Configuration Guide

IBM 3725 Model 1
Communication Controller

Configuration Guide

IBM System/370,30xx, and 4300 Processors

Publication Number
SA33-0012-4
File Number
S370/30xx/4300-15

Fifth Edition (May 1986)

This major revision obsoletes SA33-0012-3.
Information has been added describing:

- A new line attachment base, LABC, providing for the IBM Token-Ring Network.
- New LIC weights and speeds.
- Increments to the main memory (up to a maximum of 3 M bytes).

These changes and others are indicated by a vertical line to the left of the change.

References in this publication to IBM products, programs, or services does not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

The information contained in this manual is subject to change from time to time. Any such changes will be reported in subsequent revisions or Technical Newsletters.

Publications are not stocked at the addresses given below; requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be addressed to either of the following:

- International Business Machines Corporation, Department 6R1LG, 180 Kost Road, Mechanicsburg, PA 17055, USA
- IBM France, Centre d'Etudes et Recherches, Department 0798, 06610 La Gaude, France

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
(C)Copyright IBM Corporation 1983, 1984, 1986

PREFACE

This manual is a guide for selecting a $3725 / 3726$ Communication Controller and Expansion configuration.

The purpose of the manual is twofold:

1. To give the structure of the $3725 / 3726$, explaining what the 3725 and 3726 features do and how they are related.
2. To explain how these features should be ordered to meet the customer's requirements.

It is assumed that the user of this manual has become familiar with the subject by reading 3725 Model 1 Communication Controller, Introduction GA33-0010.

This configuration guide is organized as follows:

- Chapter 1 explains how to use the guide and describes the feature structure.
- Chapter 2 shows examples of simple and typical configurations, together with lists of features to be ordered.
- Chapter 3 explains how to configure a complex controller via graphic aids and examples.
- Chapter 4 lists the features together with their prerequisites. It also explains how to configure and order Miscellaneous Equipment Specifications (MESs).
- Appendix A must be filled in to record the network configuration in terms of terminals, lines, token-rings, and ports.
- Appendixes B and C represent empty interface couplers (LICs/TICs) and empty line attachment bases (LABs).
- Appendix D explains how to configure and order Specified Configurations.

In this manual, 3725 or 3726 refers to the physical unit, whereas controller (or $3725 / 3726$) refers to the functional aspect of the controller.

For configuration purposes, and for brevity, the following terms are used, with the meanings indicated.

Port (or LIC port): One of the positions of a line interface coupler (LIC) to which cables may be connected.

Line: The communication path that leads from one of the ports of a line interface coupler (LIC) to data terminal equipment (DTE) in a user application network, including the modems or other data circuit-terminating equipment (DCE), if any.

Token-Ring: The communication path that leads from one of the ports of one, or more, token-ring interface couplers (TICs) to an IBM Token-Ring Network.

Category-A speed: ≤ 9600 bps in BSC EBCDIC or SDLC half-duplex, or ≤ 1200 bps in asynchronous protocol (start-stop), or ≤ 600 bps in asynchronous protocol (start-stop, character mode).

Category-B speed: 9600 bps in SDLC duplex or in BSC ASCII, or ≤ 2400 bps in asynchronous protocol (start-stop), or ≤ 1200 bps in asynchronous protocol (start-stop, character mode).

Category-C speed: All speeds above category A and B, in all protocols.

Note: For a complete list of abbreviations and terms, refer to 3725 Model 1 Communication Controller, Introduction
CHAPTER 1. INTRODUCTION
How to Configure with this Guide 1-1
ontroller Organization
1-1
The Basic 3725 and its Features 1-2
Storage Increment (FC \#7100) 1-2
3M Byte Capability (FC \#7101) 1-2
Channel Adapter (FC \#1561) 1-2
Line Attachment Base (FC \#4771/4772/4774) 1-2
Line Interface Coupler (FC \#49xx) 1-2
Token-Ring Interface Coupler (FC \#4991) 1-2
Internal Clock Control (ICC) (FC \#4666 or \#4667) 1-3
The 3726 Expansion and its Features 1-3
Line Increase Feature (LIF, FC \#3602) 1-3
Channel Adapter (FC \#1561) 1-3
Line Attachment Base (FC \#4771/4772/4774) 1-3
Line Interface Coupler (FC \#49xx) 1-4
Token-Ring Interface Coupler (FC \#4991) 1-4
Internal Clock Control (ICC) (FC \#4666 or \#4667) 1-4
The Operator Console 1-4
Minimum Controller Configuration 1-4
Maximum Controller Configuration 1-5
Controller Components 1-6
Storage 1-6
Channel Adapter (CA) 1-7
Two-processor Switch (TPS) 1-7
TPS Location and Prerequisites 1-7
Line Attachment Base (LAB) 1-7
LAB Type A 1-8
LAB Type B 1-8 1-8
LAB Type C 1-8
LAB Location 1-8
Interface Couplers (LICs/TICs) 1-8
LIC Types 1-9
LIC Ports 1-9
LIC Weight 1-10
LIC Position on a LAB 1-10
LIC Position and Prerequisites 1-10
TIC Type, Position, and Prerequisites 1-12
TIC Ports 1-12
Internal Clock Control (ICC) 1-12
CHAPTER 2. EXAMPLE CONFIGURATIONS
How to Use the Example Cases 2-1
CASE 1 2-2
CASE 2-6
CASE
CASE
2-8
2-8
CASE
2-10
2-10
CASE 6 2-12
CASE 7 2-15
CASE 8 2-17
CASE 9 2-21
CASE 10 2-25
CASE 11 2-29
CASE 12 2-33
CHAPTER 3. GRAPHIC CONFIGURATION PROCEDURE
3725 Graphic Configuration Step by Step 3-1
Step 1. Gathering Information 3-1
| Step 2. Assigning Lines/Token-Rings to LICs/TICs 3-1
Line Assignment Rules for LICs 3-1
Procedure for Assigning Lines to LICs 3-2
Assigning Token-Rings to TICs 3-2
Step 3. Assigning LICs/TICs to LABs 3-2
What to Transfer to the LABs 3-3
LIC Transfer Procedure for $L A B-1$ and $L A B-2$ 3-3
LAB Rules for Assigning LICs to $L A B-1$ and $L A B-2$ 3-3
Transfer Sequence for $L A B-1$ and $L A B-2$ 3-3
LIC Transfer Procedure for LAB-3 to LAB-8 3-4
LAB Rules for Assigning LICs to LAB-3 to LAB-8 3-5
Transfer Sequence for $L A B-3$ to $L A B-8$ 3-5
LAB Physical Position Sequence 3-6
Step 4: Updating the LABs 3-6
CHAPTER 4: ORDERING PROCEDURE
3725 Ordering Information 4-1
3726 Ordering Information 4-1
Cable Ordering 4-4
Ordering Cables in the US and WT A/FE 4-4
Ordering Cables in WT E/ME/A 4-5
3725/3726 Standard Cables for North America, Latin America, and Taiwan 4-5
3725/3726 Standard Cables for WT E/ME/A 4-6
3725/3726 Custom-Length Cables 4-7
Feature Lists 4-9
Altering a Controller Configuration after Installation 4-10
MES Configuration Procedure 4-10
Differences between an MES Order and an Initial Order 4-12
Checking Differences 4-12
Configuration Differences 4-12
Ordering Differences 4-12
| Storage Increase 4-13
APPENDIX A: USER APPLICATION NETWORK
APPENDIX B: GRAPHIC REPRESENTATION OF LICS/TICS
APPENDIX C: GRAPHIC REPRESENTATION OF LABS IN A CONTROLLER
APPENDIX D: CONFIGURING AND ORDERING SPECIFIED CONFIGURATIONS
INDEX

ure		age
1-1.	Contents of a Basic 3725	1-2
1-2.	Feature Contents of a 3726	1-3
1-3.	Minimum Controller Configuration (3725)	1-4
1-4.	Maximum Controller Configuration (3725/3726)	1-5
1-5.	Controller Logic Block Diagram	1-6
1-6.	Storage Requirements for Simple	1-6
1-7.	Types of Line Attachment Base	1-8
1-8.	Assigning Lines to LICs	1-9
1-9.	Example of LICs Filled in and Weighed	1-10
1-10.	LIC Features and Specify Codes	1-11
1-11.	Assigning a Token-Ring to a TIC	1-12
2-1.	Types of Configurations.	2-1
3-1.	Summary of LIC and LAB Configuration Rules	3-8
4-1.	Machine and Feature Prerequisites for Channel Adapters	
4-2.	Machine and Feature Preerequisites fór Lib	4-4
4-3.	3725/3726 Standard Cables for North America	
	America, and Taiwan ${ }^{\text {a }}$, for wi $\dot{E} \dot{M} E$	4-5
4-4.	3725/3726 Standard Cables for WT E/ME/A	4-6
4-5.	3725/3726 Custom-Length Cables	4-7
4-6.	Feature Lists	

The structure of the $3725 / 3726$ lends itself to easy configuring, both for initial orders and for upgrades to installed machines. There are few feature types, and performance does not depend on feature position.

To eliminate the need for feature position codes, the $3725 / 3726$ is configured by a set of rules. Detailed information concerning these rules is given in Chapter 3 .

HOW TO CONFIGURE WITH THIS GUIDE

1. DEFINE THE CUSTOMER'S NETWORK

List the characteristics of the lines that will be connected to the controller (speed, protocol, interface, and clocking) on the left-hand side of the figure in Appendix A.
2. CHECK WHETHER THE DESIRED CONFIGURATION IS SIMPLE

See if this configuration corresponds to one of the sample cases in Chapter 2 (Figure 2-1).
a. If the configuration is simple:

Pick the closest configuration and add or delete features as necessary.

Update the right-hand side of the figure in Appendix A with port number and cable information.
b. If the configuration is complex:

If none of the samples cases meets your requirements, you may build a configuration using "Chapter 3, Graphic Configuration Procedure."

To change an installed configuration or order a $3725 / 3726$, see
"Chapter 4, Ordering Procedure."
Note: Although this manual provides all the information required for all configurations, the rules and examples should be used with caution. Check storage, throughput, and feature quantities carefully before ordering.

CONTROLLER ORGANIZATION

The organization is:

- The IBM 3725 Communication Controller, which is basic, can accommodate up to 96 lines and up to two channel adapters (with or without a two-processor switch).
- The IBM 3726 Communication Controller Expansion, which is optional, can accommodate up to 160 lines and up to four channel adapters (two of which may be equipped with a two-processor switch).

This brings the total attachment capability (3725 and 3726) to 256 lines and six channel adapters (eight channel connections when using the two-processor switches). See Figure 1-4 for channel adapters and TPS location.

The basic 3725 (see Figure 1-1) contains:

```
- A central control unit (CCU)
- 512K bytes of storage
- The maintenance and operator subsystem (MOSS)
- Two line attachment bases (LABs) type A
- Space to accommodate a third LAB (type A, B, or C)
- A number of line interface couplers (LICs)
- Space to accommodate two channel adapters
- Space to accommodate one ICC in each of the LABs
```


Figure 1-1. Contents of a Basic 3725

Storage Increment (FC \#7100)

The basic 3725 includes 512K of storage. Up to ten storage increments of 256 K each may be ordered.

3M Byte Capability (FC \#7101)
This feature allows the increase of storage above 2M bytes. It is not included with the basic controller and must be ordered separately, if required.

Channel Adapter (FC \#1561)

Two channel adapters can be installed on the basic 3725. Each channel adapter may be equipped with a two-processor switch (FC \#8320).

Line Attachment Base (FC \#4771/4772/4774)

Two LABs (type A) are included in the basic 3725. To get the third LAB, order one FC \#4771 (LABA), FC \#4772 (LABB), or FC \#4774 (LABC). To order a LABA without any LIC, order SC \#9671. To order a LABB without any LIC, order SC \#9672. To order a LABC without any LIC5/TIC5, order SC \#9674. With three LABs LABA/LABB, the 3725 can accommodate a maximum of 96 lines. With two LABAs and a LABC, the 3725 can accommodate a maximum of 80 lines and four IBM Token-Ring Networks.

Line Interface Coupler (FC \#49xx)
Up to four lines can be connected to each line interface coupler (LIC). Up to eight LICs can be installed on each LABA and LABB and up to four on each LABC.

Token-Ring Interface Coupler (FC \#4991)
Up to four token-rings can be connected to a LABC, one per TIC. (One LABC can be installed in a basic 3725, in LAB location 3, supporting a maximum of four IBM Token-Rings and sixteen lines.)

Note: More than one TIC can connect a LABC to a token-ring for reasons of availability or performance.

One ICC feature may be installed on each LAB. The ICC is enabled for specific LICs by the CE or plant when the LICs are installed.

THE 3726 EXPANSION AND ITS FEATURES
The 3726 is required when more than two channel adapters or more than three LABs are needed.

The 3726 (see Figure 1-2), without the line increase feature, can accommodate up to four channel adapters (or up to two channel adapters equipped with a two-processor switch), and up to three LABs type A, B, or C (FC \#4771/4772/4774). These LABs are installed in LAB locations 4,5 , and 6 . They are referred to as $L A B-4, L A B-5$, and $L A B-6$.

Figure 1-2. Feature Contents of a 3726

Line Increase Feature (LIF, FC \#3602)

This accommodates two extra $L A B s$ type A, B, or C
(FC \#4771/4772/4774). These LABs are installed in LAB locations 7 and 8, and are referred to as $L A B-7$ and $L A B-8$.

Channel Adapter (FC \#1561)
Four channel adapter (CA) features can be installed on the 3726
Expansion. The first two CAs may be equipped with a
two-processor switch (TPS, FC \#8320). The possibilities are:

- Four CAs, or
- Three CAs and one TPS, or
- Two CAs and two TPSs

Line Attachment Base (FC \#4771/4772/4774)

Three LABs can be installed on the 3726 without the line
increase feature. Two more LABs can be installed on the line increase feature. The LABs on the 3726 can be LAB type A (FC \#4771), LAB type B (FC \#4772), or LAB type C (FC \#4774) To order a LABA without any LIC, order SC \#9671. To order a LABB without any LIC, order SC \#9672. To order a LABC without any LICs/TICs, order SC \#9674. With five LABs, the controller can accommodate a maximum of 160 lines. If a LABC is installed the maximum is 144 lines and four token-rings.

Note: A maximum of two LAB type Cs can be installed on a 3725 with a 3726 extension. That is, if LAB-3 of the 3725 contains a LAB type C then the 3726 can contain only one LAB type C. If the 3725 contains no LAB type C then a maximum of two can be installed in the 3726 .

Up to four lines can be connected to each line interface coupler (LIC). Up to eight LICs can be installed on each LABA or LABB, and four on a LABC.

Token-Ring Interface Coupler (FC \#4991)
Up to four token-rings can be connected to a LABC, one per TIC.
More than one TIC may connect a LABC to a token-ring for reasons of availability or performance.

Internal Clock Control (ICC) (FC \#4666 or \#4667)
One ICC feature may be installed on each LAB. The ICC is enabled for specific LICs by the CE or plant when the LICs are installed.

THE OPERATOR CONSOLE
The IBM 3727 Operator Console consists of three elements: the logic, the display, and the keyboard. It provides the operator access to the controller via the MOSS.

- One 3727, called the primary operator console, is connected by a cable of $7.5 \mathrm{~m}(25 \mathrm{ft})$ in length.
- Optionally, another 3727, called the alternate operator console, can be connected by a cable of 150 m (492 ft) in length.

In E/ME/A, for the alternate operator console add FC \#1480 (attachment feature) to the 3725 order.

MINIMUM CONTROLLER CONFIGURATION

Figure 1^{-3} gives the minimum configuration. One operator console is required, for operation and maintenance.

Figure 1-3. Minimum Controller Configuration (3725)
Note: If the controller is link-attached (that is, via another IBM controller), no channel adapter is required.

Figure 1-4 gives the maximum configuration (3725 and 3726). 3725 Unit

3726 Unit

Figure 1-4. Maximum Controller Configuration (3725/3726)

The 3725 controller contains three logical subsystems (see Figure 1-5):

- The control subsystem (CSS), which consists of a central control unit, up to 3072 K bytes of storage, and zero through six channel adapters (CAs).
- The transmission subsystem (TSS), which consists of two through eight line attachment bases (LAB type A or B) with their scanners, one through 64 line interface couplers (LICs), and optionally one or two LAB type Cs each with up to four LICs and four TICs, and zero through eight internal clock control (ICC) features.
- The maintenance and operator subsystem (MOSS), which consists of a processor, storage, a diskette, and a control panel. MOSS is operated by means of the 3727 .

Host System

Figure 1-5. Controller Logic Block Diagram

STORAGE

Controller main storage needed depends on the requirements of the user application network and on the control program that is being used (NCP or EP).

The basic 3725 includes 512K of main storage. Up to ten storage increments of 256 K each can be installed with the initial system or subsequently. This allows a maximum of 3072 K .

If the storage capacity for new orders is to be more than $2 M$ bytes then the 3 M byte capability (FC \#7101) is required. For existing controllers, see "Storage Increase" in Chapter 4.
Figure $1-6$ indicates storage requirements for some simple configurations.

User Application Network (or 3705 being replaced)	Storage Required
Replacement of a 3705 model A through H or 1 to 50 medium speed lines or 1 to 12 high speed lines	512 K (see note)
Replacement of a 3705 model J, K, or L	512 K or 768 K
More than 50 medium speed lines	768 K or 1024 K

Figure 1-6. Storage Requirements for Simple Configurations

Note: If the control program is EP, or if only asynchronous protocol is being used, 512K should be sufficient, whatever the number of terminals.

Complex configurations, using large control blocks, can require storage of up to $3 M$ bytes.

CHANNEL ADAPTER (CA)
A channel adapter feature (FC \#1561) allows communication with IBM System/370, IBM 3030, 4300, or 3081 Processors, or equivalent processors.

Channel adapters are ordered by quantity. To identify them on the 3725 control panel, they are assigned numbers that correspond to their installation sequence: CA-1 through CA-6 (see Figure 1-4).

TWO-PROCESSOR SWITCH (TPS)
A two-processor switch feature (FC \#8320), when added to a channel adapter, allows this adapter to connect to two I/O channels of two different hosts, or to two I/O channels of the same host.

Data transfer occurs on only one channel interface at a time. Manual switches on the 3725 control panel allow the user to enable both channel interfaces, one interface or the other, or neither interface.

In the case where both interfaces are enabled, the processors must resolve any contention.

TPS Location and Prerequisites

Like their corresponding channel adapters, TPSs occupy adjacent positions on the 3725 and 3726 . They are assigned numbers that correspond to their installation sequence: TPS-1 through TPS-4.

Each TPS requires a channel adapter. Only the first four CAs (CA-1 through CA-4) may be equipped with TPSS, and the total number of channel connections in a two-unit controller (CAs + TPSs) cannot exceed eight (see notes in figure 1-4).

LINE ATTACHMENT BASE (LAB)
The controller communicates with the user application network by means of scanners located on line attachment bases (LABs).

There are three types of $L A B: L A B$ type A (LABA), LAB type B ($L A B B$), and $L A B$ type C ($L A B C$). (See Figure 1-7.)

LAB positions 1 and 2 always contain LABAs (included in basic 3725). LAB positions 3 through 8 may contain either LABAs, LABBs, or LABCs depending on the speed and type of the connection.

Note: The scanner is part of a LAB and does not have to be ordered.

Figure 1-7. Types of Line Attachment Base
LAB Type A
A LABA has one scanner that manages up to 32 medium speed lines:

- In LAB locations 1 and 2, a LABA should not normally contain high speed lines (exceptions to this rule are given in Chapter 3).
- In LAB locations 3 through 8, a LABA contains only medium speed LICs (with speed category-A lines).

The maximum number of LICs is eight.
LAB Type B
A LABB has two scanners. Each scanner manages up to 16 medium and high speed lines (four LICs). The maximum number of LICs is eight. A LABB normally contains LICs with high speed lines, and may be "padded" with lower speed LICs.

LAB Type C
A LABC has one scanner that manages up to 16 lines (four LICs), and one multiplexer that manages up to four token-rings (four TICs).

LAB Location
LABs are assigned numbers corresponding to their installation sequence: $L A B-1$ to $L A B-8$ (see Figure 1-4). They are ordered by type and quantity, and their location need not be specified. If the location is to be specified, see "Appendix $D^{\prime \prime}$.

INTERFACE COUPLERS (LICS/TICS)

A LIC provides the interface between the communication scanner and the lines of the user application network. LICs are defined by their type, attachment, and weight.

A TIC provides the interface between the multiplexer of a LABC and a token－ring．More than one TIC can connect a LABC to a token－ring．

LIC Ports

There are five types of LIC．Each LIC type has its own feature code and supports a different interface（see Figure 1－10）．

LIC2，LIC3，or LIC4B can attach to only one high speed line （they are called one－port LICs）．

LIC1 and LIC4A can attach to up to four medium speed lines（they are called four－port LICs）．These four lines may have different speeds and protocols．A duplex line requires only one port of a LIC．

As shown in Figure 1－8，a LIC connects the controller to：
－Communication lines，via DCEs
－Autocall units（LICl only）
－DTEs in direct－attached mode（without DCEs）

＝ニニニニニ＝Cable
Communication line
Figure 1－8．Assigning Lines to LICs

An＂autocalled＂line requires two LIC ports：
－One LIC port（on a LICl only）for the autocall function， with a cable connected to the autocall unit（the weight assigned to that port is the minimum one）．
－One LIC port for the data transmission function，with a cable connected to the modem．

Direct Attachment
LICs that are specified for one or several direct－attached lines
are assigned a speed of 9600 bps at the plant．This speed may
be modified at installation time at the customer＇s premises．

The speed will then be applicable to all the lines that are directly attached to this LIC.

EP/BSC Tributary Station
If a line is defined, under EP/3725 Release 1 control program, to connect the 3725 as a tributary station while using BSC protocol, it must use the character mode. (See "Internal Clock Control", later in this chapter).

LIC Weight

A scanner has a maximum capacity. The term "LIC weight" refers to the percentage of scanner capacity consumed by a LIC. It must not exceed 100 .

The LIC weight is a value (12 to 100) attributed to a LIC at configuration time. This weight corresponds to the maximum load of the lines connected to that LIC. On LICs with several ports (LIC1 and LIC4A), the weight of the LIC is determined by the speed of the "heaviest" line (see Figure 1-9).

This weight is converted to a specify code (see Figure 1-10). This specify code is used by the plant to optimize the line traffic distribution and avoid scanner overload.

Figure 1-9. Example of LICs Filled in and Weighed

LIC Position on a LAB

LAB type A or LAB type B have eight positions, and a LAB type C four, in which a LIC can be installed (see Figure 1-7):

- Positions 1, 2, 3, and 4 are referred to as the left half-LAB.
- Positions 5, 6, 7, and 8 are referred to as the right half-LAB.

Different LIC types may be installed on the same LAB.

LIC Position and Prerequisites

LICs occupy adjacent positions within the LAB or half-LAB controlled by one scanner. (See "Chapter 3, Graphic
Configuration Procedure" for more details on LIC installation.) The types, quantities, and weights are specified. Positions need not be specified.
The main prerequisite of a LIC is the LAB. The quantity of LABs required depends mainly on the weight of the LICs. LICs with asynchronous (without modem clocking) or direct-attached devices require an internal clock control (ICC) on the LAB on which they are installed.

