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Preface 

Techniques for migrating Scientific & Engineering Fortran applications to 
the System/370 Model 3090 Vector Facility are presented. The development 
of a vector migration strategy to exploit the System/370 Model 3090 Vector 
Facility is described. Local vectorization techniques and program-wide 
modifications which enhance the vector content of applications are 
discussed. The use of the VS Fortran Version 2 Compiler and Library, The 
Engineering and Scientific Subroutine Library and related products to 
exploit the System/370 Model 3090 Vector Facility are also introduced. 

This document was authored by David B. SoIl of the Application Analysis 
Group, a part of the Scientific and Engineering Products organization of 
the IBM Data Systems Division. In order to determine the best ways of 
using the System/370 Model 3090 Vector Facility for engineering and 
scientific work, this group has analyzed numerous applications. This 
analysis is the basis for this technical bulletin. 

The migration of applications using the Vector Facility, the kinds of 
problems it is designed to solve, and the Fortran language support provided 
to the user have also been studied. 

The objectives in this technical bulletin are to: 

• develop and describe techniques for effective use of the IBM 3090 
Vector Facility; 

• share application migration experiences with users; 

• provide feedback into the product development cycle for IBM 
processors. 

This technical bulletin discusses this information from the user's point of 
view, and introduces application techniques that can help exploit the 
Vector Facility. Also included are: 

• illustrations of programming considerations that can hinder fully 
exploiting the Vector Facility, 

• a discussion of how to avoid some of the obstacles to using the Vector 
Facility effectively, 
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• suggestions on ways to reduce the effort in performing the migration 
process by using existing packages, 

• recommendations on the kinds of tools to use. 
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1.0 Introduction 

This technical bulletin presents one view of the process of migrating 
Fortran application programs to exploit the System/370 Model 3090 Vector 
Facility. 

The discussion of the application migration process IS divided into the 
following parts: 

1. The first part involves establishing a migration methodology. This 
begins with determining the objectives of the migration effort, and 
setting realistic goals for the resulting (anticipated) performance gains. 
Next, a migration strategy is developed from a three stage process. This 
process consists of 

a. characterizing the application program, 

b. recompiling using the VS Fortran Version 2 vectorizing compiler, 
and 

c. analyzing the results of these two activities to formulate the 
migration strategy. 

This strategy may consist of a combination of local and global program 
modifications which enhance the "vector content" of the application. 

2. The second part reviews key vectorization concepts, and how they apply 
to the System/370 Model 3090 Vector Facility and the VS Fortran 
Version 2 Vectorizing Compiler. 

3. The third part includes descriptions of a number of local vectorizations 
which may be required as part of the migration strategy. A series of 
examples is used to illustrate programming practices which make an 
application's possibilities for vector execution - its "vector content" -
as visible as possible to the vectorizing compiler. 

4. The fourth part introduces some of the program-wide ("global") aspects 
of a migration effort. The scope of this discussion will be limited to 
those aspects of overall program modification concerned with module or 
logic organization, and those aspects of matching data structures which 
promote vectorization. No attempt is made to analyze the vectorization 
aspects of the many alternative methods of solution or different 
numerical techniques available. 

A brief summary then presents an overview of the migration process. 
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In the rest of this technical bulletin, we will assume a working familiarity 
with the Fortran language, particularly as implemented by the VS Fortran 
Compiler and Library. No previous experience with vector computation is 
assumed. 

In the following discussion, we will be using terminology that may not be 
familiar. Some key terms are defined in Appendix A, "Glossary of Terms 
and Concepts" on page 77. An overview of the characteristics of the 
System/370 Model 3090 Vector Facility and the VS Fortran Version 2 
Vectorizing Compiler are presented in 3.0, "Overview of Vectorization 
Concepts" on page 19. 
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2.0 Application Migration 

The application migration methodology is a process of discovery by which 
the "vector content" of an application may be found and be made visible to 
the compiler, and used to improve the performance of the application. An 
important aspect of this process is the determination of a strategy by which 
this performance will be improved, and the time to execute the application 
correctly will be reduced. Part of the formulation of this strategy is to 
realistically assess the scope of the migration activity, the potential 
performance improvement, and the level of effort required. 

Our objectives, therefore, are to investigate 

• techniques for exploiting the vector facility, 
• methods of improving vector execution performance, 
• where to look for vectorizable code, and 
• some approaches to using the Vector Facility effectively. 

Another objective is to describe some of the Application Analysis group's 
experiences in migrating different types of programs to the vector hardware 
and making them run efficiently. This process is known as "enabling 
vector usage", or sometimes simply as "enabling". 

2.1 What is the Goal of Application Migration? 

A simple theoretical model (known as "Amdahl's Law") gives an 
approximate indication of the maximum possible performance improvement 
(P) when a program having a given vectorization ratio (V) is executed on 
hardware having a specified ratio of vector to scalar computation speeds 
(a): P = l/(l-V + Via). The family of curves in Figure 1 on page 4 gives an 
indication of the maximum level of performance improvement (P) we might 
expect, given various scalar-to-vector performance ratios (a), for each 
degree of vectorization (V). The degree of vectoriza~ion is the percentage of 
the application's scalar CPU time which may be migrated to execute on the 
vector hardware. 
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Figure 1. Performance Improvement vs. Vectorization 

Several observations should be made about these curves. 

1. It can be seen that even if an application can obtain an 80% 
v~ctorization ratio (V), and the speed· of vector execution is infinitely 
fast ("a" is infinite), then the application can only realize a factor of 5 
performance improvement! This is because 20% of the application's 
original (scalar) CPU time is still spent executing in scalar mode on the 
scalar hardware. Thus, you should not anticipate substantial 
performance improvements unless your application is (a) highly 
vectorizable, and (b) the vector facility on which it executes is capable 
of high vector-to-scalar speed ratios. 

2. It is very difficult to characterize accurately the ratio "a" of vector to 
scalar execution speeds. It is sometimes tempting to use known 
quantities like hardware cycle times, but these numbers often have 
little to do with the actual performance of real applications on a vector 
facility. 

3. The vectorization ratio (V) must be understood with some care. As we 
will see in the following discussions, there are situations where the 
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choice of scalar or vector execution must be made judiciously; it is not 
sufficient simply to push as much of an application's instruction stream 
as possible onto the Vector Facility in order to get the "performance 
improvement" implied by the curves in Figure 1 on page 4. 

The goal, therefore, is to 

• focus on those parts of the applications that take the most CPU time, 
• convert them to enable execution in vector mode (while recognizing 

that some portion of the code will remain scalar), and 
• keep realistic expectations for performance improvements. 

2.2 Vector Migration: Application Selection 

The vector migration effort can be an ongoing activity, or can be limited to 
performing a restricted set of tasks in a reasonable time frame to obtain a 
cost effective result for the effort invested. It is clear, then, that we must 
be aware of the tradeoffs involved in choosing which application programs 
are to be migrated to a form which better exploits vector computation. We 
must ask, "How do we select an application program for vectorization?" 

2.2.1 Selection Criteria 

The first criterion for selection might be to ask "is it a long running, 
frequently used program?" It is probably not cost effective to spend a lot of 
effort on a short running program which is used infrequently. 

The next criterion involves "CPU intensity". In general, the greatest 
performance improvement will be realized from an application which has a 
high CPU utilization rate. However, this should not exclude an application 
with significant I/O content, since the reorganization performed to improve 
vectorization often has the added benefit of reducing I/O activity. We must 
keep in mind that only the computational content of the code will directly 
benefit from vectorization. 

While it is frequently assumed that high CPU utilization implies high 
floating point content, it should be noted that the System/370 Model 3090 
Vector Facility can operate on integer and logical vectors as well as 
floating point vectors. However, the speed improvement for programs 
containing a high proportion of integer and logical operations is sometimes 
not as great as for floating point operations. 

2.2.2 Virtual Storage Compatibility 

"Virtual storage compatibility" for vector applications involves essentially 
the same considerations encountered when virtual storage is used for scalar 
applications: data references should be localized as much as possible. For 
array references, this generally means that the data should be used in 
"storage order" as much as possible. 
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Since one major benefit of the Vector Facility is that a single vector 
instruction performs an operation On a vector of multiple data elements, 
any needed memory accesses are most efficient when the vector of data 
elements is stored in contiguous memory locations. 

As noted above, most of the steps taken to exploit the Vector Facility 
involve good programming practices rather than specific techniques 
required for exploiting specific vector hardware. When the user has finished 
the process of vectorization, he generally has higher quality scalar code, as 
well as having used "good" vector-enabling techniques. 

2.2.3 Algorithm Analysis 

There is considerable know ledge and experience in user installations to 
suggest that certain algorithms are more vectorizable than others, and are 
more appropriate for vector execution. Although it is possible to replace 
certain algorithms, this replacement must be approached with some care to 
ensure that this is the correct action. Sometimes, the replacement algorithm 
is just a restatement of the original algorithm, applied to the data in a 
different order. And,sometimes the replacement algorithm, although it is 
more vectorizable, unfortunately requires more iterations to achieve the 
same numerical result. 

The following simple example illustrates how a restatement of the original 
algorithm can help. Multiplication of two matrices A and B to give a 
product matrix C is typically written in the form shown in Figure 2. 

DO 1 I = 1, M 
DO 1 J =1, P 

C(I,J) = 0.0 
DO 1 K = 1, N 

C(I,J) = C(I,J)+A(I,K)*B(K,J) 
1 CONTINUE 

Figure 2. Typical Coding of Matrix Multiplication 

In fact, this is only one of six possible ways to permute the sequence of DO 
statements in writing this simple computation. (Many other sophisticated 
variations are possible, which we will ignore for now.) As discussed in 
5.15, "Restating an Algorithm" on page 64, there is a way to revise the nest 
of loops in Figure 2 which yields better performance. This is shown in 
Figure 3 on page 7. 
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DO 2 J = 1, P 
DO 1 I = 1, M 

C(I,J) = 0.0 
1 CONTINUE 

DO 2 K = 1, N 
DO 2 I 1, M 

C(I,J) = C(I,J)+A(I,K)*B(K,J) 
2 CONTINUE 

Figure 3. Revised, Efficient Form of Matrix Multiplication 

It is beyond the scope of the discussions in this technical bulletin to include 
considerations relating to modifying the mathematics or solution 
techniques applied to the many types of engineering and scientific problems 
which may benefit from vectorization. The application developer probably 
has had considerable experience with the type of algorithms he is working 
with, since he had to make the original choices matching the solution 
technique or algorithm to the problem. Therefore we will note that a great 
deal of published materiall is available which contains many references to 
this kind of information, and restrict our discussions to those cases in 
which the solution technique is retained, but perhaps the algorithm is 
modified to use the data in a different order. 

2.2.4 Engineering and Scientific Subroutine Library 

As we discuss the migration process, we will continue to look for 
opportunities to replace an existing (scalar) algorithm with one of the 
highly tuned vectorized versions available in the Engineering and Scientific 
Subroutine Library (ESSL). For2 example, a Fast Fourier Transform (FFT) 
written in Fortran might be replaced by calls to the high-performance FFT 
routines in ESSL, rather than spending the effort that would be needed to 
analyze, rewrite, and tune the scalar Fortran version. 

2.3 Application Migration: Strategy 

The combination of all of these various approaches, which includes both 
local vectorization and some more global considerations, as well as looking 
for opportunities to make use of the ESSL vector subroutines, leads to the 
general question: "How can we form a strategy for migrating an 
application program to exploit the vector facility?". 

To form this strategy, it is helpful to ask these questions: 

• Is the code manageable? 

See REFERENCES, Appendix B. 

2 See the IBM Engineering and Scientific Subroutine Library Guide and 
Reference (Form Number GC23-0182). 
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• Can the user accomplish the migration task in a reasonable time? 
• How much effort has to be put into the migration task? 
• Does the user understand the code? 
• Does the user have to make a decision about changing the algorithm or 

not? 
• Can the user work within a few modules, or does he have to restructure 

the program? 
• Are pre-packaged vectorized functions available for the user's purposes? 
• Will localized modifications to the program be sufficient? 

These are some of the considerations the user could deal with even before 
submitting his program to the compiler. Thus, the application migration 
process requires the user to understand his application. He needs the 
answers to these questions to properly interpret the results of the compiler 
vectorization, and as an. aid to the formulation of a vector migration 
strategy. 

2.4 Vector Migration Methodology 

The migration process does not have to be established for each individual 
application. Although the process is application dependent, many 
applications will have some characteristics in common. Similarities are 
found within an industry or class of problem, and within specific solution 
techniques that occur over and over again. These similarities may be 
exploited by applying the experience of other migration efforts to establish 
general guidelines for the migration of a given application. 

The scope of the migration methodology has been limited in this technical 
bulletin to the migration of existing applications by finding the code and 
data organization which best expresses the vector content of the problem 
without replacing the solution method or technique. 

The task for the user then, is to determine, for the type of solution 
technique involved, what type of organization is most efficient for 
vectorization, and what kind of algorithm· is being used. Some algorithms 
imply a certain amount of data independence, not just from the algorithm 
itself, but also from the underlying mathematics and/or the physical 
problem being solved. 

2.5 Application Migration: Initial Steps 

The simplest and easiest approach is for the user to simply apply the 
Fortran vectorizing compiler to the application, and let it vectorize 
"everything". If the application code and data are appropriately organized, 
the desired performance improvements may become available with no 
further effort being needed. 

Of course, this type of migration does not require much explanation. In 
practice, however, it is most usually found that the vectorization process is 
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application dependent, particularly when the application was not originally 
designed for vector execution. This technical bulletin describes some of the 
more challenging aspects of migrating scalar Fortran application code to 
vectorizable code, where a simple recompilation with VS Fortran Version 2 
is not sufficient. 

2.5.1 Language Conversion 

A convenient first step in the migration process is to move all of the 
application source code to the standard Fortran-77 language base 
represented by VS Fortran Version 2, LANGLVL(77). Although this 
conversion is not required (VS Fortran Version 2 will accept and vectorize 
Fortran-66, VS Fortran LANGLVL(66) constructs), it is recommended that 
the code be converted to the standard language level before making 
modifications for vectorization. 

To assist in this effort, a Language Conversion Program (LCP) is available3• 

2.6 Analyzing Inhibitors to Migration 

'The process of migration now proceeds through several stages. Beginning 
with the Fortran-77 base, we will (1) characterize the application in several 
ways to be described shortly, (2) apply the VS Fortran Version 2 
Vectorizing Compiler to the source code, and (3) analyze the results. We 
must then decide whether the simple vectorization results are acceptable as 
is, or whether there are inhibitors to further vectorization which must be 
overcome. 

If these inhibitors are well localized (e.g., restricted to a single routine), 
then local recoding may be all that is required. If, however, it can be 
determined that the basic inhibitor to vectorization is the logical 
organization of the program's modules, or even the organization of its data, 
then we may begin to formulate the migration strategy previously 
mentioned. We will now discuss each of these steps to illustrate the 
activities involved. 

2.7 Characterizing the Application 

Characterizing the application involves discovering a number of things the 
user may already know about the application, such as 

• What solution technique is used, and will it vectorize well? 
• What kind of vector inhibitors exist in the program? 
• Are the inhibitors related to 

3 See the IBM Fortran Language Conversion Program General Information 
manual (form number GC23-0154) for additional information on the LCP 
product. 
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the syntactic style (the way in which the loops are expressed), 
the complexity 6f the indexes within those loops, or 
is the inhibitor the overall organization of the code? 

(When these things are not already known, some of the techniques to be 
described will help in discovering them.) 

Information about the solution technique provides insight into the type of 
modification which might be performed, without actually changing the 
technique itself. Other observations regarding the style and structure of 
the code help to set expectations for the migration effort, decide on the 
potential for using ESSL routines, and establish the potential for reordering 
the algorithm to improve its vector content. 

