Preface

This publication is directed to the Customer Engineer assigned to maintain the IBM 3705-80 Communications Controller. He is assumed to be trained on either a System 360, System $/ 370,4300$ Processor, or $3031,3032,3033$, or 3081 Processor Complex and to have a teleprocessing background.

This publication should be used to locate and replace failing field replaceable units within the controller. Pictures are combined with text to convey basic operational concepts. No attempt is made to provide detailed theory information Each page contains one topic (although some topics may require more than one page).

The CE should always begin at the "start" section of Volume I when trying to locate a failure. This section contains a flowchart that points to the correct part of the manual for locating the failure

The 3705-80 FETMM consists of three volumes which are identified by two form numbers. The volumes may be placed in separate binders for ease of use

Second Edition (January 1982)

Volume I (SY27-0208) contains comprehensive "how to fix information." Information is provided on: (1) main enance philosophy, (2) internal functional tests (IFTs) (3) diagnostic control module (DCM), (4) power map procedures, and
Volume I is to help the CE test the $3705-80$, locate failing hardware components, and repair and return the controller to the user as quickly as possible. Divider tabs provide quick access to the individual sections.
Volume II (SY27-0209, part 1 of 2) contains an abbreviation list, legend, a volume table of contents, introduction to the $3705-80$, a description of the control panel switche and lights and procedures for using them, diagnostic aids, CL , and unit, and strain a ces sesite A

Volume III (SY27-0209, part 2 of 2) contains an abbreviation list, legend, a volume table of contents, and the theory maintenance sections on the type 1 channel adapter, the type 2 communication scanner, the line interface base, the line sets, the power system, the remote program loader (RPL), and the type 4 channel adapter. It also contains information on test tools and equipment, preventive main tenance, and physical locations. A composite index of both volumes is at the back of each volume. Divider tabs provide quick access to the individual sections.

Prerequisite Publication

Introduction to the 3705-80 Communications

natroller, GA27-330

Related Publications

IBM 3705-80 Communications Controlle
Principles of Operation, GC30-3074
IBM 3704 and 3705 Communications Controllers
Original Equipment Manufacturer's Information GA27-3053
IBM 3705-80 Parts Catalog, S131-0077
System/360 Operating System Online Test Executive Program, GC28-5086
DOS OLTEP SRL, GC24-5086
System/360 and System/370 I/O Interface Channel to Control Unit Original Equipment Manufacturer's Information, GA22-6974

Guide to Using the IBM 3705 Communications Controller Control Panel, GA27-3087

SUMMARY OF CHANGES FOR SY27-0209-1

This revision contains:

- a new section (Type 4 CA) in Volume III that provides info
mation on the Type 4 Channel Adapter.
- new pages and updated information on existing pages in

Volumes II and III to integrate Type 4 CA information.

- minor updates to the Power Section (D pages) of
other minor editorial changes and clarifications.

A	And circuit or ampere	ck
AA	automatic answering	clk
ABAR	attachment buffer address register	cm
ABO	adapter bus out (register)	CMDR
ac	alternating current	CMND
ACO	automatic call originate	com
ACF/NCP/	Advanced Communications Function for	COS
vs	Network Control Program/Virtual Storage	CP
ACR	abandm call and retry	CPU
ACU	automatic calling unit	CR
adr	address	CRC
AEQ	automatic equalizer	CRI
AHR	add halfword register (instruction)	CRO
ALD	automated logic diagram	CS
ALU	arithmetic logic unit	CSAR
AMP	amplifier	CSB
APAR	authorized program analysis report	CSCD
AR	add register (instruction)	CSMC
ARI	add register immediate (instruction)	ctrl
B	branch (instruction)	CTS
BAL	branch and link (instruction)	CUE
baLR	branch and link register (instruction)	CW
BAR	buffer address register	CWAR
BB	branch on bit (instruction)	CWCN
BC	bit clock	DAA
BCB	bit control block	DA
BCC	bit clock control	dB
BCL	branch on C latch (instruction)	DBAR
BCT	branch on count (instruction)	dc
Bо	bus out	DCE
BP	break point	DCM
bps	bit per second	DCR
BSC	binary synchronous communication	DE
BSM	bridge storage module	DET
BZL	branch on Z latch (instruction)	diag
CA	channel adapter	dist
CACHKR	channel adapter check register	DLO
CACR	channel adapter control register	DOS
CADB	channel adapter data buffer	DPR
CAMR	channel adapter mode register	DR
CASNSR	channel adapter sense register	
CASTR	channel adapter status register	DCS
CB	circuit breaker	DSR
CbAR	CSB buffer address register	DT
сСв	character control block	DTE
CCR	compare character register (instruction)	DTR
CCT	coupler cut through (modem)	EC
ccu	central control unit	EB
CD	carrier detect	ECP
CDS	configuration data set	EIA
CE	Channel End (status)	enbl
chan	channel	EON
char	character	EPO

check
clock
centimeter
channel adapter command register
command
common
Call Originate Status
circuit protector
central processing unit
compare register (instruction)
cyclic redundancy check
compare register immediate (instruction)
Call Request
cycle steal
cycle steal address register
communication scanner base
clear to send, carrier detect
cycle steal message counter
control
Clear To Send
Control Unit End (status)
control word
control word address register
control word byte count register
data access arrangement
data modem ready
decibel
diagnostic buffer address register
direct current
data circuit-terminating equipment
diagnostic control monitor
data channel ready
Device End (status)
detector
diagnostic
distance
data line occupied
Disk Operating System
digit present
display register or
data ring (modem)
distant station connect (ACO only)
data set ready
data tip (modem)
data terminal equipment
data terminal ready
edge connector
extended buffer
emulation control program
Electronic Industries Association
enable
end of number (ACO only)
emergency power off
check
clock
channel adapter command register
command
all Orignate Status
artal proz
mpare register (instruction)
redundancy check
ompare register immediate (instruction)
cycle steal
ommunication scanner base

Control Unit End (status)
control word
ntrol wadress register
位
data access arrangeme
cibe
irect current
-terminating equipmen
jagnostic control monitor
data channel ready
detector
diagnostic
data line occupied
isk Operating Systen
gray regist
data ring (modem)
station connect (ACO only)
ap
data terminal equipment
data terminal read
extended buffer

Eletron
nd of number (ACO only)
emergency power off

POSC	present oscillator sample condition	STH	store halfword (instruction)
pot	potentiometer	stk	stacked
P-P	post processor modem card	svc	service
PPB	prime power box	sw	switch
PUT	programmable unijunction transistor	SYN	synchronous idle
PWI	power indicator	sync	synchronization or synchronous
R	resistance or resistor	TAR	temporary address register
rcv	receive	тв	terminal board
rd	read	TIC	Transfer In Channel
rdy	ready	tr	trigger
RE	register and external register (instructions)	TRM	test register under mask (instruction)
ref	reference	TSL	Technical Service Letter
reg	register	T2	test 2
regen	regenerative	T3	test 3
req	request	T4	test 4
RI	register immediate (instruction) or	UC	Unit Check (status)
	ring indicator (modem)	UE	Unit Exception (status)
RLSD	receive line signal detector	v	volts
RMS	root mean square	V/divn	volts per division
ROS	read-only storage	wd	word
RPL	remote program loader	wr	write
RR	register to register (instructions)	XCR	exclusive-or character register (instruction)
RS	register to storage (instructions)	xfer	transfer
RSA	register and storage with addition (instructions)	$\begin{aligned} & \text { xfmr } \\ & \text { XHR } \end{aligned}$	transformer exclusive-or halfword register (instruction)
RT	register branch or register and branch (instructions)	$\begin{aligned} & \mathrm{xmt} \\ & \mathrm{XR} \end{aligned}$	transmit exclusive-or register (instruction)
RTS	Request To Send	XRI	exclusive-or register immediate (instruction)
rly	relay	2W	two-wire line connection (implies
SAR	storage address register		half-duplex)
SCF	secondary control field	4W	four-wire line connection (implies duplex,
SCR	silicon controlled rectifier or subtract character register (instruction)		but actual duplex depends on the line set type and telephone company equipment).
SCRID	silicon controlled rectifier indicator driver		
SDF	serial data field		
SDLC	synchronous data link control		
SDR	storage data register		
sec	second		
sel	selection		
SEP	separator (ACO only)		
seq	sequence		
SG	signal ground		
SH	switch hook (modem)		
SHR	subtract halfword register (instruction)		
SIG	signal		
SIO	start I/O		
SMS	standard modular system		
SR	subtract register (instruction)		
SRI	subtract register immediate (instruction)		
SRL	Systems Reference Library		
s/S	start/stop		
ST	store (instruction)		
STC	store character (instruction)		
STCT	store character and count (instruction)		

Legend
(Part 1 of 2)

1. Logic Diagrams

Register

The input side is denoted by a thick line. A partial transfer of contents is shown
by numbered inout and/or output lines.

Counter

ALU

Compare

Decode
The active output is the output whose output value equals the sum of the active input values.

Flip Latch
Input side is denoted by a thick line. ALD reference page may be shown beneath.

Polarity Hold

The 'output' of the polarity hold block is at the indicated polarity when both the 'data' and the 'control' 'lines go to their indicated polarity. When the 'control' line
goes to the polarity opposite to goes to the polarity opposite to the polarity it is at When th at the polarity it is at. When the
'clear' line goes to its indicated polarity, clear' line goes to its indicated polarit,
the 'output' line goes to the polarity opposite to that indicated.

Local Store

Read.-.-Output from the local store addressed.
Contents of local store in not destroved. ite--Input contents stored in the local store addressed when 'write' is active.

M REG
See Local Store

Negator (Inverter)

Time Delay
An input pulse starts the time delay. An input pulse starts the ime delay.
Each output pulse has the same duration as the input pulse but is delayed by the specified amount.

Parity Check
Parity check on the data bus

Parity Generate
Parity generated on the data bus

Multiple Line Transfer

Hardware Process

Type 2 scanner hardware action resulting from input/output instructions or signals from the line/autocall interface.

Annotation

Gives descriptive comment or explanatory
note.

Input-Output
CCU executes the control program
input/output instructions.

4. General

Decision
Indicates a point in a flowchart where
Terminal
Indicates the beginning or end of the event.

Process
Indicates a major function or event.

Off-page Connector
Indicates a connection between diagrams located on separate pages. The location of the correspond-
ingly-lettered symbol is shown adjacent the symbol

CONTENTS-VOLUME 2

INTRODUCTION TO THE 3705-80
INTRODUCTION TO THE 3705-80 0-000
3705-80 DATA FLOW
TYPE 1 CA
3705-80 DATA FLOW-WITH
TYPE 4 CA

CONTROL PANEL

CONTROL PANEL LAYOUT DISPLAY A Display A Check Light Display A Status Lights
DISPLAY B
Display B Status Lights
Display B Check Lights
CONGTS SEL SWITCHES AND
LIGHTS
CONTROL PANEL PROCEDURES $\quad 1-120$
CONTROL PANEL TEST OF THE
CCU DATA PATH
Part 1. Basic Control and
Data Flow
Part 2. Miscellaneous Controls Part 3. CCU Data Bits-Card Locations
AGNOSTIC AID
Scope Points and Jumper
CE Indicator Latch Card Test Blocks
ROS TEST
Type 1 or Type 4 Channel Adapter
N-ROS Tes
CENTRAL CONTROL UNIT
CENTRAL CONTROL UNIT 3705-80.CARD FUNCTIONS CCU DATA FLOW
CLOCK TIMES
STORAGE PROTECTION MACHINE CYCLES Display Register Store In Register Display Storage Storing Data Storage Scanning Storage Scanning Single Address Scent Pattern Start Pusbss Scanning Start Pushbutton Operations

MACHINE CYCLE PRIORITIES program level priorities AND INTERRUPTS
DATA OPERATION CONTROLS
ocal store register
CONTROLS
CYCLE STEAL IN (TYPE 4 CA)
YCLE STEAL OUT (TYPE 4 CA)
EGISTER IN DECODING INSTRUCTIONS REGISTER TO REGIS INSTRUCTIONS INSTRUCTIONS register and storage INSTRUCTIONS
REGISTER AND STORAGE WITH ADDITION INSTRUCTIONS
REGISTER AND IMMEDIATE ADDRESS INSTRUCTIONS
REGISTER BRANCH OR
REGISTER AND BRANCH INSTRUCTIONS
REGISTER AND EXTERNAL REGISTER INSTRUCTIONS CU INPUT INSTRUCTIONS
Input X'00' to $X^{\prime} 1 F$
General Registers
Installed
nput X'71' Panel Addres
Data Entry Digits
nput X'72' Display/Function
Select Switch
Input $X^{\prime} 73^{\prime}$ Insert Key
Input X'74' Lagging Address
Register ${ }^{\prime}$ ' 1 Interrupt Requests
nput X'77' Adapter Level 2 or
3 Interrupt Requests
nput $X^{\prime} 79^{\prime}$ Utility
Input $X^{\prime} 7 B^{\prime}$ and $X^{\prime} 7 C^{\prime} B S C$ Register
nput X'7D' CCU Check Register 6-840
Input X'7E' CCU Level 1
Interrupt Requests
nput X'7F' CCU Level 2, 3, or 4
Interrupt Requests
CU OUTPUT INSTRUCTIONS
Output X'00' to X'1F
General Registers
Output $X^{\prime} 70^{\prime}$ Hard Stop

Output $X^{\prime} 71^{\prime}$ Display Register $1 \quad 6-870$ Output $X^{\prime} 72^{\prime}$ Display Register $2 \quad 6-870$ Output X'73' Set Key (Storage
Protect)
Output X'77' Miscellaneous
Controls
Output $X^{\prime} 78$ ' Force CC Checks
Output X'79' Utility
Output X'7D' Set PCI L3
Output $X^{\prime} 7 D^{\prime}$ Set PCI L4
Output $X^{\prime} 7 E^{\prime}$ Set Mask Bits Output $X^{\prime} \mathrm{IE}^{\prime}$ Set Mask Bits
Output $\mathrm{X}^{\prime} 7 \mathrm{I}^{\prime}$ Reset Mask Bits
IPL
IPL Data Flow
storage
Storage maintenance and
PHYSICAL LOCATIONS STORAGE BOARD LAYOUT (01A-b2) STORAGE MAINTENANCE PROCEDURE
MAINTENANCE PROCEDUREINTERMITTENT STORAGE ADDRESS ERRORS

Ce SAFETY PRACTICES

All Customer Engineers are expected to take every satety pre-
caution possible and observe the following safety practices caution possible and observe
while maintaining IBM equipment

1. You should not work alone under hazardous conditions
or around equipment with dangerous voltage. Always or around equipment with dangerous vol tage. Always
advise your manager if you MUST work alone. 2. Remove all power AC and DC wher removing or assem. bling maior components, working in immediate area of
power supplies, pertorming mechanical inspection of
 or tager in off position. "Do not Operate" tags, form 229-1266, affixed when apolit
2. When it is absolutely necessary to work on equipment having exposed operating mechanical parts or exposed live
elecetrical circuity anywhere in the machine, the following precautions must be followed.
a. Another person familiar w
a. Another person familiar with power off controls must
b. Rings, wrist watches
c. links, shall not be worn. Only
c. Keep one hand in pocket.
e. When using test instruments be certain controls are set correc
used. . Ased. contacting ground potential (metal floor strios, machine frames, etc.- - use suitable rubber mats pur-
chased locally if eecessary) 5. Safety Glasses must te worn when
a. Using a hammer to wrive vins, , iveting, staking, etc.
b. Power hand drilling, reaming, grinding, etc.
b. Using spring hooks, attaching springs.
d. Soldiering, wire eutting, removing steel bands.
e. Parts cleaning, using solvents, sprays, cleaners, cheme. Parts ciea
icals. etc
f. All othe

Al other conditions that may be hazardous to your
eves. REMEMBER, THEY ARE YOUR EYES.
6. Special satety instructions such as handing Cathoce ed as outtined in CEM's and Safety Section of the Maintenance Manuals
7. Do not use solvents. chemicals, greases or oils that
have not been approved by $18 M$.
B. Avoid using tools or test equipment that have no
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg
muscles- this takes strain off back muscles. Do not

1. All safety dequipment or parts weighing overer 60 pounds.
2. All satety devices such as guar sts, shielss, signs,
w.
wirese, etc. shall be restored after maintenance.
3. Each Custonier Engineer is responsible to be certain
that no action on his part renders product unsate or that nu action on his sart renders spoduct unsate or
texposes hazards to customer personnel.
4. Place removed machine covers in a safe out-of-the-way
place where no one can trip over them.
5. Aeturned to customer
6. Always place CE tool kit away from walk areas where
no one can trip over it it i it
7. Avoid touching mectithanical moving parts (ite).
lubricating, checking for play, et
8. When using stroboscoope-do not touch ANYTHING

1i. may be moving.
18. Avoid wearing loos
machinery. Shirt sleveves must be left buttoned or
19. Trilied above the elbow.
ferably nonconductive) approximately a tie clasp (pre
end
enches tro
20. Before starting equipment, make
2. Before starting equipment, make certain fellow CE;
and customer personnel are not in a hazardous posi
21. Maintaing good housekeeping in area of machine while
performing and after completing maintenance.

Location of logic pages by volume number

Volume	Logic Pages	Contents
41	YZ	Power supply-installation instruction
42	AA-CV	CCU
A42	CW-CZ	ROS-Type 2 attachment base-CCU
43	DF-DZ	CCU
44	MM	Storage
45	TA-TB	Type 2 scanner
46	VA	LIB-reference material
47	VB	LIB-line sets $1,2,3,4,5,8$, and 9
48	RA-RS	Type 1 channel adapter
A48	PA-PS	Type 4 channel adapter
49	GA-GC	Remote Program Loader Diskette Controller

KNOWING SAFETY RULES IS NOT ENOUGH
AN UNSAFE ACT WILL INEVITABLY LEAD TO AN ACCIDENT
USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS
229-1264-1

Artificial Respiration
general consideration

1. Start Immediately, Seconds Count
Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to
loosen clothing warm the victim or
2. Choply stimulants. Mouth tor Obstructions
3. Check Mouth for Obstructions
Remove foreign obiects - Pull t
forward. Clothing-Keep Warm
4. Loosen Clothing-Keep Warm
Take care of these items after victim
is breathing by himself or when helo
is breathing by
is availabe.
5. Remanain in Position

After victiosition revives, be ready to
resume respiration if necessary,
5. Calla a Dostor
. Have someone summon medical aid
vontinue without interruption untin
victim is breathing without help or victim is breathing without help or
is certainly dead. is certainly dead.
$\begin{aligned} & \text { Rescue Breathing for Adults } \\ & \text { Victim on His Back Immediately }\end{aligned}$

1. Clear throat of water, food, or for
2. eign matter. Tilt head back to open air passage.
3. Lift jaw up to keep tongue out of
4. Pinch nostrils
a. age when you blow.
$\begin{aligned} & \text { 5. Blow untii) you see chest rise. } \\ & \text { 6. Remove your lips and allow lungs }\end{aligned}$
5. Loempty
6. of throat onstriuction aurglings, signs
$\begin{aligned} & \text { 8. Repeat moutrt to mouth breathings } \\ & 10-20 \text { times a minute. }\end{aligned}$
$\begin{aligned} & \text { Continue rescue breathing until he } \\ & \text { breathes for himself. }\end{aligned}$

No
Reprint Courtesy Mine Safety Appliances

Introduction to the 3705-80

The IBM 3705-80 Communications Controller is a transmission control unit with processing capabilities. Its functions are controlled by a program that resides in controller storage.

The 3705 is available in 4 models, based on the maximum line-attachment capability. (The actual number of lines that the 3705-80 can support depends upon such factors as line speed and the throughput capability of the control program.)

3705-80 contains a central control unit, a control panel, 256K of storage, a channel adapter, a communication scanner, and line interface bases and line sets.

Refer to the Introduction to the IBM 3705-80 Communications Controller, GA27-3304 for more introductory information.

CENTRAL CONTROL UNIT
The central control unit (CCU) contains the circuits and data flow paths necessary to execute the 3705-80 instruction set and to control 3705-80 storage and the attached adapters. The CCU operates under control of the 3705-80 control program.

CONTROL PANEL
The control panel contains the switches and lights necessary to control many 3705-80 functions manually. The control panel provides such functions as the ability to store and display information in storage and registers, the control and indication of power, the indication of status and error information, and operator and diagnostic controls.

STORAGE
The 3705-80 contains 256K bytes of storage only. This storage features automatic single-bit error correction, double-bit error detection, and a 1.0 microsecond cycle time. A storage protection mechanism in the CCU makes it possible to protect the contents of storage.

TYPE 1 CHANNEL ADAPTER
The type 1 channel adapter (type 1 CA) provides attachment to an IBM System/360, System/370, 4300 Processor, or a 3031, 3032, 3033, or 3081 Processor Complex bytemultiplexer channel. The type 1 CA requires intervention from the 3705-80 control program for each data transfer.

TYPE 2 COMMUNICATION SCANNER
The type 2 communication scanner provides the interface between the line interface bases and the central control unit. The scanner monitors the communication line for service requests.

The type 2 communication scanner hardware assembles and disassembles characters. It interrupts the control program only when an entire character is ready for transfer to or from a line. The type 2 scanner can handle lines at speeds up to 57,600 bps. The $3705-80$ contains a single type 2 scanner only.

LINE INTERFACE BASES
Line interface bases (LIBs) attach the lines to the 3705-80. The single available LIB type handles requirements for different types of line terminations. Depending upon the line termination, as many as 8 lines can be attached through one LIB. The number of installed LIBs depends on the model. A maximum of two LIBs can be installed in the 3705-80.

BASIC LINE ATTACHMENT SEGMENT AND LINE SETS Lines are attached to LIBs through basic line attachment segments and line sets. Depending upon the type of line termination, either one or two lines can be attached to one basic line attachment segment or line set.

REMOTE PROGRAM LOADER
A 3705-80, used only as a remote communications controller, requires a remote program loader instead of a channel adapter. The remote program loader consists of an ROS bootstrap program, a diskette, a diskette drive, and a diskette controller. It is used to load a control program from a local 3705-80 to a remote 3705-80 via an SDLC communication facility. Internal functional tests for the remote 3705 reside on the diskette.

In addition to the RPL feature, the 3705-80 can contain a channel adapter. With both features installed, internal function tests (IFTs) can be run using either the channel or the RPL feature.

For a 3705-80 containing an RPL feature only (no channels), all IFTs are contained on the diskette.

TYPE 4 CHANNEL ADAPTER
The type 4 channel adapter (type 4 CA) is a modified type 1 CA that enables the control program to transfer across the channel interface multibyte bursts of up to 32 bytes in extended buffer mode with program intervention required only before and after each burst. A plugging option allows the burst to be subdivided into groups of 4,8 , or 16 bytes with the type 4 CA disconnecting from the channel interface and reconnecting for each group to allow other channel activity to occur. The Type 4 CA can also transfer data by cycle steal under program control.

3705-80 DATA FLOW - WITH TYPE 1 CA
(PART 1 OF 2)

TYPE 2 COMMUNICATION SCANNER

Notes:

1. During a transmit operation, the character in the PDF is transferred to the SDF as the last bit of the previous character is
2. During a receive operation, the thater in the SDF is trans
3. During a receive operation, the character in the SDF is trans.
[^0]3705-80 DATA FLOW - WITH TYPE 1 CA (PART 2 OF 2)
THESE DESCRIPTIONS REFER TO PAGE 0-010
High Level Data Flow From the Host Processor to the Communication Facilities (Transmit)
1 The channel adapter issues a request for service to the channel to transfer data into its data buffer.

2 An Input $X^{\prime} 64$ ' gates data characters 1 and 2 to the CCU In Bus. An Input X'65' gates data characters 3 and 4 to the CCU In Bus.

3 The two data characters are stored in the genera egister specified by the input instruction.

The control program places the data to be sent to the scanner in the bytes of a general register
4 An Output X'44' gates the data character from byte of the general register through CCU logic to the 'output register'. The Output X'44' places the data cha $0-7$) of the ICW (interface control ward) prio lected by the control program. Scanner hardware transfers the data character from the 'parallel data field' to the 'serial data field' where the character is serialized.

5 When the scanner addresses the line and the line's 'bit service request' is active, the serialized bit is buffered in the 'send data' latch of the line set's B register. The strobe, controlled by the transmit oscillator or the modem transmit clock, gates the bit to the transmit buffer where it is sent to the communication facility.

High Level Data Flow From the Communication Facilities to the Host Processor (Receive)
6 The line set strobes the received bit into its receive buffer.

When the type 2 scanner addresses this line interface and 'bit service request' is active, the scanner gates the received data bit (data in 5) to the 'received data' latch.

7 The type 2 scanner assembles the received bits into a character in the ICW 'serial data field' for that line interface. The scanner then transfers the character to the ICW 'parallel data field'. When the CCU accepts the scanner character service interrupt, the scanner gates the character to the ICW 'input register'.
8 An Input X'44' gates the character from the ICW 'input' register to the general register specified by the input instruction

The control program must prepare the data now in main storage for use by the channel adapter.

The control program places the next two data characters to be transferred to the type 1 channel adapter in a general register.

An Output $X^{\prime} 64$ ' gates data character 1 and 2 out of the general register, through CCU logic, onto the CCU Out Bus to the CA 'data buffers'. An Output X'65 gates data characters 3 and 4 .fo channel adapter issues a service request to trans fer data characters to the Channel Bus in. The data characters are transferred one character at a time.

3705-80 DATA FLOW WITH TYPE 4 CA

 (PART 2 OF 2)THESE DESCRIPTIONS REFER TO PAGE 0-030
High Level Data Flow From the Host Processor to the Communication Facilities (Transmit)
1 After the type 4 CA responds to a Write type command, the CA issues a request for service to the channel to transfer data to the CA data buffer.
2. Type 1 CA mode - An Input X'64' gates data char acters 1 and 2 to the CCU In Bus. An Input X'6 gates data characters 3 and 4 to the CCU In Bus.

- EB mode - The data characters are loaded into the 32 ts data Input X'GC' 1 the 30 with Input X'6D'. Input X'6D's gate two data characters to CCU Inbus the CCU Inbus.
- CS mode - Two data characters are loaded in the two character CS buffer register in the EB local store. Cycle steal timings gate the two data char

3. Type 1 CA mode - The two data characters are stored in the general register specified by the Input instruction.
EB mode - Same as for type 1 CA mode
CS mode - The cycle steal operation gates the two data characters through CCU logic to storage.
4 An Output $X^{\prime} 44^{\prime}$ gates the data character from byte 1 of the general register through CCU logic to the 'output register'. The Output X'44' places the data character in bit positions $8-15$ (parallel data field bits $0-7$) the control program. Scaner hardwar trastors the data character from the 'parallel data field' to the serial data field' where the character is serialized

5 When the scanner addresses the line and the line's 'bit service request' is active, the serialized bit is buffered in the 'send data' latch of the line set's B register. Th strobe, controlled by the transmit oscillator or the modem transmit clock, gates the bit to the transmit buffer where it is sent to the communication facility.

High Level Data Flow From the Communication Facilities to the Host Processor (Receive)

6 The line set strobes the received bit into its receive buffer.

When the type 2 scanner addresses this line interface and 'bit service request' is active, the scanner gates the received data bit (data in 5) to the 'received data' latch.

7 The type 2 scanner assembles the received bits into character in the ICW 'serial data field' for that line interface. The scanner then transfers the character to
the ICW 'parallel data field' When the CCU accepts the ICW 'parallel data field'. When the CCU accepts gates the character to the ICW 'input register'.

8 The control program must prepare the data now in main storage for use by the type 4 CA depending the CA mode.

- Type 1 CA mode - the control program places the next two data characters to be transferred to the channel adapter in a general register.
- EB mode - Same as for type 1 CA mode.
- CS mode - The control program places the received data characters into appropriate areas of main stor age for subsequent cycle-steal operations and sets up the CA to transfer the data to the channel.

9- Type 1 CA mode - An Output X'64' gates data characters 1 and 2 from the general register, through CCU logic, onto the CCU Out Bus through the out bus register to the CA 'data buffers'. An Outpu $X^{\prime} 65$ ' gates data characters 3 and 4 .

- EB mode - An Output X'6D' gates data characters 1 and 2 from the general register, through register. The CA then loads the data into the EB local store where 32 data characters can be buffered
- CS mode - A cyclesteal operation gates two data characters through CCU logic onto the CCU Out Bus, through the outbus register to the CS buffer register in the EB local store.

10 After the type 4 CA responds to a Read type com mand, the CA issues a service request to the channel to transfer data characters to the channel Bus \ln. The data characters are transferred one character at a time.

This page intentionally left blank.

Control Panel Layout

DISPLAY A

Display A Check Lights

The DISPLAY/FUNCTION SELECT switch must be in
STATUS to display check conditions in display A.

- Any of the following turn off the display A check lights if additional checks are not detected:
. Pressing the CC CHECK RESET pushbutton.
b. Pressing the RESET pushbutton.
c. Executing an Output $X^{\prime} 77^{\prime}$ instruction with bit 0.1 on in the general register designated by the \mathbf{R} field of the instruction (when in bypass CC check stop mode).
d. Executing an Output $X^{\prime} 77$ ' instruction from the con trol panel by storing a " 1 " in bit 0.1 of external register $X^{\prime} 777^{\prime}$. (See 1-140.) (The 3705-80 must be in program stop mode.)

- Turned on by the CCU (Central Control Unit) check reg. ister when a parity check occurs in the data path. If one or more of the BYTE lights are on, but no ott CC CHECK light is on, the parity check is in the ALU (arithmetic logic unit), the A register, the B register, or the Z register.

Note: If the IPL is not successfully completed he local store registers can cause a parity check because they are not initialized.

- Turned on when the CCU detects a parity error on the 'indata' bus.

The BYTE X, BYTE 0 , and/or BYTE 1 CHECK light and the CC CHECK light also come on.

Turned on when a SAR (storage address register) parity check occurs.

The BYTE X, BYTE 0, and/or BYTE 1 CHECK light and the CC CHECK light also come on.

- Turned on when an SDR (storage data register) parity check occurs.

The BYTE 0 and/or BYTE 1 CHECK light and the CC CHECK light also come on.

- Turned on when an OP (operation) register parity check occurs.
The BYTE 0 and/or BYTE 1 CHECK ligh and the CC CHECK light also come on.
- Turned on when a CCU or CS (communi cation scanner) support feature clock check occurs.
- Turned on when in program level 1 , and one of the following occurs, causing a CC check. a. In/out check
b. Protect check
c. Invalid op check

If any one of these occurs in program level 1 , it causes a CC check.

Display A Status Lights

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display status conditions in display A .

- Turned on at TO of A time during a cycle steal cycle.
- Turned off after T3 of D time if no othe cycle steal is to follow immediately
- Turned on at TO of A time during a control panel function cycle steal cycle.
- Turned off after T3 of D time during instruction execution cycles if no other
CYCLE instruction cycle is to follow immediately
If this light is off for any noticeable length of time, the HARD STOP, PROGRAM STOP, or WAIT light should be on for the same length of time.

Cycle Time

- Displays a binary designation of the four basic cycle times. (See the chart below.)
$4 \underset{\text { TMCLE }}{\text { Crime }}$
During normal operation, the $3705-80$ cycle times are 250 nanoseconds in dura tion and are under the control of the machine oscillator. To observe the stepping of these lights, set the DIAGNOSTIC CONTROL switch to CLOCK STEP and repeatedly press the START pushbutton.

Clock Time

- Displays a binary designation of the four basic clock times. (See the chart below.)
Clock During normal operation the clock times are 62.5 nanoseconds in duration and ar under the control of the machine oscillator. To observe the stepping of these lights, set switch to CLOCK STEP and repeatedly press the START pushbutton

Cycle Time	A				B			
Clock Time	то	T1	T2	T3	то	T1	T2	T3
Bit 1.4 light	0				0			
Bit 1.5 light	0				1			
Bit 1.6 light	0	0	1	1	0	0	1	1
Bit 1.7 light	0	1	0	1	0	1	0	

Cycle Time	c				D			
Clock Time	то	T1	T2	T3	T0	T1	T2	T3
Bit 1:4 light	1				1			
Bit 1.5 light	0				1			
Bit 1.6 light	0	0	1	1	0	0	1	1
Bit 1.7 light	0	1	0	1	0	1	0	1

DISPLAY

Note: For control panel storage-address and storagescan functions. DISPLA Y B BYTE X should be ignored because storage operates only on halfwords.

Display B Status Lights

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display status conditions in display B.

Address Compare

- Turned on during instruction cycles when the address compare conditions described under LOAD/STORE ADDRESS COADDRESS
COMPARE - Turned off during the next cycle unless th PROGRAM STOP light is on.

IPL Phase

- Displays a binary designation of the three IPL (Initial Program Load) phases. Both lights turn off at the end of IPL initialization when the program executes Output $X^{\prime} 77^{\prime}$ with bit 0.0 on. Reinitialization of the IPL also turns both lights off Unless the DIAGNOSTIC CONTROL switch is in CLOCK STEP, IPL phases 1 and 2 should be hardly noticeable. If these lights stay on, it indicates a hardware failure.

A persistent IPL phase 3 indication is likely to be caused by either a hardware failure in read-only storage, a program failure, a CCU failure, or the host processor not loading the $3705-80$.

The 'IPL phase' latches are on CU010.

C and Z Level

- Indicates the C and Z condition latches for the active program level.

- Indicates which of the five program levels are active or have interrup requests entered. (No
light indicates that leve 5 is active if instruc tions are being executed.)
- Turned on when an interrupt occurs for that program level.
- Turned off when one of
the following occurs:
a. Exit instruction executed at that
level.
b. Ineve.
b. 'Interrupt entered' latch for that level is reset by a machin
reset.

If more than one of these lights are on, the highest priority program level indicated is the active level. Program level 5 is active when none of these lights are on and instructions are being executed.

Display B Check Lights

The DISPLAY/FUNCTION SELECT switch must be in STATUS to display check conditions in display B.

Adapter Check

- Turned on when the type 1 channel adapter, type 4 channel adapter, or type 2 scanner requests a program level 1 interrupt. See page $8-360$ (type 1 CA), H-380 (type 4 CA) or B-130 (type 2 scanner). An adapter check causes a level 1 interrupt. An adapter check while in program level 1 causes a CC check.
- Turned off when the interrupt request is reset.

In/Out Check
${ }^{5}$
Turned on when the CCU detects one of th following.
a. Invalid input or output instruction (See page 6-151.)
b. Parity check on the 'indata' bus execution of an input instruction
c. Execution of an input or output instruction while in program level 5 .

An in/out check causes a level 1 interrupt. An in/out check in program level 1 causes a CC check.
Turned off by one of the following
Machine reset occurs
b. Executing Output $X^{\prime} 77$ ' with bit 1.5 on in the reg ister designated by the R field of the instruction (when in bypass CC check stop mode).
c. Executing Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77^{\prime}$ and then storing a ' 1 ' in bit position 1.5. (See 1-140.) (The 3705-80 must be in program stop mode.)

Turned on when an attempt is made to change protected data. A protect check causes a level 1 interrupt. A protect check in program level 1 causes a CC check.

- Turned off by eithe
a. A machine reset.
b. Executing an Output X 77 ' with bit 1.5 on in the register designated by the R on in the register designated by the mode). mode)
c. Executing Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77$ and then storing a ' 1 ' in bit position 1.5 (See 1-140.) (The 3705-80 must be in program stop mode.)

nvalid OP

- Turned on when the CCU detects an invalid OP code. An invalid op check causes a level interrupt. An invalid op check in program level 1 causes a CC check
- Turned off by any of the following
a. A machine reset.
b. Executing Output $X^{\prime} 77^{\prime}$ with bit 1.5 on in the register designated by the R field (when in bypass CC check stop mode).
c. Executing an Output $X^{\prime} 77^{\prime}$ from the control panel by displaying register $X^{\prime} 77^{\prime}$ and then storing a ' 1 ' in bit position 1.5 . (S 1-140.) (The 370)

CONTROL PANEL SWITCHES AND LIGHTS

Customer and CE Usage Meters

The 3705-80 has a customer usage meter (top meter) and a CE usage meter. The meters show the run time in hours and tenth hours. The CE Key switch position determines which meter is condioned of the mold be running

The 400 msec minimum time is reinitiated when one of the following occurs:
a. An instruction is executed at program level 1, 2,4, or 5
b. An instruction is executed at program level 3 after approximately 8 ms have elapsed since the interval time interrupt request was set.
c. An instruction is executed at program level 3 and an interrupt request other than the interval timer level 3 interrupt request is set.
d. A cycle steal cycle occurs.

Neither meter runs during
a. Idle cycles.
b. IPL phases 1-3.

Note: The meter will run if the Emulation Program is loaded, the access method is not operating, and the DISPLAY/FUNCTION SELECT switch is set to function 1 or 6 . Return the switch to the STATUS position to prevent unnecessary meter time.

Mode Select Switch

- Controls the 3705-80 mode of operation.

When the PANEL ACTIVE light is off, the $3705-80$ runs as if the MODE SELECT switch and the DIAGNOSTIC CON. TROL switch were in PROCESS, no matter what position the switches are in.

Note: If the panel is active and DIAGNOSTIC CONTROL switch is in any one of the STORAGE TEST positions or in the,CLOCK STEP position, it overrides the MODE SELECT switch.

Address Compare Interrupt

- Causes the address compare L1 interrupt request to set at the end of the instruction if the address compare conditions described in LOAD/STORE ADDRESS COMPARE SWITCH on page 1.060 are met.

The 3705-80 operates normally except for the interrupt request when an address compare occurs.

Intruction Ste

- Causes the $3705-80$ to execute one instruction each time the START pushbutton is pressed and released.

The 'program stop' latch sets after the execution of the instruction. All interrupts except program L1 and PCI interrupts to higher program levels are inhibited until an exit instruction is executed. After an exit instruction wich progro level is active until the next 'exit' instrucion, PCI to a higher level, or program level 1 interrupt

Unless it is already set, the interval timer L3 interrupt request cannot be set when the MODE SELECT switch is in this position.

Panel Enable/Disable Switch

- Available as the Unit Protection Feature.
- This allows the operator to disable/enable the operato panel switches (except POWER ON/OFF, CHANNEL ENABLE/DISABLE, and DISPLAY/FUNCTIO
TECT with a key controlled switch
he disable position wil prevent
Whe in pane
Address/Register Detting of th as input by the program. When in the disable entered and EP (emulation program) mode the display lights can still be used.

CE Key Switch

- Determines whether the CE or the customer usage meter is conditioned to run.

If the slot is vertical, the customer usage meter is conditioned to run. If it is horizontal, the CE usage meter is conditioned to run.

roces

- Allows the $3705-80$ to run normally.

If the MODE SELECT switch is in any other position, the TEST light comes on

Address Compare Program Sto

- Causes a program stop at the end of the instruction if the address compare conditions described in LOAD/ STORE ADDRESS COMPARE SWITCH on page 1-060 are met.

With the switch in this position, an address compare detection does not set the address compare L 1 interrupt request.

