## PERSONAL

The importance of personal safety cannot be overemphasized. To ensure personal safety and the safety of co-workers, follow established safety practices and procedures at all times.
Look for and obey the DANGER notices found in the maintenance documentation. All CEs must be familiar with the general safety practices and the procedures For convenience, this form is duplicated to the right.

## MACHINE

To protect machines from damage, turn off power before removing or inserting circuit cards of components. Do not leave internal machine areas needlessly exposed, avoid shoring panel pins whe
 addition, look for and observe the CAUTION notices ound in maintenance documentation

## CE SAFETY PRACTICES

All Customer Engineers sere expected to to take every satery
precaution possibile and obsene the following safery prac tices while mainitiaing IBM equipment: or around equipment with dangererous voltage. Always or around equipment with dangerous voltage.
avise your manager if you MUST nork alone.
2. Remove all pover, ac and dc, when removing or assemewer suppplies, performing mechanical inspection of por
3. After turning off wall box power switch, lock it in the Off position or tagit with a "Do Not Operate" tag. Form
229.1266. Pull power supply cord whenever possibe.
4. When it is absolutiely necessary to work on equipmen
 the following precautions:
a. Another person familiar wit
be in immediate vicinity.
. metal cuff links.
c. Use only insulated pliers and screwdrives
c. Keep one hand in pocket.
e. When using test instrumen

When using test instruments, be certain that controls
are set correctiv and that insulyed
Avoid contacting ground potential Imetal flior strips.

5. Wear safety glasses when:
a. Usinga hammer to drive pins, riveting, staking, elc
b. power or hand drilling, reaming, grinding, etc
c. Using spring hooks, atraching springs.
. soldering, wire cutting, remoming steel bed
e. Cleaning parts with solvents, spravs, cleaners, chemi.
cals, elc.
f. Performing any other work that may be hazardous to
your eves. REMEMBER-THEY ARE YOUR EYES.
6. Follow special satety instructions when performing special. high voltages. These instructions are outlines dinc CEMs
7. Do not use solvents, chemicals, greases, or oils that have
8. Avoid using tools or test equipment that have not been ap
9. Replace worn or broken tools and test equipment
10. Lift by standing or pushing us with stronger leg muscles.
this takes strain off back muscles. Do not
ment or parts weighing over 60 pounds.
11. After maintenance, restore all saietry devices, such as guards.

no action on his natrier inderssponsonible to be certain thas
13. Place removed mach ine covers
place where no one can trip overs them
14. Ensure that all machine covers are in
15. Always place CE tool kit away trom walk areas where no
6. Avoic touching moving mechanical parts when IUbricati
checking tor play, etc.
may be moving.
B. Avoid wearing loose clothing that may be caught in ma.
chinery. Shirt sieveses must be left buttoned or rolled abo The elibow.
19. Ties must be tucked in shirt or have a ie clasp (preferably
20. Before starting equipment, make certrain fellow CEs and
chine while per-
torming and after compoleting maintenance. Knowing satery rules is not onough. Un unsto sec will inevitubly lead to an acciden

## ARTIFICIAL RESPIRATION

General Considerations

1. Slart Immediatily - Seconds Counk rom danger. Do not Wait or look for nelpolo ors stop to to

2. Check Mouth tor Obstructions

self or when help is available.
3. Remain in Position Ater victim revies, be ready to resume respiration if
necessary,
4. Don't Givene $U$ summor medical aid.

Continue withour interaption until victim is breathing

## Rescue Breathing for Adults

1. Place victim on his back immediately.
2. ciear throat of water tood or foel.
3. Ciear hhroat of water, food, or forereig
4. Tilt head back to ooen air ascsee
5. Tilt head back to open air passage.
6. Liti liw up to keep tongue out of air passage.
7. Blow until you see chest rise.
8. Remove your lips and allow lungs to empty.
. Lisen for snoring and gurgings - signs of throat obstruc.
9. Repeat mouth to mouth breathing 10.20 times a minute,
Continue esesue breath

$\underset{\substack{\text { Thumb and } \\ \text { finger positions }}}{ }$


## 3803-2/3420

$\square$

VOLUME 4 CONTENTS BY SECTION

For subject details or subjects nct found in this table of contents, refer to the general INDEX section in this volume.


3803-2/3420

| XG0090 <br> Seq 1 of 2 4169702 <br> Part Number See EC <br> History 845958 <br> 1 Sep 79      |
| :--- |


| SECTION 55 |  |
| :---: | :---: |
| LWR (Loop Write Read) | 55-005 |
| Basic Recording Technique | 55-007 |
| Common Microprogram Routines | 55-020 |
| SECTION 57 |  |
| NRZI | 57-006 |
| Translate | 57-020 |
| Write Data Convert | 57-025 |
| Read Data Convert | 57-026 |
| SECTION 58 |  |
| S/360, S/370 Switching | 58-005 |
| Two Channel Switch | 58-010 |
| Tie Breaker | 58-030 |
| Device Switching | 58-050 |
| Inbound Crosspoint Switching | 58-101 |
| SECTION 75 |  |
| CE Panel Information | 75-001 |
| SECTION 80 |  |
| Tools and Test Equipment | 80-000 |
| SECTION 85 |  |
| PM Procedures and Schedules | 85-000 |
| SECTION 90 |  |
| Installation | 90-000 |
| INDEX |  |
| Detailed Index (Volumes 1 throug | INDEX 1 |

## BASIC SUBSYSTEM

The IBM 3803-2/3420 Magnetic Tape Subsystem consists of an IBM 3803 Model 2 Tape Control and one or more IBM 3420 Magnetic Tape Units. The 3420 tap are available in six models with tape speeds of , 125, and 200 inches per second (ips) ( $190,5 / 317,5 / 508 \mathrm{~cm} / \mathrm{sec}$ ) for Models 3 and 4, 5 and 6 , and 7 and 8 , respectively.
The 3803 Model 2 operates in 6250 bpi and 1600 bpi modes.
A 3803 tape control without any switching features controls up to eight 3420 tape units ( $1 \times 8$ configuration also called selection logic)
The 3803 command set, status responses, and basic sense data are compatible with those used by IBM 2400 -series tape subsystems. However, there are som minor programming differences. For example:

1. The number of sense bytes and contents of those bytes differ from those used by 2400 -series subsystems.
2. All commands not shown on $40-005$ and $40-008$ set COMMAND REJECT in the sense informatio which, in turn, sets Unit Check in the status byte,
indicating to the system that something is wrong.

A sense command must be issued after an erro condition sets Unit Check in the unit status byte In most instances, non-time dependent programs that operate successfully on an IBM 2400 -series tape subsystem will operate correctly on an IBM
3803-2/3420 subsystem

## 3420 TAPE UNIT

Information presented in this section applies to all models of the tape unit

With compatible features, 3420 Models 3,5 , and 7 can be attached to the 3803-2 without modification


## AUTOMATIC THREADING

A write reel latch secures the file reel to the reel hub automatically. When the operator places a file reel or he power window closes, the write reel latch secures the file reel to the hub, and tape is automatically threaded, loaded into the vacuum columns, and positioned at load point without further operator action

## IBM Easy load cartridge

When used with a solid-flange tape reel (standard IBM 10.5 inch), the optional, IBM Easy Load Cartridg reduces tape handling and helps prevent tape contamination or physical damage.
During a load operation, if the first threading sequence is unsuccessful, tape is rewound into the cartridge and another attempt is made.

## TAPE TRANSPOR

A single direct-drive capstan moves tape forward or backward. Air bearings reduce friction and tape wear only the oxide (recording) surface of the tape contacts tapered vacuum columns greatly reduce tape inertia when starting and stopping tape. The tapered columns and single, direct-drive capstan start and stop tape quickly and smoothly.

## REWINDING

Tape remains in the vacuum columns during rewind operations. Rewind ends when a photocell senses a ) reflective marker on
beginning-of-tape (load point) reflective marker on tape.

During a rewind unload operation, tape is rewound completely onto the file reel. The tape unit is left in unloaded status, with the tape reel latch unlocked and the window open, allowing the operator to remove the file ree

## READ BACK CHECKING

A two-gap read/write head with 0.150 inch ( $3,81 \mathrm{~mm}$ ) between read and write gaps allows read back between read and write gaps allows read back
checking during a write operation. Moving forward tape passes first the write gap, then the read gap.

## FULL-WIDTH ERASURE

An erase head applies a strong magnetic field that erases the entire width of tape during write operations. Full-width erasure prevents interchangeability problems when tape is written on one tape unit and read on another; it also reduces the chances of leaving extraneous bits in interblock gaps or skip areas
During a write, write tape mark, or erase operation, the tape unit monitors the erase head operation. On a 3420 Model 4, 6, or 8, an erase head failure drops tape unit ready status and halts tape motion. On a 3420 Model 3,5 , or 7 , an erase head failure sets Unit Check, but does not drop ready status

## FILE PROTECTION

A write enable ring must be present in the file reel when writing. To avoid destroying information on tape the write enable ring is removed. A reel without the ring is "file-protected". FILE PROTECT turns on when the reel is mounted and no writing can occur.

## 3420 MODELS 4, 6, AND 8

Models 4, 6, and 8 tape units can write and read 6250 bpi tapes with 0.3 -inch interblock gaps. Nominal data rates are 470, 780, and 1250 kilobytes per second at 6250 bpi

A tape cleaning mechanism is added
3420 Models 3,5, and 7 can be converted in the field to Models 4. 6, and 8

## OPER-SUBSYSTEM CONCEPTS (Cont'd)

## RECORDING METHODS

## 6250 BPI

In 6250 bpi mode, 6250 data bytes per inch ( 246 data bytes per mm ) are recorded in nine parallel tracks on tape. 6250 bpi tapes are written with an identification burst (ID burst) in track 1 at load point. The ID burst is ollowed by a control burst and a $0.3-\mathrm{inch}(7,62 \mathrm{~mm})$ BG before a data block is written
6250 bpi is a basic density on 3803 Model 2 and on 3420 Models 4, 6, and 8.

## 6250 BPI ERROR CORRECTION

The 6250 bpi format employs an
error-correcting/detecting code capable of correcting all single-track errors on the strength of the code alon and correcting all double-track errors with the aid of track pointers. Pointers such as phase error and incorrect pattern are indications of questionable data. If the errors fall outside the code capability, Data Check and Unit Check are set and Error Recovery Procedures

## 1600 BPI

In 1600 bpi mode, 1600 bytes per inch ( 63 bytes per mm ) are recorded in nine parallel tracks on tape. The data format uses eight of the nine bits for data, the eight bits of one byte can represent an alphabetic character, zoned decimal digit, two decimal digits (packed), a special character, or eight binary bits.
1600 bpi is a basic density on the 3803 Model 2 and on 3420 Models 3, 5 , and 7 , and a feature on 3420 Model 4,6 and 8 .

