
--..- ------ - ------- -. ---- - - --------
-~-,-

Vectorization and Vector
Migration Techniques

Technical Bulletin

--...-- ------ --- -------= ::-:. ::= ----------, -

Author: David B. Soli
Applications Analysis and
Implementation Techniques
Data Systems Division
Kingston, New York

Editor: Ralph Stephens
IBM Technical Education Center
Chicago, Illinois

Vectorization and Vector
Migration Techniques

Technical Bulletin

Acknowledgement

For their assistance and support of this technical bulletin,
the author would like to express his appreciation to the
following:

• Paul Dorn,' Washington Systems Center, North Central
Mktg. Division

• John R. Ehrman, Santa Teresa Laboratory, General
Products Division

The information contained in this document has not been
submitted to any FORMAL IBM TEST AND IS DISTRIBUTED
ON AN "AS IS" basis without any warranty either expressed or
implied. The use of this information or the implementation of
any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there
is no guarantee that the same or similar results will be obtained
elsewhere.

First Edition, June 1986

All rights reserved.

In this document, any references made to an IBM licensed program are not
intended to state or imply that only IBM's licensed program may be used; any
functionally equivalent program may be used instead.

It is possible that this material may contain reference to, or information about
IBM products (machines and programs), programming or services that are not
announced in your country. Such references or information must not be construed
to mean that IDM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or the the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to: IBM Corporation,
Chicago Technical Education Center, One IBM Plaza, Chicago, Illinois 60611.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1986

Preface

Techniques for migrating Scientific & Engineering Fortran applications to
the System/370 Model 3090 Vector Facility are presented. The development
of a vector migration strategy to exploit the System/370 Model 3090 Vector
Facility is described. Local vectorization techniques and program-wide
modifications which enhance the vector content of applications are
discussed. The use of the VS Fortran Version 2 Compiler and Library, The
Engineering and Scientific Subroutine Library and related products to
exploit the System/370 Model 3090 Vector Facility are also introduced.

This document was authored by David B. SoIl of the Application Analysis
Group, a part of the Scientific and Engineering Products organization of
the IBM Data Systems Division. In order to determine the best ways of
using the System/370 Model 3090 Vector Facility for engineering and
scientific work, this group has analyzed numerous applications. This
analysis is the basis for this technical bulletin.

The migration of applications using the Vector Facility, the kinds of
problems it is designed to solve, and the Fortran language support provided
to the user have also been studied.

The objectives in this technical bulletin are to:

• develop and describe techniques for effective use of the IBM 3090
Vector Facility;

• share application migration experiences with users;

• provide feedback into the product development cycle for IBM
processors.

This technical bulletin discusses this information from the user's point of
view, and introduces application techniques that can help exploit the
Vector Facility. Also included are:

• illustrations of programming considerations that can hinder fully
exploiting the Vector Facility,

• a discussion of how to avoid some of the obstacles to using the Vector
Facility effectively,

Preface 111

• suggestions on ways to reduce the effort in performing the migration
process by using existing packages,

• recommendations on the kinds of tools to use.

1 V Vectorization Techniques

Contents

1.0 Introduction 1

2.0 Application Migration 3
2.1 What is the Goal of Application Migration? 3
2.2 Vector Migration: Application Selection 5

2.2.1 Selection Criteria 5
2.2.2 Virtual Storage Compatibility 5
2.2.3 Algorithm Analysis 6
2.2.4 Engineering and Scientific Subroutine Library 7

2.3 Application Migration: Strategy 7
2.4 Vector Migration Methodology 8
2.5 Application Migration: Initial Steps 8

2.5.1 Language Conversion 9
2.6 Analyzing Inhibitors to Migration 9
2.7 Characterizing the Application 9

2.7.1 Where Vector Content May Be Found 10
2.7.2 How Vector Content May Be Expressed 11
2.7.3 Style ... 11
2.7.4 An Example .. 12

2.8 Measuring the Application 14
2.9 Vector Compilation 15
2.10 Scope of Application Modification 16
2.11 Level of Effort .. 16

3.0 Overview of Vectorization Concepts 19
3.1 The Basic Unit of Vectorization: The DO Loop 19
3.2 The Basic Action of Vectorization: Loop Sectioning 19
3.3 Loop Selection ... 20

3.3.1 Vectorizing Outer DO Loops 21
3.4 Data Independence 23
3.5 Recurrepces ... 24
3.6 Indirect Addressing 26
3.7 The Stride of a Vector 27
3.8 Sources of Numerically Different Results 29

3.8.1 Vectorization of Reduction Operations 29
3.8.2 Vectorization of Library Intrinsic Functions 31
3.8.3 Fortran-66 and Fortran-77 Execution of DO Loops 31

4.0 Local Vectorization Considerations 33
4.1 Not All DO Loops Are Appropriate for Vectorization 33
4.2 Not All DO Loops Are Well Suited for Vectorization 33
4.3 Not All Loops Are DO Loops 34
4.4 Some Loops Should Be Written as DO Loops 34

Contents V

4.5 Some DO Loops Iterate Too Few Times 35
4.6 Some Loop Iteration Counts Are Unknown 36
4.7 Some DO Loops Cannot Be Vectorized 36
4.8 Summary ... 37

5.0 Local Vectorization Techniques 39
5.1 Stride ~ 40

5.1.1 Stride and Recurrences 41
5.1.2 Stride Minimization 42

5.2 Data Organization 43
5.2.1 Reorganizing Data to Improve Stride 43
5.2.2 Using EQUIVALENCE to Improve Vector Length 44
5.2.3 Data Restructuring 45

5.3 Temporary Variables 46
5.3.1 Scalar Temporaries 46
5.3.2 Scalar Array Element References 47

5.4 Subscript Considerations 48
5.4.1 Subscripts With Constant Increments 48
5.4.2 Computed Auxiliary Subscripting Variables 48
5.4.3 Linearized Multi-Dimensional Subscripts 49
5.4.4 Auxiliary Subscripts with Unknown Increment 50

5.5 Recurrence, Part 2 50
5.5.1 Hiding Recurrences 51

5.6 Unrolling Loops .. 52
5.7 Loop Segmentation 53
5.8 Statement Reordering 54
5.9 Loop Distribution 55
5.10 Indirect Addressing 56
5.11 Conditional Operations 56

5.11.1 Conditional Operations and IF Conversion 57
5.11.2 Writing Conditional Code 58
5.11.3 Improving Conditional Code 59

5.12 Data Dependent Loops 61
5.13 Loops Containing External References 63
5.14 Loops Containing Input/Output Statements 64
5.15 Restating an Algorithm 64
5.16 Vector Optimizations 66

5.16.1 Vector Sub-Sections 67
5.16.2 Indirect Addressing 68
5.16.3 Improving Vector Density 68

5.17 Local Vectorization Techniques: Summary 70

6.0 Global Migration Considerations 71
6.1 Global Restructuring 72
6.2 Incorporating Loops Across Modules 72
6.3 Changing the Solution Method 74

7.0 Summary ... 75

Appendix A. Glossary of Terms and Concepts 77

Appendix B. References 81

VI Vectorization Techniques

Figures

1. Performance Improvement vs. Vectorization 4
2. Typical Coding of Matrix Multiplication 6
3. Revised, Efficient Form of Matrix Multiplication 7
4. Solution Paths for General Problems 12
5. Application Organization: Sequential 13
6. Application Organization: Vector 14
7. Performance Gain Over Time, and Level of Effort Required 17
8. Basic Unit of Vectorization: the DO Loop 19
9. A Vectorizable Loop Before Sectioning 20

10. A Vectorizable Loop After Sectioning 20
11. Loop Selection: Original Code 21
12. Loop Selection: Equivalent Code 21
13. Loop Selection: Vectorized Code 22
14. Loop Selection: Vectorizing an Outer Loop 22
15. Schematic Form of Vectorized Outer Loop 22
16. Simple Example of a Data Independent Loop 23
17. Execution Order of Data Independent Loop 23
18. Simple Example of a Data Dependent Loop 24
19. Execution Order of Data Dependent Loop 24
20. Loops Demonstrating Recurrences 24
21. Loop Demonstrating a Implicit Recurrence 25
22. A Loop With No Recurrence 25
23. Loop With No Recurrence 25
24. Execution Order of Loop with No Recurrence 26
25. Similar Loop, Now Containing a Recurrence 26
26. Example of Indirect Addressing 26
27. Vectorizable Indirect-Addressing Loops 27
28. Non-Vectorizable Indirect-Addressing Loop 27
29. A DO Loop With Stride-1 Memory References 27
30. DO Loops With Stride 1 and Stride 50 28
31. Identical DO Loops \Vith Different Strides and Counts 28
32. Summing Elements of a Vector 29
33. Dot Product of Vectors A and B 30
34. Partial Summation in Reduction Operations 30
35. A DO Loop With Unknown Control Parameters 31
36. A DO Loop Inappropriate for Vectorization 33
37. A DO Loop Not Well Suited for Vectorization 34
38. A Hand-Coded Loop 34
39. A Hand-Coded Backward Loop 35
40. A Standard Backward DO Loop 35
41. A DO Loop With Small Iteration Count 35
42. A DO Loop With Unknown Iteration Count 36
43. DO Loop With REAL Index 36

Figures Vll

44. DO Loop With Index Converted to INTEGER 37
45. Loops With Different Strides 41
46. Loop With Dependence in One Dimension 41
47. Loop With Many Long-Stride References 42
48. Copying Data to Minimize Long-Stride References 42
49. Inappropriate Data Organization for Vectorization ~. 43
50. Data Organization More Appropriate for Vectorization 44
51. Loops With 3-Dimension Arrays 44
52. Loops With 2-Dimension EQUIVALENCEd Arrays 45
53. Poor Loop and Data Structure 45
54. Improved Loop and Data Structure 46
55. Scalar Temporary Becomes Vector Temporary 46
56. Scalar Array Element as a Temporary 47
57. Auxiliary Array Subscript \tVith Constant Increment 48
58. Computed Array Subscript•....... 49
59. Eliminating An Auxiliary Subscripting Variable 49
60. Auxiliary Subscripting Variable With Unknown Increment 50
61. Same Loop with Constant Auxiliary Subscript 50
62. Loops Not Containing a Recurrence 51
63. Subscript Relationships in Previous Example 51
64. Loop With Unrolling and Without 52
65. Loop Unrolled Along Non-Vector Dimension 52
66. Nested Loops Available for Segmentation 53
67. Loops After Segmentation 53
68. Loops Before and After Segmentation 54
69. Removing an Order Dependence 54
70. Loop Suitable for Distribution 55
71. Original Loop Is Split Into Two Loops 55
72. Indirect Addressing With a Temporary Vector 56
73. Example of a Conditional Operation 57
74. Loops With Conditional Operations 57
75. Loop With Conditional Control 57
76. Loop With Data Dep~ndence 58
77. Loop With Conditional Control 58
78. Loop Containing a Condition 58
79. Control Dependence Changed tq Data Dependence 59
80. Data Dependence With Different Conditions 59
81. Loops With Control Dependence ~ 60
82. Computation on 3-Dimensional Grid 60
83. Loops With Modified Control Dependence 61
84. Data Dependent Loop With Branch Out 61
85. Vectorizable Version of Data Dependent Loop 62
86. Loop Containing a CALL Statement 63
87. Loop Containing WRITE Statement 64
88. Loop With WRITE Statement Moved 64
89. All Six Ways to Multiply Two Matrices 65
90. Visualizing Matrix Multiplication ·66
91. Subsets of Vectors 67
92. Eliminating Subsets of Vectors 67
93. Counting Conditional Selections 69
94. Compressing Vector A Into Vector X 69
95. Expanding Vector X Into Vector A, Zero Filler 69
96. Expanding Vector X Into Vector A, With Replacement 70

Vlll Vectorization Techniques

97. Loops Distributed Across Modules 73
98. Loops Incorporated Into a Single Module 73

Figures IX

X Vectorization Techniques

1.0 Introduction

This technical bulletin presents one view of the process of migrating
Fortran application programs to exploit the System/370 Model 3090 Vector
Facility.

The discussion of the application migration process IS divided into the
following parts:

1. The first part involves establishing a migration methodology. This
begins with determining the objectives of the migration effort, and
setting realistic goals for the resulting (anticipated) performance gains.
Next, a migration strategy is developed from a three stage process. This
process consists of

a. characterizing the application program,

b. recompiling using the VS Fortran Version 2 vectorizing compiler,
and

c. analyzing the results of these two activities to formulate the
migration strategy.

This strategy may consist of a combination of local and global program
modifications which enhance the "vector content" of the application.

2. The second part reviews key vectorization concepts, and how they apply
to the System/370 Model 3090 Vector Facility and the VS Fortran
Version 2 Vectorizing Compiler.

3. The third part includes descriptions of a number of local vectorizations
which may be required as part of the migration strategy. A series of
examples is used to illustrate programming practices which make an
application's possibilities for vector execution - its "vector content" -
as visible as possible to the vectorizing compiler.

4. The fourth part introduces some of the program-wide ("global") aspects
of a migration effort. The scope of this discussion will be limited to
those aspects of overall program modification concerned with module or
logic organization, and those aspects of matching data structures which
promote vectorization. No attempt is made to analyze the vectorization
aspects of the many alternative methods of solution or different
numerical techniques available.

A brief summary then presents an overview of the migration process.

Introduction 1

In the rest of this technical bulletin, we will assume a working familiarity
with the Fortran language, particularly as implemented by the VS Fortran
Compiler and Library. No previous experience with vector computation is
assumed.

In the following discussion, we will be using terminology that may not be
familiar. Some key terms are defined in Appendix A, "Glossary of Terms
and Concepts" on page 77. An overview of the characteristics of the
System/370 Model 3090 Vector Facility and the VS Fortran Version 2
Vectorizing Compiler are presented in 3.0, "Overview of Vectorization
Concepts" on page 19.

2 Vectorization Techniques

2.0 Application Migration

The application migration methodology is a process of discovery by which
the "vector content" of an application may be found and be made visible to
the compiler, and used to improve the performance of the application. An
important aspect of this process is the determination of a strategy by which
this performance will be improved, and the time to execute the application
correctly will be reduced. Part of the formulation of this strategy is to
realistically assess the scope of the migration activity, the potential
performance improvement, and the level of effort required.

Our objectives, therefore, are to investigate

• techniques for exploiting the vector facility,
• methods of improving vector execution performance,
• where to look for vectorizable code, and
• some approaches to using the Vector Facility effectively.

Another objective is to describe some of the Application Analysis group's
experiences in migrating different types of programs to the vector hardware
and making them run efficiently. This process is known as "enabling
vector usage", or sometimes simply as "enabling".

2.1 What is the Goal of Application Migration?

A simple theoretical model (known as "Amdahl's Law") gives an
approximate indication of the maximum possible performance improvement
(P) when a program having a given vectorization ratio (V) is executed on
hardware having a specified ratio of vector to scalar computation speeds
(a): P = l/(l-V + Via). The family of curves in Figure 1 on page 4 gives an
indication of the maximum level of performance improvement (P) we might
expect, given various scalar-to-vector performance ratios (a), for each
degree of vectorization (V). The degree of vectoriza~ion is the percentage of
the application's scalar CPU time which may be migrated to execute on the
vector hardware.

Application Migration 3

§;
0

~
It:
~
:t
w
~
It:
11.
3!;

~
< :t
It:

f2
It:
W
11.

WHAT IS THE GOAL?

20.0 ,..-----------------r--, a=oo

P= ----
(l-V)++

15.0 a=15

10.0 a=10

5.0 a=5

I -~~~======-1 a=2 1.0 I-- a=l

o
o .5

VECTORIZATION RATIO (V)

1.0

a = Peak Vector/Scalar Performance Ratio

Figure 1. Performance Improvement vs. Vectorization

Several observations should be made about these curves.

1. It can be seen that even if an application can obtain an 80%
v~ctorization ratio (V), and the speed· of vector execution is infinitely
fast ("a" is infinite), then the application can only realize a factor of 5
performance improvement! This is because 20% of the application's
original (scalar) CPU time is still spent executing in scalar mode on the
scalar hardware. Thus, you should not anticipate substantial
performance improvements unless your application is (a) highly
vectorizable, and (b) the vector facility on which it executes is capable
of high vector-to-scalar speed ratios.

2. It is very difficult to characterize accurately the ratio "a" of vector to
scalar execution speeds. It is sometimes tempting to use known
quantities like hardware cycle times, but these numbers often have
little to do with the actual performance of real applications on a vector
facility.

3. The vectorization ratio (V) must be understood with some care. As we
will see in the following discussions, there are situations where the

4 Vectorization Techniques

choice of scalar or vector execution must be made judiciously; it is not
sufficient simply to push as much of an application's instruction stream
as possible onto the Vector Facility in order to get the "performance
improvement" implied by the curves in Figure 1 on page 4.