ARNing

 can cause adapter problems.

Display/Function Select Switch

- Used to display or store in storage or register; to display machine status or TAR and the Op register; and to make on line parameter changes.
any position, except STATUS or TAR \& OP REG STER, displays A and B show the contents of display egisters 1 and 2.

Tar \& Op Register

Causes display A to show the contents of TAR (Tem porary Address Register)

- Causes display B, bytes 0 and 1 to show the contents of the Op register. (Ignore byte X)

Note: After a REGISTER ADDRESS, STORAGE ADDRESS, or STORAGE TEST function, the TAR \& OP REGISTER position will no longer display the last previous TAR and OP code. Therefore, display and record hese values before you do any other displaying if you will later need this information
stas
Causes displays A and B to show check and status information.

See page 1.010 and 1.020 for information about the check and status lights.

Functions 1-6
The active program determines the function of the FUNC TION 1-6 positions.

Storage Address
Used to select a storage address for displaying storage and for storing data in a storage location.

Pressing and releasing the SET ADDRESS/DISPLAY push button with the DISPLAY/FUNCTION SELECT switch in this position causes a display storage CS1 maintenance cycle. (See page 1-120, Set Address and Display Storage Procedure.)
Pressing and releasing the STORE pushbutton with the DISPLAY/FUNCTION SELECT switch in this position auses a store storae CS1 maintenace and a stor storage CS2 maintenance cycle if the $3705-80$ is in a stopped state. (See page 1-130, Storing Data in Storage Locations.)

Register Address

- Used to select a register address for displaying a register and for storing data in a register.

Pressing and releasing the SET ADDRESS/DISPLAY push button causes a display register CS1 maintenance cycle. (See page 1-120, Set Address and Display Register Procedure.)

Pressing and releasing the STORE pushbutton causes a store register CS1 maintenance cycle if the $3705-80$ is in a stopped state.

Channel 1 Interface Enable/Disable Switch

 Single Channel Adapter)
arning

heri operating with a type 1 or type 4 CA in an NCP (PEP icluded) environment, do not attempt to disable a channel interface unless the 3705-80 network has been quiesced or system reset has occurred. If this procedure is not fol owed, the NCP may, while disabled, attempt to send synchronous status which inhibits the CA1 or CA4 from becoming enabled again.

- Used to enable and disable channel interfaces $1 A$ and 1B. Refer to 8-140 (Type 1 CA) for a description of interfaces 1 A and 1 B

If the DIAGNOSTIC CONTROL switch is in one of the our STORAGE TEST positions and the START push. button is pressed, any interface that is enabled is disabled abruptly. The CHANNEL INTERFACE ENABLED ight stays on until the host processor drops 'clock out' ven though the interface is disabled. No channel can become enabled.

Note: Be sure the channel is disabled before performing storage test operations.

L

- Used to enable interface 1A
- Interface $1 B$ is disabled.

If interface 1 B is installed and enabled and the switch is urned to this position, interface $1 B$ is disabled when clock out' drops on interface 1 B and command chaining stops. Channel 1 A is e met.

DISBL 1

Used to disable both interfaces $1 A$ and $1 B$
If ore of the interfaces is enabled when you set the switch to DISBL 1 , the interface is disabled when 'clock out' drops on that interface, and command chaining stops. Pressing the RESET pushbutton with the switch in DISBL 1 also disables the interface.

NBLB

- Present only if the 3705-80 has the Two-Channel Switch feature for channel interface 1.
- Causes the same results for interface 1 B that are described under ENBL A

Channel 1 Interface A Enabled Light

- Turned on when interface 1 A is enabled.
- Turned off when interface 1 A is disabled.
even though the adapter is disabled.

Channel 1 Interface B Enabled Light

- Turned on when interface $1 B$ is enabled.
- Turned off when interface $1 B$ is disabled.

Note. The light stays on when the $3705-80$ is in hard stop, even though the adapter is disabled.

Channel 1/Channel 2 Enable/Disable Switches

(Two Type 4 CAs)

Chan 1 Enabled

- Turned on when CA4 \#1 is enabled
- Turned off when CA4 \#1 is disabled.

ENBL/DISBL

- Used to enable/disable CA4 \#1.

Chan 2 Enabled

- Turned on when CA4 \#2 is enabled.
- Turned off when CA4 \#2 is disabled.

ENBL/DISBL

Used to enable/disable CA4 \#2.

$10 C 10 C 1$

Power Check Light

Turned on when a power check occurs. (See D-010 for conditions that cause a power check.)

- Turned off by pressing the POWER-OFF pushbutton on the control panel, if a thermal condition does not exist.
- Also turned on and off during a normal power-on
sequence.
- Not turned on by LAMP TEST pushbutton.

If the light is on because of a check condition, you cannot urn power on until you reset the check condition. If the power check resulted from an undervoltage sense, an ove voltage sense, or an overcurrent sense, reset the check by ressing the POWER OFF pushbuton. If the check resing the THERMAL RESET pushbutton located inside the covers of the $3705-80$ (See D-520).

Panel Active Light

WARNING

When the PANEL ACTIVE light is on, all the control panel switches and pushbuttons are active.

- Turned on when the MODE SELECT and DIAGNOSTIC CONTROL switches have been in the PROCESS position at least once since the last power-on sequence.
f the light is off and 3705-80 power is on, the 3705-80 operates as if the switches were in the PROCESS position However, the pushbuttons, except for the power con rols, have no effect.

Lamp Test Pushbutton

Turns on all control panel lights, except POWER CHECK and the spares.

Pressing the LAMP TEST pushbutton does not affect nor mal operation.

LOAD/STORE ADDRESS COMPARE SWITCH

Store Compare

- Used to determine if data from a general register is stored in a specific byte of storage. (See Store Address Compare on 1-140.)

With the switch in this position, the addresses in the ADDRESS/DATA switches and in SAR are compared during each 12 and 13 cycle of a ST, STC, STH or STCT instruction. If the addresses are equal, an address compare occurs, and the ADDRESS COMPARE light in display B comes on if the DISPLAY/FUNCTION SELECT switch is in STATUS.

During 12 cycle for STH and ST instructions, bit 1.7 of the addresses is ignored in the comparison. (Both bytes are stored in the storage halfword.)

During 12 cycle for STC and STCT instructions and 13 cycle for ST instructions, bit 1.7 is included in the comparison. (Only one byte is stored in the addressed storage halfword location.)

Load Compare

- Used to determine if an instruction loads data from Load Address Compare page 1-140.

The storage address in ADDRESS/DATA switches A-E is compared with SAR during each 11 , 12 or 13 cycle of a load instruction. In this case a load instruction is any instruction except ST, STC, STH, or STCT. If the addresses are equal, an address compare occurs and the ADDRESS COMPARE light in display B comes on if the DISPLAY/FUNCTION SELECT switch is in STATUS

During all 11 cycles, during 12 cycles for LH instructions, and during 13 cycles for the L instruction, bit 1.7 of the addresses is ignored in the address comparison. (Storage is addressed on a hal fword basis,)

During 12 cycles for IC, ICT, and L instructions, bit 1.7 is included in the address comparison. (Storage is addressed on a byte basis.)

CC Check Light

- Turned on when a CC check is detected
- Turned off by any of the following
pushbutton if
Exeutin Ouck
b. Ex 0 . 0.1 on in the
c. Executing an Output $X^{\prime} 77^{\prime}$ from the control panel
c. Executing an Output $X^{\prime} 77^{\prime}$ from the control panel in bit position 0.1. (See 1-140.)
d. Pressing the RESET pushbutton if there are no more CC checks.

Use input $X^{\prime} 7 D^{\prime}$ or turn the DISPLAY/FUNCTION SELECT switch to STATUS to display the specific CC check in display A.

WARNIN

MST cards are very sensitive and touching the pin side of certain cards can cause a CC check.

- Resets the CCU check register and turns off the CC CHECK light, if the CC checks are no longer present
This pushbutton works only if the PANEL ACTIVE light is on.

Note: The CC CHECK light is referred to as the CCU check indicator in logic.

Reset Pushbutton

ressing the RESET pushbutton

1. Sets the 'hard stop' and 'program stop' latches.
2. Sets odd parity in the local store register $X^{\prime} 00^{\prime}$. (The data is not affected.)
3. Sets valid parity in the Op register and in SDR
4. Sets valid parity in the Op register and in SDR.
5. Sends a reset signal across the adapter interface to the 3705-80 adapters.
6. Logically disconnects the type 1 or type 4 channel adapter from the interface by not allowing select out to be trapped.
7. Signals to the adapters that a not initialized state exists until the state ends as a result of IPL
8. Resets the CCU error register.
9. Masks program levels $2-5$ and adapter level 1 .

bits.

9. Resets the 'program level entered' latches.
10. Resets all CCU interrupt requests.
11. Sets the 'test mode' latch.
12. Aborts IPL phase 2 , if it is active

Set Address/Display Pushbutton

- Used to:
a. Display the contents of a storage location, a CCU register, or an adapter external register in display B .
b. Set the address of a storage location, CCU register, or adapter register for a store operation

This pushbutton functions only when the PANEL ACTIVE light is on and the DISPLAY/FUNCTION SELECT switch light is on and the DISPLAY/FUNCTION SELECT switch is in REGISTER ADDRESS or STORAGE ADDRESS. DIAGNOSTIC CONTROL switch is in one of the four STORAGE TEST positions and you have pressed the START pushbutton (unless the 'hard stop' latch was set previously).

A dynamic display can be done provided a program dis play is not present.

Start Pushbutton

- Used to
a. Restart the program. Reset the 'hard stop' and 'program stop' latches if the DIAGNOSTIC CONTROL switch is in PROCESS, BYPASS CC CHECK STOP, or CC CHECK HARD STOP.
b. Reset the 'hard stop' latch and start one of the four storage test functions.
c. Start the clock step function to step the CCU clock when the DIAGNOSTIC CONTROL switch is in CLOCK STEP

The START pushbutton works only if the PANEL ACTIVE light is on. Pressing the START pushbutton always cause
a 1.2 usec CS1 start pushbutton maintenance cycle.

Store Pushbutton

WARNING

Be careful when you perform a store operation. The data stored may alter normal program operation. An adapter check can occur when channel cycle steals and store operations occur at the same time

- Pressed and released to store data from the ADDRESS DATA switches in a storage location or in a register

The STORE pushbutton works only when the PANEL ACTIVE and PROGRAM STOP lights are on and the DISPLAY/FUNCTION SELECT switch is in REGISTER ADDRESS or STORAGE ADDRESS. It does not work during IPL Phase 1 and 2 or when the DIAGNOSTIC CONTROL switch is in one of the four STORAGE TEST positions and you have pressed the START pushbutton. The 'program stop' latch should be set before setting
the address for the store operation.

Stop Pushbutton

- Pressed to set the 'program stop' latch and stop program execution at the next instruction boundary.

This pushbutton works only when the PANEL ACTIVE light is on. It does not stop adapter or maintenance cycle steal operations.

WARNING

When the 'program stop' latch is set, cycle steal operation can cause adapter problems.

Program Display Light

Turned on when display register 1 or 2 contains program output. (CCU executed Output X' 71^{\prime} or $X^{\prime} 72^{\prime}$.)

- Turned off when the CCU takes a maintenance cycle, or when you press and release the START pushbutton if the 'hard stop' or 'program stop' latch is on.

If the light is on, turn the DISPLAY/FUNCTION SELECT switch to a position other than TAR \& OP REGISTER or STATUS. This causes displays A and B to display the data that is in display registers 1 and 2 .

nterrupt Pushbutton

Causes a program level 3 interrupt request.
Before you press the INTERRUPT pushbutton, set the ISPLAY/FUNCTION SELECT switch and the ADDRESS/DATA switches according to the convention established by the program handling the request.
To reset the interrupt request, Output $X^{\prime} 77^{\prime}$ must be eccuted with bit 0.2 on in the register designated by the R field of the instruction. (The CE can execute this output by using the control panel. See 1-140.)

This pushbutton works only when the PANEL ACTIVE light is on.

Hard Stop Light

- Turned on when the 'hard stop' latch sets.

The 'hard stop' latch sets when any of the following happen. a. The CCU executes Output $X^{\prime} 70^{\prime}$ when in program $1,2,3$, or 4.
b. The control panel is active, the DIAGNOSTIC CONTROL switch is in STORAGE SCAN or STORAGE TEST PATTERN, and a CCU check occurs.
c. The control panel is active, the DIAGNOSTIC CONTROL switch is in CC CHECK HARD STOP, and a CC check occurs.
d. The control panel is active, and you press the RESET pushbutton
The 3705-80 is in IPL phase 2 or 3 , and a CC check occurs (unless the 'bypass check stop' latch is set).

PROGRAN DISPLAY

Test Light

- Turned on when any of the following occur
a. The MODE SELECT switch is not in PROCESS.
b. The DIAGNOSTIC CONTROL switch is not in PROCESS.
c. The 'test mode' latch is set. (Note: The 'test mode' latch can be set by the control program via Output $X^{\prime} 79^{\prime}$ or by pressing the RESET pushbutton.)
- Turned off when all of the following occur.
b. The DIAGNOSTIC CONTROL switch is in PROCESS,
c. The 'test mode' latch is reset by the control program.
f. The control panel is active, and you turn the DIAGNOSTIC CONTROL switch to CLOCK STEP.
- Turned off when the 'hard stop' latch is reset.

The 'hard stop' latch is reset when any of the following happen.
a. A power-on reset occurs
b. IPL phase 1 reset occur
c. The DIAGNOSTIC CONTROL switch is not in any of the four STORAGE TEST positions; none of the conditions that set the 'hard stop' latch are present; and you press the START pushbutton. If the DIAGNOSTIC CONTROL switch is in CLOCK STEP and you press the START pushbutton, the latch is eset during the start cycle, but not immediately.

Wait Light

- Turned on when the CCU is in the wait state (running, but not taking instruction cycles or cycle steal cycles). Also comes on when the PROGRAM STOP or HARD. STOP light is on.
- Turned off when an interrupt occurs or the CCU takes a cycle steal cycle.
The usage meter does not run when the WAIT light is on.
For an explanation of the wait state, see "Idle Cycle" on 6.050

Program Stop Light

- Turned on when the 'program stop' latch sets.

The 'program stop' latch sets when one of the following happens.
a. The control panel is active; the MODE SELEC switch is in ADDRESS COMPARE PROGRAM STOP; the LOAD/STORE ADDRESS COMPARE witch is in LOAD or STORE; and the contents of SAR match the address in ADDRESS/DATA switches A-E. (See 1-060.)
. The panel is active; the MODE SELECT switch is NSTRUCTION STEP; and the CCU reaches an instruction boundary.
c. The 'hard stop' latch sets.
d. The control panel is active, and you press the STOP pushbutton.
e. The control panel is active, the DIAGNOSTIC CONTROL switch is in one of the STORAGE TES positions, and you press the START pushbutton.

- Turned off when the 'program stop' latch resets.

The 'program stop' latch is reset when one of the following happens.
et occurs.
occurs.
. The control panel is active, DIAGNOSTIC CONTROL switch is not in any of the four STORAGE the 'program stop' latch are conditions that set the 'program stop' latch are present, and you press
the START pushbutton. If the DIAGNOSTIC the START pushbutton. If the DIAGNOSTIC
CONTROL switch is in CLOCK STEP, and you press the START pushbutton, the latch is reset during the start cycle.

WARNING
 When the 'program stop' latch is set, cycle steal operations can cause adapter problems.

Load Light

- Turned on when IPL starts.
- Turned off by either
a. Executing Output $X^{\prime} 79^{\prime}$ with bit 1.1 on the registe designated by the R field of the instruction.
b. Executing Output $X^{\prime} 79^{\prime}$ from the control panel Executing Output $X^{\prime} 79^{\prime}$ from the control panel
by displaying register $X^{\prime} 79^{\prime}$ and then storing a 1 ' in bit position 1.1. (See page 1-140.)

Load Pushbutton

- Causes a machine reset and starts an IPL if the 'panel active' latch is set. (The PANEL ACTIVE light should be on.) See pages 6-960 to $6-964$ for information on IPL

C

Power On Pushbutton

- Starts a power-on sequence if the LOCAL/REMOTE POWER switch is in LOCAL (Not affected by the Unit Protection Feature).

The POWER CHECK light comes on when you press the POWER ON pushbutton and goes off when the power-on sequence is complete. The light stays on if a failure prevents completion of the power-on sequence.

An IPL starts at the end of a power-on sequence. The MODE SELECT and DIAGNOSTIC CONTROL switches must be in PROCESS so that the channel interface can be enabled during IPL.

Storage Address/Register Data (Address/Data) Switches

- Sets addresses or enters data to test the 3705-80.

For storage addressing, you should use only positions $0-3$ on switch A. For data entry, turning the switch to oositions $4-F$ will also cause data to be entered $4=0,5=1$, $6=2,7=3,8=9,9=1, A=2, B=3, C=4, D=5, E=6, F=7$.

When input $\mathrm{X}^{\prime} 71^{\prime}$ is executed, the data in the switches is placed in the general register designated by the R field in the instruction.

Note: If input $X^{\prime} 71^{\prime}$ is executed while you are turning the ADDRESS/DATA switches, the data loaded into the general register is unpredictable.

Remote/Local Power Switch

- Determines whether the host processor or the 3705-80 controls dc power. (Not affected by the Unit Protection Feature.)

Local

- Dc power can be turned on and off only at the 3705-80 control panel. An emergency power off at any attached host processor turns off $3705-80$ power.
- The host processor controls $3705-80 \mathrm{dc}$ power.

Dc power comes on at the 3705-80 when power is turned on at any attached host processor. Dc power goes off at the $3705-80$ when power is off at every attached host processor, when an emergency power off occurs at any attached host processor, or when you press the POWER OFF pushbutton.

Power Off Pushbutton

- Starts a power-off sequence. Resets any power check (except those caused by overheating) and turns off the POWER CHECK light (Not affected by the Unit Protec tion Feature).

This pushbutton shuts down power with the REMOTE/ LOCAL POWER switch in either position.

Note: Turn the CHANNEL INTERFACE ENABLE/ DISABLE switch (es) to DISBL and wait for the INTERFACE ENABLED lights to go off before you press the POWER OFF pushbutton. This prevents interference with the attached CPU.

- Used to perform diagnostic tests on the 3705-80.

If the PANEL ACTIVE light is off, the $3705-80$ runs as if the switch were in PROCESS. The TEST light comes on if the switch is in any position other than PROCESS.

WARNING

Before starting a clock step, storage scan, single address scan, storage test pattern, or single address test pattern procedure, perform a program shutdown procedure and disable the channel adapter. If you do not take this pre caution, the channel adapter will be suddenly for

Note: Certain storage failures are not detected by perform ing storage scan, single address scan, single address test pattern, and storage test pattern procedures. Storage IFT must be run to indicate these failures.

Process

- Allows the 3705-80 to run normally

Bypass CC Check Stop

- Allows normal operation except the 'hard stop' latch does not set, and the CCU does not start an IPL sequence when a CC check occurs. Normal operation can be affected if the check alters the program in any way. See chart below.

The 'hard stop' latch does not set, but the appropriate CC check latch sets, and the CC CHECK light comes on
cCU Action When a Check Condition Occurs

Diagnostic Control	Hardstop		Process		Bypass Check Sto	
Error Occurred in Program Level	1	2, 3, 4, 5	1	2, 3, 4, 5	1	2,3,
Hardware CheckALU**INDATASARSDROPREGCLOCK	$\}$ nardstops	$\}$ nardstops	$\}$ Note ${ }^{1}$	$\}_{\text {Note }{ }^{1}}$	$\}_{\text {bypasses }}$	$\}$ bypasses
Program Check						
ADAPTER N/OUT						
PROTECT	hardstops	level 1	Note ${ }^{1}$	${ }_{\text {level }} 1$		${ }_{\text {bex }}^{\text {bids }}$ level
invalid op						

Notes:

1. A check sets the 'mach ck set IPL'latch and causes the $3705-80$ to re-IPL. If another program check 2. This type error is is not byo exits level 1, the $3705-80$ will hardstop.

The check condition is an ALU Check if the byte 0 , byte 1 , and/or byte X lights are on and the
INDATA, INDATA, SAR, SDR, OP REG, and CLOCK lights are off.

Allows normal operation except that a CC check causes the $3705-80$ to hard stop at the end of that cycle and解 page 6-930.) See chart below.

The 'hard stop' latch sets, the appropriate CCU check latch sets, and the CC CHECK light comes on; but the CCU does not start an IPL sequegnce

Clock Step
Note: During clock step operations, the REFRESH OVERRUN ndicator turns on and remains on. This is a false or invalid dication, because the overrun detection logic cannot function normally during clock step operations. You must reset IPL the 3705-80 after clock step operations to validate the dicator
(See also page 1-160)

- Causes the CCU clock to be controlled by the START pushbutton instead of the $3705-80$ oscillator. (Refer to Clock Step Procedure on page 1-140.)
The 3705-80 stays in process mode until the START pushbutton is pressed and an instruction boundary is reached. Pressing it the first time stops the 3705-80 in TO of A time.
Each time you press and release the START pushbutton, the CCU clock advances one T time. (This can be observed

torage Test Patter

Causes the continuous storing of test data from the ADDRESS/DATA switches in sequential storage loca tions. (See Storing a Test Pattern in Storage page ccu. Aftr CCU reads that location to check for good parity. The
single Address Test Pattern

- When the DIAGNOSTIC CONTROL switch is in this position, pressing and releasing the START pushbutton causes a continuous store and read operation for the storage location addressed by TAR. (See Single Address Test Pattern Procedure page 1-130.)
in the CLOCK TIME lights in display A. See chart A.) Press and release the START pushbutton repeatedly to step the CCU clock through one "dummy" cycle (15 times). Then step the CCU clock through one CS Start cycle (1 times) to set up the following I cycle (observe the CS CYCLE light). Step the CCU clock through the instruction cycle(s). A CS Start cycle occurs before each of the following instruction's I cycle.
In CLOCK STEP the 3705-80 operates normally except 1. Instead of the machine oscillator, the START pushbutton steps the CCU clock.

2. The Z bus is gated to display register 1 at each AT3 time during maintenance cycles.
3. The Z bus is gated to display register 2 at every T3 time during maintenance cycles.
4. Storage does a complete read call beginning at ATO time and then, if it is a store-type instruction, does complete write call at CTO time
pattern is then stored at the next address. The operation stops when the switch is turned to another position or when the CCU detects an error.

The 3705-80 stays in the process state until the START pushbutton is pressed and released. This sets the 'program stop ${ }^{\prime}$ latch and starts the operation.

The 3705-80 stays in the process state until the START pushbutton is pressed and released. This sets the 'program stop latch and starts the operation. The operation stops when the switch is turned to another position. The operation continues regardless of error indications.

Storage Scan

- When the Diagnostic Control switch is set in this posi tion, pressing and releasing the START pushbutto causes a storage scan operation.
The 3705-80 stays in the process state until the START pushbutton is pressed and released. This sets the 'program stop' latch and starts the operation. The operation stops when the switch is turned to another position or when the CCU detects an error.

Single Address Scan

- When the DIAGNOSTIC CONTROL switch is in this position, pressing and releasing the START pushbutton causes a continuous scan of the storage location addressed by ADDRESS/DATA switches. (See Single Address Scan page 1-130.)
The 3705-80 stays in the process state until the START pushbutton is pressed and released. This sets the program stop' latch and starts the operation. This operation continues regardless of error indications.

Chart A

Cycle Time	A				в			
Clock Time	то	T1	T2	T3	T0	T1	T2	T3
Bit 1.4 light	0				0			
Bit 1.5 light	0				1			
Bit 1.6 light	0	0	1	1	0	0	1	1
Bit 1.7 light	0	1	0	1	0	1	0	1

Cycle Time	c				D			
Clock Time	то	T1	T2	T3	T0	T1	T2	
Bit 1.4 light	1				1			
Bit 1.5 light	0				1			
Bit 1.6 light	0	0	1	1	0	0	1	1
Bit 1.7 light	0	1	0	1	0	1	0	1

CONTROL PANEL PROCEDURES
Power-On Procedure

1. Set the LOCAL/REMOTE POWER switch to LOCAL.
2. Press the POWER ON pushbutton. The POWER CHECK light should turn on.
3. The POWER CHECK light turns off when the power on sequence ends. See D-500 and Power MAPs in Volume I for power sequence problems.

Note: The power-on procedure causes an IPL.
Power-Off Procedure

1. Set the CHANNEL INTERFACE ENABLE/DISABLE switch to DISBL.
2. Wait until the CHANNEL INTERFACE ENABLED light(s) turns off.
3. Press the POWER OFF pushbutton.

Activating the Control Panel

1. Set the MODE SELECT and the DIAGNOSTIC CONTROL switches to PROCESS.
2. The 'panel active' latch is set and the PANEL ACTIVE light turns on.

Enabling a Channel Interface

1. Set the CHANNEL INTERFACE ENABLE/DISABLE switch to ENBL A or ENBL B.
2. When the interface is enabled, the CHANNEL INTERFACE ENABLED light for that interface turns on.

Note: You may need to stop the host processor momentarily, to satisfy certain enable conditions if the host processor is very busy. Interface enable must also be conditioned by the 3705-80 program.

Disabling a Channel Interface

1. Set the CHANNEL INTERFACE ENABLE/DISABLE switch to DISBL.
2. When the channel interface is disabled and the 'clock out' line from the host processor is inactive, the CHANNEL INTERFACE ENABLED light for that interface turns off.

Note: You may need to stop the host processor momentarily to satisfy certain disable conditions if the host processor is very busy.

IPL Procedure

1. Activate the panel.
2. Press the LOAD pushbutton.
3. The LOAD light turns on when IPL starts.

Resetting the 3705-80
WARNING
Disable the channel interface(s) before pressing the RESET pushbutton.

1. Press the RESET pushbutton.
2. This resets all the 3705-80 hardware. (See RESET Pushbutton page 1-070.)
3. Press the LOAD pushbutton to start an IPL sequence.

Resetting a CC Check

1. Press the CC CHECK RESET pushbutton.
2. If no more checks are detected, the CC CHECK light turns off.

Requesting a Program Level 3 Interrupt

1. Set the DISPLAY/FUNCTION SELECT switch and the ADDRESS/DATA switches according to the convention established by the program handling the request.
2. Press and release the INTERRUPT pushbutton.

Displaying 3705-80 Status

1. Set the DISPLAY/FUNCTION SELECT switch to STATUS.
2. The lights in display A and display B show check and status information as indicated by their labeling.

Displaying TAR and the OP Register

1. Set the DISPLAY/FUNCTION SELECT switch to TAR \& OP REGISTER.
2. Display A shows the address in TAR. Display B bytes 0 and 1 show the contents of the Op register. Byte X of display B contains all Os .

Note: After a register address, storage address or storage test function, the TAR \& OP REGISTER position of the DISPLA Y/FUNCTION SELECT switch will no longer display the last previous TAR and OP code.

set Address and Display Register Procedure

 (See page 6-052 for flowchart.)WARNING
You can display most addressable registers using this proedure with the program running without affecting normal program operation. However, when you address certain registers, control functions occur and affect program opera tion. Refer to page $8-060$ (type 1 CA) and H -040 type 4 CA) for information on these registers.

1. Set ADDRESS/DATA switches B and D to the addres of an input register. (See 6-151 for the register addresses.)
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS.
. Press and release the SET ADDRESS/DISPLAY
pushbutton.

- A display register CS1 maintenance cycle is taken on the next instruction boundary.
Display A bits $0.0-0.3$ and bits $1.0-1.3$ display the ll
- The input register address in the ADDRESS/DATA switches is also put in the Op register
Display B shows the register contents. If the register ddress is uriassigned, all zero's, or a CA register ddress that cannot be displayed, display B shows all os. See 8 -060 (type 1 CA) and $\mathrm{H}-040$ (type 4 CA) for description of undisplayable CA registers. The in/Out Check L1 interrupt request is not set.
- If the PROGRAM STOP light is on, the register address is also placed in TAR. It can then be used as he register address in a subsequent store register operation.

Note: If the PROGRAM DISPLAY light is on, this operaion will not work with the program running.

Storing Data in a Register
(See page 6-054 for flowchart.)

Be careful when using the STORE pushbutton. The data tored may affect normal program and cycle steal operation and destroy program data.
. If the PROGRAM STOP light is not on, press the STOP pushbutton.
2. Perform a set address and display register operation to set in the Op register the address of the output register n which you desire to store data. Leave the DISPLAY/ FUNCTION SELECT switch at REGISTER ADDRESS.
3. Set the data in ADDRESS/DATA switches A-E
4. Press and release the STORE pushbutton

- The PROGRAM DISPLAY light turns off, if it was on
- Display A shows the contents of TAR. (TAR and the Op register contain the address entered in the s address and display register operation.)
- The data in ADDRESS/DATA switches A-E is stored in the output register addressed by the Op register,
- If the register address in B .
- If the register address in the Op register is unassigned, the store operation has no effect. The In/Out Check L 1 interrupt request is not set.

Set Address and Display Storage Procedure

 (See page 6-056 for flowchart.)Note: Displaying storage locations using this procedure does not affect normal program or cycle steal operation.
. Set ADDRESS/DATA switches A-E to the storage address.
2. Set the DISPLAY/FUNCTION SELECT switch to STORAGE ADDRESS
3. Press and release the SET ADDRESS/DISPLAY
pushbutton.

- A display storage CS1 maintenance cycle is taken on the next instruction boundary.
- The contents of ADDRESS/DATA switches A-E are placed in SAR and in display A.
- Display B bytes 0 and 1 shows the contents of the addressed storage halfword location. Because control perate only on halfwords, display B byte X should operate only
- If the PRO
- If the PROGRAM STOP light is on, the storage address is also placed in TAR. It can then be used
ote: If the PROGRAM DISPLAY light is on, this opera tion will not work with the program running.

Storing Data in Storage Locations
(See page 6-057 for flowchart.)
Note: Certain storage failures are not detected by this procedure. Storage IFTs must be executed to indicate these failures.

1. If the PROGRAM STOP light is not on, press the STOP pushbutton.
2. Perform a set address and display storage operation to set the storage address in TAR. (See page 1-120.) Leave the DISPLAY/FUNCTION SELECT switch at STORAGE ADDRESS.
3. Set the data in ADDRESS/DATA switches B-E.
4. Press and release the STORE pushbutton.

- The PROGRAM DISPLAY light turns off, if it was on.
- The contents of ADDRESS/DATA switches B-E are stored at the location addressed by TAR.
- TAR is incremented to address the next halfword storage location. Display A shows this new address.
- Display B bytes 0 and 1 displays the data from the addressed storage location. Because control panel storage-address and storage-scan functions operate only on halfwords, display B byte X should be completely ignared.

5. Press the STORE pushbutton each time you want to store data from ADDRESS/DATA switches B-E in the next sequential storage location.

Storing a Test Pattern in Storage
(See page 6-060 for flowchart.)
WARNING
Disable the channel interfaces before you start this procedure.

If a test pattern that is an invalid Op is stored, pressing the START pushbutton will cause an invalid Op CC check.

Note: Certain storage failures are not detected by this procedure. Storage IFTs must be executed to indicate these failures.

1. Set the test pattern data in ADDRESS/DATA switches B-E.
2. Set the DIAGNOSTIC CONTROL switch to STORAGE TEST PATTERN.
3. Set the DISPLAY/FUNCTION SELECT switch to any position except TAR and OP Register or STATUS.
4. Press the START pushbutton.

- The PROGRAM STOP light turns on.
- The data in ADDRESS/DATA switches B-E is stored in the storage location addressed by TAR.
- Display A displays the address in TAR. TAR is then incremented to address the next storage halfword location.
- Display B bytes 0 and 1 displays the data from the storage location. Because control panel storageaddress and storage-scan functions operate only on halfwords, display B byte X should be completely ignored.
- The stored data is checked for parity. A parity check causes the appropriate CC CHECK light to turn on. The 3705-80 stops. To continue the operation: (1) press the CC CHECK RESET pushbutton, and (2) press the START pushbutton. The operation continues until the CCU detects an error.

5. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

Note: Because an asynchronous stop occurs when the switch is turned, an indata check may occur. Ignore the check, and press the CC CHECK RESET pushbutton.

Storage Scan
(See page 6-063 for flowchart.)
WARNING
Disable the channel interfaces before you start this procedure.

Note: Certain storage failures are not detected by this procedure. Storage IFTs must be executed to indicate these failures.

1. Set the DIAGNOSTIC CONTROL switch to STORAGE SCAN.
2. Press the START pushbutton.

- The PROGRAM STOP light turns on.
- The storage location addressed by TAR is scanned first.
- Each CS1 cycle increments the address in TAR by two and puts the new address in display A (unless the DISPLAY/FUNCTION SELECT switch is in STATUS.)
- Display B bytes 0 and 1 shows the last thing set in the Op register if the DISPLAY/FUNCTION SELECT switch is in TAR \& OP REGISTER. (The Op register is not changed during this operation.) If the switch is not in the TAR and OP Register or STATUS position, display B shows the contents of the storage location addressed by SAR. Because control panel storage-address and storage-scan functions operate only on halfwords, display B byte X should be completely ignored.
- A parity check causes the appropriate check light to turn on. The 3705 stops. The address in display A is two greater than the address that caused the parity check. To continue the operation: (1) press the CC CHECK RESET pushbutton, and (2) press the START pushbutton. The operation continues until the CCU detects an error.

3. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

Note: Because an asynchronous stop occurs when the switch is turned, an indata check may occur. Ignore the check and press the CC CHECK RESET pushbutton.

ingle Address Test Pattern Procedure

See page 6-064 for flowchart.)

varning
 Disable the channel interfaces before you start this procedure.

Note: Certain storage failures are not detected by this procedure. Storage IFTs must be run to indicate thes failures.

1. Set the address of the storage location in TAR, using the procedure in Set Address and Display Storage Procedure or in Single Address Scan.
Set the test pattern in ADDRESS/DATA switches B-E
Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS TEST PATTERN.
2. Set the DISPLAY/FUNCTION SELECT switch to any

Press the START pushbutton.
The data in ADDRESS/DATA switches B-E is stored in the storage location addressed by TAR.

- Display A shows the address in TAR. TAR is not incremented.
Display B bytes 0 and 1 shows the data stored in the storage location. The data is checked for parity. Because contro! panel storage-address and storage scan functions operate only on halfwords, display B byte X should be ignored.
- A parity check does not cause the machine to stop but the appropriate CC CHECK light does turn on. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

Note: Because an asynchronous stop occurs when the witch is turned, an indata check may occur. Ignore the heck and press the CC CHECK RESET pushbutton.

Single Address Scan

(See page 6-067 for flowchart.)

1. Set ADDRESS/DATA switches A-E to the address of the storage location that you want to scan.
. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS SCAN.
. Set the DISPLAY/FUNCTION SELECT switch to an position except TAR and OP Register or STATUS.
2. Press the START pushbutton.

- During each CS1 cycle, display A displays the address in the ADDRESS/DATA switches.
- Display B bytes 0 and 1 shows the data in the addressed location. Because control panel storage address and storage-scan functions operate only on halfwords, display B byte X should be ignored.

The storage address is not incremented.
The scanning does not stop if a parity check occurs, but the appropriate CC CHECK light does turn on.
5. The ADDRESS/DATA switches can be rotated to con tinuously display the contents of the storage locations. To end the operation, set the DIAGNOSTIC CONTROL switch to another position.

Note: Because an asynchronous stop occurs when the Note: Because an asynchronous stop occurs when the check and press the CC CHECK RESET pushbutton.

Store Address Compare

Set the LOAD/STORE ADDRESS COMPARE switch to STORE.
Set ADDRESS/DATA switches A-E to the storage address.

Note: To determine if a 'store character' (STC) or 'store character and count' (STCT) instruction stores data from a general register in a storage byte, set the ADDRESS/DATA switches to the address of that byte.

To determine if a 'store' (ST) or 'store halfword' (STH) tores byte 0 and byte 1 of a general register in a storage halfword, set the ADDRESS/DATA switches to the address of either byte.

- During 12 and 13 cycles, the storage address in the ADDRESS/DATA switches is compared with the contents of SAR. If the addresses are equal, and the instruction being executed is a ST, STC, STH, or STCT instruction, the ADDRESS COMPARE light in display B turns on, if the DISPLAY/FUNCTION ELECT switch is in STATUS. BIT 17 is included in the address comp byte instruction.
. To cause a program stop to occur when the addres compare occurs, set the MODE SELECT switch to address compare program stop. Pressing and releasing the START pushbutton resets the 'program stop' latch and restarts the program.

4. To cause the address compare L 1 interrupt request to set when the address compare occurs, set the MODE SELECT switch to ADDRESS COMPARE INTERRUPT

Load Address Compare

. Set the LOAD/STORE ADDRESS COMPARE switch to LOAD
2. Set ADDRESS/DATA switches A-E to the storage address.

Note: To determine if an instruction at a specific address ever executed, the address set in the ADDRESS/DATA
switches can be either the address of byte 0 or byte 1 of the instruction.

To determine if a storage byte is ever loaded into a general register, set the ADDRESS/DATA switches to the address of that byte.
To determine if a storage halfword is ever loaded into byte 0 and 1 of a general register, set the ADDRESS/DATA switches to the address of either byte 0 or byte 1 of the storage location.

During 11,12 , and 13 cycles, the storage address in the ADDRESS/DATA switches is compared with the contents of SAR. If the addresses are equal, and STH O STCT, the ADDRESS COMPARE Light display B turns on if the DISPLAY/FUNCTION SELECT switch is in STATUS Bit 17 is included in the address comparison only if the instruction is a byte instruction.

- If the MODE SELECT switch is at ADDRESS COMPARE PROGRAM STOP when the addresses are equal, pressing and releasing the START pushbutton resets the 'program stop' latch and restarts the program.

3. To cause a program stop to occur when the address compare occurs, set the MODE SELECT switch to ADDRESS COMPARE PROGRAM STOP.
4. To cause the address compare L1 interrupt request to set when the address compare occurs, set the MODE SELECT switch to ADDRESS COMPARE INTERRUPT

Lamp Test

Note: Pressing the LAMP TEST pushbutton does not affect normal 3705-80 operation.

1. Press the LAMP TEST pushbutton.
2. All the control panel lights, except the POWER CHECK light and the spares, turn on.

Clock Step Procedure

WARNING

Disable the channel interface before you start this

 procedure.Note: During clock step operations, the REFRESH OVERRUN indicator turns on and remains on. This is a false or invalid indication, because the overrun detection logic cannot function normally during clock step operation. You must reset or IPL the 3705-80 after clock step operations to validate the dicator

1. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP.
2. Press the START pushbutton.

