
--- ------ ----- ---- - ---- - - ----------_.-
IBM PALO ALTO SCIENTIFIC CENTER

G320-3489, March 1986

Introduction to Vectorizing Techniques
on the IBM 3090 Vector Facility

H. H. Wang

Introduction to
Vectorizing Techniques on tile IBM 3090 Vector

Facility

H. H. "Vang

Document Number G320-3489

February t 986

IBM Palo Alto Scientific Center
1530 Page IVlili Road
Palo Alto, California

11 Vectorizing Techniques

Abstract

The advantage of vector processing is first reviewed. Then the IBl\t1 3090 Vector Pacility and software
tools are briefly discussed. The major part of the rcport is devoted to the methodology of choosing
algorithms on the target vector machine. We illustrate the method of evaluating algorithms and point out
various good practices with examples in linear algehra prohlems commonly encountered in science and
engmeenng.

Abstract 111

IV Vectorizing Techniques

Contents

Vector Processing Preliminaries

Vectorization .
IBM 3090 Vector Facility
VS-FORTRAN Version 2 Compiler

Vector Sectioning Loop
Good FORTRAN Practice

Assembler H Version 2
Engineering and Scientific Subroutine Library (ESSL)

Vectorization Technique of Numerical Algorithms
Techniques of vectorization
Vectorization in Linear Algehra
Two basic vector operations

I)ot Product .
Dot product timing
Scalar times a vector plus vector: SAXPY

Matrix-vector multiply .. .
llorizontal ProcesJing .. .
Vertical Proce.'ising .. .
Block p,·oce.'ising
Comparison of horizontal, lOf"tical, and block p,'ocl'.uin.t:

C:onvolution
Tridiagonal Solver

Gaussian Elimination .. .
FORTRAN code for Gaussian elimination
Cyclic Reduction
Speedup

Iterative solution of large sparse linear systems
The Model Problem ,
Basic Iterative Methods
Block Iterative lVtethods
Other Iterative Methods

Summary

Bibliography

3
4
6
6
7
7
7

9
9

10
11
1 1
12
12
13
13
14
15
16
17
18
18
19
19
20
20
20
24
27
28

29

31

Contents v

vi Vectorizing Techniques

Vector Processing Pl;eliminaries

A vector computer is designed to speedup repetitive but independent computations applied to large
arrays of data. The clements of these arrays arc usually arranged regularly as vectors or matrices in the
sense as understood in linear algebra. More specifically, in data processing terminology, a i'cctor is an
array of data whose successive clements are stored either in consecutive store locations or in locations
separated by a constant stride. Thus, rows and columns as wen as diagonals of a matrix are common
examples of vectors. So are tabulated measurements of physical variables such as temperature, and pressure.

The main approach to gain speed in a vector computer is pipe/ining. The term pipclining refers to the
design technique that subdivides a basic operation into suh-operations each of which is performed by a
special hardware in the same fashion as an assembly line in industrial manufacturing. The pipelining
principle has been applied to memory access and instnlction decoding since early 1960's. Pipeiincd
arithmetic units were first included in machines like the System 360 l'v1odel 91 and others. However, these
machines are scalar machines because thcir arithmetic instructions arc executed with only one pair of
operands. The first commercial vector machine "vas the Texas Instruments Inc. ASC (de1ivered in 1972)
with hardware instructions which accept vectors as operands.

A typical float.ing-point add pipeline with four segments (compare exponents, align fractions, add fractions,
and normalize) is shown in Figure 1.

When a vector instruction is issued, it initiates the stream of operands (assuming two source vector
operands) to the pipeline, each segment of the pipeline accepts a pair of operands, performs its particular
function, passes the result to the next segment, and receives the next pair of operands from the stream.
At any instant during the execution, several pairs of operands are heing processed concurrently in the
pipeline. The net effect is that there is an initial delay to complete the first result, called the startup time,
but each subsequent result follows quickly since it is only one segment away. Thus if the operands can
be delivered to the pipeline in steady streams, the time for the completion of a vector instruction producing
N results is given by

1~ = S + Nt, (1)

where S is the start up time, t is the time for each segment to complete its task. The startup tilne can he
thought of as an overhead of a vector instruction. Its significance diminishes as the vector length N becomes
large. To enhance the effective bandwidth of data flow to match the execution speed of the arithmetic
unit, a high speed buffer memory (cache) is included as a part of the IBM 3090 VF,although a highly
interleaved memory is often employed on other systems.

Another approach to gain in speed is the technique called cllOinillK in which multiple pipelines are linked
together and operate as a single long pipeline. Chaining is offered on the IBM 3090 VF in the form of

Vector Processing Preliminaries

operands Compare align odd normal ization result
exponents --II fractions -+ fractions -I> -

a l+5• b l+5 a'+4. b 1+4 0 1+3• b 1+3 0,+2. b l+2 01+1. b'+1 Cf

Figure I: A floating-point 3fld pipeline. Vector add: C = A + n.

compound instructions, multiply and add and mulaply lind accumulate instructions. Besides enabling" the
full usc of the pipelines, vector instructions also suhstantially reduce the need to execute branch instructions.

The speed of a scalar computer is usuaI1y measured by the numher of instructions executed per unit
time, such as 'million instnlctions per second' (illIPS). For a vector processor, which is primarily designed
for scientific computation, it is universally accepted to measure the speed by the number of useful (in the
user's point of view) arithmetic operations performed per unit time, such as the usc of million floating-point
operations per second (~IEGA FLOPS, or JllF1J)PS). There is no fixed relationship hetween the two
measurements. In general, it takes two to five instnlctions to perform a floating-point operation on a
scalar machine.

For detailed information on various parallel/vector architectures, the reader is referred to the 'book by
Hockney and Jesshope [I) and the book by Hwang and Briggs (2).

2 Vectorizing Techniques

Vectorization

Vectorization means different things to different people. To a language developer, vecto,.ization is designing
array-like language extensions to FORTRAN such as VECTRAN [31. To a compiler writer, it means
analyzing the dependencies of the statements of the source code (DO-loops) and convert as much sequential
operations to equivalent vector operations as economical1y feasihle. To a user, vecto,.ization means the
introduction of hardware vector instructions into his program so that the high speed of these instructions
can be effectively utilized. In general, a user has following three choices to do this:

1. lIe may choose to vectorize his application simply hy recompiling his scalar rORTRAN code using
the vectorizing compiler; or

2. he may ohtain more henefit by first restructuring his code so as to assist the compiler to recogntze
more opportunities for generating vector code; or

3. he may recode completely his application hy choosing or devising a new algorithm to reap the most
benefit frotTI the target vector machine.