## NINE-TRACK NRZ

In nine-track NRZI, data is recorded at 800 bpi ( 31,5 bytes per mm ) in nine parallel tracks on tape. Data representation is the same as for 1600 bpi PE. For nine-track NRZI operation, the dual density feature is nine-track NRZI feature is required on a 3803 Mode

## SEVEN-TRACK NRZI

In seven-track NRZI mode, data is recorded at 200 , 556 , or 800 bpi ( $7,6 / 21,9 / 31,5$ bytes per mm ). The data format uses six of the seven bits for data and the seventh bit for parity checking. Data is recorded in can represent a BCD character or six binary bits. For seven-track NRZI operation, a seven-track feature is required on both a 3420 Model 3, 5, or 7 and on the 3803-2.

## INTERBLOCK GAP

An interblock gap (IBG) is the erased section of tape used to indicate the end of a block or record interblock gaps are:

## 6250 bpi: <br> Nine-track

PE/NRZI:

Seven-track:
0.6 inch ( $15,2 \mathrm{~mm}$ ) nominal 0.5 inch ( $12,7 \mathrm{~mm}$ ) minimum 0.75 inch $(19,05 \mathrm{~mm})$ nominal 0.68 inch ( $17,27 \mathrm{~mm}$ ) minimum.

## MAGNETIC TAPE AND REELS

Most tape volumes that operate satisfactorily on 3420 Models 3, 5 , and 7 will operate with equal or better read/write reliability for an equivalent number of byte transferred on 3420 Models 4,6 , or 8 . Tape must conform to IBM Half-Inch Tape Specifications, GA32-0006

3420 SUBSYSTEM CHARACTERISTICS

|  | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tape Speed (Read or Write) <br> (ips) <br> (cm/sec) | $\begin{gathered} 75 \\ 190.5 \end{gathered}$ | $\begin{gathered} 75 \\ 190,5 \end{gathered}$ | $\begin{gathered} 125 \\ 317,5 \end{gathered}$ | $\begin{gathered} 125 \\ 317,5 \end{gathered}$ | $\begin{aligned} & 200 \\ & 508 \end{aligned}$ | $\begin{aligned} & 200 \\ & 508 \end{aligned}$ |
|  | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 2.3 \\ & 4.0 \\ & 2.1 \\ & 3.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 2.6 \\ & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.65 \\ & 0.95 \\ & 1.28 \end{aligned}$ |
| Forward Start Time, nominal**(ms) | 1.8 | 1.4 | 1.4 | 1.1 | 1.3 | 08 |
| Data Rates ( $\mathrm{Kb} / \mathrm{sec} ; \mathrm{Kd} / \mathrm{sec}$ ): <br> 6250 BPI <br> 1600 BPI PE <br> 800 BPI NRZI (9-Track) <br> 800 BPI NRZI (7-Track) <br> 556 BPI NRZI (7-Track) <br> 200 BPI NRZI (7-Track) | $\begin{gathered} 120 / 240 \\ 60 / 120 \\ 60 \\ 41.7 \end{gathered}$ | $\begin{aligned} & 470 / 940 \\ & 120 / 240 \end{aligned}$ | $\begin{gathered} 200 / 400 \\ 100 / 200 \\ 100 \\ 69.5 \\ 25.0 \\ \hline \end{gathered}$ | $\begin{aligned} & 780 / 1560 \\ & 200 / 400 \end{aligned}$ | $\begin{gathered} 320 / 640 \\ 160 / 320 \\ 160 \\ 1111.2 \\ 40.0 \\ \hline \end{gathered}$ | $\begin{gathered} 1250 / 2500 \\ 320 / 640 \end{gathered}$ |
| Passing Times per Byte (usec): <br> 6250 BPI <br> 1600 BPI PE <br> 800 BPI NRZI <br> 556 BP NRII <br> 200 BPI NRZI | $\begin{gathered} 8.3 \\ 16.7 \\ 24.0 \\ 24.0 \\ \hline 6.7 \\ \hline \end{gathered}$ | $\begin{gathered} 2.133 \\ 8.3 \end{gathered}$ | $\begin{gathered} 5.0 \\ 10.0 \\ 14.4 \\ 40.0 \end{gathered}$ | $\begin{aligned} & 1.28 \\ & 5.0 \end{aligned}$ | $\begin{array}{r} 3.1 \\ 6.2 \\ 9.0 \\ 25.0 \\ \hline \end{array}$ | $\begin{gathered} 0.80 \\ 3.1 \end{gathered}$ |
| Passing Times, IBG (ms): 6250 BPI 9-track (PE and NRZI) 7-track (NRZI) | $\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 4.8 \\ & 6.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 4.8 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.75 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$ |
| Rewind Time (2400-foot reel) | 60 | 60 | 60 | 60 | 45 | 45 |
| Rewind/Unload Time (2400-foot reel) (sec) | 66 | 66 | 66 | 66 | 51 | 51 |
| Load Operation, approximate time (in sec.) to tape unit ready' (after reel/cartridge is mounted and LOAD/REWIND is pressed) | 10 | 10 | 10 | 10 | 7 | 7 |

Read access time is the interval from initiation of a Forvard Read command given to
until the first data byte is read when tape is brought up to speed from stopped status
Write access time is the interval from the issuance of a Move command given to the tape
first data byyte is written on tape when tape is brought up to speed from stopped status.
Start time is the interval from the issuance of a Move command to the tape unit, until tape attains $90 \%$ of specified velocity,

## 3803 MODEL 2 TAPE CONTROL

The 3803 Model 2 Tape Control connects to the I/O interface of an IBM System/360 Model 50 and above by RPQ only) or an IBM System/370, Model 35 and bove The tam control sections a read section ection, and a channel buffer section. nel buffer section.
Note: "I/O Interface" refers to a set of lines over which the tape control and system channel exchange control and data signals. Interface lines and operation re described in IBM System/360 and System/370 I/O Interface, Channel to Control Unit, Original Equipment Manufacturers' Information, Order Number GA22-6974. The 3803 may exceed an interface signal sequence of 32 microseconds, and may produce a worst case interface signal sequence of up to 50 microseconds on ome instructions when in seven-track mode with the two-channel switch feature installed.
The 3803 Model 2 operates at 6250 or 1600 bpi. The Model 2 with appropriate features can process 3 ine NRZI, 200 bi 3 M 5 , and 7 ape units having the companion NRZ1 features.
All data transfers are in burst mode. The tape contro executes one command on one tape unit at a time. Th por pors an on wite perations, bus out parity is checked and parity enerated, if necessary, before the byte is sent to the ape unit. On read operations, tape control parity is checked and generated, if necessary, before the byte is placed on the I/O interface. On sense operations, correct parity is supplied for each byte. Parity is also hecked on command bytes.

O commands issued by the channel are executed with microprograms resident in two independent read-only torage (ROS) units. One ROS unit controls
communication lines to the channel, while the othe OOS unit controls communication lines to the tape unit

## ADDRESSING

Every tape unit has a unique device address, whic consists of a channel address, a tape control address, tape control address when the system is installed. The tape control has separate device interface connectors for each tape unit address. A tape unit's address is determined by the tape control connector to which it is attached. There is no address decoding at the tape unit or device interface level.

## METERING

A usage meter is installed in the tape control and in each tape unit. The tape control's usage meter records elapsed time whenever the METERING OUT line is active and the tape control is in online status (Enabled). A tape unit's usage meter records elapsed time when the tape control METERING OUT line is active, tape unit is loaded, and the tape is not at load point. (CPU) metering circuits; this line is active from the time a command is accepted by the tape control until Device End is generated for that command. See IBM System/360 and System/370 I/O Interface: Channel to Control Unit OEMI, Order Number GA22-6974.

## ENABLE/DISABLE SWITCH

This switch allows the tape control and all attached tape units to be put online or taken offline so a customer engineer can use the CE panel switches and indicators to diagnose errors. Whenever the tape control is placed in offline status (Disabled), the usage meters in the tape control and all attached tape units are prevented from running. When the two-channel switch is provided on the 3803

## POWER ON/OFF SEQUENCING

Normal power on/power off sequencing for the 3803-2/3420 tape subsystem is controlled by system necessitate dropping power in the tape control and attached tape units while power remains on in the system. To take the subsystem offline, see 12-010

3803-2/3420 CONFIGURATIONS

## Operation with Model $4 / 6 / 8$ Tape Units 6250 or 1600 bp Mode and Models $3 / 5 / 71600$ bpi Tape Units



Operation with Model $4 / 6 / 8$ Tape Units 6250 or 1600 bp Model and Mo
NRZI Modes)


MAXIMUM OF 8 TAPE UNITS PER TAPE CONTRO

3803 MODEL 2 FEATURES
Features available on a 3803 Model 2 are nine-track NRZI, seven-track (NRZI), two-channel switch, and device switch. For switch feature descriptions, see Section 58-005 through 58-111.

NINE-TRACK NRZI
The nine-track NRZI feature, available on the 3803 Model 2, permits operation in nine-track NRZI mode. Nine-track NRZI operation requires a 3420 Model 3, 5, or 7 Tape Unit with the dual density feature.

SEVEN-TRACK NRZI
The seven-track feature permits operation in seven-track NRZI mode. Seven-track operation with a 3803 Model 2 is at $800 / 556 / 200 \mathrm{bpi}$. The seven-track feature contains both the data translator and data converter for seven-track operations. The operation is similar to that of the 3803-1 with the seven-track feature. For seven-track operation, the seven-track feature on a 3420 Model 3, 5, or 7 and on the 3803 Model 2 is required. The nine-track NRZI feature is a prerequisite for the seven-track feature on the 3803 Model 2.

Writing a tape with the translator on causes eight-bit bytes from the I/O interface to be written on tape as six-bit BCD characters; reading such a tape causes six-bit BCD characters to be translated into their EBCDIC equivalents. When using the translator, data rates are not changed and there are no changes in the tape unit's operation.
Writing a tape with the data converter on causes four tape characters ( 24 data bits) to be written for every three storage bytes ( 24 data bits); reading such a tape reverses the process by converting four tape characters into three storage bytes. When operating with the data converter on, the data transfer rate is 75 percent of the rate with data converter off.