- The 3705-80 stops in TO of A time
- The START pushbutton, instead of the 3705-80 oscillator, provides pulses to drive the CCU clock
- If the DISPLAY/FUNCTION SELECT switch is in STATUS, displays A and B show check and status information. If the switch is in TAR \& OP REG ISTER, display A shows the contents of TAR and display B shows the contents of the Op register. If the switch is in any other position, the contents of the Z bus are gated to display register 1 at each AT3 time and to display register
Rules for observing clock-step operations.
- The first instruction executed in clock-step mode is preceded by an idle cycle (CS indicator off, I indicator off).
- A CS1 start-pushbutton cycle (CS indicator on, I indi cator off) is taken before the start of each instruction
- The I cycle being executed can be determined by observing the Display A status indicators 1.3-1.7. By counting the number of transitions thru IA TO since the last cycle steal cycle, the I-cycle number is known (be sure to watch the I indictor - ignore the interspersed idle cycles).
may be interspersed dependin on the instruction.

In CLOCK STEP the 3705-80 operates normally except . Instead of the machine oscillator, the START pushbutton steps the CCU clock
2. The \mathbf{Z} bus is gated to display register $\mathbf{1}$ at each AT3 time during maintenance cycles.
The Z bus is gated to display register 2 at every T time during maintenance cycles
Stage does a complete read call beginning at ATO time and then, if it is a store-type instruction, does a complete write call at CTO time.
instruction Step Procedure

1. Set the MODE SELECT switch to INSTRUCTION TEP.

- The PROGRAM STOP light turns on.

Press and release the START pushbutton to continue with the next instruction.

- The 3705-80 executes one instruction.
. 3705 you press and release the START pushbutton the 3705 executes one instruction.

Note: The CCU handles cycle steal requests normally during this procedure. All interrupts, except program level 1 interrupts and interrupts to higher program levels, are inhibited until the program executes an 'exit' instruction.

xecuting an Input or Output Instruction From

 the Control Panelinput instructions can be executed from the control panel by displaying the corresponding external register. See Set Address and Display Register Procedure on page 1-120.
utput instructions can be executed from the control panel by displaying the corresponding external register and then toring the desired bits in the register. (The 3705-80 must be in program stop mode.) See Storing Data in a Register on page 1-120.

Example: The CC CHECK lights in displays A and B can be turned off by executing an Output $X^{\prime} 77^{\prime}$ instruction with bit 0.1 on the general register designated by the \mathbf{R} field of the instruction. The lights can also be turned off by storing a " 1 " in bit 0.1 of external register $X^{\prime} 77$ '.
The bits stored in an external register from the control panel have the same hardware function as when they are et on by a program. Therefore, many hardware functions can be checked by simulating input and output

Setting Up and Executing an Instruction

WARNING

isable the channel interface(s) before starting this procedure.

Note: This procedure is an example of one method to set un and execute an instruction.

1. Press the STOP pushbutton.
2. Use the Set Address and Display Storage Procedure page 1-120) to set the storage address that you want store the instruction in.
3. Use the steps in Storing Data in a Storage Location (page $1-130$) to store the desired instruction in the storage location
4. In the next storage location, store a 'branch' instruction to cause a branch back to the preceding storage location
5. Use the Set Address and Display Register Procedure (page 1-120) to set the IAR (register 0) for the program level that you are in. (The current program level can be determined from the status lights in display B.)
6. Follow the steps in Storing Data in a Register (page 1-120) to store the address of the storage location from step 3
7. If you want to step through the instructions:
a. Turn the MODE SELECT switch to INSTRUCTION STEP.
b. Press and release the START pushbutton. The CCU executes one instruction. The 3705-80 stops, and the PROGRAM STOP light turns on.
c. Press and release the START pushbutton to execute the next instruction. Each time you press the START pushbutton, the CCU executes one instru tion.

Note: If the CCU is in level 1 (as it is immediately after ROS is loaded), program execution in levels 2,3,4, or 5 requires the following previous steps: (1) reset level 1 requests - Output X ' 77 ', (2) unmask appropriate interrupt level - Output X 가, (3) generate an appropriate interrupt request, and (4) EXIT.

CONTROL PANEL TEST OF CCU DATA PATH

Part 1. Basic Control and Data Flow

This section tests the part of the data path in the CCU necessary to load ROS and those controls that may be necessary to analyze a failure detected by the ROS test.

1. Press LAMP TEST. -All panel lights, except POWER CHECK and the spares, should light.
2. Swap any failing lights with lights in working position to verify that the lights are bad
. e place the lights found to be defective
. If the lights tested are good, swap the driver cards locted at 01A-B4U2 and O1A-B4U3. Refer to D-210 and ALDs AP009 to AP015 for details.

Panel Active (Required for Further Panel Testing)

 The following conditions should activate the PANEL ACTIVE light:DIAGNOSTIC CONTROL switch in PROCESS
b. Not power-on reset

MODE SELECT switch in PROCESS
Refer to ALD CU001-BM6.
WARNING
Disable the channel interface(s) before proceeding.

Clock Step

Note. During clock step operations, the REFRESH OVERRUN indicator turns on and remains on. This is a false or invalid indication, because the overrun detection logic cannot function normally during clock step operation. You must rese or IPL the 3705-80 after clock step operations to validate the indicator.
. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP.
. Press RESET. -Verify that the HARDSTOP, PRO GRAM STOP, TEST, and WAIT lights are on.
3. Set the DISPLAY/FUNCTION SELECT switch to STATUS.
. Press START. -Check CYCLE TIME and CLOCK TIME in display A. CYCLE TIME should equal ' 00 '; LOCK TME should equal 0
CLOCK TIME and CYCLE TIME CYC stepping of IME. CYCLE TIME ould increment each time CLOCK TIME steps from '11' to '00'.

Itial Data Path Test (ALU-B Side, Z bus, Display A) Set the DISPLAY/FUNCTION SELECT switch to STORAGE ADDRESS
2. Set the DIAGNOSTIC CONTROL switch to SINGLE dDRESS SCAN
4. The address set in ADDRESS/DATA switches should be equal to Display A. Vary the ADDRESS/DATA switches to test various data bit combinations (for example, 0101, 5555, AAAA, etc.)
5. Compare display A with' the switch values to check for data bit failures.
6. If data bit failures occur, refer to CCU DATA BITS/ CARD LOCATIONS (page 1-160) for card swapping.

Note: This procedure can also be used as convenient way to display multiple storage locations. Data is displayed in display B.
7. Return the DIAGNOSTIC CONTROL switch to PROCESS

Storage Data Path Test (ALU-A Side, Displyy B)

1. Press STOP.
2. Display storage at any valid address using the set address and display storage procedure (page 1-120).
3. Press STORE. - The data in the ADDRESS/DATA
4. Press STORE again
by 2 ech time STORE is presed Display B shour be 2 the contents of is .

Note: The data being stored is not displayed because TAR is incremented; the next storage location is displayed.
5. Verify that the correct data was stored by using the display storage procedure.
6. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS TEST PATTERN.
7. Press START. -The contents of display B should equal the value in the ADDRESS/DATA switches. Vary data pattern in the switches as desired.

Storage Test Pattern

1. Set the DIAGNOSTIC CONTROL switch to STORAGE TEST PATTERN.
2. Set the ADDRESS/DATA switches to 'FFFF
3. Set the DISPLAY/FUNCTION SELECT switch to TORAGE ADD
4. Press START
5. Display A shows the incrementing address; display B
6. If the machine
7. If the machine stops because of a CC check, record the following
a. Falingrage address lequals the address in display
b. Failing bits
b. Faling bits (Compare the ADDRESS/DATA switches and display B.)
c. Set the DISPLAY/FUNCTION SELECT switch to STATUS. -Display A shows the error status.

Note: If a CC check has occurred, but the ADDRESS/ DATA switches and display B are equal, the parity bit has probably failed. (The BYTE lights indicated the byte with the bad parity bit.)
7. Press CHECK RESET, then press START.
8. Repeat steps 1 through 6 using different data patterns in the ADDRESS/DATA switches (for example, 0000, 0101,5555, AAAA, etc.)
9. Analyze failures to determine a failing pattern (data or addressing).

ROS Test Contro

Verifies that IPL phase 1 and 2 execute correctly.

1. With the channel interface disabled, press LOAD on the local $3705-80$. On the Remote $3705-80$, press LOAD.
2. The IPL phase lights should equal ' 11 ' with the program
looping, waiting for the 'interface enabled' signal. Do not enable the interface unless channel data transfer is desired. If trouble is suspected, refer to the ROS listing and to the ROS test section of this manual
a. If the IPL PHASE lights are ' 01 ', check the hardware reset function
b. If the IPL PHASE lights are ' 10 ', ROS test transfer to storage is incomplete.
(1) Press RESET to force IPL phase $3\left({ }^{\prime} 11^{\prime}\right)$,
(2) Run the storage pattern test with data equal to 'FFFF' to establish a background pattern.
(3) Press LOAD.
(4) If the same failure occurs: Turn the DISPLAY FUNCTION SELECT switch to TAR \& OP REGISTER. Display A shows the next storage address. Press RESET and display storage starting at $X^{\prime} 0000^{\prime}$ to determine how much of ROS was loaded (data instead of FFFF).
3. Refer to ROS TEST, page 2-000 if a failure occurs in IPL phase '11'. (Local 3705-80.)
4. Refer to RPL section in Vol 1 (SY27-0208) of this set
for ROS Testing for a Remote 3705-80. for ROS Testing for a Remote 3705-80.
Address Compare Stop, Instruction Step, and Hard Stop
5. Set the DISPLAY/FUNCTION SELECT switch to

TAR and OP REGISTER.
2. Set the LOAD/STORE ADDRESS COMPARE switch to LOAD.
3. Set the MODE SELECT switch to ADDRESS COM PARE PROGRAM STOP.
. Set the ADDRESS/DATA switches to '00012'.
. Press LOAD. (The address compare pulse is available OIA-B3P2-s09. See ALD page CU004.)
. The 3705-80 should stop with:
a. TEST light on.
c. LOAD light on.
d. DISPLAY A set to $X^{\prime} 00014^{\prime}$ (The instruction at address $X^{\prime} 0012^{\prime}$ was executed)
e. ADDRESS COMPARE and PROG L1 lights are on if the DISPLAY/FUNCTION SELECT switch is set to STATUS.
7. Set the MODE SELECT switch to INSTRUCTION STEP
Press START. Verify that DISPLAY A equals X'00016' (IAR incremented).
play register $X^{\prime} 70$.
10. Store register $X^{\prime} 70^{\prime}$ (Ignore the data.) -The HARD. STOP light should be on.

art 2. Miscellaneous Controls

This section tests the panel functions that are not required for ROS testing and analysis but are used for DCM Diagnostic Control Module control and indications. Note the input and output instructions can be executed from the ontrol panel by displaying and storing into the externa register. Refer to Executing an Input or Output Instruction From the Control Panel on page 1-140

Load Light

1. Press LOAD. -Verify that the LOAD light is on 2. Press RESET.
2. Display register \times ' 79 '
3. Display register $X^{\prime} 79^{\prime}$
4. Store $X^{\prime} 0040^{\prime}$ in register $X^{\prime} 79^{\prime}$. -Verify that the LOAD light is off.

Set and Reset Test Mode

1. Set the MODE SELECT switch to PROCESS.
2. Set the DIAGNOSTIC CONTROL switch to PROCESS.
3. Display register $X^{\prime} 79$ ',
4. Store $X^{\prime} 0010^{\prime}$ in register $X^{\prime} 79^{\prime}$. -TEST light goes off if it was on.
5. Store $X^{\prime} 0020^{\prime}$ in register $X^{\prime} 79^{\prime}$. -TEST light turns on.

Scope Sync Pulse

1. Display register $X^{\prime} 79^{\prime}$
2. Store $X^{\prime} 0002$ ' in register $\mathrm{X}^{\prime} 79^{\prime}$. -Fires scope sync \#1 at 01A-B3M2-P10, ALD page Cu015.
3. Store $X^{\prime} 00011^{\prime}$ in register $X^{\prime} 79^{\prime}$. - Fires scope sync \#2 at 01A-B3M2.P13, ALD page CU015

Wait Light

1. Press RESET. -Verify that the WAIT light is on.
2. Set the DIAGNOSTIC CONTROL switch to SINGLE ADDRESS SCAN.
3. Press START. -Verify that the WAIT light is off.
4. Set the DIAGNOSTIC CONTROL switch to PROCESS

P Register Data and CC Check

1. Press RESET.
2. Set the MODE SELECT switch to INSTRUCTION STEP.
3. Press LOAD (forces program level 1)
4. Store X'FFFF' in address X'0012' (Branch on Bit using register 7 ; this will be the first instruction executed).
5. Store $X^{\prime} 00000^{\prime}$ in address $X^{\prime} 0014^{\prime}$ (Invalid OP decode)
6. Store $X^{\prime} 000000^{\prime}$ in register $X^{\prime} 07^{\prime}$.
7. Set DISPLAY/FUNCTION SELECT switch to TAR and OP REGISTER.
8. Press START.
a. DISPLAY B equals $X^{\prime} F F F F^{\prime}$ (instruction stored in Step 4).
b. Repeat steps 4,6 , and 7 varying the data in Step if a hot/cold bit is suspected in the OP REG.
9. Press START again.
10. The lights should indicate:
a. CC check
b. Invalid OP
c. L1 program chec
d. Hardstop
11. Store $X^{\prime} 4004$ ' in register $X^{\prime} 77^{\prime}$
a. CC CHECK lights should be
b. Invalid OP and $\mathrm{L1}$ program check should be reset
12. Reset the $3705-80$.

isplay/Function Select Switch and Program Display

1. Reset the $3705-80$
2. Set the MODE SELECT switch to INSTRUCTION STEP.
. Press LOAD (forces program level 1).
3. Store the following instructions at the given address: Address ' $^{\prime} 0012^{\prime}-X^{\prime} 742 C^{\prime}$ (Puts contents of the DISPLAY/FUNCTION SELECT switch in CCU register 4.)
Address $X^{\prime} 0014^{\prime}-X^{\prime} 7414^{\prime}$ (Output register 4 to display register 1).
Address X'0016' $^{\prime}$ - $\mathbf{X ' 7 4 2 4 ' ~}^{\prime}$ (Output register 4 to display register 2). ${ }^{\prime}$ Address X'0018' $^{\prime}$ (${ }^{\prime} \mathbf{A 8 0 9}^{\prime}$ (Branch back to first instruction).
4. Set the DISPLAY/FUNCTION SELECT switch to TAR and OP REGISTER.
. Press START to step through the program.
a. Verify that the program loops
b. The PROGRAM DISPLAY light should turn on and off while the program is stepped.
5. Set the MODE SELECT switch to PROCESS.
6. Press START.
a. The program should run continuously. (The PRO GRAM STOP light should stay off.)
b.
7. Rotate the DISPLAY/FUNCTION SELECT switch to ell A gel
STO AAE ADDRESS
b. REGISTER ADDRESS $-X^{\prime} 1000$
b. FUNCTION SELECT $1-X^{\prime} 0040$
c. FUNCTION SELECT 1 - X'0040
d. FUNCTION SELECT 2 - X'0020
d. FUNCTION SELECT 2 - X'0020
f. FUNCTION SELECT $4-X^{\prime} 0008$
g. FUNCTION SELECT $5-X \times 0004$
h. FUNCTION SELECT $6-X^{\prime} 000$
8. Press STOP to stop the program.

Interrupt Request and Reset

1. Press RESET.
2. Display register $X^{\prime} 7 F^{\prime}$. -Verify that bit 0.6 is off.
. Press INTERRUPT.
3. Display register $X^{\prime} 7 F^{\prime}$. -Verify that bit 0.6 is on (Panel irpt req L3)
4. Store $X^{\prime} 2000^{\prime}$ in register $X^{\prime} 77^{\prime}$. -Reset panel irpt req
5. Display register $X^{\prime} 7 F^{\prime}$. -Verify that bit 0.6 if off.

Part 3. CCU Data Bits -Card Location This section shows cards containing the data bit groups and miscellaneous controls. This information should be useful when running either panel tests or memory IFTs. Logic references are given for further detail.

GENERAL DATA FLOW: Includes B register, LAR,
local store, CCU display, ALU, SAR, TAR, A register,
and ALU check bits.

Bits	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { x.P.X. } 6, \\ \text { X. } 7 \end{array} \\ \hline \end{array}$	0.P-0.1	0.2-0.4	0.5-0.7	1.P-1.1	1.2-1.4	1.5-1.7
Card	A-84J2	A-B4K2	A-B4L2	A-B4M2	A-B4N2	A-84P2	A-8402
$\begin{aligned} & \text { ALD } \\ & \text { Page } \end{aligned}$	DF	DG	DH	DJ	DK	DL001-	DM001-

OP Register and SDR Register

Bits	$0.0-0.4$	$0.5-0.7,0 . \mathrm{P}$	$1.0-1.4$	$1.5-1.7,1 . \mathrm{P}$
Card	A-B4G2	A-B4G2	A-B4H2	A-B4H2
ALD				
Page	DN001-	DP001-	DCo01-	
004	004	DR001-		

SAR and SDR Drivers and Receivers (3705-80)

ALD Page	DS001-005
SAR Drivers	A-B4B2
SDR Dr/Rec Byte 0	A-B4A3
SDR D/Rec Byte 1	A-B4A2

Miscellaneous Logic References and Card Locations

Functions	ALD Pages	Cards
ALU Controls	CA001-004	01A-B3J2
Panel Controls	cu001-015	01A-B3N2, B3L2, B3P2
Clock and Controls	CC001-008	01A-B302, B3R2
Data Flow Reg Controls	cs001-007	01A-B3F2, B4E2
Condition Codes	cz001-005	01A-B3G2
Local Store Controls	cL001-005	01A-B3K2
Instruction Decode	CD001-004	01A-B3H2
Storage Controls	см001.003	01A-B3T4
Priority Controls	CP001.007	01A-в3м2

DIAGNOSTIC AIDS: SCOPE POINTS AND JUMPERING CAPABILITIES

Scope Points

The following scope points can be used to diagnose problems:
A. '+ diag scope sync point 1 ' at 01A-B3M2-P10 on ALD page CUO15. The DCM controls this sync point by means of ant 1 is used to sync on the beginning of each routine or on the hardware setup block when the DCM is in a scoping loop.
B. '+ diag scope sync point 2' at 01A-B3M2-P13 on ALD page CUO15. The DCM controls this sync point by means of an Output X‘79' when bit 1.7 is a 1 . Scope sync point 2 is used to sync on the test function of a test routine.
Diag scope points 1 and 2 may be used together to count repetitions of the test function. Sync point 1 is used to trigger the scope and the delayed sweep feature is used to count the number of pulses (each pulse repre sents one repetition) on sync point 2.
See 'Setting Up a Scoping Loop' (below) for informa
tion on scoping for a failure while running the IFTs.
C. ' + address compare test pin' at 01 A-B3P2-S09 on ALD page CU004. The STORAGE ADDRESS/REGISTER DATA switches on the control panel are used to estabany IFT routine or in the DCM. A sync pulse is generated when the address for fetch. A sync pulse is genera thad the same as the address in the STORAGE ADDRESS/ REGISTER DATA switches.
D. - -A time' at 01A-B3R2-P04

Setting Up a Scoping Loop (IFT Failures) After a failure has been detected, the DCM and IFTs provide two looping options.

- The Loop on First Error option selects the smallest possible loop within the IFT. The loop includes the hardware setup, pretest, set scope sync point 2 , test, analysis, and error display. The loop for this option normally takes less time to execute than the Restart on First Error option. The loop continues whether or not the error occurs again.
- The Restart Routine on First Error option selects a loop that starts at the beginning of a routine, continues the routine to the point where the error was first detected, and then restarts the routine again. The loop for this sequence-sensitive failures, The loop continues whethe arther or not the error occurs again.

After selecting the looping option, use the continue funcion to continue from the error stop. The time required to top on the error code again gives an indication of the length of the loop. Repeat this process several times and use the longest length of time.

To obtain continuous running loops, the 'bypass error stop' CE sense switch must also be set.

If an error other than the one selected for looping occurs, the DCM stops to display the new error code. To bypass tops for other errors, set the 'bypass new error stop' CE sense switch.

When the scoping loop is running correctly, the scoping indicator (Display B, bit 0.4) blinks at the rate of 3.2 seconds (1.6 seconds on and 1.6 seconds off). Display B (byte 0, bits 5, 6, and 7) is incremented by one for each error detected. This error counter (together with the loop time) indicates the failure is solid or intermittent. Other information is also displayed. Display A shows the adapter FT and routine number. Display B (byte 0 , bits $0-3$ and byte 1) shows the error code being looped on.

Diagnostic Jumpering Capabilities

The following jumpering capabilities can be used to diagnose problems.
Invoke IPL When an Address Compare Occurs

1. Plug the CE MST-1 latch card P/N 5851882 onto a socket position that has no second level wraps on any pin. Probe pins A, F, or M located on latch card according to instructions.

WARNING

The latch card must be plugged onto the board with the component side of the card toward the right or circuit damage will result.
2. Connect 01A-B3P2-S09 to pin A. Refer to ALD page CU004.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page CU010.
4. Set the LOAD/STORE ADDRESS COMPARE switch and the ADDRESS/DATA switches as desired.

Invoke IPL When the 'Hard Stop' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3L2-M03 to pin F. Refer to ALD page Cu006.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page CUO10.
Press the START pushbutton.

Invoke IPL When the 'Machine Check' Latch Sets
. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3N2-J06 to pin F. Refer to ALD page CK006.
3. Connect 01A-B3L2-J09 to pin M. Refer to ALD page CuO10.
4. Press the START pushbutton

Cause the 'Clock Step' Latch to Freeze the Clock When an Address Compare Occurs
an Address Compare Occurs

1. Same as step 1 of Invoke IPL When an Address Compare
 cuoor.
Connect 01A-B3P2-J09 to pin M. Refer to ALD page Cu007.
2. Set the LOAD/STORE ADDRESS COMPARE switch and the ADDRESS/DATA switches as desired.
3. Press the START pushbutton.
4. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the address compare stop.
Cause the 'Clock Step' Latch to Freeze the Clock When the 'Hard Stop' Latch Sets
5. Same as step 1 of Invoke IPL When an Address Compare Occurs.
6. Connect 01A-B3L2-M03 to pin F. Refer to ALD page CU006.
Connect 01A-B3P2-J09 to pin M. Refer to ALD page CU007.
7. Press the START pushbutton.
8. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the hard stop.

Prevent Loading of ROS During IPL

Connect 01A-B3L2-U02 to 01A-B3L2-G08. Refer to ALD page CU010.

Cause the 'Clock Step' Latch to Freeze the Clock When the 'Machine Check' Latch Sets

1. Same as step 1 of Invoke IPL When an Address Compare Occurs.
2. Connect 01A-B3N2-J06 to pin F. Refer to ALD page CK006.
Connect 01A-B3P2-J09 to pin M. Refer to ALD page CU007.
. Press the START pushbutton.
3. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP after the machine check.

Simulate a Continuous Panel Display Register Operation

1. The $3705-80$ must be stopped.
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS
3. Set ADDRESS/DATA switches B and D to the desired register address.
4. Press the SET ADDRESS DISPLAY pushbutton
5. Jumper 01A-B3P2-J03 to ground. Refer to ALD page CU003.

Note: This operation does not occur every time. Therefore, when scoping, use a cycle steal time as a sync point. (CS1A-B302B10 on CCOO2)

Simulate a Continuous Panel Store Register Operation

1. The 3705 must be stopped.
2. Set the DISPLAY/FUNCTION SELECT switch to REGISTER ADDRESS.
3. Set ADDRESS/DATA switches B and D to the desired
4. Press the SET ADDRESS DISPLAY pushbutton.
5. Jumper 01A-B3P2-J06 to ground. Refer to ALD page CuOO3
6. Set the ADDRESS/DATA switches B thru E to the desired data.

Note: This operation does not occur every cycle time. Therefore, when scoping, use a cycle steal time as a sync point.

Deactivate Interval Time Bids
Jumper 01A-B3M2-G09 to ground. Refer to ALD page cu014.

Note: If a bid has already been set, that bid will be honored before the interval timer is deactivated.

Clock Step Thru IPL Phase 2 (Load ROS

1. Press the RESET pushbutton.
2. Set the DIAGNOSTIC CONTROL switch to CLOCK STEP.
3. Press the START pushbutton
4. Jumper 01A-B3P2J09 (+ Active clock step) to 01AB3L2D09 (+IPL 2 Latch). Refer to ALD pages CU007 and Cu010.
5. Press the LOAD pushbutton. Observe IPL phase 2 when the LOAD pushbutton is released
6. You can now clock step thru the loading of ROS by using the START pushbutton

DIAGNOSTIC AIDS-CE INDICATOR LATCH CARD

MST-1 CE Indicator Latch Card

C.E. Indicator Latch Card P/N 5851882 is available from Mechanicsburg for servicing IBM products using the MST-1 echnology.
The Latch Card is a 2 -High, 2-Wide card which plugs onto the pin side of an MST- 1 board. The card can be plugged onto any two vertically adjacent socket positions except edge connector positions. The Latch Card is intended for use on socket locations with no discrete wiring; however, with care, it can be used on socket positions that have no second level wraps on any pin. If the Latch Card is left on an MST- 1 board for an extended period of time, normal machine vibration may cause it to work loose from the pins and lose contact.

WARNING

The Indicator Latch Card must be plugged onto the MST-1 board with the component side of the card toward the right. If the card is plugged on upside down, or is plugged into the card side of the board, circuit damage will result.
The Latch Card contains two complete latch circuits. Each latch circuit has its own set of input pins, output pins, and latch status indicator lamp.

A reset line which is common to both latch circuits can be activated by the manual reset switch or by a plus signal applied to program pin Q .

The correlation between active signal levels and input pin to be used is shown below for the various combinations which can be monitored.

Pin OP is an optional, plus level input pin. It can be used in place of, or in addition to, input pins D and E .

Output pin M is a summation of input pins A through H prior to the latch. Pin M will be at a plus level whenever the combination of signals being monitored is active. Thus, the signal occurring at output pin M can be used as an input to the latch circuitry contained on the other half of the atch card.

Output pins P and N provide outputs from the latch. Output pin P will be at a plus level when the latch is set (indiput pin P will be at a plus level when the latch is set (indi eset (indicator lamp off). Pin N provides the inverse level of pin P .

Listed below are some of the ways the latch card can be used:

1. Baby Sitter

To determine if several signal lines are all at their active levels at the same time, plug the card onto the pin side of the MST-1 board and jumper the signal lines to the proper input pins for the ANDing condition being monitored. If all signal lines are at their active level a the same time, the latch will be set and turn on the indicator lamp.
2. One-Time Pulse Detection

If a signal line should not change during a particular sequence of events, jumper the signal line to an appropriate OR input pin. For example, if the line is plus and should never go minus, jumper it to a -"OR" input
pin. If the line goes to a minus level, the latch will be pin. If the line goes to a minus level, the latch will be set and turn on the indicator lamp.
3. Scope Sync Point

The signal lines required to generate the desired sync should be jumpered to appropriate input pins. Jumper a plus level reset signal to pin Q . The latch will be set reset line. The signal at latch output pin Por of the now be used as a stable scope sync.

Use C.E. Jumper P/N 4110178, cut to required length. The ends of this wire are simply plugged onto the pins to be connected. The plastic insulation coating serves as a receptacle for the pin.

MST-1 Indicator Latch Card P/N 5851882
Indicator Lamp P/N 5353889
Jumper P/N 4110178 Specify length when ordering. MST-1 Latch Card label P/N 5500728.

Note: The latch card does not include a label. Alway order a label for each latch card.

DIAGNOSTIC AIDS: TEST BLOCKS

 PART 1 OF 2)These illustrations provide a ready reference to the interface leads available at the interface connector positions on the I/O gate. Some Communication Scanner IFT Manual ing certain lines up or down. The test blocks provide convenient method of doing this in most cases.

To force an interface lead to the active state, jumper it to 'Data Terminal Ready'. The state of DTR can be determined from the symptom index. If the inactive state of an interface lead is to be tested, allow the lead to float. EIA, CCITT V. 35 (except for transmit and receive data), and digital interface lines float to the inactive level.

To wrap data between two compatible line interfaces, jumper all interface leads to their normal operational state. Use the check lists below for typical jumpering

For Interfaces that Connect to Stand-Alone

 Modems or Local Attachments, Jumper:a. 'Request to Send' and 'Clear to Send' of the transmit interface to 'Receive Line Signal Detect' (Carrier Detect) of the receive interface using Y jumper P/N 1770810 b. 'Request to Send and 'lear Yo Sena of he recive f the transmit interface using Y jumper P/N 1770810 'Data Terminal Ready' to 'Data Set Ready' on both interfaces. (See special notes for the LS3 line set on page $1-310$). page 1-310)
d. Send data on one line to receive data of the opposite

Receive data of one line to send data of the opposite line.

For Interfaces with IBM Limited Distance or

 Leased Line Adapters or with Leased Line Modems Jumpera. Send data to receive data of the opposite line. b. Receive data to send data of the opposite line.

Notes:

For line set LS1 in duplex mode, use a single wrap block for that
line. For LS1 in haff-duplex mode two lines must be wrapped. ine. For LSO in half-duplex mode, two lines must be w
he $3705-80$ ship group contains two $L S 1$ wrap blocks.

Signals used only by high-address receive line.

Line Set LS2-Half-Duplex (Logic V vo08)

Line Set LS4 (Logic VA005)
(Note 4)

Line Set LS3-Duplex (Logic VA013)

3. Signals used by both low-address transmit line and high address
 receive line. S
transmit line.
4. Line set LS4 can
reference only.

DIAGNOSTIC AIDS: TEST BLOCK
DIAGNOSTIC AIDS: TEST BLOCK
(PART 1 OF 2)
1-300

Notes:

1. Exte
External clock must be specified to wrap the two half-duplex LS5 lines.

[^1]3. To wrap the LS8 or LS9 duplex line, connect T (transmit) or position O to R (receive) of both positions O and 1. Nex connect C (control) of position O to 1 (indicate) of both wrap S leads. Internal clock must be specified.) Do no

ClC C

ROS Test

ROS Requirements Depending On Type of Channel
Adapter and or Remote Program Loader
Without Remote Program Loader (RPL)

With Remote Program Loader

$3705-80$ with RPL feature only (no type 1 or type 4 CA) uses RPL ROS
N - Required for two CA4s
$1=$ CA1 ROS (Mini)
$\mathrm{N}=$ CA4 ROS see $2-120$
$\begin{array}{ll}\mathrm{R}=\mathrm{CAPLROS} \\ x & =\text { R }\end{array}$
$\mathrm{X}=$ Invalid configuration
TYPE 1 AND TYPE 4 CHANNEL ADAPTER The instructions contained in the ROS program depend upon the type channel adapter that is installed in the 3705-80.

The ROS code enables the controller to load its control program across the channel.

Before the ROS code attempts to transfer the data, it checks the functions and instructions it needs to complete the transfer. The functions tested are:
Instructions
Data path

- Channel adapter enable

Channel adapter selection
Channel adapter level 3 interrupt
Receipt of
adapter
That a level 1 or level 3 interrupt was received from the
nly the portion of the instructions needed to complete he transfer of the first program module across the channel isted. The instructions tested are:

- LRI
- ORI
- TRM

LH

- STH
- ST
- BB
- BCL
- BZL
- ${ }^{-1} \mathrm{XR}^{-1}$
- XR

IN* $^{\prime}$ '60,61, 62,64,67,76,77,79,7D,7E'

- OUT ${ }^{*}$, X'60,62,63,64,66,67,77,79'
*Those input and output instructions associated with the CA and several of those necessary for CCU operation are used but are not thoroughly tested.
detection circuits without testing them

A listing of the ROS code is in the ALD's beginning on W101. A flow chart showing the logical flow of ROS channel adapter operations precedes the ROS listing in the ALDs.

Simulation Run

Immediately following the ROS listing is a simulation run. The simulation run is a listing in instruction execution order showing the contents of the registers used.

Use the simulation run during instruction step procedures in the instruction test portion of ROS as a check for correct operation.

Error Analysis Procedure

Type 1 ROS code presents error indications to the control panel for CCU and channel adapter errors. Observe the rror indications and follow the prescribed course of action for each indication.

Control Panel Switches

During the IPL, the MODE SELECT switch and the DIAGNOSTIC CONTROL switch must be in the PROCESS posiion for the indicators to function correctly.

Instruction Testing

Before trying to load data across the channel, ROS Program code tests the preceding instructions. The general procedur or locating an instruction execution failure is to step the instructions through the failing section of the instruction test portion of the code.

The simulation run following the ROS code listing in the ALD is to be used during the instruction step procedure as check for correct operation

The indications that appear on the control panel are

IPL Phase III Program Stop Hard Stop Load Test
This is a CCU failure indication. TAR contains the address of the next instruction to be executed. This value is the address of the stop instruction +2 . Check the contents TAR against the following list; if it is equal to any value given, follow the indicated procedure

An instruction failed to execute. Using the ROS listing and the simulation run, use the load address compare procedurs
with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at various places in the program. Then use the instruction step procedure to step through the program and locate the failure addresses at the beginning of
.
1 Set the MODE SELECT switch to ADDRESS COMPARE

2 Set the beginning address for one of the test routines in the ADDRESS/DATA switches. Refer to the ROS listing for the beginning addresses of the routines.
3 Retry the IPL.
4 If the same error occurs before the program stop, change ddress. The address of the first instruction may a pe used if necessary.

5 Retry until the program stop occur
6 When the program stops at the selected address, set the MODE SELECT switch to INSTRUCTION STEP.

Step through the code, following the listing and the simu lation run, to locate the error. (See CWOOO.)

Display main storage addresses
1 location $X^{\prime} 0032^{\prime} \longrightarrow \begin{aligned} & \text { All bits should be off in Display B. Suspect any bit that is } \\ & \text { on in the display as being continuously on from storage (se } \\ & 7-0030 \text { or } 7-260 \text {). The bit can also be continuously on }\end{aligned}$ from ROS, (see 6-961).

2 location 0056
All bits should be on in Display B. Suspect any bit that is not on as being continously off from storage (see 7-030 7-260). The bit can also be continuously off coming from ROS, (see 6-961).

ROS Address Generation Test

Display main storage addresses			
$1 \mathrm{X}^{\prime} 0000{ }^{\prime}$ should contain $\mathrm{X}^{\prime} 7004^{\prime}$	If Location $X^{\prime} 0000^{\prime}$ Contains	Suspect SAR Bit	See
	X'F6FF' ×'0082' X'0492' X'F1FF ${ }^{\prime}{ }^{\prime} 6174{ }^{\prime}$	$\begin{aligned} & 15 \text { on } \\ & 14 \text { on } \\ & 13 \text { on } \\ & 12 \text { on } \\ & 11 \text { on } \\ & 10 \text { on } \\ & 9 \text { on } \\ & 8 \text { on } \end{aligned}$	$7-260$ 7.260 $7-260$ 7.260 $7-260$ $7-260$ $7-260$ $7-260$
2 X'01FE' should contain '0404’	If Location 01FE Contains	Suspect SAR Bit	See
	X'1001' X'81FE' X'6124' $\mathrm{X}^{\prime} 9813^{\prime}$ $\mathrm{X}^{\prime} 8602^{\prime}$ ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ ABA $^{\prime}$ X'A863' X'8160'	$\begin{aligned} & 15 \text { off } \\ & 14 \text { off } \\ & 13 \text { off } \\ & 12 \text { off } \\ & 11 \text { off } \\ & 10 \text { off } \\ & 9 \text { off } \\ & 8 \text { off } \end{aligned}$	$7-260$ 7.260 $7-260$ $7-260$ $7-260$ $7-260$ $7-260$ $7-260$

Note: Only SAR bits 8 through 15 are used to address low storage. The other SAR bits are not used.

If no discrepancy has been found in the ROS Data Transfer or Address Generation Test, verify that the control panel is set up properly and re-try the IPL.

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a number of Load pushbutton operations, for these charts to be valid. Otherwise, use control panel and display procedures $(1-140)$ to determine if there is an addressing problem.

C

Channel Checking

IPL Phase III Load
his is an indication that communications between the channel adapter and the host CPU should be checked, using LTEP or OLTSEP with the initial test, OLTs or IFTs. The ustomer's first program may be used if desired. Refer to the status and sense information chart at the end of this ot if CAsful If $C A$ perration is not posiber is not successful. If CA operation is not possible, proceed

If the instruction testing has been completed, try the the res rent routine when there problem.

Type 1 or Type 4 Channel Adapter ROS Checkout Routine
1 Disable all channel interfaces. Verify that the control panel INTERFACE ENABLED lights are off.

2 Press the RESET pushbutton.
3 Press the LOAD pushbutton.
4 Press the STOP pushbutton.
5 Set the MODE SELECT switch to INSTRUCTION STEP.

6 Set the DISPLAY/FUNCTION select switch to TAR \& OP REGISTER.

7 Press the START pushbutton. Observe the address in display A .

8 Press the START pushbutton several more times and
 ${ }^{\circ} 00 E A^{\prime},{ }^{\prime} 00 E C$ ', '00EE', '00FO', '00F2', 'OOF4', and '00F6.

If this loop is not being executed, one of the following problems is indicated:

- An interface remained enabled
- An incorrect branch occurred.
- Contents of storage is incorrect.

To locate the failur

10 Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPAR PROGRAM STOP to stop at $X^{\prime} 00 E 4^{\prime}$. Then follow the ROS listing using the instruction step procedure.

Observe the normal program loop while the $3705-80$ is waiting for initial selection. The host must be unable to select the 3705-80 for an IPL.

1 Enable an interface (more than one interface may be installed; enable only one). When an interface is enabled, ROS code may cause IPL phase 1 and 2 if conditions are present.

2 Press the CHECK RESET pushbutton.
3 Press the LOAD pushbutton. Verify that the correct interface enabled light comes on

4 Press the STOP pushbutton.
5 Set the MODE SELECT switch to INSTRUCTION STEP.

6 Set the DISPLAY/FUNCTION SELECT switch to TAR \& OP REGISTER

7 Press the START pushbutton. Observe the address in display A. With the LOAD light on, continue to press the START pushbutton to display the loop X'0124', '0126', '0128', '012 ' and '012E'.

8 Set the MODE SELECT switch to PROCESS.
9 If the loop is incorrect, use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at $X^{\prime} 0122^{\prime}$. Then, following the program listing, use the instruction step procedure to locate the failure.

10 If the loop is correct, press the START pushbutton to return to normal operation.

Check
Check to see that the initial test or first program module was loaded correctly. Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at address X'01FA This is the last ROS instruction before control is turned over to the next program. If this program stop occurs, it indicates that ROS is giving control to the next program correctly.

If the instruction test section of ROS is executed correctly, but control is not turned over to the next program correctly, check to see if the program loops within repeating major branches that match the list and indicate genera

ROS repeating branches that may be caused by a channel adapter failure

Repeating Branches	Probable Cause	Check the Contents of		
		Reg.	Byte	Bit
00F6-00E8	Interface will not become enabled	67	1	4
010E-0104	Cannot develop a level 1 or level 3 interrupt	$\begin{aligned} & \hline 60 \\ & 67 \\ & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	0 5 4
$\begin{aligned} & \hline 011 \mathrm{~A}-0124 \\ & 0126-0110 \end{aligned}$	A solid level 1 interrupt	76	0	5
012A-0144	A solid level 3 initial select interrupt occurred	$\begin{aligned} & 60 \\ & 77 \end{aligned}$	0	0 4
012C-01AA	A solid level 3 data service interrupt	$\begin{aligned} & 60 \\ & 77 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0

These steps indicate the general area of the program that should be checked for an apparent type 1 channel adapter failure occurring after the CPU has issued an IPL command.

Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at the following addresses to determine to what extent the ROS program has completed the transfer of the first program or Initial Test.

Address $\mathbf{X}^{\prime} 0404^{\prime}$

This is the entry address for the initial test or first program If this program stop occurs, refer to the initial test description, Voll (SY27-0208) of the IBM 3705-80 ML (maintenance library), or to the first program descrip tion, for additional information. The ROS program is no longer being executed.

Address X'01CA'

At this address, the program checks to verify that the IPL command was received. Register X'61', byte 1 contains the command.

Check the address that is requesting service. Register $\mathrm{X}^{\prime} 6$ byte 0 should contain the single subchannel address that is requesting service.

Address X'01EA'

Compare the known byte count with the hardware byte count, after the initial test or first program data transfer The contents of register 1 should equal the contents of egister 5 . Register 1 should contain a value of $X^{\prime} 400^{\prime}$ X'0402'). Register 5 starts with a value of X'400' and Xa increments by 2 as ROS loads the program, two bytes at a time.

The following status and sense combinations are developed by ROS for various conditions that occur when the ROS program is being executed:

OF Channel End, Device End, Unit Check, Unit Exception, and sense of IPL Required

A byte count error occurred during the initial test or first program module transfer.

OE Channel End, Device End, Unit Check, sense of IPL Required, and Equipment Check

A false level 1 or level 3 interrupt occurred at initial selection time.

06 Device End, Unit Check, and Sense of IPL Required
Either an IPL is required because of normal condi ions or a failure to recognize that the single sub channel is active.

00 Sense of IPL Required
A system reset has occurred.

N ROS TEST

(PART 1 OF 3)

N-Channel ROS for the Type 4 CA

The N-channel ROS is used when two type 4 CAs ar
installed.
The N -channel ROS code allows the loading of the control program to occur across either of the installed type 4 CAs. The N -channel ROS code:
1 Tests the CCU instructions.
2 Selects and enables the installed type 4 CAs.
3 Scans the installed type 4 CAs for an IPL command then begins the IPL on the CA with the IPL command.
4 Continuously scans each type 4 CA for interrupts.
5 Prepares each CA having an active command and while no IPL is in progress sends a final ending status of 'CE, DE, UC' with a sense byte of 'not initialized'.
6 Prepares each CA not having an active command and while no IPL is in progress sends an asynchronous status of 'DE, UC' with a sense byte of 'not initialized'
7 Sends an ending status of 'CE, DE' to a Sense command if an IPL is not in progress.
8 Begins loading the control program through the first type 4 CA that ROS recognizes as having received an IPL command.
9 Prepares the other CA to respond with an ending statu OF 'CE, DE, UE' to Sense commands once an IPL is in progress on either CA
10 Allows a subsequent IPL command to override an existing IPL command in progress. A new IPL operawith the subsequent IPL command that

1 Handes all type 4
4 CA interrupts until control is passed to the loader.

Before the ROS code attempts to transfer the data, it checks the functions and instructions it needs to complete the transfer. Tested are

- Instructions
- Data path
- Channel adapter enable
- Channel adapter selection
- Channel adapter level 3 interrupt
- Receipt of an IPL command on each enabled channe adapter
That a level 1 or level 3 interrupt was received from the channel adapter

Only the portion of the instructions needed to comple the transfer of the first program module across the channel tested. The instructions tested are

- ArI
- LRI
- ORI
- TRM
- LH
- STH
- ST
- BB
-BZL
- B
- $\mathrm{IN}^{*}, \mathrm{X} \times 60,61,62,64,67,76,77,79,7 \mathrm{D}, 7 \mathrm{E}^{\prime}$

OUT* ${ }^{*}$ '60',62,63,64,66,67,77,79

Those input and output instructions associated with the CA and several of those necessary for CCU operation ar used but are not thoroughly tested.

ROS checks the data path and uses some of the error detec tion circuits without testing them.

A listing of the ROS code is in the ALD's beginning on W501. A flowchart showing the logical flow of ROS channel adapter operations precedes the ROS listing in the ALDs (CW500)

Simulation Run

The simulation run starts on CW301. The simulation run is listing in instruction execution order showing the con tents of the registers used.

Use the simulation run during instruction step procedures the instruction test portion of ROS as a check for correct operation.

Error Analysis Procedure

N ROS code presents error indications to the control panel
for CCU and channel adapter errors. Observe the error
indications and follow the prescribed course of action fo each indication.

Control Panel Switches
During the IPL, the MODE SELECT switch and the DIAG NOSTIC CONTROL switch must be in the PROCESS position for the indicators to function correctly.

nstruction Testing

Before trying to load data across the channel, ROS program code tests the proceding instructions. The general procedure for locating an instruction execution failure is to step the instructions through the failing section of the instruc-

The simulation run following the ROS code listing in the ALD is to be used during the instruction step procedure as check for correct operation.

The indications that appear on the control panel are:
IPL Phase III
Program Stop
Hard Stop
Load
Test

An instruction failed to execute. Using the ROS listing and the simulation run, use the load address compare procedurs
with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at various places in the program. Then use the instruction step procedure to step through th ogram and locate the failure addresses at the beginning of est routines in the listing as stopping points.
$1 \begin{aligned} & \text { Set the MODE SELECT switch to ADDRESS COMPARE } \\ & \text { PROGRAM STOP. }\end{aligned}$
2 Set the beginning address for one of the test routines in for the beginning addresses of the routines.
3 Retry the IPL
4 If the same error occurs before the program stop, change he address in the ADDRESS/DATA switches to a previous ddress. The address of the first instruction may be used if necessary.

5 Retry until the program stop occurs.
6 When the program stops at the selected address, set th MODE SELECT switch to INSTRUCTION STEP.

7 Step through the code, following the listing and the simu
lation run, to locate the error. (See CWOOO.)

N ROS TEST

1 location $\mathrm{X}^{\prime} 0032^{\prime} \longrightarrow$ All bits should be off in DisplayB. Suspect any bit that is on in the display as being continuously on from storage also be continuously on from ROS, (see (6061)

2 location 0056 \qquad All bits should be on in Display B. Suspect any bit that is not on as being continuously off from storage (see 7-260) (see 6
ROS Address Generation Test
Display main storage addresses
$1 \mathrm{X}^{\prime} 0000^{\prime}$ should contain $\mathrm{X}^{\prime} 7004^{\prime}$

Note: Only SAR bits 7 through 15 are used to address low storage. The other SAR bits are not used.

If no discrepancy has been found in the ROS Data Transfer or Address Generation Test, verify that the control panel is set up properly and re-try the IPL

		3705-80
If location $x^{\prime} 0000{ }^{\prime}$ Contains	Suspect SAR Bit	See
X'F6FF'	15 on	7.260
X'9888'	14 on	7.260
X'8108'	13 on	7.260
x'0082'	12 on	7.260
X ${ }^{\text {0492' }}$	11 on	7.260
X'F1FF'	10 on	7.260
×'1305'	9 on	7.260
x'66C8'	8 on	7.260
X'4303'	7 on	7.260
If location		
${ }^{\prime} 03 \mathrm{FE}^{\prime}$	Suspect	
Contains	SAR Bit	See
x'0708'	15 off	7.260
x'0006'	14 off	7.260
X'0608'	13 off	7.260
x'0002'	12 off	7.260
X'7004'	11 off	7.260
X'7004'	10 off	7.260
$\times{ }^{\prime} 003{ }^{\prime}$	9 off	7.260
X ${ }^{\prime} 17{ }^{\text {c }}$	8 off	7.260
x'88DB'	7 off	7-260

These charts are valid only for intermittent errors. ROS must load into storage correctly at least one time out of a number of Load pushbutton operations, for these charts be valid. Otherwise, use control panel and display pro cedures ($1-140$) to determine if there is an addressing problem.

N ROS TEST

(PART 3 OF 3

Channel Checking (Part 1)

IPL Phase III This is an indication that communica
Load tions between the channel adapter and the host processor should be checked, using OLTEP or OLTSEP with the initial test, OLTs or IFTs. The customer's first program may be used if desired. Refer to the status and sense information chart at the end of this section if CA operation is possible but the load operation is not successful. I CA operation is

If the instruction testing has been completed try the type 4 channel adapter N ROS checkout routine when there is a problem

Type 4 Channel Adapter N ROS Checkout Routine

1 Disable all channel interfaces. Verify that the contro panel INTERFACE ENABLED lights are off.

2 Press the RESET PUSH BUTTON
3 Press the LOAD push button.
4 Press the STOP push button.
5 Set the MODE SELECT switch to INSTRUCTION STEP.

6 Set the DISPLAY/FUNCTION select switch to TAR \& op REGISTER.

7 Press the START push button. Observe the address in display A .

8 Press the START push button several more times and observe the program looping through addresse $\mathrm{X}^{\prime} 0126^{\prime}, \mathrm{X}^{\prime} 0128^{\prime}, \mathrm{X}^{\prime} 012 \mathrm{~A}^{\prime}, \mathrm{X}^{\prime} 012 \mathrm{C}^{\prime}, \mathrm{X}^{\prime} 012 \mathrm{E}^{\prime}$ $X^{\prime} 0130^{\prime}, X^{\prime} 0132^{\prime}, X^{\prime} 0134^{\prime}$, $X^{\prime} 0136^{\prime}, X^{\prime} 0138$ $X^{\prime} 013 A^{\prime}, X^{\prime} 013 C^{\prime}, X^{\prime} 016 A^{\prime}$ and $X^{\prime} 016 C^{\prime}$.

9 If this loop is not being executed, one of the following problems is indicated:

- An interface remained enabled
- An incorrect branch occurred.
- Contents of storage is incorrect.

10 Use the load address compare procedure with the MODE SELECT switch set to ADDRESS COMPARE PROGRAM STOP to stop at X'0126'. Then follow the ROS listing using the instruction step procedure

Observe the normal program loop while the $3705-80$ is waiting for initial selection. The host must be unable to select the 3705-80 for an IPL
1 Enable one of the interfaces. When the interface is enabled, ROS code may cause IPL phase 1 and 2 if certain conditions are present.

2 Press the CHECK RESET push button.
3 Press the LOAD push button. Verify that the correct interface enabled lights come on

4 Press the STOP push button.
5 Set the MODE SELECT switch to INSTRUCTION STEP.

6 Set the DISPLAY/FUNCTION SELECT switch to TAR \& OP REGISTER

7 Press the START push button. Observe the address in display A. With the LOAD light on, continue to press the START push button to display the loop.

8 Set the MODE SELECT switch to PROCESS.
9 If the loop is incorrect, use the load address compar procedure with the MODE SELECT switch set to $X^{\prime} 0126^{\prime}$. Then, following the program listing, use th instruction step procedure to locate the failure

10 If the loop is correct, press the START push button to return to normal operation.

Check

Check to see that the initial test or first program module was loaded correctly. Use the load address compare proce dure with the MODE SELECT switch set to ADDRESS This is the ROS insuction to hive to the next program. If this program stop occurs, it diate the is iving contol to the next progem correctly.

Channel Checking (Part 2)

These steps indicate the general area of the program that hould be checked for an apparent type 4 channel adapter failure occurring after the processor has issued an IPL command.

Use the load address compare procedure with the MODE ELECT switch set to ADDRESS COMPARE PROGRAM. STOP to stop at the following addresses to determine to what extent the ROS program has completed the transfer of the first program or Initial Test.

Address X'0404

This is the entry address for the initial test or first program If this program stop occurs, refer to the Initial Test descripon in the Start section of this FETMM (Volume 1 S27-0208).

Address X‘0268

At this address, the program checks to verify that the IPL mmand was received. Register X'61', byte 1 contains the command.

Check the address that is requesting service. Register X'61 byte 0 should con

Address X 0364

Compare the known byte count with the hardware byte count, after the initial test or first program data transfer, The contents of register 1 should equal the contents of register 5 . Register 1 should contain a value of $X^{\prime} 400^{\prime}$ plus the byte count of the program (located in storage at $X^{\prime} 0402^{\prime}$). Register 5 starts with a value of $X^{\prime} 400^{\prime}$ and increments by 2 as ROS loads the program, two bytes at a time.

The following status and sense combinations are developed ROS for various conditions that occur when the ROS program is being executed:

OF Channel End, Device End, Unit Check, Unit Excep tion, and sense of IPL Required
byte count error occurred during the initial test of first program module transfer.

OE Channel End, Device End, Unit Check, sense of IPL Required, and Equipment Check.

A false level 1 or level 3 interrupt occurred at initial selection time.

06 Device End, Unit Check, and Sense of IPL Required
Either an IPL is required because of normal cond tions or a failure to recognize that the single subchannel is active.

00 Sense of IPL Required.
A system reset has occurred.

WARNING

Touching the pin side of the CCU board while the 3705-80 is running can cause CCU errors.

The Central Control Unit (CCU) contains all the circuits and data flow paths necessary to execute the instruction set and to control storage and the attached adapters. The CCU, controlled by a program in storage, contains 32 genera registers and various hardware registers that the control program uses for instruction execution and data handling.

The CCU can execute 51 instructions, which can be used to transfer data from one register to another, to store dat from a register in $3705-80$ storage, to load data from storage into a register, and to perform various arithmetic and hardware functions. Some of the CCU hardware registers can be addressed as external registers by input and oundicted beside the resist in is indicated beside the register in the data flow on page

Each program, CCU, or adapter request has an assigned priority for use of the CCU. When any control program or hardware function requests use of the 3705 (an interrupt request), the priority system determines when the CCU will handle the interrupt request.

Each of the interrupt requests is assigned to one of five program levels. Program level 1 has the highest priority and program level 5 , the lowest. The machine priority controls determine when an interrupt can occur.

The CCU has a storage protection mechanism that monitors attempts either to modify storage or to execute instructions in protected storage. Storage protection causes a check when the contents of storage are accessed for unauthorized modification.

Page 6-020 shows the general data flow for the CCU. Data flow for a particular operation is determined by the instruc tion, cycle steal, or control operation being performed.

Abbreviations Used in This Section
ALU - Arithmetic Logic Unit
IAR - Instruction Address Registe
Op Reg - Lagging Address Register
PC - Parity Check
PG - Parity Generation
SAR - Storage Address Register
SDR - Storage Data Register
TAR - Temporary Address Register

86^{6+}

Cards That Can Be Swapped in The CCU

- B4J2, B4K2 and B4N2
- B4L2, B4M2, B4P2, and B4O2
- B 4 H 2 and B 4 G 2
- B4A4, and B4B2
- B4A2 and B4A 3
- B3U2, B3U3, and B3U4
- B3T2 and B3T3
- B4U2, B4U3

3705-80 CARD FUNCTIONS

See page 6-000 also

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Pages } \end{aligned}$	Card Function
взС4	CU0016	Power-on Reset Force Storage Test Pattern and Redrive to MEM
B3F2	CS002,Cs004 CS006-Cs007	Part of Data Flow Register Controls Data Flow Register Control Timing
B3G2	Cz001-CZ005 CQ001 CQ004-CQ005 cD001	C and Z Condition Code Latches and the Generation of Their Sets and Gates Part of Adapter Interface Controls Pulsed Inputs and Outputs Part of Instruction Decode
в3н2	CD001-CD004 CSOO3	Part of Instruction Decode Part of Data Flow Register Controls
B3,2	CA001-CA004 CD001	ALU Controls Part of Instruction Decode
в3к2	CL001-CL005	Local Store Controls
B3L2	cu005-Cu006 cu009-CU010 CU014 CK007 CP006-CP007 cu005	Part of Panel Controls Prog Level 1 Prog Check Detection Meter and Interval Timer Test Mode and Check Stop Mode
в3м2	cu014-CU015 CP002-CPOO5 CS001	Part of Panel Controls Part of Priority Controls, Program Level Select, Program Level Masks and 'Program Level Entered' Latches Set LAR
B3N2	CK003-CK007 cu001 cu013	Error Detection, Error Register Part of Panel Controls Part of CCU Indata Bus
B3P2	CU003-CU004 CU006-CU007 CSOO5	Part of Panel Controls M Bus Assembler Control

Card Location	$\begin{aligned} & \text { ALD } \\ & \text { Pages } \end{aligned}$	$\begin{aligned} & \text { Card } \\ & \text { Function } \end{aligned}$
в302	C 0002 -Ccoo3 cc004-CC005 ccoos CS001 cQ001-C0002	Instruction and Cycle-Steal Times Instruction and Cycle-Steal Counter and Cycle Counter Error Detection Instruction Starts and Cycle Stops Maintenance Condition Part of Adapter Interface Controls
B3R2	CS007 ccoor Cc006 CC007 C0001-cQ002	Set SAR, DR1, and DR2 ABCD Counter Local Store Address Register and T Times Clock and machine oscillator Part of Adapter Interface Controls
B3S2	ск001-Ск002 CR001-CR008 cu013	Force Errors BSC and SDLC CRC Generation Part of CCU Indata Bus
в3T2	AP001-A.PO08	Part of Control Panel Switches and Pushbuttons
взтз	AP001-AP008	Part of Control Panel Switches and Pushbuttons
взт4	CP001 СМ001	Part of Priority Controls Memory Reset
B3U2	AP003-AP015	Part of Control Panel Switches and Pushbuttons
взиз	AP004-AP011	Part of Control Panel Switches and Pushbuttons
B3U4	AP001-AP008	Part of Control Panel Switches and Pushbuttons
B3U5	$\begin{aligned} & \text { CCOOT } \\ & \text { APOO8 } \end{aligned}$	8 MHz Oscillator Lamp Test
B4A2	DS004	SDR Drivers and Receivers for Byte 1

Card Location	ALD Pages	Card Function
B4A3	DS002	SDR Drivers and Receivers for Byte 0
B4A4	DB101	Memory Control Cable Drivers
B4B2	DS001	SAR Drivers
B4C2	CG001	Gated Indata Bit X.6
B4D2	Cv001-CV061 CM002-CM003	Storage Protect and Error Detection Read Call/Write Call, Storage Size Input and Allow Set Memory Diagnostic Register
B4F2	CW011-CW012	Read-Only Storage
B4F4	CW001	Alternate Ros Feature
B4F5	DW001	Control Signal Terminators
B4R2	CF001-CF002 CF003 CF004 CF004	Forre Constants Bit Filter and Parity Generator Shift Right Controls Add Constants
B4U2	AP012-AP015	Part of Panel Indicator Circuits
B4U3	AP009-AP011	Part of Panel Indicator Circuits
B4U4	AP001	Panel Rotor Switches

CLOCK TIMES

705-80 STORAGE

Each 1.0 microsecond machine cycle is divided into four time slots of 250 ns each. The A, B, C, and D times are
Simed signal.

- Generate the 'mem store new time' signal.
- Detect a CCU clock error.

Clock Time Lights in Display A
If the DISPLAY/FUNCTION SELECT switch is in the STATUS position, display A bit lights $1.4,1.5,1.6$, and 1.7 show the CCU clock times.

Note: When the $3705-80$ is running, the bit 1.7 light does ot come on because the firing time is not long enough to heat the light. With the 3705-80 in clock step mode, the light does come on.

Cycle Time	A				B				
Clock Time	TO	$T 1$	$T 2$	$T 3$	$T 0$	$T 1$	$T 2$	$T 3$	
Bit 1.4 of Display A	0	0	0	0	0	0	0	0	
Bit 1.5 of Display A	0	0	0	0	1	1	1	1	
Bit 1.6 of Display A	0	0	1	1	0	0	1	1	
Bit 1.7 of Display A	0	1	0	1	0	1	0	1	

Cycle Time	C				D				
Clock Time	T0	$T 1$	$T 2$	$T 3$	$T 0$	$T 1$	$T 2$	$T 3$	
Bit 1.4 of Display A	1	1	1	1	1	1	1	1	
Bit 1.5 of Display A	0	0	0	0	1	1	1	1	
Bit 1.6 of Display A	0	0	1	1	0	0	1	1	
Bit 1.7 of Display A	0	1	0	1	0	1	0	1	

Note: Lights indicate the clock time that was just completed. $0=0 f$
$1=0 n$

3705-80 Storage

STORAGE PROTECTIO

By comparing a three bit protect key with a three bit storage key, storage protection makes it possible to protect the contents of storage from an unauthorized attempt to address storage. Specifically, storage protection does not allow instruction fetching from unauthorized storage and does not allow data modification at an unauthorized address; however it does allow data loading from an storage location any time.

The protect keys are located in an 8 key address bit by 3 key address bit local storage area, and the storage keys are located in a 128 key address bit by 3 key address bit local storage area. One storage key is assigned to each 2,048 bytes of storage. The protect keys and storage keys are set by an Output $X^{\prime} 73^{\prime}$ instruction containing the respective key address. (For more information on the Output $X^{\prime} 73^{\prime}$ instruction, see page 6-880.)

To execute an instruction that does not modify storage, the protect key must be equal to the storage key. If the keys do not match, a protection exception L1 interrupt is set.

To modify a storage location, one of three conditions must be met:

- The protect key must be equal to the storage key
- The protect key is $X^{\prime} 0^{\prime}$, that is, Program Level $1,2,3$,
or 4.
- The storage key is $X^{\prime} 7^{\prime}$, meaning unprotected storage.
- If none of the conditions are met, the keys are considered not matched, and a protection exception Li interrupt is set.

When the CCU is reset, storage protection is disabled. Therefore, any instruction fetch is valid, and any attempt to modify storage is permitted. The first Output $X^{\prime} 73^{\prime}$ in struction executed after a reset enables storage protection This instruction must set a storage key of $X^{\prime} 0^{\prime}$ at the key address that corresponds to the storage block where the instruction execution is taking place. Otherwise, a protec tion check occurs if the storage key is not already $X^{\prime} 0^{\prime}$

When the $3705-80$ power is turned on, the bits in the settable protect keys and storage keys assume a random bit pattern. Each key must be initialized by an Output $X^{\prime} 73^{\prime}$ containing its key address and key type. Until each key is initialized, caution must be used in the control of program levels and I/O activity that may depend on storage
protection. protection.
A storage operation from the control panel cannot cause a storage protection check.

MACHINE CYCLES

(PART 1 OF 2)
The 3705-80 uses six types of machine cycles: cycle steal 1, cycle steal 2 , instruction 1 , instruction 2 , instruction 3 , and idle.

Cycle Steal 1 (CS1) Cycle
CS1 cycles are used for type 4 CA cycle-steal operations. They are also used as maintenance cycles in the following control panel operations.

- ROS boostrap program load (see page 6-961).
- Display register. (See page 6-052.)
a. In CS1A time, the address in the ADDRESS/DATA switches is placed in the Op register and in display $3705-80$ is stopped. 3705-80 is stopped.
b. In CSC time, the contents of the external register addressed by bits 0.1-0.3 and bits 1.0-1.3 of the Op general register.
c. In CS1D time, the contents of the 'in bus' (for adapter register), of the 'indata bus' (for CCU register), or of SDR (for CCU general register) are placed in display register 2.
- Display storage. (See page 6-056.)
a. In CS1A time, the address in the ADDRESS/DATA switches is placed in SAR and in display register 1. The address is also placed in TAR if the 3705-80 is stopped. The address in SAR is used to address
storage.
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
In CS1D time, the contents of SDR are placed in dis play register 2.
- START pushbutton operations. (See page 6-069)
a. In CS1A time, the address in TAR is placed in SAR CS1B
SDR. (This, SDR. (This occurs by default and has no effect on
the start cycle or on the following cycle.)
c. In CS1D time, the address in the active IAR is placed in TAR and in display register 2.
Storing in a register. (See page 6-054.)
a. In $\operatorname{CS1A}$ time, the contents of TAR are placed in display register 1. (TAR should contain a register address.)
b. In CS1C time, the data in the ADDRESS/DATA switches is placed in SDR and on the 'out bus' to the adapters.
c. In CS1D time, the contents of SDR are placed in dis play register 2. If the register designated by the set address and display register procedure is a CCU regis ter, the contents of SDR are placed in the register.
- Storing in storage. (See page 6-057.)
a. In CS1A time, the address in TAR is placed in SAR The address in TAR is then incremented by 2 , and the new address is placed in TAR and in display register 1.
b. In CS1B time, the data in the ADDRESS/DATA switches is placed in SDR.
c. In CS1D time, the contents of SDR are placed in display register 2.
- Storage scanning. (See page 6-063.)
a. In CS1A time, the address in TAR is placed in SAR. The address in TAR is then incremented by 2 , an the new address is placed in TAR and in display register 1. The address in SAR is used to addres storage.
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
c. In CS1D time, the contents of SDR are placed in display register 2.
a. In CS1A time, the contents of TAR are placed in display register 1. The address in SAR is used to address storage. (The first cycle does not address the location in the ADDRESS/DATA switches.)
b. In CS1B time, the contents of the storage location addressed by SAR are placed in SDR.
c. In CS1C time, the address in the ADDRESS/DATA switches is placed in TAR.
d. In CS1D time, the contents of SDR are placed in dis play register 2. The contents of TAR are placed in SAR.
- Storage test pattern (page 6-060) and single address test pattern (page 6-064.)
a. In CS1A time, the contents of TAR are placed in dis in CS1B tim.
b. In CSIB time, the data in the ADDRESS/DATA switches is placed in SDR.
in csic time, the contents of SDR are stored in the In CS1D time th by SAR.
. In CS1D time, the contents of SDR are placed in dis play register 2.

CS1 cycles can occur between instruction cycles because CS1 cycles have higher priority.

Cycle Steal 2 (CS2) Cycle
A CS2 cycle is required after each CS1 cycle for the follow ing control panel operations.
Storing data in a storage location
a. In CS2A time, the contents of TAR are placed in dis play register 1 and in SAR. The address in SAR is used to address storage.
b. In CS2B time, the contents of the storage location addressed by SAR (original +2) are read into SDR
c. In CS2D time, the contents of SDR are placed in display register 2.

- Storage test pattern
a. In CS2A time, the address in TAR is incremented by 2 and placed in TAR and in display register 1. Th
In CS2B time he ne
ddressed by SAR are placed in SDR In CS2D time the contents
of SDR are placed in dis play register 2.
- Single address test pattern a. In CS2A time, the iddress in TAR is placed in TAR and in display register 1. (The address is not incremented.)
b. In CS2B time, the contents of SDR are stored at the storage location addressed by SAR.
c. In CS2D time, the contents of SDR are placed in display register 2.

nstruction 1 (I1) Cycle

An 11 cycle is used as the first machine cycle taken to execute an instruction. The first 16 bits of the instruction are placed in the Op register. Most instructions require only an 1 cycle for execution. Instructions that require additiona machine cycles for execution are listed in the next paragraph.

Instruction 2 (I2) Cycle

The 12 cycle is used as the second machine cycle for the
following instructions.

- 'Insert character and count' (ICT)
- 'Store character and count' (STCT)
- 'Insert character' (IC)
'Store character' (STC
- 'Load' (L)
'Store' (ST)
- 'Banch and link register' (BALR)
'Branch and link' (BAL)
- 'Load address' (LA

Instruction 3 (13) Cycle

An 13 cycle is required as the third machine cycle for the
following instructions.
'Load' (L)
-'Store' (ST)

Idle Cycle

An idle cycle occurs whenever CS1, CS2, 11, 12, or 13 cycles re not being executed. When an idle cycle occurs, the WAIT light turns off we CS1, CS2,11, 12, or 13 cycle is executed.

Ide cycles are those cycle time slots that occur

1) When the CCU is hardstopped and no panel functions are being used.
(2) When the CCU is program stopped, no panel functions are being used, and no adapter is cycle-stealing.
During the first cycle of a START pushbutton oper tion (also known as 'dummy' cycles).
(4) After an exit instruction when level 5 is masked off and no bids for any level are pending, until an interrupt occurs.

toring Data in a Storage Location with the 3705-80 Stopped (Part 3 of 3)

cs2D time:

- Places the contents of SDR in Display Register 2.

Storage Test Pattern (Part 1 of 3)

Storage Test Pattern
 Storage Test P (Part 3 of 3)

From Preceding Page

Storage Scanning

Note: See page 6 -000 for data flow bit card
 bit card locations.

Start Pushbutton Operations

 MACHINE CYCLE PRIORITIES (PART 2 OF 2)

Changing Machine Priorities
 Masking Program Levels)

WARNing

Be careful about masking program levels because it disrupts the normal priority structure. It could cause overrun conitions or delay hardware error indications.

Output X'7E' Set Mask Bits (page 6-950) and Output X'7F Reset Mask Bits (page 6-960) can change the priority structure if they are executed with certain bits on.

When a program level is masked, machine cycles cannot be used for instruction execution at that program level. If evel 2,3 or 4 is active, instruction execution at that program level is allowed to finish before a mask of that level is ffective. Only adapter interrupts can be masked in program level 5.

Note: The CE can execute Outputs $X^{\prime} 7 E^{\prime}$ and $X^{\prime} 7 F^{\prime}$ from he control panel. (See page 1-160.)

Refresh Storage Cycles
The storage unit in the $3705-80$ is dynamic, meaning that the information in storage needs to be renewed or refreshed periodically to maintain validity. The CCU has a basic machine and storage cycle of 1 us. A read storage operation occurs during the first 500 ns and a write storage operation, if required occurs during the second 500 ns of a storage cycle. If a write operation is not required, a refresh storage operation can occur aring an cycles.

ROGRAM LEVEL PRIORITIES AND

INTERRUPTS (PART 1 OF 3)
Interrupts are caused by adapters or programs initiating hardware-forced branches from lower-priority program evels to higher program levels. The interrupts occur
because of:
Hardware service requests

- Program errors

Machine cycle priorities determine when a level n inter upt can occur. A level n interrupt can occur when all of the following conditions are met:

- No cycle-steal requests are present
- The program is at the end of an instruction execution (instruction boundary)
No interrupt requests at a higher priority level are
present.
- Program level n is not masked.

Program level n is not active
Note: Level 1 interrupts in program level 1 cause a re-IPL the first time they occur and a hard stop the second time.

When a level n interrupt occurs, the 'level n interrupt ntered' latch sets. Instruction execution at the interrupted level is temporarily suspended until instruction execution is completed at the higher priority level.

The hardware forces a branch to the storage location tha is the starting address for level n .

An 'exit' instruction is executed when the interrupt request别 rupt entered' latch and allows the machine priority controls to determine which program level should be active next. If other interrupt requests are pending at a higher priority level, the interrupted program is allowed to continue from the point where it was interrupted. If no interrupt requests are pending at any level, program level 5 becomes active. f level 5 is masked off and no interrupt requests are pending at any level, then an 'exit' instruction will cause he CCU to go into the Wait state (take Idle cycles) until in interrupt occurs. An 'exit' instruction while in level 5 will set a SVC supervis Call prom interrupt to level

The example at the right shows a possible sequence of interrupts.

EXAMPLE

1 The program at level 4 is being executed.
2 An L2 interrupt request occurs.
3 The hardware forces a branch to the starting address of program level 2 at the next instruction boundary.

4 The program at level 2 is servicing the L2 interrupt request.

5 An L3 interrupt request occurs, but it is not honored because program level 2 has higher priority.

Program Level 1

Interrupt
Address
x. 00010

When the $L 2$ interrupt request is serviced, an 'exit' instruction is executed, and the hardware examines the interrupt requests. Program level 3 becomes active since the L3 interrupt can now be honored

7 The program at level 3 services the $L 3$ interrupt request.
8 When the L3 interrupt request is serviced, an 'exit' instruction is executed. The hardware examines the interrupt requests, and program level 4 becomes active since no higher interrupt requests exist.The execution of the program at level 4 continues from the point where it was interrupted.

10 When program execution at level 4 is completed, an 'exit' instruction is executed. Program level 5 is now active because no interrupts to a higher level are pending

PROGRAM LEVEL PRIORITIES AND

 INTERRUPTS (PART 2 OF 3)

Note: On all IBM programs, Address X $\times 00010$ contains a 'store' instruction with the R and B fields equal to 0 . This instruction causes the address in the IAR to be placed at the storage location specified by the sum of the disp/2 ment field D and the constant \times '00780 first 'store' instruction. They store the other seven general registers in the next consecutive address because of the D field value. This allows program levels 1 and 2 to share the same group of general registers. See page 6-430 for an explanation of the 'store' instruction.

he Arithmetic Logic Unit (ALU) performs all arithmetic nd logic functions. It can perform 8, 16, or 18 bit arithmetic in one operation.

Note: The output of the decode circuit is a binary decode of the two
select lines. For example, if Z bus bits $0.0-0.7$ select 2 ' is active and
select lines. For example, if ' Z bus bits $0.0-0.7$ select 2^{\prime} 's active and
2 bus bits $0.0-0.1$ select 1 ' 1 s inactive, the binary decode is 2 .
Therefore, the lines ' $A L U$ e exclusive or bit 0.0 ' and 'ALU 0
exclusive or bit 0.1 ' are selected to determine the setting of the z register.

This page shows the circuitry that selects the local store registers (general registers) during the execution of an instruction. The type of instruction and the timing the selected register.

[^2]

LOCAL STORE REGISTER CONTROLS
 (PART 3 OF 3)

CYCLE STEAL OUT (TYPE 4 CA)

C

INSTRUCTION DECODING
 PART 2 OF 2)

$\begin{gathered} \text { EField } \\ x y \end{gathered}$	Register/Function		FETMM Page
00	Gen Reg, Group 0	Reg 0	6-770
01		Reg 1	6-770
02		Reg 2	6-770
03		Reg 3	6-770
04		Reg 4	6-770
05		Reg 5	6-770
06		Reg 6	6-770
07		Reg 7	6-770
08	Gen Reg, Group 1	Reg 0	6-770
09		Reg 1	6-770
OA		Reg 2	6-770
OB		Reg 3	6-770
oc		Reg 4	6-770
OD		Reg 5	6-770
OE		Reg 6	6-770
OF		Reg 7	6-770
10	Gen Reg, Group 2	Reg 0	6-770
11		Reg 1	6-770
12		Reg 2	6-770
13		Reg 3	6-770
14		Reg 4	6-770
15		Reg 5	6-770
16		Reg 6	6-770
17		Reg 7	6-770
18	Gen Reg, Group 3	Reg 0	6-770
19		Reg 1	6-770
1A		Reg 2	6-770
${ }^{18}$		Reg 3	6-770
${ }^{1 \mathrm{C}}$		Reg 4	6-770
1 D		Reg 5	6-770
1 E		Reg 6	6-770
¢ $\begin{gathered}1 F \\ 20.3 F\end{gathered}$		Reg 7	6-770
20-3F	A constant of all zeros is loaded into R , and the CCU sets the input/output check L1 request.		

$\begin{gathered} \text { E Field } \\ X Y \end{gathered}$	Register/Function Type 2 Scanner	FETMM Page
40	Interface Address	B-120
41	Unused	
42	Unused	
43	Check Register	B-130
44	ICW Input Reg 0-15	B-140
45	ICW Input Reg 16-31	B-140
46	Display Register	B-150
47	ICW Input Reg 32-45	B-140
48	Unused	
49	Unused	
4A	Unused	
4 B	Unused	
4 C	Unused	
4D	Unused	
4 E	Unused	
4 F	Unused	

$\begin{gathered} \text { E Field } \\ \text { XY } \end{gathered}$	Register/Function	$\begin{aligned} & \text { FETMM } \\ & \text { Page } \\ & \hline \end{aligned}$
48-4F	A constant of all zeros is loaded into R , and the CCU sets the input/output check L1 request.	
*60	Initial Selection Control	8-070,4-050
*61 T	Initial Selection Address \& Command	8-070,4-050
*62 1	Data/Status Control	8-090,4-070
*63 C	Address and ESC Status	8-100,4-080
*64 A	Data Buffer Bytes 1,2	8-110,4-090
*65 \&	Data Buffer Bytes 3,4	8-110,H-090
*66 ${ }^{\text {T }}$	NSC Status Byte	8-120,H-100
*67 4	Control	8-130,H-110
**68 c	Level 1 Status	
**69 A	Level 3 Status	
**6A	Parallel Data Register	
**6B	Control Pgm Load Reg	
***6C	CA4 EB Mode Control Reg	H-130
***6D	CA4 EB Mode Data Buffer	H-150
***6E	CA4-CS Register and CSAR Byte X	H-170
***6F	CA4-CSAR Byte 0/1	H-170
70	Storage Size Installed	6-770
71	Panel Address/Data Digits	6-780
72	Display/Function Select Switch	6-790
73	Insert Key	6-800
74	LAR	6-800
75	A constant of all zeros is loaded into R.	
76 C	Adapter Interrupt Request Group 1	6.810
77 C	Adapter Interrupt Request Group 2	6-820
78 U	A constant of all zeros is loaded into R.	
79	Utility	6-830
78	BSC CRC Register	6-840
7 C	Reserved	
7 D	CCU Check Register	6.841
7 F	CCU Level 1 Interrupt Requests	6.850
7 F	CCU Level 2 Interrupt Requests	6-860

- nputs and Outpurs $\times 60-\times 67$ are for the type 1 and type 4 CA.
Inputs and Outputs $\mathrm{X}^{\prime} 68,69,6 \mathrm{~A}, 6 \mathrm{~B}{ }^{\prime}$
REMOTE 3705-80.
$* *$ Inputs and Outputs $X^{\prime} 6 C^{\prime}-X^{\prime} 6 F^{\prime}$ are for
the type 4 CA.

Output Register Addresses

$\begin{aligned} & \text { E Field } \\ & X Y \end{aligned}$	Register/Function		$\begin{aligned} & \hline \text { FETMM } \\ & \text { Page } \end{aligned}$
00	Gen Reg, Group 0	Reg 0	6.870
01		Reg 1	6-870
02		Reg 2	6870
03		Reg 3	6-870
04		Reg 4	6-870
05		Reg 5	6.870
06		Reg 6	6.870
07		Reg 7	6-870
08	Gen Reg, Group 1	Reg 0	6-870
09		Reg 1	6.870
OA		Reg 2	6.870
ов		Reg 3	6-870
OC		Reg 4	6.870
OD		Reg 5	6870
OE		Reg 6	6-870
OF		Reg 7	6-870
10	Gen Reg, Group 2	Reg 0	6-870
11		Reg 1	6870
12		Reg 2	6-870
13		Reg 3	6.870
14		Reg 4	6.870
15		Reg 5	6.870
16		Reg 6	6.870
17		Reg 7	6-870
18	Gen Reg, Group 3	Reg 0	6.870
19		Reg 1	6.870
1A		Reg 2	6.870
1B		Reg 3	6.870
1 C		Reg 4	6-870
1 D		Reg 5	6870
1 E		Reg 6	6.870
1 F		Reg 7	6.870
20-3F	The bits of R are ignored, and the CCU sets the input/output check L 1 .		

