

Maintenance Library

Communications Controller
Theory-Maintenance
Volume I

This publication is directed to the General Systems Customer Engineer assigned to maintain the IBM 3705 Communications Controller. He is assumed to be trained on either a System/360 or System/370 CPU and to have a teleprocessing background.
This publication should be used to locate and replace failing field replaceable units within the 3705 . Pictures are combined with text to convey both comprehensive "how to fix" information and basic operational concepts. No attempt is made to provide detailed theory information. Each page contains one topic (although some topics may require more than one page). Tabs in the table of contents provide quick access to the individual sections.
There are two versions of the 3705 , one with bridge storage and one with FET storage. In this manual ref erences to the 3703 will be commont to both versio References to he 3 re-I will apply to the b-11 will apply to the FET storage version.
The CE should always start at the "Maintenance Philosphy" section when trying to locate a failure. This section contains a flowchart that points to the correct part of the manuai for locating the failure.
Although this manual is packaged as one unit, it is divided into three volumes, which may be placed in separate binders for ease of use.

Seventh Edition (May 1979)
Changes are periodically made to the information herein; any such changes will be on in connection with the servicing of IBM systems or equipment, refer to the latest edition that is applicable and current.
It is possible that this material may contain reference to, or information about, TBM products (machines and programs), programming or services which are not
announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to your IBM representative or to the IBM branch office erving your locality.

This manual has been written by the IBM System Communications Division, Publica-
tions Development, Department E02, P.O. Box 12195, Research Triangle Park,
North Carolina 27709 A reader's comment form is provided at the back of this
North Carolina 27709. A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may be sent to the above address. IBM may use or distribute any of the information vou supply in any way believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

IBM has prepared this maintenance manual for the use of IBM customer engineers
in the installation, maintenance, and repair of the specific machines indicated. IBM in the instaliation, maintenance, and repair of the specific machine.
makes no representations that it is suitable for any other purpose.
The drawings and specifications contained herein shall not be reproduced in whole
or in part without written permission.

Volume one contains an abbreviation list, legend, the composite table of contents, maintenance philosophy, introduction to the 3705, a description of the control panel switches and lights and procedures for using them, diagnostic aids, ROS tests, IPL, and the theory-maintenance sections on the central control unit, storage, and type is at the back of each volume.
Volume two contains an abbreviation list, legend, a volume table of contents, and the theory-maintenance sections on the type 2 channel adapter, the type 1 communication scanner the type 2 communication scanner, the line interface bases, and the line sets. A composite index of all three volumes is at the back of each volume.
Volume three contains an abbreviation list, legend, a volume table of contents and the theory-maintenance sections on the power supply, the type 3 communication scanner, the cype 3 channel adapter and the type 4 channel adapter. also contains information on test tools and equipment, preventive maintenance, and physical locations. A com posite index of all three volumes is at the back of each T
The CE may reduce the size of this manual at his discreion. A 3705 may contain a type 1 or a type 2 communica theory-maintenance section that describes the scanner not included in the system. The CE can also discard the theory inted etype 2 a for the type 3 chan dapter, or for the type 4 channel adapter if the is not included in the system. Sections should be removed
from the system manual only; the CE should retain all sections in his own copy. (Remember that any pages discarded will still be listed in the index and in the table of contents.) A new system manual must be ordered if the system is expanded to include a different type of scanner or adapter. Individual sections cannot be ordered.

Prerequisiste Publication:
Introduction to the 3704 and 3705 Communications Controllers, GA27-3051

Related Publications:

IBM 3704 and 3705 Communications Controllers:
Principles of Operation, GC30-3004
Original Equipment Manufacturers' Information GA27-3053

Parts Catalog, S131-0032
System/360 Operating System Online Test Executive Program, GC28-6650
DOS OLTEP SRL GC24-5086
OLTSEP Operators' Guide, D99-SEPDT
System/360 and System/370 I/O Interface Channel to Control Unit Original Equipment Manufacturers' Information, GA22-6974
IBM Maintenance Diagnostic Program IBM 3705 Communi cations Controller Channel Adapter On-Line Test and Wrap All-Lines, On-Line Test D99-3705C.
IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Loader, Dial Control Module, Initial Test, and Panel Diagnostic Cos-3705D.
IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Symptom Indexes D99-3705E.
Guide to Using the IBM 3705 Communications Controller Control Panel, GA27-3087

On-Line Terminal Test (OLTT) IBM Maintenance Document On-Line Terminal Tes User's Guide, D99-3700A

On-Line Line Test (OLLT)

- IBM Maintenance Document Program 3704/3705 Communications Scanner On-Line Line Test, D99-3700C (for NCP-3 or later)
- IBM Maintenance Document Program 3705 Communications Scanner On-Line Line Test, D99-3705 (for NCP-1 or 2)

Summary of Changes for SY27-0107-4
This revision contains new information about (1) $3705-11$, (2) FET storage, (3) type 3 communication scanner, (4) type 4 channel adapter, (5) LIB type 12 , and (6) Line sets 12 A and 12B. This revision contains the following changes:

- Line sets 12 A and 12 B require that 'modem receive space' keep SCF 0 (Receive Break) set for five consecutive cha acter times before the control program interprets this condition as a break signal. (The IBM 3767 Communication Terminal sends the 450 Hz break signal for six character times while the 3705 sends the 450 Hz break signal for three character times.)
- Diagnostic jumpering procedures to use the 'clock step' latch to freeze the clock have been updated.
- Unit and frequency codes have been added to the P.M. requirements.

In addition minor corrections and changes have been made. The page headings and the keying symbols have been changed for standardization.
Summary of Changes for SY27-0107-5
This revision contains new information about (1) Line Sets 1T and 1U, (2) the Remote Program Loader-II for the 3705-II and its impact on IPL, (3) multiple type 4 channel adapters, (4) N -channel ROS for the type 4 channel adapter, (5) 3705-11 feature board locations, (6) 3705-11 allowable hardware combinations and control panel configurations, (7) a procedure to clock step thru IPL phase 2 (load ROS), (8) a procedure to determine intermittent FET storage address errors, and (9) an IPL data flow.
The IPL phase 1 and 2 Timing chart has been expanded and minor corrections and changes have been made.

Summary of Changes for SY27-0107-6
This revision contains new information about (1) additional FET storage provided by $3705-\mathrm{II}$ Models $\mathrm{J}-\mathrm{L}$, (2) 900 nanosecond cycle time, (3) Line Sets 1 W and 1 Z , and the Cycle Utilization Counter Register. The new informa tion affects sections describing:

- FET. storage data flow and timings
- Physical Locations
- Card functions and locations
- Input and Output instructions
- Power supply information
- Line set and LIB information
- Channel adapters
- Communication scanners

In addition, minor corrections and changes have been made.

A	And circuit or ampere	ck
AA	automatic answering	clk
ABAR	attachment buffer address register	cm
ABO	adapter bus out (register)	CMDR
ac	alternating current	CMND
ACO	automatic call originate	com
ACF/NCP/	Advanced Communications Function for	cos
vs	Network Control Program/Virtual Storage	CP
ACR	abandom call and retry	CPU
ACU	automatic calling unit	CR
adr	address	CRC
AEO	automatic equalizer	CRI
AHR	add halfword register (instruction)	cro
ALD	automated logic diagram	CS
ALU	arithmetic logic unit	CSAR
AMP	amplifier	CSB
APAR	authorized program analysis report	CSCD
AR	add register (instruction)	CSMC
ARI	add register immediate (instruction)	ctrl
B	branch (instruction)	CTS
BAL	branch and link (instruction)	CUCR
BALR	branch and link register (instruction)	CUE
BAR	buffer address register	CW
BB	branch on bit (instruction)	CWAR
BC	bit clock	CWCNT
BCB	bit control block	DAA
BCC	bit clock control	DA
BCL	branch on C latch (instruction)	dB
BCT	branch on count (instruction)	DBAR
BO	bus out	dc
BP	break point	DCE
bps	bit per second	DCM
BSC	binary synchronous communication	DCR
BSM	bridge storage module	DE
BZL	branch on Z latch (instruction)	DET
CA	channel adapter	diag
CACHKR	channel adapter check register	dist
CACR	channel adapter control register	DLO
CADB	channel adapter data buffer	DOS
CAMR	channel adapter mode register	DPR
CASNSR	channel adapter sense register	DR
CASTR	channel adapter status register	
CB	circuit breaker	DCS
CBAR	CSB buffer address register	DSR
CCB	character control block	DT
CCR	compare character register (instruction)	DTE
CCT	coupler cut through (modem)	DTR
ccu	central control unit	EC
CD	carrier detect	EB
CDS	configuration data set	ECP
CE	Channel End (status)	EIA
chan	channel	enbl
char	character	EON
CHR	compare halfword register (instruction)	EPO

check
clock
centimeter
channel adapter command register
command
common
Call Originate Status
circuit protector
central processing unit
compare register (instruction)
cyclic cedundancy check
compare register immediate (instruction)
Call Request
cycle steal
cycle steal address register
communication scanner
clear to send, carrier detect
cycle steal message counter
control
Clear To Send
Cycle Utilization Counter Register
Control Unit End (status)
control word
control word address register
control word byte count register
data access arrangement
data modem ready
decibel
diagnostic buffer address register
direct current
data circuit-terminating equipment
diagnostic control module
data channel ready
Device End (status)
detector
diagnostic
distance
data line occupied
Disk Operating System
digit present
display register or
data ring (modem)
distant station connect (ACO only)
data set ready
data tip (modem)
data terminal equipment
data
edge coninal ready
extended buffer
emulation control program
Electronic Industries Association
enabbe
end of number (Aco only)
emergency power off

ESC	emulation subchannel
EXT	external
FCS	final control sequence
FET	field effect transistor modem card
FETOM	Field Engineering Theory of Operation Manual
FF	flip flop
FL	flip latch
FRU	field replaceable unit
GB	ground bus
gnd	ground
hex	hexadecimal
Hifwd	halfword
horz	horizontal
HS	heat sink
Hz	Hertz
1	instruction (cycle)
IAR	instruction address register
IC	insert character (instruction)
ICS	initial control sequence
ICT	insert character and count (instruction)
ICW	interface control word
IFT	internal functional test
IN	input (instruction)
INCWAR	inbound control word address register
Init	initial
int	internal
intf	interface
I/O	input/output
IPL	initial program load
IR	interrupt remember
ISACR	initial selection address and command register
L	load (instruction)
LA	load address (instruction)
LAR	lagging address register
LCD	line code definer
LCOR	load character with offset register (instruction)
LCR	load character register (instruction)
LED	light emitting diode
LGF	leading graphics flag
LH	load halfword (instruction)
LHOR	load halfword with offset register (instruction)
LHR	load halfword register (instruction)
LIB	line interface base
lim	limiter
LOR	load with offset register (instruction)
LOSC	last oscillator sample condition
LR	load register (instruction)
LRI	load register immediate (instruction)
LS or Is	local store
It	latch
L1	level 1

L2	level 2
L3	level 3
L4	level 4
L5	level 5
mA	milliampere
Men TB	memory terminal board
modem	modulator/demodulator
ms/divn	milliseconds per division
MST	monolithic system technology
mV	millivolt
NB	Digit Signal
N/C	normally closed
NCP	network control program
NCR	and character register (instruction)
NHR	and halfword register (instruction)
N/O	normally open
NR	and register (instruction)
NRI	and register immediate (instruction)
NRZI	non-return-to-zero inverted
ns	nanoseconds
NSC	native subchannel
OBR	outboard recorder
O/C	overcurrent
OCR	or character register (instruction)
OE	exclusive or
OH	off hook (modem)
OHR	or halfword register (instruction)
OLT	on line test
OLTEP	on line test executive program
OLTLIB	on line test library
OLTSEP	on line test standalone executive program
op	operation
op reg	operation register
OR	or register (instruction)
ORI	or register immediate (instruction)
OS	Operating System
OSC	oscillator
OUT	output (instruction)
OUTCWAR	outbound control word address register
OVRN	overrun
O/V	overvoltage
P	parity
PC	parity check
PCF	primary control field
PCI	program controlled interrupt
PDF	parallel data field
PEP	partitioned emulation programming
PG	parity generation
pgm	program
PH	polarity hold
PND	Present Next
P/N	part numbit
Por	power on reses
position	

POSC	present oscillator sample condition
pot	potentiometer
P.P	post processor modem card
PPB	prime power box
PUT	programmable unijunction transistor
PWI	power indicator
R	resistance or resistor
rcv	receive
rd	read
rdy	ready
RE	register and external register (instructions)
ref	reference
reg	register
regen	regenerative
req	request
RI	register immediate (instruction) or ring indicator (modem)
RLSD	receive line signal detector
RMS	root mean square
ROS	read-only storage
RPL	remote program loader
RR	register to register (instructions)
RS	register to storage (instructions)
RSA	register and storage with addition (instructions)
RT	register branch or register and branch (instructions)
RTS	Request To Send
rly	relay
SAR	storage address register
SCF	secondary control field
SCR	silicon controlled rectifier or subtract character register (instruction)
SCRID	silicon controlled rectifier indicator driver
SDF	serial data field
SDLC	synchronous data link control
SDR	storage data register
sec	second
sel	selection
SEP	separator (ACO only)
seq	sequence
SG	signal ground
SH	switch hook (modem)
SHR	subtract halfword register (instruction)
SIG	signal
SIO	start I/O
SMS	standard modular system
SR	subtract register (instruction)
SRI	subtract register immediate (instruction)
SRL	Systems Reference Library
S/S	start/stop
ST	store (instruction)
STC	store character (instruction)
STCT	store character and count (instruction)
STH	store halfword (instruction)

stacked
service
synchronous idle
synchronization or synchronous
temporary address register
terminal board
Transfer In Channe
trigger
test register under mask (instruction)
Technical Service Letter
test 2
test 3
test 4
nit Check (status)
Unit Exception (status)
volts
volts per division
word
exclusive-or character register (instruction)
ransfer
ransfer
exclusive-or halfword register (instruction)
transmit
exclusive-or register immediate (instruction)
two-wire line connection (implies half-duplex)
four-wire line connection (implies duplex, but actual
duplex depends on the line set type and telephone
company equipment.

CONTENTS-VOLUME 1

MAINTENANCE PHILOSOPHY	MP	CENTRAL CONTROL UNIT C	CCU
MAINTENANCE PHILOSOPHY	0-000	CENTRAL CONTROL UNIT	6.000
Maintenance Process	0-000	3705-I CARD FUNCTIONS	$6-010$
Problem Isolation	0.010	3705-II CARD FUNCTIONS	6 -011
CC Check Analysis Chart	0-030	CCU DATA FLOW	6 -020
		CLOCK TIMES	6 -030
INTRODUCTION TO THE 3705 In	INTRO	STORAGE PROTECTION	6.040
		MACHINE CYCLES	6.050
INTRODUCTION TO THE 3705	0.050	Display Register	6-052
3705 DATA FLOW	$0-060$	Store In Register	6-054
3705-II DATA FLOW	0-080	Display Storage	6.056
		Storage Data	6-057
CONTROL PANEL CP		Storage Test Pattern	6-060
		Storage Scanning	6-063
CONTROL PANEL LAYOUT	1 -000	Single Address Test Pattern	6-064
DISPLAY A	1.010	Single Address Scanning	6 -067
Display A Check Lights	1.010	Start Push Button Operation	$6-069$
Display A Status Lights	1.010	MACHINE CYCLE PRIORITIES	$6-070$
DISPLAY B	1-020	PROGRAM LEVEL PRIORITIES	
Display B Status Lights	1.020	AND INTERRUPTS	6.080
Display B Check Lights	1 -020	data operation controls	S 6-100
CONTROL PANEL SWITCHES AND		LOCAL Store register	
LIGHTS	$1-030$	CONTROLS	6-110
CONTROL PANEL PROCEDURES	1-120	CYCLE STEAL IN (CA2, CA3	
CONTROL PANEL TEST OF THE		CA4 or TYPE 3 SCANNER)	6-120
CCU DATA PATH	1-170	CYCLE STEAL OUT (CA2, CA3,	
Part 1. Basic Control and		CA4 or TYPE 3 SCANNER)	- 6.140
Data Flow	$1-170$	INSTRUCTION DECODING	6-150
Part 2. Miscellaneous Controls	1-180	REGISTER IMMEDIATE	
Part 3. CCU Data Bits-Card		INSTRUCTIONS	6-160
Locations	1-190	REGISTER TO REGISTER	
DIAGNOSTIC AIDS		INSTRUCTIONS	6-190
Scope Points and Jumper		REGISTER AND Storage	
Capabilities	$1-200$ $1-201$	INSTRUCTIONS	6-270
Test Blocks	$1-300$	REGISTER AND STORAGE WIT	
		ADDITION INSTRUCTIONS	6-470
		REGISTER AND IMMEDIATE	
ROS TEST ROS		ADDRESS INSTRUCTIONS	6-560
		REGISTER BRANCH OR	
Type 1 and Type 4 Channel		REGISTER AND BRANCH	
Adapter	2-000	INSTRUCTIONS	6-630
Type 2 and Type 3 Channel		REGISTER AND EXTERNAL	
Adapter	2-040	REGISTER InStructions	6-700
Dual Channel Adapters	2-080	CCU INPUT INSTRUCTIONS	6-770
N -Channel ROS for the type 4 CA	- 2120	Input $\mathrm{X}^{\prime} 00{ }^{\prime}$ to $\mathrm{X}^{\prime} 1 \mathrm{~F}^{\prime}$	
		General Registers	6-770
		Input X'70' Storage Size	
		Installed	6-770

nput X'71' Panel Addr/Data Entry Digits
nput X' 72 ' Display/Function
Select Sw.
Input $\times 3^{\prime}$ Insert Key
nput $X^{\prime} 74^{\prime}$ Lagging Address
Register
Input $X^{\prime} 76^{\prime}$ Adapter Level 1 Interrupt Request
nput X'77' Adapter Interrupt Request Level 2 or 3
put X'79' Utility
mput X'7A' Cycle Utilization
Counter Register
Cycle Utilization Counter
Register Operation
Register
nput X'7D' CCU Check Register 6.841
hput $X^{\prime} 7 E^{\prime}$ CCU Level 1
Interrupt Requests
Input $X^{\prime} 7 F^{\prime}$ CCU Level 2,3, or 4
Input $X^{\prime} 7 F^{\prime}$ CCU Level 2,3, or 4
Interrupt Requests 6-860
CCU OUTPUT INSTRUCTIONS 6-870
Output X'00' to $X^{\prime}{ }^{\prime} F^{\prime}$
General Registers
Output X'70' Hard Stop
Output X'71' Display Register 1
Output X'72' Display
Register 2
Output X'73' Set Key
3705s with under 256 K
Output X'73' Set Key
3705s with over 256K
Output X'
Controls
Output $\times^{\prime} 79^{\prime}$ tility Checks
Output $X^{\prime} 79^{\prime}$ Utility
Output $X^{\prime} 7 A^{\prime}$ Cycle Utilization
Counter Reset
Ouptut $X^{\prime} 7 C^{\prime}$ Set PCI L3
Output X'7D' Set PCI L4
Output X'7E' Set Mask Bits
Output X'7F' Reset Mask Bits
IPL Data Flow
ERROR CHECKING $\quad 6-970$

STORAGE STO
bRIDGE STORAGE MODULE ADDRESSING
X AND Y DRIVE SYSTEM AND
TIMING AND ADDRESSING
SENSE/INHIBIT (READ/WRITE) 32K
SENSE/INHIBIT (READ/WRITE) 16K
READ/WRITE TIMING
SDR BIT FAILURES
SENSE/INHIBIT SCOPING
PROCEDURES
STORAGE DATA TO CCU

STORAGE CONTROLS TO CCU $\quad 7.060$

storage cycle timing
STORAGE PHYSICAL LOCATIONS $7-090$
SERVICE TECHNI
ADJ STORAGE
ET STORAGE MAINTENANCE
PHILOSOPHY AND PHYSICAL LOCATIONS
LAYOUT (01B BOAR
FET STORAGE BOARD
LAYOUT (O2B-A1)
7.210

FET STORAGE DATA FLOW
REGISTER OPERATION
FET STORAGE TIMING CHART $\begin{array}{r}7-240 \\ \hline-250\end{array}$
Fet storage maintenance
PROCEDURE
fet storage test
PATTERNS
MAINTENANCE PROCEDURE-
INTERMITTENT FET STORAGE
ADDRESS ERRORS $7-2$

TYPE 1 CHANNEL ADAPTER CA 1	
INTRODUCTION	8-000
TYPE 1 CHANNEL ADAPTER DATA	
FLOW	8.010
CARD FUNCTIONS AND	
LOCATIONS	8-030
INPUT AND OUTPUT	
Instructions	$8-060$
Output $\mathrm{X}^{\prime} 60^{\prime}$ Instruction	8.070
Input $\mathrm{X}^{\prime} 60{ }^{\prime}$ Instruction	8.070
Input $\mathrm{X}^{\prime} 61{ }^{\prime}$ Instruction	8.070
Output $\mathrm{X}^{\prime} 62$ ' Instruction	8 8080
Input X'62' Instruction	8 -090
Output and Input X '63'	
Instruction	8-100
Output and Input X'64'	
Instruction	8-110
Output and Input $\mathrm{X}^{\prime} 65^{\prime}$	
Instruction	8-110
Output X'66' Instruction	8-120
Input X'66' Instruction	8-120
Output and Input X ${ }^{6} 7{ }^{\prime}$	
Instruction	8-130
CHANNEL ADAPTER	
INITIALIZATION (IPL)	8-140
EXPECTED CPU RESPONSE TO	
ASYNCHRONOUS STATUS	8-160
InITIAL SELECTION	8-170
WRITE IPL COMMAND	8-180
ca decodes a channel	
COMMAND	
NSC No-Op	$8-210$
ESC No-Op	8-210
NSC Test I/O	8-220
ESC Test I/O	8-220
INBOUND DATA TRANSFERS	8-250
ENDING SEQUENCE STATUS	
STACKED	8-301
OUTBOUND DATA TRANSFERS	8-310
CA ERROR INTERRUPTS	8-360
CA timing	8-370
CHANNEL interface	
SEQUENCES	8-380

CONTENTS

LOCATION OF LOGIC PAGES BY VOLUME NUMBER

Volume	Logic Pages	Contents
1	YZ	Power supply-installation instruction
2	AA-CV	CCU
2A	cW-cz	ROS-Type 2 attachment base-CCU
3	DF-DZ	CCU
4	RA-RS	Type 1 scanner and channel adapter
A04	PA.PS	Type 4 channel adapter
5	QA-ON	Type 2 channel adapter
A05	SA-SO	Type 3 channel adapter
6	TA-TB	Type 2 scanner
7	VA	Type 1 LIB-reference material
8	vB	Type 1 LIB -line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}$, $1 \mathrm{G}, 1 \mathrm{GA}, 1 \mathrm{H}, 1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~N}, 1 \mathrm{R}, 1 \mathrm{~S}, 1 \mathrm{~T}, 1 \mathrm{TA}$, 1U, 1W, 1 Z
9	vc-vD	Type 2 LIB-line set 2A
10	VE-VF	Type 3 LIB-line sets 3A, 3B
11	VG-VH	Type 4 LIB -line sets 4A, 4B, 4C
12	vJ	Type 5 LIB-line sets 5A, 5B
13	VL	Type 6 LIB-line set 6A
14	VN	Type 7 LIB
15	vo	Type 8 LIB-line sets 8A, 8B
16	vs	Type 9 LIB-line set 9A
17	GA-GC	Remote Program Loader Diskette Controller
18	vu	Type 10 LIB-line set 10A
19	vw	Type 11 LIB-line sets 11A, 11B
20	vx	Type 12 LIB-line sets 12A, 12B
21	MM	FET storage (3705-11)
22	TD-TE	Type 3 or 3HS scanner
23	TF	Type 3 or 3HS scanner
24	TA.TB	Type 2 scanner (3705-11)

CONTENTS-VOLUME 3		3705-II POWER CHECK	D-510	SCAN ADDRESS DATA FLOW			
		3705-11 FAULT INDICATORS	D-520	USING HIGH SPEED SELECT	F-090		
3705-1		3705-II POWER DISTRIBUTION	D-530	SCAN ADDRESSING	F-100		
POWER SUPPLY PWR		3705-II EXPANSION FRAME		SCAN COUNTER \quad F-110			
		POWER DISTRIBUTION	D-535				
COMPONENT LOCATIONS	D-000	3705-II POWER-ON SEQUENCE	D-540	FIELDS	F-120		
POWER CHECK	D.010	3705-II DC VOLTAGE		Line control definer	F-130		
FAULT INDICATORS	D-020	distribution	D-550	Primary/extended primary			
3705 POWER DISTRIBUTION	D-030	CHECKING $+3.4 \mathrm{~V},+8.5 \mathrm{~V},+6 \mathrm{~V}$		control field	F-140		
EXPANSION FRAME POWER		CHECKIGG +3.4 V , +8.5 V , +6 V	D-560	Byte 15 (BSC status)	F-150		
distribution	D-040	INDICATOR LIGHTS-		Byte 15 (SDLC status)	-160		
POWER-ON SEQUENCE D-050MAINTENANCE CHARTS AND		SUPPLY/CONTROL	D-570	ICW DATA FLOW	F-170		
		INDICATOR LIGHTS -CHARTS D-575		INPUT INSTRUCTIONS			
PROCEDURES	D. 060				Input X'40' (interface address)	-180	
DC VOLTAGE DISTRIBUTION	D-140	DC VOLTAGE MEASUREMENTUSAGE METER	D-580	Input $\mathrm{X}^{\prime} 41{ }^{\prime}$ and $\mathrm{X}^{\prime} 42^{\prime}$	F-190		
CHECKING $\pm 12,+6,-30$, VOLT			D. 590	Input $\mathrm{X}^{\prime} 43^{\prime}$ (Check register)	F-200		
SCRs	D. 150			Input $\mathrm{X}^{\prime} 44^{\prime}, \mathrm{X}^{\prime} 45^{\prime}$, and $\mathrm{X}^{\prime} 47^{\prime}$	F-210		
CHECKING -4 VOLT SCRs	D. 170	3705-II POWER MAINTENANCE ANALYSIS PROCEDURES (MAPS)	PWR MAPS		F-220		
SCR CONTROLS	D. 190			Input $\mathrm{X}^{\prime} 48^{\prime}, \mathrm{X}^{\prime} 49^{\prime}$, and $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$	F-230		
INDICATOR LIGHTS - POWER		3705-II POWER MAINTENANCE ANALYSIS PROCEDURES (MAPS)	D-599	Input $\mathrm{X}^{\prime} 4 \mathrm{~B}^{\prime}, \mathrm{X}^{\prime} 4 \mathrm{C}^{\prime}, \mathrm{X}^{\prime} 4 \mathrm{E}^{\prime}$,			
SUPPLY/CONTROL	D-210			and $\mathrm{X}^{\prime} 4 \mathrm{~F}^{\prime}$	F-240		
Indicator lights - Charts		miscellaneous MISC		OUTPUT INSTRUCTIONS	F-250		
AND PROCEDURES	D. 220			Output $X^{\prime} 40^{\prime}$ and $X^{\prime} 41^{\prime}$	F-2		
dC Voltage measurement	D. 230	3705-1 PHYSICAL LOCATIONS	E-000				
USAGE METER	D-240	TOOLS AND TEST EQUIPMENT		Output $\mathrm{X}^{\prime} 43^{\prime}$ (control)	F-270		
POWER DOWN SEQUENCE	D-250	PREVENTIVE MAINTENANCE	$\begin{aligned} & \mathrm{E}-010 \\ & \mathrm{E}-010 \end{aligned}$	Output $\mathbf{X}^{\prime} 44^{\prime}$ (SCF/PDF)	F-280		
3705-II POWER SUPPLY (OXD GATE WITH MORE THAN THREE CARDS)		3705-II PHYSICAL LOCATIONS		Output $\mathrm{X}^{\prime} 45^{\prime}$ (LCD/PCF/EPCF)	F-290		
		(BASIC FRAME OF MODELS E-L		Output $\mathrm{X}^{\prime} 46^{\prime}$ (SDF)	F-300		
		AND FIRST EXPANSION FRAME		Output $\mathrm{X}^{\prime} 47^{\prime}$ (MISC ICW bits)	F-310		
		3705-11 PHYSICAL LOCATIONS E-020		Output $\mathrm{X}^{\prime} 48^{\prime}, \mathrm{X}^{\prime} 49^{\prime}, \mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$	F-320		
		Output \times ' $4 \mathrm{E}^{\prime}$ (CS/PDF pointers	F-330				
(BASIC FRAME OF MODELS E-L				3705-1I PHYSICAL LOCATIONS		Output X'4E' (CS/PDF pointers ICW control)	
AND FIRST EXPANSION FRAME OF MODELS E-H) D-300		MODELS J-L)	E-021	Output $\mathrm{X}^{\prime} 4 \mathrm{~F} \mathrm{~F}^{\prime}$ status	F-350		
3705-II POWER SUPPLY		3705-II FEATURE BOARD		CYCLE STEAL DATA FLOW	F-355		
(FIRST EXPANSION FRAM		LOCATIONS 3705-II ALLOWABLE HARDWARE	E-030	CYCLE STEAL OPERATION-	F-360		
		Steal timing chart					
POWER CHECK			3705-II ALLOWABLE HARDWARE COMBINATIONS AND CONTROL PANEL CONFIGURATIONS	E-040		CYCLE STEAL TIMING CHART-	
FAULT INDICATORS D-320		RANSMIT			F-370		
POWER DISTRIBUTION D-330		TYPE 3 AND 3 SS COM-MUNICATION SCANNER CS3	CS AND PDF POINTER				
			SEDF ARRAY-SUMMMARY OF	F-380			
EXPANSION FRAME POWER DISTRIBUTION D-340							
FET STORAGE POWER			Introduction	F-000	CS/PDF POINTER USE	F-390	
ELEMENTS		TYPE 2 ATTACHMENT DATA		WRITE ARRAY CONDITIONS	F-391		
POWER-ON SEQUENCE				PDF/CS POINTER SELECTIONFORCING CONTROL CHARAC	F-39		
DC VOLTAGE DISTRIBUTIONPOWER DOWN SEQUENCE		Ow	F-020				
	D-360	DATA FLOW DESCRIPTIONS	F-040	TERS AND CONSTANTS TO			
		COMMUNICATION		CONTROL CHARACTER DECODE			
3705-II POWER SUPPLY (OXD GATE WITH ONLY TWO OR THREE CARDS)		SCANNER BOARD OXA-E2	F-050	CONTROL CHARA			
		LAYOUT		BSC TRANSMIT DATA FLOW	F-410		
		COMMUNICATION		BSC TRANSMIT DETAILS	F-420		
3705-II POWER SUPPLY COMPONENT LOCATIONS	D. 500	SCANNER BOARD OXA-E3	F-060	BI-SYNC TERMINAL OPERATION	F-425		
		LAYOUT		SDLC TRANSMIT	F-430		
		CLOCK AND TIMINGS-BRIDGE storage	F-070	SDLC TRANSMIT DATA FLOW	F-440		
				SDLC TERMINAL OPERATION CYCLE STEAL OPERATION. RECEIVE	F-445		
		CLOCK AND TIMINGS-FET storage	F-080				
					F-450		

CYCLE STEAL TIMING CHART	F-460
bSC receive	F-470
BSC RECEIVE DATA FLOW	F-480
PDF ARRAY/CONTROL	
REGISTER/STATUS REGISTER	
ENTRY FORMAT	F-490
bSC RECEIVE details	F-500
SDLC RECEIVE	F-510
SDLC RECEIVE dATA FLOW	F-520
DATA IN/OUT-LIB TO SCANNER	F-530
LEVEL 2 Interrupt	F-550
SET/RESET OF ICW	
Bits 13.0, 13.1, 13.6, and 13.7	F-570
CHANGING PCF STATES	F-580
CHANGING EPCF STATES	F-590
SET OF ICW BITS 0.1-0.5 (SCF	
BITS 1-5)	F-610
generation of last line	
STATE AND GATED TIMEOUT	F-620
BISYNC TIMEOUT COUNTER	
AND SDLC ONES COUNTER	F-630
SCANNER LEVEL 1	
INTERRUPTS	F-650
COMmUNICATION	
SCANNER SERVICE AIdS	F-680
SCANNER WRAP MODE	F-700
DIAGNOSTIC WRAP	F. 710
TYPE 3 CHANNEL ADAPTER C	CA 3
introduction	G-000
TYPE 3 CA TAG LINES DATA	
FLOW	G-010
TYPE 3 CA BUS LINES DATA	
FLOW	G-020
CARD FUNCTIONS AND	
LOCATIONS	G-030
CONTROL PANEL DESCRIPTION	G-040
OUTPUT X'59' INSTRUCTION	G-050
INPUT X'5C' INSTRUCTION	G-060
ENABLE OR DISABLE TYPE 3	
CA INTERFACE	G-070
TYPE 3 CA SELECTION FROM	
A NEUTRAL STATE	G-080
INSTANTANEOUS ALLEGIANCE	
STATE	G-090
LONG TERM ALLEGIANCE STATE	TE G-110
CONTINGENT STATE	G-120
ASYNCHRONOUS DEVICE END	G-130
ASYNCHRONOUS ATTENTION	
Status	G-150
TYPE 3 CA RESPONSE TO	
SYSTEM AND SELECTIVE RESET	ET G-1

TYPE 4 CHANNEL ADAPTER

NTRODUCTION H-000 TYPE 4 CA DATA FLOW CARD FUNCTIONS AND LOCATIONS INPUT AND OUTPUT instructions

$$
\text { Input } X^{\prime} 60^{\prime} X^{\prime} 61{ }^{\prime}
$$

$$
\text { Output } x^{\prime} 62^{\prime}
$$

Input X'62'

Output and Input $X^{\prime} 63^{\prime}$ Output and Input $X^{\prime} 64, X^{\prime} 65^{\prime}-\mathrm{H}-090$ utput and input $X^{\prime} 66$ Input $X^{\prime} 67^{\prime}$
Output $X^{\prime} 67^{\prime}$
———
$\begin{array}{r}\mathrm{H}-130 \\ \hline \text { Hput } \times 60120\end{array}$

Input X'6D \quad H-150
Output X'6D' \quad H-160
Input X'6E, \times '
OUTBOUND DATA TRANSFERS-
EBMODE
NBOUND DATA TRANSFERS-
EB MODE
OUTBOUND DATA TRANSFERS H-30 CYCLE STEAL OPERATIONINBOUND DATA TRANSFERS CA4 INTERRUPTS
INITIAL SELECTIVE RESET, INITIAL INTERFACE DISCONNECT AND SERVICE SELECTIVE RESET-
SELECTOR CHANNEL
CONTROLS
DISCONNECT IN-SELECTOR CHANNEL

CE SAFETY PRACTICES

Volume	Logic Pages	Contents
1	YZ	Power supply-installation instruction
2	AA-CV	CCU
2A	cW-cz	ROS-Type 2 attachment base-CCU
3	DF-DZ	CCU
4	RA-RS	Type 1 scanner and channel adapter.
A04	PA-PS	Type 4 channel adapter
5	QA-OR	Type 2 channel adapter
A05	SA-SR	Type 3 channel adapter
6	TA-тB	Type 2 scanner
7	VA	Type 1 LIB-reference material
8	vB	Type 1 LIB -line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}$, $1 \mathrm{GA}, 1 \mathrm{H}, 1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~N}, 1 \mathrm{~S}, 1 \mathrm{~T}, 1 \mathrm{TA}, 1 \mathrm{U}, 1 \mathrm{~W}, 1 \mathrm{Z}$
9	Vc-vD	Type 2 LIB-line set 2A
10	VE-VF	Type 3 LIB-line sets 3A, 3B
11	VG-VH	Type 4 LIB-line sets 4A, 4B, 4C
12	vJ	Type 5 LIB-line sets 5A, 5B
13	VL	Type 6 LIB-line set 6 A
14	VN	Type 7 LIB
15	vo	Type 8 LIB--line sets 8A, 8B
16	vs	Type 9 LIB-line set 9A
17	GA-GC	Remote Program Loader Diskette Controller
18	vu	Type 10 LIB-line set 10A
19	vw	Type 11 LIB-line sets 11A, 11B
20	vx	Type 12 LIB -line sets 12A, 12B
21	MM	FET storage (3705-11)
22	TD-TE	Type 3 or 3HS scanner
23	TF	Type 3 or 3HS scanner
24	TA-TB	Type 2 scanner (3705-11)

This manual is intended as a tool for the Customer Eng neer to use while repairing the IBM 3705 Communications Controller. This section of the manual presents a planned approach to maintenance problems that will help make repair faster. This planned approach is based on error de tection, recovery and recording, error isolation, repair, and pair verification.
Error Detection, Recovery, and Recording
Hardware error detection circuits work with the control program. Many hardware detected errors result in a level 1 program interrupt so that the appropriate error recovery procedure can be started, or an orderly shutdown of the ystem can occur
Refer to the "Diagnostic Aids" section of one of these five manuals, depending upon which control program you are using, for a description of the control program's erro ecovery procedures and error recording functions:
IBM 3704 and 3705 Communications Controller
IBM type 1 Channel Adapter, SY30-3001.
IBM 3704 and 3705 Communications Controller Emulation Program-Program Logic Manual, for 3705 with type 4 Channel Adapter, SY30-3031.
IBM 3704 and 3705 Communications Controller Network Control Program-Program Logic Manual

30-3003

IBM 3704 and 3705 Communications Controller Network Control Program/VS-Program Logic Manual IBM 370
IBM 3704 and 3705 Communications Controller etwork Control Program/VS, version 5-Program
ACF/NCP/VS

Network Control Program Logic,

Y30-3041.
If some other control program is being used, refer to the ocumentation for that program to see how it handles erro etection, recovery, and recording

Error Isolation

You are provided a series of test programs to use with the 3705.

The first of these is the ROS (read-only storage) test which is automatic with each IPL attempt. ROS testing is limited to those functions needed to transfer more ex nsive test programs across the channel from the COUS ROS testing and error analysis are described in the ROS Remote Program Loader Diagnostic Manual. The ROS test requires dedicated use of the 3705 .

The second test is the Initial Test which is also automatic with each IPL unless optioned out by the customer. The initial test is more extensive that ROS testing, but it does not completely test all of the 3705 hardware. The initia test and its associated error indications are described in 3705 Communications Controller Internal Functional Test Loader, Diagnostic Control Module Panel Line Test, and Initial Test, D99-3705D. For remote 3705s, see the Remote Program Loader Diagnostic Manual. The initial test requires dedicated use of the 3705
The most comprehensive of the tests provided are the Internal Functional Tests (IFTs). These tests run under control of the Diagnostic Control Module (DCM) and are described in the IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Function Test Loader, Diagnostic Control Module, Panel Line Test, and /nitial Test, D99-3705D. Further explanations IBM Maintenance Diagnostic Program IBM 3705
Communications Controller Internal Functional Test Symptom Indexes D99-3705E. For Remote 3705s, see the Remote Program Loader Diagnostic Manual.
Terminal On-Line Tests, channel On-Line Tests, and pane procedures are also provided. The OLTs are described in the IBM Maintenance Diagnostic Program 3705 Communications Controller On-Line Test and Wrap All Lines Test, D99-3705C

In addition to the test programs, control panel check-out procedures are provided to check out some of the 3705 hardware. These procedures are described in the Control Panel section of this manual.

Repair

Repair will generally consist of replacing a field replaceable unit (FRU), or making an adjustment in main storage the power supply.

Repair Verification

Running appropriate sections of the diagnostic test prorams will generally verify proper operation of the conustomer.

MAINTENANCE PROCESS
Some effort is required to determine why a failure occur red, whether it halts operations of the 3705 , or permits recovery. The process of locating the failure is divided into three steps or phases: problem determination, problem definition, and problem isolation.

Problem Determination
In this step, either customer personnel or you determine which unit in the teleprocessing network is failing. Failures may be in the CPU, the 3705, a down-line terminal, a modem, the communications line or a remote 3705, if one is installed in the network

Problem Definition

This step defines the failure to a functional unit. If the 3705 is still in use by the customer, the course of ac ion is different than if the customer cannot use the con oller. In either case, deciding which test procedure to use is primary

- Control Panel

The control panel can be used to check out certain hardware functions without loading a test program. The procedures that can be performed are explain in the "Control Panel" section of this manual.

- ROS Test

This test is automatic with an IPL operation and tests a basic subset of the CCU hardware. The erro analysis procedure for this test is explained in the "ROS" section of this manual. For Remote 3705s, see the Remote Program Loader Diagnostic Manu The control panel must be used to locate enro the machine when these tests are in use.

- Initial Test

This test is automatic with an IPL operation unless optioned out by the customer. It tests a portion of the CCU hardware not tested by ROS. See the Initial Test section of /BM Maintenance Diagnostic Program 3705 Communications Controller On-Line Test and Internal Functional Test, D99-3705 for tions available. The errors indicated by this test ar listed in a symptom index included in the initial test section of D99-3705*. The customer canno use the machine when these tests are in use.

- Internal Functional Test (IFT)

These tests cannot be run while the customer is using the 3705 because they run under control of a Diagnostic Control Module (DCM). The DCM is loaded into the 3705 storage from the CPU by the OLT loader running under OLTEP or OLTSEP.

Remote 3705 's DCM and IFTs are loaded from the diskette at the remote site by way of the control panel IFTs indicate errors with coded displays using Display A and Display B. These indications are listed in order by functional unit in symptom indexes in the "DCM/IFT" section of /BM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Symptom Indexes

D99-3705E

- On-Line Test

These tests are executed in the host CPU under control of an On-Line Test Executive Program. On-Line Termina of ats (OLITT) and On-Line Line Tests (OLLT) may be run when the customer is still using the 3705 . The Loade See the Related Publ OLT's require total use of the 3 (for the proper On-Line IBM maintenance document program guide.

Problem Isolation

After the error has been further defined for a particular functional unit, problem isolation begins. The first step in problem isolation is to analyze the error indications. The course of action is based on the urgency of the customer situation and what is available in the error indications. If one of the test programs has been chosen, refer to that section of this manual for information on analyzing the problem.

When replacing any logic card (FRU) in the 3705, the controller must first be disabled and powered down If cards are replaced on the Remote feature board with power on, the diskette may be damaged.
In addition, the host CPU must be in a Hard Stop condition (single cycle) when replacing the select-out bypass relay card in the channe adapter (type 1,2,3 or 4) at card
location A4T4. Failure to observe this precaution causes channel checks at the CPU.
Prolonged touching of the pins on the CCU boards at 01A-B3 and 01A-B4 may result in CC checks.

0000000

DIAGNOSTIC APPROACH AND TROUBLE ANALYSIS (PART 2)
CC CHECK ANALYSIS FLOWCHART

CC CHECK ANALYSIS FLOWCHART (PART 2)

INTRODUCTION TO THE 3705

The IBM 3705 Communications Controller is a transmision control unit with processing capabilities. Its funcons are controlled by a program that resides in 37 storage.
The
The 3705 is available in 64 models, based on the apability. storage and the maximum line-attachment apport dTe actual number of lines that the 3705 ca throughput capability of the control program.
All 64 models of the 3705 contain a central control (32K for a $3705-11$), a channel adapter, a communication scanner, and line interface bases and line sets. The communication scanner and the channel adapter are vailable in several versions.
Refer to the Introduction to the IBM 3704 and 3705 Communications Controllers, GA27-3051 for more intro ductory information.

CENTRAL CONTROL UNIT

The central control unit (CCU) contains the circuits and data flow paths necessary to execute the 3705 instruc ion set and to control 3705 storage and the attached
adapters. The CCU operates under control of the 3705 control program.

CONTROL PANEL
The 3705 control panel contains the switches and lights ecassary to control many 3705 functions manually. Th store and display information in storage and registers, he control and indication of power, the indication of atus and error information, and operator and diagnostic controls.

TORAGE

Bridge Storage
3705-I contains a ferrite core storage unit. The amount storage ranges from 16 K bytes to 240 K bytes in 32 K increments. A storage protection mechanism in th storage.

FET Storage

3705-II contains a FET (Field Effect Transistor) storag unit. The amount of storage ranges from 32 K bytes to 256 K bytes in 32 K increments in the base frame of

256 K bytes of storage are available in increments of 64 K bytes. This additional storage is located in the first expan sion frame attached to the 3705 .
This storage features automatic single-bit error correction, double-bit error detection, and a $1: 0$ or 0.9 micro
second cycle time depending on the model. A storage protection mechanism in the CCU makes it possible to protect the contents of storage.

TYPE 1 CHANNEL ADAPTER

The type 1 channel adapter (type 1 CA) provides attachment to an IBM System $/ 360$ or System $/ 370$ byte
multiplexer channel. The type 1 CA can handle only relatively low volume of throughput and requires inter vention from the 3705 control program for each data transfer. However, it is adequate for many small works and is more econom.
type 3 CA , or type 4 CA .

TYPE 2 CHANNEL ADAPTER
The type 2 channel adapter (type 2 CA) provides to an IBM System/360 or System/370 selector, byte-multiplexer, or
channel. The type 2 CA transfers data by cycle steal, requires less program control than the type 1 CA , and

TYPE 3 CHANNEL ADAPTER

The type 3 channel adapter (type 3 CA) is a type 2 CA modified by the addition of a two processor switch. The Model 158 and 168 tightly coupled multiprocessor systems a symmetric shared I / O device and to single processors s an I/O device with alternate path capability.

TYPE 4 CHANNEL ADAPTER
The type 4 channel adapter (type 4 CA) is a modified ype 1 CA that enables the control program to transfer 32 bytes in extended buffer mode with program intervention required only before and after each burst. plugging option allows the bursts to be subdivided into
groups of 4, 8, or 16 bytes with the type 4 CA disconnectin from the channel interface and reconnecting for each group to allow other channel activity to occur. The ype 4 CA can also transfer data by cycle steal under rogram control.

TYPE 1 COMMUNICATION SCANNER
The type 1 communication scanner provides the inte control unit. The scanner monitors the communications lines for service requests.
The type 1 scanner interrupts the 3705 for each bit at arrives or leaves over a communication line. The canner. The type 1 scanner can handle lines at speed up to 7200 bps and is more economical than the type 2 or 3 scanner. The 3705 can handie only one type scanner. Type 1 and 2 scanners or type 1 and type 3 cannot be mixed on a 3705

TYPE 2 COMMUNICATION SCANNER

The type 2 communication scanner provides the inter face between the line interface bases and the central control unit. The scanner monitors the communicatio mbles and disassembles characters. It interrupts the control program only when an entire character aner can handle lines at speeds up to 50,000 bps. The 3705 can have up to four type 2 scanners. Type 1 and type 2 scanners cannot be mixed on a 3705 .

TYPE 3 COMMUNICATION SCANNER

The type 3 communication scanner provides the interfac etween the line interface base and the central control nit. The scann The type 3 c
and disassembles characters. The scanner cycle-steals data to and from buffers for each line. The scanner ma ains an associated storage address and byte count, characters. The scanner transfers data until certain control characters are detected and/or the byte count is
reduced to zero, either of which requests control program erruption.
The type 3 communication scanner handles eight-bit die for SDLC or BSC (EBCDIC or USASCII) line
peration. The $3705-1$ allows the type 3 scanner to be mixed with a type 2 scanner provided the type 3 scanner alows any mix of type 2 and type 3 scanners.

LINE INTERFACE BASES

Line interface bases (LIBs) attach the lines to the 3705. Nine LIB types are available to handle requirements for different types of line terminations. Depending upon the the termination,

LINE SETS

Lines are attached to LIBs through line sets. Depending pon the type of line termination, either one or two

REMOTE PROGRAM LOADER
A 3705, used only as a remote communications controller, equires a remote program loader instead of a channel adapter. The remote program loader consists of an ROS tte controller It is used to load a control program fisk local 3704 or 3705 to the remote 3705 via an SDLC communication facility. Internal functional tests for the emote 3705 reside on the diskette.
In addition to the RPL feature, the base frame of $705-11$ can contain a channel adapter. With both featu
installed, internal function tests (IFTs) can be run using either the channel or the RPL feature.
For a 3705 containing an RPL feature only (no channels),

TYPE 2 COMMUNICATION SCANNER*

TYPE 1 CHANNEL ADAPTER

Notes: . During a transmit operation, the character in the
PDF is transferred to the SDF as the last bit of the is rransterred to the SDF as the last bit of
the preious character is being transferred from
2. During ar eceave operation, the character in the
SDF is transerred to the PDF as the last bit of SDF is transerred to the
the character is received.

egend
mancrow \longrightarrow Receive Data Flow TThe type 1 scanner and the type 2 scanner are mutually
exclusive.

3705-I DATA FLOW, (PART 2)

THESE DESCRIPTIONS REFER TO PAGE 0.060 HIGH LEVEL DATA FLOW FROM THE CPU TO THE COMMUNICATION FACILITIES (TRANSMIT)

1 The channel adapter issues a request for service to the The channel adapter issues a request for service
2. Type 1 CA-An Input $X^{\prime} 64^{\prime}$ gates data characters 1 and 2 to the CCU In Bus. An Input X'65' gat

- Type 2 or 3 CA-A Cycle steal "in" operation data 1 and data 2 characters to the CCU in Bus. See 9.430 for odd byte transfers.
B - Type 1 CA-The two data characters are stored in register specified by the input instruc tion
Type 2 or 3 CA-The cycle steal operation gates th two data characters through CCU logic to storage.

In either case, the control program must place the data to be sent to the scanner in a general register in the proper format. The format depends on the type of scanner as follows:

- Type 1 scanner-The control program serializes the data character and places the bit to be transmitted in bit 1.7 ('send data') of the general register prior to each Output X'43' instruction.

An Output X'43' instruction is required for each bit of the character.

- Type 2 scanner-The control program places the data character in byte 1 of the general register.
4 - Type 1 scanner-When the scanner addresses the line and 'bit service request' is active, an Output $X^{\prime} 43^{\prime}$ gates the data bit from bit 1.7 of the general register through CCU logic to the scanner.
- Type 2 scanner-An Output X'44' gates the data character from byte 1 of the general register through CCU logic to the 'output register'. The Output X'44' places the data character in bit positions $8-15$ (parallel data field bits $0-7$) of the ICW (interface control word) previously selected by the control program. Scanner hardware transfers the data character from the 'parallel data field' to the 'serial data field' where the character is serialized.

5 When the scanner addresses the line and the line's 'bit service request' is active, the serialized bit is buffered the 'send data' latch of the line set's B register. Th robe, controlled by the transmit oscillator or the buffer where it clock, gates the bit to the failty.

HIGH LEVEL DATA FLOW FROM THE COMMUNICATION FACILITIES TO THE CPU (RECEIVE)

6 The line set strobes the received bit into its receive uffer

- Type 1 scanner-When the scanner addresses this line interface and 'bit service request' is active, the scanner gates the received data bit (data in 5) to the 'receive data' latch when neither Input X ' 42 or Input X'43' is decoded.
- Type 2 scanner-When the scanner addresses this line interface and 'bit service request' is active, the scanner gates the received data bit (data in 5) to the 'received data' latch.

7 The type 2 scanner assembles the received bits into a character in the ICW 'serial data field' for that line interface. The scanner then transfers the character to the ICW 'parallel data field'. When the CCU accepts the scanner character service interrupt, the scanner gates the character to the ICW input register'.
8 - Type 1 scanner-An Input X'43' gates the 'received data' bit to the general register specified by the input instruction. An Input X'43' is required for each bit received. The control program must assemble the character from the data bits received.

- Type 2 scanner-An Input X'44' gates the characte from the ICW 'input' register to the general register
specified by the input instruction specified by the input instruction

In either case, the control program must prepare the data now in main storage for use by the channel adapter accord ing to the type of channel adapter

- Type 1 CA-The control program places the nex two data characters to be transferred to the channel adapter in a general register
- Type 2 or 3 CA-The control program places the received data characters into appropriate areas of main storage for subsequent cycle steal operations and sets up the CA to transfer the data to the channel.
9 - Type 1 CA-An Output X'64' gates data character 1 and 2 out of the general register, through C logic, onto the Cu Out Bus to the CA data buffers
and 4.
- Type 2 or 3 CA-A cycle steal "out" operation gates two data characters from main storage through CCU logic to the CCU Out Bus into the 'adapter bus out' register.
10 The channel adapter issues a service request to transfer data characters to the Channel Bus In. The data char acters are transferred one character at a time.

HIGH LEVEL DATA FLOW FROM THE CPU TO THE COMMUNICATION FACILITIES
(TRANSMIT)
1 After the type 4 CA responds to a Write type command,
the CA issues a request for service to the channel to transfer thata to ssues a request forer
data
2 - Type 1 CA mode - An Input X'64' gates data cha

- Type 1 CA mode - An Input X'64' gates data charac-
ters 1 and 2 to the CCU In Bus. An Input X' 65 ' gates data characters 3 and 4 to the CCU In Bus.
- EB mode - The data characters are loaded into the 32 character extended-buffer local store. The CA4 sets data characters 1 and 2 into the In register with
Input $X^{\prime} 6 C^{\prime}$. the remaining 30 with Input $X^{\prime} 6 D^{\prime}$ Input X'6D's gate two data characters to the CCU
- Inbus.
- CS mode - Two data characters are loaded in the two character CS buffer register in the EB local store. In register then to the CCU In Bus.
3 - Type 1 CA mode - The two data characters are stored in the general register specified by the Input instruction.
- EB mode - Same as for type 1 CA mode. data characters through CCU logic to storage two The control program must place the data characters in the storage "data buffers" for the type 3 scanner.

4. A cycle steal operation transfers up to eight data charac ters from storage to the CS data out register and then to the PDF array. The scanner transfers one character from the PDF array to the SDF in the ICW where the character is serialized and sent one bit at a time to the line set. The other characters
are transferred one at a time to the SDF as the SDF needs them. are transferred one at a time to the SDF as the SDF needs them.
Cycle steal operations transfer two more data characters to the Cycle steal operations transfer two more data charact
PDF array after two characters are sent to the SDF.
5 When the scanner addresses the line and the line's 'bit service request' is active, the serialized bit is buffered in the 'send data' latch of the line set's B register. The strobe, controlled by the transmit oscillator or the modem transmit clock, gates the
bit to the transmit buffer where it is sent to the communication facility.

HIGH LEVEL DATA FLOW FROM THE COMMUNICATION FACILITIES TO THE CPU (RECEIVE)
6 The line set strobes the received bit into its receive buffer. When the scanner addresses this line interface and bit service request' is active, the scanner gates the received data bit (dat data latch
The type 3 scanner assembles the received bits into a char
acter in the ICW 'serial data field' for that line interface. The acternine then transfers the character to the PDF array where up
scanner to eight data characters can be buffer. When two PDF buffers are loaded, a cycle steal operation transfers the two characters to the CS data in register and then through CCU logic to storage
8 The control program must prepare the data now in main

- Type 1 CA mode - CA depending on the CA mod
- Type next two data characters to be transferred to the channel adapter in a general register.
- EB mode - Same as for type 1 .
- CS mode - The control program places the received data characters into appropriate areas of main storag or subsequent cycle-steal operations and sets up the - -

9 - Type 1 CA mode - An Output X'64' gates data char acters 1 and 2 from the general register, through CCU logic, onto the CCU Out Bus through the outbus register to the CA 'data buffers'. An Output X'65' gate
data characters 3 and 4 . and 2 from the general register, through CCU logic onto the CCU Out Bus to set the outbus register. Th CA then loads the data into the EB local store where 32 data characters can be buffered

- CS mode - A cycle-steal operation gates two data characters through CCU logic onto the CCU Out Bus, through the outbus register to the CS buffer register in the EB local store
10 After the type 4 CA responds to a Read type command, the CA issues a service request to the channel to transfer data ferred one character at a time.

DISPLAY A CHECK LIGHTS

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display check conditions in display A .

- Any of the following turn off the display A check lights if additional checks are not detected:
a. Pressing the CC CHECK RESET push button.
b. Pressing the RESET push button.
c. Executing an Output $X^{\prime} 77^{\prime}$ instruction with bit 0.1 on in the genc. Executing an Output $X^{\prime} 77^{\prime}$ instruction with bit 0.1 on in the gen-
eral register designated by the R field of the instruction (when eral register designated by the R
in bypass CC check stop mode).
d. Executing an Output $X^{\prime} 77^{\prime}$ instruction from the control panel by
storing a $" 11^{\prime \prime}$ in bit 0.1 of external register $X^{\prime} 77^{\prime}$ (See $1-160$.) storing a " 1 " in bit 0.1 of external register X' 777^{\prime}. (See $1-160$.)
BYTE X, 0 , and 1

- Turned on by the CCU (Central Control Unit) check register
when a parity check occurs in when a parity check occurs in the data path. If one or more of
the BYTE lights are on but no the BYTE lights are on, but no
other CC CHECK light is on the parity check is in the ALU (arithmetic logic unit), the A register, the B register, or the Z register.
Note: If the IPL is not successfully completed, the local store registers can cause a parity check because they are not
initialized. initialized.

INDATA

- Turned on when the CCU detects a parity error on the . 'indata' bus.INDATA The BYTE X, BYTE 0, and/or BYTE 1 CHECK light and the CC CHECK light also come on

- Turned on when a SAR (storage address register) parity check occurs.

The BYTE X, BYTE 0, and/or BYTE 1 CHECK light and the CC CHECK light also come on.
Note: A program error can cause a SAR byte X adapter check when a CA2, CA3, CA4 or a type 3 scanner is cycle-stealing. This failure can occur if the program sets up a cycle-steal address for that adapter to addrass a location larger than the
storage size installed storage size installed.
SDR

- Turned on when an SDR (storage data register) parity check occurs.
FET Storage Note: If storage is not initialized, an SDR check will likely occur. Storage may be initialized by (1) the initial test diagnostic, or (2) storage IFTs, or (3) manually performing a control
panel "Storage Test Pattern" operation.