Interface	LIC Type	Cables (Note 1)	Protocol and Maximum Speed (in bps)	LIC Weight	Specify Code WOO ICC

$\begin{aligned} & \mathrm{RS232C} \\ & \mathrm{~V} .24 \\ & \mathrm{X} .21 \text { bis } \end{aligned}$	FC \#4C1	Four cables	BSC EBCDIC or SOLC HDX ≤ 9600 (Note 2)) or BSC ASCII or SDLC DX ≤ 4800 (Note 2)), or autocall (no ICC)	12	\#9101	\#9121
or			BSC EBCDIC $\leq 19200)$			
	(Note 7)		SDLC HDX $\leq 19200)$.	25	\#9105	\#9125
RS-366			BSC ASCII or SDLC DX ≤ 9600 (Note 2)	25	\#9102	\#9122
			BSC ASCII 14400	37	\#9106	-
			$\begin{array}{ll}\text { SDLC DX } 14400 \\ \text { BSC ASCII } & \leq 19200,\end{array}$	42	\#9107	-
V. 25			or SDLC DX ≤ 19200).	50	\#9103	\#9123
			Asynchronous S5 (Note 3)			
			≤ 1200	12	\#9101	\#9121
			2400	25	\#9102	\#9122
			≤ 4800................	50	\#9103	\#9123
			≤ 9600...............	100	\#9104	\#9124
			Asymehronous 55, character mode (Note 5)	100	\#9104	\#9124
			≤ 300................	12	-	\#9121
			≤ 600	18	-	\#9111
			≤ 1200	37	-	\#9112
			BSC in character mode ≤ 1200 (Note 6)..... (including tributary station)	42	-	\#9113

Wideband service	LIC2	One cable	BSC EBCDIC ≤ 64000 or SDLC HDX ≤ 72000.. or BSC ASCII or SDLC HDX ≤ 32000,	25	\#9201	-
8751	FC \#4921		BSC ASCII or SDLC DX ≤ 64000 (old)	. 42	\#9202	-
or 8801			(nex)	- 25	\#9201	-
or 8803	(Note 7)		SDLC HDX/DX ≤ 128000 SDLC HDX/DX ≤ 230400	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & \text { \#9204 } \\ & \text { \#9203 } \end{aligned}$	-

X. 21 medium speed	LIC4A	Four cables	SDLC HDX ≤ 9600 or SDLC DX ≤ 4800 SDLC FDX ≤ 9600	12 25	$\begin{aligned} & \text { \# } 9401 \\ & \text { \#9402 } \end{aligned}$	$\begin{aligned} & \text { \# } 9421 \\ & \# 9422 \end{aligned}$

X. 21 high speed	LIC4B	One cable	SDLC HDX ≤ 72000	25	\# 9403	\#9423
			SDLC DX ≤ 64000 (old)	42	\#9404	\# ${ }^{\text {9424 }}$
			(new)	25	\#9403	\#923
			SDLC HDX/DX ≤ 256000............................. (available in E/ME/A only)	100	\#9405	\# 9425

Figure 1-10. LIC Features and Specify Codes

Notes:

1. LIC1 or LIC4A are four-port LICs (4 cables). LIC2, LIC3, or LIC4B are one-port LICs (1 cable); see "Cable Ordering" in Chapter 4.
2. Speeds and/or LIC weights are not supported with control program EP/3725 Release 1 for tributary operations (see character mode).
3. a. Speeds and/or LIC weights are not supported if the control program level is ACF/NCP Version 2 or EP/3725 Release 1 (see character mode).
b. Weights and specify codes apply to most commonly used DTEs, that is DTEs using transmission codes with at least 10 bits per character (start, data/parity, stops) like ASCII.
c. DTEs using transmission codes with fewer than 10 bits per character (start, data/parity, stops) are also supported at speeds up to 600 bps .
4. At 14400 and 19200 bps , only two ports per LICl may be used. At 14400 bps the DTEs are clocked externally.
5. This mode is used only when the control program is ACF/NCP Version 2 or EP/3725 Release 1.
6. This mode is used only with control program EP/3725 Release 1 for tributary operations.
7. The maximum line speed supported with control program EP/3725 Release 2 for tributary operations is 19200 bps for LIC1, and 64000 bps for LIC2 and LIC3.

IIC Type, Position, and Prerequisites

There is one type of TIC with the feature code 4991 . The maximum number of TICs per LABC is four.

The only prerequisite is a LABC with an empty TIC position. The position occupied within a LABC by a TIC is not significant.

Note: TICs do not have a "weight" like LICs.

IIC Ports

> As shown in Figure 1-11, a TIC connects the controller to a token-ring.

Figure 1-11. Assigning a Token-Ring to a TIC

INTERNAL CLOCK CONTROL (ICC)

An internal clock control feature is needed when:

- A DCE is present but does not provide clocking. In this case, the DTE provides its own clocking and the ICC (FC \#4667) provides clocking to the 3725 at the following rates:
- Synchronous: 50, 110, 134.5, 200, 300, 600, and 1200 bps - Asynchronous: 50, 75, 100, 110, 134.5, 200, 300, 600, $1200,2400,4800,9600$, and 19200 bps.

Note: The speed of the ICC is set for each DTE, at control program generation time and must match that of the internal clock of the DTE.

- No DCE is present. Therefore, no DCE clocking is provided. The DTEs are direct-attached:
- The DTE provides its own clocking and the ICC provides clocking to the 3725 at the following rates:

Synchronous: 50, 110, 134.5, 200, 300, 600, and 1200 bps Asynchronous: 50, 75, 100, 110, 134.5, 200, 300, 600, 1200, 2400, 4800, 9600, and 19200 bps.

Note: The speed of the ICC is set for each DTE, at control program generation time and must match that of the internal clock of the DTE.

- The DTE does not provide its own clocking. DTE clocking is external. The ICC (FC \#4667) provides clocking to the 3725 and the DTE at the following rates:

Synchronous: 2400, 4800, 9600, 19 200, 56000 , and 245760 bps Asynchronous: $2400,4800,9600$, and 19200 bps.

Initially, the speed is set at 9600 bps and may be changed at installation on a per-LIC basis.

Note: ICC FC \#4666 will be replaced by FC \#4667. For availability dates, contact your IBM representative.

The example cases in this Chapter represent some common configurations that consider:

- The lines/token-rings in the network (Appendix A)
- The assignment of these lines/token-rings to LICs/TICs (Appendix B)
- The assignment of the LICs/TICs to LABs (Appendix C)
- The machines and features to be ordered for the network

Cases 11 and 12 are configurations that are attached to token-rings.

Case	Configuration Type	Case Characteristics
1	1 to 32 medium speed lines in BSC or SDLC	No asymchronous protocol. No high speed line.
2	Same as Case 1, but in WT E/ME/A	Different cable ordering.
3	1 to 32 medium speed lines (all protocols)	No high speed line. ICC for asynchromous.
4	Same as Case 3, but complicated example	Direct-attached devices.
5	1 to 12 medium speed lines, and 1 to 4 category-C speed lines	No need for second LAB (fewer than five LICs).
6	1 to 28 medium speed lines (all protocols) and 1 to 4 high speed lines (BSC, SDLC)	A few high speed lines. Requires a second LAB.
7	32 to 64 medium speed lines (all protocols)	No high speed lines. Requires a second LAB.
8	32 to 50 medium speed lines (all protocols) and 1 to 12 high speed lines (BSC, SDLC)	A few high speed lines. Requires third LAB (LABB).
9	97 to 256 medium speed lines (all protocols)	No high speed lines. Requires 3726 (fourth LAB).
10	65 to 256 medium speed lines (all protocols) and 1 to 4 high speed lines (BSC, SDLC)	Same as Case 9, but with a few high-speed lines.
11	Same as Case 7, plus two token-rings	Requires a second LAB and a LABC.
12	Same as Case 10, plus five token-rings	Requires two LABCs

Figure 2-1. Types of Configurations

1. Select from Figure 2-1 the case that best corresponds to the telecommunications environment.

The examples are shown for guidance only. If there is any doubt, or if the configuration differs greatly from the cases listed, use the graphic configuration procedure in Chapter 3.
2. Update Appendixes A and C to suit the end user's application network. Filling in Appendix B is an optional, intermediate step, that illustrates the configuration rules followed.
3. Add to or subtract from the order list, according to the requirements.

Note: Most of the feature codes and specify codes used here apply to interface CCITT V. 24 or RS232C for medium speed lines, and interface CCITT V. 35 for some high speed lines. Should other interfaces, such as X.21, be used substitute the corresponding feature and specify codes (see Figure 1-10).

CASE 1

Configuration Type
One to 32 low or medium speed lines in BSC or SDLC. No asynchronous, no high speed, no 9600 bps duplex, no direct-attached devices.

Characteristics

Small and simple configuration in the US and WT A/FE.
Line Example

> 5 lines using BSC EBCDIC at 9600 bps
> 16 lines using SDLC (HDX) at 4800 bps

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Boston 1	9600	BSC EBCDIC	RS-232C	B0S1	1404	0	
2	Atlanta 1	9600	BSC EBCDIC	RS-232C	ATLI	1404	1	
3	Dallas 1	9600	BSC EBCDIC	RS-232C	DALI	1404	2	
4	Miami 1	9600	BSC EBCDIC	RS-232C	MIA1	1404	3	
5	Boston 2	9600	BSC EBCDIC	RS-232C	Bos2	1404	4	
6	Boston 3	4800	SDLC (HDX)	RS-232C	B0S3	1404	5	
7	Boston 4	4800	SDLC (HDX)	RS-232C	B0S4	1404	6	
8	Chicago 1	4800	SDLC (HDX)	RS-232C	CHII	1404		
9	Chicago 2	4800	SDLC (HDX)	RS-232C	CHI2	1404	8	
10	Seattle 1	4800	SDLC (HDX)	RS-232C	SEAI	1404	9	
11	Miami 2	4800	SDLC (HDX)	RS-232C	MIA2	1404	10	
12	Miami 3	4800	SDLC (HDX)	RS-232C	MIA3	1404	11	
13	Miami 4	4800	SDLC (HDX)	RS-232C	MIA4	1404	12	
14	Miami 5	4800	SDLC (HDX)	RS-232C	MIA5	1404	13	
15	Los Angeles 1	4800	SDLC ($H D X$)	RS-232C	LA-1	1404	14	
16	Los Angeles 2	4800	SDLC (HDX)	RS-232C	LA-2	1404	15	
17	San Francisco 1	4800	SOLC (HDX)	RS-232C	SF-1	1404	16	
18	San Francisco 2	4800	SDLC (HDX)	RS-232C	SF-2	1404	17	
19	Hartford 1	4800	SDLC (HDX)	RS-232C	HAR1	1404	18	
20	Hartford 2	4800	SDLC (HDX)	RS-232C	HAR2	1404	19	
21	Hartford 3	4800	SDLC (HDX)	RS-232C	HAR3	1404	20	

LIC Contents

BOSI ATLI DAL1 MIA1	$\begin{aligned} & \text { BOS2 } \\ & \text { BOS3 } \\ & \text { BOS4 } \\ & \text { CHI } \end{aligned}$	CHI2 SEAI MIA2 MIA3	MIA4 MIA5 LA-1 LA-2	SF-1 SF-2 HAR1 HAR2	HAR 3 free free free	
$\begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \\ & \text { SC } 9101 \end{aligned}$	LIC1 Ht= 12 SC 9101	$\begin{aligned} & \text { LICI } \\ & \text { Wt }=12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt }=12 \\ & \text { SC } 9101 \end{aligned}$	

LAB-1 Contents

This figure shows how the lines will be connected to the controller. The line addresses are required when generating the control program.

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	28	24	20 HAR3	16 SF-1	12 MIA4	8 CHI2	4 B0s2	0 BOS1
	29	25	21 free	17 SF-2	13 MIA5	9 SEAI	5 Bos3	1 ATLI
	30	26	22 free	18 HAR1	14 LA-1	10 MIAZ	6 BOS4	2 dall
Weight Sum:	31	27	23 free	19 HAR2	15 LA-2	11 MIA3	7 CHI 1	3 MIAI
72	free	free	$\begin{aligned} & \operatorname{LIC1} \\ & \mathrm{LIT}_{t}=12 \end{aligned}$	$\operatorname{LICl}_{W t}^{\text {LIC }}=12$	$\begin{aligned} & \text { LIC1 } \\ & \mathbf{L W t}^{2}=12 \end{aligned}$	$\begin{aligned} & \text { LIC. } \\ & \mathrm{Wt}=12 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & W t=12 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \omega t=12 \end{aligned}$
ICC:			FC \#4911	$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC \#4911 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC \#4911 } \end{aligned}\right.$	Wt $=12$ FC \$4911	FC $\$ 4911$	FC $\$ 4911$
NO			SC \#9101	SC \#9101	SC \#9101	Sc \#9101	Sc. \#9101	Sc \#9101

Notes:

1. All LICs being of equal weight and all cables being identical, you could change the position of the lines on those six LICs without any impact on throughput (but check that the line addresses correspond to those assigned at SYSGEN time).
2. LICl being a four-port LIC (four cables), three more lines may be installed later (category-A speed, weight 12).
3. Total LAB-1 weight being 72, LIC positions 7 and 8 are free: you can install up to two LICs in these positions, provided the total ($72+$ new LIC weights) does not exceed 100 .

Order List

$\begin{array}{ll} 1 & 3725 \\ 1 & F C \\ \text { \#1561 (CA) } \\ 6 & \text { FC } \# 4911 \text { (LIC1) } \\ & 6 \text { SC \#9101 } \end{array}$	512K of storage are included Channel adapter in position 1 (CA-1) One FC \#4911 for each LIC1 (four lines or fewer) One SC \#9101 for each LICl weight 12 (modem-attached) Notes: 1. Color, voltage, and language need not be specified if the country default options satisfy the requirements. In Case 1, the defaults are: Pearl white (Blue in Canada), $60 \mathrm{~Hz}, 208 \mathrm{~V}$, and US English. 2. LAB-1 is included in 3725 unit. Do NOT order it.
24 CG \#1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).

13727	Primary operator console

Configuration Type

One to 32 low or medium speed lines in BSC or SDLC. No asynchronous, no high speed, no 9600 bps duplex, no direct-attached devices.

Characteristics
Small and simple configuration in WT E/ME/A.

Line Example

5 lines using BSC EBCDIC at 9600 bps
16 lines using SDLC (HDX) at 4800 bps

Appendix A Contents

LIC Contents

LAB-1 Contents

This figure shows how the lines will be connected to the controller. The line addresses are required when generating the control program.

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	28	24	20 BON3	16 LYO1	12 PAR4	8 6LA2	4 LON2	0 LONI
	29	25	21 free	17 LYO2	13 PAR5	9 DUB1	5 LON3	1 ORLI
	30	26	22 free	18 BONI	14 NIC1	10 PAR2	6 L.ON4	2 MADI
Weight	31	27	23 free	19 BON2	15 NIC2	11 PAR3	7 glal	3 PAR1
72	free	free	LITI	LIC1	LIC1	LIC1	LIC1	LIC1
ICC:			$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC } \end{aligned}\right.$	Wt $=12$ FC \#4911	Wt $=12$ FC \#4911	Wt $=12$ FC \#4911	$\mathrm{Wt}=12$ FC \#4911	$\mathrm{Wt}=12$ FC
NO			SC \#9101					

Notes:

1. All LICs being of equal weight and all cables being identical, you could change the position of the lines on those six LICs without any impact on throughput (but check that the line addresses correspond to those assigned at SYSGEN time).
2. LICl being a four-port LIC (four cables), three more lines may be installed later (category-A speed, weight 12).
3. Total LAB-1 meight being 72, LIC positions 7 and 8 are free: you can install up to two LICs in these positions, provided the total ($72+$ new LIC meights) does not exceed 100.

Order List

13727 Primary operator console

One to 32 low or medium speed lines in BSC or SDLC, and asynchronous. No category-B speed line (9600 bps duplex). No category-C speed line (high speed). No direct-attached devices.

Characteristics
Internal clock control (ICC) feature required for asynchronous lines.

Line Example

$$
\begin{aligned}
& 7 \text { lines using start-stop at } 1200 \mathrm{bps} \\
& 18 \text { lines using sDLC (HDX) at } 4800 \mathrm{bps}
\end{aligned}
$$

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Dial-up 1	1200	Start-stop	RS-232C	DU1	1404	0	
2	Dial-up 2	1200	Start-stop	RS-232C	DU2	1404	1	
3	Dial-up 3	1200	Start-stop	RS-232C	DU3	1404	2	
4	Dial-up 4	1200	Start-stop	RS-232C	DU4	1404	3	
5	Dial-up 5	1200	Start-stop	RS-232C	DU5	1404	4	
6	Dial-up 6	1200	Start-stop	RS-232C	DU6	1404	5	
7	Dial-up 7	1200	Start-stop	RS-232C	DU7	1404	6	
8	Chicago 1	4800	SDLC (HDX)	RS-232C	CHII	1404	7	
9	Chicago 2	4800	SDLC (HDX)	RS-232C	CHI2	1404	8	
10	Seattle 1	4800	SDLC (HDX)	RS-232C	SEA1	1404	9	
11	Miami 1	4800	SDLC (HDX)	RS-232C	MIAI	1404	10	
12	Miami 2	4800	SDLC (HDX)	RS-232C	MIA2	1404	11	
13	Miami 3	4800	SDLC (HDX)	RS-232C	MIA3	1404	12	
14	Miami 4	4800	SDLC (HDX)	RS-232C	MIA4	1404	13	
15	Los Angeles 1	4800	SDLC (HDX)	RS-232C	LA-1	1404	14	
16	Los Angeles 2	4800	SDLC (HDX)	RS-232C	LA-2	1404	15	
17	San Francisco 1	4800	SDLC (HDX)	RS-232C	SF-1	1404	16	
18	San Francisco 2	4800	SDLC (HDX)	R5-232C	SF-2	1404	17	
19	Hartford 1	4800	SDLC (HDX)	RS-232C	HAR1	1404	18	
20	Hartford 2	4800	SDLC (HDX)	RS-232C	HAR2	1404	19	
21	Hartford 3	4800	SDLC (HDX)	RS-232C	HAR3	1404	20	
22	New York 1	4800	SDLC (HDX)	RS-232C	NY1	1404	21	
23	New York 2	4800	SDLC (HDX)	RS-232C	NY2	1404	22	
24	Buffalo 1	4800	SDLC (HDX)	RS-232C	BUF1	1404	23	
25	Buffalo 2	4800	SDLC (HDX)	R5-2326	BUF2	1404	24	

Note: Column 'Line Addr' is filled in after the LICs are assigned to LABs.

LIC Contents

DU1	c
DU2	c
DU3	C
DU4	C
LICI C Wt $=12$ SC 9121${ }^{2}$	

| DU5 C
 DU6 C
 DU7 C
 CHI1 |
| :--- | :--- |
| LIC1
 Wt=12
 SC 9121 |
| CHI2
 SEA1
 MIA1
 MIA2 |
| LIC1
 Wt=12
 SC 9101 |
| MIA3
 MIA4
 LA-1
 LA-2 |
| LIC1
 Wt $=12$
 SC 9101 |

SF-1
SF-2
HAR1
HAR2
LIC1
Wt=12
SC 9101

$\left.\left.\left.\left.\begin{array}{|l|l|}\hline \text { HAR3 } \\ \text { NY-1 } \\ \text { NY-2 } \\ \text { BUF1 }\end{array}\right] \begin{array}{l}\text { BUF2 } \\ \text { free } \\ \text { free } \\ \text { free }\end{array}\right] \begin{array}{|l|l}\hline \text { LIC1 } \\ \text { Wt= 12 } \\ \text { SC } 9101\end{array}\right] \begin{array}{|}\hline \text { LIC1 } \\ \text { St } 12 \\ \text { SC } 9101\end{array}\right]$

Notes:

1. Asymchronous lines and LICs requiring clocking are marked 'C'.
2. On LICs, install lines with ICC requirement first (LIC rule 4).

LAB-1 Contents

This figure shows the machine layout. It corresponds to the configuration data set supplied by the plant. It is required to generate the control program.

LAB-1 type A	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos.
	28	24 BUF2	20 HAR3	16 SF-1	12 MIA3	8 CHI 2	4 DU5 C	0 DU1 C
	29	25 free	$21 \mathrm{NY}-1$	17 SF-2	13 MIA4	9 SEAI	5 DUS C	1 due C
	30	26 free	22 La-1	18 MIA2	14 LA-1	10 MIAI	6 du7 C	2 dus C
Weight	31	27 free	23 buFI	19 HAR2	15 La-2	11 MIA	7 CHII	3 DU4 C
84	Free	LIC1	LIC1	LIC1	LIC1	LIC1	LIC1 C	LIC1 C
ICC:---		$\left\lvert\, \begin{aligned} & W_{t}=12 \\ & \text { FC \#4911 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} \text { \#911 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} \text { \#4911 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} 4911 \end{aligned}\right.$	$\begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} \text { \#4911 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} \text { \# } 4911 \end{aligned}\right.$	$\begin{aligned} & \mathrm{Wt}=12 \\ & \mathrm{FC} \end{aligned}$
FC4666 or		SC \#9101	SC \#9101	SC \#9101	SC. \#9101	SC \#9101	SC \#9121	SC \#9121

Notes:

1. LICl being a four-port LIC (four cables), three more lines may be installed later (category-A speed, weight 12).
2. Total LAB-1 weight being 84, LIC position 8 is marked 'free': one more LIC (weight 12) can be installed in this position.
3. Lines requiring an ICC can share a LIC with other types of line. The specify code to be used is the one for ICC (SC \#9121 for LIC position 2 in this example).
4. On LAB-1, start with LIC requiring ICC (LAB rule 4).

Order List

13725	512 K of storage are included
1 FC \#1561 (CA)	Chanmel adapter in position 1 (CA-1)
$\begin{gathered} 7 \text { FC \#4911 (LIC1) } \\ 5 \text { SC \#9101 } \\ 2 \text { SC \#9121 } \end{gathered}$	One FC \#4911 for each LICI (four lines or fewer) One SC \#9101 for each LICI weight 12 (BSC or SDLC) One SC \#9121 for each LIC1 weight 12 (1200 bps Start-stop)
1 FC \#4666 or FC \#4667	One ICC required for asynchronous lines on LAB-1 Notes: 1. Default color, voltage, and language are used. 2. LAB-1 is included in 3725 unit. Do NOT order it.
28 CG \#1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).

13	3727	Primary operator console

CASE 4

Configuration Type

One to 32 low or medium speed lines using BSC or SDLC, and asynchronous. Some devices connected directly (without a DCE). Only Category-A speed lines (no 9600 bps duplex, no high speed).

Characteristics
Similar to Case 3 , but the example is more complicated. Shows different line speeds mixed on one LIC.

Line Example
3 lines using start-stop at 2400 bps (modem-attached)
4 lines using start-stop at 300 bps (modem-attached)
6 lines using SDLC (HDX) at 9600 bps (direct-attached)
2 lines using SDLC (HDX) at 4800 bps (modem-attached)
4 lines using SDLC (DX) at 4800 bps (mrodem-attached)
6 lines using BSC EBCDIC at 4800 bps (modem-attached)

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Dial-up 1	2400	Start-stop	RS-232C	DU1	1404	24	
2	Dial-up 2	2400	Start-stop	RS-232C	DU2	1404	25	
3	Dial-up 3	2400	Start-stop	RS-232C	DU3	1404	26	
4	Dial-up 4	300	Start-stop	RS-2326	DU4	1404	27	
5	Dial-up 5	300	Start-stop	RS-232C	DU5	1404	0	
6	Dial-up 6	300	Start-stop	RS-232C	DU6	1404	1	
7	Dial-up 7	300	Start-stop	RS-232C	DU7	1404	2	
8	Local 1	9600	SDLC (HDX)	RS-232C	None	1400	3	
9	Local 2	9600	SDLC (HDX)	RS-232C	None	1400	4	
10	Local 3	9600	SDLC (HDX)	RS-232C	None	1400	5	
11	Local 4	9600	SDLC (HDX)	RS-232C	None	1400	6	
12	Local 5	9600	SDLC (HDX)	RS-232C	None	1400	7	
13	Local 6	9600	SDLC (HDX)	RS-232C	None	1400	8	
14	Miami 1	4800	SDLC (HDX)	RS-232C	MIAI	1404	9	
15	Los Angeles 1	4800	SDLC (HDX)	RS-232C	La-1	1404	10	
16	Los Angeles 2	4800	SDLC (DX)	RS-232C	LA-2	1404	11	
17	San Francisco 1	4800	SDLC (DX)	RS-232C	SF-1	1404	12	
18	San Francisco 2	4800	SDLC (DX)	RS-232C	SF-2	1404	13	
19	Hartford 1	4800	SDLC (DX)	RS-232C	HARI	1404	14	
20	Hartford 2	4800	BSC EBCDIC	RS-232C	HAR2	1404	15	
21	Hartford 3	4800	BSC EBCDIC	RS-232C	HAR3	1404	16	
22	New York 1	4800	BSC EBCDIC	RS-232C	NY1	1404	17	
23	New York 2	4800	BSC EBCDIC	RS-232C	NY2	1404	18	
24	Buffalo 1	4800	BSC EBCDIC	RS-232C	BuF 1	1404	19	
25	Buffalo 2	4800	BSC EBCDIC	RS-232C	BUF2	1404	20	

LIC Contents

Notes:

1. Asynchronous lines and LICs requiring clocking are marked ' C '. Lines attached directly to DTEs (without DCE) are marked 'D' to show that a direct-attached cable group is needed.
2. On LICs, when line weights are equal, install lines with ICC requirement first, asynchronous lines followed by direct-attached lines (LIC rule 4).

LAB-1 Contents

This figure shows the machine layout. It corresponds to the configuration data set supplied by the plant. It is required to generate the control program.

