ABENTVIATIONS

A.	And circuit or ampere	ck	check	ESC	emulation subchannel	L2	level 2
AA	automatic answering	clk	clock	EXT	external	L3	level 3
ABAR	attachment buffer address register	cm	centimeter	FCS	final control sequence	L4	level 4
ABO	adapter bus out (register)	CMDR	channel adapter command register	FET	field effect transistor modem card	L5	level 5
ac	alternating current	CMND	command	FETOM	Field Engineering Theory of Operation	mA	milliampere
ACO	automatic call originate	com	common		Manual	Mem TB	memory terminal board
ACF/NCP/	Advanced Communications Function for	cos	Call Originate Status	FF	flip flop	modem	modulator/demodulator
vs	Network Control Program/Virtual Storage	CP	circuit protector	FL	flip latch	$\mathrm{ms} /$ divn	milliseconds per division
ACR	abandom call and retry	CPU	central processing unit	FRU	field replaceable unit	MST	monolithic system technology
ACU	automatic calling unit	CR	compare register (instruction)	GB	ground bus	mV	millivolt
adr	address	CRC	cyclic redundancy check	gnd	ground	NB	Digit Signal
AEO	automatic equalizer	CRI	compare register immediate (instruction)	hex	hexadecimal	N/C	normally closed
AHR	add halfword register (instruction)	CRO	Call Request	Hlfwd	halfword	NCP	network control program
ALD	automated logic diagram	CS	cycle steal	horz	horizontal	NCR	and character register (instruction)
ALU	arithmetic logic unit	CSAR	cycle steal address register	HS	heat sink	NHR	and halfword register (instruction)
AMP	amplifier	CSB	communication scanner	Hz	Hertz	N/O	normally open
APAR	authorized program analysis report	CSCD	clear to send, carrier detect	1	instruction (cycle)	NR	and register (instruction)
AR	add register (instruction)	CSMC	cycle steal message counter	IAR	instruction address register	NRI	and register immediate (instruction)
ARI	add register immediate (instruction)	ctrl	control	IC	insert character (instruction)	NRZI	non-return-to-zero inverted
B	branch (instruction)	CTS	Clear To Send	ICS	initial control sequence	ns	nanoseconds
BAL	branch and link (instruction)	CUCR	Cycle Utilization Counter Register	ICT	insert character and count (instruction)	NSC	native subchannel
BALR	branch and link register (instruction)	CUE	Control Unit End (status)	ICW	interface control word	OBR	outboard recorder
BAR	buffer address register	CW	control word	IFT	internal functional test	O/C	overcurrent
BB	branch on bit (instruction)	CWAR	control word address register	IN	input (instruction)	OCR	or character register (instruction)
BC	bit clock	CWCNTR	control word byte count register	INCWAR	inbound control word address register	OE	exclusive or
BCB	bit control block	DAA	data access arrangement	Init	initial	OH	off hook (modem)
BCC	bit clock control	DA	data modem ready	int	internal	OHR	or halfword register (instruction)
BCL	branch on C latch (instruction)	dB	decibel	intf	interface	OLT	on line test
BCT	branch on count (instruction)	DBAR	diagnostic buffer address register	I/O	input/output	OLTEP	on line test executive program
BO	bus out	dc	direct current	IPL	initial program load	OLTLIB	on line test library
BP	break point	DCE	data circuit-terminating equipment	IR	interrupt remember	OLTSEP	on line test standalone executive program
bps	bit per second	DCM	diagnostic control module	ISACR	initial selection address and command register	op	operation
BSC	binary synchronous communication	DCR	data channel ready	L.	load (instruction)	op reg	operation register
BSM	bridge storage module	DE	Device End (status)	LA	load address (instruction)	OR	or register (instruction)
BZL	branch on \mathbf{Z} latch (instruction)	DET	detector	LAR	lagging address register	ORI	or register immediate (instruction)
CA	channel adapter	diag	diagnostic	LCD	line code definer	OS	Operating System
CACHKR	channel adapter check register	dist	distance	LCOR	load character with offset register	OSC	oscillator
CACR	channel adapter control register	DLO	data line occupied		(instruction)	OUT	output (instruction)
CADB	channel adapter data buffer	DOS	Disk Operating System	LCR	load character register (instruction)	OUTCWAR	outbound control word address register
CAMR	channel adapter mode register	DPR	digit present	LED	light emitting diode	OVRN	overrun
CASNSR	channel adapter sense register	DR	display register or	LGF	leading graphics flag	o/v	overvoltage
CASTR	channel adapter status register		data ring (modem)	LH	load halfword (instruction)	P	parity
CB	circuit breaker	DCS	distant station connect (ACO only)	LHOR	load halfword with offset register	PC	parity check
CBAR	CSB buffer address register	DSR	data set ready		(instruction)	PCF	primary control field
CCB	character control block	DT	data tip (modem)	LHR	load halfword register (instruction)	PCI	program controlled interrupt
CCR	compare character register (instruction)	DTE	data terminal equipment	LIB	line interface base	PDF	parallel data field
CCT	coupler cut through (modem)	DTR	data terminal ready	lim	limiter	PEP	partitioned emulation programming
CCU	central control unit	EC	edge connector	LOR	load with offset register (instruction)	PG	parity generation
CD	carrier detect	EB	extended buffer	LOSC	last oscillator sample condition	pgm	program
CDS.	configuration data set	ECP	emulation control program	LR	load register (instruction)	PH	polarity hold
CE	Channel End (status)	EIA	Electronic Industries Association	LRI	load register immediate (instruction)	PND	Present Next Digit
chan	channel	enbl	enable	LS or Is	local store	P/N	part number
char	character	EON	end of number (ACO only)		latch	POR	power on reset
CHR	compare halfword register (instruction)	EPO	emergency power off	L1	level 1	pos	position

POSC
pot
P-P
PPB
PUT
PWI
R
rev
rd
rdy
RE
ref
reg
regen
req
RI
RLSD
RLSD
RMS
ROS
RPL
RR
RS
RSA
RT
RTS
RTS
rly
SAR
SCF
SCR
SCRID
SCRI
SDF
SDLC
SDR
sec
Sel
SEP
seq
SG
SH
SHR
STH
SIG
SIO
SMS
SR
SRI
SRL
S/S
ST
STC
ST

resent oscillator sample condition

 potentiometerpost processor modem card
prime power box
programmable unijunction transistor power indicator
resistance or resistor
receive
read
ready
gister and external register (instructions)
ferenc
egenerative
equest
egister immediate (instruction) or
ring indicator (modem)
receive line signal detector
oot mean square
ead-only storage
emote program loader
egister to register (instructions)
egister to storage (instructions)
egister and storage with addition (instructions)
egister branch or register and branch
(instructions)
relay
storage address register
secondary control field
ilicon controlled rectifier o
subtract character register (instruction) silicon controlled rectifier indicator driver serial data field
n control
torage data register
econd
eparator (ACO only)
equence
sequenal ground
signal
switch hook (modem)
subtract halfword register (instruction)
signal
start I/O
standard modular system
subtract register (instruction)
subtract register immediate (instruction
Systems Reference Library
tart/stop
store (instruction)
tore character (instruction)
store character and count (instruction) store halfword (instruction)

stacked

service
switch
synchronous idle
synchronization or synchronous
emporary address register
terminal board
Transfer In Channel
trigger
test regis
est register under mask (instruction)
Technical Service Letter
test 2
st
Unit Check (status)
Unit Exception (status)
volts
volts per divisio
word
exclusive-or character register (instruction)
transfer
transforme
exclusive-or halfword register (instruction)
transmit
exclusive-or register (instruction)
exclusive-or register immediate (instruction)
two-wire line connection (implies half-duplex)
four-wire line connection (implies duplex, but actual duplex depends on the line set type and telephone company equipmen

LEGEND

1. Logic Diagram

Register

The input side is denoted by a thick line. A partial transfer of contents is shown
by numbered input and/or output lines.

Counter

ALU

Compare

Decode

Lat
Input side is denoted by a thick line
ALD reference page may be shown beneath.

Polarity Hold

The 'output' of the polarity hold block is at the indicated polarity when both the 'data' and the
control' lines go to their indicated
polarity. When the 'control' line
gos to the polarity opposite to
goes to the polarity opposite to
that indicated, the 'output' line holds
at the polarity it is at. When the
'clear' line goes to its indicated polarity,
he 'output' line goes to the polarit/
opposite to that indicated.

AND Current Driver

Local Store
Read---Output from the local store addressed.
Contents of local store is not destroyed.

- te---Input contents stored in the local store
addressed when 'write' is active.

M REG
See Local Store

Amplifier

 Negator (Inverter)

Time Delay

An input pulse starts the time delay Each output pulse has the same dura tion as the input pulse but is delayed by the specified amount.

The active output is the output whose output value equals the sum of the outtive ivalue equalss.
active input values.

CONTENTS-VOLUME 3		3705-II POWER SUPPLY		CLOCK AND TIMINGS-BRIDGE		BI-SYNC TERMINAL OPERATION	F-425	ASYNCHRONOUS DEVICE END	G-130	
		COMPONENT LOCATIONS	D. 500	Storage	F-070	SDLC TRANSMIT	F-430	ASYNCHRONOUS ATTENTION	G-130	
		3705-II POWER CHECK	D. 510	CLOCK AND TIMINGS-FET		SDLC TRANSMIT DATA FLOW	F-440	Status	G-150	
		3705.II FAULT INDICATORS	D. 520	storage	F-080	SDLC TERMINAL OPERATION	F-445	TYPE 3 CA ReSponse to		
3705-I POWER SUPPLY PWR		3705-II POWER DISTRIBUTION	D. 530	SCAN ADDRESS DATA FLOW		CYCLE STEAL OPERATION.		SYSTEM AND SELECTIVE RESET	G-170	
		3705-II EXPANSION FRAME		USING HIGH SPEED SELECT	F-090	RECEIVE	F-450			
COMPONENT LOCATIONS D.000		POWER DISTRIBUTION	D. 535	SCAN ADDRESSING	F-100	CYCLE STEAL TIMING CHART.		TYPE 4 CHANNEL ADAPTER	CA4	
		3705-II POWER-ON SEQUENCE	D-540	SCAN COUNTER	F-110	RECEIVE	F-460			
POWER CHECK	D.010	3705-II DC Voltage		ICW CONTROL AND DATA		bSC RECEIVE	F-470			
FAULT INDICATORS D-020		distribution	D. 550	FIELDS	F-120	BSC RECEIVE DATA FLOW	F-480			
3705 POWER DISTRIBUTION D-030		CHECKING $+3.4 \mathrm{~V},+8.5 \mathrm{~V},+6 \mathrm{~V}$		Line control definer	F-130	PDF ARRAY/CONTROL		TYPE 4 CA DATA FLOW CARD FUNCTIONS AND	H-010	
		AND $\pm 12 \mathrm{~V}$ SCRs indicator lights-	D. 560	Primary/extended primary control field	F-140	REGISTER/STATUS REGISTER ENTRY FORMAT	F-490	CARD FUNCTIONS AND LOCATIONS	H-030	
POWER-ON SEQUENCE D.050MAINTENANCE CHARTS AND		SUPPLY/CONTROL	D. 570	Byte 15 (BSC status)	F-150	BSC RECEIVE DETAILS	F-500	INPUT AND OUTPUT		
		INDICATOR LIGHTS-CHARTS		Byte 15 (SDLC status)	F-160	SDLC RECEIVE	F-510	INSTRUCTIONS	H-040	
procedures	D-060	AND PROCEDURES	D. 575	ICW DATA FLOW	F-170	SDLC RECEIVE DATA FLOW	F. 520	Input $\mathrm{X}^{\prime} 60^{\prime}, \mathrm{X}^{\prime} 61{ }^{\prime}$	H-050	
DC VOLTAGE DISTRIBUTIONCHECKING $\pm 12,+6,-30$, VOLT		dC Voltage measurement	D-580	INPUT INSTRUCTIONS	F-170	DATA IN/OUT-LIB TO SCANNER	F-530	Output $\mathrm{X}^{\prime} 62^{\prime}$	H-060	
		USAGE METER	D-590	Input $\mathrm{X}^{\prime} 40{ }^{\prime}$ (interface address)	F-180	LEVEL 2 INTERRUPT	F-550	Input $\mathrm{X}^{\prime} 62^{\prime}$	H-070	
SCRs	D. 150		D-590	Input $\mathrm{X}^{\prime} 41^{\prime}$ and $\mathrm{X}^{\prime} 42^{\prime}$	F-190	SET/RESET OF ICW		Output and Input $X^{\prime} 63^{\prime}$	H-080	
CHECKING -4 VOLT SCRs	D. 170	3705-II POWER MAINTENANCE	PWR MAPS	Input $\mathrm{X}^{\prime} 43^{\prime}$ (Check register)	F-200	Bits 13.0, 13.1, 13.6,		Output and Input $\mathrm{X}^{\prime} 64^{\prime}, \mathrm{X}^{\prime} 65^{\prime}$	H-090	
SCR CONTROLS	D. 190	ANALYSIS PROCEDURES (MAPS)	PWR MAPS	Input $\mathrm{X}^{\prime} 44^{\prime}, \mathrm{X}^{\prime} 45^{\prime}$, and $\mathrm{X}^{\prime} 47^{\prime}$	F-210	and 13.7	F-570	Output and Input $X^{\prime} 66^{\prime}$	H-100	
INDICATOR LIGHTS - POWER SUPPLY/CONTROL D. 210		3705-II POWER MAINTENANCE		Input X'46' (Display Register)	F-220	CHANGING PCF STATES	F-580	Input $X^{\prime} 67^{\prime}{ }^{\prime}$	H-110	
		ANALYSIS PROCEDURES (MAPs)	D-599	Input $X^{\prime} 48^{\prime}, X^{\prime} 49^{\prime}$, and $X^{\prime} 4 A^{\prime}$	F-230	CHANGING EPCF STATES	F-590	Output $\times 16{ }^{\prime}$	H-120	
INDICATOR LIGHTS - CHARTS				Input $\mathrm{X}^{\prime} 4 \mathrm{~B}^{\prime}, \mathrm{X}^{\prime} 4 \mathrm{C}^{\prime}, \mathrm{X}^{\prime} 4 \mathrm{E}^{\prime}$,		SET OF ICW BITS 0.1-0.5 (SCF		${ }^{\text {a }}$ Input $X^{\prime} 6 C^{\prime}{ }^{\prime}$	$\mathrm{H}-130$ $\mathrm{H}-140$	
		miscellaneous MISC		and $\mathrm{X}^{\prime} 4 \mathrm{~F}^{\prime}$	F-240	BITS 1-5)	F-610	Output $\mathrm{X}^{\prime} 6 \mathrm{C}$	-	
DC VOLTAGE MEASUREMENT	D.230			OUTPUT INSTRUCTIONS	F-250	generation of last line		Input $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$	H-150	
USAGE METER	D. 240	3705-I PHYSICAL LOCAIONS		Output $\mathrm{X}^{\prime} 40^{\prime}$ and $\mathrm{X}^{\prime} 41^{\prime}$	F-250	STATE AND GATED TIMEOUT	F-620	Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$	H-160	
POWER DOWN SEQUENCE	D-250	TOOLS AND TESTEUTIVE MAINTENANCE	$\begin{aligned} & E-010 \\ & E-010 \end{aligned}$	Output ${ }^{\prime} 42^{\prime}$ (DBAR/Scan		BISYNC TIMEOUT COUNTER		Input ' $^{\prime} 6 E^{\prime}, X^{\prime} 6 \mathrm{~F}^{\prime}$	H-170 H-180	
3705-II POWER SUPPLY (OXD WITH MORE THAN three cards)	PWR	3705-II PHYSICAL LOCATIONS		Limits) ${ }^{\text {Output }} \mathrm{X}^{\prime} 43^{\prime}$ (control)	F-260 F-270	AND SDLC ONES COUNTER	F-630	Output $X^{\prime} 6 E^{\prime}, X^{\prime} 6 F^{\prime}$	H-180	
		(BASIC FRAME OF MODELS E-L		Output ${ }^{\prime} 44^{\prime}$ (SCF/PDF)	F-280	TYPE 3 SCANNER LEVEL 1		EB MODE	H-190	
		AND FIRST EXPANSION FRAME		Output $\mathrm{X}^{\prime} 45^{\prime}$ (LCD/PCF/EPCF)	F-290	INTERRUPTS	F-650	INBOUND DATA TRANSFERS-		
			OF MODELS E-H)	E. 020	Output X'46' (SDF)	F-300	TYPE 3 COMMUNICATION		EB MODE	H-250
			3705-11 PHYSICAL LOCATIONS		Output ${ }^{\prime} 47^{\prime}$ (MISC ICW bits)	F-310	SCANNER SERVICE AIDS	F-680	CYCLE STEAL OPERATION-	
		(FIRST EXPANSION FRAME OF		Output $\mathrm{X}^{\prime} 48^{\prime}, \mathrm{X}^{\prime} 49^{\prime}, X^{\prime} 4 \mathrm{~A}^{\prime}$	F-320	SCANNER WRAP MODE	F-700	OUTBOUND DATA TRANSFERS	H-300	
AND FIRST EXPANSION FRAME	D-300	MODELS J-L)	E-021	Output $X^{\prime} 4 \mathrm{CO}^{\prime}$ and $\mathrm{X}^{\prime} 4 \mathrm{D}^{\prime}$	F-330	DIAGNOSTIC WRAP	F-710	CYCLE STEAL OPERATION-	H-300	
3705-II POWER SUPPLY		3705-1I FEATURE BOARD	E-021	Output X'4E' (CS/PDF pointers ICW control)	F-340	TYPE 3 CHANNEL ADAPTER C	CA 3	INBOUND DATA TRANSFERS	H-340	
			LOCATIONS	E-030	Output \times '4F' status	F-350			CA4 INTERRUPTS	H-380
(FIRST EXPANSION FRAME OF MODELS J-L ONLY) D-301		3705-II ALLOWABLE HARDWARE		CYCLE STEAL DATA FLOW	F-355	INTRODUCTION	G-000	initial selective reset,		
POWER CHECK	D.310	COMBINATIONS AND CONTROL		CYCLE STEAL OPERATION-		TYPE 3 CA TAG LINES DATA		initial interface		
FAULTINDICATORS	D-320	PANEL CONFIGURATIONS	E-040	TRANSMIT	F-360	FLOW	G-010	disconnect And service		
POWER DIStribution	D-330			CYCLE STEAL TIMING CHART-		TYPE 3 CA BUS LINES DATA		SELECTIVE RESET-		
EXPANSION FRAME POWER		TYPE 3 COMMUNICATION CS3		TRANSMIT	F-370	FLOW	G-020	SELECTOR CHANNEL		
distribution	D. 340	SCANNER		CS AND PDF POINTER		CARD FUNCTIONS AND		CONTROLS	H-390	
FET STORAGE POWER		introduction	F-000	SEQUENCE-TRANSMIT	F-380	LOCATIONS		IISCONNECT IN-SELECTOR		
ELEMENTS	D-345	TYPE 2 ATTACHMENT DATA		PDF ARRAY-SUMMARY OF		CONTRUT X'59' INSTRUCTION		CHANNEL	H-400	
POWER-ON SEQUENCE	D-350	flow	F-020	WRITE ARRAY CONDITIONS	F-391	INPUT X '5C' INSTRUCTION.	G-060			
DC VOLTAGE DISTRIBUTION POWER DOWN SEQUENCE	D. 360	TYPE 3 SCANNER DATA FLOW	F-030	PDF/CS POINTER SELECTION	F-392	ENABLE OR DISABLE TYPE 3				
	D.370	DATA FLOW DESCRIPTIONS	F-040	FORCING CONTROL CHARAC		CA Interface	G-070			
		TYPE 3 COMMUNICATION		TERS AND CONSTANTS TO		TYPE 3 CA SELECTION FROM				
3705-II POWER SUPPLY (OXD GATE WITH ONLY TWO OR THREE CARDS)		SCANNER BOARD OXA-E2		THE SDF	F-395	A NEUTRAL STATE	G-080			
		LAYOUT	F-050	CONTROL CHARACTER DECODE	F-396	INSTANTANEOUS ALLEGIANCE				
		TYPE 3 COMMUNICATION		BSC TRANSMIT	F. 400	STATE	G-090			
		SCANNER BOARD OXA-E3		BSC TRANSMIT DATA FLOW	F. 410	LONG TERM ALLEGIANCE STATE	E G-110			
		LAYOUT	F-060	BSC TRANSMIT DETAILS	F-420	CONTINGENT STATE	G-120			

CONTENTS

LOCATION OF LOGIC PAGES BY VOLUME NUMBER

Volume	Logic Pages	Contents
1	YZ	Power supply-installation instruction
2	AA-CV	CCU
2A	CW-CZ	ROS-Type 2 attachment base-CCU
3	DF-DZ	CCU
4	RA-RS	Type 1 scanner and channel adapter
A04	PA.PS	Type 4 channel adapter
5	QA-OR	Type 2 channel adapter
A05	SA-SR	Type 3 channel adapter
6	TA-TB	Type 2 scanner
7	VA	Type 1 LIB-reference material
8	VB	Type 1 LIB-line sets $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}$, $1 \mathrm{GA}, 1 \mathrm{H}, 1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~N}, 1 \mathrm{~S}, 1 \mathrm{~T}, 1 \mathrm{TA}, 1 \mathrm{U}, 1 \mathrm{~W}, 12$
9	vc-vD	Type 2 LIB-line set 2 A
10	VE-VF	Type 3 LIB-line sets 3A, 3 B
11	VG-VH	Type 4 LIB-line sets 4A, 4B, 4C
12	vJ	Type 5 LIB-line sets 5A, 5B
13	VL	Type 6 LIB-line set 6A
14	VN	Type 7 LIB
15	vo	Type 8 LIB-line sets 8A, 8B
16	vs	Type 9 LIB-line set 9A
17	GA-GC	Remote Program Loader Diskette Controller
18	vu	Type 10 LIB -line set 10A
19	VW	Type 11 LIB-line sets 11A, 11B
20	vx	Type 12 LIB-line sets 12A, 12B
21	мм	FET storage ($3705-\mathrm{II}$)
22	TD-TE	Type 3 or 3HS scanner
23	TF	Type 3 or 3HS scanner
24	TA-tB	Type 2 scanner (3705-11)

(i) (i) 0
$D(y)($
 \square
\square (1) 33 36303 30 \square

(3)

0

3705-I POWER SUPPLY

COMPONENT LOCATIONS

- See D-300 through D-450 for a 3705 -II with more than three cards in the OXD power control gate.
- D-150 through D-240 are used for the $3705-1$ and a $3705-11$ with More than three cards in the OXD power control gate. (Seee
$\mathrm{D}-500$ through D-590 for a $3705-11$ with only two or three D- 500 through D- 590 for a $3705-11$ with
cards in the OXD power control gate.)
- The expansion frame physical locations are identical excep
- The expansion frame physical locations are identical er is no EPO panel nor sequence panel (gate 01E).
there
- Refer to the following chart for the component layouts of other units.
- Power MAPs for all $3705-$-Ils begin on page D-600.

Unit	Layout reference
Prime power box	YZ301 sheet 2-3
Heat sink tower (01G)	YZ301 sheet 4-5
Capacitor bank (01F)	YZ301 sheet 6
EPO panel	YZ301 sheet 11
BSM-1 \&2 (01B\&C)	YZ301 sheet 7
1/O Gate (01S)	YZ301 sheet 9

- Expansion frame control board (0XD-A1) does not have a card at the T4 position.
$0 / V$ - over voltage
o/C - over current

- The Power Check light turns on during a normal power-on sequence and turns off when the sequence has successfully comoleted.
- A power-off sequence occurs, and the Power Check ligh
turns on for any of the following check conditions: ns on for any of the following check conditions

2. Overcurrent on the -4 V supply
3. Undervoltage on any logic voltage
4. Thermal sense on the logic gates, storage gates, and power supplies.

- If the power check resulted from conditions 1.3 , reset the Power Check light by pressing the Power Off switch.
- If erom now be turned on
within $3-4$ seconds, power is f ce has not been completed sense) is turned on, power is forced off, 01E-RY11 (fault Reset the Power Check the Power Check light turns on switch. Power can now be turned on
- If the power check resulted from thermal condition reset the power check light by pressing the Thermal Reset switch (located on the sequence panel-gate 01E) after the thermal contact that detected the thermal condition has cooled off and closed its contact (usualy
- Power check logic is on YZO41

Power Off Switch

Tan undervolage LED is on but the power will not sequence can be made to hang up by removing the sequence can be made to hang up by removing the
filter card for the next voltage to sequence on. For example: to scope the $+6 \vee \mathrm{SCRs}$, remove the -30 V
fitter card.
ower on voltage sequence

1. $\pm 12 \mathrm{~V},-4 \mathrm{~V}$
2. 30 V
$1 \begin{aligned} & \text { There are } 12 \text { lightemiting diodes (LEDs) on one card } \\ & \text { located on the control board at 010-A1 U4. When on, }\end{aligned}$ hese LEDS indicate the following fault conditions: Overvoltage on any logic voltage
Overcurrent on the 4 V supaly One or more open SCR in the 4 V supply One or more open scR in the
Undervoltage on any logic voltage
2 Once a $L E D$ is on, it stays on even if power drops. To turn the L LED (s) off, press the In

- The indicators will not turn on during 'power on rese
or while the Power Off push button is pressed sequently, the LEDs will not assist you with a poweron sequence problem.
- All fault indications that cause power down turn on
the 'power check' light.

Note 1
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 Hz power, jumper terminal block PPB-TB2 to obtain
$220 / 235 \mathrm{~V}$ for the convenience outlet (see $\mathrm{Y} Z 013$)
for 200 V 60 Hz power (Japan), use PPB-CP1 (5A) with transformer $T 1$ to obtain 100 V for the convenience outlet (see YZO23).

For 200 V 50 Hz power (Japan), only the PPB-K1 contactor is used with the convenience outlet voltage of 200 V (see Y Z033).

Note 2
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 Hz power, terminal block PPB-TB2 is jumpered to power, terminal block PPB-TB2 is jumpered to
obtain $220 / 235 \mathrm{~V}$ for all blowers and to conne the neutral of the Wye input power to transformers T3 and T4.
(All blowers are single phase)

LEGEND

PPB - Prime power box
PPB - Prime power box
CP
Circuit protecto
CB - Circuit protector
SCR - Silicon controlled rectifie
BSM - Basic storage

3705-I EXPANSION FRAME POWER DISTRIBUTION

NOTE FOR WORLD TRADE

- $220 / 235 \mathrm{~V}$ (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 3 phase 50 Hz expansion frames are jumpered to obtain $220 / 235 \mathrm{~V}$ for all blowers and to connect the neutral of the Wye
input power to transformers T3 and T4. See YZ015.

- Shows the sequence of events that occur during normal switch is set to the LOCAL position, and the Power On switch is depressed, or (2) when the Local/Remote Power switch is set to the REMOTE position, and the host CPU
brings power uo. rings power up.

1 The 4 second delays are located on PB on the Sequence Panel gate 01E.

3705-I MAINTENANCE CHARTS AND PROCEDURES

POWER ON SEQUENCE

- This procedure is based on the fact that a failure results in
the power-on sequence hanging at the failure point.
- A procedure to isolate the failing frame for power-on
problems on multiframe machines is within area outlined
- Check lists used in this flowchart are not all inclusive,
but assist you in locating the problem more readily.
Following the check list is a logic page reference for
your use when the check list does not pin point the
problem.
Notes:

1. +24 Vdc can be +20 V to +35 V depending on loading
and input line voltage.
2. -24 Vdc can be -20 V to -35 V depending on loading
3. +30 Vdc can be +25 V

Vdc can be +25 V to +40 V depending on loading
and input line voltage.
. Verify that all CPU interfaces are disabled to avoid
channel errors when powering down.
SAFETY - Observe normal safety practices when servicing
this power supoly

Power must be off in the 3705 whenever a card is to be substituted or replaced.
Connect the $1 / O$ interface cables to bypass the 3705
Connect the I/ O interface cables to bypass the 370
when you are working on a power supply voltage
when you are working on a a power supply voitage
sequence problem. The 3705 relies on power
sequencing during power on and off to prevent the
drivers and recivers from generating noise on the
channel interface signal lines.

INTERPRETATION OF DECISION BLOCK PATHS
Yes-Normal operation in which the relay picks and holds according to the power-on sequence
chart on D-050 and drops according to the power-down sequence chart on page D-250. No-The relay fails to pick.
Momentarily picks but doesn't hold-Do not take either the Yes or No path. This is a failure and

3705-I MAINTENANCE CHARTS AND PROCEDURES, PART 3

3705-I MAINTENANCE CHARTS AND PROCEDURES, PART 6

3705-I MAINTENANCE CHARTS AND PROCEDURES, PART 7

CHECKING $\pm 12 \mathrm{~V},+6 \mathrm{~V},-30 \mathrm{~V}$ SCR'S
Note: See D-560 for similar information on a
$3705-11$ with only two or three cards in the
OXD power control gate.
For - 4 V , see D-170
Because the wave shapes for the $\pm 12 \mathrm{~V},+6 \mathrm{~V}$, and
30 V are similar, only representative samples
30 V are similar, only representative samples.
1 Setup the scope as follows: Horizontal sweep at $2 \mathrm{~ms} /$ divn
Vertical sweepappropriate to voltage
Put the soope probe on terminal 1 of the choke
for the voltage being tested (see chart below).
for the voltage being tested (see chart bel
See A for the location of the choke.

Voltage	Choke
+6 V	L 2
-12 V	$\mathrm{L3}$
-30 V	L 4
+12 V	L

3 There should be six pulses within 16.7 ms
shown in $\mathbf{B}(20.0 \mathrm{~ms}$ for 50 Hz).
a. If one pulse is missing as shown in
C] the problem is most likely an open SCR'.
b. To locate an 'open SCR', scope the
SCR cathodes at the $0 \times \mathrm{D}^{-A 1 \times \times \times \times x}$ points in \mathbf{D}. 7 shape for a good SCR is shown in E
When an SCR does not When an SCR does not
cond uct, the cathod wave shape
has no step 'ch the negative going has no 'step' in the negative goin
portion, as shown in F.
c. If two pulses are missing as shown in \mathbf{G},
the problem is most likely a bad SCR the problem is most likely a bad SCR
control card since one SCR control card drives two SCRs. D shows the SCR control card tuat drives
SCRs for each vol tage.

SERVICE AID
The SCR control cards that drive the SCR
are all interchangeable within a power supply or with another power supply.

A Capacitor Bank

3705-II
| Note: Not applicable to a $3705-11$ with only two or
Note: Not applicable to a 3705-ll with only
three cards in the OXD power control gate.
01F-HD 2 applies +12 V to the basic frame logic.
OXF-HD2 applies +12 V V to the expansion frame logic and turns on
the -30 V power supply if one is present.

Voltage	Filter Card	SCR No.	$\begin{aligned} & \text { SCR Control } \\ & \text { Card } \end{aligned}$	SCR Cathode $0 \times D-A 1 \times \times \times \times x$
$-30 \mathrm{~V}$ See 3705-11 below	R4	1 2	$\begin{aligned} & \text { N4 } \\ & \mathrm{P} 4 \end{aligned}$	A4B04 A4B05
			04	
		4 5 5 6	$\begin{aligned} & \mathrm{O4} \\ & \mathrm{P} 4 \\ & \mathrm{~N} 4 \\ & \hline \end{aligned}$	A4B09 A4B10 A4B12
+6 V	M4	9 10 11	$\begin{aligned} & \mathrm{J4} \\ & \text { K4 } \\ & \mathrm{L4} \end{aligned}$	C4B04 C4B05 C4B07
		12 13 13 14	$\begin{aligned} & \hline \mathrm{L4} \\ & \mathrm{K4} \\ & \mathrm{J4} \end{aligned}$	C4B09 C4B10 C4B12
-12 V	S2	$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 2 \\ & \mathrm{O} 2 \\ & \mathrm{R} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A5B04 } \\ & \text { A5B80 } \\ & \text { A5B07 } \end{aligned}$
		20 21 22 22	$\begin{aligned} & \hline \mathrm{R} 2 \\ & \mathrm{O}_{2} \\ & \mathrm{P} 2 \\ & \hline \end{aligned}$	A5B09 A5B10 A5B12
+12 V	M2	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J2} \\ & \mathrm{K2} \\ & \mathrm{L2} \\ & \hline \end{aligned}$	C5B804 C5B05 C5B07
		$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} 2 \\ & \mathrm{~K} 2 \\ & \mathrm{~J} 2 \end{aligned}$	C5B09 C5B10 C5B12 -sb

3705-II
Basic frame: -30 VSCR control cards are not installed since the
-30 V is never used. The -30 V power supply components may -30 V is never used. The -30 V power supply components may
not be installed in some machines.

 Sync - Line
Vert - Uper - 20 v/divn
Lower - 10 v/divn

$4 \begin{aligned} & \text { Press Power Off push button. Turn off PPB-CB1, the } \\ & \text { main } \mathrm{CB} \text { in the } 3705 \text {. Remove the appropriate } \mathrm{SCR}\end{aligned}$ control cards, PN 5862617 , associated with the shorted SCR (see \boldsymbol{D} on D-150). Turn on PPB-CB1 Press Power On push button.

5 If one SCR is shorted, the wave shape will be similar
$6 \begin{aligned} & \text { If the wave shapes are good, insert the SCR control } \\ & \text { cards removed in paragraph 4. }\end{aligned}$

LOCATING THE SHORTED SCR

1. Turn off PPB-CB1.
2. Remove 2 screwns that hold the front edge of the heat sink that contains the bad
SCR (see 1 II for heat sink locations).
3. Pull the heat sink assembly to the front of
4. The tower. Tor 'anode' to 'cathode' shorts
5. Test for 'anode' to 'cathode' shorts
a. Remove the tree center tap leads
from the secondary wind from the secondary winding of
transformer T3 as specified in the
foll
,

Voltage	Remove $3 \times$ Xfr leads at:
-30 V	TЗ-TB1-9
-12 V	T3-TB1-10
+12 V	ТЗ-TB1-11
+6 V	T3-TB1-12

b. Use an ohmmeter to determine which SCR is shorted. A shorted SCR may a as a direct short with a low resistance
between the cathode and anode, or may appear as a diode, with a high hesistanc
in one direction and a low resistance in in one direction and a low resistance in
the other. A oood CR has a high reading
between between the cathode and anode in both betwee
directi
sinc.
a. Remove the three SCR control cards associated with that voltage (see \bar{D}
measure th
resistance between the gate and
cathode of each SCR (see J) Readings of 50 ohms or greater in
both forward and reversed direcons indicate no short. A reading
short. a few onms indicates a
Usolder the leads to the bad SCR
3. Remove the nuad and tockwasher that
hold the SCR to the heat sink and remove

Mount the new SCR on heat sink.
9. Mount the new SCR on heat sink.
10. Resolder leads to poper SCR teminals.
11. Side the heat sink into the tower so the
11. Siside the heat sink into the tower so
12. Replace 2 front screws . . front slots engage the insuatoror. 1 weashe
were used with these screws, discard them. Were ure dw wh these screws,
13. Replace heat sink cover.
14. Make sure the SCR control car

Masociated with this voltage are
removed Brin power up and
removed. Bring power up and
ensure there is no voltage at the
esspective measurement point
(ese
L.200) Tun
Se an ohmmeter to measure
between pins JO5 and B13 on
the removed SCR control cards.
the removed SRR control ca,
If the reading is 150 ohms,
replace the SCR control card
Readings of 10 ohms or less are
ormal. Repeat measurem
15. Reewinert good SCR control cards.
16. Replace the center tap leads removed
16. Replace the center tap leads rem.
in (6).
17. Turn on PPB-CB1 and power up

1 Gate olG Heat

CHECKING -4V SCR'S
Note: See D-560 for similar information
on a 3705-In with only two or th
in the OXD power control gate.
For $\pm 12 \mathrm{~V},+6 \mathrm{~V},-30 \mathrm{~V}$, see D-150
1 Set up the scope as follows: Horizontal sweep $-2 \mathrm{~ms} /$ /ivn
Vertical sweep - appropriate to voltage
2 Scope at anode of diode D1 (end with wires) tribution common plate (see YZ075/077 or D-140).
3 There should be six pulses within 16.7 ms as shown in $1(20.0 \mathrm{~ms}$ for 50 Hz).
42 shows a wave shape with one pulse missing. The problem is most likely an
opon SCR'. To ocate a specific open SCR
ond Change the vertical sweep to 0.5 V /divn and
scope the 'regenerative gate 'at the heaat sink edge connectors according to the following
chart.

SCR No.	SCR Regen. Gate
7	$0 \times G-E C 1-\mathrm{h}$
8	$0 \times G-E C 1-9$
15	$0 \times G-E C 2-9$
16	$0 \times G-E C 2-h$
23	$0 \times G-E C 3-h$
24	$0 \times G-E C 3-9$

Refer to 7 on D-180 for the location of the
edge connectors.
The wave shape of the 'regenerative gate' during
normal operation is shown in 3 . The ampli tude of the 'regenerative gate' varies with power
loading $11.5 \mathrm{~V}+0.75 \mathrm{~V}$ for 140 A load). How-
ever ever, if the SCR is 'open', no pulse will appear
on the scope. on the scope
Note: The regenerative gate may not be found o
Il machines because it is only a test point. An alternate test is to observe each SCR anode wave hape with an oscilloscope. A good SCR anode wave shape is shown in 4 , and an 'open' SCR
anode wave shape is shown in 5 . node wave shape is shown in 5

OPEN SCR - 4 V at Anode of Diode D1 Horz -2 ms/divn
vert -2 V/divn

Upper - OPEN SCR ANODE WAVE SHAPE (4 V) at OXG TB

Sync - Line
Vert - Upor - $10 \mathrm{~V} / \mathrm{divn}$
Lower $-5 \mathrm{~V} / \mathrm{divn}$
Note: M Mtiple extraneous pulses may
appear between the good ramp pulses
as shown above. The smaller extraneous

CHECKING -4 V SCR'S, PART 2

5 If two pulses are missing, as shown in 6 , the problem is most likely a bad SCR con-
trol card because one SCR control card trol card be cause one SCR control card
drives two SCRs (see the following chart). A bad SCR control card can quickly be isolated by interchanging the three SCR
control cards in the -4 V supply with any control cards in the $4 V$ supply with any
other supply (see D-000 for other positions).

SCR No.	SCR Control Card
7	E2
8	E2
15	F2
16	F2
23	G2
24	G2

6 A 'cathode' to 'anode' short of an SCR in the to open. The SCR may open due to the high
shorting current. A 'control gate' to 'cathode' short may not cause PPB-CP4 to to 'cathode'
(a) Test for 'anode' to 'cathode' short (SCR did not open).

1. Power down and turn off PPB-CB1.
2. Remove each T4 transformer lead to the SCR anode at OXG-TB1-X (see
YZ073). Use an ohmmeter to determine which SCR is shorted by measuring between each OXG-TB1-X
anode lead and the ground bus HS-GBW1 7) A SCR may appear as a direct short with a low resi tance between the
cathode and anode, or may appear as a diode, with a high resistance in one direction and a low resistance in the other. A good SCR has a high anode in both directions. Check all SCRs.
3. Connect the T4 transformer leads at
(b) Test for 'control gate' to 'cathode' short.
4. Remove SCR control cards
OXD-A1E2, F2, and G2.
5. Use an ohmmeter to measure the resistance between the control
gate (white) and the cathode (red) -see 8 . Readings of 50 ohms or greater in both forward and reversed directions, indicate no short. A reading of a few ohms
indicates a short.
6. If all SCRs are good, reinsert the PPB-CB1.

If the trouble has not been determined by the above
procedure, continue the analysis by referring to
$\mathrm{D}-190$ and D-200.

6 Bad voltage regulator card -4 V at Anode of Diode D1 Horz - $2 \mathrm{~ms} /$ divn
Vert - $2 \mathrm{~V} /$ divn Sync - Line

TO REPLACE A 4 V SUPPLY SCR (INCLUDING HEAT SINK)
(1) Turn off PPB-CB1, main CB in the 3705. (2) Remove heat sink cover.
(4) Remove the three SCR leads to the edge connector
(5) If the SCR to be replaced is SCR-7, SCR-15, or SCR-GBW1.
(see 7 , loosen and lift
edge connector located
(6) Rirectly in front of the SCR assembly to be replaced
(6) Remove the two screws that
the heat sink to be removed.
(7) Carefully slide the heat sink forward until the anode lead
attached to the rear of the heat sink can be reached with a
screwdriver (see $\mathbf{9}$). Remove this lead from the heat 8) sink.

Install the new SCR assembly by performing steps 1 through 7 in reverse. Do not substitute any other washer for those
removed with the screws in step 6, because a larger washer could short the heat sink
9) Remove the SCR control cards in OXD-A1E2 F2 and G2 if they are plugged. Bring power up and check that there power off.
(10) Use an ohmmeter to measure between pins $J 05$ and B13 on the removed - 4 V SCR control cards. If the reading 10 ohms or less are normal. Repeat measurements between G02 and G04
Reinsert good SCR control cards, turn on PPB-CB1 and then bring up power to verify the repair

SCR CONTROLS

Note: Not applicable to a 3705 -II with only two or three cards in the OXD power control gate.

One Phase of -4 V Supply

- This page shows one phase of the 4 V power supply
and card inputs and outputs.
- The controls of the SCR are similar in all power
- The -4 V supply is the only supply to have SCRs wit regenerative gates (not on all machines), a shunt for
over-current detection, and a stabilizing circuit for low over-current detection, and a stabilizing circuit for low
current ($0-10 \mathrm{~A}$).

AC reference and reset card

 . two SCRs do not operate in each power supply
wo
DC SIGNAL LEVELS
Voltage varies with potentiometer setting and power supply. The following table gives
the range of voltages for NORMAL operation.

Power Supply	'DC Ref' Voltage Range	'Filtered' Voltage Range	AC Ref Attenuated
+ 42 V	1.25 V to 1.5 V	0.6 V to 0.75 V	110 mV
${ }_{-12}^{+12} \mathrm{~V}$		3.6 V to 4.4 V 1.0 V to 1.25 V	100 mV 340 mV
${ }^{+}{ }^{6} 0 \mathrm{~V}$		3.3 V to 3.7 V V $* 0.7 \mathrm{~V}$ to 10 V	50 mV 350 mV

*Reading will vary outside the range as room temperature varies.
SEQUENCE GROUND
It is tied to ground for the $-4 \mathrm{~V},+12 \mathrm{~V}$, and -12 V supplies. After th
$-4 \mathrm{~V}, \pm 12 \mathrm{~V}$ supd -4 CR ' controls to torin hane by dronenced up, this line signals the +6 V SCR controls to turn on by dropping from approximately +20 V
to less than +1 V . After the +6 V supply has sequenced up.
to less than +1 V . After the +6 supply has sequenced 1 .
a simila level signals the -30 V SCR control to turn on.

$$
\begin{aligned}
& \text { evel to }+0.3 \mathrm{~V} \\
& \mathrm{~V} \text { to }+5 \mathrm{~V})
\end{aligned}
$$

4 V current is determined by measuring the dc voltage across
the shunt, thounted at the oower
end of OXA-W1 brass end of $0 X A-W 1$ brass platel -se
$\mathrm{D}-140.50 \mathrm{mV}=150$ amperes. \square

1 AC Input at OXD-A1B2BO2

2 AC Ref A at $0 \times D-A 1 B 2 D 13$
Vert -5 V/divn

3 AC Ref A (attenuated) at OXD-A1 H2DOS
$4 \begin{gathered}\text { Reset A at OXD-A1B2B13 } \\ \text { Vert - } \\ \text { V/divn }\end{gathered}$
$5 \begin{aligned} & \text { Test Point - RAMP at OXD-A1E2B09 } \\ & \text { Vert }-5 \text { V/divn }\end{aligned}$ Note: Multiple ramp pulses may $\begin{gathered}\text { exis. } \\ \text { See } \\ \text { E } \\ \text { on page } \\ \text { D-170 }\end{gathered}$

6 Test point - AMP at OXD-A1E2J02 Vert - -5 V/divn Note: The waveform indicated by the dashed lines may be present.
They have no adverse effect.
7 SCR Trigger Puise Channel 1 -Crt gate at OXD-A1E2JO5
Channel 1 -Cathode at OXD.A1E2B13 Vert -5 V /divn (both channels)

8 SCR-7 Regenerative Gate at OXG-EC1-h Venlif used as a test point to

verify that the SCR conducts) | Verify that the |
| :--- |
| Vert $-1 \mathrm{~V} / \mathrm{divn}$ |

Note: The regenerative gate may
not be on all-4 V SCRs.

9 SCR-7 Anode at 0XG-TB1

$10 \stackrel{4 \mathrm{~V} \text { DC Sense at } 0 \times D-A 1 \mathrm{H}_{2} \mathrm{JO2}}{\text { Vert }-2}$ Vert -2 V divn
Horz -0.2 sec/divn
Sync - Power On push button
$11 \begin{gathered}-4 \mathrm{~V} \text { O/V Detect at OXD-A1H2J12 } \\ \left.\begin{array}{c}\text { Vert } \\ \text { Horz } \\ \text { V/divn }\end{array}\right)\end{gathered}$ Vert -2 Vdivn
Horz -0.2 sec/divn
Sync - Powerer On push button

ESCRIPTION OF SCR CONTROLS Wave shapes 1 through 9 apply to all power
supplies except picture 8 which is unique to supplies except
the -4 V supoly.
1
ac reference - a delay of approximately
500 microseconds occurs between the zero 500 microseconds occurs between the ze
crossing of the ac inuput and the zer crossing of the ac input and the zer
voltage point of the ac reference.
3 ac reference after passing through a resistor
4 Reset pulse - triggers the start of the
mp in picture 5 .
5 Ramp - starts after the reset pulse falls.
6
AMP - output of the operational amp-
lifier. This signal is the amplified ac ref A lifier. This signal is the amplified ach ref A
attenuated' whose base line is established by
the attenuated whose base ine is established by
the output voltage and the poentioneter
setting. The P UT (programmabte uniu unction
 transistor) compares the 'ramp' and 'AMP'
output as indicated below and conducts
when the 'ramp' voltage exceeds the 'AMP when the 'ramp' volitage exceeds the 'AM
voltage. The PuT output generates the
control ghate pulse which fires the SCR. If the ac line input voltage rises, or
a higher dc output voltage is sensed, the
base output level of the AMP rises and base output level of the AMP rises and
he PUT conducts later in the cycle. The SCRs conduct for a shorter period of the
cycle, and this lowers the output voltage.

If the ac line input voltage falls, or
a reduced dc output voltage is sensed, ar reducer dc output voltage is sensed,
it lowers the base of the AMP output,
and the PUT conducts earrier in the cycle. The SCRs condsuct for a torne
and
period of the cycle and this raises the period of the cycle, and this raises the
putput voltage (see draving below).
$7 \begin{aligned} & \text { SCR trigger pulse - fires the SCR. } \\ & \text { SCR conduction occurs when the } \\ & \text { control gate is positive with respect to }\end{aligned}$

8 SCR-7 regenerative gate indicates the time the SCR is conducting,
is only a test point and is not connected to any circuit. It may
not be found on all -4 V SCRs.
9 SCR-7 anode voltage - cuts off sch conduction when the anode
voltage goes negative with respect voltage goes n
to its cathode

INDICATOR LIGHTS-SUPPLY/CONTROL

Note: See D-570 for similar information on
a 3705-II with only two or three cards in the
OXD power control gate.

| INDICATOR LIGHTS-CHARTS AND PROCEDURES
Note: See D-575 for similar information on a 3705 -II with only two or three cards in the OXD power control gate.

| Note: See D-580 for similar information on a 3705 -II with
only two or three cards in the OXD power control gate.

Voltages should be set using a Weston 901 meter (PN 460879) or equivalent.

All voltage measurements should be made at the specified points in the control board (except +3.4 V and +8.5 V).

Voltage	Voltage Measurement Points 0XD-A1xxxxx	Card Location Of Voltage Adjustment Potentiometer	Maximum Ripple (peak to peak)
Note 1	C6E04	S5	1200 mV
-12 V	c6C04	S2	480 mV
-4V	B6E04	H2	80 mV
$+6 \mathrm{~V}$	B6A04	M4	240 mV
+12 V	B6C04	M2	480 mV
+3.4 V	O1B-TB2-1 $02 \mathrm{~B}-\mathrm{TB2}$ 1	None	80 mV
+8.5 V	01B-TB2-3 $02 \mathrm{~B}-\mathrm{TB2-3}$	None	200 mV

POWER SUPPLY REGULATION AND MAXIMUM CURRENT

Voltage	Power Supply Regulation	Maximum Rated Output Current	
		3705	Each expansion frame
$\begin{aligned} & -30 \mathrm{~V} \\ & \text { Note } 1 \end{aligned}$	$\pm 1.20 \mathrm{~V}$	8A	8A
-12 V	$\pm 1.20 \mathrm{~V} *$	10A	10 A
4 V	$\pm 0.16 \mathrm{~V}$	160A	160A
$+6 \mathrm{~V}$	$\pm 0.24 \mathrm{~V}$	10A	10A
$+12 \mathrm{~V}$	$\pm 1.20 \mathrm{~V}$ *	30A	30 A
$+3.4 \mathrm{~V}$	$\pm 0.34 \mathrm{~V}$	30A	
$+8.5 \mathrm{~V}$	$\pm 0.85 \mathrm{~V}$	10A	

$\pm 0.84 \mathrm{~V}$ in the 3705 or expansion frame when
that frame contains a LIB type 3 or LIB type 4.
LB type 3 - Limited Distance 3a Type 1 (two wire),
LIB type 4 - Limited Distance 4a Type 2,or
Leased Line $4 b$ (two wire),
Leased Line 4 (four wire)
Note: -30 V is not present on the r may not be present on
$3705-11$ expansion frames.
$1-30 \mathrm{~V}$ is temperature compensated as indicated in the following chart

DC COMMON-FRAME GROUND CONNECTION

- dc common and frame ground are tied together in each 3705 and expansion frame by a wire that connects jumper bus
- Eight jumper assemblies (P/N1770813) are mounted between frame ground (at board mounting screws) and the dc signal ground pin positions for each logic board located on gate

Lower section of gate 0XF
LOGIC VOLTAGE LEVELS

MST-1

VTL

Digital Levels
SPACE or control ON $-23 \mathrm{ma}(+1 \mathrm{~V})$ MARK or control OFF -5 ma (-0.7 V Open circuit - control OFF

0000000000000000000000000000000000

$0000000000000000000000000000000000$

- This page shows the seauence of events that occur during

 swith is set to the ReMOTE position, and he host CPU
11 Remote feaure mach ines do not 隹 the REMOTELL LocAL position orm the fowo Tff is the same as the suith The Remote power off feature is on
onlv vee page $\mathrm{D}-251$ for detais.
$2{ }^{011} 01$ E-RY13 (poweroff verride) drops 3 to 4 seconds after not been completed by the time the power-off override relay nor been completed dy the time the
dross, the of ollowing events occur:

O1E-RY $13-1$ N/O drops 01 E-HD1 (contactors on) Fse
from
3
 through the 1 RY- $\mathrm{N} / \mathrm{N} /(\pm 121$
turns on the Power Check light.
This siruit prevents a failure to complete a power-down
seuuence which mioht have occurred due to a condition seauence which might h.
such as a sticking relay.

	Contact or action causing dropout	Power Supply Components or Action	Timing Relationships
	(Locall Press Power Off Switch YZo53	Power Off Switch or CPU Power Off Switch	
1	(Remote Feature) Decode Output X ${ }^{\prime} 79{ }^{\prime}$ Byte 0 Bit 1	01 E -RY15 (Remote Power Off)	
	Power Off Switch (Remote Feature) 01E-RY15-1 NC	01E-RY6 (Power On)	
	01E-RY6-12 N/C YZ054	Power Off Reset	Floating Ground
	01E-RY6-9 YZ053	Power On Light	
	(Remote)	OXF-HD2 24 V Seq To Diskette	
	01E-RY6-10 (Local) YZ055	OXF-HD2 (Turn On -30V)	Ground put on-30 V at Mem TB1-1
	01E-RY6-2 YZ055	01E-RY13 (Power Off Override)	$1-3.4 \text { Seconds } \longrightarrow 2$
	OXF-HD2-(1,3) YZ071	-30 V (all frames)	
	(Remote 3705) OXF HD2-2	+24 V for Diskette	
	-30 V drops ${ }^{\text {c }}$	-30 V Sense Relays (all frames)	
	:30 V Sense Relays in all frames \quad YZ056	01E-RY12	
	01E-RY124 YZ055	OXF-HD1 (Turn On +6 V)	
	OXF-HD1-(1 \& 2) YZO71	+6 volts (all frames)	
	+6 volts drops \quad YZ101	+6 V Sense Relays (all frames)	
	+6 V Sense Relay transistor turnoff \quad YZ101	Ground for -30 V sequence	
	+6 V Sense Relays in all frames \quad YZ056	01E-RY2 (+6 V Up)	
	01E-RY2-4 YZ055	01E-HD1 (Contactors On)	
3	01E-HD1-1 YZ052	PPB-K2 (ac to 3705)	
	01E-HD1-1 YZ052	PPB-K1 (ac to Expansion Frames 1, 2, and 3)	
	PPB-K2 (3705), PPB-K1 Expansion Frames ${ }^{\text {cosem }}$ ($\begin{gathered}\text { (Domestic) } \\ \text { YZ003-005 }\end{gathered}$	$+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ (all frames)	
	$+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ drops $\quad \mathrm{YZ} 101$	$+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ Sense Relays (all frames)	
	$+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ transistor turnoff	Ground for +6 V sequence	$+1 \vee$ (approx) $+20 \vee$ (approx)
	$+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ Sense Relays in all frames	01 E -RY1 ($+12 \mathrm{~V},-12 \mathrm{~V}, 4 \mathrm{~V}$ Up)	
	01E-RY1-3 YZ053	01E-RY3 (Sequence Complete)	
	RY3-1 N/C YZ054	Power-On Reset Controlled	Ground $\quad+24 \mathrm{Vdc}$
		PPB-K1 (EPO)	
		01E-RY9 (Remote)	Remote position of Local/Remote Power Switch
		-1e.ry (Remote)	- - Local position of Local/Remote Power Switch

$0000000000000000000000000000000000$

3705-II POWER SUPPLY
(BASIC FRAME OF MODELS E-L AND
FIRST EXPANSION FRAME OF MODELS E-H)
Note: See D-500 through D-590 for a 3705-II with only
two or three cards in the OXD power control gate.
COMPONENT LOCATIONS (See Note)
The 3705-II can have several configurations of - 30 V power supplies depending on whether the 3705-II built new at the factory.

- A field or factory converted basic frame retains the - 30 V power supply components but the -30 V cards in $01 \mathrm{D}-\mathrm{A} 1$ are removed. The -4 V shunt on
$01 \mathrm{~A}-\mathrm{W} 1$ is not used. The expansion frames retain $01 \mathrm{~A}-\mathrm{W} 1$ is not used. The expansion frames retain their - 30 V power supply components. The fac-
tory convert removes the -30 V cards in $0 \times \mathrm{D}-\mathrm{A} 1$ while the field convert leaves them in, but only uses the -30 V for power-up sensing. The -4 V shunt on OXA-W1 is not used
- A factory built $3705-11$ basic frame does not contain a $-30 \vee$ power supply nor -30 V cards in
OXD-A1. The -4 V shunt is not installed.
- The expansion frame physical locations are identi-
- cal except there is no EPO panel, no sequence cal excent there is no EPO panel, no sequen
panel (gate 01 E) nor +3.4 V power supply.
- Refer to the following chart for the component layouts of other units.

Unit	Layout reference
Prime power box	YZ301 sheet 2-3
Heat sink tower (01G)	YZ301 sheet 4-5
Capacitor bank (01F)	YZ301 sheet 6
EPO panel	YZ301 sheet 10
FET storage (01B)	YZ301 sheet 15
1/O Gate (01S)	YZ301 sheet 8
+3.4 V Reg (01H)	YZ301 sheet 16
+8.5 V Reg (01B)	YZ301 sheet 15

- Expansion frame control board (0XD-A1) does have a card at the T4 position.
- A sequence control card is located on FET storage gate 01B-A1U2.

Gate 01H

$\underset{\substack{20 \\ \text { Wornp trade foll }}}{ }$

$0000000000000000000000000000000000$

3705-II POWER SUPPLY
FIRST EXPANSION FRAME - MODELS J-L ONLY)
Note: See D-500 through D-590 for a 3705-II with only Note: See D-500 through D-590 for a $305-1$ with

COMPONENT LOCATIONS

Unit	Layout reference
Prime power box	YZ301 sheet 3
Heat sink tower (02G)	YZ301 sheet 4-5
Capacitor bank (02F)	YZ301 sheet 6
Control gate 02D	YZ301 sheet 11
FET storage (02B)	YZ301 sheet 15
1/O Gate (01S)	YZ301 sheet 8
+3.4 V Reg (02H)	YZ301 sheet 16
+8.5 V Reg (02B)	YZ301 sheet 15

- A sequence control card is located on FET storage gate 02B-A1U2.

3705-II POWER CHECK

Note: See D-510 for similar information on a $3705-11$ with only two or three cards in the OXD power control
or power MAPs on all 3705-11, refer to D-600.

- The Power Check light turns on during a normal power-on sequence and
completed.
- A power-off sequence occurs, and the Power Check light turns on for any of the following check conditions

1. Overvoltage on any logic voltage
2. Undervoltage on any logic voltage
3. Thermal sense on the logic gates, storage 3. Thermal sense on the logic
gates, and power supplies.

- If the power check resulted from conditions $1-2$, reset the Power Check light by pressing the Power Off switch. Power can now be turned on.
- If a normal powerdown sequence has not been completed within $3-4$ seconds, power is forced off, 01 E-RY11 (fault sense) is turned on, and the Power Check light turns on,
Reset the Power Check light by pressing the Power Off switch. Power can now be turned on.
- If the power check resulted from a thermal condition, reset the power check light by pressing the Thermal Reset switch (located on the sequence panel-gate 01E) condition has cooled off and closed its contact (usually about a half hour). Power can now be turned on
- Power check logic is on YZO4

POWER CHECK-THERMAL SENSE POWER OFF

POWER CHECK-FAULT SENSE POWER OFF

000000000000000000000000000000000

3705-II FAULT INDICATORS

Note: See D-520 for fault indicators on a 3705-II with only two or three cards in the OXD power control gate.

See D-020 for fault indications on expansion frames with
 Overvoltage on any logic voltage
Undervoltage on any logic voltag
B Once a LED is on, it stays on even if power drops. To turn the LED (s) off, press the
set button located on the U4 card.

The indicators will not turn on during 'power on rese
or while the Power Off push button is pressed Con sequently, the LEDS will not assist you with a powera sequence problem

- All fault indications that cause power down turn on
the 'power check' light.
he 'power check' light.

Sequence card at 01B-A1U2 or 02B-A1U2
includes faut sensors for $+3.4 \mathrm{~V},+8.5 \mathrm{~V}$ and
FET storage -4 V .
Seauence card at 018-A1U2 or 02B-A1U2
includes fault sensors for $+3.4 \mathrm{~V},+8.5 \mathrm{~V}$
FET storage -4 V .

Service Note: If an undervoltage LED is on but the power will not equence can be made to hang up by removing the equence can be made to hang up by removing
mper between $018-A 1 V 4003$ and 044 or jumper between
$028-1 V 4 D 03$ and $D 04$ or the filter card for t the ex toltage to sequence on. For example: th
 card.
Power on voltage sequence:

1. $+12 v-4 v$
$+8.5 \mathrm{~V},+3.4 \mathrm{~V}$ (sequenced via a signal from
$01 \mathrm{~F}-\mathrm{HD} 2$ to 01 O -A1V4DO3 or $02 \mathrm{~F}-\mathrm{HD} 2$ to

. Follow procedure for checking SCRs in $¥ 12 \mathrm{~V}$ or
${ }^{+6 \mathrm{~V} \text { supplies on }}$ Follow procedure for checking +8.5 V on $\mathrm{D}-372$
. Follow procedure for checking SCRs in -4 V supply
2. Follow

D-371.

Those 3705-11 basic frames that were field/factory converted from $3705-1$ contain -30 V power supply components but th
-30 V has been crippled by the removal of the control cards from 01D-A1.

NOTES FOR WORLD TRADE
Note 1
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 Hz power, jumper terminal block PPB-TB2 to obtain
$220 / 235 \mathrm{~V}$ for the convenience outlet (see $\mathrm{YZO131)}$.
For 200 V 60 Hz power (Japan), use PPB-CP1 (5A) with transformer T 1 to obtain 100 V for the convenience outlet (see YZO23).
For 200 V 50 Hz power (Japan), only the PPB-K1 contactor is used with the convenience outle

Note 2
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 Hz power, terminal block PPB-TB2 is jumpered to obtain $220 / 235 \mathrm{~V}$ for all blowers and to connect the neutral of the Wye input power to transformers
T3 and T4.
(All blowers are single phase).

LEGEND

PPB - Prime power box
CP
CB - Circuit protector
CB

- Circuit breaker
SCR - Silicon controlled rectifier

3705-II EXPANSION FRAME POWER DISTRIBUTION

Note: See D-535 for power distribution in a $3705-11$
expansion frame with oniy two cards in the OXD
power control gate.

NOTE FOR WORLD TRADE

- $220 / 235 \mathrm{~V}$ (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 3 phase 50 Hz expansion frames are jumpered to obtain $220 / 235 \mathrm{~V}$ expansion trames are jumpered to obtan
for all blowers and toconnect the neutra of the Wye
input power to transformers $T 3$ and $T 4$. See $Y Z 015$.

3705

FET STORAGE POWER ELEMENTS

Note: Not applicable to a 3705 -II with only two or
three cards in the OXD power control gate. Refer
to D-505.