DENSITY FEATURE COMBINATIONS

| Density (bpi) (Note 1) | 3803-1 | 3803-2 | $\begin{gathered} 3420-3 / 5 / 7 \\ \text { (Note 2) } \\ \hline \end{gathered}$ | $\begin{gathered} 3420-4 / 6 / 8 \\ \text { (Note 3) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 6250, 9-Track | Not Applicable | Standard | Not Applicable | 6250 Feature |
| 1600, 9-Track | Standard | Standard | 1600 Feature | 6250/1600 Feature |
| 800, 9-Track | Dual Density Feature | 9-Track NRZI Feature | Dual Density Feature | Not Applicable |
| 800, 7-Track | 7-Track Feature | 7-Track Feature (Note 4) | 7-Track Feature | Not Applicable |
| 556, 7-Track | 7-Track Feature | 7-Track Feature (Note 4) | 7-Track Feature | Not Applicable |
| 200, 7-Track | RPQ only | 7-Track Feature (Note 4) | 7-Track Feature | Not Applicable |
| Notes: <br> 1. Density must be specified for each 9-track 3420 tape unit. <br> 2. 3420-3/5/7 can be operated by a 3803-1 or 3803-2. <br> 3. 3420-4/6/8 can be operated by a 3803-2 only. <br> 4. 9-track NRZI feature is a prerequisite for 7-track feature on 3803-2. |  |  |  |  |


| XG0200 | 2735972 <br> Sea 1 of 2 2 | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## COMMANDS AND INSTRUCTIONS

## COMMANDS

Commands executed by this subsystem fall into one of the following three categories:

1. Burst Commands
2. Motion Control Commands
3. Non-Motion Control Commands

The table on this page and the one on $40-008$ list the subsystem commands and command codes.
Commands not listed will set COMMAND REJECT.
Programming Note: The 3803/3420 subsystem has no interlocking to prevent improper sequencing of writeand read-type operations that may result in wring Avoiding these improper sequences is a program responsibility.
Avoid the following two basic sequences:

1. A write-type operation after a forward read-type operation except:
a. When the block or Tape Mark (TM) read is known to be followed by a TM. A tape mark is a special block used to separate files.
b. When the block or TM read is known to have been followed by erase record gap (ERG) or is known to have been the last block written before a backward operation.
For example: R R W* avoid.
A read forward-type operation following write-type operations.
For example: $\mathbf{R} \mathbf{B} \mathbf{W} \mathbf{R}^{*}$ avoid
W indicates a write-type operation: write, write TM, or (ERG).
$\mathbf{R}$ indicates a forward read-type operation: read forward, forward space block, or forward space file.
B indicates a backward read-type operation: read backward, backspace block, or backspace file.

- indicates the logical record on which problems may occur.
Because it may be difficult or impossible to ensure the above safe situations, a write after read forward sequence should be used only in applications where strict control of format and command sequence exists. Write is allowable following a backspace. Assume the following tape format with labels where * is used to denote a TM:
VOL HDR * dATA SET * EOF * hDR * dATA SET * EOF **
A rewrite of the last data set involves the following safe and proper sequence. After processing the next to header (HDR) label of the last data set, backspace write a new HDR, and rewrite the data set. If a new data set is being added, the read forward verifies the second consecutive TM, and thus, the true end of a data set on this tape. A backspace, write new HDR, etc., completes the sequence.

| Burst Commands | Command Byte <br> 01234567 |  |
| :---: | :---: | :---: |
| Write | 000000010 |  |
| Read Forward | 00000100 |  |
| Read Backward | 000011000 |  |
| Sense | 0000010004 |  |
| Sense Reserve | 11110100 F 4 |  |
| Sense Release | 11010100 D |  |
| Request Track-In-Error | 00001101118 |  |
| Loop Write-To-Read | 100010118 |  |
| Set Diagnose | 010010114 |  |
| Motion Control Commands |  | Hex |
| Rewind | 000001110 |  |
| Rewind Unload | 0000111110 |  |
| Erase Gap | 000010111117 | 17 |
| Write Tape Mark | 000011111111 | 17 |
| Backspace Block | 00100111127 |  |
| Backspace File | 00100111112 | 2 F |
| Forward Space Block | 0011011137 | 37 |
| Forward Space File | 0011111113 | 3 F |
| Data Security Erase | 100101119 | 97 |



## BURST COMMANDS

Burst commands transfer data across the channel/tape control interface. Channel End and Device End are signaled when the operation is complete (ending status).
The burst commands are

## Write

Read Forward
Read Backward
Sense
Sense Reservase
Request Track-In-Error
Loop Write-To-Read (maintenance aid*)
Set Diagnose (maintenance aid*)

- Diagnostic programs issue maintenance aid commands via start $1 / \mathrm{Os}$ (SIOs) that are op-codes in the Channel Command Word (CCW).


## Write

Write records data on tape as it moves forward and creates an interblock gap (IBG) at the end of each block. The tape control checks the parity of each data byte received from the $1 / 0$ interface.

## READ FORWARD

Read Forward sets the tape unit to forward read status As the tape moves, data is read until the read head As the tape moves, data is read until the read head
detects the next IBG. The tape control checks and, if necessary and possible, corrects the bits of each byte transferred to the $1 / O$ interface. Sensing a tape mark sets Unit Exception with Channel End and Device End in the Unit Status byte.

## READ BACKWARD

Read Backward sets the tape unit to backward read status. The operation of the command is similar to Read Forward, except that the 7-track NRZI data controls are the same as in Read Forward. A Read Backward, given at load point or into load point, sets Unit Check. The tape unit remains in backward status at the end of a Read Backward command.

## SENSE

Sense transfers the sense bytes to channel. There are 24 bytes of sense data available. The CCW specifies the number of sense bytes to be transferred and the starting storage address. The information transferred includes unusual conditions associated with the last operation and provides details about the current onditions present in the tape control and tape unit. A ense command addressed to a tape unit that is not ready will be executed.

## SENSE RESERVE

Sense Reserve reserves the addressed tape control for the channel issuing this command. The tape control will remain reserved for the channel until either:

- A Sense Release command is issued from the reserving channel, or
A system reset occurs.
Attempting to select a tape control that is reserved to nother channel results in a Control Unit Busy andication. The Sense Reserve command should only be issued by the Control Program.

803-2/3420


## SENSE RELEASE

Sense Release releases the reserved tape control so it is available to either channel. The Sense Releas command should only be issued by the control program.
Programming Note: Sense Reserve and Sense Release commands can only be used on subsystem having the two-channel switch feature. If these feature, COMMAND REJECT results. When using these commands, they must be the first command in a chain or COMMAND REJECT results.
The Sense Reserve and Sense Release commands are not supported by IBM Operating Systems

REQUEST TRACK-IN-ERROR (REQUEST TIE)
Request TIE returns to the tape control a data byte containing track-in-error information for 9 -track and containing track-in-error information for 9 -track and
sensing level information for 7 -track tape units. This information is transmitted to the channel in sense byte 2 on a Sense command following a Read, Read Backward, Write, or Loop Write to Read command When issued following a 6250 bpi or PE operation, Request TIE is treated as a No Operation (NOP Reset Sense.

When issued following a 9-track NRZI read operation, a Request TIE either

- Enables the tape control to perform a correction read operation if the data byte contains a single bit, or
- Does not enable the tape control to perform a correction read operation if the data byte contains When issued following a 7 -track read operation, the Request TIE byte controls the read clipping level in the following sequence:

Second attempt-Middle Level
Fourth attempt-High Level
Clipping levels are cyclically altered in this way as long as read attempts result in Vertical Redundancy Check (VRC) errors.

## LOOP WRITE-TO-READ (LWR)

Loop Write-to-Read checks the tape control and tape unit data and control paths without moving tape. In 6250 or 1600 bpi mode, LWR writes and error checks the record. In NRZI mode, LWR writes the record but checks only for Write Trigger VRC errors. Read errors wh occur during the NRZI operation but will be re
O 9 -track 3420 tape units, a LWR command issued at beginning-of-tape (BOT) is executed in 1600 bpi mode. Elsewhere on tape, LWR is executed in the current operating mode of the tape unit.
WR does not require the tape unit to be in write status, but the tape unit must be ready. Execution of an LWR does not change the status of the tape unit. An LWR performed from the processing unit uses the same data path as a Write command.

## SET DIAGNOSE ‘4B'

Set Diagnose is used to call microdiagnostic routines. Bytes are transferred from channel to the tape control to modify the operation of succeeding commands in the chain

FLAG BYTE 1

| Bit | Write | Read |
| :---: | :--- | :--- |
| 0 | Diagnostic Write | N/A |
| 1 | N/A | IBG Measure |
| 2 | Inhibit Postamble | Read Access |
| 3 | Var Go-down Time | Var Go-down Time |
| 4 | Inhibit Preamble | N/A |
| 5 | LWR | DMR |
| 6 | TUBO Mask | N/A |
| 7 | Change Direction | Change Direction |

## Diagnostic Writ

Performs the same function as the 'OB' command.
PE - causes writing to be inhibited in any track when the write data contains successive one bits.
NRZI - 9 track - Inhibits writing P bits 7 track - Inhibits writing C bits.

## Inhibit Postamble

Prevents writing the last 39 zeros of the postamble. The ending all-ones marker and the first zero is written

## Variable Go-down Time

Two bytes (flag bytes 3 and 4) are sent to the tape control unit. These bytes are used to control the wait time before starting the next operation in the chain following the Set Diagnostic (48) command.

## Count values are:

103.15 Microseconds to decrement one count.

$$
27 \text { Milliseconds to decrement the low order } \begin{aligned}
& \text { counter } 256 \text { ('FF') counts and cause one }
\end{aligned}
$$ decrement of the high order count

## Inhibit Preamble

Prevents writing the first 39 zeros of the preamble. The last (40th) zero and the beginning all-ones marker is written.
Loop Write-To-Read
Write data is sent to the tape unit. In the MST board is gated to the read circuits and then returned to the tape control unit for read checking

## Set TUBO Mask

Flag byte 3 is used as a mask to control the tape unit Bus Out. Any bit on in flag byte 3 causes that tape unit
Bus Out bit to be held active, and thus prevents the tape unit from writing data for that specific bit.

## Change Direction

Change Direction allows the following word (CCW) chain to progress through turnaround, if necessary, and unit. At this point, the operation is terminated. The tape unit is left in forward or backward, write or read status, depending on the operation follow the Change Direction instruction.

