
--- ------ ----- ---- - ---- - - ----------_.-
IBM PALO ALTO SCIENTIFIC CENTER 

G320-3489, March 1986 

Introduction to Vectorizing Techniques 
on the IBM 3090 Vector Facility 

H. H. Wang 



Introduction to 
Vectorizing Techniques on tile IBM 3090 Vector 

Facility 

H. H. "Vang 

Document Number G320-3489 

February t 986 

IBM Palo Alto Scientific Center 
1530 Page IVlili Road 
Palo Alto, California 



11 Vectorizing Techniques 



Abstract 

The advantage of vector processing is first reviewed. Then the IBl\t1 3090 Vector Pacility and software 
tools are briefly discussed. The major part of the rcport is devoted to the methodology of choosing 
algorithms on the target vector machine. We illustrate the method of evaluating algorithms and point out 
various good practices with examples in linear algehra prohlems commonly encountered in science and 
engmeenng. 
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Vector Processing Pl;eliminaries 

A vector computer is designed to speedup repetitive but independent computations applied to large 
arrays of data. The clements of these arrays arc usually arranged regularly as vectors or matrices in the 
sense as understood in linear algebra. More specifically, in data processing terminology, a i'cctor is an 
array of data whose successive clements are stored either in consecutive store locations or in locations 
separated by a constant stride. Thus, rows and columns as wen as diagonals of a matrix are common 
examples of vectors. So are tabulated measurements of physical variables such as temperature, and pressure. 

The main approach to gain speed in a vector computer is pipe/ining. The term pipclining refers to the 
design technique that subdivides a basic operation into suh-operations each of which is performed by a 
special hardware in the same fashion as an assembly line in industrial manufacturing. The pipelining 
principle has been applied to memory access and instnlction decoding since early 1960's. Pipeiincd 
arithmetic units were first included in machines like the System 360 l'v1odel 91 and others. However, these 
machines are scalar machines because thcir arithmetic instructions arc executed with only one pair of 
operands. The first commercial vector machine "vas the Texas Instruments Inc. ASC (de1ivered in 1972) 
with hardware instructions which accept vectors as operands. 

A typical float.ing-point add pipeline with four segments (compare exponents, align fractions, add fractions, 
and normalize) is shown in Figure 1. 

When a vector instruction is issued, it initiates the stream of operands (assuming two source vector 
operands) to the pipeline, each segment of the pipeline accepts a pair of operands, performs its particular 
function, passes the result to the next segment, and receives the next pair of operands from the stream. 
At any instant during the execution, several pairs of operands are heing processed concurrently in the 
pipeline. The net effect is that there is an initial delay to complete the first result, called the startup time, 
but each subsequent result follows quickly since it is only one segment away. Thus if the operands can 
be delivered to the pipeline in steady streams, the time for the completion of a vector instruction producing 
N results is given by 

1~ = S + Nt, (1) 

where S is the start up time, t is the time for each segment to complete its task. The startup tilne can he 
thought of as an overhead of a vector instruction. Its significance diminishes as the vector length N becomes 
large. To enhance the effective bandwidth of data flow to match the execution speed of the arithmetic 
unit, a high speed buffer memory (cache) is included as a part of the IBM 3090 VF,although a highly 
interleaved memory is often employed on other systems. 

Another approach to gain in speed is the technique called cllOinillK in which multiple pipelines are linked 
together and operate as a single long pipeline. Chaining is offered on the IBM 3090 VF in the form of 
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Figure I: A floating-point 3fld pipeline. Vector add: C = A + n. 

compound instructions, multiply and add and mulaply lind accumulate instructions. Besides enabling" the 
full usc of the pipelines, vector instructions also suhstantially reduce the need to execute branch instructions. 

The speed of a scalar computer is usuaI1y measured by the numher of instructions executed per unit 
time, such as 'million instnlctions per second' (illIPS). For a vector processor, which is primarily designed 
for scientific computation, it is universally accepted to measure the speed by the number of useful (in the 
user's point of view) arithmetic operations performed per unit time, such as the usc of million floating-point 
operations per second (~IEGA FLOPS, or JllF1J)PS). There is no fixed relationship hetween the two 
measurements. In general, it takes two to five instnlctions to perform a floating-point operation on a 
scalar machine. 

For detailed information on various parallel/vector architectures, the reader is referred to the 'book by 
Hockney and Jesshope [I) and the book by Hwang and Briggs (2). 
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Vectorization 

Vectorization means different things to different people. To a language developer, vecto,.ization is designing 
array-like language extensions to FORTRAN such as VECTRAN [31. To a compiler writer, it means 
analyzing the dependencies of the statements of the source code (DO-loops) and convert as much sequential 
operations to equivalent vector operations as economical1y feasihle. To a user, vecto,.ization means the 
introduction of hardware vector instructions into his program so that the high speed of these instructions 
can be effectively utilized. In general, a user has following three choices to do this: 

1. lIe may choose to vectorize his application simply hy recompiling his scalar rORTRAN code using 
the vectorizing compiler; or 

2. he may ohtain more henefit by first restructuring his code so as to assist the compiler to recogntze 
more opportunities for generating vector code; or 

3. he may recode completely his application hy choosing or devising a new algorithm to reap the most 
benefit frotTI the target vector machine. 

We shall restrict our discussion on techniques of ,'ecto,.ization from a user's point of view. 