The BYTE 0 and/or BYTE 1 CHECK light and the CC CHECK light also come on.

OP REG

(O)

- Turned on when an OP (operation) register parity check occurs.
RPG The BYTE 0 and/or BYTE 1 CHECK light and the CC CHECK light also come on.

CLOCK

○

- Turned on when a CCU or CS (communication scan ner) support feature clock check occurs.
cLock
PROG L1
- Turned on when in program level 1 , and one of the following occurs, causing a CC check.
a. In/out check
b. Address except check
c. Protect check
d. Invalid op check
If any one of these occurs in program level 1, it causes a CC check.

DISPLAY A STATUS LIGHTS

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display status conditions in display A.
CS CYCLE
(O) - Turned on at T0 of A time during a cycle steal cycle.

- Turned off after T3 of D time if no other cycle steal Turned off after $T 3$ of D time
cycle is to follow immediately.

1 Cycle

- Turned on at TO of A time during instruction execir - tion cycles.
cycle
- Turned off after T3 of D time during instruction execu tion cycles if no other instruction cycle is to follow immediately.
If this light is off for any noticeable length of time, the HARD STOP, PROGRAM STOP, or WAIT light should be on for the same length of time.

CYCLE TIME
${ }^{4}$

- Displays a binary designation of the six basic cycle times. (See the chart below.)
CYCLE During normal operation, the 3705 Models A-D cycle times are 200 nanoseconds in duration (250 ns for
Models $\mathrm{E}-\mathrm{H}$ and 225 ns for Models J -L) and are unde the control of the machine oscillator. To observe the stepping of these lights, set the DIAGNOSTIC CONTROL switch to CLOCK STEP and repeatedly press the START pushbutton.

CLOCK TIME

- Displays a binary designation of the four basic clock times. (See the chart below.)
CLOCK During normal operation the $3705-1$ clock times are are under the control of the machine oscillator bsserve the stepping of these lights, set the DIAGNOSTIC CONTROL switch to CLOCK STEP and repeatedly press the START pushbutton.

3705-I only

Clock Time
Bit 1.4 light
Bit 15 light

Lights indicate the clock time that was just completed.
*Cycle times E and F are "dummy" times that are added to make a clock cycle
*Cycle times E and F are "dummy" times that are added to make a clock cycle
ecuual to a 1.2 usec storage cycle (3705 -/ only). On the control panel, cycle equal to a 1.2 usec storage cycle (3705-I only. On the control panel, cycle
times E and F appear as repetitions of cycles A and B respectively. A, 1.2 use
storage cycle is necesssary beceuse of bridge storage characteristics.

DISPLAY B

Note: For control panel storage-address and storage-scan functions. DISPLAY B B BTE X should be ignored because storage operates only on halfword

DISPLAY B STATUS LIGHTS

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display status conditions in display B.
$\stackrel{\circ}{\bigcirc}$

- Turned on during linstruction cycles when the address compare conditions described under LOAD/STORE ADDRESS
COMPARE - Turned off during the next cycle unless the PROGRAM STOP light is on.
IPL PHASE

- Displays a binary designation of the three IPL (Initial Program Load) phases.
Both lights turn off at the end of IPL initialization when the program executes Output X also wurns
bit 0.0 on. Reinitialization of the IPL als
4 both lights off.
Unless the DIAGNOSTIC CONTROL switch is in
CLOCK STEP CLOCK STEP, IPL phases 1 and 2 should be hardly hardware failure.
A persistent IPL phase 3 indication is likely to be caused by either a hardware failure in read-only storage, a program failure, a CCU failure, o

The 'IPL phase are on cu010.

C and Z LEVEL

- Indicates the C and Z condition latches for the active program level.

Lecved

ENTERED INTERRUPT LEVEL

Indicates which of the five pro gram levels are active or have interrupt requests entered. (No light
indicates that level 5 is active if instructions are being executed.)
Turned on when ant interrupt oc-
curs for that program level.

- Turned off when one of the following occurs:

. Exit instruction is executed at that level.

b. 'Interrupt entered' latch for that
level is reset by a machine reset. If more than one of these lights are on, the highest priority program
level indicated is the active level. Program level 5 is active when none of these lights are on and instructions are being executed.

DISPLAY B CHECK LIGHTS

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display check conditions in display B.

ADAPTER CHECK

- Turned on when any adapter (CA or CS) requests a program level 1 interrupt. See page 8-130 (type 1 CA), $9-200$ (type 2 or 3 CA), H-380 (type 4 CA), A-220 (type 1
scanner), B-130 (type 2 scanner) or F-200 (type 3 scanner). scanner,, B adapter check causes a level 1 interrupt. An adapter check while in program level 1 causes a CC check.
- Turned off when the interrupt request is reset

IN/OUT CHECK
$\overbrace{}^{5}$

- Turned on when the CCU detects one of the following
a. Invalid input or output instruction. (See page 6-151.)
b. Parity check on the 'indata' bus during execution of an input instruction.
c. Execution of an input or output instruction while in program level 5 .
An in/out check causes a level 1 interrupt. An in/out check in program level 1 causes a CC check
- Turned off by one of the following:
a. Machine reset occurs
b. Executing Output $X^{\prime} 77^{\prime}$ with bit 1.5 on in the register designated by the R field of the instruction (when in bypass CC check stop mode)
c. Executing Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77$ ' and then storing a ' 1 ' in bit position 1.5 .
$1-160$.) (The 3705 must be in program stop mode.)

ADDRESS EXCEPTION

- Turned on when an address greater than the maximum installed storage address is addressed by instruction
DDRESS rupt. An address exception in program level 1 causes Turned off by either:
a. A machine reset.
b. Executing Output $X^{\prime} 77^{\prime}$ with bit 1.5 on in the register designated by the R field (when in bypass CC check stop mode)
c. Executing an Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77$ ' and then storing a ' 1 ' in bit position 1.5 . (See 1 1-160.) (The 3705 must be in program stop mode.) PROTECT CHECK
- Turned on when an attempt is made to change protected data. A protect check causes a level 1 interrupt. A pro tect check in program level 1 causes a CC check.
- Turned off by either:
a. A machine reset.
b. Executing an Output $X^{\prime} 77^{\prime}$ with bit 1.5 on in the register designated by the R field (when in bypass CC
check stop mode).
c. Executing Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77^{\prime}$ and then storing a ' 1 ' in bit position 1.5. (See 1-160.) (The 3705 must be in pro gram stop mode.)
INVALID OP

- Turned on when the CCU detects an invalid OP code. An invalid op check causes a level 1 interrupt. An invalid op check in program level 1 causes a CC check.
OP OPD - Turned off by any of the following:
a. A machine reset.
b. Executing Output $X^{\prime} 77^{\prime}$ with bit 1.5 on in the reg ister designated by ister designated by
check stop mode).
c. Executing an Output $X^{\prime} 77{ }^{\prime}$ from the control panel by displaying register \times ' 77 ' and then storing a ' 1 ' in bit position 1.5. (See 1-160.) (The 3705 must be in program stop mode.)

CONTROL PANEL SWITCHES AND LIGHTS

customer and ce usage meters

The 3705 has a customer usage meter (top meter) and a CE usage meter. The meters show the run time in hours and tenth hours. The CE Key switch position determines which meter is conditioned to run. The minimum usage meter run time is 400 msec . The fol-
,
The 400 msec minimum time is reinitiated whan one of
the following occur:
An instruction is executed at program level 1,2,4, or 5
b. An instruction is executed at program level 3 after approximately 8 ms have elapsed since the interval timer interrupt
request was set.
c. An instruction is executed at program level 3 and an interrupt equest other than the interval timer level 3 interrupt request is set.
d. A cycle steal cycle occurs.

Neither meter runs during:
a. Idle cycles.
b. IPL phases 1-3.

NOTE: The meter will run if the Emulation Program is loaded, the access method is not operating, and the DISPLAY/ UNCTION SELECT switch is set to function 1 or 6 . unnecessary meter time.
MODE SELECT SWITCH

- Controls the 3705 mode of operation.

When the PANEL ACTIVE light is off, the 3705 runs as if the MODE SELECT switch and the DIAGNOSTIC CONTROL switch were in PROCESS, no matter what position the switches are in
NOTE: If the panel is active and DIAGNOSTIC CONTROL switch is in any one of the STORAGE TEST positions or in the CLOCK STEP position, it overrides the MODE SELECT switch.
ADDRESS COMPARE INTERRUPT

- Causes the address compare L 1 interrupt request to set at the end of the instruction if the address compare conditions described in met.

The 3705 operates normally except for the interrupt request when an address compare occurs.

INSTRUCTION STEP

- Causes the 3705 to execute one instruction each time the STAR push button is pressed and released.

The 'program stop' latch sets after the execution of the instruction. Al interrupts except program L1 and PCI interrupts to higher program levels are inhibited until an 'exit' instruction is executed. After an 'exit' instruction is executed, the machine cycle priority controls determine
a higher level, or program level 1 interrupt.
Unless it is already set, the interval timer L3 interrupt request cannot be set when the MODE SELECT switch is in this position.

PANEL ENABLE/DISABLE SWITCH

- Available as the Unit Protection Feature
- This allows the operator to disable/enable the operator panel switches (except power on/off) with a key controlled switch. use of the control pane
When in the disable position the setting of the Storage Address/ Register Data switches can be entered as input by the program. en in disable position and (emulation program) mode the display lights can still be used.

CE KEY SWITCH

 tioned to run.If the slot is vertical, the customer usage meter is conditioned to run. If it is horizontal the CE usage meter is coter is conditioned

PROCESS

- Allows the 3705 to run normally.

If the MODE SELECT switch is in any other position, the TEST light comes on.

ADDRESS COMPARE PROGRAM STOP

- Causes a program stop at the end of the instruction if the address compare conditions described in LOA

With the switch in this position, an address compare detection does not set the address compare L1 interrupt request.

When the 'program stop' latch is set, cycle steal
operations can cause adapter problems.

display/function select switch

- Used to display or store in storage or register; to display machine status or TAR and the Op register; and to make on line parameter changes.
In any position, except STATUS or TAR \& OP REGISTER, displays A and B show the contents of display registers 1 and 2 .

TAR \& OP REGISTER

- Causes display A to show the contents of TAR (Temporary Address Register)
- Causes display B, bytes 0 and 1 to show the contents of the Op register. (Ignore byte X.)

Note: After a REGISTER ADDRESS, STORAGE ADDRESS, or STORAGE TEST function, the TAR \& OP REGISTER, position will no longer display the last previous TAR and you do any other displaying if you will later need this information

STATUS

- Causes displays A and B to show check and status information

See page 1-010 and 1-020 for information about the check and status

FUNCTIONS 1-6
he active program determines the function of the FUNCTION 1-6 positions.

STORAGE ADDRESS

- Used to select. a storage address for displaying storage and for storing data in a storage location.
Pressing and releasing the SET ADDRESS/DISPLAY push button with the DISPLAY/FUNCTION SELECT switch in this position causes a display storage CS1 maintenance cycle. (See page 1-130, Set Addres and Display Storage Procedure.)
Pressing and releasing the STORE push button with the DISLAY/FUNCTION SELECT switch in this position causes a store storage CS1 maintenance cycle and a store storage CS2 maintenance cycle if the 3705 is in a stopped state. (See page 1-140, Storing Data in Storage Locations.)
REGISTER ADDRESS
- Used to select a register address for displaying a register and for stor ing data in a register.

Pressing and releasing the SET ADDRESS/DISPLAY push button causes display register CS1 maintenance cycle. (See page 1-130, Set Address and Display Register Procedure.)
iter CS1 maintenance cycle if the

CHANNEL 1 INTERFACE

ENABLE/DISABLE SWITCH

When operating with a type 1 or type 4 CA in an NCP (PEP included) environment, do not attempt
 to disable a channel interface unless the 3705 net work has been quiesced or a system reset has
occurred. If this procedure is not followed, the NCP may, while disabedure is not followed, the chronous status which inhibits the CA1 or 4 from becoming enabled again.

- Used to enable and disable channel interfaces 1 A and 1 B . Refer to $8-140$ (Type 1 CA) and $9-080$ (Type 2 CA) for a descrintion of interfaces 1 A and 1B. See G-040 for the type 3 CA swutch positions and descriptions
If the DIAGNOSTIC CONTROL switch is in one of the four STORAGE TEST positions and the START push button is pressed, any interface that is enabled is disabled abruptly. The CHANNEL INTERFACE ENABLED light stays on until the CPU drops 'clock out', even though the interface is disabled. No channel can become enabled.

NOTE: Be sure the channel is disabled before performing storage test operations.
ENBL A

- Used to enable interface 1A.
- Interface $1 B$ is disabled.

If interface 1 B is installed and enabled and the switch is turned to thi position, interface 1 B is disabled when 'clock out' drops on interface 1 B and command chaining stops. Channel 1 A is enabled when these conditions are met

ISBL 1

- Used to disable both interfaces 1A and 1B.

If one of the interfaces is enabled when you set the switch to DISBL the interface is disabled when 'clock out' drops on that interface, and mmand chaining stops. Pressing the RESET push button with the switch in DISBL 1 also disables the interface.

ENBL B

- Present only if the 3705 has the Two-Channel Switch feature for channel interface 1 .

Causes the same results for interface 1 B that are described under ENBL .

CHANNEL 1 INTERFACE

A ENABLED LIGHT

- Turned on when interface 1 A is enabled
- Turned off when interface 1 A is disabled

NOTE: The light stays on when the 3705 is in hard stop, even though the adapter is disabled.

CHANNEL 2 INTERFACE

A ENABLED LIGHT

- Turned on when interface 2A is eriabled.
- Turned off when interface $2 A$ is disabled.

NOTE: The light stays on when the 3705 is in hard stop, even thoug the adapter is disabled.

CHANNEL 2 INTERFACE

ENABLE/DISABLE SWITCH

When operating with a type 1 or type 4 CA in an NCP (PEP included) environment, do not attempt to disable a channel interface unless the 3705 net work has been quiesced or a system reset has NCP may, while disabled, attempt to send asyn chronous status which inhibits the CA1 or 4 from becoming enabled again.

This switch and the CHANNEL 2 INTERFACE A and B ENABLED lights are on the control panel only if a second channel adapter is installed in an expansion frame. The switch provides the same functions for the second channel adapter that the CHANNEL 1 INTERFACE ENABLE/DISABLE switch provides for channel interface 1 .

CHANNEL 2 INTERFACE

B ENABLED LIGHT

- Turned on when interface $2 B$ is enabled.
- Turned off when interface $2 B$ is disabled.

NOTE: The light stays on when the 3705 is in hard stop, even though

POWER CHECK LIGHT

- Turned on when a power check occurs. (See D-010 for condi tions that cause a power check.)
- Turned off by pressing the POWER-OFF push button on the control panel, if a thermal condition does not exist.
- Also turned on and off during a normal power-on sequence
- Not turned on by LAMP TEST push button.

If the light is on because of a check condition, you cannot turn power on until you reset the check condition. If the power check resulted fro an undervoltage sense, an overvoltage sense, or an overcurrent sense, reset the check by pressing the POWER OFF push button. If the check THERMAL RESET push button located inside the covers of the 3705 (See D-010).

PANEL ACTIVE LIGHT

When the PANEL ACTIVE light is on, all the contro panel switches and push buttons are active

- Turned on when the MODE SELECT and DIAGNOSTIC CONTROL switches have been in the PROCESS position at least once since the last power-on sequence.

If the light is off and 3705 power is on, the 3705 operates as if the switches were in the PROCESS position. However, the push buttons, except for the power controls, have no effect.

LAMP TEST PUSH BUTTON

- Turns on all control panel lights, excent POWER CHECK and the spares.
Pressing the LAMP TEST push button does not affect normal operation. The lights are much brighter than usual.

LOAD/STORE ADDRESS COMPARE SWITCH

 STORE COMPARE- Used to determine if data from a general register is stored in a
specific byte of storage. (See Store Address Compare on 1-150.) With the switch in this position, the addresses in the ADDRESS/DATA switches and in SAR are compared during each 12 and 13 cycle of a
ST, STC, STH or STCT instruction. If the addresses are equal, an address compare occurs, and the ADDRESS COMPARE light in display B comes on if the DISPLAY/FUNCTION SELECT switch is in STATUS.
During 12 cycle for STH and ST instructions, bit 1.7 of the addresse is ignored in the comparison. (Both bytes are stored in the storage halfword.)
During 12 cycle for STC and STCT instructions and 13 cycle for ST instructions, bit 1.7 is included in the comparison. (Only one byte is stored in the addressed storage halfword location.)

LOAD COMPARE

- Used to determine if an instruction loads data from a specific storage 1.150 .)

The storage address in ADDRESS/DATA switches A-E is compared with SAR during each 11,12 or 13 cycle of a load instruction. In this case a oad instruction is any instruction except ST, STC, STH, or STCT. If the addresses are equal, an address compare occurs and the ADDRESS SELECT switch is in STATUS.
During all 11 cycles, during 12 cycles for LH instructions, and during 13 cycles for the L instruction, bit 1.7 of the addresses is ignored in the address comparison. (Storage is addressed on a halfword basis.
During 12 cycles for $I C$, ICT, and L instructions, bit 1.7 is included in the address comparison. (Storage is addressed on a byte basis.)

CC CHECK LIGHT

- Turned on when a CC check is detected.
- Turned off by any of the following
a. Pressing the CC CHECK RESET push button if there are no more CC checks.
b. Executing an Output $X^{\prime} 77^{\prime}$ with bit 0.1 on in the register desiged by the R fild of the instruction
c. Executing an Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register X ' 77 ' and then storing a ' 1 ' in bit position 0.1. (See 1-160.)
d. Pressing the RESET push button if there are no more CC checks. Use Input X'7D' or turn the DISPLAY/FUNCTION SELECT switch to STATUS to display the specific CC check in display A

Resets the CCU check register and turns off the CC CHECK light, if the CC checks are no longer present.
This push button works only if the PANEL ACTIVE light is on

Note: The CC CHECK light is referred to as the CCU check indicator in logic.

RESET PUSH BUTTON

Pressing the RESET push button:

1. Sets the 'hard stop' and 'program stop' latches.
2. Sets odd parity in the local store register $\mathrm{X}^{\prime} 00^{\prime}$. (The data is not affected.)
3. Sets valid parity in the Op register and in SDR
4. Sends a reset signal across the adapter interface to the 3705 adapters.
5. Disables the channel adapters (Type 2 or 3 CA). Logically disconnects the channel adapter from the interface by
not allowing select out to be trapped (Type 1 or 4 CA)
6. Signals to the adapters that a not initialized state exists until the state ends as a result of IPL
7. Resets the CCU error register.
8. Masks program levels $2 \cdot 5$ and adapter level 1 .

NOTE: Output X'7F' must be executed to reset the mask bits.
9., Resets the 'program level entered' latches.
0. Resets all CCU interrupt requests.
11. Sets the 'test mode' latch.
12. Aborts IPL phase 2, if it is active.

SET ADDRESS/DISPLAY PUSH BUTTON

- Used to:
a. Display the contents of a storage location, a CCU register, or an adapter external register in display B
b. Set the address of a storage location, CCU register, or adapter register for a store operation.

This push button functions only when the PANEL ACTIVE light is on and the DISPLAY/FUNCTION SELECT switch is in REGISTER ADD RESS or STORAGE ADDRESS. It does not function during IPL phase
1 or 2 or when the DIAGNOSTIC CONTROL switch is in one of the 1 or 2 or when the DIAGNOSTIC CONTROL switch is in one of the four STORAGE TEST positions and you have pressed the START push
button (unless the 'hard stop' latch was set previously) button (unless the hard stop' latch was set previously).
A dynamic display can be done provided a program display is not
present.

START PUSH BUTTON

- Used to:
a. Restart the program. Reset the 'hard stop' and 'program stop' latches if the DIAGNOSTIC CONTROL switch is in PRO
BYPASS CC CHECK STOP, or CC CHECK HARD STOP.
b. Reset the 'hard stop' latch and start one of the four storage test functions.
c. Start the clock step function to step the CCU clock when the DIAGNOSTIC CONTROL switch is in CLOCK STEP.
The START push button works only if the PANEL ACTIVE light is on ressing the START push button always causes a 1.2 usec CS1 start push button maintenance cycle.

STORE PUSH BUTTON

Be careful when you perform a store operatio the data stored may alter normal program and when channel cycle steals and store operations occur at the same time.

- Pressed and released to store data from the ADDRESS/DATA witches in a storage location or in a register.

The STORE push button works only when the PANEL ACTIVE and PROGRAM STOP lights are on and the DISPLAY/FUNCTION
SELECT switch is in REGISTER ADDRESS or STORAGE ADDRESS It does not work during IPL Phase 1 and 2 or when the DIAGNOSTIC you have pressed the START push button. The 'program stop' latch should be set before setting the address for the store operation.

STOP PUSH BUTTON

- Pressed to set the 'program stop' latch and stop program execution at the next instruction boundary.
This push button works only when the PANEL ACTIVE light is on It does not stop adapter or maintenance cycle steal operations.

PROGRAM DISPLAY LIGHT

- Turned on when display register 1 or 2 contains program output. (CCU executed Output X'71' or $X^{\prime} 72^{\prime}$.)
- Turned off when the CCU takes a maintenance cycle, or when you press and release the START push button if the 'hard stop' or 'program stop' latch is on.

If the light is on, turn the DISPLAY/FUNCTION SELECT switch to a position other than TAR \& OP REGISTER or STATUS. This causes displays A and B to display the data that is in display registers 1 and 2.

INTERRUPT PUSH BUTTON

- Causes a program level 3 interrupt request.

Before you press the INTERRUPT push button, set the DISPLAY/FUNCTION SELECT switch and the ADDRESS/DATA switches according to the convention established by the program handling the request.

To reset the interrupt request, Output $X^{\prime} 77^{\prime}$ must be executed with bit 0.2 on in the register designated by the R field of the instruction. (The CE can execute this output by using the control panel. See 1-160.) This push button works only when the PANEL ACTIVE light is on.

HARD STOP LIGHT

- Turned on when the 'hard stop' latch sets.

The 'hard stop' latch sets when any of the following happen.
a. The CCU executes Output $X^{\prime} 70^{\prime}$ when in program level $1,2,3$, or 4.
b. The control panel is active, the DIAGNOSTIC CONTROL switch is in STORAGE SCAN or STORAGE TEST PATTERN, and a CCU check occurs.
c. The control panel is active, the DIAGNOSTIC CONTROL switch is in CC CHECK HARD STOP, and a CC check occurs.
d. The control panel is active, and you press the RESET push button.
e. The $\mathbf{3 7 0 5}$ is in IPL phase $\mathbf{2}$ or 3, and a CC check occurs (unless the 'bypass check stop' latch is set).
f. The control panel is active, and you turn the DIAGNOSTIC CON TROL switch to CLOCK STEP.

- Turned off when the 'hard stop' latch is reset.

The 'hard stop' latch is reset when any of the following happen.
a. A power-on reset occurs.
b. IPL phase 1 reset occurs.
c. The DIAGNOSTIC CONTROL switch is not in any of the four STORAGE TEST positions; none of the conditions that set the 'hard stop' latch are present; and you press the START push button. If the DIAGNOSTIC CONTROL switch is in CLOCK STEP and you press the START push button, the latch is reset during the start cycle, but not immediately.

WAIT LIGHT

- Turned on when the CCU is in the wait state (running, but not taking instruction cycles or cycle steal cycles). Also comes on when the PROGRAM STOP or HARDSTOP light is on.
- Turned off when an interrupt occurs or the CCU takes a cycle steal cycle.

The usage meter does not run when the WAIT light is on. See 6-060 for an explanation of the wait state.

- Turned off when all of the following occur.

1. The MODE SELECT switch is in PROCESS,
2. The DIAGNOSTIC CONTROL switch is in PROCESS,
3. The 'test mode' latch is reset by the control program.

PROGRAM STOP LIGHT

- Turned on when the 'program stop' latch sets.

The 'program stop' latch sets when one of the following happens.
a. The control panel is active; the MODE SELECT switch is in ADDRESS COMPARE PROGRAM STOP. the LOAD/STOR ADDRESS COMPARE switch is in LOAD or STORE; and the contents of SAR match the address in ADDRESS/DATA switches A-E. (See 1-060.)
b. The panel is active ; the MODE SELECT switch is in INSTRUC TION STEP; and the CCU reaches an instruction boundary.
c. The 'hard stop' latch sets.
d. The control panel is active, and you press the STOP push button.
e. The control panel is active, the DIAGNOSTIC CONTROL switch is in one of the STORAGE TEST positions, and you press the START push button.

- Turned off when the 'program stop' latch resets.

The 'program stop' latch is reset when one of the following happens.
a. A power-on reset occurs.
b. IPL phase 1 reset occurs.
c. The control panel is active, DIAGNOSTIC CONTROL switch is not any of the four STORAGE TEST positions, none of the conditions that set the 'program stop' latch ar present, and you press the START push button. If the
DIAGNOSTIC CONTROL switch is in CLOCK STEP you press the START push button, the latch is reset during the start cycle.

Causes a machine reset and starts an IPL if the panel act atch is set. (The PANEL ACTIVE light should be on.) See pages 6-960 to 6-964 tor information on IPL

LOAD LIGHT

- Turned on when IPL starts
- Turned off by either
a. Executing Output $X^{\prime} 79^{\prime}$ with bit 1.1 on in the register designated by the R field of the instruction.
b. Executing Output $X^{\prime} 79^{\prime}$ from the control panel by displaying register X'79' and then storing a ' 1 ' in bit posi-
tion 1.1. (See page $1-160$.)

OAD PUSH BUTTON

CAUTION When the 'program stop' latch is set, cycle steal operations can cause adapter problems.

POWER ON PUSH BUTTON

- Starts a power-on sequence if the LOCAL/REMOTE POWER switch is in LOCAL (Not affected by the Unit Protection Feature).
The POWER CHECK light comes on when you press the POWER ON push button and goes off when the power-on sequence is complete. The light stays on if a failure prevents completion of the power-on An IPL starts at the end of a power-on sequence. The MODE ELIECT Ad DIAGNOSTIC CONTROL swith must be in PROCES so that the channel interface can iee enabled during IPL

REMOTE/LOCAL POWER SWITCH

- Determines whether the CPU or the 3705 controls dc power (Not affected by the Unit Protection Feature).
LOCAL
- Dc power can be turned on and off only at the 3705 control panel. An emergency power off at any attached CPU turns of 3705 powe

REMOTE

- The CPU controls 3705 dc power

Dc power comes on at the 3705 when power is turned on at any attached CPU. Dc power goes off at the 3705 when power is off at every attached CPU, when an emergency power off occurs at any attached CPU, or when you press the POWER OFF push button.

POWER OFF PUSH BUTTON

Starts a power-off sequence. Resets any power check (except those caused by overheating) and turns off the POWER CHECK light (Not affected by the Unit Protection Feature)

This push button shuts down power with the REMOTE/LOCAL POWER switch in either position.
NOTE: Turn the CHANNEL INTERFACE ENABLE/DISABL switch (es) to DISBL and wait for the INTERFACE ENABLED lights to go off before you press the POWER attached CPU.

STORAGE ADDRESS/REGISTER DATA

 (ADDRESS/DATA) SWITCHES- Sets addresses or enters data to test the 3705

For storage addressing, you should use only positions $0-7$ on switch A.
For data entry turning the switch to positions $8-F$ will

to be entered $8=0,9=1, A=2, B=3, C=4, \quad=5, E=6, F=7$ to be entered $8=0,9=1, A=2, B=3, C=4, D=5, E=6, F=7$
When Input $X^{\prime} 71^{\prime}$ is executed, the data in the switches is placed in the general register designated by the R field in the instruction

NOTE: If Input $X^{\prime} 71^{\prime}$ is executed while you are turning the ADDRESS/DATA switches, the data loaded into the general register is unpredictable.

DIAGNOSTIC CONTROL SWITCH

- Used to perform diagnostic tests on the 3705 .

If the PANEL ACTIVE light is off, the 3705 runs as if the switch were in PROCESS. The TEST light comes on if the switch is in any position other than PROCESS.

Before starting a clock step, storage scan, single address scan, storage test pattern, or single address test pattern procedure, per
 form a program shutdown procedure and disable the channel adapters. If you do not take this precaution, the channel adapters
will be suddenly forced to the disabled state, and a system error may occur.

NOTE: Certain storage failures are not detected by performing storage scan, single address scan, single address test pattern, and storage test pattern procedures. Storage IFT
must te run to indicate these failures.

PROCESS

- Allows the 3705 to run normally

BYPASS CC CHECK STOP

- Allows normal operation except the 'hard stop' latch does not set, and the CCU does no and one

The 'hard stop' latch does not set, but the appropriate CC check latch sets, and the CC CHECK light comes on

CC CHECK HARD STOP

- Allows normal operation except that a CC check causes the 3705 to hard stop at the end of that cycle and prevents the latch 'mach ck set IPL'. (See Output X'79' page 6-930.) See chart below.
The 'hard stop' latch sets, the appropriate CCU check latch sets, and the CC CHECK light comes on; but the CCU does not start an IPL sequence.

CCU Action When a Check Condition Occurs

Diagnostic Control Switch Position	Hardstop		Process		Bypass Check Stop	
EFror Occurred in Program	1	2, 3, 4, 5	1	2, 3, 4, 5	1	2,3,4,5
Hardware Check \qquad NDATA SAR SDR OP REG clock	hardstops	nardstops	Note A	Note A	bypasses	bypasses
Program Check ADAPTER in/out PROTECT invalid op	nardstops	$\} \begin{gathered}\text { bids } \\ \text { level } 1\end{gathered}$	$\}$ Note A	${ }_{\text {bids }}^{\substack{\text { bidsel } \\ \text { level }}}$	bypasses bypasses Notes Note bypasses	bids level 1

[^0]
CLOCK STEP

See also page 1-160)

- Causes the CCU clock to be controlled by the START push button instead of the

The 3705 stays in process mode until the START push button is pressed and an instruction boundary is reached. Pressing it the first time stops the 3705 in TO of A time.
Each time you press and release the START push button, the CCU clock advances one
T time. (This can be observed in the CLOCK TIME lights in display A See chart A) Press time. (This can be observed in the CLOCK ME lights in display A. See chart A.) Pr "dummy" cycle (23 times for $3705-1 ; 15$ times for $3705-11$). Then step the CCU clock through one CS Start cycle (24 times for $3705-1$; 16 times for $3705-11$) to set up the (in
following I cycle (observe the CS CYCLE light). Step the CCU clock through the instruc-
tion cycle(s). A CS Start cycle occurs before each of the following instruction's I cycle.
in CLOCK STEP the 3705 operates normally except:

1. Instead of the machine oscillator, the START push button steps the CCU clock. 2. The Z bus is gated to display register 1 at each AT3 time during maintenance cycles. 3. The Z bus is gated to display register 2 at every $T 3$ time during maintenance cycles. waits to start a complete write call at FT1 time
3705-11 only-Storage does a complete read call beginning at ATO time and then, if it

SINGLE ADDRESS SCAN

- When the DIAGNOSTIC CONTROL switch is in this position, pressing and releasing the START push button causes a continuous scan of the storage location addressed by

The 3705 stays in the process state until the START push button is pressed and released This sets the 'program stop' latch and starts the operation. This operation continues egardless of error indications.

Chart A	3705-1 only							
Cycle Time	A	E*	B					
Clock Time	T0\|T1	T2	${ }^{\text {T3 }}$	T0\|ti	T2	T3	T0\|T1	T2 ${ }^{\text {T3 }}$
Bit 1.4 light	0	0	0					
Bit 1.5 light	0	0	1					
Bit 1.6 light		01011						
Bit 1.7 l light		$0 \cdot 0$	0	3705-1 onily				

Lights indicate the clock time that was just completed
*Cycle times E and F are "dummy" times that are added to
make a clock cycle equal to a 1.2 use storage cycle $(3705-1$ make a clock cycle equal on an on the conrol panel, cycle times E and F appear
oniy
as repetitions of cycles A and B respectively.

STORAGE TEST PATTERN

- Causes the continuous storing of test data from the ADDRESS/DATA switches in sequential storage locations. (See Storing a Test Pattern in Storage page 1-140.) After
storing the pattern at a location, the CCU reads that location to check for good parity. The pattern is then stored at the next address. The operation stops when the switch is turned to another position or when the CCU detects an error.
The 3705 stays in the process state until the START push button is pressed and released. This sets the 'program stop' latch and starts the operation.

SINGLE ADDRESS TEST PATTERN

- When the DIAGNOSTIC CONTROL switch is in this position, pressing and releasing he Stin

The 3705 stays in the process state until the START push button is pressed and released. This sets the 'program stop' latch and starts the operation. The operation stops when the witch is tur to ather positio. Theration continues regardless of error
indications.
STORAGE SCAN
When the Diagnostic Control switch is set in this position, pressing and releasing the

The 3705 stays in the process state until the START push button is pressed and released. This sets the 'program stop' latch and starts the oreration. The operation stops when the switch is turned to another position or when the CCU detects an error.

CONTROL PANEL PROCEDURES

POWER-ON PROCEDURE

1. Set the LOCAL/REMOTE POWER switch to LOCAL.
2. Press the POWER ON push button. The POWER CHECK light should turn on
3. The POWER CHECK light turns off when the power on sequence ends. See D-050 for power sequence problems.
NOTE: The power-on procedure causes an IPL.
POWER-OFF PROCEDURE
4. Set the CHANNEL INTERFACE ENABLE/DISABLE switch (es)
5. Wait until all the CHANNEL INTERFACE ENABLED lights turn
6. Press the POWER OFF push putton.

ACTIVATING THE CONTROL PANEL

1. Set the MODE SELECT and the DIAGNOSTIC CONTROL switche to PROCESS.
2. The 'panel active' latch is set and the PANEL ACTIVE light turns on. ENABLING A CHANNEL INTERFACE

1: Set the CHANNEL INTERFACE ENABLE/DISABLE switch to ENBL A or ENBL B.
2. When the interface is enabled, the CHANNELINTERFACE ENABLED light for that interface turns on.

NOTE: You may need to stop the CPU momentarily, to satisfy certain enable conditions if the CPU is very busy. nter-
face enable must also be conditioned by the 3705 program.

DISABLING A CHANNEL INTERFACE

1. Set the CHANNEL INTERFACE ENABLE/DISABLE switch to
2. When the channel interface is disabled and the 'clock out' line from the CPU is inactive, the CHANNEL INTERFACE ENABLED light for that interface turns off
NOTE: You may need to stop the CPU momentarily to satisfy certain
disable conditions if the CPU is very busy.
IPL PROCEDURE
See "Enabling Type 4 CA NSC Address", page H-000, for the procedur for selecting the CA4 that is to accept the IPL if dual type 4 CAs are
3. Activate the pane
4. Press the LOAD push button.
5. The LOAD light turns on when IPL starts.

RESETTING THE 3705

1. Press the RESET push button
2. This resets all the 3705 hardware. (See RESET Pusth Button page 1-070.)
3. Press the LOAD push button to start an IPL sequence.

RESETTING A CC CHECK

1. Press the CC CHECK RESET push button.
2. If no more checks are detected, the CC CHECK light turns of REQUESTING A PROGRAM LEVEL 3 INTERRUPT
3. Set the DISPLAY/FUNCTION SELECT switch and the ADDRESS DATA switches according to the convention established by the program handling the request.
4. Press and release the INTERRUPT push button.

DISPLAYING 3705 STATUS

1. Set the DISPLAY/FUNCTION SELECT switch to STATUS.

The lights in display A and display B show check and status informa ion as indicated by their labeling

DISPLAYING TAR AND THE OP REGISTER

1. Set the DISPLAY/FUNCTION SELECT switch to TAR \& OP
2. Display A shows the address in TAR. Display B bytes 0 and 1 show the contents of the Op register. Byte X of display B contains all O s.

NOTE: After a register address, storage address or storage test function, the TAR \& OP REGISTER position of the DISPLYY/FUNCTION SELECT switch will no longer
display the last previous TAR and OP code.

You can display most addressable registers using caution this procedure with the program running withou affecting normal program operation. However,
when you address certain registers, control functions occur and affect program operation. Refer to pages $8-060$ (type 1 CA), $9-100$ (type 2 and 3 CA) and H -040 (type 4 CA) for information on these registers. Inputs $X^{\prime} 41^{\prime}, X^{\prime} 42^{\prime}$, and $X^{\prime} 43^{\prime}$ the scanner is stopped (type 1 scanner only).

1. Set ADDRESS/DATA switches B and D to the address of an input
register. (See $6-151$ for the register addresses.)
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS
3. Press and release the SET ADDRESS/DISPLAY push button.

- A display register CS1 maintenance cycle is taken on the next instruction boundary.
- Display A bits 0.0-0.3 and bits 1.0-1.3 display the contents of ADDRESS/DATA switches B and D. All other bits in display A are 0 .
- The input register address in the ADDRESS/DATA switches is also put in the Op register.
- Display B shows the register contents. If the register address is unassigned, all zero's, or a CA register address that cannot be displayed, display B shows all Os. (See 8-060 (type 1 CA), $9-100$ (type 2 and 3 CA) and H -040 (type 4 CA) for a description of undisplayable CA registers.) The In/Out Check L1 interrupt request is not set.
- If the PROGRAM STOP light is on, the register address is also placed in TAR. It can then be used as the register address in subsequent store register operation.

NOTE: If the PROGRAM DISPLAY light is on, this operation will not work with the program running.

STORING DATA IN A REGISTER

(See page 6-054 for flowchart.)
Be careful when using the STORE push button. cycle steal operation and destroy program data

1. If the PROGRAM STOP light is not on, press the STOP push button.
2. Perform a set address and display register operation to set in the Op register the address of the output register in which you desir to store data. Leave the DISPLAY/FUNCTION SELECT switch t REGISTER ADDRESS
3. Set the data in ADDRESS/DATA switches A-E.
4. Press and release the STORE push button.

- The PROGRAM DISPLAY light turns off, if it was on.
- Display A shows the contents of TAR. (TAR and the Op register contain the address entered in the set address and display register operation.)
- The data in ADDRESS/DATA switches A-E is stored in the output register addressed by the Op register, and is displayed in display B.
- If the register address in the Op register is unassigned, the store operation has no effect. The In/Out Check L1 interrupt request is not set.

NOTE: Displaying storage locations using this procedure does not affect normal program or cycle steal operation.

1. Set ADDRESS/DATA switches $A-E$ to the storage address.
2. Set the DISPLAY/FUNCTION SELECT switch to STORAGE
ADDRESS.
3. Press and release the SET ADDRESS/DISPLAY push button.

- A display storage CS1 maintenance cycle is taken on the next instruction boundary.
- The contents of ADDRESS/DATA switches A-E are placed in SAR and in display A.
- Display B bytes 0 and 1 shows the contents of the addressed storage hal fword location. Because control panel storagestorage halfword location. Because control panel storage-
address and storage-scan functions operate only on halfwords, display B byte X should be ignored. If the storage address is invalid for the machine configuration, display B shows all 0 The Address Exception L1 interrupt request does not set.
- If the PROGRAM STOP light is on, the storage address is also placed in TAR. It can then be used as the initial address in a
store storage operation.

NOTE: If the PROGRAM DISPLAY light is on, this operation will not work with the program running.

STORING DATA IN STORAGE LOCATIONS (See page 6-057 for flowchart.)

NOTE: Certain storage failures are not detected by this procedure. Storage IFTS must be executed to indicate these failures.

1. If the PROGRAM STOP light is not on, press the STOP push button.
2. Perform a set address and display storage operation to set the storage address in TAR. (See page 1-130.) Leave the
TION SELECT switch at STORAGE ADDRESS.
3. Set the data in ADDRESS/DATA switches B-E.
4. Press and release the STORE push button.

- The PROGRAM DISPLAY light turns off, if it was on.
- The contents of ADDRESS/DATA switches B-E are stored at the location addressed by TAR.
- TAR is incremented to address the next halfword storage loca tion. Display A shows this new address.
- Display \mathbf{B} bytes 0 and 1 displays the data from the addressed storage location. Because control panel storage-address and
storage-scan functions operate only on hal fwords, display B byte X should be completely ignored. If the storage address is too large for the machine configuration, display B shows all 0 's. The Address Exception $L 1$ interrupt request is no set.

5. Press the STORE push button each time you want to store data from ADDRESS/DATA switches B-E in the next sequential stor age location.

STORING A TEST PATTERN IN STORAGE
(See page 6-060 for flowchart.)

Disable the channel interfaces before you start this procedure.
If a test pattern that is an invalid Op is stored, press ing the START push button will cause an invalid Op CC check.
NOTE: Certain storage failures are not detected by this procedure Storage IFTS must be executed to indicate these failures.

1. Set the test pattern data in ADDRESS/DATA switches B-E.
2. Set the DIAGNOSTIC CONTROL switch to STORAGE TEST 2. Set the DITTERN
3. Set the DISPLAY/FUNCTION SELECT switch to any
position except TAR and OP Register or STATUS.
4. Press the START push button

- The PROGRAM STOP light turns on.
- The data in ADDRESS/DATA switches B-E is stored in the storage location addressed by TAR.
- Display A displays the address in TAR. TAR is then incre mented to address the next storage halfword location.
- Display B bytes 0 and 1 displays the data from the storage location. Because control panel storage-address and storagescan functions operate only on halfwords, display B byte X should be completely ignored
- The stored data is checked for parity. A parity check causes the appropriate CC CHECK light to turn on. The 3705 stops. To
continue the operation: (1) press the CC CHECK RESET push button, and (2) press the START push button. The operation continues until the CCU detects an error.

5. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

NOTE: Because an asynchronous stop occurs when the switch turned, an indata check may occur. Ignore the check, and press the CC CHECK RESET push button

STORAGE SCAN (See page 6-063 for flowchart.)

NOTE: Certain storage failures are not detected by this procedure Storage IFTs must be executed to indicate these failures.

1. Set the DIAGNOStic control switch to Storage scan.
2. Press the START push button

- The PROGRAM STOP light turns on
- The storage location addressed by TAR is scanned first.
- Each CS1 cycle increments the address in TAR by two and puts the new address in display A (unless the DISPLAY/FUNCTION
- Display B bytes 0 and 1 shows the last thing set in the Op register if the DISPLAY/FUNCTION SELECT switch is in
TAR \& OP REGISTER. (The Op register is not changed TAR \& OP REGISTER. (The Op register is not changed during this operation.) If the switch is not in the TAR and tents of the storage location addressed by SAR. Because control panel storage-address and storage-scan functions operate only on halfwords, display B byte X should be completely ignored.
- If the address in TAR is invalid for the machine configuration, the operation proceeds, but display B shows all Os. This continues until the addressing starts again at the first address.
- A parity check causes the appropriate check light to turn on The 3705 stops. The address in display A is two greater than the address that caused the parity check. To continue the operation: (1) press the CC CHECK RESET push button, and (2) press the START push botton. The operation continues
until the CCU detects an error.

3. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

NOTE: Because an asynchronous stop occurs when the switch is turned, an indata check may occur. Ignore the check
and press the CC CHECK RESET push button.

SINGLE ADDRESS TEST PATTERN PROCEDURE

 See page 6-064 for flowchart.)CAUTION
Disable the channel interfaces before you start this procedure.

NOTE: Certain storage failures are not detected by this pro cedure. Storage IFTs must be run to indicate these failures.

1. Set the address of the storage location in TAR using the procedur in Set Address and Display Storage Procedure or in Single Address Scan
2. Set the test pattern in ADDRESS/DATA switches B-E.
3. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS TEST PATTERN.
4. Set the DISPLAY/FUNCTION SELECT switch to any
position except TAR and OP Register or STATUS.
5. Press the START push button.

- The PROGRAM STOP light turns on.
- The data in ADDRESS/DATA switches B-E is stored in the storage location addressed by TAR.
- Display A shows the address in TAR. TAR is not incremented.
- Display B bytes 0 and 1 shows the data stored in the storage location. The data is checked for parity. If the storage address is too large for the machine configuration, display B shows all 0 's. Because control panel storage-address and storage-scan y on hal fwords, display B byte X should be ignored.
- A parity check does not cause the machine to stop, but the appropriate CC CHECK light does turn on.

6. To end the operation, set the DIAGNOSTIC CONTROL switch to
another position.

NOTE: Because an asynchronous stop occurs when the switch is turned, an indata check may occur. Ignore the check and press the CC CHECK RESET push button.

SINGLE ADDRESS SCAN (See page 6-067 for flowchart.)

1. Set ADDRESS/DATA switches $A-E$ to the address of the storage location that you want to scan.
2. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS SCAN
3. Set the DISPLAY/FUNCTION SELECT switch to an
4. Press the START push button

- During each CS1 cycle, display A displays the address in the ADDRESS/DATA switches.
- Display B bytes 0 and 1 shows the data in the addressed location. Because control panel storage-address and storage should be ignored
- The storage address is not incremented.
- The scanning does not stop if a parity check occurs, but the appropriate CC CHECK light does turn on.

5. The ADDRESS/DATA switches can be rotated to continuously
display the contents of the storage locations.
6. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

NOTE: Because an asynchronous stop occurs when the switch is turned, an indata check may occur. Ignore the check and press the CC CHECK RESET push butto

STORE ADDRESS COMPARE

1. Set the LOAD/STORE ADDRESS COMPARE switch to STORE
2. Set ADDRESS/DATA switches $A-E$ to the storage address.

NOTE: To determine if a 'store character' (STC) or 'store character and count' (STCT) instruction stores data from a general register in a storage byte, set the ADDRESS/DATA switches to the address of that byte To determine if a 'store' (ST) or 'store halfword' (STH) stores byte 0 and byte 1 of a general register in a storage
halfword, set the ADDRESS/DATA switches to the addre of either byte.

- During 12 and 13 cycles, the storage address in the ADDRESS/DATA switches is compared with the contents of SAR. If the addresses are equal, and the instruction being executed is a ST, STC, STH, or STCT instruction, the ADDRESS COMPARE light in display B turns on, if the 1.7 is included in the address comparison only if the instruction is a byte instruction.

3. To cause a program stop to occur when the address compare occurs, set the MODE SELECT switch to ADDRESS COMPAR Pressing and releasing the START push
4. To cause the address compare $L 1$ interrupt request to set when the address compare occurs, set the MODE SELECT switch to ADDRESS COMPARE INTERRUPT.

LOAD ADDRESS COMPARE

. Set the LOAD/STORE ADDRESS COMPARE switch to LOAD
2. Set ADDRESS/DATA switches A-E to the storage address.

NOTE: To determine if an instruction at a specific address is ever xecuted, the address set in the ADDRESS/DATA switches can be either the address of byte 0 or byte 1 of the instruccan be
tion.
o determine if a storage byte is ever loaded into a general register, set the ADDRESS/DATA switches to the address of that byte.
To determine if a storage halfword is ever loaded into switches to the address of either byte 0 or byte 1 of the storage location.

- During 11,12 , and 13 cycles, the storage address in the ADDRESS/DATA switches is compared with the contents of SAR
If the addresses are equal, and the instruction is any instruction other than ST, STC, STH, or STCT, the ADDRESS COMPARE ight in display B turns on if the DISPLAY/FUNCTION SELEC parison only if the instruction is a byte instruction
- If the MODE SELECT switch is at ADDRESS COMPARE PROGRAM STOP when the addresses are equal, pressing and tatch and restarts the program.

To cause a program stop to occur when the address compare occurs,
set the
MODE set the
STOP.
4. To cause the address compare $L 1$ interrupt request to set when the SELECT switch to AD DRESS COMPARE INTERRUPT.

LaMP test

NOTE: Pressing the LAMP TEST push button does not affect normal 3705 operation.

1. Press the LAMP TEST push button.
2. All the control panel lights, except the POWER CHECK light and
the spares, turn on. the spares, turn on

CLOCK STEP PROCEDURE

Disable the channel interfaces before you start this procedure.

1. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP
2. Press the START push button.

- The 3705 stops in T0 of A time
- The START push button, instead of the 3705 oscillator, provides pulses to drive the CCU clock.
- If the DISPLAY/FUNCTION SELECT switch is in STATUS, displays A and B show check and status information. If the switch is in TAR \& OP REGISTER, display A shows the contents of switch is in any other position, the contents of the Z bus are gated to display register 1 at each AT3 time and to display register 2 at every $\mathbf{T} 2$ time during maintenance cycles.

NOTE: $3705-1$ only - Clock cycles E and F are not indicated on the control panel; they appear as repetitions of cycles A and B , control pane
respectively.

Rules for observing clock-step operations.

- The first instruction executed in clock-step mode is preceded by an idle cycle (CS indicator off, I indicator off).
- A CS1 start-push button cycle (CS indicator on, I indicator off) is
taken before the start of each instruction.
taken before the start of each instruction.
- The I cycle being executed can be determined by observing the Display A status indicators 1.3-1.7. By counting the number of
transistions thru IA TO since the last cycle steal cycle the l-cycle transistions thru IA TO since the last cycle steal cycle, the 1 -cycle
number is known (be sure to watch the I indicator - ignore the interspersed idle cycles).
- Additional idle cycles may be interspersed depending on the machine model and instruction
In CLOCK STEP the 3705 operates normally except:

1. Instead of the machine oscillator, the START push button steps
2. The \mathbf{Z} bus is gated to display register 1 at each AT3 time during
3. The Z bus is gated to
maintenance cycles.
4. The Z bus is gated to display register 2 at every $T 3$ time during maintenance cycles.
5. 3705-I only-Storage does a complete read call beginning at AT 3705.11 only-Storage dows a complete read call beginning at A 3705 -II only-Storage dows a complete read call beginning at ATO time and then, if it is a store-type instruction, does a complete write call at CTO time.

INSTRUCTION STEP PROCEDURE

During instruction step mode,cycle steal operations could cause adapter problems.

1. Set the MODE SELECT switch to INSTRUCTION STEP

- The PROGRAM STOP light turns on

2. Press and release the START push button to continue with the next instruction.

- The 3705 executes one instruction, and the PROGRAM STOP light turns off.

3. Each time you press and release the START push button, the 3705 executes one instruction

NOTE: The CCU handles cycle steal requests normally during this pro cedure. All interrupts, except program level 1 interrupts and interrupts to higher program levels, are inhibited until the program executes an 'exit' instruction.

EXECUTING AN INPUT OR OUTPUT INSTRUCTION FROM THE CONTROL PANEL

Input instructions can be executed from the control panel by dis playing the corresponding external register. See Set Address and Display Register Procedure on page 1-130.

Output instructions can be executed from the control panel by displaying the corresponding external register and then storing the desired bits in the register. (The 3705 must be in program stop mode.) See Storing Data in a Register on page 1-130.
Example: The CC CHECK lights in displays A and B can be turned off by executing an Output $X^{\prime} 77^{\prime}$ instruction with bit 0 . on the general register designated by the R field of the " " 1 " in bit 0.1 of external register $X^{\prime} 77^{\prime}$.

The bits stored in an external register from the control panel have the same hardware function as when they are set on by a program. herefore, many hardware functions can be checked by simulating input and output instructions from the control panel.

SETTING UP AND EXECUTING AN INSTRUCTION

CAUTION
 Disable the chandel interfaces before starting this

 pocNOTE: This procedure is an example of one method to set up and execute an instruction

1. Press the STOP push button
2. Use the Set Address and Display Storage Procedure (page 1-130) to set the storage address that you want to store the instruction in
3. Use the steps in Storing Data in a Storage Location (page 1-140) to store the desired instruction in the storage location.
4. In the next storage location, store a 'branch' instruction to cause a
branch back to the preceding storage location.
5. Use the Set Address and Display Register Procedure (page 1-130) to set the IAR (register 0) for the program level that you are in. (The current program level can be determined from the status
6. Follow the steps in Storage Data in a Register (page 1-130) to store the address of the storage location from step 3 in the IAR.
7. If you want to step through the instructions:
a. Turn the MODE SELECT switch to INSTRUCTION STEP.
b. Press and release the START push button. The CCU executes ne instruction. turns on
c. Press and release the START push button to execute the next instruction. Each time you pres the START push button, th CCU executes one instruction
NOTE: If the CCU is in level 1 (as it is immediately after ROS is oaded), program 1 , 1 (1) reset level 1 requestsOutput $X^{\prime} 77^{\prime}$, (2) unmask appropriate interrupt levelOutput $X^{\prime} 7 F^{\prime}$, (3) generate an appropriate interrupt

CONTROL PANEL TEST OF CCU DATA PATH

PART 1. BASIC CONTROL AND DATA FLOW

This section tests the part of the data path in the CCU necessary to load ROS and those controls that may be necessary to analyze a failure
 LAMP TEST

1. Press LAMP TEST.-All panel lights, except POWER CHECK and the spares, should light.
2. Swap any failing lights with lights in working positions to verify that the lights are bad.
3. Replace the lights found to be defective
4. If the lights tested are good, swap the driver cards located at 01 A-B4U2 and 01A-B4U3. Refer to D-210 and ALDs AP009 to AP015 for details.

PANEL ACTIVE (REQUIRED FOR FURTHER PANEL

 ESTINGThe following conditions should activate the PANEL ACTIVE light:
a. DIAGNOSTIC CONTROL switch in PROCESS
b. Not power-on reset
c. MODE SELECT switch in PROCESS

Refer to ALD CU001-BM6.

Disable all channel interfaces before proceeding.

CLOCK STEP

1. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP.
2. Press RESET.-Verify that the HARDSTOP, PROGRAM STOP, TEST, and WAIT lights are on
3. Set the DISPLAY/FUNCTION SELECT switch to STATUS.
4. Press START.-Check CYCLE TIME and CLOCK TIME in display A. CYCLE TIME should equal ' 00^{\prime} '; CLOCK TIME
5. Press START repeatedly and observe the stepping of CLOCK TIME and CYCLE TIME. CYCLE TIME should increment each tim CLOCK TIME steps from ' 11 ' to ' 00^{\prime} '

NOTE: 3705-I only - Cycle time E occurs after cycle time A (00 and appears as a repeat of cycle A. Cycle F occurs after
cycle $B(01)$ and appears as a repeat of cycle B. E and F imes are necessary because of bridge storage characteristic Cycles C, D, and A follow in normal order.

INITIAL DATA PATH TEST (ALU-B SIDE, Z BUS,

1. Set the DISPLAY/FUNCTION SELECT switch to STORAGE
2. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS scan.
3. Press START.
4. The address set in ADDRESS/DATA switches should be equal to Display A. Vary the ADDRESS/DATA switches to test various data bit combinations (for example, 0101, 5555, AAAA, etc.)
5. Compare display A with the switch values to check for data bit failures.
6. If data bit failures occur, refer to CCU DATA BITS/CARD LOCATIONS (page 1-190) for card swapping.

NOTE: This procedure can also be used as convenient way to display may
display
7. Return the DIAGNOSTIC CONTROL switch to PROCESS

STORAGE DATA PATH TEST (ALU-A SIDE, DISPLAY B) 1. Press STOP.
2. Display storage at any valid address using the set address and display storage procedure (page 1-130).
3. Press STORE.-The data in the ADDRESS/DATA switches is stored at the address displayed in step 2.
4. Press STORE again.-Display A should increment by 2 each time STORE is pressed. Display B should be the contents of the addres indicated in display A. NOTE: The data being stored is not displayed because TAR is
. Verify that the correct data was stored by using the display storage procedure.
6. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS TEST PATTERN.

7 Press START.-The contents of display B should equal the value in he ADDRESS/DATA switches. Vary data pattern in the switche desired

STORAGE TEST PATTERN

. Set the DIAGNOSTIC CONTROL switch to STORAGE TEST PATTERN.
2. Set the ADDRESS/DATA switches to 'FFFF'
3. Set the DISPLAY/FUNCTION SELECT switch to STORAGE ADDRESS.
4. Press START.
5. Display A shows the incrementing address; display B shows the data
6. If the machine stops because of a CC check, record the following

Failing storage address (equals the address in display A minus 2)
b. Failing bits (Compare the ADDRESS/DATA switches and display B.)
Set the DISPLAY/FUNCTION SELECT switch to STATUS.-Dis play A shows the error status.

NOTE: If a CC check has occurred, but the ADDRESS/DATA witches and display B are equal, the parity bit has probably . parity bit.)
7., Press CHECK RESET, then press START.
8. Repeat steps 1 through 6 using different data patterns in the AAAA, etc.)
Analyze failures to determine a failing pattern (data or addressing)

ROS TEST CONTROL
Verifies that IPL phase 1 and 2 execute correctly.

1. With the channel interface disabled, press LOAD on the local 3705. On the Remote 3705, press LOAD.
2. The IPL phase lights should equal ' 11 ' with the program looping, waiting for the 'interface enabled' signal. Do not enable the interface unless channel data transfer is desired. If trouble is suspected, refer to the ROS listing and to the ROS test section of this manual.
a. If the IPL PHASE lights are ' 01 ', check the hardware reset function.
b. If the IPL PHASE lights are ' 10 ', ROS test transfer to storage is incomplete.
(1) Press RESET to force IPL phase 3 ('11').
(2) Run the storage pattern test with data equal to 'FFFF' to establish a background pattern.
(3) Press LOAD.
(4) If the same failure occurs: Turn the DISPLAY/FUNCTION SELECT switch to TAR \& OP REGISTER. Display A shows the next storage address. Press RESET and display storage starting at $X^{\prime} 0000^{\prime}$ to determine how much of ROS was loaded (data instead of FFFF).
3. Refer to ROS TEST, page $2-000$ if a failure occurs in IPL phase '11'. (Local 3705.)
4. Refer to Remote Loader Diagnostic Manual, page 0-028, for ROS Testing for a Remote 3705.