We shall restrict our discussion on techniques of ,'ecto,.ization from a user's point of view.

Traditionally, on ~ scalar machine, the fastest algorithm is one t.hat requires the least amount of arithmetic
operations. This is not necessarily tnlc anymore on a vector computer. An algorithm with higher operation
count but which vectorizes well may outweigh the cost of extra arithmetic operations when executed in
vector mode. An example of this is the tridiagonal system solver (discussed below), where the vector
algorithm requires about twice as many operations as the scalar algorithm, but is faster than the scalar
algorithm executing in scalar mode for sufficiently long vectors. The performance of a vector code also
depends on the average vector length, and the startup time of the vector instructions. After an application
is vectorized, it is natural to try to measure its performance in some way. The most commonly accepted
measure is speedup, which is frequently defined as

p= scalar execution time
vector execution time

(2)

This definition works fine when one vectorizes his application using the first two methods. IIowever,
ambiguity arises when vectorization is achieved using a different algorithm. In this case, he is more
interested in comparing the execution speed of the scalar algorithm with that of the vector algorithm under
consideration. So, a better definition of speedup is

p' =
scalar execution time using the hest scalar algorithm

vector execution time using the vector algorithm
(3)

Vectorization 3

This shows that an execution using a highly vedorizable algorithm with a high speedup factor P docs not
necessarily mean a large improvement over the scalar execution.

We want to mention another definition of speedup which reveals clearly the role of scalar operations in
a vectorized code. Let v denote the percentage of arithmetic operations in the code that can be executed
by vector instructions, then the speedup is given by

(4)

where R is the ratio of vector speed over the scalar speed. If v= 0.5, or in another word, if the program
is 500/0 vectorizable, then the speedup cannot exceed the value of 2 even if the vector operation is infinitely
fast. This phenomenon was first discussed by Amdahl in 1967 (4) and is known as "Amdah(s law". Figure
2 shows the speedup as a function of v for several representative values of R. Experience show that for
most applications the values of v fall between 0.5 - 0.9. This means that the speedup for most programs
will be limited in the range of two to ten no matter how fast the vector speed. However, if the cost of
vector hardware is only a smal1 percentage of the total cost of a complete scalar/vector processing system,
then the case for the additional hardware which can douhle or triple the speed of many programs is easily
rnade.

In what follows, we first briefly discuss, for completeness, the J090 Vector Facility and software tools
available. We then devote the rest of the report to our main purpose: to discuss the methodology· of
choosing algorithms on the target vector machine. \Ve iI1ustrate the method of evaluating algorithms and
point out various good practices with exampk~s in linear algebra problems commonly encountered in
science and engineering.

IBM 3090 Vector Facility

The 3090 Vector Facility is an integral part of the CPU. Its main features are:

• 16 128-word vector registers (or 8 double-word vector registers)

For both standard and long floating-point data as well as 32-bit integer data.

• 128-bit long Vector Mask Register

- To hold the results of vector compare and to serve as argument or result of other logical operations
and to use as mask for mask controJIed operations.

• 63 vector instructions (171 opcodes)

Many instructions with 3 operands and one of them can be frotn memory.

multiply and add and multiply and accumulate instructions to produce one multiply-and-add result
per machine cycle.

4 Vectorizing Techniques

2
10

a.'

0- 1
~10
UJ
LU
0..
Vl

10

SPEEDUP VS S VECTORIZABLE
R: VECTOR SPEE~CALAR SPEED

Figure 2: Speedup P as a function of % vectorizable v.

R=oo

R=20

R=10

.-...,-R=2

- Elements of a vector in memory can be in consecutive memory locations or can be separated by a
constant stride. The stride can be any signed integer.

Gather and scatter instructions to facilitate sparse vector operations.

Since the vector registers is of length Z = 128 on the 3090 VF, vector instructions can only process Z
elements at a time, and vectors of length greater than Z must be processed by sections, in a process quite

Vectorization 5

sectioning, the timing formula for a vector instruction of Icngth N on 3090 vr is given by

(5)

where r is the startup time for processing each section, and s is the vector-sectioning-loop set-up time.
The significance of s diminishes when there are more than one vector instructions in the sectioning loop.
Note that here and afterwards the square brackets denote the ceiling function.

VS-FORTRAN Version 2 COIn/lifer

Naturally, vector instructions can be incorporated into a program most dircctly by programming in
assembler language. However, the preferred language in science and engineering is FORTRAN. Plus the
fact that the vast amount of old FORTRAN programs makes the conversion to assembler impractical.
Therefore, vast majority of the application programs must rely on the compiler for vectorization. The
VS-FORTRAN Version 2 Compiler is designed to fulfill this need.

The VS FORTRAN Version 2 Compiler employs the state-of-the-art technique in producing highly
optimized object code. When scalar compilation is requested, the compiler generates optimized scalar
code. When vectorization is requested, the compiler, in addition, analyzes an the nests of DO loops and
identifies in them the statements which may be vectorized, applies economic analysis and chooses those
loops and statements which wiU execute fastest on the target vector hardware, and generates optimized
vector code for them.

Vector Sectioning Loop

The basic result of vcctorizing a DO-loop is to produce vector instnlctions that operate on groups of
data elements. Since the vector instructions on the]090 Vector Facility operate on Z elements at a time,
the compiler converts the scalar loop into a loop over groups (sections) of Z elements. Thus, the loop:

DO 1 I =-1, N
1 A(I) = 8(1)

is converted by the compiler into:

DO 1 I = 1, N, Z
DO 1 II = I, MIN(N,I+Z-l)

1 A(II) = 8(11)

The inner loop (loop with index II) is not actually present. It represents the actions of the vector instruction
produced by the compiler.

For more detailed descriptions of the Vectorizing Compiler consult the manual (5) and the report r6).

6 Vectorizing Techniques

Good FO RTRAN Practice

Since the compiler generates both scalar and vector codes, it is important to follow good scalar practice
as well as good vector practice in preparing the application code. Portunatc1y, experiences show that it is
generally true that good vector practice implies good scalar practice and vice versa. It is not unusual that
a well converted program intended for a vector machine runs faster even on the scalar portion of the
machine. It is equally true that a good scalar program which make efficient use of the high-speed huffer
memory (cache) will often result in good vector object code when submitted to a vectorizing compiler.