Notes:

1. +E is 15 V to 22 V . -E is +2 V to -6 V .
2. +E if +8.5 V or +3.4 V don't come up within 2 sec after +24 V appears at J 13 or if +3.4 V goes OVER VOLTAGE. 3. Jumper may be removed to manually
exercise +8.5 V and +3.4 V according to flow chart. brings power up.

1 The 4 second delays are located on P8
The 4 second delays are located
on the Sequence Panel gate 01 E .

Notes:

1. The 8.5 V sense elelay picks 01 E -R12 when
the $3705-11$ h has no expansion frames, or the
expansion frames contain no -30 V power
suplos.
expansion frames contain no -30 V power
suppolies.
Supplies.
Apolies to expansion frames that have a
-30 V power supply.

0000000000000000000000000000000000

3705-II DC VOLTAGE DISTRIBUTION
Note: See D-550 for DC voltage distribution on a 3705-ii with ofily two or three cards in the OXD power controil gate.

REMOVE LEADS FROM THIS SIDE OF STORAGE TB TO DISCONNECT LOAD

- Do not remove any of the wires labeled SENS

Do not remove any of the terminal board (TB) jumpers which connect a voltage with its sense

Do not bend the laminar bus tab too sharply because it may crack upon straightening.

3705-II POWER-DOWN SEQUENCE

Note: This power down sequence does not apply to
a $3705-11$ with only two or three cards in the OXD power control gate.

- This page shows the sequence of events that occur during Pormal power-off operation, , when the Local/Remote Oower switct is set ot the L2 Lhen position, and the Power
Of switch is pressed, or (2) when the Local/ Remote Power Witch is set to the REMOTE position, and the host CPU brings power down.
$1 \begin{aligned} & 01 E-R Y 13 \text { (power-off override) drops } 3 \text { to } 4 \text { seconds after } \\ & 01 \mathrm{E} \text {-RY6 (power }\end{aligned}$ ot been completed by the time the power-off override relay ops, the following events occur
- 01E-RY1331 N/O drops 01E-HD1 (contactors on)
-see YZO55. The power down sequence continues from 2
01E-RY13-1 N / C picks 01 E -RY11 (fault sense)
through through the $01-\mathrm{RY}-2 \mathrm{~N} / \mathrm{O}(\pm 12 \mathrm{~V}, 4 \mathrm{~V}$ up) which
turns on the Power Check light.

This circuit prevents a failure to complete a power-down
sequence which might have occurred due to a condition such as a sticking relay.
Notes:

1. App
haves to expansion frames tha
. When the $3705-11$ has no ex
2. When the $3705-11$ has no expansion

3705-II MAINTENANCE CHARTS AND PROCEDURES, PART 3

3705-II MAINTENANCE CHARTS AND PROCEDURES, PART 5

Replace jumper between pins
$01 \mathrm{~B}-\mathrm{A} 1 \mathrm{~V} 1 \mathrm{~B} 11$ and B 13 .

3705-II MAINTENANCE CHARTS AND PROCEDURES, PART 7

This section applies to $3755-11$ expansion frames
that will contain BSMs.

-

3705-II DC VOLTAGE DISTRIBUTION

- Do not remove any of the wires labeled SENS

Do not remove any of the terminal board (TB) jumpers which connect a voltage with its sense lead.
Do not bend the laminar bus tab too sharp REMOVE LEADS FROM THIS SIDE OF STORAGE

REMOVE LEADS FROM THIS SIDE OF STORAGE TB TO DISCONNECT LOAD

3705-II POWER-DOWN SEQUENCE

- This page shows the sequence of events that occur during
 Ott switc is pressed. or (2) When the Local/ Remote Power
switch is set to the REMOTE position, and the host CPU brings power down
$1{ }_{015}^{01 E-R Y Y G 3}$ power-off overridel drops 3 to 4 seconds a ter oot been completeded by the time the power-orof soveridide elelay not been completed by the time
drops, the foliowing events
occur
 from 2
 trough the $01-\mathrm{PY}-\mathrm{NNO}(\pm 1121$
turns on the Power Check light.
This circuit preventsa failure to compotee a power down
sesuence which miont have occurred due to
a condition seauence whicc mignt
such asa sticking relay.

Notes:

1. Applies to expansion frames that

Contact or action causing dropout		Power Supply Components or Action	Timing Relationstips
(Locall Press Power Off Switch	Y2053	Power Off Switch or CPU Power Off Switch	
Power Off Switch		01ERY6 (Power On)	
01E-RY6.12 N/C	YZ054	Power Off Reser	Floating Ground
01E-RY6.9	Y2053	Power On Light	
01E-RY6-10 (Local)	YZ055	(e) ${ }^{\text {a }}$	Ground put on 30 Vat Mem TB1-1 Note 1
01E-RY6-2	Yz055	01 E -RY 13 (Power Off Override)	$\xrightarrow{34 \text { Seconds }} \longrightarrow$
OXF-HD2-(1,3) Note 1	Yz2071	-30 V (all expansion frames with 30 V)	Note 1
-30 V drops Note 1	Yz101	-30 V Sense Relays (all expansion frames with 30 V)	Note 1
$-30 \vee$ Sense Relays in any expansion frame with -30 V Notes 1,2	Yz056	01 ERY 12 (+8.5 V up)	
01E-RY124	Yz055	OXF-HD1 (Turn On +6 V) and drops +3.4 V and +8.5 V	
OXF-HD1-(12 \& 2) and 01H-HD1 (+12)	Yz071	+6 and +12 volts (ali frames)	
+6 and +12 volts drops	Yz101	${ }^{+} 6$ and +12 V Sense Relays (all frames)	
${ }^{+6 \mathrm{~V} \text { Sense Relay transistor turnoff }}$	Yz101	Ground for 30 V sequence \quad Note 1	+1 V (approx) ${ }^{\text {a }}$
${ }^{+6} \mathrm{~V}$ Sense Relays in all fames	Yz056	01 ERY ($2(+6 \mathrm{~V}$ Up)	
01E-RY24	Yz055	01E-HD1 (Contactors On)	
01E-HD1-1	YZ052	PPB-K2 (ac to 3705)	
01E-HD1-1	YZ052	PPB-K1 (ac to Expansion Frames 1, 2, and 3)	
PPB K K2 (3705), PPBBK1 Expansion Frames	(Domestic) YZ003-005	$-12 \mathrm{~V},-4 \mathrm{~V}$ (all frames)	
$-12 \mathrm{~V},-4 \mathrm{~V}$ drops	Yz101	$-12 \mathrm{~V},-4 \mathrm{~V}$ Sense Relays (all frams)	
- $12 \mathrm{~V}, 4 \mathrm{~V}$ Sense Relay transistor turnoff	Yz101	G Ground for +6 V sequence	
$-12 \mathrm{~V},-4 \mathrm{~V}$ Sense Relays in all frames	Yzos6	01E.RY1 (+12 V V. $12 \mathrm{~V}, 4 \mathrm{~V}$ Up)	
01E.RY1-3	Yzo53	01 E-RY3 (Sequence Complete)	
RY3.1 $/ \mathrm{C}$	YZ054	Power-On Resert Controlled	Ground
		PPB-K1 (EPO)	
		01E-RY9 (Remote)	Remote position of Local/Remote Power Svitch

0000000000000000000000000000000000

3705-II MODIFIED POWER-EXPANSION FRAME (0XD GATE WITH ONLY TWO CARDS)
Note: Expansion frames do not contain (1) a control panel, (2) a master sequence control card in the OXD gate, (2) a master sequence control card in
(3)
dc Output Voltages 1

3705-II POWER SUPPLY
(OXD GATE WITH ONLY TWO OR THREE CARDS)
Note: For a 3705-II with more than three cards in the OXD gate, see D-300

Component Locations
Note: The 3705-II expansion frame with modified power does not contain (1) a control panel, (2) a master sequence card in COXD gate (3) an 01E gate, or (4) an EPO panel. An RPO ower supply assembly (S30251) must be installed in the EPO panel location if an expansion frame without modifie power is to attach to a $3705-11$ basic frame with modified ower. Otherwise the physical locations of components in the basic frame and expansion frames are the same.

Unit	Layout Reference
Prime power box	YZ586 sheets 2,3, or 13
OXD	YZ586 sheet 11
O1E	YZ586 sheet 9
EPO panel	YZ586 sheet 10
FET storage (OXB)	YZ586 sheet 15
$1 / 0$ Gate (OXS)	YZ556 sheet 8
OXF	YZ586 sheet 6
OXH	YZ586 sheet 16

($-=\sqrt{R 7}$

EET Storage rame only 0XD-A1 (Bytrol Card 01D-C1 (Base frame only Master Sequence Card OXD-E1 OXD-E1
Frame Sequence Card
*(Base frame only)

$\frac{\left.1\right|_{1} ^{\text {OXA-W2 }}}{1 \text { OXA-W1 }}$

 card side)

\qquad

Power Control Cable Plug
P1-3705
P2 - 1st expansion frame
P3 - 2nd expansion frame
P4- 3 rd expansion frame

Operator Operator
Panel Sid

Chokes L1, L2
(Behind PPB)
RPO S30251 power supply assembly is mounted EPO panel location on expansion frames (without with modified power.

Gate 0XF
Power Supply Mounting Asm.
$4 \mathrm{~V},+6 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$

$\underset{C P 3-20 A}{(+1}$
CP3-20A
(ㅇ) (-12V PS)
(0) $(+6 \mathrm{~V}$

CP1-10A

3705-II POWER CHECK

OXD GATE WITH ONLY TWO OR THREE CARDS
Note: See D-600 for 3705-II Maintenance
Analysis Procedures.

- The Power Check light turns on during a normal power-on sequence and turns off when the sequence has successfully completed.
- A power-off sequence occurs, and the Power Check A power-off sequence occurs, and the Power Check
light turns on for any of the following check conditions:

1. Overvoltage on any logic voltage
2. Thermal sense on the logic gates, storage gates, and power supplies.

- If the power check resulted from conditions 1-2, reset the Power Check light by pressing the Power Iff switch. Power can now be turned on
- If the power check resulted from a thermal condition, reset the power check light by pressing the THERMAL RESET switch (located on the power sequence control gate-0XD after the thermal contact that detected the thermal condition has cooled off and closed its contact (usually about a half hour). Power can now be turned on.

3705-II FAULT INDICATORS
(OXD GATE WITH ONLY TWO OR THREE CARDS)

There are 16 light-emiting diodes (LEDs) located on the panel of gate OXD. When on, these LEDs indicate the
following fault conditions;
Overvoltage on any logic voltage
Uhdervoltage on any logic voltage
3.4 or 8.5 V TIME FAULT
‘THERMAL’ Sense
Once a LED is on, it stays on even if power drops.
To turn the LED (s) off, press the LAMP RESET
button located on the panel of gate OXD.

- All fault indications cause power down and turn on the 'power check' light.

Power On Voltage Sequence:

LED\#	Fault Indication	Causes Power Down	Duration of Fault Before Power Down	Level at which sense relays pick, LED turns on, under-voltage causes power down	Action To Be Taken If Respective LED is On
1	4V overvoltage	Yes	Immediate	4.7 V	See Note 1 and refer to: D-670
2	+3.4V OVERVOLTAGE	Yes	Immediate	$+4 \mathrm{~V}$	D-670
3	+8.5V OVERVOLTAGE	Yes	Immediate	+9.7V	
4	+6V OVERVOLTAGE	Yes	Immediate	+6.6V	$\left\lvert\, \begin{array}{l\|l} \mathrm{D}-670 \\ \mathrm{D}-670 \end{array}\right.$
5	-12V OVERVOLTAGE	Yes	Immediate	-14V.	
6	+12V OVERVOLTAGE	Yes	Immediate	$+14 \mathrm{~V}$	D-670
7	4 V UNDERVOLTAGE	Yes	Immediate	3.0 V to 3.5 V	$\text { D. } 640$
8	+3.4V UNDERVOLTAGE	Yes	Immediate	2.8 V	0
9	+8.5V UNDERVOLTAGE	Yes	Immediate	+2.8V	
10	+6V UNDERVOLTAGE	Yes	Immediate	$\underline{+5.4 \mathrm{~V} \text { to }+5.59 \mathrm{~V}}$	D.655
11	-12V UNDERVOLTAGE	Yes	Immediate	8.7V to -10.3V	$\begin{array}{r} 0.660 \\ 0.665 \\ \hline \end{array}$
12	+12V UNDERVOLTAGE	Yes	Immediate	+9.0 V to +10.0 V	
13	time fault	Yes	1 Second	+VTL Logic Level	See Note 2
14	THERMAL	Yes	Immediate	+VTL Logic Level	See Note 3
15	OVERCURRENT 1	Not Used	N/A	N/A	N/A
16	OVERCURRENT 2	Not Used	N/A	N/A	N/A

Notes:

1. Follow procedure for checking SCRs as shown on D-560.
2. Check the 3.4 V and 8.5 V power supply if a 'TIME FAULT
i. is the only fault indication.
3. Check filters and blowers. Power on the 3705 and observe
the 'THERMAL CHECK' light. If the light turns on again, isolate the light to frame and check thermistors and wiring.

NOTES FOR WORLD TRADE
Note 1
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 Hz power, jumper terminal block PPB-TB3 to obtain
$220 / 235 \mathrm{~V}$ for the convenience outlet (see Y ZO506 $220 / 235 \mathrm{~V}$ for
and $Y 5508)$.
For 200 V 60 Hz power (Japan), use PPB.CP1 (5A with transformer T 1 to obtain 100 V for the con. venience outlet (see YZ510)
For 200 V 50 Hz power (Japan), only the PPB-K1 contactor is used with the convenience outlet

Note 2
For 220/235 V (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 50 H power, terminal block PPB-TB3 is jumped to
obtain $220 / 235 \mathrm{~V}$ for all blowers and to connect
the neutral of the Wye input power to transformer
T 3 (see $\mathrm{Y} Z 508$ and $\mathrm{YZ530})$.
talberest
(All blowers are single phase)

LEGEND

PPB - Prime power box
CP - Circuit protector
CB - Circuit breaker
SCR - Silicon controlled rectifier

PPB-K
(EPO)
 formers
(inPPB)
(1 Phase) Convenience
Outlet

Se note 1 $\begin{aligned} & \text { Foe World } \\ & \text { Trade } \\ & 3705\end{aligned}$


```
00000000000000000000000000000000000000
```

0000000000000000000000000000000000
3705-II EXPANSION FRAME POWER DISTRIBUTION (OXD GATE WITH ONLY TWO CARDS)

NOTE FOR WORLD TRADE

- $220 / 235 \mathrm{~V}$ (Delta) or $380 / 408 \mathrm{~V}$ (Wye) 3 phase 50 Hz expansion frames are jumpered to obtain $220 / 235 \mathrm{~V}$
for all blowers and to connect the neutral of the Wye for all blowers and to connect the

- Shows the sequence of events that occur during norma power-or operation (1) when the Local/Remote Powe witch is set to the LOCAL position, and the Power On switch is depressed, or (2) when the Local/ Remote Power
switch is set to the REMOTE position, and the host CPU brings power up.

Contact or action causing pickup	Power Supply Components or Action	Timing Relationships
EPO-J (1, 2, 3, or 4)	PPB-K1 (EPO)	(+24 Vdc For Relays)
PPB-K1 \# 1 point		Remote position of Local/Remote Power Switch
Press Power On Switch	Power On switch or CPU Power On	Local position of $\overline{\text { Local/Remote Power Switch }}$
Local Power On Switch or CPU Power On		
Local Power On Switch or CPU Power On	Power Check Light	
Local Power On Switch or CPU Power On	Power On Reset	
01D-C1 Transistor picks K2	PPB-K2 (ac to 3705)	
PPB-K2 \# 4 point (3705)	PPB-K1 (ac to Expansion frame \#1)	
PPB-K1 \# 4 point (Expansion frame 1)	PPB-K1 (ac to Expansion frame \#2)	
PPB-K1. \# 4 point (Expansion frame 2)	PPB-K1 (ac to Expansion frame \#3)	
ac applied to each frame		
01D-C1 transitor	+5V 'Start Sequencing' signal sent to each expansion frame	
01D-C1 transistor	12-second timer started	
4 V up in each frame	$-12 \mathrm{~V},+3.4 \mathrm{~V}$, and +6 V sequence begins when -4 V up in each frame	
-12 V and +6 V up in each frame	+12 V sequence begins when +6 V and -12 V up in each frame	
+3.4 V up in each frame	+8.5 V sequence begins when +3.4 V up in each frame	
+8.5 and +12 V up in each frame	Sequence complete (all frames)	
Power-On sequence complete (every frame)	Power ON Light	+24 Vdc

0000000000000000000000000000000000

3705-II DC VOL TAGE DISTRIBUTION (OXD GATE WITH ONLY TWO OR THREE CARDS)

CHECKING $+3.4 \mathrm{~V},+8.5 \mathrm{~V},+6 \mathrm{~V}, \pm 12 \mathrm{~V}$ and -4 V SCRs

 (OXD GATE WITH ONLY TWO OR THREE CARDS)Because the wave shapes for the $+3.4 \mathrm{~V},+8.5 \mathrm{~V},-4 \mathrm{~V},+6 \mathrm{~V}$, and $\pm 12 \mathrm{~V}$ SCRs are similar, only representative samples are shown.

Note: The $+3.4 \mathrm{~V},+8.5 \mathrm{~V},+6 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ supplies are each associated with an individual pair of SCRs. The -4 V supply is associated with three pairs of SCRs.

1. Setup the scope as follows:
a. Sync the scope on LINE.
b. Set horizontal sweep at $5 \mathrm{~ms} /$ divn.
c. Set the vertical sweep appropriate to voltage.
2. Put the scope probe on the heat sink for the voltage being tested (see chart below). See $\mathbf{1}$ or $\mathbf{2}$ for the location of the heat sink.

Voltage	Heat Sink
-4 V	1,2, and 3
+8.5 V	4
-12 V	5
+12 V	6
+6 V	7
+3.4 V	8

3. There should be two pulses within 16.7 ms as shown in (20.0 ms for 50 Hz).
a. If one pulse is missing as shown in 4 , the problem is most likely an 'open SCR' or control card.

Note: A single SCR, firing alone for voltages other than -4 V , does not sustain the output voltage and allow the 3705 power to remain on. During the power-on sequence, however, you will se the traces shown in 4 for a few seconds.
b. To locate an 'open SCR', follow either Procedure A or Procedure B.

Procedure A

1. Use two scope probes with the Vert--Volt/divn for the A and B traces at the same setting
2. Attach the A probe to the heat sink associat
with the SCRs you are checking 1 or 2.
3. Athe he Brobe to the cathode of 2 . resemble either 5 or 6 (vertical asiustment of
the traces may be necessary to obtain the proper display).
4. The display (probe A) for the conducting SCR is shown in 5 , and the display for an 'open' SCR is shown in 6

See Note

Procedure B

1. Turn off PPB-CB1

Remove (unsolder) lead from the gate of either
SCR associated with the supply being tested.
3. Turn on PPB-CB1 and power-on the 3705

If the wave obrm 4 appears, at 4
It fires, you have removed the gate from the good SCR Turn off PPB-CB1 and replace the open SCR.
See Note
Note: Three pairs of SCRs are associated with -4 V Each pair of SCRs operates from one phas of the 3-phase input (refer to YZ530). The missing, therefore it is essential that each moing, C R dition. Do not conclude that-4V SCRs perating properly until ech phase has been checked individually.

Locating a Shorted SCR

A shorted SCR is the principal cause of a tripped circuit breaker or circuit protector in a 3705-11.

1. If PPB-CB1 (main CB) trips during power-on of a 3705 -II with only two or three cards in the 0XD power control gate, the probable cause is a shorted SCR in the -4 V d power supply.
2. If CP5 trips, the probable cause is a shorted SCR in the +3.4 V dc power supply.
3. A shorted SCR in the $+6 \mathrm{~V},+8.5 \mathrm{~V}$, or $\pm 12 \mathrm{~V}$ dc power supply either acts like a fuse and opens the associated
circuit, or causes one of the following conditions
a. Overheats transformer wires
b. Trips PPB-CB1 (main CB).
c. Trips CP1, CP2, CP3, or CP4.

Testing the SCR for Shorts

1. Turn off PPB-CB1
2. Isolate the SCR to be tested.
a. Remove the power supply control card from OXD-A1A1
b. Remove the cathode connection from the SCR Note For an SCR in the -4 V supply, remove the cathode onnection -4 V , remove. for supplies other than -4V, r)
(refer to YZ530).
3. Test for 'anode' to 'cathode' shorts. Use an ohmmeter to determine which SCR is shorted. A shorted SCR may appear as a direct short with a low resistance between the cathode and anode, or may appear as a diode, with a high resistance in one direction and a low resistance in the other. A good SCR has a high reading between SCRs associated anode in both directions. Check.
4. Test for 'gate' to 'cathode' shorts. Use an ohmmeter to measure the resistance between the gate and cathode of each SCR (see 7). Readings of 50 ohms or greate in both forward and reversed directions indicate no short. A reading of only a few ohms indicates a shor
5. Unsolder the leads to the bad SCR.
6. Remove the nut and lockwasher that hold the SCR to the heat sink and remove SCR.
R. Mount new SCR on heat sink.

Resolder leads to proper SCR terminals. Turn on
PPB-CB1 and power up to verify the repair.

Power Supply Mounting Assembly (0XH) +3.4 V and +8.5 V

Power Supply Mounting Assembly (0XF)
$-4 \mathrm{~V}+6 \mathrm{~V}$ and +12 V , $\pm 12 \mathrm{~V}$

Horz - 2 ms/divn
Vert - Appropriate to Voltage Under Test
Sync - Line

DC VOLTAGE MEASUREMENT

(OXD GATE WITH ONLY TWO OR THREE CARDS)

- Voltages should be set using a digital voltmeter.

Voltage	Voltage Measurement	Location of Voltage Adjustment Potentiometer on Card 0xD-A1C1	Maximum Ripple (peak to peak)
-4 V	B06 on any board	P1	80 mV
-12 V	0XA-TB1-3	P2	480 mV
+12 V	0XA-TB1-1	P3	480 mV
+8.5 V	0XB-A1J2D07	P4	200 mV
+3.4 V	0XB-A1J2D03	P5	80 mV
+6 V	OXA-TB1-T2	P6	240 mV

3705-II basic frame
(Also on first expansion
frame of Models $ل$, K

Power Supply Regulation And Maximum Current

Voltage	Power Supply Regulation	Maximum Rated Output Current	
		3705	Each expansion frame
-12V	$+0.84 \mathrm{~V}$	9A	9A
. 4 V	$+0.16 \mathrm{~V}$	200A	200A
+6V	$+0.24 \mathrm{~V}$	8A	8A
+12 V	$+0.84 \mathrm{~V}$	14A	14A
+3.4 V	+0.20V	34 A	
+8.5 V	+0.43V	10.6A	or first expa on Models J,

dc common and frame ground are tied together in each 3705 and expansion frame by a wire that connects jumper bus OXA-W1-3 to the plate base. See YZ536.

- Eight jumper assemblies (P/N 1770813) are mounted between frame ground (at board mounting screws) and the dc signal ground pin positions for each logic board located on gate (s) 0XA.

LOGIC VOLTAGE LEVELS
MST-1

VTL

Digital Levels
SPACE or control ON -23 ma $(+1 \mathrm{~V})$ MARK or control OFF - 5 ma $l-0.7 \mathrm{~V}$ Open circuit - control OFF
a

3.0 V

Attach a jumper between
TB1-12 and M2B (meter)
on the 01D gate (YZ522,
$Y 7524$)
Z2524
Are the meters running now

Remove the jumper
(TB1-12 to M2B)

Measure for 40Vrms between (YZ524, YZ530)

Is the 40 V correct?

Replace transformer T3
(See Note)
Check wiring and connectors

3705-II POWER MAINTENANCE
 ANALYSIS PROCEDURES (MAPs)

POWER ON SEQUENCE

- These MAPs are based on the fact that a failure results in the power-on sequence hanging at the failure point.
- A procedure to isolate the failing frame for power-on problems on multiframe machines is included.
- Check lists used in the MAPs are not all inclusive but assist you in locating the problem more readily. Following the check list is a logic page reference for your use when the check list does not pin point the problem
Notes:

1. +24 Vdc can be +20 V to +35 V depending on loading and input line voltage.
2. -24 Vdc can be -20 V to -35 V depending on loading
and input line voltage.
3. +30 Vdc can be +25 V to +40 V depending on loading ad input line voltage.
Verify that al CPU interfaces are disabled to avoid
hannel errors when powering down.

SAFETY Observe normal safety practices when servicing
this power supply.
Power must be off in the 3705 whenever a card is to be substituted or replaced You must turn off CB1 (on PPB) before replacing cards in the OXD gate. therwise, unpredictable LED indications may occur.
Connect the I/O interface cables to bypass the 3705
when you are working on a power supply voltage
quence problem. The 3705 relies on power
equencing during power on and off to prevent the
drivers and receivers from generating noise on the
channel interface signal lines.
INTERPRETATION OF DECISION bLOCK PATHS (reLAY OPERATION)
Yes-Normal operation in which the relay picks and holds according to th power-on sequence chart on D-250 and drops according to the power-off sequence chart on page D-450
No-The relay fails to pick.
Momentarily picks but doesn't hold-Do not take either the Yes or No path. This is a failure and you should determine why the relay did not hold up.

3705-II POWER-MAINTENANCE ANALYSIS PROCEDURES (MAPs)

POWER SYSTEM IDENTIFICATION system or a modified version of the standard power system.

Before using the power MAPs, you must determine the type of power system installed in the 3705-II basic frame and each of the attached expansion frames. The type of power system installed in each frame can be identified by examining the power control gate (D -gate). If the D -gate in an individual frame contains more than three cards, a standard power system is installed in that frame. If the D-gate contains only three cards (basic frame) or two cards (expansion frame), a modified power system is installed in the frame. Frames with either of the power systems installed can be attached to each other. (An expansion frame without modified power must contain RPO S30251 before attachment can be made to a basic frame with modified power.)
The Power MAPs are arranged in the following sequence.
Page
MAP
D-600 FRAME ISOLATION-BASIC FRAME WITHOUT MODIFIED POWER SYSTEM
D-602 FRAME ISOLATION--BASIC FRAME WITH MODIFIED POWER SYSTEM
D-605 PROBLEM ISOLATION IN A FAILING BASIC FRAME WITHOUT MODIFIED POWER SYSTEM
PROBLEM ISOLATION IN A FAILING FRAME WITHOUT MODIFIED POWER SYSTEM PROBLEM ISOLATION IN A FAILING BASIC FRAME WITH MODIFIED POWER SYSTEM PROBLEM ISOLATION IN A FAILING EXPANSION FRAME WITH MODIFIED POWER SYSTEM -4V UNDERVOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM
+3.4V UNDERVOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM
+8.5V UNDERVOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM +6V UNDER VOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM -12V UNDERVOLTAGE PROBLEM IN A FRAME WITH MODIFIIED POWER SYSTEM +12 V UNDERVOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM OVERVOLTAGE PROBLEM IN A FRAME WITH MODIFIED POWER SYSTEM

Did 01E-RY3 pick during the power-on sequence (sequence complete relay, YZ053)?

Is 01E-RY3 still picked?
*Possible false indication.

- Check for shorted points at: $01 E-R Y 11-3$ N/0 01E-RY10-4 N/O

Is 01E-RY11 picked (fault sense relay)?

- Check CBs and CPs (refer to D-330for basic frame and D-340 or D-535 for expansion frame).

Check CBs and CPs in the basic frame (refer to D-330).

Check the LEDs on the 01D gate of the basic frame to determine the failing power supply (refer to "3705-II FAULT INDICATORS" on page D-320).

Are any expansion frames present?

Check the CBs and CPs in the expansion frames (refer to D-340 and D-535).

Check the LEDs on the OXD gate of the expansion frames to determine the failing power supply (refer to "3705-II FAULT
INDICATORS" on page D-320 or D-520).

Are any expansion frames present? D-520) power control gate? (Refer to D-505 and D-520)

- Turn off PPB-CB1 (main circuit breaker in
- Disconnect the lead from the POWER OFF switch 'B' side common (prevents FAULT SENSE
- pull the power control cable located at
- 01 E -p1.
- To prevent a thermal condition, turn off

PPB-CB1 (main circuit breaker in 3705). - Pull the power control cable plug asso With the frame farthest from the
Frame Position

Expansion frame 3 Expansion frame
Expansion frame Expan
3705 WITHOUT MODIFIED POWER SYSTEM 01D GATE WITH MORE THAN THREE CARDS)-PART 2 OF 2

*The trouble is in the bypassed frame

* Press power orf.
- Turn off PPB-CBI
- Remove the inserted dummy paddle card and
- replug the removed power control cable.

Does the failing frame contain only two cards in the 0XD power control gate? (Refer to $D-505$

- Reconnect the lead to the POWER OFF switch
- Reconnect the lead to the power
'B' side common if applicable.
- Check for loose cables and cards on the OXD
gate.

 PPB-CB1 (main circuit breaker in 3705). pull the power control cable plug associated Frame Position Cable Plug

Position
Expansion frame 3
Expansion frame
Expansion frame 1

- Insert the dummy paddle card PN 5993207 in the position of the removed power control cable plug. The dumm card is included in
- Turn on PPB-CB1.

Does the 3705 power on now?

- Press power off.

Remove the inserted dummy card and replug

Was the 01E-P2 plug the last plug removed?

- Pull the power control cable plug for the
*The trouble is in the basic frame
- Turn on PPB-CB1.
*The trouble is in the bypassed frame
- Press POWER OFF.
- Remove the inserted dummy card and replug
- The removed power control cable
- Place a jumper between pins 01D-A1C1M07 and $01 D-A 1 C 1 p 08$ (disables the 12 second time out)

Does the failing expansion frame contain only
two cards in the OXD power control gate?

- Press the THERMAL RESET switch on the 01D gate

Does the THERMAL light turn off?

Jumper out the thermal switches (OIE-JXQ to OIE-JXR. YZ540) one frame at a time until to
the THERMAL light can be reset, then use an - Rhmmeter to isolate the defective switch an

- Replace the master sequence card at 01D-A1C
- if the THERMAL light can not be reset.
last frame jumpered out.
*The thermal condition is gone (thermal switch Check all air filters and blowers.

Does 01E-RY6 pick (YZO53)?

```
- Check for +24 Vdc at:
(1) \(01 E-R Y 3-5\) op
(1) 01 ER RY3-5 op
(2) \(01 E R Y \mathrm{R}-1\) op
(3) POWER OFF swit
- check for ground at 01E-RY11-4 \(\mathrm{N} / \mathrm{C}\).
```

*POWER ON pushbutton must be pressed.

Is 01E-RY6 picked (YZ053)?

- With POWER ON pressed, check for +24 Vdc at:
(1) POUER ON switch (1) PONER ON SWIt (2) $01 \mathrm{ERY3-4}$ op
(3) $01 \mathrm{EERY}-1$ op
- Check for oround at 01E-RYi1-4 NCC
*Power on reset begins

Is +24 Vdc present at 01E-RY6-11 op (YZ055)?

Is +24 Vdc present at 01E-RY3-11 N/C?

- Repair the 01E-RY3-11 points.

Is +24 Vdc present at 01E-J8C?

- Replace the card at 01E-P8 (location of
- Check circuit.
- Check the 01E-RY6-11 points.

0000000000000000000000000000000000

IS
YZ
+25

Is +24 Vdc present at $01 \mathrm{E}-\mathrm{J} 8 \mathrm{E}$?

- Replace the card at 01E-P8 (location of diode).
- Check connectors.
- Check 01E-RY1-4 N/O
- Check for +24 Vdc across 01E-RYZ coil - Check 0ie-Ry6-5 n/o.

3705-II POWER-MAINTENANCE
ANALYSIS PROCEDURES (MAPS)

PROBLEM ISOLATION IN A FAILING FRAME WITHOUT MODIFIED POWER SYSTEM (OXD GATE WITH MORE THAN THREE CARDS)-PART 1 OF 7

Is the RPQ S30251 power supply present in the

- Check PPB-K1-4 in previous frame (PPB-K2-4
- Check pps-X1-4 in previous frame
if previous frame is basic frame).
- Check circuit
- See note $\frac{1}{2}$ if applicable.

- see note 2 .

Is +24 Vdc present at RPQ-TB3-5 in the failing
frame $(Y Z 599) ?$

- Check the circuit to 01E-EC3.
- See note $\frac{1}{2}$ if applicable

Is $A C$ present at $R P Q-T B 3-2$?

- Check RPQ-T1 and RPQ-CP1
- See note $\frac{1}{2}$ if applicable
- Check RPQ-D2 and RPQ-C2.
- See note $\frac{1}{2}$.

Is +24 Vdc present at 01E-JXB?
: Check PPB-K1-4 (PPB-K2-4 in basic frame)
: See note $\frac{1}{2}$ if applicable.

Is +24 Vdc present at $0 \times D-A 1 G 4 G 12(-4 \mathrm{~V},-12$
$\mathrm{V},+12 \mathrm{~V}$ sense relay RR1 up, YZ056)?

- Check the cabling from OXD-A1G4G12 to
- See note $\frac{1}{2}$ if applicable.

Notes:

Remove the jumper between pins 01D-A1C1M07
and 01D-A1C1P0.
Reconnect the jumper between pins
$0 \times B-A 1 V 1 B 11$ and $0 \times B-A 1 V 1 B 13$.

Is +24 Vdc present at 0XD-A1G4G10?

- Check the cabling from 01E-PXJ to
- See note 11 if applicable.
- See note 2

Is +20 Vdc present at OXD-A1G4B12 (YZ191)? $*+20 V$ supply can vary from +19 V to $+21 \dot{V}$.
with maximum ripple of 100 mV peak-to-peak.
s +20 Vdc present at OXD-A1U2D13

- Check circuit (YZ101,YZ191)
- See note $\frac{1}{2}$

Is +30 Vdc present at OXD-A1U2D05?

- Replace the +20 V regulator card at

See note 1 if applicable.

Is the RPQ 530251 power supply present in the Is +30 Vdc present at 01E-EC3-e (YZ051)?

- Check the cabling from 01E-EC3 (YZ101,
- See note $\frac{1}{2}$ if applicable.

Is RPQ-K1 picked in the failing frame (YZ599)?

Is at least +2.5 Vdic present at RPQ-TBJ-8?

- Check the cabling from 01E-EC3 to RPQ-TB3-8 - in the failing frame.
- See note 2 .

Is approximately 0 Vdc present at RPQ-K1 B
Is approxi

- Replace RPQ-Q1 in the failing frame.
- Check circuit.
- See note $\frac{1}{2}$.
- Check the RPQ-K1 coil.
: See note 1 if applicable
- See note 2

Is +30 Vdc present at RPQ-K1-9?

Is $A C$ present at RPQ-TB3-1?

Check RPQ-T1.
See note 1 if applicable
See note 2.

- See note 2
- Check RPQ-D1 and RPQ-C1.
- See note $\frac{1}{2}$.
- Check RPQ-K1 points.
: Check circuit.
- See note ${ }^{2}$.

Is +30 Vde present at $01 \mathrm{E}-\mathrm{HDI}-3 \mathrm{~N} / 0$?

- Replace the SMS card at PPB-T2-J1 in the - basic frame.
- See note $\frac{1}{2}$ if applicable.
- Check the 01E-HD1-3 points
: Check circuit
- See note $\frac{1}{2}$.

Is the RPQ 530251 power supply present in the

Is -6 Vdc present at 01E-EC3-a (YZ051)?

- Check the cabling from 01E-EC3
- See note 1
- See note 2 .

Is -24 Vdc present at $01 \mathrm{E}-\mathrm{C} 2(-)$?

- Replace the SMS card at PPB-T2-J1 in the basic frame.
- See note 1 if applicable
- Replace the -6 V regulator at $01 \mathrm{E}-\mathrm{HS} 1$.
- Check circuit.
See note 1
Sif applicable.
- See note 2 .

Is $A C$ present at RPQ-TB3-3 in the failing

- Check RPQ-T1.

Check RPQ-T1.
: See note $1 \frac{1}{}$ if applicable.
See note 2.

- Check circuit
- See note 1 if. applicable.
\qquad
Notes:

1. Remove the jumper between pins 01D-A1C1M07 and 01D-A1C1P08.

3705-II POWER-MAINTENANCE ANALYSIS PROCEDURES (MAPS)

PROBLEM ISOLATION IN A FAILING FRAME WITHOUT MODIFIED POWER SYSTEM (OXD GATE WITH MORE THAN THREE CARDS)-PART 3 OF 7

- Check for the following tripped circuit protectors (1) (1) $^{2 \times F-C P 2}(-12$: (1) $0 \times \mathrm{F}-\mathrm{CP} 2$ (-12 V supply),
(2) $0 \times \mathrm{F}-\mathrm{CP}$ (+122 V supply), *Plunger will protrude farther if tripped.

Does a CP trip when powering up even after
being reset?

- Check for these tripped circuit protector (1) PPB-CP1 (T2 transformer).
(2) PPB-CP2 (-4 Y and T3 transformer),
- check for these tripped circuit protectors (1) failing frame is basic fram
(2) PPB-CP (T3 transformer),
(2) $\mathrm{PPB}-\mathrm{CP4}$ (-4 transformer), V and transformer)

Does a CP trip when powering up even after being reset

Is -4 V sense present at $0 \times \mathrm{D}-\mathrm{AIG4D13}$ (YZ101)?

- Check for -4 Vdc at OXA-W2-6

Scope the -4 Y SCRs, filter card and SCR
control cards per D-170 and D-190. Replace
any bad components as required.
Adjust the pot on card $0 \times 0-A 1 H 2$ if the
voltase is outside the -4.16 V to -3.84 V range, when measured at OXD-A1BSEO4 (see
D-230)

- See note $\frac{1}{2}$ if appiicable.

Is - 12 V sense present at $0 \times \mathrm{D}-\mathrm{A} 1 \mathrm{G4B09}$?

- Check for
vense at jumper bus
- Scope the -12 Y SCRs, filter card and SCR any bad components as required
- Adjust the pot on card oxD-A1s2 if the
- See note 1 if applicable.
- See note 2 .

Is the OXB gate present in this frame?

Is +12 V sense present at $0 \times \mathrm{D}-\mathrm{A} G \mathrm{G} \mathrm{B} 08$?

- Replace the card at OXD-A1G4
- See note $\frac{1}{2}$ if applicable.

Is -4 V sense present at $0 \times B-A 1 U 2 \mathrm{D} 07$ (YZ 195)?

- Check the $-4 V$ cabling from OXA-W2 to
- See note $\frac{1}{2}$ if applicable.

Is +12 V sense present at $0 \times D-\AA \AA_{1 G 4 B 08}(Y Z 101) ?$

- Check for +12 V sense at jumper bus
- Scope the +12 V SCRs, filter card and SCR
control cards per D-150 and D-190. Replace
- Adjust the pot on as required oxd-A1M2 if the
voltage is outside tolera
- See note 1 if applicable.
See note 2 .

Is less than +1 vdc present at $0 \times B-A 1 U 2 G 08$
(YZ195)?

Is less than +1 Vdc present at 0XD-A1G4J02
(YZ101)?

- Replace the card at OXD-A1G4
- See note $\frac{1}{1}$ if applicable
- Check the cable from OXD-A1E5 to OXB-A1V4.
- See note $\frac{1}{2}$ if applicable.
- Replace the card at OXB-AlU2
- Replace the card at oxb-
Sea note 1 if applicable.

- Test for a shorted SCR in the power supply associated with the tripping circuit
protector per $D-150$ and $D-170$. The fault protector per D-150 and D-170. The fault the failure did not occur during the power-on sequence. Reset the fault indicator. If power does not stay on long enimgh to scope the SCRS, pr
ohmmeter checks of the SCRs.

Are the SCRs good

- Replace the bad SCR (D-160 or D-180) - See note $\frac{1}{2}$ if applicable.
- See note 2 .
- Follow the instructions below for the voltage associated with the circuit
protector that trips (see D-440).

1. For -4 V V :

2. Disconnect the storage gate leads at
3. Jumper between OXA-TB1-13 and OXA-W2-6.
4. Disconnect the laminar bus lugs at

For $0 \times 12 \mathrm{~A} \mathrm{~V}^{2}$: 1 and 2 .

1. Disconnect the laminar bus lugs at

- OXA-TB1-3 and 3

G
D-613
Notes

1. Remove the jumper betwean pins 01D-A1Cim0
2. and 01D-A1C1P08

Reconnect the jumper between pins
$0 \times B-A 1 V 1 B 11$ and $0 \times B-A 1 V 1 B 13$.

Is approximately +1 Vdc present at 0XB-A1U2J02

Is +1 V present at $0 \times D-A 1 G 4 G 05$ (YZ101)?

- Replace the card at OXD-A1G4.
- Seplace the card at 0xD-A
See note $\frac{1}{2 f}$ applicable.
See note 2 .
- Check circuit (YZ101,YZ195)
- See note 1 if applicable.

See note 2
Is less
$(Y Z 195)$?

Is -4 V present at $0 \times B-A 1 \mathrm{U} 2 \mathrm{D} 07 ?$

- Check circuit (YZ101,YZ195)
- See note 1 if applicable.
- Replace the card at OXB-A1U2

Replace the card at OXB-A
See note $\frac{1}{\text { if applicable. }}$
See note 2 .

Is approximately +1 Vdc present at OXD-A1M4B13
(YZ101)?

- Check circuit wiring (YZ101, YZ195)

See note $\frac{1}{2}$ if applicable

- Scope the +6 V SCRs, filter cards, and SCR control cards per $\mathrm{D}-150$ and
bad components as required. - Adjust the pot on card 0XD-A1M4 if the voltase is outside of the +5.76 v to +6.24
vensureat OXD-A1B6A04. See D-230. - See note 1 if applicable
- See note 2 .

PROBLEM ISOLATION IN A FAILING FRAME WITHOUT MODIFIED POWER FRAME WITHO (OXD GATE WITH MORE THAN THREE CARDS)-PART 5 OF 7

Is oXF-HD2 picked in the failing frame
(applies +12 to logic, YZ055)?

Is +24 Vdc present at 01E-JXP?

- Check the OXF-HD2 coil - See note $\frac{1}{2}$.
s +24 Vdc present at 01E-RY2-3 N/0?
- Check 01E-RY2-3 points.

Sheck circuit.

- See note 2.
- Replace the card at 01E-P8 (location of
diode)
- Check circuit.
- Check circuit.
: See note $\frac{1}{\text { if }}$ if applicable
- See note 2 .

Is the OXB gate present in this frame?

- Check the -30 V supply if present in this
- Check the connections at 01E-JXL and

O1E-JXM. 1 if applicable

- See note $\frac{1}{2}$ if applicable
- Press power off.

caution

Remove the FET array cards; Possible
locations at $0 \times B-A 1$ are $J 2 / J 4, K 2 / K 4$,
 M2/M4, N2/N4, P2/P4, Q2/Q4, and R2/R4, Keep
them in order so that each may be installed
in its original location.

- Place grounded jumpers at OXB-A1U2G04 and at
- Place grounded jumpers at oxb-A1U2G04
OXB-A1U2D13 (turns on $+3.4 \mathrm{~V}, \mathrm{YZ195)}$.
- Press POWER ON.

I5 ${ }^{\text {1) }}+3.4$ Vdc present at $0 \times B-$ TB2-1 (YZO75, sheet

- Check the cable from OXD to $0 \times B-A 1 V 2$ and
- Sex note
fapplicable
- Check the connections at both ends of cables - Replace the and $0 \times B-A 1 V 4$ at $a t 0 \times 3-A 1 U 2$
- Replace the card note 1 if applicable
- See notes 2,3 and 4 .
- Remove the wire plugged into OXH-PC3. - Reset OXH-CP1.

Does OXH-CPI trip again?

- Replace the OXH-PC card

Reconnect the wires to $0 \times H-P C 3$ and 0XH-PC3

- See note 11 if applicable.
- Remove the SCR-1 anode wire at the 0XH-C2(+
- Reset OXH-CP1.

Does $0 \times H-C P 1$ trip again?

- Replace SCR-1
- Reconnect the wires to OXH-PC2 and OXH-PC3
- See note 1 if applicable
- Check for:

1. Shorted component in the bulk filter (YZOD5 or YZÓ
2. Shorted ${ }^{\text {C }} 3$.
3. Short in +j.4 V distribution (YZ076)

Reconnect the SCR-1 anode wire
See note 1 if applicable.

\qquad
Notes:

1. Remove the jumper between pins 01D-A1C1M07
2. Reconnect the jumper between pins
3. RXB-A1V1B11 and 0XB-A1V1B13
4. Reinstall the removed FET array cards in
5. Remove the jumpers at pins OXB-A1U2G04 and

: Press Power off.

- Remove the jumpers at pins OXB-A1U2G04 and
- Place grounded jumpers at OXB-A1U2DOg and
- Press Poller on. (turns on +8.5 V, YZ195)

Is +8.5 Vde present at $0 \times B-$ TB2-3 (YZ075, sheet
1)?
2).

PROBLEM ISOLATION IN A FAILING FRAME WITHOUT MODIFIED POWER SYSTEM (OXD GATE WITH MORE THAN THREE CARDSI-PART 7 OF 7

- Check for a bad transistor, $0 \times B-Q 1$
- Reconnect the wire to oXB
- See notes 2 , 3 and 5 .
- Press power off.
 *You must wait at least ten seconds between each power-down-to-power-up operation to
allow for "bleedins" the unloaded +3.4 +8.5 V capacitors. Power will not come up
- Press POWER on

Is approximately +8.5 Vdc present at
OXB-A1U2D06 (also $0 \times$ -

- Check for a bad transistor, OXB-Q1 (YZ075
- Reconnect the wire to OXB-TB3-2
- Remove the jumper between OXB-AiU2B10 and

OXB-A1U2D06.

- See note 1 if applicable.

Reconnect the wire to OXB-TB3-2 XXB-A1U2B10 and *Procedure for basic checking ox
sequencing card voltages.

Is +20 Vdc present at OXB-A1U2G12 (YZ191)

- Check the cable from OXD to $O X B-A 1 V 2$ and 0×B-A1V4
- See note 1 if applicable
s -6 Vdc present at OXB-A1U2G05?
Check the cable from $O X D$ to $O X B-A 1 V 2$ and
$0 \times B-A 1 V 4$. - See note 1 if applicable
- See notes 1 , if applicable 3 and 5 .
- Check the connections at both ends of cables - Replace the card at OXB-A1U2
- See note 1 if applicable

Is +24 Vdc present at 01E-JXM (YZ056)?

- Replace the sequence card at OXB-A1U2
- See note 1 if applicable

Is less
(YZ195)?

Replace the card at OXD-A1G4
Check the cabling to 0XD-A1G4.
See note 1 if applicable.
See notes 2 , 3 and 5 .

Procedure for basic checking of OX sequencing card voltages.

Is +20 Vdc present at OXB-A1U2G12 (YZ191)?

- Check the cable from OXD to OXB-A1V2 and OXB-A1V4.
- See note 1 if applicable

See notes 2,3 and 5

Is -6 Vdc present at 0XB-A1U2G05?

- Check the cable from OXD to OXB-A1V2 and

0XB-A1V4.
See note 1
See note 1 if applicable.

- Check the connections at both ends of cables at $0 \times B-A 1 V 2$ and $0 \times B-A 1 V 4$.
See note 1 if applicable.

Notes: Remove the jumper between pins 01D-A1C1M07
and 01D-A1C1P08

- Reconnett the jumper between pins

3. Reinstall the and OXB-A1V1BB3.
4. Reinstall the removed FET array cards in
5. Remove the jumpers at pins OXB-A1U2G04 and
6. Remove the jumpers at pins OXB-A1U2DO9 and

3705-II POWER-MAINTENANCE ANALYSIS PROCEDURES (MAPs)

PROBLEM ISOLATION IN A FAILING BASIC FRAME WITH MODIFIED POWER SYSTEM (01D GATE WITH ONLY THREE CARDS)-PART 2 OF 5

- Check the PPB-K2 coil and wiring (YZ522).

Is the LOCAL/REMOTE switch in the LOCAL
position (YZ522)?

Is 0 Vde present at the LOCAL/REMOTE switch

- Check the LOCAL/REMOTE switch.

- Check the LOCAL/REMOTE switch.
(YZ560)
Check the cabling from the LOCAL/REMOTE
switch N 10 to $01 \mathrm{D}-\mathrm{AlC1}$
*A CPU or channel power on must be initiated
*A CPU or channel power on must be initiated
to provide a contact closure within the CPU. to provide a contact closure within the
This closure returns +24 Vdc to the EPO panel (EPO-J1)

Is +24 Vdc present at EPO, J1-6?

- Check the CPU cable and associated CPU.
- Replace the master sequence card at

Replace
$01 D-A 1 C 1$

- Check
Checticl. sequence card a
- Check the cabling from the LOCAL/REMOT

- Check the LOCAL/REMOTE switch.
- Check the master sequence card at 01D-A1C1
- Check the cabling from the LOCAL/REMOTE
switch N/C to 01D-A1C1G09 (YZ522)
- Meter 01D-A1C1P02 while pressing the POWER Meter 01D-A1C1P02
ON switch (YZ554)

Is +24 Vdc present at 01D-A1C1P02?

- Replace the master sequence card at - Check the cabling from the LOCAL/REMOTE
switth N/0 to $01 D-A 1 C 1 J 09(Y Z 522)$.

IS +24 Vdc present at 01D-TB1-9 (YZ522,

- Check the O1D-RYZ-1 points.
- Check the POWER ON switch and verify that - +24 Vdc is present at the switch.
Check cabling from PowER ON switch to
$010-A 1 C 1 J 02$.
\qquad
Notes:

1. Remove the jumper between pins 01D-A1C1M07 6. Remove the jumper between pins 01D-A1E1G12
and 01D-A1E1J08.

- Press Power OFF
- Place a jumper between pins 01D-A1C1M07 and - Place
- Place a jumper between pins 01D-A1E1G12 and
- Press POWER ON.

Does PPB-K2 pick and remain picked?

Is any over voltage LED on at the 01D gate?

Is 0 Vdc present at 01E, J1-F (-Crash, YZ540)?

- Replace the frame sequence card at 01D-A1E1. - If the problem still exists, replace the
- Check for a short at 01E-JXF
- See notes 1 and 6.

Is 24 Vdc present at POWER OFF switch, COM
$(+24 \mathrm{~V}$ Pow Off sw, YZ522)?

- Press POWER OFF

Check the $-24 V$ standby supply at 01D-c1(and replace the capacitor 01D-C1 if more

- than ${ }^{2} 4$ ripple is present and replace the capacitor PPB-C1 if more
- Replace the master sequence card at
- If the problem still exists, check 01D-c
- If the problem still
- Check the cabling from the POWER OFF switch,

COM to 01D-A1C1G02 (YZ522).

- Check for a shorted POWER OFF switch

Is between +4.5 Vdc and +5.5 Vde present at
$01 \mathrm{D}-\mathrm{QZ}-3(Y Z 524, Y \mathrm{YZ5} 6$, Sheet 5 of 11$)$?

- If more than 200 mV ripple is present at
$01 \mathrm{D}-\mathrm{Q}-3$, replace the capacitor $01 \mathrm{D}-\mathrm{C3}$.

- Replace the +5 V regulator at 01D-Q2.
- Check 01D-R4.

Use an $A C$ meter to measure the T3 output
voltages between $01 \mathrm{D}-\mathrm{TB} 1-12$ and $01 \mathrm{D}-\mathrm{TB1} 14$.

Is approximately +44 Vac rms present between
-

- Check the T3 transformer and the PPB-K2-2
points (YZ530). 6.
- Check the diodes at 01D-TB1-13 (YZ524).
- See notes 1 and 6

Is 01D-RY1 picked (YZ522)?
 AlE1J03 (YZ546)?

- Replace the +5 V regulator at 01D-Q1 - See notes 1 and 6

00000000000000000000000000000000000

Is the RPQ S30251 power supply present in
expansion frame 2 (YZ599, D-505)?
Is +24 Vdc present at PPB-T2-TB5-3 in
expansion frame $2(Y Z 526)$?

- Check the cabling from PPB-T2-TB5-3 to
$03 D-T B 1-8$.
- Use an ac meter to measure the PPB-T2 output voltages in expansion frame 2. Expected voltage is 20 Vac Pm between:
PPB-TV-TB5-1 and PPB-T2-TB5-6

Are the voltages within the specified range?

- Check PPB-CP1, PPB-CB1, and the input
voltage in expansion frame 2 (YZ518).
- Check the diodes at PPB-T2-TB5-3.

Is +24 Vdc present
frame 2 (YZ599)?

- Check the circuit to 01E-EC3-b.
${ }_{2}$ Is $A C$ present at $R P Q-T B 3-2$ in expansion frame
- Check RPQ-T1 and RPQ-CP1
- Check RPQ-D2 and RPQ-C2.

I5 +24 Vdc present at 01E-J1N (+24 V pick
$0 \times \mathrm{F}-\mathrm{HD1}, \mathrm{YZ540)?}$

Is +24 Vdc present at $01 E-J 1 \mathrm{~K}$ (+24 V for HD1 driver)?

Check the cabling from 01E-J4J to 01E-J1K.

- Replace the master sequence card at
- See notes.
- See notes 1 and 6 . from 01E-J1K to
- Check the cabling from 01E-J1K
$01 E-A 1 C 107$.
- Check the cabling from 01D-A1C1G07 t
- Check the cabling from 01D-A1C1G07 to
$01 E-J 1 N$ (YZ555).

Is +24 Vdc present at $01 E-J 1 P(+24 \mathrm{~V}$ pick
$0 \times \mathrm{F}-\mathrm{HD} 2)$?

- Check the cabling from 01D-A1C1S02 to
- See notes 1 and 6.

Is +24 Vdc present at 01D-A1C1P04 (sequence

- Check the cabling from 01E-JIH to
- 01D-A1C1J04.
- Replace the master sequence card at
- See notes 1 and 6

Notes:

1. Remove the jumper between pins 01D-A1C1M0
and $01 D-A 1 C 1 P 08$.
2. Remove the jumper between pins 01D-A1E1G12
and 01D-A1E1J08.

3705-II POWER-MAINTENANCE ANALYSIS PROCEDURES (MAPS)

PROBLEM ISOLATION IN A FAILING BASIC FRAME WITH MODIFIED POWER SYSTEM (01D GATE WITH ONLY THREE CARDS)-PART 5 OF 5

Is +24 Vdc present at ald-A1C1P05 (sequence
complete new, YZ556)? mplete new, YZs6)

- Check the 01D-RY1-1 points (YZ522).
$01 D-A 1 C 1 G 04$. and 6

Is approximately 0 Vdc present at POWER ON ndicator $1-\mathrm{B}$ (YZ522)?

Replace the master sequence card at
Check the cabling from 01D-A1C1503 to the
Cowek the indicator (YZ556).

- See notes 1 and 6.
- Check the POWER ON light.
- See notes 1 and 6

Notes:
Notes: Remove the jumper between pins 01D-A1C1M07
 EXPANSION FRAME WITH MODIFIED POWER SYSTEM (OXD GATE WITH ONL TWO CARDSI-PART $20 F 2$

Is between +4.5 Vdc and +5.5 Vdc present a
$0 \times \mathrm{D}-\mathrm{A1E1J03}$?

- If more than 200 mV ripple is present at

Is approximately +30 Vdc present at 0XD-TB1-13

- Replace the +5 V regulator at OXD-Q1
- Check oxD-R4.
See note 1 if applicable.
- See note 7 .
- Use an $A C$ meter to measure the PPB-TB output
voltages between $0 \times D-T B 1-12$ and $0 \times D-T B 1-14$.

Is approximately +30 Vac rms present between
OXD-TB1-12 and OXD-TB1-14?

- Check the PPB-T3 transformer and the PPB-K.
points in the failing frame (YZ530).
- See note $\frac{1}{7}$ if applicable
- Check the diodes at OXD-TB1-13

Check the diodes at oxD-T
: See note 1 if applicable.

Is OXD-RY1 picked (YZ568)?

- Check the OXD-RY1-1 N/O points.
: See note 1 if applicable

Is at least +2.5 Vdc present at 0XD-TB1-7 (

- Check the cabling from 01E-EC3-f,g,h to
- See note i if applicable.
- See note 7 .

${ }^{\text {Is }}$ (YZ568)?

- Check the LEDs on the OXD gate in the

Check the LEDs on the oxD gate in the failing frame in the order listed bel
go to the appropriate page (see D-520
(1) Any

- If no LEDs are on, check the frame sequence

Check the OXD-RY1 coil

- Check the oXD-RY1 coil.
See note 1 if applicabie.
See note 7 .
$\# * ~$
Notes:

1. Remove the jumper between pins 01D-A1C1M07
2. Remove the jumper between pins OXD-A1E1G12
and OXD-A1E1J08.

Scope the gate pulses at OXD-A1A1B11
(YZ566).

Are the gate pulses present?

- Replace the phase control card at OXD-A1A1 - Adjut Con
: See note 1 iff applicable.
- See note 7
- Press power off

Measure the resistance of the pulse
transformer secondary coil between the following pins:
$0 \times D-A 1 A 1 G 02$ and $0 \times D-A 1 A 1102$

Is less than 20 ohms present (YZ566)?

- Replace the phase control card at OXD-A1A
- Adjust voltages (D-580).
note 7.
- Check for ac at the cathode of the failing
- screct

Check the failing $\operatorname{SCR}(s)$ and cabling from

- the phase control card.
- Press POWER OFF
Disconnect the iaminar bus lugs at
$0 \times A-T B 1-6,7$, and 8 (YZ536, D-550).

Disconnect the laminar bus lugs at
$0 \times A-T B 1-7,7$, and 8 (YZ536, D-550).
Press POWER ON.

- Determine which lead causes the under-voltage on the $-4 V$ supply by powering up after replacing the laminar bus lugs one Caution: Isolate the short to a logic board by removing ere laminar bus or storag voltage jumpers to each board Before jumpers fromt to a board, power must be off until the jumpers are all off/on. Otherwise, could exceed the capacity of the board pins and burn them off
- Isolate to a card by removing cards.
- See note 1 if applicable.
- Press Power off
- Reconnect the laminar bus lugs at
- Disconnect the laminar bus lugs at
- Place a jumper between 13 aXA-TB1-13 and
- PXA-W2-6.

Is -4 Vdc present at OXA-TB1-13?

- Determine which lead causes the under-voltage on the ${ }^{-4} V$ supply by powering up after $\begin{aligned} & \text { r } \\ & \text { at a time }\end{aligned}$
Caution: Isolate the short to a logic board by removing the laminar bus or storage
voltage jumpers to each board Before voltage jumpers to each board. Before
removing or reinstalling the laminar bus jumpers from/to a board, power must be off the current required by the bon. 0therwise, could exceed the capacity of the board pins
- Isolate to a card by removing cards
- See note $\frac{1}{7}$. if applicable.

Press POWER OFF Reconnect the laminar bus lugs at 0XA-TB1-9, 10,11 , and 13 .
Remove the jumper between OXA-TB1-13 and
$0 \times A-W 2-6$.

- Test for a shorted filter capacitor (0XF-C1,
OXF-C2, OXF-C9, or OXF-C10). (YZ586 sheet 6) danger
Measure the voltage across the capacitor (to ensure it has discharged) before touching
- Remove one capacitor terminal lead at a time. The jumper to the next capacitor must and nut, or controll of the power sypply will capacitor is removed from the circuit
Press POWER ON.

Is -4 Vdc present at OXA-TB1-13?

- Replace the shorted capacitor
- See note $\frac{1}{7}$ if applicable.
- Press power off

Have all capacitors for this voltage been

- Adjust the -4 pot on the phase control - (see D-580)

Replace the phase control card if adjusting
the pot does not fix it. See Caution at the - Adjop of column one on this pase.

- Check for open OXF-L1, OXF-L2 and OXF-L3
chokes (YZ586, sheet 6).
- See note 1 if applicable.

Notes:

1. Remove the jumper between pins 01D-A1C1M07
2. Remove the jumper between pins OXD-A1E1G12

- Press power off
: Rress power off
- Peset oxH-CP5.
Press POWER ON.
Does $0 \mathrm{XH}-\mathrm{CP} 5$ trip again?
- Suspect a bad FET array card or a defective - Sircuit protector, oxh-cP5.
- See notes ${ }^{1}$
- Press Power off

Disconnect the storage gate leads at
OXB-TB2-1 and $0 \times B-T B 2-2$. Be sure that the
+3.4 V sense lead is still connected to the supply voltage (YZ536)
sead is sel

- Reset 0XH-CP5.

Does OXH-CP5 trip again?

- Check for a shorted board or card in the 0XB
- Reconnect the storage gate leads at
- See notes 1 and 7 if applicable.
- P
- Rress POWER OFF.
- Reconnect the storage gate leads at
- Disconnect the leads at $0 \times \mathrm{H}-\mathrm{C7}(+)$ and
$0 \times \mathrm{H}-\mathrm{C8}(+)$ ($\mathrm{ZZ586}$, sheet 16$)$.
- Reset OXH-CP5.
- Replace the phase control card at OXD-A1A1
(see caution at the top of column one).
- Adjust voltages (D-580).
- See note 1 if applicable.
- Check for ac at the cathode of the failing

SCR.

- Check the failing SCR and cabling from the
- phase control card.
: Check oxh-Cp.
See note 1 if applicable.
See notes 3 and 7 .

Does OXH-CP5 trip again?

- Check for a shorted capacitor, OXH-C7 or
- See notes 1 and 7 if applicable.
- Check for a bad circuit protector, OXH-CP5
- Reconnect the leads at $0 \times \mathrm{H}-\mathrm{C7}(+)$ and
- See notes 1 and 7 if applicable.