ADDRESS COMPARE STOP, INSTRUCTION STEP, AND HARD STOP

1. Set the DISPLAY/FUNCTION SELECT switch to TAR and OPREGISTER.
2. Set the LOAD/STORE ADDRESS COMPARE switch to LOAD.
3. Set the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP.
4. Set the ADDRESS/DATA switches to '00012'.
5. Press LOAD. (The address compare pulse is available at 01A-B3P2-S09. See ALD page CU004.)
6. The 3705 should stop with:
a. PROGRAM STOP light on.
b. TEST light on.
c. LOAD light on.
d. DISPLAY A set to 'X'00014' (The instruction at address $X^{\prime} 0012$ ' was executed).
e. ADDRESS COMPARE and PROG L1 lights are on, if the DISPLAY/FUNCTION SELECT switch is set to STATUS.
7. Set the MODE SELECT switch to INSTRUCTION STEP.
8. Press START. Verify that DISPLAY A equals $X^{\prime} 00016^{\prime}$ (IAR incremented).
9. Display register $X^{\prime} 70^{\prime}$.
10. Store register $X^{\prime} 70^{\prime}$ (Ignore the data.) - The HARDSTOP light should be on.

PART 2. MISCELLANEOUS CONTROLS

This section tests the panel functions that are not required for ROS testing and analysis but are used for DCM Diagnostic Control Module control and indications. Note the input and output instructions can be executed from the control panel by displaying and storing into the external register. Refer to Executing an Input or Output Instruction From the Control Panel on page 1-160.

LOAD LIGHT

1. Press LOAD.-Verify that the LOAD light is on.
2. Press RESET.
3. Display register $X^{\prime} 79^{\prime}$.
4. Store $X^{\prime} 0040$ ' in register $X^{\prime} 79^{\prime}$.-Verify that the LOAD light is off.

SET AND RESET TEST MODE

1. Set the MODE SELECT switch to PROCESS.
2. Set the DIAGNOSTIC CONTROL switch to PROCESS.
3. Display register $X^{\prime} 79^{\prime}$.
4. Store $X^{\prime} 0010^{\prime}$ in register $X^{\prime} 79^{\prime}$.-TEST light goes off if it was on.
5. Store $X^{\prime} 0020^{\prime}$ in register $X^{\prime} 79^{\prime}-$ TEST light turns on.

SCOPE SYNC PULSE

1. Display register $X^{\prime} 79^{\prime}$.
2. Store $X^{\prime} 0002^{\prime}$ in register $X^{\prime} 79^{\prime}$.-Fires scope sync \# 1 at 01A-B3M2-P10, ALD page CU015.
3. Store $X^{\prime} 0001^{\prime}$ in register $X^{\prime} 79^{\prime}$.-Fires scope sync \#2 at 01A-B3M2-P13, ALD page CU015.

WAIT LIGHT

1. Press RESET.-Verify that the WAIT light is on.
2. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS SCAN.
3. Press START.-Verify that the WAIT light is off.
4. Set the DIAGNOSTIC CONTROL switch to PROCESS.

OP REGISTER DATA AND CC CHECK

1. Press RESET.
2. Set the MODE SELECT switch to INSTRUCTION STEP.
3. Press LOAD (forces program level 1).
4. Store $X^{\prime} \mathrm{FFFFF}^{\prime}$ in address $\mathrm{X}^{\prime} 0012^{\prime}$ (Branch on Bit using register 7; this will be the first instruction executed).
5. Store $X^{\prime} 0000^{\prime}$ in address $X^{\prime} 0014^{\prime}$ (Invalid OP decode).
6. Store $X^{\prime} 000000^{\prime}$ in register $X^{\prime} 07^{\prime}$.
7. Set DISPLAY/FUNCTION SELECT switch to TAR and OP REGISTER.
8. Press START.
a. DISPLAY B equals X'FFFF' (instruction stored in Step 4).
b. Repeat steps 4,6 , and 7 varying the data in Step 4 if a hot/cold bit is suspected in the OP REG.
9. Press START again.
10. The lights should indicate:
a. CC check
b. Invalid OP
c. L1 program check
d. Hardstop
11. Store $X^{\prime} 4004^{\prime}$ in register $X^{\prime} 77^{\prime}$.
a. CC CHECK lights should be reset.
b. Invalid OP and L1 program check should be reset.
12. Reset the 3705 .

ISPLAY/FUNCTION SELECT SWITCH AND PROGRAM

. Reset the 3705
2. Set the MODE SELECT switch to INSTRUCTION STEP
3. Press LOAD (forces program level 1)
4. Store the following instructions at the given address:

Address X'0012' $^{\prime}$ - ${ }^{\prime} 742 \mathrm{C}^{\prime}$ (Puts contents of the DISPLAY/FUNCTION SELECT switch in CCU register 4.)
Address $X^{\prime} 0014^{\prime}$ - $X^{\prime} 7414^{\prime}$ (Output register 4 to display register 1). Address $X^{\prime} 0011^{\prime} \cdot X^{\prime} 7424^{\prime}$ (Output register 4 to display register 2).
5. Set the DISPLAY/FUNCTION SELECT switch to TAR and OP REGISTER.
6. Press START to step through the program.
a. Verify that the program loops.
b. The PROGRAM DISPLAY light should turn on and off while the program is stepped.
7. Set the MODE SELECT switch to PROCESS.
8. Press START.
a. The program should run continuously. (The PROGRAM STOP light should stay off.)
b. The PROGRAM DISPLAY light should stay on
9. Rotate the DISPLAY/FUNCTION SELECT switch to the following positions and check the values in both displays A and B bytes 0 and
a. STORAGE ADDRESS - X'1000'
b. REGISTER ADDRESS - $X^{\prime} 0800$
c. FUNCTION SELECT 1 - X'0040
d. FUNCTION SELECT 2 - X'0020
e. FUNCTION SELECT 3 - X‘0010
f. FUNCTION SELECT 4 - X‘0008
g. FUNCTION SELECT 5 - X'0004
h. FUNCTION SELECT 6 - X'OOO2
10. Press STOP to stop the program.

INTERRUPT REQUEST AND RESET

1. Press RESET.
2. Display register $X^{\prime} 7 F^{\prime}$. - Verify that bit 0.6 is off,
3. Press INTERRUPT
4. Display register $X^{\prime} 7 F^{\prime}$. - Verify that bit 0.6 is on (Panel irpt req L3)
5. Store $X^{\prime} 2000$ ' in register $\mathrm{X}^{\prime} 77^{\prime}$. - Reset panel irpt req L3.

SAR AND SDR DRIVERS AND RECEIVERS (3705-II)

Frame	1	2
ALD Page	DS001-005	DT001
SAR Drivers	A-B4B2	A-B4B3
SDR Dr/Rec Byte 0	A-B4A3	Same as frame 1 through hirst storage assembly
SDR Dr/Rec Byte 1	A-B4A2	

MISCELLANEOUS LOGIC REFERENCES AND CARD

 LOCATIONS
PART 3. CCU DATA BITS-CARD LOCATIONS

This section shows cards containing the data bit groups and miscellaneous controls. This information should be useful when running either panel tests or memory IFTs. Logic references are given for further detail

GENERAL DATA FLOW: Includes B register, LAR, local store, $C C U$ display, ALU, SAR, TAR, A register, and ALU check bits.

Bits	X.4, X. 5	${ }_{\text {x }} \times$. 7 , \times, 6,	0.P.0. 1	0.2-0.4	0.5-0.7	1.P-1.1	1.2-1.4	1.5-1.7
Card	B4S2	A-B4J2	A-B4K2	A.B4L2	A-84M2	A-B4N	A-B4P2	A-B402
ALD	DExxx	DF	DG	DH	DJ	DK	DLOO	DM001-

OP REGISTER AND SDR REGISTER

Bits	0.4	7,0.P	1.4	P
ard	A-B4G2	A.B4G2	A-B4	A-B4H2
${ }_{\text {Page }} \mathrm{ALD}$	DNoO1. 004	DP001- 004	D00011. 004	DR001.

SAR AND SDR DRIVERS AND RECEIVERS (3705-I)

Frame	1	2	3	4
ALD Page	DS001-005	DT001-005	DU001-005	DV001-005
SAR Drivers	A-B4C2	A.84C3	A-B4C4	A-B4C5
SDR Dr/Rec Byte 0	A-84B2	A-84B3	A-B4B4	A-8485
SDR Dr/Rec Byte 1	A-B4A2	A.B4A3	A-B4A4	A-B4A5

DIAGNOSTIC AIDS: SCOPE POINTS AND JUMPERING CAPABILITIES
SCOPE POINTS

The following scope points can be used to diagnose problems:
A. '+ diag scope sync point 1 ' at 01A-B3M2-P10 on ALD page CUO15. The DCM controls this sync point by means of an Output $X^{\prime} 79^{\prime}$ when bit 1.6 is a 1 . Scope sync point 1 is used to sync on the beginning of each routine or on the hardware setup block when the DCM is in a scoping loop.
B. '+ diag scope sync point 2' at 01A-B3M2-P13 on ALD page CUO15. The DCM controls this sync point by means of an Output $X^{\prime} 79$ ' when bit 1.7 is a 1 . Scope sync point 2 is used to sync on the test function of a test routine.
Diag scope points 1 and 2 may be used together to count repetitions of the test function. Sync point 1 is used to trigger the scope and the delayed sweep feature is used to count the number of pulses (each pulse represents one repetition) on sync point 2.
See 'Setting Up a Scoping Loop' (below) for information on scoping for a failure while running the IFTs.
C. '+ address compare test pin' at 01A-B3P2-S09 on ALD page CU004. The STORAGE ADDRESS/REGISTER DATA switches on the control panel are used to establish a sync reference on this test pin at any location in any IFT routine or in the DCM. A sync pulse is generated when the address for fetch or store (controlled by the LOAD/STORE ADDRESS COMPARE switch) is the same as the address in the STORAGE ADDRESS/REGISTER DATA switches.
D. '-A time' at 01A-B3R2-P04 on ALD page CC001.

SETTING UP A SCOPING LOOP (IFT Failures)
After a failure has been detected, the DCM and IFTs provide two looping options.

- The Loop on First Error option selects the smallest possible loop within the IFT. The loop includes the hardware setup, pretest, set scope sync point 2, test, analysis, and error display. The loop for this option normally takes less time to execute than the Restart on First Error option. The loop continues whether or not the error occurs again.
- The Restart Routine on First Error option selects a loop that starts at the beginning of a routine, continues the routine to the point where the error was first detected, and then restarts the routine again. The loop for this option takes longer; however, it may be required for sequencesensitive failures. The loop continues whether or not the error occurs again.

After selecting the looping option, use the continue function to continue from the error stop. The time required to stop on the error code again gives an indication of the length of the loop. Repeat this process several times and use the longest length of time.

To obtain continuous running loops, the 'bypass error stop' CE sense switch must also be set.

If an error other than the one selected for looping occurs, the DCM stops to display the new error code. To bypass stops for other errors, set the 'bypass new error stop' CE sense switch.

When the scoping loop is running correctly, the scoping indicator (Display B, bit 0.4) blinks at the rate of 3.2 seconds (1.6 seconds on and 1.6 seconds off). Display B (byte 0 , bits 5,6 , and 7) is incremented by one for each error detected. This error counter (together with the loop time) indicates the failure is solid or intermittent. Other information is also displayed. Display A shows the adapter, IFT and routine number. Display B (byte 0 , bits $0-3$ and byte 1) shows the error code being looped on.

DIAGNOSTIC JUMPERING CAPABILITIES
The following jumpering capabilities can be used to diagnose problems.

Invoke IPL When an Address Compare Occurs

1. Plug the CE MST-1 latch card P/N 5851882 onto a socket position that has no second level wraps on any pin. Probe pins A, F, or M located on latch card according to instructions.

The latch card must be plugged onto the board
with the component side of the card toward the right or circuit damage will result.
2. Connect 01A-B3P2-S09 to pin A. Refer to ALD page CU004.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page CU010.
4. Set the LOAD/STORE ADDRESS COMPARE switch and the ADDRESS/DATA switches as desired.

Invoke IPL When the 'Hard Stop' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3L2-M03 to pin F. Refer to ALD page CU006.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page CU010.
4. Press the START push button.

Invoke IPL When the 'Machine Check' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3N2-J06 to pin F. Refer to ALD page CK006.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page Cu010.
4. Press the START push button.

Cause the 'Clock Step' Latch to Freeze the Clock When an Address Compare Occurs

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3P2-S09 to pin A. Refer to ALD page CU004.
3. Connect 01A-B3P2-J09 to pin M. Refer to ALD page CU007.
4. Set the LOAD/STORE ADDRESS COMPARE switch and the ADDRESS/DATA switches as desired.
5. Press the START push button.
6. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the address compare stop.

Cause the 'Clock Step' Latch to Freeze the Clock When the 'Hard Stop' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3L2-M03 to pin F. Refer to ALD page CU006.
3. Connect 01A-B3P2-J09 to pin M. Refer to ALD page CU007.
4. Press the START push button.
5. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the hard stop.

Prevent Loading of ROS During IPL Connect 01A-B3L2-U02 to 01A-B3L2-G08. Refer to ALD page CU010.

Cause the 'Clock Step' Latch to Freeze the Clock When the 'Machine Check' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3N2-J06 to pin F. Refer to ALD page CK006.
3. Connect 01A-B3P2-J09 to pin M. Refer to ALD page cu007.
4. Press the START push button.
5. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the machine check.

Simulate a Continuous Panel Display Register Operation

1. The 3705 must be stopped.
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS.
3. Set ADDRESS/DATA switches B and D to the desired register address.
4. Press the SET ADDRESS DISPLAY push button.
5. Jumper 01A-B3P2-J03 to ground. Refer to ALD page CU003.
NOTE: This operation does not occur every time. Therefore, when scoping, use a cycle steal time as a sync point. (CS1A-B302B10 on CC002)

Simulate a Continuous Panel Store Register Operation

1. The 3705 must be stopped.
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS.
3. Set ADDRESS/DATA switches B and D to the desired register address.
4. Press the SET ADDRESS DISPLAY push button.
5. Jumper 01A-B3P2-J06 to ground. Refer to ALD page CU003.
6. Set the ADDRESS/DATA switches B thru E to the desired data.
NOTE: This operation does not occur every cycle time. Therefore, when scoping, use a cycle steal time as a sync point.

Deactivate Interval Time Bids
Jumper 01A-B3M2-G09 to ground. Refer to ALD page CU014.
NOTE: If a bid has already been set, that bid will be honored before the interval timer is deactivated.

Clock Step Thru IPL Phase 2 (Load ROS)

1. Press the RESET push button.
2. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP.
3. Press the START push button.
4. Jumper 01A-B3P2J09 (+ Active clock step) to 01A-B3L2D09 (+IPL 2 Latch). Refer to ALD pages CU007 and CU010.
5. Press the LOAD push button. Observe IPL phase 2 when the LOAD push button is released.
6. You can now clock step thru the loading of ROS by using the START push button.

DIAGNOSTIC AIDS - CE INDICATOR LATCH CARD

MST-1 CE Indicator Latch Card

C. E. Indicator Latch Card P/N 5851882 is available from Mechanicsburg for servicing IBM products using the MST-1 technology.

The Latch Card is a 2-High, 2-Wide card which plugs onto the pin side of an MST-1 board. The card can be plugged onto any two vertically adjacent socket positions except edge connector positions. The Latch Card is intended for use on socket locations with no discrete wiring; however, care, an MST-1 board for an extended period of time, normal machine vibration may cause it to work loose from the pins and lose contact.

The Indicator Latch Card must be plugged onto the MST-1 board with the component side of the card toward the right. If the card is plugged on upside down, or is plugged into the card side of the board, circuit damage will result.

The Latch Card contains two complete latch circuits. Each tatch circuit has its own set of input pins, output pins, and latch status indicator lamp.

A reset line which is common to both latch circuits can be activated by the manual reset switch or by a plus signal applied to program pin O

The correlation between active signal levels and input pin to be used is shown below for the various combinations which can be monitored.

Pin OP is an optional, plus level input pin. It can be used in place of, or in addition to, input pins D and E .

Output pin M is a summation of input pins A through H prior to the latch. Pin M will be at a plus level whenever the combination of signals being monitored is active. Thus, the signal occurring at output pin M can be used as an in put to the latch circuitry contained on the other half of the latch card.

Output pins P and N provide outputs from the latch. Out put pin P will be at a plus level when the latch is set (ind cator lamp on) and at a negative level when the latch is reset (indicator lamp off). Pin N provides the inverse leve of $\operatorname{pin} P$

line 1-1 1

Listed below are some of the ways the latch card can be used:
. Baby Sitter
To determine if several signal lines are all at their active levels at the same time, plug the card onto the pin side of the MST-1 board and jumper the signal tion being monitored. If all signal lines are at their active level at the same time, the latch will be set and turn on the indicator lamp.
One-Time Pulse Detection
If a signal line should not change during a particular sequence of events, jumper the signal line to an appropriate OR input pin. For example, if the line is plus and should never go minus, jumper it to a latch will be set and turn on the ind us Scope Sync Point

The signal lines required to generate the desired sync should be jumpered to appropriate input pins. Jump er a plus level reset signal to pin O. The latch will be set by the sync condition and reset under control of the reset line. The signal at latch output pin P or N can now be used as a stable scope sync.
Use C. E. Jumper P/N 4110178, cut to required length The ends of this wire are simply plugged onto the pins to be tacle for the pin.

MST-1 Indicator Latch Card P/N 5851882
Indicator Lamp P/N 5353889
Jumper P/N 4110178 Specify length when ordering. MST-1 Latch Card label P/N 5500728.
Note: The latch card does not include a label. Alway order a label for each latch card.

DIAGNOSTIC AIDS: TEST BLOCKS

These illustrations provide a ready reference to the interface leads available at the interface connector positions on the I/O gate. Some Communication Scanner IFT Manual Inter vention Routines refer to wrapping a pair of lines or tying certain lines up or down. The test blocks provide a convenient method of doing this in most cases.

To force an interface lead to the active state, jumper it to 'Data Terminal Ready'. The state of DTR can be determined from the symptom index. If the inactive state of an interface lead is to be tested, allow the lead to float. EIA, CCITT V. 35 (except for transmit and receive data), and digital interface lines float to the inactive level.

To wrap data between two compatible line interfaces, jumper all interface leads to their normal operational state Use the check lists below for typical jumpering.

FOR INTERFACES THAT CONNECT TO STAND-ALONE MODEMS OR LOCAL ATTACHMENTS, JUMPER:
a. 'Request to Send' and 'Clear to Send' of the transmit interface to 'Receive Line Signal Detect' (Carrier Detect) of the receive interface using Y jumper $\mathrm{P} / \mathrm{N} 1770810$.
b. 'Request to Send' and 'Clear to Send' of the receive inter face to 'Receive Line Signal Detect' (Carrier Detect) of the transmit interface using Y jumper $\mathrm{P} / \mathrm{N} 1770810$.
c. 'Data Terminal Ready' to 'Data Set Ready' on both interfaces. (See special notes for the 1G line set on page 1-310).
d. Send data of one line to receive data of the opposite line.
e. Receive data of one line to send data of the opposite line.

FOR INTERFACES WITH IBM LIMITED DISTANCE OR LEASED LINE ADAPTERS OR WITH LEASED LINE MODEMS, JUMPER:
a. Send data to receive data of the opposite line.
b. Receive data to send data of the opposite line.

FOR TELEGRAPH CURRENT LOOP INTERFACES (See Line Set 2A test block), JUMPER:
a. Ring + of position 0 through a 100 ohm, 1 watt resistor to H2G11 (+6 Vdc) on the LIB Type 2 board.
b. TIP of position 1 to any D08 pin (ground) on the LIB Type 2 board.
c. TIP of position 0 to Ring + of position 1 .

Note: Test Blocks are shown facing the jumper pin side See page E-010 for jumper and test block part numbers.

Line Set 1 A (Logic VA003)
I (Note 1)

Line Set 1D (Logic VA004)

Line Set 1 E (Logic VA005) | (Note 2)

Notes:
Notes:

1. Line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{~F}$, and 1 H are no longer available for the IBM 3705. The functions these line sets provided are now performed by line set 1D. However, appropriate cables must be attached to the 1D line set. Refer to "Line Set 10" on C -002.
2. Line set 1 E can not be wrapped using this block-jumper reference only.

Line Set 1C (Logic VA009)
I (Note 1

Line Set 1F (Logic VA010)
I (Note 1)

Page of SY27-0107-6 As Updated 2 April 1980 By TNL: SY27-1249

Page of SY27-0107-6 As Updated 8 Dec 1980 By TNL: SY27-1268 DIAGNOSTIC AIDS: TEST BLOCKS (PART 2)

Line Set 1 N or $\underset{\text { (Note } 4 \text {) }}{\text { (Nuplex (Logic VA017) }}$

Notes:

1. To wrap a pair of lines, connect T of the transmit line to R of the
receive line and C of the transmit line to 1 of the receive line (connect
A to A and B to B). Do not wrap S leads. Internal clock must be specified.
2. Signals used only by high-address receive line,
3. Signals used by both low-address transmit line and high-adidress receive line
Signals not noted are used only by the low-address transmit line.

receivers as this may
damage the terminator
card
damas

00000000

DIAGNOSTIC AIDS: TEST BLOCKS (PART 3)

3. To use line set wrap on a 12
Line Set,
optioceify external clock
ond wrap the 12 transmit Line Set, specify external lock
option, and wrap the 1 Zransmit
line to the 1 Z recieve line. Do line to the 12 receive
not wrap clock leads.

Line Sets 10A (Logic VU130), and 11A or 11B (Logic VW300)

Line Set 12A (Logic VX025/026)

ROS TEST

ROS Requirements Depending On Type of Channel Adapter and or Remote Program Loader.

Without Remote Program Loader (RPL) 3705-II only

CA \#1		CA \#2					CA \#3	CA \#4
		None	CA1	CA2	CA3	CA4	CA4	CA4
	CA1	1	X	D	D	X	X	X
	CA2	2	X	D	D	x	X	X
	CA3	2	x	D	D	X	X	X
	CA4	1	X	D	D	$\begin{aligned} & 1 \mathrm{or} \\ & \mathrm{Nt} \end{aligned}$	N	N

With Remote Program Loader (3705-II only)

CA \#1		CA \#2					CA \#3
		None	CA1	CA2	CA3	CA4	CA4
	CA1	R and 1	X	R and D	R and D	X	X
	CA2	R and 2	X	R and D	R and D	X	X
	CA3	R and 2	x	R and D	R and D	X	X
	CA4	R and 1	X	R and D	R and D	R and (1 or N) t	R and N

3705-11 with only RPL uses the RPL ROS
+1 - Required for two CA4s with the IPL switch
N - Required for two CA4s without the IPL switch
1 = CA1 ROS (Mini)
$2=$ CA2 ROS
$D=$ Dual ROS
$N=$ CA4 ROS (3705-11 only) see $\mathbf{2 - 1 2 0}$
$R=$ RPL ROS (3705-11 only)
$X=$ Invalid configuration
TYPE 1 AND TYPE 4**CHANNEL ADAPTER
The instructions contained in the ROS program depend upon the type channel adapter that is installed in the 3705. The ROS code enables the controller to load its control program across the channel.

Before the ROS code attempts to transfer the data, it checks the functions and instructions it needs to complete the transfer. The functions tested are:

- Instructions
- Data path
- Channel adapter enable
- Channel adapter selection
- Channel adapter level 3 interrupt
- Receipt of an IPL command on each enabled channel adapter.
- That a level 1 or level 3 interrupt was received from the channel adapter

Only the portion of the instructions needed to complete the transfer of the first program module across the channel is tested. The instructions tested are:

- ARI
- LRI
- ORI
- TRM
- LH
- STH
- ST
- BB
- BCL
- BZL
- B
- XR
- $\operatorname{IN}{ }^{*}, X^{\prime} 60,61,62,64,67,76,77,79,7 D, 7 E^{\prime}$
- OUT * , X'60,62,63,64,66,67,77,79'
*Those input and output instructions associated with the CA and several of those necessary for CCU operation are used but are not thoroughly tested.

ROS checks the data path and uses some of the error detection circuits without testing them.

A listing of the ROS code is in the ALD's beginning on CW101. A flow chart showing the logical flow of ROS channel adapter operations precedes the ROS listing in the ALDs.

SIMULATION RUN
Immediately following the ROS listing is a simulation run. The simulation run is a listing in instruction execution order showing the contents of the registers used.

Use the simulation run during instruction step procedures in the instruction test portion of ROS as a check for correct operation.

ERROR ANALYSIS PROCEDURE

Type 1 ROS code presents error indications to the control panel for CCU and channel adapter errors. Observe the error indications and follow the prescribed course of action for each indication.

CONTROL PANEL SWITCHES
During the IPL, the MODE SELECT switch and the DIAGNOSTIC CONTROL switch must be in the PROCESS position for the indicators to function correctly.
** See H-000 for the type 4 configurations that use this ROS Test

INSTRUCTION TESTING
Before trying to load data across the channel, ROS Program code tests the preceding instructions. The general procedure for locating an instruction execution failure is to step the instructions through the failing section of the instruction test portion of the code

The simulation run following the ROS code listing in the ALD is to be used during the instruction step procedure as a check for correct operation.

The indications that appear on the control panel are:
IPL Phase III Program Stop Hard Stop Load Test

This is a CCU failure indication. TAR contains the address of the next instruction to be executed. This value is the address of the stop instruction +2 . Check the contents of TAR against the following list; if it is equal to any value given, follow the indicated procedure.

the simulation failed to execute. Using the ROS listing and with the MODE SEL PROGRAM STOP to stop at various places in the program. Then use the instruction step procedure to step through the program and locate the failure addresses at the beginning of test routines in the listing as stopping points.

1 Set the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP.

2 Set the beginning address for one of the test routines in the ADDRESS/DATA switches. Refer to the ROS listing for the beginning addresses of the routines.

3 Retry the IPL.
4 If the same error occurs before the program stop, change the address in the ADDRESS/DATA switches to a previous address. The address of the first instruction may be used if necessary.

5 Retry until the program stop occurs.
6 When the program stops at the selected address, set the MODE SELECT switch to INSTRUCTION STEP.

7 Step through the code, following the listing and the simulation run, to locate the error. (See CW000.)

If TAR contains an address that has not been previously
defined, a program load or execution failure probably execute the ROS Data Transfer Test and the ROS Address
Generation Test. Generation Test.

ROS Data Transfer Test

Display main storage addresses
1 location X'0032' \qquad All bits should be off in Display B. Suspect any bit that is on in the display as being continuously on from storage (see
$7-030$ or $7-260$. The bit can also be continuously on from ROS, (see 6-961)
2 location 0056 \qquad All bits should be on in Display B. Suspect any bit that is not on as being continuously off from storage (see 7-030 or 7-260). The bit can also be continuously off coming from ROS, (see 6-961).
ROS Address Generation Test
Display main storage addresse
$1 X^{\prime} 0000^{\prime}$ should contain $X^{\prime} 7004$

		3705-1	3705-11.
$\begin{gathered} \text { If location } \\ x^{\prime} 00000^{\prime} \\ \text { contains } \end{gathered}$	Suspect SAR Bit	See	See
' ${ }^{\prime} \times 6 \mathrm{FFF}{ }^{\prime}$	15 on	7.030	
	114 on 13 13	$7-030$ $7-030$	7.260 7.260
+ ${ }^{\times 10082}$	12 on	\bigcirc	7.260
${ }^{\times} \times{ }^{\text {'0492 }}$ ',	11 on	7.030	7-260
	10 9 9	7.030 7.030	$7-260$ 7.260
+'6174'	8 on	7.030	7-260
If location 01 FE Contains	Suspect SAR Bit SAR Bit	See	See
×'1001'	15 off	7.030	7-260
	14 off 13 off	7.030 7.030	7-260
	112 off	7.030 7 7.030	7-260
	11 10 off 10	$7-030$ 7.030	$7-260$ $7-260$
	90 off	7.030 7.030	$7-260$ 7.260
X $\times 160^{\prime}$	8 off	7.030	7.260

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a
number of Load pushbutton operations, for these charts to ne valid. Otherwise, use control panel and display procedures (1-140) to determine if there is an addressing problem.
NOTE: Only SAR bits 8 through 15 are used to address low
torage. The other SAR bits are not used.

If no discrepancy has been found in the ROS Data Transfer
or Address Generation Test, verify that the control panel is
set up properly and re-try the IPL.

CHANNEL CHECKING

IPL Phase III Load

This is an indication that communica tions between the channel adapter and the host CPU should be checked, using
OLTEP or OLTSEP with the initial tes OLTs or IFTs. The customer's first program may be used if desired. Refer to the status and sense information chart at the end of this section if CA operation is possible but the load operation is not successful. If CA operation is no checkout routines.
If the instruction testing has been completed, try the type 1 channel adapter ROS checkout routine when there is a problem

Type 1 or Type 4 Channel Adapter ROS Checkout Routine
1 Disable all channel interfaces. Verify that the control panel INTERFACE ENABLED lights are off.

2 Press the RESET push button
3. Press the LOAD push button.

4 Press the STOP push button.
5 Set the MODE SELECT switch to INSTRUCTION STEP
6 Set the DISPLAY/FUNCTION select switch to TAR \& OP REGISTER.
7 Press the START push button. Observe the address in dis play A

8 Press the START push button several more times and ob serve the program looping through addresses $X^{\prime} 00 E 8$ ',

9 If this loop is not being executed, one of the following problems is indicated:

- An interface remained enabled
- An incorrect branch occurred
- Contents of storage is incorrect.

To locate the failure
10 Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at $X^{\prime} 00 E 4^{\prime}$. Then follow the ROS listing
using the instruction step procedure

CHECK
Check to see that the initial test or first program module was loaded correctly. Use the load address compare procedure with the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP to stop at address X'01FA. This is the last ROS instruction before control is turned over to the next
program. If this program stop occurs, it indicates that ROS is giving control to the next program correctly.

If the instruction test section of ROS is executed correctly, but control is no turned over to the next program correctly, check to see if the program loops within repeating major branches that match the list and indicate general area of failure.

ROS repeating branches that may be caused by a channel adapter

Repeating Branches	Probable Cause	Check the contents of		
		Reg.	Byte	Bit
00F6-00E8	Interface will not become enabled.	67	1	4
010E-0104	Cannot develop a level 1 or level 3 interrupt	$\begin{aligned} & 60 \\ & 67 \\ & 76 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	4 0 5 4
011A-0124 0126-0110	A solid level 1 interrupt	76	0	5
012A-0144	A solid level 3 initial select interrupt occured	$\begin{aligned} & 60 \\ & 77 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	${ }_{4}^{0}$
012C-01AA	A solid level 3 data service interrupt	60 77	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0 4

10 if the loop is correct, press the START push button To return to normal operation

Channel Checking (Part 2)

These steps indicate the general area of the program that should be checked for an apparent type 1 or type 4 chann
adapter failure occurring after the CPU has issued an IPL command.
Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at the following addresses to determine to what extent the ROS program has completed the transfer of the first program or Initial Test.

Address X'0404

This is the entry address for the initial testor first program. If this program stop occurs, refer to the initial test description in IBM Maintenance Diagnostic Program 3705 Communications Controller On-Line Test and Internal Functional Test, D99-3705A, or to the first program description, for additional information. The ROS program is no longer being executed

Address: X'01CA

At this address, the program checks to verify that the IPL command was received. Register $\mathrm{X}^{\prime} 61$ ', byte 1 contains the command

Address X‘0138

Check the address that is requesting service. Register Check the address that is requesting service. Regi
X^{\prime} byte 0 should contain the single subchannel address that is requesting service.

Address X'01EA

Compare the known byte count with the hardware byte count, after the initial test or first program data transfer. The contents of register 1 should equal
the contents of register 5 . Register 1 should contain the contents of register 5. Register 1 should contain (located in storage at X'0402'). Register 5 starts with a value of $X^{\prime} 400^{\prime}$ and increments by 2 as ROS loads he program, two bytes at a time.

The following status and sense combinations are developed by ROS for various conditions that occur when the ROS rogram is being executed:

OF Channel End, Device End, Unit Check, Unit Abte count error occurred during the initial test or first program module transfer.

OE Channel End, Device End, Unit Check, sense of IPL Required, and Equipment Check

A false level 1 or level 3 interrupt occurred at nitial selection time.

06 Device End, Unit Check, and Sense of IPL Required Either an IPL is required because of normal conditions or a failure to recognize that the single subchannel is active.
00 Sense of IPL Required
A system reset has occurred.

TYPE 2 AND TYPE 3 CHANNEL ADAPTER

The instructions contained in ROS depend upon the ype of channel adapter that is installed in the 3705 . rogram across the channel.
Before the ROS code attempts the channel data transfer, checks the functions and instructions it needs to complet the transfer. Tested are:

- Instructions
- Data path
- Channel adapter enable
- Channel adapter selection
- Channel adapter level 3 interrupt
- That the channel adapter received an IPL command
- That a level 1 or level 3 interrupt was received from he channel adapter

Only the portion of the instruction set needed to con lete the transfer of the first program module across th channel is tested. The instructions tested are

- ARI
- LRI
- ORI
- trm
- LH
- STH
- ST
- BB
- BCL
- BZL
- B
- $\quad X R$
- $\quad \mathrm{IN}^{*} \mathrm{X}^{\prime} 52,55,58,59,5 \mathrm{C}, 76,77,79,7 \mathrm{D}, 7 \mathrm{E}$
- OUT* \times ‘50,54,57,71,72,77,79’
*Those input and output instructions associated
with the CA, and several of those necessary for
CCU operations, are used but not thoroughly tested

ROS checks the data path and uses some of the error detection circuits without testing them
A listing of the ROS code is located in the ALDs, begin ing on page CW201
A flowchart showing the logical flow of ROS-channel adapter operations precedes the ROS listing in the ALD. SIMULATION RUN

Included with the ROS listing is a simulation run. Th simulation run is a listing, in instruction execution
order, showing the contents of the registers used.
Use the simulation run during instruction step procedures Use the simulation run during instruction step pror correct operation.

ERROR ANAL YSIS PROCEDURE

Type 2 ROS code presents error indications to the control panel for CCU and channel adapter errors. Observe the rror indications and follow the prescribed course of rotion for each indication.

CONTROL PANEL SWITCHES
During IPL, the MODE SELECT switch and the DIAGNOS-
During IPL, the MODE SELECT switch and the DIAGNOS
TIC CONTROL switch must be in the PROCESS position for the indicators to function correctly. The STORE/LOAD COMPARE switch must be in the LOAD position.

NSTRUCTION TESTING

Before trying to load data across the channel, ROS code tests the preceding intructions. The geral pross ture for locating an instruction execution failure is to use the instruction step procedure to step through the failing section of the instruction test portion of the code.

The simulation run, located following the ROS code listing in the ALDs, toe used during the instruction step procedure as a check for correct operation.

The indications that appear on the control panel are

IPL Phase III
 Program Stop Hard Stop
 Hard Sto
 Toad

This is a CCU failure indication. TAR contains the addre of the next instruction to be executed. This value is the TAR against the following list. If it is equal to any value given, follow the indicated procedure.

See page 2-070 if these lights if these lights

An invalid branch t
zero has occurred.

An instruction failed to execute. Using the ROS listing and the simulation run, use the load address compare procedure with the MODE SELECT switch in ADD RESS COMPARE PROGRAM STOP to stop at various places in the program. Then use the instruction step procedure to step throug
to locate the failure. Pick addresses at the beginning of test routines in the listing as stopping points.

1. Set the MODE SELECT switch to ADDRESS COMPARE
2. Set the beginning address for one of the test routines in for the beginning addresses of the routines.
3. Retry the IPL
4. If the same error occurs before the program stop, change the address in the ADDRESS/DATA switches to a previous address. The address of of the first instruction may be used, if necessary
5. Retry until the program stop occurs.
6. When the program stops at the selected address, set th MODE SELECT switch to the INSTRUCTION STEP
7. Step through the code following the listing and the simu lation run, to locate the error
8. Set up the program stop at the beginning addres
of the Branch on Bit Test, ($X^{\prime} 00 \mathrm{~A} 4^{\prime}$), from the ROS listing.
9. Retry the IPL
10. When the PROGRAM STOP light comes on, set the MO
STEP.
11. Step through the test. Register 1 contains the instruction and indicates what is being tested. Bit 0.7 on indicates hat byte 1 is being tested, and bit 0.7 off indicates a binary indication of the bit that is being tested within the byte. The bits are being tested for "solia" and

Register 1		Bits Being Tested	
$\begin{gathered} \text { Byte 0 } \\ 01234567 \end{gathered}$	$\begin{gathered} \text { Byte 1 } \\ 01234567 \end{gathered}$	$\begin{gathered} \text { Byte 0 } \\ 01234567 \end{gathered}$	$\begin{gathered} \text { Byte } 1 \\ 01234567 \end{gathered}$
xx00xxx0	$0 \times x \times x$	1000	
xx00xxx0	1 1xxxxxx	01000000	000
xx01xxx0	0xxxxxxy	00100000	00000000
xx01xxx0	1xxxxxxx	00010000	00000000
xx10xxx0	0xxxxx	0000100	0000000
$10 \times x \times 0$	1 xx	00000100	00000000
x11xxx0	0xxx	00000010	000
x11xxx0	1 xxxx	00000001	00000000
xx00xxx1	0xxxxxxx	00000000	10000
xx00xxx1	1xxxxxxx	00000000	010000
xx01xxx1	0xxxxxx	00000000	00100
001xxx1	1 xxxxxx	00000000	00010
xx10xxx1	0xxxxxx	00000000	0000
xx10xxx	1xxxxxx	00000000	0000
11 xxx 1	0xxxx	00000000	00000010

Address Compare
Adapter Check
In/Out Check
Address Exception
Address Except
Protect Check
The program generated a hard stop because of a failure in the generated check character test. By operating on registers
throughout the program and predicting the results, the throughout the program and predicting the results, the This testing is done during the second section of ROS code.

Address program stop at the continuity generation address.

Address	Register 5 Should be	Register 7 Should be
X'OOEE ${ }^{\prime}$	X'FFFF'	X'FFFF'
($\frac{\chi^{\prime} \text { ¢FFF' }}{}$
X'01.DA'	X'FF2F'	X'0018'

If register 5 is wrong at a location, the check character generation failed in the preceding block of instructions. procedure with by using the load address compare COMPARE PROGRAM STOP to stop at the beginning address of the failing block. Then compare the storage procedure to step through the failing section.

Instruction Testing (Part 3)
 occurred. To verify that the program was loaded correctly,
execute the ROS Data Transfer Test and the ROS Address execute the
Generation Test.

ROS Data Transfer Test

Display Main Storage Addresses

1. $X^{\prime} 0032^{\prime} \quad$ All bits should be off in display B. Suspect any bit that is on All bits should be off in display . Suspect any be the display as being continuously on from storage. (see
2. l (sioe 7-030). The bit can also be on continuously from ROS, (see 6-961).
3. X'0056' All bits should be on in display B. Suspect any bit that is not on as being continuously off from storage, (see 7-030) The bit can also be continuously off, coming from ROS (see 6-961).

ROS Address Generation Test
Display Main Storage Addresses

1. $X^{\prime} 0000{ }^{\prime}$ should contain $X^{\prime} 7004^{\prime}$

$\begin{aligned} & \text { If location } \\ & \times{ }^{\prime} 0000^{\prime} \\ & \text { Contains } \\ & \hline \end{aligned}$	Suspect SAR Bit	See	
		3705-1	3705-11
X'F6FF'	15 on	7.030	7.260
	14 on	7.030 7.030	7.260 7.260
- \times '0082'	12 on	7.030	7 7-260
- ${ }^{\text {'00492', }}$	11 on	7.030 7.030	$7-260$ 7.260
	10 on	7.030 7 7	7.260 7.260
X'5774'	8 on	7-030	7.260

2. $\mathbf{X}^{\prime} 01 \mathrm{FE}^{\prime}$ should contain $\mathrm{X}^{\prime} 0404^{\prime}$

$\begin{aligned} & \text { If location } \\ & \text { ' }^{\prime 01 F} \mathrm{FEE}^{\prime} \\ & \text { Contains } \end{aligned}$	Suspect SAR Bit	See	
		3705-1	3705-11
\times ¢ 0400	15 off	7.030	7-260
X'8FF8' or $\mathrm{X}^{\prime} \mathrm{FE80}{ }^{\prime}$	14 off		
	13 off 12 off	7.030 7.030	$7-260$ 7.260
X'81F8'	11 off	7.030	7-260
X ${ }^{\prime} 1{ }^{\prime} 8^{\prime}$	10 off	7.030	7.260
X'F982'	9 off	7-030	7.260
× ${ }^{\text {8788 }}$	8 off	7.030	7.260

Note: Only SAR bits 8 through 15 are used to address low
storage. The other bits are not used storage. The other bits are not used.

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a number of LOADD push button operations for these charts to be valid. Otherwise, use manual store and display, 1-140, to determine an addressing problem.
If no discrepancy has been found in the ROS Data Transfer Test or the ROS Address Generation Test, check to verify that the control panel switches are set correctly and retry the IPL

CHANNEL CHECKING

ndication PL Phase iII Load
 Program Display

This may be a channel adapter failure or it may indicate
that some external action is necessary.

The DISPLAY/FUNCTION
SELECT switch must not \& OP position, to get correct
displays
The following displays that appear in display B indicate th probable failing condition.

Value in Display B

$x^{\prime} 0001$ 'The program is looping because the channel adapter could not be selected. The CA is selected by an Output $X^{\prime} 57^{\prime}$ instruction with byte 1 , bit 4 on in the register designated by, in the instruction. This sets the 'CA selected' latch in the CA mode
register (CAMR), OHOO1. See 9-080 for additiona CA selection information. (See the section labeled ROS 04 in the listing.
The channel adapter mode is sensed by an Input $x^{\prime} 55$ ' instruction. When the CA is selected ('CA the CCU on the Inbus (see OHOO6 and 9-190 for additional information).
$X^{\prime} 0002^{\prime}$ The program is looping because the channel adapter interface was not enabled. Enable the interface using the procedure on 1-120. Display register $X^{\prime} 58^{\prime}$, byte 1 , bit 4 or 5 should be on if an inter-
face is enabled (label ROS 05 in the listing).
$\mathrm{X}^{\prime} 0004^{\prime}$ The program is looping, waiting for a CA level 1 or level 3 interrupt that should have been set by the CA when CA1 mode was set by the program. Th label ROS O3 in the ROS code listing is the begin-

Value in
${ }^{\prime} 0008^{\prime}$ interrupt from an IPL command or a level 1 interrupt indicating a CA error when the IPL command was received. The label ROS 16 in the ROS code listing is the beginning address of the routine in which the program is looping. $x^{\prime 0402}$ ' The program is looping, waiting for a CA leve 1 or level 3 interrupt indicating initial test or section labeled ROS 19 in the listing).
$\times^{\prime} 0408$ This is the same as loop $\times 10008^{\prime}$ except that he " 04 " indicates that a level 1 interrupt during the initial test or first program ata transfer

IPLication: Phase II
 oad

his indicates that communications between the channel adapter and the host CPU should be checked using OLTEP or OLTSEP with OLTs, IFTs, or initial test. User program may be used, if necessary.
If a problem is indicated during the IPL (05) command

f the status presented to the channel is
OF CHANNEL END, DEVICE END, UNIT CHECK, UNIT EXCEPTION and SENSE of IPL required.

A byte count error occurred during the initia test (or first program) module transfer

OE CHANNEL END, DEVICE END, UNIT CHECK and SENSE of IPL REOUIRED.
PL, HIO or interface stop was issued during initial est or first program data transfer.

06 DEVICE END and UNIT CHECK with SENSE of IPL REQUIRED
Normal response when IPL request is initiated at the 705 or failure to recognize that the single subchanne ativ.
00 SENSE of IPL required.
A system or selective reset has occurred.

Load

ROS code has turned over control either to initial test or first customer program at address X'0404'. (Se "Initial Test" in
IBM Maintenance Diagnostic Program IBM 3705 Communications Controller On Line Testand Wrap All Lines Test, D99-3705C IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Loader, Diagnostic Control Panel Line Test, and Initial Test, D99-3705D.

IBM Maintenance Diagnostic Program
IBM 3705 Communications Controller
Internal Functional Test Symptom Indexes, D99-3705E.
To verify that the ROS program is no longer in contro set the switches to address compare stop at $\mathrm{X}^{\prime} 0404^{\prime}$. this stop occurs, the ROS program is no longer bein executed.

DUAL CHANNEL ADAPTERS

The dual channel adapters ROS code enables the controller to load its control program across either channel
The instructions contained in ROS depend upon the type
of channel adapters installed in the 3705 .
Before the ROS code attempts the channel data trans-
fer, it checks the functions and instructions it needs to
complete the transfer. Tested are:

- Instructions
- Data path
- Channel adapter enable
- Channel adapter selection
- Channel adapter level 3 interrupt
- Receipt of an IPL command by the channel adapters
- Receipt of a level 1 or level 3 interrupt from the channel adapters
Only the portion of the instruction set needed to complete the transfer of the first program module across the channel is tested. The instructions tested are
- ARI
- LRI
- ORI
- trm
- LH
- STH
- ST
- BB
- BCL

BZL

- B
- XR
- IN * X'52,55,58,59,5C,76,77,79,7D,7E'
- OUT ${ }^{*}$ X $50,54,57,71,72,77,79^{\prime}$

If CA 1 is a type 1 or type 4 , the following instructions
are also used;

- \mathbb{N}^{*} X'60,61,62,64,67’
- OUT* X'62,63,64,66,67'
*Those input and output instructions associated with the CA, and several of those necessary for CCU operations, are used but not thoroughly tested

ROS checks the data path and uses some of the erro detection circuits without testing them.
A listing of the ROS code is located in the ALDs, begin ning of page CW401.
A flowchart showing the logical flow of ROS-channel adapter operations precedes the ROS listing in the ALDs.

SIMULATION RUN

Included with the ROS listing is a simulation run.
The simulation run is a listing, in instruction execution order, showing the contents of the registers used.
The simulation run, located with the ROS code
listing in the ALDs, is to be used during the instruction ste procedure as a check for correct operation.

ERROR ANALYSIS PROCEDURE

Dual ROS code presents error indications to the contro panel for CCU and channel adapter errors. Observe the error indications and follow the prescribed course of action for each indication.

CONTROL PANEL SWITCHES

During IPL, the MODE SELECT switch and the DIAGNOS TIC CONTROL switch must be in the PROCESS position for the indicators to function correctly. The STORE/LOAD COMPARE switch must be in the LOAD position.

INSTRUCTION TESTING

Before trying to load data across the channel, ROS code tests the previously listed instructions. The general procedure for locating an instruction execution failure is to use the instruction step procedure to step through the
failing section of the instruction test portion of the code.
The indications that appear on the control panel are:
IPL Phase III
Program Stop
Hard Stop
Load

Test \quad| This is a CCU failure indication. TAR contains the address |
| :--- |
| of the next instruction to be executed. This value is the |
| address of the stop instruction +2 . Check the contents of |
| TAR against the following list. If it is equal to any value |
| given, follow the indicated procedure. |

Load
Test
| See pages 2-110 if these lights are not on.
of the next instruction to be executed. This value is the TAR against sop instruction +2 . Check the contents of given, follow the following list. If it is equal to any value

An instruction failed to execute. Using the ROS listing and the simulation run, use the load address compare procedure PROGRAM STOP to Then use the instruction stap procedure to step throuh to ure filure Pick dirses the bing to

1. Set the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP
2. Set the beginning address for one of the test routines in the ADDRESS/DATA switches. Refer to the ROS listing for the beginning addresses of the routines
3. Retry the IPL.
4. If the same error occurs before the program stop, change the address in the ADDRESS/DATA switches to a previous address. The address of the first instruction may be used, if necessary.
5. When the program stops at the selected address, set the MODE SELECT switch to the INSTRUCTION STEP position.
6. Step through the code following the listing and the simulation run, to locate the error.

Instruction Testing (Part 2)

Instruction Testing (Part 3)
\rightarrow If TAR contains an address that has not been previously defined, a pro gram load or execution failure probably occurred. To verify that the program was loaded correctly execute the ROS Data Transfer Test and the ROS Address Gener tion Test.

ROS Data Transfer Tes

Display Storage Addresses

1. $X^{\prime} 0032^{\prime}$ All bits should be off in display B. Suspect any bit that is on in the display as being continuously on from storage. (See 7-030.) The bit can also be on continuously from ROS, (see 6-971).
2. $X^{\prime} 0056^{\prime}$, Any bit that is not on as being continuously Iso be continuously off, coming from ROS (see 6-971).
ROS Address Generation Test
Display Storage Addresses
3. $X^{\prime} 0000{ }^{\prime}$ should contain $X^{\prime} 7004^{\prime}$

$\begin{array}{\|l\|} \hline \text { If focation } \\ \times \times 0000^{\prime} \\ \text { Contains } \\ \hline \end{array}$	SuspectSAR Bit	See	
		3705-1	3705-11
X'F6FF'	15 on	7.030	7.260
X'9888'	14 on	7.030	7-260
	13 on	7 7-030	7.260
${ }^{\times} \times 10492^{\prime}$	11 on	7.030	7.260
X'F1FF'	10 on	7 7-030	7.260
$\times{ }^{\prime 1305}$	9 on	7 7-030	7.260
X ${ }^{\text {8280 }}$	8 on	7.030	7.260
$\hat{x}^{\prime} 5174^{\prime} \text { or }$	7 on	7-030	7.260

2. ' $^{\prime} 03 F E^{\prime}$ should contain $X^{\prime} 0400^{\prime}$

If location X'03FE' Contains	Suspect SAR Bit	See	
		3705-1	3705-11
$\mathrm{X}^{\prime} 8 \mathrm{C80} 0^{\prime}$ or $\mathrm{X}^{\prime} 8 \mathrm{FF} 8^{\prime}$	15 off	7.030	7.260
$\mathrm{X}^{\prime} \mathrm{A} 808{ }^{\prime}$ or $\mathrm{X}^{\prime} 001 \mathrm{C}^{\prime}$	14 off	7-030	7.260
X'D720' or X'8004'	13 off	7.030	7.260
$\times^{\prime} 8780{ }^{\prime}$ or $\mathrm{X}^{\prime} 719 \mathrm{C}^{\prime}$	12 off	7-030	7.260
X'9817' or X'6124'	11 off	7-030	7.260
${ }^{\times} 614 c^{\prime}$	10 off	7.030	7.260
X'C910' or $\mathrm{X}^{\prime} \mathrm{C9FD}{ }^{\prime}$	9 off	7.030	7.260
$\mathrm{X}^{\prime} \mathrm{C} 814{ }^{\prime}$ or $\mathrm{X}^{\prime} \mathrm{E} 8 \mathrm{B6} 6^{\prime}$	8 off	7.030	7.260
$\mathrm{X}^{\prime} \mathrm{EC8C} \mathrm{C}^{\prime}$ or $\mathrm{X}^{\prime} 11 \mathrm{CB}^{\prime}$	7 off	7.030	7.26

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a number of LOAD pushbutton operations for these charts to be valid. Otherwise, use manual store and display, 1-140, oo determine an addressing problem.
If no discrepancy has been found in the ROS Data Transfer Test or the ROS Address Generation Test, check o verify that the control panel switches are set correctly and retry the IPL.

CHANNEL CHECKING

Indication:
IPL Phase II
Load

Program Display

This may be a channel adapter failure or it may indicate that some external action is necessary.

> The DISPLAY/FUNCTION SELECT swith must not be in the STATUS or TAR \& OP position, to get correct displays.

The displays that appear in display B indicate the following conditions:

IPL Phase III Load Program Display

This indicates that communications between the channel adapters and the host CPUs should be checked, using customer's first program may be used if desired. Refer to the status and sense information chart at the end of this section if CA operation is possible but the load operation is not successful If CA operation is not possible proceed with the CA ROS checkout routines.

If the instruction testing has been completed, try the channel adapter ROS checkout routines when there is a problem.

Channel Adapter ROS Checkout Routine \# 1

1. Disable all channel interfaces. Verify that the control panel INTERFACE ENABLED lights are off.
2. Press the RESET push button
3. Press the LOAD push button.
4. Display B should indicate all zeros while ROS loops through the interrupt wait loop starting at label DROS1 5 in the program listing.
5. If the display is not correct, one of the following problems is indicated:

- An interfáce remained enabled
- An incorrect branch occurred
- Contents of storage is incorrect.
- A channel adapter malfunctioned

To Locate A Failure

Use the Load Address Compare procedure with the mode select switch set to ADDRESS COMPARE PROGRAM STOP. Select the stop address according to the adapter Follow the ROS listing using the Instruction Step procedure to determine the failing condition.

Adapter	Adapter Type	ROS Program Listing Label
CA Frame \#1	Type 1 or 4	DROS30
CA Frame \#1	Type 2 or 3	DROSO3
CA Frame \#2	Type 2 or 3	DROSO86

Channel Adapter ROS Checkout Routine \# 2

1. If the display and ROS loop are sorrect in step 4 of routine 1 , enable either or both interfaces

2. Until an IPL command ($\mathrm{X}^{\prime} 05^{\prime}$) is detected by a CA1 or CA2, the only branch is from $\mathrm{X}^{\prime} 01 \mathrm{CC}^{\prime}$ to $\mathrm{X}^{\prime} 01 \mathrm{~B} 4$ or X'01BO
3. If any other repeating branch occurs, check the following list for general areas of channel adapter operation.

| Repeating Branches | Probable Cause | Check the Contents of Reg\| Byte| Bit | | |
| :---: | :---: | :---: | :---: | :---: |
| 01B6-01D4 or 01B4-01D4 | Solid CA1 Level 1 interrupt | 76 | 0 | 5 |
| 01BA-01DC or 01B8-01E8 | Solid CA2 Level 1 interrupt | 76 | 0 | 6 |
| 01C2-01CE | Type 1 CA not enabled | 67 | 1 | 4 |
| 01 c6-0162 or | Solid CA1 Level 3 interrupt
 (Type 2 or 3 CA1 not enabled and IPL not started on CA2) | 77 | 1 | 4 |
| 0166-02E8 or 016A-02E4 | Solid type 1 CA initial selection Level 3 interrupt | 60 | 0 | 0.7 |
| 01C8-0178 or 01C8-017C | Solid type 1 CA data/ status Level 3 interrupt | $\begin{array}{r} 77 \\ 62 \\ 62 \\ \hline \end{array}$ | $\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{gathered} 3 \\ 0.7 \\ 0-4 \\ \hline \end{gathered}$ |
| 01CA-01FE or
 01CA-0224 | Solid CA2 Level 3 interrupt (CA2 not enabled and IPL not started on CA1 | 77 | 1 | 2 |
| Any address greater than 03FE | A branch out of ROS code occurred. | | | |

Channel Adapter ROS Checkout Routine \# 3

The following stop addresses provide checkpoints to determine the extent of IPL command completion.
Use the Load Address Compare procedure with the GRAM STOP to detmin whe whether the described con ditions occur

Address ${ }^{\prime} 0404^{\prime}$

This is the entry address for the initial test or first program. If this program stop occurs, refer to the initial test description in IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Loader, Diagnostic Control Module, Initial Test, and Panel Line Test, D99-3705D, or to the first program description, for additional information. The ROS program is no longer being executed.

L Label DROS55 for type 1 or type 4 CA Frame \#1 ONLY Compare the known byte count with the hardware byte count, after the initial test or first program data transfer. The contents of register 1 should equal the contents of register 5 . Register 1 should contain a value of $X^{\prime} 400^{\prime}$ plus the byte count of the program (located in storage at $X^{\prime} 0402^{\prime}$). Register 5 starts with a value of $X^{\prime} 400^{\prime}$ and increments by 2 as ROS loads the program, two bytes at a time.
| Label DROS50 for type 1 or type 4 CA Frame \#1 ONLY An IPL command was received. Register X'61' Byte 1 contains the command.

Label DROS33 for type 1 or type 4 CA Frame \#1 ONLY Check the address that is requesting service. Register X '6 Byte 0 should contain the native subchannel address.
| Label DROS25 for type 2 or 3 CA Frame \#1 or CA Frame \#2 Compare the hardware and program byte counts after the IPL data transfer. The contents of register 3 should equal the contents of register 5 . Register 5 contains plus one and Register 3 contains a hardware byte count.
| Label DROS245|for type 2 or 3 CA Frame \#1 ONLY An IPL command has been received on CA1.

Label DROSZ415

(If listing does not include Label DROSZ415, use address X'0226' instead.)
An IPL command has been received on CA Frame \#2. The following status and sense combinations are developed by ROS for various conditions that occur when the ROS program is being executed
OF Channel End, Device End, Unit Check, Unit Exception, and sense of IPL Required.
A byte count error occurred during the initial test or first program module transfer
OE Channel End, Device End, Unit Check, sense of IPL Required, and Equipment Check. (Equipment Check is present only if CA1 is a type 1 .
A false level 1 or level 3 interrupt occurred at initia selection time.
06 Device End, Unit Check, and Sense of IPL Required Either an IPL is required because of normal conditions or, on a type 1 CA1, the single subchannel is not recognized as being active
00 Sense of IPL Required
Status and sense is presented to a Sense command following a system reset, and IPL has not begun on other channel adapter.

Special Status Conditions to Handle Dual Channel IPL Contention
When an IPL has been started on one channel, a sense com mand issued by the other channel will receive an initial status of Unit Exception from a type 2 or 3 CA or an immediate final status of Channel End, Device End and Unit Exception from a type 1 or type 4 CA
If an IPL on one channel fails to end within an allotted period of time, it may be overridden by an IPL on the other channel. The original IPL then ends with Channe End, Device End, and Unit Check.

