-order bytes of registers R~ and 
R2 to zero. 

5. When the contents of the R~ and R2 
fields are the same, the operation 
proceeds the same way as when two 
distinct pairs of registers having the 
same contents are specified. 
Condition code 0 is set. 

6. The following is a detailed 
description of those cases in which 
movement takes place, that is, where 
destructive overlap does not exist. 
Depending on whether the second 
operand wraps around from location 
16,777,215 to location 0, movement 
takes place in the following cases: 

a. When the second operand does not 
wrap around, movement is performed 
if the leftmost byte of the first 
operand coincides with or is to 
the left of the leftmost byte of 
the second operand, or if the 
leftmost byte of the first operand 
is to the right of the rightmost 
second-operand byte participating 
in the operation. 

b. When the second operand wraps 
around, movement is performed if 
the leftmost byte of the first 
operand coincides with or is to 
the left of the leftmost byte of 
the second operand, ang if the 
leftmost byte of the first operand 
is to the right of the rightmost 
second-operand byte participating 
in the operation. 

The rightmost 
determined by 
first-operand 
lengths. 

second-operand byte is 
using the smaller of the 

and second-operand 

When the second-operand length is one 
or zero, destructive overlap cannot 

7. 

exist. 

Special precautions must be taken if 
KOVE LONG is made the target of 
EXECUTE. See the programminq note 
concerning interruptib le instructions 
under EXECUTE. 

8. Since the execution of KOVE LONG is 
interruptible, the instruction cannot 
be used for situations where the 
program must rely on uninterrupted 
execution of the instruction or on the 
interval timer not being updated 
during the execution of the 
instruction. Similarly, the program 
should normally not let the first 
operand of KOVE LONG include the 
location of the instruction since the 
new contents of the location may be 
interpreted for a resumption after an 
interruption, or the instruction. may 
be refetched without an interruption. 

9. Further progra mming notes concerning 
interruptible instructions are 
included in the section "Interruptible 
Instructions" in Cha pter 5, "Program 
Execution." 

KOVE NUKERICS 

KVN [SS] 

r -y---------r----,---/ /---. 
I 'D1' I L B~ D~ I B2 I D2 I 
I I /_--L----L--/----l 
o 8 16 20 32 36 47 

The rightmost four bits of each byte in the 
second operand are placed in the rightmost 
bit positions of the corresponding bytes in 
the first operand. The leftmost four bits 
of each byte in the first operand remain 
unchanged. 

Each operand is processed left to right. 
When the operands overlap, the result is 
obtained as if the operands were processed 
one byte at a time and each result byte 
were stored immediately after the necessary 
operand byte is fetched. 

ConditiQn ~Qde: 
unchanged. 

The 

Access (fetch, operand 
store, operand 1) 

code remains 

2; fetch and 

Chapter 7. General Instructions 7-27 



remain unchanged. 

Each operand is processed left to right. 
When the operands overlap, the result is 
obtained as if the operands were processed 
one byte at a time and each result byte 
were stored immediately after the necessary 
operand byte is fetched. 

Condition ~Qde: unchanged. The code remains 

Access (fetch, operand 2; fetch and 
store, operand 1) 

1. An example of the use of MOVE ZONES is 
given in Appendix A. 

2. MVZ moves the zoned portion of a 
decimal field in the zoned format. 
The zoned format is described in 
Chapter 8, "Decimal Instructions." 
The operands are not checked for valid 
sign and digit codes. 

3. Accesses to the first operand of MVZ 
consist in fetching the leftmost four 
bits of each byte in the first operand 
and subsequently storing the updated 
value of the byte. These fetch and 
store accesses to a particular byte do 
not necessarily occur one immediately 
after the other. Thus, this 
instruction cannot be safely used to 
update a location in storage if the 
possibility exists that another CPU or 
a channel may also be updating the 
location. An example of this effect 
is shown for the instruction OR (01) 
in the section "Multiprogramming and 
Multiprocessing Examples" in Appendix 
A. 

MULTIPLY 

MR (RR] 

[RX] 

r--------,r----y----~----~-----------_, 

'5CI B:a I L-______ ~L-__ ~ ____ _L ____ ~ ____________ _J 

o 8 12 16 20 31 

The second word of the first operand 
(multiplicand) is multiplied by the second 
operand (multiplier), and the doubleword 
product is placed at the first-operand 
location. 

The R~ field of the instruction specifies 
an even-odd pair of general registers and 
must designate an even-numbered register. 
When R~ is odd, a specification exception 
is recognized. 

Both the multiplicand and multiplier are 
treated as 32-bit signed binary integers. 
The multiplicand is ta ken f rom the 
odd-numbered register of the pair specified 
by the R~ field. The contents of the 
even-numbered register are ignored. The 
product is a 64-bit signed binary integer, 
which replaces the contents of the even-odd 
pair of general registers specified by the 
R~ field. An overflow cannot occur. 

The sign of the product is determined by 
the rules of algebra from the multiplier 
and multiplicand sign, except that a zero 
result is always positive. 

Congi tion ~Qde: 
unchanged. 

The code remains 

Access (fetch, opera nd 2 of M onl y) 
Specification 

1. An example of the use of MULTIPLY is 
given in Appendix A. 

2. The significant part 
usually occupies 62 
Only when two maximum 
are multiplied are 
product bits formed. 

of the product 
bits or fewer. 
negative numbers 

63 significant 

11 C I R~ Ra KULTIPLY HALFWORD 

o 8 12 15 

MH [ RX] 

r-------~ _, 
I 4C I I R~ X:a Ba D:a I 

, _J 

o 8 12 16 20 31 

Chapter 7. General Instructions 7-29 



PACK 

PACK 

o 

first-operand byte from storage and 
subsequently storing the updated 
value. These fetch and store accesses 
to a particular byte do not 
necessarily occur one immediately 
after the other. Thus, the 
instruction OR cannot be safely used 
to update a location in storage if the 
possibility exists that another CPU or 
a channel may also be updating the 
location. An example of this effect 
is shown in the section 
"Multiprogramming and Multiprocessing 
Examples" in Appendix A. 

[55] 

y--I 1----, 
B~ I D~ B2 D2 I 

I I __ ~ ____ L-~/~ 
8 12 16 20 32 36 47 

The format of the second operand is changed 
from zoned to packed, and the result is 
placed in the first-operand location. The 
zoned and packed formats are described in 
Chapter 8, "Decimal Instructions." 

The second operand is treated as having the 
zoned format. The numeric bits of each 
byte are treated as a digit. The zone bits 
are ignored, except the zone bits in the 
rightmost byte, which are treated as a 
sign. 

The sign and digits are moved unchanged to 
the first operand and are not checked for 
valid codes. The sign is placed in the 
rightmost four bit positions of the 
rightmost byte of the result field, and the 
digits are placed adjacent to the sign and 
to each other in the remainder of the 
result field. 

The result is obtained as if the operands 
were processed right to left. When 
necessary, the second operand is considered 
to be extended on the left with zeros. If 
the first operand is too short to contain 
all digits of the second operand, the 
remaining leftmost portion of the second 
operand is ignored. Access exceptions for 
the unused portion of the second operand 
mayor may not be indicated. 

When the operands overlap, the result is 
obtained as if each result byte were stored 
immediately after the necessary operand 
bytes are fetched. Two second-operand 
bytes are needed for each result byte, 
except for the rightmost byte of the result 
field, which requires only the rightmost 
second-operand byte. 

Condition ~Qde: 
unchanged. 

The code remains 

Access (fetch, 
operand 1) 

operand 2; store, 

1. An example of the use of PACK is qiven 
in Appendix A. 

2. The PACK instruction may be used to 
interchange the two hexadecimal digits 
in one byte by specifying a zero in 
the L~ and L2 fields and the same 
address for both ~perands. 

3. To remove the zone bits of all bytes 
of a field, including the riqhtmost 
byte, both operands must be extended 
on the right with a dummy byte, which 
subsequently is ignored in the result 
field. 

SET PROGUM MASK 

SPM rRR] 

i i 

'04' R~ I1111I 

o 8 12 15 

The contents of the general register 
specified by the R~ field are used to set 
the condition code and the program mask of 
the current PSi. Bits 12-15 of the 
instruction are ignored. 

Bits 2 and 3 of the register specified by 
the R~ field replace the condition code, 
and bits 4-7 replace the program mask. 
Bits 0, 1, and 8-31 of the register 
specified by the R~ field are ignored. 

OBit 2 is zero, and bit 3 is zero 
1 Bit 2 is zero, and bit 3 is one 
2 Bit 2 is one, and bit 3 is zero 
3 Bit 2 is one, and bit 3 is one 

None. 

Chapter 7. General Instructions 7-31 



..,.., 

L 

ignored. 

All 64 bits of the first operand 
participate in the shift. Bits shifted out 
of bit position 0 of the even-numbered 
register are not inspected and are lost. 
Zeros are supplied to the vacated register 
positions on the right. 

Co~diliQn £ode: 
unchanged. 

The code remains 

Specification 

SHIFT LEFT SINGLE 

SLA [RS] 

r 
I 'BB' 

o B 12 16 20 31 

The numeric part of the first operand is 
shifted left the number of bits specified 
by the second-operan d address. Bits 12-15 
of the instruction are ignored. 

The second-operand address is not used to 
address data; its low-order six bits 
indicate the number of bit positions to be 
shifted. The remainder of the address is 
ignored. 

The first operand is treated as a 32-bit 
signed binary integer. The sign of the 
first operand remains unchanged. All 31 
numeric bits of the operand participate in 
the left shift. Zeros are supplied to the 
vacated register positions on the right. 

If one or more bits unlike the sign bit are 
shifted out of bit position 1, an overflow 
occurs. The overflow causes a program 
interruption when the fixed-point-overflow 
mask bit is one. 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Fixed-Point Overflow 

1. An example of the use of SHIFT LEFT 
SINGLE is given in Appendix A. 

2. For numbers with an absolute value of 
less than 230 , a left shift of one bit 
position is equivalent to multiplying 
the number by two. 

3. Shift amounts from 31 to 63 cause the 
entire numeric part to be shifted out 
of the register, leaving a result of 
the maximum negative number or zero, 
depending on whether or not the 
initial contents were negative. 

Engineering !Qte 

An initial value of all ones with a shift 
amount of 32 or greater results in the 
maximum negative number and an overflow. 

SHIFT LEFT SINGLE LOGICAL 

SLL R~,D2 (B 2 ) [RS] 

, , --, 
'89' Rs. IIIIII B2 D2 I 

I I ----L -...I 

0 8 12 16 20 31 

The first operand is shifted left the 
number of bits specified by the 
second-operand address. Bits 12-15 of the 
instruction are ignored. 

The second-operand address is not used to 
address data; its low-order six bits 
indicate the number of bit positions to be 
shifted. The remainder of the address is 
ignored. 

All 32 bits of the first operand 
participate in the shift. Bits shifted out 
of bit position 0 are not inspected and are 
lost. Zeros are supplied to the vacated 
register positions on the right. 

Condition £Qde: 
unchanged. 

The 

Program Exce~tions: None. 

code remains 

Chapter 7. General Instructions 7-33 



~ 

1. A right shift of one bit position is 
eguivalent to division by 2 with 
rounding downward. When an even 
number is shifted right one position, 
the result is equivalent to dividing 
the number by 2. When an odd number 
is shifted right one position, the 
result is eguivalent to dividing the 
.us next lower number by 2. For 
example, +5 shifted right by one bit 
position yields +2, whereas -5 yields 
-3. 

2. Shift amounts from 31 to 63 cause the 
entire numeric part to be shifted out 
of the register, leaving a result of 
-1 or zero, depending on whether or 
not the initial contents were 
negative. 

SRIFT RIGRT SINGLE LOGICAL 

SRL RlI D2 (B2 ) [RS 1 

r--- • • 
I '88' R!. 1////1 B2 D2 
'---- I I 

0 8 12 16 20 31 

The first operand is shifted right the 
number of bits specified by the 
second-operand address. Bits 12-15 of the 
instruction are ignored. 

The second-operand address is not used to 
address data; its low-order six bits 
indicate the number of bit positions to be 
shifted. The remainder of the address is 
ignored. 

All 32 bits of the first operand 
participate in the shift. Bits shifted out 
of bit position 31 are not inspected and 
are lost. Zeros are supplied to the 
vacated register positions on the left. 

Condi!,iog £.Qde: 
unchanged. 

The code remains 

STORE 

ST [ RX] 

-, 
, 50' I 

L_ ______ ~L_ __ ~ ____ _L_.---L ____________ ~ 

o 8 12 16 20 31 

The first operand is 
second-operand location. 

stored at the 

The 32 bits in the 
placed unchanged at 
location. 

general register are 
the second-operand 

The code remains 

Access (store, operand 2) 

STaR E CHAR AC TER 

STC [RX] 

r--------,r----,-----r----~-----------_, 

142' I L-______ ~L-__ ~ ____ -L ____ ~ ____________ ~ 

o 8 12 16 20 31 

Bits 24-31 of the general register 
designated by the R!. field are placed 
unchanged at the second-operand location. 
The second operand is one byte in length. 

Condi tiog ~.Qde: 
unchanged. 

The code 

Access (store, operand 2) 

STORE CRARACTERS UNDER MASK 

STCM [ RS] 

remains 

r---------r----,-----r----,------------_, 
IBE' I L-______ ~~ __ ~ ____ ~ ____ L-___________~ 

o 8 12 16 20 31 

Bytes selected from the first operand under 
control of a mask are placed in contiguous 
byte locations beginning at the 
second-operand address. 

The contents of the M3 field are used as a 

Chapter 7. General Instructions 7-35 



L 

involving human responses, the 
high-order clock word may provide 
sufficient resolution. 

2. Condition code 0 normally indicates 
that the clock has been set by the 
control program. Accordingly, the 
value may be used in elapsed-time 
measurements and as a valid 
time-of-day and calendar indication. 
Condition code 1 indicates that the 
clock value is the elapsed time since 
the power for the clock was turned on. 
In this case the value may be used in 
elapsed-time measurements but is not a 
valid time-of-day indication. 
Condition codes 2 and 3 mean that the 
value provided by STORE CLOCK cannot 
be used for time measurement or 
indication. 

3. Condition code 3 indicates that the 
clock is either in the stopped state 
or not-operational state. These two 
states can normally te distinguished 
since an all-zero value is stored when 
in the not-operational state. 

STORE HALFWORD 

STH [RX] 

Rt. Ba 
J 

o 8 12 16 20 31 

Bits 16-31 of the general register 
designated by the Rt. field are placed 
unchanged at the second-operand location. 
The second operand is two bytes in length. 

Condi~i2D ~2de: 
unchanged. 

The code 

Access (store, operand 2) 

STORE MULTIPLE 

STM Rt., R3 , D2 (B 2) [BS J 

~ ~ 

, 90' I R1 R3 B2 I D2 
----L-

0 8 12 16 20 

The contents of the set of 
registers starting with the 
specified by R1 and ending 

remains 

31 

general 
register 

with the 

reqister specified by R:3 are placed in the 
storage area beginning at the location 
designated by the second-operand address 
and continuing through as many locations as 
needed. 

The general registers are stored in the 
ascending order of register numbers, 
starting with the register specified by Rt. 
and continuing up to and includi ng the 
register specified by R:3, with register 0 
following register 15. 

Condition ~ode: 
unchanqed. 

The code 

Access (store, operand 2) 

programming !ote 

remains 

An example of the use of STORE MULTIPLE is 
given in Appendix A. 

SUBTRACT 

SR Rt.,Ra [RR] 

• 1B' 

o 8 12 15 

S Rt.,Da(Xa,Ba) [ RX] 

r-------~r----,-----r----~-----------_, 

• 5B' Xa Da I L-______ ~L-__ ~ ____ -L ____ ~ ____________ ~ 

o 8 12 16 20 31 

The second operand is subtracted from the 
first operand, and the difference is placed 
in the first-operand location. The 
operands and the difference are treated as 
32-bit signed binary integers. 

An overflow causes a program interruption 
when the fixed-point-overflow mask bit is 
one. 

Resulting Condition ~ode: 

o 
1 
2 
3 

Difference is zero 
Difference is less than zero 
Difference is greater than zero 
Overflow 

Access (fetch, operand 2 of S onl y) 

Chapter 7. General Instructions 7-37 



SUPER VI SOR CALL 

SVC I [Ril ] 

'OA' I 

o 8 15 

The instruction causes 
interruption, with the 
instruction providing 
code. 

a 
I 

the 

supervisor-call 
field of the 

interruption 

Bits 8-15 of the instruction, with eight 
high-order zeros appended, are placed in 
the supervisor-call interruption code that 
is stored in the course of the 
interruption. See "Supervisor-Call Inter­
ruption" in Chapter 6, "Interruptions." 

A serialization and a checkpoint­
synchronization function is performed. CPU 
operation is delayed until all previous 
storage accesses by this CPU to storage 
have been completed, as observed by 
channels and other CPUs. All previous 
checkpoints, if any, are canceled, and the 
results of all previous stores are 
released, if held exclusive, to permit 
channels and other CPUs to access the 
results. No subsequent instructions or 
their operands are accessed by this CPU 
until the execution of this instruction is 
completed. 

Condition Code: 
andls-savedas 
condi t ion code 
sUpervisor-call 

TEST AND SET 

TS 

The code remains unchanged 
part of the old PSW. A new 
is loaded as part of the 
interruption. 

[S] 

i I 

'93' 1////////1 B2 

o 8 16 20 31 

The leftmost bit (bit position 0) of the 
byte located at the second-operand address 
is used to set the condition code, and then 
the byte is set to all ones. Bits 8-15 of 
the instruction are ignored. 

The byte in storage is set to all ones as 
it is fetched for the testing of bit 
position O. No access by another CPU to 
this location is permitted between the 
moment of fetching and the moment of 

storing all ones. 

A serialization function is perfo~ed 
before the byte is fetched and again aft~r 
the storing of all ones. CPU operation is 
delayed until all previous accesses by thi$ 
CPU to storage have been completed, as 
observed by channels and other CPUs, and 
then the byte is fetched. No subseguent 
instructions or their operands are accessed 
by this CPU until the all-ones value has 
been placed in storage, as observed by 
channels and other CPUs. 

Resulting Condition ~: 

0 Leftmost bit of byte specified was 
zero 
Leftmost bit of byte specified was 
one 

2 
3 

Program ~!ioD..§: 

Access (fetch and store, operand 2) 

1. TEST AND SET may be used fo~ 
controlled sharing of a common storage 
area by programs operating on 
different CPUs. This instruction, 
which is provided primarily fqr 
compatibility with proqrams written 
for System/360, does not provide 
suitable functions for sharing between 
programs on a single CPU or for 
programs that may be interrupted. The 
instructions CO~PARE AND SWAP and 
CO~PARE DOUBLE AND SWAP provide these 
functions. See the description Of 
these instructions and the associated 
programming notes for details. 

2. It should be noted that TEST 
does not interlock against 
accesses by channels. 

AND SET 
storage 

TEST UNDER ~A SK 

r Sl] 

r-------~~-------~r_--_T-------------, 

I 

o 8 16 20 31 

A mask is used to select bits of the first 
operand, and the result is indicated in the 
condition code. 

Chapter 7. General Instructions 7-39 



L 

is added to the initial second-operand 
address to obtain the address of a 
function byte, the list may contain 
256 bytes. In cases where it is known 
that not all eight-bit argument values 
will occur, it is possible to reduce 
the size of the list. 

6. significant performance degradation is 
possible when, with DAT on, the 
second-operand address of TRANSLATE 
designates a location that is less 
than 256 bytes to the left of a 
2,048-byte boundary. This is because 
the machine may perform a trial 
execution of the instruction to 
determine if the second operand 
actually crosses the boundary. 

TRANSLATE AND TEST 

TRT [S5] 

r------~--------T- ~/ ~--~--/---, 
, DD' I L Bs. I Ds. Ba Da I 

L---- ~/ __ 4-__ -L __ /~ 

o 8 16 20 32 36 47 

The bytes of the first operand are used as 
eight-bit arguments to select function 
bytes from a list designated by the 
second-operand address. The first nonzero 
function byte is inserted in general 
register 2, and the related argument 
address in general register 1. 

The L field designates the length of only 
the first operand. 

The bytes of the first operand are selected 
one by one for translation, proceeding from 
left to right. The first operand remains 
unchanged in storage. Fetching of the 
function byte from the list is performed as 
in TRANSLATE. The function byte retrieved 
from the list is inspected for a value of 
zero. 

When the function byte is zero, the 
operation proceeds with the next byte of 
the first operand. When the first-operand 
field is exhausted before a nonzero 
function byte is encountered, the operation 
is completed by setting condition code O. 
The contents of general registers 1 and 2 
remain unchanged. 

When the function byte is nonzero, the 
operation is completed by inserting the 
function byte in general register 2 and the 
related arqument address in general 
register 1. This address points to the 
argument byte last translated. The 
function byte replaces bits 24-31 of 
general register 2. The address replaces 

bits 8-31 of general register 1. Bits 0-7 
of general register 1 and bits 0-23 of 
general register 2 remain unchanged. 

When the function byte is nonzero, either 
condition code 1 or 2 is set, depending on 
whether the argument byte is the rightmost 
byte of the first operand. condition code 
1 is set if one or more argument bytes 
remain to be translated. Condition code 2 
is set if no more argument bytes remain. 

Access exceptions are recognized only for 
those bytes in the second operand which are 
actually required. Access exceptions are 
not recognized for those bytes in the first 
operand which are to the right of the first 
byte for which a nonzero function byte is 
obtained. 

o 
1 

2 

3 

All function bytes zero 
Nonzero function byte; first­
operand field not exhausted 
Nonzero function byte; first­
operand field exhausted 

~roqra~ Exceptions: 

Access (fetch, operands 1 and 2) 

1. An example of the use of TRANSLATE AND 
TEST is given in Appendix A. 

2. The instruction TRANSLATE AND TEST may 
be used to scan the first operand for 
characters with special meaning. The 
second operand, or list, is set up 
with all-zero function bytes for those 
characters to be skipped over and with 
nonzero function bytes for the 
characters to be detected. 

UNPACK 

UNPK Ds.CLs.,Bs.) ,DaCLa,Ba) r 5S] 

-.- / /---, 
'F3 ' I L'L La B'L Ds. Ba Da I 

I /~ 

0 8 12 16 20 32 36 47 

The format of the second operand is changed 
from packed to zoned, and the result is 
placed in the first-operand location. The 
packed and zoned formats are described in 
Chapter 8, "Decimal Instructions." 

Chapter 7. General Instructions 7-41 



Decimal-Number Formats •••••••••••••••••••••••••••••••••••••••••• 8-1 
Zoned Format •••••••••••••••••••••••••••••••••••••••••••••••••• 8-1 
Packed Format ••••••••••••••••••••••••••••••••••••••••••••••••• 8-1 
Decimal Codes ••••••••••••••••••••••••••••••••••••••••••••••••• 8-2 

Decimal Operations •••••••••••••••••••••••••••••••••••••••••••••• 8-2 
Decimal-Arithmetic Instructions ••••••••••••••••••••••••••••••• 8-2 
Editing Instruct ions •••••••••.•••••••••••••••••••• , •••••••••••• 8-3 
Execution of Decimal Instructions ••••••••••••••••••••••••••••• 8-3 
Other Instructions for Decimal Operands •••.•••••••••••••••••••• 8-3 

Instructions •••••••••••••••••••••••••••••••••••••••••••••••••••• 8-3 
ADD DECIMAl •••••••••••••••••••••••••.••••••••••••••••••••••••• 8-5 
COMPARE DECIMAL ••••••••••••••••••••••••••••••••••••••••••••••• 8-5 
DIVIDE DECIMAL •••••••••••••••••••••••••••••••••••••••••••••••• 8-5 
EDIT •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 8-6 
EDIT AND MARK ••••••••••••••••••••••••••••••••••••••••••••••••• 8-10 
MULTIPLY DECIMAL •••••••••••.•••••••••••••••••••••••••••••••••• 8-10 
SHIFT AND ROUND DECIMAL ••••••••••••••••••••••••••••••••••••••• 8-11 
SUBTRACT DECIMAL •••••••••••••••••••••••••••••••••••••••••••••• 8-12 
ZERO AND ADD •••••••••••••••••••••••••••••••••••••••••••••••••• 8-12 

The decimal instructions of this chapter 
perform arithmetic and editing operations 
on decimal data. Additional operations on 
decimal data are provided by several of the 
instructions in Chapter 7, "General 
Instructions." Decimal operands always 
reside in storage, and all instructions 
operating on decimal data use the SS 
instruction format. 

Decimal numbers may be in either the zoned 
or packed format. Both decimal-number 
formats have from one to 16 bytes, each 
byte consisting of a pair of four-bit 
codes. The four- bi t codes include 
decimal-digit codes, sign codes, and a zone 
code. Decimal operands occupy storage 
fields that start on a byte boundary. 

ZONED FOFMAT 

r---.---,----T--~.-/~--~--. • 
Z N Z N I Z N I Z/S I N 

L----L---.L---.L-----1-/ ----L-__ -'-__ --' 

In the zoned format, the rightmost four 
bits of a byte are called the numeric bits 
(N) and normally consist of a code 
representing a decimal digit. The leftmost 
four bits of a byte are called the zone 

bits (Z), except for the righ tmost byte of 
a decimal operand, where these bits may be 
treated either as a zone or as a sign (S). 

Decimal digits in the zoned format may be 
part of a larger character set, which 
includes also alphabetic and special 
characters. The zoned format is, 
therefore, suitable for input, editing, and 
output of numeric data in human-readable 
form. There are no decimal-arithmetic 
instructions which operate directly on 
decimal numbers in the zoned format; such 
numbers must first be converted to the 
packed format. 

PACKED FORMAT 

r---~--~---r---,~/-'--~r---~--'---, 
D D D D D D D S I 
~ __ L-__ L-__ L-__ L-/~ __ ~ __ ~~~~~ 

In the packed format, each byte contains 
two decimal digits (D), except for the 
righ tmost byte, which conta ins a sign to 
the right of a decimal digit. Decimal 
arithmetic is performed with operands in 
the packed format and generates results in 
the packed format. 

For all decimal instructions in this 
chapter other than EDIT and EDIT AND MARK, 
both operands are in the packed forma t. 

Chapter 8. Decimal Instructions 8-1 



DECIMAL CODES 

The decimal digits 0-9 have the binary 
encoding 0000-1001. 

The preferred sign codes are 1100 for 
and 1101 for minus. These are the 
codes generated for the results of 
decimal-arithmetic instructions and 
CONVERT TO DECIMAL instruction. 

plus 
sign 
the 
the 

Alternate sign codes are also recognized as 
valid when appearing in the sign position: 
1010, 1110, and 1111 are alternate codes 
for plus, and 1011 is an alternate code for 
minus. Alternate sign codes are accepted 
for any decimal operand but are never 
generated or propagated in the signed 
result of a decimal-arithmetic instruction 
or CONVERT TO DECIMAL, even when an operand 
remains otherwise unchanged, such as when 
adding zero to a number. An alternate sign 
code is, however, left unchanged by the 
instructions MOVE NUMERICS, MOVE WITH 
OFFSET, MOVE ZONES, PACK, and UNPACK. 

When an invalid code is detected, a data 
exception is recognized. For the 
decimal-arithmetic instructions, the action 
taken for a data exception depends on 
whether a sign code is invalid. When a 
sign code is invalid, the operation is 
suppressed regardless of whether any other 
condition causing an exception exists. 
When no sign code is invalid, the operation 
is terminated. 

For the editing instructions EDIT and EDIT 
AND MARK, an invalid sign code is not 
recognized. The operation is terminated 
for a data exception due to an invalid 
digit code. No validity checking is 
performed by the instructions MOVE 
NUMERICS, MOVE WITH OFFSET, MOVE ZONES, 
PACK, and UNPACK. 

The zone code 1111 appears in the left four 
bit positions of each byte representing a 
decimal digit in zoned-format results. 
Zoned-format results are produced by the 
instructions EDIT, EDIT AND MARK, and 
UNPACK, except that the left four bit 
positions of the rightmost byte produced by 
UNPACK contain whatever code exists in the 
sign position of the packed operand. The 
right four bit positions of each byte in 
the zoned format contain a decimal-digit 
code. 

The meaning of the decimal codes is 
summarized in the figure "Summary of Digit 
and siqn Codes." 

8-2 System/370 principles of Operation 

1. SincE~ 1111 is both the zone code and 
an alternate code for plus, unsigned 
(positive) decimal numbers may be 
represented in the zoned format with 
1111 codes in all byte positions. The 
result of the PACK instruction 
converting such a number to the packed 
format may be used directly as an 
operand for decimal instructions. 

2. The use of the alternate minus code 
1011 is not recommended. 

Recognized As I 
-i 

Code Digit Sign I 
-i 

0000 0 Invalid 
0001 1 Inva lid 
0010 2 Invalid 
0011 3 Invalid 
0100 4 Invalid 
0101 5 Invalid 
0110 6 Invalid 
0111 7 Invalid 
1000 8 Invalid 
1001 9 Invalid 
1010 Invalid Plus 
1011 Invalid Minus 
1100 Invalid Plus (preferred) 
1101 Invalid Minus (preferred) 
1110 Invalid Plus 
1111 Invalid Plus (zone) 

Summary of Digit and Sign Codes 

The decimal instructions in this chapter 
consist of two classes, the 
decimal-arithmetic instructions and the 
editing instructions. 

DECIMAL-ARITHMETIC INSTRUCTIONS 

The decimal-arithmetic instructions perform 
addition, subtraction, multiplication, 
division, comparison, and shifting. 

Operands of the decimal-arithmetic 
instructions are in the packed format and 

J 

J 

are treated as signed decimal integers. A .J" 
decimal integer is represented in true form 
as an absolute value with a separate plus 
or minus sign. It contains an odd number 



of decimal digits, from one to 31, and the 
sign; this corresponds to an operand length 
of one to 16 bytes. 

A decimal zero normally has a plus sign, 
but multiplication, division, and overflow 
may produce a zero value with a minus sign. 
Such a negative zero is a valid operand and 
is treated as equal to a positive zero by 
the COMPARE DECIMAL instruction. 

The lengths of the two operands specified 
in the instruction need not be the same. 
If necessary, the shorter operand is 
considered to be extended with zeros to the 
left of the high-order digit. Results, 
however, cannot exceed the first-operand 
length as specified in the instruction. 

when a carry or some high-order nonzero 
digits of the result are lost because the 
first-operand field is too short, the 
result is obtained by ignoring the overflow 
information, condition code 3 is set, and, 
if the decimal-overflow mask bit is one, a 
program interruption for decimal overflow 
occurs. The operand lengths alone are not 
an indication of overflow; significant 
digits must have been lost during the 
operation. 

The operands of decimal-arithmetic 
instructions should not overlap at all or 
should have coincident rightmost bytes. In 
ZERO AND ADD, the operands may also overlap 
in such a manner that the rightmost byte of 
the first operand (which becomes the 
result) is to the right of the rightmost 
byte of the second operand. For these 
cases of proper overlap, the result is 
obtained as if operands were processed 
right to left. Because the codes for 
digits and signs are verified during the 
performance of the arithmetic, improperly 
overlapping operands are recognized as data 
exceptions. 

The same decimal field in storage may be 
specified for both operands of the 
instructions ADD DECIMAL, COMPARE DECIMAL, 
DIVIDE DECIMAL, MULTIPLY DECIMAL, and 
SUBTRACT DECIMAL. Thus, a decimal number 
may be added to itself, compared to itself, 
etc. SUBTRACT DECIMAL may te used to set a 
decimal field in storage to zero. 

EDITING INSTRUCTIONS 

The editing instructions are EDIT and EDIT 
AND MARK. For these instructions, only one 
operand (the pattern) has an explicitly 

specified length. The other operand (the 
source) is considered to have as many 
digits as necessary for the completion of 
the operation. 

Overlapping operands for the editing 
instructions yield unpredictable results. 

EXECUTION OF DECIMAL INSTRUCTIONS 

During the execution of a decimal 
instruction, all bytes of the operands are 
not necessarily accessed concurrently, and 
the fetch and store accesses to a single 
location do not necessarily occur one 
immediately after the other. Furthermore, 
for decimal instructions, intermediate 
values may be placed in the result field 
that may differ from the original operand 
and final result values. Thus, in a 
multiprocessing system, an instruction such 
as ADD DECIMAL cannot be safely used to 
update a shared storage location when the 
possibility exists that another CPU may 
also be updating that location. 

OTHER INSTRUCTIONS FOR DECIMAL OPERANDS 

In addition to the decimal instructions in 
this chapter, the instructions MOVE 
NOMEFICS and MOVE ZONES are provided for 
operating on data in the zoned format. Two 
instructions are provided for converting 
data between the zoned and packed formats: 
the PACK instruction transforms zoned data 
into packed data, and UNPACK performs the 
reverse transformation. The MOVE WITH 
OFFSET instruction operates on packed data. 
Two instructions are provided for 
conversion between the packed-decimal and 
binary formats. The CONVERT TO BINARY 
instruction converts packed decimal to 
binary, and CONVERT TO DECIMAL converts 
binary to packed decimal. These seven 
instructions are not considered to be 
decimal instructions and are described in 
Chapter 7, "General Instructions." The 
editing instructions in this chapter may 
also be used to change data from the packed 
to the zoned format. 

INSTRUCTIONS 

The decimal instructions and their 
mnemonics, formats, and operation codes are 
listed in the figure "Summary of Decimal 
Instructions." The figure also indicates 
when the condition code is set and the 
exceptional conditions in operand 
designations, data, or results that cause a 

Chapter 8. Decimal Instructions 8-3 



program interruption. 

]Qig: In the detailed descriptions of the 
individual instructions, the mnemonic and 
the symbolic operand designation for the 

i ~ 
IMne- I 
I monicl 
I I 
lAP ISS 
ICP ISS 
IDP ISS 
I ED ISS 
I EDMK ISS 
I I 

assembler language are shown with each 
instruction. For ADD DECIMAL, for example, 
AP is the mnemonic and D~ (L~,B~) ,D 2 (L2 ,B2 ) 

the operand designation. 

Characteristics 
i 

C A ID DF 
C A ID 

A SPID DK 
C A ID 
C A ID 

I 
IMULTIPLY DECIMAL STIFC IMP ISS A SPID 
ISHIFT AND ROUND DECIMAL STIFO I SRP ISS C A ID DF 
ISUBTRACT DECIMAL STIFB ISP ISS C A ID DF 
IZERO AND ADD STIF8 IZAP ISS C A ID DF 
~ 
1!lli~natiQ!!: 
I 
I A Access exceptions 
I C Condition code is set 
I D Data exception 
I DF Decimal-overflo. exception 
I DK Decimal-divide exception 
I n PER general-register-alteration event 
I SP specification exception 
I Ss SS instruction format 
I ST PER storage-alteration event 

SUlllmary of Decimal Instructions 

8-4 System/370 principles of Operation 



ADD DECIMAL 

AP [SS] 

/-~---r--/---, 
'FA' B~ D~ B2 Da I 

L-_____ ~ __ ~ ____ ~ __ _L __ / /~ 

o 8 12 16 20 32 36 47 

The second operand is added to the first 
operand, and the resulting sum is placed in 
the first-operand location. The operands 
and result are in the packed format. 

Addit ion is algebraic, taking into account 
the signs and all digits of both operands. 
All sign and digit codes are checked for 
validity. 

If the first operand is too short to 
contain all significant digits of the sum, 
decimal overflow occurs. The operation is 
completed. The result is obtained by 
ignoring the overflow information, and 
condition code 3 is set. If the 
decimal-overflow mask is one, a program 
interruption for decimal overflow takes 
place. 

The sign of the sum is determined by the 
rules of algebra. When the operation is 
completed without an overflow, a zero sum 
has a positive sign. When high-order 
digits are lost because of an overflow, a 
zero result may be either positive or 
negative, as determined by what the sign of 
the correct sum would have been. 

o 
1 
2 
3 

Sum is zero 
Sum is less than zero 
Sum is qreater than zero 
Overflow 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 
Decimal Overflow 

An example of the use of ADD DECIMAL is 
given in Appendix A. 

COMPARE DECIKAL 

CP r SS] 

/--r----..-/---, 
, F9' B~ D~ Ba Da I 

/ /~ 

o 8 12 16 20 32 36 47 

The first operand is 
second operand, and the 
in the condition code. 
the packed format. 

compared with the 
result is indicated 
The operands are in 

Comparison is algebraic and follows the 
procedure for decimal subtraction, except 
that both operands remain unchanged. When 
the difference is zero, the operands are 
equal. When a nonzero difference is 
positive or negative, the first operand is 
high or low, respectively. 

Overflow cannot occur because the 
difference is discarded. 

All sign and digit codes are checked for 
validity. 

Resulting Co~~ition Code: 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Access (fetch, operands 1 and 2) 
Data 

Programming Notes 

1. An example of the use of COMPARE 
DECIMAL is given in Appendix A. 

2. The comparison operation does not 
distinguish between valid sign codes. 
A valid plus or minus sign is 
equivalent to any other valid plus or 
minus sign, respectively. 

DIVIDE DECIMAL 

DP [ S5] 

r-------y----,---~r----r--/--~,---~ /---, 
'FD' I L~ La B~ D1 I Ba Da I 

I /--~I-----L __ /~ 
o 8 12 16 20 32 36 47 

Chapter 8. Decimal Instructions 8-5 



The first operand (the dividend) is divided 
by the second operand (the divisor). The 
resulting quotient and remainder are placed 
in the first-operand location. The 
operands and result are in the packed 
format. 

The quotient is placed leftmost in the 
first-operand location. The number of 
bytes in the quotient is equal to the 
difference between the dividend and divisor 
lengths (l1. - La). The remainder is placed 
rightmost in the first-operand location and 
has a length equal to the divisor length. 
Together, the quotient and remainder occupy 
the entire first operand; therefore, the 
address of the quotient is the address of 
the first operand. 

The divisor length cannot exceed 15 digits 
and sign (La not greater than seven) and 
must be less than the dividend length (La 
less than L1.); otherwise, a specification 
exception is recognized. The operation is 
suppressed, and a program interruption 
occurs. 

The dividend, divisot, quotient, and 
remainder are all signed decimal integers, 
right-aligned in their fields. All sign 
and digit codes of the dividend and divisor 
are checked for validity. 

The sign of the quotient is determined by 
the rules of algebra from the dividend and 
divisor signs. The sign of the remainder 
has the same value as the dividend sign. 
These rules hold even when the quotient or 
remainder is zero. 

Overflow cannot occur. If the divisor is 
zero or the quotient is too large to be 
represented by the number of digits 
allowed, a decimal-divide exception is 
recognized. The operation is suppressed, 
and a program interruption occurs. The 
operands remain unchanged in storage. The 
decimal-divide exception is indicated only 
if the sign codes of both the dividend and 
divisor are valid, and only if the digit or 
digits used in establishing the exception 
are valid. 

£~nditiQ~ £ode: 
unchanqed. 

The code remains 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 
Decimal Divide 
Specification 

8-6 System/370 principles of Operation 

1. An example of the use of 
DECIMAL is given in Appendix A. 

DIVIDE J 
2. 

3. 

4. 

EDIT 

ED 

The dividend cannot exceed 31 digits 
and sign. Since the remainder cannot 
be shorter than one digit and sign, 
the quotient cannot exceed 29 digits 
and sign. 

The condition for a decimal-divide 
exception can be determined by a trial 
subtraction. The leftmost digit of 
the divisor is aligned one digit to 
the right of the leftmost dividend 
diqit. When the divisor, so aligned, 
is less than or equal to the dividend, 
a divide exception is indicated. 

Provided a data exception 
exist, a decimal-divide 
occurs when the leftmost 
digit is not zero. 

D1. (L,B1.) ,Da (Ba) [SS] 

~/ 

does not 
exception 
di vidend 

/--. 
'DE' L B1. I D1. Ba Da I 

/- /--J 
o 8 16 20 32 36 47 

The second operand (the source), which 
normally contains one or more decimal 
numbers in the packed format, is changed to 
the zoned format and modified under the 
control of the first operand (the pattern). 
The edited result replaces the first 
operand. 

The length field specifies the length of 
the first operand, which may contain bytes 
of any val ue. 

The length of the source is determined by 
the operation according to the contents of 
the pattern. The source has the packed 
format. The leftmost four bits of each 
source byte must specify a decimal digit 
code (0000-1001); a sign code (1010-1111) 
is recognized as a data exception. The 
rightmost four bits may specify either a 
sign or a decimal digit. Access and data 
exceptions are recognized only for those 
bytes in the second operand which are 
actually required. 

The result is obtained as if both operands 

J 

were processed left to right one byte at a J .. 
time. overlapping pattern and source 
fields give unpredictable results. 



During the editinq process, 
the pattern is affected in 
ways: 

each byte of 
one of three 

1. It is left unchanged. 

2. It is replaced by a source digit 
expanded to the zoned format. 

3. It is replaced by the first byte in 
the pattern, called the fill byte. 

Which of the three actions takes place is 
dete~mined by one or more of the following: 
the type of the pattern byte, the state of 
the significance indicator, and whether the 
source digit examined is zero. 

g~tt~~n ]yte§: There are four types of 
pattern bytes: digit selector, 
significance starter, field separator, and 
message byte. Their coding is as follows: 

r-
I Name Code I 
~ ----------------;---------~ 
I Diqit selector 
I Significance starter 
I Field separator 
I Message byte 

0010 0000 I 
0010 0001 I 
0010 0010 I 
Any other I 

The detection of either a digit selector or 
a significance starter in the pattern 
causes an examination to be made of the 
significance indicator and of a source 
digit. As a result, eit her the expanded 
source digit or the fill byte, as 
appropriate, is selected to replace the 
patte~n byte. Additionally, encountering a 
diqit selector or a significance starter 
may cause the significance indicator to be 
changed. 

The field separator identifies individual 
fields in a multiple-field editing 
operation. It is always replaced in the 
result by the fill byte, and the 
significance indicator is always off after 
the field separator is encountered. 

Message bytes in the pattern are either 
replaced by the fill byte or remain 
unchanged in the result, depending on the 
state of the significance indicator. They 
may thus be used for padding, punctuation, 
or text in the significant portion of a 
field or for the insertion of 
sign-dependent symbols. 

Fill ~Yig: The first byte of the pattern 
is used as the fill byte. The fill byte 
can have any code and may concurrently 
specify a control function. If this byte 
is a digit selector or significance 
starter, the indi cated editing action is 
taken after the code has been assigned to 
the fill byte. 

Sou~~ Qigi1~: Each time a digit selector 
or significance starter is encountered in 
the pattern, a new source digit is examined 
for placement in the pattern field. Either 
the source digit is disregarded, or it is 
expanded to the zoned format, by appending 
the zone code 1111 on the left, and stored 
in place of the pattern byte. 

The source digits are selected one byte at 
a time, and a source byte is fetched for 
inspection only once during an editinq 
operation. Each source digit is examined 
only once for a zero value. The leftmost 
four bits of each byte are examined first, 
and the rightmost four bits, when they 
represent a decimal-digit code, remain 
available for the next pattern byte that 
calls for a digit examination. When the 
leftmost four bits contain an invalid digit 
code, the operation is terminated. 

At the time the left digit of a source byte 
is examined, the rightmost four bits are 
checked for the existence of a siqn code. 
When a sign code is encountered in the 
rightmost four bit positions, these bits 
are not treated as a decimal-digit code, 
and a new source byte is fetched from 
storage when the next pattern byte calls 
for a source-digit examination. 

When the pattern contains no digit selector 
or significance starter, no source bytes 
are fetched and examined. 

Signifi~An£~ Indi~1QE: The siqnificance 
indicator is turned on or off to indicate 
the significance or nonsiqnificance, 
respectively, of subsequent source digits 
or message bytes. Significant source 
digits replace their correspondinq digit 
selectors or significance starters in the 
result. Significant message bytes remain 
unchanged in the result. 

The significance indicator, by its on or 
off state, indicates also the neqative or 
positive value, respectively, of a 
completed source field and is used as one 
factor in the setting of the condition 
code. 

The indicator is set to off at the start of 
the editing operation, after a field 
separator is encountered, or after a source 
byte is examined that has a plus code in 
the rightmost four bit positions. 

The indicator is set to on when a 
significance starter is encountered whose 
source digit is a valid decimal digit, or 
when a digit selector is encountered whose 
source digit is a nonzero decimal digit, 
provided that in both instances the source 
byte does not have a plus code in the 
rightmost four bit positions. 

In all other situations, the indicator is 

Chapter 8. Decimal Instructions 8-7 



not changed. A minus sign code has no 
effect on the significance indicator. 

]g§gli ~ies: The result of an editing 
operation replaces and is equal in length 
to the pattern. It is composed of pattern 
bytes, fill bytes, and zoned source digits. 

If the pattern byte is a message byte and 
the significance indicator is on, the 
message byte remains unchanged in the 
result. If the pattern byte is a field 
separator or if the significance indicator 
is off when a message byte is encountered 
in the pattern, the fill byte replaces the 
pattern byte in the result. 

If the digit selector or significance 
starter is encountered in the pattern with 
the significance indicator off and the 
source digit zero, the source digit is 
considered nonsignificant, and the fill 
byte replaces the pattern byte. If the 
digit selector or significance starter is 
encountered with either the significance 
indicator on or with a nonzero decimal 
source digit, the source digit is 
considered significant, is changed to the 
zoned format, and replaces the pattern byte 
in the result. 

Condition Code: The sign and magnitude of 
the~ast-field edited are used to set the 
condition code. The term "last field" 
refers to those source bytes in the second 
operand selected by digit selectors or 
significance starters after the last field 
separator. When the pattern contains no 
field separator, there is only one field, 
which is considered to be the last field. 
The last field is considered to be of zero 
length if no digit selectors or 
significance starters appear in the 
pattern, if none appear after t he last 
field separator, or if the last byte in the 
pattern is a field separator. 

Condition code 0 is set when the last field 
is zero or of zero length. 

Condition code 1 is set when the last field 
edited is nonzero and the significance 
indicator is on, indicating a result less 
than zero. 

Condition code 2 is set when the last field 
edited is nonzero and the significance 
indicator is off, indicating a result 
greater t han zero. 

The figure "summary of EDIT Functions" 
summarizes the functions of the editing 
operation. The leftmost four columns list 
all the significant combinations of the 
four conditions that can be encountered in 
the execution of an editing operation. The 
riqhtmost two columns list the action taken 
for each case--the type of byte placed in 
the result field and the new setting of the 

8-8 System/370 Principles of Cperation 

significance indicator. 

o Last field is zero or of zero 
length 

1 Last field is less than zero 
2 Last field is greater than zero 
3 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 

1. Examples of the use of EDIT are given 
in Appendix A. 

2. Editing includes sign and punctuation 
control, and the suppression and 
protection of leading zeros by 
replacing them with blanks or 
asterisks. It also facilitates 
programmed blanking of all-zero 
fields. Several fields may be edited 
in one operation, and numeric 
information may be combined with text. 

3. As a rule, the source is shorter than 
the pattern, because each 4-bit source 
digit is generally replaced by an 
8-bit byte in the result. 

4. The total number of digit selectors 
and significance starters in the 
pattern must equal the number of 
source digits to be edited. 

5. If the fill byte is a blank, if no 
significance starter appears in the 
pattern, and if the source is all 
zeros, the editing operation blanks 
the result field. 

6. The resulting condition code indicates 
whether or not the last field is all 
zeros and, if nonzero, reflects the 
state of the significance indica tor. 
The significance indicator reflects 
the sign of the source field only if 
the last source byte examined contains 
a sign code in the low-order digit 
position. For multiple-field editing 
operations, the condition code 
reflects the sign and value only of 
the field following the last field 
separator. 

7. Significant performance degradation is 
possible when, with DAT on, the 
second-operand address of EDIT 
designates a location that is less 
than the length of the first operand 

J 

J 



to the left of a 2,048-byte boundary. 
This is because the machine may 
perform a trial execution of the 
instruction to determine if the second 
operand actually crosses the boundary. 

The second operand of EDIT, 
normally shorter than the 
operand, can in the extreme case 
the same length as the first. 

while 
first 

have 

r---------------------------------------------------------------r-------------------------"-------, 
I 
I 
I , , 
I 
I Pattern Byte 
I----
Digit selector 

significance starter 

IField separator 
I 
,Message byte 
I 

Conditions 
r i 

IPrevious State I IRight Four 
lof SignificancelSourcelSource Bits 
I Indicator IDigit I Are Plus Code 
I I I 

Off 

On 

Off 

On 

* 
Off 
On 

0 
1-9 
1-9 
0-9 
0-9 

0 
0 
1-9 
1-9 
0-9 
0-9 

** 

** 
** 

* 
No 
Yes 
No 
Yes 

No 
Yes 
No 
Yes 
No 
Yes 

** 

** 
** 

I Results 
I 

I , 
, R esul t Byte 
I 
Fill byte 
Source digit 
Source digit 
Source digit 
Source digit 

Fill byte 
Fill byte 
Source digit 
Source digit 
Source digit 
Source digit 

Fill byte 

Fill byte 
Message byte 

State of I 
Significance, 
Indica tor at, 
End of Diqitl 
Examination I 

off 
On 
Off 
On 
Off 

On 
Off 
On 
Off 
On 
Off 

Off 

Off 
On 

I 

, --L-______________ -L ______ ~ ______________ L-________________ _L __________ ~ 

I Expl 2!!ati.Q!!: 
I , , * No effect on result byte or on new state of significance indicator 

** Not applicable because source is not examined 

Summary of EDIT Functions 

Chapter 8. Decimal Instructions 8-9 



EDIT AND MARK 

[SS] 

r------~---------r- ~/---~~/___, 

I 'DF' I L B1.. I D1. I B2 I D2 I 
L---___ ~ ______ .L_ / I /~ 

o 8 16 20 32 36 47 

The second operand (the source), which 
normally contains one or more decimal 
numbers in the packed format, is changed to 
the zoned format and modified under the 
control of the first operand (the pattern). 
The address of each first significant 
result byte is inserted in qeneral register 
1. The edited result replaces the pattern. 

The instruction EDIT AND MARK is identical 
to EDIT, except for the additional function 
of inserting the address of the result byte 
in bit positions 8-31 of general register 1 
whenever the result byte is a zoned source 
digit and the significance indicator was 
off before the examination. Bits 0-7 of 
the register are not changed. 

o Last field is zerc or of zero 
length 

1 Last field is less than zero 
2 Last field is greater than zero 
3 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 

1. Examples of the use of EDIT AND MARK 
are given in Appendix A. 

2. The instruction EDIT AND MARK 
facilitates the programming of 
floatinq currency-symbol insertion. 
The address inserted in general 
register 1 is one greater than the 
address where a floating currency-siqn 
would be inserted. The instruction 
BRANCH ON COUNT (BCTR), with zero in 
the R~ field, may be used to reduce 
the inserted address ty one. 

3. No address is inserted in general 
register 1 when the significance 
indicator is turned on as a result of 
encountering a significance starter 
with the corresponding source digit 
zero. To ensure that general register 
1 contains a valid address when this 

8-10 system/370 principles of Operation 

occurs, the address of the pattern 
byte that immediately follows the 
significance starter should be placed 
in the register beforehand. 

4. When multiple fields are edited with 
one EDIT AND MARK instruction, the 
address inserted in general register 1 
applies only to the last field edited. 

5. See also th e progra mming note unde r 
EDIT regarding performance degradation 
due to a possible trial execution. 

MULTIPL Y Dl~CIMAL 

MP D1. (Lt. ,B1..) ,D 2 (L2 ,B 2) r SS] 

I - /---.--,---/---, 
'FC' I L1.. L2 B1.. D1.. I B2 I D2 I , /---1-----1.--/-----1 

0 8 12 16 20 32 36 47 

The product of the first operand (the 
multiplicand) and the second operand (the 
multiplier) is placed in the first-operand 
location. The operands and result are in 
the packed format. 

The multiplier length cannot exceed 15 
digits and sign (L2 not greater than seven) 
and must be less than the multi plicand 
length (L2 less than L1..); otherwise a 
specification exception is recognized. The 
operation is suppressed, and a program 
interruption occurs. 

The multiplicand must have at least as many 
bytes of high-order zeros as the number of 
bytes in the multiplier; otherwise, a data 
exception is recognized, the operation is 
terminated, and a program interruption 
occurs. This restriction ensures that no 
product overflow occurs. 

The multiplicand, multiplier, and product 
are all signed decimal integers, 
right-aligned in their fields. All sign 
and digit codes of the multiplicand and 
multiplier are checked for validity. 

The sign of the product is determined by 
the rules of algebra from the mul ti plier 
and multiplicand signs, even if one or both 
operands are zeros. 

Condition ~2de: 
unchanged. 

The code remains 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 
Specification 



1. An example of the use of MULTIPLY 
DECIMAL is given in A~pendix A. 

2. The ~roduct cannot exceed 31 
and sign. The leftmost digit 
product is always zero. 

SHIFT AND ROUND DECIMAL 

[SS] 

digits 
of the 

.--- --T---~----T---~--/ /---, 
I 'FO' L2. 13 B2. D2. B2 D2 I 
~ ______ ~ __ .~ ____ L-__ -L __ / __ L-__ 4-_/ __ -J 

o 8 12 16 20 32 36 47 

The first operand is shifted in the 
direction and for the number of 
decimal-digit positions specified by the 
second-operand address, and, when shifting 
to the right is specified, the absolute 
value of the first operand is rounded by 
the rounding digit, 1 3 • The first operand 
and the result are in the packed format. 

The first operand is considered to be in 
the packed-decimal format. Only its digit 
portion is shifted; the sign position does 
not participate in the shifting. Zeros are 
supplied for the vacated digit positions. 
The result replaces the first operand. 
Nothing is stored outside of the specified 
first-operand location. 

The second-operand address, specified by 
the B2 and D2 fields, is not used to 
address data; bits 26-31 of that address 
are the shift value, and the high-order 
bits of the address are ignored. 

The shift value is a six-bit signed binary 
integer, indicating the direction and the 
number of decimal-digit positions to be 
shifted. positive shift values specify 
shifting to the left. Negative shift 
values, which are represented in two's 
complement notation, specify shifting to 
the right. The following are exa mples of 
the interpretation of shift values. 

Shifi ,H1!!~ Amount .snd J:i~ct iQ.!! 

011111 31 digits to the left 
000001 One digit to the left 
000000 No shift 
111111 One digit to the riqht 
100000 32 digits to the right 

For a right shift, the 13 field, bits 12-15 
of the instruction, are used as a decimal 
rounding digit. The first operand, which 
is treated as positive by ignoring the 

sign, is rounded by decimally adding the 
rounding digit to the leftmost of the 
digits to be shifted out and by propagating 
the carry, if any, to the left. The result 
of this addition is then shifted right. 
Except for validity checking and the 
participation in rounding, the digits 
shifted out of the low-order decimal-digit 
position are ignored and are lost. 

If one or more significant digits are 
shifted out of the high-order digit 
positions during a left shift, decimal 
overflow occurs. The opera ti on is 
completed. The result is obtained by 
ignoring the overflow information, and 
condition code 3 is set. If the 
decimal-overflow mask is one, a program 
interruption for decimal overflow takes 
place. Overflow cannot occur for a right 
shift, with or without rounding, or when no 
shifting is specified. 

In the absence of overflow, the sign of a 
zero result is made positive. Otherwise, 
the sign of the result is the same as the 
original sign, but the code is the 
preferred sign code. 

A data exception is recognized when the 
first operand does not have valid sign and 
digit codes or when the rounding digit is 
not a valid digit code. The validity of 
the first-operand codes is checked even 
when no shift is specified, and the 
validity of the rounding digit is checked 
even when no addition for rounding takes 
place. 

o 
1 
2 
3 

Result is zero 
Result is less than zero 
Result is greater than zero 
Overflow 

Access (fetch and store, operand 1) 
Data 
Decimal Overflow 

1. Examples of the use of SHIFT AND ROUND 
are given in Appendix A. 

2. SHIFT AND ROUND can be used for 
shifting up to 31 diqit positions left 
and up to 32 digit positions right. 
This is sufficient to clear all digits 
of any decimal number even with 
rounding. 

3. For righ t shifts, the roundi ng digit 5 
provides conventional rounding of the 

Chapter 8. Decimal Instructions 8-11 



result. The rounding digit 0 
specifies truncation without rounding. 

q. When the B:a field is zero, the six-bit~ 
shift value is obtained directly from 
bits q2-q7 of the instruction. 

SUBTRACT DECIMAL 

SP [SS] 

.-----~--~----T---~--/ /---, 
'FB' I Lt. L:a Bt. D,. B:a D:a I 

I /_~ __ L-_/.--J 

o 8 12 16 20 32 36 q7 

The second operand is subtracted from the 
first operand, and the resulting difference 
is placed in the first-operand location. 
The operands and result are in the packed 
format. 

SUBTFACT DECIMAL is executed the same as 
ADD DECIMAL, except that the second operand 
is considered to have a sign opposite to 
the sign in storage. The second operand in 
storage remains unchanged. 

o 
1 
2 
3 

Difference is zero 
Difference is less than zero 
Difference is greater than zero 
Overflow 

Access (fetch, operand 2; fetch and 
store, operand 1) 

Data 
Decimal Overflow 

ZERO AND ADD 

ZAP [SS] 

.------~----~--~. ~--/--~~/---, 
I IF 8 I I Lt. L:a I B,. I D,. I B:a I D:a I 
~ ____ ~~ __ .-L __ ~I ____ -L_/--i----i--/--J 

o 8 12 16 20 32 36 q7 

8-12 svstem/370 principles of operation 

The second operand is placed in the 
first-operand location. The operation is 
equivalent to an addition to zero. The 
operand and result are in the packed 
format. 

Only the second operand is checked for 
valid sign and digit codes. Extra 
high-order zeros are supplied for the 
shorter operand if needed. 

If the first operand is too short to 
contain all significant digits of the 
second operand, decimal overflow occurs. 
The operation is completed. The result is 
obtained by ignoring the overflow 
information, and condition code 3 is set. 
If the decimal-overflow mask is one, a 
program interruption for decimal overflow 
takes place. 

A zero result is positive. However, when 
significant high-order digits are lost 
because of overflow, a zero result has the 
sign of the second operand. 

The two operands may overlap, provided 
rightmost byte of the first operand 
coincident with or to the right of 
rightmost byte of the second operand. 
this case the result is obtained as if 
operands were processed right to left. 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

program Exc~tioD§: 

the 
is 

the 
In 

the 

Access (fetch, operand 2; 
operand 1) 

store, 

Data 
Decimal Overflow 

programming !Q~ 

An example of the use of ZERO AND ADD is 
given in Appendix 1 • 

J 

J 



Floating-Point Number Representation •••••••••••••••••••••••••••• 9-1 
Normalization ••••••••••••••••••••••••••••••••••••••••••••••••••• 9-2 
Floating-point-Data ForDlat ..••••••••••••••••..••• • ' •.•••• • _ •••.•..• 9-2 
Instructions ...............••.•.. ..•.•....•• ....................... 9-4 

ADD NORMALIZED •••••••••••••••••••••••••••••••••••••••••••••••• 9-6 
ADD UNNOFMALIZED •••••••••••••••••••••••••••••••••• ~ ••••••••••• 9-7 
COMPARE ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-8 
DIVIDE •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-9 
HALVE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-10 
LOAD •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-10 
LOAD AND TEST ••••••••••••.•••••••••••••••••••••••••••••••••••• 9-11 
LOAD COMPLE!ENT •••••••••••••••••••••••••••••••••••••••••••.••• 9-11 
LOAD NEGATIVE ••••••••••••••••••••••••••••••••••••••••••••••••• 9-12 
LOAD POSITIVE ••••••••••••••••••••••••••••••••••••••••••••••••• 9-12 
LOAD ROUNDED •••••••••••••••••••••••••••••••••••••••••••••••••• 9-12 
MULTIPLY •••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-13 
STORE ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-14 
SUBTRACT NORMAlIZED •••••••••••••••••• .; •••••••••••••• , •••••••••• 9-15 
SUBTRACT UNNORPlAlIZED ••••••••••••••••••••••••••••••••••••••••• 9-15 

used to 
with a 

yield 

Floating-point instructions are 
perform calculations on operands 
wide range of magnitude and to 
results scaled to preserve precision. 

The floating-point instructions provide for 
loadinq, rounding, adding, subtracting, 
comparing, multiplying, diViding, and 
storinq, as well as controlling the sign of 
short, long, and extended operands. Short 
operands generally permit faster processing 
and require less storage than long or 
extended operands. On the other hand, long 
and extended operands permit greater 
preC1S10n in computation. Four floatinq­
point reqisters are provided. Instructions 
may perform either register-to-register or 
storage-and-register operations. 

Most of the instructions qenerate 
normalized results, which preserve the 
highest precision in the operation. For 
addition and subtraction, instructions are 
also provided that generate unnormalized 
results. Either normalized or unnormalized 
numbers may be used as operands for any 
floating-point operation. 

extended-operand instruc­
of the extended-precision 

feature. The other 
instructions and the 

The rounding and 
tions are part 
float inq-point 
floating-point 
floatinq-point 
floating-point 

registers are part of the 
feature. 

A floatinq-point number consists of a 
signed hexadecimal fraction and an unsigned 
seven-bit binary integer called the 
characteristic. The characteristic 
represents a siqned exponent and is 
obtained by adding 64 to the exponent value 
(excess-64 notation). The ranqe of the 
characteristic is 0 to 127, which 
corresponds to an exponent ranqe of -64 to 
+63. The value of a floating-point number 
is the product of its fraction and the 
number 16 raised to the power of the 
exponent which is represented by its 
characteristic. 

The fraction of a floating-point number is 
treated as a hexadecimal number because it 
is considered to be multiplied by a number 
which is a power of 16. The name, 
fraction, indicates that the radix point is 
assumed to be immediately to the left of 
the leftmost fraction diqit. The fraction 
is represented by its absolute value and a 
separate sign bit. The entire number is 
positive or negative, dependinq on whether 
the sign bit of the fraction is zero or 
one, respectively. 

When a floating-point operation would cause 
the result exponent to exceed 63, the 
characteristic wraps around from 127 to 0, 
and an exponent-overflow condition exists. 
The result characteristic is then too small 
by 128. When an operation WOuld cause the 
exponent to be less than -64, the 
characteristic wraps around from 0 to 127, 

Chapter 9. Floating-Point Instructions 9-1 



and an exponent-underflow condition exists. 
The result characteristic is then too large 
by 128, except that a zero characteristic 
is produced when a true zero is forced. 

A true zero is a floating-point number with 
a zero characteristic, zero fraction, and 
plus siqn. A true zero may arise as the 
normal result of an arithmetic operation 
because of the particular magnitude of the 
operands. The result is forced to be a 
true zero when: 

1. An exponent underflow occurs and the 
exponent-underflow mask bit in the PSW 
is zero, 

2. The result fraction of an addition or 
subtraction operation is zero and the 
significance mask bit in the PSi is 
zero, or 

3. The operand of HALVE, one or both 
operands of MULTIPLY, or the dividend 
in DIVIDE has a zero fraction. 

When a proqram interruption for exponent 
underflow occurs, a true zero is not 
forced; instead, the fraction and sign 
remain correct, and the characteristic is 
too large by 128. When a program 
interruption for significance occurs, the 
fraction remains zero, the sign is 
positive, and the characteristic remains 
correct. 

The siqn of a sum, difference, product, or 
quotient with a zero fraction is positive. 
The siqn of a zero fraction resulting from 
other operations is established from the 
operand sign, the same as for nonzero 
fractions. 

A quantity can be represented with the 
qreatest prec1s10n by a floating-point 
number of a given fraction length when that 
number is normalized. A normalized 
floating-point number has a nonzero 
leftmost hexadecimal fraction digit. If 
one or more leftmost fraction digits are 
zeros, the number is said to be 
unnormalized. 

Unnormalized numbers are normalized by 
shifting the fraction left, one digit at a 
time, until the leftmost hexadecimal digit 
is nonzero and reducing the characteristic 
by the number of hexadecimal digits 
shifted. A number with a zero fraction 
cannot be normalized; its characteristic 
either remains unchanged, or it is made 
zero when the result is forced to be a true 
zero. 

9-2 system/370 Principles of operation 

Floating-point operations may be performed 
with or without normalization. Most 
operations are performed only with 
normalization. Addition and subtraction 
with short or long operands may be 
specified as either normalized or 
unnormalized. 

With unnormalized operations, leftmost 
zeros in the result fraction are not 
eliminated. The result mayor may not be 
normalized, depending upon the original 
operands. 

In both normalized and unnormalized 
operations, the initial operands need not 
be in normalized form. The operands for 
mUltiplication and division are normalized 
before the arithmetic process. For other 
normalized operations, normalization takes 
place when the intermediate arithmetic 
result is changed to the final result. 

When the intermediate result of addition, 
subtraction, or rounding causes the 
fraction to overflow, the fraction is 
shifted riqht by one hexadecimal-digit 
position and the value one is placed in the 
vacated leftmost digit position. The 
fraction is then truncated to the final 
result length, while the characteristic is 
increased by one. This adjustment is made 
for both normalized and unnormalized 
operations. 

Programming !.Qte 

Up to three leftmost bits of 
of a normalized number may be 
the nonzero test applies to 
leftmost hexadecimal digit. 

FLOATI!Q-POINT-DATA FORKAl 

the fraction 
zeros, since 
the entire 

Floating-point numbers have a 32-bit 
(short) format, a 64-bit (long) forma t, or 
a 128-bit (extended) format. Numbers in 
the short and long formats may be 
designated as operands both in storage and 
in the floating-point registers, whereas 
operands having the extended format can be 
designated only in the floating-point 
registers. 

The floating-point registers contain 64 
bits each and are numbered 0, 2, 4, and 6. 
A short or long floating-paint number 
requires a single floating-point register. 
An extended floating-point number requires 
a pair of these reqisters: either 
registers 0 and 2 or register 4 and 6; the 
two register pairs are designated as 0 or 
4, respectively. When the R~ or R2 field 

J 



of a floating-point instruction designates 
any register number other than 0, 2, 4, or 
6 for t he short or long format, or any 
register number other than 0 or 4 for the 
extended format, the operation is 
suppressed, and a program interruption for 
specification exception occurs. 

Short Floating-point Number 

I I i /'------. 

ISICharacteristicl 6-Digit Fraction 
L-L-- /'----~ 

o 8 31 

Long Floating-Point Number 

r-r-- ---y----------/----------~ 
ISICharacteristicl 14-Digit Fraction 
L.L- i / _______ --' 

o 8 63 

Extended Floating-Point Number 

High-Order Part 
I , i -------/----------~ 
I I High-Order I 
ISICharacteristicl 

Leftmost 14 Digits 
of 28-Digit Fraction 

/ --I 

o 1 8 63 

Low-Order Part 
~I-rl------------~----------/------------~ 
I I Low-Order I Rightmost 14 Digits 
ISICharacteristicl of 28-Digit Fraction L-L--, _________ -L_______ / __________ -J 

64 72 127 

In all formats, the first bit (bit 0) is 
the sign bit (S). The next seven bits are 
the characteristic. In the short and long 
formats, the remaining bits constitute the 
fraction, which consists of six or 14 
hexadecimal digits, respectively. 

A short floating-point numrer occupies only 
the leftmost 32 bit positions of a 
floating-point register. The rightmost 32 
bit positions of the register are ignored 
when used as an operand in the short format 
and remain unchanged when a short result is 
placed in the register. 

An extended floating-point number has a 
28-digit fraction an d consists of tw 0 long 
floating-point numbers which are called the 
high-order and low-order parts. The 
high-order part may be any long 
floating-point number. The fraction of the 
high-order part contains the leftmost 14 
hexadecimal digits of the 28-digit 
fraction. The characteristic and sign of 
the high-order part are t he characteristic 
and sign of the extended floating-point 
number. If the high-order part is 
normalized, the extended number is 

considered normalized. The fraction of the 
low-order part contains the rightmost 14 
digits of the 28-digit fraction. The sign 
and characteristic of the low-orde r part of 
an extended operand are ignored. 

When a result in the extended format is 
placed in a register pair, the sign of the 
low-order part is made the same as that of 
the high-order part, and, unless the result 
is a true zero, the low-order 
characteristic is made 14 less than the 
high-order characteristic. When the 
subtraction of 14 would cause the low-order 
characteristic to become less than zero, 
the characteristic is made 128 greater than 
its correct value. Exponent underflow is 
indicated only when the high-order 
characteristic underflows. 

When an extended result is 
zero, both the high-order 
parts are made a true zero. 

made a true 
and low-order 

The range covered by the magnitude (M) of a 
normalized floating-point number depends on 
the format. 

In the short format: 

16- 65 ~ M ~ (1 - 16- 1 ) x 16 13 

In the long format: 

16- 65 ~ It ~ (1 - 16- H ) x 16 13 

In the extended format: 

16- 65 ~ M ~ (1 - 16-28 ) x 16 13 

In all formats, approximately: 

5.4 X 10-79 ~ It ~ 7.2 X 10 75 

Although the final result of a 
floating-point operation has six 
hexadecimal fraction digits in the short 
format, 14 fraction digits in the long 
format, and 28 fraction digits in the 
extended format, intermediate results have 
one additional hexadecimal digit on the 
right. This digit is called the guard 
digit. The guard digit may increase the 
precision of the final result because it 
participates in addition, subtraction, and 
comparison operations and in the left shift 
that occurs during normalization. 

The entire set of floating-point operations 
is available for both short and long 
operands. These instructions genera te a 
result that has the same format as the 
operands, except that for MULTIPLY, a long 
product is produced from a short multiplier 
and multiplicand. Extended floating-point 
instructions are provided only for 
normalized addition, subtraction, and 
multiplication. Two additional 
multiplication instructions generate an 

Chapter 9,. Floating-Point Instructions 9-3 



extended product from a long multiplier and 
multiplicand. The rounding instructions 
provide for rounding from extended to long 
format and from long to short format. 

1. A long floating-point number can be 
converted to the extended format by 
appending any long floating-point 
number having a zero fraction, 
including a true zero. Conversion 
from the extended to the long format 
can be accomplished by truncation or 
by means of LOAD RCUNDED. 

2. In the absence of an exponent overflow 
or exponent underflow, t he long 
floating-point number constituting the 
low-order part of an extended result 
correctly expresses the value of the 
low-order part of the extended result 
when the characteristic of the 
high-order part is 14 or higher. This 
applies also when the result is a true 
zero. When the high-order 
characteristic is less than 14 but the 
number is not a true zero, the 
low-order part, when addressed as a 
lonq floating-point number, does not 
have the correct characteristic value. 

3. The entire fraction of an extended 
result participates in normalization. 
The low-order part alone mayor may 
not appear to be a normalized long 
floating-point number, depending on 

9-4 svstem/370 principles of operation 

whether the 15th 
normalized 28-digit 
nonzero or zero. 

INSTRUCTIONS 

diqit of 
fraction 

the 
is 

The floating- po in t instructions a nd their 
mnemonics, formats, and operation codes are 
listed in the figure "Summary of 
Floating-Point Instructions." The figure 
also indicates when the condition code is 
set and the exceptional conditions in 
operand designations, data, or results that 
cause a program interruption. 

Mnemonics for the floating-point 
instructions have an R as the last letter 
when the instruction is in the RR format. 
For instructions where all operands are the 
same length, certain letters are used to 
represent operand-format length and 
normalization, as follows: 

E short norma lized 
U short unnormalized 
D long normalized 
W long unnormalized 
X extended normalized 

No1~: In the detailed descriptions of the 
individual instructions, the mnemonic and 
the symbolic operand designation for the 
assembler language are shown with each 
instruction. For a register-to-register 
operation using LOAD (short), for example, 
LER is the mnemonic and R~,R2 the operand 
designation. 



I IMne- I Op I 
I Name I monicl Characteristics Code I 
I I I , ---,- I 
IADD NORMALIZED (extended) I AXR IRR C XP SP I EU EO LSI 36 I 
IADD NORMALIZED (long) I ADR IRR C FP SP lEU EO LSI 2A I 
IADD NORMALIZED (long) I AD IRX C FP A SPIEU EO LSI 6A I 
IADD NORMALIZED (short) I AER IFR C FP SPI EU EO LSI 3A I 
IADD NORMALIZED (short) IAE IRI C FP A SP lEU EO LSI 7A I ...-- I I I I I I 
IADD UNNORMALIZED (long) I AiR IRR C FP SPI EO LSI 12E , 
IADD UNNORMALIZED (long) I Ai IRI C FP A SPI EO LSI 16E I 
IADD UNNORMALIZED (short) IAUR IFR C FP SPI EO LSI 13E I 
IADD UNNORMALIZED (short) I AU IRI C FP A SPI EO LSI In I 
ICOMPARE (long) ICDR I RR C FP SP I I 129 I , I I I I I ~ 
I CO~PARE (long) CD IRX C FP A SPI I 169 I 
ICOMPARE (short) CER IRR C FP SP I I 139 I 
ICOMPARE (short) CE IRX C FP A SPI I 179 I 
IDIVIDE (long) DDR IRR FP SP lEU EO FK 1 12D I 
IDIVIDE (long) DD I RI FP A SP lEU EO FK I 16D I 
I I I I I I I 
I DIVIDE (short) DER IRR FPI SP lEU EO FK I 13D I 
1 DIVIDE (short) DE IRI FPI A SPI EU EO FK I 17D I 
1 HALVE (long) HDR IFR FPI SP lEU I 124 I 
1 HALVE (short) HER IRR FP I SPI EU I 134 I 
ILOAD (lonq) LDR IFR FPI SPI I 128 I ...-- I I I I I I I 
ILOAD (lonq) LD I RX FP I A SPI I 168 I 
ILOAD (short) LER IRR FPI SPI I 138 I 
ILOAD (short) LE IRI FPI A SPI I 178 I 
ILOAD AND TEST (long) LTDR IRR C FPI SPI I 122 I 
ILOAD AND TEST (short) LTER IRR C FPI SP I I 132 I ...-- I I I I I I 
ILOAD COMPLEMENT (lon g) LCDR IFR C FP SPI I 123 I 
ILOAD COMPLEMENT (short) LCER IRR C FP SPI I ,33 I 
ILOAD NEGATIVE (long) LNDR IFR C FP SP I I I 21 I 
ILOAD NEGATIVE (short) LNER , FR C FP SP I I I 31 I 
ILOAD POSITIVE (lonq) LPDR IRR C FP SPI I 120 I ...-- I I I I I , 
ILOAD POSITIVE (short) ILPER IFR C FP SPI I 130 I 
I LOAD ROUNDED (extended to long) ILRDR IRR XP SPI EO I 125 I 
I LOAD ROUNDED (long to short) ILRER IRR XP SPI EO I 135 I 
I MULTI PL Y (extended) IMXR IRR XP SP lEU EO I 126 I 
I MULTIPLY (lonq) IMDR IFR FP SPI EU EO I 12C I ...-- I I I I I I I 
I MULTIPLY (lonq) IMD IRX FPI A SPIEU EO 16C 
I MULTIPLY (long to extended) IMIDR IRR XPI SPI EU EO 127 
I MULTIPL Y (long to extended) IMXD IRX XPI A SPIEU EO 167 
I MULTIPLY (short to long) IMER IRR FP I SPIEU EO 13C 
I MULTI PLY (short to lonq) IME IRX FPI A SP lEU EO 17C ...-- I I I I I 
I STORE (lonq) ISTD IRX FP I A SP I STI60 
I STORE (short) ISTE IRX FPI A SPI STI70 
ISUBTRACT NOFMALIZED (extended) I SXR IRR C IP I SP lEU EO LS 137 
ISUBTRACT NORMALIZED (lonq) ISDR IRR C FP I SPIEU EO LS 12B 
ISUBTRACT NORMALIZED (lonq) ISD IRX C FPI A SPIEU EO LS 16B 
L- ----L ---I 

Summary of Floating-Point Instructions (Part 1 of 2) 

Chapter 9. Floating-Point Instructions 9-5 



r--
I 
I Name 
~ 
I SUBTRACT NORMALIZED (short) 
I SUBTRACT NORMALIZED (short) 
ISUBTRACT UNNORMALIZED (long) 
I SUBTRACT UNNORMALIZED (long) 
I SUBTRACT UNNORMALIZED (short) 
I SUBTRACT UNNORMALIZED (short) 
I 
~xplan.stiQ'!!: 

A Access exceptions 
C Condition code is set 
EO Exponent-overflow exception 
EU Exponent-underflow exception 
FK Floating-point-divide exception 
FP Floating-point feature 
LS Significance exception 
RR RR instruction format 
RX RX instruction format 
SP specification exception 
ST PER storage alteration event 

IMne- I 
I monicl 
I I 
ISER IRR 
ISE IRX 
ISWR IRR 
I SW IRX 
I SUR IRR 
ISU IRX 

XP Extended-precision floating-point feature 

lOp 
Characteristics ICode 

• I • I 
C FPI SPIEU EO LSI 13B 
C FP I A SPI EU EO LSI 17B 
C FPI SPI EO LSI 12F 
C FP I A SPI EO LS I 16F 
C FPI SPI EO LSI 13F 
C FP I A SPI EO LSI I7F 

Summary of Floating-Point Instructions (Part 2 of 2) 

ADD NORMALIZED 

rRR, Short Operands1 

'3A' R~ R:;a 
L-.-

0 8 12 15 

AE Ru D:;a(X 2 ,B:;a) [ RX, Short Operands] 

'7A' Rs. X:;a B:;a D:;a 

0 8 12 16 20 31 

ADR Rs.,R:;a r RR, Long Operands] 

'2A' Rs. R:;a 

0 8 12 15 

AD R~, D:;a (X:;a ,B:;a) [RX, Long Operands 1 

--,. 
'6A' R~ X:;a B2 I D2 

0 8 12 16 20 31 

9- 6 System/370 Principles of Operation 

[RR, Extended Operands] 

, 36' 

o 8 12 15 

The second operand is added to 
operand, and the normalized sum 
in the first-operand location. 

the first 
is placed 

Addition of two floating-point numbers 
consists in characteristic comparison, 
fraction alignment, and fraction addition. 
The characteristics of the two operands are 
compared, and the fraction accompanying the 
smaller characteristic is aligned with the 
other fraction by a right sh ift, with its 
characteristic increased by one for each 
hexadecimal digit of shift until the two 
characteristics agree. 

When a fraction is shifted right during 
alignment, the leftmost hexadecimal digit 
shifted out is retained as a guard digit. 
The fraction that is not shifted is 
considered to be extended with a zero in 
the guard-digit position. When no 
alignment shift occurs, both operands are 
considered to be extended with zeros in the 
guard-digit position. The fractions are 
then added algebraically to form an 
intermediate sum. 

The intermediate-sum fraction consists of 
seven (short forma~, 15 (long format), or 
29 (extended format) hexadecimal digits, 
including the guard digit, and a possible 
carry. If a carry is present, the sum is 



shifted right one digit position so that 
the carry becomes the leftmost digit of the 
fraction, and the character istic is 
increased by one. 

If the addition produces no carry, the 
intermediate-sum fraction is shifted left 
as necessary to eliminate any leading 
hexadecimal zero digits resulting from the 
addition, provided the fraction is not 
zero. Vacated rightmost digit positions 
are filled with zeros, and the 
characteristic is reduced by the number of 
hexadecimal digits of shift. The fraction 
thus normalized is then truncated on the 
right to six (short format), 14 (long 
format) , or 28 (extended format) 
hexadecimal digits. In the extended 
format, a characteristic is generated for 
the low-order part, which is 14 less than 
the high-order characteristic. 

The sign of the sum is determined by the 
rules of algebra, unless all digits of the 
intermediate-sum fraction are zero, in 
which case the sign is made plus. 

An exponent-overflow exception is 
recognized when a carry from the leftmost 
position of the intermediate-sum fraction 
would cause the characteristic of the 
normalized sum to exceed 127. The 
operation is completed by making the result 
characteristic 128 less than the correct 
value, and a program interruption for 
exponent overflow takes place. The result 
sign and fraction remain correct, and, for 
AXR, the characteristic of the low-order 
part remains correct. 

An exponent-underflow exception is 
recognized when the characteristic of the 
normalized sum would be less than zero and 
the fraction is not zero. If the 
exponent-underflow mask tit is one, the 
operation is completed by making the result 
characteristic 128 greater than the correct 
value. The result sign and fraction remain 
correct, and a program interruption for 
exponent underflow takes place. When 
exponent underflow occurs and the 
exponent-underflow mask bit is zero, a 
program interruption does not take place; 
instead, the operation is completed by 
making the result a true zero. For AXR, no 
exponent underflow is recognized when the 
characteristic of the low-order part would 
be less than zero but the characteristic of 
the high-order part is zero or greater. 

The result fraction is zero when the 
intermediate-sum fraction, including the 
guard digit, is zero. With a zero result 
fraction, the action depends on the setting 
of the significance mask bit. If the 
significance mask bit is one, no 
normalization occurs, the intermediate and 
final result characteristics are the same, 
and a program interruption for significance 

takes place. If the significance mask bit 
is zero, the program interruption does not 
occur; instead, the result is made a true 
zero. 

The R~ field for lER, AE, ADR, and AD, and 
the Ra field for lER and ADR must designate 
register 0, 2, 4, or 6. The R~ and R2 
fields for AXR must designate register 0 or 
4. Otherwise, a specification exception is 
recogni zed. 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Access (fetch, operand 2 of AE and AD 
only) 

Exponent Overflow 
Exponent Underflow 
Operation (if the floating-point 

feature is not installed, or, for 
AXR, if the extended-precision 
floating-point feature is not 
installed) 

Significance 
Specification 

1. Interchanging the two operands in a 
floating-point addition does not 
affect the value of the sum. 

2. The ADD NORMALI ZED instructions 
normalize the sum but not the 
operands. Thus, if one or both 
operands are unnormalized, precision 
may be lost during fraction alignment. 

ADD UNNORMALIZED 

AUR R~,Ra [ RR, Short Operands] 

, 3E' R~ Ra 

0 8 12 15 

AU R~,Da(Xa,Ba) r RX, Short Operands] 

'7E' R~ Xa Ba Da 
L ---1 

0 8 12 16 20 31 

Chapter 9. Floating-Point Instructions 9-7 



[ER, Long Operandsl 

, 
I 2 E I I Rs. Ra 

L- I 

o 8 12 15 

[EI, Long Operands] 

, 
'6E' Rs. Ia Ba Da I 

o 8 12 16 20 31 

The second operand is added to the first 
operand, and the unnormalized sum is placed 
in the first-operand location. 

The execution of ADD UNNOR!ALIZED is 
identical to that of ADD NORMALIZED, except 
that: 

1. When no carry is present after the 
addition, the intermediate-sum 
fraction is truncated to the proper 
result-fraction length without a left 
shift to eliminate leading hexadecimal 
zeros and without the corresponding 
reduction of the characteristic. 

2. Exponent underflow cannot occur. 

3. The guard digit does not participate 
in the recognition of a zero result 
fraction. A zero result fraction is 
recognized when the fraction, that is, 
the intermediate-sum fraction, 
excluding the guard digit, is zero. 

The Rs. and Fa fields must designate 
register 0, 2, 4, or 6; otherwise, a 
specification exception is recognized. 

o Result fraction is zero 
1 Eesult is less than zero 
2 Result is greater than zero 
3 

Access (fetch, operand 2 of AU and Ai 
only) 

Exponent Overflow 
Operation (if the floating-point 

feature is not installed) 
Significance 
Specification 

Except when the result is made a true zero, 
the characteristic of the result of ADD 
UNNORMALIZED is equal to the greater of the 

9-8 System/370 principles of Operation 

two operand 
one if the 
carry. 

characteristics, increased by 
fraction addition produced a 

COI!PARE 

CER Rs.,Ra [ RR, Short Operands] 

, 
139 1 I Rs. Ra 

I 

0 8 12 15 

CE Rs.,Da(Ia,Ba) [ RI, Short Operands1 

-, 
'79' Rs. Ia Ba Da I 

~ 

0 8 12 16 20 31 

CDR Rs.,Ra [ ER, Long Ope ra nd s ] 

129 1 Rs. Ra 

0 8 12 15 

CD Rs.,Da(Ia,Ba) [ RX, Long Operands] 

, 69 1 Rs. Ia Ba Da 
--I 

0 8 12 16 20 31 

The first operand is compared with the 
second operand, and the condition code is 
set to indicate the result. 

The comparison is algebraic and follows the 
procedure for normalized floating-point 
subtraction, except that the difference is 
discarded after setting the condition code 
and both operands remain unchanged. ihen 
the difference, including the guard digit, 
is zero, the operands are equal. When a 
nonzero difference is positive or negative, 
the first operand is high or low, 
respectively. 

An exponent-overflow, exponent-underflow, 
or significance exception cannot occur. 

The Rs. and Ra fields must desiqnate 
register 0, 2, 4, or 6; otherwise, a 
specification exception is recoqnized. 

o 
1 
2 
3 

Operands are equal 
First operand is low 
First operand is high 



~ 

~am Exceptions: 

Access (fetch, operand 2 of CE and CD 
only) 

Operation (if the floating-point 
feature is not installed) 

Specification 

1. An exponent inequality alone is not 
sufficient to determine the inequality 
of two operands with the same sign, 
because the fractions may have 
different numbers of· leading 
hexadecimal zeros. 

2. Numbers with zero fractions compare 
equal even when they differ in sign or 
characteristic. 

DIVIDE 

DER Rs.,Ra (FR, Short Operands J 

'3D' Rs. F2 
L-

0 8 12 15 

DE Rs.,Da (Xa ,B 2) [BX, Short Operands] 

-r-
'7D' I Ps. X2 Ba Da 

0 8 12 16 20 31 

DDR Rs.,Ra [RR, Long Operands] 

~ 

'2D' I Rs. Ra 
I 

0 8 12 15 

DD Rs., Da (Xa ,Ba) [FX, Long Operands] 

, 6D' Pi. Xa Ba Da 

0 8 12 16 20 31 

The first operand (the dividend) is divided 
by the second 
the normalized 
first-operand 
preserved. 

Floating-point 
characteristic 

operand (the divisor), and 
quotient is 

location. No 

division 
subtraction 

placed in the 
remainder is 

consists in 
and fraction 

division. The operands are first 
normalized to eliminate leading hexadecimal 
zeros. The difference between the dividend 
and divisor characteristics of the 
normalized operands, plus 64, is used as 
the characteristic of an intermediate 
quotient. 

All dividend and divisor fraction digits 
participate in forming the fraction of the 
intermediate quotient. The 
intermediate-quotient fraction can have no 
leading hexadecimal zeros, but a 
right-shift of one digit position mav be 
necessary with an increase of the 
characteristic by one. The fraction is 
then truncated to the proper resul t­
fraction length. 

An exponent-overflow exception is 
recognized when the characteristic of the 
final quotient would exceed 127 a nd the 
fraction is not zero. The operation is 
completed by making the characteristic 128 
less than the correct value. The result is 
normalized, and the sign and fraction 
remain correct. A program interruption for 
exponent overflow occurs. 

An exponent-underflow exception exists when 
the characteristic of the final quotient 
would be less than zero and the fraction is 
not zero. If the exponent-underflow mask 
bit is one, the operation is completed bV 
making the characteristic 128 qreater than 
the correct value, and a program 
interruption for exponent underflow occurs. 
The result is normalized, and the sign and 
fraction remain correct. If the 
exponent-underflow mask bit is zero, a 
program interruption does not take place; 
instead, the operation is completed by 
making the quotient a true zero. 

Exponent underflow does not occur when an 
operand characteristic becomes less than 
zero during normalization of the operands 
or when the intermediate-quotient 
characteristic is less than zero, as long 
as the final quotient can be represented 
with the correct characteristic. 

When the divisor fraction is zero, the 
operation is suppressed, and a program 
interruption for floating-point divide 
occurs. This includes the d ivisi on of zero 
by zero. 

When the dividend fraction is zero, but the 
divisor fraction is nonzero, the quotient 
is made a true zero. No exponent overflow 
or exponent underflow occurs. 

The sign of the quotient is determined by 
the rules of algebra, except that the sign 
is always plus when the quotient is made a 
true zero. 

The Rs. field for DER, DE, DDR, and DD, and 

Chapter 9. Floating-Point Instructions 9-9 



field for DER and 
register 0, 2, 
a speci fication 

the Ra 
designate 
Ot herwise, 
recognized. 

DDR, 
IJ, or 

exception 

must 
6. 
is 

Condition ~Qde: 
unchanged. 

The code remains 

HALVE 

HER 

Access (fetch, operand 2 of DD and DE 
only) 

Exponent Overflow 
Exponent Underflow 
Floating-Point Divide 
Operation (if the floating-point 

feature is not installed) 
Specification 

[RR, Short Operands] 

.------'~ 

'3 IJ' I Rio Ra 
L--- I 

o 8 12 15 

HDR Rio,Ra [FR, Long Operands 1 

.--------r---~--, 

'2IJ' I Ri. Ra 
I J 

o 8 12 15 

The second operand is divided by 2, and the 
normalized quotient is placed in the 
first-operand location. 

The fraction of the second operand is 
shifted right one bit position, placing the 
contents of the rightmost bit position into 
the leftmost bit position of the guard 
digit and introducing a zero into the 
leftmost bit position of the fraction. The 
intermediate result, including the guard 
digit, is then normalized, and the final 
result is truncated to the proper length. 

An exponent-underflow exception exists when 
the characteristic of the final result 
would be less than zero and the fraction is 
not zero. If the exponent-underflow mask 
bit is one, the operation is completed by 
making the characteristic 128 greater than 
the correct value, and a program 
interruption for exponent underflow occurs. 
The result is normalized, and the sign and 
fraction remain correct. If the 
exponent-underflow mask tit is zero, a 
program interruption does not take place; 
instead, the operation is completed by 
making the result a true zero. 

9-10 system/370 principles of Operation 

When the fraction of the second operand is 
zero, the result is made a true zero, and 
no exponent underflow occurs. 

The sign of the result is the same as that 
of the second operand, except that the sign 
is always plus when the quotient is made a 
true zero. 

The Rio and Ra fields must designate 
register 0,2, IJ, or 6; otherwise, a 
specification exception is recoqnized. 

Condition ~ode: 
unchanged. 

The 

Exponent Underflow 

code remains 

Operation (if the floating-point 
feature is not installed) 

Specification 

Programming Not~ 

1. with short and long operands, the 
halve operation is identical to a 
divide operation with the number 2 as 
divisor. Similarly, the result of HDR 
is identical to that of MD or MDR with 
one-half as a multiplier. No multiply 
operation corresponds to HER, since no 
multiply operation produces short 
results. 

2. The result of HALVE is zero only when 
the second-operand fraction is zero, 
or when exponent underflow occurs with 
the exponent-underflow mask set to 
zero. A fraction with zeros in every 
bit position, except for a one in the 
rightmost bit position, does not 
become zero after the right shift. 
This is because the one bi t is 
preserved in the guard-digit position 
and becomes the leftmost bit after 
normalization of the result. 

LOAD 

LER Rio,Ra [RR, Short Operandsl 

o 8 12 15 

J 



(. 
LE RUD2 (X 2 ,B 2) [FX, Short Operands] 

'78 ' F1. X2 B2 D2 

0 8 12 16 20 31 

LDR R1., R2 (FR, Long Operands] 

'28' R,.. R2 

0 8 12 15 

LD R,..,D2 (X2 ,B 2) (RX, Long Operands] 

---,- , 
, 68' R1. X2 B2 I D2 

L--

0 8 12 16 20 31 

The second operand is placed unchanged in 
the first-operand location. 

The R,.. and R2 fields must designate 
register 0,2,4, or 6; otherwise, a 
specification exception is recognized. 

Condition ~Qde: unchanged. 'Ihe code remains 

Access (fetch, operand 2 of LE and LD 
only) 

operation (if the floating-point 
feature is not installed) 

Speci fic ation 

LOAD AND TEST 

LTER R1. , R " r FF, Short Operands 1 

.-
I ' 32' R,.. F2 
L--

0 8 12 15 

LTDR F1.,R" [FR, long Operands 1 

, 22' R,.. R2 
L--

0 8 12 15 

The second operand is placed unchanged in 
the first-operand location, and its sign 
and magnitude are tested to determine the 
setting of the condition code. 

The R:t 
reaister 

and R" fields 
0, 2, 4, or 

must designate 
6; otherwise, a 

specification exception is recognized. 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Operation (if the floating-point 
feature is not installed) 

Specification 

Programming !Qte 

When the same register is specified as the 
first-operand and second-operand location, 
the operation is equivalent to a test 
without data movement. 

LOAD COMPLEMENT 

[RR, Short Operands] 

o 8 12 15 

LCDR R,..,R 2 rFF, Long operands1 

, 23' 

o 8 

The second 
first-operand 
inverted • 

12 15 

operand is placed 
location with the 

in 
siqn 

the 
bit 

The sign bit is inverted, even if the 
fraction is zero. The characteristic and 
fraction are not changed. 

The R,.. and R2 fields must designate 
register 0, 2, 4, or 6; otherwise, a 
specification exception is recognizee. 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program ]~£~iion~: 

Operation (if the floating-point 
feature is not installe~) 

Chapter 9. Floating-Point Instructions 9-11 



Specification 

LOAD NEGATIVE 

LNER Fi.,R 2 [FR, Short Operands] 

, 31 ' Ri. R2 

0 8 12 15 

LNDR Ri., R2 [FR, Long Operands] 

, 21 ' Ri. R2 
L-

0 8 12 15 

The second operand is placed in the 
first-operand location with the sign made 
minus. 

The sign bit is made one, even if the 
fraction is zero. The characteristic and 
fraction are not changed. 

The Ri. and R2 fields must designate 
register 0, 2, 4, or 6; otherwise, a 
specification exception is recognized. 

o 
1 
2 
3 

Result fraction is zero 
Result is less than zero 

Operation (if the floating-point 
feature is not installe~ 

Specification 

LOAD POSITIVE 

LPER Ri.,R 2 [RR, Short Operands 1 

'30' Ri. R2 
L--

0 8 12 15 

LPDR Ri.,R 2 [FR, Long Operands] 

r-----,---
I '20' I Ri. R2 

----L-

0 8 12 15 

9-12 system/370 Principles of Operation 

The second operand 
first-operand location 
plus. 

is placed 
with the 

in the 
siqn made 

The siqn bit 
characteristic 
changed. 

is 
and 

made zero. 
fraction are 

The 
not 

The Ri. and R2 fields must de siqna te 
register 0, 2, 4, or 6; otherwise, a 
specificat.ion exception is recognized. 

o Result fraction is zero 
1 
2 Result is greater than zero 
3 

Operation (if the floating-point 
feature is not installed) 

Specification 

LOAD ROUNDED 

LRER Ri.,R 2 
rRR, Long Operand 2, Short Operand 1] 

, 35' 
L-. ________ L-__ ~ ____ ~ 

o 8 12 15 

LRDR Ri.,R 2 
rRR, Extended Operand 2, Lonq Operand 11 

'25' 

o 8 12 15 

The second operand is rounded to the next 
shorter format, and the result is placed in 
the first-operand location. 

Rounding consists in adding a one in bit 
position 32 or 72 of the lonq or extended 
second operand, respectively, and 
propagating any carry to the left. The 
sign of the fraction is iqnored, and 
addition is performed as if the fractions 
were posit.ive. 

If rounding causes a carry out of the 
leftmost hexadecimal digit position of the 
fraction, the fraction is shifted right one 
digit position so that the carry becomes 
the leftmost digit of the fraction, and the 
characteristic is increased by one. 

The sign of the result is the same as the 
sign of the second operand. There is no 



normalization to eliminate leading zeros. 

An exponent-overflow exception exists when 
shifting the fraction right would cause the 
characteristic to exceed 127. The 
operation is completed by loading a number 
whose characteristic is 128 less than the 
correct value, and a program interruption 
for exponent overflow occurs. The result 
is normalized, and the sign and fraction 
remain correct. 

Exponent-underflow and significance 
exceptions cannot occur. 

The R~ field must designate register 0, 2, 
4, or 6; the Fa field of LRER must 
designate register 0, 2, 4, or 6; and the 
Fa field of LRDF must designate register 0 
or 4. otherwise, a specification exception 
is recognized. 

~QnditiQn ~Qde: 
unchanged. 

The code remains 

Exponent Overflow 
operation (if the 

floating-point 
installed) 

Specification 

extended-precision 
feature is not 

MULTIPLY 

MER F~,Fa 

o 

[RR, Short Mu ltipl ier and Multip licand, 
Long Product] 

'3C' 

8 12 15 

ME R~,Da(Xa,Ba) 

o 

[HX, Short Multiplier and Multiplicand, 
Long Product] 

'7C' 

8 12 16 20 31 

MDR [FR, Long Operands] 

'2C I 

o 8 12 15 

MD [RX, Long Operands] 

r-------~----~----T----,r------------, 

'6C' I R~ , 
o 8 12 16 20 31 

MXDR R~,Ra 
[RR, Long Multiplier and Multiplicand, 

Extended Product] 

'27' 

o 8 12 15 

MXD R~,Da(Xa,Ba) 
[RX, Long Multiplier and Multiplicand, 

Extended Product] 

r---------r----~----r-·---,~----------_, 

I ' 67' 
L-______ ~~ __ ~ ____ -L ____ ~___________~ 

o 8 12 16 20 31 

MXR R~,Ra [RR, Extended Operands] 

o 8 12 15 

The normalized product 
operand (the multiplier) 
operand (the multiplicand) 
first-operand location. 

of the second 
and the first 

is placed in the 

Multiplication of two floating-point 
numbers consists in exponent addition and 
fraction multiplication. The operands are 
first normalized to eliminate leading 
hexadecimal zeros. The sum of the 
characteristics of the normalized operands, 
less 64, is used as the characteristic of 
the intermediate product. 

The fraction of the intermediate product is 
the exact product of the normalized operand 
fractions. When the intermediate-product 
fraction has one leading hexadecimal zero 
digit, the fraction is shifted left one 
digit position, bringing the contents of 
the guard-digit position into the rightmost 
position of the result fraction, and the 
intermediate-product characteristic is 
reduced by one. The fraction is then 
truncated to the proper result-fraction 
length. 

For MER and ME, the multiplier and 
multiplicand fractions have six hexadecimal 
digits; the product fraction has the full 
14 digits of the long format, with the two 
rightmost fraction digits always zeros. 
For MDR and MD, the multiplier and 
multiplicand fractions have 14 digits, and 

Chapter 9. Floating-Point Instructions 9-13 



the final product fraction is truncated to 
14 digits. For MIDR and MID, the 
multiplier and multiplicand fractions have 
14 digits, with the multiplicand occupyinq 
the high-order part of the first operand; 
the final product fraction contains 28 
digits and is an exact product of the 
operand fractions. For MIR, the multiplier 
and multiplicand fractions have 28 digits, 
and the final product fraction is truncated 
to 28 diqits. 

An exponent-overflow exception is 
recognized when the characteristic of the 
final product would exceed 127 and the 
fraction is not zero. The operation is 
completed by making the characterist ic 128 
less than the correct value. If, for 
extended results, the low-order 
characteristic would also exceed 127, it, 
too, is decreased by 128. The result is 
normalized, and the sign and fraction 
remain correct. A program interruption for 
exponent overflow occurs. 

Exponent overflow is not recognized when 
the intermediate-product characteristic is 
initially 128 but is brought back within 
range by normalization. 

An exponent-underflow exception exists when 
the characteristic of the final product 
would be less than zero and the fraction is 
not zero. If the exponent-underflow mask 
bit is one, the operation is completed by 
making the characteristic 128 greater than 
the correct value, and a program 
interruption for exponent underflow occurs. 
The result is normalized, and the sign and 
fraction remain correct. If the 
exponent-underflow mask bit is zero, 
program interruption does not take place; 
instead, the operation is completed by 
making the product a true zero. For 
extended results, exponent underflow is not 
recognized when the low-order 
characteristic would be less than zero but 
the high-order characteristic is equal to 
or greater than zero. 

Exponent underflow does not occur when the 
characteristic of an operand becomes less 
than zero during normalization of the 
operands, as long as the final product can 
be represented with the correct 
characteristic. 

When either or both operand fractions are 
zero, the result is made a true zero, and 
no exponent overflow or exponent underflow 
occurs. 

The siqn 
the rules 
is always 
true zero. 

of the product is determined by 
of algebra, except that the sign 
zero when the result is made a 

The R~ field for MER, 
the R2 field for MER, 

~E, MDR, and MD, and 
MDR, and MIDR must 

9-14 System/370 Principles of Operation 

designate register 0, 2, 4, or 6. The R~ 

field for MIDR, MXD, and MIR, and the R2 
field for MXR must designate register 0 or 
4. Otherwise, a specificati.on exception is 
recognized. 

The code remains 

Access (fetch, operand 2 of ME, MD, 
and MXD only) 

Exponent Overflow 
Exponent Underflow 
Operation (if the floatinq-point 

feature is not installed, or, for 
MXDR, MID, and MIR, if the 
extended-precision floating-point 
feature is not installed) 

Specification 

Interchanging the two operands in 
floating-point multiplication does 
affect the value of the product. 

a 
not 

STORE 

STE R~,D2(X2,Ba) [ RI, Short Operands] 

-, 
, 70' Ri. X2 Ba D2 I 

0 8 12 16 20 31 

STD R~,D2(Xa,B2) [ RX, Lonq Opera nds] 

160' R~ 12 B2 D2 
--I 

0 8 12 16 20 31 

The first operand is placed unchanqed in 
the second-operand location. 

The Ri. field must designa te register 0, 2, 
4, or 6; otherwise, a specification 
exception is recognized. 

Condition £Qde: 
unchanged. 

The code 

Access (store, operand 2) 

remains 

J 

Operation (if the floatinq-point J' 
feature is not installed) 

Specification 



~ 

l" 

SUBTRACT NORMALIZED 

SER R,.,R a [RR, Short Operands] 

'3B' F'l. F:a 

0 8 12 15 

SE R,.,D:a (l:uB:a) [ RI, Short Operands] 

.--,- , 
, 7B' R,. l:a I B:a I D:a I 

• 
0 8 12 16 20 31 

SDR R,.,R a [ FR, Long Operands] 

r ~ 

I ' 2B' I R'l. F:a 
I 

0 8 12 15 

SD R,.,D2 (la,Ba) r RI, Long Operands 1 

, 6B' R'l. 12 B:a D:a 

0 8 12 16 20 31 

SIR R,. , R:a [RR, Extended Operandsl 

'37' R'l. R:a 

0 8 12 15 

The second operand is subtracted from the 
first operand, and the normalized 
difference is placed in the first-operand 
location. 

The execution of SUBTRACT NORMALIZED is 
identical to that of ADD NORMALIZED, except 
that the second operand participates in the 
operation with its sign bit inverted. 

The R'l. field of SER, SE, SDR, and SD, and 
the R2 field of SER and SDR must designate 
register 0, 2, 4, or 6. The R'l. and R:a 
fields of SIR must designate register 0 or 
q. otherwise, a specification exception is 
recognized. 

o 
1 
2 
3 

Result fraction is zero 
Result is less than zero 
Result is greater than zero 

Access (fetch, operand 2 of SE and SD 
only) 

Exponent Overflow 
Exponent Underflow 
Operation (if the floating-point 

feature is not installed, or, for 
SIR, if the extended-precision 
floating-point feature is not 
installed) 

Siqnificance 
Specification 

SUB TRACT UNNOR Mi LI ZED 

SUR R'l.,R:a [ RR, Short Operands] 

, 3F' R,. R:a 

0 8 12 15 

SU R,.,D:a(1 2 ,B:a) [ RI, Short Operands] 

-, 
, 7F' R'l. l:a B2 D2 I 

0 8 12 16 20 31 

SiR R,.,R:a [ RR, Long Operands] 

, 2F' Rt.. R:a 

0 8 12 15 

Si Rt..,D:a(X:a,B:a) [ RI, Long Operands] 

. . 
, 6F' I R,. l:a B:a D2 

• ---l 

0 8 12 16 20 31 

subtracted from the 
the unnormalized 
the first-operand 

The second operand is 
first operand, and 
difference is placed in 
location. 

The execution of SUBTRACT UNNORMALIZED is 
identical to that of ADD UNNORMALIZED, 
except that the second operand participates 
in the operation with its sign bit 
inverted. 

The R,. and R:a fields must designate 
register 0,2,4, or 6; otherwise, a 
specification exception is recognized. 

o Result fraction is zero 

Chapter 9. Floating-Point Instructions 9-15 



1 Result is less than zero 
2 Result is qreater than zero 
3 

Access (fetch, operand 2 of SU and SW 

9-16 System/370 Principles of Operation 

only) 
Exponent Overflow 
Operation (if the floating-point 

feature is not installed) 
Significance 
Speci fication 

J 



CONNECT CHANNEL SET ••••••••••••••••••••••••••••••••••••••••••• 10-5 
DIAGNOSE •••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-5 
DISCONNECT CHANNEL SET •••••••••••••••••••••••••••••••••••••••• 10-6 
EXTRACT PRIMARY ASN •••••••••••••••••••.••••••••••••••••••••••• 10-6 
EXTRACT SECONDARY ASN ••••••••••••••••••••••••••••••••••••••••• 10-1 
INSERT ADDRESS SPACE CONTROL •••••••••••••••••••••••••••••••••• 10-1 
INSERT PSi KEY •••••••••••••••••••••••••••••••••••••••••••••••• 10-8 
INSERT STORAGE KEY •••••••••••••••••••••••••••••••••••••••••••• 10-9 
INSERT VIRTUAL STORAGE KEY •••••••••••••••••••••••••••••••••••• 10-9 
INVALIDATE PAGE TABLE ENTRY ••••••••••••••••••••••••••••••••••• 10-10 
LOAD ADDRESS SPACE PARAMETERS ••••••••••••••••••••••••••••••••• 10-11 

PASN Translation •••••••••••••••••••••••••••••••••••••••••••• 10-12 
SASN Translation •••••••••••••••••••••••••••••••••••••••••••• 10-12 
SASN Authorization •••••••••••••••••••••••••••••••••••••••••• 10-12 
Control-Register Loading •••••••••••••••••••••••••••••••••••• 10-12 
Other Conditions •••••••••••••••••••••••••••••••••••••••••••• 10-13 
Summary ••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-13 

LOAD CONTROl •••••••••••••••••••••••••••••••••••••••••••••••••• 10-16 
LOAD PSW •••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-11 
LOAD REAL AIDRESS ••••••••••••••••••••••••••••••••••••••••••••• 10-11 
MOVE TO PRIMARY ••••••••••••••••••••••••••••••••••••••••••••••• 10-18 
MOVE TO SECONDARY ••••••••••••••••••••••••••••••••••••••••••••• 10-18 
MOVE WITH KEY ••••••••••••••••••••••••••••••••••••••••••••••••• 10-20 
PROGRAM CALL •••••••••••••••••••••••••••••••••••••••••••••••••• 10-21 

PROGRAM CALL to Current Primary (PC-cp) ••••••••••••••••••••• 10-22 
PROGRAM CALL with Space switching (PC-ss) ••••••••••••••••••• 10-22 

PROGRAM TRANSFER •••••••••••••••••••••••••••••••••••••••••••••• 10-28 
PROGRAM TRANSFER to Current Primary (PT-cp) ••••••••••••••••• 10-28 
PROGRAM TRANSFER with Space switching (PT-ss) ••••••••••••••• 10-28 

PURGE TLB ••••.•••••••••••••••••••••••••••••••••••••••••••••••• 10-33 
READ DIRECT ••••••••••••••••••••••••••••••••••••••••••••••••••• 10-33 
RESET REFERENCE BIT ••••••••••••••••••••••••••••••••••••••••••• 10-34 
SET ADDRESS SPACE CONTROL ••••••••••••••••••••••••••••••••••••• 10-34 
SET CLOCK ••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-35 
SET 
SET 
SET 

CLOCK CCMPARATCR •••••••••••••••••••••••••••••••••••••••••• 10-36 
••••••••••••••••••••••••••••••••••••••••••••••••• 10-36 CPU TIMER 

PREFIX •••••••••••••••••••••••••••••••••••••••••••••••••••• 10-36 
SET PSW KEY FROM ADDRESS •••••••••••••••••••••••••••••••••••••• 10-31 
SET SECONDARY ASN ••••••••••••••••••••••••••••••••••••••••••••• 10-38 

SET SECONDARY 
SET SECONDARY 

ASN to Current Primary (SSAR-c~ •••••••••••••• 10-38 
ASN with Space switching (SSAR-ss) •••••••••••• 10-38 

SET STORAGE KEY ••••••••••••••••••••••••••••••••••••••••••••••• 10-Q1 
SET SYSTEM MAS~ ••••••••••••••••••••••••••••••••••••••••••••••• 10-41 

10-42 
10-43 
10-43 

SIGNAL PPOCESSCR •••••••••••••••••••••••••••••••••••••••••••••• 
STORE CLOCK COMPARATOR •••••••••••••••••••••••••••••••••••••••• 
STORE CONTROL ••••••••••••••••••••••••••••••••••••••••••••••••• 
STORE CPU AIDRESS ••••••••••••••••••••••••••••••••••••••••••••• 10-44 
STORE CPU It •••••••••••••••••••••••••••••••••••••••••••••••••• 10-Q4 
STORE CPU TIMER ••••••••••••••••••••••••••••••••••••••••••••••• 10-45 
STORE PREFIX •••••••••••••••••••••••••••••••••••••••••••••••••• 10-45 
STORE THEN AND SYSTEM MASK •••••••••••••••••••••••••••••••••••• 10-45 
STORE THEN OR SYSTEM MASK ••••••••.•••••••••••••••••••••••••••• 10-46 
TEST BLOCK •••••••••••••••••••••••••••••••••••••••••••••••••••• 10-46 
TEST PROTECTION ••••••••••••.•••••••••••••••••••••••••••••••••• 10-48 
WRITE DIRECT •••••••••••••••••••••••••••••••••••••••••••••••••• 10-49 

The control instructions include all 
privileged and semiprivileged instructions, 
except the input/output instructions, which 

are described in 
Operations." 

Chapter 12, "Input/Output 

Chapter 10. Control Instructions 10-1 



Privileged instructions may be executed 
only when the CPU is in the supervisor 
state. An attempt to execute a privileged 
instruction in the problem state generates 
a privileged-operation exception. 

The semiprivileged instructions are those 
instructions that can be executed in the 
problem state when certain authority 
requirements are met. An attempt to 
execute a semiprivileged instruction in the 
problem state when the authority 
requirements are not met generates a 
privileged-operation exception or some 
other program-interruption condition 
depending on the particular requirement 
which is violated. Those requirements 
which cause a privileged-operation 
exception to be generated in problem state 

10-2 System/370 principles of Operation 

are not enforced when executed in the 
supervisor state. 

The control instructions and their 
mnemonics, formats, and operation codes are 
listed in the fiqure "Control 
Instructions." The fiqure also indicates 
when the condition code is set and the 
exceptional conditions in operand 
designations, data, or results that cause a 
program interruption. 

Note: In the detailed descriptions of the 
individual instructions, the mnemonic and 
the symbolic operand designation for the 
assembler language are shown with each 
instruction. For LOAD PSi, for example, 
LPSi is the mnemonic and Da(Ba) the operand 
designation. 



, 

L I IMne- I Op I , Name Imonicl Characteristics Code I 

• I I I • , I 
ICONNECT CHANNEL SET ICONCSIS C CSIP I I B200 I 
I DIAGNOSE I I DM IP DM I I 83 I 
IDISCONNECT CHANNEL SET IDISCSIS C CSIP I I B201 I 
IEXTRACT PRIMARY ASN I EPAR I RRE DUIQ I SOl R B226 I 
,EXTRACT SECONDARY ASN I ESAR I RRE DUIQ I SOl R B227 I 

• I I I I I I I 
IINSEIT ADDRESS SPACE CCNTROL IIAC IRRE C DUIQ I SOl R I B224 I 
IINSERT PSW KEY IIPK IS PKIQ I I R I B20B I 
IINSERT STORAGE KEY IISK IRR IP Al SPI I R 109 I 
IINVALIDATE PAGE TABLE ENTFY IIPTE IRRE EFIP Al I $ I IB221 I 
l- I I I I I I I 
IINSERT VIFTUAL STORAGE KEY I IVSK IFRE DUIQ Al I SOl R I B223 I 
ILOAD CONTROL ILCTL IRS IP A SPI I IB7 I 
ILOAD ADDRESS SPACE PARAMETERS ILASP ISSE C DUIO AS SPI SOl I E500 I 
ILOAD PSW ILPSW IS L IP A SPI t I 182 I 
,LOAD REAL ADDRESS ILRA IRX C TRIP Al I I R I B1 I 
I--- I I I I I I ~ 
I MOVE TO PRIMARY MVCP ISS C DUIQ Al I t SOl STIDA I 
IMOVE TO SECONDAFY MVCS ISS C DUIQ Al I t SOl STI DB I 
IMOVE WITH KEY MVCK ISS C DUIQ A I I STID9 I 
I PROG RAM CALL PC IS DUIQ AT I PC T t SOIB R XTIB218 I 
I PROGFAM TRANSFEF PT IFRE DUIQ AT SPI PA T t SOIB XTIB228 I 

• I I I I I I 
I PURGE TLB PTLB IS TRIP I $ I IB20D I 
I READ DIRECT RDD lSI DCIP Al I $ I SDI85 I 
IRESET REFERENCE BIT RRB IS C TRIP Al I I I B213 I 
ISET ADDRESS SPACE CONTROL SAC IS DUI SPI t SOl I B219 I 
I--- I I I I I I I 
I SET CLOCK SCK IS C I P A SPI I I B204 I 

L ISET CLOCK COMPARATOF SCKC IS CKIP A SP I I I B206 I 
ISET CPU THIER SPT IS CKIP A SPI I IB208 I 
I SET PREFIX SPX IS MPIP A SPI $ I IB210 I 
ISET PSW KEY FROM ADDRESS SPKA IS PKIQ I I I B20A I ...-- I I I I I , 
ISET SECONDARY ASN SSAR IRRE DUI AT I SA T t SOl STIB225 I 
ISET STORAGE KEY SSK IRR IP Al SPI t I 108 I 
ISET SYSTEM MASK SSM IS IP A SPI SOl 180 I 
ISIGNAL PROCESSOR SIGP IRS C MPIP I $ I R I AE I 
r- I I I I I I , 
ISTORE CLOCK COMPARATOR ISTCKCIS CKIP A SP I STIB207 I 
ISTORE CONTROL I STCTLIRS IP A SP I STIB6 I 
ISTORE CPU ADDRESS I STAP IS ItPIP A SP I STIB212 I 
I STORE CPU ID ISTIDPIS I P A SP I STIR202 I 
I-- I I I I I I 
I STORE CPU TIMER ISTPT IS CKIP A SP I STIB209 I 
ISTOPE PREFIX ISTPX IS ItP I P A SP I STIB211 I 
ISTORE THEN AND SYSTEM MASK ISTNSltlSI TRIP A I STIAC I 
ISTORE THEN OR SYSTEM MASK ISTOSMISI TRIP A SP I STIAD I 
ITEST BLOCK ITB IFRE C TBIP Al $ III R I B22C I 
I--- I I I I I , 
ITEST PROTECTION I TPROT I S SE C EFIP Al I IE501 I 
I WRITE DIRECT IWRD lSI DCI P Al $ I 184 I 
L-- ---L- , , I ----' 

Summarv of Control Instructions (Part 1 of 2) 

Chapter 10. Control Instructions 10-3 



r------------------------------------------------------------------------------------------------, 
~.!El~ n a :LiQ!! : 

A Access exceptions for logical address 
Al Access exceptions; not all access exceptions may occur; see instruction 

description for details 
AI Access exceptions for instruction address 
AS Access exception and ASN-trans1ation-specification exception; see instruction 

description for details 
AT ASN-translation exceptions (include addressing, ASN-trans1ation specification, 

AFX translation, and ASX translation) • 
B PER branch event 
C Condition code is set 
CK cPU-timer and c10ck-ccmparator feature 
CS Channe1-set-switching feature 
DC Direct-control feature 
DM Depending on the model, DIAGNOSE may generate various program exceptions 

and may change the condition code. 
DU Dua1-address-space facility 
EF Extended facility 
L New condition code loaded 
MP Multiprocessing feature 
P Privileged-operation exception 
PA Additional exceptions for PROGRAM TRANSFER (include addressing and primary 

authority) 
PC Additional exceptions for PROGRAM CALL (include adllressing, Pc-translation 

specification, LX translation, and EX translation) 
PK PSW-keY-hand1ing feature 
Q Privileged-operation exception for semiprivi1eged instructions 
R PER general-register alteration event 
RR RR instruction format 
RRE RRE instruction format 
RS RS instruction format 
RX RX instruction format 
S S instruction format 
SA Additional exceptions for SET SECONDARY ASN (include addressing and secondary 

authority) 
SD PER storage-alteration event, which can be caused by RDD only when IPTE is 

not installed. 
SI SI instruction format 
SO Special-operation exception 
SP Specification exception 
SS SS instruction format 
SSE SSE instruction format 
ST PER storage-alteration event 
T Trace exceptions (include access and specification) 
TB Test-block feature 
TR Translation feature 
XT space-switch event and PER storage-alteration event 
t Causes serialization and checkpoint synchronization 
$ Causes serialization 

Summary of Control Instructions (Part 2 of 2) 

10-4 system/370 principles of Operation 



L 
CONNECT CHANNEL SET 

CONCS D2 (B2) [S] 

r-
I ' B200' B2 D:a 
L-

0 16 20 31 

The channel set currently connected to this 
C~u is disconnected, and the addressed 
channel set, if currently disconnected, is 
connected to this cpu. 

The second-operand address, specified by 
the B2 and D2 fields, is not used to 
address data; bits 16-31 form the 16-bit 
channel-set address. Bits 8-15 of the 
second-operand address are ignored. 

When the channel set currently connected to 
this cpu is not the channel set addressed 
by the instruction, the currently connected 
channel set is immediately disconnected 
from this CPU, regardless of whether the 
channel set addressed by the instruction is 
operational or can be connected to this 
cpu. 

If the addressed channel set is currently 
connected to this CPU, no operation is 
performed, and condition code 0 is set. If 
the addressed channel set is operational 
and currently disconnected, it is connected 
to this CPU, and condition code 0 is set. 

When the addressed channel set is connected 
to another CPU, it is not connected to this 
CPU, and condition code 1 is set. 

When the addressed channel set is not 
operational, condition code 3 is set. 

A serialization function is performed. 
That is, CPU operation is delayed until all 
previous accesses by this CPU to main 
storage have been completed, as observed by 
channels and other CPUs. No subsequent 
instructions or their operands are accessed 
by this CPU until the execution of this 
instruction is completed. If a channel in 
the channel set which is connected by means 
of this instruction has an IIO interruption 
pending, and if the CPU is enabled for IIO 
interruptions, the interruption is 
recognized at the completion of this 
instruction. 

o Connection operation completed 
1 Connection operation not 

2 

performed; addressed channel set 
connected to another CPU 

3 Not operational 

PrOqIAIDlnterruptions: 

Operation (if the 
feature switching 

installed) 
Privileged Operation 

channel-set-
is not 

DIAGNOSE 

, 83' 

o 8 31 

The CPU performs built-in diagnostic 
functions, or other model-dependent 
functions. The purpose of the diagnostic 
functions is to verify proper functioning 
of CPU equipment and to locate faulty 
components. Other model-dependent 
functions may include disablinq of failing 
buffers, reconfiguration of storage and 
channels, and modification of control 
storage. 

Bits 8-31 may be used as 
formats, or in some other 
the particular diagnostic 
use depends on the model. 

in the SI or RS 
way, to specify 
function. The 

The execution of the instruction may affect 
the state of the CPU and the contents of a 
register or storage location, as well as 
the progress of an IIO operation. Some 
diagnostic functions may cause the test 
indicator to be turned on. 