The goal, therefore, is to

• focus on those parts of the applications that take the most CPU time,
• convert them to enable execution in vector mode (while recognizing

that some portion of the code will remain scalar), and
• keep realistic expectations for performance improvements.

2.2 Vector Migration: Application Selection

The vector migration effort can be an ongoing activity, or can be limited to
performing a restricted set of tasks in a reasonable time frame to obtain a
cost effective result for the effort invested. It is clear, then, that we must
be aware of the tradeoffs involved in choosing which application programs
are to be migrated to a form which better exploits vector computation. We
must ask, "How do we select an application program for vectorization?"

2.2.1 Selection Criteria

The first criterion for selection might be to ask "is it a long running,
frequently used program?" It is probably not cost effective to spend a lot of
effort on a short running program which is used infrequently.

The next criterion involves "CPU intensity". In general, the greatest
performance improvement will be realized from an application which has a
high CPU utilization rate. However, this should not exclude an application
with significant I/O content, since the reorganization performed to improve
vectorization often has the added benefit of reducing I/O activity. We must
keep in mind that only the computational content of the code will directly
benefit from vectorization.

While it is frequently assumed that high CPU utilization implies high
floating point content, it should be noted that the System/370 Model 3090
Vector Facility can operate on integer and logical vectors as well as
floating point vectors. However, the speed improvement for programs
containing a high proportion of integer and logical operations is sometimes
not as great as for floating point operations.

2.2.2 Virtual Storage Compatibility

"Virtual storage compatibility" for vector applications involves essentially
the same considerations encountered when virtual storage is used for scalar
applications: data references should be localized as much as possible. For
array references, this generally means that the data should be used in
"storage order" as much as possible.

Application Migration 5

Since one major benefit of the Vector Facility is that a single vector
instruction performs an operation On a vector of multiple data elements,
any needed memory accesses are most efficient when the vector of data
elements is stored in contiguous memory locations.

As noted above, most of the steps taken to exploit the Vector Facility
involve good programming practices rather than specific techniques
required for exploiting specific vector hardware. When the user has finished
the process of vectorization, he generally has higher quality scalar code, as
well as having used "good" vector-enabling techniques.

2.2.3 Algorithm Analysis

There is considerable know ledge and experience in user installations to
suggest that certain algorithms are more vectorizable than others, and are
more appropriate for vector execution. Although it is possible to replace
certain algorithms, this replacement must be approached with some care to
ensure that this is the correct action. Sometimes, the replacement algorithm
is just a restatement of the original algorithm, applied to the data in a
different order. And,sometimes the replacement algorithm, although it is
more vectorizable, unfortunately requires more iterations to achieve the
same numerical result.

The following simple example illustrates how a restatement of the original
algorithm can help. Multiplication of two matrices A and B to give a
product matrix C is typically written in the form shown in Figure 2.

DO 1 I = 1, M
DO 1 J =1, P

C(I,J) = 0.0
DO 1 K = 1, N

C(I,J) = C(I,J)+A(I,K)*B(K,J)
1 CONTINUE

Figure 2. Typical Coding of Matrix Multiplication

In fact, this is only one of six possible ways to permute the sequence of DO
statements in writing this simple computation. (Many other sophisticated
variations are possible, which we will ignore for now.) As discussed in
5.15, "Restating an Algorithm" on page 64, there is a way to revise the nest
of loops in Figure 2 which yields better performance. This is shown in
Figure 3 on page 7.

6 Vectorization Techniques

DO 2 J = 1, P
DO 1 I = 1, M

C(I,J) = 0.0
1 CONTINUE

DO 2 K = 1, N
DO 2 I 1, M

C(I,J) = C(I,J)+A(I,K)*B(K,J)
2 CONTINUE

Figure 3. Revised, Efficient Form of Matrix Multiplication

It is beyond the scope of the discussions in this technical bulletin to include
considerations relating to modifying the mathematics or solution
techniques applied to the many types of engineering and scientific problems
which may benefit from vectorization. The application developer probably
has had considerable experience with the type of algorithms he is working
with, since he had to make the original choices matching the solution
technique or algorithm to the problem. Therefore we will note that a great
deal of published materiall is available which contains many references to
this kind of information, and restrict our discussions to those cases in
which the solution technique is retained, but perhaps the algorithm is
modified to use the data in a different order.

2.2.4 Engineering and Scientific Subroutine Library

As we discuss the migration process, we will continue to look for
opportunities to replace an existing (scalar) algorithm with one of the
highly tuned vectorized versions available in the Engineering and Scientific
Subroutine Library (ESSL). For2 example, a Fast Fourier Transform (FFT)
written in Fortran might be replaced by calls to the high-performance FFT
routines in ESSL, rather than spending the effort that would be needed to
analyze, rewrite, and tune the scalar Fortran version.

2.3 Application Migration: Strategy

The combination of all of these various approaches, which includes both
local vectorization and some more global considerations, as well as looking
for opportunities to make use of the ESSL vector subroutines, leads to the
general question: "How can we form a strategy for migrating an
application program to exploit the vector facility?".

To form this strategy, it is helpful to ask these questions:

• Is the code manageable?

See REFERENCES, Appendix B.

2 See the IBM Engineering and Scientific Subroutine Library Guide and
Reference (Form Number GC23-0182).

Application Migration 7

• Can the user accomplish the migration task in a reasonable time?
• How much effort has to be put into the migration task?
• Does the user understand the code?
• Does the user have to make a decision about changing the algorithm or

not?
• Can the user work within a few modules, or does he have to restructure

the program?
• Are pre-packaged vectorized functions available for the user's purposes?
• Will localized modifications to the program be sufficient?

These are some of the considerations the user could deal with even before
submitting his program to the compiler. Thus, the application migration
process requires the user to understand his application. He needs the
answers to these questions to properly interpret the results of the compiler
vectorization, and as an. aid to the formulation of a vector migration
strategy.

2.4 Vector Migration Methodology

The migration process does not have to be established for each individual
application. Although the process is application dependent, many
applications will have some characteristics in common. Similarities are
found within an industry or class of problem, and within specific solution
techniques that occur over and over again. These similarities may be
exploited by applying the experience of other migration efforts to establish
general guidelines for the migration of a given application.

The scope of the migration methodology has been limited in this technical
bulletin to the migration of existing applications by finding the code and
data organization which best expresses the vector content of the problem
without replacing the solution method or technique.

The task for the user then, is to determine, for the type of solution
technique involved, what type of organization is most efficient for
vectorization, and what kind of algorithm· is being used. Some algorithms
imply a certain amount of data independence, not just from the algorithm
itself, but also from the underlying mathematics and/or the physical
problem being solved.

2.5 Application Migration: Initial Steps

The simplest and easiest approach is for the user to simply apply the
Fortran vectorizing compiler to the application, and let it vectorize
"everything". If the application code and data are appropriately organized,
the desired performance improvements may become available with no
further effort being needed.

Of course, this type of migration does not require much explanation. In
practice, however, it is most usually found that the vectorization process is

8 Vectorization Techniques

application dependent, particularly when the application was not originally
designed for vector execution. This technical bulletin describes some of the
more challenging aspects of migrating scalar Fortran application code to
vectorizable code, where a simple recompilation with VS Fortran Version 2
is not sufficient.

2.5.1 Language Conversion

A convenient first step in the migration process is to move all of the
application source code to the standard Fortran-77 language base
represented by VS Fortran Version 2, LANGLVL(77). Although this
conversion is not required (VS Fortran Version 2 will accept and vectorize
Fortran-66, VS Fortran LANGLVL(66) constructs), it is recommended that
the code be converted to the standard language level before making
modifications for vectorization.

To assist in this effort, a Language Conversion Program (LCP) is available3•

2.6 Analyzing Inhibitors to Migration

'The process of migration now proceeds through several stages. Beginning
with the Fortran-77 base, we will (1) characterize the application in several
ways to be described shortly, (2) apply the VS Fortran Version 2
Vectorizing Compiler to the source code, and (3) analyze the results. We
must then decide whether the simple vectorization results are acceptable as
is, or whether there are inhibitors to further vectorization which must be
overcome.

If these inhibitors are well localized (e.g., restricted to a single routine),
then local recoding may be all that is required. If, however, it can be
determined that the basic inhibitor to vectorization is the logical
organization of the program's modules, or even the organization of its data,
then we may begin to formulate the migration strategy previously
mentioned. We will now discuss each of these steps to illustrate the
activities involved.

2.7 Characterizing the Application

Characterizing the application involves discovering a number of things the
user may already know about the application, such as

• What solution technique is used, and will it vectorize well?
• What kind of vector inhibitors exist in the program?
• Are the inhibitors related to

3 See the IBM Fortran Language Conversion Program General Information
manual (form number GC23-0154) for additional information on the LCP
product.

Application Migration 9

the syntactic style (the way in which the loops are expressed),
the complexity 6f the indexes within those loops, or
is the inhibitor the overall organization of the code?

(When these things are not already known, some of the techniques to be
described will help in discovering them.)

Information about the solution technique provides insight into the type of
modification which might be performed, without actually changing the
technique itself. Other observations regarding the style and structure of
the code help to set expectations for the migration effort, decide on the
potential for using ESSL routines, and establish the potential for reordering
the algorithm to improve its vector content.

For example, the original ,programmer may have masked the program's
inherent data independence4 by over-modularizing the program. That is,
the program may have been organized in such a way that computations
which might be performed on vectors of operands are spread over many
subroutines, each of which operates on a single scalar datum at a time.
When the program is executing in "sequential" (scalar) mode this may not
have made any difference. For vector exploitation, however, it is
recommended that the user review how both the program's logic and the
data were organized, and how the program's data addressing patterns were
associated with the program's instructions.

2.7.1 Where Vector Content May Be Found

When the original problem was analyzed, using a specific computational
style may not have been particularly important. It is observed that most
scientific and engineering applications have some vector content. In order
to appreciate the degree to which a specific application can utilize the
Vector Facility, the user has to know something about the original problem,
how the problem has bee'n modeled, and how that model has been expressed.

Most of today's complex problems cannot be solved exactly, but must be
represented approximately. The resulting approximate mathematical
solution is then represented by an approximate numerical solution. This
process of refinement yields a tractable computational solution to the
original physical problem which, it is hoped, closely resembles reality. At
each stage of this refinement, the trend is towards more simplifications
which will permit valid solutions to be found. These simplifications, in turn,
involve such practices as uncoupling of physical effects or mathematical
equations, independent treatment of processes (quasi-static,
quasi-stationary) and the like. Such uncoupling or separation of effects
provides the data independence which permits vectorization, in addition to
the natural independence of effects present in the original problem.

In order to maximize the vectorization potential of an application program,
then, it is our task to avoid hiding the inherent data independence present

4 See 3.4, "Data Independence" on page 23.

10 Vectorization Techniques

during the translation from the model of the problem to the mathematical
description, to the numerical approximation, and finally to the expression
of that numerical solution in Fortran.

2.7.2 How Vector Content May Be Expressed

2.7.3 Style

The migration strategy can be partially formed by assessing the potential
for vectorization present in each of several classes of solution methods.
Figure 4 on page 12 illustrates the solution process for a general problem,
showing three possible paths which result in an application program.

Along the left-hand path, a class of explicit or direct solution techniques is
indicated. As a group, they have a certain amount of similarity in terms of
the way of expressing the algorithms, methods of handling data and
techniques of writing code. The data independence required for
vectorization is usually expressed in the physical space of the problem, such
as in the relationship between parameters evaluated on a physical grid.
There is a degree of freedom in selecting an array (grid) dimension for
vectorization presented by this class of solutions which may not be present
in other classes.

The right-hand path depicts the class of implicit solutions, including large
systems of equations. Along this path, the data independence is expressed in
the relationships between the rows and columns of the matrices being
manipulated, according to the rules of the matrix or linear algebra
technique being used. The middle path indicates a mixed situation.

Thus the visibility of the inherent vector content of the problem must be
maintained at each of the several stages of analysis, from the original
statement of the problem to the final expression in FORTRAN.

At the bottom of the figure is a box labeled "machine tuning", which will be
discussed last in this "top-down" process.

For scalar machines, it usually did not matter how the program's code was
organized as the user migrated his application from running in fixed, real
memory to running in virtual storage. However, he did have to consider
both the way the data was organized and the way it was referenced. This
resulted in adopting a style of programming where the user organized and
addressed his data to account for the program's behavior when the data was
in virtual storage.

Style also counts in writing good vector code. However, it may be a more
important factor on vector machines than on scalar machines, because
"style" includes not only the micro-scale - the individual program loops -
but the macro-scale - the way in which the program is designed. Whether
the user is designing a new application or migrating an existing one, he
should keep in mind the idea of maximizing the use of storage-order
addressing. This should also help to organize the program so that it
vectorizes well.

Application Migration 11

2.7.4 An Example

WHERE VECTOR CAN BE EXPRESSED

Figure 4. Solution Paths for General Problems

Suppose we have an application which performs a simulation, in the order
of what happens at a single point (in a 3-dimensional space, perhaps) with
many functions, many physical phenomenon, and many actions.

The program may originally have been designed for a sequential machine,
and the user may have modularized this program so that each routine
computed the results of one of such actions at a point; when all actions at a
single point were completed, the process was repeated in a cyclic manner.
This situation is illustrated by the simplified flow diagram in Figure 5 on
page 13.

What happens to one point may be happening to many, or indeed to all the
points, and this is one clue telling us where we may look to uncover the
required data independence. That is, each routine or function may be doing
the same thing to each point, but because the program was structured to
perform the computations on a "point-by-point" basis, the compiler will not
be able to detect the fact that the same operations are being performed on
many points.

12 Vectorization Techniques

APPLICATION ORGANIZATION

SUBROUTINE 1

SUBROUTINE 2

SUBROUTINE n

Figure 5. Application Organization: Sequential

However, by viewing this problem in a different way, we realize that a
reorganization is possible: the same solution technique is applied to the
data points, only in a different order. This means that the user may apply
an algorithm in stages by applying the first part of an algorithm to all
points to which it relates. The second part of the algorithm is applied to its
set of points, and so on. This situation is illustrated in Figure 6 on
page 14.

The data structure for this design might be much larger than for the
original design, since many variables which were (undimensioned) scalars
could now become arrays of points, or vectors. (The Dynamic COMMON
feature of VS Fortran5 permits full use of large virtual storage, such as the
2 gigabytes of virtual addressing available under MVS/XA, and makes it
easy to manage this "scalar expansion".)

5 See the VS Fortran Version 2 Programming Guide (form number SC26-4118).

Application Migration 13

VECTOR APPLICATION ORGANIZATION

SUBROUTINE 1

SUBROUTINE 2

SUBROUTINE n

Figure 6. Application Organization: Vector

2.8 Measuring the ApplicatiQn

Adapting a program to enable vectorization is one form of program
optimization. Like other program optimization activities, it is always useful
to make measurements to determine where the program's CPU time is being
spent. The distribution of CPU time can provide valuable information
regarding how and where to focus one's effort in modifying the program.

One method of determining the CPU time characteristics of a Fortran
application is through the use of an execution analyzer such as the VS
Fortran Execution AnalyzerS, or any similar diagnostic tool, to detect
"hot-spots" - segments of code where large fractions of the' application's
CPU time are spent. ,MVS provides STIMER/TTIMER macros, while VS
Fortran Version 2 Interactive Debug7 provides a TIME function. ,In
addition, most large installations have some type of timer facility.

6 VS Fortran Execution Analyzer, Program Number 5798-DXJ.

14 Vectorization Techniques

See the VB Fortran Version 2 Interactive Debug Guide and Reference (Form
Number SC26-4223).

Regardless of the method used to capture the CPU utilization, what is
necessary is that the user understand where the time is being spent, not
only among the routines, but within the most CPU intensive routines as
well.

The interpretation of the distribution of CPU time may depend on the
design of the application. The distribution of CPU time, along with an
understanding of the logic on the program, can provide a valuable aid in
the formulation of a migration strategy. The appearance of a "hot-spot" in
the CPU time distribution may be interpreted differently if it occurs in a
simulation organized in a "point-by-point" manner, than if it occurs in a
code organized to handle many points per function.

These time-distribution observations should give the user direction as to
where he should focus his effort. If the CPU time distribution is uneven,
and is concentrated in one part of a program, the task may be as simple as
analyzing one single loop; if it does not already vectorize, it may be either a
replaceable function, or a modifiable or replaceable loop.

The user may thus have narrowed the scope of his efforts from many
routines to one or a few loops, and presumably has reduced the amount of
work to be done.

2.9 Vector Compilation

Assuming that the user has achieved an understanding of the organization
and behavior of his application, the next thing to do is to submit the
program to the VS Fortran Version 2 Vectorizing Compiler. If the resulting
performance improvement is satisfactory, or if no further effort can be
invested in program modification, the migration activity is complete.

In many situations, however, migrating an existing application program for
vector execution may require more than simple vectorization (reliance on
the vectorization capability of the compiler); it may also require more than
just the analysis of inner DO loops. Rather, it may require an
understanding of both the static structure and the dynamic behavior of the
program.