FLAG BYTE 2

| Bit | Description |
| :---: | :--- |
| 0 | Block Data Check |
| 1 | N/A |
| 2 | Block Interrupts |
| 3 | Force Control Unit Busy |
| $4-7$ | N/A |

FLAG BYTE 3 (OPTIONS)
DMR
Go-Up Time in tack pulses
GDT Hi order byte of go-down count
TUBO Mask Byte used to mask TU Bus Out

## FLAG BYTE 4 (OPTIONS)

DMR Go-down time measure count equivalent to tach pulses. No tach pulse when tape is not moving.
GDT Lo order byte of go-down count

## MOTION CONTROL COMMANDS

Motion control commands move tape but do not transfer information across the channel/tape control interface.
All motion control commands operate as follows

1. Channel End is signaled when the command is accepted (initial status)
2. For commands other than Rewind/Unload, devic end is signaled when the operation is completed (ending status).
3. The tape control responds with BUSY if the tape control is addressed while executing the command As a result, the 3803 is obligated to present a CUE interrupt to the channel that received the BUSY as soon as the current operation is complete.
Note: For Rewind/Unload, Channel End is signaled in initial status, and Device End, Control Unit End, and Unit Check are signaled in an interrupt status cycle after the command becomes effective at the tape unit. Device End is signaled again when the operator reload tape, presses START, and the tape unit goes from been offline in the interim.

Motion control commands are
Rewind
Rewind/Unload
Erase Gap
Write Tape Mark
Backspace Block
Backspace File
Backspace File
orward Space Block
Data Security Erase

## REWIND (REW)

Rewind causes the selected tape unit to rewind tape to load point

## REWIND UNLOAD (RUN)

Rewind Unload causes the selected tape unit to rewind tape to load point, removes tape from the columns, finishes winding tape onto the right reel, closes the cartridge (if used), and opens the window.

## ERASE RECORD GAP (ERG)

Erase Record Gap causes the selected tape unit to nove tape forward and erase tape as follows

|  | Single ERG | Successive ERGs |
| :--- | :--- | :--- |
| 6250 bpi | $3.75 \mathrm{in}.(95,3 \mathrm{~mm})$ | $3.45 \mathrm{in} .(87,6 \mathrm{~mm})$ |
| 1600 bpi and <br> 800 bpi 9 -track | 4.2 in. $(106,7 \mathrm{~mm})$ | 3.6 in. $(91,4 \mathrm{~mm})$ |
| 7 -track | $4.5 \mathrm{in}.(114,3 \mathrm{~mm})$ | $3.75 \mathrm{in} .(95,3 \mathrm{~mm})$ |

## WRITE TAPE MARK (WTM)

Write Tape Mark causes the selected tape unit to move ape forward and write a tape mark block.
At 6250 and 1600 bpi, a WTM causes the subsystem to write a tape mark preceded by an Erase record gap.
Data Check, Equipment Check, and Unit Check can be set during a Write Tape Mark (WTM) operation.
Attempting to write a tape mark on a file-protected ape unit sets COMMAND REJECT.

## BACKSPACE BLOCK (BSB)

Backspace Block causes tape to move backward to the ext interblock gap or to load point, whichever comes first. No data bytes are transferred. Channel End is ignaled at the next interblock gap or load point. gnaled at the next interblock gap or load point. End in the status byte. Backspacing into or at load point sets Unit Check with Device End in the status byte. The tape unit remains in backward status.

## BACKSPACE FILE (BSF)

Backspace File causes the selected tape unit to move tape backward to the interblock gap on the load point side of a tape mark, or to load point, whichever comes not set when tape mark is sensed
Backspacing into or at load point sets Unit Check with Device End in the status byte. Device End is signaled emains in backward status

## FORWARD SPACE BLOCK (FSB)

orward Space Block causes the selected tape unit to move tape forward to the next interblock gap. Initial status contains Channel End. Sensing a tape mark sets Unit Exception, with Device End in the status byte

## FORWARD SPACE FILE (FSF)

Forward Space File causes the selected tape unit to move tape forward to the interblock gap beyond the ext tape mark. No data bytes are transferred. Initial status contains Channel End. Device End is signaled at he completion of the operation. Sensing the tape ma does not set the Unit Exception bit.
rogramming Note: The tape control responds with ontrol Unit Busy sequence while performing an ERG, TM, BSB, BSF, FSB, or FSF operation

## DATA SECURITY ERASE (DSE)

Data Security Erase causes the selected tape unit to rase tape from the point at which the operation is nitiated until the end-of-tape marker is sensed.
The DSE command is accepted by the tape control only when chained immediately following an Erase Gap ommand. Receipt of this command under any other ondition results in COMMAND REJECT. If the ommand is accepted, initial status contains Channel ander An attempt to erase a file-protected tape sets COMMAND REJECT. Unit Exception never occur as a result of this command. Data Security Erase at end of tape (EOT) causes an immediate ending sequence. The tape control does not remain busy afte initial selection. An attempt to select the tape unit while executing a DSE results in busy status.
During DSE execution, the tape unit monitors erase ead current to ensure that tape is erased. If erase head failure is detected, the operation is terminated by dropping TAPE UNIT READY. Device End and Unit check are issued as a result of dropping READY. A completion of a DSE, the tape control presen evice End to channel

Programming Note: If the tape unit drops ready or fails logically during DSE, the ending status containing Device End and sense byte 7, bit 4 (Erase Head Failure) is also set.

Device End is signaled when the EOT marker is sensed during a normal DSE completion. However, a sense command should be performed to assure EOT was . Upon completion of the DSE, the operating onsure must issue sufficient erase gap command marker. Issuing 14 erase gap commands, which erases about 4 feet $(1,22 \mathrm{~m})$ of tape, is generally sufficient. The channel must be enabled for interrupts to detect a Device End is signaled a sense command should be performed to ensure the tape unit reached EOT.
The Data Security Erase command is not currently supported by IBM Operating Systems. DOS supports DSE via a Magnetic Tape Command (MTC).

## NON-MOTION CONTROL COMMANDS

Non-motion control commands do not move tape and do not transfer data across the channel/tape control interface.
Channel End and Device End are signaled when non-motion control commands are accepted (initial status).
Non-motion control commands are
No-Operation
Mode Set 1
Mode Set 2
Diagnostic Mode Set (maintenance aid)

## NO-OPERATION (NOP)

NOP performs no function in the tape control or tape unit, and does not transmit data or move tape. NOP does not reset tape control sense data.
Programming Note: Placing a NOP command at the end of a series of chained commands delays channel disconnect from the tape control until the NOP is executed. Indiscriminate use of this command delays the channel program, and may contribute to a channel overload condition.

## MODE SET 1 (MS 1)

Mode Set 1 commands sent to tape controls with the 7 -track NRZI feature establish an operating mode for succeeding 7 -track NRZI operations. Bits 0 and 1
control density ( $200 / 556 / 800$ bpi) and bits 2,3 , and 4 control parity (odd or even), data converter (on or off),
See chart on this page.
See chart on this page.
A Mode Set 1 command affects operation of all 7-track tape units attached to the tape control. Unless reset, the tape control retains its mode setting until it receives another Mode Set command.

## MODE SET 2 (MS 2)

Mode Set 2 commands sent to a 3803 Model 2, set the operating mode for succeeding write-type operation Modes are: $6250 \mathrm{bpl}, 1600 \mathrm{bpi}$ PE, or 800 bp its mode setting until it receives another Mode Set command.

## DIAGNOSTIC MODE SET (DMS)

DMS causes an artificial signal-loss condition that checks read and write error detection circuits.

- At 6250 bpi, track $P$ is made all zeros and the program supplies the error correcting code as part of the data.
- At 6250 bpi Diagnostic Read inhibits single- and double-track error corr check characters to channel with data
- At 1600 bpi, whenever write data contains successive one bits in any track, writing in that track is inhibited until the last one bit is reached
- In 9-track NRZI mode, no bits are written in track P. - In 7-track NRZI mode, no bits are written in track C. A Diagnostic Mode Set command affects only operations for the command chain in which it is issued.

Mode Set Commands

| Set Density |  |  | Parity |  | Data Converter |  | Translator |  | Command Byte |  |  |  |  |  |  | Hex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 556 | 800 | Odd | Even | On | Off | On | Off | 0 | 1 | 23 | 3 | 5 | 6 |  |  |
| Mode Set 1 (7-Track) (See Note) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| x |  |  | $\times$ |  | $\times$ |  |  | x |  | 0 | 01 | 0 | 0 | 1 |  | 13 |
| x |  |  |  | x |  | x |  | x |  | 0 | 10 | 0 | 0 | 1 | 1 | 23 |
| x |  |  |  | x |  | x | x |  |  | 0 | 10 | 1 | 0 | 1 | 1 | 2 B |
| x |  |  | x |  |  | x |  | x | 0 | 0 | 11 | 0 | 0 | 1 | 1 | 33 |
| x |  |  | x |  |  | $\times$ | x |  |  | 0 | 11 | 1 | 0 | 1 | 1 | 38 |
|  | x |  | $\times$ |  | $\times$ |  |  | x |  | 1 | 01 | 0 | 0 | 1 | 1 | 53 |
|  | $x$ |  |  | $x$ |  | $x$ |  | $\times$ |  | 1 | 10 | 0 | 0 | 1 | 1 | 63 |
|  | x |  |  | $\times$ |  | $\times$ | $\times$ |  |  | 1 | 10 | 1 | 0 | 1 | 1 | 6B |
|  | x |  | $x$ |  |  | x |  | $\times$ | 0 | 1 | 11 | 0 | 0 | 1 | 1 | 73 |
|  | x |  | x |  |  | $\times$ | $\times$ |  |  | 1 | 11 | 1 | 0 | 1 | 1 | 7 B |
|  |  | $x$ | x |  | $\times$ |  |  | $\times$ |  | 0 | 01 | 0 | 0 | 1 | 1 | 93 |
|  |  | x |  | x |  | x |  | $\times$ |  | 0 | 10 | 0 | 0 | 1 | 1 | A3 |
|  |  | $\times$ |  | x |  | $\times$ | $\times$ |  |  | 0 | 10 | 1 | 0 | 1 | 1 | AB |
|  |  | $\times$ | x |  |  | x |  | $\times$ | 1 | 0 | 11 | 0 | 0 | 1 | 1 | B3 |
|  |  | x | $\times$ |  |  | $\times$ | $\times$ |  |  | 0 | 11 | 1 | 0 | 1 | 1 | вв |
| Mode Set 2 (9-Track) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 800 | 1600 | 6250 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | x |  |  |  |  |  |  |  | 1 | 01 | 0 | 0 | 1 | 1 | D3 |
|  | $\times$ |  |  |  |  |  |  |  |  | 1 | 0 | 0 | 0 | 1 | 1 | C3 |
| x |  |  |  |  |  |  |  |  | 1 | 1 | 0 | 1 | 0 | 1 | 1 | св |

## $3803-2 / 3420$



## i/O instructions

In addition to initiating one of the $\mathrm{I} / \mathrm{O}$ operations by means of the Start 1/0 (SIO) instruction, the program can cause certain actions at the tape control by using the Test I/O and Halt I/O instructions.