For example, the original ,programmer may have masked the program's 
inherent data independence4 by over-modularizing the program. That is, 
the program may have been organized in such a way that computations 
which might be performed on vectors of operands are spread over many 
subroutines, each of which operates on a single scalar datum at a time. 
When the program is executing in "sequential" (scalar) mode this may not 
have made any difference. For vector exploitation, however, it is 
recommended that the user review how both the program's logic and the 
data were organized, and how the program's data addressing patterns were 
associated with the program's instructions. 

2.7.1 Where Vector Content May Be Found 

When the original problem was analyzed, using a specific computational 
style may not have been particularly important. It is observed that most 
scientific and engineering applications have some vector content. In order 
to appreciate the degree to which a specific application can utilize the 
Vector Facility, the user has to know something about the original problem, 
how the problem has bee'n modeled, and how that model has been expressed. 

Most of today's complex problems cannot be solved exactly, but must be 
represented approximately. The resulting approximate mathematical 
solution is then represented by an approximate numerical solution. This 
process of refinement yields a tractable computational solution to the 
original physical problem which, it is hoped, closely resembles reality. At 
each stage of this refinement, the trend is towards more simplifications 
which will permit valid solutions to be found. These simplifications, in turn, 
involve such practices as uncoupling of physical effects or mathematical 
equations, independent treatment of processes (quasi-static, 
quasi-stationary) and the like. Such uncoupling or separation of effects 
provides the data independence which permits vectorization, in addition to 
the natural independence of effects present in the original problem. 

In order to maximize the vectorization potential of an application program, 
then, it is our task to avoid hiding the inherent data independence present 

4 See 3.4, "Data Independence" on page 23. 
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during the translation from the model of the problem to the mathematical 
description, to the numerical approximation, and finally to the expression 
of that numerical solution in Fortran. 

2.7.2 How Vector Content May Be Expressed 

2.7.3 Style 

The migration strategy can be partially formed by assessing the potential 
for vectorization present in each of several classes of solution methods. 
Figure 4 on page 12 illustrates the solution process for a general problem, 
showing three possible paths which result in an application program. 

Along the left-hand path, a class of explicit or direct solution techniques is 
indicated. As a group, they have a certain amount of similarity in terms of 
the way of expressing the algorithms, methods of handling data and 
techniques of writing code. The data independence required for 
vectorization is usually expressed in the physical space of the problem, such 
as in the relationship between parameters evaluated on a physical grid. 
There is a degree of freedom in selecting an array (grid) dimension for 
vectorization presented by this class of solutions which may not be present 
in other classes. 

The right-hand path depicts the class of implicit solutions, including large 
systems of equations. Along this path, the data independence is expressed in 
the relationships between the rows and columns of the matrices being 
manipulated, according to the rules of the matrix or linear algebra 
technique being used. The middle path indicates a mixed situation. 

Thus the visibility of the inherent vector content of the problem must be 
maintained at each of the several stages of analysis, from the original 
statement of the problem to the final expression in FORTRAN. 

At the bottom of the figure is a box labeled "machine tuning", which will be 
discussed last in this "top-down" process. 

For scalar machines, it usually did not matter how the program's code was 
organized as the user migrated his application from running in fixed, real 
memory to running in virtual storage. However, he did have to consider 
both the way the data was organized and the way it was referenced. This 
resulted in adopting a style of programming where the user organized and 
addressed his data to account for the program's behavior when the data was 
in virtual storage. 

Style also counts in writing good vector code. However, it may be a more 
important factor on vector machines than on scalar machines, because 
"style" includes not only the micro-scale - the individual program loops -
but the macro-scale - the way in which the program is designed. Whether 
the user is designing a new application or migrating an existing one, he 
should keep in mind the idea of maximizing the use of storage-order 
addressing. This should also help to organize the program so that it 
vectorizes well. 
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2.7.4 An Example 

WHERE VECTOR CAN BE EXPRESSED 

Figure 4. Solution Paths for General Problems 

Suppose we have an application which performs a simulation, in the order 
of what happens at a single point (in a 3-dimensional space, perhaps) with 
many functions, many physical phenomenon, and many actions. 

The program may originally have been designed for a sequential machine, 
and the user may have modularized this program so that each routine 
computed the results of one of such actions at a point; when all actions at a 
single point were completed, the process was repeated in a cyclic manner. 
This situation is illustrated by the simplified flow diagram in Figure 5 on 
page 13. 

What happens to one point may be happening to many, or indeed to all the 
points, and this is one clue telling us where we may look to uncover the 
required data independence. That is, each routine or function may be doing 
the same thing to each point, but because the program was structured to 
perform the computations on a "point-by-point" basis, the compiler will not 
be able to detect the fact that the same operations are being performed on 
many points. 
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APPLICATION ORGANIZATION 

SUBROUTINE 1 

SUBROUTINE 2 

SUBROUTINE n 

Figure 5. Application Organization: Sequential 

However, by viewing this problem in a different way, we realize that a 
reorganization is possible: the same solution technique is applied to the 
data points, only in a different order. This means that the user may apply 
an algorithm in stages by applying the first part of an algorithm to all 
points to which it relates. The second part of the algorithm is applied to its 
set of points, and so on. This situation is illustrated in Figure 6 on 
page 14. 

The data structure for this design might be much larger than for the 
original design, since many variables which were (undimensioned) scalars 
could now become arrays of points, or vectors. (The Dynamic COMMON 
feature of VS Fortran5 permits full use of large virtual storage, such as the 
2 gigabytes of virtual addressing available under MVS/XA, and makes it 
easy to manage this "scalar expansion".) 

5 See the VS Fortran Version 2 Programming Guide (form number SC26-4118). 
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VECTOR APPLICATION ORGANIZATION 

SUBROUTINE 1 

SUBROUTINE 2 

SUBROUTINE n 

Figure 6. Application Organization: Vector 

2.8 Measuring the ApplicatiQn 

Adapting a program to enable vectorization is one form of program 
optimization. Like other program optimization activities, it is always useful 
to make measurements to determine where the program's CPU time is being 
spent. The distribution of CPU time can provide valuable information 
regarding how and where to focus one's effort in modifying the program. 

One method of determining the CPU time characteristics of a Fortran 
application is through the use of an execution analyzer such as the VS 
Fortran Execution AnalyzerS, or any similar diagnostic tool, to detect 
"hot-spots" - segments of code where large fractions of the' application's 
CPU time are spent. ,MVS provides STIMER/TTIMER macros, while VS 
Fortran Version 2 Interactive Debug7 provides a TIME function. ,In 
addition, most large installations have some type of timer facility. 

6 VS Fortran Execution Analyzer, Program Number 5798-DXJ. 
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Regardless of the method used to capture the CPU utilization, what is 
necessary is that the user understand where the time is being spent, not 
only among the routines, but within the most CPU intensive routines as 
well. 

The interpretation of the distribution of CPU time may depend on the 
design of the application. The distribution of CPU time, along with an 
understanding of the logic on the program, can provide a valuable aid in 
the formulation of a migration strategy. The appearance of a "hot-spot" in 
the CPU time distribution may be interpreted differently if it occurs in a 
simulation organized in a "point-by-point" manner, than if it occurs in a 
code organized to handle many points per function. 

These time-distribution observations should give the user direction as to 
where he should focus his effort. If the CPU time distribution is uneven, 
and is concentrated in one part of a program, the task may be as simple as 
analyzing one single loop; if it does not already vectorize, it may be either a 
replaceable function, or a modifiable or replaceable loop. 

The user may thus have narrowed the scope of his efforts from many 
routines to one or a few loops, and presumably has reduced the amount of 
work to be done. 

2.9 Vector Compilation 

Assuming that the user has achieved an understanding of the organization 
and behavior of his application, the next thing to do is to submit the 
program to the VS Fortran Version 2 Vectorizing Compiler. If the resulting 
performance improvement is satisfactory, or if no further effort can be 
invested in program modification, the migration activity is complete. 

In many situations, however, migrating an existing application program for 
vector execution may require more than simple vectorization (reliance on 
the vectorization capability of the compiler); it may also require more than 
just the analysis of inner DO loops. Rather, it may require an 
understanding of both the static structure and the dynamic behavior of the 
program. 

The information gained through the characterization and measurement of 
the application now provides a basis for the interpretation of the results of 
vector compilation. That is, which DO loops are vectorized by the compiler? 
Are all of the important (CPU-intensive) loops vectorized? Do the loops 
which vectorize represent the real vector content of the application? 
Although the most CPU-intensive loops vectorize, they may not represent 
the greatest vector potential. 

Since all vector operations do not perform at the same rate, the simple fact 
of vectorization may not be sufficient to achieve maximum performance 
improvement. Considerations such as vector length and density, stride and 
other addressing patterns will affect vector performance. Beginning with 
section 3, we will discuss some of the specific techniques which can be used 
to improve vectorization and vector execution performance. Before 
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introducing these techniques, the migration strategy should be completed 
by determining the scope of the migration, that is, the amount of 
modification and the level of effort required to accomplish that 
modification. 

2.10 Scope of Application Modification 

There are two basic types of program modification. In one case, the user 
alters the form of his program. The vector content may already be present, 
but may be expressed in a form that is awkward, overly complex, or 
ambiguous. 

In the other case, the user alters the method of solution or the content of 
what the program is doing. This kind of modification may not always be 
desirable, but nevertheless, the user should be aware that sometimes it is 
necessary to consider modifying the solution technique in cases where the 
potential benefit may be sufficiently great. 

With the accumulated information about the characteristics and 
organization of the application, and its CPU time behavior, the user is now 
in a position to make an important decision. Is simple vectorization 
enough? If the performance improvement resulting from application of the 
VS Fortran Version 2 Vectorizing Compiler is not maximizing the vector 
potential of the application then what migration steps should be taken? 

2.11 Level of Effort 

The process of defining a strategy for migration should not only identify the 
inhibitors to vectorization, and provide a plan for their removal, but must 
take into account the level of effort involved as well. 

The curves in Figure 7 on page 17 are presented to illustrate the 
qualitative characteristics of the relationship between effort and benefit for 
the vector migration activity. The three "steps" in the left-hand curve 
indicate stages of incremental improvement in performance. The right hand 
curve illustrates level of effort. This is intended to convey the idea that 
each incremental level improvement in performance requires an increased 
level of effort. The performance gain eventually reaches a plateau, where 
all available vector content has been realized. 
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Figure 7. Performance Gain Over Time, and Level of Effort Required 
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3.0 Overview of Vectorization Concepts 

The System/370 Model 3090 Vector Facility and the VS Fortran Version 2 
Vectorizing Compiler introduce new techniques for engineering and 
scientific computation. We will review some of the relevant concepts here, 
before discussing program modifications that can help exploit the 
capabilities of the Vector Facility. 

3.1 The Basic Unit of Vectorization: The DO Loop 

The basic unit of vectorization is defined as the "DO" loop. Figure 8 
illustrates a typical DO loop. 

DO 99 I = 1, N 
A(I) = A(I) + 

99 CONTINUE 

Figure 8. Basic Unit of Vectorization: the DO Loop 

There are other ways to code loops in Fortran, but only loops expressed as 
DO loops will be considered for vectorization. 

3.2 The Basic Action of Vectorization: Loop Sectioning 

The vector registers in the System/370 Model 3090 Vector Facility hold a 
predetermined number of data elements, which will only rarely be identical 
to the number of elements in a computer vector. Therefore, it is almost 
always necessary to split the computer vector into segments called sections. 
Each section may contain at most the number of elements a vector register 
can hold; this number is called the section size, and is denoted by "Z". Z is 
usually a power of 2, and is 128 for the System/370 Model 3090 Vector 
Facility. 

Vectorizing a DO loop produces instructions that operate on groups of data 
elements. 
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DO 10 J = 1, N 
10 A(J) = B(J) 

Figure 9. A Vectorizable Loop Before Sectioning 

Thus, the loop in Figure 9 is converted by the compiler into one loop (the 
original loop, now over "groups" of elements) which contains a second 
(conceptual) "loop over the elements in the group". This second 
(conceptual) loop represents the actions of the vector instructions 
themselves. 

xx 

DO 10 J = 1, N, Z <-- Note Increment Z 

DO xx 
A( jv) 

jv = J, J + MIN(N-J,Z-I), 1 
B (jv) 

10 CONTINUE 

Figure 10. A Vectorizable Loop After Sectioning 

Note the following differences between the original loop in Figure 9 and 
the vectorized loop in Figure 10: 

• The innermost loop ("DO xx") is executed in the vector hardware, In 
"groups" (sections) of "z" elements at a time. 

• The outer loop increment is "Z" instead of 1, so the vector instructions 
in the loop are executed approximately NjZ times, rather than the N 
times required for the equivalent scalar loop. 

• The "remnant" left over (when N is not evenly divisible by "Z") is also 
executed in the vector hardware. 

3.3 Loop Selection 

Loop selection is a fundamental vectorization capability of the VS Fortran 
Version 2 Vectorizing Compiler. Unlike many other compilers, the VS 
Fortran Version 2 Vectorizing Compiler analyzes the innermost eight loops 
in a nest of DO loops, and selects the single loop whose vectorization will 
lead to the fastest execution of the entire nest. As with many other 
vectorization actions, there are ways to write the statements in the nest to 
increase the compiler's chances of exploiting possible vectorization 
opportunities. 

20 Vectorization Techniques 



DO 15 I = 1, N 
DO 15 J = 1, M 

X(I,J) AA(I,J) + BB(I,J) 
15 Y(I,J) = AA(I,J) * BB(I,J) 

Figure 11. Loop Selection: Original Code 

Sometimes, based on the economic analysis the compiler performs to 
provide the most efficient loop execution, a loop structure like that shown 
in Figure 11 will be vectorized either by selecting the "J" (inner) loop for 
vectorization, or by selecting the "I" (outer) loop. That is, based on the 
available information regarding the loop limits, dimensions, stride, cost of 
instruction issue, and so forth, the compiler might vectorize the outer, "I" 
loop. 

In addition to considering both DO loops as vectorization candidates, the 
compiler will also evaluate the possibility that the nest will execute fastest 
if neither loop is vectorized. It is quite possible that scalar execution might 
be faster than vector execution; if this is the case, the compiler will 
generate scalar code for the nest. 

3.3.1 Vectorizing Outer DO Loops 

In order to select the outer loop in Figure 11 for vectorization, the compiler 
must determine that the nest of loops would give the same result as if it 
were written as shown in Figure 12, with the two DO statements 
in terchanged. 

DO 15 J = 1, M 
DO 15 I = 1, N 

X(I,J) AA(I,J) + BB(I,J) 
15 Y(I,J) = AA(I,J) * BB(I,J) 

Figure 12. Loop Selection: Equivalent Code 

The compiler determines that it is indeed safe to "interchange" the order of 
these two loops, since all computations within the loops are independent of 
the order in which they are computed. 

Note carefully, however, that even though it is safe to "interchange" the 
order of the loops, they always remain in their original order! When the 
outer loop in Figure 11 is selected for vectorization, the compiler will 
generate instructions which section the loop on the leftmost ("I") subscript, 
as illustrated in Figure 13 on page 22: 
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DO 15 I 1, N, Z 
DO 15 J = 1, M 

DO xx iv = I, I+MIN(N-Z,Z-I), 1 
X(iv,J) AA(iv,J) + BB(iv,J) 

xx Y(iv,J) = AA(iv,J) * BB(iv,J) 

15 CONTINUE 

Figure 13. Loop Selection: Vectorized Code 

It can be seen in this example that the actual order of statement execution 
is not the same as for the "interchanged" loops in Figure 12 on page 21. 
Thus, it is useful to remember that "interchange" testing is just one stage 
in the compiler's assessment of the vectorization opportunities in a nest of 
DO loops. 