The information gained through the characterization and measurement of
the application now provides a basis for the interpretation of the results of
vector compilation. That is, which DO loops are vectorized by the compiler?
Are all of the important (CPU-intensive) loops vectorized? Do the loops
which vectorize represent the real vector content of the application?
Although the most CPU-intensive loops vectorize, they may not represent
the greatest vector potential.

Since all vector operations do not perform at the same rate, the simple fact
of vectorization may not be sufficient to achieve maximum performance
improvement. Considerations such as vector length and density, stride and
other addressing patterns will affect vector performance. Beginning with
section 3, we will discuss some of the specific techniques which can be used
to improve vectorization and vector execution performance. Before

Application Migration 15

introducing these techniques, the migration strategy should be completed
by determining the scope of the migration, that is, the amount of
modification and the level of effort required to accomplish that
modification.

2.10 Scope of Application Modification

There are two basic types of program modification. In one case, the user
alters the form of his program. The vector content may already be present,
but may be expressed in a form that is awkward, overly complex, or
ambiguous.

In the other case, the user alters the method of solution or the content of
what the program is doing. This kind of modification may not always be
desirable, but nevertheless, the user should be aware that sometimes it is
necessary to consider modifying the solution technique in cases where the
potential benefit may be sufficiently great.

With the accumulated information about the characteristics and
organization of the application, and its CPU time behavior, the user is now
in a position to make an important decision. Is simple vectorization
enough? If the performance improvement resulting from application of the
VS Fortran Version 2 Vectorizing Compiler is not maximizing the vector
potential of the application then what migration steps should be taken?

2.11 Level of Effort

The process of defining a strategy for migration should not only identify the
inhibitors to vectorization, and provide a plan for their removal, but must
take into account the level of effort involved as well.

The curves in Figure 7 on page 17 are presented to illustrate the
qualitative characteristics of the relationship between effort and benefit for
the vector migration activity. The three "steps" in the left-hand curve
indicate stages of incremental improvement in performance. The right hand
curve illustrates level of effort. This is intended to convey the idea that
each incremental level improvement in performance requires an increased
level of effort. The performance gain eventually reaches a plateau, where
all available vector content has been realized.

16 Vectorization Techniques

LEVEL OF EFFORT

RESTRUCTURE
,

;
;

~ ~ i !it
~ I ~

~

r
TIME

Figure 7. Performance Gain Over Time, and Level of Effort Required

Application Migration 17

18 Vectorization Techniques

3.0 Overview of Vectorization Concepts

The System/370 Model 3090 Vector Facility and the VS Fortran Version 2
Vectorizing Compiler introduce new techniques for engineering and
scientific computation. We will review some of the relevant concepts here,
before discussing program modifications that can help exploit the
capabilities of the Vector Facility.

3.1 The Basic Unit of Vectorization: The DO Loop

The basic unit of vectorization is defined as the "DO" loop. Figure 8
illustrates a typical DO loop.

DO 99 I = 1, N
A(I) = A(I) +

99 CONTINUE

Figure 8. Basic Unit of Vectorization: the DO Loop

There are other ways to code loops in Fortran, but only loops expressed as
DO loops will be considered for vectorization.

3.2 The Basic Action of Vectorization: Loop Sectioning

The vector registers in the System/370 Model 3090 Vector Facility hold a
predetermined number of data elements, which will only rarely be identical
to the number of elements in a computer vector. Therefore, it is almost
always necessary to split the computer vector into segments called sections.
Each section may contain at most the number of elements a vector register
can hold; this number is called the section size, and is denoted by "Z". Z is
usually a power of 2, and is 128 for the System/370 Model 3090 Vector
Facility.

Vectorizing a DO loop produces instructions that operate on groups of data
elements.

Overview of Vectorization Concepts 19

DO 10 J = 1, N
10 A(J) = B(J)

Figure 9. A Vectorizable Loop Before Sectioning

Thus, the loop in Figure 9 is converted by the compiler into one loop (the
original loop, now over "groups" of elements) which contains a second
(conceptual) "loop over the elements in the group". This second
(conceptual) loop represents the actions of the vector instructions
themselves.

xx

DO 10 J = 1, N, Z <-- Note Increment Z

DO xx
A(jv)

jv = J, J + MIN(N-J,Z-I), 1
B (jv)

10 CONTINUE

Figure 10. A Vectorizable Loop After Sectioning

Note the following differences between the original loop in Figure 9 and
the vectorized loop in Figure 10:

• The innermost loop ("DO xx") is executed in the vector hardware, In
"groups" (sections) of "z" elements at a time.

• The outer loop increment is "Z" instead of 1, so the vector instructions
in the loop are executed approximately NjZ times, rather than the N
times required for the equivalent scalar loop.

• The "remnant" left over (when N is not evenly divisible by "Z") is also
executed in the vector hardware.

3.3 Loop Selection

Loop selection is a fundamental vectorization capability of the VS Fortran
Version 2 Vectorizing Compiler. Unlike many other compilers, the VS
Fortran Version 2 Vectorizing Compiler analyzes the innermost eight loops
in a nest of DO loops, and selects the single loop whose vectorization will
lead to the fastest execution of the entire nest. As with many other
vectorization actions, there are ways to write the statements in the nest to
increase the compiler's chances of exploiting possible vectorization
opportunities.

20 Vectorization Techniques

DO 15 I = 1, N
DO 15 J = 1, M

X(I,J) AA(I,J) + BB(I,J)
15 Y(I,J) = AA(I,J) * BB(I,J)

Figure 11. Loop Selection: Original Code

Sometimes, based on the economic analysis the compiler performs to
provide the most efficient loop execution, a loop structure like that shown
in Figure 11 will be vectorized either by selecting the "J" (inner) loop for
vectorization, or by selecting the "I" (outer) loop. That is, based on the
available information regarding the loop limits, dimensions, stride, cost of
instruction issue, and so forth, the compiler might vectorize the outer, "I"
loop.

In addition to considering both DO loops as vectorization candidates, the
compiler will also evaluate the possibility that the nest will execute fastest
if neither loop is vectorized. It is quite possible that scalar execution might
be faster than vector execution; if this is the case, the compiler will
generate scalar code for the nest.

3.3.1 Vectorizing Outer DO Loops

In order to select the outer loop in Figure 11 for vectorization, the compiler
must determine that the nest of loops would give the same result as if it
were written as shown in Figure 12, with the two DO statements
in terchanged.

DO 15 J = 1, M
DO 15 I = 1, N

X(I,J) AA(I,J) + BB(I,J)
15 Y(I,J) = AA(I,J) * BB(I,J)

Figure 12. Loop Selection: Equivalent Code

The compiler determines that it is indeed safe to "interchange" the order of
these two loops, since all computations within the loops are independent of
the order in which they are computed.

Note carefully, however, that even though it is safe to "interchange" the
order of the loops, they always remain in their original order! When the
outer loop in Figure 11 is selected for vectorization, the compiler will
generate instructions which section the loop on the leftmost ("I") subscript,
as illustrated in Figure 13 on page 22:

Overview of Vectorization Concepts 21

DO 15 I 1, N, Z
DO 15 J = 1, M

DO xx iv = I, I+MIN(N-Z,Z-I), 1
X(iv,J) AA(iv,J) + BB(iv,J)

xx Y(iv,J) = AA(iv,J) * BB(iv,J)

15 CONTINUE

Figure 13. Loop Selection: Vectorized Code

It can be seen in this example that the actual order of statement execution
is not the same as for the "interchanged" loops in Figure 12 on page 21.
Thus, it is useful to remember that "interchange" testing is just one stage
in the compiler's assessment of the vectorization opportunities in a nest of
DO loops.

Another example may help to clarify this process. When we speak of
"vectorizing the outer loop", we actually mean that all eligible statements
within that loop, including nested inner loops, will be vectorized on the
index of that loop.

DO 97 J = 1, 700
H(J) = A(J) * B(J)
DO 98 I = 1, 700

98 C (J ,I) = C (J , I) * (D (J ,I) + H (J))
97 CONTINUE

Figure 14. Loop Selection: Vectorizing an Outer Loop

In Figure 14, there are computational statements in both loops. When the
outer loop with index J is vectorized, the statement in the inner loop is
vectorized on J also. This result is indicated schematically in Figure 15,
where the actions of the vector instructions are represented by the "loops"
in the boxes.

DO 97 J = 1, 700, Z

DO xx jv = J, J+MIN(700-Z,Z-I)
xx H (j v) A (j v) * B (j v)

DO 98 I = 1, 700

DO ww jv = J, J+MIN(700-Z,Z-I)
ww C(jv,I) = C(jv,I) * (D(jv,I) + H(jv»

98 CONTINUE
97 CONTINUE

Figure 15. Schematic Form of Vectorized Outer Loop

22 Vectorization Techniques

The processing in this nest first calculates a "J-section" of values of the
array H, and then calculates 700 J-sections of the array C by stepping
through all the values of the index 1. Then, the next section (in J) of values
of the array H is calculated, followed by the second set of 700 J-sections of
the array C; and so on.

The important points to remember about vectorizing nests are:

• all statements inside the DO loop chosen for vectorization are
considered for vector execution, not just those statements immediately
nested in that DO loop;

• vectorizing an outer loop may actually cause more of the nest's
computational work to be done in vector mode than if an inner loop
were vectorized.

3.4 Data Independence

A key factor in enabling the vectorization of an application is the "data
independence" of the vectors of data to be operated on by the Vector
Facility's instructions. In general, data independence means that every
operand in a vector is operated on independently of every other operand
within that vector.

To illustrate a simple example of data independence, consider the DO loop
in Figure 16:

DO 99 J = 1, 20
99 A(J) = A(J) + B(J)

Figure 16. Simple Example of a Data Independent Loop

The execution order of this loop is shown in Figure 17.

A(1)
A(2)

A(20)

A(1)
A(2)

+ B(1)
+ B(2)

A(20) + B(20)

Figure 17. Execution Order of Data Independent Loop

A value computed in each iteration of the loop in Figure 17 is not used in
other iterations. The computation of the elements of A(I) in this loop are
therefore independent of each other for all values of 1. This independence
of data values from one DO loop iteration to another is a key factor in
allowing execution on the System/370 Model 3090 Vector Facility, and this
DO loop can be vectorized.

By way of contrast, consider the DO loop in Figure 18 on page 24.

Overview of Vectorization Concepts 23

DO 99 J = 1, 20
99 A(J+1) = A(J) + B(J)

Figure 18. Simple Example of a Data Dependent Loop

The execution order of this loop is shown in Figure 19.

A(2)
A(3)

A(21)

A(1)
A(2)

+ B(l)
+ B(2)

A(20) + B(20)

Figure 19. Execution Order of Data Dependent Loop

The value computed in all but the first iteration of the loop in Figure 19 is
dependent on the value computed in the previous iteration. Therefore, this
DO loop does not satisfy the requirement for data independence, and the
loop cannot be vectorized.

In 3.6, "Indirect Addressing" on page 26, we will see another common
programming practice that may not satisfy the data independence
requirement.

Most of the localized program changes we will consider in this technical
bulletin are intended to make any existing data independence as "visible"
as possible to the VS Fortran Version 2 Vectorizing Compiler. At the same
time, we may also need to be prepared to perform whatever other data or
module reorganizations necessary to permit us to express this data
independence clearly, or possibly even to eliminate certain dependences.

3.5 Recurrences

Recurrences occur so commonly in Fortran applications that it is worth
examining their special properties with regard to vectorization. A
recurrence carries a dependence between the elements of a vector (usually
in the form of a linear relationship among the subscripts) which prevents
its being used in a vector operation. The two loops in Figure 20 illustrate
operations containing recurrences.

DO 21 I = 2, 100
21 Q(I) = Q(I-1) + A(I)

DO 22 I = 1, 99
22 Q(I+1) = Q(I) + A(I)

Figure 20. Loops Demonstrating Recurrences

24 Vectorization Techniques

In both cases, every computed element (except the first) of the array "Q"
depends on the just-computed value of the preceding element; therefore the
elements are not independent. This has the effect of inhibiting vectorization
of the computations of the elements of "Q".

The compiler will not vectorize operations containing recurrences. As
noted in the discussion of loop splitting in 5.9, "Loop Distribution" on
page 55, the compiler will try to split a loop which contains recurrences in
order to permit the vectorization of the other statements. In fact, even if
the recurrence is implicit as the result of EQUIVALENCE statements, as
seen in Figure 21, the compiler will assume that a dependence exists, and
will not vectorize the statement.

EQUIVALENCE (R(l), Q(l))

DO 23 I = 1, N
23 R(I+1) = Q(I) + A(I)

Figure 21. Loop Demonstrating a Implicit Recurrence

In this example, "R" and "Q" refer to the same storage. If "R" is replaced
by "Q" within the loop, we find the same recurrence relationship as given
by the preceding example in Figure 20 on page 24.

The subscript relationships illustrated in Figure 20 on page 24 need not
always imply a recurrence. In Figure 22, the DO loop increment has been
changed from 1 to 2, and the recurrence vanishes!

DO 21 I = 2, 100, 2
21 Q(I) = Q(I-1) + A(I)

Figure 22. A Loop With No Recurrence

This DO loop may now be vectorized, because all values computed in the
loop are independent of one another.

The dependence of the computed value of one element of a vector on others
does not necessarily mean the computation cannot be vectorized. Suppose
the loop in Figure 18 on page 24 had been written in the slightly modified
form shown in Figure 23.

DO 99 I = 1, 20
99 A(J) = A(J+l) + B(J)

Figure 23. Loop With No Recurrence

The execution order of this loop is shown in Figure 24 on page 26.

Overview of Vectorization Concepts 25

A(l) = A(2) + B(l)
A(2) = A(3) + B(2)

A(20) = A(21) + B(20)

Figure 24. Execution Order of Loop with No Recurrence

The value computed in each iteration of the loop is independent of all
values computed in previous iterations of the loop. Therefore, this loop can
be vectorized.

However, if the DO loop index runs from 20 to 1 in steps of -1, a recurrence
does exisi, and the loop cannot be vectorized. This is illustrated in
Figure 25.

DO 99 I = 20, 1, -1
99 A(J) = A(J+l) + B(J)

Figure 25. Similar Loop, Now Containing a Recurrence

Even though this DO loop contains the same statement as in Figure 23 on
page 25, the change in the direction of loop traversal causes a recurrence.

3.6 Indirect Addressing

Indirect addressing is concerned with addressing an array by using
subscripts which are themselves subscripted. Thus, it involves a separate
array of subscript values in addition to the array whose elements are
directly involved in the operation(s) to be performed. This is . illustrated in
Figure 26.

DO 26 J = 1, N
26 A(INDX(J» 0.0

Figure 26. Example of Indirect Addressing

This array of subscript values need not be in any specific order, and may
participate in vector operations. As long as the array which is indirectly
addressed does not appear on both sides of the equal sign in a Fortran
statement, the statement may be eligible for vectorization. This is
equivalent to saying that a statement which uses an indirectly addressed
variable may be vectorized if there are either only loads of the variable, or
only stores of the variable, but not if there are both.

The examples in Figure 27 on page 27 both illustrate this requirement.

26 Vectorization Techniques

DO 27 J = 1, N
27 R(J) = A(INDX(J» + C(J) * .5

DO 28 J = 1, N
28 A(INDX(J» R(J) + C(J) * .5

Figure 27. Vectorizable Indirect-Addressing Loops

Each of the DO loops is vectorizable, since it involves only fetches (loads)
or only stores of the indirectly addressed array "A". Note that the values
of the elements of the INDX array may be arbitrary, so long as they do not
violate the declared dimension bounds of the array A.

The last example, in Figure 28, shows a loop which will not be vectorized,
since the compiler has no way to determine whether any value in the list
vector "INDX" is repeated.

DO 29 I = 1, N
29 A(INDX(I» A(INDX(I» + B(I)

Figure 28. Non-Vectorizable Indirect-Addressing Loop

If two elements of the INDX array have the same value, say INDX(il) and
INDX(i2), then A(INDX(i2» would not be independent of A(INDX(il», since
they are the same element of "A". Thus, the requirement of data
independence is not satisfied, and this loop cannot be vectorized. Since the
array of subscript values may be dynamically generated, uniqueness of
values in general cannot be guaranteed.

3.7 The Stride of a Vector

The value of localized memory references was mentioned earlier, in
2.2.2, "Virtual Storage Compatibility" on page 5. The concept of "stride" is
helpful in understanding how data can be organized and referenced in order
to improve localization.

As defined on Appendix A, "Glossary of Terms and Concepts" on page 77,
the. stride of a vector is the addressing increment between successive
elements divided by the element length. In Fortran terms, "stride" has a
much simpler characterization.