Condition ~2£~: The code is unpredictable. 

Privileged Operation 
Depending on the model, other 

exceptions ma y be recoqni zed. 

1. Since the instruction is not intended 
for problem-program or supervisor­
program use, DIAGNOSE has no mnemonic. 

2. DIAGNOSE, unlike other instructions, 
does not follow the rule that 
programming errors are distinquished 
from equipment errors. Improper use 
of DIAGNOSE may result in false 
machine- check indica tions or ma y cause 
actual machine malfUnctions to be 
iqnored. It may also alter other 
aspects of system operation, including 
instruction execution and channel 
operation, to an extent that the 

Chapter 10. Control Instructions 10-5 



operation does not comply with that 
specified in this publication. As a 
result of the improper use of 
DIAGNOSE, the system may be left in 
such a condition that the power-on 
reset or initial-microprogram-loading 
(IML) function must be performed. 
Since the function performed by 
DIAGNOSE may differ from model to 
model and between versions of a model, 
the program should avoid issuing 
DIAGNOSE unless the program recognizes 
both the model number and version code 
stored by STORE CPU ID. 

DISCONNECT CHANNEL SET 

DISCS D2 (B 2) [ S ] 

T -, 
, B 201 ' B2 I D2 I 

L- I 

0 16 20 31 

The addressed channel set is disconnected 
from the CPU to which it is currently 
connected. If the channel set is not 
connected, no operation is performed. 

The second-operand address, specified by 
the B2 and D2 fields, is not used to 
address data; bits 16-31 form the 16-bit 
channel-set address. Bits 8-15 of the 
second-operand address are ignored. 

When the addressed channel set is not 
connected to any CPU, no operation is 
performed, and condition code 0 is set. 

When the addressed channel set is connected 
either to the CPU issuing the DISCONNECT 
CHANNEL SET instruction or to a CPU that is 
in the stopped or check-stop state, the 
disconnection operation is performed, and 
condition code 0 is set. 

When the addressed channel set is connected 
to another CPU which is in the operating 
state, which is being reset, or for which a 
SIGP reset is pending, no disconnection 
operation is performed, and condition code 
1 is set. 

When the addressed channel set is connected 
to another CPU which is in the load state 
or which is in the operator-intervening 
state, it depends on the model if condition 
code 0 or 1 is set. The action taken in 
this case is consistent with the condition 
code indicated. 

When the addressed channel set is not 
operational, condition code 3 is set. 

A serialization function is performed. 

10-6 System/370 principles of Operation 

Tha t is, CPU operation is delayed until all 
previous accesses by this CPU to main 
storage have been completed, as observed by 
channels and other CPUs. No subsequent 
instructions or their operands are accessed 
by this CPU until the execution of this 
instruction is completed. 

o Disconnection operation completed 
1 Disconnection operation not 

performed; addressed channel set 
connected to another CPU which is 
not in the proper state 

2 
3 Not operational 

Operation (if the channel-set-
switching feature is not 
installed) 

privileged Operation 

I EXTRACT PRIMARY ASN 

EPAR [RRE] 

r I i i I 

I 'B226' I11111111I Rs. I1111I 

o 16 24 28 31 

The 16-bit PASN, bits 16-31 of contr01 
register 4, is placed in bit positions 
16-31 of the general register desiqnated by 
the Rs. fiE!ld. Bits 0-15 of the general 
register are set to zeros. 

Bits 16-23 and 28-31 of the instruction are 
ignored. 

The instruction must be issued with DAT on; 
otherwise, a special-operation exception is 
recognized, and the operation is 
suppressed. The special-operatiort 
exception is recognized in both the problelll 
and supervisor states. 

In the problem state, the extraction­
authority control, bit 4 of controi 
register 0, must be one; otherwise, a 
privileged-operation exception is 
recognized, and the operation is 
suppressed. In the supervisor state, the 
extraction-authority-control bit is not 
examined. 

The priority of recognition of progralll 
exceptions for the instruction is shown in 
the figure "Priority of Execution: EPAR. II 



I 

~: 
CondiliQn ~ode: 
unchanged. 

The code remains 

Operation (if DAS is not 
Privileged Operation 

authority control 
problem state) 

special Operation 

installed) 
(extraction­

is zero in 

1.-6. Exceptions with the same priority 
as the priority of program­
interruption conditions for the 
general case. 

7.A Access exceptions for second 
instruction halfword. 

7.B.1 Operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to DAT being off. 

8. Privileged-operation exception 
due to extraction-authority con­
trol, bit 4 of control register 
0, beino zero. 

~ I Priority of Execution: EPAR 

I EXTRACT SECONDARY ASN 

ESAR fRRE] 

.----------T� ~ I , 
, B227' I11I11111I R~ I11I1I 

L--______ -..&'_ I I 

o 16 24 28 31 

The 16-bit SASN, bits 16-31 of control 
register 3, is placed in bit positions 
16-31 of the general register designated by 
the R~ field. Bits 0-15 of the general 
register are set to zeros. 

Bits 16-23 and 28-31 of the instruction are 
ignored. 

The instruction must be issued with DAT on; 
otherwise, a special-operation exception is 
recognized, and the operation is 
suppressed. The special-operation 
exception is recognized in both the problem 
and supervisor states. 

I I In the problem state, the extraction­
'-' I authority control, bit 4 of control 

I register 0, must be one; otherwise, a 

privileged-operation exception is 
recognized, and the operation is 
suppressed. In the supervisor state, the 
extraction-authority-control bit is not 
examined. 

The priority of recognition of program 
exceptions for the instruction is shown in 
the figure "Priority of Execution: ESAR." 

Conditign £Qde: 
unchanged. 

The code remains 

Program ~~Etions: 

Operation (if DAS is not 
Privileged Operation 

authority control 
problem state) 

Special Operation 

installed) 
(extraction­

is zero in 

r- , 
1.-6. Exceptions with the same priori tyl 

as the priority of proqram- I 
interruption conditions for the I 
general case. I 

I 
7.A Access exceptions for second I 

instruction halfword. I 
I 

7.B.1 Operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to DAT being off. 

8. Privileged-operation exception 
due to extraction-authority con­
trol, bit 4 of control register 
0, being zero. 

I Priority of Execution: ESAR 

I INSERT ADDRESS SPACE CONTROL 

lAC r RRE] 

r---------~Ir-----,Ir---rl---, 

I 'B224' I1I111I1II R~ I1111I 
, I 

o 16 24 28 31 

The address-space-control bit, bit 16 of 
the current psw, is placed in bit position 
23 of the general register desiqnated by 
the R~ field. Bits 16-22 of the register 
are set to zeros, and bits 0-15 and 24-31 
of the register remain unchanged. The 
address-space-control bit is also used to 
set the condition code. 

Chapter 10. Control Instructions 10-7 



Bits 16-23 and 28-31 of the instruction are I proqrammiD~ MQtes 
ignored. 

The instruction must bE issued with DAT on; 
otherwise, a special-operation exception is 
recognized, and the operation is 
suppressed. The special-operation 
exception is recognized in both the problem 
and supervisor states. 

In the problem state, the extraction­
authority control, bit 4 of control 
register 0, must be on e; otherwise, a 
privileged-operation exception is 
recognized, and the operation is 
suppressed. In the supervisor state, the 
extraction-authority-control bit is not 
examined. 

The priority of recognition of program 
exceptions for the instruction is shown in 
the figure "Priority of Execution: lAC." 

o 
1 
2 
3 

PSW bit 16 is zero 
PSW bit 16 is one 

Proqr~m Exceptions: 

operation (if DAS is not 
Privileged Operation 

authority control 
problem state) 

special Operation 

installed) 
(extraction­

is zero in 

1.-6. Exceptions with the same priority 
as the priority of program­
interruption conditions for the 
general case. 

7.A Access exceptions for second 
instruction halfword. 

7.B.1 Operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to DAT being off. 

8. Privileged-operation exception 
due to extraction-authority con­
trol, bit 4 of control register 
0, being zero. 

I Priority of Execution: lAC 

10-8 svstem/370 principles of Operation 

1. Bits 16-19 of the general register 
designated by the R~ field are 
reseI:ved for expansion for use with 
possi.ble future facilities. The 
progL"am shoUld not depend on these 
bits being set to zero. Similarly, 
condi.tion codes 2 and 3 may be set as 
a result of future facilities. 

2. The instructions lAC and SAC are 
defined to operate on the third byte 
of a general register so that the 
address-space-control bit can be saved 
in the same general register as the 
PSi k:ey, which is placed in the fourth 
byte of general register 2 by the IPK 
instruction. 

INSERT PSIir KEY 

IPK [ S] 

r------------------..r-----------------" 
I 'B20B' 111111111111111111 , , , 

o 16 31 

The four-bit PSW-key, bits 8-11 of the 
current P SW , is inserted in bit posi tion s 
24-27 of general register 2, and bits 28-31 
of that register are set to zeros. Bits 
0-23 of general register 2 remain 
unchanged. 

Bits 16-31 of the instruction are ignored. 

In the problem state, when DAS is 
installed, the extraction-authority 
control, bit 4 of control register 0, must 
be one; otherwise, a privileged-operation 
exception is recognized, and the operation 
is suppressed. When DAS is not installed, 
execution of the instruction in the problem 
state results in a priVileged-operation 
exception regardless of the extraction­
authority control. In the supervisor 
state, the extraction-authority-control bit 
is not examined. 

Resulting ConditiQn ~QQ~: The code remains 
unchanged. 

Operation (if the PSW-key-handling 
feature is not installed) 

Privileged Operation (extraction-
authority control is zero in 
problem state) 

J 



INSERT STORAGE KEY 

[RR 1 

'09' R~ 

o 8 12 15 

The storage key associated with the 2K-byte 
block that is addressed by the contents of 
the general register designated by the Ra 
field is inserted in the general register 
designated by the R~ field. 

Bits 8-20 of the register designated by the 
Ra field designate a block of 2K bytes in 
real storage. Bits 0-7 and 21-27 of the 
register are ignored. Bits 28-31 of the 
register must be zeros; otherwise, a 
specification exception is recognized, and 
the operation is suppressed. 

The address designating the storage block, 
being a real address, is not subject to 
dynamic address translation. The reference 
to the storage key is not subject to a 
protection exception. 

The execution of the instruction depends on 
whether the PSi specifies the EC or BC 
mode. In the EC mode, the seven-bit 
storage key is inserted in bit positions 
2ij-30 of the register designated by the R~ 
field, and bit 31 is set to zero. In the 
BC mode, bits O-q of the storage key are 
placed in bit positions 2q-28 of that 
register, and bits 29-31 of the register 
are set to zeros. In both modes, the 
contents of bit positions 0-23 of the 
register remain unchanged. 

COQdii!QQ ~ode: 
unchanged. 

The 

Addressing (operand 2) 
Privileged Operation 
Specification 

I INSERT VIRTUAL STORAGE KEY 

IVSK [RRE) 

code remains 

.-----------------T'------ T'----,---~ 

'B223' 1////////1 R~ 

o 16 28 31 

The storage key associated with the 2K-byte 
block addressed by the contents of the 
general register designated by the Ra field 

is inserted in the general 
designated by the R~ field. 

register 

Bits 16-23 of the instruction are ignored. 

In the problem state, the extraction­
authority control, bit q of control 
register 0, must be one; otherwise, a 
privileged-operation exception is 
recognized, and the operation is 
suppressed. In the supervisor state, the 
extraction-authority-control bit is not 
examined. 

The block is designa ted by bits 8-20 of the 
register; bits 0-7 and 21-31 of the 
register are ignored. 

The block address is a virtual address and 
is subject to the address-space-selection 
bit, bit 16 of the current PSi. In the 
primary-space mode, the address is treated 
as a primary-virtual address; in the 
secondary mode, the address is treated as a 
secondary-virtual address. The instruction 
must be issued with DAT on; otherwise, a 
special-operation exception is recoqnized, 
and the operation is suppressed. The 
reference to the storage key is subject to 
the normal access exceptions, except that 
protection does not apply. 

Bits O-q of the storage key, which are the 
access-control bits and the 
fetch-protection bit, are placed in bit 
positions 2q-28 of the register designated 
by the R~ field, with bits 29-31 set to 
zeros. The change and reference bits in 
the storage key are not inspected. The 
change bit is not affected by the 
operation. The reference bit, depending on 
the model, mayor may not be set to one as 
a result of the operation. 

The following diagram depicts the execution 
of the IVSK instruction: 

Key from Block 
t ii" 

IACC IFIRICI . , 
, 
I 
I Zeros 
, I 

...--, , 
Ii' , 

lACe IFIOOOI 
I I , 

o 31 

The priority of recoqnition of program 
exceptions for the instruction is shown in 
the figure "Priority of Execution: IVSK." 

Chapter 10. Control Instructions 10-9 



Access (except for protection, block 
specified by R2) 

Operation (if DAS is not installed) 
Privileged operation (extraction-

authority control is zero in 
problem state) 

Special Operation 

1.-6. Exceptions with the same priority 
as the priority of program­
interruption conditions for the 
general case. 

7.A Access exceptions for second 
instruction halfword. 

7.B.1 operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to DAT being off. 

8. Privileqed-operation exception due 
to extraction-authority control, 
bit 4 of control register 0, 
beinq zero. 

9. Access exceptions except for 
protection. 

I Priority of Execution: IVSK 

INVALIDATE PAGE TABLE ENTRY 

IPTE [RRE1 

~--------------.~ .~,----,---~ 

'B221' 1////////1 Rs. R2 
I ~I ____ ~ __ ~ 

16 24 28 31 

The designated page-table entry is 
invalidated, and the associated 
translation-lookaside-buffer (TLB) entries 
in all CPUs of the configured system are 
purged. 

The contents of the register designated by 
the Rs. field have the format of a 
segment-table entry with only the 
page-table origin used. The contents of 
the register designated by the R2 field 
have the format of a virtual address with 
only the page index used. The contents of 
fields that are not part of the page-table 
origin or page index are ignored. 

The translation format, contained in bit 

10-10 System/370 principles of Operation 

positions 8-12 of control register 0, 
specifies the mode for translation. If an 
invalid combination is contained in these 
bit positions, a translation-specification 
exception is recognized, and the operation 
is suppressed. 

The page-table origin and the page index 
designate a page-table entry, following the 
dynamic-ad dress-translation rules for 
page-table lookup. The address formed from 
these two components is a real address. 
The page-invalid bit of this page-table 
entry is set to one. Durinq this 
procedure, no page-table-Iength check is 
made, and the page-table entry is not 
inspected for availability or format 
errors. Additionally, the page-frame real 
address contained in the entry is not 
checked for an addressing exception. 

The entire 
concurrently 
S ubsequen tly 
page-invalid 

page-table entry is fetched 
from ma in storage. 

the byte containing the 
bi t is stored. 

A serialization function is performed on 
the CPU which is issuing IPTE. CPU 
operation is delayed until all previous 
accesses by this CPU to main storage have 
been completed, as observed by channels and 
other CPUs. No subsequent instructions or 
their operands are accessed by this CPU 
until the execution of this instruction is 
completed. 

In addition to setting the page-invalid bit 
to one, this CPU performs a purge of 
selected entries from its TLB and signals 
all CPUs configured to it to perform a 
purge of selected entries from their TLBs. 
Each TLB is purged of at least those 
entries that have been formed using all of 
the following: 

• 

• 

• 

• 

The translation format specified in 
bit positions 8-12 of control register 
o of the CPU issuing IPTE 

The page-table origin specified by the 
IPTE instruction 

The page index specified by the IPTE 
instruction 

The page-frame real address contained 
in the designated page-table entry 

The execution of IPTE is not completed on 
the CPU which is issuing it until all 
entries corresponding to the specified 
parameters have been purged from the TLB on 
this CPU and until all other configured 
CPUs have completed any storage accesses, 
including the updating of the change and 
reference bits, using TLB entries 
corresponding to the specified parameters. 

When the generated address of the 



page-table entry refers to a location 
outside the main storage of the configured 
system, an addressing exception is 
recognized, and the operation is 
suppressed. When the attempt to set the 
page-invalid bit causes a protection 
violation, a protection exception is 
recognized, and the operation is 
suppressed. When bit positions 8-12 of 
control register 0 contain an invalid code, 
a translation-specification exception is 
recognized, and the operation is 
su ppr essed. 

Condition ~ode: 
unchanged. 

The code remains 

Addressing (page-table entry) 
operation (if the extended facility is 

not installed) 
Privileged Operation 
protection (fetch and 

table entry, 
protection and 
protection) 

store, page­
key-controlled 

low-address 

Translation Specification (bits 8-12 
in CRO only) 

1. The selective purge may be implemented 
in different ways, depending on the 
model, and, in general, more entries 
may be purged than the minimum number 
required. Some models may purge all 
entries with the specified page-frame 
real address. Others may purge all 
entries with the page index, and some 
implementations may purge precisely 
the minimum number of entries 
required. Therefore, in order for a 
program to run on all models, the 
program should not take advantage of 
any properties obtained by a less 
selective purge on a particular model. 

2. The purge of TLB entries may make use 
of the page-frame real address in the 
page-table entry. Therefore, if the 
page-table entry, while being 
attached, has had a page-frame real 
address that is different from the 
current value, copies of the previous 
values may remain not purged. 

3. IPTE cannot be safely used to update a 
shared location in main storage if the 
possibility exists that another CPU 
may also be updating the location. 

I LOAD ADDRESS SPACE PARAMETERS 

LASP ( SSE] 

r-------"-----------r----T, I--~---r---I__, 
• E5 00' B~ I D~ B2 D2 I 

L-________________ ~L-___i __ 1 I~ 

o 16 20 32 36 47 

The contents of the doubleword at the 
first-operand location contains values to 
be loaded into control registers 3 and 4, 
including a secondary ASN and a primary 
ASN. Execution of the instruction consists 
in performing four major steps: PASN 
translation, SASN translation, SASN 
authorization, and control-register 
loading. Each of these steps mayor may 
not be performed, depending on the outcome 
of certain tests and on the setting of bits 
29- 31 of the second-operand address. These 
steps, when successful, obtain additional 
values, which are loaded into control 
registers 1, 5, and 7. when the steps are 
not successful, no control registers are 
changed, and the reason is indicated in the 
condition code. 

The instruction can be executed only when 
the ASN-translation control, bit 12 of 
control register 14, is one. If the ASN­
translation-control bit is zero, a special­
operation exception is recognized, and the 
operation is suppressed. 

The doubleword first operand contains a 
PSW-key mask (PKM), a secondary ASN (SASN), 
an authorization index (AX), and a primary 
ASN (PASN). The primary ASN is translated 
by means of the address-space tables to 
obtain a PSTD, LTD, and, optionally, an AX. 
The secondary ASN is translated by means of 
the address-space tables to obtain an SSTD, 
and, optionally, an authority check is made 
to ensure that the new AX is authorized to 
the new SASN. 

The doubleword at the first-operand 
location has the following format: 

PKM-d SASN-d AX-d PASN-d 

o 16 32 48 63 

The "d" stands for designated doubleword 
and is used to distinguish these fields 
from other fields with similar names which 
are referred to in the definition. The 
current contents of the corresponding 
fields in the control registers are 
referred to as PKM-old, SASN-old, etc. The 
updated contents of the control registers 
are referred to as PKM-new, SASN-new, etc. 

The second-operand addre ss is not used to 
address data; instead, the low-order three 

Chapter 10. Control Instructions 10-11 



bits are used to control portions of the 
operation. The remainder of the address is 
ignored. Bits 29-31 of the second-operand 
address are used as follows: 

29 Force ASN translation 
30 Use AX from first operand 
31 Skip SASN authorization 

In the PASN translation process, the PASN-d 
is translated by means of the ASN first 
table and the ASN second table. The STD 
and LTD fields and, opt ionally, the AX 
field, obtained from the ASN-second-table 
entry are subsequently used to update the 
corresponding control registers. 

When bit 29 of the second-operand address 
is one, PASN translation is always 
performed. When bit 29 is zero, PASN 
translation is performed only when PASN-d 
is not equal to PASN-old. When bit 29 is 
zero and PASN-d is equal to PASN-old, the 
PSTD-old and LTD-old are left unchanged in 
the control registers and become the 
PSTD-new and LTD-new, respectively. In 
this case, if bit 30 is zero, then the 
AX-old is left unchanged in the control 
register and becomes the AX-new. 

The PASN translation follows the normal 
rules for ASN translation, except that the 
invalid bits, bit 0 in the ASN-first-table 
entry and bit 0 in the ASN-second-table 
entry, when ones, do not result in an ASN­
translation exception, and the space­
switch-event bit in the ASN-second-table 
entry, when one, does not result in a 
space-switch event. When either of the 
invalid bits is one, condition code 1 is 
set. When the ASN-second-table entry is 
valid and the space-switch-event bit is 
one, condition code 3 is set. In both 
cases, the control registers remain 
unchanged. 

The contents of the AX, STD, and LTD fields 
in the ASN-second-table entry which is 
accessed as a result of the PASN 
translation are referred to as AX-p, STD-p, 
and LTD-p, respectively. 

In the SASN-translation process, the SASN-d 
is translated by means of the ASN first 
table and the ASN second table. The STD 
field obtained from the ASN-second-table 

10-12 system/370 principles of Operation 

entry is subsequently used to update the 
secondary- segment-table designation (SSTD) 
in control register 7. The ATO and ATL 
fields obtained are used in the SASN 
authorization, if it occurs. 

SASN translation is performed only when 
SASN-d is not equal to PASN-d. When SASN-d 
is equal to PASN-d, the SSTD-new is set to 
the same value as PSTD-new. When SASN-d is 
egual to SASN-old, bit 29 (force ASN 
translation) is zero, and bit 31 (skip SASN 
authorization) is one, then SASN 
translation is not performed, and SSTD-old 
becomes SSTD-new. 

The SASN translation follows the normal 
rules for ASN translation, except that the 
invalid bits, bit 0 in the ASN-first-table 
entry and bit 0 in the ASN-second-table 
entry, when ones, do not result in an ASN­
translation exception. When either of the 
invalid bits is one, condition code 2 is 
set, and the control registers remain 
unchanged. 

The contents of the STD, ATO, and ATL 
fields in the ASN-second-table entry which 
is accessed as a result of the SASN 
translation are referred to as STD-s, 
ATO-s, and ATL-s, respectively. 

SASN authorization is performed when bit 31 
of the second-operand address is zero and 
SASN-d is not equal to PASN-d. When SASN-d 
is equal to PASN-d or when bit 31 of the 
second-operand address is one, SASN 
authorization is not performed. 

SASN authorization is performed using 
ATO-s, ATL-s, and the intended value for 
AX-new. When bit 30 of the second-operand 
address is zero and PASN translation was 
performed, the intended value for AX-new is 
AX-p. When bit 30 is zero and PASN 
translation was not performed, the AX is 
not changed, and AX-new is the same as 
AX-old. When bit 30 of the second-operand 
address is one, the intended value for 
AX-new is AX-d. SASN authorization follows 
the normal rules for secondary 
authorization, except that, if the AX is 
not authorized, condition code 2 is set, 
and none of the control registers are 
updated. 

When the PASN-transla tion, SASN-
transla tion, and SASN-auth ori za tion 
functions, if called for in the operation, 



are performed without encountering any 
exceptions, the operation is completed by 
replacing the contents of control registers 
1, 3, 4, 5, and 7 with the new values, and 
condition code 0 is set. The control 
registers are loaded as follows: 

The PSW-key-mask and SASN fields in control 
register 3 are replaced by the PKM-d and 
SASN-d fields from the first-operand 
location. 

The PASN, bits 16-31 of control register 4, 
is replaced bV the PASN-d field from the 
first-operand location. 

The authorization index, bits 0-15 of 
control register 4, is replaced as follows: 

• When bit 30 of the second-operand 
address is one, from AX-d. 

• When bit 30 of the second-operand 
address is zero and PASN translation 
is performed, from AX-p. 

• When bit 30 of the second-operand 
address is zero and PASN translation 
is not performed, the authorization 
index is not changed. 

When PASN translation is performed, the 
primary-segment-table designation in 
control register 1 and the linkage-table 
designation in control register 5 are 
replaced from the STD-p and LTD-p fields, 
respectively, which are obtained during 
PASN translation. When PASN translation is 
not performed, the primary-segment-table­
designation and linkage-table-designation 
fields remain unchanged. 

The secondary-segment-table designation in 
control reqister 7 is replaced as follows: 

• 

• 

• 

When SASN-d equals PASN-d, from the 
new contents of control register 1, 
the primary-segment-table designation. 

When SASN translation is performed, 
from SSTD-s. 

The SASN remains unchanged when all of 
the following are true: SASN-d equals 
SASN-old, SASN-d does not equal 
PASN-d, and bits 29 and 31 of the 
second-operand address are zero and 
one, respectively. 

When PASN translation is called for and 
cannot be completed because bit 0 is one in 
either the ASN-first-table or the ASN­
second-table entries, condition code 1 is 
set, and the control registers are not 
changed. 

When PASN translation is called for and the 
translation is completed but the ASN­
second-table entry specifies a space-switch 
event, condition code 3 is set, and the 
control registers are not changed. 

When SASN translation is called for and the 
translation cannot be completed because bit 
o is one in either the ASN-first-table or 
ASN-second-table entries, or because SASN 
authorization is called for and the SASN is 
not authorized, condition code 2 is set, 
and the control registers are not changed. 

The firs.t operand must be designated on a 
doubleword boundary; otherwise, a 
specification exception is recognized, and 
the operation is s~ppressed. The operation 
is suppressed on all addressing and 
protection exceptions. 

The figures "Summary of Actions: LASP" and 
"Priority of Execution: LASP" summarize 
the functions of the instruction and the 
priority of recognition of exceptions and 
condi tion codes .• 

Resulting Co.nditj,.Q!l Code: 

o Translation and authorization 
complete; parameters loaded 

1 primary ASN not available; 
parameters not loaded 

2 Secondary ASN not available or not 
authorized; parameters not loaded 

3 Primary ASN has space-switch event 
specified; parameters not loaded 

Access (fetch, operand 1) 
Addressing (ASN-first-table entry, 

ASN-second-table entry, authority­
table entry) 

ASN-Translation Specification 
Operation (if DAS is not installed) 
Privileged Operation 
Special Operation 
Specification 

Chapter 10. Control Instructi ons 10-13 



r--
I 1 .-6. 
I 
I 
I 7. A 
I 
I 7.B.1 
I 
I 7.B.2 
I 
I 7.B.3 , 

8. 

9. 

10. 

10.1 

10.2 

10.3 

10.4 

10.5 

10.6 

, 10.7 

11 • 

11. 1 

11.2 

11.3 

11. 4 

11.5 

11.6 

12. 

12.1 

12.2 

12.3 

Exceptions with the same priority as the priority of program­
interruption conditions for the general case. 

Access exceptions for second and third instruction halfwords. 

Operation exception if DAS is not installed. 

Privileged-operation exception. 

Special-operation exception due to the ASN-translation control, 
bit 12 of control register 14, being zero. 

Specification exception. 

Access exceptions for the first operand. 

Execution of PASN translation (when performed) • 

Addressing except ion for access to ASN-first-tabIE! entry. 

condition code 1 due to I bit (bit 0) in ASN-first-table entry 
having the value one. 

ASN-translation-specification exception due to invalid ones (bits 
1-7, 28-31) in ASN-first-table entry. 

Addressing exception for access to ASN-second-table entry. 

condition code 1 due to I bit (bit 0) in ASN-second-table entry 
having the value one. 

ASN-translation-specification exception due to invalid ones (bits 
1-7, 30, 31, 60-63, 97-103) in ASN-second-table entry. 

condition code 3 due to space-switch-event bit (bi.t 95) in ASN­
second-table entry having the value one. 

Execution of SASN translation (when performed) • 

Addressing exception for access to ASN-first-table entry. 

Condition code 2 due to I bit (bit 0) in ASN-first-table entry 
having the value one. 

ASN-translation-specification exception due to invalid ones (bits 
1-7, 28-31) in ASN-first-table entry. 

Addressing exception for access to ASN-second-table entry. 

Condition code 2 due to I bit (bit 0) in ASN-second-table entry 
having the value one. 

ASN-translation-specification exception due to invalid ones (bits 
1-7, 30, 31, 60-63, 97-103) in ASN-second-table entry. 

Execution of secondary authorization (when performed). 

Condition code 2 due to authority-table entry being outside table. 

Addressing exception for access to authorit~table entry. 

Condition code 2 due to S bit in authority-table entry being zero. L-____________________ ___ 

priority of Execution: LASP 

10-14 System/370 principles of Operation 



~ 

• ~ 

I Second-oper an d- I 
PASH-oldl Address Bits* PASN I Result Field 
Equals I Translation I 
PASN-d I 29 30 Performed I PSTD-new AX-new LTD-new 

I I 
Yes I 0 0 No I PSTD-old AX-old LTD-old 
Yes I 0 1 No I PSTD-old AX-d LTD-old 
Yes I 1 0 Yes I STD-p AX-p LTD-p 
Yes I 1 1 Yes I STD-p AX-d LTD-p 
No I 0 Yes I STD-p AX-p LTD-p 
No I 1 Yes I STD-p AX-d LTD-p 

Action in this case is the same regardless of the setting of 
this bit. 

* Second-operand-address bits: 
29 Force ASN translation 
30 Use AX from first operand 

Summary of Actions: LASP {Part 1 of ~ 

..-- • 
I I ISecond-Operand-
ISASN-d ISASN-d I Address Bits* SASN 

-,-
I I 
I SASN I 

IEquals I Equals I TranslationlAuthorizat I Result Fieldl 
IPASN-d I SASN-oldl 29 31 Performed IPerformed# SSTD-new I 
I I I I 
I Yes I I No I 
I No I No I 0 Yes I 
I No I No I 1 Yes I 
I No I Yes I 1 0 Yes I 
I No I Yes I 1 1 Yes I 
I No I Yes I 0 0 Yes I 
I No I Yes I 0 1 No I 
~ -1-

I ~.!.l2la.!l~iion: 
I 
I Act ion in this case is t he same regardless of 
I of this bit. 
I 
I # SASN authorization is performed using ATO-s, 
I AX-new. 
I 
I * Second-operand-address bits: 
I 29 Force ASN translation 
I 31 Skip secondary authority test 

Summary of Actions: LASP (Part 2 of 2) 

1 • Bits 29 
address 
provide 
cases 

and 31 in the second-operand 
are intended primarily to 

improved performance for those 
where the step may be 

unnecessary. 

When bit 29 is set to zero, the action 
of the instruction is based on the 

I 
No PSTD-new I 
Yes STD-s I 
No STD-s I 
Yes STD-s I 
No STD-s I 
Yes STD-s I 
No SSTD-old I 

--L- t 
I 
I 

the setting I 
I 
I 

ATt-s, and I 
I 
I 
I 
I 
I 

assumption that the current values for 
PSTD-old, LTD-old, and AX-old are 
consistent with PASN-old and that 
SSTD-old is consistent with SASN-old. 
When this is not the case, bit 29 
should be set to one. 

Bit 31, when one, eliminates the SASN­
authorization test. The program may 
be able to determine in certain cases 
that the SASN is authorized, either 

Chapter 10. Control Instructions 10-15 



because of prior use or because the AX 
being loaded is authorized to access 
all address spaces. 

2. The SAsN-translation and SASN-
authorization steps are not performed 
when SASN-d is equal to PASN-d. This 
is consistent with the action in SET 
SECONDAFY ASN to current primary 
(SSAR-cp), which does not perform the 
translat ion or ASN authorization. 

3. The following is a summary of 
abbreviations used in this instruction 
description. 

r-----------------,-------------------------, 
I Abhreviat ion for 
II r--------,---------~ 
Icontrol-Registerl 
I Number.Bit I 
I I 
I 1.0-31 I 
I 3.0-15 I 
I 3.16-31 I 
I 4.0-15 I 
I 4.16-31 I 
I 5.0-31 I 
I 7.0-31 I 

Previous 
Contents 

PSTD-old 
PKM-old 
SASN-old 
AX-old 
PASN-old 
LTD-old 
SSTD-old 

Subseguent 
Contents 

PSTD-new 
PKM-new 
SASN-new 
AX-new 
PASN-new 
LTD-new 
SSTD-new 

L' _________________ ~, ___________ J~ _________ __J 

r------------------,-----'--------------, 
I First-operand I 
I Bit positions Abhreviation I 
I I 
I 0-15 PKM-d I 
I 16-31 SASN-d I 
I 32-47 AX-d I 
I 48-63 PASN-d I 

I 

I Abbreviation Used for 
I the Field When Accessed 
I as Part of 

IField in ASN-I 
I Second-Table I PASN SASN 
I Entry I Translation Translation 

• I 
I 1-31 I ATO-s 
I 32-47 I AX-p 
I 48-59 I ATL-s 
I 64-95 I STD-p STD-s 
I 96-127 I LTD-p 
I 
I ~.I£!g!latiQ!!: 
1 
I The field is not used in this case. 

10-16 System/370 principles of Operation 

LOAD CONTROL 

r-------~.-----r_--~----_r'------------_, 

1 B7 1 I R2. R3 Ba D2 1 
I --l 

o 8 12 16 20 31 

The set of control registers starting with 
the control register designated by the R2. 
field and ending with the control register 
designated by the R3 field is loaded from 
the locations designated by the 
second-oper.and address. 

The storagE! area from which the contents of 
the control registers are obtained starts 
at the location designated by the 
second-operand address and continues 
through as many storage words as the number 
of control registers specified. The 
control registers are loaded in ascending 
order of their addresses, starting with the 
control register designated by the R2. field 
and continuing up to and including the 
control register designated by the R3 
field, with control register 0 following 
control register 15. The second operand 
remains unchanged. 

The second operand must be designated on a 
word boundary; otherwise, a specification 
exception is recognized, and the operation 
is suppressed. 

Condition ~Qde: 
unchanged. 

Progr~ Exceptions: 

The code 

Access (fetch, operand 2) 
Privileged Operation 
specification 

Programming !otes 

remains 

1. To ensure that existing programs run 
if and when new facilities using 
additional control-register positions 
are defined, only zeros should be 
loaded in unassigned control-register 
posi ti.ons. 

2. Loading of control registers on some 
models may require a significant 
amount of time. This is particularly 
true for changes in significant 
parameters. For example, the TLB may 
be purged as a result of changinq the 
translation parameters in control 
register 0 or as a result of chanqing 
or enabling the program-event-
recording parameters in control 

J 



registers 9-11. Where possible, the 
program should avoid loading 
unnecessary control registers. In 
loading control registers 9-11, the 
model attempts to optimize for the 
case when the bits of control register 
9 are zeros. 

LOAD PSW 

(5] 

, i 

'82' 1////////1 B2 
I I -'--

20 o 8 16 31 

The current PSW is replaced by the contents 
of the doubleword at the location 
designated by the second-operand address. 

If the new PSW specifies the BC mode, 
information in bit positions 16-33 of the 
new PSW is not retained as the PSW is 
loaded. When the PSW is subsequently 
stored, these bit positions contain the new 
interruption code and the instruction­
len gt h code. 

A serialization and checkpoint­
synchronization function is performed at 
the beginning and also at the completion of 
the operation. The CPU operation is 
delayed until all storage accesses due to 
previous instructions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results with no 
possibility of cache deadlock. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPUs. All 
previous checkpoints, if any, for this 
instruction are canceled. 

The operand 
doubleword 
speci fication 
the operation 
is suppressed 
exceptions. 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

The value which is to be loaded by the 
instruction is not checked for validity 
before it is loaded. However, immediately 
after loading, a specification exception is 
recognized and a program interruption 

occurs when the newly 
the EC mode and any 
true: 

loaded PSW specifies 
of the following are 

• The EC facility is not installed, or 

• The contents of bit positions 0, 2-4, 
17, and 24-39 are not all zeros, or 

• Bit position 16 is one and DAS is not 
installed. 

In these cases, the operation is completed, 
and the resulting instruction-length code 
is zero. 

Bits 8-15 of the instruction are ignored. 

Condition Code: The code is set 
specified in-the new PSW loaded. 

Access (fetch, operand 2) 
Privileged Operation 
Specification 

LOAD REAL ADDRESS 

( RX] 

r--------,r---~-----r----~------------, 

'B 1 ' I L. ________ -L ____ ~ ____ L-__ ~ _____________ ~ 

o 8 12 16 20 31 

as 

The real address corresponding to the 
second-operand virtual address is placed in 
the general register designated by the R~ 
field. 

The virtual address specified by the X2 , 
B2 , and D2 fields is translated by means of 
the dynamic-address-translation facility, 
regardless of whether DAT is on or off. 

When DAS is not installed, the translation 
is performed by using the current contents 
of control registers 0 and 1. When DAS is 
installed, the translation is performed by 
using the current translation forma t in 
control register 0 and the segment-table 
designation in either control register 1 or 
7. Control register 1 is used if the 
current PSW specifies BC mode or specifies 
EC mode with bit 16 set to zero. Control 
register 7 is used if the current PSW 
specifies EC mode with bit 16 set to one. 
In either case, the translation is 
performed] without the use of the 
transla tion-lookaside buffer (TLB) • 
Sufficient high-order zeros are appended on 
the left of the resultant real address to 
produce a 32-bit result, which is then 
placed in the general register designated 

Chapter 10. Control Instructions 10-17 



by the R~ field. The translated address is 
not inspected for boundary alignment or for 
addressing or protection exceptions. 

Condition code 0 is set when translation 
can be completed, that is, when the entry 
in each table lies within the specified 
table length and its I bit is zero. 

When the I bit in the segment-table entry 
is one, condition code 1 is set, and the 
real address of the segment-table entry is 
placed in the register designated by the R~ 
field. When the I bit in the page-table 
entry is one, condition code 2 is set, and 
the real address of the page-table entry is 
placed in the register designated by the R~ 
field. When either the segment-table ent ry 
or the page-table entry is outside the 
table, condition code 3 is set, and the 
reqister designated by the R~ field 
contains the real address of the entry that 
would have been referred to if the length 
violation did not occur. In all these 
cases, high-order zeros are appended on the 
left of the real address, and the 32-bit 
result is placed in the register. 

An addressing exception is recognized when 

the simultaneous execution of LRA on this 
CPU and IPTE on another CPU may produce 
inconsistent results. That is, if LRA 
accesses the tables in storage, the PTE may 
appear to be invalid (condition code 2) 
even though the TLB has not yet been 
invalidated, and the TLB may remain valid 
until the completion of IPTE on the other 
CPU. There is no guaranteed limit to the 
number of instructions which may occur 
between the completion of LRA and the TLB 
being purged. 

I MOVE TO PR IHARY 

"VCP D~ (R~ ,B~) ,Da (Ba) ,R3 r ss 1 

1 1-. 
I DA I R~ R3 B~ D~ B2 D2 1 

1 I~ 

0 8 12 16 20 32 36 47 

the address of the segment-table entry or 1 MOVE TO SECONDARY 
page-table entry designates a location 
outside the available main storage of the 
installed system. A translation­
specification exception is recognized when 
bits 8-12 of control register 0 contain an 
invalid code, or the segment-table entry or 
page-table entry has a format error. For 
all these cases, the operation is 
su ppr essed. 

"VCS 

I DB I 

0 

D~ (R~ ,B~) ,Da (Ba) ,R 3 

1 
R~ R3 B~ D~ 

1 
8 12 16 20 

[SS] 

1-. 
Ba Da 1 

I~ 

32 36 47 

Re2ulii~g Congition £od~: The first operand is replaced by the second 

0 Translation available 
1 Segment-table entry invalid (I bit 

is one) 
2 Page-table entry invalid (I bit is 

one) 
3 Segment- or page-table lengt h 

exceeded 

~Qg~am Exceptions: 

Addressing 
Operation (if the translation feature 

is not installed) 
Privileqed Operation 
Translation Specification 

Caution must be observed in the execution 
of LOAD REAL ADDRESS (LRA) in a 
multiprocessing system. Since INVALIDATE 
PAGE TABLE ENTRY (1PTE) may turn on the I 
bit in storage before broadcasting to purge 
the entries from the TLBs of other CPUs, 

10-18 System/370 principles of Operation 

operand. One operand is in the primary 
space, and the other is in the secondary 
space. The accesses to the operand in the 
primary space are performed using the PSW 
key; the accesses to the opera nd in the 
secondary space are performed using the key 
specified in the third operand. 

The addresses of the operands are virtual, 
one operand. address being translated by 
means of the primary segment-table 
description and the other by means of the 
secondary segment-table de scri ption. 
Operand-address translation is performed by 
ignoring the state of the address-space­
selection bit in the current psw. 

Since the secondary space is accessed, the 
operation is performed only when the 
secondary-space control, bit 5 of control 
register 0, is one and DAT is on. When 
either the secondary-space control is zero 
or DAT is off, a special-operation 
exception is recognized, and the operation 
is suppressed. The special-operation 
exception is recognized in both the problem 
and supervisor states. 

..) 



In the problem state, the operation is 
performed only if the secondary-space­
access key is valid. The secondary-space­
access key is valid only if the 
corresponding PSw-key-mask bit in control 
reqister 3 is one. Otherwise, a 
privileged-operation exception is 
recognized, and instruction execution is 
suppressed. In supervisor state, any value 
for the secondary-space-access key is 
valid. 

For MVCP, movement is to the primary 
from the secondary space. 
first-operand address is translated 
the primary segment table, and 
second-operand address is translated 
the secondary segment table. 

space 
The 

using 
the 

using 

For MVCS, movement is to the secondary 
space from the primary space. The 
first-operand address is translated using 
the secondary segment table, and the 
second-operand address is translated using 
the primary segment tatle. 

Bit positions 24-27 of the general register 
specified by the R3 field are used as the 
secondary-space-access key. Bit positions 
0-23 and 28-31 of the register are ignored. 

The contents of the general register 
specified by the R~ field are a 32-bit 
unsigned value called the true length. 

Graphically, the contents of the general 
registers just described are as follows: 

True Lengt h 

o 31 

, i • 

R3 I 1111111111111111111111111 Key I1111I 
, I , , 

o 24 28 31 

The first and second operands are the same 
length, called the effective length. The 
effective length is equal to the true 
length, or 256, whichever is less. Access 
exceptions for the first and second 
operands are recognized only for that 
portion of the operand within the effective 
length. When the effective length is zero, 
no access exceptions are recognized for the 
first and second operands, and no movement 
takes place. 

Each storage operand is processed left to 
right. The storage-operand-consistency 
rules are the same as for MVC, except that 
when the operands overlap in virtual or in 
real storage, the use of the common 
real-storage location is not necessarily 
recognized. 

As part of the execution of the 
instruction, the value of the true length 
is used to set the condition code. If the 
true length is 256 or less, includinq zero, 
the true length and effective length are 
equal, and condition code 0 is set. If the 
true length is greater than 256, the 
effective length is 256, and condition code 
3 is set. 

For both KVCP and KVCS, a serialization and 
checkpoint-synchronization function is 
performed at the beginning and also at the 
completion of the operation. 

The CPU operation is dela yed until all 
storage accesses due to previous 
instructions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPUs. All 
previous checkpoints, if any, for this 
instruction are canceled, and the results 
of all stores for this instruction are 
released, if held exclusive, to permit 
channels and other CPUs to access the 
results. 

The priority of the recoqni tion of 
exceptions and condition codes is shown in 
the figure "Priority of Execution: KVCP 
and MVCS." 

0 Effective length equal to true 
length 

1 
2 
3 Effective length less than true 

length 

Access (fetch, virtual-primary 
address, operand 2, MVCSi fetch, 
virtual-secondary address, operand 
2, KVCPi store, virtual-secondary 
address, operand 1, KVCSi store, 
virtual-primary address, operand 
1, MVCP) 

Operation (if DAS is not installed) 
Privileged Operation (selected PSW key 

mask is zero in problem state) 
Special Operation 

Chapter 10. Control Instructions 10-19 



.-- , 
1.-6. Exceptions with the same priority 

as the priority of program­
interruption conditions for the 
qeneral case. 

7.A Access exceptions for second and 
third instruction halfwords. 

7.B.1 Operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to the secondary-space control, 
bit 5 of control register 0, 
being zero, or the translation 
bit, bit 5 of the PSW, being zero. 

8. Privileged-operation exception due 
to selected PSW key mask being 
zero in problem state. 

9. Completion due to length zero. 

10. Access exceptions for operands. 
L.... 

Priority of Execution: MVCP and MVCS 

1. The MVCP and MVCS 
used in a loop 
number of bytes 
the proqrammi ng 
KEY. 

instructions can be 
to move a variable 

of any length. See 
note under MOVE WITH 

2. The instructions MVCP and MVCS should 
be used only when movement is between 
different spaces. The performance of 
these instructions on most models may 
be significantly slower than HVCK, 
MVC, or MVCL. In addit ion, the 
definition of overlapping operands for 
MVCS and MVCP is not compatible with 
the more precise definitions for HVCK 
and MVC. 

I MOVE WITH KEY 

MVCK [SS] 

r-------~~----,-----~/--~--~--I--, 
I 'D9' I R1.. I ROO! B:I. I D:I. I B;,1 D;,1 I 

~ __ ~ ___ -L---I I~ 

o 8 12 16 20 32 36 47 

The first operand is replaced by the second 
operand. The fetch accesses to the 
second-operand location are performed using 

10-20 system/370 Principles of Operation 

the key specified in the third operand, and 
the store accesses to the first-operand 
location are performed using the PSi key. 

Bit positions 24-27 of the general register 
specified by the R3 field are used as the 
source access key. Bit positions 0-23 and 
28-31 of the register are ignored. 

In the problem state, the operation is 
performed only if the source-access key is 
valid. The source-access key is valid only 
if the corresponding PSi-key-mask bit in 
control register 3 is one. Otherwise, a 
privileged-operation exception is 
recognized, and instruction execution is 
suppressed. In supervisor state, any value 
for the source access key is valid. 

The contents of the general register 
specified by the R:I. field are a 32-bit 
unsigned value called the true length. 

Graphically, the contents of the general 
registers just described are as follows: 

True Length 

o 31 

iii -, 

1IIIIIIIIIIIIIIIIIIIIIIIIIKey I1111I 
~------------------------~----~,~~ 
o 24 28 31 

The first and second operands are the same 
length, called the effective length. The 
effective length is equal to the true 
length, or 256, whichever is less. Access 
exceptions for the first and second 
operands are recognized only for that 
portion of the operand within the effectiVe 
length. When the effective length is zero, 
no access exceptions are recognized for the 
first and second operands, and no movement 
takes place. 

Each storage operand is processed left to 
right. When the storage operands overlap, 
the result is obtained as if the operands 
were processed one byte at a time and each 
result byte were stored immediately after 
the necessary operand byte was fetched. 
The storage-operand-consistency rules are 
the same as for MVC. 

As part of the execution of the 
instruction, the value of the true length 
is used to set the condition code. If the 
true length is 256 or less, including zero, 
the true length and effective length are 
equal, and condition code 0 is set. If the 
true length is greater than 256, the 
effective length is 256, and condition code 
3 is set. 

The priority of the rec og ni ti on of 



exceptions and condition codes is shown in I PROGRAM CALL 
the figure "Priority of Execution: MVCK." 

0 Effective length equal to true 
length 

1 
2 
3 Effective length less than true 

length 

RrOq£ll ]l[£g:Qtio.!!§ : 

Access (fetch, operand 2; store, 
operand 1) 

Privileged Operation (selected PSi key 
mask is zero in problem state) 

operation (if DAS is not insta11e~ 

1.-6. Exceptions with the same priority 
as the priority of program­
interruption conditions for the 
general case. 

7.A Access exceptions for second and 
third instruction ha1fwords. 

7.B Operation exception if DAS is not 
installed. 

8. Privileged-operation exception due 
to selected PSi key mask being 
zero in problem state. 

9. Completion due to length zero. 

10. Access exceptions for operands. 
1.--, __ _ 

Priority of Execution: MVCK 

1. The KVCK instruction can be used in a 
loop to move a var iab1e nu mber of 
bytes of any length, as follows: 

START 

END 

MVCK 
BZ 
LA 
LA 
S 
B 

Dj. (Rj., Bj.) , D2 (B 2) , R3 
END 
Bj., 256 (Bj.) 
B2 , 256 (B 2) 
Rj.,='256' 
START 

2. The performance of KVCK on most models 
may be significantly slower than that 
of KVC and MVCI. Therefore, MVCK 
should not be used if the key of the 
source and the target are the same. 

PC [ S] 

1 r---------~---,---------~ 
1 1 'B218' 1 L ____________ L-__ ~ ____ . _____ ~ 

1 0 16 20 31 

A two-level lookup is performed to locate 
an entry-table entry (ETE). The ETE 
contains an authorization-key mask; an ASN; 
an entry parameter, which is loaded into 
general reg ister 4; and inf orma ti on to 
update the PSi-key masks in control 
register 3 and to replace the problem bit, 
and instruction address in the PSi. The 
original contents of the control register 
and the PSi are saved in general registers 
3 and 14. The ETE also controls whether a 
space-switching operation is to occur by 
specifying a nonzero ASN. When space 
switching is specified, the new PASN is 
loaded from the ETE and is used in a 
two-level lookup to locate an 
ASN-second-tab1e entry (ASTE). From this 
ASTE, a new PSTD, AX, and LTD are loaded. 
Whether space switching is specified or 
not, the previous PASN and PSTD are placed 
in the SASN and SSTD, respectively, and the 
previous PASN is saved in general register 
3. 

The instruction can be executed only when 
the CPU is in primary-space mode, and when 
the subsystem-linkage control, bit 0 of 
control register 5, is one. If the CPU is 
in real-space mode, or is in 
sec onda ry- space mode, or the 
subsystem-linkage control is zero, a 
special-operation exception is recognized. 
In addition, PROGRAM CALL with space 
switching (PC-ss) can be executed only when 
the ASN control, bit 12 of control register 
14, is one. If PC-ss is attempted with the 
ASN control zero, a special-operation 
exception is recognized. The 
special-operation exception is recognized 
in both the problem and supervisor states 
and the operation is suppressed. 

The second-operand address is not used to 
access data; instead, the low-order 20 bits 
of the address is used as a program-call 
number and has the following format: 

Second-Operand Address: 

Program-Call Number 
r I I 

1////////////1 LX EX I, 

o 12 24 31 

Chapter 10. Control Instructions 10-21 



1~nk~gg Inde~ (11): Bits 12-23 of the 
second-operand address are the linkage 
index and are used to select an entry from 
the linkage table designated by the 
linkage-table designation in control 
register 5. 

EniK! InQ~~ (EX): Bits 24-31 of the 
second-operand address are the entry index 
and are used to select an entry from the 
entry table desiqnated by the linkage-table 
entry. 

Bits 0-11 of the second-operand address are 
iqnored. 

The linkaqe-table and entry-table lookup 
process is depicted in the figure 
"Execution of PROGRAM CALL (Part 1 of ~." 
The detailed definition for this 
table-lookup process is described in the 
section "PC-Number Translation" in Chapter 
5, "Proqram Execution." The entry-table 
entry has the following format: 

r---------.----------.--I--~----------~,,,' 
AKM I ASN I 0-0 1 IA I P 1 

L--- I __ ~ I I 

o 16 32 40 63 

.-----I------~------- T I 

1 PARM EKM I1111111111I11 L---__ I ______ ~ ________ · ____ ~ ____________ ~ 

64 96 112 127 

1-7 and ETE hits 32-39 must be 
otherwise, a PC-translation 

LTE bits 
zeros; 
exception 
instruction 

is recognized, and the 
is suppressed. 

After the entry-table entry has been 
fetched, if the current PSW specifies the 
problem state, the current PSW-key mask in 
control register 3 is tested against the 
AKM field in the entry-table entry to 
determine whether the program is authorized 
to access this entry. The AKM and PSW-key 
mask are ANDed and if the result is zero, a 
privileqed-operation exception is 
recognized, and the operation is 
suppressed. When PC is executed in 
supervisor state, the AKM field is ignored. 

If the result of the AND of the AKM and the 
psw-key mask is not zero, or if the CPU is 
in the supervisor state, the execution of 
the instruction continues. 

The PSW-key mask (bits 0-15 of control 
register 3) is placed in bit positions 0-15 
of general register 3, and the current PASN 
(bi ts 16-31 of control register 4) is 
placed in bit positions 16-31 of general 
register 3. 

The current PSTD, bits 0-31 of control 
register 1, are placed in control register 
7 to become the current SSTD. 

10-22 System/370 Principles of Operation 

The current PASN, bits 16-31 of control 
register 4, are placed in bit positions 
16-31 of control register 3 to become the 
current SASN. 

Bits 40-62 of the current PSW (the updated 
instruction address) are placed into bit 
positions 8-32 of general register 14. Bit 
15 of the PSW (the problem-state bit) is 
placed in bit position 31 of general 
register 14. Bits 0-7 of general register 
14 are set to zeros. 

Bits 40-62 of the ETE, with a rightmost 
zero appended, are placed in PSW bit 
positions 40-63 (the instruction address). 
Bit 63 of the ETE is placed in PSW bit 
position 15 (the problem-state bit). 

Bits 64-95 of the ETE (the entry parameter) 
are loaded into general register 4. 

Bits 96-111 of the ETE (the EKM) are ORed 
with the PSW-key mask, bits 0-15 of control 
register 3, and the result replaces the 
PSW-key mask in control register 3. 

If bits 16-31 of the ETE 
zeros, a PROGRAM CALL to 
(PC-c~ is specified, and 
completed. 

(the ASN) are 
current primary 
the operation is 

The PC-cp operation is depicted 
figure "Execution of PROGRAM CALL 
of 3)." 

in the 
(Part 2 

If the ASH is nonzero, a PROGRAM CALL with 
space switching (PC-ss) is specified, and 
the ASN is translated by means of a 
two-level table lookup. 

The PC-ss operation is depicted in the 
figures "Execution of PROGRAI! CALL (Part 2 
of 3 and Part 3 of 3)." The PC-ss 
operation is completed as follows: 

Bits 16-25 of the ETE are used as a 10-bit 
AFX to index into the ASN first table, and 
bits 26-31 are used as a six-bit ASX to 
index into the ASN second table specified 
by the AFX. The ASN table-lookup process 
is described in the section "ASN 
Translation" in Chapter 5, "Program 
Execution. It The exceptions associa ted wi th 
ASN translation are collectively called 
ASH-translation exceptions. These 
exceptions and their priority are described 
in Chapter 6, "Interruptions." 



(.,. 

Bits 16-31 of the entry-table entry are 
placed in bit positions 16-31 of control 
register 4 as the new PASN. 

Bits 64-95 of the ASN-second-table entry 
(the STD) are loaded into control register 
1 as the new PSTD. 

Bits 32-47 of the ASN-second-table entry 
(the AX) are loaded into bit positions 0-15 
of control register 4 as the new authority 
index. 

Bits 96-127 of the ASN-second-table entry 
(the LTD) are loaded into control register 
5 as the new linkage-table designation. 

When the contents of the space-switch event 
mask, bit 31 of control register 1 was zero 
both before and after the operation, the 
execution of PC-ss is completed. If the 
space-switch-event mask was one either 
before or after the operation, or both, 
then a space-switch-event program 
interruption is recognized, and the 
operation is completed. 

For both PC-cp and PC-ss, a serialization 
and checkpoint-synchronization function is 
performed at the beginning and also at the 
completion of the operation. 

The CPU operation is delayed until all 
storage accesses due to previous 
instruct ions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 

any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPUs. All 
previous checkpoints, if any, for this 
instruction are canceled. 

The priority of recognition of program 
exceptions for the instruction is shown in 
the figure "Priority of Execution: PC." 

Condition ~Qde: 
unchanged. 

Program ~~~E!ions: 

The code 

ASN Translation (PC-ss onln 
Addressing 
ASN Translation 
EX Translation 
LX Translation 

remains 

Operation (if DAS is not installed) 
PC-Translation Specification 
Privileged Operation (AND of AKM and 

PSW-key masks is zero in problem 
state) 

Space-Switch Event (PC-ss only) 
Special Operation 
Trace 

Chapter 10. Control Instructions 10-23 



r------------------------
1.-6. Exceptions with the same priority as the priority of program-

interruption conditions for the general case. 

7.A Access exceptions for second instruction halfword. 

7.B.1 operation exception if DAS is not installed. 

7.B.2 Special-operation exception due to DAT being off, the CPU 
being in secondary-space mode, or the subsystem-linkage­
control bit in control register 5 being zero. 

8.A Trace exceptions. 

8.B.1 LX-translation exception due to linkage-table entry being 
outside table. 

8.B.2 Addressing exception for access to linkage-table entry. 

8.B.3 LX-translation exception due to I bit (bit 0) in linkage-table 
entry having the value one. 

8.B.4 PC-translation-specification exception due to inva.lid ones 
(bits 1-7) in linkage-table entry. 

8.B.5 Ex-translation exception due to entry-table entry being out­
side table. 

8.B.6 Addressing exception for access to entry-table ent.ry. 

8.B.7 pc-translation-specification exception due to inva.lid ones 
(bits 32-39) in entry-table entry. 

8.B.8 privileged-operation e~ception due to a zero result from 
ANDing PSw-key mask and AKM in problem state. 

8.B.9 Special-operation exception due to the ASN-transla.tion con­
trol, bit 12 cf control register 14, being zero. 

8.B.10 ASN-translation exceptions. (Only for PC-ss.) 

9. Space-switch event. (Only for PC-ss.) 
L---

Priority of Execution: PC 

10-24 system/370 principles of Operation 



L 

PROGRAM CAll Instruction 

.,' ,I 
CP5 IVIIII LTO ILTLI 

I I I 

I 
I 

, i 

, B 21 8' I Ba I Da 
L-.. __ --1._ ... ' ___ ..... 

Operand-2 Addr 

• 
I 
I , 

r-----~.------~----, 

(Ba)+Da I111111I LX EX 
I • 
I 1(14) (X16) 

I .r--------------------~' 

I 
I r-
I I 
I , 
I " '--->1+1 

Y 

I I 
I , Linkaqe Table 

I " • 
L--->I+I I 

Entry 

Y I I 
L-->~~T'------~ 
R I I I 0 I E'rO I ETll 

, I 
I I 
I I 

Table 
.---
I 
I 

L-->I --,- r • • R I AKM ASN I 0 IA IPI 
I .L- , , 
I 
I L-________________ . _____________ _ 

R: Address is real 

PARM EKM 

I 
I 

• I 
1111111I 

I 
I 
I 

I Execution of PROGRAM CALL (Part 1 of 3): PC-Number Translation 

Chapter 10. Control Instructions 10-25 



Entrv-Table Entry 
~·~--------or-r----------~-----,r-----~, , , 

I AKM ASN I 0 EKM I111111I IA I PI PARM 
I '0'-L--, ~--L-__ ~_~_-L 

r--------~ I 
I 
I , 
I 
I , , 

I 
L-

r----
I , 
I 
V 

I I 
I I 
I I 
I I , 
I 
I 0 
I I , , I , PSW .--1 , , I--~ .... ----... . --, , afterl IPI 'I IA 101 

I , L . ..J L--/~ __ I_-L---~ ____ -L 

I , 
r---, 
,ANDr->Priv Op 
L....-..J if zero 

1 problem 
I 

in 
state 

GR4 r 
after, 

L 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 

PARM 

I CR 3 .-----,------, CR4 r'----·r---~ 
I beforel PKM SASN beforel AX PASN 

, 
I 
I 
I 
I , , 
I' I , 

, L--T---.1.----..l L-, , Yes I , 
r---- ASN 

e<------e 
I 
I 
V 

r--1 

lOR 1<-------1 
L~ 

I '=0 I 
, 'I 

PC-cp '_I 
instruction 
cODlplete 

I r--------e--------------..l 
V V 

CR3 .------.------, 
after, PKM SASN I 

L--__ -L __ . 

L-______ --, 

, 
V 

.--------1 , , 

eR1 r 
before I PSTD , 

I 
I 
I , 

G R3 r ----r---.--, 
after, PKM PASN, 

-..l 

CR 1 r, ---------------, 

after I SSTD 

PSW r'-----~~·---__,r___r , , i , 
before I IPI IA 101 

---L,-L- I I 

I I 
L-- I , 

I I 
0 , I I , , , 

GR14 r--T • , 
afterl 0 I IA IPI 

L--..L_. I I 

Execution of PROGRAM CAlL (Part 2 of 3): PC-cp and PC-ss 

10-26 system/310 principles of Operation 

No 

I , 
PC-55 

ASN trans­
la ti on 

J 



Entry-Table Entry 

ASH 

~-------------------------------------<--------. 

, 

CR11i 
I , 

I • ii, , , 

I V I IAFTO I IAFI IASI I 
L- ' ", I , " , 

I (x ") I (X 1 6) 
I I 
I I 
I r---------------------------~ 
I I 
I I 
I , ASH First Table 
I ., , 
L-)I+I I 

Y I 
I I r'---------J 

R I I I 
I I , 
I r' ... '--r,------"T,---i r--, 

L-)IIIOI ASTO 10 r)I+1 
~ I Y 
I I I 
I I RI 
I I I 
, , I 

I 
I 

ASN Second Table 

, 
I 
I 

I ~I~'--~'----T'--T'----T'----T'~'------------'--~---'--------~ 
L-)III 0 IATO 1001 AI IATL 101 STD 0 LTD 

~I-L __ -L ____ L--L __ T,-L----~I-LI----~--------~--~~------~ I , 
I I 
I I 
I I 
I I 

I 
I L-_____________________ ), _____________________________ I~~, 

I I , , 
CRIi r'------~----_, 
afterl AX PASH 

I 
I 
I 
I 
I 
I CRS , 
I afterl 
I 
I 
I 
I 
I , 

CR1 r------------, 
after I PSTD 

R: Address is real 

I Execution of PROGRAM CALL (Part 3 of 3): ASN Translation for PC-ss 

I 
I 
I 
I , 

LTD 

Chapter 10. Control Instructions 10-27 



1 PROGRAM TRANSFEF 

PT Ri.,Ra [RRE J 

r t 
'B228' I11111111I Ri. Ra 

o 16 24 28 31 

The contents of the regtster specified by 
the Ri. field is used to update the PSi-key 
mask and the PASN. The contents of the 
register specified by the Ra field is used 
to update the problem-state bit and 
instruction address in the current PSi. 

Bits 16-23 of the instruction are ignored. 

The format of the two registers specified 
by the R~ and Fa fields is as follows: 

~----------------~----------------, 
PSi-Key Mask I ASN 

~----------------~----------------~ o 16 31 

r I I , 

Ra 1000000001 Instruction Address IPI L ________ ~ ________________________ ~I~I 

o 8 31 

)1 When the contents of bit positions 16-31 of 
1 the general register specified by the R~ 
1 field are equal to the current PASN, the 
1 operation is called PROGRAM TRANSFER to 
1 current primary (PT-cp); when the fields 
1 are not equal the operation is called 
1 PROGRAM TRANSFER with space switching 
1 (PT-ss). 

The instruction can be executed only when 
the CPU is in primary-space mode, and the 
subsystem-linkage control, bit 0 of control 
register 5, is one. If the CPU is in 
real-space mode or is in secondary-s~ace 
mode, or the subsystem-linkage control is 
zero, a special-operation exception is 
recoqnized, and the operation is 
suppressed. 

The contents of the register specified by 
the R2 field are used to update the 
instruction address, and the problem-state 
bit of the current PSi. Bit 31 of the 
general register specified by the R2 field 
is placed in the problem state bit 
position, PSi bit position 15, unless the 
operation would cause PSi bit 15 to change 
from one to zero (problem state to 
supervisor state). If such a change would 
occur, a privileged-operation exception is 
recognized, and the operation is 
suppressed. Bits 8-30 of the general 
register specified by the Ra field replace 
the instruction address, bits 40-62, of the 
current PSi. Bit 63 of the PSi is set to 

10-28 system/370 principles of Operation 

zero. The PSi is updated only if bits 0-7 
of the reqister are all zeros; if not, a 
specification exception is recognized, and 
the operation is suppressed. 

In addition to the above requirements, when 
a PT-ss is specified, the ASN-translation 
control, bit 12 of control reqister 14, 
must be onei otherwise, a special-operation 
exception is recognized, and the operation 
is suppressed. 

Bits 0-15 of the general register specified 
by the Ri. field are ANDed with the PSi-key 
mask, bits 0-15 of control register 3, and 
the result replaces the contents of the 
PSi-key mask. 

In both PT-ss and PT-Cp, the ASN specified 
by bits 16-31 of general reqister Ri. 
replaces the SASN in control register 3, 
and the SSTD in control register 7 is 
replaced by the final contents of control 
register 1. 

The PT-cp operation is depicted in Part 1 
of the figure "Execution of PROGRAM 
TRANSFER." On a PT-cp operation, the 
operation is completed when the common 
portion of the PT operation, as described 
above, is completed. The authorization 
index, PASN, primary STD, and linkaqe-table 
designation are not changed by PT-cp. 

The PT-ss operation is depicted in Parts 1 
and 2 of the figure "Execution of PROGRAM 
TRANSFER." For a PT-ss, the contents of 
bit positions 16-31 of the general register 
specified by the Ri. field a re used as an 
ASN, which is translated by means of a 
two-level table lookup. 

Bits 16-25 of the general register are used 
as a 10-bit AFX to index into the ASN first 
table. Bits 26-31 are used as a six-bit 
ASX to index into the ASN second table. 
The ASN table-lookup process is described 
in the section "ASN Translation" in Chapter 
5, "Proqram Execution." The exceptions 
associated with ASN translation are 
collectively called "ASN-transla tion 
exceptions." These exceptions and their 
priority are described in Chapter 6, 
"Interruptions." 

I The authority-table origin from the 
1 second-table entry is used as the base for 
1 a third table lookup. The current 



authorization index, hits 0-15 of control 
reqister 4, is used as the index to look up 
the entry in the authority table. The 
authority-table lookup is descrihed in the 
section "ASN Authorization" in Chapter 5, 
"Proqram Execution." 

The PT-ss operation is completed by placing 
bits 64-95 of the ASN second-table entry in 
both the PSTD and SSTD, bit positions 0-31 
of control registers 1 and 7, respectively. 
The contents of bit positions 32-47 of the 
ASN second-table entry are placed in the 
authorization index, bit positions 0-15 of 
control register 4. The contents of bit 
positions 96-127 of the ASH second-table 
entry are placed in the LTD, bit positions 
0-31 of control register 5. The ASN, hits 
16-31 of the general register specified by 
the R~ field, is placed in the SASN and 
PASN, bit positions 16-31 of control 
reqisters 3 and 4. 

When the contents of the space-switch-event 
mask, bit 31 of control register 1, were 
zero both before and after the execution of 
the instruction, the execution of PT-ss is 
completed. If the space-switchevent mask 
was one either before or after the 
operation, or both, then a space-switch­
event program interruption is recognized, 
and the operation is completed. 

For both PT-cp and PT-ss, a serialization 
and checkpoint-synchronization function is 
performed at the beginning and also at the 
completion of the operation. 

The CPU operation is delayed until all 

storage accesses due to previous 
instructions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPUs. All 
previous checkpoints, if any, for thi s 
instruction are canceled. 

The priority of recognition of program 
exceptions for the instruction is shown in 
the figures "Priority of Execution: PT-cp" 
and "priority of Execution: PT-ss." 

Condition £gde: The 
unchanged. 

Addressing 
ASH Translation 
Operation (if DAS is 
Primary Authority 
Privileged Operation 

supervisor state 
Space-Switch Event 
Special Operation 
Specification 
Trace 

code remains 

not installed) 

(attempt to set 
in prob Ie m sta te) 

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case. 

7.A Access exceptions for second instruction half word. 

7.B.1 Operation exception if DAS is not installed. 

7.B.2 special-operation exception due to DAT being off, the CPU 
being in secondary-space mode, or the subsystem-linkage­
control bit in control register 5 being zero. 

8.A Trace exceptions. 

8.B.1 privileged-operation exception due to attempt to set super­
visor state when in problem state. 

8.B.2 Specification exception due to nonzero value in bits 0-7 of 
R2 • L----_________________________________________________________________________ ~ 

Priority of Execution: PT-cp 

Chapter 10. Control Instructions 10-29 



1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the qeneral case. 

7.A Access exceptions for second instruction halfword. 

7.B.1 Operation exception if DAS is not installed. 

7.B.2 Special-operation exception due to DAT being off, the CPU 
being in secondary-space mode, or the subsystem-linkage­
control bit in control register 5 being zero. 

8.A Trace exceptions. 

8.B.1 Privileqed-operation exception due to attempt to set super­
visor state when in problem state. 

8.B.2 Specification exception due to nonzero high-order. instruction­
address bits with 24-bit addressing mode specifiE!d. 

8.B.3 Special-operation exception due to the ASN-translation con­
trol, bit 12 of control register 14, being zero. 

8.B.4 ASN-translation exceptions. 

8.B.5 Primary-authorization-translation exceptions. 

8.B.6 Primary-authority exception due to authority-table entry 
being outside table. 

8.B.7 Addressinq exception for access to authority-table entry. 

8.B.8 primary-authority exception due to P bit in authority-table 
entry being zero. 

9. space-switch event. L----_________________________________________________________ -____________ ~ 

Priority of Execution: PT-ss 

Progr~~ing ]ote~ the restored PASN. 

2. With proper a uthorit y, and while 
1. The operation of PT is such that it 

may be used to restore the CPU to the 
state saved by a previous PROGRAK CALL 
instruction. This restoration is 
accomplished by issuing PT 3,14. 
Though qeneral registers 3 and 14 are 
not restored to their oriqinal values, 
the PASN, PSi-key mask, problem bit, 
and instruction address are restored, 
and the authorization index, primary 
STD, and LTD are made consistent with 

10-30 System/370 Principles of Operation 

executing in a common area, PT may be 
used to change the primary address 
space to any desired space. The 
second,ary address space is also 
changed to be the same as the new 
PASN. 

3. Unlike most RR branch instructions, a 
value of zero in the R2 field for PT 
causes a branch. 

J 



I 
I 

, 
(R1-) I PKM ASN 

I CR3 ,r_------,-------, 
I before, PKM SASN 
I I~----r_~.------~ 

I I 
I , , , , ~ 

1.-_-> I AND I 
~ ~i------, , 

I , , , 

PROGRAM TRANSFER Instruction 
i i 

'B228' 1////////1 R1- R2 

, , 
(R 2 ) I 0 IA IPI 

L-~L-___ ,-___ ~J 

CR4 r------~-------, CR3 
after 

.. , I 
before I AX PASN PKM I SASN I I 

L------~--~r_~ , I 
I , 0 L >:< ________________________ ~ 
I , I , , , I 

/ , , , , , PSW r------~~----~--~------·--_,,, 
Yes / 'No 
~ f----, 
I , / , 
, 'J , 

Completed See following 
figure 

(PT-cp) (PT-ss) 

afterl IPI 
I I 

CR 1 r"', --------, 

before I 

CR7 
after 

PSTD 
, 
I 
I (PT-cp only) 
I , 

SSTD 

I Execution of PROGRAM TRANSFER (Part 1 of 2): PT-cp and PT-ss 

IA I I 
..L-J 

Chapter 10. Control Instructions 10-31 



, 1 r-- , 
CR 14 I VI AFTO I AFX ASX I 

L- , • , L---, ~ 

I (x 4096) 
I 

I r 
I -----I (1l1J I PKM ASN 
I I (x 4) 
I , 
I ., ASN First Table 
L-_>I + I 

I 
I 
I 
I 

Y I 
I I 
I ~---. ~ 
L--->III 0 ASTO 101 
R I ~ 

I I 
I I 

I 0-

I I (x 16) 
I I 
I , 
I ., ASN Second Table 
L-_>I+I r----------

L,J I 
, I 
, I 
L-_>I , • 
R I I lOA TO , 0 I A X 

I ~ , , , 
r-------------' , 
I 
I , CR4 ,r-----~----, 

before I AX I PASN I 
I L ___ ~ .~--.--I 

, r.-----------------" (x 1;4 ) 
I , 

i i 
ATL ,0, 

, , 

L---_--L_--,,.--....I 

STD 

• , 

L-. ___ > 

-, 
I 
I 
I 
I 
I 
I 

, , I 
II 0 LTD , 
, • I 

L I , , 
I , , , , 

I I 
I I 
I I , , 

, r-, Authority Table Cll1 .... -----------, CR4 r---~------' 
L-_> I + I ,---, 

L,J I I 
I I I 
, I , 
I , I 

afterl PSTD 

• , 
L-_>~ Cll? r---------~ 

I P, 5, 
hJ---4 

" I ,L , 
, I 
L--...J 

after, 

>primary-auth exception 
if P tit is zero or table length 
is exceeded 

Execution of PROGRAM TRANSFER (Part 2 of 2): PT-ss 

10-32 system/3?0 principles of Operation 

SSTD 

after I AX PASN 

• , 
CRS ,...--------, 
after, LTD 

L _______ ....I 



PURGE TLB 

PTLB [5] 

• 1 
'B20D' 111111111111111111 

o 16 31 

All information in 
lookaside buffer (TLB) 
invalid. No change is 
of addressable storage 

the translation­
of this CPU is made 
made to the contents 
or registers. 

The TLB appears 
contents for all 
The invalidation 
other CPU. 

cleared of its original 
following instructions. 

is not signaled to any 

A serialization function is performed. CPU 
operation is delayed until all previous 
accesses by this CPU to storage have been 
completed, as observed by channels and 
other CPUs. No subseguent instructions, 
their operands, or dynamic-ad dress­
translation entries are fetched by this CPU 
until the execution of this instruction is 
complete. 

Bits 16-31 of the instruction are ignored. 

Condition ~2de: 
unchanqed. 

The code remains 

PrQg~g!!l Excg12t ions: 

Operation (if the translation feature 
is not installed) 

Privileqed Operation 

READ DIRECT 

RDD [5IJ 

r--------~--------,-----~------------, 
, 85' D1. 

o 8 16 20 31 

The contents of the I2 field are made 
available as siqnal-out timing signals. A 
direct-in data byte is accepted from an 
external device in the absence of a hold 
siqnal and is placed in the location 
designated by the first-operand address. 

when the extended facility is 
installed, the first-operand address 
logical address, and is subject to 
normal access exceptions and to the 
storage-alteration event. 

not 
is a 
the 
PER 

When the extended facility is installed, 

the first-operand address is a real address 
and not subject to dynamic address 
translation. Addressing and protection 
exceptions apply, and the PER 
storage-alteration event does not apply. 

The contents of the I2 field are made 
available on a set of eight signal-out 
lines as 0.5-microsecond to 1.0-microsecond 
timing signals. These signal-out lines are 
also used in WRITE DIRECT. On a ninth line 
(read out) , a O.5-microsecond to 
1.0-aicrosecond timing signal is made 
available coincident with these timinq 
signals. The read-out line is distinct 
from the write-out line in WRITE DIRECT. 
No checking bits are made available with 
the eight instruction bits. 

Eight data bits are accepted from a set of 
eight direct-in lines when the hold signal 
on the hold-in line is absent. The hold 
signal is sampled after the read-out siqnal 
has been completed and should be absent for 
at least 0.5 microsecond. No checking bits 
are accepted with data siqnals, but a 
checking-block code is generated as the 
data is placed in storage. When the hold 
siqnal is not removed, the CPU does not 
complete the instruction. 

A serialization function is performed 
before the signals are made available and 
again after the first-operand byte is 
placed in storage. CPU operation is 
delayed until all previous accesses by this 
CPU to main storaqe have been completed, as 
observed by channels and other CPUs, and 
then the signal-out timing siqnals are 
presented. No subsequent instructions or 
their operands are accessed by this CPU 
until the first operand byte has been 
placed in main storage, as observed by 
channels and other CPUs. 

An excessively long instruction execution 
may result in incomplete updatinq of the 
interval timer. 

Conditi2n ~2de: 
unchanged. 

The code remains 

Access (store, operand 1; access 
applies only if the extended 
facility is not installed) 

Addressing (operand 1) 
Operation (if the direct-control 

feature is not installed) 
Privileged Operation 
Protection (store, operand 1; key­

controlled protection and low­
address protection) 

Chapter 10. Control Instructions 10-33 



RESET REFERENCE BIT 

r-- , 
I 'B213' I L----____________ ~ ____ _L ____________ _J 

o 16 20 31 

The reference bit in the storage key 
associated with the 2K-byte block that is 
designated by the second-operand address is 
set to zero. 

Bits 8-20 of the second-operand address 
designate a block of 2K bytes in real 
storage. Bits 0-7 and 21-31 of the address 
are ignored. 

The address designatinq the storage block, 
being a real address, is not subject to 
dynamic address translation. The reference 
to the storage key is not subject to a 
protection exception. 

The values of the remaining bits of the 
storage key, including the change bit, are 
not affected. 

The condition code is set to reflect the 
state of the reference and change bits 
before the reference bit is set to zero. 

0 Reference bit zero, change bit 
zero 

1 Reference bit zero, change bit one 
2 Reference bit one, change bit zero 
3 Reference bit one, change bit one 

Addressing (operand 2) 
Operation (if the translation feature 

is not installed) 
Privileged Operation 

I SET ADDRESS SPACE CONTROL 

SAC Da (Ba) [S ] 

r-----------------T.~ 
, B2 19' I Ba I L----____________ ~' ____ _L' ____________ ~ 

o 16 20 31 

Bits 20-23 of the second-operand address 
are used as a code to set the 
address-space-control bit in the PSW. The 
second-operand address is not used to 
address data; instead, bits 20-23 form the 
code. Bits 0-19 and 24-31 of the 

10-34 System/370 Principles of Operation 

second-operand address are ignored. Bits 
20- 22 of the second-operand address must be 
zero; otherwise, a specification exception 
is recognized, and the operation is 
suppressed. 

The operation is performed only when the 
secondary-space control, bit 5 of control 
register 0, is one and DAT is on. When 
either the secondary-space control is zero 
or DAT is off, a special-operation 
exception is recognized, and the operation 
is suppressed. The special-operation 
exception is recognized in both the problem 
and supervisor states. 

The following diagram and table summarize 
the operation of SAC: 

Second-Operand Address 

i ,i , 
1 111111111111111111111 Code I 111111111 

o 

0000 
0001 
All others 

20 

Primary 
Secondary 
Invalid 

24 

A serialization and 
synchronization function is 
the beginning and also at the 
the operation. 

31 

o 
1 

Unchanged 

checkpoint­
performed at 
com pIe ti on of 

The CPU operation is dela yed until all 
storage accesses due to previous 
instructions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results. 

When the operation is completed, a second 
checkpoint-synchronization function is 
performed, as follows. The CPU operation 
is delayed until all previous checkpoints, 
if any, for this instruction are canceled. 

The priority of recognition of program 
exceptions for the instruction is shown in 
the figure "Priority of Execution: SAC." 

Conditig~ £gg~: Unchanged. 

Program li!ception.§: 

Operation (if DAS is not installed) 
Special Operation 
Speci fica tion 



1.-6. Exceptions with the same priority 
as the priority of program­
interruption conditions for the 
general case. 

7.A Access exceptions for second 
instruction halfword. 

7.B.1 Operation exception if DAS is not 
installed. 

7.B.2 Special-operation exception due 
to the secondary-space control, 
bit 5 of control register 0, 
being zero, or the translation 
bit, bit 5 of the PSW, being 
zero. L----_________________________________________ ~ 

priority of Execution: SAC 

1. SAC is defined in such 
mode to be set can be 
in the displacement 
instruction or can be 
the same bit positions 
register as saved 
instruction. 

a way that the 
placed directly 
field of the 
specified from 

of a general 
by t he lAC 

2. Predictable program operation is 
ensured in secondary mode only when 
the instructions are fetched from 
virtual-address locations which 
translate to the same real address by 
means of both the primary and 
secondary segment tables. Thus, a 
program should not enter seconda ry 
mode if it is not aware of the 
virtual-to-real mapping in both the 
primary and secondary spaces. 

SET CLOCK 

[S1 

r----------------~. T·-----------, 

I 'B201P B2 I L-_______________ ~ ____ ~ _____________ ~ 

o 16 20 31 

The current value of the TaD clock is 
replaced by the contents of the doubleword 
designated by the second-operand address, 
and the clock enters the stopped state. 

The doubleword operand replaces the 
contents of the clock, as determined by the 

resolution of the clock. Only those bits 
of the operand are set in the clock that 
correspond to the bit positions which are 
updated by the clock; the contents of the 
rema1n1ng rightmost bit positions of the 
operand are ignored and are not preserved 
in the clock. In some models, startinq at 
or to the right of bit position 52, 
low-order bits of the second operand are 
ignored, and the corresponding positions of 
the clock which are imple me nted a re set to 
zeros. 

After the clock value is set, the clock 
enters the stopped state. The clock leaves 
the stopped state to enter the set state 
and resume incrementing under control of 
the TaD-clock sync-check control (bit 2 of 
control register 0). When the bit is zero 
or the TOD-clock-synchronization facility 
is not installed, the clock enters the set 
state at the completion of the instruction. 
When the bit is one, the clock remains in 
the stopped state either until the bit is 
set to zero or until any other running TaD 
clock in the configured system is 
incremented to a value of all zeros in bit 
positions 32-63. 

When the TOO clock is shared by another 
CPU, the clock remains in the stopped state 
under control of the TaD-clock sync-check 
control bit of the CPU which set the clock. 
If, while the clock is stopped, it is set 
by another CPU, then the clock COmes under 
control of the TaD-clock sync-check control 
bit of the CPU which last set the clock. 

The value of the clock is changed and the 
clock is placed in the stopped state only 
if the manual TOO-clock control of any CPU 
in the configuration is set to enable-set. 
If the TOO-clock control is set to secure, 
the value and the state of the clock are 
not changed. The two results are 
distinguished by condition codes 0 and 1, 
respectively. 

When the clock is not operational, the 
value and state of the clock are not 
changed, regardless of the setting of the 
TaD-clock control, and condition code 3 is 
set. 

The operand 
double word 
specification 
the operation 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. 

o 
1 
2 
3 

Clock value set 
Clock value secure 

Clock in not-operational state 

Chapter 10. Control Instructions 10-35 



~Qg£am !!~.RtiQ1!§: 

Access (fetch, operand 2) 
Privileged Operation 
Specificatior 

SET CLOCK COMPARATOR 

r-----------------"-----T-------------, 
I 'B206' I Ba I LL ______________ ---L-__ ~,L-__________ ~ 

o 16 20 31 

The current value of the clock comparator 
is replaced by the contents of the 
doubleword designated by the second-operand 
address. 

Only those bits of the operand are set in 
the clock comparator that correspond to the 
bit positions to be compared with the TOD 
clock; the contents of the remaining 
rightmost bit positions of the operand are 
iqnored and are not preserved in the clock 
comparator. 

The operand 
doubleword 
specification 
the operation 
is suppressed 
exceptions. 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

Condition ~Qde: 
unchanqed. 

The code 

Access (fetch, operand 2) 
Operation (if the CPU-timer 

comparator feature 
installed) 

privileged Operation 
Specification 

SET CPU TIMER 

remains 

and clock-
is not 

y------_.-, 
'B208' I L----_________ ---L-___ ~ ____ __ 

o 16 20 31 

The current value of the CPU timer is 
replaced by the contents of the doubleword 
desiqnated by the second-operand address. 

Only those bits of the operand are set in 

10-36 System/370 principles of Operation 

the CPU timer that correspond to the bit 
positions to be updated; the contents of 
the remaining rightmost bit positions of 
the operand are ignored and are not 
preserved in the CPU timer. 

The operand 
doubleword 
specification 
the operation 
is suppressed 
exceptions. 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

Condition ~ode: 
unchanged. 

The code 

Access (fetch, operand 2) 
Operation (if the CPu-timer 

comparator feature 
installed) 

Privileged Operation 
specification 

SET PREFIX 

remains 

and clock-
is not 

r--------·----------r---~-------------, 
I 'B210' L __________________ L-__ ~ ____________ ~ 

o 16 20 31 

The contents of the prefix register are 
replaced by the contents of bit positions 
8-19 of the word at the location desiqnated 
by the second-operand address. All 
information in the translation-Iookaside 
buffer (TLB) of this CPU is made invalid. 

After the second operand is fetched, 
depending on the model, the prefix value 
mayor may not be tested to determine 
whether the corresponding block in absolute 
storage is available before it is used to 
replace the contents of the prefix 
register. 

On models which do not test the value, the 
instruction is completed after settinq the 
prefix register. If the address loaded 
specifies a location which is not 
available, the machine subsequently hangs 
up when an instruction or interruption 
procedure is performed that requires 
prefixing to be applied to the storage 
address. 

On models which do test the value, some or 
all of the necessary checks are performed 
to ensure that the entire 4K-byte block 
designated by the prefix address is 
available. If the storage area is not 
available, an addressing exception is 

J 



recognized, and the operation is 
suppressed. The check to determine that 
the 4K-byte block is available may involve 
accessing the location. This access is not 
subject to protection; however, the access 
may cause the reference bits to be turned 
on. 

If the operation is completed, the new 
prefix is used for any interruptions 
following the execution of the instruction 
and for the execution of subsequent 
instructions. The contents of bit 
positions 0-7 and 20-31 of the operand are 
ignored. 

The TLB appears cleared of its oriqinal 
contents for all following instructions. 

A serialization function is performed. CPU 
operation is delayed until all previous 
accesses by this CPU to main storage have 
been completed, as observed by channels and 
other CPUs. No subsequent instructions, 
operands, or dynamic-address-translation 
entries are fetched by this CPU until the 
execution of this instruction is completed. 

The operand must be designated on a word 
boundary; otherwise, a specification 
exception is recognized, and the operation 
is suppressed. The operation is suppressed 
on protection and addressing exceptions. 

Condi ti2!l ~ode: 
unchanged. 

The code 

Access (fetch, operand 2) 
Addressing (new prefix area) 

remains 

operation (if the multiprocessing 
feature is not installe~ 

Privileged operation 
specification 

SET PSi KEY FROM ADDRESS 

'B20A' 
~ ____________ ~ ____ -L _____________ ~ 

o 16 20 31 

The four-bit PSi key, bits 8-11 of the 
current PSi, is replaced by bits 24-27 of 
the second-operand address. 

The second-operand address is not used to 
address data; instead, bits 24-27 of the 
address form the new PSi key. Bits 8-23 
and 28-31 of the second-operand address are 
ignored. 

In the problem state, when D~S is 
installed, the execution of the instruction 
is subject to control by the PSi-key mask 
in control register 3. ihen the bit in the 
PSi-key mask corresponding to the PSi-key 
value to be set is one, the instruction is 
executed normally. ihen the selected bit 
in the PSi-key mask is zero, a 
privileged-operation exception is 
recognized, and the operation is 
suppressed. ihen DAS is not installed, 
execution of the instruction in the problem 
state results in a privileged-operation 
exception regardless of the contents of 
control register 3. In the supervisor 
state, the PSi key is set with no checking. 

Condit!2!! ~2de: 
unchanged. 

The code remains 

Operation (if the PSi-key-handling 
feature is not installed) 

Privileged Operation (selected PSi key 
mask is zero in problem state) 

1. The format of the SET PSi KEY FROM 
ADDRESS instruction permits the 
program to set the PSi key either from 
the general register designated by the 
Ba field or from the Da field in the 
instruction itself. 

2. When one program requests another 
program to access a location specified 
by the requesting program, the SET PSi 
KEY FROM ADDRESS instruction can be 
used by the called program to verify 
that the requesting program is 
authorized to make this access, 
provided the storage location of the 
called program is not protected 
against fetching. The called program 
can perform the verification by 
replacing the PSi key with the 
requesting-program PSi key before 
making the access and subsequently 
restorinq the called-program PSi key 
to its original value. Caution must 
be observed, however, in handling any 
resulting protection exceptions since 
such exceptions may cause the 
operation to be terminated. See the 
instruction TEST PROTECTION and 
associated programming notes, for an 
alternative approach to the testing of 
addresses passed by a calling program. 

Chapter 10. Control Instructions 10-37 



I SET SECONDARY ASN 

SSAR Ri. [RRE] 

r---- --------~tr-----___,_--~___, 

I 'B225' 1////////1 Ri. 1////1 L----____________ ~' ________ ~' _____ 'L_ __ ~ 

o 16 24 28 31 

The ASN specified in bit positions 16-31 of 
the general register specified by the Ri. 
field replaces the secondary ASN, and the 
segment-table designation corresponding to 
that ASN replaces the SSTD. 

Bits 16-23 and 28-31 of the instruction are 
iqnored. The contents of bit positions 
0-15 of the reqister specified by the Ri. 
field are ignored. 

The operation is performed only when the 
AS N-trans lation control, bit 12 of control 
register 14, is one and DAT is on. When 
either the ASN-translation-control bit is 
zero or DAT is off, a spec ial-operation 
exception is recognized, and the operation 
is suppressed. The special-operation 
exception is recognized in both the problem 
and supervisor states. 

The contents of bit positions 16-31 of the 
register specified by the R~ field are 
called the new ASN. First the new ASN is 
compared with the current PASN. If the new 
ASN is egual to the PASN, the operation is 
called SET SECONDARY ASN to current primary 
(SSAR-cp). If the new ASN is not equal to 
the current PASN, the operation is called 
SET SECONDARY ASN with space switching 
(SSAR-ss) • 

~! ~£;~QNDAR! 
<'~~AR=£.J2) 

The new ASN replaces the SASN, bits 16-31 
of control register 3; the PSTD, bits 0-31 
of control register 1, replaces the SSTD, 
bits 0-31 of control register 7; and the 
operation is completed. 

The new ASN is translated by means of the 
ASN translation tables, and then the 
current AX, bits 0-15 of control register 
4, is used to test whether the program is 
authorized to access the specified ASN. 

The new ASN is 
tWo-level table 

translated by 
lookup. Bits 

means of a 
0-9 of the 

10-38 system/370 Principles of Operation 

new ASN (bits 16-25 of the register) are 
used as a 10-bit AFX to index into the 
first table. Bits 10-15 of the new ASN 
(bits 26-31 of the register) are used as a 
six-bit ASX to index into the second table. 
The two-level lookup is described in the 
section "ASN Translation" in Chapter 5, 
"Program Execution." The exceptions 
associa ted with ASN translation are 
collectively called "ASN-translation 
exceptions." These exceptions and their 
priority are described in Chapter 6, 
"Interruptions." 

The AST entry obtained as a result of the 
second lookup contains the segment-table 
designation, and authority-table origin and 
length associated with the ASN. The 
remaining fields in the AST entry are 
ignored. 

The authority-table orig in from the 
second-table entry is used as a base for a 
third table lookup. The current 
authorization index, bits 0-15 of control 
register 4, is used, after it has been 
checked against the authority-table length, 
as the index to locate the entry in the 
authority table. The authority-table 
lookup is described in the section "ASN 
Translation" in Chapter 5, "Program 
Execution." 

The ASN, bits 16-31 of the qeneral register 
specified by the Ri. field, is placed in the 
SASN, bit positions 16-31 of control 
register 3. The segment-table designation, 
bits 64-95 of the AST entry, is placed in 
the SSTD, bits 0-31 of control register 7. 

For both SSAR-cp and 
serialization and 
synchronization function is 
the beginning and also at the 
the operation. 

SSAR-ss, a 
checkpoint­

performed at 
completion of 

The CPO operation is delayed until all 
storage accesses due to previous 
instructions by this CPO have been 
completed, as observed by channels and 
other CPOs. All previous checkpoi nts, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPOs to access the results. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed, as 
follows. The CPO operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPOs. All 
previous checkpoints, if any, for this 
instruction are canceled. 

The priority of recognition 
exceptions for the instruction 
the figures "Priority of 

of program 
is shown in 

Execution: 

J 



Addressing 
ASI Translation (SSAR-ss onlV 
Operation (if DAS is not installed) 
secondary Authority 
Special Operation 
Trace 

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case. 

7.A Access exceptions for second instruction halfword. 

7.B.1 Operation exception if DAS is not installed. 

7.B.2 special-operation exception due to DAT being off, or the ASI­
translation control, bit 12 of control reqister 14, being 
zero. 

8.A Trace exceptions. 

I Priority of Execution: SSAR-cp 

.---
1.-6. Exceptions with the same priority as the priority of program­

interruption conditions for the general case. 

7.A Access exceptions for second instruction halfword. 

7.B.1 Operation exception if DAS is not installed. 

7.B.2 Special-operation exception due to DAT being off, or the ASN­
translation control, bit 12 of control register 14, being 
zero. 

8.A Trace exceptions. 

8.B.1 ASN-translation exceptions. 

8.8.2 Secondary-authorization-translation exceptions. 

8.B.2 Secondary-authority exception due to authority-table entry 
being outside table. 

8.B.3 Addressing exception for access to authority-table entry. 

8.B.4 Secondary-authority exception due to S bit in authority­
table entry being zero. 

Priority of Execution: SSAR-ss 

Chapter 10. Control Instructions 10-39 



SET SECONDARY ASN In strucHon 
r------~----~~-_, 

,.--------, I 'B22S' 1111111111 R~ 111111 
ASIl , I 

L ____ ---L __ --L- ! _-' 

,--~~-----, r----~-_, I 
CR111 I I VI AFTO I I AFI IASII I 

L-----L_'__~---I L-~-L-T......I 
L ________________ ---, 

I (x 11,096) I I 
r--------' I I (x 

I r----------------------i I 
16) 

I 
,.-. --,1 

(R~) 111111111 ASIl I 1 
, I (x II) I L --~-~---' I 
I I ,.-.J I I 
I , ASN lirst Table I I 
I ,-, (accessed for SSAR-ss only) 

L-__ e 

L-_) I + I r , 
~ I I 
, I I 
L-) "~~-----,-I 
R I I I 0 I ASTO 101 

.. -'----'-T--~ 
I , I 

CR3 ,----~----_, 
beforel PKK I SASIl 

L_ I 

I 
I 

,-----~ 

I I I I r---e 
L------f-----I , , I 

I 
,.-----------1 

ell3 r'---~---_' I 
after I PKK I SASIl I I 

L. -' I 
r-----------------......I I 
I r----------->: <---- ! 

, r---~------_, I I 
I CRII I AX I PASN I I I , 
I beforeL--~---L--~-......I , Ilo I 'Yes 
I I I I r__t 1-_, 
I I L __ ......I "I' 

r--t--------'-.J SSAR-ss '_I SSAR-cp 
I I 
I , ASN Second Table 
, r_, (accessed for SSAR-ss only) 

L-+-> I + I r--------------------------------.-------_, 
, Y I I 
I I I I 
I I I I 
I L-) I-T--~----~----~---~-----__,.---------__t 
, I I, 0 I ATO 101 'ATL 101 STD I I 
I ~--L-,_----L-'-------L--------L-L-----~----L----------_I 
I I I I I CR1 r---------, 
I I I (x II) r-----......I I before I PSTD I L ______ + ____________________ +-_________________ -' L 

I I (SSAR-SS only) I (SSAR-cp only) 
,-+---------......1 I r-------------------------------i 
I I , , 
I L--, (x 1/11) r--------, 
I I eR1 I SSTD I 
I , Authority Table afterL--------.J 
I r_, (accessed for SSAR-ss onll) 
L-_> I + I r-_, 

Y I I 
I , I 
I t-T-I 
'--) IP IS I 
R ~T1 

I L+-->Secondary-authority exception 
I I if S bit is zero or table length exceeded 
'--......I (SSAR-ss only) 

I R: Address is real 

I Execution of SET SECONDARY ASN Instruction 

10-40 System/310 Principles of Operation 



L 
SET STORAGE KEY 

SSK R1.,R:a [RR] 

, 08' R ... Ra 
L.. J 

0 8 12 15 

The storage key associated with the 2K-byte 
block that is addressed by the contents of 
the general reqister designated by the Ra 
field is replaced by the contents of the 
general register designated by the R1. 
field. 

Bits 8-20 of the register designated by the 
R2 field designate a block of 2K bytes in 
real storaqe. Bits 0-7 and 21-27 of the 
register are ignored. Bits 28-31 of the 
register must be zeros; otherwise, a 
specification exception is recognized, and 
the operation is suppressed. 

The address designating the storage block, 
being a real address, is not subject to 
dynamic address translation. The reference 
to the storage key is not subject to a 
prptection exception. 

The new seven-bit storage-key value is 
obtained from bit positions 24-30 of the 
register designated by the R1. field. The 
contents of bit positions 0-23 and 31 of 
the reqister are ignored. When dynamic 
address translation is not installed, bits 
29 and 30 are ignored. 

A serialization and 
synchronization function is 
the beginning and also at the 
the operation. 

checkpoint­
performed at 
comp let ion of 

The CPU operation is delayed until all 
storage accesses due to previous 
instructions by this CPU have been 
completed, as observed by channels and 
other CPUs. All previous checkpoints, if 
any, are canceled, and the results of all 
previous stores are released, if held 
exclusive, to permit channels and other 
CPUs to access the results. 

When the operation is completed, a second 
serialization and checkpoint­
synchronization function is performed at 
the completion of the operation, as 
follows. The CPU operation is delayed 
until all storage accesses due to this 
instruction have been completed, as 
observed by channels and other CPUs. All 
previous checkpoints, if any, for this 
instruction are canceled. 

condi1iQ!! 
unchanged. 

The code remains 

Addressing (operand 2) 
Privileged Operation 
Specification 

SET SYSTEK KA SK 

SSM 

, i 

'80' I11111111I Ba 
I I 

o 8 16 20 

I 

I 
J 

31 

Bits 0-7 of the current PSW are replaced by 
the byte at the location designated by the 
second-operand address. 

When the SSK-suppression facility is 
installed, the execution of the instruction 
is subject to the SSM-suppression bit, bit 
1 of control register O. When the bit is 
zero, the instruction is executed normally. 
When the bit is one and the CPU is in the 
supervisor state, a special-operation 
exception is recognized, and the operation 
is suppressed. 

The operation is suppressed on protection 
and addressing exceptions. 

The value to be loaded into the PSi is not 
checked for validity before loading. 
However, immediately after loading, a 
specification exception is recognized, and 
a program interruption occurs, if the CPU 
is in EC mode and the contents of bit 
positions 0 and 2-4 of the PSW are not all 
zeros. In this case, the instruction is 
completed, and the instruction-length code 
is set to 2. The specification exception 
in this case is considered to be caused as 
part of the execution of the instruction. 

Bits 8-15 of the instruction are ignored. 

CondiliQ!! ~Qde: 
unchanged. 

The code 

Access (fetch, operand 2) 
Privileged operation 
Special Operation 
Specification 

The SSM instruction is frequently 
the BC mode to disable or enable 
for IIO or external interruptions. 

remains 

used in 
the CPU 
Hence, 

Chapter 10. Control Instructions 10-41 



suppressing the execution of the SSM 
instruction by means of the SSM-suppression 
bit, bit 1 of control register 0, may be 
useful when converting a program written 
for aBC-mode PSW to operate with an 
EC-mode PSi. 

SIGNAL PROCESSOR 

[RS] 

'AE' B2 
~ ______ ~~ __ ~ ____ ~___-L-

o 8 12 16 20 31 

An eight-bit order code is transmitted to 
the CPU designated by the CPU address 
contained in the third operand. The result 
is indicated by the condition code and may 
be detailed by status assembled in the 
first-operand location. 

The second-operand address is not used to 
address data; instead, bits 2q-31 of the 
address contain the eight-bit order code. 
Bits 8-23 of the second-operand address are 
ignored. The order code specifies the 
function to be performed by the addressed 
cpu. The assiqnment and definition of 
order codes appear in t he sect ion "CPU 
Signaling and Response" in Chapter q, 
"Control." 

The 16-bit binary number contained in bit 
positions 16-31 of the general reqister 
designated by the R3 field forms the CPU 
address. The high-order 16 bits of the 
register are ignored. 

A serialization function is performed at 
the beginning and also at the completion of 
the operation. 

The CPU operation is delayed until all 
storage accesses due to previous 
instructions by this CPU have been 
completed, as observed by channels and 
other CPUs, and then the signaling occurs. 
No subsequent instructions or their 
operands are accessed by this CPU until the 
execution of the instruction is completed. 

When the order code is accepted and no 
nonzero status is returned, condition code 
o is set. When status information is 
qenerated by this CPU or returned by the 
addressed CPU, the status is placed in the 
qeneral register designated by the R~ 
field, and condition code 1 is set. 

When the access path to the addressed CPU 
is busy, or the addressed CPU is 
operational but in a state where it cannot 
respond to the order code, condition code 2 

10-42 system/370 Principles of Operation 

is set. 

When the addressed CPU is not operational 
(tha t is, it is not provided, or it is not 
configured to this CPU, or it is in certain 
cUstomer-engineer test modes, or its power 
is off), condition code 3 is set. 

A more detailed discussion of the 
condition-code settings for SIGNAL 
PROCESSOR is contained in the section "CPU 
Signaling and Response" in Chapter q, 
"Control." 

The format 
PROCESSOR 
below. 

of the operands of 
instruction are 

the SIGNAL 
illUstrated 

General register designated by R~: 

Status 

o 31 

General register designated by R3: 

r • 
111111111111111111 CPU Address , , 

o 16 31 

Second-operand address: 

, . 
I I 
11111111111111111111111111 

Order 
Code L, ____________ • ______________ ~ ______ ~ 

o 2q 

o Order code accepted 
1 Status stored 
2 BUSY 
3 Not operational 

31 

ProqrA!!! I.!£!lpt io.!!§: 

Operation (if the multi proce ssinq 
feature is not installed) 

Privileged Operation 

1. To ensure that presently written 
programs will be executed properly 
when new facilities usinq adaitional 
bits are installed, only zeros should 
appear in the unused bit positions of 
the second-operand address and in bit 
positions 0-15 of the register 
designated by the R3 field. 

J 

J 



2. certain orders are provided with the 
expectation that they will be used 
primarily in special circumstances. 
such orders may be implemented with 
the aid of an auxiliary maintenance or 
service processor, and, thus, the 
execution time may take several 
seconds. Unless all of the functions 
provided by the order are required, 
combinations of other orders, in 
conjunction with appropriate 
programming support, can be expected 
to provide a specific fUnction more 
rapidly. The SIGP orders emergency 
signal, external call, and sense are 
the only orders which are intended for 
frequent use. The following orders 
are intended for infrequent use, and 
the performance therefore may be much 
slower than for the frequently used 
orders: IML, restart, start, stop, and 
all the reset orders. 

STORE CLOCK COMPARATOR 

r-- , 
I 'B207' I L-____ . ____________ ~ ____ ~ ____________ J 

o 16 20 31 

The current value of the clock comparator 
is stored at the doubleword location 
designated by the second-operand address. 

Zeros are provided for the rightmost bit 
positions of the clock comparator that are 
not compared with the TaD clock. 

The operand 
doubleword 
specification 
the operation 
is su ppressed 
exceptions. 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

Co!!.di.1i2l! 
unchanged. 

'Ihe code 

Access (store, operan d 2) 
Operation (if the CPU-timer 

comparator feature 
installed) 

Privileged Operation 
Specification 

remains 

and clock-
is not 

STORE CONTROL 

r RS] 

r-------~r---_,-----r----,_-----------_, 

'B6' I 

o 8 12 16 20 31 

The set of control registers starting with 
the control register designated by the R~ 
field and ending with the control register 
designated by the R3 field is stored at the 
locations designated by the second-operand 
address. 

The storage area where the conte nts of the 
control registers are placed starts at the 
location designated by the second-operand 
address and continues through as many 
storage words as the number of control 
registers specified. The contents of the 
control registers are stored in ascending 
order of their addresses, starting with the 
control register designated by the R~ field 
and continuing up to and including the 
control register designated by the R3 
field, with control register 0 followinq 
control register 15. The contents of the 
control registers remain unchanged. 

The information stored for unassigned 
control-register positions, or positions 
associated with a facility which is not 
installed, is unpredictable. 

The second operand must be designated on a 
word boundary; otherwise, a specification 
exception is recognized, and the operation 
is suppressed. 

Conditi2l! ~ode: 
unchanged. 

The code 

Access (store, operand 2) 
Privileged Operation 
Specification 

remains 

Although STORE CONTROL may provide zeros in 
the bit positions corresponding to the 
unassigned register positions, the program 
should not depend on such zeros. 

Chapter 10. Control Instructions 10-Q3 



STORE CPU ADDRESS 

r-------------~ 

I 'B212' I B2 
~I----------------~'-----~------------~ 
o 16 20 31 

The CPU address by which this CPU is 
identified in a multiprocessing system is 
stored at the halfword location designated 
bV the second-operand address. 

The operand must bE designated on a 
halfword boundary; otherw ise, a 
specification exception is recognized, and 
the operation is suppressed. The operation 
is suppressed on addressing and protection 
exceptions. 

CongiiiQn ~ode: 
unchanged. 

The code 

Access (store, operand 2) 

remains 

operation (if the multiprocessing 
feature is not installed) 

Privileged Operation 
Specification 

STORE CPU ID 

STIDP [ S J 

-----,r----'T-------------, 
'B202' B2 I , 

o 16 20 31 

Information identifyinq the CPU is stored 
at the doubleword location designated by 
the second-operand address. 

The format 
follows: 

of the information 

I 

,Version 
I Code 

o 8 

CPU Identification 
Number 

31 

r-------------~----------------~ 
, Model , 
I Number I 
L----__________ ~ 

32 48 

Maximum MCEL 
Length 

63 

is as 

Bit positions 0-7 contain the version code. 
The format and significance of the version 
code depend on the model. 

10-44 system/370 principles of Operation 

Bit positions 8-31 contain the CPU 
identification number, consisting of six 
four-bit digits. Some or all of these 
digits are selected from the physical 
serial number stamped on the cpu. The 
contents of the CPU-identification-number 
field, in conjunction with the model 
number, permit unique identification of the 
CPU. 

Bit positions 32-47 contain the model 
number, consisting of four digits: 
high-order zero digits, if necessary, 
followed by the digits of the System/370 
model number. For example, a Model 145 or 
3033 system would store "0145" or "3033," 
respectively. 

Bit positions 48-63 contain a 16-bit binary 
value indicating the length in bytes of the 
longest machine-check extended logout 
(MCEL) that can be stored by the cpu. 

The operand 
double word 
specification 
the operation 
is suppressed 
exceptions. 

must be designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

Condition ~Qde: 
unchanged. 

The code remains 

Program Excep!ions: 

Access (store, operand 2) 
Privileged Operation 
Specification 

1. The pr.ogram should allow for the 
possibility that the CPU 
identification number may contain the 
digits A-F as well as the digits 0-9. 

2. The principal uses of the information 
stored by the instruction STORE CPU ID 
are the following: 

a. The CPU identification number, 
combined with the model number, 
provides a unigue CPU 
identification that can be used in 
associating results with an 
individual system, particularly in 
regard to functional differences, 
performance differences, and error 
handling. 

b. The model number, in conj unction 
with the version code, can be used 
by model-independent programs in 
determining which model-dependent 
recovery programs should be 
called. 



c. The MCEL length can be used by 
model-independent programs to 
allocate main storaqe for the MCEL 
area. 

STORE CPU TIMER 

'B209' B2 L-_____________ ,---L-

o 16 20 31 

The current value of the CPU timer is 
stored at the doubleword location 
designated by the second-operand address. 

Zeros are provided for the rightmost bit 
positions that are not updated by the CPU 
timer. 

The operand 
doubleword 
specification 
the operation 
is su ppressed 
exceptions. 

must b€ designated on a 
boundary; otherwise, a 
exception is recognized, and 
is suppressed. The operation 
on addressing and protection 

Condition ~Qde: 
unchanged. 

The code 

Access (st ore, operan d 2) 
operation (if the CPU-timer 

comparator feature 
installed) 

Privileged Operation 
Specification 

STORE PR EFIX 

5TPX D2 (B 2 ) [5] 

r-- T 

1 'B211' B2 I D2 

0 16 20 

remains 

and cloclt-
is not 

, 
1 

31 

The contents of the prefix register are 
stored at the word location designated by 
the second-operand address. Zeros are 
provided for bit positions 0-7 and 20-31. 

The operand must be designated on a word 
boundary; otherwise, a specification 
exception is recognized, and the operation 
is suppressed. The operation is suppressed 
on addressing and protection exceptions. 

~on£i tj,Q'!! ~Qde: 
unchanged. 

The code 

Access (store, operand 2) 

remains 

operation (if the multiprocessing 
feature is not installed) 

privileged Operation 
Specification 

STORE THEN AND SYSTEM MASK 

STNSM Ds. (Bs.) ,Ia [ SI] 

r-------~r-------~r-·--~-------------, 
'AC' Bs. Ds. 1 L-______ ~~ ______ ~~---L-, ____________ ~ 

o 8 16 20 31 

Bits 0-7 of the current PSW are stored at 
the first-operand location. Then the 
contents of bit positions 0-7 of the 
current P5W are replaced by the logical AND 
of their original contents and the second 
operand. 

The operation is suppressed on addressing 
and protection exceptions. 

Condition ~Qde: 
unchanged. 

Prog~am EX~B1iQns: 

The code remains 

Access (store, operand 1) 
Operation (if the translation feature 

is not installed) 
privileged Operation 

The STORE THEN AND SYSTEM MASK i nst ruction 
permits the program to set selected bits in 
the system mask to zeros vh ile retaining 
the original contents for later 
restoration. For example, it may be 
necessary that a program, which has no 
record of the present status, disable 
program-event recording for a few 
instructions. 

Chapter 10. Control Instructions 10-45 



STORE THEN OR SYSTEM MASK 

[SI) 

, AD' 
L----____ ~ ________ ~ ____ ~ __________ ~ 

o 8 16 20 31 

Bits 0-7 of the current PSW are stored at 
the first-operand location. Then the 
contents of bit positions 0-7 of the 
current PSW are replaced by the logical OR 
of their original contents and the second 
operand. 

The value to be loaded into the PSW is not 
checked for validity before loading. 
However, immediately after loading, a 
specification exception is recognized, and 
a program interruption occurs, if the CPU 
is in the EC mode and the contents of bit 
positions 0 and 2-4 of the PSW are not all 
zeros. In this case, the instruction is 
completed, and the instruction-length code 
is set to 2. The specification exception 
in this case is considered to be caused as 
part of the execution of the instruction. 

The operation is suppressed on addressing 
and protection exceptions. 

CondiiiQn ~ode: 
unchanged. 

The code 

Access (store, operan d 1) 

remains 

Operation (if the translation feature 
is not installed) 

Privileged Operation 
Specification 

The STORE THEN OR SYSTEM MASK instruction 
permits the program to set selected bits in 
the system mask to ones while retaining the 
oriqinal contents for later restoration. 
For example, the program may enable the CPU 
for I/O interruptions without having 
available the current status of the 
external-mask bit. 

10-46 System/370 principles of Operation 

1 TEST BLOCK 

TB Rj.,1l 2 [RRE) 

• • , 
'B22C' 1////////1 Rj. R2 1 

0 16 24 28 31 

The storage keys and storage locations of 
the 4K-byte block addressed by the contents 
of the qenera1 register designated by the 
R2 field are tested for usability based on 
the susceptibility to the occurrence of 
invalid checking-block code. The resu1 t of 
the test is indicated in the condition 
code. A complete testing operation is 
necessarily performed only when the ini tial 
contents of general register 0 are zero. 
The contents of general register 0 are set 
to zero at the completion of the ope ra tion. 

The contents of the general reqister 
designated by the Rj. field are ignored. 
Bits 16-23 of the instruction are iqnored. 

If the block is found to be usable, the 
4,096 bytes of the block are cleared to 
zeros, the contents of the storage keys are 
unpredictable, and the condition code is 
set to zero. If the block is found to be 
unusable, the data and the storage keys are 
set, as far as is possible by the model, to 
a value such that subsequent fetches to the 
area do not cause a machine-check 
condition, and the condition code is set to 
one. 

The contents of the general register 
designated by the Rj. field a re treated as a 
31-bit real address of a 4K-byte block in 
storage. Bits 1-19 of the register 
designate the block of 4K bytes, and bits 0 
and 20-31 of the register are ignored. 

The address of the block is a real address, 
and the accesses to the block designated by 
the second-operand address are not subject 
to key-controlled protection. Addressing 
and low-address protection do apply. The 
operation is terminated on addressing and 
protection exceptions; that is, the 
condition code and the contents of general 
register 0 are unpredictable. The contents 
of storagE~ are not changed when these 
exceptions occur. 

Depending on the model, the test for 
usability may be performed (1) by 
alternately storing and reading out test 
patterns to the data and storage key in the 
block or (2) by reference to an internal 
record of the usability of the blocks in 
the system, or (3) by using a combination 
of both mechanisms. 

In models in which an internal record is 

J 



I 
I 

Ll 
I 
I 
I 
I , 
I 

used, the block is indicated as unusable if 
a solid failure has been previously 
detected, or if intermittent failures in 
the block have exceeded the threshold 
implemented by the model. In such models, 
depending on the error, attempts to store 
mayor may not occur. Thus, if block 0 is 
not usable, and no store occurs, 
low-address protection may not be 
indicated. 

In models in which test patterns are used, 
the TEST BLOCK instruction may be 
interruptible. When an interruption occurs 
after a unit of operation, other than the 
last one, the condition code is 
unpredictable, and the contents of general 
register 0 may contain a record of the 
state of intermediate steps. When 
execution is resumed after an interruption, 
the condition code is ignored, but the 
contents of general register 0 may be used 
to determine the resumption point. 

If (1) TEST BLOCK is issued with an initial 
value other than zero in general register 
0, or (2) the interrupted instruction is 
resumed after an interruption with a value 
in general register 0 other than the value 
which was present at the time of the 
interruption, or (3) the block is accessed 
by another CPU or channel during the 
execution of the instruction, then the 
results in the storage block and keys and 
the resultant condition-code setting and 
the contents of general register 0 are 
unpredictable. 

Invalid checking-block-code errors 
initially found in the block or encountered 
during the test do not normally result in 
machine-check conditions. The test-block 
function is implemented in such a way that 
the frequency of machine-check 
interruptions due to the instruction is not 
significant. However, if, during the 
execution of TEST BLOCK for an unusable 
block, that block is accessed by another 
CPU or channel, machine-check conditions 
may result on either processor or both 
processors. 

A serialization function is performed 
before the block is accessed and again 
after the operation is completed. CPU 
operation is delayed until all previous 
accesses by this CPU to storage have been 
completed, as observed by channels and 
other CPus, and then the accesses, if any, 
to the block occur. No subsequent 
instructions or their operands are accessed 
by this CPU until the execution of this 
instruction is completed, as observed by 
channels and other CPUs. 

o Block is usable, 
of storage in the 

and the contents 
block have been 

set to zeros 
1 Block is not usable 
2 
3 

Addressing 
operation (if the instruction is not 

installed) 
Privileged Operation 
Protection (operand 2, low-address 

protection only) 

1. The execution of TEST BLOCK on most 
models is significa ntly slower than 
that of MOVE LONG with padding; 
therefore, the instruction should not 
be used for the normal case of 
clearinq storage. 

2. The program should use TEST BLOCK at 
ini tial program load ing and as pa rt of 
the vary-storage-on-line procedure to 
determine if blocks of storaqe exist 
which should not be used. 

3. ihen an error is detected in either 
the data or keys of a block that has 
been in use and the recovery program 
chooses to mark the block unusable, 
the TEST BLOCK instruction should be 
issued to the block. This instruction 
attempts, as far as is possible on the 
model, to leave the contents of a 
block in such a state that subsequent 
errant fetches or prefetches to the 
block will not cause machine-check 
interruptions. The proqra m should 
ignore the resulting condition co~e in 
this case since, dependinq on the 
model, on the type of error, and on 
the threshold implemented by the 
model, the condition code may indicate 
a usable block, even though the 
program has decided otherwise. 

4. 

5. 

The model mayor may not be successful 
in removing the errors from a block 
when the TEST BLOCK instruction is 
issued. The proqram therefore should 
take every reasonab Ie preca ution to 
avoid referencing an unusable block. 
For example, the program should not 
place the page-frame real address of 
an unusable block in an attached 
page-table entry. 

On some models, 
reported for a 
block is not 
program. When 
reported for a 
which has been 

machine checks may be 
block even thouqh the 

referenced by the 
a machine check is 

key error in a block 
marked as unusable by 

Chapter 10. Control Instructions 10-47 



the program, it is possible that SET 
STORAGE KEY may be more effective than 
TEST BLOCK in validating the key. 

TEST PROTECTION 

TPROT [SSE] 

r-----------------,-----T---/--~~/__, 
'E501' B~ I D~ I Ba I D2 I 

~ ________________ ~ __ __L' / I /~ 

o 16 20 32 36 47 

The location specified by the first-operand 
address is tested for protection exceptions 
using the access key specified in bits 
24-27 of the second-operand address. 

The second-operand address is not 
address data; instead, bits 24-27 
address form the access key to be 
testing. Bits 8-23 and 28-31 
second-operand address are ignored. 

used to 
of the 
used in 
of the 

The first-operand address is a logical 
address and thus is subiect to translation 
when DAT is on. When DAT is on and the 
first-operand address cannot be translated 
because of a situation that would normally 
cause a page-translation or segment­
translation exception, the instruction is 
completed by setting condition code 3. 

When translation of the first-operand 
address can be completed, or when DAT is 
off, the storage key associated with the 
first-operand address is tested against the 
access key specified in bits 24-27 of the 
second-operand address, and the condition 
code is set to indica te whether store and 
fetch accesses are permitted, taking into 
consideration all applicable protection 
mechanisms. Thus, for example, if bit 3 of 
control register 0 is one, indicating that 
low-address protection is enabled, and if 
the first-operand address is less than 512, 
then a store access is not permitted. 

The contents of storage, including the 
change bit, are not affected. Depending on 
the model, the reference bit associated 
with the first-operand address may be set 
to one, even for the case in which the 
location is protected against fetching. 

When DAT is on, an addressing except ion is 
recognized when the address of the 
segment-table entry, the page-table entry, 
or the operand real address after 
translation designates a location outside 
the available storage of the system. Also, 
when DAT is on, a translation-specification 
exception is recognized when the 

10-48 System/370 principles of Operation 

segment-table entry or page-table entry has 
a format error. When DAT is off, only the 
addressing exception due to the operand .\. 
real address applies. For all of these ~ 
cases, the operation is suppressed. 

Res~lt!gg Condition £gde: 

1. 

2. 

3. 

o 

1 

2 

3 

Both fetching and storing are 
permitted 
Fetching is permitted, but storing 
is not 
Neither fetching nor storing are 
permitted 
Translation not available 

Addressing (operand 1) 
Operation (if the extended facility is 

not installed) 
Privileged Operation 
Translation Specification 

The instruction TPROT permits a 
program to check the validi ty of an 
address passed from a calling program 
without incurring program exceptions. 
The i.nstruction sets a condition code 
to indicate whether fetching or 
storing is permitted at the 1 oca tion 
speci.fied by the first-operand address 
of the instruction. The instruction 
takes into consideration all of the 
protection mechanisms installed in the 
machine: key-controlled and 
low-address protection. Additionally, 
since segment translation and page 
translation may be a substitute for a 
protection violation, these exceptions 
are used to set the condition code 
rather than cause an interruption. 

See the progra mming notes under SET 
PSW KEY FROM ADDRESS for more details 
and for an alternative approach to 
testing validity of addresses passed 
by a calling program. The approach 
using TEST PROTECTION has the 
advan tage of a test which does not 
result in exceptions; however, the 
test and use are separated in time and 
may not be accurate if the possibility 
exists that the control program can 
change the storage key of the location 
in question. 