$* * * * *$ Notes

Notes

1. Re
2. and 01D-A1cip jumper between pins 01D-A1C1M0
3. Reinstall the removed FET array cards in
4. Reir orisinal locations. array cards in Remove the jumper
and OXD-A1EIJ08.

3705-II POWER-MAINTENANCE ANALYSIS PROCEDURES (MAPS)
+8.5V UNDERVOLTAGE PROBLEM IN A RAME WITH MODIFIED POWER SYSTEM CAD GATE WITH ONLY TWO OR THREE CARDS)

Caution: A.shorted SCR can damase a phase ontrol card, also a defective phase control card can damage an SCR (see.
for Shorts" on page $D-560)$.

- Press POWER OFF

Caution: Remove the FET array cards.
Caution: Remove the FET array cards
Possible 10 cations at $0 \times \mathrm{XB}-\mathrm{A1}$ are $12 / \mathrm{j4}$, $\mathrm{K} 2 / \mathrm{K} 4, \mathrm{~L} 2 / \mathrm{L4}, \mathrm{M} 2 / \mathrm{M4}, \mathrm{~N} 2 / \mathrm{N4}, \mathrm{P2/P4}, \mathrm{Q2/Q4}$,
and R2/R4. Keep them in order so that each and $R 2 / R 4$. Keep them in order so that each
may be installed in its original location.

Is 0XH-CP4 tripped (YZ586, sheet 16)?

- Place a jumper between pins OXD-A1E1G12 and out) if (disables the 12 second time
- Place a jumper from OXD-A1Eigog to ground POWER ON.

I5
YZ536)?

15 +8. 5 Vdc present at 0XB-TB2-3?

Replace the frame sequence card at OXD-A1E1
See note 1 if applicable

Scope the +8.5 V SCRs at the base of 0 XH -HS (YZ586, sheet 16).

Are both SCRs firing (see D-560)?

Adjust the +8.5 V pot on the phase contro (see D-580)
Replace the phase control card at OXD-A1A if adjusting the pot does not fix it (see
Caution at the top of this column).

- Adjust voltages (D-580).
- See note 1 if applicabl
- Press power off.
- Reset OXH-CP4.

Press POWER ON

DOes OXH-CP4 trip again?

- Suspect a bad FET array card or a defective - Sircuit protector, $0 \times \mathrm{AH}$-cp 4 .
- See note 3
- Press power off. - DiEconnect the 5 toraga gate leads at
$0 \times B-T B 2-3$ and $0 \times B-T B 2-4$ Be sure that the
$+8.5 V 5$ Sense lead is still connected to the +8.5 V sense lead is still connected to th supp
- Press POWER ON

Does OXH-CP4 trip again?

- Chack for a shorted board or card in the OXB
- Rate.
- See notes 1 . and 7 if applicable.
- Press POWER OFF
- Reconnect the storage gate leads a
- OXB-TB2-3,4
the lead at $0 \mathrm{XH}-\mathrm{Cb}(+)$ (YZ58
- Reset Pah-CP4.

Does OXH-CP4 trip again?

- Replace the shorted capacitor, OXH-C6.
- See notes 1 and 7 if applicable.
- Check for a bad circuit protector, 0XH-CP4 - Reconnect the lead at oxH-c6(+). : See notes 1 and 7 if applicable.
- Press power off

Measure the resistance of the pulse following pins: OXD-A1A1S09 and $0 \times D-A 1 A 1 U 09$
$0 \times D-A 1 A 1 S 10$ and $0 \times D-A 1 A 1 U 10$

Is les5 than 20 ohms present (YZ566)

- Replace the phase control card at OXD-A1AI (see Caution at the top of column one)
- See note 1 if applicable.
- See note 1 if applicable
- Check for ac at the cathode of the failing
- Check the failing SCR and cabling from the - See note 1 if applicable

Is at least +1.0 Vdc present at OXD-A1E1MO
(drive signal for +8.5 V supply, $\mathrm{YZ551)?}$ Caution: Do not short OXD-A1E1MO2 to adjacent pins. Card damage may occur

- Replace the frame sequence card at OXD-A1E1. phase control card at OXD-A1A1 instead (see cause control card at the top of column one)
- Adjust voltages (D-580).
- See note ${ }^{1} 3$ if applicable

Is approximately 40 Vac peak-to-peak (15 Vac rms) present at

- Check PPB-T3 and the PPB-K2-3 points
- See note 1 if applicable
- Replace the phase control card at 0XD-A1A1 - Adjust voltages (D-580) of
lf the problem still exists, check 0XH-CP4
OXH-L7 choke and SCRs instead (YZ586, shee - 16).

Check circuit.
: See note 1 if applicable

- See notes 3,7 , and 8.
** Notes:

Remove the jumper between pins 01D-A1C1M07
and 01D-A1C1P08.
and 01D-A1C1P08.
Reinstall the removed FET array cards in
7. Remove the jumper between pins oxD-A1E1G12
8. Remove the jumper at pin OXD-A1E1G09.

- Scope the +6 V SCR"
$(Y Z 586$ at sheet 6)

Are both SCRs firing (see D-560)?

- Adjust the +6 pot on the phase control card at 0xD-
- Replace the phase control card if adjusting the pot does not fix it (see Caution at
- Adjust voltages (D-580).
- Press POWER OFF: transformer secondary coils between the
- OXD-A1A1G07 and OXD-A1A1J07,

Is less than 20 ohms present (YZ566)?

Replace the phase control card at OXD-A1A1 Replace the phase control card at 0XD-AI
(see Caution at the top of column one).
Adjust voltages (D-580).
: See note 1 if applicable.

- Check for ac at the cathode of the failing

SCR.
Check the failing SCR and cabling from th
phase control card.
Sae note 1 if applicable.
See note 7 .

Notes
Remove the jumper between pins 01D-A1C1M07
7. Remove the jumper between pins OXD-A1E1G12
and OXD-A1E1J08.

```
3705-II POWER-MAINTENANCE
M% SN-II POWER-MAINTENANCE 
```

12V UNDERVOLTAGE PROBLEM IN A RAME WITH MODIFIED POWER SYSTE OXD GATE WITH ONLY TWO OR THREE CARDS)

Caution: A shorted SCR can damage a phase control card ($0 \times D-A 1 A 1$), and a defective phase
control card can damage an SCR (see TTesting control card can damage an SCR (see
the SCR for Shorts" on page D-560).
s OXF-CP2 tripped (YZ586, sheet 6)

- Press Power off

Place a jumper between pins OXD-A1E1G12 and
$0 \times D-A 1 E 1 J 08$ (disables the $0 \times D-A 1 E 1 j 08$ (disables the 12 second time - Press if not already present

I5 0 Ode present at $0 X A-T B 1-3$ (-12 V sense,
YZ536)?

Is at least 1.0 Vdc present at oxd-A1E1M13
(drive signal for -12 vupply)?
Caution: Do not short OXD-A1E1M13 to adjacent ins; card damage may occur

- Replace the frame sequence card at OXD-A1E1 phase control card at 0xD-AIAl instead (see Caution at the top of this column).
- Adjust voltages (D-580).
- See note $\frac{1}{7}$
- Replace the phase control card at OXD-A1A1
(see Caution at the top of this column).
- Adjust voltages (D-580) If the problem still exists, check oxF-CP
- If the problem still exists, check OXF-CP2,
OXF-L5 choke, SCRs, and T3 instead (YZ586,
- Sheet 6)
- See note circuit. 1 if applicable.

See note 7
Is -12 Vdc present at OXA-TB1-3?

- Replace the frame sequence card at OXD-A1E1

Check the cabling to OXD-A1E1P07 (YZ529).

- See note 1 if applicable

Press power off
Disconnect the laminar bus lugs at 0XA-TB1Reset OXF-CP2.

Does OXF-CP2 trip again?

- Determine which lead causes the circuit Determine which lead causes the circuit
protector to trip by powering up after
replacing the laminar bus lugs one at repla.

CAUTION
solate the short to a logic board by removing the laminar bus jumpers to each laminar bus jumpers from/to a board, power nust be off until the jumpers are al off/on. Otherwise, the current required by of board assembly could exceed the capacity

- Isolate to a card by removing cards
- Press POWER OFF

Rras the laminar bus lugs at OXA-TB1-3
anisconnect the lead at 0XF-C4(+)

- Reset OXF-CP2.

Does OXF-CP2 trip again (YZ586, sheet 6)?

- Replace the shorted capacitor, OXF-C4
- See notes 1 and 7 if applicable.

Check for a bad circuit protector, OXF-CP2. - See notes 1 and 7 if applicable.

Caution: A shorted SCR can damage a phase control card (0XD-A1A1), and a defective phase control card can damage an SCR (see
the SCR for Shorts" on page D-560).

Is OXF-CP3 tripped (YZ586, sheet 6)?

- Press POWER OFF Place jumper between pins OXD-A1E1G12 and out) if not already present
- Press poner on.

Is ${ }^{0}$ OV Vde present at OXA-TB1-14 (+12 V sense,

Is approximately 40 Vac peak-to-peak (15 Vac rms prese
sheet 5)?

- Check PPB-T3 and cabling to SCR 5
- See note $\frac{1}{7}$

Is at least +1.0 Vdc present at oxD-A1E1P11
(drive signal for +12 V supply)? Caution: Do not short OXD-A1E1PII to adjacent ins; card damage may occur

- Replace the frame sequence card at OXD-A1E1 If the problem still exists, replace the
phase control card at $0 \times D-A 1 A 1$ (see caution at the top of this column).
- Adjust voltages (D-580).
- See note $\frac{1}{}$ Sot.
- Check Diode 1 between OXA-TB1-1 and OXA-TB1-14 (YZ536, sheet 1). If the diode is good, replace the phase control card a column). (see (Diso
- Adjust voltages (D-580).
- If the problem 5 till exists, check 0XF-CP3, 0xF-L6 cho
sheet 6).
Check the circuit
- See note 1 if applicable.
- Press Power off

Disconnect the laminar bus lugs at OXA-TB1-1 - Reset 0XF-CP3 (YZ536, D-550).

- Resess POWFCP ON.

Does OXF-CP3 trip again?

- Determine which lead causes the circuit protector to trip by powering up after time.
CAUTION
Isolate the short to a logic board by
removing the laminar bus jumpers to each
board. Before removing or reinstalling the
laminar bus jumpers from/to a board, power
must be off until the jumpers are all
offlon. otherwise, the current required by
the board assembly could exceed the capacity
of the board pins and burn them off.
- Isolate to a card by removing cards.

- Press POWER OFF
- Reconnect the laminar bus lugs at OXA-TBI-1
- Disconnect the lead at OXF-C5(+) (YZ586,
- Disconnect

Sheet 6).

- Reset oxf-cp3.
Press POWER ON

Does OXF-CP3 trip again?

- Replace the shorted capacitor, 0XF-C5.
- Check for a bad circuit protector, OXF-CP3.
- Reconnect the lead at oxf-c5(+).

Is +12 Vdc present at 0XA-TB1-1?

- Replace the frame sequence card at OXD-A1E1
Check the cabling to $0 \times D-A 1 E 1 M 03$ (YZ529).

See note $\frac{1}{7}$ if applicable.

- Scope the +12 V SCRs at the base of 0XF-HS6
(YZ586, sheet 6). (y2586,

Are both SCRs firing (see D-560)?

- Adjust the +12 V pot on the phase control card at 0XD
(see D-580)
- Replace the phase control card if adjusting the pot does not fix it. (see caution at
Adjust voltages ($D-580$).
- See note $\frac{1}{7}$ if applicable.
- Press POWER OfF.
- Measure the resistance of the pulse transformer secondary coils between the OXD-A1A1G10 and OXD-A1A1J10
$0 \times D-A 1 A 1 G 12$ and $0 \times D-A 1 A 1 J 12$

Is less than 20 ohms present (YZ566)?

- Replace the phase control card at OXD-A1A1 - (see Caution at the top of column one)
- Adjust voltages (D-580).
- See note 7 .
- Check for ac at the cathode of the failing
- Check the failing SCR and cabling from the phase control cardi
- See note 1 if applicable
See note 7

Notes
Remove the jumper between pins 01D-A1C1M07
and 01D-A1C1P08.
and 01D-A1C1P08.

7. Remove the jumper between pins OXD-A1E1G12
and OXD-A1EIJ08.

See logic pages YZ301 sheets $1-13$
for physical location details not shown
on this page.

 (Connector Side)

EPO PANEL			
J4	J3	J2	11
6 3	66 3	63	66 3
52	[5) 2	5 5	55^{2}
$4 \square$	4 1	41	$4 \square$
${ }^{\circ} 8$	\bigcirc		\bigcirc
			6 3 5 2 4 1
\bigcirc	\bigcirc	\bigcirc	\bigcirc

bASIC FRAME

expansion frame

3705-I Physical location
E-000
MISC
A. Special tools, test equipment, and maintenance supplies to be shipped with the 3705:

Description	P/N
Thermometer	5392366 (3705-I only)
"Y" Jumper	1770810
Jumper	1770811
Test Block	1770812

B. Test equipment and non-technology related tools required for the 3705:

1. Test equipment

P/N	Description	Quantity
$\begin{gathered} 454550 \\ \text { or } \end{gathered}$	454 Tektronix* Scope	1
453047	453 Tektronix* Scope	1
453585	Digitec **251 or 266 Meter	1
453545	db Meter	1
5851882	MST 1 CE Indicator Latch Card	1
. Tools		
P/N	Description	Quantity
453631	Microfiche Viewer	1
5801645	Back Panel Indicator Card	1

C. Technology related tools

Refer to Tools and Test Equipment TSL No. 43 and to the Monolithic System Technology, Packaging, Tools, Wiring Change Procedure, SY22-6739 for tool requirements of the IBM 3705. Some of these tools may not be part of the normal maintenance package and should not be ordered by the Branch Office

* Trademark of Tektronix, Inc.
** Trademark of United Systems Corporation

UNIT	FREQ	CHECK	- WHEN CHECKED
		1. Check all voltages 2. Tighten all screw type connections of power system 3. Check indicators	At installation At installation and 6 months after installation On each call
1	6	4. Check cooling fans 5. Check air filters	Determined by the operating environment
2	12	6. Check line cord, plug, terminals, and grounding 7. Scope all SCRs	Every 12 months Every 12 months

000

3705-II PHYSICAL LOCATIONS

(BASIC FRAME OF MODELS E-L AND FIRST EXRANSION FRAME OF MODELS E-H)

The location and types of power supply conponants in a 3705 -II depend upon
the number of cards installed in the 01 D power control gate. For physical

control board gate
XFMR
T3
nOTES:
See D-300 for
supply details

1. USED IN BASIC FRAME ONLY
2. FOR A 3705-II WITH MORE THAN THREE CARDS INSTALLED IN THE OXD POWER CONTROL GATE,
REFR TO D 300 IN THIS MANUAL AND LOGIC PAGES YZ301, SHEETS 1-17.
FOR A $3705-11$ WITH ONLY TWO OR THREE CARDS IN
THE OXD POWER CONTROL GATE. REFER TO D-505 IN THIIS MANUAL AND LOGIC PAGE YZ586, SHEETS 1-17.
3. PHYIICAL LOCATIONS FOR THE FIRST EXPANSION

FRAME OF MODELS J-L ARE SHOWN ON E-O21.

$$
\begin{aligned}
& \text { Terminator Assemblies }
\end{aligned}
$$

See E -O30 for the feature board locations for

LOGIC GATE-0XA

$\begin{array}{rr} \\ \text { GND } & 8 \\ \text { (0) } & 9 \\ \text { (0) } & 10\end{array}$

X3 Boa

3705-II PHYSICAL LOCATIONS
(BASIC FRAME OF MODELS E-L AND FIRST EXPANSION FRAME OF MODELS E-H)
E-020

0000000000000000000000000000000000

3705-II PHYSICAL LOCATIONS
 (FIRST EXPANSION FRAME OF MODELS J-L ONLY)

The location and types of power supply components in a $3705-11$ depend
upon the number of cards installed in the $O X D$ power contol gate. For

physical location details and other information not shown on this page, See NOTE.

02A-X1 Board $=$ Type 1 LIB
$02 \mathrm{~A}-\times 2$ Board $=$ Type 2 LB 02A-×2 Board = Type 1 Type 2 LIB
$02 A-\times 3$ Board $=$ Type $3 L 1 B$
 O2A-X6 Board = Type 6 LIB
O2A-X7 Board $=$ Type 7 LIB $02 \mathrm{~A}-\times 7$ Boord $=$ Type 7 LLB
$02 \mathrm{~K} 8 \mathrm{Board}=$ Type 8 LIB O2A-x9 Board $=$ Type 9 LIB
O2A-W1 02A-W1 Board $=$ Type 10 LIB
02A-W3 Board $=$ Type 12 LIB

0000000000000000000000000000000000 3705-II FEATURE BOARD LOCATIONS

Remote Program Loader And Channel Adapter Combinations								
RPL	CA\#1	CA\#2	CA\#3	BOAP	RD LOCA	TIONS	CA \#3	CONTROL PANEL TYPE
1	-	-	-	3705-81	-	-	-	NO SWITCHES
1	1	-	-	3705-81	3705-A4	-	-	1
1	1	2	-	3705-81	3705-A4	3706-A4	-	2
1	1	3	-	3705-81	3705-A4	3706-A4	-	3
1	2	-	-	3705-81	3705-A4	-	-	1
1	2	2	-	3705-81	3705-A4	3700-A4	-	2
1	2	3	-	3705-81	3705-A4	3706-A4	-	3
1	3	-	-	3705-81	3705-A4	-	-	4
1	3	2	-	3705-81	3705-A4	3706-A4	-	5
1	3	3.	-	3705-81	3705-A4	3706-A4	-	6
1	4	-	-	3705-81	3705-A4	-	-	1
1	4	2	-	3705-B1	3705-A4	3706-A4	-	2
1	4	3	-	3705-81	3705-A4	3706-A4	-	3
1	4	4	-	3705-81	3705-A4	3706-A4	-	2
1	4	4	4	3705-81	3705-A4	3706-84	3706-A4	9

Channel Adapter Combinations - No Remote Program Loader								
CA \#1	CA \#2	CA \#3	CA \#4	board locations				CONTROL PANEL TYPE
TYPE	TYPE	TYPE	TYPE	CA\#1	CA \#2	CA \#3	CA \#4	
1	-	-	-	3705-A4	-	-	-	1
1	2	-	-	3705-A4	3706-A4	-	-	2
1	3	-	-	3705-A4	3706-A4	-	-	3
2	-	-	-	3705-A4	-	-	-	1
2	2	-	-	3705-A4	3706-A4	-	-	2
2	3	-	--	3705-A4	3706-A4	-		3
3	-	-	-	3705-A4	-	-	-	4
3	2	-	-	3705-A4	3706-A4	-	-	5
3	3	-	-	3705-A4	3706-A4	-	-	6
4	-	-	-	3705-A4	-	-	-	1
4	2	-	-	3705-81	3705-A4	-	-	7
								2
4	3	-	-	3705-A4	3706-A4	$\stackrel{-}{-}$	-	3
4	4	-	-	3705-81	3705-A4	-	-	7
					R			2
				3705-A4	3706-A4			
4	4	4	-	3705-81	3705-A4	3706-A4	-	8
				3705-A4	3706-84	3706-A4		9
4	4	4	4	3705-81	3705-A4	3706-B4	3706-A4	10

CONTROL PANEL CONFIGURATIONS

NOTES: 1. The IPL source switch is installed only for
2. Two typ 4 CAs with a CA1 ROS.
2. The PPL source switch may already be
installed in this location on some machines.
3. Switches and indicators in the left column
3. Switches and indicators in the left column
are for CAs in the basic frame.
4. Switches and indicators in the right

000000000000000000000
MISC

0000000000000000

I TYPE 3 OR 3HS COMMUNICATION SCANNERS

INTRODUCTION

Similarities of Type 2, Type 3, or Type 3HS Scanners
(See Notes).

- Structure and Architecture
- First five bytes of the ICW
- Input-Output for $X^{\prime} 40^{\prime}-X^{\prime} 47$
- Autocall operation (see B-090)
- Interface attachment (input/output, C
LIBs).
- Level 2 interrupt operation (see B-300)

The type 3 communication scanner provides the interface between the line attachment hardware (line or autocall inter-
faces) and the CCU. The primary function of the scanner is faces) and the CCU. The primary function of the scanner is
to monitor the communication lines for service requests.
Four type 3 or type $3 H S$ scanners may be installed in the
$\left\lvert\, \begin{aligned} & \text { Four type } 3 \text { or type } 3 \text { HS scanners may be installed in the } \\ & 3705-11 \text { and three type } 3 \text { scanners may be installed in the }\end{aligned}\right.$ 3705-1 expansion frames (none in the basic frame). Each scanner supports synchronous half-duplex and duplex lines operating at various line speeds. For each line interface, the control program initializes the line type (BSC, SDLC, machine or modem), bit clocking speed for business machine clocking, and interrupt priority.
Functions of the Type 3 and Type 3HS Scanners
(See Notes).

- Scans the line/autocall interface addresses in the LIB positions it supports.
- Performs character assembly/disassembly
- Provides character buffering
base when program service is req to the attachment
- Provides bit clock addresses for the LIB positions it supports so the LIB can generate the strobe pulse for
- Preceive operations.
machine transmit and receive pulses for use by the machine transmit and re
ine/autocall interfaces.
- Signals program level 1 interrupts for failures in the scanner, LIB, and line/autocall interface. The cause of
the level 1 interrupt is buffered in the
- Monitors the state of certain carrier equipment and autocall unit lines for interfaces that are selected by he control program and buffers the state in the dispay register whe
- Performs Control Character Decode.
- Cycle-steals data to and from main storage.
- Translates USASCII to EBCDIC and EBCDIC to USASCII.
- Monitors data for line control characters.
- Performs modem interface control.
- Performs cycle steal count update

Perform block check character accumulation.
Notes: Autocall, address substitution, upper scan limit, and scanners.
. The type $3 H S$ scanner ahows only two line inferface addresses and attaches to a LIB1 only
| Type 2 Attachment Base (See Notes)
The type 2 attachment base provides common interface controls to the central control unit and line addressing controls
for the type 3 or type $3 H S$ scanner and is containg
for the type 3 or type 3HS scanner and is contained on two
The attachment base:

- Generates line interface addresses for all type 3 or
type 3 HS scanners for scan addressing
- Performs address substitution under program control

Provides a buressing
addressing
Provides the
interrupts by priority
Scanner Initialization
Scanner Initialization
The scanner and its associated LIBs are placed in a disabled The scanner and its associated LIBs are placed in a disabled
state (1) during a power-on sequence, (2) during an IPL (3) by a control panel reset, or (4) dưring the execution of
(4) ate an Output $X^{\prime} 43{ }^{\prime}$ when the general register specified by the
R field contains appropriate bits. The control program must
enable each scanner by executing Output X'43' with bits $0.1=1$ and $1.6=1$ before the control program can initialize each ICW (interface control word) and the asso-
ciated line or autocall interface. This initialization must ciated line or autocall interface. This initialization must
occur before the line interface can be placed in operation
I Interface Control Word (See Notes).
The ICW provides the normal communications link between the control program and the scanner, and between the con-

trol program and the interface hardware. The scanner contains 64 ICWs, one for each of the line/autocall interfaces | that may be attached (see Note 2). Certain fields within |
| :--- |
| the ICW are used to buffer information about the interface | the ICW are used to buffer

between successive scans.

The ICW:

- Serializes the character to be transmitted
- Deserializes the received character

Buffers the autocall digit

- Buffers the mode of operation
- Is used to initialize the line interface hardware and the
scanner operation for that interface.
- Buffers Cycle Steal Addresses
- Buffers bec
- Buffers Line Control Data

rogram Addressing

The control program accesses the ICW or scanner during that part of the scanner cycle called CCU time. During
CCU time, the scanner implements the input and output instructions (see Input/Output section) that apply to that scanner. During this time, the interface address in ABAR attachment buffer address register) accesses the associated ICW and selects the scanner. The control program execute cutes output instructions to change the contents of this cuw.
The control program also executes input instructions to The control program also executes input instructions to
obtain (1) the interface address in ABAR, (2) the status o the check register, and (3) the status of the display register
The control program also executes output instructions to 1) set the interface address in ABAR, (2) set the state o he substitution control register, (3) set the state of the upper scan limit latches in the selected scanner. (4) enable
or disable a LIB or scanner, 5) set or reset the scanner con ol functions, or (6) set high speed select.

Note: Items 2, 3, and 6 are not applicable to type 3 HS canner operations.
Since program addressing is similar to that in the type 2 canner it is not included in this section. See B-290 for program addressing details.

Scan Addressing (See Notes)

Each scanner services the line/autocall interface during that part of the scanner cycle called CSB time. During CSB time he scan counter in the attachment base provides an int scanner for scan addressing. Each scanner uses this inter face address to access the corresponding line/autocall inter face and the associated ICW. The scanner receives the status of the line/autocall interface and determines if a bit under control of the primary control field in the ICW, per orms the bit service operation and updates the ICW content. The scanner signals a character service level 2 interrup when appropriate. If the scanner does not detect a bit

The scan counter furnishes 96 discrete interface addresses to all scanners in parallel even though the type 3 scanner can attach only up to 64 line sets, see Notes). The address substitution mechanism in the attachment base can modify certain addresses before hey are sent to the scanners. Each scanner contain mechanism for modifying the inderface address seceived from the attachment base. Modification only occurs during scan addressing. Address substitution and upper scan imit modification are both under control of the program.

Notes:
Autocall, address substitution, upper scan limi and high-speed select are not used by the type 3 HS scanner.
2. The type 3 HS scanner allows only two line interface

Cycle Steal
The type 3 or type 3 HS scanner can steal cycles from the CCU under control of certain fields in the ICW. The cycle
steals are used to store data in or fetch data from main storag

Level 1 Interrupts

Failures in the scanner can affect all communication lines attached to the 3705, or can affect at least a group of lines the failures is indicated by a scanner level 1 interrupt request. Each scanner contains a check register which

ransmit Operation

The program initializes the operation by assigning a beginning storage address and byte count in the line interface
ICW. The scanner then performs cycle steals to fetcc data from scanner then performs cycle steals to fetch The first character to be transmitted is transferred from the PDF array to the SDF (serial data field)

The control program indicates in the ICW the type of line control to use. The scanner implements the line contro (surch as initial sYN and haD, and response charac-
ters). After all the data has been transmitted the scanner sends the ending character or sequence and then causes a program level 2 interrupt. The SDF serializes the character and sends it to the line interface a bit at a time face. The line interface then sends the bits to the modem or transmission line under control of the transmit oscillator located in the scanner or external clock in the modem.

eceive Operation

The line interface receives the bits from the modem or transmission line. The line interface strobes the bits into
its receive buffer. The strobe is under control of the bit clock control (located in the LIB) for business machine clocking. The scanner contains the receive oscillator that control e bit clock circuit in the LIB. The modem receive clock specified by the control program for synchronous operation. In either case, the strobe generates a bit service request in the line interface which signals the scanner that the receive
buffer contains the received bit. The scanner places the uffer contains the received bit. The scanner places the then transfers the character to the PDF array. The scanner will use cycle steal to store the received character from the PDF array to main storage two characters at a time if the | cycle steal address is on an even boundary. The scanbeen received and then causes a program level 2 interrupt.

| TYPE 3 OR TYPE 3HS SCANNER DATA FLOW DESCRIPTION

This page describes those data flow components that are used on the type 3 or type 3HS scanner and not on the type 2 scanner. The key symbols refer to Page F-030.

1 OUTPUT REGISTER

The output register buffers the data from a specified general gister that the CCU places on the outbus during the executio f an Output $X^{\prime} 4 X^{\prime}$ type instruction.

2 CYCLE STEAL DATA OUT REGISTER
This register buffers the halfword of data from main storage that the CCU places on the outbus during a transmit cycle-steal oper-
ation (see F-360).
3 OUTREG GATING
The "outreg gating" logic gates part/or all of the output register
contents directly/or offset to its destination by means of (1) outontents directly/or offset to its destination by means of (1) out bus A.O-A.7, depending on the output instruction (see F-280 for typical gating example). The "outreg gating" logic also gates he PDF array by means of outreg bus 1.0-1.7 during a transmi cycle-steal operation (see F-360).

4 DECODE END CHARACTERS

When the scanner detects an ETX, ETB, or ENQ character on
outreg bus $110-17$ during outreg bus 1.0-1.7 during a BSC transmit cycle-steal data fetch character, the BCC, and Pad characters, turns the line around and requests a level 2 interrupt (see F-400).

5 HIGH SPEED SELECT REGISTER

Each scanner has a HS select register that allows address substitutes the even-numbered address in that scanner's LIB 1 for all scan counter line addresses that contain the even/odd-numered selected lines that are associated with a position in the S select register that contains a 1. See Page F-090 for sca

Note: Autocall, address substitution, upper scan limit, and high-speed select options are not used by the type 3HS scanner.CBAR (CYCLE STEAL BUFFER ADDRESS REGISTER)
This register is used during cycle-steal operations to buffer the selected ICW address for use during a following CCU time since
the cycle stealing is done asynchronous with 'gated bit service CSB time. At the first available CCU time following the cycle teal machine cycle for a transmit cycle steal, the address in CBAR (1) selects the PDF array in which the scanner loads the
two data bytes and (2) selects the ICW so the scanner can write the updated CS byte count, the updated CSAR and the regenerated CS valid bit into the correct ICW (see F-360). At the first available CCU time following the cycle-steal machine cycle or a receive cycle-steal, the address in CBAR selects the ICW so the scanner can write the updated CS and PDF pointers, the
updated CSAR, the updated CS byte count, and the regenerated CS valid bit into the correct ICW (see F-450).

7 CSAR (CYCLE STEAL ADDRESS REGISTER) The scanner loads this register with the current address of main orage what is to be stored or fetched during a cycle8 and θ ation. The current address comes from ICW bytes 6

8 CSAR FOR UPDAT
The scanner loads the same address in this register as it loaded into CSAR. On a transmit cycle-steal operation, the scanner loaded into the PDF array (see F-360). On a receive cycle-stea operation the scanner increments the address in this registe data in register' (see

9 CYCLE STEAL BYTE COUNT REGISTER

 The scanner loads this register with the current CS byte count from ICW byte 7 at the same time CSAR is loaded. On a ransmit cycle-steal operation, the scanner decrements the CS te count for each dat her decrements the CS byte count for each data byte that is set in the 'CS data in register' (see F-450).DBAR (DIAGNOSTIC BUFFER ADDRES REGISTER)
The scanner sets the status of the actual ICW addressing lines into this register whenever a bid for a level 1 interrupt is caused (TE706). The level 1 program then inputs DBAR to determine the failing line (see F-190)

11. PDF ARRAY

The type 3 scanner PDF array contains 512 addressable

 ICW addresses provided by the type 3 scanner is associated with an array of eight buffers. The type 3 HS scanner provides 21 CW addresses and each address is associated with an array of 16 buffers. Each array therefore provides with a type 3 scanner and 16 characters with a type 3 HS scanner.The ICW addressing lines that select the ICW local store also select the associated PDF array (see F-390). Selectin of the 'array address register' that is set by either the PDF pointer or the CS pointer. The PDF and CS pointers for a type 3 scanner are in CW byte 12 only, and the pointers for a type 3 HS scanner are in ICW bytes 12 and 17. The PDF pointer can not be used when the CS pointer is bein
used and vice versa. See Page $\mathrm{F}-390$ for a summary of CS/PDF pointer use.
The PDF array buffers data, control, and status bytes (see F-490). On a transmit cycle-steal operation, data is transfer from main storage the scanner transfers it to the SDF where the data is alized for transmission (see F-360). Received data is transferred from the SDF to the PDF array and a receive cycle-steal oper-

12 PDF WORK REGISTER

When a PDF buffer is selected by the PDF pointer for read out (no 'write array'), the contents of the selected PDF buffer is set into the PDF work register so that the control logic and the PDF in register have access to it (see F-410 and F-440)

PDF IN REGISTER

During a 'fetch buffer' (level 2 interrupt or an Output $X^{\prime} 40^{\prime}$ while in level 3 or level 4), the scanner sets the contents of the DF work register into the 'PDF in register' while also setting
 see F-250. The 3705 control program now has access to th status of the ICW
the 'fetch buffer'.
14 CYCLE STEAL DATA IN REGISTER This register buffers the data to be transferred to main storage
by a receive cycle-steal operation (see F-450).

15 PDF STATUS REGISTER
When a PDF buffer is selected by the CS pointer for read out (no 'write array') and the PDF buffer contains a status byte PDF bits 0.5 and $0.6=11$), the scanner sets the status byte into the PDF status register (see F-480 and F-490). The s.

16 PDF CONTROL REGISTER

When a PDF buffer is selected by the CS pointer for read out no 'write array') and the PDF buffer contains a control byte (PDF bits 0.5 and $0.6=10$), the scanner sets the control byte the ICW bytes 0 and 14 .

17 CHECK REGISTER 0

When the scanner detects an ICW work register check for any bytes other than $0,2,10$, or 14 , or a PDF array check, the scaner sets a corresponding bit in check register 0 and then ter 0 expands the check

Page of SY27-0107-6 As Updated 2 April 1980 By TNL: SY27-1249

COMMUNICATION SCANNER BOARD OXA-E2 LAYOUT
The type 3 scanner occupies two board
locations; $0 \times A-E 2$ and $0 \times A-E 3$

$\begin{aligned} & \hline \text { Card } \\ & \text { Loc } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ALD} \\ & \mathrm{Aloge} \\ & \hline \end{aligned}$	Function
E2T2	$\bigoplus_{T F 205}^{T F 200}$	ICW byte 0 and 14-input gates, input registers, work registers, and local store arrays.
E2S2	$\int_{T F 215}^{T F 210}$	ICW byte 15 and 16 -input gates, input registers, work registers, and local store arrays.
E2N2	$\begin{aligned} & \text { TF220 } \\ & \text { TF221 } \\ & \text { TF222 } \end{aligned}$	PDF control register, PDF status register SCF update ICW byte 14 update
E2U2	$\prod_{T F 305}^{T F 300}$	ICW byte 2 and 10 -input gates, input registers, work registers, and local store arrays.
E2M2	$\bigoplus_{T F 315}^{T F 310}$	ICW byte 5 and 11 -input gates, input registers, work registers, and local store arrays.
E2R2	$T F 320$ $T F 320$ $T F 321$ $T F 322$ $T F 323$ $T F 324$ $T F 325$ $T F 36$ $T F 327$ $T F 328$ $T F 328$ $T F 360$ $T F 36$ $T F 364$ $T F 636$ $T F 365$ $T F 368$	New EPCF state 0 Set new EPCF states 1 and 3 Set new EPCF state 2 Set EPCF siate 4 New EPCF states 6, 7, 8 Rec and X mit conditions New ICW Bits 16.6 and 16.7 ICW bits 16.4-16.7, EPCF state c Set EPCF 0 BSC receive Set EPCF 0 SDLC receive Set EPCF state 4 receive Set EPCF state 5 receive ICW write pulse generation
E202	$\left.\right\|_{T F 344} ^{T F 340}$	ICW byte 15 control
E2G2	$\downarrow_{T F 405}^{T F 400}$	ICW byte 3 and 13-input gates, input registers, work registers, and local store arrays.
E2v2	$\prod_{T F 415}^{T F 410}$	CW byte 4 and 12 -input gates, input registers, work registers, and local store arrays.
E2H2	$\begin{aligned} & \text { TF420 } \\ & \text { TF421 } \\ & \text { TF422 } \\ & \text { TF423 } \\ & \text { TF424 } \\ & \text { TF426 } \end{aligned}$	SDF to PDF bits 0-2 SDF to PDF bits 3-7 New SDF bits $0-4$ and tag time New SDF bits 5-9 CSB LIB data out bus New CSB bits to array

Card Loc	$\begin{aligned} & \text { ALD } \\ & \text { Pag } \end{aligned}$	Function
E2K2	$\begin{aligned} & \text { TF440 } \\ & \text { TF441 } \\ & \text { TF442 } \\ & \text { TF443 } \\ & \text { TF4445 } \\ & \text { TF446 } \end{aligned}$	Control character ROS address assembly Character decode encode ROS EBCDIC to USASCII translate ROS PDF work reg array parity check PDF to SDF and BCC gates ROS char decode reg-PDF work reg control PDF In register
E2L2		Old BCC input selection Data select and LRC generation CRC generation New BCC (ICW byte 10) New BCC (ICW byte 11) BCC character compare BCC controls and gating
E2F2		PDF array pointer control (ICW byte 12) Generate SDLC flag $\mathrm{X}^{\prime} 00^{\prime}$ and $\mathrm{X}^{\prime} 07^{\prime}$ Generates $\mathrm{X}^{\prime} 55^{\prime}$ or $\mathrm{X}^{\prime} \mathrm{FF} \mathrm{F}^{\prime}$-BSC final status to array New ICW 13.2, 13.4, 13.5-reset byte 12 New and old EPCF decode inverters
E2J2	$\begin{aligned} & \text { TF500 } \\ & \text { TF5501 } \\ & \text { TF5502 } \\ & \text { TFF503 } \\ & \text { TFF550 } \\ & \text { TF5506 } \end{aligned}$	Inverters LCD state decodes regen of LCD (ICW byte 2) interrupt go-set PCF state 0 or 4 Set PDF 5 or 6 Set PCF 7 New PCF states-PCF decode SDF transfer
E2C2	TF600 TF601 TF602 TF603 TF604 TF605 TF666 TF607	Inverters and terminators CSB data out 7-test data latch Receive data bit-last line state SDLC BSC Counter (ICW byte 4) Bit service reset SDLC BSC counter control (ICW byte 4) Regen output 47 ICW Byte 5 regen
E2D2	$\begin{aligned} & \text { TF620 } \\ & \text { TF621 } \\ & \text { TF622 } \\ & \text { TF623 } \\ & \text { TF624 } \\ & \text { TF665 } \\ & \text { TF626 } \end{aligned}$	Feedback check CSB data in gating Display bus gate Display reg and gating to inbus Scanner diagnostic line wrap simulator B data register Control out and control in latches
E2E2	TF800 TF801 TF802 TF883 TF804 TF805 TF806 TF807	Inverters New ICW bits 13.6, 13.7-misc ctrls Set/reset ICW bit 13.0 (seq 0) Set/reset ICW bit 13.1 (seq 1) EPCF decodes Set PDF control bits 0,1,2,4,7 and cycle steal message count controls Set PDF ctl 10, set L2 go, set BSC EOM PDF Array inbus gating
E2B2	$\begin{aligned} & \text { TF810 } \\ & \text { TF811 } \\ & \text { TF812 } \\ & \text { TF813 } \\ & \text { TF814 } \\ & \text { TF815 } \\ & \text { TF816 } \end{aligned}$	Inverters EPCF decodes and update BCC Write SDF to PDF Transfer PDF to SDF-set timeouts Control character combinations Generate transmit SYN and DLE Gate data check and set array bits 6 and 9, set EPCF 8

$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	$\begin{aligned} & \mathrm{A} \text { Pog } \\ & \text { Pa } \end{aligned}$	Function
E2P2		Set ICW bits 5.4 and set DLE response char Misc controls Initial and final status ICW byte 15 work register control Set L2 on the fly Inverters and EPCF decodes Set 14.1, 14.7 VRC BCC to SDF transfer Set array status

0001

CLOCK AND TIMINGS - FET STORAGE
Models J-L/E-H

SCAN ADDRESS DATA FLOW USING HIGH SPEED SELECT

SCAN ADDRESSING
Description for F-090. The numbers refer to corresponding
numbers on the data flow. numbers on the data flow.

1 Scan Counter

The scan counter runs continuously, stepping through 96 different states. See F-110 for details on the scan counter positions and sequence of interface address outputs. The scan counter steps every 1.6μ s when used on a $3705-1$
(see Note 1). Without modification, the scanner can not handle line speeds higher than 4,800 bps without the
possibility of undetected bit overrun/underrun conditions. $1 \begin{aligned} & \text { With a type } 3 \text { scanner, three modifications can be made }\end{aligned}$ to the scan counter output to allow the scanner to handle
line speeds of up to 56,000 bps. These modifications are made in conjunction with the substitution control register, the upper scan limit latches, and the high-speed select register. Address modification, when using the sub-
stitution control register, modifies the stitution control register, modifies the addresses placed on ification, when using the high-speed select register in a scanner, modifies the addresses only in that scanner. The substitution control registers should not be used when the high-speed select registers are used. The upper scan limits are used with either the addresses on a scanner basis. (See Note 2).
2 Address Substitution (Substitution Control Register) Never used when the high-speed select register is used. See B-230

```
tion control register. (See Note 2)
```


3 Line Address Bus

Ten address bits plus a parity bit are on the line address bus, but for scan addressing, CSB sel 0 and CSB sel 1 are ignored. Parity is generated over the eight bit address on line address bus ositions 2-9.

4 Address Substitution (High-Speed Select Register) The contents of line address bus positions 4, 2 and modified address 8 (scan 8 modifies address 8 as described in the upper scan limit modification chart on this, page) is decoded into 1 of 8 selected line even-odd combinations as shown in the chart on
$\mathrm{F}-090$ (see Note 2). If a 1 is in the HS select register
position corresponding to the decoded selected line combination, the scanner raises 'force LIB 1' to modify the address. This modification forces

- LIB select 1.
- Address select (x) where $x=$ even address of the decoded

Adeted-line combination

- ICW addressing for LIB 1 and line select (x).

Notes:
For the $3705-\mathrm{II}$, every 2.0 microseconds if the 1.8 microseconds if the cycle time is 900 nanoseconds (Models J-L).
2. Type 3HS scanners attach to a LIB 1 in the 3705 -II selected. The address substitution ane the only addresses and autocall options are not applicable to type 3 HS , scanner operations.
'Force LIB 1 ' forces a scan limit of 11 (scan 16) to the attach ment base over CSB bits 0 and 15 to enable the attachment
base to modify the scan counter output to reflect the fact that an address has been substituted for the one the scan counter is pointing to. This is necessary if the L2 interrupt priority register is to present the same address that caused the L 2 interrupt. If the address on the line address bus was the odd address of the selected line combination, or if line select $8=1$ for scan 8 ,
the scanner raises 'line select 1 ' to inhibit setting ' L 2 bid' and 'CSB wants a priority register' 6 . This prevents the scan counter that is pointing to the odd address from transferring the wrong address to the L 2 interrupt priority register when If the decoded selected line combination finds a 0 in the co responding position of the HS select register, the state of the upper scan limits determines what modifications are made to line addres.

7 Upper Scan Limit Modification
Each type 3 scanner has two upper scan limit latches. Each scanner modifies the address on the line address bus according to the state of its upper scan limit latches. See the chart to the right for the actual line address bit positions modified by the four states of the upper scan limit latches. The line address bus
output may be modified in some form as shown in the chart. A zero in the ' 1 st 3^{\prime} ' position ion of the fCW local store address selects ICWs associated with LIBs $1,2,3$ and also combines with a one in the ' 1 or 4 ', ' 2 or 5 ', or ' 3 ' or 6 ' positions for LIB. select 1,2 , or 3 .
or If the scan counter output is not modified by the HS select register or by address substitution, the four states of the upper scan limit latches create the following effective scan periods: $3705-1$

$\begin{aligned} & \text { Upper } \\ & \text { Scan } \\ & \text { Limit } \\ & \text { State } \end{aligned}$	Actual Scan Counter Period	$\left\lvert\, \begin{aligned} & \text { Number of } \\ & \text { Interfaces } \\ & \text { actually } \\ & \text { scanned by } \\ & \text { Scanner } \end{aligned}\right.$	Number of times each Interface is scanned in Scan Counte Period	$\binom{1.2$ usec }{ Cycle Time } Effective Scan Period
00	153.6 usec	96		53.6
10	153.6 usec	48	2	76.8
11	153.6 usec	16	${ }^{6}$	25.6 usec 128
01	153.6 usec	8	12	12.8 usec

3705-11

$\begin{aligned} & \text { Upper } \\ & \text { Scan } \\ & \text { Limit } \\ & \text { State } \end{aligned}$	Actual Counter Period	$\left\|\begin{array}{l\|} \text { Number of } \\ \text { Interfaces } \\ \text { actually } \\ \text { scanned by } \\ \text { Scanner } \end{array}\right\|$	Number of times each Interface is scanned in Scan Counte Period	$\begin{aligned} & 1.0 \text { usec } \\ & \text { Cucle Time } \\ & \text { CHffective } \\ & \text { Stan } \\ & \text { Period } \end{aligned}$	$\begin{aligned} & \binom{0.9 \text { usc }}{\text { cycle Time }} \\ & \text { Effective } \\ & \text { Scan } \\ & \text { Period } \end{aligned}$
$\begin{aligned} & 00 \\ & 10 \\ & 11 \\ & 01 \end{aligned}$	192 usec 192 192 usec 192 192 usec	$\begin{aligned} & 96 \\ & \hline 48 \\ & 16 \\ & 88 \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ 6 \\ 12 \end{array}$	* 192 usec 96 usc 32 usec 16 usec	$\begin{array}{r} 172.8 \\ 86.4 \\ 28.8 \\ 14.4 \end{array}$
Scan and sc are not applic type 3 scanne	imit state er period able for HS	2	48	4.0 usec	3.6 usec

*The effective scan period is for 96 addresses since the type 2
attachment base steps through 96 addresses.
3. The upper scan limit for a type 3 HS scanner is forced
to a value of 01 by the 3705 ther to a value of 01 by the 3705 hardware and is not a
program option.

8 LIB Select and Address Select

Every 1.6 (3705-1) microseconds, the scanner selects a line interface, or autocall interface, by sending the modified of the LIB select and address select lines. (See Ny m.

9 ICW Local Store

Each type 3 scanner contains a local store array that contains 64 addressable interface control words (ICW). Each ICW con tains 16 bytes plus 16 parity bits. (Each type 3HS
scanner local store array contains two ICWs only. Each ICW contans-in addition to 16 bytes with 16 parity
bits-ICW bits $17.0,17.1$.) A distinct ICW is associated with each line interface, or autocall unit interface, attached to the scanner through a LIB. A duplex line interface has two distinct ICWs. See chart on B-250 for the relationships
between the modified line address bus output, ICW array selection, and interface address selected for each scanner. See B-220 for scan address timings to read out and write into the ICW associated with the selected interface address.
of the selected ICW are placed in the ICW work register at R2 ICW and the 'control in B^{\prime} status. CW and the 'control in B^{\prime} status.
When a hardware interface bit service or a program service
level 2 interrupt is required, the ICW contents written back into the local store at W2T1T2 time. If the ICW contents are not modified, they normally are not written into he local store array because the original contents are no

10 LIB Control

The scanner control logic sends a 'control in B' signal to the selected interface which gates the status of certain data communications equipment lines and certain latches in the interface

11 Line Address Bus to Next Scanner
Line address bus positions $2-9$ pass directly to the next scanner Position 0 reverses position with the inverted position 1; how-
ever, these two positions are not used during scan addressing.

UPPER SCAN LIMIT MODIFICATIONS OF LINE ADDRESS BUS (Type 3 Scanner only)

Upper Scan Limit	Position	Address Bit Positions								Interface Lines Selected lassume scanner \#1)	Modification Performed
		$\begin{gathered} 1 \text { st } \\ 3 \end{gathered}$	$\begin{gathered} 1 \text { or } \\ 4 \end{gathered}$	$\begin{gathered} 2 \text { or } \\ 5 \end{gathered}$	$\left\lvert\, \begin{gathered} 3 \text { or } \\ 6 \end{gathered}\right.$	8	4	2	1		
$\begin{gathered} 00 \\ \text { (64 lines) } \end{gathered}$	Line adr bus									$\begin{gathered} \text { LIB sel }= \\ =1 ; \text { Adr sel }=1 \\ (021) \end{gathered}$	Invert '11st 3' bit
	Local store adr										
	Line addr bus									$\begin{gathered} \text { LIB sel }=4 ; \text { Adr sel }=1 \\ (051) \end{gathered}$	Invert '1st 3' bit
	Local store adr										
$\begin{array}{\|c} 10 \\ (48 \text { lines) } \end{array}$	Line adr bus		$+{ }_{0}^{0} \downarrow$							LiB sel = 2; Adr sel = 7	Force '1st 3^{\prime} ' bit to 0
	Local store adr				O γ	0	1	17	17	(037)	
11	Line adr bus		$\mathrm{x}^{\mathrm{x}} \mathrm{x}^{\mathrm{x}}$	\times	x					LIB sel $=1$; Adr sel $=\mathrm{C}$	Force ' 1 or 4' bit to 1
	Local store adr		0 0	0	0	1	1	\bigcirc	01	(02C)	'1st 3'.' 2 or 5', '3 or 6' to 0 .
ines	Line adr bus	\times		\times	\times	?			\times	LIB sel $=1$; Adr sel $=5$	If bit $8=.1$, force it to 0 and force bit 1 to 1 .
	Local store adr	${ }_{0}{ }^{+1}$		0	0	0	17	07	1	(025)	
	Line adr bus			$\square_{1}+$	\times	0				$\begin{gathered} \text { LIB sel }=1 ; \text { Adr sel }=4 \\ (024) \end{gathered}$	If bit $8=0$, do not modify it, but force bit 1 to 0 .
	Local store adr			0	0		01	0			
	to 1 , and bits ' 1 st $3^{\prime}, ~ ' 2 ~ o r ~$ 5 ', or ' 3 or 6^{\prime} ' 0 .										

UPPER SCAN LIMIT MODIFICATIONS OF LINE ADDRESS BUS (Type 3HS Scanner Only)

\dagger indicates no modification
X indicates don't care

SCAN ADDRESSING (TYPE 3HS SCANNERS ONLY)

Explanation of Type 3HS Scanner Addressing

With a type 3 HS scanner, only line interface addresse 0 and 2 on a LIB 1 are scanned. Hardwired modifi cations to scan addressing circuits provide 48 scan of each selected line interface per scan counter cycle. The modifications force the following conditions to occur.

1. A scan limit of 8 is established which restrict interface line selection to a range of $020-027$
2. Line select bit 4 is forced off (0) and narrows the interface line selection range to 020-023.
3. High-speed select register positions 0 and 1 are forced on (1) to cause scanning of interface line addresses 0 and 2 only.

1

SCAN COUNTER (See Notes)

- Stepped every 1.6 (3705-1), 2.0 (3705-11, Models E-H), or 1.8 ($3705-11$, Models J.L.) microseconds at C01 time or $1.8(3705$
(see $\mathrm{F}-090$).
- There are 96 different states-one for each interface address in the type 2 communication scanner. The type 3 scanner scanner handles two interface addresses only.
- The relationship of the output state of the scan counter with respect to the line address bus bit positions is shown in the charts.

Position '1st 3' - A one indicates LIB 1,2 or 3 is selected. (See Note 2). A zero indicates LIB 4,5 or 6 is selected.

Position ' 1 or 4' - A one selects LIB 1 if position '1st 3' is a one, or LIB 4 if position '1st 3 ' is a zero. (See Note 2).
Position '2 or 5' - A one selects LIB 2 if position '1st 3^{\prime} ' is a one, or LIB 5 if position '1st 3^{\prime} is a zero.
Position '3 or 6' - A one selects LIB 3 if position '1st 3^{\prime} ' is a one, or LIB 6 if position
'1st 3 ' is a zero. See Note 2

Only one position, from among ' 1 or 4 ', ' 2 or 5 ', and '3 or 6 ', can be active at a time.
These four positions define the LIB to be selected.
Positions 8,4,2,1 form the hex representation for the line address within the selected LIB. See Note 1 .

- The scan counter generates interface addresses in the sequence shown in the charts. The LIBs are selected in sequence shown in the charts. The Liss are selected in se--
quence (see Note 2)-however, the even interface addresses within each LIB are generated consecutively, followed by the odd interface addresses.

Notes:

1. With the type 3HS scanner only line interface addresses $020,022,0 \mathrm{~A} 0,0 \mathrm{~A} 2,120,122,1 \mathrm{AO}$, and 1A2 can be used.
2. Type 3HS scanners attach to a LIB 1 only and Type 3HS scanners attach to a LIB 1 only and
do not use upper scan limit, address substitution
or the autocall option.

TYPE 3 COMMUNICATION SCANNER (BASIC FRAME)
SEQUENCE OF INTERFACE ADDRESSES GENERATED BY SCAN COUNTER

TYPE 3HS COMMUNICATION SCANNER (BASIC FRAME) SEQUENCE OF INTERFACE ADDRESSES GENERATED BY SCAN COUNTER

Interface Address (Hex)	Scan Counter Bit Positions								$\begin{array}{\|c} \text { LIB } \\ \text { Selected } \end{array}$	$\begin{array}{\|l\|l} \text { Interface } \\ \text { Line } \\ \text { Selected } \end{array}$
	1st 3	1 or 4	2 or 5	3 or 6	8	4	2	1		
	\longrightarrow LIB Address $\longrightarrow \sim$ within selected LIB \rightarrow									
020	1	1	0	0	0	0	0	0	1	0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	0		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	0		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	0		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	0		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	1		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	1		0
022	1	1	0	0	0	0	1	0		2
020	1	1	0	0	0	0	0	1		0
022	1	1	0	0	0	0	1	0	\dagger	2

ICW CONTROL AND DATA FIELDS (BYTES 0-5)

The ICW (interface control word) is the link between the con-
trol program and the type 3 scanner and the type 3 scanner nd the interface hardware. Certain fields in the ICW buffer formation about the interface between successive scans. In addition the ICW controls the cycle steal operations between the PDF (parallel data field) and the SDF (serial data field) and between the PDF and main storage.
The type 3 scanner ICW consists of 128 information The type 3 scanner ICW consists of 128 information bit
and is physically located in the scanner local store (130 information bits for a type 3 HS scanner ICW).

output
NAME
BYte.bit

DESCRIPTION

ALD REF INPUT

00

| ICW CONTROL AND DATA FIELDS (BYTES 6-17)

ICW LINE CONTROL DEFINER
LCD (Line Control Definer)
The LCD is used during transmit and receive operations to define the line control used by the line interface. LCD bit 0 (located in ICW 2.0) defines EP (Emulation Program) or NC
(N) (Network Control Program) mode. The offstate of this bit CD hex characters 0.7) defines EP mode. The onstate of this bit (LCD hex characters 8 -E) defines NCP mode; LCD X'F' defines a feedback check for both EP and NCP modes
(see key symbol 5 on page F-530).

tYpe of line control
Reserved
Reserved
Reserved
Reserved
Dial (Auto-call unit)
SC EBCDIC Line Control
BSC USASCII Line Control
Reserved
Reserved
SDLC 8 bit byte length-search for
SDLC control characters (Flag, Abort, Idie).
Reserved
Reserved
Reserved
Reserved
BSC EBCDIC Line Control
SSC USASCII Line Control
Reserved
Feedback check

- The PCF (primary control field) and EPCF (extended primary control field) define the state of the line interface at any particular time. They are used to buffer the opera-
tion being performed on that line interface between successive scans.
- The control program initially sets the status of the

PCF/EPCF.

- The control program executes Output $X^{\prime} 45^{\prime}$ to set or change
the PCF/EPCF states.
the PCF/EPCF states.
- The type 3 scanner automatically changes PCF status under
certain conditions (see diagrams).
certain conditions (see diagrams).
- The control program executes Input $X^{\prime} 45$ ' to determine the
- PCF status, and Input X'4B' to determine the EPCF status.
- The scanner interpretation of the PCF/EPCF depends upon
the state of the LCD field. The interpretations for a binary synchrenous interface and a syncherpreus dans for a binar interface are shown on this page. See B-090 for the interpretation of the PCF/EPCF for an autocall interface.
- Refer to the state transfer diagrams in the ALDs for the conditions that change the PCF/EPCF states.
Explanation of diagrams.

The control program sets PCF/EPCF $X^{\prime} 1 /{ }^{\prime}$. This is indicated by no line going toward 1 .
Once the scanner executes set mode (PCF/EPCF $X^{\prime} 1 / /{ }^{\prime}$), the scanner automatically sets PCF/EPCF X'0/-' (No-Op). This is
indicated by the line leaving 1 and going to 0 A level 2 interrupt request occurs and is indicated by the (1) inserted within the line.

A dash represents a don't care condition of the EPCF bits. Note: See B-310 for the logic circuits that cause 'interrupt
go'. This causes the level 2 interrupt request.

EP MODE

For EP LCD states, the initial and final control sequences are in the data stream except for transparent endings.

STATUS BYT IN NCP MODE

 $L_{\text {Initial }}$ Control Sequence (ICS)

- Initial Control Sequence (BSC Transmit)

Used at the beginning of a BSC transmit operation for control characters.

012 control sequence bits are defined as:
000 - No Initial Control
001 - Start of Text STX
010 - Transparent Start of Text DLE-STX 011 - Start of Header SOH
100 - Special XMIT EOT
111 - Prog Flag X' ${ }^{\prime}$ FF' (set by hardware)
All other combinations are undefined for BSC transmit. Use of any undefined combination may result in undefined operation.

- Final Control Sequence (BSC Transmit)

 Used at the end of a BSC transmission. Its meaning is defined in conjunction with the initial control sequence fieldICS FCS LGF
Bit $012 \quad 3456$
$00000110 / 1$ XMIT ENQ, turn line around. ENQ may be in data stream of leading graphics.
0000110 0/1 ХМІт ACK-0, turn line around.
0000111 O/1 XMIT NAK, turn line around.
0001101 O XMIT, RVI, turn line around.
$000 \quad 11100 / 1$ XMIT ACK-1, turn line around
0001111 0/1 XMIT WACK, turn line around.
00100110 XMIT STX-ENQ (TTD), turn line around, byte count set to zero.
00110010 XMIT STX-data-ETX, turn line around, no
skip byte on ITB in data
00110100 XMIT STX-data-ETB, turn line around, no
skip byte on ITB in data.
$00111010 \quad$ XMIT STX-data-ETX, turn line around, skip
0011110 - XMIT STX-data-ETB, turn line around, skip byte on ITB in data. byte on ITB in data.
01000110 XMIT DLE-STX-data-DLE-ENQ, turn line
0100100 0 XMIT DLE-STX-data-DLE-ITB
01010010 XMIT DLE-STX-data-DLE-ETX, turn line
around.
0101101 O XMIT data-DLE-ETX, turn line around ITB was previously sent
01011100 XMIT data-DLE-ETB, turn line around.
0110011 О хміт SOH-data-ENQ, turn line around.
01110010 XMIT SOH-data ETX, turn line around, no skip byte on ITB in data.
0111010 O XMIT SOH-data ETB, turn line around, no
$0111101 \quad 0 \quad$ XMIT SOH-data-ETX turn line around, skip XMIT SOH-data-ETT
byte on $1 T B$ in data.
$01111100 \quad$ XMIT SOH-data-ETB, turn line around, skip byte on ITB in data. Note: If DLE-STX is in data stream ending is
-0 100 ด
o XMIT EOT, turn line around
1001110 O XMIT DLE-EOT, turn line around.

STATUS BYTE FORMAT FOR BSC RECEIVE

- Initial Status (BSC Receive)

The initial status bits are set according to the first text control character received.

Bit 012
000 - Control mode - no text received
001 - text mode - STX first character
010 - transparent text mode - DLE-STX first characters
010 - transparent text mode - DLE-STX first character
011 - Heading - SOH first character
100 - Special Status - DLE-EOT (DISC) first characters
inal Status (BSC Receive)
The final status bits are set according to the ending control characters received.

Bits 3-6

0000	Timeout
0001	ITB
0010	
0011	ENQ
00100	EOT
00101	'STIK'
00110	Wrong ACK
0111	NAK
1000	ETX
1001	ETB
1010	ETB
1011	
1100	
1101	RVI
1110	Positive ACK
1111	WACK

- Leading Graphics (BSC Receive)

The leading graphics bit is set if the first character after the phase character is not an initial or final status.

STATUS BYTE FORMAT FOR SDLC TRANSMIT

 The status byte is set by the network control program to inform the scanner of the action to perform at the end-of-frame.Bits 0-3 Not used in SDLC transmit
Bit 4 - Bit 4 is on - transmit extra flag ahead of SDLC test frame.

- Bit 4 is off - do not transmit extra Blag ahead of SDLC test frame.
If line turnaround is not required (bit $7=0$) nd: Bit 5 is on - transmit continuous flags. - Bit 5 is off - go to the line ide state.

Bit 6 If a line turnaround is required (bit $7=1$) and: Bit 6 is on - transmit 9 consecutive ones before turning the line around.

STATUS BYTE FORMAT FOR SDLC RECEIVE
$\begin{array}{ll}\text { Bit } 0 & \text { Control exception. Set by the scanner hardware } \\ \text { to indicate a control frame was indicated by the }\end{array}$ control" character but a Flag character was not received three characters later.
Reserved
Bit 2 Reserved
Bit 3 Idle. Set by the network control program to request a level 2 interrupt if the receive line
goes to an idle state after a Flag is detected.

Reserved
Bits 5-7 Not used in receive

Bit 7 - Bit 7 is on - Turn the line around to receive.

ICW DATA FLOW

All ICW cards except byte 17 may be swapped.
See the description of ICW test mode for Output
$X^{\prime} 43^{\prime}(F-270), X^{\prime} 44^{\prime}(F-280), X^{\prime} 45^{\prime}(F-290)$,
$X^{\prime} 46^{\prime}(F-300)$, and $X^{\prime} 4 F^{\prime}(F-350)$ instructions.

Byte 17 is used with the type 3 HS scanner
only.