$\begin{gathered} \text { E Field } \\ X Y \end{gathered}$	Register/Function	FETMM Pages
* 60	Reset Initial Selection	8-070
*61	Unused	
*62 ${ }^{\text {T }}$	Data/Status Control	8-080,4-060
*63 1	Address and ESC Status	8-100,4-080
*64 C	Data Buffer Bytes 1, 2	8-110,H-090
*65 A	Data Buffer Bytes 3,4	8-110,H-090
*66 \&	NSC Status Byte	8-120,H-100
*67 T	Control	8-130,H-120
**68 4	Control	
**69 C	Read/Write	
**6A A	Parallel Data Register	
**6B	Control Pgm Load Reg	
*** ${ }^{\text {c }}$	CA4 EB Mode Control Reg	H-140
**6D	CA4 Eb Mode Data Buffer	H-160
***6E	CA4-CSAR Byte X	H-180
***6F	CA4-CSAR Byte 0/1	H-180
70	Hardstop	6-870
71	Display Reg 1	6.870
72	Display Reg 2	6-880
74.76	The bits of R are ignored	
77 C	Miscellaneous Control	6.900
78 C	Force CCU Checks	6-920
79 U	Utility	6-930
7A	The bits of R are ignored.	6-940
7B	The bits of R are ignored.	
7 C	Set PCI L3	6-940
7 D	Set PCI L4	6-940
7E	Set Mask Bits	6-940
7 F	Reset Mask Bits	6-950

$\begin{aligned} & \text { E Field } \\ & X Y \end{aligned}$	Register/Function Type 2 Scanner	FETMM Page
40	Interface Address	B-160
41	Adr Substitution Ctrı	B-160
42	Upper Scan Limit CtrI	B-170
43	Control	B-170
44	ICW 0-15	B-180
45	ICW 16-23	B-190
46	ICW 24-33, 44	B-200
47	ICW 34-43	B-210
48		
49	The bits of R are ignored and the CCU	
4A	sets the input/output check L1 request.	
4B		
4 C		
4D		
4 E		
4F		

REGISTER IMMEDIATE (RI) INSTRUCTIONS
The CCU takes one 11 cycle to execute each of the eight 'register immediate' instructions. The same sequence occurs during I1A, I1B, and I1C times for each of the instructions; only the sequence during I1D is different.

For all 'register immediate' instructions, the general register designated by the \mathbf{R} field in the instruction must be an odd-numbered register.

Add Register Immediate (ARI)

0	1	2	3	4	$5-6$		
1	0	0	1	0	R	N	l

The data in the 1 field is added to byte $0(N=0)$ or bytes 0 nd $1(N=1)$ of the general register designated by the R field. The register specified must be an odd-numbered register. The result is stored in the selected byte(s) of the general register. If $N=0$, byte 1 of R remains unchanged.
The ' C ' latch sets if $\mathrm{N}=0$ and byte 0 of R overflows, or i $N=1$ and bytes 0 and 1 overflow. The ' Z ' latch sets if $\mathrm{N}=0$ and byte O of R equals O , or if $\mathrm{N}=1$ and bytes O and 1 of R equal 0 .

Byte X of the general register is included in the addition if $N=1$, but byte X does not affect the setting of the C and Z latches.

AND Register Immediate (NRI)

0	1	2	3	4	$5-6$	7	$8-15$
1	1	1	0	0	R	N	1

The data in the I field is ANDed with byte $0(N=0)$ or byte $1(\mathrm{~N}=1$) of the general register designated by the R field. This register must be an odd-numbered register. The result are stored in the selected byte of R. The non-selected byte of the register remains unchanged.

The ' C ' latch sets if the selected byte of R does not equa 0 . The ' Z ' latch sets if the selected byte of R equals 0 .

Compare Register Immediate (CRI)

0	1	2	3	4	$5-6$		7
1	0	1	1	0	R	N	1

The data in the I field is compared with byte $0(\mathrm{~N}=0)$ or byte $1(\mathrm{~N}=1)$ of the general register designated by the R field. This register must be an odd-numbered register. The contents of the general register are not changed.

The ' C ' latch sets if the selected byte of R is less than I. The ' Z ' latch sets if the selected byte of R equals I.

Exclusive-OR Register Immediate (XRI)

0	1	2				$5-6$	

The data in the I field is exclusive-ORed with byte $0(N=0)$ or byte 1 ($N=1$) of the general register designated by the R field. The register must be an odd-numbered register. The results are stored in the selected byte of the general register

The ' C ' latch sets if the selected byte of R does not equal . The ' Z ' latch sets if the selected byte of R equals $\mathbf{0}$.

Load Register Immediate (LRI)

0	1	2	3	4	$5-6$	7	$8-15$
1	0	0	0	0	R	N	I

The data from the 1 field is loaded into byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. This register must be an odd-numbered register. The non-selected byte of the register remains unchanged

The ' C ' latch sets if the selected byte of R is not equal to The ' Z ' latch sets if the selected byte of R equals 0 .

OR Register Immediate (ORI)

0	1	2	3	4	$5-6$		7		$8-15$
1	1	0	1	0	R	N	I		

The data in the 1 field is ORed with byte $0(N=0)$ or byte 1 ($N=1$) of the general register designated by R. The register pecified by the R field must be an odd-numbered register speciled by the R field must be an odd-numbered regist both of the corresponding bit positions in the one or egister and the I field are 1; otherwise, the bit is set to 0 . The results are stored in the selected byte of R. The no lected byte of R remains unchanged

The ' C ' latch sets if the selected byte of R does not equal . The ' Z ' latch sets if the selected byte of R equals 0 .

Subtract Register Immediate (SRI)

0	1	2	3	4	$5-6$	7	$8-15$
		0		0	0	R	N

The data in the 1 field is subtrated from byte $0(N=0)$ from bytes 0 and 1 ($\mathrm{N}=1$) of the general register $\mathrm{N}=0$) by the R field. This register must be an odd-numbered register. The results are stored in the selected byte(s) of R.

Before the subtraction is done, the Ifield is expanded with high-order zeros to equal the size of the selected byte(s) of the general register.

The subtraction is done by adding the two's complement of the I field to the selected bytes of the general register. If the difference is less than zero, the result is in two's com plement form.

The ' C ' latch sets if $\mathrm{N}=0$ and byte 0 of R is less than 0 , or if $N=1$ and bytes 0 and 1 of R are less than 0 . The ' Z ' latch sets if $N=0$ and byte 0 of R equals 0 , or if $N=1$ and bytes 0
and 1 of R equal 0 .

Test Register Under Mask (TRM)

0	1	2	3	4	$5-6$	7	
1	1	1	1	0	R	N	1

The data in the I field is tested against (ANDed with) byt ($N=0$) or byte 1 ($N=1$) of the general register designate by the R field. This register must be an odd-numbered egister. The contents of R are not changed

The ' C ' latch sets if the results do not equal 0 . The ' Z latch sets if the results equal 0 .

Note: See page 6-000 for data flow
bit card locations.

C C C C C C C c

REGISTER TO REGISTER (RR) INSTRUCTIONS

(PART 1 OF 3)
The CCU takes one 11 cycle to execute any one of the 25 RR instructions except for the 'branch and link register' (BALR) instruction. The BALR instruction requires an 11 and an 12 cycle for execution.

For halfword, and 18 -bit operations, the R1 and R2 fields in the instruction can specify any of the eight general registers in the active group. For byte operations, only an odd-numbered register can be specified, therefore the General Register $=(2 \times R)+1$

Add Character Register (ACR)

0	$1-2$	3	4	5	5	7	8		8	10	11	12	13

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by the $R 2$ field is and ($\mathrm{N} 1=1$) of the general register designate ade the 1 field The result is pace in the selected byte(s) of R1. The registers specified by R1 and R2 must be odd-numbered registers.

Byte X of the register specified by R1 is included in the operation. However, byte X does not affect the setting of the C and Z latches.

The ' C ' latch sets if $\mathrm{N} 1=0$ and byte $\mathbf{0}$ of R 1 overflows, or if $\mathrm{N} 1=1$ and bytes $\mathbf{0}$ and overflow.

R1, equal 0
Add Halfword Register (AHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	0	1	0	0	0	0

Bytes 0 and 1 of the general register designated by $\mathbf{R 2}$ are added to bytes 0 and 1 of the general register designated by R1. The result is placed in bytes 0 and 1 of R1
The ' \mathbf{C} ' latch sets if bytes 0 and 1 overflow. The ' Z ' latch sets if bytes 0 and 1 equal 0
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Add Register (AR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R2	0	R1	1	0	0	1	1	0	0	0

Bytes $\mathrm{X}, 0$ and 1 of the general register designated by R 2 are added to bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by R1. The result is placed in R1

The ' C ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R1 overflow.
The ' Z ' latch sets if bytes $X, 0$ and 1 of $R 1$ equal 0
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed

AND Character Register (NCR)

0	$1-2$	3	4	5	5	7	8	9	10	11	12	13	14

Byte $0(N 2=0)$ or byte $1(N 2=1)$ of the general register designated by R2 is ANDed with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by $R 1$. The result is placed in the selected byte of R1. The registers specified by R1 and R2 must be oddnumbered registers.

The ' \mathbf{C} ' latch sets if the selected byte of R 1 does not equal $\mathbf{0}$. The ' \mathbf{Z} ' latch sets if the selected byte of R1 equals 0 .

AND Halfword Register (NHR)

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \hline 0 & \text { R2 } & 0 & \text { R1 } & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right) 0$.

Bytes 0 and 1 of the general register designated by R2 are ANDed with bytes 0 and 1 of the general register designated by R1. The result is placed in bytes 0 and 1 of R1.

The ' C ' latch sets if bytes 0 and 1 of R 1 are not equal to 0 .
The ' \mathbf{Z} ' latch sets if bytes $\mathbf{0}$ and $\mathbf{1}$ of R1 equal $\mathbf{0}$.
Note: If general register O(IAR) is specified as R1, a branch to the address formed in register O occurs. The ' C ' and ' Z ' latches are not changed

AND Register (NR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	1	0	1	0	0	0

Bytes $\mathrm{X}, 0$, and 1 of the general register designated by R 2 are ANDed with bytes $\mathrm{X}, 0$, and 1 of the general register designated by R1. The result is placed in R1.

The ' C ' latch sets if bytes $\mathrm{X}, 0$, and 1 of $\mathrm{R1}$ are not equal to 0
The ' Z ' latch sets if bytes $X, 0$, and 1 of R1 equal 0 .
Note: If general register O (IAR) is specified as R1, a branch to the address formed register Ooccurs. The 'C' and ' Z 'latches are not changed.

Branch and Link Register (BALR)

$\begin{array}{llllllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

This two-cycle instruction causes an unconditional branch to the storage address in俍 R2, and before it is placed in register 0 (IAR), the contents of register 0 are moved to the register specified by R1 to provide for subroutine linkage.

Since register 0 is the IAR, no linkage is provided if it is specified as R1. For the same reason, no branch occurs if it is specified as R2.

The ' C ' and ' Z ' latches are not changed.

Compare Character Register (CCR)

0	$1-2$	3	4	$5-6$	7	8	9	10	11	12	13	14	15
0	R 2	N 2	O	R 1	N 1	0	0	1	1	1	0	0	0

Byte 0 ($\mathrm{N} 2=0$) or byte $\mathbf{1}$ ($\mathrm{N} 2=1$) of the general register designated by R 2 is compared with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by R1. The egisters specified by R1 and R2 must be odd-numbered registers. The contents of the registers are not changed.

The ' \mathbf{C} ' latch sets if the selected byte of R 1 is less than the selected byte of $\mathbf{R 2}$
The ' Z ' latch sets if the selected byte of R1 equals the selected byte of R2

REGISTER TO REGISTER (RR) INSTRUCTIONS (PART 2 OF 3) (PART 2 OF 3)

Compare Halfword Register (CHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	1	1	0	0	0	0

Bytes 0 and 1 of the general register designated by R2 are compared with bytes 0 and of the general register designated by R1. The contents of the registers are not changed
The ' C ' latch sets if bytes 0 and 1 of R 1 are less than bytes 0 and 1 of $R 2$.
The ' Z ' latch sets if bytes 0 and 1 of R1 are equal to bytes 0 and 1 of R2.

Compare Register (CR)

$\begin{array}{llllllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

Bytes $X, 0$ and 1 of $R 2$ are compared with $X, 0$ and 1 of R1. The contents of the registers are not changed

The ' C ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R 1 are less than bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R 2 The ' \mathbf{Z} ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ are equal to bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R 2

Exclusive-OR Character Register (XCR)

0	$1-2$	3	4	$5-6$	7	8	9	10	11	12	13	14	15
0	R 2	N 2	0	R 1	N 1	0	1	0	0	1	0	0	0

Byte 0 ($\mathrm{N} 2=0$) or byte 1 ($\mathrm{N} 2=1$) of the general register designated by R 2 is exclusiveORed with byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by R 1 The registers specified by R1 and R2 must be odd-numbered registers. The result is placed in the selected byte of R1.

The ' \mathbf{C} ' latch sets if the selected byte of R1 does not equal 0 .
The ' Z ' latch sets if the selected byte of R1 equals 0 .

Exclusive-OR Halfword Register (XHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	0	0	0	0	0	0

Bytes 0 and 1 of the general register designated by R2 are exclusive-ORed with bytes 0 and 1 of the general register designated by R1. The result is placed in bytes 0 and 1 of R1.

The ' C ' latch sets if bytes 0 and 1 of $R 1$ are not equal to 0
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general res ister O (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Exclusive-OR Register (XR)

$\begin{array}{llllllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

Bytes $X, 0$ and 1 of the general register designated by $R 2$ are exclusive-ORed with bytes $\mathrm{X}, 0$ and 1 of the general register designated by R 1 . The result is placed in R1. The ' \mathbf{C} ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R 1 do not equal $\mathbf{0}$.

The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Load Character Register (LCR)

0	$1-2$	3	4	$5-6$	7	8	9	10	11	12	13	14	15
0	R 2	N 2	0	R 1	N 1	0	0	0	0	1	0	0	0

Byte $0(\mathrm{~N} 2=0$) or byte $1(\mathrm{~N} 2=1)$ of the general register designated by R 2 is moved to byte $0(N 1=0)$ or byte $1(N 1=1)$ of the general register designated by $R 1$. The register specified by R1 and R2 must be odd-numbered registers.

The ' \mathbf{C} ' latch sets if the selected byte of R1 has an even number of data bits set to 1 The ' Z ' latch sets if the selected byte of R1 equals 0 .

Load Character with Offset Register (LCOR)

0	$1-2$	3	4	5-6	7	8	9	10	11	12	13	14	15
	R2	N2		R1	N1			1	1				

Byte $0(\mathrm{~N} 2=0)$ or byte $1(\mathrm{~N} 2=1)$ of the register specified by the R 2 field is shifted right bit position and a 0 is inserted in the high-order bit position. The bit shifted out of position 7 is lost. The resulting byte is placed in the selected byte of R1. The nonselected byte of R1 remains unchanged. The registers specified by R1 and R2 must be odd-numbered registers.

The ' C ' latch sets if the bit shifted out of bit position 7 of the selected byte of R 2 is 1 . The ' Z ' latch sets if the selected byte of R1 equals $\mathbf{0}$.

Load Halfword Register (LHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	0	0	0	0	0	0	0

Bytes 0 and 1 of the general register designated by R2 are loaded into bytes 0 and 1 of the general register designated by R1

The ' C ' latch sets if bytes 0 and 1 of R1 do not equal 0 .
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
ote: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Load Halfword with Offset Register (LHOR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
0	R 2	0	R 1	1	1	1	1	0	0	0	0

Bytes 0 and 1 of the general register designated by R 2 are shifted right one bit position A 0 is inserted in the high-order bit position. The resulting halfword is placed in byte 0 nd 1 of $R 1$.

The ' C ' latch sets if the bit shifted out of bit 1.7 is 1
The ' Z ' latch sets if bytes 0 and 1 of $R 1$ equal 0
Note: If general register O(IAR) is R1, a branch to the address formed in register 0 ccurs. The ' C ' and ' Z ' latches are not changed.

REGISTER TO REGISTER (RR) INSTRUCTIONS
 (PART 3 OF 3)

Load Register (LR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
	R	$R 2$	0	$R 1$	1	0	0	0	1	0	0

Bytes $X, 0$ and 1 of the general register designated by $R 2$ are loaded into bytes $X, 0$ and 1 of R1.

The ' C ' latch sets if bytes $\mathrm{X}, 0$, and 1 of R 1 do not equal 0 .
The ' Z ' latch sets if bytes $X, 0$, and $\mathbf{1}$ of $R 1$ equal 0 .
Note: If general register O(IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Load with Offset Register (LOR)

| 0 | $1-3$ | 4 | $5-7$ | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | R 2 | 0 | R 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |

Bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by R 2 are shifted right one bit position. A 0 is inserted in the high-order bit position. The result is placed in bytes $\mathrm{X}, 0$ and 1 of R1

The ' C ' latch sets if the bit shifted out of bit 1.7 is 1
The ' Z ' latch sets if bytes $X, 0$, and 1 of $R 1$ equal 0 .
Note: If general register 0 (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches do not change.

OR Character Register (OCR)

	1-2	3	4	5-6	7	8	9	10	11	12	13	14	15

\square
Byte 0 ($\mathrm{N} 2=0$) or byte 1 ($\mathrm{N} 2=1$) of the general register designated by R 2 is ORed with byte $\mathbf{0}(\mathbf{N} 1=0)$ or byte $1(\mathbf{N} 1=1)$ of the general register designated by R1. The register specified by R1 and R2 must be odd-numbered registers. The result is placed in the sected byte of R1. The non selected byte of R1 remains unchanged

The ' \mathbf{C} ' latch sets if the selected byte of R does not equal $\mathbf{0}$.
The ' Z ' latch sets if the selected byte of $\mathbf{R 1}$ equals $\mathbf{0}$

OR Halfword Register (OHR)

0	$1-3$	4	$5-7$	8	9	10	11	12	13	14	15
	$R 2$	0	R	1	1	0	1	0	0	0	0

0	R2	0	R 1	1	1	0	1	0	0	0	0

Bytes 0 and 1 of the general register designated by R2 are ORed with bytes 0 and 1 of the general register designated by $R 1$. The result is placed in bytes 0 and 1 of $R 1$.

The ' C ' latch sets if bytes 0 and 1 of R 1 do not equal 0 .
The ' Z ' latch sets if bytes 0 and 1 of $R 1$ equal 0
Note: If general register O (IAR) is R1, a branch to the address formed in register O occurs. The ' C ' and ' Z ' latches are not changed.

OR Register (OR)

0	$1-3$	4	$5-7$	8	9	10	11	12	12	14	15
0	R2	0	R1	1	1	1	0	1	1	0	0

Bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by R 2 are ORed with bytes $\mathrm{X}, 0$, and 1 of the general register designated by $R 1$. The result is placed in bytes $X, 0$ and 1 of R1

The ' \mathbf{C} ' latch sets if bytes $\mathbf{X}, \mathbf{0}$, and $\mathbf{1}$ of $\mathbf{R 1}$ do not equal $\mathbf{0}$.
The ' \mathbf{Z} ' latch sets if bytes $\mathbf{X}, \mathbf{0}$, and $\mathbf{1}$ of R1 equal $\mathbf{0}$.
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 occurs. The ' C ' and ' Z ' latches are not changed.

Subtract Character Register (SCR)

0	$1-2$	3	4	5	5	7	8	9	10	11	12	13	14
0	15												

Byte 0 ($N 2=0$) or byte 1 ($\mathrm{N} 2-1$) of the general register designated by R 2 is subtracted from byte $0(N 1=0)$ or bytes 0 and $1(N 1=1)$ of the general register designated by $R 1$ Before the subtraction is performed, the selected byte of R2 is expanded with high order zeros to equal the size of the selected byte(s) of R1. The subtraction is per byts) of R1. The result is stered in theled bytes) of If the differ is byte(s) of R1. The result is stored in the selected byte(s) of R1. If the difference is less than zero, the result is in two's complement form

The ' C ' latch sets if $\mathrm{N}=\mathbf{0}$ and the selected byte(s) of R 1 are less than $\mathbf{0}$
The ' Z ' latch sets if $\mathrm{N}=1$ and the selected byte(s) of R 1 equal $\mathbf{0}$

Subtract Halfword Register (SHR)

$\begin{array}{llllllllllll}0 & 1-3 & 4 & 5-7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

Bytes 0 and 1 of the general register designated by R2 are subtracted from bytes 0 and of the general register designated by $R 1$. The subtraction is performed by adding the bytor 1 of plement form.

The ' C ' latch sets if bytes $\mathbf{0}$ and $\mathbf{1}$ of R 1 are less than $\mathbf{0}$.
The ' Z ' latch sets if bytes 0 and 1 of R1 equal 0 .
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 occurs. The 'C' and ' Z ' latches are not changed.

Subtract Register (SR)

0	$1-3$	4	5	5	8	9	10	11	12	13	14
0	R 2	0	R 1	1	0	1	0	1	0	0	0

Bytes $\mathrm{X}, \mathbf{0}$, and 1 of the general register designated by R 2 are subtracted from bytes $X, 0$, and 1 of the general register designated by R1. The subtraction is performed by dding the two's complement of bytes $X, 0$, and 1 of R2 to bytes $X, 0$, and 1 of R2, The result is placed in R1. If the difference is less than zero, the result is in two complement form.

The ' C ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and 1 of R 1 are less than 0
The ' Z ' latch sets if bytes $X, 0$, and 1 of R1 equal 0 .
Note: If general register O (IAR) is R1, a branch to the address formed in register 0 ccurs. The ' C ' and ' Z ' latches are not changed.

REGISTER AND STORAGE (RS) INSTRUCTIONS

The CCU takes an 11 and an 12 machine cycle to execute the 'insert character', "load halfword', 'store character', or 'store halfword' instruction. The 'load' and 'store' instructions each require an I , I 2 , and I 3 cycle.

For the 'insert character' and 'store character' instructions, the general register designated by the R field in the instruction must be odd-numbered, therefore the General Register $=$ $(2 \times R)+1$.

Insert Character (IC)

0	$1-3$	4		$5-6$	7	8		$9-15$
O	B	1	R	N	O	D		

The 18 -bit base address in the general register specified by the B field is added to the displacement specified in the D field. The displacement can be 0 to +127 bytes. The didion an effective address that is used to address torage.

The byte at the effective storage address is loaded into byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. The remaining bits of the register are unchanged. R must be an odd register.

The ' C ' latch sets if the selected byte of R has an even number of 1 bits.

The ' \mathbf{Z} ' latch sets if the selected byte of R equals 0 .
Note: If general register 0 (IAR) is specified by B, a constant of $X^{\prime} 0680^{\prime}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 128 bytes starting at address $X^{\prime} 0680^{\prime}$ without having to load a base register.

Load (L)

0	$1-3$	4	$5-7$	8	$9-13$	14	15	
	B	0	R	0				0

The 18 -bit base address in the general register specified by the B field is added to the displacement in the D field. he displacement can be 0 to +31 fullwords. The addition orms an effective address that is used to address storage.

The low-order 18 -bits of the fullword at the effective storage address are loaded into the general register specified storage address are loaded into the general register specif address are ignored.) The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries.

The ' \mathbf{C} ' latch sets if bytes $\mathrm{X}, \mathbf{0}$, and $\mathbf{1}$ of R do not equal $\mathbf{0}$. The ' \mathbf{Z} ' latch sets if bytes $X, 0$, and 1 of R equal 0 .

Note: If general register O (IAR) is specified by R, an unconditional branch to the address formed in register O occurs. The ' C ' and ' Z ' latches are not changed. If general register 0 is specified by $B, X^{\prime} 0780^{\prime}$ is used as the base address instead of the contents of register O. This permits direct addressing of the ' 32 fullwords starting at address
$x^{\prime} 0780^{\prime}$ without having to load a base register.

Load Halfword (LH)

0	$1-3$	4	$5-7$			
0	14	15				
0	B	O	R	O	D	1

The 18 -bit base address in the general register specified by he B field is added to the displacement specified by the D field. The displacement can be 0 to +63 halfwords. This addition forms an effective address that is used to address addition
storage.

The halfword at the effective storage address is loaded into bytes 0 and 1 of the register specified by the \mathbf{R} field. The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries.

Byte X of the register specified by R is set to zero during the load operation.

The ' C ' latch sets if bytes 0 and 1 of R do not equal 0
The ' \mathbf{Z} ' latch sets if bytes 0 and 1 of R equal 0 .
The Load Halfword instruction is also used in conjunction with the Input $X^{\prime} 7 B^{\prime}$ instruction to generate the new BSC-CRC character. When this instruction is executed at program level $2,3,4$, or 5 , or level 1 during IPL phase 3 , the halfword accessed is loaded into both the specified general register and the BSC-CRC register. For non-CRC operation, the loading of data into the BSC-CRC register serves no purpose.

Note: If general register O (IAR) is specified by the R field, an unconditional branch to the address formed in register Ooccurs. The condition codes are not changed, If general register O is soecified by $B, X^{\prime} 0700^{\prime}$ is u sed as the base address instead of the contents of general register o. This permits direct addressing of the 64 halfwords starting at address $X^{\prime} 0700^{\prime}$ without having to load a bas register. register.

Store (ST)

0	1.3	4	5-7	8	9-13	14	15
-	B	0	R	1	D	1	

The 18 -bit base address in the general register specified by the B field is added to the displacement specified by the D field. The displacement can be 0 to +31 fullwords. The addition forms the effective address used to address storage

Bytes $X, 0$ and 1 of the general register specified by the R field are stored in the low-order 18 bits of the fullword located at the effective address. The high-order 14 bits are not affected. The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries. The ' C ' and ' Z ' latches are not changed.

Note: If general register 0 (IAR) is specified by $B, X^{\prime} 0780^{\prime}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 32 fullwords starting at address $X^{\prime} 0780^{\prime}$ without having to load a base register.

Special Case: A 'store' instruction must be located at storage location $\mathrm{X}^{\prime} 0010^{\prime}$. The R field and B field of this instruction both equal 0 . This is the first instruction executed when a program level 1 interrupt occurs. During 11A time of the store instruction, the gate 'Write LS' is blocked in order to preserve the IAR of program level 2. During I3D time of the instruction, the storage location $X^{\prime} 0012^{\prime}$ is forced onto the Indata Bus to address the next storage instruction.

Store Character (STC)

0	$1-3$	4	5	5	8			$9-15$
0	B	1	R	N	1	D		

The 18 -bit base address in the general register specified by the B field is added to the displacement specified by the D field. The displacement can be 0 to +127 bytes The addition forms an effective address that is used to address storage.

Byte $0(N=0)$ or byte $1(N=1)$ of the general register specified by the R field is stored at the effective storage address. R must be an odd register.

The ' C ' and ' Z ' latches are not changed.

Note: If general register 0 (IAR) is specified by $B, X^{`} 0680^{\circ}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 128 bytes starting at address $X^{\prime} 0680^{\prime}$ without having to load a base register.

Store Halfword (STH)

0	1-3	4	5-7	8	9-14	15
0	B	0	R	1	D	1

The 18 -bit base address in the general register designated by the B field is added to the displacement specified by the D field. The displacement can be 0 to +63 halfwords. The addition forms an effective address that is used to address storage.

Byte 0 and 1 of the general register designated by the R field are stored at the effective address. The low-order bit of the effective address is ignored since storage is addressed on halfword boundaries.

The ' C ' and ' Z ' latches are not changed.
Note: If general register 0 (IAR) is specified by $B, X^{\prime} 0700^{\prime}$ is used as the base address instead of the contents of register 0 . This permits direct addressing of the 64 hall words starting at address $X^{\prime} 0700$ ' without having to load a base register. If the R field is zero, $X 0000$ is stored at the storage address instead of the contents of register 0

[^3]

Note: See page $6-000$ for data flow
bit card locations.

REGISTER AND STORAGE WITH ADDITION (RSA) INSTRUCTIONS

 The CCU takes an 11 and an 12 cycle to execute either the 'insert character and count' or 'store character and count' instructions.or the 'ICT' and 'STCT' instructions, the general register designated by the R field in the instruction must be an odd-numbered register; therefore, the general register (2xR) +1

Insert Character and Count (ICT)

0	$1-3$	4	$5-6$	7	8	9	10	11	12	13	14	15
0	B	O	R	N	O	O	O	1	0	0	0	0

The B field specifies a general register in the active group. The register contains an address (effective address) that is used to address storage. The content of the register secified by is incen yte at the effective address is placed in byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the \mathbf{R} field. The register specified by R must be an odd-numbered register. Register 0 should not normally be specified in the B field because it contains the instruction address.
The ' C ' and ' Z ' latches are not changed.
Note: If the registers specified by B and R are the same, the contents of byte 1 of the register is incremented before the 8 -bit character is inserted. If $N=1$, the inserted character the Orlays byte 1 of the same register, and the previous incrementing has no significance. If $N=0$, the character is inserted into byte O of the register, and byte 1 contains the original value plus 1.

Store Character and Count (STCT)

0	1-3	4	5-6	7	8	9	10	1		12	13	14	15
0	B	0	R	N	0	0	1	1		0	0	0	0

The B field specifies a general register in the active group. This register contains an
The B field specifies a general register in the active group. This register contains an address (effective address) that is used to select a storage location. The content of the
register specified by B is incremented by 1 . Byte $0(N=0)$ or byte $1(N=1)$ of the general register specified by R is then stored at the effective address. The register specified by R must be an odd-numbered register. Register 0 should not be specified by the B field because it contains the instruction address.

The ' C ' and ' Z ' latches are not changed.

To Next Column

REGISTER AND IMMEDIATE ADDRESS (RA) INSTRUCTIONS
The CCU takes an 11 and an 12 cycle to execute either the 'branch and link' or the 'load address' instruction.

The 'branch and link' and 'load address' instructions are the only 32 -bit instructions for the 3705-80.

Branch and Link (BAL)

0	1	2	3	4	$5-7$	8	9	10	11	12	13	$14-31$
1	0	1	1	1	R	0	0	0	0	0	0	A

This instruction causes an unconditional branch to the storage address specified by the A field. The contents of general register 0 (IAR) are moved to the general register specified by the R field to provide for subroutine linkage. The address in the A field is then placed in register 0 . Since register 0 is the IAR, no linkage is provided if it is specified by R.

The ' C ' and ' Z ' latches are not changed.
Load Address (LA)

0	1	2	3	4	$5-7$	8	9	10	11	12	13	$14-31$
1	0	1	1	1	R	0	0	1	0	0	0	A

This instruction places the contents of the A field in the general register specified by the R field. Bits $12,13,14$, and 15 of the A field are loaded into byte X of R.

The ' C ' and ' Z ' latches are not changed.
Note: If general register 0 (IAR) is addressed, an unconditional branch occurs to the instruction located at the storage address specified by the A field.

Note: See page 6 -000 for data flow
bit card locations.

REGISTER BRANCH OR REGISTER AND

BRANCH (RT) INSTRUCTIONS
The CCU takes an 11 cycle to execute any one of the five register branch, or register and branch instructions.

Branch Displacement Calculations

The displacement in halfwords can be calculated as shown below (multiply by 2 for displacement in bytes):

If ${ }^{*}=0$, Displacement halfwords $=1+T$
If $=1$, Displacement halfwords $=1-T$
Example: A800 is a NO OP.
A803 is a branch to itself indefinitely.

Branch (B)

0	1	2	3	4	$5-14$		15
1	0	1	0	1	T	${ }^{*}$	

$0=+$ displacement
$1=$ - displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The isplacement specified by the T field can be -1023 to
1023 halfwords. Bit 15 determines whether the displacement is positive or negative. An unconditional branch to the "branch to" address occurs.

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the address of the next sequential instruction. Therefore, the displacement from the B instruction is -1022 to +1024 halfwords.

Branch On Bit (BB)

0	1	2	3	4	5-6	7	8	9-14	15
1	1	M	M	1	R	N	M		

$* 0$	$=+$ displacement
1	$=$ - displacement

$1=-$ displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -63 to +63 halfwords. Bit 15 determines whether the displacement is positive or negative. An unconditional branch to the "branch to" address occurs.

The M field specifies a bit in byte $0(N=0)$ or byte $1(N=1)$ of the general register designated by the R field. This bit is tested. If the bit is 0 , the next sequential instruction is executed; if the bit is 1 , the next instruction to be executed is at the "branch to" address.

The ' C ' and ' Z ' latches are not changed.
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the address of the next sequential instruction after the $B B$ instruction. Therefore the displacement from the $B B$ instruction is -62 to +64 halfwords.

M field and N field decode		
	Instruction	
$\text { Bit to } \mathrm{Be}$	N 7	MMM-field $23 \text { 8-bit }$
0.0	0	000
1	0	001
2	0	010
3	0	011
4	0	100
5	0	101
6	0	110
7	0	111
1.0	1	000
1	1	001
2	1	010
3	1	011
4	1	100
5	1	101
6	1	110
7	1	111

Branch On C Latch (BCL)

0	1	2	3	4	$5-14$	15	
1	0	0		1			

0 = + displacement

$1=$ - displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -1023 to +1023 halfwords. Bit 15 determines whether the displacement is positive or negative.

The ' C ' latch is tested. If it is not set, the next sequential instruction is executed. If it is set, the next instruction to be executed is at the "branch to" address.

The ' C ' and ' Z ' latches are not changed

Note: Since register 0 (IAR) is incremented before the instruction is executed, the displacement is with respect to the next sequential instruction after the $B C L$ instruction. Therefore, the displacement from the BCL instruction is - 1022 to +1024 halfwords.

Branch On Count (BCT)

| 0 | 1 | 2 | 3 | 4 | $5-6$ | 7 | 8 | $9-14$ | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 1 | R | N | 1 | T | ${ }^{*}$ |

*0 $=+$ displacement General Register $=(2 \times R)+1$

The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -63 to +63 positive or negative

The count contained in byte $0(N=0)$ or bytes 0 and 1 ($\mathrm{N}=1$) of the general register designated by the R field is decremented by 1 and then is tested. If the result is 0 , the next sequential instruction is executed. If the result is not 0 , the next instruction to be executed is at the "branch to" address.

If the byte count is $X^{\prime} 00^{\prime}$ or the halfword count is $X^{\prime} 0000^{\prime}$ before execution of this instruction, then the effective count value is 256 or 65,536 , respectively.

The ' C ' and ' Z ' latches are not changed when this instruc tion is executed.

Note: Since register O(IAR) is incremented before the in struction is executed, the displacement is with respect to the next sequential instruction after the BCT instruction. Therefore, the displacement from the BCT instruction is -62 to +64 halfwords.

0	1	2	3	4			$5-14$
	15						
1	0	0	0	1	T	${ }^{*}$	

* $0=+$ displacement

$1=$ - displacement
The displacement in the T field is added to the address in general register 0 (IAR) to form a "branch to" address. The displacement specified by the T field can be -1023 to +1023 halfwords. Bit 15 determines whether the dis placement is positive or negative.
The ' Z ' condition latch is tested. If not set, the next sequential instruction is executed. If set, the next instruc tion to be executed is at the "branch to"' address.

The ' C ' and ' Z ' latches are not changed
Note: Since register 0 is incremented before the instruction is executed, the displacement is with respect to the next sequential instruction after the BZL instruction. can be -1022 to +1024 halfwords.

REGISTER AND EXTERNAL REGISTER (RE) INSTRUCTIONS

 An 'input' or 'output' or 'exit' instruction takes one 11 cycle for execution.
Input

0	1.3	4	$5-7$	8				
0	E	0	R	E	1	1	0	0

This instruction loads the general register specified by the \mathbf{R} field with the contents of the external register specified by the Efield. See 6-151 for the addresses of the 128 input-addressable external registers.

The ' C ' and ' Z ' latches are not changed when an 'input' instruction is executed.
An input' instruction can be executed at program level 1, 2, 3, or 4. An attempt to execute this instruction at program level 5 causes the $L 1$ input/output check interrupt request to be set. The check is also set if the external register address is not assigned or is not recognized by any adapter. It is also set if incorrect parity is detected on the CCU inbus when an input instruction is executed

Note: If register O (IAR) is specified as R, a branch to the effective address formed in register O occurs.

Outpu

0	$1-3$	4	$5-7$	$8-11$	12	13	14	15
0	E	0	R	E	0	1	0	0

This instruction places the contents of the general register specified by the R field in the external register specified by the E field. The addresses of the 128 output-addressable registers are shown on 6-151

The ' C^{\prime} ' and ' Z ' latches are not changed when an 'output' instruction is executed
An output' instruction can be executed at program level 1, 2,3, or 4. An attempt to execute this instruction at program level 5 causes the LT input/output check interrup request to set. The check also sets if the external register address is not assigned or is not recognized by any adapter. An output instruction executed at program level 2,3 , or 4, or level 1 during IPL phase 3 also causes the CRC data register in the CCU to be loaded with the contents of byte 1 of the register specified by R .
Note: If register O (IAR) is specified by E, a branch to the effective address formed in register O occurs. If register 0 is specified by R and one of the general registers is spec fied by E, the content of the general register is not changed, and parity is regenerated.

Exit

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0

This instruction is used to leave any of the five program levels. When an 'exit' instruction is executed at a program level, the 'interrupt entered' latch for that program level is reset.
exit is executed at program level 5 , the program level 4 supervisor interrupt request is set. If no other interrupt requests are present, the next instruction executed is the istruction at the starting address for program level 4. If other interrupt requests are ighest program level requested.

If level 5 is masked off and no interrupt requests are pending at any level, then an 'exit' instruction will cause the CCU to go into the 'Wait' state (take idle cycles) until an interrupt occurs.

The ' C ' and ' Z ' latches are not changed.

Exit Instruction Operation

Instruction	Operation
Exit	Compare

See page 6-100.

Note: See page 6-000 for data flow bit card locations.

CCU INPUT INSTRUCTIONS

The central control unit (CCU) has 44 assigned input
instructions. These input instructions set bits in a general
register to indicate various hardware conditions.

Inputs X'00' to X'1F
General Registers
inputs $X^{\prime} 00^{\prime}-X^{\prime} 1 F^{\prime}$ load the contents of the general
register specified by the E field into the general register
specified by the R field.
Thers register specified by the field
set ine B register at IIC time. Refer to the input
instruction on page 6-710.

nput X'70' Storage Size Installed

Input X' 70 ' turns on bit 0.3 of the general register specified
by the R field. Setting bit 0.3 of the general register to " 1 " indicates that the $3705-80$ contains 256 K bytes of
storage.

General Register Bit Definitions

Hardware Function

Input X'71' Panel Addr/Data Entry Digits
Input X'71' causes the general register specified by
Input $X^{\prime} 71$ ' causes the general register specified by the
R field to be loaded according to the setting of the

General Register Bit Definitions

X. 6	X. 7
	$\begin{array}{l}\text { Switch } A \\ \text { These bits are loaded with information } \\ \text { from ADDRESS/DATA switch A. }\end{array}$

$\begin{array}{lll}0.0 & 0.3 & \text { Switch B }\end{array}$

Hardware Function

The contents of the Y bus are set in the B register at IIC time. Refer
to the input instruction on page 6.710 .