In the handling of dynamic add ress 
translation, TEST PROTECTION is 
similar to LOAD REAL ADDRESS in that 
the instructions do not cause 
page-translation and segment-
translation exceptions. Instead, 
these situations are indicated by 



means of a condition-code setting. 
Situations which result in condition 
codes 1, 2, and 3 for LRA result in 
condition code 3 for TPROT. However, 
the instructions differ in several 
respects. TPROT has a logical address 
and thus is not subject to translation 
when DAT is off. LEA has a virtual 
address which is always translated. 
TPROT may use the TLB for translation 
of the address, whereas LRA does not 
use the TLB. 

When DAT is off for LRA, the 
translation specification for an 
invalid value of bits 8-12 of control 
register 0 occurs after instruction 
fetching as part of the execution 
portion of the instruction. This 
situation cannot occur for TPROT since 
the operand address is a logical 
address and does not examine control 
register 0 when DAT is off. When DAT 
is on, the exception would be 
reeognized during instruction fetch. 
Since the instruction-fetch portion of 
an instruction is common for all 
instructions, access exceptions 
associated with instruction fetching 
are not described in the individual 
instruction definition. 

iRI TE DI R ECT 

WRD r SI] 

'84' 

o 8 16 20 31 

The byte at the location designated by the 
first-operand address is made available as 
a set of direct-out static signals. Eight 
instruction bits are made available as 
signal-out timing signals. 

When the extended facility is not 
installed, the first-operand address is a 
logical address and subject to normal 
access exceptions. When the extended 
facility is installed, the first-operand 
address is a real address and therefore not 
subject to translation; only addressing and 
protection exceptions apply. 

The eight data bits of the byte fetched 
from the real storage location specified by 
the first-operand address are presented on 
a set of eight direct-out lines as static 
signals. These signals remain until the 
next WRITE DIRECT is executed. No checking 
bits are presented with the eight data 
bits. 

The contents of the I3 field are made 
available simultaneously on a set of eight 
signal-out lines as 0.5-microsecond to 
1.0-microsecond timing signals. On a ninth 
line (write out), a O.5-microsecond to 
1.0-microsecond timing signal is made 
available concurrently with these timinq 
signals. The eight signal-out lines are 
also used in READ DIRECT. No checking bits 
are made available with the eight 
instruction bits. 

A serialization function is performed 
before the operand is fetched and aga1n 
after the signals have been presented. CPU 
operation is delayed until all previous 
accesses by this CPU to main storage have 
been completed, as observed by channels and 
other CPUs, and then the first operand byte 
is fetched and the signals made available. 
No subsequent instructions or their 
operands are fetched by this CPU until the 
signals have been made available. 

Condition ~Qde: 
unchanged. 

The code remains 

Access (fetch, operand 1; access 
applies only if the extended 
facility is not installed) 

Addressing (operand 1) 
Operation (if the direct-control 

feature is not installed) 
Privileged Operation 
Protection (fetch, operand 1) 

Chapter 10. Control Instructions 10-49 



----------~ 

t: .. 



L 

Machine-Check Detection ••••••••••••••••••••••••••••••••••••••••• 11-2 
correction of Machine Malfunctions •••••••••••••••••••••••••••••• 11-2 

Error Checking and Correction ••••••••••••••••••••••••••••••••• 11-2 
CPU Retry •••••••••••••.•••••••••.••••••••••••••••••••••••••••• 11-3 

Effects of CPU Retry •••••••••••••••••••••••••••••••••••••••• 11-3 
Checkpoint Synchronization •••••••••••••••••••••••••••••••••• 11-3 
Handling of ~achine Checks During Checkpoint 
Synchronization ••••••••••••••••••••••••••••••••••••••••••••• 11-3 
Checkpoint-Synchronization Operations ••••••••••••••••••••••• 11-q 
Checkpoint-synchronization Action ••••••••••••••••••••••••••• 11-q 

unit Deletion ••••••••••••••••••••••••••••••••••.•••••••••••••• 11-4 
Handling of Machine Checks •••••••••••••••••••••••••••••••••••••• 11-5 

Validation •••••••••••••••••••••••••••••••••••••••••••••••••••• 11-5 
Invalid CBC in Storage •••••••••••••••••••••••••••••••••••••••• 11-6 

Programmed Validation of Storage •••••••••••••• _ ••••••••••••• 11-6 
Invalid CBC in Storage Keys ••••••••••••••••••••••••••••••••••• 11-7 
Invalid CBC in Registers •••••••••••••••••••••••••••••••••••••• 11-9 

Check-Stop State •••••••••••••••••••••••••••••••••••••••••••••••• 11-10 
System Check Stop ••••••••••••••••••••••••••••••••••••••••••• 11-11 

Machine-Check InterrUption •••••••••••••••••••••••••••••••••••••• 11-11 
Exigent Conditions •••••••••••••••••••••••••••••••••••••••••••• 11-11 
Repressible Conditions •••••••••••••••••••••••••••••••••••••••• 11-12 
Interruption Action ••••••••••••••••••••••••••••••••••••••••••• 11-12 
Point of Interruption ••••••••••••••••••••••••••••••••••••••••• 11-14 

Machine-Cheek-Interruption Code ••••••••••••••••••••••••••••••••• 11-15 
Subclass •••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-16 

System Damage ••••••••••••••••••••••••••••••••••••••••••••••• 11-16 
Instruction-processing Damage ••••••••••••••••••••••••••••••• 11-17 
System Recovery ••••••••••••••••••••••••••••••••••••••••••••• 11-17 
Interval-Timer Damage ••••••••••••••••••••••••••••••••••••••• 11-17 
Timing-Facility Damage •••••••••••••••••••••••••••••••••••••• 11-17 
External Damage ••••••••••••••••••••••••••••••••••••••••••••• 11-18 
Degradation ••••••••••••••••••••••••••••••••••••••••••••••••• 11-18 
Warning •••••••••••••••••••••••••••••••••••••••••••••••• _ •••• 11-18 

Time of Interruption occurrence ••••••••••••••••••••••••••••••• 11-18 
Backed Up ••••••••••••••••••••••••••••••••••••••••••••••••••• 11-18 
Delayed ••••••••••••••••••••••••••••••••••••••••••••••••••••• 11-18 

Synchronous Machine-Check Interruption Conditions ••••••••••••• 11-18 
Processing Backup ••••••••••••••••••••••••••••••••••••••••••• 11-19 
processing Damage ••••••••••••••••••••••••••••••••••••••••••• 11-19 

storage-Error Type •••••••••••••••••••••••••••••••••••••••••••• 11-19 
Storage Error Uncorrected ••••••••••••••••••••••••••••••••••• 11-19 
Storage Error Corrected ••••••••••••••••••••••••••••••••••••• 11-19 
Storage-Key Error Uncorrected ••••••••••••••••••••••••••••••• 11-20 

Machine-Check Interruption-Code Validity Bits ••••••••••••••••• 11-20 
PSW-EMWP Validity ••••••••••••••••••••••••••••••••••••••••••• 11-20 
PSW Mask and Key Validity ••••••••••••••••••••••••••••••••••• 11-20 
PSW Program-Mask and Condition-Code Validity •••••••••••••••• 11-20 
PSW-Instruction-Address Validity ••••••••••••••••••••••••• 11-20 
Failing-Storage-Address Validity ••••••••••••••••••••••••• 11-20 
Region-Code Validity •••••••••••••••••••••••••••••••••••••••• 11-21 
External-Damage-code Validity ••••••••••••••••••••••••••••••• 11-21 
Floating-Point-Register Validity ••••••••••••••••••••••••• 11-21 
General-Register Validity ••••••••••••••••••••••••••••••••••• 11-21 
Control-Register Validity ••.•••••••••••••••••••••••••••••••• 11-21 
Logout Validity •••••••••.••••••••••••••••••••••••••••••••••• 11-21 
Storage logical Validity •••••••••••••••••••••••••••••••••••• 11-21 
CPU-Timer Validity •••••••••••••••••••••••••••••••••••••••••• 11-21 
Clock-Comparator Validity ••••••••••••••••••••••••••••••••.•• 11-21 
Machine-Check Extended-Logout Length ••••••••••••••••••••.••• 11-22 

Machine-Check Extended Interruption Information ••••••••••••••••• 11-22 
Register-Save Areas ••••••••••••••••••••••••••••••••••••••••••• 11-22 
External-Damage Code •••••••••••••••••••••••••••••••••••••••••• 11-22 

Chapter 11. Machine-Check Handling 11-1 



-------------- -----

Failing-storage Address ••••••••••••••••••••••••••••••••••••••• 11-2q 
Region Code •••••••••••••••••••••••••••••••••.••••••••••••••••• 11-2q 

Handling of Machine-Check Conditions •••••••••••••••••••••••••••• 11-25 
Floating Interruption Conditions •••••.•••••••••••••••••••••••• 11-25 

Floating Machine Check Interruption Conditions ••••••••••.••• 11-25 
Machine-Check Masking •••••••••••••.•••••.••••••••••••••••••••••• 11-25 

Check-stop Control •••••.••••••••••.••••••••••••••••••••••••• 11-26 
Recovery-Report Mask •••••••••••••••••.•••••••••••••••••••••• 11-26 
Degradation-Report Mask •••..•••••••••••••••••••••••••••••••• 11-26 
External-Damage-Report Mask •.••••••••••••••••••••••••••••••• 11-26 
Warning Mask ••••••••••••.••.•••••••••••••••••••••••••••••••• 11-26 

Machine-Check Logout •.•••••••••.•••••••••••••••••••••••••••••••. 11-26 
Logout Controls •••••.••••••••••••••••••••••••••••••••••••••••• 11-27 

Synchronous Machine-Check Extended-Logout Control ••••••••••• 11-27 
Input/Output Extended-Logout Control •••.•••••.•••••••••••••• 11-27 
Asynchronous Machine-Check Extended-Logout Control •.•••••••• 11-27 
Asynchronous Fixed-Logout Control ••••••••.•••••.•••••••••••• 11-27 

Machine-Check Extended-Logout Address ••••••••••••••••••••••••• 11-27 
Summary of Machine-Check Masking and Logout .•••••••••••••••••••• 11-28 

The machine-cheek-handling mechanism 
provides extensive equipment-malfunction 
detection to ensure the integrity of system 
operation and to permit automatic recovery 
from some malfunctions. Equipment 
malfunctions and certain external 
disturbances are reported by means of a 
machine-check interruption to assist in 
program-damage assessment and recovery. 
The interruption supplies the program with 
information about the extent of the damage 
and the location and nature of the cause. 
Eguipment malfunctions, errors, and other 
situations which can cause machine-check 
interruptions are referred to as machine 
checks. 

Machine-check-detection mechanisms may take 
many forms, especially in control functions 
for arithmetic and logical processing, 
addressing, sequencing, and execution. For 
program-addressable information, detection 
is normally accomplished by encoding 
redundancy into the information in such a 
manner that most failures in the retention 
or transmission of the information result 
in an invalid code. The encoding normally 
takes the form of one or more redundant 
bits, called check bits, appended to a 
group of data bits. Such a group of data 
bits and the associated check bits are 
called a checking block. The size of the 
checking block depends on the model. 

bits is included to permit detection of 
multiple errors, to permit error 
correction, or both. 

For checking purposes, the entire contents 
of a checking block, includina the 
redundancy, is called a checking-block code 
(CBq. When a CBC completely meets the 
checking requirements (that is, no fail ure 
is detecte d), it is sa id to be va lid. When 
both detection and correction are provided 
and a CBC is not valid but sa ti sfies the 
checking requirements for correction (the 
failure is correctable), it is said to be 
near-valid. When a CBC does not sa tisfy 
the checking requirements (the failure is 
uncorrectable), it is said to be invalid. 

Three mechanisms may be used to provide 
recovery from machine-detected malfunc­
tions: error checking and correction, CPU 
retry, and unit deletion. 

Machine failures which are corrected 
successfully mayor may not be reported as 
machine-check interruptions. If reported, 
they are system-recovery conditions, which 
permit the program to note the cause of CPU 
delay and to keep a log of such i nciden ts. 

ERROR CHECKING AND CORRECTION 

J 

The inclusion of a single check bit in the 
checking block allows the detection of any 
single-bit failure within the checking 
block. In this arrangement, the check bit 
is somet imes referred to as a "parity bit." 
In other arrangements, a group of check 

When sufficient redundancy is included in 
circuitry or in a checking block, failures J" 
can be corrected. For example, circuitry 
can be triplicated, with a voting circuit 
to determine the correct value by selecting 

11-2 System/370 principles of Operation 



two matching results out of three, thus 
correcting a single failure. An 
arrangement for correction of failures of 
one order and for detection of failures of 
a higher order is called error checking and 
correction (ECC). Commonly, ECC allows 
correction of single-bit failures and 
detection of double-bit failures. 

Depending on the model and the portion of 
the machine in which ECC is applied, 
correction may be reported as a system­
recovery machine-check condition or no 
report may be given. 

Uncorrected errors in storage and in the 
storage key may be reported, along with a 
failing-storage address, to indicate where 
the error occurred. Depending on the 
situation, these errors may be reported 
along with system recovery, with external 
secondary report, or with the damage or 
backup condition resulting from the error. 

CPU RETRY 

In some models, information about some 
portion of the state of the machine is 
saved periodically. The point in the 
processing at which this information is 
saved is called a checkpoint. The 
information saved is referred to as the 
checkpoint information. The action of 
saving the information is referred to as 
establishinq a checkpoint. The action of 
discarding previously saved information is 
called invalidation of the checkpoint 
information. The length of the interval 
between establishing checkpoints is 
model-dependent. Checkpoints may be 
established at the beginning of each 
instruction or several times within a 
sinqle instruction, or checkpoints may be 
established less frequently. 

subsequently, this saved information may be 
used to restore the machine to the state 
that existed at the time when the 
checkpoint was established. After 
restoring the appropriate portion of the 
machine state, processinq continues from 
the checkpoint. The process of restorinq 
to a checkpoint and then continuing is 
called CPU retry. 

CPU retry may be used for machine-check 
recovery, to effect nullification and 
suppression of instruction execution when 
certain program interruptions occur, and in 
other model-dependent situations. 

CPU retry is, in general, performed so that 
there is no effect on the program. 
However, change bits which have been 
changed from zeros to ones are not 
necessarily set back to zeros. As a 
result, change bits may appear to be set to 
ones for blocks which would have been 
accessed if restoring to the checkpoint had 
not occurred. If the path taken by the 
program is dependent on information that 
may be changed by another CPU or by a 
channel or if an interruption occurs, then 
the final path taken by the proqram may be 
different from the earlier path; therefore, 
change bits may be ones because of stores 
along a path apparently never taken. 

~heQ~9i~1 aInchronizatiQ~ 

Checkpoint synchronization consists in the 
following steps. The CPU operation is 
delayed until all conceptually previous 
storage accesses are completed, both for 
purposes of machine-check detection and as 
observed by channels and other CPUs. The 
checkpoint information for all previous 
checkpoints, if any, is invalidated. 
Optionally, a new checkpoint is 
established. The CPU operation is delayed 
until all of these actions appear to be 
completed, as observed by channels and 
other CPUs. 

When, in the process of completinq all 
previous stores as part of the 
checkpoint-synchronization action, the 
machine is unable to complete all stores 
successfully but can successfully restore 
the machine to a pre vious check poin t, 
processing backup is reported. 

When, in the process of completinq all 
stores as part of the checkpoint­
synchronization action, the machine is 
unable to complete all stores successfully 
and cannot successfully restore the machine 
to a previous checkpoint, the type of 
machine-check condition reported depends on 
the oriqin of the store. Failure to 
successfully complete stores associated 
with instruction execution may be reported 
as instruction-processing damage, or some 
less critical machine-check condition may 
be reported with the 
storage-logical-validity bit set to zero. 
A failure to successfully complete stores 
associated with the execution of an 

Chapter 11. Machine-Check Handlinq 11-3 



interruption, other 
supervisor call, is 
damage. 

than program or 
reported as system 

When the machine check occurs as part of a 
checkpoint-synchronization action before 
the execution of an instruction, the 
execution of the instruction is nullified. 
When it occurs before the execution of an 
interruption, the interruption condition, 
if the interruption is external, I/O, or 
restart, is held pending. If the 
checkpoint-synchronization operation was a 
machine-check interruption, then along with 
the originating condition, either the 
storage-logical-validity bit is set to zero 
or instruction-processing damage is also 
reported. Program interruptions, if any, 
are lost. 

All interruptions and the execution of 
certain instructions cause a checkpoint­
synchronization action to be performed. 
The operations which cause a checkpoint­
synchronization action are called 
checkpoint-synchronization operations and 
include: 

1. All interruptions: external, I/O, 

2. 

machine check, program, restart, and 
supervisor call. 

BFANCH ON CONDITION (BCR) 
and R2 fields containing 
all zeros, respectively. 

with the Ms. 
all ones and 

3. The instructions LOAD PSi, SET STORAGE 
KEY, and SUPERVISOR CAll. 

ij. All I/O instructions. 

5. The instructions MOVE TO PRIMARY, MOVE 
TO SECONDARY, PROGRAM CALL, PROGRAM 
TRANSFER, SET ADDRESS SPACE CONTROL, 
and SET SECONDARY ASN. 

6. The DAS-tracing function. 

The instructions which are defined to cause 
the checkpoint-synchronization action 
invalidate checkpoint information but do 
not necessarily establish a new checkpoint. 
Additionally, the machine may establish a 
checkpoint between any two instructions or 
units of operation. Thus, the point of 
interruption for the machine check is not 
necessarily at an instruction defined to 
cause a checkpoint-synchronization action. 

11-4 System/370 principles of Operation 

For all interruptions except I/O 
interruptions, a checkpoint-synchronization 
action is performed at the completion of 
the interruption. For I/O interruptions, a 
checkpoint-synchronization action mayor 
may not be performed at the completion of 
the interruption. For all interruptions 
except program, supervisor-call, and 
exigent lDachine-check interruptions, a 
checkpoint--synchronization action is also 
performed before the interruption. The 
fetch access to the new PSi may be 
performed either before or after the first 
checkpoint-synchronization action. The 
store accesses and the changing of the 
current PSW associated with the 
interruption are performed after the first 
checkpoint-synchronization action and 
before the second. 

For all checkpoint-synchronization instruc­
tions except BCR, I/O instructions, and 
SUP ERVISOR CALL, checkpoint-synch roniza tion 
actions are performed before and after the 
execution of the instruction. For BCR, 
onl y one checkpoint- sync hroniza ti on ac tion 
is necessarily performed, and it may be 
performed either before or after the 
instruction address is updated. For the 
SUPERVISOR CALL instruction, a checkpoint­
synchronization action is performed before 
the instruction is executed, including the 
updating of the instruction address in the 
PSi. The checkpoint-synchronization action 
taken after the supervisor-call 
interruption is considered to be part of 
the interruption action and not part of the 
instruction execution. For I/O 
instructions, a checkpoint-synchronization 
action is always performed before the 
instruction is executed and mayor may not 
be perforlDed after the instruction is 
executed. 

The DAs-tracing function causes checkpoint­
synchronization actions to be performed 
before the trace action and after 
completion of the trace action. 

UNIT DELETION 

In some models, malfunctions in certain 
transparent units of the system can be 
circumvented by discontinUing the use of 
the unit. Examples of cases where 
transparent-unit deletion may be used 
include the disabling of all or a portion 
of a cache or of a transla tion-lookaside 
buffer (TLB) • unit deletion may be 
reported as a degradation machine-check 
condition. 



A machine check is caused by a machine 
malfunction and not by data or 
instructions. This is ensured during the 
power-on sequence by initializing the 
machine controls to a valid state and by 
placing valid CBC in the CPU registers, in 
the storage keys, and, if it is volatile, 
also in main storage. 

specification of an unavailable component, 
such as a storage unit, channel, or I/O 
device, does not cause a machine-check 
indication. Instead, such a condition is 
indicated by the appropriate program or I/O 
interruption or condition-code setting. In 
particular, an attempt to access a storage 
location which has been configured out of 
the system results in an addressing 
exception and does not generate a 
machine-check condition, even though the 
storage location or its associated storage 
key has invalid CBC. 

A machine check is indicated whenever the 
result of an operation could be affected by 
information with invalid CBC, or when any 
other malfunction makes it impossible to 
establish reliably that an operation can 
be, or has been, performed correctly. When 
information with invalid CBC is fetched but 
not used, the condition mayor may not be 
indicated, and the invalid CBC is 
preserved. 

When a machine malfunction is detected, the 
action taken depends on the model, the 
nature of the malfunction, and the 
situation in which the malfunction occurs. 
Malfunctions affecting operator-facility 
actions may result in machine checks or may 
be indicated to the operator. Malfunctions 
affecting certain other operations such as 
SIGNAL PROCESSOR may be indicated by means 
of a condition code or may result in a 
machine-check interruption. 

A malfunction detected as part of an I/O 
operation may cause a machine-check 
condition, an I/O-error condition, or both. 
I/O-error conditions are indicated by an 
I/O interruption or by the appropriate 
condition-code setting during the execution 
of an I/O instruction. When the machine 
reports a failing-storage location detected 
during an I/O operation, both I/O-error and 
machine-check conditions may be presented. 
The I/O-error condition is the primary 
indication to the program. The 
machine-check condition is a secondary 
indication, which is presented as system 
recovery or as an external secondary 
report, toqether with a failing-storage 
address. 

VALIDATION 

Machine errors can be generally classified 
as solid or intermittent, according to the 
persistence of the malfunction. A 
persistent machine error is said to be 
solid, and one that is not persistent is 
said to be intermittent. In the case of a 
register or storage location, a third type 
of error must be considered, called 
externally generated. An externally 
generated error is one where no failure 
exists in the register or storage location 
but invalid CBC has been introduced into 
the location from something external to the 
location. For example, the value could be 
affected by a power transient, or an 
incorrect value may have been introduced 
when the information was placed in the 
location. 

Invalid CBC is preserved as invalid when 
information with invalid CBC is fetched or 
when an attempt is lIade to update only a 
portion of the checking block. When an 
attempt is made to replace the contents of 
the entire checking block and the block 
contains invalid CBC, it depends on the 
operation and the model whether the block 
remains with invalid CBC or is replaced. 
An operation which replaces the contents of 
a checking block with valid CBC, while 
ignoring the current contents, is called a 
validation operation. Validation is used 
to introduce a valid CBC into a register or 
location which is sufferinq froll an 
intermittent or externally generated error. 

validating a checking block does not ensure 
that a valid CBC will be observed the next 
time the checking b lock is accessed. If 
the failure is solid, validation is 
effective only if the information placed in 
the checking block is such that the failing 
bits are set to the value to which they 
fail. If an attempt is made to set the 
bits to the state opposite to that in which 
they fail, then the validation will not be 
effective. Thus, for a solid failure, 
validation is only useful to eliminate the 
error condition, even though the underlying 
failure remains, thereby reducing the 
exposure to additional reports. The 
locations, however, cannot be used, since 
invalid eBe will result from attempts to 
store other values in the location. For an 
intermittent failure, however, validation 
is useful to restore a valid CBC such that 
a subsequent partial store into the 
checking block (a store into a checking 
block without replacing the entire checking 
block) by either the CPU or a channel will 
be permitted. 

When a checking block consists of multiple 
bytes in storage, or multiple bits in CPU 
registers, the invalid CBC can be made 
valid only when all of the bytes or bits 

Chapter 11. Machine-Check Handlinq 11-5 



are replaced simultaneously. 

For each type of field in the system, 
certain instructions are defined to 
validate the field. Depending on the 
model, additional instructions may also 
perform validation; or, in some models, a 
register is automatically validated as part 
of the machine-check-interruption sequence 
after the original contents of the register 
are placed in the appropriate save area. 

When an error occurs in a checking block, 
the original information contained in the 
checking block should be considered lost 
even after validation. Automatic register 
validation leaves the contents 
unpredictable. Programmed and manual 
validation of checking blocks causes the 
contents to be changed explicitly. 

The machine-check-interruption handler must 
assume that the registers require 
validation. Thus, each register should be 
loaded, using an instruction defined to 
validate, before the reqister is used or 
stored. 

INVALID CBC IN STORAGE 

The size of the checking block in storage 
depends on the model but is never more than 
2,048 bytes. 

When invalid CBC is detected in storage, a 
machine-check condition may occur; 
depending on the circumstances, the 
machine-check condition may be system 
damage, instruction-processing damage, 
external damage, or system recovery. If 
the invalid CBC is detected as part of an 
I/O operation, the error is normally 
reported as an I/O-error condition. When a 
CCi, indirect-data-address word, or data is 
prefetched from storage, is found to have 
invalid CBC, but is not used in an I/O 
operation, the condition is normally not 
reported as an I/O-error condition. The 
condition mayor may not be reported as a 
machine-check interruption. Invalid CBC 
detected during accesses to storage for 
other than CPU-related accesses may be 
reported as system recovery with storage 
error uncorrected indicated, or as external 
secondary report, since the primary error 
indication is reported by some other means. 

When the storage checking block consists of 
multiple bytes and contains invalid CBC, 
special storage-validation procedures are 
generally necessary to restore or place new 

11-6 system/370 principles of Operation 

information in the checking block. 
Validation of storage is provided with the 
manual clear-reset operation and may also 
be provided as a program function. Manual 
storage validation by clear reset validates 
all blocks. 

A checking block with invalid CBC is never 
validated unless the entire contents of the 
checking block are replaced. An attempt to 
store into a checking block having invalid 
CBC, without replacing the entire checking 
block, leaves the data in the checking 
block (including the check bits) unchanged. 
Even when an instruction or an I/O input 
operation specifies that the entire 
contents of a checking block are to be 
replaced, validation mayor may not occur, 
depending on the operation and the model. 

Machine checks may be reported for 
prefetched and unused data. Dependinq on 
the model, such situations may, or may not, 
be successfully retried. For example, a 
BALR instruction which specifies an R2 
field of zero will never branch, but on 
some models a prefetch of the I oca tion 
specified by register zero may occur. 
Access exceptions associated with this 
pre fetch will not be reported. However, if 
an invalid checking-block code is detected, 
CPU retry .may be attempted. Depending on 
the model, the prefetch may recur as part 
of the retry, and thus the retry will not 
be successful. Even when the CPU retry is 
successful, the performance degradation of 
such a retry is significant, and system 
recovery will be presented, normally with a 
failing-storage address. The proqram in 
this case should initiate proceedinqs to 
eliminate use of, and validate the 
location, to avoid continued degradation. 

Provided that an invalid CBC does not exist 
in the storage key associated with a 
4K-byte block, the instruction TEST BLOCK 
causes the entire 4K-byte block to be set 
to zeros with a valid CBC, regardless of 
the current contents of the storage. TEST 
BLOCK thus removes an invalid eBC from a 
location in storage which has an 
intermi ttent, or one-time, fail ure. 
However, if a permanent failure exists in a 
portion of the storage, a subsequent fetch 
may find an invalid CBC. 

When the instruction TEST BLOCK is included 
in a System/370 model, TEST BLOCK will, in 
most cases, be the most effective 

J 



Ll , 

instruction in validating storage. When 
TEST BLOCK is not included, the instruction 
MOVE LONG, depending on the model, may 
prove effective. 

The effectiveness of the following 
quideline depends on the model. On some 
models instructions may be implemented that 
are more effective than the one listed 
here; however, the following approach is 
recommended when a model-dependent routine 
cannot be justified. 

Execution of the instruction MOVE LONG will 
be most effective in validating the 
main-storaqe area containing the first 
operand when the following conditions are 
satisfied: 

• The first-operand field and 
second-operand field participatinq in 
the operation do not overlap. 

• The first-operand field starts on a 
2K-byte boundary and is 2K bytes (or a 
multiple) in length. 

• The second-operand field, if 
in length, starts on a 
boundary and is 2K bytes 
multiple) in length. 

nonzero 
2K-byte 

(or a 

• In general, the validation will be 
more effective if the second-operand 
field is of zero length. A nonzero 
second operand should be specified 

only if it is required to restore the 
contents of the block without 
introducing intermediate values. 

An interruption or stopping of 
during execution of MVCL does not 
the validation function performed. 

INVALID CBC IN STORAGE KEYS 

the CPU 
affect 

Depending on the model, each storaqe key 
may be contained in a single checking 
block, or the access-control and 
fetch-protection bits and the reference and 
change bits may be in separate checking 
blocks. 

The figure "Invalid CBC in Storaqe Keys" 
describes the action taken when the storage 
key has invalid CBC. The fiqure indicates 
the action taken for the case when the 
access-control and fetch-protection bits 
are in one checking block and the reference 
and change bits are in a separate checking 
block. In machines where both fields are 
included in a single checking block, the 
action taken is the combination of the 
actions for each field in error, except 
that completion is permitted only if an 
error in all affected fields permits 
completion. References to main storaqe to 
which protection does not apply are treated 
as if an access key of zero is used for the 
reference. This includes such references 
as channel references durinq the initial 
program load procedure and implicit 
references, such as interruption action and 
DAT-table accesses. 

Chapter 11. Machine-Check Handling 11-7 



~ , 
I I Action Taken on Invalid CBC 
I I i 

I IFor Access-Control andl For Reference and 
I Type of Reference IFetch-Protection Bits I Chanqe Bits 
r--- I I 
Set storage key IComplete; validate. IComplete; validate. 

I I 
Insert storage key IPD; preserve. IPD in EC mode, PD or 

I complete in BC mode; 
I preserve. 
I 

Reset reference bit IPD or complete; PD; preserve. 
Ipreserve. 
I 

CPU prefetch (informa-I CPF; preserve. CPF; preserve. 
tion not used) I 

I 
I/O prefetch (informa- IPF; preserve. IPF; preserve. 

tion not used) 

Fetch, nonzero access MC; preserve. 
key 

store, nonzero access 
key 

Fetch, zero access 
key2 

Store, zero access 
key2 

~------------------
I 
Ilixpl~!!~!.'!Q!!: 

MCt; preserve. 

MC or complete; 
preserve. 

MC or complete; 
preserve. 

-'--

MC or complete; 
preserve. 

MC or complete; 
preserve or correct 3 • 

MC or complete; 
preserve. 

MC or complete; 
preserve or correct 3 • 

I 
I 
I 
I I 

Complete The condition does not cause termination of the execution I 
of the instruction and, unless an unrelated condition pro­
hibits it, the execution of the instruction is completed, 
ignoring the error condition. No machine-cheek-damage 
conditions are generated, but a system-recovery condition 
may be generated. 

CPF Invalid CBC in the storage key for a CPU prefetch which is 
unused may give rise to any of the following: 
• Completed operation; no error reported. 
• Completed operation; system recovery reported with 

storage-key error uncorrected and a failing-storage 
address. 

• Instruction-processing damage (either with or without 
backup); storage-key error uncorrected and. a failing­
storage address. L----________________________________________________________________________ ~ 

Invalid CBC in Storage Keys (Part 1 of 2) 

11-8 System/370 principles of Operation 



IPF 

PD 

MC 

Invalid CBC in the storage key for an I/O prefetch which 
is unused may result in any of the following: 
• Completed operation; no error reported. 
• Completed operation; system recovery reported with 

storage-key error uncorrected and a failing-storage 
address. 

• I/O-error condition; no machine-check condition. 
• I/O-error condition; system recovery reported with 

storage-key error uncorrected and a failing-storage 
address. 

• External damage; storage-key error uncorrected and a 
failing-storage address, or no storage-key error un­
corrected; I/O-error condition or no I/O-error condi­
tion. 

• External damage; valid external-damage code, external 
secondary report, storage-key error uncorrected, and 
a failing-storage address; I/O-error condition or no 
I/O-error condition. 

Instruction-processing-damage; storage-key error uncor­
rected and a failing-storage address, or no storage-key 
error uncorrected. 

Same as PD for CPU references, but an I/O reference may 
result in the following combinations of I/O-error condi­
tion and machine-check interruption. 
• I/O-error condition and no machine-check interruption 
• System recovery, with storage-key error and a failing­

storage-address or without storage-key error, and an 
I/O-error condition 

• External damage, with storage-key error uncorrected 
and a failing-storage address or without storage-key 
error, and with or without an I/O-error condition. 

• External damage, with a valid external-damage code, 
external secondary report, storage error, and a 
failing-storage address, and an I/O-error condition. 

Validate The entire key is set to the new value with valid CBC. 

Preserve The contents of the entire checking block having invalid 
CBC are left unchanged. 

Correct The reference and change bits are set to ones with valid 
CBC. 

1 The contents of the main-storage location are not changed. 

2 The action shown for an access key of zero is also appli­
cable to references to which protection does not apply. 

3 The contents of the reference and change bits are pre­
served if the "MC" action is taken and are converted to 
ones if the "complete" action is taken. ___________________________________________ --J 

Invalid CBC in Storage Keys (Part 2 of ~ 

INVALID CBC IN REGISTERS 

When invalid CBC is detected in a CPU 
register, a machine-check condition may be 
recognized. CPU registers include the 
general, floating-point, and control 
registers, the current PSW, the prefix 

register, the TOO clock, the CPU timer, and 
the clock comparator. 

When a machine-check interruption occurs, 
whether or not it is due to invalid CBC in 
a CPU register, the following actions 
affecting the CPU registers, other than the 
prefix register and the TOD-clock, are 

Chapter 11. Machine-Check Handling 11-9 



taken as part of the interruption. 

1. The contents of the registers are 
saved in assigned storage locations. 
Anv register which is in error is 
identified by a corresponding validity 
bit of zero in the machine-check­
interruption code. Malfunctions 
detected during register saving do not 
result in additional machine-check­
interruption conditions; instead, the 
correctness of all the information 
stored is indicated by the appropriate 
setting of the validity bits. 

2. On some models, registers with invalid 
CBC are then validated, their actual 
contents being unpredictable. On 
other models, programmed validation is 
reguired. 

The prefix register and the TOD clock are 
not stored during a machine-check 
interruption, have no corresponding 
validity bit, and are not validated. 

On those models in which registers are not 
automatically validated as part of the 
machine-check interruption, a register with 
invalid CBC will not cause a machine-check­
interruption condition unless the contents 
of the register are actually used. In 
these models, each register may consist of 
one or more checking blocks, but multiple 
registers are not included in a single 
checking block. When only a portion of a 
register is accessed, invalid CBC in the 
unused portion of the same register may 
cause a machine-check-interruption 
condition. For example, invalid CBC in the 
right half of a long operand of a floating­
point register may cause a machine-check­
interruption condition if a LOAD (LE) 
operation attempts to replace the left 
half, or short form, of the register. 

Invalid CBC associated with the check-stop­
control bit (control register 14, bit 0) 
and with the asynchronous fixed-logout­
control bit (control register 14, bit 9) 
will cause the CPU either to enter the 
check-stop state immediately or to assume 
that bits 0 and 9 have their initialized 
values of one and zero, respectively. 

Invalid CBC associated with the prefix 
register cannot safely be reported by the 
machine-check interruption, since the 
interruption itself requires that the 
prefix value be applied to convert real 
addresses to the corresponding absolute 
addresses. Invalid CEC in the prefix 
register causes the CPU to enter the 
check-stop state immediately when the 
check-stop-control bit (control register 
14, bit 0) is one. When the check-stop­
control bit is zero the machine is 
permitted to ignore even the most severe 
errors; thus, invalid CBC in the prefix 

11-10 Systemj370 principles of Operation 

register may be ignored or may cause the 
CPU to enter the check-stop state. 

On those models which do not validate 
registers during a machine-check 
interruption, the following instructions 
will cause validation of a register, 
provided the information in the register is 
not used before the register is validated. 
Other instructions, although they replace 
the entire contents of a register, do not 
necessarily cause validation. 

General registers are validated by BRANCH 
AND LINK (BAL, BALR), LOAD (LR), and LOAD 
ADDRESS (LA). LOAD (L) and LOAD MULTIPLE 
(LM) validate if the operand is on a word 
boundary, and LOAD HALFWORD (LH) validates 
if the operand is on a halfword boundary. 

Floating-point registers are validated by 
LOAD (LOR) and, if the operand is on a 
doubleword boundary, by LOAD (LD). 

Con trol registers ma y be va lida ted ei ther 
singly or in groups by using the 
instruction LOAD CONTROL (LCTL). 

The CPU timer and clock comparator are 
validated by SET CPU TIMER (SPT) and SET 
CLOCK COMPARATOR (SCKC), respectively. 

The TOO clock is validated by SET CLOCK 
(SCK) if the TOD-clock control is set to 
enable-set. 

Depending on the register, and the model, 
the contents of a register may be validated 
by the machine-check interruption or the 
model may require that a program issue a 
validating instruction after the 
machine-check interruption has occurred. 
In the case of the CPU timer, dependinq on 
the model, both the machine-check 
interruption and validating instructions 
may be required to restore the CPU timer to 
full working order. 

In certain situations it is impossible or 
undesirable to continue operation when a 
machine error occurs. In these cases, the 
CPU may enter the check-stop state, which 
is indicated by the check-stop indica tor. 

In general, the CPU may enter the 
check- stop state whenever an uncorrec table 
error or other malfunction occurs and the 
machine is unable to recognize a specific 
machine-check-interruption condition. 



The CPU always enters the check-stop state 
if the check-stop-control bit, bit 0 of 
control register 14, is one and if any of 
the following conditions exists: 

• PSW bit 13 is zero and an exigent 
machine-check condition is generated. 

• During the execution of an 
interruption due to one exigent 
machine-check condition, another 
exigent machine-check condition is 
detected. 

• During a machine-check interruption, 
the machine-check-interruption code 
cannot be stored successfully or the 
new PSW be fetched successfully. 

• Invalid CBC is detected in the prefix 
register. 

• A malfunction in the receiving CPU, 
which is detected after accepting the 
order, prevents the successful 
completion of a SIGNAL PROCESSOR order 
and the order was a reset, or the 
receiving CPU cannot determine what 
the order was. The recel.vl.ng CPU 
enters the check-stop state. 

If the check-stop-control bit is zero when 
one of these conditions occurs, the CPU may 
or may not enter the check-stop state, 
depending on the model. There may be many 
other conditions for particular models when 
an error may cause check stop. 

When the CPU is in the check-stop state, 
instructions and interruptions are not 
executed, the interval timer is not 
updated, and channel operations may be 
stopped. In systems with channel-set 
switching, I/O operations are normally not 
affected. The TOD clock is normally not 
affected by the check-stop state. The CPU 
timer mayor may not run in the check-stop 
state, depending on the error and the 
model. The start key and stop key are not 
effective in this state. 

The CPU may be removed from the check-stop 
state by CPU reset. 

In a multiprocessing configuration, a CPU 
entering the check-stop state generates a 
reguest for a malfunction-alert external 
interruption to all CPUs in the 
configuration. Except for the reception of 
a malfunction alert, other CPUs and I/O 
operations are not normally affected by the 
check-stop state in a CPU. However, 
depending on the nature of the condition 
causing the check stop, other CPUs may also 
be delayed or stopped, and I/O activity for 
channels connected to other CPUs may be 
affected. 

In a multiprocessing configuration, some 
errors, malfunctions, and damage conditions 
are of such a severity that the condition 
causes all CPUs in the configuration to 
enter the check-stop state. This condition 
is called a system check stop. The state 
of the channels is unpredictable. 

The program should avoid setting the 
check-stop control, bit 0 of control 
register 14, to zero, since the machine may 
continue to operate rather than enter the 
check-stop state when extremely serious 
conditions, such as an error in the prefix 
reg ister, occur. 

A request for a machine-check interruption, 
which is made pending as the result of a 
machine check, is called a machine-check­
interruption condition. There are two 
types of machine-check-interruption 
conditions: exigent conditions and 
repressible conditions. 

EXIGENT CONDITIONS 

Exigent machine-check-interruption condi­
tions are those in which damaqe has or 
would have occurred such that the current 
instruction or interruption sequence cannot 
safely continue. Exigent conditions are of 
two classes: instruction-processing damage 
and system damage. In addition to 
indicating specific exigent conditions, the 
system-damage bit is used to report any 
malfunction or error which cannot be 
isolated to a less severe report. 

Exigent conditions for instruction 
sequences are classified as two types, 
nullifying exigent conditions and 
terminating exigent conditions, according 
to whether the instruction affected is 
nullified or terminated. Exigent 
conditions for interruptions are classified 
as one type, terminating exigent 
condi tions. The terms "nullifica ti on" and 
"termination" have the same meaning as that 
used in Chapter 6, "Interruptions," except 
that more than one instruction may be 
involved. Thus a nullifying exigent 
condition indicates that the CPU has 
returned to the beginning of a unit of 

Chapter 11. Machine-Check Handling 11-11 



operation prior to the error. A 
terminating exigent condition means that 
the results of one or more instructions may 
have unpredictable values. 

REPRESSIBLE CONDITIONS 

Repress ib Ie machine-c heck-interru ption 
conditions are those in which the results 
of the instruction-processing sequence have 
not been affected. Repressible conditions 
can be delayed, until the completion of the 
current instruction or even longer, without 
affecting the integrity of CPU operation. 
Repressible conditions are of three 
classes: recovery, alert, and repressible 
damage. Each class has one or more 
subclasses. 

A malfunction in the CPU, storage, channel, 
or operator facilities which has been 
successfully corrected or circumvented 
internally without logical damage is called 
a recovery condition. Depending on the 
model and the type of malfunction, some or 
all recovery conditions may be discarded 
and not reported. Recovery conditions that 
are reported are grouped in one subclass, 
system recovery. 

A machine-check-interruption condition not 
directly related to a machine malfunction 
is called an alert condition. The alert 
conditions are grouped in two subclasses: 
degradation and warning. 

A malfunction resulting in an incorrect 
state of a portion of the system not 
directly affecting seguential CPU operation 
is called a repressible-damage condition. 
Repressible-damage conditions are divided 
into three subclasses, according to the 
function affected: timing-facility damaqe, 
interval-timer damage, and external damage. 

1. Even though repressible conditions are 
usually reported only at normal points 
of interruption, they may also be 
reported with exiqent machine-check 
conditions. Thus, if an exigent 
machine-check condition causes an 
instruction to be abnormally 
terminated and a machine-check 
interruption occurs to report the 
exigent condition, any pending 
repressible conditions may also be 
reported. The meaningfulness of the 
validity bits depends on what exigent 
condition is reported. 

2. Classification of a damage condition 

11-12 system/370 Principles of Operation 

as repressible does not imply that the 
damage is necessarily less severe than J 
damage classified as an exigent . 
condition. The distinction is whether .. . 
action must be taken as soon as the 
damage is detected (exigent) or 
whether the CPU can con tin ue 
processing (repressib Ie) • For a 
repressible condition, the current 
instruction can be completed before 
taking the machine-check interruption 
if the CPU is enabled; if the CPU is 
disabled for machine checks, the 
condition can safely be kept pendinq 
until the CPU is again enabled for 
machine checks. 

For example, the CPU may be disabled 
for machine-check interruptions 
because it is handling an earlier 
instr uct ion- processing- da mage i nte rrup-
tion. If, during that time, an I/O 
operation encounters a storaqe error, 
that condition can be kept pending 
because it is not expected to 
interfere with the current machine-
check processing. If, however, the 
CPU also makes a reference to the area 
of storage containing the error before 
re-enabling machine-check 
interruptions, another instruction­
processing-damage condition is 
created, which is treated as an 
exigent condition and causes the CPU j 
to enter the check-stop state, if the ...• 
check-stop-control bit is set to one. 

INTERRUPTION ACTION 

A machine-check interruption causes the 
following actions to be taken. The PSW 
reflecting the point of interruption is 
stored as the machine-check old PSW at 
loca tion 48. The conte nts of other 
registers are stored in register-save areas 
at locations 216-231 and 352-511. After 
the contents of the registers are stored in 
register-save areas, depending on the 
model, the registers may be validated with 
the contents being unpredictable. A 
failing-storage address, if any, is stored 
at location 248, an external-damage code 
may be stored at location 244, and a region 
code may be stored at location 252. Then a 
machine-check-interruption code (MeIC) of 
eight bytes is placed at location 232. The 
new PSW is fetched from location 112. 
Additionally, sometime before the storing 
of the MCIe, one or more machine-check 
logouts may have occurred. The 
machine-generated addresses to access the 
old and new PSW, the interruption code, 
extended interruption information, and the j .... 
fixed-logout area are all real addresses. 
The machine-check extended-logout address 
is also a real address. 



, 
I Starting I Length 
I Information Stored (Fetched) Location I in Bytes 
I 
IOld PSW 
I New PSW (fetched) 
IMachine-check-interruption code 
IFailing-storage address 
IRegister-save areas 
I CPU timer 
I Clock comparator 
I Floating-point registers 0, 2, 4, 6 
I General registers 0-15 
I Control registers 0-15 
IExtended interruption information 
I External-damage code 
I Region code 
ILogout areas 
I Fixed logout 
I Machine-check extended logout (MCEL) 
r--
INote~: 

I 

I 
4a a 

112 a 
232 8 
24a 14 

216 8 
224 a 
352 32 
3a4 614 
44a 614 

244 4 
252 4 

256 96 
Note 1 Note 2 

I 1. The starting location of the MCEL is determined by the 
I MCEL address in control register 15. 
I 
I 2. The length of the MCEl is model-dependent. , 

Machine-Cheek-Interruption Locations 

The fields accessed during the machine­
check interruption are summarized in the 
figure "Machine-Cheek-Interruption 
Locat ions. " 

If the machine-check-interruption code 
cannot be stored successfully or the new 
PSW cannot be fetched successfully, the CPU 
enters the check-stop state when the check­
stop-control bit is one. . 

A repressible machine-check condition can 
initiate a machine-check interruption only 
if both PSW bit 13 is one and the 
associated subclass mask bit in control 
register 14 is also one. When it occurs, 
the interruption does not terminate the 
execution of the current instruction; the 
interruption is taken at a normal point of 
interruption, and no program or 
supervisor-call interruptions are 
eliminated. If the machine check occurs 
during the execution of a machine function, 
such as a CPu-timer update, the 
machine-check interruption takes place 
after the machine function has been 
completed. 

When the CPU is disabled for a particular 
repressible machine-check condit ion, the 
condition remains pending. Depending on 
the model and the condition, multiple 
repressible conditions may re held pending 
for a particular subclass, or only one 
condition may be held pending for a 
particular subclass, regardless of the 
number of conditions that may have been 

detected for that subclass. 
external-damage conditions 
condition is retained. 

When multiple 
occur, each 

When a repressible machine-check 
interruption occurs because the 
interruption condition is in a subclass for 
which the CPU is enabled, pending 
conditions in other subclasses may also be 
indicated in the same interruption code, 
even though the CPU is disabled for those 
subclasses. All indicated conditions are 
then cleared. 

If a machine check which is to be reported 
as a system-recovery condition is detected 
during the execution of the interruption 
procedure due to a previous machine-check 
condition, the system-recovery condition 
may be combined with the other condi tions, 
discarded, or held pending. 

An exigent machine-check condition can 
cause a machine-check interruption only 
when PSW bit 13 is one. When a nullifying 
exigent condition causes a machine-check 
interruption, the interruption is taken at 
a normal point of interruption. When a 
terminating exigent condition causes a 
machine-check interruption, the 
interruption terminates the execution of 
the current instruction and may eliminate 
the program and supervisor-call 
interruptions, if any, that would have 
occurred if execution had continued. 
proper execution of the interruption steps, 
including the storing of the old PSW and 

Chapter 11. Machine-Check Handling 11-13 



other information, depends on the nature of 
the malfunction. When an exigent 
machine-check condition occurs during the 
execution of a machine function, such as a 
CPU-timer update, the sequence is not 
necessarily completed. 

When PSW bit 13 is zero and an exigent 
machine-check condition is generated, 
subsequent action depends on the state of 
the check-stop-control bit, bit 0 of 
control register 14. When the 
check-stop-control bit is zero, the 
machine-check condition is held pending, 
and an attempt is made to complete the 
execution of the current instruction and to 
proceed with the next sequential 
instruction. When the check-stop-control 
bit is one, processing stops immediately, 
and the CPU enters the check-stop state. 
Depending on the model and the severitv of 
the error, the CPU may enter the check-stop 
state even when the check-stop-control bit 
is zero. 

Similarly, if, during the execution of an 
interruption due to one exigent 
machine-check condition, another exigent 
machine check is detected, the subsequent 
action depends on the state of the 
check-stop-control bit. If the 
check-stop-control bit is one, the CPU 
enters the check-stop state; if the bit is 
zero, an attempt is made to proceed with 
the condition held pending for subsequent 
interruption. If an exigent machine check 
is detected during an interruption due to a 
repressible machine-check condition, system 
damage is reported. 

Exigent machine-check conditions held 
pending while the check-stop-control bit is 
zero remain pending and do not cause the 
CPU to enter the check-stop state if the 
check-stop-control bit is subsequently set 
to one. 

~achine-check-interruption conditions are 
handled in the same manner regardless of 
whether the wait-state bit in the PSW is 
one or zero: a machine-check condition 
causes an interruption if the CPU is 
enabled for that condition. 

~achine checks which occur while the rate 
control is set to instruction step are 
handled in the same manner as when the 
control is set to prOCESS; that is, 
recovery mechanisms are active, and logout 
and machine-check interruptions occur when 
allowed. Machine checks occurring during a 
manual operation may be indicated to the 
operator, may generate a system-recovery 
condition, may be reported as an external 
secondary report, may result in system 
damage, or may cause a check stop, 
depending on the model. 

Every reasonable attempt is made to limit 

11-14 system/370 principles of Operation 

the side effects of any machine check and 
the associated interruption. Normally, 
interrupticms, as well as the progress of 
I/O operations, remain unaffected. The 
malfunction, however, may affect these 
activities,. and, if the currently acti ve 
PSW has bit 13 set to one, the 
machine-check interruption will indicate 
the total extent of the damage caused, and 
not just the damage whic h oriqi na ted the 
condi tion. 

POINT OF INTERRUPTION 

The point in the processing which is 
indicated by the interruption and used as a 
reference point by the machine to determine 
and indicate the validity of the status 
stored is referred to as the point of 
interruption. 

Because of the checkpoint capability in 
models with CPU retry, the interruption 
resulting from an exigent machine-check­
interruption condition may indicate a point 
in the CPU processing sequence which is 
logically prior to the error. 
Additionally, the model may have some 
choice as to which point in the CPU 
processing sequence the interruption is 
indicated, and, in some cases, the status 
which can be indicated as valid depends on 
the point chosen. 

Only certain points in the processing may 
be used as a point of interruption. For 
repressiblE! machine-check interruptions, 
the point of interruption must be after one 
uni t of operation is completed and any 
associated program or supervisor-call 
interruption is taken, and before the next 
unit of operation is begun. 

Exigent machine-check conditions for 
instruction sequences are those in which 
damage has or would have occurred to the 
instruction stream. Thus, the damage can 
normally be associated with a point part 
way though an instruction and this point is 
called the point of damage. In some cases 
there may be one or more instructions 
separating the point of damaqe and the 
point of interruption, and the processinq 
associated with one or more instructions 
may be damaged. When the point of 
interruption is a point prior to the point 
of damage due to a nullifiable exigent 
machine-check condition, the point of 
interruption can be only at the same points 
as for repressible machine-check 
conditions .. 

Exigent machine-check conditions which are 
delayed (disallowed and presented later 
when allowed) can be presented only at the 
same points of interruption as repressible 



machine-check conditions. When a 
terminating exigent machine-check condition 
is not delayed, the point of interruption 
may also be after the unit of operation is 
completed but before any associated program 
or supervisor-call interruption occurs. In 
this case, a valid PSW instruction address 
is defined as that which would have been 
stored in the old PSW for the program or 
supervisor-call interruption. Since the 
operation has been terminated, the values 
in the result fields, other than the 
instruction address, are unpredictable. 
Thus the validity bits associated with 
fields which are due to be changed by the 
instruction stream are mean ingless when a 
terminating exigent machine-check condition 
is reported. 

When the point of interruption and the 
point of damage due to an exigent 
machine-check condition are separated by a 
checkpoint-synchronization fUnction, the 
damage has not been isolated to a 
particular program, and system damage is 
indicated. 

When an exigent machine-cheek-interruption 

condition occurs, the point of interruption 
which is chosen affects the amount of 
damage which must be indicated. An attempt 
is made, when possible, to choose a point 
of interruption which permits the minimum 
indication of damage. In general, the 
preference is the interruption point 
immediately preceding the error. 

When all the status information stored as a 
result of an exigent machine-check­
interruption condition does not reflect the 
same point, an attempt is made when 
possible to choose the point of 
interruption so that the instruction 
address which is stored in the 
machine-check old PSW is valid. 

On all machine-check interruptions, a 
machine-check-interruption code (MCIC) is 
stored at the doubleword starting at 
location 232 and has the format shown in 
the figure "Machine-Check Interruption-Code 
Format." 

Bits in the Mcrc which are not assigned, or 
not implemented by a particular model, are 
stored as zeros. 

Chapter 11. Machine-Check Handling 11-15 



r I I 

IS P S T C E D I I IS S KI IW It P I F R ElF G C L SI 
ID D R D D D 0 G WIO o 0 0 OIB DIE C EIOIP S I! A A C CIP R R G TI 
L-

0 9 14 16 20 27 31 

I • , 
I IC CI 
10 o 0 0 000 0 0 0 0 0 0 OIT CI KCEL Length 
t 

32 

o 
1 
2 
3 
4 
5 
7 
8 
14 
15 
16 
17 
18 
20 
21 

I • 
46 48 

System damage (SD) 
Instruction-processing damage (PD) 
System recovery (SR) 
Interval-timer damage (TD) 
Timing-facility damage (CD) 
External damage (ED) 
Degradation (DG) 
Warning (W) 
Backed UP (B) 
Delayed (D) 
Storage error uncorrected (SE) 
St orage error corrected (SCl 
Storage-key error uncorrected (KE) 
PSW-EMiP validity (iP) 
PSi mask and key validity (ItS) 

63 

22 
23 
24 

PSi program-mask and condition-code validity (PI!) 
PSi-instruction-address validity (IA) 
Failing-storage-address validity (FA) 

25 
26 
27 
28 
29 
30 
31 
46 

Region-code validity (RC) 
External-damage-code validity (EC) 
Floating-point-register Validity (FP) 
General-register validity (GR) 
control-register validity (CR) 
Logout validity (LG) 
Storage logical validity (ST) 
cpu-timer validity (CT) 

47 
48-63 

Clock-comparator validity (CC) 
Machine-check-extended-logout (KCEL) length 

Noig: All other bits of the I!CIC are unassigned and stored as zeros. 

Machine-Check Interruption-Code Format 

The program should not depend on unassigned 
bits in the machine-check-interruption code 
being zeros, so as to ensure that existing 
programs run if and when new facilities 
using these bits are defined. 

SUBCLASS 

Bits 0-5, 7, and 8 are t he subclass bits 
which identify the type of machine-check 
condition causing the interruption. At 
least one of the subclass bits is stored as 
a one. When multiple errors have occurred, 
several of the defined bits may be set to 
ones. 

11-16 System/370 principles of Operation 

Bit 0 (SD), when one, indicates that damage 
has occurred which cannot be isolated to 
one or more of the less severe 
machine-check subclasses. When system 
damage is indicated, the remaininq bits in 
the machine-check-interruption code are not 
meaningful, and information stored in the 
reg ister- save areas, machine-check 
extended-interruption fields, and 
failing-storage-address field is not 
meaningful. System damage is a terminating 
exigent condition. 



Bit 1 (PO), when one, indicates that damage 
has occurred to the instruction processing 
of the CPU. 

The exact meaning of bit 1 depends on the 
setting of the backed-up bit, bit 14. When 
the backed-up bit is one, the condition is 
called processing backup. When the 
backed-up bit is zero, the condition is 
called processing damage. These two 
conditions are described in the section 
"Synchronous Machine-Check-Interruption 
Conditions" in this chapter. 

Instruction-processing damage 
nullifying or terminating 
condition. 

is a 
exigent 

Bit 2 (SB), when one, indicates that 
malfunctions were detectEd but did not 
result in damage or have been successfully 
corrected. Some malfunctions detected as 
part of an I/O operation may result in a 
system-recovery condition in addition to an 
I/O-error condition. The presence and 
extent of the system-recovery capability 
depend on the model. 

System recovery is a repressible condition. 

1. System recovery may be used to report 
a failing-storage addre~s detected by 
a CPU prefetch or by an I/O operation. 

2. Unless the corresponding validity bits 
are ones, the indication of system 
recovery does not imply storage 
logical validity, or that the fields 
stored as a result of the 
machine-check interruption are valid. 

Bit 3 (TD), when one, indicates that 
has occurred to the interval timer 
storage location 80. Interval-timer 
is a repressible condition. 

damage 
or to 

damage 

Timing-Facililx Dam!g~ 

Bit 4 (CD), when one, indicates that damage 
has occurred to the TOO clock, the CPU 
timer, the clock comparator, or to the 
CPU-timer or clock-comparator external­
interruption conditions. The timing­
facility-damage machine-check condition is 
set whenever any of the following occurs; 

1. The TOD clock accessed by this CPU 
enters the error or not-operational 
state. 

2. The CPU timer is damaged, and the CPU 
is enabled for CPU-timer external 
interruptions. On some models, this 
condi tion may be recognized even when 
the CPU is not enabled for CPU-timer 
interruptions. Depending on the 
model, the machine-check condition may 
be generated only as the CPU timer 
enters an error state. Or, the 
machine-check condition may be 
continuously generated whenever the 
CPU is enabled for CPU-timer 
interruptions, until the CPU timer is 
validated. 

3. The clock comparator is damaged, and 
the CPU is enabled for clock­
comparator external interruptions. On 
some models, this condition may be 
recognized even when the CPU is not 
enabled for clock-comparator 
in terruptions. 

Timing-facility damage may also be set 
along with instruction-processing damage 
when an instruction which accesses the 
TOO-clock, CPU timer, or clock comparator 
produces incorrect results. Depending on 
the model, the CPU timer or clock 
comparator may be validated by the 
interruption which reports the CPU timer or 
clock comparator as invalid. 

Timing-facility damage is a repressible 
condition. 

programming Mote 

Timing-facility-damage conditions for the 
CPU timer and the clock comparator are not 
recognized on most models when these 
facilities are not in use. The facilities 
are considered not in use when the CPU is 
disabled for the corresponding external 
interruptions (PSi bit 7, or the 
subclass- mask bits, bits 20 and 21 of 
control register 0, are zeros), and when 
the corresponding set and store 
instructions are not being issued. 
Timing-facility-damage conditions that are 
already pending remain pending, however, 

Chapter 11. Machine-Check Handling 11-17 



when the CPU is disabled for the 
corresponding external interruption. 

Timing-faci1ity-damage 
damage to the TOD 
recognized. 

conditions 
clock are 

due to 
always 

Bit 5 (ED), when one, indicates that damage 
has occurred to a channel or to storage 
during operations not directly associated 
with processing the current instruction. 
Channel malfunctions are reported as 
external damage only when the channel is 
unable to report the malfunctions by an 
I/O-error condition. Depending on the 
model and on the type and extent of the 
error, an external-damage condition may be 
indicated as system damage instead of 
external damage. 

When bit 5, external damage, is one and bit 
26, externa1-damage-code validity, is also 
one, the external-damage code has been 
stored to indicate, in more detail, the 
cause of the external-damage machine-check 
interruption. When the external damage 
cannot be isolated to one or more of the 
conditions as defined in the 
external-damage code, or when the detailed 
indication for the condition is not 
implemented by the model, external damage 
is indicated with bit 26 set to zero. 

External damage is a repressible condition. 

Bit 7 (DG), when one, indicates that 
continuous degradation of system 
performance, more serious than that 
indicated by system recovery, has occurred. 
Degradation may be reported when 
system-recovery conditions exceed a 
machine-preestablished threshold or when 
unit deletion has occurred. The presence 
and extent of the degradation-report 
capability depends on the model. 

Degradation is a repressible condition. 

Bit 8 (i), when one, indicates that damage 
is imminent in some part of the system (for 
example, that power is about to fail, or 
that a loss of cooling is occurring). 
Whether warning conditions are recognized 
depends on the model. 

11-18 system/370 Principles of Operation 

If the condition responsible for the 
imminent damage is removed before the 
interruption request is honored (for 
example, if power is restored), the reguest 
does not remain pending, and no 
interruption occurs. Conversely, the 
request is not cleared by the interruption, 
and, if the condition persists, more than 
one interruption may result from the same 
condition. 

warning is a repressible condition. 

TIME OF INTERRUPTION OCCURRENCE 

Bits 14 and 
interruption 
interruption 
error. 

15 of the machine-check­
code indicate when the 

occurred in relation to the 

Bit 14 (B), when one, indicates that the 
point of interruption is at a checkpoint 
before the point of error. This bit is 
meaningful only when the instruction­
processing-damage bit, bit 1, is also set 
to one. The presence and extent of the 
capability to indicate a backed-up 
condition depends on the model. 

Bit 15 (D), when one, indicates that some 
or all of the machine-check conditions were 
delayed in being reported because the CPU 
was disabled for that type of interruption 
at the time the condition occurred. The 
bit mayor may not apply to floating 
machine-check interruptions. 

SYNCHRONOUS 
CONDITIONS 

MACHINE-CHECK INTERRUPTION 

da mage and 
14 of the 

iden tify, 

The instruction-processing 
backed-up bits, bits 1 and 
machine-cheek-interruption code, 
in combination, two conditions. 

1 
1 

o 
1 

Processing damage 
Processing backup 



The processing-backup condition indicates 
that the point of interruption is prior to 
the point, or points, of error. This is a 
nullifying exigent condition. When all of 
the validitv bits associated with CPU 
status are indicated as valid, the machine 
has successfully returned to a checkpoint 
prior to the malfunction, and no damage has 
vet occurred. The validity bits in the 
machine-check-interruption code which must 
be one for this to be the case are as 
follows: 

20 
21 
22 

23 
27 
28 
29 
31 

46 
47 

PSW EMWP bits 
PSW mask and key 
PSW proqram mask and 

condition code 
PSW instruction address 
Floating-point registers 
General registers 
Control registers 
storage (result field 

within current checkpoint 
interval) 

CPU timer 
Clock comparator 

The processing-backup condition is reported 
rather than system recovery to indicate 
that a malfunction or failure stands in the 
way of continued operation of the CPU. The 
malfunction has not been circumvented and 
damage would have occurred if ,instruction 
processing had continued. 

The processing-damage condition indicates 
that damage has occurred to the instruction 
processing of the CPU. The point of 
interruption is a point beyond some or all 
of the points of damage. Processing damage 
is a terminating exigent condition; 
therefore, the contents of result fields 
may be unpredictable and still indicated as 
valid. 

Processing damage may include malfunctions 
in PER, monitor call, and dynamic address 
translation. Processing damage causes any 
SVC interruption and program interruption 
to be discarded. However, the contents of 
the old PSi and interruption-code locations 
for these interruptions may be set to 
unpredictable values. 

STORAGE-ERROR TYPE 

Bits 16-18 of the machi ne-check­
interruption code are used to indicate an 
invalid CBC or a near-valid CBC detected in 
main storage or an invalid CBC in a storage 
key. The failing-storage-address field, 
when indicated as valid, identifies an 
address within the storage checking block 
containing the error, or, for storage-key 
error uncorrected, within the block 
associated with the storage key. The 
portion of the system affected by an 
invalid CBC is indicated in the subclass 
field of the machine-check-interruption 
code. I/O-detected storage errors, when 
indicated as I/O-error conditions, may also 
be reported as (1) system recovery, 
(2) external damage with the 
external-damage code valid or invalid, or 
(3) external secondary report. CBC errors 
that occur in storage or in the storage kev 
and that are detected on prefetched or 
unused data by the CPU or channel mayor 
may not be reported, dependinq on the 
model. 

Bit 16 (SE), when one, indicates that a 
checking block in ma1n storage contained 
invalid CBC and that the information could 
not be corrected. The contents of the 
checking block in main storage have not 
been changed. The location reported may 
have been accessed by this CPU or another 
CPU or by an 1/0 operation, or its c on ten ts 
may have been prefetched for a program or 
fetched as the result of a model-dependent 
storage access. 

Bit 17 (SC), when one, indicates that a 
checking block in main storage contained 
near-valid CBC and that the information has 
been corrected before being used. 
Depending on the model, the contents of the 
checking block in main storage mayor may 
not have been restored to valid CBC. The 
location reported may have been accessed by 
this CPU or another CPU or by an 1/0 
operation, or its contents may have been 
pre fetched for a program or fetched as the 
result of a model-dependent storage access. 
The presence and extent of the 
storage-error-correction capability depends 
on the model. 

Chapter 11. Machine-Check Handling 11-19 



Bit 18 (KE), when one, indicates that a 
storage key contained invalid CBC and that 
the information could not be corrected. 
The contents of the checking block in the 
storage key has not been changed. The 
storage key may have been accessed by this 
CPU or another CPU or by an I/O operation, 
or its contents may have been prefetched 
for a program or fetched as the result of a 
model-dependent storage access. 

The storage-error-uncorrected and storage­
key-error-uncorrected bits do not in 
themselves indicate the occurrence of 
damage because the error detected may not 
have affected a result. The accompanying 
subclass bits of the interruption code 
indicate the area affected by the error. 

MACHINE-CHECK INTERRUPTION-CODE 
BITS 

VALIDITY 

Bits 20-31, 46, and 47 of the machine­
check-interruption code are validity bits. 
Each bit indicates the validity of a 
particular field in storage. with the 
exception of the storage-logical-validity 
bit (bit 31), each bit is associated with a 
field stored during the machine-check 
interruption. When a validity bit is one, 
it indicates that the saved value placed in 
the corresponding storage field is valid 
with respect to the indicated point of 
interruption and that no error was detected 
when the data was stored. 

When a validity bit is zero, one or more of 
the following conditions may have occurred: 
the original information was incorrect, the 
original information had invalid CBC, 
additional malfunctions were detected while 
storing the information, or none or only 
part of the information was stored. Even 
though the information is unpredictable, 
the machine attempts, when possible, to 
place valid CBC in the storage field and 
thus reduce the possibility of additional 
machine checks being caused. 

The validity bits for the floating-point 
registers, general registers, control 
registers, CPU timer, and clock comparator 
indicate the validity of the saved value 
placed in the corresponding save area. The 
information in these registers after the 
machine-check interruption is not 
necessarily correct even when the correct 
value has been placed in the save area and 

11-20 System/370 Principles of operation 

the validity bit set to one. The use of 
the registers and the operation of the 
facility associated with the control 
registers, CPU timer, and clock comparator, 
are unpredictable until these registers are 
valida ted. (See the sec tion "I nvalid CBC 
in Registers" earlier in this chapter.) 

PSW-EMWP yal!~ity 

Bit 20 (WP), when one, indicates that the 
EMWP bits (bits 12-15) of the machine-check 
old PSi are correct. 

Bit 21, when one, indicates that the system 
mask, PSi key, and miscellaneous bits of 
the machine-check old PSW are correct. 
Specifically, this bit covers bits 0-11 of 
both EC-mode and BC-mode PSis, and also 
bits 16, 17, and 24-39 of the EC-mode PSi. 

Bit 22 (PM), when one, indicates 
program mask and condition code 
machine-check old PSi are correct. 

Bit 23 (IA), when one, indicates 
instruction address (bits 40-63) 
machine-check old PSi is correct. 

Programming MQte 

tha t the 
of the 

tha t the 
of the 

When a machine check occurs which stores a 
BC- mode PSW, the contents of the 
interruption code and ILC in the 
machine-check old PSW are unpredictable, 
and no PSi-validity bit covers these bits. 
The four PSW-validity bits cover all 64 
bits of the EC-mode PSW. 

Bit 24 (FA), when one, indicates that a 
correct failing-storage address has been 
placed at location 248 after a storage 



error uncorrected or storage-key error 
uncorrected or storage error corrected. 
The presence and extent of the capability 
to identify the failing storage location 
depend on the model. When no such errors 
are reported, that is, bits 16-18 of the 
machine-check-interruption code are zeros, 
the failing-storage address is meaningless, 
even though it may be indicated as valid. 

Bit 25 (RC), when one, indicates that a 
correct region code has been stored. The 
presence of the region code depends on the 
model. When a model does not provide a 
region code, bit 25 is set to zero. 

Bit 26 (EC), when one, indicates that a 
valid external-damage code has been stored, 
provided that bit 5, external damage, is 
also one. When bit 5 is zero, bit 26 has 
no meaninq. 

Bit 27 (FP), when one, indicates that the 
contents of the floating-point-register 
save area 
correct 
registers 
When the 
installed, 

at locations 352-383 reflect the 
state of the floating-point 
at the point of interruption. 
floating-point feature is not 
this bit is set to zero. 

Bit 28 (GR), when one, indicates that the 
contents of the general-register save area 
at locations 384-447 reflect the correct 
state of the general registers at the point 
of interruption. 

Bit 29 (CR), when one, indicates that the 
contents of the control-register save area 
at locations 448-511 reflect the correct 
state of the control registers at the point 
of interruption. 

Bit 30 (LG), 
machine-check 
was correctly 
not provide 
bit 30 is set 

when one, indicates that the 
extended-logout i nf orma tion 
stored. When a model does 

extended-logout i nf orma tion, 
to zero. 

Bit 31 (Sn, when one, indicates that the 
storage locations, the contents of which 
are modified by the instructions being 
executed, contain the correct information 
relative to the point of interruption. 
That is, all stores before the point of 
interruption are completed, and all stores, 
if any, after the point of interruption are 
suppressed. When a store before the point 
of interruption is suppressed because of an 
invalid CBC, the storage-Iogical-validity 
bit may be indicated as one, provided that 
the invalid CBC has been preserved as 
invalid. 

When instruction-processing damage, without 
the backed-up condition, is indicated, the 
storage logical validity has no meaning. 

storage logical validity reflects only the 
instruction-processing activity and does 
not reflect errors in the state of storage 
as the result of interval-timer update or 
I/O operations, or of the stori ng of the 
old PSW and other interruption information. 

CPU-Timer Va!idit~ 

Bit 46 (CT), when one, indicates that the 
CPU timer is not in error and that the 
contents of the CPU-timer save area at 
location 216 reflect the correct state of 
the CPU timer at the time the interruption 
occurred. When the CPU timer is not 
installed, bit 46 is set to zero. 

Bit 47 (CC), when one, indicates that the 
clock comparator is not in error and that 
the contents of the clock-comparator save 
area at location 224 reflect the correct 
state of the clock comparator. When the 
clock comparator is not installed, bit 47 
is set to zero. 

Chapter 11. Kachine-Check Handling 11-21 



The validity bits must be used in addition 
to the subclass bits and the backed-up bit 
in order to determine the extent of the 
damage caused by a machine-check condition. 
No damage has occurred to the system when 
the following are true: 

• 

• 

• 

The four PSW validity bits, the three 
register validity bits, the two 
timing-facility-validity bits, and the 
storage-logical-validity bit must all 
be ones. 

The damage-subclass bits 0, 3, 4, and 
5 must be zeros. 

The instruction-processing-damage bit 
must be zero or, if one, the backed-up 
bit must also be one. 

Bits 48-63 of the machine-check­
interruption code contain a 16-bit binary 
value indicating the length in bytes of the 
information most recently stored in the 
extended-logout area, starting at the 
location designated by the machine-check 
extended-logout address in control register 
15. When no extended logout has occurred, 
this field is set to zero. 

When asynchronous machine-check extended 
logouts are permitted (control register 14, 
bit 8, is one), more than one extended 
logout may have occurred. The length 
stor"ed on interruption does not necessarily 
indicate the longest logout which has 
occurred. 

As part of the machine-check interruption, 
in some cases, extended interruption 
information is placed in fixed areas 
assigned in storage. The contents of 
registers associated with the CPU are 
placed in register-save areas. For 
external damage, additional information is 
provided for some models by storing an 
external-damage code. When storage error 
uncorrected, storage error corrected, or 
storage-key error uncorrected is indicated, 
the failing-storage address is saved. Some 

11-22 System/370 Principles of Operation 

models store a region code to show the 
location of the error. 

Each of these fields has associated with it 
a validity bit in the machine-check­
interruption code. I f, for any reason, the 
machine cannot store the proper information 
in the field, the associated validity bit 
is set to zero. 

REGISTER-SAVE AREAS 

As part of the machine-check interruption, 
the current contents of the CPU registers, 
except for the TOO clock, are stored in 
five register-save areas assigned in 
storage. Each of these areas has 
associated with it a validity bit in the 
machine-check-interruption code. If, for 
any reason, the machine cannot store the 
proper information in the field, the 
associated validity bit is set to zero. 

The following are the five sets of 
registers and the locations in storage 
where their contents are saved during a 
machine-check interruption. 

216-223 
22~231 

352-383 

384-447 
448-511 

CPU timer 
Clock comparator 
Floating-point registers 

0, 2, 4, 6 
General registers 0-15 
Control registers 0-15 

When the CPu-timer and clock-comparator 
feature or the floating-point feature is 
not installed, the corresponding locations 
remain unchanged. The information stored 
for unassigned or uninstalled control­
register positions is unpredictable. 

EXTERNAL-DAMAGE CODE 

The word at location 24q is the 
external-damage code. This field, when 
implemented and indicated as valid, 
describes the cause of external damage. 
The field is valid only when bit 5, 
external damage, and bi t 26, 
external-damage validity are both ones. 
The code provides the following 
information. 

Ext~~~l ~~£gnd~~~ R~g~i: Bit 2, when 
one, indicates that the machine-check 
interruption has been reported f or an 
external error for which the primary J" 
indication of the error has been or will be 
made by means of some other report. The 
primary indication may be an I/O-error 



condition, an indication to the operator, 
another machine-check interruption, or even 
another bit in the same machine-check 
interruption. 

The external secondary report has three 
main purposes. First, it is used to 
present the failing-storage address 
associated with storage errors detected 
during channel accesses to storage. In 
this case, the failing-storage address and 
storage-error-uncorrected, storaqe-error­
corrected, or storage-key-error-uncorrected 
indication are used to identify the cause 
of failure and the associated location. 

second, the external secondary report is 
used to present model-dependent logout 
information for an error associated with a 
channel that is physically integrated with 
the cpu. The machine-check indication in 
this case is provided so that channels 
integrated with the cpu can use the normal 
CPU logout mechanism for prese nt ing the 
model-dependent logout information. 

For these two purposes, the primary error 
indication is normally by means of an 
I/O-error condition. These errors include 
conditions presented as channel-control 
check, channel-data check, and interface­
control check. External secondary reports 
due to IIO and channel errors (1) may be 
presented to any or all CPUs in the 
configuration, (2) are not necessarily 
presented to the cpu to which the channel 
is connected, and (3) when channel-set 
switching is installed, may be presented 
even when the channel set is disconnected. 
In some models, external secondary reports 
due to IIO and channel errors may be 
broadcast to all CPUs in the configuration. 

The third use of external secondary report 
is to provide a mechanism for presenting 
logout information associated with errors 
detected by other external devices or 
during operator-initiated operations. The 
primary indication in this case is normally 
by means of the external device or by an 
indication to the operator. 

Ch~!!~l .Not ..QE~r.gtio!!al: Bit 3, when one, 
indicates that one or more channels in the 
configuration have entered the 
not-operational state without performing an 
IIO system reset on the I/O interface. 
This situation occurs when these channels 
have detected an error of such severity 
that channel operations cannot continue. 
In systems with channel-set switching, 
channel-not-operational conditions are 
reported to all CPUs in the configuration 
even when the channel set is disconnected. 
only those state changes in the channel 
which would be seen if the channel set were 
connected to a cpu are considered for 
purposes of this interruption. The 
channel-not-operational condition is 

reported only on systems in which all 
channels have implemented the CLEAR CHANNEL 
(CLRCH) instruction. 

Channel-Control Failure: Bit 4, when one, 
indlcateS-tha~one-or--more channels in the 
configuration have entered the 
not-operational state and mayor may not 
have performed an IIO system reset on the 
IIO interface. This situation occurs when 
the channels have lost power or detected an 
error of such severity that channel 
operations cannot continue. In systems 
with channel-set switching, channel­
control-failure conditions are reported to 
all CPUs in the configuration, even when 
the channel set is disconnected. The 
channel-control-failure condition is 
reported only on systems in which all 
channels have implemented the CLEAR CHANNEL 
(CLRCH) instruction. 

When the machine can determine that all 
affected channels actually entered the 
not-operational state without performing 
I/O system reset on the I/O interface, the 
channel-not-operational condition is 
indicated rather than channel-control 
failure. 

I/O-lns.!!:.!!ct.!m! Time.Qut: Bit 5, when one, 
indicates that the execution time of an IIO 
instruction has exceeded the maximum 
allowed by the cpu. The IIO instruction 
has been completed by setting condition 
code 3. When the cpu is enabled for 
external-damage machine-check conditions at 
the time the timeout occurs, the 
instruction address stored in the 
machine-check old PSW (if indicated as 
valid) points to the instruction following 
the IIO instruction. In this case, the 
address of the failing IIO instruction (or 
of the EXECUTE) can be obtained by 
subtracting 4 from the instruction address. 
Timeout of an IIO instruction is reported 
by means of bit 5 only when the CPU can 
ensure that the channel has not issued an 
I/O system reset on the IIO interface. 
Dependinq on the channel and the timeout 
condition, the channel mayor may not be 
operational. The I/O-instruction-timeout 
condition is reported only on systems in 
which all channels have implemented the 
CLEAR CHANNEL (CLRCH) instruction. 

I/O-In!~rrupt!on Tim~out: Bit 6, when one, 
indicates that the channel portion of an 
IIO interruption has exceeded the time 
limit established by the CPU and that the 
cpu has canceled the interruption. The 
I/O-interruption condition mayor may not 
have 'been lost, and information mayor may 
not have been stored at the locations of 
the old PSW, CSW, and other areas 
associated with an IIO interruption. The 
I/O interruption was not taken; that is, 
sequential instruction processing continued 
without loading the IIO new PSW. Timeout 

Chapter 11. Machine-Check Handling 11-23 



of an I/O interruption is reported by means 
of bit 6 only when the CPU can ensure that 
the channel has not issued an I/O system 
reset on the I/O interface. Depending on 
the channel and the timeout condition, the 
channel mayor may not be operational. The 
I/O-interruption-timeout condition is 
reported only on systems in which all 
channels have implemented the CLEAR CHANNEL 
(CLRCH) instruction. 

Reserygg: Bits 0, 1, and 7-31 are reserved 
for future expansion and are always set to 
zeros. 

1. Bit 0 is reserved for future expansion 
and possible redefinition of the 
remaining bits in the external-damage 
code. Thus, the proqram should test 
bit 0 for a zero value before 
interpreting the other bits in the 
external-damage code. 

2. Bit 3 (channel not operational), bit 4 
(channel-control failure) , and 
external damage with the external­
damage code invalid, form a set of 
three errors of increasing severity. 
When a channel-not-operational or 
channel-control-failure condition is 
reported, the affected channels enter 
the not-operational state. Thus, if 
the program is aware of the addresses 
of all channels which have been 
operational in the system, then, by 
means of a TEST CHANNEL instruction to 
all channels in the system, the 
program can determine which channels 
have entered the not-operational 
state. Since the channel-not­
operational and channel-control­
failure conditions are reported to all 
CPUs in the configuration, all 
channels on all CPUs must be tested. 
When channel-set switching is 
installed, then all channels, 
including those not currently 
connected to any CPU, must be tested. 

Channel not operational is the least 
severe indication of the three. The 
affected channels can be determined as 
indicated above, and it is known in 
this case that I/O system reset has 
not been performed on the I/O 
interface. 

Channel-control failure is more severe 
than channel not operational in that 
I/O system reset may have been 

11-24 System/370 principles of Operation 

performed on the I/O interface. 

External damage with the external­
damage code invalid is the most severe 
indication of the three. All channels 
in the configuration may have been 
affected, and the affected channels 
mayor may not appear to be not 
operational to a TEST CHANNEL 
instruction. Damage which can be 
reported by means of this indication 
incl udes errors occurring d uri ng the 
execution of an I/O interruption. For 
example, this indication can be used 
to report that an I/O interruption 
occurred with incorrect I/O address, 
incorrect CSW, incorrect limited­
channel-logout information, or 
channel-control failure. 

FAILING-STORAGE ADDRESS 

When storage error uncorrected, storage 
errOr corrected, or storage-key error 
uncorrected is indicated in the machine­
check-interruption code, the associated 
address, called the failing-storage 
address, is stored in bits 8-31 of the word 
at location 248. Bits 0-7 of that word are 
set to zeros. 

In the case of storage errors, the 
failing-storage address may designate any 
byte within the checking block. For 
storage-key error uncorrected, the 
failing-storage address may designate any 
address within the 2,048-byte block of 
storage associated with the storage key 
that is in error. When an error is 
detected in more than one location before 
the interruption, the failing-storage 
address may designate any of the failing 
locations. The address stored is an 
absolute address; that is, the value stored 
is the address that is used to reference 
storage after dynamic address translation 
and prefixing have been applied. 

REGION CODE 

Depending on the model, a region code may 
be stored at the word at location 252. The 
region code may contain model-dependent 
information which more specifically defines 
the location of the error. For example, it 
may contain a model-dependent address of 
the unit causing an external damage or 
recovery report. 



I FLOATING INTERRUPTION CONDITIONS 

An interruption which is made available to 
any CPU in a multiprocessing configuration 
is called a floating interruption 
condition. The first CPU that accepts the 
interruption clears the interruption 
condition, and it is no longer available to 
any other CPU in the configuration. 

A floating interruption is presented to the 
first CPU in the configuration which is 
enabled and can accept the interruption. A 
CPU cannot accept the interruption when it 
is in the check-stop state, has an invalid 
prefix, is performing an unending strinq of 
interruptions due to a PSW-format error of 
the type that is recognized early, or is in 
the stopped state. However, a CPU with the 
rate control set to instruction step can 
accept the interruption when the start key 
is ac t i vat e d • 

When a CPU enters the check-stop state in a 
multiprocessing configuration, the program 
on another CPU can determine whether a 
floating interruption may have been 
reported to the failinq CPU and then lost. 
This can be accomplished if the 
interruption program places zeros in the 
storaqe locations containing old PSWs and 
interruption codes after the interruption 
has been accepted (or has been moved into 
another area for later processing). After 
a CPU enters the check-stop state, the 
program in another CPU can inspect the 
old-PSW and interruption-code locations of 
the failing CPU. A nonzero value in an old 
PSW or interruption code indicates that the 
CPU has begun an interruption but the 
program did not complete the handling of 
it. 

The acceptance of a floating interruption 
should be interlocked in such a way as to 
m~n~m~ze the possibility that the 
interruption is lost. The condit ion should 
not be cleared until after the interruption 
has progressed to the point that the old 
PSi and interruption code have been stored. 
Thus, if the CPU enters the check-stop 
state or a SIGNAL PROCESSOR reset order 

causes the CPU to be reset before the old 
PSi and interruption code are stored, the 
floating condition is either still pending 
and will cause an interruption to be made 
available to another CPU in the 
configuration, or an indication of the 
interruption has been placed in main 
storage. 

Floating ~~chine 
Conditions 

Floating machine-cheek-interruption 
conditions are reset only by the manually 
initiated resets through the operator 
facilities. When a machine check occurs 
which prohibits completion of a floating 
machine-check interruption, the 
interruption condition is no longer 
considered a floating interruption 
condition, and system damage is indicated. 

All machine-check interruptions are under 
control of the machine-check mask, PSW bit 
13. In addition, some machine-check 
conditions are controlled by subclass masks 
in control register 1ij. 

The exigent machine-check condi tions 
(system damage and instruction-processinq 
damage) are controlled only by the 
machine-check mask, PSW bit 13. When PSW 
bit 13 is one, an exigent condition causes 
a machine-check interruption. When PSW bit 
13 is zero and the check-stop-control bit, 
bit 0 of control register 1Q, is one, the 
occurrence of an exigent machine-check 
condition causes the CPU to enter the 
check-stop state. When PSi bit 13 is zero 
and the check-stop-control bit is zero, the 
machine may attempt to continue or may 
enter the check-stop state dependinq on the 
type of error. 

The repressible machine-check conditions 
are controlled both by the machine-check 
mask, PSW bit 13, and by four subclass-mask 
bits in control register 1Q. If PSi bit 13 
is one and one of the subclass-mask bits is 
one, the associated condition initiates a 
machine-check interruption. If a 
subclass-mask bit is zero, the associated 
condition does not initiate an interruption 
but is held pendinq. However, when a 
machine-check interruption is initiated 
because of a condition for which the CPU is 
enabled, those conditions for which the CPU 
is not enabled may be presented alonq with 
the condition which initiates the 
interruption. All conditions presented are 
then cleared. 

Chapter 11. Machine-Check Handlinq 11-25 



Control Register 14 

, i i ~ 

IC I IIlDEWI 
IS I IMMMMI 
i i I ..I.-

0 4 7 

Control register 14 contains mask bits that 
specify whether certain conditions can 
cause machine-check interruptions. With 
the exception of bit 0, which is provided 
on all models, each of the bits is 
necessarily provided only if the associated 
function is provided. 

The program should avoid, whenever 
possible, operating with PSW bit 13, the 
machine-check mask, set to zero, since any 
exigent machine-check condition which is 
recognized durinq this situation may cause 
the CPU to enter the check-stop state. In 
particular, the program should avoid 
issuing I/O instructions or allowing for 
I/O interruptions with PSW tit 13 a zero. 

Bit 0 (CS) of control register 14, controls 
the system action taken when an exiqent 
machine-check condition occurs under one of 
the following two conditions: 

1. When the CPU is disabled for 
machine-check interruptions (that is, 
PSW bit 13 is zero). 

2. When an exigent machine-check 
condition occurs during the process of 
storing the machine-cheek-interruption 
code, storing the machine-check old 
PSW, or fetchinq the machine-check new 
PSW during a machine-check 
interruption. 

If the check-stop control bit is one and 
either condition occurs, the machine enters 
the check-stop state; if the check-stop 
control bit is zero, the machine may 
attempt to continue or may enter the 
check-stop state, depending on the type of 
error and the model. The check-stop 
control bit is initialized to one. If 
damage occurs to control register 14, the 
check-stop control bit is assumed to be 
one. 

11-26 System/370 Principles of Operation 

Bit 4 (Ill'l) of control register 14 controls 
system-recovery-interruption conditions. 
This bit is initialized to zero. 

Bit 5 (DM) of control register 14 controls 
degradation-interruption conditions. This 
bit is initialized to zero. 

Bit 6 (EM) of control register 14 controls 
timing- facili ty- damage, 
interval- timer- damage, and external-damage 
conditions. This bit is initialized to 
one. 

Bit 7 (WM) of control register 14 controls 
warning conditions. This bit is 
initialized to zero. 

Some models place model-dependent 
information in main storage as a result of 
a machine check. This is referred to as a 
machine-check logout. Machine-check 
logouts are of four different types: 
synchronous fixed logout, asynchronous 
fixed logout, synchronous machine-check 
extended logou t, a nd as ynch rono us 
machine-check extended logout.] 

Machine-cheek-logout information may, 
depending on the model, be placed in the 
machine-check extended-logout (MCEL) area. 
The starting location of the MCEL area is 
specified by the contents of control 
register 15. The existence and length of 
the MCEL are model-dependent. 

Some models may place machine-cheek-logout 
information in the fixed-logout area. This 
area is 96 bytes in length and starts at 
location 256. The fixed logout may be in 
addition to or instead of an extended 
logout. 

When a machine-check logout occurs during 
the machine-check interruption it is called 
a synchronous logout. If a machine-check 



logout occurs without a machine-check 
interruption, or if the logout and the 
interruption are separated by instruction 
process ing or by CPU retry, then the logou t 
is called an asynchronous logout. 

To preserve the initial machine-check 
conditions, some models perform an 
asynchronous logout before invoking CPU 
retry. Depending on the model, logout may 
occur before recovery, after recovery, or 
at both times. If logout occurs at both 
times it may be into the same portion or 
two different portions of the logout area. 

LOGOUT CONTROLS 

Control register 14 contains bits which 
control when a logout may occur. 

Control Register 14 

, I i / , I , 

IS II I 
ILILI 

IAIFI 
ILILI 

-L-L-~ __ I __ ~I~I~I_ 
1 2 8 9 

~Ynch£QnQ!!§' Machin~-Check ].!tended-LogQut 
ContrQ.! 

Bit 1 (SL) of control register 14 controls 
the logout action during a machine-check 
interruption. When this bit is one, the 
machine-check extended-logout area may be 
changed during the interruption; when this 
bit is zero, the area may be changed only 
under control of the asynchronous 
machine-check extended-Iogout-control bit, 
bit 8 of control register 14. This bit is 
initialized to one. 

Bit 2 (IL) of control register 14, when 
one, permits channel logout into the I/O 
extended-logout area as part of an I/O 
interruption. When this bit is zero, I/O 
extended loqouts cannot occur. This bit is 
initialized to zero. 

!§.ll£h!:QnQ]ll! .Hachin~=Check Extended-Lo.5!Qut 
ContrQ.! 

Bit 8 (AL) of control register 14, in 

conjunction with PSW bit 13, controls 
asynchronous change of the machine-check 
extended-logout area. When this bit and 
PSW bit 13 are both ones, the machine may 
change the machine-check extended-logout 
area at any time; when this bit is zero, 
the area may be changed only under control 
of the synchronous machine-check extended­
logout-control bit, bit 1 of control 
register 14. This bit is initialized to 
zero. 

Bit 9 (FL) of control register 14, when 
one, permits the fixed-logout area to be 
changed at any time. When this bit is 
zero, the fixed-logout area may be changed 
only during a machine-check interruption or 
dUring an I/O interruption. This bit is 
initialized to zero. 

MACHINE-CHECK EXTENDED-LOGOUT ADDRESS 

MCEL Address 

o 8 29 31 

Bits 8-28 of control register 15, with 
three low-order zeros appended, specify the 
startinq location of the machine-check 
extended-logout (KCEL) area. The contents 
of control reqister 15 are initialized by 
setting bit 22 to one and all other bi ts to 
zeros, which specifies a starting address 
of 512 (decimal). The MCEL address is a 
real address. 

When a model provides the machine-check 
extended logout (KCEL), control register 15 
is implemented. 

1. The availability and extent of the 
machine-check extended-logout area 
differs among models and, f or any 
particular model, may depend on the 
features or engineerinq changes 
installed. In order to provide for 
such variations, the program should 
determine the extent of the logout by 
means of STORE CPU ID whenever a 
storage area for the extended logout 
is to be assigned. A length of zero 
in the MCEL field that results from 
executing STORE CPU ID indicates that 
no MCEL is provided. 

Chapter 11. Machine-Check Handling 11-27 



2. The maximum logout information is 
obtained by setting both the 
synchronous and asynchronous 
machine-checK extended-logout control 
bits to ones. Both of these bits must 
be zeros to prevent any changes to the 
machine-checK extended-logout area. 

3. Use of the machine-checK 
extended-logout area while 
asynchronous machine-checK extended 
loqout is allowed may produce 
unpredictable results. 

4. When the asynchronous fixed logout 
control bit is one, proqram use of the 
fixed logout area should be restricted 
to the fetching of data from this 
area. store operations or channel 

r- T 

programs reading into the fixed logout 
area may cause machine checKs or 
undetected errors if the store occurs 
during CPU retry_ ]Qi~ ih~i ih!§!§ 
~n ~£~ptiQn to i~~ !~!g ihgi 
£!Qg!~inq ~rrQrs ~Q ngi £g~§g 
.!!lg£hine- che£.! !ndicai.,igns. 

A summary of machine-check masking and 
logout is given in the figures "!'Iachine­
Check-Condition Masking," "!'Iachine-Check­
Logout Control," and "!'lachine-Check 
Control-Reqister Bits." 

Action When CPU I 
Disabled for I 
Subclass and I 

I 
I 
I 
I Sub­

Class 
Mask 

~, I 
I 
I 
~ 

Subclass 

I System damaqe 
I Instruction-processinq 
IInterval-timer damage 
ITiming-facility damage 
I System recovery 
IExternal damage 
I Degradation 
IWarninq 
f--
I ~xpl~!l.g:UQ!l.: 
I 

damage 

I P Indication held pendinq. 

EM 
EM 
RM 
EM 
D!'I 
W!'l 

IChecK-StoPICheck-StoPI 
I Ctrl = 0 I Ctrl = 1 I 
I I I 
I p* I Check stopl 
I p* ICheck stopl 
I PIP I 
I PIP I 
I Y I Y I 
I PIP I 
I PIP I 
I PIP I 

I 

I Y 
I * 
I 

Indication may be held pending or may be discarded. 
System integrity may have been lost, and the system 
cannot be considered dependable. 

L----. ____________ _ 

Machine-Check-Condition Masking 

11-28 System/370 Principles of Operation 



r------~----------T 
I PSi I CR 14 Bit 1 
IBit 131 (SL) 
I I 
I 0 I 
I 1 I 
I 1 I 
I I 
I 1 I 
I 1 I , ' 
I CR14 Bit 
I (Ft) 
I 

x 
o 
1 

o 
1 
i 

91 
I 
I 

CR14 Eit 
(AL) 

x 
o 
o 

1 
1 

• 
81 

I 
I 
INo MCEL 
INo MCEL 

"CEL Action 

,MCEL may occur only durinq 
I machine-check interruption. 1 

,MCEL may occur at any time. 2 

IMCEL may occur at any time. , 

Pixed-Logout Action 

I 
I 
I 
I 

o IFixed-10gout area may be changed by the CPU 
lon1y during machine-check interruption. 1 

I 
IFixed-10gout area may be changed at any time. 

~,--------~----------------------------------------------~ 
IExp1@at1,Q1P 

AL Asynchronous machine-check extended-logout control 

PL Asynchronous fixed-logout control 

KCEL Machine-check extended logout 

SL Synchronous machine-check extended-10qout control 

X Indicates the same action occurs whether the bit is zero 
or one. 

1 Loqout prior to instruction retry is not permissible in 
this state even though recovery reports are enabled. 

2 In some models, the asynchronous machine-check extended-
10qout control (AI) is iqnored, and no logout occurs in 
this state. 

Machine-Check-Loqout Control 

I 
I 
I Bit Description , 
ICheck-stop control 
Isynchronous KCEL control 
IIOEL control 
IRecovery-report mask 
,Degradation-report mask 
IExterna1-damaqe-report mask 
I Warninq mask 
I\synchronous MCEL control 
IAsynchronous fixed-loqout control 

i 
I Control I State of Bit 
IRegister 14 I on Initial 
IBit Position I CPU Reset 
, I 
I 0 I 1 
, 1 I 1 
12, 0 
14, 0 ,5, 0 
, 6 I 1 
, 7 , 0 
I 8 , 0 
, 9 I 0 

i 
_____________________ --L I 

Machine-Check Control-Register Bits 

Chapter 11. Machine-Check Handling 11-29 





Attachment of Input/Output Devices •••••••••••••••••••••••••••••• 12-2 
Input/Output Devices •••••••••••••••••••••••••••••••••••••••••• 12-2 
Control Units ••••••••••••••••••••••••••••••••••••••••••••••••• 12-3 
Channels •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-3 

Modes of Operation •••••••••••••••••••••••••••••••••••••••••• 12-4 
Types of Channels ••••••••••••••••••••••••••••••••••••••••••• 12-4 

I/O-System Operation •••••••••••••••••••••••••••••••••••••••••• 12-6 
Compatibility of Operation •••• , •••••••••••••••••••••••••••••••• 12-1 

Control of Input/Output Devices ••••••••••••••••••••••••••••••••• 12-8 
Input/Output Device Addressing, •••••••••••••••••••••••••••••••• 12-8 
States of the Input/Output System ••••••••••••••••••••••••••••• 12-9 
Resetting of the Input/Output System •••••••••••••••••••••••••• 12-11 

I/O-System Reset ••••••••••••••••••• ' ••••••••••••••••••••••••• 12-11 
I/O Selective Reset ••••••••••••••••••••••••••••••••••••••••• 12-11 
Effect of Reset on a Working Device ••••••••••••••••••••••••• 12-12 
Reset Upon Malfunction •••••••••••••••••••••••••••••••••••••• 12-12 

Condition Code •••••••••••••••••••••••••••••••••••••••••••••••• 12-12 
Instruction Formats ••••••••••••••••••••••••••••••••••••••••••• 12-15 
Instructions •••••••••••••••••••••••••••••••••••••••••••••••••• 12-15 
CLEAR CHANNEL ••••••••••••••••••••••••••••••••••••••••••••••••• 12-16 
CLEAR I/O ••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-11 
HALT DEVICE ••••••••••••••••••••••••••••••••••••••••••••••••••• 12-19 
HALT I/O •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-22 
START I/O ••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-25 
START I/O FAST RELEASE •••••••••••••••••••••••••••••••••••••••• 12-25 
STORE CHANNEL ID •••••••••••••••••••••••••••••••••••••••••••••• 12-28 
TEST CHANNEL •••••••••••••••••••••••••••••••••••••••••••••••••• 12-29 
TEST I/O •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-29 
Input/output-Instruction-Exception Handling ••••••••••••••••••• 12-32 

Execution of Input/Output Operations •••••••••••••••••••••••••••• 12-32 
Blocking of Data •••••••••••••••••••••••••••••••••••••••••••••• 12-33 
Channel-Address Word •••••••••••••••••••••••••••••••••••••••••• 12-33 
Channel-Command Word •••••••••••••••••••••••••••••••••••••••••• 12-33 
Command Code •••••••••••••••••••••••••••••••••••••••••••••••••• 12-34 
Designation of Storage Area ••••••••••••••••••••••••••••••••••• 12-35 
Chaining •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-36 

Data Chaining ••••••••••••••••••••••••••••••••••••••••••••••• 12-38 
Command Chaining •••••••••••••••••••••••••••••••••••••••••••• 12-39 

Skipping •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-39 
program-Controlled Interruption ••••••••••••••••••••••••••••••• 12-40 
Channel Indirect Data Addressing •••••••••••••••••••••••••••••• 12-41 
Commands •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-42 

write ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-43 
Read •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-43 
Read Backward ••••••••••••••••••••••••••••••••••••••••••••••• 12-44 
Control ••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-44 
Sense ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-45 
Sense ID •••••••••••••••••••••••••••••••••••••••••••••••••••• 12-46 
Transfer in Channel ••••••••••••••••••••••••••••••••••••••••• 12-47 

Command Retry ••••••••••••••••••••••••••••••••••••••••••••••••• 12-41 
Conclusion of Input/Output Operations ••••••••••••••••••••••••••• 12-48 

Types of Conclusion ••••••••••••••••••••••••••••••••••••••••••• 12-48 
Conclusion at Operation Initiation •••••••••••••••••••••••••• 12-48 
Immediate Operations •••••••••••••••••••••••••••••••••••••••• 12-49 
Conclusion of Data Transfer ••••••••••••••••••••••••••••••••• 12-50 
Termination by HALT I/O or HALT DEVICE .' ••••••••••••••••••••• 12-51 
Termination by CLEAR I/O •••••••••••••••••••••••••••••••••••• 12-52 
Termination Due to Equipment Malfunction •••••••••••••••••••• 12-52 

Input/Output Interruptions •••••••••••••••••••••••••••••••••••• 12-52 
Interruption Condit ions ••••••••••••••••••••••••••••••••••••• 12-52 
Channel-Available Interruption •••••••••••••••••••••••••••••• 12-54 

Priority of Interruptions •••••••••••••••••••••••••••••••••• 12-54 
Interruption Action ••••••••••••••••••••••••••••••••••••••••• 12-54 

Chapter 12. Input/Output Operations 12-1 



Channel-Status Word ••••••••••••••••••••••••••••••••••••••••••• 12-55 
unit Status ••••••••••••••••••••••••••••••••••••••••••••••••••• 12-56 

Attention ••••••••••••••••••••••••••••••••••••••••••••••••••• 12-56 
status Modifier ..•••••.........• ' .............................. 12-56 
Control-Unit End ••• ~ ......................................... 12-57 
Busy ••••••••••••••••••••••••••••••• Ia •••••• n. _ ................ 12-57 
Channel End ••••••••••••••••••••••••••••••••••••••••••••••••• 12-60 
Device End ••••••••••••••••••••••••••••••••••••••••••.•••••••• 12-60 
Unit Check •••••••••••••••••••••••••••••••••••••• ~ ••••••••••• 12-61 
Unit Exception •••••••••••••••••••••••••••••••••••••••••••••• 12-62 

Channel Status ••••• ~ ••••••••••••••••••••••••••••••••• _ •••••••• 12-62 
Program-Controlled Interruption ••••••••••••••••••••••••••••• 12-62 
Incorrect Length ••••••..•.••••••.•••••••.. n •••••••••••• ' ••••• 12-62 
Program Check ••••••••••••••••••••••••••••••••••••••••••••••• 12-63 
Protection Check •••••••••• ~ ••••••••••••••••••••••• _ ••••••••• 12-63 
Channel-Data Check •••••••••••••••••••••••• ~ ••••••••••••••••• 12-6q 
Channel-Control Check ••••••••••••••••••••••••••••••••••••••• 12-64 
Interface-Control Check ••••••••••••••••••• _ ••••••••••••••••• 12-64 
Chaining Check •••••••••••••••••••••••••••••••••••••••••••••• 12-65 

Contents Of Channel-Status Word ••••••••••••••••••••••••••••••• 12-65 
Information Provided by Channel-Status Word ••••••••••••••••• 12-65 
Subchannel Key ••••••••••••••••••••• ~ •••••••••••••••••••••••• 12-66 
CCW Address ••••••••••••••••••••••••••••••••••••••••••••••••• 12-66 
Count •• ~ •••••••••••••••••••••••••••••••••••••••••••••••••••• 12-67 

I Status •••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-68 
Channel Logout •••••••••••••••••••••••••••••••••••••••••••••••••• 12-69 
I/O-ComBlunication Area •••••••• ~ .•••••••••••••••• • ' •••••••••••••• •• 12-71 

The transfer of information to or from main 
storage, other than to or from the central 
processing unit or by means of the direct 
control path, is referred to as an input or 
output operation. An input/output' (I/O) 
operation involves the use of an I/O 
device. Input/output devices perform I/O 
operations under control of control units, 
which are attached to the central 
processing unit (CPU) by means of channels. 

This portion of the publication describes 
the programmed control of I/O devices by 
the channels and by the cpu. Formats are 
defined for the various types of I/O 
control information. The formats apply to 
all I/O operations and are independent of 
the type of I/O device, its speed, and its 
mode of operation. 

The formats described include provisions 
for functions unique to some I/O device 
types, such as erasing a gap on a 
magnetic-tape unit. The way in which a 
device makes use of the format is defined 
in the System Library (SL) publication for 
the particular device. 

All main-storage references for I/O 
operations are references to absolute 
storage. Unless indicated otherwise, 
"sto['age" means absolute storage, and 
"address" means absolute address. The 
terms "I/O address," "channel address," and 
"device address" are never abbreviated to 
"address" in this publication. 

12-2 svs~em/370 Principles of operation 

INPUT/OUTPUT DEfICES 

Input/output devices provide external 
storage and a means of communication 
between data-processing systems or between 
a system and its environment. Input/output 
devices include such equipment as card 
readers, card punches, ma gnetic-ta pe units, 
direct-access-storage devices (disks and 
drums), display units, typewriter-keyboard 
devices, printers, teleprocessing devices, 
and sensor-based equipment. 

Most types of I/O devices, such as 
printers, card equipment, or tape devices, 
deal directly with external media, and 
these devices are physicall y 
distinguishable and identifiable. Other 
types consist only of electronic equipment 
and do not directly ha ndle ph ysical 
recording media. The channel-to-channel 
adapter, for example, provides a 
channel-to-channel data-transfer path, and 
the data never reaches a physical recording 
medium outside main storage. Similarly, a 
transmission-control unit handles 
transmission of information between the J .. 
data-processing system and a remote 
station, and its input and output are 
signals on a transmission line. An 1/0 



device may be physically distinct 
equipment, or it may time-share equipment 
with other I/O devices. 

An input/output device ordinarily is 
attached to one control unit and is 
accessible from one channel. switching 
equipment is available to make some devices 
accessible to two or more channels by 
switching devices between control units and 
control units between channels. The time 
required for switching occurs during 
device-selection time and may be ignored. 

CONTROL UNITS 

A control unit provides the logical 
capabilities necessary to operate and 
control an I/O device and adapts the 
characteristics of each device to the 
standard form of control provided by the 
channel. 

The control unit accepts control signals 
from the channel, controls the timing of 
data transfer, and provides indications 
concerning t~e status of the device. 

The I/O device attached to the control unit 
may be designed to perform only certain 
limited operations, or it may perform many 
different operations. A typical operation 
is moving the recording medium and 
recording data. To accomplish these 
functions, the device needs detailed signal 
sequences peculiar to the type of device. 
The control unit decodes the commands 
received from the channel, interprets them 
for the narticular type of device, and 
provides the signal sequence required for 
execution of the operation. 

A control unit may be housed separately, or 
it may be physically and logically integral 
with the I/O device or the CPU. In most 
electromechanical devices, a well-defined 
interface exists between the device and the 
control unit because of the difference in 
the type of equipment the control unit and 
the device contain. These electro­
mechanical devices often are of a type 
where only one device of a group attached 
to a control unit is required to operate at 
a time (magnetic-tape units or disk-access 
mechanisms, for example), and the control 
unit is shared among a number of I/O 
devices. On the other hand, in some 
electronic I/O devices such as the channel­
to-channel adapter, the control unit does 
not have an identity of its own. 

From the programmer's point of view, most 
functions performed by the control unit can 
be merged with those performed by the I/O 
device. Therefore, this publication 
normally does not make specific mention of 

the control unit function; the execution of 
I/O operations is described as if the I/O 
devices communicated directly with the 
channel. Reference is made to the control 
unit only when emphasizing a function 
performed by it or when describinq how 
sharing of the control unit among a number 
of devices affects the execution of I/O 
operations. 

CHANNELS 

A channel directs the flow of information 
between I/O devices and main storage. It 
relieves the CPU of the task of 
communicating directly with the devices and 
permits data processing to proceed 
concurrently with I/O operations. 

A channel provides a means £or connecting 
different types of I/O devices to the CPU 
and to storage. The channel accepts 
control information from the CPU in the 
format supplied by the program and changes 
it into a sequence of signals acceptable to 
a control unit and device. Similarly, when 
an I/O device provides signals that should 
be brought to the attention of the program, 
the channel transforms the signals to 
information that can be used in the CPU. 

A channel contains facilities f or the 
control of I/O operations. During 
execution of an I/O operation i nvol ving 
data transfer, the channel assembles or 
disassembles data and synchronizes the 
transfer of data bytes with storage cycles. 
To accomplish this, the channel maintains 
and updates an address and a count that 
describe the destination or source of data 
in storage. When the channel facilities 
are provided in the form of separate 
autonomous eguipment designed specifically 
to control I/O devices, I/O operations are 
completely overlapped with the activity in 
the CPU. The only storage cycles required 
during I/O operations in such channels are 
those needed to transfer data and control 
information to or from the final locations 
in storage. These cycles do not interfere 
with the CPU program, except when both the 
CPU and the channel concurrently attempt to 
refer to the same storage area. 

If separate equipment is not provided, 
facilities of the CPU are used for 
controlling I/O devices. When the CPU and 
channels, or the CPU, channels, and control 
units, share common facilities, I/O 
operations cause interference to the CPU, 
varying in intensity from occasional delay 
of a CPU cycle to a complete lockout of CPU 
activity. The intensity depends on the 
extent of sharing and on the I/O data rate. 
The sharing of the facilities, however, is 
accomplished automatically, and the program 

Chapter 12. Input/Output operations 12-3 



is not affected by CPU delays, except for 
an increase in execution time. 

An I/O 
modes: 

operation occurs in one 
burst or byte-multiplex. 

of two 

In burst mode, the I/O device monopolizes 
the channel and stays logically connected 
to the channel for the transfer of a burst 
of information. No other device can 
communicate with the channel during the 
time a burst is transferred. The burst can 
consist of a few bytes, a whole block of 
data, a sequence of blocks with associated 
control and status information (the block 
lengths may be zero), or status information 
which monopolizes the channel. The 
facilities in a channel capable of 
operating in burst mode may be shared by a 
number of concurrently operating I/O 
devices. 

Some channels can tolerate an absence of 
data transfer during a burst-mode 
operation, such as occurs when reading a 
long qap on maqnetic tape, for not more 
than approximately 1/2 minute. Equipment 
malfunction may be indicated when an 
absence of data transfer exceeds this time. 

In byte-multiplex mode, the I/O device 
stays logically connected to the channel 
only for a short interval of time. The 
facilities in a channel capable of 
operating in byte-multiplex mode may be 
shared by a number of concurrently 
operating I/O devices. In this mode, all 
I/O operations are split into short 
intervals of time during which only a 
segment of information is transferred. 
During such an interval, only one device is 
logically connected to the channel. The 
intervals associated with the concurrent 
operation of multiple I/O devices are 
sequenced in response to demands from the 
devices. The channel controls are occupied 
with anyone operation only for the time 
reguired to transfer a segment of 
information. The segment can consist of a 
single byte of data, a few bytes of data, a 
status report from the device, or a control 
sequence used for initiation of a new 
operation. 

Operation in burst and byte-multiplex modes 
is differentiated because of the way the 
channels respond to I/O instructions. A 
channel operating a device in the burst 
mode appears busy to new I/O instructions, 
whereas a channel operating one or more 
devices in the byte-multiplex mode is 
capable of initiating an operation on 
another device. If a channel that can 
operate in either mode is communicating 

12-4 system/370 Principles of Operation 

with an I/O device at the instant a new I/O 
instruction is issued, action on the 
instruction is delayed by the channel until 
the current mode of operation is 
established. Furthermore, the new I/O 
operation is initiated only after the 
channel has serviced all outstanding 
requests from devices previously placed in 
operation. 

The distinction between a short burst of 
data occurring in the byte-multiplex mode 
and an operation in the burst mode is in 
the length of the bursts of data. A 
channel that can operate in either mode 
determines its mode of opera ti on by 
timeout. Whenever the burst causes the 
device to be connected to the channel for 
more than approximately 100 microseconds, 
the channel is considered to be operating 
in the burst mode. 

Ordinarily, devices with a high 
data-transfer rate operate with the channel 
in burst mode, and slower devices run in 
byte-multiplex mode. Some control units 
have a manual switch for setting the mode 
of operation. 

A system can be equipped with 
of channels: selector, byte 
and block multiplexer. 

three types 
mul ti plexer, 

The channel facilities required for 
sustaining a single I/O operation are 
termed a subchannel. The subchannel 
consists of- internal storage used for 
recording the addresses, count, and any 
status and control information associated 
with the I/O operation. The capability of 
a channel to permit multiplexing depends 
upon whet.her it ha s more tha none 
subchannel. 

A selector channel, which contains a 
minimum of facilities, has one subchannel 
and always forces the I/O device to 
transfer data in the burst mode. The burst 
extends over the whole block of data, or, 
when command chaining is specified, over 
the whole sequence of blocks. A selector 
channel cannot perform any multiplexing and 
therefore can be in volved in only one I/O 
operation or chain of operations at a time. 
In the meantime, other I/O devices attached 
to the channel can be executing previously 
initiated operations that do not involve 
communication with the channel, such as 
backspacing tape. When the selector 
channel is not executing a n opera ti on or a 
chain of operations and is not processing 
an interruption, it monitors the attached 
devices for status information. 



A byte-multiplexer channel contains 
multiple subchannels and can operate at any 
one time in either byte-multiplex or burst 
mode. The channel operates most 
efficiently when runninq I/O devices that 
are designed to operate in byte-multiplex 
mode. The mode of operation is determined 
by the I/O device, and, during data 
transfer, the mode can change at any time. 
Unless data transfer is occurring, the mode 
of operation has no meaning. The data 
transfer associated with an operation can 
occur partially in the byte-multiplex mode 
and partially in the burst mode. 

A block-multiplexer channel contains 
multiple subchannels and can only operate 
in burst mode. The channel operates most 
efficiently when running devices that are 
designed to operate in burst mode. When 
multiplexing is not inhibited, the channel 
permits multiplexing between bursts, 
between blocks when command chaining is 
specified, or when command retry is 
performed. On most models, the burst is 
forced to extend over the block of data, 
and multiplexing occurs between blocks of 
data when command chaining is specified. 
Whether or not multiplexing occurs depends 
on the design of the channel and I/O device 
and on the state of the 
block-multiplexing-control bit. 

When the block-multiplexing-control bit, 
bit 0 of control register 0, is zero, 
multiplexing is inhibited; when it is one, 
multiplexinq is allowed. 

Whether a block-multiplexer channel 
executes an I/O operation with multiplexing 
inhibited or allowed is determined by the 
state of the block-multiplexing-control bit 
at the time the operation is initiated by 
START 1/0 or START I/O FAST RELEASE and 
applies to that operation until the 
involved subchannel becomes available. 

For brevity, the term "multiplexer channel" 
is used hereafter when describing a 
function or facility that is common to both 
the byte-multiplexer and the 
block-multiplexer channel. Multiplexer 
channels vary in the number of subchannels 
they contain. When multiplexing, they can 
sustain concurrently one 1/0 operation per 
subchannel, provided that the total load on 
the channel does not exceed its capacity. 
Each subchannel appears to the program as 
an independent selector channel, except in 
those aspects of communication that pertain 
to the physical channel (for example, 
individual subchannels on a multiplexer 
channel are not distinguished as such by 
the TEST CHANNEL instruction or by the 
masks controlling I/O interruptions from 
the channel). When a multiplexer channel 
is not servicinq an I/O device, it monitors 
its devices for data and for status 
informa tion. 

Subchannels on a multiplexer channel may be 
either ~Qnsh~~ed or shar~Q. 

A subchannel is referred to as nonshared if 
it is associated with and can be used only 
by a single I/O device. A nonshared 
subchannel is used with devices that do not 
have any restrictions on the concurrency of 
cha nnel-program operations, such as a 
single drive of an IBM 3330 Disk Storaqe. 

A subchannel is referred to as shared if 
data transfer to or from a set of devices 
implies the use of the same subchannel. 
Only one device associa ted with a shared 
subchannel may be involved in data 
transmission at a time. Shared subchannels 
are used with devices, such as 
magnetic-tape units or some disk-access 
mechanisms, that share a control unit. For 
such devices, the sharing of the subchannel 
does not restrict the concurrency of I/O 
operations since the control unit permits 
only one device to be involved in a 
data-transfer operation at a time. IIO 
devices may share a control unit without 
necessarily sharing a subchannel. For 
example, each transmission line attached to 
the IBM 2702 Transmission Control is 
assigned a nonshared subchannel, although 
all of the transmission lines share the 
common control unit. 

A block-multiplexer channel can be made to 
operate as a selector channel by the 
appropriate setting of the block­
multiplexing-control bit. However, since a 
block-multiplexer channel inherently can 
interleave the execution of multiple I/O 
ope rations and since the state of the 
block-.multiplexing-control bit can be 
changed at any time, it is possible to have 
one or more operations that permit 
multiplexing and an operation that inhibits 
multiplexing being executed simultaneously 
by a channel. 

Therefore, to ensure complete compatibility 
with selector channel operation, all 
operational subchannels on the 
block-multiplexer channel must be available 
or operating with multiplexing inhibited 
when the use of that channel as a selector 
channel is begun. All subsequent 
operations should then be initiated with 
the block-multiplexing-control bit 
inhibiting multiplexing. 

Chapter 12. Input/Output Operations 12-5 



I/O-SYSTEM OPERATION 

Input/output operations are initiated and 
controlled by information with two types of 
formats: instructions and channel-command 
words (CCWs). Instru£!ion§ are decoded by 
the CPU and are part of the CPU proqram. 
CC!§ are decoded and executed by the 
channels and I/O devices and initiate I/O 
operations, such as reading and writing. 
One or more CCWs arranged for sequential 
execution form a channel program. Both 
instructions and CCWs are fetched from 
storage. The formats of ecws are common 
for all types of I/O devices, although the 
modifier bits in the command code of a CCW 
may specify device-dependent operations. 

The CPU proqram initiates I/O operations 
with the instruction STAFT I/O or START I/O 
FAST RELEASE. These instructions identify 
the channel and the I/O device and cause 
the channel to fetch the channel-address 
word (CA W) from a fixed location in 
storage. The CAW contains the subchannel 
key and designates the location in storage 
from which the channel subsequently fetches 
the first CCW. The CCW specifies the 
command to be executed and the storage 
area, if any, to be used. 

I When START I/O is executed and the 
I addressed channel and subchannel are 
I available, the channel attempts to select 
I the I/O device and sends the command-code 
I' part of the CCW to the control unit. The 
I device responds indicating whether it can 

execute the command. 

At this time, the execution of START I/O. 
is completed. The results of the attempt 
to initiate the execution of the command 
are indicated by setting the condition code 
in the PSW and, in certain situations, by 
stori~g pertinent information in the 
channel~status word (CSW). 

When START I/O FAST RELEASE is executed, 
the functions performed during the 
execution of the instruction depend on the 
desiqn of the channel. Some channels 
perform the same functions as for START 
I/O; other channels release the CPU (that 
is, complete the execution of the 
instruction) before the I/O operation has 

'been initiated at the addressed dev ice. 
Channels are permitted to release the CPU 
as early as when the CAW has been fetched. 
Channels designed to release the CPU before 
the I/O operation is initiated at the I/O 
device perform the functions associated 
with I/O operation initiation logically 
subsequent and asynchronous to the 
execution of START I/O FAST RELEASE. When 
the CPU is releas~d, the results of the 
execution of the instruction to that point 

12-6 System/370 Principles of Operation 

are indicated by setting the condition code 
in the PSW and, in certain situations, by \ 
storinq pertinent informa tion in the CSW. ...." 

If the I/O operation is initiated at the 
I/O device and its execution invol ves 
transfer of data, the subchannel is set up 
to respond to service requests from the 
device and assumes further control of the 
operation. In operations that do not 
require any data to be transferred to or 
from the device, the device may siqnal the 
end of the operation immedia tely on receipt 
of the command code. 

An I/O operation may involve transfer of 
data to one storage area, designated by a 
single cew, or to a number of noncontiguous 
storage areas. In the latter case, 
generally a list of CCWs is used for 
execution of the I/O operation, each CCW 
designating a contiguous storage area, and 
the CCWs are said to be coupled by data 
chaining. Data chaining is specified by a 
flag in the CCW and causes the channel to 
fetch another CCW upon the exhaustion or 
filling of the storage area desiqnated by 
the current CCW. The storaqe area 
designated by a cew fetched on data 
chaining pertains to the I/O operation 
already in progress at the I/O device, and 
the I/O device is not notified when a new 
cew is fetched. 

Provision is made in the CCW forma t f or the ' ''''\ 
programmer to specify that, when the CCW is ...." 
decoded, the channel request a n I/O 
interruption as soon as possible, thereby 
notifying the CPU program that chaining has 
progressed at least as far as that ccw. 

To complement the dynamic-address­
translation facility available in the CPU, 
channel indirect data addressinq is 
available. A flag in the CCW specifies 
that an indirect-data-address list is to be 
used to designate the storage areas for 
that CCW. Each time the boundary of a 
2,OqS-byte block of storage is reached, the 
list is referenced to determine the next 
block of storage to be used. By extendinq 
the storaqe-addressing capabilities of the 
channel, channel indirect data addressinq 
permits essentially the same CCi sequences 
to be used for a program runninq with 
dynamic address translation in the CPU that 
would be used if it were operating with 
eguivalent contiquous real storage. 

The conclusion of an I/O operation normally 
is indicated by channel end and device end. 
When channel end is presented, it means 
that the I/O device has received or 
provided all data associated with the 
operation and no longer needs channel 
facilities. When device end is presented, ~'", 
it usually means that the I/O device has 
concluded execution of the I/O operation. 
On some I/O devices, for reasons of 



~: 

performance, device end is presented before 
the I/O operation has been concluded. 
Device end can occur concurrently with 
channel end or later. 