LAB-1 type A	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	28	24 OUl c	20 buF2	16 HAR3	$12 \mathrm{SF}-1$	8 Loc6 D	4 Loc2 D	0 Dus C
	29	25 DU2 C	21 free	$17 \mathrm{NY}-1$	13 SF-2	9 MIA1	5 Loc3 D	1 DU6 C
	30	26 DU3 C	22 free	$18 \mathrm{NY}-2$	14 HAR1	10 LA-1	6 Loc4 D	2 Du7 C
Weight Sum:	31	27 DU4 c	23 free	19 BUF1	15 HaR2	111 LA-2	7 Loc5 D	$\left\lvert\, \begin{aligned} & 3 \text { Locl } 0 \\ & -10 . \end{aligned}\right.$
97	N/A	$\begin{aligned} & \text { LIC1 } C \\ & \text { Wt }=25 \end{aligned}$	$\left.\right\|_{\mathrm{LIC1}} ^{\operatorname{LIC}=12}$	$\left.\right\|_{\mathrm{Wt}=12} ^{\text {LIC1 }}$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \end{aligned}\right.$	$\left.\right\|_{\text {LIC1 }} ^{\text {LIC }} 12 \mathrm{C}$	$\left.\right\|_{\mathrm{Wt}=12} ^{\text {LIC1 }}$
ICC: Y		FC \#4911						
$\left\|\begin{array}{l} \text { FC4666 } \\ \text { or } \\ \text { FC } 4667 \end{array}\right\|$		SC \#9122	SC \#9101	SC \#9101	SC. \#9101	SC \#9121	SC \#9121	SC \#9121

Notes:

1. LIC1 being a four-port LIC (four cables), three more lines may be installed later (category-A speed, weight 12).
2. Total LAB-1 weight being 97, LIC position 8 is marked 'not available' (N/A): no LIC can be installed in this position (minimm LIC weight being 12, the total would exceed 100).
3. Lines requiring an ICC can share a LIC with other types of line. The specify code to be used is the one for ICC (SC \#9121 for LIC position 3 in this example).
4. On LAB-1, start with lowest weight LICs (LAB rule 1), and when LIC weights are equal, start with LICs requiring clocking (LAB rule 4).

Order List

13727	Primary operator console

Configuration Type
One to 12 low and medium speed lines, and 1 to 4 lines of category-C speed (> 9600 bps duplex).

Characteristics

The limited number of lines allows high speed lines on left half of $L A B-1$ ($L A B$ rule 8).

Line Example

```
l line using SDLC (DX) at 56 000 bps (category-C speed, V.35)
4 lines using SDLC (DX) at 9600 bps (category-B speed)
6 lines using BSC EBCDIC at 4800 bps
```

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Boston 1	9600	SDLC (DX)	RS-232C	B0S1	1404	8	
2	Atlanta 1	9600	SDLC (DX)	RS-232C	ATLI	1404	9	
3	Dallas 1	9600	SDLC (DX)	RS-232C	dall	1404	10	
4	Miami 1	9600	SDLC (DX)	RS-232C	MIAI	1404	11	
5	New York 1	56000	SDLC (DX)	V. 35	NY-1	0087	12	
6	Los Angeles 1	4800	BSC EBCDIC	RS-232C	LA-1	1404	0	
7	Los Angeles 2	4800	BSC EBCDIC	RS-232C	LA-2	1404	1	
8	San Francisco 1	4800	BSC EBCDIC	RS-232C	SF-1	1404	2	
9	San Francisco 2	4800	BSC EBCDIC	RS-232C	SF-2	1404	3	
10	Hartford 1	4800	bSC EbCDIC	RS-232C	HARI	1404	4	
11	Hartford 2	4800	BSC EBCDIC	RS-232C	HAR2	1404	5	

Note: 'Line Addr' column is filled in after the LICs are assigned to LABs.

LIC Contents

$N Y-1$
N / A
N / A
N / A
LIC3
$W t=42$
$S C 9302$

BOS1
ATLI
DAL1
MIAL
LIC1
Wt $=25$
SC 9102

$L A-1$
$L A-2$
$S F-1$
$S F-2$
LICI
$W t=12$
$S C 9101$

HAR1
HAR2
free
free
LIC1
Wt= 12
SC 9101

Note: On LICs, install lines with heaviest weights first (LIC rule 2).

LAB-1 Contents

This figure shows the machine layout. It corresponds to the configuration data set supplied by the plant. It is required to generate the control program.

LAB-1 type A	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	28	24	20	16	$12 \mathrm{NY}-1$	8 BOS1	4 HARI	0 LA-1
	29	25	21	17	$13 \mathrm{~N} / \mathrm{A}$	9 ATLl	5 HAR2	1 La-2
	30	26	22	18	$14 \mathrm{~N} / \mathrm{A}$	10 dall	6 free	2 SF-1
Weight Sum: 91	31	27	23	19	$15 \mathrm{~N} / \mathrm{A}$	11 MIAI	7 free	3 SF-2
	N/A	N/A	N/A	N/A	LIC3 $\mathrm{Wt}=42$	LIC1 ${ }_{\text {Wt }}=25$	$\mathrm{LICI}_{\text {LIC }}=12$	${ }_{W}^{\text {LICI }}=12$
ICC:					$\left\lvert\, \begin{aligned} & \text { Wt }=42 \\ & \text { FC } \end{aligned} \mathbf{\# 4 9 3 1}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Wt}=25 \\ & \mathrm{FC} \text { \# } 4911 \end{aligned}\right.$	Wt $=12$ FC \#4911	$\left\lvert\, \begin{aligned} & W t=12 \\ & F C \end{aligned}\right.$
NO					SC \#9302	SC \#9102	SC \#9101	SC \#9101

Notes:

1. On LAB-1, start with LICs with lowest weights (LAB rule 1).
2. On LAB-1, which is a LAB type A, you may install category-C speed lines (>9600 bps) in the left part of the right half-LAB if no lower speed LIC remains to be installed (LAB rule 8, exception to LAB rule 5).
3. When a category-C speed LIC (> 9600 bps duplex) is installed on a LABA, LIC positions 5, 6, 7, and 8 are marked 'not available' (N/A): no LICs can be installed in these positions.

Order List

```1 3725 1 FC #1561 (CA) 3 FC #4911 (LIC1) 2 SC #9101 1 SC #9102 1 FC #4931 (LIC3) 1 SC #9302```	512K of storage are included   Channel adapter in position 1 (CA-1)   One FC \#4911 for each LICl (four lines or fewer) One SC \#9101 for each LICl weight 12 (modem-attached) One SC \#9102 for each LIC1 weight 25 ( 9600 bps duplex) One FC \#4931 for each LIC3 (one line only) One SC \#9302 for each LIC3 weight 42 (modem-attached)   Notes: 1. Default color, voltage, and language are used.   2. LAB-1 is included in 3725 unit. Do NOT order it.
$\begin{array}{rr} 12 \text { CG } & \# 1404 \\ 1 \text { CG } & \# 0087 \end{array}$	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).


13727	Primary operator console

## Configuration Type

One to 32 low and medium speed lines in BSC, SDLC, and asynchronous, and 1 to 4 lines of speed category-C (>9600 bps duplex). Some direct-attached devices.

## Characteristics

Like Case 5, but a second LAB is required.
Line Example

$$
\begin{aligned}
& 4 \text { lines using sDLC (DX) at } 19200 \text { bps (category-C speed) } \\
& 4 \text { lines using SDLC (DX) at } 9600 \mathrm{bps} \text { (category-B speed) } \\
& 8 \text { lines using SDLC (HDX) at } 4800 \mathrm{bps} \text { (direct-attached) } \\
& 10 \text { lines using BSC EBCDIC at } 4800 \text { bps (modem-attached) }
\end{aligned}
$$

## Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Boston 1	19200	SDLC (DX)	RS-232C	BOS1	1404	32	
2	Atlanta 1	19200	SDLC (DX)	RS-232C	ATLI	1404	33	
3	Dallas 1	19200	SDLC (DX)	RS-232C	dall	1404	34	
4	Miami 1	19200	SDLC ( $D X$ )	RS-232C	MIA1	1404	35	
5	Boston 2	9600	SDLC ( $D X$ )	RS-232C	BOS2	1404	20	
6	Boston 3	9600	SDLC ( $\mathrm{SX}^{\text {) }}$	RS-232C	B0S3	1404	21	
7	Boston 4	9600	SDLC (DX)	RS-232C	B0S4	1404	22	
8	Boston 5	9600	SDLC (DX)	RS-232C	B0S5	1404	23	
9	Local 1	4800	SDLC (HDX)	RS-232C	None	1400	0	
10	Local 2	4800	SDLC (HDX)	RS-232C	None	1400	1	
11	Local 3	4800	SDLC (HDX)	RS-232C	None	1400	2	
12	Local 4	4800	SDLC ( HDX )	RS-232C	None	1400	3	
13	Local 5	4800	SDLC (HDX)	RS-232C	None	1400	4	
14	Local 6	4800	SDLC (HDX)	RS-232C	None	1400	5	
15	Local 7	4800	SDLC (HDX)	RS-232C	None	1400	6	
16	Local 8	4800	SDLC (HDX)	RS-232C	None	1400	7	
17	Los Angeles 1	4800	BSC EBCDIC	RS-232C	LA-1	1404	8	
18	Los Angeles 2	4800	BSC EbCDIC	RS-232C	LA-2	1404	9	
19	Los Angeles 3	4800	BSC EBCDIC	RS-232C	LA-3	1404	10	
20	Los Angeles 4	4800	BSC EBCDIC	RS-232C	LA-4	1404	11	
21	Los Angeles 5	4800	BSC EbCDIC	RS-232C	LA-5	1404	12	
22	Los Angeles 6	4800	BSC EBCDIC	RS-232C	LA-6	1404	13	
23	Hartford 1	4800	BSC EBCDIC	RS-232C	HAR1	1404	14	
24	Hartford 2	4800	BSC EbCDIC	RS-232C	HAR2	1404	15	
25	Hartford 3	4800	BSC EBCDIC	RS-232C	har3	1404	16	
26	Hartford 4	4800	BSC EBCDIC	RS-232C	HAR4	1404	17	

## LIC Contents

BOS 1	B0S2
ATLI	B0S3
DALI	B0S4
MIA1	B0S5
LICI	LIC1
$\omega t=50$	Wt=25
Sc 9103	SC 9102


$\operatorname{Loc} 1$	$D$
$\operatorname{Loc} 2$	$D$
$\operatorname{Loc} 3$	$D$
$\operatorname{Loc} 4$	$D$
LIC1	$C$
Wt=12	
SC 9121	


| Loc5 | $D$ |
| :--- | :--- | :--- |
| Loc6 | $D$ |
| Loc7 | $D$ |
| Loc8 | $D$ |
| LIC1 | $C$ |
| Wt=12 |  |
| SC 9121 |  |


| LA-1 |
| :--- | :--- |
| LA-2 |
| LA-3 |
| LA-4 |
| LIC1 |
| Wt=12 |
| SC 9101 |
| LA-5 |
| HAR1 |
| HAR2 |
| LIC1 |
| Wt= 12 |
| SC 9101 |


HAR3
HAR4
free
free
LICl
Wt= 12
SC 9101



## Notes:

1. Asymchronous lines and LICs requiring clocking are marked ' $C$ '. Lines attached directly to DTEs (without DCE) are marked 'D' to show that a direct-attached cable group is meeded.
2. On LICs, install lines with heaviest weights first (LIC rule 2); and when line weights are equal, install lines with ICC requirement first (LIC rule 4).
$\angle A B-1$ and $L A B-2$ Contents

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
pe	28	24	20 BOS2	16 HAR3	12 LA-5	8 LA-1	4 Loc5 D	0 Locl D
	29	25	21 B0S3	17 HAR4	13 LA-6	9 LA-2	5 Loc6 D	1 Loc2 D
	30	26	$22 \mathrm{BOS4}$	18 free	14 Harl	10 LA-3	6 Loc7 D	$2 \operatorname{Loc} 3 \mathrm{D}$
Weight	31	27	23 BOS5	19 free	15 HAR2	11 LA-4	7 Loc8 D	3 Loc4 0
Sum:	N/A	free	LIC1	LIC1	LICI	LIC1	LIC1	LIC1 C
-------			Wt $=25$	Wt $=12$	$W \mathrm{t}=12$	Wt $=12$	Wt $=12$	Wt $=12$
ICC: Y			FC \#4911	FC \#4911	FC \#4911	FC \#4911	FC 4.411	FC \#4911
FC4666   or			SC \#9102	SC \#9101	SC \#9101	SC \#9101	SC \#9121	SC \#9121


LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	32 BOSI	36	40	44	48	52	56	60
	33 ATLl	37	41	45	49	53	57	61
	34 DALI	38	42	46	50	54	58	62
Weight	35 MIAI	39	43	47	51	55	59	63
50	LIC1 50	free	free	free	N/A	N/A	N/A	N/A
ICC:   NO	$\left\lvert\, \begin{aligned} & \text { Wt }=50 \\ & \text { FC } \# 4911 \\ & \text { SC } \# 9103 \end{aligned}\right.$							

Notes:

1. On LAB-1, start with LICs with lowest weights (LAB rule 1), and when weights are equal, start with LICs requiring clocking.
2. LAB-1 should not be used for category-C speed lines (LAB rule 5). LAB rule 8 gives the exception to this rule.
3. Total LAB-1 weight being 85 , LIC position 7 is marked 'free': one more LIC (weight 12) can be installed.
4. On LAB-2, which is a LAB type A, you may install category-C speed lines ( $>9600$ duplex) in the left half-LAB if no lower speed LIC remains to be installed (LAB rule 8, exception to LAB rule 5). LIC positions 5 through 8 are marked 'not available' (N/A).
5. Weight sum of CS position 1 on LAB-2 being 50, LIC positions 2, 3, and 4 are marked 'free': up to three more LICs can be installed.

Order List

13725   1 FC \#1561 (CA)   7 FC \#4911 (LIC1)   2 SC \#9121   3 SC \#9101   1 SC \#9102   1 SC \#9103   1 FC \#4666 or FC \#4667	512 K of storage are included   Channel adapter in position 1 (CA-1)   One SC \#4911 for each LIC1 (four lines or fewer)   One SC \#9121 for each LIC1 weight 12 (direct-attached)   One SC \#9101 for each LICl weight 12 (BSC or SDLC)   One SC \#9102 for each LICI weight 25 ( 9600 duplex)   One SC \#9103 for each LIC1 weight 50 (19 200 bps)   One ICC required for direct-attached lines on LAB-1   Notes: 1. Default color, voltage, and language are used   2. $L A B-1$ and $L A B-2$ are included in 3725 unit. Do NOT order them.
$\begin{aligned} 20 & \text { CG } \end{aligned} \#_{1404}^{8} \text { CG } \quad \# 1400$	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).


13727	Primary operator console

From 32 to 64 low and medium speed lines in BSC, SDLC, and asynchronous, modem-attached or direct-attached. No high speed, no 9600 bps duplex.

## Characteristics

Requires second $L A B$. Has an alternate connection to a second host processor.

## Line Example

```
10 lines using SDLC (HDX) at 4800 bps (direct-attached)
30 lines using BSC EBCDIC at 9600 bps (modem-attached)
12 lines using start-stop at 1200 bps (modem-attached)
```


## Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Local	4800	SDLC ( HDX )	RS-232C	None	1400	12	
2	Local 2	4800	SDLC (HDX)	RS-232C	None	1400	13	
3	Local 3	4800	SDLC (HDX)	RS-232C	None	1400	14	
4	Local 4	4800	SDLC (HDX)	RS-232C	None	1400	15	
5	Local 5	4800	SDLC (HDX)	RS-232C	None	1400	16	
6	Local 6	4800	SDLC (HDX)	RS-232C	None	1400	17	
7	Local 7	4800	SDLC (HDX)	RS-232C	None	1400	18	
8	Local 8	4800	SDLC (HDX)	RS-232C	None	1400	19	
9	Local 9	4800	SDLC (HDX)	RS-232C	None	1400	20	
10	Local 10	4800	SDLC (HDX)	RS-232C	None	1400	21	
11-40	(New York 1-30)	9600	BSC EBCDIC	R5-232C	NY1-30	1404	22-51	
41-52	(Dial-up 1-12)	1200	Start-stop	RS-232C	DU1-12	1404	0-11	

## LIC Contents

DU1 c	Du5 c
DU2 c	Du6 C
DU3 C	DU7 C
DU4 C	DU8 C
$\begin{array}{ll}\text { LIC1 } \\ \\ \omega t=12 & C\end{array}$	
WC 9121	SC 9121


Du9 c	Locl D	Loc5 D
DU10 C	Loc2 D	Loc6 D
DU11 C	Loc3 D	Loc7 D
DU12 c	Loc 4 D	Loc8 D
$\operatorname{LIC1}_{W} \mathbf{C}=12$	LIC1 C	LIC1 C
Wt=12	$\mathrm{Wt}=12$	$W_{t=12}$
SC 9121	SC 9121	SC 9121



$N Y-11$
$N Y-12$
$N Y-13$
$N Y-14$
LICI
Wt $=12$
SC 9101


$N Y-15$
$N Y-16$
$N Y-17$
$N Y-18$
LIC1
Wt $=12$
SC 9101


NY-19
$\mathrm{NY}-20$
$\mathrm{NY}-21$
$\mathrm{NY}-22$
LIC1
$\mathrm{Wt}=12$
SC 9101


$N Y-23$
$N Y-24$
$N Y-25$
$N Y-26$
LIC1
Wt=12
SC9101


$N Y-27$
$N Y-28$
$N Y-29$
$N Y-30$
LIC1
Wt $=12$
SC 9101



## Notes:

1. Asynchronous lines and LICs requiring clocking are marked 'C'. Lines attached directly to DTEs (without DCE) are marked ' $D$ ' to show that a direct-attached cable group is needed.
2. On LICs, install lines with ICC requirement first (LIC rule 4).
$\angle A B-1$ and $\angle A B-2$ Contents

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	$28 \mathrm{NY}-7$	24 NY-3	$20 \operatorname{Loc} 9 \mathrm{D}$	16 Loc5 0	12 Locl D	8 DU9 C	4 DUS C	0 DU1 C
	$29 \mathrm{NY}-8$	25 NY-4	21 Loc10 D	17 Loc6 D	13 Loc2 D	9 DU10 C	5 DU6 C	1 DUZ C
	30 NY-9	26 NY-5	22 NY-1	18 Loc7 D	14 Loc3 D	10 DUII C	6 DU7 C	2 DU3 C
Weight	31 NY-10	27 NY-6	23 NY-2	19 Loc8 D	15 Loc4 D	11 DU12 C	7 DU8 C	3 DU4 C
Sum:	LIC1	LIC1	LIC1 C	LICl C	LICl C	LICl C	LICI C	LIC1 C
	Wt $=12$	Wt $=12$	Wt $=12$	$\omega t=12$	Wt $=12$	$\mathbf{W t}=12$	Wt $=12$	$\mathrm{Wt}=12$
ICC: Y	FC \$4911	FC \#4911	$\text { FC } \# 4911$	FC \#4911				
$\left\lvert\, \begin{gathered} \text { FC4666 } \\ \text { or } \\ \text { FC } 4667 \end{gathered}\right.$	SC \#9101	SC \#9101	SC \#9121					


LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	$32 \mathrm{NY}-11$	36 NY-15	40 NY-19	44 NY-23	$48 \mathrm{NY}-27$	52	56	60
	33 NY-12	37 NY-16	$41 \mathrm{NY}-20$	$45 \mathrm{NY}-24$	$49 \mathrm{NY}-28$	53	57	61
	34 NY-13	$38 \mathrm{NY}-17$	$42 N Y-21$	$46 \mathrm{NY}-25$	$50 \mathrm{NY}-29$	54	58	62
Weight	$35 \mathrm{NY}-14$	39 NY-18	$43 \mathrm{NY}-22$	47 NY-26	$51 \mathrm{NY}-30$	55	59	63
$\begin{gathered} \text { Sum: } \\ 60 \end{gathered}$	LIC1	LIC1	LIC1	LIC1	LIC1	free	free	free
	Wt $=12$	Wt = 12	$\omega t=12$	Wt $=12$	$\omega t=12$			
ICC: NO	FC \#4911	FC \#4911	$\begin{aligned} & \text { FC \#4911 } \\ & \text { SC \#9101 } \end{aligned}$	FC \#4911	$\left\lvert\, \begin{array}{ll} \text { FC } & \text { \#4911 } \\ \text { SC } & \# 9101 \end{array}\right.$			

Notes:

1. On LAB-1 and LAB-2, start with LICs requiring clocking, first asynchronous then direct-attached lines (LAB rule 4).
2. Total LAB-2 weight being 60, LIC position 6 to 8 are marked 'free': you can order an MES for three more LIC5, without exceeding 100 for the scanner weight.

## Order List

```1 3725 1 FC #1561 (CA) 1 FC #8320 (TPS) 13 FC #4911 (LIC1) 6 SC #9121 7 SC #9101 1 FC #4666 or FC #4667```	512K of storage are included   Chanmel adapter in position 1 (CA-1)   Two-processor switch for CA-1 (TPS-1)   One SC ${ }^{\text {\# }} 4911$ for each LICl (four lines or fewer)   One for each LIC1 weight 12 (1200 bps start-stop and direct-attachment) One for each LICl weight 12 (BSC, SDLC via modem)   One ICC for LAB-1 with direct-attached or asymehronous limes.   Notes: 1. Default color, voltage, and language are used.   2. $L A B-1$ and $L A B-2$ are included in 3725 unit. Do NOT order them.
42 CG $\$ 1404$ 10 CG $\$ 1400$	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).

| 13727 | Primary operator console |
| :--- | :--- | :--- |

CASE 8

Configuration Type
From 32 to 50 low and medium speed lines in BSC, SDLC, and asynchronous, modem-attached or direct-attached. Some high speed, some 9600 bps duplex.

Characteristics
Requires three LABs.
Line Example

```
10 lines using SDLC (HDX) at 4800 bps (direct-attached)
44 lines using BSC EBCDIC at 4800 bps (modem-attached)
    line using SDLC (DX) at 56 000 bps (interface V.35: LIC3)
    line using SDLC (DX) at 50 000 bps (wideband data service: LIC2)
    4 lines using SDLC (DX) at 9600 bps (modem-attached)
```

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Moder (DCE)	Cable Group\#	Line Addr	Cable Length
1	Local 1	4800	SDLC (HDX)	RS-232C	None	1400	0	
2	Local 2	4800	SDLC (HDX)	RS-232C	None	1400	1	
3	Local 3	4800	SDLC (HDX)	RS-232C	None	1400	2	
4	Local 4	4800	SDLC (HDX)	RS-232C	None	1400	3	
5	Local 5	4800	SDLC (HDX)	RS-232C	None	1400	4	
6	Local 6	4800	SDLC (HDX)	RS-232C	None	1400	5	
7	Local 7	4800	SDLC (HDX)	RS-232C	None	1400	6	
8	Local 8	4800	SDLC (HDX)	RS-232C	None	1400	7	
9	Local 9	4800	SDLC (HDX)	RS-232C	None	1400	8	
10	Local 10	4800	SDLC (HDX)	RS-232C	None	1400	9	
11-54	(New York 1-44)	9600	BSC EBCDIC	RS-232C	NY1-44	1404	10-53	
55	Boston 1	50000	SDLC (DX)	Wideband	8051	0086	64	
56	Boston 2	56000	SDLC (DX)	V. 35	B0S2	0087	68	
57	Miami 1	9600	SDLC (DX)	RS-232C	MIAI	1404	56	
58	Miami 2	9600	SDLC (DX)	RS-232C	MIA2	1404	57	
59	Miami 3	9600	SDLC (DX)	RS-232C	MIA3	1404	58	
60	Miami 4	9600	SDLC (DX)	RS-232C	MIA4	1404	59	

Note: 'Line Addr' column is filled in after the LICs are assigned to LABs.

LIC Contents

BOS 1	B0s2	MIAI	Locl D	Loc5 D
N/A	N/A	MIAz	Loc2 D	Loc6 D
N/A	N/A	mia3	Loc3 D	Loc7 D
N/A	N/A	MIA4	Loc4 D	Loc8 D
LIC2	LIC3	LIC1	LICI C	LIC1 6
$\omega t=42$	$W t=42$	$\mathrm{W} t=25$	$W_{t}=12$	Wt= 12
SC 9202	SC 9302	SC 9102	SC 9121	SC9121

| Loc9 D
 Loc10 D
 $N Y-1$
 $N Y-2$
 LIC1 C
 Wt= 12
 SC9121 |
| :--- | :--- |

NY-3 $N Y-4$ $N Y-5$ $N Y-6$
LIC1
Wt $=12$
SC9101
:---
$N Y-8$
$N Y-9$
$N Y-10$
LIC1
Wt = 12
SC 9101

NY-11	NY-15
$\mathrm{NY}-12$	NY-16
$\mathrm{NY}-13$	NY-17
NY-14	$\mathrm{NY}-18$
LIC1	LIC1
$W_{\text {t }}=12$	$\mathrm{H}_{\mathbf{t}=12}$
SC 9101	SC 9101

$N Y-19$
$N Y-20$
$N Y-21$
$N Y-22$
LIC1
Wt= 12
$S C$

$N Y-23$
$N Y-24$
$N Y-25$
$N Y-26$
LIC1
Wt= 12
SC 9101

NY-27	NY-31
NY-28	NY-32
NY-29	NY-33
NY-30	NY-34
LIC1	LIC1
Wt= 12	Wt= 12
SC 9101	SC 9101

$N Y-35$ $N Y-36$ $N Y-37$ $N Y-38$ LIC1 Wt= 12 $5 C$$\|$

$N Y-39$
$N Y-40$
$N Y-41$
$N Y-42$
LIC1
$W t=12$
$S C \quad 9101$

NY-43
NY-44
free
free
LIC1
Wt= 12
SC 9101

\square

Notes:

1. Asynchronous lines and LICs requiring clocking are marked ' C '. Lines attached directly to DTEs (without DCE) are marked ' D ' to show that a direct-attached cable group is needed.
2. On LICs, install lines with heaviest weights first (LIC rule 2); and when line weights are equal, install lines with ICC requirement first (LIC rule 4).