A notable exception to the general rule is the scalar practice of loop unrolling. See [6) for detail.

The single most effective way to achieve optimal use of storage in vector code is to use stride-l operations
as much as possible. This means, for example, in matrix calculation, using column-oriented algorithm
rather than row-oriented algorithm. When writing nested DO-loops for operation on multi-dimensional
arrays, try to vary the subscripts in order of leftmost to rightmost.

When rows of a matrix must be accessed and the column dimension is even (especially when it ean be
divisihle by a large power of 2), then it is sometimes advantageous to pad the column so that the column
dimension becomes odd. To do this will make more effective use of the interleaved main storage and will
also make fuller use of the cache. As a result, the execution will be speeded up at a small cost of storage
space.

Por more tips on writing good fORTRAN programs intended for both scalar and vector hardware
please see [6]. The book by lYfetcalf [7] also contains many good PORTRAN practices.

Assenlbler H Version 2

For users who wish to obtain the maximum benefit from the scalar/vector hardware. See the manual [RI.

Engineering and Scientific Subroutine Libr'ar)) (ESS L)

ESSIJ [9] is a set of mathematical routines that exploit the SYSTEM/370 Vector Hardware. It consists
of a vector library and a scalar library. The vector library employs the state-of-the-art or new algorithms
and fine tuned in assembly language for the vector facility to achieve optimum performance. \Vhere
feasible, the effects of paging, cache size, and vector size have all been taken into consideration when
deciding on an algorithm. The execution rate') of ~ome of the routines in the library approach the
theoretical maximum rate of the vector hardware. The scalar library, with its subroutines having the same
calling sequences as their counterparts in the vector library, is provided so that one can develop the
application code on any scalar facility that sub~cribes the lihrary. ESSL subroutines can be called from
VS FORTRAN programs as well as from Assembler programs.

The library consists of more than one hundred commonly used subroutines in both short and long
precision. These routines fall into six areas of mathematical computation.

Vectorization 7

1. Linear Algebra

The linear algebra subprograms consist of vector-scalar subprograms and matrix-vector subprograms.
The vector-scalar subprograms contain a group of suhprograms which petform the same functions
and with the same caUing sequences as those of OLAS (IOJ.

2. Matrix Operations

This group of subroutines provide computations for matrix addition, subtraction, and multiplication
in assembly language codes closely tuned for vector hardware.

3. Simultaneous Linear Algebraic Equations

The simultaneous linear algebraic equations subroutines provide factorizations and solutions to
linear systems of equations for a real general matrix, a real banded matrix, a real symmetric positive
defmite matrix, and a real symmetric positive definite banded matrix.

4. Eigensystetns Analysis

This group of subroutines compute the eigenvalues and either all or selected eigenvectors for a real
symmetric matrix and for a real general matrix.

5. Signal Processing

The signal processing subroutines provide mathematical computations for Fourier transforms,
convolutions, and correlations. They also provide programs for four IBM 3838 Array Processor
Algorithms for signal processing application.

6. Random Number Generator

8 Vectorizing Techniques

Vectorization Technique of Numerical Algorithms

Numerical methods designed for parallel or pipclincd architecture started to appear in the literature
around mid 1960's. Since the first of these machines hecame operational in early 1970's, the literature on
parallel and vector computing has been increasing at a rapid rate. Besides the two books mentioned
earlier, there have been numerous survey papers written on all aspects of parallel/vector computing. In the
case of numerical methods, most of the early work were reviewed by l'vfiranker in 1971 [11). Ileller [121
surveyed methods for linear algebra problems in 1978. Similar survey was given by Sameh in 1977 [131.
Recently, (1985) Ortega and Voigt [14] gave a complete account on solution of partial differential equations
on parallel and vector computers.

It is appropriate, at this point, to clarify the usc of the terms pa,-allel and vector in reference to machines
and algorithms. Since early 1960's, two contrasting architectural designs have been proposed to exploit
the parallelism exhibited in many applications. One design employs array of processors operating simul
taneously (or in parallel, hence the name parallel machine) under one central control. An example of such
a machine is the Iltiac IV. Another design makes use of pipelined arithmetic units and instructions which
accepts vector operands (hence the name vector computer) such as the eRA Y-I. Both designs fit Flynn's
[15] classification as SIMD (single instruction stream, multiple data stream) machines. The vector design
has been demonstrated to be more cost effective using- the available technology. The methods developed
for both types of machines are often interchangeahle.

Recently numerous designs which fit Flynn's classification as MIl\fD (multiple instruction stream,
multiple data stream) machines have appeared. These designs range from a few replications of the basic
design to thousands of microprocessors operating in unison. Commercii111y available MIMD machines
offer a limited parallelism. Examples arc IBl\1 30R4 and 3090 systems. The parallel methods developed
for such machines work best with coarse granularity while vector algorithms concentrate on operations in
nests of iImer loops. In addition, the characteristics of eaeh individual machine, such as the size of available
memory, the accessibility of data, the instruction set, and so on, can greatly influence the applicahility of
a particular algorithm. The challenge for the user is to select or devise an algorithm and arrange the
computation so that the architectural features of the target machine arc fully utilized. In the rest of this
paper, we limit our discussion to vectorizing techniques on the 3090 Vector Facility.

Techlliqlles of l'ectorizatioll

Many vector algorithms follow the principle known as ,.e orde ring. Rem'dering may involve restructuring
the computational domain such as re-numbering the nodes in a grid so that more parallelism is revealed
in the cOlnputation; or it may simply mean the rearranging the order of computation in order to increase
the vector length or to decrease the stride or hoth.

Vectorization Technique of Numerical Algorithms 9

An example of using the ,-eOl-dering principle is the implementation of the 3090 VF instruction multiply
and accumulate where products of corresponding clements of two vectors are accumulated into four partial
sums in the ftrst four locations of a vector register. The instruction Jum partial .~ums is next executed to
obtain the total sum. The reason for arranging the computation in this manner is to allow the multiply
and add pipelines working in tandem so as to produce one multiply-and-add result each clock period. We
shall give additional examples of using the reorde,-ing principle below.