Another example may help to clarify this process. When we speak of 
"vectorizing the outer loop", we actually mean that all eligible statements 
within that loop, including nested inner loops, will be vectorized on the 
index of that loop. 

DO 97 J = 1, 700 
H(J) = A(J) * B(J) 
DO 98 I = 1, 700 

98 C (J ,I) = C (J , I) * (D (J ,I) + H (J) ) 
97 CONTINUE 

Figure 14. Loop Selection: Vectorizing an Outer Loop 

In Figure 14, there are computational statements in both loops. When the 
outer loop with index J is vectorized, the statement in the inner loop is 
vectorized on J also. This result is indicated schematically in Figure 15, 
where the actions of the vector instructions are represented by the "loops" 
in the boxes. 

DO 97 J = 1, 700, Z 

DO xx jv = J, J+MIN(700-Z,Z-I) 
xx H ( j v ) A ( j v ) * B ( j v ) 

DO 98 I = 1, 700 

DO ww jv = J, J+MIN(700-Z,Z-I) 
ww C(jv,I) = C(jv,I) * (D(jv,I) + H(jv» 

98 CONTINUE 
97 CONTINUE 

Figure 15. Schematic Form of Vectorized Outer Loop 
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The processing in this nest first calculates a "J-section" of values of the 
array H, and then calculates 700 J-sections of the array C by stepping 
through all the values of the index 1. Then, the next section (in J) of values 
of the array H is calculated, followed by the second set of 700 J-sections of 
the array C; and so on. 

The important points to remember about vectorizing nests are: 

• all statements inside the DO loop chosen for vectorization are 
considered for vector execution, not just those statements immediately 
nested in that DO loop; 

• vectorizing an outer loop may actually cause more of the nest's 
computational work to be done in vector mode than if an inner loop 
were vectorized. 

3.4 Data Independence 

A key factor in enabling the vectorization of an application is the "data 
independence" of the vectors of data to be operated on by the Vector 
Facility's instructions. In general, data independence means that every 
operand in a vector is operated on independently of every other operand 
within that vector. 

To illustrate a simple example of data independence, consider the DO loop 
in Figure 16: 

DO 99 J = 1, 20 
99 A(J) = A(J) + B(J) 

Figure 16. Simple Example of a Data Independent Loop 

The execution order of this loop is shown in Figure 17. 

A( 1) 
A(2) 

A(20) 

A( 1) 
A( 2) 

+ B( 1) 
+ B(2) 

A(20) + B(20) 

Figure 17. Execution Order of Data Independent Loop 

A value computed in each iteration of the loop in Figure 17 is not used in 
other iterations. The computation of the elements of A(I) in this loop are 
therefore independent of each other for all values of 1. This independence 
of data values from one DO loop iteration to another is a key factor in 
allowing execution on the System/370 Model 3090 Vector Facility, and this 
DO loop can be vectorized. 

By way of contrast, consider the DO loop in Figure 18 on page 24. 

Overview of Vectorization Concepts 23 



DO 99 J = 1, 20 
99 A(J+1) = A(J) + B(J) 

Figure 18. Simple Example of a Data Dependent Loop 

The execution order of this loop is shown in Figure 19. 

A(2) 
A( 3) 

A( 21) 

A( 1) 
A(2) 

+ B(l) 
+ B(2) 

A(20) + B(20) 

Figure 19. Execution Order of Data Dependent Loop 

The value computed in all but the first iteration of the loop in Figure 19 is 
dependent on the value computed in the previous iteration. Therefore, this 
DO loop does not satisfy the requirement for data independence, and the 
loop cannot be vectorized. 

In 3.6, "Indirect Addressing" on page 26, we will see another common 
programming practice that may not satisfy the data independence 
requirement. 

Most of the localized program changes we will consider in this technical 
bulletin are intended to make any existing data independence as "visible" 
as possible to the VS Fortran Version 2 Vectorizing Compiler. At the same 
time, we may also need to be prepared to perform whatever other data or 
module reorganizations necessary to permit us to express this data 
independence clearly, or possibly even to eliminate certain dependences. 

3.5 Recurrences 

Recurrences occur so commonly in Fortran applications that it is worth 
examining their special properties with regard to vectorization. A 
recurrence carries a dependence between the elements of a vector (usually 
in the form of a linear relationship among the subscripts) which prevents 
its being used in a vector operation. The two loops in Figure 20 illustrate 
operations containing recurrences. 

DO 21 I = 2, 100 
21 Q(I) = Q(I-1) + A(I) 

DO 22 I = 1, 99 
22 Q(I+1) = Q(I) + A(I) 

Figure 20. Loops Demonstrating Recurrences 
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In both cases, every computed element (except the first) of the array "Q" 
depends on the just-computed value of the preceding element; therefore the 
elements are not independent. This has the effect of inhibiting vectorization 
of the computations of the elements of "Q". 

The compiler will not vectorize operations containing recurrences. As 
noted in the discussion of loop splitting in 5.9, "Loop Distribution" on 
page 55, the compiler will try to split a loop which contains recurrences in 
order to permit the vectorization of the other statements. In fact, even if 
the recurrence is implicit as the result of EQUIVALENCE statements, as 
seen in Figure 21, the compiler will assume that a dependence exists, and 
will not vectorize the statement. 

EQUIVALENCE (R(l), Q(l)) 

DO 23 I = 1, N 
23 R(I+1) = Q(I) + A(I) 

Figure 21. Loop Demonstrating a Implicit Recurrence 

In this example, "R" and "Q" refer to the same storage. If "R" is replaced 
by "Q" within the loop, we find the same recurrence relationship as given 
by the preceding example in Figure 20 on page 24. 

The subscript relationships illustrated in Figure 20 on page 24 need not 
always imply a recurrence. In Figure 22, the DO loop increment has been 
changed from 1 to 2, and the recurrence vanishes! 

DO 21 I = 2, 100, 2 
21 Q(I) = Q(I-1) + A(I) 

Figure 22. A Loop With No Recurrence 

This DO loop may now be vectorized, because all values computed in the 
loop are independent of one another. 

The dependence of the computed value of one element of a vector on others 
does not necessarily mean the computation cannot be vectorized. Suppose 
the loop in Figure 18 on page 24 had been written in the slightly modified 
form shown in Figure 23. 

DO 99 I = 1, 20 
99 A(J) = A(J+l) + B(J) 

Figure 23. Loop With No Recurrence 

The execution order of this loop is shown in Figure 24 on page 26. 
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A(l) = A(2) + B(l) 
A(2) = A(3) + B(2) 

A(20) = A(21) + B(20) 

Figure 24. Execution Order of Loop with No Recurrence 

The value computed in each iteration of the loop is independent of all 
values computed in previous iterations of the loop. Therefore, this loop can 
be vectorized. 

However, if the DO loop index runs from 20 to 1 in steps of -1, a recurrence 
does exisi, and the loop cannot be vectorized. This is illustrated in 
Figure 25. 

DO 99 I = 20, 1, -1 
99 A(J) = A(J+l) + B(J) 

Figure 25. Similar Loop, Now Containing a Recurrence 

Even though this DO loop contains the same statement as in Figure 23 on 
page 25, the change in the direction of loop traversal causes a recurrence. 

3.6 Indirect Addressing 

Indirect addressing is concerned with addressing an array by using 
subscripts which are themselves subscripted. Thus, it involves a separate 
array of subscript values in addition to the array whose elements are 
directly involved in the operation(s) to be performed. This is . illustrated in 
Figure 26. 

DO 26 J = 1, N 
26 A(INDX(J» 0.0 

Figure 26. Example of Indirect Addressing 

This array of subscript values need not be in any specific order, and may 
participate in vector operations. As long as the array which is indirectly 
addressed does not appear on both sides of the equal sign in a Fortran 
statement, the statement may be eligible for vectorization. This is 
equivalent to saying that a statement which uses an indirectly addressed 
variable may be vectorized if there are either only loads of the variable, or 
only stores of the variable, but not if there are both. 

The examples in Figure 27 on page 27 both illustrate this requirement. 
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DO 27 J = 1, N 
27 R(J) = A(INDX(J» + C(J) * .5 

DO 28 J = 1, N 
28 A(INDX(J» R(J) + C(J) * .5 

Figure 27. Vectorizable Indirect-Addressing Loops 

Each of the DO loops is vectorizable, since it involves only fetches (loads) 
or only stores of the indirectly addressed array "A". Note that the values 
of the elements of the INDX array may be arbitrary, so long as they do not 
violate the declared dimension bounds of the array A. 

The last example, in Figure 28, shows a loop which will not be vectorized, 
since the compiler has no way to determine whether any value in the list 
vector "INDX" is repeated. 

DO 29 I = 1, N 
29 A(INDX(I» A(INDX(I» + B(I) 

Figure 28. Non-Vectorizable Indirect-Addressing Loop 

If two elements of the INDX array have the same value, say INDX(il) and 
INDX(i2), then A(INDX(i2» would not be independent of A(INDX(il», since 
they are the same element of "A". Thus, the requirement of data 
independence is not satisfied, and this loop cannot be vectorized. Since the 
array of subscript values may be dynamically generated, uniqueness of 
values in general cannot be guaranteed. 

3.7 The Stride of a Vector 

The value of localized memory references was mentioned earlier, in 
2.2.2, "Virtual Storage Compatibility" on page 5. The concept of "stride" is 
helpful in understanding how data can be organized and referenced in order 
to improve localization. 

As defined on Appendix A, "Glossary of Terms and Concepts" on page 77, 
the. stride of a vector is the addressing increment between successive 
elements divided by the element length. In Fortran terms, "stride" has a 
much simpler characterization. 
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DIMENSION A(1000), B(1000) 

DO 44 J = 1, 1000 
A(J) = A(J) + B(J) 

44 CONTINUE 

Figure 29. A DO Loop With Stride-l Memory References 

In Figure 29 on page 27, the elements of the arrays "A" and "B" are being 
referenced in order of adjacent elements; thus, their addressing increment is 
the same as the length of each element. We call this a "stride-I" reference 
pattern, or sometimes simply "stride-I" for short. 

In Figure 30, there are two loops referring to the array "C". 

* STRIDE 1 * STRIDE 50 
DIMENSION C(50,300) DIMENSION C(50,300) 
- - - - - - - -
DO 45 J = 1, 50 DO 46 K = 1, 300 

C(J,2) = 0.0 C(17,K) = 0.0 
44 CONTINUE 46 CONTINUE 

Figure 30. DO Loops With Stride 1 and Stride 50 

The loop on the left is varying the leftmost subscript of the array C, and 
because Fortran stores arrays in "column-major" order in which the 
leftmost subscript varies most rapidly, the memory references will be 
"stride-I". However, the loop on the right varies the rightmost subscript of 
the array "C"; thus the memory references will be to elements of "c" at a 
stride of 50. 

The stride of memory references is only one of the factors controlling the 
compiler's choice of a loop to vectorize. For example, in Figure 31, the 
compiler might choose to vectorize either the inner or the outer loop, 
depending on the array sizes. 

REAL A(20,20),B(20,20) 

DO 1 K = 1, 20 
DO 1 J = 1, 20 

A(J,K)=B(J,K)*A(J,K) 
1 CONTINUE 

REAL A(80,80),B(80,80) 

DO 1 K = 1, 80 
DO I·J = 1, 80 

A(J,K)=B(J,K)*A(J,K) 
1 CONTINUE 

Figure 31. Identical DO Loops With Different Strides and Counts 

The nest of DO loops on the left might be vectorized on the outer loop, 
because the overhead of sectioning the inner loop 20 times can be avoided, 
and the stride of 20 is reasonably small. The nest on the right might be 
vectorized on the inner loop to minimize stride costs, but at the expense of 
having to do the vector loop initiation 80 more times. 
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Experience has shown that when all other factors can be kept unchanged, 
the best vector performance is usually obtained for small strides. Many of 
the examples that follow will illustrate techniques for reducing the stride of 
array references in loops suitable for vectorization. 

3.8 Sources of Numerically Different Results 

When a program is being converted from scalar to vectorized form, it is 
usual practice to compare the numerical results from the two versions. 
Almost all the vector instructions generated by the VS Fortran Version 2 
Vectorizing Compiler produce results that are identical to the results 
produced by the equivalent scalar instructions. 

However, there are two different situations where the results produced from 
vectorized programs may be different from the results produced when those 
programs are executed in scalar mode. These situations involve 

• reduction operations, and 
• intrinsic function references. 

We will discuss each of these in turn, and explain how to prevent 
vectorizations which could lead to the resulting numerical differences, by 
using the NOREDUCTION and NOINTRINSIC sub-options of the VECTOR 
compiler option. The user is cautioned to consider these differences during 
the numerical validation of vectorized code. 

Furthermore, the difference in interpretation of the DO statement between 
the Fortran-66 and Fortran-77 standards· is another possible source of 
numerically different results. 

3.8.1 Vectorization of Reduction Operations 

Reduction operations involve accumulating the sum of the elements of a 
vector into a scalar. Special hardware instructions can be generated by the 
VS Fortran Version 2 Vectorizing Compiler to perform these operations. 
Two typical reductions are summing the elements of a vector, and 
calculating the inner ("dot") product of two vectors. 

The sum of the elements of a vector is illustrated in Figure 32. The VS 
Fortran Version 2 Vectorizing Compiler will recognize and automatically 
vectorize such a sum reduction operation. 

S = 0.0 
DO 99 I 1, N 

99 S = S + A(I) 

Figure 32. Summing Elements of a Vector 
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Similarly, the "dot product" or "inner product", illustrated in Figure 33 on 
page 30 is another example of code for which the vector result may not be 
"bit-by-bit" identical to the scalar computation due to the use of the vector 
accumulate instructions. 

D = 0.0 
DO 99 I 1, N 

99 D = D + A(I) * B(I) 

Figure 33. Dot Product of Vectors A and B 

The VS Fortran Version 2 Vectorizing Compiler will automatically 
recognize and vectorize such loops. 

These examples illustrate the few instances where the user does not achieve 
"bit for bit" numerical equivalence of results between the scalar and vector 
implementations of the same operation. This is because the vector 
summation is performed using vector "accumulate" instructions which do 
not necessarily perform the addition of elements in the same order as the 
original scalar code. 

The accumulate operation is accomplished by forming partial sums (for the 
System/370 Model 3090 Vector Facility, the number of partial sums is 4), 
and then by summing the partial sums. 

For example, the elements A(l), A(2), ... A(N) in Figure 32 on page 29 
would be added first as four partial sums, as shown in Figure 34. 

Partial sum 1 
Partial sum 2 
Partial sum 3 
Partial sum 4 

A(l) + A(5) + A(9) + 
A(2) + A(6) + A(10) + 

-. A(3) + A(7) + A(ll) + 
A(4) + A(8) + A(12) + 

Figure 34. Partial Summation in Reduction Operations 

Finally, the four partial sums are added in sequence to form the final result. 
Because the order of summation is different from a normal DO loop's scalar 
summation, cancellation and truncation of intermediate results may occur 
in different places. As a result, some numerical differences may occur when 
reduction operations are vectorized. 

Another possible source of result differences is that sums of short precision 
(REAL*4) operands are accumulated in long precision (REAL*8), thus 
reducing truncation errors. 