Overview of Vectorization Concepts 27

DIMENSION A(1000), B(1000)

DO 44 J = 1, 1000
A(J) = A(J) + B(J)

44 CONTINUE

Figure 29. A DO Loop With Stride-l Memory References

In Figure 29 on page 27, the elements of the arrays "A" and "B" are being
referenced in order of adjacent elements; thus, their addressing increment is
the same as the length of each element. We call this a "stride-I" reference
pattern, or sometimes simply "stride-I" for short.

In Figure 30, there are two loops referring to the array "C".

* STRIDE 1 * STRIDE 50
DIMENSION C(50,300) DIMENSION C(50,300)
- - - - - - - -
DO 45 J = 1, 50 DO 46 K = 1, 300

C(J,2) = 0.0 C(17,K) = 0.0
44 CONTINUE 46 CONTINUE

Figure 30. DO Loops With Stride 1 and Stride 50

The loop on the left is varying the leftmost subscript of the array C, and
because Fortran stores arrays in "column-major" order in which the
leftmost subscript varies most rapidly, the memory references will be
"stride-I". However, the loop on the right varies the rightmost subscript of
the array "C"; thus the memory references will be to elements of "c" at a
stride of 50.

The stride of memory references is only one of the factors controlling the
compiler's choice of a loop to vectorize. For example, in Figure 31, the
compiler might choose to vectorize either the inner or the outer loop,
depending on the array sizes.

REAL A(20,20),B(20,20)

DO 1 K = 1, 20
DO 1 J = 1, 20

A(J,K)=B(J,K)*A(J,K)
1 CONTINUE

REAL A(80,80),B(80,80)

DO 1 K = 1, 80
DO I·J = 1, 80

A(J,K)=B(J,K)*A(J,K)
1 CONTINUE

Figure 31. Identical DO Loops With Different Strides and Counts

The nest of DO loops on the left might be vectorized on the outer loop,
because the overhead of sectioning the inner loop 20 times can be avoided,
and the stride of 20 is reasonably small. The nest on the right might be
vectorized on the inner loop to minimize stride costs, but at the expense of
having to do the vector loop initiation 80 more times.

28 Vectorization Techniques

Experience has shown that when all other factors can be kept unchanged,
the best vector performance is usually obtained for small strides. Many of
the examples that follow will illustrate techniques for reducing the stride of
array references in loops suitable for vectorization.

3.8 Sources of Numerically Different Results

When a program is being converted from scalar to vectorized form, it is
usual practice to compare the numerical results from the two versions.
Almost all the vector instructions generated by the VS Fortran Version 2
Vectorizing Compiler produce results that are identical to the results
produced by the equivalent scalar instructions.

However, there are two different situations where the results produced from
vectorized programs may be different from the results produced when those
programs are executed in scalar mode. These situations involve

• reduction operations, and
• intrinsic function references.

We will discuss each of these in turn, and explain how to prevent
vectorizations which could lead to the resulting numerical differences, by
using the NOREDUCTION and NOINTRINSIC sub-options of the VECTOR
compiler option. The user is cautioned to consider these differences during
the numerical validation of vectorized code.

Furthermore, the difference in interpretation of the DO statement between
the Fortran-66 and Fortran-77 standards· is another possible source of
numerically different results.

3.8.1 Vectorization of Reduction Operations

Reduction operations involve accumulating the sum of the elements of a
vector into a scalar. Special hardware instructions can be generated by the
VS Fortran Version 2 Vectorizing Compiler to perform these operations.
Two typical reductions are summing the elements of a vector, and
calculating the inner ("dot") product of two vectors.

The sum of the elements of a vector is illustrated in Figure 32. The VS
Fortran Version 2 Vectorizing Compiler will recognize and automatically
vectorize such a sum reduction operation.

S = 0.0
DO 99 I 1, N

99 S = S + A(I)

Figure 32. Summing Elements of a Vector

Overview of Vectorization Concepts 29

Similarly, the "dot product" or "inner product", illustrated in Figure 33 on
page 30 is another example of code for which the vector result may not be
"bit-by-bit" identical to the scalar computation due to the use of the vector
accumulate instructions.

D = 0.0
DO 99 I 1, N

99 D = D + A(I) * B(I)

Figure 33. Dot Product of Vectors A and B

The VS Fortran Version 2 Vectorizing Compiler will automatically
recognize and vectorize such loops.

These examples illustrate the few instances where the user does not achieve
"bit for bit" numerical equivalence of results between the scalar and vector
implementations of the same operation. This is because the vector
summation is performed using vector "accumulate" instructions which do
not necessarily perform the addition of elements in the same order as the
original scalar code.

The accumulate operation is accomplished by forming partial sums (for the
System/370 Model 3090 Vector Facility, the number of partial sums is 4),
and then by summing the partial sums.

For example, the elements A(l), A(2), ... A(N) in Figure 32 on page 29
would be added first as four partial sums, as shown in Figure 34.

Partial sum 1
Partial sum 2
Partial sum 3
Partial sum 4

A(l) + A(5) + A(9) +
A(2) + A(6) + A(10) +

-. A(3) + A(7) + A(ll) +
A(4) + A(8) + A(12) +

Figure 34. Partial Summation in Reduction Operations

Finally, the four partial sums are added in sequence to form the final result.
Because the order of summation is different from a normal DO loop's scalar
summation, cancellation and truncation of intermediate results may occur
in different places. As a result, some numerical differences may occur when
reduction operations are vectorized.

Another possible source of result differences is that sums of short precision
(REAL*4) operands are accumulated in long precision (REAL*8), thus
reducing truncation errors.

If some step in the migration process requires that reduction operations
give the same results as scalar code, the user may specify the
NOREDUCTION sub-option (abbreviated NORED) of the VS Fortran
Version 2 Vectorizing Compiler's VECTOR option. This will turn off the
compiler's attempted recognition and vectorization of reduction operations.

30 Vectorization Techniques

3.8.2 Vectorization of Library Intrinsic Functions

Numerical differences may also be encountered when comparing the results
obtained using the VS Fortran Version 2 intrinsic function library with
results using previous Fortran libraries (G, G1, H, H-Extended, and VS
Fortran Version 1). This is due to the major improvements in precision
introduced in the VS Fortran Version 2 Library. Many of the algorithms
used in the VS Fortran Version 2 Library have been upgraded to provide
greatly increased accuracy over the entire numerical range of the various
library functions. In addition, the results from the vector and scalar
versions of the VS Fortran Version 2 Library routines provide bit-identical
results for all arguments.

To help with verifying results during application migration, the
NOINTRINSIC sub-option (abbreviated NOINT) of the VECTOR option tells
the compiler that the user wishes the compiler not to invoke the vector
versions of the Fortran intrinsic functions. Since the compiler normally
selects the vector versions of the Fortran intrinsic functions automatically
during the vectorization process, the use of this sub-option will force the
compiler to use the scalar versions for all intrinsics.

Having specified the NOINTRINSIC sub-option at compile time, the user
may provide a link-time library containing the old library routines. Thus,
the numerical results from the intrinsic functions will be identical to the
"old" values, while the rest of the program may be vectorized. Once
vectorization results are satisfactory, the INTRINSIC sub-option (which is
the default) is specified, and the new library routines will be used
automatically.

The user may now validate the vectorized code assured of bit-for-bit
equivalence between the scalar and vector versions of the intrinsics when
using VS Fortran Version 2. Numerical differences in the results can then
be attributed to the increased accuracy of the new routines (assuming that
possible differences due to reduction operations have already been taken
into account.)

3.8.3 Fortran-66 and Fortran-77 Execution of DO Loops

One other factor to consider in preparing programs for vectorization is the
different treatment of DO loops between the Fortran-66 and Fortran-77
standards. In Fortran-66, DO loops are always traversed at least once.
Fortran-77 requires that the "trip count" of the loop be checked before
beginning the execution of the loop, and if the count is not greater than
zero, the loop must not be executed.

DO 99 I = M, N
A(I) = A(I) +

99 CONTINUE

Figure 35. A DO Loop With Unknown Control Parameters

Overview of Vectorization Concepts 31

If the loop limit N is smaller than the initial value M in the DO loop
illustrated in Figure 35, then the loop will not be executed at all when the
compiler parameter LANGL VL(77) is specified. If an application program
depends on at least one execution of the DO loop, different numerical
results might result.

Even though the VS Fortran Version 2 Vectorizing Compiler will vectorize
programs written at both the Fortran-66 and Fortran-77 language levels, the
user is cautioned to check for the possibility that his program depends on
one of the two standard interpretations of the DO statement.

32 Vectorization Techniques

4.0 Local Vectorization Considerations

Vectorization is centered on DO loops, and the statements they contain. In
this section we will examine some of the factors that determine whether a
given DO loop should or should not be vectorized.

4.1 Not All DO Loops Are Appropriate for Vectorization

DO 99 I = I, N
J = 2 * MOD(I,M) / K
A(J) = A(J) + ...

99 CONTINUE

Figure 36. A DO Loop Inappropriate for Vectorization

However, not all "DO" loops are appropriate for vectorization. Recall that
vectorization requires data independence among the elements of a vector.

The computation of the subscript "J" in Figure 36, on which A depends,
does not necessarily have a unique set of values. Some elements of A could
depend on each other as a result. Both the MOD function and the division
of an integer by an integer provide a set of values, some of which may be
repeated.

In this example, that means that for several values of "I", there might be
identical values of "J". Thus an element of A may be recomputed several
times, which means that this loop cannot be expressed as a vector
operation. Although it appears to be a simple loop, it is not vectorizable
because the computations of the elements of "A" are not independent of
each other.

4.2 Not All DO Loops Are Well Suited for Vectorization

Local Vectorization Considerations 33

COMMON /COM/ INC,

DO 99 I = 1, N, M
A(I+INC) A(I) + ...

99 CONTINUE

Figure 37. A DO Loop Not Well Suited for Vectorization

Some DO loops may not be suitable for vectorization. The DO loop in
Figure 37 ranges from 1 to N, with an increment of M. The computation of
one index for A has an increment INC whose value (for purposes of this
example) we assume is not known within the scope of this routine. By
itself, this would not automatically prevent vectorization.

In this case, however, there is no way to guarantee that the value of this
increment does not cause an overlap of subscript values with the index of
the "DO" loop. This means that values of A may not be independent of each
other under all conditions. It may be that they actually are independent,
but there is no way for the compiler to examine them and determine that
this loop may be safely vectorized.

4.3 Not All Loops Are DO Loops

Another FORTRAN loop which will not vectorize is the "IF -GOTO" loop, as
shown in Figure 38.

1=0
11 I = I + 1

A(I) = •••
IF (I .LT. N) GO TO 11

Figure 38. A Hand-Coded Loop

The "IF-GOTO" loop of course provides much the same function as a DO
loop in scalar mode. The compiler, however, does not recognize an
"IF -GOTO" loop as a "DO" loop, and will not vectorize it.

4.4 Some Loops Should Be Written as DO Loops

In Fortran-66, a DO loop index was expected to increase. In cases where it
was necessary for the loop index to decrease, either an auxiliary subscript
variable had to be created (see 5.4.2, "Computed Auxiliary Subscripting
Variables" on page 48 for further discussion), or a hand-written "IF-GOTO"
loop was written, as shown in Figure 39 on page 35.

34 Vectorization Techniques

I = N
11 CONTINUE

A(I) = ...
I = I - 1
IF (I .GT. 0) GO TO 11

Figure 39. A Hand-Coded Backward Loop

The Fortran-77 standard permits a negative increment for DO loops, so this
"IF -GOTO" loop can now be written in the simpler form shown in
Figure 40.

DO 11 I = N, 1, -1

A(I) =
11 CONTINUE

Figure 40. A Standard Backward DO Loop

The VS Fortran Version 2 Vectorizing Compiler can recognize this loop as
a "DO" loop, and can now consider it for vectorization.

4.5 Some DO Loops Iterate Too Few Times

Although the "DO" loop in Figure 41 is properly posed and unambiguous,
the VS Fortran Version 2 Vectorizing Compiler will determine that this
loop is executed too few times to benefit from vector execution.

DO 99 I = 1, 2
A(I) = A(I) +

99 CONTINUE

Figure 41. A DO Loop With Small Iteration Count

The compiler takes account of the fact that all vector instructions have
some amount of overhead (CPU time) associated with the initiation and
termination of the instruction. As a result, depending on which of the
vector instructions is being used, there is a minimum vector length (or loop
iteration count) below which it is computationally more efficient to perform
the loop's operations in scalar mode.

On the average, this number is approximately 12. A loop with a length of
less than 12 should probably not be vectorized. (In fact, for the example in
Figure 41, a loop with a length of 2 should probably have been written
explicitly, rather than as a "DO" loop, just as a matter of good
programming practice.)

Local Vectorization Considerations 35

4.6 Some Loop Iteration Counts Are Unknown

If the value of the loop iteration count "N" is determined by some other
computation or is an unknown parameter of the problem, as illustrated in
Figure 42, then there is no a priori way for the compiler to determine the
benefits of vectorization.

DO 99 I = 1, N
A(I) = A(I) +

99 CONTINUE

Figure 42. A DO Loop With Unknown Iteration Count

Assuming that no vectorization inhibitors are present, and in the absence of
other information, the compiler will estimate a "reasonable" iteration
count, and such a loop would probably be vectorized. This will not
automatically lead to improved performance, however; if the actual value of
N is small, scalar execution could be more efficient.

4.7 Some DO Loops Cannot Be Vectorized

The Fortran-77 standard permits the index and control parameters of a DO
loop to have integer or real values. While almost all programs use integer
variables and values for the control parameters, a program might use real
values, as illustrated in Figure 43.

REAL X

DO 29 X = 0.46, 8.95, 0.01
29 SUM SUM + EXP(-B * ATAN(X))

Figure 43. DO Loop With REAL Index

Such a loop will not be vectorized by the VS Fortran Version 2 Vectorizing
Compiler. The equivalent form shown in Figure 44 on page 37 will be
vectorized.

REAL X

DO 29 J = 46, 895, 1
X = FLOAT(J) / 100.0

29 SUM = SUM + EXP(-B * ATAN(X))

Figure 44. DO Loop With Index Converted to INTEGER

36 Vectorization Techniques

4.8 Summary

Now that the background for the vector migration process has been
established, we proceed to discuss some of the details of local vectorization.
We will discover, however, that no amount of local modification for vector
migration will provide significant improvement if the basic computation
ordering, module structure, or data structure is inconsistent with the
vectorization process. Some of these more global considerations are
presented in 6.0, "Global Migration Considerations" on page 71.

The next section, 5.0, "Local Vectorization Techniques" on page 39,
discusses some of the methods which apply to local modifications for vector
migration.

Local Vectorization Considerations 37

38 Vectorization Techniques

5.0 Local Vectorization Techniques

The following section discusses the vectorization of loops and loop
structures and provides numerous examples. These examples are not
intended to state rules or a list of "do's and don'ts". Instead, the examples
attempt to identify items that prevent or inhibit vectorization, and
techniques that help to enhance vectorization. As long as the user keeps
data independence in mind, he is free to write code in the way he is
accustomed to. No particular style or particular technique is emphasized.

In many applications, the quickest and easiest path to improved
performance on the System/370 Model 3090 Vector Facility is to replace a
Fortran-written algorithm with calls to one or more of the routines in the
Engineering and Scientific Subroutine Library. These routines have been
highly optimized to exploit the characteristics of the Vector Facility, and
they can provide substantial performance gains in applications that use
them heavily.

However, not all applications spend almost all of their time executing just a
few algorithms. In these cases, whether a user develops a new application
or migrates an old one, style still counts. Style encompasses both the
manner in which the algorithms are written or expressed and the way in
which the overall program and data are organized.

Besides the Engineering and Scientific Subroutine Library, the VS Fortran
Version 2 Vectorizing Compiler is the major tool available to achieve
improved vector performance. This compiler has additions to the features of
VS Fortran Version 1, and a new option which controls the vectorization of
Fortran source code. Although the compiler uses state-of-the-art techniques
for vectorization, certain programming styles and practices in current use
may result in the vector content of the code being obscured or hidden from
the compiler. Also, as discussed earlier, the program's organization may
have spread the vector content across many subroutines, where the
compiler (which can process only one subroutine at a time) cannot "see" it.

Therefore, the user sometimes has to intervene. When intervention is
required, we have observed that a number of types of helpful modifications
occur again and again. The following sections discuss some of the more
common practices which have been successfully used to improve
vectorization.

The examples which follow have been taken out of context. They are loops
whose structures have been simplified to illustrate a point. The examples
used are skeletons, and are intended to provide clues to improving the
vectorization process, even when embedded in complicated code structures.

Local Vectorization Techniques 39

5.1 Stride

These examples are not intended as a list of right vs. wrong programming
techniques. Rather, they are intended to suggest potential improvements to
vector programming as more general practices which can be applied to
realistic and probably more complex application programs. Some of the
examples, in fact, use simple loops which are vectorizable in their current
form. The discussion and evaluation of these examples is worthwhile,
however, since it serves to indicate some of the limits on the vectorization
process. In these examples, the ellipses (written as " . . . " or as "- - - -")
are used to indicate other work to be performed within the loop(s) to remind
us that we are only considering one type of Fortran construct at a time, in
what is potentially a very complex structure otherwise.