0000000000000
(1) 00

10
(1)

010 0 00 0

INPUT X'40' (INTERFACE ADDRESS)
input $X^{\prime} 40^{\prime}$ is used to obtain the interface address from ABAR (attachment buffer address register) in the attachment base. When Input X' 40 ' is executed; the attach ment base gates the interface address in ABAR to the 0.6
through 1.6 bit positions of the general register specified by through 1.6 bit positions of the general register specified by
the R field. The attachment base also gates a 1 to position 0.4 and a 0 to each of the remaining positions in the general register.
If Input X'40' is executed during program level 2 , the attachment base resets the 'priority register occupied' latch associated with the interface address in ABAR. Th
indicates that (1) the character service request is being serviced by the control program and (2) the 'program level 2 interrupt priority register', from which the ABAR was loaded, is now available for another level 2 interrupt the same priority. Subsequent Input X' 40 ' instructions
within the same character service interrupt do not reset within the same character service interrupt do not reset the
'priority register occupied' latches. An exit instruction must be executed in program level 2 to reset the L2 input 40 latches before another 'reset occupied latches' signal can occur.

*For timing with bridge storage see B-120

INPUT X‘41' AND X‘42'

INPUT X‘41’ (HIGH SPEED SELECT)
The 3705 control program uses this instruction to determine the setting of the high-speed select register and to obtain ICW bits 17.0 and 17.1 during type 3HS scanner operations.
The scanner gates the contents of the high-speed select register The scanner gates the contents of the high-speed
to the general register specified by the R field.
Notes:

1. ICW bits 17.0 and 17.1 contain meaningful information only after a) a level 2 interrupt occurs, or b) an Output $X^{\prime} 40^{\prime}$ instruction is executed in program level 3 or 4.
trigh speed select register option is not applicable to type 3HS scanner operation.

INPUT X'42' (DBAR/CHECK REGISTER 0)
The 3705 control program uses this instruction to determine the state of check register 0, DBAR (diagnostic buffer address register), and scan limit bits. The scanner gates these bits to the general register specified by the R field.
The scanner sets the cycle-steal address, currently in

- ICW work register checks 0 thru 7 .
- ICW work register
- LIB select error.
- CS parity error (CS inbound/outbound data)
- CSAR even parity.
- A D

An Output $X^{\prime} 42^{\prime}$ instruction also sets DBAR as well as to type 3 H S scanner operations.

LEVEL 1 INTERRUPT
If any of the check register bits in a scanner are set to 1 , the scanner sets the level 1 interrupt request that bids for a program level 1 interrupt in the CCU. The level 1 routine determines which scanner caused the level 1 interrupt by
executing Input $X^{\prime} 76^{\prime}$. The control program can set ABAR with an interface address associated with that scanner, and then execute Input $X^{\prime} 42^{\prime}$ 'and Inout $X^{\prime} 43^{\prime}$ to determine the
specific cause for the level 1 interrupt.

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6
1.7	GENERAL													
REGISTER														

	INPUT X'41'	INPUT X ${ }^{\prime} 2^{\prime}$		
$\begin{aligned} & \hline \text { General } \\ & \text { Register } \\ & \text { Bit Pos. } \end{aligned}$	Description	Check Register 0 Position	Cause of Check	
0.0	High speed select reg 0	ICW work reg check 2	Set to 1 if scanner detects a parity check (even) from ICW work register for Byte 3 or Byte 13.	TE701
0.1	High speed select reg 1	ICW work reg check 3	Same as above for ICW Byte 4 or Byte 12.	TE701
0.2	High speed select reg 2	ICW work reg check 4	Same as above for ICW Byte 5 or Byte 11.	TE701
0.3	High speed select reg 3	ICW work reg check 5	Same as above for ICW Byte 6 or Byte 8.	TE701
0.4	High speed select reg 4	ICW work reg check 6	Same as above for ICW Byte 7 or Byte 9 .	TE701
0.5	High speed select reg 5	ICW work reg check 7	Same as above for ICW Byte 15 or Byte 16.	TE701
0.6	High speed select reg 6	PDF array check	Set to 1 if scanner detects a parity check (everi) on the PDF array output.	TE701
0.7	High speed select reg 7	0		
1.0	Cy StI PDF Array Ptr Bit $16{ }^{\text {a }}$	DBAR 32	-	TE704
1.1	PDF Array Ptr Bit 16*	DBAR 16		TE704
1.2	0	DBAR 8		TE704
1.3	0	DBAR 4		TE704
1.4	0	DBAR 2		TE704
1.5	0	DBAR 1		TE704
1.6	0 -	Scan limit 0**		TE540
1.7	0	Scan limit 1**		TE540

** General register bit positions 1.0 and 1.1 are associated with

INPUT X'43' (CHECK REGISTER 1)

Input X'43' is used to obtain the status of check register in the scanner. The interface address in the attachment buffer address register selects the scanner that contains the check register.
LEVEL 1 INTERRUPT
If any of the check register bits in a scanner are set to 1 , the scanner sets 1 interrupt in the CCU. The level 1 routin determines which scanner caused the level 1 interrupt by executing Input $X^{\prime} 76^{\prime}$. The control program can set ABAR with an interface address associated with that scanner, and then execute Input X'43' to determine the specific cause for the level 1 interrupt

$\begin{array}{\|c\|} \hline \text { General } \\ \text { Register (R) } \end{array}$	Check Register Position	Cause Of Check	Reference
0.0	LIB 1 BCC Check	Set to 1 if the scanner detects a LIB 1 BCC local store parity error during a bit clock selection.	TE702
0.1	LIB 2 BCC Check	Same as above for LIB position 2.	TE702
0.2	LIB 3 BCC Check	Same as above for LIB position 3.	TE702
0.3	LIB 4 BCC Check	Same as above for LIB position 4.	TE702
0.4	0		
0.5	0		
0.6	LIB Select Check	Set to 1 if more than one LIB was selected, or more than one line was accessed on the selected LIB, or no line was accessed on the selected LIB, or a line was accessed on a LIB that was not selected.	TE702
0.7	Inbus Check	Set to 1 if the scanner detects a parity error (even) on Inbus bytes 0 or 1 .	TE263
1.0	ICW Work Reg Check 1	Set to 1 if the scanner detects a parity error (even) from ICW work reg for Byte 2 or Byte10.	TE701
1.1	Priority Reg Avail Check	Set to 1 if the scanner detects a parity error (even) in the priority register available lines ($4+\mathrm{P}$).	TE703
1.2	CCU Outbus Check	Set to 1 if the scanner detects a parity error (even) on the Outbus (16 +2P).	TE703
1.3	Line Adr Bus Check	The line adr bus parity is used to predict the parity of the address as modified by the scanner's upper scan limits. If this predicted parity does not compare with the actual parity of the modified address, the scanner sets this bit to 1.	TE703
1.4	Bad Inbound or Outbound CS Data	Scanner sets to 1 if CCU detects a parity check on the data the scanner is cycle stealing to or from storage.	TE703
1.5	CSAR Check	Scanner sets to 1 if CCU detects a parity check (even) in the Cycle Steal Address Register.	TE703
1.6	Address Exception	Scanner sets to 1 if the CCU detects that the address in CSAR exceeds the CCU storage size or points to a protected area of storage not assigned to the scanner. Scanner sets to 0 if 1.5 is a 1 .	TE703
1.7	ICW Work Reg Check 0	Set to 1 if scanner detects a parity check (even) from ICW work reg for Byte 0 or Byte 14.	TE701

NPUT X'44’, X'45', AND X'47'
INPUT X'44' (ICW BYTE 0 AND PDF ARRAY) The 3705 control program uses this instruction to determine he states of the SCF (secondary control field) and the PDF
parallel data field) from the PDF array. The scanner gates parailen tants of ICW Input register byte 0 (SDF) and PDF n register to the general register specified by the R field.
See the chart below for the bit definitions.

INPUT X'45' (ICW BYTES 2 AND 3)

The 3705 control program uses this instruction to determine the states of the LCD, basic PCF, and SDF. The scanner gate he contents of the (SF) input regiter bye 2 LCD and basi PCF) and byte 3 (SDF) to the general register specified by

NPUT X'47' (ICW BYTES 4 AND 5)

The 3705 control program uses this instruction to determine the states of the bits in $1 C W$ bytes 4 and 5 as defined in th hart below. The scanner gates the contents of the ICW
by the R field.
The 1 CW Input registers and PDF In register are loaded The ICW Input registers and PDF In register are loaded
from the ICW and PDF array work registers respectively whe from the ICW and or Output $X^{\prime} 4 O^{\prime}$ in levels 3 or 4 rais 'fetch buffer'.

0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7

$\begin{aligned} & \text { General } \\ & \text { Register } \\ & \text { Bit Pos. } \end{aligned}$	Input X'44'	$\begin{aligned} & \text { Input } \\ & x^{\prime} 45^{\prime} \end{aligned}$	Input $\mathrm{X}^{\prime} 47{ }^{\prime}$
0.0	SCF 0 (Abort Detect-SDLC)	LCD Bit 0	SDF Bit 8
0.1	SCF 1 (Service Request Interlock)	LCD Bit 1	SDF Bit 9
0.2	SCF 2 (Character Overrun/Underrun)	LCD Bit 2	Ones Count-SDLC or Interval Timer-BSC; Bit 4
0.3	SCF 3 (Modem Check)	LCD Bit 3	Ones Count-SDLC or Interval Timer-BSC; Bit 2
0.4	SCFF 4 (Not L2 Bid)	PCF Bit 0	Ones Count-SDLC or Interval Timer-BSC; Bit 1
0.5	SCF 5 (End of Message)	PCF Sit 1	Last Line State-SDLC
0.6	SCF 6 (Program Flag)	PCF Bit 2	Display Request
0.7	SCF 7 (Line Trace Active)	PCF Bit 3	Ones Count-SDLC or Interval Timer-BSC; Bit 16
1.0	PDF Bit 0	SDF $\operatorname{Bit} 0$	Ones Count-SDLC or Interval Timer-BSC; Bit 8
1.1	PDF Bit 1	SDF Bit 1	L2 Interrupt Pending
1.2	PDF Bit 2	SDF Bit 2	Priority Sit 1
1.3	PDF Bit 3	SDF Bit 3	Priority Bit 2
1.4	PDF Bit 4	SDF Bit 4	NRZI Control-SDLC or Transparent Text-BSC
1.5	PDF Bit 5	SDF Bit 5	Diagnostic 0
1.6	P PDF Bit 6	SDF Bit 6	Diagnostic 1
1.7	PDF Bit 7	SDF $\operatorname{Bit} 7$	External Modem Clock

\square
0

00000000000000000000000000000000000

INPUT X'46' (DISPLAY REGISTER)

The 3705 control program uses this instruction to determine he setting of the display register. The scanner gates the contents of the display register to the general register specified by
DISPLAY REQUEST OPERATION
After the attachment base address register (ABAR) has been set to the proper interface address, the control program executes
an Output $X^{\prime} 43^{\prime}$ with bit $0.2=1$ to set the display request bit (ICW bit 4.6). As long as the display request bit is on, every scan of that interface causes the display register to trap the contents on the B display bus.
For the display register con
For the display register contents to be meaningful, only one scanner. Because each scanner contains a display register scanner may contain one ICW that uses the display request bit. Input X'46' should not be executed until the interface has
been scanned at least one time after setting the display bit This ensures that the data in the display register is valid for the This ensures that the data in the display register is valid for the
interface just selected and is not the result of a former display interface just sel
trap operation.
B DISPLAY BUS - NORMAL OPERATION During 'control in B ' time, the B data register traps the line
interface status that is on ' C B data in'
II 1 I B data 6 con. interface status that is on CSB data in A. If B data 6 conBSC or SDLC mode, the scanner forces bit 1 (CTS) and bit 3 (DTR). If there is not a feedback check, the contents of the B data register and the forced bits are gated to the B display bus and are then lo
display request bit is on.
During 'control in A' time, a feedback test 2 is made between the line interface A register contents on 'CSB data in'
and the 'set' A register lines on 'CSB data out'. Any discrep. and the 'set' A register lines on 'CSB data out'. Any discrep-
ancy causes a feedback check that inhibits gating the B data ancy causes a feedback check that inhibits gating the B data lines, that caused the feedback check are forced to zero and the remaining CSB data-in lines and CSB data-out lines that match, force their corresponding bits to ones. Thus the lines
that caused the feedback check can be distinguished from the lines that are working correctly.

B DISPLAY BUS - DIAGNOSTIC MODE 0

When a line is in diagnostic mode 0 , the scanner performs a
The control prograp. line, to diagnostic mode 0 (Output $X^{\prime} 46^{\prime}$) and then sets the PCF EPCF, and LCD states. Normal line functions are then simuDuring the Diagnostic Scanner Wrap, the scanner gates the DCSB data out' lines 3 to the B display bus and then to the display register for the line that has the display request bit on. Gated diag mode 0 ' inhibits the display register trapping the B data register or the feedback lines.
'Control in B

- 'Diag xmit' simulates CT
- 'Diag mode 0 wrap' simulates DSR.
- 'Diag rcv' simulates RLSD.
- 'Diag rcv mark' simulates the receive data bit buffer.

The diagnostic signals are not gated to the display register The diagnostic signals are net gated the the display register traps at W2 time and the diagnostic

NPUT X'48' (ICW BYTES 6 AND 7)

The 3705 control program uses this instruction (1) to determine the contents of the cycle steal byte count and cycle
steal extended address bits X.4-X.7 (2) to determine the steal extended address bits X.4-X.7, (2) to determine the whether ETB, ETX, or ENO characters were in the cycle steal data. The scanner gates the contents of ICW input register bytes 6 and 7 to the general register specified by

INPUT X'49' (ICW BYTES 8 AND 9)
The 3705 control program uses this instruction to determine the contents of the cycle steal address register. The scanner general register specified by the R field.

INPUT X'4A' (ICW BYTES 10 AND 11)

The 3705 control program uses this instruction to determine the contents of the old BCC (block check character). The 16 USASCII is buffered in these two bytes between bit servic The scanner gates the BCC accumulation from ICW input register bytes 10 and 11 to the general register specified by the R field.

INPUT X‘4B', X‘4C', X‘4E', AND X‘4F' INPUT X'4B' (ICW BYTE 16)
The 3705 control program uses this instruction to determine the state of the Extended PCF, New Sync, DTR and OLTT diagnostic bits. The scanner gates the contents of $C W$ input
register byte 16 to the general register specified by the R field. INPUT X'4C' (PDF ARRAY BITS 0-10)
The 3705 control program uses this instruction to determine
the contents of PDF array bits $0-10$. The scanner loads the The contents of PDF array bits $0-10$. The scanner loads the that work register with the contents of the PDF array but Fetch buffer' loads the contents of the PDF work register into the PDF in-register just as 'fetch buffer' loads the conents of the ICW work registers into the ICW input registers. he scanner gates the contents of the PDF in-register to th INPUT X'4E' (ICW BYTES 12 AND 13)
The 3705 control program uses this instruction to determine
the PDF array address that the cycle steal and PDF pointers he PDF array address that the cycle steal and PDF pointers message counter field and the turnaround control bit. The scanner gates the contents of ICW input register bytes 12 and 3 to the general register specified by the R field.

INPUT X‘4F' (ICW BYTES 14 AND 15
The 3705 control program uses this instruction to determin the state of the status fields as shown on the chart for BSC or SDLC. The scanner gates the contents of ICW input regis ter bytes 14 and 15 to the general register specified by the
R field.

(attachment buffer address register) to the attach ment base. When Output $X^{\prime} 40^{\prime}$ is executed in program levels 3 or 4 , the attachment base gates the
contents of the ICW work register to te ICW input contents of the ICW work register to the ICW input register and the contents of the PDF array (selected
by the PDF pointer) to the PDF in register where they are available to the control program by means of Input instructions $X^{\prime} 44^{\prime}, ~ ' 455^{\prime}, ~ ' 477^{\prime}, ~ ' 48 ', ~ ' 49 ', ~$ ' $4 \mathrm{~A}^{\prime}$, ' $4 \mathrm{~B}^{\prime},{ }^{\prime} 4 \mathrm{C}^{\prime}$, ${ }^{\prime} 4 \mathrm{E}^{\prime}$, and ' 4 F '
The control program must execute Output $X^{\prime} 40^{\prime}$ to initialize ABAR with an interface address associated with an installed type 3 scanner after

Genera Register (R)	Output \times ' $40{ }^{\prime}$			
$\begin{gathered} 0.0 \\ 0.1 \\ 0.5 \end{gathered}$	i			
0.6 0.7			$00=1$ 01	$10=3$ 11
1.0 1.1 1.2			$\begin{aligned} & 010=\operatorname{LIB} 1 \\ & 011=\operatorname{LIB} 2 \\ & 100=\operatorname{LIB} 3 \end{aligned}$	$\begin{aligned} & 101=\operatorname{LIB} 4 \\ & 110=\operatorname{LIB} 5 \\ & 111=\operatorname{LIB} 6 \end{aligned}$
1.3 1.4 1.5 1.6		$\begin{aligned} & \text { Bit }{ }^{5} \\ & \text { Bit } 6 \\ & \text { Bit } \\ & \text { Bit } \\ & \text { Bit } 8 \text { F } \end{aligned}$	0-F (hex)	
1.7	*			

General Register (R)	Output \times '41'
$\left.\right\|_{\substack{0.7 \\ 1.0 \\ 1.0 \\ 1.0}} ^{\substack{0.0}}$	
$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$	Substitution Ctrl Reg Bit 1 $\left\lvert\, \begin{array}{l}\text { Bit 2 } \\ \text { Bit 3 } \\ \text { Bit 4 }\end{array}\right.$
1.6	*

the 3705 is powered on and before other inputs and outputs are issued to the scanner. Otherwise an input/output check may occur.
Output \times '41' sets the substitution control register
bits in the attachment base and the bits in the highbits in the attachment base and the bits in the high

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 \\
\hline
\end{array}
$$

AR

${ }^{*}$ For bridge storage timing, see B-160

output ' $^{\prime} 42^{\prime}$ (DBAR/SCAN LIMITS)

The 3705 control program uses this instruction to set the contents of the upper scan limits and DBAR (diagnostic buffer address register) in the selected scanner. The interface
address in the attachment buffer address register selects the
scanner. (See Note). scanner. (See Note).
Normally the scann
when an ICW work register, array check LIB select error CS parity error, CSAR even parity, or CSAR address exception occur. The level 1 routine of the control program executes an Input $X^{\prime} 42^{\prime}$ to obtain the address of the failing line
from DBAR. The diagnostic program uses Output $X^{\prime} 42^{\prime}$ to set DBAR only to verify the correct operation of DBAR and the Input $X^{\prime} 42^{\prime}$ instruction. Output Timings-FET Storage*

| cCu Clock
 11 Time of Output Inst I-O Reg Adr Bus | \|A|B|C|D|A|B|C|D|A|B|C|D| |
| :---: | :---: |
| | - (Non Output Inst) |
| | $X \longrightarrow$ |
| Sample Output Data | |
| Scanner Clock | M21.M22 M23 W2 R1 M1 W1 R2 M21 M22 M23 W2 |
| Gate Output Reg | |
| Latched I-O Adr Bits 4-7 | |
| Output Register | Contents of General Register R |
| Sync Latch* | |
| Output 42 | |
| Upper Scan Limit Latches | |
| | *See B-180 for bridge storage timing |

OUTPUT X‘43’ (CONTROL)

he 3705 control program uses this instruction to set or reset various control functions in a type 3 scanner. The interface address in the attachment buffer address register selects the scanner. When Output X'43' is executed, the bit configuration in the genera SELECTIVE LIB RESET
A set function ($0.0=1$), with a 1 in the associated disable LIB position, sets the 'LIB X disabled' latch. This causes a selective LIB reset to each line attached to LIB X when the scan counter selects that line interface. 'LIB X disabled' also inhibits the setting of any the check register positions. The reset continues until the 3705 control program disable LIB position, leaving LIB X enabled. For a summary of the reset actions see
2 and 3.

SELECTIVE SCANNER RESET

The set function ($0.0=1$) with bit $1.6=1$ resets the 'CSB enable' latch. This forces the anstan in 1,2 and 3 . As each line interface is selected by the scan the entire scanner. The reset ends when the 'CSB enable' latch is turned on by the reset function ($0.1=1$) with bit $1.6=1$ and the scanner is enabled.

UMMMARY OF RESET ACTIONS

CW Test Mode 3

In test mode, the ICW is treated as storage and only output instructions are allowed to
Forces 'control out A^{\prime} ' and 'control in A^{\prime} '-TF626. Resets line/autocall inter

- Forces 'control out B^{\prime} and 'control in C'-TF604. $\} \begin{aligned} & \text { face latches in all line }\end{aligned}$
- Holds 'CSB data out 1.7 ' to 0-TF424. 'Inhibits 'B7 bit svc req' from generating 'gated bit svc or I and A rst'-TF625.

Sets display register position 8 - $T F 623$.

- Alters the outreg gating for Output $X^{\prime} 44^{\prime}, X^{\prime} 45^{\prime}, X^{\prime} 46^{\prime}, X^{\prime} 4 F^{\prime}$
- Alters the outreg gating for Output $X^{\prime} 44^{\prime} X^{\prime} 45^{\prime}, X^{\prime} 46^{\prime}, X^{\prime} 4 F^{\prime}$.

Inhibits: 'set cs req latch'-TE341, 'set L2 bid

- Inhibits the ROS and transparency ROS functions-TF816.

CW and Array Reset 2 (I and A Reset)

Affective for LIB disabled or CSB disabled.
Forces ICW TEST Mode.

- Forces 'write at W2 T1 T2 time for all ICW bytes.

- Initializes BCC in ICW bytes 10 and 11-TF305, TF315.

Resets ICW bits: 0.1 (svc req) -TF221,0.7 (trace) -TF221, 4.2-4.4 and 4.7,5.0 (ones counter)-TF603, 4.6 (display request) TF607, 5.5-5.7 (diag 0-1, ext clk)-TF607, 6.5 (cs valid)-TE343.
Sets ICW byte 12 to ones (CS and PDF pointers to array) TF480.
Sorces 'write array'-TE345.
Inhibits 'strobe array WR' from loading PDF array WR-TE344

CSB Disable 1

Forces IICW and Array Reset' and 'ICW Test Mod
Resets: Upper scan limit latches-TE540, 'CS busy' latch-TE240, ‘CS reques
latch-TE240.

- Inhibits set of: 'LIB sel error', 'adr excep error', bad data', 'SAR even parity', 'In res
error', 'pri req error', and 'BAR error' latches-TE703

Output Reg Pos	Position Name	Set Function (0.0 $=1$)	Reset Function (0.1 $=1$)
0.0	Set Function	A 1 causes the set function for output positions 0.2 through 1.6 when the corresponding bit is 1 . This bit should not be 1 if 0.1 is 1 .	Must be a 0 if the reset function is on (bit $0.1=1$).
0.1	Reset Function	A 1 causes the reset function for output positions 0.2 through 1.6 when the corresponding bit is 1 . This bit should not be 1 if 0.0 is 1 .	Must be a 0 if the set function is on (bit $0.0=1$).
0.2	Display Request	A 1 sets ICW bit 4.6. A 0 does not change ICW bit 4.6.	A 1 resets the ICW bit 4.6. A 0 -no change.
$\begin{gathered} 0.3 \\ 1.5 \end{gathered}$	Not used	No effect.	No effect.
0.6	Diagnostic Test Mode	A1 sets the diagnostic mode latch. See summary 3 in text. A 0 has no effect.	A 1 resets the diagnostic mode latch. A 0-no change.
0.7	Disable LIB pos 1	A 1 sets the 'LIB 1 disabled' lateh. When LIB 1 is selected, 'ICW and array reset' and ' 1 CW test mode' lines generate reset, inhibit, and set functions. See summaries 23 in text. A 0 has no effect.	A 1 enables LIB 1 by resetting the 'LIB 1 disabled' latch. A 0 has no effect.
1.0	Disable LIB pos 2	Same as 0.7 for LIB 2.	Same as 0.7 for LIB 2.
1.1	Disable LIB pos 3	Same as 0.7 for LIB 3.	Same as 0.7 for LIB 3.
1.2	Disable LIB pos 4	Same as 0.7 for LIB 4.	Same as 0.7 for LIB 4.
$\begin{aligned} & 1.3 \\ & 1.4 \end{aligned}$	Not used	No effect.	No effect.
1.5	Type 2 Scanner N L1 Request	A 1 sets all 21 latches in the check register and causes a level 1 interrupt. A 0 has no effect.	A 1 resets the check register latches and the level 1 interrupt. A 0 has no effect.
1.6	Disable Interrupt Requests	A 1 resets the 'CSB enable' latch to disable the scanner. 'CSB disabled', ICW and array reset', and 'ICW test mode' lines generate reset, inhibit,and set functions. See summaries 1 2 3 in text.	A 0 has no effect. Note: The 3705 control program must set the 'CSB enable' latch in each scanner before they may be initialized.
1.7	Not used	No effect.	No effect.

OUTPUT X'44' (SCF/PDF)

The 3705 control program uses this instruction (1) to reset the following SCF (secondary control field) bits in the ICW: SDLC
abort detected, service request, overrun/underrun, modem check abort detected, service request, overrun/underrun, modem check,
end of message, (2) to set SCF bit 4 (not L2 bid), (3) to set or reset SCF bit 0.6 (program flag) and SCF bit 0.7 (trace control), and (4) to output data to the PDF array in the selected scanner. The interface address in the attachment buffer address register selects the scanner and the associated ICW.
NORMAL OPERATION (NOT ICW TEST MODE) 'Output 44' gates outreg 0.0-0.7 to the alternate bus and outreg $1.0-1.7$ directly to the outreg bus $1.0-1.7$. Alternate bus its set/reset associated SCF bits. 'Output 44' always sets SCF 4 bid' not L2 bid) bets 4 .
'Output 44' turns on the 'select PDF pointer' latch 1 This latch gates the PDF array pointer bits to the decode circuit where the value of these bits combines with the
value of the ICW address bits (from ABAR) to select the buffer associated with the selected ICW interface. Alternate bus bit 0.4 or a dial LCD, gated by 'output 44', turns on 'write array' 2 that (1) writes the PDF data (on outreg bus .0-1.7) into the selected PDF array buffer position then (2) writing the incremented count to ICW byte 12. The scanner oads the PDF data into PDF array positions 1.0-1.7 and places zeros in positions $0.5-0.7$ to indicate that the conents is data

ICW TEST MODE
When in ICW test mode (see F-270), 'output 44' gates outreg $0.0-0.7$ directly to outreg bus $0.0-0.7$ 3 . The diagnostic program uses this means to control setting/resetting the SCF bits in ICW byte 0 . 'ICW test mode' also inhibits the regene loading of the PDF data is the same as for normal operation.

The 3705 control program uses this instruction to set the LCD and PCF in ICW byte 2 and to set the extended PCF in ICW byte 16 if "Byte 0 Active" (0.0) is $=1$. The interface address
in the attachment buffer address register selects the scanner in the attachment buffer
and the associated ICW.

NORMAL OPERATION (NOT ICW TEST MODE) Output 45^{\prime} gates outreg 0.1-0.7 to outreg bus 1.1-1.7 if out outreg bus $0.0-0$ gates the $L C D$ and $P C F$ in outreg 1.0-1.7 to PCF bits in ICW byte 2 while 'Wrt B16' sets bits $1.0-1.7$ in ICW byte 16. If outreg bus $0.0=1$ (Bit 0 active), the scanner

ICW TEST MODE
When in ICW test mode (see F-270), "output 45' gates outreg
bits $0.0-0.7$ to outreg bus $10-17$ to test ICW byte 16 .

Note: Output $X^{\prime 455^{\prime}}$ timing is similar
to that on $\mathrm{F}-260$.
Note: Output X
to that on $F-260$.

OUTPUT X'46’ (SDF)

The 3705 control program uses this instruction (1) to set the SDF bits in ICW bytes 3 and 4 and (2) to indirectly set 5.4
(NRZI control), 5.5 (diag mode 0), 5.6 (diag mode 1), and 5.7 (external clock) when a set mode (PCF state 1) is executed. The interface address in the attachment buffer address register selects the scanner and the associated ICW.
NORMAL OPERATION (NOT ICW TEST MODE) 'Output 46' gates SDR bits $0-7$ from outreg $0.6,0.7$ and outreg $1.0-1.5$ to the alternate bus and SDR bits 8 and 9 from outreg
$1.6-1.7$ to outreg bus $0.0,0.1$. Write ICW B3' and 'write ICW 34^{\prime} then set the SDF bits into ICW bytes 3 and 4 .

Setting ICW Byte 5 During Set Mode
'Output 46 ' gates the SDR bits from outreg 0.0 (NRZI control), 0.1 (diag mode 0), 0.2 (diag mode 1), 1.1 (diag mode), 1.2 alternate bus and gates the SDR bits from outreg 1.6 (osc select bit 1 l and 1.7 (osc select bit 2) to outreg bus 0.0-0.1 Write ICW B3' and 'Write ICW B4' then set the SDF bits into CW bytes 3 and 4 . When a set mode (PCF X 1 ') is executed
1 , 'write ICW B5' sets work register bits 3.0 (NRZ1 control), 3.1 (diag mode 0), 3.2 (diag mode 1), and 3.6 (external clock) . ${ }^{2}$ 5.4-5.7. 'Gated bit service' forces 'write ICW B5' 2 during CSB time when PCF $\mathrm{X}^{\prime} 1^{\prime}$ ' is active.

ICW TEST MODE

When in ICW test mode (see F-270), 'output 46' gates outreg bits 0.0 (NRZ1 control), 0.1 (diag mode 0), 0.2 (diag mode 1), and 0.3 (external clock) to outreg bus 1.4-1.7 3
and then 'write ICW B5' sets them into 5.4-5.7 while inhibitin and then write $4 C W$ B5' sets them into $5.4-5.7$ while inhibiting
the regen of $5.4-5.74$. ICW bytes 3 and 4 are tested in the normal manner as described above.

OUTPUT X'47' (MISC ICW BITS)

The 3705 control program uses this instruction to set the 'last line state' bit, the content of the ones counter, and the priority bits in ICW bytes 4 and 5 . The interface address in the attach-
ment buffer address register selects the scanner and the associated ICW.

The interface address in the attachment buffer address register selects the scanner and the associated ICW for the above output instructions.
Output X'48' (CS CONTROL AND BYTE COUNT) The 3705 control program uses this instruction (1) to set the extended address bits X.4-X.7, CS valid, data chain flag,
and message chain flag bits in ICW byte 6 and (2) to set the contents of the cycle steal byte-count field in ICW byte 7 . When initializing a cycle steal operation, the control program executes an Output $X^{\prime} 48^{\prime}$ instruction after executing an Output $X^{\prime} 49^{\prime}$ instruction.

OUTPUT X‘49' (CYCLE STEAL ADDRESS REGISTER)
The 3705 control program uses this instruction to set the storage address of the first byte of data that the scanner is to cycle steal (to/from) into CSAR (located in ICW bytes 8 and 9). Storage is addressed from the address formed by combining he extended address bits X. 6 and $X .7$ with the CSAR bits. executes an Output $X^{\prime} 49^{\prime}$ instruction before the Output $X^{\prime} 48^{\prime}$ instruction.
OUTPUT X'4A' (BLOCK CHECK CHARACTER) The 3705 control program may use this instruction to set the
contents of the BCC in ICW bytes 10 and 11 . This is normally not done since the BCC is accumulated as data is transmitted or received for SDLC, BSC EBCDIC, and BSC USASCII.

General Register Bit Pos.	Output $\mathrm{X}^{\prime} 48{ }^{\prime}$	Output X ${ }^{\prime} 49^{\prime}$	Output $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$
0.0	CS Adr X. 4	CSAR Bit 0.0	BCC Bit 0
0.1	CS Adr X. 5	CSAR Bit 0.1	BCC Bit 1
0.2	CS Adr X 6.6	CSAR Bit 0.2	BCC Bit 2
0.3	Cs Adr X. 7	CSAR Bit 0.3	BCC Bit 3
0.4	0 Reserved	CSAR Bit 0.4	BCC Bit 4
0.5	cs Valid	CSAR Bit 0.5	BCC Bit 5
0.6	Data Chain Flag	CSAR Bit 0.6	BCC Bit 6
0.7	Message Chain Flag	CSAR Bit 0.7	BCC Bit 7
1.0	CS Count Bit 128	CSAR Bit 1.0	BCC Bit 8
1.1	Cs Count Bit 64	CSAR Bit 1.1	BCC Bit 9
1.2	cs Count Bit 32	CSAR Bit 1.2	BCC Bit 10
1.3	Cs Count Bit 16	CSAR Bit 1.3	BCC Bit 11
1.4	Cs Count Bit 8	CSAR Bit 1.4	BCC Bit 12
1.5	Cs Count Bit 4	CSAR Bit 1.5	- BCC Bit 13
1.6	cs Count Bit 2	CSAR Bit 1.6	BCC Bit 14
1.7	cs Count Bit 1	CSAR Bit 1.7	BCC Bit 15

OUTPUT X‘4C’ AND X‘4D’

Output X'4C' (PDF Array)
The 3705 control program uses this instruction to load the PDF array buffer with the 11 -bit data from the general register speci-
fied by the R field. The line address from ABAR selects (1) the scanner and (2) the ICW and PDF array for the associated line interface while the PDF pointer selects one of the eight array buffers associated with the line interface.
'Output $4 \mathrm{C}^{\prime}$ gates outreg bytes 0 and 1 directly to the PDF array input 1 . Only outreg bus bits $0.5-0.7$ are used from outreg byte 0 . 'Output $4 \mathrm{C}^{\prime}$ s sets the 'Select PDF pointer' latch 2 that gates the PDF pointer ""count" to the PDF array decode circuit where the buffer selection is made. 'Output 4C'
raises 'write array' $\mathbf{3}$ to load the data into the selected PDF buffer. The count of the PDF pointer does not step.
Output X'4D' (ICW Cycle Steal PDFS)
The 3705 control program uses this instruction to load the ICW
cycle steal PDFs with the two data bytes from the general cycle steal PDFs with the two data bytes from the general
register specified by the R field. The line address from ABAR selects (1) the scanner and (2) the ICW and PDF array for the associated line interface while the CS pointer selects one of the eight array buffers associated with the line interface. The 3705 control program sets the "address" character in byte 0 a transmit in SDLC mode. Since the 'select PDF pointer' latch 2 is off, 'select CS
pointer' gates the CS pointer "count" to the PDF array decode pointer' gates the CS pointer "count to the 'Output 4D' gates
circuit where the buffer selection is made. circuit where the buffer selection in made.
data byte 0 from outreg byte 0 to outreg $1.0-1.7$ 4 and data byte 0 'rom
then raises 'write array' o lo load data byte 0 into the selected
CS PDF array buffer. 'Write array' then increments the CS CS PDF array buffer. 'Write array' then increments the CS
pointer by one. 'Output 4D' then gates data byte 1 from outpointer by one. 'Output 4D' then gates data byte 1 from out-
reg byte 1 directly to outreg bus $1.0-1.7 \quad 5$ and again raises reg byte 1 directly to outreg bus 1.0-1.7 5 and again raise
'write array' to load data byte 1 into the next sequential location. Write array' then increments the CS pointer by one and stores the updated count into ICW byte 12 .

$\begin{aligned} & \hline \text { General } \\ & \text { Register } \\ & \text { Bit Pos. } \end{aligned}$	Output ${ }^{\prime} 4 \mathrm{C}^{\prime}$	Output ${ }^{\prime} 4 \mathrm{D}^{\prime}$
0.0	Unused bit	CS PDF Array Bit 0.0
0.1	Unused bit	CS PDF Array Bit 0.1
0.2	Unused bit	CS PDF Array Bit 0.2
0.3	Unused bit	CS PDF Array Bit 0.3
0.4	Unused bit	CS PDF Array Bit 0.4
0.5	PDF Array Bit 0.5	CS PDF Array Bit 0.5
0.6	PDF Array Bit 0.6	CS PDF Array Bit 0.6
0.7	PDF Array Bit 0.7	CS PDF Array Bit 0.7
1.0	PDF Array Bit 1.0	CS PDF Array Bit 1.0
1.1	PDF Array Bit 1.1	Cs PDF Array Bit 1.1
1.2	PDF Array Bit 1.2	CS PDF Array Bit 1.2
1.3	PDF Array Bit 1.3	cs PDF Array Bit 1.3
1.4	PDF Array Bit 1.4	CS PDF Array Bit 1.4
1.5	PDF Array Bit 1.5	CS PDF Array Bit 1.5
1.6	PDF Array Bit 1.6	CS PDF Array Bit 1.6
1.7	PDF Array Bit 1.7	CS PDF Array Bit 1.7

[^0]

OUTPUT X'4F' STATUS

The 3705 control program uses this instruction (1) to set/rese the status in ICW byte 15, (2) to reset ICW byte 14 bits 0.0 $0.1,0.3,0.4,0.6$, and 0.7 if the corresponding bit is a one
(a zero has no effect), and (3) to set/reset ICW byte 14 bits 0.2 (a zero has no effect), and (3) to set/reset ICW byte 14 bits 0.2
and 0.5 . The interface address in the attachment buffer address register selects the scanner and associated ICW.
NORMAL OPERATION (NOT ICW TEST MODE) Output 4F' gates outreg 0.0-0.7 to the alternate bus and outreg $1.0-0.7$ directly to outreg bus $1.0-1.7$. Alternate bus bits set/ reset the corresponding bits in ICW byte 141 . The status bits that are 1 s (on outreg bus $1.0-1.7$) set the corresponding corresponding bits in ICW byte 15
ICW TEST MODE
When in ICW test mode (see F-270), 'output 4F' gates outreg $0.0-0.7$ directly to outreg bus $0.0-0.7 / 3$. The diagnostic program uses this means to set/reset the bits in ocW byte from the ICW byte 14 work register 4

General Register Bit Pos.	BSC	SDLC
0.0	Reset RLSD	Reset RLSD
0.1	Reset BSC Format exception	Reset idle detected
0.2	Set/reset flush	Set/reset flush
0.3	Reset data check	Reset data check
0.4	Reset bad pad/flag	Reset flag off boundary
0.5	Set/reset ACK expected	Set/reset two control characters
0.6	Reset invalid DLE sequence	Reset invalid DLE sequence
0.7	Reset length check	Reset length check
1.0	Initial status bit 0	0 (except for diagnostics)
1.1	Initial status bit 1	0 Reserved
1.2	Initial status bit 2	0 Reserved
1.3	Final status bit 3	Prog Req Irpt on idle defect or flag
1.4	Final status bit 4	Use two flags
1.5	Final status bit 5	$\begin{aligned} & \left.\begin{array}{l} 1=x \text { xit flag } \\ 0=x \text { ait ider } x \text { idie } \end{array}\right\} \text { if no turn } \end{aligned}$
1.6	Final status bit 6	Xmit Pad before line turnaround
1.7	Leading graphics bit 7	Line turnaround after transmission

Cycle Steal Operation -Transmit

introduction

During a transmit operation, the scanner transfers data from
the storage to the PDF array by means of cycle stealing. Cycle the storage to the PDF array by means of cycle stealing. Cycle
stealing normally transfers two bytes at a time. When CSAR cycle steal address s register) initially addresses an odd storage
leal location (CSAR bit $1.7=1$) the scanner transfers data byte 1 ot the PDF array and then increments CSAR to an even address. All subsequent data is transferred two bytes at a time.
The CS pointers determine which of the eight buffers
16 buffers for the type 3 HS scanner) associated with
the selected ICW will receive each transferred data byte. The initial state of the CS and PDF pointers is set by Y .he 3705 control program (Output $X^{\prime} 4 E^{\prime}$ ') or is reset to $X^{\prime} F^{\prime}$ by increments the CS pointer as each data byte is loaded into he PDF array buffer.
data byte from the PDF array buffers to the SDF when the
"tag" is detected. The PDF pointers determine which buffer tag" is detected. The PDF pointers determine which buffer
transfers the data byte to the SDF. The scanner increments the PDF pointer as each data byte transfers to the SDF.
The scanner initiates a cycle steal request to fetch two more bytes of data whenever two buffers of the PDF array that is associated with the selected Cowre empty. The scanner tests
the states of the CS and PDF pointers to determine when two buffers are empty. See the "CS and PDF Pointer Sequence" chart on $F-380$.
Scanner Tests for Empty Buffers
At each 'bit service request' (except when the array is full, the PDF pointer is selected, or CS is busy) the scanner steps the CS
pointer by 1 and then compares cs pointer bits $12.1-12.3$ with
| PDF pointer bits 12.5 .12.7 (see Note 1). An unequal
condition indicates that there are at least two empty
buffers so a cycle steal is requested to transfer two bytes
buffers so a cycle steal is requested to transfer two bytes
of data to the empty buffers
of data to the empty buffers. An equal condition indicates
that the buffers are either full or empty and a second test
is made. The scanner compares CS pointer bit 12.0 with
\mid ISDF pointer bit 12.4 (see Note 2) and, if they are equal,
the array is empty. If they are not equal, the array is full.
Notes:

1. For the type 3 HS scanner, CS pointer bits $12.0-12.3$
are compared with PDF pointer bit 12.4 .12 .7 .
For the type $3 H S$ scanner, $C S$ pointer bit 17.0 is
compared with PDF pointer bit 17.1.

Cycle Steal Operation-Transmi

The keying numbers refer to the diagram on this page and ${ }^{-370}$.
The 3705 control program sets ICW bytes 8 and 9 with the storage address for the first byte of data to be fetched 1 The 3705 control program then sets 1 CW byte 7 with the CS byte count and sets CW byte with the extended portion of
the storage address, the data chain flag, the message chain flag
 notifies the scanner that the address, byte count and any flags
are valid and to request a cycle steal operation from the caul are valid and tor request a cycle steal operation from the CCU. for details of the following sequence.
When 'bit service request' is active on the selected interface address, the scanner tests the pointers to determine if there
selected interface address. (The entire sequence of testing the the array is our trans example is shown on F-380.) Since sets the 'CS request' latch. This sends 'bid cycle steal' to the CCU. The scanner raises 'set CS registers' which gates (1) the CS address from ICW work register bytes 6, 8, and 9 to CSAR and CSAR update register 4 , (2) the CS byte count from and (3) the ICW address to CBAR 6 selected address to use to address the ICW and PDF array during a following CCU time. At this time the two data bytes mus be loaded into the associated PDF buffers and the updated byte requested the cycle steal. The 'CS busy' latch prevents al other scanned line 'interface ICWs containing a 'CS valid' bit on from requesting a cycle steal
can take a CS cycle, the CCU returns 'CS go to the first scanner. If the first scanner did not CSB' signal to the next scanner. This continues from scanner to scanner until the signal is trapped by the scanner that requested the cycle steal.
e address from CSAR to SAR where the CCU uses it to address the storage location of the data to be fetched. When the CCU raises 'sample CS data on outbus', the scanner gates the data into the CS data out register $8 \mathbf{8}$. The scanner then requests access to the ICW during CCU time and,
if there is no Output X ' $4 X$ ' nor a 'fetch buffer' operation under way, sets the 'CBAR active' latch. The address in CBAR then selects the ICW and the associated PDF array 9 . The scannee sets data byte 0 in the buffer selected by the CS pointer and decrements the CS byte count The scanner then sets data byte 1 into the next sequential buffer and again indremints the CS pointer and CSAR update register and decrements the CS byte count. The scanner stores the updated CS and PDF pointers, the updated CSAR and CS byte count, and the
regenerated cycle steal valid bit in the ICW. 'CS reset' turns off the CS busy latch to end this cycle steal operation.
Ending Cycle Steal Data Transfers for Transmit The above cycle steal operation is repeated for the transfer of each two data bytes until the cycle steal valid bit is reset. This occurs when

- The cycle steal byte count goes to 0 .
- If the data chain flag (ICW bit 6.6) is on and if no ETX, received data just fetched, the scanner sets ' $L 2$ inter rust pending' (ICW bit 5.1) to notify the control program to set up CSAR, CS byte count, flags and CS valid for the next data buffer
- If the data chain flag bit is off, the scanner uses the final status from
- An ETB, ETX, or ENQ character is detected in the received
data just fetched.
- The scanner sets ICW bit 6.4 (ETB + ETX + ENQ in data) resetting CS valid. No L2 interrupt is made.

New ICW Bytes 3,4

New ICW Bytes 3,4

000000
0000000

CYCLE STEAL TIMING CHART-TRANSMIT

Test for
empty buffers.

Repeat this sequence at the next gated bit service
for this selected ICW as long as there are buffer (s)

If the scanner detects an outbus byte 0 or byte 1 parity check while If the scanner detects an outbus byte 0 or byte 1
the cycle-steal data is on the outbus, the scanner:

- Sets the 'CS parity error' latch (TE703): This causes the scanner - to bid for a level 1 interrupt.
- Activates 'work reg or array or CS error' (TE706). This sets the
cycle-steal address, currently in CBAR, into DBAR
- Inhibits the regeneration of 'cycle steal valid' (ICW bit 6.5) that terminates the cycle-steal operation
The control presar exeates an Invi X 43 ' instruction to deter
mine what caused the evell 1 interrupt-bit 1.4 will be on. The control program executes an Input $X^{\prime} 42^{\prime}$ ' instruction to determine the line interface address (trapped in DBAR) that was active when the
CS parity error occurred.

CS AND PDF POINTER SEQUENCE-TRANSMIT

CS Pointer Latches TE342
PDF Pointer Latche
CS Request TE240 Compare Equal* TE342 Not Equal** TE346 Array Empty TE346 Array Full TE346
Select CS Pointer TE344 Step Cs Pointer TE345 Select PDF Pointer TE344 Step PDF Pointer TE345
Step CS Adr and Byte Count TE345
Cycle Steal Busy TE240
Write PDF to SDF TF813

$$
\begin{aligned}
& \text { pointer bit } 12.4 \\
& \text { Type } 3 \text { Seaner: Compare C } \\
& \text { pointer bit cho } 17.0 \text { with PDF } \\
& \text { pointer bit } 17.1
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& \text { Array not empty, not full-at least } 1 \text { empty buffer } \\
& \text { Array not empty, not full-at least } 2 \text { empty buffers } \\
& \text { Array empty } \\
& \text { Array full-1 empty buffer } \\
& \text { Do not store updated pointers-no write byte } 12 \\
& \text { Store updated pointers-write byte } 12
\end{aligned}
$$

000
PDF ARRAY-SUMMARY OF CS/PDF POINTER USE

PDF Pointers Selected	CS Pointers Selected
1. Fetch buffer (Gate In Reg) No 'write array' nor 'step PDF pointer'. 2. Output X'44' Write array' and 'step PDF pointer' at M1T1 but updated pointer is not written into ICW Byte 12. 3. Output $X^{\prime} 4 \mathrm{C}^{\prime}$ 'Write array' at M1T1 but no 'step PDF pointers'. 4. ICW and array reset. 'Write array' and 'step PDF pointers' at M22T1 and M23T2. 5. Dial (LCD 3 or B). No 'Write array' nor 'step PDF pointers'. 6. SDF to PDF (Receive). 'Write array' and 'step PDF pointer' at M22T1. 7. Status Character to PDF. 'Write array' and 'step PDF pointer' at M23T2. 8. Control character to PDF. 'Write array' and 'step PDF pointer' at M23T2. 9. Status character and control character to PDF. 'Write array' and 'step PDF pointer' at M22T1 (status) and M23T1 (control). 10. ITB skip. No 'write array'. 11. PDF to SDF (Transmit). No 'write array' but 'step PDF pointer' at M23T2 except if $P C F=E$ or $P D F=f i r s t ~ D L E$ in transparency.	1. Output $X^{\prime} 4 D^{\prime}$ ' 'Write byte 0 and byte 1 and two 'step CS pointer' at M1T1 and M1T3. 2. CS data-out register byte 0 to PDF (Transmit). 3. CS data-out register byte 1 to PDF (Transmit). 'Write array' and 'step CS pointer' at M1T3. 4. CS test of pointers to determine if the PDF array has room for data from CS data out register (Transmit). No 'write array' but 'step CS pointers' No 'write array' but 'step CS pointers' at M22T2, however updated pointer is not written into ICW byte 12. 5. PDF array "data" to $C S$ data in register bytes 0 and 1 (Receive-one byte). pointers at $M 22 T 1$. 6. PDF array "data" to CS data in register byte 0 and byte 1. (Receive-two bytes). No 'write array' but 'step Cs pointers' at M22T2 (load bytes 0 and 1) at M23T2 (overlay byte 1). 7. PDF array "status" to PDF status register and PDF control register (Receive). No 'write array' but step CS pointers' at M22T2. The scanner then gates the "status" from the PDF status register. 8. PDF array "control" to PDF status register and PDF control register (Receive). No 'write array' but 'step CS pointers' at M22T2. The scanner then gates the "control" from the PDF control register. 9. PDF array "status" to PDF status register and PDF control register then PDF array "control" overlays the "status" in the PDF control register (Receive). No 'write array" but 'step CS pointers at M22T2 and M23T2.

Note: See page F-392 for PDF or CS pointer selection second level diagrams.
| PDF Array Address Selection For LIB 1 Lines 0 Thru 3 (See Note).

 lines 0 and 2 only. Sixteen PD F array buffers
are associated with each type 3 HS scanner line
set.

WRITE ARRAY CONDITIONS

00

FORCING CONTROL CHARACTERS AND CONSTANTS TO THE SDF

The scanner uses the character-decode ROS for generating control characters and constants and for decoding control characters (see F-396).
When in transmit mode, the scanner generates control characters and constants by generating an eight bit ROS address for the desired address. Five of these address bits are variable and are generated by logic determined by PCF/ EPCF states and by ICW byte 151 . Address bit 32 is always inactive 2, address bit 64 is always forced active 3 , and address bit 128 is forced active for USASCII lines only 4 . The five variable bits that are used to generate a specific character or constant are defined in the following chart.
When generating control characters and constants, the scanner addresses ROS from M22M23T3 time to R1 time to provide valid characters to the SDF at W2 write time since the ROS data-bit output is valid 50 nano-seconds after being addressed.

Character/ Constant	Position to Char Gen	ROS Address MyNomy	ROS Data Bit Outpu (Hex)	
PAD(00)	00001	X1000001	00	00
PAD(FF)	00010	$\times 1000010$	FF	FF
ENQ	00011	X1000011	2D	85
ITB	00100	X1000100	1F	1F
PAD(55)	00101	$\times 1000101$	55	55
ACK 0	00110	X1000110	70	B0
NAK	00111	X1000111	3D	15
SYN	01000	X1001000	32	16
ETX	01001	$\times 1001001$	03	83
ETB	01010	X1001010	26	97
STX	01011	X1001011	02	02
EOT	01100	X1001100	37	04
RVI	01101	$\times 1001101$	7 C	BC
ACK 1	01110	X1001110	61	31
WACK	01111	$\times 1001111$	6B	3B
7E	10000	X1010000	7E	FF
PAD(07)	10001	$\times 1010001$	07	07
SOH	10010	X1010010	01	01
PAD(1F)	10011	$\times 1010011$	1 F	1F
DLE	10100	X1010100	10	10

Notes: 1. ROS address 128;
If $X=0$, then the ROS data bit output is EBCDIC. If $X=1$, then the ROS data bit output is USASCII. 2. ROS forces the parity bit for USASCII.

CONTROL CHARACTER DECODE

During a transmit operation, the scanner gates the character in the selected PDF array into the PDF work register. The scanner uses the bits of this character to address the characterdecode ROS. ROS activates combinations of eight ROS data bits depending on the input character configuration. The scan ner latches these eight ROS output states in the characterdecode register that provides the input to the decode logic.
During a receive operation, the scanner uses the bits of the assembled receive character in the SDF to address the char-acter-decode ROS.
The following chart shows the 'ROS data-bit' outputs that ROS activates for different characters in the PDF work register (transmit) or in the SDF (receive)

Input Character	EBCDIC	USASCII	ROS Data Bits 01234567
SOH	01	01	00000110
STX	02	02	00000010
ETX	03	03	10111001
DLE	10	10	00101000
ITB	1 F	1 F	10100001
ETB	26	17	10111010
ENO	2 D	05	00110011
SYN	32	16	00101100
EOT	37	04	01000100
NAK	3 D	15	00000111
ACK 1	61	31	01001011
WACK	6B	3 B	01001111
ACK 0	70	30	01001110
RVI	7 C	3C	01001101

Notes: 1. The scanner forces ROS address bit 128 to a 1 bit when in USASCII mode 1
2. The scanner does not use the USASCII parity bit when addressing ROS.
3. The PDF addresses ROS in transmit mode and the SDF addresses ROS in receive mode.

BSC TRANSMIT

To begin a BSC transmission, the 3705 control program must execute an:

- Output sequence for "Set Mode" to initialize the line set
- Output X'4F' to set the initial control, final control and leading graphics control in ICW byte 15 when using NCP mode (LCD X' C^{\prime} or ' D^{\prime} '). See F -150 for the control fields
in ICW byte 15 . When using EP mode (LCD $\times^{\prime} 4^{\prime}$ ' 5 ' or in ICW byte 15. When using EP mode (LCD $X^{\prime} 4^{\prime}$ ' ' 5 ', or 6), the initial and final control eharacters are the EP pro-
stream, except for transparent endings which the gram must set in ICW byte 15 .
- Output $X^{\prime} 45^{\prime}$ to set (1) the LCD (EP mode or NCP mode), (2) the PCF to $X^{\prime} 8$ ', and (3) EPCF to $X^{\prime} 0^{\prime}$ (transmit initial). Output $X^{\prime} 45^{\prime}$ also resets the CS and PDF pointers
- Output X'49' to set ICW bytes 8 and 9 with the storag address of the first byte of data to be fetched by cycle
stealing.
- Output X'48' to set (1) ICW byte 7 with the CS byte count and (2) ICW byte 6 with the extended portion of
the storage address, the data chain flag, and the cycle valid bit.
The scanner transmits PAD and SYN characters (forced by the PCF/EPCF states) to get the receiving modem in char acter phase. When in NCP mode, the scanner then transmits
the initial control or leading graphics, if specified. When in EP mode, the scanner transmits the initial control character from the PDF array. This character and the data to follow are placed in the PDF by cycle stealing - see F-410. The scan ner then transmits the data. The scanner inserts SYN
sequences (SYN-SYN or DLE-SYN) every second The ner also generates the BCC characters. When all the data has been transferred, the scanner transmits the final control sequence (as specified in ICW 15 for NCP mode, or the end
character in character in the data stream for EP mode), the BCC if the receive state. At the completion of the turnaround the scanner initiates a level 2 interrupt request. If a turnaround is not required (ITB sequence), the level 2 interrupt request have been transmitted and the line has been turned around, or the byte count goes to zero.

Normal Text Mode

When in normal text mode, the scanner monitors the data as it is fetched from CCU storage. If the scanner detects an ITB character in the PDF during a PDF to SDF transfer, the
scanner transmits the ITB followed by the BCC and then continues transmitting the next block of data, but skips the next character if so directed by the final control "status" in ICW byte 15 (NCP mode). If the scanner detects an ETX, ETB, or ENQ in the data stream fetched from storage by
cycle stealing, the scanner resets 'cycle steal valid' (ICW bit 6.5) then transmits the characters queued in the PDF (including the ETX or ETB character), the BCC and a PAD. In NCP the line has turned around the scanner requests a level 2 . interrupt.

Transparent Text Mode
When in transparent text mode, the scanner monitors the data stream for a DLE character. If a DLE is detected in
the PDF, the scanner inserts an additional DLE without updating the BCC accumulation. The receiving station recog nizes this DLE-DLE sequence as a DLE data character Since all characters are transparent, the scanner does not
recognize any control sequence in the data stream while in transparent text mode. The control status (ICW byte 15) as set by the 3705 control program, determines which ending sequence to use when the data has been transmitted. The options are DLE MB, DLE ETX, DLE ENQ, or DLE ETB around to receive state before the scanner requests a level 2 interrupt. The DLE ITB causes the scanner to (1) leave transparent mode, (2) send the BCC, and (3) request a level 2 interrupt for the next block of data

EBCDIC/USASCII Translation

For BSC transmit operation, the type 3 scanner performs an EBCDIC to USASCII code translation when the $L C D=X$
(NCP USASCII) or LCD X'E' and not in transparent text state. No translation occurs for EP USASCII

BSC Transmit State-Transfer Diagram

Once the 3705 control program sets the PCF/EPCF states to trol program turns over the execution of the entire transmit operation to the scanner. The scanner automatically changes the PCF/EPCF states as required based on the LCD state, the state of ICW bits (especially ICW byte 15), the data cha mit state-transfer diagram. The scanner uses the level 2 interrupt request to notify the control program when additional control program service is required. State-transfer dia grams are located in the ALDs to enable you to determine transmit operation up to the interrupt.
Selected sections of the state-transfer diagram for a BSC transmit operation are shown below. This example has been used to illustrate (and $F-380$) and (2) BSC transmit details ($F-420$). The data flow for this operation is on the facing page for your reference when examining this state-transfer diagram.

How to Read State-Transfer Diagrams
These state-transfer diagrams are
PCF/EPCF

If for example: (refer to reference number 38 below)

- The PCF = $x^{\prime} 9$ ' and
- The EPCF = $X^{\prime} 5^{\prime}$ and
- ICW bit 13.0 is off (not seq 0) and
- Tag has been detected as the last bit of the ETX character is transferred to the LIB and
- ICW bit 13.1 is off (not seq 1) and
- the LCD is not BSC USASCII code and
- ICW bits 15.3-15.6 (final control status) contain an ETB or ETX character-set when the ETX was set in the SDF from the PDF
Then the scanner:
- Sets EPCF = $X^{\prime} 6^{\prime}$ and
- Transfers the low order byte of the BCC character (BCC 2) from ICW byte 11 to the SDF and
- Sets ICW bit $13.0(\mathrm{seq} 0)$ to indicate that this character is the first of a multi-byte transmission

Example of BSC Transmit State-Transfer Diagram

PDF $=$ SOH/STX means a SOH or STX character is

$$
\begin{aligned}
& \text { means a SOH or STX character is } \\
& \text { detected in the PDF selected by } \\
& \text { the PDF pointer for a PDF to SDF }
\end{aligned}
$$

(1) $=$ Reference number used by the diagnostic engine to reter .
diagram.

BSC TRANSMIT DATA FLOW
For use with the state-transfer diagram on F-400. See F-360 for a description of cycle stealing for a transmit operation.
TE527

$$
-
$$

$\left[^{4.1} \quad \overline{10.0}{ }^{10.7}\right.$

Control Logic

$0000000000000000000000000000000000$

BSC TRANSMIT DETAILS

This example illustrates the details for the transmission of the PAD two SYNs, and the STX characters as shown on F-400 Note: This example uses LCD $=4$ (EBCDIC code - Emulato rogram).
The scanner holds 'CSB data out 7 ' (send data buffer) at the mark level while CTS (clear to send) is off (TF601). A While TS is off, 'SDF direct' regenerates the data in the SDF and
When CTS turns on, the scanner sets PCF $=9$ (TF505). B tate $9 / 0$ becomes the active PCF/EPCF state at the next 'bit service request' for that interface. The scanner then:

- Removes the mark hold and sends the bit in SDF 9 to the

LIB at 'bit service request' time (TF601). C

- Shifts SDF 0.9 under control of 'bit service request'. D During this shift, the scanner
- Inhibits 'SDF direct'.
-Places a zero in SDF 0 . E

The scanner detects the transmit tag during 'gated bit service'

when SDF 1-7 contains all zeros and SDF 8 is 1 (TF422).
The scanner:

- Sets EPCF X' 2^{\prime} ' that modifies PCF X'9' to "transmit SYN"

Sets SDF = X'132' (SYN character and tag bit)-TF815.

- Sets ICW bit 13.0 (Sequence 0)-indicates the first of two

The scanner sends the bits in SDF 9 to the LIB at each 'bit service request time. When the scanner detects the tag, the

- Rests ICW bit 130 indicat to be transmitted (TF802).
- Sets SDF $=X^{\prime} 132^{\prime}$ (SYN character and tag bit) -TF815.

When the scanner detects the tag, after transmitting the second SYN character, and if no leading graphic is to be generated and the character in the PDF work register $=$ SOH of STX, the

- Sets EPCF X'4' that modifies PCF X'9' to "transmit text"
- Sets ICW bits 15.0-15.2 $=001$ to indicate the initial control character STX (was the first character in the buffer for our
- Resets the BCC.
- Resets ICW bit 5.4.
- Transfers the STX character in the PDF to the SDF \mathbf{H} (TF813)
- Forces a tag bit into SDF 1 (TF442).
- Resets SDF 0.
- Sets the contents of the ones counter internal timer in ICW byte 4 to 10110 to start a 1 sec timeout (TF603).

Note: This operation uses EBCDIC code over a non-switched
half-duplex line.