If some step in the migration process requires that reduction operations 
give the same results as scalar code, the user may specify the 
NOREDUCTION sub-option (abbreviated NORED) of the VS Fortran 
Version 2 Vectorizing Compiler's VECTOR option. This will turn off the 
compiler's attempted recognition and vectorization of reduction operations. 
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3.8.2 Vectorization of Library Intrinsic Functions 

Numerical differences may also be encountered when comparing the results 
obtained using the VS Fortran Version 2 intrinsic function library with 
results using previous Fortran libraries (G, G1, H, H-Extended, and VS 
Fortran Version 1). This is due to the major improvements in precision 
introduced in the VS Fortran Version 2 Library. Many of the algorithms 
used in the VS Fortran Version 2 Library have been upgraded to provide 
greatly increased accuracy over the entire numerical range of the various 
library functions. In addition, the results from the vector and scalar 
versions of the VS Fortran Version 2 Library routines provide bit-identical 
results for all arguments. 

To help with verifying results during application migration, the 
NOINTRINSIC sub-option (abbreviated NOINT) of the VECTOR option tells 
the compiler that the user wishes the compiler not to invoke the vector 
versions of the Fortran intrinsic functions. Since the compiler normally 
selects the vector versions of the Fortran intrinsic functions automatically 
during the vectorization process, the use of this sub-option will force the 
compiler to use the scalar versions for all intrinsics. 

Having specified the NOINTRINSIC sub-option at compile time, the user 
may provide a link-time library containing the old library routines. Thus, 
the numerical results from the intrinsic functions will be identical to the 
"old" values, while the rest of the program may be vectorized. Once 
vectorization results are satisfactory, the INTRINSIC sub-option (which is 
the default) is specified, and the new library routines will be used 
automatically. 

The user may now validate the vectorized code assured of bit-for-bit 
equivalence between the scalar and vector versions of the intrinsics when 
using VS Fortran Version 2. Numerical differences in the results can then 
be attributed to the increased accuracy of the new routines (assuming that 
possible differences due to reduction operations have already been taken 
into account.) 

3.8.3 Fortran-66 and Fortran-77 Execution of DO Loops 

One other factor to consider in preparing programs for vectorization is the 
different treatment of DO loops between the Fortran-66 and Fortran-77 
standards. In Fortran-66, DO loops are always traversed at least once. 
Fortran-77 requires that the "trip count" of the loop be checked before 
beginning the execution of the loop, and if the count is not greater than 
zero, the loop must not be executed. 

DO 99 I = M, N 
A(I) = A(I) + 

99 CONTINUE 

Figure 35. A DO Loop With Unknown Control Parameters 
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If the loop limit N is smaller than the initial value M in the DO loop 
illustrated in Figure 35, then the loop will not be executed at all when the 
compiler parameter LANGL VL(77) is specified. If an application program 
depends on at least one execution of the DO loop, different numerical 
results might result. 

Even though the VS Fortran Version 2 Vectorizing Compiler will vectorize 
programs written at both the Fortran-66 and Fortran-77 language levels, the 
user is cautioned to check for the possibility that his program depends on 
one of the two standard interpretations of the DO statement. 
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4.0 Local Vectorization Considerations 

Vectorization is centered on DO loops, and the statements they contain. In 
this section we will examine some of the factors that determine whether a 
given DO loop should or should not be vectorized. 

4.1 Not All DO Loops Are Appropriate for Vectorization 

DO 99 I = I, N 
J = 2 * MOD(I,M) / K 
A(J) = A(J) + ... 

99 CONTINUE 

Figure 36. A DO Loop Inappropriate for Vectorization 

However, not all "DO" loops are appropriate for vectorization. Recall that 
vectorization requires data independence among the elements of a vector. 

The computation of the subscript "J" in Figure 36, on which A depends, 
does not necessarily have a unique set of values. Some elements of A could 
depend on each other as a result. Both the MOD function and the division 
of an integer by an integer provide a set of values, some of which may be 
repeated. 

In this example, that means that for several values of "I", there might be 
identical values of "J". Thus an element of A may be recomputed several 
times, which means that this loop cannot be expressed as a vector 
operation. Although it appears to be a simple loop, it is not vectorizable 
because the computations of the elements of "A" are not independent of 
each other. 

4.2 Not All DO Loops Are Well Suited for Vectorization 
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COMMON /COM/ INC, 

DO 99 I = 1, N, M 
A(I+INC) A(I) + ... 

99 CONTINUE 

Figure 37. A DO Loop Not Well Suited for Vectorization 

Some DO loops may not be suitable for vectorization. The DO loop in 
Figure 37 ranges from 1 to N, with an increment of M. The computation of 
one index for A has an increment INC whose value (for purposes of this 
example) we assume is not known within the scope of this routine. By 
itself, this would not automatically prevent vectorization. 

In this case, however, there is no way to guarantee that the value of this 
increment does not cause an overlap of subscript values with the index of 
the "DO" loop. This means that values of A may not be independent of each 
other under all conditions. It may be that they actually are independent, 
but there is no way for the compiler to examine them and determine that 
this loop may be safely vectorized. 

4.3 Not All Loops Are DO Loops 

Another FORTRAN loop which will not vectorize is the "IF -GOTO" loop, as 
shown in Figure 38. 

1=0 
11 I = I + 1 

A(I) = ••• 
IF (I .LT. N) GO TO 11 

Figure 38. A Hand-Coded Loop 

The "IF-GOTO" loop of course provides much the same function as a DO 
loop in scalar mode. The compiler, however, does not recognize an 
"IF -GOTO" loop as a "DO" loop, and will not vectorize it. 

4.4 Some Loops Should Be Written as DO Loops 

In Fortran-66, a DO loop index was expected to increase. In cases where it 
was necessary for the loop index to decrease, either an auxiliary subscript 
variable had to be created (see 5.4.2, "Computed Auxiliary Subscripting 
Variables" on page 48 for further discussion), or a hand-written "IF-GOTO" 
loop was written, as shown in Figure 39 on page 35. 
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I = N 
11 CONTINUE 

A(I) = ... 
I = I - 1 
IF (I .GT. 0) GO TO 11 

Figure 39. A Hand-Coded Backward Loop 

The Fortran-77 standard permits a negative increment for DO loops, so this 
"IF -GOTO" loop can now be written in the simpler form shown in 
Figure 40. 

DO 11 I = N, 1, -1 

A(I) = 
11 CONTINUE 

Figure 40. A Standard Backward DO Loop 

The VS Fortran Version 2 Vectorizing Compiler can recognize this loop as 
a "DO" loop, and can now consider it for vectorization. 

4.5 Some DO Loops Iterate Too Few Times 

Although the "DO" loop in Figure 41 is properly posed and unambiguous, 
the VS Fortran Version 2 Vectorizing Compiler will determine that this 
loop is executed too few times to benefit from vector execution. 

DO 99 I = 1, 2 
A(I) = A(I) + 

99 CONTINUE 

Figure 41. A DO Loop With Small Iteration Count 

The compiler takes account of the fact that all vector instructions have 
some amount of overhead (CPU time) associated with the initiation and 
termination of the instruction. As a result, depending on which of the 
vector instructions is being used, there is a minimum vector length (or loop 
iteration count) below which it is computationally more efficient to perform 
the loop's operations in scalar mode. 

On the average, this number is approximately 12. A loop with a length of 
less than 12 should probably not be vectorized. (In fact, for the example in 
Figure 41, a loop with a length of 2 should probably have been written 
explicitly, rather than as a "DO" loop, just as a matter of good 
programming practice.) 
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4.6 Some Loop Iteration Counts Are Unknown 

If the value of the loop iteration count "N" is determined by some other 
computation or is an unknown parameter of the problem, as illustrated in 
Figure 42, then there is no a priori way for the compiler to determine the 
benefits of vectorization. 

DO 99 I = 1, N 
A(I) = A(I) + 

99 CONTINUE 

Figure 42. A DO Loop With Unknown Iteration Count 

Assuming that no vectorization inhibitors are present, and in the absence of 
other information, the compiler will estimate a "reasonable" iteration 
count, and such a loop would probably be vectorized. This will not 
automatically lead to improved performance, however; if the actual value of 
N is small, scalar execution could be more efficient. 

4.7 Some DO Loops Cannot Be Vectorized 

The Fortran-77 standard permits the index and control parameters of a DO 
loop to have integer or real values. While almost all programs use integer 
variables and values for the control parameters, a program might use real 
values, as illustrated in Figure 43. 

REAL X 

DO 29 X = 0.46, 8.95, 0.01 
29 SUM SUM + EXP(-B * ATAN(X)) 

Figure 43. DO Loop With REAL Index 

Such a loop will not be vectorized by the VS Fortran Version 2 Vectorizing 
Compiler. The equivalent form shown in Figure 44 on page 37 will be 
vectorized. 

REAL X 

DO 29 J = 46, 895, 1 
X = FLOAT(J) / 100.0 

29 SUM = SUM + EXP(-B * ATAN(X)) 

Figure 44. DO Loop With Index Converted to INTEGER 
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4.8 Summary 

Now that the background for the vector migration process has been 
established, we proceed to discuss some of the details of local vectorization. 
We will discover, however, that no amount of local modification for vector 
migration will provide significant improvement if the basic computation 
ordering, module structure, or data structure is inconsistent with the 
vectorization process. Some of these more global considerations are 
presented in 6.0, "Global Migration Considerations" on page 71. 

The next section, 5.0, "Local Vectorization Techniques" on page 39, 
discusses some of the methods which apply to local modifications for vector 
migration. 
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5.0 Local Vectorization Techniques 

The following section discusses the vectorization of loops and loop 
structures and provides numerous examples. These examples are not 
intended to state rules or a list of "do's and don'ts". Instead, the examples 
attempt to identify items that prevent or inhibit vectorization, and 
techniques that help to enhance vectorization. As long as the user keeps 
data independence in mind, he is free to write code in the way he is 
accustomed to. No particular style or particular technique is emphasized. 

In many applications, the quickest and easiest path to improved 
performance on the System/370 Model 3090 Vector Facility is to replace a 
Fortran-written algorithm with calls to one or more of the routines in the 
Engineering and Scientific Subroutine Library. These routines have been 
highly optimized to exploit the characteristics of the Vector Facility, and 
they can provide substantial performance gains in applications that use 
them heavily. 

However, not all applications spend almost all of their time executing just a 
few algorithms. In these cases, whether a user develops a new application 
or migrates an old one, style still counts. Style encompasses both the 
manner in which the algorithms are written or expressed and the way in 
which the overall program and data are organized. 

Besides the Engineering and Scientific Subroutine Library, the VS Fortran 
Version 2 Vectorizing Compiler is the major tool available to achieve 
improved vector performance. This compiler has additions to the features of 
VS Fortran Version 1, and a new option which controls the vectorization of 
Fortran source code. Although the compiler uses state-of-the-art techniques 
for vectorization, certain programming styles and practices in current use 
may result in the vector content of the code being obscured or hidden from 
the compiler. Also, as discussed earlier, the program's organization may 
have spread the vector content across many subroutines, where the 
compiler (which can process only one subroutine at a time) cannot "see" it. 

Therefore, the user sometimes has to intervene. When intervention is 
required, we have observed that a number of types of helpful modifications 
occur again and again. The following sections discuss some of the more 
common practices which have been successfully used to improve 
vectorization. 

The examples which follow have been taken out of context. They are loops 
whose structures have been simplified to illustrate a point. The examples 
used are skeletons, and are intended to provide clues to improving the 
vectorization process, even when embedded in complicated code structures. 
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5.1 Stride 

These examples are not intended as a list of right vs. wrong programming 
techniques. Rather, they are intended to suggest potential improvements to 
vector programming as more general practices which can be applied to 
realistic and probably more complex application programs. Some of the 
examples, in fact, use simple loops which are vectorizable in their current 
form. The discussion and evaluation of these examples is worthwhile, 
however, since it serves to indicate some of the limits on the vectorization 
process. In these examples, the ellipses (written as " . . . " or as "- - - -") 
are used to indicate other work to be performed within the loop(s) to remind 
us that we are only considering one type of Fortran construct at a time, in 
what is potentially a very complex structure otherwise. 

Some of these expressions may prevent the code from vectorizing if they 
appear in a larger loop. The degree of vectorization may vary, depending on 
the users choice of the "VECTOR" compiler option, LEVEL(l) or 
LEVEL(2). At LEVEL(l), all statements within a loop must be vectorizable 
in order for the loop as a whole to vectorize. The LEVEL(2) option will 
cause the compiler to attempt to vectorize a loop, even if all statements 
within the loop cannot be vectorized. This may be accomplished through a 
combination of loop splitting, scalar expansion, IF conversion, etc. 

On the System/370 Model 3090 Vector Facility, the performance of any 
single instruction is generally optimal when its data is referenced with 
stride-1 addressing. If a DO loop can refer to vectors with stride 1, 
performance will generally be much better than if a longer stride is used. 
However, many DO loops, and many nests of DO loops, must refer to 
vectors having a variety of strides. Many of the following examples will 
explore techniques for "improving" the stride of vector accesses. 

One of the first considerations is for the user to determine where arrays are 
referenced at strides other than 1, and whether· those references have to 
remain that way. The two examples in Figure 45 on page 41 will yield the 
same result; but in scalar mode, the innermost loop in the first example will 
reference arrays with a stride of N*M,; while the innermost loop in the 
second example will reference the arrays in storage order (stride 1). 
However, the outermost loop in the first example will reference the arrays 
with a stride of 1, while the outermost loop in the second example will 
reference the arrays with a stride of N*M. 
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DO 99 I = 1, N 
DO 99 J = 1, M 

DO 99 K = 1, L 
A(I,J,K) B(I,J,K) + C(I,J,K) 

+ A(I,J,K) + 

99 CONTINUE 

DO 99 K = 1, L 
DO 99 J = 1, M 

DO 99 I = 1, N 

... * A(I,J,K) * ... 

A(I,J,K) B(I,J,K) + C(I,J,K) 
+ A(I,J,K) + 

... * A(I,J,K) * ... 
99 CONTINUE 

Figure 45. Loops With Different Strides 

Depending on the dimensions of the arrays and the number of iterations of 
each loop, any of the three DO loops could be selected for vectorization. In 
general, however, it is best to avoid making the loop with the largest 
iteration count control the vectors with the longest stride, and to enhance 
the use of large iteration counts to control vectors with short stride. 

Thus, the first example in Figure 45 is best if N is large compared to M and 
L, and the first dimension of each array is large. Conversely, if the second 
and third dimensions of the arrays are also large, the second example may 
be best. Which form will lead to the best performance in any given 
application must be determined by CPU timings. 

5.1.1 Stride and Recurrences 

Suppose there is a recurrence in the subscript controlled by the innermost 
DO loop, as shown in Figure 46. 

DO 99 J = 1, M 
DO 99 I = 2, N 

A(I,J) = A(I-1,J) + B(I,J) 
99 CONTINUE 

Figure 46. Loop With Dependence in One Dimension 

The compiler cannot vectorize the inner "I" loop due to the recurrence, but 
the outer "J" loop is eligible, and may be selected for vectorization 
depending on the economic analysis. Unless the actual value of "N" is 
known, we do not know if the resulting performance will be acceptable. If 
"N" and the first dimension of A and B have a value of the order of 1000, 
performance may well be disappointing, while if "N" is of order 10 the 
performance may be quite acceptable. 
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5.1.2 Stride Minimization 

Next, we consider an example of what can be done to remove some of the 
references at strides other than 1, without harming the computation. In 
Figure 47 a type of reduction operation in "I" and "J" is found. 

DO 99 I = 2, N 
DO 99 J = 2, M 

DO 99 K = 1, L 
A(K) 1.0 / X(I,J,K) 
B(K) X(I-1,J,K) * A(K) + X(I,J-1,K) 
C(K) = X(I,J+1,K) - B(K) * X(I-1,J,K) 

99 CONTINUE 

Figure 47. Loop With Many Long-Stride References 

This means that the order of the loops may not be changed. The compiler 
may determine that the operation will be most efficiently performed in 
scalar mode. 