Traditionally, on ~ scalar machine, the fastest algorithm is one t.hat requires the least amount of arithmetic 
operations. This is not necessarily tnlc anymore on a vector computer. An algorithm with higher operation 
count but which vectorizes well may outweigh the cost of extra arithmetic operations when executed in 
vector mode. An example of this is the tridiagonal system solver (discussed below), where the vector 
algorithm requires about twice as many operations as the scalar algorithm, but is faster than the scalar 
algorithm executing in scalar mode for sufficiently long vectors. The performance of a vector code also 
depends on the average vector length, and the startup time of the vector instructions. After an application 
is vectorized, it is natural to try to measure its performance in some way. The most commonly accepted 
measure is speedup, which is frequently defined as 

p= scalar execution time 
vector execution time 

(2) 

This definition works fine when one vectorizes his application using the first two methods. IIowever, 
ambiguity arises when vectorization is achieved using a different algorithm. In this case, he is more 
interested in comparing the execution speed of the scalar algorithm with that of the vector algorithm under 
consideration. So, a better definition of speedup is 

p' = 
scalar execution time using the hest scalar algorithm 

vector execution time using the vector algorithm 
(3) 
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This shows that an execution using a highly vedorizable algorithm with a high speedup factor P docs not 
necessarily mean a large improvement over the scalar execution. 

We want to mention another definition of speedup which reveals clearly the role of scalar operations in 
a vectorized code. Let v denote the percentage of arithmetic operations in the code that can be executed 
by vector instructions, then the speedup is given by 

(4) 

where R is the ratio of vector speed over the scalar speed. If v= 0.5, or in another word, if the program 
is 500/0 vectorizable, then the speedup cannot exceed the value of 2 even if the vector operation is infinitely 
fast. This phenomenon was first discussed by Amdahl in 1967 (4) and is known as "Amdah(s law". Figure 
2 shows the speedup as a function of v for several representative values of R. Experience show that for 
most applications the values of v fall between 0.5 - 0.9. This means that the speedup for most programs 
will be limited in the range of two to ten no matter how fast the vector speed. However, if the cost of 
vector hardware is only a smal1 percentage of the total cost of a complete scalar/vector processing system, 
then the case for the additional hardware which can douhle or triple the speed of many programs is easily 
rnade. 

In what follows, we first briefly discuss, for completeness, the J090 Vector Facility and software tools 
available. We then devote the rest of the report to our main purpose: to discuss the methodology· of 
choosing algorithms on the target vector machine. \Ve iI1ustrate the method of evaluating algorithms and 
point out various good practices with exampk~s in linear algebra problems commonly encountered in 
science and engineering. 

IBM 3090 Vector Facility 

The 3090 Vector Facility is an integral part of the CPU. Its main features are: 

• 16 128-word vector registers (or 8 double-word vector registers) 

For both standard and long floating-point data as well as 32-bit integer data. 

• 128-bit long Vector Mask Register 

- To hold the results of vector compare and to serve as argument or result of other logical operations 
and to use as mask for mask controJIed operations. 

• 63 vector instructions ( 171 opcodes ) 

Many instructions with 3 operands and one of them can be frotn memory. 

multiply and add and multiply and accumulate instructions to produce one multiply-and-add result 
per machine cycle. 
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- Elements of a vector in memory can be in consecutive memory locations or can be separated by a 
constant stride. The stride can be any signed integer. 

Gather and scatter instructions to facilitate sparse vector operations. 

Since the vector registers is of length Z = 128 on the 3090 VF, vector instructions can only process Z 
elements at a time, and vectors of length greater than Z must be processed by sections, in a process quite 
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sectioning, the timing formula for a vector instruction of Icngth N on 3090 vr is given by 

(5) 

where r is the startup time for processing each section, and s is the vector-sectioning-loop set-up time. 
The significance of s diminishes when there are more than one vector instructions in the sectioning loop. 
Note that here and afterwards the square brackets denote the ceiling function. 

VS-FORTRAN Version 2 COIn/lifer 

Naturally, vector instructions can be incorporated into a program most dircctly by programming in 
assembler language. However, the preferred language in science and engineering is FORTRAN. Plus the 
fact that the vast amount of old FORTRAN programs makes the conversion to assembler impractical. 
Therefore, vast majority of the application programs must rely on the compiler for vectorization. The 
VS-FORTRAN Version 2 Compiler is designed to fulfill this need. 

The VS FORTRAN Version 2 Compiler employs the state-of-the-art technique in producing highly 
optimized object code. When scalar compilation is requested, the compiler generates optimized scalar 
code. When vectorization is requested, the compiler, in addition, analyzes an the nests of DO loops and 
identifies in them the statements which may be vectorized, applies economic analysis and chooses those 
loops and statements which wiU execute fastest on the target vector hardware, and generates optimized 
vector code for them. 

Vector Sectioning Loop 

The basic result of vcctorizing a DO-loop is to produce vector instnlctions that operate on groups of 
data elements. Since the vector instructions on the ]090 Vector Facility operate on Z elements at a time, 
the compiler converts the scalar loop into a loop over groups (sections) of Z elements. Thus, the loop: 

DO 1 I =-1, N 
1 A(I) = 8(1) 

is converted by the compiler into: 

DO 1 I = 1, N, Z 
DO 1 II = I, MIN(N,I+Z-l) 

1 A(II) = 8(11) 

The inner loop (loop with index II) is not actually present. It represents the actions of the vector instruction 
produced by the compiler. 