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
type A								
	28 NY-19	24 NY-15	20 NY-11	$16 \mathrm{NY}-7$	$12 \mathrm{NY}-3$	8 Loc9 D	4 Loc5 D	0 Locl D
	29 NY-20	25 NY-16	21 NY-12	17 NY-8	13 NY-4	9 Locl0 D	5 Loc6 D	1 Loc2 D
	$30 \mathrm{NY}-21$	26 NY-17	22 NY-13	$18 \mathrm{NY}-9$	$14 \mathrm{NY}-5$	10 NY-1	6 Loc7 D	$2 \operatorname{Loc} 3$ D
Weight	$31 \mathrm{NY}-22$	27 NY-18	$23 \mathrm{NY}-14$	$19 \mathrm{NY}-10$	15 NY-6	11 NY-2	7 Loc8 D	3 Loc4 D
Sum:	LIC 1	LICI	LIC1	LIC1	LICI	LIC1 C	LIC1 C	LIC1 C
96	Wt $=12$	$\mathrm{Wt}=12$	Wt $=12$	Wt $=12$	Ht $=12$	$\mathrm{Ht}=12$	Wt $=12$	Wt $=12$
	$\text { FC } \# 4911$	FC \#4911	FC \#4911	FC \#4911	FC ${ }^{\text {P4911 }}$	FC \# 4911	FC \#4911	FC \#4911
$\begin{gathered} \text { FC4666 } \\ \text { or } \\ \text { FC4667 } \end{gathered}$	SC \#9101	SC \#9121	SC \#9121	SC \#9121				

LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	32 NY-23	36 NY-27	$40 \mathrm{NY}-31$	44 NY-35	48 NY-39	52 NY-43	56 MIAl	60
	$33 \mathrm{NY}-24$	$37 \mathrm{NY}-28$	41 NY-32	45 NY-36	49 NY-40	$53 N \gamma-44$	57 MIA2	61
	34 NY-25	$38 \mathrm{NY}-29$	42 NY-33	46 NY-37	$50 \mathrm{NY}-41$	54 free	58 MIA3	62
Weight Sum:	$35 \mathrm{NY}-26$	39 NY-30	43 NY-34	47 NY-38	$51 \mathrm{NY}-42$	55 free	59 MIA4	63
97	LICI	LICl	LIC 1	LICI	LICI	LICI	LICI	N/A
------	Wt = 12	Wt = 12	Wt $=12$	Wt $=12$	Wt $=12$	Wt $=12$	Wt $=25$	
ICC:	FC \#4911	FC \#4911	FC \#4911	FC \#4911	FC \$4911	FC \#4911	FC W911 FC \#9102	
NO	SC \#9101	FC \#9102						

LAB-3	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	LABB
	64 B051	68 B0S2	72	76	80	84	88	92	
	65 N/A	69 N/A	73	77	81	85	89	93	
	66 N/A	70 N/A	74	78	82	86	90	94	
Weight	67 N/A	71 N/A	75	79	83	87	91	95	
Sum: 84	-------	LIC3	free	N/A	free	free	free	free	Weight Sum:
	Wt $=42$	$\mid W t=42$							
ICC: NO	FC \#4921	$\begin{array}{ll} \text { FC } & \# 4931 \\ \text { SC } & \# 9302 \end{array}$							ICC:

Notes:

1. On LAB-1 and LAB-2, start with LICs with lowest weights (LAB rule li) and when weights are equal, start with LICs requiring clocking (LAB rule 4).
2. $L A B-1$ and $L A B-2$ should not be used for category-C speed lines (LAB rule 5).
3. Total LAB-2 weight being 97, LIC position 8 is marked 'not available' (N/A).
4. First LIC on LAB-3 has a weight over 18 : it must be a LAB type B (LAB rule 7).
5. Each half of a LABB (LAB-3) has a maximum weight capacity of 100 and the assignment rules (LAB rules 2, 3, and 4) must be applied to each half-LAB separately (LAB rule 6).
6. On LAB-3, total weight of first scanner (CS Pos. 1) being 84, LIC position 3 is marked 'free': one more LIC (weight 12) can be installed without exceeding 100 for the scanner weight.
7. On LAB-3, total weight of second scanner (CS Pos. 2) being 0, LIC positions 5, 6, 7, and 8 are marked 'free': up to four more LICs can be installed.

13725	512 K of storage are included
1 FC 7100 (SI)	One 256K-storage increment (total of 768 K)
1 FC \#1561 (CA)	Channel adapter in position 1 (CA-1)
1 FC \#8320 (TPS)	Two-processor switch for CA-1 (TPS-1)
1 FC \#4772 (LABB)	One for each LABB (starting from LAB-3) (two LABAs are already included in the basic 3725 in LAB positions 1 and 2)
$\begin{gathered} 1 \text { FC \#4921 (LIC2) } \\ 1 \mathrm{SC} \# 9202 \end{gathered}$	One for each LIC2 (one line per LIC) One for each LIC2 weight 42 (modem-attached)
1 FC \#4931 (LIC3) 1 SC \#9302	One for each LIC3 (one line per LIC) One for each LIC3 weight 42 (modem-attached)
```15 FC #4911 (LIC1) 3 SC #9121 11 SC #9101 1 SC #9102```	One for each LIC1 (four lines or fewer)   One for each LICl weight 12 (SDLC direct-attached)   One for each LICl weight 12 (BSC, SDLC via modem)   One for each LICl weight 25 (modem-attached)
1 FC \#4666 or FC \#4667	One ICC required for direct-attached lines in LAB position 1 ------------   Note: Default color, voltage, and language are used.
50 CG 1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4). LICI via DCE
10 CG \#1400	LIC1 direct-attached
1 CG \#0086	LIC2
1 CG \#0087	LIC3 via DCE

13727 Primary operator console

CASE 9

## Configuration Type

More than 100 low and medium speed lines in BSC, SDLC, and asynchronous. Some 9600 bps duplex (category-B speed), no high speed line.

Characteristics
Requires the 3726 for the fourth LAB.
Line Example

```
20 lines using start-stop at 1200 bps
78 lines using BSC EBCDIC at 4800 bps
8 lines using SDLC (DX) at 9600 bps
2 channel adapters
```

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Dial-up 1	1200	Start-stop	RS-232C	DU1	1404	0	
2	Dial-up 2	1200	Start-stop	RS-232C	DU2	1404	1	
3	Dial-up 3	1200	Start-stop	RS-232C	DU3	1404	2	
4	Dial-up 4	1200	Start-stop	RS-232C	DU4	1404	3	
5	Dial-up 5	1200	Start-stop	RS-232C	DU5	1404	4	
6	Dial-up 6	1200	Start-stop	RS-232C	DU6	1404	5	
7	Dial-up 7	1200	Start-stop	RS-232C	DU7	1404	6	
8	Dial-up 8	1200	Start-stop	RS-232C	DU8	1404	7	
9	Dial-up 9	1200	Start-stop	RS-232C	DU9	1404	8	
10	Dial-up 10	1200	Start-stop	RS-232C	DU10	1404	9	
11	Dial-up 11	1200	Start-stop	RS-232C	DU11	1404	10	
12	Dial-up 12	1200	Start-stop	RS-232C	DU12	1404	11	
13	Dial-up 13	1200	Start-stop	RS-232C	DU13	1404	12	
14	Dial-up 14	1200	Start-stop	RS-232C	DU14	1404	13	
15	Dial-up 15	1200	Start-stop	RS-232C	DU15	1404	14	
16	Dial-up 16	1200	Start-5top	RS-232C	DU16	1404	15	
17	Dial-up 17	1200	Start-stop	RS-232C	DU17	1404	16	
18	Dial-up 18	1200	Start-stop	RS-232C	DU18	1404	17	
19	Dial-up 19	1200	Start-stop	RS-232C	DU19	1404	18	
20	Dial-up 20	1200	Start-stop	RS-232C	DU20	1404	19	
21-64	New York 1-44	4800	BSC EBCDIC	RS-232C	NY1-44	1404	20-63	
65-99	New York 45-78	4800	BSC EBCDIC	RS-232C	NY45-78	1404	72-105	
99	Miami 1	9600	SDLC (DX)	RS-232C	MIA1	1404	64	
100	Miami 2	9600	SDLC ( DX )	RS-232C	MIA2	1404	65	
101	Miami 3	9600	SDLC (DX)	RS-232C	MIA3	1404	66	
102	Miami 4	9600	SDLC (DX)	RS-232C	MIA4	1404	67	
103	Miami 5	9600	SDLC (DX)	RS-232C	MIA5	1404	68	
104	Miami 6	9600	SDLC ( DX )	RS-232C	MIA6	1404	69	
105	Miami 7	9600	SDLC (DX)	RS-232C	MIAT	1404	70	
106	Miami 8	9600	SDLC (DX)	RS-232C	MIA8	1404	71	

Note: 'Line Addr' column is filled in after the LICs are assigned to LABs.

MIAI	MIA5	DUI C	Du5 c	DU9	DU13 c	DU17 c	$\mathrm{NY}-1$	$\mathrm{Nr}-5$	NY-9
MIAZ	miag	Du2 c	DU6 C	DU10 c	DU14 c	DU18 6	NY-2	NY-6	NY-10
mia3	MIA 7	DU3 c	OU7 c	DUll c	DU15 C	DU19 C	$\mathrm{NY}-3$	$\mathrm{NY}-7$	$\mathrm{NY}-11$
Mra4	MIAB	DU4 C	DUB C	DU12 C	DU16 C	DU20 C	NY-4	NY-8	$\mathrm{NY}-12$
LICI   $W_{t}=25$   SC 9102	LICI   Wt= 25   SC 9102	$\begin{aligned} & \text { LIC1 C C } \\ & \text { Ht= } 12 \\ & S C=9121 \end{aligned}$	LICI C   $\mathrm{W} t=12$   SC 9121	LICl C   $\mathrm{wt}=12$   SC 9121	$\begin{aligned} & \text { LICl } C \\ & \text { Nt }=12 \\ & \text { SC } 9121 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \quad \text { C } \\ & \text { Wt= } 12 \\ & \text { SC } 9121 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt=12 } \\ & \text { SC } 9101 \end{aligned}$	$\left\{\begin{array}{l} \text { LIC1 } \\ \text { Wt= } 12 \\ \text { SC } 9101 \end{array}\right.$	$\begin{aligned} & \text { LIC1 } \\ & \text { Nt= } 12 \\ & \text { SC } 9101 \end{aligned}$


$N Y-13$
$N Y-14$
$N Y-15$
$N Y-16$
LIC1
Wt= 12
$S C \quad 9101$


$N Y-17$   $N Y-18$   $N Y-19$   $N Y-20$
LIC1   $W t=12$   $S C ~ 9101$
$N Y-21$   $N Y-22$   $N Y-23$   $N Y-24$
LIC1   $N t=12$   $S C ~ 9101$


$\begin{aligned} & \mathrm{NY}-25 \\ & \mathrm{NY}-26 \\ & \mathrm{NY}-27 \\ & \mathrm{NY}-28 \end{aligned}$	$\begin{aligned} & \mathrm{NY}-29 \\ & \mathrm{NY}-30 \\ & \mathrm{NY}-31 \\ & \mathrm{NY}-32 \end{aligned}$
LIC1   $W_{t}=12$   SC 9101	LICI   $W_{t}=12$   SC 9101







$\begin{aligned} & N Y-53 \\ & N Y-54 \\ & N Y-55 \\ & H Y-56 \end{aligned}$	$\begin{aligned} & N Y-57 \\ & N Y-58 \\ & N Y-59 \\ & N Y-60 \end{aligned}$
LICI   Wt= 12   SC 9101	LIC1   Wt= 12   SC 9101








Notes:

1. Asynchronous lines and LICs requiring clocking are marked ' $C$ '.
2. On LICs, install lines with heaviest weights first (LIC rule 2), and when line weights are equal, install lines with ICC requirement first (LIC rule 4).
$L A B-1, L A B-2, L A B-3$, and $L A B-4$ Contents

LAB-1 type A	$\text { Pos. } 8$	$\text { Pos. } 7$	$\text { Pos. } 6$	$\text { Pos. } 5$	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	$28 \mathrm{NY}-9$	$24 \mathrm{NY}-5$	$20 \mathrm{NY}-1$	16 DU-17 C	$12 \mathrm{DU}-13 \mathrm{C}$	8 DU-9 C	4 DU-5 C	0 DU-1
	$29 \mathrm{NY}-10$	$25 \mathrm{NY}-6$	$21 \mathrm{Nr}-2$	17 DU-18 C	$13 \mathrm{DU}-14 \mathrm{C}$	$9 \mathrm{DU}-10 \mathrm{C}$	5 Du-6 C	1 DU-2
	$30 \mathrm{Nr}-11$	$26 \mathrm{NY}-7$	$22 \mathrm{NY}-3$	$18 \mathrm{DU}-19 \mathrm{C}$	14 DU-15 C	$10 \mathrm{DU}-11 \mathrm{C}$	6 DU-7 6	2 DU-3
Weight	$31 \mathrm{NY}-12$	$27 \mathrm{NY}-8$	$23 \mathrm{NY}-4$	19 DU -20 C	$15 \mathrm{DU}-16 \mathrm{C}$	$11 \mathrm{DU}-12 \mathrm{C}$	7 DU-8 C	3 DU-4
96	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \omega t=12 \end{aligned}\right.$	$\left.\right\|_{\mathrm{WICl}} ^{\mathrm{LICl}}=12$	$\begin{aligned} & \text { LIC1 } \\ & \omega t=12 \end{aligned}$	$\begin{array}{r} \text { LIC1 } \\ \mathrm{Wt}=12 \end{array}$	$\begin{array}{lr} \text { LICI } \\ \mathrm{Wt}=12 \end{array}$	$\left\lvert\, \begin{array}{ll} \text { LICI } & C \\ W t=12 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} \text { LIC1 } & C \\ \omega t=12 \end{array}\right.$	$\begin{aligned} & \text { LIC1 } C \\ & W t=12 \end{aligned}$
ICC: Y	FC \#4911							
$\begin{gathered} \text { FC4666 } \\ \text { or } \\ \text { FC } 4667 \end{gathered}$	SC \#9101	SC \#9101	SC \#9101	SC \#9121				


LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
type A	$32 \text { NY-13 }$	$36 \mathrm{NY}-17$	40 NY-21	44 NY-25	48 NY-29	52 NY-33	56 NY-37	60 NY-41
	$33 \mathrm{NY}-14$	37 NY-18	41 NY-22	45 NY-26	$49 \mathrm{NY}-30$	53 NY-34	57 NY-38	$61 \mathrm{NY}-42$
	34 NY-15	$38 \mathrm{NY}-19$	42 NY-23	$46 \mathrm{NY}-27$	50 NY-31	54 NY-35	58 NY-39	$62 \mathrm{NY}-43$
Weight	35 NY-16	39 NY-20	43 NY-24	47 NY-28	51 NY-32	55 NY-36	59 NY-40	$63 N Y-44$
Sum:	LIC1	LICI						
	$\mathbf{W t}=12$	Wt $=12$	$\mathrm{Wt}=12$					
ICC:	FC \#4911	FC \% 4911	FC \$4911	FC \#4911				
NO	SC \#9101							


LAB-3	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	LABB
Type B	64 MIAL	68 MIA5	72 NY-45	76 NY-49	80 NY-53	84 NY-57	88 NY-61	92 NY-65	
	65 MIAZ	69 MIA6	$73 N Y-46$	77 NY-50	81 NY-54	85 NY-58	$89 \mathrm{NY}-62$	93 NY-66	
	66 MIA3	70 MIA7	74 NY-47	78 NY-51	$82 \mathrm{NY}-55$	86 NY-59	90 NY-63	$94 \mathrm{NY}-67$	
Weight	67 MIA4	71 MIAB	75 NY-48	79 NY-52	83 NY-56	87 NY-60	91 NY-64	95 NY-68	Weight
Sum:	LIC1	LIC1	LIC1	LIC1	LIC1	LIC1	LICI		Sum: 48
	Wt $=25$	Wt $=25$	Wt $=12$	$W t=12$	Wt $=12$	$\mathbf{W t}=12$	Wt $=12$	Wt $=12$	
ICC:	FC \#4911	FC \#4911	FC F4911	FC \#4911	FC \% 4911	FC \#911	C ${ }^{\text {W }} 4911$	C \#4911	ICC:
NO	SC \#9102	SC \#9102	SC \#9101	NO					



Notes:

1. On LAB-1 and LAB-2, start with LICs with lowest weights (LAB rule 1), and when weights are equal, start with LICs requiring clocking (LAB rule 4).
2. LAB-1 and LAB-2 should NOT be used for category-C speed lines (LAB rule 5).
3. First LIC on LAB-3 has a weight over 18: it must be a LAB type B. First LIC on LAB-4 has a weight under 19: it must be LAB type A (LAB rule 7).
4. Each HALF of a LABB (LAB-3) has a maximum weight capacity of 100 and the filling-in rules (LAB rules 2, 3, and 4) must be applied to each half-LAB separately (LAB rule 6).
5. On LAB-4, total weight of first scanner being 36, LIC positions 4 through 8 are marked 'free': up to five more LICs can be installed (only weights 12 or 18 ).

Order List

13725	512 K of storage are included
2 FC \#7100 (SI)	Two $256 \mathrm{~K}-\mathrm{storage}$ increment (total of 1024K)
2 FC \#1561 (CA)	Channel adapter in positions 1 and 2 ( CA-1, CA-2)
1 FC \#4772 (LABB)	One for each LABB (starting from LAB-3)   (two LABAs are already included in the basic 3725 in LAB position 1 and 2)
	One SC \#4911 for each LICI (four lines or fewer) One for each LICI weight 12 (BSC, SDLC via modem) One for each LICl weight 12 (start-stop 1200 bps ) One for each LICI weight 25 (modem-attached)
1 Fe \#4666 or FC \#4667	One ICC required for asynchronous lines on LAB-1 ---------Default color, voltage, and language are used.
96 CG \#1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).


13726	Expansion machine required for fourth LAB (LAB-4)
1 FC \#4771 (LABA)	One FC \#4771 for each LABA (starting from LAB-4)
$\begin{gathered} 3 \text { FC \#4911 (LIC1) } \\ 3 \text { SC \#9101 } \end{gathered}$	One FC \#4911 for each LICI (four lines or fewer) One for each LICl weight 12 (BSC, SDLC via modem)
	Default color and voltage are used.
12 CG \#1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).


13727	Primary operator console

More than 80 low and medium speed lines in BSC, SDLC, and asynchronous.
Some 9600 duplex, some high speed lines.

## Characteristics

Requires four LABs. Like Case 9, but some tigh speed lines.

## Line Example

