
--- ------ ----- ---- - ---- - - ----------_ .. -
IBM PALO ALTO SCIENTIFIC CENTER

G320-3504, November 1987

Exploiting the IBM 3090 Vector Facility
in Image Processing Applications

H. J. Myers
A. H. Karp

EXPLOITING THE I.HM 3090
VECTOR FACILITY

IN IMAGE PROCESSING
APPLICATIONS

Document Number G320-3504

October 15, 1987

H. Joseph Myers
Alan Karp

IBM Scientific Center
P.O. Box 10500

Palo Alto, CA 94304

2 Exploiting the IBM 3090 Vector Facility ·in Image Processing Applications

Exploiting the IBM 3090 Vector Facility in Image
Processing Applications

Abstract
Image processing requires computationally intensive manipulation of very large amounts of byte
oriPf1ted data. It would be desirable to take advantage of a vector processor to reduce computation
time when solving image processing problems. An obstacle to achieving this is the tendency of image
data to consist of I-byte data elements, while the Vector Facility offers at a minimum a 2-byte
load/store capability. The purpose of this study was to implement several common image processing
applications to take advantage of the Vector Facility offered on the IBM 3090 in order to determine
the degree to which vectorization could be accomplished, and to gauge the performance benefits which
could be derived.

Performance improvements resulting from the techniques w;ed ranged from zero to a factor of 3.57
when the vector instructions were compared lo simple scalar algorithms. II owever, over half of the
gain wa.f due to the better coding techniques alone. The vectorized algorithms demonstrated a
vectorizability around 90%. It is concluded that the addition of I-byte load and store instructions
to the vector instruction set would not provide benefit beyond the methods described here.

Keywords
Image Processing
Vector Facility
IBM 3090
Algorithms
Optimization
Performance

Overv;eJV
Image processing of Landsat, medical and other byte-mapped data requires operations on very large
l'vtegabyte arrays. (A "standard" Landsat Scene requires 320 megabytes to store.) The unit of in
formation in these arrays, called a "pixel" is normally stored as one byte. Typical image displays
can present l024xl024 or I024xI280 pixel images, each of which may be represented by three bytes
(3.6 megabytes total). Because of the size of these images, unit increases in performance can have
a significant effect.

We have selected three different image processing functions for algorithmic construction.

• Point operations
• Histogram collection
• Local Intensity Enhancement

Each of these applications presents a different set of vectorizing problems to be solved. However,
they all shared a single main problem: handling I-byte data. \Ve will, therefore, first discuss a
method for unpacking I-byte data into 2-byte data as a general technique. The analogous function
of packing 2-byte data is similar. With this pair of functions one could simply unpack an image,
work on it with vector operations, then pack the result. Another approach is to process the data
as it is being unpacked. This latter approach is the best, and will be implemented in the various
algorithms, but the unpacking process is shown separately here for expository purposes. Naturally,
for this technique to payoff, the computational cost of unpacking and the additional loop overhead
has to be more than absorbed by the gain in vector processing the results. This technique uses the
vector facility to do the unpacking. This reduces the cost of this technique to a minimum. Note
that the method also can be further enhanced if parallel computation is available. The method
assumes that images have a multiple of four pixels.

Exploiting the IBM 3090 Vector Facility in Image Processing Applications

The unpacking method is illustrated by the following FORTRAN code. (The annotation to the
left of the code is from the FORTRAN compiler vectorizer report.)

LOGICAL*l IPIX(N)
INTEGER*2 IV2(N)
INTEGER*4 IMAGE4(N/4), 14, I, N
EQUIVALENCE (1MAGE4(1),1P1X(1))
INTEGER*4 14

VECT +------- DO 20 I = 0,N/4-1
I 14 = 1MAGE4(I+l) !Transfer to 4-byte word
I 1V2(4*1+4) =IAND(14,255) !Piek off last byte & store
I 14 = ISHFT(I4,-8) IShift next byte into plaee
I IV2(4*I+3) =IAND(14,255) lete.
I 14 = 1SHFT(I4,-8)
I IV2(4*1+2) =IAND(14,255)
I 14 = ISHFT(I4,-8)
I IV2(4*1+l) =IAND(I4,255)

20 CONTINUE

The diagram below illustrates vectorized unpacking into 2-byte integers.