For more detailed descriptions of the Vectorizing Compiler consult the manual (5) and the report r6). 
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Good FO RTRAN Practice 

Since the compiler generates both scalar and vector codes, it is important to follow good scalar practice 
as well as good vector practice in preparing the application code. Portunatc1y, experiences show that it is 
generally true that good vector practice implies good scalar practice and vice versa. It is not unusual that 
a well converted program intended for a vector machine runs faster even on the scalar portion of the 
machine. It is equally true that a good scalar program which make efficient use of the high-speed huffer 
memory (cache) will often result in good vector object code when submitted to a vectorizing compiler. 

A notable exception to the general rule is the scalar practice of loop unrolling. See [6) for detail. 

The single most effective way to achieve optimal use of storage in vector code is to use stride-l operations 
as much as possible. This means, for example, in matrix calculation, using column-oriented algorithm 
rather than row-oriented algorithm. When writing nested DO-loops for operation on multi-dimensional 
arrays, try to vary the subscripts in order of leftmost to rightmost. 

When rows of a matrix must be accessed and the column dimension is even (especially when it ean be 
divisihle by a large power of 2), then it is sometimes advantageous to pad the column so that the column 
dimension becomes odd. To do this will make more effective use of the interleaved main storage and will 
also make fuller use of the cache. As a result, the execution will be speeded up at a small cost of storage 
space. 

Por more tips on writing good fORTRAN programs intended for both scalar and vector hardware 
please see [6]. The book by lYfetcalf [7] also contains many good PORTRAN practices. 

Assenlbler H Version 2 

For users who wish to obtain the maximum benefit from the scalar/vector hardware. See the manual [RI. 

Engineering and Scientific Subroutine Libr'ar)) (ESS L) 

ESSIJ [9] is a set of mathematical routines that exploit the SYSTEM/370 Vector Hardware. It consists 
of a vector library and a scalar library. The vector library employs the state-of-the-art or new algorithms 
and fine tuned in assembly language for the vector facility to achieve optimum performance. \Vhere 
feasible, the effects of paging, cache size, and vector size have all been taken into consideration when 
deciding on an algorithm. The execution rate') of ~ome of the routines in the library approach the 
theoretical maximum rate of the vector hardware. The scalar library, with its subroutines having the same 
calling sequences as their counterparts in the vector library, is provided so that one can develop the 
application code on any scalar facility that sub~cribes the lihrary. ESSL subroutines can be called from 
VS FORTRAN programs as well as from Assembler programs. 

The library consists of more than one hundred commonly used subroutines in both short and long 
precision. These routines fall into six areas of mathematical computation. 
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1. Linear Algebra 

The linear algebra subprograms consist of vector-scalar subprograms and matrix-vector subprograms. 
The vector-scalar subprograms contain a group of suhprograms which petform the same functions 
and with the same caUing sequences as those of OLAS (IOJ. 

2. Matrix Operations 

This group of subroutines provide computations for matrix addition, subtraction, and multiplication 
in assembly language codes closely tuned for vector hardware. 

3. Simultaneous Linear Algebraic Equations 

The simultaneous linear algebraic equations subroutines provide factorizations and solutions to 
linear systems of equations for a real general matrix, a real banded matrix, a real symmetric positive 
defmite matrix, and a real symmetric positive definite banded matrix. 

4. Eigensystetns Analysis 

This group of subroutines compute the eigenvalues and either all or selected eigenvectors for a real 
symmetric matrix and for a real general matrix. 

5. Signal Processing 

The signal processing subroutines provide mathematical computations for Fourier transforms, 
convolutions, and correlations. They also provide programs for four IBM 3838 Array Processor 
Algorithms for signal processing application. 

6. Random Number Generator 
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Vectorization Technique of Numerical Algorithms 

Numerical methods designed for parallel or pipclincd architecture started to appear in the literature 
around mid 1960's. Since the first of these machines hecame operational in early 1970's, the literature on 
parallel and vector computing has been increasing at a rapid rate. Besides the two books mentioned 
earlier, there have been numerous survey papers written on all aspects of parallel/vector computing. In the 
case of numerical methods, most of the early work were reviewed by l'vfiranker in 1971 [11). Ileller [121 
surveyed methods for linear algebra problems in 1978. Similar survey was given by Sameh in 1977 [131. 
Recently, (1985) Ortega and Voigt [14] gave a complete account on solution of partial differential equations 
on parallel and vector computers. 

It is appropriate, at this point, to clarify the usc of the terms pa,-allel and vector in reference to machines 
and algorithms. Since early 1960's, two contrasting architectural designs have been proposed to exploit 
the parallelism exhibited in many applications. One design employs array of processors operating simul
taneously (or in parallel, hence the name parallel machine) under one central control. An example of such 
a machine is the Iltiac IV. Another design makes use of pipelined arithmetic units and instructions which 
accepts vector operands (hence the name vector computer) such as the eRA Y-I. Both designs fit Flynn's 
[15] classification as SIMD (single instruction stream, multiple data stream) machines. The vector design 
has been demonstrated to be more cost effective using- the available technology. The methods developed 
for both types of machines are often interchangeahle. 

Recently numerous designs which fit Flynn's classification as MIl\fD (multiple instruction stream, 
multiple data stream) machines have appeared. These designs range from a few replications of the basic 
design to thousands of microprocessors operating in unison. Commercii111y available MIMD machines 
offer a limited parallelism. Examples arc IBl\1 30R4 and 3090 systems. The parallel methods developed 
for such machines work best with coarse granularity while vector algorithms concentrate on operations in 
nests of iImer loops. In addition, the characteristics of eaeh individual machine, such as the size of available 
memory, the accessibility of data, the instruction set, and so on, can greatly influence the applicahility of 
a particular algorithm. The challenge for the user is to select or devise an algorithm and arrange the 
computation so that the architectural features of the target machine arc fully utilized. In the rest of this 
paper, we limit our discussion to vectorizing techniques on the 3090 Vector Facility. 