```
68 lines using BSC EBCDIC at 4800 bps
20 lines using start-stop at 1200 bps
 8 lines using SDLC (DX) at 9600 bps (category-B speed)
 3 lines using SDLC (DX) at 56 000 bps (Interface V.35)
 3 channel adapters and one tmo-processor switch
```

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Dial-up 1	1200	Start-stop	RS-232C	DU1	1404	0	
2	Dial-up 2	1200	Start-stop	RS-232C	DU2	1404	1	
3	Dial-up 3	1200	Start-stop	RS-232C	DU3	1404	2	
4	Dial-up 4	1200	Start-stop	RS-232C	DU4	1404	3	
5	Dial-up 5	1200	Start-stop	RS-232C	DU5	1404	4	
6	Dial-up 6	1200	Start-stop	RS-232C	DU6	1404	5	
7	Dial-up 7	1200	Start-stop	RS-232C	DU7	1404	6	
8	Dial-up 8	1200	Start-stop	RS-232C	DU8	1404	7	
9	Dial-up 9	1200	Start-stop	RS-232C	DU9	1404	8	
10	Dial-up 10	1200	Start-stop	RS-232C	DU10	1404	9	
11	Dial-up 11	1200	Start-stop	RS-232C	DU11	1404	10	
12	Dial-up 12	1200	Start-stop	RS-232C	DU12	1404	11	
13	Dial-up 13	1200	Start-stop	RS-232C	DU13	1404	12	
14	Dial-up 14	1200	Start-5top	RS-232C	DU14	1404	13	
15	Dial-up 15	1200	Start-stop	RS-232C	DU15	1404	14	
16	Dial-up 16	1200	Start-stop	RS-232C	DU16	1404	15	
17	Dial-up 17	1200	Start-stop	RS-232C	DU17	1404	16	
18	Dial-up 18	1200	Start-stop	RS-232C	DU18	1404	17	
19	Dial-up 19	1200	Start-stop	RS-232C	DU19	1404	18	
20	Dial-up 20	1200	Start-stop	RS-232C	DU20	1404	19	
21-64	New York 1-44	4800	BSC EBCDIC	RS-232C	NY1-44	1404	20-63	
65-68	New York 45-48	4800	BSC EBCDIC	RS-232C	NY45-48	1404	72-75	
69-88	New York 49-68	4800	BSC EBCDIC	RS-232C	NY49-68	1404	96-115	
89	Miami 1	9600	SDLC (DX)	RS-232C	MIA1	1404	84	
90	Miami 2	9600	SDLC ( DX )	RS-232C	MIA2	1404	85	
91	Miami 3	9600	SDLC (DX)	RS-232C	mia3	1404	86	
92	Miami 4	9600	SDLC ( DX )	RS-232C	MIA4	1404	87	
93	Miami 5	9600	SDLC ( $D X$ )	RS-232C	MIA5	1404	88	
94	Miami 6	9600	SDLC ( DX )	RS-232C	MIA6	1404	89	
95	Miami 7	9600	SDLC (DX)	RS-232C	MIA7	1404	90	
96	Miami 8	9600	SDLC ( DX )	RS-232C	MIAB	1404	91	
97	Houston 1	56000	SDLC (DX)	V. 35	HOU1	0087	64	
98	Los Angeles 1	56000	SDLC (DX)	V. 35	LA-1	0087	68	
99	San Francisco 1	56000	SOLC (DX)	V. 35	SF-1	0087	80	

LIC Contents

HOU1   N/A   N/A   N/A	$\begin{aligned} & \text { LA-1 } \\ & N / A \\ & N / A \\ & N / A \end{aligned}$	$\begin{aligned} & S F-1 \\ & N / A \\ & N / A \\ & N / A \end{aligned}$	$\begin{aligned} & \text { MIA1 } \\ & \text { MIAZ } \\ & \text { MIA3 } \\ & \text { MIA4 } \end{aligned}$	MIA5   MIAG   MIAT   MIAB	DU1 DU2 OU3 O OU4 c	Du6 DU6 c c	DU9 DU10 c DU11 c DU12 c	DU13 $\begin{aligned} & \text { c } \\ & \text { DU14 } \\ & \text { DU15 } \\ & \text { Du16 } \\ & \text { D }\end{aligned}$	Du17 ${ }^{\text {d }}$ c
$\begin{aligned} & \text { LIC3 } \\ & \omega t=42 \end{aligned}$ $\text { Sc } 9302$	$\begin{aligned} & \text { LIC3 } \\ & \text { Wt= } 42 \\ & \text { SC } 9302 \end{aligned}$	$\begin{aligned} & \text { LIC3 } \\ & \text { Wt }=42 \\ & S C \quad 9302 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt= } 25 \\ & \text { SC } 9102 \end{aligned}$	LICI   $w_{t}=25$   SC 9102	$\left\{\begin{array}{l} \text { LIC1 C } \\ \text { Wt= } 12 \\ \text { SC } 9121 \end{array}\right.$	LICl C   Wt= 12   SC 9121		$\begin{aligned} & \text { LIC1 C } \\ & \text { Wt= } 12 \\ & S C \quad 9121 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC1 C } \\ & \text { Wt= } 12 \\ & \text { SC } 9121 \end{aligned}\right.$


NY-1   $N Y-2$   $N Y-3$   $N Y-4$
LIC1
Wt= 12
$S C 9101$


$N Y-5$
NY-6
NY-7
NY-8
LIC1
Wt= 12
SC 9101


$N Y-9$
$N Y-10$
$N Y-11$
$N Y-12$
LIC1
Wt $=12$
SC 9101


$N Y-13$
$N Y-14$
$N Y-15$
$N Y-16$
LIC1
$W t=12$
$S C ~ 9101$


$N Y-17$
$N Y-18$
$N Y-19$
$N Y-20$
LIC1
Wt= 12
SC 9101

\(\left.$$
\begin{array}{|l|}\hline \begin{array}{l}\mathrm{NY}-21 \\
\mathrm{NY}-22 \\
\mathrm{NY}-23 \\
\mathrm{NY}-24\end{array}
$$ <br>
\hline \mathrm{LIC1} <br>
\mathrm{Nt}=12 <br>

\mathrm{SC} 9101\end{array}\right]\)| $\mathrm{NY}-25$ |
| :--- |
| $\mathrm{NY}-26$ |
| NY |
| $\mathrm{NY}-27$ |
| $\mathrm{NY}-28$ |
| $\mathrm{LIC1}$ |
| $\mathrm{Nt}=12$ |
| SC 9101 |


$N Y-29$   $N Y-30$   $N Y-31$   $N Y-32$
LIC1    Wt $=12$    $S C$ 9101


$N Y-33$
$N Y-34$
$N Y-35$
$N Y-36$
$L I C 1$
$W t=12$
$S C \quad 9101$


$N Y-37$
$N Y-38$
$N Y-39$
$N Y-40$
LIC1
Wt $=12$
$S C \quad 9101$


$\begin{aligned} & N Y-41 \\ & N Y-42 \\ & N Y-43 \\ & N Y-44 \end{aligned}$	( $\begin{aligned} & \mathrm{NY}-45 \\ & \mathrm{NY}-46 \\ & \mathrm{NY}-47 \\ & \mathrm{NY}-48\end{aligned}$
LICI   $\mathrm{Wt}=12$   SC 9101	LICI $\mathrm{Wt}=12$ SC 9101


NY-49   NY-50   $N Y-51$   $N Y-52$
LICl
$\mathrm{Nt}=12$
SC 9101


$N Y-53$
$N Y-54$
$N Y-55$
$N Y-56$
$\left.\begin{array}{ll}\text { LIC1 } \\ \text { Wt }=12 \\ S C & 9101 \\ \hline\end{array}\right]$

$\left[\begin{array}{l}\begin{array}{l}N Y-57 \\ N Y-58 \\ N Y-59 \\ N Y-60\end{array} \\ \hline \begin{array}{ll}\text { LIC1 } \\ W t=12 \\ S C ~ 9101\end{array} \\ \hline \begin{array}{l}N Y-61 \\ N Y-62 \\ N Y-63 \\ N Y-64\end{array} \\ \hline \begin{array}{l}\text { LIC1 } \\ W t=12 \\ S C \\ 9101\end{array} \\ \hline\end{array}\right.$

$N Y-65$
$N Y-66$
$N Y-67$
$N Y-68$
LIC1
$W t=12$
$S C \quad 9101$

$\square$


Notes:

1. Asynchronous lines and LICs requiring clocking are marked 'C'.
2. On LICs, install lines with heaviest weights first (LIC rule 2), and when line meights are equal, install lines with ICC requirement first (LIC rule 4).
$L A B-1, L A B-2, L A B-3$, and $L A B-4$ Contents


LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	32 NY-13	36 NY-17	$40 \mathrm{Nr}-21$	44 NY-25	48 NY-29	52 NY-33	$56 \mathrm{NY}-37$	60 NY-41
	$33 \mathrm{NY}-14$	$37 \mathrm{NY}-18$	$41 \mathrm{NY}-22$	$45 \mathrm{NY}-26$	49 NY-30	53 NY-34	57 NY-38	61 NY-42
	$34 N Y-15$	38 NY-19	$42 \mathrm{NY}-23$	$46 \mathrm{NY}-27$	50 NY-31	54 NY-35	58 NY-39	62 NY-43
Weight	35 NY-16	$39 \mathrm{NY}-20$	$43 \mathrm{NY}-24$	$47 \mathrm{NY}-28$	$51 \mathrm{NY}-32$	55 NY-36	$59 \mathrm{NY}-40$	$63 \mathrm{NY}-44$
Sum 96	LIC 1	LIC	LICI	LIC]	LICl	LICI	LICl	
IC	Wt $=12$ FC \#4911	Wt $=12$ FC \# 4911	$\begin{aligned} & \text { Wt }=12 \\ & \text { FC } 4911 \end{aligned}$	Wt $=12$ FC \% 4911	$\begin{aligned} & \text { Wt }=12 \\ & \text { FC } 4911 \end{aligned}$	Wt $=12$ FC \$4911	$\begin{aligned} & \text { Wt = } 12 \\ & \text { FC } 4911 \end{aligned}$	$\begin{aligned} & \text { Wt }=12 \\ & \text { FC } 4911 \end{aligned}$
NO	5C \#9101	SC \#9101	SC \#9101	SC \#9101	SC \%9101	SC \#9101	5C \#9101	5C \#9101


LAB-3	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	LABB
Type B	64 HOU1	68 LA-1	$72 \mathrm{NY}-45$	$76$	80 SF-1	84 MIA1	88 MIA5	$92$	
	65 N/A	69 N/A	73 NY-46	77	81 N/A	85 MIA2	89 MIA6	93	
	66 N/A	$70 \mathrm{~N} / \mathrm{A}$	74 NY-47	78	82 N/A	86 MIA3	90 MIA7	94	
Weight Sum:	67 N/A	71 N/A	75 NY-48		$83 \mathrm{~N} / \mathrm{A}$	87 MIA4	91 MIAB		Weight Sum:
96	LIC3 Wt $=42$	$\left\lvert\, \begin{aligned} & \text { LIC3 } \\ & \text { Wt }=42 \end{aligned}\right.$	$\left.\right\|_{W t=12} ^{\text {LICI }}$	N/A	LIC3 ${ }^{\text {LIC }}=42$	LIC1 ${ }_{\text {Wt }}=25$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & W t=25 \end{aligned}\right.$	N/	92
ICC: NO	FC \#4931	FC $\begin{aligned} & \text { F4931 } \\ & \text { SC } \\ & \text { \#9302 }\end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { FC } & \text { \#4911 } \\ \text { SC } & \# 9101 \end{array}\right.$		WC $\begin{aligned} & \text { F } 4931 \\ & \text { SC } \\ & \text { \# }\end{aligned}$	FC \#4911	$\left\lvert\, \begin{array}{ll} \text { FC } & \text { \#911 } \\ \text { SC \#9102 } \end{array}\right.$		$\begin{aligned} & \text { ICC: } \\ & \text { NO } \end{aligned}$


LAB-4	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	96 NY-49	100 NY-53	104 NY-57	$108 \mathrm{NY}-61$	$112 \mathrm{NY}-65$	116	120	124
	97 NY-50	$101 \mathrm{NY}-54$	105 NY-58	$109 \mathrm{NY}-62$	$113 \mathrm{NY}-66$	117	121	125
	$98 \mathrm{NY}-51$	102 NY-55	106 NY-59	$110 \mathrm{Nr}-63$	114 NY-67	118	122	126
Weight	99 NY-52	103 NY-56	107 NY-60	111 NY-64	115 NY-68	119	123	127
$\begin{gathered} \text { Sum: } \\ 60 \end{gathered}$	LICI	LICl		LIC1	\|LIC1	free	free	free
ICC:	$\begin{aligned} & \text { Wt }=12 \\ & \text { FC \#4911 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC \#4911 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC } 4911 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & W t=12 \\ & \text { FC } 4911 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }=12 \\ & \text { FC }{ }^{2} 4911 \end{aligned}\right.$			
NO	SC \#9101							

## Notes:

1. LAB-1 and LAB-2 should not be used for category-C speed lines (LAB rule 5).
2. On LAB-1 and LAB-2, start with LICs with lowest weights (LAB rule 1), and, when weights are equal, start with LICs requiring clocking (LAB rule 4).
3. First LIC on LAB-3 has a weight over 18: it must be a LAB type B. First LIC on LAB-4 has a weight under 19: it must be LAB type A (LAB rule 7).
4. Each HALF of a LABB (LAB-3) has a maximum weight capacity of 100 and the filling-in rules (LAB rules 2,3 , and 4) must be applied to each half-LAB separately (LAB rule 6).
5. On LAB-3 (LABB), total weight of first scanner (CS Pos. 1) being 96, LIC position 4 is marked 'not available' (N/A).
6. On LAB-3 (LABB), total weight of second scamer (CS Pos. 2) being 92, LIC position 8 is marked 'not available' (N/A).

Order List

13725	512K of storage are included
2 FC \#7100 (SI)	Two $256 \mathrm{~K}-\mathrm{storage}$ increment (total of 1024 K )
2 FC \#1561 (CA)	Channel adapter in position 1 and 2 ( CA-1, CA-2)
1 FC \#8320 (TPS)	Two-processor switch for CA-1 (TPS-1)
1 FC \#4772 (LABB)	One for each LABB (starting from LAB-3)   (two LABs (LABAs) are already included in the basic 3725 in LAB position 1 and 2)
```19 FC #4911 (LIC1) 12 SC #9101 5 SC #9121 2 SC #9102```	One SC \#4911 for each LICl (four lines or fewer One for each LICI weight 12 (BSC, SDIC via modem) One for each LICl weight 12 (start-5top 1200 bps ) One for each LIC1 weight 25 (modem-attachment)
$\begin{gathered} 3 \text { FC } \# 4931 \text { (LIC3) } \\ 3 \mathrm{SC} \# 9302 \end{gathered}$	One SC \#4931 for each LIC3 (one line in V.35) One for each LIC3 weight 42 (modem-attachment)
$\begin{aligned} & 1 \text { FC \#4666 or } \\ & \text { FC \#4667 } \end{aligned}$	One ICC required for asynchronous lines on LAB-1 Default color, voltage, and language are used.
$\begin{array}{r} 76 \text { CG \#1404 } \\ 3 \text { CG \#0087 } \end{array}$	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).

13726	Expansion machine required for fourth LAB and for third channel adapter
1 FC \#1561 (CA)	Chanmel adapter in position 3 (CA-3)
1 FC \#4771 (LABA)	One FC 4771 for each LABA (starting from LAB-4)
$\begin{gathered} 5 \text { FC \#4911 (LIC1) } \\ 5 \mathrm{SC} \# 9101 \end{gathered}$	One FC \#4911 for each LICl (four lines or fewer) One for each LIC1 weight 12 (BSC, SDLC via modem)
	Default color and voltage are used.
20 CG \#1404	To be ordered on cable order form (see under "Cable Ordering" in Chapter 4).

13727	Primary operator console

CASE 11

Configuration Type

From 32 to 64 low and medium speed lines in BSC, SDLC, and asynchronous, modem-attached or direct-attached. No high speed or 9600 bps duplex. Two token-rings.

Characteristics

Requires second $L A B$ and a $L A B$ type C in $L A B-3$. Has an alternate connection to a second host processor.

Line Example

10 lines using SOLC (HDX) at 4800 bps (direct-attached)
30 lines using BSC EBCDIC at 9600 bps (modem-attached)
12 lines using start-stop at 1200 bps (modem-attached)

Token-Ring Example

```
2 token-rings
```


Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Local 1	4800	SDLC (HDX)	RS-232C	None	1400	12	
2	Local 2	4800	SDLC (HDX)	RS-232C	None	1400	13	
3	Local 3	4800	SDLC (HDX)	RS-232C	None	1400	14	
4	Local 4	4800	SDLC (HDX)	RS-232C	None	1400	15	
5	Local 5	4800	SDLC (HDX)	RS-232C	None	1400	16	
6	Local 6	4800	SDLC (HDX)	RS-232C	None	1400	17	
7	Local 7	4800	SDLC (HDX)	RS-232C	None	1400	18	
8	Local 8	4800	SDLC (HDX)	RS-232C	None	1400	19	
9	Local 9	4800	SDLC (HDX)	RS-232C	Nome	1400	20	
10	Local 10	4800	SDLC (HDX)	RS-232C	None	1400	21	
11-40	(New York 1-30)	9600	BSC EBCDIC	RS-232C	NY1-30	1404	22-51	
41-52	(Dial-up 1-12)	1200	Start-stop	RS-232C	DU1-12	1404	0-11	

$\#$	Token-ring Reference	Speed	Protocol	Interface	Modem (DCE	Cable Group\#	Line Addr	Cable Length
53	Head Office Warehouse	N / A N / A	N / A N / A	N / A	N / A	1666	80	

Note: 'Line Addr' column is filled in after Appendix \mathbf{C} has been completed.

Appendix B Contents

DU1 C	DU5 C
DU2 C	DU6 C
DU3 C	DU7 C
DU4 C	DU8 C
LIC1 C	LIC 1 C
Wt=12	$\omega t=12$
SC 9121	SC 9121

DU9 C	Locl D
DU10 C	Loc2 D
DUll C	Loc3 D
DU12 C	Loc 4 D
LIC1 C	LIC1 C
$W_{t}=12$	Wt=12
SC 9121	SC 9121

$\left[\begin{array}{lll}\text { Loc5 } & D \\ \text { Loc6 } & D \\ \text { Loc7 } & D \\ \text { Loc8 } & D \\ \hline \text { LIC1 } & C \\ \text { Wt=12 } \\ \text { SC } 9121\end{array}\right]$

$\operatorname{Loc} 9$	D
$\operatorname{Loc} 10$	D
$N Y-1$	
$N Y-2$	
LICl	C
$W t=12$	
$S C$	9121

$N Y-3$
$N Y-4$
$N Y-5$
$N Y-6$
LIC1
Wt= 12
SC 9101

$N Y-7$
$N Y-8$
$N Y-9$
$N Y-10$
LICl
Wt $=12$
SC 9101

$N Y-11$
$N Y-12$
$N Y-13$
$N Y-14$
LIC1
Wt $=12$
$S C 9101$

$N Y-15$
$N Y-16$
$N Y-17$
$N Y-18$
LICl
$W t=12$
$S C 9101$

$N Y-19$
$N Y-20$
$N Y-21$
$N Y-22$
LICI
Wt= 12
$S C 9101$

$N Y-23$
$N Y-24$
$N Y-25$
$N Y-26$
LICI
Wt= 12
SC9101

$N Y-27$
$N Y-28$
$N Y-29$
$N Y-30$
LICl
$W t=12$
$S C 9101$

Notes:

1. Asymchronous lines and LICs requiring clocking are marked ' C '. Lines attached directly to DTEs (without DCE) are marked 'D' to show that a direct-attached cable group is needed.
2. On LICs, install lines with ICC requirement first (LIC rule 4).

Head Office	Warehouse	
TICI	TIC1	

Appendix Contents

$\left\|\begin{array}{l} \text { LAB-1 } \\ \text { type A } \end{array}\right\|$	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	$28 \mathrm{NY}-7$	$24 \mathrm{NY}-3$	20 Loc9 0	16 Loc5 D	12 Locl D	8 DU9 C	4 DU5 C	0 DUl C
	$29 \mathrm{NY}-8$	25 NY-4	21 Loc10 D	17 Loc6 D	13 Loc2 D	9 DUIO C	5 DUS c	1 DU2 C
	$30 \mathrm{NY}-9$	$26 \mathrm{NY}-5$	$22 \mathrm{NY}-1$	18 Loc7 D	14 Loc3 D	10 DU11 C	6 Du7 c	2 DU3 C
Weight	$31 \mathrm{NY}-10$	27 NY-6	$23 \mathrm{NY}-2$	19 Loc8 D	15 Loc4 D	11 DU12 C	7 Dus c	3004 C
96	LIC1	LIC1	LIC1 C	LIC1 C	LIC1 C	LIC1 C	LIC1 C	LIC1 C
ITC	$\mathrm{Wt}=12$	$\mathrm{Wt}=12$	Wt $=12$					
ICC: Y	FC \#4911	FC \#4911	FC \#4911	FC \% ${ }^{\text {P }}$ S911	FC \#4911	FC \#4911	FC	FC \#4911
$\left\|\begin{array}{c} \text { FC4666 } \\ \text { or } \\ \text { FC4667 } \end{array}\right\|$	SC \#9101	SC \#9101	SC \#9121					

LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	$32 \mathrm{NY}-11$	36 NY-15	$40 \mathrm{NY}-19$	$44 \mathrm{NY}-23$	$48 \mathrm{NY}-27$	52	56	60
	33 NY-12	$37 \mathrm{NY}-16$	$41 \mathrm{NY}-20$	$45 \mathrm{Nr}-24$	$49 \mathrm{NY}-28$	53	57	61
	$34 \mathrm{Nr}-13$	$38 \mathrm{Nr}-17$	$42 \mathrm{NY}-21$	$46 \mathrm{NY}-25$	50 NY-29	54	58	62
Weight	35 NY-14	$39 \mathrm{Nr}-18$	$43 \mathrm{NY}-22$	$47 \mathrm{NY}-26$	$51 \mathrm{Nr}-30$	55	59	63
60	LICI $\omega t=12$	$\begin{aligned} & \text { LIC1 } \\ & W_{t}=12 \end{aligned}$	$\operatorname{LICl}_{W t=12}$	$\begin{aligned} & \text { LIC1 } \\ & \omega_{t}=12 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \mathrm{Nt}=12 \end{aligned}\right.$	free	free	free
ICC:	FC \#4911							
No	SC \#9101							

$\left\lvert\, \begin{array}{\|l\|} \text { LAB- } \\ \text { type } \end{array}\right.$	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	$\begin{aligned} & \text { LaB- } 3 \\ & \text { type } C \end{aligned}$
	64	68			(80) Head Office	(81) Warehouse	(82)	(83)	
	65	69	73	77					
	66	70	74	78					
Weight	67	71							
	free	free	free		TICI	TICI	free	free	
ICC:					FC \$4991	FC 4991			$\left.\right\|_{\text {ICC: }} ^{\text {NO }}$

Notes:

1. On LAB-1 and LAB-2, start with LICs requiring clocking, first asymchronous then direct-attached lines (LAB rule 4).
2. Total LAB-2 weight being 60, LIC position 6 to 8 are marked 'free': An MES can be ordered for up to three more LICs.
3. The two token-rings can be attached to any position in the TIC half of the LABC. In this example positions 7 and 8 are marked as free. The positions 1 to 4 are free for LICs.

Order List

13725	512 K of storage are included
1 FC \#1561 (CA)	Channel adapter in position 1 (CA-1)
1 FC \#8320 (TPS)	Two-processor switch for CA-1 (TPS-1)
$\begin{gathered} 13 \text { FC \#4911 (LIC1) } \\ 6 \text { SC \#9121 } \\ 7 \text { SC \#9101 } \end{gathered}$	```One SC #4911 for each LIC1 (four lines or fester) One for each LICl weight 12 (1200 bps start-stop and direct-attachment) One for each LICl weight }12\mathrm{ (BSC, SDLC via modem)```
$\begin{array}{lll} 1 & \text { FC } & \text { \#4774 } \\ & 2 & \text { FC } \end{array} \text { \#4991 }$	One LAB type C for $L A B-3$ Ore for each token-ring
1 FC 4666 or FC \#4667	One ICC for LAB-1 with direct-attached or asymehronous lines. Notes: 1. Default color, voltage, and language are used. 2. $L A B-1$ and $L A B-2$ are included in 3725 unit. Do NOT order them.
42 CG \#1404	To be ordered on cable order form (see "Cable Ordering" in Chapter 4).
10 CG \#1400	
2 CG \#1666	

13727	Primary operator console

CASE 12

Configuration Type
More than 80 low and medium speed lines in BSC, SDLC, and asynchronous. Some 9600 bps duplex and high speed lines. Five token-rings.

Characteristics
Requires four LABs. Like Case 10 with five token-rings.

Line Example

```
68 lines using BSC EBCDIC at 4800 bps
20 lines using start-stop at 1200 bps
    8 lines using SDLC (DX) at 9600 bps (category-B speed)
    3 lines using SDLC (DX) at 56 000 bps (Interface V.35)
    3 channel adapters and one two-processor switch
```


Token-Ring Example

```
5 token-rings
```

Appendix A Contents

\#	Line Reference	Speed	Protocol	Interface	Modem (DCE)	Cable Group\#	Line Addr	Cable Length
1	Dial-up 1	1200	Start-stop	RS-232C	DU1	1404	0	
2	Dial-up 2	1200	Start-stop	RS-232C	DU2	1404	1	
3	Dial-up 3	1200	Start-stop	RS-232C	DU3	1404	2	
4	Dial-up 4	1200	Start-stop	RS-232C	DU4	1404	3	
5	Dial-up 5	1200	Start-stop	RS-232C	DU5	1404	4	
6	Dial-up 6	1200	Start-stop	RS-232C	DU6	1404	5	
7	Dial-up 7	1200	Start-stop	RS-232C	DU7	1404	6	
8	Dial-up 8	1200	Start-stop	RS-232C	DU8	1404	7	
9	Dial-up 9	1200	Start-stop	RS-232C	DU9	1404	8	
10	Dial-up 10	1200	Start-stop	RS-232C	DU10	1404	9	
11	Dial-up 11	1200	Start-stop	RS-232C	DU11	1404	10	
12	Dial-up 12	1200	Start-stop	RS-232C	DU12	1404	11	
13	Dial-up 13	1200	Start-stop	RS-232C	DU13	1404	12	
14	Dial-up 14	1200	Start-stop	RS-232C	DU14	1404	13	
15	Dial-up 15	1200	Start-stop	RS-232C	DU15	1404	14	
16	Dial-up 16	1200	Start-stop	RS-232C	DU16	1404	15	
17	Dial-up 17	1200	Start-stop	RS-232C	DU17	1404	16	
18	Dial-up 18	1200	Start-stop	RS-232C	DU18	1404	17	
19	Dial-up 19	1200	Start-stop	RS-232C	DU19	1404	18	
20	Dial-up 20	1200	Start-stop	RS-232C	DU20	1404	19	
21-64	New York 1-44	4800	BSC EBCDIC	RS-232C	NY1-44	1404	20-63	
65-68	New York 45-48	4800	BSC EBCDIC	RS-232C	NY45-48	1404	72-75	
69-88	New York 49-68	4800	BSC EBCDIC	RS-232C	NY49-68	1404	$\begin{array}{r} 128- \\ 147 \end{array}$	
89	Miami 1	9600	SDLC (DX)	R5-232C	MIAI	1404	100	
90	Miami 2	9600	SDLC (DX)	RS-232C	MIA2	1404	101	
91	Miami 3	9600	SDLC (DX)	RS-232C	MIA 3	1404	102	
92	Miami 4	9600	SDLC ($D X$)	RS-232C	MIA4	1404	103	
93	Miami 5	9600	SDLC (DX)	RS-232C	MIA5	1404	104	
94	Miami 6	9600	SDLC (DX)	RS-232C	MIAG	1404	105	
95	Miami 7	9600	SDLC (DX)	RS-232C	MIA 7	1404	106	
96	Miami 8	9600	SDLC (DX)	RS-232C	MIAB	1404	107	
97	Houston 1	56000	SDLC (DX)	V. 35	HOU1	0087	64	
98	Los Angeles 1	56000	SDLC (DX)	V. 35	LA-1	0087	68	
99	San Francisco 1	56000	SDLC (DX)	V. 35	SF-1	0087	96	

$\#$	Token-ring Reference	Speed	Protocol	Interface	Modem (DCE	Cable Group\#	Line Addr	Cable Length
100	Head Office	N/A	N/A	N/A	N / A	1666	80	
101	Warehouse	N/A	N/A	N/A	N/A	1666	81	
102	Showroom	N/A	N/A	N/A	N/A	1666	112	
103	Accounts 1	N/A	N/A	N/A	N/A	1666	115	
104	Accounts 2	N/A	N/A	N/A	N/A	1666	114	

Note: 'Line Addr' column is filled in after Appendix C has been completed.