The above principle is applied to increase the percentage of a computation that can be vectorized. In
order to execute the vector instructions at full spced, source vectors must be delivered to the arithmetic
pipeline without any delay. This wi11 happen if the data needed are already in the cache memory. Since
a single vector instruction may specify large amount of computation, the requirement on data rate is more
severe in vector processing than in scalar processing. One should exercise extra care in structuring the data
so that cache memory and main memory are optimally utilized. This can be achieved by choosing stride-l
or low stride algorithms. Fortunately, many algorithms in scientific computation involve operations on
vectors whose elements reside in consecutive memory locations.

To reduce the memory traffic, intermediate results of compiltation should be kept in the registers as long
as possible. Outer-loop unrolling r 16J is a programming technique to achieve this end.

Vectorization in Lilleal" Algebra

Computational linear algebra is the rTIost studied topic in nun1erical analysis because the majority of
scientific computation can be formulated as basic matrix and vector operations. Large matrix problems
are now routinely solved owing mainly to the existence of reliable software such as LINPACK [17} and
EISPACK (18). There is also a great wealth of literature on matrix calculations on vector computers. The
reader is referred to the survey papers mentioned above for more information. A. recent paper by Do ngarra ,
Gustavson, and Karp [I 9J is particularly informative. They discuss how the performance can vary by
simply reordering the loops in the program and suggest hest algorithms for register oriented vector machines.
The report [6J also includes a section on implementing well-known algorithms on the 3090 VI'. We do
not intend to give a complete review of previous works here. Instead, we shall illustrate the use of the
principle of reOl·de";ng and the method of evaluating competing algorithms by implementing the computation
of

• Two basic vector operations

• Matrix-vector multiply

• Convolution

• Tridiagonal system solution

• Iterative solution of large sparse linear systems.

10 Vectorizing Techniques

Two basic vector operations

1. Dot product, known as SDOT in RLAS

For two vectors x and y each with n elements, the dot product is given by:

(6)

2. Scalar times vector plus vector, known as SAXPY in 8LAS

For two vectors x and y and a scalar a, this calculation is given by:

y+ax (7)

Both expressions can be computed efficiently on 3090 VF.

Dot Product

Dot product can be computed with the sectioning loop shown below:

'* assume vector length n in GRO
'* address of x in GRI
'* address of y in GRZ
*

VZPSD VRO zero partial sums
LOOP VLVCU GRO load VCT and update

VLD VRZ,GRI load a section of x
VMCD VRO,VR2,GR2 multiply section of y to x

* and accumulate partial sums
Be 2,LOOP branch to LOOP if GRO>O
SDR FRO,FRO clear FRO
VSPSD VRO,FRO sum partial sums (dot pdt)

Allowing 50 cycles each for VZPSD, VI,VCO, and VSPSD, and assuming 30 cycles of startup time for
each section for VLD and vrvtCO and 5 cycles for each scalar instruction, we can estimate the time (in
cycles) for the dot product to be:

tdot = 2n+ 115[1~8] + 105 (8)

Vectorization Technique of Numerical Algorithms 11

Dot product timing

Using the above formula, we can estimate the running time for some typical values of n.

n

tdot

lVlflop

128

476

29

256

847

33

512

1589

35

1024

3073

36

This compares favorably with the best scalar dot product time of 10 MFLO PS on the 3090.

Scalar times a vector plus vector: SAXPY

SAXPY can be computed with the following code:

* compute y=y+ aX
* assume GRO has vector
* address of X in GRI
* address of y in GRZ
* a is 1n FRO
*

LR GR3,GRZ
LOOP VlVCU GRO

*
*

VlD VRO,GRZ
VMADS VRO,FRO,GRI

VSTD VRO,GR3
BC Z,LOOP

length n

copy address y in GR3
load VCT and update
load a section of y
multiply a section of x
by a and add to the
corresponding y section
store a section in y
branch back if GRO>O

Assuming the same start-up ~ime (30 cycles) for each section of VMADS and VSTD as before, we can
estimate the SAXPY time as:

tsaxpy = 3n + 145 [1~8]

Using this formula, we obtain the following timing:

o

tsaxpy

Mflop

100

445

24

200

890

24

500

2080

26

1000

4160

26

(9)

Note that the MFLO P rates are not as high as those of the dot product. This is because of the I/O
requirement of the SAXPY is 30 words versus only 20 for dot product.

12 Vectorizing Techniques

In general, we can estimate the speed of a computation task by looking at its computation density which
can be defmed as the following ratio:

total operations performed
(10)

total data items required in and out of memory

In general, the higher the computation density, the faster the processing rate. The computation densities of
dot product and SAXPY are I and 2/3 respectively.

In next two sections, we shall look at more complex computations in which multiple S!\XPY's are
required and computation can be arranged so that intermediate results can be held in registers. Thus, store
operations can be mostly eliminated resulted in tnuch higher computation density than the single Si\XPY.

Matrix-vector tnultiply

Consider the multiplication of a vector x by a matrix A:

y=Ax, (11)

where A is a real matrix of dimension mxn, and x and yare real column vectors of dimension nand m
respectively. Assuming that i\ is stored in column-major order, we compare the following three methods
for computing y.

Horizontal .Processing

In horizontal processing, vector computations are performed horizontally from left to right in row fashion.

Assuming that y has been set to zero initially, the FORTRAN code represents the computation of y
using horizontal processing:

DO 10 I = I,M
DO 10 J = I,N

10 Y(I) = Y(I) + A(I,J) * X(J)

The inner loop represents the dot product of i-th row of A and x. Since A is columnwise stored, the stride
of the TOW vector is m.

An equivalent assembly code is:

GRO = n, GRI = GR7 = m
GR5 = GR6 = 1, GRll = 8

*
*
* add. A in GR2, x in GR3, y in GR4

Vcctorlzation Technique of Numerical Algorithms 13

*
LPZ LR GR8,GR3 GR8 has address of x

SDR FRO,FRO clear FRO
VZPSD VRO clear VRO for partial sum
LR GRI0,GR2 GRID get address of A
LR GR9,GRO GR9 = n

LPI VLVCU GR9 load VCT and update
VLD VRZ,GRZ(GRl) load a row section of A
VMCD VRO,VRZ,GR8 multiply by x section

* and partial sum to VRO
Be Z,LPI branch back if GRO>O
VSPSD VRO,FRO sum partial sums in FRO
STD FRO,O(GR4) store dot product in y
AR GR4,GRll update GR4 for next y
AR GRZ,GRII update GRZ for next row
BXLE GR5,GR6,LPZ branch

Using the same assumptions for each type of instructions as before, we get the timing formula for
horizontal proces,t;ing:

(12)

Note that this formula is valid only for infinite cache. The degradation for large matrices that cannot be
held in the cache is severe due to large stride. The code requires m passes over the address space of the matrix.