Techlliqlles of l'ectorizatioll 

Many vector algorithms follow the principle known as ,.e orde ring. Rem'dering may involve restructuring 
the computational domain such as re-numbering the nodes in a grid so that more parallelism is revealed 
in the cOlnputation; or it may simply mean the rearranging the order of computation in order to increase 
the vector length or to decrease the stride or hoth. 
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An example of using the ,-eOl-dering principle is the implementation of the 3090 VF instruction multiply 
and accumulate where products of corresponding clements of two vectors are accumulated into four partial 
sums in the ftrst four locations of a vector register. The instruction Jum partial .~ums is next executed to 
obtain the total sum. The reason for arranging the computation in this manner is to allow the multiply 
and add pipelines working in tandem so as to produce one multiply-and-add result each clock period. We 
shall give additional examples of using the reorde,-ing principle below. 

The above principle is applied to increase the percentage of a computation that can be vectorized. In 
order to execute the vector instructions at full spced, source vectors must be delivered to the arithmetic 
pipeline without any delay. This wi11 happen if the data needed are already in the cache memory. Since 
a single vector instruction may specify large amount of computation, the requirement on data rate is more 
severe in vector processing than in scalar processing. One should exercise extra care in structuring the data 
so that cache memory and main memory are optimally utilized. This can be achieved by choosing stride-l 
or low stride algorithms. Fortunately, many algorithms in scientific computation involve operations on 
vectors whose elements reside in consecutive memory locations. 

To reduce the memory traffic, intermediate results of compiltation should be kept in the registers as long 
as possible. Outer-loop unrolling r 16J is a programming technique to achieve this end. 

Vectorization in Lilleal" Algebra 

Computational linear algebra is the rTIost studied topic in nun1erical analysis because the majority of 
scientific computation can be formulated as basic matrix and vector operations. Large matrix problems 
are now routinely solved owing mainly to the existence of reliable software such as LINPACK [17} and 
EISPACK (18). There is also a great wealth of literature on matrix calculations on vector computers. The 
reader is referred to the survey papers mentioned above for more information. A. recent paper by Do ngarra , 
Gustavson, and Karp [I 9J is particularly informative. They discuss how the performance can vary by 
simply reordering the loops in the program and suggest hest algorithms for register oriented vector machines. 
The report [6J also includes a section on implementing well-known algorithms on the 3090 VI'. We do 
not intend to give a complete review of previous works here. Instead, we shall illustrate the use of the 
principle of reOl·de";ng and the method of evaluating competing algorithms by implementing the computation 
of 

• Two basic vector operations 

• Matrix-vector multiply 

• Convolution 

• Tridiagonal system solution 

• Iterative solution of large sparse linear systems. 

10 Vectorizing Techniques 



Two basic vector operations 

1. Dot product, known as SDOT in RLAS 

For two vectors x and y each with n elements, the dot product is given by: 

(6) 

2. Scalar times vector plus vector, known as SAXPY in 8LAS 

For two vectors x and y and a scalar a, this calculation is given by: 

y+ax (7) 

Both expressions can be computed efficiently on 3090 VF. 

Dot Product 

Dot product can be computed with the sectioning loop shown below: 

'* assume vector length n in GRO 
'* address of x in GRI 
'* address of y in GRZ 
* 

VZPSD VRO zero partial sums 
LOOP VLVCU GRO load VCT and update 

VLD VRZ,GRI load a section of x 
VMCD VRO,VR2,GR2 multiply section of y to x 

* and accumulate partial sums 
Be 2,LOOP branch to LOOP if GRO>O 
SDR FRO,FRO clear FRO 
VSPSD VRO,FRO sum partial sums (dot pdt) 

Allowing 50 cycles each for VZPSD, VI,VCO, and VSPSD, and assuming 30 cycles of startup time for 
each section for VLD and vrvtCO and 5 cycles for each scalar instruction, we can estimate the time (in 
cycles) for the dot product to be: 

tdot = 2n+ 115[ 1~8] + 105 (8) 
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Dot product timing 

Using the above formula, we can estimate the running time for some typical values of n. 

n 

tdot 

lVlflop 

128 

476 

29 

256 

847 

33 

512 

1589 

35 

1024 

3073 

36 

This compares favorably with the best scalar dot product time of 10 MFLO PS on the 3090. 

Scalar times a vector plus vector: SAXPY 

SAXPY can be computed with the following code: 

* compute y=y+ aX 
* assume GRO has vector 
* address of X in GRI 
* address of y in GRZ 
* a is 1n FRO 
* 

LR GR3,GRZ 
LOOP VlVCU GRO 

* 
* 

VlD VRO,GRZ 
VMADS VRO,FRO,GRI 

VSTD VRO,GR3 
BC Z,LOOP 

length n 

copy address y in GR3 
load VCT and update 
load a section of y 
multiply a section of x 
by a and add to the 
corresponding y section 
store a section in y 
branch back if GRO>O 

Assuming the same start-up ~ime (30 cycles) for each section of VMADS and VSTD as before, we can 
estimate the SAXPY time as: 

tsaxpy = 3n + 145 [ 1~8] 

Using this formula, we obtain the following timing: 

o 

tsaxpy 

Mflop 

100 

445 

24 

200 

890 

24 

500 

2080 

26 

1000 

4160 

26 

(9) 

Note that the MFLO P rates are not as high as those of the dot product. This is because of the I/O 
requirement of the SAXPY is 30 words versus only 20 for dot product. 
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In general, we can estimate the speed of a computation task by looking at its computation density which 
can be defmed as the following ratio: 

total operations performed 
(10) 

total data items required in and out of memory 

In general, the higher the computation density, the faster the processing rate. The computation densities of 
dot product and SAXPY are I and 2/3 respectively. 