Some of these expressions may prevent the code from vectorizing if they
appear in a larger loop. The degree of vectorization may vary, depending on
the users choice of the "VECTOR" compiler option, LEVEL(l) or
LEVEL(2). At LEVEL(l), all statements within a loop must be vectorizable
in order for the loop as a whole to vectorize. The LEVEL(2) option will
cause the compiler to attempt to vectorize a loop, even if all statements
within the loop cannot be vectorized. This may be accomplished through a
combination of loop splitting, scalar expansion, IF conversion, etc.

On the System/370 Model 3090 Vector Facility, the performance of any
single instruction is generally optimal when its data is referenced with
stride-1 addressing. If a DO loop can refer to vectors with stride 1,
performance will generally be much better than if a longer stride is used.
However, many DO loops, and many nests of DO loops, must refer to
vectors having a variety of strides. Many of the following examples will
explore techniques for "improving" the stride of vector accesses.

One of the first considerations is for the user to determine where arrays are
referenced at strides other than 1, and whether· those references have to
remain that way. The two examples in Figure 45 on page 41 will yield the
same result; but in scalar mode, the innermost loop in the first example will
reference arrays with a stride of N*M,; while the innermost loop in the
second example will reference the arrays in storage order (stride 1).
However, the outermost loop in the first example will reference the arrays
with a stride of 1, while the outermost loop in the second example will
reference the arrays with a stride of N*M.

40 Vectorization Techniques

DO 99 I = 1, N
DO 99 J = 1, M

DO 99 K = 1, L
A(I,J,K) B(I,J,K) + C(I,J,K)

+ A(I,J,K) +

99 CONTINUE

DO 99 K = 1, L
DO 99 J = 1, M

DO 99 I = 1, N

... * A(I,J,K) * ...

A(I,J,K) B(I,J,K) + C(I,J,K)
+ A(I,J,K) +

... * A(I,J,K) * ...
99 CONTINUE

Figure 45. Loops With Different Strides

Depending on the dimensions of the arrays and the number of iterations of
each loop, any of the three DO loops could be selected for vectorization. In
general, however, it is best to avoid making the loop with the largest
iteration count control the vectors with the longest stride, and to enhance
the use of large iteration counts to control vectors with short stride.

Thus, the first example in Figure 45 is best if N is large compared to M and
L, and the first dimension of each array is large. Conversely, if the second
and third dimensions of the arrays are also large, the second example may
be best. Which form will lead to the best performance in any given
application must be determined by CPU timings.

5.1.1 Stride and Recurrences

Suppose there is a recurrence in the subscript controlled by the innermost
DO loop, as shown in Figure 46.

DO 99 J = 1, M
DO 99 I = 2, N

A(I,J) = A(I-1,J) + B(I,J)
99 CONTINUE

Figure 46. Loop With Dependence in One Dimension

The compiler cannot vectorize the inner "I" loop due to the recurrence, but
the outer "J" loop is eligible, and may be selected for vectorization
depending on the economic analysis. Unless the actual value of "N" is
known, we do not know if the resulting performance will be acceptable. If
"N" and the first dimension of A and B have a value of the order of 1000,
performance may well be disappointing, while if "N" is of order 10 the
performance may be quite acceptable.

Local Vectorization Techniques 41

5.1.2 Stride Minimization

Next, we consider an example of what can be done to remove some of the
references at strides other than 1, without harming the computation. In
Figure 47 a type of reduction operation in "I" and "J" is found.

DO 99 I = 2, N
DO 99 J = 2, M

DO 99 K = 1, L
A(K) 1.0 / X(I,J,K)
B(K) X(I-1,J,K) * A(K) + X(I,J-1,K)
C(K) = X(I,J+1,K) - B(K) * X(I-1,J,K)

99 CONTINUE

Figure 47. Loop With Many Long-Stride References

This means that the order of the loops may not be changed. The compiler
may determine that the operation will be most efficiently performed in
scalar mode.

An interesting aspect of this procedure is that each of the operations
controlled by the innermost DO processes almost the entire range of of the
array X. Almost all of the values will be used, even though the stride may
be large. Since most of the values will be involved and they will be utilized
many times in a number of statements, it may be profitable to take the
"penalty" of referencing. the array "X" with large stride once, and create a
temporary copy ("XX" in Figure 48) in which the data is reordered so that
the several other operations address the data in storage order, with stride 1.

In order to achieve maximum re-use, all references to the variable "X" in
the main nest of DO loops are replaced with references to the copy, "XX",
as shown in Figure 48.

DO 97 I = 2, N
DO 97 J = 2, M

DO 97 K = 1, L
97 XX(K,J,I) = X(I,J,K)

DO 99 I = 2, N
DO 99 J = 2, M

DO 99 K = 1, L
A(K) 1.0 / XX(K,J,I)
B(K) = XX(K,J,I-1) * A(K) + XX(K,J-1,I)
C(K) = XX(K,J+1,I) - B(K) * XX(K,J,I-1)

99 CONTINUE
DO 98 I = 2, N

DO 98 J = 2, M
DO 98 K = 1, L

98 X(K,J,I) = XX(I,J,K)

Figure 48. Copying Data to Minimize Long-Stride References

42 Vectorization Techniques

The associated cost of introducing the extra copy operations may be more
than compensated for by the speed improvement of the vector execution of
this loop, which has now been made possible.

As a general rule, when the major operations in a DO loop must be
performed with some stride other than 1, the code should be analyzed to
determine if there are a sufficient number of references to the affected
variable to warrant the extra cost of the copy operation.

5.2 Data Organization

Even if the DO loops are well organized logically and syntactically, and are
obviously vectorizable, the data organization may not be appropriate to
optimize the vector performance of the loop structure. If this is the case, the
user should plan to organize the data so that its vectors have the longest
possible length and the shortest possible stride. As with any vector
machine, some overhead is required to initiate vector operations. The
longer the vector, the more closely the performance approaches the
maXImum.

5.2.1 Reorganizing Data to Improve Stride

Suppose we have an application in which a basic "data element" is a 5x5
matrix, and we need to handle 10,000 of these matrices. This is illustrated
in Figure 49.

DIMENSION A(5,5,10000)

DO 99 K = 1, 10000
DO 99 ICOL = 1, 5

DO 99 IROW = 1, 5
A(IROW, ICOL, K)

99 CONTINUE
A(IROW, ICOL, K) + •.•

Figure 49. Inappropriate Data Organization for Vectorization

The analysis of this situation proceeds as follows. Should the loops in
Figure 49 be thought of as operating, one matrix at a time, on each of
10,000 matrices each of which is a (5x5) square array, or can the requisite
operation be performed on one of the array elements at a time for each of
10,000 5x5 arrays?

The answer to this question will determine whether the data dimensioning
is specified as (5,5,10000) or as (10000,5,5). When the compiler vectorizes the
"K" loop (the others are too short), the vectors will be computed with a
stride of 25 with the first choice, or a stride of 1 with the second choice.

Since maximum vector performance is achieved by addressing long vectors
at a stride of 1, and since for this example, there is no difficulty in
re-ordering the data, the order of operations may be arranged so that all

Local Vectorization Techniques 43

10,000 arrays have the same' element computed as a single vector. This
situation is shown in Figure 50 on page 44.

DIMENSION A(10000, 5, 5)

DO 99 IeOL = 1, 5
DO 99 IROW = 1, 5

DO 99 K = 1, 10000
A(K, IROW, ICOL)

99 CONTINUE
A(K, IROW, ICOL) + ...

Figure 50. Data Organization More Appropriate for Vectorization

5.2.2 Using EQUIVALENCE to Improve Vector Length

One of the factors which affects vector performance improvement is vector
length. As discussed earlier, increasing the length of the vectors generally
improves performance. It is appropriate to consider at least one technique
by which vector length may be improved without resorting to extreme
measures.

The example shown in Figure 51 shows a 3-dimensional nested loop.

DIMENSION A(N,M,L), B(N,M,L)

DO 99 K = 1, L
DO 99 J = 1, M

DO 99 I = 1, N
99 A(I,J,K) A(I,J,K) + B(I,J,K)

Figure 51. Loops With 3-Dimension Arrays

Let us assume that the array dimensions are larger than the mInImum
required for vector execution, but not particularly large. The nest of loops
in this example contains no dependences in any of the three DO indexes,
and all three are eligible for vectorization. The compiler will only select
one loop for vectorization, and by our assumptions, the vector length may
not be long enough to achieve the full potential performance improvement.

We observe that the operations are all iridependent and vectorizable in the
first two dimensions. We can then take advantage of Fortran's linear
mapping of multiply-dimensioned variables to "collapse" the leading two
dimensions into a single linear dimension whose length is equal to the
product of the original two. The coding technique employed uses the
EQUIVALENCE statement. As shown in Figure 52 on page 45, new
variables are defined and individually EQUIVALENCEd to the original
variables so that they share the same virtual storage.

44 Vectorization Techniques

DIMENSION A(N,M,L), B(N,M,L), AA(NM,L), BB(NM,L)
EQUIVALENCE (A (1,1,1) ,AA (1,1)), (B (1,1,1) ,BB (1 , 1))

DO 99 K = 1, L
DO 99 IJ = 1, NM

99 AA(IJ,K) = AA(IJ,K) + BB(IJ,K)

Figure 52. Loops With 2-Dimension EQUIVALENCEd Arrays

The original two dimensions may now be indexed with a single linear index
whose length (by our assumption) is significantly greater than either of the
original two. The resulting vector operations now are more likely to
approach optimal vector length performance. Although this example only
shows the combination of two of the three dimensions, all three dimensions
in this example might have been combined, with a resulting vector length of
N*M*L.

While this technique may appear somewhat artificial, it is similar to the
"effective" equivalence which occurs when multiply dimensioned arrays are
passed as arguments to a subroutine which uses a single linear index to
address the entire array in storage order. This is typical of the practice of
using subroutines to provide a computational result based solely on the
starting address and length for all input and output arrays. The use of
EQUIVALENCE provides the same function, in this case, without the
overhead of subroutine CALLs.

5.2.3 Data Restructuring

We next present an example of restructuring the data to promote
vectorization. Suppose that the application program is designed to solve,
handle or otherwise manipulate a small number of simultaneous equations
independently at many points on a grid. Let us represent this process by a
matrix transpose on a small (5x5) matrix, at each point of the grid (I,J,K) as
seen in Figure 53.

DIMENSION A(5,5,N,M,L), B(5,5,N,M,L)

DO 99 K = I, L
DO 99 J = I, M

DO 99 I = I, N
DO 99 ICOL = 1, 5

DO 99 IROW = I, 5
99 B(ICOL,IROW,I,J,K) A(IROW,ICOL,I,J,K) + ...

Figure 53. Poor Loop and Data Structure

Any vector operation over the matrix dimension using either of the two
innermost loops is restricted to a length of 5. Operating on the many
matrices by forming one of the matrix elements for all points in one of the
grid dimensions would be performed at some stride other than 1 (25, at a
minimum). By restructuring the data array and using this latter evaluation

Local Vectorization Techniques 45

ordering, we may process one matrix element (IROW,ICOL) for all such
matrices in one grid dimension.

DIMENSION A(N,M,L,5,5), B(N,M,L,5,5)

DO 99 ICOL = I, 5
DO 99 IROW = I, 5

DO 99 K = I, L
DO 99 J = 1, M

DO 99 I = I, N
99 B(I,J,K,ICOL,IROW) A(I,J,K,IROW,ICOL) + ...

Figure 54. Improved Loop and Data Structure

As Figure 54 shows, the combination of DO statement reordering and data
reordering will provide a more efficient structure for vector execution.

Once written in this form, it is clear that we may attempt to collapse the
array's dimensions to improve vector length, as discussed earlier. In this
example, all three (grid) dimensions might be combined to provide a flexible
scheme for transposing matrices on a grid whose dimensions and size may
range up to a maximum (combined) length of N*M*L. Each element
(IROW,ICOL) is moved for ALL points in the grid, providing what should be
effective vector length performance.

5.3 Temporary Variables

It is a common practice to use temporary variables in a DO loop to hold
intermediate values. The presence of such variables may adversely affect
the vectorization of the loop in which they appear. The VS Fortran Version
2 Vectorizing Compiler· can recognize and vectorize many uses of temporary
variables; however, it helps to understand techniques that can be used to
increase the likelihood of vectorization where it is not otherwise recognized
by the compiler.

5.3.1 Scalar Temporaries

The example in Figure 55 illustrates the use of a scalar temporary variable
which contains a partial result. In this context, if these were the only
statements in the loop, the compiler would vectorize the loop as if it were
written as on the right. (This technique is known as scalar expansion.)

* SCALAR TEMPORARY
DO 1 I = 1, N

T = A(I) + B(I)
1 R(I) = T + C(I)/T

* VECTOR TEMPORARY
DO 1 I I, N

T(I) A(I) + B(I)
1 R(I) T(I) + C(I)/T(I)

Figure 55. Scalar Temporary Becomes Vector Temporary

46 Vectorization Techniques

There are two factors to consider in recoding to convert scalar temporaries
into vector temporaries. First, a compiler-generated vector temporary can
often be kept in a register and need not be stored. If the user creates a
temporary array variable, the compiler must allocate storage in the
program for the array, and then keep track of its usage. It may be difficult
to detect whether a store is needed or not.

Second, the explicit presence of a vector temporary may affect the scalar
performance of the loop, because the elements of the temporary array must
be stored.

Conversely, the user should recognize that extensive use of such scalar
temporaries within a single loop could eventually exhaust the compiler's
ability to expand them. A single limit is not known, however, since it
depends on the context in which the temporaries appear.

Thus, some judicious experimentation may be needed to assess the benefits
of manual scalar expansion.

5.3.2 Scalar Array Element References

In Figure 56, the array element A(K) has been used on the left as a scalar
array reference. Note that the loop uses A(K) for a temporary assignment,
and that the loop variable is "J". When the loop is exited, A(K) has a single
value. The last value it attained is B(M)*C(M). "Good programming
practice" indicates that the user can save computational effort even in
scalar form by removing that element from the loop and performing only
the final computation. This approach produces higher quality vectorized
code as well.

DO 3 J
A(K)

3 R(J)

1, M
B(J)*C(J)
(A(K)-.5)**2

DO 3 J = 1, M
3 R(J) = (B(J)*C(J)-.5)**2

A(K) = B(M) * C(M)

Figure 56. Scalar Array Element as a Temporary

The new loop, on the right, does not have the scalar array element A(K)
which it cannot expand since it is addressed using another subscript. As a
result, the compiler will vectorize this new loop. The sense of the original
loop is retained by establishing the final value of A(K) after completion of
the loop. This example assumes that M is not zero, that is, the loop is not a
zero-trip DO loop which is permitted in FORTRAN 77.

Local Vectorization Techniques 47

5.4 Subscript Considerations

The next topic involves the use of subscripts that are not simply the loop
induction variable, the "DO" loop index. When array variables are
subscripted with expressions or with auxiliary computed subscripts, it can
be difficult for the compiler to determine unambiguously whether the
statements in the loop are vectorizable. A previous example (Figure 36 on
page 33) used the MOD function and division by an integer to demonstrate
this difficulty.

5.4.1 Subscripts With Constant Increments

The example in Figure 57 shows that the constant increment "5" could be
placed directly into the subscript of the variable itself.

DO 7 I = 1, N
J = I + 5

7 R(J) = 1.0

DO 7 I = 1, N
7 R(I+5) = 1.0

Figure 57. Auxiliary Array Subscript With Constant Increment

Eliminating the auxiliary subscript "J" in the loop avoids the possibility of
unnecessary stores. There is also a second advantage: if the code which
follows this loop requires the final value of "J", then this loop might not
vectorize, since vectorization could require that "J" be considered as an
auxiliary induction variable whose final value must be calculated.

Removing the explicit computation of "J" may promote vectorization. If the
value of J is required later, the assignment statement J=N+5 could be
placed after the loop to provide the final value.

The greater the complexity and use of auxiliary subscripts, the greater the
potential for the compiler to be unable to analyze them for· vectorization
purposes. Thus,another approach to "good programming practice" is to
avoid the unnecessary computation of auxiliary subscripts.

5.4.2 Computed Auxiliary Subscripting Variables

Figure 58 on page 49 illustrates a more complex subscript inside the I loop,
but only a part of the computation is dependent on that subscript.

48 Vectorization Techniques

11

DO 13 J = 1, M

DO 11 I = 1, N
K = (J-l)*N + I
A(I) = B(K)

13 CONTINUE

Figure 58. Computed Array Subscript

11

DO 13 J = 1, M

INC (J-l) * N
DO 11 I = 1, N

A(I) = B(I+INC)

13 CONTINUE

The simplest action is to remove the "I" -independent part from the loop.
The new variable "INC" is invariant in the "I" loop, and can be used to
index "B".