An interesting aspect of this procedure is that each of the operations 
controlled by the innermost DO processes almost the entire range of of the 
array X. Almost all of the values will be used, even though the stride may 
be large. Since most of the values will be involved and they will be utilized 
many times in a number of statements, it may be profitable to take the 
"penalty" of referencing. the array "X" with large stride once, and create a 
temporary copy ("XX" in Figure 48) in which the data is reordered so that 
the several other operations address the data in storage order, with stride 1. 

In order to achieve maximum re-use, all references to the variable "X" in 
the main nest of DO loops are replaced with references to the copy, "XX", 
as shown in Figure 48. 

DO 97 I = 2, N 
DO 97 J = 2, M 

DO 97 K = 1, L 
97 XX(K,J,I) = X(I,J,K) 

DO 99 I = 2, N 
DO 99 J = 2, M 

DO 99 K = 1, L 
A(K) 1.0 / XX(K,J,I) 
B(K) = XX(K,J,I-1) * A(K) + XX(K,J-1,I) 
C(K) = XX(K,J+1,I) - B(K) * XX(K,J,I-1) 

99 CONTINUE 
DO 98 I = 2, N 

DO 98 J = 2, M 
DO 98 K = 1, L 

98 X(K,J,I) = XX(I,J,K) 

Figure 48. Copying Data to Minimize Long-Stride References 
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The associated cost of introducing the extra copy operations may be more 
than compensated for by the speed improvement of the vector execution of 
this loop, which has now been made possible. 

As a general rule, when the major operations in a DO loop must be 
performed with some stride other than 1, the code should be analyzed to 
determine if there are a sufficient number of references to the affected 
variable to warrant the extra cost of the copy operation. 

5.2 Data Organization 

Even if the DO loops are well organized logically and syntactically, and are 
obviously vectorizable, the data organization may not be appropriate to 
optimize the vector performance of the loop structure. If this is the case, the 
user should plan to organize the data so that its vectors have the longest 
possible length and the shortest possible stride. As with any vector 
machine, some overhead is required to initiate vector operations. The 
longer the vector, the more closely the performance approaches the 
maXImum. 

5.2.1 Reorganizing Data to Improve Stride 

Suppose we have an application in which a basic "data element" is a 5x5 
matrix, and we need to handle 10,000 of these matrices. This is illustrated 
in Figure 49. 

DIMENSION A(5,5,10000) 

DO 99 K = 1, 10000 
DO 99 ICOL = 1, 5 

DO 99 IROW = 1, 5 
A(IROW, ICOL, K) 

99 CONTINUE 
A(IROW, ICOL, K) + •.• 

Figure 49. Inappropriate Data Organization for Vectorization 

The analysis of this situation proceeds as follows. Should the loops in 
Figure 49 be thought of as operating, one matrix at a time, on each of 
10,000 matrices each of which is a (5x5) square array, or can the requisite 
operation be performed on one of the array elements at a time for each of 
10,000 5x5 arrays? 

The answer to this question will determine whether the data dimensioning 
is specified as (5,5,10000) or as (10000,5,5). When the compiler vectorizes the 
"K" loop (the others are too short), the vectors will be computed with a 
stride of 25 with the first choice, or a stride of 1 with the second choice. 

Since maximum vector performance is achieved by addressing long vectors 
at a stride of 1, and since for this example, there is no difficulty in 
re-ordering the data, the order of operations may be arranged so that all 
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10,000 arrays have the same' element computed as a single vector. This 
situation is shown in Figure 50 on page 44. 

DIMENSION A(10000, 5, 5) 

DO 99 IeOL = 1, 5 
DO 99 IROW = 1, 5 

DO 99 K = 1, 10000 
A(K, IROW, ICOL) 

99 CONTINUE 
A(K, IROW, ICOL) + ... 

Figure 50. Data Organization More Appropriate for Vectorization 

5.2.2 Using EQUIVALENCE to Improve Vector Length 

One of the factors which affects vector performance improvement is vector 
length. As discussed earlier, increasing the length of the vectors generally 
improves performance. It is appropriate to consider at least one technique 
by which vector length may be improved without resorting to extreme 
measures. 

The example shown in Figure 51 shows a 3-dimensional nested loop. 

DIMENSION A(N,M,L), B(N,M,L) 

DO 99 K = 1, L 
DO 99 J = 1, M 

DO 99 I = 1, N 
99 A(I,J,K) A(I,J,K) + B(I,J,K) 

Figure 51. Loops With 3-Dimension Arrays 

Let us assume that the array dimensions are larger than the mInImum 
required for vector execution, but not particularly large. The nest of loops 
in this example contains no dependences in any of the three DO indexes, 
and all three are eligible for vectorization. The compiler will only select 
one loop for vectorization, and by our assumptions, the vector length may 
not be long enough to achieve the full potential performance improvement. 

We observe that the operations are all iridependent and vectorizable in the 
first two dimensions. We can then take advantage of Fortran's linear 
mapping of multiply-dimensioned variables to "collapse" the leading two 
dimensions into a single linear dimension whose length is equal to the 
product of the original two. The coding technique employed uses the 
EQUIVALENCE statement. As shown in Figure 52 on page 45, new 
variables are defined and individually EQUIVALENCEd to the original 
variables so that they share the same virtual storage. 
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DIMENSION A(N,M,L), B(N,M,L), AA(NM,L), BB(NM,L) 
EQUIVALENCE (A ( 1,1,1) ,AA ( 1,1) ), (B ( 1,1,1) ,BB ( 1 , 1) ) 

DO 99 K = 1, L 
DO 99 IJ = 1, NM 

99 AA(IJ,K) = AA(IJ,K) + BB(IJ,K) 

Figure 52. Loops With 2-Dimension EQUIVALENCEd Arrays 

The original two dimensions may now be indexed with a single linear index 
whose length (by our assumption) is significantly greater than either of the 
original two. The resulting vector operations now are more likely to 
approach optimal vector length performance. Although this example only 
shows the combination of two of the three dimensions, all three dimensions 
in this example might have been combined, with a resulting vector length of 
N*M*L. 

While this technique may appear somewhat artificial, it is similar to the 
"effective" equivalence which occurs when multiply dimensioned arrays are 
passed as arguments to a subroutine which uses a single linear index to 
address the entire array in storage order. This is typical of the practice of 
using subroutines to provide a computational result based solely on the 
starting address and length for all input and output arrays. The use of 
EQUIVALENCE provides the same function, in this case, without the 
overhead of subroutine CALLs. 

5.2.3 Data Restructuring 

We next present an example of restructuring the data to promote 
vectorization. Suppose that the application program is designed to solve, 
handle or otherwise manipulate a small number of simultaneous equations 
independently at many points on a grid. Let us represent this process by a 
matrix transpose on a small (5x5) matrix, at each point of the grid (I,J,K) as 
seen in Figure 53. 

DIMENSION A(5,5,N,M,L), B(5,5,N,M,L) 

DO 99 K = I, L 
DO 99 J = I, M 

DO 99 I = I, N 
DO 99 ICOL = 1, 5 

DO 99 IROW = I, 5 
99 B(ICOL,IROW,I,J,K) A(IROW,ICOL,I,J,K) + ... 

Figure 53. Poor Loop and Data Structure 

Any vector operation over the matrix dimension using either of the two 
innermost loops is restricted to a length of 5. Operating on the many 
matrices by forming one of the matrix elements for all points in one of the 
grid dimensions would be performed at some stride other than 1 (25, at a 
minimum). By restructuring the data array and using this latter evaluation 
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ordering, we may process one matrix element (IROW,ICOL) for all such 
matrices in one grid dimension. 

DIMENSION A(N,M,L,5,5), B(N,M,L,5,5) 

DO 99 ICOL = I, 5 
DO 99 IROW = I, 5 

DO 99 K = I, L 
DO 99 J = 1, M 

DO 99 I = I, N 
99 B(I,J,K,ICOL,IROW) A(I,J,K,IROW,ICOL) + ... 

Figure 54. Improved Loop and Data Structure 

As Figure 54 shows, the combination of DO statement reordering and data 
reordering will provide a more efficient structure for vector execution. 

Once written in this form, it is clear that we may attempt to collapse the 
array's dimensions to improve vector length, as discussed earlier. In this 
example, all three (grid) dimensions might be combined to provide a flexible 
scheme for transposing matrices on a grid whose dimensions and size may 
range up to a maximum (combined) length of N*M*L. Each element 
(IROW,ICOL) is moved for ALL points in the grid, providing what should be 
effective vector length performance. 

5.3 Temporary Variables 

It is a common practice to use temporary variables in a DO loop to hold 
intermediate values. The presence of such variables may adversely affect 
the vectorization of the loop in which they appear. The VS Fortran Version 
2 Vectorizing Compiler· can recognize and vectorize many uses of temporary 
variables; however, it helps to understand techniques that can be used to 
increase the likelihood of vectorization where it is not otherwise recognized 
by the compiler. 

5.3.1 Scalar Temporaries 

The example in Figure 55 illustrates the use of a scalar temporary variable 
which contains a partial result. In this context, if these were the only 
statements in the loop, the compiler would vectorize the loop as if it were 
written as on the right. (This technique is known as scalar expansion.) 

* SCALAR TEMPORARY 
DO 1 I = 1, N 

T = A(I) + B(I) 
1 R(I) = T + C(I)/T 

* VECTOR TEMPORARY 
DO 1 I I, N 

T(I) A(I) + B(I) 
1 R(I) T(I) + C(I)/T(I) 

Figure 55. Scalar Temporary Becomes Vector Temporary 
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There are two factors to consider in recoding to convert scalar temporaries 
into vector temporaries. First, a compiler-generated vector temporary can 
often be kept in a register and need not be stored. If the user creates a 
temporary array variable, the compiler must allocate storage in the 
program for the array, and then keep track of its usage. It may be difficult 
to detect whether a store is needed or not. 

Second, the explicit presence of a vector temporary may affect the scalar 
performance of the loop, because the elements of the temporary array must 
be stored. 

Conversely, the user should recognize that extensive use of such scalar 
temporaries within a single loop could eventually exhaust the compiler's 
ability to expand them. A single limit is not known, however, since it 
depends on the context in which the temporaries appear. 

Thus, some judicious experimentation may be needed to assess the benefits 
of manual scalar expansion. 

5.3.2 Scalar Array Element References 

In Figure 56, the array element A(K) has been used on the left as a scalar 
array reference. Note that the loop uses A(K) for a temporary assignment, 
and that the loop variable is "J". When the loop is exited, A(K) has a single 
value. The last value it attained is B(M)*C(M). "Good programming 
practice" indicates that the user can save computational effort even in 
scalar form by removing that element from the loop and performing only 
the final computation. This approach produces higher quality vectorized 
code as well. 

DO 3 J 
A(K) 

3 R(J) 

1, M 
B(J)*C(J) 
(A(K)-.5)**2 

DO 3 J = 1, M 
3 R(J) = (B(J)*C(J)-.5)**2 

A(K) = B(M) * C(M) 

Figure 56. Scalar Array Element as a Temporary 

The new loop, on the right, does not have the scalar array element A(K) 
which it cannot expand since it is addressed using another subscript. As a 
result, the compiler will vectorize this new loop. The sense of the original 
loop is retained by establishing the final value of A(K) after completion of 
the loop. This example assumes that M is not zero, that is, the loop is not a 
zero-trip DO loop which is permitted in FORTRAN 77. 
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5.4 Subscript Considerations 

The next topic involves the use of subscripts that are not simply the loop 
induction variable, the "DO" loop index. When array variables are 
subscripted with expressions or with auxiliary computed subscripts, it can 
be difficult for the compiler to determine unambiguously whether the 
statements in the loop are vectorizable. A previous example (Figure 36 on 
page 33) used the MOD function and division by an integer to demonstrate 
this difficulty. 

5.4.1 Subscripts With Constant Increments 

The example in Figure 57 shows that the constant increment "5" could be 
placed directly into the subscript of the variable itself. 

DO 7 I = 1, N 
J = I + 5 

7 R(J) = 1.0 

DO 7 I = 1, N 
7 R(I+5) = 1.0 

Figure 57. Auxiliary Array Subscript With Constant Increment 

Eliminating the auxiliary subscript "J" in the loop avoids the possibility of 
unnecessary stores. There is also a second advantage: if the code which 
follows this loop requires the final value of "J", then this loop might not 
vectorize, since vectorization could require that "J" be considered as an 
auxiliary induction variable whose final value must be calculated. 

Removing the explicit computation of "J" may promote vectorization. If the 
value of J is required later, the assignment statement J=N+5 could be 
placed after the loop to provide the final value. 

The greater the complexity and use of auxiliary subscripts, the greater the 
potential for the compiler to be unable to analyze them for· vectorization 
purposes. Thus,another approach to "good programming practice" is to 
avoid the unnecessary computation of auxiliary subscripts. 

5.4.2 Computed Auxiliary Subscripting Variables 

Figure 58 on page 49 illustrates a more complex subscript inside the I loop, 
but only a part of the computation is dependent on that subscript. 
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11 

DO 13 J = 1, M 

DO 11 I = 1, N 
K = (J-l)*N + I 
A(I) = B(K) 

13 CONTINUE 

Figure 58. Computed Array Subscript 

11 

DO 13 J = 1, M 

INC (J-l) * N 
DO 11 I = 1, N 

A(I) = B(I+INC) 

13 CONTINUE 

The simplest action is to remove the "I" -independent part from the loop. 
The new variable "INC" is invariant in the "I" loop, and can be used to 
index "B". 

As a general rule, the less the user creates complicated subscripting 
structures, the better off he is. The scalar performance might also improve 
since some operations have been removed. 

5.4.3 Linearized Multi-Dimensional Subscripts 

Subscript expressions of the form illustrated in Figure 58 are sometimes 
used to map a two-dimensional array onto a one-dimensional array. These 
"linearized" subscripts may be more difficult for the compiler to analyze 
than the equivalent multi-dimensional form. 

For example, if the code segment in Figure 58 had appeared in a subroutine 
for which the arrays "A" and "B" and their dimensions were dummy 
arguments, then the code can be written in a more "natural" form in which 
the complex subscript expressions can be replaced by single subscripts, as 
shown in Figure 59. 

DIMENSION A (N) , B(N,M) 
- - - -
DO 13 J 1, M 
- - - -

DO 11 I = 1, N 
11 A(I) = B(I,J) 

- - - -
13 CONTINUE 

Figure 59. Eliminating An Auxiliary Subscripting Variable 

The compiler-generated code to calculate the subscripts is essentially the 
same in the two cases. In this revised format, however, the compiler can 
more easily analyze both loops as candidates for vectorization. 
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5.4.4 Auxiliary Subscripts with Unknown Increment 

COMMON /COM/ INC 

J = 1 
DO 99 I = 1, 100 

A(J) = A(J) + 5.0 
99 J = J + INC 

Figure 60. Auxiliary Subscripting Variable With Unknown Increment 

The example in Figure 60 illustrates an ambiguity which might result in a 
loop which will not vectorize. In this case, J is initially well defined, but it 
is increased by an increment whose value is externally defined (it is in the 
COMMON block /COM!). In analyzing this loop, the compiler must be able 
to know that the value of INC cannot be zero before it will vectorize the 
loop. Because there is a possibility that INC could be zero, the compiler 
will assume that the elements of A are not data independent and that no 
vector operation is possible. 

If the increment INC is known to be zero and the code is rewritten on that 
basis, the compiler will vectorize the loop! This is shown in Figure 61. 

COMMON /COM/ INC 

J = 1 
DO 99 I = 1, 100 

A(J) = A(J) + 5.0 
99 CONTINUE 

Figure 61. Same Loop with Constant Auxiliary Subscript 

This loop simply adds the constant 5.0 to A(J) 100 times, and the compiler 
will generate code to perform a reduction operation (which is discussed in 
3.B.1, "Vectorization of Reduction Operations" on page 29). 