Vertical Processing

In vertical proce,t;sing, vector computations arc carried out vertically from top to bottom in column fashion.

If we simply switch the DO loops in the horizontal proce.'ising code, we obtain the code for vertical
processing. Thus:

DO 10 J = I,N
DO 10 I = I,M

10 Y(I) = Y(I) + A(I,J) * X(J)

This is a stride-l code. It requires only one pass over the address space of A. The inner loop represents
a SAXPY which requires loading and storing once for each segment of y. We can see this clearly in the
following assembly code.

14

*
*
*
*

assume y has been set to zero
GRO=GR7=n, GRl=m
GR5=GR6=1
GRI0=8

Vectorizing Techniques

* GR2=addreSS~A~
* GR3=address x
* GR4=address y
*
LP2 LD FRO,0(GR3) load x element in FRO

LR GR9,GR4 GR9 gets address of y
LR GR11,GR4 GRl1 gets address of y
LR GR8,GR1 GR8=m

LP1 VLVCU GR8 load VCT and update
VLD VRO,GR4 load a section of y
VMADS VRO,FRO,GR2 VRO=VRO+section(A)* x
VSTD VRO,GRll store y section
Be 2,LPI branch back if GR8>0
AR GR3,GR10 GR3 points to next x elem.
BXLE GR5,GR6,LP2 branch -

The timing formula for the above code is:

(13)

This formula gives good approximation of the computation time even for large matrices since the penalty
for cache traffic is small for stride-l operations. The shortcoming of this code is the need to load and
store y vector 2n times.

Block processing

In block processing, sectioning vector loop computations are performed from left to right and top to
bottom in a combined horizontal and vertical approach.

A FORTRAN code represents the block p,-oce,'iJing is as fol1ows:

C

DO 10 I = 1 , M , Z
DO 10 J = 1 , N
DO 10 II = I , MIN (M , I+Z-l)

C Z is the section size and = 128 on 3090VF
C

10 Y(II) = Y(II) + A(II,J) * X(J)

By sectioning the outer loop, the y vector can he computed one section at a titne (represented by the
inner two loops). The results of the II loop can he held in a vector register until the final results are
obtained (i.e., until the J loop has been exhausted). The codc involves only stride-l operations, although
it does require [m / 128] passes of the address space of the matrix.

Vectorization Technique of Numerical Algorithlns 15

The following code employs the hlock processing approach.

* GRO=GRII=n, GRI=m, GR7=8m, GRIO=I
* GR2=add(A), GR3=add(x), GR4=add(y)
*
LP2 LA GR9,1 GR9=1

LR GR8,GR3 GR8=address of X
VLVCU GRI load VCT and update
VLZDR VRO clear VRO
LR GRS,GR2 GRS gets address of A

LPI LD FRO,O(GR8) load x element
LR GR6,GR5 GR6=current address of A
VMADS VRO,FRO,GR6 VRO=VRO+col. sec. of A*x
AR GRS,GR7 GR5 points to next col. of A
LA GR8,8(GR8) update GR8 to next x element
BXLE GR9,GRIO,LPI branch back if not done
VSTD VRO,GR4 store a section in y
LA GR2,I024(GR2) GR2 points to next block
Be 2,LPZ branch back if GRI>O

Note that no vector load instructions are needed anywhere in the code.

The timing formula is given by:

tb = nm + 2m + (55n + 135) [1;8] (14)

Again this formula gives a good estimate of the running time even for large matrices because only stridc- J

vector operations are involved.

Comparison of horizontal, vertical, and hlock processing

Using the timing formulas, we obtain the following table:

n,m 50 200 500

til 17750 ----- -----

Mflops 15

tv 16250 184000 1055000

Mflops 16 23 26

tb 5485 62670 361540

Mflops 49 69 75

16 Vectorizing Techniques

We can reject outright the horizontal code hecau~e it cau~es inefficient use of the cache storage. The
block code outperfonns the vertical code due to the more efficient use of the vector register. Their
computation densities (being 2 and 2/ 3 respectively) also show the right choice is block processing.

More choices of methods are available for matrix multiply and solution of lincar systcms by simply
reordering the loops. They are discussed in (19).

COil V Oill tio 11

Given two sequences U = (Ul' U2, ... , un) and x = (Xl ,X2, ... , Xm+n-I)' The convolution of X and u, (x * u),
is a sequence of length m given by: (for i = I, ... , m)

n

(x * u)i = L xn+i_jUj'
j-I

(15)

Convolution is actually a special matrix-vector multiply. For example, te.t n = 4 and m = 5, the above
equation in expanded form is:

(16)

(17)

(18)

(19)

(20)

Many algorithms (notably those based on PI'T) have heen developed to compute convolution at reduced
number of operations. \Vhen the length of the filter, U, is small (say 50) compared to the length of the
time series, x, then it is more economical to compute the convolution by straightfonvard matrix-vector
multiply. However, convolution differs from general matrix-vector multiply in two ways:

1. no need to store a matrix

2. no large stride problem.

As a consequence, horizontal processing is faster than l'c,.tical processing in computing convolution. The
best method, nonetheless, is still block processing. In an actual test on the 3090VF [20], a speedup of
more than 10 over the scalar execution was obtained using the block approach.

Vectorization Technique of Numerical Algorithms 17

Tridiagonal Solver

The solution of tridiagonal system of linear equations are required when implicit schemes are used to
solve differential equations by finite difference methods. The usual method for solving such a system on
a serial computer is based on Gaussian elimination which is entirely recursive and docs not lend itself
conveniently to vectorization. In the past dozen years, a number of new algorithms have been proposed
for solving tridiagonal systems on parallel and vector computers. Probably the best vector algorithm is
based on the cyclic reduction method [21) first developed by Gene Golub and Roger Hockney and reported
in Hockney [22]. For a system of n equations, the average vector length of cyclic reduction is n / p, where
p = log2n. This vectorization is achieved at a cost of approximately twice the arithmetic operations (as
compared with Gaussian elimination). In what follows, we estimate the speedup of cyclic reduction over
Gaussian elimination for solving one system of tridiagonal equations.