As a general rule, the less the user creates complicated subscripting
structures, the better off he is. The scalar performance might also improve
since some operations have been removed.

5.4.3 Linearized Multi-Dimensional Subscripts

Subscript expressions of the form illustrated in Figure 58 are sometimes
used to map a two-dimensional array onto a one-dimensional array. These
"linearized" subscripts may be more difficult for the compiler to analyze
than the equivalent multi-dimensional form.

For example, if the code segment in Figure 58 had appeared in a subroutine
for which the arrays "A" and "B" and their dimensions were dummy
arguments, then the code can be written in a more "natural" form in which
the complex subscript expressions can be replaced by single subscripts, as
shown in Figure 59.

DIMENSION A (N) , B(N,M)
- - - -
DO 13 J 1, M
- - - -

DO 11 I = 1, N
11 A(I) = B(I,J)

- - - -
13 CONTINUE

Figure 59. Eliminating An Auxiliary Subscripting Variable

The compiler-generated code to calculate the subscripts is essentially the
same in the two cases. In this revised format, however, the compiler can
more easily analyze both loops as candidates for vectorization.

Local Vectorization Techniques 49

5.4.4 Auxiliary Subscripts with Unknown Increment

COMMON /COM/ INC

J = 1
DO 99 I = 1, 100

A(J) = A(J) + 5.0
99 J = J + INC

Figure 60. Auxiliary Subscripting Variable With Unknown Increment

The example in Figure 60 illustrates an ambiguity which might result in a
loop which will not vectorize. In this case, J is initially well defined, but it
is increased by an increment whose value is externally defined (it is in the
COMMON block /COM!). In analyzing this loop, the compiler must be able
to know that the value of INC cannot be zero before it will vectorize the
loop. Because there is a possibility that INC could be zero, the compiler
will assume that the elements of A are not data independent and that no
vector operation is possible.

If the increment INC is known to be zero and the code is rewritten on that
basis, the compiler will vectorize the loop! This is shown in Figure 61.

COMMON /COM/ INC

J = 1
DO 99 I = 1, 100

A(J) = A(J) + 5.0
99 CONTINUE

Figure 61. Same Loop with Constant Auxiliary Subscript

This loop simply adds the constant 5.0 to A(J) 100 times, and the compiler
will generate code to perform a reduction operation (which is discussed in
3.B.1, "Vectorization of Reduction Operations" on page 29).

5.5 Recurrence, Part 2

The loop presented in Figure 62 on page 51 shows that complex
relationships may exist between elements of an array, and still not contain
a recurrence.

50 Vectorization Techniques

DO 99 J = 1,M
DO 98 I = 1,N

A(I,J)=A(I-1,J-1)+A(I-1,J+1)+A(I+1,J-1)+A(I+1,J+1)
98 CONTINUE
99 CONTINUE

Figure 62. Loops Not Containing a Recurrence

The diagram in Figure 63 demonstrates some of the dependences of one
element upon the others.

J ->

0 -+ 0 +- 0 0

1 I
1 1

I 0 1---> 0 <---I 0 0

I I
1 I I
V 0 -+ 0 +- 0 0

0 0 0 0

Figure 63. Subscript Relationships in Previous Example

Suppose we consider the vectorization of this loop in the "I" direction. Then
the A(I,J) might be considered as the "J"th vector over "I". Similarly,
A(I-1,J-l) represents a different section of the "J-1"st vector, and
A(I + 1,J + 1) is still another section of the "J + l"st vector, all in the "I"
direction. Thus there is no dependence between elements of the "J"th
vector, which would be a recurrence; rather, there are relationships
between one vector and another, which are not recurrences.

5.5.1 Hiding Recurrences

It is possible to effectively hide some recurrences through the use of other
"aliasing" techniques such as passing arrays as subroutine arguments. The
compiler cannot detect such recurrences, since the range of its analysis is
limited to a single routine at a time. The Fortran-77 standard permits such
aliasing only if the dummy arguments are "read-only". Thus, a
standard-conforming program may not use these "aliasing" techniques to
avoid or hide recurrences. (If the apparent recurrences are truly
"read-only", no recurrence exists, and there is no need for a subroutine call
to hide the recurrence!)

Furthermore, such "aliasing" techniques can cause overlaps and unsafe
conditions that are not possible to detect since the user is performing them
across module boundaries.

Local Vectorization Techniques 51

5.6 Unrolling Loops

Loop unrolling is a familiar technique employed to improve performance on
selected scalar machine architectures. The intent of loop unrolling is to
increase the proportion of computation in a loop compared to the overhead
of the loop's "bookkeeping".

Vector computation already provides much more computation in a loop
compared to the loop overhead; thus, vectorizing a loop that was unrolled
to improve scalar performance could give far less improvement than would
be possible if the loop had been left "rolled".

* With Unrolling
DO 99 I = 1, N, 3

A(I+O) A(I+O) + B(I+O)
A(I+l) A(I+l) + B(I+l)
A(I+2) = A(I+2) + B(I+2)

99 CONTINUE

* Without Unrolling
DO 99 I = 1, N

A(I) = A(I) + B(I)
99 CONTINUE

Figure 64. Loop With Unrolling and Without

The compiler will vectorize the unrolled loop shown in Figure 64 by
generating three separate vector instructions, each with a stride of three (3)
and a vector length of N. Each instruction will only operate on one third of
the N values.

While these are valid vector instructions, improved vector performance may
be obtained by recombining the statement sequence into the original single
statement, which will be vectorized with a stride of 1 and a vector length of
N, as shown on the right. This is an example of a scalar performance coding
technique which does not pertain to vector applications.

In the example on the left in Figure 65, the two-dimensional operations are
unrolled along the leftmost subscript, in the direction which should
probably be vectorized.

DO 99 J = 1, M
DO 99 I =- 1, N, 3

A(I+O,J)
A(I+l,J)
A(I+2,J)

99 CONTINUE

DO 99 J = 1, M, 3
DO 99 I = 1, N

A(I,J+O)
A(I,J+l)
A(I,J+2)

99 CONTINUE

Figure 65. Loop Unrolled Along Non-Vector Dimension

Following the technique illustrated in the example in Figure 64, we can
recombine the statements in the "I" direction to promote better vector
performance. However, there is no reason why the user could not unroll the
loop in the dimension controlled by the other index, "J", as shown on the
right in Figure 65, since the new statement sequence defines three
individual vectors of stride 1, each with length "N". Therefore, unrolling,

52 Vectorization Techniques

so long as it is performed in the non-vector dimension, remains an
appropriate coding style for vector programming.

If either loop limit is very small, then is it probably worth unrolling the
loop completely, by "expanding" it inline. Then, the DO statement for that
loop index can be eliminated, and the compiler can make a better decision
about vectorizing the remaining DO loop.

5.7 Loop Segmentation

If the computational work is unevenly distributed among the loops in a
nest, the compiler might well select the "correct" loop for vectorization, but
additional vectorization opportunities might not be accessible.

An example of loop segmentation is shown in Figure 66.

DO 15 J = 1, M

DO 5 I = 1, N

5 CONTINUE

15 CONTINUE

Figure 66. Nested Loops Available for Segmentation

In this nest of two loops, the compiler could select either the inner "I" loop
or the outer "J" loop for vectorization, but not both. As the ellipses
indicate, considerable work may be performed in the "J" loop which would
not be executed in vector mode if the inner, "I" loop were vectorized.
Similarly, there might be statements in the inner "I" loop which we would
also want to be vectorized even when the outer "J" loop is selected for
vectorization.

To improve opportunities for vectorization, the user could manually
segment the outer loop into three loops, each of which then becomes a
candidate for vectorization, as shown in Figure 67.

DO 115 J = 1, M
- - - -

115 CONTINUE
DO 215 J = 1, M

DO 5 I = 1, N
- - - -

5 CONTINUE
215 CONTINUE

DO 315 J = 1, M
- - - -

315 CONTINUE

Figure 67. Loops After Segmentation

Local Vectorization Techniques 53

Of course, the operations within these loops must be sufficiently
independent to allow this loop segmentation to be correct.

Loop segmentation must be applied with care, of course. There is always an
identifiable cost in vector loop initiation and termination, and in sectioning
the arrays within the loop. Thus, for example, it is possible that enough
work in the inner loop is already vectorized on the outer loop's index "J"
that segmentation would introduce enough extra overhead to cause slower
execution! That is, vectorization could be increased, while program speed
decreases. As with other vectorizations, timing measurements will reveal
the relative merits of each change.

A more specific example of loop segmentation to enhance vectorization is
shown in Figure 68. In this example, more work is being performed in the
"J" loop than in the "I" loop.

DO 10 J = 1, M
A(J) S * A(J)
B(J) S * B(J)
C(J) A(J) + B(J)
D(J) S * C(J)

DO 9 I = 1, N
E(I,J)=E(I,J)+D(J)

9 CONTINUE
10 CONTINUE

DO 10 J = 1, M
A(J) S * A(J)
B(J) = S * B(J)
C(J) = A(J) + B(J)
D(J) = S * C(J)

10 CONTINUE
DO 20 J = 1, M

DO 9 I = 1, N
E(I,J)=E(I,J)+D(J)

9 CONTINUE
20 CONTINUE

Figure 68. Loops Before and After Segmentation

It is clear that as long as the computation of the variable "D" is completed
before the computation of the variable "E", these computations may be
performed independently. Thus, two loops may be fonned from the original
outer loop, and the amount of work which is eligible for vectorization is
increased.

5.8 Statement Reordering

Figure 69 shows an example of statement reordering. The VS Fortran
Version 2 Vectorizing Compiler can detect most instances where statement
reordering will permit vectorization, and will do the reordering
automatically. However, because such vectorizations may not always be
visible to the compiler, it may sometimes help to do such reorderings in the
source code.

DO 17 I = 1, N
R(I) = A(I)

17 A(I+l) = B(I)

DO 17 I = 1, N
A(I+l) = B(I)

17 R(I) = A(I)

Figure 69. Removing an Order Dependence

54 Vectorization Techniques

The computation of "R" would appear to depend on the computation of "A"
from the preceding trip through the loop. However, a little analysis shows
that since the element of "A" which is being computed is the element that
the computation of "R" will use on the next cycle of the loop, all of the
"A"s could be computed before the "R"s. The computational order may be
reversed, and the loop now is visibly vectorizable.

5.9 Loop Distribution

The compiler also has the ability to distribute or split a loop by considering
the possibility of vectorizing Fortran statements within the loop separately,
on a "statement by statement" basis, rather than analyzing the loop as a
whole for vectorization. This compiler feature is part of the extra function
obtained when the user selects the LEVEL(2) sub-option of the VECTOR
compiler option. This process is illustrated in Figure 70.

DO 15 I = 2, N
AA(I) = AA(I) + B(I)**2

15 X(I) = X(I-1) + Y(I)

Figure 70. Loop Suitable for Distribution

In this loop, the statement involving the variable "AA" may be safely
vectorized, but the statement involving the variable "X" contains a
recurrence relationship, which may not. (Recurrences are discussed in
3.5, "Recurrences" on page 24.) The compiler can determine, however, that
the two Fortran statements in the body of the loop are independent of each
other, and could therefore be processed separately. The compiler then
"splits" the original loop into two loops, "distributing" the original loop
across the statements, as shown in Figure 71.

DO 15 I = 2, N
15 AA(I) = AA(I) + B(I)**2

DO xx I = 2, N
xx X(I) = X(I-1) + Y(I)

Figure 71. Original Loop Is Split Into Two Loops

The loop containing the computation of "AA" may now be executed In
vector mode, while the loop containing "X" remains in scalar mode.

Such vectorizable Fortran constructs may appear in a context which
contains other vector inhibitors, or which does not provide enough
information to the compiler to analyze the situation, or which is too
complex. Thus it is advantageous to adopt a style which isolates the
vectorizable from the non-vectorizable computations, in order to promote
additional vectorization.

Local Vectorization Techniques 55

5.10 Indirect Addressing

The technique of copying data elements into a temporary vector illustrated
in Figure 48 on page 42 might be used for indirectly addressed variables, as
shown in Figure 72. Again, we assume that the number of elements, "M",
and the amount of work involved in the computation loop between the two
data motion loops, is sufficient to justify the copying loops.

It should be noted that this technique may be used only when the condition
of no-duplication of values in the list of indirect addresses.

DO 10 I = 1, N
TEMPA(I) = A (INDEX (I))

10 CONTINUE
DO 15 I = 1, N

- - - -
* many operations on TEMPA ...

- - - -
15 CONTINUE

DO 20 I = 1, N
A(INDEX(I» TEMPA(I)

20 CONTINUE

Figure 72. Indirect Addressing With a Temporary Vector

Indirectly addressed operations are commonly called a "gather" when data
is fetched from an indirectly addressed array in storage into a contiguous
vector, and a "scatter" when data is stored from a contiguous vector into an
indirectly addressed array.

Even though we have discussed only the simplest one-dimensional case for
both indirect addressing and conditional operations, these techniques are
equally extensible to operations on arrays or matrices. As noted earlier,
since Fortran stores arrays in column-major order, it is easy to apply these
techniques to the column vectors of an array without further complicating
the algorithm. In addition, experience with many applications has resulted
in the observation that a common programming practice is to collapse a
multi-dimensional array into a singly-dimensioned linear array in order to
gain flexibility of use of the application for many array sizes. The required
index pointers for this practice may be used to introduce the conditional
execution technique as well.

5.11 Conditional Operations

We now consider the vectorization of conditional operations. The examples
are intended to convey some indication of the difference between styles
which work well in scalar mode compared to styles which might be more
appropriate to vector execution.

The System/370 Model 3090 Vector Facility provides masked operations
which operate under the control of "Vector Mask Mode". When Vector

56 Vectorization Techniques

Mask Mode is off, all elements of a vector are used; when Vector Mask
Mode is on, any masked operation will operate selectively on designated
elements of a vector. The selection mechanism is the Vector Mask Register,
which contains a bit sequence whose length is the section size Z. These bits
can be set on and off by comparisons and other operations; a masked
operation will then operate on only those elements corresponding to "on"
bits in the Vector Mask Register.

For example, consider the DO loop in Figure 73.

DO 66 I = 1, N
66 IF (A(I) .GT. B(I)) C(I) D(I)

Figure 73. Example of a Conditional Operation

This loop would be vectorized by using the comparison of the arrays A and
B to set the contents of the Vector Mask Register; then, those contents
would be used to select the elements of arrays C and D for which the
assignment operation is to be performed.

5.11.1 Conditional Operations and IF Conversion

The next topic we will consider involves conditional operations. That is,
operations which take place under the control of the logical result of some
comparison. This topic suggests a specific style of coding, since the vector
relational is not currently supported in vector mode, but the resulting
logical vector may be saved for use as a "mask" for later vector operations,
as in Figure 74.

DO 98 I = 1, N
LCOND(I) = A (I) .LT. B(I)

98 CONTINUE
DO 99 I = 1, N

IF(LCOND(I)) C(I) D(I)
99 CONTINUE

Figure 74. Loops With Conditional Operations

If the comparison is directly used to control a vector operation, then both
the comparison and the conditional operation may be vectorized.

DO 99 I = 1, N

IF(A(I) .LT. B(I)) GO TO 99

99 CONTINUE

Figure 75. Loop With Conditional Control

Local Vectorization Techniques 57

The example in Figure 75 will be converted from a control dependence to a
data dependence, as if it were written as in Figure 76 on page· 58.

DO 99 I = 1, N

IF(A(I) .GE. B(I» THEN

ENDIF
99 CONTINUE

Figure 76. Loop With Data Dependence

In either case, the loop will be vectorized, and the conditional operation
will be executed in vector "masked mode" under control of the bit mask
generated by a vector "compare" instruction.

The last example, in Figure 77, shows a specific type of conditional
operation which the compiler will not vectorize.

DO 99 I = 1, N

IF(A(I) .LT. B(I» C(INDX(I» 0.0

99 CONTINUE

Figure 77. Loop With Conditional Control

No hardware support is provided for indirectly addressed operations in
vector masked-mode. The result is that this type of conditional computation
will always be executed in scalar mode.

5.11.2 Writing Conditional Code

We will now examine several different examples showing different ways of
expressing the same set of conditions. The object of the loop in Figure 78 is
to compute a quantity which depends on the SQRT function, while avoiding
the square root computation when its argument is negative.

DO 25 I = 1, N
X(I) = Y(I) + Z(I)
IF (B (I) . LT . 0.) GO TO 15
X(I) = X(I) + EXP(SQRT(B(I»)
GO TO 25

15 X(I) = X(I) + 1.0
25 CONTINUE

Figure 78. Loop Containing a Condition

In this example, the loop contains a branch around part of the computation
which is taken when the argument of the SQRT intrinsic function is

58 Vectorization Techniques

negative. This type of loop contains a control dependence, a dependence on
the data for a transfer of control of execution. The VS Fortran Version 2
Vectorizing Compiler will use "IF Conversion" to try to turn the "control
dependence" into a "data dependence". This results in code like the
sequence shown in Figure 79.