Input Pixel vector (bytes)
load bytes as full~rds

I
v copy I4 into vector (i2) and mask out high bytes

store i2 with i i
stride of 4 v v

I i I I I lo'dl loihl IV2
v

, , I I I I I I I I I

shift I4 right 8 copy I4 into vector (i2) and mask out high bytes
iii iii iii Iii iii i , ,Ii

I4 lOa b c II 0 e f 9 I --> Mask & i2 10 0 0 c II 0 0 0 91---..
I I I I II I I I I , I I I " I I , I

v
shift I4 right 8

store i2 with r-i ------,..., ----'

stride of 4 v v
iii 1 , • , ••

IV2 I I 10 clo dl
I • I I •• I I I

copy I4 into vector (i2) and mask out high bytes

I4 10·0·a·bllo··0'''fl--> Mask & i2 10'0'0'bllo·o·0'fl---,
• I I I I.. I I I I , , , J II I I I I

I
shift I4 right 8

I4 lo'o'o'allo'o'o'el
I I I I " I I I I

store i2 '-1 ------,..., --------'

stride of 4 v v
• • I I ••• i ••

IV2 I 10 blo clo dl
I J I , I I I I I I

I I • i •••
10 flo 910 hi
, I I I • I •

i
store 14 with stride of 4 v • v

I I ••• i ••• i I I I I I I I

IV2 10 alO blo clo dlo elO flo 910 hi
, I • I i I • I I I I I I , I I I

In the sections below we will compare timings and give petformance figures. All runs were made
on an IBM 3090 model 200 with a vector facility having 128-element vectors. The term "percent
vectorizable" is discussed in detail in reference [1]. The heading "Disabled" below refers to com
piling the vector version of the algorithm with FORTRAN/VS, release 2.2 without selecting the
vectorizing option.

2 Exploiting the IBM 3090 Vector Facility in Image Processing Applications

Point Operations
Point operations are carried out on all pixels of an image unifonnly, and without regard to pixel
location, and without regard to the computations on other pixels in the image. For example,
doubling all pixel values in an image is a point operation. Point operations are clearly a prime
candidate for vectorization. In this operation the shape of an image need not be considered. It can
be treated in vector (I-dimensional) form.

A common technique for applying point operations is to compute a table of 256 results from ap
plying the operation to all possible values of a pixel. A simple replacement of each pixel with its
corresponding table entry can then ensue as a rapid process. The operation selected was "contrast
stretch", calculated as: p' = a x p + b

Below is the entire subroutine for performing a contrast stretch as described above. Note the
technique required for fetching a byte into a word which is required because the FORTRAN/VS
compiler does not allow a LOGICAL· I quantity to act as a subscript. (The functions ICHAR and
CHAR do not generate in-line conversion code.)

C

SUBROUTINE POINTO(IPIX,OPIX,N,A,B)
INTEGER*4 N
REAL*4 A, B, C
LOGICAL*l IPIX(N), OPIX(N)

LOGICAL*l C41(4), C42(4), C1, G2
INTEGER*4 141, 142, LUT(0:255)
EQUIVALENCE (C1, C41(4)), (141, C41(1))
EQUIVALENCE (C2, C42(4)), (142, C42(1))
141 = 0
142 = 0

C Load up LUT for 256 input values
DO 10 I = 0,255

C = A * I + B
IF (C .GT. 255) THEN C = 255
IF (C .LT. 0) THEN C = 0
LUT(I) = INT(C+0.5)

10 CONTINUE

C Apply LUT to IPIX to produce OPIX
DO 20 I = l·,N

C1 =IPIX(I) !fetch pixel into
142 = LUT(I41)
OPIX(I) = C2 !fetch pixel from

20 CONTINUE
END

low

low

order part of word (141)

order part of word (142)

The code on the next page shows the vectorized subroutine plus the compiler report showing that
vectorization was possible for both the program loops. Following that are the timings. Note that
the modified algorithm performed 2.7 times faster than the original without the benefit of the vector
fa~ility.