5.5 Recurrence, Part 2 

The loop presented in Figure 62 on page 51 shows that complex 
relationships may exist between elements of an array, and still not contain 
a recurrence. 
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DO 99 J = 1,M 
DO 98 I = 1,N 

A(I,J)=A(I-1,J-1)+A(I-1,J+1)+A(I+1,J-1)+A(I+1,J+1) 
98 CONTINUE 
99 CONTINUE 

Figure 62. Loops Not Containing a Recurrence 

The diagram in Figure 63 demonstrates some of the dependences of one 
element upon the others. 

J -> 

0 -+ 0 +- 0 0 

1 I 
1 1 

I 0 1---> 0 <---I 0 0 

I I 
1 I I 
V 0 -+ 0 +- 0 0 

0 0 0 0 

Figure 63. Subscript Relationships in Previous Example 

Suppose we consider the vectorization of this loop in the "I" direction. Then 
the A(I,J) might be considered as the "J"th vector over "I". Similarly, 
A(I-1,J-l) represents a different section of the "J-1"st vector, and 
A(I + 1,J + 1) is still another section of the "J + l"st vector, all in the "I" 
direction. Thus there is no dependence between elements of the "J"th 
vector, which would be a recurrence; rather, there are relationships 
between one vector and another, which are not recurrences. 

5.5.1 Hiding Recurrences 

It is possible to effectively hide some recurrences through the use of other 
"aliasing" techniques such as passing arrays as subroutine arguments. The 
compiler cannot detect such recurrences, since the range of its analysis is 
limited to a single routine at a time. The Fortran-77 standard permits such 
aliasing only if the dummy arguments are "read-only". Thus, a 
standard-conforming program may not use these "aliasing" techniques to 
avoid or hide recurrences. (If the apparent recurrences are truly 
"read-only", no recurrence exists, and there is no need for a subroutine call 
to hide the recurrence!) 

Furthermore, such "aliasing" techniques can cause overlaps and unsafe 
conditions that are not possible to detect since the user is performing them 
across module boundaries. 
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5.6 Unrolling Loops 

Loop unrolling is a familiar technique employed to improve performance on 
selected scalar machine architectures. The intent of loop unrolling is to 
increase the proportion of computation in a loop compared to the overhead 
of the loop's "bookkeeping". 

Vector computation already provides much more computation in a loop 
compared to the loop overhead; thus, vectorizing a loop that was unrolled 
to improve scalar performance could give far less improvement than would 
be possible if the loop had been left "rolled". 

* With Unrolling 
DO 99 I = 1, N, 3 

A(I+O) A(I+O) + B(I+O) 
A(I+l) A(I+l) + B(I+l) 
A(I+2) = A(I+2) + B(I+2) 

99 CONTINUE 

* Without Unrolling 
DO 99 I = 1, N 

A(I) = A(I) + B(I) 
99 CONTINUE 

Figure 64. Loop With Unrolling and Without 

The compiler will vectorize the unrolled loop shown in Figure 64 by 
generating three separate vector instructions, each with a stride of three (3) 
and a vector length of N. Each instruction will only operate on one third of 
the N values. 

While these are valid vector instructions, improved vector performance may 
be obtained by recombining the statement sequence into the original single 
statement, which will be vectorized with a stride of 1 and a vector length of 
N, as shown on the right. This is an example of a scalar performance coding 
technique which does not pertain to vector applications. 

In the example on the left in Figure 65, the two-dimensional operations are 
unrolled along the leftmost subscript, in the direction which should 
probably be vectorized. 

DO 99 J = 1, M 
DO 99 I =- 1, N, 3 

A(I+O,J) 
A(I+l,J) 
A(I+2,J) 

99 CONTINUE 

DO 99 J = 1, M, 3 
DO 99 I = 1, N 

A(I,J+O) 
A(I,J+l) 
A(I,J+2) 

99 CONTINUE 

Figure 65. Loop Unrolled Along Non-Vector Dimension 

Following the technique illustrated in the example in Figure 64, we can 
recombine the statements in the "I" direction to promote better vector 
performance. However, there is no reason why the user could not unroll the 
loop in the dimension controlled by the other index, "J", as shown on the 
right in Figure 65, since the new statement sequence defines three 
individual vectors of stride 1, each with length "N". Therefore, unrolling, 
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so long as it is performed in the non-vector dimension, remains an 
appropriate coding style for vector programming. 

If either loop limit is very small, then is it probably worth unrolling the 
loop completely, by "expanding" it inline. Then, the DO statement for that 
loop index can be eliminated, and the compiler can make a better decision 
about vectorizing the remaining DO loop. 

5.7 Loop Segmentation 

If the computational work is unevenly distributed among the loops in a 
nest, the compiler might well select the "correct" loop for vectorization, but 
additional vectorization opportunities might not be accessible. 

An example of loop segmentation is shown in Figure 66. 

DO 15 J = 1, M 

DO 5 I = 1, N 

5 CONTINUE 

15 CONTINUE 

Figure 66. Nested Loops Available for Segmentation 

In this nest of two loops, the compiler could select either the inner "I" loop 
or the outer "J" loop for vectorization, but not both. As the ellipses 
indicate, considerable work may be performed in the "J" loop which would 
not be executed in vector mode if the inner, "I" loop were vectorized. 
Similarly, there might be statements in the inner "I" loop which we would 
also want to be vectorized even when the outer "J" loop is selected for 
vectorization. 

To improve opportunities for vectorization, the user could manually 
segment the outer loop into three loops, each of which then becomes a 
candidate for vectorization, as shown in Figure 67. 

DO 115 J = 1, M 
- - - -

115 CONTINUE 
DO 215 J = 1, M 

DO 5 I = 1, N 
- - - -

5 CONTINUE 
215 CONTINUE 

DO 315 J = 1, M 
- - - -

315 CONTINUE 

Figure 67. Loops After Segmentation 
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Of course, the operations within these loops must be sufficiently 
independent to allow this loop segmentation to be correct. 

Loop segmentation must be applied with care, of course. There is always an 
identifiable cost in vector loop initiation and termination, and in sectioning 
the arrays within the loop. Thus, for example, it is possible that enough 
work in the inner loop is already vectorized on the outer loop's index "J" 
that segmentation would introduce enough extra overhead to cause slower 
execution! That is, vectorization could be increased, while program speed 
decreases. As with other vectorizations, timing measurements will reveal 
the relative merits of each change. 

A more specific example of loop segmentation to enhance vectorization is 
shown in Figure 68. In this example, more work is being performed in the 
"J" loop than in the "I" loop. 

DO 10 J = 1, M 
A(J) S * A(J) 
B(J) S * B(J) 
C(J) A(J) + B(J) 
D(J) S * C(J) 

DO 9 I = 1, N 
E(I,J)=E(I,J)+D(J) 

9 CONTINUE 
10 CONTINUE 

DO 10 J = 1, M 
A(J) S * A(J) 
B(J) = S * B(J) 
C(J) = A(J) + B(J) 
D(J) = S * C(J) 

10 CONTINUE 
DO 20 J = 1, M 

DO 9 I = 1, N 
E(I,J)=E(I,J)+D(J) 

9 CONTINUE 
20 CONTINUE 

Figure 68. Loops Before and After Segmentation 

It is clear that as long as the computation of the variable "D" is completed 
before the computation of the variable "E", these computations may be 
performed independently. Thus, two loops may be fonned from the original 
outer loop, and the amount of work which is eligible for vectorization is 
increased. 

5.8 Statement Reordering 

Figure 69 shows an example of statement reordering. The VS Fortran 
Version 2 Vectorizing Compiler can detect most instances where statement 
reordering will permit vectorization, and will do the reordering 
automatically. However, because such vectorizations may not always be 
visible to the compiler, it may sometimes help to do such reorderings in the 
source code. 

DO 17 I = 1, N 
R(I) = A(I) 

17 A(I+l) = B(I) 

DO 17 I = 1, N 
A(I+l) = B(I) 

17 R(I) = A(I) 

Figure 69. Removing an Order Dependence 
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The computation of "R" would appear to depend on the computation of "A" 
from the preceding trip through the loop. However, a little analysis shows 
that since the element of "A" which is being computed is the element that 
the computation of "R" will use on the next cycle of the loop, all of the 
"A"s could be computed before the "R"s. The computational order may be 
reversed, and the loop now is visibly vectorizable. 

5.9 Loop Distribution 

The compiler also has the ability to distribute or split a loop by considering 
the possibility of vectorizing Fortran statements within the loop separately, 
on a "statement by statement" basis, rather than analyzing the loop as a 
whole for vectorization. This compiler feature is part of the extra function 
obtained when the user selects the LEVEL(2) sub-option of the VECTOR 
compiler option. This process is illustrated in Figure 70. 

DO 15 I = 2, N 
AA(I) = AA(I) + B(I)**2 

15 X(I) = X(I-1) + Y(I) 

Figure 70. Loop Suitable for Distribution 

In this loop, the statement involving the variable "AA" may be safely 
vectorized, but the statement involving the variable "X" contains a 
recurrence relationship, which may not. (Recurrences are discussed in 
3.5, "Recurrences" on page 24.) The compiler can determine, however, that 
the two Fortran statements in the body of the loop are independent of each 
other, and could therefore be processed separately. The compiler then 
"splits" the original loop into two loops, "distributing" the original loop 
across the statements, as shown in Figure 71. 

DO 15 I = 2, N 
15 AA(I) = AA(I) + B(I)**2 

DO xx I = 2, N 
xx X(I) = X(I-1) + Y(I) 

Figure 71. Original Loop Is Split Into Two Loops 

The loop containing the computation of "AA" may now be executed In 
vector mode, while the loop containing "X" remains in scalar mode. 

Such vectorizable Fortran constructs may appear in a context which 
contains other vector inhibitors, or which does not provide enough 
information to the compiler to analyze the situation, or which is too 
complex. Thus it is advantageous to adopt a style which isolates the 
vectorizable from the non-vectorizable computations, in order to promote 
additional vectorization. 
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5.10 Indirect Addressing 

The technique of copying data elements into a temporary vector illustrated 
in Figure 48 on page 42 might be used for indirectly addressed variables, as 
shown in Figure 72. Again, we assume that the number of elements, "M", 
and the amount of work involved in the computation loop between the two 
data motion loops, is sufficient to justify the copying loops. 

It should be noted that this technique may be used only when the condition 
of no-duplication of values in the list of indirect addresses. 

DO 10 I = 1, N 
TEMPA(I) = A ( INDEX ( I ) ) 

10 CONTINUE 
DO 15 I = 1, N 

- - - -
* many operations on TEMPA ... 

- - - -
15 CONTINUE 

DO 20 I = 1, N 
A(INDEX(I» TEMPA(I) 

20 CONTINUE 

Figure 72. Indirect Addressing With a Temporary Vector 

Indirectly addressed operations are commonly called a "gather" when data 
is fetched from an indirectly addressed array in storage into a contiguous 
vector, and a "scatter" when data is stored from a contiguous vector into an 
indirectly addressed array. 

Even though we have discussed only the simplest one-dimensional case for 
both indirect addressing and conditional operations, these techniques are 
equally extensible to operations on arrays or matrices. As noted earlier, 
since Fortran stores arrays in column-major order, it is easy to apply these 
techniques to the column vectors of an array without further complicating 
the algorithm. In addition, experience with many applications has resulted 
in the observation that a common programming practice is to collapse a 
multi-dimensional array into a singly-dimensioned linear array in order to 
gain flexibility of use of the application for many array sizes. The required 
index pointers for this practice may be used to introduce the conditional 
execution technique as well. 

5.11 Conditional Operations 

We now consider the vectorization of conditional operations. The examples 
are intended to convey some indication of the difference between styles 
which work well in scalar mode compared to styles which might be more 
appropriate to vector execution. 

The System/370 Model 3090 Vector Facility provides masked operations 
which operate under the control of "Vector Mask Mode". When Vector 
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Mask Mode is off, all elements of a vector are used; when Vector Mask 
Mode is on, any masked operation will operate selectively on designated 
elements of a vector. The selection mechanism is the Vector Mask Register, 
which contains a bit sequence whose length is the section size Z. These bits 
can be set on and off by comparisons and other operations; a masked 
operation will then operate on only those elements corresponding to "on" 
bits in the Vector Mask Register. 

For example, consider the DO loop in Figure 73. 

DO 66 I = 1, N 
66 IF (A(I) .GT. B(I)) C(I) D(I) 

Figure 73. Example of a Conditional Operation 

This loop would be vectorized by using the comparison of the arrays A and 
B to set the contents of the Vector Mask Register; then, those contents 
would be used to select the elements of arrays C and D for which the 
assignment operation is to be performed. 

5.11.1 Conditional Operations and IF Conversion 

The next topic we will consider involves conditional operations. That is, 
operations which take place under the control of the logical result of some 
comparison. This topic suggests a specific style of coding, since the vector 
relational is not currently supported in vector mode, but the resulting 
logical vector may be saved for use as a "mask" for later vector operations, 
as in Figure 74. 

DO 98 I = 1, N 
LCOND(I) = A (I) .LT. B(I) 

98 CONTINUE 
DO 99 I = 1, N 

IF(LCOND(I)) C(I) D(I) 
99 CONTINUE 

Figure 74. Loops With Conditional Operations 

If the comparison is directly used to control a vector operation, then both 
the comparison and the conditional operation may be vectorized. 

DO 99 I = 1, N 

IF(A(I) .LT. B(I)) GO TO 99 

99 CONTINUE 

Figure 75. Loop With Conditional Control 
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The example in Figure 75 will be converted from a control dependence to a 
data dependence, as if it were written as in Figure 76 on page· 58. 

DO 99 I = 1, N 

IF(A(I) .GE. B(I» THEN 

ENDIF 
99 CONTINUE 

Figure 76. Loop With Data Dependence 

In either case, the loop will be vectorized, and the conditional operation 
will be executed in vector "masked mode" under control of the bit mask 
generated by a vector "compare" instruction. 

The last example, in Figure 77, shows a specific type of conditional 
operation which the compiler will not vectorize. 

DO 99 I = 1, N 

IF(A(I) .LT. B(I» C(INDX(I» 0.0 

99 CONTINUE 

Figure 77. Loop With Conditional Control 

No hardware support is provided for indirectly addressed operations in 
vector masked-mode. The result is that this type of conditional computation 
will always be executed in scalar mode. 

5.11.2 Writing Conditional Code 

We will now examine several different examples showing different ways of 
expressing the same set of conditions. The object of the loop in Figure 78 is 
to compute a quantity which depends on the SQRT function, while avoiding 
the square root computation when its argument is negative. 

DO 25 I = 1, N 
X(I) = Y(I) + Z(I) 
IF (B ( I ) . LT . 0.) GO TO 15 
X(I) = X(I) + EXP(SQRT(B(I») 
GO TO 25 

15 X(I) = X(I) + 1.0 
25 CONTINUE 

Figure 78. Loop Containing a Condition 

In this example, the loop contains a branch around part of the computation 
which is taken when the argument of the SQRT intrinsic function is 
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negative. This type of loop contains a control dependence, a dependence on 
the data for a transfer of control of execution. The VS Fortran Version 2 
Vectorizing Compiler will use "IF Conversion" to try to turn the "control 
dependence" into a "data dependence". This results in code like the 
sequence shown in Figure 79. 

DO 25 I = 1, N 
X(I) = Y(I) + Z(I) 
IF ( B ( I ) . GE. 0.) THEN 

X(I) X(I) + EXP(SQRT(B(I))) 
ELSE 

X{I) = X(I) + 1.0 
ENDIF 

25 CONTINUE 

Figure 79. Control Dependence Changed to Data Dependence 

The resulting loop is now vectorized by using a vector comparison to set the 
mask in the Vector Mask Register, followed by operations under mask. 