$X .6$	$X .7$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7

General R
($(\mathrm{In} \mathrm{CCU})$

Input X‘72' Display/Function Select Switch
Input $X^{\prime} 72^{\prime}$ causes the general register specified by the
R field to be loaded with information indicating the posi-

General Register Bit Definitions

Hardware Function
DISPLAY/FUNCTION
SELECT Switch APOOS
Gate Input 72 (c0004)
Gate ccu Indata to
Y Bus (CSOO4)
Gate Y Bus to B Reg (CSOO4)
The contents of the Y bus are set in the B register at $11 C$ time. Refer
to the input instruction on page 6.710 .
nput X'73' Insert Key
nput $X^{\prime} 73^{\prime}$ is associated with storage protection. When xecuted, the key addressed by the last Output $X^{\prime} 73^{\prime}$ is inserted into bits 1.5-1.7 of the general register specified by the R field.

eneral Register Bit Definitions

 This bits contain the key
addressed by the last Output $X^{\prime} 73$

```
00.0
General Register
```


Input $\mathbf{X}^{\prime} 74$ ' Lagging Address Register

When an Input $X^{\prime} 74^{\prime}$ is executed, the contents of the lagging address register (LAR) are transferred to the register specified by the R field. If this input is executed at program level 2,3 , or 4 , the address from LAR is of the las instruction executed before the input. If this input is execul in ion executed before entering leval 1.

The contents of the Y bus are set in the B register at $11 C$ time. Refer to the input instruction on page 6.710.

Input X'76' Adapter Level 1 Interrupt Requests

Input $X^{\prime} 76^{\prime}$ is associated with program level 1 interrupt
requests. Execution of this instruction loads the general register specified by the R field with bits that indicate the origin of an adapter level 1 interrupt request.

General Register Bit Definitions

$\int_{0}^{0.0} \begin{aligned} & \text { Type } 4 \mathrm{CA} \# 1 \text { or \#2 } \\ & \mathrm{A} " 1 \text { " } 1 \text { indicates that type } 4 \mathrm{CA} \# 1 \text { or \#2 has }\end{aligned}$
requested a program level 1 interrupt.
0.1 Type 2 Scanner L1

A " 1 " indicates that the type 2 scanner has requested a program level 1 interrupt
0.2 This bit is 0 .
$]^{0.3}$ This bit is 0 .

${ }^{0.4}$ This bit is 0 .

0.5 Type 1 CA or Selected Type 4 CA L1

A " 1 " indicates that the type 1 CA or selected
A ${ }^{\prime \prime}$ "indicates that the type
type 4 CA has requested a program level 1 interrupt.
0.6 This bit is 0 .
0.7 Remote Program Loader $L 1$
$\mathrm{A}^{\prime \prime} 1{ }^{1 \prime}$ indicates that the Remote Diskette Controller has requested a program level 1 interrupt.

\author{

| 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | General Register

(In CCUU)
}

\section*{Hardware Function 	Gate Input 76	$\underbrace{}_{\text {AAOO2 }}$
EXIT		
Gate 1st Test Pnts on Inbus		}

Input 'X77' Adapter Level 2 or 3 Interrupt

 RequestsReq X'77' is associated with program level 2 and level 3 interrupt requests. Execution of this instruction loads the general register specified by the R field with bits to indicate the origin of an adapter level 2 or 3 interrupt
request.
When priority selection is required with two type 4 CAs, this instruction sets or resets the selected latch in each type 4 CA according to the state of the 'CA4 has priority' latch. It also resets the 'prime priority select' latch.

General Register Bit Definitions

$T^{0.0} \quad$ This bit is 0. A"Musted a program 2 interrupt
\qquad These bits are 0
$\int_{1}^{1.0} \quad \begin{aligned} & \text { Type } 4 \mathrm{CA} \mathrm{L3} \\ & A^{\prime \prime} 1^{\prime \prime} \text { indicate }\end{aligned}$
A"1 indicates that type $4 \mathrm{CA} \# 1$, \#2,
has requested a program. level 3 interrupt.
1.1 Remote Program Loader L3

A " 1 " indicates that the Remote Diskette Controller has requested a program level 3 interrupt.
$\xrightarrow{1.2}$ This bit is 0.
$1.3 \begin{aligned} & \text { Type } 1 \text { or Selected Type } 4 \mathrm{CA} \text { Data/Status } \mathrm{L} 3 \\ & A \text { " } 1 \text { "indicates that a type } 1 \text { or selected type }\end{aligned}$ A "1" indicates that a type 1 or selected type 4 CA has
requested a program level 3 data service interrupt. requested a program level 3 data service interrupt.
1.4 Type 1 or Selected Type 4 CA L3 A " 1 " indicates that the type 1 or selected
type 4 CA has requested a program level 3 initial selection interrupt.

Hardware Function

The contents of the Y bus are set in the B register at 11 C time. Refer to the input instruction on page 6-710.

Input X'79' Utility

Input X'79' causes the general register specified by the R field to be loaded with information indicating (1) the state of the program level 5 C and Z condition latches, (2) the last program level to be active before a level 1 interrupt, (3) the state of the IPL escape control, and 4) the 3705-80 contains a type 1 or type 4 CA.

General Register Bit Definitions

```
0.0
```



``` These bits are 0
0.6 Program Level \(5, \mathrm{C}\) Condition \(A\) " \("^{\prime \prime}\) indicates that the ' \(C\) Condition'
latch for program level 5 is on.
0.7 Program Level 5,2 Conditio
\(A " 1 "\) " indicates that the ' 2 condition
latch for program level 5 is on.
1.0 Program Level 2
A"1" indicates that program level 2
was interrupted by program level 1 . See Note 1
1.1 Program Level 3
A"1" indicates that program level 3
was interrupted by program level 1 . See Note 1 .
1.2 Program Level 4
A"1" indicates that program level 4
was interrupted by program level 1. See Note 1 .
1.3 Program Level 5
A "1" indicated that program level 5 or the "WAIT" state
was interrupted by program level 1. See Note 1 .
1.4 This bit is always set to " 1 " in the \(3705-80\).
1.5 See Note 2
A ' 0 ' indicates a 3705-80 Communications Controller
1.6 \(A^{\prime} 1\) ' indicates that a type 1 or type 4 CA
\(T\) is installed in the 3705-80. See Note 1 .
1.7 IPL Escape Control
A ' 0 indicates that a jumper has been installed by a CE at the customer's request. By forcing a branch to storage location \(\times\) '06FC', this jumper causes a bypass of the part of the bootstrap program that controls the initial program load.
1. Bits \(1.0-1.3\) and \(1.6-1.7\) are 0 if input \(X 79^{\prime}\) is executed when
not in program level 1 .
2. The \(3705-80\) Communications Controller has no hardware
```

Notes: 2. The in program level 1 .
3. This bit always equals zero.

Hardware Function

The contents of the Y bus are set in the B register at $11 C$ time. Rete
to the input instruction on page 6.710 .

Input X'7B' BSC CRC Register The old CRC accumulation in the P register and the new character in the Q register are combined in the new CRC generation circuitry. Input $X^{\prime} 7 B^{\prime}$ selects the output lines (SO to S 15) from the new CRC generation circuitry that corresponds to BSC CRC checking.

CRC Generation Example
A typical update of the CRC, located in the Character Control Block area, is provided below.

1 Output X'7E' (Set Mask Bits) - to prevent interrupts.
2 Load Halfword - loads the P register with the old CRC accumulation. Each Load Halfword executed changes the contents of the P register; therefore, a Load Halfword instruction should not be executed again until the new accumulated CRC is loaded into a CCU general register.

3 Insert Character - places the new character in a general register.

4 Any output instruction - places the new character in the \mathbf{Q} register when the general register used in step 3 is specified in the ' R ' field.

5 Input $X^{\prime} 7 B^{\prime}$ (BSC CRC Register) or Input $X^{\prime} 7 C^{\prime}$ (SDLC 8 CRC Register) - selects the corresponding outputs of the new CRC generation circuitry and places the new accumulated CRC in the general register specified in the ' R ' field.

6 Output X'7F' (Reset Mask Bits) - allows interrupts.
7 Store Halfword - stores new CRC accumulation in the CCB area on storage.

Input X'7C' SDLC 8 CRC Register
The old CRC accumulation in the P register and the new character in the Q register are combined in the new CRC generation circuitry. Input $X^{\prime} 7 C^{\prime}$ selects the output lines ($\mathbf{S} 0$ to $\mathbf{S 1 5 \text {) from the new CRC generation circuitry that }}$ corresponds to SDLC 8 CRC checking.

Input X'7D' CCU Check Register
 Input X'7D' sets the bits in the general register specified by
 the R field to correspond to the CCU check register. Pages $6-050$ and 6 -051 show the CCU check register.

General Register Bit Definition

0.0 Byte X Check

A" " " indicates a parity check in byte x (except for SDR)
0.1 Byte 0 Check

A " 1 " indicates a parity check in byte 0 .
0.2 Byte 1 Check

A" 1 " indicates a parity check in byte 1 (bytes 1 or X for SDR)
0.3 L1 Program Check

A"". indicates that a arogram check
0.4 SAR Check

A "1" indicatess a storage address register
parity check. Bit $0.0,0.1$, or 0.2 indicates
parity check. Bit 0.0, 0.1, or 0.2 indicates
which oyte of the storage address register
which oyte of the storage address register
caused the check.
05. SDR Check

A "1"" indicates a storage data register parity
check. Bit 0.1 ind Check. Bit 0.1 indicates SDR byte 0 caused the
parity check while bit 0.2 indicates SDR bytes or X caused the parity check.
0.6 Op Reg Check
 check. Bit $0.0,0.1$ or or 0.2 indicates which
byte of the operation register caused the
check check.
0.7
Indata Bus Check
1.7 A A"1" indicates an indata bus parity check.
Bit $0.0,0.1$, or 0.2 indicates which byte of

Hardware Function

1.1	1.2	$\begin{array}{l}\text { These bits are } 0 .\end{array}$
1.3		
IPL Diskett		

te Controller Error (see note)

	1.3
1 IPL Diskette Controller Error (see	
1.4	
IPL Media Error (see note)	

whenever any of the ccu checks in this input
are on. This bit should be checked first whe
checking for a cCU check condition.
1.6 Attachment Base Clock Check.

A "1" indicates a type 2 attachment base
clock check The type 2 scanner clock
signalec
sinal an incorrect number of time slots.
signaled an incorrect number of time slots.
$1.7 \quad \mathrm{Ccu}$ Clock Check
CCU Clock Check
A"1" indicates a central control unit
clock check. The CCU Clock signaled an incorrect number of time slots.

\section*{| | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Note: A " $1^{\prime \prime}$ indicates that an error message is stored
at location $\times 0020^{\prime}-$ ' $^{\prime} 003 \mathrm{~F}^{\prime}$. at location $X^{\prime} 0020^{\prime}-X^{\prime} 003 F^{\prime}$. Load Program 1 sets
the indicator when the the indicator when the message is stored.

Input X'7E' CCU Level 1 Interrupt Requests Input $X^{\prime} 7 E$ ' sets the bits in the register specified by the R field to indicate which level 1 interrupt request is set. Bit 1.1-1.4 are set as the result of a program check in any level and cause a level 1 interrupt if the error occurred in program level 2-5. A program check in program level 1 causes an IPL. If a program check occurs during IPL it causes a hard stop.

General Register Bit Definitions

7 These bits are " 0 ".
$\int_{\substack{1.0 \\ \text { address compare interrupt. }}}^{\begin{array}{l}\text { Address Compare I Interrupt } \\ \text { A. } \\ \text { and }\end{array}}$
address compare inter
$\frac{1.1}{}$ This bit is 0 .
1.2 In/Out Check L1
A " 1 "indicates an in/out
check has occurred.
1.3 Protection Check L1

A"1" indicates a protection
heck has occurred.
1.4 Invalid Op Check L1

A"1" indicates an invalid op
code check has occurred.
1.5 This bit is " 0 ".
1.6 IPLLI

A "1" indicates that an IPL
is occurring
is occurring.
1.7 This bit is " 0 ".

```
0.0.0
    M General Register
```

Input X'7F' CCU Level 2, 3, or 4 Interrupt Requests
Input $X^{\prime} 7 F^{\prime}$ sets bits in the general register specified by
the R field to indicate which level 2,3 , or 4 interrupt
requests are set.
General Register Bit Definitions

Hardware Function

Gate Input 7F

CCU OUTPUT INSTRUCTIONS
The CCU has 43 assigned output instructions. These output instructions set and reset various CCU latches and load external registers with data from general registers.

Outputs $\mathrm{X}^{\prime} \mathbf{0 0}$ to $\mathrm{X}^{\prime} 1 \mathrm{~F}^{\prime}$ General Registers Outputs $X^{\prime} 00^{\prime}-X^{\prime} 1 F^{\prime}$ load the contents of the general register specified by the R field into the general register specified by the E field.

At I1D time, the contents of the Z bus (contents of the register specified by the R field) are set in the general register specified by the E field. Refer to the output instruction on page 6-730.

Output X'70' Hardstop
Output X'70' causes the 'hardstop' latch to set. The 3705-80 comes to a complete stop, and IPL is required to continue processing using the adapters. The bit settings are ignored since this output performs a control function.

Output X'71' Display Register 1
Output X'71' causes the contents of the general register designated by the R field to be loaded in display register 1. The PROGRAM DISPLAY light also turns on.

At I1D time, the contents of the Z bus (contents of the general register specified by the R field) are set in display register 1. Refer to the output instruction on page 6-730.

Output X'72' Display Register 2
Executing Output X'72' causes the contents of the genera register specified by the R field to be loaded in display register 2. The PROGRAM DISPLAY light also turns on.

At I1D time, the contents of the Z bus (contents of the general register specified by the R field) are set in display register 2. Refer to the output instruction on page 6-730.

Output X'73' Set Key

Storage Protect) (Part 1 of 2)
Output $X^{\prime} 73^{\prime}$ is associated with storage protection. It is used to set either a storage key or a protect key with the contents of bits 1.5-1.7 of the general register designated by he \mathbf{R} field. Bit 1.3 controls the selection of either a torage key or a protect key. If bit 1.4 is " 1 ", the addressed key is set according to bits $1.5-1.7$. If bit 1.4 is " 0 ", the addressed key is not set.

Input $X^{\prime} 73^{\prime}$ can be used to set bits in a general register
according to the key addressed by the last Output $\mathrm{X}^{\prime} 73^{\prime}$.
General Register Bit Definitions

General Register (In CCU)															
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7

Hardware Function
The contents of the Z bus (contents of the general register specified by the R field) set storage protection at I1D time
Refer to the output instruction on page 6-730.

Output X'77' Miscellaneous Controls
Output $X^{\prime} 77^{\prime}$ contains controls used to set or reset various
Output $X^{\prime} 77^{\prime}$ cont

General Register Bit Definitions

$\frac{\square}{0.7}$ Reset Diagnostic L2
A"1"r esests the level 2 diagnostic
interrupt request interrupt request. This bit is ignored if the CCU is not in test mode.
(See ALD page CUO14.) Set Diagnostic L2 A " 1 " sets the level 2 diagnostic interrupt request. This bit is ignored if the CCU is
not in test mode. (See ALD page CUO14.)

	0.5
0.3	These bits are unused

0.2 Reset Panel Interrupt Request $L 3$

$$
\begin{aligned}
& A " 1 " \text { resets the program level } 3 \text { external } \\
& \text { interrupt request. (See ALD page CUO14.) }
\end{aligned}
$$

0.1 Reset CCU Checks

A " 1 " resets all $C C U$ checks. (See ALD page Cu006.)
0.0 Reset IPL L1

A "1" resets the level 1 IPL request.
(See ALD page CUO10.)
$A^{\prime} 1$ ' resets the Not-Initialized sense bit.

Hardware Function

At I1D time, the contents of the Z bus (contents of the general register specified by the R field) set the controls shown on this page. Refer to the output instruction on page 6-730.

If a Remote Programmer Loader is installed on a 3705-80 the ROS bootstrap program executes an Output $X^{\prime} 77^{\prime}$, after the load module has been successfully transferred that resets the 'program initiated IPL' latch (GE102) if it was set.
$T T T T T T$
Reset SVC L4
A"1" resets the level 4 supervisor call
(SCV L4) request. (See ALD page CUO15,
$\overline{1.6}$ Reset PCI L4
A " 1 " resets the level 4 program-controlled
interrupt request (PCI L4) set by Output
$\times \rightarrow 7$ ' $^{\text {. }}$ (
$x^{\prime} 7 D^{\prime}$. (See ALD page CU015.)
$\overline{1.5}$ Reset Program Checks L1
A"1" resets all program level 1 program check interrupt requests. (See ALO page CU014.)
$\frac{1.4}{1.4}$ Reset Address Compare L1
A"1" resest the program level 1 address
compare interrupt request. (See ALD page CUO14.) $\frac{1}{1.3}$ This bit is unused.
$\frac{}{1.2}$ Reset PCI L3
A " 1 " resets the level 3 program-controlled Anterupt request (PCI L33) set by Output
$x^{\prime} 7 C^{\text {C }}$. (See ALD page CU015). $x^{\prime} 7 C^{\prime}$. (See ALD page CUO15)
Reset Interval Timer L3
A "1" resets the program level 3 interval
timer request. (See ALD page CU014.)
This bit is unused

Output X'78' Force CC Checks

Output $X^{\prime} 78^{\prime}$ provides a means for testing the CC check
circuits under diagnostic means for by forcing checks in the CCU data flow. This output is ignored if the CCU is not in test mode.
take corrective action atter using this output and store data with the correct parity in the affected register or storage location.

General Register Bit Definitions

Hardware Function
At I1D time, the contents of the Z bus (contents of the general register specified by the R field) cause the functions shown on this page. Refer to the output instruction on page 6.730.


```
|
                    A"." causes incorrect parity on the
                    indata bus. (See ALD page CK001.)
                A Register Check
                    A"1"cruses incorrect parity in the
                Complement Z Bus Parity
                A "1" causes incorrect parity to be forced
                ACthe Z bus. (See ALD page CKO01,
            Complement Storage Parity
                A "1"" causes incurrect parity in both
                byte 0 and byte 1 of the halfword
                icrssed in s:orage on the next 
                instruction cycle
                    A "1"." causes the corresponding bit position
                    of bytes X,O, and 1 of the input to the ALU
                    check detection circuits to be complemented.
                    (See ALD page CK002.)
```


Output X'79' Utility

Output $X^{\prime} 79^{\prime}$ sets or resets various CCU latches.

General Register Bit Definitions

General Register R									
0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	1.0	1.1

(10

1.1 Reset Load Indicator
A "1 sets the 'load" latch that resets the
LOAD light on the control panel to
Lhat IPLight is on the contenol panel to indicate
Ieset and the LOAD Light is turned on during
IPL. (See ALD page COOO6.)

set Check Stop Mode

A" " 1 " resets 'ck stop mode' set during IPL
phase 1 and allows the setting of 'mach $c k$

See page 6 -960 and ALD page CU006).

$\overline{0.7}$ Program Level $5, \mathrm{z}$ Condition
If bit 0.5 of this output is " 0 ". the ' z
condition "atch for program level 5 is
condition latch for program leve I
set atcording to the state of this bit.
$\underset{0.6}{ } \quad \begin{aligned} & \text { (See ALD page CZOO4.) }\end{aligned}$
If bit 0.5 of this output is " 0 ", the
is set according to the state of this bit.
(See ALD page C $Z 005$.
Inhibit Program Level $5, \mathrm{C}$ and Z Replacement

If this bit is " " 0 ", the program level $5{ }^{\circ} \mathrm{C}$ and Z condition
latches are set according to bits 0.6 and 0.7 . If this bit is
latches are set according to bits 0.6 and 0.7 . If the
" 1 , no action is taken (See ALO page CZZO4.)
These bits are unused.

et Storage Diagnostic Mod

A"1" sets the 'allow set memory diag reg' latch. At the next 'store
new' pulse, store bits for bytes 0 and 1 are set into the FET storage
new pusse, rsore biss.
diagnostic registers.

Set IPL

A"1"" initiates an IPL. (See ALD page CUO10.) A"1" also selects the ROS to be used
as specified by output X' 68 ' and bit 0.4 if a Remote Program Loader is installed.
These bits are unused.

Note: Although the emulation program does not use $X^{\prime} 79^{\prime}$ bit 1.0
the Network Control Program does and will re-IPL and check
point restart on a machine check.

Output X'7C' Set PCI L3

Output $X^{\prime} 7 C^{\prime}$ sets the program controlled interrupt request or level 3. Since this instruction performs a function, the it settings of the register are ignored

Output X'7D’ Set PCI L4
Output $\mathrm{X}^{\prime} 7 \mathrm{D}^{\prime}$ sets the program controlled interrupt request for level 4. Since this instruction performs a function, the bit settings of the register are ignored.

Output X'7E' Set Mask Bits
Output $X^{\prime} 7 E^{\prime}$ is used to set mask bits to prevent interrupts
Output X 男 is used to set mask bits to p
General Register Bit Definitions

Hardware Function
At I1D time, the contents of the Z bus (contents of the
general register specified by the R Field) cause the func-
tions shown on this page. Refer to the output instruction on page 6-730.

Output $X^{\prime} 7 F^{\prime}$ Reset Mask Bits
Output $X^{\prime} 7 F^{\prime}$ is used to reset the mask bits for program
level interrupts.
General Register Bit Definitions

Hardware Function

At I1D time, the contents of the Z bus (contents of the
general register specified by the R field) cause the func
tions shown on this page. Refer to the output instruction n page 6-730

PL

(PART 1 OF 5)

Initial program load (IPL) controls the clearing of storage and the loading of a bootstrap program into storage during a power-on reset sequence or only the loading of a bootstra program during an IPL not caused by a power-on reset.
Initializing a power-on IPL operation causes: (1) a general reset of the IBM 3705-80, (2) a clear storage operation (the hex value epresented by STORAGE DATA switches B, C, D, and E is forced into all storage locations for a period of 300 to 400 milliseconds), (3) automatic loading of a bootstrap program into storage from read only storage (ROS), and (4) passing of control to the bootstrap program. The (4) passing of control to the bootstrap program. The
bootstrap program (1) controls channel operations unti the first load module from the host is successfully transferred into storage under a channel I/O Write IPL command or (2) controls remote-program-loader operations until the first load module from the host is successfully transferred into storage via the communication facility. After success ful transfer of the first program segment into the $3705-80$, the bootstrap program passes control to the loaded program segment which then controls the loading of whatever additional load modules are required to complete th 3705-80 control program load.

PLL is accomplished by successfully completing the thre phases of the IPL operation.

Two lights in display B on the control panel indicate the three phases of IPL. The LOAD light on the control panel is turned on when the IPL is initiated, and is not turned of until phase three is completed, and the control program executes an Output X' 79^{\prime} with bit 1.1 on in the CCU general register designated by the R field.

IPL Initialization

PL Phase 1

During IPL phase 1 , the LOAD light turns on, and a genera reset occurs in the 3705-80. The duration of the reset depends upon the duration of the action initiating the IPL
For example, if the LOAD pushbutton is held in, the reset lasts until the pushbutton is released

The general reset: requests.
2. Resets all interrupt entered latches
3. Resets all CCU interrupt requests
4. Resets PROG RAM STOP and HARD STOP
5. Discontinues instruction execution.
6. Disables storage protection
7. Turns on the control panel TEST light.

Minimal reset occurs in the channel adapter unless the IPL is the result of a power-on-reset. The RESET switch com pletely resets the channel adapter and makes an IPL nec essary. A complete power-on-reset occurs in the remot program loader if it is installed
When the phase 1 reset ends, phase 2 begins.

Summary of IPL Phase 1 Resets.

$\begin{aligned} & \text { Logic } \\ & \text { Page } \end{aligned}$	Card Location	Function
CC004	B302	Inhibit I Cycles
CL005	взк2	Condition LS Write
см001	B4C2	Inhibit Storage Operations
CP001	взт4	Inhibit Allow Instructions
CP002	в3м2	Mask Interrupt Levels
CP003	B3M2	Reset Interrupt Entered Latches
CS002	B3F2	Conditions Set SDR byte X, 0, and 1 Inhibit Set Bad Addr
cs003	B3F2	Condition TAR Set
CS004	B3F2	Gate CCU Indata to Y bus Gate TAR to Y bus
cs007	B3F2	Set Op Reg
cu004	в3Р2	Reset Address Compare Reset Program Stop
cu005	B3L2	Set Test Mode
		Reset BP Ck Stp Mode
cu007	B3P2	Reset Clock Step
		Reset Start, Display, Store
CU014	B3L2	Reset PCI Bid Lev 2
		Reset Addr Exception
		Reset Allow Irpt
cuo 15	в3M2	Reset PCI Bid Lev 3
		Reset PCI Bid Lev 4
		Reset Svc Bid Lev 4
cv061	B4D2	Inhibit Storage Protection
cx002	B3D2	Priority Register Occupied Latches

IPL (PART 2 OF 5)

PL Phase 2

During IPL Phase 2, the ROS bootstrap program is automatically loaded into storage sequentially from location $\mathrm{X}^{\prime} 00000$ '. (See Notes.) The ROS array for the CA1 or CA4 is mounted on an MST card and is plugged into the socket at 01A-B4F2 (see logic page CW011 and CW012) while the Remote Program Loader II ROS array card is plugged into the socket at 01A-B4F4 (see logic page CW001).
The bootstrap program code is unique to the particular ype ROS, and a listing of the code is contained in the logic pages beginning on ALD CW101.

Notes:

1. If the IPL operation is initiated by a power-on reset (POR), a storage test pattern is forced into all storage locations for a period of 300 to 400 milliseconds. The storage test pattern equals the hexadecimal value represented by STORAGE DATA switches B, C, D, and E. When the forced storage test pattern operation ends, the CCU initiates a power-on reset which causes IPL phase 1 to occurs, and the ROS is loaded into storage.
2. See page 1-200 for a procedure to clock step through IPL phase 2 (see Note 3)
3. The forced storage test pattern that occurs during IPL phase 2 of an IPL operation initiated by POR cannot be clock stepped. To simulate a POR IPL, follow either procedure A or B.
A. With the $3705-80$ power off, jumper $B 3 C 4 B 13$ to B3C4J11. Bring up power on the 3705-80. The 3705-80 will now loop IPL phase 1 and 2. During IPL phase 2, the forced storage test pattern operation will occur. The data pattern loaded into storage DATA switches B. C. D, and E. With the 370580 , D, and E.
 active, jumper B3C4B13 to B3C4J11 and press LOAD." The POR IPL operation will loop as described in Procedure A.

Phase 2 Data Flow

Note: This description of the IPL phase 2 data flow applies only to the loading of ROS. For information on the loading of a storage test pattern (occurs only during IPL phase 2 of an IPL operation initiated by a power-on reset), refer to CU016 (control logic) and 6-060 (storage test pattern data flow).

At the beginning of IPL phase 2, SAR and TAR contain all Os. Cycle steal cycles are used to load the ROS bootstrap program into storage.
SAR addresses both storage and ROS. ROS is addressed on a byte level. During each cycle steal cycle, the ROS data is placed in byte 1 of the 'indata' bus.

The first cycle steal cycle in IPL phase 2 stores the first byte of ROS data in byte 0 of the first storage location. (A 'cross lo to hi' operation places the ROS data in both bytes 0 and 1 . Because SAR bit 1.7 is 0 , 'ROS byte 0 ' and zeros in byte $\mathbf{1}$ are gated to SDR and loaded into storage.)

The second cycle steal cycle stores the second byte of ROS data in byte 1 of the first storage location. (Because SAR bit 1.7 is 1 ,'ROS byte 0 , from the store read cycle, and 'ROS byte 1 ' are gated to SDR and loaded into storage.)

The bootstrap cycle steal operations continue until all of the ROS bootstrap program is loaded. The following data flow charts and pages $6-963$ or $6-964$ show the ROS boot strap cycle steal operations.

Note: Refer to page CWOOO for a list of ROS program code, simulation run, and ROS flow charts.

This page intentionally left blank.

Note: Before using this chart, refer to the
IPL description on $6-960$ and $6-961$.
IPL description on 6-960 and 6-961.
1 - Panel Active
$2+$ Load Push Button In
3 IPL 1 Latch (Note 2)
4- IPL Reset Countdown Star ted
5 - Set Int Timer Bid
$6+$ Allow Instruction
7 + Any 1 Time
$8+$ Pre-Empt All But Maint
$9+$ Wait to Ind
$10+$ Load to ind
$11+$ Power On or IPL Rese
$11+$ Power On or IPL Rese
$12+$ IPL Phase 1 to Ind
$13+$ Reset
$13+$ Reset
14 - Test Mode Latch (Indicator On)
15 - IPL Reset Count Down Complete
16 IPL 2 Latch
16 IPL 2 Latch
17 + Bootstrap Mod
18 - Bootstrap ROS 1
$19+$ IPL Phase 2 or 3 to Display B
20 - Latch Store
$21+$ IPL Bid Level 1
22 - Level 1 Bid Sample
23- Prog Level 1 Next
24 - Virgin Level
$25+$ Bid Maint Latch
$26+$ Go Maint
$27+G o c s$
28- Go First CS Cycle
29. cs 1 Time
29- CS 1 Time
30 TAR
31 -Gate
31- Gate TAR to Y Bus
$32+$ Set SAR
33 SAR
$34-$ Gate Y Bus to B Reg
$35+$ Force Constant
$36+$ Add Bytes $X, 0$, and 1
$37+$ Set TAR
38 Read Call Wr Call Time
$39+$ Block Complete SDR
$40+$ SAR Bits $0.5,0.6$ and 0.7
41 - Gate CCU Indata to Y Bus
$42+$ Select 1st to 4th 256 Bytes
43 - Cross Lo to Hi
44- Gate Z Bus Byte 0 to M Bus
$1_{46 \text {. Gate }}^{45} \mathrm{Z}$ Bus Byte 1 to M Bus
47 - Gate Byte 0 to M Bus (Sense Data)
$48+$ Set SDR
49 SDR
50 - Write + Read
$51+$ Bootstrap Loaded
52 + IPL Phase 3
Notes:

1. $A B=$ Phase A and B Sample pulses; therefore
these timings may vary. (See page D-570.)

Reset by Output $X^{\prime} 79^{\prime}$,
with bit $1.1=1$


```
The IPL l latch can also be set by the 
``` conditions sho
on page 6 -961.
3. See Page \(1-200\) for a pro
step thru IPL phase 2. 2 .

\section*{PL Phase 3}

ROS bootstrap program execution begins with an interrup to program level 1 , and the program is executed entirely at this level. The instruction at storage location \(X^{\prime} 00010^{\prime}\) is the first instruction to be executed. (The branch to storage address X'00010' is hardware forced at the start of IPL phase 3.) Refer to logic page CWOOO for the listing of the ROS bootstrap program, ROS flow charts, ROS code, and simulation run.

The first section of the program:
1. Saves the general registers for group 0 starting in loca tion X'00780'.
2. Verifies the operation of the \(3705-80\) instructions needed by the second part of the bootstrap program; see 2-000 2.040.
3. Tests to determine whether to continue or branch to th ROS bootstrap escape address X'06FC'
If the branch is not taken, saves external registers \(X^{\prime} 76^{\prime}\) \(\mathrm{X}^{\prime} 7 \mathrm{D}^{\prime}\), and \(\mathrm{X}^{\prime} 7 \mathrm{E}^{\prime}\) starting at storage location \(\mathrm{X}^{\prime} 00702^{\prime}\).

The TEST light turns off on the control panel after the first part of the test is complete.

The second part of the ROS bootstrap program controls channel adapter or remote program loader operations until he first program load module is successfully transferred from the host. If there is no command pending for completion or final status in the CA, the ROS bootstrap program has the CA generate an asynchronous status of Device End (DE) and Unit Check (UC). If a command other than a Write IPL is pending completion, the CA generates a final status of Device End, Unit Check, and Channel End (CE) if CE has not already been generated. In either case, Not Initialized (sense bit 6) is made available for a subsequen channel Sense command. A Write IPL normally follow he channersense oader Section in

The Write IPL command allows the transfer of the first load module from the host processor into the 3705-80. Under the Write IPL command, the load module is stored in sequential storage locations starting at location X'00400 The maximum size of this load module cannot exceed 768 bytes. When this transfer is successfully completed the ROS bootstrap program executes an Output \(X^{\prime} 77{ }^{\prime}\), latch, the IPL level 1 interrupt request, and the IPL PHASE lights. The ROS bootstrap program turns control over to the program module just loaded by branching to location X'00404'. The first two halfwords transferred in the load module must contain the IPL source identification and the total number of bytes in the load module in that order

The IPL operation is complete when the IPL level 1 inter rupt request is reset and the IPL PHASE lights turn off. However, the LOAD and TEST lights remain on until an Output X'79' resets them with bits 1.1 and 1.3 on respec tively in the general register. When the \(3705-80\) is completely loaded, the loaded program should execute this instruction

The IPL completion point in the ROS bootstrap program may not be reached because of one of the following: 1. A CC check hardstop
2. Improper instruction test operation
3. Program continuity check
4. Channel adapter disabled
5. IPL count transfer check

In this case, the ROS bootstrap program either hard-stops or loops and executes a program display function to try to identify the IPL status. See ROS Testing, 2-000 and 2-040.

IPL Phase 3 with Type 1 or Type 4 Channel Adapter Unless the IPL sequence is started by a power on sequence, the state of the type 1 CA is not affected by the reset performed in IPL phase 1. Therefore, the ROS bootstrap program must handle the following conditions:
1. Channel Interface disabled. The bootstrap program executes Output X'67' with bit 1.4 on in the CCU general register to allow the interface to become enabled. The program loops until the interface becomes enabled. 2. Channel interface enabled. The bootstrap program tests to determine whether or not the native subchannel (NSC) is active with a channel comm a. If no command is in prog
cogress, the bootstrap program Thus. When or type 4 CA to send DE, UC program loops, waiting for an initial selection level 3 interrupt request. When the interrupt request is detected, the bootstrap program responds as described in the type 1 or type 4 channel adapter section of this manual; see 8-140.
b. If a command is in progress, the bootstrap program signals the CA to end the command with \(\mathrm{CE}, \mathrm{DE}\), UC status. When this status is successfully transferred, the bootstrap program loops waiting for a type 1 CA initial selection level 3 interrupt request. The boot strap program responds to the interrupt request as described in the type 1 channel adapter section of this manual; see 8-140

C C

\section*{C C}

\section*{3705-80 STORAGE MAINTENANCE}

STORAGE MAINTENANCE OVERVIEW

\section*{Storage Array Card}

3705-80 storage has single-bit error correction. Therefore, array cards with single-bit errors are not replaced. When two errors occur at any address, a double-bit error is detected. An array card with a double-bit error should be replaced. All 3705-80 models contain two storage array cards. Each card contains 128 K bytes.

Storage Support Cards
When a failure occurs on one of the 6 storage support cards in a \(3705-80\), the diagnostic indicators on gate 01 B can be used to aid in isolating the failure. Failures that cause aloss of timing signals (such as card select timing or write pulses) may be isolated by card substitution or by the use of an oscilloscope.

Intermittent Problems
Intermittent failure of storage array cards should be a rare occurrance. If the IFTs do not indicate a storage problem but other indications (such as a machine check auto-IPL or hard stop with SDR or Op Reg CC checks) point to an intermitten problem, the following procedure should be used.
1. Determine the failing address using the maintenance procedure on Page 7-260. If this procedure does not point the failing address, use the procedure on Page 7-290. 2. Try swapping the array cards, 01A-B2T2 and 01A-B2U2, to isolate the problem.
Intermittent problems are more likely to be caused by failures in the MST support logic.

STORAGE PHYSICAL LOCATIONS
All \(3705-80\) storage is located in gate \(01 \mathrm{~A}-\mathrm{B} 2\). The storage
cycle time is one microsecond for all models. A read operation is performed every " A " cycle-even when in a stopped condition. Write operations are performed only when the CC requires a store operation. The storage controls include automatic single-bit error correction and double-bit error detection. When a double-bit error is detected, the uncorrected bits are sent to the CCU and the parity bits for bot bits are not altered when a double-bit error is detected.

The IFTs are the primary means of servicing storage. Diagnostic indicators are located on the pin side of the 01 A -B2 storage board (A5 position) to assist you in iso lating troubles when the IFTs cannot be loaded, or the trouble cannot be found using the IFTs.

The storage requires two special voltages, +5 V and -5 V , in I addition to the +12 V supply used throughout the
3705-80.

This page intentionally left blank.

STORAGE BOARD LAYOUT (01A-B2)
\begin{tabular}{|c|c|c|}
\hline CARD LOCATION & \[
\begin{aligned}
& \text { ALD } \\
& \text { PAGE }
\end{aligned}
\] & FUNCTION \\
\hline 01A-B2A5 & Mм465 & LEDs on pin side of storage board \\
\hline 01A-B2B3 & мм151 & Control cable connection \\
\hline 01A-B2B4 & MM151 & Control cable connection \\
\hline \multirow[t]{6}{*}{01A-B2C2} & мм451 & SAR connector \\
\hline & мм452 & Refresh address/SAR address \\
\hline & MM453 & Delay line clock and storage control \\
\hline & MM454 & Refresh control \\
\hline & MM455 & Miscellaneous controls \\
\hline & MM456 & Data and diagnostic register controls \\
\hline \multirow[t]{11}{*}{01A-B2D2} & мм351 & Store/Sense TCC byte 0 \\
\hline & мм352 & ECC bit correction for bytes 0 and 2 \\
\hline & мм353 & Byte 0 terminator \\
\hline & мм 354 & Diagnostic register bytes 0 and 2 \\
\hline & мм 355 & Data and corrected byte 2 \\
\hline & мм 356 & Data and corrected byte 0 \\
\hline & мм357 & ECC check and syndrome generator \\
\hline & мм358 & CCU parity generator for bytes 0 and 2 \\
\hline & MM359 & CCU sense byte 0 \\
\hline & MM360 & Data to storage byte 2 \\
\hline & MM361 & Data to storage byte 0 \\
\hline \multirow[t]{10}{*}{01A-b2E2} & мм371 & Store/Sense TCC byte 1 \\
\hline & ммз72 & ECC bit correction for bytes 1 and 3 \\
\hline & мм 373 & Byte 1 terminator \\
\hline & мм 374 & Diagnostic register bytes 1 and 3 \\
\hline & Mм375 & Data and corrected byte 3 \\
\hline & мм376 & Data and corrected byte 1 \\
\hline & MM377 & ECC check and syndrome generator \\
\hline & MM378
M 379 & CCU parity generator for bytes 1 and 3 \\
\hline & MM379
M 3880 & cCU sense byte 1
Data to storage byte 3 \\
\hline & мм381 & Data to storage byte 1 \\
\hline \multirow[t]{4}{*}{01A-B2F2} & MM461 & ECC byte and bit error decode \\
\hline & мM462 & ECC correctable error decode \\
\hline & MM463 & Check registers \\
\hline & MM464 & LED drivers for errors \\
\hline \multirow[t]{4}{*}{01A-B2R2} & Mм751 & Storage bus driver/receiver converters for byte 0 \\
\hline & Mм752 & Storage bus driver/receiver converters for bits C1 through C4 \\
\hline & мм753 & Storage bus driver/receiver converters for byte 1 \\
\hline & Mм754 & Converted addresses and special bits to storage \\
\hline \multirow[t]{5}{*}{01A-B2S2} & мм761 & Storage bus driver/receiver converters for byte \\
\hline & & \\
\hline & MM762 & Storage bus driver/receiver converters for bits C5 through C8 \\
\hline & Mм763 & Storage bus driver/receiver converters for byte \\
\hline & Mм764 & Converted addresses and special bits to storage \\
\hline 01A-b2T2 & мм651 & Low 128 K bytes of storage \\
\hline 01A-B2U2 & MM652 & High 128 K bytes of storage \\
\hline
\end{tabular}

Notes:
1. See ALD Page MMO21 for voltage cable connections to pin side of 01A-B2 board.
2. See ALD Page MM465 for storage LED indicators that are located on the pin side
1. See ALD Page MMO21 for voltage cable connections to pin side of 01A-B2 board. of 01A-B2 board A5 position. See also page \(7-260\) for a description of the LED indicators.