In next two sections, we shall look at more complex computations in which multiple S!\XPY's are 
required and computation can be arranged so that intermediate results can be held in registers. Thus, store 
operations can be mostly eliminated resulted in tnuch higher computation density than the single Si\XPY. 

Matrix-vector tnultiply 

Consider the multiplication of a vector x by a matrix A: 

y=Ax, (11) 

where A is a real matrix of dimension mxn, and x and yare real column vectors of dimension nand m 
respectively. Assuming that i\ is stored in column-major order, we compare the following three methods 
for computing y. 

Horizontal .Processing 

In horizontal processing, vector computations are performed horizontally from left to right in row fashion. 

Assuming that y has been set to zero initially, the FORTRAN code represents the computation of y 
using horizontal processing: 

DO 10 I = I,M 
DO 10 J = I,N 

10 Y(I) = Y(I) + A(I,J) * X(J) 

The inner loop represents the dot product of i-th row of A and x. Since A is columnwise stored, the stride 
of the TOW vector is m. 

An equivalent assembly code is: 

GRO = n, GRI = GR7 = m 
GR5 = GR6 = 1, GRll = 8 

* 
* 
* add. A in GR2, x in GR3, y in GR4 
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* 
LPZ LR GR8,GR3 GR8 has address of x 

SDR FRO,FRO clear FRO 
VZPSD VRO clear VRO for partial sum 
LR GRI0,GR2 GRID get address of A 
LR GR9,GRO GR9 = n 

LPI VLVCU GR9 load VCT and update 
VLD VRZ,GRZ(GRl) load a row section of A 
VMCD VRO,VRZ,GR8 multiply by x section 

* and partial sum to VRO 
Be Z,LPI branch back if GRO>O 
VSPSD VRO,FRO sum partial sums in FRO 
STD FRO,O(GR4) store dot product in y 
AR GR4,GRll update GR4 for next y 
AR GRZ,GRII update GRZ for next row 
BXLE GR5,GR6,LPZ branch 

Using the same assumptions for each type of instructions as before, we get the timing formula for 
horizontal proces,t;ing: 

( 12) 

Note that this formula is valid only for infinite cache. The degradation for large matrices that cannot be 
held in the cache is severe due to large stride. The code requires m passes over the address space of the matrix. 

Vertical Processing 

In vertical proce,t;sing, vector computations arc carried out vertically from top to bottom in column fashion. 

If we simply switch the DO loops in the horizontal proce.'ising code, we obtain the code for vertical 
processing. Thus: 

DO 10 J = I,N 
DO 10 I = I,M 

10 Y(I) = Y(I) + A(I,J) * X(J) 

This is a stride-l code. It requires only one pass over the address space of A. The inner loop represents 
a SAXPY which requires loading and storing once for each segment of y. We can see this clearly in the 
following assembly code. 

14 

* 
* 
* 
* 

assume y has been set to zero 
GRO=GR7=n, GRl=m 
GR5=GR6=1 
GRI0=8 
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* GR2=addreSS~A~ 
* GR3=address x 
* GR4=address y 
* 
LP2 LD FRO,0(GR3) load x element in FRO 

LR GR9,GR4 GR9 gets address of y 
LR GR11,GR4 GRl1 gets address of y 
LR GR8,GR1 GR8=m 

LP1 VLVCU GR8 load VCT and update 
VLD VRO,GR4 load a section of y 
VMADS VRO,FRO,GR2 VRO=VRO+section(A)* x 
VSTD VRO,GRll store y section 
Be 2,LPI branch back if GR8>0 
AR GR3,GR10 GR3 points to next x elem. 
BXLE GR5,GR6,LP2 branch -

The timing formula for the above code is: 

(13) 

This formula gives good approximation of the computation time even for large matrices since the penalty 
for cache traffic is small for stride-l operations. The shortcoming of this code is the need to load and 
store y vector 2n times. 

Block processing 

In block processing, sectioning vector loop computations are performed from left to right and top to 
bottom in a combined horizontal and vertical approach. 

A FORTRAN code represents the block p,-oce,'iJing is as fol1ows: 

C 

DO 10 I = 1 , M , Z 
DO 10 J = 1 , N 
DO 10 II = I , MIN ( M , I+Z-l ) 

C Z is the section size and = 128 on 3090VF 
C 

10 Y(II) = Y(II) + A(II,J) * X(J) 

By sectioning the outer loop, the y vector can he computed one section at a titne (represented by the 
inner two loops). The results of the II loop can he held in a vector register until the final results are 
obtained (i.e., until the J loop has been exhausted). The codc involves only stride-l operations, although 
it does require [m / 128] passes of the address space of the matrix. 
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The following code employs the hlock processing approach. 