BI-SYNC TERMINAL OPERATION (PART 2)

SDLC TRANSMIT

To begin an SDLC (synchronous data link control) transmission, he 3705 control program must execute an:

- Output sequence for "set mode" to initialize the line set (see F-530).
- Output X'4F' to set the SDLC transmit control/status byte in ICW byte 15 (see F-160). The scanner uses this status to determine the type of ending to perform at the end-
(turnaround or to transmit Ide or Fiag characters).
- Output $X^{\prime} 45^{\prime}$ to set (1) the LCD to $X^{\prime} 9^{\prime}$-SDLC, (2) the PCF to $X^{\prime} 8^{\prime}$, and (3) EPCF to $X^{\prime} 0^{\prime}$ (transmit initial). Output ${ }^{\prime} \times 45^{\prime}$ also resets the CS and PDF pointers in ICW byte 12 to $X^{\prime} F^{\prime}$.
- Output X'4D' to set the "address"' and "control" character in the first two PDF buffers selected by the CS pointers $X^{\prime} F^{\prime}$ and $X^{\prime} O^{\prime}$). The $C S$ pointers now point to $X^{\prime} 1^{\prime}$, the ing.
- Output X'49' to set ICW bytes 8 and 9 with the storage address of the first byte of data to be fetched by cycle stea ing.
- Output X'48' to set (1) ICW byte 7 with the CS byte count and (2) ICW byte 6 with the extended portion of the storage address, the data chain flag, the message chain flag,
and the cycle steal valid bit. If this is a ""control" frame the 3705 control program sets the CS byte count to zero and sets the cycle steal valid bit.
The scanner transmits (1) a PAD character ($\mathrm{X}^{\prime} 55^{\prime}$) to synhronize the receive modem and a Flag character ($X^{\prime} 7 E^{\prime}$); both haracters are forced by the PCF/EPCF states, (2) the "address" ter from the second PDF buffer, and (4) the data characters fetched from the CCU storage data buffer by cycle stealing. Hen the CS byte count goes to zero and the data chain fi, CW bit 6.6) is on, the scanner sets ' L 2 interrupt pending ICW bit 5.1). This will cause an L2 service request at CS CSAR, the CS byte count, the flags, and CS valid for the next CCU storage data buffer. If the data chain flag is off, the scan ner transmits all the data characters then the BCC character. The scanner then uses the status byte in ICW byte 15 to deter byte does not specify a line turnaround (ICW bit $15.7=0$), the canner requests a level 2 interrupt. If the status byte specifies line turnaround (ICW bit $15.7=1$), the scanner changes to a eceive monitor Flag state ($5 / 0$) with "Request to Send" act control). When the line turnaround is complete, the scann equests a level 2 interrupt.
The scanner always transmits the data as it was received from storage by cycle stealing; no translation is done during an SDLC
transmit operation. The scanner monitors the sequence of transmit data bits and when a consecutive sequence of 5 binary ones is noted, the scanner automatically inserts a binary zero bit before transmitting the next data bit. This includes the transmission tive sequence of transmitted binary one digits exceeding 5 with in the frame except the Flag or Abort. The scanner generates
the Flag, Abort and Idle characters as needed.

SDLC Transmit State-Iransfer Diagram
Once the 3705 control program sets the PCF/EPCF states to 8/0 (transmit initial) to start the SDLC transmission, the con trol program turns over the execution of the entire transmit operation to the scanner. The scanner automatically changes
the PCF/EPCF states as required based on the LCD state the the PCF/EPCF states as required based on the LCD state, the
state of ICW bits (especially ICW byte 15), and others. The scanner uses the level 2 interrupt request to notify the control program when additional control program service is required. State-transfer diagrams are located in the ALDs to enable you executing the transmit operation up to the interrupt. The keying numbers refer to the data flow on F-440

How to Read State-Transfer Diagrams
These state-transfer diagrams are read:

If for example: (see reference number 11)

- The PCF $=X^{\prime} 9^{\prime}$ and
- The EPCF = $X^{\prime} 4^{\prime}$ and
- Tag has been detected and
- The PDF is empty (the CS pointer and PDF pointer selec
the same buffer) and
- The CS byte count has gone to zero and
- ICW bit 6.6 (data chain flag) is off

Then the scanner

- Sets EPCF = $X^{\prime} 6^{\prime}$ and
- Transfers the low order byte of the BCC character (BCC 2

11 to the SDF and

- Sets ICW bit 13.0 (seq 0) to indicate that the next character
- Resets ICW bit 16.0 (new sync).

Example of SDLC Transmit State-Transfer Diagram

Xmit	Xmit	Xmit Flag 9/2	Xmit	Xmit BCC 2	Xmit BCC 1	Xmit End Fiag	Xmit Idle 9/7
Init	PAD	($\mathrm{N} 00 \mathrm{lnsert)}$	Data	9/6	9/6	9/5	(No 0 Insert)
8/0	9/0	$\overline{13.0}$	9/4	13.0	13.0	(No 0 I Insert)	$\frac{13.0}{}$

Legend:
$\mathrm{S}=\mathrm{Set}$
$\mathrm{R}=$ Reset
$\mathrm{B}=$ Reset
$\frac{8 / 0}{130}=\mathrm{PCF} \mathrm{X}^{\prime} 8^{\prime}$ and EPCF $\times^{\prime} 0^{\prime}$
$13.0=1 \mathrm{CW}$ bit 13.0 is 0 (Not seq 0
Tag $=$ Tag detected as the
Tag $=$ Tag detected as the last bit is

Ext clock $=\begin{gathered}\text { transmitting modem } \\ \text { Line is to to se modem } \\ \text { clock for bit service }\end{gathered}$

00

SDLC TRANSMIT DATA FLOW
For use with the state-transfer diagram on F-430. See F-360
for a description of cycle stealing for a transmit
for a description of cycle stealing for a transmit operation.

for a description of cycle stealing for a transmit operation.

SDLC TERMINAL OPERATION
Note: This operation is in NCP mode over a non-switched half-duplex line

0000000000000000000000000000000000

SDLC TERMINAL OPERATION (PART 2)

Control Program

CYCLE STEAL OPERATION-RECEIVE

Introduction

During a receive operation, the scanner transfers data, control, and status to the PDF array depending on the LCD, PCF, and
EPCF states. All data to be stored is first transferred from the EDF to the PDF array that is selected by the PDF pointers. At some later scan of this ICW, the scanner transfers the data, two bytes per cycle steal, from the PDF array (selected by the
CS pointer) to main storage. Status bytes are buffered in the PDF array (after the data) and are transferred later to ICW byte 15 by the cycle steal interface hardware. Control bits are also buffered in the PDF array (after the data) and are used to set bits in ICW bytes 0 and 14 after the data preceding them
Cycle stealing normally transfers two bytes at a time. When CSAR (cycle steal address register) initially addresses an odd storage location (CSAR bit $1.7=1$), the scanner transfers data te 1 to the storage data buffer and then increments CSAR erred two bytes at a time.

All subsequent data is trans-
The CS pointers determine which of the eight PDF buffers (associated with the selected ICW) transfers its data byte to the 3705 control program (Output $X^{\prime} 4 E^{\prime}$) or is reset to $X^{\prime} F^{\prime}$ by an Output $X^{\prime} 45$ ' when the EPCF state is set. The scanner incre ments the CS pointer as each data byte is transferred to the 'cycle steal data in register'. The scanner also decrements. the cycle steal byte
update register.

The CS pointers determine which of the PDF buffers (associated with the selected ICW) transfers its data byte to storage. (See Note). The initial state of the CS and PDF or is reset to X' X^{\prime} ' by an Output $X^{\prime} 45^{\prime}$ ' when the EPCF state is set. The scanner increments the CS pointer as each data byte is transferred to the 'cycle steal data in register'. The scanner also decrements the cycle steal byte count register and increments the CSAR update registe
Note: Eight PDF buffers are associat
scanner line set and 16 buffers are associated with the type 3HS scanner line set.

During a receive operation, the scanner transfers one data The PDF pointers determine which PDF " tag " is detected data byte from the SDF. The scanner increments the PDF pointer as each data byte transfers to the PDF buffer. When using BSC, the scanner initiates a cycle steal request
to transfer two more bytes of data whenever two or more buffers of the PDF array associated with the selected ICW are loaded. When using SDLC, the scanner initiates a cycle-steal request when the content of the CS message count is incremented to a non-zero state as described on F-510 and shown in
a logic flow on F-520. When using BSC , the scanner tests the states of the CS and PDF pointers to determine when two buffers (at least) are loaded. See F-460.
Scanner Tests For Loaded Buffers
At each 'bit service request' (except when (1) the array is At each 'bit service request' (except when (1) the array is
empty, (2) the PDF pointer is selected, (3) the CS busy latch is on, or (4) a status or control character is in the PDF buffer selected by the CS pointer), the scanner steps the CS pointer
pointer bits 12.5-12.7 (CS pointer bits 12.0-12.3 with PDF pointer bits 12.4-12.7 for a type 3HS scanner). An unequal
condition indicates that there are at least two loaded buffers so the scanner requests a cycle steal to transfer two bytes of data to the storage data buffer. An equal condition indicate
that the buffers are either full or empty and a second test is made. The scanner compares CS pointer bit 12.0 with PDF
 17.1 for a type 3 HS scanner) and if they are equal, the array is empty. If they are not equal, the array is full. The array normally does not t.

Cycle Steal Operation-Receive

The keying numbers refer to the diagram on this page and description. The 3705 control program sets ICW bytes 8 and 9 with the storage address for the first byte of data to be stored. The 3705 control program then sets ICW byte 7 with the CS byte
count and sets ICW byte 6 with the extended portion of the storage address and the cycle steal valid bit. CS valid (ICW bit 6.5) notifies the scanner that the address and byte count are valid and to request a cycle steal operation when two buffers are loaded (BSC). Refer to the "Cycle Steal Timing Chart When 'bit service request' is active on the selected interface address, the scanner tests the pointers to determine if there are two loaded buffers in the PDF array associated with the selected interface address. The STX character has been transferred to
PDF buffer 1111 but the next buffer, 0000 is empty. Therefore the first test 2 finds only one buffer loaded and the scan ner does not set the 'CS request' latch. After the "data 1 "' char acter has been transferred to PDF buffer 0000, the nest test 3 finds at least two buffers loaded and the scanner sets the ' C S
request'latch 4 . This sends 'bid cycle steal' to the CCU request'latch 4 . This sends 'bid cycle steal' to the CCU.
The scanner raises' set CS registers' as long as 'CS busy' is off and this gates (1) the CS address from ICW work register bytes 6,8 , and 9 to CSAR and the 'CSAR Update' register 5 and
(2) the CS byte count from ICW work register byte 7 to the (2) the CS byte count from ICW work register byte 7 to the C byte count register $\mathbf{6}$. 'Set CS request Lt' gates the ICW
address to CBAR 7 where the selected address is saved for use in addressing the ICW during a following CCU time. At this time the STX and data 1 characters are loaded into the 'CS data in' register 8 and the CS byte count and 'CSAR update' reg--
ister are updated. The 'CS busy' latch prevents all other scanned line-interface ICWs containing a 'CS valid' bit from requesting a cycle steal.
When the CCU can take a CS cycle, the CCU returns 'CS go CSB' 9 to the first scanner. If the first scanner did not request the cycle steal, that scanner propogates the 'CS go CSB'
signal to the next scanner. This continues from ser to the next scanner. This continues from scanner to scanner until the
cycle steal.
The scanner gates the address from CSAR to SAR where the CCU uses it to address the storage location for the data to be stored. When the CCU raises 'gate CS data on inbus', the scanner gates the data from the 'CS data in' register to the Inbus
10 . The scanner then requests access to the selected ICW 10 . The scanner then requests access to the selected ICW
during CCU time and, if there is no Output X ' $4 X^{\prime}$ nor a 'fetch buffer' operation underway, sets the 'CBAR active' latch. The address in CBAR then selects the ICW 11 and the scanner
writes the updated CS and PDF pointers, the updated CSAR and CS byte count and the regenerated CS valid bit in the ICW
'CS reset' then turns off the 'CS busy' latch to end this cycle steal operation.

Ending Cycle Steal Data Transfers For Receive The above cycle steal operation is repeated for the transfer of The above cycle steal operation is repeated for the transfer of
each two data bytes until the cycle steal valid bit is reset. This occurs when:

- The cycle steal byte count goes to 0 .
- A "control byte" is read from the PDF array when the end of message (ICW bit 0.5) condition is on.

00000000000000000000000000000000000

CYCLE STEAL TIMING CHART-RECEIVE

The BSC receive example on $\mathrm{F}-470$ is used in this timing chart.

To initialize a line interface for a BSC (binary synchronous com munication) receive operation, the 3705 control program must have performed a set mode to initialize the line set (oscillator, clocking, diagnostic mode, etc) and must (1) have previously
set the line interface to a transmit state that ended with a line surnaround to the receive state, or (2) set the LCD/PCF/EPCF to a receive monitor state.

The scanner monitors the receive data stream for two consecutive SYN characters to acquire character phase. When the
scanner decodes the first SYN character, the scaner sets EPCF scanner decodes the first ${ }^{\prime}$ (${ }^{\prime}$ character, the scanner sets EPCF
to $X^{\prime} 11^{\prime}$, sets ICW bit 13.0 (seg 0), and continues to monitor the receive data stream (see F-500). If the next character received is not a SYN character, the scanner sets EPCF to $X^{\prime} O^{\prime}$, resets ICW bit 13.0, and resumes monitoring for two consecutive SYN
characters. If the second character detected is a SYN character, characters. If the second character detected is a sYN character,
the scanner is in character phase and resets ICW bit 13.0 . The scanner then decodes the next non-SYN character(s) to determine if a text message, control message, or a response message
is being received.

Control Character(s)
If the scanner decodes SOH, STX, or DLE-STX as the first nonSYN character(s) at the beginning of a message, the scanner sets
 $\mathrm{LCD}=\mathrm{X}^{\prime} \mathrm{C}^{\prime}$ or $\mathrm{X}^{\prime} \mathrm{D}^{\prime}$ (NCP mode), the scanner discards the con-
trol character (s) (by not transferring them to the PDF). After the first data byte is received the scanner requests a level 2 inter rupt to notify the network control program to assign a data buf fer for the coming text. The network control program must also execute an

- Output X'49' to set ICW bytes 8 and 9 with the storage to be stored by cycle stealing.
- Output X'48' to set (1) ICW byte 7 with the CS byte count - Output X'48' to set (1) ICW byte 7 with the CS byte count
and (2) ICW byte 6 with the extended portion of the storage address and the cycle steal valid bit.
If the LCD $=\mathrm{X}^{\prime} 4^{\prime}, \mathrm{X}^{\prime} 5^{\prime}$, or $\mathrm{X}^{\prime} 6^{\prime}$ (ÉP mode), the emulation program would have (1) pre-assigned the first data buffer, (2) setup CSAR with the data buffer address (Output X'49') and (3) setup the CS byte count and the cycle steal valid bit (Output character(s) to the PDF so that they may be stored with the text that is received.
Control Characters Stripped from the Text-NCP Mode Normal Text Mode
- SYN
- ETX
- ETB
- ENO

Transparent Text Mode

- DLE-SYN sequence
- DLE-ITB sequence
- DLE-EXT sequence
- DLE-ETB sequence
- DLE-ENO sequence
- First DLE of DLE-DLE sequence

Note: DLE-STX characters are not stripped from the text if it follows an ITB ending; data characters may intervene
between the ITB ending characters and the DLE-STX characters.
Control Characters Stripped from the Text-EP Mode Normal Text Mode

- SYN

Transparent Text Mode

- DLE-SYN sequence
- First DLE of DLE-DLE sequence

BCC Accumulation
The scanner accumulates the BCC on all characters received following STX, SOH or the first DLE-STX except SYN charsequence when in transparent text mode. The scanner includes the DLE and STX characters in the BCC accumu lation when the DLE-STX sequence is received in normal text mode causing transparent mode to be set. The scanner
does not include the DLE or SYN characters in the BCC accumulation when the DLE-SYN sequence is received in transparent text mode.

End Control Characters

When the scanner decodes an end-control character (ACK, NAK, DLE-ETB) as an ending, the scance DLE-ITB, DLE-ETX, or status in ICW bits 15.3-15.6 (see $F-150$). If the $L C D=X^{\prime} C^{\prime}$ or $\mathrm{X}^{\prime} \mathrm{D}^{\prime}$ (NCP mode), the scanner discards the end-control charac--
ter(s) (by not transferring them to the PDF). If the $\mathrm{LCD}=\mathrm{X} \mathbf{A}^{\prime} \mathrm{A}^{\prime}$ ter(s) (by not transferring them to the PDF). If the $\mathrm{LCD}=\mathrm{X}^{\prime} 4^{\prime}$,
$X^{\prime} 5^{\prime}$, or $X^{\prime} 6^{\prime}$, (EP mode), the scanner transfers the end-control character(s) to the PDF so that they may be stored behind the text. The end-control character (s) are accumulated in the BCC if in text mode. If the BCC character follows the end-control character(s) the scor for validity. The BCC character is not transferred to the data buffer unless ICW bit 0.7 (trace) is on and the control character is not ITB. In EP mode, with ICW 0.7 (trace), the scanner stores the BCC character (BCC 2 and BCC 1) behind the end-control character. In NCP mode with ICW 0.7 (trace),
the scanner stores the BCC character behind the last data charthe scanner stores the BCC character behind the la the data
acter. The BSC LRC/CRC characters are valid if the check remainder is $X^{\prime} 00000^{\prime}$. If not, the scanner sets 'array bus in bit 5 dot' $\mathbf{8}$ in the control byte. This sets SCF control register
bit $1.2 \mathbf{9}$ when the CS pointer selects that bit $1.2 \mathbf{9}$ when the CS pointer selects that PDF buffer which in turn sets
ner sets ICW bit 0.5 (EOM), resets 7 CW bit 6.5 (CS valid bit) and requests a level 2 interrupt 7 . ICW bits 0.1 and 0.5 indicate a normal ending while ICW bits 0.5 and 14.3 (as well as
$0.2,0.3,14.0,14.1,14.4,14.6$ or 14.7) indicate an wnorm .2, $0.3,14.0,14.1,14.4,14.6$, or 14.7) indicate an abnormal

BSC Receive State-Transfer Diagram
Once the PCF/EPCF state has been set to receive monitor phase, the 3705 control program turns over the execution of the entir receive operation to the scanner. The scanner automatically
changes the PCF/EPCF states as required based on the LCD state, the state of various ICW bits, the data characters in the
received data stream, and others. The scanner uses the level 2 interrupt request to notify the control program when additiona program service is required. State-transfer diagrams are located
in the ALDs to enable you to determine exactly what sequence the scanner followed in executing the receive operation up to the interrupt.
Selected sections of the state-transfer diagram for a BSC Selected sections of the state-transfer diagram for a BSC
receive operation are shown below. This example has been used to illustrate (1) cycle steal operation-receive (F-450) and (2) BS
receive details ($F-500$). The data flow for this operation is on the facing page for your reference when examining this statetransfer diagram. The keying numbers refer to the data flow on F-480.

How to Read State-Transfer Diagrams

These state-transfer diagrams are read

If for example: (refer to reference number 51 below)

- PCF $=X^{\prime} 7$ and
- EPCF $=X^{\prime} 4^{\prime}$ and
- Tag has been detected as the last bit of the ETX character has been received and
- ICW bit 5.4 (transparancy) is 0 and
- The character in the SDF is decoded as an ITB or ETB or

Then the scanner:

- Sets EPCF = $X^{\prime} 5^{\prime}$ and
- Sets the final status code associated with the end-control character in 'array bus in bits 6.9 ' to write it into the PDF
array. When this buffer is selected by the CS pointers the array. When this buffer is selected by the CS pointers the
status is set into the PDF status register and PDF control register. The scanner gates the status from the PDF status register into ICW bits 15.3-15.6 and
- Accumulates the end-control character in the BCC and
- Resets ICW bit 13.1 (seq 1)-has no effect here and
- Transfers the end-control character to the PDF array since this example is in EP mode

Example of BSC Receive State-Transfer Diagram

Legend:
$\mathrm{S}=\mathrm{Set}$
$\mathrm{R}=$ Reset
$\mathrm{EP}=$ Emu

$13.0=10 \times$
$P=P C F$
$E=E P C F$
$A C C=A$ Accumulate $B C C$
$L 2=$ Level 2 interrupt reque
Level 2 interrupt request
SOH+ + STX means the character
iust received in the SDF is deco just received in the SDE Sis decoroded
as a SOH or STX by the character as a SOH or STX
decode register
(25) $=$ Reference number used by the diagnostic
engineer to refer you to
this engineerto refer yeu $+=\mathrm{iran}$
$+=$ And

BSC RECEIVE DATA FLOW

PDF ARRAY/CONTROL REGISTER/STATUS REGISTER ENTRY FORMAT

RECEIVE STATE ONLY

The scanner writes the final status (shown below) for a BSC receive through the PDF array only after entering text mode
(STX or DLE-STX). The scanner writes the initial and final (STX or DLE-STX). The scanner writes the initial and final status (shown on F-150) for a BSC receive directly to ICW byte 15 if text mode has not been entered.

FINAL STATUS BSC RECEIVE
$\begin{array}{llll}1.3 & & r^{1.6} \\ 0 & 0 & 0 & 0 \\ 0 & \text { Timeo }\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 0 & \text { imeo } \\ 0 & 0 & 0 & 1 & \text { TTB }\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & \text { ITB } \\ 0 & 0 & 1 & 1 & \text { ENO } \\ 1 & 0 & 0 & 1 & \text { ETX }\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 1 & \text { ETX } \\ 1 & 0 & 1 & 0 & \text { ETB }\end{array}$

BSC RECEIVE DETAILS

This example illustrates the details for receiving the PAD, two SYNs, and the STX characters as shown on F-470.
Note: This example uses LCD $=4$ (EBCDIC code-Emulation Program)
The scanner shifts the received data (PAD and SYN) through The SDF (serial data field) at each bit service request looking For the sync configuration. 'PCF state 5' causes 'SDF shift' that gates. each 'new rev bit' into SDF 2 position while shifting
the contents of SDF $2=8$ positions. Zeros are placed in SDF 0 , since nothing shifts into these positions. The 'new rev bit' and SDF 2.8 are sampled in the ROS character decode circuit each gated bit service until ROS decodes a SYN character (TF344) 1 . During this bit service, the scanner

- Sets EPCF $=X^{\prime} 1$ ' that modifies PCF $X^{\prime} 5$ ' to "character
- $\begin{aligned} & \text { Sts EPCF } \\ & \text { phase" (TE321) } \\ & 2\end{aligned}$
- Sets ICW bit 13.0 (sequence 0)-TF802. This indicates the
first of a two-byte sequence (character phase).
- Sets the contents of the ones counter in ICW byte 4 to

00010 to start a 3 sec timeout (TF603).

- Blocks 'SDF shift' and 'SDF direct' to reset the SDF to zero (TF506).
- Inserts a tag bit in SDF 2 (TF821)

The scanner shifts the received data (SYN) through the SDF at each bit service request until the tag bit is detected in SDF 9 (TF422) 4. ROS also decodes the SYN character during
this bit service request. During this bit service, the scanner:

- Resets ICW bit 13.0 (sequence 0)-TF802 5. This indi
cates the second of a two-byte sequence (character phase)
- Sets ICW bit 13.3 (sequence 2)-TF485. (Not used for EP).
- Blocks 'SDF shift' and 'SDF direct' to reset the SDF to zero (TF506)
- Inserts a tag bit in SDF 2 (TF821) 6
- Set ICW byte $15=X^{\prime} 00^{\prime}($ TF $342 / 3)$.

The scanner shifts the received data (STX) through the SDF each bit service request until the tag is detected (TF422) 7 ROS also decodes the STX character During this bit servico request, the scanner:

- Resets ICW bit 13.0
- Brings up 'write SDF to PDF' (LCD specifies EP)-TF812 This:
-Allows 'SDF to PDF unxlated' 8 to gate the STX character from
-Brings up 'write array' that writes the STX character into the PDF array address selected by the combination of the ICW address bits and the PDF pointer (TF812). -Increments the PDF pointer count by 1 (TE345).
- Raises 'initialize BCC' (TF826) that

Inhibits generating a new BCC and writes zeros to ICW bytes 10 and 11.
-Resets ICW bit 5.4 (BSC transparent text)-TF821.

- Blocks 'SDF shift' and 'SDF direct' to reset the SDF to zeros (TF506).
- Causes 'SDF to PDF unxlated' to set a tag in SDF 2 (TF422)
- Sets PCF X'7' (TF504
- Sets EPCF X'4' that modifies PCF X'7' to "receive text"

The scanner continues to receive the text characters.

SDLC RECEIVE

To initialize a line interface for an SDLC (synchronous data link control) receive operation, the network control program
must (1) have performed a "set mode": to initialize the line set (oscillator, clocking, diagnostic mode, etc) (2) have previously set the line interface to a transmit state that ended with a line turnaround to the receive state or (3) set the LCD/PCF/EPCF a receive monitor state with an Output $X^{\prime} 45^{\prime}$ instruction.
Output $X^{\prime} 45^{\prime}$ also resets the CS and PDF pointers in ICW byte 12 to $X^{\prime} F^{\prime}$. The network control program must also execute an:

- Output X'49' to set ICW bytes 8 and 9 with the storage address of the assigned data buffer in which the addres

- Output X'48' to set (1) ICW byte 7 with a CS byte count of two and (2) ICW byte 6 with the extended
storage address and the cycle steal valid bit.
The scanner monitors the receive data stream for a Flag char-2-4.4) count the ones as they are received. The scanner detects the Flag when the count equals 7 and the next bit received is a space (0)-See TF602. The Flag character is not transferred to the data buffer in CCU storage. If ICW bit 5.6
(diag 1) is off, the scanner changes to PCF $X^{\prime} 6^{\prime} /$ EPCF $X^{\prime} 1^{\prime}$ state. The scanner remains in this state as long as Flag characters are received. The first non-Flag/non-Abort character (address) sets EPCF to $X^{\prime} 2^{\prime}$. The scanner transfers the address character to the PDF array and accumulates the BCC. When
the next character is assembled in the SDF, the scanner sets EPCF X' 3 ' (provided a Flag or Abort character was not detected), writes the control character in the PDF buffer selected by the PDF pointer, and accumulates ine BCC. The scanner tests the control character to determine if an information or super-
visory control frame is currently being received. If bit 7 of the control character is a zero, the frame being received is an infor mation frame: if bit 7 is a one, the frame is a supervisory

Information Frame
As long as the CS message count (ICW bits 13.6-13.7) is 00 during a receive state and when using SDLC, the signal 'inhibit CS access to PDF' (TF801) picks the 'select PDF pointer' latch every bit service 7 . This inhibits setting the 'CS request'
latch. If WR 4.0-SDF 8' (bit 7 of the control character is in latch. If WR 4.0-SDF ' ' (bit 7 of the control character is in $^{\text {SDF } 8 \text { when the tag bit is detected in SDF 9) is a zero, or ICW }}$ bit 0.7 (trace) is on, 8 , the scanner increments the CS message count and sets ICW bit 13.1 (seq 1). Since the CS message count is no longer 00 , the 'inhibit CS access to PDF' signal drops
and allows a CS request. This occurs at the bit service that follows the bit service during which the tag was detected and the control character was written into the PDF buffer. The scanne now transfers the "address" and "control" characters to the data buffer by cycle stealing and the CS byte count goes to zero. work control program to set up the storage address for the next data buffer, set the new CS byte count and set the CS valid bit. The scanner continues to receive the data from the line and
store it in the data buffer until the ending Flag is received store it in the data buffer until the ending Flag is received. This signals the scanner to load a control byte (set bits for EOM
and level 2 interrupt) in the PDF buffer selected by the PDF pointers and to check the validity of the check characters
eceived. The SDLC CRC checking is valid if the check remain er is 'FOB8'. Note: the SDLC CRC is stored in complemen in bit 1.2 dot' $^{\prime} 9$ in the control byte that is written in the PDF buffer. This sets PDF control register bit 1.210 (when hat PDF buffer is selected by the CS pointer) that in turn sets data check (ICW bit 14.3). In either case, the scanner sets ICW evel 2 interrupt $\mathbf{5}$. ICW bits 0.1 (normal service request) and 0.5 indicate a normal ending while ICW bits 0.5 and (0.2 , .3, 14.0, 14.3, 14.4, 14.6, or 14.7) indicate an abnormal

Supervisory Frame

If 'WR 4.0-SDF 8' (bit 7 of the control character is in SDF 8 When the tag bit is detected in SDF 9) is a one and ICW bit 0.7
(trace) is off 8 , the scanner does not increment the CS mes age count (ICW, bits 13.6-13.7). As long as the CS message signal 'inhibit CS access to PDF' (TF801) picks the 'select PDF pointer' latch every bit service. This inhibits setting the 'CS request' latch. Therefore, the scanner can not store the
address" and "control"' characters at this time. The scanner eceives the two BCC BCC
When the ending Flag character is detected, the scanner decrements the PDF pointers by two (to back over the two BCC byte bytes) and sets ICW bit 13.3 (seq 2)-see reference number 51 on he SDLC Receive state-transfer diagram in the ALDs ber 52 on ALD page TD007) the scanner checks the validity o the check characters received and if the check is valid, the scanner (1) resets ICW bit 13.3, (2) sets EOM and a level 2 interrup condition in the PDF control byte, (3) increments the CS mesallows the cycle steal operation to transfer the "address" and "control" characters to the data buffer and the PDF control byte to ICW bytes 0 and 14. If the SDLC CRC check is not valid, the scanner sets data check as explained under Infor
If a Flag or Abort is received instead of the address, control, BCC 2, or BCC 1 characters, the scanner returns to the monito or-Flag state without setting any error bits. If the Flag charbit 15.0 (control exception) 11 through the PDF array and continues receiving data as if this were an information frame.

Conditions That Cause a Level 2 Interrupt

- The CS byte count goes to zero while still receiving dat
- The scanner detects an ending Flag character. The EOM 4 is passed through the PDF array so that the EOM is not p sented to the network control program until all the data
including the BCC, has been stored.
The line goes idle 12 (16 ones) while receiving data. The
Abort bit (ICW bit 0.0) is set with the Idle bit (ICW bit 14.1).

SDLC Receive State-Transfer Diagram

Once the PCF/EPCF state has been set to receive monitor phase,
entire receive operation to the scanner. The scanner automatially changes he PC eceived data stream, and others. The scanner uses the leve interrupt request to notify the network control program when dition program service is required. State-transfer diagrams are located in the ALDS to enable you to determine exactly operation up to the interrupt.
Selected sections of the state-transfer diagram for an SDLC ceive operation are shown below. The data flow for this oper is state-transfer diagram. The Keying numbers refer to thi data flow on F-520.
How to Read State-Transfer Diagrams
These state-transfer diagrams are read:

If for example: (refer to reference number 23 below)

- $P C F=x^{\prime} 6^{\prime}$ and
- EPCF $=X^{\prime} 2^{\prime}$ and
- Tag is detected when the last bit of the control or command character is received and
- ICW bit 14.5 (two control characters) is off and
- The character just received in the SDF is not a flag or abort

Then the scanner:

- Sets EPCF $=X^{\prime} 3^{\prime}$ and
- Transfers the received control/command character in the SDF to the PDF and
- Accumulates the BCC for the control/command characte and
- Resets ICW bit 13.0 (has no effect here).

If this is an information frame or ICW bit 0.7 (trace) is on, the scanner:

- Sets ICW bit 13.1 (seq 1) and
- Increments the CS message count (ICW bits 13.6-13.7).

Example of SDLC Receive State-Transfer Diagram

DATA IN/OUT-LIB TO SCANNER
See F-540 for a description of the numbered control circuits.

Notes: 1. The A and B register latches may not be present in all line interfaces provided by various Line Sets,
(see C-170 thru C-320). A feedback check occurs if a set mode tries so set latches in the line interface
that are not present; therefore the control progra that are not present; therefore, the control program
must exercise care when setting SDF bits for use by
set mod met mode.
A set mode for a li
a feedback check.
2. BSC state A should not be used if the new sync
latch is not present in the line interface; otherwise, atch is not present in the
a feedback check may occur.

Logic Pages for Line Set

A/B Registers	Logic Page.
1 A	VB020
$1 \mathrm{1B}$	VB820
16 10	V8020
1 E	VB080
1 F	VB060
${ }_{1}^{1 \mathrm{G}}$	VB100
$1{ }^{1+1}$	V8060
1 J	V8121
$1 \mathrm{1K}$	VB140
${ }_{3}^{2 A}$	VD020
${ }_{3 B}^{3 A}$	VF020
4 A	vH02O
4 B	VH040
4 C	VH060
5 A	VJ100
58	VJ100
${ }_{6}^{64} 7$	VL100
LIB 7	VN100
8 8A	VQ100
${ }^{8 B}$	VO100
9 A	vS100
10A	vU100
11 A 11 B	VW100

$$
\text { - - - - - SCANNER LLIB }-\ldots-
$$

0 0000

4 The scanner ensures the latches are set to the correct value by sending 'control in A' to the interface hardjust set) over the data-in lines to the scanner.
5 At gated bit service, if any latch does not agree with the value to which it was to have been set, a feedback error results which sets the LCD field to hex ' F '. This temporarily suspends scanner-to-interface action for hat line. Level- 2 interrupts for the faulty interface must be reconnized by a periodic scan of the LCD fields for all interfaces. The 3705 interval timer is used to provide this periodic scan of the LCD fields. Line and autocall interface feedback error detection in a group of interfaces, the interface hardware. type 3 scanner hardware or program logic may be at fault.

6 With 'bit service' on, a transmit or autocall operation sends 'control out B ' to the interface and control lo

The 'control in C ' signal sent to the intace, caus
7 The 'control in C' signal, sent to the interface, cause a feedback test.

3 \& 6 When Output $X^{\prime} 43^{\prime}$ is executed with the set function on (1 in 0.0) and any 'disable LIB po-
sition $1-6$ ' (1 in corresponding byte and bit sition
position), the line 'select LIB reset' is active while canning the interface/autocall lines on the disabled LIB. At this time the data out lines are held off while 'control out A ' and 'control out B ' are sen to the interface to reset the hardware lat.
feedback test then occurs. (See F-530).

- Two signals are sent from the type 3 scanner to the interface without any control signals to gate them. These are the 'reset bit service' and 'test data' lines.
- The 'reset bit service' line resets the 'bit service' latch in the interface hardware on the cycle in
which it is sensed. This notifies the interface hardware that the service request has just been honored. A feedback check then occurs.
- When diagnostic wrap mode is used the scanner

When diagnostic wrap mode is used, the scann
places the transmitted data of the diagnostic transmit line in a 'test data' latch in the type 3 scanner hardware. The receive lines sample th
state of this 'test data' latch and use it as received data.

- Bit Overrun Reset
- LIB Active In

Held at the down level in the scanner

- Auto Call Present

Terminated in the scanner but not used
$\begin{aligned} & \text { The diagnostic mode latch turns on by executing } \\ & \text { Output } X^{\prime} 43^{\prime} \text { with bits } 0.0 \text { and } 0.6 \text { set to } 1 \text {. Whe }\end{aligned}$
Output $\times 43$ with bits 0.0 and 0.6 set to 1 . When
re held off while 'control out A^{\prime} ' and 'control out B^{\prime} ar feedback test then occurs.

SCANNER INTERFACE TIMING TO LIBS
3 \& 6 The CSB disable latch turns on by executing Output $X^{\prime} 43^{\prime}(1)$ in byte 0 , bit 0 and 1 in byte 1 ,
bit 6), by an IPL reset, by the control panel Reset pushbutton, or by power on/off reset. When the CSB disable latch is on, the data out lines are held of while contro out A and control out B are sent to
the interface to reset the hardware latches. A feedback test then occurs (See F-530).
3 At each scan time, a disable (PCF state F) sends control out A ' and 'control out B ', to the interface th data out lines held off to reset the control ignals the das. The fall of data terminal ready the interface is disabled and for the data communis cations equipment to terminate that connection. A feedback test then occurs. The scanner will no finish the disable sequence, set PCF 0 , or request 2 interrupt until bit service time
feedback test then occurs.

[^1]
LEVEL 2 INTERRUPT

For use in determining the circuit that caused a level 2 interrupt when the state-transfer diagram reference number is

The key symbols on pages F-550 and F-560 indicate the logic circuits that are used for PCF/EPCF state transitions that cause L2 interrupts.
The charts below summarize these circuits by SDLC/BSC operations and gives the state-transfer diagram reference number (circled number)
hat applies to each key symbol. You can determine which circuit caused the L2 interrupt using the reference number from the diagnostics

solc T Tansmit L2	BSCT Tranmit L2
$\begin{array}{lll} \mathbf{1} & 2 \\ \mathbf{2} & (12) \\ \mathbf{1} & (17) & (19) \end{array}$	
Solc Receive L2	BSC Reecive L2

Logic to Set/Reset ICW Bit 13.1 (Seq 1)

Logic to Set/Reset ICW Bits 13.6 and 13.7 (CS MESSAGE COUNT)

00

CHANGING EPCF STATES

Set EPCF States 7 and 8

Set EPCF State C

$$
\begin{aligned}
& \begin{array}{l}
\text { Note: } \begin{array}{c}
\text { cco } \\
\text { ACK, wack } \\
\text { or EOT. }
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

CHANGING EPCF STATES (PART 2)
Set EPCF State 0

SDLC Idle Detect

LCD State 3 or B Dial
\times mit End
PCF State 6 In Phase SDLC Abort (Not) WR 13.1 Seq 1

WR 13.0 Seq 0 WR 13.3 Seq 2 BSC Rec EPCF State 8

ICW Bit 0.2 (Overrun/Underrun)
Underrun-Derected on rransit operations only
Underrun-Derected on rransit operations only
Or CS pointer and PDF pointer timings. see t
Or CS pointer and PDF pointer timings. see t
liowing pages:
liowing pages:
Trassit -F. 370 .
Rece. 380
Revive-F.460
Trassit -F. 370 .
Rece. 380
Revive-F.460

00
generation of last line state and gated timeout
(ICW BIT 4.5)

1010

SDLC Ones Counter
The SDLC ones counter is used to count received or transmitted one bits (marks). During a power-on reset or scanner disable 1 , the ones counter is forced to zero. The counter will re main at zero until a zero bit (space) is transmitted or received count equals zero inhibits stepping the counter 21). The first zero bit (space) received or transmitted forces counter bit on . The counter then increments once for ear (mark) transmitted or received. When a zero bit (space) is transmitted or received, the counter is reset to a count of one. In transmit mode, if a character or character string contain ing five or more consecutive one bits (not a flag, abort or idle) is to be transmitted, a zero bit is inserted after the fifth one bit and the counter is reset to one.
In receive mode, if a character or character string containing five consecutive one bits followed by a zero bit is received, the zero bit is stripped from the accumulated SDF character and the counter is reset to a count of 1 .

Bisync Timeout Counter
The bisync timeout counter, which is the same hardware as the SDLC ones counter, is used to generate a one-second timeout in transmit mode (for SYN insertion) and a three-second timeout in receive mode (SYN not received after establishing char-
acter phase or three seconds of continuous SYNs). The counter is reset to its initial count after receivingor trans mitting a SYN, if not in EPCF state 8 (DLE SYN in trans parent mode). The count is also initialized when leaving
EPCF state 8
The counter is incremented 4 by the state of a reset vel 3 interrupt timer' flip-flop and ICW work register 4. last line state/bisync timer control). The level 3 flip-flop is initially reset to zero and ICW work register 4.5 is set to one Each time the program does an Output $X^{\prime} 77$ ' to reset the leve 3 timer interrupt (approximately every 100 milliseconds), the flip-flop will change state. If the line is not in transparent trans mit mode with internal clocking, the state of the flip-flop is not equal at tag time, the counter is incremented 6 and the not equal at
incremented until the count is all ones (timeout), Any
further change to the counter is inhibited until a set one-second
or three-second timeout signal is generated.
If the bisync line is in transmit transparent mode and uses
If the bisync line is in transmit transparent mode and uses
internal modem clocking, characters transmitted are counted internal modem clocking, characters transmitted are count
to generate two SYN characters every 56 to 84 characters. The counter in this case is incremented each time ICW work register 12.4 (PDF address bit 8) changes state.

| SCANNER LEVEL 1 INTERRUPTS

| SCANNER LEVEL 1 INTERRUPTS (PART 2)

This page intentionally left blank

000

|SCANNER LEVEL 1 interrupts (PART 3)

| COMMUNICATION SCANNER SERVICE AIDS

Sync Generation

To generate a sync for scoping type 3 communication scanne circuits, the following techniques and hints are provided

- A line interface and its ICW and PDF are accessed by the scanner periodically to check for bit service requests.
- Most actions and changes in the ICW, PDF, and line interface registers occur at bit service scan time. The exceptions CCU time.
- Most IFT routines wrap data in scanner wrap mode or diagnostic wrap mode with the first line (840,940 , etc.) as receive line and the second line (842,942 , etc.) as the transmit ine. These addresses can be changed by selec Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Symptom Indexes D99-3705E for the IFT X741 stop codes and the actions required to change the line addresses.
- The MST-1 latch card is used to AND conditions together for sync generation. The latch card will accept up to 5 in puts ANDed by using both circuits on the card in tandem. Connect pin M (output of upper latch) to pin D (input of lower latch) and connect sync points needed to AND inputs of upper and lower latches. All sync points in this service-aid are minus active. However, the latch card will accept plus inpus al sync plus. The latches are not used for scoping just the ANDing circuits before the latches, Note that pins ل J K

$$
\text { and } L \text { are not included in the summation to pin } M \text {. }
$$

O-

The indicator latch card must be plugged onto the MST-1 of the card toward the right I the card is plugged on upside down, or is plugged into the card ide of the board, circuit damage will result.

- All IFTs that test the transmit and receive line control cir cuits and the data wrap functions (IFTs $\mathrm{X741}$ and above) (TD006 thru TD009) See pages F-400, F-430, F-470, and F-510 for details on these diagrams. These diagrams should be referred to on any IFT error stop where a state transition is checked or data and status is tested after the state transiis checked or data and status is tested after the state transition.
- The IFTs provide an address useable with address compare sync to generate a sync close to the state transition under test.

MST-1 CE Indicator Latch Card

The minus active signal levels and input pins to be used for this service-aid are shown below. A complete list of all active signal levels and other information on the latch card can be found on 1-201.

1. Sync For Scoping ICW

To scope an ICW for a particular line, sync on 'sel line X from the LIB (V×048) ANDed with CSB time. Scop the output of the work register for the bits needed

\qquad
-CSB Bit Svc ICW Wrt
*SEL LINE will be active at C1-C2 if the CCU time is not used for or

2. Sync For State Transitio

To see a particular state transition, sync on '-sel line X from the LIB $(V \times 048)$ ANDed with '-PCF state X ' '-EPC state X^{\prime} ' 'tag time,' and '-gated bit svc'. The address of the line under test can be determined from the IFT stop infor mation or from the user
Example 1: To see state transition 18 on page $F-400$, sync on '-sel line $X^{\prime}(V \times 048)$ ANDed with '-PCF state 9' (TF505), '-EPCF state 4' (TF825), and '-tag time' (TF422). The PDF conditions could be scoped with the conditions to set the new PDF/EPCF of $9 / 5$ (TF324). The new PCF/ EPCF state can only be seen as new ICW bits to be written back to ICW local store at CSB bit service write time during this tag bit service. At the next CSB scan of the line address, the dec be checked

Example of State Transition 18
3. Sync For State Transition Using IFT Generated Sync This technique provides a more reliable sync for IFT erro loops. See section 3.3 of the IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Symptom Indexes D99-3705E.

The diagnostic routines that check for state transitions use a common subroutine to wait for the state transition unde test. At the branch to the subroutine, the diagnostic loads register X' 18 ' with the address of a data area that contains the number of character times the subroutine waits for the expected PCF/EPCF change. This character count is prior to the branch and link instruction that branches to the wait
 cation scanner IFT that checks a PCF/EPCF state change, display register $\mathrm{X}^{\prime} 18$ and note the address displayed. Display storage using the address from register $X^{\prime} 18$ '. The data in the storage location will be the number of characters the subroutine will wait for the state change. Restart the IFT with the "Loop on First Error" and "Bypass Error Stop" sense switches set. Dial the address from register. $X^{\prime} 18^{\prime \prime}$ into the STORAGE ADDRESS/REGISTER DATA switches BCDE (1-100) and sync the scope externally on ' + address compare sync point, 01A-B3 P2S09 (see 1 -200). Display ANDed with 'tag time' Ta time alone occurs for both transmit and receive lines depending on whether the line under test is in transmit or receive state. Delay to the tag is specified by the count in register $X^{\prime} 18^{\prime}$. This is the tag time when the state transition should occur. Refer to the particular state transfer referenced by the IFT error stop to see the conditions that should produce the state change. Using the second level diagrams for setting new PCF and EPCF states (F-590 thru F-600), scope to find the error. The IFTs also check for the new character set in the SDF and in some cases the status bits in the ICW after the state change. The same scoping technique as above will apply for these failure stops.

Address Compare Sync from IFT
Example 2: Assume the IFT routine waits 3 character times before expecting a state change under test. Delay sync to the 3rd tag time

The address and data from register $X^{\prime} 18^{\prime}$ display is valid only when th the error stop occurs while waiting for a state transition or while checking conditions after a state transition. Wa a levil 4 error occurs,

COMMUNICATION SCANNER SERVICE AIDS (PART 2

4. Sync For Cycle Steal (See F-450 and F-460) Generating a sync to scope cycle steal circuits is complicated by the asynchronous timings of a cycle steal operation. A beginning sync is 'cycle steal request latch' ANDed with 'gated bit service' and 'sel line X '. If there is no interference from cycle steal priority of other scanner or instruction cycles, then the 'go internal' latch will be set during the next CSB time. During this CSB time, the actual cycle steal to storage occurs. If there is a delay because of priority, then the cycle steal will occur during a later CSB time. During the following CCU time, if no output instruc tion is being excuted, 'CBAR active' lateh is set and data or cycle steal count and cycle steal address are updated in the ICW. The key latches are 'cycle steal request', 'go internal and 'CBAR active'.
For a cycle steal transmit operation, sync on ${ }^{-}$-gated bit svc (TF625) ANDed with '-CS request latch' (TE240), and '-sel line $X^{\prime}(V \times 048)$. Connect 'go internal' (TE241) to sync delay and scope the data as it transfers from storage to the cycle-steal data-out register, connect 'CBAR active' (TE544) to sync delay and scope the data into the PDF array, the CSAR update, and the new cycle steal byte count. See example 3.

Load CS Data Out
Reg from SDR

Write ICW

For a cycle steal receive operation, sync on 'gated bit svc' TF625) ANDed with '-CS request latch' (TE240) and '-sel ine $X^{\prime}(V \times 048)$. Connect 'go internal' (TE241) to syn delay and scope the data to storage. Connect '-CBAR active' (TE544) to sync delay and scope the CSAR update and the new cycle-steal byte count. See example 4.
$\underset{\text { Example } 4}{\text { Cycle Stal Recive }} \quad|A| B|C| D|A| B|C| D \mid$

5. ICW Bit Errors

Scoping the picking or dropping of a bit in the ICW can be simplified by setting the machine in a continuous panel egister display or store operation (see 1-200). Sync the cope on register-in or register-out decodes and check th input and output of the ICW work register and the ICW. Assume a bit pick problem with ICW byte 2. Set up the control panel for an Output $X^{\prime} 45^{\prime}$ with zeros as data
umper the continuous store pin (01A-B3P2J06) to ground. Sync the scope on Output X'45' (0XA-E3S2P13), TE502 and observe the outreg bus bits and the new ICW bits as input to the ICW during CCU Time (TF300).
To check the data path from the ICW work register to the In register, execute a control panel Output X'40' with the line under test as data (fetch buffer). Set up a continuous input and scope In register inputs with the input ' X ' decode as a sync.
6. IFT Hints

- The following general registers have assigned uses in the IFTs as follows

Reg ' 11 ' Line under test
Reg '14' Address of the line generating L2 interrupts Reg '15' Bits in error
Reg '18' Special use for sync generation

- Check the heading of the routine where an error stop occurs for sequences and data used in the test. Check the entire routine error stops for help in understanding the error.
- The IFTs use common subroutines to set mode, wait for a state change, and test for wrap data.
- The IFTs test the beginning state transfers before using them to build toward later state transfers.
- All routines that test for state transfers (X740 thru X79A) operate in scanner wrap mode (Diag 0 , bit 5.5 on). Wrap routines X7A0 thru X7A6 operate in diagnostic wrap (wrap in the line set). Wrap routine X7A8 is a manual intervention routine that allows the selection of transmit and receive lines and the mode of wrap. This routine may be run in scanner wrap mode and then in line-set wrap mode to isolate a trouble to the LIB cables and bit-clock circuits. The scanner wrap mode does not depend on any LIB circuits being active but the line set wrap does. See the second level diagram of scanner wrap (F-700).
- The basic transmit and receive functions are tested in scanner wrap mode before cycle steal mode is tested. Basic cycle steal circuits are tested before the transmit functions with cycle steal are tested. Receive functions with cycle steal are tested last along with LRC and CRC accumulation functions.
- All ICW positions are tested in ICW test mode for set and reset functions. ICW test mode causes the ICW array to be used as a storage unit. All changes to the ICW array by the scanner control logic are inhibited in ICW test mode.
- Scanner problems that result in a level 1 error only when running IFTs can be run with level 1 errors masked off to for scoping. With level 1 errors maked off, set the "loop on error" option and scope the problem using previous techniques. The IFT error stop may occur later than when the level 1 error would occur and this fact must be considered when analyzing the failure. The level 1 errors are masked off as follows:
Return the program to the DCM halt 80FX, (FFFF in the STORAGE ADDRESS/REGISTER DATA switches BCDE, function 6, and interrupt or start). Manually store FFFF in storage location 0730. Restart the IFTs with all routines requested for the scanner under test. An error stop should occur in routine X717 indicating that a level 1 interrup did not occur when expected. Bypass this error and con
tinue until an error occurs in the IFT. Analyze the stop using the IBM Maintenance Diagnostic Program IBM 3705 Communications Controller Internal Functional Test Symptom Indexes D99-3705E and display the error by looping and scoping using the techniques listed in this service aid or other applicable procedures. The level 1 interrupts will remain masked off until storage location 0730 is cleared manually or the lFTs are completely reliminated reset the storage flag at 0730 and rerun all the FTs to prove corretion if 1 errors if the IFT do not fail with level 1 errors masked off the problem could e a parity bit pick or drop problem or a false level 1 error

Type 3 Communication Scanner Scope Points		
-CSB Time	TE404	E3L2D02
-CCU Time	TE404	E3L2B05
-Gated Bit Sve	TF625	E2D2U03
-Bisync Pwrd	TF501	E2J2M09
CSB Bit Svc ICW Wrt Time	TE400	E3L2P02
-SDLC Xmt Tag	TF827	E2P2P05
-BSC Xmt Tag	TF827	E2P2U07
-EPCF State 0	TF804	E2E2S08
-EPCF State 1	TF804	E2E2S02
-EPCF State 2	TF804	E2E2G13
-EPCF State 3	TF804	E2E2U10
-EPCF State 4	TF825	E2P2B12
-EPCF State 5	TF804	E2E2G07
-EPCF State 6	TF804	E2E2G10
-EPCF State 8	TF816	E2B2U02
Xmt State	TF505	E2J2J04
Receive State	TF505	E2J2J05
-Tag Time	TF422	E2H2J06
-PCF State 1 Set Mode	TF505	E2J2G05
PCF State 2 Mon DSR	TF505	E2J2P10
-PCF State 3 Mon RI DSR	TF505	E2J2M12
-PCF State 4 Mon Phase	TF505	E2J2U12
-PCF State 5 Mon Phase DSR	TF505	E2J2G08
-PCF State 6 In Phase	TF505	E2J2D11
-PCF State 7 Rcv	TF505	E2J2P06
-PCF State 8 Or A	TF505	E2J2U04
-PCF State 9 Or B	TF505	E2J2U13
-PCF State E Xmt Cont	TF505	E2J2S03
-PCF State F Disable	TF505	E2J2D07
-Sel Line 0 (Type 1 LIB)	V -048	X1F2B11
-Sel Line 1 (Type 1 LIB)	V -048	X1F2D11
+Addr Compare Test Pin (Sync from panel switches)	CU004	01A-B3P2S0
CSB Timings (CSB Time, CCU Time	TE404	
RI, W2, etc)	TE405	
Input Gating (Input 41, etc)	TE501	
Output Gating (Output 41, etc)	TE502	
-CS Request Internal	TE240	E3K2U04
-Go Internal	TE241	E3K2G10
-CBAR Active	TE544	E3H2S13

SCANNER WRAP MODE

DIAGNOSTIC MODE 0 (ICW BIT 5.5)

Scanner Wrap

The scanner wrap mode provides an internal-scanner line-wrap capability. This mode allows the control program to test most of the scanner registers, scanner data flow, scanner control logic, and the 'CSB data out' lines without using LIB hardware.

Setup

1. Select one line interface to act as a transmit line and one other line interface on the same scanner to act as a receive line.
2. The control program executes an Output $\mathrm{X}^{\prime} 40^{\prime}$ instruction to load ABAR with the receive interface address.
3. The control program executes an Output $X^{\prime} 46^{\prime}$ instruction with bit 0.1 on to set ICW bit 3.1 (SDF 1) and other bits according to NRZI and Diag 1
4. The control program executes an Output $X^{\prime} 45^{\prime}$ instruction to set the PDF to $X^{\prime} 1^{\prime}$ (set mode) that sets ICW bit 5.5 to set the PDF to X ' (set mode) that sets
5. Repeat steps 2 thru 4 using the transmit interface address.
6. After the receive and transmit lines have been put into "scanner wrap mode", the control program may simulate all normal line functions.

Operation

1. Since 'gated diag mode 0 ' inhibits the 'CSB data in 1-7 lines 1 and 'bit svc req' 2 , the scanner uses the
1200 bps oscillator to generate a 'diag bit svc' 3 fo both the receive and transmit lines.
2. When the transmit address is being scanned:

- 'Send data' bits are buffered in the scanner 'test data latch under control of 'diag bit svc' 4
- 'Diag Xmit $\mathbf{5}$ is set in B data register 1 to simulate CTS to the control logic.
- 'Diag mode 0 wrap' 6 ' is set in B data register 3 to simulate DSR to the control logic.

3. When the receive address is being scanned:

- 'Diag rcv' 7 is set in B data register 4 to simulate RLSD to the control logic.
- 'Diag rcv mark' 8 (from the ' test data' latch) is set in B data register 5 to simulate the receive data bit to the control logic.

DIAGNOSTIC WRAP

- Provides a means of testing and locating troubles in the type 3
scanner line control logic and line-interface receive logic.
- Provides a method of on-line program testing.
- Can be performed on-line without affecting the operation of nos not in diagnostic mode.

SETUP

- Set any one line interface per type 3 scanner to act as a trans mit line and any one or more line interfaces in the sam scanner to act as receive lines.
- Set Mode is issued to all diagnostic receive line interfaces first, then to the diagno
must be set as follows:
- SDF 3 (Diagnostic Mode) - set to 1.

SDF 4 (Data Terminal Ready) - reset to 0

- SDF 5 (Sync Mode) - set to 1 for synchronous mode
- SDF 7 (External Clock) - reset to 0 . 1200 bps

SDF 8 set to 1 for 2400 bps

- SDF 8 and 9 (Oscillator Select 1,2) - Select an available for the transmit and receive line interfaces.

OPERATION

1. After the Set Modes are issued, the affected line interfaces can be exercised through any sequence of point-to-point or
2. Data bits clocked to the transmit line interface 'send data buffer' are also clocked into the 'test data' latch in the
type 3 scanner. 1
3. As each receive line interface (in diagnostic mode) is scanned, the 'test data' bit is strobed into the 'receive
4. When the 'diagnostic mode' bit is a 1 in the B data register (B6) during scan time, the type 3 scanner simulates the active states of:

- 'Data Set Read
y' and 'Clear to Send'. Clear to Send is no ctive if WR 16.1 DTR is on

This page intentionally left blank

TYPE 3 CHANNEL ADAPTER

INTRODUCTION

The type 3 channel adapter is a modified type 2 CA that

375 to be attached to

- System/370 Model 158 and Model 168 tightly-coupled multiprocessor systems as a symmetric shared I/O device.
- Single processors as an I/O device with an alternate path apability.

Since the type 3 CA is a modified type 2 CA , the description of the Type 2 CA in Section 9 is applicable to the type 3 CA and is not repeated in this section. This section covers the difference between the Type 2 CA and the Type 3 CA: the wo-processor switch in the type 3 CA. This section contain hose modifications made to the type 2 CA operation Appropriate references to th.
associated area in Section 9.
The type 3 channel adapter logic board may be located in the 01A-A4 position of the basic 3705 or the 02A-A4 position 01A-A4 position of the basic 3705 or the 02A-A4 position
of the first expansion frame. The logic pages use the pseud board location of W4 for the type 3 CA .
Each type 3 CA contains two channels: interface A and interface B. Interface A and interface B are enabled and disabled separately by their own enable/disable switches. Both interfaces may be enabled simultaneously. (This iffers from the type 2 CA where enabling interface A sabled interface B.) However, channel operations ca
wo enable/disable switches and two enable lights are mounted on the 3705 control panel. The two enable/ disable switches may alternately be located on a remo mounted in the switch positions on the 3705 control panel.

NEUTRAL STATE

The channel adapter is in the neutral state when it is perational, not switched to either channel interface, he disable switch. SWITHETATE

The channel adapter is in the switched state when it is The channel adapter is in the switched state when it is B.

- As an example, the CPU attached to the channel A interface automatically switches the channel adapter from the neutral state to the switched state (with alegiance to interface A) by executing a channel program.
The channel adapter continually monitors channel B interface and responds to any channel B initiated initial selection sequence by:

1. Trapping Select Out and suspending completion of the selection sequence by not returning Op in the neutral state
2. Responding with the control unit busy channel ta sequence.

The channel adapter switches from the switched stat the neutral state when the channel A interface operation terminates.

DISABLED STATE

Manually setting the enable/disable switch to the disable osition makes the 3705 appear not-opertion to assiated channel (condition code 3)

When the channel is executing an I/O operation over one interface (interface A for example), an initial selection ttempt by the channel attached to channel B interface of he same type 3 CA causes the channel adapter to present
Busy status to the channel B interface. When the I/O peration on interface A that caused the busy state has erminated, the channel adapter notifies the channel B terface that the busy state has ended by presenting synchronous Device End.

MAINTENANCE PROGRAMS

The type 3 CA uses all the IFT and OLT programs provided for the type 2 CA . In addition, the type 3 CA uses a new
OLT (T3705BF) to test the channel adapter's ability to 1) present Busy, (2) remember that Busy had been presented and later (3) present Device End. OLT T3705BF, in addition ITEP running under OS/VS1 OLTSS, are supported by ests are executable under VTAM because TOLTEP does not support 1 That 3705. 'System Test/370' can configure and test the type 3 CA.

TYPE 3 CA TAG LINES DATA FLOW

TYPE 3 CA BUS LINES DATA FLOW

CARD FUNCTIONS AND LOCATIONS

$\begin{aligned} & \text { Card } \\ & \text { Loc. } \end{aligned}$	${ }^{\text {First }}$ ${ }_{\text {Page }}$	Function
W4T2	SR011	Cycle Steal Adr Reg Byte X Models J-L only)
w4T4	S8011	Intf. A and B Select-Out relays
W402	SB001	Interface A Drivers
W4P2	sc001	Interface A Receivers Diagnostic Registers
w4S2	SD001	Intf. B Drivers
W4R2	SE001	Inti. B Receivers
W4N2	SF001	Channel Tag Clock Tag Control Tag Control Powering
W4M2	SG001	Cycle Steal Control Channel Buffer Control Control Command Enable
W4L2	SH001	Input/Output Decode Adapter Select Jumpering CW Count Register CW Command Decode Diagnostic Wrap Mode Latch
W4K2	SJ001	Interrupt Requests Channel Command Decode
W4J2	SK001	Sense and Status Latches and Gates
W4H2	sL001	Byte 0 of Data Buffer CSAR ccu Outbus Buffer
W4G2	Sm001	Byte 1 of Data Buffer CCU Outbus Buffer
W4F2	SN001	CA Check Register Cycle Steal Rate Jumpering Fnd Busy CE Remb latch Increment CSAR Burst Mode latch Error latches
W4E2	SP001	Intf. A Control Logic int. A Control Logic Controls Reset Gener tion
W2D2	s0001	Intf. A and B Bus Out Selection Intf. A and B Tag Out Selection Type 3 CA Clock and System Reset

> *Y2 and Y3 cables are presen
> in Models J-L, only.

OXA-W4* Board
CARD SIDE

CHANNEL 1 INTERFACE A
ENABLE/DISABLE SWITCH

Used to enable and disable channel interface 1A
Once the enable/disable switch has been thrown to its opposite state, the channel adapter changes state (goes online or offline) when all of the following conditions have been satisfied concurrently:

- The clock-out tag line is inactive, indicating that the CPU is in a wait state.
- The channel adapter is not executing a command on that interface.
- Command chaining is not indicated for that interface.
- Select Out is not active on that interface.
- Device End is not pending in that interfaces 'device end' latch
- An Input $X^{\prime} 58^{\prime}$ instruction is not being executed to examine the state of the 'enable' latch.

If the DIAGNOSTIC CONTROL switch is in one of the four STORAGE TEST positions and the START push button is pressed, any interface that is enabled is disabled abruptly. The channel interface enabled light stays on until the CPU drops 'clock out', even though the interface is disabled. No channel can become enabled.
NOTE: Be sure the channel is disabled before performing storage test operations.

CHANNEL 1 INTERFACE B ENABLED LIGHT

- Turned on when interface 18 is enabled
- Turned off when interface 18 is disabled.

NOTE: The light stays on when the 3705 is in hard stop, even though the adapter is disabled.

CHANNEL 1 INTERFACE

A ENABLED LIGHT

- Turned on when interface 1 A is enabled
- Turned off when interface 1 A is disabled.

NOTE: The light stays on when the 3705 is in hard stop, even though the adapter is disabled.

CHANNEL 2 INTERFACE A ENABLED LIGHT

- Turned on when interface 2 A is enabled.
- Turned off when interface 2 A is disabled

NOTE: The light stays on when the 3705 is in hard stop, even though the adapte is disabled.

CHANNEL 2 INTERFACE A ENABLE/DISABLE SWITCH

Used to enable and disable channel 2 interface A. The comments for the channel 1 interface A enable/disable switch apply for this switch too.

CHANNEL 2 INTERFACE B ENABLED LIGHT

- Turned on when interface 2 B is enabled.
- Turned off when interface $2 B$ is disabled

NOTE: The light stays on when the 3705 is in hard stop, even though the adapter is disabled.

CHANNEL 2 INTERFACE B ENABLE/DISABLE SWITCH

Used to enable and disable channel 2 interface B. The comments for the channel interface A enable/disable switch apply for this switch too.