TEST I/O
A Test I/O instruction performed by the Central Processing Unit (CPU), causes the status byte for the selected tape unit to be sent to the channel for analysis. No actual operation is performed.
Note: A Test I/O command issued to a not ready tape unit results in a contingent connection on tape control units with the two-channel switch.

HALT I/O
A Halt $\mathrm{I} / \mathrm{O}$ instruction causes data transfer to stop. The tape control disconnects from the channel and proceeds in dipendently to the completion of the operation. When the operation is completed, the tape control tries to re-establish connection with the channel to transfer ending status. If addressed while
completing the operation, the tape control returns a BUSY signal.
If a Halt I/O instruction is executed after STATUS IN and before tape motion is started during a Write or Read operation, the operation is canceled, and Channel End, Device End, Unit Check, and Data Check are generated
$3803-2 / 3420$
$\square$

READ/WRITE FLOW LOGIC


3803-2/3420

|  | ${ }_{\text {Par }}^{2735975}$ | See EC History | 845958 1 Sep 79 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



OPER-READ CIRCUITS
50-002


## 3803-2/3420

| XG0600 |
| :--- | :--- | :--- | :--- |
| Seq 1 of 2 | \($$
\begin{gathered}\text { Part Number }\end{gathered}
$$ \begin{gathered}See EC <br>

History\end{gathered}\)
50-002
O Coopright Interational Business Mactines Corporation 1976. 1979

MICROPROCESSORS (MP1/MP2) SCHEMATIC


3803-2/3420


ROS 1 TRAP CONDITIONS

$303.2 / 3420$

## OPER-ROS (Cont'd)

## ROS 1 TRAP CONDITIONS (Cont'd)

Both hardware and microprograms generate resets.
Types of resets are General, Selective, and Machine.
[1] GENERAL RESET resets all flags, stats, and reserve
bits that apply to the selecting interface.
(2] SELECTIVE RESET performs the same functions except the Control Unit Reserve and Hold Interface bits are not reset.
[3] POWER ON RESET and CE panel resets generate MACHINE RESET. Turning power on and pressing RESET both generate POWER ON RESET. POWER ON RESET clears some LSRs and initiates INTERFACE CHECKOUT. Channel outbound tags are checked to ensure all are inactive and a inbound tags except O IN are activated. Contents CHANNEL BUS OUT.
[4] INITIAL SELECTION AB CE traps ROS 1 to 000 at each selection of the tape control.
[5] LOCK ROS 1 IC traps ROS 1 to 000 when an ALU
MP2 is activated for the proper reset after Stat has been set on or off to reset only the selecting interface. CONTROL UNIT BUSY is activated for the duration of the reset and is deactivated at completion of MP2 reset

If MP2 has hardware errors, the tape control "hangs up" with BUSY active and loops on a trap address.
If all steps are completed correctly, the reset is finished. Any failure "hangs up" the tape control at a rap address and BUSY remains active.

| XG0700 | 2735977 | See EC Histor History | $\begin{aligned} & \mathbf{8 4 5 9 5 8} \\ & 1 \text { Seo } 79 \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

6250 WRITE SERVICE REQUIREMENTS
The write buffers fill automatically at the maximum rate permitted by the control unit, cable, and channel delays. This diagram shows when byte requirements occur. The channel must respond only to the average need during the period of overrun, checking such that at least one ECC (error correction code) group remains in control unit buffers at all times until stop occurs. Note that no individual channel byte transfer is overrun checked.
36 bytes are pre-buffered and one ECC group or more must remain in the buffer at all times prior to Stop. This time could permit some data chaining or be considered a safety factor.


Notes:
[1] Proportionately more on lower speed tape units.
[2] The Resync Burst consists of a mark 1 group, 2 sync groups, and a mark 2 group. It is interleaved in a block of data after every 158 data groups, and is used to re-synchronize the read circuits during a 6250 read operation.

| XG0800 <br> Seq 1 of 2 | 2735978 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## 6250 READ SERVICE REQUIREMENTS

The channel buffer and both read byte buffers are empty at the start. Overrun is called only if there is insufficient room in the buffer for a waiting ECC group. The ECC rate varies according to corrections require
but follows the tape rate average over periods of 50
bytes or more. The channel has until the postamble
end to accept all data from the buffer. Note that no
individual data transfer is checked for overrun. To
overrun, the buffer fills during a channel lag.
There is excess read buffer capacity equivalent to 10
usec* available for "slip" or possible data chaining.
The time may be distributed or lumped. Overrun check starts at the 34th byte since that is the total buffer capacity.


3803-2/3420

| $\begin{array}{l}\text { XGOB00 } \\ \text { Seq } 2 \text { of } 2\end{array}$ | $\begin{array}{l}\text { 273597r }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MICROPROCESSOR CLOCKS CONTROL LOGIC
Hardware clocks control both microprocessors (MP Hardware clocks control both microprocessors pulses.
The MP2 clock is similar to the MP1 clock shown
The clocks run on either 150- or 200-nanosecond
cycles. The length of the cycle depends on the
instruction.
The numbers on the clock outputs (CLK1-CLK22) bear no relationship to the times these lines become active within the clock cycle.

Clock Timing Chart

MICROPROCESSOR 1 INSTRUCTION COUNTER (IC)

## MP2 IC is similar on:

ALD AA071, 081, 091
Cards A2L2, A2M2


## 3803-2/3420



OPER-LSR BUFFERS
LOCAL STORAGE REGISTERS
The Local Storage Registers (LSRs) serve as buffers to hold command codes, addresses, error conditions, and any other data the microprocessors use. Each microprocessor has 32 Local Storage Registers. Each register holds one byte ( 8 bits) of data and a parity bit. The registers are numbered LSR 0 through LSR 31.
Data from the D Register is stored in the LSRs, and the output from the LSRs goes to the A Register and the B Bus.
Microprogram instructions gate the contents of the LSRs to other registers.

When the LSRs are used, Field 1 of the microprogram instruction addresses a specific register.
The procedure on page 12-012 displays contents of local storage registers.

ROS/LSR Logic


3803-2/3420

| XG1000 Seq 1 of 2 | 2735980 <br> Part Number | See EC History | 845958 <br> 1 Sep 79 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

STAT REGISTERS
STAT registers are used for microprocessor to microprocessor communication and for microprocessor to data flow communication.

MP1 Stat Register Usage

| MP1 <br> Stat |  |
| :---: | :--- |
| 0 | Stop |
| 1 | Sense |
| 2 | Sense II |
| 3 | Diag. Mode |
| 4 | Stat A |
| 5 | Stat B |
| 6 | Stat C |
| 7 | Stat D |


| MP2 <br> Stat |  |
| :---: | :--- |
| 0 | Tape Op |
| 1 | Start R/W |
| 2 | Wr ID |
| 3 | 7 Trk |
| 4 | Stat A |
| 5 | Stat B |
| 6 | Stat C |
| 7 | Stat D |

MP1/MP2 Stat Registers


## CROSSOVER (XOUTA/XOUTB)

 REGISTERSThe MP1 XOUTA Crossover Register is both a buffer for MP1 control information and a transfer register when sending a byte of information to MP2.
The individual bits from XOUTA (XOUTA BIT x ) are used for the following
Bit Location
0 FC211 Gates unit serial number to Channel.
1 FC211 Gates EC level and features data to channel $\begin{array}{ll}\text { BW311 } & \text { Gates 7-track Mode Sets } \\ \text { BW151 } \\ \text { Generates WRITE END GATE TO DF }\end{array}$
2 BN311 Gates 7-track Mode Sets
$\begin{array}{lll}3 & \begin{array}{lll}\text { BN311 }\end{array} & \begin{array}{l}\text { Gates } 7 \text {-track Mode Sets }\end{array} \\ \text { BW151 } & \text { Gates Write Tape Mark }\end{array}$
$4 \quad$ BN311 $\quad$ Gates 7 -track Mode Sets
CNO31
BW151
Gates NRE1 Track-in-EET
WRITE MARK 1
$5 \quad \begin{array}{lll}\text { CNO31 } \\ \text { BW151 } \\ \text { Gates NRZI Track-in-EEror } \\ \text { Gates WRITE MARK }\end{array}$
$\begin{array}{ll}\text { BW151 } & \text { Gates WRITE MARK } 2 \\ \text { BN231 } & \text { Gates WRITE OP TO DF }\end{array}$
$6 \quad$ PR161 Gates the Sense Bytes to Channel $\begin{array}{ll}\text { CNO31 } & \text { Gates NRZ1 Track-in-Error } \\ \text { BW151 } \\ \text { Gates WRITE A2 }\end{array}$
7 PR161 Gates Sense Bytes to Channel $\begin{array}{ll}\text { CNO31 } & \text { Gates NRZ1 Track } \\ \text { BW151 } & \text { Gates WRITE A1 }\end{array}$
The contents of XOUTA are gated to MP2 by XFR XINA TO LSR 2 on AA431. Output of XOUTA in MP1 is called XINA in MP2

MP1 XOUTB crossover register is a transfer register sending a byte of information to MP2. When MP1 XOUTB is used, MP2 traps to addres to a specific routine in MP2.
The MP2 XOUTA crossover register is both a buffer for MP2 control information and a transfer register when sending a byte of information to MP1

Bits from XOUTA (XOUTA BIT x ) are used as
follows:
Bit ALD
AA141 Gates PE Mode
AA141 Gates forward operation
$\begin{array}{lll} & \\ 3 & \text { AA141 } & \begin{array}{l}\text { Allows envelope loss } \\ 3\end{array} \\ \text { CCO21 } \\ \text { BW231 } & \text { Gates Sync Mode for Detection } \\ \text { Gates }\end{array}$
$\begin{array}{lll}\text { BW231 } & \text { Gates Sync Mode } \\ \text { Gates } 6250 \\ \text { CB111 Mode } \\ \text { Gates Detection }\end{array}$
$\begin{array}{ll}\text { CB11 } & \text { Gates Detection Frequency } \\ \text { AA141 } \\ \text { Gates low gain to read logic }\end{array}$
CB111 Gates detection frequency
The contents of XOUTA are gated to MP1 by XFR XINA TO LSR 1 on AB441. Output of XOUTA in MP2 is known as XINA in MP1.