* GRO=GRII=n, GRI=m, GR7=8m, GRIO=I 
* GR2=add(A), GR3=add(x), GR4=add(y) 
* 
LP2 LA GR9,1 GR9=1 

LR GR8,GR3 GR8=address of X 
VLVCU GRI load VCT and update 
VLZDR VRO clear VRO 
LR GRS,GR2 GRS gets address of A 

LPI LD FRO,O(GR8) load x element 
LR GR6,GR5 GR6=current address of A 
VMADS VRO,FRO,GR6 VRO=VRO+col. sec. of A*x 
AR GRS,GR7 GR5 points to next col. of A 
LA GR8,8(GR8) update GR8 to next x element 
BXLE GR9,GRIO,LPI branch back if not done 
VSTD VRO,GR4 store a section in y 
LA GR2,I024(GR2) GR2 points to next block 
Be 2,LPZ branch back if GRI>O 

Note that no vector load instructions are needed anywhere in the code. 

The timing formula is given by: 

tb = nm + 2m + (55n + 135) [ 1;8] ( 14) 

Again this formula gives a good estimate of the running time even for large matrices because only stridc- J 

vector operations are involved. 

Comparison of horizontal, vertical, and hlock processing 

Using the timing formulas, we obtain the following table: 

n,m 50 200 500 

til 17750 ----- -----

Mflops 15 

tv 16250 184000 1055000 

Mflops 16 23 26 

tb 5485 62670 361540 

Mflops 49 69 75 
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We can reject outright the horizontal code hecau~e it cau~es inefficient use of the cache storage. The 
block code outperfonns the vertical code due to the more efficient use of the vector register. Their 
computation densities (being 2 and 2/ 3 respectively) also show the right choice is block processing. 

More choices of methods are available for matrix multiply and solution of lincar systcms by simply 
reordering the loops. They are discussed in (19). 

COil V Oill tio 11 

Given two sequences U = (Ul' U2, ... , un) and x = (Xl ,X2, ... , Xm+n-I)' The convolution of X and u, (x * u), 
is a sequence of length m given by: (for i = I, ... , m) 

n 

(x * u)i = L xn+i_jUj' 
j-I 

( 15) 

Convolution is actually a special matrix-vector multiply. For example, te.t n = 4 and m = 5, the above 
equation in expanded form is: 

(16) 

(17) 

( 18) 

( 19) 

(20) 

Many algorithms (notably those based on PI'T) have heen developed to compute convolution at reduced 
number of operations. \Vhen the length of the filter, U, is small (say 50) compared to the length of the 
time series, x, then it is more economical to compute the convolution by straightfonvard matrix-vector 
multiply. However, convolution differs from general matrix-vector multiply in two ways: 

1. no need to store a matrix 

2. no large stride problem. 

As a consequence, horizontal processing is faster than l'c,.tical processing in computing convolution. The 
best method, nonetheless, is still block processing. In an actual test on the 3090VF [20], a speedup of 
more than 10 over the scalar execution was obtained using the block approach. 
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Tridiagonal Solver 

The solution of tridiagonal system of linear equations are required when implicit schemes are used to 
solve differential equations by finite difference methods. The usual method for solving such a system on 
a serial computer is based on Gaussian elimination which is entirely recursive and docs not lend itself 
conveniently to vectorization. In the past dozen years, a number of new algorithms have been proposed 
for solving tridiagonal systems on parallel and vector computers. Probably the best vector algorithm is 
based on the cyclic reduction method [21) first developed by Gene Golub and Roger Hockney and reported 
in Hockney [22]. For a system of n equations, the average vector length of cyclic reduction is n / p, where 
p = log2n. This vectorization is achieved at a cost of approximately twice the arithmetic operations (as 
compared with Gaussian elimination). In what follows, we estimate the speedup of cyclic reduction over 
Gaussian elimination for solving one system of tridiagonal equations. 

Gaussian Elimination 

Consider the tridiagona1 system of n linear equations: Ax = r, where A is a tridiagonal matrix with its 
i-th row denoted by ( ... , Ci,al,b/,.J. The solution can be obtained in 2 steps: 

1. Forward step. 

(21 ) 

(22) 

(23) 

y/ = rl - cl ~_ 'Yi- , ' i = 2, ... , n. (24) 

2. Backward step. 

(25) 

(26) 

In actual coding, array d can replace the main diagonal a, while y, and x can share the same space as r. 
A total of 9n arithmetic operations (including Il divides) are required to obtain the answers. 
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FORTRAN code for Gaussian elimination 

The following code computes the solution of one tridiagonal system. 

SUBROUTINE GAUSS3(A,B,C,R,N) 
C 
C A is main diagonal, B is super-diagonal. 
C C is sub-diagonal. 
C R is the right side and result on exit. 
C 

DIMENSION A(N),B(N),C(N),R(N) 
C 
C forward step 
C 

A(I)=l.O/A(l) 

10 

DO 10 I =2,N 
A(I)=1.0/(A(I)-C(I)*A(I-l)*B(I-l» 
R(I)=R(I)-C(I)*A(I-l)*R(I-l) 

C 
C backward step 
C 

R(N)=R(N)*A(N) 
DO 20 I =N-l,l,-l 

20 R(I)=(R(I)-R(I+l)*B(I»*A(I) 
RETURN 
END 

Note that a good compiler should only evaluate the expression: C( I)'" A( I - 1) once. 

Cyclic Reduction 

The approach in cyclic reduction is to eliminate in the even-numhered equations the coefficients associated 
with the odd-numbered variables by elementary row t.ransformations. These transformations can be carried 
out simultaneously. The transformed even-numbered equations again form a tridiagonal system half of the 
original size. The elimination can be repeated on the reduced system. After p steps of such elimination, 
there is only one equation left. The solution of that equation is readily ohtained. Other solutions can then 
be obtained by back substitut.ion .. The implementation of the algorithm as given in (231 requires a total 
of 20n arithmetic operations ( including n divides ). 