Operations that keep the control unit busy 
after releasing channel facilities may, in 
some situations, cause a third indication 
called control-unit end. control-unit end 
may occur only concurrently with or after 
channel end. 

Concurrent with channel end, both the 
channel and the I/O device can provide 
indications of unusual situations. 
Control-unit end and device end can be 
accompanied by error indications from the 
I/O device. 

The indication of the conclusion of an I/O 
operation can be brought to the attention 
of the program by an I/O interruption or, 
when the CPU is disabled for I/O 
interruptions from the channel, by 
programmed interrogation of the I/O device. 
An indication that will result in an I/O 
interruption or that can be observed 
throuqh interroqation is called an 
interruption condition. In either case, a 
CSW is stored, which contains additional 
information concerning the execution of the 
operation. When channel end is indicated 
in the CSW and no equipment malfunctions 
have been detected, the csw identifies the 
last CCW used and provides its residual 
byte count, thus indicating the extent of 
storage used. 

Facilities are provided for the program to 
initiate the execution of a chain of I/O 
operations with a single START I/O or START 
I/O FAST RELEASE. When the chaining flags 
in the current CCW specify command chaining 
and no unusual conditions have been 
detected in the operation, the receipt of 
the device-end signal causes the channel to 
fetch a new CCW and to initiate execution 
of a new command at the device. Execution 
of the new command is initiated by the 
channel in the same way as the previous 
operation. Channel end and device end are 
not presented to the program when command 
chaining causes execution of another I/O 
operation to be initiated. However, 
unusual situations can cause premature 
termination of command chaining and 
generation of an I/O-interruption 
condition. 

Activities that generate I/O-interruption 
conditions are asynchronous to activity in 
the CPU, and more than one I/O-interruption 
condition can exist at the same time. The 
channel and the CPU establish priority 
among the conditions so that only one 
condition is presented to the CPU at a 
time. 

The execution of an I/O operation or chain 

of I/O operations involves up to four 
levels of participation: 

1. Except for the effects caused by the 
integration of CPU and channel 
equipment, the CPU is busy for the 
duration of execution of START I/O or 
START I/O FAST RELEASE, which lasts at 
most until the addressed I/O device 
responds to the first command. 

2. The subchannel is busy with the 
execution from the time condi ti on code 
o is set for the START I/O or START 
I/O FAST RELEASE until the CPU has 
accepted the I/O interruption 
signaling that the I/O operation, or 
if a chain of I/O operations, the last 
operation, has completed at the 
subchannel. 

3. The control unit may remain busy after 
the execution has completed at the 
subchannel and may generate 
control-unit end when it becomes free. 

4. The I/O device is busy from the 
ini tiation of the first opera ti on at 
the I/O device until the interrUption 
condition caused by the device end 
associated with the operation is 
cleared from the I/O device. 

An interruption condition caused by device 
end blocks the initiation of an I/O 
operation with the I/O deVice, but normally 
does not affect the state of any other part 
of the system. An interruption condition 
caused by control-unit end may block 
communications through the control unit to 
any device attached to it, and an 
interruption condition caused by channel 
end normally blocks a 11 communications 
through the subchannel. 

COMPATIBILITY OF OPERATION 

The organization of the I/O system provides 
for a uniform method of controlling I/O 
operations. The capability of a channel, 
however, depends on its use and on the CPU 
model to which it is attached. Channels 
are provided with different data-transfer 
capabilities, and an I/O device designed to 
tra nsfer data only at a specific rate (a 
magnetic-tape unit or a disk storaqe, for 
example) can operate only on a channel that 
can accommodate at least this data rate. 

The data rate a channel can accommodate 
depends also on the way the I/O operation 
is programmed. The channel can sustain its 
highest data rate when no data chaining is 
specified. Data chaining reduces the 
maximum allowable rate; and the extent of 
the reduction depends on the frequency at 

Chapter 12. Input/Output Operations 12-7 



which new CCWs are fetched and on the 
address resolution of the first byte in 
each new storage area. Furthermore, since 
a channel shares storage with the CPU and 
other channels, activity in the rest of the 
system affects the accessibility of storage 
and, hence, the instantaneous load the 
channel can sustain. 

In view of the dependence of channel 
capacity on programming and on activity in 
the rest of the system, an evaluation of 
the ability of elements in a specific I/O 
configuration to function concurrently must 
be based on a consideration of both the 
data rate and the way the I/O operations 
are programmed. Two systems differ ing in 
performance but employing identical 
complements of I/O devices may be able to 
execute certain programs in common, but it 
is possible that other programs requiring, 
for example, data chaining, may not run on 
one of the systems because of the increased 
load caused by the data chaining. 

The CPU controls I/O operations by means of 
nine I/O instructions: CLEAR CHANNEL, 
CLEAR I/O, HALT DEVICE, HALT I/O, START 
I/O, START I/O FAST RELEASE, STORE CHANNEL 
ID, TEST CHANNEL, and TEST I/O. 

The instructions TEST CHANNEL, CLEAR 
CHANNEL, and STORE CHANNEL ID address a 
channel; they do not address an I/O device. 
The other six I/O instructions address a 
channel and a device on that channel. 

INPUT/OUTPUT DEVICE ADDRESSING 

An I/O device and the associated access 
path are designated by an I/O address. The 
16-bit I/O address consists of two parts: 
a channel address in the leftmost eight bit 
positions and a device address in the 
rightmost eight bit positions. 

The channel address provides for 
identifying up to 256 channels. Channels 
are numbered 0-255. Channel 0 is a 
byte-multiplexer channel, and each of 
channels 1-255 may be a byte-multiplexer, 
block-multiplexer, or selector channel. 

The number and type of channels and 
subchannels available, as well as their 
address assignment, depend on the system 
model and the particular installation. 

The device address identifies the 
particular I/O device and control unit on 
the designated channel. The address 

12-8 System/370 Principles of Operation 

identifies, for example, a particular 
magnetic-tape drive, disk-access mechanism, J 
or transmission line. Any number in the 
range 0-255 can be used as a device 
address, providing facilities for 
addressing up to 256 devices per channel. 
An exception is some multiplexer channels 
tha t provide fewer than the maximum 
configuration of subchannels and hence do 
no permit use of the corresponding 
unassignable device addresses. 

Devices that do not share a control unit 
with other devices may be assigned any 
device address in the range 0-255, provided 
the address is not recognized by any other 
control uni.t. Logically, such devices are 
not distinguishable from their control 
unit, and both are identified by the same 
address. 

Devices sharing a control unit (for 
example, magnetic-tape dri ves or 
disk-access mechanisms) are assigned 
addresses within sets of contiguous 
numbers. The size of such a set is equal 
to the maximum number of devices that can 
share the control unit, or 16, whichever is 
smaller. Furthermore, such a set starts 
with an address in which the number of 
low-order zeros is at least equal to the 
number of bit positions required for 
specifying the set size. The high-order 
bit positions of an address wi thin such a .. j 
set identify the control unit, and the 
low-order bit positions designate the 
device on the control unit. 

control units designed to accommoda te more 
than 16 devices may be assigned 
nonsequential sets of addresses, each set 
consisting of 16, or the number required to 
bring the total number of assigned 
addresses equal to the maximum number of 
devices attachable to the control unit, 
whichever is smaller. The addressing 
facilities are added in increments of a set 
so that the number of device addresses 
assigned to a control unit does not exceed 
the number of devices attached by more than 
15. 

The control unit does not respond to any 
address outside its assigned set or sets. 
For example, if a control unit is designed 
to control devices ha ving only the values 
0000 to 1001 in the low-order bit positions 
of the device address, it does not 
recognize addresses containing 1010 to 1111 
in these bit positions. On the other hand, 
a control unit responds to all addresses in 
the assigned set, regardless of whether the 
device associated with the address is 
installed. If no control unit responds to 
an address, the I/O device appears not 
operational. If a control unit responds to j 
an address for which no device is 
installed, the absent device appears in the . 
not-ready state. 



Input/output devices accessible through 
more than one channel have a distinct 
address for each path of communications. 
This address identifies the channel and the 
control unit. For sets of devices 
connected to two or more control units, the 
portion of the address identifying the 
device on the control unit is fixed, and 
does not depend on the path of 
communications. 

The assignment of channel and device 
addresses is arbitrary, subject to the 
rules described and any model-dependent 
restrictions. The assignment is made at 
the time of installation, and the addresses 
normally remain fixed thereafter. 

STATES OF THE INPUT/OUTPUT SYSTEM 

The state of the I/O system identified by 
an I/O address depends on the collective 
state of the channel, subchanne1, and I/O 
device. Each of these components of the 
I/O system can have up to four states, as 
far as the response to an I/O instruction 
is concerned. These states are listed in 
the fiqure "Input/Output System States." 
The name of the state is followed by its 
abbreviation and a brief definition. 

1 channel, subchanne1, or I/O device that 
is available, interruption-pending, or 
working is called "operational." A 
channel, subchanne1, or I/O device that is 
interruption-pending, workinq, or 
not-operational is called "not available." 

In a multiplexer channel, the channel and 
sub channel are easily distinquishab1e and, 
if the channel is operational, any 
combination of channel and subchannel 
states is possible. Since the selector 
channel can have only one subchanne1, the 
channel and subchanne1 are functionally 
coupled, and certain states of the channel 
are related to those of the subchanne1. In 
particular, the workinq state can occur 
only concurrently in both the channel and 
subchannel and, whenever an interruption 
condition is pending in the subchannel, the 
channel also is in the same state. The 
channel and subchanne1, however, are not 
syn onymous, and an interruption condi tion 
not associated with data transfer, such as 
attention, may not affect the state of the 
subchanne1. Thus, the subchannel may as a 
function of the I/O instruction, be 
available when the channel is 
interruption-pending or has an interruption 
condition pending at a device. A 
consistent distinction between the 
subchannel and channel permits selector and 
multiplexer channels to be covered 
uniformly by a single description. 

r------------------------~----------------------------------------~ 
I 
~ 

Name 

Available 
Interruption pending 

Workinq 
Not operational 

~ub£h~!l!lg! 

Available 
Interruption pending 

Workinq 
Not operational 

Available 
Interruption pending 
Working 
Not operational 

I Abbreviation and DefinH . .i..on 
I ~------------------.----------------; 

I 
I 
I 

A I 
I I 

I 
W I 
N 1 

A 
I 

W 
N 

A 
I 
W 
N 

None of the following states 
Interruption condition immedi­

ately available from channel 
Channel operating in burst mode 
Channel not operational 

None of the following states 
Information for CSW available in 

subchanne1 
Subchanne1 executing an operation 
Subchanne1 not operational 

None of the following states 
Interruption condition in device 
Device executing an operation 
Device not operational L----____________________ .A-__ ~ _____________________________________ ~ 

Input/Output-System States 

Chapter 12. Input/Output Operations 12-9 



The I/O device referred to in the figure 
"Inpu t/Output- System states" includes both 
the I/O device proper and its control unit. 
For some types of I/O devices, such as 
magnetic-tape units, the working and the 
interruption-pending states can be caused 
by activity in the addressed I/O device or 
control unit. A "not available" shared 
control unit imposes its state on all 
devices attached to the control unit. The 
states of the 1/0 devices are not related 
to those of the channel and sUbchannel. 

When the response to an I/O instruction is 
determined by the state of the channel or 
subchannel, the components further removed 
are not interrogated. Thus, 10 composite 
states may be distinguished as conditions 
for the execution of I/O instructions. 
Each composite state is ident ified by three 
letters. The first letter specifies the 
state of the channel, the second letter 
specifies the state of the subchannel, and 
the third letter specifies the state of the 
device. Each letter may be A, I, W, or N, 
denoting the state of the component. The 
letter X indicates that the state of the 
corresponding component is not significant 
for the execution of the instruction. 

Available (A!A): The addressed channel, 
subchannel, control unit, and I/O device 
are operational, are not engaged in the 
execution of any previously initiated 
operations, and do not contain any pending 
interruption conditions. 

Because of internal activity, some 
block-multiplexer channels may at times 
appear to be working even though they are 
not engaged in the execution of a 
previously initiated operation and do not 
contain any interruption condition. This 
will result in a WXX state instead of the 
AAA state. 

Inig£!:~£:!;j,Q1l pending in ll.§.!j,ce (HI) or 
De~1Qg ]Q!:1ing (AA]): The addressed channel 
and subchannel are available. The 
addressed control unit or I/O device is 
executing a previously initiated operation 
or contains an interruption condition. 
These situations are possible: 

1 • 

2. 

3. 

4. 

The device is executing an operation, 
such as rewinding magnetic tape or 
seeking on a disk file, after 
signaling channel end. 

The control unit associated with the 
device is executing an operation, such 
as backspacing file on a magnetic-tape 
unit, after signaling channel end. 

The device or control unit is 
executing an operation with another 
subchannel or channel. 

The device or control unit contains 

12-10 system/370 principles of Operation 

the device-end, control-unit-end, or 
attention condition or a channel-end 
condition associated with a terminated 
operation. 

Device Not Ql!~tional (!!!): The 
addressed---channel and subchannel are 
available. The addressed I/O device is not 
operational. A device appears not 
operational when no control unit recognizes 
the address. This occurs when the control 
unit is not provided in the system, when 
power is off in the cont rol unit, or when 
the control unit has been logically 
disconnected from the system. The 
not-operational state is indicated also 
when the control unit is provided and is 
designed to attach the device, but the 
device has not been installed and the 
address has not been assigned to the 
control unit. (See also the section 
"Input/Output Device Addressing" in this 
chapter.) 

If the addressed device is not installed or 
has been logically removed from the control 
unit, but the associated control unit is 
operational and the address has been 
assigned to the control unit, the device is 
said to be not ready. When an instruction 
is addressed to a device in the not-ready 
state, the control unit responds to the 
selection and indicates unit check whenever 
the not-ready state precludes a successful 
execution of the operation. (See the 
section "Unit Check" in this chapter.) 

Inte~£1i~ Pen~j,ng in SugQhan~~! (!I!): 
The addressed channel is available. An 
interruption condition is pending in the 
addressed subchannel. The subchannel is 
able to provide information for a CSW. The 
interruption information indicates status 
associated with the addressed I/O device or 
another I/O device associated with the 
subchannel. The state of the addressed 
device is not significant, except when the 
address specified by TEST I/O is the same 
as the address of the I/O device for which 
the subchannel is interruption-pending, in 
which case the CSW contains status 
information that has been provided by the 
device. 

The state AIX does not occur on the 
selector channel. On the selector channel, 
the existence of an interruption condition 
in the subchannel immediately causes the 
channel to assign to this condi tion the 
highest priority for I/O interruptions and, 
hence, leads to the state IIX. 

sub£hanBel !orking (!]!): The addressed 
channel is available. The addressed 
subchannel is executing a previously 
initiated START I/O (510) or START I/O FAST 
RELEASE (SIOF) function. The addressed 
sub channel enters the working state when 
condition code 0 is set for SIO or SlOF. 



The addressed subchannel remains in the 
working state until the SIO or SIOF 
function is concluded at the subchannel. 
Usually the conclusion of the SIO or SIOF 
function occurs when the I/O operation or 
chain of operations receives channel end 
for the last operation. The state of the 
addressed device is not significant, except 
when HALT I/O or HALT DEVICE is issued. 
During the execution of HALT I/O and HALT 
DEVICE, the state of the device may be 
interrogated and will then be indicated in 
either the CSi or the condition code. 

The subchannel-working state does not occur 
on the selector channel since all 
operations on the selector channel are 
executed in the burst mode and cause the 
channel to be in the working state (WiX). 

S11 bch~!!!!gl B.Q!. Q.E~!:.2.! ion.21 (!]lD : The 
addressed channel is available. The 
addressed subchannel on the multiplexer 
channel is not operational. A subchannel 
is not operational when it is not provided 
in the system. This state cannot occur on 
the selector channel. 

.!.!!!.~ru!!i!on pend!.!!g in ~h.2.!!.!!~l U!!): The 
addressed channel is not working and has 
established which device will cause the 
next I/O interruption from this channel. 
The state in which the channel contains an 
interruption condition is distinguished 
only by the instruction TEST CHANNEL. This 
instruction does not cause the subchannel 
and I/C device to be interrogated. The 
other I/O instructions, with the exception 
of STORE CHANNEL ID, consider the channel 
available when it contains an interruption 
condition. A channel with an interruption 
condition may be considered to be working 
by the instruction STORE CHANNEL ID. When 
the channel assigns priority for 
interruptions among devices, the 
interruption condition is preserved in the 
I/O device or subchannel. (See the section 
"Interruption Conditions" in this chapter.) 

Ch~!!!!el lorking (!~~): The addressed 
channel is operating in the burst mode. In 
the multiplexer channel, a burst of bytes 
is currently being handled. In the 
selector channel, an operation or a chain 
of operations is currently being executed, 
and the channel end for the last operation 
has not yet been signaled. The states of 
the addressed device and, in the 
multiplexer channel, of the subchannel are 
not significant. In addition, because of 
internal activity, some block-multiplexer 
channels may at times appear to be working 
even thouqh they are not operating in burst 
mode. Depending on the model and the 
channel type, TEST I/O and HALT DEVICE may 
consider the channel to be available when 
the channel is working with a device other 
than the addressed device. 

Channel !Q.! Ope!:~.!io.!!~1 (!!!): The 
addressed channel is not operational. A 
channel is not operational when it is not 
provided in the system, whe n power is off 
in the channel, when it is not confiqured 
to the CPU, or when it detects a 
channel-check-stop condition. As lonq as a 
channel-check-stop condition persists, the 
channel performs no I/O instructions, wi th 
the exception of CLEAR CHANNEL (which may 
be executed, depending on the system 
model); performs no I/O interruptions; 
executes no channel programs; and suspends 
all I/O-interface activity. When a channel 
is not operational, the states of the 
addressed I/O device and subchannel are not 
significant. 

RESETTING OF THE INPUT/OUTPUT SYSTEM 

Two types of resetting can occur in the I/O 
system: an I/O system reset and an I/O 
selective reset. The response of each type 
of I/O device to the two kinds of reset is 
specified in the SL publication for the 
device. 

IIQ-System Re~et 

I/O-system reset is performed in the 
channel and on the associated I/O interface 
when the CPU to which the channel is 
configured executes the instruction CLEAR 
CHANNEL or a program reset, initial-program 
reset, clear reset, or power-on re se t is 
performed, when a power-on sequence is 
performed by the channel, and, under 
certain conditions on some earlier models, 
when a channel detects egui pment 
malfunctions and the clear-channel facility 
is not installed. 

I/O-system reset causes the channel to 
conclude operations on all subchannels. 
Sta tus information and all interruption 
conditions in all subchannels are reset, 
and all operational subchannels are placed 
in the available state. The channel 
signals system reset to all I/O devices 
attached to it. 

The I/O selective reset 
some channels when they 
equipment malfunctions. 

is performed by 
detect certain 

I/O selective reset causes the channel to 
signal selective reset to the device that 
is connected to the channel at the time the 

Chapter 12. Input/Output Operations 12-11 



malfunction is detected. 
are reset. 

No subchannels 

With eit her type of reset, if the dev ice is 
currently communicating with a channel, the 
device immediately disconnects from the 
channel. Data transfer and any operation 
using the facilities of the control unit 
are immediately concluded, and the I/O 
device is not necessarily positioned at the 
beginninq of a block. Mechanical motion 
not involving the use of the control unit, 
such as rewinding magnetic tape or 
positioning a disk-access mechanism, 
proceeds to the normal stopping point, if 
possible. The device appears in the 
workinq state until the termination of 
mechanical motion or the inherent cycle of 
operation, if any, whereupon it becomes 
available. status information in the 
device and control unit is reset, but an 
interruption condition may be generated 
upon completinq any mechanical operation. 

When a malfu nction occurs and t he program 
is alerted by an I/O interruption, or when 
a malfunction occurs during the execution 
of an I/O instruction and the program is 
alerted by the setting of a condition code, 
then an I/O selective reset may have been 
performed. A CSW is stored identifying the 
cause of the malfunction. 

The device addressed by the I/C instruction 

12-12 System/370 principles of Operation 

is not necessarily the device that is 
reset. 

When a malfunction occurs and the program 
is alerted by a machine-check interruption, 
then an I/O selective reset or, on some 
earlier models, I/O system reset may have 
been performed. This mayor may not be 
accompanied by an I/O interruption. 

CONDITION CODE 

The results of certain tests by the channel 
and device, and the original state of the 
addressed part of the I/O system a re used 
during the execution of an I/O instruction 
to set one of four condition codes in the 
PSW. The condition code is set at the time 
the execution of the instructi on is 
concluded, that is, the time the CPU is 
released to proceed with the next 
instruction. The condition code ordinarily 
indicates whether or not the function 
specified by the instruction has been 
performed and, if not, the reason for the 
rejection. In the case of START I/O FAST 
RELEASE executed independent of the device, 
a condition code 0 may be set that is later 
superseded by a deferred condition code 
stored in the CSW. 

The figure "Condition-Code Settings for I/O 
States and Instructions" lists the 
I/O-system states and the corresponding 
condition codes for each I/O instruction. 
The I/O-system states and associated 
abbreviations are defined in the section 
"States of the Input/Output System" earlier 
in this chapter. The digits in the figure 
represent the decimal value of the code. 



~ 1 I Condition-Code settings 1 
1 I I ,----r 1 
1 I I/o 1 SIO 1 1 1 1 1 1 1 1 
1 Conditions IStatel SIOFITIOICLRIO IHIOIHDVITCHISTIDCICLRCHI 
r--- 1 1 1 1 1 1 1 1 1 
IAvailable AAA O,1*0l1 ° 1 ° 1 1* 1 1*1 ° 0 
IInterruption pending in device AAI 1*0l1 1*1 ° 1 1*1 1 *1 ° 0 
IDevice working AAW 1*0l 1 1*1 ° 1 1*1 1* 0 0 
1 Device not operational AAN 3m 1 3 1 ° 1 3 1 3 0 0 

1 

Interruption pending in subchannel AIX 1 1 1 1 
For the addressed device DD 11*# 1 1* 1 ° 1 ° 0 0 
For another device 2 1 2 1 ° 1 ° 1 ° 0 0 

Subchannel working AWl I 1 1 1 
with the addressed device 2 1 2 1 1* 11 *# 11 *# 0 0 
with another device 2 1 2 1 0 11 *# 1 0 0 0 

Subchannel not operational ANI 3 1 3 1 3 1 3 1 3 0 0 
Interruption pending in channel IXI ---See Note 1 ## 
Channel workinq WII 1 1 1 

with the addressed dEvice 2 1 2 1 *** 2 1 + 2 ## 
with another device 2 1 2-1 ** 2 1 /< 2 U 

Channel not operational NXX 3 1 3 1 3 3 1 3 3 3 

ExE1~!latio!l: 

* Whenever condition code 1 is set, the CSW or its status portion is 
stored at location 64 during execution of the instruction. 

** when CLEAR I/O encounters the WII state, either condition code 2 is 
set, or the channel is treated as available and the condition code is 
set according to the state of the subchannel. When the channel is 
treated as available, the condition codes for the WXX states are the 
same as for the AXI states. 

*** A condition code 
on the channel. 

(with the CSW stored) or 2 may be set, depending 

The condition code depends on the state of the subchannel, the 
channel type, and the system model. If the subchannel is not 
operational, a condition code 2 or 3 is set. If the subchannel is 
available or working with the addressed device, a condition code 2 is 
set. otherwise, a condition code 0 or 2 is set. 

# when a "device not operational" response is received in selecting the 
addressed device, condition code 3 is set. 

START I/O FAST RELEASE may cause the same condition code to be set as 
for START I/O or may cause condition code 0 to be set. 

+ The condition code depends on the I/O interface sequence, the channel 
type, and the system model. If the channel ascertains that the 
device received the signal to terminate, a condition code 1 is set 
and the CSW stored. otherwise, a condition code 2 is set. 

tt When the channel is unable to store the channel ID because of the 
working or interruption-pending state, a condition code 2 is set. If 
the working or interruption-pending state does not preclude storing 
the channel ID, a condition code 0 is set. 

Condition-Code Settings for I/O States and Instructions (Part 1 of 2) 

1 
0 
0 

° 0 

0 
0 

0 
0 
0 
0 

0& 
0& 
3&& 

Chapter 12. Input/Output Operations 12-13 



r---------------------------
~!E1anatio!! (Continu~.9): 

• If the subchannel is interruption-pending for the addressed 
condition code 1 may be set depending on the channel type. 

device, 

& On certain channels, when the working state precludes performing the 
I/O system reset, condition code 2 is set. 

&& On certain channels, when the not-operational state is due to a 
channel-check-stop condition, the instruction is executed, and condi­
tion code 0 is set. 

cc If the 
of the 
ities, 
exists 

sUbchannel is interruption-pending because of the concluding 
portion of the operation involving the use of channel facil­

condition code 2 is set. If the interruption-pending condition 
for other reasons, condition code 1 is set. 

]Q.!:g: For the purpose of executing START I/O, START I/O FAST RELEASE, TEST 
I/O, CLEAR I/O, HALT DEVICE, and HALT I/O, a channel containing an inter­
ruption condition appears the same as an available channel, and the condi­
tion-code setting depends on the states of the subchannel and device. The 
condition codes for the IYY states are the same as for the AYY states, 
where the Ys represent the states of the subchannel and the device. As an 
examole, the condition code for the lAW state is the same as for AAW. 

----------------------~ 

Condition-Code settings for I/O States and Instructions (Part 2 of 2) 

The available 
code 0 only 
during the 
instruct ion. 

state results in 
when no errors are 

execution of 

condition 
detected 

the I/O 

When a subchannel on a multiplexer channel 
contains an interruption condition (state 
AIX), the I/O device associated with the 
concluded operation normally is in the 
interrUption-pending state. When the 
channel detects during the execution of 
TEST I/O that the device is not 
operational, condition code 3 is set. 
Similarly, condition code 3 is set when 
HALT I/O or HAL~ DEVICE is addressed to a 
subchannel in the working state (state 
AWX), but the device is not operational. 

Error conditions, including all equipment 
or programming errors detected by the 
channel or the I/O device during execution 
of the I/O instruction, generally cause the 
csw to be stored. However, when the nature 
of the error causes a machine-check 
interruption, but no I/O interruption, to 
occur, the CSW is not stored. Three types 
of errors can occur: 

~h.~!!!!g1=~uip.!!!m!1 Error: The channel can 
detect the following equipment errors 
during execution of S~ART I/O, START I/O 
FAST RELEASE, TEST I/C, CLEAR I/O, H!LT 
I/O, and HALT DEVICE: 

1. The channel received an address from 
the device during initial selection 
that either had a parity error or was 
not the same as the one the channel 
sent out. Some device other than the 

12-14 system/370 Principles of Operation 

one addressed maybe ma lfunctioning. 

2. The unit-status byte that the channel 
received during initial selection had 
a parity error. 

3. A signal from the I/O device occurred 
at an invalid time or had in valid 
duration. 

4. The channel detected an error in its 
control equipment. (This is also true 
for STORE CHANNEL 10 and TEST 
CHANNEL.) 

The channel may perform an I/O selective 
reset or, on some earlier models, may 
perform an I/O system reset or generate a 
hal t signal, depending on the type of error 
and the model. If a CSW is stored, 
channel-control check or interface-control 
check is indicated, depending on the type 
of error. 

Cha.n.nel=£f:.29f:Emminq Erro!:: The channel can 
detect the followinq proqramming errors 
during execution of START 1/0 or STAFT I/O 
FAST RELEASE. All of the errors are 
indicated during START I/O, and during 
START I/O FAST RELEASE when it is executed 
as START I/O, by the condition-code setting 
and by the status portion of the CSW. When 
the SIOF function is performed, the first 
two errors are indicated as for START I/O, 
and the rema~n~ng errors may be indicated 
as for SIO or may be indicated in a 
subsequent I/O interrUption. 

Depending on the model, conditions 9, 10, 



11 and 12 may (a) cause an error condition 
to be recognized and prevent operation 
initiation or (b) may cause an error 
condition to be recoqnized only if the 
operation causes the device to attempt to 
transfer data. In case (b), a command that 
specifies an immediate operation does not 
cause an error indication for an SIO or 
SIOF fu nct ion. 

1. Invalid CCW-address specification in 
CAW 

2. Invalid CAW format 

3. 

4. 

5. 

Invalid CCW address in CAW 

First-CCw location protected against 
fetchinq 

First CCil 
channel 

specifying transfer in 

6. Invalid command code in first CCi 

7. Invalid count in first CCi 

8. Invalid format for first CCi 

9. 

10. 

11 • 

If channel indirect data addressing 
(CIOA) was specified, an invalid 
data-address specification in the 
first ccw 

If CIOA was specified, an invalid data 
address in the first CCW 

If CIDA was specified, the first-IDAW 
location protected against fetching 

12. If CIDA was specified, invalid format 
for the first IDAW 

The CSW indicates program check, except for 
items 4 and 11, for which protection check 
is indicated. 

Devicg Error: Programming or equipment 
errors detected by the device as part of 
the execution of START I/O, or START I/O 
FAST RELEASE are indicated by unit check or 
unit exception in the CSW. 

The causes of unit check and unit exception 
for each type of I/O device are detailed in 
the SL publication for the device. 

INSTRUCTION FORMATS 

All I/O instructions use 
format: 

the followinq S 

r------------------r----,-------------, 
I Op Code L __________________ L-__ ~ ____________ ~ 

o 16 20 31 

Except for STORE CHANNEL 10, bit positions 
8-14 of these instructions are ignored. 

The second-operand address specified by the 
B2 and D2 fields is not used to desiqnate 
data but instead is used to identify the 
channel and I/O device. Address 
computation follows the rules of address 
arithmetic. The address has the followinq 
format: 

, I , , 

1////////IChn AddrlOev Addrl 

8 16 24 31 

Bit positions 16-31 contain the 16-bit I/O 
address. Bit positions 8-15 are ignored. 

INSTRUCTIONS 

All I/O instructions cause a serialization 
function to be performed. See the section 
"Serialization" in Chapter 5, "Program 
Execution. " 

The names, mnemonics, format, and operation 
codes of the I/O instructions are listed in 
the figure "Input/Output Instructions." 
The figure also indicates that all I/O 
instructions cause a program interruption 
when they are encountered in the problem 
state, that all I/O instructions set the 
condition code, and that all I/O 
instructions are in the S instruction 
format. 

Not~: In the detailed descriptions of the 
individual instructions, the mnemonic and 
the symbolic operand designation f or the 
assembler language are shown with each 
instruction. In the case of START I/O, for 
example, SIO is the mnemonic and 02(B 2) the 
operand designation. 

Chapter 12. Input/Output operations 12-15 



ICLEAR CHANNEL 
ICLEAR I/O 
IHALT DEVICE 
IHALT I/O 
I START I/O 

Name 

ISTART I/O FAST RELEASE 
ISTORE CHANNEL ID 
ITEST CHANNEL 
I TEST I/O 

• l~xpl~atiQn: 
I 
I C 
I P 
I RE 
I S 

Condition code is set. 
Privileged-operation exception. 
Recovery-extensicn feature. 
S instruction format. 

l!'Ine- I 
Imonicl 
I I 
ICLRCHIS 
I CLRIOI S 
IHOV IS 
I HIO IS 
ISIO IS 
ISIOF IS 
ISTIDCIS 
ITCH IS 
ITIO IS 

I 

, 
C REIP 
C IP 
C IP 
C IP 
C IP 
C IP 
C IP 
C IP 
C IP 

Characteristics 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

01' I 
Code I , 
9F01*1 
9001*1 
9E01*1 
9EOO*! 
9COO*! 
9C01 *1 
B203 I 
9FOO*1 
9000*1 

! 

I * 
I $ 

Eits 8-14 of the operation code are ignored. 
Causes serialization. L----___________________________________________________________________________________________ -l 

Summary of Input/Output Instructions 

The instructions CLEAR I/O, HALT DEVICE, 
HALT I/O, START I/O, START I/O FAST 
RELEASE, STORE CHANNEL IO, and TEST I/O may 
cause a CSW to be stored. To prevent the 
contents of the CSW stored by the 
instruction from being destroyed by an 
immediately followinq I/O interruption, the 
CPU must be disabled for all I/O 
interruptions before CLEAR I/O, HALT 
DEVICE, HALT I/O, START I/O, START I/O FAST 
RELEASE, STORE CHANNEL 10, and TEST I/O is 
issued and must remain disabled until the 
information in the CSW provided by the 
instruction has been acted upon or stored 
elsewhere for later use. 

CLEAR CHANNEL 

CLRCH [S] 

r--------- ~----T------------~ 

I '9F01' I B:;z I 
I I 

o 16 20 

with the clear-channel feature 
the CLRCH function is 
Otherwise, the TCH function, 
described in the definition 
CHANNEL, is performed. 

31 

installed, 
performed. 

which is 
of TEST 

I/o-system reset 
addressed channel, 
signaled to all I/O 
addressed channel. 

is performed in the 
and system reset is 

devices attached to the 

12-16 System/370 principles of Operation 

The instruction 
only when the 
state. 

CLEAR CHANNEL 
CPU is in the 

is executed 
supervisor 

Bits 8-14 of the instruction are iqnored. 
Bits 16-23 of the second-operand address 
identify the channel to which the 
instruction applies. Bits 24-31 of the 
address are ignored. 

The instruction CLEAR CHANNEL inspects only 
the state of the addressed channel. When 
the channel is available or interruption­
pending, I/O-system reset is performed. 

When the channel is workinq, some channels 
may indicate busy and cause no I/O­
interface action, while other channels 
cause I/O-system reset to be performed. 

When the channel is not operational because 
of a channel-check-stop condition, some 
channels cause an I/O-system reset to be 
performed on the I/O interface. In all 
other not-operational-state cases, the 
reset function is inhibited. 

Privileged Operation 

o I/O-system reset was performed on 
the I/O interface associated wi th 
the addressed cha nnel 

1 
2 Channel busy 
3 Not operational 

The condition code set when 
causes the CLRCH function to 

CLEAR CHANNEL 
be perf ormed 



is shown for all possitle states of the I/O 
system in the figure "Condition Codes Set 
by CLEAR CHANNEL." The condition code set 
when CLEAR CHANNEL causes the TCH function 
to be performed is shown for all possible 
states of the I/O system in the figure 
"Condition Codes Set by TEST CHANNEL" in 
the definition of the instruction TEST 
CHANNEL. See the section "States of the 
Input/Output system" in this chapter for a 
detailed definition of the A, I, W, and N 
states. 

Channel A I 1 W 
1 

N 1 
-I 

3++ 1 

A 
I 
W 
N 

o o 10+ 

Available 
Interruption pending 
working 
Not Oper at ion al 

+ On certain channels, when the working 
state precludes performing the I/O 
system reset on the I/O interface, 
condition code 2 is set. 

++ On certain channels, when the 
not-operational state is due to a 
channel-cheek-stop condition, the 
instruction is executed, and condition 
code 0 is set. 

Condition Codes Set by CLEAR CHANNEL 

CLEAR CHANNEL should be used to reset an 
I/O-device association with an I/O 
interface when I/O devices are shared with 
other systems or have multiple paths to the 
same system. In those cases when I/O 
devices are shared, before using CLEAR 
CHANNEL, steps should be taken to protect 
against compromising data integr ity until 
the desired I/O-device association can be 
reestablished. 

CLEAR CHANNEL may cause a channel that is 
not-operational because of a channel-check­
stop condition to be restored. Before a 
not-operational channel can be restored or 
system reset signaled on an I/O interface, 
on some models CLEAR CHANNEL must be issued 
to all channels. On other models, CLEAR 
CHANNEL, when issued to a subset of the 
channels, can cause a not-operational 
channel to be restored or system reset to 
be signaled on an I/O interface. Refer to 
the SL publication for the model to 
determine the appropriate recovery action. 

CLEAR I/O 

CLRIO D2 (B 2 ) [ S] 

9D01 

o 16 20 31 

Either a TID or CLRIO function 
performed, depending on the channel and 
block-multiplexing control, bit 0 
control register o. The TID function 
performed when the CLRIO function is 
implemented by the channel or when 
block-multiplexing-control bit is zero. 

is 
the 
of 
is 

not 
the 

The TID function is described in the 
definition of the instruction TEST I/O. 

Bits 8-14 of the instruction are ignored. 
Bit positions 16-31 of the second-operand 
address identify the channel, subchannel, 
and I/O device to which the instruction 
applies. 

The CLRIO function causes the current 
operation with the addressed device to be 
discontinued and the state of the operation 
at the time of the discontinuation to be 
indicated in the stored CSW. 

When the subchannel is available, 
interruption-pending with another device, 
or working with another device, no channel 
action is taken, and condition code 0 is 
set. Channels not capable of determining 
subchannel states while in the working 
state may set condition code 2. 

When the subchannel is either working with 
the addressed device or interruption­
pending with the addressed device, the 
CLRIO function causes condition code 1 to 
be set and causes the channel to 
discontinue the operation with the 
addressed device by storing the status of 
the operation in the CSW and making the 
subchannel available. When the channel is 
working with the addressed device, the 
device is signaled to terminate the current 
operation. Some channels may, instead, 
indicate busy and ca use no cha nnel action. 

When any of the following conditions 
occurs, the CLRIO function causes the CSW 
to be stored at real storage locations 
64-71. The contents of the entire CSW 
pertain to the I/O device addressed by the 
instruction. 

1. The channel is available or 
interruption-pending, and the 
subchannel (1) contains an 
interruption condition for the 
addressed device because of the ending 
of an I/O operation at the subchannel 

Chapter 12. Input/Output Operations 12-17 



2. 

3. 

4. 

or (2) is working with the addressed 
device. The subchannel-key, 
command-address, and count fields 
describe the state of the operation at 
the time of the execution of the 
instruction. If the subchannel is 
interruption-pending for reasons other 
than the completion of an I/O 
operation at the subchannel, the 
fields in the CSW other than the unit­
status field are all set to zeros. 

The channel is working with the 
addressed device. The subchannel-key, 
command-address, and count fields 
describe the state of the operation at 
the time the instruction is executed. 
(Some channels alternatively indicate 
busy under this condition.) 

The channel is working with a device 
other than the one addressed, and the 
subchannel (1) contains an 
interruption-pending condition for the 
addressed device because of the ending 
of an I/O operation at the subchannel 
or (2) is working with the addressed 
device. The subchannel-key, command­
address, and count fields describe the 
state of the operation at the time 
CLEAR I/O is executed. (Some channels 
alternatively indicate busy under 
these conditions.) If the subchannel 
is interrUption-pending for reasons 
other than the completion of an I/O 
operation at the subchannel, the 
fields in the CSW other than the unit­
status field are all set to zeros. 

The channel 
error during 
instruction. 

detected an equipme nt 
the execution of the 

The CSW identifies the 

12-18 System/370 principles of operation 

error condition. The states of the 
channel and the I/O operations in 
progress are unpredictable. The 
limited channel logout, if stored, 
indicates a sequence code of 000. 

When CLEAR I/O cannot be executed because 
of a pending logout that affects the 
operational capability of the channel, a 
full CSW is stored. The fields in the CSW 
are all set to zeros, with the exception of 
the logout-pendinq and channel-con trol­
check bi ts,which are set to ones. No 
channel logout is associated with this 
status. 

Progrgm EX£gl?!.MH!.§: 

Privileged Operation 

o 

1 
2 
3 

No operation in 
subchannel for 
device 
CSW stored 
Channel busy 
Not operational 

progress at the 
the addressed 

The condition code set when CLEAR I/O 
causes the CLRIO function to be perf ormed 
is shown for all possible states of the I/O 
system in the fiqure "Condition Codes set 
by CLEAR I/O." The condition code set when 
CLEAR I/O causes the TIO fUnction to be 
performed is shown for all possible state 
of the I/O system in the f iqure "Condi tion 
Codes Set by TEST I/O" in the definition of 
the instruction TEST I/O. See the section 
"States of the Input/Output System" in this 
chapter for a detailed definition of the A, 
I, W, and N states. 



A I I W~ I W# I N I 
Channel I I I I 

I I I 1++131 
IAII~II#IW~IW#INIAII~II#IW~IW#INIAII~II#IW~IW#IN I 

Subchannel 1 1 1 1 -+-+ 1 1 1 1 1 1 1 1 1 1 1 1 I 
10lQ 11*IQ 11*1]1010 11*IQ 11*1]1+1+ 1++1+ 1++1+++1 

A Available 
I Interruption pendinq 

I~ Interruption pending for a device other than the one 
addressed 

It Interruption pending for the addressed device 
W Workinq 

W~ = working with a device other than the one addressed 
w# = Workinq with the addressed device 

N Not operational 
* CSW stored 

+ In the W~AX, W~I~X, and w~w~x states, a condition code 0 or 
2 may be set, depending on the channel. 

++ In the W~I#X, w~wtx, 

(with the CSW stored) 
channel. 

and wtxx states, a condition 
or 2 may be set, depending 

code 1 
on the 

+++ In the W~NX state, a condition code 2 or 3 may be set, 
depending on the channel. 

Noi~: Underscored codes pertain to situations that can occur 
only on the multiplexer channel. 

Condition Codes Set by CLEAR I/O 

1. Since some channels cause a condition 
code 2 to be set when the instruction 
is received and the channel is 
workinq, it may be useful to issue a 
halt instruction and then CLEAR I/O to 
the desired address. using HALT 
DEVICE will ensure that condition code 
2 is received on the CLEAR I/O only 
when the channel is working with a 
device other than the one addressed. 
Using HALT I/O will ensure that the 
current working state, if any, is 
terminated without regard for the 
address. 

2. Because of the inability of CLEAR I/O 
to terminate operations on some 
channels when in the working state, 
the instruction is not a suitable 
substitute for HALT I/O or HALT 
DEVICE. 

3. The combination of HALT DEVICE 
followed by CLEAR I/O can be used to 
clear out all activity on a channel by 
executing the two instructions for all 
device addresses on the channel. 

HALT DEVICE 

HDV [ S] 

9E01 

o 16 20 31 

The current I/O operation at the addressed 
I/O device is terminated. The subsequent 
state of the subchannel depends on the type 
of channel. Bits 8-14 of the instruction 
are ignored. 

Bits 16-31 of the second-operand address 
identify the channel, the subchannel, and 
the I/O device to which the instruction 
applies. 

When the channel is either available or 
interruption-pending with the subchannel 
available or working with an I/O operation 
in progress at the addressed device, HALT 
DEVICE causes the addressed device to be 
selected and to be signaled to terminate 
the current operation, if any. If the 
subchannel is working with an I/O operation 
in progress at the addressed device, HALT 
DEVICE also causes the channel to signal 
termination of the I/O operation if the 
device reguests or offers a byte of data. 
If status is presented and command chaining 

Chapter 12. Input/Output Operations 12-19 



is indicated for the I/O operation using 
the subchannel, it is suppressed. If the 
subchannel is available, the subchannel is 
not affected. 

When the channel is either available or 
interruption-pending with the subchannel 
either working with a device other than the 
one addressed or interruption-pending, no 
action is taken. 

When the channel is working in burst mode 
with the addressed device, data transfer 
for the operation is immediately 
terminated, and the device immediately 
disconnects from the channel. If chaininq 
is indicated for the I/O operation using 
the subchannel, it is suppressed. 

When the channel is working in burst mode 
with a device other than the one addressed, 
and the subchannel is available, 
interruption-pending, or working with a 
device other than the one addressed, no 
action is taken. If the subchannel is 
working with an I/O operation in progress 
at the addressed device, the channel 
signals termination of the device operation 
the next time the device requests or offers 
a byte of data, if any. If chaining is 
indicated for the I/O operation using the 
subchannel, it is suppressed. 

When the channel is werkinq in burst mode 
with a device other than the one addressed 
and the sUbchannel is not operational, is 
interruption-pending, or is working with a 
device other than the one addressed, the 
resulting condition code may, in some 
channels, be determined by the subchannel 
state. 

Termination of a burst operation by HALT 
DEVICE on a selector channel causes the 
channel and sUbchannel to be placed in the 
interruption-pending state. Generation of 
the interruption condition is not 
contingent on the receipt of status 
information from the device. When HALT 
DEVICE causes a burst operation on a 
byte-multiplexer channel to be terminated, 
the subchannel associated with the burst 
operation remains in the working state 
until the device provides ending statu~, 
whereupon the subchannel enters the 
interruption-pending state. The 
termination of a burst operation by HALT 
DEVICE on a block-multiplexer channel may, 
dependinq on the model and the type of 
subchannel, take place as for a selector 
channel or may allow the subchannel to 
remain in the working state until the 
device provides endinq status. 

When any of the three situations numbered 
below occurs, HALT DEVICE causes the 16-bit 
unit-status and channel-status portion of 
the CSW to be replaced by a new set of 
status bits. The contents of the other 

12-20 system/370 principles of Operation 

fields of the CSW are not changed. The CSW 
stored by HALT DEVICE pertains only to the 
execution of HALT DEVICE and does not 
describe the I/O operation, a t the 
addressed subchannel, that is terminated. 
The extent of data transfer and the status 
at the termination of the operation at the 
sUbchannel are provided in the CSW 
associated with the interruption condition 
caused by the termination. The three 
sit uations are: 

1. The adllressed device is selected and 
signaled to terminate the current 
operation, if any. The CSW then 
contains zeros in the status field 
unless a machine malfunction is 
detected. 

2. The control unit is busy and the 
device cannot be given the siqnal to 
terminate the I/O operation. The CSW 
unit-status field contains ones in the 
busy and status-modifier bit 
positions. The channel-status field 
contains zeros unless a machine 
malfunction is detected. 

3. The channel detects a machine 
malfunction during the execution of 
HALT DEVICE. The status bits in the 
CSW then identify the type of 
malfunction. The state of the channel 
and the progress of the I/O operation 
are unpredictable. 

If HALT DEVICE cannot be executed because 
of a pending logout which affects the 
operational capability of the channel or 
subchannel, a full CSW is stored. The 
fields in the CSW are all set to zeros, 
with the exception of the loqout-pendinq 
bit and the channel-control-check bit, 
which are set to ones. No channel logout 
occurs in this case. 

When HALT DEVICE causes data transfer to be 
terminated, the control unit associated 
with the operation may not become available 
until the data-handling portion of the 
operation in the control unit is concluded. 
Conclusion of this portion of the operation 
is signaled by the generation of channel 
end. This may occur at the normal time for 
the operation, or earlier, or la ter, 
dependinq on the operation and type of 
device. 

When HALT DEVICE causes data transfer to be 
terminated, the subchannel associated with 
the operation remains in the working state 
until the channel-end condition is received 
and the subchannel enters the interruption­
pending state. If the subchannel is shared 
by other devices attached to the control 
unit, I/O instructions addressed to those 
devices set the condition code appropriate 
to the subchannel states described. 



The I/O device executing the terminated 
operation remains in the working state 
until the end of the inherent cycle of the 
operation, at which time device end is 
generated. If blocks of data at the device 
are defined, as in read-type operations on 
magnetic tape, the recording medium is 
advanced to the beginning of the next 
block. 

When HALT DEVICE is issued at a time when 
the subchannel is available and no bUrst 
operation is in progress, the effect of the 
HALT DEVICE signal depends partially on the 
type of device and its state. In all 
cases, the HALT DEVICE signal has no effect 
on devices that are not in the working 
state or are executing a mechanical 
operation in which data is not transferred, 
such as rewinding tape or positioning a 
disk-access mechanism. If the device is 
executing a type of operation that is 
unpredictable in duration, or in which data 
is transferred, the device interprets the 

I A I 
Channel I I 

I I 
I A IIIW;!1 wt I NI 

Subchannel I--- I I ~ I I 
I IQIQ I 111 
IA II Ii I NI IA II Ill' INI IA 

Control Unit I I I I I , I I I , I II 
I 

signal as one to terminate the operation. 
Pending attention or device-end conditions 
at the device are not reset. 

Proru;:am Ex£~j;ioill!: 

Privileged Operation 

o Subchannel busy with another 
device or interruption pending 

1 CSW stored 
2 Channel working 
3 Not operational 

The condition code set by HALT DEVICE for 
all possible states of the I/O system is 
shown in the figure "Condition Codes set by 
HALT DEVICE." See the section "States of 
the Input/Output System" in this chapter 
for a detailed definition of the A, I, W, 
and N states. 

I i¢ lUI NI 
I I I 

I I Q) 131 
A IIli~1 W# I N 11 I I I W¢ I w tiN I 

I + I I I I I I I I 
IOIQ I 11Ill:!:.l+ Il I!I 

IW INI 11 II Ii I NI 
I I , I I I I I 

--Device 11*11*11*131 11!ll!11*IJI 11*11*11*131 11!ll~I~UI 

A Available 
I Interruption pending 
Ii Worki ng 

W;! = working with a device other than the one addressed 
it = Working with the addressed device 

N Not operational 
* CSW Stored 

In the itXX state, either condition code 1 (with CSW stored) 
may be set, depending on the channel. However, condition code 
can be set only if the control unit has received the signal 
control-unit-busy status is received by the channel. 

or condition code 2 
1 (with CSW stored) 
to termina te or if 

+ In the i¢IX and i¢W;!X states, either condition code 0 or 2 may be set. 

• In the W;!NX state, either condition code 2 or 3 may be set, depending on the model 
and the channel type. 

~Qig: Underscored condition codes pertain to situations that can occur only on the 
multiplexer channel. 

Condition Codes Set by HALT DEVICE 

Chapter 12. Input/Output Operations 12-21 



1. Some selector and byte-multiplexer 
channels designed prior to the 
defining of HALT DEVICE (for example, 
the 2860), will execute HALT DEVICE as 
HALT I/O. A program can ensure 
complete compatibility between HALT 
DEVICE and HALT I/O on such channels 
by observing the following 
conventions: 

a. On a byte-multiplexer channel, do 
not issue HALT DEVICE to a 
multiplexing device when a burst 
operation is in progress on the 
channel. 

b. On a byte-multiplexer channel, do 
not issue HALT DEVICE to a device 
on a shared subchannel while that 
subchannel is working with a 
device other than the one 
addressed. 

c. On a selector channel in the 
working state, do not issue HALT 
DEVICE to any dev ice ot her than 
the one with which t he channel is 
working. 

2. A block-multiplexer channel may 
execute HALT DEVICE as a block­
multiplexer or selector channel. 
However, when a block-multiplexer 
channel is performing as a selector 
channel, the halt-device function is 
executed as HALT DEVICE rather than 
HALT I/O. 

3. The execution of HALT DEVICE always 
causes data transfer between the 
addressed device and the channel to be 
terminated. The condition code and 
the CSW (when stored) indicate whether 
the control unit was signaled to 
terminate its operation during the 
execution of the instruction. If the 
control unit was not signaled to 
terminate its operation, the condition 
code and the CSW (when stored) imply 
the situations under which the 
execution of a HALT DEVICE for the 
same address will cause the control 
unit to be signaled to terminate. 

Condition Code 0 indicates that HALT 
DEVicE-canno~signal the control unit 
until an interruption condition on the 
same subchannel is cleared. 

Condition Code 1 ~ith 
~Qgi£ol-Unit-BusY--st21us!~ !~g ~SW 
indicates that HALT DEVICE cannot 
signal the control unit until the 
control-unit-end status is received 
from that control unit. 

12-22 system/370 Principles of Operation 

CO~Qit!Q~ ~ode 1 ~ith Ze~Q§!~ 1h~ 
sta1~§ lield of !he ~~~ indicates that 
the addressed device was selected and 
signaled to terminate the current 
operation, if any. 

Condition Code 2 indicates that the 
controI-unit-Cannot be signaled until 
the channel is not working. The end 
of the working state can be detected 
by noting an interruption from the 
channel or by noting the results of 
repeatedly executing HALT DEVICE. 

Condition Code 3 indicates that manual 
intervention is- required in order to 
allow HALT DEVICE to signal the 
control unit to terminate. 

HALT I/O 

HIO D2 (Ba) [ S] 

r , 
9EOO Ba Da I 

J 

0 16 20 31 

Execution of the current I/O operation at 
the addressed I/O device, subchannel, or 
channel is terminated. The subsequent 
state of the subchannel depends on the type 
of channel. Bits 8-14 of the instruction 
are ignored. 

Bits 16-31 of the second-operand address 
identify the channel and, when the channel 
is not working, identify the subchannel and 
the I/O device to which the instruction 
applies. 

When the channel is either available or 
interruption-pending, with the subchannel 
either available or working, HALT I/O 
causes the addressed I/O device to be 
selected and to be signaled to terminate 
the current operation, if any. If the 
subchannel is available, its state is not 
affected. If, on the byte-multiplexer 
channel, the subchannel is workinq, data 
transfer is immediately terminated, but the 
subchannel remains in the working state 
until the device provides the next status 
byte, whereupon the subchannel is placed in 
the interruption- pending sta tee 

When HALT I/O is issued to a' channel 
operating in the burst mode, data transfer 
for the burst operation is terminated, and 
the I/O device performing the burst 
operation is immediately disconnected from 
the channel. The subchannel and I/O-device 
address in the instruction, in this case, 
is ignored. 



The termination of a burst operation by 
H~LT I/O on the selector channel causes the 
channel and subchannel to be placed in the 
interruption-pending state. Generation of 
the interruption condition is not 
contingent on the receipt of a status byte 
from the I/O device. When HALT I/O causes 
a burst operation on the byte-multiplexer 
channel to be terminated, the subchannel 
associated with the burst operation remains 
in the working state until the I/O device 
signals channel end, whereupon the 
subchannel enters the interruption-pending 
state. The termination of a burst 
operation by HALT I/O on a 
block-multiplexer channel may, depending on 
the model and the type of subchannel, take 
place as for a selector channel or may 
allow the subchannel to remain in the 
working state until the device provides 
endinq status. 

On the byte-multiplexer channel operating 
in the byte-multiplex mode, the I/O device 
is selected and the instruction executed 
only after the channel has serviced all 
outstandinq requests for data transfer for 
previously initiated operations, including 
the operation to be halted. If the control 
unit does not accept the signal to 
terminate the operation because it is in 
the not-operational or control-unit-busy 
state, the subchannel, if working, is set 
up to signal termination of device 
operation the next time the device requests 
or offers a byte of data. If command 
chaining is indicated in the subchannel and 
the device presents status, command 
chaining is suppressed. 

When the addressed subchannel is 
interruption-pending, with the channel 
available or interruption-pending, HALT I/O 
does not cause any action. 

When any of the following conditions 
occurs, HALT I/O causes the status portion, 
bits 32-Q7, of the csw to he replaced by a 
new set of status bits. The contents of 
the other fields of the CSW are not 
chanqed. The CSW stored by HALT I/O 
pertains only to the execution of HALT I/O 
and does not describe the I/O operation 
that is terminated at the addressed 
subchannel. The extent of data transfer, 
and the status at the termination of the 
operation at the subchannel, are provided 
in the csw associated with the interruption 
condition due to the termination. 

1. The addressed device was selected and 
signaled to terminate the current 
operation. The CSW contains zeros in 
the status field unless an equipment 
error is detected. 

2. The channel attempted to select the 
addressed device, but the control unit 
could not accept the HALT I/O signal 

3. 

because it is executing a previously 
initiated operation or had an 
interruption condition associated with 
a device other than the one addressed. 
The signal to terminate the operation 
has not been transmitted to the 
device, and the subchannel, if in the 
working state, will signal termination 
the next time the device identifies 
itself. The CSW unit-status field 
contains ones in the busy and 
status-modifier bit positions. The 
channel-status field contains zeros 
unless an equipment error is detected. 

The channel detected an equipment 
malfunction during the execution of 
H~LT I/O. The status bits in the CSW 
identify the error condition. The 
state of the channel and the progress 
of the I/O operation are 
unpredictable. 

When HALT I/O cannot be executed because of 
a pending logout which affects the 
operational capability of the channel or 
subchannel, a full CSW is stored. The 
fields in the CSW are all set to zeros, 
with the exception of the logout-pending 
bit and the channel-control-check bit, 
which are set to ones. No channel logout 
occurs in this case. 

When HALT I/O causes data transfer to be 
terminated, the control unit associated 
with the operation may not become available 
until the data-handling portion of the 
operation in the control unit is 
terminated. Termination of the 
data-transfer portion of the operation is 
signaled by the generation of channel end, 
which may occur at the norma 1 ti me f or the 
operation, earlier, or later, depending on 
the operation and type of device. 

when HALT I/O causes data transfer to be 
terminated, the subchannel associated with 
the operation remains in the working state 
until the channel-end condition is received 
and the subchannel enters the 
interruption-pending state. If the 
subchannel is shared by other devices 
attached to the control unit, I/O 
instructions addressed to those devices set 
the condition code appropriate to the 
sUbchannel states described. 

When HALT I/O causes data transfer to be 
terminated, the I/O device executing the 
terminated operation remains in the working 
state until the end of the inherent cycle 
of the operation, at which time device end 
is generated. If blocks of data at the I/O 
device are defined, such as reading on 
magnetic tape, the recording medium is 
advanced to the beginning of the next 
block. 

when HALT I/O is issued at a time when the 

Chapter 12. Input/Output Operations 12-23 



subchannel is available and no burst 
operation is in progress, the effect of the 
HALT I/O signal depends on the type of I/O 
device and its state and is specified in 
the SL publication for the I/O device. The 
HALT I/O signal has no effect on I/O 
devices that are not in the working state 
or are executing a mechanical operation in 
which data is not transferred, such as 
rewinding tape or positioning a disk-access 
mechanism. If the I/O device is executing 
a type of operation that is variable in 
duration, the I/O device interprets the 
signal as one to terminate the operation. 
Attention or device-end signals at the 
device are not reset. 

Channel I A I 
I I , I 

Subchannel I A II Ii I NI 1 
I I I I I 
I 1..2 11*# III 

Control Unit 11 II Ii IN I 11 II Ii 
-Device I I I I -I I I I 

I 

privileged Operation 

o Interruption pendinq in subchannel 
1 C SW stored 
2 Burst operation terminated 
3 Not operational 

The condition code set by HALT I/O for all 
possible states of the I/O system is shown 
in the figure "Condition Codes set by HALT 
I/O." See the section "States of the 
Input/Output system" in this chapter for a 
detailed definition of the A, I, W, and N 
states. 

I WI NI 
I I i 
12131 

IIli INI 
I I I I 
10 11*# I~I 

IN I 
I , 

11*11*11*13 I 11* 11* 11* I 31 

1 
I 
W 
N 

* # 

Available 
Interruption pending 
iorkinq 
Not operational 
CSW stored 
When a device-not-operational response is received in 
selecting the addressed device, a condition code 3 is set. 

Note: underscored condition codes pertain to situations that can 
occur only on the multiplexer channel. 

Condition Codes Set by HALT I/O 

12-24 system/370 Principles of Operation 



The instruction HALT 1/0 provides the 
program with a means of terminating an 1/0 
operation before all data specified in the 
operation has been transferred or before 
the operation at the device has reached its 
normal ending point. It permits the 
program to immediately free the selector 
channel for an operation of higher 
pr iority. On the byte-multiplexer channel, 
HALT 1/0 provides a means of controlling 
real-time operations and permits the 
program to terminate data transmission on a 
communication line. 

START 1/0 

SIO [ S ] 

r------------------,-----T------------~ 
geoo B:z I 

I 

o 16 20 31 

START 1/0 FAST RELEASE 

SIOF [S] 

ge01 

o 16 20 31 

A write, read, read backward, control, or 
sense operation is initiated with the 
addressed 1/0 device and subchannel. Bits 
8-14 of the instruction are ignored. 

Either an SIO or SIOF function is 
performed, depending cn the instruction, 
the channel, and the block-multiplexing 
control, bit 0 of control register O. The 
instruction START 1/0 always causes the SIO 
function to be performed, as does START 1/0 
FAST RELEASE when the block-multiplexing­
control bit is zero. When the bit is one, 
START I/O FAST RELEASE may, depending on 
the channel, cause either the SIO or the 
SIOF function to be performed. 

Bits 16-31 of the second-operand address 
identify the channel, subchannel, and 1/0 
device to which the instruction applies. 
The CAW, at location 72, contains the 
subchannel key and the address of the first 
CCW. This eew specifies the operation to 
be performed, the storage area to be used, 
and the action to be taken when the 

operation is completed. 

Por the SIO fUnction, the 1/0 operation is 
initiated at the device if the addressed 
1/0 device and subchannel are available, 
the channel is available or interruption­
pending, and errors or exceptional 
situations have not been detected. The 1/0 
operation is not initiated when the 
addressed part of the 1/0 system is in any 
other state or when the channel or device 
detects any error or exceptional situations 
during execution of the instruction. 

For the SlOP function, the 1/0 operation is 
made pending at the subchannel if the 
subchannel is available, the channel is 
available or interruption-pending, and no 
errors or exceptional conditions are 
recognized during the execution of SIOF. 
Selection of the 1/0 device may be 
performed during the execution of SIOF or 
may be performed later. When an SIOF 
function is performed, initiation of the 
1/0 operation at the 1/0 device occurs 
logically subsequent and asynchronous to 
the execution of SIOF. When the 1/0 
operation is not initiated at the 1/0 
device during the execution of SIOF, the 
1/0 operation is said to be pending at the 
subchannel until channel and subchannel 
facilities are available for initiation. 
When an 1/0 operation is made pending at 
the subchannel, the subchannel enters the 
working state and condition code 0 is set 
for SlOP. 

When the channel attempts to initiate the 
pending I/O operation at the 1/0 device, 
the detection of any error condition by the 
channel or the 1/0 device causes the 
channel to terminate the operation. The 
detection of any exceptional condition by 
the channel or the 1/0 device during the 
attempt to initiate the 1/0 operation at 
the 1/0 device also causes the channel to 
terminate the operation. 

When the channel is available or 
interruption-pending, and the subchannel is 
available before the execution of the 
instruction, the following situations cause 
a csw to be stored. How the CSW is stored 
depends on whether an SIO or SIOF function 
is performed. The SIO function causes the 
status portion of the esw to be replaced by 
a new set of status bits. The status bits 
pertain to the device addressed by the 
instruction. The contents of the other 
fields of the CSW are not changed. When 
the SlOP function is performed, the first 
situation causes the same action as for the 
SIO function; also, the control-unit and 
device state may be tested, and so 
situation 5 may cause the same action as 
for the SIO function, or situation 5 may be 
indicated in a subsequent 1/0 interruption 
during which the entire esw is stored. The 
remaining situations for the SlOP function 

Chapter 12. Input/Output Operations 12-25 



are indicated in 
interruption, during 
is stored. 

a subsequent I/O 
which the entire CSW 

1. The channel detects a programming 
error in the contents of the CAW or 
detects an equipment error during 
execution of the instruction. The CSW 
identifies the error. If selection of 
the device occurred prior to detection 
of the error or if the error condition 
was detected during the selection of 
the device, the device status is 
indicated in the CSW. 

2. The channel detects a programminq 
error associated with the first ccw 
or, if channel indirect data 
addressinq is specified, with the 
first IDA W; or, for t he SlOP function, 
the channel detects an equipment error 
after completion of the instruction. 
The CSW identifies the error. If 
selection of the device occurred prior 
to detection of the error, or if the 
error condition was detected during 
the selection of the device, the 
device status is indicated in the CSW. 

3. An immediate operation was executed, 
and either (1) no coromand chaining is 
specified and no command retry occurs, 
or (2) chaining is suppressed because 
of unusual situations detected during 
the operation. In the CSW, the 
channel-end bit is one, the busy bit 
is zero, and other status may be 
indicated. The PCT bit is one if PCl 
was specified in the first CCi. The 
I/O operation is initiated, but no 
information has been transferred to or 
from the storage area designated by 
the ccw. No interruption conditions 
are generated at the subchannel, and 
the subchannel is available for a new 
I/O operation. If device end is not 
indicated, the device remains busy, 
and a subsequent device-end condition 
is generated. 

4. The I/O device is int~rruption­
pending, or the control unit is 
interruption-pending for the addressed 
device. The csw unit-status field 
contains one in the busy-bit position, 
identifies the interruption condition, 
and may contain other bits provided by 
the device or control unit. The 
interruption condition is cleared. 
The I/O operation is not initiated. 
The channel-status field indicates any 
errors detected by the channel, and 
the PCI bit is one if PCI was 
specified in the first ccw. 

5. The I/O device or the control unit is 
executing a previously initiated 
operation, or the control unit is 
interruption-pending for a device 

12-26 System/370 principles of Operation 

other than the one addressed. The CSW 
unit-status field contains one in the 
busy-bit position or, if the control 
unit is busy, the busy and 
status-modifier bits are ones. The 
I/O operation is not initiated. The 
channel-status field indicates any 
errors detected by the channel, and 
the PCI bit is one if specified in the 
first CC w. 

6. The I/O device or control unit 
detected an equipment or prog ramminq 
error during the initiation, or the 
addressed device is not ready. Th~ 
CSW identifies the error. The 
channel-end and busy bits are zeros, 
unless the device was busy, in which 
case the busy bit, as well as any bits 
causinq interruption conditions, are 
ones. The interruption conditions 
indicated in the CSW have been cleared 
at the device. The I/O operation is 
not initiated. No interruption 
conditions are generated at the T/O 
device or subchannel. The PCT bit in 
the CSW is one if PCI was specified 
in the first ccw. 

When the SIO or SIOF function cannot be 
executed because of a pend ing loq out which 
affects the operational capability of the 
channel or subchannel, a full CSW is 
stored. The fields in the csw are all set 
to zeros, with the exception of the 
loqout-pending bit and the 
channel-control-checK bit, which are set to 
ones. No channel logout occurs in this 
case. 

When the SIOF function causes condition 
code 0 to be set and subsequently a 
situation is encountered which would have 
caused a condition code 1 to be set had the 
function been 510, a deferred-condition­
code-1 I/O-interruption condi tion is 
generated. When the SIOF functi on ca uses 
condition code 0 to be set and, 
subsequently, it is determined that the 
de~ice is not operational, a deferred­
condi tion-code-3 I/O-interruption condition 
is generated. In both of the above cases, 
in the resulting I/O interruption, a full 
CSW is st:>red, an1 the deferred condi tion 
code appears in the csw. 

On the byte-multiplexer channel, both the 
510 and SlOF functions cause the addressed 
device to be selected and the operation to 
be initiated only after the channel has 
serviced all outstanding requests for data 
transfer for previously initiated 
operations. 

Privileged Operation 



o I/O operation initiated 
channel proceeding with 
execution 

1 CSW stored 
2 Channel or sub channel busy 
3 Not operational 

Channel I A or I 
I 
1 

and 
its 

IW I NI 
I I I 
12131 

Subchannel I A IUIH Iii NI 
I I I I I , 
I 12$I2$&lllll 

Control Unit I A I I I W IN I 
-Device I I 1 -+--~ 

I#11*ibI1*ibI3iill 

A Available 
I Interruption pending 

The condition code set by START I/O and 
START I/O FAST RELEASE for all possible 
sta tes of the I/O system is shown in the 
figure "Condition Codes Set by START I/O 
and START I/O FAST RELEASE." See the 
section "States of the Input/Output System" 
in this chapter for a detailed definition 
of the A, I, W, and N states. 

1# = Interruption pending for a device other than the one 
addressed 

It = Interruption pending for the addressed device 
Ii working 
N Not operational 
* CSW stored 
# • When a nonimmediate I/O operation has been initiated, 

and the channel is proceeding with its execution, 
condition code 0 is set. 

• When an immediate operation has been initiated, and no 
command chaining or command retry is taking place, or 
the device is not ready, or an error has been detected 
by the control unit or device, for the SIO function 
condition code 1 is set, and the CSW is stored. Under 
the same circumstances, for the SIOF function, condition 
code 0 is set, and subsequently an I/O-interruption 
condition is generated. The CSW stored when the 
I/O-interruption condition is cleared contains the same 
information as the CSW stored during the SIO function 
under the same conditions, plus the deferred-condition­
code-1 indication. 

ill The SIOF function may cause condition code 0 to be set, in 
which case the other condition code shown will be specified 
as a deferred condition code. 

& When the subchannel is interruption-pending because of the 
concluding of an I/O operation at the subchannel, condition 
code 2 is set. When the subchannel is interruption-pending 
for any other reason, condition code 1 is set and the status 
portion of the CSW is stored. 

$ The AIX state only occurs on the multiplexer channel. 

Noi~: Underscored condition codes pertain to situations that can 
occur only on the multiplexer channel. 

Condition Codes Set by START I/O and START I/O FAST RELEASE 

Chapter 12. Input/Output Operations 12-27 



1. The instruction START I/O FAST RELEASE 
has the advantage over START I/O that 
the CPU can be released after the CAW 
is fetched, rather than after 
completion of the lengthy device­
selection procedure. Thus, the CPU is 
freed for other activity earlier. A 
disadvantaqe, however, is that if a 
deferred condition code is presented, 
the resultant CPU execution time may 
be greater than that required in 
executing START I/O. 

2. When the channel detects a programming 
error during execution of the SIO 
function, when the addressed device 
contains an interruption condition, 
and when the channel and subchannel 
are available, the instruction mayor 
mav not clear the interruption 
condition, depending on the type of 
error and the model. If the 
instruction has caused the dev ice to 
be interrogated, as indicated by the 
presence of the ~usy bit in the CSW, 
the interruption condition has been 
cleared, and the CSW contains program 
or protection check, as well as the 
status from the device. 

3. Two major differences exist between 
the SIO and SIOF functions: 

a. Unchained immediate commands on 
certain channels (that is, those 
which execute SIOF independent of 
the device) result in a condition 
code 0 for the SICF function, 
whereas condition code 1 is set 
for the SIO function. See also 
programming Note 2 in the section 
"Com man d Retry" 0 f this chapter. 

b. Condition code 0 is set by these 
certain channels for the SIOF 
function, even though the 
addressed device is not available 
or the command is rejected by the 
device. The device information 
will be supplied by means of an 
interruption. 

STORE CHANNEL ID 

STIDC [S] 

B203 B::a L-________________ ~ __ ~ ____________ ~ 

o 16 20 31 

Information identifying the designated 

12-28 system/370 principles of Operation 

channel is stored in the four-byte field at 
real storage location 168. 

Bits 16-23 of the second-operand address 
identify the channel to which the 
instruction applies. Bit positions 24-31 
of the address are ignored. 

The format of the information stored at 
location 168 is: 

,i I -, 

ITypelChannel Modell Max IOEL Lengthl ________ -L. ________ • ________ -J 

o 16 31 

Bits 0-3 specify the channel type. When a 
channel can operate as more than one type, 
the code stored identifies the channel type 
at the time the instruction is executed. 
The following codes are assigned: 

Bits 
Q 1 ~! .J Chal!l!!!,! lYE!! 

0 0 0 0 Selector 
0 0 0 1 Bvte multiplexer 
0 0 1 0 Block multiplexer 

* When STIDC is executed, the setting 
of bit 2 is unpredictable when bit 3 
of the channel type code is stored 
as zero and bit 0 of control 
register 0 is (1) currently set to 
zero or (2) was set to zero when a 
previous SIO or SIOF was executed 
and at least one subchannel is 
currently in the working or 
interruption pending state because 
of executing the fUnction of that 
previous SIO or SIOF. 

Bits 4-15 identify the channel model. When 
the channel model is implied by the channel 
type and the CPU model, zeros are stored in 
the field. 

Bits 16-31 contain the length in bytes of 
the longest I/O extended logout that can be 
stored by the channel during an I/O 
interruption. If the channel never stores 
logout information using the IOEL address, 
then this field is set to zero. 

When the channel detects an equipment 
malfunction during the execution of STORE 
CHANNEL ID, the channel causes the status 
portion, bits 32-41, of the CSW to be 
replace d by a new set of sta tus bi ts. With 
the exception of the channel-control-check 
bit (bit 45), which is stored as a one, all 
bits in the status field are stored as 
zeros. The contents of the other fields of 
the CS~ are not changed. 

When STORE CHANNEL ID cannot be executed 
because of a pending logout which affects 
the operational capability of the channel, 
a full CSW is stored. The fields in the 



CSW are all set to zero, with the exception 
of the logout-pending bit and the channel­
control-check bit, which are set to ones. 
No channel logout occurs in this case. 

Privileqed operation 

0 Channel ID correctly stored 
1 CSW stored 
2 Channel activity prohibited 

storinq ID 
3 Not operational 

The condition code set by STORE CHANNEL ID 
for all possible states of the I/O system 
is shown in the figure "Condition Codes Set 
by STORE CHANNEL ID." See "States of the 
Input/Output System" for a detailed 
definition of the A, I, W, and N states. 

Channell A I I I WIN I 
~I--I-I-~ 
I 0 I • I • I 3 I 

A Available 
I Interruption pending 
W Workinq 
N Not operational 

• When the channel is unable to store 
the channel ID because of its working 
state or because it contains a 
pending-interruption condition, 
condition code 2 is set. If the 
working or interruption-pending state 
does not preclude the storing of the 
channel ID, condition code 0 is set. 

Condition Codes Set by STORE CHANNEL ID 

TEST CHANNEL 

TCH [ S ] 

r---- ----r--T--- --, 
I 9FOO B2 I I 

I 

o 16 20 31 

The condition code in the PSW is set to 
indicate the state of the addressed 
channel. The state of the channel is not 
affected, and no action is caused. Bits 
8-14 of the instruction are ignored. 

Bits 16-23 of the seccnd-operand address 
identify the channel to which the 
instruction applies. Bit positions 24-31 

of the address are ignored. 

The instruction TEST CHANNEL inspects only 
the state of the addressed channel. It 
tests whether the channel is operating in 
the burst mode, is interruption-pend.ing, or 
is not operational. When the channel is 
operating in the burst mode and contains an 
interruption condition, the condi tion code 
is set as for operation in the burst mode. 
When none of these situations exist, the 
available state is indicated. No device is 
selected, and, on the multiplexer channel, 
the subchannels are not interrogated. 

Program Excep1ions: 

Privileged Operation 

o Channel available 
1 Interruption or logout condi tion 

in channel 
2 Channel operating in burst mode 
3 Channel not operational 

The condition code set by TEST CHANNEL for 
all possible states of the addressed 
channel is shown in the figure "Condition 
Codes Set by TEST CHANNEL." See the 
section "States of the I nput/Output System" 
in this chapter for a detailed definition 
of the A, I, w, and N states. 

Channell A I I 
~I----~-----+--+-~ 

W N 

I 0 I 1 

A Available 
I Interruption pending 
W working 
N Not operational 

2 3 

Condition Codes Set by TEST CHANNEL 

TEST I/O 

TIO ( S] 

r------------------r---~-------------, 

9nOO I L __________________ L-__ ~ ______ . ______ ~ 

o 16 20 31 

The state of the addressed channel, 
subchannel, and device is indicated by 
setting the condition code in the PSi and, 
in certain situations, by storing the CSW. 
Interruption conditions may be cleared. 
Bits 8-14 of the instruction are ignored. 

Chapter 12. Input/Output Operations 12-29 



Bits 16-31 of the second-operand address 
identify the channel, subchannel, and I/O 
device to which the instruction applies. 

The TIO function is performed 
instruction TEST I/O and, on some 
and under certain circumstances, 
I/O. 

by the 
channels 
by CLEAR 

When the channel is operating in burst mode 
and the addressed subchannel contains an 
interruption condition for the addressed 
device, the TIO function causes condition 
code 1 or 2 to be set, depending on the 
model and channel type. If condition code 
1 is set, the CSW is stored at location 64 
to identify the interruption condition, and 
the interruption condition is cleared. The 
interruption condition in the subchannel is 
not cleared, and the CSW is not stored if 
the channel is working and has not yet 
accepted the status causing the 
interruption condition from the device. 
Condition code 2 is set in this case. 

When the channel is either available or 
interruption-pending and the addressed 
subchannel is either interruption-pending 
for a different device or working, the TIO 
function causes condition code 2 to be set. 

When either of the situations described in 
the following two paragraphs occurs with 
the channel either available or 
interruption-pending or, on some channels, 
working, the TIO function causes the CSW to 
be stored. The contents of the entire CSW 
pertain to the I/O device addressed by the 
instruction. 

1. The subchannel is interruption-pending 
for the addressed device and the 
interruption condition is due to the 
termination of an I/O operation at the 
subchannel. When the CSw is stored, 
the interruption condition is cleared. 
The subchannel key, CCW address, and 
count fields contain the final values 
for the I/O operation. The unit­
status and/or channel-status fields 
contain indications provided by the 
device or channel respectiVely, which 
identify the interruption condition 
and any other conditions detected by 
the channel or device. 

2. The subchannel is interruption-pending 
for the addressed device and the 
interruption condition is due to the 
termination of an I/O operation at the 
device, due to a status indication 
generated by the control unit or 
device after the termination of an I/O 
operation at the subchannel, or due to 
a status indication which is not 
associated with any I/O operation. 
When the CSW is stored, the 
interruption condition is cleared. 
The sUbchannel key, CCW address, and 

12-30 System/370 principles of Operation 

count fields are stored as zeros. The 
uni t- sta t us field conta ins indica tions 
provided by the device which identify 
the interruption condition. The 
channel-status field contains zeros 
unless a channel equipment error is 
detected. 

When any of the following situations occurs 
with the channel either available or 
interruption-pending, the TIO function 
causes the CSW to be stored. The contents 
of the entire CSW pertain to the I/O device 
addressed by the instruction. 

1. The subchannel is available, and the 
I/O device contains an interruption 
condition or the control unit contains 
control-unit end for the addressed 
device. The CSW unit-status field 
identifies the interruption condi tion 
and may contain other bits provided by 
the device or control unit. The 
interruption condition is cleared. 
The busy bit in the CSW is zero. The 
other fields of the CSW contain zeros 
unless an equipment error is detected. 

2. The subchannel is available, and the 
I/O device or the control unit is 
executing a previously initiated 
operation or the control unit has an 
interruption condition associated with 
a device other than the one addressed. 
The CSW unit-status field contains one 
in the busy-bit position or, if the 
control unit is busy, the busy and 
status-modifier bits are ones. Other 
fields of the CSW contain zeros unless 
an equipment error is detected. 

3. The subchannel is available, and the 
I/O device or channel detected an 
equipment error during execution of 
the instruction or the addressed 
device is not ready and does not have 
any interruption condition. The CSW 
identi.fies the error. If the device 
is not ready, unit check is indicated. 
No interruption conditions are 
generated at the I/O device or the 
subchannel. 

When TEST I/O cannot be executed because of 
a pendinq logout which affects the 
operational capability of the channel or 
subchannel, a full CSW is stored. The 
fields in the CSW are all set to zeros, 
with the exception of the loqout-pendinq 
bi t and the channel-control-check hi t, 
which are set to ones. No channel loqout 
is associated with this status. 

When the TIO function is used to clear an 
interruption condition signalinq conclusion 
of an I/O operation at the subchannel and 
the channel has not yet accepted the 
condition from the device, the function 
causes the device to he selected and the 



interruption condition in the device to be 
cleared. During certain I/O operations, 
some types of devices cannot provide their 
current status in response to TEST I/O. 
Some magnetic-tape control units, for 
example, are in such a state when they have 
provided channel end and are executinq the 
backspace-file operation. When TEST I/O is 
issued to a control unit in such a state, 
the unit-status field of the CSW has the 
busy and status-modifier bits set to ones, 
with zeros in the other CSW fields. The 
interruption condition in the device and in 
the subchannel is not cleared. 

On some types of devices, the device never 
provides its current status in response to 
TEST I/O, and an interruption condition can 
be cleared only by permitting an I/O 
interruption. When TEST I/O is issued to 
such a device, the unit-status field has 
the status-modifier bit set to one, with 
zeros in the other CSW fields. The 
interruption condition in the device and in 
the subchannel, if any, is not cleared. 

However, by the time the channel assigns 
the hiqhest priority for interruptions to a 
condition associated with an operation at 
the subchannel, the channel has accepted 
the status from the device and cleared the 
corresponding condition at the device. 
Some channels accept and clear an 
interruption condition siqnaling the 
conclusion of an I/O operation at the 
subchannel from tte device before it is 
assigned the highest priority for 
interruptions. other channels may accept 
and clear any type of interruption 
condition from the device prior to 
assigning it the hiqhest priority for 
interruptions. The acceptance of an 
interruption condition from a device causes 
the associated subchannel to enter the 
interruption-pending state. When the 
channel recoqnizes an interruption 
condition Signaling the conclusion of an 
I/O operation at the subchannel, the 
associated subchannel enters the 
interruption-pending state even when the 
interruption condition has not yet been 
accepted from the device. 

When the TIO function is addressed to a 
device for which the channel has already 
accepted the interruption condition, the 
device is not selected, and the condition 
in the subchannel is cleared regardless of 
the type of device and its present state. 
The csw contains unit status and other 
information associated with the 
interruption condition. 

On the byte-multiplexer channel, the TIO 
function causes the addressed device to be 
selected only after the channel has 
serviced all outstanding requests for data 
transfer for previously initiated 
operations. 

Privileged Operation 

o Available 
1 C SW stored 
2 Channel or subchannel busy 
3 Not operational 

The condition code set by the TIO function 
for all possible states of the I/O system 
is shown in the figure "Condition Codes Set 
by TEST I/O." See the section "States of 
the Input/Output System" in this chapter 
for a detailed definition of the A, I, w, 
and N states. 

Chapter 12. Input/Output Operations 12-31 



Channel 1 A 1 I W# 1 nlHI 
I I I I I 
I I 1 12 131 

Subchannel 1 A IHIUIWINI A II#IItIWINIAII#IItliINI 
I I I I 1 I I I I I I I- I I I I 
I 12 11!.1~IJI 12 I 1* 1~IJI~ll I.! 121~1 

Control Unit IAII I W I NI IAII Ii INI 
-Device 1-+-1 I I , I I I , 

1011*11*131 I 0 I 1* 11 * I 31 

A Available 
I Interruption pending 

1# = Interruption pending for a device other than the one 
addressed 

It = Interruption pending for the addressed device 
W Working 

w# = Working with a device other than the one addressed 
wt = working with the addressed device 

N Not operational 
* CSil stored 
~ In the W#I#X state, either condition code 1 may be set with the 

CSW stored, or condition code 2 may be set, depending on the 
channel and the activity in the channel. 

Noig: Underscored condition codes pertain to situations that can 
occur only on the multiplexer channel. 

Condition Codes set by TEST I/O 

1. Disabling the CPU for I/O 
interruptions provides the program 
with a means of controllinq the 
priority of I/O interruptions 
selectively by channels. The priority 
of devices attached on a channel 
cannot be controlled by the program. 
The instruction TEST I/O in some cases 
permits the program to clear 
interruption conditions selectively by 
I/O device. 

2. When a CSW is stored by the TIO 
function, the interface-control-check 
and channel-control-check indications 
may be due to an interruption 
condition already existing in the 
channel or may be due to an 
interruption condition created by the 
TIO function. Similarly, the 
unit-check bit set to one with the 
channel-end, control-unit-end, or 
device-end bits set to zeros may be 
due to a situation created by the 
preceding operation, the I/O device 
being not ready, or an equipment error 
detected during the execution of TEST 
I/O. The instruction TEST I/O cannot 
be used to clear an interruption 
condition due to the PCI flag while 
the subchannel is working. 

3. The use of a TEST I/O loop on a 
multiplexer channel to retrieve ending 
status for a channel program should, 
in qeneral, be avoided. TEST I/O 

12-32 system/370 principles of Operation 

loops may be used to return ending 
status to a sense command when that 
command was initiated by a START I/O 
that I:eceived condition code O. TEST 
I/O loops under other conditions may 
result in hang conditions. 

INPUT/OUTP UT- INSTRUCTION-EXCEPTION HANDLING 

Before the channel is signaled to execute 
an I/O instruction, the instruction is 
tested for validi ty by the CPU. 
Exceptional situations detected at this 
time cause a program interruption. 

The following exception may cause a program 
interruption: 

Pri.!i1gggg QBeratj,.Q'!!: An I/O instruction 
is encountered when the CPU is in the 
problem state. The instruction is 
suppressed before the channel has been 
signaled to execute it. The CSW, the 
condition code in the PSi, and the state of 
the addressed sUbchannel and I/O device are 
not affected by the attempt to execute an 
I/O instruction while in the problem state. 

The channel can execute six commands: 
write, read, read backward, control, sense, 
and transfer in channel. Each command 



except transfer in channel initiates a 
corresponding I/O operation. The term "I/O 
operation" refers to the activity initiated 
by a command in the I/O device and 
associated subchannel. The subchannel is 
involved with the execution of the 
operation from the initiation of the 
command until the channel-end signal is 
received or, in the case of command 
chaining, until the device-end signal is 
received. The operation in the device 
lasts until device end is signaled. 

BLOCKING OF DATA 

Data recorded by an I/O device may be 
divided into blocks. The length of a block 
depends on the device; for example, a block 
can be a card, a line of printing, or the 
information recorded between two 
consecutive gaps on magnetic tape. 

The maximum amount of information that can 
be transferred in one I/O operation is one 
block. An I/O operation is terminated when 
the associated storage area is exhausted or 
the end of the block is reached, whichever 
occurs first. For some operations, such as 
writing on a magnetic-tape unit or at an 
inquiry station, blocks are not defined, 
and the amount of information transferred 
is controlled only by the program. 

CHANNEL-ADDRESS WORD 

The channel-address word (CAW) specifies 
the subchannel key and the address of the 
first CCW associated with START I/O or 
START I/O FAST RELEASE. The channel refers 
to the CAW only during the execution of 
START I/O or START I/O FAST RELEASE. The 
CAW is fetched from real storage location 
72 of the CPU issuing the instruction. The 
pertinent information thereafter is stored 
in the subchannel, and the program is free 
to change the contents of the CAW. 
Fetching of the CAW by the channel does not 
affect the contents of the location. 

The CAW has the following format: 

, I ~------------------, 
IKeylOOOOI CCW Address 1 
I , , , 

o 4 8 31 

The fields in the CAW are allocated for the 
following purposes: 

§ubch~nel Key: Bits 
key for all fetching 
output data and for 
data associated with 

0-3 form the access 
of CCWs, IDAWs, and 

the storing of input 
START I/O and START 

I/O FAST RELEASE. This key is matched with 
a storage key during these storage 
references. For details, see the section 
"Key-controlled Protection" in Chapter 3, 
"Storage." 

CCW Address: 
locatIon--of 
storage. 

Bits 8-31 designate the 
the first CCW in absol ute 

Bit positions 4-7 of the CA W must contain 
zeros. The three low-order bits of the CCW 
address must be zeros to specify the CCW on 
integral boundaries for doubleword s. If 
any of these restrictions is violated, or 
if the CCW address specif ies a storage 
location which is not provided or is 
protected against fetching, START 1/0 and, 
in some cases, START 1/0 FAST RELEASE, 
cause the status portion of the CSW to be 
stored, with the protection-check or 
program-check bit set to one. In this 
even t, the 1/0 opera t ion is not i ni tia ted. 

Bit positions 4-7 of the CAW, which 
presently must contain zeros, may in the 
future be assigned to the control of new 
functions. It is, therefore, recommended 
that these bit positions not be set to ones 
for the purpose of obtaining an intentional 
program-check indication. 

CHANNEL-COKKAND WORD 

The channel-command word (CCW) specifies 
the command to be executed and, for 
commands initiating 1/0 operations, it 
designates the storage area associated with 
the operation and the action to be taken 
whenever transfer to or from the area is 
completed. The CCWs can be located 
anywhere in storage, and more than one can 
be associated with a START I/O or START 1/0 
FAST RELEASE. 

The first CC W is fetched d uri ng the 
execution of START I/O or START 1/0 FAST 
RELEASE being executed as START 1/0. When 
START 1/0 FAST RELEASE is executed 
independent of the device, the first CCW 
may be fetched subsequent to the execution 
of START 1/0 FAST RELEASE. Each additional 
CCW in the sequence is obtained when the 
operation has progressed to the point where 
the additional CCW is needed. Fetching of 
the CCWs by the channel does not a ffect the 
contents of the location in storage. 

Chapter 12. Input/Output Operations 12-33 



The CCW has the following format: 

, 
ICmd Codel Data Address 

o 8 31 

, i' • ------, 
IFlags 10011/1111111 count I 
~ ____ -L'~ ______ -L ____________ -J 

32 38 40 48 63 

The fields in the CCW are allocated for the 
followinq purposes: 

commang £od~: Bits 0-7 specify 
operation to be performed. 

the 

Data Address: Bits 8-31 specify a location 
In-absolute storage. It is the first 
location referred to in the area designated 
by the CCW. 

Ch~i!!=.12~i~ (£]2) 1lag: Bit 32, when one, 
specifies chaining of data. It causes the 
storage area designated by the next CCW to 
be used with the current operation. 

Ch~i!!=~Qm~ang (CC) 1!~: Bit 33, when one, 
and when the CD flag is zero, specifies 
chaining of commands. It causes the 
operation specified by the command code in 
the next ccw to be initiated on normal 
completion of the current operation. 

SUp'p'~§l.§.s-Length-Indi.£ation (~11) Pl~: Bit 
34 controls whether incorrect-length is to 
be indicated to the program. When this bit 
is one and the CD flaq is zero, the 
incorrect-length indication is suppressed. 
When both the CC and SLI flags are one, 
command chaining takes place regardless of 
any incorrect-length situation. 

Skip. (~~1£) 1lag: Bit 35, when one, 
specifies suppression of the transfer of 
information to storage during a read, read 
backward, or sense operation. 

PrQ~~!!!=£QntrQlled-In.!.!1Y.!!Eti.Qn (PC];) Ilag: 
Bit 36, when one, causes the channel to 
generate an interruption condition when the 
ccw takes control of the cha~nel. When bit 
36 is zero, normal operation takes place. 

Ingi~~£i=.12at~=Addre22 (IDA) 1lag: 
when one, specifies indirect 
addressing. 

Bit 37, 
data 

count: Bits 48-63 specify the number of 
bytes in the storage area designated by the 
CCW. 

Bit positions 38-39 of every CCW other than 
one . specifying transfer in channel must 
contain zeros. otherwise, a program-check 
condition is generated. When the first CCW 
designated by the CAW does not contain 
zeros in bit positions 38-39, the 1/0 

12-34 System/370 principles of operation 

operation is not initiated, and the status 
portion of the CSW with the program-check 
indication is stored during execution of 
START 1/0 or START 1/0 FAST RELEASE being 
executed as START 1/0. Detection of this 
condition during data chaining causes the 
1/0 device to be signaled to conclude the 
operation. When the absence of these zeros 
is detected during command chaining or 
subsequent to the execution of START 1/0 
FAST RELEASE, the new operation is not 
initiated, and an interruption condition is 
generated. 

The contents of bit positions 40-47 of the 
CCW are ignored. 

Programming ~ote 

Bit positions 38-39 of the CCW, which 
presently must contain zeros, may in the 
future be assigned to the control of new 
functions. It is recommended, therefore, 
that these bit positions not be set to ones 
for the purpose of obtaining an intentional 
program-check indication. 

COI'II'IAND CODE 

The command code, bit positions 0-7 of the 
CCW, specifies to the channel and the 1/0 
device the operation to be performed. A 
detailed description of each command 
appears under "Commands." 

The two low·-order bits or, when these bits 
are 00, the four low-order bits of the 
command code identify the operation to the 
channel. The channel distinguishes among 
the following four operations: 

output forward (write, control) 
Input forward (read, sense) 
Input backward (read backward) 
Branching (transfer in channel) 

The channel ignores the high-order bits of 
the command code. 

Commands that initiate 1/0 operations 
(write, read, read backward, control, 
sense, and sense ID) cause all eight bits 
of the command code to be transferred to 
the 1/0 device. In these command codes, 
the leftmost bit positions contain modifier 
bits. The modifier bits specify to the 
device how the command is to be executed. 
They may, for example, cause the device to 
compare data received during a write 
operation with data previously recorded, 
and they may specify such information as 
recording density and parity. For the 
control command, the modifier bits may 



<.r 

• 

contain the order code specifying the 
control function to be perfor med. The 
meaning of the modifier bits depends on the 
type of I/O device and is specified in the 
SL publication for the device. 

The command-code assignment is listed in 
the following table. The symbol X 
indicates that the bit position is ignored; 
11 identifies a modifier bit. 

I Code Command I 
I-- , 
I XXXX 0000 Invalid I , 11111111 111101 Write I 
I MMMM 111110 Read I 
I M!11111 1100 Read Backward I 
I M 11M 11 I1M11 Control I 
I I1MI1I1 0100 Sense I 
I 1110 0100 Sense ID I 
I XXXX 1000 Transfer in Channell 
~ __ --L 

Whenever the channel detects an invalid 
command code during the initiation of a 
command, a program check is generated. 
When the first CCW designated by the CAW 
contains an invalid command code, the 
status portion of the CSW with the 
program-check indication is stored during 
execution of START I/O or START I/O FAST 
RELEASE being executed as START I/O. When 
the invalid code is detected during command 
chaining or subsequent to the execution of 
START I/O FAST RELEASE, the new operation 
is not initiated, and an interruption 
condition is generated. The command code 
is ignored during data chaining, unless it 
specifies transfer in channel. 

DESIGNATION OF STORAGE AREA 

The storage area associated with an I/O 
operation is defined by one or more CCWs. 
A CCW defines an area by specifying the 
address of the first byte to be transferred 
and the number of consecutive bytes 
contained in the area. The address of the 
first byte appears in the data-address 
field of the CCW, except when channel 
indirect dat a addressing is specified. 
Channel indirect data address ing is 
described in the section "Channel Indirect 
Data Addressing." The number of bytes 
contained in the storage area is specified 
in the count field. 

In write, read, control, and sense 
operations, storage locations are used in 
ascending order of addresses. As 
information is transferred to or from 
storage, the address from the address field 
is incremented, and the count from the 
count field is decremented. The 
read-backward operation places data in 

storage in a descending order of addresses, 
and both the count and the address are 
decremented. When the count reaches zero, 
the storage area defined by the CCil is 
exhausted. 

Any storage location that is provided can 
be used in the transfer of data to or from 
an I/O device if the location is not 
protected against the type of reference. 
Similarly, a CCW can be located in any part 
of storage if the location is not protected 
against a fetch-type reference. 

When the first CCW is designated by the CAW 
as being at a storage location that is not 
provided, the I/O operation is not 
initiated, and the status portion of the 
CSW with the program-check indication is 
stored during the execution of START I/O or 
START I/O FAST RELEASE being executed as 
START I/O. When, subsequently, during the 
operation or chain of operations, the 
channel refers to a storage loc.ation that 
is not provided, an interruption condi tion 
indicating program check is generated, and 
the device is signaled to terminate the 
operation. 

When the first CCW designated by the CAW is 
in a location that is protected against a 
fetch-type reference, the I/O operation is 
not initiated, and the status portion of 
the CSW with the protection-check 
indication is stored during the execution 
of START I/O or START I/O FAST RELEASE 
being executed as START I/O. When, 
subsequently, during the I/O operation or 
chain of operations, the channel refers to 
a protected location, an interruption 
condition indicating protection check is 
generated, and the device is signaled to 
terminate the operation. 

During an output operation, the channel may 
fetch data from storage before the time the 
I/O device requests the data. Any number 
of bytes specified by the current CCW may 
thus be prefetched. When data chaining 
during an output operation, the channel may 
prefetch the next CCW at any time during 
the execution of the current CCW. 

Pre fetching may cause the channel to refer 
to storage locations that are protected or 
not provided. such errors detected during 
prefetching of data or CCws do not affect 
the execution of the operat ion and dono t 
cause error indications until the I/O 
operation actually attempts to use the data 
or until the CCW takes control. If the 
operation is concluded by the I/O device or 
by HALT I/O, HALT DEVICE, or CLEAR I/O 
before the invalid informa tion is needed, 
no program check or protection check is 
generated. 

The count field in the CCW can specify any 
number of bytes from one to 65,535. Except 

Chapter 12. Input/Output Operations 12-35 



for a CCW specifying transfer in channel, 
which has no count field, the count field 
may not contain the value zero. Whenever 
the count field in the CCW initially 
contains a zero, a program check is 
generated. When this occurs in the first 
CCW designated by the CAW, the operation is 
not initiated, and the status portion of 
the CSW with the program-check indication 
is stored during execution of START I/O or 
START I/O FAST RELEASE being executed as 
START I/O. When a count of zero is 
detected during data chaining, the I/O 
device is siqnaled to terminate the 
operation. Detection of a count of zero 
during command chaining or subsequent to 
the execution of START I/O FAST RELEASE 
suppresses initiation of the new operation 
and generates an interruption condition. 

CHAINING 

When the channel has performed the transfer 
of information specified by a CCW, it can 
continue the activity initiated by START 
I/O or START I/O FAST RELEASE by fetching a 
new ccw. Such fetching of a new CCW is 
called chaining, and the CCis belonging to 
such a sequence are said to be chained. 

Chaining takes place between CCis located 
in successive doubleword locations in 
storage. !t proceeds in an ascending order 
of addresses; that is, the address of the 
new CCW is obtained by adding 8 to the 
address of the current CCi. Two chains of 
CCws located in noncontiguous storage areas 
can be coupled for chaining purposes by a 
transfer-in-channel command. All CCis in a 
chain apply to the I/O device specified in 
the original START I/O or START I/O FAST 
RELEASE. 

12-36 System/370 principles of Operation 

Two types of chaining are provided: 
chaining of data and chaining of commands. 
Chaining is controlled by the chain-data 
(CD) and chain-command (CC) flag s in 
conjunction with the suppress-length­
indication (SLI) flag in the CCi. These 
flags specify the action to be taken by the 
channel upon the exhaustion of the current 
CCi and upon receipt of ending status from 
the device, as shown in the figure 
"Channel-Chaining Action." 

The specification of chaining is 
effectively propagated through a transfer­
in-channel command. When in the process of 
chaining a transfer-in-channel command is 
fetched, the CCW designated by the transfer 
in channel is used for the type of chaining 
specified in the CCi preceding the transfer 
in channel. The CD and CC flags are 
ignored in the transfer-in-channel command. 

Not~: For a description of the storage 
area associated with a ccw when channel 
indirect data addressing is invoked, see 
the section "Channel Indirect Data 
Addressing" later in this chapter. 

/ 



, , Action in Channel upon Exhaustion of Count I 
IFlags in , or Receipt of Channel End , 
ICurrent ~-------------------~ I 
ICCW I I Regular Operation I 
I , , I ~I -----------T,- , I 
ICDICCI SLII Immediate Operation I I I II I III I 
\--1 I I I I I I 
I 01 01 0 lEnd, NIL IStop, IL lEnd, NIL lEnd, IL I 
I 0 I 0 I 1 I End, NIL IStop, NIL I End, NIL I End, NIL I 
1 01 11 0 I Chain Command IStop, IL I Chain command I End, IL I 
1 01 11 1 I Chain Command IChain commandlChain commandlChain command I 
I I I I I I I I 
1 11 01 0 lEnd, NIL IChain Data 1* lEnd, IL I 
I 11 01 1 lEnd, NIL IChain Data 1* lEnd, IL I 
111110 lEnd, NIL IChain Data 1* IEnd,IL, 
I 11 11 1 lEnd, NIL ,Chain Data 1* lEnd, IL I 
\--~--L- I 
l!xplg,gatiQ!p 

I 

II 

III 

End 

stop 

IL 

NIL 

count exhausted, end of block at device not reached. 

Count exhausted and channel end from device. 

count not exhausted and channel end from device. 

The operation is terminated. If the operation is 
immediate and has been specified by the first CCI 
associated with a START I/O, a condition code 1 is set, 
and the status portion of the CSW is stored as part of 
the execution cf the START I/C. In all other cases, an 
interruption condition is generated in the subchannel. 

The device is signaled to terminate data transfer, but 
the subchannel remains in the working state until 
channel end is received; at this time an interruption 
condition is qenerated in the subchannel. 

Incorrect length is indicated with the interruption 
condi tion. 

Incorrect length is not indicated. 

Chain command The channel performs command chaining upon receipt of 
device end. 

Chain data 

* 

The channel immediately fetches a new CCW for the same 
operation. 

The situation where the residual count is zero but data 
chaining is indicated at the time the device provides 
channel end cannot validly occur. When data chaining 
is indicated, the channel fetches the new CCW after 
transferring the last byte of data designated by the 
current CCW but before the device provides the next 
request for data or status transfer. As a result, the 
channel recognizes the channel end from the device only 
after it has fetched the new CCW, which cannot contain 
a count of zero unless a programming error has been 
made. L----______________ . _______________________________________ ~ 

Channel-Chaining Action 

Chapter 12. Input/Output Operations 12-37 



During data chaining, the new CCW fetched 
bV the channel defines a new storage area 
for the original I/O operation. Execution 
of the operation at the I/O device is not 
affected. When all data designated by the 
current CCW has been transferred to storage 
or to the device, data chaining causes the 
operation to continue, using the storage 
area designated by the new CCW. The 
contents of the command-code field of the 
new CCW are ignored, unless they specify 
transfer in channel. 

Data chaining is considered to occur 
immediately after the last byte of data 
desiqnated by the current CCW has been 
transferred to storage or to the device. 
When the last byte of the transfer has been 
placed in storage or accepted by the 
device, the new CCW takes over the control 
of the operation and replaces the pertinent 
information in the subchannel. If the 
device siqnals channel end after exhausting 
the count of the current CCW but before 
transferring any data to or from the 
storage area designated by the new ccw, the 
csw associated with the concluded operation 
pertains to the new CCW. 

If programming errors are detected in the 
new ccw or during its fetching, the error 
indication is generated, and the device is 
signaled to conclude the operation when it 
attempts to transfer data designated by the 
new CCW. If the device signals channel end 
after the new cew takes control but before 
transferring any data designated by the new 
cew, program check or protection check is 
indicated in the csw associated with the 
termination. The contents of the CSW 
pertain to the new CCW unless a program 
check or protection check is generated 
while fetching the new CCW or while 
fetchinq or executing an intervening 
transfer-in-channel command. A data 
address which causes a program check or 
protection check aives an error indication 
only after the I/O device has attempted to 
transfer data to or from the addressed 
storage location. 

Data chaining during an input operation 
causes the new Ccw to te fetched when all 
data designated by the current CCW has been 
placed in storage. On an output operation, 
the channel may fetch the new CCW from 
storage ahead of the time data chaining 
occurs. Any prograroming errors in a 
prefetched ccw, however, do not affect the 
execution of the operation until all data 
designated by the current CCW has been 
transferred to the I/O device. If the 
device concludes the operation before all 
data designated bV the current CCW has been 
transferred or if data chaining is 
suppressed for any other reason, the errors 

12-38 System/370 Principles of Operation 

associated with the prefetched cew are not 
indicated to the program. 

Only one ecw describing a data area may be 
pre fetched. If the prefetched CCW 
specifies transfer in channel, only one 
more CCW may be fetched before the 
exhaustion of the current CCW. 

Programmin~ !Qte~ 

1. Data chaining may be used to rearrange 
data as it is transferred between 
storage and an I/O device. Data 
chaining permits data to be 
transferred to or from noncontiguous 
areas of storage, and, when used in 
conjunction with the skippi ng function 
(see the section "Skippinq" later in 
this chapter), data chainina enables 
the program to place in storage 
selected portions of a block of data. 

When, during an input operation, the 
proqram specifies data chaininq to a 
location into which data has been 
placed under the control of the 
current CCW, the channel, in fetchinq 
the next cew, fetches the new contents 
of the location. This is true even if 
the location contains the last byte 
transferred under the control of the 
current CCW. When, on input, a 
channel program data-chains to a ccw 
placed in storage by the CCW 
specifying data chaining, the block is 
said to be self-describinq. l!. 
self-describing block contains one or 
more CCWs that specify storage 
locations and counts for subseauent 
data in the same block. 

The Ilse of self-describing blocks is 
equivalent to the use of unchecked 
data. An I/O data-transfer 
malfunction that affects validity of a 
block is signaled only at the 
completion of data transfer. The 
error normally does not prematurely 
terminate or otherwise affect the 
execution of the operation. Thus, 
there is no assurance that a CCW read 
as data is valid until the operation 
is completed. If the CCW is in error, 
the use of the CCW in the curren t 
operation may cause subsequent data to 
be placed in wrong storage locations 
with reSUltant destruction of the 
contents of those locations. 

2. When, durinq data chaining, an I/O 
device transfers data by using the 
data-streaming feature, an overrun or 
chaining-check condition may be 
recognized when a small byte-count 
value is specified in the ccw. The 

J 

J 



minimum acceptable number of bytes 
that can be specified varies as a 
function of the system model and 
system activity. Refer to the 
appropriate channel SL publication of 
the using system to determine the most 
reasonable minimum byte count that can 
be handled by the channel. 

During command chaining, the new CCW 
fetched by the channel specifies a new I/O 
operation. The channel fetches the new CCW 
and initiates the new operation upon 
receipt of the device-end signal for the 
current operation. When command chaining 
takes place, the completion of the current 
operation does not generate an interruption 
condition, and the count indicating the 
amount of data transferred during the 
current operation is not made available to 
the proqram. For operations involving data 
transfer, the new command always applies to 
the next block at the device. 

Command chaining takes place and the new 
operation is initiated only if no unusual 
situations have been detected in the 
current operation. In particular, the 
channel initiates a new I/O operation by 
command chaining upon receipt of a status 
byte signaling one of the following status 
combinations: device end, device end and 
status modifier, device end and channel 
end, device end and channel end and status 
modifier. In the former two cases, cha nnel 
end must have been siqnaled before device 
end, with all other status bits set to 
zeros. If status such as attention, unit 
check, unit exception, incorrect length, 
program check, or protection check has 
occurred, the sequence of operations is 
concluded, and the status associated with 
the current operation causes an 
interruption condition to be generated. 
The new CCW in this case is not fetched. 
Incorrect length does not suppress command 
chaininq if the current CCW has the SLI 
flag set to one. 

An exception to seguential chaining of CCWs 
occurs when the I/O device presents status 
modifier with device end. When no unusual 
conditions have been detected and command 
chaining is specified or when command retry 
has been previously signaled and an 
immediate retry could not be performed, the 
combination of status modifier and device 
end causes the channel to alter the 
seguential execution of CCis. If command 
chaining was specified, status modifier and 
device end cause the channel to chain to 
the CCW whose storage address is 16 higher 

than that of the CCW that specified 
chaining. If command retry was previously 
signaled and immediate retry could not be 
performed, the status causes the channel to 
command-chain to the CCW whose storage 
address is 8 higher than that of the CCW 
for which retry was initially signaled. 

When both command and data chaining are 
used, the first cei associated with the 
operation specifies the operation to be 
executed, and the last CCW indicates 
whether another operation follows. 

Programming !Qte 

Command chaining makes it possible for the 
program to initiate transfer of multiple 
blocks by means of a single START I/O or 
START I/O FAST RELEASE. It also permits a 
subchannel to be set up for the execution 
of auxiliary functions, such as positioning 
the disk-access mechanism, and for 
data-transfer operations without 
interference by the program at the end of 
each operation. Command chaining, in 
conjunction with the status-modifier 
condition, permits the channel to modify 
the normal sequence of opera ti on s in 
response to signals provided by the I/O 
device. 

SKIPPING 

Skipping causes the suppression of storage 
references during an I/O operation. It is 
defined only for read, read backward, and 
sense operations and is controlled by the 
skip flag, which can be specified 
individually for each CCW. When the skip 
flag is one, skipping occurs; when zero, 
normal operation takes place. The setting 
of the skip flag is ignored in all other 
operations. 

Skipping affects only the handling of 
information by the channel. The operation 
at the I/O device proceeds normally, and 
informa tion is transferred to the channel. 
The channel keeps updating the count but 
does not place the information in storage. 
Chaining is not precluded by skipping. In 
the case of data chaining, normal operation 
is resumed if the skip flag in the new ccw 
is zero. 

When the skip flag is set to one, the data 
address in the CC W is not checked. 

Chapter 12. Input/Output Operations 12-39 



Skipping, when combined with data chaining, 
permits the proqram to place in storage 
selected portions of a block from an I/O 
device. 

PROGRAM-CONTROLLED INTERRUPTION 

The program-controlled-interruption (PCI) 
function permits the program to cause an 
I/O interruption during the execution of an 
I/O operation. The function is controlled 
by the PCI flag in the CCW. The flag can 
be on either in the first CCW specified by 
START I/O or START I/O FAST RELEASE or in a 
CCW fetched during chaining. Neither the 
pcr flag nor the associated interruption 
affects the execution of the current 
operation. 

Whenever the pcr flag in the ccw is one, an 
interruption condition is generated in the 
channel. When the first ccw associated 
with an operation contains the PCI flag, 
either initially or upon command chaining, 
the interruption may occur as early as 
immediately upon the initiation of the 
operation. The PCI flag in a CCW fetched 
on data chaining causes the interruption to 
occur after all data designated by the 
precedinq CCW has been transferred. The 
time of the interruption, however, depends 
on the model and the current activity in 
the system and may be delayed even if I/O 
interruptions are allowed. No predictable 
relationship exists bEtween the time the 
interruption due to the PCI flag occurs and 
the progress of data transfer to or from 
the area deSignated by the CCi, but the 
fields within the CSW pertain to the same 
instant of time. 

If chaining occurs before the interruption 
due to the PCI flag has taken place, the 
PCI interruption condition is carried over 
to the new CCW. This carryover occurs both 
on data and command chaining and, in either 
case, the interruption condition is 
propagated through the transfer-in-channel 
command. The interruption conditions due 
to the PCI flags are not stacked; that is, 
if another CCW is fetched with a PCI flag 
before the interruption due to the PCI flag 
of t.he previous CCW has occurred, only one 
interruption takes place. 

A CSW containing the PCI bit set to one may 
be stored by an interruption while the 
operation is still proceeding or by an 
interruption, TEST I/O, or CLEAR I/O upon 
the termination of the operation. A CSW 
cannot be stored by TEST I/O while the 
subchannel is in the working state. 

12-40 System/370 Principles of Operation 

When the CSW is stored by an interruption 
before the operation or c ha in of ope ra tions 
has been concluded, the CCi address is 8 
greater than the address of the current 
CCi, and the count is Unpredictable. All 
unit-status bits in the CSi are zero. If 
the channel has detected any unusual 
situations, such as channel-data check, 
program check, or protection check by the 
time the interruption occurs, the 
corresponding channel-status bit is one, 
although the status in the subchannel is 
not reset and is indicated again upon the 
termination of the operation. 

A unit-status 
indicates that 
operations has 
this case has 
PCI bit set to 

bit set to one in the CSi 
the operation or chain of 

been concluded. The CSi in 
its regular format with the 
one. 

However, when the interruption due to the 
PCI flag is delayed until the operation at 
the subchannel is concluded, two 
interruptions from the subchannel may still 
take place. The first interruption 
indicates and clears the interruption 
condition due to the PCI flag, and the 
second provides the CSW associated with the 
ending status. Whether one or two 
interruptions occur depends on the model 
and on whether the interruption condition 
due to the PCI flag has been assigned the 
highest priority for interruption at the 
time of conclusion. TEST I/O or CLEAR I/O 
addressed to the device associated wi th an 
interruption condition in the subchannel 
clears the interruption condition due to 
the PCI flag, as well as the one associated 
with the conclusion. 

The setting of the PCI flag is inspected in 
every CCW except those specifying transfer 
in channel, where it is ignored. The PCI 
flag is also ignored during initial program 
loading. 

1. Since no unit-status bits are set to 
ones in the CSW associated with the 
conclusion of an operation of a 
selector channel by HALT 1/0 or HALT 
DEVICE, unit-status bits and the pcr 
bit set to ones are not necessary for 
the operation to be concluded. When 
status in a selector channel includes 
pcr at the time the operation is 
concluded by HALT rio or HALT DEVICE, 
the C SW associa ted with the concl uded 
operation is indistinguishable from 
the CSW provided by an interruption 
during execution of the operation. 

2. Program-controlled 
provides a means 

interruption 
of alerting the 

.J 



program to the progress of chaining 
during an I/O operation. It permits 
programmed dyna.ic storage allocation. 

CHANNEL INDIRECT DATA AtDRESSING 

Channel indirect data addressing permits a 
single channel-command word to control the 
transmission of data that spans 
noncontiquous paqes in real storage. 

Channel indirect data addressing is 
specified by a flag bit in the CCW which, 
when one, indicates that the data address 
in the CCW is not used to directly address 
data. Instead, the address specifies the 
first word ~n a list of words, called 
indirect-data-address words (IDAWs), each 
of which contains an acsolute address 
designating a data area within a 2,048-byte 
block of storage. 

When the incirect-data-addressing bit in 
the CCW is one, bits 8-31 of the CCW 
specify the location of the first IDAW to 
be used for data transfer for the command. 
Additional IDAWs, if needed for completing 
the data transfer for the CCW, are in 
successive storage locations. The number 
of IDAWs required for a CCW is determined 
by the count field of the CCW and by the 
data address in the initial IDAW. When, 
for example, the CCW count field specifies 
4,000 bytes and the first IDAW specifies a 
location in the middle of a 2,048-byte 
block, three IDAWs are required. 

Each IDAW is used for the transfer of up to 
2,048 bytes. The IDAW specified by the CCW 
can designate any location. Data is then 
transferred, for read, write, control, and 
sense commands, to or from successively 
higher storage locations or, for a read 
backward command, to successively lower 
storage locations, until a 2,048-byte block 
boundary is reached. The control of data 
transfer is then passed to the next IDAW. 
The second and any subsequent IDAWs must 
specify, depending on the command, the 
first or last byte of a 2,048-byte block. 
Thus, for read, write, control, and sense 
commands, these IDAWs will have zeros in 
bit positions 21-31. For a read-backward 
command, these IDAWs will have ones in bit 
positions 21-31. 

Except for the unique restrictions on the 
specification of the data address by the 
IDAW, all other rules for the data address, 
such as for protected storage and invalid 
addresses, and the rules for data 
prefetching, remain the same as when 
indirect data addressing is not used. 

A channel may prefetch any of the IDAWs 
pertaining to the current CCW or to a 

prefetched CCW. An IDAW takes control of 
the data transfer when the last byte has 
been transferred for the previous IDAW. 
The same rules apply as with data chaininq 
regarding when an IDAW takes control of 
data transfer during an I/O operation. 
That is, when the count in the CCW has not 
reached zero, a new IDAW takes control of 
the data transfer when the last byte has 
been transferred for the previous IDAW for 
that CCW, even in situations where 
(1) channel end, (2) channel end and device 
end, or (3) channel end, device end, and 
status modifier are received prior to 
transfer of any data bytes pertaining to 
the new IDAW. A prefetched IDAW does not 
take control of an I/O operation if the 
count in the CCW reached zero with the 
transfer of the last byte of data for the 
previous IDAW for that eew. Errors 
detected in prefetched IDAWs are not 
indicated until the IDAW takes control of 
the data transfer. 

The format of the IDAW and the significance 
of its fields are as follows: 

, I 

1000000001 Data Address 

o 8 31 

Bit positions 0-7 are reserved for future 
use and must contain zeros. If any of the 
bits is a one, a program check is 
generated, and the operation is terminated. 

Bits 8-31 specify the location of the first 
byte to be used in the data transfer. In 
the first IDAW for a cew, any location can 
be specified. For subsequent IDAWs, 
depending on the command, either the first 
or the last location of a 2,04S-byte block 
located on a 2,048-byte boundary must be 
specified. For read, write, control, and 
sense commands, the beginning of the block 
must be specified, and bits 21-31 of the 
IDAW will be zeros. For a read-backward 
command, the end of the block must be 
specified, and bits 21-31 of the IDAW will 
be ones. Improper data-address 
specification causes a proqram check to be 
generated and the operation to be 
terminated. 

When the IDAW flaq (bit 37) of 
set to one and any of the 
conditions occurs: 

the ecw is 
following 

1. 

2. 

3. 

The address in the eew does not 
designate the first IDAW on an 
integral word boundary, 

The address in the cew does not 
designate a valid storage location, 

Access to the storage location 
specified by the address in the ecw is 
prohibited by protection, or 

Chapter 12. Input/Output Operations 12-41 



4. Bits 0-7 of the first IDAW are not condi tions. In this case, any of 
zeros, these conditions causes the channel to J indicate program check only if the 

then, depending on the model, the above device attempts to tra nsfer da ta. An 
four conditions may be handled in one of immediate comma nd does not resul t in a 
two ways: proqram-check indication. 

1- The channel checks for the above 
conditions before initiat ing the 
operation at the device. If any of COMMANDS 
these conditions is encountered, the 
channel indicates program check and 
does not initiate the operation at the The fiqure "Channel-Command Codes" lists 
device. the command codes for the six commands and 

indicates which flaqs are defined for each 
2. The channel initiates the operation at command. The flags are ignored for all 

the device prior to checking for these commands for which t hey are not deti ned. 

~ or--
I Name I Code I Flags I 
I I I I 
IWrite IMMMf'l MM011CD CC SLI PCI IDA I 
IFead I M!'!MM MM10lCD CC SLI SKIP PCI IDA I 
IRead backward IMMMM 1100lCD CC SLI SKIP PCI IDA I 
IControl IM!'!!'!M MM111CD CC SLI PCI IDAI 
I Sense IMM!!!'! 0100lCD CC SLI SKIP PCI IDAI 
ISense ID I 1110 0100lCD CC SLI SKIP PCI IDAI 
I Transfer in channell XXXX 10001 I 
I ~ I 
I~!£!.an~iio.!!: 
I 
ICD Chain data 
ICC Chain command 
1St! Suppress length indication 
I SKIP Skip 
I PCI program-controlled interrupt ion 
IIDA Indirect data addressing 
111 Modifier bit 
IX Ignored 

Channel-Command Codes 

12-42 System/370 principles of Operation 



L 
All flaqs have individual significance, 
except that the CC and SlI flags are 
ignored when the CD flag is set to one. 
The SLI flag is ignored on immediate 
opera t ions, in which case the 
incorrect-length indication is suppressed, 
regardless of the setting of the flag. The 
PCI flag is ignored during initial program 
loadinq. 

Each command is described below, and the 
format is illustrated. 

1. A malfunction that affects the 
validity of data transferred in an 1/0 
operation is signaled at the end of 
the operation by means of u nit check 
or channel-data check, depending on 
whether the device (control unit) or 
the channel detected the error. In 
order to make use of the checking 
facilities provided in the system, 
data read in an input operation should 
not be used until the end of the 
operation has been reached and the 
validity of the data has been checked. 
Similarly, on writing, the copy of 
data in storage should not be 
destroyed until the program has 
verified that no malfunction affecting 
the transfer and recording of data was 
detected. 

2. An error condition may be recognized 
by the channel and the 1/0 operation 
terminated when 256 or more chained 
commands are executed with an 1/0 
device and none of the executed 
commands result in the transfer of any 
data. 

.-- ----, 
I I I 

I MMMMMM01 I 
I I 

Da ta Address I 
I 

o 8 31 

r-r-T~ ~--------, 

ICICISI IPIII I I 
IDICILI/ICIDIOOIIIIIIIIII Count 
I I I I I I I I A I I I 
L-~I~~I~IL-~I~I __ ~ ________ ~ ________ J 

32 35 

A write 
device, 
trans fer 

40 48 63 

operation is initiated at the 1/0 
and the subchannel is set up to 
data from storage to the 1/0 

device. Data in storage is fetched in an 
ascend inq order of addresses, startinq with 
the address specified in the CCW. 

A CCIi' used in a write operation is 
inspected for the CD, CC, SLI, PCI, and IDA 
flags. The setting of the skip flaq is 
ignored. Bit positions 0-5 of the cew 
contain modifier bits. 