Gaussian Elimination

Consider the tridiagona1 system of n linear equations: Ax = r, where A is a tridiagonal matrix with its
i-th row denoted by (... , Ci,al,b/,.J. The solution can be obtained in 2 steps:

1. Forward step.

(21)

(22)

(23)

y/ = rl - cl ~_ 'Yi- , ' i = 2, ... , n. (24)

2. Backward step.

(25)

(26)

In actual coding, array d can replace the main diagonal a, while y, and x can share the same space as r.
A total of 9n arithmetic operations (including Il divides) are required to obtain the answers.

18 Vectorizing Techniques

FORTRAN code for Gaussian elimination

The following code computes the solution of one tridiagonal system.

SUBROUTINE GAUSS3(A,B,C,R,N)
C
C A is main diagonal, B is super-diagonal.
C C is sub-diagonal.
C R is the right side and result on exit.
C

DIMENSION A(N),B(N),C(N),R(N)
C
C forward step
C

A(I)=l.O/A(l)

10

DO 10 I =2,N
A(I)=1.0/(A(I)-C(I)*A(I-l)*B(I-l»
R(I)=R(I)-C(I)*A(I-l)*R(I-l)

C
C backward step
C

R(N)=R(N)*A(N)
DO 20 I =N-l,l,-l

20 R(I)=(R(I)-R(I+l)*B(I»*A(I)
RETURN
END

Note that a good compiler should only evaluate the expression: C(I)'" A(I - 1) once.

Cyclic Reduction

The approach in cyclic reduction is to eliminate in the even-numhered equations the coefficients associated
with the odd-numbered variables by elementary row t.ransformations. These transformations can be carried
out simultaneously. The transformed even-numbered equations again form a tridiagonal system half of the
original size. The elimination can be repeated on the reduced system. After p steps of such elimination,
there is only one equation left. The solution of that equation is readily ohtained. Other solutions can then
be obtained by back substitut.ion .. The implementation of the algorithm as given in (231 requires a total
of 20n arithmetic operations (including n divides).

As a vector algorithm to solve tridiagonal equations, (~yclic reduction as described above has two weak
nesses, namely:

1. The vector length changes by a factor of 2 each step. This causes more overhead.

2. The indices of the coefficients appearing in successive tridiagonal system become further separated at
each step. This complicates the addressing scheme and results in less than optimal use of the cache storage.

Vectorization Technique of Numerical Algorithms 19

A recent implementation by Kershaw (24) alleviates the second weakness mentioned above. In addition,
the operation count of his implemcntation is reduced to 18n (with n divides) at the expense of some extra
storage.

Speedup

In [25J, a measurement of the 3090 vector time of the cyclic reduction was made based on an implemen
tation of Kershaw's algorithm. Similar technique was used to measure the scalar execution time of the
Gaussian elimination solution. The diagram of speedup versus the order of the matrix, n is reproduced
here as Figure 3. I

Note that the vector execution is slower than the scalar execution for n < 250. Even for large n, the
speedup is insignificant although the cyclic reduction code is almost entirely vectorizablc. This is largely
due to:

• The excellent scalar speed of the 3090 makes its vector to scalar speed ratio relatively moderate.

• Cyclic reduction requires twice the amount of arithmetic as compared with Gaussian elimination.

However, quite often solutions of multiple independent tridiagonal systelns are required (example: Line
SOR method discussed in the next section) when finite difference methods are used. In these cases, the
scalar Gaus.~ian elimination algorithm can be applied simultaneously to all (or two halves in the case of
line SOR) the tridiagonal systems and the execution can be completely vectorized.

Iterative soilltion of large sparse lillear syste111S

Large but sparse linear systems of equations arise when finite difference methods are used to solve partial
differential equations. \Ve choose the following model problem for discussion.

The Model Problem

The most studied elliptic boundary value problem is the Dirichlet problem, which is to find the equi
librium temperature distribution in the interior of a homogeneous solid when specified temperature is
prescribed on its boundary. By physical principle, the tcmperature satisfies the Lap/ace equation. In two
space dimensions, the Laplace equation takes the form

(27)

The vector speedups of the tridiagonal solvers included in the new release 2 r~C;SL (May, 1987) are noticeably better then those
sh<?wn in Figure 3.

20 Vectorizing Techniques

1.5

1.0r---~---
(L
::::>

I
o
W
w
(L
(j)

0.5

o.o~~~~~~~~~~~~~~~~~~~~~~~~

o 500 1000 1500 2000 2500

Figure 3: Estimated speedup of vector vs scalar algorithm for tridagonnl system solyers as a function of n.

The model problem refers to the solution of the Dirichlet problem in a unit square region,
R:O < x < 1,0 < y < 1. That is: to find u(x, y) which satisfies equation (27) in R and the boundary value,
g(x,y), specified on four sides.

In the numcrical solution we impose a uniform grid R(/t) on R, where R(/t) is Inade of mesh lines:

(28)

where h = (n + 1)- t. For example, for n = 4, the grid is as shown in Figure 4. The intersections of the
grid lines are called grid points. Those in the intcrior are called intcrior grid points (solid dots) and those
on the boundary are termed boundary points. The standard five-point difference equation which approx
imates equation (27) is:

Vcctorization Techniquc of Numerical Algorithms 21

Figure 4: A grid with 4x4 interior grid puints.

4u(ih,jh)-u«i-I)/t,jh)-u«i+ l)h,j/t)-u(ih,U-l)h)-u(ih,U+ I)h)=O, i,j= l, ... n. (29)

The above formula is valid for all interior mesh points. Expressing in words, the formula simply means
that the temperature at a point is the average temperature of its four nearest neighbors.

For instance, if we apply the above difference equation to the grid in Figure 4 in which the interior grid
point are numbered in rowwise and left to right fashion (natu,.alorde,.ing) as shown in Figure 5, we obtain,
for grid-point 1, the equation:

4u1 - U:2 -lis = u(.2, 0) + u(O, .2) = g(.2, 0) + g(O, .2) s r t (30)

and for grid-point 2:

-UI +4U:2 -1.l:3 -~ =u(.4, 0) =g(.4, 0) sr2 (31)

and so on. Note that the right hand sides of both equations consist of known boundary values and we
have used new symbols, rt and r2, to represent them.

vVe can express all the equations in a single matrix equation:

Au=r, (32)

22 Vectorizing Techniques

Figure 5: Natural ordering of interior grid points.

where A is the coefficient matrix, and u is the column vector of unknowns, and r is the column vector of
known boundary values. In our 4x4 grid example, the matrix A takes the form as shown in Figure 6.
Note that the matrix is sparse in view of the fact that the maximum number of nonzero element in a row
or column is five, also note that the matrix is regularly structured in that an the nonzero elements lie on
five diagonals. Experience shows that such a system can he very effectively solved by an iterative method.