The MP2 XOUTB Crossover Register is a transfer register sending a byte of information to MP1. This register is primarily used to send sense bytes
from MP2 to MP1 for transfer to channel.

| $\begin{array}{r} \text { MP1 } \\ \text { xOUTA } \end{array}$ | Sense Stat On | Dataflow Control | 6250 BPI Write | 1600 BPI Write | NRZI Write | XfR TIE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  | Format | Format | Format | Any binary combination over 8 will Dead Track only track 0. |  |  |  |  |  |  |
| 1 |  | $\begin{array}{\|l} \hline \begin{array}{l} \text { 7-track Mode } \\ \text { Set* } \end{array} \\ \hline \end{array}$ | End Gate | End Gate | End Gate |  |  |  |  |  |  |  |
| 2 |  | 7-track Mode Set* |  |  |  |  |  |  |  |  |  |  |
| 3 |  | $\begin{aligned} & \text { 7-track Mode } \\ & \text { Set* } \end{aligned}$ | Tape Mark | Tape Mark |  |  | 01 | 1 | 3 | 45 |  | 67 |
| 4 |  | 7-track Mode Set* | 00111 | 00111 |  |  | 1 |  |  |  |  |  |
| 5 |  | Write\# | 11100 | 11100 |  |  |  | 1 | 1 | 1 |  |  |
| 6 | Bin 2 | PE | 01010 |  |  |  |  | 1 |  |  | 1 |  |
| 7 | Bin 1 | NRZ1 | 10101 |  |  |  |  | 1 | 1 |  | 1 | 1 |
|  | Real Time gating of Sense Bytes | * Bits 1-4 of <br> -track Mode <br> Set. |  |  |  |  |  |  |  |  |  |  |
|  |  | \# Bits are phase locked in dataflow hardware by rise of TAPE OP to allow use of register for write format. | Strobed into write controls at each group boundary except bit 3 which is real time. |  |  | Microprogram encoded. |  |  |  |  |  |  |

Crossover Register


MP2 XOUTA Bit Usag

| MP2 <br> XOUTA | Data Control |
| :---: | :--- |
| P |  |
| 0 | PE |
| 1 | Forward |
| 2 | Allow Env. Loss |
| 3 | Sync |
| 4 | 6250 |
| 5 | Speed |
| 6 | Low Gain |
| 7 | Speed |

## 3803-2/3420

## MICROPROCESSOR LISTINGS

Microprocessors 1 and 2 have different listings that can be identified by ALU1 or ALU2 printed in the upper left corner of each page
Listings are in four parts:

1. General reference information, sense byte descriptions, Local Storage Register layout, branch ansfer codes, etc.
2. Equate statements which specify a symbolic name for a value. Equate statements are generally
followed by a description of the use of the constant.
3. Listing of the executable instructions
4. Cross reference table containing all symbolic names used in the listing. This table includes the length of the referenced field, its value, the statement number in which it is defined, and th statement numb
symbolic name.

## COMMUNICATION BETWEEN <br> MICROPROCESSORS

Either microprocessor can move a byte of information from an LSR to either the XOUTA or XOUTB registers. The other microprocessor can then move the byte of isR.
Each microprocessor can test, with Branch On Condition instructions, STAT BITS B, C, and D from the other microprocessor

## LINKING MICROPROGRAM ROUTINES

LINK registers store microprogram addresses for return to a major routine from subroutines. Before branching to a subroutine, the address of a Branch Uncondition Unconditional instruction must be in the same page a the subroutine to which the program is branching. When the subroutine has completed its function, the contents of the LINK register are transferred to the Instruction Counter. The microprogram then branches to the Branch Unconditional instruction, which, in turn branches to the return point in the calling routine.

MP1 has six link registers named LINK 1 through
INK6 and MP2 has three LINK registers named LINK 1 through LINK3. The LINK registers are local torage registers used for linkage purposes. The specific local storage registers used for linkage are

| LINK | MP1 | MP2 |
| :--- | :--- | :--- |
| LINK1 | LSR16 | LSR28 |
| LIN2 | LSR17 | LSR25 |
| LINK3 | LSR18 | LSR26 |
| LINK4 | LSR19 |  |
| LIN5 | LSR24 |  |
| LINK6 | LSR25 |  |

Multiple link registers are available because there may be several possible branches out of a subroutine.

## MICROPROCESSOR (MP1 AND MP2)

 FUNCTIONSTwo microprocessors (50-003) control logic perations of the tape control.
Dperation of MP2 is dependent on the operation of MP1. MP2 remains idle until MP1 supplies it with an address at which to begin. MP1 operates constantly either executing a routine required by the operation being performed or polling the possible conditions that

Microprocessors consist of
Read Only Storage (ROS) in which the
microprogram is stored for use by the
microprocessor. The contents of ROS cannot be modified by the microprogram.
An Arithmetic Logic Unit (ALU) which performs all arithmetic and logic operations: ADD, AND, OR, and XOR.
Registers and Buses to hold or transfer data for subsequent use.
Read Only Storage is addressed by three-dig exidecimal numbers 000 through 7FF Eee-dig hexidecimal numbers 000 through 7FF. Each 16 bit ong. The first digit of the address specifies a page (block of 256 addresses) of Read Only Storage. Each microprocessor has 8 pages of storage, 0 through 7 The two low-order digits specify one of the possible 56 addresses in a page

In general, MP1 handles all logic operations dealing with the channel and MP2 handles the operations dealing with the tape units.
The microprocessors can transfer bytes of information between them and test single bits stored in the other microprocessor.

## MICROPROCESSOR INSTRUCTIONS

The microprocessors use 12 instructions. See following pages

## MICROPROCESSOR INSTRUCTION

 FORMATMicroprocessor instructions have the following format:
[label]OPCODE field 1 ,field2[comments]
where label is a one- to eight-character name by which the instruction can be referenced. Branch instructions point to locations in the microprogram

OPCODE is the operation to be performed on the data or addresses in Field 1 or Field 2 .
Field 1 is generally the address of a Local Storage Register. In some instructions this field may be branch condition or ROS page number
Field 2 is generally a constant, referred to as a decimal number or by a symbolic name. The value of the beginning of the listings as EQU statements. In some instructions this field may be a branch address or transfer code.
Field 2 can contain several symbolic constants combined arithmetically, that is, the sum or difference of two or more constants.
For example, the constant in the instruction
ADD WORK 1,ONES-174
esults in the constant hexidecimal FF (ONES) minus the decimal value 174 , or a decimal value of 81 .

## MICROPROGRAM EC's

 Microprogram EC's are applied with two Array PatchCards, type DEO1, which provide auxiliary ROS arrays The arrays contain four sets of microcode patches shown in Figure 1 in order to select the proper patches for it's location. The following patches active when these two cards are installed (refer to page 52-102 for the patch listings):

Alternate Path Device Busy
2. Velocity Retry Extension
3. Turnaround Delay
4. Allocated Busy
5. Truncated Postamble
6. Extra Device End
7. Sense Reset

Verify factory plugging


Note: If RPO S 10231 is installed see plugging instructions on pages 52-103/104.


## HIGH-ORDER ROS REGISTER

The High-Order ROS Register in each microprocessor holds the 8 high-order bits of a microprogram
instruction. The registers in MP1 and MP2 are identical Bits 0 through 3 contain the operation code. Bits 3 through 7 contain a branch condition or LSR addres Bits 4 through 7 and the $\mathrm{Hi} /$ Lo latch can also contain the LSR address.
Bit 3 will be zero for OR, AND, ADD, XO, and STO instructions. In these instructions, bit $3=0$ allows the addressed LSR to be updated.
Bit 3 in this register serves different purposes
depending on the instruction being executed. Bit 3 is part of the operation code for the modified instructions ORM, ADDM, ANDM, and XOM. This use prevents 15.

Bit 3 is part of the branch condition code for the BOC instruction. There are 32 branch condition codes used.

## LOW-ORDER ROS REGISTER

The Low-Order ROS register in each microprocessor holds the 8 low-order bits of a microprogram
instruction. The registers in MP1 and MP2 are identical The output from these registers goes to the A Bus, th depending on the instruction.

## A REGISTER

The A Register serves as a buffer for information from n LSR that is used as input to the ALU. The contents of the selected LSR are gated to the A Register by XFR LSR TO A REGISTER. The next logic operation (ADD, AND, OR, or XOR) ORs the contents of the A Register with the contents of the instruction's Field 2 and places the result on the A Bus.

During logic operations, the $A$ Register is reset by the CLK 4 line.


ChANNEL TAGS IN REGISTER
The Channel Tags in register holds the channel tags
bits until they are transferred to the Channel Bus In.
Individual register bits are used as follows:


Function
Chain Hold A
Chain Hold B
Hold Interface or Busy
CU Busy
Status $\ln$
CTI
At
Ad o
Alde
Address in
CTI Bit 6 to
CE

| Op In |
| :--- |

## CHANNEL BUS IN REGISTER

The Channel Bus In register serves as a buffer to ransfer bytes from LSRs in MP1 to channel.


3803-2/3420

## TAPE UNIT BUS OUT (TUBO) REGISTER

The TUBO register is a buffer to hold control
information. High speed output is ORed with data bus
The TUBO register stores MP2 control information for the 3420. The output information is multiplexed with tag lines (MOVE, CONTROL, COMMAND) to contro
tape unit functions.


| $\begin{aligned} & \begin{array}{l} \text { XeG1200 } \\ \text { Seq } 2 \text { of } 2 \end{array} \end{aligned}$ | 2735982 | See EC History | $\begin{aligned} & \begin{array}{l} 845958 \\ 1 \text { Sep } 79 \end{array} \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## D REGISTERS

The D Register serves as a buffer between the ALUs and LSRs.
A CLK 22 pulse loads the data into the D Register and resets individual positions when no data is available to load them.
Transfer (XFR) microinstructions gate input from BUS OUT.
CLK 21 degates D Register input from the ALU during store and transfer operations. During logic operations, this input remains active because CLK 21 does not occur.

## MP1 SPECIAL REGISTER (HARDWARE

 ERRORS)The Special Register in MP1 (AB461) is not used as a conventional register, because the input gate is alway active and the latchback is always inactive. MP1 hardware errors merely pass through the register becoming SPEC REG BITS 0-7. When needed, parity bit is generated to maintain odd parity.
Special Register bits are activated as follows
Spec
Reg
Error Line


MP2 SPECIAL REGISTER (TU BUS IN)
The Special Register in MP2 (FD011) is used as the Tape Unit Bus In Register. The Device Bus In bits are called DEVICE BITS LATCHED. The register gate is CLK 18 SET TUBI ALU2. When needed, parity bit is generated to maintain odd parity.