N ROS TEST

N-CHANNEL ROS FOR THE TYPE 4 CA

The N -channel ROS is used when one to four type 4 CAs are installed without the IPL switch on the control panel and th control program is 'Advanced Communications Function for Network Control Program/VS'

The N -channel ROS code allows the loading of the control program to occur across any installed type 4 CA . The N -channe ROS code

Tests the CCU instructions.
Selects and enables the installed type 4 CAs.
Scans the installed type 4 CAs for an IPL command then begins the IPL on the CA with the IPL command
4 Continuously scans each type 4 CA for interrupts. no IPL is in progress sends a final ending status of 'CE, DE, UC' with a sense byte of 'not initialized'
6 Prepares each CA not having an active command and while no IPL is in progress sends an asynchronous status of 'DE, UC' with a sense byte of 'not initialized'
7 Sends an ending status of 'CE, DE' to a Sense command if an IPL is not in progress.
8 Begins loading the control program through the first type 4 CA that ROS recognizes as having received an IPL command.
9 Prepares the other CAs to respond with an ending status of 'CE, DE, UE' to Sense commands once an IPL is in progress on any CA.
10 Allows a subsequent IPL command to override existing IPL command in progress. A new IPL ent IPL command

11 Handles all type 4 CA interrupts until control is passed to the loader.
Before the ROS code attempts to transfer the data, it checks the functions and instructions it needs to complete the transfer. Tested are

- Instructions
- Data path
- Channel adapter enable
- Channel adapter selection
- Channel adapter level 3 interrupt
- Receipt of an IPL command on each enabled channel adapter
- That a level 1 or level 3 interrupt was received from the

Only the portion of the instructions needed to complete the transfer of the first program module across the channel is tested. The instructions tested are

- ARI
- LRI
- ori
- trm
- LH
- LH
- STH
- ST
- BB
- BCL
- BZL
- B
- XR
- IN *, X'60,61,62,64,67,76,77,79,7D,7E
- OUT * ${ }^{*}$ X'60',62,63,64,66,67,77,79
*Those input and output instructions associated with the CA and several of those necessary for CCU operation are used but are not thoroughly tested.

ROS checks the data path and uses some of the error detection circuits without testing them.

A listing of the ROS code is in the ALD's beginning on CW501. A flowchart showing the logical flow of ROSchannel adapter operations precedes the ROS listing in the ALDs (CW500).

SIMULATION RUN

The simulation run starts on CW301.
The simulation run is a listing in instruction execution order showing the contents of the registers used.
Use the simulation run during instruction step procedures ine instruction test portion of ROS as a check for correct operation.

ERROR ANALYSIS PROCEDURE

N ROS code presents error indications to the control panel for CCU and channel adapter errors. Observe the error indications and follow the prescribed course of action for each indication.

CONTROL PANEL SWITCHE

During the IPL, the MODE SELECT switch and the DIAG
During the IPL, the MODE SELECT switch and the DIAG
NOSTIC CONTROL switch must be in the PROCESS position for the indicators to function correctly.

INSTRUCTION TESTING

Before trying to load data across the channel, ROS Program code tests the preceding instructions. The general procedure or locating an instruction execution failure is to step the
test portion of the code.
The simulation run following the ROS code listing in the
ALD is to be used during the instruction step procedure as
a check for correct operation.
The indications that appear on the control panel are:
 If these lamps are not on.

An instruction failed to execute. Using the ROS listing and the simulation run, use the load address compare procedure PROGRAM STOP to stop at various places in the CoMPAR Then use the instruction step procedure to step through th program and locate the failure addresses at the beginning of test routines in the listing as stopping points.
Set the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP.
2 Set the beginning address for one of the test routines in the ADDRESS/DATA switches. Refer to the ROS listing for the beginning addresses of the routines.
Retry the IPL.
4 If the same error occurs before the program stop, change he address in the ADDRESS/DATA switches to a previou ddress. The address of the first instruction may be used necessary
Retry until the program stop occurs.
6 When the program stops at the selected address, set the MODE SELECT switch to INSTRUCTION STEP.
Step through the code, following the listing and the simuStep through the code, following the listing and
lation run, to locate the error. (See CWOOO.)

- If TAR contains an address that has not been previously defined, a program load or execution failure probably occurred. To verify the program was loaded correctly, execute the ROS Data Transfer Test and the ROS Address Generation Test.

ROS Data Transfer Test

Display main storage addresses
1 location X'0032'

All bits should be off in Display B. Suspect any bit that is on in the display as being continuously on from storage (see ROS, (see 6-961).
2 location 0056 \qquad All bits should be on in Display B. Suspect any bit that is not on as being continuously off from storage (see 7-030 or 7-260). The bit can also be continuously off coming from ROS, (see 6-961).
ROS Address Generation Test
Display main storage addresses
$1 \times{ }^{\prime} 0000^{\prime}$ should contain $X^{\prime} 7004^{\prime}-$
$2{\text { X'03FE' should contain } X^{\prime} 03 E 8^{\prime} \longrightarrow}_{\longrightarrow}$

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a must load into storage correctly ar least one time out of a be valid. Otherwise, use control panel and display procedures (1-140) to determine if there is an addressing problem.
NOTE: Only SAR bits 7 through 15 are used to address low storage. The other SAR bits are not used.

If no discrepancy has been found in the ROS Data Transfer or Address Generation Test, verify that the control panel
is set up properly and re-try the IPL

CHANNEL CHECKING (Part 1)

IPL Phase III

Load

This is an indication that communica-
tions between the tions between the channel adapter and
the host CPU should be checked, using OLTEP or OLTSEP with the initial test, OLTs or IFTs. The customer's first program may be used if desired. Refer to the status and sense information chart at the end of this section if CA operation is possible but the load operation is not successful. If CA operation is no
possible, proceed with the CA ROS checkout routines.
If the instruction testing has been completed, try the type 4 channel adapter N ROS checkout routine when there is a problem

Type 4 Channel Adapter N ROS

Checkout Routine

1. Disable all channel interfaces. Verify that the control panel INTERFACE ENABLED lights are off.
2 Press the RESET PUSH BUTTON
3 Press the LOAD push button.
4 Press the STOP push button.
5 Set the MODE SELECT switch to INSTRUCTION STEP.
6 Set the DISPLAY/FUNCTION select switch to TAR \& OP REGISTER.
7 Press the START push button. Observe the address in display A.
8 Press the START push button several more times and observe the program looping through addresses $X^{\prime} 0126^{\prime}$,
$X^{\prime} 0128^{\prime}, X^{\prime} 012 \mathrm{~A}^{\prime}, X^{\prime} 012 \mathrm{C}^{\prime}, X^{\prime} 012 \mathrm{E}^{\prime}, X^{\prime} 0130^{\prime}, X^{\prime} 0132^{\prime}$ $\chi^{\prime} 0134^{\prime}, X^{\prime} 0136^{\prime}, x^{\prime} 0138^{\prime}, x^{\prime} 013 A^{\prime}, x^{\prime} 013 C^{\prime}, X^{\prime} 016 A^{\prime}$ and $\mathrm{X}^{\prime} 016 \mathrm{C}^{\prime}$.
9 If this loop is not being executed, one of the following problems is indicated:

- An interface remained enabled.
- An incorrect branch occurred
- Contents of storage is incorrect.

To locate the failure
10 Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at $X^{\prime} 0126^{\prime}$. Then follow the ROS listing using the instruction step procedure.
Observe the normal program loop while the 3705 is waiting for initial selection. The host must be unable to
select the 3705 for an IPL.

1 Enable one or more interfaces. When an interface is enabled, ROS code may cause IPL phase 1 and 2 if ertain conditions are present.
2 Press the CHECK RESET push button.
3 Press the LOAD push button. Verify that the correct interface enabled lights come on.
4 Press the STOP push button.
5 Set the MODE SELECT switch to INSTRUCTION STEP.
6 Set the DISPLAY/FUNCTION SELECT switch to TAR \& OP REGISTER.
7 Press the START push button. Observe the address in display A. With the LOAD light on, continue to press the START push button to display the loop.

8 Set the MODE SELECT switch to PROCESS.
9 If the loop is incorrect, use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at $X^{\prime} 0126^{\prime}$. Then, following the program listing, use
10 If the loop is correct, press the START push button to return to normal operation.

CHECK

Check to see that the initial test or first program module was loaded correctly. Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at
address $\times{ }^{\prime} 037 C^{\prime}$. This is the last ROS instruction before control is turned over to the next program. If this program stop occurs, it indicates that ROS is giving control to the next program correctly.

Channel Checking (Part 2)

These steps indicate the general area of the program that should be checked for an apparent type 4 channel adapter failure occurring after the CPU has issued an IPL command.
Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM. STOP to stop at the following addresses to determine to what extent the ROS program has completed the transfer of the first program or Initial Test.
Address X' $^{\prime} 0404^{\prime}$
This is the entry address for the initial test or first program. If this program stop occurs, refer to the initial test description in IBM Maintenance Diagnostic Program 3705 Communications Controller On-Line Test and program description, for additional information. The ROS program is no longer being executed.

Address X'0268'

At this address, the program checks to verify that the IPL command was received. Register X‘61', byte 1 contains. the command.

Address X'01AE'
Check the address that is requesting service. Register $\mathrm{X}^{\prime} 61$ ' byte 0 should contain the single subchannel address that is requesting service.
Address X'0364'
Compare the known byte count with the hardware byte count, after the initial test or first program data transfer. The contents of register 1 should equal the contents of register 5 . Register 1 should contain a value of $X^{\prime} 400^{\prime}$ plus the byte count of the program
(located in storage at $X^{\prime} 0402^{\prime}$). Register 5 starts with value of $X^{\prime} 400^{\prime}$ and increments by 2 as ROS loads the program, two bytes at a time.

The following status and sense combinations are developed by ROS for various conditions that occur
of Channel End, Device End, Unit Check, Unit Exception, and sense of IPL Required. A byte count error occurred during the initial A byte count error occurred during th
test of first program module transfer.
OE Channel End, Device End, Unit Check, sense of Channel End, Device End, Unit Check,
IPL Required, and Equipment Check Aalse level 1 or level 3 interrupt occurred at initial selection time.

06 Device End, Unit Check, and Sense of IPL Required
Either an IPL is required because of normal conditions or a failure to recognize that the ingle subchannel is active.
00 Sense of IPL Required A system reset has occurred.

```
B452
B452
B4k2
B4N2
```


CENTRAL CONTROL UNIT

3705-I CARD FUNCTIONS

See page $6-000$ also

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Pages } \end{aligned}$	Card Function
B3F2	CS002-Cs004 CS006-Cs00	Part of Data Flow Register Controls
B3G2	cz001-CZ005 co001 C0004-C0005 CDOO1	C and Z Condition Code Latches and the Generation of Their Sets and Gates Part of Adapter Interface Controls Pulsed Inputs and Outputs Part of Instruction Decode
В3 ${ }^{\text {H2 }}$	$\begin{aligned} & \text { CDOO1-CDOO4 } \\ & \text { csoo3 } \end{aligned}$	Part of Instruction Decode Part of Data Flow Register Controls
B3/2	CA001-CA004 CD001	ALU Controls Part of instruction Decode
ВЗК2	CL001-CL005	Local Store Controls
B3L2	cu005-CU006 CU009-CU010 CU014 CK007 CP006-CP007 CU005	Part of Panel Controls Second Error Detection Meter and Interval Timer Test Mode and Check Stop Mode.
В3м2	cu014.Cu015 CP002-CP.005 Csool	Part of Panel Controls Part of Priority Controls, Program Level Select, Program Level Mask's and 'Program L Entered' Latches Set LAR
B3N2	ско0з-ско07 cu001 cu013	Error Detection, Error Register Part of Panel Controls Part of CCU Indata Bus
B3P2	cuoo3-cuoot	Part of Panel Controls

Card Location	$\begin{gathered} \text { PLD } \\ \text { Pages } \end{gathered}$	Card Function
в302	CC002-Cc003 CC004-CC005 ccoos Cs001 c0001-C0002	Instruction and Cycle-Steal Times Instruction and Cycle-Steal Counter and Cycle Counter Error Detection Instruction Starts and Cycle Stops Maintenance Condition Part of Adapter Interface Controls
B3R2	CS007 CCOO1 ccoo6 Cc007 c0001-C0002	Set SAR, DR1, and DR2 ABCD Counter Local Store Address Register T Times Clock and machine oscillator Part of Adapter Interface Controls
B352	ск001-СК002 CR001-CR008 Cu013	Force Errors BSC and SDLC CRC Generation Part of CCU Indata Bus
взт2	AP001-AP008	Part of Control Panel Switches and Push Buttons
в3т3	AP001-AP008	Part of Control Panel Switches and Push Buttons
взт4	CP001	Part of Priority Controls
в3U2	AP001-AP008	Part of Control Panel Switches and Push Buttons
взиз	AP001-AP008	Part of Control Panel Switches and Push Buttons
B3U4	AP001-AP008	Part of Control Panel Switches and Push Buttons
B4A2	DS504-DS005	Frame 1 SDR Drivers and Receivers for Byte 1
в4А3	DT004-DT005	Frame 2 SDR Drivers and Receivers for Byte 1
B4A4	DU004-DU005	Frame 3 SDR Drivers and Receivars for Byte 1

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Pages } \end{aligned}$	Card Function
B4A5	DV004-DV005	Frame 4 SDR Drivers and Receivers for Byte 1
B4B2	DS002-DS003	Frame 1 SDR Drivers and Receivers for Byte 0
B483	DT002-DT003	Frame 2 SDR Drivers and Receivers for Byte 0
B484	DU002-DU003	Frame 3 SDR Drivers and Receivers for Byte 0
B485	DV002-DV003	Frame 4 SDR Drivers and Receivers for Byte 0
B4C2	DS001	Frame 1 SAR Drivers
B4C3	DT001	Frame 2 SAR Drivers
B4C4	DU001	Frame 3 SAR Drivers
B4C5	DV001	Frame 4 SAR Drivers
B4D2	cV001-CV061	Storage Protect and Error Detection
B4E2	Cs005 см002-см003 см003	Part of M Bus Assembler Controls Read Call/Write Call and Storage Size Input Address Exception Detection
B4F2	CW001-CW012	Read-Only Storage
B4F5	DW001	Control Signal Terminators
B4P2	CS005	Part of M Bus Assembler Controls
B4R2	CF001-CF002 CF003 CF004 CFOO4	Force Constants Bit Filter and Parity Generator Shift Right Controls Add Constants
B4U2	AP012-AP015	Part of Panel Indicator Circuits
B4U3	AP009-APO11	Part of Panel Indicator Circuits

3705-II CARD FUNCTIONS
See page 6-000 also.

Card Location	ALD Pages	Card Function
B3F2	$\begin{aligned} & \text { CSOO2, CSOO4 } \\ & \text { CsOOG-CSOOT } \end{aligned}$	Part of Data Flow Register Controls Data Flow Register Control Timing
B3G2	CZ001-CZOO5 C0001 C0004-C0005 CD001	C and Z Condition Code Latches and the Generation of Their Sets and Gates Part of Adapter Interface Controls Pulsed Inputs and Outputs Part of Instruction Decode
B3H2	$\begin{aligned} & \text { CD001-CD004 } \\ & \text { Cs003 } \end{aligned}$	Part of Instruction Decode Part of Data Flow Register Controls
B3J2	$\begin{aligned} & \text { CA001-CA004 } \\ & \text { CD001 } \end{aligned}$	ALU Controls Part of Instruction Decode
B3K2	CL001-CL005	Local Store Controls
B3L2	CU005-CU006 CU009-CU010 CU014 CK007 CP006-CP007 CU005	Part of Panel Controls Prog Level 1 Prog Check Detection Meter and Interval Timer Test Mode and Check Stop Mode
B3M2	CU014-CU015 CP002-CP005 CSOO1	Part of Panel Controls Part of Priority Controls, Program Level Select, Program Level Masks and 'Program Level Entered' Latches Set LAR
B3N2	CK003-CK007 CU001 CU013	Error Detection, Error Register Part of Panel Controls Part of CCU Indata Bus
B3P2	CU003-CU004 CU006-CU007 CSOO5	Part of Panel Controls M Bus Assembler Control

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Pages } \end{aligned}$	Card Function
B3Q2	CC002-CC003 CC004-CCOO5 cc008 CSOO1 C0001-C0002	Instruction and Cycle-Steal Times Instruction and Cycle-Steal Counter and Cycle Counter Error Detection Instruction Starts and Cycle Stops Maintenance Condition Part of Adapter Interface Controls
B3R2	CS007 CC001 CC006 CC007 C0001-CQ002	Set SAR, DR1, and DR2 ABCD Counter Local Store Address Register and T Times Clock and machine oscillator Part of Adapter Interface Controls
B3S2	CK001-CK002 CR001-CR008 CU013	Force Errors BSC and SDLC CRC Generation (Type 2 scanner only) Part of CCU Indata Bus
B3T2	AP001-AP008	Part of Control Panel Switches and Push Buttons
B3T3	AP001-AP008	Part of Control Panel Switches and Push Buttons
B3T4	CP001 CM001	Part of Priority Controls Memory Reset
B3U2	AP003-AP015	Part of Control Panel Switches and Push Buttons
B3U3	AP004-AP011	Part of Control Panel Switches. and Push Buttons
B3U4	AP001-AP008	Part of Control Panel Switches and Push Buttons
B3U5	$\begin{aligned} & \text { CC007 } \\ & \text { AP008 } \end{aligned}$	$\begin{aligned} & 8 \text { or } 8.889 \mathrm{MHz} \text { Oscillator } \\ & \text { Lamp Test } \end{aligned}$
B4A2	DS004	Frame 1 SDR Drivers and Receivers: for Byte 1

Card Location	ALD Pages	Card Function
B4A3	DS002	Framie 1 SDR Drivers and Receivers for Byte 0
B4A4	DB101	Memory Control Cable Drivers
B4B2 B4B3	DS001 DT001	Frame 1 SAR Drivers Frame 2 SAR Drivers
B4C2	CG001 CM002	Fet Memory Installed Address Exception
B4D2	CV001-CV061	Storage Protect and Error Detection
B4E2	AJ002	Memory Size Jumper Read Call/Write Call, Storage Size input and Allow Set Memory Diagnostic Register Address Exception Detection
B4F2	CW011-CW012	Read-Only Storage
B4F4	CW001	Alternate ROS Feature
B4F5	DW001	Control Signal Terminators
B4R2	CF001-CF002	
CF003	Force Constants Bit Filter and Parity Generator Shift Right Controls	
B6003	CF004 CF004	Add Constants
B4T2	CN001	Cycle Utilization Counter
B4U2	AP012-AP015	Part of Panel Indicator Circuits
B4U3	AP009-AP011	Part of Panel Indicator Circuits
B4U4	AP001	Panel Rotor Switches

CLOCK TIMES

3705-I (BRIDGE STORAGE)
Each 1.2 microsecond machine cycle is divided into six time slots of 200 ns each. The A, B, C, and D times are used for ALU operations. The E and F times are necessary because of bridge storage read-write requirements.

3705-II (FET STORAGE)
Each 1.0 or 900 ns for Models J -L microsecond machine cycle is divided into four time slots of 250 ns each (225 ns for Models $\mathrm{J}-\mathrm{L}$). The A, B, C, and D times are used for ALU operations. The E and F times (which occur simultaneously with B and C time, respectively) are used to:

- Synchronize cycle times with the 'gate A time' signal.
- Generate the 'mem store new time' signal.
- Detect a CCU clock error.

CLOCK TIME LIGHTS IN DISPLAY A
If the DISPLAY/FUNCTION SELECT switch is in the STATUS position, display A bit lights $1.4,1.5,1.6$, and
1.7 show the CCU' clock times.

NOTE: When the 3705 is running, the bit 1.7 light does not
the light does comes on.

$\begin{array}{\|l\|} \hline \text { Cycle Time } \\ \hline \text { Clock Time } \\ \hline \end{array}$	3705-1 only											
	A				Emern				в			
	то	T1	T2	T3	ro	til	T2	т	то	T1	T2	T3
Bit 1.4 of Display A	0	0	0	0	${ }^{\circ}$	0	0	o	0	0	0	0
$\begin{aligned} & \begin{array}{l} \text { Bit } 1.5 \text { of } \\ \text { Display A } \end{array} \\ & \hline \end{aligned}$	0	0	0	0	-	0	\%	\%	1	1	1	1
$\begin{array}{\|l\|} \hline \text { Bit } 1.6 \text { of } \\ \text { Display A } \\ \hline \end{array}$	0	0	1	1	-	o	9.	+	0	0	1	1
$\begin{array}{\|l\|} \hline \text { Bit } 1.7 \text { of } \\ \text { Display A } \end{array}$	0	1	0	1	\%	T	\%	1	0	1	0	1

NOTE: Lights indicate the clock time that was just
$0=0$ off
$1=0 n$

ALD Pages CCOO1 and CC006
Card Location 01A-B3R2

0100
0000
0
0 O
000000
0
00000
10
00000

STORAGE PROTECTION

By comparing a three bit protect key with a three bit storage key, storage protection makes it possible to proect the contents of storage from an unauthorized attemp o address storage. Specifically, storage protection do not allow instruction fetching from unauthorized storag and does not allow data modification at an unauthorized address; however it does allow data loading from any storage location any time.
The protect keys are located in an 8 key address bit by 3 key address bit local storage area, and the storage keys are located in a (256 for Models $\mathrm{J}-\mathrm{L}$) key address bit by 3 key address bit local storage area. One storage key is assigned to each 2,048 bytes of storage. The pro tect keys and storage keys are set by an Output $X 7$ instruction containing the respective key address. (For more information on the Output $X^{\prime} 73^{\prime}$ instruction, see page 6-880.).
To execute an instruction that does not modify storage, the protect key must be equal to the storage key. If the keys do not match, a protection exception L1 interrupt is set
storage location, one of three condition must be met

- The protect key must be equal to the storage key.
- The protect key is $X^{\prime} 0^{\prime}$, that is, Program Level
$1,2,3$ or 4.
- The storage key is $X^{\prime} 7^{\prime}$, meaning unprotected storage
- If none of the conditions are met, the keys are con sidered not match, and a protection exception L interrupt is set.
When the CCU is reset, storage protection is disabled Therefore, any instruction fetch is valid, and any attempt to modify storage is permitted. The first Output $\times 73^{\prime}$ ion. This instruction must set a storage key of $X^{\prime} 0^{\prime}$ at the
 h instruction execution is taking place. Otherwise, rotection check occurs if the storage key is not already X' 0 '. When the 3705 power is turned on, the bits in the bit pattern. Each key must be initialized by an Output $X^{\prime} 73$ ' containing its key address and key type. Until each key is initialized, caution must be used in the control of program levels and I / O activity that may depend on storage protection
A store storage operation from the control panel cannot cause a storage protection check.

MACHINE CYCLES

The 3705 uses six types of machine cycles: cycle steal 1, cycle steal 2, instruction 1 , instruction 2 , instruction 3 , and idle.

CYCLE STEAL 1 (CS1) CYCLE

CS1 cycles are used for type 3 communication scanner and |type 2,3, or 4 CA cycle-steal operations. They are also used as maintenance cycles in the following control panel operations.

- ROS bootstrap program load (see page 6-961)

Display register. (See page 6-052)
a. In CS1A time, the address in the ADDRESS/DATA switches is placed in the Op register and in display register 1 . The address is also placed in TAR if the 3705 is stopped.
b. In CS1C time, the contents of the external register addressed by bits 0.1-0.3 and bits 1.0-1.3 of the Op register are placed in SDR if the external register is a general register.
c. In CS1D time, the contents of the 'in bus' (for adapter register), of the 'indata bus' (for CCU regisin display register 2 .

- Display storage. (See page 6-056.)
a. In CS1A time, the address in the ADDRESS/DATA switches is placed in SAR and in display register 1 The address is also placed in TAR if the 3705 is stopped. The address in SAR is used to address storage.
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
c. In CS1D time, the contents of SDR are placed in display register 2.
- START pushbutton operations. (See page 6-069).
a. In CS1A time, the address in TAR is placed in SAR and in display register 1.
b. In CS1B time, the contents of the Z bus are placed in SDR. (This occurs by default and has no effect on the start cycle or on the following cycle.)
c. In CS1D time, the address in the active IAR is placed in TAR and in display register 2
- Storing in a register. (See page 6-054.)
a. In CS1A time, the contents of TAR are placed in display register 1. (TAR should contain a register address.)
b. In CS1C time, the data in the ADDRESS/DATA switches is placed in SDR and on the 'out bus' to the adapters.
c. In CS1D time, the contents of SDR are placed in display register 2 . If the register designated by the set address and display register procedure is a CCU register, the contents of SDR are placed in the register.
Storing in storage. (See page 6-057.)
a. In CS1A time, the address in TAR is placed in SAR The address in TAR is then incremented by 2 , and the new address is placed in TAR and in display register 1.
b. In CS1B time, the data in the ADDRESS/DATA switches is placed in SDR.
c. In CS1D time, the contents of SDR are placed in dis play register 2
Storage scanning. (See page 6-063.)
a. In CS1A time, the address in TAR is placed in SAR The address in TAR is then incremented by 2 , and the new address is placed in TAR and in display storage
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
c. In CS1D time, the contents of SDR are placed in display register 2
- Single address scanning. (See page 6-067.)
a. In CS1A time, the contents of TAR are placed in display register 1 . The address in SAR is used to address storage. (The first cycle does not address the location in the ADDRESS/DATA switches.)
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
c. In CS1C time, the address in the ADDRESS/DATA switches is placed in TAR.
d. In CS1D time, the contents of SDR are placed in display register 2. The contents of TAR are placed in SAR.
- Storage test pattern (page 6-060) and single address test pattern (page 6-064).
a. In CS1A time, the contents of TAR are placed in display register 1.
b. In CS1B time, the data in the ADDRESS/DATA switches is placed in SDR.
c. In CS1C time, the contents of SDR are stored in the location addressed by SAR.
In CS1D time, the contents of SDR are placed in display register 2.

CS1 cycles can occur between instruction cycles because CS1 cycles have higher priority.

CYCLE STEAL 2 (CS2) CYCLE
A CS2 cycle is required after each CS1 cycle for the following control panel operations.

- Storing data in a storage locatio
a. In CS2A time, the contents of TAR are placed in display register 1 and in SAR. The address in SAR is used to address storage.
b. In CS2B time, the contents of the storage location addressed by SAR (original +2) are read into SDR

解 play register 2.
Storage test pattern
a. In CS2A time, the address in TAR is incremented by 2 and placed in TAR and in display register 1. The
contents of SAR are used to address storage.
b. In CS2B time, the contents of the storage location sed by SAR are p
In $\operatorname{CS} 2 D$ time the contents of SDR are placed in display register 2.

- Single address test pattern
a. In CS2A time, the address in TAR is placed in TAR and in display register 1. (The address is not
- In CS2B time
b. In CS2B time, the contents of SDR are stored at the storage location addressed by SAR
time, the contents of SDR are placed in dis play register 2.

INSTRUCTION 1 (I1) CYCLE

An 11 cycle is used as the first machine cycle taken to execute an instruction. The first 16 bits of the instruction are placed in the Op register. Most instructions require only an 11 cycle for execution. Instructions that require additional machine cycles for execution are listed in the next paragraph.

INSTRUCTION 2 (I2) CYCLE
The 12 cycle is used as the second machine cycle for the following instructions.

- 'Insert character and count' (ICT)
- 'Store character and count' (STCT)
'Insert character' (IC)
- 'Store character' (STC)
- 'Load' (L)
- 'Store' (ST)
- 'Branch and link register' (BALR
- 'Branch and link' (BAL
- 'Load address' (LA)

NSTRUCTION 3 (13) CYCLE

An 13 cycle is required as the third machine cycle for the following instructions if the 3705 has extended addressing.

- 'Load’ (L)
- 'Store' (ST)

IDLE CYCLE

An idle cycle occurs whenever CS1, CS2, I1, 12, or 13 cycles are not being executed. When an idle cycle occurs, the WAIT light turns on, and the 3705 is in the wait state. Th WAIT light turns off when a CS1, CS2, 11,12 , or 13 cycle xecuted.

Idle cycles are those cycle time slots that occur:
(1) When the CCU is hardstopped and no panel functions are being used.
2) When the CCU is program stopped, no panel functions are being used, and no adapter is cycle-stealing.
(3) During the first cycle of a START push button operation (also known as 'dummy' cycles).
4) After an exit instruction when level 5 is masked off and no bids for any level are pending, until an interrupt occurs.

DISPLAY REGISTER

Procedure on page 1-130

000000000000000000000000000000000

STORING DATA IN A STORAGE LOCATIONS WITH THE 3705 STOPPED (PART 1)

Procedure on page 1-140

000000000
00000000
00000000
0

STORING DATA IN A STORAGE LOCATION WITH THE 3705 STOPPED (PART 3)

0
000
000
00
000000
0000
00
000
00

STORAGE TEST PATTERN (PART 3)

SINGLE ADDRESS TEST PATTERN (PART 1)

Procedure on page 1-150

0000000
0000
00000

SINGLE ADDRESS TEST PATTERN (PART 2)

SINGLE ADDRESS TEST PATTERN (PART 3)

000000000000000000000000000000000

SINGLE ADDRESS SCANNING

SINGLE ADDRESS SCANNING (PART 2)

000000000000000000000000000000000

START PUSHBUTTON OPERATIONS

MACHINE CYCLE PRIORITIES

Changing Machine Priorities
(Masking Program Levels)

Output X'7E' Set Mask Bits (page 6-950) and Output X'7F Reset Mask Bits (page 6-960) can change the priority struc ure if they are executed with certain bits on.
be used for instruction execution at that program level. If level 2, 3, or 4 is active, instruction execution at that proram level is allowed to finish before a mask of that level is effective. Only adapter interrupts can be masked in program level 5 .

NOTE: The CE can execute Outputs $X^{\prime} 7 E^{\prime}$ and $X^{\prime} 7 F^{\prime}$ from the control panel. (See page 1-160.)

PROGRAM LEVEL PRIORITIES AND INTERRUPTS

Interrupts are caused by adapters or programs initiating
Interrupts are caused
hardware-forced branches from lower-priority program level to higher program levels. The interrupts occur because of:

- Hardware errors
- Hardware service requests
- Program errors
- Program service requests

Machine cycle priorities determine when a level n interrupt can occur. A level n interrupt can occur when all of the ollowing conditions are met:

- No cycle-steal requests are present.
- The program is at the end of an instruction execution (instruction boundary).
- No interrupt requests at a higher priority level are present.
- Program level n is not masked.
- Program level \mathbf{n} is not active.

NOTE: Level 1 interrupts in program level 1 cause a re-IPL time.
When a level n interrupt occurs, the level n interrup entered' latch sets. Instruction execution at the interrupted
level is temporarily suspended completed at the higher priority level.
The hardware forces a branch to the storage location that is the starting address for level n.
An 'exit' instruction is executed when the interrupt request has been serviced. The instruction resets the 'level n interrupt entered' latch and allows the machine priority controls to determine which program level should be active next. If no other interrupt requests are pending at a higher priority level, where it was interrupted. If no interrupt requests are pending at any level, program level 5 becomes active. If level 5 is masked off and no interrupt requests are pending at any level, then an 'exit' instruction will cause the CCU to go into th 'exit' instruction while in level 5 will set a SVC. superviso Call program interrupt to level 4.

The example at the right shows a possible sequence of inter rupts.

EXAMPLE:

1 The program at level 4 is being executed
2 An L2 interrupt request occurs.
3 The hardware forces a branch to the starting address of program level 2 at the next instruction boundary.

4 The program at level 2 is servicing the $L 2$ interrup

5 An L3 interrupt request occurs, but it is not honored because program level 2 has higher priority.

When the L2 interrupt request is serviced, an 'exit' instruction is executed, and the hardware examines the interrupt requests. Program level 3 becomes active since

7 The program at level 3 services the L3 interrupt request.
8 When the L3 interrupt request is serviced, an 'exit' instruc tion is executed. The hardware examines the interrup higher interrupt requests exist.
9 The execution of the program at level 4 continues from he execution of the program at leva

10 When program execution at level 4 is completed, an 'exit' instruction is executed. Program level 5 is now
active because no interrupts to a higher level are pending.

PROGRAM LEVEL PRIORITIES AND INTERRUPTS (PART 2)

Note: On all $1 B M$ programs, Address $X^{\prime} 00010^{\prime}$ contains a 'store' instruction with the R
and B fields equal to 0 . This instruction and B fields equal to 0 . This instruction
causes the address in the $1 A R$ to be placed at the storage location specified by the sum of the displacement field D and the
constant χ° '00780. Sene constant X ' 00780 '. Seven more 'sto
instructions follow the first 'store' in struction. They store the other seven general registers in the next consecuti address because of the D field value.
This allows program levels 1 and 2 This allows program levels 1 and 2 to
share the same group of generar registers
See page $6-430$ for an explanation of the 'store' instruction.

Priorities between simultaneus interrupt requests assigned to the same level are resolved by the order in which the program tests the s
request latches.
The set/reset condition of a specific interrupt request latch can be checked by using an 'input' instruction to load the condition of the request latch into a general register. Then the 'branch on bit' instruction can test for the specific
input X'7E' (page 6-850) loads CCU Interrupt Request Group 1 into a general register; Input $X^{\prime} 7 F^{\prime}$ (page 6-860), CCU Interrupt Request Group 2; Input $X^{\prime} 76^{\prime}$ (page 6-810) Adapter Interrupt Request Group 1; and Input X'77' (pag 6 -820), Adapter Interrupt Request Group 2.

DATA OPERATION CONTROLS

The Arithmetic Logic Unit (ALU) performs all arithmetic and logic functions. It can perform 8 or 16 bit arithmetic
(with extended addressing, 18 or 20 bits) in one operation

The A side of the ALU can be loaded through the A register with the true or the complemented value of SDR, SDR shifted right one bit position, SAR, or hardware generated

The B side of the ALU can be loaded through the B regiswith the contents of 1 of the 32 general registers or with data from the Y bus.

The chart on this page shows what control lines are active for specific data operations.

Note: The output of the decode circuit is a binary decode of the two select lines. For example, if ' Z bus bits $0.0-0.7$ select 2 ' is active 2. Therefore, the lines 'ALU 0 exclusive or bit 0.0^{\prime} and ' $A L U 0$ exclusive or bit 0.1 ' are selected to determine the setting of the

LOCAL STORE REGISTER CONTROLS (PART 3)

CYCLE STEAL IN (CA 2, CA 3, CA 4, OR TYPE 3 SCANNER)

[^1]

\qquad
\qquad 0 \qquad 10 \qquad 0 00

INPUT REGISTER ADDRESSES

$\begin{aligned} & \text { E Field } \\ & X Y \\ & \hline \end{aligned}$	Register/Function		$\begin{aligned} & \text { FETMM } \\ & \text { Page } \end{aligned}$
00	Gen Reg, Group 0	Reg 0	6.770
01 02		Reg 1 Reg 2	${ }^{6.7770}$
03		Reg 3	6.770
04 05 05		Reg 4	${ }^{6.770} 6$
06		Reg 6	${ }_{6-770}$
07		Reg 7	6-770
-08	Gen Reg, Group 1	Reg 0	${ }_{6}^{6.770}$
${ }_{0}{ }^{\text {A }}$		${ }_{\text {Reg }}$	6.770
${ }^{\circ} \mathrm{OB}$		Reg 3	6.770
${ }_{0}$		Reg 5	${ }_{6}^{6-770}$
${ }^{0}$		Reg 6	6.770
${ }_{10}$	Gen Reg, Group 2	${ }_{\text {Reg }} \mathrm{R}$	${ }_{6}^{6-770}$
11		Reg 1	6.770
${ }_{13}^{12}$		Reg 2 Reg 3	${ }^{6.7770}$
14		Reg 4	6.770
15 16		Reg Reg 6	6.770 6.770
17		Reg 7	6 6-770
$\begin{array}{r}18 \\ \hline 19\end{array}$	Gen Reg, Group 3	Reg 0 Reg 1	${ }_{\text {c }}^{6-770}$
${ }^{1 /}$		Reg 2	$6-770$
18 18 18		Reg^{3}	${ }^{6.770}$
1 D		Reg Reg	${ }_{\text {col }}^{\substack{6-770}}$
1 l		Reg 6 Reg	- 6 6-770
20-3F	A constant of all zeros is loaded into R , and the CCU sets the input/output check L 1 request.		

Note: Inputs and Outputs $\mathrm{X}^{\prime} 50^{\prime} \times \mathrm{X}^{\prime} 5 \mathrm{~F}$ ' are for Inputs and Outputs $X^{\prime} 60^{\prime}-X^{\prime} 67^{\prime}$ are for the type 1 and 4 CA.
Inputs and Outputs \times '68, 69, 6A, 6 B
are used for the remote loader on a
REMOTE 370 . are used for the re
REMOTE 3705 .
Inputs and Outputs $X^{\prime} 6 C^{\prime}-X^{\prime} 6 F^{\prime}$ are
for the type 4 CA.

$\begin{gathered} E \text { Field } \\ X Y \\ \hline \end{gathered}$	Register/Function Type 1 Scanner	$\begin{aligned} & \text { FETMM } \\ & \text { Page } \end{aligned}$	Register/Function Type 2 Scanner	$\begin{aligned} & \text { FETMM } \\ & \text { Page } \end{aligned}$	Register/Function Type 3 Scanner	$\begin{aligned} & \text { FETMM } \\ & \text { Pege } \end{aligned}$
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \end{aligned}$	Unused Interface Address Cntl A Cntl B/C	$\begin{aligned} & \mathrm{A}-140 \\ & \begin{array}{c} \text { A-150 } \\ \mathrm{A}-180 \end{array} \end{aligned}$	Interface Address Unused Unused Check Register	B-130	Interface Address High Speed Select DBAR/Check Register 0 Check Register	$\begin{aligned} & \hline F-180 \\ & F-190 \\ & F-190 \\ & F-200 \end{aligned}$
$\begin{aligned} & 44 \\ & 45 \\ & 46 \\ & 47 \\ & \hline \end{aligned}$	Status Unused Unused	A-120	ICW Input Reg 0-15 ICW Input Reg 16-31 ICW Input Reg 32-45	$\begin{aligned} & \hline \text { B-140 } \\ & \text { B-140 } \\ & \text { B-150 } \\ & \text { B-140 } \\ & \hline \end{aligned}$	SCF/PDF Array Byte LCD/PCF/SDF ICW Bytes 4 ICW Bytes 4 and 5	$\begin{aligned} & F-210 \\ & F-210 \\ & F-220 \\ & F-210 \\ & F-210 \end{aligned}$
$\begin{aligned} & 48 \\ & 49 \\ & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \end{aligned}$	Unused Unused Unused		Unused Unused Unused		CS Control and Byte Count CSAR OId BCC EPCF	$\begin{aligned} & \mathrm{F}-230 \\ & \mathrm{~F} 230 \\ & \mathrm{~F} 230 \\ & \mathrm{~F}-240 \end{aligned}$
$\begin{aligned} & 4 \mathrm{C} \\ & 4 \mathrm{D} \\ & 4 \mathrm{E} \\ & 4 \mathrm{l} \end{aligned}$	Unused Unused Unused Unuse		Unused Unused Unused Unuse		$\begin{aligned} & \text { PDF Array Bits } 0.5-1.7 \\ & \text { Not Used } \\ & \text { ICW Control } \\ & \text { Status } \end{aligned}$	F-240 $\mathrm{F}-240$ $\mathrm{~F}-240$

OUTPUT REGISTER ADDRESSES

${ }_{\substack{E \\ \text { Efield } \\ X Y}}$	Register/Function		$\begin{aligned} & \text { FFTMM } \\ & \text { Peage } \end{aligned}$
00	Gen Reg, Group 0	Reg 0	6-870
01 02		Reg 1 Reg 2	${ }^{6-870} 6$
03		Reg 3	6-870
04 05 05		Reg Reg 5	- $\begin{gathered}6.870 \\ 6.870\end{gathered}$
06		Reg 6	6-870
07 08 08	Gen Reg, Group 1	Reg 7 Reg 0	- $\begin{aligned} & 6-870 \\ & 6.870\end{aligned}$
09		Reg 1	6.870
		Reg 2	- $\begin{aligned} & 6-870 \\ & 6.870\end{aligned}$
${ }_{0}$		Reg 4	6-870
0 O		Reg 5	6-870
${ }^{\text {OE }}$		Reg 6	${ }_{6}^{6-870}$
10	Gen Reg, Group 2	${ }_{\text {Reg }}$	${ }_{6-870}^{6-870}$
11		Reg 1	6-870
12		Reg 2	${ }^{6-870}$
14		Reg Reg 4	${ }_{6-870}^{6-870}$
15		Reg 5	6-870
16		Reg 6	6-870
18	Gen Reg, Group 3	${ }_{\text {Reg }} \mathrm{R}$	${ }_{6-870}^{6-870}$
19 19 19		Reg 1 Reg 2	6.870 6870
${ }_{18}$		${ }_{\text {Reg }} \mathbf{R}$	${ }_{6}^{6-870}$
1 C		Reg 4	6-870
1 T		Reg 5	6.870 6870 880
1F		Reg ${ }^{\text {Reg }} 7$	$\begin{aligned} & 6-870 \\ & 6-870 \end{aligned}$
20-3F	The bits of R are ignored, and the input/output check L1.		

$\begin{aligned} & \text { E Field } \\ & \text { XY } \end{aligned}$	Register/Function	$\begin{aligned} & \text { FETMM } \\ & \text { Pages } \end{aligned}$
50	INCWAR	${ }^{9-110}$
51 52	OUTCWAR	9.120
	Set Sense Register Bits.	9-140
	Set Status Register Bits	9-160
55 56 c 	Set Control Register Bits Rst Control Register Bits	9.180 9.180
	Chnl Adapter Mode Reg	9-210
	Chnl Bus Out Diag Reg	9-220
	Type 3 CA Diag Busy	G-050
	Chnl Adapter Data Buffer	9-240
${ }_{5}^{5 B}$ A	Chnl Tag Diagnostic Reg Unused	9-250
5 D	Unused	
${ }_{5}^{5 \mathrm{~F}}$	Unused	
5 F	Unused	
60	Reset Initial Selection	8.070
61	Unused	
${ }_{6}^{62}$	Data/Status Control	8-080, H -060
	Adaress and ESC Status	
65	Data Buffer Bytes 3,4	8-110, H -090
${ }^{66}$ A	NSC Status Byte	8-120,4
678	Control	8-130,H-120
68 ${ }^{}$	Control	
*69	Read/Mrite	
- 6	Paralel Data Register	
*	Contio Pmm Load heg	
6 D	CA4 EE M Mode Danta Buffer	H-140
**6E	CA4-CSAR Byte \times	${ }_{\text {H-180 }}^{\text {H-180 }}$
**6F	CA4-CSAR Byte 0/1	
	Hardstop	
71	Display Reg 1	6.870
72	Display Reg 2	6-870
	Set Key	6.880
77	The bits of R are ignored	
770	Miscelianeous Control	6.9
78 C	Force CCO Checks	6-920
78	Utility	-6.930
7 B	The bits of R are ignored.	
7 C	Set PCIL 2	6-940
70	Set PCI L4	6.940
7E	Set Mask Bits	6-940

$\begin{aligned} & \text { E Field } \\ & \text { XY } \end{aligned}$	Register/Function Type 1 Scanner	FETMM Page	Register/Function Type 2 Scanner	$\begin{aligned} & \text { FETMM } \\ & \text { Page } \end{aligned}$	Register/Function Type 3 Scanner	FETMM Page
40	Reset Char Service	A-230	Interface Address	B-160	Interface Address	F-250
41	Start Scanner, Reset	A-240	Adr Substitution Ctrl	B. 160	HS Sel Reg, Sub Ctri Reg	F-250
42	Control A	A-250	Upper Scan Limit Ctrl	B-170	DBAR/Scan Limit Ctrl	F-260
43	Control B	A-280				
4	General Control	A.300	${ }^{\text {ICW O O }}$-15	B-180	SCF/PDF Array Byte	F-280
45	Scanner Control	A 310	ICW 16-23	B-190	SCDFPCF/EPCF	$\stackrel{\mathrm{F}-290}{\mathrm{~F}-300}$
46	Set Char Service	A-320	ICW 24-33, 44	B-200	SDF	
47	Force Bid L2 Request	A.330	ICW 34-43	B-210	MISC ICW Bits	F-310
48494 A48	The bits of R are ignored and the CCU sets the input/output check L1 request.				CSControl and Byte Count	
					CSAR	$\mathrm{F}-320$
					Old BCC Reserved	F-320
					PDF Array Bits 0.5-1.7	
$4{ }_{4}^{4 \mathrm{D}}$					ICW Crcle Stal PDFs CS/PDF Pointers, ICW Control	$\stackrel{F}{\mathrm{~F}-330}$
4 F					${ }_{\text {Status }}$ CSIPD	$\mathrm{F}_{\mathrm{F}-350}$

REGISTER IMMEDIATE (RI) INSTRUCTIONS

The CCU takes one 11 cycle to execute each of the eight 'register immeate instructions. The same sequence occurs during $11 \mathrm{~A}, 11 \mathrm{~B}$, and 11 C ferent. For all 'register immediate' instructions, the general register desig-
nated by the R field in the instruction must be an odd-numbered regis-

ADD REGISTER IMMEDIATE (ARI)

\qquad
The data in the 1 field is added to byte $0(N=0)$ or bytes 0 and $1(N=1)$ of the general register designated by the R field. The register specified must be an odd-numbered register. The result is stored in the selected
byte (s) of the general register. If $N=0$, byte 1 of R remains unchanged The ' C ' latch sets if $N=0$ and byte 0 of R overflows, or if $N=1$ and
bytes 0 and 1 overflow. The ' Z^{\prime} latch sets if $N=0$ and byte 0 of R equals 0 or if $\mathrm{N}=1$ and bytes 0 and 1 of R equal 0 .

With Extended Addressing, byte X of the general register is included in the addition if $\mathrm{N}=1$, but byte X does not affect the setting of the C and

AND REGISTER IMMEDIATE (NRI)

The data in the I field is ANDed with byte $0(N=0)$ or byte $1(N=1)$ of he general register designated by the R field. This register must be an The non-selected byte of the register remains unchanged.
The ' C ' latch sets if the selected byte of R does not equal 0 . The ' Z atch sets if the selected byte of R equals 0 .
COMPARE REGISTER IMMEDIATE (CRI)

0	1	2	3	4	$5-6$	7	$8-15$
1	0	1	1	0	R	N	1

The data in the 1 field is compared with byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. This register must be an odd-numbered register. The contents of the general register are no changed.

The ' C ' latch sets if the selected byte of R is less than I. The ' Z latch sets if the selected byte of R equals I.

EXCLUSIVE-OR REGISTER IMMEDIATE (XRI)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | $8-15$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 0 | R | N | 1 |

The data in the 1 field is exclusive-ORed with byte $0(N=0)$ or byte 1 ($\mathrm{N}=1$) of the general register designated by the R field. The register must be an odd-numbered register. The results are stored in the selected byte
of the general register.

The ' C ' latch sets if the selected byte of R does not equal 0 . The latch sets if the selected byte of R equals O.

LOAD REGISTER IMMEDIATE (LRI)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | $8-15$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | R | N | 1 |

The data from the I field is loaded into byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. This register must be an unchanged.
The ' C ' latch sets if the selected byte of R is not equal to 0 . The Z^{\prime} latch sets if the selected byte of R equals 0 .
OR REGISTER IMMEDIATE (ORI)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | $8-15$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | 0 | R | N | 1 |

The data in the 1 field is ORed with byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by R. The register specified by the R field must be an odd-numbered register. A bit position in the resulting byte is
set to 1 if one or both of the corresponding bit positions in the general register and the I field are 1 ; otherwise, the bit is set to 0 . The results are stored in the selected byte of R. The non-selected byte of R remains unchanged.

The ' C ' latch sets if the selected byte of R does not equal 0 . The ' Z ' latch sets if the selected byte of R equals 0 .

SUBTRACT REGISTER IMMEDIATE (SRI)

0	1	2	3	4	5	5	7

The data in the I field is subtracted from byte $0(N=0)$ or from bytes 0 and $1(N=1)$ of the general register designated by the R field. This register must be an odd-numbered register. The results are stored in the

Before the subtraction is done, the I field is expanded with high order zeros to equal the size of the selected byte(s) of the general register.

The subtraction is done by adding the two's complement of the field to the selected bytes of the general register. If the difference firs the result is in two's complemert form.

The ' C ' latch sets if $\mathrm{N}=0$ and byte 0 of R is less than 0 , or if $\mathrm{N}=1$ and bytes 0 and 1 of R are less than 0 . The ' Z ' latch sets if $N=0$ and byte 0 of R equals 0 , or if $N=1$ and bytes 0 and 1 of R equal 0 .

TEST REGISTER UNDER MASK (TRM)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | $8-15$ |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | R | N | 1 |

The data in the 1 field is tested against (ANDed with) byte $0(N=0)$ o must be an odd-numbered register. The contents of R are not changed.
The ' C ' latch sets if the results do not equal 0 . The ' Z ' latch sets if the results equal 0 .

0000000000000000000000000000000000

[^2] 0 0 0 0

0 01 10 0000 0011 10 0 0 0 0 0

REGISTER TO REGISTER (RR) INSTRUCTIONS

The CCU takes one 11 cycle to execute any one of the 25 RR instructions except for the 'branch and link register' (BALR) instruction. The BALR instruction requires an 11 and an 12 cycle for execution.
I For halfword, and 18 or 20-bit operations, the R1 and R2 fields in the instruction can specify any of the eight general registers in the active group. For byte operations, only an odd-numbered register can be specified, therefore the General Register $=(2 \times R)+1$.

ADD CHARACTER REGISTER (ACR)

| 0 | $1-2$ | 3 | 4 | $5-6$ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | R2 | N 2 | 0 | R 1 | N 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

Byte $0(\mathrm{~N} 2=0)$ or byte $1(\mathrm{~N} 2=1)$ of the general register designated by the R2 field is added to byte $0(\mathrm{~N} 1=0)$ or bytes 0 and $1(\mathrm{~N} 1=1)$ of the general register designated bv the R1 field. The result is placed in the selected byte (s) of R1. The registers specified by R1 and R2 must be odd-numbered registers.

With Extended Addressing, byte X of the register specified by $R 1$ is included in the operation. However, byte X does not affect the setting of the C and Z latches.

The ' C ' latch sets if $\mathrm{N} 1=0$ and byte 0 of R 1 overflows, or if $\mathrm{N} 1=1$ and bytes 0 and 1 overflow.

The ' Z ' latch sets if $N 1=0$ and byte 0 of $R 1$ equals 0 , or if $N 1=1$ and bytes 0 and 1 of R1, equal 0 .

ADD HALFWORD REGISTER (AHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	0	1	0	0	0	0

Bytes $\mathbf{0}$ and 1 of the general register designated by R2 are added to bytes 0 and 1 of the general register designated by R1. The result is placed in bytes 0 and 1 of R1.

The ' C ' latch sets if bytes 0 and 1 overflow. The ' Z ' latch sets if bytes 0 and 1 equal 0.

Note: If general register 0 (IAR) is R1, a branch to the address $\overline{\text { formed }}$ in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

ADD REGISTER (AR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	0	1	1	0	0	0

Bytes X, 0, and 1 of the general register designated by R2 are added to bytes $X, 0$, and 1 of the general register designated by R1. The result is placed in R1.

Without Extended Addressing, the operation is the same as for the 'add halfword register' instruction.

The ' C ' latch sets if bytes $X, 0$, and 1 of $R 1$ overflow.
The ' Z ' latch sets if bytes $X, 0$, and 1 of R1 equal 0 .
Note: If general register $\mathbf{0}$ (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

AND CHARACTER REGISTER (NCR)

| 0 | $1-2$ | 3 | 4 | $5-6$ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | R 2 | N 2 | 0 | R 1 | N 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by R2 is ANDed with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by R1. The result is placed in the selected byte of R1. The registers specified by R1 and R2 must be odd-numbered registers.

The ' C ' latch sets if the selected byte of $R 1$ does not equal 0 . The ' Z ' latch sets if the selected byte of R1 equals 0.

AND HALFWORD REGISTER (NHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	$R 2$	0	$R 1$	1	1	1	0	0	0	0	0

Bytes $\mathbf{0}$ and 1 of the general register designated by R2 are ANDed with bytes 0 and 1 of the general register designated by R1. The result is placed in bytes $\mathbf{0}$ and 1 of R1.

The ' C ' latch sets if bytes 0 and 1 of R1 are not equal to 0 .
The ' Z ' latch sets if bytes 0 and 1 of $R 1$ equal 0 .
Note: If general register 0 (IAR) is specified as R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

AND RĖGISTER (NR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	1	0	1	0	0	0

Bytes X, 0, and 1 of the general register designated by R2 are ANDed with bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by R1. The result is placed in R1.

Without Extended Addressing, the operation is the same as for the 'and halfword register' instruction.

The ' C ' latch sets if bytes $\mathrm{X}, 0$, and 1 of R 1 are not equal to 0 .
The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register $\mathbf{0}$ (IAR) is specified as R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

BRANCH AND LINK REGISTER (BALR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	$R 2$	0	$R 1$	0	1	0	0	0	0	0	0

This two-cycle instruction causes an unconditional branch to the storage address in the general register designated by R2. After the 'branch to' address is obtained from R2, and before it is placed in register 0 (IAR), the contents of register 0 are moved to the register specified by R1 to provide for subroutine linkage.

Since register 0 is the IAR, no linkage is provided if it is specified as R1. For the same reason, no branch occurs if it is specified as R2.

The ' C ' and ' Z ' latches are not changed.
COMPARE CHARACTER REGISTER (CCR)

| 0 | $1-2$ | 3 | 4 | $5-6$ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | R 2 | N 2 | 0 | R 1 | N 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |

Byte $0(\mathrm{~N} 2=0)$ or byte 1 ($\mathrm{N} 2=1$) of the general register designated by R2 is compared with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by R1. The registers specified by R1 and R2 must be odd-numbered registers. The contents of the registers are not changed.

The 'C' latch sets if the selected byte of R1 is less than the selected byte of R2.

The ' Z ' latch sets if the selected byte of R1 equals the selected byte of R2.

COMPARE HALFWORD REGISTER (CHR)

$\begin{array}{lllllllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ | 0 |
| :--- |

Bytes 0 and 1 of the general register designated by R2 are compared with bytes 0 and 1 of the general register designated by R1. The contents of the registers are not changed
The 'C' latch sets if bytes 0 and 1 of R1 are less than bytes 0 and
-
R2. ${ }^{\text {Th }}$

COMPARE REGISTER (CR)

0	$1-3$	4	5	5	8	9	10	11	12	13	14
0	15										
0	R 2	0	R 1	1	0	1	1	1	0	0	0

Bytes $X, 0$ and 1 of $R 2$ are compared with $\times 0$ and 1 of $R 1$. The con tents of the registers are not changed.

Without Extended Addressing, the operation is the same as 'compare halfword register
The 'C' latch sets if bytes $\mathrm{X}, 0$, and 1 of R1 are less than bytes $\mathrm{X}, 0$, and 1 of R2
The ' Z ' latch sets if bytes $X, 0$ arid 1 are equal to bytes $\mathrm{X}, 0$, and

EXCLUSIVE-OR CHARACTER REGISTER (XCR)
$\begin{array}{llllllllllllll}0 & 1-2 & 3 & 4 & 5-6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

| R2 | N2 | 0 | R1 | N1 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by R2 is exclusive-ORed with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the gen must be odd-numbered registers. The result is placed in the selected byte of R1.

The ' C ' latch sets if the selected byte of $R 1$ does not equal 0
The ' Z ' latch sets if the selected byte of R 1 equals $\mathbf{0}$.

EXCLUSIVE-OR HALFWORD REGISTER (XHR)

0	$1-3$	4	5	$5-7$	8		10	11	12	13	14
0	15										
0	R2	0	R 1	1	1	0	0	0	0	0	0

Bytes 0 and 1 of the general register designated by $R 2$ are exclusiv The result is placed in bytes 0 and 1 of R1.

The 'C' latch sets if bytes 0 and 1 of R 1 are not equal to 0
The ' Z ' latch sets if bytes 0 and 1 of $R 1$ equal 0
Note: If general register O (IAR) is $\mathrm{R1}$, a branch to the address latches are not change EXCLUSIVE-OR REGISTER (XR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R2	0	R1	1	1	0	0	1	0	0	0

Bytes $X, 0$, and 1 of the general register designated by $R 2$ are exclusiveORed with bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by $\mathrm{R1}$. The result is placed in R 1

Without Extended Addressing, the operation is the same as 'exclusive or hal fword register'

The ' C ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R 1 do not equal 0 .
The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed

LOAD CHARACTER REGISTER (LCR

Byte 0 ($\mathrm{N} 2=0$) or byte 1 ($\mathrm{N} 2=1$) of the general register designated by R2 moved to byte $0 \quad(N 1=0)$ or byte $1(N 1=1)$ of the general register numbered registers.
The ' C ' latch sets if the selected byte of $R 1$ has an even number of data bits set to 1

The ' \mathbf{Z} ' latch sets if the selected byte of R 1 equals 0 .

LOAD CHARACTER WITH OFFSET REGISTER (LCOR)

0	$1-2$	3	4	5	7	8	9	10	11	12	13	14	15
0	R2	N-2	0	R-1	N1	0	1	1	1	1	0	0	0

Byte 0 ($\mathrm{N} 2=0$) or byte 1 ($\mathrm{N} 2=1$) of the register specified by the R2 field position. The bit shifted out of position 7 is lost The resulting byte is placed in the selected byte of R1. The non-selected byte of R1 remains
unchanged. The registers specified by R1 and R2 must be odd-numbered
registers.

The ' C ' latch sets if the bit shifted out of bit position 7 of the selected byte of R2 is 1 .

The ' Z ' latch sets if the selected byte of R1 equals 0 .