Exploiting the IBM 3090 Vector Facility in Image Processing Applications 3

SUBROUTINE POINTl(IN4,OUT4,N,A,B)
INTEGER*4 N
REAL*4 A, B, C
INTEGER*4 IN4(N/4)~ OUT4(N/4)

INTEGER*4 141, 142, LUT(0:255)
C Load up LUT for 256 input values

VECT +------- DO 10 I = 0,255
1 C = A * I + B
1 IF (C .GT. 255) THEN C = 255
1 IF (C .LT. 0) THEN C = 0
1 LUT(I) = ISHFT(INT(C+0.5),24)

10 CONTINUE

VECT +------
I
I
I
I
1
I
1
1
1 __ -

C

C

Apply LUT to IPIX to produce OUT4
I4=0

Operate on pixels 4 at a time
DO 20 I = 0,N/4

141 = 1N4(I)
142 = LUT(IAND(I41,255))
141 = ISHFT(I41,-8)
142 = IOR(ISHFT(I42,-8),LUT(IAND(I41,255)))
141 = ISHFT(I41,-8)
142 = IOR(1SHFT(I42,-8),LUT(IAND(I41,255)))
141 = ISHFT(I41,-8)
142 = IOR(ISHFT(I42,-8),LUT(IAND(I41,255)))
OUT4(I) = 142

20 CONTINUE

The times (in milliseconds) to contrast stretch a 1 Mbyte image are shown below:

Scalar
Virtual CPU 0.596
Vector CPU 0.000

Non-vectorizable time

Vectorized
0.167
0.150

0.017 (s)

Disabled
0.220 (Ts)
0.000

Percent vectorizable: 100 x (1 - siTs) = 92.3%
Percent of time vector facility in use = 100 x .150/.167 = 89.8%
Performance improvement (.220/.167) = 1.32 Disabled/Vectorized
Performance improvement (.596/.167) = 3.57 Scalar/Vectorized
Performance improvement (.596/.220) = 2.71 Scalar/Disabled

The Histogram Algorithm
In addition to the problem of accessing I-byte data, histogramrning introduces the problem of order
dependency. The normal histogram calculation is performed in FORTRAN as follows:

LOG1CAL*l IP1X(N)
1NTEGER*4 14, I, N, HGM(0:255)
DO 10 I = I,N

14 =IPIX(I) Copy 1 byte of image data to 14
HGM(I4) = HGM(I4) + 1 Generate the histogram counts

10 CONTINUE

4 Exploiting the IBM 3090 Vector Facility in Image Processing Applications

This program cannot be vectorized. We focus on the case when several pixels have the same value.
If two pixels have the same value, then two vector elements will refer to the same word in storage.
When this happens, copies of the same word will be loaded into separate vector elements, incre
mented, and returned to memory. Because there is no control to assure this process will be properly
synchronized, there is no guarantee that the histogram will be computed properly. In fact, there is
every reason to believe that it won't. Therefore, the code must be run in scalar mode.

To compute the histogram in a vectorized manner, we divided the image into some number of
sectors. We used, for example, a number matching the machine vector size. This allowed each
sector to have its own histogram, and set up the computation so that the vectors were loaded with
elements from different sectors at any time. This was done by setting the vector stride to span each
sector so that only one element from each sector was processed at a time. This ensured that only
one ele,ment in any histogram was affected on any vector add cycle. At the end of the main accu
mulation, the histograms were accumulated into a single histogram, again in vector mode.

The method for accumulating counts into separate histograms is diagrammed below. Note that
even though multiple pixels may have the same value, there is no contention because different
histograms are being incremented.