## MIST OR TCS REGISTER (MP1)

The MIST (Multi-Interface Tags) Register (FC181) is used as a Request In Register when the Two-Channel Switch (TCS) feature is installed. This register has four bits assigned as suppressable and non-suppressable REQUEST INS for Channel A and B .
Bit functions are:
Bit Function
4 Suppressable REQUEST IN Channel A
Non-supporessable REOUEST IN
Channel a
6
7 $\begin{aligned} & \text { Suppressable REQUEST IN Channel B } \\ & \text { Non-suppressable REOUEST IN }\end{aligned}$


303-2/3420 $\square$
$\left.\begin{array}{|l|l|l|l|}\hline \mathbf{X G 1 3 0 0} \\ \text { Seq 1 of 2 }\end{array} \begin{array}{ll}2735983 \\ \text { Part Number }\end{array}\right)$

## ADD/ADDM (HEX CODE A OR B)

1. The LSR byte selected by Field 1 (ROS reg bits $4-7$ ) is placed on the B Bus.
2. The A register is ORed with the constant in Field 2 (ROS reg bits 8-15).
3. The result is placed on the $A$ bus.
4. The A bus and the B bus are added together.
5. The result is placed on the $D$ bus.

If the operation is an ADD, the $D$ bus is stored into the LSR byte addressed by Field 1 and the $\mathrm{Hi} /$ Lo latch. LSR byte addressed by Field 1 and the $\mathrm{Hi} / \mathrm{Lo}$ latch. The result of an ADDM operation is not stored in an
LSR. The result of either operation remains on the D bus until the next ALU operation. While on the D bus, the result of the operation is available for branch control. The A Register is reset at the end of the operation.

Sample of an Arithmetic ADD Instruction
Step IC
Load ROS Reg
Hi ROS Party Check Sample
or ROS Parity Check Sample
Set Lookahead to Incremented IC Addres
Sample D Reg
Gate $D$ Bus to LSR (if ROS reg bit 3 not active)
Reset A Reg
 Hex value of ADD OP code
ROS address at which this instruction is located

3803-2/3420

| XG1300 | 2735983 |
| :--- | :--- |



OPER-LOGICAL AND

AND/ANDM (HEX CODE C OR D)

1. The LSR byte selected by Field 1 is placed on the B bus.
2. The A Register is ORed with the constant in Field 2.
3. The result is placed on the $A$ bus.
4. The A bus and the B bus are ANDed.
5. The result is placed on the D bus.

If the operation is an AND, the D bus is stored back into the LSR byte addressed by Field 1 and the HI/LO latch. The result of an ANDM is not stored in an LSR. The result of either operation remains on the D bus until the next ALU operation. While on the D bus, the result of the ANDM operation is available for branch control. The A Register is reset at the end of the operation.


Reset A Reg


| XG1400 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 1 of 2 2 | 2735984 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |

## ORI/ORM (HEX CODE 8 OR 9)

1. The LSR byte selected by Field 1 is placed on the $B$ bus.
2. The A register is ORed with the constant in Field 2.
3. The result is placed on the $A$ bus.
4. The A bus and the B bus are ORed.
5. The result is placed on the $D$ bus.

If the operation is an ORI, the D bus is stored back into the LSR byte addressed by Field 1 and the Hi/Lo latch. The result of an ORM is not stored in the LSR. The result of either operation remains on the $D$ bus until the ext AlU oper is available for branch control The $A$ Register is reset at the end of the operation.


3803-2/3420

| $\mathbf{X G 6 1 4 0 0}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 2 of 2 | $\begin{array}{l}\text { 27art Number } \\ \text { Por }\end{array}$ | $\begin{array}{c}\text { See EC } \\ \text { History }\end{array}$ | $\begin{array}{c}845958 \\ \text { Sep 79 }\end{array}$ |  |  |  |  |  |

## XO/XOM (HEX CODE E OR F)

1. The LSR byte selected by Field 1 is placed on the B bus.
2. The A register is ORed with the constant in Field 2
3. The result is placed on the $A$ bus.
4. The $A$ bus and the $B$ bus are exclusive ORed.
5. The result is placed on the $D$ bus.

If the operation is an XO the D bus is stored in the LSR byte addressed by field 1 and the Hi/Lo latch. The result of an XOM operation is not stored in an LSR. The result of either operation remains on the $D$ bus until the next ALU operation. While on the D bus, the result of the operation is available for branch contro The A Register is reset at the end of the operation.

Sample Logical Exclusive OR Instruction

$\square$


BOC (HEX CODE 2 OR 3)
ROS reg Field 1 , together with bit 3 , is decoded to test one of 32 conditions. If the BOC is met, ROS reg Field one of 32 conditions. If the BOC is met, ROS reg F
2 is set into the Lo IC. See $52-086$ for a complete
listing of MP1 and MP2 branch conditions.
The contents of the $A$ reg are not altered.
Special Condition-If the two-channel switch or NRZI features are installed, a BOC on these features (BOC on 'MIFTR' or 'NRZFEAT') results in a successful BOC with the Hi IC forced to ROS page 4. See logic diagram.


3803-2/3420
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \text { XG1500 } \\ \text { Seq 2 of } 2\end{array} \begin{array}{c}\text { 2735985 } \\ \text { Part Number }\end{array}\right) \begin{gathered}\text { See EC } \\ \text { History }\end{gathered}\left|\begin{array}{c}845958 \\ 1 \text { Sep 79 }\end{array}\right|$

OPER-MP1 BRANCHES
MP1 BRANCH CONDITIONS

| BOC <br> Instr+ <br> Field 1 | $\begin{gathered} \text { ROS Reg } \\ \text { Bits } \end{gathered}$ |  |  |  |  | Microprogram Name of Line Sensed | Logic Line Name of Condition Sensed | Branch Cond Logic Page | Source Logic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 |  |  |  |  |
| 20 | 0 | 0 | 0 | 0 | 0 | DBUS D Reg equal 0 | ALU output all zero ALU1 | AB121 | AB371 |
| 21 |  |  |  |  | 1 | NALCO not ALU carry out | Not ALU carry ALU1 | AB121 | AB371 |
| 22 |  |  |  | 1 | 0 | ALUR ALU2/ALU1 Error | Any hardware error ALU2 | AB121 | AA461 |
| 23 |  |  |  | 1 | 1 | MIFTR** MIS or 7-Trk Feature | Feature present ALU1 | AB121 | AB131 |
| 24 |  |  | 1 | 0 | 0 | BOPE Bus Out parity error | Not Bus Out parity odd | AB131 | FC151 |
| 25 |  |  | 1 | 0 | 1 | NCUEA Not CU End Chan A | Not CUE pending Chan A | AB131 | FC031 |
| 26 |  |  | 1 | 1 | 0 | SELO Select Out | Gated Select Out | AB131 | FC141 |
| 27 |  |  | 1 | 1 | 1 | DFLER | Data Check (Not Tape Op) | AB131 | BW241 |
| 27 |  |  | 1 | 1 | 1 | Clock "B" | Write Grp "B" (Tape Op) | AB131 | BW151 |
| 28 |  | 1 | 0 | 0 | 0 | ADrout Addr Out A or B | Address Out A B CE | AB171 | AB171 |
| 29 |  | 1 | 0 | 0 | 1 | CMDOUT Cmd Out A or B | Command Out A B CE | AB171 | FC151 |
| 2A |  | 1 | 0 | 1 | 0 | STATA Stat A ALU1 | Stat A ALU1 | AB151 | AB141 |
| 2B |  | 1 | 0 | 1 | 1 | STAT B Stat B ALU2 | Stat B ALU2 to ALU1 | AB151 | AA141 |
| 2 C |  | 1 | 1 | 0 | 0 | SELRST Selective Reset | Selective Reset | AB171 | FC151 |
| 2D |  | 1 | 1 | 0 | 1 | SVCOUT Service Out | Service Out only on write ops. Service In or Service Out on read ops. | AB171 | FC151 |
| 2E |  | 1 | 1 | 1 | 0 | SCB Switched to Chan "B" | Switched to Chan "B" | AB161 | XM101 |
| 2 F |  | 1 | 1 | 1 | 1 | PWRRST Power On Reset | Mach or Gen Reset Chan A B | AB161 | AB161 |
| 30 | 1 | 0 | 0 | 0 | 0 | DREG0* D Reg Bit 0 On | D Bus 0 ALU1 | AB121 | AB341 |
| 31 | 1 | 0 | 0 | 0 | 1 | DREG1 D Reg Bit 1 On | D Bus 1 Alu1 | AB121 | AB341 |
| 32 | 1 | 0 | 0 | 1 | 0 | DREG2* D Reg Bit 2 On | D Bus 2 Alu1 | AB121 | AB341 |
| 33 | 1 | 0 | 0 | 1 | 1 | DREG3* D Reg Bit 3 On | D Bus 3 ALU1 | AB121 | AB341 |
| 34 | 1 | 0 | 1 | 0 | 0 | DREG4* D Reg Bit 4 On | D Bus 4 ALU1 | AB131 | AB351 |
| 35 | 1 | 0 | 1 | 0 | 1 | DREG5* D Reg Bit 5 On | D Bus 5 AlU1 | AB131 | AB351 |
| 36 | 1 | 0 | 1 | 1 | 0 | DREG6* D Reg Bit 6 On | D Bus 6 AlU1 | AB131 | AB351 |
| 37 | 1 | 0 | 1 | 1 | 1 | DREG7* D Reg Bit 7 On | D Bus 7 ALU1 | AB131 | AB351 |
| 38 | 1 | 1 | 0 | 0 | 0 | OPRIN Operation In | Channel Operation In | AB171 | FC141 |
| 39 | 1 | 1 | 0 | 0 | 1 | sUPO Suppress Out | Suppress A B | AB171 | FC151 |


| $\begin{aligned} & \text { BOC } \\ & \text { Instrt } \\ & \text { Field } 1 \end{aligned}$ | ROS Reg Bits |  |  |  |  | Microprogram Name of Line Sensed | Logic Line Name of Condition Sensed | Branch Cond Logic Page | Source Logic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 |  |  |  |  |
| 3A | 1 | 1 | 0 | 1 | 0 | STATC Stat C AlU2 | Stat C ALU2 to ALU1 | AB151 | AA1.41 |
| 3B | 1 | 1 | 0 | 1 | 1 | STATD Stat D ALU2 | ALU2 Locked Status | AB151 | AA451 |
| 3 C | 1 | 1 | 1 | 0 | 0 | NGENR Not Gen Reset | Not General Reset Chan A B | AB171 | FC041 |
| 3D | 1 | 1 | 1 | 0 | 1 | ISEL Initial Selection | Initial Selection A B CE | AB171 | AB171 |
| 3E | 1 | 1 | 1 | 1 | 0 | nCUEB Not CUE for Chan | Not CUE PENDING Chan B | AB161 | XM031 |
| 3 E | 1 | 1 | 1 | 1 | 0 | Buffer Branch | RD Channel Buffer (Stop to DF) | AB161 | BR011 |
| 3F | 1 | 1 | 1 | 1 | 1 | Overrun | Data Flow Detected Overrun (Not Tape Op) | AB161 | BW241 |
| 3 F | 1 | 1 | 1 | 1 | 1 | All Ones | End of Data being written (Tape Op) | AB161 | BW151 |