Appendix B Contents

HOUI N/A N/A N/A	$\begin{aligned} & L A-1 \\ & N / A \\ & N / A \\ & N / A \end{aligned}$	$\begin{aligned} & S F-1 \\ & N / A \\ & N / A \\ & N / A \end{aligned}$	MIAI MIAZ MIA3 MIA4	MIA5 MIA6 MIA7 MIA8	DU1 C DU2 C DU3 C DU4 C	DU6 C DU6 C DU7 C DU8 C	$\left\lvert\, \begin{array}{ll} \text { DU9 } & \text { C } \\ \text { DU10 } & \text { C } \\ \text { DU11 } & C \\ \text { DU12 } & \text { C } \end{array}\right.$	DU13 C DU14 C DU15 C DU16 C	$\begin{aligned} & \text { DU17 C } \\ & \text { DU18 } \\ & \text { DU19 } \\ & \text { DU20 } \end{aligned}$
$\begin{aligned} & \text { LIC3 } \\ & \text { Wt= } 42 \\ & \text { SC } 9302 \end{aligned}$	$\begin{aligned} & \text { LIC3 } \\ & \text { Wt= } 42 \\ & \text { SC } 9302 \end{aligned}$	$\begin{aligned} & \text { LIC3 } \\ & \text { Wt= } 42 \\ & \text { SC } 9302 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt }=25 \\ & \text { SC } 9102 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt= } 25 \\ & \text { SC } 9102 \end{aligned}$	$\begin{aligned} & \text { LICI C } \\ & \mathrm{Wt}=12 \\ & \mathrm{SC} 9121 \end{aligned}$	$\begin{aligned} & \text { LICI C } \\ & \text { Wt }=12 \\ & \text { SC } 9121 \end{aligned}$	$\begin{aligned} & \text { LIC1 C } \\ & \text { Wt= } 12 \\ & 5 C 9121 \end{aligned}$	$\begin{aligned} & \text { LIC1 C } \\ & \text { Wt= } 12 \\ & \text { SC } 9121 \end{aligned}$	LICI C Wt= 12 SC 9121

$\begin{aligned} & N Y-1 \\ & N Y-2 \\ & N Y-3 \\ & N Y-4 \end{aligned}$	$\begin{aligned} & N Y-5 \\ & N Y-6 \\ & N Y-7 \\ & N Y-8 \end{aligned}$	$\begin{aligned} & N Y-9 \\ & N Y-10 \\ & N Y-11 \\ & N Y-12 \end{aligned}$	$\begin{aligned} & N Y-13 \\ & N Y-14 \\ & N Y-15 \\ & N Y-16 \end{aligned}$	$\begin{aligned} & N Y-17 \\ & N Y-18 \\ & N Y-19 \\ & N Y-20 \end{aligned}$	$\begin{aligned} & N Y-21 \\ & N Y-22 \\ & N Y-23 \\ & N Y-24 \end{aligned}$	$\begin{aligned} & N Y-25 \\ & N Y-26 \\ & N Y-27 \\ & N Y-28 \end{aligned}$	$\begin{aligned} & N Y-29 \\ & N Y-30 \\ & N Y-31 \\ & N Y-32 \end{aligned}$	$\begin{aligned} & N Y-33 \\ & N Y-34 \\ & N Y-35 \\ & N Y-36 \end{aligned}$	$\begin{aligned} & N Y-37 \\ & N Y-38 \\ & N Y-39 \\ & N Y-40 \end{aligned}$
$\begin{aligned} & \text { LIC1 } \\ & \text { Wt } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \mathrm{Wt}=12 \\ & \mathrm{SC} 9101 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \mathrm{Nt}=12 \\ & \mathrm{SC} 9101 \end{aligned}\right.$	$\begin{aligned} & \text { LICI } \\ & \text { Wt= } 12 \\ & S C 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt= } 12 \\ & \text { SC } 9101 \end{aligned}$

$N Y-41$
$N Y-42$
$N Y-43$
$N Y-44$
LICI
WT $=12$
SC 9101

$\left\lvert\, \begin{aligned} & \mathrm{NY}-45 \\ & N Y-46 \\ & N Y-47 \\ & N Y-48 \end{aligned}\right.$	$\begin{aligned} & N Y-49 \\ & N Y-50 \\ & N Y-51 \\ & N Y-52 \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \text { WT }=12 \\ & \text { SC } 9101 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \mathrm{Nt}=12 \\ & \text { SC } 9101 \end{aligned}\right.$

$\left.\begin{array}{|l|}\hline N Y-53 \\ N Y-54 \\ N Y-55 \\ N Y-56 \\ \hline \text { LIC1 } \\ \text { Wt }=12 \\ S C \\ \hline\end{array}\right]$

NY-57	NY-61
NY-58	$\mathrm{Nr}-62$
NY-59	$\mathrm{NY}-63$
NY-60	NY-64
LIC1	LIC1
$W_{\text {Wt }}=12$	$W_{\text {L }}=12$
SC 9101	SC 9101

$N Y-65$
$N Y-66$
$N Y-67$
$N Y-68$
$L I C 1$
$W t=12$
$S C 9101$

Notes:

1. Asynchronous 1 ines and LICs requiring clocking are marked 'C'.
2. On LICs, install lines with heaviest weights first (LIC rule 2), and when line weights are equal, install lines with ICC requirement first (LIC rule 4).

Appendix C Contents

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	$28 \mathrm{NY}-9$	24 NY- 5	$20 \mathrm{NY}-1$	16 DU-17 C	$12 \mathrm{DU}-13 \mathrm{C}$	8 DU-9 C	4 DU-5 C	0 DU-1
	$29 \mathrm{NY}-10$	$25 \mathrm{NY}-6$	21 NY-2	17 DU-18 C	$13 \mathrm{DU}-14 \mathrm{C}$	$9 \mathrm{DU}-10 \mathrm{C}$	5 DU-6 C	1 DU-2
	$30 \mathrm{Nr}-11$	$26 \mathrm{NY}-7$	22 NY-3	18 DU-19 C	14 DU-15 C	$10 \mathrm{DU}-11 \mathrm{C}$	6 DU-7 C	2 DU-3
Weight	$31 \mathrm{NY}-12$	27 NY-8	$23 \mathrm{NY}-4$	19 DU-20 C	15 DU-16 C	11 DU-12 C	7 DU-8 C	3 DU-4
Sum:	-------	-------	-------				-------	-------
96	LICI Wt $=12$	LIC1 $\mathrm{Wt}=12$	LIC1 Wt $=12$	$\begin{aligned} & \text { LIC1 C } \\ & \mathrm{Wt}=12 \end{aligned}$	$\begin{array}{\|lr} \text { LIC1 } & C \\ W t=12 \end{array}$	$\begin{array}{\|ll} \text { LIC1 } & C \\ \omega t= & 12 \end{array}$	$\begin{aligned} & \text { LICI } \quad C \\ & \text { Wt }=12 \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { LIC1 } & C \\ W t= & 12 \end{array}\right.$
ICC: Y	FC \#4911	FC \#4911	FC \#4911	FC \#4911	FC \$4911	FC \#4911	FC \#4911	FC \#4911
$\begin{gathered} \text { FC4666 } \\ \text { or } \\ \text { FC4667 } \end{gathered}$	SC \#9101	SC \#9101	SC \#9101	SC \#9121				

LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	$32 \mathrm{NY}-13$	$36 \mathrm{NY}-17$	40 NY-21	44 NY-25	48 NY-29	52 NY-33	56 NY-37	60 NY-41
	$33 \mathrm{NY}-14$	37 NY-18	41 NY-22	45 NY-26	49 NY-30	53 NY-34	57 NY-38	61 NY-42
	34 NY-15	$38 N \mathrm{Y}-19$	$42 \mathrm{NY}-23$	46 NY-27	$50 \mathrm{NY}-31$	54 NY-35	58 NY-39	62 NY-43
Weight	$35 N \mathrm{~N}-16$	$39 \mathrm{NY}-20$	43 NY-24	47 NY-28	51 NY-32	$55 N \mathrm{~N}-36$	59 NY-40	$63 \mathrm{Nr}-44$
Sum 96	LIC1	LIC1	LIC1	LIC1	LIC1	LIC1	LICl	LIC1
	Wt $=12$	Wt = 12						
ICC:	FC \#4911	FC \$4911						
NO	SC \#9101	SC \%9101	SC \#9101	SC \#9101				

LAB-4 type C	Pos. 1	Pos. 2	Fos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	LAB-4 type C
	96 SF-1	100 MIA1	104 MIA5	108	$\begin{aligned} & (112) \\ & \text { Show-room } \end{aligned}$	(113)	(114) Accounts 2	$\begin{aligned} & (115) \\ & \text { Accounts } 1 \end{aligned}$	
	$97 \mathrm{~N} / \mathrm{A}$	101 MIA2	105 MIA6	109					
	98 N/A	102 MIA3	106 MIA7	110					
Weight	99 N/A	103 MIA4	107 MIAB	111					
$\begin{aligned} & \text { Sum: } \\ & 92 \end{aligned}$	LIC3	LIC1	LICI	N/A	TIC1	free	TIC1	TICI	
	Wt $=42$ FC 4931	$\omega t=25$	$\omega t=25$						
$\begin{gathered} \text { ICC: } \\ \text { NO } \end{gathered}$	FC \#4931	$\begin{array}{ll} \text { FC } & \text { \#4911 } \\ \text { SC } & \text { \#9102 } \end{array}$	$\left\lvert\, \begin{array}{ll} \text { FC } & \text { \#4911 } \\ \text { SC } & \# 9102 \end{array}\right.$		FC \#4991		FC \#4991	FC \#4991	$\begin{aligned} & \text { ICC: } \\ & \text { NO } \end{aligned}$

LAB-5	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
type A	128 NY-49	132 NY-53	136 NY-57	$140 \mathrm{NY}-61$	$144 \mathrm{NY}-65$	148	152	156
	129 NY-50	133 NY-54	$137 \mathrm{NY}-58$	141 NY-62	$145 \mathrm{NY}-66$	149	153	157
	130 NY-51	134 NY-55	$138 \mathrm{NY}-59$	142 NY-63	$146 \mathrm{NY}-67$	150	154	158
Weight	131 NY-52	135 NY-56	139 NY-60	143 NY-64	147 NY-68	151	155	159
Sum:	LIC1 $\mathrm{Wt}=12$	$\left\lvert\, \begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \end{aligned}\right.$	LICI $\mathrm{Wt}=12$	$\begin{aligned} & \text { LIC1 } \\ & \text { Wt }=12 \end{aligned}$	$\begin{aligned} & \text { LICI } \\ & \text { Wt }=12 \end{aligned}$	free	free	free
ICC:	FC \#4911	FC \#4911	FC \#4911	$\text { FC } \# 4911$	$\text { FC }{ }^{14911}$			
NO	SC \#9101							

Notes:

1. LAB-1 and LAB-2 should not be used for category-C speed lines (LAB rule 5).
2. On LAB-1 and LAB-2, start with LIC5 with lowest weights (LAB rule 1), and, when weights are equal, start with LICs requiring clocking (LAB rule 4).
3. First LIC on LAB-3 has a weight over 18: it cannot be a LAB type A. First LIC on LAB-5 has a weight under 19: it must be LAB type A (LAB rule 7).
4. The LIC half of a $L A B C$ ($L A B-3$ and $L A B-4$) has a maximum weight of 100 and the filling-in rules (LAB rules 2, 3, and 4) must be applied to each half-LAB separately (LAB rule 6).
5. On LAB-3 (LABC), total weight of the LIC half being 96, LIC position 4 is marked 'not available' (N/A).
6. On LAB-4 (LABC), total weight of the LIC half being 92, LIC position 4 is marked 'not available' (N/A).
7. The five token-rings can be attached to any position in the TIC half of the two LABCs. There are a total of eight positions available. In this example positions 7 and 8 of LAB-3, and position 6 of LAB-4 are marked as free.

Order List

13725	512 K of storage are included
2 FC \#7100 (SI)	Two 256K-storage increment (total of 1024K)
2 FC \#1561 (CA)	Channel adapter in position 1 and 2 (CA-1, CA-2)
1 FC \#8320 (TPS)	Two-processor switch for CA-1 (TPS-1)
1 FC \#4774 (LABC)	One LABC (LAB-3) (two LABs (LABAs) are already included in the basic 3725 (LAB-1 and LAB-2)
$19 \mathrm{FC} \mathrm{F}_{4911}($ LIC1)	One SC \#4911 for each LICl (up to four lines)
12 SC \#9101	One for each LICI weight 12 (BSC, SDLC via moden)
5 SC \#9121	One for each LICl weight 12 (start-stop 1200 bps)
2 SC \#9102	One for each LICl weight 25 (modem-attachment)
3 FC \#4931 (LIC3)	One SC \#4931 for each LIC3 (one line in V.35)
3 SC \#9302	One for each LIC3 weight 42 (modem-attachment)
2 FC \#4991 (TIC)	One for each token-ring
1 FC \#4666 or	One ICC required for asymchronous lines on LAB-1
FC \#4667	Default color, voltage, and language are used.
76 CG \#1404	To be ordered on cable order form (see "Cable Ordering" in Chapter 4).
3 CG \#0087	

13726	Expansion machine required for LAB-4 and LAB-5, and for third channel adapter
1 FC \#1561 (CA)	Chanmel adapter in location 3 ($C A-3$)
1 FC \#4771 (LABA)	One LABA ($\mathrm{LAB}-5$)
1 FC \#4774 (LABC)	One LABC
$\begin{gathered} 5 \text { FC \#4911 (LIC1) } \\ 5 \text { SC \#9101 } \end{gathered}$	One FC \#4911 for each LICl (four lines or fewer) One for each LICI weight 12 (BSC, SDLC via modem)
3 FC \#4991 (TIC)	One for each token-ring
	Default color and voltage are used.
20 CG \#1404	To be ordered on cable order form (see "Cable Ordering" in Chapter 4).
5 CG \#1666	

13727	Primary operator console

```
Configuring the controller means mainly configuring the
transmission subsystem, that is, simulating the installation of
the lines of your user application network on your future
controller. This pseudo-installation will tell you what
quantity and type of features are required.
```


3725 GRAPHIC CONFIGURATION STEP BY STEP

The transmission subsystem configuration must be done in four steps:

1. Gathering line and terminal information
2. Assigning lines/token-rings to LICs/TICs
3. Assigning LICs/TICs to $L A B s$
4. Updating the LABs

STEP 1. GATHERING INFORMATION

Enter on left side of Appendix A (or a copy of it), all
information concerning the lines/token-rings: protocol, speed, type of attachment (autocall, direct-attached).

Enter the modem reference on the right-hand side of Appendix A.

STEP 2. ASSIGNING LINES/TOKEN-RINGS TO LICS/TICS

Appendix B represents drawings of LICs (one-port LICs for LIC2,
LIC3, and LIC4B; four-port LICs for LIC1 and LIC4A) and token-ring TICs.

LIC port: one of four positions of a LIC to which cables may be connected.

Using Appendix B (or a copy of it), simulate the installation of the user application network lines on the LIC/TIC drawings.

The following section gives the rules for assigning lines to these LICs. Figure 1-10 gives the types, weights, and specify codes of the LICs required for each interface, protocol, and line speed.

Line Assignment Rules for LICs

LIC Rule 1: Each LIC type accepts only certain interfaces. Do not mix lines of incompatible interfaces on the same LIC (for example, CCITTV. 24 and X.21).

LIC Rule 2: Within a LIC type, start with the heaviest line.
LIC Rule 3: Pad a LIC that is not full with lower weight lines, before starting to assign lines to a new LIC.

LIC Rule 4: For lines of identical weights, start with the ones that require a clock (first asynchronous lines, then direct-attached lines).

LIC Rule 5: LIC2, LIC3, or LIC4B are ONE-port LICs cone cable for one line). Only one line address is used, the three remaining line addresses are not available.

1. Enter for each line:
a. The line 'reference' on one line of a LIC represented on Appendix B.

This reference may be any group of letters and numbers that distinguish this line from another, for example, 1031a, LON1.
b. The clocking requirements (if any). In the examples in Chapter 2, ' C ' is used for an asynchronous line and ' D ' for a line that is direct-attached (without DCE).
c. 'A' if the line is using 'Autocall'.
d. 'Free' in empty lines of four-port LICs (LIC1 and LIC4A), if less than four lines are assigned to that LIC.

Note: If several terminals or clusters will use the same communication line (switched or multipoint), count only one line.
2. Enter for each LIC:
a. The LIC type (LIC1, LIC2, LIC3, LIC4A, or LIC4B):

Add a 'C' if one of the lines in that LIC requires an ICC (asynchronous or direct-attached).
b. The LIC weight (see Figure 1-10):

For LICs with four ports (LIC1 and LIC4A), the LIC weight is determined by the speed of the "heaviest" line installed (the one in the first port, on top of that LIC).

For one-port LICs (LIC2, LIC3, and LIC4B), the LIC weight is determined by the speed of the line installed on that LIC.
c. The LIC specify code (see Figure 1-10):

The specify code is determined from the LIC type, the LIC weight, and whether or not an ICC is required.

Examples of lines assignment to LICs are given in Figure 1-9 and in the "LIC Contents" section for each case in Chapter 2.

Assigning Token-Rings to TICs

There are no rules for the assignment of token-rings to TICs, as each TIC provides only one token-ring attachment.

STEP 3. ASSIGNING LICS/TICS TO LABS

When the lines/token-rings have been assigned to the LICs/TICs in Appendix B, the LABs are configured. That is, the installation position of the LICs/TICs within the LAB locations LAB-1 to LAB-8 (represented in Appendix C) is determined. Enter the data into Appendix C, or a copy of it.

IMPORTANT: This pseudo-installation of the LICs/TICs on the LABs must follow the precise rules so as to match the real installation (that is, the way the machine is going to be built in the plant).

For each LIC to be 'installed', transfer:

1. The line reference(5) with the 'C', 'D', or 'A' indicator
2. The LIC type and clocking indicator (if any)
3. The LIC weight into field 'Wt='.
4. The LIC specify code into field 'SC='.

For each TIC to be 'installed', transfer:

1. The token-ring reference.

There are two slightly different procedures for assigning LICs to $L A B s$: one for $L A B-1$ and $L A B-2$, and one for the other LABs.

All rules for configuring the transmission subsystem are given in Figure 3-1 at the end of this Chapter.

LIC TRANSFER PROCEDURE FOR LAB-1 AND LAB-2
Remember that $L A B-1$ and $L A B-2$ are both $L A B A s$ cone scanner that controls up to eight medium speed LICs).

Assign LICs to LAB-1 and LAB-2 in ascending-weight sequence, starting from position 1, and install each LIC contiguously (position 2, then position 3, and so on) as long as:

1. The LIC is a LIC1 or a LIC4A.
2. The weight of the LIC is 25 or less.
3. The weight of the LIC added to the weight of the LICs already installed on the LAB does not exceed 100.

LAB rule 8 gives the possible exceptions.
$\angle A B$ Rules for Assigning LICs to $L A B-1$ and $L A B-2$
The $L A B$ rules that apply to $L A B-1$ and $L A B-2$ are:
$L A B$ rule $1,3,4,5$, and 8.
These are listed in Figure 3-1.
Iransfer sequence for $\angle A B-1$ and $\angle A B-2$
The following list gives the precise sequence, but the basic rules to apply are: Ascending-weight sequence (LAB rule 1), then by LIC type (LAB rule 3), then LIC with ICC first (LAB rule 4).

Seq	Weight	LIC	ICC	Specify Code
1	12	LIC1	Yes	\#9121
2	12	LIC1	No	\#9101
3	12	LIC4A	Yes	\#9421
4	12	LIC4A	No	\#9401
5	18	LICI	Yes	\#9111
6	25	LIC1	Yes	\#9122
7	25	LIC1	No	\#9102
8	25	LIC4A	Yes	\#9422
9	25	LIC4A	No	\# 9402
- -	- - -	----	- -	- - -
10	25	LICI	Yes	\#9125
11	25	LIC1	No	*9105
12	25	LIC2	No	\#9201
13	25	LIC3	Yes	\#9321
14	25	LIC3	No	\#9301
15	25	LIC4B	Yes	\#9423
16	25	LIC4B	No	\#9403
17	37	LIC1	Yes	\#9112
18	37	LIC1	No	\#9106
19	42	LIC1	No	W9107
20	42	LIC1	Yes	\#9113
21	42	LIC2	No	\#9202
22	42	LIC3	Yes	*9322
23	42	LIC3	No	\#9302
24	42	LIC4B	Yes	\# 9424
25	42	LIC4B	No	\#9404
26	50	LIC1	Yes	\#9123
27	50	LIC1	No	\#9103
28	50	LIC2	No	\#9204
29	50	LIC3	No	\#9305
30	100	LIC1	Yes	\#9124
31	100	LIC1	No	\#9104
32	100	LIC2	No	\#9203
33	100	LIC3	Yes	\#9323
34	100	LIC3	No	\#9303
35	100	LIC4B	Yes	\#9425
36	100	LIC4B	No	\#9405

Note: LIC specify codes listed below the broken line can be installed only in positions 1 to 4 of LAB-1 and LAB-2, and prevent installation of any LICs in positions 5 to 8 (LAB rule 8).

LIC TRANSFER PROCEDURE FOR LAB-3 TO LAB-8
Remember, in $L A B-3$ to $L A B-8$ that $\angle A B A 5$, $\angle A B B 5$, or $\angle A B C 5$ can be installed.

Install the LIC with the highest weight on the first (leftmost) position of the LAB.

1. If the weight of the LIC in the first position is over 18 (category-B or category-C speed), the LAB must be type B or C.

The basic principles to apply when assigning LICs to a LABB are:
a. Install the LICs in descending-weight sequence, starting with highest weight LIC in position 1 (leftmost); but do not install on the right half-LAB (positions 5 to 8) before making sure that no lighter weight can "fill in the gap" in the left half-LAB.
b. Restart the sequence for each half-LAB. Each half of a LABB is controlled by a scanner that has a maximum weight capacity of 100 , and LIC assignment rules must be applied to each half-LAB separately (LAB rule 6). Case 10 in Chapter 2 shows a LABB (LAB-3).
2. If the weight of the LIC in the first position is 18 or less (category-A speed), the LAB may be type A, B, or C.

As a consequence, in LAB location 3 to 8, a LABA does not contain LICs with a weight over 18. The basic principle to apply when assigning LICs to a LABA is the following:
Install the LICs on the LAB starting with the highest weight LIC in position 1 (leftmost), and install contiquously (position 2 up to position 8) as long as the weight of the LIC added to the weight of the LICs already installed does not exceed 100 .

TICs are installed in any position in the TIC half of a LABC.

$\angle A B$ Rules for Assigning LICs to $L A B-3$ to $L A B-8$

The $L A B$ rules that apply to $L A B-3$ to $L A B-8$ are:
LAB rule $2,3,4,5,6$, and 7.
These are listed in Figure 3-1.
Transfer Sequence for $L A B-3$ to $L A B-8$
The list below gives the precise sequence, but the basic rules to apply are: Descending-weight sequence (LAB rule 2), then by LIC type (LAB rule 3), then LICs with ICC first (LAB rule 4).

Seq	Weight	LIC	ICC	Specify Code (see Note)
1	100	LIC2	No	\#9203
2	100	LIC3	Yes	\#9323
3	100	LIC3	No	\#9303
4	100	LIC4B	Yes	\# 9425
5	100	LIC48	No	\#9405
6	100	LIC1	Yes	\#9124
7	100	LIC1	No	\#9104
8	50	LIC3	No	\#9305
9	50	LIC2	No	\#9204
10	50	LIC1	Yes	\#9123
11	50	LIC1	No	\#9103
12	42	LIC1	Yes	\#9113
13	42	LIC2	No	\#9202
14	42	LIC3	Yes	\# 9322
15	42	LIC3	No	\#9302
16	42	LIC4B	Yes	\#9424
17	42	LIC4B	No	\#9404
18	42	LIC1	No	\#9107
19	37	LICI	No	\#9106
20	37	LIC1	Yes	\#9112
21	25	LIC2	No	\#9201
22	25	LIC3	Yes	\#9321
23	25	LIC3	No	\#9301
24	25	LIC4B	Yes	\#9423
25	25	LIC4B	No	\#9403
26	25	LIC1	Yes	\#9122
27	25	LIC1	No	\#9102
28	25	LIC4A	Yes	\#9422
29	25	LIC4A	No	\#9402
30	25	LICI	Yes	\#9125
31	25	LIC1	No	\#9105
$\overline{32}$	- ${ }_{18}{ }^{-}$	LICI	Yes	\#9111
33	12	LIC1	Yes	\#9121
34	12	LIC1	No	\#9101
35	12	LIC4A	Yes	\#9421
36	12	LIC4A	No	\#9401

Note: When assigning LICs to a LABA, use only the last five elements of the sequence list (below the broken line).

For new orders:

1. LABs will usually be physically positioned, within the 3725/3726, into LAB locations 3 to 8, according to LAB type. The sequence is contiguous, beginning with LAB location 3:

- LABCs with LICs/TICs
- LABCs without LICs/TICs
- LABBs with LICs
- LABBs without LICs
- LABAs with LICs
- LABAs without LICs.

Note: For other sequences, see "Appendix D".
2. It is recommended that an "empty" LAB "follows" the "last" LAB of a type. This will allow the controller to be upgraded without unnecessary loss of efficiency. For example:

- LAB-3 containing LABC
- LAB-4 containing empty LABC
- LAB-5 containing LABB
- LAB-6 containing empty LABB
- LAB-7 containing LABA
- LAB-8 containing empty LABA.