Programming Mote 

When writinq on devices for which block 
length is not defined, such a s a 
magnetic-tape unit or an inquiry station, 
the amount of data written is controlled 
only by the count in the CCW. Every 
operation terminated under count control 
causes the incorrect-length indication, 
unless the indication is suppressed by the 
SLI flag. 

r------~-------------------------, 
I 

I I 
IMMM!'!MM101 
I I 

Data Address 
~ ____ ---L ________________________ ~ 

o 8 31 

, , ,~~--,---------,---------, 
I I I I S I I I 
ICICISIKIPIII I I 
IDICILIIICIDIOOIIIIIIIIII Count 
I I I II P I II A I I I 
, I I '..&..-.L.....L ' I 

32 40 48 63 

A read operation is initiated at the 1/0 
device, and the subchannel is set up to 
transfer data from the device to storaqe. 
For devices such as ma gnet ic-ta pe uni ts, 
disk storage, and card eguipme nt, the bytes 
of data within a block are provided in the 
same sequence as written by means of a 
write command. Data is placed in storage 
in an ascending order of addresses, 
starting with the address specified in the 
ccw. 

A CCi used in a read operation is inspected 
for every flaq--CD, CC, SLI, SKIP, PCI, and 
IDA. Bit positions 0-5 of the CCi contain 
modifier bits. 

Chapter 12. Inputloutput Operations 12-43 



I 
I I 
IMMMM11001 
I I 

o 8 

--, 
I 
I 

Data Address I 
I 

31 

, i ,I-"T .--, 

I I I I S I I I I 
ICICISIKIPIII I I I 
IDICILIIICIDIOOI////////l count I 
I I I II P I II A I I I I 
L.....L.-L I I I I I .1-. __ ---' 

32 40 48 63 

A read-backward operation is initiated at 
the I/O device, and the subchannel is set 
up to transfer data from the device to 
storage. On magnetic-tape units, read 
backward causes reading to be performed 
with the tape moving l:ackward. The bytes 
of data within a block are sent to the 
channel in a sequence opposite to that on 
writing. The channel places the bytes in 
storaqe in a descending order of address, 
starting with the address specified in the 
CCW. The bits within a byte are in the 
same order as sent to the device on 
writing. 

A CCW used in 
inspected for 
SKIP, PCI, and 
the CCW contain 

.--
I I 
I MMMMMM111 
I I 

a read-backward operation is 
every flag--CD, CC, SLI, 
IDA. Bit positions 0-3 of 
modifier bits. 

---, 
I 

Data Address I 
I L----___ ~_________________ ____ ~ 

o 8 31 

• , I i I "-T i -,-------, 

ICICISI IPIII I I 
IDICILI/ICIDIOOII///////I Count 
I I I I I I I I A I I I 

32 35 40 48 63 

A control operation is initiated at the I/O 
device, and the sUbchannel is set up to 
transfer data from storage to the device. 
The device interprets the data as control 
information. The control information, if 
any, is fetched from storage in an 
ascending order of addresses, starting with 
the address specified in the CCW. A 
control command may be used to initiate at 

12-44 System/370 Principles of Operation 

the I/O device an operation not involving 
transfer of data, such as backspacinq or 
rewinding magnetic tape or positioning a 
disk-access mechanism. 

For many control functions, the entire 
operation is specified by the modifier bits 
in the command code, and the fUnction is 
performed as an immediate operation (see 
the section" Immedia te Operations" later in 
this chapter) • If the command code does 
not specify the entire control function, 
the data-address field of the CCW 
designates the location containinq the 
required additional information. This 
control information may include a code 
further specifying the operation to be 
performed or an external address, such as 
the disk address for the seek function, and 
is transferred in response to requests by 
the device. 

A control command code containing zeros for 
the six modifier bits is defined as a 
llQ-OEe£~iiQ~. The no-operation order 
causes the addressed device to respond with 
channel end and device end without causinq 
any action at the device. The control 
command can be executed as an immediate 
operation, or the device can delay the 
status until after the initial selection 
sequence is completed. Other operations 
that can be initiated by means of the 
control command depend on the type of I/O 
device. These operations and their codes 
are specified in the SL publication for the 
device. 

A CCW used in a control operation is 
inspected for the CD, CC, SLI, pcr, and IDA 
flags. The setting of the skip flaq is 
ignored. Bit positions 0-5 of the CCW 
contain modifier bits. 

Since a CCW (other than transfer in 
channel) with a count of zero is invalid, 
the proqram cannot use the CCW count field 
to specify that no data be transferred to 
the I/O device. Any operation terminated 
before data has been transferred causes the 
incorrect-length indication, provided the 
operation is not immediate and has not been 
rejected during the initiation sequence. 
The incorrect-length indication is 
suppressed when the SLI flag is on. 



L 
Sen~~ 

I 
I I 
IMMM~01001 Data Address 
I I 
L-----

0 8 31 

ro-T~~~--~---- --,---------, 
I I I I S I I I 
ICICISIKIPIII I I 
IDICILIIICIDIOOI////////l 
I I I I I PII I AI I I 
L-~I I , I I , 

32 40 48 

I 
I 

Count I 
I 

63 

A sense operation is initiated at the I/O 
device, and the subchannel is set up to 
transfer up to 32 bytes of sense data from 
the device to storage. The data is placed 
in storage in an ascending order of 
addresses, starting with the address 
specified in the CCW. 

Data transferred during a sense operation 
provides information concerning unusual 
conditions detected by the I/O device. The 
information provided as a result of 
executing the sense command is more 
detailed than that supplied by the 
unit-status byte in the CSW and may 
describe reasons for the unit-check 
indication. It may also indicate, for 
example, if the device is in the not-ready 
state, if the tape unit is in the 
file-protected state, or if magnetic tape 
is positioned beyond the end-of-tape mark. 

The first six bits of the first sense data 
byte (sense byte 0) are common to all I/O 
devices. The six bits, when set to ones, 
designate the following: 

, 
Bit Designation I 

~ 
I 

0 Command reject I 
1 Intervention required I 
2 Bus-out check I 
3 Equipment check I 
4 Data check I 
5 Overrun I 

L----- J 

The following is the m~nbg of the first 
six bits: 

comm~ng Bgjgg~: The device has detected a 
programming error. A command has been 
received which the device is not designed 
to execute, such as read backward issued to 
a direct-access storage device, or which 
the device cannot execute because of its 
present state, such as write issued to a 

file-protected tape unit. Command reject 
is indicated when the program issues an 
invalid sequence of commands, such as write 
to a direct-access storage device without 
previous designation of the block. Command 
reject may also be indicated when invalid 
data is transferred and the data is treated 
as an extension of the command. For 
example, command reject is indicated when 
an invalid seek argument is transferred to 
a direct-access storage device. 

Intervention B~uireg: The last operation 
could--not-- be executed because of a 
situation requiring some type of 
intervention at the device. This bit 
indicates situations such as the hopper in 
a card punch being empty or the printer 
being out of paper. It is also turned on 
when the addressed device is not ready, is 
in test mode, or is not provided on the 
control unit. 

Bus-Out Check: The device or the control 
unit has-received a data byte or a command 
code with an invalid parity from the 
channel. During writing, bus-out check 
indicates that incorrect data has been 
recorded at the device, but this does not 
cause the operation to be terminated 
prematurely. Parity errors on command 
codes and control information cause the 
operation to be immediately terminated and 
suppress checking for situations that would 
cause command reject and intervention 
required. 

Equipm~n~ ~heck: During the last 
operation, the device or the control unit 
has detected equipment malfunctioning, such 
as an invalid card-hole count or a 
printer-buffer parity error. 

Rata Ch~~~: The device or the control unit 
has detected a data error other than those 
included in bus-out check. Data check 
identifies errors associated with the 
recording medium and includes errors such 
as reading an invalid card code or 
detecting invalid parity on data recorded 
on magnetic tape. 

On an input operation, data check indicates 
that incorrect data may have been placed in 
storaqe. The control unit forces correct 
parity on data sent to the channel. On 
writing, data check indicates that 
incorrect data may have been recorded at 
the device. Unless the operation is of a 
type where the error precludes meaningful 
continuation, data errors on reading and 
writing do not cause the operation to be 
terminated prematurely. 

Over~~n: The overrun condition occurs when 
the channel fails to respond to the control 
unit in the anticipated time interval to a 
request for service from the 1/0 device. 
When the total activity initiated by the 

Chapter 12. Input/Output Operations 12-45 



program exceeds the capability of the 
channel, an overrun may occur when data is 
transferred to or from a control unit that 
is either usinq the data-streaming feature 
or is nonbuffered. An overrun condition 
also may occur when the I/O device receives 
the new command too late during command 
chaininq. 

When the channel fails to accept a byte on 
an input operation, the followinq data 
transferred to storage may be used to fill 
the gap. On an output operation, overrun 
indicates that data recorded at the device 
may be invalid. 

All information significant to the use of 
the device normally is provided in the 
first byte. Any bit positions followinq 
those used for programming information may 
contain diagnostic information, and the 
total number of sense bytes may extend up 
to 32 bytes as needed. The number and the 
meaning of the sense bytes extendinq beyond 
the first byte are peculiar to the type of 
I/O device and are specified in the SL 
publication for the device. 

The basic sense command has zero modifier 
bits. This command initiates a sense 
operation on all devices and cannot cause 
the command-reject, intervention-required, 
data-check, or overrun bit to be set to 
one. If the control unit detects an 
equipment malfunction, or invalid parity of 
the sense command code, the equipment-check 
or bus-out-check bit is set to one, and 
unit check is indicated in the unit-status 
byte. 

Devices that can provide special diagnostic 
sense information or can be instructed to 
perform other special functions by use of 
the sense command may define modifier bits 
for the control of these functions. The 
special sense operations may be initiated 
by a unique combination of modifier bits, 
or a group of codes may specify the same 
function. Any remaining sense command 
codes may be considered invalid, thus 
causing the unit-check indication, or may 
cause the same action as the basic sense 
command, dependinq upon the type of device. 

The sense information that pertains to the 
last I/O operation or other action at a 
device may be reset any time after the 
completion of a sense command addressed to 
that device. Any command addressed to the 
control unit of a device, other than the 
no-operation command and the command which 
results from a TEST I/O instruction, may be 
allowed to reset the sense information, 
provided that the busy bit is not included 
in the initial status. The sense 
information may also te changed as a result 
of asynchronous actions, for example when 
the device chanqes from the not-ready to 
ready state. (See "Device End" in this 

12-46 System/370 principles of Operation 

chapter.) 

A CCIl u.sed 
inspected for 
SKIP, PCI, and 
the ccw contain 

in a sense operation is 
every flag--CD, CC, SLI, 
IDA. Bit positions 0-3 of 
modifier bits. 

.--------""-------------------------, 
I 
I I 
1111001001 
I I 

Data Address 

~------~I"------------------------~ 
o 8 31 

,--,--r.....,--r--r-T ----r-------, 
I I I I S I I I I I 
ICICISIKIPIII I I I 
IOICILIIICIOIOOI////////1 Count I 
I I I liP I II A 1 I I I 
I I I I ~_~--L-________ ~ _______ ~ 

32 40 48 63 

Execution of the sense-IO command proceeds 
exactly as that of a read command, except 
that data is obtained from sensinq 
indicators rather than from a record 
source. The data transferred is seven 
bytes in length. 

The control unit ana I/O device may 
properly execute the sense-IO command, may 
execute the command as the basic sense 
command, or may reject the sense-IO command 
with unit-check status. Pefer to the SL 
manual for the control unit and I/O device. 

The sense-ID command must not initiate any 
operations other than the sensinq of the 
type/model number. If the control unit or 
device is available and not busy, then 
execution of the sense-ID command is 
accomplished. Basic sense data may be 
reset as a result of executinq the sense-IO 
command. 

The sense bytes sent in response to sense 
ID are defined as follows: 

byte 0 
byte 1 
byte 2 
byte 3 
byte 4 
byte 5 
byte 6 

Hexadecimal IFF I 
Control-unit type number 
Control-unit type number 
Control-unit model number 
Device type number 
Device type number 
Device model number 

All unused sense bytes are set to zeros. 

Bytes 1 <lnd 2 contain the four-decimal­
digit control-unit type number that 
corresponds directly with the uni t type 
number attached to the unit. 

J 



L 

L 

Byte 3 contains the control-unit model 
number, if applicable. If not applicable, 
bvte 3 must be a byte of all zeros. 

Bytes 4 and 5 contain the four-decimal­
digit device type number that corresponds 
directly with the device type number 
attached to the I/O device. 

Byte 6 contains the device model number, if 
applicable. If not applicable, byte 6 must 
be a byte of all zeros. 

Whenever a cOntrol unit is not separately 
addressable from the attached device or 
devices, the response to the sense-ID 
command is a ~oncatenation of control-unit 
type number and device type number. 

If a control unit can be addressed 
separately from the attached device or 
devices, then the response to the sense-ID 
command is dependent on the unit addressed. 
If a control unit is addressed, the 
response to the sense-ID command is 
"control-unit type number," with normal 
ending status presented after byte 3. If 
the device is addressed, the response to 
the sense-ID command is "device type 
number" placed at byte locations 1, 2, and 
3, followed by channel-end and device-end 
status. 

Whenever the control unit and device are 
not distinct, the type number giVen is the 
control-unit n1,lmber. In this case, sense 
data transfer would end with channel-end 
and device-end status being presented. 
Communication controllers utilizing 
indirect addressing to end devices generate 
the three bytes of sense data that identify 
only the controller. 

r----~-r-------------- ------, 
1////110001 CCW Address I 

______ .1 

o 4 8 31 

r---- ----, 
1/ / / / / / / / / / / / / / / / I 
L----________ ~-----__ --------______ ~ 

32 63 

The next CCW is fetched from the location 
in absolute storage designated by the 
data-address field of the CCW specifying 
transfer in channel. The 
transfer-in-channel command does not 
initiate any I/O operation at the channel, 
and the I/O device is not signaled. The 
purpose of the transfer-in-channel command 

is to provide chaining between CCws not 
located in adjacent doubleword locations in 
an ascending order of addresses. The 
command can occur in both data and command 
chaining. 

The first CCW designated by the CAW must 
not specify transfer in channel. When this 
restriction is violated, no I/O operation 
is initiated, and a program check is 
generated. The error causes the status 
portion of the CSW, with the proqram-check 
status bit set to one, to be stored durinq 
the execution of START I/O or START I/O 
FAST RELEASE beinq executed as START I/O. 
When START I/O FAST RELEASE is executed 
independent of the device, the error mav 
cause, depending on the model, the same 
indication as for START I/O or may cause an 
interruption condition to be generated. 

To address a CCW on integral boundaries for 
doublewords, a CCW specifyinq transfer in 
channel must contain zeros in bit positions 
29- 31. Furthermore, a CCW specifying a 
transfer in channel must not be fetched 
from a location designated bV an 
immediately preceding transfer in channel. 
When either of these errors is detected, a 
program check is qenerated. 

The contents of the second half 
bit positions 32-63, are 
Similarly, the contents of bit 
0-3 of the CCW are ignored. 

COMMAND RETRY 

of the CCW, 
ignored. 

posi tions 

Some channels have the capability to 
perform command retry, a channel and 
control-unit procedure that causes a 
command to be retried without requirinq an 
I/O interruption. This retry is initiated 
by the control unit presenting either of 
two status-bit combinations by means of a 
special communication sequence with the 
channel. When immediate retry can be 
performed, the control unit siqnals a 
channel-end, unit-check, and sta tus­
modifier status-bit combination, together 
with device end. When immediate retry 
cannot be performed, the presentation of 
device end is delayed until the control 
unit is prepared. If device end and no 
other status bits are signaled, command 
retry is performed. If device end is 
accompanied by status modifier, command 
retry is not performed, and the channel 
command-chains to the CCW following the one 
for which retry was signaled. When any 
other status bit accompany device end or 
device end and status modifier, an 
interruption condition is generated. In 
this situation, the CSW will contain the 
status indications causing the interruption 
condition. 

Chapter 12. Input/Output Operations 12-47 



When the channel is not capable of 
performina command retry, the retry is 
suppressed, and an interruption condition 
is generated. The CSW will contain the 
channel-end, unit-check, and status­
modifier status indications, along with any 
other appropriate status. 

Durina command retry, the channel action is 
similar to that taken when command 
chaining. Thus, when command retry is 
performed, a START I/O initiating an 
immediate operation for which command 
chain ina is not indicated in the CCW causes 
a condition code 0, rather than a condition 
code 1, to be set. The subsequent 
termination of the r/o operation causes an 
interruption condition to be generated. 
During command retry, the CCW may be 
refetched. 

The following possible results of a command 
retry must be anticipated ty the program: 

1. A CCW with the PCI flag set to one 
may, if retried because of command 
retry, cause multiple pcr 
interruptions to occur. 

2. A channel program consisting of a 
single, unchained CCW specify ina an 
immediate command may cause a 
condition code 0 rather than a 
condition code 1 to be set. This 
setting of the condition code occurs 
if the control unit siqnals command 
retry at the time initial status is 
siqnaled to t he channel. An 
interruption condition is generated 
upon completion of the operation. 

3. If a CCW used in an operation is 
changed before that operation has been 
successfully completed, the results 
are unpredictable. 

4. A csw stored after the initiation of a 
retry but before the presentation of 
device end, as when an interruption 
condition due to the pcr flag is 
taken, contains the address of the 
command to be retried plus 8. 

5. If a HALT I/O, HAlT DEVICE, or CLEAR 
I/O instruction is issued after the 
initiation of a retry but before the 
presentation of device end, the CSW 
contains the address of the command to 
be retried plus 8. 

6. On a multiplexer channel, chained CCWS 
which might ordinarily have been 
executed in a burst may, upon the 
occurrence of command retry, cause 

12-48 System/370 principles of Operation 

multiplexing to occur, with the result 
that the channel becomes unexpectedly 
available. 

7. Command chaining may occur even thouqh 
the CCW does not indicate command 
chaining. This can occur if immediate 
retry is not requested and the control 
unit or device presents a status of 
device end and status modifier. 

When the operation or sequence of 
operations initiated by START I/O or START 
I/O FAST RELEASE is ended, the channel and 
the device generate status. Status can be 
brouqht to the attention of the proaram by 
means of an I/O interruption, by TEST I/O 
or CLEAR I/O, or, in certain cases, by 
START I/O or START I/O FAST RELEASE. This 
status, as well as an address and a count 
indicating the extent of the operation 
sequence, are presented to the proaram in 
the form of a channel-status word (CSW). 

TYPES OF CONCLUSION 

Normally an I/O operation at the subchannel 
lasts until the device signals channel end. 
Channel end can be signaled durina the 
sequence initiating the operation, or 
later. When the channel detects equipment 
malfunctioning or an I/O system reset is 
performed, the channel disconnects the 
device without receiving channel end. The 
proqram can force a device to be 
disconnected prematurely by issuinq CLEAR 
CHANNEL, CLEAR I/O, HALT I/O, or HALT 
DEVICE. 

After the addressed channel and subchannel 
have been verified to be in a state where 
START I/O or START I/O FAST RELEASE can be 
executed, certain tests are performed on 
the validity of the information specified 
by the program and on the a vai labili ty of 
the addressed control unit and I/O device. 
This testing occurs during the execution of 
START I/O, either during or subsequent to 
the execution of START I/O FAST RELEASE, 
and during command chaininq. 

A data-transfer operation is ini tia ted at 
the sUbcha.nnel and device only when no 
progra mmi nq or equipment errors are 
detected by the channel and when the device 
responds with zero status or siqnals 

J 

J 

.J 



I 

L 

L' 

command retry during the initiation 
sequence. When the channel detects or the 
device signals any unusual situations 
during the initiation of an operation, the 
command is said to be rejected. 

Rejection of the command during the 
execution of START 1/0 or START I/O FAST 
~ELEASE is indicated by the settinq of the 
condition code in the PSi. Unless the 1/0 
device is not operational, the reasons for 
the rejection are detailed by the portion 
of the CSW stored by START I/O or START I/O 
FAST RELEASE. The I/O device is not 
started, no interruption conditions are 
generated, and the subchannel is available 
subsequent to the initiation sequence. The 
1/0 device is immediately available for the 
initiation of another operation, provided 
the command was not rejected because the 
device or control unit was busy or not 
operat iona 1. 

When an unusual situation causes a command 
to be rejected during initiation of an I/O 
operation by command chaininq, an 
interruption condition is generated, and 
the subchannel is not available until the 
condition is cleared. The reasons for the 
rejection are indicated to the program by 
means of the corresponding status bits in 
the csw. T~e not-operational state of the 
1/0 device, which during the execution of 
START I/O and in some models during the 
execution of START I/O FAST RELEASE causes 
condition code 3 to be set, instead causes 
the interface-control-check bit to be set 
to one when detected during command 
chaining. The new operation at the I/O 
device is not initiated. 

When START 1/0 FAST RElEASE is executed by 
a channel independent of the addressed 
device, tests for most proqram-speci~ied 
information, for control-unit and device 
availability, for control-unit and device 
status, and for most errors may be 
performed subsequent to the execution of 
START I/O FAST RELEASE. Some situations 
which would have caused a condition code 1 
or 3 to be set had the instruction been 
START I/O instead cause an interruption 
condition to be qenerated. The CSW, when 
stored, indicates that the interruption 
condition is a deferred condition code 1 or 
3. 

Any command other than the command that 
results from TEST I/O may cause the I/O 
device to signal channel end immediately 
upon receipt of the command code. An I/O 
operation causing channel end to be 
signaled during the initiation sequence is 
called an immgdiate QE~IatlQ~. 

When the first CCW designated by the CAW 
during a START I/O or START 1/0 FAST 
RELEASE executed as a START 1/0 initiates 
an immediate operation with command 
chaining not indicated and command retry 
not occurring, no interruption condition is 
generated. In this case, channel end is 
brought to the attention of the proqram by 
causinq START I/O or START I/O FAST RELEASE 
to store the CSW status portion. The 
subchannel is immediately made available to 
the program. The I/O operation, however, 
is initiated, and, if channel end is not 
accompanied by device end, the device 
remains busy. Device end, when 
subsequently provided by the device, causes 
an interruption condition to be generated. 

An immediate operation initiated by the 
first CCW designated by the CAW durinq a 
START I/O FAST RELEASE executed independent 
of the addressed device appears to the 
program as a nonimmediate command. That 
is, any status generated by the device for 
the immediate command, or f or a subsequent 
command if command chaining occurs, causes 
an interruption condition to be generated. 

When command chaining is specified after an 
immediate operation and no unusual 
situations have been detected during the 
execution, or when command retry occurs for 
an immediate operation, neither START I/O 
nor START I/O FAST RELEASE causes the 
immediate storinq of CSW status. The 
subsequent commands in the chain are 
handled normally, and channel end for the 
last operation of the chain of CCWs 
generates an interruption condition even if 
the I/O device provides the signal 
immediately upon receipt of the command 
code. 

Whenever immediate completion of an I/O 
operation is signaled, no data has been 
transferred to or from the device as a 
result of that operation. 

Since a count of zero is not valid, any CCW 
specifying an immediate operation must 
contain a nonzero count. When an immediate 
operation is executed, however, incorrect 
length is not indicated to the program, and 
command chaining is performed when so 
specified. 

Control operations for w~ich the entire 
operation is specified in the command code 
may be executed as immediate operations. 
Whether the control function is executed as 
an immediate operation depends on the 
operation and type of device and is 
specified in the SL publication for the 
dey ice. 

Chapter 12. Input/Output operations 12-49 



When the device accepts a command, the 
subchannel is set up for data transfer. 
The subchannel is in the working state 
during this period. Unless the channel 
detects equipment malfunctioning or the 
operation is concluded by CLEAR CHANNEL, 
CLEAR 1/0, or, on the selector channel, the 
operation is concluded by CLEAR CHANNEL, 
CLEAR I/O, HALT I/O, or HALT DEVICE, the 
subchannel-working state lasts until the 
channel receives the channel-end signal 
from the I/O device. When no command 
chaining is specified or when chaining is 
suppressed because of unusual situations, 
channel end causes the operation at the 
subchannel to be terminated and an 
interruption condition to be generated. 
The status bits in the associated C5W 
indicate channel end and any unusual 
situations. The 1/0 device can signal 
channel end at any time after initiation of 
the operation, and the signal may occur 
before any data has been transferred. 

For operations not involving data transfer, 
the I/O device normally controls the timing 
of channel end. The duration of data­
transfer operations may be variable and may 
be controlled by the 1/0 device or the 
channel. 

Excluding equipment errors, CLEAR I/O, HALT 
DEVICE, and HALT I/O, the channel signals 
the device to conclude data transfer 
whenever any of the following events 
occurs: 

1. The storage areas specified for the 
operation are exhausted or filled. 

2. A program check is detected. 

3. A protection check is detected. 

~. A chaining check is detected. 

The first event occurs when the channel has 
stepped the count to zero in the last CCW 
associated with the operation. A count of 
zero indicates that the channel has 
transferred all information specified by 
the program. The other three events are 
due to errors and cause premature 
conclusion of data transfer. In every 
case, the conclusion is signaled in 
response to a service request from the 
device and causes data transfer to cease. 
If the device has no blocks defined for the 
operation (such as writing from magnetic 
tape), it concludes the operation and 
generates channel end. 

The device can control the duration of an 
operation and the timing of channel end. 
On certain operations for which blocks are 

12-50 System/370 principles of Operation 

defined (such as reading from magnetic 
tape), the device does not provide the J 
channel-end signal until the end of the 
block is reached, regardless of whether or 
not the device has been previously signaled 
to conclude data transfer. 

If the data address in the CCW is invalid, 
no data is transferred during the 
operation, and the device is siqnaled to 
conclude the operation in response to the 
first service request. On writinq, devices 
such as magnetic-tape units request the 
first byte of data before any mechanical 
motion is started and, if the data address 
is invalid, the operation is concluded 
before the recording medium has been 
advanced. However, since the operation has 
been initiated at the I/O device the I/O 
device provides channel end, and an 
interruption condition is genera ted. 
Whether a block at the 1/0 device is 
advanced when no data is transferred 
depends on the type of 1/0 device and is 
specified in the 5L publication for the I/O 
device. 

When command chaining takes place, the 
subchannel is in the workinq state from the 
time condition code 0 is set for START 1/0 
or START IIO FAST RELEASE until the device 
signals channel end for the last operation 
of the chain. On the selector channel, the 
dev ice executing the I/O opera ti on sta ys\ 
connected to the channel and the channel is ,...", 
in the lIorking state during the entire 
execution of the chain of 1/0 operations. 
On the multiplexer channel, an 1/0 
operation in the burst moae causes the 
channel to be in the working state only 
while transferring a burst of data. If 
channel '~nd and device end do not occur 
concurrently, the device disconnects from 
the channel after providing channel end, 
and the channel can in the meantime 
communicate with other devices. 

Any unusual situations cause command 
chaining to be suppressed and an 
interruption condition to be generated. 
The unusual situations can be detected by 
either the channel or the device, and the 
device can provide the indications with 
channel end, control-unit end, or device 
end. When the channel is aware of the 
unusual situation by the time the 
channel-end signal for the operation is 
received, the chain is ended as if the 
operation during which the si tua tion 
occurred were the last operation of the 
chain. The device-end signal subsequently 
is processed as an interruption condition. 
When the device signals unit check or unit 
exception with control-unit end or device 
end, the subchannel terminates the workina 
state upon receipt of the signal from the , 
device. 'rhe channel-end indication in this ...., 
case is not made available to the proqram. 



The instructions HALT I/O and HALT DEVICE 
cause the current operation at the 
addressed channel or sub channel to be 
immediately terminated. The method of 
termination differs from that used upon 
exhaustion of count or upon detection of 
proqramming errors to the extent that 
termination by HALT I/O or HALT DEVICE is 
not necessarily contingent on the receipt 
of a service request from the device. 

When HALT I/O is issued to a channel 
operating in bUrst mode, the channel issues 
the halt siqnal to the device currently 
operating with the channel, regardless of 
the device address specified with the HALT 
I/O instruction. If the channel is 
involved in the data-transfer portion of an 
operation, data transfer is immediately 
terminated, and the device is disconnected 
from the channel. If HALT I/O is addressed 
to a selector channel executing a chain of 
operations and the device has already 
provided channel end for the current 
operation, the instruction causes the 
device to be disconnected and command 
chaining to be immediately suppressed. 

When HALT DEVICE is issued to a channel 
operating in burst mode, the halt signal is 
issued to the device involved in the 
burst-mode operation only if that device is 
the one to which the HALT DEVICE is 
addressed. If the operation thus 
terminated is in the data-transfer portion 
of the operation, data transfer is 
immediately terminated, and the device is 
disconnected from the channel. If the 
terminated burst involves a selector 
channel executing a chain of operations and 
the device has already provided channel end 
for the current operation, HALT DEVICE 
causes the device to be disconnected and 
command chaining to be immediately 
suppressed. If, on a selector channel, the 
device involved in the burst is not the one 
to which the HALT DEVICE is addressed, no 
action is taken. If, on a multiplexer 
channel, the device involved in the burst 
is not the one to which the HALT DEVICE is 
addressed, HALT DEVICE causes any operation 
for the addressed device to be terminated 
at the addressed subchannel and suppresses 
any further data transfer or command 
chaining for that device. 

When HALT I/O or HALT DEVICE is issued to a 
channel not operating in burst mode, the 
addressed device is selected, and the halt 
signa I is issued as the dev ice res pond s. 
If the device presents status and if 
command chaininq is indicated in the 
subchannel, it is suppressed. 

The termination of an operation by HALT I/O 
or HALT DEVICE on the selector channel 

results in up to four distinct interruption 
conditions. The first one is qenerated by 
the channel upon execution of the 
instruction and is not continqent on the 
receipt of status from the device. The 
channel-status bits reflect the unusual 
situations, if any, detected durinq the 
operation. If HALT I/O or HALT DEVICE is 
issued subsequent to the initiation of the 
I/O operation at the I/O device but before 
all data specified for the operation has 
been transferred, incorrect length is 
indicated, subject to the control of the 
SLI flag in the current CCi. The execution 
of HALT I/O or HALT DEVICE itself is not 
reflected in CSIl status, and all status 
bits in a CSi due to this interruption 
condition can be zero. The channel is 
available for the initiation of a new I/O 
operation as soon as the interruption 
condition is cleared. 

The second interruption condition on the 
selector channel occurs when the control 
unit signals channel end. The selector 
channel handles this condition as any other 
interruption condition from the device 
after the device has been disconnected from 
the channel, and provides zeros in the 
subchannel-key, CCIl-address, count, and 
channel-status fields of the associated 
CSW. Channel end is not made available to 
the program when HALT I/O or HALT DEVICE is 
issued to a channel executing a chain of 
operations and the device has already 
provided channel end for the current 
operation. 

Finally, the third and fourth interruption 
conditions occur when control-unit end, if 
any, and device end are signaled. These 
signals are handled as for a ny other I/O 
operation. 

The termination of an operation by HALT I/O 
or HALT DEVICE on a multiplexer channel 
causes the normal interruption conditions 
to be generated. If the instruction is 
issued when the subchannel is in the 
data-transfer portion of an operation, the 
subchannel remains in the worki nq state 
until channel end is signaled by the 
device, at which time the subchannel is 
placed in the interruption-pending state. 
If HALT I/O or HALT DEVICE is issued after 
the device has signaled channel end and the 
subchannel is executing a chain of 
operations, channel-end is not made 
available to the proqram, and the 
subchannel remains in the worki nq state 
until the next status byte from the device 
is received. Receipt of a status byte 
subsequently places the subchannel in the 
interruption-pending state. The CSIl 
associa ted with the interruption condi tion 
in the subchannel contains the status byte 
provided by the device and the channel. If 
HALT I/O or HALT DEVICE is issued before 
all data areas associated with the current 

Chapter 12. Input/Output Operations 12-51 



operation have been exhausted or filled, 
incorrect length is indicated, subject to 
the control of the SLI flag in the current 
CCW. The interruption condition is 
processed as for any other type of 
termination. 

The termination of a burst operation by 
HALT I/O or HALT DEVICE on a 
block-multiplexer channel may, depending on 
the model and the type of subchannel, take 
place as for a selector channel or may 
allow the subchannel to remain in the 
working state until the device provides 
ending status. 

The count field in the CSW associated with 
an operation terminated by HALT I/O or HALT 
DEVICE is unpredictable. 

The termination of an operation by CLEAR 
I/O causes the subchannel to be set to the 
available state and causes a CSW to be 
stored. The validity of the CSW fields is 
defined in the instruction CLEAR I/O 
earlier in this chapter. 

When CLEAR I/O terminates an operation at a 
subchannel in the interruption-pending 
state, up to three subsequent interruption 
conditions rela.ted to the operation can 
occur. since CLEAR I/O causes the 
subchannel to be made available, these 
interruption conditions will result in only 
the unit-status portion of the CSW being 
indicated. 

The first interruption condition arises on 
a selector channel when channel end is 
siqnaled to the channel. This occurs only 
when the interruption-pendinq states of the 
channel and subchannel at the execution of 
CLEAR I/O were due to the previous 
execution of HALT I/O or HALT DEVICE. 

The second and third interruption 
conditions arise when control-unit end, if 
any, and device end are signaled to the 
channel. 

When CLEAR I/O terminates an operation at a 
subchannel in the working state, up to four 
subsequent interruption conditions related 
to the operation can occur. For all of 
these conditions, only the status portion 
of the CSW is indicated. 

The first interruption 
certain channels when 

condition arises on 
the terminated 

12-52 System/370 Principles of Operation 

operation was in the midst of data 
transfer. Since the device is not siqnaled 
to terminate the operation during the 
execution of CLEAR I/O unless the channel 
is working with the addressed device when 
the instruction is received, the device 
may, subsequent to the CLEAR I/O, attempt 
to continue the data transfer. The channel 
responds by signaling the device to 
terminate data transfer. Dependi nq on the 
channel, the need to signal the device to 
terminate data transfer may be ignored or 
may be considered an interface-control 
check which creates an interruption 
condition. Only channel status is 
indicated in the CSW. 

A second interruption condition may occur 
if channel-end status is received from the 
device. The third and fourth conditions 
may occur if control-unit end, and/or 
device end are presented to the channel. 
In these three cases, only unit status is 
indicated in the CSW. 

When channel-equipment malfunctioninq is 
detected or invalid signals are received 
from a device, the recovery procedure and 
the subsequent states of the subchannels 
and devices on the channel depend on the 
type of error and on the model. Normally, 
the program is alerted to the termination 
by an I/O interruption, and the associated 
CSW indicates channel-control check or 
interface-control check. However, when the 
nature of the malfunction prevents an I/O 
interruption, a machine-check interruption 
occurs, and a CSW is not stored. A 
malfunction may cause the channel to 
perform the I/O selective reset or to 
generate the halt signal. 

INPUT/OUTP UT INTERR UPTIONS 

Input/output interruptions provide a means 
for the CPU to change its state in response 
to conditions that occur in I/O devices or 
channels. The conditions are indicated in 
an associated CSW which is stored at the 
time of interruption. These conditions can 
te caused by the program or by an external 
event at the device. 

J 

A request for an I/O interruption is called ~ 
an I/O-interruption condition, or, in this ~ 
chapter, simply an interruption condition. 



An interruption condition can be brought to 
the attention of the program only once and 
is cleared when it causes an interruption. 
Alternatively, an interruption condition 
can be cleared by TEST I/O or CLEAR I/O, 
and conditions generated by the I/O device 
follow ina the termination of the operation 
at the subchannel can be cleared by TEST 
I/O, START I/O, or START I/O FAST RELEASE. 
The latter include interruption conditions 
caused by attention, device end, and 
control-unit end, and channel end when 
provided by a device after conclusion of 
the operation at the subchannel. 

The device attempts to initiate a request 
to the channel for an I/O interruption 
whenever it detects any of the following: 

Channel end 
control-unit end 
Device end 
Attention 

The channel combines the above status with 
information in the subchannel and either 
causes an I/O interruption or continues 
command chaining as a function of the 
received status. when command chaining 
takes place, channel end and device end do 
not cause an interruption and are not made 
available. 

The channel creates an interruption 
condition when any of the following 
conditions occurs during command chaining: 

unit check 
unit exception 
Busy indication from device 
Program check 
protection check 

when an operation initiated by command 
chaining is terminated because of an 
unusual situation detected during the 
command initiation seguence, the 
interruption condition may remain pending 
within the channel, or the channel may 
create an interruption condition at the 
device. This interruption condition is 
created at the device only in response to 
presentation of status by the device and 
causes the device subsequently to present 
the same status for interruption purposes. 
The interruption condition at the device 
mayor may not be associated with unit 
status. If the unusual situation is 
detected by the device (unit check or unit 
exception) the unit-status field of the 
associated CSW identifies the condition. 
If the unusual situation is detected by the 
channel, as in the case of program and 
protection check, the identification of the 
error is preserved in the subchannel and 
appears in the channel-status field of the 
associated CSW. 

An interruption condition caused by the 
device may be accompanied by channel and 
other unit status. Furthermore, more than 
one condition associated with the same 
device can be cleared at the same time. As 
an example, when channel end is not cleared 
at the device by the time device end is 
generated, both may be indicated in the csw 
and cleared at the device concurrently. 

However, either prior to or at the time the 
channel assigns highest priority for 
interruptions to an interruption condition 
associated with an operation at the 
subchannel, the channel accepts the status 
from the device and clears the condition at 
the device. The interruption condition and 
the associated status indication are 
subseguently preserved in the subchannel. 
Any subsequent status generated by the 
device is not included when the CSW is 
stored, even if the status is generated 
before the interruption condition is 
cleared. 

When the channel is not working, a device 
that is interruption-pending may attempt to 
initiate a request to the channel for an 
I/O interruption by presenting a nonzero 
status byte to the channel. Depending on 
the channel, some models may accept the 
status into the subchannel. Alterna ti vely, 
some models may signal the device to hold 
the status until the channel is capable of 
causing an interruption. In this case, the 
channel selects the device to obtain the 
status when the interruption occurs. The 
status stored by the channel is the status 
presented by the device at interruption 
time and, because of changed conditions at 
the device, may not be the same status 
presented by the device initially. 
Specifically, a status of zero, busy, or 
busy and status modifier may be stored. 

when the channel detects any of the 
following, it generates an interruption 
condition without necessarily communicating 
with or having received the status byte 
from the device: 

• PCI flag in a CCW 

• Execution of HALT I/O or HALT DEVICE 
on a selector channel 

• Channel-availab Ie interrupti on (CAl) 

• A programming error associated 
the CCW or first IDAW following 
SIOF function 

with 
the 

The interruption conditions from the 
channel, except for CAl, can be accompanied 
by other channel-status indications, but 
none of the device status b its is on when 
the channel initiates the interruption in 
this case. 

Chapter 12. Input/Output Operations 12-53 



The channel-available-interruption (CAl) 
condition is provided on all block­
multiplexer channels and causes the entire 
CSW to be replaced by a new set of bits. 
All fields of the CSW are set to zero. The 
1/0 address stored contains a zero device 
address and a channel address identifying 
the interrupting channel. 

The channel generates the CAl condition if 
it previously had responded with a 
condition code 2 to an 1/0 instruction 
other than HALT 1/0 or HAlT DEVICE and if 
the working state thus indicated no longer 
exists. When the working state which 
caused condition code 2 was due to a 
subchannel busy with a device other than 
the one addressed, the conclusion of the 
working state is not signaled by a CAl. 

Since any other interruption condition 
(except PCI) accomplishes the same fu nction 
as CAl, a CAl condition is reset upon the 
occurrence of any interruption (except PCI) 
on that channel. Some channels also reset 
a CAl condition when another interruption 
condition (except PCI) is cleared by a TEST 
1/0 on the same channel. The occurrence of 
another channel-working state before the 
CAl causes the CAl condition to be 
suspended until the working state ends. 

The CAl is desiqned to inform the program 
that a channel which previously indicated 
busy is no longer busy. The CAl condition 
pending in a channel does not cause the 
rejection of a subseguent START 1/0 or 
START 1/0 FAST RELEASE but does cause a 
condition code 1 to be returned to TEST 
CHANNEL. The CAl can therefore be used as 
a tool for keeping 1/0 reguests in sequence 
by using it in conjuncti~n with TEST 
CHANNEL. A channel which responded with 
condition code 2 because the channel was 
busy does not subsequently respond with a 
condition code 0 to a TEST CHANNEL without 
clearinq an interruption condition in the 
inter im. 

PRIORITY OF INTERRUPTIONS 

Generation of interruption conditions is 
asynchronous to the activity in the CPU, 
and interruption conditions associated with 
more than one 1/0 device can exist at the 
same time. The priority among interruption 
conditions is controlled by two types of 
mechanisms--one establishes the priority 

12-54 System/370 principles of Operation 

among interruption conditions within a 
channel, and another establishes priority 
among interruption conditions from 
different channels. A channel requests an 
1/0 interruption only after it has 
established priority among interruption 
conditions. The status associated with 
interruption conditions is preserved in the 
devices or channels until accepted by the 
CPU. 

Assignment of priority among requests for 
interruption associated with devices on any 
one channel is a function of the type of 
channel, the type of interruption 
condition, and the position of the device 
on the 1/0 interface. A device's position 
on the interface is not related to its 
address. Interruption conditions from 
different devices do not necessarily occur 
in the sequence in which they are 
generated. However, multiple interruption 
conditions for a single device are 
presented in the sequence in which they are 
generated. 

The priorities among reguests for 1/0 
interruptions from different channels 
depend on channel addresses. The 
priorities of channels 1-15 are in the 
order of their addresses, with channel 1 
having the highest priority. The priority 
of byte-multiplexer channel 0 is undefined. 
Its priority may be above, below, or 
between those priorities of channels 1-15. 

An 1/0 interruption can occur only when the 
CPU is enabled for 1/0 interruptions. The 
interruption occurs at the completion of a 
unit of operation. If a channel has 
established the priority among interruption 
conditions, while the CPU is disabled for 
1/0 interruptions, the interruption occurs 
immediately after the completion of the 
instruction enabling the CPU and before the 
next instruction is executed. This 
interruption is associated with the highest 
priority condition for the channel. If 
interruptions are allowed from more than 
one channel concurrently, the interruption 
occurs from the channel having the highest 
priority among those requesting 
interruption. 

If the priority amonq interruption 
conditions has not yet been established in 
the channel by the time the interruption is 
allowed, the interruption does not 
necessarily occur immediately after the 
completion of the instruction enabling the 
CPU. This delay can occur regardless of 
how long the interruption condi ti on has 
existed in the device or the subchannel. 

J 



L' 
1 

The interruption causes the current 
program-status word (PSW) to be stored as 
the old PSW at real storage location 56 and 
causes the CSW associated with the 
interruption to be stored at real storage 
location 64. In EC mode, the channel and 
device causing the interruption are 
identified by the I/O address which is 
stored at real storage locations 186-187. 
In BC mode, the channel and device causing 
the interruption are identified by the I/O 
address in pit positions 16-31 of the I/O 
old PSW. 

If a limited-channel logout is present, it 
is stored at real storage locations 
176-179. 

subsequently, a new PSW is loaded from real 
storage location 120, and processinq 
resumes in the state indicated by this PSW. 
The CSW associated with the interruption 
identifies the interruption condition 
responsible for the interruption and 
provides further details about the progress 
of the operation and the status of the 
device. 

When a number of I/O devices on a shared 
control unit are concurrently executing 

~ operations such as rewinding tape or 
positioning a disk-access mechanism, the 
initial device-end signals generated on 
complet ion of the operations are provided 
in the order of generation, unless command 
chaining is specified for the operation 
last ini tia ted. In the latter case, the 
control unit provides the device-end signal 
for the last initiated operation first, and 
the other signals are delayed until the 
subchannel is freed. Whenever 
interruptions due to the device-end signals 
are delayed because the CPU is disabled for 
I/O interruptions or the subchannel is 
busy, the original order of the signals is 
destroyed. 

CHANNEL-STATUS WORD 

The channel-status word (CSW) provides to 
the program the status of an I/O device or 
the indication of the reasons for which an 
I/O operation has been concluded. The CSi 
is formed, or parts of it are replaced, in 
the process of I/O interruptions and 
possibly during the execution of START I/O, 
START I/O FAST RELEASE, !EST I/O, CLEAR 
I/O, HALT I/O, HALT DEVICE, and STORE 
CHANNEL ID. The CSW is stored at real 
storage location 64 and is available to the 
program at this location until the time the 

next I/O interruption occurs or until 
another I/O instruction causes its contents 
to be replaced, whichever occurs first. 

The information placed in the CSW by an I/O 
interruption pertains to the device which 
is identified by the I/O address stored 
during the interruption. The information 
placed in the CSW by START I/O, START I/O 
FAST RELEASE, TEST I/O, CLEAR I/O, HALT 
I/O, or HALT DEVICE pertains to the device 
addressed by the instruction. 

The CSW has the following format: 

• I .--r----------------------, 
I I I I I 
IKeylOILlcCI CCW Address , , 

o 468 

• 
Uni t 1 Channel 

Status I Status Count 

32 40 48 

31 

63 

The fields in the CSW are allocated as 
follows: 

Subch~n~l ~~X: Bits 0-3 form the access 
key used in the chain of operations at the 
subchannel. 

LoqQ~1 R~nding (1): Bit 5, when one, 
indicates that an I/O instruction cannot be 
executed until a logout has been cleared. 
Bit 45, channel-control check, will always 
be one when bit 5 is one. 

Bits 6 and 7 DeferI,gg ~QQgition ~Qg~ (~~): 
indicate whether situations 
encountered subsequent to the 
condition code 0 for START I/O 
that would have caused a 
condition-code setting for START 
possible setting of these bits, 
meanings, are as follows: 

I 

1 Setting of 
I I 

1 Bit 61Bit , 1 
1 0 1 0 
1 0 I 1 
I 1 I 0 
1 1 1 1 

1 
1 

71 !!eaning 
I 

ha ve been 
setti ng of a 
FAST REL'EASE 

different 
I/O. The 
a nd their 

1 
1 
1 

---l 
1 Normal I/O interruption 1 
IDeferred condition code is 11 
1 (Reserved) I 
1 Deferred condition code is 31 L ____ ~L_ ____ ~ _____________________ __ 

CCi Address: Bits 8-31 form an absolute 
address-that is 8 higher than the address 
of the last CCi used. 

Status: Bits 32-47 identify the status of 
the device and the channel that caused the 
storing of the CSi. Bits 32-39, the unit 
status, indicate situations detected by the 

Chapter 12. Input/Output Operations 12-55 



device or control unit. Bits 40-47, the 
channel status, are provided by the channel 
and indicate situations associated with the 
subchannel. The 16 bits are designated as 
follows: 

32 Attention 
33 status modifier 
34 Control-unit end 
35 Busy 

36 Channel end 
31 Device end 
38 Unit check 
39 unit exception 

40 
41 
42 
43 

44 
45 
46 
47 

Program-controlled interruption 
Incorrect length 
program check 
protection check 

Channel-data check 
Channel-control check 
Interface-control check 
Chaininq check 

Count: Bits 48-63 form the residual count 
for~he last ccw used. 

UNIT STATUS 

The followinq status indications are 
qenerated by the I/O device or control 
unit. The timing and causes of these 
status indications for each t.ype of device 
are specified in the Sl publication for the 
device. 

When the I/O device is accessible from more 
than one channel, status due to 
channel-initiated operations is siqnaled to 
the channel that initiated the associated 
I/O operation. The handling of status not 
associated with I/O operations, such as 
attention, unit exception, and device end 
because of transition from the not-ready to 
the ready state, depends on the type of 
device and situation and is specified in 
the SL publication for the device. (See 
"Device End" in this chapter.) 

Attention is signaled when the device 
detects an asynchronous condition that is 
significant to the program. The condition 
may also be described by other status 
indications that accompany attention. 
Attention is interpreted by the program and 
is not associated with the initiation, 

12-56 System/370 principles of Operation 

execution, 
operation. 

or conclusion of an I/O 

The device can signal attention to the 
channel when no operation is in prog ress at 
the I/O device, control unit, or 
subchannel. Attention can be signaled with 
device end upon cOllpletion of an operation, 
and it c:an be signaled to the channel 
during the initiation of a new I/O 
operation. Attention along with device end 
and unit exception can also be siqnaled 
whenever a device changes from the 
not-ready to the ready state. The handlinq 
and presentation of attention to the 
channel depends on the type of device. 

When the device signals attention durinq 
the initiation of an operation, the 
operation is not initiated. !l.ttention 
causes command chaining to be suppressed. 

An I/O device may present attention 
accompanied by device end and unit 
exception when a not-ready-to-ready-state 
transition is siqnaled. (See "Device End" 
in this chapter. 

Status modifier is generated by the device 

J 

when the cLevice cannot provide its current 
status in response to TEST I/O, when the ~ 
control unit is busy, when the normal 
sequence of commands has to be modified, or 
when command retry is to be initiate~. 

When status modifier is siqnaled in 
response to TEST I/O and status modifier is 
the only status bit that is set to one, 
this indic:ates that the device is unable to 
execute the function specified by the 
instructi()n and has not provided its 
current status. The interrUPtion 
condition, which may be pending at the 
device or subchannel, has not been cleared, 
and the CSW stored by TEST I/O contains 
zeros in the subchannel-key, CCW-address, 
and count fields. 

When the status-modifier bit in the CSW is 
set to one together with the busy bit, it 
indicates that the busy status pertains to 
the control unit associated with the 
addressed I/O device. The control unit 
appears busy when it is executing a type of 
operation that precludes the acceptance and 
execution of any command or the 
instructi()ns TEST I/O, HALT I/O, and HALT 
DEVICE or when it contains an interruption 
condition for a device other than the one 
addressed. The interruption condition may 
be due to control-unit end, due to channel 
end following the execution of CLEAR I/O, \ 
or, on thE! selector channel, due to channel ,.." 
end following the execution of HALT I/O or 



HALT DEVICE. The busy state occurs for 
operations such as backspace file, in which 
case the control unit remains busy after 
providing channel end, for operations 
concluded by CLEAR I/O, and for operations 
concluded on the selector channel by HALT 
1/0 or HALT DEVICE, and temporarily occu rs 
on the 2702 Transmission Control after 
initiation of an operation on a device 
accommodated by the control unit. A 
control unit accessible from two or more 
channels appears busy when it is 
communicating with another channel. 

Presence of status modifier and device end 
means that the normal sequence of commands 
must be modified. The handling of this 
statns combination by the channel depends 
on the operation. If command chaininq is 
specified in the current ccw and no unusual 
situations have been detected, presence of 
status modifier and device end causes the 
channel to fetch and chain to the CCW whose 
storage address is 16 higher than that of 
the current CCW. If the I/O device signals 
status modifier at a time when no command 
chaining is specified, or when any unusual 
situations have been detected, no action is 
taken in the channel, and the 
statUs-modifier bit and any other status 
bits presented by the device are set to 
ones in the CSW. 

status modifier is set to one in 
combination with unit check and channel end 
to initiate the command-retry procedure. 

Control units that recognize special 
conditions that must be brought to the 
attention of the proqram present status 
modifier alonq with other status 
indications in order to modify the meaning 
of tht status. The status presented is 
unrelated to the execution of an 1/0 
operat ion. 

Control-unit end indicates that the control 
unit has become available for use for 
another operation. 

Control-unit end is provided only by 
control units shared by I/O devices or 
control units accessible by two or more 
channels, and only when one or both of the 
following have occurred: 

1. The proqram had previously caused the 
control unit to be interrogated While 
the control unit was in the busy 
state. The control unit is considered 
to have been interroqated in the busy 
state when a command or the 
instructions START I/O, START I/O FAST 
RELEASE (when not executed 

independently of the device), TEST 
I/O, HALT I/O, or HALT DEVICE had been 
issued to a device on the con trol 
unit, and the control unit had 
responded with busy and status 
modifier in the unit-status byte. See 
the section "status Modifier" earlier 
in this chapter. 

2. The control unit detected an unusual 
condi tion during the porti on of the 
operation after channel end had been 
signaled to the channel. The 
indication of the unusual situation 
accompanies control-unit end. 

If the control unit remains busy with the 
execution of an operation after siqnalinq 
channel end but has not detected any 
unusual situations and has not been 
interrogated by the program, control-unit 
end is not generated. Similarly, 
control-unit end is not provided when the 
control unit has been interrogated and 
could perform the indicated function. The 
latter case is indicated by the absence of 
busy and status modifier in the response to 
the instruction causing the interrogation. 

When the busy state of the control unit is 
temporary, control-unit end is included 
with busy and status modifier in response 
to the interrogation even thouqh the 
control unit has not yet been freed. The 
busy condition is considered to be 
temporary if its duration is commensurate 
with the program time required to handle an 
I/O interruption. The 2702 Transmission 
Control is an example of a device in which 
the control unit may be busy temporarily 
and which includes control-unit end with 
busy and status modifier. 

control-unit end can be siqnaled with 
channel end, with device end, or between 
the two. Control-unit end may be siqnaled 
at other times and may be accompanied by 
other status bits. When control-unit end 
is siqnaled by means of an I/O interruption 
in the absence of any other status, the 
interruption may be identified by any 
address assigned to the control unit. A 
control-unit end may cause the control unit 
to appear busy for the initiation of new 
operations with any attached device. 
Alternatively, a control-unit end may be 
assigned by the control unit to a specific 
device address, and only that device would 
appear busy for the initiation of new 
operations. 

BUSY indicates that the 
control unit cannot execute 
instruction because (1) it 

I/O device or 
the command or 

is executing a 

Chapter 12. Input/Output Operations 12-57 



previously initiated operation, (2) it 
contains an interruption condition, (3) it 
is shared by channels or I/O devices and 
the shared facility is not available, or 
~) a self-initiated function is being 
performed. The status associated with the 
interruption condition for the addressed 
device, if any, accompanies the busy 
status. If busy applies to the control 
unit, busy is accompanied by status 
modifier. 

12-58 system/370 principles of Operation 

The figure "Indications of Busy in CSW" 
lists the situations for devices connected 
to only one channel when the busy bit is 
set to one in the csw and when busy is 
accompanied by status modifier. For 
devices shared by more than one channel, 
operations related to one channel may cause 
the control unit or device to a ppea r busy 
to the other channels. 



I 
I 
I 

CSW Status Stored by 

SIO orl I HIO orl I/O 
I Condition SIOF¢ I TIO ICLRIO+ HDV IRPT# 
r--- --+------~I------,r_----+_-----1 

I 
I 

Subchannel available 
DE or attention in device 
Device working, CU available 

CU end or channel end in CU: 
for the addressed device 
for another device 

CU working 
Interruption condition in 

subchannel for the addressed 
device because of: 
chaining terminated by busy 
other type of termination 
asynchronous statusm 

Sub channel working 
CU available 
CU working 

B,cl 
B 

B,cl 
& 

B,SM 

* 
* B,cl 

* 
* 

NB,cl 
B 

NB,cl 
$ 

B,SM 

B,cl 
NB,cl 
NB,cl 

* 
* 

* 
* 
NB 
NB 
NB 

NB,cl 
NB,cl 
NB,cl 

NB 
NB 

* 
* 
* 
* 
* 

* 
* 
* 
NB 

B,SM 

NB,cl 
m 

NB,cl 
NB,cl 
B,SM 

B,cl 
NB,cl 
NB,cl 

* 
* ______________________________ . __ L-__ ----L ________ L-_____ .~ ____ ~ ______ ~ 

B Busy bit in CSW is onE. 

cl Interruption condition cleared; status is placed in CSW. 

CU Control unit. 

DE Device end. 

NB Busy bit is zero. 

SM Status-modifier bit appears in CSW. 

* CSW not stored, or I/C interruption cannot occur. 

¢ When a channel executes START I/O FAST RELEASE as START I/O, the csw 
status stored for the two instructions is identical. When START I/O 
FAST RELEASE is executed independently of the device, the same status 
is stored DY an I/O interruption with the CSW also indicating 
deferred condition code 1. 

& Either a CSW is not stored or busy and status modifier are stored. 

$ unit status of either zeros or busy and status modifier is stored. 

m unit status of busy may be stored or an I/O interruption may not 
occur. 

Asynchronous status is any unit status that is not 
termination of an I/O operation at the subchannel. 

related to the 

I # 
I 

Except when the I/O interruption is caused by a deferred condition 
code 1 for START I/O FAST RELEASE. 

I 
I + The entries in this column apply 
I executed. When CLEAR I/O causes 
I entries in the TIO column apply. L----______________________ _ 

Indications of Busy in CSW 

only when the CLRIO function is 
the TIO function to be executed, the 

Chapter 12. Input/Output Operations 12-59 



Channel end is caused ty the completion of 
the port ion of an 1/0 operat ion involving 
transfer of data or control information 
between the 1/0 device and the channel. 
The condition indicates that the subchannel 
has become available for use for another 
operation. 

Each 1/0 operation initiated at the device 
causes channel end to be signaled, and 
there is only one channel end for an 
operation. Channel end is not signaled 
when programming errors or equipment 
malfunctions are detected during initiation 
of the operation. When cowmand chaining 
takes place, only the channel end of the 
last operation of the chain is made 
available to the program. Channel end is 
not made available to the program when a 
chain of commands is prematurely concluded 
because of an unusual situation indicated 
with control-unit end or device end or 
during the initiation of a chained command. 

The instant within an I/O operation when 
channel end is signaled depends on the 
operation and the type of device. For 
operations such as writing on magnetic 
tape, channel end occurs when the block has 
been written. On devices that verify the 
writing, channel end mayor may not be 
delayed until verification is performed, 
depending on the device. When magnetic 
tape is being read, channel end occurs when 
the gap on tape reaches the read-write 
head. On devices equipped with buffers, 
channel end occurs upon completion of data 
transfer between the channel and the 
buffer. During control operations, channel 
end is generated when the control 
information has been transferred to the 
devices, although for short operations 
channel end may be delayed until completion 
of the operation. Operations that do not 
cause any data to be transferred can 
provide channel end during the initiation 
sequence. 

Channel end in the control unit may cause 
the control unit to appear busy for the 
initiation of new operations. 

Channel end is presented in combination 
with status modifier and unit check to 
initiate the command-retry procedure. 

Device end is indicated (1) when the 
completion of an I/O operation occurs at 
the device, (2) when the 1/0 device signals 
that a chanqe from the not-ready to the 
ready state has occurred, (3) when the 

12-60 System/370 principles of Operation 

termination of an activity has occurred 
which previously caused a response of busy 
to the channel, and (4) when the I/O device 
signals that an asynchronous condition has 
been recognized. Device end normally 
indicates that the I/O device has become 
available for use in another operation. 

Each I/O operation initiated at the device 
causes device end, and there is only one 
device end for an operation. Device end is 
not generated when any programming or 
equipment malfunction is detected during 
initiation of the operation. When command 
chaining takes place, only the device end 
of the last operation of the chain is made 
available to the program unless an un usual 
condition is detected during the ini tia tion 
of a chained command, in which case the 
chain is concluded without device end. 

Device end associated with an 1/0 operation 
is generated either simultaneously with 
channel end or later. For data-transfer 
operations on some 1/0 devices, the 
operation is complete at the time channel 
end is generated, and both device end and 
channel end occur together. The time at 
which device end is presented depends upon 
the I/O device type and the kind of command 
executed. For most I/O devices, device end 
is presented when the I/O operation is 
completed at the I/O device. In some 
cases, for reasons of performance, device 
end is presented before the 1/0 operation 
has actually been completed at the I/O 
device. However, in all cases, when device 
end is presented, the I/O device is 
available for execution of an immediately 
following CCw if command chaini ng was 
specified in the previous CCW. During 
execution of control commands, device end 
may be presented with channel end or later. 

When command chaining is specified, receipt 
of the device-end signal, in the absence of 
any unusual situations, causes the channel 
to initiate a new I/O operation. 

When the state of a device is changed from 
not ready to ready, either device end or 
device end, attention, and unit exception 
are indicated. Refer to the SL manual for 
the 1/0 device to determine which 
indication is given. 

A device is considered to be not-ready when 
operator intervention is required in order 
to make the device ready. A not-ready 
condition can occur, for example, because 
of any of the following: 

1. An unloaded condition for magnetic 
tape 

2. Card equipment out of cards or with 
the stacker full 

3. A printer out of paper 



q. Error conditions that need operator 
intervention 

5. The unit having changed from the 
enabled to the disabled state 

Device end is also accompanied by other 
status where conditions are recognized that 
are unrelated to the execution of an I/O 
operation. 

Unit check indicates that the I/O device or 
control unit has detected an unusual 
situation that is detailed by the 
information available to a sense command. 
Unit check may indicate that a programming 
or equipment error has beEn detected, that 
the not-ready state of the device has 
affected the execution of the command or 
instruction, or that an exceptional 
situation other than the one identified by 
unit exception has occurred. The 
unit-check bit provides a summary 
indication of the sense data. 

An error causes the unit-check indication 
when it occurs during the execution of a 
command or TEST I/O, or during some 
activity associated with an I/O operation. 
Unless the error pertains to the activity 
initiated by a command and is of immediate 
significance to the program, the error does 
not cause the program to be alerted after 
device end has been cleared; a malfunction 
may, however, cause the device to become 
not ready. 

Unit check is indicated when the existence 
of the not-ready state precludes a 
satisfactory execution of the command, or 
when the command, by its nature, tests the 
state of the device. When no interruption 
condition is pending for the addressed 
device at the control unit, the control 
unit signals unit check when TEST I/O or 
the no-operation control command is issued 
to a not-ready device. In the case of 
no-operation, the command is rejected, and 
channel end and device end do not accompany 
unit check. 

Unless the command is designed to cause 
unit check, such as rewind and unload on 
magnetic tape, unit check is not indicated 
if the command is properly executed even 
though the device has become not ready 
during or as a result of the operation. 
Similarly, unit check is not indicated if 
the command can be executed with the device 
not ready. Selection of a device that is 
not ready does not cause a unit check when 
the sense command is issued or when an 
interruption condition is pending for the 
addressed device at the control unit. 

If the device detects during the initiation 
seguence that the command cannot be 
executed, unit check is signaled to the 
channel without channel end, control-unit 
end, or device end. Such unit status 
indicates that no action has been taken at 
the device in response to the command. If 
the situation precluding proper execution 
of the operation occurs after execution has 
been started, unit check is accompanied by 
channel end, control-unit end, or device 
end, depending on when the situation was 
detected. Any errors associated with an 
operation, but detected after device end 
has been cleared, are indicated by 
signalinq unit check with attention. 

Errors, such as invalid command code or 
invalid command-code parity, do not cause 
unit check when the device is workinq or 
contains an interruption condition at the 
time of selection. Under these 
circumstances, the device responds by 
providing busy status and indicatinq the 
interruption condition, if any. The 
command-code invalidity is not indicated. 

concluding an operation with the unit-check 
indication causes command chaining to be 
suppressed. 

Unit check is presented in combination with 
channel end and status modifier to initiate 
the command-retry procedure. 

1. If a device becomes not ready upon 
completion of a command, the ending 
interruption condition can be cleared 
by TEST I/O without generation of unit 
check due to the not-ready state, but 
any subsequent TEST I/O issued to the 
device causes a unit-check indication. 

2. In order that sense indications set in 
conjunction with unit check are 
preserved by the device until 
requested by a sense command, some 
devices inhibit certain functions 
until a command other than test I/O or 
no-operation is received. 
Furthermore, any command other than 
sense, test I/O, or no-operation 
causes the device to reset any sense 
information. To avoid dearadation of 
the cevice and its control unit and to 
avoid inadvertent resetting of the 
sense information, a sense command 
should be issued immediately to any 
device signaling unit check. 

3. Unit-check status presented either in 
the absence of or accompanied by other 
status indicates only that sense 
information is available to the basic 

Chapter 12. Input/Output Operations 12-61 



sense command. Presentation of either 
channel end and unit check or channel 
end, device end, and unit check does 
not provide any indication as to the 
kind of conditions encountered by the 
control unit, the state of the I/O 
device, or whether execution of the 
I/O operation ever was initiated. 
Descriptions of these conditions or 
states are provided in the sense 
information. 

Unit exception is caused when the I/O 
device detects a situation that usually 
does not occur. Unit exception includes 
situations such as recognition of a tape 
mark and does not necessarily indicate an 
error. During execution of an I/O 
operation, unit exception has only one 
meaning for any particular command and type 
of device. 

unit exception may be generated when the 
device is executing an I/O operation, or 
when the device is involved with some 
activity associated with an I/O operation 
and the condition is of immediate 
significance to the program. If the device 
detects during the initiation seguence that 
the operation cannot be executed, unit 
exception is presented to the channel and 
appears without channel end, control-unit 
end, or device end. Such unit status 
indicates that no action has been taken at 
the device in response to the command. If 
the condition precluding normal execution 
of the operation occurs after the I/O 
operation has been initiated, unit 
exception is accompanied by channel end, 
control-unit end, or device end, depending 
on when the situation was detected. Any 
unusual condition associated with an I/O 
operation, but detected after device end 
has been cleared, is indicated by signaling 
unit exception with attention. 

If the I/O device responds with busy status 
to a command, the generation of unit 
exception is suppressed even when execution 
of that command usually causes unit 
exception to be indicated. 

Concludinq an operation with the 
unit-exception indication causes command 
chaining to be suppressed. 

exception 
attention 

from the 
state. (See 

Some devices present unit 
accompanied by device end and 
whenever a device changes 
not-ready state to the ready 
"Device End" in this chapter.) 

12-62 System/370 Principles of Operation 

CHANNEL STATUS 

The following status bits are generated by 
the channel. Except for the status bits 
resulting from equipment malfunction, they 
can occur only while the subchannel is 
involved with the execution of an I/O 
operation. 

Program-Controlled Interruption 

A program-controlled interruption occurs 
when the channel fetches a CCW with the 
program-controlled-interruption (PCI) flag 
set to one. The I/O interruption due to 
the PCI flag takes place as soon as 
possible after the CCW takes control of the 
operation but maybe delayed an 
unpredictable amount of time because I/O 
interruptions are disallowed or because of 
other activity in the system. 

The interruption condition due to 
flag does not affect the progress 
I/O operation. 

the PCI 
of the 

Incorrect length occurs when the number of 
bytes contained in the storage areas 
assigned for the I/O operation is not equal 
to the number of bytes requested or offered 
by the I/O device. Incorrect length is 
indicated for one of the following reasons: 

Long ~12£~ Qll InE~1: During a read, 
read-backward, or sense operation, the 
device attempted to transfer one or more 
bytes to storage after the assigned storage 
areas were filled. The extra bytes have 
not been placed in storage. The count in 
the CSW is zero. 

Long ~lock Q!! Qutp~.!: During a write or 
control operation, the device requested one 
or more bytes from the channel after the 
assigned storage areas were exhausted. The 
count in the CSW is zero. 

ShQrt !n2£~ 2!! Inpu!: 
transferred during a 
or sense operation is 
the storage areas 
operation. The count 
zero. 

The number of bytes 
read, read-backward, 
insufficient to fill 
assigned to the 
in the CSW is not 

Sho!:! BI.9£~ on QutE.!:!.!: The device 
terminated a write or control operation 
before all information contained in the 
assigned storage areas was transferred to 
the device. The count in the CSW is not 
zero. 

J 

J 

J 



Incorrect length is not indicated when the 
current CCW has the SLI flag set to one and 
the CD flaq set to zero. The indication 
does not occur for immediate operations and 
for operations rejected during the 
initiation sequence. 

When incorrect length occurs, command 
chaining is suppressed, unless the SLI flag 
in the CCW is one or unless the operation 
is immediate. See the figure "Channel­
Chaining Action" in this chapter for the 
effect of the CD, CC, and SLI flags on the 
indication of incorrect length. 

The setting 
unpredictable 
CLEAR I/O. 

of incorrect length is 
in the CSW stored durinq 

proqram check occurs when programming 
errors are detected by the channel. 
proqram check can be due to the following 
causes: 

Inn!ig ~~~-Addrgss ~~cifiq1ion: The CAW 
or the transfer-in-channel command does not 
designate the CCW on inteqral boundaries 
for doublewords. The three rightmost bits 
of the CCW address are not zeros. 

In!~lig ~~] Add~~: The channel has 
attempted to fetch a CCW from a storage 
location which is not available to the 
channel. An invalid CCW address can occur 
in the channel because the program has 
specified an invalid address in the CAW or 
in the transfer-in-channel command or 
because on chaining the channel has 
attempted to fetch a CCW from an 
unavailable location. 

Inyg!ig ~Q~~n£ ~Q£~: The command code in 
the first CCW designated by the CAW or in a 
CCW fetched on command chaining has four 
low-order zeros. The command code is not 
tested for validity during data chaining. 

Invalid count: A CCW other than a ccw 
specIfying-transfer in channel contains the 
value zero in bit positions 48-63. 

Inva!ig 1~1W-!ddres~ ~Eecification: Channel 
indirect data addressing is specified, and 
the data address does not designate the 
first IDAW on an integral word boundary. 

, Invalid IDAW Add~§~~: The channel has 
~ attempted-to- fetch an IDAW from a storaqe 

location which is not available to the 

channel. An invalid IDAW address can occur 
in the channel because the program has 
specified an invalid address in a CCW that 
specifies indirect data addressing or 
because the channel, on sequentially 
fetching IDAWs, has attempted to fetch from 
an unavailable location. 

Invali£ ~~1g Addr§~~: The channel has 
attempted to transfer data to or from a 
storage location which is not available to 
the channel. An invalid data address can 
occur in the channel because the program 
has specified an invalid address in the 
CCi, or in an IDAW, or because the channel, 
on sequentially accessing storage, has 
attempted to access an unavailable 
location. 

In!~li£ 1~!! ~E§cificatiQ'!!: Bits 0-7 of 
the IDAW are not all zeros, or the second 
or subsequent IDAW does not specify the 
first or, for read-backward operations, the 
last byte of a 2,048-byte storaqe block. 

Invalid ~!! Format: The CAW does not 
contain zeros in bit positions 4-7. 

Invalid CCW Format: A CCW other than a CCW 
specIfyinq- transfer in channel does not 
contain zeros in bit positions 38-39. 

Invalid Se~§nce: The first CCW designated 
by the CAW specifies transfer in channel, 
or the channel has fetched two successive 
ccws both of which specify transfer in 
channel. 

Detection of program check during the 
initiation of an operation causes execution 
of the operation to be suppressed. When 
program check is detected after the 
operation has been initiated at the device, 
the device is signaled to conclude the 
operation the next time it requests or 
offers a byte of data. Program check 
causes command chaining to be suppressed. 

Protection Check 

Protection check occurs when the channel 
attempts a storage access that is 
prohibited by key-controlled storage 
protection. Protection applies to the 
fetching of CCWs, IDAWs, and output data, 
and to the storing of input data. Storage 
accesses associated with each channel 
program are performed using the subchannel 
key provided in the CAW associated with 
that channel program. For details, see the 
sec tion "Key-Controlled Protection" in 
Chapter 3, "Storage." 

When protection check occurs durinq the 
fetching of a CCW that specifies the 
initiation of an I/O operation, or occurs 

Chapter 12. Input/Output Operations 12-63 



during the fetching of the first IDAW, the 
operation is not initiated. When 
protection check is detected after the 
operation has been initiated at the device, 
the device is siqnaled to conclude the 
operation the next time it requests or 
offers a byte of data. Protection check 
causes command chaining to be suppressed. 

Channel-data check indicates that a machine 
error has ~een detected in the information 
transferred to or from storage durinq an 
I/O operation, or that a parity error has 
been detected on the data on bus-in during 
an input operation. This information 
includes the data read or written, as well 
as the information transferred as data 
during a sense or control operation. The 
error may have been detected in the 
channel, in storaqe, or on the path between 
the two. Channel-data check may be 
indicated for data with an invalid 
checking-block code in storaqe when the 
data is referred to by the channel but the 
data does not participate in the operation. 

Whenever a parity error on I/O input data 
is indicated by means of channel-data 
check, the channel forces correct parity on 
all data received from the I/O device, and 
all data placed in storage has valid 
checking-block code. When, en an input 
operation, the channel attempts to store 
less than a complete checking block, and 
when invalid checkinq-block code is 
detected on the checking block in storaqe, 
the contents of the location remain 
unchanqed with invalid checking-block code. 
On an output operation, whenever a 
channel-data check is indicated, all bytes 
that came from a checking block with 
invalid checkinq-block code have been 
transmitted with parity errors. 

Channel-data check causes command chaining 
to be suppressed but does not affect the 
execution of the current operation. Data 
transfer proceeds to normal completion, if 
possible, and an interruption condition is 
generated when the device presents channel 
end. A loqout may be performed, depending 
on the channel. Accordingly, the detection 
of the error may affect the state of the 
channel and the device. 

Channel-control check is caused by machine 
malfunction affecting channel controls. It 
may be caused by invalid checking-block 

12-64 system/370 Principles of operation 

code on CCW and data addresses and invalid 
checking-block code on the contents of the 
CCW. Channel-control check may also \ 
include those channel-detected errors ..., 
associated with data transfer that are not 
indicated as channel-data check, as well as 
those I/O interface errors detected by the 
channel that are not indicated as 
interface-control check. Errors 
responsible for channel-control check may 
cause the contents of the CSW to be invalid 
and conflicting. The CSW as generated by 
the channel has valid checking-block code. 

Detection of channel-control check causes 
the current operation, if any, to be 
immediately concluded. 

Channel-control check is set whenever CSW 
bit 5, logout pending, is set to one. 

In some situations, machine malfunctions 
affecting channel control may insteao be 
reported as an external-damage or 
system-damage machine-check condi tion. 

Interface-control check indicates that an 
invalid signal has been received by the 
channel when communicating with a control J. 
unit or device. This check is detected by 
the channel and usually indicates 
malfunctioning of an I/O device. It can be 
due to the following: 

1. The address or status byte received 
from a device has invalid parity. 

2. A dE~vice responded with an address 
other than the address specified by 
the channel during initiation of an 
operation. 

3. During command chaininq the device 
appeared not operational. 

4. A signal from a device occurred at an 
invalid time or had invalid duration. 

5. A device siqnaled I/O error alert. 

The interface-control-check condi ti on may 
also include those channel-detected errors 
associated with bus-in during data transfer 
that are not indicated as channel-data 
check. 

Detection of interface-control check causes 
the current operation, if any, to be 
immediately concluded. 



Chaining check is caused by channel overrun 
during data chaining on input operations. 
Chaininq check occurs when the I/O data 
rate is too hiqh to be handled by the 
channel and by storaqe under current 
conditions. Chaining check cannot occur on 
output operations. 

Chaining check causes the I/O device to be 
siqnaled to conclude the operation. It 
causes command chaining to be suppressed. 

CONTENTS OF CHANNEL-STATUS WORD 

The contents of the CSW depend on the 
reason the CSW was stored and on the 
programming method by which the information 
is obtained. The status portion always 
identifies the reason the CSW was stored. 
The subchannel-key, CCW-address, and count 
fields may contain information pertaining 
to the last operation or may be set to 
zero, or the oriqinal contents of these 
fields at location 64 may be left 
unchanqed. 

Interruption conditions resulting from the 
execution or conclusion of an operation at 
the subchannel cause the whole csw to be 
replaced. Such a CSW can re stored only by 
an I/O interruption or by TEST I/O or CLEAR 
I/O. Except for situations associated with 
command chaining and eguipment 
malfunctioning, the storinq can be caused 
by PCI or channel end and by the execution 
of HALT I/O or HALT DEVICE on the selector 
channel. The contents of the CSW are 
related to the current values of the 
corresponding quantities, althouqh the 
count is unpredictable after program check, 
protection check, and chaining check, and 
after an interruption due to the PCl flaq. 

A CSW stored upon the execution of a chain 
of operations pertains to the last 
operation which the channel executed or 
attempted to initiate. Information 
concerning the preceding operations is not 
preserved and is not made available to the 
program. 

When an unusual situation causes command 
chaininq to be suppressed, the premature 
conclusion of the chain is not explicitly 
indicated in the CSW. A CSW associated 
with a conclusion due to a situation 
occurring at channel-end time contains 
channel end and identifies the unusual 

situation. When the device signals the 
unusual situation with control-unit end or 
device end, the channel-end indication is 
not made available to the program, and the 
channel provides the current subchannel 
key, CCW address, and count, as well as the 
unusual indication, with control-unit end 
or device end in the CSW. The CCw-address 
and count fields pertain to the operation 
that was executed. 

When the execution of a chain of commands 
is concluded by an unusual situation 
detected during initiation of a new 
operation, the CCW-address and count fields 
pertain to the rejected command. Except 
for situations resulting from equipment 
malfunctioning, conclusion at initiation 
time can occur because of attention, unit 
check, unit exception, or program check, 
and causes both the channel-end and 
device-end bits in the CSW to be set to 
zeros. 

A csw associated with status siqnaled after 
the operation at the subchannel has been 
concluded contains zeros in the subchannel­
key, CCW-address, and count fields, 
provided the status is not cleared durinq 
START I/O or START I/O FAST RELEASE and 
provided loqout pending is not indicated. 
This status includes attention, 
control-unit end, and device end (and 
channel end when it occurs after the 
conclusion of an operation on the selector 
channel by HALT I/O or HALT DEVICE). 

When the above status indications, other 
than logout pending, are cleared durinq 
START I/O or START I/O FAST RELEASE, only 
the status portion of the CSi is ston'd, 
and the original contents of the 
subchannel- ke y, CCw-add ress, 
deferred-condition-code, logout-pendinq, 
and count fields in location 611 are 
preserved. Similarly, only the status bits 
of the CSW are changed when the command is 
rejected or the operation at the subchannel 
is concluded during the execution of START 
I/O or START I/O FAST RELEASE or whenever 
HALT I/O or HALT DEVICE causes CSW status 
to be stored. 

Errors detected during execution of the I/O 
operation do not affect the validity of the 
CSW unless channel-control check or 
interface-control check are indicated. 
Channel-control check indicates that 
equipment errors have been detected which 
can cause any part of the CSW, as well as 
the I/O address, to be invalid. 
Interface-control check indicates that the 
address identifying the device or the 
status bits received from the device may be 
invalid. The channel forces correct parity 
on invalid CSW fields. The validity of 
these fields can be ascertained by 
inspectinq the limited channel loqout. 

Chapter 12. Input/Output Operations 12-65 



When any 1/0 instruction cannot be executed 
because of a pendinq logout which affects 
the operational capability of the channel 
or subchannel, a full CSW is stored. The 
fields in the csw are all set to zeros, 
with the exception of the logout-pending 
bit and the channel-control-check bit, 
which are set to ones. 

A CSW stored to reflect the progress of an 
operation at the subchannel contains the 
subchannel key used in that operation. The 
contents of this field are not affected by 
programming errors detected by the channel 
or by the situations causing termination of 
the operation. 

12-66 system/370 principles of Operation 

When the CSW is formed to reflect the 
progress of the I/O operation at the 
subchannel, the CCW address is normally 8 
higher than the address of the last ccw 
used in the operation. 

The figure "Contents of the CCW-Address 
Field in the CSW" lists the contents of the 
CCW-address field for all situations that 
can cause the CSW to be stored. They are 
listed in order of priority; that is, if 
two sit1lations occur, the CSW appears as 
indicated for the situation higher on the 
list. When a CSW has been stored and the 
situation exists that a command-retry 
request has been recognized but the CCW has 
not been re-executed, the "last-used COl + 
8" is the ccw that is to be retried. 



r--
I Situations 
r----------------------

Channel-control check 
Status stored by START I/C or 

START I/O FAST RELEASE 
Status stored by HA LT I/O or 

HALT DEVICE 
Invalid CCW-address spec in 

transfer in channel (TIC) 
Invalid CCW address in TIC 
Invalid CCW address generated 
Invalid command code 
Invalid count 
Invalid data address 
Invalid CCW format 
Invalid sequence - 2 TICs 
Invalid key on CCil fetch 
Invalid key on data or IDAW 

access 
Chaininq check 
Termination under count control 
Termination bV I/O device 
Termination by HALT I/O 
Termination by CLEAR I/O 
suppression of command 

chaining due to unit check 
or unit exception with de­
vice end or control-unit end 

Termination on command 
chaininq by busy, unit 
check, or unit exception 

Deferred condition code 1 or 3 

PCI flaq in CCil 
Interface control check 
Channel end after HALT I/O 

on selector channel 
Channel end after CLEAR I/C 
Control-unit end 
Device end 
Attention 
BUsy 
Status modifier 

Contents of Field 

Un predictable 
Unchanged 

Unchanged 

Address of TIC + 8 

Address of TIC + 8 
First invalid CCil address + 8 
Address of invalid CCW + 8 
Address of invalid CCil + 8 
Address of invalid CCil + 8 
Address of invalid CCil + 8 
Address of second TIC + 8 
Address of protected ceil + 8 
Address of current ceil + 8 

Address of last-used CCW 
Address of last-used CCil 
Address of last-used CCil 
Address of last-used CCW 
Address of last-used CCW 
Address of last eCil used 
the completed operation 

Address of CCil specifying 
the new operation + 8 

Address of ceil specifying 

+ 8 
+ 8 
+ 8 
+ 8 
+ 8 
in 
+ 8 

the new operation + 8 
Address of last-used CCil + 8 
Unpredictable 
Zero 

Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

Contents of the CCil-Address Field in the CSil 

The residual count, in con junction with the 
original count specified in the last CCil 
used, indicates the number of bytes 
transferred to or from the area designated 
by the CCil. When an input operation is 
concluded, the difference between the 
original count in the CCW and the residual 
count in the csw is equal to the number of 
bytes transferred to storage; on an output 

operation, the difference is equal to the 
number of bytes transferred to the I/O 
dev ice. 

The figure "Contents of the Count Field in 
the CSW" lists the contents of the coun t 
field for all situations that can cause the 
CSil to be stored. They are listed in the 
order of priority; that is, if two 
situations occur, the csw appears as for 
the situation higher on the list. 

Chapter 12. Input/Output Operations 12-67 



r------------------------·-----------,----------------------------------, 
I situations 
~ 
Channel-control check 
status stored by START l/C or 

START I/O FAST RELEASE 
Status stored by HALT I/O or 

HALT DEVICE 
Program check 
protection check 
Chaining check 
Termination under count control 
Termination by I/O device 
Termination by HALT I/C or 

HALT DEVICE 
Termination by CLEAR I/O 
suppression of command 

chaining due to unit check 
or unit exception with device 
end or control-unit end 

Termination on command chaining 
by busy, unit check, or unit 
exception 

Deferred condition code 1 or 3 

PCI flag in CCI 
Interface-control check 
Channel end after HALT I/C 

on selector channel 
Channel end after CLEAR I/C 
Control-unit end 
Device end 
Attention 
BUsy 
status modifier 

L...--____ _ 

I Contents of Field 
I 
Unpredictable 
Unchanged 

Unchanged 

Unpredictable 
Unpredictable 
Unpredictable 
Correct 
Correct 
Unpredictable 

Unpredictable 
Correct. Residual count of last 

CCI used in the completed 
operation. 

Correct. original count of 
eCI specifying the new 
operation. 

Correct. Original count of CCW 
specifying the new operation. 

Unpredictable 
Unpredictable 
Zero 

Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

Contents of the Count Field in the CSW 

The status bits identify the situations 
that have been detected during the I/O 
operation, that have caused a command to be 
rejected, or that have been generated by 
external events. 

If the CCW fetched on command chaining has 
the PCI flag set to one but a programming 
error in the contents of the CCI precludes 
the initiation of the' operation, it is 
unpredictable whether the PCI bit is one in 
the csw associated with the int<:!rruption 
condition. Similarly, if a programming 
error in the contents of the CCW causes the 
command to be rejected dUring execution of 
START I/O or START I/O FAST RELEASE, the 
CSW stored by the instruction mayor may 
not have the PCl bit set to one. 
Furthermore, when the channel detects a 
programming error in the CAW or in the 
first CCI, the PCI bit is unpredictable in 
a CSI stored by START I/O or START I/O FAST 
RELEASE even when the PCI flag is zero in 
the first CCW associated with the 
instruction. 

However, if the CCI fetched on command 
chaining has the PCI flag set to one but an 
unusual situation detected by the device 
precludes the ini tia tion of the operation, 
the PCI bit is one in the CSW associated 

J 

J 

When the channel detects several errors, 
all corresponding status bits in the CSW 
may be set to ones or only one may be set, 
depending on the error and model. Errors 
associated with equipment malfUnctioning 
have precedence, and whenever 
malfunctioning causes an operation to be 
terminated, channel-control check, 
interface-control check, or channel-data 
check is indicated, depending on the error. 
When an operation is concluded by proqram 
check, protection check, or chaining check, 
the channel identifies the situation 
responsible for the conclusion and mayor 
may not indicate incorrect length. When a 
data error has been detected and the 
operation is concluded prematurely because 
of a program check, protection check, or 
chaining check, both data check and the 
program ming error are identified. 

with the interruption condition. LikewisE', ..J", 
if device status causes the command to be 
rejected during execution of START I/O or 
START I/O FAST RELEASE, the CSW stored by 

12-68 system/370 principles of Operation 



the instruction contains the PCI bit set to 
one. 

situations detected by the channel are not 
related to those identified by the I/O 
device. 

The figure "Contents of the CSW Status 
Fields" summarizes the handling of status 
bits. The fiqure lists the states and 
activities that can cause status 
indications to be created and the methods 
by which these indications can be placed in 
the CSW. 

When a channel stores a CSW that indicates 
channel-control check in the absence of 
logout pending, or interface-control check, 
or, on some channels, channel-data check, a 
channel logout accompanies the storing of 
the CSW. Such a logout is useful for error 
recovery. The logout may be a limited 
channel logout, a full channel logout, or 
both. The type of logout that occurs and, 
for the full channel logout, the length of 
the full channel logout and the location at 
which it is stored, depend on the channel 

type and model number. 

The limited channel logout contains 
model-independent information and is stored 
at real locations 176-179 of the CPU to 
which the channel is configured. When it 
is stored, bit 0 of the logout is always 
stored as a zero. 

The full channel logout contains 
model-dependent informa tion. Whe n the 
length of the full channel logout exceeds 
96 bytes, it is stored at the location 
specified by the I/O extended-Ioq out (IOEL) 
address in real locations 173-175 of the 
CPU to which the channel is configured. 
When the length of the full channel logout 
is 96 bytes or fewer, the channel may 
either use the IOEL address or store the 
full channel logout in the fixed-logout 
area, real locations 256-351 of the CPU to 
which the channel is configured. The 
information stored by the STORE CHANNEL ID 
instruction implies whether the IOEL is 
used and, if it is used, specifies the 
maximum full-channel-logout length. The 
full-channel-Iogout information may be 
stored in the IOEL area only when the IOEL­
mask bit (control register 14, bit 2) of 
the CPU to which the channel is confiqured 
is one. 

Chapter 12. Input/Output Operations 12-69 



T 
I I I I Upon Termination I I I I I 
I I IWhen lof Operation at IDuringlBy I IBy I I 
I IWhen ,Subch I , ,ICmd ISIO IBy IHIOIBy I/O I 
I 11/0 islis I I Ctrl II/OIChain-lor IBy ICLRIOlor 'Inter- I 
I status IIdle IWorldnglSubchl Unit IDevling ISIOFITIOI+ IHDVlruptionl 
~I -------------+-, --·-I~--+_-+_ I I I , , ---+-, I 
Attention c* I c* c* SIS S S 
status modifier ICC cs ICS 5 CS 5 
Control-unit end I c* CS ICS S CS S 
Busy I C cs CS S C5 S 
Channel end I C* C*H c*¢ CS~ S 5 S 
Device end c* I c* C ~ CS~ S S S 
Unit check C ICC C c* CS CS S CS 
unit exception ICC C c* CS S 5 S 
Program-controlled I 

interruption IC* 
Incorrect length IC 
program check IC 
protection check IC 
Channel-data check IC 
Channel-control check c* IC* 

IInterface-control check c* IC* 
IChaining check IC 
IDeferred cond code 1 I 
IDeferred cond code 3 , 

C* 
C 
C 
C 
C 
c* 
c* 
C 

C* 
C* 

C 

C* 
C* 

C* 
C* IC* 

IC* 
I 
I 
I 

C5 

C5 
C5 

CS 
C5 

C*# 
C*# 

S 
S 
S 
5 
5 
CS 
C5 
5 
S 
5 

S 
5 
S 
S 
5 
CS 
CS 
S 
S 
S 

C5 
C5 

S 
S 
S 
S 
5 
CS 
CS 
5 
5 
S 

I 
I 

I--- ---L __ ~ ______ ~ 

IExll~!!atiQ!!: I 
I C The channel or device can create or present status at the indicated time. A csw I 

I 
I 
I 
1 
1 
I 
I 

I or its status portion is not necessarily stored at this time. 
I 

status such as channel end or device end is created at the indicated time. Other 
status bits may have been created previously but are made accessible to the program 
only at the indicated time. Examples of such status bits are program check and 
channel-data check, which are detected while data is transferred but are made 
available to the program only with channel end, unless the PCI flag or an equipment 
malfunction has caused an interruption condition to be generated earlier. 

I 

5 The status indication is stored in the CSIl at the indicated time. 

An "5" appearing alone indicates that the status has been created previously. The 
letter "C" appearinq with the "5" indicates that the status did not necessarily 
exist previously in the form that causes the program to be alerted, and may have 
been created by the I/O instruction or I/O interruption. For example, an equipment 
malfUnction may be detected during an I/O interruption, causing channel-control or 
interface-control check to be indicated; or a device such as the 2702 may sianal 
control-unit busy in response to interrogation by an I/O instruction, causing status 
modifier, busy, and control-unit end to be indicated in the CSW. 

I * The status qenerates an interruption condition. 
I 
I Channel end and device end do not result in interruption conditions when command 
I chaining is specified and no unusual situations have been detected. , 
, ~ This indication is created at the indicated time only by an immediate operation. , 
I I Applies only to srCF. 
I 
, H when an operation on the selector channel has been concluded by HALT DEVICE or HALT 
I I/O, or an operation has been concluded by CLEAR I/O, channel end indicates the 
I conclusion of the data-handling portion of the ooeration at the control unit. , 
,+ The entries in this column apply only when the CLFIO function is executed. When 
I CLEAR I/O causes the TIO function to be executed, the entries in the TIO column 
, apply_ 
L-

Contents of the CSW Status Fields 

12-70 System/370 principles of Operation 

, , 
I 
1 J..) 



Real locations 160-191 of the CPU to which 
the channel is configured comprise a 
permanently assiqned area of storage used 
for I/O, designated the I/O-communication 
area (IOCA). (See the figure 
"I/O-Communication Area.") 

Locations 160-167, 180-184, and 188-191 are 
reserved for future I/O use. 

~h~QQgl 1] (Locations 168=121): Locations 
168-171, when stored during the execution 
of a STORE CHANNEL ID instruction, contain 
information which describes the addressed 
channel. 

1LQ ~~i~nded=LogoU1 l£dre§2 (LocatiQQ§ 
121.=112): The I/O extended-logout (IOEL) 
address (locations 173-175) is program-set 
to designate an area to be used by channels 
not capable of storing or not choosing to 
store the full channel logout in the 
fixed-logout area (locations 256-351). The 
low-order three bits of the 
I/O-extended-logout address are reserved 

.--
160, 

1 
1641 

and are ignored by the channel so that the 
full channel logout always begins on a 
doubleword boundary. 

Whether the rOEL facility is used depends 
on the channel type and model number. 
Channels with a full-channel-loqout length 
not exceeding 96 bytes use either the IOEL 
area or locations 256-351 as the 
full-channel-logout area. Channels with a 
full-channel-logout length exceeding 96 
bytes use the IOEL area. 

The extent of the full-channel-loqout area 
differs among channels and, for any 
particular channel, may depend on the 
features or engineering changes installed. 
In order to provide for such variations, 
the program should determine the extent of 
the full channel logout by means of STORE 
CHANNEL 10 whenever a storage area for the 
full channel logout is to be assigned. 

r----------------------------------------·-----------------~ 
1681 Channel ID 

----T \---
1721 1 rOEL Address 

~-----------L-----
1761 limited Channel Logout , 
1801 

\ • ----~,r_--------------------------------_i 
1841 1000000001 I/O Address 

r----------~. 
1881 L--________________________ _ 

I/O-Communication Area 

Chapter 12. Input/Output Operations 12-71 



.Hmit~g Channel Lo.9.2.!!.i Uocations 
116-11~): The limited-channel-logout field 
nocations 176-179) contains model-
independent information related to 
equipment errors detected by the channel. 
This information is used to provide 
detailed machine status when errors have 
affected I/O operations. The field may be 
stored only when the CSW or a portion of 
the CSW is stored. 

The limited-channel-logout facility may not 
be available on all channels. The field, 
if stored, mayor may not be accompanied by 
the full channel logout. Channels which do 
not store the limited-channel-logout field 
instead usually store eguivalent 
information in the full channel logout. 

The bits of the field are defined as 
follows: 

o This bit is always stored as a zero 
when a limited channel logout is 
stored. If the program ensures 
that this bit is set to one and any 
channel-control check, interface­
control check, or channel-data 
check occurs, a test of this bit 
can determine if the LCL was stored 
by the channel. The lCL cannot be 
stored by a channel unless one of 
these three channel-status bits is 
set to one. 

1-3 

4-7 

Identity of th~ E!.Qr~~£ontr..Ql 
!!!lii (~~Q) identifies the scu 
through which storage references 
were directed when an error was 
detected. This identity is not 
necessarily the identity of the 
storage unit involved with the 
transfer. When only one physical 
path exists between channel and 
storage, the storage-control unit 
has +he identity of the cpu. If 
more than one path exists, the 
storage-control unit has its own 
identity. 

When bit 3 is zero, bits 1 and 2 
are undefined. In this case, the 
SCU identity is implied to be the 
same as the CPU identity. When bit 
3 is one, the binary value of bits 
1 and 2 identifies a physical SCU. 
Each scu in the system has a unique 
ident ity. 

Detect field identifies the type of 
uni~that--detected the error. At 
least one bit is present in this 
field, and multiple bits may be set 
when more than one unit detects the 
error. 

Bit 4 
Bit 5 
Bit 6 

CPU 
Channel 
Main-storage control 

12-72 System/370 principles of Operation 

8-12 

13-14 

15-23 

24-25 

Bit 7 -- Main storage 

Source iiel~ indicates the most 
lIkely source of the error. The 
determination is made by the 
channel on the basis of the type of 
error check, the location of the 
checking station, the information 
flow path, and the success or 
failure of tra nsmission th rouqh 
previous check stations. 

Normally, only one bit will be 
present in this field. However, 
when interunit communication cannot 
be resolved to a single uni t, such 
as when the interface between units 
is at fa ul t, multi pIe bi ts 
(normally two) may be set to ones 
in this field. When a reasonable 
determination cannot be made, all 
bits in this field are set to 
zeros. 

source fields 
uni ts, the 
can also be 

If the detect and 
indicate different 
interface between them 
considered suspect. 

Bit 8 -­
Bit 9 -­
Bit 10 
Bit 11 
Bit 12 

cPU 
Channel 
Main-storage control 
Main storage 
Control unit 

Figld-Vali.M.iY ilM:.§!. These 
indicate the validity of 

bits 
the 
the 
the 
the 

information stored in 
designated fields. When 
validity bit is set to one, 
field is stored and usable. 
the validity bit is set to 
the field is not usable. 

When 
zero, 

The fields designated are: 

Bit 15 --

Bit 16 
Bit 17 
Bit 18 
Bit 19 
Bit 20 
Bit 21 

Bit 22 
Bit 23 

l.I.e§ 

Full channel logout. 
This bit is set to one, 
by some models that 
implement the clear­
channel feature, when 
full-channel-Iogout in­
formation with correct 
contents is stored by the 
channel. Otherwise, the 
bit is stored as zero. 
Reserved. Stored zero. 
Reserved. Stored zero. 
Reserved. Stored zero. 
Sequence code 
Uni t status 
CCW address and sub­
channel key in CSW 
Channel address 
Device address 

tha t has 



L 

occurred is indicated 
bits. 

by these two 

This encoded field has meaning only 
when a channel-control check or an 
interface-control check is 
indicated in the esw. When neither 
of these two checks is indicated, 
no termination has been forced bv 
the channel. 

00 
01 

10 

Interface disconnect 
Stop, st ack , or normal 
termination 
Selective reset 

11 System reset 

26 

27 

28 

29-31 

Bg~eryed. Stored zero. 

lQierface .IQQP~rati.'!~. When the 
clear-channel feature is installed, 
this bit is set to one when the 
channel detects an I/O-interface 
malfunction which persists a¥ter 
selective reset is signaled on the 
interface. Interface-control check 
is also set when this condition is 
detected. When the clear-channel 
feature is not installed, bit 27 is 
stored as zero. 

E£Qg£ammirrg BQ~~: This bit implies 
that devices involved in active I/O 
operations related to the 
identified channel may have been 
left in the working state. eLEA? 
CHANNEL addressed to that channel 
can be used to relieve ~he 
condition. 

ILQ-g!ror ~le£1. This bit, when 
set to one, indicates that the 
limited channel logout resulted 
from the signaling of I/O-error 
alert by th e indicated unit. The 
I/O-error-alert signal indicates 
that the control unit has detected 
a malfunction which prevents it 
from communicating properly with 
the channel. The channel, in 
response, performs a malfunction 
reset and causes interface-control 
check to be set. 

~g~£g gQg~ identifies the I/O 
sequence in progress at the time of 
error. It is meaningless if stored 
during the execution of HALT I/O or 
HALT DEVICE. 

For all cases, the eew address in 
the CSW, if validly stored and 
nonzero, is the address of the 
current CCIi plus 8. 

The sequence code assignments are: 

000 A channel-detected error 

occurred during the 
of a TEST I/O or 
instruction. 

execution 
CLEAR I/O 

001 Command-out wit:h a nonzero 
command byte on bus-out has 
been sent by the channel, but 
device status has not yet been 
analyzed by the channel. This 
code is set with a command-out 
response to address-in during 
initial selection. 

010 The command has been accented 
by the device, but no data has 
been transferred. This code is 
set by a service-out or 
command-out response to 
status-in durina an initial 
selection sequence, if the 
status is either channel end 
alone, or channel end and 
device end, or channel end, 
device end, and status 
modifier, or all zeros. 

011 At least one byte of data has 
been transferred between the 
channel and the device. This 
code is set with a service-out 
response to service-in and, 
when appropriate, may be used 
when the channel is in an idle 
or polling state. 

100 The command in the current Ccw 
has either not yet been sent to 
the device or else was sent but 
not accepted by the 6evice. 
This code is set when one of 
the following situations 
occurs: 

1. When the CCIi address is 
upda ted during command 
chaining or a START I/O. 

2. When service-out or 

3. 

4. 

5. 

command-out is raised in 
response to status-in 
during an initial selection 
seguence with the status on 
bus-in including attention, 
control-unit end, unit 
check, unit exception, 
busy, status modifier 
(without channel end and 
device end), or device end 
(without channel end). 

When a short, control-unit­
busy seguence is signaled. 

When comma nd 
signaled. 

retry is 

When the 
test-I/O 
than the 

channel issues a 
command rather 
command in the 

Chapter 12. Input/Output operations 12-73 



current CCii. 

101 The command has been accepted, 
but data transfer is 
unpredictable. This code 
applies from the time a device 
comes on the interface until 
the time it is determined that 
a new sequence code applies. 
The code may thus be used when 
a channel goes into the polling 
or idle state and it is 
impossible to determine that 
code 010 or 011 applies. The 
code may also be used at other 
times when a channel cannot 
distinguish between code 010 or 

12-74 Svstem/370 Principles of Operation 

011. 

11 0 !Lg§er~g. J 
111 R~'yed. 

Res~!!~g (1g£~tig~ 1~~): Zero is stored at 
location 185 whenever an I/O address is 
stored at locations 186-187. 

1LQ Agg!~ss (Locatigns 186=1~1): A two­
byte field is provided for storinq the I/O 
address on each I/O interruption in the EC 
mode. 



Manual operation •••••••••••••••••••••••••••••••••••••••••••••••• 13-1 
Basic Operator Facilities ••••••••••••••••••••••••••••••••••••••• 13-2 

Address-Compare Controls •••••••••••••••••••••••••••••••••••••• 13-2 
Alter-and-Display Controls •••••••••••••••••••••••••••••••••••• 13-2 
Check control ••••••••••••••••••••••••••••••••••••••••••••••••• 13-2 
Check-Stop Indicator •••••••••••••••••••••••••••••••••••••••••• 13-3 
IML Controls •••••••••••••••••••••••••••••••••••••••••••••••••• 13-3 
Interrupt Key ••••••••••••••••••••••••••••••••••••••••••••••••• 13-3 
Interval-Timer Control •••••••••••••••••••••••••••••••••••••••• 13-3 
Load Indicator •••••••••••••••••••••••••••••••••••••••••••••••• 13-3 
Load-Clear Key •••••••••••••••••••••••••••••••••••••••••••••••• 13-4 
Load-Normal Key •••••••••••••••••••••••••••••••••••••••••••.••• 13-4 
Load-Unit-Address Controls •••••••••••••••••••••••••••••••••••• 13-4 
Manual Indicator •••••••••••••••••••••••••.•••••••••••••••••••• 13-4 
Power Controls •••••••••••••••••••••••••••••••••••••••••••••.•• 13-4 
Rate Control •••••••••••••••••••••••••••••••••••••••••••••••••• 13-4 
Festart Key ••••••••••••••••••••••••••••••••••••••••••••••••••. 13-4 
Start Key ••••••••••••••••••.•••••••••••••••••••••••••••••••••• 13-5 
stop Key •••••••••••••••••••••••••••••••••••••••••••••••••••••• 13-5 
store-Status Key •••••••••••••••••••••••••.•••.•••••••••••••••• 13-5 
System-Reset-Clear Key •••••••••••••••••••••••••••••••.•••••••• 13-5 
System-Reset-Normal Key •••••••••••••••••••••.••••••••••••••••• 13-5 
Test Indicator •••••••••••••••••••••.•••••••••••••••••••••••••• 13-5 
TOD-Clock Control ••••••.••••.••••••••••••••••.•••••••.•••••••• 13-6 
wait In di cator ••••••••••••••••••••••• , •••••• ' ••••••••••••••••••• 13-6 

Multiprocessing Configurations ••• _ •••••••••••••••••••••••••••••• 13-6 

The operator facilities provide functions 
for the manual operation and control of the 
machine. The functions include operator­
to-machine communication, indication of 
machine status, control over the setting of 
the TOO clock, initial program loading, 
resets, and other manual controls for 
operator intervention in normal machine 
operation. 

A model may provide additional operator 
facilities which are not described in this 
chapter. Examples are the means to 
indicate specific error conditions in the 
equipment, to change equipment configura­
tions, and to facilitate maintenance. 
Furthermore, controls covered in this 
chapter may have additional settings which 
are not described here. such additional 
facilities and settings are contained in 
the appropriate System Library (SL) 
publication. 

Most models provide, in association with 
the operator facilities, a console device 
which may be used as an I/O device for 
operator communication with the proqram; 
this console device may also be used to 
implement some or all of the facilities 
described in this chapter. 

The operator facilities may be implemented 
on different models in various technologies 
and configurations. On some models, more 
than one set of physical representations of 
some keys, controls, and indicators may be 
provided, such as on multiple local or 
remote operating stations, which may be 
effective concurrently. 

A machine malfunction that prevents a 
manual operation from being performed 
correctly, as defined for that operation, 
may cause the CPU to enter the check-stop 
state or give some other indication to the 
operator that the operation has failed. 
Alternatively, a machine malfunction may 
cause a machine-cheek-interruption 
condition to be recognized. 

Chapter 13. Operator Facilities 13-1 



ADDRESS-COMPARE CONTROLS 

The address-compare controls provide a way 
to stop the CPU when a preset address 
matches the address used in a specified 
type of main-storage reference. 

One of the address-compare controls is used 
to set up the address to be compared with 
the storage address. 

Another control provides at least two 
settings to specify the action, if any, to 
be taken when the address match occurs. 
The two stttings are normal and stop. When 
this control is set to stop, the test 
indicator is turned on. 

1. The normal setting disables the 
address-compare operation. 

2. The stop setting causes the CPU to 
enter the stopped state on an address 
match. Depending on the model and the 
type of reference, pending I/O, 
external, and machine-check 
interruptions mayor may not be taken 
before entering the stopped state. 

A third control may specify 
storage reference for which 
comparison is to be made. 
provide one or more of 
settinqs, as well as others: 

the type of 
the address 
A model may 

the following 

1. The any setting causes the 
comparison to be performed 
storaqe references. 

address 
on all 

2. The data-store setting causes address 
comparison to be performed when 
storage is addressed to store data. 

3. The I/O setting causes address 
comparison to be performed when 
storage is addressed by a channel to 
transfer data or to fetch a 
channel-command or indirect-data-
address word. W~ether references to 
the channel-address word or the 
channel-status word cause a match to 
be indicated depends on the model. 

4. The instruction-aadress setting causes 
address comparison to be performed 
when storage is addressed to fetch an 
instruction. The rightmost bit of the 
address setting mayor may not be 
ignored. The match is indicated only 
when the first byte of the instruction 
is fetched from the selected location. 
It depends on the model whether a 

13-2 System/370 principles of Operation 

match is indicated when fetching the 
target instruction of EXECUTE. 

Depending on the model and the type of 
reference, address comparison may be 
performed on virtual, real, or absolute 
addresses, and it may be possible to 
specify the type of address. 

In a multiprocessinq configuration, it 
depends on the model whether the address 
setting applies to one or all CPUs in the 
configuration and whether an address match 
causes one or all CPUs in the configuration 
to stop. 

ALTER-AND-DISPLAY CONTROLS 

The operator facilities provide controls 
and procedures to permit the operator to 
alter and display the contents of locations 
in storage, the storage keys, the general, 
floating-point, and control registers, the 
prefix, and the PSW. 

Before alter-and-display operations may be 
performed, the CPU must first be placed in 
the stopped state. During alter-and­
display operations, the manual indicator 
may be turned off temporarily, and the 
start and restart keys may be inoperative. 

Addresses used to select storage locations 
for alter-and-display operations are real 
addresses. The capability of specifying 
logical, virtual, or absolute aadresses may 
also be provided. 

CHECK CONTROL 

The check control has 
settings, stop and normal. 

a t least two 
If the control 

enters the is set to stop, the CPU 
check-stop state when either: 

1. A machine-check condition is detected 
and not corrected 

2. A channel check occurs whiCh would 
cause information to be stored in a 
channel-logout area at real locations 
176-179 or 256-351 

The following actions associated with 
entering the check-stop state are model­
dependent: storing of informa ti on in 
assigned storage locations, indicating the 
cause of the stop, and the manner of 
resuming CPU operations. 

If the chE!ck control is set to normal, the ~ 
action resulting from the detection of a 
machine check or channel check is the same 



as described in Chapter 11, "Machine-Check 
Handling," or in Chapter 12, "Input/Output 
Operations," respectively. 

The test indicator is on while the check 
control is set to stop. 

Except that recovery from a machine check 
or a channel check with logout is not 
possible, the check control permits a 
System/360 program, which uses assigned 
storage locations above 128 as ordinary 
storage, to be run in the BC mode. The 
check control also permits running a 
System/370 program which, while handling a 
machine check or channel check, expects 
model-dependent information that is not 
consistent with the information supplied by 
the particular model on which the program 
is to be run. 

CHECK-STOP INDICATOR 

The check-stop indicator is on when the CPU 
is in the check-stop state. Reset 
operations normally cause the CPU to leave 
the check-stop state and thus turn off the 
indicator. The manual indicator may also 
be on in the check-stop state. 

IML CONTROLS 

The IML controls provided in some models 
perform initial microprogram loading (IML). 

The IML controls are effective while the 
power is on. 

Noig: The name IMPL controls was used in 
earlier descriptions. 

INTERRUPT KEY 

When the interrupt key is activated, an 
external-interruption condition indicating 
the interrupt key is generated. (See the 
section "Interrupt Key" in Chapter 6, 
"Interruptions.") 

The interrupt kev is effective when the CPU 
is in the operating or stopped state. It 
depends on the model whether the interrupt 
key is effective when the CPU is in the 
load state. 

INTERVAL-TIMER CONTROL 

The interval-timer control disables or 
enables operation of the interval timer. 
Disabling the interval timer does not 
affect any other facility. 

When the control is set to disable the 
interval timer, updating of assigned 
storage locations 80-83 ceases. The 
contents of locations 80-83 remain at the 
last value to which they were upda ted, 
unless changed by a subsequent store 
operation. Depending on the model, any 
pending interval-timer-interruption condi­
tion is Unaffected, is cleared, or is kept 
pending without regard to the state of the 
external mask, PSW bit 7, and the interval­
timer mask, bit 24 of control register o. 

When the control is set to enable the 
interval timer, updating of locations 80-83 
is resumed using the current contents. If 
an interval-timer-interruption reguest 
existed and vas kept pending when the 
interval-timer control was last set to 
disable, that condition remains pending 
until the CPU is enabled for the 
interruption. 

The setting to enable the interval timer is 
considered the normal setting. The test 
indicator mayor may not be turned on when 
the interval-timer control is set to 
disable. 

Disabling the interval timer allows 
execution of a program which uses locations 
80-83 as ordinary storage. A program which 
does not use the interval timer will 
function correctly with the interval timer 
disabled, even when the interval timer 
fails. 

LOAD INDICATOR 

The load indicator is on during initial 
program loading, indicating that the CPU is 
in the load state. The indicator goes on 
when the load-clear or load-normal key is 
activated and the corresponding operation 
is started. It goes off after the new PSW 
is loaded successfully. 

Chapter 13. Operator Facilities 13-3 



LOAD-CLEAR KEY 

Activating the load-clear key causes a 
clear-reset operation to be performed and 
initial program loading to be started using 
the IIO device specified by the 
load-un it-address controls. In a 
multiprocessing configuration, a clear 
reset is propagated to all CPUs in the 
configuration. For details, see the 
sections "Resets" and "Initial Program 
Loading" in Chapter 4, "Control." 

The load-clear key is effective when the 
CPU is in the operating, stopped, load, or 
check-stop state. 

LOAD-NORMAL KEY 

Activatinq the load-normal key causes an 
initial-CPU-reset and a subsystem-reset 
operation to be performed and initial 
program loading to be started using the IIO 
device specified by the load-unit-address 
controls. In a multiprocessing 
configuration, a CPU reset is propagated to 
all CPUs in the configuration. For 
details, see the sections "Resets" and 
"Initial program Loading" in Chapter 4, 
"Control." 

The load-normal key is effective when the 
CPU is in the operating, stopped, load, or 
check-stop state. 

LOAD-UNIT-ADDRESS CONTROLS 

The load-unit-address controls select three 
hexadecimal digits, which provide the 12 
rightmost IIO address bits used for initial 
program loading. 

MANUAL INDICATOR 

The manual indicator is on when the CPU is 
in the stopped state. Some functions and 
several manual controls are effective only 
when the CPU is in the stopped state. 

POWER CONTROLS 

The power controls 
power on and off. 

The CPUs, storage, 

are used to turn the 

channels, operator 

13-4 System/370 principles of Operation 

facilities, and IIO devices may all have 
their power turned on and off by common 
controls, or they may have separate power 
controls. When a particular unit has its 
power turned on, that unit is reset. The 
sequence is performed so that no 
instructions or IIO operations are 
performed until explicitly specified. The 
controls may also permit power to be turned 
on in stages, but the machine does not 
become operational until power-on is 
complete. 

When the power is completely turned on, an 
IKL operation is performed on models which 
have an IKL function. A power-on reset is 
then initiated (see the section "Resets" in 
Chapter 4, "Control"). 

RATE CONTROL 

The setting of the rate control determines 
the effect of the start function and the 
manner in which instructions are executed. 

The rate control has at least two settinqs. 
The normal setting is process. When the 
rate control is set to process and the 
start function is performed, the CPU starts 
operating at normal speed. When the rate 
control is set to instruction step, one 
instruction or, for interruptible 
instructions, one unit of operation is 
executed each time the start function is 
performed. For details, see the section 
"Stopped, Operating, Load, and Check-Stop 
States" in Chapter 4, "Control." 

The test indicator is on while the rate 
control is not set to process. 

If the setting of the rate control is 
changed while the CPU is in the operating 
or load state, the results are 
unpredictable. 

RESTART KEY 

Activating the restart 
restart interruption. 
"Restart Interruption" 
"Interruptions.") 

key 
(See 
in 

initiates a 
the section 
Cha pter 6, 

The restart key is effective when the CPU 
is in the operating or stopped state. The 
key is not effective when the CPU is in the 
check-stop state. It depeads on the model 
whether the restart key is effective when 
the CPU is in the load state. 

J 



START KEY 

Activating the start key causes the CPU to 
perform the start function. (See the 
section "stopped, Operating, Load, and 
Check-Stop States" in Chapter 4, 
"Control." ) 

The start key is effective only when the 
CPU is in the stopped state. The effect is 
unpredictable when the stopped state has 
been entered by a reset. 

STOP KEY 

Activating the stop key causes the CPU to 
perform the stop function. (See the 
section "stopped, Operating, Load, and 
Check-Stop States" in Chapter 4, 
"Control." ) 

The stop key is effective only when the CPU 
is in the operating state. 

Activating the stop key has no effect when: 

• An unending string of certain program 
or external interruptions occurs. 

• The prefix register 
invalid address. 

contains an 

• The CPU is in the load or check-stop 
state. 

STORE-STATUS KEY 

Activating the store-status key initiates a 
store-status operation. (See the section 
"Store Status" in Chapter 4, "Control. ") 

The store-status key is effective only when 
the CPU is in the stopped state. 

The store-status operation may be used in 
conjunction with a standalone dump program 
for the analysis of major program 
malfunctions. For such an operation, the 
following seauence would be called for: 

1. Activation of the stop or 
system-reset-normal key 

2. Activation of the store-status key 

3. Activation of the load-normal key to 
enter a standalone dump program 

The system-reset-normal key must be 
activated in step 1 when the stop key is 
not effective because a continuous strinq 
of interruptions occurs, the prefix 
register contains an invalid address, or 
the CPU is in the check-stop state. 

SYSTEM-RESET-CLEAR KEY 

Activating the system-reset-clear key 
causes a clear-reset operation to be 
performed. In a multi processing 
configuration, a clear reset is propagated 
to all CPUs in the configuration. For 
details, see the section "Resets" in 
Chapter 4, "Control." 

The system-reset-clear key is effective 
when the CPU is in the operating, stopped, 
load, or check-stop state. 

SYSTEM-RESET-NORMAL KEY 

When the store-status facility is not 
installed, activating the system-reset­
normal key causes an initial-CPU-reset 
operation and a subsystem-reset operation 
to be performed. When the store-status 
facility is installed, activating the 
system-reset-normal key causes a CPU-reset 
operation and a subsystem-reset operation 
to be performed. In a multi processing 
configuration, a CPU reset is propagated to 
all CPUs in the configuration. For 
details, see the section "Resets" in 
Chapter 4, "Control." 

The system-reset-normal key is effective 
when the CPU is in the operating, stopped, 
load, or check-stop state. 

TEST INDICATOR 

The test indicator is on when a manual 
control for operation or maintenance is in 
an abnormal position that can affect the 
normal operation of a program. 

Setting the address-compare controls or the 
check control to stop or setting the rate 
control to instruction step turns on the 
test indicator. Setting the interval-timer 
control to disable mayor may not turn on 
the test indicator. 

Chapter 13. Operator Facilities 13-5 



The test indicator may be on when one or 
more diagnostic functions under the control 
of DIAGNOSE are activated, or when other 
abnormal conditions occur. 

If a manual control is left in a settinq 
intended for maintenance purposes, such an 
abnormal settinq may, among other things, 
result in false machine-check indications 
or cause actual machine malfunctions to be 
iqnored. It may also alter other aspects 
of machine operation, including instruction 
execution, channel operation, and the 
functioning of operator controls and 
indicators, to the extent that operation of 
the machine does not comply with that 
described in this publication. 

The abnormal setting of a manual control 
causes the test indicator of the affected 
CPO to ~e turned on; however, in a 
multiprocessinq configuration, the 
operation of other CPOs may be affected 
even though their test indicators are not 
turned on. 

TaD-CLOCK CONTROL 

When the TOD-clock control is not 
activated, that is, the control is set to 
secure, the value of the TaD clock is 
protected aqainst unauthorized or 
inadvertent chanqe by not permitting the 
instruction SET CLOCK to change the value. 

When the TaD-clock control is activated, 
that is, the control is set to enable set, 
alteration of the clock value by means of 
SET CLOCK is permitted. This setting is 
temporary, and the control automatically 
returns to secure. 

13-6 system/370 principles of Operation 

In a multiprocessing configuration, 
activating the TOD-clock control enables 
all TOD clocks in the configuration to be 
set. If there is more than one physical 
representation of the TaD-clock control, no 
TOD clock is secure unless all TaD-clock 
controls in the configuration are set to 
secure. 

WAIT INDICATOR 

The wait indicator is on when the 
wait-state bit in the current PSW is one. 

In a multiprocessing confiquration, one of 
each of the followinq keys and controls is 
provided for each cpo: alter and display, 
interrupt, rate, restart, start, stop, and 
store status. The load-clear key, 
load- normal key, and load-uni t-address 
controls are provided for each CPU capable 
of performinq I/O operations. 
Alternatively, a single set of keys and 
controls may be used together with a 
control to select the desired cpo. 

There need not be more than one of each of 
the following keys and controls in a 
multiprocessing configuration: address 
compare, check, IML, interval timer, power, 
system reset clear, system reset normal, 
and TaD clock. 

One check-stop, manual, test, and wait 
indicator is provided for each CPU. A load 
indicator is provided only on a CPO capable 
of performing I/O operations. 
Alternatively, a single set of indicators 
may be switched to more than one cpo. 

There need not be more than one system 
indicator in a multi proce ssinq 
configuration. 

In a system capable of being partitioned, 
there must be a separate set of keys, 
controls, and indicators in each 
configuration. 