Most iterative methods can be described as follows: 1,ct 1\1 he a nonsingular matrix but otherwise
arbitrary, then A = M - B is a .t;plitting of A and, associated with this splitting, there is an iterative scheme
for solving (32)

(33)

where the superscript indicates the iteration numher. The basic operations of numerical methods for
solving (32) are matrix-vector multiplication and solution of linear system involving sparse but regularly
structured matrix. For good vectorization, we like to choose an iterative method such that:

1. The Matrices M and B in (33) retain the sparse and diagonal form of A.

2. The matrix M is easily factored into triangular factors which are as sparse as A and possess partitions
with diagonal blocks (D},D2, .•. , Dm), where Di are diagonal and m is SInaU (preferably 1 or 2 or at
least much less than the order of matrix).

Vectorization Technique of Numerical Algorithms 23

4 -1 -1

-1 4- -1 -1

-1 4- -1 -1

-1 4- -1

-1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1

-1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1 -1

-1 -1 4 -1

-1 4 -1

-1 -1 4 -1

-1 -1 4 -1

-1 -1 4

Figure 6: Matrix A corresponding to the natural ordering.

Condition 1 is important because matrix-vector multiply involving A1 and B can be computed with a
few vector multiply and add instructions if they are stored hy the diagonals. Condition 2 is essential for
fast vector solution of linear systems involving M.

Basic Iterative Methods

It is convenient to express the matrix A as

A=L+J)+ U, (34)

where L is the strict lower triangular part of A, D is the main diagonal of A, and U is the strict upper

24 Vectorizing Techniques

triangular part of A. In studying an iterative method, not only one should know how easy it can be
computed, but also one must ask how fast docs it converge?

1. The Jacobi Method

Perhaps the simplest iterative scheme is the Jacobi iteration in which Al = J) in (33). That is

U(I+I) = D- 1 [r- (L + U)u(i)] (35)

It. prescribes that the value of the new iteration at a point is the average value of the previous
iteration at its four nearest neighbors. It is quite obvious that all cOInponents of the right side
vector of (35) can be computed simultaneously and the method is completely vectorizable with long
vectors (length = n2) with the natural ordering of the grid points. Howcver, this method is seldom
used because of its slow convergence rate.

2. The Gauss-Seidel Method

It is intuitively clear that if we make usc of the new values as soon as they have been computed
in the iteration (33), the convergence will be faster. Indeed, we can double the rate of convergence
if we use the Gauss-Seidel method where such strategy is employed by letting M = L + D and the
iteration can be written

(L + D)u(i+ 1) = r _ Uu(i) . (36)

Equation (36) represents a lower triangular system of linear equations. It is readily apparent that
the Gauss-Seidel iteration using the natural ordering is not vcctorizable since condition 2 discussed
above is not met. Fortunately, it has been shown (see Young [261, for instance) that convergence
will not sufTer if we reorder the grid point in checkerboard fashion, or the so-called ,-ed-black
ordering as shown in Figure 7. The matrix A corresponding to this ordering is shown in Figure R
. Equation (36) can naturally be partitioned into the block form

(37)

The above equation can be computed in two steps: i.e.,

(1+ I) _ If"\ -I [if (i)] u 1 -./ I rl - U2 ' (38)

and

(HI) _ D- 1 [L (/+1)] u2 - 2 r2 - u1 . (39)

Vectorization Technique of Numerical Algorithms 25

Figure 7: Red-black ordering of interior grid points.

These two equations look a lot like the Jacobi iteration and each involves vector operations with
vector length n2 /2. We want to point out here that non-zero clements of Land U lie on five
diagonals in our 4x4 example. In the case when t.he number of grid points on each line is odd, the
non-zero elements would lie only on four diagonals. Therefore, one must be careful in computing
the matrix-vector products involving Land U.

We have just demonstrated that by reordering the grid point in checkerboard fashion, we transform
the serial Gauss-Seidel method into a very satisfying vector method.

3. The Successive Over-relaxation (SOR) Method

The convergence rate of the Gauss-Seidel method can be increased by an order of magnitude if
the SO R method is used. The SO R method can be regarded as an extra extrapolation process from
the Gauss-Seidel iterates. That is

(i+ I) (i) (i+ I)
Usor = (1 - c.))u.wr + c.)ugs ' (40)

where c.) is the relaxation factor. The best value for c.) is between 1 and 2. If c.) = 1 the method
reduces to that of Gauss-Seidel. The SOR has heen the method of choice for many applications
involving sparse linear systems ever since Young's dissertation (27) was puhlished in the early 1950's.
The red-black ordered SOR method has also become the standard method for vector computation.

26 Vectorizing Techniques

4 -1 -1

4 -1 -1 -1

4 -1 -1 -1 -1

4 -1 -1 -1

4 -1 -1 -1

4 -1 -1 -1 -1

4 -1 -1 -1

4 -1 -1
-1 -1 -1 4

-1 -1 4
-1 -1 -1 4

-1 -1-1 -1 4
-1 -1 -1 -1 4

-1 -1 -1 4
-1 -1 4

-1 -1 -1 4

Figure R: Matrix corresJlonding to rerl-hlack ordering.

Block Iterative Methods·

The convergence rate of a basic iteration can he increased if we use the corresponding block iteration in
which a group (block) of grid points arc updated simultaneously. In the case of the popular line-SOn
method where a tine of grid values are computed via the solution of a tridiagonal system. Thanks to the
work of Cuthill and Varga [2RJ, line iteration docs not incur additional computation cost over the basic
point iteration. As in the case of point method, the line-SOR using the natur'al o,.de,.ing (i.e., line by line
order) is not vectorizable. However, it is obvious that all the odd (even) lines can be solved simultaneously.
Therefore, the line method using the red-black. or the zeb,.a ordering is vectorizable with vector length
n/2 (solving n /2 tridiagonal systems simultaneously). for large grid problem, this is the choice method
for many applications.

Vectorization Technique of Numerical Algorithms 27

Other Iterative Methods

In recent years, many iterative methods have been devised to compute the solution of large and sparse
systems, most notable among them are a group of methods called the preeconditioned conjugate gradient
(peG) methods. For a review of their effectiveness on modern vector computers, the reader is referred
to the survey [14J and the references contained therein.