LOAD HALFWORD REGISTER (LHR

0	1-3	4	5-7	8	9	10	11	12	13	14	15
0	R2	0	R1	1	0	0	0	0	0	0	0

Bytes $\mathbf{0}$ and $\mathbf{1}$ of the general register designated by R2 are loaded into bytes 0 and 1 of the general register designated by R1

The ' C ' latch sets if bytes 0 and 1 of $R 1$ do not equal 0
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address

LOAD HALFWORD WITH OFFSET REGISTER (LHOR)

0	1	$1-3$	4	5	5	8	9	10	11	12	13
0	R 2	0	R 1	1	1	1	1	0	0	0	0

The ' C ' latch sets if the bit shifted out of bit 1.7 is 1
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address

LOAD REGISTER (LR)

0	1-3	4	5.7	8	9	10	11	12	13	14	15
0	R2	0	R1	1	0	0	0	1	0	0	0

Bytes $X, 0$ and 1 of the general register designated by $R 2$ are loaded into bytes $\mathrm{X}, 0$, and 1 of R1.

Without Extended Addressing, the operation is the same as 'load halfword register'.

The ' C ' latch sets if bytes $X, 0$, and 1 of $R 1$ do not equal 0 .
The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register $\mathbf{0}(I A R)$ is $R 1$, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.
LOAD WITH OFFSET REGISTER (LOR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	1	1	1	0	0	0

Bytes X, 0, and 1 of the general register designated by R2 are shifted right one bit position. A 0 is inserted in the high-order bit position. The result is placed in bytes $\mathrm{X}, \mathbf{0}$, and 1 of R 1 .

Without Extended Addressing, the operation is the same as 'load halfword with offset register.'

The ' C ' latch sets if the bit shifted out of bit 1.7 is 1.
The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches do not change.
OR CHARACTER REGISTER (OCR)

| 0 | $1-2$ | 3 | 4 | $5-6$ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | R 2 | N 2 | 0 | R 1 | N 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by R2 is ORed with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by R1. The registers specified by R1 and R2 must be oddnumbered registers. The result is placed in the selected byte of R1. The non-selected byte of R1 remains unchanged.

The ' C ' latch sets if the selected byte of R does not equal 0 .
The ' Z ' latch sets if the selected byte of R1 equals $\mathbf{0}$.

OR HALFWORD REGISTER (OHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R2	0	R 1	1	1	0	1	0	0	0	0

Bytes 0 and 1 of the general register designated by R2 are ORed with bytes 0 and 1 of the general register designated by R1. The result is placed in bytes 0 and 1 of R1.

The ' C ' latch sets if bytes 0 and 1 of R1 do not equal 0 .
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

OR REGISTER (OR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	0	1	1	0	0	0

Bytes $X, 0$, and 1 of the general register designated by $R 2$ are ORed with bytes $X, 0$, and 1 of the general register designated by $R 1$. The result is placed in bytes $\mathrm{X}, 0$, and 1 of R1.

Without Extended Addressing, the operation is the same as 'or halfword register.

The ' C ' latch sets if bytes $X, 0$, and 1 of R1 do not equal 0 .
The ' Z ' latch sets if bytes $X, 0$, and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

SUBTRACT CHARACTER REGISTER (SCR)

0	$1-2$	3	4	$5-6$	7	8	9	10	11	12	13	14	15
0	R 2	N 2	0	R 1	N 1	0	0	1	0	1	0	0	0

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by R2 is subtracted from byte $0(N 1=0)$ or bytes 0 and $1(N 1=1)$ of the general register designated by R1. Before the subtraction is performed, the selected byte of R2 is expanded with high-order zeros to equal the size of the selected byte(s) of R1. The subtraction is performed by adding the two's complement of the selected byte(s) of R2 to the selected byte(s) of R1. The result is stored in the selected byte(s) of R1. If the difference is less than zero, the result is in two's complement form.

The ' C ' latch sets if $\mathrm{N}=0$ and the selected byte(s) of R1 are less than

The ' Z ' latch sets if $N=1$ and the selected bytes(s) of $R 1$ equal 0 .

SUBTRACT HALFWORD REGISTER (SHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	1	0	0	0	0	0

Bytes 0 and 1 of the general register designated by $R 2$ are subtracted from bytes 0 and 1 of the general register designated by R1. The sub traction is performed by adding the two's complement of bytes 0 and 1 of R2 to bytes 0 and 1 of R1. The result is placed in bytes 0 and 1 of R1. If the difference is less than zero, the result is in two's complement form.

The ' C ' latch sets if bytes 0 and 1 of $R 1$ are less than 0 .
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

SUBTRACT REGISTER (SR)

0	$1-3$	4	5	8	9	10	11	12	13	14	15
0	$\mathrm{R}-2$	0	R 1	1	0	1	0	1	0	0	0

Bytes $X, 0$, and 1 of the general register designated by R 2 are subtracted from bytes $X, 0$, and 1 of the general register designated by R1. The subtraction is performed by adding the two's complement of bytes X, placed in R . If the difference is less than zero, the result is in two's complement form.

Without Extended Addressing, the operation is the same as 'subtract halfword register'

The ' C ' latch sets if bytes $X, 0$, and 1 of $R 1$ are less than 0 .
The ' Z ' latch sets if bytes $X, 0$, and 1 of R1 equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

00000000000000000000000000000

 REGISTER AND STORAGE (RS) INSTRUCTIONSThe CCU takes an 11 and an 12 machine cycle to execute the inser character', 'load halfword', 'store character', or 'store halfword' instruction. The 'load' and 'store instructions each require an 11,12 and 13 cycle.
For the 'insert character' and 'store character' instructions, the general register designated by the R field in the instruction must be

INSERT CHARACTER (IC)
$\begin{array}{lllllll}0 & 1-3 & 4 & 5-6 & 7 & 8 & 9-15\end{array}$

The 16-bit (18 or 20-bit with extended addressing) base address in the general register specified by the B field is added to the displacement specified in the D field. The displacement can be 0 to +127 bytes. The addition forms an effective address that is used to address storage.

The byte at the effective storage address is loaded into byte $0(N=0)$ or byte 1 ($N=1$) of the general register designated by the R field. The
remaining bits of the register are unchanged. R must be an odd register.

The ' C ' latch sets if the selected byte of R has an even number of 1 bits.

The ' \mathbf{Z} ' latch sets if the selected byte of R equals 0 .
Note: If general register 0 (IAR) is specified by B, a constant of X 0680 is used as the base address instead of the contents of
register 0. This permits direct addressing of the 128 bytes star at address X'0680' without having to load a base register.
LOAD (L)
$\begin{array}{lllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9-13 & 14 & 15\end{array}$

0	B	0	R	0	D	1	0

I The 16 -bit (18 or 20-bit with extended addressing) base address in the general register specified by the B field is added to the displacement in the D field. The displacement can be 0 to +31 full words. The addition orms an effective address that is used to address storage.
The low-order 16 -bits (18 or 20 -bits with extended addressing) of the specified by the R field. (The high-order 12,14 or 16 bits in the storage address are ignored.) The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries.

The ' C ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R do not equal $\mathbf{0}$.
The ' Z ' latch sets if bytes $X, 0$, and 1 of R equal 0 .
In a 3705 without Extended Addressing, a 'load' instruction is decoded and executed as a ' load halfword' instruction except
that X ' 0780^{\prime} is used as the base address if IAR is specified by B.

Note: If general register 0 (IAR) is specified by R, an uncondi-
tional branch to the address formed in register 0 occurs. The ' C ' tional branch to the address formed in register 0 occurs. The ' 'C'
and ' Z ' latches are not changed If general register 0 is specified by and X^{\prime} latches are not changed. If general register 0 is specified by
$B, X^{\circ} 070^{\prime}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 32 fullwords starting at address $X^{\prime} 0780^{\prime}$ without having to load a base register

LOAD HALFWORD (LH)

$\begin{array}{lllllll}0 & 1-3 & 4 & 5-7 & 8 & 9-14 & 15\end{array}$

0	B	0	R	0	D	1

The 16 -bit (18 or 20 -bit with extended addressing) base address in the general register specified by the B field is added to the displacement
specified by the D field. The displacement can be 0 to +63 halfword specified by the D field. The displacement can be 0 to +63 halfwords.
This addition

The halfword at the effective storage address is loaded into bytes 0 and 1 of the register specified by the R field. The low-order bit of the effective address is ignored since storage is addressed on hal fword
boundaries.
With Extended Addressing, byte X of the register specified by R is
set to zero during the load operation. to zero during the load operation.
The ' C ' latch sets if bytes 0 and 1 of R do not equal 0
The ' Z ' latch sets if bytes 0 and 1 of R equal 0 .
The Load Halfword instruction is also used in conjunction with the input $X^{\prime} 7 B^{\prime}$ instruction to generate the new BSC-CRC character. When this instruction is executed at program level 2,3,4, or 5, or level 1 during IPL phase 3, the halfword accessed is loaded into both the specified general register and the BSC-CRC register. For non-CRC
operation, the loading of data into the BSC-CRC register serves no purpose.

Note: If general register 0 (IAR) is specified by the R field, an unconditional branch to the address formed in register 0 occurs. The condition codes are not changed. If general register 0 is specified
by $B, X^{\prime} 0700^{\prime}$ is used as the base address instead of the contents of by $\mathrm{B}, \mathrm{X}^{\prime} 0700^{\prime}$ is used as the base address instead of the contents of general register 0 . This permits direct addressing of the 64 halfwords
starting at address $\times^{\prime} 0700^{\circ}$ without having to load a base register.

STORE (ST)

$\begin{array}{llllllll}0 & 1-3 & 4 & 5-7 & 8 & 9-13 & 14 & 15\end{array}$

0	B	0	R	1	D	1	0

The 16 -bit (18 or 20 -bit with extended addressing) base address in the general register specified by the B field is added to the displacement specified by the D field. The displacement can be 0 to +31 fullwords The addition forms the effective address used to address storag.

Bytes $X, 0$, and 1 of the general register specified by the R field ar stored in the low-order 16 bits (18 or 20 bits with extended addressing) of the fullword located at the effective address. The high-order 14 bits (12 or 10 bits with extended addressing) are not affected low-order bit of the effective addres
addressed on halfword boundaries.

Without Extended Addressing, bytes 0 and 1 of the register are stored into the low-order 16 bits of the fullword in storage, and the high-order 16 bits remain unchanged.

The ' C ' and ' Z ' latches are not changed

In a 3705 without Extended Addressing, a 'store' instruction is decoded and executed as a store halfword instruction except

Note: If general register 0 (IAR) is specified by $B, X^{\prime} 0780^{\prime}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 32 fullwords starting at address X ' 0780^{\prime} without having to load a base register.

Special Case: A 'store instruction must be located at storage location $X^{\prime} 0010^{\prime}$. The R field and B field of this instruction both equal
0 . This is the first instruction executed when a program level 1 int rupt occurs. During I1A time of the store instruction, the gate 'Write rupt occurs. During IAA time of the store instruction, the gate 'Write
LS' is blocked in order to perserve the IAR of program level 2. Dur
ing I3D time of the instruction, the storage location $\mathrm{X}^{\prime} 0012^{\prime}$ is forced onto the Indata Bus to address the next storage instruction.

STORE CHARACTER (STC)

0	$1-3$	4	5	5	7	8
0	B	1	R	N	1	D

1 The 16 -bit (18 or 20 -bit with extended addressing) base address in the general register specified by the B field is added to the displacement
specified by the D field. The displacement can be 0 to +127 bytes. The addition forms an effective address that is used to address storage.

Byte $0(N=0)$ or byte $1(N=1)$ of the general register specified by the
R field is stored at the effective storage address. R must be an odd regis R field is stored at the effective storage address. R must be an odd regis ter.

The ' C ' and ' Z ' latches are not changed.
Note: If general register 0 (IAR) is specified by $B, X^{\prime} 0680^{\prime}$ is used direct addressing of the 128 bytes starting at address $X^{\prime} 0680^{\prime}$ without having to load a base register.

STORE HALFWORD (STH)

0	$1-3$	4	$5-7$	8	$9-14$	
0	B	0	R	1	D	1

| The 16 -bit (18 or 20 -bit with extended addressing) base address in the general register designated by the B field is added to the displacement specified by the D fild. The displacement can be to +63 halfwords.

Byte 0 and 1 of the general register designated by the R field are stored at the effective address. The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries.

The ' C ' and ' Z ' latches are not changed.
Note: If general register 0 (IAR) is specified by B, $X^{\prime} 0700^{\prime}$ is used as the base address instead of the contents of register 0 . This permit
direct addressing of the 64 halfwords starting at direct addressing of the 64 halfwords starting at address $X^{\prime} 0700^{\prime}$ is stored at the storage address instead of the contents of register 0 .

00000000000000

000000000000000000000000000000000000

\square

0000000000000000000000000000000000000

Note: See page $6-000$ for data flow
bit card locations.

0 D
0
0
100
0
00
00
0
0
00
01
O
00
0
0
00
0
10
10
0

0000000000000000000000000000000000

0000000000000000000000000000000000

Note: See page 6 -000 for data flow
bit card locations.

000000000000000000000000000000000

000000000000000000000000000000000000

The CCU takes an 11 and an 12 cycle to execute either the 'insert cha acter and count' or 'store character and count' instructions.

For the 'ICT' and 'STCT" instructions, the general register designated by the R field in the instruction must be an odd-numbered register

NSERT CHARACTER AND COUNT (ICT)

0	$1-3$	4	5	5	7	8	9	10	11	12	13	14
0	B	0	R	N	0	0	0	1	0	0	0	0

The B field specifies a general register in the active group. The register The content of the register specified by B is incremented by 1 after the effective address has been obtained. The byte at the effective address is placed in byte $0(N=0)$ or byte $1(N=1)$ of the general register designate by the \mathbf{R} field. The register specified by \mathbf{R} must be an odd-numbered egister. Register 0 should not normally be specified in the B field because it contains the instruction address.
The ' C ' and ' Z ' latches are not changed.
Note: If the registers specified by \mathbf{B} and R are the same, the contents of byte 1 of the register is incremented before the 8 -bit char acter is inserted. If $\mathrm{N}=1$, the inserted character then overlays byte 1 of $N=0$, the register, and the previous incrementing has no significance. If tains the original value plus 1 .
STORE CHARACTER AND COUNT (STCT)

0	$1-3$	4	5	5	7	8	9	10	11	12	13	14
0	B	0	R	N	O	0	1	15				

The B field specifies a general register in the active group. This registe contains an address (effective address) that is used to select a stor
age location. The content of the register specified by B is incremented
by 1. Byte 0 ($N=0$) or byte 1 ($N=1$) of the general register specified by
R is then stored at the effective the general register specified must be an odd-numbered register. Register 0 should not be specified
by the B field because it contains the instruction address.
The ' C ' and ' Z ' latches are not changed.

000000000000000000000000000000000000000

Note: See page $6-000$ for data flow

Instruction	Operation
ICT	B Reg Direct

[^3]00

REGISTER AND IMMEDIATE ADDRESS (RA) INSTRUCTIONS

The CCU takes an 11 and an 12 cycle to execute either the 'branch and link' or the 'load address' instruction.

The 'branch and link' and 'load address' instructions are the only
.
BRANCH AND LINK (BAL)

| 0 | 1 | 2 | 3 | 4 | 5 | 8 | 9 | 10 | 11 | $12-31$ |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| 1 | 0 | 1 | 1 | 1 | R | 0 | 0 | 0 | 0 | A |

This instruction causes an unconditional branch to the storage address
specified
linkage. The address in the A field is then placed in register 0 . Since
$\left\lvert\, \begin{aligned} & \text { register } 0 \text { is the IAR, no linkage is provided if it is specified by } R \text {. Bits } 12, \\ & 13,14 \text { and } 15 \text { of the A field are used only with Extended Addressing. }\end{aligned}\right.$
The ' C ' and ' Z ' latches are not changed.
LOAD ADDRESS (LA)

0	1	2	3	4	$5-7$	8	9	10	11	$12-31$
1	0	1	1	1	R	0	0	1	0	

This instruction places the contents of the A fieid in the general register
specified by the R field. With Extended Addressing bits 1213 . 14 and
specified by the R field. With Extended Addressing, bits 12, 13, 14 and
I5 of the A field are loaded into byte X of R. Without Extended
.
The ' C ' and ' Z ' latches are not changed
Note: If general register 0 (IAR) is addressed, an unconditional branch occurs to the instruction located at the storage address specified by the A field.

$$
000000000000000000000000000000000
$$

000

000000000000000000000000000000

[^4]

REGISTER BRANCH OR REGISTER AND BRANCH (RT) INSTRUCTIONS

The CCU takes on 11 cycle to execute any one of the five register branch, or register and branch instructions.
BRANCH DISPLACEMENT CALCULATIONS
The displacement in halfwords can be calculated as shown below (multiply by 2 for displacement in bytes):

If ${ }^{*}=0$, Displacement halfwords $=1+T$
If ${ }^{*}=1$, Displacement halfwords $=1-T$
Example: A800 is a NO OP.
A803 is a branch to itself indefinitely.
BRANCH (B)

0	1	2	3	4	$5-14$	15
1	0	1	0	1		T
$*$						

* $0+$ displacement
$1=-$ displacement

The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -1023 to +1023 halfwords. Bit 15 determines whether the displacement is positive or negative. An unconditional branch to the "branch to" address occurs.

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the address of the next sequential instruction. Therefore, the displacement from the B instruction is -1022 to +1024 halfwords.

BRANCH ON BIT (BB)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | 8 | $9-14$ | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | M | M | 1 | R | N | M | T | $*$ |
| $*$
 $0=-$ displacement
 $1=-$ displacement | | | | | | | | | | General Register $=(2 \times \mathrm{R})+1$

The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -63 to +63 halfwords. Bit 15 determines whether the displacement is positive or negative. An unconditional branch to the "branch to" address occurs.

The M field specifies a bit in byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. This bit is tested. If the bit is 0 , the next sequential instruction is executed; if the bit is 1 , the next instruction to be executed is at the "branch to" address.

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the address of the next sequential instruction after the $B B$ instruction. Therefore, the displacement from the BB instruction is -62 to +64 halfwords.

M field and N field decode		
	Instruction	
Bit to Be Tested	N 7	MMM-field $238-\text { bit }$
0.0	0	000
1	0	001
2	0	010
3	0	011
4	0	100
5	0	101
6	0	110
7	0	111
1.0	1	000
1	1	001
2	1	010
3	1	011
4	1	100
5	1	101
6	1	110
7	1	111

BRANCH ON C LATCH (BCL)

| 0 | 1 | 2 | 3 | 4 | $5-14$ | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 1 | T | $*$ |

${ }^{*} 0=+$ displacement
$1=-$ displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "'branch to"' address. The displacement specified by the T field can be -1023 to +1023 halfwords. Bit 15 determines whether the displacement is positive or negative.

The ' C ' latch is tested. If it is not set, the next sequential instruction is executed if it is set, the next instruction to be executed is at the "branch to" address.

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 (IAR) is incremented before the instruction is executed, the displacement is with respect to the next sequential instruction after the BCL instruction. Therefore, the displacement from the BCL instruction is -1022 to +1024 halfwords.

BRANCH ON COUNT (BCT)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | 8 | $9-14$ | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 1 | R | N | 1 | T | $*$ |

$\begin{aligned} & * \\ & *=+ \text { displacement }\end{aligned}$

$$
\text { General Register }=(2 \times R)+1
$$

The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -63 to +63 halfwords. Bit 15 determines whether the displacement is positive or negative.

The count contained in byte $0(\mathrm{~N}=0)$ or bytes 0 and $1(\mathrm{~N}=1)$ of the general register designated by the R field is decremented by 1 and then is tested. If the result is 0 , the next sequential instruction is executed. If the result is not 0 , the next instruction to be executed is at the "branch to" address.

If the byte count is $\mathrm{X}^{\prime} 00^{\prime}$ or the halfword count is $\mathrm{X}^{\prime} 00000^{\prime}$ before execution of this instruction, then the effective count value is 256 or 65,536 , respectively.

The ' C ' and ' Z ' latches are not changed when this instruction is executed.

Note: Since register 0 (IAR) is incremented before the instruction is executed, the displacement is with respect to the next sequential instruction after the BCT instruction. Therefore, the displacement from the BCT instruction is -62 to +64 halfwords.

BRANCH ON Z LATCH (BZL)

0	1	2	3	4	$5-14$	15
1	0	0	0	1	T	$*$

*0 $=+$ displacement
$1=$ - displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -1023 to +1023 halfwords. Bit 15 determines whether the displacement is positive or negative.

The ' Z ' condition latch is tested. If not set, the next sequential instruction is executed. If set, the next instruction to be executed is at the "branch to" address

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the next sequential instruction after the BZL instruction. Therefore, the displacement from the BZL instruction can be -1022 to +1024 halfwords.

An 'input' or 'output' or 'exit' instruction takes one 11 cycle for execution.

INPUT

0	$1-3$	4	$5-7$	$8-11$	12	13	14	15
0	E	0	R	E	1	1	0	0

This instruction loads the general register specified by the R field with the contents of the external register specified by the E field
registers. Z ' latches not changed when an 'input' instruction
The ' C ' and ' Z ' latches are not changed when an 'input' instruction is executed.

An input instruction can be executed at program level 1, 2, 3, or 4 1 input/output check this instruction at program level 5 causes the set if the external register address is not assigned or is not recognized by any adapter. It is also set if incorrect parity is detected on the CCU inbus when an input instruction is executed.

Note: If register 0 (IAR) is specified as R, a branch to the effective
address formed in register 0 occurs.

OUTPUT

0	$1-3$	4	$5-7$	$8-11$	12	13	14	15
0	E	0	R	E	0	1	0	0

This instruction places the contents of the general register specified by he R field in the external register specified by the E field. The addresses of the 128 output-addressable registers are shown on 6-151.

The ' C ' and ' Z ' latches are not changed when an 'output' instruction is executed.

An output' instruction can be executed at program level 1, 2, 3, or An attempt to execute this instruction at program level 5 causes the L1 input/output check interrupt request to set. The check also sets if the external register address is not assigned or is not recognized by any dapter. An output instruction executed at program level 2, 3, or 4, or
evel 1 during IPL phase 3 also causes the CRC data register in the CCU to be loaded with the contents of byte 1 of the register specified by R.

Note: If register 0 (IAR) is specified by E, a branch to the effective address formed in register 0 occurs. If register 0 is specified
by R and one of the general registers is specified by E the content of the general register is not changed, and parity is egenerated

EXIT

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0

This instruction is used to leave any of the five program levels. When an 'exit' instruction is executed at a program level, the 'interrupt entered' latch for that program level is reset.

If 'exit' is executed at program level 5 , the program level 4 supervisor interrupt request is set. If no other interrupt requests are present, the next instruction executed is the instruction at the present, the next instruction executed is the instruction at the starting address of the highest program level requested.

If level 5 is masked off and no interrupt requests are pending at any level, then an 'exit' instruction will cause the CCU to go into the "Wait" state (take idle cycles)
until an interrupt occurs.
The ' C ' and ' Z ' latches are not changed

INPUT INSTRUCTION OPERATION

OUTPUT INSTRUCTION OPERATION

0000000000000000000000000000000

000000000000000000000000000000000

CCU INPUT INSTRUCTIONS

The central control unit (CCU) has 44 assigned input instructions. These input instructions set bits in a genera register to indicate various hardware conditions.

INPUTS X‘00' TO X'1F'

 GENERAL REGISTERSInputs $X^{\prime} 00^{\prime}-X^{\prime} 1 F^{\prime}$ load the contents of the general register specified by the E field into the general register specified specified by the
by the R field.
The contents of the general register specified by the E field are set in the B register at 11 C time. Refer to the input instruction on page 6-710.

Storage Size	Bit Position			
	0.0	0.1	0.2	0.3
16 K	0	0	0	1
48 K	0	0	1	1
80 K	0	1	0	1
112 K	0	1	1	1
144 K	1	0	0	1
176 K	1	0	0	1
208 K	1	1	1	1
240 K	1	1	0	1

Note:
last logical
lisM
BSM

INPUT X'70’ STORAGE SIZE INSTALLED

Input $X^{\prime} 70^{\prime}$ causes the general register specified by the R field to be loaded with a combination of bits that indicate the amount of storage installed.

GENERAL REGISTER BIT DEFINITIONS
3705-1 (Bridge Storage)

or 240 K

0.1 A "1" indicates that the amount of storage
installed in the $3705-1$ is either $80,112,208$, installed i.
or 240 K.
0.2 A " 1 " indicates that the amount of storage instated
or 240 K
0.3 A ${ }^{\mathrm{A}} 1 \bar{\prime}$ indicates that tne amount of storage
installed in the $3705-1$ is aither $16,48,80$
$0.4 \quad 144,17,208$, or 240 K.

HARDWARE FUNCTION

INPUT X'71' PANEL ADDR/DATA ENTRY DIGITS

Input $X^{\prime} 71$ ' causes the general register specified by the ADDRESS/DATA switches on the control panel.

GENERAL REGISTER BIT DEFINITIONS

$\mathrm{x.4}$	x .5	x .6	X .7	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7

General Register R
(In CCU)

HARDWARE FUNCTION

The contents of the Y bus are set in the B register at $11 C$ time. Refer

INPUT X‘72’ DISPLAY/FUNCTION SELECT SWITCH

Input $X^{\prime} 72^{\prime}$ causes the general register, specified by the
R field to be loaded with information indicating the
position of the DISPLAY/FUNCTION SELECT switch.
GENERAL REGISTER BIT DEFINITIONS

[^5]hardware function

Gate Input 72 (c0004)
Gate CCU Indata to
Y Bus (CsOO4)
Y Bus (CsOO4)
Gate Y Bus to B Reg (CSOO4)
The contents of the Y bus are set in the B register at 11 C time. Refer
to the input instruction on page 6.710 .

INPUT X'73' INSERT KEY

INPUT X‘74’ LAGGING ADDRESS REGISTER

Input $X^{\prime} 73^{\prime}$ is associated with storage protection. When executed, the key addressed by the last Output $X^{\prime} 73^{\prime}$ is inserted into bits $1.5-1.7$ of the general register specified by the R field.

GENERAL REGISTER BIT DEFINITIONS

General Registe
(In CCU)

When an Input $X^{\prime} 74$ is executed, the contents of the lagging address register (LAR) are transferred to the register specified by the R field. If this input is executed at progra level 2, 3, or 4, the address from LAR is of the last instruc tion executed before the input: If this input is executed in
program level 1 , the address from LAR is of the last instru tion executed before entering level 1.

HARDWARE FUNCTION

0000000000000000000000000000000000

INPUT X'76' ADAPTER LEVEL 1 INTERRUPT REQUESTS

Input $X^{\prime} 76^{\prime}$ is associated with program level 1 interrupt
requests. Execution of this instruction loads the general
register specified by the R field with bits that indicate the
register specified by the R field with bits that
origin of an adapter level 1 interrupt request.
GENERAL REGISTER BIT DEFINITIONS

HARDWARE FUNCTION

nput $X^{\prime} 77^{\prime}$ is associated with program level 2 and level 3 inter rupt requests. Execution of this instruction loads the general register specified by the R field with bits to indicate the origin of an adapter level 2 or 3 interrupt request.
When priority selection is required with two type 4 CAs, this instruction sets or resets the selected latch in each type 4 CA
according to the state of the 'CA4 has priority' latch. It also resets the 'prime priority select' latch.

GENERAL REGISTER BIT DEFINITIONS
0.0 This bit is 0

$\xrightarrow{0.1} \quad \begin{aligned} & \text { Type } 1,2 \text {, or } 3 \text { Scanner } L 2 \\ & A^{\prime \prime} 1 " \text { indicates that a scan }\end{aligned}$
 A "1" indicates that a scanner has requested a program level

$0.2-07 \quad$ These bits are 0
$]_{-1.0}^{\text {Type } 4 \text { CA L3 }}$
A "1" indicates that type $4 \mathrm{CA} \# 1, \# 2, \# 3$, or \#4
has requested a program level 3 interrupt.
1.1 Remote Program Loader L3

A " 1 " indicates that the Remote Diskette Controller
has requested a program level 3 inierrupt.
1.2 Type 2 or Type 3 CA \# 2 L3

A"1" indicates that a type 2 or 3
$\mathrm{CA} \# 2$ has reques
level 3 interrupt.
${ }^{1.3}$ Type 1 or Selected Type 4 CA Data/Status L3
A" "1" indicates that a type 1 or selected type 4 CA has requested a program level 3
data service interupt
1.4 Type 1, 2, or 3 CA \# 1 or Selected Type 4 CA A" 1 " indicates that a type 2 or 3 CA \# 1 has type 1 or selected type 4 CA has requested a program level 3 initial selection interru 1.5.1.6 00 - Type $4 \mathrm{CA} \# 1$ selected

01 - Type 4 CA \#2 seelected
10 - Type 4 CA \#3 selected
11 - Type 4 CA \#4 selected
${ }^{1.7}$ This bit is 0

General Regis (In CCU)

00000 0 0 0 00 01 10

00000000000000000000000000000000000

INPUT X’79' UTILITY

Input $X^{\prime} 79^{\prime}$ causes the general register specified by the
R field to be loaded with information indicating (1) the R field to be loaded with information indicating (1) the (2) the last program level to be active before a level 1 interrupt, (3) the state of the IPL escape control, and

GENERAL REGISTER BIT DEFINITIONS

10.

Note 1: \quad Bits $1.0-1.3$ and $1.6-1.7$ are 0 if input $X^{\prime} 79^{\prime}$ is executed when not in program level 1 .
Note 2: The 3705 Communications Controller has no hardware to force
a 0 in bit 1.5 it results as a default condition. The 3704 Commun
a o in bit 1.5 - it results as a default condition. The 3704
ications Controller has the hardware to force a 1 in 1.5 .

Present only with 900 nanosecond cycle time
$(17.778 \mathrm{MHz}$ oscillator)

HARDWARE FUNCTION

INPUT X'7A' CYCLE UTILIZATION COUNTER REGISTER

The Cycle Utilization Counter Register (CUCR) is accessed via an
Input $X^{\prime} 7 A^{\prime}$ instruction. Input $X^{\prime} 7 A^{\prime}$ provides 15 data bits and a flag bit which sets to 1 to indicate CUCR. The data bits are incremented once for each 8 cycles that are utilized. Utilized cycles are defined as cycles taken for

- Instruction execution
- Cycle steal operations

Notes:

1. The Cycle Utilization Counter Register is a standard feature on 3705 Models J-L only. The counter is also available for 3705 Models E-H, but only on an RPQ basis.
2. For 3705 Models E-H containing a Cycle Utilization Counter Register RPO, the register must be cleared to zero. To determine if a Cycle Utilization Counter Register RPQ is installed and clear the register:
a. Execute a Load Halfword instruction (storage $=X^{\prime} 0000^{\prime}$). b. Execute any Output instruction with the register specified equal to $X^{\prime} 0000^{\prime}$. c. Execute an Input $X^{\prime} 7 A^{\prime}$ instruction to determine if bit 0.0
of the CUCR is set to " 1 ". If bit 0.0 of the CUCR is set to " 1 " the CUCR is installed.

GENERAL REGISTER BIT DEFINITIONS

\[

\]

CNO41

INPUT X'7B' BSC CRC REGISTER

The old CRC accumulation in the Pregister and the new character in the Q register are combined in the new CRC
generation circuitry. Input $X^{\prime} 7 B^{\prime}$ selects the output lines (SO to S15) from the new CRC generation circuitry that corresponds to BSC CRC checking.

CRC GENERATION EXAMPLE

A typical update of the CRC, located in the Character Control Block area, is provided below.
1 Output X'7E' (Set Mask Bits)--to prevent interrupts.
2 Load Halfword-loads the P register with the old CRC accumulation. Each Load Halfword executed changes the contents of the Pregister; therefore, a
Load Halfword instruction should not be executed again until the new accumulated CRC is loaded into a CCU general register.

3 Insert Character-places the new character in a general register.
4 Any output instruction-places the new character in the Q register when the general register used in step 3 ster when the general regis.
is specified in the ' R ' field.
$5 \begin{aligned} & \text { Input } X^{\prime} 7 B^{\prime} \text { (} \text { (BSC CRC Register) or } \\ & \text { Input } X^{\prime} 7 C^{\prime} \text { (SDLC } 8 \text { CRC Register) -selects the corresponding }\end{aligned}$ outputs of the new CRC generation circuitry and places the new accumulated CRC in the eneral register specified in the ' R ' field.

6 Output X'7F' (Reset Mask Bits)-allows interrupts.
7 Store Halfword-stores new CRC accumulation in the CCB area on storage.

NPUT X‘7C’ SDLC 8 CRC REGISTER

The old CRC accumulation in the P register and the new character in the Q register are combined in the new CRC (SO to S15) from the new CRC generation circuitry that corresponds to SDLC 8 CRC checking.

000000000000000000000000000000000000

INPUT X'7D' CCU CHECK REGISTER

Input X'7D'sets the bits in the general register specified by the R field to correspond to the CCU check register. Pages
$6-050$ and $6-051$ show the $C C U$ check $6-050$ and $6-051$ show the CCU check register.
GENẸRAL REGISTER BIT DEFINITION

- 1 - 1

HARDWARE FUNCTION

The contents of the Y bus are set in the B register out 11 C time. Refer
to the input instruction on page 6.710

$00 O O O O O O O O O Q O O O Q O O O O O O O O O O O O Q O Q O O$

INPUT X'7F' CCU LEVEL 2, 3, OR 4 INTERRUPT REQUESTS

HARDWARE FUNCTION

Input X'7F' sets bits in the general register specified by
the R field to indicate which level 2,3 or 4 interrupt
requests are set.

GENERAL REGISTER BIT DEFINITIONS

CCU OUTPUT INSTRUCTIONS

The CCU has 43 assigned output instructions. These output instructions set and reset various CCU latches and load
external registers with data from general registers.

OUTPUTS X'00' TO X'1F' GENERAL REGISTERS

Outputs $X^{\prime} 00^{\prime}-X^{\prime} 1 F^{\prime}$ load the contents of the general register specified by the R field into the general registe specified by the E field.
At 11 D time, the contents of the Z bus (contents of the register specified by the R field) are set in the general instruction on page $6-730$.

OUTPUT X‘70’ HARDSTOP

Output \times ' 70 ' causes the 'hardstop' latch to set The 3705 comes to a complete stop, and IPL is
required to continue processing using the adapters. The bit settings are ignored since this output performs performs a control function.

OUTPUT X‘71’ DISPLAY REGISTER 1

Output $X^{\prime} 71$ causes the contents of the general register designated by the R field to be loaded in display register 1 The PROGRAM DISPLAY light also turns on.

At I1D time, the contents of the Z bus (contents of the general register specified by the R field) are set in display
register 1: Refer to the output instruction on page $6-730$

OUTPUT X‘72’ DISPLAY REGISTER 2

Executing Output $X^{\prime} 72^{\prime}$ causes the contents of the general register specified by the R field to be loaded in display
register 2. The PROGRAM DISPLAY light also turns on

At 11D time, the contents of the Z bus (contents of the general general register specified by the R field) are set in display
register 2. Refer to the output instruction on page $6-730$.

OUTPUT X'73' SET KEY - 3705s WITH UNDER 256K (PART 1)

Output $X^{\prime} 73^{\prime}$ is associated with storage protection. It is
used to set either a storage key or a protect key with the
contents of bits $1.5-1.7$ of the general register designated
contents of bits $1.5-1.7$ of the general register designated
by the R field. Bit 1.3 controls the selection of either a
storage key or a protect key. If bit 1.4 is " 1 "', the addressed
key is set according to bits $1.5-1.7$. If bit 1.4 is " 0 ", the key is set according to bit
addressed key is not set.

Input $X^{\prime} 73^{\prime}$ can be used to set bits in a general register
according to the key addressed by the last Output $X^{\prime} 73^{\prime}$
GENERAL REGISTER BIT DEFINITIONS

along with bits $0.4-0.6$, torm the storage key
address. If bit 1.3 is 0 " these bits are ignored

HARDWARE FUNCTION

The contents of the Z bus (contents of the general register specified by the R field) set storage protection at 11 D time. Refer to the output instruction on page $6-730$.

OUTPUT X'73' SET KEY - 3705s WITH UNDER 256K (PART 2)

OUTPUT X'73' SET KEY - 3705s WITH OVER 256K (PART 1)

(Storage Protect)

Output $X^{\prime} 73^{\prime}$ is associated with storage protection. It is used to set either a storage key or a propect key with the
contents of bits $1.5-1.7$ of the general register designated by the R field. Bit 1.3 controls the selection of either a
storage key or a protect key. If bit 1.4 is " " 1 ", the addressed
key is set according to bits $1.5-1.7$. If bit 1.4 is " 0 ", the
addressed key is not set.
Input $X^{\prime} 73^{\prime}$ can be used to set bits in a general register
according to the key addressed by the last Output $X^{\prime} 73^{\prime}$.
GENERAL REGISTER BIT DEFINITIONS
General Register (In CCU)

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6

HARDWARE FUNCTION

The contents of the Z bus (contents of the general register specified by the R field) set storage protection at I1D time Refer to the output instruction on page $6-730$

OUTPUT X‘73' SET KEY - 3705s WITH OVER 256K (PART 2) (STORAGE PROTECT)

OUTPUT X'77' MISCELLANEOUS CONTROLS

Output ${ }^{\prime} 77^{\prime}$ contains controls used to set or rese
arious interrupt requests.

GENERAL REGISTER BIT DEFINITIONS

HARDWARE FUNCTIO

At IID time, the contents of the Z bus (contents of the general register specified by the R field) set the control shown on this page. Refer to the output instruction on page 6-730.
a Remote Programer Loader is installed on a 3705-11, the ROS bootstrap program executes an Output $X 77$, after the load module has been successfully transferred, that reset the 'program initiated IPL' latch (GE102) if it was set.

Output X'78' provides a means for testing the CC check circuits under diagnostic control by forcing checks in the CCU data flow. This output is ignored if the CCU is not in test mode.

Note: You may have to take corrective action after using this output and store data with the correct parity in the affected register or storage location.

GENERAL REGISTER BIT DEFINITIONS

HARDWARE FUNCTION
At I1D time, the contents of the Z bus (contents of the general register specified by the R field) cause the functions shown on this page. Refer to the output instruction on page 6-730.

OUTPUT X'79' UTILITY

Output X'79' sets or resets various CCU latches.

GENERAL REGISTER BIT DEFINITIONS

HARDWARE FUNCTION

At I1D time, the contents of the Z bus (contents of th general register specified by the B register) cause th instruction of page 6-730.

OUTPUT X'7A' CYCLE UTILIZATION COUNTER RESET

When this instruction is issued, the bits in the Cycle Utilization Counter Register are reset to zero. The general register bits of
the Output $X^{\prime} 7 A^{\prime}$ instruction are ignored.

[^6]
OUTPUT X‘7C' SET PCI L3

Output \times ' $7 C^{\prime}$ sets the program cor ${ }^{+r}$ rolled interrupt request for level 3 . Since this instruction performs a function, the
bit settings of the register are ignored.

OUTPUT X’7D' SET PCI L4

Output $\mathrm{X}^{\prime} 7 \mathrm{D}^{\prime}$ sets the program controlled interrupt request for level 4. Since this instruction performs a function, the bit settings of the register are ignored

OUTPUT X‘7E’ SET MASK BITS

Output $X^{\prime} 7 E^{\prime}$ ' is used to set mask bits to prevent interrupts Output $X^{\prime} 7 E^{\prime}$ is used to set mask bits to p

GENERAL REGISTER BIT DEFINITIONS

HARDWARE FUNCTION
At 11D time, the contents of the Z bus (contents of the general register specified by the R Field) cause the function shown on this page. Refer to the output instruction on page 6.730 .

OUTPUT X‘7F' RESET MASK BITS

Output $X^{\prime} 7 F^{\prime}$ is used to reset the mask bits for program
level interrupts.
general register bit definitions

HARDWARE FUNCTION

At IID time, the contents of the Z bus (contents of the general register specified by the R field) cause the functions shown on this page. Refer to the output instruction on page 6-730

1.0

IPL

Initial program load (IPL) controls the loading of an initial program into the 3705 .
3705, automatic loading of a bootstrap program into storage from a read-only-storage (ROS) array, and finally passing of control to the bootstrap program. The bootstrap program 1) controls channel operations until the first load module from the host is successfully transferred into storage under
a channel I/O Write IPL command or (2) controls remote-program-loader operations until the first load module from he host is successfully transferred into storage via the com unication facility. After successful transfer of the first passes control to the loaded program segment which then controls the loading of whatever additional load modules
are required to complete the 3705 control program load.
IPL is accomplished by successfully completing the three hases of the IPL operation.
Two lights in display B on the control panel indicate the three phases of IPL. The LOAD light on the control panel is turned on when the IPL is initiated, and is not
 CCU general register designated by the R field.

IPL INITIALIZATION

IPL PHASE 1

During IPL phase 1 , the LOAD light turns on, and a general reset occurs in the 3705. The duration of the reset depends upon the duration of the action initiating the IPL. For example, if the LOAD push button is held in, the reset lasts until
the push button is released.

The general reset:

1. Sets mask bits for program levels $2-5$ and adapter
2. Resets all interrupt entered latches.
3. Resets all CCU interrupt requests
4. Resets PROGRAM STOP and HARD STOP
5. Discontinues instruction execution.
6. Disables storage protection.
7. Turns on the control panel TEST light.

Minimal reset occurs in the channel adapters unless the IPL is the result of a power-on-reset. The RESET switch completel complete power-on-reset occurs in the remote program loader it is installed.
When the phase 1 reset ends, phase 2 begins.

Summary of IPL Phase 1 Resets.

$\begin{aligned} & \text { Logic } \\ & \text { Page } \end{aligned}$	Card Location	Function
CC004	8302	Inhibit I Cycles
${ }^{\text {CLLOO5 }}$		Condition LS Write
CM001 CPOOO	B4C2 8374	Intibit Storage Operations
${ }_{\text {CPOO1 }}$	B3T4 B3M2	Inhibit Allow Instructions Mask Interrupt Levels
	- ${ }_{\text {B3M }}^{\text {B3M }}$	Mask Interrupt Levels
Cs002	${ }_{\text {B3F2 }}$	Conditions Set SDR byte X, 0 , and 1
		Inhibit Set Bad Addr
${ }^{\text {csoou }}$	B3F2	Condition TAR Set
4	B3F2	Gate CCU Indata to Y b
CS007		Sete Sap to Y bus
CU004	B3P2	Reset Address Compare
		Reset Program Stop
cu005	B3L2	Set Test Mode
cu007	B3P2	Reset BP Ck Stp Mode Reset Clock Step
cu014	B3L2	Reset Start, Display, Store
		Reset PCI Bid Lev 2
		Reset Addr Exception
		Reset Allow Irpt
CU015	взм2	Reset Interrupt Key
		Reset PCl Bid Lev 4
		Reset Svc Bid Lev 4
CV061	${ }^{\text {B4D2 }}$	Inhibit Storage Pro
CX002	B3D2	Priority Register Occupied Latches

*Refer to Output X ' 79 ' Bit 1.0 Page 6.930

IPL (PART 2)

IPL PHASE 2
During IPL phase 2, the ROS bootstrap program is auto matically loaded into storage sequentially from location
\times ' 000000^{\prime}. Different ROS arrays are installed in the 3705 depending upon which type channel adapter is installed or, in the case of the remote 3705-11, whether the remote program loader is installed with or without channel adapters See 2-000 for all ROS arrays types.) In any case the CA1, on an MST card and is plugged into the socket at 01A-B4F2 (see logic page CW011 and CWO12) while the Remote Program Loader IL, ROS array card is plugged into the socket The bootstrap progic page CWOO1)

ROS logic pages beginning on the code is co

Note: See page 1-200 for a procedure to clock step
See page $1-200$ for
thru IPL phase 2.

PHASE 2 DATA FLOW

At the beginning of IPL phase 2, SAR and TAR contain all Os. Cycle steal cycles are used to load the ROS boot
strap program into storage
trap program into storage.
SAR addresses both storage and ROS. ROS is addressed ata is placed in byte 1 ach cycle steal cycle, the ROS
The first cycle steal cycle in IPL phase 2 stores the first byte of ROS data in byte 0 of the first storage location A 'cross lo to hi' operation places the ROS data in both bytes 0 and 1. Because SAR bit 1.7 is 0 , 'ROS byte 0 ' and
zeros in byte 1 are gated to SDR and loaded into storage.) The second cycle steal cycle stores the second byte of ROS data in byte 1 of the first storage location. (Becaus AR bit 1.7 is 1 ,'ROS byte 0 , from the store read cycle, nd 'ROS byte 1 ' are gated to SDR and loaded into storage.) bootstrap program is loaded. The following data flow charts and pages $6-963$ or $6-964$ show the ROS bootstrap cycle steal operations.

Note: Refer to page CWOOO for a list of ROS program code, simulation run, and ROS flow charts.

0000000000000000000000000000000000000

IPL PHASE 1 AND 2 TIMING - FET STORAGE
IPL Phase LPhase 1

1 - Panel Active
$2+$ Load Push Button In
4. PLL Reset Countdown Started

5 - Set Int Timer Bid
6 + Allow Instruction
7 + Any 1 Time
$8+$ Pre-Empt All But Maint
$9+$ Wait to Ind
$10+$ Load to Ind
1 + Power On or IPL Rese
$12+$ IPL Phase 1 to Ind
$3+$ Rese
4 - Test Mode Latch (Indicator On)
5 - IPL Reset Count Down Complete
6 IPL 2 Latch
$17+$ Bootstrap Mode
8 -Bootstrap ROS 1
18 -Bootstrap ROS 1
$19+$ IPL Phase 2 or 3 to Display B
$19+$ IPL Phase 20
20 - Latch Store
20 - Latch Store
22-Level 1 Bid Sample
23. Prog Level 1 Next

24 - Virgin Level
$25+$ Bid Maint Latch
$26+$ Go Maint
$27+$ Go CS
28 - Go First CS Cycle
29 - cS 1 Time
30 TAR
31-Gate TAR to Y Bus
$32+$ Set S
3 SAR
34 - Gate Y Bus to B Reg
35 + Force Constant 00001
37 + Set TAR
38 Read Call Wr Call Time
39 Block Complete SDR
$40+$ SAR Bits $0.5,0.6$, and 0.7
41 - Gate CCU Indata to Y Bus
$42+$ Select 1 st to 4 th 256 Bytes
43 - Cross Lo to Hi
44 - Gate Z Bus Byte 0 to M Bus
45- Gate Byte 1 to M Bus (Sense Data)
46. Gate Z Bus Byte 1 to M Bus

47- Gate Byte 0 to M Bus (Sense Data)
$48+$ Set SDR
49 SDR
$50+$ Store Pulse
$51+$ Bootstrap Loaded
$\begin{array}{ll}\text { MM40 } \\ 52+\text { IPL Phase } 3 & \text { Cw001 } \\ \text { Notes: } 1 . & \text { B }=\text { Phase }\end{array}$
these timings may vary. (See page D -210)

IPL PHASE 3

ROS bootstrap program execution begins with an inter rupt to program level 1, and the program is executed entirely at this level. The instruction at storage location $X^{\prime} 00010^{\prime}$ is the first instruction to be executed. (The branch to storage address $X^{\prime} 00010^{\prime}$ ' is hardware forced at the start of IPL phase 3.) Refer to logic page CW000 for the listing of the ROS bootstrap program, ROS flow charts, ROS code, and simulation run.

The first section of the program:

1. Saves the general registers for group 0 starting in location X'00780'.
2. Verifies the operation of the 3705 instructions needed by the second part of the bootstrap program; see 2-000, 2-040, 2-080, or 2-120.
3. Tests to determine whether to continue or branch to the
ROS bootstrap escape address $X^{\prime} 06 F C^{\prime}$.
4. If the branch is not taken, saves external registers $X^{\prime} 76^{\prime}$, $X^{\prime} 7 D^{\prime}$, and $X^{\prime} 7 E^{\prime}$ starting at storage location $X^{\prime} 00702^{\prime}$

The TEST light turns off on the control panel after the first part of the test is complete.

The second part of the ROS bootstrap program controls channel adapter or remote program loader operations until the first program load module is successfully transferred from the host. If there is no command pending for completion or CA generate the CA, the ROS bootstrap program has the and Unit Check (UC). If a command other than a Write IPL is pending completion, the CA generates a final status of Device End, Unit Check, and Channel End (CE) if CE has not already been generated. In either case, Not Initialized (sense bit 6) is made available for a subsequent channel Sense command. A Write IPL normally follows the channel Sense command. See the 3704 and 3705 Communications Controllers Remote Program Loader Theory-Maintenance, SY27-0135, for a description of the remote program
loader IPL.

The Write IPL command allows the transfer of the first load module from the host CPU into the 3705. Under the Write IPL command, the load module is stored in sequential storage locations starting at location $X^{\prime} 00400^{\prime}$. The maxi-
| mum size of this load module cannot exceed 768 bytes. When this transfer is successfully completed, the ROS bootstrap program executes an Output $X^{\prime} 77^{\prime}$, with bit 0.0 on in the general register, to reset the IPL 2 latch, the IPL level 1 interrupt request, and the IPL PHASE lights. The ROS bootstrap program turns control over to the program, module just loaded by branching to location ' '00404'. The $^{\text {first two halfwords transferred in the load module must }}$ first two halfwords transferred in the load module must of bytes in the load module in that order:

The IPL operation is complete when the IPL level 1 The IPL operation is complete when the IPL level 1
interrupt request is reset and the IPL. PHASE lights turn off. However, the LOAD and TEST lights remain on until an Output $X^{\prime} 79^{\prime}$ resets them with bits 1.1 and 1.3 on respectively in the general register. When the 3705 is completely loaded, the loaded program should execute this instruction.

The IPL completion point in the ROS boostrap program may not be reached because of one of the following:

1. A CC check hardstop
2. Improper instruction test operation
3. Program continuity check
4. Channel adapter disabled
5. Channel adapter malfunction
6. IPL count transfer check

In this case, the ROS bootstrap program either hard-stops or loops and executes a program display function to try to identify the IPL status. See ROS Testing, 2-000, 2-040 2-080, or 2-120.

IPL PHASE 3 WITH TYPE 1 OR TYPE 4 CHANNEL ADAPTER
Unless the IPL sequence is started by a power on sequence, the state of the type or type 4 CA is not affected by the reset performed in IPL phase 1. Therefore, the ROS boot strap program must handle the following conditions:

1. Channel Interface disabled. The bootstrap program executes Output X'67' with bit 1.4 on in the CCU general register to allow the interface to become enabled. The program loops until the interface becomes enabled.
2. Channel interface enabled. The bootstrap program tests to determine whether or not the native subchannel (NSC) is active with a channel command. Then one of the following actions occurs:
a. If no command is in progress, the bootstrap program signals the type 1 or type 4 CA to send DE, UC status. When this status transfer is complete, the CA program loops, waiting for an initial selection level 3 interrupt request. When the interrupt request is detected, the channel adapter section of this manual see 8-140
. If a command is in progress, the bootstrap proore signals the CA to end the command with CE, DE, UC status. When this status is successfully transferred, the bootstrap program loops waiting for a type 1 or type 4 CA initial selection level 3 interrupt request. The bootstrap program responds to the interrupt reques as described in the type 1 channel adapter section of this manual; see 8-140.

IPL PHASE 3 WITH TYPE 2 OR TYPE 3 CHANNEL

 ADAPTERUnless the IPL sequence is initiated as a result of a power on sequence, the state of the type 2 or type 3 CA is not affected by the reset performed in IPL phase 1. Therefore, the type 2 or type 3 CA bootstrap program must be capable of per forming the following:

1. The bootstrap program requests a level 3 interrupt and loops until the interrupt occurs.
2. The bootstrap program loops until the interface becomes enabled.
3. If the channel interface is enabled and no command is in progress, the bootstrap program determines that no command was in progress when the level 3 interrupt occurred and signals the CA to send DE and UC status to the host CPU. Not initialized is set in the sense register and made available to a subsequent channel Sense interrupt from the CA signals that Write IPL come 3 interrupt from the CA has been received
4. If the channel interface is enabled and a command is in progress, the bootstrap program signals the CA to end the command with CE, DE, and UC status if the com-
mand is not a channel Write IPL command. If the command is a channel Write IPL, a level 3 interrupt is requested to signal the bootstrap program that the command is a Write IPL. The bootstrap program responds as desscribed in the Type 2 Channel Adapter Section of this manual; see 9-310.

SPECIAL STATUS CONDITIONS TO HANDL DUAL CHANNEL IPL CONTENTION:

When an IPL has been started on one channel, a sense command issued by the other channel will receive an initial status of Unit Exception from a type 2 or type 3 CA.
With Dual-ROS and a type 1 or 4 CA, two status sequences are possible for a Sense command:
(1) With Models J-L or Models A-H with E.C. 319139 a CA 1 or 4 will present a sense byte and give final status of CE, DE, and UE.
(2) With 3705 Models A-H without E.C. 319139, the CA 1 or 4 will present final status of CE, DE, and UE without presenting the sense byte.

Note: With N-ROS, a Type 4 CA presents a sense byte followed by a final status of CE, DE, and UE.
An IPL on one channel will end with Channel End
Device End and Unit Check when overridden by an IPL on the other channel.

IPL DATA FLOW

ERROR CHECKING

BRIDGE STORAGE MODULE
3705-I BRIDGE STORAGE
The Bridge Storage Module (BSM) is a ferite core storage unit. The 3705 uses a 16 K (8 K - 18 bitt addressing scheme) BSM as the basis storage unit. A 32 K (116 K -18 18 bits address
ing scheme)
BSM can be chained to the 16 K
BSM to ing schemel
a total of 48 K in can be chained to the trist frame. An additional 64 K can be installed in 32 K increments in each expansion module
for for a total storage capacity of 240 K .
To chain two BSMs, cables are added between the BSMs, and the terminators are moved to the last BSM. The outputs of the data latches in the high-order BSM are DOT-ORed to the out-

The BSM is a separately packaged unit that mounts in the space provided for an MST 1 board. It contains the core array, timing and control circuits, a drive system, a sense/inhibit system, and a set of data latches. The BSM does not contain a 'storage address register (SAR).
Note: The CCU reads and writes even parity to and from storage but uses odd parity checking in the CCU storage but uses odd pa.
when transfering data.
The central control unit (CCU) communicates with the BSM through interface lines that transfer addresses, data, and con trol signals. Interface signals are compatible with MST-1 cirtrol signals. Interface signals are compatible with
cuit technology, but the BSM uses some SLT circuits inter-
nally

Each storage cycle takes a minimum of 1200 nsec and contains a read cycle and a write cycle. (Storage has a destructive readout.) During the write cycle, either the old data is regenerated or new data is stored.

ADDRESSING

3705-I BRIDGE STORAGE

Each address selects 16 data bits and two parity bits (two cores in each of the 9 planes.
The direction of the currents in the crossing X drive, Y drive, and sense lines determines whether a ' 0 ' or a ' 1 ' is read from, or written into a core.
The SAR bits control the current in the X and Y lines.
Note: In any storage configuration, the 16 K BSM is always the last logical BSM.
With a 16 K BSM, the cards at W1D2 and W1E2 control all the X lines. The cards at W1F2, W1G2, and W1H2 co trol all the Y lines. These cards can be swapped to isolate problems.
With a 32 K BSM, the cards at W1D2, W1E2, and W1F2 control all the X 'lines. The cards at $W 1 G 2$, $W 1 H 2$, and to isolate problems.

Part of Address	Cards	
	32 K BSM	16K BSM
Hix	W1E2, W1F2	W1E2
HiY		W1G2

X AND Y DRIVE SYSTEM AND

 TIMING FOR ADDRESSING3705-I BRIDGE STORAGE
The X and Y drive system uses:

- Current sources

Current Sources

Current sources supply drive current to the X and Y windings.
There are four current sources in the BSM that are packaged on
There are four current sources in the BSM that are packaged on
he $W 1 K 2$ card: X read, X write, Y read, and Y write. Each curren
ource consists of a transformer secondary, the primary of which is driven by a transistor controlled by cycle timing. The transformer secondary is also the sink for the drive current.
Gate and Selection System
The gate and selection system directs drive current to a single X-line and a single Y-line. The gate and selection system oper-
ates as a switch at each end of the drive lines to direct the curren source drive current to a single drive line. Address decoders select a pair of 'gate drivers' for X and a pair for Y during the read cycle. During the write cycle, four different drivers are selected in addition to the X write current source and the Y write current source. These drivers, in conjunction with diodes
in the drive lines to the array, direct the current in the reverse direction through the same X and Y lines.

SENSE/INHIBIT (READ/WRITE)

3705-I BRIDGE STORAGE

- One sense/inhibit winding is used for each data bit.

Each winding goes through 8 K of core.
The sense/inhibit winding is parallel to the X-drive lines.
During a read cycle, cores changing states induce pulses in th
sense/inhibit windings.
During a write cycle, the inhibit current in the sense/inhibit

SENSE/INHIBIT (READ/WRITE) 16K
3705-I BRIDGE STORAGE

- One sense/inhibit winding is used for each data bit position, and goes through 8 K of storage addresses.
- The sense/inhibit winding is parallel to the X-drive
lines.
- During a read cycle, cores changing states induce
pulses in the sense/inhibit windings.
During a write cycle, the inhibit current in the sense/ inhibit winding can prevent cores from changing states.


```
A 32 K BSM can be chained with
the basic 16 K of storage to make 48 K of storage. The sense bits from the two BSMs are DOTTS-ORed to get
the storage sense bits. Note: In any storae.
```

Note: In any storage configuration,
the 16 K BSM is the last logical BSM.

READ/WRITE TIMING
3705-I BRIDGE STORAGE

SDR SENSE BITS

If a consistent error occurs in an SDR bit for data coming from storage, use the following chart to determine what card to replace.