Indicates Card Location

\section*{}

\section*{STORAGE DATA FLOW (PART 2 of 2)}
- Storage is initialized with valid data during power-on reset

Storage array interface is 40 bits wide-full word (32 data
bits plus 8 check bits) 11 and 13
- Storage-to-CCU interface is 18 bits wide- \(-1 / 2\) word (16 data

Dits plus 2 party bits) 1 and 21
- Dynamic storage logic requires refresh cycles (every 8 us during normal operation) to maintain validity of stored information.
- Storage refresh cycles occur every 4 us during initialization to assure valid data
Single bit storage errors are correctable. Double bit storage errors are uncorrectable

\section*{Introduction}

The CCU has a basic machine cycle and storage cycle of 1 us. During the first 500 ns of a storage cycle, the CCU reads from torage. During the second 500 ns of a storage cycle, the CCU writes to storage if required. If a write storage operation is not required, a refresh storage operation can occur during the second 500 ns .

\section*{Addressing}
2. SAR bit \(X .6\) selects the appropriate array card (lower 128 K or upper 128 K). 14 and 17 SAR bit 1.6 gates the appropriate storage bytes (bytes 0 and 1 or bytes 2 and 3) to the \(\operatorname{CCU} 20\) or from the CCU .4 and 11 SAR bit 1.6 also gates the appropriate
correction bits. 10 and 5 correction bits. 10 and 5

22 Storage address bits 0.0-0.6 are refresh address bits. The refresh addresses are updated by a ring counter. During a storage refresh cycle, the refresh address bits
7 are gated to the address selection converters, instead of SAR bits 0.0 through 0.6 . SAR bits X. 7 and .7-1.5 are gated to the address selection converters on all storage cycles. During refresh storage cycles, both storage array cards are accessed.

Data Register
4 The data register is the holding register for the up/ down funneling effect between the halfword CCU interface and the fullword storage array interface.

During a read operation, the data register holds the four data bytes and one check byte that are read from storage. 13 Depending on SAR bit 1.6, the appropriate two bytes with parity are then gated to he CCU. 20 and 21
During a write operation, the appropriate two bytes from the CCU are gated to the data register depending on the setting of SAR bit 1.6. The other two bytes are already in the data register from the read opera
tion in the first half of the storage cycle. (The two "new" bytes from the CCU overlay whatever was read from storage.) During the last half of the storage cycle, the two "new" bytes plus the two other bytes are written to storage.

Read Operation
A read operation occurs during the first 500 ns of any I time or operator panel cycle steal time. The array contents 23 (data bits \(0.0-3.7\) and check bits \(\mathrm{C} 1-\mathrm{C} 8\)) are gated into the data register. 13 and 4
5 The Error Correction OEs (exclusice ORs) are used to reverse the setting of a bit for a single bit, correctable error. These Error Correction OEs are deactivated until after (1) an ECC (Error Correction Code, just read from storage, and (2) the newly generated check bits have been saved in the check remember register. 7 After the check bits are saved, the error detection logic \(\mathbf{8}, \mathbf{9}\), and \(\mathbf{1 0}\) determines detection logic 8 , \(\mathbf{8}\), and 10 determines
if an error has occurred and if the error is correctable or not. Single bit errors are correctable 5 double bit errors are not correctable.

6 The ECC (Error Correction Code) generator logic generates eight check bits as shown in the following chart. The X's indicate the bits that are exclusive ORed together to determine whether a check bit should be turned on. For example, C2 \(=1\) whenever an even number of data bits in its associated group (byte 1, bits \(0-7\) and byte 2, bits \(0-7\)) are 1s

The ECC generator also generates check bits for
a write operation.
7 The check remember register saves the generated check bits \(1-8\) from the data just read before it is corrected.

8 The syndromes (S1-S8) are the result of an exclusive OR of the just from storage.

9 The error correction decode logic examines the syndrome (S1-S8) to determine if an error occurred and whether it is correctable (single bit error, no failure) or not correctable (double bit error, failure).

10 Assuming a correctable error, the byte/bit decode logic examines the syndromes (\(\mathrm{S} 1-\mathrm{S} 8\)) to determine which bit (\(0-7\)) in which byte (\(0-3\)) needs correction,
Read, Modify, Write Operation
During the second 500 ns of a write storage cycle, the appropriate two bytes (0 and 1 or 2 and 3) from the the setting of SAR bit 1.6. The other two bytes are the sedy in the dota register from the read bytes are already half of the cycle, and have been corrected through the error correction OEs. 5 The ECC generator 6 the error correction OEs. \(\mathbf{5}\). The ECC generator 6
generates the check bits (\(\mathbf{1 - 8}\). The data and check bits are then gated through the MST to VTL converters 11 and the VTL drivers 12 to the storage array.

19 The diagnostic register is used by the diagnostic IFTs to validate the storage and error detection/error correction circuitry and to gather statistics on storage errors. When the diagnostic register is reset (all zeroes), the storage data passes through the exclusive ORs unchanged. When a bit in the diagnostic register is set to a 1 , it alters the storage bit until the diagnostic register is reset.

\section*{Refresh Storage Operation}

The storage unit in the \(3705-80\) is dynamic, meaning that the stored information must be renewed or refreshed periodically to maintain its validity. If a write operation is not required, a refresh storage operation can occur during the second 500 ns of a storage cycle. During a power-on IPL, refresh storage cycles occur approximately every four microseconds to assure that storage is initialized with valid data. During normal operation, refresh cycles occur approxi mately every eight microseconds.

If a refresh storage cycle has not occurred for 16 us, a refresh overrun failure occurs 18 and the informatio in storage is considered invalid.

\author{
\(\qquad\)
}

\section*{STORAGE MAINTENANCE PROCEDURE (PART 2 of 2)}

\section*{Fault Location}

The storage diagnostics should be run to establish a failing The storage diagnostics should be run to establish a failing
pattern, if it is not already evident from the reported probem. If the failure is in the first storage locations on the low 128 K array card, it may prevent loading and/or executing
 ll in odure may also be to
- Set the MODE SELECT switch to INSTRUCTION STEP
- Press the RESET then LOAD pushbuttons.
- Store the following program:
\begin{tabular}{|c|c|c|c|}
\hline Address & Data & \multicolumn{2}{|l|}{Instruction} \\
\hline 00000 & 3188 & LR & 1,3 \\
\hline 00002 & 1181 & STH & 1,0 (1) \\
\hline 00004 & 9102 & ARI & 1 (1), 2 \\
\hline 00006 & 2188 & CR & 1,2 \\
\hline 00008 & 8802 & BZL & \(\times{ }^{10000 C}\) \\
\hline 0000A & А80B & B & \(\mathrm{x}^{\prime} 00002^{\prime}\) \\
\hline 0000 C & A102 & SRI & 1 (1), 2 \\
\hline 0000E & 1501 & LH & 5,0(1) \\
\hline 00010 & 1580 & CHR & 5, 1 \\
\hline 00012 & 8806 & BZL & X'0001A \({ }^{\prime}\) \\
\hline 00014 & 7114 & OUT & 1, \(\mathrm{X}^{\prime} 71^{\prime}\) \\
\hline 00016 & 7524 & OUT & 5, \(\times^{\prime} 72{ }^{\prime}\) \\
\hline 00018 & 7004 & OUT & \(0, x^{\prime} 70^{\prime}\) \\
\hline 0001A & A102 & SRI & 1 (1), 2 \\
\hline 0001 C & 1388 & CR & 3,1 \\
\hline 0001 E & 8821 & BzL & \(\times^{\prime} 00000{ }^{\prime}\) \\
\hline 00020 & A815 & B & X'0000E' \\
\hline
\end{tabular}
- Check that storage where program is loaded is functioning correctly by displaying and checking program just loaded.
- Store \(X^{\prime} 00022^{\prime}\) in register \(X^{\prime} 03^{\prime}\).
- Store X'08000' in register X'02'

Store \(X^{\prime} 00000^{\prime}\) in register \(X^{\prime} 00^{\prime}\).
- Pre MODE SELECT swit
- Tress the START pushbutton.

The program loads each halfword with its address as dat and checks that the proper value is
Set the DISPLAY/FUNCTION SELECT switch to a pos ition other than STATUS or TAR and OP REGISTER DISPLAY A = Address DISPLAY A \(=\) Addres
DISPLAY B \(=\) Data
- Pressing the START pushbutton causes the program to loop until the next failure.
- Continue until a failing pattern is established

Most problems are associated with component failure such as cards or loose connectors.

\section*{WARNING}

Turn the power off before removing storage cards for
swapping or replacing.
Swappable Storage Cards
The following pairs of cards can be swapped 01A-B2D2 and B2E2
1 01A-B2R2 and B2S2 01A-B2T2 and B2U2

This page intentionally left blank.

\section*{MAINTENANCE PROCEDURE - INTERMITTENT STORAGE ADDRESS ERRORS}

Use this procedure to trap the failing storage address if the storage diagnostics and maintenance procedures do not indicate a problem. This procedure should isolate the failing storage address to a 32 K increment of storage
in the upper or lower 128 K bytes of \(3705-80\) storage.
1. Set the DIAGNOSTIC CONTROL switch to CC CHECK
Set the DIAG
HARDSTOP.
2. Load the EP or NCP and then start the normal operation.
3. If a storage error occures, the \(3705-80\) will hardstop from a CC check with the OP REG or SDR check light on
4. If the SDR check light is on, go to step 7 .
5. If the OP REG check light is on, the failing storage
address is four less than the contents of TAR.
6. If the OP REG contains a "Load Address" or "Branch and Link" instruction, the failing storage address is two less than the contents of TAR. See Page 6-150 for in instruction decoding.
7. The failing instruction will be displayed in the OP REG and should be an ICT, STCT, IC, STC, LH, L, ST, or STH instruction. See Page 6-150 for instruction decoding
8. If the B field of the instruction (byte 0 , bits 1,2 , and of the OP REG) is 000 , the failing storage address is in the first 32 K increment of the lower 128 K bytes of storage. If the \(B\) field of the instruction (byte 0 , bits 1 , 2 , and 3 of the OP REG) is 100 , the failing storage address is in the first 32 K increment of the upper 128 K bytes of
Record
Record the displacement field from the failing instruction displayed in the OP REG.
10. Determine the current program interrupt level by observing the ENTERRED INTERRUPT LEVEL lights while the DISPLAY/FUNCTION switch is in the STATUS position. If no PROG LEV lights are on, level 5 is the current program level.
11. Use the \(B\) field of the instruction (byte 0 , bits 1,2 , and 3 of the OP REG) and the current interrupt level to determine, from the following chart, the register address to be used to display the contents of Base Register
12. The failing storage address is obtained by adding (hex) the displacement field (from step 9) to the base number (from step 11). For the ICT and STCT instrucitons, 1 he failing storage address is one less than the calculated value. For the \(L\) instruction, the address may be two more than the calculated value.

Note: If the \(R\) or \(R, N\) field specifies the same register as the \(B\) field, this procedure will not work

This page intentionally left blank.

\section*{11}

\section*{Index}

A
A bus assembler controls \(6-100\)
A register direct operation, \(\mathrm{CCU} \quad 6-100\)
A register direct operation, C
abort, SDLC B-061, B-520
access controls, file F-110
access drive, \(F-310\)
recalibration \(F-470\)
ACR instruction 6-150, 6-190, 6-220
activating the control panel \(1-060,1-120\) ADAPTER CHECK light 1-020
add character register instruction
add halfword register instruction
\(6-150,6-190, ~ 6-220\) add operation, CCU 6-100
add register immediate instruction 6-150, 6-160, 6-170 add register instruction 6-150, 6-190, 6-220
address, type 1 CA
address, type 1 CA
byte transfer
ESC \(8-100,8-110,8-300\)
NSC 8-000
address assignment, type 1 CA 8-000
address compare
interrupt
\(1-030\)
interrupt \(1-030\)
load \(1-150\)
program stop
store
\(1-150\)
ADDRESS COMPARE light 1-020
Address select
type 2 communic
address substitution
type 2 communication scanner \(\quad\) B-220
ADDRESS/DATA switches
ADDRESS/DATA switches
addressing storage \(7-220\)
adjusting DC voltage D-580
adjustments
DC voltages D-580
adiust diskette drive F-540
adjustments see removal, adjustment, and replacement
procedures)
AHR instruction 6-150, 6-190, 6-220
ALD references, line set C-160
ALD referencos, line set C-1
alignment tool CE F-620
alignment tool, CE
ALU controls
F-100
amplifier,
\(\underset{\text { read }}{\text { limit }}\) F-520
read
and character register instruction
\(6-150,6-190,6-220\)
and character register instruction \(6-150,6-190,6-220\)
and halfword register instruction \(6-150,6-190,6-220\) and operation, CCU 6-100
and register immediate instruction 6-150, 6-160, 6-170
and register instruction \(6-150,6-190,6-220\)
and register instruction 6-150, 6-190, 6-220
AR instruction \(6-150,6-190,6-220\)
ARI instruction
\(6-150,6-160,6-170\)
arithmetic operations \(6-100\)
array
storage board 7 7-220
layout (OIA-B2)
\(7-210\) layout (01A-B2) 7-210
attachment buffer address regist
type 2 communication scanner
level 2 interrupt B-310
\(\begin{array}{lll}\text { LIB identification } & \text { B-360 } \\ \text { program addressing } & \text { B-290 }\end{array}\)
auto call interface, line set LS4 C-260
auto call interface, type 2 communication scanner
abandon call and retry
\(B-090, ~\) call riginate status
B-090,
B-150,
Bcall request B-090, B-260 data line occupied B-090, B-150, B-260 digit present \(\mathrm{B}-090, \mathrm{~B}-260\) merrupt remember B-090, B-500, B-510 power indicator \(\mathrm{B}-090, \mathrm{~B}-150, \mathrm{~B}-260\) present next digit \(\mathrm{B}-090, \mathrm{~B}-150, \mathrm{~B}-260\)

B
B data register
type 2 communication scanner B-150, B-260
\(B\) instruction 6-150, 6-630, 6-640
B register direct operation, CCU 6-100
BAL instruction \(6-150,6-560,6-570\)
BALR instruction
\(6-150,6-190,6-240\)
BALR instruction \(\quad 6-150,6-190,6-240\)
BB instruction \(\quad 6-150,6-630,6-660\)
BCC read, LIB C-O30
BCC write, LIB C-030
\(\begin{array}{lll}\text { BCL instruction } & 6-150,6-630,6-640 \\ \text { BCT instruction } & 6-150,6-630,6-60\end{array}\)
BCT instruction \(6-150,6-630,6-68\)
belt tracking, adjustment of \(F-545\)
bisync (see BSC)
bit clock control, LIB
ALU flowchart C-050
local store C-030
local store \(\mathrm{C}-030\)
timings \(\mathrm{C}-030\)
bit clock select, LIB C-030
bit service
line set \(1 \quad \mathrm{C}-180, \mathrm{C}-210\)
\(\begin{array}{ll}\text { line set } 2 & \mathrm{C}-230 \\ \text { line set } 3 & \mathrm{C}-250\end{array}\)
line set \(4 \quad \mathrm{C}-260\)
line set \(5 \quad \mathrm{C}-280\)
line set 8 or 9 C-300, C-320
block header F-300
bootstrap load 6 -961
branch and link instruction \(6-150,6-560,6-570\)
branch and link
branch and link register instruction \(6-150,6-190,6-240\)
ranch instruction 6-150, 6-630, 6-640
branch on bit instruction 6-150, 6-630, 6-660 branch on C latch instruction 6-150, 6-630, 6-640 branch on count instruction 6-150, 6-630, 6-680 branch on \(Z\) latch instruction \(6-150,6-630,6-640\)
BSC control character recognition, type 4 CA SSC control character recognition, type 4 CA H-260 BSC, terminal operation
type 2 communication scanner B-370
BSC, type 2 communication BSC, type 2 communication scanner B-370 buffer address register-CSB, type 2 communication scanne program addressing B-290
burst length, jumper options type 4 CA H-000
burst length, jumper options type 4 CA H-000
bus terminator assemblies \(\mathrm{E}-00\)
business machine clock C-030
yte address
type 4 CA \(\quad \mathrm{H}-08\)
te address/command from ISACR \(\begin{array}{ll}\text { type } 1 \text { CA } & 8-070 \\ \text { type } 4 \mathrm{CA} & \mathrm{H}-050\end{array}\)
byte address ESC test I/O transfer, type 1 CA 8-190
byte address/status from local store
\begin{tabular}{lll}
ype 1 CA & \(8-150,8-160\) \\
\hline
\end{tabular}
byte count
\(\begin{array}{ll}\text { type } 1 \text { CA } & 8-270,8-330 \\ \text { BYTE lights, } X, 0,1 & 1-010\end{array}\)
ZZ instruction 6-150, 6-630, 6-640
\({ }^{\text {C LEVEL light }} 1\) 1-020
\(\begin{array}{lll}\text { cable bus/tag } & \mathrm{E}-000 \\ \text { cabling, LIB } & \mathrm{C}-110\end{array}\)
Card functions and locations
\(\begin{array}{lll}\text { CCU } 6-000 \\ \text { diskette controller } & \text { F-20 }\end{array}\)
Power Supply D-505
\(\begin{array}{ll}\text { storage } & \text { 7-210 } \\ \text { type } 1 \text { CA } \\ 8-030\end{array}\)
\(\begin{array}{lll}\text { ype } 1 \text { CA } & 8-030 \\ \text { ype } 4 \text { CA } & \mathrm{H}-030\end{array}\)
type 2 communication scanner B-040
ard layout, CCU data path 6-000
ard positions, LIB C-070
BS data coupler interface C-330, C-370
CC check
bypass hardstop on 1-110
hardstop on 1-110
\(\begin{array}{ll}\text { resetting a } & 1-120 \\ \text { C } C \text { CHECK light } \\ & 1-060\end{array}\)
CC check lights, display A 1-010
CC CHECK RESET push button 1-06
CCU data path, control panel test of 1-170, 1-190
CU introduction 6-00
\(\begin{array}{cc}\text { cloutbus check } \\ \text { type } 1 \text { CA } & 8-360\end{array}\)
CE alignment tool F-620
CE burst length jumper options, type 4 CA H-000
E jumper, Diskette write F-460
Ekey 1-030
CE service hints \({ }^{1-200}\)
CE usage meter 1-030, D-590
entral control unit, introduction 6-000, 0-000
hanging machine priorities \(6-071\)
type 1 CA 8-000
type 4 CA H-000
hannel checking, ROS test
type 1 or type 4 CA
\(2-020\)
channel command rejecting, type 1CA 8-160
channel commands, type 1 CA \(8-000\)
channel interface
disabling a \(1-120\)
\(\begin{array}{lc}\text { disabing a } & 1-120 \\ \text { enabling a } & 1-120\end{array}\)
channel sense command
type 1 CA 8-160
CHANNEL 1 INTERFACE A ENABLED light 1-05
CHANNEL 1 INTERFACE B ENABLED light 1-05
switch 1-050
haracter service cycle, type 4 CA
sequence chart, inbound data \(\mathrm{H}-270\)
character control block vector address
type 2 CS B B-330, B-120
heck, type 1 CA
cCU outbus
CCU outbus \(\quad 8-360\)
channel bus-in
input/output
\(8-360\)
local store parity
\(8-360\)
heck lights
\(\begin{array}{ll}\text { display A } & 1-010 \\ \text { display } B & 1-020\end{array}\)
turning off the 1-010
heck register, type 2 CS
CCU outbus check B-130, B-170
\(\begin{array}{lll}\text { ICW input register check } & \text { B-130 } \\ \text { ICW work register check } & \text { B-130 }\end{array}\)
IB select check B-130
LB X BCC Check B-130
line adr bus check B-130, B-190
priority register available
priority register available check \(\quad\) B-130
\(H R\) instruction \(6-150,6-200,6-220\)
lock, business machine C-030
ock, Diskette controller F-110
LOCK light \(1-010\)
clock step 1 1-10, 1-160
CLOCK TIME lights \(1-010\)
clock times, CCU 6-030
clocking
type 2 attachment base B-050, B-051
type 2 communication scanner B-050, B-051
losed diodes in bridge storage 7-120
\(\begin{array}{ll}\text { collet assembly, Diskette } & \text { F-500 } \\ \text { collet, removal and replacement of } \\ \text { F-540 }\end{array}\)
 ommand decode, file \(\mathrm{F}-110\)
ommunication scanner, introduction 0-050
compare character register instruction 6-150, 6-190, 6-220
compare halfword register instruction 6-150, 6-190, 6-220
ompare operation, CCU 6-100
compare register immediate
instruction \(\quad 6-150,6-200,6-17\)
compare register instruction 6-150, 6-200, 6-220
component locations, power supply D-505
onfiguration
type 2 communication scanner \(\quad \mathrm{B}-000\)
onfiguration chart, LIB and line sets \(\mathrm{C}-000\)
control in A
type 2 con
ontrol in B
type 2 communication scanner B-260
type 2 com
ontrol out \(A\)
control out B
type 2 communication \(\mathrm{B}-26\)
control output \(X^{\prime} 68^{\prime} \quad F-410\)
control panel
activating the 1-120, 1-060 \(\begin{array}{ll}\text { description } & \text { F-040 } \\ \text { introduction } \\ 0-050\end{array}\)
layout 1-000
control panel description F-040
control procedures
activate control pane
clock step
1-160
clock step thru IPL phase 2 (load ROS) 1-200
disabling channel interface
display 3705 status \(1-120\)
display TAR and Op register 1-120
enabling channel interface \(\quad 1-120\)
execute input or output instruction execute input or output instruction 1-160
instruction step
\(1-160\) IPL 1-120
IPL phase 2, clock set thru 1-200
load address compare 1-150
\(\begin{array}{ll}\text { power off } & 1-120 \\ \text { power on } & 1-120\end{array}\)
request prog. level 3 interrupt 1-120
reset \(3705-80 \quad 1-120\)
reset CCU check 1-120
set address and display register \(1-130,6-050,6-052\) set address and display storage \(1-130,6-050,6-05\) setring up and executing instruction
single address scan
\(1-150,6-050,6-067\) single address test pattern, \(1-150,6-050,6-064\)
storage scan \(1-140,6-050,6-063\) storage scan \(11-140,6-050,6-06\) storing data in register \(1-130,6-050,6-05\) storing data storage \(1-140,6-050,6-057\) storing test pattern in
storage 1-140, 1-170, 6-050, 6-060
test of CCU data path \(\quad 1-170\), through 1-190
control program load data flow \(\mathrm{F}-010\)
control register data/status
type 1 CA
\(\begin{array}{lll}\text { type } 1 \text { CA } & 8-020 \\ \text { type } 4 \text { CA } & \mathrm{H}-020\end{array}\)
control register initial selection
\(\begin{array}{ll}\text { type } 1 \text { CA } & 8-020 \\ \text { type } 4 \text { CA } & -020\end{array}\)
type 4 CA CA \(\mathrm{H}-\mathrm{O2O}\)
controller, Diskette, data flow F-110
controls
file d
\(\begin{array}{ll}\text { file data } & \text { F-110 } \\ \text { file access } & \text { F-110 }\end{array}\)
cover assembly, removal and replacement of F-540
CR instruction 6-150, 6-200, 6-220
CRC generation
CRI instruction
\(6-150,6-160,6-170\)
cross hi to lo operation, CCU 6-100
cross lo to hi operation, CCU 6-100
CS CYCLE light 1-010
\(\begin{array}{lll}\text { CS1 cycle } & 6-060 \\ \text { CS1 time } & 6-061\end{array}\)
\(\begin{array}{ll}\text { CS1 time } & 6-061 \\ \text { CS2 cycle } & 6-060\end{array}\)
cs2 time 6-061
customer usage meter 1-030
cycle steal
in, type 4 CA 6-120
in, type 4 CA 6-120
out, type 4 CA 6-140
1 cycle \(6-060\)
2 cycle 6-06
cycle steal operation, type 4 CA
CA to channel data transfer \(\quad \mathrm{H}-360\)
inbound data transfer \(\mathrm{H}-340, \mathrm{H}-350, \mathrm{H}-370\)
inbound data transfer \(\mathrm{H}-340, \mathrm{H}-350, \mathrm{H}-370\)
inbound sequence chart \(\mathrm{H}-360\)
outbound data transfer H-300, H-310
outbound sequence chart \(\mathrm{H}-330\)
CYCLE TIME light 1-010

DANGER
prime power removal F-570
60 Hz motor frame holes F-545
60 Hz motor fram
\({ }^{2} 200\)
raw read F-520
write F-520
write F-520
data controls, file F-110
data flow
bits
central control unit 6-020
control program load F-010
Diskette controller, F -100
1PL \(6-970\), F-050
LIB C-020
storage
\(7-220\)
type 2 communication scanner B-020
level 2 interrupt B-300
\(\begin{array}{lll}\text { program addressing } & \text { B-280 } \\ \text { scan addressing } & \text { B-220 }\end{array}\)
\(\begin{array}{lll}\text { type } 4 \text { CA } & \text { H-010 } \\ 3705-80 & 0-010\end{array}\)
\(3705-80 \quad 0-010\)
data operation controls 6-100
data path, control panel test of 1-170 through 1-190
\(\begin{array}{lll}\text { data register, parallel } & \text { F-110 } \\ \text { data synchronization } & \text { F-320 }\end{array}\)
data transfer between host CPU and remote station using a local and remote controller \(\begin{array}{lll}\text { CPU to station } & \text { F-020 } \\ \text { station to } & \text { CPU } & \text { F-020 }\end{array}\)
DC common connection to frame ground D-580
DC voltage distribution, power supply D-550
DC voltage measurement D-580
\(\begin{array}{ll}\text { decode, file command } & \text { F-110 } \\ \text { decoding, instruction } & 6-150\end{array}\)
determining when an interrupt can occur 6-080 diagnostic aids
CE indicator latch card 1-201
scope points and jumpering capabilities 1-200
DIAGNOSTIC CONTROL switch 1-110
diagnostic wrap, type 2 communication scanner B-51
diagnostic wrap mode
yype 2 communication scanne
B data register
B data register B-150
force line interface latches B-150
test data latch B-270
dial bit service
type 2 communication scanner B-260
differences, type 1 CA and type 4 CA H-00
disable all LIBs
type 2 communication scanner B-170
type 2 communication scanner B-70
disable interface
type 2 communication scanner
disable zero-insert control type 2
disable zero-insert control type 2
communication scanner B-06
disable zero=insert remembrance-SCF 5
disabling a channel interface 1-120
Diskette,
characteristics of F-530
description of F-1
handling F-530
insertion of F-531
removal of \(\mathrm{F}-531\)
eplacement ordering procedure F-531
shipping and receiving of F-53
storage of long term F-530
\(\begin{array}{lll} & & \\ \text { Diskette controller clock } & \text { F-11 }\end{array}\)
Diskette controller data flow description F-110
iskette controller read failures, diagnostic
approach for \(\mathrm{F}-490\)
iskette drive \(\mathrm{F}-500\)
cover F-500
collet assembly F-500
physical locations \(\mathrm{F}-600\)
timing sequence F-510
ader control of ROS briples F-520
iskette read F-440
Diskette write F-460
\(\begin{array}{ll}\text { display A } & 1-010 \\ \text { display B } & 1-020\end{array}\)
display register.
type 2 communication scanner B-150
display register CS1 maintenance cycle 1-040, 6-05 display register p
display request
type 2 communication scanner B-150
isplay storage CS1 maintenance cycle 1-040
display storage procedure 1-130
displaying
checks 1-120
display and record TAR first 1-040
0 P register \(1-120,1-040\)
\(\begin{array}{ll}\text { register } & 1-130, \\ \text { status } & 1-120\end{array}\)
storage 1-130, 1-040
TAR 1-120, 1-040
TAR and the OP register 1 1-120
temporary address register (TAR) 1-120, 1-040
temporary address register
\(3705-80\) status \(1-120\)
drive cover, Diskette F-500
\(\begin{array}{lll}\text { drive motor, removal and replacement of } & \text { F-545 } \\ \text { drive pulley, removal and replacement of } & \text { F-545 }\end{array}\)
drive, Diskette,
physical locations for (see Diskette)

E
nable channel interface, type 1 CA 8-140
NABLE/DISABLE switches 1-050
NABLE/DISABLE, PANE
Enabling a channel interface 1-120
ENTERED INTERRUPT LEVEL lights 1-020
\(\stackrel{\text { error }}{\text { CCU }}\)
\(\begin{array}{lll}\text { byte } X \text { error } & 6-980 \\ \text { byte } 0 \text { error } & 6-980 \\ \text { byte } 1 \text { error } & 6-980\end{array}\)
clock error 6-981
ndata parity error 6-980
hterrupts, type 4 CA H-380
Op reg parity error
prog lev 1 prog check \(\quad 6-981\)
\begin{tabular}{lll}
& \\
SAR parity error & \(6-980\) \\
\hline DR parity error & \(6-980\)
\end{tabular}
SDR parity error 6-980
LIB, BCC local store parity C-120
LB address C-120
N ROS, type 4 CA 2-140
type 1 and type 4 CA \(2-000\)
vironment, extended F-000
erase F-520
outbus parity \(\mathrm{F}-400\)
\(\begin{array}{lll}\text { write not enable } & \quad \text { F-400 } \\ \text { SC test } \\ I\end{array}\) O initial selection \(L 3\) interrupt, type 1 CA \(\quad 8-230\)
exceeding maximum storage \(1-020\)
instruction \(6-150,6-200,6-22\)
exclusive-or halfword register
instruction 6-150, 6-200, 6-220
exclusive-or operation, CCU 6-100
exclusive-or register imedial
exclusive-or register immediate
instruction \(6-150,6-160,6-170\)
exclusive-or register instruction 6-150, 6-200, 6-220
executing instruction from the control panel \(1-160\)
exit instruction 6-150, 6-700, 6-750
xtended buffer mode, type 4 CA
control register \(\mathrm{H}-130 \mathrm{H}-140\)
data buffer \(\mathrm{H}-150, \mathrm{H}-160\)
sequence charts \(\mathrm{H}-200, \mathrm{H}-220, \mathrm{H}-240, \mathrm{H}-270, \mathrm{H}-290\)
F
ault irdicators, power supply
thermistor D-520
feedback error type 2 communication scanne
LCD field B-070
\(\begin{array}{ll} \\ \text { file access controls } & \mathrm{F}-110\end{array}\)
file command decode \(\mathrm{F}-110\)
file control card, \(F-500\)
removal and replacement of \(\mathrm{F}-575\)
file data controls \({ }^{F}\)
flag, SDLC
\(\mathrm{B}-520\)
flag detect predicted position, SDLC B-530
flag detect predicted position, SDLC B-530
flag detection-SCF 5 type 2 communication scanner B-061
flowchart
format,
Diskette \(\quad\) F-300
track
G
ate locations, power supply D-505
eneral register selection controls \(6-110\) through 6-112
H
hard stop latch
\(\begin{array}{ll}\text { resets } & 1-080 \\ \text { sets } & 1-080\end{array}\)
sets \(1-080\)
HARD STOP light
1-080
HARD
head,
adj
adjustment of F-555

\section*{}
read/write F-500
ead and pressure pad cleaning F-555
head load actuator assembly F-500

CYCLE light 1 -010
C instruction 6-150, 6-270, 6-290
CT instruction 6-150, 6-470, 6-480
identify \(L 1\) interrup
FT track assignments \(\mathrm{F}-300\) and F-545
mbound data transfer, type 1 CA 8-250
a/status \(L 3\) interrupt \(8-280\)
ending data/status \(L 3\) interrupt 8-250
initial selection L3 interrupt \(8-250\)
inbound data transfer ending, type 1 CA 8-280 initial selection L3 interrupt \(\mathrm{H}-350, \mathrm{H}-370\) sequence chart H -360
inbound data transfer, EB mode, type 4 CA H-250 SSC control character recognition \(\mathrm{H}-26\) data/status L3 interrupt \(\mathrm{H}-25\) ditial selection 13 interrupt \(L\) H-28 intial selection L3 interrupt \(\mathrm{H}-250\)
sequence charts \(\mathrm{H}-270, \mathrm{H}-290\)
SDATA light
Sta
\(1-010\)
dicator lights charts and procedures, power supply D-575 nitial program load, type 1 CA \(\quad 8-140\)
initial selection status
\(\begin{array}{ll}\text { type } 1 \text { CA } & 8-020 \\ \text { type } 4 \text { CA } & \mathrm{H}-020\end{array}\)
initialization
type 2 communication scanner B-000
/OUT CHECK Light 1-020
put instruction
data flow 6-710
data flow 6-710
executing from the control panel 1-160
input instructions
\(\begin{array}{llll}\text { entral control unit } & \text { 6-770 } \\ \text { Input } X^{\prime} 00 \text { ' to } X^{\prime} & F^{\prime} & 6-770\end{array}\)
\begin{tabular}{ll}
\\
Input \(X^{\prime} 70^{\circ}\) & to \(X^{\prime} 1 F\) \\
\(6-770\) \\
\hline
\end{tabular} \({ }^{\prime \prime}\) Input \(x^{\prime} 77^{\prime}\)
Input \(X^{\prime} 73^{\prime}\)
Input \(X^{\prime} 74^{\prime}\)
Input \(X^{\prime} 76^{\prime}\) Input \(X\)
Input \(X^{\prime} 77^{\prime}\) Input \(X^{\prime} 79^{\prime}\)
Input \(X^{\prime} 7 B^{\prime}\) Input \(X^{\prime} 7 C^{\prime}\)
Input \(X^{\prime} 7 D^{\prime}\)
 Input \(X^{\prime} 7 E\)
Input \(X^{\prime} 7 \mathrm{~F}\) ype 1 channel adap Input \(x^{\prime} 60^{\prime}\) Input X'61
Input X'62 Input \(X^{\prime} 62\)
Input \(X^{\prime} 63\) \begin{tabular}{lll}
\\
Input \(\times{ }^{\prime} 64^{\prime}\) & \(8-110\) \\
\hline
\end{tabular} \(\begin{array}{ll} \\ \text { Input } X^{\prime} 65^{\prime}, 8-110 \\ \text { Input } X^{\prime} 66^{\prime} & 8-120\end{array}\)