I~-- 128--~1 The Image data in memory

o

128 histograms ----~

Below is the code used to accumulate counts into 128 histograms. (Our vector facility has 128 el
ements.) It assumes that the image has been unpacked into the vector IV2. Note that the l-loop
is vectorized, and that all accumulations on each iteration of the I -loop are into separate histogram
accumulators.

VECT +------- DO 30 J = 1, 128
RECR 1+------ DO 30 I = 0,N-128,128

1 I HGMS(IV2(J+I),J) = HGMS(IV2(J+I),J) + 1
1-_-

30 CONTINUE

This is the code needed to combine the results into a single histogram.

VECT +------- DO 50 I = 0, 255
1 14 = 0

RECR 1+------ DO 40 J = 1, 128
11__ 14 = 14 + HGMS(I,J)
1 40 CONTINUE
1___ HGM(I) = 14

50 CONTINUE

!14 was introduced to allow
!the complier to vectorize the
touter loop. Had HGM(I) been used
!the complier would have inferred
!recursion in both loops.

Exploiting the IBM 3090 Vector Facility in Image Processing Applications 5

It is possible to combine the unpacking process with the DO 30 I loop in order to avoid allocating
space to the unpacked vector, and eliminate the corresponding store instructions. The following
code illustrates the method. Note that the inner loop which unpacks four pixels is "unrolled"
avoiding additional overhead of loop control, and allowing for customization of the frrst and fourth
extractions.

INTEGER*4 IVX !additional declaration
VECT +------
RECR +------

I
I
I
I
I
1
1
1
1_-

60

70

DO 70 J = 1, 128
DO 60 I = 0,N/4-1,128

I4 = IMAGE4(I+J)
IVX =IAND(I4,255)
HGMS(IVX,J) = HGMS(IVX,J) + 1
IVX =IAND(ISHFT(I4,-8),255)
HGMS(IVX,J) = HGMS(IVX,J) + 1
IVX =IAND(ISHFT(I4,-16),255)
HGMS(IVX,J) = HGMS(IVX,J) + 1
IVX =IAND(ISHFT(I4,-24),255)
HGMS(IVX,J) = HGMS(IVX,J) + 1

CONTINUE

CONTINUE

As noted earlier, there is a trade-off between the time to unpack the image data and the speed-up
resulting from vectorization. lbe assembler results below show the times to be about equal. Below
are the times in seconds to process a I Mbyte image.

Algorithm Scalar Vectorized Scalar Vectorized
Times Assembler Assembler FORTRAN FORTRAN
Virtual CPU 0.208 0.200 0.593 0.285
Vector CPU 0.000 0.188 0.000 0.265

------ ------
Non-vectorizable time 0.012 (s) 0.020

Percent vectorizable: 100 x (1 - siTs) = 94.2% (asm)
Percent vectorizable: 100 x (1 - siTs) = 94.7% (ftn)

(s)

Disabled
FORTRAN

0.375 (Ts)
0.000

Percent of time vector facility in use = 100 x .188/.200 = 94% (asm)
Percent of time vector facility in use = 100 x .265/.285 = 93% (ftn)
Performance improvement (.208/.200) = 1.02 (asm)
Performance improvement (.375/.285) = 1.32 (ftn) Disabled/Vectorized
Performance improvement (.593/.285) = 2.08 (ftn) Scalar/Vectorized
Performance improvement (.593/.375) = 1.58 (ftn) Scalar/Disabled

When the FORTRAN versions of the program are compared, the performance improvement is
about 580/0. When optimized fully by hand (assembler code) both scalar and vector algorithms
perform at approximately the same speed. We should not have been surprised by this result (but
we were).