In fact, the original loop might also have been written as shown In 
Figure 80. 

DO 25 I = 1, N 
X(I) = Y(I) + Z(I) 
IF (B (I) . GE. 0.) X (I) 
IF (B (I) . LT. 0.) X ( I) 

25 CONTINUE 

X(I) + EXP(SQRT(B(I))) 
X(I) + 1.0 

Figure 80. Data Dependence With Different Conditions 

In this case, a mask would be constructed for the result of each of the tests, 
and each of the conditional computations would be performed under a 
different mask. 

Although each of the loops in the preceding examples (Figures 78-80) will 
provide the same result, the vector performance will vary depending on the 
coding style employed. CPU timings will help in selecting the style that 
leads to the best performance. 

5.11.3 Improving Conditional Code 

The next example, in Figure 81 on page 60 combines several of the 
techniques in the preceding discussions. 
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DO 30 J = 1, JMAX 
DO 20 I = 1, IMAX 
IF(J.EQ.JMID.AND.(I.EQ.1.0R.I.EQ.IMAX).AND.FLAG) 

X GO TO 20 
DO 10 K = 1, KMAX 

A(I,J,K) = B(I,J,K) + C(I,J,K) 
10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

Figure 81. Loops With Control Dependence 

The computation is representative of a practice that happens routinely in 
the simulation of physical phenomena of any kind. For some condition, the 
computation is to be bypassed for specific index values. This may be 
thought of as a boundary condition on a 3-dimensional grid (I,J,K), where 
the computation is not to be performed along part of the top and bottom 
planes of the grid (see Figure 82). 

J 
I 

Figure 82. Computation on 3-Dimensional Grid 

The compiler will analyze this loop and attempt to vectorize the (inner) "K" 
loop by changing the control dependence to a data dependence as in the 
example of Figure 79 on page 59. Depending on the dimensions of the 
arrays in the I,J directions, however, the economic analysis may indicate 
that the cost of this loop in vector mod~, for vectors of length KMAX, 
potentially at a large stride (lMAX* JMAX), may exceed the cost in scalar 
mode, and select scalar execution mode as a result. 

However, if we examine th.e condition, we find that part of the condition is 
independent of the "I" index, and is essentially used to select the limits on 
the "I" loop. Instead of testing each value of the index "I", we remove the 
"I" -independent part of the condition from the "I" loop and use it to set the 
"I" limits outside of the "I" loop. Now we observe that the "I" and "K" 
loops are order-independent, and may be interchanged. The resulting 
computation (shown in Figure 83 on page 61) is vectorizable, in the "I" 
direction. 
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DO 30 K = 1, KMAX 
DO 20 J = 1, JMAX 

lBEGlN = 2 
lEND = IMAX - 1 
IF(J.EQ.JMID .AND. FLAG) 

X GO TO 25 
IBEGIN = 1 
lEND = IMAX 

25 DO 10 I = IBEGIN, lEND 
A(I,J,K) = B(I,J,K) + C(I,J,K) 

10 CONTINUE 
20 CONTINUE 
30 CONTINUE 

Figure 83. Loops With Modified Control Dependence 

The vectors will be of length IMAX or IMAX-2, depending on the result of 
the "IF" test, and memory references will be in storage order (stride 1). 
Thus we have modified this loop so that the vector content is clearly 
~'visible" to the compiler. An additional benefit of this modification is that 
the loop will execute more efficiently in scalar mode as well, since the "IF" 
test has been simplified, is executed fewer times, and the memory references 
have been re-ordered to a stride 1 addressing pattern. 

The intent here is not to suggest that there is only one method for handling 
this operation. However, it does illustrate an example of how conditions on 
the boundaries of computations can be used to determine vector lengths, 
without introducing unnecessary tests within a loop which act to prevent 
vectorization. In the end, the user usually generates better scalar code at 
the same time. 

5.12 Data Dependent Loops 

Data dependent loops proceed until a computed value reaches some limit. 
While it is possible tc vectorize such loops, it should be recognized that a 
performance gain may not necessarily be realized. For example, the loop in 
Figure 84 will not vectorize since it contains a branch to a statement 
outside the range of the loop. 

DO 98 I = 1, N 

X(I) = Y(I) - Z(I) * T(I) 
IF (X(I) .LT. 0.0) GO TO 99 
ROOT(I) SQRT(X(I)) 

98 CONTINUE 
99 ILAST = I - 1 

Figure 84. Data Dependent Loop With Branch Out 
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However, it can be transformed into a vectorizable set of operations by 
segmenting the loop into three new loops, as illustrated in Figure 85 on 
page 62. 

DO 96 I = 1, N 

TEMPX(I) = Y(I) - Z(I) * T(I) 
96 CONTINUE 

DO 97 I = 1, N 
IF (X(I) .LT. 0.0) GO TO 98 

97 CONTINUE 
98 ILAST = I-I 

DO 99 I = 1, ILAST 
XCI) = TEMPX(I) 
ROOT(I) = SQRT(X(I» 

99 CONTINUE 
IF (ILAST.EQ.N) GO TO 101 
X(ILAST+l) = XTEMP(ILAST+l) 

101 CONTINUE 

Figure 85. Vectorizable Version of Data Dependent Loop 

The first loop performs the evaluation of the variable to be tested, "X", and 
all of the work which leads to that computation. The second loop 
establishes the range of computation (loop limit or vector length) for the 
third loop which contains the rest of the computation. The ellipses (- - - -) 
represent some (potentially large) amount of computation, which we will 
assume will vectorize in the new loop sequence. 

In vector mode, all "N" values of the arrays in the first loop will be 
computed. This means that more work may be performed in the vectorized 
loop than in the scalar version, which would have terminated at the 
appropriate condition. The speed improvement realized by executing in 
vector mode will be diminished by the time spent performing the extra 
work. In fact, a speed degradation may be encountered depending on the 
amount of work involved. As a rule of thumb, assuming a vector speed-up of 
a factor of two, the original loop would have to be performed for N /2 of the 
computations or more for a speed improvement to be realized. If fewer 
computations were performed, a loss in performance might result. This first 
order estimate applies only to this specific loop and ignores the speed 
improvement obtained from executing the rest of the computations (third 
loop) in vector mode. The third loop has the same range as the original, so 
that a speed improvement from vector execution would be expected for this 
section of code. 

Note that a temporary has been introduced for the "X" result in the first 
loop This is because the original loop only modified the first ILAST + 1 
values of "X", but the vector loop changes all "N" values. If it is necessary 
to protect the values from ILAST + 2 to "N", a temporary would be required 
to store the "N" values and the first ILAST of them would be copied into 
"X" later. This ensures the integrity of "X", except for the single negative 
value which triggered the original branch. This value is shown to be 
updated after the last loop completes. If this fix-up is not required, the 
temporary need not be introduced. 
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Overall, it is the combination of the extra work performed, the relative 
distribution of work between the first and last loops, and the vector 
speed-up which will determine whether an improvement in execution time 
will be realized. Clearly the greatest benefit will be obtained when the 
amount of work in the first loop is small, the point at which the original 
loop is exited is close to the loop limit, and the computation in the last loop 
is more extensive relative to that of the first. 

5.13 Loops Containing External References 

Loops containing non-intrinsic external references simply do not vectorize. 
If a CALL statement is present in a loop, the loop will not vectorize. 
Consider the example in Figure 86. 

DO 99 I = 1, M DO 97 I = 1, M 
- - - - - - - -
A(I,J,K) = 97 A(I,J,K) = 

DO 98 I = 1, M 
CALL SUBA (A, ... ) CALL SUBA (A, ... ) 

98 CONTINUE 
DO 99 I = 1, M 

- - - - - - - -
99 CONTINUE 99 CONTINUE 

Figure 86. Loop Containing a CALL Statement 

(Of course, when Fortran intrinsic functions are used, the compiler 
automatically provides links to the vector versions of the intrinsics8, so 
long as the sub-option NOINTRINSIC is not specified). 

Isolation of the CALL statement, as shown on the right in Figure 86, 
provides one method of improving the vectorization potential of the loop, if 
the subroutine coding permits. Otherwise, a technique described in the 
discussion in 6.2, "Incorporating Loops Across Modules" on page 72 may be 
used. 

8 Consult the VS Fortran Version 2 Language and Library Reference (Form 
Number SC26-4221) for a list of the Fortran intrinsic functions. 
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5.14 Loops Containing Input/Output Statements 

DO 99 I = 1, N 
A(I) = •• 
B (I) =. . . 

WRITE(10) A(I), B(I) 
99 CONTINUE 

Figure 87. Loop Containing WRITE Statement 

Input/Output operations do not vectorize. When a DO loop contains I/O 
statements in what would otherwise a vectorizable loop, as in Figure 87, 
the 1/0 statements should removed, as shown in Figure 88. 

DO 99 I = 1, N 
A(I) = . 
B(I) = ... 

99 CONTINUE 
WRITE(10) (A(I), B(I), I 1, N) 

Figure 88. Loop With WRITE Statement Moved 

The compiler can then analyze the loop, and vectorize it if it meets the 
necessary requirements. 

5.15 Restating an Algorithm. 

One way to improve vector performance is to restate or reorder an 
algorithm so as to make optimal use of the data. This is contrasted with 
either modifying the algorithm to apply it in stages, reordering the data to 
remove dependencies, or changing the solution technique altogether. 

The six possible orderings of the DO statements to perform a matrix 
multiplication are presented in Figure 89 on page 65. 
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DO 1 I = 1, M 
DO 1 J = 1, P 
C(I,J) = 0.0 

DO 1 K = 1, N 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

1 CONTINUE 

DO 1 I = 1, M 
DO 1 J = 1, P 
C(I,J) = 0.0 

1 CONTINUE 
DO 2 K = 1, N 
DO 2 I = 1, M 
DO 2 J = 1, P 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

2 CONTINUE 
\ 

DO 1 J = 1, P 
DO 1 I = 1, M 
C(I,J) = 0.0 

DO 1 K = 1, N 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

1 CONTINUE 

DO 1 J = 1, P 
DO 1 I = 1, M 
C(I,J) = 0.0 

1 CONTINUE 
DO 2 K = 1, N 
DO 2 J = 1,P 
DO 2 I = 1,M 

\ 2 
\ 

C(I,J) = C(I,J)+A(I,K)*B(K,J) 
CONTINUE 

-----------------------------------\-------------------------------------
DO 2 I = 1, M 
DO 1 J = 1, P 
C(I,J) = 0.0 

1 CONTINUE 
DO 2 K = 1, N 
DO 2 J = 1, P 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

2 CONTINUE 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

DO 2 J = 1, P 
DO 1 I = 1, M 
C(I,J) = 0.0 

1 CONTINUE 
DO 2 K = 1, N 
DO 2 I = 1, M 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

2 CONTINUE 

Figure 89. All Six Ways to Multiply Two Matrices 

These orderings correspond to the data addressing patterns illustrated in 
Figure 90 on page 66. 
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EXAMPLE 

Figure 90. Visualizing Matrix Multiplication 

In the upper left of each figure appears the standard row-column matrix 
multiply, with the (scalar) elements of the result matrix being developed in 
row order. The pattern on the top right is also a row-column matrix 
multiply, developing the (scalar) result in column order. The ordering 
appearing in the lower right is the preferred one. Here the product is 
performed as a scalar-vector multiply (with the scalars in column order), 
followed by a vector-vector add, to develop a column vector of the result 
matrix. This operation sequence can be mapped onto the vector-scalar 
"Multiply And Add" compound instruction, one of the fastest instructions 
in the System/370 Model 3090 Vector Facility. 

5.16 Vector Optimizations 

Optimization of code undergoing migration to vector execution should be 
performed only after the code migration and application validation have 
been completed. In addition to the usual scalar optimizations, there are a 
few vector-specific optimizations which may be helpful. Some of these 
considerations are: 

• The usual scalar optimizations still apply: 
Strength Reduction 
Constant Propagation 
Dead Code Elimination 
Constant Sub-expressions 

• Vector-specific optimizations 
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Redundant operations on vector sections 
Re-computation of indirect index lists 
Dense vs. Sparse operations 

5.16.1 Vector Sub-Sections 

The concept of a vector section can have several meanings. One is, of 
course, the model-dependent hardware sectioning by which vectors of any 
length are processed. A second type of vector section might be called a 
"sub-section", a sub-vector which is contained within a vector. 

For example, suppose that an operation such as multiplication is to be 
performed in two different places in a code. We assume that each 
multiplication ranges over a different sub-vector of some longer vector, but 
both use the same scalar multiplier. Figure 91 illustrates this situation. 

DO 10 I = 1, N-2 
10 X(I) = A(I) * S 

DO 20 I = 3, N 
20 X(I) = A(I) * S 

Figure 91. Subsets of Vectors 

In the first DO loop, only the first N-2 elements of "A" are multiplied and 
(presumably) used afterwards. In the second loop, the last N-2 elements of 
"A" are required. Since the two sub-vectors of "A" result from the same 
computation, and since they overlap (we assumed that N is large), some of 
the computations are redundant. A savings may be realized by performing 
the initial operation over all required values of "A", and addressing the 
result as needed, as shown in Figure 92. 

DO 10 I = 1, N 
10 X ( I) = A ( I ) * S 

Figure 92. Eliminating Subsets of Vectors 

The number of operations saved in this case would be N-4 multiply 
operations, which would represent a time savings in both scalar and vector 
modes. 

Thus our focus has been changing from the scalar point of view, in which 
we consider individual elements, to a vector view, where the "object" of our 
attention is the string of elements called a "vector". This is the basis for 
the saying, "THINK VECTOR". 
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5.16.2 Indirect Addressing 

Another optimization is to avoid the computation of indirect index lists, 
so-called "list vectors". This should follow from the observation that for 
many applications, the geometry, topology or connectivity of the problem is 
fixed for the duration of computation. A judicious ordering. of the 
conditions which result in indirect address lists, from the broadest 
condition towards the more restrictive will promote a minimum of 
recomputation. 

There are varying techniques associated with dense vs. sparse vector 
operations. Frequently different parts of a computation are required to be 
executed conditionally, affecting only selected elements of a given vector or 
set of vectors. These conditions may result from the physical problem itself, 
range of validity of a mod~l of a process, the mathematics which describe be 
the process or the numerics of the computation. 

The mechanisms of both indirect addressing and masked-mode computation 
are appropriate to the selection of those elements of a vector upon which to 
operate. Although indirect addressing is the more general indexing scheme, 
it is also the more expensive. 

Indirect addressing can be used in situations where the list of elements is in 
some random order, where masked mode cannot. As a rule of thumb, if the 
condition can be applied to the elements of a vector in monotonic order, 
and the number of elements selected is a reasonable fraction of the total 
vector, then vector masked-mode operations are generally more efficient. 
Vector masked-mode operations result from conditional execution of 
Fortran computations in vector mode. 

5.16.3 Improving Vector Density 

The programming style ·used to perform conditional computations is a 
particularly good opportunity for the user to make use of information about 
the behavior of the application to improve performance beyond what would 
result from the "brute-force" or more direct expression of the conditional 
operations. in Fortran. For example, consider a computational process in 
which many vector computations are to be performed conditionally, starting 
from a small number of input vectors and resulting in a small number of 
output vectors, and in which, say 10% of the elements are involved. Rather 
than perform all of the vector computations under a mask (the logical. 
condition which controls the execution) perhaps it may be more efficient to 
create new, auxiliary vectors consisting only of the affected elements of the 
original vectors. Then the succeeding computations may be performed on 
stride-1 (storage order) vectors, whose length is (by our assumption) 10% of 
the original. Assuming that there is sufficient work to be performed, and 
that this shortened length is sufficient to provide effective vector 
utilization, then a performance improvement may be realized. 