For existing controllers: if there are no free LIC or TIC positions in a $L A B$ of the required type, follow the two steps above starting from the "first" free LAB location.

Note: Remember that there is a difference between "free" interface coupler positions and those that are "not available". This is explained in the following: "Step 4: Updating the LABs".

STEP 4: UPDATING THE LABS
After entering LIC information in the LABs, update the LAB information, that is:

1. Enter the $L A B$ type (see LAB rule 7):
a. 'C' if a token-ring is attached.
b. 'A' if the LIC in position 1 has a weight of 18 or less.
c. 'B' in all other cases (LAB-1 and LAB-2 are always a LABA).
2. Enter 'Yes' in the box 'ICC' if one or more LICs of the LAB have lines marked with 'C' or 'D'.
3. Enter the total weight of the LICs on each LAB:
a. For a LABA, enter the total weight of all LICs installed on the LAB in box 'weight sum'.
b. For a LABB, enter the total weight of the LICs installed on the left half-LAB in box 'weight sum', and the total weight of the LICs installed on the right half-LAB in box 'weight sum'.
c. For a LABC, enter the total weight of the LICs installed on the left half-LAB in box 'weight sum'.
4. Mark the LIC positions that are free:
a. 12 being the minimum LIC weight, 88 (100-12) is the threshold.
b. For a LABA, if the total weight of the LICs is 88 or less, mark empty LICs of that LAB as free.
c. For a LABB, if the total weight of the left half-LAB is 88 or less, mark empty LICs of the left half-LAB as free. Do the same for the right half-LAB.
d. For a LABC, if the total weight of the LICs is 88 or less, mark empty LICs as free.
5. Mark the LIC positions that are not available:
a. 12 being the minimum LIC weight, 88 (100-12) is the threshold.
b. For a LABA, if the total weight of all the LICs installed exceeds 88, mark all empty LIC positions of that LAB as not available (N/A).
c. For a LABB, if the weight of left half-LAB exceeds 88 , mark all empty LIC positions of the left half-LAB as not available (N / A). Do the same for right half-LAB (check weight sum).
d. For a LABC, if the weight of the LIC half of the LAB exceeds 88, mark all empty LIC positions as not available.
6. For each LIC installed, convert the LIC type into the appropriate feature code (see Figure 1-10) and enter it next to "FC='. For each TIC installed enter the feature code \#4991.
7. For each LIC2, LIC3, or LIC4B (one-port LIC) installed on a LAB, mark as not available ('N/A') the three remaining line addresses.
8. For each line of Appendix C :
a. Select the appropriate cable group (see Figure 1-10, Figure 4-3, and Figure 4-4), and enter it in Appendix A.
b. Copy the line address number from Appendix C to Appendix A.

Chapter 2 contains examples of LAB updating.

Figure 3-1. Summary of LIC and LAB Configuration Rules

Order the units in the following sequence:

- 3725
- Primary operator console
- 3726 (if necessary)
- Alternate operator console (if requested)

Color, voltage, and language: For available and default options, see the IBM representative. If the default country options meet your requirements, you need not enter specify codes.

Common data: Customer number and request date.
Although the operator console(s) and the two units $(3725$ and 3726) are ordered separately, they must contain identical scheduling information so that all these machines are delivered together at the customer's premises.

Country ordering difference: In WT E/ME/A, enter specify code \#2999 (see "Cable Ordering", later in this chapter).

3725 ORDERING INFORMATION

If required, order:

1

1

1. Up to ten 256 K storage increment features (see Figure 1-6). The basic model contains 512 K of storage.
2. The 3725 channel interface features: One or two channel adapters and one or two two-processor switches (see Figure 4-1).
3. The 3725 transmission subsystem (TSS) features (marked in Appendix C in LAB locations 1, 2, and 3):
a. One LAB (type A, B, or C) for LAB location 3. Two LABs type A are included in the $3725 \mathrm{LAB}-1$ and $L A B-2$, and need not be ordered.
b. Up to 24 LIC15, LIC2s, LIC35, LIC4A5, and LIC4B5. This is, for each LIC type, the quantity of LIC positions that have at least one entry filled.

Enter the quantity for each LIC specify code.
Within a LIC type, the sum of LIC specify codes quantity must be equal to the LIC feature codes quantity (see examples of order lists in Chapter 2).
c. Up to four TICs, when LAB-3 is to be a LABC.
d. Up to three ICCs (one per LAB). This applies to 'ICC' boxes marked 'Yes'.

Note: If the alternate operator console is required in $E / M E / A$, add the alternate console attachment feature (FC \#1480) to the 3725 order.

3726 ORDERING INFORMATION
If required (see Figures 4-1 and 4-2), order:

1. 3726 channel interface features: Up to four channel adapters and one or two two-processor switches (see Figure 4-1).
2. 3726 transmission subsystem (TSS) features (marked in Appendix C in LAB location 4 through 8).
a. Up to five LABs (type A, B, or C) for LAB positions 4 through 8.

Specify the following location codes:

LAB A FC \#4771	LAB B FC \#4772	LAB C FC \#4774	LAB Location
SC \#8941	SC \#8942	SC \#8944	4
SC \#8951	SC \#8952	SC \#8954	5
SC \#8961	SC \#8962	SC \#8964	6
SC \#8971	SC \#8972	SC \#8974	7
SC \#8981	SC \#8982	SC \#8984	8

One or two LAB type C for LAB location 4 through 8. There is a maximum of one, when the 3725 base contains a LAB type C.

Note: When a LABC is to be installed on a 3726, then its 3725 base must be at an appropriate EC level. Therefore, orders for LABCs ton new or existing 37265) must be accompanied by an MES, specify code 9710, for the base 3725. After checking the plant records, IBM will upgrade the EC level of the 3725, if necessary, before or during the installation of the LABC on the 3726.
b. The line increase feature (FC \#3602), if LAB location 7 or 8 is to be used.
c. Up to 40 LIC1s, LIC2s, LIC3s, LIC4As, and LIC4Bs. Enter the quantity for each LIC specify code.
d. Up to four/eight TICs if one/two LAB type Cs are specified.
e. Order up to five ICCs (one per $L A B$).

Channel Adapters	TPS Quantity	Machines and Features To Be Ordered
1	0 or 1	The 3725 with one FC \#1561 (CA-1) with zero or one FC \#8320 (TPS-1)
2	0, 1, 2	The 3725 with two FC \#1561 (CA-1 and CA-2) with zero to two FC \#8320 (TPS-1, TPS-2)
3	0 to 3	```The 3725 with two FC #1561 (CA-1 and CA-2) with zero to two FC #8320 (TPS-1, TPS-2) AND The 3726 with one FC #1561 (CA-3) with zero or one FC #8320 (TPS-3)```
4	0 to 4	The 3725 with two FC \#1561 (CA-1 and CA-2) with zero to two FC \#8320 (TPS-1, TPS-2) AND The 3726 with two FC \#1561 (CA-3 and CA-4) with zero to two FC \#8320 (TPS-3, TPS-4)
5	0 to 3	The 3725 with two FC \#1561 (CA-1 and CA-2) AND The 3726 with three FC \#1561 (CA-3, CA-4, and CA-5) with zero or one FC \#8320 (TPS-3)
6	0 to 2	```The 3725 with two FC #1561 (CA-1 and CA-2) with zero to two FC #8320 (TPS-1, TPS-2) AND The 3726 with four FC #1561 (CA-3, CA-4, CA-5, and CA-6)```

Figure 4-1. Machine and Feature Prerequisites for Channel Adapters

LABs	Machines and Features To Be Ordered
1 or 2	The 3725 (which includes two LABAs in LAB location 1 and 2)
3	The 3725 (which includes two LABAs in LAB location 1 and 2) with one FC \#4771 (LABA), one FC \#4772 (LABB), or one FC \#4774 (LABC) for LAB location 3
4, 5, 6	The 3725 (which includes two LABAs in LAB location 1 and 2) with one FC \#4771 (LABA), one FC \#4772 (LABB), or one FC \#4774 (LABC) for LAB location 3 AND The 3726 with one to three FC \#4771 (LABA), FC \#4772 (LABB), or one FC \#4774 (LABC) for LAB location 4 through 6
7 or 8	The 3725 (which includes two LABAs in LAB location 1 and 2) with one FC \$4771 (LABA), one FC \#4772 (LABB), or one FC \#4774 (LABC) for LAB location 3 AND The 3726 with FC \#3602 (line increase feature, space for LAB location 7 and 8$)$ with four or five FC \#4771 (LABA), FC \#4772 (LABB), or one FC $\# 4774$ (LABC) for LAB location 4 through 8

Figure 4-2. Machine and Feature Prerequisites for LABs

CABLE ORDERING

With each 3725 or 3726 ordered, specify the cables for the LIC and TIC connections, for the channel connections, and optionally for the alternate console.

Because cable ordering procedures are country-dependent, the two possible procedures are explained in the following sections.

More technical information on cables is to be found in the IBM Input/Output Equipment IM-PP: System/360, System/370, 4300 Processors, GC22-7064.

TIC cables are only supplied in standard lengths. Custom length cables must be ordered from cable vendors. When a Token-Ring uses Telephone Twisted Pair, a filter is required in the network. Check with an IBM Installation and Planning Representative.

ORDERING CABLES IN THE US AND WT A/FE

In North America, Latin America, and Taiwan:

1. Order channel cables by cable group number, up to the maximum length as shown under n $3725 / 3726$ Custom-Length Cables."
2. Whenever possible order LIC, TIC, and alternate operator console cables at standard lengths as shown under "3725/3726 Standard Cables for North America, Latin America, and Taiwan."
3. If the standard lengths are not suitable, order custom-length cables as shown under ${ }^{n} 3725 / 3726$ Custom-Length Cables."

In WT A/FE (except in North America, Latin America, and Taiwan), order all cables by cable group number as shown under "3725/3726 Custom-Length Cables."

60-Hz machines are all shipped from Raleigh, N.C., USA. Cables for these machines must be ordered by an exception telex order according to the exception order process.

50-Hz machines are supplied automatically with standard cables as shown under "3725/3726 standard Cables for WT E/ME/A." These cables need not be ordered. If the type and/or the length of the standard cables do not meet the customer requirements, process as follows:

1. Order the cables through an exception telex order.
2. Use the cable part numbers.
3. Specify the cable length up to the maximum length defined under "3725/3726 Custom-Length Cables."

3725/3726 STANDARD CABLES FOR NORTH AMERICA, LATIN AMERICA, AND TAIWAN

If possible order the standard-length cable groups shown below. For shorter cables, or for an alternate operator's console cable up to 20 m (64 ft) long, order the cable groups shown under "3725/3726 Custom-Length Cables."

Feature	Group Number	Number of Cables	$\underset{m}{\text { Length }}$		Comments	Notes
	0099	1	13.5	45	Alternate Operator Console	
$\begin{gathered} 4911 \\ \text { (LICI) } \end{gathered}$	$\begin{aligned} & 0082 \\ & 0085 \\ & 1400 \\ & 1404 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\left\|\begin{array}{l} 13.5 \\ 13.5 \\ 13.5 \\ 13.5 \end{array}\right\|$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	```V.25/RS366 Autocall Unit V.24/RS232C Direct Attachment, Asynchronous V.24/RS232C Direct Attachment, Synchronous V.24/RS232C DCE```	$\begin{array}{ll}1, & 3 \\ 1, & 3 \\ 1, & 3 \\ 1, & 3\end{array}$
$\begin{gathered} 4921 \\ (\text { LIC2 }) \end{gathered}$	0086	1	13.5	45	Wideband DCE	2, 3
$\begin{gathered} 4931 \\ (\operatorname{LIC} 3) \end{gathered}$	$\begin{aligned} & 0087 \\ & 0088 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\left\|\begin{array}{l} 13.5 \\ 13.5 \end{array}\right\|$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { V. } 35 \text { DCE } \\ & \text { V. } 35 \text { Direct Attachment } \end{aligned}$	$\begin{array}{ll} 2, & 3 \\ 2, & \end{array}$
$\begin{gathered} 4941 \\ (\text { LIC } 4 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & 0089 \\ & 0091 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\left\lvert\, \begin{aligned} & 13.5 \\ & 30 \end{aligned}\right.$	$\begin{array}{r} 45 \\ 100 \end{array}$	$\begin{aligned} & \text { X. } 21 \text { DCE } \\ & \text { X. } 21 \text { Direct Attachment } \end{aligned}$	$\begin{aligned} & 1,3 \\ & 1,3 \end{aligned}$
$\begin{aligned} & 4942 \\ & (\text { LIC4B }) \end{aligned}$	$\begin{aligned} & 0089 \\ & 0091 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 30 \end{aligned}$	$\begin{array}{r} 45 \\ 100 \end{array}$	$\begin{aligned} & \text { X. } 21 \text { DCE } \\ & \text { X. } 21 \text { Direct Attachment } \end{aligned}$	$\begin{array}{ll} 2, & 3 \\ 2, & 3 \end{array}$
$\begin{array}{r} 4991 \\ \text { (TIC) } \end{array}$	1666	1	22.9	75		2, 3

Figure 4-3. 3725/3726 Standard Cables for North America, Latin America, and Taiwan

Notes:

1. Four cable groups can be ordered for each LIC.
2. One cable group can be ordered for each LIC and TIC.
3. 3725 Model 1 Communication Controller, Introduction 6A33-0010, lists terminals that may be connected to various LIC and TIC types.

Feature	Group Number	Number of Cables	\square	Length	Comments
1480	0099	1	13.5	45	Alternate Operator Console
1561	$\begin{aligned} & 3920 \\ & 1178 \end{aligned}$	1	18.5	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	Channel Adapter
4911	$\begin{aligned} & 1404 \\ & 0092 \\ & 0096 \end{aligned}$	4 4 4	$\begin{aligned} & 13.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	LICI Except UK and Belgium LICI UK LIC1 Belgium
4921	0086	1	13.5	45	LIC2
4931	$\begin{aligned} & 0087 \\ & 0095 \end{aligned}$	1	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	LIC3 Except France LIC3 France
4941	0089	4	13.5	45	LIC4A
4942	$\begin{aligned} & 0091 \\ & 0155 \end{aligned}$	1	$\begin{aligned} & 30 \\ & 13.5 \end{aligned}$	$\begin{array}{r} 100 \\ 45 \end{array}$	LIC4B except France TRANSFIX LIC4B France TRANSFIX
8320	$\begin{aligned} & 3920 \\ & 1178 \end{aligned}$	1	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	TPS
4991	none	1	9	30	(See note)

Figure 4-4. 3725/3726 Standard Cables for WT E/ME/A
Note: For custom length TIC cables contact a referenced distributor of the IBM cabling system. The length of TIC cables must meet IBM cabling sytem specifications.

Figure 4-5 (Part 1 of 2). 3725/3726 Custom-Length Cables

8320	3920	2	62	200	62	200	5353920		
	1178	1	45	150	45	150	5351178	First Two-Processor Switch Power Control, First Two-Processor Switch	
8320	3920	2	62	200	62	200	5353920	Second Two-Processor Switch Power Control, Second Two-Processor Switch	
	1178	1	45	150	45	150	5351178		
8320	3920	2	62	200	62	200	5353920	Third Two-Processor Switch Power Control, Third Two-Processor Switch	9
	1178	1	45	150	45	150	5351178	9	8
8320	3920	2	62	200	62	200	5353920	Fourth Two-Processor Switch Power Control, Fourth Two-Processor Switch	8

Figure 4-5 (Part 2 of 2). 3725/3726 Custom-Length Cables

Notes:

1. A maximum distance of $35 \mathrm{~m}(115 \mathrm{ft}$) meets the CCITT specifications. However, if the terminal is a 3725, it operates correctly up to $150 \mathrm{~m}(492 \mathrm{ft})$.
2. The maximum length is:

Up to 56000 bps	$150 \mathrm{~m}(492 \mathrm{ft})$
Up to 128000 bps	$60 \mathrm{~m}(197 \mathrm{ft})$
Above 128000 bps	$30 \mathrm{~m}(98 \mathrm{ft})$

3. The maximum distance to meet the CCITT specifications is: Up to $56000 \mathrm{bps} \quad 150 \mathrm{~m}(492 \mathrm{ft})$
Above $56000 \mathrm{bps} \quad 60 \mathrm{~m}(197 \mathrm{ft})$
However, if the terminal is a 3725 , it operates correctly:
Up to $19200 \mathrm{bps} \quad 600 \mathrm{~m}(1969 \mathrm{ft})$
Above $19200 \mathrm{bps} \quad 300 \mathrm{~m}(984 \mathrm{ft})$
4. Four cable groups can be ordered for each LIC.
5. One cable group can be ordered for each LIC.
6. 3725 Model 1 Commumication Controller, Introchuction 6A33-0010, lists terminals that may be connected to various LIC types.
7. When the DCE is an IBM 3863, 3864, or 3865 Modem, the maximum length is $100 \mathrm{~m}(328 \mathrm{ft}$) if the suffix level of the modem (two alphabetic characters on the date tag) is FG or later for the US and America/Far East, or KF or later for Europe/Middle East/Africa. For earlier suffix level modems, if data multiplexer feature 3260 is not installed, the modem must have EC 344120 installed. If data multiplexer feature 3260 is installed, the modem must have EC 323406 installed.
8. Fifth channel 1561 and fourth TPS 8320 are mutually exclusive.
9. Sixth chamel 1561 and third TPS 8320 are mutually exclusive.
10. Feature \#1480 is required in E/TME/A only.
11. For speeds $\geq 64000 \mathrm{bps}$, the maximum cable length is 35 m (115 feet).

Figure 4-6 (Part 1 of 2). Feature Lists

Figure 4-6 (Part 2 of 2). Feature Lists

Notes:

1. For $E / M E / A$, enter specify code $\# 2999$ on the 3725 and 3726 orders to get the cables. In the US and $A / F E$, cables must be entered on the cable order form (see preceding section).
2. In E/ME/A, FC \#1480 is mandatory if an alternate operator console is required.
3. The maximum quantity of LICs of each type depends on the weight of the LICs, the type of LAB, and the other LIC types installed (Figures 1-4 and 1-10).
4. In E/ME/A only.
5. For feature availability, contact an IBM representative.
6. There is a maximum of one LABC for a 3725 and two for a 3725 with a 3726.

ALTERING A CONTROLLER CONFIGURATION AFTER INSTALLATION

Altering a configuration after the installation of the controller is done by ordering a miscellaneous equipment specification (MES) or request for price quotation (RPQ), for 3725 only.

The controller can determine what features are installed and display a graphic representation of the current configuration on the console. This graphic representation can be transmitted to a host to be printed.

MES CONFIGURATION PROCEDURE

1. Determine the speeds and protocols of the lines to be added.
2. Get a picture of the current configuration from the graphic configuration file on the diskette.
3. If there are any unused ports in the LICs currently installed, use these first.
4. If additional LICs are needed, assign them to unused positions of installed LABs if scanner capacity is available (that is, if the sum of the weights of currently installed LICs plus additional LICs is less than or equal to 100).
5. If additional LIC positions are needed beyond those available in the LABs currently installed, one or more additional LABs will be needed. To order the $L A B(5)$, find your current LAB configuration in the left-hand column of
the following figure. The corresponding line in the right-hand column lists the features required.

Present Number of LABs	Machines and Features To Be Ordered for an Additional LAB
2	MES for 3725: FC \#4771 (LABA), \#4772 (LABB), or \#4774 (LABC) for LAB-3
3	Nets 3726 order (not MES): with FC 4771 (LABA), $\# 4772$ (LABB), or $\# 4774$ (LABC) for LAB-4
4	MES for 3726: FC \#4771 (LABA), \#4772 (LABB), or \#4774 (LABC) for LAB-5
5	MES for 3726: FC \#4771 (LABA), \#4772 (LABB), or \#4774 (LABC) for LAB-6
6	MES for 3726: FC 3602 (line increase feature) with FC \#4771 (LABA), \#4772 (LABB), or \#4774 (LABC) for LAB-7
7	MES for 3726: FC \#4771 (LABA), \#4772 (LABB), or \#4774 (LABC) for LAB-8

6. The choice between $\angle A B A, \angle A B B$, or $\angle A B C$ depends upon the lines to be installed and the customer's plan for the network.
a. If all the lines to be installed are medium speed lines (category-A speed), LABA would be the proper choice.
b. If the lines to be installed are all high speed lines, or a mix of high speed and medium speed, LABB allows maximum flexibility with minimum disruption. LABB is also a good choice for a purchased machine because of its flexibility.
c. A LABC is installed to provide an attachment to one or more token-rings.
7. Add ICCs as needed, one per LAB.
8. Update the graphic configuration to show the physical relationship of the new line/token-ring and LIC/TIC positions within the LAB locations.
9. Order the additional features by quantity and type.
10. Put the MES number provided by the IBM representative in the appropriate MES field on the graphic diagram. Retain a copy of the graphic configuration and send a copy to the FE/CE branch office that will install the MES. FE/CE need this information to install the MES correctly, matching the SYSGEN.
11. Enter the cable group numbers, or the part numbers, in the proper LIC/TIC position on the graphic configuration (or on Appendix A), and order the cables.
12. Enter the channel adapters and TPSs. To order the channel adapter, find the current channel adapter configuration in the left-hand column of the following figure. The corresponding line in the right-hand column lists the features required.

Present Number of CAs	What to order for an Additional Channel Adapter
0	MES for 3725: FC \#1561 (for CA-1)
1	MES for 3725: FC \#1561 (for CA-2)
2	MES for 3726: FC \#1561 (for CA-3) or, if 3726 is not already installed, New order for 3726 with one FC \#1561 (for CA-3)
3	MES for the 3726: FC \#1561 (for CA-4)
4	MES for the 3726: FC \#1561 (for CA-5)
5	MES for the 3726: FC \#1561 (for CA-6)

13. When the MES is installed, FE/CE will update the configuration data file on the diskette.

DIFFERENCES BETWEEN AN MES ORDER AND AN INITIAL ORDER

Checking Differences

For an initial order, the plant checks both units $\langle 3725$ and 3726) for weight compatibility and prerequisite features. For an MES, no cross-checking is performed between the existing configuration and the additional features ordered.

Configuration Differences

Before proceeding as for a new order:

1. Assign lines to empty ports on a graphic representation of the LABs.
2. Assign lines to LICs in Appendix B (see step 2 of Chapter 3).
3. Assign these LICs/TICs, and token-rings to TICs, to free LIC/TIC positions of installed LABs, that is "fill in the gaps".

Follow the weight rules and, whenever possible, the sequence rules that apply to initial orders (see step 3 of Chapter 3). LIC rules 1 and 5 and $L A B$ rules 5 and 8 must always apply; and it is suggested that other LAB and LIC rules also be followed.

Note: Update also the total scanmer weight(s) and the ICC requirements.
When no new LICs or TICs can fit into an existing LAB, proceed with the remaining LICs/TICs as for the new order of a LAB.

Ordering Differences
| First, determine which type of order is required: MES or RPQ for a 3725, MES on 3726, or new order for 3726. The request date need not be related to that of the base machine.

1. The machine type is followed by the the serial number of that machine (or the order number if the machine has not been installed yet).
2. Only the additional features have to be entered on the order.

Notes:

1. If LIC combined weight exceeds standard initial order limits, specify code SC \#6000 must be ordered unless it is already in the machine's history.
2. In case of MES on LAB, specify code SC $\$ 6000$ must be ordered unless it is already in the machine's history.

Storage Increase

Storage capacity can be increased in increments of 256 K bytes, up to a total of 3 M bytes, by installing one storage increment (FC \#7100) for each 256 K of additional storage required. The 3 M byte capability (FC \#7101) is required, in addition, if the total storage is to be more than $2 M$ bytes.

Note: If the storage is to be increased to more than $2 M$ bytes for controllers installed before EC level A20965:

- An original capacity of 0.5 M bytes requires: - The 3 M byte capability (FC \#7101) - A basic storage upgrade (RPQ 8Q0455) in addition to between seven and ten storage increments (FC \#7100), giving between 2.25 and $3 M$ bytes in total.
- An original capacity of 0.75 M bytes requires:
- The 3M byte capability (FC \#7101)
- A basic storage upgrade (RPQ 8Q0455)
- A storage increment upgrade (RPQ 8Q0459) in addition to between six and nine storage increments (FC \#7100), giving between 2.25 and $3 M$ bytes in total.
- An original capacity of $1 M$ bytes requires:
- The 3M byte capability (FC \#7101)
- A basic storage upgrade (RPQ 890455)
- Two storage increment upgrades (RPQ 890459)
in addition to between five and eight storage increments (FC \#7100), giving between 2.25 and $3 M$ bytes in total.