DO 25 I = 1, N
X(I) = Y(I) + Z(I)
IF (B (I) . GE. 0.) THEN

X(I) X(I) + EXP(SQRT(B(I)))
ELSE

X{I) = X(I) + 1.0
ENDIF

25 CONTINUE

Figure 79. Control Dependence Changed to Data Dependence

The resulting loop is now vectorized by using a vector comparison to set the
mask in the Vector Mask Register, followed by operations under mask.

In fact, the original loop might also have been written as shown In
Figure 80.

DO 25 I = 1, N
X(I) = Y(I) + Z(I)
IF (B (I) . GE. 0.) X (I)
IF (B (I) . LT. 0.) X (I)

25 CONTINUE

X(I) + EXP(SQRT(B(I)))
X(I) + 1.0

Figure 80. Data Dependence With Different Conditions

In this case, a mask would be constructed for the result of each of the tests,
and each of the conditional computations would be performed under a
different mask.

Although each of the loops in the preceding examples (Figures 78-80) will
provide the same result, the vector performance will vary depending on the
coding style employed. CPU timings will help in selecting the style that
leads to the best performance.

5.11.3 Improving Conditional Code

The next example, in Figure 81 on page 60 combines several of the
techniques in the preceding discussions.

Local Vectorization Techniques 59

DO 30 J = 1, JMAX
DO 20 I = 1, IMAX
IF(J.EQ.JMID.AND.(I.EQ.1.0R.I.EQ.IMAX).AND.FLAG)

X GO TO 20
DO 10 K = 1, KMAX

A(I,J,K) = B(I,J,K) + C(I,J,K)
10 CONTINUE
20 CONTINUE
30 CONTINUE

Figure 81. Loops With Control Dependence

The computation is representative of a practice that happens routinely in
the simulation of physical phenomena of any kind. For some condition, the
computation is to be bypassed for specific index values. This may be
thought of as a boundary condition on a 3-dimensional grid (I,J,K), where
the computation is not to be performed along part of the top and bottom
planes of the grid (see Figure 82).

J
I

Figure 82. Computation on 3-Dimensional Grid

The compiler will analyze this loop and attempt to vectorize the (inner) "K"
loop by changing the control dependence to a data dependence as in the
example of Figure 79 on page 59. Depending on the dimensions of the
arrays in the I,J directions, however, the economic analysis may indicate
that the cost of this loop in vector mod~, for vectors of length KMAX,
potentially at a large stride (lMAX* JMAX), may exceed the cost in scalar
mode, and select scalar execution mode as a result.

However, if we examine th.e condition, we find that part of the condition is
independent of the "I" index, and is essentially used to select the limits on
the "I" loop. Instead of testing each value of the index "I", we remove the
"I" -independent part of the condition from the "I" loop and use it to set the
"I" limits outside of the "I" loop. Now we observe that the "I" and "K"
loops are order-independent, and may be interchanged. The resulting
computation (shown in Figure 83 on page 61) is vectorizable, in the "I"
direction.

60 Vectorization Techniques '

DO 30 K = 1, KMAX
DO 20 J = 1, JMAX

lBEGlN = 2
lEND = IMAX - 1
IF(J.EQ.JMID .AND. FLAG)

X GO TO 25
IBEGIN = 1
lEND = IMAX

25 DO 10 I = IBEGIN, lEND
A(I,J,K) = B(I,J,K) + C(I,J,K)

10 CONTINUE
20 CONTINUE
30 CONTINUE

Figure 83. Loops With Modified Control Dependence

The vectors will be of length IMAX or IMAX-2, depending on the result of
the "IF" test, and memory references will be in storage order (stride 1).
Thus we have modified this loop so that the vector content is clearly
~'visible" to the compiler. An additional benefit of this modification is that
the loop will execute more efficiently in scalar mode as well, since the "IF"
test has been simplified, is executed fewer times, and the memory references
have been re-ordered to a stride 1 addressing pattern.

The intent here is not to suggest that there is only one method for handling
this operation. However, it does illustrate an example of how conditions on
the boundaries of computations can be used to determine vector lengths,
without introducing unnecessary tests within a loop which act to prevent
vectorization. In the end, the user usually generates better scalar code at
the same time.

5.12 Data Dependent Loops

Data dependent loops proceed until a computed value reaches some limit.
While it is possible tc vectorize such loops, it should be recognized that a
performance gain may not necessarily be realized. For example, the loop in
Figure 84 will not vectorize since it contains a branch to a statement
outside the range of the loop.

DO 98 I = 1, N

X(I) = Y(I) - Z(I) * T(I)
IF (X(I) .LT. 0.0) GO TO 99
ROOT(I) SQRT(X(I))

98 CONTINUE
99 ILAST = I - 1

Figure 84. Data Dependent Loop With Branch Out

Local Vectorization Techniques 61

However, it can be transformed into a vectorizable set of operations by
segmenting the loop into three new loops, as illustrated in Figure 85 on
page 62.

DO 96 I = 1, N

TEMPX(I) = Y(I) - Z(I) * T(I)
96 CONTINUE

DO 97 I = 1, N
IF (X(I) .LT. 0.0) GO TO 98

97 CONTINUE
98 ILAST = I-I

DO 99 I = 1, ILAST
XCI) = TEMPX(I)
ROOT(I) = SQRT(X(I»

99 CONTINUE
IF (ILAST.EQ.N) GO TO 101
X(ILAST+l) = XTEMP(ILAST+l)

101 CONTINUE

Figure 85. Vectorizable Version of Data Dependent Loop

The first loop performs the evaluation of the variable to be tested, "X", and
all of the work which leads to that computation. The second loop
establishes the range of computation (loop limit or vector length) for the
third loop which contains the rest of the computation. The ellipses (- - - -)
represent some (potentially large) amount of computation, which we will
assume will vectorize in the new loop sequence.

In vector mode, all "N" values of the arrays in the first loop will be
computed. This means that more work may be performed in the vectorized
loop than in the scalar version, which would have terminated at the
appropriate condition. The speed improvement realized by executing in
vector mode will be diminished by the time spent performing the extra
work. In fact, a speed degradation may be encountered depending on the
amount of work involved. As a rule of thumb, assuming a vector speed-up of
a factor of two, the original loop would have to be performed for N /2 of the
computations or more for a speed improvement to be realized. If fewer
computations were performed, a loss in performance might result. This first
order estimate applies only to this specific loop and ignores the speed
improvement obtained from executing the rest of the computations (third
loop) in vector mode. The third loop has the same range as the original, so
that a speed improvement from vector execution would be expected for this
section of code.

Note that a temporary has been introduced for the "X" result in the first
loop This is because the original loop only modified the first ILAST + 1
values of "X", but the vector loop changes all "N" values. If it is necessary
to protect the values from ILAST + 2 to "N", a temporary would be required
to store the "N" values and the first ILAST of them would be copied into
"X" later. This ensures the integrity of "X", except for the single negative
value which triggered the original branch. This value is shown to be
updated after the last loop completes. If this fix-up is not required, the
temporary need not be introduced.

62 V ectorization Techniques

Overall, it is the combination of the extra work performed, the relative
distribution of work between the first and last loops, and the vector
speed-up which will determine whether an improvement in execution time
will be realized. Clearly the greatest benefit will be obtained when the
amount of work in the first loop is small, the point at which the original
loop is exited is close to the loop limit, and the computation in the last loop
is more extensive relative to that of the first.

5.13 Loops Containing External References

Loops containing non-intrinsic external references simply do not vectorize.
If a CALL statement is present in a loop, the loop will not vectorize.
Consider the example in Figure 86.

DO 99 I = 1, M DO 97 I = 1, M
- - - - - - - -
A(I,J,K) = 97 A(I,J,K) =

DO 98 I = 1, M
CALL SUBA (A, ...) CALL SUBA (A, ...)

98 CONTINUE
DO 99 I = 1, M

- - - - - - - -
99 CONTINUE 99 CONTINUE

Figure 86. Loop Containing a CALL Statement

(Of course, when Fortran intrinsic functions are used, the compiler
automatically provides links to the vector versions of the intrinsics8, so
long as the sub-option NOINTRINSIC is not specified).

Isolation of the CALL statement, as shown on the right in Figure 86,
provides one method of improving the vectorization potential of the loop, if
the subroutine coding permits. Otherwise, a technique described in the
discussion in 6.2, "Incorporating Loops Across Modules" on page 72 may be
used.

8 Consult the VS Fortran Version 2 Language and Library Reference (Form
Number SC26-4221) for a list of the Fortran intrinsic functions.

Local Vectorization Techniques 63

5.14 Loops Containing Input/Output Statements

DO 99 I = 1, N
A(I) = ••
B (I) =. . .

WRITE(10) A(I), B(I)
99 CONTINUE

Figure 87. Loop Containing WRITE Statement

Input/Output operations do not vectorize. When a DO loop contains I/O
statements in what would otherwise a vectorizable loop, as in Figure 87,
the 1/0 statements should removed, as shown in Figure 88.

DO 99 I = 1, N
A(I) = .
B(I) = ...

99 CONTINUE
WRITE(10) (A(I), B(I), I 1, N)

Figure 88. Loop With WRITE Statement Moved

The compiler can then analyze the loop, and vectorize it if it meets the
necessary requirements.

5.15 Restating an Algorithm.

One way to improve vector performance is to restate or reorder an
algorithm so as to make optimal use of the data. This is contrasted with
either modifying the algorithm to apply it in stages, reordering the data to
remove dependencies, or changing the solution technique altogether.

The six possible orderings of the DO statements to perform a matrix
multiplication are presented in Figure 89 on page 65.

64 Vectorization Techniques ,

DO 1 I = 1, M
DO 1 J = 1, P
C(I,J) = 0.0

DO 1 K = 1, N
C(I,J) = C(I,J)+A(I,K)*B(K,J)

1 CONTINUE

DO 1 I = 1, M
DO 1 J = 1, P
C(I,J) = 0.0

1 CONTINUE
DO 2 K = 1, N
DO 2 I = 1, M
DO 2 J = 1, P
C(I,J) = C(I,J)+A(I,K)*B(K,J)

2 CONTINUE
\

DO 1 J = 1, P
DO 1 I = 1, M
C(I,J) = 0.0

DO 1 K = 1, N
C(I,J) = C(I,J)+A(I,K)*B(K,J)

1 CONTINUE

DO 1 J = 1, P
DO 1 I = 1, M
C(I,J) = 0.0

1 CONTINUE
DO 2 K = 1, N
DO 2 J = 1,P
DO 2 I = 1,M

\ 2
\

C(I,J) = C(I,J)+A(I,K)*B(K,J)
CONTINUE

-----------------------------------\-------------------------------------
DO 2 I = 1, M
DO 1 J = 1, P
C(I,J) = 0.0

1 CONTINUE
DO 2 K = 1, N
DO 2 J = 1, P
C(I,J) = C(I,J)+A(I,K)*B(K,J)

2 CONTINUE

\

\

\

\

\

\

\

\

\

DO 2 J = 1, P
DO 1 I = 1, M
C(I,J) = 0.0

1 CONTINUE
DO 2 K = 1, N
DO 2 I = 1, M
C(I,J) = C(I,J)+A(I,K)*B(K,J)

2 CONTINUE

Figure 89. All Six Ways to Multiply Two Matrices

These orderings correspond to the data addressing patterns illustrated in
Figure 90 on page 66.

Local Vectorization Techniques 65

EXAMPLE

Figure 90. Visualizing Matrix Multiplication

In the upper left of each figure appears the standard row-column matrix
multiply, with the (scalar) elements of the result matrix being developed in
row order. The pattern on the top right is also a row-column matrix
multiply, developing the (scalar) result in column order. The ordering
appearing in the lower right is the preferred one. Here the product is
performed as a scalar-vector multiply (with the scalars in column order),
followed by a vector-vector add, to develop a column vector of the result
matrix. This operation sequence can be mapped onto the vector-scalar
"Multiply And Add" compound instruction, one of the fastest instructions
in the System/370 Model 3090 Vector Facility.

5.16 Vector Optimizations

Optimization of code undergoing migration to vector execution should be
performed only after the code migration and application validation have
been completed. In addition to the usual scalar optimizations, there are a
few vector-specific optimizations which may be helpful. Some of these
considerations are:

• The usual scalar optimizations still apply:
Strength Reduction
Constant Propagation
Dead Code Elimination
Constant Sub-expressions

• Vector-specific optimizations

66 Vectorization Techniques

Redundant operations on vector sections
Re-computation of indirect index lists
Dense vs. Sparse operations

5.16.1 Vector Sub-Sections

The concept of a vector section can have several meanings. One is, of
course, the model-dependent hardware sectioning by which vectors of any
length are processed. A second type of vector section might be called a
"sub-section", a sub-vector which is contained within a vector.

For example, suppose that an operation such as multiplication is to be
performed in two different places in a code. We assume that each
multiplication ranges over a different sub-vector of some longer vector, but
both use the same scalar multiplier. Figure 91 illustrates this situation.

DO 10 I = 1, N-2
10 X(I) = A(I) * S

DO 20 I = 3, N
20 X(I) = A(I) * S

Figure 91. Subsets of Vectors

In the first DO loop, only the first N-2 elements of "A" are multiplied and
(presumably) used afterwards. In the second loop, the last N-2 elements of
"A" are required. Since the two sub-vectors of "A" result from the same
computation, and since they overlap (we assumed that N is large), some of
the computations are redundant. A savings may be realized by performing
the initial operation over all required values of "A", and addressing the
result as needed, as shown in Figure 92.

DO 10 I = 1, N
10 X (I) = A (I) * S

Figure 92. Eliminating Subsets of Vectors

The number of operations saved in this case would be N-4 multiply
operations, which would represent a time savings in both scalar and vector
modes.

Thus our focus has been changing from the scalar point of view, in which
we consider individual elements, to a vector view, where the "object" of our
attention is the string of elements called a "vector". This is the basis for
the saying, "THINK VECTOR".

Local Vect.orization Techniques 67

5.16.2 Indirect Addressing

Another optimization is to avoid the computation of indirect index lists,
so-called "list vectors". This should follow from the observation that for
many applications, the geometry, topology or connectivity of the problem is
fixed for the duration of computation. A judicious ordering. of the
conditions which result in indirect address lists, from the broadest
condition towards the more restrictive will promote a minimum of
recomputation.

There are varying techniques associated with dense vs. sparse vector
operations. Frequently different parts of a computation are required to be
executed conditionally, affecting only selected elements of a given vector or
set of vectors. These conditions may result from the physical problem itself,
range of validity of a mod~l of a process, the mathematics which describe be
the process or the numerics of the computation.

The mechanisms of both indirect addressing and masked-mode computation
are appropriate to the selection of those elements of a vector upon which to
operate. Although indirect addressing is the more general indexing scheme,
it is also the more expensive.

Indirect addressing can be used in situations where the list of elements is in
some random order, where masked mode cannot. As a rule of thumb, if the
condition can be applied to the elements of a vector in monotonic order,
and the number of elements selected is a reasonable fraction of the total
vector, then vector masked-mode operations are generally more efficient.
Vector masked-mode operations result from conditional execution of
Fortran computations in vector mode.

5.16.3 Improving Vector Density

The programming style ·used to perform conditional computations is a
particularly good opportunity for the user to make use of information about
the behavior of the application to improve performance beyond what would
result from the "brute-force" or more direct expression of the conditional
operations. in Fortran. For example, consider a computational process in
which many vector computations are to be performed conditionally, starting
from a small number of input vectors and resulting in a small number of
output vectors, and in which, say 10% of the elements are involved. Rather
than perform all of the vector computations under a mask (the logical.
condition which controls the execution) perhaps it may be more efficient to
create new, auxiliary vectors consisting only of the affected elements of the
original vectors. Then the succeeding computations may be performed on
stride-1 (storage order) vectors, whose length is (by our assumption) 10% of
the original. Assuming that there is sufficient work to be performed, and
that this shortened length is sufficient to provide effective vector
utilization, then a performance improvement may be realized.

One way of determining whether this method should be selected is to count
the potential length of the conditionally selected elements. An example of
this technique is shown in Figure 93 on page 69.

68 Vectorization Techniques'

ICOUNT = 0
DO 10 I = 1, N

IF (logical expression) ICOUNT
10 CONTINUE

Figure 93. Counting Conditional Selections

ICOUNT + 1

Once the number has been determined, and assuming that it is large
enough, then the new vectors might be constructed as shown in Figure 94.

J = 0
DO 10 I = 1, N

IF (logical expression) THEN
J = J + 1
X(J) = A(I)

ENDIF
10 CONTINUE

Figure 94. Compressing Vector A Into Vector X

The subsequent operations on the new vectors may then be said to act on
them in "compressed" form.