$\begin{gathered} \text { Sorage } \\ \text { Sense } \\ \text { Bit } \end{gathered}$	SDR BitsFailing	Suspected Card to Replace	
		16 K	32K
0	0.0	wis4	wik4
1	0.1 0.1	${ }_{\text {W1 }}^{\text {W14 }}$	${ }_{\text {W1K4 }}$
${ }_{3}$	0.2 0.3	${ }_{W 1 H 4}$	${ }_{W} 1{ }^{\text {d }}$
4	0.4	W1H4	W1H4
5	0.5	$\mathrm{w}_{1} \mathrm{H}_{4}$	${ }_{\text {W1H4 }}$
${ }^{6}$	0.6 0.7	${ }_{\text {W1G4 }}$	${ }_{\text {W1G4 }}$
8	Pty Byte 0	W1G4	Wif 4
	1.0	${ }^{\text {W1F4 }}$	W1F4
10	1.1	W1F4	W1E4
11 12	1.2	W1F4	${ }_{W}{ }_{\text {W104 }}$
13	1.4	W1E4	W1D4
14	1.5	W1E4	wic4
15	1.6	W1D4	${ }_{\text {wict }}$
16		W1D4	W1B4
17	Pty Byte 1	W104	W1B4

SENSE/INHIBIT SCOPING PROCEDURES

3705-I BRIDGE STORAGE

Use $1 \times$ probes when scoping the array. When large Use $1 \times$ probes when scoping the array. When
signal levels scope may saturate and distort the wave shape. High noise spikes also occur when the BSM writes bits in positions other than the one being scoped. This is not an error condition. oise level, ground each probe with the high (preferable 6 inches or less) when you display array sense bits. Keep the leads away from th XYZ resistors while scoping because the leads can pick up noise from these resistors.

SENSE BIT SCOPING OF ALL ADDRESSES
A Set up the scope:

1. Use: '-strobe bits $0-8$ ' as a sync point for 16 K , bits ${ }^{0}$-stro '-strobe bits 9-17' as a sync point for 16 K , bits 9.17 '-gate preamp A',
for 32 K , bits $0-8$. '-gate preamp B', K4J02 (SR071) as a sync poin for 32K, bits 8-16.
2. Display 'strobe' on channel A, and note the position for reference.
3. Display the sense bits:

Channel A probe to one sense line
Channel B probe to the other end of the sense line. Channels A and B added.
Channels A and B at the same gain setting. Time Scale: $100 \mathrm{~ns} / \mathrm{cm}$
This gives a differential display on the scope.
Note: The sense bits are logically inverted on the interface between the CCU and the BSM. A logial ' 1 ' bit in the BSM becomes a logical ' 0 ' bit in the CCU (SR077).

The wave forms shown here are typical of a BSM, but they vary with each BSM. Be careful when interpreting distinguish between the actual signal and nois

B Use either the storage scan procedure on page 1-140 or the procedure for storing a test pattern in storage on page 1-140.

Data/Address switches set to 'FFFF'

$\frac{\text { All Addresses }}{\text { Strobe Bits }} 0$

(SRO71)
(SR071)
$\underset{\substack{132 k \\ 1,6 k)}}{\substack{1 \\ \hline}}$

Array Sense Bit 0
K4BO2/K4DO2
S4B02/4DO22
(SR071)
(SRO71)

$\frac{\text { All Addresses }}{\text { Strobe Bits }}$
$(32 \mathrm{~K})$
$(16 \mathrm{~K})$
rray Sense Bit 0
$1 \mathrm{~V} / \mathrm{Cm}$
K4BO2/K4DO2
(SRR071) $\begin{array}{lll} \\ \text { j4BO2/J4DO2 } & \text { (SRO71) }\end{array}$

SENSE BIT SCOPING OF A SINGLE ADDRESS
Set up the scope as in "Sense Bit Scoping of All Addresses", Use either the "Single Address Scan" on page $1-150$ or the
"Single Address Test Pattern Procedure" ${ }^{\text {on }}$ page $1-150$.

Data/Address switches set to 'FFFF

Data/Address switches set to ' 0000 '

storage data to ccu
3705-I BRIDGE STORAGE

Note: The 1 KK BSM is always the la
logical 8 SMM, but it is always in
the first frame physically

STORAGE CONTROLS TO CCU

3705-I BRIDGE STORAGE
When the DIAGNOSTIC CONTROL switch is not in the CLOCK STEP position, 'read call' alternates with 'write call' every 600 ns. However, when the DIAGNOSTIC CON TROL switch is in the CLOCK STEP position, 'read call' and 'write call' alternate at a rate controlled by the oper
tion of the START push button. 'Read call' starts the internal clock in the BSM. The BSM clock runs asynchro nously through one read operation and stops. 'Write call estarts the internal clock in the BSM, and the BSM clock runs asynchronously through one write operation and stops. 'Store new' resets the 'data' latches and puts the informa-
ion on the 'store bit' lines into the 'data' latches. The data in the 'data' latches is written into storage during the write cycle.
'Reset' resets the 'data' latches and the latches controlling
rd time', 'wr time', 'rd set', and 'wr set'.
Note: Bytes 1 and 2 in the storage correspond to bytes

STORAGE CYCLE TIMING

3705-I BRIDGE STORAGE

The BSM is an asynchronous unit; once started, it operates
independently from the CCU. The CCU starts the storage cycle by issuing the 'read call/write call' signal. This turns on the 'timing control' latch and the 'read/write' latch. The 'read/write' latch on defines this cycle as a readout cycle. performing no function at this time but ensuring that the next 'read call/write call' will reset the 'read/write' latch. Therefore, the following cycle will be a write cycle. During the write cycle, the 'set reset' latch is turned off, forcing the next cycle to be a readout cycle.
The CCU allows 600 ns for each cycle (read or write) to be completed; it holds the storage address in SAR for both cycles.

STORAGE CLOCK
Each 'read call/write call' signal turns on the 'timing control' 'latch. This starts the clock, which is a delay line tappec

225 ns , so the duration of each delayed pulse is approxi225 ns , so the duration of each delayed pulse is approxi-
mately 225 ns . These pulses are wired to AND circuits to $\quad 50 \mathrm{~ns} \rightarrow 1$ provide composite timing signals as required.
\because ?

STORAGE PHYSICAL LOCATION

3705-I BRIDGE STORAGE

- 3705 storage is located on the B and C gates.
- The first BSM is located in the B gate of the module in which it is located.
- The B and C gates are referred to as the W1 gate in the storage ALDs

Card side of storage gate
B Gate

Gate	Address Found in Each Frame*			
	Frame 1	Frame 2	Frame 3	Frame 4
B	$224-240 \mathrm{~K}$	$32-64 \mathrm{~K}$	$96-128 \mathrm{~K}$	$160-192 \mathrm{~K}$
C	$0-32 \mathrm{~K}$	$64-96 \mathrm{~K}$	$128-160 \mathrm{~K}$	$192-224 \mathrm{~K}$

*Maximum configuration of the storage. In all configurations, the 16 K

00000
000

SERVICE TECHNIQUES

3705-I bridge storage

bSM SERVICING

For reliable storage operation, the BSM diagnostics should run error-free with the 30 V YYZ drive voltage varied $\pm 1.2 \mathrm{~V}$ from its optimum setting. (See "XYZ Drive Voltage
Reoptimization" on page 7.160.) The standard CE pocket meter is sufficieient for this purpoose, since adjustments are elative to the optimum setting. If BSM operation is unrelible, both $X Y Z$ drive voltage reoptimization and strobe abet both \times Y drve votiage reoptimization and
seting and -30 V reoptimization are required.

The decal on the XYZ current limiting resistor cover lists the proper -30 V and strobe settings for each BSM.
The 30 V power supply is a temperature tracking supply that adjusts by -75
temperature rises.
Card replacement, voltage and strobe adjustments, and epairs to visual shorts or opens are the only repairs that
can be done by the CE. Array failures other than cabling defects, open diodes, and visual opens and shorts require BSM replacement.

fault location

The storage diagnostics should be run to establish a failing pattern, if it is not already evident from the reported problem. If the failure is in the first logical BSM, it may prevent
loading and/or executing the storage diagnostics. Manually loading and/or executing the storage diagnostics. Manually
storing and displaying, or scanning storage may establish the soring and displaying, or scanning storage may estabish the
faiure pattern. The following procecure may also be used tailure antern. The following
Set the MODE SELECT switch to INSTRUCTION STEP.
Press the RESET then LOAD pushbuttons.
Store the following program:

Address	Data	Instruction	
00000	3188	LR	1.3
00002	1181	STH	1,0 (1)
00004	9102	ARI	1 (1), 2
00006	2188	CR	1,2
00008	8802	BZL	$\times \times 0000{ }^{\prime}$
0000A	A80B	B	$\mathrm{x}^{\prime} 00002^{\prime}$
0000c	A102	SRI	1 (1), 2
0000E	1501	LH	5,0 (1)
00010	1580	CHR	5,1
00012	8806	BZL	$\times^{\prime} 0001 A^{\prime}$
00014	7114	OUT	1, $\times^{\prime} 71$
00016	7524	OUT	5, $\times^{\prime 7} \mathbf{7}^{\prime}$
00018	7004	OUT	$0, \times 70^{\prime}$
0001A	A102	SRI	1 (1), 2
0001 C	1388	CR	3,1
0001E	8821	bzL	$\times^{\prime} 00000{ }^{\prime}$

- Check that memory where program is loaded is function ing corctly by displaying and checking program just oaded.
- Store $X^{\prime} 00022^{\prime}$ in register $X^{\prime} 03^{\prime}$. , , 16 K machine

Store $X^{\prime} 08000^{\prime}$ in otherwise.

- Store X'00000' in register $X^{\prime} 00$

Set the MODE SELECT switch to PROCESS

- The program loads each halfword with its address as data and checks that the proper value is stored. If an error
occurs the program will hardstop.
ition other than STATUS or TAR and OP REGISTER. DISPLAYA $=$ Addres

Pressing the START pushbutton causes the program to
loop until the next failure.

- Continue until a failing pattern is established.

Most problems are associated with component failures and are in two categories

1. Normal circuit failures such as card, loose connector, etc.
2. Array failures such as shorted lines, diodes, etc.

All BSM problems should be approached as if they are normal circuit failures. These failures can be broken int the following distinct patterns.

SINGLE BIT, MULTIPLE ADDRESS FAILURES
A sense/inhibit problem usually shows up as an extra or missing bit throughout an 8 K block of storage. (Each sense/inhibit line passes through 8, 192 cores.) If the sense/inhibit card is not at fault, check the wiring to the
inhibit current limiting resistor. (Refer to SR071-076 and to SR264 for locations.) See that -30 V appears on pin 2 of the affected resistor. This failure could also be caused by a defective gate driver card. (See "Addressing" on by a defective
page $7-010$. .
A single bit failure in all addresses could be caused by the current source card, the control driver card, or a bad strobe driver card. Check also for a broken sense/
inhibit wire between the array and the back panel pins Thibit wire between the array and the back panel pin
on the sense amplifier. (See "Sense/Inhibit" 7-030.) A complete sense/inhibit winding resistance should measure approximately 14.0 ohms. An open or shorted sense/n with wing that is determined to

Multiple Bits, Multiple Address Failures

If this type of problem cannot be corrected by card swapping or replacement, an array failure probably exists. If the failY ure is related to an address pattern, it suggests an open X or card.
If the failure is related to a combination of more than one address pattern, it suggests a short between drive lines. Multiple bit failures in ar addresses could be caused by the hibit card.

SHORTS BETWEEN DRIVE LINES

Shorts between drive lines usually show up as the dropping of one or more bits of two addresses. Analysis of the failing帾 shows in almost all cases that they are adjacent in the array. This can be verified by a resistance check. When the
two lines have been located a resistance check should be two ines have been located, a resistance check should be
made between the two lines, moving from one end of the array to the other. Because of the resistance of the windings, less resistance is seen as you get nearer the short.
In almost all cases, the short is caused by foreign materia etween the adjacent pins, or two pins are touching. A If foreign material is causing the short, it is possible that he material cannot be seen. The foreign material may be emoved by passing a piece of paper between the pins at the rea of the short.

DEFECTIVE CORES

A defective core position usually shows up as the dropping of a single bit in a single address. This type of problem can be caused by cracked, chipped, or broken cores losing their Vay 30 V
Vary the -30 V drive voltage and the strobe setting to ee if the rate of failure changes. If the problem persists and you cannot obtain reliable operation, replace the BSM.

POOR SOLDER CONNECTIONS AND WELDS

This type of problem may be initially diagnosed as an open ine due to a diode or an internal open within the array. However, before assuming that either of these are the cause,
nake a complete resistance check.

Open land patterns can be repaired by using number 30 wire to jumper the open.

Solder connections or welds can be resoldered satisfactorily.

BSM REPLACEMENT or SR229 (16K) for applicable jumpers.

CONTINUITY CHECK OF XY DRIVE LINES

0000000000000

LOCATING AN OPEN OR SHORTED DIODE

3705-I BRIDGE STORAGE
Because of the complex connection of the isolation diodes, many parallel paths exist and hinder a simple continuity check. A suggested method of locating a bad diode follows.
This example is for the same failing X address (000110) as described in CONTINUITY CHECK on page 7-110.

1. Turn off the power.
2. Remove X gate cards W1D2 and W1E2 (W1D2, W1E2, and W1F2 for 32K).
3. Probe the points shown with an ohmmeter. Be careful to observe the polarity of the meter as indicated by the + or -. Expected meter readings are infinity (∞) or some resistance R (unpredictable because of meter and circuit variations). An infinite reading in dicates an open
shorted diode.

An open drive line may also be verified by scoping the source driver load resistor on the resistor panel. See 7.150 for the wave form of the Y-read current source with and
without an open diode (see SR264). This method identifies an open array drive line if both Y -read and Y -write appear open. If either appears to be correct, an open diode is ikely. A continuity check is required to determine which diode of the two in the line is open.

Once it has been determined that an open diode does exist, the charts on SR174 and SR184 (SR234 and SR244

Probing points on the botton diode board requires re moval of the BSM. See "Removing the BSM" on this page.

If an open Y-line exists and the fault cannot be located on
the top diode board, the BSM must be removed to expose
the bottom diode board:

1. Disconnect all cables to the BSM
2. Remove all the cards
3. Remove the BSM and lay the unit with the card side down on a table.
4. Loosen the four nuts that hold the array on the board Loosen the four nuts that hold the array on the board
The board is now connected by only the drive and sense/inhibit lines.
5. You can now expose the bottom diode board by the following method
Turn the unit over. Be careful to support the array since it is now connected only by wiring. Pull the array out vertically and turn it over so that it is laying top-side-down on the card socke

REPLACING AN OPEN DIODE

An individual diode cannot be removed because it is a part of a module containing 16 diodes. Replacing an open diode requires soldering an individual GY diode (Part Number
2414891) over the open one. Use the following procedure.
Example: Replacing the read source diode for X address 00001

Since the above procedure paraliels the old diode, only open diodes
can be replaced. A shorted diode requires BSM replacement.

3705-I BRIDGE STORAGE

If a pattern cannot be determined and failures are of a random nature, the following areas should be checked for possible causes of the trouble.

A Use the oscilloscope to perform steps $1,2,3$, and 4

1 Probe the XY drive voltage pulses on the XY read and write current limiting resistors, and compare them with the following pictures.

Sync: -Read Call/Write Call
$200 \mathrm{~ns} / \mathrm{cm}$
Sync: -Re
200 $\mathrm{ns} / \mathrm{cm}$
$10 \times$ Probe

-Read Call/Write Call
$\begin{array}{ccc}\text { B2807 } & \text { (SRO11) } & \text { (32K } \\ \text { B3B07 } \\ \text { (SR011) } & (16 K\end{array}$
\times Read Current Source Resistor $5 \mathrm{~V} / \mathrm{cm}$
Pin 2 (SR264)
Y Read current Source Resistor
$5 \mathrm{~V} / / \mathrm{m}$ $\stackrel{5}{5} \mathrm{~V} / \mathrm{cm} 2(\mathrm{SR} 264)$
ead Call/Write Call (Sync)
-Read Call/Write Call (Sync) $\begin{array}{lll}\text { R8B07 } & \text { (SRO11) } \\ \text { B3B07 } & \\ \text { (SR011) }\end{array}$ $(32 \mathrm{~K})$
$(16 \mathrm{~K})$

+ Read Tim

\section*{| \times Write Current Source Resistor |
| :---: |
| $5 \mathrm{~V} / \mathrm{cm}$ |}

$5 \mathrm{~V} / \mathrm{cm}$
P in 2 (SR264)

000000000000000000000000000000000000
$\begin{aligned} & \text { Note: } \text { No pulse will be observed on resistor pin } 2 \text { since it is the } \\ &-30 \vee \text { power suoply connection }\end{aligned}$
$-30 V$ power supply connection. The $X Y Z$ drive vol tage
supply is a temperature tracking supply so the magnitude of
the pulses may vary slightily if the XYZ drive voltage is not
at -30 volts.

2 Probe the Z drive voltage pulses on the Z (inhibit) current limiting resistors, and compare them with the following pictures.

32 K
-Inhibit A bits 0.5 ${ }_{K 4004}^{200 \mathrm{mv} / \mathrm{cm}}$ (SR071)

16K
-1 nhibibit Byte
J4J04
Z Load Bit 0 Resistor $5 \mathrm{~V} / \mathrm{cm}$
Pin 1 or 3 (SR264
-Read Call/Write Call (Sync

Z load Bit 0 Resistor
$5 \mathrm{~V} / \mathrm{cm}$
Pin 1 or 3 (SR264)
$200 \mathrm{~ns} / \mathrm{cm}$
$10 \times$ probe

3 Probe the control driver, and compare the scope with the following pictures.
Sync (Read Call/ $/ W_{\text {rite }}$ Call)
200 ns $/ \mathrm{cm}$
$200 \mathrm{~ns} / \mathrm{cm}$
$10 \times$ Probe

Read Control
$1 \mathrm{~V} / \mathrm{cm}$

$(32 \mathrm{~K})$
$(16 \mathrm{~K})$
$\begin{array}{r}\mathrm{X} \text { Rd Lo Gate Control } \\ 5 \mathrm{~V} / \mathrm{cm} \\ \hline\end{array}$
$\begin{array}{ll}5 \mathrm{VV} / \mathrm{cm} & \text { SRO21) } \\ \text { C2010 } \\ \text { B2D10 } & \text { (SRR021) }\end{array}$
$(32 \mathrm{~K})$
$(16 \mathrm{~K})$

 $1 \mathrm{~V} / \mathrm{cm}$
C2B04
B2804
(SRO21

$(32 \mathrm{~K})$
$(16 \mathrm{~K})$

x Wr Lo Gate Control | $\begin{array}{ll}5 \mathrm{~V} / \mathrm{cm} \\ \text { C200 } \\ \text { C20 } \\ \text { (SR021) }\end{array}$ |
| :--- | :--- | $\begin{array}{cc}\text { C2D06 } & \text { (SRO21) } \\ \text { B2DO6 } \\ \text { (SRO21) }\end{array}$

$(32 \mathrm{~K})$
$(16 \mathrm{~K})$
2006 (SR021) (16K)

4 Probe the strobe driver, and compare the scope with
the following picture.
Sync (-Read Call/Write Call)
$200 \mathrm{~ns} / \mathrm{cm}$
$10 \times$ probe

Read Call/Write Call
$\begin{array}{lll}\text { BV2007 } & \text { (SRO11) } & \text { (32K } \\ \text { B3B07 } & \text { (SR011) } & \text { (16K }\end{array}$
(16K)

Strobe Bits 0.8/9.17

(16K)

3 Check for improper setting of the $-30 \mathrm{~V},+6 \mathrm{~V},-4 \mathrm{~V}$, -14 V , and +3 V supply voltages. Use a Weston ${ }^{*} 901$ or equivalent meter to adjust these voltages. The +3 V supply, Refer to the "Power Supply Adjustments and Checks" section.

Check for loose voltage connectors to the large board. See SR264 for the connections. See SR264 for the connections.

D. Check for unplugged back panel resistor assemblies,

* Trademark of Weston, Inc

See "Sense/Inhibit-Scoping Procedures' for instructions on cycling a single address.

ADJUSTMENTS
3705-I BRIDGE STORAGE

XYZ DRIVE VOLTAGE REOPTIMIZATION
NOTE: If two BSMs are in the same frame, treat them as one BSM for voltage reoptimization. Voltage points for storage are shown on ALD page SR101.

Drive voltage marginal limits are normally reverified whenever replacing S / Z, timing, driver source, or strobe driver cards.

To reoptimize the drive voltage:

1. Loop the storage diagnostics. (Use Worse Case-Schmoo Test Routine number 09.)
2. Determine the upper drive voltage limit. Slowly decrease (approach zero) the drive voltage until an error occurs. (Measure the voltage at power control board OXD-AIC6-E04, common OXD-AIB6-E02. See page D-230. Adjust the drive voltage with the potentiometer on the card in position S 5 of the power control board.) Record the last operating voltage as the upper limit.
3. Determine the lower drive voltage limit. Slowly increase (negative from - 30 V) the drive voltage until an error occurs. Do not exceed -35 volts as the lower limit.

NOTE: The BSM should run error free for a minimum of of 30 seconds at the last operating point.
4. The optimum drive voltage is the average of the upper and lower drive voltage limits.
5. If the difference between the upper and the lower limits is less than 2.4 volts, strobe reoptimization may be necessary.

NOTE: To minimize the drive voltage power supply tracking error, reoptimize the drive voltage at a BSM ambient temperature of 68° to $86^{\circ} \mathrm{F}$. It is permissible to optimize outside this temperature if necessary, but the drive voltage should be checked as soon as possible within the prescribed range.

Measure the temperature at the base of the array using a thermometer, part number 5392366 , or equivalent.

STROBE SETTING REOPTIMIZATION
To reoptimize the strobe setting:

1. Loop storage diagnostics.
2. Determine and plot the upper and lower drive voltage limits for a range of strobe settings. The strobe should be set in 10 ns increments for this optimization process. Determine these limits as explained in the $X Y X$ Drive Voltage Reoptimization paragraphs. Make the strobe adjustments on the strobe driver card at C3 (B5 for 16 K), using ALD page SR254 as a guide. A decal is provided on the XYZ current limiting resistor cover to indicate the initial setting that should be used as a reference.
3. Plot the limits recorded on the vertical axis and the strobe delay tap setting on the horizontal axis. The selected strobe setting should maximize the difference between the upper and lower drive voltage limits while centering the strobe between the earliest and latest acceptable settings.
4. The optimum drive voltage setting is the average of the upper and lower drive voltage limits at the selected strobe settings.
5. If the differences between the upper and lower voltage limits is less than 2.4 volts, a fault probably exists and must be corrected before further reoptimization is attempted.

POWER SUPPLY CHECKS AND ADJUSTMENTS
The 3705 supplies $-30 \mathrm{~V},+6 \mathrm{~V}$, and -4 V to the BSM. A BSM internal +3 V and voltage sense -14 V is generated from the -6 V and -30 V respectively. The -30 V is a temperaturecompensated drive voltage. (See the temperature graph on page D-230.)

In the power sequence, the -30 V is the last up and the first down.

Measure all voltages with a Weston* 901 meter or equivalent, with the temperature between 68° and $86^{\circ} \mathrm{F}$.

Verify that the +6 V and -4 V are present at the power control board (OXD-AIB6-A04 for +6 V , OXD-AIB6-E04 for - 4 V , and OXD-AIB6-E02 for common). The +3 V may be adjusted by means of a potentiometer on the upper-half of card A4 (32K) or C4 (16K).

NOTE: The +3 V is set by referencing it to the +6 V instead of ground. This results in the meter reading of -3 V .

Measure the $-14 \mathrm{~V},+0.05 \mathrm{~V}$, on A4J11 (32K) or C4J11 (16K) referenced to ground. The voltage can be adjusted with a potentiometer on the lower half of the card at A4 (32K) or C4 (16K). (See ALD page SR101 for voltage measurements.)

* Trademark of Weston, Inc.

FET STORAGE MAINTENANCE PHILOSOPHY AND PHYSICAL LOCATIONS

FET STORAGE MAINTENANCE PHILOSOPHY
FET Storage Array Cards
FET storage has single-bit error correction. Therefore, FET array cards with single-bit errors are not replaced. When two errors
occur at any address, a double-bit error is detected. A doubleoccur at any address, a double-bit error is detected. A doublebit error can be caused by one error on each card of a card pair or by a double-bit error on one card of a card pair. The worst
card should be replaced (the card with the double-bit error or the card with the most single-bit errors). See IBM Maintenance Diagnostic Program IBM 3705 Communications Controller

ET Storage Support Cards
When a failure occurs on one of the storage support cards, the diagnostic indicators can be used to aid in isolating the failure. Failures that cause a loss of timing signals (such as chip select iming or write pulses) may be isolated by card substitution or by the use of an oscilloscope

Intermittent Problems
Intermittent failure of FET storage array cards should be a rare ccurrance. If the IFTs do not indicate a storage problem but ther indications (such as a machine check auto-IPL or hardOp with SDR or Op Reg CC checks) point to an intermittent
Determine the failing address using the maintenate cedure on Page 7-260. If this procedure does not point to the failing address, use the procedure on Page 7-290.
2. Replace the pair of array cards at the suspected address, or
f feasible, try replacing one of the array cards at a time. Intermittent problems are more likely to be caused by failures
in the MST support logic. in
FET STORAGE PHYSICAL LOCATIONS
The 3705-II contains FET storage while the $3705-\mathrm{I}$ contains one or more bridge storage modules (core). The $3705-\mathrm{II}$ comes in Models E, F, G, H.J. K, and L. The Model E has one frame Models F and J have two frames, Models G and K have three frames, while the Models H and L have four frames. In the base frame, storage size increases in increments of 32 K bytes (maxi mum of 256 K bytes). In the first expansion frame, storage
increases in increments of 64 K bytes (maximum of 512 K bytes).

The chart below shows model and submodel designations with equivalent storage size

Base Frame	First Expansion Frame	Second Expansion Frame	Third Expansion Frame	
Models	Models	Models	Models	Storage Size
E1	F1	G1	H1	32K
E2	F2	G2	${ }^{\mathrm{H} 2}$	${ }^{64 \mathrm{~K}}$
E3	F3	G3	H3	96K
E4	F4	G4	H4	128K
E5	F5	G5	H5	160 K
E6	F6	G6	H6	192K
E7	F7	G7	H7	224K
E8	F8	G8	H8	256K
-	J1	K1	L1	320 K
-	J2	K2	L2	384K
-	J3	K3	L3	448K
-	J4	K4	L4	512 K

All 3705-II Model E-H FET storage is located in the basic frame in gate 01B. None is located in the expansion frame ase frame (gate 01B) and the first expansion frame (gate 02B The FET storage cycle time is one microsecond for Models E-H and 900 nanoseconds for Models J-L. A read operation is performed every " A " cycle-even when in a stopped condition. Write operations are performed only when the CCU requires a store operation. The storage controls include automatic single bit error correction and double-bit error detection. When a CCU and the parity bits for both bytes are inverted to force parity errors in the CCU. Data bits are not altered when a double-bit error is detected.
The IFTs are the primary means of servicing FET storage. A diagnostic indicator panel is located on the FET storage gate to assist you in isolating troubles when the IFTs canno loaded, or the trouble cannot be found using the IFTs. The FET storage requires two special voltages: +3.4 V and 3705 -II with more than three cards in the OXD power control gate is located on the 01 B gate mounted behind the diagnostic indicator panel. The +8.5 V is derived from the +12 V SCR supply (see $\mathrm{D}-330$). The +3.4 V supply is located on gate 01 H . The 3.4 V and 8.5 V power supplies on a 3705-II with only two or three cards in the OXD gate are located on the 01H gate (see D-500).

01B/02B Gate
(Note 1)

Notes: 1. The 028 gate is installed only when
2. Therage size exceeds 256 K bytes. on the 01 B gate only. The indicators can be used for storage sizes up
and including 512 K bytes.
3. The illustrations shown do not apply
to a $3705-11$ with only two or three
cards in the
cards in the OXD power
gate. Refer to $D-500$.

Card Location	$\begin{aligned} & \mathrm{A} \text { ALD } \\ & \text { Page } \end{aligned}$	Function
01B-A1A2	MM104	Store bit terminators (receivers)
	MM105 MM106	Sense bit drivers
	MM106	Detect sense bits parity error before CCU drivers output-LED 7
	mм107	Detect store bits parity error after CCU receivers-LED 1
018-A1B2	MM201	SAR bit terminators
	MM202	Card select gate latch
	Mm203	Card select decoding
	MM204	Write, gate CSX, and gate CSY
	MM206	Power SAR bit lines
01B-A1C2 (Installed for Models J-L only > 256K)	mм703	Redrive bits to over 256 K byte mem
	MM704	Receive bits from over 256 K byte mem
	MM705	Receive bits from under 256 K byte mem
	MM706	Parity check on data sent to over 256 K byte mem (LED 2)
	Mм707	Parity check on data received from over 256 K byte mem (LED 5)
01B-A1F2	мм301	Data from storage terminators
	Mм302	Data registers for data bits and error corrections bits
	мм 305	Detect (by bit) errors in data read from array
	MM306	Error correction for single-bit error
	MM307	Multiple-bit error detection Generate check bits from
	MM309	Generate check bits from store data Generate sense bits 0.0 and $1 . \mathrm{P}$
	мм310	Block error correction on multiple errors and force parity error
01B-A1G2	MM401	Generate read gate, store pulse, gate diag reg
	MM402	Diagnostic register
	MM404	Diagnostic indicator latches
	MM405 MM406	Diagnostic indicator LED drivers Store data storage drivers
	MM407	Store data parity checker
01B-A1H2	MM501	Data from storage isolation
	MM508	Parity check storage exit-LED 5
	Mм509	Parity error on read under 256K Check bit storage drivers
	MM601	Select card 1-(0-32K) FET array (bits 0.0-1.2)
01B-A1J4	MM601	Select card 1-(0-32K) FET array (bits 1.3-1.7 and C1-C6)
01B-A1K2	MM602	Select card 2-(32K-64K) FET array
01B-A1K4	MM602	(${ }^{\text {(bits } 0.0-1.2)}$ Select card 2 (32K-64K) FET arra
-18.A.k4		$\begin{aligned} & \text { Select card } \\ & \text { (bits } 1.3-1.7 \text { and } \mathrm{C} 1-\mathrm{C} 6 \text {) } \end{aligned}$
01B-A1L2	мм603	Select card 3-(64K-96K) FET array (bits 0.0-1.2)
01B-A1L4	MM603	Select card 3-(64K-96K) FET array (bits 1.3-1.7 and $\mathrm{C} 1-\mathrm{C} 6$)

Note: Card A1U2 is not present on a $3705-$ II with only two or three cards in the OXD power control gate.

$\begin{array}{\|l\|} \hline \text { Card } \\ \text { Location } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { ALD } \\ \text { Page } \end{array}$	Function	$\begin{aligned} & \hline \begin{array}{l} \text { Card } \\ \text { Location } \end{array} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { ALD } \\ \text { Page } \end{array}$	Function
01B-A1M2	мм 604	Select card 4-(96K-1 28K) FET array (bits $0.0-1.2$	01B-A1P2	MM606	Select card 6-(160K-192K) FET array (bits 0,0-1 2)
01B-A1M4	мм604	Select card 4-(96K-128K) FET array (bits 1.3-1.7 and $\mathrm{C} 1-\mathrm{C} 6$)	01B-A1P4	MM606	Select card 6-(160K-192K) FET array (bits 1.3-1.7 and C1-C6)
01B-A1N2	MM605	Select card 5-(128K-160K) FET array (bits 0.0-1.2)	B-A102	mм607	Select card 7-(192K-224K) FET array (bits 0.0-1.2)
01B-A1N4	MM605	Select card 5-(128K-160K) FET array (bits 1.3-1.7 and $\mathrm{C} 1-\mathrm{C} 6$)	01B-A104	MM607	Select card 7-(192K-224K) FET array (bits 1.3-1.7 and C1-C6)

000000000000000000000000000000000

0000000000000000000000000000000000

Card Location	$\begin{array}{\|l\|l\|} \hline \mathrm{ALD} \\ \text { Page } \end{array}$	Function
02B-A1A2	мм201	SAR bit terminators
	MM202	Card select gate latch
	MM203	Card select decoding
	MM204 MM206	Write, Gate CSX, and Gate CSY Power SAT bit lines
02B-A1B2		
	$\begin{array}{\|l\|l} \text { MM503 } \\ \text { MM504 } \end{array}$	mem Data and check bits to over 256 K byte mem
	MM505	Data and check bits from over 256K byte mem
	MM515	Data and check bits from over 256K byte mem.
	MM516	Parity check write data from first mem (LED 3) Parity check on over 256K read (LED 4)
		-
	MM601	Select card 1-(256-288K) FET array (bits 1.3-1.7 and C1-C6)
02B-A1K2	MM602	Select card 2-(288-320K) FET array (bits 0.0-1.2)
02B-A1K4	MM602	Select card 2-(288-320K) FET array (bits 1.3-1.7
02B-A1L2	Mm603	Select card 3-(320-352K) FET array (bits 0.0-1.2)
02B-A1L4	MM603	Select card 3-(320-352K) FET array (bits 1.3-1.7 and C1-C6)
02B-A1J4	MM601 MM601	Select card 1-(256-288K) FET array (bits 0.0-1.2) Select card 1-(256-288) FET array (bits $1.3-1.7$
		$\left\lvert\, \begin{aligned} & \text { Select card 1 } \\ & \text { and C1-C6) } \end{aligned}\right.$
	MM602	Select card 2-(288-320K) FET array (bits 0.0-1.2)
${ }_{\text {ORB-A1 K4 }}$	MM602	Select card 2-(288-320K) FET array (bits 1.3-1.7 and C1-C6)
$\begin{array}{\|l\|l\|} \text { O2B-A1L2 } \\ \text { 02B-A1L4 } \end{array}$		Select card 3-(320-352K) FET array (bits 0.0-1.2)
	мм603	Select card 3-(320-352K) FET array (bits 1.3-1.7

Card Location	$\begin{array}{\|c} \text { ALD } \\ \text { Page } \end{array}$	Function ${ }^{\prime}$
02B-A1M2	MM604	Select card 4-(352-384K) FET array
O2B-A1M4	MM604	Select card 4-(352-384K) FET array
02B-A1N2	MM605	Select card 5-(384-41
		(bits 0.0-1.2)
02B-A1N4	Mm605	Select card 5-(384-416K) FET array

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
02B-A1P2	MM606	Select card 6-(416-448K) FET array (bits 0.0-1.2)
02B-A1P4	MM606	Select card 6-(416-448K) FET array (bits 1.3-1.7 and C1-C6)
02B-A102	мM607	Select card 7-(448-480K) FET array (bits 0.0-1.2)
02B-A104	MM607	Select card 7-(448-480K) FET array (bits 1.3-1.7 and C1-C6)

Card Location	ALD Page	Function
O2B-A1R2	MM608	Select card 8-(480-512K) FET array (bits $0.0-1.2)$ O2B-A1R4
MM60ect(480-512K) FET array (bits 1.3-1.7 and C1-C66 O2B-A1U2	Power supply sense and sequence	

[^7]| FET STORAGE DATA FLOW-PART 2
Addressing
1 SAR bits X.4, X.5, X.6, X.7, and 0.0 decode into 'card select 1 ' through 'card select 8 '. Each card-select line
selects a pair of $F E T$ array cards that contain 32 k of elects a pair of FET array cards that contain 32 k of 'read call write call frame 1 ' is active and selects FET storage located in the base frame. When the X. 5 bit turns on, the signal 'read call write call frame 2 ' selects
the FET storage located in the first expansion frame

SAR Bits					FET Array Cards Selected	Address Bit Range
x. 4	X. 5	x. 6	x. 7	0.0		
0	0	0	0	0	01B-A1 J2/J4	00000-07FFF
0	0	0	0	1	01B-A1 K2/K4	08000-0FFFF
0	0	0	1	0	01B-A1 L2/L4	10000-17FFF
0	0	0	1	1	01B-A1 M2/M4	18000-1FFFF
0	0	1	0	0	018-A1 N2/N4	20000-27FFF
0	0	1	0	1	018-A1 P2/P4	28000-2FFFF
0	0	1	1	0	018-A1 02/04	30000-37FFF
0	0	1	1	1	01B-A1 R2/R4	38000-3FFFF
	1	0			02B-A1 J2/J4	40000-47
0	1	0	0	1	02B-A1 K2/K4	48000 - 4FFFF
0	1	0	1	0	02B-A1 L2/L4	50000-57FFF
0	1	0	1	1	02B-A1 M2/M4	58000-5FFFF
0	1	1	0	0	02B-A1 2 2/N4	60000-67FFF
0	1	1	0	1	02B-A1 P2/P4	68000-6FFFF
0	1	1	1	0	02B-A1 $22 / 04$	70000-77FFF
0	1	1	1	1	02B-A1 R2/R4	78000-7FFFF

The address selection circuits, selected by 'card select x ' decode the selected address from SAR bits 0.1-1.6.

Read Operation

3 The read call portion of the 'read call write call' line line generates the gate $\operatorname{CSX}^{\prime}$ ' (chip select x) pulse and the read gate.
4 During a read operation the 'write' pulse is inactive. The 'read gate to ECC' pulse gates the FET array con-
tents (data bits $0.0-1.7$ and check bits $\mathrm{C} 1-\mathrm{C} 6$) into the ECC (error correction code) data register. This storage output has odd parity and the parity check line 'parity check memory exit' (Models E-H) turns on diagnostic indicator \#5. For Models J-L, a parity check occurring
on a read under 256K operation, or a parity check on a read over 256 K turns on diagnostic indicator \#5. Diagnostic indicator \#4 also turns on if a data error is detected during a read over 256 K operation. The status

5 The ECC generates six new check bits from the contents of data register bits 0.0-1.7 and compares these six new heck bits with the six check bits in the data register. A syndrome bit is generated for each mismatch of check
bits. A syndrome decoder determines if there is (1) no error, (2) a single-bit error, or (3) a double-bit error.

1. No error-data bits 0.0-1.7 are sent to the CCU unchanged. The 'ECC active' diagnostic indicator

A sixteen bit diagnostic register on the control card (01B-A1G2) aids the IFTs in validating the operation of the error detection/error correcting circuitry and in gathering storage error statistics. The output of the diagnostic register SDR (see 7-220). When a "test mask" (combinations of ones and zeros) is set in the diagnostic register, each one causes an nversion of the corresponding bits in the store data while zeros pass the store data unchanged.

Setting the Diagnostic Register
1 An Output X'79' with bits 0.3 and $1.2=1$ sets the 'allow set memory diag reg' latch and 'test mode' latch respectively
2 The test mode latch turning on removes the resets to the diagnostic register and to the 'allow set memory diag reg'

3 'Allow set memory diag reg' brings up 'degate data to mem' $^{\prime}$ that inhibits the store data and C bits from being written into the FET array.

4 Any store instruction may be executed to store the "test mask" data in the diagnostic register (this example uses
the STH (store halfword) instruction). The data at the storage address is not changed during this operation. An installed address must be used to prevent address excep. tion checks.
5 During the 12 cycle of the STH instruction, 'mem store new' arms the 'allow set memory diag reg' latch so that

6 'Store new' brings up (1) 'gate diag reg' that sets the 'write', and (3) 'gate CSX' (used for address selection)

7 The next 'mem reset' pulse resets the 'allow set memor diag reg' latch.

8 The IFTs use the test mask bit pattern in the diagnostic register to force single-bit errors, double-bit errors etc. te validate the ECC (error correction code) circuitry and
to gather statistics on storage errors.

Resetting the Diagnostic Register
9 The diagnostic register resets (1) on a machine reset, (2) when the test mode latch is turned off (output X

"Only when sto

 Allow Set Memory Diag Reg Lat SAR

SDR
Reser
Mem Store New
Store Pulse (Write)
Gate Diag Reg
Diagnostic Register

FET STORAGE TIMING CHART

FET STORAGE MAINTENANCE PROCEDURE-PART 2

Notes:

- Test patterns 0000, FFFF, AAAA, and 5555

Tenerate on all 'ones' check bit pattern.
Test patterns 7FFE and 8001 generate an
Any data halfword generates the same check bit pattern as is complement

FET STORAGE TEST PATTERNS

READ/WRITE CYCLE-USING STORAGE TEST PATTERN

+ Gate card select (B2D13)
- Gate CSX A1 (B2S12)
+ Read gate to ECC (G2G03)
+ Bit 0.0 from memory (F2S13) (Bit 0.0 active)

Scope settings: $\quad 1 \mathrm{~V} / \mathrm{cm}$

READ CYCLE - USING STORAGE SCAN
${ }^{+}$Gate card select (B2D13)

- Gate CSX A1 (B2S12)
+ Read gate to ECC (G2G03)
+ Bit 0.0 from memory (F2S13) (Bit 0.0 active)
Scope settings: $\quad 1 \mathrm{~V} / \mathrm{cm}$

READ/WRITE CYCLE-USING STORAGE TEST PATTERN

+ Gate card select (B2D13)

Gate CSX A1 (B2S12)

+ Read gate to ECC (G2GO3)
+ Bit 0.0 from memory (F2S13) (Bit 0.0 Inactive)
Scope settings: $1 \mathrm{~V} / \mathrm{cm}$
$100 \mathrm{nsec} / \mathrm{cm}$

READ CYCLE-USING STORAGE SCAN
Gate card select (B2D13)

- Gate CSX A1 (B2S12)

Read Gate to ECC (G2G03)

+ Bit 0.0 from memory (F2S13) (Bit 0.0 inactive)

Scope settings: $1 \mathrm{~V} / \mathrm{cm}$
$100 \mathrm{nsec} / \mathrm{cm}$

WRITE CYCLE-USING STORAGE TEST PATTERN

+ Gate card select (B2D13)
+ Data 0.0 to memory (J2J13) (Bit 0.0 active)
+ Write A1 (J2J10)
+ Reset to memory (G2UO5)

Scope settings: $1 \mathrm{~V} / \mathrm{cm}$ 100 cm

WRITE CYCLE-USING STORAGE TEST PATTERN + Gate card select (B2D13)

+ Data 0.0 to memory (J2J13) (Bit 0.0 inactive)
+ Write A1 (J2J10)
+ Reset to memory (G2U05)
Scope settings: $1 \mathrm{~V} / \mathrm{cm}$
$100 \mathrm{nsec} / \mathrm{cm}$

MAINTENANCE PROCEDURE - INTERMITTENT FET STORAGE ADDRESS ERRORS

Use these procedures to trap the failing storage address if the FET storage diagnostics and maintenance procedures do not dicate a problem. These procedures should be used to isolate the problem to a 32 K increment of storage so it can be replace as a last resort.

Procedure A - use this procedure if the 3705 does not have any adapters that cycle steal (that is Type 2 CA, Type 3 CA Type 4 CA using ACF/NCP/VS or higher, or the Type 3 scanner).

Procedure B - use this procedure whenever procedure A does not apply.

PROCEDURE A

(Used when 3705 does not have adapters that cycle steal.)

1. Set the DIAGNOSTIC CONTROL switch to CC CHECK HARDSTOP.
2. Load the EP or NCP and then start the normal operation.
3. If a storage error occurs, the 3705 will hardstop from a CC check with the OP REG or SDR check light on.
4. If the SDR check light is on, go to step 6.
5. If the OP REG check light is on, the failing storage address is two less than the contents of TAR
6. If the OP REG contains a "Load. Address" or "Branch nd Link" instruction, he fails Adrass ass is instruction decoding.
7. The failing instruction will be displayed in the OP REG and should be an ICT, STCT, IC, STC, LH, L, or ST instruction. See Page 6-150 for instruction decoding.
8. If the B field of the instruction (byte 0 , bits 1,2 , and 3 of the OP REG) is 000 , the failing storage address is in the first 32 K increment.
9. Record the displacement field from the failing instruction displayed in the OP REG.
10. Determine the current program interrupt level by using the following procedure:

PROGRAM LEVEL 1 ENTERED iNTERRUPT LEVEL light on?

Level 1 is the current interrupt level. PROGRAM LEVEL 2 ENTERED INTERRUPT LEVEL light on?
Level 2 is the current interrupt level.
PROGRAM LEVEL 3 ENTERED INTERRUPT LEVEL light on? Level 3 is the current interrupt level. PROGRAM LEVEL 4 ENTERED INTERRUPT LEVEL light on?

Level 4 is the current interrupt level. Level 5 is the current interrupt level.
11. Use the B field of the instruction (byte 0 , bits 1,2 , and 3 of the OP REG) and the current interrupt level to determine, from the following chart, the register address to be used to display the contents of the Base Register.

Register Address to Display Base Number

B Field	Current Interrupt Level				
	1	2	3	4	5
	01	01	09	11	19
	02	02	0 A	12	1 A
	03	03	OB	13	1 B
100	04	04	0 C	14	1 C
101	05	05	0 D	15	1 D
110	06	06	0 E	16	1 E
111	07	07	0 F	17	1 F

Set this register address in ADDRESS/DATA switches B and D and display the base
12. The failing storage address is obtained by adding (hex) the displacement field (from step 9) to the base number (from step 11). For the ICT and STCT instructions, the failing storage address is one less than the calculated more than the calculated value.

Note: If the R or R, N field specifies the same register as the B field, this procedure will not work. Use Procedure B if necessary

PROCEDURE B

(Used when Procedure A does not apply.)

1. Obtain two MST-1 CE Indicator Latch Cards, P/N 5851882, and install on boards 01 A-B3 or B4 (only one latch card is needed if your 375 is not over 64 K$)$. See
a description of the use of the latch cards.
2. Jumper pin O of the latch card(s) to pin 01A-B3N2J06 (-Mach Check) -ALD page CK006. This holds the latch cards reset until a machine check occurs.
3. Jumper pin F of latches $\# 1, \# 2, \# 3$, and $\# 4$ to 01A-B3R2G10 (-CD Time)-ALD page CC001

Note: Latches \#1, and \#2 are both on latch card \#1. Latches \#3 and \#4 are on latch card \#2.
4. Jumper pin E of latches \#1, \#2, \#3 and \#4 to Jumper pin E of latches \#1, \#2, \#3 and \#4 to
01A-B3P2J05 (-Program Stop Latch)-ALD page Cu004 Jumper pin D of latch \#1 to $01 \mathrm{~A}-\mathrm{B} 4 \mathrm{E} 2 \mathrm{U} 02$ (1 SAR Bit 0.0)-ALD page CM002.
6. If 64 K or lower, go to Step 10
7. Jumper pin D of latch \#2 to 01A-B4E2M13 (+SAR Bit X.7)-ALD page CMOO2.
8. Jumper pin D of latch $\# 3$ to 01 A B4E2SO3 (SAR X.6)-ALD page CM 002
9. Jumper pin D of latch \#4 to 01A-B4E2J13 (+SAR Bit $\times 7$) ALD page CM002.
10. Reset the latch card(s) and set the DIAGNOSTIC CON TROL switch to CC CHECK HARD STOP
11. Load the EP or NCP and then start the normal operation.
12. If a storage error occurs, the 3705 will hardstop from a CC check with the OP REG or SDR check light on
13. Determine the failing 32 K storage increment using the following chart.

Latch 4 (X.5)	Latch 3 (X.6)	Latch 2 (X.7)	Latch 1 (0.0)	Failing Storage Increment
OFF	OFF	OFF	OFF	$1-32 \mathrm{~K}$
OFF	OFF	OFF	ON	$32 \mathrm{~K}-64 \mathrm{~K}$
OFF	OFF	ON	OFF	$64 \mathrm{~K}-96 \mathrm{~K}$
OFF	OFF	ON	ON	$96 \mathrm{~K}-128 \mathrm{~K}$
OFF	ON	OFF	OFF	$128 \mathrm{~K}-160 \mathrm{~K}$
OFF	ON	OFF	ON	$160 \mathrm{~K}-192 \mathrm{~K}$
OFF	ON	ON	OFF	$192 \mathrm{~K}-224 \mathrm{~K}$
OFF	ON	ON	ON	$224 \mathrm{~K}-256 \mathrm{~K}$
ON	OFF	OFF	OFF	$256 \mathrm{~K}-288 \mathrm{~K}$
ON	OFF	OFF	ON	$288 \mathrm{~K}-320 \mathrm{~K}$
ON	OFF	ON	OFF	$320 \mathrm{~K}-352 \mathrm{~K}$
ON	OFF	ON	ON	$352 \mathrm{~K}-384 \mathrm{~K}$
ON	ON	OFF	OFF	$384 \mathrm{~K}-416 \mathrm{~K}$
ON	ON	OFF	ON	$416 \mathrm{~K}-448 \mathrm{~K}$
ON	ON	ON	OFF	$448 \mathrm{~K}-480 \mathrm{~K}$
ON	ON	ON	ON	$480 \mathrm{~K}-512 \mathrm{~K}$

TYPE 1 CA DATA FLOW

TYPE 1CA DATA FLOW (PART 2)

INITIAL SELECTION ADDRESS AND COMMAND REGISTER AND COMMAND REGISTER

This register contains the I/O device address byte and command byte presented to the channel adapter during initial election. The register can be accessed by Input $X^{\prime} 61$ adapter initial or data/status level 3 interrupt request is set. See $8-070$ for Input X'61' description. This register is referred to as the SIO register in the ALD's.

2

LOCAL STORE

The local store provides buffering for the I/O address byte used in all data and status transfer sequences initiated by the outbound ding for up to four bytes of data for
The control program loads or accesses the $1 / 0$ device ddress and the emulation status byte with Output $X^{\prime} 63$ with $X^{\prime} 64^{\prime}$ or $X^{\prime} 65$ ' instructions, see chart below.

Data	${ }^{\text {Data }}$ Transfer	
Byte		
	$\mathrm{X}^{\prime 6} 4^{\prime}$	X'64'
2	¢ ${ }^{\prime} 6^{\prime}{ }^{\prime}$	${ }^{\text {' }}$ '64'
${ }_{4}$		

3
NSC STATUS BYTE REGISTER

The current status of the NSC is maintained in this register and gated over the channel interface during NSC status ransfer sequences. The control program should set the NSC tatus by executing an Output $X^{\prime} 66^{\prime}$ instruction. The control program
intial selection status regitter

The status byte is generated and presented to the channel rom this register during initial selection sequences excep under the following conditions.

- An initial selection sequence occurs for the native mode subchannel before the NSC status byte provide by the control program has been accepted. The NSC atus byte from the NSC status register is presente generated status.
- An initial selection sequence occurs for an emulation address when the control program has signaled that signaled that ESC Test $1 / 0$ status is available. The ESC status byte provided by the program is presented instead of hardware generated status.

5 initial selection control register

The information in this register identifies the event causing he type 1 channel adapter initial level 3 interrupt request to be set. The register can be accessed by Input $\mathrm{X}^{\prime} 60^{\prime}$, which should be executed only if the interrupt request is
set.

6
DATA/STATUS CONTROL REGISTER
The information in this register controls and identifies events that cruse the type 1 channel adapter data/status level 3 interrupt request to be set. The register can be
accessed by Input $X^{\prime} 62^{\prime}$, which should be executed only if the interrupt request is set. The control program can perorm various control functions by setting or resetting bits in this register with an Output X' 62 ' instruction. The instruc ion should be executed only when the control program is servicing a type 1 CA level 3 interrupt request.

7ERROR/CONDITION REGISTER

The error/condition register is a collection of latches that are set when the CA detects an error or an occurrence of ${ }^{\text {specific asynchronous conditons. }}$ gene 3705 control protion, (see page 8-140). The errors indicated by the error/con dition register cause type 1 CA error interrupts (see page -360)

CARD FUNCTIONS AND LOCATIONS

$\begin{aligned} & \text { Card } \\ & \text { Loc. } \end{aligned}$	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
Y4D2	RA101	1/O Decodes (Type 1 Scanner and CA) /O Feedback L1 Bid Basic Clocking Inbus Doting Inbus Gating
Y4P2	RC101	Chan. Intf. Tags and Control Chan Intf A Receivers ntf. A control Channel Address Jumper Channel Address Parity Check Local Store Assembler Byte 0 Local Store Byte 0 Intf B Address
Y4N2	RC201	Tag Control Clock Tag Control, Start I/O and Op-In Tag Control Tag In latches Tag Control stack chaining stop or Halt I/O Tag Control Enable and Sel. Sys Reset Tag Control Powering
Y4M2	RC301	Bus-Out Repowering Low Address Jumpering Low Address Logic High Address Jumpering High Address Logic Start I/O and Command Registers Local Store Byte 1 Command Decode Outbus Inversion
Y4L2	RC401	$\begin{aligned} & \text { Outbus Termination } \\ & \text { Initial Selection Control } \\ & \text { Service Transer Control } \\ & \text { Byte Count Cortol } \\ & \text { Initial Status Generation } \end{aligned}$
YАк2	RC501	Input/Output Control Assembler and Local Store contro Asynchronous Interrupt contro NSC Control RN Asynchronous Information Error Latches
Y4T2	RC601	NSC Status Register Asynchronous Interrupt Control
Y4T4	$\begin{aligned} & \mathrm{RC801} \\ & \mathrm{RC} 802 \end{aligned}$	Interface A Select Out Relay Interface B Select Out Relay
Y402	RC701	Bus-In Drivers Intf. A Tag-In Drivers Intf. A Select Out Relay Driver and Control gates Bus-In Error Latch
Y4R2	RF101	Intf. B Receivers
Y4S2	RF201	Bus-In Drivers, Intf. B Tag-In Drivers Intf. B Select Out Relay and Control Gates Bus In Error Latch

*The Adbus is not used with the Type 1 Channel Adapter.
** Y4 is the psuedo board location for
the Type 1 Channel Adapter.
The actual board location is $01 \mathrm{~A}-\mathrm{A} 4$.

000
 0000000
 0000000

INPUT AND OUTPUT INSTRUCTIONS

The type 1 channel adapter relies on the 3705 control program to use input and output instructions to contro data transfers. The control program initiates channel data and status transfers, and transfers data between then CA and the CCU with input and output instructions register. The input instructions gate the external register to CCU general registers via the CCU Inbus. Output instructions gate CCU general registers to CA registers via the CCU Out bus. The ' $1 / \mathrm{O}$ register address bus' is decoded in the type cation scanner.
Executing an Input or Output $X^{\prime} 60^{\prime}, X^{\prime} 611^{\prime}, X^{\prime} 62{ }^{\prime}$ $X^{\prime} 63^{\prime}, X^{\prime} 64^{\prime}, X^{\prime} 65^{\prime}$, or $X^{\prime} 66^{\prime}$ when the CA is actively handling a data or status transfer sequence causes an

CONTROL PANEL ACCESS TO CA REGISTERS
Type 1 CA registers X'60' through X'66' should be accessed from the control panel with Input or Output instructions only when eith 0 ith 3 interrupts are

To ens
should be in either Program Stop or Hard Stop mode befor these instructions Program Stop or Hard Stop mode befor If these conditions are not met the following panel.

1. If the type 1 CA is in the process of a data or status transfer sequence and an Input or Output X ' 60 through X'66' is initiated from the control panel, the type 1 CA hardware
a. Sauses a type 1 CA evel 1 interrupt request.
b. Gates $\times^{\prime} 00000^{\prime}$ CA $\ln /$ Out instruction accept latch.
in display B if onto the CCU Inbus to be displayed d. Does not recognize Output instructions.
2. If the type 1 CA is not transferring data or status and a type 1 CA level 3 interrupt request is not pending, one of the fll ${ }^{\prime}$ wing occurs
the instruction is executed without error or, if at the same time the instruction is being executed, the CA is being selected by the host CPU channel, the CCU may sample invalid data from the type 1 CA
The data in display B should be considered invali
b. For Output $X^{\prime} 66^{\prime}$ instructions, either the instruction is executed without error or, if at the same time the instruction is being executed, the type 1 CA is being selected by the host CPU channel, a type 1
CA channel bus in check and a type 1 CA level 1 interrupt request may be ses or a CPU data check
may be detected at the host CPU.

3. It the type 1 CA is in the process of presenting ESC tatus to a e est 1 issued to an ESC address, and an $X^{\prime} 66^{\prime}$ is exenteugh X '
a. The instruction executes without error.
b. If at the same time any of these instructions are being executed, the type 1 CA is being selected by
the host CPU channel either a type 1 channel bus the host CPU channel, either a type 1 channel bus request, or a CPU data check may occur.
Input and Output $X^{\prime} 67$ ' can be executed from the 3705 control panel without causing an error.

INPUT X‘60’ INSTRUCTION

Input X' 60^{\prime} transfers the contents of the initial selectio control register into a CCU general register. The 3705 control program uses this instruction to determine
exact cause of a type 1 CA initial selection level 3
interrupt.
An Output X ${ }^{\prime} 60^{\prime}$ resets the initial selection contro egister and the $L 3$ interrupt request resulting from
the initial selection.

Bit	$\begin{aligned} & \text { Logic } \\ & \text { Page } \end{aligned}$	Function
0.0	RC402	Input Initial Selection Sta
		Input Initial Interface Dis
0.2	RC205	Input Initial Selective R
0.3	RC402	Input Initial Bus Out Check
0.4		
0.5	RC402	Input Stack In
0.6		
0.7	RC205	Input System Reset

*Normal Initial Selective

INPUT X‘61' INSTRUCTION

Input X'61' transfers the contents of the initial selection address and command byte register into a CCU general register. During an initial selection sequence, a type 1 CA intial selection level 3 interrupt is requested, and the 37 and command causing the interrupt. Byte 0 is the address o which the command in byte 1 was issued.
The 3705 control program must store the address and command because the host CPU can send the CA a new command before the 3705 control program has completed program must also control the CA action for each command. An Output X'61' instruction has no effect on the channel dapter.

OUTPUT X'62' INSTRUCTION

INPUT X'62' INSTRUCTION

This instruction transfers the contents of the data/status control register into a CCU general register. The 3705 control program uses this instruction to determine the
exact cause of a type 1 CA data/status level 3 interrupt.