User Application Network (Part 1 of 4)

\#	Line Reference Token-Ring Reference	C/D/A	Speed*	Protocol*	Interface*	Modem* (DCE)	Cable Group ${ }^{\text {\# }}$	$\begin{aligned} & \text { Line } \\ & \text { Address } \end{aligned}$	Cable Length
1	- -	-•••••	.	-	-••••	-•		-•••	-•••
2	-••••••••	-•••••		-••••	-••••	-	-	- • •	-•
3	-•••••••••	-•••••	-	-••••		-	-	-•••	-
4	-••••••••	-•••••		-	-	-	-•	-	-
5	-••••••••	-•••••	-	-••••		-••	-	-	-
6	-•••••••••	-		-		-	-	-	-
7	-••••••••	-••••		-••••		$\cdots \cdots$		-	-•
8	-••••••••	-••••							-
9	-••••••••	-•••••		-••••					-•••
10	-•••••••••	-•••••							-
11	-••••••••				-••			-
12	-••••••••								
13	-•••••••	-•••••	-••	-••••					
14	-••••••••	- • • • •	-	-••••					- ••
15	-••••••••	-••••	-••	-••••					
16	-••••••••	-	,	-••••	-	-••	-••		
17	-••••••••	- • . . • •	-	- • • •	-••••	-••			- . .
18	-••••••••	$\cdots \cdots$	-••	-••••		-••			
19	-••••••••	-					
20	-	-••••					
21	-••••••••	-•••••	$\cdots \cdot \cdots$	-••••	-••••	-			- ••
22	-••••••••		-••	-••••	-••••	-			-•••
23	-••••••••	-•••••		-••••	-••••	-•			- . -
24	-••••••••			-••••	-••••				-•••
25	-								

[^0]

Line Reference: Any short reference that identifies the line (for example, DTE machine number, oumer name, or location). Enter also: C for asynchronous, D for direct attachment, and A for autocall. Ioken-Ring Reference: Any short reference that identifies the Token-Ring. Speed, Protocol, Interface, and Modem columns are not applicable.
Speed and Protocol: Maximum speed and line protocol (start-stop, BSC EBCDIC or ASCII, SDLC DX or HDX). Interface: (CCITT V.24, RS-232C, V.35, and so on).
Modem: Short reference that identifies the modem (if any) to which the cable will be connected.
Cable Group\# and Cable Lenath: See under "Cable Ordering" in Chapter 4.
Line Address: Line address (0 to 255) for cable connection.

User Application Network (Part 3 of 4)

\#	Line Reference Token-Ring Reference	$C / D / A$	Speed*	Protocol*	Interface*	Modem* (DCE)	Cable Group\#	Line Address	Cable Length
51	-•••••••	-••	-	-••••	-••	-••
52	-	-••••••	-	-••••	-••	-••	-	-•••
53	-••••••••	-••••••	-	-	-••	-•	-••	-	-•••
54	-••••••••	-••••••	-	-••••	-••••	-•	-••	- • •	-•••
55	-••••••••	-••••••	-	$\cdots \cdots \cdot$ •	-••••	-•	-••	-•••	-•••
56	-•••••••••	-••••••	-	-••••	-••••	-	-••	
57	-••••••••	-••••••	-		-	-	$\cdots \cdots$		
58	-••••••••	-••••••	-		-	-••	-••		
59	-••••••••	$\cdots \cdots \cdot$ ••	-		-	-•	-••		
60	-•••••••				-••••	-•	-••		
61	-••••••••	-	-		-	-••	-••		
62				-••••	-•			
63	-••••••••	-	-	- . . .	-•••	-•	-••		
64	-	-••••••	-	-••••	-	-••	-••		
65	-	-••••••	- . .	- . .	-•••	-•			
66	-	-	- . .	- . .	-•••	-			
67	-	- . .	-	\cdots			
68	-	-••••••	-•••	-•••	-••••	\cdots	-••		
69	-	-••••••	. . .	- . .	-•••	-•	-••		
70	-•••••	$\cdots \cdots \cdots$	\cdots	\cdots	-•	-••			
71	-			-••••	-••••	-			
72	-•••••••	-••••••	-••	$\cdots \cdots$	-•	-	-••		
73	-••••••••	-••••••		-••••	-••	-•	-••		
74	-	-••••••	-•••	-••••	-	-•	$\cdots \cdots$		-•••
75	-	-			-				

Line Reference: Any short reference that identifies the line (for example, DTE machine number, oumer name, or location). Enter also: C for asynchronous, D for direct attachment, and A for autocall. Token-Ring Reference: Any short reference that identifies the Token-Ring. Speed, Protocol, Interface, and Modem columns are not applicable.
Speed and Protocol: Maximum speed and line protocol (start-stop, BSC EBCDIC or ASCII, SDLC DX or HDX). Interface: (CCITT V.24, RS-232C, V.35, and so on).
Modem: Short reference that identifies the modem (if any) to which the cable will be connected. Cable Group\# and Cable Length: See under "Cable Ordering" in Chapter. 4.
Line Address: Line address (0 to 255) for cable connection.

User Application Network (Part 4 of 4)

Line Reference: Any short reference that identifies the line for example, DTE machine number, oumer name, or location). Enter also: C for asynchronous, D for direct attachment, and A for autocall. Ioken-Ring Reference: Any short reference that identifies the Token-Ring. Speed, Protocol, Interface, and Modem columns are not applicable.
Speed and Protocol: Maximum speed and line protocol (start-stop, BSC EBCDIC or ASCII, SDLC DX or HDX). Interface: (CCITT V.24, RS-232C, V.35, and so on).
Modem: Short reference that identifies the modem (if any) to which the cable will be connected. Cable Group\# and Cable Length: See under "Cable Ordering" in Chapter 4.
Line Address: Line address (0 to 255) for cable connection.

Note: "Step 2. Assigning Lines/Token-Rings to LICs/TICs" in Chapter 3 explains how to use this Appendix. Four-Port LICs: LIC1 and LIC4A (Part 1 of 2)

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
$\begin{aligned} & \text { LIC = } \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{LIC}= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}\right.$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \mathrm{LIC}= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIT }= \\ & \text { Wt = } \\ & \text { SC }= \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC = } \\ & \mathbf{W t}= \\ & \text { SC = } \end{aligned}\right.$	$\left\{\begin{array}{l} \text { LIC }= \\ \text { Wt }= \\ S C= \end{array}\right.$	$\left\{\begin{array}{l} \mathrm{LIC}= \\ \mathrm{Wt}= \\ \mathrm{SC}= \end{array}\right.$	$\begin{aligned} & \text { LIC = } \\ & \text { Wt = } \\ & \text { SC = } \end{aligned}$

$\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ \left.\hline \begin{array}{l}\text { LIC }= \\ W t= \\ S C=\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ \hline \text { LIC }= \\ W t= \\ S C=\end{array}\right]\end{array}\right.$
$\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ \left.\hline \begin{array}{l}\text { LIC }= \\ W t= \\ S C= \\ \hline\end{array}\right] \\ \hline\end{array}\right.$

$\sqrt{1}$| 2 |
| :--- |
| 2 |
| 4 |
| $L I C=$
 $W t$
 $S C=$ |

1
2
3
4
LIC $=$ $W t=$ $S C=$

1	1
2	2
3	3
4	4
LIC $=$ Wt = $\mathrm{SC}=$	

1
2
3
4
$\left.\begin{array}{l}\text { LIC }= \\ W t= \\ S C= \\ \hline\end{array}\right]$

1
2
3
4
$L I C=$
$W t=$
$S C=$

1
2
3
4
LIC $=$ $W t=$ $S C=$

1
2
3
4
LIC $=$
Wt $=$
$S C=$

$\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ \hline L I C= \\ W t= \\ S C=\end{array}\right]$

1
2
3
4
LIC $=$ Wt $=$ $S C=$

One-Port LIC5: LIC2, LIC3, or LIC4B (Part 1 of 2)

1	1	1	1	1	1	1	1	1	1
LIC = Wt = SC =	LIC = Wt = SC =	LIC = Wt = SC =	LIC $=$ Wt $=$ SC =	LIC $=$ Wt $=$ SC $=$	LIC $=$ Wt $=$ SC =	LIC $=$ Wt $=$ SC =	LIC = Wt = SC	LIC = Wt = SC =	LIC $=$ Wt = SC =
1	1	1	1	1	1	1	1	1	1
	LIC $=$ Wt $=$ SC $=$	LIC $=$ Wt $=$ SC $=$	LIC $=$ $\mathrm{Wt}=$ SC $=$	LIC $=$ Wt $=$ SC $=$	LIC $=$ Wt $=$ SC $=$	LIC = Wt = SC =	LIC $=$ $W \mathrm{t}=$ SC $=$	LIC $=$ Wt $=$ SC $=$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$

Four-Port LIC5: LIC1 and IIC4A (Part 2 of 2)

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { sc }= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \mathrm{sc}= \end{aligned}$	$\begin{aligned} & \text { LIC } \\ & \text { LI }= \\ & \text { Sc }= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }_{2}= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIc }= \\ & \text { Wt }= \\ & \mathrm{sc}= \end{aligned}$	$\begin{aligned} & \text { LIC } \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4
$\begin{aligned} & \text { LIC }= \\ & \text { Wt = } \\ & \text { SC = } \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \mathrm{LIC}= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \text { Wt }= \\ & \text { SC }= \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \text { Wt = } \\ & \text { SC = } \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \text { Wt }= \\ & \text { SC = } \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \text { Wt = } \\ & \text { SC = } \end{aligned}$	$\begin{aligned} & \text { LIC = } \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$

1	1	1	1	1
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
$\begin{aligned} & \text { LIC = } \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \\ & \text { SC = } \end{aligned}\right.$	LIC $=$ Wt $=$ SC =	$\begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \\ & \mathrm{SC}= \end{aligned}$	$\begin{aligned} & \text { LIC }= \\ & W_{t}= \\ & S C= \end{aligned}$

| 1 |
| :--- | :--- |
| 2 |
| 3 |
| 4 |
| $L I C$
 $W t$
 $W C$
 $S C$ |
| 2 |
| 3 |
| 4 |
| $S C=$ |

1
2
3
4
LIC $=$ $W t=$ $S C$

1
2
3
4
$\left.\begin{array}{l}\text { LIC }= \\ W t= \\ S C= \\ \hline\end{array}\right]$

1
2
3
4
LIC $=$ $W t=$ $S C=$

One-Port LICs: LIC2, LIC3, or LIC4B (Part 2 of 2)

IBM Token-Ring TICs (LAB Type C)

1	1	1	1	1	1	1	1
TIC $=1$	TIC $=1$	$T I C=1$	TIC $=1$	TIC $=1$	$T I C=1$	TIC $=1$	TIC $=1$

| Note: "Step 3. Assigning LICs/TICs to LABs" in Chapter 3 explains how to use this Appendix.

LAB-1	Pos. 8	Pos. 7	Pos. 6	Pos. 5	Pos. 4	Pos. 3	Pos. 2	Pos. 1
	28	24	20	16	12	8	4	0
	29	25	21	17	13	9	5	1
	30	26	22	18	14	10	6	2
Weight	31	27	23	19	15	11	7	
	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \end{aligned}\right.$	$\begin{aligned} & \text { LIC }= \\ & \mathbf{W L}_{t}= \end{aligned}$	$\left.\right\|_{W t=} ^{\text {LIC }=}$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & W t= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}\right.$	$\begin{aligned} & \text { LIC }= \\ & \mathbf{W t}= \end{aligned}$
ICC: FC466	FC \#49.. SC \#9	\|FC \#49.. sc \#9.	FC \#49.. SC \#9	FC \#49..	FC \#49.. sc \#9.	FC \#49.. SC \#9	FC \#49..	FC \#49.. SC \#9

LAB-2	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8
	32	36	40	44	48	52	56	60
	33	37	41	45	49	53	57	61
	34	38	42	46	50	54	58	62
Weight	35	39	43	47	51	55	59	
	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{LIC}= \\ & \mathrm{Wt}= \end{aligned}\right.$	$\begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mu_{t}= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mathrm{Nt}= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mathbf{W t}_{t}= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \mathrm{Wt}= \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & W t= \end{aligned}\right.$
ICC: FC466.	FC \#49..							
FC466.								

LAB-3	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	
Type									
A/B/C	64	68	72	76				$\begin{aligned} & \text { (83) } \\ & 92 \end{aligned}$	
	65	69	73	77	81	85	89	93	
	66	70	74	78	82	86	90	94	
Weight	67	71	75	79	83	87	91	95	Weight
Sum:			-------	-------	-------	-------	-------	--------	Sum:
	LIC $=$	LIC $=$		LIC =	$\left\lvert\, \begin{aligned} & \text { LTIC } \\ & \text { LIC } \end{aligned}\right.$	$\begin{aligned} & \text { (IIC }= \\ & \text { LIC } \end{aligned}$	$\begin{aligned} & \text { TIIC } \\ & \text { LIC }= \end{aligned}$	TIIC $=$ LIC $=$	$\begin{aligned} & \text { (LAB B } \\ & \text { only) } \end{aligned}$
	Wt $=$	Wt	Wt $=$	Wt $=$	Wt $=$	Wt =	Ht $=$	Wt $=$	
ICC:	FC \#49..								
FC466.	SC \#9...								

Note: For LAB-3 to LAB-8, inclusive, the port addressing and TIC number for a LAB-C is shown in brackets. For example, if LAB-4 is a LAB-C then the TICls have the addresses 112, 113, 114 and 115 for the positions 5, 6, 7 and 8 respectively.

LAB-6	Pos. 1	Pos. 2	Pos. 3	Fos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	
Type ${ }^{\text {A/B/C }}$	160	164	168	172	(176	(177)	(178)	$\text { (} 179 \text {) }$	
					176	180	184	188	
	161	165	169	173	177	181	185	189	
	162	166	170	174	178	182	186	190	
Weight	163	167	171	175	179	183	187	191	Weight
Sum:					(TIC $=$)	(TIC $=$)	(TIC $=$)	(TIC $=$)	Sum:
	LIC =	LIC $=$	LIC =	LIC $=$	LIC =	LIC =	LIC =	LIC =	only)
	Wt =	Wt =	Wt =	Wt =	Wt $=$	Wt =	Wt =	Wt =	
ICC:	FC \#49..	FC \#49..	FC \$49..	FC \#49..					
FC466.	SC \#9...	SC \#9...	SC \#9...	SC \#9...	5C \#9...	SC \#9...	SC \#9...	SC \#9...	

LAB-7	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	
A/B/C	192	196	200	204	$\begin{aligned} & (208) \\ & 208 \end{aligned}$	$\left\lvert\, \begin{aligned} & (209) \\ & 212 \end{aligned}\right.$	$\begin{aligned} & (210) \\ & 216 \end{aligned}$	$\begin{aligned} & (211) \\ & 220 \end{aligned}$	
	193	197	201	205	209	213	217	221	
	194	198	202	206	210	214	218	222	
Weight	195	199	203	207	211	215	219	223	Weight
					(TIC =)	(TIC $=$)	(TIC $=$)	(TIC = ${ }^{\text {ITC }}$	(LAB B
				$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}\right.$	$\left\{\begin{array}{l} \text { LIC }= \\ \text { Wt }= \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { LIC }= \\ & W+= \end{aligned}\right.$	$\begin{aligned} & \text { LIC }= \\ & \text { Wt }= \end{aligned}$	$\left\{\begin{array}{l} \text { LIC }= \\ \text { Wt }= \end{array}\right.$	only)
	$\left\lvert\, \begin{aligned} & \text { Wt }= \\ & \text { FC \#49. } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }= \\ & \text { FC } \# 49 . . \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }= \\ & \text { FC \#49. } \end{aligned}\right.$	$\begin{aligned} & W t= \\ & F C \end{aligned}$	Wt = $\text { FC } 49 .$	\|Wt = FC \#49..	$\left\lvert\, \begin{aligned} & \text { Wt }= \\ & \text { FC } \# 49 . \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { Wt }= \\ & \text { FC \#49. } \end{aligned}\right.$	
$\begin{aligned} & \text { ICC: } \\ & \text { FC } 466 . \end{aligned}$	$\begin{aligned} & \text { FC } \\ & \text { \#49.. } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC } 79 . . . \end{aligned}$	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC \#9... } \end{aligned}$	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC \#9... } \end{aligned}$	FC \#49.. SC \#9...	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC \#9... } \end{aligned}$	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC \#9... } \end{aligned}$	$\begin{aligned} & \text { FC \#49.. } \\ & \text { SC \#9... } \end{aligned}$	

LAB-8	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Pos. 6	Pos. 7	Pos. 8	
Type									
A/B/C	224	228	232	236	$\begin{aligned} & (240) \\ & 240 \end{aligned}$	$\begin{aligned} & (241) \\ & 244 \end{aligned}$	$\begin{aligned} & (242) \\ & 248 \end{aligned}$	$\begin{aligned} & (243) \\ & 252 \end{aligned}$	
	225	229	233	237	241	245	249	253	
	226	230	234	238	242	246	250	254	
Weight	227	231	235	239	243	247	251	255	Weight
Sum:				--------	(TIC $=$)	(TIC $=$ -	-----	------	Sum: (LAB B
	LIC =	LIC $=$	LIC =	(only)					
	$\mathrm{Ht}=$	Wt =	Wt =	Wt $=$	Wt $=$	Wt =	Wt $=$	Wt $=$	
ICC:	FC \#49..	$\text { FC } 49 \ldots$							
FC466.	SC \#9...	SC \#9.	SC \#9...	SC \#9...	SC \#9...	SC \#9...	SC \#9.	SC \#9...	

Notes:

1. The line numbers in positions 5 through 8 , of LAB-3 through LAB-8, apply only to LABAs or LABBs. For LABCs the positions 5 through 8 , of $L A B-3$ through LAB-8, are reserved for token-rings.
2. Once LABs are filled in, write the port费 and cable information on right-hand side of Appendix A.
3. Appendix C, or a copy of it, should be left with the end user 50 as to allow a later comparison with the configuration data set sent by the mamufacturing plant.

It is possible to configure the 3725 Model 1 and the 3726 Expansion without following all the rules described in Chapter 3.

This procedure does not modify the ordering process for Specify Features such as:

Voltage, Power Cord Length (ISG), Automatic Cable Shipment (E/ME/A), Color, and Machine Nomenclature,
and the following Special Features:
Channel Adapter, Two-Processor Switch, Storage Increment, Alternate Console Attachment (E/ME/A) of a 3725, and Line Increase Feature of a 3726.

It allows flexibility in positioning LICs and ICC in the LABs. It should apply only when matching very specific configuration requirements.

Such configurations are called "Specified Configurations" and should be ordered with Specify Code SC \#6000.

LIC and ICC positions are defined in the Specification Sheet available from the IBM representative.

For initial orders, order alterations, and MESs, see the IBM representative.

The following configuration rules must apply when configuring a Specified Configuration:

Rule 1 (Order Rule)

In the Specification Sheet, the total LIC weight must not exceed 100; that is 100 for a LABA, 100 for each half of a LABB, and 100 for the LIC half of a LABC.

Rule 2 (Scanning Rate/LIC Placing Rule)

The maximum scanning capacity authorized per communication scanner is 307200 bps in full or half-duplex mode. The scanning rate of a LIC port must be at least equal to the highest speed used on the line attached to that port.

The scanning rate of a single port LIC2, 3 , or $4 B$ is obtained by dividing 307200 bps by the number of LICs installed in its communication scanner (including the spare positions between the first position and the last occupied position). This number may vary from 1 through 8 for a LABA, from 1 through 4 for each half of a LABB, and from 1 through 4 for the LIC half of a LABC.

The scanning rate of each port of a LIC1 or 4 A is obtained by dividing the above result by four.

LIC positions run from the right to the left in the LABI, and from the left to the right in all other LABs. (See Appendix C.)

The maximum speed supported by a communication scanner is, however, limited to 256000 bps in full or half-duplex mode.

Rule 3 (Operational Rule)

When a $3725 / 3726$ is used as a back-up of several other $3725 / 37265$, or when all the plugged LICs are not operational at the same time, it may happen that the actual LIC weight per communication scanner exceeds 100 . In such a case, the combined LIC weights of the LICs concurrently operational in a given configuration must never exceed 100.

Notes:

1. A LIC is "operational" when at least one of its lines has been defined in the NCP/EP system generation and has been activated by the access method.
2. The number of LIC3s should not exceed four on the first two LABs.

Rule 4 (Start-Stop 9600 and 19200 bps Placing Rule)
When attaching Start-Stop terminals at 9600 or 19200 bps, the following LIC placing restrictions should apply in order to comply with the ICC distribution scheme:

1. On a LAB Type A or C, a LICi may attach Start-Stop lines running at 9600 bps only in the first or second LIC positions and lines running at 19200 bps only in the first LIC position.
2. On a LAB Type B, a LIC1 may attach Start-stop lines running at 9600 bps only in LIC positions $1,2,5$ and/or 6 and lines running at 19200 bps only in LIC positions 1 and/or 5.

Other LIC positions may only be used, as defined above, for lines not requiring an ICC to provide business machine clocking.

A

```
altering controller configuration 4-10
assignment
    LICs to LABs
        procedure for LAB-1 and LAB-2 3-3
        procedure for LAB-3 to LAB-8 3-4
```

C
cable ordering 4-4
channel adapter (CA) 1-2, 1-3, 1-7
character mode 1-11
console, operator 1-4
controller
components 1-6
configuration
maximum 1-5
minimum 1-4
organization 1-1
packaging 1-1
custom-length cables 4-7
D
Direct Attachment 1-9
E
EC level A20965 4-13
example configurations 2-1
F
feature code, LIC 1-10
feature lists 4-9
G
graphic configuration
procedure 3-1
step by step 3-1
graphic representation of LABs $\mathrm{C}-1$
graphic representation of LICs $B-1$
I
IBM Token-Ring Network ii
internal clock control (ICC) 1-3, 1-4,
1-12

L
line attachment base (LAB
location codes 4-2
line attachment base (LAB) 1-2, 1-3, 1-7

LABC 1-8
location 1-8
physical position sequence 3-6
rules 3-8
type A 1-8
type B 1-8
type C 1-8
line increase feature, 3726 1-3
line interface coupler (LIC) 1-2, 1-4,
feature and specify codes $1-10$
location and prerequisites 1-10 port 1-9
position on a LAB 1-10
rules 3-8
type 1-9
weight 1-10

M

```
MES 4-10, 4-12
```

0
operator console 1-4
ordering information
3725 4-1
3726 4-1
R
RPQ 4-10, 4-12, 4-13
rules
LIC assignment to LABs 3-2, 3-8
line assignment to LICs 3-1, 3-8
5
specified configurations $D-1$
specify code, LIC 1-10
speed
category-A ii
category- B iii
category-C iii
standard cables 4-5, 4-6
storage increment 1-2, 1-5, 1-6, 4-13
T
terminology iii
token-ring iii, 1-2, 1-4, 1-6, 1-8,
2-1, 3-1, $3-2,4-11,4-12, A-1, A-2$,
$\mathrm{A}-3, \mathrm{~A}-4, \mathrm{~B}-1, \mathrm{~B}-2, \mathrm{C}-2$
token-ring interface coupler (TIC) iii,
1-2, 1-4, 1-6, 1-8, 2-29, 2-33, 3-1,
$3-2,3-3,3-5,3-6,3-7,4-1,4-2,4-4$,
$4-5,4-6,4-9,4-11,4-12, B-1, B-2$,
$\mathrm{C}-1, \mathrm{C}-2$
"weight" 1-12
position and prerequisites 1-12
position on the LAB 1-12
type 1-12
Tributary station 1-10, 1-11
two-processor switch (TPS) 1-7
location and prerequisites 1-7
U
user application network A-1
W
weight, LIC 1-10
3
3M byte capability $1-2,1-6,4-13$

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location 10 which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, 10 your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

Number of latest Newsletter associated with this publication:
Thank you for your cooperation. No postage stamp necessary if mailed in the USA. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the back of the title page.)

Reader's Comment Form

Fold and tape

IBM Branch Office serving you

SA33-0012-04

[^0]: Line Reference: Any short reference that identifies the line for example, DTE machine number, oumer name, or location). Enter also: C for asynchronous, D for direct attachment, and A for autocall. Token-Ring Reference: Any short reference that identifies the Token-Ring. Speed, Protocol, Interface, and Modem columns are not applicable.
 Speed and Protocol: Maximum speed and line protocol (start-stop, BSC EBCDIC or ASCII, SDLC DX or HDX). Interface: (CCITT V.24, RS-232C, V.35, and so on).
 Modem: Short reference that identifies the modem (if any) to which the cable will be connected.
 Cable Group\# and Cable Length: See under "Cable Ordering" in Chapter 4.
 Line Address: Line address (0 to 255) for cable connection.