As a vector algorithm to solve tridiagonal equations, (~yclic reduction as described above has two weak
nesses, namely: 

1. The vector length changes by a factor of 2 each step. This causes more overhead. 

2. The indices of the coefficients appearing in successive tridiagonal system become further separated at 
each step. This complicates the addressing scheme and results in less than optimal use of the cache storage. 
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A recent implementation by Kershaw (24) alleviates the second weakness mentioned above. In addition, 
the operation count of his implemcntation is reduced to 18n (with n divides) at the expense of some extra 
storage. 

Speedup 

In [25J, a measurement of the 3090 vector time of the cyclic reduction was made based on an implemen
tation of Kershaw's algorithm. Similar technique was used to measure the scalar execution time of the 
Gaussian elimination solution. The diagram of speedup versus the order of the matrix, n is reproduced 
here as Figure 3. I 

Note that the vector execution is slower than the scalar execution for n < 250. Even for large n, the 
speedup is insignificant although the cyclic reduction code is almost entirely vectorizablc. This is largely 
due to: 

• The excellent scalar speed of the 3090 makes its vector to scalar speed ratio relatively moderate. 

• Cyclic reduction requires twice the amount of arithmetic as compared with Gaussian elimination. 

However, quite often solutions of multiple independent tridiagonal systelns are required (example: Line 
SOR method discussed in the next section) when finite difference methods are used. In these cases, the 
scalar Gaus.~ian elimination algorithm can be applied simultaneously to all (or two halves in the case of 
line SOR) the tridiagonal systems and the execution can be completely vectorized. 

Iterative soilltion of large sparse lillear syste111S 

Large but sparse linear systems of equations arise when finite difference methods are used to solve partial 
differential equations. \Ve choose the following model problem for discussion. 

The Model Problem 

The most studied elliptic boundary value problem is the Dirichlet problem, which is to find the equi
librium temperature distribution in the interior of a homogeneous solid when specified temperature is 
prescribed on its boundary. By physical principle, the tcmperature satisfies the Lap/ace equation. In two 
space dimensions, the Laplace equation takes the form 

(27) 

The vector speedups of the tridiagonal solvers included in the new release 2 r~C;SL (May, 1987) are noticeably better then those 
sh<?wn in Figure 3. 
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Figure 3: Estimated speedup of vector vs scalar algorithm for tridagonnl system solyers as a function of n. 

The model problem refers to the solution of the Dirichlet problem in a unit square region, 
R:O < x < 1,0 < y < 1. That is: to find u(x, y) which satisfies equation (27) in R and the boundary value, 
g(x,y), specified on four sides. 

In the numcrical solution we impose a uniform grid R(/t) on R, where R(/t) is Inade of mesh lines: 

(28) 

where h = (n + 1)- t. For example, for n = 4, the grid is as shown in Figure 4. The intersections of the 
grid lines are called grid points. Those in the intcrior are called intcrior grid points (solid dots) and those 
on the boundary are termed boundary points. The standard five-point difference equation which approx
imates equation (27) is: 
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Figure 4: A grid with 4x4 interior grid puints. 

4u(ih,jh)-u«i-I)/t,jh)-u«i+ l)h,j/t)-u(ih,U-l)h)-u(ih,U+ I)h)=O, i,j= l, ... n. (29) 

The above formula is valid for all interior mesh points. Expressing in words, the formula simply means 
that the temperature at a point is the average temperature of its four nearest neighbors. 

For instance, if we apply the above difference equation to the grid in Figure 4 in which the interior grid 
point are numbered in rowwise and left to right fashion (natu,.alorde,.ing) as shown in Figure 5, we obtain, 
for grid-point 1, the equation: 

4u1 - U:2 -lis = u(.2, 0) + u(O, .2) = g(.2, 0) + g(O, .2) s r t (30) 

and for grid-point 2: 

-UI +4U:2 -1.l:3 -~ =u(.4, 0) =g(.4, 0) sr2 (31) 

and so on. Note that the right hand sides of both equations consist of known boundary values and we 
have used new symbols, rt and r2, to represent them. 

vVe can express all the equations in a single matrix equation: 

Au=r, (32) 
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Figure 5: Natural ordering of interior grid points. 

where A is the coefficient matrix, and u is the column vector of unknowns, and r is the column vector of 
known boundary values. In our 4x4 grid example, the matrix A takes the form as shown in Figure 6. 
Note that the matrix is sparse in view of the fact that the maximum number of nonzero element in a row 
or column is five, also note that the matrix is regularly structured in that an the nonzero elements lie on 
five diagonals. Experience shows that such a system can he very effectively solved by an iterative method. 

Most iterative methods can be described as follows: 1,ct 1\1 he a nonsingular matrix but otherwise 
arbitrary, then A = M - B is a .t;plitting of A and, associated with this splitting, there is an iterative scheme 
for solving (32) 

(33) 

where the superscript indicates the iteration numher. The basic operations of numerical methods for 
solving (32) are matrix-vector multiplication and solution of linear system involving sparse but regularly 
structured matrix. For good vectorization, we like to choose an iterative method such that: 

1. The Matrices M and B in (33) retain the sparse and diagonal form of A. 

2. The matrix M is easily factored into triangular factors which are as sparse as A and possess partitions 
with diagonal blocks (D},D2, .•. , Dm), where Di are diagonal and m is SInaU (preferably 1 or 2 or at 
least much less than the order of matrix). 
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Figure 6: Matrix A corresponding to the natural ordering. 