Number Representation ••••••••••••••••••••••••••••••••••••••••••• A-2 
Binary Integers ••••••••••••••••••••••••••••••••••••••••••••••• A-2 

Siqned Binary Integers •••••••••••••••••••••••••••••••••••••• A-2 
unsigned Binary Integers •••••••••••••••••••••••••••••••••••• A-4 

Decimal Integers •••••••••••••••••••••••••••••••••••••••••••••• A-5 
Floating-Point Numters •••••••••••••••••••••••••••••••••••••••• A-5 
Conversion Example •••••••••••••••••••••••••••••••••••••••••••• 1-7 

Instruction-Use Examples •••••••••••••••••••••••••••••••••••••••• A-7 
Machine Format ••••••••••••••••••••••••••••.••••••••••••••••• 1-7 
Assembler-Language Format ••••••••••••••••••••••••••••••••••• 1-7 

General Instructions ••••.••.••••••••••••••••..•••.•.••••••••••.• 1-8 
ADD HILFWORD (AH) ••••••••••••••••••••••••••••••••••••••••••••• A-8 
~ND (N. ER, NI, Ne) ••.•.•••••••••••••••••••••.••••••..•••••••• 1-8 

And (NI) •••••••••••••••••••••••••••••••••••••••••••••••••••• 1-8 
••••••••••••••••••••••••••••••••••• 1-8 BUR) 

(BC, BCR) ••••••••••••••••••••••••••••••••• A-9 
BRINCH AND LINR (BIL, 
BRANCH ON CONDITION 
BRINCH ON CCUNT (BCT, 
BRANCH ON INDEX HIGH (BXH) 

BCT R) ••••••••••••••••••••••••••••••••••• A - 9 
•••••••••••••••••••••••••••••••••••• A-10 

BRANCH ON INDEX lOW OR EQUAL (BXLE) ••••••••••••••••••••••••••• A-11 
COMPARE HALFWORD (CH) ••••••••••••••••••••••••••••••••••••••••• A-11 
COMPARE LOGICIL (CI, CLC, CLI, CLR) ••••••••••••••••••••••••••• A-11 

Compare Logical (CLC) ••••••••••••••••••••••••••••••••••••••• A-11 
Compare Logical (CLI) ••••••••••••••••••••••••••••••••••••••• A-12 
Compare Logical (CLR) ••••••••••••••••••••••••••••••••••••••• 1-12 

COMPARE LOGICAL CHARICTERS UNDER MISK (CLK) •••••••••.••••••••• 1-12 
COMPIRE LOGICl1 LONG (CLCL) ••••••••••••••••••••••••••••••••••• A-13 
CONVERT TO EINARY (CVB) 
CONVERT TO tECIl'lAL (CVD) 

••••••••••••••••••••••••••••••••••••••• A-14 
•••••••••••••••••••••••••••••••••••••• 1-14 

DIVIDE (D, DR) •••••••••••••••••••••••••••••••••••••••••••••••• 1-15 
EXCLUSIVE OR (X, XC, XI, XR) •••••••••••••••••••••••••••••••••• 1-15 

Exclusive Or (XC) ••••••••••••••••••••••••••••••••••••••••••• 1-15 
ExclusivE Or (XI) •••••••••••••• •••••••• ~ •••••••••••••••••••• 1-16 

EXECUTE (EX) •••••••••••••••••••••••••••••••••••••••••••••••••• 1-17 
INSERT CHARACTERS UNDER MASK (ICM) •••••••••••••••••••••••••••• A-17 
LOAD (L, LR) •••••••••••••••••••••••••••••••••••••••••••••••••• A-18 
LOAD ADDRESS (U) 
LOAD HALFWORD (LH) 

••••••••••••••••••••••••••••••••••••••••••••• A-18 
•••••••••••••••••••••••••••••••••••••••••••• 1-19 

MOVE (MVC, MVI) ••••••••••••••••••••••••••••••••••••••••••••••• A-19 
Move (MVC) 
Move (MVI) 

•••••••••••••••••••••••••••••••••••••••••••••••••• A-19 
•••••••••••••••••••••••••••••••••••••••••••••••••• A-20 

MOVE LONG (MVCI) ••••••••••••••••• ••••••••••••••••••••••••••••• A-20 
••••••••••••••••••••••••••••••••••••••••••• A-21 MOVE NUMERICS (MVN) 

MOVE WITH OFFSET (MVO) •••••••••••••••••••••••••••••••••••••••• 1-21 
•••••••••••••••••••••••••••••••••••••••••••••• 1-22 MOVE ZONES (!liZ) 

MULTIPLY (Pl, PlF) 
MULTIPLY HALFW CRD (PlH) 

•••••••••••••••••••••••••••••••••••••••••••••• 1-22 
•••••••••••••••••••••••••••••••••••••••• 1-23 

OR (0, OR, 01, CC) •••••••••••••••••••••••••••••••••••••••••••• A-23 
••••••••••••••••••••••••••••••••••••••••••••••••••••• 1-23 Or (01) 

PACK (PACK) ••••••••••••••••••••••••••••••••••••••••••••••••••• A-23 
SHIFT LEFT DOUBLE (SLDA) 
SHIFT LEFT SINGLE (SLA) 

•••••••••••••••••••••••••••••••••••••• A-24 
••••••••••••••••••••••••••••••••••••••• 1-24 

STOPE CHIRACTERS UNDER MASK (STCM) •••••••••••••...•••.•••••••• 1-25 
STORE MULTIPLE (ST~ •••••••••••••••••••••••••••••••••••••••••• 1-25 
TEST UN DER MIS R (T M) •••••••••••••••••••••••••••••••••••••••••• A-25 
TRANSLATE (TF) •••••••••••••••••••••••••••••••••••••••••••••••• 1-26 
TRINSLITE AND TEST (TRT) •••••••••••••••••••••••••••••••••••••• 1-26 
UNPACK (UNPK) .•••••••••••••••••••••••••••••••••••••••••••••••• 1-28 

Decimal Instructions •••.•.•••••.•••••••••••••..•.••••••••••••••• 1-29 
•••••••••••••••••••••••••••••••••••••••••••••• 1-29 IDD DECIMAL (AP) 

COMPARE DECIMAL (CP) 
DIVIDE DECIMIL (DP) 

•••••••••••••••••••••••••••••••••••••••••• A-29 
•••••••••••••••••••••••••••••• 1-29 

EDIT (ED) ••••••••••••••••••••••••••••••••••••••••••••••••••••• A-30 
EDIT AND MARK (EDMK) •••••••••••••••••••••••••••••••••••••••••• A-31 

Appendix A. Number Representation and Instruction-Use Examples 1-1 



MULTIPLY DECIMAL (MP) ••••••••••••••••••••••••••••••••••••••••• A-32 
SHIFT AND ROUND DECIMAL (SRP) ••••••••••••••••••••••••••••••••• A-32 

Decimal Left Shift •••••••••••••••••••••••••••••••••••••••••• A-32 
Decimal Right Shift ••••••••••••••••••••••••••••••••••••••••• A-33 
Decimal Right Shift and Round ••••••••••••••••••••••••••••••• A-33 
Multiplying by a Variable Power of 10 ••••••••••••••••••••••• A-33 

ZERO AND AtD (ZAP) •••••••••••••••••••••••••••••••••••••••••••• 1-34 
Floating-point Instructions ••••••••••••••••••••••••••••••••••••• A-34 

ADD NORMALIZED (AD, ADR, AE, AER, AXR) •••••••••••••••••••••••• A-34 
ADD UNNORMAlIZED (AU, AUR, AW, AWR) ••••••••••••••••••••••••••• A-35 
COMPARE (Ct, CtR, CE, CER) •••••••••••••••••••••••••••••••••••• A-35 
Floating-Point-Number Conversion ••••••••••.••••••••••••••••••• A-35 

Fixed Point to Floating Point ••••••••••••••••••••••••••••••• A-35 
Floating Point to Fixed Point ••••••••••••••••••••••••••••••• A-36 

Multiprogramming and Multiprocessing Examples ••••••••••••••••••• A-37 
Example of a program Failure Using OR Immediate ••••••••••••••• A-37 
COMPARE ANt SWAP (CS, CDS) •••••••••••••••••••••••••••••••••••• A-37 

setting a single Bit •••••••••••••••••••••••••••••••••••••••• A-37 
Updating Counters ••••••••••••••••••••••••••••••••••••••••••• A-38 

Bypassing POST AND WAIT •••••.••••••••••••••••••••••••••••••••• A-39 
BYPASS PCST Routine ••••••••••••••••••••••.•••••••••••••••••• A-39 
BYPASS WAIT Routine ••••••••••••••••••••••••••••••••••••••••• A-39 

LOCK/UNLOCK ••••••••••••••••••••••••••••••••••••••••••••••••••• A-39 
LOCK/UNLOCK with LIFO Queuing for Contentions ••••••••••••••• A-40 
LOCK/UNLOCK with FIFO Queuing for Contentions ••••••••••••••• A-41 

Free-pool Manipulation •••••••••••••••••••••••••••••••••••••••• A-42 

NU~~~B REPRESENTATION 

BINARY INTEGERS 

Signed binary integers are most commonly 
represented as halfwords (16 bits) or words 
(32 bits). In both lengths, the leftmost 
bit (bit 0) is the sign of the number. The 
remaining bits (bits 1-15 for· halfwords and 
1-31 for words) are used to designate the 
magnitude of the number. Binary integers 
are also referred to as fixed-point 
numbers, because the radix point is 
considered to be fixed at the right, and 
any scaling is done by the programmer. 

positive binary integers are in true binary 
notation with a zero sign bit. Negative 
binary integers are in two's-complement 
notation with a one bit in the sign 
position. In all cases, the bits between 
the sign bit and the leftmost significant 
bit of the integer are the same as the sign 
bit (that is, all zeros for positive 
numbers, all ones for negative numbers). 

Negative binary integers are formed in 

A-2 System/370 principles of Cperation 

two's-complement notation by inverting each 
bit of the positive binary int.eger aJl4 
adding one. As an example using the 
halfword format, the binary number with the 
decimal value +26 is made negative (-26) in 
the following manner: 

+26 0 000 0000 0001 1010 
Invert 1 111 1111 1110 0101 
Add 1 1 

-26 1 111 1111 1110 0110 (Two's comple­
ment form) 

(S is the sign bit.) 

This is eguivalent 
number: 

to subtracting 

00000000 00011010 
from 

00000000 00000000 

Negative binary integers are changed 
positive in the same manner. 

The following addition examples illustrate 
two's-complement arithmetic and overflOW 
conditions. Only eight bit positions are 
used. 

1. +57 = 0011 1001 
+35 = 0010 0011 

+92 = 0101 1100 

J 



2. +57 = 0011 1001 
-35 1101 1101 

+22 = 0001 0110 

3. +35 
-57 

0010 0011 
1100 0111 

-22 1110 1010 

4. -57 
-35 

1100 0111 
1101 1101 

No overflow--carry 
into leftmost posi­
tion and carry out. 

Sign change only--no 
carry into leftmost 
position and no 
carry out. 

-92 = 1010 0100 No overflow--carry 
into leftmost posi­
tion and carry out. 

5. + 5 7 :;: 0011 1001 
+92 0101 1100 

+149 = *1001 0101 *Overflow--carry 
into leftmost posi­
tion, no carry out. 

6. -57 :;: 1100 0111 
-92 1010 0100 

-149 = *0110 1011 *Overflow--no carry 
into leftmost posi­
tion hut carry out. 

2 3 1 - 1 = 2 147 483 647 0 111 1111 1111 
2 1 • 65 536 = 0 000 0000 0000 
20 :;: 1 = 0 000 0000 0000 
0 = 0 = 0 000 0000 0000 

-2 0 = -1 = 1 111 1111 1111 
-2 1 -2 = 1 111 1111 1111 
-2 1 • = -65 536 1 111 1111 1111 
-231 + 1 :;: -2 147 483 647 1 000 0000 0000 
-2 3 1 = -2 147 483 648 = 1 000 0000 0000 

The presence 
condition may 
carries: 

or absence of an 
be recognized 

overflow 
from the 

• There is no overflow: 

• 

a. If there is no carry into the 
leftmost bit position and no carry 
out (examples 1 and 3). 

b. If there is a carry into the 
leftmost position and also a carry 
out (examples 2 and 4). 

There is an overflow: 

a. If there is a carry into the 
leftmost position but no carry out 
(example 5). 

b. If there is no carry into the 
leftmost position but there is a 
carry out (example 6). 

The following are 16-bit signed binary 
integers. The first is the maximum 
positive 16-bit binary integer. The last 
is the maximum neqative 16-bit binary 
integer (the negative 16-bit binary integer 
with the greatest absolute value). 

215 - 1 
20 
0 

-20 
-215 

32,767 
1 
0 

-1 
-32,768 

o 111 1111 1111 1111 
o 000 0000 0000 0001 
o 000 0000 0000 0000 
1 111 1111 1111 1111 
1 000 0000 0000 0000 

The followinq are several 32-bit signed 
binary integers arranged in descending 
order. The first is the maximum positive 
binary integer that can be represented by 
32 bits, and the last is the maximum 
negative binary integer that can be 
represented by 32 bits. 

1111 1111 1111 1111 1111 
0001 0000 0000 0000 0000 
0000 0000 0000 0000 0001 
0000 0000 0000 0000 0000 
1111 1111 1111 1111 1111 
1111 1111 1111 1111 1110 
1111 0000 0000 0000 0000 
0000 0000 0000 0000 0001 
0000 0000 0000 0000 0000 

Appendix A. Number Representation and Instruction-Use Examples A-3 



Certain instructions, such as ADD LOGICAL, 
treat binary integers as unsigned rather 
than signed. Unsigned binary integers have 
the same format as signed binary integers, 
except that the leftmost bit is interpreted 
as another numeric bit rather than a sign 
bit. There is no complement notation 
because all unsigned binary integers are 
considered positive. 

The following examples illustrate the 
addition of unsigned binary integers. Only 
eight bit positions are used. The examples 
are numbered the same as the corresponding 
examples for signed binary integers. 

1. 57 0011 1001 
35 0010 0011 

92 = 0101 1100 

2. 57 
221 

= 0011 1001 
1101 1101 

278 = *0001 0110 *Carry out of 
leftmost position 

3. 35 0010 0011 
199 = 1100 0111 

234 = 1110 1010 

232 - 1 = 4 294 967 295 = 1111 1111 1111 
231 2 147 483 648 = 1000 0000 0000 
231 - 1 = 2 147 483 647 0111 1111 1111 
2 1 • 65 536 0000 0000 0000 
20 1 0000 0000 0000 
0 = 0 0000 0000 0000 

A-4 System/370 Principles of Operation 

1111 
0000 
1111 
0001 
0000 
0000 

4. 199 
221 

1100 0111 
1101 1101 

-----------------
420 = *1010 0100 *Carry out of 

leftmost position 

5. 57 0011 1001 
92 0101 1100 
----------------

149 1001 0101 

6. 199 1100 0111 
164 1010 0100 

363 = *0110 1011 *Carry out of 
leftmost position 

A carry out of the leftmost bit position 
mayor may not imply an overflow, depending 
on the application. 

The following are several 
binary integers arranged 
order. 

1111 1111 1111 1111 
0000 0000 0000 0000 
1111 1111 1111 1111 
0000 0000 0000 0000 
0000 0000 0000 0001 
0000 0000 0000 0000 

32-bit unsigned 
in descending 



L 

DECIMAL INTEGERS 

Decimal integers are represented as one or 
more decimal digits and a sign digit. Each 
digit is a 4-bit code. The decimal digits 
are in binary-coded decimal (BCD) form, 
with the values 0-9 encoded as 0000-1001. 
The sign is usually represented as 1100 (C 
hex) for plus and 1101 (0 hex) for minus. 
These are the preferred sign codes, which 
are generated by the machine for the 
results of decimal operations. There are 
also several alternate sign codes (1010, 
1110, and 1111 for plus; 1011 for minus). 
The alternate sign codes are accepted by 
the machine as valid but are not generated 
for results. 

Decimal integers may have different 
lengths, from one to 16 bytes. There are 
two decimal formats: packed and zoned. In 
the packed format, each byte contains two 
decimal digits, except for the rightmost 
byte which contains the sign in its right 
digit. The number of decimal digits in the 
packed format can vary from one to 31. 
Because decimal integers must consist of 
whole bytes and there must be a sign digit 
on the right, the number of decimal digits 
is always odd. If an even number of 
significant digits is desired, a leading 
zero must be inserted on the left. 

In the zoned format, each byte consists of 
a decimal digit on the right and the zone 
code 1111 (F hex) on the left, except for 
the rightmost byte where the sign code 
replaces the zone code. Thus, decimal 
integers in the zoned format can have 
anywhere from one to 16 digits. The zoned 
format may be used directly for input and 
output in the extended binary-coded-decimal 
interchange code (EBCDIC), except that the 
sign must be separated from the rightmost 
digit and handled as a separate character. 
For positive (unsigned) numbers, however, 
the sign code of the rightmost digit can 
simply be replaced by the zone code, which 
is one of the acceptatle alternate codes 
for plus. 

In either format, negative decimal integers 
are represented in true notation with a 
separate sign. As for tinary integers, the 
radix point (decimal point) of decimal 
integers is considered to be fixed at the 
right, and any scaling is done by the 
programmer. 

The following are some examples of decimal 
integers shown in hexadecimal notation: 

Val.l!~ fg£!~g I.Qilg! 1!Q'!!~~ IQ!".J!Igj; 

+123 12 3C F1 F2 C3 or F1 F2 F3 

-4321 04 32 10 F4 F3 F2 01 

+000050 00 00 05 OC Fa Fa FO FO F5 CO or 
Fa Fa FO FO F5 Fa 

-7 70 07 

00000 00 00 OC FO FO FO Fa co or 
FO FO FO FO Fa 

Under some circumstances, a zero with a 
minus sign (negative zero) is produced. 
For example, the multiplicand: 

00 12 3D (-123) 

times the multiplier: 

OC (+0) 

generates the product: 

00 00 00 (-0) 

because the product sign follows the 
algebraic rule of signs even when the value 
is zero. A negative zero, however, is 
entirely equivalent to a positive zero; 
they compare equal in a decimal comparison. 

FLOATING-POINT NUMBERS 

A floating-point number is expressed as a 
fraction multiplied by a separate power of 
16. The term floating point indicates that 
the radix-point placement, or scaling, is 
automatically maintained by the machine. 

The part of a floating-point number which 
represents the significant digits of the 
number is called the fraction. A second 
part specifies the power (exponent) to 
which 16 is raised and indicates the 
location of the radix point of the number. 
The fraction and exponent may be 
represented by 32 bits (short format), 64 
bits (long format), or 128 bits (extended 
forma t) • 

Short Floating-Point Number 

r-T--------------~i-----------/----------. 
ISICharacteristicl6-Digit Fraction , 
L-L-____________ ~ __________ / ___________ J 

o 8 31 

Appendix A. Number Representation and Instruction-Use Examples A-5 



Long Floatinq-point Numter 

r' I i / 
IS I Characteristic I 14-Digit Fraction 
L-L-- / ____________ ~ 

o 1 8 63 

Extended Floating-Point Number 

High-Order Part 
r-T i 
I I Hiqh-Order I 
ISICharacteristicl 

/-------.... 
Leftmost 14 Digits 

of 28-Digit Fraction 
~~ __________ L-________ / ___________ ~ 

o 1 8 63 

Low-Order Part 
, i /-------. 
I I Low-Order I Rightmost 14 Diqits 
ISICharacteristicl of 28-Digit Fraction L-L--____________ -L __________ / ~ 

64 12 121 

A floatinq-point number has two signs: one 
for the fraction and one for the exponent. 
The fraction sign, which is also the sign 
of the entire number, is the leftmost bit 
of each format (0 for plus, 1 for minus). 
The numeric part of the fraction is in true 
notation reqardless of the sign. The 
numeric part is contained in bits 8-31 for 
the short format, in bits 8-63 for the long 
format, and in bits 8-63 followed by bits 
12-121 for the extended format. 

The exponent sign is ottained by expressing 
the exponent in excess-64 notation; that 
is, the exponent is added as a signed 
number to 64. The resulting number is 
called the characteristic. It is located 
in bits 1-1 for all formats. The 
characteristic can vary from 0 to 121, 
permitting the exponent to vary from -64 
throuqh 0 to +63. This provides a scale 
multiplier in the range of 16-. 4 to 16+. 3 • 

A nonzero fraction, if normalized, must be 
less than one and greater than or equal to 
1/16, so that the ranqe covered by the 
magnitude M of a floating-point number is: 

16- 615 :5 M < 16 63 

1.0 +1/16x16 1 0 100 0001 0001 
0.5 +8/16x16 0 0 100 0000 1000 
1/64 +4/16x16- 1 0 011 1111 0100 
0.0 = +0 x16- 64 = 0 000 0000 0000 

-15.0 -15/16x16 1 = 1 100 0001 1111 
5.4x10-79 Et +1/16x16-· 4 = 0 000 0000 0001 
1. 2x 1 075 ~ (1-16-.) x16 63 0 111 1111 1111 

A-6 system/310 Principles of Operation 

In decimal terms: 

16-. 5 is approximately equal to 5.4 x 
10- 79 

16. 3 is approximately equal to 1.2 x 
1075 

More precisely, 

In the short format: 

In the long format: 

16-. 5 :5 M :5 (1 - 16- 14) x 16 63 

In the extended format: 

Within a given fraction length (6, 14, or 
28 digits), a floating-point operation will 
provide the greatest precision if the 
fraction is normalized. A fraction is 
normalized when the leftmost digit (bit 
positions 8, 9, 10, and 11) is nonzero. It 
is unnormalized if the leftmost digit 
contains all zeros. 

If normalization of the operand is desired, 
the floating-point instructions that 
provide automatic normalization are used. J. 
This automatic normalization is . 
accomplished by left-shifting the fraction 
(four bits per shift) until a nonzero digit 
occupies the leftmost digit position. The 
characteristic is reduced by one for each 
digit shifted. 

The following are sample normalized short 
floating-point numbers. The last two 
numbers represent the smallest and the 
largest positive normalized numbers. 

0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 
1111 1111 1111 1111 1111 



CONVERSION EXAKPLE 

Convert the decimal numter 59.25 to a short 
Hoating-point number. (In another 
appendix are tables for the conversion of 
hexadecimal and decimal integers and 
fract ions. ) 

1. The number is separated into a decimal 
integer and a decimal fraction. 

59.25 = 59 ulus 0.25 

2. The decimal integer is converted to 
its hexadecimal representation. 

59 {1 O} = 3B {16} 

3. The decimal fraction is converted to 
its hexadecimal representation. 

O. 25 { 1 O} = O. 4 {1 6} 

4. The integral and fractional parts are 
combined and expressed as a fraction 
times a power of 16 (exponent). 

3B.4{16} = 0.3B4{16} x 16 2 

~. The characteristic is developed from 
the exponent and converted to binary. 

6. 

'1. 

base + exponent 
64 + 2 

character istic 
66 = 1000010 

The fraction is converted to binary 
and grouped hexadecimally. 

.3B4{161 = .0011 1011 0100 

The characteristic and the fraction 
are stored in the short format. The 
sign position contains the sign of the 
fraction. 

o 1000010 0011 1011 0100 0000 0000 
0000 

E*amples of instruction seguences that may 
he used to convert between signed binary 
ihtegers and floating-point numbers are 
~hown in the section "Floating-Point-Number 
C~hversion" later in this appendix. 

The following examples illustrate the use 
of many of the unprivileged instructions. 
Before studying one of these examples, the 
reader should consult the instruction 
descr ipt ion. 

~be instruction-use examples are written 

principally for assembler-lanquage 
programmers, to be used in conjunction with 
the a ppropria te assemb ler-Ia ng uaqe man ual s. 

Most examples present one particular 
ins truction, both a s it is writ te n in an 
assembler-language statement and as it 
appears when assembled in storage (machine 
format). 

In the instruction-use examples, the 
notation {2}, {10}, or {16} may be used, 
indicating that the preceding number is 
binary, decimal, or hexadecimal, 
respectively. 

Machine FO£.!!!E.i 

All machine-format numerical operands are 
written in hexadecimal notation unless 
otherwise specified. Hexadecimal operands 
are shown converted into binary, decimal, 
or both if such conversion helps to clarify 
the example for the reader. Storage 
addresses are also given in hexadecimal. 

In assembler-language statements, registers 
and lengths are presented in decimal. 
Displacements, immediate operands, and 
masks may be shown in decimal, hexadecimal, 
or binary notation; for example, 12, X'C', 
or B'1100' represent the same value. 
Whenever the value in a register or storage 
location is referred to as "not 
sig nifican t," this va lue is replaced during 
the execution of the instruction. 

When 55-format instructions are written in 
the assembler language, lengths are given 
as the total number of bytes in the field. 
This differs from the machine definition, 
in which the length field specifies the 
number of bytes to be added to the field 
address to obtain the address of the last 
byte of the field. Thus, the machine 
length is one less than the 
assembler-language length. The assembler 
program automatically subtracts one from 
the length specified when the instruction 
is assembled. 

In some of the examples, symbolic addresses 
are used in order to simplify the examples. 
In assembler-language statements, a 
symbolic address is represented as a 
mnemonic term written in all capitals, such 
as FLAGS which may denote the address of a 
storage location containing data or 
program-control information. When symbolic 
addresses are used, the assembler supplies 
actual base and displacement values 

Appendix A. Number Representation and Instruction-Use Examples A-7 



according to the programmer's 
specifications. Therefore, the actual 
values for base and displacement are not 
shown in the assembler-language format or 
in the machine-language format. For 
assembler-language formats, in the labels 
that designate instruction fields, the 
letter "S" is used to indicate the 
combination of base and displacement fields 
for an operand address. (For example, 51 
represents the combination of B1 and D1.) 
In the machine-language format, the base 
and displacement address components are 
shown as asterisks (***). 

(See Chapter 7.) 

ADD HALF WORD (AH) 

The ADD HALF~ORD instruction algebraically 
adds the halfword contents of a storage 
location to the contents of a register. 
The halfword storage operand is expanded 
to 32 bits after it is fetched and before 
it is used in the add operation. The 
expansion consists in propagating the 
leftmost (sign) bit 16 positions to the 
left. For example, assume that the 
contents of storage locations 2000-2001 are 
to be added to register 5. Initially: 

Register 5 contains 00 00 00 19 = 25{10}. 
storage locations 2000-2001 contain FF FE 

= -2 {10}. 
Register 12 contains 00 00 18 00. 
Register 13 contains 00 00 01 50. 

The format of the required instruction is: 

Machine Format 

Op Code R,­
-,----~----_r---_,____-, 

X2 B2 

4A I 5 D C I 6BOI 

Assembler Format 

AH 5,X'6BO' (13,12) 

After the instruction is executed, register 
5 contains 00 00 00 17 = 23{10}. 

A-8 5ystem/370 Principles of Operation 

AND (N, NR, NI, NC) 

When the Boolean operator AND is applied to 
two bits, the result is one when both bits 
are one; otherwise, the result is zero. 
When two bytes are ANDed, each pair of bits 
is handled separately; there is no 
connection from one bit position to 
another. The following is an example of 
ANDing two bytes: 

First-operand byte: 0011 0101{2} 
0101 1100 {2} Second-operand byte: 

Result byte: 0001 0100 {2} 

A frequent use of the AND instruction is to 
set a particular bit to zero. For example, 
assume that storage location 4891 contains 
0100 0011 {2}. To set the rightmost bit of 
this byte to zero without affecting the 
other bits, the following instruction can 
be used (assume that register 8 contains 
00 00 48 90): 

Machine Format 

Op Code 12 B:I. D:I. , 
94 FE 8 0011 

Assembler Format 

NI 1 (8) , X' FE I 

When this inst~uction is executed, the byte 
in storage is ANDed with the immediate byte 
(the 12 field of the instructions): 

Location 4891 
Immediate byte 

Result: 

0100 0011 {2} 
1111 1110 {2} 

01000010{2} 

The resulting byte, with bit 7 set to zero, 
is stored back in location 4891. Condition 
code 1 is set. 

BRANCH AND LINK (BAL, BALR) 

J 

The BRANCH AND LINK instructions are . ~ 
commonly used to branch to a subroutine ~ 
with the option of later returning to the 



L 
main instruction sequence. For example, 
assume that you wish to branch to a 
subroutine at storage address 1160. Also 
assume: 

The contents of register 2 are not 
siqnificant. 

Register 5 contains 00 00 11 50. 
Address 00 00 C6 contains the BAL 

instruction, so that 00 00 CA is the 
address of the next sequential 
instruction. 

The format of the BAL instruction is: 

!'lachine Format 

Op Code R,. 

1.15 2 o 

Assembler Format 

BAL 2,1('110' (0,5) 

5 
, 

0101 

After the instruction is executed: 

Register 2 (bits 8-31) contains 00 00 CA. 
PSW bits 1.10-63 contain 00 11 60. 

The proqrammer can return to the main 
instruction seguence at any time with a 
BRANCH ON CONDITION (EeR) instruction that 
specifies register 2 and a mask of 15{10}, 
provided that register 2 has not meanwhile 
been disturbed. 

The BALR instruction with the 
to zero may be used to load a 
use as a base register. For 
the assembler language, the 
statements: 

BALF 
USING 

15,0 
*,15 

Ra field set 
register for 

example, in 
sequence of 

tells the assembler program that register 
15 is to be used as the base register in 
assembling this program and that, when the 
program is executed, the address of the 
next sequential instruction following the 
BALR will be placed in the register. (The 
USING statement is an "assembler 
instruction" and is thus not a part of the 
object program.) 

As another example, BALR 6,0 may be used to 
preserve the current condition code in bits 
2 and 3 of register 6 for future 
inspection. 

Note that, in all three examples, a value 
of zero in the Xa or Ra field indicates 

that the corresponding function is not 
performed; it does not refer to register O. 
Fegister 0 can be designated by the R,. 
field, however. 

BRANCH ON CONDITION (BC, BCR) 

The BRANCH ON CONDITION instructions test 
the condition code to see whether a branch 
should or should not be taken. The branch 
is taken only if the condition code is as 
specified by a mask. 

"ask 
ValY~ 

8 
1.1 
2 
1 

Condition 
~ode 

o 
1 
2 
3 

For example, assume that an ADD (A or AR) 
operation has been performed and that you 
wish to branch to address 6050 if the sum 
is zero or less (condition code 0 or 1). 
Also assume: 

Register 10 contains 00 00 ~O 00. 
Register 11 contains 00 00 10 00. 

The RX form of the instruction performs the 
required test (and branch if necessary) 
when written as: 

!!achine Format 

Op Code ",. , 
1.17 C B A 0501 

Assembler Format 

BC 12,X'50' (11,10) 

A mask of 15 indicates a branch on any 
condition (an unconditional branch). A 
mask of zero indicates that no branch is to 
occur (a no-operation). 

BRANCH ON COUNT (BCT, BCTR) 

The BRANCH ON COUNT instructions are often 
used to execute a program loop for a 
specified number of times. For example, 
assume that the following represents some 
lines of coding in an assembler-language 
program: 

Appendix A. Number Representation and Instruction-Use Examples A-9 



LUPE AR 8,1 

BACK BCT 6,LOPE 

where reqister 6 contains 00 00 00 03 and 
the address of LOPE is 6826. Assume that, 
in order to address this location, register 
10 is used as a base register and contains 
00 00 68 00. 

The format of the BCT instruction is: 

Machine Format 

Op Code 
r , 
I 46 6 o A 0261 

Assembler Format 

BCT 6, X' 26' (0,10) 

The effect of the coding is to execute 
three times the loop defined by locations 
LUPE throuqh BACK. 

BRANCH ON INDEX HIGH (BX~ 

The BRANCH ON INDEX HIGH instruction is an 
index-incrementing and loop-controlling 
instruction that causes a tranch whenever 
the sum of an index value and an increment 
value is greater than some compare value. 
For example, assume that: 

Register 4 contains 00 00 00 8A = 138 (1 OJ 
= the index. 

Reqister 6 contains 00 00 00 02 2 (10} = 
the increment. 

Reqister 7 contains 00 00 00 AA 170(10} 
= the compare value. 

Register 10 contains 00 00 71 30 = the 
branch address. 

The format of the instruction is: 

A-10 System/370 principles of Operation 

!achine Format 

Op Code 

86 " 6 A 

Da , 
0001 

Assembler Format 

BIB 4,6,0(10) 

When the instruction is executed, first the 
contents of register 6 are added to 
register 4, second the sum is compared with 
the contents of register 7, and third the 
decision whether to branch is made. After 
execution: 

Register 4 contains 00 00 00 8C = 140{10} 
Registers 6 and 7 are unchanged. 

Since the new value in register 4 is not 
yet greater than the value in reqister 7, 
the ~ranch to address 7130 is not taken. 
Repeated use of the instruction will 
eventtlally cause the bra nch to be taken 
when the value in register" reaches 172. 

When the reqister used to contain the 
increment is odd, that register also 
becomes the compare-value register. The 
following assembler-language subroutine 
illustrates how this feature may be used to 
search a table. 

Table 

I 2 Bytes 2 Bytes 
r---------+---------~ 
I 
I 
I 
I 
I 
I 
I 

IRG1 
ARG2 
ARG3 
ARG" 
ARGS 
ARG6 

FONCT1 
FUNCT2 
FUNCT3 
FONCT" 
FUNCT5 
FONCT6 

Assume that: 

Register 8 contains the search argument. 
Register 9 contains the width of the table 

in bytes (00 00 00 04). 
Register 10 contains the length of the 

table in bytes (00 00 00 18). 
Register 11 contains the starting address 

of the table. 
Register 14 contains the return address to 

the main program. 

AS the following subroutine is executed, 
the argument in register 8 is succeSSiVelY..,) .. 
compared with the arguments in the table, 
starting with argument 6 and workinq 
backward to argument 1. If an equality is 



found, the corresponding function replaces 
the argument in register 8. If an equality 
is not found, FFFF{16} replaces the 
argument in reqister 8. 

SEARCH LNR 9,9 
NOTEQUAL BXH 10,9,lOOP 
NOTFOUND LA 8,XIFFFFI 

BCF 15,14 
LOOP CH 8,0(2,3) 

BC 7,NOTEQUAL 
LH 8,2(10,11) 
BCR 15,14 

The first instruction (INR) causes the 
value in reqister 9 to be made negative. 
After execution of this instruction, 
register 9 contains FFFFFFFC -4{10}. 
Considering the case when no equality is 
found, the BXH instruction will be executed 
seven times. Each time BYH is executed, a 
value of -4 is added to register 10, thus 
reducinq the value in register 10 by 4. 
The new value in register 10 is compared 
with the -4 value in register 9. The 
branch is taken each time until the value 
in register 10 is -4. 

BRANCH ON INDEX LOW OR EQUAL (BXlE) 

This instruction is similar to BRANCH ON 
INDEX HIGH except that the branch is 
successful when the sum is low or equal 
compared to the compare value. 

COMPARE HAlF~ORD (CH) 

The COMPARE HAlFWORD instructicn compares a 
16-bit signed binary integer in storage 
with the contents of a register. For 
example, assume that: 

Register 4 contains FF FF 
- 3 2,768 {1 O} • 

Register 13 contains 00 01 60 
Storage locations 16080-16081 

= -32,768{10}. 

When the instruction: 

80 00 

50. 
contain 8000 

Machine Format 

Op Code R!o 
I 

49 4 o D 0301 

Assembler Format 

CH 4,X I 30 1 (0,13) 

is executed, the contents of locations 
16080-16081 are fetched, expanded to 32 
bits (the sign bit is propaqated to the 
left), and compared with the contents of 
register 4. Because the two numbers are 
equal, condition code 0 is set. 

COMPARE LOGICAL (CL, ClC, ClI, ClR) 

The COMPARE LOGICAL instructions differ 
from the signed-binary comparison 
instructions (C, CH, CR) in that all 
quantities are handled as unsigned binary 
integers or as unstructured data. 

The COMPARE LOGICAL (ClC) instruction can 
be used to perform the byte-by-byte 
comparison of storage fields up to 256 
bytes in length. For example, assume that 
the following two fields of data are in 
storage: 

Field 
1886 1891 
r--. , ii, , iii , , , 

ID11D61C81D51E21D61D516BIC114BIC214BI 

Field 2 
1900 190B 
r i I I Ii' , , , i .---, 

ID11D61C81D51E21D61D516BIC114BIC314BI 
I , '--L~ , , , I I , , 

Also assume: 

Register 9 contains 00 00 18 80. 
Register 7 contains 00 00 19 00. 

Execution of the instruction: 

Appendix A. Number Representation and Instruction-Use Examples A-11 



Machine Format 

Op Code L 02. Ba Oa 
if, 

05 OB 9 0061 7 I 0001 
L----____ -L ____ ~ ____ JL_ __ ~ ____ _L' __ ~ 

Assembler Format 

CLC 6(12,9),0(7) 

sets condition code 1, indicating that the 
contents of field 1 are lower in value than 
the contents of field 2. 

Because the collating sequence of the 
EBCDIC code is determined simply by a 
logical comparison of the tits in the code, 
the CLC instruction can be used to collate 
EBCDIC-coded fields. For example, in 
EBCDIC, the above two data fields are: 

Field 1 
Field 2 

JOHNSON,A.E. 
JOHNSON ,A.C. 

Condition code 1 tells us that A.B.JOHNSON 
precedes A.C.JOHNSON, thus placing the 
names in the correct alphatetic sequence. 

The COMPARE LOGICAL (CII) instruction 
compares a byte from the instruction stream 
with a byte from storage. For example, 
assume that: 

Register 10 contains 00 00 17 00. 
Storage location 1703 contains 7E. 

Execution of the instruction: 

Machine Format 

Op Code 12 
-, 

95 AF A 0031 
~------~~.--~-----~~ 

Assembler Format 

eLI 3(10),X'AF' 

sets condition code 1, 
first operand (the 
storage) is lower 
(immediate) operand. 

indicating that the 
quantity in main 
than the second 

A-12 System/370 Principles of Operation 

Assume that: 

Register 4 contains 00 00 00 01 
Register 7 contains FF FF FF FF 

Execution of the instruction: 

Machine Format 

Op Code 

15 4 7 

Assembler Format 

Op Code R2.,R a 

CLR 4,7 

1 • 
2 32 -1. 

sets condition code 1. Condition code 1 
indicates that the first operand is lower 
than the second. 

If, instead, the signed-binary comparison 
instruction COMPARE (CR) had been executed, 
the contents of register 4 would ha ve been 
interpreted as +1 and the contents of 
register 7 as -1. Thus, the first operand 
would have been higher, so that condition 
code 2 would have been set. 

COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) 

The COMPARE LOGICAL CHARACTERS UNDER MASK 
(CLM) instruction provides a means of 
comparing bytes selected from a general 
register to a contiguous field of bytes in 
storage. The M3 field of the CLM 
instruction is a four-bit mask that selects 
zero to four bytes from a general register, 
each mask bit corresponding, left to right, 
to a register byte. In the comparison, the 
register bytes corresponding to ones in the 
mask are treated as a contiguous field. 
The operation proceeds left to right. For 
example, assume that: 

Three bytes starting at storage location 
10200 contain FO BC 7B 

Register 12 contains 10000 
Register 6 contains FO BC 5C 7B 

Execution of the instruction: 



Machine Format 

Op Code R~ 
-,----"T"--T .~--, 

BD 1 6 D C 2001 
~ ______ ~ ____ .~ ___ L-

Assembler Format 

CLM 6,B'1101',X'200'(12) 

causes the following comparison: 

Fegister 6: FO BC 
1 

5C 
o 

7E 
1 MaSK 1 

Three bytes 
starting at 
location 
10200 

FO EC 7B 
I L-.. __ , 1 

'------, I I 
.---L-.-.L---r--L--, 
I FO 1 BC I 7B 1 

I 

Because the selected bytes 
condition code 0 is set. 

COMPARE LOGICAL LONG (CICL) 

are equa I, 

The COMPARE LOGICAL LONG (CLCL) instruction 
is used to compare two operands in storage, 
byte by byte. Each operand can be of any 
length. Two even-odd pairs of general 
registers (four registers in all) are used 
to locate the operands and to control the 
execution of the CLCL instruction, as 
illustrated in the following diagram. The 
first reaister of each pair must be an even 
register, and it contains the storage 
address of the byte currently being 
compared in each operand. The odd register 
of each pair contains the length of the 
operand it covers, and the leftmost byte of 
the second-operand odd register contains a 
padding byte which is used to extend the 
shorter operand, if any, to the same length 
as the longer operand. 

The followinq illustrates the assignment of 
registers: 

i 

Ri. (even) 1111111111 First-Operand Address 

0 8 31 

j , 
Ri,+1(odd) I11111111I First-Operand Lenqth 

I I 

0 8 31 

I , I 

R2 (even) 1111111111 Second-Operand Addressl 
L I 

0 8 31 

r- I 

R2+ 1 (odd) IPad By tel Second-Operand Leng th 

0 8 31 

Since the CLCL instruction may be 
interrupted during execution, the 
interrupting progra m must preserve the 
con tents of the four reqisters for use when 
the instruction is resumed. 

The following instructions set up two 
register pairs to control a text-string 
comparison. For example, assume: 

QI!~!:.gJlg 

Address: 20800 (hex) 
Length: 100 (dec) 

QI2~!:gng 2 

Address: 20AOO (hex) 
Length: 132 (dec) 

I 

Pagging ~.Y.!~ 

Address: 20003 ( hex) 
Length: 1 
Value: 40 (hex) 

Register 12 contains 00 02 00 00 

The setup instructions are: 

LA 4,X'800'(12) Point register 4 to 
start of first operand 

LA 5,100 Set register 5 to 
length of first 
operand 

LA 8,X'AOO'(12) Point register 8 to 
start of second 
operand 

LA 9,132 Set reqister 9 to 
length of second 
operand 

ICM 9,B'1000',3(12) Insert padding byte in 
leftmost byte position 
of register 9. 

Register pair 4,5 
operand. Bits 8-31 
the storage address 
EBCDIC text string, 

defines the first 
of register 4 contain 
of the start of an 

and bits 8-31 of 

Appendix A. Number Representation and Instruction-Use Examples A-13 



register 5 contain the length of the 
string, in this case 100 bytes. 

Register pair 8,9 defines the second 
operand, with bits 8-31 of register 8 
containing the starting location of the 
second operand and bits 8-31 of register 9 
containing the length of the second 
operand, in this case 132 bytes. Bits 0-7 
of register 9 contain an EBCDIC blank 
character (X' 40') to pad the shorter 
operand. In this example, the padding byte 
is used in the first operand, after the 
100th byte, to compare with the remaining 
bytes in the second operand. 

with the register pairs thus set up, the 
format of the CLCL instruction is: 

Machine Format 

Op Code 

OF 4 8 

Assembler Format 

Op Code Rs.,Ra 

CLCL 4,8 

When this instruction is executed, the 
comparison starts at the left end of each 
operand and proceeds to the right. The 
operation ends as soon as an inequality is 
detected or the end of the longer operand 
is reached. 

If this CLCL instruction is interrupted 
after 60 bytes have compared equal, the 
operand lengths in registers 5 and 9 will 
have been decremented to X'28' and X'48', 
respectively, and the operand addresses in 
registers 4 and 8 will have been 
incremented to X'2083C' and X'20A3C'. The 
padding byte X'40' remains in register 9. 
When the CLCL instruction is reissued with 
these register contents, the comparison 
resumes at the point of interruption. 

NOW, assume that the instruction is 
interrupted after 110 bytes. That is, the 
first 100 bytes of the seccnd operand have 
compared equal to the first operand, and 
the next 10 bytes of the second operand 
have compared equal to the padding byte 
(blank). The residual operand lengths in 
registers 5 and 9 are 0 and X'16', 
respectively, and the operand addresses in 
reqisters 4 and 8 are X'20864' (the value 
when the first operand was exhausted, and 
X' 20A6E' (the current value for t he second 
operand) . 

When the comparison ends, the condition 

A-14 System/370 principles of Operation 

code is set to 0, 1, or 2, depending on 
whether the first operand is equal to, less 
than, or greater than the second operand, 
respectively. 

When the operands are unegual; the 
addresses in registers 4 and 8 locate the 
bytes that caused the mismatch. 

CONVERT TO BINARY (CVB) 

The CONVERT TO BINARY instruction converts 
an eight-byte, packed-decimal number into a 
signed binary integer and loads the result 
into a general register. After the 
conversion operation is completed, the 
number is in the proper form for use as an 
operand in signed binary arithmetic. For 
exa mple, assume: 

storage locations 
decimal number 
00 00 00 00 00 

The contents of 
significant. 

7608-760F contain a 
in the packed format: 

25 59 4C (+25,594). 
register 7 are not 

Register 13 contains 00 00 76 00. 

The format of the conversion instruction 
is: 

Machine Format 

Op Code Rs. Xa Ba Da 
, 

4F 7 o D 0081 

Assembler Format 

CVB 7,8 (0,13) 

After the instruction is executed, register 
7 contains 00 00 63 FA. 

CONVERT TO DECIMAL (CVD) 

The CONVERT TO DECIMAL instruction performs 
functions exactly opposite to those of the 
CONVERT TO BINARY instruction. CVD 
converts a signed binary integer in a 
register to packed decimal and stores the 
eight-byte result. For example, assume: 

Reqister 1 contains the signed binary 
integer: 00 00 OF OF. .,. 

Register 13 contains 00 00 76 00. .." 

The format of the instruction is: 



L 

L 

Machine Format 

Op Code Rio Xa B2 D:;I 
~ I 

4E I 0 D 0081 

Assembler Format 

C VD 1 , 8 (0, 13) 

After the instruction is executed, storage 
locations 1608-160F contain 00 00 00 00 00 
03 85 5C (+3855). 

The plus sian qenerated is the preferred 
plus siqn, 1100{21. 

DIVIDE (D, DR) 

The DIVIDE instruction divides the dividend 
in an even-odd register pair by the divisor 
in a register or in storage. Since the 
dividend is assumed to be 64 bits long, it 
is important that the proper sign be first 
affixed. For example, assume that: 

storage locations 3550-3553 contain 00 00 
08 DE = 2210{10} = the dividend. 

Storage locations 3554-3551 contain 00 00 
00 32 = 50{10J = the divisor. 

The initial contents of registers 6 and 1 
are not siqnificant. 

Reaister 8 contains 00 00 35 50. 

The following assembler language statements 
load the reqisters properly and perform the 
divide operation: 

Statement I comments 

IL 
I 
ISRDA 
I 
I 
I 
ID 

I 
6,0(0,8) IPlaces 00 00 08 DE into 

I register 6. 
6,32 (0) I Shifts 00 00 08 DE into 

1 register 7. Register 6 
1 is filled with zeros 
1 (sign bits). 

6,4 (0,8) I Performs the division. 

The machine format of the above DIVIDE 
instruction is: 

Machine Format 

OP Code Rio X2 Ba D2 , 
5D 6 0 8 0041 

.J 

After all the foregoing instructions are 
executed: 

Register 6 contains 00 00 00 14 20 {1 OJ = 
the remainder. 

Register 1 contains 00 00 00 2D 45 {1 OJ 
the guotient. 

Note that if the dividend had not been 
first placed in register 6 and shifted into 
register 1, register 6 might not have been 
filled with the proper sign bits (zeros in 
this example), and the DIVIDE instruction 
might not have given the expected results. 

EXCLUSIVE OR (X, XC, XI, XR) 

When the Boolean operator EXCLUSIVE OF is 
applied to two bits, the result is one when 
either, but not both, of the two bits is 
one; otherwise, the result is zero. When 
two bytes are EXCLUSIVE ORed, each pair of 
bits is handled separately; there is no 
connection from one bit position to 
another. The following is an example of 
the EXCLUSIVE OR of two bytes: 

First-operand byte: 0011 0101{21 
0101 1100{2J Second-operand byte: 

Result byte: 0110 1001 {2} 

The EXCLUSIVE OR (XC) instruction can be 
used to exchange the contents of two areas 
in storage without the use of an 
intermediate storage area. For example, 
assume two three-byte fields in storage: 

359 35B 
i I ,--, 

Field 1 1001171901 

360 362 
r iii 

Field 2 1001141011 

Execution of the instruction (assume that 
register 1 contains 00 00 03 58): 

Appendix A. Number Representation and Instruction-Use Examples A-15 



!!achine Format 

Op Code L 

07 02 7 
, 

0011 7 
i 

0081 
~------~----~----~----~--~~--~ 

Assembler Format 

XC 1(3,7),8(7) 

Field is EXCLUSIVE ORed with field 2 as 
follows: 

Field 1 : 0000 0000 0001 0111 1001 0000 {2} 
00 17 90 

Field 2 : 0000 0000 0001 0100 0000 0001 {2} 
= 00 1" 01 

------------------------------------------
Result: 0000 0000 0000 0011 1001 0001 {2} 

= 00 03 91 

The result replaces the former contents of 
field 1. 

NOW, execution of the instruction: 

"achine Format 

Op Code L 01. Ba Oa 
r--------,----~r----r----~,----·,---~i 

I 07 02 7 0081 7 0011 

Assembler ?ormat 

XC 8(3,7},1(7) 

produces the following result: 

Field 1: 0000 0000 0000 0011 1001 0001{2} 
= 00 03 91 

Field 2: 0000 0000 0001 0100 0000 0001{2} 
00 14 01 

Result: 0000 0000 0001 0111 1001 0000 {2} 
= 00 17 90 

The result of this operation replaces the 
former contents of field 2. Field 2 now 
contains the original value of field 1. 

Lastly, execution of the instruction: 

A-16 system/370 Principles of Operation 

"achine Format 

Op Code L 

07 02 

Assembler Format 

7 
, 

0011 7 

Op Code Ot.(L,Bs.> ,0a(Ba) 

XC 1(3,7),8(7) 

produces the following result: 

Oa 
i 

0081 

Field 1: 0000 0000 0000 0011 1001 0001{2} 
00 03 91 

Field 2: 0000 0000 0001 0111 1001 0000{2} 
00 17 90 

Result: 0000 0000 00010100 0000 0001{2} 
= 00 14 01 

The result of this operation replaces the 
former contents of field 1. Field 1 now 
contains the original value of field 2. 

Exclusive Or (XI) 

A frequent use of the EXCLUSIVE OR (XI) 
instruction is to invert a bit (change a 
zero bit to a one or a one bit to a zero). 
For example, assume that storage location 
8082 contains 011U 1001{2}. To invert the 
leftmost and rightmost bits without 
affecting any of the other bits, the 
following instruction can be used (assume 
that register 9 contains 00 00 80 80): 

"achine Format 

Op Code Ia 

97 81 9 

Assembler Format 

Op Code 01. (Bt.) ,12 

X I 2 (9) , X ' 8 1 ' 

i 

0021 

When the instruction is executed, the byte 
in storage is EXCLUSIVE ORed with the 
immediate byte (the Ia field of the 
instruction) : 

J 



Location 8082: 
Immediate byte: 

Result: 

0110 1001 {2l 
1000 0001 {2l 

1110 1000 {2l 

The resulting byte is stored back in 
location 8082. Condition code 1 is set to 
indicate a nonzero result. 

1. with the XC instruction, fields up to 
256 bytes in length can be exchanged. 

2. With the XR instruction, the contents 
of two registers can be exchanged. 

3. Because the X instruction operates 
storage to reqister only, an exchange 
cannot be made solely by the use of X. 

q. A field EXCLUSIVE ORed with itself is 
cleared to zeros. 

5. For additional examples of the use of 
EXCLUSIVE OR, see the section 
"Floating-Point-Number Con~ersion" 
later in this appendix. 

EXECUTE (EX) 

The EXECUTE instruction causes one ~et 
instr~£iiQn in main storaqe to be executed 
out of sequence without actually branching 
to the tarqet instruction. Unless the R~ 
field of the EXECUTE instruction is zero, 
bits 8-15 of the target instruction are 
ORed with bits 24-31 of the R~ register 
before the target instruction is executed. 
Thus, EXECUTE may be used to supply the 
length field for an SS instruction wit hout 
modifying the SS instruction in storage. 
For example, assume that a MOVE (MVC) 
instruction is the target that is located 
at address 3820, with a format as follows: 

Machine Format 

B~ Op Code L 
-r----r--T 

D2 I 00 C 

Assembler Format 

D~ 
--,. 

0031 

Op Code D~(L,B~),Da(Ea) 

MVC 3(1,12),0(13) 

Ea , 
D 0001 

where register 12 contains 00 00 89 13 and 
register 13 contains 00 00 90 AO. 

Further assume that at storage address 

5000, the following EXECUTE instruction is 
located: 

Machine Format 

Op Code R~ Xa , 
44 1 o A 0001 

Assembler Format 

EX 1,0 (0,10) 

where register 10 contains 00 00 38 20 and 
register 1 contains 00 OF FO 03. 

When the instruction at 5000 is executed, 
the rightmost byte of register 1 is ORed 
with the second byte of the target 
instruction: 

Register byte: 
Instruction byte: 

0000 OOOO{~ = 00 
0000 0011{~ = 03 

Result: 0000 0011{2} = 03' 

causing the instruction at 3820 to 
executed as if it originally were: 

!achine Format 

Op Code L Bt. D~ Ba Da 
--r , , 

D2 03 C I 0031 D 0001 

Assembler Format 

Op Code Dt. (L,B~) ,Da (Ea) 

!tVC 3(4,12) ,0(13) 

However, after execution: 

Register 1 is unchanged. 
The instruction at 3820 is unchanged. 

be 

The contents of the four bytes starting at 
location 90AO have been moved to the 
four bytes starting at location 8916. 

The CPU next executes the instruction at 
address 5004 (PSW bits 40-63 contain 
00 50 04). 

INSERT CHARACTERS UNDER !tASK (ICM) 

The INSERT CHARACTERS UNDER MASK (ICM) 
instruction may be used to replace all or 

Appendix A. Number Representation and Instruction-Use Examples A-11 



selected bytes in a general register with 
bytes from storage and to set the condition 
code to indicate the value of the inserted 
field. 

For example, if it is desired to insert a 
three-byte address from FIELDA into 
reqister 5 and leave the leftmost byte of 
the register unchanqed, assume: 

Machine Format 

Op Code R~ , 
BF 5 7 * * * * I L----____ ~ ____ ~ __ ~~___ -J 

Assembler Format 

ICM 5,B ' 0111' ,FIEIDA 

FIELDA: 
Reqister 5 (before): 
Register 5 (after): 
Condition code (after): 

As another example: 

Machine Format 

Op Code R:l 
r---------r----,-----r 

FE DC BA 
12 34 56 78 
12 FE DC BA 
1 (leftmost bit 

----, 

of inserted 
field is one) 

I BF 6 9 * * * * I ___ .I 

Assembler Format 

ICM 6,B'1001',FIELDB 

FI ELDB: 
Reqister 6 (before): 
Reqister 6 (after): 
Condition code (after): 

12 34 
00 00 00 00 
12 00 00 34 
2 (inserted field 

is nonzero 
with leftmost 
zero bit) 

When the mask field contains 1111, the ICM 
instruction produces the same result as 
LOAD (L) (provided that the indexing 
capability of the RI format is not needed), 
except that ICM also sets the condition 
code. The condition-code setting is useful 
when an all-zero field (condition code O) 
or a leftmost one bit (condition code 1) is 

A-18 system/370 principles of Operation 

used as a flag. 

LOAD (L, LR) 

The LOAD instructions take four bytes from 
storage or from a general register and 
place them unchanged into a general 
register. For example, assume that the 
four bytes starting with location 21003 are 
to be loaded into register 10. Initially: 

Register 5 contains 00 02 00 00. 
Register 6 contains 00 00 10 03. 
The contents of register 10 are 

significant. 
Storage locations 21003-21006 contain 

00 AB CD. 

not 

00 

To load register 10, the R I form of the 
instruction can be used: 

Machine Format 

Op Code 
I 

58 A 5 6 0001 
L-________ L-__ ~ ____ -L ____ ~,.~ 

Assembler Format 

L 10,0(5,6} 

After the instruction is executed, register 
10 contains 00 00 ~B CD. 

LOAD ~DDRESS (LA) 

The LOAD ADDRESS instruction provides a 
convenient way to place a nonnegative 
binary integer up to 4095{10} in a register 
without first defining a constant and then 
using it as an operand. For example, the 
following instruction places the number 
2048{10} in register 1: 

J 



~ 
Machine Format 

Op Code R1. X:a B:a D:a -• 1 

41 1 0 0 8001 
.J 

Assembler Format 

LA 1,2048(0,0) 

The LOAD ADDRESS instruction can also be 
used to increment a register by an amount 
up to 4095{10} specified in the D:a field. 
Only the rightmost 24 bits of the result 
are retained, however. For example, assume 
that register 5 contains 00 12 34 56. 

The instruction: 

Machine Format 

Op Code X:a B:a 
r--------r---~----~--·~----~l 

41 I 5 0 5 OOA I 
! 

Assembler Format 

LA 5,10(0,5) 

adds 10 (decimal) to 
register 5 as follows: 

the contents of 

Register 5 (old): 00 12 34 56 
Da field: 00 00 00 OA 

Reqister 5 (new): 00 12 3q 60 

The register may be specified as either B:a 
or X:a. Thus, the instruction LA 5,10(5,0) 
produces the same result. 

As the most general example, the 
instruction LA 6,10(5,4) adds the 
displacement, in this case 10, to the 
contents of register 4 and to the contents 
of register 5 and places the 24-bit sum of 
these three values in register 6. 

LOAD HALlWORD (LH) 

The LOAD HALlWORD instruction places 
unchanged a halfword from storage into the 
right half of a reqister. The left half of 
the register is loaded with zeros or ones 
according to the sign (leftmost bit) of the 

halfword. 

For example, assume that the two bytes in 
storage locations 1803-1804 are to be 
loaded into register 6. Also assume: 

The contents of register 6 are not 
significant. 

Register 14 contains 00 00 18 03. 
Locations 1803-1804 contain 00 20. 

The instruction 
register is: 

required to load the 

Machine Format 

Op Code Rs. D:a 
I 

48 6 o E 0001 

Assembler Format 

Op Code Rs.,D:a(X2 ,B 2 ) 

LH 6,0(0,14) 

After the instruction is executed, register 
6 contains 00 00 00 20. If locations 
1803-1804 had contained a negative number, 
for example, A7 B6, a minus Sign would have 
been propagated to the left, givinq FF FF 
17 B6 as the final result in register 6. 

MOVE (liVC, KiI) 

The MOVE (MVC) instruction can be used to 
move data from one storage location to 
another. For example, assume that the 
following two fields are in storage: 

2048 2052 
r--r- iii i i • i , , i 

Field 1 IC11C21C31C41C51C61C71C81C91CAICBI 
L ' I I • • I , , ---L_..I.--J 

3840 3848 
iii , iii i i-' 

Field 2 IF11F21F31F41F51F61F71F81F91 
L--L __ ~~ __ ~ __ L--L. __ L--L!--.J 

Also assume: 

Register 1 contains 00 00 20 48. 
Register 2 contains 00 00 38 40. 

With the following instruction, the first 

Appendix A. Number Representation and Instruction-Use Examples A-19 



eight bytes of field 2 replace the first 
eight bytes of field 1: 

Machine Format 

Ot> Code L 
I 

D2 07 0001 

Assembler Format 

MVC 0 (8,1) ,0(2) 

After the instruction is executed, field 1 
becomes: 

2048 2052 
i. i I I ~i i", I 

Field 1 IF11F21F31F41F51F61F71F81C91CAICBI 

Field 2 is unchanged. 

MVC can also be used to propagate a byte 
through a field by starting the 
first-operand field one byte location to 
the right of the second-operand field. For 
example, suppose that an area in storage 
starting with address 358 contains the 
following data: 

358 360 
i • , t , i i T--'--' 
IOOlF11F21F31F41F51F61F71F81 
~-L __ ~~~-L. __ ~~ ___ ~_~~ 

with the following HVC 
zeros in location 358 
throughout the entire 
register 11 contains 00 

Machine Format 

Op Code L 

instruction, the 
can be propagated 

field (assume that 
00 03 58): 

r-------·-r----,-----r----',-----T----~I 

D2 107 B 0011 B 0001 
.L.-.--..L. ____ ...J 

Assembler Format 

Op Code D1. (L ,B1.) , Da (Ba) 

MVC 1(8,11),0(11) 

Because the HVC handles one byte at a time, 
the above instruction essentially takes the 
byte at address 358 and stores it at 359 
(359 now contains 00), takes the byte at 
359 and stores it at 35A, and so on, until 
the entire field is filled with zeros. 

A-20 system/370 principles of Operation 

Note that an MVI instruction could have 
been used originally to place the byte of 
zeros in location 358. 

1. Although the field occupyinq locations 
358-360 contains nine bytes, the 
length coded in the assembler format 
is equal to the number of moves (one 
less than the field length). 

2. The order of operands is 
even though only one 
involved. 

i mportan t 
field is 

The MOVE (MVI) instruction places one byte 
of information from the instruction stream 
into storage. For example, the 
instruction: 

Machine Format 

Op Code Ia B1. D1. 
"""T ,---, 

92 I 5B I 000 I 

Assembler Format 

MVl 0(1) ,CI$I 

may be used, in conjunction with the 
instruction EDIT AND MARK, to insert a 
dollar symbol at the storage address 
contained in general register 1 (see also 
the example for EDIT AND MARK). 

MOVE LONG (MVCL) 

The MOVE LONG (MVeL) instruction can be 
used for moving data in storage as in the 
first example of the MVC instruction, 
provided that the two operands do not 
overlap. MVCL differs from MVC in that the 
address and length of each operand are 
specified in an even-odd pair of qeneral 
registers. Consequently, MVCL can be used 
to move more than 256 bytes of data with 
one instruction. As an example, assume: 

Register 2 contains 00 OA 00 00. 
Register 3 contains 00 00 08 00. 
Register 8 contains 00 06 00 00. 
Register 9 contains 00 00 08 00. 



Execution of the instruction: 

Machine Format 

Op Code R:1 
r----'-----r----,-----, 
I OE 8 2 I 

Assembler Format 

Op Code R!., Ra 

MVCL 8,2 

moves 2,048{101 bytes from locations 
AOOOO-A07FF to location 60000-607FF. 
Condition code 0 is set to indicate that 
the operand lengths are equal. 

If register 3 had contained FO 00 04 00, 
only the 1,024{10} bytes from locations 
AOOOO-A03FF would have been moved to 
locations 60000-603FF. The remaining 
locations 60400-607FF of the first operand 
would have been filled with 1,024 copies of 
the padding byte X'FO', as specified by the 
leftmost byte of register 3. Condition 
code 2 is set to indicate that the first 
operand is longer than the second. 

The technique for setting a field to zeros 
that is illustrated in the second example 
of Mve cannot be used with MVCL. If the 
registers were set up to attempt such an 
operation with MVCL, no data movement would 
take place and condition code 3 would 
indicate destructive overlap. 

Instead, MVCL may be used to clear a 
storage area to zeros as follows. Assume 
register 8 and 9 are set up as before. 
Register 3 contains only zeros, specifying 
zero length for the second operand and a 
zero padding byte. The contents of 
register 2 are not significant. Executing 
the instruction MVCL 8,2 causes locations 
60000-607FF to be filled with zeros. 
Condition code 2 is set. 

MOVE NUMERICS (MVN) 

Two related instructions, MOVE NUMERICS and 
MOVE ZONES, may be used with decimal data 
in the zoned format to operate separately 
on the rightmost four bits (the numeric 
bits) and the leftmost four bits (the zone 
bits) of each byte. Both are similar to 
MOVE (MVC), except that MOVE NUMERICS moves 
only the numeric bits and MOVE ZONES moves 
only the zone bits. 

To illustrate the operation of the MOVE 

NUMERICS instruction, assume that 
following two fields are in storaqe: 

the 

7090 7093 
.--r- iii 

Field A IC61C71C81C91 

7041 7046 
.--r- ii, i I 

Field B IFOIF11F21F31F41F51 

Also assume: 

Register 14 contains 00 00 70 90. 
Register 15 contains 00 00 70 40. 

After the instruction: 

Machine Format 

Op Code L 
, I 

D1 03 F 0011 E 0001 
L-________ L-__ ~~ __ -L ____ ~ ____ L-__ ~ 

Assembler Format 

Op Code D!. (L,B!.) ,Da (Ba) 

MVN 1(4,15),0(14) 

is executed, field B becomes: 

7041 7046 
.----T--'- i I I i 
IF61F71F81F91F41F51 

, I I I , 

The numeric bits of the bytes at locations 
7090-7093 have been stored in the numeric 
bits of the bytes at locations 7041-7044. 
The contents of locations 7090-7093 and 
7045-7046 are unchanged. 

MOVE WITH OFFSET (MVO) 

MOVE WITH OFFSET may be used to shift a 
packed-decimal number an odd number of 
digit positions or to concatenate a sign to 
an unsigned packed-decimal number. 

Assume that the three-byte 
packed-decimal number in storage 
4500-4502 is to be moved to 
5600-5603 and given the sign 
packed-decimal number ending at 
5603. Also assume: 

Register 12 contains 00 00 56 00. 
Register 15 contains 00 00 45 00. 

unsigned 
loca tions 
loca tions 

of the 
loca tion 

Storage locations 5600-5603 contain 77 88 

Appendix A. Number Representation and Instruction-Use Examples A-21 



99 OC. 
storage locations 4500-4502 contain 12 34 

56. 

After the instruction: 

Machine Format 

Op Code 
.-------.~----~----r---~--~--,----" 

F1 3 2 C I 0001 F 0001 
L----____ ~ ____ ~ __ -L ____ ~ ___ ~~ __ _L __ __J 

Assembler Format 

MVO 0(4,12),0(3,15) 

is executed, the storage locations 
5600-5603 contain 01 23 45 6C. Note that 
the second operand is Extended on the left 
with one zero to fill out the first-operand 
field. 

MOVE ZONES (MVZ) 

The MOVE ZONES instruction can, similarly 
to MOVE (MVC) and MOVE NUMERICS, operate on 
overlapping or nonoverlapping fields. When 
operatinq on nonoverlapping fields, MOVE 
ZONES works like the MOVE NUMERICS 
instruction (see the example for MOVE 
NUMERICS), except that MeVE ZONES moves 
only the zone bits of each byte. To 
illustrate the use of MOVE ZONES with 
overlapping fields, assume that the 
follovinq data field is in storage: 

800 805 
r--r- I , ii, 

IF11C21F31C41F51C61 

Also assume that register 15 contains 00 00 
08 00. The instruction: 

Machine Format 

Op Code L 

D3 

Assembler Format 

F 
, 

0011 F 

MVZ 1(5,15),0(15) 

D2 , 
0001 

A-22 system/370 Principles of Operation 

propagates the zone bits from the byte at 
address 800 through the entire field, so 
that the field becomes: 

800 805 
"i ii" 
IF11F21F31F41F51F61 
I I , , I , I 

MULTIPLY (M, MR) 

Assume that a number in register 5 is to be 
multiplied by the contents of a word at 
address 3750. Initially: 

The contents of register 4 are not 
significant. 

Register 5 contains 00 00 00 9A 154{10} 
= the multiplicand. 

Register 11 contains 00 00 06 00. 
Register 12 contains 00 00 30 00. 
Storage locations 3750-3753 contain 00 00 

00 83 = 131{10} = the multiplier. 

The instruction required for performing the 
multiplication is: 

Machine Format 

Op Code X2 B2 , 
5C B C 1501 

L-______ ~ ____ ~ ____ L-__ -L".~ 

Assembler Format 

Op Code R~,D2(X2,B2) 

M 4,X '150' (11,12) 

After the instruction is executed, the 
product is in the register pair 4 and 5: 

Register 4 contains 00 00 00 00. 
Register 5 contains 00 00 4E CE = 

20, 1 74 {1 O} • 
Storage locations 3750-3753 are Unchanged. 

The RF format of the instruction can be 
used to square the number in a reqister. 
Assume that register 7 contains 00 01 00 
05. The instruction: 



Machine Format 

Op Code R~ 

1C 6 7 

Assembler Format 

MR 6,7 

multiplies the number in register 7 by 
itself and places the result in the pair of 
registers 6 and 7: 

Register 6 contains 00 00 00 01. 
Register 7 contains 00 OA 00 19. 

MULTIPLY HALFWORD (MH) 

The MULTIPLY HALFWORD instruction is used 
to multiply the contents of a register by a 
halfword in storage. For example, assume 
that: 

Register 11 contains 00 00 00 15 =21 (10} = 
the multiplicand. 

Register 14 contains 00 00 01 00. 
Register 15 contains 00 00 20 00. 
Storage locations 2102-2103 contain FF D9 

= -39 = the multiplier. 

The instruction: 

Machine Format 

Op Code 
1 

4C B E F 0021 
~ ______ ~~ __ ~ ____ ~ ____ ~ ___ J 

Assembler Format 

MH 11,2(14,15) 

multiplies the two numbers. The product, 
FF FF FC CD -819{10}, replaces the 
original contents of register 11. 

Only the rightmost 32 
stored in a register; 
on the left are 
interruption occurs on 

tits of a product are 
any significant bits 
lost. No proqram 
overflow. 

OR (0, OR, OI, OC) 

When tbe Boolean operator OR is applied to 
two bits, the result is one when either bit 
is one; otherwise, the result is zero. 
When two bytes are ORed, each pair of bits 
is handled separately; there is no 
connection from one bit position to 
another. The following is an example of 
ORing two bytes: 

First-operand byte: 0011 0101(2} 
0101 1100(2} Second-operand byte: 

Resul t byte: 0111 1101 {2} 

A frequent use of the OR instruction is to 
set a particular bit to one. For example, 
assume that storage location 4891 contains 
0100 0010(2}. To set the rightmost bit of 
this byte to one without affecting the 
other bits, the following instruction can 
be used (assume that register 8 contains 00 
00 48 90): 

Kachine Format 

Op Code 12 B~ D~ 

i 

96 01 8 0011 

Assembler Format 

OI 1 (8) , X ' 01 ' 

When this instruction is executed, the byte 
in storage is ORed with the immediate byte 
(the 12 field of the instruction): 

Location 4891: 
Immediate byte: 

Result: 

0100 0010(2} 
0000 000 1 {2} 

01 00 00 11 {2} 

The resulting byte with bit 7 set to one is 
stored back in location 4891. Condition 
code 1 is set. 

PACK (PACK) 

Assume that storage locations 1000-1003 
contain the followinq zoned-decimal number 
that is to be converted to a packed-decimal 

Appendix A. Number Representation and Instruction-Use Examples 1-23 



number and left in the same location: 

1000 1003 
iii ,.--, 

Zoned number IF11F21F31C41 

Also assume that register 12 contains 00 00 
10 00. After the instruction: 

Machine Format 

Op Code L~ 
r--------r----r----r--'~-- '~.----,---~i 

F2 3 

Assembler Format 

3 C I 0001 C 0001 
I 

PACK 0(4,12),0(4,12) 

is executed, the result in locations 
1000-1003 is in the packed-decimal format: 

1000 1003 
i , i .,--, 

Packed number 10010112314CI 
'--~ __ L-_.L--.J 

1. This example illustrates the operation 
of PACK when the first- and 
second-operand fields overlap 
completely. 

2. During the operation, the second 
operand was extended on the left with 
zeros. 

SHIFT LEFT DOUBLE (SLDA) 

The SHIFT LEFT DOUELE instruction is 
similar to SHIFT LEFT SINGLE exce~t that 
SLDA shifts the 63 bits (not including the 
sign) of an even-odd register pair. The B~ 
field of this instruction must be even. 
For example, if the contents of registers 2 
and 3 are: 

00 7F 01 72 FE DC BA 98 = 
0000 0000 0111 1111 0000 1010 0111 0010 
1111 1110 1101 1100 1011 1010 1001 1000{21 

The instruction: 

A-24 system/370 principles of Operation 

Machine Format 

Op Code 
r-------~.----,,----~,----,---~i 

8F 2 1////1 0 01FI 
, I 

Assembler Format 

SL DA 2, 31 (0) 

results in registers 2 and 3 both being 
left-shifted 31 bit positions, so that 
their new contents are: 

7F 6E 50 4C 00 00 00 00 = 
0111 1111 0110 1110 0101 1101 0100 1100 
0000 0000 0000 0000 0000 0000 0000 0000{2} 

In this case, a significant bit is shifted 
out of bit position 1 of register 2. 
Condition code 3 is set to indicate this 
overflow and, if the fixed-point-overf10w 
mask bit in the PSi is one, a fixed-point 
overflow interruption occurs. 

SHIFT LEFT SINGLE (SLA) 

Because SHIFT LEFT SINGLE leaves the sign 
bit unchanged, this instruction performs an 
algebraic shift. For example, if the 
contents of register 2 are: 

00 7F 01 72 = 0000 0000 0111 1111 0000 1010 
0111 0010{2} 

The instruction: 

!!achine Format 

Op Code 
i i 

8B 2 1////1 
I , 

Assembler Format 

SLA 2,8(0) 

results in register 2 
eight bit positions 
contents are: 

o 
i 

0081 

being shifted 
so that its 

7F OA 72 00 = 0111 1111 0000 1010 0111 
0000 0000 {21 

Condi tion code 2 is set to indica te 

left 
new 

0010 

that 
~ 



L 

the result is nonzero and positive. 

If a left shift of nine places had been 
specified, a significant bit would have 
been shifted out of bit position 1. 
Condition code 3 would have been set to 
indicate this overflow and, if the 
fixed-point-overflow mask bit in the PSi is 
one, a fixed-point overflow interruption 
would have occurred. 

STORE CHARACTERS UNDER MASK (STCM) 

STORE CHARACTERS UNDER MASK (STCM) ma, be 
used to place selected bytes from a 
register into storage. For example, if it 
is desired to store a three-byte address 
from qeneral register 8 into location 
FIELD3, assume: 

Machine Format 

Op Code R1. "13 S2 
.--- T------, 
I BE 8 7 I * * * * I 

J 

Register Format 

00 Code P!.,1'!3,S2 

STC"I 8,B'0111' ,FIELD3 

Reqister 8: 
FIELD3 (before): 
FIELD3 (after): 

12 34 56 78 
not siqnificant 
34 56 78 

As another example: 

Machine Format 

Op Code R1. 
.-----~---,r----r 

I BE I 9 5 

Reaister Format 

, 
* * * * I 

--' 

STC"! 9,B'0101' ,FIEID2 

Reqister 9: 01 23 45 67 
FIELD2 (before): not significant 
FIELD2 (after): 23 67 

STORE MULTIPLE (STM) 

Assume that the contents of qeneral 
registers 14, 15, 0, and 1 are to be stored 
in consecutive words starting with location 
4050 and that: 

Register 14 contains 00 00 25 63. 
Register 15 contains 00 01 27 36. 
Register 0 contains 12 43 00 62. 
Reaister 1 contains 73 26 12 57. 
Register 6 contains 00 00 40 00. 
The initial contents of locations 

4050-405F are not significant. 

The STORE MULTIPLE instruction 
use of just one instruction to 
contents of the four registers: 

allows the 
store the 

/'lachine Format 

Op Code 
I 

90 E 6 0501 

Assembler Format 

STM 14,1,X'50'(6) 

After the instruction is executea: 

Locations 4050-4053 contain 00 00 
Locations 4054-4057 contain 00 01 
Locations 4058-405B contain 12 43 
Locations 405C-405F contain 73 26 

TEST UNDER MASK (TM) 

The TEST UNDER 
selected bits 
condition code 
assume that: 

MASK instruction 
of a byte and 
accordinqly. For 

25 63. 
27 36. 
00 62. 
12 57. 

examines 
sets the 
example, 

Storaqe location 9999 contains FB. 
Register 7 contains 00 00 99 90. 

Execution of the instruction: 

Appendix A. Number Representation and Instruction-use Examples "A-25 



Machine Format 

Op Code 12 
r--------?----,---~r_--_, 

91 C3 7 0091 

Assembler Format 

Op Code 

T'1 9 (7) ,B' 11000011' 

produces the following result: 

FB 11111011f2} 
Mask = 1100 0011{2} 

Result = 11xx xx11 {2} 

Condition code 3 is set: all selected bits 
are ones. 

If location 9999 had contained B9, the 
result would have been: 

B9 
Mask 

= 1011 1001 {2} 
= 1100 0011{2} 

Result = 10xx xx01 {2} 

Condition code 1 is set: the selected bits 
are both zeros and ones. 

If location 9999 had contained 3C, the 
result would have been: 

3C = 0011 1100{2} 
Mask = 1100 0011 {2} 

Resul t = OOxx xxOO {2} 

Condition code 0 is set: all selected bits 

simplicity, the example shows only the part 
of the table containing the decimal digits: 

Translate Table for Decimal Digits: 

10FO 10F9 
ii," Iii i" 
1301311321331341351361371381391 
"'" I' "" 

Assume that the four-byte 
location 2100 contains the 
the digits 1984: 

field at storage 
EBCDIC code for 

Locations 2100-2103 contain F1 F9 F8 F4. 
Register 12 contains 00 00 21 00. 
Register 15 contains 00 00 10 00. 

As the instruction: 

P1achine Format 

Op Code L D:z 

• DC 03 C • 000 I F 0001 

Assembler Format 

TF 0(4,12) ,0(15) 

is executed, the binary value 
source byte is adde1 to the 
address of the table, and the 
address is used to fetch a target 

Table starting address: 
First source byte: 

1000 
F1 

Address of target byte: 10F1 

of each 
startinq 

resulting 
byte: 

are zeros. After execution of the instruction: 

]Q1~: storage location 9999 remains 
unchanged. 

TRANSLATE (TF) 

The TRANSLATE instruction can be used to 
translate data from any character code to 
any other desired code, provided that each 
coded character consists of eight bits or 
fewer. In the following example, EBCDIC is 
translated to ASCII. The first step is to 
create a 256-byte table in storage 
locations 1000-10FF. This table contains 
the characters of the target code in the 
sequence of the binary representation of 
the source code; that is, the ASCII 
representation of a character is placed in 
storage at the starting address of the 
table plus the binary value of the EBCDIC 
representation of the same character. For 

A-26 System/370 Principles of Operation 

Locations 2100-2103 contain 31 39 38 34. 

Thus, the ASCII code for the digits 1984 
has replaced the EBCDIC code in the 
four-byte field at storage location 2100. 

TRANSLATE AND TEST (TRT) 

The TRANSLATE AND TEST instruction can be 
used to scan a data field for characters 
with a special meaning. To indicate which 
characters have a special meaning, a table 
similar to the one used for the TRANSLATE 
instruction is set up, except that zeros in 
the table indicate characters without any 
special meaning and nonzero values indicate 
characters with a special meaning. 

The figure "Translate-and-Test 
follows has been set up to 

Table" that 
distinguish 

J 



alphameric characters (A to Z and 0 to 9) 
from blanks, certain special symbols, and 
all other characters which are considered 

invalid. EBCDIC coding is assumed. The 
256-byte table is assumed stored at 
locations 2000-20FF. 

023 4 5 6 789 ABC D E F 
r--"-T~i , i , i f i , iii i , , 

200_1401401401401401401401401401401401401401401401401 
I 1 I 1 I 1 I 1 1 I 1 1 1 1 I 1 , 

201_1401401401401401401401401401401401401401401401401 
~-+IIIII+IIIIIII' 

202_1401 401401401401 401401401401401401401401401401401 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 

203_1401401401401401401401401401401401401401401401401 
~--+- 1 1 1 1 II-+- 1 I I I 1 1 1 I 

204_1041401401401401401401401401401401081 40IOC1101401 
1 I 1 1 1 1 1 1 1 1 I 1 1 I 1 1 , 

205_1141 4014014014014014014014014014011811C1201401401 
~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

206_12"12814014014014014014014014014012CI401401401401 
~-+ 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 

207_1401401 401 4014014014014 0 14 014014013013413813C1401 
1 1 1 1 1 1 1 1 1 1 I II-+-I 1 1 

208_1401401401401401401401401401401401401401401401401 
1 1 1 1 II+-+- 1 1 1 1 1 1 1 1 , 

209_1401401401401401401401401401401401401401401401401 
~-+-I 1 1 +-+--+--+- 1 1 1 1 1 1 1 

20A_1401401401401401401401401401401401401401401401401 
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 

20B_14014014014014014014014014014014014014014 0 1401401 
1 1 1 1 1 1 II-+- 1 1 1 1 1 1 1 I 

20C_I 40 IOOIOOIOOIOOIOOIOOIOOIOOIOOI401401401 40 I401401 
~I 1 1 +-+--+-11111111 , 

20D_1401001001001001001001001001001401401401401401401 
I 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 , 

20E_1401401001001001001001001001001401401401401401401 
I- I 1 1 1 I II-+- I I 1 1 , 1 1 , 

20F_IOOI00100100I00100100100100I001401401401401401401 
L~' '" 1"1" I I '" 

Noig: If the character codes in the statement being 
translated occupy a range smaller than 00 throuqh 
FF{16}, a table of fewer than 256 bytes can be used. 

Translate and Test Table 

Appendix A. Number Representation and Instruction-Use Examples A-27 



The table entries for the alphameric 
characters in EBCDIC are 00; thus, the 
letter A (code C1) corresponds to byte 
location 20C1, which contains 00. 

The 15 special symbols have nonzero entries 
from 04 (16} to 3C (16} in increments of 4. 
Thus, the blank (code 40) has the entry 
04(16}, the period (code 4B) has the entry 
OB(16}, and so on. 

All other table positions have the entry 
40{16} to indicate an invalid character. 

The table entries are chosen so that they 
may be used to select one of a list of 16 
words containing addresses of different 
routines to be entered for each special 
symbol or invalid character encountered 
during the scan. 

Assume that this list of 16 branch 
addresses is stored at locations 3004-3043. 

startinq at storage location CABO, there is 
the following sequence of 21 {10} EBCDIC 
characters: 

Locations CABO-CA94: UNPKbpROUT(9) ,WORD(5) 

Also assume: 

Register 1 contains 00 00 CA 7F. 
Register 2 contains 00 00 30 00. 
Register 15 contains 00 00 20 00. 

As the instruction: 

Machine Format 

Op Code L D1. 
r----·-----r----,---~r----~I I 
I DD 14 1 0011 F 1 0001 
L----. ____ ~ __ ~~----~ 

Assembler Format 

TRT 1 (21,1),0(15) 

is executed, the value 
arqument byte, the letter 
the starting address of 
produce the address of the 
be examined: 

Table starting address 
First argument byte (U) 

Address of table entry 

of 
U, is 
the 

table 

2000 
E4 

20E4 

t he first 
added to 

table to 
entry to 

Because zeros were placed in storaqe 
location 20E4, no special action occurs. 
The operation continues with the second and 
subsequent argument bytes until it reaches 
the blank in location CAB4. When this 
symbol is reached, its value is added to 

A-2B system/370 Principles of Operation 

the starting address of the table, as 
usual: 

Table starting address 2000 
Argument byte (blank) 40 

Address of table entry 2040 

Because location 2040 contains a 
value, thE! following actions occur: 

non zero 

1. 

2. 

3. 

The address of the 
00CA84, is placed in 
bits of register 1. 

argument byte, 
the rightmost 24 

The table entry, 04, is placed in the 
rightmost eight bits of register 2, 
which now contains 00 00 30 04. 

Condition code 1 is set (scan not 
completed) • 

The TRANSLATE AND TEST instruction may be 
followed by instructions to branch to the 
routine at the address found at location 
3004, which corresponds to the blank 
character encountered in the scan. When 
this routine is completed, program control 
may return to the TRANSLATE AND TEST 
instruction to continue the scan, except 
that the length must first be adjusted for 
the characters already scanned. 

For this purpose, the TRANSLATE AND TEST j' 
may be executed by the use of an EXECUTE 
instruction, which supplies the length 
specification from a general register. In 
this way, a complete statement scan can be 
performed with a single TRANSLATE AND TEST 
instruction repeated over and over by means 
of EXECUTE, and without modifying any 
instructions in storage. In the example, 
after the first execution of TRANSLATE AND 
TEST, register 1 contains the address of 
the last argument byte translated. It is 
then a simple matter to subtract this 
address from the address of the last 
argument b~te (CA94) to produce a length 
specification. This length minus one is 
placed in the register that is referenced 
as the R1 field of the EXECUTE instruction. 
(Note that the length code in the machine 
format is one less than the total number of 
bytes in the field.) The second-operand 
address of the EXECUTE instruction points 
to the TRANSLATE AND TEST instruction, 
which is the same as illustrated above, 
except for the length (L) which is set to 
zero. 

UNP ACK (UNPK) 

Assume that storage locations 2501-2502 .~" 
contain a signed, packed-decimal number 
that is to be unpacked and placed in 
storage locations 1000-1004. Also assume: 



Register 12 contains 00 00 10 00. 
Reqister 13 contains 00 00 25 00. 
storage locations 2501-2502 contain 12 3D. 
The initial contents of storage locations 

1000-1004 are not significant. 

After the instruction: 

Machine Format 

Op Code 
r------,- --,- T,----,---,j 

F3 I 4 1 C I 0001 D 0011 , 

Assembler Format 

UNPK 0(5,12),1(2,13) 

is executed, the storage locations 
1000-1004 contain FO FO F1 F2 D3. 

(See Chapter 8.) 

ADD DECIMAL (AP) 

Assume that the signed, packed-decimal 
number at storage locations 500-503 is to 
be added to the signed, packed-decimal 
number at locations 2000-2002. Also 
assume: 

Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 05 00. 
storage locations 2000-2002 contain 38 46 

OD (a negative number). 
Storaqe locations 500-503 contain 01 12 34 

5C (a positive number). 

After the instruction: 

Machine Format 

Op Code 
r---- ~-----,r---~----~j 

I FA 2 3 C 000 I D 000 I 
L----____ -L ____ ~ __ ~~ __ ~_ 

Assembler Format 

AP 0(3,12),0(4,13) 

is executed, the 
2000-2002 contain 73 88 
2 is set to indicate 

storage locations 
5C; condition code 
that the sum is 

positive. Note that: 

1. Because the two numbers had different 
signs, they were in effect subtracted. 

2. Although the second operand is longer 
than the first operand, no overflow 
interruption occurs because the result 
can be entirely contained within the 
first operand. 

COMPARE DECIMAL (CP) 

Assume that the signed, packed-decimal 
contents of storage locations 700-703 are 
to be algebraically compared with the 
signed, packed-decimal contents of 
locations 500-502. Also assume: 

Register 12 contains 00 00 06 00. 
Register 13 contains 00 00 03 00. 
Storage locations 700-703 contain 17 25 35 

6D. 
Storage locations 500-502 contain 72 14 

2D. 

After the instruction: 

Machine Format 

Op Code Bs. D2 
r-------r---,----T---~~--_r,---~___, 

1 F9 3 2 C 100 1 D 200 1 
-.J 

Assembler Format 

CP X '100' (4,12) , X' 200 ' (3,13) 

is executed, condition code is set, 
indicating that the first operand (the 
contents of locations 700-703) is less than 
the second. 

DIVIDE DECIMAL (DP) 

Assume that the signed, packed-decimal 
number at storage locations 2000-2004 (the 
dividend) is to be divided by the siqned, 
packed-decimal number at locations 
3000-3001 (the divisor). Also assume: 

Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 30 00. 
Storage locations 2000-2004 contain 01 23 

45 67 8C. 
Storage locations 3000-3001 contain 32 1D. 

After the instruction: 

Appendix A. Number Representation and Instruction-Use Examples A-29 



Machine Format 

00 Code Lt. 
ro--
I FD 4 C 

D2 
I • 0001 D 0001 

L-______ ~~ __ ~ ____ ~.~ ____ _L ____ ~ __ ~ 

Assembler Format 

DP 0(5,12),0(2,13) 

is executed, the dividend is entirely 
replaced by the signed quotient and 
remainder, as follows: 

2000 2004 
r--..---.,--,.--r--, 

Locations 2000-2004 13S14610DI011SCI 
, I 

quotient remainder 

1. Because the dividend and divisor have 
different signs, the quotient receives 
a negative sign. 

2. The remainder receives the sign of the 
dividend and the length of the 
divisor. 

3. If an attempt were made to divide the 
dividend by the one-byte field at 
location 3001, the quotient would be 
too long to fit within the four bytes 
allotted to it. A decimal-divide 
exception would exist, causing a 
proqram interruption. 

EDIT (ED) 

Before decimal data in the packed format 
can be used in a printed report, digits and 
signs must be converted to printable 
characters. Moreover, punctuation marks, 
such as commas and decimal points, may have 
to be inserted in appropriate places. The 
highly flexible EDIT instruction performs 
these functions in a single instruction 
execution. 

This example shows step-by-step one way 
that the EDIT instruction can be used. The 
field to be edited (the source) is four 
bytes long; it is edited against a pattern 
13 bytes long. The following symbols are 
used: 

1-30 System/370 principles of operation 

r--------------------r------------------------, 
I Symbol I Meaning 
I I 

40) IBlank character Ib (Hexadecimal 
I ( (Hexadecimal 
Id (Hexadecimal 

21) IS ignif ica nce sta rter 
20) I Digit se lector 

Assume that the source and pattern fields 
are: 

1200 1203 
r--~ I i 

l0215714216CI 

1 
1 
L- + 

1000 100C 
,II','" r, i .-r--, 
14012012016BI2012112014BI20120140lC31D91 

b d d d d d d b C F 

Execution of the instruction (assume that 
register 12 contains 00 00 10 00) : 

Machine Format 

Op Code L 9t. Dt. B2 D2 
T I • 

DE I OC C 0001 C 2001 

Assembler Format 

op Code Dt.(L,Bt.) ,D2 (B 2 ) 

ED 0(13,12),X'200'(12) 

alters the pattern field as follows: 

J 



~ 
I 
1 
1 Pattern 
I---

b 
d 
d 
, 
d 
( 
d 

d 
d 
b 
C 
R 

1 
1 No1g§.: 
1 

Diqit 

0 
2 

5 
7 
4 

2 
6+ 

significance 
Indicator 

(Before/After) Rule 

off/off leave (1) 
off/off fill 
off/on (2) diqit 
on/on leave 
on/on diqit 
on/on diqit 
on/on diqit 
on/on leave 
on/on digit 
on/off (3) diqit 
off/off fill 
off/off fill 
off/off fill 

-'--

11 • This character is the fill byte. 
1 

Location 
1000-100C 

bdd,d(d.ddbCR 
bbd,d(d.ddbCR 
bb2,d(d.ddbCR 
same 
bb2,5(d.ddbCR 
bb2, 57d. ddbCR 
bb2,574.ddbCR 
same 
bb2,574.2dbCR 
bb2,574.26bCR 
same 
bb2,574.26bbR 
bb2,574.26bbb 

12. 
1 

First nonzero decimal source digit turns on siqnificance 
indicator. 

I 
13. 
1 

Plus siqn in the four rightmost bits of the byte turns 
off significance indicator. 

Thus, after the instruction is executed, 
the pattern field contains the result as 
follows: 

1000 100C 
I t Iii , • ~, i ~I i i 

140140lF216BIF51F71F414BIF21F61401401401 

b b 2 5 7 4 2 6 b b b 

When printed, the new pattern field appears 
as: 

2,574.26 

The source field remains unchanqed. 
Condition code 2 is set because the number 
was qreater than zero. 

If the number in the source field is 
changed to 00 00 02 6D, a negative number, 
and the oriqinal pattern is used, the 
edited result this time is: 

1000 100C 
i • • --r- iii ~~"---Y--I i I 

140140140140140140lFOl4BIF21F6140lC31D91 
I I I I I J..-.~,_~_"--_____ "",,,,--, 

b b b b b b 0 2 6 b C R 

This pattern field prints as: 

0.26 CR 

The siqnificance starter force s the 
significance indicator to the on state and 
hence causes the decimal point to be 
preserved. Because the minus-sign code has 
no e~fect on the significance indicator, 
the characters CR are printed to show a 
negative (credit) amount. 

Condition code 1 is set (number less than 
zero). 

EDIT AND MARK (EDMK) 

The EDIT AND MARK instruction may be used, 
in addition to the functions of EDIT, to 
insert a currency symbol, such as a dollar 
sign, at the appropriate position in the 
edited result. Assume the same source in 
storage locations 1200-1203, the same 
pattern in locations 1000-100C, and the 
same contents of general register 12 as for 
the EDIT instruction above. The previous 
contents of qeneral register 1 are 
immaterial; a LOAD ADDRESS instruction is 
used to set up the first diqit position 
that is forced to print if no significant 
digits occur to the left. 

The instructions: 

LA 1,6(0,12) Load add re ss of 
forced siqnificant 
dig it into GR1. 

EDMK 0(13,12) ,X'200' (12) Leave address of 
first siqnificant 

Appendix A. Number Representation and Instruction-Use Examples A-31 



BCTR 1,0 

MVI 0 (1 ) , C ' $ , 

dig it in G F 1 • 
Subtract 1 from 
address in GR1. 
Store dollar sign 
and address in 
GR1. 

produce the following results for the two 
examples under EDIT: 

1000 100C 
r---r---r-~ i , I , ~-y , , , 

140ISBIF216BIFS/F7/F4/4BIF2IF6/40140/40/ 

b $ 2 S 7 4 2 6 b b b 

This pattern field prints as: 

$2,574.26 

Condition code 2 is set to indicate that 
the number edited was areater than zero. 

1000 100C 
, I I -.- , • I T--'--'--- I I , --, 

14014014014014015BIFOl4BIF21F6140/C31D91 
I , , , I I I ~ I , I 

b b b b b $ 0 2 6 b C R 

This pattern field prints as: 

$0.26 CR 

condition code 1 is 
is less than zero. 

MULTIPLY DECIMAL (MP) 

set because the number 

Assume that the sianed, nacked-decimal 
number in storaqe locations 1202-1204 (the 
multiplicand) is to be multiplied by the 
siqned, packed-decimal number in locations 
500-S01 (the multiplier). 

1202 1204 
, i 1-' 

Multiplicand 138146100/ 
L--L_..L-_J 

500 501 

Multiplier 

Because the multiplier and multiplicand 
have a total of eiqht siqnificant digits, 
at least five bytes must be reserved for 
the siqned result. ZERO AND ADD can be 
used to move the multiplicand into a lonqer 
field. AssulI'e: 

Register 4 contains 00 00 12 00. 

A-32 System/370 principles of Operation 

Register 6 contains 00 00 05 00. 

Then execution of the instruction: 

ZAP X'100' (S,4) ,2(3,4) 

sets up a new multiplicand in storage 
locations 1300-1304: 

1300 1304 
, , i , , 1 

Multip1icand(new) 1001001381461001 

Now, after the instruction: 

Machine Format 

Op Code L1. O2 

r-------,r----,-----r·----~--_"r---~----, 

FC 4 1 4 1001 6 0001 

Assembler Format 

MP X'100'(5,4),0(2,6) 

is executed, storage locations 1300-1304 
contain the product: 01 23 45 66 OC. 

SHIFT AND ROUND DECIMAL (SRP) 

The SHIFT AND FOUND DECIMAL 
instruction can be used for 
decimal numbers in storaae to the 
riaht. When a number is shifteo 
roundinq can also be done. 

(SFP) 
shi tUng 
left or 

riah t, 

In this example, the contents of storage 
location FIELD1 are shifted three places to 
the left, effectively multiplying the 
contents of FIELD1 by 1000. FIELD1 is six 
bytes long. The fo1lowinq instruction 
performs the operation: 

Machine Format 

Op Code 
r--------,r---~----'i.-·--~I-----r----, 

FO 5 o 1****1 0 0031 

Assembler Format 

SRP FIELD1 (6) ,3,0 



FIELD1 (before): 00 01 23 45 67 8C 

FIELD1 (after): 12 34 56 78 00 OC 

The second-operand address in this 
instruction specifies the shift amount 
(three places). The rounding factor, 13, 
is not used in left shift, but it must be a 
valid decimal diqit. After execution, 
condition code 2 is set to show that the 
result is greater than zero. 

In this example, the contents of storage 
location FIELD2 are shifted one place to 
the right, effectively dividing the 
contents of FIELD2 by 10 and discarding the 
remainder. FIELD2 is five bytes in length. 
The folloYing instruction performs this 
operation: 

Machine Format 

Op Code L1. 
r--------.---~----TI -y- Ti----~ 

FO 1 4 0 1****1 0 103F 

Assembler Format 

SRP FIELD2 (5) ,64-1,0 

i, 
r--I 1 
1 1 

,.-i, ,-1-, 
00111111 

L-..,--J 
1 
1 

6-bit two's 
complement 
for -1 

FIELD 2 (before): 01 23 45 67 8C 

FIELD 2 (after): 00 12 34 56 7C 

In the SFP instruction, shifts to the right 
are specified in the second-operand address 
bV negative shift values, which are 
represented as a six-bit value in two's 
complement form. 

The six-bit two's complement of 
n, can be specified as 64 - n. 
example, a right shift of 
represented as 64 - 1. 

Condition code 2 is set. 

a number, 
In this 
one is 

In this example, the contents of storage 
location FIELD3 are shifted three places to 
the right and rounded, effectively dividinq 
by 1000 and rounding to the nearest whole 
number. FIELD3 is four bytes in length. 

Machine Format 

Op Code 

FO 3 

Assembler Format 

iii 

5 1****1 0 103D 
I i~ 

r--I 1 
1 1 

,.-i, rL-, 
00111101 
~-' 

1 
1 

6-bit two's 
complement 
for -3 

SRP FIELD3 (4) ,64-3,5 

FIELD 3 (befor~: 12 39 60 OD 

FIELD 3 (after): 00 01 24 OD 

The shift amount (three places) is 
specified in the D2 field. The 13 field 
specifies the rounding factor of 5. The 
rounding factor is added to the last digit 
shifted out (which is a 6), and the carry 
is propagated to the left. The sign is 
ignored during the addition. 

Condition code 1 is set because the result 
is less than zero. 

Since the shift value designated by the SRP 
instruction specifies both the direction 
and amount of the shift, the operation is 
equivaleut to multiplying the decimal first 
operand by 10 rdis~d to the power specified 
by the shift valde. 

If the shift val:le is variable, it may be 
specified bV the B2 field instead of the 
displacement D2 of the SRP instruction. 
The qeneral regi~t~r designated by B2 
should contain the shift value (power of 
10) as a signed binary integer. 

A fixed scale factor modifyinq the variable 

Appendix A. Number Representation and IdstLuction-Use Examples A-33 



power of 10 may be specified by using both 
the B2 field (variable part in a general 
register) and the D2 field (fixed part in 
the displacement). 

The SRP instruction uses only the rightmost 
six bits of the effective address D2 (B 2 ) 

and interprets them as a six-bit signed 
binary integer to control the left or right 
shift as in the previous two examples. 

ZERO AND ADD (ZAP) 

Assume that the signed, packed-decimal 
number at storage locations 4500-4502 is to 
be moved to locations 4000-4004 with four 
leading zeros in the result field. Also 
assume: 

Register 9 contains 00 00 40 00. 
Storage locations 4000-4004 contain 12 34 

56 78 90. 
Storage locations 4500-4502 contain 38 46 

ODe 

After the instruction: 

Machine Format 

Op Code 
r-------~--_,r_---r ~ T.----,---_" 

F8 I 4 2 9 I 0001 9 5001 
L-______ ~IL-__ ~ ____ ~ ____ ~ ~. ____ J_ __ -J 

Assembler Format 

ZAP 0(5,9),X'500'(3,9) 

is executed, the storage locations 
4000-4004 contain 00 00 38 46 OD; condition 
code 1 is set to indicate a negative 
result. 

Note that, because the first'operand is not 
checked for valid sign and digit codes, it 
may contain any combination of hexadecimal 
digits before the operation. 

(See Chapter 9.) 

In this section, the abbreviations FPRO, 
FPR2, FPR4, an d FPR6 st and for 
floating-point registers 0, 2, 4, and 6 
respect i vel y. 

A-34 System/370 Principles of Operation 

ADD NORMALIZED (AD, ADR, IE, AER, AIR) 

The ADD NORMALIZED instructions perform the . .'\ 
addition of two floating-point numbers and ~ 
place the normalized result in a 
floating-point register. Neither of the 
two numbers to be added must necessarily be 
normalized before addition occurs. For 
example, assume that: 

FPR6 contains C3 08 21 00 00 00 00 00 = 
-82.1{16) -130.06{10} approximately 
(unnormalized). 

storage locations 2000-2007 contain 41 12 
34 56 00 00 00 00 = +1.23456{16) 
+1.14{10} (normalized). 

Register 13 contains 00 00 20 00. 

The instruction: 

Machine Format 

Op Code 
I 

7A 6 o D 0001 

Assembler Format 

AE 6,0(0,13) 

performs the short-precision 
the two operands, as follows. 

addition of 

The characteristics of the two numbers (43 
and 41) are compared. Since the number in 
storage has a characteristic that is 
smaller by 2, it is right-shifted two 
hexadecimal digit positions. The two 
numbers are then added: 

GDl 
FPR6: -43 08 21 00 
Shifted no. from storage: +43 00 12 34 5 

Intermediate sum: -43 08 OE CB B 

1 Guard digit 

Because the intermediate sum is 
unnormalized, it is left-shifted to form 
the normalized floating-point number -42 80 
EC BB = -80.ECBB{16) = -128.92. Combining 
the sign with the characteristic, the 
result is C2 80 EC BB, which replaces the 
left half of FPR6. The right half of FPR6 
and the contents of storage locations 
2000-2007 are unchanged. Condition code 1 
is set to indicate a negative result. 

If the long-precision instruction AD is 
used, the result in FPR6 is C2 80 EC BA AD 
00 00 00. Note that the lonq-precision 
instruction avoids a loss of precision in 
this example. 



ADD UNNORMALIZED (AU, AUR, Ai, AiR) 

The ADD U~NORMALIZED instructions operate 
identically to the ADD NORMALIZED 
instructions, except that the final result 
is not normalized. For example, using the 
the same operands as in the example for ADD 
NORMALIZED, when the short-precision 
instruction: 

Machine Format 

Op Code 
r--------~----~----,----~----, 

I 7E 6 0 I D 000 I 

Assembler Format 

AU 6,0(0,13) 

is executed, the two numbers are added as 
follows: 

GDl 
FPR6: -43 08 21 00 
Shifted no. from storage: +43 00 12 34 5 

Sum: -43 08 OE CB B 

1 Guard digit 

The guard digit participates in the 
addition but is discarded. The 
unnormalized sum replaces the left half of 
FPR6. Condition code 1 is set because the 
result is neqative. 

The result in FPR6 (C3 08 OE CB 00 
00) shows a loss of a significant 
when compared to the result 
short-precision normalized addition. 

COMPARE (CD, CDR, CE, CER) 

00 00 
digit 

of 

Assume that FPR4 contains 43 00 00 00 00 00 
00 00 (=0), and FPR6 contains 34 12 34 56 
78 9A BC DE (a positive number). The 
contents of the two registers are to be 
compared usinq a long-precision COMPARE 
instruction. 

Machine Format 

Op Code Ri. 
r---------r·----~----, 

I 29 4 6 

Assembler Format 

Op Code Ri.,R 2 

CDR 4,6 

The number with the smaller characteristic, 
which is the one in register FPR6, is 
right-shifted 15 hexadecimal digit 
positions so that the two characteristics 
agree. The shifted contents of FPR6 are 43 
00 00 00 00 00 00 00, with a guard digit of 
zero. Therefore, when the two numbers are 
compared, condition code 0 is set, 
indicating an eguality. 

As the above example implies, when 
floating-point numbers are compared, more 
than two numbers may compare equal if one 
of the numbers is unnormalized. For 
example, the unnormalized floatinq-point 
number 41 00 12 34 56 78 9A BC com pares 
egual to all numbers of the form 3F 12 34 
56 78 9A BC OX (X represents any 
hexadecimal digit). When the COMPARE 
instruction is executed, the two riqhtmost 
digits are shifted right two places, the 0 
becomes the guard digit, and the X does not 
participate in the comparison. 

However, when two normalized floating-point 
numbers are compared, the relationship 
between numbers that compare equal is 
unique: each digit in one number must be 
identical to the corresponding digit in the 
other number. 

FLOATING-POINT-NUMBER CONVERSION 

The followinq examples illustrate one 
method of converting between binary 
fixed-point numbers (32-bit signed binary 
integers) and normalized floatinq-point 
numbers. Conversion must provide for the 
different representations used with 
neqative numbers: the two's-complement 
form for signed binary integers, and the 
signed-absolute-value form for the 
fractions of floating-point numbers. 

The method used here inverts the leftmost 
bit of the signed binary integer which, 
after appending additional zero bits on the 

Appendix A. Number Representation and Instruction-Use Examples A-35 



left as necessary, is equivalent to adding 
231 to the number. This changes it from a 
signed integer in the range 231 - 1 through 
-2 31 to an unsigned integer in the range 
232 - 1 through O. After conversion to the 
long floating-point format, the value 231 

is subtracted again. 

Assume that general register 
contains the integer 
two's-complement form: 

GR9 FF FF FF C5 

9 
-59 

(GR9) 
in 

Further, assume two eight-byte fields in 
storage: TEMP, for use as temporary 
storage, and TW031, which contains the 
floating-point constant 231 in the 
following format: 

TW031 4E 00 00 00 SO 00 00 00 

This is an unnormalized long floating-point 
number with the characteristic 4E, which 
corresponds to a radix point to the right 
of the number. 

The following instruction sequence performs 
the conversion: 

.E~§.!!lt 

X 9,TW031+4 GR9: 
1F FF FF C5 

ST 9,TEMP+4 TEMP: 
1F FF FF C5 

MVC TEMP (4) ,TW031 TEMP: 
4E 00 00 00 1F FF FF C5 

LD 2,TEMP FPR2: 
4E 00 00 00 1F FF FF C5 

SD 2,TW031 FPR2: 
C2 3B 00 00 00 00 00 00 

The EXCLUSIVE OR (X) instruction inverts 
the leftmost bit in general register 9, 
using the riqht half of the constant as the 
source for a leftmost one bit. The next 
two instructions assemble the modified 
number in an unnormalized long 
floating-point format, using the left half 
of the constant as the plus sign, the 
characteristic, and the leading zeros of 
the fraction. LOAD (LD) places the number 
unchanged in floating-point register 2. 
The SUBTRACT NORMALIZEO (SD) instruction 
performs the final two steps by subtracting 
231 in floating-point form and normalizing 
the result. 

The procedure described here consists 
basically in reversing the steps of the 
previous procedure. Two additional 
considerations must be taken into account. 
First: the floating-point number may not 

A-36 system/310 Principles of Operation 

be an exact integer. Truncating the excess 
hexadecimal digits on the right requires 
shifting the number one digit position 
farther to the right than desired for the 
final result, so that the units digit 
occupies the position of the guard digit 
Second: the floating-point number may have 
to be tested as to whether it is outside 
the range of numbers representable as a 
signed binary integer. 

Assume that floating-point 
contains the number 59.25{10} 
normalized form: 

register 6 
3B.4{161 in 

FPR6 42 3B 40 00 00 00 00 00 

Further, assume three eight-byte fields in 
storage: TEMP, for use as temporary 
storage, and the constants 2 32 (TW032) and 
231 (TW031R) in the following formats: 

TW032 
TW031R 

4E 00 00 01 00 00 00 00 
4F 00 00 00 OS 00 00 00 

The constant TW031R is shifted right one 
more position than the constant TW031 of 
the previous example, so as to force the 
units digit into the guard-digit position. 

The following instruction sequence performs 
the integer truncation, range tests, and 
conversion to a signed binary integer in 
general register S (GRS): 

Re§ult 

SO 6,TW031R FPR6: 
CS 1F FF FF C5 00 00 00 

BC 11,OVERFLOW Branch to overflow 
routine if result 
non-nega tive 

AW 6,TW032 FPR6: 
4E 00 00 00 SO 00 00 3B 

BC 4,OVERFLOW Branch to overflow 
routine if resul t 
negative 

STO 6,TEMP TEMP: 
4E 00 00 00 SO 00 00 3B 

XI TEMP+4,X'SO' TEMP: 
4E 00 00 00 00 00 00 3B 

L S,TEMP+4 GRS: 
00 00 00 3B 

The SUBTRACT NORMALIZED (SO) instruction 
shifts the fraction of the number to the 
right until it lines up with TW031R, which 
causes the fraction digit 4 to fall to the 
right of the guard digit and be lost; the 
result of subtracting 2 31 from the 
rema~n~ng digits is renormalized. The 
result should be negative; if not, the 
original number was too large in the 
positive direction. The first BRANCH ON 
CONDITION (BC) performs this test. 

The ADD UNtWRMALIZED (AW) instruction adds ... ~ 
232 : 231 to correct for the previous ~ 
SUbtraction and another 2 31 to change to an 



all-positive range. The second BC tests 
for a negative result, showing that the 
number was too large in the negative 
direction. The unnormalized result is 
placed in temporary storage by the STORE 
(STD) instruction. There the leftmost bit 
of the binary integer is inverted by the 
EXCLUSIVE OR (XI) instruction before being 
loaded into GR8. 

When two or more programs sharing common 
storage locations are running concurrently 
in a multiprogramminq or multiprocessing 
environment, one program may, for example, 
set a flag bit in the common-storage area 
for testing by another program. It should 
be noted that the instructions AND (NI or 
NC), EXCLUSIVE OR (XI or XC), and OR (01 or 
OC) could be used to set flag bits in a 
multiproqramminq environment; but the same 
instructions may cause program logic errors 
in a multiprocessinq system where two or 
more CPUs can fetch, modify, and store data 
in the same storage locations 
simultaneously. 

EXAMPLE OF A PROGRAM FAILURE USING OR 
IMMEDIATE 

Assume that two independent programs try to 
set different bits to one in a common byte 
in storage. The following example shows 
how the use of the instruction OR immediate 
(01) can fail to accompl ish this, if the 
proqrams are executed nearly simultaneously 
on two different CPUs. One of the possible 
error situations is depicted. 

.--- .?-----~ 

I Execution of I Execution of 
I instruction I instruction 
I 01 FLAGS,X'01' FLAGS I 01 FLAGS,X'80' 
I on CJ)U A I I on CPU B 
~ --------+-------+--------------~ 

X'OO' Fetch 
FLAGS X'OO' 

FLAGS should have value of X'81' follow-I 
inq both updates. I 

L--

The problem shown here is that the value 
stored by the 01 instruction executed on 
CPU A overlays the value that was stored by 
CPU B. The X'80' flag bit was erroneously 
turned off, and the date is now invalid. 

The COMPARE 
provided to 
problems. 

AND SWAP instruction 
overcome this and 

COMPARE AND SWAP (CS, CDS) 

has been 
similar 

The COMPARE AND SWAP (CS) and COMPARE 
DOUBLE AND SWAP (CDS) instructions can be 
used in multi programming or multi processinq 
environments to serialize access to 
counters, flags, control words, and other 
common storage areas. 

The followinq examples of the use of the 
COMPARE AND SWAP and COMPARE DOUBLE AND 
SWAP instructions illustrate the 
applications for which the instructions are 
intended. It is important to note that 
these are examples of functions that can be 
performed by programs runninq enabled for 
interruption (mul tiprogramminq) or by 
programs that are runninq on a 
multiprocessing configuration. That is, 
the routine allows a proqram to modify the 
contents of a storage location while 
running enabled, even though the routine 
may be interrupted by another proqram on 
the same CPU that will update the location, 
and even though the possibility exists that 
another CPU may simultaneously update the 
same location. 

The CS instruction first checks the value 
of a storage location and then modifies it 
only if the value is what the program 
expects; normally this would be a 
previously fetched value. If the value in 
storage is not what the program expects, 
then the location is not modified; instead, 
the current value of the location is loaded 
into a general register, in preparation for 
the program to loop back and try aqain. 
During the execution of CS, no other CPU 
can access the specified location. 

The following instruction seguence shows 
how the CS instruction can be used to set a 
single bit in storage to one. Assume that 
FLAGS is the first byte of a word in 
storage called "WORD." 

Appendix A. Number Representation and Instruction-use Examples A-37 



LA 6,X'80' Put bit to be ORed 
into GR6 

SL1 6,24 Shift left 24 places to 
align the byte to be 
ORed with the loca­
tion of FLAGS within 
WORD 

L 7,WORD Get original flag bit 
values 

RETRY LR 8,7 Put flags to be modi-
fied into GR8 

OR 8,6 Set bit to one in new 
copy of flags 

CS 7,8,WOFD Store new flags unless 
original flags were 
changed 

BC 4,RETRY If new flags are not 
stored, try again 

The format of the CS instruction is: 

Machine Format 

Op Code 
---r , 

BA 7 1 8 1****1 

Assembler Format 

CS 7,8, WORD 

The CS instruction compares the first 
operand (general register 7 containing the 
oriqinal flaa values) to the second operand 
(WORD) while storage access to the 
specified location is not permitted to any 
CPU other than the one executing the CS 
instruction. 

If the comparison is successful, indicating 
that FLAGS still has the same value that it 
originally had, the modified copy in 
general register 8 is stored into FLAGS. 
If FLAGS has changed since it was loaded, 
the compare will not be successful, and the 
current ~alue of FLAGS is loaded into 
general register 7. 

The CS instruction sets condition code 0 to 
indicate a successful compare and swap, and 
condition code 1 to indicate an 
unsuccessful compare and swap. 

The program executing the sample 
instructions tests the condition code 
followinq the CS instruction and reexecutes 
the flag-modifying instructions if the CS 
instruction indicated an unsuccessful 
comparison. When the CS instruction is 
successful, the program continues execution 
outside the loop and FlAGS contains valid 
data. 

The branch to 
some other 

RETRY will be taken 
program modifies the 

only if 
update 

A-38 system/370 principles of Operation 

location. This type of a loop differs from 
the typical "bit-spin" loop. In a bit-spin 
loop, the program continues to loop until 
the bit changes. In this example, the 
program continues to loop only if the value 
does change during each iteration. If a 
number of CPUs simultaneously attempt to 
modify a single location by using the 
sample instruction sequence, one CPU will 
fall through on the first try, another will 
loop once, and so on until all CPUs have 
succeeded. 

Updating ~Quni~ 

In this example, a 32-bit counter is 
updated by a program using the CS 
instruction to ensure that the counter will 
be correctly updated. The oriqinal value 
of the counter is obtained by loadinq the 
word containing the counter into general 
reqister 7. This value is moved into 
general register 8 to provide a modifiable 
copy, and general register 6 (containing an 
increment to the counter) is added to the 
modifiable copy to provide the updated 
counter value. The Cs instruction is used 
to ensure valid storing of the counter. 

The program updating the counter checks the 
result by examining the condition code. 
The condition code 0 indicates a successful 
update, and the program can proceed. If 
the counter had been changed between the 
time that the program loaded its original 
value and the time that it executed the CS 
instruction, the CS instruction would have 
loaded the new counter value into general 
register 7 and set the condition code to 1, 
indicating an unsuccessful update. The 
program then must update the new counter 
value in general register 7 and retry the 
CS instruction, retesting the condition 
code, and retrying until a successful 
update is completed. 

The following instruction sequence performs 
the above procedure: 

LA 6,1 Put increment ( 1) into 
GR6 

L 7,CNTR Put oriqinal counter 
value into GR7 

LOOP LR 8,7 Set up copy in GR8 to 
modify 

AR 8,6 Increment copy 
CS 7,8,CNTR Update counter in 

storage 
Be 4,LOOP If original value had 

changed, update new 
value 

The following shows two CPUs, A and B, 
executing this instruction sequence 
simultaneously: both CPUs attempt to add 
one to CNTR. 



~ 
Cp.y ! ~R.Y 11 ~Q!!lents 

GRl ~R~ £liTR GRl GR] 

16 
16 1 6 CPU A loads GR7 

and GR8 from CNTR 
16 16 CPU B loads GR7 

and GR8 from CNTR 
17 CPU B adds one to 

GR8 
17 CPU A adds one to 

GR8 
17 CPU A executes CS; 

successful match, 
store 

17 CPU B executes CS; 
no match, GR7 
changed to CNTR 
value 

18 CPU B loads GR8 
from GR7, adds 
one to GR8 

18 CPU E executes CS; 
successful match, 
store 

BYPASSING POST AND WAIT 

The following routine allows the SVC "POST" 
as used in OS/VS to re bypassed whenever 
the corresponding WAIT has not yet been 
issued, provided that the supervisor WAIT 
and POST routines use COMPARE AND SWAP to 
manipulate event control blocks (ECBs). 

Initial Conditions: 

GR1 contains the address of the ECB. 
GRO contains the POST code. 

HSPOST L 3,0(1) GR3 = contents 
ECB 

of 

LTR 3,3 ECB marked ' wait-
ing'? 

BM PSVC Yes, issue post 
SVC 

CS 3,0,0(1) No, store post 
code 

BE EXITHP continue 
PSVC POST (1),(0) ECB address is in 

GR1, post code in 
GRO 

EXITHP [ Any instruction1 

The following routine may be used in place 
of the previous HSPOST routine if the ECB 
is assumed to contain zeros when it is not 
marked "WAITING." 

HSPOST SR 3,3 
CS 3,0,0(1) 
BE EXITHP 
POST (1),(0) 

EXITHP [ Any instruction 1 

BYP ASS !A!l Routine 

A BYPASS WAIT function, correspondinq to 
the BYPASS POST, does not use the CS 
instruction, but the FIFO LOCK/UNLOCK 
routines which follow assume its use. 

HSWAIT TM 0(1) ,X' 40' 
BO EXITHW If bit 1 is one, 

then ECB is al ready 
posted; branch to 
to exit 

WAIT ECB= (1) 
EXITHW rAn" instruction] 

LOCK/UNLOCK 

When a common storage area larqer than a 
doubleword is to be updated, it is usually 
necessary to provide special interlocks to 
ensure that a single program at a time 
updates the common area. Such an area is 
called a serially reusable resource (SRR). 

In general, updating a list, or even 
scanning a list, cannot be safely 
accomplished without first "freezing" the 
list. However, the COMPARE AND SWAP 
instructions can be used in certain 
restricted situations to perform queuinq 
and list manipulation. Of prime importance 
is the capability to perform the 
lock/unlock functions and to provide 
sufficient queuing to resolve contentions, 
either in a LIFO or FIFO manner. The 
lock/unlock functions can then be used as 
the interlock mechanism for updatinq an SFR 
of any complexity. 

The lock/unlock functions are based on the 
use of a "header" associated with the SRR. 
The header is the common sta rtinq point for 
determining the states of the SRR, either 
free or in use, and also is used for 
queuing requests when contentions occur. 
Contentions are resolved usinq WAIT and 
POST. The general programming technique 
requires that the proqram that encounters a 
"locked" SRR must "leave a mark on the 
wall" indicating the address of an ECE on 
Which it will WAIT. The proqram 
"unlocking" sees the mark a nd posts the 
ECB, thus permitting the waiting program to 
continue. In the two examples qiven, all 
programs using a particular SRR must use 

Appendix A. Number Representation and Instruction-Use Examples A-39 



either the LIFO queuing scheme or the FIFO • A positive value indicates that the 
scheme; the two cannot be mixed. When more SRR is in use and that one or more 
complex queuing is required, it is additional programs are waiting for 
suggested that the queue for the SRR be the SRR. Each waiting program is 
locked using one of the two methods shown. identified by an element in a ch ained 

list. The positive value in the 
header is the address of the element 
most recentl y added to the list. 

!lf2 LO£1SL.l!.N12~1S 
~Qntent'!Q.!!2 

The header consists of a word, which can 
contain zero, a positive value, or a 
negative value. 

• A zero value indicates that the SRR is 
free. 

Each element consists of two words. The 
first word is used as an ECB; the second 
word is used as a pointer to the next 
element in the list. A negative value in a 
pointer indicates that the element is the 
last element in the list. The element is 
required only if the program finds the SRR 
locked and desires to be placed in the 
list. 

• A negative value indicates that the 
SRR is in use but no additional 
programs are waiting for the SRR. 

The following chart describes the 
taken for LIFO LOCK and LIFO 
routines. 

r-- --, 
I Action, 
, I , --; 

I IHeader contains,Header Contains I Header Contains, 
I Function I Zero ,positive Value INegative Value, 
I I I I 
ILIFO LOCK ,SRR is free. ,SRR is in use. Store the I 
I (the incoming,set the header ,contents of the header into I 
,element is atlto a negative Ilocation A+4. Store address A 1 
Ilocation I'l) Ivalue. Use the linto the header. WAIT; the ECBI 
I ISRR. lis at location A. I 
, I I , I 
ILIFO UNLOCK Error ISomeone is IThe list is 
I Iwaitinq for thelempty. Store 
I ISRR. Move the Izeros into the 
I IPointer from Iheader. The SRR 
I Ithe "last in" lis free. 
I I element into I 
I Ithe header. I 
I IPOST; the ECB I 
I lis in the "lastl 
I lin" element. I 
L-- ' 

A-40 System/370 Principles of Operation 

action 
UNLOCK 

J 



The following routines allow enabled code 
to perform the actions described in the 
previous chart. 

Initial Conditions: 

GR1 contains the address of the incoming 
element. 

GR2 contains the address of the header. 

LLOCK SR 
ST 
LNR 

TRYAGN CS 

BE 

ST 

CS 

LA 
BNE 

WAIT 

3,3 
3,0(1) 
0,1 

3,0,0(2) 

USE 

3,4 (1) 

3,1,0(2) 

3,0 (0) 
TFYAGN 

ECB= (1) 

GR3 = 0 
Initialize the ECB 
GRO = a negative 
value 
set the header to a 
negative value if 
the header contains 
zeros 
Did the header con­
tain zeros? 
No, store the value 
oft he header int 0 

the pointer in the 
incoming element 
Store the address of 
the incoming element 
into the header 
GR3 = 0 
Did the header get 
updated? 
Yes, wait for the 
resource; 
The ECE is in the in­
coming element 

USE r A ny instruction J 

Initial Conditions: 

GR2 contains the address of the header. 