Count transferred to the cCU

OUTPUT AND INPUT X'63' INSTRUCTIONS

The 3705 control program uses the Output X'63' instruction to load the subchannel address (byte 0) and ESC status byte (byte 1) into the local store buffer. The CA identifies itself
to the channel by gating byte 0 onto the channel bus-in, during the data transfer and gates byte 1 onto the channel busin to transfer the ESC status to the host CPU. (NSC address and status take a different path, see page 8-170.)

The 3705 control program must ensure that the correct address and status bytes are stored in the register. Otherwise, incorrect channel operation occurs.

With the Input X' 63 ' instruction, the 3705 control program can determine the last subchannel address provided to the host CPU. The level 3 interrupt request latch should be set for this instruction to execute.

CCU Outbus Bit Definitions

Bits	Definition
$0.0-0.7$	Subchannel address
1.0	Attention
1.1	Status modifier (SM)
1.2	Control unit end (CUE)
1.3	Busy
1.4	Channel end (CE)
1.5	Device end (DE)
1.6	Unit check (UC)
1.7	Unit exception (UE)

Transfer Address Byte	ESC Status Byte
Deis eufier iota	Sara Suitar ivite?
[rata Sutar Syio	idata Eutfer 5yce

1

Output X' 64 ' instruction loads data buffer byte 1 and data buffer byte 2 with the first two data bytes to be transferred across the channel to the CPU. These two data bytes are transferred to the CPU one byte-at a time during an out
bound data transfer.

Input $X^{\prime} 64^{\prime}$ transfers into a $C C U$ general register the two data bytes that were received from the channel and stored in data buffer byte 1 and data buffer byte 2 .

OUTPUT AND INPUT X'65' INSTRUCTION

3

Output X' 65 ' instruction loads data buffer byte 3 and data buffer byte 4 with the second two bytes to be transferred across the channel to the CPU. These two data bytes are transferred to the CP
bound data transfer.

Input X'65' transfers into a CCU general register the two data bytes that were received from the channel and stored in data buffer byte 3 and data buffer byte 4 .

The Output $X^{\prime} 67$ ' instruction sets or resets the various control latches. The 3705 control program must execut
an Output $X^{\prime} 67^{\prime}$ instruction to enable the CA interface before the CA can transfer data to or from the channel.

Bit	Card Loc.	$\begin{gathered} \text { ALD } \\ \text { Page } \end{gathered}$	Function
0.4	Y402	RC707	Diagnostic reset
1.0	Y4T2	RC602	Set suppress out monitor
1.1	Y4T2	RC602	Set request program interrupt
1.2	Y4K2	$\begin{aligned} & \text { RC507 } \\ & \text { RC507 } \\ & \text { RC507 } \\ & \text { RC707 } \\ & \text { RF207 } \end{aligned}$	Reset invalid I/O Op Reset local store parity check Reset CCU outbus check Reset channel bus in erro (interface A) Reset channel bus in error (interface B)
1.3	Y4N2	RC206	Reset system reset or NSC
1.4	Y4P2	RC103	Request interface enable
1.5	Y4T2	RC602	Set ESC mode enable
1.6	Y4T2	RC602	Reset ESC active
1.7	Y4P2	RC103	Reset interface enable

The Input X'67' transfers the error condition registe dhe hardware address of the NSC channel interface address to the CCU.

Summary of Inbus bits during Input $\mathrm{x}^{\prime} 67^{\prime}$:

Bit	Card Loc.	$\begin{aligned} & \text { Logic } \\ & \text { Page } \end{aligned}$	Function
$\begin{aligned} & 0.0 \cdot 0.0 . \\ & 0.0 .0 .7 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \mathrm{Y4P2} \\ & \mathrm{Y} 4 \mathrm{P2} 2 \end{aligned}$	$\begin{aligned} & \text { RC104 } \\ & \text { RC107 } \end{aligned}$	NSC hardware address intf A NSC hardware address intf B
$\begin{aligned} & 1.0 \\ & 1: 1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \text { Y } 402 \\ & \text { Y4K2 } \\ & \text { Y4K2 } \end{aligned}$	$\begin{aligned} & \text { RC707 } \\ & \text { RC507 } \\ & \text { RC507 } \end{aligned}$	Chan bus in error Invalid I/O Op CCU outbus check
1.3 1.4 1.5	$\begin{aligned} & \text { YK2 } 2 \\ & \text { Y4K2 } \\ & \text { Y4K2 } \end{aligned}$	$\begin{aligned} & \text { RC507 } \\ & \text { RC504 } \\ & \text { RC504 } \end{aligned}$	Local store parity check CA enabled NSC address active
1.6 1.7	二	二	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$

CHANNEL ADAPTER INITIALIZATION (IPL)

- Channel adapter initialization involves enabling the CA from the host CPU.
The type 1 CA is not affected by the reset performed in IPL phase 1 unless the IPL sequence is started by a power on sequence. Therefore, the ROS bootstrap program must hande the following situations

1. Channel interface disabled
2. Channel interface enabled without a channel command in progress.
3. Channel interface enabled with a channel command in progress.

The CA can be enabled to one of two channel interface The second channel interface is optional and allows the CA to be attached to two different CPUs. The CA can also be attached to the same channel through the interfaces. How ever, only one interface can be enabled at a time.
The channel interface must be enabled for the and CA to communicate. The manual procedure to enabl a channel interface is described on page $1 \cdot 050$. The bootstrap program must execute an Output X'67' instruction
with bit 1.4 on in the with bit 1.4 on in the general register. This bit allows the
channel interface to be enabled. The ROS botstrap premer chame checks fo to be enabled. The ROS bootstrap program checks for the interface to become enabled with an Input $X^{\prime} 67^{\prime}$ instruction. When the Input $X^{\prime} 677^{\prime}$ transfers bit 1.4 to the CCU general register, the ROS bootstrap pro-
gram requests a CA data/status level 3 interruot gram requests a CA data/status level 3 interrupt by exe-
cuting an Output $X^{\prime} 67^{\prime}$ instruction with bit 1.1 on in the CCU general register

If no channel command is in progress, the program signals the CA to send an asynchronous status of Device
End (DE) Unit Check (UC) to the channel. The bootstrap End (DE) Unit Check (UC) to the channel. The bootstrap program must execute the

Instruction	General Register Bits Byte $0 \quad$ Byte 1		Indication or Function
Output X ${ }^{\prime} 67{ }^{\prime}$	00000000	00001000	Enable channel interface
Input X'67'	00000000	00001000	Interface enabled, the ROS bootstrap program loops on this instruction until the interface is enabled.
Output X ${ }^{\prime} 67$	00000000	01000000	Program requests a level 3 interrupt. The ROS bootstrap program executes in level 1 which makes this routine different from the control program routine

The ROS bootstrap program senses the requested interrupt and
executes the following sequence of

Instruction	$\begin{gathered} \text { General Register Bits } \\ \text { Byte } 0 \end{gathered}$		Indication or Function
Input X ${ }^{\prime} 77^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input X'62'	00000001	00000000	0.7 = Program requested level 3 interrupt
Output X'63'	Address	00000000	Byte $0=$ NSC address Byte 1 = all zeros
Output X'66'	00000000	00000110	$1.5=$ Device End $1.6=$ Unit Check Note: If ahe channel command is pending when the IPL sequence is started the ROS the ROS bootstrap program adds Channel End (CE) to the status byte to signal the host CPU to end the pending command.
Output $\mathrm{X}^{\prime} 62$ '	00001000	00000000	$0.4=$ NSC Final Status transfer

CHANNEL ADAPTER INITIALIZATION (PART 2)
$1 \begin{aligned} & \text { The Output X'62' sets bit } 0.4 \text { in the } \\ & \text { datat/status control register and causes } \\ & \text { the CA to attach to the channel and }\end{aligned}$ initiate a channel transfer.

$4 \quad$ The CA requests a data/status level 3 interrupt to signal the ROS bootstra
program that the status transfer is
comple
complete.

$\overbrace{\text { RC403 }}$

EXPECTED CPU RESPONSE TO ASYNCHRONOUS STATUS

The ROS bootstrap program expects to receive a Channel Sense command in response to the asynchronous DE, UC Status so the program loops waiting for an initial selection level 3 interrupt from the CA.

Because the ROS bootstrap program can only handle a Sense or Write IPL command, it rejects others by preșenting final status of CE, DE, and UC.

However, any command received by the CA starts an initial selection sequence. When the channel Sense command starts the initial selection sequence, and requests a type 1 CA initial selection level 3 interrupt, the ROS bootstrap program responds with the following instructions:

Instruction	General Register BitsByte 0		Indication or function
Input X'77'	00000000	00001000 ,	Type 1 CA Initial Selection L3 Interrupt
Input \times '60'	10000000	00000000	Normal initial selection
Input X'61'	Address	Command	Byte 0 = address of NSC Byte $1=$ command
Output $\mathrm{X}^{\prime} 63{ }^{\prime}$	Address	00000000	Byte $0=$ NSC address
Output $X^{\prime} 64{ }^{\prime}$	00000010	00000000	0.6 = Not initialized (sense byte)
Output X'62'	10000100	00000001	$0.0=$ Outbound transfer sequence $0.5=$ Reset initial selection 1.7 = byte count of one

The Output X'62' initiates the channel service cycle to transfer the sense byte to the channel from Data Buffer Byte 1.

SENSE BIT DEFINITIONS
Bit 0 - Command Reject. This bit indicated that the channel command presented to the channel adapter is not a valid Equipment Check. This bit indicates that an internal hard-
ware check or a parity check is detected during a data command for a particular subchannel address or not valid
for the NSC address. transfer between the CCU and the channel adapter.

Bit 1 - Intervention Required. This bit indicated that programming | Bit 4 -Data check. errors were detected by either the CA, the CCU, or the Bit 5 - Not used. CA is executing a channel hardware sets this bit when the Bit 6 - This bit indicated that the CCU is not initialized. The host CPU is expected to respond to this bit with a Write IPL command.
Bit 2 - Bus Out Check. This bit indicated a parity check was detected on the I/O channel bus out during the initial Abort. This bit indicated that the 3705 control program. to 3705 data transfer. has terminated its channel operation in an abnormal

Note: Refer to the Program Logic Manual for the sense bit definitions because they are program dependent

SENSE COMMAND ENDING STATUS
Ending status can be presented to the channel in one of three combinations:

1. CE, DE presented together - normal operation.
2. Split $C E, D E$, (that is, not together)
is re, and UC, -occurs wheninterface disconnect
is received during'a Sense command

INITIAL SELECTION

- The CA decodes its address from the channel 'bus out' and stores it in the initial selection address and command byte register.
- The CA decodes the channel command and either:

1. Executes the command without control program intervention, (No-Op, NSC Test I/O).
2. Requests an initial selection level 3 interrupt so th 305 control program can process the command. address and command byte register.

- The CA gates initial status to the channel 'bus in' for each command without control program intervention.

Each channel command issued to the CA starts an initial selection sequence. Since the 3705 can emulat perate in native mode (NSC), some differences occu during several commands.
In native mode (NSC address), the CA handles No-Op and Test I/O commands without control program intervention. The CA also handles No-O 3705 is operating in emulation mode (ESC address). In order for the CA to decode its address or commands, the CA must be enabled with respect to a hannel interface as described in Channel Adapter Initialization, 8-140. If the 3705 is to operate in
emulation mode (ESC), the 3705 control program must also set ESC operational with an Output X' ${ }^{\prime} 67^{\prime}$ instruction.
If the CA raises 'request in' to start a data/status transfer, but the channel responds with 'address out' and 'select out' (initial selection sequence), the initial selection sequence overrides the data/status transfer. The 3705 control program must remember that the data/status in the local store was not transferred he channel and must present it again. This can only occur during ESC mode

CA DECODES AND STORES THE ADDRESS

The CA can recognize a range of addresses as described on The CA The addresses that are hardware pluged are compared to the address from the channel to determine when the channel is addressing the CA. The NSC address is plugged on card Y4P2 (RC104 for interface A and RC10
and RC106 for interface B) Tho and RC1 6 for interface B). The low ESC address is
plugged on card Y4M2 (RC302), and the high ESC address is plugged on card Y4M2 (RC304).
If the address is valid, it is gated into the initial selection address and command byte register. The CA gates the address onto the channel 'bus in' and receives a channel command in response. Channel commands are also maintained in the
initial selection address and command byte register. The action taken for each command varies, depending upon the mode (ESC or NSC) and the command. Refer to the di: cussions of the different commands to determine how the) are executed.

LOGIC REFERENCE: RC 306

WRITE IPL (PART 2)

Data transfers across the channel one byte at a time,
and each byte is gated into the local store data buffer.
The byte count is incremented for each byte transferred.

1 Loads byte 1 into Data Buffer Byte 1
2. Loads byte 2 into Data Buffer Byte 2

In response to the CA data/status level three interrupt, the 3705 control program must execute the following

Instruction	General Register BitsByte 0		Indication or Function
Input X'77'	00000000	00010000	Type 1 CA data/status level 3 interrupt.
Input X'62'	0100 0*00	0000 0xxx	$0.1=$ inbound data transfer *0.5 if on indicates a channel stop or interface disconnect. The control program should end the channel command 1.5-1.7 = the number of bytes transferred.
Input X'63'	Address	00000000	Byte $0=$ Subchannel address Byte 1 = all zeros
Input X'64'	Data byte	Data byte	Byte $0=$ data byte 1 Byte $1=$ data byte 2
Output ${ }^{\prime} 62^{\prime}$	01000010	00000010	$0.1=$ inbound data transfer $0.6=$ reset data/status condition 1.6 = request 2 bytes of data

Note: $\begin{aligned} & \text { This bit pattern is valid only if the } \mathrm{CA} \text { is to continue the data } \\ & \text { transfer. }\end{aligned}$ The ROS bootstrap program expects to transfer up transfer. The ROS bootstrap program exepectst to trans the date
to 1022 data bytes before ending the channel command and to 1022 data bytes before ending the channel command and
requests 2 aytes of data eneach transfar. This semuence is
repeated until the transfer is completed if the transfer is to repeated until th
end, see $8-280$

If bit 0.5 is on during the input \times ' 62 ', the channel has signaled the end of the data transfer by initiating a channel
stop sequence. The 3705 control program should send the final status to the channel with the following instructions.

Instruction	$\underset{\substack{\text { General Register Bits } \\ \text { Byte } 0}}{\substack{\text { Byte } \\ \hline}}$		Indication or Function
Output \times '63'	Address	00000000	byte $0=$ subchannel address See note 1
Output X'66'	00000000	00001100	$\begin{aligned} & 1.0=\text { Attention } \\ & 1.1=\text { Status Modifier } \\ & 1.2=0 \\ & 1.3=0 \\ & 1.4=\text { Channel End See note } 2 \\ & 1.5=\text { Device End See note } 2 \\ & 1.6=\text { Unit Check } \\ & 1.7=\text { Unit Exception } \end{aligned}$
Output \times ' 62^{\prime}	00001010	00000000	$0.4=$ Set NSC Final Status Transfer $0.6=$ Reset data/status L3 interrupt

Notes:

1. The 3705 control program does not necessarily have to execute this instruction since the NSC address in the transfer address
byte register should not have changed during the data transfer.
2. This is the normal final status that should be presented. However the 3705 control program can present other bits to designate

CA DECODES A CHANNEL COMMAND

The CA accepts any command byte if it is in correct parity control program intervention if (1) the 3705 is in native mode, and the command is a No-Op or Test 1/O, or (2) th 3705 is in emulation mode, and the command is a No-Op.

Note: Depending upon whether the 3705 is in native mode (NSC) or emulation mode (ESC), different action may be taken for a channel command. Where there is a difference, NSC information is in the left hand
column and ESC information is in the right hand column.

Otherwise, the command is stored in the initial selection address and command byte register, and an initial selection can handle the command as required

NO-OP COMMAND

The CA immediately presents CE, DE status to the channel

TEST I/O

- Presents initial status of $X^{\prime} 00^{\prime}$, or presents any pending
status with the initial status.
If NSC status is pending, Test I/O initial status is gated
from the NSC status register.
LOGIC REFERENCE: RC60

If NSC status is not pending, Test I/O initial status is
gated from the initial selection status register.
LOGIC REFERENCE: RC406

TEST I/O

- Presents initial status of

Status Modifier
Control Unit End
Busy

- Requests a level 3 interrupt so that the 3705 control program can present the status of the subchannel address to which the command was issued.

The CA presents the initial status for this command and requests an initial selection level 3 interrupt so that the 3705 control program can load the status byte for the
subchannel address into the ESC status byte register in local store.

ESC

The 3705 control program must determine the status to return to the channel after determining which subchannel gram must execute the following instructions in response to the level 3 interrupt.

Instruction	General Register Bits		Indication or Function
Input $\mathrm{X}^{\prime} 77{ }^{\prime}$	00000000	00001000	Type 1 CA initial selection level 3 interrupt.
Input $\mathrm{X}^{\prime} 60^{\prime}$	10000000	00000000	Normal Initial Selection
Input X'61'	address	00000000	byte $0=$ address requesting service byte $1=$ Test $1 / 0$ decode
Output X'63'	address	status	byte $0=$ subchannel address byte 1 = status of subchanne
Output ' $^{\prime} 62$ '	00100110	00001000	$0.2=$ ESC final status transfer $0.5=$ Reset Initial Selection $1.4=$ ESC Test I/O Status Ready

The host CPU program must loop on the Test I/O command. When the next initial selection sequence occurs, the hardware compares the address presented to the adapter initial selection address and command byte register.
If these addresses compare and the subsequent command is a Test I/O command, the CA presents the status byte loaded by an Output $X^{\prime} 63^{\prime}$ instruction and then requests
data/status level 3 interrupt so that the 3705 control program can determine that the status was presented. If the addresses do not compare during the initial
selection sequence or if the command is not a Test $1 / \mathrm{O}$
command, the CA resets out of the ESC Test I/O mode and handles this sequence as a normal initial selection. athis occurs, the 3 das cons program does not sense completion of the Test $1 / 0$. Between the time the Test $1 / O$ is first issued, and the time the 3705 control program executes the Output $X^{\prime} 62^{\prime}$ to transfer the status, the CA responds with a short con
trol unit busy status (Status Modifier Control Unit End and Busy) to any initial selection sequence from the host

INBOUND DATA TRANSFERS

Inbound data transfers result from commands that require the passing of data from the host CPU to 3705 storage.
When the commands are decoded, they request an initial selection level 3 interrupt so that the 3705 control program can determine what action to take to service the command on 8-170.

CA REQUESTS AN INITIAL SELECTION LEVEL 3 INTERRUPT

CONTROL PROGRAM RESPONDS TO THE INTERRUPT
The 3705 control program responds to the initial selection
level 3 interrupt with the following sequence of instructions.

Instruction	$\begin{array}{c}\text { General Register Bits } \\ \text { Byte } 0\end{array}$		Indication or Function
Byte 1			

* If other bits are on during this input, the 3705 control program must
take appropriate action to service the condition indicated by the bit.

The Output $X^{\prime} 62$ ' instruction initiates a channel service
cycle to transfer the data from the host CPU to the CA
local store.

INBOUND DATA TRANSFER (PART 2) CA AND CHANNEL TRANSFER DATA

$1 \begin{aligned} & \text { After trapping select out, the } \mathrm{CA} \text { identifies itself to the channel } \\ & \text { Refer to page } 8-320 \text { for an explanation of request in' to the }\end{aligned}$

The channel tag clock operates each time the channel
and the CA start a alatatransfer. The clock synchronizes the
CA and the channel to handle the data transfer.

$1 \begin{aligned} & \text { Loads byte } 1 \text { into Data } \\ & \text { Buffer Byte } 1\end{aligned}$
(2) Loads byte 2 into Data

3 Loads bvte 3 into Data
$4 \begin{gathered}\text { Loads byte } 4 \text { into Data } \\ \text { Buffer Byte } 4\end{gathered}$

INBOUND DATA TRANSFER (PART 3)
CA AND CHANNEL TRANSFER DATA (CONTINUED)

$5 \begin{gathered}\text { In response to the } \mathrm{CA} \text { data/status level } 3 \text { interrupt. } \\ \text { the } 3705 \text { control program must execute the following } \\ \text { instructions. }\end{gathered}$

Instruction	General Register BitsByte 0		Indication or Function
Input $\mathrm{X}^{\prime} 77^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt.
Input X'62'	$01000^{* 00}$	0000 0XXX	0.1 = inbound data transfer 0.5 if on indicates a channel stop condition, and the control program should end the channel command 1.5-1.7 = the number of bytes transferred.
Input X'63'	Address	00000000	Bvte $0=$ subchannel address Byte $1=$ all zeros
Input $\mathrm{X}^{\prime} 64^{\prime}$	Data byte	Data byte	Byte $0=$ data byte 1 (Note 1) Byte $1=$ data byte $2($ Note 1$)$
Input $\mathrm{X}^{\prime} 65{ }^{\prime}$	Data byte	Data byte	Byte $0=$ data byte 3 (Note 1) Byte $1=$ data byte 4 (Note 1)
Output X'62'	01000010	0000 00xx	0.1 = inbound data transfer $0.6=$ reset data service condition (if required). 1.6-1.7 = Indicate the number of bytes of data. (Note 2)
Notes: 1. Execution of Input $X^{\prime} 64$ ' and $X^{\prime} 65$ ' depends upon how many data bytes are requested.			
2. This bit pattern is valid only if the CA is to continue the data transfer. If the transfer is to end, see 8-280.			

4 the When the count of the bytes transferred equals
4 the count specified by the Output X '62' 2^{\prime} instruction
the CA requests a level 3 data/statatus interrupt by

When the host CPU has transferred all the inbound data,
a channel stop sequence is initiated. When the 3705 con-
trol program executes the Input $X^{\prime} 62^{\prime}$ instruction in
transferred to the CCU general register so that the 3705
control program can take appropriate action to end the
command. The channel stop sequence initiates a Type 1
CA data/status level 3 interrupt

ENDING AN INBOUND TRANSFER (PART 2)

The 3705 control program must determine what action to take to end the command. When the 3705 control program is ready to present its final status, it executes the following

Instruction	General Register Bits Byte 0 Byte 1		Indication or Function
Output X'63'	Address	00000000	byte $0=$ subchannel address
Output $\times{ }^{6} 66^{\prime}$	00000000	00001100	1.0 = Attention $1.1=$ Status Modifier $1.2=0$ $1.2=0$ $1.3=0$ $1.4=$ Channel End* $1.5=$ Device End ${ }^{*}$ $1.6=$ Unit Check $1.7=$ Unit Exception
Output \times ' $62{ }^{\prime}$	00001000	00000000	$0.4=$ Set NSC Final Status Transfer

This is the normal final status that should be presented. However,
the 3705 control program can present other bits to designate dif-
the 3705 control program
ferent conditions if needed.

The 3705 control program executes these instructions to
present final status if operating in ESC mode.

Instruction	General Register Bits Byte $0 \quad$ Byte 1		Indication or Function
Output K'63'	Address	00001100	Byte $0=$ ESC address $1.4=$ Channel End $1.5=$ Device End*
Output X'62'	00100000	00000000	$0.2=$ ESC status transfer

*These are the normal final status bits. However, the 3705 contro
program can set other status bits if conditions warrant.

'Status in', 'Clock 4 ' and 'allow sve $L 3$ ' reset
 level 3 interrupt which signals the 3705 contro
program that the status transfer is complete.

The CA identifies itself to the channel and transfers the
'Status in', 'Clock 4 ' and 'allow svc $L 33^{\prime}$ reset the 'Init Sve' flip latch to request a data/status levegrenterrupt which signals the 3705 con
program that the status transfer is complete.
final status byte to the channel 'Bus In^{\prime}

ENDING SEQUENCE WHEN SERVICE STATUS IS STACKED

If the channel is unable to immediately handle status from the CA that causes a CPU interruption, the channel responds to 'status in' with 'command out' (stack status) and chesnel and stacked, it becomes suppressible status The CA must not present the suppressible status to the The CA must the presel drops 'suppress out' to indicate it can handle the status. When the CA is in NSC mode, the CA hardware inhib 'request in' until 'suppress out' falls and then presents $i=9$ suppressible status. A
When the CA is in ESC mode, the CA hardware cannot be tied up waiting for 'suppress out' to fall. Data transfers must be allowed to continue for the lines not presenting must be allowed to continue for the lines not presenting
suppressible ESC status. The fact that 'suppress out' is suppressible ESC status. The fact that 'suppress out' is
up does not prevent the channel from servicing data transup does not prevent the channel from servicing data trans-
fers-.-just suppressible status transfers. The 3705 control program determines when 'suppress outt' drops and then presents the suppressible status from the stack status queue.

See page 8-302 for the description of the CA operation associated with this sequence chart.

ENDING SEQUENCE WHEN SERVICE STATUS IS STACKED (PART 2)

The general sequence of events that occur in the channel interface, the CA, and the 3705 control program for ESC mode is shown in the sequence chart on page 8-301.
The 3705 control program executes Output X' 62^{\prime} to initiate service. This causes 'request in' to start a service status sequence. 'Status in' resets initiate service causing a type 1 CA level 3 interrupt. The 3705
control program must determine that the status has been stacked control program must determine that the status has been stacked and that 'suppress out' is up; then turn on the following instructions at A in the sequence chart. The CA is now available for darol program executes the following instructions at A in the sequence chart. The CA is now available for data transfers or non suppressible status for the other ESC lines.

A

Instruction	General Register BitsByte 0		Indication or Function
Input X'77'	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input X'62'	00100000	00110000	$0.2=$ ESC status transfer $1.2=$ Suppress out 1.3 = Service status stacked
Output X'62'	00000010	00000000	$0.2=0$ to reset ESC status transfer (inhibits a continuous bid level 3 interrupt) $0.6=\begin{gathered}\text { Data service reset (resets service status } \\ \text { stacked) }\end{gathered}$
Output X'67'	00000000	10000000	$1.0=$ Set suppress out monitor

When 'suppress out' falls, the suppress out interrupt latch turns on causing a type 1 CA level 3 interrupt. The 3705 control program executes the following instructions at \mathbf{B} in the sequence chart to start another service status sequence to present the suppressible status to the channel. At the same time, the suppressible status latch is set
B

Instruction	General Register Bits Byte $0 \quad$ Byte 1		Indication or Function
Input X'77\%	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input X'62'	00000010	00000000	$0.6=$ Suppress out monitor
Output X'62'	00100000	00010000	$0.2=1$ to set ESC status transfer $1.3=$ Set suppressible status Reset suppress out monitor

If for some reason, the channel can not immediately handle any status before it brings up 'select out', the channel raises 'suppress out' again. The suppressible status stacked latch is set when 'request in' and 'suppress out' are up and the suppressible status latch is on. This causes a type 1 CA level 3 interrupt that drops 'request in' and also notifies the 3705 control program the channel can not accept the status. The 3705 control program executes the following instructions at C that set the suppress out monitor latch to detect when 'suppress out' falls. The CA is now available for data transfer or non-suppressible status for the other ESC lines.

Instruction	General Register BitsByte 0		Indication or Function
Input $\mathrm{X}^{\prime} 77{ }^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input $\mathrm{X}^{\prime} 62$ '	00100000	00110000	0.2 = ESC status transfer 1.2 = Suppress out 1.3 = Suppressible status stacked
Output X'62'	00000010	00000000	$0.2=0$ to reset ESC status transfer (inhibits a continuous bit level 3 interrupt) $0.6=$ Data service reset (resets suppressible status) (resets suppressible status stacked)
Output X ${ }^{\prime} 67$ '	00000000	10000000	$1.0=$ Set suppress out monitor

When 'suppress out' falls, the suppress out interrupt latch turns on, causing a type 1 CA level 3 interrupt. The 3705 control program executes the following instructions at (D) in the sequence chart to start another service status sequence to present the suppressible status to the channel. At the same time, the suppressible status latch is set.
-

Instruction	General Register Bits.Byte 0		Indication or Function
Input X ${ }^{\prime} 77^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input X'62'	00000010	00000000	$0.6=$ Suppress out monitor
Output X 62^{\prime}	00100010	00010000	$0.2=1$ to set ESC status transfer $0.6=$ Data service reset $1.3=$ Set suppressible status Reset suppress out monitor

> 'Status in' resets initiate service causing a type 1 CA level 3 interrupt. The 3705 control executes the following instructions at the channel.
-

Instruction	$\underset{\text { General Register Bits }}{\text { Byte } 0} \begin{gathered}\text { Byte } 1\end{gathered}$		Indication or Function
Input \times ' $77{ }^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input $X^{\prime} 62^{\prime}$	00100000	00000000	$0.2=$ ESC status transfer
Output X ${ }^{\prime} 62^{\prime}$	00000010	00000000	$0.2=0$ to reset ESC status transfer (inhibits a continuous bid level 3 interrupt) $0.6=$ Data service reset resets suppressible status)

OUTBOUND DATA TRANSFERS

Outbound data transfers result from channel Read commands that direct the transfer of data from 3705 storage to the host CPU. They are handled by the CA basically the same whether the CA is in ESC or NSC mode. The major differe
the channel.

CA DECODES THE COMMAND AND REQUESTS AN INTERRUPT

The 3705 control program responds to the initial select level 3 interrupt with the following instructions.

Instruction	$\underset{\text { Byte } 0}{\substack{\text { Genal } \\ \text { Begister Bits } \\ \text { Byte } 1}}$		Indication or Function
Input $\times^{\prime} 77^{\prime}$	00000000	00001000	Type 1 CA initial selection level 3 interrupt
Input X'60'	10000000	00000000	Normal initial selection (Note 1)
Input X'61'	address	command	Byte $0=$ address byte 1 = command
Output X ${ }^{\prime} 63^{\prime}$	address	00000000	byte $0=$ transfer address byte 1 = all zeros
Output \times '64'	data	data	Byte 0 = data byte 1 byte $1=$ data byte 2
Output $\mathrm{X}^{\prime} 65^{\prime}$	data	data	byte $0=$ data byte 3 byte $1=$ data byte 4
Output X ${ }^{\prime} 62^{\prime}$	10000110	00000000	$0.0=$ outbound data transfer $0.5=$ reset initial selection 1.6-1.7 $=0$ to transfer four bytes (Note 2)

Notes: 1. Other bits may be transferred to the CCU during this input. If other bits are on, the 3705 control program
differently from the normal initial selection.
2. From one to four bytes of data may be transferred to the . if less than four are to may be transferred to the $X^{\prime} 64$ channel..If ess than our are
and \times ' 65 ' vary accordingly.

OUTBOUND DATA TRANSFERS (PART 2)

CA AND CHANNEL TRANSFER DATA

The Output X'62' instruction starts a channel service cycle so that the data loaded into the data buffer bytes can be transferred to the channel.

The channel tag clock operates, each time the channel and the CA start a data transfer. The clock synchronizes the CA and the channel to handle the data transfer

 result ting from 'request in to the
channel. The data is gated on bus in by 'service in' because this is an an inbound data transfer as shown.

Outbound Data Transfers (Part 3)
CA and Channel Transfer Data (Continued)
The CA transfers the data to the channel 'Bus In' one byte at a time. As each byte is transferred across
the channel interface, the byte count is incremented.

CA AND CCU TRANSFER DATA
When the number of bytes transferred across the channel interface equals the number specified in the byte count, the CA requests a type 1 CA data/status level 3 interrupt.

The 3705 control program responds to the level 3 data/status interrupt with the following instructions.

Instruction	General Register BitsByteByte 1		Indication or Function
Input $\mathrm{X}^{\prime} 77^{\prime}$	00000000	00010000	Type 1 CA data status level 3 interrupt
Input $\mathrm{X}^{\prime \prime} \mathrm{F}^{\prime}$	10000000	00000100	$0.0=$ outbound data transfer $1.5=$ number of bytes transferred in (four indicated by bit 1.5
Output X'64'	Data byte	Data byte	Byte $0=$ data byte 1 Byte 1 = data byte 2
Output $\mathrm{X}^{\prime} 65^{\prime}$	Data byte	Data byte	Byte $0=$ data byte 3 Byte 1 = data byte 4
Output \times '62'	10000010	00000000	$0.0=$ outbound data transfer $0.6=$ reset data service condition 1.6 and 1.7 off indicate transfer in four bytes.

ENDING AN OUTBOUND TRANSFER

Outbound data transfers can be ended either by the host CPU or the 3705 control program. The host CPU ends the transfer by initiating a channel stop sequence or with Halt I/O. The 3705 control program ends the transfer

Note. There are some differences in the NSC and ESC status presentation. Where differences exist, NSC information appears on the left, and ESC informa tion appears on the right of the page.

CHANNEL INITIATES A CHANNEL STOP

When the host CPU has transferred all the data it has to ransfer with the active command, it begins a channel stop sequence to signal the 3705 .

The 3705 control program responds to the data/status level 3 interrupt with the following instructions.

Instruction	General Register Bits Byte 0 Byte		Indication or Function
Input $\times 177^{\prime}$	00000000	00010000	Type 1 CA data/status level 3 interrupt
Input X'62'	10000100	0000 0xxx	$0.0=$ Outbound transfer $0.5=$ Channel Stop or Intf disconnect 1.5-1.7 $=$ Number of bytes transferred
Input X'61'	Address	Command	Byte $0=$ last address presented to the CA* Byte $1=$ last command presented to the CA *
Input X'63'	Address	00000000	Byte $0=$ address CA was serving when channel Byte 1 = stop occurred should be all zeros unless a status byte was loaded into the register.

*If the CA received a new channel command while still processing the
command byte register change to reflect the new command and address. The Input $X^{\prime} 63^{\prime}$ provides
stop sequence

ENDING AN OUTBOUND TRANSFER (PART 2)

or Function
el address whose status
esented. (Note 1)
ier
(Note 2)
Note 2)
ion.

Notes: 1. In NSC mode, this address should not change from transter the address into this register after it thas been ioaded oorreetly the first time.
2. This is the normal finial staut sthat should be presented to the channel. However, the 375 control program can de
whether adoditional stat sus bits should be peresented.

[^8]The 3705 control program executes the following

Instruction	General Register Bits Byte $0 \quad$ Byte 1		Indication or Function
Output X'63'	address	00000000	$\begin{aligned} & \hline \text { Byte } 0= \text { Subchannel address whose status } \\ & \text { is being presented. (Note 1) } \end{aligned}$
Output \times '66'	00000000	00001100	$1.0=$ Attention $1.1=$ Status Modifier $1.2={ }^{*}$ (Not used) $1.3={ }^{*}$ (Not used) $1.4=$ Channel End (Note 2) 1.5 = Device End (Note 2) $1.6=$ Unit Check 1.7 = Unit Exception
Output ${ }^{\prime} 62^{\prime}$	00001000	00000000	$0.4=$ Set NSC final status transfer.

The 3705 control program executes the following
instructions to present the final status to the channel

Instruction	General Register Bits Byte 0 Byte		Indication or Function
Output X'63'	address	00001100	Byte $0=$ subchannel address to which the status is to be presented. $1.0=$ Attention $1.1=$ Status Modifier $1.2=$ Control Unit End $14=$ Busy $1.4=$ Channel End (See Note) $1.5=$ Device End $1.5=$ Device End (See Note) $1.6=$ Unit Check $1.7=$ Unit Exception
Output X'62'	00100000	00000000	$0.2=$ ESC status transfer

Note: This is the normal final status to present to the channel. However,
the 3705 control program can determine if other bits should be
presented. presented.

'Status \ln ', 'Clock 4', and 'allow svc $L 3^{\prime}$ reset
the Init Sve fipp latch to request a datastatus
level 3 interrupt which signals the
3705
program that the status transfer is complete.

CA ERROR INTERRUPTS

The type I channel adapter requests a level 1 interrup whenever

- A channel 'Bus-In' check occurs.

The channel adapter hardware detects bad parity he data byte being sent across the channel to the
The control program should respond to the interrupt with an Input $\mathrm{X}^{\prime} 67^{\prime}$ instruction to transfer the Bit 10 should be transferred if agister to 'he C ' check occurred

An in/out instruction accept check occurs
An in/out instruction accept check (invalid I/O op) occurs it the contro' program executes an Input or Output X^{\prime}
$X^{\prime} 61^{\prime}, X^{\prime} 62^{\prime}, X^{\prime} 63^{\prime}, X^{\prime} 64^{\prime}, X^{\prime} 65^{\prime}$, or $X^{\prime} 66^{\prime}$ instruction while the CA is actively handling any data or status tran er sequence. When the control program responds to the evel 1 interrupt with an Input $X^{\prime} 67^{\prime}$, bit 1.1 is transferred

A 'CCU Outbus' check occurs.
hen bad parity is detected on the 'CCU Outbus', the CA requests a level 1 interrupt. Bit 1.2 is returned to he CCU from the error condition register when the control program executes an Input $X^{\prime} 67^{\prime}$ instruction in response to the interrupt.

- A local store check occurs

Bad parity being gated from the local store registers causes a level 1 interrupt request. Bit 1.3 is returned the control program executes an Input $X^{\prime} 67^{\prime}$ instrucion in response to the interrup.

CA TIMING

[^9] INDEX

A bus assembler controis 6-100
$\begin{array}{ll}\text { A register direct operation, } \mathrm{CCU} & \text { 6-100 } \\ \text { A segment of bridge storage module } & 7-030\end{array}$
A segment of briage star
$A A \cdot A C O ~ i n t e r f a c e s ~$
$C-330$
abort, SDLC B-061, B-520

activating the control panel 1.060
active state, type 2 CA 9.060
ADAPTER CHECK light $1-020$
$\begin{array}{ll}\text { ADA Cheracter register instruction } & \text { 6-150, 6-190, 6-220 }\end{array}$
add half word register instruct
add operation, CCU
$6-100$
add operation, CCU $\begin{aligned} & \text { 6-100 } \\ & \text { add register immediate instruction } \\ & \text { add register instruction } \\ & \text { 6-150, } 6-190,6-620\end{aligned} \quad$ 6-160, 6-170
ddress, type 1 CA
byte transfer
ESC
ESC
8.000

BEC
ESC
NSC $\quad 8.0000$

NSC
storage
7.010
address assignment, type 1 CA
address compare
$\underset{\text { address compare }}{\text { interrupt }}{ }^{1-030}$
interrupt 1.030
10ad 1.150
program stop 1.03
$\begin{array}{lll}\text { ADORESS COMPARE light } & 1-020\end{array}$
$\begin{array}{lll}\text { ADDRESS COMPARE light } \\ \text { ADDESS EXCEPTION light } & 1-020 \\ 1.020\end{array}$
address failures, single bit, 7.100
type 2 communication scanner B-220
address substitution
$\left.\begin{array}{lll}\text { yppe } 2 \text { communication scanner } & \text { B-220 } \\ \text { ype } 3 \text { communication scanner } & \text { F-100 }\end{array}\right]$
ADDRESS/DATA switches 1.100
$\begin{array}{ll}\text { addressing, bridge storage } & 7-010 \\ \text { addressing } & \text { FET Ttorage } \\ 7-200\end{array}$
$\begin{aligned} & \text { addressing failures, multiple bits, multiple addresses bridge } \\ & \text { storage } \\ & 7 .-100\end{aligned}$
storage $\quad 7.100$
adjusting DC voltag
adjustments
bridge stage
$7-100$
bridge storage 7-160
receive equalizer meter-LIB5 5 -160
AHR instruction 6-150, 6-1.100, 6-220
ALD reterences line set
allow low priority latch, type 1 communication scanner A.050
ALU controls 6 -100

and half word register instructi
and operation, CCU
$6-100$
and register immediate instruction 6-150, 6-160, 6-170
and register instruction 6-150, 6-190,
AR instruction $\quad 6-150,6-190,6-220$
$\begin{array}{lll}\text { AR instruction } & 6 \cdot 150,6-190,6-220 \\ \text { ARI instruction } \\ 6-150,6-160,6-170\end{array}$
arithmeric
array
$\underset{\text { brid }}{\text { aray }}$
FET storage board
$\begin{array}{llll}l & \\ \text { layout (01B-A1) } & 7.210\end{array}$
$\begin{gathered}\text { FET storage board } \\ \text { layout (02B-A1) }\end{gathered} \quad 7-21$
asynchronous attention status, type 3 CA
asynchronous device end type 3 CA
and
attachment buffer address register
type 2 communication scann
ther
level 2 interrupt B -3
lisen
$\begin{array}{ll}\text { LIB identification } \\ \text { program addressing } & \begin{array}{l}\text { B-360 } \\ \text { B-290 }\end{array}\end{array}$

Emulation Program panel procedures C-430 1FTs C-560
panel procedures C-43
auto call interface
LIB $7,9 \mathrm{C}-32$
line set $1 \mathrm{E} \mathrm{C}-220$
auto call interface, type 2 communication scanne
abandon call and retry
$B-090, B-150, B-260$
abandon call and retry $\begin{aligned} & \mathrm{B}-090, \mathrm{~B}-150, \mathrm{~B}-260 \\ & \text { call originate status } \mathrm{B}-090, \mathrm{~B}-150, \mathrm{~B}-260\end{aligned}$
call request
data line occupied B-090, B-150, B-260

present next digit $\mathrm{B}-090, \mathrm{~B}-150, \mathrm{~B}-260$
Emulation Program panel procedures C-430

${ }^{\text {B data register }}$
$\begin{array}{lll}\text { type } 2 \text { communication scanner } & \text { B-150, B-260 } \\ \text { type } 3 \text { communication scanner } & \text { F-220, F-530 }\end{array}$
type 3 communication scanner F-220,F-5
instruction 6-150, 6-630, 6-640
B segment of bridge storage module $\quad 7-030$
LIB 6 AA and AEO C-102
LIB 7 ACO and AEO C-103
$\begin{array}{ll}\text { LIB } 8 \text { AA } & \text { C-104 } \\ \text { LIB9 ACO } & \text { C- } 105\end{array}$
$\begin{array}{lll}\text { LIB } 9 \text { ACO } & \text { C-105 } \\ \text { LIB 12AA } & \text { C-108 }\end{array}$
maintenance procedures C-520, C-530, C-560, C-570
$\begin{array}{ll}\text { BAL instruction } & 6-150, \\ \text { BALR } \\ \text { 6nstruction } \\ 6-150,60,6-570 \\ 6.190 \\ 6-240\end{array}$
BALR instruction 6 -150, 6-190, $6-240$
BB instruction 6 -150, $6-630,6-660$
$\begin{array}{ll}\mathrm{BCC} \text { read, } \mathrm{LIB} & \mathrm{C}-030 \\ \text { BCC write, LIB } & \mathrm{C} 030\end{array}$
$\begin{array}{lll}\text { BCL instruction } & 6-150, ~ 6-630, ~ 6-640 \\ \text { BCT instruction } & 6-150,6-630,6-680\end{array}$
bid level 2 interrupt, type 1 communication scanner A-060
bi-directional inter
bisync (see BSC)
bit clock control, LIB
ALCal stowchart C-030 C -050
Col
timings C-030
bit clock error, type 1 communication scanner A-220
bit clock select, LIB C-O30
bit control block addresses, type 1 communication scanner A-140

line set $1 \mathrm{D}, \mathrm{C}$-220,
line set 1 E
line set $1 \mathrm{G}, 1 \mathrm{~T} \mathrm{C}$ - 230
line set 1GA, $1 T \mathrm{~A}$
line set 1J. C
$\mathrm{C}-242$
C
$\begin{array}{llll}\text { line set } 11 \mathrm{~J} & \mathrm{C}-242 \\ \text { line set } 1 \mathrm{~K}, 1 \mathrm{~S}, 1 \mathrm{U} & \mathrm{C}-244\end{array}$
$1 \begin{array}{lll}\text { line set } 1 \mathrm{~N} & \mathrm{C}-245 \\ \text { line set } 1 \mathrm{R} & \mathrm{C}-247 \mathrm{~A}\end{array}$
line set 1 R
line set $1 \mathrm{~W}, 1 \mathrm{C}-247 \mathrm{~A}$
$\mathrm{C}-248$
line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C} \quad \mathrm{C}-260$
line set $5 \mathrm{~A}, 5 \mathrm{~B}, 6 \mathrm{~A}, \mathrm{C}$
ine set $5 A, 3 A, 3 B, 4 A, 4 B, 4 \mathrm{C}$
lin
lin

line set 10A C-314, C-315
line set $11 \mathrm{~A}, 11 \mathrm{~B} \quad \mathrm{C}-318 \mathrm{C}, 319$
line set $11 \mathrm{~A}, 11 \mathrm{~B} \quad \mathrm{C}-318, \mathrm{C}-319$
LIB 7.9 autocall interface $\mathrm{C}-320$
bit service $\llcorner 2$ latch, type 1 communication scanner A-040

```
board layout
    type 2 communication scanner B-040
    ly)
3705-11 feature, locations E-030
bootstrap load 6-961 (tom diode board in brige storage, exposing 7-1
branch and link instruction 6-150, 6-560, 6-570
branch and link register instruction 6-150,6-19
Mranch instruction 6-150, 6-630, 6-640
Mranch on C latch instruction 6-150, 6-630, 6-660
lol
branch on Z latch instruction 6-150,6-630,6-640
break, line set 12A,12B C-300, C-312 % CA 9-40
lol
bridge storage module, 7-000
BSC CRC register 6-840
BSC, terminal operation
c,terminal operation sommunication scanner F-425
BSC, type 3 communication scanner
    l
    l
#SM tranmit details F-420
BSM 7-000 
buffer address register-CSB, type 2 communication scanner,
\begin{array}{l}{\mathrm{ program addressing B-290}}\\{\mathrm{ burst length, jumper options}}\end{array}
# type 4 CA H-000 
bus terminator assemblies E-000, E-020, E-021
lol
l}\begin{array}{l}{\mathrm{ busy state, type 2 CA 9-060}}\\{\mathrm{ byte address }}
    type 1 CA
    #type 4CA Corm-080
l}\begin{array}{l}{\mathrm{ byte address ESC test 1/O transfer, type 1 CA 8-190}}\\{\mathrm{ byte address/com}}
    type 1 CA 
byte address/status from local store
*)
```



```
type 1 CA 8-270, 8-330
Hype 2CA 9.4.40
lol
C LEVELlight 1-020
clul
cabling, type 3 communication scanner F-050, F-060
Card functions and locations
        FET storage %-210
    *yperacA 9-030
    type 1 communication scanner
    lym
    type 2 communication scanner B-040
```

type 3 communication scanner E3 board F-060
$\begin{array}{lll}\text { power supply, } 3705-1 & \text { D.000 } \\ \text { power supply } 3705-11 & \mathrm{D}-300 \text { or } \mathrm{D}-500\end{array}$ $\begin{array}{ll}\text { power supply } \\ 3705 \\ 3705-11 & 6-010 \\ 6\end{array}$
card layout, CCU data path 6-000
card layout, CCU da
card positions, LIB
card positions, Liol
type 1
type
C.-070
type 1
type 2
type 3
tye
$\begin{array}{ll}\text { type } 3 & \mathrm{C} \text {-- } \\ \text { type } 4 \\ \text { type } 5\end{array}$
$\begin{array}{ll}\text { type } 5 & \mathrm{C} .10 \\ \text { type } 6 & \text { C. } 10 \\ \text { type } 7 & \mathrm{C} .10\end{array}$

$\begin{array}{ll}\text { type } & \text { C-105 } \\ \text { type } 11 & \mathrm{C}-106 \\ \text { t-107 }\end{array}$
cautions
CCU, when
changing machine priorities $6-071$
masking program levels $6-071$
performing maintenance $6-000$
control panel
address compare program stop
$1-030$
address compare program stop
cc check light
10.060
clock step procedure $1-160$
control panel test of CCU data
$\begin{array}{ll}\text { control panel test of } \mathrm{CCU} \text { data path } \\ \text { diagnostic } & 170\end{array}$
diagnostic control switch
diagnostic jumpering
$1-200$
display function select switch 1.040
enable/disabble switch 1 1-050
instruction step procedure
panel active light 1.060
program stop light
$1-.090$
$\begin{array}{lll}\text { program stop light } & 1.090 \\ \text { resetting the } & 3705 & 1-120\end{array}$
set address and display register procedure 1-130
settidg up and executing an instruction $1-160$
single addresses test pattern procedure $1-150$
stop push button 1.070
storage scan $1-140$
storage scan ${ }^{1-140}$
store push button
storing a test pattern $1-140$
storing data in a register $1-130$
storing data
diagnostic aids
CF
CF indicator card 1-201, F-680
maintenance philosophy
when replacing cards 0.000
$\begin{aligned} & \text { power supply, when } \\ & \text { performing maintenance procedures D-030, D. } 130, \mathrm{D}-600\end{aligned}$

removal of SENSE wires D-140, D-360, D-550
removal of terminal board jumpers connected to

emoving or reinstalling lamina
eplacing cards D. $060, \mathrm{D} .600$
scoping 'control gate' with respect to the cathode D-190
substituting cards D-060, D-600
w verking on voltage sequence probl
+6 V circuit protector trips D .130
ROS
Channel checking 2-070, 2-110
performing maintenance procedures 7.260
replacing BSM $7-100$
type 1 CA
ype 1 CA

control panel (continued)
procedures
activate control panel 1-120, 1-060
clock ste 1-160
clock step 1-160
colok step thru 1 PL phase 2 (load ROS)
$1-200$
clock step thru IPL phase 2 (load ROS)
disbobing channel interface
display
1-120
display 3705 status 1.120
display TAR and ${ }^{\text {degister }} 1.120$
enabling channel interface 1.120

Lad address con
power off 11.120
power on 1-120

reses $3705 \mathrm{~T}_{1-120}$
set acdress check dispolar register
set address and display storage
1-1-130,6-050,6-6.052
$1-130,6-050,6-056$
set address and display storage $11-130,6-050,6,6-05$
setting up and executing instruction $1-160$
single address scan $1-150,6-050,6-067$
single address scast pattern $11-150,6-050,6-064$
storage scan $11-140,6-050,6-063$
torage scan $1.140,6-050,6$

storing test pattern in storage, $1-140,6-1170,6-050,6-060$
test of CCU data path $1-170$ through $1-190$
test of CU data path
type 3 CA
G-040
control register data/status
type 1 CA 8.020
$\begin{array}{cc}\text { type } 1 \text { CA } & \begin{array}{l}8-020 \\ \text { type } 4 \text { CA }\end{array} \\ \text { H-020 }\end{array}$
control register initial selection
$\begin{array}{lll}\text { type } 1 \mathrm{CA} & 8-020 \\ & \\ \text { type } 4 \mathrm{CA} & \mathrm{H}-020\end{array}$
ontrol register, PD
control register, PDF array/status register, type 3 communication
scanner
control word fetch timing, type 2 CA $9-520$
control word fetch/cycle steal tyce
control word fetch/cycle steal, type 2 CA
control word/cycle steal, type 2 CA
$9-270$
core, bridge storage defective $\quad 7-100$
CR instruction
$6-150,6-200$,
$6-220$
instruction 6-150, 6-200, 6-220
$\begin{array}{ll}\text { CRC generation } & 6-840 \\ \text { CRI instruction } & 6-150,6-160,6-170 \\ \text { cross }\end{array}$
cross hi to lo operation, CCU $\quad 6-100$
cross to to hioperation CCU
$6-100$
cross 1 o to hioperation, C
CS CYCLE light $1-010$
CS
CS1 cycle
CS1 time
6-060
$\begin{array}{lll}\text { CS1 time } & 6.061 \\ \text { CS2 cycle } & 6-060\end{array}$
CS2 cycle
CS2 time
curnt
6-061
curent sources, bridge storage $7-020$
cycle steal
ddress upate, type $2 \mathrm{CA} 9-340,9-470$
control word, type $2 \mathrm{CA} 9-270,940$
control wort ormat, type $2 \mathrm{CA} 9-270$
data fetch, tvpe $2 \mathrm{CA} 9-450$

$\begin{array}{ll}\text { in CA2, CA3, CA4, or type } \\ \text { out CA2, CA3, CA4 } & \text { or type } 3 \text { or } 3 \mathrm{HS} \text { scanner scanner } \\ 6-120 \\ 6.140\end{array}$
out CA2, CA3, CA4, or then
rete, ype 2 CA
1
1 cycle 6 -.060
2 cycle 6 -600
cycle steal control word fetch, type 2 CA 9-340, 9-410, 9-450
cycle stael. type 3 or $3 H S$ communication scanner
bad data $F-200$
check register $F-200$
data flow $F-355$
data flow F-355
1CW control and count fields F-120, F-12
neceive operation F-450
receeve operation F-450
receive timing chart F-460
summary of CSPPF

cycle steal, type 3 or 3 HS communication scanner (continued)
transmit, CS and PDF pointer sequence F-38
$\begin{array}{lll} \\ \text { transmit timing chart } & \text { F-370 }\end{array}$
transmit operation $\mathrm{F}-360$
cycle steal operation, type 4 CA
CA to channel data transfer
CA to channel data transfer $\mathrm{H}-360$
inbound data transfer $\mathrm{H}-340, \mathrm{H}-350, \mathrm{H}-370$

$\begin{array}{lll}\text { outbound data transfer } & \mathrm{H}-300, \mathrm{H}-310 \\ \text { outbound sequence chart } & \mathrm{H}-330\end{array}$
CYCLE TME light $1-010$ (H (3 (

outpul $X 7 A^{\prime}$ instruction $6-831$
CCU 6-061
$\begin{array}{ll}\text { CCU machine } & 6.050 \\ \text { CCU priorities } \\ 6.070\end{array}$
data
ata fetch/cycle steal, type 2 CA $9-450$
bits 6 -000
bridge storage
central
contran control

LIB ${ }^{6-0.920}$
auto-answer C- -360
comprehensive
C-420A
comprenensive $\begin{aligned} & \text { C- } \\ & \text { receive } \\ & \text { transmit } \mathrm{C}-390 \\ & \mathrm{C}\end{aligned} \mathrm{-380}$
tryensmit
tye 1 communication scanner A. 010
type 2 attachment base, type 2 A-010
scommunication
type 2 attachment base, type 3 or 3 HS communication scanner F-020
 evel 2 interitupt 8 B-300
pogram addressing
$B-280$
scan addressing
$\left.\begin{array}{ll}\text { B-220 } \\ \text { type } \\ 3 & \mathrm{CA}\end{array}\right)$
ches $\begin{aligned} & \text { bus sines } \\ & \text { b-020 } \\ & \text { tag lines } G-010\end{aligned}$