Vector processing is faster than scalar for three reasons. First, only one instruction is needed to
process many operands. On modem machines, like the 3090, the instruction fetch and decode is
overlapped with the execution of previous instructions so there is little gain here. Second, there is
only one branch for each vector register full of operands instead of one branch per operand in the
scalar case. We unrolled the scalar loop to handle 4 pixels at at time which reduces this advantage
of the vector unit. Third, vectors run faster because the operations can be pipelined (i.e., a multiple
cycle operation can be broken down into steps that are overlapped) so that asymptotically the
machine produces one result per cycle. In the histogram algorithm virtually every scalar operation
takes one cycle negating this' advantage of the vector unit. In other words, the vector unit does not
speed up this calculation because the scalar unit is so efficient at handling byte data.

6 Exploiting the IBM 3090 Vector Facility in Image Processing Applications

The assembler code below shows the algorithm operating on pixels in both scalar and vector im
plementations. Examination of the assembler code shows that, contrary to the appearance of the
FORTRAN code, the scalar code loop must include load and shift instructions in the loop, which
consumes the same number of cycles as the ISHIF and lAND in the vector loop. Therefore, the
ISHIFT and lAND do not actually make the loop longer.

The improvement seen in the FO R TRAN implementation is due to the inability of the compiler
to efficiently handle i-byte data, particularly in applying it as a subscript. This problem is not
manifest in the vectorized solution because we always are dealing with integers in that case. As can
be seen, neither FORTRAN program can compete favorably with the assembly code.

* Second pixel
LA
IC
SLL
L
AR
ST

* Second pixel
VSRL
VNQ
VAR
VLI
VAQ
VSTI

(scalar)
8,0
8,1(7,5)
8,2
9,0(6,8)
9,0
9,0(6,8)

(vector)
2,2,8
4,1,2
3,4,1
0,3,0(8)
0,9,0
0,3,0(8)

Clear register to get pixel values
Load pixel value into register
Convert word address to bytes
Load HGM(IPIX(I))
Increment counter
Store updated value

Shift next pixel into position
Pick off next pixel value
Add pixel values to column offsets
Load HGM(IPIX(I))
Update all histograms
Store updated value

Note, however, that because the vector algorithm is almost completely vectorizable, the algorithm
speed will be nearly that of the the vector unit. The following table shows the expected timing for
corresponding vector facility speed ups. .

Vector/Scalar Speed
Algorithm Time

1
0.200

2
0.106

4
0.059

10
0.031

Clearly, this algorithm will prove useful on a machine with a vector facility substantially faster than
its scalar unit. Note also, that providing a vector version of a I-byte fetch instruction would not
lead to a significant speed up of the process.

Local Intensity Enhancement (LIE)
It often happens that the lighting over an image is uneven. This can be corrected for by an algo
rithm which performs localized contrast stretching. This algorithm [2] is carried out as follows:
Move a W x W window over the image, frrst vertically, moving one row at a time. At the end of
each row, start at the top, one column over. For each set of pixels under the window at each po
sition, compute the mean and standard deviation. Use these values to contrast stretch the value
of the central pixel under the window at each position, forcing a desired mean and standard devi
ation.

This algorithm typifies a "neighborhood" process in which the value of a pixel is detennined from
the values of pixels that surround it. This algorithm must take into account the 2-dimensional as
pect of the image.

Formulas:

Mean

Exploiting the IBM 3090 Vector Facility in Image Processing Applications 7

Standard Deviation: S = j i .f nf - M2 =
nt-f'

Contrast stretch: pi = a x p + b

where a = Sdesired / Swindow

b = M desired - a x M window

The figure below illustrates placement of some windows.

I-+---w---+I

w ...
- -,- -
- -
--

...

f'.eneral approach:

I
I
I
I
N ,
I
I
I

1. Compute partial sum (and partial sum of squares) of 1st W columns. (Note: use of the word
"sums" in this section will mean both sums collectively.)

The following diagram illustrates steps 2 and 3.

Ix Ix2

p p
a a
r r
t t
i i
a a
1 1

+---8---

I+-- -w - --+ I
I I I I I +-+-+-+--

W
I
J.

I I Ix', first column of windows

I I Ix, first column of windows

2. Compute sums for fITst column of windows.

I
I
I
I
N

I
I
I
I

Note: Once the sums for the fITst window are computed, subsequent wiridow sums can be
computed by differences. That is, the sum for a window is its predecessor's sum, minus its
predecessor's first row, p~us the fITst row below the predecessor.