LUNLK L 

A LTP 

BM 
L 
CS 

BNE 

POST 

B 
B SR 

CS 

BNE 
EXIT r Any 

1,0 (2) 

1, 1 

B 
0,4(1) 
1,0,0(2) 

A 

(1 ) 

EXIT 

GR1 = the contents of 
the header 
Does the header con­
tain a negative 
value? 
No, load the pointer 
from the "last in" 
element and store 
it in the header 
Did t he header get 
updated? 
Yes, post the "last 
in" element 
Continue 

0,0 The header contains a 
1,0,0 (2) negative value; free 

the header and 
A continue 
instruction J 

Note that the L 1,0 (2) instruction at 
location LUNLK would have to be CS 
1,1,0(2) if it were not for the rule that a 
word fetch starting on a word boundary must 

fetch the word such that if another CPU 
changes the word being fetched, either the 
entire new or the entire old value of the 
word, and not a combination of the two, is 
obtained. 

LOS;JS/UNl!Q~JS 
Contentions 

FIIQ 

The header always contains the address of 
the most recently entered element. The 
header is originally initialized to contain 
the address of a posted ECB. Each program 
using the serially reusable resource (SRR) 
must provide an element regardless of 
whether contention occurs. Each program 
then enters the address of the element 
which it has provided into the header, 
while simultaneously it removes the address 
previously contained in the header. Thus, 
associated with any particular program 
attempting to use the SRR are two elements, 
called the "entered element" and the 
"removed element." The "entered element" 
of one program becomes the "removed 
element" for the immediately following 
program. Each program then waits on the 
removed element, uses the SRR, and then 
posts the entered element. 

When no contention occurs, that is, when 
the second program does not attempt to use 
the SRR until after the first program is 
finished, then the POST of the first 
program occurs before the WAIT of the 
second program. In this case, the 
bypass-post and bypass-wait routines 
described in the precedinq section are 
applicable. For simplicity, these two 
routines are shown only by name rather than 
as individual instructions. 

In the example, the element need be only a 
single word, that is, an ECB. However, in 
actual practice, the element could be made 
larger to include a pOinter to the previous 
element, along with a program 
identification. Such information would be 
useful in an error situation to permit 
starting with the header and chaining 
through the list of elements to find the 
program currently holding the SRR. 

It should be noted that the element 
provided by the program remains pointed to 
by the header until the next program 
attempts to lock. Thus, in general, the 
entered element cannot be reused by the 
program. However, the removed element is 
available, so each program gives up one 
element and gains a new one. It is 
expected that the element removed by a 
particular program durinq one use of the 
SRR would then be used by that proqram as 
the entry element for the next reguest to 
the SRR. 

Appendix A. Number Representation and Instruction-Use Examples A-41 



It should be noted that, since the elements 
are exchanged from one proqram to the next, 
the elements cannot be allocated from 
storage that would be freed and reused when 
the proqram ends. It is expected that a 
proqram would obtain its first element and 
release its last element by means of the 
routines described in the section 
"Free-pool Manipulation" in this appendix. 

The following chart describes the action 
taken for FIFO LOCK and FIFO UNLOCK. 

r-----------------------~ 

I Function I Action 
I- I 
IFIFO LOCK IStore address A 
I linto the header. 
I (the incoming ele- IWAIT; the ECB is at I 
Iment is at location Ithe location addres-I 
IA) Ised by the old con- I 
I ,tents of the header., 
r--- I , 
IFIFO UNLOCK ,POST; the ECB is at , 
I Ilocation A. , L----_________________ ~ ________________ ~ 

The following routines allow enabled code 
to perform the actions described in the 
previous chart. 

Initial conditions: 

GR3 contains the address of the header. 
GP4 contains the address, A, of the 

element currently owned by this 
program. This element becomes the 
entered element. 

FLOCK LR 2,4 

SR 1 , 1 
ST 1,0(2) 
L 1,0 (3) 

TRYAGN CS 1,2,0(3) 

BNE TFYAGN 

LR 4,1 

HSWAIT 

USE rAny instruction] 

GF2 now contains 
address of element 
to be entered 
GR1 = a 
Initialize the ECB 
GR1 = contents of 
the header 
Enter address A 
into header while 
remember ing old 
contents of 
header into GR1; 
GR 1 now contains 
address of 
removed element 
Removed element 
becomes new cur­
rently owned 
element 
Perform bypass­
wait routine; if 
ECB already 
posted, continue; 
if not, wait; GR1 
contains the ad­
dress of the ECB 
The SRF may now be 
used 

A-42 System/370 Principles of Operation 

Initial conditions: 

GR 2 contains 
element, 
routine. 

the address of the removed 
obta ined d ur ing the FLOCK 

FUNLK LR 1,2 Place address of en­
tered element in GR1; 
GR1 = address of ECB 
to be posted 

SR 0,0 GRO = 0; GRO has a 
post code of zero 

HSPOST Perform bypass-post 
routine; if ECB has 
not been waited on, 
then mark posted and 
continue; if it has 
been waited on, then 
post 

CONTINUE [Any instruction] 

FREE-POOL MANIPULATION 

It is anticipated that a program will need 
to add and delete items from a free list 
without using the lock/unlock routines. 
This is especially likely since the 
lock/unlock routines require storaqe 
elements for queuing and may require 
working storage. The lock/unlock routines 
discussed previously allow simultaneous 
lock routines but permit only one unlock 
routine at a time. In such a situation, 
multiple additions and a single deletion to 
the list may all occur simultaneously, but 
multiple deletions cannot occur at the same 
time. In the case of a chain of pointers 
containing free storage buffers, multiple 
deletions along with additions can occur 
simultaneously. In this case, the removal 
cannot be done usinq the CS instruction 
without a certain degree of exposure. 

Consider a chained list of the type used in 
the LIFO lock/unlock example. Assume that 
t.he first two elements ar-e at locations A 
and B, r-espectively. If one program 
attempted to remove the first element and 
was interrupted between the fourth and 
fifth instructions of the LUNLK routine, 
the list could be changed so that elements 
A and C are the first two elements when the 
interrupted program resumes execution. The 
CS instruction would then succeed in 
storing the value B into the header, 
thereby destroying the list. 

The probability of the occurrence of such 
list destruction can be reduced to ~~~~ 
zero by appending to the header a counter 
that indicates the number of times elements 
have been added to the list. The use of a 
32-bit counter guarantees that the list 



will not be destroyed unless the following 
events occur, in the exact sequence: 

1 • An unlock routine is interrupted 
between the fetch of the pointer from 
the first element and the update of 
the header. 

2. The list is manipulated, including the 
deletion of the element referenced in 
1, and exactly 232 -1 additions to the 
list are performed. Note that this 
takes on the order of days to perform 
in any practical situation. 

3. The element referenced in 1 is added 
to the list. 

~. The unlock routine interrupted in 1 
resumes execution. 

The following routines use such a counter 
in order to allow multiple, simultaneous 
additions and removals at the head of a 
chain of pointers. 

The list consists of a doubleword header 
and a chain of elements. The first word of 
the header contains a pointer to the first 
element in the list. The second word of 
the header contains a 32-bit counter 
indicating the number of additions that 
have been made to the list. Each element 
contains a pointer to the next element in 
the list. A zero value indicates the end 
of the list. 

The following chart describes the free­
pool-list manipulation. 

, I Action I 
, I i I 
I Function ,Header = O,Count I Header = A,Count , 
I-- , I 
IADD TO LIST IStore the first word of the header into I 
,(the incomingllocation A. Store the address A into the I 
lelement is atlfirst word of the header. Decrement the I 
Ilocation A) Isecond word of the header by one. I 
I I I I 
IDELETE FROM IThe list is emptY.ISet the first word of thel 
,LIST I I header to the value of I 
, I Ithe contents of location I 
I I IA. Use element A. I 
L- I 

Appendix A. Number Representation and Instruction-Use Examples A-~3 



The following routines allow enabled code 
to perform the free-pool-list manipulation 
described in the above chart. 

Initial conditions: 

GR2 contains the address of the element to 
be added. 

GR4 contains the address of the header. 

ADDO LM 0,1,0(4) GRO,GR1 = contents of 
the header 

TFYAGN ST 0,0 (2) Point the new element 
to the top of the list 

LR 3,1 Move the count to GR3 
BCTR 3,0 Decrement the count 
CDS 0,2,0(4) Update the header 
BNE TRYAGN 

Initial conditions: 

GR4 contains the address of the header. 

A-44 system/370 principles of Operation 

DELETQ LM 2,3,0(4) GR2,GR3 = contents 
of the header 

TRYAGN LTR 2,2 Is the list empty? 
BZ EMPTY Yes, get hel p 
L 0,0 (2) No, GRO = the 

pointer from the 
first element 

LF 1,3 Move the count to 
GR1 

CDS 2,0,0(4) Update the header 
BNE TRYAGN 

USE rAny instruction] The addres of the 
removed element is 
in GR2 

Note that the LM instructions at locations 
ADDQ and DELETQ would have to be CDS 
instructions if it were not for the rule 
that a doubleword fetch starting on a 
doubleword boundary must fetch the 
doubleword such that if another CPU changes 
the doubleword being fetched, either the 
entire new or the entire old value of the 
doublevord, and not a combination of the 
two, is obtained. 

J 



~he followinq four fiqures list 
instructions arranqed by name, mnemonic, 
operation code, and feature. Some models 
may offer instructions that do not appear 
in the fiqures, such as those provided for 
emulation or as part of special or custom 
features. 

The operation code 00 with a two-byte 
instruction format is allocated for use by 
the proqram when an indication of an 
invalid operation is required. It is 
improbable that this operation code will 
ever be assiqned to an instruction 
implemented in the cpu. 

A Access exceptions for logical 
addresses 

AI Access exceptions for instruction 
address 

AT ASN-translation exceptions (include 
addressinq, ASN-translation specifica­
tion, AFX translation, and ASX transla­
tion) 

A1 Access exceptions; not all access 
exceptions may occur; see instruction 
description for details 

B PER branch event 
BS Branch-and-save feature 
C Condition code is set 
CK CPU-timer and clock-comparator feature 
CS Channel-set-switching feature 
D Data exception 
DC Direct-control feature 
DF Decimal-overflow exception 
DK Decimal-divide exception 
D~ Depending on the model, DIAGNOSE may 

generate various program exceptions 
and may change the condition code 

DU Dual-address-space facility 
EF Extended facility 
EO Exponent-overflow exception 
EU Exponent-underflow exception 
EX Execute exception 
FK Floatinq-point-divide exception 
FP Floating-point feature 
IF Fixed-point-overflow exception 
II Interruptible instruction 

IK 
L 
LS 
MI 
lW 
MP 
P 
PA 

PC 

PK 
Q 

R 
RE 
BR 
RRE 
RS 
RX 
S 
SA 

SD 

SI 
SO 
SP 
SS 
SSE 
ST 
SW 
T 

TE 
TR 
XT 

XP 

$ 
I'-

1'-1 

* 

Fixed-point-divide exception 
New condition code loaded 
Siqnificance exception 
Move-inverse feature 
Monitor event 
Multiprocessinq feature 
Privileged-operation 
Primary- authorization transla ti OD ex­
ceptions (include addressinq and pri­
mary authority) 
PC-number-translation exceptions (in­
clude addreSSing, PC-translation speci­
fication, LX translation, and EX trans­
lation) 
PSw-key-handlinq feature 
Privileged-operation exception for 
semiprivileged instructions 
PER general-reqister-alteration event 
Recovery-extension feature 
RR instruction format 
RRE instruction format 
FS instruction format 
RX instruction format 
S instruction format 
Secondary-authorization translation 
exceptions (include addressing and 
secondary authority) 
PER storage-alteration event, which 
can be caused by ROD only when IPTE is 
not installed 
SI instruction format 
Special-operation exception 
Specification exception 
SS instruction format 
SSE instruction format 
PER storage-alteration event 
Conditional-swapping feature 
Trace exceptions (include access and 
speci fication) 
Test-block feature 
Translation feature 
Space-switch event and PER storage­
alteration event 
Extended-precis ion floa ting- poi nt fea­
ture 
Causes serialization 
Causes serialization and checkpoint 
synchronization 
Causes serialization and checkpoint 
synchronization .when the M1 and R2 
fieldS contain all ones and all zeros, 
respectively 
Bits 8-14 of the operation code are 
iqnored 

Appendix B. Lists of Instructions B-1 



r-- I --, 
I IMne- I lOp I Page I 
I Name Imonicl Characteristics I Code I No. I J I I I I I I I , 
IADD IAR IRR C I IF I R 11A 17-7 I 
IADD IA IRX C I A IF I R I SA 17-7 I 
IADD DECIMAL lAP ISS C I A 0 OF I STIFA 18-5 I 
IADD HALFIfORD I AH IRX C I A IF I R 14A 17-7 I 
IADD LOGICAL I ALR IRR C I I R 11 E 17-8 I 
I I -r I I I I I 
IADD LOGICAL I AL IRX C I A I R I SE 17-8 I 
IADD NORMALIZED (extended) I AXR IRR C XPI SP EU EO LSI 136 19-6 I 
IADD NORMALIZED (long) I ADR IRR C FP I SP EU EO LSI 12A 19-6 I 
IADD NORMALIZED (long) I AD IRX C FPI A SP EU EO LSI 16A 19-6 I 
I ADD NORMALIZED (short) I AER IRR C FPI SP EU EO LSI 13A 19-6 I 
r-- I I I I I I I I 
IADD NORMALIZED (short) I AE IRX C FP A SPI EU EO LSI 17A 19-6 I 
IADD UNNORMALIZED (long) lAiR IRR C FP SPI EO LSI 12E 19-7 I 
IADD UNNORKALIZED (long) lAW IRX C FP A SPI EO LSI 16E 19-7 I 
IADD UNNORMALIZED (short) I AUR IRR C FP SPI EO LSI 13E 19-7 I 
IADD UNNORMALIZED (short) I AU IRX C FP A SPI EO LSI 17E 19-7 I 
r-- I I I I I I I 
lAND INR IRR C I I R 114 7-8 I 
lAND IN IRX C A I I R 154 7-8 I 
lAND (character) INC ISS C A I I STID4 7-8 I 
I AND (immediate) INI lSI C A I I STI94 7-8 I 
I BRANCH AND LINK I BALR IRR I IB R lOS 7-9 I 
r I I I I I -+ I 
I BRANCH AND LINK IBAL I RX I I IB R 14S 7-9 I 
I BRANCH AND SAVE I BASR IRR BSI I IB R 100 7-9 I 
I BRANCH AND SAVE IBAS I RX BSI I I B R 140 7-9 I 
I BRANCH ON CONDITION IBCR I RR I I ':1 IB 107 7-10 I 
I BRANCH ON CONDITION IBC IRX I I IB 147 7-10 I 
I I I I I I I I I 
I BRANCH ON COUNT I BCTR IRR I I IB R 106 17-11 I 
IBRANCH ON COUNT IBCT IRX I I IB R 146 17-11 I 
I BRANCH ON INDEX HIGH IBXH IRS I I IB R 186 17-11 I j IBRANCH ON INDEX LOW OR EQUAL I BXLE IRS I I IB R 187 17-11 I 
ICLEAR CHANNEL I CLRCH IS C REIP I $ I I 9F 0 1 * 112-16 I 
r-- I I I I I I I I 
ICLEAR I/O I CLRIO S C P I $ I I 9DO 1 * 112-17 I 
I COMPARE ICR RR C I I 119 17-12 I 
ICOMPARE IC RX C A I I 159 17-12 I 
ICOMPARE (long) ICDR RF C FP SP I I 129 19-8 I 
ICOMPARE (long) ICD RX C FP A SPI I 169 19-8 I 
I I I I I I I 
ICOMPARE (short) ICER RR C FP SP I I 139 19-8 I 
I COMPARE (short) ICE RX C FP A SP I I 179 19-8 I 
ICOMPARE AND SWAP ICS RS C SW A SPI $ I R STIBA 17-12 I 
.1 COMPARE DECIMAL ICP SS C A 10 I I F9 18-5 I 
ICOMPARE DOUBLE AND SWAP I CDS RS C SW A SPI $ I R STIBB 17-12 I 
I I I I I I I I I 
ICOMPARE HALFWORD ICH IRX C I A I 149 17-14 I 
ICOMPARE LOGICAL ICLR IRR C I I 115 17-14 I 
ICOMPARE LOGICAL I CL IRX C I A I 155 17-14 I 
I COMPARE LOGICAL (character) ICLC ISS C I A I 105 17-14 I 
ICOMPARE LOGICAL (immediate) I CLI lSI C I A I 195 17-14 I 
r-- I I I I I I I 
ICOMPARE LOGICAL CHARACTERS UNDER MASKI CLM IRS C I A I IBD 17-15 I 
I COMPARE LOGICAL LONG ICLCL IRR C I A SP I II R 10F 17-15 I 
ICONNECT CHANNEL SET ICONCSIS C CSIP I IB200 110-5 I 
ICONVERT TO BINARY ICVB IRX I A ID IK R 14F 17-17 I 
ICONVERT TO DECIMAL I CVD IRX I A I STI4E 17-17 I 

I I I , 

Instructions Arranqed 1:y Name (Part 1 of 5) 

B-2 System/370 Principles of Operation 



I I 

I IKne- I lOp I Page 

L I Name Imonicl Characteristics I Code I No. 

I I I I I I I I 
I DIAGNOSE I I OK I P OK I I 183 110-5 
I DISCONNECT CHANNEL SET IDISCSIS C CSIP I I IB201 110-6 
I DIVIDE lOR IRR I SPI IK I R 110 17-18 
I DIVIDE 10 IRX I A SP I IK I R 150 17-18 
I DIVIDE (long) IDDR IRR FP I SPI EU EO FK I 120 19-9 
r- I I I I I I I 
I DIVIDE (lonq) 100 IRX FPI A SPIEU EO FK I 160 19-9 
I DIVIDE (short) IDER IRR FPI SPI EU EO FK I 130 19-9 
I DIVIDE (short) IDE IRX FPI A SPI EU EO FK I 170 19-9 
I DIVI DE DECll!AL lOP ISS I A SPID OK I STIFD 18-5 
I EDIT I ED ISS C I A 10 1 STIDE 18-6 
r- I I I I I I I --l 
I EDIT AND MARK EDKK ISS C I A 10 I R STIDF 18-10 
IEXCLUSIVE OR XR IRR C I I I R 117 17-18 
IEXCLUSIVE OR X IRX C I A I I R 157 17-18 
IEXCLUSIVE OR (character) xc ISS C I A I I STID7 17-18 
I EXCLUSIVE OR (immediate) XI lSI C I A I I STI97 17-18 
I--- I I I I I I 
I EXECUTE EX IRX I AI SPI EXI 44 17-19 
IEXTRACT PRIMARY ASN EPAR IRRE DUIQ I SOl R B226 110-6 
IEXTRACT SECONDARY ASN ESAR IRRE DUIQ I SOl R B227 110-7 
IHALT DEVICE HOY IS C IP I S I 9E01*112-19 
IHALT I/O HIO IS C IP I S I 9EOO*112-22 
I--- I I I I I I 
IHALVE (long) IHDR IRR FP I SP I EU I 24 19-10 
I HALVE (short) I HER IRR FPI SP I EU I 34 19-10 
IINSERT ADDRESS SPACE CONTROL IIAC I RRE C DUIQ I SOl R B224 110-7 
IINSERT CHARACTER I IC I RX I A I I R 43 17-20 
IINSERT CHARACTERS UNDER !!ASK lICK IRS C I A I I R BF 17-20 
I I I I I I I I 
IINSERT PSW KEY IIPK IS PKIQ I I R I B20B 10-8 
IINSERT STORAGE KEY IISK IRR IP Al SPI I R 109 10-9 

L IINSERT VIRTUAL STORAGE KEY IIVSK IRRE DUIQ Al I SOl R I B223 10-9 
IINVALIDATE PAGE TABLE fNTRY I IPTE IRRE EFIP Al I S I IB221 10-10 
ILOAD ILR IRR I I I R 118 7-21 
I--- I I I I 1 I 
ILOAD IL RX I A I R 158 7-21 
ILOAD (long) ILDR RR FPI SP I 128 9-10 
ILOAD (long) ILD RX FPI A SP I 168 9-10 
ILOAD (short) ILER RR FPI SP I 138 9-10 
ILOAD (short) ILE RX FPI A SP I 178 9-10 , I I I -+ I 
ILOAD ADDRESS ILA RX I R 141 17-21 
1 LOAD ADDRESS SPACE PARAMETERS ILASP SSE C DU Q AS SPI SO IE500 110-11 
ILOAD AND TEST I LTR RR C I R 112 17-21 
ILOAD AND TEST (long) I LTDR RR C FP SPI 122 19-11 
ILOAD AND TEST (short) ILTER RR C FP SPI 132 19-11 , I I I I I 
ILOAD COMPLEMENT ILCR IRR C I IF R 13 17-22 
ILOAD COMPLEMENT (long) ILCDR IRR C FP SPI 23 19-11 
ILOAD COMPLEMENT (short) I LCER IRR C FP SPI 33 19-11 
ILOAD CONTROL I LCTL IRS P A SPI B7 110-16 
ILOAD HALFWORD ILH IRX A I R 48 17-22 
I I I I I -+-
ILOAD MULTIPLE ILM IRS I A I R 98 17-22 
ILOAD NEGATIVE ILNR IRR C I I R 11 17-23 
ILOAD NEGATIVE (long) ILNDR IRR C FPI SPI 21 19-12 
ILOAD NEGATIVE (short) ILNER IFR C FP I SP I 31 19-12 
ILOAD POSITIVE ILPR IRR C I I IF R 10 17-23 
L--

Instructions ~rranqed 1:y NamE (Part 2 of 5) 

Appendix B. Lists of Instructions B-3 



r--- --r-
I IMne- I lOp I Page I 
I Name Imonicl Characteristics I Code I No. I J l- I I I , I I I I 
ILOAD POSITIVE (long) LPDR IRR C FPI SPI I 120 19-12 I 
ILOAD POSITIVE (short) LPER IRR C FP I SPI I 130 19-12 I 
ILOAD PSW LPSW IS L IP A SPI e I 182 110-17 I 
ILOAD REAL ADDRESS LRA IRX C TRIP Al I I R I B1 110-17 I 
ILOAD ROUNDED (extended to long) LRDR IRR XP I SPI EO I 125 19-12 I 
I-- I I I I I I I 
I LOAD ROUN DED (long to short) LRER IFR XPI SPI EO I 135 9-12 I 
I MON! TOR CALL MC I S I I SPI MOl I AF 7-23 I 
IMOVE (character) MVC ISS I A I I STID2 7-24 I 
IMOVE (immediate) MVI 151 I A I I STI92 7-24 I 
IMOVE INVERSE MVCIN I SS MIl A I I STIE8 7-24 I 
I I I I I I I 
IMOVE LONG MVCL IRR C I A SPI III R STIOE 7-25 I 
IMOVE NUMERICS MVN ISS I A I I STID1 7-27 I 
I MOVE TO PRIMARY MVCP ISS C DUIQ Al I e 501 STIDA 10-18 I 
I MOVE TO SECONDARY MVCS ISS C DUIQ Al I e 501 STIDB 10-18 I 
IMOVE WITH KEY MVCK ISS C DUIQ A I I STID9 10-20 I , I I I I I I I I 
IMOVE WITH OFFSET I MVO ISS I A I STIF1 17-28 I 
IMOVE ZONES IMVZ ISS I A I ST D3 17-28 I 
I MULTIPLY I MR IFR I SPI R 1C 17-29 I 
I MULTIPLY 1M I R X I A SPI R 5C 17-29 I 
I MULTIPLY (extended) IMXR IRR XPI SPI EU EO 26 19-13 I 
I-- I I I I I I 
I MULTIPLY (long to extended) IMXDR IRR XPI SPI EU EO 27 19-13 I 
I MULTI PLY (long to extended) I MXD IRX XPI A SPI EU EO 67 19-13 I 
I MULTIPLY (long) I MDR IRR FPI SPIEU EO 2C 19-13 .1 
I MULTIPLY (long) IMD I RX FPI A SPI EU EO 6c 19-13 I 
I MULTIPLY (short to long) IMER IRR FPI SPI EU EO 3C 19-13 I 
I-- I I I I I I I 1 
I MULTI PLY (short to long) I ME IRX FP A SPI EU EO I 17C 19-13 I 
I MULTIPLY DECIl!AL IMP ISS A SPI D I STI FC 18-10 I 
I MULTIPLY HALFWORD IMH IRX A I I R 14C 17-29 I J lOR lOR IRR C I I R 116 17-30 I 
lOR 10 IRX C A I I R 156 17-30 I , , I I I I I -I 
lOR (character) 10C SS C A I I STID6 17-30 I 
lOR (immediate) 101 SI C A I I STI96 17-30 I 
IPACK I PACK SS A I I STIF2 17-31 I 
I PROG RAM CALL I PC S DU Q AT I PC T e SOIB R XTIB218 110-21 I 
IPROGRAM TRANSFER IPT RRE DU Q AT SPI PA T e SOIB XTIB228 110-28 I , I I 1 I I I I 
IPURGE TLB PTLB S TR I P I $ I I B20D 110-33 I 
IREAD DIRECT RDD SI DCIP Al 1 $ 1 SDI85 110-33 I 
IRESET REFERENCE BIT RRB S C TRIP Al I I I B213 110-34 I 
ISET ADDRESS SPACE CONTROL SAC S DUI SPI e 501 IB219 110-34 I 
ISET CLOCK SCK S C IP A SPI I I B204 110-35 I 
I I I I I I I I 
ISET CLOCK COMPARATOR SCKC IS CKIP A SPI I I B206 110-36 I 
ISET CPU TIMER SPT IS CKIP A SPI I IB208 110-36 I 
ISET PREFIX SPX IS MPIP A SPI $ I IB210 110-36 I 
ISET PROGRAM MASK SPM IRR L I I I 104 17-31 I 
ISET PSW KEY FROM ADDRESS SPKA IS PKIQ I I IB20A 110-37 I 
I-- I I I I I I I I 
ISET SECONDARY ASN ISSAR IRRE DUI AT I SA T e SOl STIB225 110-38 I 
ISET STORAGE KEY I SSK I RR IP Al SPI e I 108 110-41 I 
ISET SYSTEM MASK I SSM IS IF A SPI 501 180 110-41 I 
ISHIFT AND ROUND DECIMAL ISRP ISS C I A ID DF I STIFO 18-11 I 
ISHIFT LEFT DOUBLE I SLDA IRS C I SFI IF I R 18F 17-32 I 
L-

Instructions Arranged by Name (Part 3 of 5) 

0-4 System/370 Principles of Cperation 



.-- -,-----, 

L 
I I"ne- I lOp I Page I 
I Name I monic I Characteristics I Code I No. I 
1 I I I I I I I 
ISHIFT LEFT DOUBLE LOGICAL I SLDL IRS SPI I R 18D 17-32 I 
I SHIFT LEFT SINGLE ISLA IRS C I IF I R 18B 17-33 I 
ISHIFT LEFT SINGLE LOGICAL ISLL IRS I I R 189 17-33 I 
I SHIFT RIGHT DOUBLE ISRDA IRS C SPI I R 18E 17-34 I 
I SHIFT RIGHT DOUBLE LOGICAl I SRDL IRS SPI I R 18C 17-34 I 
I I I I I I I I 
I SHIFT RIGHT SINGLE ISRA IRS C I I R 18A 17-34 I 
,SHIFT RIGHT SINGLE LOGICAl ISRL , RS I I R ,88 17-35 I 
ISIGNAL PROCESSOR ISIGP IRS C "P P I $ I R I AE 110-42 I 
1 START I/O ISIO IS C P I $ I 19COO*112-25 1 
ISTART I/O FAST RELEASE ISIOF IS C P I $ I 19C01*112-25 I 
r- I I I I I I I I 
ISTORE 1ST IRX I A I I STI50 17-35 I 
ISTORE (long) I STD IRX FPI A SPI I STI60 19-14 I 
ISTORE (short) ISTE IRI FPI A SPI I STI70 19-14 I 
ISTORE CHANNEL ID ISTIDCIS C IP I $ I IB203 112-28 1 
I STORE CHARACTER ISTC IRX I A I I STI42 17-35 I , I I I I I I I I 
I STORE CHARACTERS UNDER "ASK ISTCM IRS I A I I STIBE 17-35 I 
ISTORE CLOCK ISTCK IS C I A I $ I STIB20S 17-36 I 
ISTORE CLOCK COftPARATOR ISTCKCIS CKIP A SPI I STI B207 110-43 I 
ISTORE CONTROL I STCTL IRS IP A SPI I STIB6 110-43 I 
I STORE CPU ADDRESS ISTAP IS MPIP A SPI I STIB212 110-44 I 
r- I I I I I I I --l 
I STORE CPU ID ISTIDPIS IP A SPI I STIB202 110-44 I 
I STORE CPU TIMER ISTPT IS CKIP A SPI I STIB209 110-45 I 
ISTORE HALFWORD ISTH IRX I A I I STI40 17-37 I 
ISTORE MULTIPLE ISTM IRS I A I I STI90 17-37 1 
1 STORE PREFIX ISTPX IS MPIP A SPI 1 STIB211 110-45 I 
I I I 1 I I 1 I I 
I STORE THEN AND SYSTEM liAS K I STNSMI SI TRIP A I I STIAC 110-45 1 

L 
ISTORE THEN OR SYSTEM IIASK 1 STOSM lSI TR IP A . SP I I STIAD 110-46 1 
ISUBTRACT ISR IFR C I I IF I R 11B 17-37 I 
ISUBTRACT ,S IRI C I A I IF , R 15B 17-37 1 
1 SUBTRACT DECIMAL , SP 1 SS C I A ID DF I STIFB 18-12 I 
I I I I I I 1 1 I 
iSUBTRACT HALFWORD ISH IRI C I A I IF I R 14B 17-38 1 
ISUBTRACT LOGICAL SLR IER C I I I R 11 F 17-38 I 
ISUBTRACT LOGICAL SL IRX C 1 A I I R 15F 17-38 I 
I SUBTRACT NORMALIZED (extended) SXR IRR C IPI SPI EU EO LSI 137 19-15 I 
ISUBTRACT NORftALIZED (long) SDR IRR C FPI SPI EU EO LSI 12B 19-15 I 
I I I I I I 1 I 
ISUBTRACT NORMALIZED (long) SD IRX C FP I A SPI EU EO LSI 16B 9-15 I 
I SUBTRACT NORMALIZED (short) SER IRR C FPI SPI EU EO LSI 13B 9-15 I 
I SUBTRACT NORMALIZED (short) SE IRX C FPI A SPIEU EO LSI 17B 9-15 I 
I SUBTRACT UNNORMALIZED (long) SiR IRR C FPI SPI EO LSI 12F 9-15 I 
I SUBTRACT UNNORMALI ZED (lonq) SW IRX C FPI A SP, EO LSI 16F 9-15 I 
I I I I , I I ~ 
!SUBTRACT UNNORMALIZED (short) ISUR IRR C FPI SPI EO LSI 13F 9-15 1 
ISUBTRACT UNNORMALIZED (short) ISU IRX C FPI A SPI EO LSI 17F 9-15 I 
I SUPERVISOR CALL ISVC IRR I I t I lOA 7-39 I 
ITEST AND SET ITS IS C I A I $ I STI93 7-39 I 
ITEST BLOCK ITB IRIlE C TBIP A1 I $ III R IB22C 10-46 I , I I I I I I I 
ITEST CHANNEL ITCH IS C IP I $ I 19FOO*112-29 I 
ITEST I/O I TIO IS C IP I $ I' 19DOO*112-29 I 
ITEST PROTECTION I TPROTI SSE C EFIP Al I I I ES01 110-48 I 
ITEST UNDER MASK ITM lSI C I A I I 191 17-39 I 
ITRANSLATE ITR ISS I A I I STIDC 17-40 I 
1--- I I I I I 

Instructions Arranged by Name (Part 4 of 5) 

Appendix B. Lists of Instructions B-5 



r-- • 
I Il!ne- I lOp I Paqe 
I Name I monicl Characteristics ICode I No. 
I I I • • I I 
I TRANSLATE AND TEST ITRT ISS C I A I R I DD 17-41 
I UNPACK IUNPK ISS I A I STIF3 17-41 
IWRITE DIRECT IWRD lSI DCIP At I $ 184 110-49 
IZERO AND ADD IZAP ISS C I A ID DF STIF8 18-12 

Instructions Arranged ty Name (Part 5 of 5) 

B-6 System/370 principles of Operation 



, , , • 
I!!ne- I I lOp I Page 
Imonicl Name I Characteristics ICode 1 No. 
I I I , • , I 1 
I I DIAGNOSE I D!! IP DI! 1 I 183 110-5 
I A IADD IRX C I A 1 IF I R 15A (7-7 
lAD IADD NOR!!ALIZED (long) IRX C FP I A SPIEO EO LSI 16A 19-6 
IADR I ADD NORI!ALIZED (long) IRR C FP I SPI EO EO LSI 12A 19-6 
IAE IADD NORI!ALIZED (short) IRX C FP I A SPIEO EO LSI 17A 19-6 
I I I I I I I 1 
lAER IADD NORI!ALIZED (short) IRR C FPI SPI EU EO LSI 13A 19-6 
I AH IADD HALFWORD I RX C I A I IF I R 14A 17-7 
IAL I ADD LOGICAL IRX C I A I I R 15E (7-8 
IALR IADD LOGICAL I RR C I I I R 11E 17-8 
lAP I ADD DECII!AL ISS C I A ID DF I STIFA 18-5 , I I I I I I I 
IAR I ADD IRR C I I IF I R 111 17-7 
IAU IADD UNNORI!ALIZED (short) IRI C FPI A SPI EO LSI 17E 19-7 
IAUR IADD ONNOR!!ALIZED (short) IRR C FP I SPI EO LSI 13E 19-7 
lAW IADD UNNOR!!ALIZED (long) IRI C FP I A SPI EO LSI 16E 19-7 
IAWR IADD UNNORI!ALI ZED (long) IRR C FPI SPI EO LSI 12E 19-7 , I I I I I I I 
lAIR IADD NORKALIZED (ext ended) IRR C XPI SPI EU EO LS 136 19-6 
IBAL I BRANCH AND LINK IRX I I B R 145 (7-9 
IBALR I BRANCH AND LINK IRR I I B R 105 (7-9 
IBAS I BRANCH AND SAVE IRX BSI I B R 14D 17-9 
IBASR I BRANCH AND SAVE IRR BSI I B R 10D 17-9 
I I I I I I I 
IBC I BRANCH ON CONDITION IRX I I B 147 7-10 
IBCR I BRANCH ON CONDITION IRR I I tl B 107 7-10 
IBCT I BRANCH ON COUNT IRX I I B R 146 7-11 
IBCTR I BRANCH ON COUNT I RR I I B R 106 7-11 
IBXH I BRANCH ON INDEX HIGH IRS I I B R 186 7-11 
I I I I I I I 
IBXLE I BRANCH ON INDEX LOW OR EQUAL IRS I I IB R 187 7-11 
IC I COl!PARE IRX C I A I I 159 7-12 

L ICD I COKPARE (lonq) IRX C FPI A SPI I 169 9-8 
ICDR ICOl!PARE (long) IRR C FPI SPI I 129 9-8 
ICDS ICOl!PARE DOUBLE AND SWAP IRS C SWI A SPI $ I R STIBB 7-12 
I I I I I I I 
ICE ICOl!PARE (short) IRX C FPI A SPI I (79 9-8 
ICER ICOl!PARE (short) IRR C FPI SP I I 139 9-8 
ICH ICOl!PARE HALFWORD I RX C I A I I 149 7-14 
ICL I CO!!PARE LOGICAL IRX C I A I I 155 7-14 
ICLC ICO!!PARE LOGICAL (character) ISS C I A I I IDS 7-14 
I I I I I I I I 
ICLCL ICOl!PARE LOGICAL LONG I RR C I A SPI III R 10F (7-15 
ICLI ICOl!PARE LOGICAL (immediate) lSI C I A I I 195 17-14 
ICL!! ICO!!PARE LOGICAL CHARACTERS UNDER t'!ASKIRS C I A I I IBD (7-15 
ICLR ICO!!PARE LOGICAL I R 'R C I I I I 15 (7-14 
ICLRCHICLEAR CHANNEL IS C REI P I $ I 19F01*112-16 
r---- I I I I I I I 
I CLRIOI CLEAR I/O IS C IP I $ I 19D01*112-17 
ICONCSICONNECT CHANNEL SET IS C CSIP I I I B200 110-5 
ICP ICOl!PARE DECII!AL ISS C I A ID I I F9 18-5 
ICR I COI!PARE IRR C I I I 119 17-12 
ICS ICOI!PARE AND SWAP IRS C SWI A SPI $ I R STIBA 17-12 
I I I I I I -+- I 
ICVB I CONVERT TO BINARY IRX I A ID IK I R 14F 17-17 
ICVD ICONVERT TO DECIMAL IRX I A I I STI4E 17-17 
10 I DIVIDE IRX I A SP I IK I R 15D 17-18 
100 I DIVIDE (long) IRX FPI A SPI EU EO FK I 16D 19-9 
IDDR I DIVIDE (long) IRR FPI SPI EU EO FK I 12D 19-9 
I , , 

Instructions Arranged by Mnemonic (Part 1 of 5) 

Appendix B. Lists of Instructions B-7 



-,-- , --, 
I!!ne- I I lOp I Page I 
Imonicl Name I Characteristics ICode I No. I J r- I I I , , I I I 
IDE I DIVIDE (short) IRX FPI A SPI EU EO FK I 170 19-9 I 
IDER I DIVIDE (short) IRR FPI SPI EU EO FK I 130 19-9 I 
IDISCSIDISCONNECT CHANN!L SET IS C CSIP I I IB201 110-6 I 
lOP I DIVIDE DECIMAL ISS I A SPID OK I STIFD 18-5 I 
lOR I DIVIDE IRR I SPI IK I R 110 17-18 I 
I I I I I I I I I 
lED EDIT ISS C I A 10 I STIDE 18-6 I 
IEDMK EDIT AND MARK ISS C I A 10 I R STIDF 18-10 I 
IEPAR EXTRACT PRIMARY ASN IRRE DUIQ I SOl R I B226 110-6 I 
I ESAR EXTRACT SECONDARY ASN IRRE DUIQ I SOl R I B227 110-7 I 
lEX EXECUTE IRX I AI SPI EXI ILiLi 17-19 I 
I I I I I I I I 
IHDR HALVE (long) IRR FPI SPI EU I 12Li 19-10 I 
IHDV HALT DEVICE IS C IP I $ I 19E01*112-19 I 
IHER HALVE (short) IRR FPI SP I EU I 13Li 19-10 I 
IHIO HALT I/O IS C IP I $ I 19EOO*112-22 I 
I lAC INSERT ADDRESS SPACE CONTROL I RRE C DUIQ I SOl R I B22Li 110-7 I , I I I I I I I I 
IIC INSERT CHARACTER IRX I A I I R I Li 3 17-20 I 
IICM INSERT CHARACTERS UNDER MASK IRS C I A I I R I BF 17-20 I 
IIPK INSERT PSi KEY IS PKIQ I I R I B20B 110-8 I 
IIPTE INVALIDATE PAGE TABLE ENTRY IRRE EFIP A1 I $ I IB221 110-10 I 
IISK INSERT STORAGE KEY IRR IP A1 SPI I R 109 110-9 I 
I--- I I I I -+- I , 
IIVSK INSERT VIRTUAL STORAGE KEY IRRE DUIQ A1 I SOl R I B223 110-9 I 
IL LOAD IRX I A I I R 158 17-21 I 
ILA LOAD ADDRESS IRX I I I R I Li 1 17-21 I 
ILASP LOAD ADDRESS SPACE PARA!!ETERS ISSE C DUIQ AS SPI SOl IE500 110-11 I 
ILCDR LOAD COMPLEMENT (long) IRR C FPI SPI I 123 19-11 I 
I I I I I I I I I 
ILCER ILOAD COMPLEMENT (short) IRR C FP SPI I 133 19-11 I 
ILCR I LOAD CO MPLEM ENT IRR C I IF I R 113 17-22 I 
ILCTt I LOAD CONTROL IRS P A SPI I IB7 110-16 I J ILD ILOAD (long) IRX FP A SPI I 168 19-10 I 
ILDR ILOAD (long) IRR FP SPI I 128 19-10 I 
I I -+- I I I I I 
ILE ILOAD (short) IRX FP A SPI I 178 19-10 I 
ILER ILOAD (short) IRR FP SPI I 138 19-10 I 
ILH ILOAD HALFiORD IRX A I I R ILi8 17-22 I 
ILM ILOAD MULTIPL E IRS A I I R 198 17-22 I 
ILNDR ILOAD NEGATIVE (long) IRR C FP SPI I 121 19-12 I 
I--- I I I I I I I , 
ILNER ILOAD NEGATIVE (short) IRR C FPI SPI 131 9-12 I 
ILNR ILOAD NEGATIVE IRR C I I R I 11 7-23 I 
ILPDR LOAD POSITIVE (long) IRR C FPI SPI 120 9-12 I 
ILPER LOAD POSITIVE (short) IRR C FP I SPI 130 9-12 I 
ILPR LOAD POSITIVE IRR C I I IF R 110 7-23 I 
I I I I I , 
ILPSi LOAD PSi IS L IP A SPI t 182 10-17 I 
ILR LOAD IRR I I R I 18 7-21 I 
I LRA LOAD REAL ADDRESS IRX C TRIP A1 I R I B1 10-17 I 
ILRDR LOAD ROUNDED (exten ded to long) I RR XPI SP I EO 125 9-12 I 
ILRER LOAD ROUNDED (long to short) IRR XPI SPI EO 135 9-12 I 
I--- I I I I I I I 
ILTDR LOAD AND TEST (long) IRR C FPI SPI I 122 19-11 I 
ILTER LOAD AND TEST (short) IRR C FP I SPI I 132 19-11 I 
ILTR LOAD AND TEST IRR C I I I R I 12 17-21 I 
1M MULTIPLY IRX I A SPI I R 15C 17-29 I 
IMC MONI TOR CALL lSI I SPI 1.01 I AF 17-23 I 
L.. ----1. I , , , , , 

Instructions Arranged l:::y Mnemonic (Part 2 of 5) 

3-8 System/370 principles of Cperation 



IMne- I I lOp I Page I 

L 
Imonicl Name I Characteristics I Code I No. I 
I I I T i -or I I I 

MD I MULTIPL Y (long) IRX FPI A SPI EU EO I 16C 9-13 I 
MDR I MULTIPLY (long) IFF FPI SPI EU EO I 12C 9-13 I 
ME IMULTIPLY (short to long) IRX FP I A SPIEU EO I 17C 9-13 I 
MER IMULTIPLY (short to long) IFR FP I SPI EU EO I 13C 9-13 I 
MH I MULTIPLY HALF WORD IRX I A I I R 14C 7-29 I 

I I I I I I I 
MP I MULTIPLY DECIMAL ISS I A SPID I STIFC 8-10 I 
MF I MULTIPLY IRR I SPI I R 11C 7-29 I 
MVC I MOVE (char act er) ISS I A I I STID2 7-24 I 
MVCINIMOVE INVERSE ISS MIl A I I STIE8 7-24 I 
MVCK IMOVE WITH KEY ISS C DUIQ A I I STID9 10-20 I 

I I I I I I I I I 
I MVCL I MOVE LONG IRR C I A SPI II R STIOE 17-25 I 
I MVCP I MOVE TO PRIMARY ISS C DUIQ A1 I t SO STIDA 110-18 I 
IMVCS I MOVE TO SECONDARY ISS C DUIQ A1 I t SO STIDB 110-18 I 
IMVI IMOVE (immediate) I S I I A I STI92 17-24 I 
IMVN IMOVE NUMERICS ISS I A I STID1 17-27 I 
I I I I I I I I 
IMVO IMOVE WITH OFFSET ISS I A I STIF1 17-28 I 
IMVZ I MOVE ZONES ISS I A I STID3 17-28 I 
I MXD I MULTIPLY (long to extended) IRX XPI A SPI EU EO 167 19-13 I 
IMXDR I MULTIPL Y (long to extended) I RR XPI SPIEU EO 127 19-13 I 
IMXR I MULTIPL Y (extended) IFR XPI SPIEU EO 126 19-13 I 
r--t- -+- I I I I I I 
IN I AND IRX C I A I I R 154 17-8 I 
INC I AND (character) ISS C I A I I STID4 17-8 I 
INI I AND (immediate) lSI C I A I I STI94 17-8 I 
INR I AND IRR C I I I R 114 17-8 I 
10 lOR I RX C I A I I R 156 17-30 I 
r- I I I I I I I ---I 
10C lOR (character) ISS C I A I I STID6 17-30 I 
10I lOR (immediate) lSI C I A I I STI96 17-30 I 

L 
lOR lOR IRR C I I I R 116 17-30 I 
I PACK I PACK ISS I A I I STIF2 17-31 I 
I PC I PROGRAM CALL IS DUIQ AT I PC T t SOIB R XTIB218 110-21 I , I I I I I I I , 
I PT I PROGRAM TRANSFER IFRE DUIQ AT SP I PA T t SOIB XTIB228 110-28 I 
I PTLB I PURGE TLB IS TRIP I $ I IB20D 110-33 I 
IRDD IREAD DIRECT lSI DCIP A1 I $ I SDI85 110-33 I 
IRRB IRESET REFERENCE BIT IS C TRIP A1 I I IB213 110-34 I 
IS I SUBTRACT IRX C I A I IF I R 15B 17-37 I 
l- I I I I I I I I 
ISAC SET ADDRESS SPACE CONTROL IS DUI SPI t 501 IB219 110-34 I 
ISCK SET CLOCK IS C IP A SPI I I B204 110-35 I 
ISCKC SET CLOCK COMPARATOR IS CKIP A SPI I I B206 110-36 I 
ISD SUBTRACT NORMALIZED (long) IRX C FP I A SPI EU EO LSI 16B 19-15 I 
ISDR SUBTRACT NORMALIZED (long) IFR C FP I SPI EU EO LSI 12B 19-15 I 
I I I I I I I I 
ISE SUBTRACT NORMALIZED (short) IRX C FPI A SPI EU EO LSI 17B 19-15 I 
ISER SUBTRACT NORMALIZED (short) IRR C FP I SPI EU EO LSI 13B 19-15 I 
ISH SUBTRACT HALFWORD IRX C I A I IF I R 14B 17-38 I 
ISIGP SIGNAL PROCESSOR IRS C !'IP IP I $ I R IAE 110-42 I 
ISIO START I/O IS C IP I $ I 19COO*112-25 I 
r- I I I I I I I I 
ISIOF I START I/O FAST RELEASE IS C IP I $ I 19C01*112-25 I 
ISL I SUBTRACT LOGICAL IRX C I A I I R I SF 17-38 I 
ISLA ISHIFT LEFT SINGLE IRS C I I IF I R 18B 17-33 1 
ISLDA ISHIFT LEFT DOUBLE IRS C I SPI IF I R 18F 17-32 I 
ISLDL I SHIFT LEFT DOUBLE LCGICAL IRS I SPI I R 18D 17-32 I 

I , 

Instructions Arranged by Mnemonic (Part 3 of 5) 

Appendix B. Lists of Instructions B-9 



i • i • l!'Ine- I I lOp I Page 
Imonicl Nallle I Characteristics I Code I No. 

J 1 I I I • 1 I 
ISLL ISHIFT LEFT SINGLE LOGICAL IRS I I R 189 17-33 
ISLR I SUBTRACT LOGICAL IRR C I I R 11F 17-38 
ISP I SUBTRACT DECIMAL ISS C I A ID DF STIFB 18-12 
ISPKA !SET PSi KEY FROM ADDRESS IS PKIQ I IB20A 110-37 
ISPM ISET PROGRAM MASK IRR L I I 104 17-31 
1 I I I I I I 
ISPT ISET CPU TIMER IS CKIP A SPI IB208 11~36 
I SPX I SET PREFIX IS MPIP A SPI $ IB210 110-36 
ISR I SUBTRACT IRR C I I IF R 11B 17-37 
ISRA I SHIFT RIGHT SINGLE IRS C I I R 18A 17-34 
I SRDA I SHIFT RIGHT DOUBLE IRS C I SPI R 18E 17-34 , I I , I I I 
ISRDL I SHIFT RIGHT DOUBLE lCGICAL RS I SPI R 18C 17-34 
ISRL I SHIFT RIGHT SINGLE lCGICAL RS I I R 188 17-35 
ISRP ISHIFT AND ROUND DECIMAL SS C I A I D DF STIFO 18-11 
ISSAR ISET SECONDARY ASN RRE DUI AT I SA T tl SO STIB225 110-38 
ISSK ISET STORAGE KEY RR IP A1 SP I tl 108 110-41 
1 I I I I I 
ISS!'I ISET SYSTEM MASK S IP A SPI SO 180 110-41 
1ST I STORE RX I A I STI50 17-35 
ISTAP ISTORE CPU ADDRESS S MPIP A SPI STIB212 110-44 
ISTC I STORE CHARACTER RI I A I STI42 17-35 
ISTCK ISTORE CLOCK S C I A I $ STIB205 17-36 
\ I I I I I I I 
ISTCKCI STORE CLOCK COMPARATOR IS CKIP A SPI I STIB207 110-43 
I STCM I STORE CHARACTERS UNDER MASK IRS I A I I STIBE 17-35 
ISTCTLISTORE CONTROL IRS IP A SPI I STIB6 110-43 
ISTD I STORE (long) I RI FPI A SPI I STI60 19-14 
ISTE I STORE (short) IRI FPI A SP I I STI70 19-14 
l- I I I I I I I 
ISTH ISTORE HALFiORD IRI I A I I STI40 17-37 
ISTIDCISTORE CHANNEL ID IS C IP I $ I IB203 112-28 
I STIDP I STORE CPU ID IS IP A SPI I STIB202 110-44 

J ISTM !STORE MULTIPLE IRS I A I I STI90 17-37 
ISTNSMISTORE THEN AND SYSTEM MASK lSI TRIP A I I STI AC 110-45 
I--- I I I I I I I 
I STOSMI STORE THEN OR SYSTEM MASK lSI TRIP A SPI I STIAD 110-46 
ISTPT ISTORE CPU TIMER IS CKIP A SPI I STIB209 110-45 
ISTPX I STORE PREFIX IS MPIP A SPI I STIB211 110-45 
ISU I SUBTRACT UNNORMAIIZED (short) IRX C FPI A SPI EO LSI 17F 19-15 
ISUR I SUBTRACT UNNORMAIIZED (short) IRR C FPI SPI EO LSI 13F 19-15 
I I I I I I I I 
ISVC ISUPERVISOR CALL I RR I I tl I lOA 17-39 
I SW I SUBTRACT UNNORMAIIZED ( long) IRX C FPI A SPI EO LSI 16F 19-15 
ISWR I SUBTRACT UNNORMALIZED (long) IRR C FPI SPI EO LSI 12F 19-15 
ISXR I SUBTRACT NORMALIZED (extended) IRR C XPI SPIEU EO LSI 137 19-15 
ITB I TEST BLOCK IRRE C TBIP A1 I $ III R I B22C 110-46 
I I I I I I I I 
ITCH TEST CHANNEL IS C IP I $ I 19FOO*112-29 
ITIO TEST I/O IS C IP I $ I 19DOO*112-29 
ITM TEST UNDER MASK lSI C I A I I I 91 17-39 
ITPROT TEST PROTECTION I SSE C EFI P A1 I I I E501 110-48 
ITR TRANSLATE ! SS I A I I STIDC 17-40 
I I I I I -+ I 
ITRT TRANSLATE AND TEST ISS C I A I I R I DD 17-41 
ITS TEST AND SET IS C I A I $ I STI93 17-39 
IUNPK UNPACK ISS I A I I STIF3 17-41 
IWRD WRITE DIRECT lSI DCIP A1 I $ I 184 110-49 
IX EXCLUSIVE OR IRX C I A I I R 157 17-18 
,---L i 

Instructions Arranged by Mnemonic (Part 4 of 5) 

B-10 System/370 Principles of Operation 



IMne- I lOp I Paqe 
Imonic Name I Char acterist ics ICode I No. 
I I I T I I 
IXC EXCLUSIVE OR (character) ISS C A I I STID7 17-18 
IXI EXCLUSIVE OR (immediate) lSI C A I I STI97 \1-18 
IIR EXCLUSIVE OR IRR C I I R 117 \1-18 
IZAP ZERO AND ADD ISS C A ID DF I STIF8 18-12 

Instructions Arranged by Mnemonic (Part 5 of 5) 

Appendix B. Lists of Instructions B-11 



i i 
lOp I IKne- I I Page 
ICode I Name laonicl Characteristics I No. 
I I I I -r- i I 

J 104 ISET PROGRAK MASK ISPK IRR L I I 17-31 
105 I BRANCH AND LINK I BALR IRR I I B R 17-9 
106 IBRANCH ON COUNT I BCTR I RR I I B R 17-11 
107 IBRANCH ON CONDITION IBCR IRR I I ¢1 B 17-10 
108 I SET STORAGE KEY ISSK IRR IP A1 SPI ¢ 110-41 
~ I I I I I I 
109 IINSERT STORAGE KEY IISK IRR IP A1 SPI R 110-9 
lOA ISUPERVISOR CALL ISlC IRR I I ¢ 17-39 
100 I BRANCH AND SAVE IBASR IRR BSI I B R 17-9 
10E I KOVE LONG IKlCL IRR C I A SPI II R 5TI7-25 
10F I COMPARE LOGICAL LONG ICLCL IRR C I A SPI II R 17-15 
I I I I I I I I 
110 ILOAD POSITIVE ILPR I RR C I I IF I R 17-23 
111 ILOAD NEGATIVE ILNR IRR C . I I I R 17-23 
112 ILOAD AND TEST ILTR I RR C I I I R 17-21 
113 ILOAD COKPLEMENT ILCR I RR C I I IF I R 17-22 
114 lAND INR IRR C I I I R 17-8 
r-- I I I I I I I 
115 ICOKPARE LOGICAL ICLR IRR C I I 17-14 
116 10F lOR I RR C I I R 17-30 
117 I EXCLUSIVE OR IXR IRR C I I R 17-18 
118 ILOAD ILR IRR I I R 17-21 
119 I COMPARE ICR IRR C I I 17-12 
~ I I I I I I 
111 I ADD IAR I RR C I IF I R 17-7 
! 1 B I SUBTRACT ISR I RR C I IF I R 17-37 
11C I KULTIPL Y IKR IRR SPI I R 17-29 
110 I DIVIDE IDR I RR SPI IK I R 17-18 
11 E I ADD LOGICAL IALR IRR C I I R 17-8 
r-- I I I +- I I I 
11F I SUBTRACT LOGICAL ISLR I RR C I I I R 17-38 
120 I LOAD POSITIVE (long) ILPDR IRR C FPI SPI I 19-12 
121 ILOAD NEGATIVE (long) ILNDR IRR C FPI SP I I 19-12 
122 I LOAD AND TEST (long) ILTDR IRR C FPI SPI I 19-11 

J 123 ILOAD COMPLEMENT (long) ILCDR IRR C FPI SPI I 19-11 
r-- I I I I I I --+-
124 IHALVE (long) IHDR IRR FPI SPIEU I 19-10 
125 I LOAD ROUNDED (exteniled to long) ILRDR IRR XPI SPI EO I 19-12 
i 26 IMULTIPLY (extended) IMXR IRR XP I SPIEU EO I 19-13 
127 I KULTIPL Y (long to extended) IMXDR IRR XP I SPIEU EO I 19-13 
128 ILOAD (lonq) ILDR IRR FPI SPI I 19-10 
I I I I I I I I 
129 I COMPARE (long) ICDR IRR C FP SPI I 19-8 
12A I ADD NORMALIZED (long) I ADR IRR C FP SPIEU EO LSI 19-6 
12B I SUBTRACT NORKAtIZED (long) ISDR IRR C FP SPIEU EO LSI 19-15 
12C I MULTIPL Y (long) IMDR IRR FP SPIEU EO I 19-13 
120 I DIVIDE (long) I DDR IRR FP SPI EU EO FK I 19-9 
r---+-- I I I I I 
12E IADD UNNORMALIZED (long) I A1lR RR C FP SPI EO LSI 9-7 
12F I SUBTRACT UNNORMAIIZED (long) ISiR RR C FP SPI EO L51 9-15 
130 ILOAD POSITIVE (short) ILPER RR C FP SPI I 9-12 
131 I LOAD NEGATIVE (short) ILHER RR C FP SP I I 9-12 
132 I LOAD AND TEST (short) ILTER RR C FP SPI I 9-11 
I I I I I I 
133 ILOAD COMPLEMENT (short) ILCER RR C FPI SPI I 9-11 
134 I HALVE (short) I HER RR FPI SPIEU I 9-10 
135 ILOAD ROUNDED (long to short) ItRER RR XPI SPI EO I 9-12 
136 I ADD NORMALIZED (ext ended) IAXR RR C IPI SPIEU EO LSI 9-6 
137 I SUBTRACT NORMALIZED (extended) ISXR RR C XP I SPIEU EO LSI 9-15 

Instructions Arranqed by Operation Code (Part 1 of 5) 

B-12 System/370 Principles of Operation 



,----,-
lOp I ,Mne- , I Page 
ICode I Name I monic I Characteristics I No. 

L ~ I , I I I 
, 

138 ILOAD (short) ILER IRR FPI SPI 19-10 
139 I COMPARE (short) I CER IRR C FPI SP I 19-8 
13A IADD NORMALIZED (short) I AER IRR C FPI SPI EU EO LS 19-6 
13B I SUBTRACT NORMALIZED (short) IS ER IRR C FPI SP I EU EO LS 19-15 
13C IMULTIPLY (short to lonq) 1M ER IRR FPI SPIEU EO 19-13 , I I I I I I 
130 DIVIDE (short) IDER IRR FPI SP EU EO FK 19-9 
13E ADD UNNORMALIZEr (short) IAUR IRR C FPI SP EO LS 19-7 
13F SUBTRACT UNNORMAIIZED (short) I SUR IRR C FPI SP EO LS 19-15 
140 STORE HALFWORD ISTH IRX I A ST17-37 
141 LOAD ADDRESS ILA IRX I R 17-21 
I I I I I I 
142 STORE CHARACTER STC IRX A I ST 7-35 
143 INSERT CHARACTER IC IRX A I R 7-20 
144 EXECUTE EX IRX AI SP EXI 7-19 
145 BRANCH AND LINK BAL , RX IB R 7-9 
146 BRANCH ON COUNT BCT IRX IB R 7-11 
I--- I I I I 
147 IBRANCH ON CONDITION BC IRX I I B 7-10 
148 ILOAD HALFWORD LH I RX A I I R 7-22 
1119 I COMPARE HALFWORD CH IRX C A I I 7-111 
14A I ADD HALFWORD AH I RX C A I IF I R 7-7 
14B I SUBTRACT HALF WORD SH IRX C A I IF I R 7-38 , I I I I I I I 
14C I MULTIPLY HALFWORD IMH IRX I A I I R 17-29 
140 I BRANCH AND SAVE I BAS IRX BSI I IB R 17-9 
14E ICONVERT TO DECIMAL ICVD IRX I A I I STI7-17 
14F ICONVERT TO BINARY ICVB IRX I A 10 IK I R 17-17 
150 I STORE 1ST IRX I A I I STI7-35 , I I I I I I I 
154 lAND IN IRX C I A I R 17-8 
155 I COMPARE LOGICAL ICL IRX C I A I 17-111 
156 lOR 10 I RX C I A I R 17-30 

L 157 I EXCLUSIVE OR IX IRX C I A I R 17-18 
158 ILOAD IL I RX I A I R 17-21 , I -+- I I I I 
159 ICOMPARE C IRX C I A I 17-12 
15A IADD A IRX C I A I IF R 17-7 
15B I SUBTRACT S IRX C I A I IF R 17-37 
15C I MULTIPLY M IRX I A SPI R 17-29 
150 I DIVIDE 0 IRX I A SPI IK R 17-18 , I I I I I I 
15E IADD LOGICAL AL RX C I A I I R 17-8 
15F I SUBTRACT LOGICAL SL RX C I A I I R 17-38 
160 I STOR E (long) STD RX FPI A SPI I ST19-14 
167 I MULTIPLY (long to extended) MXD RX XPI A SPIEU EO I 19-13 
168 ILOAD ( lonq) LD RX FPI A SPI I 19-10 
I I I I I --+-
169 I COMPARE (long) CD RX C FPI A SPI I 19-8 
16A I ADD NORMALIZED (Ion g) AD RX C FP I A SPI EU EO LSI 19-6 
16B I SUBTRACT NORMALIZED (long) SO RX C FPI A SPIEU EO LSI 19-15 
16C I MULTIPL Y (long) MD RX FPI A SPIEU EO I 19-13 
160 I DIVIDE (long) DO RX FPI A SPI EU EO FK I 19-9 
I I I I I I I 
16E IADD UNNORMALIZED (long) lAW IRX C FPI A SPI EO LSI 19-7 
16F I SUBTRACT UNNORMAIIZED (long) ISW IRX C FPI A SPI EO LSI 19-15 
170 I STORE (short) ISTE IRX FPI A SPI I STI9-111 
178 ILOAD (short) ILE I RX FPI A SPI I 19-10 
179 I COMPARE (short) ICE IRX C FP I A SPI I 19-8 

I ---' 

Instructions Arranged ty Oneration Code (Part 2 of 5) 

Appendix B. Lists of Instructions B-13 



i --,- i 
Op I IMne- I I Page 
Code I Name I monic I Characteristics I No. 

J I I I i i i I 
7A IADD NORMALIZED (short) IAE IRX C FPI A SPIEU EO LSI 19-6 
7B I SUBTRACT NORMALIZED (short) IS E IRX C FPI A SPIEU EO LSI 19-15 
7C IMULTIPLY (short to long) IME I RX FP I A SPIEU EO I 19-13 
70 I DIVIDE (short) IDE IRX FPI A SPIEU EO FK I 19-9 
7E IADD UNNORI'IALIZED (short) IAU IRX C FPI A SPI EO LSI 19-7 

I I I I I I I I 
I7F I SUBTRACT UNNORMALIZED (short) I SU IRX C FP I A SPI EO LSI 19-15 
180 I SET SYSTEM MAS K I SSM IS I P A SPI SOl 110-41 
182 I LOAD PSi ILPSW IS L I P A SPI t I 110-17 
183 I DIAGNOSE I I DM IP 01'1 I I 110-5 
184 I WRITE DIRECT IWRD lSI DCI P A1 I $ I 110-49 , I I I I I I I 
185 READ DIRECT I RDD lSI DcrP A1 I $ I SOl 10-33 
186 BRANCH ON INDEX HIGH IBXH IRS I I IB R 17-11 
187 BRANCH ON INDEX LOW OR EQUAL IBXLE IRS I I IB R 17-11 
188 SHIFT RIGHT SINGLE LOGICAL ISRL IRS I I I R 17-35 
189 SHIFT LEFT SINGLE LOGICAL ISLL IRS I I I R 17-33 
I--- I I I I I I 
18A SHIFT RIGHT SINGLE ISRA IRS C I I I R 17-34 
18B SHIFT LEFT SINGLE ISLA IRS C I I IF I R 17-33 
18C SHIFT RIGHT DOUBLE LOGICAL ISRDL IRS I SPI I R 17-34 
180 SHIFT LEFT DOUBLE LCGICAL ISLDL IRS I SPI I R 17-32 
18E SHIFT RIGHT DOUBLE ISRDA IRS C I SPI I R 17-34 
I----+- I I I I I I 
18F I SHIFT LEFT DOUBLE ISLDA IRS C I SPI IF I R 17-32 
190 ISTORE MULTIPLE I STI'I IRS I A I I ST17-37 
191 ITEST UNDER MASK ITI'I lSI C I A I I 17-39 
192 I MOVE (immediate) IHI lSI I A I I ST17-24 
193 I TEST AND SET ITS IS C I A I $ I ST17-39 
I----+- I I 1 I I I 
194 lAND (immediate) IN! lSI C I A I I ST17-8 
195 ICOMPARE LOGICAL (immediate) ICLI lSI C I A I I 17-14 
196 lOP (immediate) 101 lSI C I A I I ST17-30 

J 197 I EXCL USI VE OR (immediate) IXI lSI C I A I I ST17-18 
198 I LOAD MULTIPLE ILI'I IRS I A I I R 17-22 
I--- I I I I I I I 
19COO*ISTART I/O ISIO IS C IP I $ I 112-25 
19C01*1 START I/O FAST RELEASE ISIOF IS C IP I $ I 112-25 
19000* I TEST I/O ITIO IS C IP I $ I 112-29 
19001 * I CLEAR I/O ICLRIOIS C IP I $ I 112-17 
19EOO*IHALT I/O I HIO IS C IP I $ I 112-22 
I----+- I I I I I I 
19E01*IHALT DEVICE HDV IS C IP I $ I 112-19 
19FOO*ITEST CHANNEL TCH IS C IP I $ I 112-29 
19F01*ICLEAR CHANNEL CLRCHIS C REIP I $ I 112-16 
lAC I STORE THEN AND SYSTEM MASK S TNSI'II SI TR I P A I I ST110-45 
lAD I STORE THEN OR SYSTEM MASK STOSI'II SI TR IP A SPI I ST110-46 I , I I I I I I --I 
IAE I SIGNAL PROCESSOR SIGP IRS C MPIP I $ I R 110-42 I 
17IF I MONITOR CALL MC lSI I SPI 1'101 17-23 I 
IB1 I LOAD REAL ADDRESS LRA I RX C TR IP A1 I I R 110-17 I 
IB200 ICONNECT CHANNEL SET CONCSIS C CSIP I I 110-5 I 
IB201 I DISCONNECT CHANNEL SET DISCS I S C CSIP I I 110-6 I , I I I I I I I I 
I B202 I STORE CPU ID ISTIDPIS IP A SPI I ST110-44 I 
I B203 ISTORE CHANNEL 10 ISTIDelS C IP I $ I 112-28 I 
I B204 ISET CLOCK I SCK IS C IP A SPI I 110-35 I 
IB205 ISTORE CLOCK I STCK IS C I A I $ I ST17-36 I 
IB206 ISET CLOCK COMPARATOR ISCKC IS CKIP A SPI I 110-36 I 

I I 

Instructions Arranged ty Operation Code (Part 3 of 5) 

B-14 System/370 principles of Operation 



• . ---,. 
lOp I IKne- I I Page 
ICode I Name I monic I Characteris:tics I No. 

L I I I I i • I 
IB201 ISTORE CLOCK COMPARATOR ISTCKCIS CKIP A SPI ST110-43 
IB208 I SET CPU TIMER ISPT IS CKI P A SPI 110-36 
IB209 ISTORE CPU TIMER ISTPT IS CKI P A SPI ST110-45 
IB20A ISET PSW KEY FROM ADDRESS ISPKA IS PKIQ I 110-31 
IB20B IINSERT PSW KEY IIPK IS PKIQ I R 110-8 
I I I I I I I 
IB20D IPURGE TLB IPTLB IS TRIP I $ 110-33 
IB210 ISET PREFIX ISPX IS MPIP A SPI $ 110-36 
IB211 I STORE PREFIX ISTPX IS MP IP A SFI STI10-45 
IB212 ISTORE CPU ADDRESS I STAP IS MPIP A SPI ST110-44 
IB213 IRESET REFERENCE BIT IFRB IS C TR I P Al I 110-34 
I I I I I I I 
IB218 I PROGRAK CALL IPC IS DUIQ AT IPC T t SOIB R XT110-21 
IB219 ISET ADDRESS SPACE CONTROL ISAC IS DUI SPI t SOl 110-34 
IB221 I INVALIDATE PAGE TABLE ENTRY IIPTE I RRE EF I P Al I $ I 110-10 
IB223 IINSERT VIRTUAL STORAGE KEY I IlSK I RRE DUIQ Al I SOl R 110-9 
IB224 IINSERT ADDRESS SPACE CONTROL IIAC I RRE C DUIQ I SOl R 110-1 
I I I I I I I I 
IB225 ISET SECONDARY ASN ISSAR I RRE DUI AT I SA T t SOl ST110-38 
IB226 I EXTRACT PRIMARY ASN IEPAR IRRE DUIQ I SOl R 110-6 
IB221 IEXTRACT SECONDARY ASN I ESAR IRRE DUIQ I SOl R 110-1 
IB228 IPROGRAM TRANSFER IPT I RRE DUIQ AT SPI PA T t SOIB XT110-28 
IB22C ITEST BLOCK ITB I RRE C TBIP Al , $ III R 110-46 
I I I I I I I I 
IB6 ISTORE CONTROL I STCTL I FS IP A SPI I ST110-43 
IB1 I LOAD CONTROL ILCTL IRS IP A SPI I 110-16 
IBA ICOMPARE AND SWAP ICS IRS C SWI A SPI $ I R ST11-12 
IBB ICOMPARE DOUBLE AND SWAP I CDS IRS C SWI A SPI $ I R ST11-12 
IBD ICOMPARE LOGICAL CHARACTERS UNDER MASKICLM IRS C I A I I 11-15 
I I I I I I , I 
IBE STORE CHARACTERS UNDER MASK ISTCM IFS I A I I ST11-35 
IBF INSERT CHARACTERS UNDER MASK IICM IRS C I A I I R 11-20 
ID1 KOVE NUKERICS IKlN ISS I A I I ST11-21 

L ID2 KOVE (character) IMYC ISS I A , I ST11-24 
103 KOYE ZONES IKlZ ISS I A I I ST11-28 
I-- I I I I I I 
104 AND (character) INC ISS C I A I I ST11-8 
ID5 COKPARE LOGICAL (character) ICLC ISS C I A I I 11-14 
106 OR (character) 10C ISS C I A I I ST11-30 
ID1 EXCL USI YE OR (character) IXC ISS C I A I I ST11-18 
109 MOVE WITH KEY I MVCK ISS C DUIQ A I I ST110-20 
I I I I I I I I 
IDA I MOVE TO PRIKARY IK YCP ISS C DUIQ Al I t SOl ST110-18 
IDB I MOVE TO SECONDARY IMYCS ISS C DUIQ Al I t SOl ST110-18 
IDC I TRANSLATE ITR ISS I A I I ST11-40 
IDD I TPANSLATE AND TEST ITRT ISS C I A I I R 11-41 
IDE I EDIT lED ISS C I A ID I STI8-6 
I I I I I I I I 
IDF I EDIT AND MARK IE DKK ISS C I A D I R ST18-10 
IE500 ILOAD ADDRESS SPACE PARAKETERS I LASP I SSE C DUIQ AS SP SOl 110-11 
IE501 ITEST PROTECTION ITPROTISSE C EF I P Al , 110-48 
I E8 IKOVE INVERSE IKTCINISS MIl A I ST11-24 
IFO I SHIFT AND ROUND DECIMAL ISRP ISS C I A D DF I ST18-11 
I I I I I I I 
IF1 IKOYE WITH OFFSET I !!TO ISS I A I STI1-28 
IF2 I PACK IPACK ISS I A I ST11-31 
IF3 I UNPACK IUNPK ISS I A I ST11-41 
IF8 I ZERO AND ADD I ZAP ISS C I A D OF I ST18-12 
IF9 ICOMPARE DECIKAL ICP ISS C I A D I 18-5 
L-- -----L 

Instructions ~rranaed :Cy Operation Code (Part 4 of 5) 

Appendix B. Lists of Instructions B-15 



~ 

lOp I I!!ne- I 
ICode I Name Imonicl Characteristics 
I I I I i 

IFA I ADD DECIMAL lAP ISS C A 10 
IFB I SUBTRACT DECIMAL ISP ISS C A I D 
IFC I!!ULTIPLY DECIMAL IMP ISS A SPID 
IPD I DIVIDE DECI!!AL I DP ISS A SPID 
I I 

Instructions Arranged by Operation Code (Part 5 of 5) 

• 
I IMne- I 
I Name Imonicl Characteristics 
I I I I 

I BRANCH AND SAVE IBASR IRR BSI 
I BRANCH AND SAVE IBAS IRX BSI 

Instructions Arranqed by Feature: Branch and Save 

I 
I Name 
I 
ICONNECT CHANNEL SET 
I DISCONNECT CHANNEL SET 

I!!ne- I 
Imonicl 
I I 
ICONCSIS 
IDISCSIS 

C 
C 

• CSIP 
CSIP 

Characteristics 

Instructions Arranged by Feature: Channel-Set Switching 

B-16 Svstem/370 principles of Operation 

DF 
OF 

OK 

• IB 
IB 

R 
R 

Page 
I No. 

~---+-
I ST18-5 
I ST18-12 
I ST18-10 
I ST18-5 
I 

• lOp I Page 
I Code I No. 
I I 
IOD 17-9 
IIID 17-9 
~ 

lOp 
ICode 
I 
IB200 
IB201 

I Page 
I No. 
I 
110-5 
110-6 

J 



r-- -----, 
I 'Mne- , , Op I Paqe I 
I Name Imonic, Characteristics , Code I No. I 

L I , I I I I I I I 
IADD IAR IRR C I I IF I R IH 17-7 I 
IADD IA IRX C I A I IF I R 15A 17-7 I 
IADD DECIMAL lAP ISS C I A ID DF I STIFA 18-5 I 
IADD HALFWORD IAH IRX C I A I IF I R 14A 17-7 I 
!ADD LOGICAL IALR IRR C I I I R 11 E 17-8 I 
r-- I I I I I I I I 
I ADD LOGICAL I AL IRX C I A I I R 15E 7-8 I 
lAND INR IRR C I I I R 114 7-8 I 
lAND IN IRX C I A I I R 154 7-8 I 
I AND (character) INC ISS C I A I I STID4 7-8 I 
lAND (immediate) I NI lSI C I A I I STI94 7-8 I 
r-- I I I I I I I 
I BRANCH AND LINK I BALR IRR I I IB R 105 7-9 I 
I BRANCH AND LINK I BAL IRX I I IB R 145 7-9 I 
IBRANCH ON CONDITION I BCR IRR I I j!!t IB 107 7-10 I 
I BRANCH ON CONDITION I BC IRX I I IB 147 7-10 I 
IJ;lRANCH ON COUNT I BCTR I RR I I IB R 106 7-11 I 
I I I I I I I I I 
I BRANCH ON COUNT I BCT IRX I I IB R 146 17-11 I 
I BRANCH ON INDEX HIGH I BXH IRS I I IB R 186 17-11 I 
I BRANCH ON INDEX LOW OR EQUAL I BXLE IRS I I IB R 187 17-11 I 
ICLEAR I/O ICLRIOIS C IP I $ I 19D01*112-17 I 
ICOMPARE ICR IRR C I I I 119 17-12 I 
I I I I I I I I I 
ICOMPARE C IRX C I A , I 159 17-12 I 
ICOMPARE DECIMAL CP ISS C I A I D I I F9 18-5 I 
ICOMPARE HALFWORD CH IRX C I A I I 149 17-14 I 
ICOMPARE LOGICAL CLR IRR C I I I 115 17-14 I 
ICOMPARE LOGICAL CL IRX C I A I I 155 17-111 I 
I I I I I I I I 
ICOMPARE LOGICAL (character) CLC SS C I A I I I D5 17-14 I 
ICOMPARE LOGICAL (immediate) CLI SI C I A I I 195 17-14 I 
ICOMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C I A I I IBD 17-15 I 
ICOMPARE LOGICAL LONG CLCL RR C I A SPI III R 10F 17-15 I 

"'" ICONVERT TO BINARY CVB RX I A ID IK I R 14F 17-17 I 
I I I I I , , I 
ICONVERT TO DECIMAL ICVD RX I A I I STI4E 17-17 I 
I DIAGNOSE I DM IP DM I I 183 110-5 I 
I DIVIDE IDR RR I SP I IK I R 11 D 17-18 I 
I DIVIDE ID RX I A SPI IK I R 15D 17-18 I 
I DIVI DE DECIMAL I DP SS I A SP, D DK I STIFD 18-5 I 
I I I I I I I I , 
IEDIT lED ISS C I A ID I STIDE 18-6 I 
I EDIT AND MARK IEDMK ISS C I A ID I R STIDF 18-10 I 
,EXCLUSIVE OR IXR IRR C I I I R 117 17-18 I 
IEXCLUSIVE OR IX IRX C I A I I R 157 17-18 I 
IEXCLUSIVE OR (character) I XC ISS C I A I I STID7 17-18 I 
I I I I I I I I I 
IEXCLUSIVE OR (immediate) IXI lSI C I A I I STI97 17-18 I 
IEXECUTE I EX IRX I AI SP I EXI 144 17-19 I 
IHALT DEVICE IHDV IS C IP I $ I 19E01*112-19 I 
IHALT I/O I HIO IS C IP I $ I 19EOO*112-22 I 
IINSERT CHARACTER IIC IRX I A I I R 143 17-20 I 
I I --+-- I I I I I I 
II NSERT CHARACTERS UNDER MASK IICM IRS C I A I I R I BF 17-20 I 
IINSERT STORAGE KEY I ISK IRR IP At SPI I R 109 110-9 I 
ILOAD ILR IRR I I I R 118 17-21 I 
ILOAD IL IRX I A I I R 158 17-21 I 
ILOAD ADDRESS ILA IRX I I I R 141 17-21 I 
L- I I -1...-

Instruct ions Arranged I::y Feature: Commercial Instruction Set (Part 1 of 3) 

Appendix B. Lists of Instructions B-17 



i , , 
I Il!ne ... I Op I Page 
I .... I,onicl Characteristics Code I No. 
I *iftU I I • • , I J 11.010 nDTEn ILTR IFF C I I I R 12 7-21 
11.010 COI!l?LE!I EHT ILCF IFR C I I IF I R 13 7-22 
IL01D ~OlJ'l'ROL I LeTL IRS IP A SPI I B7 10-16 
11.010 H lJ., l'lf0 R 0 ILH IRI I A I I R ij8 7-22 
11.010 I!ULTlPLE ILl! IRS I A I I R 98 7-22 
J-.-- I I I I I I 
11.010 UGlTIVE I Lli R IRR C I I I R I 11 7-23 
I :r.0lJ) POSITIVE IUR IRR C I I IF I R I 10 7-23 
ILOAD PSi I!.PSi IS L IP A SPI f. I 182 10-17 
IIIOIt TOR CALL IIIC 151 I SPI !lOI I AF 7-23 
IIIOVE (character) I live ISS I 1 I I STID2 7-2ij 
I , , I, I ' I I I I I 
I!!OVE (in.dbt.) I I! VI 151 I A I I STI92 17-2ij 
I!OVE LOliG I !Ve~ In C I A SPI III R STIOE \1-25 
Ilion nuncs I!lVlI ISS I 1 I I STID1 17-27 
IMOVE WITII oPP$n I ltV ° ISS I 1 I I STIF1 \1-28 
IIIOVE zon:; II!VZ ISS I A I I STID3 17-28 
~ I I I I I I I 
,II0"TIPU I!R IRR I SPI I R 11C \1-29 
IIIUL'UPI,J II! IRX I A SPI I R 15C 17-29 
I MOJ,TIPU DECI!lAL I!P ISS I A SPIO I STI FC 18-10 
tllnT:rPU Hl+l'lfORD I!lH IRX I A I I R lijC 17-29 
lOR lOR IRR e I I I R 116 17-30 

• t''4 I I I I I I I 
10~ 10 IRI C I A I I R 156 17-30 
lOR (cha.racter) 10C IS 5 C I A I I STID6 17-30 
lOR (inediate, 101 151 C I A I I STI96 17-30 
IPACK IPACIt ISS I A I I STIF2 \1-31 
ISST CLOCK ISCIt IS C I P A SPI I IB204 110-35 
~-, I I I I I I I 
ISET PROGRAM !l$K ISP!I IRR 1. I I I 104 17-31 
I SET STOUGE UY ISSK IRR IP Al SPI f. I 108 110-41 
ISIT SYST!K IIASK ISS! IS IP 1 SPI 501 180 110-41 
ISHIFT AID RQOllD DICIIIAI. ISRP ISS C I A ID DF I STIFO 18-11 J ISHIPT LEPT DOIJBI"B I 51. J;)l Il~ S C I SPI IF I R 18F 17-32 
I I I I I I I I I 
ISHIPT LEPT DOU8LI LOGl~AL I SLI)L IRS I SPI I F 180 17-32 
I SHIFT LEFT SI""U I Stl IRS C I I IF I R 18B 17-33 
I SHUT LElT SUGLE LOGlpU I SLL IRS I I I R 189 17-33 
I SHIFT RIGHT DOUBLE I SRDA IRS C I SPI I R 18E 17-34 
ISaIPT RIGHT DOUBLE LOGIC,n ISRDL IRS I SPI I R 18C 17-34 

• I I I I I I I 
I SHIFT UGHT SIlfGI"E ISal IRS C I I I R 181 17-34 
ISHUT alGHT SINGLE ~OGICll ISRL IRS I I I R 188 17-35 
I START I/O I SIO IS C IP I $ I 19COO*112-25 
IST1R~ I/O PAST RILElS! ISIOP IS C IP I $ I 19C01*112-25 
ISTOn 1ST IRI I A I I 5TI50 17-35 
............. 

blUUI. II> 
I I I I 1 I I 

ISTOn ISTIPCIS C I P I $ I IB203 \12-28 
I STORE elf lR lCUlI ISTC IRX I 1 I I 5'1'142 \1-35 
ISTon CRlUCTlBS UJDBlt IlSl I STCII IRS I 1 I I STIBE 17-35 
I 5 Ton CLoer; ISTCK IS C I 1 I $ I STIB205 17-36 
,STORE COIUOL ISTCTLIRS IP 1 SPI I STIB6 110-43 
I I I I I I I I 
,STOR! CPU II) ISTIDPIS IP A SPI I STI B202 110-44 
I SToR. RAUiOIll) ISTH I Rl; I A I I STI40 \1-37 
I STOR! ISQLTHLE , STI! IRS I 1 I I STI90 17-37 
I StJ~TIIA~'l' ISR IFR C I I IF I R 11B 17-37 
I SUBTRM;or IS In c I 1 I IF I R 15B 17-37 

!nstl;'uct ions l~~aMe4 by Feature: Commercial Instruction Set (Part 2 of 3) 

B-1e system/370 principles of Operation 



L 
I 
I Name 
I 
I SUBTRACT DECIMAL 
I SUBTRACT HALFWORD 
ISUBTRACT LOGICAL 
ISUBTRACT LOGICAL 
I SUPERVISOR CALL 
I 
I TEST AND SET 
ITEST CHANNEL 
ITEST I/O 
ITEST UNDER MASK 
I TRANSLATE 
I---
I TRANSLATE AND TEST 
I UNPACK 
I ZERO AND ADD 
~ 

Instructions Arranged by Feature: 

I 
I Nallle 
I 
ICOltPARE AND SWAP 
ICOMPARE DOUBLE AND SWAP 

Iltne- I 
I monic I Characteristics 
I I • • ISP ISS C I A I D DF 
ISH IRX C I A I IF 
ISLR IPR C I I 
ISL IRX C I A I 
ISVC IRR I I t 
I I I I 
ITS IS C I A S 
ITCH IS C IP S 
I TIO IS C IP S 
I TIt lSI C I A 
ITR ISS I A 
I I I 
ITRT ISS C I A 
IUNPK ISS I A 
IZAP ISS C I A D DF 

Commercial Instruction Set (Part 3 

I Itne- I 
I monicl 
I I 
I CS IRS 
I CDS IRS 

C 
C 

• SWI 
SWI 

Characteristics 
i 

A SPI S 
A SPI S 

Instructions Arranged by Feature: Conditional Swapping 

I IMne- I 
I Name Imonicl Characteristics 
I I I • • ISET CLOCK COMPARATOR ISCKC IS CKIP A SPI 
ISET CPU TIMER ISPT IS CKIP A SPI 
ISTORE CLOCK COltPARATOR ISTCKCIS CKIP A SPI 
I STORE CPU TIMER ISTPT IS CKIP A SPI 

----L 

Instructions Arranged by Feature: CPU Timer and Clock Comparator 

• I IMne- I 
I Name Imonicl Characteristics 
I I I i 
IREAD DIRECT I ROD lSI DCIP Al S 
IWRITE DIRECT IWRD lSI DCI P Al S 

Instructions Arranqed by Feature: Direct Control 

of 

lOp I Page 
I Code I No. 
I I 

STIFB 18-12 
R 14B 11-38 
R 11F 11-38 
R ISF 11-38 

lOA 17-39 
I I 

STI93 11-39 
19FOO*112-29 
19DOO*112-29 

R 

3) 

191 
STIDC 

I 
I DD 

STIF3 
STIF8 

lOp 
ICode 
I 

R STIBA 
R STIBB 

Op 
Code 

B206 
B208 

ST B201 
ST B209 

i 

lOp 
ICode 
I 

SDI85 
184 

17-39 
11-40 
I 
17-41 
17-41 
18-12 

I Page 
I No. 
I 
11-12 
17-12 

I Paqe 
I No. 
I 
110-36 
110-36 
110-43 
110-45 

i 

I Page 
I No. 
I 
110-33 
110-49 

Appendix B. Lists of Instructions B-19 



--, 
I IMne- I lOp I Page I 
I Name I monicl Characteristics ICode I No. I 
I-- I I i I I I I , 

J IEXTRACT PRIMARY ASN I EPAR I RRE DUIQ I 501 R IB226 10-6 I 
IEXTRACT SECONDARY ASN I ESAR I RRE DUIQ I 501 R IB227 10-7 I 
IINSERT ADDRESS SPACE CCNTROL I lAC I RRE C DUIQ I 501 R I B224 10-7 I 
IINSERT VIRTUAL STORAGE KEY I IVSK IRRE DUIQ Al I 501 R IB223 10-9 I 
ILOAD ADDRESS SPACE PARAMETERS I LASP ISSE C DUIQ AS SPI 501 I E500 10-11 I 
I I I I I I I I 
I MOVE TO PRIMARY IMVCP ISS C DUIQ Al I t 501 STIDA 10-18 I 
IMOVE TO SECONDARY I MVCS ISS C DUIQ 11 I t 501 STIDB 10-18 I 
IMOVE WITH KEY I MVCK ISS C DUIQ A I I STID9 10-20 I 
I PROGRAM CALL I PC IS PUIQ AT IPC T t SOIB R XTIB218 10-21 I 
I PROG RAM TRAN SFER I PT IRRE DUIQ AT SPI PA T t SOIB ITIB228 10-28 I 
I-- I I I I I I I I 
ISET ADDRESS SPACE CONTROL ISAC IS DUI SPI t 501 IB219 110-34 I 
ISET SECONDARY ASN ISSAR IRR! DUI AT I SA T t 501 STIB225 110-38 I 
L-

Instructions Arranged by Feature: Dual-Address-Space (DA S) Facility 

i 

I l!!ne- I lOp I Page 
I Name Imonicl Characteristics I Code I No. 
I I I i I I 
IINVALIDATE PAGE TABLE ENTBY IIPTE IRRE EFIP A1 $ IB221 110-10 
ITEST PROTECTION ITPROTISSE C EFIP A1 IE501 110-48 , -1. 

I 
I ]ot~: The extended facility actually consists of 14 instructions 12 of which are MVS-
I dependent. L----__________________ . ________________________________ ------________________________________ -J 

Instructions Arranged by Feature: Extended Facility (without MVS Assist) 

r-- I 

I IMne- I lOp I Page 
I Name Imonici Characteristics I Code I No. 
I I I , i I I I 
IADD NORMALIZED (extended) lAIR IRR C XPI SPIEU EO LSI 136 19-6 
I LOAD ROUN OED (extended to long) ILRDR IRR XPI SPI EO I 125 19-12 
ILOAD ROUNDED (long to short) ILRER IRR XPI SPI EO I 135 19-12 
I MULTIPLY (extended) IMIR IRR XPI SPI EU EO I 126 19-13 
I MULTIPLY (long to extended) IMXDR IRR XPI SPI EU EO I 127 19-13 
I-- 1 I 1 I I I 1 
1 MULTIPLY (long to extended) IMXD IRX XPI A SPIEU EO I 167 19-13 
I SUBTRACT NORMALIZED (extended) ISIR I lIB C IPI SPI EU EO LSI 137 19-15 
I 

Instructions Arranged by Feature: Extended-Precision Floating Point 

B-20 System/370 principles of Operation 



.-- I I I 

I IMne- I lOp I Page 
I Name I monici Characteristics ICode I No. 

L I I I I I I I I 
IADD NORMALIZED (long) IADR IRR C FPI SPI EU EO LSI 12A 19-6 
IADD NORMALIZED (long) I AD IRX C FPI A SPI EU EO LSI 16A 19-6 
IADD NORMALIZED (short) I AER IRR C FPI SPIEU EO LSI 13A 19-6 
IADD NORMALIZED (short) I IE IRX C FPI 1 SPIEU EO LSI 171 19-6 
IADD UNNORMALIZED (long) I AWR IRR C FPI SPI EO LSI 12E 19-7 
r-- I I I I I I I 
IADD UNNORMALIZED (long) lAW IRX C FPI 1 SPI EO LSI 16E 19-7 
IADD UNNORMALIZED (short) I AUR IRR C FPI SPI EO LSI 13E 19-7 
IADD UNNORMALIZED (short) I AU IRX C FPI A SPI EO LSI 17E 19-7 
ICOMPARE (long) ICDR I FR C FP I SPI I 129 19-8 
I COMPARE (long) ICD IHI C PPI A SP I I 169 19-8 
I I I I I I I I 
ICOMPARE (short) ICER IFR C FPI SPI I 139 9-8 
ICOMPARE (short) ICE IRX C FPI A SPI I 179 9-8 
I DIVIDE (long) IDDR IRR FPI SPI EU EO FK I 12D 9-9 
I DIVIDE (short) IDER IRR FPI SPI EU EO FK I 13D 9-9 
I DIVIDE (short) I DE IRX PPI A SPIEU EO FK I I7D 9-9 
I I I I I I I 
I HALVE (long) IHDR IFR FPI SPIEU I 124 9-10 
IHALVE (short) IHER IRR PPI SP I EU I 13IJ 9-10 
ILOAD (long) ILDR IRR FPI SPI I 128 9-10 
ILOAD (lonq) ILD IRX FP I A SPI I 168 9-10 
ILOAD (short) ILER IRR FPI SPI I 138 9-10 
I I -+- I I I I I 
ILOAD (short) ILE IRX FPI A SPI I 178 19-10 
ILOAD AND TEST (long) I LTDR IRR C FPI SPI I 122 19-11 
ILOAD AND TEST (short) ILTER IRR C FPI SPI I 132 19-11 
ILOAD COMPLEMENT (long) ILCDR I RR C FP I SPI I 123 19-11 
ILOAD COMPLEMENT (short) ILCER IRR C FP I SPI I 133 19-11 
I I I I I I I I 
ILOAD NEGATIVE (long) ILNDR IFR C FPI SPI I 121 19-12 
ILOAD NEGATIVE (short) ILHER IFR C FPI SP I I 131 19-12 
ILOAD POSITIVE (long) ILPDR IRR C FPI SP I I 120 19-12 
ILOAD POSITIVE (short) ILPER IRR C FPI SPI I 130 19-12 

~ 
I MULTIPLY (long) IMDR IRR FPI SPIEU EO I 12C 19-13 
r-- I I I I I I I 
I MULTIPLY (lonq) IMD IRX FP A SPI EU EO I 16C 19-13 
I MULTIPLY (short to long) IMER IRR FP SPI EU EO I 13C 19-13 
I MULTIPLY (short to long) IME IRX FP A SPI EU EO I 17C 19-13 
I STORE (lonq) I STD IRX FP A SPI I STI60 19-1IJ 
ISTORE (short) ISTE IRX FP A SPI I STI70 19-1IJ 
I I I I I I I 
ISUBTRACT NORMALIZED (long) ISDR IRR C FP SPIEU EO LSI 12B 19-15 
I SUBTRACT NORMALIZED (long) ISO IRX C FP A SPI EU EO LSI 16B 19-15 
I SUBTRACT NORMALIZED (short) ISER IRR C FP SPI EU EO LSI 13B 19-15 
I SUBTRACT NOFMALIZED (short) ISE IR X C FP A SPIEU EO LSI 17B 19-15 
I SUBTRACT UNNORMALIZED (long) I SWR IRR C FP SPI EO LSI 12F 19-15 
r-- I I I I I I I 
ISUBTRACT UNNORMALIZED (long) I SW IRX C FPI A SPI EO LSI 16F 19-15 
I SUBTRACT UNNORMALIZED (short) ISUR IRR C FPI SPI EO LSI 13F 19-15 
I SUBTRACT UNNORMALIZED (short) ISU IRX C FPI A SPI EO LSI 17F 19-15 

---L 

Instructions Arranged by Feature: Floating Point 

Appendix B. Lists of Instructions B-21 



r-
I IKne- I 101' I Page 
I Name Imonicl Characteristics ICode I No. 
r---------------------------------+1·----41--------~1 ------,----------T-----4I-----rI----~ 
I KOVE INVER SE I KVCIN ISS KI I A I ST I E8 11-24 
~ ___________________________________ _L __ ---L ________ _L ________ ~ ________ ~~ ____ ~ _____ ~ ____ ~ 

Instructions Arranged by Feature: Move Inverse 

r- ----------------------------_.,r_---,r----------------------------------.---r,-----y-----~ 

I IKne- I 101' I Page 
I Name Imonici Characteristics ICode I No. 
I I I • , t I -+-.----~ 
ISET PREFIX ISPX IS KPIP A SPI $ I IB210 110-36 
I SIGNAL PROCESSOR I SIGP IRS C KP I P I $ I R I AE 110-42 
ISTORE CPU ADDRESS ISTAP IS KPIP A SPI I STIB212 110-44 
ISTORE PREFIX ISTPX IS KPIP A SPI I STIB211 110-45 L----__________________ . ______________ ~ ____ ~, ________ ~ ________ ~ __________ L_ __ • __ -L ____ _L ______ ~ 

Instructions Arranged by Feature: Multiprocessing 

I I 

I IKne- I 101' I Page 
I Name Imonicl Characteristics ICode I No. 
r--------------------------------r----+-------~------,_------I I • T I I 
IINSERT PSi KEY IIPK IS PKIQ I R I B20B 110-8 
ISET PSi KEY FROK ADDRESS I SPKl IS PKIQ I IB20A 110-37 , I ____________ _____________ -L __ __ 

-L , , , , 

Instructions Arranqed by Feature: PSi-Key Handling 

• i , 
I IKne- I 101' Page 
I Name I monicl Characteristics ICode No. 
~I-------------------------------------+I-----+I---------.r--------r-----------T I I 
ICLEAR CHANNEL ICLRCHIS C REIP $ I 19FO 1 * 112-16 L ____________ . ________________________ ~ ____ ~ _________ ~ ______ _L __________ _L ____ ~L_ __ ~L_ ____ ~ 

Instructions Arranqed by Feature: Recovery Extensions 

r----------------------------------r-----~-------------------------------------r_----r_----_. 
I 
I 
1-----­
ITEST BLOCK 

Name 
IKne- I 
I_onicl Characteristics 

-------------------------Ir---~Ir_-------·T------·_.r_------~ 
ITB IRRE C TBIP Al $ III R 

lOp 
ICode 
I 
I B22C 

I Page 
I No. 
I 
110-46 L- -L--__ ~ ________ -L ______ ~~ ________ ~~ ____ ~ ____ ~ ____ ~ 

Instructions Arranqed by Feature: Test Block 

B-22 System/370 principles of Operation 



,.... , , i; 

I Iftne- I lOp I Paqe 
I Niue I Ionic I C;h aJ;:aeter,j.st ies ICode I !o. 

(..., I ;'1 I , 
• i • , I 

ILOAD RUt ADDRISS ILU ,n c !RIP l' I R I B1 111>-11 
I PURGE TtD I PTLB IS TRIP I $ IB20D 110-33 
laEsn RJPERENC! DU I RRB IS C TRIP 11 I IB213 110-34 
I STORE TU! UD SI5U!! !!AS)( I S':tISlIS~ TRIP A I STile 110-45 
I STORE TU! OR SYSTI! fillS. ISTOS!lIU TaIP 1 SPI 5'1'11D , 1 0.,.1& 6 , , 

I 
, 

, f 
, , 

Instructions Arranged by Feature: Tral;lslation 

APpendix B. Lists of Instructions 8-23 





I I Con di tion Code I 
I r--------"T I 
I Instruction I 0 I I 2 I 3 I 
I I I I I I 
I ADD, ADD HALFWORD I zero I < zero I> zero loverflow I 
IADD DECII!AL Izero 1< zero I> zero I overflow I 
I ADD LOGICAL I zero, I not zero, I zero, I not zero, I 
I I no carry I no carry I carry I carry I 
I ADD NORMALIZED I zero 1 < zero I> zero 1- I 
IADD UNNORMALIZED I zero I < zero I> zero 1- I 
I I I I I I 
lAND zero Inot zero 1- 1- I 
ICLEAR CHANNEL reset signaled 1- 1- I not operational I 
ICLEAR I/O no operation ICSW stored I channel busylnot operational I 
I in progress I I I I 
ICOMPARE, COMPARE HALFWORD equal Ilow I high 1- I 
ICOI!PARE AND SWAP equal I not equal 1- 1- I 
I---- I I I I 
ICOMPARE DECIMAL equal Ilow I high 1- I 
ICOI!PARE DOUBLE AND SWAP equal I not equal 1- 1- I 
ICOMPARE LOGICAL equal Ilow I high 1- I 
ICOMPARE LOGICAL CHARACTERS UNDER equal Ilow I high 1- I 
I MASK I I I I 
ICOI!PARE LOGICAL LONG equal Ilow I high 1- I 
I ~---·--~I-----~I--------1 
ICONNECT CHANNEL SET successful connected to 1- ! not operational I 
1 another CPU! I I 
IDISCONNECT CHANNEL SET successful connected to 1- I not operational! 
! another CPUI I I 
I EDIT, EDIT AND MARK zero < zero I> zero 1- I 
IEXCLUSIVE OR zero not zero 1- 1- I 
PIALT DEVICE interruption CSi stored I channel I not opera tionall 
I pending/busy I working I I 
I I I I I 
IHALT I/O I interruption CSW stored Iburst OPe Inot operationall 
I 1 pending I stopped I I 
IINSERT ADDRESS SPACE CONTROL Izero one 1- 1- I 
IINSERT CHARACTERS UNDER MASK lall zeros 1st bit one 11st bit zerol- I 
I LOAD AND TEST I zero < zero I> zero 1- I 
I LOAD COMPLEMENT (fixed point) I zero < zero I> zero I overflow I 
I---- I I I I I 
ILOAD COMPLEMENT (floating point) I zero I < zero I> zero 1- I 
ILOAD NEGATIVE Izero 1< zero 1- 1- I 
ILOAD POSITIVE (fixed point) Izero 1- I> zero I overflow I 
ILOAD POSITIVE (floating point) Izero 1- I> zero 1- I 
I LOAD REAL ADDRESS I transla tion 1 ST entry I PT entry Ileng th I 
I I available I invalid I invalid I violation I L----__________________ -LI __________ ~. ___________ ~I~ _______ _L ________ -J 

Summary of Condition-Code Settings (Part 1 of 2) 

Appendix C. Condition-Code Settinqs C-1 



~-------~~------~----~--r.------------------------------------~----~------~--~ I I COil 41 tiOIl Code I I ~'----------~--~--------~i~--------~i------------~I I Ins ttuction I 0 I I 2 I 3 I 
............. --' 'I I , I , 
IftOVE LONG Ilength equal Ilength low Ilength hiqh 14e8tr overlap I 
IliOn '1'0 PRtlllllY 1 MOVE -rod Ilength =< 256 1- 1- Ilenqth > 256 I 
I SBCONDUY I I I I I 
,MOY! WITH kEY Ilenqth =< 256 1- 1- Ilength > 256 I 
lOR Izero Inot zero 1- 1- I 
IR!SPl't UPBRElfC! SIT IR b1t zet()~ 18 bit zeto, Il bit one, IE! bit one, I 
I I C bit zero I C bit one I C bit zerol C bit one I 
I I I I I I 
ISET CLOCr Iset I secure 1- Inot operational I 
ISHIPT liD ROOND DECIMAL Izero 1< zero I> zero 1 overflow I 
ISRlrt LElT (DOOB1! or SINGLE) Izero 1< zero I> zero I overflow I 
IS81rT RIGHT (~OBLE or SINGLE) Izero 1< zero I> zero I~ I 
IstGRlL PROCl\:SSOtl lorder code Istatus storedlbusy Inot operational I 
1 I aceepted I I I I I----------------....-----... I---......... ---+-I ... ' -'--.......................... 1 ........ ---..... ' ... 1----------41 
IST1RT I/O, START I/O P1ST Isuccessful ICS' stored Ibu~y Inot operatiollall 
I RELEASE I I I I I 
ISTORE CH1NNEL 11> lID stored I CSi stored I busy I not operational I 
ISTORE CLOCK Iset Inot set I error Inot operationall 
IS~8'l'RACT, SUSTRlCT HAL1W08D Izero i< zero I> zero I oVerflow I 
ISOBTRACT DECIMAL Izera 1< zero I> leta I overflow 1 
".. I I 1 ·1' I 
I saSTRACT LOGICAL 1- I not zero, 12e1'o, I not zero, I 
I I I no carry 1 carry I carry I 
ISUBTRAcT NO~MALIZED Izero 1< zero I> zero 1-- I 
ISUBTRICT UNNORMALIZED Izera 1< zero I> zero 1-- I 
lUST AND SET l1eft zeto l1eft Olle 1- 1- 1 
lUST BLOCK I usable Inot usable 1- 1--- I 
I . I I· I I I 
ITIST CHANNEL I available linterruption I burst lode ,not operational I 
I I I pendinq I I I 
ITEST l/O I available ICst stored I busy Inot operational I 
ITEST PROtECTION Ifetch and storelno store Ina fetch, Ino translation I 
I I I I no store I I 
ITEST ORDER MASk lall zeros I mixed I~ lallolles I 
ITUHSLlTl AND TEST Izero I incomplete I complete 1- I 
luao IND AD» I zero 1< zero I) Zero lovElrflo" 1 
~I-----------·--~------~------~'------------~,------~----~------~--~#~~-----------4\ bl!bb.U2A: 

> zero 
< zero 
=< 256 
hiqh 
low 
lenqth 

Not applicable 
R~sult is qreater than zero 
Result 1s less than zero 
Equal to, or less than, 256 
rirst operand compares hiqh 
first opetand compares low 
Length of first operand 

lQ~~: The condition cod~ IDa1 also be changed by DiAGNOSE, EXEC~I, LOAD PSW, SET PROGRAM 
M1SK, and SUPERVISOR CALL, and by an interruption. 

Sullmary of condition-Code Settings (Part 2 of 2) 

c·2 System/310 principles of Opetation 



Commercial Instruction set •••••••••••••••••••••••••••••••••••• D-1 
Floating-Point Feature •••••••••••••••••••••••••••••••••••••••• D-1 
Universal Instruction Set ••••••••••••••••••••••••••••••••••••• D-2 
Extended-Precision Floating-point Feature ••••••••••••••••••••• D-2 
External-Signal Feature ••••••••••••••••••••••••••••••••••••••• D-2 
Direct-Control Feature •••••••••••••••••••••••••••••••••••••••• D-2 
Translation Feature •••••••••••••••••••••••.••••••••••••••••••• D-2 
CPU-Timer and Clock-Comparator Feature •••••••••••••••••••••••• D-2 
Conditional-swapping Feature •••••••••••••••••••••••••••••••••• D-2 
PSW-Key-Handling Feature •••••••••••••••••••••••••••••••••••••• D-2 
Move-InversE Feature ••••.•••••••.•.••.••••••••..••••.•••••.••. D-2 
Multiprocessing Feature ••••.••••••.••••••.•••••••••••••••.•••• D-2 
Dual-Address-Space (DAS) Facility ••••••••••••••••••••••••••••• D-3 
Service-Signal Feature •••••••••••••••••••••••••••••••••••••••• D-4 
Test-Block Feature •••••••••••••••••••••••••••••••••••••••••••• D-4 
Branch-and-Save Feature •••••••••••••••••••••••••••••••••••••.• D-4 
Extended Facility ••••••••••••••••••••••••••••••••••••••••••••• D-4 
Recovery-Extension Feature •••••••••••••••••••••••••••••••••••• D-4 
Channel-Set-Switching Feature ••••••••••••••••••••••••••••••••• D-4 
Fast-Release Feature •••••••••••••••••••••••••••••••••••••••••• D-4 
Clear-I/O Feature •••.•••••••••••••••••••••••••••••••••••••••••• D-4 
Channel-Indirect-Data-Addressing Feature •••••••••••••••••••••• D-4 
command-Retry Feature ••••••••••••••••••••••••••••••••••••••••• D-4 
Limited-Channel-Logout Feature •••••••••••••••••••••••••••••••• D-4 
I/O-Extended-Logout Feature ••••••••••••••••••••••••••••••••••• D-5 

Availability of Features •••••••••••••••••••••••••••••••••••••••• D-5 
Features Not Described in the Principles of Operation ••••••••••• D-7 

This appendix lists the facilities in 
System/370, shows how they are grouped, and 
indicates their availability as features on 
models implementing the System/370 
architecture. A facility is an architec­
tural grouping of functions. 

• 

ities, and for the IOEL control (if an 
installed channel has the 1/0-
extended-logout facility) 

Key-controlled protection 

COMMERCIAL INSTRUCTION SET 

Every CPU incorporates the commercial 
instruction set (listed in Appendix B) and 
the associated basic computing functions, 
including: 

• Byte-oriented operands 

• General registers 

• Basic-control (BC) mode 

• Control reqisters, with bit positions 
for the block-multiplexing control bit 
(if block multiplexing is provided), 
for the interrupt-key and interval­
timer masks, for channel .asks 
associated with installed channels, 
for monitor masks, for control of 
installed machine-cheek-handling facil-

• Interval timer 

• TOD clock 

• Basic operator facilities 

Every system also includes the capability 
for at least one byte-multiplexer, block­
multiplexer, or selector channel. The 
capability may be implemented as a separate 
physical unit or may be provided by sharing 
the physical unit with the CPU. 

Additionally, the followinq features may be 
available: 

FLOATING-POINT FEATURE 

Includes the floating-point instructions 
(listed in Appendix B) and the floating­
point registers. 

Appendix D. Facilities D-1 



UNIVERSAL INSTRUCTION SET 

Includes the instructions of the commercial 
instruction set and the floating-point 
feature. 

EXTENDED-PRECISION FLOATING-POINT FEATURE 

Includes the extended-precision floating­
point instructions (listed in Appendix B). 

EXTERNAL-SIGNAL FEATURE 

Includes the extension 
interruptions for external 
control-register position 
external-signal mask, and 
accept external signals. 

to external 
signals, the 

for the 
the means to 

DIRECT-CONTROL FEATURE 

Includes the external-signal feature and 
the instructions READ DIRECT and WRITE 
DIRECT. 

TRANSLATION FEATURE 

Includes the following facilities: 

• 

• 

• 
• 

• 

Q!na~ic ,Addre22 TrEl!2.!atio,!! (QAT). 
The DAT facility includes the 
translation mechanism, with the 
associated control-register positions 
and program-interruption codes, and 
reference and change recording. 
Includes controls for 4K-byte and 
2K-byte page size and 64K-byte and 
1M-byte segment size. 