BSC recive
BSC transmit
$F-480$
$F-410$
cycle steal F -355
description
scan adress
scing
Sid
SDLC receive F-520
type 4 CA
3705
37050
0.060

ata operation contrors $6-100$

data transter read timing, type
data transfer write timin, type 2 CA
O.54-530
DC common connection to trame ground D-230
DC voltage distribution, power supply D. 140

ecoding, instruction 6 -150
destructive readout in bridge storage 7 -030
determining when an interrupt can occur 6 -080
determining wh
diagnostic aids
CE indicato
scope points and card cumpering capabilities $1-200$
test blocks $1-300$
test blocks $1-300$
diagnotic approach flowchart 0.010
modern (see maintenance procedures) C-440
diagnostic bit service atch, type 1 communication scanner A-300
DIAGNOSTIC CONTROL switch 1.110
diagnostic wrap, type 2 communication scan
diagnostic wrap mode
type 1 communication scanner A- 340
type 2 communication scan
tyata reaiction scanne
B-150
force line interface latches B-150
test data lateh B-270
test data latch $\mathrm{B}-270$
type 3 or 3 HS communication scanner $\begin{array}{ll}B \text { data register } & \text { F-220 } \\ \text { diagnostic mode } 0 & F-700\end{array}$ $\begin{array}{lll}\begin{array}{l}\text { force line interface latches } \\ \text { test data latch } \\ \text { F-540 }\end{array} & \text { F-210 }\end{array}$ test data latch
wrap $F-710$
diagnostic wrap state, type 2 CA $9-060$
dial bit service
type 2 communication scanner B-260 type 3 or 3 HS communication scanner F-530 $\begin{array}{lll}\text { differences, type } 1 \\ \text { differences, type } 2 \text { and type } 4 \text { CA } & \text { H-000 }\end{array}$
difide
docating an open or closed
local
locating an open or closed
replacing an open
$7-120$
replacing an
disable all LIBs
type 2 communication scanner $\mathrm{B}-170$
type 3 or 3 HS communication
disable interface
type 2 communication scanner B-260, B-270
type 3 or 3 HS communication scanner F-530, F-540
disable zero-insert control type 2 communication scanner B -06
disable zero-isisert
scanner B-061
disabled state type
disabled state type 3 CA \quad G-000
disabling a channel interface
$1-120, \mathrm{G}-040$
$\begin{array}{lll}\text { display A } & 1-010 \\ \text { display B } & 1-020\end{array}$
display register
type 2 communication scanner B-150
type 3 or 3 HS communication scanner $\mathrm{F}-220$
display register CS1 maintenance ccle
$1-040,6-056$ display register CS1 maintenance cycle
dispoay register procedure
display display register
display recuest
type 2 communication scanner B-150
type 3 or 3 HS communication scanner
display storage CS1 maintenance cycle ${ }_{1-040}$
display storage procidure $1-130$
DISPLAY/FUCTION SELECT Swit
displaying
display and record TAR first $1-040$
OP register
register
$1-130,120,1-040$
$\begin{array}{ll}\text { status } & 1-120 \\ \text { stage } & 1-130\end{array}$
storage
TAR
1-120,
$1-130,1-040$
TAR and the OP register 11.120
temporary address register (TAR) 1-120, 1-040
$\begin{array}{ll}3705 \text { status } & 1-120 \\ \text { drive line shorts } \\ 7-100\end{array}$
drive lines, continuity check
drivers, bridge storage
$7-020$
E EB mode, type 4 CA $H-000$ Emulation Program, modem panel procedures $\mathrm{C}-420 \mathrm{O}$
enable channel interface, type 1 CA
$8-140$ enable/disable LIB, type 1 communication scanner A-310 enable or disable type 3 CA interf $1-050, \mathrm{G}-040$ ENABLE/DISABLE, PANEL switch \quad 1-030

entered interrupt Levelights 1-020
EPCF, changing states $\mathrm{F}-5900$ F-600
equalization procedure, LIB type 5
C-410A error
$\begin{array}{ll}\text { byte } X \text { error } & 6-980 \\ \text { byte } 0 \text { error } \\ \text { byte } 1 \text { error } & 6-980 \\ 680\end{array}$
$\begin{array}{ll}\text { byte } 1 \text { error } \\ \text { clock error } & 6-981 \\ 6-981\end{array}$
Indata parity error
Interrupts, type 4 CA
6-980
$\mathrm{H}-380$
Op reg parity error
prog lev 1 -980
prog lev 1 prog check 6 -9
SAR parity error $6-980$
SDR parity error
6.980
6
LIB, BCC local store parity C-120
LIB address $\mathrm{C}-120$
type 2 CA
CCU
CCU inbus check $9-500$
CCU outbus check
channel bus-out check
9.500
$9-50$
Channel bus-out check
CWAR data buffer check
cycle
cycle steal address check
9.5000
$\begin{array}{lll}\text { cycle steal address check } & 9-500 \\ \text { interface A A channel bus-in check } & 9-500\end{array}$
$\begin{array}{llll} \\ \text { interface } A \text { channel bus-n check } & 9-500 \\ \text { interraupt } B \text { channel bus-in check } & 9-500\end{array}$
interrupt $9-500$
invalid control word format $9-500$
invalid control word format
invalid CWAR
$9-500$
error analysis procedure in ROS test
dual CA
N ROS, type 4 CA 2-140
type 1 and type 4 CA 2-000
type 2 or type 3 CA
$2-040$
type 2 or type $3 \mathrm{CA} 2-200$
$\begin{gathered}\text { error detection, maintenance philosophy of } \\ \text { error isolation tools }\end{gathered}$ 0.000
errror isotation tools 0.000
error recording
error recording $\begin{aligned} & \text { emulation log out } 0.000 \\ & \text { maintenance philosophy of } 0.000\end{aligned}$
error recovery procedures, maintenance philosophy of 0.000
error reset, ty
error reset, type 1 communication scanner
bit overrun $A-30$
deedback check A-300
$\begin{array}{lll}\text { ESC evel } 1 \text { checks } & \text { A-300 } \\ \text { ESt } \\ \text { then }\end{array}$
exceeding maximum storage 1.020
exclusive-or character register instruction $6-150,6-200,6-220$
exclusive-or character register instruction $6-150,6-200,6-220$
exclusive-or alfword register instruction $6-150,6-200,6-220$
exclusive-or operation
exclusive-or operation, CCU 6-100
exclusive-or register immediate instruction 6-150, 6-160, 6-170
exclusive-or register instruction 6 -150, $6-200,6-62$
executing instruction from the control panel $1-160$
exit instruction $6-150,6-700,6-750$
extended buffer mode, type 4 CA
H-000
control register H-130, H-140
data buffer $\mathrm{H}-150 \mathrm{H}-160$
data buffer $\mathrm{H}-150, \mathrm{H}-160$
sequence charts $\mathrm{H}-200, \mathrm{H}-220, \mathrm{H}-240, \mathrm{H}-270, \mathrm{H}-290$
extended ICW controls
$\mathrm{F}_{\text {fault indicators, power supply }}$
LED positions
thermistor D-020
3705-1 $\mathrm{D}-320$

feedback error. type 2 com LD field
LCD field $B-070$
LB interface $B-260$
eedback errar, type 3 communication scanner
LCD field
$F-130$
LBD interface $F-530$
ferrite core storage unit 7.000
ferrite core storage unit $7-000$
FETT storage $7-200$
FET storage address error procedure $7-290$
flag, SDLC B-520
flag chain, type 2 CA $9-280$
flag detect predicted position, SDLC \quad B-530
flag detection-SCF 5 type 2 communication scanner B-061
flag zero count override, type 2 CA
flowehart, LIB, BCC ALU C-050
flowchart, LIB, BCC ALU C-O
format/cycle steal control word, communication scanner A-330
$\begin{array}{lll}\text { frame ground connection to DC common } & \text { D-230 }\end{array}$
gate and selection system for bridge storage 7-020
gate character sen
scanner A-060
gate locations, pow
gate locations, power supply D-000
gated timeout generation
gated timeout generation \quad F-620
general register selection controls
$6-110$ through 6-112
H
hard stop latch
resets $1-080$
sets
HARD STOP light 1-080
hardware, allowable combinations E-040
${ }^{1}$ CYCLE light $\quad 1-010$

CW , set/resen bits test mode F-13.0, $13.1,130$
type 3 or 3 HS commund 13.7
ICW sync for scooing $\begin{aligned} & \text { type }-680\end{aligned}$

set bits \quad 0.1-0.5
set bit $4.5 \quad$ F.610
$\begin{array}{lll}\text { set bit } 4.5 & \text { F-620 } \\ \text { set bit } 5.5 & \text { F-700 }\end{array}$
identify $L 1$ interrupt
type 2 communication scanner B-130
type 3 or 3 HS communication scanner
idle state (see wait state)
inbound data transfer, type 1 CA 8 -250
data/status $\angle 3$ interrupt $8-270$ ending data/status $L 3$ interrupt $\quad 8-280$
initial selection $L 3$ interrupt $8-250$
 ${\underset{\text { initial selection }}{\text { sequence chart }} \mathrm{L} 3 \text { interr }}_{\mathrm{H}-360}$
$\begin{gathered}\text { inbound data transfer, EB mode, type } 4 \mathrm{CA} \\ \text { BSC control character recongition }\end{gathered} \mathrm{H}-250$ BSC control character recognition
data/status $\mathrm{L3}$ interrupt $\mathrm{H}-250$ ending data/status Li Linterrupt $\mathrm{H}-280$
initial selection $L 3$ inter endial selection L3 interrupt $\mathrm{H}-25$
initite
sequence
inbound data transfer ending, type 1 CA $8-280$
increment scanner, type 1 communication scanne
NDATA light 1 -100
indicator light data flow, power supply $\mathrm{D}-210$
indicator lach chard $1-201$, F-680
indicator lights charts and procedures, power supply D-220
inhibit/sense in tridse storage 7.030
inhibit/sense scoping procedures $7-050$

initial selection status
type 11 CA 8.020
type 4 CA

initial selection timing, type $2 \mathrm{CA} 9-510$
initial selective reset, $\mathrm{CA4}$, selector channel $\mathrm{H}-390$
initial status, type $2 \mathrm{CA} 9-310$
initial status, type 2 ' CA $9-310$
initialization
type 2 communication scanner $\mathrm{B}-000$
initialized state, type 2 CA
IN/OUT CHECK light
ir.put instruction
data flow $6-710$
description 6-700
executing from the control panel
$1-160$
${ }^{11^{\prime}-7}{ }^{6}{ }_{6-770}$
entral control unit
Input $X^{\prime 00}{ }^{\text {to }} \times 1 \mathrm{~K}^{\prime} \mathrm{F}^{\prime}$
$\begin{array}{ll}\text { Input } \times 170^{\prime} & 6-770 \\ \text { Input } \times 771 & 6.780 \\ & \end{array}$

$\begin{array}{lll}\text { Input } X ‘ 76^{\prime} & 6.810 \\ \text { Input } & X^{\prime} 77^{\prime} & 6.820\end{array}$

Input $X^{\prime} 7 F^{\prime}{ }^{6} 6-860$
type 1 channel acapoter

Input $X^{\prime} 62^{\prime}$
Input $X \times 63^{\prime}$
$8-1070$

Input $X^{\prime} 5 C^{\prime} \mathrm{G}$ - 060
type 3 or 3 HS communication scanner

type 4 channel adapoter
Input $X{ }^{\prime} 60^{\prime}$
and

Input $\times 66^{\prime}$
Input $\times 67^{\prime}$
$H-100$


```
    Input X'6F
    lol
    type 3 or 3HS communication scanner F-210, F-230, F-240
nout X'71'; executing when turning the ADDRESS/DATA
input/output instruction decode, type 1 communication
    scanner A.130
    type 1 CA 8.060
    lype 2CA 9.100
    #sert character and count instruction 6-150, 6-470, 6-480
    Insert character instruction 6-1 50,6-270, 6-290
    instruction, executing from the control panel 1-160
    instruction decode restrictions, type 2 CA 9.100
    instruction decoding 6-150
    Mistruction step 1.160,1.030
    lol
    *)
    Minstuction 1 cycle 6-060
    lin
    Mstructions tested in ROS test
    N NOS, type 4CA 2.120
    #
    inteyrated modem, panel procedures C-42
    integrated modem wrap., type 2 CS B-512 
    intace address, type
    l
    %
    inmot X'40, F-180
    type 2communication scanner B-060
        lol
        PCF B.080
        l
    MW\mathrm{ Work reaister, B-220}
        y)
        LCD field F-1/
        M,
    \
    M,
    interface string, LIB C-110
    in
    #, (terrupt go, type 2 communication scanne
    BSC receive B-420
    conditions that cause B-310
    S.S receive B-490
#
lol
INTERRUPT push button 1
interupt request, type 1 CA
initial selection 8.230
```



```
interrupt request leveli, type 1 CA 8-360
interrupt requests assigne
introduction (an0,6-090
    cycle steal operation type 4CA H-300, H-340
    type 1CA 8.000
    lymer
```



```
    lol
    lol
    lym
nvalid channel commands }
O check detection, type 2 communication scanner, program
    MO chece detection, ty
        type 2 commu
    gate interface connectors, LIB C-130
    lol
|PL
    bootstrap load 6.96
    lol
    Mhase 1 6.960
    phase 1 and 2 timing, FET storage. 6.964
    Mose 1 and 2 tim
    phase 3 6.965
```



```
MPL PHASE (ights 1.020
    l
M
IPL phase 2, lock
M, (1) cyrceedure.00
lol
on scanner
$2 cycle 6.060
Jumpering
    lol
    l
    Linstruction 6-150, 6-270, 6,390
    L instruction 6-150, 6-270,6,390
    *)
LAMP TEST push button 1-060
l
    l
    biow ove priority A
    bit overrun A-300
    lol
    lol
    diagnostic bit service A.
    lemback check A.24
    Mode override A-230
    l
```



```
c}\begin{array}{c}{\mathrm{ scanner (estata}}\\{\mathrm{ teD data}}\\{\mathrm{ LCD field}}
    lol
```

LCOR instruction 6-150, 6-200, 6-220
LCR instruction $6-150,6-200,6-220$
LED faut indicators $\mathrm{D} .320, \mathrm{D}-520$

```
    level }1\mathrm{ interrupt, type 2 communica
```

 level interrupt, type 2 commur
 set by check register B-130
set by output
$\begin{array}{lll}\text { set by check register } \\ \text { set by output } X & \text { B-130 } & \\ B-170\end{array}$

set by check kegister $\begin{aligned} & \text { F-200 } \\ & \text { set by output } \text { X' }^{\prime} 43^{\prime} \\ & \text { F-270 }\end{aligned}$

level 1 interrupt state, type 2 CA $9-060$
level 2 interrupt, type 2 communication scanner
$\begin{array}{ll}\text { data flow } \mathrm{B}-300 \\ \text { examples } & \text { B-360 }\end{array}$
examples B-360
interrupt go B-310
interrupt go B-310
priority registers B-320
timing sequence B-340
level 2 interrupt, type 3 or 3 HS communication scanner F-550, F-560
level 2 interrupt pending, type 2 communication
level 2 interrupt pending,
scanner $\mathrm{B}-310, \mathrm{~B}-210$

level 3 interrupt state, type 2 CA
$\begin{aligned} & \text { LH instruction } \\ & 6-150,6-270,6-290\end{aligned}$
LHOR instruction $6-150,6-200,6-220$
LH instruction 6-150, 6-270, 6-290
LHOR instruction $6-150,6-20,6$ 6-220
LHR instruction $6-150,6-200,6-220$
LHR instruction 6-150, 6-200, 6-220
LIB interface, type 2 communication scann
bit senvice request
$B-150, B-260$
bit service request $B-150, B-260$
clear to send $B-150, B-260$
clear to send B-150, B-26,
control in A, B, C B-260
control in A, B,C B-260
control out $A, B B-260$
control out A, B \quad B-260
data set ready
B-150,

$\begin{aligned} & \text { echo check } \\ & \text { input } X\end{aligned} \mathcal{A}^{\prime} 46^{\prime}$
$B-150$
incecive data buffer B-150, B-260
recer
receive data space $B-260$
request to send
request to send $B-260$
ring indica tor $B-150, B-260$
ring indicator B-150, B-260
send data buffer B.2.260
send data buffer B-260
transit

LIB interface, type 3 or 3 HS communic
bit service request $F \cdot-220, F-530$
clear to send $F-220, F-530$
clear to send $F-220, F-530$
control in A, B, C. 530
control in A, B, C F F-530
control out A, B F-530
control out A, B F-530
data set ready F-220, F-530

receive data buffer F-220, F-530
request to send
receive data buffer F-220,F
request to send F-530
ring indicator F-220, F-530
ring indicator $F-220, F-530$
send data buffer $F-5.50$

transmit
LIB select
type 2 2or
select
type 2 communication scanner B-220
$\begin{array}{llll}\text { type } 2 \text { communication scanner } & \text { B.220 } \\ \text { type } 3 \text { or } 3 \text { HS communication scanner }\end{array}$

LB to communication scanner interface C-020
LB to ine interface C-O20
LIB type 1 , line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{GA}, 1 \mathrm{H}$
LIB type 1 , line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{GA}, 1 \mathrm{H}$,
$1 \mathrm{~J}, 1 \mathrm{~K}$
$\mathrm{C}-002$
LIS type 1, line sets $1 \mathrm{~N}, 1 \mathrm{R}, 1 \mathrm{~s}, 1 \mathrm{~T}, 1 \mathrm{TA}, 1 \mathrm{U}, 1 \mathrm{~W}, 1 \mathrm{Z} \quad \mathrm{C}-010$
LIB type 1, line sets $1 \mathrm{~N}, 1 \mathrm{R}, 1 \mathrm{~S}, 1 \mathrm{~T}$,
LIB type 2, line set 2A C -010
LIB type 2, line set 2A C -010
LIB type 3 , line sets $3 \mathrm{~A}, 3 \mathrm{~B}$ C-010
LIB type 3 , line sets $3 A, 3 B \quad C-010$
LIB type 4 , line sets $4 A, 4 B, 4 C \quad C-010$

LIB type 4, line sets $4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}$ C-
LIB type, line sets $5 \mathrm{~A}, 5 \mathrm{C}$
C-010
LIB type 5, line sets 5
LIB type 6 , line set 6 A
LIB type 7, $\mathrm{C}-010$

LIB type 7 C-O10
LIB type 8, line set $8 \mathrm{~A}, 8 \mathrm{~B} \mathrm{C}-010$
LIB type 9, Iine set 9 C C-010

LIB type 10, line set 10 C C-010
LIB type 11, line set $11 \mathrm{~A}, 11 \mathrm{~B}$
C-011

LIB type
lights
display

lights
display A
display B

 \(\begin{aligned} & \text { lights } \\ & \text { display A } \\ & \text { display } ~ \\ & \text { di-010 } \\ & \text { control panel } \\ & \text { col } \\ & \text { 1-050, }\end{aligned}\) 1-060, 1-080, 1-090
 display A 1 1-010
 display $1-020$
control panal $1.050,1-060,1-080,1-090$
control panel, type 3 CA G-040
ne address bus
type 2 communication scanner
level 2 interrupt
type 2 communication scanner
level 2 interrupt
program addressing -320
program addressing B-320
scan addressing
B-220.
le-230
scan addressing B-220, B-230
type 3 or 3 HS communicter
scan addressing B-220, B-230
type 3 or 3HS communication scanner
scan addressing F-090, F-100
scan addressing F-090, $F-10$
line address hardware positions
LIB type 1 C- -070
ine address hardware
LIB type 1
C-070
$\begin{array}{ll}\text { LIB type } 1 & \text { C-0 } \\ \text { LIB type } 2 & \text { C- } \\ \text { LIB type } 3 & \text { C- }\end{array}$
$\begin{array}{lll}\text { LIB type } & \text { Co } \\ \text { LiB tye } 2 & \text { C-0 } \\ \text { LB type } 3 & \text { C- }\end{array}$

LIB type 3 C-090
LIB ype
C-100
LIB trpe 5
C-101
LIB type 6
C-102
$\begin{array}{ll}\text { LIB type } 5 & \mathrm{C}-101 \\ \text { LIB type } 6 & \mathrm{C-102} \\ \text { LIB type } 7 & \mathrm{C}-103 \\ \text { LIB type } & \mathrm{C}\end{array}$

$\begin{array}{lll}\text { LIB type } 8 & C-104 \\ \text { LIB type } 9 & C-105\end{array}$
LIB type 9
C. C.105
LIB type 10
C-106
$\begin{array}{ll}\text { LIB type } 10 & C-105 \\ \text { LiB type } & \text { C-106 } \\ \text { C-107 }\end{array}$
LIB type 10
C-106
LIB type 11
LIB type 12
C-107
C-108
$\begin{array}{lll}\text { LIB type } 12 & \text { C-108 }\end{array}$
line interface
line set $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}$
C $\mathbf{1 7 0}$
$\begin{array}{lll}\text { line sate } 1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D} & \mathrm{C}-170 \\ \text { line set } 1 \mathrm{D}, 1 \mathrm{~F}, 1 \mathrm{H}, 1 \mathrm{D} & \mathrm{C}-200\end{array}$
line set 1A, 1B, 1C, 1D C-170
line set 1E, 1D
line set 1E
C-220

$1 \begin{array}{lll}\text { line set } 1 \mathrm{~N} & \mathrm{C}-245 \\ \text { line set } 1 \mathrm{R} & \mathrm{C}-247 \mathrm{~A} \\ \text { line set } 1 \mathrm{~W}, 1 \mathrm{Z} & \mathrm{C}-248\end{array}$
line set $1 \mathrm{~W}, 1 \mathrm{C}, \mathrm{C},-248$
line set $2 \mathrm{AA}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}$ C-250
line set $1 \mathrm{~W}, 1 \mathrm{Z} \quad \mathrm{C}-248$
line est $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{BA}, 4 \mathrm{~A}, 4 \mathrm{C} \quad \mathrm{C}-250$
line set $5 \mathrm{~A}, 5 \mathrm{~B}, 6 \mathrm{~A}, \mathrm{C}-280$
Line set 5A, 5B, 6A C-280
LIB 7 C-280
line set $8 \mathrm{AA}, 8 \mathrm{~B}, 9 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~B} \quad \mathrm{C}-300$
Line set 8A, 8B, $9 \mathrm{~A}, 12 \mathrm{~A}$,
line set $10 \mathrm{~A} \mathrm{C}-314$
line set 11A, $11 \mathrm{~B} \quad \mathrm{C}-318$
line set $11 \mathrm{~A}, 11 \mathrm{CB} \mathrm{C}-318$
LIB 7,9 autocall interface $\mathrm{C}-320$
LIB 7,9 autocall interface $C-320$
line interface bases, introduction 0.050
line interface bases, introduction
line scoping procedure c-400
line scoping
line set
ine set
ALD references
$C-160$
ALD references
C-160
general data flow
C-160

general data flow C-160
page references C-160
I line set 1A, 1B, 1C, 10 C-170
ine set $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}$
bit service $\mathrm{C}-180$
bit service C-180
line interface C-170
I line interface C-170 local attachment interface, 1C and 1D only C-190
local attachmen
receive $C-180$
strobe
C-170
receive $\mathrm{C}-180$
strobe $\mathrm{C}-170$
strobe $\mathrm{C}-170$
transmit C-180
transmit C-180
line set $1 \mathrm{D}, 1 \mathrm{~F}, 1 \mathrm{H} \quad \mathrm{C}-200$
ne set 1D, $1 \mathrm{~F}, 1 \mathrm{H}$
bit service, $\mathrm{C}-20 \mathrm{Cl}$
bit service $\mathrm{C}-210$-200
linin interface $\mathrm{C}-200$
local tattacter
bit service $\mathrm{C}-210$
line interface C - 00
local tratachment interface, 1D and 1F only C -190
local attachment
receive $\mathrm{C}-210$
$\begin{array}{ll}\text { receive } & C-210 \\ \text { strobe } & C-200\end{array}$
strobe C-200
strobe C-200
transmit C-210
SNA and non-SNA terminals C-190
SNA and non-SNA
line set $1 E$ C-220
bit service
C-220
line set 1 E C-220
bit service e-220
tine set $1 \mathrm{G}, 1 \mathrm{~T} \mathrm{C}$-230
bit service $\mathrm{C}-220$
ine set $G, 1 \mathrm{C}-230$
bit service $\mathrm{C}-231$
line interface $\mathrm{C}-230$
line interface C-230
line interface
receive $C-231$
receive $C-231$
strobe c-230
transmit $C-231$
transmit C-231
line set $1 \mathrm{GA}, 1 \mathrm{TA}$
line set $1 \mathrm{GA}, 1 \mathrm{TA}$
bit service
$\mathrm{C}-235$
bit serice
C- 235
ine interface
C-235

$\begin{array}{ll}\text { receive } & \mathrm{C}-236 \\ \text { strobe } & \mathrm{C} 235 \\ \text { transmit } & \mathrm{C}-236\end{array}$
000000000000000000000000
000000000000000000000000
000000000000000000000000
ner


```
hinet servi
    Mit service C-242
    l
#
line set 1K, 1S, 1U
    lol
    loceiveceren44
\
    Mineset (N-2,
    lol
line set 1R
    l
    line interface C-2 
    lol
< ctrobe c-247A
```



```
    lol}\begin{array}{l}{\mathrm{ receive c. c.249}}\\{\mathrm{ Strobe }}\\{C-248}
```



```
_ transmit CC-249 _ 4, 4B,4C C-250
    line interface C-250
    ll
transmit C-260
    bit sevice. C-290
    l
#}\begin{array}{l}{\mathrm{ transmit C-290}}\\{\mathrm{ line set 8A, 8B,9A, 12A,12B}}
    bitsenve C.300
    _eceive C.300
    $trobe C.300
l}\begin{array}{l}{\mathrm{ line set 10A }}\\{\mathrm{ bit sevice C.314.C-315}}
    line intertace C.314,C-315
    receive C.315
Strobe C.314,
line set 11A, 11B
    line interace C.3
    strobe C-318, C-319
    tranmit C.318
    bit service C:320
    bitservice C-320
load address compare operation 1.150
load address instruction 6.150, 6-560, 6-600
load character with o
lol}
load halfword register instruction 6-150, 6-200, 6-220
pad halfword with offset register instruction 6-150.6.200, 6.220
load instruction 6-150, 6-270,6-390
load instruction66
LOAD light 1.090 1-0,
bit servic
verface \(\mathrm{C}-241\) \(\begin{array}{ll}\text { receive } \\ \text { strobe } & \mathrm{C}-242 \\ \mathrm{C} & 241\end{array}\) \begin{tabular}{c} 
transmit C .24 \\
line set 1 K \\
\hline
\end{tabular} \(\begin{array}{ll}\text { bit service } & \mathrm{C}-244 \\ \text { line interface } & \mathrm{C}-243\end{array}\) \(\begin{array}{ll}\text { receive } & \mathrm{C} \text { C.244 } \\ \text { strobe } & \text { C-243 } \\ \text { transmit } & \text { C-244 }\end{array}\)
line set 1 N
\(\begin{array}{ll}\text { bit service } & \mathrm{C}-246 \\ \text { line interface } & \mathrm{C}-245 \\ & \end{array}\) \begin{tabular}{ll} 
ceive & \(\mathrm{C}-246\) \\
ore & C 245 \\
\hline
\end{tabular}
ne set \(1 R\)
line interface C-247
receive \(\mathrm{C}-247 \mathrm{C}\)
strobe \(\mathrm{C}-247 \mathrm{~A}\)
\(\begin{gathered}\text { transmit } \\ \text { tre } \\ \text { line set } 1 \mathrm{~W}, 1 Z\end{gathered}\)
\(\begin{array}{ll}\text { bit service } & \text { C-249 } \\ \text { line interface } & \text { C-248 }\end{array}\)
\(\begin{array}{ll}\text { strobe } & \mathrm{C}-248 \\ \text { transmit } & \mathrm{C}-249\end{array}\)
line interface C-20
receive C-260
strobe \(C-250\)
transmi
C-2
line set 5A, 58, 6A and LIB
bir service \(C-290\)
line interface C-280
eive C.290
obe C-280
transmit C.290
line set 8A, \(88,9 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~B}\)
bit senvice C- 310
line interface C- 300
obe C-300
ne set 10A
bit senice
line interface C-314. C-315
rece
strove
c.-315
c. \(314 . C-315\)
transmit C. 31
bit service C-318, C. 319
receive \(\mathrm{C}-319\)
strobe C-318, C.31
LiB type 7,9 autocall inter face
bit sevice
line interface
C.
C
load address compare operation 1.150
```



```
Oad instruction 6
OAD pushbution \(1-090\)
```

```
oad register instruction E.150,6-210,6.220,
    load with offset register instruction 6-150, 6-210,6-22
OAD/STORE ADDRESS COMPARE Switch 1.060
lol
    local attachment interface, SNA terminals C-190
    local store check, tyoe 1 CA 8-360
    l
    location of loig pages by volum
    locations, FET storage 7-200 E-03
    ocations, 3705-I physical E-000
    locations,375.-1physical (e-000
    locations, 3705-I power supply D.000
    0\timesD gate with mopere than three cards D-300, D-301
    OXD gate with only two or three cards D-500, D.50,
    logic pages by volume Vol 1-X;Vol 2-VIII;Vol 3-V'II
    logic voltage levels D-230
    longlerm allegiance state G-110
    low priority interface,type 1 communication scanner A-050
    low priority scan counter, type 1 communication scanner A-050
    LR instruction 6-150,6-210, 6-220
M
machine cycles 6.051 
    +20V GV Carsuato D.100 S, power suppiy
        +6V up D.070 
    Contactors on D-090
    lol
    M,
    lomoval of a frame D-060
    maintenance analysis procedures (MAPs) 3705-1/
    l
```



```
    lll
    l
    Mrob. isolation,, exp frame with mod pwr D.-630
    -4V undervoltage prob. with mod pwr D.6.60
    #
    lol
    -12V undervoltage prob with mod pwr D. D.655
Overvoltage prob with mod pwr p-670
    Maintenane cycle cs1 
    #
    lol
    #store storage CS1 1-040
    M
    lol
        * Transmit test C-470
        c
        M
        lol
        MA, side diagnostics C-540
    ACO fault location C-570
        *)
    Maitenance, scoping procedures
```

masking program levels 6.07
maximum storage, exceeding (see ADDRESS EXCEPTION light)
$0 \times \mathrm{D}$ gate with more than three cards $\mathrm{D}-230$ memory (see storage)
$\begin{array}{cc}\text { meter } \\ \text { CE usage } & 1-03\end{array}$
customer usage $1-030$
LIB 5 receive equalizer C-410A, C-420A, C-101
mode and line priority store, type 1 communication scanner A-170
mode and line priority store, type 1 communication scanner
mode bit override, type 1 communication scanner $A \cdot 230$
mode override latch, type 1 communication scanner A-230
mode register, type 2 CA 9 -020
mode select bits, type 1 communication scarner
moder input instructions A-150, A-170
$\begin{array}{ll}\text { output instructions } & \text { A-250 } \\ \text { MODE SELECT switch } \\ 1.030\end{array}$
MODE SELECT, switch 1.030
mode selection, type 1 CA $8-000,8-170$
$\begin{array}{ll}\text { mode//EB, type } 4 \text { CA } & \mathrm{H}-000 \\ \text { mode/ESC, type } 1 \text { CA } & 8-170\end{array}$
$\begin{array}{llll}\text { mode/ESC, type } 1 \text { CA } & 8-170 \\ \text { mode/NSC, type } 1 \text { CA } & 8.170\end{array}$
mode/ NSC, ty
modem check
type 2 communication scanner, switched network B-460 Ypee 2 communication scanner
input $X \times 44^{\prime}$
B-140

type 3 or 3 SHS communication scanner
input $X^{\prime} \cdot 44^{\prime}$
$B .210$
output X'44' B-28
modem self test $\mathrm{B}-512$
modem wrap for LiBs 5,6 , and 7 , type 2 communication
modem wrap for
scanner $\mathrm{B}-512$
$\begin{array}{lll}\text { modem wrap, LiBs 8, } 9,12 & \mathrm{C}-310 \\ \text { modem wrap test for }\end{array}$
modem wrap test for LiBs $8,9,12 \quad$ B-513
modification, type 2 communcation scanne
address substitution $8-230$
$\begin{array}{ll}\text { counter register } & \text { B-360 } \\ \text { upper scan limit } \\ \mathrm{B}-230\end{array}$
unper
modification, type 3 or $3 H S$ communication scanner
address substitution
address substitution F-100, F-10
upper scan limit $F-100$ F-101
MST-1 CE indicator latch card $1-20$
multiple bit, multiple address bridge storage failures $7-100$
multiple CA4, auto selection $H-130$

```
N N ROS test 2-120
NROS test 2-120
NCR orstr, modion 6-150, 6-190,6-22
neutral state, type 3 CA,G-000
NHR instruction 6-150, 6-190, 6-220
NR instruction 6-150, 6-190, 6-220
NRZI mode, SDLC B-530
    NSC status by te egister
    l
O
OHR instruction 6-150,6-210,6-220
Ones counter SDLC F
Op REG light 1.010
O
open diodes
    eration
    l
    uto-ansver C.360
    latern}\mathrm{ binary synchronous terminal B-370
    bit clock control sequence C-040
    bit clock control sequence C-040
    lol
C-431
31
SZ1 mode, SDLC B-53
Ones counter SDLC F-630, F-640
```

```
l
sitart-stop sequence chart-switched B-390) C-040
write odd byte, type 2 CA 9-430
write odd byte, type 2 2CA
loso type terminal 
$,
or character register instruction 6-150, 6-10, 6-220
or hal fword register instruction
Or operation, CCU 6.100 6-150 6-160, 6-170
*)
*)
lol
```



```
#ata/status L3 interupt 8-330
outbound data transfers, EB mode type 4 CA H-190
automatic CA4 selection by priority H-23O
lol
lol
(See also type 1 CA 8.340), (240)
\
```



```
    lol
    Mitial selection L3 inte
sequence chart H-330
outbound data transfer ending, type 1 CA 8-340
#
output instructions
*)
    M
        #
        lol
```



```
    OM,
    *)
    *)
    Output X'7C' 
    Output X'70, 6-940
    Output X'7E',
    Output X'7F',6.950
    M, % chanel adapter 
    lol
    Output X'63'8-100
    \all
    OMtput X''6'%'8.120
    Mpe 2 channel adapter
    Output \times50, 50, %-110
```



```
    *)
    M,
OMut }\times56; 9-18
Output X58',
Output X'5A' 
```


PDF array/control register/status register type 3 or 3 HS
CF changun station scanner F-490
PCF changing state
PDF array address selection $F-390$
PDF/CS pointer selection $F-392$
physical locations
bridge storage 7.090
FET storage 7.200
RPL diskette drive E-02
3705.11 E-020

Plane of storage bridge module $\begin{aligned} & 7.030 \\ & \text { pot and filter card power supply } \\ & \text { D. } 190\end{aligned}$
power check $3705-1$
fault senser
fault sense power off D-010
flowchart D-010
thermal sense power off D.010
power check
fault sense power off
f.
fowchart
D.
thermal sense power off D-310
POWER CHECK light 11000
power control cable plugs power supply, $3705-1$ D-000
power control cable plugs, power supply, 3705-11
OXD gate with more than three cards $\begin{aligned} & \text { D-300 } \\ & \text { OXD gate with only two or three cards } \\ & \text { D-500, D-50 }\end{aligned}$
power distribution
basic frame $3705-1$
D.030
Casic frame, 3705-1 D.030
expansion frame, $3705-1 \mathrm{D} .040$
basic frame, $3705-11$ D. 330 or D. 530
expansion frame $3705-11$
D. -540
expansinn fame,
power down seauence, 37505-1
power down sequence, 3705-1
cower down sequence, $3705-11$
oxD aate with only two or three cards
OXD aate with only two or three cards D-37
POWER OF push button 1-100
power on, changes storage protect
POWER ON push button $1-100$

power-off override $375-1$ D.250
 $3705-1$ $\mathbf{D}-250$

D70.4 with mere than three cards in OXD gate D-370
power-off procedure
power-on procedure $1-120$
power--n sequence, , ower supply, $3705-1$ D-050
power-on sequence, $3705-11$
OXD gate with more than three cards
OXD gate with only two or three cards
$\mathrm{D}-350$
$\mathrm{D}-540$ preventive maintenance E-010
ciorities
changin
changing machine
interrupt $6-090$
machine cycle 6 -070
program level 6.080
program level 6.080
selection, multiple CA4s
H-230
Priority bits 1 -2, type 2 communication scanner B-310, B-210
priority bits $1-2$, type 3 or 3 HS communication scanner
priority counter, type 1 communication scanner $A-050$
priority register, type 2 communication scanner, scanner code
identification $B-320, B-360$
problem definition 0.000
problem determination 0.000
$\begin{array}{ll}\text { problem isolation } & 0.010 \\ \text { PROG LEV } 1 \text { light } \\ 1 .-020\end{array}$
$\begin{array}{lll}\text { PROG LEV } 1 \text { light } & 1-020 \\ \text { PROG LEV } 2 \text { light } & 1-020\end{array}$

PROG L1 light ${ }^{1.0}$
program addressing, type 2 communication scanner,
CCU time
CCU time B.010
program addressing, type 3 or 3 HS communication scanner, CCU

fram flag, type 2 com niction scaner

 output X'44' F-280
program level priorities 6-090
program level 3 interrupt, requesting a $1-120$
active level in ENTERED INTERRUPT lights $1-020$
description 6 -080, $6-08$
$\underset{\substack{\text { rogram stop latch } \\ \text { reset } \\ 1-090}}{ }$
set 1.090
PROGRAM STOP light
PROTECT CHECK light
$1-090$
$1-020$
protect key 6 -040
rotected data, attempt to change (see PROTECT CHECK ligh
protection, storage 6.040
protection exception 6 -040
seudo character control block, type 1 communication

R
RA instructions $6-150,6-560$
andom storage failures $7-130-7-150$
randon storage failures $7-130-7-150$
RE instructions $6-150,6-700$
read cycle for bridge storage 7.030
ead gate drivers 7.020
ead-only storage etes
dual CA 2.080
N ROS, type 4CA
type 1 and type 4 CA 2.000
type 2 or type 3 CA
type 2 or type 3 CA 2.040
eadout, destructive in bridge storage 7.030
receive
line set 1A, 1B, 1C, $1 \mathrm{D} \mathrm{C-180}$
line set 1A, 1B, 1C, 1D C-180
line set 10, $1 \mathrm{~F}, 1 \mathrm{H} \quad \mathrm{C}-10$
line set 1GA, 1TA $\quad \mathrm{C}-235$
line set 1GA, iTA C-2
line set 1G, $1 \mathrm{~T}^{\mathrm{C}} \mathrm{C}$-230
ine set $1 \mathrm{G}, 1 \mathrm{~T}$
line set 1 J
$\mathrm{C}-242$
line set $1 \mathrm{~K}, 1 \mathrm{IS}, 1 \mathrm{U} \quad \mathrm{C}-24$
line set 1 N
$\mathrm{C}-246$
$1 \begin{aligned} & \text { line set } 1 R \\ & \text { line set } 1 \mathrm{~W}, 12-247 \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C}\end{aligned}$
line set $1 \mathrm{R} C-247 \mathrm{~A}$
line set $1 \mathrm{~W}, 1 Z \mathrm{Z},-29$
line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C} \mathrm{C}-250$
line set 5A, 5B, 6 AB
Li $7 \mathrm{C}-290$
7
line set $5 \mathrm{~A}, 5 \mathrm{~B}$,
Le $7 \mathrm{C},-290$
line set 8 A .8 B
line set 8A, 8B, 9A, 12A 12B C-310
line set $11 \mathrm{~A}, 11 \mathrm{~B}$ C-319
eceive details, communication scanner, type 2
(S-S) SDF to PD
BSC
B-420
SDC B-4.560
Start-stop B-490
receive details, communication scanner, type 3 or 3 HS
BSC
SLC 500
$F-510$
ceive line signal detector, type 2 communication scanner
$\begin{array}{ll}\text { mput } X 44 \text { ' } 4 \text { B- } 140 \\ \text { input } & X^{\prime} 46^{\prime} \\ \text { B-150 }\end{array}$
eceive line signal detect-0r, type 3 or 3 HS communication scanner

input $\mathrm{X}^{\prime} 46^{\prime} \quad$ F-220
register, type 2 CA
bus out 9.020
bus out 9.020
check 9.020
command 9.020
control channel adapter 9.020
cycle steal address 9.020
data buffer 9.020
mode 9.020
outbound control word address 9.020
sense 9.020
status 9.020
status 9.020
egister addresses 6.151
egister and external register instructions 6.700 ,
egister and storagee instructions 6 -270
egister and storage with addition instructions 6-470
register, cycle utilization counter ${ }^{6-831}$
register immediate instructions $6-160,6-220$
egister immediate instructions 6-160, 6-220
ejecting channel commands, type 1CA 8-160
REMOTE/LOCAL POWER switch $1-100$
removal, bridge storage module 7.120
removal, bridge storage module $7-120$
removing the bridge storage module $7-120$
epair verification, part of maintenance philosophy 0.000
eplacing a field replaceable unit 0.010
requesting a program level 3 interrupt 1-120
eset ICW bits 13.0, 13.1, 13.6, and 13.7
equen
type 3 communicatio
eeset. system or selective.
eset, system or selective,
type 3 CA G-170
type 4 CA selector channel $\mathrm{H}-390$
eset control function, type 2 communication scanner,
output $X ' 43^{\prime}$ B-170
reset control function, type 3 or 3 HS communication scanner
output $X^{\prime} 43^{\prime} \quad$ F-270
RESET push button $1-070$
reset-select LIB, type 3 or 3 HS communication scanner
control out A and B B-260, B-270

output $X^{\prime} 43^{\prime} \quad F-270$
setting a CCU check 1 1.120
esestting the CCU, disables storage protection 6-040
esetting the 37051.120 , 120
estrictions/instruction decode, type 2 CA $9-100$
$R 1$ instructions $6-150,6-160,6-170$
ROS bootstrap load 6.961
Ros load, clock step thru 1 1-200
ROS test
dual CA 2 2-080
N ROS test 2.120
NROS est 2.120
type 1 and type 4 CA 2.000
type 2 and type 3 CA 2.040
RPL and CA Combinations E-040

RPL and $C A$ combinations
RR
instructions $6-150,6-190$

RS instuctions 6-150, 6-270
RSA instructions 6 6.150, $6-470$
RT instructions $6-150,6-630$
$\stackrel{s}{\text { sample }}$
mple bit service, type i communication scanner A.030 sample receive data
SAR its 7.110
SAR light $1-010$
scan, type 3 communication scanner F- 090
scanssing, type
$\begin{array}{lll} \\ \text { scan addressing, type } 3 \text { or } 3 \text { HS } & \text { communication scanner time } & \text { F-010, F-10 }\end{array}$
can addressing examples, type 2 communication scanner $B-250$
scan counter, type 2 communication scanner B-230, B-240
scan counter, type 3 or 3 HS communication
3HS communication scanner
scanner $A-140$, A.330
scanner, introduction 0.050
scanner disable latch, type 2 scanner, output X'43' B-170, B-270

00

```
scanner disable latch, type 3 3canner,output X'43' F-270, F-540
canner enable, type 1 communication scanner A.3
#
c}\begin{array}{c}{\mathrm{ program addressing}}\\{\mathrm{ canng}}\\{\mathrm{ single address 1-150}}
    single address 1-150
    scorage 1.140
ope points, type 3
    *ope points, type 3 scanner
Sy,
scoping procedures
    l
    lol
SCF, bits 1.5 F.610
    CR, power supplV 
    checking for shorts in 4V D. }180\mathrm{ or D-565
    lol
    \mathrm{ replacinga -4 SCR head sink assemb}
coniol operating principles, power supoly D.200
    R controls,power supply
    SCR control card D.190
SCR instruction 6-210, 6-220 or D.570, D.575
SDF, foreing control characters and constants F-395
    abort B-520
    end of frame
    llag B-520
    Hrame detect B-062
    cW scatser B4.36 (ones
    scanner B-081 counter), type 2 communication
    scanner B.081
    scanner B-081 (%)
    CWbits, type 3 or 3HS communication scanner F-120, F-12
    LCD, type 2 communication scanner B-062 
    l
    zero bit insertion/deletion B-530
    *)
        PCF/EPCF, type 3 or 3HS communication scanner F-140
    lol
    SCF, type 2 communica
    lurmmal operation, type 3 or 3HS communication scanner F-445
    terminal operation, type 3 or 3HS communication scanner F.445
        l
OLC ones counter F.630, F-640
SDLC
SDLC transmit, type 3 or 3HS communication scanner F-543
SR light 1.010
_ secondary control fim,
select, LIB C-120
l
sel
$
*)
*)
loge points, CCU 1.200 F. 445F440
```

status register, PD
scanner $\mathrm{F}-490$
$\begin{array}{ll}\text { scanner } & \text { F-490 } \\ \text { status rejecting channel commands, type } 1 \text { CA } & 8-160\end{array}$
status transfer, type 1 CA
ESC test I/ $88-230$

final inbound NCS $8-280$
final outbound ESC
final outbound NS 8.340
final outbound NSC $8-340$
NCS testi/ $8-230$
No-Op 82.31
NCS testl// $812-23$
No.Op 8.210
status transfer ESC I/O, type 1 CA 8 -220
STC instruction $6-150,6-210,6-3,80$
STCT instruction $6-150,6-470,6-530$
STCT instruction 6 -150, 6-470, 6-530
STH instruction $6-150,6-270,6-360$
stop bit check/receive break, type 2 cormmunication scanner
$\begin{array}{ll}\mathrm{S}-\mathrm{S} \text { receive } \\ \mathrm{S}-\mathrm{S} \text { transmit } & 8-490 \\ \text { B-480 }\end{array}$
STOP push button $1-070$
STORAGE ADDRESS/REGISTER DATA switches 1.100
STORAGE ADDRESS/REGISTER DATA switches 1
orage (bridge) $7-000$
address register bits
addressing $7-110$
adjustments
$7-160$

clock 7 -080
controls to CCU
cycle $7-080$
cycle timing $7-080$
data flow $7-000$
data flow 7.000
data to CCU
$7-060$
data register bit failures $7-040$

failures, random $7-130-7-150$
introduction 0.050
introduction $0-0,1$
key $6-040$
protection $6-040$
scan $1-140,1-110,6-063$

address error procedure
board layout
$7-21090$
board layout $7-210$
data flow
$7-220$
diagnostic repair operation $\quad 7-240$
$\begin{array}{ll}\text { in a single address } & 1-130 \\ \text { in storage locations } \\ 1-140,6-057\end{array}$
$\begin{array}{ll}\text { in storage locations } & \text { 1-140, } 6-0 \\ \text { maintenance procedure. } \\ \text { phys.-260 }\end{array}$
physical locations 7 -
timing chart $7-250$
store character and count instruction 6-150, 6-470, 6-530
store character instrouction 6 -150, 6-270, 6-330
store compare
$1-060$
store compare ${ }^{1-060}$
store halfword instruction $\quad 6-150,6-270,6-360$
store instruction 6-150, 6-270, 6.430,
store instruction at address $\times^{\prime} 00010^{\prime} \quad 6-08$
STORE push button $1-070$
store register cs1 maintenance cycle 1-040, 6-054
store register CS1 maintenance cycle $11.040,6-054$
store stack bits, type 1 communication scanner A-260
store storage CS maintenance cycte $11-040,6-057$
storing data
in a register

line set $1 \mathrm{D}, 1 \mathrm{~F}, 1 \mathrm{H} \mathrm{C}-20$
line set $1 \mathrm{G}, 1 \mathrm{~T} C-230$

line set 1GA, 1 TAA $\mathrm{C}-235$

line set $1 J C-241$
line set $1 \mathrm{~K}, 1 \mathrm{~S}, 1 \mathrm{C}$
l
$\mathrm{Cl}-243$

line set
line set 2A, $3 A, 3 B-248,4 B, 4 C, C-250$
line set 2A, 3A, 3B, 4A, 4B, 4C C-250
line set $5 \mathrm{~A}, 5 \mathrm{~B}, 6 \mathrm{~A} \quad \mathrm{C}-280$

LIB 7 C-280
line set 8A, 8B, 9A, 12A, 12 B C-300

$\begin{array}{ccc}\text { scan addressing } & B-230 \\ \text { s. }\end{array}$
substitution control register, type 3 communication scanner output X•41. F-250
scan addressing F F-220
subtract character register instruction 6 .150. 6.210, 6-220
subtract hal fword register instruction
subtract operation, CCU 6.100
subtract register immediate instruction $6 \cdot 150,6 \cdot 160,6-170$
subtract reister instruction $6 \cdot-150,6 \cdot 210,6-220$
summary LCD code changes
switched state, type 3 CA
$\mathrm{CA}-000$
sync, scope for type 3 or 3 HS scanner F-680, F-690
${ }_{T}^{T}$ tim
T times displayed on control panel 1.010
tag terminator assemblies E-000. E-020, E-021
TAR, display 1.040
technology-related tools $\mathrm{E}-010$
telegraph adapter C-270
terminal, SNA line set 1 D and
terminators bus/tag $\mathrm{E}-0000, \mathrm{E}-020, \mathrm{E},-021$ erminal operation, type 3 or 3 HS communication saner bi-sync F-225, F-426
SDLC F-445, F-446
test block 1 1-300
test data latch
st data latch.
type 1 communication scanner A-340
 mode $\mathrm{B}-270, \mathrm{~B}-511$
type 3 or 3 HS communication scanner, diagnostic wrap
mode $F-540$,
est equipment
e-0
TEST light 1.080
test mode latch
reset 1.080
1.080
$\begin{array}{lll}\text { reset } & 1.080 \\ \text { set } & 1-080\end{array}$
set 1-080 0.000
test programs 0.000
test register under mask instruction 6-150, 6-160, 6-170
Test 2 (modem)
Emulation Program panel procedures C-420B
Emulation Prog
$1 \mathrm{FF}^{1} \mathrm{C} \quad \mathrm{C}-440$
est 3 (modem)
Test 3 (modem)
Emulation Prog
IFT's $\mathrm{C}-440$
est 4 (modem)
Emulation Program panel procedures C-420B
IFT's C-440
iming
timing
CCU clock $6-030$
$\begin{array}{ll}\text { CCU clock } & 6.030 \\ \text { read/write } \\ 7.040\end{array}$
read/write 7.040
storage (bridge) addressing 7.020
storage (bridge) cvcle 7.080
timing charts
asynchronous attention status, type 3 CA G-160
asynchronous attention status, type 3 CA G-160
asynhronous device end, type 3 CA G-140

automatic call originate C-340
auto-answer $C-360$
channel interface sequences $8-380$

| clock and (bridece sequences storage) | $8-380$ |
| :--- | :--- | :--- |

 clock and (FET storage) \(\quad\) F- 080
 ntingent state, type 3 CA
 CA
G. 120
control in A, B, and C ${ }^{2}$ A. 190
control in A, B, and C A. 190
ycle steal transmit, type 3 communication scanner $F-370$
ycle steal receive, type 3 or 3 HS communication scanner F460

FET storage, output $\mathrm{X}^{\prime} 44-47^{\prime}$
increment scanner $A-030$
indicator light supply/controls D-210 or D-570
IPL phase 1 and 2 timing
bridge storage $6-963$
bridge storage
FET storage
$6-964$
LIB $5,6,7$ ransmit/receive $\mathrm{C}-390$
long term allegiance, type 3 CA G-11
low priority scan example A- 050
low priority scan exa
output $X^{4} 41, A-240$
output $x^{\prime} 46^{\prime} A^{\prime} A-320$
power off $D-250$
power off D-250
power on D-050
power off, $3705-11$
D.-370
power on, $3705-11$
sample bit service A. 350
sample bit service A-030
sample receive data A-030
sample receive data $A-030$
SDLC receive sequence $B-560$
SDLC transmit teacuence $B-540$
SDLC transmit seauence B - 540
set bit service L2 2 latch $A-040$
set bit service L 2 latch
storage (FET) 7 -250
$\begin{array}{ll}\text { storage (FET) } 7-250 \\ \text { thermal sense power check 3705-1 } & D-010\end{array}$
ermal sense power check, 3705-1
$0 \times \mathrm{D}$ gate with
$\begin{array}{lll}\text { OXD gate with more than three cards } & D-310 \\ \text { OXD gate with only two or three cards } & D-510\end{array}$ type 1 communication scanner $\mathrm{B}-37$
$12 \mathrm{~A}, 12 \mathrm{~B}$ break $\mathrm{C}-311$
12A, 128 break C-311
timeout, counter bisync F-630, F-640
tools and test equipment $\mathrm{E}-010$
cycle steal operation, type 3 or 3 HS communication
scanner $F-360$
line set 1A, 1B, 1C, 1 D
C-180
ine set $1 \mathrm{D}, 1 \mathrm{~F}, 1 \mathrm{H} \mathrm{C}-21$

line set $1 \mathrm{~K}, 1 \mathrm{lS}, 1 \mathrm{U} \mathrm{C}$-24
1 line set $1 \mathrm{R} \quad \mathrm{C}$-247A
line set $1 \mathrm{~W}, 12 \quad \mathrm{C}-249$
line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C} \quad \mathrm{C}-260$
line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}$
line set $5 \mathrm{~A}, 5 \mathrm{~B}, 6 \mathrm{~A} \mathrm{C}-290$
line set 5A, 5B,
LiB 7 C -290
line set $8 \mathrm{~A}, 8 \mathrm{BB}, 9 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~B} \quad \mathrm{C}-310$
line set $8 \mathrm{~A}, 8 \mathrm{~B}, 9 \mathrm{~A}$
line set 10 A C
line set 10A $\mathrm{C}-314$
line set $11 \mathrm{~A}, 11 \mathrm{~B} \quad \mathrm{C}-318$
transmit detais, type 2 communication scanner
(SSS) PDF to
SDF transfer $B-480$
BSC B-410
start-stop B-480
transmit details, type 3 or 3 HS communication scanner
BSC \quad F-420 $\begin{array}{ll}\text { BSC } & \text { F-420 } \\ \text { SDLC } & \text { F-430 }\end{array}$
transmit sequence, type 2 communication scanner
BSC
B-400 $\begin{array}{ll}\text { BSC } & \text { B-400 } \\ \text { SDLC } \\ \text { B-540 }\end{array}$
start-stop $B-470$
s.
TrM instruction 6-150, 6-160, 6-170
crouble analysis flowchart 0.010
type 1 channel adapter, introduction 0.050
type channel adapter, introduction 0.050
type 1 communication scanner, introduction 0.050
type 2 attachment base B-020, F-. 020
type 2 channel adapter, introduction 0.050
type 2 channel adapter, introduction
type 2 channel adapter states $9-060$
type 2 communication scanner, introduction 0.050
type e CA bus lines data flow G-020
type 3 CA response to system and selective reset G-170
type 3 CA selection from a neutral state G - 080
type 3 CA tag lines data flow $\mathrm{G}-1010$
ype 3 or 3 HS communication scanner introduction F-00
data flow F-030
ype 4 channel adapter
introduction $H-000$
multiple H -000
N channel ROS
2-120
u
underrun, type 2 communication scanner
$\begin{array}{lll}\text { BSC transmit } & \text { B-410 } \\ \text { input } \times 444^{\prime} & \text { B-140 }\end{array}$
input X '44' B-140
start-stop transmit 8 B-480
ndervolatage MAPs, $3705-11$ modified power $\begin{array}{ccc}-4 \mathrm{~V} & \mathrm{D}-640 \\ +3.4 \mathrm{~V} & \mathrm{D} .645\end{array}$
$\begin{array}{ll}+3.4 \mathrm{~V} & \mathrm{D}-64 \\ +8.5 \mathrm{~V} & \mathrm{D} .65 \\ +6 \mathrm{~V} & \\ +6.65 & \mathrm{D}\end{array}$
$\begin{array}{ll}+6 \mathrm{~V} & \mathrm{D} .655 \\ -12 \mathrm{~V} & \mathrm{D} .660 \\ +12 \mathrm{~V} & \mathrm{D} .665\end{array}$
inprotected storage
D-040
upper scan limit modification, type 2 communication

scanner
upper scan limit modification, type 3 or 3 HS communication

scanner
stage meter flowchart D-240, D-590
v
OXD gate with more than three cards D-230 $0 \times \mathrm{D}$ gate with only two or three cards
$\mathrm{D}-580$ w

WAIT light 1.080
wave shapes, power supply
$+12 \mathrm{~V},-12 \mathrm{v},+6 \mathrm{~V},-30 \mathrm{~V}$ supplies $\mathrm{D}-150$
-4V supply D.-170
wave shapes LIIS $5,6,7$ modems C-450-C-520
wave shapes, LD
welds $7-100$
weitds $7-100$
wrap blocks
$\begin{array}{llll}\text { wrap blocks } \\ \text { see test blocks } & 1-300 \text {) } \\ \text { wrap mode, type } 3 \text { or } 3 \mathrm{HS} \text { scanner } & \text { F-700, F-710 }\end{array}$
wrap mode, type 3 or 3 HS scanner
write array conditions $\mathrm{F}-391$
write array conditions
write
writecle for bridge
write gate drivers
$7-020$
$\begin{array}{lll}\begin{array}{l}\text { write } \\ \text { write IPL channel command, type } \\ 1\end{array} & \text { CA } & 8-180\end{array}$
$\begin{array}{llll}\text { write PLL command, type } 2 \text { CA } & 9-330 \\ \text { write IPL command final status, type } 1 \text { CA } & 8-190\end{array}$

\times
X address cards 7.110
X and Ydive system
\times windings $7-020$
${ }^{\mathrm{X} C R \text { instruction } 6-150,6-200,6-220}$
XHR instruction $6-150,6-200,6-220$
XR instruction $6-150,6-200,6-220$
XR instruction $6-150,6-200,6-220$
XR1 instruction $6-150,6-160,6-7170$
X

XR
XY instruction
XYZ drive line continuity check
$7-110$

Y address cards 7.110
Y windings $7-020$

2 LEVEL light $1-020$
2 register controls 6.100
zero bit insertion/deletion, SDLC B-530

```
12A, 12B, integrated modem with break. C-312
3 3 32 storage bridge module 7-110
3705
    channel adapter
    lypre
    lol
    communication scanner
        lol}\begin{array}{l}{\mathrm{ type 2 8-000}}\\{\mathrm{ type 3 or 3HS F}}
    control panel 1-000
    line interface base C-000
    power supply 3705-1 D-000
    M,
    storage 7-000
3705 introduction 0.050 E-000
3705-11 control panel configurations E-040
3705-11 feature board locations E-0.30
3705-1/ hardware combinations E-040
3705-11 Power maintenance analysis procedures (MAPs) D-599
705-11 power supoly
*)
cc
```

3705 Communications Controller
Theory-Maintenance
Volume I
Order No. SY27-0107-5

This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you would like a reply, complete the following (Please Print):

Your Name \qquad
Company Name \qquad
Department \qquad
Street Address \qquad State \qquad Zip Code \qquad
Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

3705 Communications Controller

This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you would like a reply, complete the following (Please Print):

Your Name \qquad
Company Name \qquad
Department \qquad
Street Address \qquad Zip Code \qquad
Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

[^0]: NOTE A: A check sets the 'mach ck set IPL' latch and causes the 3705 to re-IPL.
 NOTE B: This type error is not bypassed and program execution does not continue. However,
 NOTE B: This type error is not typassed and program execution does
 **The check condition is an ALU Check if the byte 0, byte 1 , and/or byte X lights
 .are on and the INDATA, SAR, SDR, OP REG, and CLOCK lights are off.

[^1]: 00000000000000000000000000000000

[^2]: 0101 0 10 0 C

[^3]: 000000000000000000000000000000000000

[^4]: Note: See page $6-000$ for data flow
 bit card locations
 bit card locations.

[^5]:

[^6]: Note: Although the emulation program does not use \times ' 79 ' bit 1.0
 the Network Control Program does and will re-IPL and check oint restart on a machine chec

[^7]: 0000000000000000000000000
 0

[^8]: level 3 interrupt which signals the in 3705 control
 program that the status transfer is complete.

[^9]: a - Rise of 'select out' inbound to rise of 'operationa
 b : Rise of 'address in' after the fall of 'address out'

 - Fall of 'address in' atter the rise of 'command ou
 - Rise of 'status in' after the fall of 'command out'

 | Fall of 'status in' after the fall of 'command out' ater the rise of 'service out' |
 | :--- |
 | $400-500 \mathrm{n}$ |

 - Fall of 'status in atter the rise of 'service out' Rise of 'operational in' after the rise of 'select out' inbound - $200-350$ ns
 $200-250$ ns
 -. Rall of 'address in' after the rise of 'command out'

 Fall of 'address in' a fter the rise of 'command out' Rise of 'service in' after the fall of 'command out' \quad| $350-500 \mathrm{~ns}$ |
 | :---: | . Fall of 'service in' after the rise of 'service out'

 Rise of 'service in' after the fall of 'service out' ——— $300-350$ ns
 Note: 'Operational in' falls as shown provided 'select out' is down. If 'select 'Operational in' falls as shown provided 'select out' is down. If 'select
 out' is up when 'status in' or 'service in' falls, operational in' falls with out' is up when 'status
 the fall of 'select out'.