One way of determining whether this method should be selected is to count 
the potential length of the conditionally selected elements. An example of 
this technique is shown in Figure 93 on page 69. 
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ICOUNT = 0 
DO 10 I = 1, N 

IF (logical expression) ICOUNT 
10 CONTINUE 

Figure 93. Counting Conditional Selections 

ICOUNT + 1 

Once the number has been determined, and assuming that it is large 
enough, then the new vectors might be constructed as shown in Figure 94. 

J = 0 
DO 10 I = 1, N 

IF (logical expression) THEN 
J = J + 1 
X(J) = A(I) 

ENDIF 
10 CONTINUE 

Figure 94. Compressing Vector A Into Vector X 

The subsequent operations on the new vectors may then be said to act on 
them in "compressed" form. 

Similarly, when the "compressed" operations are complete, results may be 
replaced in the original vector in one of two ways. The first method is an 
"expand" function: that is, the selected elements are expanded according to 
the condition on the original vectors, with the intervening elements set to 
zero. An example of this zero-fill expansion is shown in Figure 95. 

J = 0 
DO 10 I = 1, N 

A(I) = 0.0 
IF (logical expression) THEN 

J = J + 1 
A(I) = X(J) 

ENDIF 
10 CONTINUE 

Figure 95. Expanding Vector X Into Vector A, Zero Filler 

The second method is the replacement of the new selected element values 
according to the condition, without disturbing the intervening elements of 
the original vector, as shown in Figure 96 on page 70. 
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J = 0 
DO 10 I = 1, N 

IF (logical expression) THEN 
J = J + 1 
A(I) = X(J) 

ENDIF 
10 CONTINUE 

Figure 96. Expanding Vector X Into Vector A, With Replacement 

5.17 Local Vectorization Techniques: Summary 

This completes the discussion of purely local vectorization techniques. 
Many of the prevalent Fortran coding practices have been presented, 
although by no means all. It is useful to summarize the various practices in 
a list, to serve as a basis for the vector migration methodology we have 
been working towards. 

• Isolate N on-Vectorizable· Constructs 
CALL 
Recurrences 
Input/Output 
Relationals 
Hazards 

• Simplify Subscripts 
• Reverse Unrolling 
• Loop Segmentation 
• Statement Re-ordering 
• Loop Distribution 
• IF Conversion 
• Improve Vector Density 
• EQUIVALENCE for Longer Vectors 
• Opportunity to Use Vector Library (ESSL) 

As the discussion has progressed, the list of local vector migration 
considerations has grown. Although it appears as the last item on the list, 
the practice of looking for the opportunity to use ESSL routines in place of 
scalar code should be continuous throughout the migration process. This 
provides an efficient and easy way of·· gaining vector performance for 
minimum' effort. ESSL routines may be introduced at low functional levels 
through the use of the Basic Linear Algebra Subroutines, (the BLAS) such 
as SY AX or SAXPY, or at a more complex functional level such as a 
Real-to-Complex, 2-Dimensional Fast Fourier Transform (SRCFT2) or 
time-varying Recursive Filter (STREC). 
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6.0 Global Migration Considerations 

The basic questions to be asked when considering more global modifications 
of an application program include: 

• Is a global restructure of the application necessary? 
• Will restructuring provide a performance improvement due to increased 

vectorization? 
• Can restructuring be accomplished in a realistic time with a realistic 

effort? 

In order to make a knowledgeable decision, it is necessary to have an 
understanding of the overall structure, the static and dynamic ordering of 
the logic, and the intent of the application. 

What determines the possibilities for the data ordering which will exhibit 
the maximum vector content? Some of the more important choices include: 

• the way in which the discrete values are represented (grid) 

• the solution technique used (LSOR, L-U Decomposition, Gaussian 
Elimination, etc.), 

• the algorithmic scheme, 

and also includes consideration of such items as 

• the resulting vector length, stride, and increased size of the application 
due to the usual expansion of scalar variables to vectors. 

The following discussion presents some simple concepts which may be 
applied to application reorganization for vector migration. It is by no means 
complete; for example, no attempt has been made to cover the many 
numerical and algorithmic schemes and techniques in current use. These 
concepts are mentioned only to place them in their proper order in the 
migration process. The descriptions are somewhat general, taking in detail 
only some examples to illustrate particular code structuring. The art of the 
problem solving process still must remain with the user. 
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6.1 Global Restructuring 

The original application and module organization may not have been 
designed to satisfy the objective of efficient vector execution, and it may be 
appropriate at this stage to consider the more global aspects of the 
migration process. This includes both module (subroutine) and data 
reorganization and may involve redistributing function between the 
routines. Reorganization implies that modules may have to be either 
combined or separated or both to make the required data independence 
visible to the compiler. 

A reorganization of the modules may have implications in terms of the 
communication between the modules, such as common areas, argument 
lists, the data structure itself, and the order in which it is used. The task is 
to determine what controls the order in which the computation will take 
place. 

• Is the computational order determined by the representation of the 
physical space being simulated? 

• Is the numerical scheme explicit or implicit? 
• Is the solution method setting the order or does the algorithm control? 

The algorithm may be reordered for example, to perform computations at 
many points in stages, rather than completing the whole algorithm for one 
point . 

. On the other hand, constraints may be placed on the application by the 
algorithm, underlying mathematics and the like which do not permit 
reordering, or result in such sparse or short vectors that the techniques 
discussed here may have small effect. Thus, it is necessary that the basic 
message of this report, "Don't Give Up", should be properly interpreted in 
these situations, and expectations for vector performance improvement 
realistically adj usted. 

6.2 Incorporating Loops Across Modules 

One technique used is to incorporate a loop structure across several 
modules or subroutines. Incorporating a loop across modules may be 
required if a loop exists that calls for a series of subroutines and drives 
them over say, one or more dimensions. Incorporating the loop inside each 
of these subroutines may be preferred since the "DO" loops f~rmed within 
each subroutine become eligible for vector analysis. As discussed earlier, 
mentioned, this is the situation when one particle, point or element is 
processed at a time, routine by routine, and function by function. 

An example of incorporating loops across modules is illustrated in 
Figure 97 on page 73. This example is a loop which includes·a CALL to (at 
least one) subroutine. That subroutine has the loop index (the induction 
variable of the loop) as one of its arguments. Within the subroutine, the 
items are addressed using that loop index, but only one at a time. The loop 
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within the subroutine is seen to contain a recurrence with respect to the 
second subscript, "J". 

DO 10 I = 1, N 

CALL SUBI ( ... , I, X, Y, ... ) 

10 CONTINUE 

SUBROUTINE SUBl( ... , I, X, Y, ... ) 
DIMENSION X(N,M,KM), Y(N,M,KM) 

DO 20 J = 1, M 
DO 20 K = 1, KM 

Y(I,J,K) Y(I,J-l,K) * X(I,J,K) 
20 CONTINUE 

Figure 97. Loops Distributed Across Modules 

The loops over "J" and "K" are observed to be interchangeable, and the 
loop is vectorizable over "K". The vector operation over "K" would be 
performed at a stride of N*M. 

An improvement might be realized by splitting the loop in the calling 
routine into three loops. In the absence of other vector inhibitors, the first 
loop should vectorize, since the CALL statement no longer appears within 
it. The last loop should also vectorize for the same reasons. The middle loop 
may then be incorporated into the subroutine, with appropriate 
dimensioning and adjustment of the argument list(s}. The order of the loops 
is also reversed, so that the "I" loop is the inner-most, and the vector 
addressing will be at a stride of 1. The final result is shown in Figure 98. 

10 

20 

DO 10 I = 1, N 
- - - -

CONTINUE 
CALL SUBI ( ... , X, Y, N, ... ) 
DO 20 I = 1, N 

- - - -
CONTINUE 

SUBROUTINE SUBl( ... , X, Y, N, ... ) 

DO 20 J = 1, M 
DO 20 K = 1, KM 

DO 20 I = 1, N 
Y(I,J,K) = Y(I,J-l,K) * X(I,J,K) 

20 CONTINUE 

Figure 98. Loops Incorporated Into a Single Module 
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If the function represented by the subroutine "SUB" in the example was 
essentially the same as provided by an ESSL function, then the loop 
splitting would permit the loop with the CALL to be replaced by a single a 
call to the ESSL routine without actually having to incorporate the loop 
into the subroutine. 

6.3 Changing the Solution Method 

Let us assume that the only opportunity for increased vectorization is 
through the replacement of the solution method itself. Before expending a 
great deal of time and energy a caveat is in order. Because a large effort 
has usually been invested in the selection of the solution method and 
supporting algorithm in the first place, the user leaves himself vulnerable 
to extra testing and validation if he chooses to use a new solution method 
or algorithm. The experience gained with the older algorithm and 
understanding of how it performs under various conditions will have to be 
re-Iearned with the replacement. 

Consequently, considerable testing may have to be performed if the user 
changes the semantics, that is, the way in which the problem is solved. 
Even if a more vectorizable method is deemed appropriate, other properties 
of the new algorithm must be considered. For example, a more vectorizable 
method which converges to a solution more slowly than the older method 
may not provide any performance improvement at all! It is strongly 
recommended that the user make use of the large body of literature 
available before taking any extreme measures9• 

Lastly, it should be noted that many algorithms have been shown to benefit 
from application of the algorithm in stages (an easier task than replacing 
the solution technique) or from modifications to the data order. Such 
schemes as "even-odd", "red-black", "multi-color" or diagonal data 
orderings have proven, under appropriate circumstances to promote 
vectorization of selected solution techniques, accompanied by performance 
improvements due both to the vector execution and to improved numerical 
behavior. 

9 See Appendix B, "References" on page 81. 
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7.0 Summary 

All of these considerations can be summarized by a few major concepts 
which describe the vector migration methodology which we set out to 
define. 

• Simple vectorization will work if the code 

is well posed for vector, 
expresses vector relationships simply, 
has no dependences. 

• Simple restructuring may benefit. 

• Global restructure may benefit, 

- but is much more difficult! 

• Understanding is required for restructuring. 

Vectors are, from the total application program point of view, a micro-scale 
concept, since they are defined on the basis of individual "DO" loops. 
So-called "simple" vectorization, that is, merely applying the VS Fortran 
Version 2 Vectorizing Compiler with the VECTOR option to an existing 
Fortran program without modification, is only one method of achieving 
vector performance. This method will work if the code is already well-posed 
for vector execution, expresses relationships simply, and contains a 
minimum amount of data dependence. Simple loop modifications may help. 

Coding style, data organization and module organization are all important 
factors which may require more global modifications to be performed. 
Changes to the over-all logic or data structure of the application, including 
modification or replacement of the solution technique or algorithm are all 
appropriate measures which can improve vector performance. It must be 
recognized, however, that they are more difficult than simple "DO" loop 
modifications, and will require a thorough understanding of the application 
program to accomplish. 

It is important to note that all of these techniques are not usually required. 
Some combination of "simple" vectorization, and local loop modifications 
may be all that is required to achieve the desired performance. The more 
extensive modifications should be undertaken only when the potential 
benefit is sufficiently high to warrant the effort. 
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Finally, regardless of the level of modification attempted, we must 
continually keep in mind that while the VS Fortran Version 2 Vectorizing 
Compiler is the primary means by which we access the System/370 Model 
3090 Vector Facility, programmer understanding and intervention is the key 
to a successful vector migration. 
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Appendix A. Glossary of Terms and Concepts 

Basic Linear Algebra Subroutines (BLAS) 

The BLAS are public domain codes to perform standard 
Linear Algebra operations. They were originally 
implemented in scalar FORTRAN. The Engineering and 
Scientific Subroutine Library contains a subset of the 
BLAS which have compatible calling sequences with these 
scalar routines. Therefore, for programs that already use 
BLAS calls, the ESSL BLAS provide an easy migration path 
to vector exploitation. 

Column-Major Ordering 

In Fortran, arrays are stored in such a way that the 
leftmost subscript cycles most rapidly. Thus, A(6,7) is 
adjacent in storage to A(5,7). 

Computer Scalar (See following "Scalar") 

Computer Vector (See following "Vector") 

Data Independence 

The data elements of a computer vector are data 
independent if every element within the vector can be 
operated on independently of every other element .. 

Engineering and Scientific Subroutine Library (ESSL) 

The Engineering and Scientific Subroutine Library is a set 
of high-performance mathematical programs which exploit 
the IBM Vector Facility for the 3090 processor. The library 
consists of 95 subroutines widely used in engineering and 
scientific computations. 

Performance Improvement (P) 

The ratio of a program's total execution CPU time in scalar 
mode to its execution CPU time when executed in mixed 
scalar-vector mode. (Note that this quantity is measurable 
and repeatable.) Also called "Job Speedup." 
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Recurrence 

Recursion 

Scalar 

A relationship among the elements of a computer vector 
which prevents data independence, in which the value of an 
element computed later in the sequence depends on the 
value of an element computed earlier in the sequence. 

(1) Recurrence. 

(2) A calling sequence which causes a routine to (directly or 
indirectly) call itself. 

(Webster) A quantity (as mass or time) that has magnitude 
describable by a real number. 

Computer Scalar 

Storage Order 

A datum stored in a computer's memory. A variable with 
no DIMENSION declaration, or a single element of an 
array. 

A computer vector is arranged in storage order if successive 
data elements are taken from a sequence of adj acent 
storage locations. 

Stride ola Vector 

Vector 

The addressing increment between successive elements of a 
computer vector, divided by the element length. 

In Fortran terms, the increment in the leftmost subscript 
position that would reference successive elements of the 
vector. 

(Webster) A quantity that has magnitude and direction and 
that commonly represents magnitude and whose orientation 
in space represents the direction; broadly: an element of a 
vector space. 

(IS010) A quantity represented by an ordered set of 
numbers. 

10 International Standards Organization. 
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Computer Vector 

A set of scalar data items, all of the same type, stored in a 
computer's memory. Usually, the set is ordered, and the 
elements of the set are frequently arranged so as to have a 
fixed addressing increment between successive elements. 

Vector Facility Hardware 

Special registers and circuity to process computer vector 
data. Special Arithmetic-Logic Units (ALU's) are used to 
exploit the possibility of repetitive arithmetic execution 
("pipelining") on the elements of a vector. (This capability 
is available on the IBM 3090 Vector Facility.) 

V ector Processor 

Vectorization 

A computer (e.g., the IBM System/370 Model 3090 Vector 
Facility) with a set of vector instructions and Vector 
Facility Hardware. 

(1) The vectorizing compiler's actions in analyzing Fortran 
programs and producing object code to execute on the 
System/370 Model 3090 Vector Facility. 

(2) The activity of modifying and adapting an application 
program to assist the vectorizing compiler in exploiting the 
Vector Facility for that program. 

Vectorization Hazard 

A real or apparent lack of data independence which 
prevents (or may prevent) vectorization of a loop. 

Vectorization Ratio 

The fraction of a program's (scalar) execution CPU time 
which, following its vectorization by the vectorizing 
complIer, is then executed on the Vector Facility. (Note 
that this quantity is measurable and repeatable.) 

VS Fortran Version 2 Vectorizing Compiler 

An optimizing and vectorizing compiler that supports the 
IBM System/370 architecture, with or without the Vector 
Facility. The VS Fortran Version 2 compiler performs the 
analysis, vectorization, and code generation required to 
exploit the Vector Facility in an efficient manner. 
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VS Fortran Version 2 Library 

80 Vectorization Techniques 

The Vector Fortran Library component of VS Fortran 
Version 2 is a high-function execution-time Fortran library 
which supports the System/370 Model 3090 Vector Facility. 
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