Input \(X^{\prime} 67^{\prime} \quad 8-130\)
type 2 Communication Scanner B-110
\(\begin{array}{ll}\text { Input } X^{\prime} 40^{\prime} & \text { B-120 } \\ \text { Input } X^{\prime} 43^{\prime} & \text { B-130 }\end{array}\)
Input \(X^{\prime} 44^{\prime}, X^{\prime} 45^{\prime}, X^{\prime} 47^{\prime} \quad B-140\)
Input \(X^{\prime} 46^{\prime} \quad \mathrm{B}-150\)
type 4 channel adapter
Input X'60' H-050
Input X \({ }^{\prime} 61\) ' \(\mathrm{H}-050\)
\(\begin{array}{ll}\text { Input X'62' } & \mathrm{H}-070 \\ \text { Input } \mathrm{X}^{\prime} 63^{\prime} & \mathrm{H}-080\end{array}\)
\(\begin{array}{lll}\text { Input X'63' } & \text { H-080 } \\ \text { Input } X^{\prime} 64^{\prime} & H-090\end{array}\)
\(\begin{array}{ll}\text { Input } X 64, & \text { H-000 } \\ \text { Input } X & \text { K5 }\end{array}\)
Input X'66' H-100
Input X'67' H-110
Input X'67' H -110
Input \(\mathrm{X}^{\prime} 6 \mathrm{C}^{\prime}, \mathrm{H}-130\)
Input \(\mathrm{X}^{\prime} 6 \mathrm{D}^{\prime}\) H-150
\(\begin{array}{ll}\text { Input } X^{\prime} 6 E^{\prime} & H-170 \\ \text { Input X'6F' } & H-180\end{array}\)
input/output register, \(X^{\prime} 69^{\prime}\) F-320
input register
type 2 communication scanner B-140
input register addresses \(6-151\)
input \(X^{\prime} 711^{\prime}\) executing when turning the ADDRESS/DATA
switches 1-100
input/output instructions
\begin{tabular}{ll}
type 1 CA & \(8-060\) \\
type 4 CA & \\
\hline-040
\end{tabular}
insert character and count instruction 6-150, 6-470, 6-480
insert character instruction \(6-150,6-270,6-290\)
instruction, executing from the control panel 1-160
\(\begin{array}{ll}\text { instruction, decoding } & \text { 6-150 } \\ \text { instruction step } & 1-160,1-030\end{array}\)
instruction step \(1-160,1\)-03
instruction testing in ROS test
N ROS, type 4 CA 2-120
type 1 and type 4 CA 2-000
instruction 1 cycle \(6-060\)
instruction 2 cycle \(6-060\)
\(\begin{array}{ll}\text { instruction } 3 \text { cycle } & 6-060 \\ \text { instructions, CCU } & 6-150\end{array}\)
instructions, CCU
\(\begin{array}{lll}\text { input } \text { X' }^{\prime} 68 \text { ' (Level } 1 \text { Status) } & \text { F-400 } \\ \text { input }{ }^{\prime} 69^{\prime} \text { (Level } 3 \text { Status) } & \text { F-430 }\end{array}\)
input \(\mathrm{X}^{\prime} 69^{\prime}\) (Level 3 Status) F -430
\(\begin{array}{lll}\text { input } X^{\prime} 6 A^{\prime} \\ \text { input } X^{\prime} 6 B^{\prime} \text { (Inpuallel Data Register) } & \text { F-470 }\end{array}\) output \(X^{\prime} 68^{\prime}\) (Control) F-410
output \(\mathrm{X}^{\prime} 69^{\prime}\) (Read/Write) F-440
output \(\mathrm{X}^{\prime} 6 \mathrm{~A}^{\prime}\) (Parallel Data Register) F-470 output X'6B' (Input/Output Register) F-480 use of, during
interface address
type 2 Communication scanner B-280, B-290 input X \(^{\prime} 40^{\prime}\) B-120
level 2 interrupt B-320, B-330
program addressing B-280, B-290
type 2 communication scanner \(\quad \mathrm{B}-060\)
LCD field B-062
local store-program addressing B-290
local store-scan addressing B-230
secondary control field B-06
SDF
work register B-220
type 2 communication scanner access
by I/O inst B-100
NTERFACE ENABLED light 1-050
intermittent storage address errors, procedure
interrupt go, type 2 communication scanner
\(\begin{array}{ll}\text { BSC receive } & \text { B-420 } \\ \text { BSC transmit }\end{array}\)
\(\begin{array}{ll} \\ \text { BSC transmit } & \text { B-410 } \\ \text { conditions that cause } & \text { B- } 310\end{array}\)
\(\begin{array}{lll}\mathrm{S}-\mathrm{S} \text { receive } & \mathrm{B}-490 \\ \mathrm{~S} \text {-S transmit } & \mathrm{B}-480\end{array}\)
NTERRUPT push button 1-080
interrupt request, type 1 CA
data/status L3 \(8-190\)
\(\begin{array}{lll}\text { data/ status L3 } & 8-190 \\ \text { initial selection } & 8-230\end{array}\)
program requested L3 8-140
interrupt request level 1 , type 1 CA \(\quad 8-360\)
iterrupt requests assigned to program levels 6-081 iterrupts,
level 1
\(\begin{array}{lll}\text { level } 1 & \mathrm{~F}-420 \\ \text { level } 3 & \mathrm{~F}-420\end{array}\)
use of Input/Output Instructions during F-420
interrupts 6-080, 6-090
introduction
control pa
cycle steal operation type \(4 \mathrm{CA} \quad \mathrm{H}-300, \mathrm{H}-340\)
\(\begin{array}{ll}\text { type } 1 \text { CA } & 8-000 \\ & \\ \text { Hpe }\end{array}\)
type 4 CA \(\quad \mathrm{H}-000\)
ype 2 communication scanner B-000
NVALID Op light 1-020
/ O check detection, type 2 communication scanner,
program addressing B-290
type 2 communication scanners 1 and 2 C-140
\(\begin{array}{lll}\text { type } 2 \text { communication scanners } 1 \text { and } 2 & \mathrm{C}-140 \\ \text { type } 2 \text { communication scanners } 3 \text { and } 4 \quad \mathrm{C}-150\end{array}\)
IPL
bootstrap load 6-96
initialization
phase \(1 \quad 6-960\)
phase 1 and 2 timing 6-963
phase 1 and 2 timing, storage 6-964
\(\begin{array}{lll}\text { phase 2 } & 6-961 \\ \text { phase } 3 & 6-965\end{array}\)
phase 3 6-965
source switch 1-000
PL data flow, CCU 6-970
PPL data flow, RPL F-050
IPL PHASE lights 1 1-020
IPL phase 1 and 2 tim
storage \(6-964\)
PL phase 2, clock step
IPL procedure \(1-120\)
IPL cycle 6-060
\(\begin{array}{ll}11 \text { cycle } & 6-060 \\ 11 \text { time } & 6-061\end{array}\)
\(\begin{array}{ll}11 \text { time } & 6-061 \\ 12 \text { cycle } & 6-060\end{array}\)
\(\begin{array}{ll}12 \text { cycle } & 6-060 \\ 12 \text { time } & 6-061\end{array}\)
\(\begin{array}{ll}12 \text { cycle } & 6-060 \\ 13 \text { time } & 6-061\end{array}\)
J
jumpering
CCU
1-200
CE burst length, type 4 CA
test blocks \(1-300\)
clock step thru IPL phase 2 1-200

\section*{L}
instruction 6-150, 6-270, 6-390
LAMP TEST push button 1-060
lamp test 1-160
atching assembly, removal and replacement of F-540
CD field
type 2 communication scanner B-062
COR instruction \(6-150,6-200,6-220\)
CR instruction 6-150, 6-200, 6-220
leadscrew and head carriage assembly,
removal and replacement of \(\mathrm{F}-550\)
removal and replacement of
leadscrew nut and spring
F-500
eadscrew wheel, removal and replacement F-555
LED fault indicators D-520
LED (light emitting diode), F-500
removal and replacement of \(\mathrm{F}-570\)
service check of \(\mathrm{F}-570\)
service check of \(\quad\) F-570
evel 1 interrupt, type 2 comm
set by check register B-130
\(\begin{array}{llll}\text { set by output } X \text { ' } 43 \text { ': } & \text { B-170 } \\ \text { s-170 }\end{array}\)
evel 2 interrupt, type 2 communication scanner
\(\begin{array}{ll}\text { data flow } & \mathrm{B}-300 \\ \text { examples } & \mathrm{B}-360\end{array}\)
interrupt go B-310
priority registers B-320
timing sequence \(B-340\)
evel 2 interrupt pending, type 2 communication
\(\begin{array}{ll}\begin{array}{ll}\text { Scanner } & \text { B-310, } \\ \text { vel } \\ \text { vel } \\ \text { interrupts }\end{array} & F-420\end{array}\)
level 3 interrupts \(F-420\)
evel 1 status, input \(X^{\prime} 68^{\prime} \quad F-400\)
level 3 status, input X'69' \(\mathrm{F}-430\)
LH instruction \(6-150,6-270,6-290\)
LHOR instruction 6-150, 6-200, 6-220
LHR instruction 6-150, 6-200, 6-220
IB interface, type 2 communication scanner
bit service request \(\mathrm{B}-150, \mathrm{~B}-260\)
clear to send \(\mathrm{B}-150, \mathrm{~B}-260\)
\(\begin{array}{lll} \\ \text { ontrol in } \mathrm{A}, \mathrm{B}, \mathrm{C} & \mathrm{B}-260\end{array}\)
\(\begin{array}{lll}\text { control out A, B B } & \mathrm{B}-260\end{array}\)
data set ready B-150, B-260
cho check B-260
receive data buffer B-150, B-260
receive data space \(\mathrm{B}-260\)
request to send \(\mathrm{B}-260\)
ing indicator \(\mathrm{B}-150, \mathrm{~B}-260\)
send data buffer \(\mathrm{B}-260\)
send data buffer \(\begin{aligned} & \text { B-260 } \\ & \text { transmit mode }\end{aligned}{ }^{\text {B-260 }}\)
LIB select
type 2 communication scanner B-220
IB to communication scanner interface C-020
IB to line interface C-020
\(\begin{array}{ll}\text { display A } & 1-010 \\ \text { display B } & 1-020\end{array}\)
control panel 1-050, 1-060, 1-080, 1-090
mit amplifier F-500
lower, adjustment of F-555
upper, adjustment of \(\mathrm{F}-555\)
ype 2 communication scanne
level 2 interrupt B-320 \(\begin{array}{lll}\text { program addressing } & \mathrm{B}-280 \\ \text { B-20. }\end{array}\) scan addressing \(\mathrm{B}-220, \mathrm{~B}-230\)
line address hardware positions
line interface
line set \(1 \quad\) C-170, \(C-190, \mathrm{C}-200\)
\(\begin{array}{ll}\text { line set } 2 & c-220 \\ \text { line set } 3 & c-240\end{array}\)
ine set \(3 \quad \mathrm{C}-240\)
\(\begin{array}{ll}\text { line set } 4 & \text { C-260 } \\ \text { ine set } 5 & \text { C-270 }\end{array}\)
line set 8 or 9 C-290, C-310
ine interface bases, introduction \(\mathrm{C}-000\) ne set
ALD references C-160
Lsi \({ }^{\text {gene }}\)
Local Attachment Interface C-190 Start/Stop C-170
S2, Half-duplex C-220
LS3, Digital Synchronous, High Speed C-240
LS4, Autocall interface C-260
S5. High Speed Duplex C-270
S8, Duplex or Half-duplex, Non-Switched C-290
S9, Duplex or Half-Duplex, Non-Switched C-290
ss, Duplex, switched C-310
page references C-160
He sets, introduction \(0-050\)
load address compare operation
\(1-150\)
load address instruction \(6-150,6-560,6-600\)
oad character with offset register
instruction 6-150, 6-200, 6-220
oad compare 1-060
oad halfword instruction 6-150, 6-270, 6-290

load halfword with offset register
instruction \(6-150,6-200,6-220\)
oad instruction \(6-150,6-270,6-390\)
OAD light 1 -090
OAD pushbutton
oad register immediate instruction 6-150, 6-1
load register instruction \(6-150,6-210,6-220\)
load with offset register instruction \(6-150,6-210,6-220\) local attachment interface, line set C-190
local attachment interface, SNA terminals C-190
cal store check, type 1 CA 8-360
local store register controls \(6-110,6-112\)
cation of logic pages by volume Vol2-VII; Vol3-VII ocations, power
ocations, RPL
card \(\mathrm{F}-200\)
Diskette drive
Diskette drive F-600
power supply
ations, storage
\(7-200\)
locations, 3705-80 physical E-000
logic pages by volume Vol2-VIII; Vol3-VIII
gic voltage levels \(D\)
OR instruction 6 -150, 6-210, 6-220
\(\begin{array}{ll}L R \text { instruction } & 6-150,6-210,6-220 \\ \text { LRI instruction } \\ 6-150,6-160,6-170\end{array}\)

M
\(\begin{array}{lll}\text { machine cycles, CCU } & 6-050\end{array}\)
remote 3705-80 Diskette drive power supply. \(\begin{array}{ll}\text { procedure } & \text { F-610 } \\ \text { preventive } & F-620\end{array}\)
service hints F-620
maintenance cycle
\(\begin{array}{ll}\text { display register CS1 } & 1-040 \\ \text { display storage CS1 } & 1-040\end{array}\)
\(\begin{array}{lll}\text { display storage CS1 } & 11004 \\ \text { store register CS1 } & 1-040\end{array}\)
store storage CS1 1-0
maintenance procedures
intermittent storage address errors \(\quad 7-290\)
maximum storage levels \(6-0\)
(see ADDRESS EXCEPTION light)
measurement, dc voltage D-580
memory (see storage)
meter
customer usage 1-030
LIB 5 receive equalizer C-410A, C-420A, C-101
MODE SELECT switch 1-030
mode selection, type 1 CA \(8-000,8-170\)
mode/ESC type 1 CA
mode/NSC, type 1 CA \(\quad 8-17\)
modem check
type 2 communication scanner, switched network B-460 type 2 communication scanne
inner
in input ' \(^{\prime} 44^{\prime}\)
output \(X^{\prime} 44^{\prime}-140\)
\(B-180\)
modification, type 2 communication scanner address substitution B-230 \(\begin{array}{lll}\text { counter register } & \text { B-360 } \\ \text { upper scan limit } & \text { B-230 }\end{array}\)
motor, RPL
current, drive
drive, F-500
removal and replacement of \(\mathrm{F}-545\)
stepper, assembly, F-500
motor and drive F-500
MST file control card, RPL
pin assignment \(F\)-575
remova and replace
test points
F-5
MST-1 CE indicator latch card 1-201
multiple CA4 auto selection \(\mathrm{H}-130\)
\(\stackrel{N}{\mathrm{~N}} \mathrm{~N}\)
NCR instruction 6-150, 6-190, 6-220
NHR instruction 6-150, 6-190, 6-220
\(\begin{array}{ll}\text { NR instruction } & 6-150,6-190,6-220 \\ \text { NRI instruction } & 6-150,6-160,6-170\end{array}\)
NSC status byte register
\(\begin{array}{ll}\text { type } 1 \text { CA } & 8-020 \\ \text { type } 4 \text { CA } & H-020\end{array}\)
O.

OCR instruction 6-150, 6-210, 6-220
\({ }^{O H R}\) instruction 6
\(G\) light \(1-010\)
operating sequence, head movement F-510
operation bit clock control sequence C-04 BSC sequence chart-switched B-390 dial flowchart B-510 start-stop C-040
start-stop sequence chart-switched B-390 synchronous (business machine clocking) C-04 synchronous (modem clocking) C-060
operations, arithmetic 6-10
or character register instruction 6-150, 6-210, 6-220
or halfword register instruction \(6-150,6-210,6-220\)
OR instruction 6-210, 6-22
or register immediate instruction 6-150, 6-160, 6-170
or register instruction 6-150, 6-210, 6-220
ORI instruction 6-150, 6-160, 6-170
outboard recorder F-070
field definitions F-070
outbound data transfer, type 1 CA
data/status \(L 3\) interrypt
\(8-330\) 8-130 data/ status L3 interrupt
ending data/status L3 interrupt
int
int
tion L3 interrupt \(8-250\)
outbound data transfers EB mode type 4 CA \(\quad \mathrm{H}-190\)
automatic CA4 selection by priority \(\mathrm{H}-230\)
CA to channel data transfer H-210
ending data/status L3 interrupt \(\mathrm{H}-240\)
(See also type 1 CA 8-340)
initial selection L3 interrupt multiple type 4 CAs \(\mathrm{H}-190\)
sequence charts \(\mathrm{H}-200, \mathrm{H}-22 \mathrm{O}, \mathrm{H}-240\)
outbound data transfer, cycle steal mode, type 4 CA H-300 initial selection L 3 interrupt \(\mathrm{H}-310\) sequence chart H -330
outbound data transfer ending, type 1 CA 8-340
\(\begin{array}{ll}\text { outbus parity error } & \text { F-400 } \\ \text { output instruction } & 6-700,6-730\end{array}\)
executing from the control panel 1-160
output instructions

Output \(X^{\prime} 00^{\prime}\) to \(X^{\prime} 1 F^{\prime} \quad 6-870\)
\(\begin{array}{ll}\text { Output } \times \prime 70^{\prime} & 6-870 \\ \text { Output } \times 71 & 6-870\end{array}\)
Output \(X^{\prime} 77^{\prime}, 6-870\)

\(\begin{array}{ll}\text { Output } X^{\prime} 77^{\prime} & 6-900 \\ \text { Output } X^{\prime} 78^{\prime} & 6-920\end{array}\)
\begin{tabular}{ll}
Output X \\
Output \(X^{\prime} 79^{\prime}\) & \(6-930\) \\
\hline-930
\end{tabular}
\(\begin{array}{lll}\text { Output } X^{\prime} 77^{\prime} & 6-940 \\ 0 \text { O-940 }\end{array}\)
\(\begin{array}{ll}\text { Output } X^{\prime} 7 \mathrm{D}^{\prime} & 6-940 \\ \text { Output } X^{\prime} 7 \mathrm{~F}^{\prime} & 6-940\end{array}\)
\(\begin{array}{ll}\text { Output } X^{\prime} 7 E^{\prime} & 6-940 \\ \text { Output } X^{\prime} 7 F^{\prime} & 6-950\end{array}\)
type 1 channel adapter
Output \(X^{\prime} 62^{\prime} \quad 8-080\)
Output X'63' \({ }^{8-100}\)
\begin{tabular}{lll}
Output \(X^{\prime} 644^{\prime}\) & \(8-110\) \\
\(\chi^{\prime} 65\) \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { Output X'65' } & 8-110 \\ 0 \text { atput } \mathrm{K}^{\prime} 66^{\prime} & 8-120\end{array}\)
\(\begin{array}{lll}\text { Output } \\ \text { Output } X^{\prime} 67^{\prime} & 8-130\end{array}\)

Output \(\times{ }^{\prime} 62^{\prime} \quad \mathrm{H}-060\)
Output X'64' H -090
Output \(X^{\prime} 65^{\prime} \quad \mathrm{H}-090\)
\(\begin{array}{ll}\text { Output X'66' } & \text { H-100 } \\ \text { Output } X^{\prime} 67^{\prime} & { }^{H}-120\end{array}\)
\(\begin{array}{ll}\text { Output } \times 67^{\prime} & \mathrm{H}-120 \\ \text { Output } X^{\prime} 6 \mathrm{C}^{\prime} & \mathrm{H}-140\end{array}\)
Output \(\mathrm{X}^{\prime} 6 \mathrm{CD}^{\prime} \mathrm{H}-160\)
\(\begin{array}{lll}\text { Output } \mathrm{X}^{\prime} 6 \mathrm{E}^{\prime} & \mathrm{H}-170 \\ \text { O- }\end{array}\)
pe 2 communications scanner
Output \(X^{\prime} 40^{\prime}, X^{\prime} 41^{\prime} \quad B-160\)
Output \(X^{\prime} 42^{\prime}, X^{\prime} 43^{\prime} \quad\) B-170
Sutput \(X^{\prime} 44^{\prime} \quad\) B-180
\(\begin{array}{ll}\text { Output } X^{\prime} 45^{\prime} & \text { B-190 } \\ \text { Output } \times x^{\prime} 6^{\prime} & \mathrm{B}-200\end{array}\)
\(\begin{array}{lll} \\ \text { Output } X^{\prime} 47^{\prime} & \begin{array}{ll}\text { B-200 } \\ \text { B-207, } \\ & \text { B-210 }\end{array}\end{array}\)
output register, type 2 communication scanner B-170
Output \(X^{\prime} 77^{\prime}\) addresses 6-151
sets lev
rests level 3 interrupt request 1 -080
ns off CCU CHECK light \(1-060\)
turns off display A check lights \(1-010\)
turns off display B check lights \(1-020\)
Output \(x\) ' 79 ' turns off LOAD light 1-0
verrun, type 2 communication scanne
put \(X^{\prime} 44^{\prime} \quad\) B-140
start-stop receive B-490
De folt indicators D-520

P
flag, type 2 communication scanner
\(\begin{array}{ll}\text { input } X^{\prime} 44^{\prime} & \mathrm{B}-140 \\ \text { output } \mathrm{X}^{\prime} 44^{\prime} & 8-180\end{array}\)
page references, line set C-160
PANEL ACTIVE light 1-060
nel, control, description F-040
panel layout 1-000
panel procedures
clock step thru IPL phase 2-1-200
parallel data register, RPL
Diskette controller, de
input \(X^{\prime} 6 A^{\prime}\) F-470
input \(X^{\prime} 6 A^{\prime}\)
output \(X^{\prime} 6 A^{\prime}\)
o-470
o-470
parity errors
BYTE lights 1-010
INDATA light \(1-010\)
OP REG light 1-010
\(\begin{array}{ll}\text { SAR light } & 1-010 \\ \text { SDR light } \\ 1-010\end{array}\)
parity errors, outbus F-400
removal, adjustment and replacement of F-570
service checks of F-570
physical locations
RPL diskette drive F-500, F-600
\(\begin{array}{lll}\text { storage } & 7-200 \\ 3705-80 & \mathrm{E}-000\end{array}\)
\(\begin{array}{ll}3705-80 \\ \text { POWER CHECK light } & 1-060, ~ D-510\end{array}\)
power control cable plugs, power supply D-505 power distribution D-53
POWER OFF push button 1-100

power-off override
power-off procedure 1-120
power-on sequence D-540
maintenance procedures, remote 3705-80
hysical locations F-600
reload spring F-500
pressure pad acuator, removal,
Jontive maintenance RPL F-620 F -50
maintenance 3705-80 E-010 chang
terrupt 6 -090
\(\begin{array}{ll}\text { machine cycle } & 6-070 \\ \text { program level } & 6-080\end{array}\)
selection, with two type 4 CAs H-230
scanner \(\mathrm{B}-310, \mathrm{~B}-210\)
scanner, scanner code
cation B-320, B-360
roblem definition \(0-000\)
roblem isolation \(0-010\)
PROG LEV 2 light 1-020
ROG LEV 3 light 1-020
PROG L1 light \({ }_{1-010}\)
ogram addressing, type 2 communication scanne
program display 1-080
Kogram flag, typee 2 comt 1-080
input \(\mathrm{X}^{\prime} 44^{\prime}\) B-140
program level priorities 6-090
active level in ENTERED INTERRUPT lights
1-020
rogram stop latco 6 -080, 6-08
reset 1-090
PROGRAM STOP light 1-090
protect key \(6-040\)
(sact data, attempt to change
otected
\(\stackrel{R}{\mathrm{R}} \mathrm{R}\)
RE instructions 6-150, 6-700
ead amplifier F-520
ead-only storage test
N-ROS, type 4 CA 2-120
type 1 and type 4 CA 2-000
with RPL 2-000
read failures, diagnostic approach for F-490
ead operation (output \(X^{\prime} 69^{\prime}\)). \(\quad \mathrm{F}-440\)
timing chart for F-450
ead/write circuit principles
Diskette drive F-510
\(\begin{array}{ll}\text { read write head, } \\ \text { adjustment for } & \text { F-500 } \\ \text { F-555 }\end{array}\)
receive
\(\begin{array}{ll}\text { line set } 1 & \text { C-180, } \\ \text { line se } \\ & \text { 210 }\end{array}\)
\(\begin{array}{ll}\text { line set } 2 & c-230 \\ \text { line set } 3 & c-250\end{array}\)
\(\begin{array}{ll}\text { line set } 3 & \mathrm{C}-250 \\ \text { line set } 4 & \mathrm{C}-260\end{array}\)
\(\begin{array}{ll}\text { line set } 4 & \mathrm{C}-200 \\ \text { line set } 5 & \mathrm{C}-280\end{array}\)
line set 8 or 9 C-300, C-330
eceive details, communication scanner, type 2 S-S) SDF to PDF transfer B-490 SDLC
SD-560
start-stop B-490
eceive line signal detector, type 2 communication scanner
\(\begin{array}{lll}\text { input } X^{\prime} 44^{\prime} & B-140 \\ \text { input } X^{\prime} 46^{\prime} & B-150\end{array}\)
switched network B-460
recorder, outboard F-070
field definitions F-070
register,
input/
\({ }^{\text {nput/output }}\) X \({ }^{\prime} 6 \mathrm{~B}\)
description of
input \(X^{\prime} 6 B^{\prime}\)
F-480
output \(X^{\prime} 6 B^{\prime} \quad\) F-470
status,
description of F-110
diagnostic \(\mathrm{F}-430\) \(\begin{array}{ll}\text { diagnostic } \\ \text { level } 1 & F-400 \\ \text { F- }\end{array}\) level 3 F-430
egister addresses 6-151
egister and external register instructions 6-700
register and storage instructions \(6-270\)
egister and storage with addition instructions 6-470
egister branch or register and branch instructions 6-630
egister cycle utilization counter \(6-831\)
gister to mediate instructions \(6-160,6-220\)
\(\begin{array}{llll}\text { ejecting channel commands, type } 1 \text { CA } & 8-160\end{array}\)
emote IPL sequence F-050
REMOTE/LOCAL POWER switch 1-100
removal, adjustment and replacement procedures, RPL
belt tracking F-545
collet \(\mathrm{F}-540\)
over assembly F-540
drive motor \(\mathrm{F}-545\)
drive pulley \(\mathrm{F}-545\)
hub assembly F-545
\(\begin{array}{ll}\text { idiler assembly } & \text { F-545 } \\ \text { latch assembly } & \text { F-540 }\end{array}\)
latch assembly F-540
eadscrew and head carriage assembly F-550
ght emitting diode (LED)
wer limit stop F-560) F-570
\(\qquad\)

MST file card F-575
photo transistor \(\mathrm{F}-570\)
pressure pad actuator \(\mathrm{F}-550\)
ead/write head F-555
\(\begin{array}{ll}\text { tepper motor } & \text { F-565 } \\ \text { rack indicator } & F-540\end{array}\)
\(\begin{array}{lll}\text { ruack indicator } & \text { F-540 } \\ \text { upper limit stop } & F-560\end{array}\)
eplacement (see removal, adjustment,
and replacement procedures)
\(\begin{array}{ll}\text { and replacement procedures) } \\ \text { replacement Diskette ordering procedure } & \text { F-531 } \\ \text { requesting a program level } 3 \text { interrupt } & 1-120\end{array}\)

\(\begin{array}{lll}\text { output } X^{\prime} 43^{\prime} & \text { B-170 } \\ \text { RESET push button } & 1-070\end{array}\)
reset-select LIB, type 3 or 3 HS communication scanner
ontrol out \(A\) and \(B \quad \mathrm{~B}-260, \mathrm{~B}-270\)
output X'43' \({ }^{\text {B-170 }}\)
resetting the CCU, disebles storage protection 6-040
esetting the 3705 2-120
R1 instructions 6-150, 6-160, 6-170
ROS bootstrap load 6-961
ROS load, clock step thru 1-20
ROS test
N -ROS 2-120
N-ROS 2-120
type 1 and type 4 CA 2-000
type \(\begin{aligned} & \text { that type } \\ & \text { RR instructions } \\ & \text { RS }\end{aligned}\) (150, \(6-1900,6-220\)
RS instructions
\(6-150,6-190,6-220\)
RS instructions \(6-150,6-190,6-220\)
RSA instructions 6-150, 6-470
\(T\) instructions \(6-150,6-630\)
s.
\(\begin{array}{ll}\text { SAR bits } & 7-220 \\ \text { SAR light } & 1-010\end{array}\)
scan addressing, type 2 communication scanner time B-010
scan addressing examples, type 2 communication
scanner B-250
scan counter type
\(\begin{array}{ll}0 & \text { per munica } \\ \text { ction } \\ 0-050\end{array}\)
scanner, introduction 0-050
scanner disable latch, type 2 scanner,
output \(X^{\prime} 43^{\prime} \mathrm{B}-170, \mathrm{~B}-270\)
canner selection, type 2 communication scanner,
g-290
single address 1-150
storage \(1-140\)
scope points, CCU 1-200
\(\begin{array}{lll} \\ \text { Scoping loop, setting up IFT } & 1-200\end{array}\)
SCR, instruction
S-210, \(6-220\)
SDLC
abort B-520
\(\begin{array}{ll}\text { end of frame } \\ \text { flag } 8-520\end{array} \quad \mathrm{~B}-520\)
\(\begin{array}{ll}\text { flag detect predicted position } \\ \text { frame } & 530\end{array}\)
frame detect B-062
ICW bits 34-36 (ones counter), type 2 communication
scanner
B-081
bew 37 (last line state), type 2 communication
scanner
ICW bit 44 (NRZI control), type 2 communication
scanner B-081
LCD, type 2 communication scanner B-062
modes of operation
NRZI
B-530
zero bit insertion/deletion B-530 \(\begin{array}{ll}\text { bit synchronous requirements } & \text { B-530 } \\ \text { PCF, type } 2 \text { communication scanner } & \text { B-080 }\end{array}\) receive sequence B-560
SCF, type 2 commereation B-061
start of frame B-520
transmission frame for
transmission sequence, type 2 communication
scanner \(\quad \mathrm{B}-540\)
R light \(1-010\)
SDR light \(1-010\)
secondary control field, type 2 communication scanner
ICW B-061
select, LIB C-120
selecting general registers 6-110-6-112
selecting local store registers
selection
6-110-6-112
selector channel, type 4 CA
disconnect in \(\mathrm{H}-400\)
initial interface disconnect \(\mathrm{H}-390\)
initial selective reset \(\mathrm{H}-390\)
service selective reset \(\mathrm{H}-390\)
service selective reset \(\mathrm{H}-3\)
sense bit definitions \(8-160\)
sense channel command, type 1 CA 8-160
separator character, dial C-330, C-341
sequence,
remote IPL
F-050
sequence chart, LiB
start-stop bit clock control C-050 synchronous bit clock control-business machine 0
synchronous bit cock contiol-external clock C-060 sequence chart, type 4 CA
automatic CA4 selection by priority \(\mathrm{H}-240\) channel service cycle \(\mathrm{H}-220, \mathrm{H}-270\) inbound data transfers, cycle steal mode \(\mathrm{H}-360\) inbound data transfers, EB mode \(\mathrm{H}-270\) loading the EB local store \(\mathrm{H}-200\) outbound data transfers, cycle steal mode \(\mathrm{H}-330\) outbound data transfers, EB mode \(\mathrm{H}-190\) service hints, RPL F-620
service request interlock, type 2 communication scanner B-140
set address and display register procedure 1-130
set address and display storage procedure \(1-130\)
SET ADDRESS/DISPLAY push button 1-070
set control function, type 2 communication scanner, output X'43' B-170
setype 2 communication scanner, control
out/ in A B-260, B-270
type 2 communication scanner, pgm steps to initialize
setting up and executing an instruction from the
\(\begin{array}{cc}\text { control panel } & 1-160 \\ \text { shift right operation, CCU 6-100 }\end{array}\)
shift right operation, CCU \(6-100\)
SHR Instruction \(6-150,6-210,6-220\)
simulation run in ROS test
N-ROS, type 4 CA 2-120
type 1 CA
2-000
single address scan
single address test patern , 1-110, 6-067
\(\begin{aligned} & \text { single address test pattern cycles } \\ & \text { single address test pattern procedure } \\ & \text {-054 }\end{aligned} 1-150,1-110\)
single current telegraph adapter C-270 SNA terminal, 1 D and 1 F line set \(\mathrm{C}-19\)
special tools E-010
spring preload
F-500
spring, preload \(\mathrm{F}-500\)
SR instruction 6-150, 6-210, 6-220
SRI instruction \(6-150,6-160,6-170\)
SRI instruction
ST instruction
\(6-150,6-270,6-430\)
START push button 1-070, 6-069
status,
\(\begin{array}{ll}\text { level } 1 & F-400 \\ \text { level } 3 & F-430\end{array}\)
status lights
display A \(\quad 1-010\)
display B \(\quad 1-020\)
datus register, Disk
status register, Diskette controller F-110
status rejecting channel commands, type 1 CA 8-160
ESC test 1/O 8-230
final inbound ESC \(8-280\)
\(\begin{array}{ll}\text { final inbound NCS } & 8-280 \\ \text { final outbound ESC } & 8-340\end{array}\)
\(\begin{array}{lll}\text { final outbound ESC } & 8-340 \\ \text { final outbound NSC } & 8-340\end{array}\)
NCS test 1/O \(8-230\)
No-Op 8 -210
status transfer ESC I/O, type 1 CA \(8-220\)
assembly of
as
as 500
removal, adjustment and replacement of F-565
STC instruction 6-150, 6-270, 6-330
STCT instruction \(6-150,6-470,6-530\)
STCT instruction 6-150, 6-470, 6-530
stop bit
stop bit check/ receive break, type 2 communication scanner
\(S-S\) receive \(B-490\)
S-S transmit \(\quad\) B-480
STOP push button 1-070
STORAGE ADDRESS/REGISTER DATA switches 1-100
storage 7-200
storage address error procedure 7-290
address error procedure 7-290
board layout \(7-210\)
data flow \(7-220\)
in a single address 1-130
in storage locations \(1-140,6-057\)
maintenance procedure
physical locations \(7-200\)
store character and count instruction 6-150, 6-470, 6-530 store character instruction 6-150, 6-270, 6-330 store compare 1-060
store halfword instruction 6-150, 6-270, 6-360
store instruction \(6-150,6-270,6-360\)
store instruction at address X'00010' 6-081
store register CS1 maintenance cycle 1-040, 6-054
store storage CS maintenance cycle 1-040, 6-057
storing data
in a register 1-130, 6-05
strobe
line set 1 C-170, C-200
\(\begin{array}{ll}\text { line set } 2 & \mathrm{C}-220 \\ \text { line set } 3 & \mathrm{C}-240\end{array}\)
\(\begin{array}{ll}\text { line set } & \mathrm{c}-240 \\ \text { line set } 4 & \mathrm{C}-260\end{array}\)
\(\begin{array}{ll}\text { line set } 4 & C-260 \\ \text { line set } 5 \quad C-270\end{array}\)
line set 8 or \(9 \quad\) C-290, C-310
substitution control register, type 2 communication scanner \(\begin{array}{ll}\text { output } x^{\prime} 41 & B-0160 \\ \text { scan addressing } & B-23\end{array}\)
\(\begin{array}{ll}\text { scan addressing } & B-230 \\ \text { subtract character register instruction } & 6-150,6-210,6-220\end{array}\)
subtract halfword register instruction \(6-150,6-210,6-22\)
subtract operation, CCU 6-100
subtract register immediate instruction 6-150, 6-160, 6-17
subtract register instruction \(6-150,6-210,6-220\)
mary LCD code changes B-062
\({ }^{\top}{ }^{\top}\) tim
Ttimes displayed on control panel 1-010
tag terminator assemblies E-000
TAR, display 1-040
technology-related tools E -
telegraph adapter \(\mathrm{C}-270\)
terminal, SNA line set 1 D and \(1 \mathrm{~F} \quad\) C-190
terminators bus/tag E-000
test block
test data latch
type 2 communication scanner, diagnostic wrap
mode B-270, B-5
test equipment \(\mathrm{E}-\mathrm{-}\)
TEST light \(1-080\)
test mode latch
reset \(1-080\)
set \(1-080\)
set 1 -080
test points, MST F-575
test register under mask instruction 6-150, 6-160, 6-170
timing
CCU clock 6-030
timing chart.
Diskette drive F-510
output \(\mathrm{X}^{\prime} 69^{\prime}\) read operation \(\mathrm{F}-450\)
output \(X^{\prime} 69^{\prime}\) write operation F-465
variable freque
timing charts
auto-answer \(\mathrm{C}-360 \quad \mathrm{C}-340\)
Channel interface sequences \(8-380\)
power on D-540
SDLC receive sequence
SDLC transmit sequence
type 1 communication scanner B-370
tools and test equipment E-010
tools and test equipment F-62
track assignments F-30
track indicator, adjustment of F-540
transmit
line set \(1 \quad \mathrm{C}-180, \mathrm{C}-210\)
\(\begin{array}{ll}\text { line set } 2 & \mathrm{C}-230 \\ \text { line set } 3 & \mathrm{C}-250\end{array}\)
line set \(4 \quad \mathrm{C}\)-260
\(\begin{array}{ll}\text { line set } 5 \quad \mathrm{C}-270 \\ & \\ \text { line set } 8 \text { or } & \mathrm{C}\end{array}\)
line set 8 or \(9 \quad\) C-300, C-320
transmit details, type 2 communication scanner (S-S) PDF to SDF transfer B-480
BSC B-410
Start-stop \(\mathrm{B}-480\)
transmit sequence, type 2 communication scanner \(\begin{array}{ll}\text { BSC } & B-400 \\ \text { SDLC } & B-540\end{array}\)
SDLC B-540
start-stop
B-470
TRM instruction 6-150, 6-160, 6-170
trouble analysis flowchart \(0-010\)
P位 1 channel adapter, introduction 0-050
type 2 attachment base B-020
type 4 communication scamner, introduction \(0-05\)
type 4 channel adapte
introduction \(\mathrm{H}-000\)
introduction \(\mathrm{H}-\mathrm{O}\)
multiple \(\mathrm{H}-000\)
N channel ROS 2-120
\(u\)
underrun, type 2 communication scanner
\(\begin{array}{lll}\text { BSC transmit } & \text { B-410 } \\ \text { input } \times 44^{\prime} & \text { B-140 }\end{array}\)
start-stop transmit B-480
unprotected storage 6 -040
upper scan limit modification, type 2 communication
usage meter flowchart D-590
\(\stackrel{\rightharpoonup}{v}\)
variable frequency oscillator (VFO)
ata synchronization F-320
\(\begin{array}{cc}\text { operation } & \text { F-320 } \\ \text { timing } & F-320\end{array}\)
voltage levels, logic D-580
w
wait light 1-080
WARNINGS
CCU , when
changing machine priorities 6-071
\(\begin{array}{ll}\text { masking program levels } \\ \text { performing maintenance } & 6-071 \\ 6-000\end{array}\)
performing
control panel
address compare program stop
cc check light
\(1-060\)
cc check light \(1-060\)
clock step procedure \(1-160\)
control panel test of CCU data path
diagnostic control switch 1-110
diagnostic jumpering 1-200
display/function select switch 1-040
enable/disable switch 1-050
panel active light 1-060
program stop light 1-090
resetting the 3705-80 1-120
set address and display register procedure 1-130
\(\begin{array}{ll}\text { setting up and executing an instruction } & 1-160 \\ \text { single addresses test pattern procedure } & 1-150\end{array}\)
stop push button 1-070
storage scan 1-140
store push button \(1-070\)
storing a test patter \(\quad 1-140\)
storing a test patter 1-140
storing data in a register 1-130
diagnostic aids
CE indicator card 1-201
power supply, when
removal of SENSE wires D-550
\(\qquad\)
removing or reinstalling laminar bus jumpers D-550
ROS
channel checking 2-070, 2-110
clamping collar F-555
cleaning head F-555
connector locking tabs F-550, F-565
damaged Diskette F-531
drive pulley setscrew F-54
front hub bearing F-545
leadscrew wheel pins F-565
measuring head coil resistance F-520
measuring head coil resistance F-52
phototransistor assembly F-555
phastic damage from chemicals F-620
pressure pad arm F-540, F-545, F-550
upper limit stop clamp screw F-560
storag
mintenance procedures 1-260 ype 1 CA
addres
wrap blocks
\(\begin{array}{lll}\text { (see test blot } \\ & \text { 8-000 }\end{array}\)
Wite data, Diskette drive
write IPL channel command, type 1 CA 8-180
write IPL command final status, type 1 CA 8-190
write IPL data/status \(L 3\) interrupt; type \(1 \mathrm{CA} \quad 8-140\)
write note enabled F-400
rite operation (output \(X^{\prime} 69^{\prime}\)) \(\quad F-440\)
\(\begin{array}{ll}\text { example of } \\ \text { timing for } & \mathrm{F}-465\end{array}\)
\begin{tabular}{l}
X \\
XCR \\
\\
\hline
\end{tabular}
XCR instruction 6-150, 6-200, 6-220
XHR instruction \(6-150,6-200,6-220\)
\(\begin{array}{ll}\text { XR instruction } & 6-150,6-200,6-220 \\ \text { XRI instruction } \\ 6-150,6-160,6-170\end{array}\)

2
LEVEL light 1-020
ero bit insertion/deletion, SDLC B-530
3705-80
channel adapter
type 18 -000
communication sca
\(\begin{array}{cc}\text { type } 2 & \text { B-000 } \\ \text { control panel } & 1-00\end{array}\)
ine interface base C-000
power supply D-500
power supply \(\mathrm{D}-100\)
storage \(7-200\)
introduction 0-050
physical locations E-000
ntrol panel configurations E-040
remote program loader E-000
 sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language, use of English is not required.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for assistance in is addressed. Please direct any requests for copies of publications, or for assistance in using your ItM syser, 10 位 your locality.
Possible topics for comment are:

If you would like a reply, complete the following (Please Print):
Your Name \(\qquad\)

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

\footnotetext{
or representative will be happy to forward your comments.)
}

```


[^0]:    
    $\square$ Receive Data Flow

[^1]:    2. To wrap the two half-duplex LS8 or LS9 lines, connect $T$ of the transmit line to $R$ of the receive line and $C$ of the transmit
    line to Io the receive line (comnect $A$ to $A$ and $B$ to $B$ ). Do not wrap $S$ leads. Internal clock must be specified.
[^2]:    (3)

[^3]:    303