Condition 1 is important because matrix-vector multiply involving A1 and B can be computed with a 
few vector multiply and add instructions if they are stored hy the diagonals. Condition 2 is essential for 
fast vector solution of linear systems involving M. 

Basic Iterative Methods 

It is convenient to express the matrix A as 

A=L+J)+ U, (34) 

where L is the strict lower triangular part of A, D is the main diagonal of A, and U is the strict upper 
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triangular part of A. In studying an iterative method, not only one should know how easy it can be 
computed, but also one must ask how fast docs it converge? 

1. The Jacobi Method 

Perhaps the simplest iterative scheme is the Jacobi iteration in which Al = J) in (33). That is 

U(I+I) = D- 1 [r- (L + U)u(i)] (35) 

It. prescribes that the value of the new iteration at a point is the average value of the previous 
iteration at its four nearest neighbors. It is quite obvious that all cOInponents of the right side 
vector of (35) can be computed simultaneously and the method is completely vectorizable with long 
vectors (length = n2) with the natural ordering of the grid points. Howcver, this method is seldom 
used because of its slow convergence rate. 

2. The Gauss-Seidel Method 

It is intuitively clear that if we make usc of the new values as soon as they have been computed 
in the iteration (33), the convergence will be faster. Indeed, we can double the rate of convergence 
if we use the Gauss-Seidel method where such strategy is employed by letting M = L + D and the 
iteration can be written 

(L + D)u(i+ 1) = r _ Uu(i) . (36) 

Equation (36) represents a lower triangular system of linear equations. It is readily apparent that 
the Gauss-Seidel iteration using the natural ordering is not vcctorizable since condition 2 discussed 
above is not met. Fortunately, it has been shown (see Young [261, for instance) that convergence 
will not sufTer if we reorder the grid point in checkerboard fashion, or the so-called ,-ed-black 
ordering as shown in Figure 7. The matrix A corresponding to this ordering is shown in Figure R 
. Equation (36) can naturally be partitioned into the block form 

(37) 

The above equation can be computed in two steps: i.e., 

(1+ I) _ If"\ -I [ if (i)] u 1 -./ I rl - U2 ' (38) 

and 

(HI) _ D- 1 [ L (/+1)] u2 - 2 r2 - u1 . (39) 
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Figure 7: Red-black ordering of interior grid points. 

These two equations look a lot like the Jacobi iteration and each involves vector operations with 
vector length n2 /2. We want to point out here that non-zero clements of Land U lie on five 
diagonals in our 4x4 example. In the case when t.he number of grid points on each line is odd, the 
non-zero elements would lie only on four diagonals. Therefore, one must be careful in computing 
the matrix-vector products involving Land U. 

We have just demonstrated that by reordering the grid point in checkerboard fashion, we transform 
the serial Gauss-Seidel method into a very satisfying vector method. 

3. The Successive Over-relaxation (SOR) Method 

The convergence rate of the Gauss-Seidel method can be increased by an order of magnitude if 
the SO R method is used. The SO R method can be regarded as an extra extrapolation process from 
the Gauss-Seidel iterates. That is 

(i+ I) (i) (i+ I) 
Usor = (1 - c.))u.wr + c.)ugs ' (40) 

where c.) is the relaxation factor. The best value for c.) is between 1 and 2. If c.) = 1 the method 
reduces to that of Gauss-Seidel. The SOR has heen the method of choice for many applications 
involving sparse linear systems ever since Young's dissertation (27) was puhlished in the early 1950's. 
The red-black ordered SOR method has also become the standard method for vector computation. 
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Figure R: Matrix corresJlonding to rerl-hlack ordering. 

Block Iterative Methods· 

The convergence rate of a basic iteration can he increased if we use the corresponding block iteration in 
which a group (block) of grid points arc updated simultaneously. In the case of the popular line-SOn 
method where a tine of grid values are computed via the solution of a tridiagonal system. Thanks to the 
work of Cuthill and Varga [2RJ, line iteration docs not incur additional computation cost over the basic 
point iteration. As in the case of point method, the line-SOR using the natur'al o,.de,.ing (i.e., line by line 
order) is not vectorizable. However, it is obvious that all the odd (even) lines can be solved simultaneously. 
Therefore, the line method using the red-black. or the zeb,.a ordering is vectorizable with vector length 
n/2 (solving n /2 tridiagonal systems simultaneously). for large grid problem, this is the choice method 
for many applications. 
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Other Iterative Methods 

In recent years, many iterative methods have been devised to compute the solution of large and sparse 
systems, most notable among them are a group of methods called the preeconditioned conjugate gradient 
(peG) methods. For a review of their effectiveness on modern vector computers, the reader is referred 
to the survey [14J and the references contained therein. 

28 Vectorizing Techniques 



Summary 

We have discussed three methods of vcctorization: 

1. Use the vectorizing compiler: VS FORTRAN Version 2 Compiler. 

2. Restructure the application code before compile. 

3. Write a new code based on a new vector algorithm. 

We have given, via examples in linear algebra computation, some good vector practices: 

• Choose stride-lor low stride algorithms. 

• Use block proce.uing whenever feasible to optimize the vector register usage. 

• Reorder the DO-loops often lead to good vectorization. 

• Make calls to vector libraries such as the ESS1.,. 
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