NOTE: This control panel layout only applies if the 3705 contains two type 3 channel adapters and the enable-disable switches are not installed in a remote attachment. Blank gray buttons would replace the two enabledisable switches in this case. See $\mathrm{E}-040$ for control panel configurations when the type 3 CA is used with the type 1 CA, type 2 CA, type 4 CA, and the remote program loader.

OUTPUT X'59' INSTRUCTION

The $\mathbf{3 7 0 5}$ control program uses this instruction for OLT diagnostic purposes.

The bit definitions are:
Byte 0 Bit 0 - Set Interface A Busy
When set to 1 , an Output $X^{\prime} 59$ ' sets:

- 'Force A busy' latch
- 'Intf B sw' latch
- 'Long allegiance chnl B^{\prime} latch

When channel A initiates an initial-selection sequence the CA sets the 'intf A busy' latch. This car ses a control unit busy sequence during which Busy sta. s is presented CA initi. Wh a servie CA is sequence to prese A, A.es ' A A nd status and the 'intf A busy' latch is reset.

Byte 0 Bit 1 - Set Interface B Busy
When set to 1 , an Output $X^{\prime} 59^{\prime}$ causes the same operation to interface B as described above for interface A.

Byte 0 Bit 4 - Reset Interface A Busy
When set to 1 , an Output $X^{\prime} 59$ ' removes the interface A busy condition by resetting

- 'Force A busy' latch
'Intf B sw' latc
- 'Long allegiance chnl B^{\prime} latch

Byte 0 Bit 5 - Reset Interface B Busy
When set to 1 , an Output $X^{\prime} 59^{\prime}$ removes the interface B busy condition by resetting:

- 'Force B busy' latch
- 'Intf A sw' latch
- 'Long allegiance chnl A' latch

inPUT X'5C' INSTRUCTION

The 3705 control program uses this instruction to transfer
the contents of the channel adapter command register into
a CCU general register.

LOGIC REFERENCE

Bit	Card	Logic page	Line name
0.0	W4K2	SJ003	Channel Test 1/0
0.1	W4K2	SU003	Channel Write command
0.2	W4K2	SJ003	Channel Read command
0.3	W4K2	SJ003	Channel No-Op command
0.4	W4K2	SJ003	Channel Sense command
0.5			
0.6 0.7	W4K2	SJ003	Channel Write Brean command
1.0	W4L2	SH005	Out Ctrl Wd.
1.1	W4L2	SH005	Out Stop Ctrl Wd.
1.2	W4L2.	SH005	In Ctrl Wd.
1.3	W4L2	SH005	TIC CW
1.4	W4K2	SU006	Channel Control command
1.5	W4D2	s0003	Switched To Interface A
1.6	W4D2	s0003	Switched To Interface B
1.7	W4K2	SJ003	Channel Write IPL command

ENABLE OR DISABLE TYPE 3 CA INTERFACE

The type 3 CA, unlike the type 2 CA, can have two CPU channel interfaces simultaneousl nabled. Hower, 3 . switches. These toggle switches may be located on the 3705 control panel. When the System $/ 370$ multiprocessing system provides for the remote attachment of these nable/disable switches, the switches may be mounted on a central CPU configuration console, or remote switching console.

Once the enable/disable switch has been thrown to its opposite state, the channel dapter changes state (goes online or offline) when all of the following condition have been satisfied concurrently:

- The clock-out tag line is inactive, indicating that the CPU is in a wait
state. 1
- The channel adapter is not executing a command on that interface.
- Command chaining is not indicated for that interface.

Select Out is not active on that interface. 4

- Device End is not pending in that interface's 'device end' latch. 5
- An Input $X^{\prime} 58^{\prime}$ instruction is not being executed to examine the state of the 'enable' latch. 6

TYPE 3 CA SELECTION FROM A NEUTRAL STATE

The type 3 CA is in the neutral state when the following conditions simultaneously exist:

- CA is operational
- CA is not switched to either channel interface
- CA is not disabled from either channel interface by the enable-disable switches.

When in the neutral state, the first attached channel to initiate an initial selection sequence selects the type 3 CA by the following operation

1. Channel A starts an initial selection sequence by placing the address on channel A bus out.
2. The CA determines that the address matches the address assigned to interface A and raises 'intf A valid address' 1 and 'valid address'. 2
3. When the channel raises the Address Out tag, the CA, in the 'not switched state', raises 'address out intf $A^{\prime} 3$ and 'address out A^{\prime}. 4
4. When the channel raises the Hold Out and Select Out tags, the CA raises
'select out to select logic A^{\prime}. 'select out to select logic A '. 5
5. The CA sets the 'intf A Sw' at TO clock pulse. 6

Note: If both channel interface A and channel interface B started thei initial selection sequences so that 'select out to select logic A ' and selse determines which interface is selected. If T2 occurs before T0
the T2 pulse selects interface B. If TO occurs before T2, the TO pulse selects interface A.
6. With the CA switched to interface A, the $C A$ gates 'select out to select logic A ' to the common circuit 'select out A '. 7
7. The CA common circuitry raises 'set trap sel out LT' which raises 'Op In' and begins the start 10 operation. 8

Sets Trap Sel Out LT Sets Op In Ctrl
Starts Clock - Starts Clock

When a type 3 CA interface is selected by a channel initial-selection sequence or a channel adapter service cycle sequence (request in), the selection switches the channel
adapter to interface B (for example) and places the channel adapter in an instantaneous allegiance state to prevent channel A interface from selecting the channel adapter. The channel adapter always enters the instantaneous allegiance state from the neutral state because the channel adapter doesn't know whether it will return to the neutral
state (no additional channel communication required) or to the long term allegiance state (no additional channel communication required) or to the long term allegiance
state (additional data transfer and/or ending status required to complete the channel state (additional data transfer and/or ending status required to complete the channel
command). If the channel A interface attempts to select the channel adapter while the channel adapter is in the instantaneous allegiance state, the channel adapter:

- Inhibits setting the interface A switch.
- Inhibits setting the interface A busy latch
- Traps select out and inhibits completion of the initial selection sequence until one of the following occurs:

1. The channel adapter passes from instantaneous allegiance to the neutral state with the following results:
a. The channel adapter switches to channel \mathbf{A} interface (with the suspended selection sequence) and enters the instantaneous allegiance state.
b. The channel adapter completes the suspended-selection sequence withou giving the device busy indication.
2. The channel adapter passes from the instantaneous allegiance state to the long term allegiance state with the following results:
a. The channel adapter interface for the suspended-selection sequence sends the control-unit-busy sequence to the channel A interface.
b. The channel adapter interface for the suspended-selection sequence remembers the busy status and requests a service cycle (request in) to
present Device End status when the long term allegiance state passes to the neutral state.

Instantaneous Allegiance Passes To Neutral

In this example, the channel adapter is in the instantaneous allegiance state having been switched to interface B. The channel attached to interface A starts an initial selection sequence by sending Address Out, Hold Out, and Select Out.

1. 'Select out to select logic A^{\prime} for interface A can not be gated to the common
select logic because the channel adapter is switched to interface B. 1
2. The instantaneous allegiance state of interface B inhibits the picking of 'intf A sw' and 'intf A busy' latches. 2
3. Because the channel adapter is switched to interface $\mathrm{B},{ }^{\prime} \mathrm{Op} \ln$ ' (from the common logic) can not be sent to the channel attached to interface A. This
suspends the initial selection sequence for interface A until (in this example) 'intf B sw' resets after the status has been presented to the channel on interface B. 3
4. The reset of 'intf B sw' drops 'instan allegiance intf $B^{\prime} 4$ and raises 'intf in not switch state'. 5
5. The fall of 'instan allegiance intf $B \mathbf{2}$ picks 'intf A sw' which switches the channel adapter to interface A and puts the channel adapter in instantaneous
6. The channel adapter gates 'select out to select logic A ' to the common sele logic 1 which results in Op In tag taing sent to the channel attached to
intf A. This resumes the initial selection sequence.

Instantaneous Allegiance Passes To Long Term Allegiance

In this example the channel attached to interface B starts another initial selection sequence while the channel adapter is in instantaneous allegiance to interface A. The channel adapter traps select out and inhibits the completion of the initial selection sequence as described above.

1. The command received during the interface A Start IOrequires a data transfer,
therefore, 'CA active' picks the 'long allegiance chnl A' latch. 7
2. This drops 'instan allegiance intf A ' which picks 'intf B busy' latch. 8
3. The channel adapter interface B sends the Status In tag with the Busy bit 3
on bus in as a control-unit-busy sequence. 10
4. The channel adapter sets 'intf B DE' latch to remember that a busy status was given to the channel and that Device End status must be presented when

INSTANTANEOUS ALLEGIANCE STATE, PART 2

1. Intf B Sw
2. Instan Alleg Intf B
3. Intf In Not Switch State
. Operational Out Intf A
4. Intf A Valid Address
5. Address Out Tag (Intf A)
. Address Out Intf A
6. Hold Out/Select Out (intf A)
. Select Out To Select Logic A
Intf A Sw
Instan Allegiance Intf A
Select Out A (common)
Trap Sel Out LT (common)
Clock runs (common)
Start IO LT (common)
Op In Ctrl (common)
Op In (common)
Address In LT (common)
Tag Delay Gate (Intf A)
Command Out Intí A
Status in LT (common)
Service Out (common)
Reset Intf LT (common)
CA Active (common)
Long Term Allegiance (Intf A)
Intf B Valid Address
Address Out Tag (Intf B)
Address Out Intf B
Hold Out/Select Out (Intf B)
7. Select Out To Select Logic A
8. Intf B Busy

Tag Delay Gate (Intf B)
3. Bus in Bit 3 (Intf B)

Intf B DELT

LONG TERM ALLEGIANCE STATE

When the channel adapter is in the instantaneous allegiance state, the channel adapter sets the long term allegiance state when:

- The channel accepts an all-zero initial status for a channel command that
- Command chaining is indicated. 2
- Unit check is presented as either initial or final status. 3

The channel adapter interface passes from long term allegiance to the 'not switched state' when:

- The channel accepts Device End for the last command executed under
a particular start 10 instruction. 4 The command chaining indication is suppressed following the channel's
acceptance of Device End but before a reselection sequence occurs. 5
A channel initiated initial-selection sequence over the interface opposite the one to基 presenting a device busy status by means of the control-unit busy sequence.

Intf B Sw	SP002	
2. Long Term Allegiance (Intf B)	SP002	
3. Intf in Not Switch State	SP002	
4. Operational Out Intf A	Sc003	
5. Intf A Valid Adr	SC007	$\underline{6}$
6. Address Out Tag (Intf A)	SC004	14
7. Address Out Intf A	SC004	$6 \longdiv { 6 }$
8. Hold Out/Select Out (Intf A)	sc003	${ }^{14}$
9. Select Out To Select Logic A	SC003	8 8
0. Intf A Busy	SP001	5,7,9
1. Intf A DE LT	SP001	10
2. Bus In Bit 3	SB002	$1 0 \longdiv { 1 0 }$
3. Tag Delay Gate	SB006	$10-\overline{10}$
4. Status In Tag	SB005	$10,13 \bigcirc 10$

CONTINGENT STATE

If the type 3 CA ends a channel command with Unit Check (error condition), the channel adapter enters a contingent state with long term allegiance to the interface over which the Unit Check was presented. When in the contingent state, the channel adapter ensures that the same channe path is available for use by a Sense command that the channel could issue after the I/O operation with the Unit Check has ended. The contingent state ends when:

- The channel adapter decodes a command other than Test IO or NO-OP.
- The channel adapter detects a system or selective reset on the interface to which the adapter is switched.
- A 3705 hard stop occurs.

A Halt IO to the interface in the contingent state does not affect the contingent state.
this example, the channel adapter has set the unit check atch while in instantaneous allegiance to interface A. As the $C E, D E, U C$ status is presented to the channel, status bit 6 (Unit Check) sets the (unit check status) latch which:

- Sets the switched interface to the long term allegiance state. 1
- Sets the 'contingent' latch. 2

The active state of the 'contingent' latch inhibits the set of the 'reset intf' latch, therefore, the channel adapter remains switched to interface A. If the interface A channel issues:

- A Sense command to retrieve the sense data, the 'contingent' latch resets and the normal sense operation procedes.
- Any command other than the Sense, Test IO, or NO-OP the 'contingent' latch resets and the Unit Check sense data resets.
- A Test IO or NO-OP command, the 'contingent' latch is not reset and the sense data may be obtained by the channel issuing a sense command as the next command.

Busy Status Initiated Device End

When the type 3 CA has given a Busy status (due to the channel adapter's long term allegiance to the opposite interface), the channel adapter will present an asynchronous Device End over the interface on which the Busy indication was given. This notifies oposite interface. The channel adapter logic generates, presents or stacks this asynchronous Device End without any 3705 control program intervention.
In this example, the channel adapter is in the long term allegiance state having been witched to interface B. During this long term allegiance, the channel attached to inter switched to interface B . During this long term allegiance, the channel attached to inter
face A attempted to select the channel adapter and the channel adapter returned a Busy status to the channel. The channel adapter remembers the busy condition by means of the 'intf A DE' latch.
When the operation on interface B has terminated, the channel adapter rese 'intf B switch' and the channel adapter goes in the 'intf in not switch state'.
The channel adapter then sets the 'force status available' latch which activates

- 'Status bit 5'. 2 This generates Device End status on bus in to the channel at status in time
- 'Request in tag to CHIF' 3 The Request In tag can not be presented to the channel because the channel adapter is not switched to either interface.
Therefore, the channel adapter sets the 'force rea in A^{\prime} ' latch 4 (G-140) Therefore, the channel adapter sets the 'force req in A ' latch 4 (G-140)
which presents Request In to the channel A interface during this not-switched state.
When the channel presents Select Out to interface A the channel adapter picks 'intf A Sw'. 5 The channel adapter then:
- Gates the channel interface A receivers and drivers
- Goes into instantaneous allegiance to interface \mathbf{A}.
- Traps select out. 6 (G-140)
- Sets the (async status switch) latch. 7 (G-140)
- Sets the 'status in' latch. 8 The channel adapter places Device End status on bus in and raises the Status In tag.
- Sets the (end DE status) latch 10 that sets the 'reset intf' latch. 11 (G-140)
- Resets the (async status switch) to set the 'assemble DE ATT rst' latch. 12 (G-140). This sets the 'reset intf' latch which resets the 'intf A switch' and puts the channel in the not-switched state.

Control Program Initiated Device End

The 3705 control program may initiate an asynchronous Device End by executing Output $X^{\prime} 57^{\prime}$ with byte 0 bit 3 set to 1 (Set IPL Device End). The hannel adapter offers the Device End to both attached interfaces by raising both request-in tag
Device End status.

Device end status activiates

- 'Status available' 13 which raises 'request in tag to CHIF' 3 and then Status available' 13 which raises 'request in tag to CHIF' $\mathbf{3}$ and then
'set req in to intf A and $B^{\prime} 14$ (G-140). This sets the 'force req in A^{\prime} latches for interface A and interface B and presents Request In tag to both interfaces.
- 'Status bit 5'. 2 This presents the Device End status to the channel interface that first selected the channel adapter.

ASYNCHRONOUS DEVICE END, PART 2

1. Intf B Switch
2. Long Term Allegiance (Intf B)
3. Intf In Not Switch State
4. Operational Out (Intf A)
5. Intf A DE LT
6. Force Status Available (Intf A)
7. Status Bit 5 (common)
8. Initiate Service Cycle (common)

Request In Tag To CHIF (common)
10. Force Req $\ln A$
11. Request In To Intf A
12. Hold Out/Select Out (Intf A)
13. Select Out To Select Logic A
14. Intf A Switch
15. Instan Allegiance Intf A
16. Select Out A
17. Set Trap Sel Out LT (common)
8. Trap Sel Out LT (common)
19. Clock runs (common)
20. Op In Ctrr (common)
21. Op In (common)
22. (Op In To Cmd Out LT) (common)
23. Async Status Switch (common)
24. Address in LT (common)
25. Tag Delay Gate (Intf A)
26. Command Out (Intf A)
27. Status in LT (common)
28. Status In Tag (Intf A)
29. Service Out (Intf A)
30. (End DE Status) (common)
31. Assemble DE ATT Rst (common)
32. Reset intf LT (common)

The type 3 CA generates an asynchronous Attention status when the 3705 contro program executes an:

- Output $X^{\prime} 57^{\prime}$ with byte 0 bit 0 set to 1 (Set IPL Attention) while in IPL phase 3.
- Output $X^{\prime} 55^{\prime}$ with byte 0 bit 6 set to 1 (Set Prog Requested Attention) when the channel adapter has its level 3 interrupt request pending. (The channel adapter waits until its level 3 interrupt request is reset before generating the Attention
status.).

The channel adapter offers the Attention status to both attached interface by raising both interface Request In tags. The first channel to raise Select Out is given the Attention Status.
In this example, the 3705 control program executed an Output $X^{\prime} 55^{\prime}$ with byte 0 bit 6 set to 1 to set the 'attention request' latch. The channel adapter presents the tatus for interface B , resests the status latches and resests 'intf B switch'. The channe dapter then sets the 'attention' latch. If there is no L3 interrupt request nor hard

- 'Request in tag to CHIF'. \qquad 2 The Request In tag can not be presented to the channel because the channel adapter is not switched to either interface. There fore, the channel adapter sets the 'force rea in A^{\prime} and 'force rea in B^{\prime} latches
channel interface A presents Select Out before channel interface B, the channel adapter switches to interface A and.
- Gates the channel interface A receivers and drivers.
- Goes into instantaneous allegiance to interface A.
- Traps select out. 4
- Sets the (async status switch) latch. 5
- Sets the 'status in' latch. 6 The channel adapter places Attention on bus in and raises the Status In Tag.
- Resets the (async status switch) to set the 'assemble DE ATT rst' latch. This sets the 'reset intf' latch which resets the 'intf A switch' and puts the channel in the not-switched state.
If channel interface B presents Select Out during the interface A selection sequence that presents the Attention status, the channel adapter bypasses the interface B Select Out to the next unit.
When the channel adapter switches allegiance to interface A, the common logic OP In signal resets 'request in tag to CHIF' which drops Request In tag from both inter faces. The 'select out to select logic B^{\prime} ' signal now sets the 'sel bypass B^{\prime} ' latch. 8
(G-160). This propogates the 'select in out to chnl' signal to the next unit on the hannel B interface.

If the 3705 control program initiates an asynchronous Attention while a tagged Device End is pending for either interface A or B, the channel adapter presents the combined Attention-Device End status if the channel to which the Device End is
tagged raises Select Out first.

ASYNCHRONOUS ATTENTION STATUS, PART 2

SYSTEM RESET

When the channel gives a system reset (Operational Out drops when Suppress Out is down), the type 3 CA may be in one of three states: switched to interface A, switched to interface B, or the not-switched state. The flowchart summarizes the action the channel adapter takes for system reset. The channel attached to interface A gives a channel attached to interface B is identical.
Channel Adapter Switched To Interface A
A system reset to interface A activates 'intf A sys reset' as well as 'system reset'. 2. These lines reset the channel adapter except for those interface B latches that are reset by 'intf B sys reset'. When the channel removes the system reset, the sel sys reset latch 3 picks causing latch to return the channel a

Channel Adapter Switched To Interface B
A system reset to interface A when the channel adapter This resets the pending Device End that is tagged for interface A.

Channel Adapter In The Not-Switched State
Since there can not be any outstanding command, the only interface activity reset by a system reset to interface A is:

- A pending Attention or Device End status that is not tagged for interface A.
- A pending Device End (due to a previous device Busy) tagged for interface A. 6 A pending Device end (due to a previous device Busy) for interface B is not reset.

The system reset activates 'intf A sys reset' 1 which activates 'sel sys reset pulse' by means of 'intf in not switch state'. 5 When the channel removes the system reset, the 'sel sys reset' latch 3 causes a level 3 interrupt request.

SELECTIVE RESET
The channel adapter recognizes a selective reset (Operational Out drops when Suppress Out is up) when 'op in' is active. (4 This activates 'sel sys reset pulse' giving the same resets that the system reset did.


```
6 Resets:
- 'Int A busy' latch
- 'Force status available' latch
- 'Sel bypass \(A\) ' latch
```

Resets:

- Channel adapter as in type 2 CA
- 'Force A busy' latch
-'Contingent' latch
Sets:
- Level 3 interrupt request
'Reset intf Cond

0

TYPE 4 CHANNEL ADAPTER

INTRODUCTION

The type 4 channel adapter (CA) provides improved throughput over the type 1 CA when operating with a type 3 scanner. Th EB (extended buffer) mode and CS (cycle steal) mode as well as in the type 1 CA mode (non-EB mode). Since the type 4 CA a modified type 1 CA , the description of the type 1 CA in is section. This section covers the differences between the his section. This section covers the differences between the

EP/NCP Burst Size Options

The emulation program user chooses, through an EP generation
option, the number of bytes of data the EP is to pass to the option, the number of bytes of data the $E P$ is to pass to the interrupt occurs. The user has a coice of $4,8,16$, or 32 bytes that determines the buffer size within the EP.
NCP-5 has no generation option to control the amount of data passed to the channel adapter; ;it always transfers four
bytes or less in non- $\mathrm{EB} / \mathrm{CS}$ mode. The maximum cycle stea ransfer for ACF/NCP/VS will be the sysgened buffer size. Se the NCP sysgen manual GC30-3008 for buffer-size options.
Main Differences Between Type 4 CA and Type 1 CA

- EB mode

The type 4 CA uses a separate $9 \times 32 \mathrm{~EB}$ local-store
data-buffer array for EB inbound and outbound data
transfers.
When in EB mode, the type 4 CA can transfer a maximum of 32 bytes of data across the channel during each data transfer burst with program
Good parity is not set into the EB local store by a power-on reset or the RESET pushbutton. The 3705 control program must assure good p
EB local store before it is accessed.
EB mode is reset by a power-on reset, the RESET pushbutton, a CA diagnostic reset, a system reset, an Output $X^{\prime} 62^{\prime}$ with bit $0.7-1$, an 0 output $X^{\prime} 6 C^{\prime}$ with bit
$0.0=0$ or when the not-initialized state is entered. is not reset by a selective reset.

- CS mode

When in cycle steal mode, the first two bytes (addresses
and 1) of the $9 \times 32 \mathrm{~EB}$ local-store data-buffer array are used as the cycle-steal buffer register for CS inbound and outbound data transfers
When in CS mode, the type 456 CA can transfer a maxidata transfer burst with program intervention required only before and after each burst.
$E B$ and $C S$ modes are mutually exclusive. An Out put $X^{\prime} 6 C^{\prime}$ with bits 0.0 (EB
on will default to EB mode.

- Expanded BSC Control Character Recognition

The type 4 CA, when in EB or CS mode and the ESC (emulator subchannel) mode is enabled, recognizes the
following BSC control characters when they are in the inbound data stream from the host CPU:

- ETB and ETX-CA stops the inbound data transfer and
- requests a level 3 interrupt.
- DLE-STX sequence-CA stops monitoring the trans
- SYN-when the CA detects (n)* consecutive SYN characters, the CA stops the inbound
data transfer and requests a level 3 interrupt
- Non-EB/CS mode

The type 4 CA uses the same 4×18 non-EB/CS local store array as the type 1 CA . The type 4 CA uses it for
non-EB inbound/outbound-data transfers and for Address In and emulator subchannel Status In presentation to the channel.

- Initial Selection 'short control unit busy' status Any start I/O to the ESC address when the type 4 CA has disconnected from the channel because of the 4 , 8 8, or 16 byte burst jumpering receives a Status in
- Multiple Type 4 CAs

When multiple type 4 CAs are installed in a 3705 ,
they share the they share the same input/output codes so the 370 control program must select the desired CA. See

- Automatic selection between multiple type 4 CAs by
level 3 interrupt priority , The priority selection circuits in each CA assign a
priority level to each type 4 CA level 3 interrupt, priority level to each type 4 CA level 3 interrupt
compare the priorities in the multispe CAs, and compare the priort with the highest priority for
then select the CA
servicing. The 3705 control program has contro sevicing. The ''pime' this priority select circuit and over when to prime this riorit (see $\mathrm{H}-230$)
when the CA selection is made
- IPL ROS implementation

One type 4 CA
Uses the type 1 CA ROS and IPL sequencing.
Type 4 CA installed with either a type 2 CA or type 3 CA
Uses the Dual ROS and IPL sequencing Two type 4 CAs with an IPL source switch the type 1 CA ROS. The two type 4 CAs can
be attached to the same or different host proce sors. An IPL source switch on the control pane (see $\mathrm{E}-040$ configuration either, but never both, type 4 CAs to accept an
IPL command over its NSC (native subchannel) IPL command over its NSC (native subchannel)
address. The type 4 CA not selected by the IPL source switch cannot recognize its NSC address and passes Select Out if the host CPU executes a
start I/O command for its NSC address (SIO ends with condition code 3). The channel addresses of both native subchannels should be outside the emulator sub-channel address range (see selected will not recognize the I/O register addresses (input/output codes) except for the selection output (see Output X 677^{\prime} on $\mathrm{H}-120$), the L3 priority sequence, and the automatic 'program requested interr
Output X 67 ' on $\mathrm{H}-120$).

- Multiple (2-4) Type 4 CAs without an IPL source switch.

Uses N-Channel ROS.
Any type 4 CA in a configuration containing WL , three or four type 4-CAs can accept an tatus is used to break contention if two or more CPUs simultaneously try to IPL the 3705 * Value of (n) is determined by the
3705 control program.

An IPL attempt by a CPU must consist of a Sense command, command-chained to a Write type 4 CA when a CPU attempts an IPL, the 3705 N -channel ROS returns an ending status of 'CE, DE, UE' to the Sense command. The unit exception breaks the command chaining and the Write IPL command is not executed by
the CPU channel. This CPU program enters the CPU channel. This CPU program enters a timeout period waiting for an asynchronous
device-end from the 3705 to indicate that the IPL operation has been completed. If the asynchronous device-end does not occur prior
to the timeout completion, this CPU program to the timeout completion, this CPU program
assumes the P PL in progress was notsuccessful and executes a Write IPL command that is not chained from a Sense command. When an IPL operation is successfully
completed, the control program just loaded returns an asynchronous device-end to all channels attached to the 3705 except the channel over which the IPL occurred. This 'DE' signals the CPU programs associated completed the transition from a not-ready state to a ready state

- Remote Program Loader (RPL) 3705 -II only From one to three type 4 CAs can be located
in the 3705 with the RPL. See $2-000$ for all in the 3705 with the RPL L. See 2 -000 for al
combinations and $\mathrm{E}-030$ for all board locations. The RPL requires a RPL ROS while the channel adapter combination, requires a different Ros as previously defined (IPL source switch installed). The RPL logic
selects which ROS is loaded at IPL phase Selects
Enabling Type 4 CA NSC Addres
Upon powering up, the type 4 CA that the IPL source switch selects will accept commands over its NSC address.
If it is desired to enable the other type 4 CA's NSC address
instead, the following steps must be performed

1. Disable the line interfaces that are enabled.
2. Set the IPL switch to the channel position desired.
3. Press the RESET pushbutton, then the LOAD pushbutton.
The type 4 CA attached to the channel that the IPL source switch selected when the RESET and LOAD push its NSC address.
button were dep
Changing the IPL switch position without powering up or without following the above procedure has no effect on which typ 4CA will accept commands over its NSC address.

When operating with a type 1 or type 4 CA in an NCP (PEP included) envichannel interface unless the 3705 network has been quiesced or a system reset has occurred. If this procedure is not followed, the NCP may, while
disabled, attempt to send asynchronous status which inhibits the CA1 or
4 from becoming enabled again.

Note: With N-Channel ROS all enabled type 4 CAs will accept commands over their NSC addresses.
Type 4 CA Configuration
Up to two type 4 CAs can be installed in a 3705-1; one in the basic frame and one in the first expansion frame in the basic frame, the second in either the basic frame or the first expansion frame, and the third and fourth be combined with a trame (see E-030). A type 4 CA ca in partitioned emulation mode. In this case, the Type 4 CA handles data transfers for lines in emulation mod and the type 2 or type 3 CA handles data transters
lines in network control mode. Multiple type 4 CAs can be used in a PEP System with the enabled NSC(s) handling the NCP data transfers and the ESC addresse handling the EP data transfers. The channel adapters in a PEP system can be attached to the same or different
CPUs. A type 4 CA cannot be comhined with a type 1 CA or a type 1 Scanner.
Type 4 CAs can have a two-channel switch but whenever two channel adapters are locateu in the same frame, neither adapter can have a two-channee switc
Up to three type 4 CAs can be combined with the remote program loader.
The type 4 CA can be attached to a selector, byte multiplexer, or block multiplexer channel of a system/370
CE Burst Length Jumper Option
Depending on which CPU model the CA4 is attached to,
the CE installs jumpers to select a burst size of 4.8 or 16 bytes. If no jumpers are installed, the burst will be the byte count set up by the control program, up to 32 bytes in EB mode and up to 256 bytes in CS mode. If a burst size or of the the connect from the channel to allow other channel activity to occur then reconnect to transfer another burst of data. This disconnecting and reconnecting will continue until the full byte count has been transferred.
EXAMPLE: (Assume the CA4 is plugged for 8 byte

1. The control program sets up a 32 byte EB mode transfer
2. The CA4 transfers 8 bytes, then disconnects from the channel interface
3. The CA4 reconnects to the channel, transfers 8 more bytes, then disconnects
4. The CA4 interrupts the control program indicating all 32 bytes have been transferred. The interrupt occurs only after the full byte county (32 in this example) has been transferred. The burst length jumpering
option is transparent to the control program. The duration that the CA 4 will disconnect from the channel is also a plugging option see CA4 logic page PA049 for burst-length and duration of delay between
bursts plugging information.

TYPE 4 CA DATA FLOW (PART 2)

INITIAL SELECTION ADDRESS AND COMMAND REGISTER

This register contains the I/O device address byte and command byte presented to the channel adapter during initia
selection. The register can be accessed by Input X'61' which should be executed only if the type 4 channel adapter initial or data/status level 3 interrupt request is set.
See H - 050 for Input $X^{\prime} 61^{\prime}$ description. This register is See H-050 for Input X'61' description. This register is
referred to as the $S I O$ register in the ALD's.

2
LOCAL STORE (NON-EB MODE)
The local store provides buffering for the $1 / 0$ address byte used in all data and status transfer sequences initiated by by
3705. Buffering for up to four bytes of data for inbound and outbound data transfers in non-EB mode is provided here also.
The control program loads or accesses the I/O device and Input $X^{\prime} 63^{\prime}$ respectively. The data bytes are transferred with $X^{\prime} 64$ ' or $X^{\prime} 65$ ' instructions, see chart below.

Data	Data	ansfer
Byte	Out	In
2	${ }^{\times} \times 4^{\prime}$	${ }^{\times}{ }^{\prime} 64{ }^{\prime}$
3 4 4		

3 NSC STATUS BYTE REGISTER

The current status of the NSC is maintained in this register and gated over the channel interface during NSC status transfer sequences. The control program should set the NSC status by executing an outpui ${ }^{\text {trol }}$ program has access to this register with the Input $X^{\prime} 66^{\prime}$ instruction.

4
initial selection status register
The status byte is generated and presented to the channe from this register during initial selection sequences except under the following conditions.

- An initial selection sequence occurs for the native mode subchannel before the NSC status byte provided by the control program has been accepted. The NSC
status byte from the NSC status register is presented instead of the hardware generated status.
- An initial selection sequence occurs for an emulation an ESC status transfer sequence is required and ha signaled that ESC Test I/O status is available. The ESC status byte provided by the program is presented in-
stead of hardware generated status.

5 INITIAL SELECTION CONTROL REGISTER
The information in this register identifies the event causing the type 4 channel adapter initial level 3 interrupt request to be set. The register can be accessed by Input $X^{\prime} 60^{\prime}$, which should be executed only if the interrupt request is

6 DATA/STATUS CONTROL REGISTER
The information in this register controls and identifies events that cause the type 4 channel adapter data/status accessed by Input $X^{\prime} 62^{\prime}$, which should be executed only if the interrupt request is set. The control program can perform various control functions by setting or resetting bits
in this register with an Output $X^{\prime} 62^{\prime}$ instruction. The instruc tion should be executed only when the control program is servicing a type 1 or 4 CA level 3 interrupt request.

7 ERROR/CONDITION REGISTER

The error/condition register is a collection of latches that are set when the CA detects an error or an occurrence of
specific asynchronous conditions. The 3705 control program has access to this register with an Input $X^{\prime} 67^{\prime}$ instruction, (see page H-110). The errors indicated by the error/condition register cause type 4 CA error interrupts (see page
$\mathrm{H}-380$)

8 EXTENDED BUFFER LOCAL STORE
The extended buffer local store provides for buffering up to 32 bytes of data for inbound and outbound data transfers when in extended-buffer mode. The first two data bytes are transferred to the In register by an Input $X^{\prime} 6 \mathrm{C}^{\prime}$. The negister to a CCU general register before loading the In regis
rest ter with the next two bytes from the EB local store. Sixteen Input $X^{\prime} 6 \mathrm{D}^{\prime}$ instructions are required to transfer the data in the entire extended buffer. All 32 bytes of data for an outper instruction, by Output $X^{\prime} 6 D^{\prime}$ instructions.

9 OUTBUS REGISTER
The outbus register buffers two data bytes for loading into the EB local store. The even data byte is loaded from the outbus register to the EB local store, followed by the odd data byte

10 EB BYTE COUNT REGISTER

This register buffers the requested byte count (up to 32) for inbound or outbound data transfers when in EB mode.

11 EB IN REGISTER

This register receives the even, then odd, data bytes from the EB local store for transfer to the CCU.

12 CYCLE STEAL ADDRESS REGISTER The byte X register and the cycle steal address register con tain the address bits of the storage data buffer location for the first data byte to be transferred to or from storage by cycle stealing. The byte X register contains the four high order address bits and the cycle steal address register contains the 16 low order address bits. The two registers com
bined form the CSAR. The CCU updates CSAR to the next sequential half-word storage address at the completion of a cycle steal transfer.

13 CYCLE STEAL BYTE COUNT

his register buffers the requested CS byte count (up to 56 bytes) for inbound or outbound data transfers when

4 CYCLE STEAL ERROR REGISTER
This register is set by the following errors

- CS outbus error-the type 4 CA sets this bit during a cycle steal operation when data from storage contain (even) parity.
CS inbus error-the type 4 CA sets this bit when the CCU raises 'bad data' to signal that the CCU has received bad data (even parity

CS address bus error-the type 4 CA sets this bit when the CCU raises 'SAR even parity' to signal that the CCU has received incorrect parity on the CS address bus.

- CS address exception-the type 4 CA sets this bit when received an address from the type 4 CA that is beyond the storage capacity of the 3705 or that points to a protected area of storage.
The type 4 CA requests a level 1 interrupt when any of these bits are set

Card Loc	$\begin{aligned} & \text { ALD } \\ & \hline \text { Paop } \end{aligned}$	Function
E4F2	PA101	1/O Decodes
	${ }^{\text {PAA102 }}$	$1 / 0$ Feedaack
	PA104	
	PA105	Inbus Dot Byte 1
	${ }^{\text {PAA106 }}$	Inbus Byte 0
	PA108	Selected Latch and L3 Bids
E4P2	PB101	Channel Intf Tags and Controls
	PB102	Channel Intf A Receivers
		Interface A
	PB104	Channel Address Jumpering and Channel Parity Check
	PB105	Non-EB/Cs Local Store Byte 0 Assembler
	${ }^{\text {PB106 }}$	Non-EB/CCL Local Store Byte 0
	${ }^{\text {PB107 }}$	Interface B Address
E4N2	PC101	Channel T Tags Control and Tag Clock
	PC 102	Channel Tags Control-Start I/O, and
	PC103	Channel Tags Control and Tag in Latches
	PC104	Channel Tags Control-Stack, Chaining,
	PC105	Channel Tags Control, Enable, and
		Selective System Reset
	PC106	Channel Tag Control Powering
E4M2	PD101	Channel Bus-Out Repower
	${ }^{\text {PDD102 }}$	Low Address Jumpers
	PD104	High Address Jumpers
	${ }^{\text {PD } 105}$	High Address Logic
	${ }^{\text {PDD106 }}$	Start /1/ Adr Reg and Command R
	PD108	Command Decode
	PD109	ccu Outbus Inversion
E4L2	PE101	ccu Outbus Termination
	PE102	Initial Selection Control
	${ }^{\text {PEE }} 103$	Service Transfer Control
	PE104	Byte Transfer Count (Non-EB/CS) Service Transfer
	PE106	Initial Status Generation
	PE107	OR Dots Byte 0
E4K2	PF101	Input/Output Control
	PF102	Assembler and $\mathrm{Non-EB/CS}$ Local Store Cntl
	${ }^{\text {PFF } 103}$	NSC Control
	PFF104	RN Asynchronous Information Error Latches
E4T2	PG101	NSC Status Register
	PG102	Asynchronous interrupt Control
E402		
	PH102	Intf A Bus-In Drivers Bits 3,4,5
	${ }_{\text {PH }}$	Intf A Bus-In Drivers Bits 6,7.P
	PH104	Intf A Tag-In Drivers Op In, Adr
	PH105	Intf A Tag-In Drivers Sel In, Req In,
		and Status In
	PH106	Select Out Relay Driver and Control Gating
	PH107	Bus-In Error Latch and Reset Generation
E4T4	PJ101	Intf A Select Out Relays

0000000000000000000000000000000000

INPUY AND OUTPUT INSTRUCTIONS

he type 4 chamel adapter relies on the 3705 control program to use input and output insti uctions to control actransters. The contiol program initiates channel AA and the CCU with input and output instructions
Each input or output instruction addresses an extern egister. The input irstructions gate the external register to gate CCU general registers to CA registers via the CCU Out.
 $X^{\prime} 64^{\prime}, X^{\prime} 65^{\prime}, X^{\prime} 66^{\prime} X^{\prime} 6 C^{\prime} X^{\prime} 60^{\prime} X^{\prime} 6 E^{\prime}$, or $X^{\prime} 6 F^{\prime}$ when the CA is actively handling a data ol status transfer sequence

CONTROL PANEL ACCESS TO CA REGISTERS Type 4 CA registers \times ' 60 ' through \times ' 66^{\prime} should be accessed from the control pariel with Input or Output instructions pending
To ensure that this interrupt remains pending, the 3705 should be in either Program Stop or Hard Stop mode before
these instructions are executed from the control panal If these conditions are not met, the following occurs:

1. If the type $4 C A$ is in the process of a data or status transfer sequence and an Input or Output $X^{\prime} 60^{\prime}$ through $X^{\prime} 66^{\prime}$ or $X^{\prime} 6 C^{\prime}$ through $X^{\prime} 6 F^{\prime}$ is initiated
from the control panel, the type 4 CA hardware
a. Causes a type 4 CA level 1 interrupt request.
b. Sets the type 4 CA In/Out instruction accept latch c. Gates $X^{\prime} 0000$ ' onto the CCU Inbus to be displayed in display B if the instruction is an Input,
2. If the type 4 CA is not transferring data or status and a type 4 CA level 3 interrupt request is not pending, one of the following occurs:
a. For Input $X^{\prime} 60^{\prime}, X^{\prime} 61^{\prime}$, or $X^{\prime} 66^{\prime}$ instructions, either the same time the instruction is being executed, the CA is being selected by the host CPU channel, the CCU may sample invalid data from the type 4 CA . The data in display B should be considered invalid.
b. For Output $\times{ }^{\circ} 66^{\prime}$ instructions, either the instruction is executed without error or, if at the same time the instruction is being executed, the type 4 CA is being selected by the host CPU channel, a type CA charinel bus in check and a type 4 CA level 1
interrupt recquest may be set or a CPU data check may be detected at the host CPU
3. If the type 4 CA is in the process of presenting ESC status to a Test I/O issued to an ESC address, and an $X^{\prime} 66^{\prime}$ is executed, of of the an Output X ' 62 ' through a. The instruction executes without error.
b. If at the same time any of these instructions are being executed, the type 4 CA is being selected by
the host CPU channel, either a type 4 chanel by the host CPU channel, either a type 4 channel bus
in check, a type 4 CA local store, a level 1 interrupt request, or a CPU data check may occur.
Input and Output X'67' can be executed from the 370 control panel without causing an error

LOADING DATA INTO THE EXTENDED BUFFER FROM THE CONTROL PANEL Simulate the following instructions from the control panel
using the procedures on Page 1-160:

Input $x^{\prime} 6 C^{\prime}$
8000 (data in ADDRESS/DAT
Input X'6D'
Output $X^{\prime} 6 D^{\prime}$
This s
by 2.
XXXX switches A-E). This data is loaded
into EB LS data buffers?

Output $X^{\prime} 6 D^{\prime}$
linput $X^{\prime} 6 \mathrm{C}^{\prime}$ input $X^{\prime} 6 C^{\prime}$ data bytes desired. The data in the ADDRESS/DATA switches may hanged. Do not perform another Input $X^{\prime} 6 D^{\prime}$ until you have loaded the number of bytes desired. The 31 st and 32 nd data bytes are loaded EB byte counter goes from 11111 to EB byte
00000).
Resets EB byte counter
The first Input $X^{\prime} 6 D^{\prime}$ transfers the 31 st and 32 nd data bytes loaded fro The second Input $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$ transfers first two data bytes loaded. Consec tive Input X ' 6 D 's transfer the data ytes in the same sequence as the Output X'6D's.

INPUT X‘60' INSTRUCTION

Input $X^{\prime} 60^{\prime}$ transfers the contents of the initial selection control register into a CCU general register. The 3705 control program uses this instruction to determine the exact cause
interrupt.
An Output X' 60 ' resets the initial selection control register and the L3 interrupt request resulting from the initial selection.

The type 4 CA and type 1 CA Input $X^{\prime} 60^{\prime}$ instructions are identical.

INPUT X‘61’ INSTRUCTION

Input X'61' transfers the contents of the initial selection address and command byte register into a CCU general
register. During an initial selection sequence, a type 4 CA initial selection level 3 interrupt is requested, and the 3705 control program must investigate the subchannel address and command causing the interrupt. Byte 0 is the address to which the command in byte 1 was issued.
The 3705 control program must store the address and command before the 3705 control program has completed the previous one when in'ESC mode. The 3705 control program must also control the CA action for each command An Output $X^{\prime} 61$ ' instruction has no effect on the channel
adapter.

Bit	$\begin{aligned} & \text { Logic } \\ & \text { Page } \end{aligned}$	Function
0.0	PE102	Input Initial Selection State
0.1	PC105	Input Initial Interface Disco
0.2	PC105	Input Initial Selective Rester
0.3	PE102	Input Initial Chan Bus Out Check
0.4 0.5		$0{ }_{\text {Input Stack }}$ Init
0.6	PF103	NSC Status Cleared
0.7	PC105	Input System Reset

*Normal Initial Selective

are identical.

OUTPUT X'62' INSTRUCTION

This instruction initiates inbound and outbound data transfers and status presentations. The 3705 control program uses this
instruction to control CA4 action and, when not in EB or CS instruction to control CA4 action and, when not in EB or CS
mode, to specify the number of bytes of data to transfer across mode, to specify the number of bytes of data to

x This bit may be on or off for a byte count of four
Summary of Output X'62' bit definitions and ALD location

INPUT X'62' INSTRUCTION

This instruction transfers the contents of the data/status control register into a CCU general register. The 3705 control program uses this instruction to determine the xact cause of a type 4 CA data/status level 3 interrupt. The type 4 CA and type 1 CA Input $X^{\prime} 62^{\prime}$ instructions are identical.

Non-EB/CS mode

Count transferred to the CCU

Count	Bits		
	1.5	1.6	1.7
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	1	1
		0	0

OUTPUT AND INPUT X‘63' INSTRUCTION

he 3705 control program uses the Output $X^{\prime} 63^{\prime}$ instructio byte 1) into the non-EB/CS local store buffer. The CA iden fies itself to the channel by gating byte 0 onto the channel bus in, during the address transfer and gates byte 1 onto the Channel bus in to transfer the ESC status to the host CPU. The aldress and status take a different path, see page 8-170 addeess and status bytes are stored in the register. Otherwise correct channel operation occurs.

With the Input $\mathrm{X}^{\prime} 63$ ' instruction, the 3705 control prograth can determine the last subchannel address provided to
the host CPU. The level 3 interrupt request latch should be set for this instruction to execute.
The type 4 CA and type 1 CA Output X'63' and Input $x^{\prime} 63$ ' instructions are identical.
cCu Outt lus Bit Definitions

"ํㅜำ

OUTPUT AND INPUT X'64’ INSTRUCTION

Output $X^{\prime} 64^{\prime}$ instruction loads non-EB/CS data buffer byte 1 and non-EB/CS data buffer byte 2 with the first two data bytes to be transferred across the channel to the CPU. These two data bytes are transferred to the CPU one byte at a time during an outbound data transfer. The type 4 CA and type 1 CA Output $X^{\prime} 64^{\prime}$ instruc tions are identical.

OUTPUT AND INPUT X'65' INSTRUCTION

3

 Output $X^{\prime} 65^{\prime}$ instruction loads non-EB/CS data bufferbyte 3 and non-EB/CS data buffer byte 4 with the seco two bytes to be transferred across the channel to the CPU These two data bytes are transferred to the CPU one byte at a time during an outbound data transfer.
The type 4 CA and type 1 CA Output $X^{\prime} 65^{\prime}$ instruc tions are identical.

Input $\mathrm{X}^{\prime} 64$ ' transfers into a CCU general register the two data bytes that were received from the channel and stored
in non-EB/CS data buffer byte 1 and non-EB/CS data buffer byte 2.
The type $4 C A$ and type 1 CA Input $X^{\prime} 64^{\prime}$ instruction are identical.

4
Input X'65' transfers into a CCU general register the two
data bytes that were received from the channel and stored in non-EB/CS data buffer byte 3 and non-EB/CS data buffer byte 4.
The ty are identical.

OUTPUT X'66' INSTRUCTION

The Output X'66' instruction loads the final status byte to
be presented to the channel into the NSC Status Byte Registe
Output X'66' bit $0.4=1$ sets NSC Long Busy. (See PF 103)
The type 4 CA and the type 1 CA Output $X^{\prime} 66^{\prime}$ instructions are identical

INPUT X‘67' INSTRUCTION

The Input $X^{\prime} 67$ 'transfers the error condition register interface address to the CCU

B.	$\begin{aligned} & \text { Con } \\ & \text { Loc } \end{aligned}$	$\frac{1 . l o g i c ~}{\text { Pat }}$	Function
$\begin{aligned} & 10007 \\ & 000.0 \end{aligned}$	$\underset{E 4 P 2}{E A P 2}$	PB104 PB107	NSC hardware address intt A NSC har dware address intf B
10	E402	${ }^{\text {PHF107 }}$	Chan bus in errio
1.1	E4K2	PF 105	Invalid lio Op
12	E4K2	PF 105	CCU outhus check
1.3	E4K2	PF 105	Local store parity check
1.4	EAK2	PF 104	CA enabled
15	E4K2	PF104	NSC address active
1.6.1.7	E4K2	PA108	00 - Type 4 CA \# 1 selected 01.- Type 4 CA \#2 selected 10 ... Type 4 CA \# 3 selected

INPUT X‘6C’ INSTRUCTION

(Type 4 CA Extended Buffer/Cycle Steal Mode

 Control Register)The Input $X^{\prime} 6 C^{\prime}$ instruction transfers to a specified CCU general register the states of the 'extended buffer mode' latch 'cycle steal mode' latch, 'character-monitor control latches, ferred in extended byte or cycle steal mode.
The Input $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$ instruction resets the EB/CS local store address counter to address 0 , then loads in register byte 0
with data byte 0 from EB/CS local store address 0 . The 'st with data byte 0 from $E B /$ / local store address 0 . The 'ste
$E B$ address counter' pulse advances the $E B / C S$ local store address counter to 1 and then loads in register byte 1 with addrespte 1 from that address. The EB/GS local store address counter then advances to address 2 so that the first Input X' $^{\prime} \mathrm{D}^{\prime}$ can continue loading the In register from sequentia
addresses. The data is buffered in the In register until the next Input $X^{\prime} 6 D^{\prime}$ 'transfers it to a specified CCU general reg-
Each byte of data from the EB/CS local store is parity Each byte of data from the EB/CS local store is par
checked and a parity error forces a level 1 interrupt.

Summary of CCU Inbus bits during Input X 6 C

OUTPUT X'6C' INSTRUCTION
(Type 4 CA Extended Buffer/Cycle Steal Mode Control Register)
The Output X' $6 C^{\prime}$ ' instruction sets or resets the ' $E B$ mode' latch, the 'CS mode' latch, and various character-monitor or rememb control latches. When outbus bit 0.0 is a one, the CA4 sets the 'EB mode' latch, inhibits any set of the 'CS mode' latch and resets the 'CS mode' latch if it was on. This instruction also sets the EB and CS byte count registers with the number
of bytes to be transferred during a data transfer and resets. the EB local store address counter and CS byte counter to 0 .

Summary of CCU Outbus bits during Output $X^{\prime} 6 C^{\prime}$

Bit	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
0.0	E4H2	PL102	$1=$ Set, $0=$ Reset-extended buffer mode
0.1 0.2	E4E2	P0104	$1=$ Set, $0=$ Reset-cycle steal mode 0
0.3 0.4	E4H2	PL105	$1=$ Set, $0=$ Reset SYN monitor control
		PL101	$1=$ Satch ${ }^{\text {ate }} 0=$ Reset DLE remember latch
0.6	E4H2	PL101	$1=$ Set, $0=$ Reset USASCII monitor control latch
0.7	E4H2	PL101	$1=$ Set, $0=$ Reset EBCDIC monitor control latch
1.1			
1.2			${ }_{\text {Requested byte count-bit } 16}$
1.4	E4J2	PK103	Requested byte count-bit 16
1.5	E4J2	PK103	Requested byte count-bit 4
1.6	E4J2	PK103	Requested byte count-bit 2
1.0	E4D2	PP102	Requested byte count-bit 128
1.12	E4D2	${ }^{\text {PPP102 }}$	Requested byte count-bit 64 Requested byte count-bit 32
1.3	E4D2	${ }^{\text {PP102 }}$	Requested byte count-bit 16
1.4	E4D2	PP102	Requested byte count-bit 8
1.5	E4D2	PP102	Requested byte count-bit 4
1.6	E4D2	PP102	Requested byte count-bit 2
1.7	E4D2	PP102	Requested byte count-bit 1

(Type 4 CA Extended Buffer/Cycle Steal Mode Data Buffer Bytes)
The 3705 control program uses the Input X'6D' instruction to transfer data to a specified CCU general register from the In register and then to reload the In register with data from the EB/CS local store data buffer.
The Input $X^{\prime} 6 C^{\prime}$ instruction loads the in register with two
data bytes from $\mathrm{EB} / \mathrm{CS}$ local store data buffer iddres and 1 . After a one cycle delay, the first Input $X^{\prime} 6 D^{\prime}$ instru tion transfers these to a specified CCU general register. The EB clock then loads In register byte 0 with data byte 0 from increments the EB/CS local store address and then loads In register byte 1 with data byte 1 from the incremented address. The EB clock increments the address to the next sequential address. The in register buffers these two data bytes until the next Input $X^{\prime} 6 \mathrm{D}^{\prime}$ transfers them to the CCU . Sixteen Input
$\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$ instructions are required to transfer the entire $\mathrm{EB} / \mathrm{CS}$ local store data buffer. The 3705 control program must allow a delay of at least one cycle between successive Input $X^{\prime} 6 \mathrm{D}^{\prime}$ instructions to give the CA4 hardware enough time to load
${ }^{\prime}$ Each Input $\mathrm{X}^{\prime} \mathrm{GD}^{\prime}$ 'oas
an inbound-data transfer sends an odd number of bytes, the ast data character and the contents of the next EB/CS local store address will be loaded into the in register. The 3705 control program uses the transferred byte count to know that he last data byte was not part of this data transfer. checked and a parity error forces a level 1 interrupt.

Bit	${ }_{\text {Cand }}^{\text {Loc }}$	$\begin{aligned} & \text { ALD } \\ & \text { Page } \\ & \hline \end{aligned}$	Function
0.0	E4J2	104	EB data buffer even byte-bit 0
$\left\lvert\, \begin{aligned} & 0.1 \\ & 0.2 \end{aligned}\right.$	E4Jj	PK104	EB data buffer even bytebit 1 EB data buffer even byte-bit 2
0.3	E.432	PK104	
0.4	E4J2	PK 104	EB data buffer even byte-bit 4
0.5	E4J2	PK104	
0.6	E432	PK104	EB data buffer even byte-bit 6
0.7	E45?	PK104	EB data buffer even byte-bit 7
	E4J2	104	$E B$ data buffer odd byte.bit 0
			EB data buffer odd byte-bit 1
	E4J2	PK 104	EB data buffer odd byte-bit 2
	E4J2	PK 104	EB data buffer odd byte-bit 3
	E4J2	PK104	EB data buffer odd byte-bit 4
		PK104	EB data buffer odd byte-bit 5
			EB data buffer odd byte-bit 6
		PK104	E8

OUTPUT X'6D' INSTRUCTION

(Type 4 CA Extended Buffer/Cycle Steal Mode Data Buffer Bytes)
The control proyram uses the Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$ instruction to load EB/CS local store data buffers with data for an outhound

The data is buftered in the outbus register until it can be Written into the EB/CS local store data buffer. A previous Output $X^{\prime} 6 C^{\prime}$ instruction had reset the $\mathrm{EB} / \mathrm{CS}$ local store sddress counter to 0 so that the data may be loaded sequen
tially beginning with address 0 . The $E B$ clock generates the gating and write pulses to load data byte 0 into the $\mathrm{EB} / \mathrm{CS}$ ocal store, increment the EB/CS local store address counter by 1 , then load data byte 1 . Each Output X'6D' instruction hus loads two data bytes in sequential addresses. Sixteen
Output $X^{\prime} 6 D^{\prime}$ instructions are required to fill the EB/CS local store. The 3705 control program must allow a delay of at least one cycle between successive Output $X^{\prime} 6 D^{\prime}$ iristructions to give the CA4 hardware enough time to load the EB/C local store data buffers (see $\mathrm{H}-200$)

Bit	${ }_{\text {Card }}^{\text {Coc }}$	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
0.0	E4J2	PK102	EB data buffer even byte-bit 0
0.1	E4J2	PK102	EB data buffer even byte-bit 1
0.2	E4J2	PK102	EB data buffer even byte-bit 2
0.3	E4J2	PK102	EB data buffer even byte--bit 3
0.4	E4J2	PK102	EB data buffer even byte--bit 4
0.5	E4J2	PK102	EB data buffer even byte-bit 5
0.6	E4J2	PK102	EB data buffer even byte-hit 6
0.7	E4J2	PK102	EB data buffer even byte-bit 7
1.0	E4J2	PK102	EB data buffer odd byte bit 0
1.1	E4J2	PK102	EB data buffer odd byte bit 1
1.2	E4J2	PK 102	EB data buffer odd byte -bit 2
1.3	E4J2	PK 102	EB data buffer odd byte-bit 3
1.4	E4J2	PK102	EB data buffer odd byte-bit 4
1.5	E4J2	PK 102	EB data buffer odd byte-bit 5
1.6	E4J2	PK102	EB data buffer odd byte-bit 6
1.7	E4J2	PK102	EB data buffer odd byte-bit 7

INPUT X'6E' AND X'6F'INSTRUCTIONS INPUT X'6E' (CS ERROR REGISTER AND CS BYTE X) The 3705 control program uses the Input X'6E' instruction to transfer the contents of the 'cycle steal error register' (see
$\mathrm{H}-380$) and the 'CSAR byte X register' to a specified CCU general register.

Bit	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
0.0	E4E2	P0105	Cycle Steal Outbus Error
0.1	E4E2	P0105	Cycle Steal Inbus Error
0.2	E4E2	P0105	Cycle Staal Adbus Err
0.3 0.4 0.4	E4E2	P0105	Cycle Steal Address Exception
0.5			
0.6			
0.7			\bigcirc
1.0			
1.1 1.2 1			0
1.3			
1.4	E4D2	PP103	CSAR Bit X. 4
1.5	E4D2	PP103	CSAR Bit X. 5
1.6	$\mathrm{ELP2}^{\text {E4D2 }}$	${ }^{\text {PP103 }}$	CSAR Bit X. 6
1.7	E4D2	PP103	CSAR Bit X .7

INPUT X'6F' (CSAR BYTE 0 AND BYTE1)

The 3705 control program uses the Input $X^{\prime} 6 F^{\prime}$ instruction to ransfer the contents of CSAR byte 0 and 1 to a specified CCU general register.

Bit	Card	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
0.0	E4D2	PP104	CSAR Bit 0.0
0.1	E4D2	PP104	CSAR Bit 0.1
0.2	E4D2	PP104	CSAR Bit 0.2
0.3	E4D2	PP104	CSAR Bit 0.3
0.4	E4D2	PP104	CSAR Bit 0.4
0.5	E4D2	PP104	CSAR Bit 0.5
0.6	E4D2	PP104	CSAR Bit 0.6
0.7	E4D2	PP104	CSAR Bit 0.7
1.0	E4D2	PP104	CSAR Bit 1.0
1.1	E4	PP104	
1.2	E4D2	PP104	CSAR Bit 1.2
1.3	E4D2	PP104	CSAR Bit 1.3
1.4	E4D2	PP104	CSAR Bit 1.4
1.5	E4D2	PP. 104	CSAR Bit 1.5
1.6	E4D2	PP104	CSAR Bit 1.6
1.7	E4D2	PP10	CSAR Bit 1.7

OUTPUT X'6E' AND X'6F' INSTRUCTIONS OUTPUT X'6E' (CSAR BYTE X)
The 3705 control program uses the Output X ' $6 E^{\prime}$ instruction to set the extended address bits in the CSAR byte X register. Output $X^{\prime} 6 F^{\prime}$ must first be executed to set CSAR bytes 0 and 1 since it also resets CSAR byte X. Output X'6E' is then executed if the
storage address is above 64 K (CSAR bits $X .4, X .5, X .6$ or $X .7=1$)

Summary of CCU Outbus bits during Output X'6

Bit	Card	$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	Function
$\begin{array}{\|c\|} \hline 0.0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ \hline \end{array}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
$\begin{array}{l\|} \hline 1.0 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.7 \end{array}$		PP103 ${ }^{\mathrm{PPP} 103}$ PP103	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { CSAR Bit X. } 4 \\ & \text { CSAR Bit X. } 5 \\ & \text { CSAR Bit X. } 6 \\ & \text { CSAR Bit X. } \end{aligned}$

OUTPUT X'6F' (CSAR BYTE 0 AND BYTE 1)
The 3705 control program uses the Output $X^{\prime} 6 F^{\prime}$ instruction oo set the storage address (for the first data buffer byte involve in a cycle-steal data transfer) in CSAR bytes 0 and 1 . Output
$X^{\prime} 6 F^{\prime}$ resets CSAR byte X by (1) forcing ones into CSAR bits $X^{\prime} 6 F$ ' resets CSAR byte X by (1) forcing ones into CSAR bits
$\times .4$. X .71 and (2) stepping CSAR byte X from $X^{\prime} F^{\prime}$ to $X^{\prime} 0^{\prime}$ 2. Resetting CSAR byte X enables the control program to et up CSAR using only Output $X^{\prime} 6 F^{\prime}$ if the storage address is ot above 64 K . Output X'6F' also sets/resets the 'odd byte control' latch 3 depending upon the state of outbus reg bit 1.7 (CSAR bit 1.7).
Summary of CCU Outbus bits during Output $\mathrm{X}^{\prime} 6$

Bit	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	ALD	Function
0.0	E4D2	PP101	CSAR Bit 0.0
0.1	E4D2	PP101	CSAR Bit 0.1
0.2	E4D2	PP101	CSAR ${ }^{\text {B }}$
0.3	E4D2	PP101	CSAR Bit 0.3
0.4	E4D2	PP101	CSAR $\operatorname{sit} 0.4$
0.5	E4D2	PP101	CSAR Bit 0.5
0.6	E4D2		CSAR Bit 0.6
0.7	E4D2	PP101	CSAR Bit 0.7
1.0	E4D2	PP101	CSAR Bit
1.1		PP101	CSAR
1.2		PP101	CSAR Bit
1.3	E4D2	PP101	CSAR Bit 1.3
1.4	E4D2	PP101	CSAR $\operatorname{sit} 1.4$
1.5	E4D2	PP101	CSAR $\operatorname{sit} 1.5$
1.6	$4{ }^{2}$	PP101	CSAR Bit 16
1.7	E4D2	PP101	CSAR Bit 1.7

OUTBOUND DATA TRANSFERS-EB MODE

Outbound data transfers result from channel Read commands that direct the transfer of data from 3705 storage to the host
CPU. When the CA4 is in EB mode, the 3705 control program CPU. When the CA4 is in EB mode, the 3705 control program
must execute an Output $X^{\prime} 6 \mathrm{D}^{\prime}$ 'for each two data bytes that are to be transferred to the channel whether the CA4 is in ESC or NSC mode.

CA DECODES THE COMMAND AND REQUESTS AN INTERRUPT

The 3705 control program responds to the initial select
level 3 interrupt with the following instructions.