28 Vectorizing Techniques

Summary

We have discussed three methods of vcctorization:

1. Use the vectorizing compiler: VS FORTRAN Version 2 Compiler.

2. Restructure the application code before compile.

3. Write a new code based on a new vector algorithm.

We have given, via examples in linear algebra computation, some good vector practices:

• Choose stride-lor low stride algorithms.

• Use block proce.uing whenever feasible to optimize the vector register usage.

• Reorder the DO-loops often lead to good vectorization.

• Make calls to vector libraries such as the ESS1.,.

Sumlnary 29

30 Vectorizing Techniques

Bibliography

[I) R. W. Hockney and C. R. Jesshope, Parallel Computers: Architecture, Programming and Algo
rithms, Adam Hilger Ltd (Bristol, England, 198 I).

[2) K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-lIill (1984).

[3) G. Paul and 1\1. W. Wilson, VECTRAN Language: An ~xperimenlal Language for Vector-Matrix
Array Processing, IBM Palo Alto Scientific Center Report G320-3334 (1975).

[4] G. M. AmdahC Validity of the single processor approach to achieving large scale computing
capabilities, AFIPS Conference Proceedings 30 (1967) pp. 483-485.

[51 VS-FORTRAN Version 2 Compiler, I,ihrary and Interactive Debug, General Information,
GC26-4219, IBM Corporation.

[6] A. A. DubruIle, R. G. Scarborough and II. G. Holsky, How to Write Good Vectorizable
FORTRAN, IBM Palo Alto Scientific Center Report G320-3478 (1985).

(7] M. Metcalf, FORTRAN Optimization, Academic Press (1982).

[8] Assemhler II Version 2 Application Programming Guide, SC26-4036, IBM Corporation.

[9] Engineering and Scientific Subroutine Library, General Information, GC23-0 182, IBlVt Corpora
tion.

[10] C. L. Lawson, R . .T. Hanson, D. R. Kincaid, and F. t. Krogh, Basic Linear Algebra Subprograms
for FORTRAN Usage, ACAI Transaction.f on J..lathematical Software 5 (1979) pp. 308-323.

[11] W. Miranker, A Survey of Parallelism in Numerical Analysis, SIAl\! Review 13 (1971) pp. 524-547.

[12] D. Heller, A Survey of Parallel Algorithms in Numerical Linear Algebra, StAAl Review 20 (1978)
pp. 740-777.

[13] A. Sameh, Numerical Parallel Algorithms, A Survey in D.Kuck, D.Lawrie, and A.Sameh (editors),
High Speed Computer and Algorithm Organization, Academic Press (1977) pp. 207-228.

[14] J. M. Ortega and R. G. Voigt, Solution of Partial Differential Equations on Vector and Parallel
COInputers, SIAM Review 27 (1985) pp. 149-240.

[15] M . .T. Flynn, Very High-Speed Computing Systems, Proc. IEEE 54 (1966) pp. 1901-1909.

Bibliography 31

[16)

[17)

[181

[191

[20)

[21]

[22J

[23}

[24J

[25]

(26)

[27]

[28]

32

J. 1. Dongarra and S. C. Eisenstat, Squeezing the !\tlost out of an Algorithm in CRA Y FORTRAN,
ACM Transaction.r on Mathematical Software 10 (1984) pp. 219-230.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. 'V. Stewart, LINPACK User's Guide, SIAM,
Philadelphia (1979).

B.T.Smjth, J.M.Boyle, J..J.Dongarra, B.S.Garbow, Y.lkebe, V.C.Klema and C.B.Moler, Matrix
Eigensystem Routines-EISPACK Guide, second edition, Springer-Verlag (1976).

J.J.Dongarra, r.G.Gustavson, and 1\.1 I. Karp, Implementing Linear Algebra Algorithms for Dense
Matrices on a Vector Pipeline Machine, SIAM Review 26 (1984) pp. 91-112.

G. Radicati, privite communication, IBM Scientific Center, Rome, Italy.

H. S. Stone, Parallel Tridiagonal Equation Solver, ACM Tran.rcations on Mathematical Software
1 (1975) pp. 308-329.

R. W. Hockney, 1\ fast direct method of Poisson's equation using Pourier analysis, .Iournalof
the Association for Computing Machinery 12 (1965) pp. 95-113.

J. J. Lambiotte and R. G. Voigt, The solution of tridiagonal linear systems on the CDC Star-l()O
computer, ACM Transcations on Mathematical Soft'ware I (1975) pp. 308-329.

D. Kershaw, Solution of single tridiagonal linear systems and Vecf.orization of the ICCG Algorithtn
on the CRAY-I, in (,. Rodrigue (ed), Parallel C·omputation.f, Academic Press (1982) pp. 85-100.

J. Gazdag, G. Radicati, P. Sguazzero and II. II. Wang, SeisInic Migration on the IBM 3090
Vector Facility, IBM .Iournal of Research and Development 30 (1986) pp. 172-183.

D. M. Young, Iterative Solution of Large I)near SY.f;tems, Academic Press (1971).

D. M. Young, Iterative Methods for Solving Partial Difference Equations of Elliptic type,
Transcation.r of American Mathematical Sodety 76 (1954) pp. 92-111.

E. H. Cuthill and R. S. Varga, A Method of Normalized Block Iteration, .I. A.'i.'io. CompUl. A4adt.
6 (1959) pp. 236-244. '

Vectorizing Techniques

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHORS:

H. H. Wang

2. TITLE:
Introduction to Vectorizing Techniques on the IBM
3090 Vector Facility

3. ORIGINATING DEPARTMENT

Palo Alto Scientific Center

4. REPORT NUMBER

Sa. NUMBER OF PAGES

32

G320-3489

Sb. NUMBER OF REFERENCES

28

9. SUBJECT INDEX TERMS

Vector
IBM 3090
Linear Algebra
Matrix
SOR Methods

6a. DATE COMPLETED

March 1986
6b. DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING

March 1986 June 1987

7. ABSTRACT

The advantage of vector processing is first reviewed. Then the IBM 3090 Vector Facility and
software tools are briefly discussed. The major part of the report is devoted to the methodology
of choosing algorithms on the target vector machine. We illustrate the method of evaluating
algorithms and pOint out various good practices with examples in linear algebra problems
commonly encountered in science and engineering.

8. REMARKS