Similarly, when the "compressed" operations are complete, results may be
replaced in the original vector in one of two ways. The first method is an
"expand" function: that is, the selected elements are expanded according to
the condition on the original vectors, with the intervening elements set to
zero. An example of this zero-fill expansion is shown in Figure 95.

J = 0
DO 10 I = 1, N

A(I) = 0.0
IF (logical expression) THEN

J = J + 1
A(I) = X(J)

ENDIF
10 CONTINUE

Figure 95. Expanding Vector X Into Vector A, Zero Filler

The second method is the replacement of the new selected element values
according to the condition, without disturbing the intervening elements of
the original vector, as shown in Figure 96 on page 70.

Local Vectorization Techniques 69

J = 0
DO 10 I = 1, N

IF (logical expression) THEN
J = J + 1
A(I) = X(J)

ENDIF
10 CONTINUE

Figure 96. Expanding Vector X Into Vector A, With Replacement

5.17 Local Vectorization Techniques: Summary

This completes the discussion of purely local vectorization techniques.
Many of the prevalent Fortran coding practices have been presented,
although by no means all. It is useful to summarize the various practices in
a list, to serve as a basis for the vector migration methodology we have
been working towards.

• Isolate N on-Vectorizable· Constructs
CALL
Recurrences
Input/Output
Relationals
Hazards

• Simplify Subscripts
• Reverse Unrolling
• Loop Segmentation
• Statement Re-ordering
• Loop Distribution
• IF Conversion
• Improve Vector Density
• EQUIVALENCE for Longer Vectors
• Opportunity to Use Vector Library (ESSL)

As the discussion has progressed, the list of local vector migration
considerations has grown. Although it appears as the last item on the list,
the practice of looking for the opportunity to use ESSL routines in place of
scalar code should be continuous throughout the migration process. This
provides an efficient and easy way of·· gaining vector performance for
minimum' effort. ESSL routines may be introduced at low functional levels
through the use of the Basic Linear Algebra Subroutines, (the BLAS) such
as SY AX or SAXPY, or at a more complex functional level such as a
Real-to-Complex, 2-Dimensional Fast Fourier Transform (SRCFT2) or
time-varying Recursive Filter (STREC).

70 Vectorization Techniques

6.0 Global Migration Considerations

The basic questions to be asked when considering more global modifications
of an application program include:

• Is a global restructure of the application necessary?
• Will restructuring provide a performance improvement due to increased

vectorization?
• Can restructuring be accomplished in a realistic time with a realistic

effort?

In order to make a knowledgeable decision, it is necessary to have an
understanding of the overall structure, the static and dynamic ordering of
the logic, and the intent of the application.

What determines the possibilities for the data ordering which will exhibit
the maximum vector content? Some of the more important choices include:

• the way in which the discrete values are represented (grid)

• the solution technique used (LSOR, L-U Decomposition, Gaussian
Elimination, etc.),

• the algorithmic scheme,

and also includes consideration of such items as

• the resulting vector length, stride, and increased size of the application
due to the usual expansion of scalar variables to vectors.

The following discussion presents some simple concepts which may be
applied to application reorganization for vector migration. It is by no means
complete; for example, no attempt has been made to cover the many
numerical and algorithmic schemes and techniques in current use. These
concepts are mentioned only to place them in their proper order in the
migration process. The descriptions are somewhat general, taking in detail
only some examples to illustrate particular code structuring. The art of the
problem solving process still must remain with the user.

Global Migration Considerations 71

6.1 Global Restructuring

The original application and module organization may not have been
designed to satisfy the objective of efficient vector execution, and it may be
appropriate at this stage to consider the more global aspects of the
migration process. This includes both module (subroutine) and data
reorganization and may involve redistributing function between the
routines. Reorganization implies that modules may have to be either
combined or separated or both to make the required data independence
visible to the compiler.

A reorganization of the modules may have implications in terms of the
communication between the modules, such as common areas, argument
lists, the data structure itself, and the order in which it is used. The task is
to determine what controls the order in which the computation will take
place.

• Is the computational order determined by the representation of the
physical space being simulated?

• Is the numerical scheme explicit or implicit?
• Is the solution method setting the order or does the algorithm control?

The algorithm may be reordered for example, to perform computations at
many points in stages, rather than completing the whole algorithm for one
point .

. On the other hand, constraints may be placed on the application by the
algorithm, underlying mathematics and the like which do not permit
reordering, or result in such sparse or short vectors that the techniques
discussed here may have small effect. Thus, it is necessary that the basic
message of this report, "Don't Give Up", should be properly interpreted in
these situations, and expectations for vector performance improvement
realistically adj usted.

6.2 Incorporating Loops Across Modules

One technique used is to incorporate a loop structure across several
modules or subroutines. Incorporating a loop across modules may be
required if a loop exists that calls for a series of subroutines and drives
them over say, one or more dimensions. Incorporating the loop inside each
of these subroutines may be preferred since the "DO" loops f~rmed within
each subroutine become eligible for vector analysis. As discussed earlier,
mentioned, this is the situation when one particle, point or element is
processed at a time, routine by routine, and function by function.

An example of incorporating loops across modules is illustrated in
Figure 97 on page 73. This example is a loop which includes·a CALL to (at
least one) subroutine. That subroutine has the loop index (the induction
variable of the loop) as one of its arguments. Within the subroutine, the
items are addressed using that loop index, but only one at a time. The loop

72 Vectorization Techniques

within the subroutine is seen to contain a recurrence with respect to the
second subscript, "J".

DO 10 I = 1, N

CALL SUBI (... , I, X, Y, ...)

10 CONTINUE

SUBROUTINE SUBl(... , I, X, Y, ...)
DIMENSION X(N,M,KM), Y(N,M,KM)

DO 20 J = 1, M
DO 20 K = 1, KM

Y(I,J,K) Y(I,J-l,K) * X(I,J,K)
20 CONTINUE

Figure 97. Loops Distributed Across Modules

The loops over "J" and "K" are observed to be interchangeable, and the
loop is vectorizable over "K". The vector operation over "K" would be
performed at a stride of N*M.

An improvement might be realized by splitting the loop in the calling
routine into three loops. In the absence of other vector inhibitors, the first
loop should vectorize, since the CALL statement no longer appears within
it. The last loop should also vectorize for the same reasons. The middle loop
may then be incorporated into the subroutine, with appropriate
dimensioning and adjustment of the argument list(s}. The order of the loops
is also reversed, so that the "I" loop is the inner-most, and the vector
addressing will be at a stride of 1. The final result is shown in Figure 98.

10

20

DO 10 I = 1, N
- - - -

CONTINUE
CALL SUBI (... , X, Y, N, ...)
DO 20 I = 1, N

- - - -
CONTINUE

SUBROUTINE SUBl(... , X, Y, N, ...)

DO 20 J = 1, M
DO 20 K = 1, KM

DO 20 I = 1, N
Y(I,J,K) = Y(I,J-l,K) * X(I,J,K)

20 CONTINUE

Figure 98. Loops Incorporated Into a Single Module

Global Migration Considerations 73

If the function represented by the subroutine "SUB" in the example was
essentially the same as provided by an ESSL function, then the loop
splitting would permit the loop with the CALL to be replaced by a single a
call to the ESSL routine without actually having to incorporate the loop
into the subroutine.

6.3 Changing the Solution Method

Let us assume that the only opportunity for increased vectorization is
through the replacement of the solution method itself. Before expending a
great deal of time and energy a caveat is in order. Because a large effort
has usually been invested in the selection of the solution method and
supporting algorithm in the first place, the user leaves himself vulnerable
to extra testing and validation if he chooses to use a new solution method
or algorithm. The experience gained with the older algorithm and
understanding of how it performs under various conditions will have to be
re-Iearned with the replacement.

Consequently, considerable testing may have to be performed if the user
changes the semantics, that is, the way in which the problem is solved.
Even if a more vectorizable method is deemed appropriate, other properties
of the new algorithm must be considered. For example, a more vectorizable
method which converges to a solution more slowly than the older method
may not provide any performance improvement at all! It is strongly
recommended that the user make use of the large body of literature
available before taking any extreme measures9•

Lastly, it should be noted that many algorithms have been shown to benefit
from application of the algorithm in stages (an easier task than replacing
the solution technique) or from modifications to the data order. Such
schemes as "even-odd", "red-black", "multi-color" or diagonal data
orderings have proven, under appropriate circumstances to promote
vectorization of selected solution techniques, accompanied by performance
improvements due both to the vector execution and to improved numerical
behavior.

9 See Appendix B, "References" on page 81.

74 Vectorization Techniques

7.0 Summary

All of these considerations can be summarized by a few major concepts
which describe the vector migration methodology which we set out to
define.

• Simple vectorization will work if the code

is well posed for vector,
expresses vector relationships simply,
has no dependences.

• Simple restructuring may benefit.

• Global restructure may benefit,

- but is much more difficult!

• Understanding is required for restructuring.

Vectors are, from the total application program point of view, a micro-scale
concept, since they are defined on the basis of individual "DO" loops.
So-called "simple" vectorization, that is, merely applying the VS Fortran
Version 2 Vectorizing Compiler with the VECTOR option to an existing
Fortran program without modification, is only one method of achieving
vector performance. This method will work if the code is already well-posed
for vector execution, expresses relationships simply, and contains a
minimum amount of data dependence. Simple loop modifications may help.

Coding style, data organization and module organization are all important
factors which may require more global modifications to be performed.
Changes to the over-all logic or data structure of the application, including
modification or replacement of the solution technique or algorithm are all
appropriate measures which can improve vector performance. It must be
recognized, however, that they are more difficult than simple "DO" loop
modifications, and will require a thorough understanding of the application
program to accomplish.

It is important to note that all of these techniques are not usually required.
Some combination of "simple" vectorization, and local loop modifications
may be all that is required to achieve the desired performance. The more
extensive modifications should be undertaken only when the potential
benefit is sufficiently high to warrant the effort.

Summary 75

Finally, regardless of the level of modification attempted, we must
continually keep in mind that while the VS Fortran Version 2 Vectorizing
Compiler is the primary means by which we access the System/370 Model
3090 Vector Facility, programmer understanding and intervention is the key
to a successful vector migration.

76 Vectorization Techniques

Appendix A. Glossary of Terms and Concepts

Basic Linear Algebra Subroutines (BLAS)

The BLAS are public domain codes to perform standard
Linear Algebra operations. They were originally
implemented in scalar FORTRAN. The Engineering and
Scientific Subroutine Library contains a subset of the
BLAS which have compatible calling sequences with these
scalar routines. Therefore, for programs that already use
BLAS calls, the ESSL BLAS provide an easy migration path
to vector exploitation.

Column-Major Ordering

In Fortran, arrays are stored in such a way that the
leftmost subscript cycles most rapidly. Thus, A(6,7) is
adjacent in storage to A(5,7).

Computer Scalar (See following "Scalar")

Computer Vector (See following "Vector")

Data Independence

The data elements of a computer vector are data
independent if every element within the vector can be
operated on independently of every other element ..

Engineering and Scientific Subroutine Library (ESSL)

The Engineering and Scientific Subroutine Library is a set
of high-performance mathematical programs which exploit
the IBM Vector Facility for the 3090 processor. The library
consists of 95 subroutines widely used in engineering and
scientific computations.

Performance Improvement (P)

The ratio of a program's total execution CPU time in scalar
mode to its execution CPU time when executed in mixed
scalar-vector mode. (Note that this quantity is measurable
and repeatable.) Also called "Job Speedup."

Appendix A. Glossary of Terms and Concepts 77

Recurrence

Recursion

Scalar

A relationship among the elements of a computer vector
which prevents data independence, in which the value of an
element computed later in the sequence depends on the
value of an element computed earlier in the sequence.

(1) Recurrence.

(2) A calling sequence which causes a routine to (directly or
indirectly) call itself.

(Webster) A quantity (as mass or time) that has magnitude
describable by a real number.

Computer Scalar

Storage Order

A datum stored in a computer's memory. A variable with
no DIMENSION declaration, or a single element of an
array.

A computer vector is arranged in storage order if successive
data elements are taken from a sequence of adj acent
storage locations.

Stride ola Vector

Vector

The addressing increment between successive elements of a
computer vector, divided by the element length.

In Fortran terms, the increment in the leftmost subscript
position that would reference successive elements of the
vector.

(Webster) A quantity that has magnitude and direction and
that commonly represents magnitude and whose orientation
in space represents the direction; broadly: an element of a
vector space.

(IS010) A quantity represented by an ordered set of
numbers.

10 International Standards Organization.

78 Vectorization Techniques

Computer Vector

A set of scalar data items, all of the same type, stored in a
computer's memory. Usually, the set is ordered, and the
elements of the set are frequently arranged so as to have a
fixed addressing increment between successive elements.

Vector Facility Hardware

Special registers and circuity to process computer vector
data. Special Arithmetic-Logic Units (ALU's) are used to
exploit the possibility of repetitive arithmetic execution
("pipelining") on the elements of a vector. (This capability
is available on the IBM 3090 Vector Facility.)

V ector Processor

Vectorization

A computer (e.g., the IBM System/370 Model 3090 Vector
Facility) with a set of vector instructions and Vector
Facility Hardware.

(1) The vectorizing compiler's actions in analyzing Fortran
programs and producing object code to execute on the
System/370 Model 3090 Vector Facility.

(2) The activity of modifying and adapting an application
program to assist the vectorizing compiler in exploiting the
Vector Facility for that program.

Vectorization Hazard

A real or apparent lack of data independence which
prevents (or may prevent) vectorization of a loop.

Vectorization Ratio

The fraction of a program's (scalar) execution CPU time
which, following its vectorization by the vectorizing
complIer, is then executed on the Vector Facility. (Note
that this quantity is measurable and repeatable.)

VS Fortran Version 2 Vectorizing Compiler

An optimizing and vectorizing compiler that supports the
IBM System/370 architecture, with or without the Vector
Facility. The VS Fortran Version 2 compiler performs the
analysis, vectorization, and code generation required to
exploit the Vector Facility in an efficient manner.

Appendix A. Glossary of Terms and Concepts 79

VS Fortran Version 2 Library

80 Vectorization Techniques

The Vector Fortran Library component of VS Fortran
Version 2 is a high-function execution-time Fortran library
which supports the System/370 Model 3090 Vector Facility.

Appendix B. References

Calahan, D., Buning, P., Ames, W. "Sparse Matrix & Other High
Performance Algorithm for CRAY-1", Dept 124, SEL, Univ. Mich.
Jan 1979

Dongarra, J. "Performance of Various Computers Using
Standard Linear Equations Software in a Fortran
Environment" Argonne National Laboratory Report
MSCD-TM-23, May 1985

Gajski, D. "An Algorithm for SolvIng Linear Recurrence
Systems on Parallel and Pipelined Machines"
IEEE Trans. on Comp., March 1981

Hwang, K.,Briggs, F. "Computer Architecture and Parallel
Processing", McGraw Hill, 1984

Kogge, P.M. "Algorithm Development for Pipelined Processors"
Proc 1977 International Cont. Parallel Proc., IEEE
No 77 CH1253-4C Aug 1977

Kuck, D., Lawre, D., Samek, A. "High Speed Computer and
Algorithm Organization" Academic Press, 1977

Kulisch, V.W., Miranker, W.L. "A New Approach to Scientific
Computation" Academic Press, NY 1983

Nolan, J., Kuba, D., Kascic, M. "Application of Vector Processors
to the Solution of Finite Difference Equations", AIME 5th
Symp. Reservoir Simulation, Feb 1979

Paul, G. "Large-Scale Vector/Array Processors" IBM Research Dept.
RC7306 Sept 78

Rice, J. "Matrix Computations and Mathematical Software" McGraw
Hill NY 1981

Rodrique, G., Giroux, E., and Pratt, M. "Perspective on Large-Scale
Scientific Computations" IEEE Comp, Oct 1986

Stone, H., "An Efficient Parallel Algorithm for the Solution of
a Tridiagnoal Linear System of Equations" J.ACM V20, 1973

Stringer, J. "Efficiency of D4 Gaussian Elimination on a Vector
Computer"

Appendix B. References 81

Vectorization and Vector Migration Techniques - Technical Bulletin

Order No. SR20-4966-0

READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action. if any. Is deemed appropriate.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may. of course. continue to use the information you
supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications. or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Name ______ ----______ ~ __ --------------__ _

Addre~ __ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments.)

SR20-4966·0

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation

Publishing Services - Department 78L/Tower II

225 John W. Carpenter Freeway - East

I rvi ng, Texas 75061

I II II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

o
c:
r+

Q
'TI
o
0:
»
0"
::l
co
r
3·
CD

..
Fold and tape Please Do Not Staple Fold and tape

--------- ------. ---- - - ----------_ .

SR20-4966·0

SR20-4966-00

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	replyA
	replyB
	xBack