Instruction	General Register Bits		Indication or Function
	Byte 0	Byte 1	
Input X'77'	00000000	100010×0	1.0 = type 4 CA level 3 interrupt 1.4 = selected type 4 CA initial selection level 3 interrupt $1.6=0$ type 4 CA \# 1 selected = 1 type 4 CA \# 2 selected
Input X'61'	address	command	$\begin{aligned} & \text { Byte } 0=\text { address } \\ & \text { Byte } 1=\text { command } \\ & \hline \end{aligned}$
Input X'60'	10000000	00000000	Normal initial selection (Note 1)
At this point the control program queues the control block for this line on the priority data-service-out queue. After all control blocks ahead of this one are serviced, the following sequence is performed.			
Output ' $^{\prime} 63$ '	address	xxxx xxxx	Byte $0=$ transfer address Byte $1=$ all zeros
Output X'6C'	10000000	10000111	$0.0=$ set extended buffer mode 1.3-1.7 $=0111$ to transfer seven data bytes out (Note 2) Resets EB adr counter to adr 00
Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$	data	data	Byte $0=$ data for $E B L S$ adr 00 Byte $1=$ data for EB LS adr 01
Minimum of one cycle delay between successive Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime} \mathrm{s}$			
Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$	data	data	Byte $0=$ data for $E B$ LS adr 02 Byte $1=$ data for EB LS adr 03
Minimum of one cycle delay between successive Output $\mathrm{X}^{\prime} 6 \mathrm{D}^{\text {'s }}$			
Output X '6D'	data	data	Byte $0=$ data for EB LS adr 04 Byte $1=$ data for EB LS adr 05
Minimum of one cycle delay between successive Output \times ' $6 \mathrm{D}^{\prime}$'s			
Output \times '60'	data	xxxx xxxx No data	Byte $0=$ data for EB LS adr 06 Byte 1 = Contents are loaded into EB L.S adr 07
Minimum of one cycle delay between Output \times '6D' and Output \times ' 62^{\prime}			
Output \times '62'	10000010	00000100	$0.0=$ outbound data transfer $0.6=$ reset data/status interrupt $1.5=$ set priority outbound-data transfer sequence EB
Output X'67'	00000000	01000000	$1.1=$ set program interrupt (to block initial select interrupts)

Loads seven data bytes into the EB local store (data buffer) starting at address 00 plus the "no data" contents of general
register byte 1 into address 0 . register byte 1 into address 07
See H -200 for a sequence char for this operation.

Outbound transfer
initiates a channel service cycle. See $\mathrm{H} \cdot 220$
for a sequence chart for for a sequence ehart
this operation and the this operation and the
channel sevvice cycle.

Notes: 1. Other bits may be transferred to the ccu during this input. If
other bits are on, the 3705 control program
differently from the normal initial selection.
2. From one to thirty-two bytes of data may be transferred to the

From one to thirty-two bytes of data may be transferred to the
chamel. The inumber of Output \times ' 60 's s depends on the numbe
of byytes of data to be transferred.

OUTBOUND DATA TRANSFERS-EB MODE (PART 1)
Sequence Chart for Loading the EB Local Store (Data Buffer)
. Out 6 C or Out 6 D EB
2. Set CCU Outbus Reg
3. Outbus Register
4. EB Mode Latch
5. EB Byte Count Register
6. Delay Step (EB Clock)
7. (Start EB Clock)
8. EB Clock 1
9. EB Clock 2
10. EB Clock 3
11. EB Clock 4
12. Gate Chill BO to LS
13. Select Local Store EB
14. Write LS Pulse EB
15. Step EB
16. EB LS Address Counter
17. Gate OB Reg Byte 0 to LS
18. Gate OB Reg Byte 1 to LS
19. Compare Count

OUTBOUND DATA TRANSFERS-EB MODE (PART 2)

CA to Channel Data Transfer-See H-220 for Sequence Chart The Output $X^{\prime} 62^{\prime}$ instruction starts a channel service cycle so that the data loaded into the EB/CS local store can be trans-
Sample $62 \sim \begin{gathered}\text { Outbo } \\ \text { Xfer }\end{gathered}$

$$
1
$$

The CA4 sends Request In to the channel to start the service cycle

The type 4 CA provides the capability of transferring 4,8 , 16 , or 32 byte bursts of data-the selection made by a $C E$-installed jumper.
 resets to drop the $C A$ off the channel and a delay counter starts. A A CE-installed jumper selects how much delay occurs beforse the $C A$
raise Request

The channel tag clock operates each time the channel and the
CA start a data transfer. The clock synchronizes the CA and the channel to handle the data transfer.

 3705 -I uses 50 ns clock
$3705-11$ uses 62.5 ns clock
Service in causes the next data byte to be read out of the
EB/CS LS data buffer to the chanel and then increments the
Service in causes the next data byte to be read out of the
EB/ $L S$ data buffer to the channel and then increments the
EB address counter.
EB address co

OUTBOUND DATA TRANSFERS-EB MODE (PART 3) Sequence Chart for the Channel Service Cycle
Continued from $\mathrm{H}-200$
. Out 62
2. EB Mode Latch
3. EB Bit Count Register
4. Select Local Store EB.
5. Priority Service Out Latch
6. EB LS Address Counter
7. Compare Count
8. Outbound Transfer
9. Initiate Service Latch
10. Initiate Service Cycle Internal
11. Request In
12. Select Out/Hold Ou
13. OP In
14. Address In
15. Command Out
16. Service In
17. Service Out
18. Bus In
$\operatorname{Intf} A$
$\operatorname{Intf} B$
19. Gate LS to Drv Assm 1 Out
20. Gate Data Byte 1 to Channel
21. (Start Tag Clock)
22. Increment Counter
23. Delay Service In Latch
24. Delay Request-In-To-Channel

Counter
25. Service L3 Interrupt

PC102
PC
PB1
PC102
PC10
PB10
PC10

Any Start I/O to this channel interface during this delay of Service In receives an init.
selection status of $X^{\prime} 70^{\prime}$ (CCU Busy).
\longrightarrow

This sequence continues into the automatic CA4 selection by priority sequence chart
on $\mathrm{H}-240$ that is applicable on H -240 that is applicable
if multiple Type 4 CAs are installed. If only one Type 4 CA is installed, the operation is
the same as for the y . the same as for the Type
(See Page $8-330$ for the See Page $8-330$ for the
control program respons to the level 3 data/status to the level 3
interrupt).

When multiple type 4 CAs are installed, the automatic-selection circuit automatically selects the CA4 with the highest priority interrupt request. The control program must execute an Output $X^{\prime} 67^{\prime}$ with all zeros in the specified general register to set he 'prime priority select' latch $\mathbf{1}$. When the next Input If the priorities were equal, the automatic-selection circu selects the first CA4 with an equal priority that receives the selected from previous CA^{\prime} signal 3
The control program can assign a higher level priority to an Outbound Data Transfer Sequence by setting bit 1.5 to 1 when executing Output $X^{\prime} 62$ ' to set the Outbound Sequence.
The automatic-selection circuit assigns priority bits to all 3 interrupts according to this table:

L3 Interrupt	Priority	Bus 2	Bits 1
Priority Outbound Data Transfer Seq.	1	1	1
OUtbund Data Transfer Seq.	1	1	0
Intital Selection Interrupt	1	0	1
Inbund Data Transfer See.	1	0	0
Remaining Data Status Interrupts	0	1	1

At 'sample at A' time, CA4 \#1 sends its L3 interrupt state to the other CA4s via the priority bus 4 . Each of these CA4s compares its priority with the CA4 \# 1 priority and sets its appropriate 'not high' and/or 'not equal' priority latches. Once set, these latches remain on until reset by the 'reset not high equal latches' pulse 5 . At 'sample at B^{\prime} time, $\mathrm{CA} \# 2$ sends its L3 interrupt state to the other CA4s $\mathbf{6}$. Each of these CA4s (\# 1, \# 3, and \#4) compares its priority with the CA \# priority latches. Some of these 'not high' and/or 'not equa' riority latches may have been set 't 'sample at A^{\prime} time At sample at C^{\prime} time, CA4 $\# 3$ sends its 13 interrupt state to CA4 \# 1, 2, and 4 and at 'sample at D' time, CA4 \#4 sends its L3 interrupt state to CA4 \# 1,2 , and 3 with the subsequen setting of the appropriate 'not high' and/or 'not equal' priority latches.
At the fall of 'sample at D^{\prime} time, each CA4 interrogates the states of its 'not high' and 'not equal' priority latches as well as the state of the 'selected from previous CA' line to determine whether to set its 'CA4 has priority' latch his sampling occurs continuously but the select latches ar or reset by this circuit only by the next Input $\mathrm{X}^{\prime} 77^{\prime}$, instruction.
 (6)

OUTBOUND DATA TRANSFERS - EB MODE (PART 5)

$0000000000000000000000000000000000$

INBOUND DATA TRANSFERS-EB MODE

Inbound data transfers result from commands that require the passing of data from the host CPU to 3705 storage. the passing of data from the host ceu to 3705 storage.
When the commands are decoded, they request an initial selection level 3 interrupt so that the 3705 control program can determine what action to take to service the command. The commands start an initial selection sequence as shown on 8-170.

CA REQUESTS AN INITIAL SELECTION LEVEL 3 INTERRUPT

From H-260 A.

CONTROL PROGRAM RESPONDS TO THE INTERRUPT
The 3705 control program responds to the initial selection level 3 interrupt with the following sequence of instructions.

Instruction	General Register Bits		Indication or Function
Input X'77'	00000000	1000 10x0	$1.0=$ type 4 CA level 3 interrupt $1.4=$ selected type 4 CA initial selection level 3 interrupt $1.6=0$ type 4 CA \# 1 selected $=1$ type $4 \mathrm{CA} \# 2$ selected
Input X'60'	10000000	00000000	$0.0=$ Normal initial selection (Note)
Input X'61'	Address	Command	Byte $0=$ subchannel address Byte 1 = command
Output X $60{ }^{\prime}$	xxxx xxxx	xxxx xxxx	Resets initial selection level 3 interrupt.
At this point the control program queues the control block for this line on the data-service-in queue. After all the control blocks ahead of this one, on the queue, are serviced the following sequence is performed.			
Output X'63'	Address	xxxx xxxx	Byte $0=$ address Byte $1=$ all zeros
Output $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$	10001001	00001000	$0.0=$ set extended buffer mode 0.4 = set SYN monitor control latch 0.7 = set EBCDIC monitor control latch 1.3-1.7 = 1000 to transfer eight data bytes Resets EB adr counter to adr 00
Output X'62'	01000010	00000000	0.1 = inbound data transfer $0.6=$ reset data/status control 1.6-1.7 $=$ request byte count limit for consecutive SYNs. $01=1 ; 10=2 ; 11=3 ; 00=4$.

The Output $X^{\prime} 62^{\prime}$ instruction initiates a channel service
cycle to transfer the data from the host CPU to the CA EB/CS
local store.

 The EB address counter steps as each data byte transfers to the EB local store. 'Count 2 ' falls after four data bytes have been transferred
''count 4 ' atter eight, 'count 8 ' after sixteen) to set the 'delay service in' latch. This latch is not set for a thirty-two byte burst. Op In resets to drop the CA off the channel and a delay counter starts. ACC
raises Request In to continue transferring data to the $E B$ local store.

INBOUND DATA TRANSFERS-EB/CS MODE (PART 2)

BSC Control Character Recognition in ESC Mode

ETB and ETX (EBCDIC or USASCI

The type 4 CA, when in EB/CS mode and the ESC (emulator sub-channel) mode is enabled, recognizes BSC control characters ETB and ETX and sets the 'svc stop or disc' latch 1 . This resets the 'initiate service cycle' 'latch and causes a CA4
data/status L3 interrupt. An Input $X^{\prime} 62^{\prime}$, executed when the level 3 interrupt is serviced, transfers bit 0.5 (service stop) to a specified CCU general register for 3705 control program use.
DLE-STX (EBCDIC or USASCII)
The type 4 CA, when in EB/CS mode and the ESC mode is (indicating the start of transparent data) and resets the EBCDIC, USASCII, and DLE monitor latches 2 to prevent monitoring the transparent data. An Input $X^{\prime 6} C^{\prime}$, executed when the level 3 interrupt is serviced, transfers zeros for USASCII and EBCDIC register for 3705 control program use If the DLE control character is the
nbound-data transfer sequence, bit 0.5 ('DLI will be on in a specified CCU general register after the ln latch)放 performed The 3705 aftrol the Input must set the 'DLE remember' latch (bit $0.5=1$) when the Out put $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$ instruction is executed for the next inbound-data transfer sequence for the subject address. If an STX control character is the first character of the next inbound-data transare reset to prevent monitoring the transparent data for ending characters.

SYN (EBCDIC or USASCII)

Some programs use SYN characters as time fill characters. The characters and frees the channel to service other devices. The type 4 CA, when in EB/CS mode and the ESC mode nabled, monitors for SYN characters if the 'monitor SYN' atch is on. The Output $X^{\prime} 62^{\prime}$ that requested the inbound-dat with the number of consecutive SYN characters that are to be received before the CA4 disconnects from the channel. When the number of consecutive SYN characters received from the channel equals the number in the non-EB/CS byte-transfer count, the CA4 resets the 'initiate service cycle' latch and
causes a CA4 Data/status L3 interrupt $\mathbf{3}$. An Input $X^{\prime} 6 C^{\prime}$ executed when the level 3 interrupt is serviced, transfers bit' 0.4 ('SYN monitor control' latch) to a specied CCU general re ster for 3705 control program use.
monitoring for SYN characters ceases and normal controls for terminating the sequence take over.

BSC Control Character	EBCDIC Hex	USASCII Hex
STX	02	02
ETX	03	03
DLE	10	03
SYN	32	10
ETB	26	16

USASCII monitor mode ignores channel bus
out bit 0 when decoding the control characters.

0000000000000000000000000000000000

INBOUND DATA TRANSFERS-EB MODE (PART 3)
Sequence Chart for the Channel Service Cycle

1. Out 6 C or Out 62
2. EB Mode Latch
3. EB Byte Count Register
4. Inbound Transfer
5. Initiate Service Latch
6. Initiate Service Cycle Interna
7. Request In
8. Select Out - Hold Out
9. OP In
10. Address in
11. Command Out
12. Service in
13. Service Out
14. Bus Out
15. (Start Tag Clock)
16. Increment Counter
17. EB LS Address Counter

$$
\mathrm{PC} 1
$$

$$
\begin{aligned}
& \text { PC1 } \\
& \text { PK1 }
\end{aligned}
$$

18. Gate Chnl BO to LS
19. Select Local Store EB
20. Write Ls Pulse EB
21. Monitor SYN Latch
22. EBCDIC Latch
23. In Transfer EB Mon Gate
24. DLE Latch
25. Delay Service In Latch
26. Delay Request-In-To-Channel

Counter
27. Service Stop or Disconnect
28. Service L3 Interrupt
?

PS1

$$
\begin{array}{ll}
\text { Logic } \\
\text { PL102 } \\
\hline
\end{array}
$$

iternal

$$
\nexists
$$

Output X'6C'

PE103
PC106

Any Start $1 / O$ to this channel interface during
this delay of Service
ection of Service in recieves an initial
selection status of $X^{\prime} 70^{\prime}$ (CCU Busy).

This sequence
continues to continues to
$\mathrm{H}-290$ for the H-290 for the
sequence of sequence of
transferring
the transferring
the data now. in the EB/CS local store
data buffers to a CCU gen-
eral register.

inbound data transfers_eb mode (PARt 3) H-270
CAA

NBOUND DATA TRANSFERS-EB MODE (PART 4)

Transferring Data From the EB/CS Local Store

General Register
In response to the type 4 CA data/status level 3 interrupt, the The control program must execute the following instructions.
from the Input $X^{\prime} 6 \mathrm{C}^{\prime}$ instruction to determine how many
rrom the input $X 6 C$ instruction to determine how many
nput $X^{\prime} 6 D^{\prime}$ instructions are required to input all the data
four in this example.

Instruction	General Register BitsByte 0		Indication or Function
Input \times ' $77{ }^{\prime}$	00000000	10010000	$1.0=$ type 4 CA L3 Interrupt $1.3=$ selected type 4 CA data/status interrup $1.6=0$ type $4 \mathrm{CA} \# 1$ selected
Input X'63'	Address	00000000	Byte $0=$ subchannel address Byte $1=$ all zeros
Input X'62'	01000100	0000 0xxx	$\begin{array}{\|l\|} \hline \begin{array}{l} 0.1 \\ 0.5 \end{array}=\text { inbound data transter } \\ \text { servecestop condition-the control } \\ \text { program should ind the channel } \\ \text { command } \\ 1.5-1.7 \text { not used for } E B \text { mode } \\ \hline \end{array}$
Input X'6C'	10000001	00000111	$0.0=$ extended buffer mode 0.7 = EBCDIC monitor control latch 1.2-1.7 = 7 transferred byte count-EB mode
Minimum of one cycle delay after Input $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$			
Input X'6D'	00110010	00110010	Byte $0=$ SYN character Byte $1=$ SYN character
Minimum of one cycle delay after Input $\times^{\prime} 6 \mathrm{D}^{\prime}$			
Input X'6D'	Xxxx \times x \times x	00010000	Byte $0=$ non-SYN character Byte $1=$ DLE character
Minimum of one cycle delay after Input $\times^{\prime} 6 \mathrm{D}^{\prime}$			
Input X'6D'	YYYY YYYY	zzzz zzzz	Byte $0=$ non-STX character Byte $1=$ data character
Minimum of one cycle delay after Input $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$			
Input X'60'	00100110	wwww wwww	Byte $0=$ ETB character Byte $1=$ non-data
Minimum of one cycle delay after Input $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$			
Output $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$	00000000	00000000	$0.0=$ reset extended buffer mode $0.7=0$ reset EBCDIC monitor control latch.

If the ETB character had not ended the data transfer las in our example) by a service stop, the 3705 control program were transferred to a CCU general register by repeating the sequence starting on $\mathrm{H}-270$.
Ending an Inbound-Data Transfer-EB Mode The ending of an inbound-data transfer in EB mode is identical
to that of the type 1 CA except for the type 4 CA reconnition
of the BSC control characters as described on page $\mathrm{H}-260$ to that of the type 1 CA except for the type 4 CA recognition
of the BSC control characters as described on page $\mathrm{H}-260$.
See page 8-280 for endings other than the recognition of the BSC control characters.
See page 8-290 (ESC) for endings caused by the recognition characters (as in the example).

See $\mathrm{H}-290$ for a
sequence chart sequence chart for
this operation.

0000000000000000000000000000000000

INBOUND DATA TRANSFERS-EB MODE (PART 5)

Sequence Chart for Inputting the EB/CS Local Store (Data Buffer)
Continued from H -270

1. $\ln 6 \mathrm{C}$ EB, $\ln 6 \mathrm{DEB}$, or Out 6 C
2. EB Mode Latch
3. EB Byte Count Register
4. Delay Step (EB Clock)
5. (Start EB Clock)
6. EB Clock 1
7. EB Clock 2
8. EB Clock 3
9. EB Clock 4
O. Gate Chnl BO to LS
10. Select Local Store EB
11. Step EB Address Counter ORed
12. EB LS Address Counter
13. Set In Reg Byte 0
14. Set In Reg Byte 1
15. In Reg Byte 0
16. In Reg Byte 1
17. CCU General Register

CYCLE STEAL OPERATION-OUTBOUND DATA TRANSFERS

Introduction
During an outbound data transfer. the CA4 transfers data from CCU storage to the EB/CS local-store data buffers by cycle
stealing. Only EB/CS local-store data buffer addresses 0 and are used during cycle stealing. Cycle stealing always transfers the two data bytes obtained from storage to the EB/CS localstore data buffers. However, if the starting address in CSAR is all subsequent data is transferred two bytes at a time unless the outbound data transfer ends by only transferring byte 0 . The CA4 cycle steals two data bytes to EB/CS local-store data buffers 0 and 1 then raises 'Request In ' to request a chanThe CA4 then blocks 'Service In' whicle the CA4 cycle steals two more data bytes. The CA4 then allows 'Service In' to transfer these two data bytes to the channel. This operation continues until the number of bytes transferred equals the requested.
Initializing the Cycle Steal Operation
The 3705 control program executes an:

- Output $X^{\prime} 6 C$ ' to load the 'CS byte count' degister with the desired number of data bytes to be passed during the channel transfer and to set 'CS mode
- Output X'GF' to load CSAR byte 0 and 1 with the storage
address of the location containing the first byte address of the location containing the first byte of data to
be transferred by cycle stealing 1 . CSAR byte X is forced to ones and then stepped to zeros to save executing Output $\mathrm{X}^{\prime} 6 \mathrm{E}^{\prime}$ ' if the extended address bits are zeros. 2
- Output X'6E' to load CSAR byte X if the extended address
X. X. 7 are not zeros.
- Output $X^{\prime} 62^{\prime}$ to set (1) outbound data transfer, (2) the 'priority outbound-data transfer sequence' (if desired) and
(3) the 'CS proceed' tatch to start the

Details of Cycle Stealing Operation

The key numbers in the paragraphs below refer to the data flow diagram on this page and/or the CS sequence chart on $\mathrm{H}-320$. Once 'CS proceed' is active, the CA4 blocks Request In
After the CA4 has bid for a cycle-steal machine cycle and the CCU responds with 'go channel 1 ', the CA4 gates the address in CSAR 5 (on a half-word boundary) to SAR so the CCU can obtain the half word of data during the cycle steal machine storage read. The CCU increments the address by two and places it on the 'CCU outbus'. The CA4, unlike CA2,
CA3, or the type 3 scanner, does not update CSAR but reload CSAR with the updated address from the CCU $\mathbf{6}$. 'CS buf fer store' $\mathbf{7}$ signals the CA4 to load data byte 0 into EB/CS LS buffer address 088 and data byte 1 into buffer address 1 9 and then reset the 'EB LS address counter'.

The CA4 removes the hold on Request In and a channel The CA4 removes the hold on Request in and a channel
service cycle transfers data 0 and then data 1 to the channel. by Output X' $6 F^{\prime}$ ', the 'odd byte control' Iatch 10 would have also been set. This latch steps the "EB address counter' and the 'byte 0 control' 'latch so the first Service In transfers
data byte 1 instead of data byte 0 . In either case, the signal in data byte 1 instead of data byte 0 . In either case, the signal 'in
full or out empty' 11 restarts the cycle steal operation for full or out empty 11 restarts the cycle steal operation for
the next two bytes of data. The CA4 does not disconnect from the channel while cycle stealing the next two bytes of data. The CA4 does block Service In $\mathbf{1 2}$ until the cycle steal operation is completed Every time Service In transfers a data byte to the channel,
the CA4 steps the 'CS byte counter' 13 . When the number Every time Service In transfers a data byte to the channel,
the CA4 steps the 'CS byte counter' 13 . When the number of data bytes actually transferred equals the desired byte count, of data bytes actually rransferred equals the desired byte count,
the CA4 resets the initiate service cycle latch 14 and requests
a data/service level 3 interrupt 15 .

OUTBOUND DATA TRANSFERS-CS MODE
Outbound data transfers result from channel Read commands that direct the transfer of data from 3705 storage to the hos CPU. When the CA is in cycle steal mode, the CA4 does not require control program intervention (once cycle stealing
been initialized) until the channel data transfer has been com pleted and the CA4 requests a level 3 interrupt. The fetching of data from CCU storage is automatically done by the cycl

CA DECODES THE COMMAND AND REQUESTS AN INTERRUPT

The 3705 control program responds to the initial select
level 3 interrupt with the following instructions.

OUTBOUND DATA TRANSFERS-CS MODE (PART 2)

CA to Channel Data Transfer-See H-300 for Sequence Chart

The Output X'62' instruction starts (1) a cycle steal operation that loads two bytes of data into the EB/CS local store and (2) thannel service cycle so that the data loaded into the EB/CS

The CA4 sends Request In to the channel to start the service
cycle.

When the Service In latch is set, it causes the next data byte to be read out of the EB/CS local store data buffer to the channe

he cycle steal operation blocks the Service In signal from being sent to the channel interface until the cycle steal operation has been completed.

The data transfer stops when the value of the CS byte counter
equals the byte count to be transferred in the CS byte count

OUTBOUND DATA TRANSFERS-CS MODE (PART 3)
CS SEQUENCE CHART-OUTBOUND

1. Sect ccu outusus Reasiser
2. Outuus Regsiser
3. cs Mode
4. cs yve count Regiser
5. cs bye counter
e. csaf
6. Inetrock intereant
7. Outbound Transer
8. Intitase Sevive lacch
9. Cs Proceed
10. Hold Reowest 1 In
cs Recuest
1.4. Bi, Chomenel 1 (Toccu)
11. Go Chamenel 1 from coul
12. Gaue csar to odab
13. Gocs meenar
14. Smome Upotaed CSAR
15. Smompe cs oata On outus (from CCW$)$
16. Cs Butere stove
17. ε E clook
18. Seoect Local score EB
19. Write Ls Puse EB
20. Step EB Addeses Connee ORed
21. E8 Ls Adderess Councer
22. Gue ob Reqegvel 1 To IS
cs complea
cs compaeae 2
23. 1 IIockseseme el i^{\prime} Out
24. Rewest In TTo cormanel
25. Seswie in in Out Tro chamel
. senwo our from cimanan
. Gate Dasa Byver Toc Chamen
26. Therement Coonner
27. Step CS Svex counter
28. Bre o Compol
*. Bye Control

29. Sorvie 13 ineruruen

[^2]Introduction

During an inbound data transfer, the CA4 transfers data from he EB/CS local-store data buffers to CCU storage by cycle
stealing. Only $\mathrm{EB} / \mathrm{CS}$ local-store data buffer addresses 0 and 1 are used only EB/CS local-store data buffer addresses 0 and the two data bytes obtained from the EB/CS LS Lata transfers to storage. However, if the starting address in CSAR is an odd address, the CCU stores data byte 1 (from the channel) and rewrites storage byte 0 in storage. All subsequent data is tran ferred two bytes at a time unless the inbound-data transfer stores data byte 0 (from the channel) and rewrites storage byte 1 in storage.
The CA4 raises 'Request In' to start a data service cycle so that the channel can transfer one or two data bytes to the tion that loads the In register with the contents of the EB/CS LS data buffers 0 and 1. The CA4 requests that the CCU tak a cycle-steal machine cycle to store the data in the in register at the address sent to the CCU over the Adbus and whether to
store byte 0 , byte 1 or bytes 0 and 1. The CCU updates the address and sends it back to the CA4 where it is loaded into CSAR. During the cycle steal operation, the CA4 blocks the Serivce In' signal from being sent to the channel. Once the cycle steal operation is completed, "Service in" is sent "out" to bytes to the EB/CS LS data buffer. This operation continues until a BSC ending control character is detected in the data rom the channel or the number of data bytes received equals he specified CS byte count and then the CA4 requests a leve

İnitializing the Cycle Steal Operation
The 3705 control program executes an:

- Output X' $6 C^{\prime}$ ' to load the 'CS byte count' register with (1) the expected number of data bytes to be received during the channel transfer. or (2) a byte count in excess of the
expected number of data bytes where a BSC end ing contro character normally ends the data transfer. Output $X^{\prime} 6 \mathrm{C}^{\prime}$ sets 'CS mode' and also sets the BSC monitor control latches if they are desired.
- Output $X^{\prime} 6 E^{\prime}$ to load CSAR bits X.4-X. 7 are not zeros . CSAR byte X is foud ones and then stepped to zeros to save executing Output $X^{\prime} 6 E^{\prime}$ if the extended address bits are zeros 2
Output ' $^{\prime} 6 E^{\prime}$ to load CSAR byte X if the extended addres bits X. 6 and $X .7$ are not zeros 3
- Output X'62' to set (1) inbound data transfer and (2) the -
Details of the Cycle Stealing Operation
The key numbers in the paragraphs below refer to the data-flow diagram on this page and/or the CS sequence chart on $\mathrm{H}-360$. The CA4 raises 'Request In' to start a data service cycle he example illustrated in the CS sequence chart on $\mathrm{H}-360$ assumes that the address in CSAR points to an odd boundary
therefore Output X'6F' sets the 'odd byte control' latch

This latch steps the EB address counter to 1 and sets 'byte 0 control' so that the first data byte transferred by the channel oaded in $E B / C S$ LS data buffer 1. The CA4 (1) steps the CS that the buffer is full, (3) turns on 'CS request' to bid for a CS1 machine cycle, and (4) blocks sending 'Service In' to the channel. 'In reg fetch' 5
\qquad esets the EB LS address counter thanand starts the EB clock. This loads the contents of buffer 0 buffer 1 into In register byte 16.
The CCU returns 'go chan 1' when the next machine cycle will be a CS1 machine cycle. The CA4 then sends all 20 bits of the address from CSAR to SAR over the CS adbus 7 and
sends 'store byte 1 ' to signal the CCU that only data byte 1 is to be stored. The CA4 gates the In register contents to SDR (storage data register) byte 1 from which data byte 1 is stored.

The CCU updates the address to an even address by increment ing by one or two 8 (depending on how many bytes were tored) and returns the address (16 bits) over the CCU outbus. and 1 . Since byte X of the updated address is not returned, th CA4 must update CSAR byte X if a carry from bit 0.0 to $X .7$ occurred during the CCU update. The CA4 knows a carry ccurred if the updated address on the CCU outbus equals zero The CA4 sends 'Service In ' to the steps CSAR byte X. The CA4 sends 'Service In' to the channel 9 when the cycle resumes and the channel transfers the next two data byte EB/CS LS data buffers 0 and 1 . This service cycle operation is even and the 'odd byte control' latch is off. Aside from load ing two data bytes instead of one, this service cycle and cycle
teal operation is identical to that described above except that tore byte 0 and store byte 1 signals are both sent to the CC hen the CSAR address is sent to SAR 10 SSC ending control characters ETB or ETX whem channel for and the monitor control latches are set. If either of these ending characters is detected $\mathbf{1 1}$ on the channel Bus Out, the 'itiate service' latch stoping the service cycle and requests a evel 3 interrupt. (See H-260). 12
Every time Service Out transfers a data byte from the chan nel, the CA4 steps the 'CS byte counter'. When the number o data bytes received equals the desired count in the'CS byte
count' register, the CA4 raises 'reset initiate service cycle EB' that resets the 'initiate service cycle' latch stopping the service cycle and requests a level 3 interrupt.

INBOUND DATA TRANSFERS-CS MODE
Inbound data transfers result from commands that require the passing of data from the host CPU to 3705 storage.
When the commands are decoded, they request an initial selection level 3 interrupt so that the 3705 control program can determine what action to take to service the command. on 8-170.
CA REQUESTS AN INITIAL SELECTION LEVEL 3 INTERRUPT

CONTROL PROGRAM RESPONDS TO THE INTERRUPT
The 3705 control program responds to the initial selection level 3 interrupt with the following sequence of instructions.

Instruction	General Register Bits Byte 0 Byte 1		Indication or Function	
Input X'77'	00000000	10001000	$1.0=$ type 4 CA level 3 interrupt $1.4=$ selected type 4 CA initial selection level 3 interrupt $1.6=0$ type 4 CA \#1 selected	
Input X'60'	$1000 \quad 0000$	00000000	Normal initial selection*	
Input X'61'	Address	Command	Byte $0=$ subchannel address Byte 1 = command	
Output \times ' 63 '	Address	00000000	$\begin{aligned} & \text { Byte } 0=\text { address } \\ & \text { Byte } 1=\text { all zeros } \end{aligned}$	Initial selection Address In and Status In response
Output $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$	01001001	00001000	0.1 = set cycle steal mode 0.4 = set SYN monitor control latch $0.7=$ set EBCDIC monitor control latch 1.0-1.7 = X'08' to transfer eight data bytes Resets EB adr counter to adr 00	
Output X'6F'	Address	Address	Byte $0=$ CSAR byte 0 Byte 1 = CSAR byte 1 Resets CSAR byte X Sets 'odd byte control' latch if CSAR bit 1.7=1	
Output X'6E'	00000000	0000 XXXX	$\begin{aligned} & \text { Byte } 0=\text { all zeros } \\ & \text { Byte } 1 \text { bits } 47=\text { extended address } \\ & \text { bits for CSAR byte } X \end{aligned}$	This instruction is not needed if the extended address bits X.4, X.5, X. 6 and X. 7 are zeros.
Output X'62'	01000110	00000000	0.1 = inbound data transfer $0.5=$ reset initial selection $0.6=$ reset data/status control 1.6-17 $=0$; check for 4 SYN chars Sets 'CS proceed' latch to start the cycle steal operation	Inbound transfer initiates a channel data service cycle 'CS proceed' initiates a cycle steal operation. See H-360 for the combined sequence of operation assuming the CS begins on an

The Output X'62' instruction initiates a channel service cycle to transfer the data from the host CPU to the CA EB/CS local store.

To Op In, Svc In, Status In

INBOUND DATA TRANSFERS-CS MODE (PART 2)
cs SEQUENCE CHART-INBOUND
csmade
2. Ods Byye control
3. Gave Chanele Aus out it is
4. cs evec couner
5. csaf (Cyces Seea Adodeses Regsiser)
6. nneriock Inemal)
7. Inound Tanater
8. Initase semive Lacen
9. Thitias. Sesivice creve Inemenal
10. Cs Procoesed
12. Reawesest ITTo chanenen
12. Sevive (1r Out TTo chamene)
13. Sevive Out (Fiom camene)
14. Incemenencouner

16. Whitie LSPuste ${ }^{\text {E }}$

19. E8 15 Addesess Couner
20. Eve o contol
21. Byve Conrool
22. In cs fencuest
23. 1 n feg Feach
24. Cs Reoweses
25. Bi, C Comenel
27. Sctin Rees greo
28. Seil n Req Evive 1
29. In Regster
30. Goc Cranenel (FFrom cCU
31. Gave CSAR To Adour
32. Gocs inemal
33. Gate cs oasion intus (firom ccui

35. Smpme Udodeaed csaA
36. Cs Compobese 1
37. Cs conpeee 2
30. (Block 'servie eln' Oul)
30. Sevives Sopo or Disomenect
40. Sesura 13 neterout

INBOUND DATA TRANSFERS-CS MODE (PART 3)

See H-360 Sequence Chart

When the channel returns Service Out in response to Service In, the channel tag clock operates to synchronize the CA4 and channel. The CA4 writes the data byte on channel Bus Out into the
EB/CS LS data buffer and then steps the EB local-store address counter.

n our example the starting address in CSAR is odd, therefore the 'odd byte control' latch had set the 'byte 0 control' latch and
had stepped the EB address counter to 1. When the first data
byte is written into the EB/CS LS data buffer, the CA4 steps
the
the CS byte counter and sets the 'byte 1 control' latch. This
indicates that the data buffers are filled and signals for a cycle steal operation.

The cycle steal operation blocks the Service In signal from being sent to the channel interface until the cycle steal operation has been completed.

'In reg fetch' starts the EB clock that provides the timing pulse
to load the data bytes from buffer 0 then buffer 1 into the In
load the data bytes from buffer 0

The CCU updates the address and returns it to CSAR.
The service cycle operation resumes after the cycle steal opera-
ion is completed. This service-cycle cycle-steal routine keeps
repeating (without any normal program interrupts) until (1) th
CA4 detects an ETX or ETB character in the data transferred
from the channel provided the CA4 is in ESC mode and the
monitor control latches are set (see H-260), or (2) the CA4 has
received the number of data bytes equal to the desired count
in the 'CS byte count' register. Either condition resets the initi-
ate service latch that stops the service cycle operation and
requests a level 3 interrupt.

The type 4 channel adapter requests a level 1 interrupt whenever:

- A channel 'Bus-ln' check occurs.

The channel adapter hardware detects bad parity in the data byte being sent across the channel to the CPU.
The control program should respond to the inerrupt with an Input $X^{\prime} 67^{\prime}$ instruction to transfer the
contents of the error condition register to the CCU. contents of the error condition register to the CCU
Bit 1.0 should be transferred if a channel 'Bus-1n'

- An in/out instruction accept check occurs.

An in/out instruction accept check (invalid I/O op) occurs if the control program executes an Input or Output $X^{\prime} 60^{\prime}$ hrough $X^{\prime} 66^{\prime}$ or $X^{\prime} 6 C^{\prime}$ through $X^{\prime} 6 F^{\prime}$ instruction fer sequence. When the control program responds to th level 1 interrupt with an Input $X^{\prime} 67^{\prime}$, bit 1.1 is transferred to the CCU.

- A 'CCU Outbus' check occurs.

When bad parity is detected on the 'CCU Outbus', the CA requests a level 1 interrupt. Bit 1.2 is returned to control program executes an Input X'67' instruction in response to the interrupt.
A local store check occurs.
Bad parity being gated from the local store registers causes a level 1 interrupt request. Bit 1.3 is returned o the CCU from the error condition register when tion in response to the interrupt.

- An EB local store check occur

Bad parity being gated from the EB local store during nput $\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}$ or Input $\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}$ sets the 'local store check latch. The next Input $X^{\prime} 6 D^{\prime}$ instruction causes a level 1 interrupt request. Bit 1.3 is returned to the CCU from he error condition register when the control program
 interrupt.

- CS outbus check occurs

When bad parity is detected on the 'CCU Outbus' during a cycle steal data transfer, the CA requests a level 1 inter
rupt. Bit 0.0 is returned to the CCU from the 'CS error rupt. Bit 0.0 is returned to the CCU from the 'CS error
register' when the control program executes an In put $X^{\prime} 6 E^{\prime}$ instruction in response to the interrupt.

- CS inbus check occurs.

When the CCU raises 'bad data' to signal that the CCU has detected even parity on the 'CCU inbus' during a cycle-steal data transfer, the CA requests a level 1 interrupt. Bit 0.1 is returned to the CCU from the 'CS err put $X^{\prime} 6 E^{\prime}$ 'instruction in response to the interrupt.

- CS address bus check occurs.

When the CCU raises 'SAR even parity' to signal that the CCU has detected incorrect parity (even) on the 'CS adbus' during a cycle-data transfer, the CA requests a level 1 interrupt. Bit 0.2 is returned to the CCU from the 'CS error register' when the control program executes
Input $X ' 6 E^{\prime}$ instruction in response to the interrupt.

- CS address exception occurs.

When the CCU raises 'address error' without 'SAR even parity' to signal that the CCU has received an address from a type 4 CA that is beyond the storage capacity of the 3705 or that points to a protected area of storage, the CA requests a level 1 interrupt. Bit 0.3 is returned to the
CCU from the 'CS error register' when the control program executes an Input $X^{\prime} 6 \mathrm{E}^{\prime}$ ' instruction in response to the interrupt.

INITIAL SELECTIVE RESET, INITIAL INTERFACE DISCONNECT AND SERVICE SELECTIVE RESET-SELECTOR CHANNEL CONTROLS

The 'gate 60 or reset' $F L$ is to prevent losing a second interrupt
while the CA4 is handling a previous interrupt
During a normal initial select L 3 interrupt (not saused by selective reset or halt I / O), the 'gate 60 or reset' FL 1 is reset, which

- Prevents either inputting or resetting the 'initial selective
reset' FL or 'initial interface disconnect' FL
- Prevents the 'service selective reset' FL from being set

If selective reset or halt $1 / 0$ occurs during a normal initia elect L3 interrupt, their respective latch will be set and after the original initial select is reset $\mathbf{2}$, the two latches an be inputted and/or reset.
If the initial select L3 interrupt is caused by a selective reset or Halt I/O 3 (no initial select L3 interrupt was in progress), the two latches can be inputted or reset 4 The service selective reset can only be set when a tive) 5

Disconnect In is gated to the channel interface (A or B) when a hardstop condition occurs and the CA4 is actively operating with the channel.

0


```
A register direct operation, CCU 6-100
AA-ACO interfaces C-330
Mabor, SDLC B-061, B-520
*ctivating the control panel 1-060, 1-120
*ctive state, type 2 CA % 9.060
add character register instruction lollo, 60, 6-190, 6-220
dd halfword register instruction 6-150,6-190,6-220
dd register immediate instruction 6-150, 6-160, 6-170
Md register immediate instruction e- 6-150,6-6
    ddress, type 1 CA
        byte ranster 
    lol
sddress assignment, type 1 CA 8-000
ddress compare 
    interrupt 1-030
    program stop 1
    M
        1-030
    ADDRESS COMPARE light 
    Address failures, single bit, multiple address, bridge storage 7-100
    dress select
    lll
    #ddres subssitution
    type 2 communication scaner,
    Mypen communication scanner F-100
    ADDRESS/DATA switches 1-100
    addressing, bridge storage (7-010
    addressing failures, multiple bits, multiple addresses bridge
    djusting DC voltage D-230
    djustments
        bridge storage 7-160
        lol
    M,
    ALD references, line set C-160.
    Alow low priority latch, type 1 communication scanner A-050
    And character register instruction 6-150, 6-190, 6-220
    and hal fword register instruction 6-150, 6-190,6-220
    lal
    *)
    *)
    arithmetic operations 6-100
    array bridge storage 7-030
        FET storage board
        FET storage board
        FET storage board
        7.210
    asynchronous attention status, type 3 CA G-150
    *)
    attachment buffer address register
        level 2 interrupt B-310
            LIB identification B-360
```

auto-answer test
Emulation Program panel procedures C-430 IFTs C - 560
NCP of per panel procedures $\mathrm{C}-432$
auto call interface
LIB $7,9 \quad$ C -320
$\begin{array}{lll}\text { Line set } 1 \mathrm{E} \\ \mathrm{E} \\ \mathrm{C} & \mathrm{Cl} 220\end{array}$
auto call interface, type 2 communication scanner
abandon call and retry
$B-090$, abandon call and retry $\mathrm{B}-0990, \mathrm{~B}-150, \mathrm{~B},-260$
call originate status $\mathrm{B}-090 \mathrm{~B}, 150 \mathrm{~B}-260$ call originate status
call request
$\mathrm{B}-090, \mathrm{~B}-260, \mathrm{~B}$ call request
data line occupied
B-090,
digit $\begin{array}{ll}\text { digit present } & \mathrm{B}-090, \mathrm{~B}-260 \\ \text { interrupt remember } & \mathrm{B}-090, \mathrm{~B}-500, \mathrm{~B}-510\end{array}$ power indicator B-090, B-150, B-260
present next digit B-090, B-150, B-260
automatic call originate test
automatic call originate test
Emulation Program panel procedures C-430
IFTs C-570
IFTs C. 570
NCP or PEP panel procedures C-432
$\stackrel{B}{B}$ data
B data register
type 2 communication scanner B-150
$\begin{array}{lll}\text { type } 2 \text { communication scanner } & \text { B-150, } \\ \text { type } 3 \text { communication scanner } & \text { F-220, } & \\ \text { t-530 }\end{array}$
8 instruction $6-150,6,630,56-640$
B register direct operation, CCU
$\begin{array}{ll}\text { B register direct operation, } \mathrm{CCU} & 6-100 \\ B \text { segment of bridge storage module } \\ 7-030\end{array}$
back panel indicato
$\begin{array}{cc}\text { LIB } 6 \mathrm{AA} \text { and AEO } & \mathrm{C}-102 \\ \text { LIB } 7 \mathrm{ACO} \text { and AEO } \\ \text { C-103 }\end{array}$
LIB 7 ACO and AEO
LIB 8 AA C-104
$\begin{array}{lll}\text { LIB9ACO } & \text { C-105 } \\ \text { LIB } 12 \text { AA } & \text { C-108 }\end{array}$
maintenance procedures C-520, C-530, C-560, C-570
maintenance procedures
BAL instruction $6-150,6-560,6-570$
BALR instruction $6-150,6-190,6-240$
BALR instruction 6-150, 6-190, 6-240
BB instruction $6-150,6-630,6-660$
$\begin{array}{ll}\text { BB instruction } & 6-150,6 \\ \text { BCC read, LIB } \\ \text { C-030 }\end{array}$

BCT instruction 6 6-150, $6-630,6-680$
bid lever 2 interrupt, type 1 communication scanner, A-060
bi-directional interrupt signal line set 12A, 12B
bi-directional interrupt signal, line set $12 \mathrm{~A}, 12 \mathrm{~B} \quad$ C-011
bisync (see
bisync (see BSC)
bit clock control
bit clock control, LLB
ALU flowchart C-050
local store Co30
local store $\begin{aligned} & \mathrm{C}-030 \\ & \text { timings } \\ & \mathrm{C}-030\end{aligned}$
$\begin{array}{ll}\text { bit clock error, type } & 1 \\ \text { communication scainner } \\ \text { bit clock select, LLB } & \text { C- } 220\end{array}$
bit clock error, type
bit commm
bitck select, LLB
bit cont
C-030
bit control block addresses, type 1 communication scanner A-140

line set 1D, 1F, 1H, 1D $\quad \mathrm{C}-210$
line set $1 \mathrm{E} \quad \mathrm{C}-220$
line set $1 \mathrm{G}, 1 \mathrm{C}$
C-230
line set $1 G A, 1 T A \quad$ C-235
$\begin{array}{lll}\text { line set 1GA, } 1 T A & C-235 \\ \text { line set } 1 \mathrm{~S} & \text { C-242 } \\ \end{array}$
line set $1 \mathrm{~K}, 1 \mathrm{~S}, 1 \mathrm{U}$
$\begin{array}{ll}\text { line set 1N } & \mathrm{C} \text {-245 } \\ \text { line set } 1 \mathrm{R} & \mathrm{C}-247 \mathrm{~A}\end{array}$
line set $1 \mathrm{~W}, 1 \mathrm{Z} \quad \mathrm{C}-248$
line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}$
line set $\quad 5 \mathrm{~A}, 5 \mathrm{~B}, 6 \mathrm{~A}, \mathrm{C}-290$

Lin set $\quad 5 A, 5 B, 6 A \quad C-290$
7

line set 8A, 8B, 9A, 12A, 12B $\quad C-310$
line set $10 A, ~$
line set 11A, 11B
Lis set 7,9 autocall interface \quad C-320
$\begin{array}{lll}\text { bit service } L 2 \text { request, type } 1 \text { communication scanner } & A .040 \\ \text { A. }\end{array}$
board layout
type 2 communication scanner B-040
$\begin{array}{lll}\text { type } 3 \text { communication scanner, board E2 } & \text { F-050 } \\ \text { type } 3 \text { communication scanner, board E3 } & \text { F- } 060\end{array}$ $3705-11$ feature, Iocations
$\mathrm{E}-030$ ootstrap load 6-961
branch and link instruct idge storage, exposing 7-120
branch and link register instruction $6-5-150,6-570$
branch and link register instruction $6-150,6-190,6-240$
branch instruction $6-150,6-630,6-640,6.60$ branch instruction $6-150,6-630,6-640$
branch on bit instruction $6-150,6-630$,
branch on C latch instruction $\quad 6-150,6-630,6-640$
brent

branch on Z latch instruction $\quad 6-150,6-630,6-640$
break, line set 12A, $12 \mathrm{~B} \quad \mathrm{C}-300, \mathrm{C}-312$
break point/channel write command, type 2 CA 9.400
bridge storage module 7 -000
BSC CRC register $6-840$
BSC control character recognition, tycte 4 CA H-260
BSC, terminal operation
SS, 3 communication scanner F-425
BSC, type 3 communication scanner
receive F-470
receive
receive details $F-500$
transmit F-400
transmit details
F-420
BSM ${ }_{7-000}^{\text {transmit }}$
buffer address register-CSB, type 2 communication scanner,
program addressing $\mathrm{B}-290$
burst length jumper options
burst length, jumper op
type 4 CA H-000
bus lines data flow, type 3 CA G-020
bus terminator assemblies $\mathrm{E}-000, \mathrm{E}-020, \mathrm{E}-021$
business machine clock
$\mathrm{Cl}-\mathrm{O}$
busy state, type 2 CA
byte address
cose
$\begin{array}{ll}\text { byte address } \\ \text { type } 1 \mathrm{CA} & 8-100 \\ \text { type } 4 \mathrm{CA} & 8-080\end{array}$
$\begin{array}{ll}\text { type } 4 \mathrm{CA} & \mathrm{H}-080 \\ \text { byte address } E S C \\ \text { test } 1 / O\end{array}$ transfer, type 1 CA $8-190$
te address/command from ISACR
$\begin{array}{ll}\text { type } 1 \text { CA } & 8-070 \\ \text { type } 4 \text { CA } & H-050\end{array}$
byte address/status from local store
type $1 \mathrm{CA} \quad 8-150.8 .160$
$\begin{array}{ll}\text { type } 1 \text { CA } & \begin{array}{l}8-150,8.160 \\ \text { type } 4 \text { CA }\end{array} \\ H-010, H-020\end{array}$
$\begin{array}{lll}\text { byte count } & & \\ \text { type } 1 \text { CA } & 8-270,8-330\end{array}$
$\begin{array}{lll}\text { 4ype } 1 \text { CA } & 8-270,8-330 \\ \text { type } 2 \text { CA } & 9-470\end{array}$

ZL instuction 6 -150, 6-630, 6-640

C LEVEL light $1-020$
$\begin{array}{lll}\text { cable bus/tag } & \mathrm{E}-0000, \mathrm{E}-020 \\ \text { cabling, LIB } & \mathrm{C}-110\end{array}$
cabling, type 3 communication scanner F-050, F-060
Card functions and locations
CCU $6-000$
$\begin{array}{ll}\text { CCU } & \text { 6-000 } \\ \text { FET storage } \\ 7-210\end{array}$
$\begin{array}{ll}\text { FET storage } & 7-210 \\ \text { PDF array } & \text { F-390 } \\ \text { type } 1 \mathrm{CA} & 8-030\end{array}$

| PDF array | F-3.30 |
| :--- | :--- | :--- |
| type 1 CA | $8-030$ |
| type | |

$\begin{array}{lll}\text { type } 2 \text { CA } & 9.030 \\ \text { type } 3 & \text { CA } & \text { G.030 }\end{array}$
$\begin{array}{lll}\text { type } 3 \text { CA } & \text { G-030 } \\ \text { type } 4 \text { CA } & \text { H-030 }\end{array}$
$\begin{array}{ll}\text { type } 1 \text { communication scanner } & \text { A-020 } \\ \text { type } 2 \text { communication scanner }\end{array}$

type 3 communication scanner E3 board F-060
 power supply
$3705-1$
$3705-11$
6.010
ard layout, CCU data path 6-000
card positions, LIB
crar positions, L
type 1
C-07
type
type 2
type 3
$\begin{array}{ll}\text { type } 3 \\ \text { type } 4 & \text { C } \\ \text { tye } \\ \text { tye }\end{array}$
$\begin{array}{lc}\text { type } 4 & \mathrm{C}-100 \\ \text { type } & \mathrm{C}-10 \\ \text { type } 6 & \mathrm{c}-10\end{array}$
$\begin{array}{cc}\text { type } 6 & \text { c-102 } \\ \text { type } & \text { C-103 } \\ \text { type } & \text { C-104 } \\ \text { type } & \text { C-105 } \\ \text { type } \\ \text { type } 11 & C-106 \\ \text { c-107 }\end{array}$
$\begin{array}{cc}\text { type } 12 & \mathrm{C}-107 \\ \text { typ }\end{array}$
CAUTIONS
CCU, when
changing machine priorities 6 6-071
masking program levels
masking program levels
performing maintenance
$6-071$
performing maintenance $6-000$
control panel
address compare program stop
acc check light
$\begin{array}{ll}\text { cc check light } \\ \text { clock step procedure }\end{array} 1-160$
Clock step procedure 11.160
control panel test of CCU data path
diagnostic control switch
1.1110

$\begin{array}{l}\text { diagnostic control switch } \\ \text { diagnostic jumpering } \\ 1-200\end{array}$

diagnostic cumper ing sisplay
display function select switch
$1-040$
display/function select switch
enabie/disable switch 1 1-050

instruction step procedure 1-160
panel active light

panel active light
program stop light $1-090$
100

resetting the $370511-120$
set address and display
set address and display register procedure $1-130$
setting up and executing an instruction
setting up and executing an instruction
single addresses test pattern procedure
$1-150$
stop push button $1 .-070$
storage scan 1-140
store push button 1-070
storing a test pattern 1-140
stagnostic aids
dicegister 1-130
diagnostic aids
CF indicator card
$1-201, ~ F-680$
maintenance philiosophy
when replacing cards 0.000
power supply, when
performing maintenance procedures D-030, D-130, D-600
+6 circuit protector trips D-130
+6 circuit protector trips D-130
removal of SENSE wires D-140, D-360, D-550
removal of terminal board jumpers connected to
voltage D-140, D-360, D-550
removing or reinstalling laminar bus jumpers D-130, D-360, D-550
replacing cards D-060. D-600
scoping 'control gate' . with respect to the cathode D-190
substituting cards D-060, D-600
substituting cards $\mathrm{D}-060, \mathrm{D}-600$
working on voltage sequence problem D-060, D-600

ROS
el checking 2-070, 2-110
performing maintenance procedures 7.260
replacing BSM 7.100
replacing BSM 7-100
type 1 CA
address assignment 8.000

```
CAUTIONS (continued)
    using CE jumper 9-100
    disabling a channel H-000
CBS data coupler interface C-330, C-370, C-410
CC check
    bypass hardstop on 1-110
    hardstop on 
CC CHECK light 1-06
CC check lights, display A 1-010
CCU data path, control panel test of 1-1-170,1-190
CCU, introduction 6-0,
    type 1CA 8-360
    CE typurst length jumper
    options, type 4CA H-000
CE kev 1-030
CE usage meter 1-030, D-240
NE usage meter 1-030, D-240 (-2cion 6-000,0-050
chaining bridge storage modules }\mp@subsup{}{}{7
changing states, type 3 communication scanne
    PCF F-580
channel adapter, introduction 0.050
Channel adapter, selectiun, multiove CA4s H-130
    col
    lonnel
    #
    *)
    *)
    channel contratcs, commands 9.310
    c}\begin{array}{c}{\mathrm{ channee.interface 120}}\\{\mathrm{ disabling a 1.120}}\\{\mathrm{ enabling a 1-120}}
chanel read command, type 2CA 9-440
channel sense command
*)
Channel write command, type 2 CA 9.400 
\,
CHANNEL INTERFACE ENABLEIDISABLE switch 1-040, G040
CHANNEL INTERFACE ENABLE/DISAB
    col
```



```
    Cl
    character service}L2%\mathrm{ L2, request,type comummunication scannerer A-060
    c
    check,type1CA
    CCU outbus 8-360
    input/outp-in 8-360
    check lights p
    lock lighs 
```



```
gnostic bit service latch, type 1 communcation scanner A-300
B-511
    gnostic wrap mode
    ype 1 communication scanner A-340
        M
        #)
        test data lateh B-270
    type 3 or 3HS communication scanner
        * data register F-220
        force line interface latches F-210
        test data latch F-540
    Mrap F-7/0
diagnostic wrap
    pe 2 commun, (a)
    type 3 or 3HS communication scanner F-53
lor
diode
    locating an open or closed
#}\begin{array}{l}{\mathrm{ replacing an open 7-120}}\\{\mathrm{ disable all LIBs (ISS}}
    l
    type 3 or 3HS communication scanner F-270
disable interface
    lol
disabee ero--insert control type 2 communication scanner B-061
disable zero-insert remembrance-SCF 5 type 2 communication
disabled state type 3 CA G-000
dsabing a channel interface 1-120, G-04
lol
display register
    pe 2 communication scanner B-150
display register CS1 maintenance cycle \l-040,6-056
display register procedure 1-130,6-052
    type 2 communication scanner B-150
    type 3 or 3HS communication scarner F-220
lismlay storge CS1 maintenance cycle eren
display storage procedure 1-130
c
    los
    OP register 1-120, 1-040
    legister 1-130,1-040
    storage 1-130,1-040
    TAR 1-120,1-040
    TAR and the OP register 1.120
    \emporary address reg
lol
E EB mode, type 4 CA H-000
Emulation Program, modem panel procedures C-420B
```



```
Enablol
enable or disable type 3 CA interface 
enabling a channel interface 1-120;G-040
```

ENTERED interrupt Level lights 1020

equaliza
error
CCU
byte X error 6.980
$\begin{array}{lll}\text { byte } 0 \text { error } & 6-980 \\ \text { byte } 1 \text { error } & 6-980 \\ \text { clock error } & 6-981\end{array}$
clock error 6.981
Indata parity error
6.980
Interrupts, type 4 CA
H-380
Op req parity enror
O-980
$\begin{array}{ll}\text { Op reg parity error } & 6-980 \\ \text { prog lev } 1 \text { prog check } & 6.981\end{array}$
$\begin{array}{ll}\text { prog lev } 1 \text { prog check } \\ \text { SAR parity error } & 6-980\end{array}$
$\begin{array}{lll}\text { SAR parity error } & 6-980 \\ \text { SDR parity error } & 6-980\end{array}$
SDR parity error $6-980$
LIB, BCC (ocal store parity
C-120
LIB address \quad C-120
LIB address
type 2 CA
CCU
CCU inbus check $9-500$
CCU outbus check
CCU outbus check
channel bus-out check $9-500$
$9-500$
$\begin{array}{lll}\text { channel bus-out check } & 9-500 \\ \text { CWAR data buffer check } & 9.500\end{array}$
$\begin{array}{ll}\text { cycle steal address check } & 9.500 \\ \text { interface A A channel busin } & 9-500\end{array}$
$\begin{array}{llll}\text { interface A channel bus-in check } & 9-500 \\ \text { interface B channel bus-in check } & 9-500\end{array}$
interrupe 9 -500
invalid control word format 9.500
invalid control word for
invalid CWAR
$9-500$
error analysis procedure in ROS test
dual CA
dual CA 2.080
N ROS , type 4 CA $2-140$
N ROS, type 4 CA 2-140
type and anpe CA 2 2000
type 2 or type 3 CA $2-040$
type 2 or type 3 CA $2-040$
error detection, maintenance
error detection, maintenanc
erro isolation tools 0.000
error recording
error recording
emulation log out 0.000
maintenance philosophy of 0.000
mainetanchoe philosophy of 0.000
error recovercy procesures maintenance
error recovery procedures, maintenance phil
error reset, type 1 communication scanner
bit overrun A-300
deedback check A-300
dever
deedback check \quad - -300
level 1 checks $A-300$
ESC teel 1 checks $A-300$
Escest $1 / 0$ initial selection $L 3$ interrupt, type 1 CA $8-230$
ESC test $1 /$ i initial selection L3 interrupt, type 1 CA $8-230$
xceeding maximum storage $1-020$

exceeding maximum storage
exclusive-or character register instruction
e-150, $6-200,6-220$

exclusive-or character register instruction 6 -150, $6-200,6-220$
exclusive.or talfword reister instruction $6-150,6-200,6-220$
exclusive-or
exclusive-or halfword register instruction 6-150, 6-200, $6-220$
exclusive-or poparation, cce $6-100$

executing instruction from the control pa
exit instruction $6-150,6-700,6-750$
extended buffer mode, type 4 CA
extended buffer mode, type 4 CA
control register $\mathrm{H}-130, \mathrm{H}-140$
data cufer H-150, H-160
dequence charts H-200, H-220, H-240, H-270, H-290
sequence charts $\mathrm{H}-200, \mathrm{H}$
xtended ICW controls
extended CW controls
extended PCF
F.
$\stackrel{F}{\text { fault in }}$
fault indicators, power supply
LED positsions Dower sup
thermistor $D-020$
thermistor D-020
$3705-1$
$\mathrm{D}-020$
$3705-1$
$3705-11$
D-020