8 Exploiting the IBM 3090 Vector Facility in Image Processing Applications

3. Compute a, b and by formulas above using Ix and Ix2
• Apply the formula to the center pixel

of each window.

4. For each subsequent column, compute window partial sums. The new partial sums can be
efficiently done by subtracting the left column of each window and adding the column to its
right.

5. Repeat steps 2, 3 and 4 until all columns of windows are processed.

Vector Approach:

To provide good vector performance (in FORTRAN) we rewrite the actions to:

a) operate on pixels in groups of 4
b) start vectorized operations on word boundaries
c) operated on data in column-major order (adjacent pixels)

Only action 3 (computing central pixel values from the summations) requires (b) to be applied if
we assume images have a multiple of 4 rows. (Images typically come in sizes that are powers of
two.) We divide the rows into three sections shown below. Only operations on the middle section
are vectorized.

~ ___ I~------------ multiple of 4 ------------~I~

head l middle tail
·start at 4x

I~----------------------- L ------------------------~I
Thinking in terms of pixels (bytes):

a) the middle section starts at word boundary (multiple of 4 bytes)
b) length of the head (LH) is 0, 1, 2 or 3
c) length of the middle (LM) is the largest multiple of 41ess than L- LH.
d) length of the tail (LT) is L - LH - LM (will be 0, 1, 2 or 3).

Considerations and methods for vectorizing are as follows:

1. Allow equivalent views of an image, LOGICAL'" 1 and INTEGER "'4. This has to be done
by passing the image arguments twice, but declaring them differently. (Note that because of
FORTRAN's column-major order, this means 4 rows of the byte-image are equivalent to one
row of the word-image.)

SUBROUTINE LIEl(IPIX,IWRDS,OPIX,OWRDS,N,W,MEAN,STD)
INTEGER*4 N, W
REAL*4 MEAN, STD
LOGICAL*l IPIX(N,N), OPIX(N,N)
INTEGER*4 IWRDS(N/4,N), OWRDS(N/4,N)

CALL LIEl(IPIX,IPIXS,OPIX,OPIXS,N,W,MEAN,STD)

2. Collect partial sums and sums of squares into INTEGER "'4 vectors TIlls is done while un
packing. As illustrated earlier, the inner loop of unpacking four pixels is unrolled.

3. Computation of sums and sums of squares for the current column of windows vectorizes au
tomatically, being summations of integer vectors.

4. The computation of mean and standard deviation for each window, and adjustment factors (a
and b) therefor, can be calculated as a separate loop and stored into REAL "'4 vectors, or it can
be incorporated into the extraction loops of the center pixels. If the latter is done, the inter
mediate variables (standard deviation, mean, a and b) will be maintained in the vector unit and
not be stored in memory.

Exploiting the IBM 3090 Vector Facility in Image Processing Applications 9

5. Vectorized evaluation of the central pixel of each of the windows is carried out in three seg
ments as indicated in the diagram above. The "head" and "tail" segments are performed in
scalar mode, processing no more than 6 pixels per column. The central segment is processed
four pixels at a time, with the code being completely vectorized by the compiler.

The resulting timings (in seconds) are:

Virtual CPU
Vector CPU

Scalar
7.754
0.000

Non-vectorizable time

Vectorized
2.697
2.097

0.600 (s)

Disabled
6.528 (Ts)
0.000

Percent vectorizable: 100 x (1 - siTs) = 90.8 %
Percent of time vector facility in use = 100 x 2.097/2.697 = 77.8%
Performance improvement (6.528/2.697) = 2.42 Disabled/Vectorized
Performance improvement (7.754/2.697) = 2.87 Scalar/Vectorized
Performance improvement (7.754/6.528) = 1.19 Scalar/Disabled