£~Qg~~]ygn1 R!&Q~ing (£~). The 
PER facility includes the associated 
control-register positions and exten­
sions to the program-interruption 
code. 

~~~ sUPR£~iQ.!!. This facility in­
cludes the contrdl-register position 
for the SSM-suppression-control bit 
and the proqram-interruption code for 
special operation. 

StQ!:~ ~t at~~ 
l1s.nual Re2~1· 

0-2 System/370 Principles of Operation 

As part of these facilities, the following 
instructions are provided: LOAD REAL J .. 
ADDRESS, PURGE TLB, RESET REFERENCE BIT, 
STORE THEN AND SYSTEM MASK, and STORE THEN 
OR SYSTEM MASK. 

On some models, no provision is made to 
include controls for the 1K-byte-segment 
size in dynamic address translation. 
Controls are provided for 4K-byte and 
2K-byte page size and 64K-byte segment 
size. 

CPU-TIMER AND CLOCK-COMPARATOR FEATURE 

Includes the clock comparator, the CPU 
timer, the associated extensions to 
external interruption, control-register 
positions for the clock-comparator and 
CPU-tiller masks, and the instructions SET 
CLOCK COMPARATOR, STORE CLOCK COMPARATOR, 
SET CPU TIMER, and STORE CPU TIMER. 

CONDITIONAL-SWAPPING FEATURE 

Includes the instructions COMPARE AND SWAP 
and COMPARE DOUBLE AND SWAP. 

PSW-KEY-HANDLING FEATURE 

Includes the instructions SET PSW KEY FROM 
ADDRESS and INSERT PSW KEY. 

MOV E- INV ER SE FEA TURE 

Includes the instruction MOVE INVERSE. 

MULTIPROCESSING FEATURE 

Includes the following 
permit the formation of 
system: 

• 

facilities, which 
a multi proce ssi nq 

These facilities include four extensions to 
the external interruption (external call, 
emergency signal, TOD-clock-sync check, and 



malfunction alert) , control-register 
positions for the TOD-clock-sync-control 
bit and for the masks for the four 
external-interruption conditions, and the 
instructions SET PREPIX, SIGNAL PROCESSOR, 
STORE CPU ADDRESS, and STORE PREFIX. 

DUAL-ADDRESS-SPACE (DAS) FACILITY 

The dual-address-space 
includes the following: 

(DAS) facility 

1. DUal-space control, which includes: 

a. An address-space control, PSi bit 
16. 

b. A primary ASN, bits 16-31 of 
control register 4. 

c. A secondary ASN, bits 16-31 of 
control register 3. 

d. A secondary-segment-table designa­
tion, in control register 7. 

2. DAS authorization mechanisms, which 
include the following: 

3. 

4. 

a. An extraction-authority control, 
bit 4 of control register O. 

b. A PSi-key mask, bits 0-15 of 
control register 3. 

c. A secondary-space control, bit 5 
of control register o. 

d. A subsystem-linkage control, bit 0 
of control register 5. 

e. An ASN-translation control, bit 12 
of control register 14. 

f. An authorization index, bits 0-15 
of control register 4. 

g. A space-switch-event bit, bit 31 
of control register 1. 

PC-number translation, which 
linkage-table designation in 
register 5. 

ASN translation, which 
ASN-first-table origin, bits 
control register 14. 

uses the 
control 

uses an 
13-31 of 

5. ASN authorization. 

6. DAS tracing. 

7. The following instructions: 

EXTRACT PRIMARY ASN (EPAR) 
EXTRACT SECONDARY ASN (ESAR) 

INSERT ADDRESS SPACE CONTROL (lAC) 
INSERT VIRTUAL STORAGE KEY (IVSK) 
LOAD ADDRESS SPACE PARAMETERS (LASP) 
MOVE TO PRIMARY (MVCP) 
MOVE TO SECONDARY (MVCS) 
MOVE WITH KEY (MVKC) 
PROGRAM CALL (PC) 
PROGRAM TRANSFER (PT) 
SET ADDRESS SPACE CONTROL (SAC) 
SET SECONDARY ASN (SSAR) 

8. Nine new exception or event conditions 
which resul t in a program 
interruption. These conditions are: 

APX-translation exception 
ASN-translation-specification exception 
ASX-translation exception 
EX-translation exception 
LX-translation exception 
PC-translation-specification exception 
Primary-authority exception 
Secondary-authority exception 
space-switch event 

For page- and segment-translation 
exceptions, a bit is stored with the 
translation-exception address. This 
bit indicates whether the address was 
translated by using the primary or 
secondary segment-tab Ie desig na ti on. 

The following System/370 instructions are 
changed or affected by the installation of 
DAS, as noted: 

• Execution of the SET PSi KEY FROM 
ADDRESS instruction is permitted in 
the problem state, subject to the 
contents of bit positions 0-15 of 
control register 3. When the bit in 
the control register corresponding to 
the PSW-key value to be set is one, 
execution is allowed; otherwise, a 
privileged-operation exception is 
recognized. The contents of control 
register 3 are ignored in the 
supervisor state. 

• 

• 

Execution of the INSERT PSi KEY 
instruction is permitted in the 
problem state when bit 4 of control 
register 0, the extraction-authority 
control, is one. When the bit is zero 
and the problem state is specified, 
the operation is suppressed, and a 
privileged-operation exception is 
recognized. The extraction-authority 
control is ignored in the supervisor 
state. 

LOAD REAL ADDRESS uses the contents of 
control register 7, instead of the 
contents of control register 1, when 
PSi bit 16 is one. Thus the second 
operand is translated either as a 
pr~mary virtual address or as a 
secondary virtual address, depending 
on the mode specified in the PSi. 

Appendix D. Facilities D-3 



• The second-operand address of EXECUTE 
is defined to be an instruction 
address rather than a logical address. 
In secondary-space mode, it is thus 
unpredictable whether the target 
instruction is fetched from the 
primary space or the secondary space. 

I SERVICE-SIGNAL FEATURE 

Provides an external interruption which is 
used by the service processor to signal 
model-dependent information to the control 
program. 

I TEST-BLOCK FEATURE 

Includes the instruction TEST BLOCK for 
testing the usability of a 4K-byte block of 
main storage. 

I BRANCH-AND-SAVE FEATURE 

Includes the instruction BRANCH AND SAVE 
(BAS and BASR). 

EXTENDED FACILITY 

Includes the instructions INVALIDATE PAGE 
TABLE ENTRY and TEST PROTECTION, the 
common-segment facility and the associated 
bit position in the segment-table entry, 
low-address protection and the associated 
control-register position for the control 
bit, and 12 MVS-dependent instructions. 

RECOVERY-EXTENSION FEATURE 

Includes the following: 

• Machine-check external-damage code in 
storage at location 244, the external­
damage-code-validity bit (bit 26 of 
the machine-cheek-interruption code), 
and the channel-not-operational indi­
cation in the machine-check external­
damage code 

• The CLEAR CHANNEL instruction 

• The logout-valid bit (bit 15) and the 
interface-inoperative bit (bit 27) in 
the limited channel logout 

D-4 System/370 Principles of Operation 

CHANNEL-SET-SWITCHING FEATURE 

Provides the ability to 
set to any CPU in 
configuration. It 
instructions CONNECT 
DISCONNECT CHANNEL SET. 

FAST-RELEASE FEATURE 

connect a channel 
a multiprocessing 

includes the 
CHANNEL SET and 

Provides for fast release of the CPU by the 
channel during the execution of the START 
I/O FAST RELEASE instruction. The release 
occurs before the device-selection 
procedure is completed, reducinq the CPU 
delay associated with the initiation of the 
I/O operation. When the fast release is 
not implemented, START I/O FAST RELEASE is 
executed as START I/O. 

CLEAR-I/O FEATURE 

Provides the clear-I/O function in a 
channel when the CLEAR I/O instruction is 
executed. When the clear-I/O function is 
not implemented, CLEAR I/O is executed as 
TEST I/O. 

CHANNEL-INDIRECT-DATA-ADDRESSING FEATURE 

Includes indirect-data-address words and 
the associated CCW flag, which facilitate 
storage addressing when virtual addresses 
are used. 

COMMAND-RETRY FEATURE 

Provides the capability 
retry a command without 
an I/O interruption. 
initiated by the control 

in a channel to 
the occurrence of 

The retry is 
uni t. 

LIMITED-CHANNEL-LOGOUT FEATURE 

Provides four bytes of channel-status 
information for model-independent recovery 
from channel errors. 



~ 

I/O-EXTENDED-LOGOUT FEATURE 

Provides for the storing of detailed 
channel-error information in a storage area 
designed by a pointer. 

--r-
I 1115 
I Feature I ..- I 
ICommercial instruction set S 
IFloating point FP 
I Extended-precision floating pOint FIP 
I Direct control ES 
I Translation 5 
I 
ICPU timer and clock comparator S 
IConditional swappinq S 
Ipsi-key handling 
IMove inverse 
I Multiprocessing ..- +--
IExtended facility I-
IRecovery extensions I-
IDual address space I-
ITest block I-
IBranch and save I-..- I 
I service signal I-
IChannel-set switching I-
I Fast release I-
I Clear I/O I-
I Channel indirect data addressing IS 
I I 
ICommand retry I-
ILimited channel logout 15 
11/0 extended loqout I-
I-- I 

Feature Availability (Part 1 of 2) 

• , 
1125 1135 
I I 
t I 
IS IS 
IFXP I FP 
I"XP IXP 
I ES i DC 
IS IS 
I I 
IS ICK 
IS lSi 
I .... I-
I- I-
I- I-
I I 
I- I-
I- I-
I- I-
I- I-
I- I-
I I 
I- I-
I- I-
I- I-
I- I-
15 15 
I I 
I- IS 
IS IS 
I- I-
I I 

• i , , , , I I i i 

1135--1138 1145 1145-114S 1155 1158 1158-1 
I 3 I I I 3 I I I I 3 I 
I I ! t I I" I , I , 
IS IS IS IS IS IS IS IS I 
15 IS I PIP 15 , S 15 IS IS I 
IXP IS IPIP IS IS In IXP I XP I 
IDC I DC IDC IDC IDC I DC I DC IDC I 
IS IS IS IS 15 IPO 15 15 I 
I I I I' I I I I . , 
IS is leK I ell: 1 S I PO IS IS I 
15 15 ISW IS IS IPO IS IS I 
IS IS tiPS IS IS IPQ IS IS I 
I- I- I- I- I .... I- I- I- I 
I- I- I .... I- I'" 1- IUP lUI' I 
I I I t I I i t I 
I- I- I- I- I- 1- IU IEl I 
I- I- I- I- I- I- I- I- I 
I- I- I .... I- I- I- I- I- I 
I- I- I- I- I- I- I- I- I 
I- I- I- i- I- I- I- 1-
I I I I t I I I I 
I- I- I .... I- t- I- I- 1-
I- I- I- I .... I- I- I .... I-
I- I- I- I .... I- I- IS IS 
I- 1- lAPS IS 15 IPQ IS 15 
IS IS IS IS IS IPO IS IS 
I ! I I I 

"'. 
t I I 

IS IS IS IS 15 IS IS 15 
IS IS IS IS IS IS IS IS 
I- i- IS IS IS I- I- I-

,4 & " 4 , I • " 

Appendix D. Paeilities D-5 



-r- • • I I I I • I I I 

I 1165 1168 1168-1195 1303113032130331308114331143411 
I 
I-­

Feature 

ICommercial instruction set 
IFloatinq point 
IExtended-precision floating point 
IDirect control 
I Translation .­
ICPU timer and clock comparator 
IConditional swapping 
IPSi-key handlinq 
IMove inverse 
I Multiprocessing .­
IExtended facility 
IRecovery extensions 
IDual address space 
ITest block 

I I I 3 I 
I -+---+ I 
IS* IS IS IS 
IS IS IS IS 
IS IS IS IS 
IS IS IS IS 
IPQ IS IS I-
I I --+ I 
IPQ IS IS I-
IPQ IS IS I-
IPQ IS IS I-
I- I- I- I-
l- IMP I Af!P l-
I I I I 
l- IEF I EF 
I- I- I-
I- I- I-
I- I- I-

I I I ISee Note 
I I I I I 

S IS IS IS IS IS 
S IS IS IS IS IS 
S IS IS IS IS IS 
DC IS IS l- IES IES 
S IS IS 1St IS IS 

I I I I I 
S IS IS IS IS IS 
S IS IS IS IS IS 
S IS IS IS IS IS 

I- I- I- IS IS 
AP 1- IAf!P IS I- I-

I I I I I I 
S IS IS S I- I-
S IS IS S I- I-

I- 133X S I- I-
I- I- S I- I-

I- I- I- I- I- S I- I-
I I I I I I I 

I Branch and save 
I----------.-------------------------~--~----+_--_+--.--r_--_r---~----+_--_+----r_--~ 
Iservice siqnal 
IChannel-set switching 
IFast release 
IClear I/O 
IChannel indirect data addressing 
I-­
ICommand retry 
ILimited channel logout 
II/O extended logout 

I-
I-
IB 
l-
IA 
I 
IB 
I-
IB 

I- I-
I- I-
IB IB 
IB IB 
IA IA 
I ---+ 
IB IB 
I- I-
IB I B 

I- I- S I-
I- ICSS S I-

B S IS IS S I-
S IS IS S IS 
S IS IS S IS 

I I I I I I 
IB IS IS IS IS IS 
I- IS IS IS IS IS 
IB IS IS IS IS I-

I I I I I I 
I--__________________________________ L-__ ~ ___ -L __ ~~ __ ~ ___ _L __ 

-1-----1..---1. 

I EXpl~!!~1j:Q!!: 
I 
IA 
I 
I AMP 
I 
lAP 
lAPS 
IB 
ICK 
ICSS 
I 
IDC 
IEF 
I ES 

Channel indirect dat a address ing is 
and 2880 channels. 

available as an option on the 2860, 2870, 

Multiprocessing feature is provided in an attached-processor configuration 
and a multiprocessor configurat ion. 
Multiprocessing feature is provided in an 
Advanced-control-proqram-support feature. 

attached-processor configuration. 

Feature is only available as a standard part of the 2880 channel. 
CPU-timer and clock-comparator feature. 
Channel-set-switching feature is provided along with the multiprocessing 
feature. 
Direct-control feature. 
Extended facility. 
External-signal feature; 
instructions. 
Floating-point feature. 

does not include the READ DIRECT and WRITE DIRECT 

Floating-point and extended-precision floating-point feature. 
Multiprocessing feature is provided in a multiprocessor configuration. 
These items are available for field installation only on purchased models. 
Facility is standard. 

I-
I-
I-
IS 
IS 
I 
IS 
IS 
I-
I 

I 
IFP 
IFXP 
IMP 
IPQ 
IS 
IS# The translation feature is standard, except 

size are not provided. 
that controls for the 1M-byte-segment 

I 
lSi 
IXP 
I-
1* 
133x 
I 

Conditional-swapping feature. 
Extended-precision floating-point feature. 
Feature is not available. 
The 165 includes MONITOR CALL only as part of the translation feature. 
3033 extension feature. 

I];'!Qi§: The figure shows the features provided by the 4300 Processors operatinq 
lin System/370 mode. 

Feature Availability (Part 2 of 2) 

D- 6 System/370 principles of Operation 

J 



The following additional features are 
available on some models. Included with 
each entry are references indicating where 
additional information can be found on the 
subject. 

APL Assist 

Emulator on System/370," A. 
and L. E. Lyon, IBM ~yste~ 

Volume 15, Number 4, 1976. 

"An APL 
Hassitt 
JOl!£!!sl, 
Article 
G321-5041. 

available in reprint, 

ECPS: MVS (M VS-Dependen t Instructions) 

Those MVS-dependent instructions that 
are part of the FCPS:MVS facility are 
described in Assists fOf MVS, 
GA22-7079. 

ECPS:VM/370 

HJ1 virtual Machine xacilii.IL37Q: 
~Y~ig~-lQqic-snd Rrobl~~ ~~ier~inatiQE 
Gui~g, Volume 1, Appendix A, SY20-0886 

L ECPS:VS1 

l~~ QS/VS1 ~QB~£!isor Logj,£, 
SY24-5155, and IB~ OS/!~l ILQ 
~l!Eg~Yi~Q£ 1Qqi~, SY24-5156 

Extended Facility (MVS-Dependent Instruc­
tions) 

Those MVS-dependent instructions that 
are part of the extended facility are 
described in Assi~i~ fQf ~!~, 
GA22-7079. 

OS/DOS Compatibility 

Shadow-Table-Bypass Assist 

Virtual-Mach1ne Assist (VMA) 

3033 Extension 
Instructions) 

Feature (MVS-De penden t 

Those MVS-dependent instructions that 
are part of the 3033 extension feature 
are described in !~~i~i§ fg~ ~!~, 
GA22-7079. 

Appendix D. Facilities D-7 



J 



PLUS 

4 
8 

16 
32 
64 

128 

256 
512 

1,024 
2,048 

4,096 
8,192 

16,384 
32,768 

65,536 
131,072 
262,144 
524,288 

1,048,576 
2,097,152 
4,194,304 
8,388,608 

16,777,216 
33,554,432 
67,108,864 

134,217,728 

268,435,456 
536,870,912 

1,073,741,824 
2,147,483,648 

4,294,967,296 
8,589,934,592 

17,179,869,184 
34,359,738,368 

68,719,476,736 
137,438,953,472 
274,877,906,944 
549,755,813,888 

1,099,511,627,776 
2,199,023,255,552 
4,398,046,511,104 
8,796,093,022,208 

17,592,186,044,416 
35,184,372,088,832 
70,368,744,177,664 

140,737,488,355,328 

281,474,976,710,556 
552,949,953,421,312 

1,125,899,905,842,624 
2,251,799,813,685,248 

4,503,599,627,370,496 
9,007,199,254,740,992 

18,014,398.509,481,QS4 
36,028,797,018,963,968 

72,057,594,037,927,936 
144,115,188,075,855,872 
288,230,376,151,711,744 
576,460,752,303,423,488 

1,152,921,504,606,846,975 
2,305,843,009,213,693,952 
4,611,686,018,427,387,904 
9,223,372,036,854,775,808 

18,446,744,073,709,551,616 

Powers of 2 (Part 1 of 2) 

o 

2 
3 

4 

5 
6 
7 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
30 
31 

32 
33 
34 
35 

36 
37 
38 
39 

40 
41 
42 
43 

44 
45 
46 
47 

48 
49 
50 
51 

52 
53 
54 
55 

56 
57 
58 
59 

60 
61 
62 
63 

64 

MINUS 
1 .0 
0.5 
0.25 
0.125 

0.0625 
0.03125 
0.01562 
0.00781 25 

0.00390 625 
0.00195 3125 
0.00097 65625 
0.00048 82812 

0,00024 41406 25 
0.00012 20703 125 
0.00006 10351 5625 
0.00003 05175 78125 

0.00001 52587 89062 
O.O~OO 76293 94531 25 
0.00000 38146 97265 625 
0.00000 19073 48632 8125 

0,00000 09536 74316 40625 
0.00000 04768 37158 20312 
0.00000 02384 18579 10156 25 
0.00000 01192 09289 55078 125 

0.00000 00596 04644 77539 0625 
0.00000 00298 02322 38769 53125 
0.00000 00149 01161 19384 76562 5 
0.00000 00074 50580 59692 38281 25 

0.00000 00037 25290 29846 19140 625 
0.00000 00018 62645 14923 09570 3125 
0.00000 00009 31322 57461 54785 15625 
0.00000 00004 65661 28730 77392 57812 

0.00000 00002 32830 64365 38696 28906 25 
0.00000 00001 16415 32182 69348 14453 125 
0.00000 00000 58207 66091 34674 07226 5625 
0.00000 00000 29103 83045 67337 03613 28125 

0.00000 00000 14551 91522 83568 51806 64062 
0.00000 00000 07275 95761 41834 25903 32031 25 
0.00000 00000 03637 97880 70917 12951 66015 625 
0.00000 00000 01818 98940 35458 56475 83007 812S 

0.00000 00000 00909 49470 17729 28237 91503 90625 
0.00000 00000 00454 74735 08864 64118 95751 95312 5 
0.00000 00000 00227 37367 54432 32059 47875 97656 25 
0.00000 00000 00113 68683 77216 16029 73937 98828 125 

0.00000 00000 00056 84341 88608 08014 86968 99414 0625 
0.00000 00000 00028 42170 94304 04007 43484 49707 03125 
0.00000 00000 00014 21085 47152 02003 71742 24853 51562 
0.00000 00000 00007 10542 73575 01001 85871 12426 75781 25 

0.00000 00000 00003 55271 35788 00500 92935 56213 37890 625 
0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125 
0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625 
0.00000 00000 00000 4440B 92098 50062 61616 94526 67236 32812 

0.00000 00000 00000 22204 46049 25031 30808 47263 33518 16406 25 
0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125 
0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625 
O.noooo 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125 

0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39052 5 
0.00000 00000 onooo 00693 88939 03907 22837 76476 97925 56762 69531 25 
0.00000 00000 00000 00346 94469 51953 61418 88238 4R962 78381 34755 625 
0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125 

0.00000 00000 00000 00086 73517 37988 40354 72059 62240 69595 33691 40625 
0.00000 00000 00000 00043 36808 68 0 94 20177 36029 81120 34797 66845 70312 5 
0.00000 ooono 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25 
0.00000 00000 ooono 00010 84202 17248 55044 34007 45280 08699 41711 42578 125 

0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625 

Appendix E. Table of Powers of 2 E-1 



18.4~5.741~.1J!'.709.551.~1f3 15'", 
36 • 8 q 3 ,4 8 8 • 1. 4 '"' , l~ 1.. S • 1 r~, .., • 2 :1 ~ F, Ci 

?3.786.q7f).~qq.F'J39,::!II1.l;h4 F.~_ 

147,573,952,5e~,676,412,92R 67 

295,147,905 ,179 ,~51,815 ,R55 F8 
590,295.81C,358,7(,)S,65' ,'7:2 1=:9 

l,180,S91 ,620,717 ,411,303 .'12.... 7'1 
2.361.!g3,241.434,822,G06.84R 71 

4,722,266,482,869,645,213,"96 71 
9,444,732,965,739,290,427,3 0 2 73 

18.889."65 ,Q31 ,47R.SAO.BS .... 7A4 74 
37,778,931,862,9S7,161,709,S6R 75 

75,557 ,R 6 3 ,725 , 9 14 , 323 ,1'19 ,136 7" 
151.115,727,451,828,646,838,272 77 
302,231,454,903,657,293,676,544 78 
604,462 ,9D9,a07 ,31 lt ,587 .153 ,OBS 7q 

1,208,925,819,6:4 ,62Q ,174,706 ,176 80 
2.417,851,639,'29.25B.1~9.41~,'~2 31 
4,835,703,278,458,516,698,~24,7C4 82 
9,671,406,55€,917,033,397,649,408 83 

lfJ,342.813,113.g34,066.795,2~a,(n5 84 
38,685,626,227,668,133,590,597,632 85 
77,371,252,1;55,336,2[,7,181,195,2,,4 86 

154,742,504,910,672,534,362,390,528 87 

309,485,009,821,345,068,724,781,056 88 
618, 970,019 , fi 4: , 590 , 137 ,44 Q , 5 Ii 2 ,11239 

1,237.9~O,03~,285,39n,L74,B99,114,?24 90 
2,475,880,078,570,750,54°,799,249,_48 91 

1I,951,760,1.57.141,521,099,595,4S6,896 92 
9,903 , 520 , 314 ,283 ,0" 2 , 1 ,0 , 1 9 2 , 9 9 3 ,792 93 

19,807,040,628,566,094,398,380,987,584 9~ 

~9,61~,Oal,257.132,158,796,771,975,168 95 

79,228,162,S14,'6~,337.S~3.543.~50.'36 qS 
158,455,325,028,528,575,187,087,900,"72 97 
316,912,650,057,057,350,374,175,801,34 4 08 
633,825,300,114,114,700,748.351.602,688 99 

1,267.650,1):)0,228,229 .1.I.01,496, 703.705,176 
2,535,301.200.456. 4 58,8')2,993,406,410,752 
5,070,602,400,912,917,605,900,812,821,504 
10,141,20~,801,815,835,211,973,625,643,008 

100 
101 
102 
103 

20,282,409,603 ,f,51,e70 ,423 ,947 ,251,286,016 104 
110,564,819,207,303,340,847,904,502,572,032 105 
81,129,638,414,606,6e1,6gS,789,OO~.144,064 106 

16 2 ,259,276,929 , 21 3 ,363 ,3 9 1 , 57 8 .010 , 2B 8 ,128 107 

32,+,518,553,658,416,725,783.156,020,576,256 108 
6"9,'37,107,316,853,453,556,3,2,041,152,512 109 

1 ,298 ,074 , 214 ,633 , 706 ,g 0 7 ,132 .624 ,082 ,1 OS ,024 110 
2,596,148,429,267,413,814,265,248,164,610,048 111 

5,192,296,658,534,827,628,530,496,329,220,096 112 
10,384,593,717,~69,6S5,2S7,n60,992,658,4"O,192 113 
20,769,187,43'+,133.310,514,121,985,316,880 ,3R4 114 
'+1,538,374 ,868,27 8 , 6 21 ,028 ,243,970 ,633 ,760 ,7" A 115 

83,076,71+9,736,557,242,056,487,9 4 1,267,521,536 116 
166,153,"S9,473,114,484.11c,a75,882,535,043,072 117 
332,3C6,998,9'+S,228,963,225,Q51,765,070,n6,144 118 
664,613,9Y7,892,'+57,936,451,903,530,140,172,J88 119 

l,329,227,995,784,915,872,903,R07,060,280,344,576 120 
2,658,"55,991,569,831,745,807,£1'+,120,560,689,152 121 
5,316.911 ,983 ,139 , 663 ,491 , £ 1 5 ,22 8 , 2 41 , 121 ,378 , 304 122 

10.633,823,9~6.279,3?6,983t23Ct456.482,242.7Sb,60B 123 

21,267,6.7,932,55R,653,966,460,'12,964,~85,513,216 124 
42,535,295,%5.117,307,932,S21,e25,928,971,02G,432 125 
85,070,SC;!1 ,730 ,234 ,615 ,865 ,843 ,651,A57 .942 ,as? .8r,4 12F, 

170,141,183,'+60,469,231,731,587,303,715,884,105,728 127 

340,282,366,920,938,463,463,374,607,431,76a,211,456 128 

Powers of 2 (Part 2 of 2) 

E-2 system/370 principles of Operation 



L 

The following tables aid in converting hexadecimal values 
to decimal values, or the reverse. 

Direct Conversion Table 
This table provides direct conversion of decimal and 
hexadecimal numbers in these ranges: 

Hexadecimal 
000 to FFF 

Decimal 
0000 to 4095 

To convert numbers outside these ranges, and to con­
vert fractions, use the hexadecimal and decimal conver­
sion tables that follow the direct conversion table in this 
Appendix. 

0 1 2 3 4 5 6 

00_ 0000 0001 0002 0003 0004 0005 0006 
OL 0016 0017 0018 0019 0020 0021 0022 
02_ 0032 0033 0034 0035 0036 0037 0038 
03_ 0048 0049 0050 0051 0052 0053 0054 

OL 0064 0065 0066 0067 0068 0069 0070 
05_ 0080 0081 0082 0083 0084 0085 0086 
06_ 0096 0097 0098 0099 0100 0101 0102 
OL 0112 0113 0114 0115 0116 0117 0118 
08_ 0128 0129 0130 0131 0132 0133 0134 
09_ 0144 0145 0146 0147 0148 0149 0150 
OA_ 0160 0161 0162 0163 0164 0165 0166 
OB_ 0176 0177 0178 0179 0180 0181 0182 
OC 0192 0193 0194 0195 0196 0197 0198 
OD_ 0208 0209 0210 0211 0212 0213 0214 
OE_ 0224 0225 0226 0227 0228 0229 0230 
OF - 0240 0241 0242 0243 0244 0245 0246 

10_ 0256 0257 0258 0259 0260 0261 0262 
1L 0272 0273 0274 0275 0276 0277 0278 
12 - 0288 0289 0290 0291 0292 0293 0294 
13_ 0304 0305 0306 0307 0308 0309 0310 
14_ 0320 0321 0322 0323 0324 0325 0326 
15_ 0336 0337 0338 0339 0340 0341 0342 
16_ 0352 0353 0354 0355 0356 0357 0358 
lL 0368 0369 0370 0371 0372 0373 0374 
18_ 0384 0385 0386 0387 0388 0389 0390 
19_ 0400 0401 0402 0403 0404 0405 0406 
lA_ 0416 0417 0418 0419 0420 0421 0422 
1B_ 0432 0433 0434 0435 0436 0437 0438 
1C 0448 0449 0450 0451 0452 0453 0454 
lD_ 0464 0465 0466 0467 0468 0469 0470 
IE - 0480 0481 0482 0483 0484 0485 0486 
IF - 0496 0497 0498 0499 0500 0501 0502 

7 8 9 A B C D E F 

0007 0008 0009 0010 0011 0012 0013 0014 0015 
0023 0024 0025 0026 0027 0028 0029 0030 0031 
0039 0040 0041 0042 0043 0044 0045 0046 0047 
0055 0056 0057 0058 0059 0060 0061 0062 0063 
0071 0072 0073 0074 0075 0076 0077 0078 0079 
0087 0088 0089 0090 0091 0092 0093 0094 0095 
0103 0104 0105 0106 0107 0108 0109 0110 0111 
0119 0120 0121 0122 0123 0124 0125 0126 0127 
0135 0136 0137 0138 0139 0140 0141 0142 0143 
0151 0152 0153 0154 0155 0156 0157 0158 0159 
0167 0168 0169 0170 0171 0172 0173 0174 0175 
0183 0184 0185 0186 0187 0188 0189 0190 0191 
0199 0200 0201 0202 0203 0204 0205 0206 0207 
0215 0216 0217 0218 0219 0220 0221 0222 0223 
0231 0232 0233 0234 0235 0236 0237 0238 0239 
0247 0248 0249 0250 0251 0252 0253 0254 0255 

0263 0264 0265 0266 0267 0268 0269 0270 0271 
0279 0280 0281 0282 0283 0284 0285 0286 0287 
0295 0296 0297 0298 0299 0300 0301 0302 0303 
0311 0312 0313 0314 0315 0316 0317 0318 0319 
0327 0328 0329 0330 0331 0332 0333 0334 0335 
0343 0344 0345 0346 0347 0348 0349 0350 0351 
0359 0360 0361 0362 0363 0364 0365 0366 0367 
0375 0376 0377 0378 0379 0380 0381 0382 0383 
0391 0392 0393 0394 0395 0396 0397 0398 0399 
0407 0408 0409 0410 0411 0412 0413 0414 0415 
0423 0424 0425 0426 0427 0428 0429 0430 0431 
0439 0440 0441 0442 0443 0444 0445 0446 0447 
0455 0456 0457 0458 0459 0460 0461 0462 0463 
0471 0472 0473 0474 0475 0476 0477 0478 0479 
0487 0488 0489 0490 0491 0492 0493 0494 0495 
0503 0504 0505 0506 0507 0508 0509 0510 0511 

Appendix F. Hexadecimal Tables F-1 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

20_ 0512 0513 0514 0515 0516 0517 0.518 0.519 0.520 0.521 0522 0.523 0524 052.5 0526 0527 
21 - 0.528 0.529 0.530 0531 0.532 0.533 0534 0.53.5 0.536 0.537 0.538 0539 0.540 0.541 0542 0543 
22 - 0544 0.54.5 0546 0.547 0.548 0.549 0.550 0551 0.5.52 0.553 05.54 0.555 0556 0.5.57 0558 0559 J 
23 0.'560 0.561 0.562 0563 0564 0.565 0566 0.567 0568 0569 0570 0.571 0572 0.573 0574 0.575 
24 0.576 0577 0.578 0.579 0.580 0.581 0.582 - 0583 0584 058.5 0.586 0587 0.588 0589 0590 0591 
2.5_ 0.592 0593 0.594 0.59.5 0.596 0.597 0.598 0.599 0600 0601 0602 0603 0604 060.5 0606 0607 
26 - 0608 0609 0610 0611 0612 0613 0614 061.5 0616 0617 0618 0619 0620 0621 0622 0623 
27 - 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 063.5 0636 0637 0638 0639 
28 - 0640 0641 0642 0643 0644 064.5 0646 0647 0648 0649 0650 06.51 0652 06.53 06.54 065.5 
29_ 06.56 06.57 0658 06.59 0660 0661 0662 0663 0664 066.5 0666 0667 0668 0669 0670 0671 
2A_ 0672 0673 0674 067.5 0676 0677 0678 0679 0680 0681 0682 0683 06"84 0685 0686 0687 
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 
2C - 0704 070.5 0706 0707 0708 0709 0710 0711 0712 0713 0714 071.5 0716 0717 0718 0719 
2D_ 0720 0721 0722 0723 0724 072.5 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E - 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 07.50 0751 
2F - 07.52 0753 0754 075.5 0756 0757 07.58 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 07'78 0779 0780 0781 0782 0783 
31 - 0784 078.5 0786 0787 0788 0789 0790 0791 0792 0793 0794 079.5 0796 0797 0798 0799 
32 - 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33 - 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 
34 - 0832 0833 0834 083.5 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
3.5_ 0848 0849 0850 0851 0852 08.53 0854 0855 08.56 08.57 08:58 0859 0860 0861 0862 0863 
36_ 0864 0865 0866 0867 0868 0llR9 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37 - 0880 0881 0882 0883 0884 D88.5 0886 0887 0888 0889 0890 0891 0892 0893 0894 089.5 
38 - 0896 0897 0898 0899 0900 0901 0902 0903 0904 090.5 0906 0907 0908 0909 0910 0911 
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 09:!2 0923 0924 092.5 0926 0927 
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3B 0944 0945 0946 0947 0948 0949 0950 0951 09.52 0953 09.54 09.5.5 09.56 0957 0958 09.59 
3C_ 0960 0961 0962 0963 0964 096.5 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 09136 0987 0988 0989 0990 0991 
3E - 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3F - 1008 1009 1010 1011 1012 1013 1014 101.5 1016 1017 1018 1019 1020 1021 1022 1023 

0 1 2 3 4 .5 6 7 8 9 A B C D E F 

40_ 1024 102.5 1026 1027 1028 1029 1030 1031 1032 1033 10:34 103.5 1036 1037 1038 1039 
41 1040 1041 1042 1043 10·14 104.5 1046 1047 1048 1049 lOS0 10.51 10.52 1053 1054 10.5.5 -

42 - 10.56 [0.57 10.58 10.=;9 1060 1061 1062 1063 1064 106.5 101l6 1067 1068 1069 1070 1071 
43 - 1072 1073 1074 107.5 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 
4L 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 lOn8 1099 1100 1101 1102 1103 
45 - 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
46 - 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 llClO 1131 1132 1133 1134 1135 
4L 1136 1137 1138 1139 1140 1141 1142 1143 1144 114.5 1146 1147 1148 1149 1150 1151 
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1Hi2 1163 1164 1165 1166 1167 
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4A 1184 - 118.5 1186 1187 1188 1189 1190 1191 1192 1193 1194 119.5 1196 1197 1198 1199 
4B - 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 12~.6 1227 1228 1229 1230 1231 
4D 1232 1233 1234 - 123.5 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 - 1249 12.50 12.51 12.52 12.53 12.54 125.5 1256 12.57 12Ei8 1259 1260 1261 1262 12R3 
4L 1264 126.5 1266 1267 1268 1269 1270 1271 1272 1273 1274 127.5 1276 1277 1278 1279 

.50._ 1280 1281 1282 1283 1284 128.5 1286 1287 1288 1289 12EI0 1291 1292 1293 1294 129.5 
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1,311 
.52_ 1312 1313 1314 131.5 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
.53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 13.53 1354 135.5 13.56 13.57 1358 1359 
5.5 - 1360 1361 1362 1363 1364 136.5 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
.5L 1392 1393 '1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 
.58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59 1424 142.5 1426 1427 1428 1429 1430 1431 1432 1433 1434 143.5 1436 1437 1438 1439 
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 14.51 14.52 1453 1454 1455 
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5D - 1488 1489 1490 14Dl 14H2 1493 1494 1495 1496 1497 1498 1499 1.500 1.501 1.502 1.503 
5E - 150·1 150.5 1506 10507 10508 1509 1,510 1511 1512 1513 1.514 10515 1,516 10517 1518 1,519 
.5L 1,520 1521 1522 1.523 1.524 1.525 1526 1527 1528 1529 1530 1531 1532 1.533 1534 1535 

F-2 System/370 principles of Operation 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
6L 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

6L 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
6L 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 
6e 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6L 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 Hl04 11105 1806 1807 
71 - 1808 1809 1810 1811 1812 1813 lS14 1815 1816 1817 181S 1819 11120 1821 lS22 1823 
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73_. 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 
74_ 1856 18S7 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 lS68 lS69 1870 1871 
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
7'- 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7B - 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983 
7C_ 1984 1985 1986 1987 1988 19S9 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7L 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

80_ 2048 2049 2050 2051 2052 2053 2054 2055 20,56 2057 2058 2059 2060 2061 2062 2063 
8L 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82_ 20S0 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 210S 2106 2107 2108 2109 2110 2111 
8L 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86_ 2144 214S 2146 2147 2148 2149 2150 21S1 2152 2153 2154 2155 2156 21.57 2158 2159 
87 - 2160 2161 2162 2163 2164 216S 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 
88 - 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8A - 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 221S 2219 2220 2221 2222 2223 
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8D_ 22.56 2257 2258 2259 2260 2261 2262 2263 2264 226.5 2266 2267 2268 2269 2270 2271 
8E - 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
IlF - 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90 - 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91 - 2320 2321 2322 2323 2324 232,5 2326 2327 2328 2329 233p 2331 2332 2333 2334 2335 
92 - 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 234CJ 23,S0 2351 
93 - 2352 2353 2354 2355 2356 2357 2358 23S9 2360 2361 2362 2363 2364 2365 2366 2367 
94_ 2368 2369 2370 2371 2372 2373 2374 237S 2376 2377 2378 2379 2380 2381 2382 23113 
95_ 2384 238,5 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96_ 2400 24(H 2402 2403 2404 240,5 2406 2407 2408 2409 2410 2411 2412 2413 2't14 2415 
97 - 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 
98_ 2432 2433 2434 243S 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2417 
99 2448 2449 2450 2451 2452 2453 2454 2455 24S6 2457 2458 24S9 2460 2461 2462 2463 
9A - 2464 2465 2466 2467 2468 2469 2470 2471 2472 2,173 2474 2475 2476 :?A77 2478 2479 
9B - 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2,192 2493 2491 2495 
9C - 2496 2497 2498 2499 2,500 2.501 2502 2503 2504 2505 2506 2S07 2501l 2509 2,510 2511 
9D - 2S12 2513 2514 2.515 2.516 2.517 2518 2519 2.'520 2,')21 2522 2523 2524 2,52.) 2526 2527 
9E - 2528 2529 2530 2531 2532 2.533 2534 2.'535 2,536 2537 2538 2539 2.540 2'511 2542 2543 
9L 2544 2545 2546 2547 2548 2549 2550 2.551 2552 25S3 2554 2S5S 2556 2.5.57 25S8 25,59 

Appendix F. Hexadecimal Tables F-3 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

AO - 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2 - 2592 2593 2.594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3 2608 2609 2610 2611 2612 2613 2614 261.5 2616 2617 2618 2619 2620 2621 2622 2623 -

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 -
A.'j~ 2640 2611 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6 - 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

~-

A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AA " ~ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
AB - 2736 2737 2738 2739 27.40 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 
AC - 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
AD - 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AE - 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AF - 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BO - 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bl - 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2 2848 2849 28,50 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3 - 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 
B4 - 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5 - 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6 - 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7 - 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 
B8 - 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9 - 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BA - 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BB - 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 
BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE - 3040 3041 3042 3043 3044 304.5 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

CO - 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl - 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C2 - 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3 3120 3121 3122 3123 312·1 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 
C4 - 3136 3137 3138 3139 3140 3141 3142 3143 3144 314,5 3146 3147 3148 3149 3150 3151 
C5 - 31':)2 31,53 3154 31,5,5 31,56 31,57 31,58 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6 - 3168 3169 3170 3171 3172 3173 3174 317,5 3176 3177 3178 3179 3180 3181 3182 3183 
C7 - 3184 318,5 3186 3187 3188 3189 3190 3191 3192 3193 3194 319,5 3196 3197 3198 3199 
C8 - 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 322,5 3226 3227 3228 3229 3230 3231 
CA - 3232 3233 3234 323,5 3236 3237 3238 3239 3240 3241 3242 3243 3244 324,5 3246 3247 
CB - 3248 3249 32.50 3251 3252 32,53 3254 3255 32.56 3257 32,58 32,59 3260 3261 3262 3263 
CC - 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3301'1 3309 3310 3311 
CF - 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 
DO -- 3328 3329 333() 3331 3332 3333 3334 333,5 3336 3337 3338 3339 3340 3341 3342 3343 
Dl 3344 3345 3346 3347 3348 3349 33,50 3351 3352 33,53 33,54 3355 33,56 3357 3358 33,59 
D2 3360 3361 3362 3363 3364 3.165 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
])3 - 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 
D4 - 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5 - 3'408 34()9 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6_"~ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 343,5 3436 3437 3438 3439 
07 - 344() 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 34,52 34,53 34,54 3455 
08 - 34,56 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
09 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OA - 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB 3504 3,505 3,506 3,507 3508 3,509 3510 3,511 3512 3,513 3,514 3515 3516 3517 3,518 3519 
DC 3520 3521 3.522 3523 3524 3525 3,526 3,527 3528 3529 3,530 3,531 3.532 3,533 3534 3,535 
DO 3536 3,537 3538 3,539 3540 3541 3542 3543 3,544 3.54,5 3546 3,547 3548 3,549 3,5,50 3,551 
DE 3.552 35,53 3554 3555 35,56 35,57 35,58 3,5,59 3,560 3,561 3,562 3,563 3,564 3,565 3,566 3,567 
OF 3,568 3,569 3,570 3,571 3572 3,573 3574 3575 3576 3577 3,578 3579 3580 3581 3,582 3583 

F-4 System/370 principles of Operation 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
EL 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EL 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FL 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
FL 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4{)13 4014 4015 
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FL 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Appendix F. Hexadecimal Tables F-5 



Conversion Table: Hexadecimal and Decimal Integers 

HALFWORD 

BYTE BYTE 

BITS: 0123 4567 0123 4567 

Hex Decimal Hex Decimal Hex Decimal Hex Decimal 

0 0 9 0 0 0 0 0 
1 268 , 435, 456 1 16,777,216 1 1 048 576 1 65,536 
2 53&,870,912 2 33,554,432 2 2,097,152 2 131,072 
3 A05, 306,368 3 50,331 648 3 3 145 728 3 196 608 
4 1 073 741 824 4 67 108 864 4 4 194 304 4 262 144 
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 
6 1,610,612,736 6 l00,663,~6 6 6,291,456 6 3'i'3,216 
7 1,879,048, 1~ 7 117,440,512 7 7,340 032 7 458 752 
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 
9 2,415,919,104 9 150,994,944 9 9 437,184 9 589,824 
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 
B 2.952 790 016 B 184 549 376 B 11 534 336 B 720,896 
C 3 221 225 472 C 201 326 592 C 12582912 C 786 432 
0 3,489 660,928 D 218,103 808 D 13 631 488 D 851 968 
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 
F 14 ,0:l6,5Jl,840 F 1<:>1,658,240 F 15,728,640 F 983,040 

8 7 6 5 

TO CONVERT HEXADECIMAL TO DECIMAL 
EXAMPLE 

1. Locate the column of decimal number.; corresponding to Conver;ion of 
the left-most digit or letter of the hexadecimal; select Hexadecimal Value 
from this column and record the number that corresponds 
to the position of the hexadecimal digit or letter. 1. D 

2. Repeat step 1 for the next (second from the left) 
2. 3 

position. 

3. Repeat step 1 for the units (third from the left) 3. 4 
position. 

4. Add the number.; selected from the table to form the 
4. Decimal 

decimal number. 

TO CONVERT DECIMAL TO HEXADECIMAL 
EXAMPLE 

1. (a) Select from the table the highest decimal number 
Conversion of 

that is equal to or less than the number to be CO;1-
Decimal Value 

verted. 
(b) Record the hexadecimal of the column containing 

1. D 
the selected number. 
(c) Subtract the selected decimal from the number to 
be converted. 

2. 3 
2. Using the remainder from step 1 (c) repeat all of step 1 

to develop the second position of the hexadecimal 
(and a remainder). 3. 4 

3. Using the remainder from step 2 repeat all of step 1 to 4. Hexadecimal 
develop the units position of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

POWERS OF 16 TABLE 

Example: 268,435,45610 = (2.68435456 x 108 )10 = 1000 0000 16 = (107)16 

16n 

I 0 
16 1 

256 2 
4 096 3 

65 536 4 
1 048 576 5 

16 m 216 6 
268 435 456 7 

4 294 967 296 I 89 68 719 476 736 
1 099 511 627 776 110 = A 

17592 186044 416 11 = B 
281 474 976 710 656112 = C 

4503599 627 370 496 13 = D 
72 057 594 037 927 936 14 = E 

1 152 921 504 606 846 976 15 = F 
~ v~~-~ 

Dec imol Values 

P-6 system/370 principles of operation 

Hex 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

034 

3328 

48 

4 

3380 

3380 

-3328 
------s2 

~ 
4 

-4 

D34 

HALFWORD 

BYTE BYTE 

0123 4567 0123 4567 

Decimal Hex Decimal Hex Decimal Hex Decimal 

0 0 0 0 0 0 0 
4096 1 256 1 16 1 1 
8,192 2 512 2 32 2 2 
12288 3 768 3 48 3 3 
16 384 4 1 024 4 64 4 4 
20,480 5 1,280 5 80 5 5 
24,576 6 I~ 6 96 6 6 
28672 7 1 792 7 112 7 7 
32 768 8 2048 8 128 8 8 
36 864 9 2,304 9 144 9 9 
40,960 A 2,560 A 160 A 10 
45 056 B 2816 B 176 B 11 
49 152 C 3072 C 192 C 12 
53 248 D 3 328 0 208 D 13 
57344 E 3,584 E 224 E 14 
61,440 F 3,840 F 240 F 15 

4 3 2 1 

To convert integer number; greater than the capacity of 
table, use the techniques below: 

HEXADECIMAL TO DECIMAL 

Successive cumulative multiplication from left to right, 
adding units position. 

Example: D3416 = 338010 

DECIMAL TO HEXADECIMAL 

D = 13 

~ 
208 

3 = + 3 
2i1 
)(16 

3376 
4= +4 

3380 

Divide and collect the remainder in reverse order. 

Example: 338010 = X16 

16 13380 ~ remainder 

16 ~_______ 4 t 
16 l!1----=: 3 I 

o ;l3801O=D3416 



Conversion Table: Hexadecimal and Decimal Fractions 

BYTE 

BITS 0123 4567 

Hex Decimal Hex Decimal Hex 

.0 .0000 .00 .0000 0000 .000 

.1 .0625 .01 .0039 0625 .001 

.2 .1250 .02 .0078 1250 .002 

.3 .1875 .03 .0117 1875 .003 

.4 .2500 .04 .0156 2500 .004 

.5 .3125 .OS .0195 3125 .005 

.6 .3750 .06 .0234 3750 .006 

.7 .4375 .07 .0273 4375 .007 

.8 .5000 .08 . OJ];! 5000 .008 

.9 .5625 .09 .0351 5625 .009 

.A .6250 .OA .0390 6250 .OOA 

.B .6875 .OB .0429 6875 .008 

.C .7500 .DC .0468 7500 .OOC 

.0 .8125 .00 .0507 8125 .000 

.E .8750 .DE .OS46 8750 . DOE 

.F .9375 .OF .OS85 9375 .OOF 

1 2 

TO CONV£RT . ABC HEXADECIMAL TO DECIMAL 

Find . A in position 1 .6250 

Find .08 in position 2 .0429 6875 

Find .DOC in position 3 .0029 2968 7500 

. ABC Hex is equal to .670898437500 

TO CONV£RT .13 DECIMAL TO HEXADECIMAL 

I. Find. 1250 next lowest ta .1300 

.0000 

.0002 

.0004 

.0007 

.0009 

.0012 

.0014 

.0017 
.0019 
.0021 
.0024 
.0026 
.0029 

.. 0031 
.0034 
.0036 

HALFWORD 

3 

BYTE 

0123 4567 

Decimal Hex Decimal Equivalent 

0000 
4414 
8828 
3242 
7656 
2070 
6484 
0898 
5:112 
9726 
4140 
8554 
2968 
7382 
1796 
6210 

0000 .0000 .0000 0000 0000 0000 
0625 .0001 .0000 1525 8789 0625 
1250 .0002 .0000 3051 7578 1250 
1875 .0003 .0000 4577 6367 1875 
2500 .0004 .0000 6103 5156 2500 
3125 .ODOS .0000 7629 3945 3125 
3750 .0006 .0000 9155 2734 3750 
4375 .0007 .0001 0681 1523 4375 
5000 .0008 .0001 ,!!:07 0312 !)IJUU 
5625 .0009 .0001 3732 9101 5625 
6250 .ODOA .0001 5258 7890 6250 
6875 .OOOB .0001 6784 6679 6875 
7500 .ODOC .0001 8310 5468 7500 
8125 .0000 .0001 9836 4257 8125 
8750 .OOOE .0002 1362 3046 8750 
9375 .OOOF .0002 2888 1835 9375 

4 

Ta convert fractions beyond the capacity of table, use techniques below: 

HEXADECIMAL FRACTION TO DECIMAL 

Convert the hexadecimal fraction to its decimal equivalent using the same 
technique as far integer numbers. Divide the results by 16n (n is the 
number of fractian positions) . 
Example: .8A7 = .54077110 

8A716 = 2215 10 .540771 
163 = 4096 409612215.000000 

subtract -.1250 = .2 Hex 

2. Find .0039 0625 next lowest to .OOSO 0000 
-.0039 0625 = .01 

3. Find .0009 7656 2500 .00109375 0000 
-.0009 7656 2500 = .004 

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 
-.0001 0681 1523 4375 = .0007 

.0000 103759765625 = .2147 Hex 

5. .13 Decimal is appraximately equal to _______ -14 

DECIMAL FRACTION TO HEXADECIMAL 

Callect integer ports of product in the order of calculation. 

Example: 

1
8 ~ 

A~ 

7 .... 

.540810 = .8A716 

.5408 
x16 

[].6528 
xl6 

fiQj.444B 
xl6 

[ll.1168 

Appendix F. Hexadecimal Tables F-7 



Hexadecimal Addition and Subtraction Table 

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2 

1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

1 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 

2 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 " 
3 04 05 06 07 08 09 OA OB OC 00 OE OF 10 " 12 

4 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 

5 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 

6 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 

7 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 

9 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 

A OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 1C 10 

F 10 11 12 13 14 15 16 17 18 19 lA 18 1C 10 IE 

Hexadecimal Multiplication Table. 
Example: 2 x 4 = 08, F x 2 = IE J 

1 2 3 4 5 6 7 8 9 A B C 0 E F 

1 01 02 03 04 05 06 07 08 09 OA 08 oc 00 OE OF 

2 02 04 06 08 OA oc OE 10 12 14 16 18 lA lC IE 

3 03 06 09 oc OF 12 15 18 18 IE 21 24 27 2A 20 

4 04 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C 

5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 48 

6 06 oc 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A 

7 07 OE 15 IC 23 2A 31 38 3F 46 40 54 58 62 69 

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 09 12 18 24 20 36 3F 48 51 5A 63 6C 75 7E 87 

A OA 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96 

8 OB 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS 

C oc 18 24 30 3C 48 54 60 6C 78 84 90 9C AS 54 

0 00 lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 

E OE lC 2A 38 46 54 62 70 7E 8C 9A AS 86 C4 02 

F OF IE 20 3C 4B 5A 69 78 87 96 AS B4 C3 D2 El 

F-B systern/370 Principles of Cperation 



Extended Binary-Coded-Decilllal Interchange 
Code (EBCDIC) 

The 256-position EBCDIC table, outlined by the heavy 
black lines, shows the graphic characters and control char­
acter representations for EBCDIC. The bit-position numbers, 
bit patterns, hexadecimal representations and card hole 
patterns for these and other possible EBCDIC characters are 
also shown. 

To find the card hole patterns for most characters, parti­
tion the 256-position table into four blocks as follows: 

1 3 

2 4 

Block 1: Zone punches at top of table; 
digit punches at left 

Block 2: Zone punches at bottom of table; 
digit punches at left 

Block 3: Zone punches at top of table; 
digit punches at right 

Block 4: Zone punches at bottom of table; 
digit punches at right 

Fifteen positions in the table are exceptions to the above 
arrangement. These positions are indicated by small num­
bers in the upper right corners of their boxes in the table_ 
The card hole patterns for these positions are given at the 
bottom of the table_ Bit-position numbers, bit patterns, and 
hexadecimal representations for these positions are found in 
the usual manner-

Following are some examples of the use of the EBCDIC 
chart: 

Character 

PF 
% 
R 
0 

Type 

Control Choracter 
Special Graphic 
Upper (He 

ower<:Ose 
Control Character, 
function not yet 
assigned 

Bit Pattern 

00000100 
01 101100 
1101 1001 
10000001 
00 11 0000 

-­Bit Positions 
01 234567 

i 

He, Hole Pattern 

Zone Punches _LOiQit Punchts 

04 12-9'-4 
6C 0-8-4 
09 11,- 9 
8 12 - 01- 1 
30 12 - 11 - 0 - 91- 8 - 1 

I , 

Appendix G. EBCDIC Chart G-1 



'0, 
0 

~. , 
~. § 

~. v 
~ 
c , 
v 

.~ I 

~ 
'" 

0000 

0001 

0010 DC2 FS SYN 

0011 DC3 WUS IR 

0100 RES/ BYP/ PP ENP INP 

0101 NL LF TRN 

0110 BS ETB NBS 

0111 POC ESC EOT 

1000 CAN SA SBS 

1001 EM IT 

1010 UBS SM SV! RFF 

1011 CUI CSP CU3 

1100 IFS MFA DC4 < 

1101 IGS ENO NAK 

1110 IRS ACK 

1II1 

S:,grd __ H.s> I ~ __ E? tte r ~ 

0) 12-0-9-8-1 CD No Punches CD 12-0 

CD 12-11-9-8-1 CD 12 ® 11-0 

CD 11-0-9-8-1 CD II ® 0-8-2 

CD 12-11-0-9-8-1 CD 12-11-0 ® 

Control Character Representation~ 

ACK Acknowledge [TB End of Transmislion Block RESjEN P 
BEL Bell ETX End of Text 
BS Backspace FF Form Feed RFF 
BYP· It-JP B)'poss/lnhibi't Presentolion fS Field Separator RNL 
CAN Concel GE Graphi c Escape RPT 
C< Carriage Return HT Horizontol Tob SA 
(SP Control Sequence Prefix IfS Interchange File Separator SBS 
CU Customer Use 1 IGS Interchange Group Separator SEL 
CC3 Customer Use 3 IR Index Return SI 
DCI Devi ce Control 1 IRS Interchange Record Separator SM/:NI 
DC2 DeyiCe Control 2 IT Indent Tab SO 
[;(3 DeVice Control 3 IUS ITB Interchange SOH 
DC4 DAv'ice Control 4 Intermediate SOS 
D: _ Delete LF line Feed SP 
OLE Do '0 li nk Escape MFA Modify Field AUril-,ute SPS 
0' Digit Select NAK Negative Acknowledge STX 
EI.' r'ld of Medium NBS Numeric Back~pace SUB 
ENQ [nquiry NL New Line SYN 
EO Eight Ones NUL Null uBS 
EOT End of Transmission POC Progrom- Opera tor VT 
ESC Escape Communi co tion WUS 

pp Presentation Position 

r;- 2 System/370 principles of Operation 

Restore/Enable 
Presentation 

C 

D 

G 

H 

.r 

® 0-1 

® 11-0-9-1 

® 12-11 

M 

N V 

0 W 

X 

Q y 

Z 

Cent Sign 
Decimal Point 

Required Form Feed < ')i9 n 

Left Parenthesis 
Plus Sign 

Required New Line 
Repeat 
Set AHribute 
Subscript 
Select 
Shift In 
Set Mode/Switch 
Shift Out 
Start of Heading 
Stort of Signifi cance 
Space 
Superscript 
Start of Text 
Substitute 
Synchronou'. Idle 
Unit Backspace 
Vertical Tab 
Word Underscore 

! 

Logical OR 
Ampersand 
Exclamation Point 
001101 Sign 
Asterisk 
Right POlerdhesis 
Semicolon 
logical NOT 

Minus Sigr I Hyphen 
Slosh 

Vertical line 
Comma 

"c Percent 
Underscore 

Greater-than Sign 
Mark 

Accent 
Colon 
Number Sign 
At Sign 
Prime, Apostrophe 
Equal Sign 
Quototion Mark 

Tilde 
Brace 

Fork 
Closing Broce 
Reverse Slant 
Chai' 
long Verticol Mark 

J 



This appendix summarizes those changes 
included in the System/370 architecture 
that may affect whether or not a program 
written according to the System/360 
architecture runs on machines implementing 
the System/370 architecture described in 
this publication. Not included are 
descriptions of System/370 functions which 
are compatible extensions, that is, 
(1) those that are suppressed on 
initialization, such as block multiplexing, 
and (2) those that are specified in such a 
manner that they cause program exceptions 
on System/360, such as new instructions. 

REMOVAL OF USASCII-8 MODE 

system/360 provides for USASCII-8 by a mode 
under control of PSW bit 12. USASCII-8 was 
a proposed zoned-decimal code that has 
since been rejected. When bit 12 of the 
System/360 PSW is one, the preferred codes 
for the USASCII-8 are generated for decimal 
results. When PSi bit 12 is zero, the 
oreferred codes for EBCDIC are generated. 

In system/310, the USASCII-8 mode and the 
associated meaning of PSi bit 12 are 
removed. In system/370, all instructions 
whose execution in System/360 depends on 
the setting of PSi bit 12 are executed 
generating the preferred codes for EBCDIC. 

Bit 12 of the PSW is handled in System/370 
as follows: 

• In models that do not have the 
extended-control (EC) mode installed, 
a one in PSW bit position 12 causes a 
program interruption for specification 
exception. 

• In models that 
installed, a one 
12 causes the CPU 
mode. 

have the EC mode 
in PSi bit position 
to operate in the Ee 

OPERATION CODE FOR HALT DEVICE AND FOR 
CLEAR CHANNEL 

In System/370, the first eight bits of the 
operation code assigned to HALT DEVICE 
~DV) are the same as those assigned to 

HALT I/O (HIO), the distinction between the 
two instructions being specified by bit 
position 15. In System/360, bit position 
15 is ignored, and the HIO function is 

performed for both instructions. 

In system/310, the first eight bits of the 
operation code assigned to CLE~R CHANNEL 
(CLRCH) are the same as those assigned to 
TEST CHANNEL, the distinction between the 
two instructions being specified by bit 
position 15. In System/360, and also in 
those System/370 machines which do not have 
CLRCH installed, bit position 15 is 
ignored, and the TCH function is performed 
for both instructions. 

LOGOUT 

In System/360, the logout area starts with 
location 128 and extends throuah as many 
locations as the given model requires. 
Portions of this area are used for 
machine-check logout, and other portions 
may be used for channel logout. While no 
limit is set on the size of the logout 
area, the extent of the area used on most 
System/360 models is less than that stored 
by a comparable System/370 model. 

On System/370, the machine-check interrup­
tion causes information to be stored at 
locations 216-239, 248-255, and 352-511. 
Additionally, the model may store loqout 
information in the fixed logout area, 
locations 256-351, and the model may also 
have a machine-check extended logout (MCEL) 
area, Which, on initialization, is 
specified to start at location 512. 
Channels may place logout information in 
the limited channel lOGout area, locations 
176-119, and in the fixed logout area, 
locations 256-351. 

In System/360, logout is not permitted on 
data check. system/310 permits logout to 
occur when the channel causes an I/O 
interruption with the data-check 
indication. 

COMMAND RETRY 

System/370 channels may provide command 
retry, whereby the channel, in response to 
a signal from the device, can retry the 
execution of a channel command. Since I/O 
devices announced prior to System/370 do 
not signal for command retry, no problem of 
compatibility exists on these devices. 
Howe7er, some new devices, which would 
otherwise be compatible with former 

Appendix H. Changes Affecting compatibility between System/360 and system/370 H-1 



devices, do signal for command retry. 

The effects of eomlllan d retry usually are 
not significant; however, the followinq is 
a list of some of the differences which 
command retry can cause: 

1. An immediate command specifying no 
chaininq may result in setting 
condition code 0 rather than condition 
code 1. 

2. Multiple PCl 
generated for 
PCl flag. 

interruptions may be 
a single CCW with the 

3. Since CCWs may te refetched, programs 
which dynamically modify CCws may be 
affected. 

4. The residual count in the CSW reflects 
only the last execution of the command 
and does not necessarily reflect the 
maximum storage used in previous 
executions. 

H-2 System/370 Principles of Cperation 

CHANNEL PREFETCHlNG 

1u System/360, on an output operation, as 
many as 16 bytes may be prefetched and 
buffered; Similarly, with data chaining 
specified, the channel may prefetch the new 
CCW when up to 16 bytes remain to be 
transferred under control of the current 
CCW. In System/370, the restriction of 16 
bytes is removed. 

VAUbUY OF DATA 

111 system/360, the contents of main storage 
- arl! j)tesetved when power is turned off. In 
System/370, because main storage may be 
vdlatile or nonvolatile, the program must 
not depend on the validity of data in main 
stotaqe after system power has been lost Or 
turnen off and then restored. 



This appendix summarizes those changes 
included in the System/370 architecture 
that may affect whether or not a program 
written according to the original 
system/370 architecture runs on machines 
implementinq the architecture described in 
this publication. Not included here are 
descriptions of compatible extensions, such 
as new facilities incorporated in 
system/370 that make use of unassigned 
operation codes and format. 

READ DIFECT AND WRITE DIRECT 

When the instruction INVALIDATE PAGE TABLE 
ENTRY is installed, the following changes 
apply: 

• Both READ DIRECT and WRITE DIRECT are 
changed to use real instead of logical 
addresses. 

• Program-event recording does not apply 
to the storage alteration performed by 
READ DIRECT. 

STORE ACCESSES 

The following changes are made as 
an access to storage for storing 
place. 

to when 
can take 

• When the execution of the instruction 
is nullified or suppressed because of 
certain program exceptions, an update 
may occur at the operand location. 
Originally no storage access was 
permitted. In some of these 
situations, the channel may observe 
intermediate results which differ from 
the final result. See the section 
"Exceptions to Nullification and 
Suppression" in Chapter 5, "Program 
Execution." 

• 

• 

When the mask in STORE CHARACTERS 
UNDER MASK is zero, an update may 
occur at the byte location designated 
by the operand address. Originally no 
storage access was permitted. 

When the result of comparison in 
COMPARE AND SWAP or COMPARE DOUBLE AND 
SWAP is unequal, an update may occur 
at the operand location. Originally 
no storage access was permitted. 

• When the result of the store operation 
is defined to be unpredictable, such 
as for STORE CLOCK with the clock in 
the error state, the store aCCess may 
be omitted. Slow Whether or not a 
store access takes place is visible to 
the proqram in four ways: an access 
exception may be indicated, the change 
bit may be set, a PER storage­
alteration event may be indicated, 
and, for stores that are part of an 
update, the channel may observe the 
distinct accesses for fetching and 
storing. The fetch and store parts of 
an update appear interlocked to 
another CPU. 

Whether or not a store access takes place 
is visible to the program in four ways: an 
access exception may be indicated, the 
change bit may be set, a PEF 
storage-alteration event may be indicated, 
and, for stores that are part of an update, 
the channel may observe the distinct 
accesses for fetching and storing. The 
fetch and store parts of an update appear 
interlocked to another CPU. 

FETCH ACCESS 

Originally the definition required that, 
with the exception of some compare 
instructions, access exceptions on fetching 
be indicated for the unused portion of an 
operand. The changed definition permits 
the indication of the access exception for 
the unused parts to be unpredictable, 
except that an access exception still must 
be indicated for TEST UNDER MASK, INSERT 
CHARACTERS UNDER MASK, and COMPARE LOGICAL 
CHARACTERS UNDER MASK when the mask is 
zero. 

OPERAND-ACCESS CONSISTENCY 

Originally the access for the operand of 
LOAD MULTIPLE was specified to be 
doubleword-concurrent; that is, all bytes 
within a doubleword appear to all CPUs to 
be accessed concurrently. This definition 
is changed to require doub1eword 
concurrency only if the operand is 
designated on a word boundary. 

The restriction is removed that, during the 
padding portion of a MOVE LONG execution, 
another CPU can observe the operand to be 

Appendix I. Changes Affecting Compatibility within System/370 1-1 



. stored only once and only in the left-to­
right sequence. 

CHANGE BIT 

Originally the System/370 architecture 
specified that the change tit be set to one 
each time information is stored in the 
corresponding storage block. This 
definition is changed as follows: 

• The change bit now is necessarily set 
to one only when the contents of the 
corresponding storage block are 
changed. In si tuations where 
execution of the instruction can be 
completed without making a store 
access, such as in MOVE (MVC) with 
coincident operands or in OR (01) with 
an immediate operand of zeros, the 
change bit may be unaffected. 
However, even when the change bit is 
not set, any applicable access 
exceptions or PER storage-alteration 
events are still indicated. 

• The change bit may be set to one as a 
result of those situations described 

1-2 system/370 principles of Operation 

• 

in the section "Store Accesses" in 
this appendix. 

Because of CPU retry, the change bit 
may be set to one for locations which 
the program has not accessed. 

SUBCHANNEL INTERRUPTION STATE 

Originally only status associated with the 
termination of an I/O operation could cause 
the subchannel to enter the interruption­
pending state. Status not associated with 
the termination of an I/O opera ti on was 
held pending at the device, and the 
subchannel would be available. The changed 
definition allows status not associated 
with the termination of an I/O opera ti on to 
be accepted into the subchannel. As a 
result of this change, a subchannel that is 
shared among multiple devices may cause 
condition code 2 to be returned to a START 
I/O or TEST I/O instruction even if no 
previous START I/O had been issued to the 
addressed device. This busy state persists 
until the interruption condition is 
cleared • 



A 

absolute address 3-4 
absolute storage 3-5 

assigned locations in 3-32 
access-control bits 3-6 
access exceptions 6-24 

priority of 6-26 
access key 3-6 
ADD (A,AR) binary instructions 7-7 
ADD DECIMAL (AP) instruction 8-5 

example A-29 
ADD HALPWOFD (AH) instruction 7-7 

example A-8 
ADD LOGICAL (AL, ALR) instructions 7-8 
ADD NORMALIZED (AD,ADR,AE,AER,AXR) 
instructions 9-6 

example A-34 
ADD UNNORMALIZED (AU ,AUR,AW,AWR) 
instructions 9-7 

example A-35 
address 

arithmetic 3-5 
unsigned binary 7-3 

base 5-5 
channel-set ~-41 
com par ison 13- 2 

effect on CPU state 4-2 
CPU 4-36 
effective (See effective address) 
failing-storage (See failing-storage 
address) 

format 3-3 
generation 5-5 

for storaqe addressinq 3-2 
I/O (channel/device) (See I/O address) 
instruction (See instructions, address 
of) 

invalid 6-14 
logical (see loqical address) 
numbering of byte locations 3-2 
PER 4-16 

3-5 primary virtual 
secondary virtual 
summary information 
transformation 3-4 

3-5 
3-27 

by DAT 3-11 
by prefixing 3-9 

translation (DAT) 3-11 
by LOAD REAL ADDRESS 

10-17 
control of 3- 12 

type of 3-4 

instruction 

wraparound 3-2 
address-compare controls 13-2 
address space 3-10 

control bit 
in PSW 4-7 
use in address translation 3-13 

created by DAT 3-11 
number (See ASN) 

address-space number (ASN) 5-12 
addressinq exception 6-14 

as an access exception 6-24 
AFT (ASN first table) 5-23 
AFTO (ASN-first-table origin) 5-23 
AFX (ASN-first-table index) 5-22 

invalid bit 5-23 
translation exception 6-16 

AKM (authorization key mas~ 5-20 
alert 

as class of machine-check conditions 
11-12 

error (in limi ted channel logout) 12-73 
allowed interruptions 6-5 
alter-and-display controls 13-2 
alteration 

general-register (PER event) 4-18 
storaqe (PER event) 4-18 

AND (N,NC,NI,NR) instructions 7-8 
examples A-8 

arithmetic 
binary 7-3 
decimal (See decimal instruction~ 
floating-point (See floating-point 
instructions) 

loqical (See unsigned binary 
ari thmetic) 

ASN (address-space number) 3-11,5-12 
authorization 5-26 
first table (UT) 5-23 

index (AF~ 5-22 
origin (AFTO) 5-23 

in entry-table entry 5-20 
second table (AST) 5-23 

index (ASX) 5-22 
origin (ASTO) 5-23 

translation 5-22 
exceptions 6-29 
specification exception 6-16 

translation control 5-16,5-22 
assembler language A-7 

instruction formats in (See individual 
instruction descriptions) 

assigned storage locations 3-29 
AST (ASN second table) 5-23 
ASTO (ASN-second-table origin) 5-23 
ASX (A SN- secon d- table index) 5-22 

invalid bit 5-23 
translation exception 6-16 

asynchronous logout 11-26 
AT (authority table) 5-16 
ATL (authority-table length) 5-23 
ATO (authority-table origin) 5-23 
attached TLB entry 3-22 
attachment of I/O devices 12-2 
attention (I/O-unit status) 12-56 
authority, testing for 5-26 
authority table (A~ 5-16 

designation 5-23 
authorization index (AX) 5-16 
authorization key mask (A KM) 5-20 
auxiliary storage (See storaqe, auxiliary) 
available state (I/O system) 12-10 
AX (authorization index) 5-16 

Index X-1 



B 

B field of instruction 5-5 
backed-up bit 11-18 
backup condition 11-19 
base address 5-5 

register 2-3 
basic control (See BC mode) 
basic sense 12-45 
BC (basic-control) mode 4-4 

proqram conversion to EC mode 10-41 
PSW format in 4-8 

binary 
(See also fixed-point) 
arithmetic 7-3 
negative zero 7-2 
number representation 7-2 

examples A-2 
one's complement for 7-3 
two's complement for 7-2 

overflow 7-3 
example A-2 

sign bit 7-2 
binary-to-decimal conversion 7-17 
block-concurrent storage references 5-35 
block-multiplexer channel 12-5 
block-multiplexing control 12-5 

effect on CLEAR I/O instruction 12-17 
effect on STAFT I/O FAST RELEASE 
instruction of 12-25 

block of I/O data 12-33 
incorrect lenqth for 12-62 
self-describinq 12-38 

block of storage 3-4 
(See also paqe) 
testinq for usability 10-46 

borrow 7-38 
boundary alignment 3-3 

for instructions 5-3 
branch address 5-5 
BRANCH AND LINK (BAL,EAlR) instructions 
7-9 

example A-8 
BRANCH AND SAVE (BAS,BASR) instructions 
7-9 

branch-and-save feature D-4 
BRANCH ON CONDITION (BC,BCR) instructions 
7-10 

example A-9 
BFANCH ON COUNT (BCT,BCTR) instructions 

7-11 
example A-9 

BRANCH ON INDEX HIGH (BXH) instruction 
7-11 

example A-10 
BRANCH ON INDEX LOW OR EQUAL (BXLE) 
instruction 7-11 

branchinq 5-5 
buffer storage (cache) 3-2 
burst mode (channel operation) 12-4 
bus-out check (bit in I/O-sense dat~ 

12-45 
busy 

as CPU state 4-38 
as I/O-unit status 12-57 
in I/O operations 12-7 

byte 3-2 
byte index 3-12 
byte-multiplex mode (channel operation) 

X-2 system/370 Principles of Operation 

12-4 
byte-multiplexer channel 12-4,12-26 
byte-oriented-operand feature 3-4 

C 

cache 3-2 
CAl (channel-available interruption) 12-54 
carry 7-3 
CAW (channel-address word) 12-33 

assigned storage location for 3-30 
in initial program loading 4-34 

CBC (checking-block code) 11-2 
in registers 11-9 
in storage 11-6 
in storage keys 11-7 

CC (chain-command) flag in CCW 12-34 
CCi (channel-command word) 12-33 

address in CAW 12-33 
address in CSW 12-55 

contents of 12-66 
validity flag for 12-72 

command code 12-34,12-42 
format 12-33 
in initial program loading 4-34 

assigned storage locations for 3-32 
prefetching of 12-35,12-38 
role in I/O operations 12-6 

CD (chain-data) flag in CCi 12-34 
central processing unit (See CPU) 
chain-command (CC) flag in CCi 12-34 
chain-data (CD) flag in CCi 12-34 
chaining 12-36 

command 12-39 
data 12-38 

chaining check (channel status) 12-65 
change bit 3-6 
change recording 3-9 
channel 2-6,12-3 

address (See I/O address) 
address word (CAi) 12-33 
block-multiplexer 12-5 
byte-multiplexer 12-4,12-26 
command word (See CCW) 
commands (See commands) 
control check (channel status) 12-64 
data check (channel status) 12-64 
end ( 1/0- unit sta t us) 12-60 
equipment error 12-14 
identification (ID) 12-28 

assigned storage location for 3-31 
in I/O-communication area 12-71 

indirect data addressing 12-41 
feature D-4 
role in I/O operations 12-6 

loqout 12-69 
masks 6-1 ~ 

difference between EC and BC modes 
4-4 

in BC-mode PSi 4-8 
model and type 12-28 
multiplexer 12-5 
not operational (I/O-system state) 

12-11 
bit in external-damage code 11-23 

program 12-6 
programming error 12-14 

J 



selector 12-4 
serialization 5-38 
status 12-62 
status word (CSli) 12-55 

information provided by 12-65 
timeout 12-4 
type code 12-28 
working (I/O-system state) 12-11 

channel-available interruPtion (CAl) 12-54 
channel-control failur~ (bit in 
external-damaqe code) 11-23 

channel set 2-6,4-41 
address 4-41 
resetting of connections for 4-33 
switching feature D-4 

channel-to-channel adapter 12-2 
channel-type code 12-28 
characteristic (of floating-point !'lumber) 

9-1 
check bits 3-3,11-2 
check control 13-2 
check stop 11-10 

as siqnal-processor status 4-40 
indicator 13..,3 
state 4-2 

control bit for 11-14,11-26 
due to malfunctioninq manual 
operat ion 13-1 

effect on CPU timer 4..,27 
entering of 11..,10,11-14 
malfunction alert when entering 6-1~ 
manual control for 13-2 

system 11-11 
checking block 11-2 

code (See CBC) 
checkpoint 11-3 

synchronization 11-3 
tracing 4-13 

CLEAR CHANNEL (CLRCH) instruction 12 .. 16 
CLEAR IIC (C'LFIO) instruction 12-17 

termination of 1/0 operation by 12-52 
clear-I/C feature D-4 
clear reset 4-33 
clearinq of storage by TEST BLOCK 
instruction 10-46 

clear ina operation 
by clear-reset function 4-33 
by load-clear key 13,..4 
by system-reset-clear key 13-5 

clock (see TOD clOCk) 
clock comparator 4-26 

as part of feature D-2 
external interruption 6-10 
machine-check save area for 3-31 
store-status saVe area for 3-32 
validity bit for 11-21 

clock unit 4-25 
code 

checkinq-block 11-2 
command 12-34 
condition (See condition code) 
decimal digit and sign 8-2 
external-damaqe 11-22 

validity bit for 11-21 
instruction-length (See 
instruction-length code) 

interruption 6-5 
monitor 6-18 
operation 5-2 

PER 4-16 
reqion 11-24 

validity bit for; 
sequence (in limited 

12-73 
version 10-44 

commands (1/0) 12-42 
basic sense 12-45 
chaininq of 12-39 

11-21 
cha nne 1 loq out) 

during initial pr;oqralll loadino 0-3U 
code in CCW 12-34 
control 12-44 
read 12-43 
read backward 12-44 
rejec~ion of 12-49 

bit in I/O-sense data 12-45 
retry of 12-47 

feature for D-q 
sense 12-45 
sense 11) 12- 4 6 
transfer in channel 12-47 
write 12-43 

commercial instruction eet D-1 
common-seqment bit 3-16 
communication area, 110 12-71 
COMPARE (C,CR) binary instructions 7-12 
COMPAFE (CD,CDR,CE,CE~) floatinq-ooin t 
instructions 9-8 

example A-35 
COMPAFE AND SWAP (CS) instruction 7-12 

examples A-37 
COI!PARE DECIMAL (CP) instruction 8-<; 

example A-29 
COMPARE DOUBLE AND SWlP (CD$) instruction 

7-12 
COMPARE HALFWOFD (CH) ins.rqotion 7-1U 

example A-11 
~OMPAPE LOGICAL (CL,CLC,CLI,C~R) 
instructions 7-14 

examples A-11 
COMPARE LOGICAL CHAl'ACTEFS UNI)ER MASK (eLM) 
instruction 7-15 

example 1-12 
COMPARE LOGICAL LONG (CLCL) instruction 
7-15 

example A-13 
comparison 

address 13- 2 
decimal 8-5 
floatinq-point 9-8 
loqical 7-4 
siqned-binary 7.q 
TOD-clock 4-26 

compatibility 1-3 
1/0 operation 12-7 
of B~-mode PSi with System/360 U-U 

completion of instruction 5-8 
concept'lal sequence 5~29 

effect on storaqe-ope~and accps~~s 5-36 
conclusion of data transfer ·(:1:/0) 12-50 
conclusion of 1/0 operatiQn~ 12-48 
ooncurrency of storaqe ret~;.nces 5-35 
condition code 5-5 

deferred 12-12 
for SIOF function '3-2~ 
in CSW 12-55 

for 1/0 operations 12~'2 
in P S W 4- 7,4- 8 
tested by BRANCH ON :ONDITION 

Index X-3 



instruction 7-10 
validity bit for 11-20 

conditional-swapping feature 
conditions for interruption 
interruption) 

D-2 
(See 

CO~NECT CHANNEL SET (CONCS) 
10-5 

instruction 

connection of channels (See channel 
connective (See logical connective) 
consistency (storage operand) 5-35 
console device 13-1 
control 4-2 

as an I/O command 12-44 
instructions 10-1 
manual (See manual operations) 
register 2-4 

set) 

description and assignments 
machine-check save area for 
store-status save area for 
validity bit for 11-21 

4-9 
3-31 

3-32 

control unit 2-6,12-3 
end (I/O-unit status) 
sharinq of 12-5 

conversion 
binary-to-decimal 7-17 
decimal-to-binary 7-17 
floating-point-number 

12-57 

basic example A-7 
instruction-sequence examples A-35 

of program from BC to EC mode 10-41 
CONVERT TO BINARY (CVB) instruction 7-17 

example A-14 
CONVERT TO DECIMAL (CVD) instruction 7-17 

example A-14 
count field 

in CCW 12-34 
in CSW 12-56 

contents of 12-67 
counter updatinq (example) A-38 
counting operations 7-11 
CPU (central processing unit) 2-2 

address 4- 36 
assiqned storage location for 3-30 
when stored during external 
interruptions 6-9 

chec kpoi nt 11- 3 
hangup due to string of interruptions 

4-3 
identification (ID) 10-44 
model number 10-44 
power-on reset 4-34 
registers 2-3 

save area for 3-31 
reset 4-32 

as siqnal-processor order 4-38 
retry 11-3 
serialization 5-37 
siqnalinq 4-36 
state 4-2 

no effect on TOD clock 4-23 
timer 4-27 

as part of feature D-2 
external interruption 6-10 
machine-check save area for 
store-status save area for 
validity bit for 11-21 

version code 10-44 
CR (See control reqister) 
csw (channel-status word) 12-55 

3-31 
3-32 

X-4 System/370 principles of Operation 

assigned storage location for 3-30 
information provided by 12-65 

CCW address 12-66 
count 12-67 
status 12-68 
subchannel key 12-66 

current PSW 4-3,5-6 
stored during interruption 6-2 

D 

D field of instruction 5-5 
damage 

code, external 11-22 
validity bit for 11-21 

external 11-18 
mask bit for 11-26 

instruction-processing 11-17 
interval-timer 11-17 
processing 11-19 
system 11-16 
timing-facility 11-17 

DAS (dual-address-space) facility 5-11 
DAT (See dynamic address translation) 
DAT mode (bit in PSW) 4-6 

use in address translation 3-12 
data 

chaining of (I/O) 12-38 
CCW prefetch for 12-38 

check (bit in I/O-sense data) 12-45 
exception 6-16 
format for 

decimal instructions 8-1 
floating-point instructions 9-2 
general instructions 7-2 

I/O-sense 12-45 
prefetching for output operation 12-35 
transfer (I/O), conclusion of 12-50 

decimal 
comparison 8-5 
digit codes 8-2 
divide exception 6-17 
instructions 8-1 

examples A-29 
number representation 8-1 

examples A-5 
operand overlap 8-3 
overflow 

exception 6-17 
mask in PSW 4-7,4-8 

rounding and shifting 8-11 
sign codes 8-2 

decimal-to-binary conversion 7-17 
decision-making 5-6 
deferred condition code (See condition 
code, deferred) 

degradation (machine-check condition) 
11- 18 

mask bit for 11-26 
delay in storing 5-33 
deletion of malfunctioning unit 11-4 
designation (origin and length) 

authority table 5-23 
entry table 5-19 
linkage table 5-19 

in ~ST entry 5-24 
page table 3-15 



primary segment table 3-14 
secondary segment table 3-15 
seqment table 3-14 

in AST entry 5-23 
destructive overlap 5-36,7-25 
detect field (in limited channel loqout) 

12-72 
device (See I/O device) 

address (See I/O address) 
console 13-1 
end (I/O-unit status) 12-60 

DIAGNOSE instruction 10-5 
used for service-processor communication 

4-29 
digit codes (decimal) 8-2 
diqit selector 8-7 
direct-access storage 3-1 
direct control 4-22 

feature 0-2 
disabling 

for interruptions 6-5 
of interval timer 4-28 

disallowed interruptions 6-5 
DISCONNECT CHANNEL SFT (DISCS) instruction 

10-6 
displacement 5-5 
display (manual controls) 13-2 
DIVIDE (D,OR) binary instructions 7-18 

example A-15 
DIVIDE (DD,DDR,DE,DER) floating-point 
instructions 9-9 

DIVIDE DECIMAL (DP) instruction 8-5 
example A-29 

di vide exception 
decimal 6-17 
fixed-point 6-18 
floating-point 6-18 

doubleword 3-3 
concurrency of reference 5-35 

dual-address-space (DAS) facility 5-11,0-3 
dump, standalone 13-5 
dynamic address translation (OAT) 3-11 

mode bit in PSW 4-6 
sequence of table fetches 5-32 

E 

early exception recognition 6-8 
EC (extended-control) mode 4-4 

control bit in PSW 4-6,4-8 
ECC (error checking and correction) 11-2 
EDIT (ED) instruction 8-6 

example A-30 
EDIT AND MARK (EOMK) instruction 8-10 

example A-31 
editing instructions 8-3 
effective address 3-5 

used for storage interlocks 5-30 
effective seqment-table designation 3-17 
EKM (entry key mask) 5-20 
emergency siqnal 

as signal-processor order 4-37 
external interruption 6-10 

enabling (for interruptions) 6-5 
entry 

in trace table 4-13 
index (EX) 5-18 

instruction address 5-20 
key mask (EKM) 5-20 
parameter 5-20 
problem state 5-20 
table (ET) 5-19 

desiqnation 5-19 
epoch (for TOO clock) 4-24 
equipment check 

as signal-processor status 4-40 
bit in I/O-sense data 12-45 

error 
alert (in limited channel logout) 12-73 
channel-eguipment 12-14 
channel-programming 12-14 
checking and correction 11-2 
device 12-15 
effect of DIAGNOSE instruction 10-5 
in PSW format 6-8 
intermittent 11-5 
state of TOO clock 4-23 
storage 11-19 
storage-key 11-20 

ET (entry tabl~ 5-19 
ETL (entry-table length) 5-19 
ETO (entry-table origin) 5-19 
event 6-14 

PER 4-14 
space-switch 5-17 

EX (entry index) 5-18 
translation exception 6-17 

EX (EXECUTE) (See EXECUTE instruction) 
exceptions 6-14 

access 6-24 
addressing 6-14 
AFX-translation 6-16 
ASN-translation 6-29 
ASN-translation-specification 6-16 
associated with PSW 6-8 
ASX-translation 6-16 
data (decimal) 6-16 
deci mal- di vide 6-17 
decimal-overflow 6-17 
early recognition of 6-8 
EX-translation 6-17 
execute 6-17 
exponent-overflow 6-17 
exponent- underflo w 6-17 
fixed-point-divide 6-18 
fixed-point-overflow 6-18 
floating-point-divide 6-18 
for invalid translation addresses and 

formats 3-21 
late recognition of 6-8 
LX-translation 6-18 
operation 6-19 
page-translation 6-19 
pc-translation-specification 6-20 
primary-authority 6-20 
privileged-operation 6-20 

for I/O instructions 12-32 
protection 6-21 
secondary-authority 6-21 
seqment-translation 6-21 
significance 6-22 
special-operation 6-22 
specification 6-22 
trace 6-29 
translation-specification 6-23 

EXCLUSIVE OR (X,XC,XI,XR) instructions 

Index X-5 



7-18 
examples A-15 

EXECUTE (EX) instruction 7-19 
effect of address comparison on target 
instruction of 13-2 

example A-17 
exceptions while fetching target 
instruction of 6-7 

PER event for target instruction 4-18 
execute exception 6-17 
exigent machine-check condition 11-11 
exponent 9-1 

(See also floating point) 
overflow 9-1 

exception 6-17 
underflow 9-1 

exception 6-17 
mask in PSi 4-7,4-8 

extended control (See EC mode) 
extended facility (feature) D-4 
extended floating-point number 9-2 
extended logout 

I/O 12-69 
control bit for 11-27 

machine-check 11-26 
address 11- 27 
validity bit for 11-21 

extended-precision floating-point feature 
D-2 

external 
call 

as signal-processor order 
external interruption due 
pending (signal-processor 

4-40 
damage 11-18 

mask bit for 11-26 
damage code 11-22 

4-37 
to 6-11 
status) 

assigned storage location for 3-31 
validity bit for 11-21 

interruption 6-9 
clock-comparator 4-26,6-10 
CPU-timer 4-27,6-10 
emergency-signal 6-10 
external-call 6-11 
external-signal 6-11 
interrupt-key 6-11 
interval-timer 4-28,6-11 
malfunction-alert 6-12 
service-signal 4-29,6-12 
TOD-clock-sync-check 6-12 

mask in PSi 4-6,4-8 
signal 6-11 

facility 4-22 
feature D-2 

external secondary report (bit in 
external-damage code) 11-22 

externally initiated functions 4-29 
EXTRACT PRIMARY ASN (EPAR) instruction 

10-6 
EXTRACT SECONDARY ASN (ESAR) instruction 

10-7 
extraction-authority-control bit 5-15 

X-6 System/370 principles of Operation 

F 

facilities D-1 
failing-storage address 11-24 

assigned storage location for 3-31 
validity bit for 11-20 

fast-release feature (I/O) D-4 
features D-1 
fetch protection 3-6 

bit in storage key 3-6 
fetch reference 5-33 

access exceptions for 6-24 
fetching 

of DAT-table entries 5-32 
of instructions 5-31 

field 3-2 
field separator 8-7 
fill byte 8-6 
fixed-length field 3-3 
fixed logout 

assigned storage location for 3-31 
channel 12-69 
machine-·check 11-26 

fixed point 
(See also binary) 
divide exception 6-18 
overflow exception 6-18 

mask in PSi 4-7,4-8 
flags 

field-validity (in limited channel 
logout) 12-72 

in CCi 12-34 
significance of 12-43 

floating interruption conditions 6-6,11-25 J ... 
clearing of 4-33 

floating point 
(See also exponent) 
comparison 9-8 
conversion 

basic example A-7 
instruction-sequence examples A-35 

data format 9-2 
divide exception 6-18 
feature D-1 
instructions 9-1 

examples A-34 
numbers 9-1 

examples A-5 
register 2-3 

machine-check save area for 3-31 
store-status save area for 3-32 

floating-point, register, validity bit for 
11-21 

floating point, shifting (See 
normali za tion) 

format 
basic sense data (I/O) 12- 45 
CAW (channel-address word) 12-33 
CCW (channel-command word) 12-33 

control 12-44 
read 12-43 
read backward 12-44 
sense ID 12-46 
transfer in channel 12-47 
write 12-43 

CSW (channel-status word) 12-55 ..J .. 
data 

decimal 8-1 
floating-point 9-2 



general-instruction 7-2 
I/O address 12-15 
I/O instruction 12-15 
IDAW (indirect-data-address wor~ 
information 3-2 
instruction 5-3 
PSW 4- 4 

error 6-8 
sense ID, data 12-46 

12-41 

format CCW (channel-command word), basic 
sense 12-45 

fract ion 9-1 
full channel logout 12-69 
fullword (See word) 

G 

qeneral instructions 7-2 
data formats for 7-2 
examples A-8 

qeneral registers 2-3 
alteration of (PER event) 
machine-check save area for 
store-status save area for 
validity bit for 11-21 

guard digit 9-3 

H 

halfword 3-3 

4-18 
3-31 

3-32 

concurrency of reference 5-35 
HALT DEVICE (HDV) instruction 12-19 

termination of I/O operation by 12-51 
HALT I/O (HIO) instruction 12-22 

termination of I/O operation by 12-51 
HALVE (HDR,HER) instructions 9-10 
header, tracing 4-12 
hexadecimal (hex) representation 5-4 

I 

I field of instruction 5-4 
I/O (input/output) 2-4,12-2 

address 12-8 
assigned storage location for 3-31 
format of 12-15 
in I/o-communication area 12-74 
validity flags for 12-72 

command, retry of 12-47 
commands 12-42 
communication area (IOCA) 12-71 
control unit 2-6,12-3 
data block 12-33 
data transfer, conclusion of 12-50 
device 2-6,12-2 

address 12-8 
error 12-15 
not-ready state 12-10 
status of 12-45 
used for initial program loading 

4-34 
effect on CPU timer 4-27 
effect on interval timer 4-28 

error 
alert (in limited channel loqout) 

12-73 
with machine check 11-5 

extended logout (IOEL) 12-69 
control bit for 11-27 
feature D-5 

instructions 12-15 
timeout (bit in external-damage code) 

11-23 
interface 

control check (channel status) 12-64 
inoperative 12-73 
position (effect on interruption 
priority) 12-54 

interruption 6-13 
action 12-54 
channel-available (CAl) 12-54 
conditions 12-52 
priority 12-54 
timeout (bit in external-damage code) 

11-23 
logout 12-69 
mask in PSW 4-6,4-8 
operations 12-2 

chaining 12-36 
channel compatibility 12-7 
conclusion of 12-48 
immediate 12-49 
initiation of 12-32 
pending 12-25 
storage-area designation for 12-35 
termination of 12-51 

power-on reset 4-34 
selective reset 12-11 
sense data 12-45 
status 12-56,12-62 
system reset 12-11 

as part of program reset 4-33 
as part of subsystem reset 4-33 
effect on channel set 4-42 

system state 12-9 
IC (instruction counter) (See instruction 

address) 
ID (See channel identification, CPU 
identification) 

IDA (indirect-data-address) flag 12-34 
IDAW (indirect-data-address word) 12-41 

format 12-41 
ILC (instruction-length code) 6-6 
I~L (initial microprogram loading) controls 

13-3 
immediate I/O operation 12-49 
immediate operand 5-4 
implicit tracing 4-11 
imprecise program interruptions 6-7 
incorrect length (channel status) 12-62 
index 

for address generation 5-5 
instructions for handling 7-11 

into ASN first and second tables 5-22 
into authority table 5-16 
into entry and linkage tables 5-18 
register 2-3 

indicator 
check-stop 13-3 
load 13-3 
manual 13-4 
test 13-5 

Index X-7 



wait 13-6 
indirect data address 12-41 

flag (IDA flag) 12- 34 
, role in I/O operations 12-6 
',word (IOAW) 12- 41 

information format 3-2 
initial CPU reset 4-32 

as signal-processor order 4-38 
initial microprogram loading (IKL), as 
s iqnal-processor order 4-38 

initial program loading (IPL) 4-34 
assigned storage locations for 3-32 
effect on CPU state 4-3 

initial program reset 4-33 
as siqnal-processor order 4-37 

input/output (See I/O) 
INSERT ADDRESS SPACE CONTROL (lAC) 
instruction 10-7 

INSERT CHARACTER (IC) instruction 7-20 
INSERT CHARACTERS UNDER MASK (IC~ 

instruction 7-20 
examples A-17 

INSERT PSW KEY (IPK) instruction 10-8 
INSERT STORAGE KEY (ISK) instruction 10-9 
INSERT VIRTUAL STORAGE KEY (IVS~ 
instruction 10-9 

instruction sets D-1 
instructions 

address of 4-7,4-9 
in address translation 3-5 
in entry-table entry 5-20 
validity bit for 11-20 

backing up of 11~19 
classes of 2- 2 
control 10-1 
damage to 11-17,11-19 
decimal 8-1 

examples A-29 
examples of use A-7 
execution 5-6 
fetching of 5-31 

access exception for 6-24 
PER event 4-18 

floatinq-point 9-1 
examples A-34 

format 5-3 
I/O 12-15 

general 7-2 
examples A-8 

I/O 12-15 
exception handling 12-32 
role in I/O operations 12-6 

interruptible 5-8 
length code (Ite) 6-6 

assigned storage locations for 3-30 
for program interruptions 6-14 
for supervisor-call interruption 

6-30 
in BC-mode PSW 4-8 

length of 5-4 
modification by EXECUTE instruction 

7-19 
prefetching of 5-31 
privileged 4-6,4-8 

for'control 10-1 
for I/O 12-15 

processing damage 11-17,11-19 
semiprivileged 10-2 
sequence of execution 5-2 

X-8 System/370 Principles of Operation 

stepping of (rate control) 13-4 
effect on CPU state 4-2 
effect on CPU timer 4-27 

integer 
binary 7-2 

address as 5-5 
examples A-2 

decimal 8-2 
integral boundary 3-3 
interface (See I/O interface) 
interface-control check (channel status) 

12-64 
interlock of storage 5-30 

for update references 5-34 
interlocked update (in tracing) 4-12 
intermittent errors 11-5 
internal storage (See storage, internal) 
interrupt key 13-3 

external interruption 6-11 
interruptible instructions 5-8 

COKPARE LOGICAL LONG 7-16 
effect on interval timer 4-28 
KOVE LONG 7-26 
stopping of 4-2 
TEST BLOCK 10-47 

interruption 6-2 
(See also masks) 
action 

I/O 12-54 
machine-check 11-12 

classes 6-5 
code 6-5 

assigned storage locations for 3-30 
I/O 6-13 
in BC-mode PSW 4-8 
machine-check 11-15 
program 6-14 
supervisor-call 6-30 

conditions 
clearing 4-32 
I/O 12-52 

effect on instruction sequence 5-8 
external 6-9 
floating conditions 6-6,11-25 
identification, assigned storage 
locations for 3-30 

input/output 6-13 
machine-check 6-13,11-11 

code 11-15 
floating conditions 11-25 

masking of 6-5 
pending 6-5 

external 6-9 
I/O 12-10 
machine- check 11-13 
relation to CPU state 4-2 

priority 6-30 
access exceptions for 6-26 
ASN-translation exceptions 6-29 
external 6-10 
I/O 12-54 
PER event 4-16 
program-interruption conditions 6-24 
trace exceptions 6-29 

program 6-14 
imprecise 6-7 .~ 

program-controlled ~/O) 12-40 ~ 
restart 6-29 
string (See string of interruptions) 



supervisor-call 6-30 
interval timer 4-28 

damage 11-17 
external interruption 6-11 
manual control for 13-3 
update reference 5-37 

intervention required (bit in I/O-sense 
data) 12-45 

invalid 
address 6-14 
ASN-first-table entry 5-23 
ASN-second-table entry 5-23 
CBC 11-2 

in registers 11-9 
in storage 11-6 
in storage keys 11-7 

channel programs 12-63 
linkage-table entry 5-19 
operation code 6-19 
order (signal-processor status) 4-40 
page 3-16 
segment 3-16 
translation address 3-21 
translation format 3-14 

exception recognition 3-21 
INVALIDATE PAGE TABLE ENTRY (IPTE) 
instruction 10-10 

effect when CPU is stopped 4-2 
inverse move 7-24 
IOCA (I/O-communication area) 12-71 
IOEL (I/O extended logout) 12-69 

address 12-71 
assigned storage location for 3-31 

maximum length 12-28 
IPL (initial program loading) 4-34 

assigned storage locations for 3-32 

key 

K 

access 3-6 
for I/O (See subchannel key) 

manual (see manual operations) 
PSW (See PSW key) 
storage (See storage key) 
subchannel (See subchannel key) 

key-controlled protection 3-6 
exception for 6-21 
not for translation-table lookup 3-18 

key handling, overview of 5-14 
key mask 

authorization 5-20 
entry 5-20 
PSW 5-15 

L 

L fields of instruction 5-4 
late exception recognition 6-8 
left-to-right addressing 3-2 
length 

field 3-2 
I/O-block 12-62 

(See also coun t field) 
instruction 5-4 

register operand 5-4 
variable (storage operands) 5-4 

limited channel logout 12-69 
assigned storage location for 3-31 
feature D-4 

link information 
for BRANCH AND LINK instruction 7-9 
for BRANCH AND SAVE instruction 7-10 

linkage (subroutine) 5-6 
linkage index (LX) 5-18 
linkage table (LT) 5-19 

designation (LTD) 5-19 
in AST entry 5-24 

linking, overview of 5-14 
LOAD (L,LR) binary instructions 7-21 

example A-18 
LOAD (LD,LDR,LE,LER) floating-point 
instructions 9-10 

LOAD ADDRESS (LA) instruction 7-21 
examples A-18 

LOAD ADDRESS SPACE PARA~ETERS (LASP) 
instruction 10-11 

LOAD AND TEST (LTDR,LTER) floating-point 
instructions 9-11 

LOAD AND TEST (LTR) binary instructi on 
7-21 

load-clear key 13-4 
LOAD COMPLEMENT (LCDR,LCER) floating-point 
instructions 9-11· 

LOAD CO~PLE~ENT (LCR) binary instruction 
7-22 

LOAD CONTROL (LCTL) instruction 10-16 
LOAD HALFWORD (LH) instruction 7-22 

examples A-19 
load indicator 13-3 
LOAD MULTIPLE (LM) instruction 7-22 
LOAD NEGATIVE (LNDR,LNER) floating-point 
instructions 9-12 

LOAD NEGATIVE (LNR) binary instruction 
7-23 

load-normal key 13-4 
LOAD POSITIVE (LPDR,LPER) floating-point 
instructions 9-12 

LOAD POSITIVE (LPR) binary instruction 
7-23 

LOAD PSW (LPSW) instruction 10-17 
LOAD REAL ADDRESS (LRA) instruction 10-17 
LOAD ROUNDED (LRDR,LRER) instructions 9-12 
load state 4-2 

assigned storage while in 3-32 
in initial program loading 4-34 

load-unit-address controls 13-4 
loading (initial) (See initial proaram 
loading, initial microprogram loading) 

location not provided 6-14 
location 80 (for interval timer) 4-28 
location 84 (in tracing) 4-12 
logical 

address 3-5 
in address translation 3-5 

arithmetic (See unsigned binary 
ari thmetic) 

comparison 7-4 
connective 

AND 7-8 
EXCLUSIVE OR 7-18 
OF 7-30 

data 7-2 
logout 

Index X-9 



channel 12-69 
extended machine-check 11-26 

address 11-27 
length of 11-22 
validity bit for 11-21 

fixed 
assigned storage location for 3-31 
channel 12-69 
machine-check 11-26 

limited channel 12-69 
assigned storage location for 3-31 

machine-check 11-26 
pending (bit in CSW) 12-55 

long floating-point number 9-2 
long I/O block 12-62 
loop control 5-6 
loop of interruptions (See string of 
interruptions) 

low-address protection 3-8 
exception for 6-21 

LT (linkage table) 5-19 
LTD (linkage-table designation) 5-19 
LTL (linkaqe-table length) 5-19 
LTO (linkage-table origin) 5-19 
LX (linkage index) 5-18 

invalid bit 5-19 
translation exception 6-18 

machine check 11-2 
(See also malfunction) 
extended logout (MCEL) 11-26 

address 11-27 
length of 11-22 
validity bit for 11-21 

fixed logout 11-26 
interruption 6-13,11-11 

action 11-12 
code (MCIC) 3-31,11-15 
floating conditions 11-25 

logout 11-26 
control bits for 11-27 

mask in PSi 4-6,4-8 
subclass masks 11-25 

main storage 3-1 
(See also storage) 
power-on reset 4-34 
sharing of 4-36 

malfunction 11-2 
alert (external interruption) 6-12 

when entering check-stop state 11-11 
correction of 11-2 
effect of DIAGNOSE instruction 10-5 
effect on manual operation 13-1 
indication of 11-5 

manual indicator 13-4 
(See also stopped state) 

manual operations 13-1 
controls 

address-compare 13-2 
alter-and-display 13-2 
check 13-2 
IML 13-3 
interval-timer 13-3 
load-unit-address 13-4 
power 13-4 

X-10 System/370 Principles of Operation 

rate 13-4 
TOD-clock 13-6 

effect on CPU signaling 4-38 
keys 

interrupt 13-3 
load-clear 13-4 
load-normal 13-4 
restart 13-4 
start 13-5 
stop 13-5 
store-status 13-5 
system-reset-clear 13-5 
system-reset-normal 13-5 

masks 6""5 
(See also interruption) 
channel 6-13 
in BRANCH ON CONDITION instruction 7-10 
in COMPARE LOGICAL CHARACTERS UNDER MASK 
instruction 7-15 

in INSERT CHARACTERS UNDER MASK 
instruction 7-20 

in P S W 4- 6 , 4- 8 
in STORE CHARACTERS UNDER MASK 
instruction 7-35 

machine-cheek-subclass 11-25 
degradation-report 11-26 
external-damage-report 11-26 
recovery-report 11-26 
warning 11-26 

monitor 6-18 
PER event 4-15 
PER general-register 4-15 
program-interruption 6-14 

maximum negative number 7-2 
KCEl (See machine check, extended logout) 
MCIC (machine-cheek-interruption code) 

11-15 
message byte 8-7 
microprogram, initial loading of 13-3 
mode 

BC (See BC mode) 
burst (channel operation) 12-4 
byte-multiplex (channel operation) 12-4 
EC (See EC mode) 
primary- and secondary-space 5-12 
primary-space 3-13 
real 3-13 
secondary-space 3-13 

model 
channel 12-28 
CPU 10-44 

modifier bits (in CCW command code) 12-34 
MONITOR CALL (MC) instruction 7-23 
monitor class and code, assigned storage 
locations for 3-31 

monitor event 6-18 
monitoring 

for PER events (See PER) 
with KONITOR CALL 6-18 

MOVE (KVC,KVI) instructions 7-24 
examples A-17,A-19 

move instructions, overview of 5-13 
MOVE INVERSE (MVCIN) instruction 7-24 
move-inverse feature D-2 
MOVE lONG (MVCL) instruction 7-25 

example A-20 
KOVE NUMERICS (MVN) instruction 7-27 

example A-21 
KOVE TO PRIMARY (MVCP) instruction 10-18 



L 

MOVE TO SECONDARY (KVeS) instruction 10-18 
MOVE WITH KEY (KVCK) instruction 10-20 
MOVE WITH OFFSET (MVO) instruction 7-28 

example A-21 
MOVE ZONES (MVZ) instruction 7-28 

example A-22 
multiplexer channel 12-5 
MULTIPLY (M,MR) binary instructions 7-29 

examples A-22 
MULTIPLY (MD, MDF,ME, MER,KXD, MXDR, KXR) 
floating-point instructions 9-13 

MULTIPLY DECIKAL (MP) instruction 8-10 
example A-32 

MULTIPLY HALFWORD (MH) instruction 7-29 
example A-23 

multiprocessinq 4-36 
considerations for A-37,8-3 
feature D-2 
manual operations for 13-6 
timing-facility interruptions for 4-25 
TOD clock for 4-22 

multiprogramming examples 1-37 

near-valid CBC 11-2 
in storage 11-5 

negat ive zero 
binary 7-2 
decimal 8-3 

example 1-5 
new PSi 4-3 

N 

assigned storage locations for 3-29 
fetched during interruption 6-2 

no-operation 
as an I/O command (control) 12-44 
instruction (BRANCH ON CONDITIOm 7-10 

nonshared subchannel 12-5 
nonvolatile storage 3-2 
normalization 9-2 
not available (I/O-system state) 
not operational 

as CPU state 4-38 
effect on channel 

as I/O-system state 
as TOD-clock state 

not ready 

set 4-42 
12-10 

4-23 

as I/O-device state 12-10 

12-9 

as signal-processor status 4-40 
not set (TOD-clock state) 4-23 
nullification of instruction 5-8 

exceptions to 5-9 
for exigent machine-check conditions 

11-11 
numbering 

addresses (byte locations) 3-2 
bits 3-2 

numbers 
binary 7-2 

examples A-2 
CPU-model 10-44 
decimal 8-1 

examples A-5 
floating-point 9-1 

examples A-5 
numeric bits 8-1 

moving of 7-27 

o 

offset (for MOVE iITH OFFSET instruction) 
7-28 

old PSi 6-2 
assigned storage locations for 3-29 

one's complement binary notation 7-3 
used for SUBTRACT LOGICAL instruction 

7-38 
op code (operation code) 5-2 
operand 5-2 

address generation for 5-5 
immediate 5-4 
length 5-2 
overlap 7-2 

decimal 8-3 
register 5-4 
sequence of references for 5-33 
storage 5-4 
types (fetch, store, and update) 5-33 
used for result 5-3 

operating state 4-2 
operation 

code (op code) 5-2 
invalid 6-19 

exception 6-19 
unit of 5-8 

operational state (I/O system) 12-9 
operator facilities 2-6,13-1 
operator intervening (signal-processor 
sta tus) 4-40 

OR (O,OC,OI,OR) instructions 7-30 
example of problem with OR immediate 

A-37 
examples A-23 

orders (signal-processor) 4-37 
CPU reset 4- 38 
emergency signal 4-37 
external call 4-37 
initial CPU reset 4-38 
initial microprogram load 4-38 
initial program reset 4-37 
program reset 4-37 
response to 4-38 
restart 4-37 
sense 4-37 
start 4-37 
stop 4-37 
stop and store status 4-37 

organization (system) 2-1 
overflow 

binary 7-3 
example 1-2 

decimal 6-17 
exponent (See exponent overflow) 
fixed-point 6-18 

overlap 
destructive 7-25 
operand 7-2 

decimal 8-3 
operation 5-29 

overrun (bit in I/O-sense data) 12-45 

PACK (PACK) 
example 

p 

instruction 
1-23 

7-31 

Index X-11 



packed decimal numbers 8-1 
conversion from zoned format 1-31 
conversion to zoned format 1-41 
examples A-5 

padding byte 
for COMPARE LOGICAL LONG instruction 
1-16 

for MOVE LONG instruction 1-25 
page 3-12 

index 3-12 
invalid bit 3-16 
size 3-1'J 
s"':i~pinq 3-11 
table 3-16 

designation 3-15 
lookup 3-20 

translation exception 6-19 
as an access exception 6-24 

p·clqe- frame real address (PFRA) 3-16 
parameters, translation 3-12 
par~ty bit 11-2 
PASN (primary address-space number) 5-12 
pattern for editing 8-6 
PC-cp (PROGRAM CALL instruction, to Current 
Primary) 10-22 

PC number 5-14 
translation 5-18 

PC-ss (PROGRAM CALL instruction, with Space 
switching) 10-22 

PC-translation-specification exception 
6-20 

PCI (See program-controlled interruption) 
pending I/O operation 12-25 
pending interruption (See interruption, 
pending) 
~ER (proqram-event recording) 4-14 

address, wraparound 4-11 
code and address 4-16 

assigned storage locations for 3-31 
ending address 4-15 
events 4-14 

general-register-alteration 4-18 
instruction-fetching 4-18 
masks 4-15 
priority of interruptions 4-16 
program-interruption condition 6-20 
storage alteration 4-18 
atorage-area designation 4-11 
successful branching 4-11 

aeneral-register masks 4-15 
m~sk (in PSi) 4-6 

subclass m~sks 4-15 
starting address 4-15 

PFRA (page-frame real address) 3-16 
PKM (PSW-key mask) 5-15 
point of damage 11-14 
point of interruption 5-8 

for machine check 11-14 
postnormalization 9-2 
power controls 13-4 
power-on reset 4-34 
precision (floating-point) 9-1 
preferred sign codes 8-2 
prefetching 

for I/O 12- 35 
of CClls (channel-coDlmand word) 12-38 
of DAT-table entries 5-32 
of instructions 5-31 

prefix 3-9 

X-12 System/370 principles of operation 

store-status save area for 3-32 
prenormalization 9-2 
primary address space 3-11,5-12 
primary ASN (PASN) 5-12 
primary authority 5-21 

exception 6-20 
primary segment table, designation (PSTD) 

3-14 
primary-space mode 3-13,5-12 
primary virtual address 3-5 
priority (See interruption) 
privileged i.ns~ruct1oDR 4-6,4-8 

for control 10-1 
for I/O 12-15 

privileged-operation excep~ion 6-20 
problem state 4-6,4-8 

bit in entry-table entry 5-20 
processing backup 11-19 
nrocessing damage 11-19 
processor (See CPU) 
program 

check (channel statu~ 12-63 
event recording (See PER) 
events (See PER events) 
exceptions 6-14 
execution 5-2 
initial loading of 4-34 
interruption 6-14 

for I/O instructions 12-32 
imprecise 6-1 
priority 6-24 

mask (in PS~ 4-1,4-8 
reset 4-33 

as signal-processor order 4-31 
status word (See PSi) 

PROGRAM CALL (PC) instruction 10-21 
to Current Primary (PC-cp) 10-22 
trace entry 4-13 
with Space switching (PC-ss~ 10-22 

program-controlled interruption (PCI) 
12-40 

channel status 12-62 
flag 12-34 

program mdsk (in PSi), validity bit for 
"1- 20 

PROGRAM TRANSFER (PT) instruction 10-28 
to Current Primary (PT-cp) 10-28 
trace entry 4-13 
with Space Switching (PT-ss) 10-28 

protection 
check (channel statu~ 12-63 
durina ·racinq 4-12 
exception 15-21 

as an access exception 6-24 
of storage (See st ora ge protec ti on) 

PSTD (primary segment-table designation) 
3-14 

PSTL (primary segment-table length) 3-14 
PSTO (primary segment-table origin) 3-14 
PSW (program-status word) 2-3,4-3 

assigned storage locations for 3-29 
BC-mode 4-8 
EC-mode 4-6 
exceptions associated with 6-8 
format error 6-8 
in initial program loading 4-34 

assigned storage locations 3-32 
in program execution 5-6 
validity bits for 11-20 



PSW, store-status save area for 3-32 
PSW key 

in PSW 4-6,4-8 
mask (PKM) 5-15 
used as access key 3-1 
validity bit for 11-20 

PSw-key-handling feature D-2 
PT-cp (PROGRAM TRANSFER instruction, to 
Current Primary) 10-2E! 

PT-ss (PROGRAM TRANSFER instruction, with 
spac~ Switching) 10-28 

PURGE TLB (PTLB) instruction 10-33 

R 

R field of instruction 5-4 
range, floating-point 9-1 
rate control 13-4 
read (I/O command) 12"'43 
read backward (I/O command) 12-44 
READ DIR lCT (RDD) insttuct ion 10-33 
read-write-direct facility 4-22 
real address 3-4 
real mode 3-13 
real storage 3-5 

assigned locations in 3-29 
receiver check (signal-processor status) 

4-40 
recovery 

condition 11-12 
extension feature D-4 
system 11-11 

mask bit for 11-26 
redundancy 11-2 
reference 

bit 3-6 
recording 3-8 
sequence for storage 5-29 

DAT-table entries 5-32 
instructions 5-31 
operands 5-33 
storage keys 5-32 

sinqle-access 5-35 
region code 11-24 

assigned storage location for 3-31 
validity bit for 11-21 

reqister 
base-address 2-3 
control 2-4 
designation of 5-4 
floating-point 2-3 
general 2-3 
index 2-3 
prefix 3- 9 
save areas 3-31,11-22 
validation 11-9 
validity bits for 11-21 

remote operatinq stations 13-1 
report masks 11-26 
repressible machine-check condition 11-12 
RESET REFERENCE BIT (RRB) instruction 

10-34 
resets 4-29 

effect on CPU state 4- 2 
effect on TOD clock 4-23 
I/O 12-11 

resolution 

of clock comparator 4-26 
of CPU timer 4-27 
of interval timer 4-28 
of TOD clock 4-23 

restart 
as Signal-processor order 4-37 
interruption 6-29 
key 13-4 

result operand 5-3 
retry 

CPU 11-3 
I/O command 12-47 

rounding (decimal) 8-11 
RR instruction format 5-3 
RRE instruction format 5-3 
as instruction format 5-3 
running (of TOD clock) 4-23 
ax instruction format 5-3 

s 

S instruction format 5-3 
SASN (secondary address-space number) 5-12 
save, areas for registers 3-31,11-22 
secondary address space 3-11,5-12 
secondary ASN (SASN) 5-12 
secondary authority 5-27 

exception 6-21 
secondary segment table, deSignation (SSTD) 

3-15 
secondary space 

changing from 5-13 
control bit 5-16 

in control register 0 3-14 
mode 3-13 

secondary-space mode 5-12 
secondary virtual address 3-5 
segment' 3-12 

indelC 3-12 
invalid bit 3-16 
size 3-14 
table 3-15 

designation (STD) 3-14 
lookup 3-20 

translation exception 6-21 
as an access exception 6-24 

segment size, no provision for 1M-byte D-2 
segment-table designation, effective 3-17 
selective reset (I/O) 12-11 
selector channel 12-4 
self-describing block of I/O data 12-38 
semiprivileged 5-11 
semiprivileged instructions 10-2 
sense 

as an I/O command 12-45 
as signal-processor order 4-37 
basic 12-45 

sense data (I/O) 12-45 
sense ID (I/O command) 12-46 
sequence 

code {in limited channel loqou~ 12-73 
conceptual 5-29 
instruction-execution 5-2 
of storage references 5-29 

serialization 5-37 
completion of store operations 5-33 
in tracing 4-13 

Index X-13 



serially reusable resource (SRR), 
definition A-39 

service ~rocessor 4-29 
service signal 4-29 

external interruption 6-12 
SET ADDRESS SPACE CONTROL (SAC) instruction 

10-34 
SET CLOCK (SCK) instruction 10-35 
SET CLOCK COMPARATOR (SCKC) instruction 

10-36 
SET CPU TIMER (SPT) instruction 10-36 
SET PREFIX (SPX) instruction 10-36 
SET PROGRA~ MASK (SPM) instruction 7-31 
SET PSi KEY FROM ADDRESS (SPKA) instruction 

10-37 
SET SECONDARY ASN (SSAR) instruction 10-38 

to Current Primary (SSAR-cp) 10-38 
trace entry 4-13 
with Space switching (SSAR-ss) 

set state (TOO clock) 4-23 
SET STORAGE KEY (SSK) instruction 
SET SYSTEM MASK (SSM) instruction 
shared control unit and subchannel 
shared main storage 4-36 

10-38 

10-41 
10-41 
12-5 

shared storage (See storage, shared) 
shared TOO clock 4-22 
SHIFT AND ROUND DECIMAL (SRP) instruction 

8-11 
examples A-32 

SHIFT LEFT DOUBLE (SLDA) instruction 7-32 
example A-24 

SHIFT LEFT DOUBLE LOGICAL (SIDl) 
instruction 7-32 

SHIFT LEFT SINGLE (SLA) instruction 7-33 
example A-24 

SHIFT LEFT SINGLE LOGICAL (SIL) instruction 
7-33 

SHIFT RIGHT DOUBLE (SRDA) instruction 7-34 
SHIFT RIGHT DOUBLE LOGICAL (SRD~ 

instruction 7-34 
SHIFT RIGHT SINGLE (SRA) instruction 7-34 
SHIFT RIGHT SINGLE LOGICAL (SRL) 
instruction 7-35 

shift ing 
decimal 8-11 
floating-point (See normalization) 

short floating-point number 9-2 
short I/O block 12-62 
51 instruction format 5-3 
sign bit 

binary 7-2 
floating-point 9-1 

sign codes (decimal) 8-2 
signal-in lines 6-11 
SIGNAL PROCESSOR (SIGP) instruction 10-42 

order codes 4-37 
signed binarv 

arithmetic 7-3 
comparison 7-4 
integer 7-2 

examples A-2 
significance 

exception 6-22 
loss 9-2,9-7 
mask in PSi 4-7,4-8 
starter 8-7 

single-access reference 5-35 
SIO and SIOF functions 12-25 
size 

X-14 system/370 Principles of Operation 

notation for iv 
of segment and page 3-14 

skip flag in CCi 12-34 
skipping (during I/O) 12-39 
SLI (suppress-length indication) flag in 

CCi 12-34 
solid errors 11-5 
source 

field in limited 
of interruption 

space-switch event 
bit 5-17 

channel loqout 
6-5 
5-17 

after ASN translation 5-24 

12-72 

mask, in translation control 3-14 
overview of 5-15 
program-interruption condition 6-22 

special-operation exception 6-22 
specification exception 6-22 
SRR (serially reusable resource) definition 

A- 39 
SS instruction format 5-3 
SSAR-cp (SET SECONDARY ASN instruction, to 
Current Primary) 10-38 

SSAR-ss (SET SECONDARY ASN instruction, 
with Space Switching) 10-38 

SSE instruction format 5-3 
SSM-suppression-control bit 6-22 
SSTD (secondary segment-table ~esignation) 

3-15 
SSTL (secondary segment-table length) 3-15 
SSTO (secondary segment-table origin) 3-15 
standalone dump 13-5 
standard epoch (for TOD clock) 4-24 
standard instruction set D-1 
start 

as signal-processor order 4-37 
function 4-2 
key 13-5 

START I/O (SIO) instruction 12-25 
START I/O FAST RELEASE (SIOF) instruction 

12- 25 
state 

CPU 
I/O 
TOO 

status 

(See CPU state) 
system 12-9 
clock 4-23 

device 12-45 
in CSi 12-55 

contents of 12-68 
modifier (of I/O-unit status) 12-56 
program (See PSi) 
register for 4-37,10-42 
resulting from signal-processor orders 

4-39 
storing of 4-35 

manual key for 13-5 
STD (segment-table designation) 3-14 
STL (segment-table length) 3-14 
STO (segment-table origin) 3-14 
stop 

as stgnal-processor order 4-37 
function 4-2 
key 13-5 

stop and store status (signal-processor 
order) 4-37 

stopped bit (in signal-processor sta tus) 
4- 40 

stopped state 
of CPU 4-2 



effect on completion of store 
operations 5-33 

of TOD clock 4-23 
storage 3-1 

absolute 3-5 
address wraparound 

for MOVE I~VERSE instruction 7-24 
for MOVE LONG instruction 7-25 

addressinq 3-2 
(See also address) 

al teration 
manual control for 13-2 
PER event 4-18 

area desiqnation 
for I/O operations 12-35 
for PER events 4-17 

assigned locations in 3-29 
auxiliary 3-1,3-11 
block 3-4 

testing for usability 10-46 
buffer (cache) 3-2 
clearing, by clear-reset function 4-33 
configuration of 3-4 
control unit (in limited channel logout) 

12-72 
direct-access 3-1 
display 13-2 
error 11-19 
failinq address (See failing-storage 
address) 

interlocks 5-30 
internal 2-3 
key 3-6 

error 11-20 
sequence of references to 5-32 
testing for usability 10-46 
validation of 11-7 

loqical validity bit for 11-21 
main 3-1 
operand 5-4 

consistency 5-35 
fetch reference 5-33 
store reference 5-33 
update reference 5-34 

prefixing for 3-9 
protection 3-6 

key-controlled protection 3-6 
low-address protection 3-8 

real 3-5 
sequence of references 5-29 
shared 

by address spaces 3-11 
by CPUs and channels 3-4 
examples A-37 

size of, notation for iv 
validation 11-6 
virtual 3-11 

created by DAT 3-11 
volatile 3-2 

effect of power-on reset 4-34 
STORE (ST) binary instruction 7-35 
STORE (STD,STE) floatinq-pojnt instructions 

9-14 
STORE CHANNEL ID (STIDC) instruction 12-28 
STORE CHARACTER (STC) instruction 7-35 
STORE CHARACTERS UNDER MASK (STCM) 
instruction 7-35 

examples A-25 
STORE CLOCK (STCK) instruction 7-36 

STORE CLOCK COMPARATOR (STCKC) instruction 
10-43 

STORE CONTROL (STCTL) instruction 10-43 
STORE CPU ADDRESS (STAP) instruction 10-44 
STORE CPU ID (STIDP) instruction 10-44 
STORE CPU TIMER (STPT) instruction 10-45 
STORE HALFWORD (STH) instruction 7-37 
STORE MULTIPLE (STM) instruction 7-37 

example A-25 
STORE PREFIX (STP~ instruction 10-45 
store reference 5-33 

access exceptions for 6-24 
store status 4-35 

as signal-processor order 4-37 
key 13-5 

STORE THEN AND SYSTEM MASK (STNS~ 

instruction 10-45 
STORE THEN OR SYSTEM MASK (STOSM) 
instruction 10-46 

string of interruptions 4-3,6-30 
by clock comparator 4-26 
by CPU timer 4-27 

sub channel 12-4 
not operational (I/O-system state) 

12-11 
working (I/O-system state) 12-10 

sub channel key 
in CAW 12-33 
in CSW 12-55 

contents of 12-66 
validity flag for 12-72 

used as access key 3-7 
used for initial program loading 4-34 

subclass-mask bits 6-5 
external-interruption 6-9 
machine-check 11-25 

subroutine linkage 5-6 
subsystem 

linkage-control bit 5-16,5-19 
reset 4-33 

SUBTRACT (S,SR) binary instructions 7-37 
SUBTRACT DECIMAL (SP) instruction 8-12 
SUBTRACT HALFWORD (SH) instruction 7-38 
SUBTRACT LOGICAL (SL,SLR) instructions 

7-38 
SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR) 
instructions 9-15 

SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR) 
instructions 9-15 

successful branching (PER event) 4-17 
SUPERVISOR CALL (SVC) instruction 7-39 
supervisor-call interruption 6-30 
supervisor state 4-6,4-8 
suppress-length-indication (SL!) flag in 

CCW 12-34 
suppression of instruction 5-8 

exceptions to 5-9 
swapping 

by COMPARE (DOUBLE) AND SWAP 
instructions 7-12 

by EXCLUSIVE OR instruction 7-19 
switching, channel-set 4-41 
synchronization 

checkpoint 11-3 
CPU timer with TOD clock 4-27 
of TOD clocks 4-23,4-25 

synchronous 
logout 11-26 
machine-check-interruption conditions 

Index X-15 



11-18 
system 

check stop for 11-11 
damage 11-16 
manual control of 13-1 
mask (in PS~ 4-3 

validity bit for 11-20 
organization 2-1 
recovery 11-17 
reset (See resets) 

I/O (See I/O-system reset) 
system-reset-clear key 13-5 
system-reset-normal key 13-5 

T 

target instruction (See EXECUTE 
instruction) 

termination 
code (in limited channel logout) 12-72 
of instruction 5-8 

termination of I/O operations 
by channel or device 12-50 
by CLEAR I/O 12-52 
by HALT DEVICE 12-51 
due to equipment malfunction 12-52 

termination of instruction, for exigent 
machine-check conditions 11-11 

TEST AND SET (TS) instruction 7-39 
TEST BLOCK (TB) instruction 10-46 
test-block feature D-4 
TEST CHANNEL (TCH) instruction 12-29 
TEST I/O (TIO) instruction 12-29 

function performed by CLEAR I/O 
instruction 12-17 

test indicator 13-5 
TEST PROTECTION (TPROT) instruction 10-48 
TEST UNDER MASK (TM) instruction 7-39 

example A-25 
testing for storage-block and storage-key 
usability 10-46 

TIC (transfer-in-channel) I/O command 
12-47 

time-of-day clock (See TOD clock) 
timeout 

bits in external-damage code 11-23 
channel 12-4 

timer 
CPU (See CPU timer) 
interval (See interval timer) 

timing facilities 4-22 
damage 11-17 

for TOD clock 4-23 
TLB (translation-Iookaside buffer) 3-21 

deletion of entries 3-26 
entry 

effect of translation changes 3-25 
state 3-22 

TOD clock 
effect of power-on reset 4-34 
manual control for 13-6 
setting and storing 4-24 
state 4-23 

effect on interval timer 4-28 
sync check (external interruption) 
synchronization facility 4-25 
unigue values 4-24 

6-12 

X-16 System/370 principles of Operation 

validation 11-9 
TOD-clock control 13-6 

enables TOO clock 4-23 
TOD-clock-sync-control bit 4-23,4-26 
tracing 4-11 

entry formats 4-13 
header 4-12 
interlocked update 4-12 
lOcation 84 4-12 
overview of 5-15 
serializing and checkpoint synchronizing 

4-13 
trace exceptions 6-29 
trace-table entry 4-13 

transfer-in.channel (TIC) I/O command 
12-"7 

tJ1NSLATE (TR) instruction 7-40 
example A-26 

TRlNSLATE AND TEST (TRT) instruction 7-41 
example 1-26 

translation 
address 3-11 
ISH 3-11 
control of address 3-12 
exception address, assigned storage 

location for 3-30 
exception identification, assigned 
storage location for 3-30 

feature D-2 
forut 3-1" 
lookaside buffer (See TLB) 
par2uneters 3-12 
PC number 5-18 
specification exception 6-23 

as an acc~ss exception 6-24 
tables for 3-15 

trial exec~tion 5-10 
true zero 9-1 
two's complement binary notation 7-2 

examples 1-2 

U 

underflow (See exponent underflow) 
unit check (I/O-unit status) 12-61 
uni t exception (I/O-unit sta tus) 12-62 
unit of operation 5-8 
unit status 12-56 

validity flag for 12-72 
universal instruction set D-1 
Unnormalized floating-point number 9-2 
UNPACK (UNPK) instruction 7-41 

example 1-28 
unsigne4 l)bary 

arithmetic 7-3 
integer 7-2 

examples 1-" 
in address generation 5-5 

update reference 5-34 
us_bIe TLB entry 3-22 

T 

valid, CBC 11-2 
valid TLB entry 3-22 



validation 11-5 
of registers 11-9 
of storage 11-6 
of storaqe key 11-7 
of TOD clock 11-9 

validity bits (in 
machine-check-interru ption code) 11-20 

validity flags (in limited channel logout) 
12-72 

variable-length field 3-3 
version code 10-44 
virtual address 3-4 
virtual storage 3-11 

created by DAT 3-11 
volatile storage, effect of power-on reset 

4-34 

W 

wait indicator 13-6 
wait state (bit in PSW) 4-6,4-8 
warning (machine-check condition) 11-18 

mask bit for 11-26 
word 3-3 

concurrency of reference 5-35 
working state (I/O system) 12-10 
wraparound 

of instruction addresses 5-5 

of PER addresses 4-17 
of register numbers 

for LOAD MULTIPLE instruction 7-22 
for STORE MULTIPLE instruction 7-37 

of storage addresses 3-2 
for MOVE INVERSE instruction 7-24 
for MOVE LONG instruction 7-25 

of TOD clock 4-23 
write (I/O command) 12-43 
WRITE DIRECT (WRD) instruction 10-49 

x 

x field of instruction 5-5 

Z 

zero, true 9-1 
ZERO AND ADD (ZAP) instruction 8-12 

example A-34 
zero instruction-length code 6-6 
zone bits 8- 1 

moving of 7-28 
zoned decimal numbers 8-1 

examples A-5 

Index X-17 





... 
c: 

E 
c. 
':; 
C' • 
Gl E 
en .. . = 0 ....... .. .. 
0·­.. .:;; - ... 

"m -E g: 
on 

"C 0 !!l ... 
'" Gl E c. 
o ~ 
;"i 
~ E 
.<::: E 
~ ::l 

~ E~ 
Gl':;; 

:c 15 
~ 0 
5! ~ 
j ";: '" .-" ~ c: 5! 
l!l cb 
Sl 3 
c.~ 
~ 0. 

81 
::l 

'. 81 
l!! '" C Gl 

~o.:: 

IBM System/370 
Principles of Operation 

Order No. GA22-7000·7 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. Comments may be written in your own language; English is not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this pUblication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



GA22-7000-7 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FI RST CLASS PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department B98 
P.O. Box 390 
Poughkeepsie, New York 12602 

II I 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape Please Do Not Staple Fold and tape 

==-= =® - - ---- ---- - ---- - - ----------_.-
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

., 
c: 

:.:::i 

'" c: 
0 
<{ 
"0 
"0 
LL 

(; ... 
:l 

U 

I 

I 
I 
I 

., 
,S 
.-I 

'" c: 
o 
<{ 
"0 
"0 
LL 

(; ... 
:l 
U 

I 
I 
I 
I 

OJ 
s: 
(f) 
-< 
'" r+ 
C1l 

3 
W 
-...J 
0 
." 
~. 
:::J 
n 
"0 
C1l 

'" 0 ...., 
0 
"0 

J C1l .... 
OJ 
r+ 

0 
:::J 

., 
ro 
z 
? 
(f) 
tv 
-...J 
0 
6 



c 
Q) 

E 
.9-
~ 
0' • 

~ § 
.S 0 ... -o .~ 
"'.1: - ... '; -
E ~ 
'0 0 

~ ; 
§ ~ 
;'0 
'" Q) 

.1: E 

.t: E 
i: ~ 
'" C) E Q; 
Q).1: 

:0 0 :: .... 
a. 0 

~ ~ 
~ :~ 
(J ~ 

~ ~ 
(J Q) 

Sl 5 - '" a. '" 
'" Q) cii C. 

51 
~ 

! ; 
<:) Q) 

~CL 

IBM System/370 
Principles of Operation 

Order No. GA22-7000-7 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems_ You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. Comments may be written in your own language; English is not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this pUblication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



GA22-7000-7 

Reader's Comment Form 

F old and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FI RST CLASS PERMIT NO. 40 ARMONK, NY 

POSTAGE WI LL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department B98 
P.O. Box 390 
Poughkeepsie, New York 12602 

I " I 
F old and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

FOld and tape Please Do Not Staple Fold and tape 

-=- -=-- -=- = ® - ---- - ---- - - ------------'-
International Business Machines Corporation 
Data Processing Division 

1133 Westchester Avenue, White Plains, N.Y. 10604 

I BM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

G> 
c: 
:J 
'" c: 
0 « 
"0 
0 
u.. 
(; ... 
:;, 
u 

I 

I 
I 
I CD 

s: 
en 
-< 
VI .... 
CD 

3 
W 
-..J 
0 
"0 ..... 
:::J 
() 

"2-
CD 
VI 

0 .... 
0 
"0 
CD ..... 
W .... 
o· 
:::J 

"T1 

CD 
z 
? 
en 
w 
-..J 
0 
6 

G) 

» 
I\J 
I\J 
.!..J 
o 

G> 0 
.<: 0 
..J .!..J 
'" c: 
o « 
"0 
o 
u.. 

:; 
u 

I 
I 
I 
I 

J 