D-320,
D-520
$3305-11 \mathrm{D} \mathrm{D} .320, \mathrm{O}-520$
ault location, bridge storage
fault location, bridge storage 7 -100
feedback henek, type 1 communication scanner, Output
$X^{\prime} 41{ }^{\prime} \quad$ A-240
feedback heek,
X'41. A-240,
feedback error
$X^{\prime} 41^{\prime}$ A-240
feedback error. type 2 c
LCD field $\mathrm{B}-070$
feeaback error. type 2 co
LCD fiele. B-070
LIB interface 8.260
LCD field $\mathrm{B}-070$
LIB interface
B-260
LIB interface B-260
feedback error, type 3
edback errare tyye 3 communication scanner
LCD field $F-130$
LIB interface $F-530$
Eerrite core storagace $F=530$
ferrite core storage unit $7-000$
FET storage $7-200$
FET storage $7-200$
FET storage adress error procedure $7-290$
fied replaceable unit, replacing o-010

```
flag, SDLC B-520 ( %-280
flag detect predicted position, SDLC B-530
flag detection-SCF 5 type 2 communication sc
lim
flowchrt, LIB, BCC ALU C-050 9-280
force bit service request, type 1 communication scanner A-330
*)
lll
G
G
gate character service count, type 1 communicatio
Mgate character servic
_
l
gated timeout generation F-620 6-110 through 6-112
Hard stop latch,
    mard stop latch
M
Msets 1-080
hardware, allowable combination
hardware, allowable combinations E-040
1CYCLE light 1.010
MC instruction 6-150,6-270,6-290
ICW, data flow for test mode F-170
ICW, sync for scoping F-680
    ICW, type 3 or 3HS Scanner 
    sey bes or.1-0.5 Fcannes
    ler bet bit 4.5
set bit 5.5 F-700
typ 2 interrupt 
l
idle state (see wait state)
lin
    # inbound data transfer, type 1 CA % % %
```



```
in
    initial selection L3 interru
    sequence chart H-360 L3 interrupt H-350,H-370
    \begin{array}{c}{\mathrm{ Sequence charr. H-360}}\\{\mathrm{ nocond data tranfer, EB mode, type 4 CA H-250}}\end{array})
    M
    data/status L3 inaterrupt recognition
    BSC control character recognition H-26
    *)
    sequenceccharts H-270,H-290
    # sequence charts H-270, H-290
    inbound data tranfer ending,type 1CA 8-280
    lol
    lol
    l
    lol
    indictorligts charts and procedures, pow
lol
    lol
    *
    lol
```



```
    mitalization
    col
initialized state, type 2 CA \(9-080\)
IN/OUT CHECK light \(1.020-1\) input instruction
data flow \(6-710\)
\(\begin{array}{ll}\text { data flow } & 6-710 \\ \text { description } \\ 6-700\end{array}\)
\(\qquad\)
        \(6-770\)
6.780
6.790
    Inut \(\times 772^{\prime}\)
Input \(\times 13^{\prime}, 6\)
    \begin{tabular}{l} 
Input \(X^{\prime} 72^{\prime}\) \\
Input \(X^{\prime} 73^{\prime}\) \\
Input \(X^{\prime} 74^{\prime}\) \\
\\
\hline
\end{tabular}


    \begin{tabular}{ll} 
Input \(X\) \\
\(X^{\prime} 77^{\prime}\) & 6.810 \\
Input & \(X^{7} 79^{\prime}\) \\
6830 \\
\hline
\end{tabular}

    \(\begin{array}{cc}\text { Input } x^{\prime} 7 A^{\prime} & 6.831 \\ \text { Input } X^{\prime} 7 B^{\prime} & 6-840 \\ \text { Input } x^{\prime} 7 C^{\prime} & 6-880 \\ \text { Input } \times 7{ }^{\prime} 7 D^{\prime} & 6.841\end{array}\)


Input \(\times 7 F^{\prime \prime}\)
type 1 channel ada
Input \(X^{\prime} 60^{\prime}\)


        adapter
8.070
8.070
\(8-070\)


        \begin{tabular}{cc}
1 & 8.070 \\
\(2^{\prime}\) & 8.070 \\
\(3^{\prime}\) & \(8-100\) \\
\(4^{\prime}, 8-110\) \\
\(5^{\prime}\) & \(8-110\) \\
\hline
\end{tabular}

    \begin{tabular}{l} 
Input \(\times\) ' \(65^{\prime}\) \\
Input \(\times 66^{\prime}\) \\
\(8-120\) \\
\hline
\end{tabular}


                        8.130
cation scann
A-140
A-150
A-180


    Input \(X 42^{\prime \prime} A-150\)
Input \(X 43^{\prime}\)
Input \(X \times 44^{\prime}\)
\(A-210\)
\(A-210\)
Input \(X \cdot 43^{\prime} A-180\)
A-210
type 2 channel actap




    Input \(X ‘ 52^{\prime}\)
Input \(X^{\prime} 53^{\prime}\)
Inout
\(X\)


    \begin{tabular}{l} 
Input \(X, 56^{\prime}\) \\
Input \(X^{\prime} 58^{\prime}\) \\
Input \(X \cdot 5 A^{\prime}\) \\
\hline
\end{tabular}


Input \(X\) '5BC' \(9-260\)
type 2 Communication Scanner \(\quad\) B-110

    \begin{tabular}{l} 
Input \(\times 40^{\prime \prime}\) \\
Inpu \(X \times 13^{\prime}\) \\
In-120 \\
Input \(X \cdot 44^{\prime}\) \\
\hline
\end{tabular}

\begin{tabular}{ll}
150 \\
\hline
\end{tabular}
Input \(X^{\prime} 46^{\prime} \mathrm{B}\) -
type 3 channel adap





    Input \(X^{\prime} 46^{\prime}, X^{\prime} 45^{\prime}, X^{\prime} 47^{\prime}\)
In 210




    Input \(X^{\prime 6} 61 \prime\)
Input \(\times{ }^{\prime} 62^{\prime}\)
    Input \(X^{\prime} 62^{\prime}\)
Input \(X^{\prime} 63^{\prime}\)
    nput \(X\) ' \(63^{\prime}\)
input \(\times 64^{\prime}\)
input \(\times 65^{\prime}\)
    Input \(\times, 64^{\prime}\)
Input \(\times{ }^{\prime} 66^{\prime}\)
, 6,

    nput \(X ' 67^{\prime}{ }^{H-110}\)
Input \(X 6 C^{\prime}{ }^{H-130}\)
type 2 communication scanner B-140
type 3 or \(3 H S\).
隹
Input \(X^{\prime} 71\) '; executing when turning the ADDRESS/DATA
switches \(1-100\) out/output instruction decode, type 1 communication scanner A-130
input output instruction
type 1 CA \(\begin{aligned} & \text { instruction } \\ & 8\end{aligned}\)
\(\begin{array}{ll}\text { type } & \text { CA } \\ \text { type } 2 \text { CA } & 8.000 \\ \text { type } 4 \text { CA } & H-040\end{array}\)
insert character and count instruction 6 -150, 6-470, 6-480 insert character instruction \(6-150,6-270,6-290\)
instantaneous allegiance state \(\mathrm{G}-090\)
instantaneous allegiance state G-090
instruction, executing from the control panel 1-160
instruction decode, type 2 CA \(9-100\)
instruction decode restrictions, type 2 CA
instruction decoding \(6-150\)
instruction decoding 6 -150
instruction step \(1-160,1-030\)
instruction testing
dual CA 2.080
dual CA 2-080
\(N\) ROS, tye 4 CA 2.120
type
type 1 and type 4 CA 2.000
type 2 or type 3 CA 2.040
instruction 1 ycle 6.060
instruction 2 cycle 6.060
6.060
instruction 3 cycle \(6-060\)
instructions \(6-150\)
instructions tested
nstructions tested in ROS test
dual 2 2.080
N ROS, type 4 CA 2.120
type 2 or type 3 CA 2.040
integrated modem, panel procedures C-420B-C-432
integrated modem with break C-312
integrated modem wrap, type \(2 \mathrm{CS}_{8}\)
integrated modem wrap. type 2 CS
interface address
B. 512 , tye 2 Communication scanner B-280, B290
input \(\times 40^{\prime} \mathrm{B}-120\)
level 2 interrupt \(B-3\)
program adruptrssing B-320, B-330 B-290
interface address.
interface address, type
input \(\chi^{\prime} 40^{\prime}\) F-180
Interface e control word
type 2 communication scanner B-060
LCD field B-062
Local store-program addressing B-290
local store-scan addressing \(8-230\)
PCF store-scan addressing B.
sCondary control field B -
secondary control field
SDF \(\begin{aligned} & \text { B.opo } \\ & \text { work reaister } \\ & \text { B-220 }\end{aligned}\)

ype 3 or 3 HS communication scanner F-120, F-121
LCD field F-1
Byte 15 ( (SSC status) ) 150
Byte 15 (SLDC status) F-160
Byte 17 (extended ICW controls)
(19RFACE ENABLED light 1 1-050
interface string, LBE C-110
intermittent bridge storage failures \(7-130 ; 7-150\)
intermittent \(F E T\) storage address errors, procedure \(7-290\)
interrupt go, type 2 communication scanner
BSC receive \(B\)-20
BSC
BSC transmit B-4.
B.
condritionsmit that - cause B-310
c.

 interrupt levil 2, type 3 or 3 HS communit
interrpt initial selection, type 2 CA 9.33
inTER INTERRUPT push button \(1-080\)
interrupt request, type 1 CA
terrupt request, type 1 C
data/status L3 \(8-190\)
initial selection \(8-230\)
\(\begin{array}{lll}\text { program requested } L 3 & 8-140 \\ \text { iterrupt request level } 11 \text {, type } 1 & 1 C A & 8-360\end{array}\) interrupt requests assigned to program levels 6.08 interrupts 6 -080
introduction
control pan
\(\begin{array}{lll}\text { control panel } 0.050 \\ \text { cycle steal operation type } 4 \text { CA } & \text { H-300, H-340 }\end{array}\) cycle steal operation
type 1 CA
type 2 CA
2-000
\(\begin{array}{lll}\text { type } 2 \text { CA } & 9-000 \\ \text { type } 3 \text { CA } & -000 \\ \text { type } 4 \text { CA } & H-000\end{array}\)
\(\begin{array}{ll}\text { type } 1 \text { communication scanner } & \text { A-000 } \\ \text { typee } 2 \text { communication scanner } & \text { B-000 }\end{array}\) tye 2 communication scanner \(\mathrm{B}-000\)
3705 or 3 HS communication scanner
30.050 F-000
invalid channel commands \(9-31\)
INVALID Op light 1 1.020
//O check detection, type 2 communication scanner, program
1/O Check detection, type 2 commu
addresing B-290
\(1 / 0\) gate interfface connectors, LIB
type 1 communication scanner C-130
type 2 communication scanners 1 2nd
\(\begin{array}{lll}\text { type } 2 \text { communication scanners } 1 \text { and } 2 & \mathrm{C}-140 \\ \text { type } 2 \text { communication scanners } 3 \text { and } 4 & \text { C-150 }\end{array}\)
\({ }^{1 P L}\)
bootstrap load 6-961
initialization 6.960
phase 16.960
phase 1 and 2 timing 6.963
phase 1 and 2 timing, FET storage 6.964 \(\begin{array}{llll}\text { phase } 2 & 6-961 \\ \text { phase } 3 & 6.965\end{array}\)
souce switch \(1-000, \mathrm{E}-040, \mathrm{H}-\mathrm{OOO}\)
IPL data flow \(6-970\)
PLL PHASE
lights
\(1-02\)
IPL phase 1 and 2 timings
bridge storage
6.963

IPL phase 2, clock
1PL procedure \(1-12\)
17 cycle \(6-060\)
11 cycle 6.060
11 time 6.061
12 cycle 6.060
12 time 6.061
13 cycle 6.060
13 time 6.061
Jumpering
CCC
CEL
\(1-200\)
CCU \(1-200\)
CE burst length, type 4 CA H-000
test blocks \(1-300\)

\(\llcorner\)
Linstruction 6-150, 6-270, 6,390
LA instruction 6-150.6.56.,6600
LAMP TEST push
lamp test 1.160
lats liest state, generation \(F\) F.620
latches, type 1 communication scanner latches, type, 1 communication scann
allow low priority A. 050 aiow ow priority
bit overun \(A-300\)

 diagnostic bit service \(A\)
disable LIB \(A-310\)
feedback check \(A-240\)
feedback check A-240
mode override \(A-230\)
output
mode override A-230
output 47 A-330
override remember A-230
override remember A-230
scanner enabie
seast d-310
Stest data
LCD field
type 2 communication scanner B-062
type 3 or 3HS communication scanner

LCOR instruction 6-150, 6-200, 6-220
LCR instruction \(6-150,6-200,6-220\)
LED faut indicators \(\mathrm{D}-320, \mathrm{D}-520\)
level 1 interrupt, type 2 communication scanner
set by check register \(\left.\begin{array}{l}\text { B-130 } \\ \text { set by output } X^{\prime} 43^{\prime} \\ \text { B-170 }\end{array}\right)\)
ell 1 interrupt, type 3 or 3 HS communication scanner
set by check register


level 1 interrupt request, type. 1 CA \(8-360\)
level 1 interrupt state, type 2 CA \(9-060\)
level 1 interrupt state, ,type 2 CA \(9-060\)
level 2 interrupt, type 2 communication scanner
data flow \(B-300\)
data flow \(\mathrm{B}-300\)
examples \(\mathrm{B}-360\)

Priority registers
timing sequence
B-320
level 2 interrupt, type 3 or 3 HS communication scanner F-550, F-560
level 2 interrupt pending, type 2 communication
scanner \(\mathrm{B}-310, \mathrm{~B}-210\)
\begin{tabular}{l} 
level 3 interrupt state, type 2 CA \\
L-060 \\
\hline instruction \\
\(6-150,6-270,6-290\)
\end{tabular}
LHOR instruction 6 -150, \(6-200,6-220\)
LHR instruction 6-150, 6-200, \(6-220\)
LIB interface, type 2 conmuication scanner
LIB interface, type 2 communication
bit service request \(\mathrm{B}-150\), B-260
clear to send B-150, B-260
control in A, B, C B-260
control out A, B B-260
data set ready B-150, B-260
\(\begin{array}{ll}\text { echo check } & \text { B-260 } \\ \text { input } X & \text { '46' } \\ \text { B-150 }\end{array}\)
receive data buffer B-150, B-260
receive data space B-2
reauest to send
B-260
request to send B-260
ring indicator B-150, B-260
send data buffer B-260
transmit mode
LiB interface, type
3 or 3 HS
bit service request \(F-220, F-530\)
clear to send \(F-220, F-530\)
control in A B-C F-530
control in A, B, C F. 530
control out A, B F-530
control out A, B F-530
data set ready \(F-220, F-530\)
input X'46' \(F-220\)
receive data buffer \(F-220, F-530\)

ring indicator F-220,F-530
send data buffer F-550
send data buffer F-530
transmit modie \(F\)-530
LIB select
type 2 communication scanner B-220
type 3 or \(3 H S\) communication scaner
type 3 or 3 HS communication scanner
LB to communication scanner interface
C-020
LIB to line interface Co-020
LIB type, , line sets \(1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{GA}, 1 \mathrm{H}\)
LIB type 1 , line sets \(1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{GA}, 1 \mathrm{H}\),
\(1 \mathrm{C}, 1 \mathrm{C}-002\)
LIB type 1, , line sets \(1 \mathrm{~N}, 1 \mathrm{R}, 1 \mathrm{~S}, 1 \mathrm{~T}, 1 \mathrm{TA}, 1 \mathrm{U}, 1 \mathrm{~W}, 1 \mathrm{Z} \quad \mathrm{C}-010\)
LIB type 1 , line sets \(1 \mathrm{~N}, 1 \mathrm{R}, 1 \mathrm{~s}\),
LIB type 2 , line set \(2 \mathrm{~A} \quad \mathrm{C}\) - 010
LIB type 3 , line sets \(3 A, 3 B C-010\)
LB type 4 ,
LIB type 4 . line sets \(4 \mathrm{AA}, 4 \mathrm{~B}, 4 \mathrm{C} \mathrm{C}-010\)
LIB type 5 , line sets \(5 \mathrm{~A}, 5 \mathrm{~B}\) C-010

LIB type 6, line set
\(\mathrm{C}-010\)
LIB type 8, line set \(8 \mathrm{~A}, 8 \mathrm{~B} \quad \mathrm{C}-010\)
Lis type 9, line set 9 A
C

LIB type 11, line set 11A, 11B \(C-011\)
LIB type 12, ine set \(12 \mathrm{~A}, 12 \mathrm{~B}\) C-011
lights
LIB type
lights
displat
displat
\(\begin{array}{lll} \\ \text { display A } & 1-010 \\ \text { dispolay B } & 1-020\end{array}\)
isplay
control panel \(11-050,1.060, ~ 1-080, ~ 1-090 ~\)
line address bus
type 2 communication scanner
level 2 interrapt
evel 2 interrupt \(\mathrm{B}-320\)
program addressing
B-280 \(\begin{aligned} & \text { program addressing } \\ & \text { scan addressing } \\ & \text { B-220, } \\ & \text { B-230 }\end{aligned}\) type 3 or 3 HS communication scanner \(\begin{array}{ll}\text { receive C-180 } \\ \text { strobe } & \text { C-170 }\end{array}\)
transmit C-180
line set 1D, \(1 \mathrm{~F}, 1 \mathrm{H} \quad \mathrm{C}-200\)
line set 1D, \(1 \mathrm{~F}, 1 \mathrm{H}\) C-200
bit service \(\mathrm{C}-210\)
line interface \(\mathrm{C}-200\)
line interface \(\mathrm{C}-200\)
local attachment interface, 1 D and 1 F only \(\mathrm{C}-190\) receive \(\begin{aligned} & \text { C-210 } \\ & \text { strobe } \\ & \mathrm{C}-200\end{aligned}\)
transmit C-210
SNA and non-SNA terminals C-190
line set \(1 \mathrm{E} \quad \mathrm{C}-220\)
line set 1G, 1T C-230
bit service C-231
line interface C-230
line interface
receive \(\mathrm{C}-231\)
receive \(C-231\)
strobe C-230
transmit
\(\begin{array}{ll}\text { transmit } & \text { C-231 } \\ \text { ine ent 1GA } & 1 T A\end{array}\)
line set 1 1AA, 1TA
bit service C-235
lin
line interface C C-235
lece
leceive
C.235
\(\begin{array}{ll}\text { receive } & \mathrm{C}-236 \\ \text { strobe } \\ \text { transmit } & \mathrm{C}-235 \\ \mathrm{C}-236\end{array}\)

 ad with offset register instruction \(6 .-150.6-210 \quad 6.220\) LOADSTRRE ADDRESS COMPARE switch 1-060
local attachment interface, line set 1C, 1 D C -190
local attachment interface, line set 1F, 1D
C-190 local attachment interface, SNA terminals C-19 local store check, tepe 1 CA \(8-360\)
local store register controls \(6-110-6-112\)
ocation of logic pages by volume vol l-vi., Vol 2-VIII; Vol 3-VI
cations, bridge storage 7.090
ocations, FET storage \(7-200\)
ocations, 3705 feature board \(\mathrm{E}-030\)
locations, \(3705-1\) physical E-000
locations, \(3705-11\) physical E-020, E-021
cations, 3705 -I power supply
OXD gate with more than thre
OXD gate with only two tor three cards D-300, D-301
ogic pages by volume Vol \(1-\mathrm{X}\); Vol 2 -VII V :Vol D -501
ogic voltage levels D-230
OR instruction \(6-150,6-210,6-220\)
low priority scan counter, type 1 conication scanner A- 050
R instruction \(6-150,6-210,6-220\)
LR instruction \(6-150,6-160,6-170\)
M
machine cycles 6 -051
machine cycles, CCU 6 -050
maintenance charts and procedures, power supply
\(+20 V\)
\(+20 \mathrm{~V},-6 \mathrm{~V}\) regula
+6 V up \(\mathrm{D}-070\)
contactors on
EPO and +24 V
\(\mathrm{D}-129\)
EPO and + +24V D.120
isoiate to voltage and SCR D. 110
solation to a frame
isolation to a trame D.060
removal of shorts \(\mathrm{D}-130\)
removal of shorts \(\mathrm{D}-130\)
\(3700-11 \mathrm{D}-600\)
\(-4 \mathrm{~V}, 12 \mathrm{~V}-12 \mathrm{~V}\) up \(\mathrm{D}-080\)

\(\begin{array}{lll}\text { frame isolation, basic w/o mod pwr } & \text { D.600 } \\ \text { frame isolation, basic with mod pwr } & \text { D. } 602\end{array}\)
\(\begin{array}{lll}\text { prob. isolation, basic w/o mod pwr } \\ \text { prob. isolation, frame w/o mod } \mathrm{Dwr} & \mathrm{D} .605 \\ \mathrm{D} .610\end{array}\)
prob. isolation, basic frame with mod pwr D-620
prob. isolation, exp frame with mod pwr D. -630
-4 V undervoltage probe with mod pwr D .640



+12 V undervoltage prob with mod pwr D. 660
overvoltage prob with mod pwr mod pwir D-66
\(\begin{array}{ll}\text { maintenance eycle } \\ \text { disispay register CS1 } \\ \text { display storter } & 1-040\end{array}\)
\begin{tabular}{lll} 
display storaeg CS1 & 1.040 \\
store register CS1 & 1.040 \\
\hline
\end{tabular}
\(\begin{aligned} & \text { store storaese } \mathrm{CS1} 1 \\ & \text { maintenance philosophy } \\ & 0.0000\end{aligned}\)
maintenance phiosophy
maintenance procedures 0000

transmit test \(C\)-470
carrier detect test
receive test C-500
receive equalizer test \(\mathrm{C}-520\)
AEO test C-520
AEO test C-520
line side diagnostic
line side diagnostics C-540
AA fault location C.570
ACO fault location C C.570
LIB 8,9, 10,12 modems C .58 o
AA fault locatoin) C-560 C - 58
ACO fault location C- 570
ACO fault location C-570
tyainenance, scoping procedures
type 3 scaner \(F-680\). F-690
MAPs, \(3705-11\) power
masking program levels 6.071
(see ADDRESS EXCEPTION light)
easurement, dc voltage
\(\begin{array}{lll}\text { OXD gate with more than three cards } \\ \text { OXD gate with only two or three cards } & \text { D-230 } \\ \text { D-580 }\end{array}\)
memory (see storage
meter
CE usage
1.030
Customer usage 1 1.030
LIB 5 receive equalizer C-410A, C-420A, C-101
\[
\begin{aligned}
& \text { LIB } 5 \text { receive equalizer C-410A, C-420A, C-101 } \\
& \text { ode and line priority store, type } 1 \text { communication scanner A- } 178
\end{aligned}
\]
\[
\begin{aligned}
& \text { mode override latch, type } 1 \text { commin } \\
& \text { mode regiser, type } 2 \text { CA } 9.020
\end{aligned}
\]
mode select bits, type 1 communication scarner
\(\begin{array}{cc}\text { output instructions } & \text { A.250 } \\ \text { ODE SELECT switch } \\ 1-030\end{array}\)
mode selection, type 1 CA \(8-000,8-170\)
mode \(/\) EB, type 4 CA \(\mathrm{H}-000\)
mode/ESC,
\(\begin{array}{ll}\text { mode/ESC, type } 1 \text { CA } & 8-170 \\ \text { mode/NSC }\end{array}\)
mode/NSC, type
modem check
type 2 communication scanner, switched network B-460
type 2 communication somer input \(\mathrm{X}^{\prime} 44^{\prime}\) ' B-140 input \(\times 44^{\prime}{ }^{\text {B-140 }}\)
output \(\times 4^{\prime} 44^{\prime}\) B-180


odem self test B-512
dem wrap for LIBs 5, 6, and 7 , type 2 communicatio
\begin{tabular}{c}
\(\begin{array}{c}\text { scanner B-512 } \\
\text { nodem wrap, LIBs }\end{array}\) \\
\hline
\end{tabular}
hodem wrap test for 9,12 C-310
odification, type 2 communication scanner
address substiter
\begin{tabular}{l} 
daress substitution \(\begin{array}{l}\text { B-230 } \\
\text { counter register } \mathrm{B}-360\end{array}\) \\
\hline
\end{tabular}
upper scan limit B-230
dification, type 3 or 3 HSS communication scanner
addess substitution F -100
address substitution
upper scan limit. F-100, F-101
MST-1 CE indicator latch card 1 -201
multiple bit, multiple address bridge storage failures \(7-100\)
\(N\) ROS test 2-1
N ROS test
2-120
NCP or PPP, modem panel procedures
NCR instruction \(6-150,6-190,6-220\)
\begin{tabular}{l} 
eutral state, type \(3 \mathrm{CA} G \mathrm{CA},-190,6-220\) \\
\hline
\end{tabular}
NHR instruction. \(6-150,6-190,6-220\)
NR instruction \(6-150,6-190,6-220\)
NRI instruction 6-150, \(6-160,6-170\)
RZI mode, SDLC \(B-530\)
C status byte register
type 1 CA \(8-020\)
\(\begin{array}{lll}\text { type } 1 \text { CA } & 8-020 \\ \text { type } 4 \text { CA } & \mathrm{H}-020\end{array}\)

OCR instruction
OHR instruction
\(6-150,6-150,6-210,6-220\)
\(6-220\)
ones counter SDLC F-630, F -640
register, displaying the 1-120, 1-04
pen diodes in bridge storage 7-120
aut tomatic call originate C-350
binary synchronous terminal B-370
bit clock control sequence
\(C-040\)

dial flowchart B-510
read single byte, type 2 CA 9.461
start-stop C-040
start-stop sequence chart-switched B-390
synchronous (business machine clocking) C-040
write odd byte, type 2 CA \(9-430\)
10.
\(\begin{array}{ll}1050 \text { type terminal } & 8-430 \\ 2741 \text { type terminal } \\ \text { B-450 }\end{array}\)
operations, arithmetic \(6-100\)
\(\begin{array}{ll}\text { or character register instruction } & 6-150,6-6210,6-220 \\ \text { or hal fword register instruction } \\ 6-150,6-210,6-220\end{array}\)
hal fword register instruction 6-150, 6-210, 6-220
or operation, CCU \(6-100\)
register immediate instruction 6-150, 6-160, 6-170
register instruction 6 -150, 6-210,
ORI instruction 6 -150, 6 -160, \(6-170\)
oscillators, business machine C-040
thound data transfer, type 1 CA
data/status C interrupt
\(8-330\)
ending data/status LS interrupt \(8 \cdot 8340\)
initial selection \(\mathrm{L3}\) interrupt \(8-250\)
utbound data transfers, EB mode type 4 CA
automatic CA4 selection by priority \(\mathrm{H}-230\)
CA to channel data transfer \(\quad\) - -210
data/status L3 interrupt \(\mathrm{H}-240\)
ending data/status L3 in interupt
ending data/status Lz interrup
See also type 1 CA 8.340 .
initial selection 13 interrupt
initial selection L3 interrupt multiple type 4 CAs. H-190
outbound date transfers, cycle steal mode, type 4 CA H-300
CA to channel data transfer H-320
initial selection L3 interrup
sequence chart H- 330
outbound data transfer ending, type 1 CA \(8-340\)
output instruction \(6-700,6-730\)
executing from the control pal
utput instructions 6.870
\begin{tabular}{ll} 
entral control unit \\
Output \(X \times 00^{\prime}\) & to \(X^{\prime} 1 F^{\prime}\) \\
\hline
\end{tabular}\(\quad 6-870\)

\(\begin{array}{ll}\text { Output } X^{\prime} 72^{2} & 6-870 \\ \text { Output } x^{\prime} 73^{3} & 6.880,6,891\end{array}\)
\(\begin{array}{ll}\text { Output } \times \prime 77^{\prime} & 6.900 \\ \text { Output } & \times 788^{\prime} \\ 6-920\end{array}\)
Output \(\times{ }^{\prime} 79^{\prime}-6.930\)
Output \(\times 7 A^{\prime} 6.930\)
6.90
\begin{tabular}{lll} 
\\
Output \\
Output & \(\times 7 A^{\prime}\) & 6.930 \\
6.940 \\
\hline
\end{tabular}
Output \(\times 7 D^{\circ} 6.9\)

type 1 channel adapte
\begin{tabular}{lll} 
untput \(\times 62^{\prime}\) & \(8-0\) \\
Output \(\times 63^{\prime}\) & \(8-1\) \\
\hline
\end{tabular}

\(\begin{array}{ll}\text { Output } \times 65^{\prime} & 8-110 \\ \text { Output } \times 6.66^{\prime} & 8.120 \\ 8.8120\end{array}\)
type 2 channel adapter
Output \(\times 50\) apter
O-110
\(\begin{array}{ll}\text { Output } X \times 53^{\prime} & 9-120 \\ 9-140\end{array}\)
Output \(\times\) '54, \(9-160\)
\begin{tabular}{l} 
Output \(\times \times 56^{\prime}\) \\
\(9-180\) \\
\hline
\end{tabular}


\(\begin{array}{ll}\text { Output } \times{ }^{\prime} 5 A^{\prime} \\ \text { Output } & X^{5} 5 B^{\prime} \\ 9\end{array}\)
Output \(\times{ }^{\prime} 5 B^{\prime}\)
Out \(\times 15 C^{\prime}\)
\(9-250\)
\(9-260\)


PDF array control register/status register type 3 or 3HS
communication csanner \(F .490\) PCF changing states \(F\)-580
PDF array F-390
PDF array address selection F-390
PDF/CS pointer selection \(\mathrm{F}-392\)
physical locations
bridge storage 7.090
EET storae
FET storage 7.200
RPL diskette drive
RPL diskette drive
\(3705-11\) E-020
plane of storage bridge module 7.030
pot and filter card power supply D-1
power check \(3705-1\)
fault sense power off D-010
flowchart \(\mathrm{D}-010\)
thowchart D-010
thermal sense power off D.010
power check \(3705-11\) fault sense power off
flowchart \(D-310, ~ D-510\) thermal sense power off D-310 POWER CHECK light 1.060
power zontrol cable plugs, power supply, 3705-I D-000
power control cable plugs, power supply, \(3705-11\)
OXD gate with more than three cards \(\mathrm{D}-300\)
OXD gate with only two or three cards \(\mathrm{D}-500, \mathrm{D}-505\)
power distribution
power distribution
basic frame, \(3705-1\) D.030
expansion frame, 3705-1 D.040
basic frame, \(3705-11 \mathrm{D}-330\) or D-530
expansion frame \(3705-11 \mathrm{D}-340\) or D 540
\(\begin{aligned} & \text { expansion frame, 3705-11 } \\ & \text { power down sequence, } 3705-1 \\ & D-250\end{aligned}\)
power down sequence, \(3705-1\)
power down sequence, 3750511
OXD aate with only two or three cards D-370
POWER OFF push button 1.100
power on, changes storage protection keys 6-040
OWER ON nus byton \(1-100\)
power supoly adjustments for bridge storaee \(7-160\) power-off override
\(3705-1\)
D. 250
\({ }_{3705-11}^{3705}\) with more than three cards in OXD gate D-370
power-off procedure
power-on procedure
1.120
power-on sequence, power supply, 3705-1 D-050
wer-on sequence, \(3705-11\)
\(\begin{array}{ll}\text { OXD gate with more than three cards } \\ \text { OXD gate with only two or three cards } & \begin{array}{l}\text { D. } 350 \\ \text { D. } 540\end{array}\end{array}\)
preventive maintenance E-010
priorities
changing machine 6.071
changing machine
interrupt 6 -090
machine cycle 6.070
program level 6 -080
program level 6 -080
selection, multiple CA4s
priority bits \(1-2\), type 2 communication scanner B-310, B-210
priority bits 1-2, type 3 or 3 HS communication scanner F-210
priority counter, 1 , 1 comunication scanner A. 1 coso
priority counter, type 1 communication scanner A-O50
priority register, type 2 communication scanner, scanner code
identification B-320, B-360
problem definition 0.000
problem determination 0.000
problem determination
problem isolation 0.010
por
Pron
\(\begin{array}{ll}\text { Probiem isolation } & 0.010 \\ \text { PROG LEV } 1 \text { light } & 1.020 \\ \text { PROG LEV } 2 \text { light } & 1-020\end{array}\)
\(\begin{array}{lll}\text { PROG LEV } 2 \text { light } & 1-020 \\ \text { PROG LEV } 3 \text { light } & 1-020\end{array}\)
\(\begin{array}{ll}\text { PROG LEV } 4 \text { light } & 1.020 \\ \text { PROG L1 light }\end{array}\)
PROG L1 light 1.010
program addressing, type 2 communication scanner,
cru time
program addressing, type 3 or 3 HS communication scanner, CCU
program addressing, type 3
time F .010
\(\begin{array}{ll}\text { time } \\ \text { program display } & 1-080\end{array}\)
\(\begin{array}{lll}\text { program display } \\ \text { PROGRAM DISPLAY light } & 1.080\end{array}\)
arogram flag, type 2 communication scanner
input \(\times 44^{\prime}\)
B-140

program flag, type 3 or 3 HS communication scanner
input \(X \cdot 44, \mathrm{~F}-210\)
\begin{tabular}{ll} 
input \(\times 44^{\prime}\) & F-210 \\
output \(\times \cdot 44\) \\
\hline
\end{tabular}
program level priorities 6 -09
program level 3 interrupt, requesting a \(1-120\)
active level in ENTERED INTERRUPT lights \(1-020\) description 6-080, 6-081
program stop atch
reset \(1-090\)
set \(1-090\)
PROGRAM STOP light 1-090
PROTECT CHECK Light
PROTECT CHECK
protect key 6.040
protected data, attempt to change (see PROTECT CHECK light)
protected storage
protection, storage 6.040
6.040
protection, starage
protection exception 6.040
\(6-040\)
pseudo character control block, type 1 communication
scanner A A
\({ }^{R}\) R instructions 6 -150, 6-560
random storage failures \(7-130-7-150\)
read cycle for bridge storage \(7-030\)
read gate drivers 7 7.020
read gate drivers \(7-0020\)
read-only storage test
dual CA \(2-080\)
N ROS, type 4CA \(2-120\)
type 1 and type 4 CA 2.000
type 2 or type 3 CA 2.040
reatout, estructive in brige storage 7.030
read/write in storage bridge \(7-030\)
\(1 \begin{aligned} & \text { receive } \\ & \text { lin }\end{aligned}\)
line set 1A, 1B, 1C, 1D C-180

line set \(1 \mathrm{G}, 1 \mathrm{~T} \mathrm{C} \mathrm{C}\) C-230
line set 1/ \(\mathrm{C}-242\)

\(\begin{array}{lll}\text { line set } 1 \mathrm{~N} & \mathrm{C}-246 \\ \text { line set } 1 \mathrm{R} & \mathrm{C}-247 \mathrm{~A}\end{array}\)
line set 1R \(\quad \mathrm{C}-247 \mathrm{~A}\)
line set 1W
line set 2A. \(3 \mathrm{AA}, 3 \mathrm{C} .4 \mathrm{AA}, 4 \mathrm{~B}, 4 \mathrm{C} \quad \mathrm{C}-250\) line set \(5 \mathrm{~A}, 5 \mathrm{~B}\),
LiB 7 C -290
line set \(8 \mathrm{~A}, 8 \mathrm{BB}, 9 \mathrm{~A}, 12 \mathrm{~A}\)
line set 12 A
C
l-315
ine set 10A C-315
line set 11A, 11B C-319
line set 11A, \(11 \mathrm{~B} \quad \mathrm{C}\)-319
receive detais, communication scanner, type 2
(S-S) SDF to PDF transfer \(\mathrm{B}-490\)
BSC
B-40
BSC
SDLC
B- 8.560

receive details, communication scanner, type 3 or 3HS
BSC F-500
SDLC
F.510
eceive line signal detector, type 2 communication scanner \(\begin{array}{ll}\text { input } X \times 44 & \text { B-140 } \\ \text { input } X \times 46 \text { B } \\ \text { B-150 }\end{array}\)
switched network B-460
receive line signal detector, type 3 or 3 HS communication scanner input X'4F'
input \(X \times 46\) '
F-240
regenerative gate, power supply, -4V SCR D-170
register, type 2 CA
bus out 9.020
check 9.020
command 9.020
control channel adapter 9.020
control word byte count 9.020
cycle steal address 9.020
data buffer 9.020
dita bund control word address 9.020
inbound contro word address 9.020
mode 9.020
outbound control word address 9.020
outbound control word address 9.020 sense 9.020
status 9.020
register addresses 6-151
register and external register instructions 6.700
register and immediate address instructions 6.560
register and storage instructions 6 -270
register and storage with addition instructions 6.470
register branch or register and branch instructions 6.630

register to register instructions 6-190
rejecting channel commands, type 1 1CA 8 -160
REMOTE/LOCAL POWER switch \(1-1.100\)
removal, bridge storage module 7-120
removing the bridge storage module 7.120
repair verification, part of maintenance philosophy 0.000
repair verification, part of maintenance phil
repiacing a field replaceable unit
replacing an ooen diode
replacing a ifild replaceabbe uni
replacing an open diode \(7-120\)
requesting a program level 3 interrupt 1.120
reset ICW bits \(13.0,13.1,13.6\) and 13.7
type 3 communication scanner \(\mathrm{F}-570\)
reset, system or selective,
type 3 CA \(G-170\)
type 4 CA selector channel H-390
eset control function, type 2 communication scanner,
eset control function, type 3 or 3 HS communication scanner

RESET push button \(1-070\)
rese-select LiB, type 3 or 3 HS communication scanner
control out A and B B-260,

rese--select LIB, type 3 communication scanner
output \(X^{\prime} 43^{\prime} \mathrm{F}\)-270
output \(X 43\)
esetting a ccu check \(1-120\)
resetting the CCU, disabbes storage protection 6-040
resetting the \(37051-120\)
estrictionsi/isstruction decode, type
R1 instructions \(6-150,6\) - 6 -160, \(6-170\)
ROS bootstrap load 6.961,
ROS load clock step thru 1.200
St test
dual CA \(2-080\)
R ROS test 2.120

RPL and CA combinations E - O -
RS instructions 6-150, 6-270
RSA instructions 6-150, 6 -470
RT inst
s
sample bit service, type \(i\) communication scanner
A.-030
ample receive data, type 1 communication scanner A-030
sample receive data, type 1 communication scanner A-030
SAR light 1-010
menncation scanner F.090
scan
scan addressing, trye 2 communication scanner time \(\begin{aligned} & \text { B.010 } \\ & \text { scan addressing, type } 3 \text { or } 3 \text { HS communication scanner time }\end{aligned}\) F-010, F-101
scan addressing examples, type 2 communication scanner \(B-250\)
can counter, type 2 communication scanner B-230, B-240
can counter, type 3 or 3 HS communication scanner
sc.n+ counter bit definitions, type 1 communication
\begin{tabular}{l} 
scanner \(A-140, A-330\) \\
\hline
\end{tabular}
scanner disable latch, type 2 scanner, output X'43' B-170, B-270
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{scanner disable latch, type 3 scanner, output X'43'F.2
scanner enable, type 1 communication scanner A. 310 scanner selection, type 2 communication scanner, program addressing B-290} \\
\hline \multicolumn{4}{|l|}{scanning} \\
\hline \multicolumn{4}{|c|}{storage 1.140} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{scope points, , CCU \(11-200\)
scope points, type 3 scanner}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{scope points, type 3 scanner} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{sync generation F-680
scoping hints and precautions, modems c-400}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{scoping hints and precautions, modems C-4 scoping loop, setting up IFT \(\quad 1.200\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{scoping procedures
sense bitall addresses
/-050}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{sense bit-single addaress
senselininit
7.050}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{SCF, bits 1.5 F.610} \\
\hline \multicolumn{4}{|l|}{SCR, power supply} \\
\hline \multicolumn{4}{|c|}{checking for shorts in -4V D. 180 or D-565} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{checking -4V D-170 or D-560}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{locating shorted SCR except 4 V D. 160 or D. 565} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & SCR control card, power supply D-190 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{pot and filter card D. 190
SCR control card D -190} \\
\hline \multicolumn{4}{|l|}{SCR instruction \(6-210,6-220\) or D-570, D-575} \\
\hline \multicolumn{4}{|l|}{SDF, forcing control characters and constants F-395} \\
\hline \multicolumn{4}{|l|}{SDLC} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\({ }_{\text {abort }} \mathrm{B}-520\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{flag B-520} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{flag detect predicted position B-530
frame detect 8.062}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{ICW bits 34-36 (ones counter), type 2 communication scanner B-081} \\
\hline \multicolumn{4}{|c|}{ICW bit 37 (last line state), type 2 communication scanner B-081} \\
\hline \multicolumn{4}{|c|}{ICW bit 44 (NRZI control), type 2 communication scanner B-081} \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{ICW bits, type 3 or 3 HS communication scanner F-120, F-121 LCD, type 2 communication scanner B-062}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{\(\begin{array}{ll}\text { LCD, type } 2 \text { communication scanner } & \text { B-062 } \\ \text { LCD, type } 3 \text { or } 3 \text { SS communication scanner } & \text { F-130 }\end{array}\)} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{modes of operation}} \\
\hline & & & \\
\hline & \multicolumn{3}{|l|}{NRZI
zero bit
Bsersion/deletion
e-530} \\
\hline \multicolumn{4}{|c|}{} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{receive sequence \(B-560\)} \\
\hline \multicolumn{4}{|c|}{SCF, type 2 communication \(\quad\) - 061 start of frame B-520} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{terminal operation, type 3 or 3 HS communication scanner transmission frame format B-520}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{transmit sequence, type 2 communication scanner B-540}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{transmit data flow, trye 3 or 3 HS communication scanner F-440
SoLC ones counter F .60 F -640}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SDLC ones counter F-630, F-640
SDLC receive, data flow, type 3 or 3 S communication scanner \(\quad\)-520}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{SDLC receive, data flow, type 3 or 3 HS communication scanner
SDLC receive, type 3 or 3 HS communication scanner
F-510} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SDLC transmit, type 3 or 3 HS communication scanner \(\quad\) F-430
SDR light
seolo
secondary control field, type 2 communication scanner}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{secondary control field, type 2 communication scann
ICW
B-061} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ect, LIB C-120}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{selecting local store registers 6-110-6-112 selection address, type 2 CA \(9-000\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{selection address, type 2 CA \(9-000\)
selection cycle steal rate, type 2 CA 9.000} \\
\hline \multicolumn{4}{|l|}{selection cycle steal rate, type 2 CA 9.000} \\
\hline
\end{tabular}
```

selector channel, type 4 CA
initaa interface disconnect H-390
initial selective reset H-390

Sense bit definitions 8.-160,9-150
*)
sense/inhibit scoping procedures 7-050
l
start-stop bit clock control c--050
sequnhronous bit clock
*)
channel service cycle H-220, H-270 (ind e
inbound datat transfers, EB mode m-270
lol
*)
\,
service request interlock, type 3or 3HS communication scanner F-210
service techniques and special tools c-40
dB meter and, uses c-400
line scoping procedure C-400

```

```

\$ set address and display yegister procedure 1-130
set address and display storage erocedure 1-130
set control function, type 2 communication scanner, output
set control function, type 2 communication scanner, output
set control function, type 3 or 3HS communication scanner, output

```

```

type
type 2 communication scanner, control out/in A B-260, B-270
\#ype 2 communication scanner, control out/in A B-2
l
etting up and executing an instruction from the
setting up and executing an instruc
Nhitt right operation, CU 6-100
\,
Mmulation rin in RROS test.
lol
lyme}$$
\begin{array}{l}{\mathrm{ type 1CA 2-000}}\\{\mathrm{ type 2 CA 2-040}}
*)
single address test pattern cycles 6-054
single address test pattern procedure 1-150, 1-110
single current telegraph adapter C-270
| SNA terminal,1D and 1F line set C-190
solder connections 7-10
solder connections
SR instuction 6-150, 6-210, 6-220
SRI instruction 6-150,6-160, 6-170
tack bits, type 1 communication scanner. A-260
START push button 1-070,6-069
 \ state change, type 3 or 3H
 PCF F-580, F-560
_ sC%c.forscoping F-680
 lol
```
taus register. PDF aray/control register type 3 or 3 HS communication
status register, PDF
scanner \(F-490\)
status rejecting channel commands, type 1 CA 8-160
tatus transfer, type 1 C
ESC test I/ 88.230
ESC test \(1 / 2\) O \(8-230\)
final inbound ESC
\(\begin{array}{ll}\text { final inbound ESC } & 8-280 \\ \text { final inbound NCS } \\ \text { final outbound ESC } & 8.280 \\ 8.340\end{array}\)
\(\begin{array}{lll} & \\ \text { inal outbund ESC } & 8.2840 \\ \text { inal outbound NSC } & 8.340\end{array}\)
nCs testl/O \(8-230\)
N
No-Op \(8-210\)
status transfer ESC I/O, type 1 CA \(8-220\)
STC instruction 6151 .
STCT instruction 6 6-150, \(6-270,6-530\)
STH instruction 6-150, 6-270, \(6-360\)
\(\begin{gathered}\mathrm{S}-\mathrm{S} \text { receive } \\ \mathrm{S}-\mathrm{S} \text { transmit } \\ 8-490 \\ \mathrm{~B}-480\end{gathered}\)
STORAGE ADDRESS/REGISTER DATA switches \(1-100\)
storage (bridge) 7 -000
\(\begin{array}{ll}\text { address register bits } & 7-110\end{array}\)
adjustments
array
\(7-030,7-160\)
7.031
array \(7.030,7-031\)
clock \(7-080\)
controls to CCU 7-070
cycle 7.080
cycle timing 7.08
cycle timing
data flow \(7-0000\)
data flow
data CCU
7.060
data register bit failures 7.040

failures,
introduction
0.050
key 6 -040
protection
evotection 6 -040
scan \(1.140,1-110,6-063\)
test pattern \(11-140,111\)
test patter) \(1-1-10,6.1-110,6-060\)
storage (FET)
\(7-200\)
address error procedure 7.290
board layout procedure \(7-210,7-211\)
data flow \(7-220\)
data flow \(7-220\)
\(\begin{array}{lll}\text { diagnostic repair operation } \\ \text { in a single address } & 7-240\end{array}\)
in storage locations \(11.140,6-057\)
maintenance procedure 7.260
maintenance procedure \(7-260\)
physical locations \(7-200\)
physical locations
timing chart \(7-250\)
store character and count instruction 6 -150, 6-470, 6-530
store character instruction tore character instruc
store compare
\(1-060\)
store halfward instruction 6-150, 6-270, 6-360
tore instruction \(6-150,6-270,6-430\)
Store instruction at address \(X\)
STORE push button 1.070
store register CS1 maintenance cycle 1-040, \(6-054\)
store stack bits, type 1 communication scanner A-260
store storage CS maintenance cycle \(1 .-40,6-057\)
tore storage CS maintenance
storing data
strobe
line set 1A, 1B, 1C, 1D C-170
line set \(1 \mathrm{~A}, \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{C}\)
line set \(1 \mathrm{D}, 1 \mathrm{~F}, 1 \mathrm{C}\) - 200
line set \(1 \mathrm{G}, 1 \mathrm{~T} \mathrm{C}-230\)
line set 1G, 1T C-230
\(\begin{array}{lll}\text { line set } 1 G A, 1 T A & C-235 \\ \text { line set } 11 \mathrm{C}\end{array}
$$\)
line set $1 \mathrm{~K}, 12 \mathrm{~S}, 1 \mathrm{U} \mathrm{C}$-243
line set $1 N \mathrm{~N}$ - 245 C

line set 2A, 3A, 3B, 4A, 4B, 4C $\quad C-250$
line set 5A, 5B, 6 C

LIB 7 C-280
line set 8A, 8B, 9A, 12A, 128 C. 30
line set 10A C-314 C. 315 .

strobe setting reoptimization 7-160
$\begin{array}{ll}\begin{array}{ll}\text { output X'41' } \\ \text { scan addressing }\end{array} & \begin{array}{ll}\text { B-230 }\end{array} \\ \text { B-230 }\end{array}$
scan addressing
substitution control register, type 3 communication scanner
output X'41' F-250
scan addressing $F \cdot 220$
subtract character register instruction
S.150, 6-210, $6-220$
 subtract operation, CCU 6-100
subtract register immediate instruction 6.150.6.160, 6-170
summary LCD code changes B-062
switched state, type 3 CA G.000

## $T$

Ttimes displayed on control panel 1.010
tag lines data flow, type 3 CA $G$ G-010
tag terminator assemblies $\mathrm{E}-000, \mathrm{E}-020, \mathrm{E}-02$
TAR, display 1.040
technology-related tools E-010
telegraph adapter C-270
terminal, SNA line set 1D and $1 \mathrm{~F} \quad$ C. 190
terminators bus/tag $\mathrm{E}-000$.
terminal oneration, type 3 or 3 HS E-021
bissync F-2225,F, F.426
SDLC F-445, F-446
test block 1.300
test data latch
type 1 communication scanner A-340
tyen
type 2 communication scanner, diagnostic wrap
mode $B-270,8-511$
type 3 or 3 BS communication scanner, diagnostic wrap
mode F .540
mode F.540,
test equipment
TEST light
$1-080$
test mode latch
reset 1.080
$\begin{array}{ll}\text { reset } & 1.080 \\ \text { set } \\ \text { St.080 }\end{array}$
test programs 0.000
test register under mask instruction 6-150, 6-160, 6-170
Test 2 (modem)
est 2 (modem)
Emulation Pro
Emulation Program panel procedures $\mathrm{C}-420 \mathrm{~B}$
IFTs
$C-440$

Emulation 1 PTo panel procedures C-420B
IFT's $\mathrm{C}-440$
Test 4 modem)
Emulation Program panel procedures C-4208
$\mathrm{IFT}^{\prime}$ 's $\mathrm{C}-440$
timing

storage (bridge) addressing
storage (bridge) cycle $7-080$
timing charts
asynchronous attention status, type 3 CA G-160
asynchronous device end, type 3 CA
automatic call originate $\mathrm{C}-340$
auto-answer C-360
channel interface sequ
$\begin{array}{lll}\text { channel interface sequences } & 8-380 \\ \text { clock and (bridge storage) } & \text { F-070 }\end{array}$
clock and (bridge storage) $F-070$
clock and ( $F$ ET storage)
contingent state,
contingent state, type 3 CA G-1 20
$\begin{array}{ll}\text { control in } A, B, \text { and } C & A-190 \\ \text { control in } A, B \text {, and } C & A-200\end{array}$
cycle steal transmit, type 3 communication scanner F-370
cycles steal receive, type 3 or 3 HS communication scanner F460
fautt sense power check D-010
cycle steal receive, thee
faut sense power heck D.010 communication sc
fault sesse power check. $3705-11$
D. 310 or D-510
FET storage, output $\times \times 44-47^{\circ}$
increment scanner $A-030$
increment scanner A-030
indicator light supoly
indicator light supply/controls D-210 or D-570
IPL phase 1 and 2 timing
brige storage 6.963
FET storage 6.964
LIB $5,6,7$ transmit/receive C-39
LIB $5,6,7$ transmit/receive $C-390$
long term allegiance, type 3 CA G-110
long term aliegiance, type 3 CA G $^{-1}$
low priority scan example A-050
output $X^{\prime} 41^{\prime} \quad A-240$
output $\times 146^{\prime} A-320$
output $X^{\prime} 46^{\prime} A-32$
power off $D-250$
power on D-050
power off, 3705-11 D-370
power on, $3705-11$ D-350 or D.540
sample bit sevice $A-030$
sample receive data $A-03$
sample receive data $A-030$
SDLC receive sequence $B-56$
SDLC receive sequence $8-560$
SDLC rensmie seauence
set
B-540
set bit senvice L2 latch A-04
storage (FET)
thermal sense power check 3705-1
D.010
thermal sense power check, 3705-11
OXD gate with more than three cards
D-310
OXD gate with only two or three cards
D. -510
OXD gate with only two or three cards D-510
type
$12 \mathrm{~A}, 12 \mathrm{~B}$ break $\mathrm{C}-311$
timeout, counter bisync F-630, F-640
toos ansmit
tran
cycle steal operation, type 3 or 3 HS communication
scanner set $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D} \mathrm{C}-180$
Mine set $1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{IC}, 1 \mathrm{D} \mathrm{C}$ C-210 C
lin
line set $1 \mathrm{G}, 1 \mathrm{~T} \mathrm{C}-240$
line set $1, \mathrm{C}-242$
line set 1 J C-242
line set $1 \mathrm{~K}, 1 \mathrm{~s}, 1 \mathrm{U} \quad \mathrm{C}-24$
$\begin{array}{ll}\text { line set 1N } & C-246 \\ \text { line set } 1 \mathrm{R} & \mathrm{C}-247 \mathrm{~A}\end{array}$
line set $1 R \quad$ C-247A
line set $1 \mathrm{~W}, 12 \quad \mathrm{C} .249$
line set $1 \mathrm{~W}, 1 \mathrm{Z}$

line set $2 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C} \quad \mathrm{C}-26$ | line set 5A, 5 BB |
| :--- |
| 41 C |

line set 8A, 8B, 9A, 12A, 12B C-310
$\begin{array}{ll}\text { line set 10A } & C-314 \\ \text { line set 11A }\end{array}$
transmit details, type 2 communication scanne
(S-S) PF to to SDF transfer B-480
BSC B-410
BSC B-410
start-stop
B-4
transmit details, type 3 or 3 HS communication scanne
$\begin{array}{ll}\text { BSC } & \text { F.420 } \\ \text { SDLC } \\ \text { F. } 430\end{array}$
transmit sequence, type 2 communication scanner
BSC $\begin{aligned} & \text { B.400 } \\ & \text { SDLC } \\ & \text { B-540 }\end{aligned}$
$\begin{array}{ll}\text { SDLC } & \text { B-540 } \\ \text { start-stop } & \text { B-470 }\end{array}$
TRM instruction 6-150.6.160.6-170
trouble analysis flowchart 0.010
type 1 communication, scanner, introduction 0.050
type 1 communication scanner, introductio
type 2 attachment base $\mathrm{B}-020, \mathrm{~F}-020$
type 2 channel adapter, introduction 0.05
type 2 channel adapter states $9-060$
type 3 communication scanner, introduction 0.050
type 3 CA bus lines data flow G .020
type 3 CA response to system and selective reset G-170
type 3 CA selection from a neutral state G .080
type 3 CA tag lines data flow G-010
type 3 channel adapter, introduction $0.050, \mathrm{G}-000$
type 3 or 3 HS communication scanner introduction F.000
type 3 or 3 HS scanner data flow F-030
type 4 channel adapter
introduction $H$-000
multiple
$N$ channel ROS
ROS
unde
underrun, type 2 communication scanne
$\begin{array}{ll}\text { BSC transmit } & \text { B-41 } \\ \text { input }\end{array}$
start-stop transmit $8-480$
indervolatage MAPs, $3705-11$ modified power

$\begin{array}{ll}-4 \mathrm{~V} & \mathrm{D} .640 \\ +3.4 \mathrm{~V} & \mathrm{D} \\ \mathrm{D} \\ +8.650\end{array}$
$\begin{array}{ll}+3.4 \mathrm{~V} & \mathrm{D} .645 \\ +8.5 \mathrm{~V} & \mathrm{D} .650 \\ +6 \mathrm{~V} & \mathrm{D} .655\end{array}$
$\begin{array}{ll}-12 \mathrm{~V} & \mathrm{D} .660 \\ +12 \mathrm{~V} & \mathrm{D} .665\end{array}$
unprotected storage
upper scan limit modific
upper scan limit modification, type 2 communication
scanner
spers scan limit modification, type 3 or 3 HS communication
scanner $\mathrm{F}-100$
usage meter flowchart D-240, D-590

V voltage levels, logic
$0 \times \mathrm{D}$ gate with more than three cards D-230
OXD gate with only two or three cards $\mathrm{D}-58$
w
WAIT light 1.080
Wait state 6 -060, $6-061$
wave shapess power
wave shapes, power supply
SCR controls $\mathrm{D}-200$
$+12 \mathrm{~V},-12 \mathrm{~V},+6 \mathrm{~V},-30 \mathrm{~V}$ supplies $\mathrm{D}-150$
-4 V supply $\mathrm{D}-170$
wave shapes, LI Bs $5,6,7$ modems $\mathrm{C}-450-C-520$ welds 7-100
wrap blocks
(see test blocks
1-300)
$\begin{array}{lll}\text { (see test blocks } & 1-300) \\ \text { wrap mode, type } 3 \text { or } 3 \text { 3HS scanner }\end{array}$ F-700, F-710
write array conditions $\mathrm{F}-391$
Write cycle for bridge sto
write gate drivers $7-020$
Write gate drivers 7 -020
write IPL crannel command, type 1 CA
write IPL command type 2 -
Write IPL command, type 2 CA 9.330
write IPL command final status,
$\begin{array}{llll}\text { write IPL command final status, type } 1 \text { CA } & 8-190 \\ \text { write IPL data/status L3 interrupt, type } 1 & 8 & 8.140\end{array}$ $X$ and $Y$ drive syste
$X$ windings
$7-020$
XCR instruction $6-150,6-200,6-220$
XHR instruction
XHR instruction $\begin{aligned} & 6-150,6-200,6 \\ & \text { XR instruction } 6-150,6-200,6-220\end{aligned}$
XRI instruction $6-150,6-160,6-170$ XY drive line continuity check $\quad 7.110$
$X Y Z$ drive voltage reoptimization
7.160
$Y$ address cards $7-110$
$Y$ windings $7-020$
$Z_{\text {LEVEL light }} 1-020$ zero bit insertion/deletion, SDLC B-530

12A, 12B, integrated modem with break C-31
16 K storage bridge module $7-110$
${ }_{32}^{3}$
${ }_{3705}{ }^{32 K}$ storage bridge module 7-110
channel adapte
type 1880
tye
tyen

| type 1 | $8-000$ |
| :--- | :--- | :--- |
| type 2 | 9.000 |
|  |  |
| typer |  |

$\begin{array}{lll}\text { type } 3 & \text { G.000 } \\ \text { type } 4 & \mathrm{H}-000\end{array}$
type 4 H-000
communication scanne
$\begin{array}{cc}\text { type } 1 & A-000 \\ \text { type } 2 & B-000\end{array}$

line interface base C-000
line set C-160
line set C-160
power supply $3705-1$
power supply $3705-1$
power supply $3705-11$ $\begin{array}{ll}\text { OXD aate with more than three cards } & \text { D-300 } \\ \text { OXD gate with only two or three carrss } \\ \mathrm{D}-500\end{array}$ OXD gate with
storage 7 7-000
3705 introduction 0 -050
3705 I physical locations E-000
$3705-11$
370511
control
feature board configurations
$E$
-
$3705-11$ hardware combinations E -040
3705-11 physical locations $E=020, E=021$
$3705-1 \mid$ Power maintenance analysis procedures (MAPs) D-599 $3705-11$ power supoly
OXD gate with more than three cards $\mathrm{D}-300, \mathrm{D}-301$
0xD gate with only tho 3705 gate with only two or three cards D.500, D.50


3705 Communications Controller
Theory-Maintenance
Volume III
Order No. SY27-0107-6

This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

3705 Communications Controller

Order No. SY27-0107-6

This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you would like a reply, complete the following (Please Print):

Your Name $\qquad$
Company Name $\qquad$
Street Address $\qquad$
City_ State $\qquad$ Zip Code $\qquad$
Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

If you would like a reply, complete the following (Please Print):
Your Name $\qquad$ Company Name $\qquad$
Department $\qquad$
Street Address $\qquad$ State $\qquad$ Zip Code $\qquad$
Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

Please Do Not Staple


Research Triangle Park
North Carolina 27709

##  <br>  <br> BM World Trade Americas/Far East Corporation Oown of Mount Pleasant, Route 9 , North Tarrytown, N.Y., U.S.A. 1059 <br> 18M World Trade Europe/Middie East/Aftica Corporation 360 Hamiton Avenue. White Plains. N. Y.. U.S.A. 10601

Research Triangle Park
North Carolina 27709

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains. N.Y. 10604
IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 1059
18M World Trade Europe/Midale East/Atrica Corporation
360 Hamilton Avenue, White Plains. N. Y. U. S. A. 10601
$00000000000000000000000000000000000$


International Business Machines Corporation
Data' Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604
IBM World Trade Americas/Far East Corporation

This Newsletter No. SY27-1249
Date 2 April 1980
Base Publication No. SY27-0107-6
Unit 3705
Previous Newsletters None

## 3705 Communications Controller Theory-Maintenance <br> © IBM Corp. 1972, 1973, 1974, 1976, 1977, 1979

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or removed are:
(Volume I)
front cover through iv
vii through $x$
$1-300$ through $1-330$
$x-1$ through $x-8$

(Volume II)<br>iii, iv<br>vii, viii<br>B-570, C-000<br>C-001, C-002 (C-002 added)<br>$\mathrm{C}-010$ through $\mathrm{C}-020$<br>C CFFOR<br>C-220, C-230<br>C-231, C-235 (added)<br>C-236, C-241 (C-236 added)<br>C-240 (removed)<br>C-244, -245<br>62

C-249, C-250 (C-249 added)
$\mathrm{x}-1$ through $\mathrm{x}-8$

## (Volume III) <br> iii, iv <br> vii, viii

F-000 through F-090
F-100, F-101 (added)
F-110 through F-130
F-160 through F-210
F-260, F-270
F-340, F-341 (F-341 added)
F-356 through F-395
F-446, F-450
F-640 through F-711 (F-711 added)
x -1 through $\mathrm{x}-8$

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change
Summary of Changes
This Technical Newsletter incorporates information on the IBM Type 3HS Communication Scanner and three new IBM line sets designed for use with the IBM 3705 Cemmunications Controller. Information is provided on the type 1 N line set which is available for attachment to a CCITT X. 21 interface (nonswitched - World Trade only), and on type 1GA and 1TA line sets which are available for use with type 3 HS scanner (at line speeds up to $230,400 \mathrm{bps}$ ).

Note: Please file this cover letter at the back of the manual to provide a record of the changes.

This Newsletter No. SY27-1253
Date 3 OCT 1980
Base Publication No. SY27-0107-6
System None
Previous Newsletters SY27-1249
3705 Communications Controller
Theory-Maintenance
© IBM Corp. 1972, 1973, 1974, 1976, 1977, 1979
This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or removed are:

| (Volume I) | (Volume III) |
| :--- | :--- |
| ix, | vii, viii |
| $7-200,7-210$ | D-000, D-010 |
| X-1 through X-8 | D-140 through D-240 |
|  | D-300 through D-370 |
| (Volume II) | D-371 through D-450 (removed) |
| X-1 through X-8 | D-500 through D-670 (added) |
|  | E-020 through E-021 |
|  | X-1 though X-8 |

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.
Summary of Changes
This Technical Newsletter incorporates information on the 3705-11 Modified Power System.
Note: Please file this cover letter at the back of the manual to provide a record of the changes.

| This Newsletter No. | SY27-1268 |
| ---: | :--- |
| Date | December 8,1980 |
| Base Publication No. | SY27-0107-6 |
| System | N/A |
| Previous Newsletters | SY27-1249 |
|  | SY27-1253 |

## 3705 Communications Controller <br> Theory - Maintenance

©Copyright IBM Corp. 1972, 1973, 1974, 1976, 1977, 1979

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or removed are:

| (Volume I) | (Volume II) | C-244, C-245 |
| :--- | :--- | :--- |
| vii, viii | vii, viii | C-246, C-247A (added) |
| $1-300,1-310$ | B-040, B-050 | C-247B (added, blank) |
| $6-770,6-780$ | B-230, B-240 | C-247C (added), C-248 |
| $6-832,6-840$ | B-570, C-000 | X-1 through X-8 |
| $7-211,7-220$ | C-001 through C-010-1 | (Volume III) |
| $7-230,7-240$ | C-160 through C-200 | H-020, H-030 |
| X-1 through X-8 |  | X-1 through X-8 |

If you are inserting pages from different Newsletters/Supplements and identical page numbers are involved, always use the page with the latest date (shown in the change-page notice at the top of the page). The page with the latest date contains the most complete information.

A technical change to the text or to an illustration is indicated by a vertical line to the left of the change.

## Summary of Changes

This Technical Newsletter incorporates information on the type 1 R line set which is available for attachment to a CCITT X. 21 interface (switched). Information on the consolidation of line set functions for line set 1D is also included.

Note: Please file this cover letter at the back of the manual to provide a cecord of the changes.


[^0]:    $0 \cap 00000$

[^1]:    Note: For the 3705-11, every 2.0 microseconds if the
    cycle time is 1.0 microseconds and every 1.8 microsecond
    if the cycle time is 900 nanoseconds. f the cycle time is 900 nanosecond.

[^2]:    