Conclusions

Algorithm

POINT
HISTOGRAM
HIST (asm)
LIE

Performance Improvement Summary

Recoding
Gain
2.71
1.58
n/a
1.19

Vector
Facility

1.32
1.32
1.02
2.42

Total
Gain
3.57
2.08
1.02
2.87

Percent
Vectorizable

92.3
94.7
94.2
90.8

Percent
In Use

90
93
94
78

Above is a summary of the performance improvements for each of the FORTRAN algorithms.
It separates out improvements due to recoding, from those due to the vector facility. From it we
see that the improvements in the algorithms from their simple, straightforward form yielded gains
that were more significant than those achieved by activating the vector facility. This is attributable
more to the efficiency of the scalar operations of the 3090 than to any shortcoming in the vector
facility.

The bulk of the savings came from loop unrolling when we processed four pixels as a group. So
little computation was required in the loop, the loop indexing and branching took a significant part
of the time.

The use of the cache memory was "perfect" in both vector and non-vector cases. That is, every
byte loaded into the cache was used. In a machine without a cache, but with a broad data path to
memory, fetching one byte at a time would leave much of the data path unused. With the cache,
data is loaded from memory 128 bytes at a time. So the cache architecture kept single byte proc
essing from being a great liability.

We note that the percent vectorizability for these algorithms is high. This means that the speed of
the algorithms is almost completely dictated by the speed of the vector facility. Therefore, if the
vector facility speed is doubled, the algorithms will run almost twice as fast.

Pinally, we note that some of these algorithms would have benefitted from an extension to the
FORTRAN compiler which would allow I-byte data (CHARACTER +1 or LOGICAL+l) to be
used as a number, particularly as a subscript.

10 Exploiting the IBM 3090 Vector Facility in Image Processing Applications

References
[1] Program Migration Notebook for 3090 Vector Facility, IBM ZZ81-0170

[2] Ralph Bernstein, et. al, "Earth Imaging and Data Processing for Mapping Analysis", IEEE 1984
Proceedings of the 4th 1 C IT, pp 144-157

[3] Duda, R. 0., and Hart, Peter E., "Pattern Classification and Scene Analysis", lohn Wiley &
Sons, 1973

Exploiting the IBM 3090 Vector Facility in Image Processing Applications II

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHORS:

H. J. Myers and A. H. Karp

2. TITLE:
Exploiting the IBM 3090 Vector Facility in Image
Processing Applications

3. ORIGINATING DEPARTMENT

Palo Alto Scientific Center

4. REPORT NUMBER

Sa. NUMBER OF PAGPS

11

G320-3504

Sb. NUMBER OF REFERENCES

3

9. SUBJECT INDEX TERMS

Image Processing
Vector Facility
IBM 3090
Algorithms
Optimization
Performance

6a. DATE COMPLETED

October 1987
6b. DATE OF INITIAL PRINTING

November 1987
6c. DATE OF LAST PRINTING

7. ABSTRACT

Image processing requires computationally intensive manipulation of very large amounts of
byte-oriented data. It would be desirable to take advantage of a vector processor to reduce
computation time when solving image processing problems. An obstacle to achieving this is
the tendency of image data to consist of 1-byte data elements, while the Vector Facility offers at
a minimum a 2-byte load/store capability. The purpose of this study was to implement several
common image processing applications to take advantage of the Vector Facility offered on the
IBM 3090 in order to determine the degree to which vectorization could be accomplished, and
to gauge the performance benefits which could be derived.

Performance improvements resulting from the techniques used ranged from zero to a factor of
3.57 when the vector instructions were compared to simple scalar algorithms. However, over
half of the gain was due to the better coding techniques alone. The vectorized algorithms
demonstrated a vectorizability around 90%. It is concluded that the addition of 1-byte load and
store instructions to the vector instruction set would not provide benefit beyond the methods
described here.

8. REMARKS

=~= .=: - -_-- -~ -- ----- -- ----------_.- Pato Alto Sctentlflc Center, 1530 P~ Mil Road. P8Io Alto. C.utomt. ~04