** If this feature is installed, force Hi IC to ROS Page 4.

3803-2/3420

| XG1600 <br> Seq 1 of 2 | 2735986 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MP2 BRANCH CONDITIONS

| $\begin{gathered} \text { BOC } \\ \text { Instr+ } \\ \text { Field } 1 \end{gathered}$ | $\begin{gathered} \text { ROS Reg } \\ \text { Bits } \end{gathered}$ |  |  |  |  | Microprogram Name of Line Sensed | Logic Line Name of Condition Sensed | Branch Cond Logic | $\begin{aligned} & \text { Source } \\ & \text { Logic } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 |  |  |  |  |
| 20 | 0 | 0 | 0 | 0 | 0 | DBUS D Reg equal 0 | Alvo | AA121 | AA361 |
| 21 |  |  |  |  | 1 | nalco | Not ALU carry | AA121 | AA361 |
| 22 |  |  |  | 1 | 0 | rocrot | ROS rotation (Tape Op) | AA121 | CB411 |
| 22 |  |  |  | 1 | 0 | CRC NePr | CRC not equal EPR (Not Tape Op) | AA121 | CN011 |
| 23 |  |  |  | 1 | 1 | NRZFEAT** Installed | Feature present | AA121 | AA131 |
| 24 |  |  | 1 | 0 | 0 | RD Time | Read Time | AA131 | BW221 |
| 25 |  |  | 1 | 0 | 1 | N Seven | Not Seven Track | AA131 | AA131 |
| 26 |  |  | 1 | 1 | 0 | tachff | Tach Velocity (Write CKT) | AA131 | Xc031 |
| 27 |  |  | 1 | 1 | 1 | STOP Stop Command | Stat Bit 0 ALU1 to ALU2 | AA131 | AB141 |
| 28 |  | 1 | 0 | 0 | 0 | ENDATA Ending Zeros | End of Data (Tape Op) | XC041 | BW241 |
| 28 |  | 1 | 0 | 0 | 0 | CRCMAT | CRC OK (Not Tape Op) | xC041 | CH111 |
| 29 |  | 1 | 0 | 0 | 1 | NCONVCK | Data CC Check (Not Tape Op) | xC041 | BN071 |
| 29 |  | 1 | 0 | 0 | 1 | NSAGC ID | Inverse TM (Tape Op) | XC041 | cC001 |
| 2A |  | 1 | 0 | 1 | 0 | STATA Stat A ALU2 | Stat A AlU2 | $\times$ ¢041 | AA141 |
| 2B |  | 1 | 0 | 1 | 1 | STATB Stat B ALU1 | Stat B ALU1 | XC041 | AB141 |
| 2 C |  | 1 | 1 | 0 | 0 | NPTE | Data P Track Only (Tape Op) | xC051 | BW231 |
| 2 C |  | 1 | 1 | 0 | 0 | DEN 556 | 556 bpi (7-Track) | xC051 | BN311 |
| 2 D |  | 1 | 1 | 0 | 1 | data rdy | Data Rdy from DF (Tape Op) | xC051 | CH131 |
| 2D |  | 1 | 1 | 0 | 1 | RPQ | RPQ Installed (Not Tape Op) | xC051 | RPQ |
| 2 E |  | 1 | 1 | 1 | 0 | Bor | Beginning of Record (Tape Op) | XC051 | ccoor |
| 2 F |  | 1 | 1 | 1 | 1 | IBG | IBG Detected (Tape Op) | XC051 | cC001 |
| 30 | 1 | $\bigcirc$ | 0 | 0 | 0 | Drego* D Reg Bit 0 On | D Bus 0 AlU2 | AA121 | AA331 |
| 31 | 1 | 0 | 0 | 0 | 1 | DREG1* D Reg Bit 1 On | D Bus 1 ALU2 | AA121 | AA331 |
| 32 | 1 | 0 | 0 | 1 | 0 | DREG2* D Reg Bit 2 On | D Bus 2 ALU2 | AA121 | AA331 |
| 33 | 1 | 0 | 0 | 1 | 1 | DREG3* D Reg Bit 3 On | D Bus 3 ALU2 | AA121 | AA331 |
| 34 | 1 | 0 | 1 | 0 | 0 | DREG4* D Reg Bit 4 On | D Bus 4 ALU2 | AA131 | AA341 |
| 35 | 1 | 0 | 1 | 0 | 1 | DREG5* D Reg Bit 5 On | D Bus 5 ALU2 | AA131 | AA341 |
| 36 | 1 | 0 | 1 | 1 | 0 | DREG6* D Reg Bit 6 On | D Bus 6 ALU2 | AA131 | AA341 |
| 37 | 1 | 0 | 1 | 1 | 1 | DREG7* D Reg Bit 7 On | D Bus 7 ALU2 | AA131 | AA341 |
| 38 | 1 | 1 | 0 | 0 | 0 | 6400 | RLC Branch | XC041 | BW231 |
| 39 | 1 | 1 | 0 | 0 | 1 | NITE | Not One Track Envelope | xC041 | BW231 |
| 39 | 1 | 1 | 0 | 0 | 1 | DEN 200 | Density 200 (Seven Track) | xC041 | BN311 |

3803-2/3420



| $\begin{gathered} \text { BOC } \\ \begin{array}{c} \text { Instr+ } \\ \text { Field } \end{array} 1 \end{gathered}$ | $\begin{gathered} \text { ROS Reg } \\ \text { Bits } \end{gathered}$ |  |  |  |  | Microprogram Name ofLine Sensed | Logic Line Name of Condition Sensed | Branch Cond LogicPage | Source Logic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 |  |  |  |  |
| 3 A | 1 | 1 | 0 | 1 | 0 | STATC Stat C Alu1 | Stat C ALU1 Mark on Wall | Xc041 | AB141 |
| 38 | 1 | 1 | 0 | 1 | 1 | STATD Stat D ALU1 | Stat D ALU1 | Xc041 | AB141 |
| 3 C | 1 | 1 | 1 | 0 | 0 | nenvlos | No Envelope Loss ( Not T Tape Op) | xc051 | CC011 |
| 3 C | 1 | 1 | 1 | 0 | 0 | nblock | No Zone Up (Tape Op) | xC051 | cC011 |
| 3 D | 1 | 1 | 1 | 0 | 1 | NTM | Tape Mark | xc051 | cC001 |
| 3 E | 1 | 1 | 1 | 1 | 0 | BSYTACH | Busy or Tach | XC051 | xC031 |
| 3 F | 1 | 1 | 1 | 1 | 1 | devattn | Interrupt | xc051 | xc031 |

** If this feature is installed, force Hi IC to ROS Page 4.


OPER-BRANCH UNCONDITIONAL LOGIC

## BRANCH UNCONDITIONAL - BU (HEX

 CODE 6)1. The contents of ROS reg Fields 1 and 2 are set into the Hi IC and Lo IC
2. The contents of the $A$ reg are not altered.

Sample of a Branch Unconditional Instruction

bRANCH UNCONDITIONAL


## STORE - STO (HEX CODE 0 OR 1)

1. The contents of Field 2 are stored in an LSR selected by Field 1
2. LSR selection is modified by the condition of the $\mathrm{HI} / \mathrm{LO}$ latch and ROS register bit 3 (see logic diagram).
3. The A register is reset.


## TRANSFER - XFR (HEX CODE 4 OR 5)

The hex value (transfer decode) in Field 2 controls all transfer operations. All XFR decodes for both ROS1 and ROS2 are on 52-101.
Some transfer decodes cause data to be transferred between an LSR selected by Field 1 and a hardware by the condition of the HI/LO latch and ROS reg bit 3 by the condition of the HI/LO latch and ROS reg bit
(see logic diagram).
Some transfer decodes do not select LSRs (that Field 1 is ignored). These operations create Field 1 is ignored). These operations create
miscellaneous Set, Reset, and Gating pulses to miscelianeo
hardware.
One transfer decode (ROS1 XFR decode of 14) transfers data from one hardware register to another (ROS1 XOUTA TO DEAD TRK REG).
Contents of the A register are not altered except as described under special condition 1 below.

## Special Conditions

1. Whenever a XFR from LSR to $A$ reg (Field 2 hex 21) is decoded, the XFR is really a logical OR (for
example, A register bits that were ON remain ON) example, A register bits that were ON remain ON )
2. Whenever a XFR 'HDWERR' (Field 2 ALU1 $=11$ or ALU2 $=44$ ) is decoded, the following actions occur:
a. Bit 4 in sense byte 11 or 12 (ALU1 or ALU2 respectively) is set.
b. The UPGM Control Check indicator* on the CE panel is turned on.
c. IC is reset to 000 (ROS1 starts executing at $000-\mathrm{ROS} 2$ holds at 000 ).

* For additional information on microprogram control check, see 75-003: "CE Panel Indicators.

Short cycle
Step IC
Load ROS Reg
Lioad ROS Rerity Check Sample
Hi Ros Lo ROS Parity Check Sample
Set Look Ahead Iathes Set Look Ahead Latches
to Incremented IC Address D Bus Parity Check (Note 1) B Bus Parity Check (Note 2) Gate D Bus to LSR Segate Adder input to DREG

Sample Transfer Instruction


## OPER-TRANSFER LOGIC

## MICROPROGRAM TRANSFER DECODES

TRANSFER DECODE-MP1

| DECODE |  | MP1 |  |
| :---: | :---: | :---: | :---: |
| Field 2 | $\begin{gathered} \text { Micro- } \\ \text { program } \\ \text { Name } \end{gathered}$ | Use | $\underset{\substack{\text { Logic } \\ \text { Decode AB181 } \\ \text { Line } \\ \text { Names }}}{\text { XFR }}$ |
| 05 | RStDOMtD | Reset device committed latch | Reset committed latch ALU1* |
| 06 | LSR | Set local store sel latch hi or low | Set LSR hi or lo* |
| 09 | CUREA | Reset CUE or general reset latch Intf A | Reset CUE Chan $A^{*}$ |
| 0A | cureb | Reset CUE or general reset latch Intf B | Reset CUE Chan $\mathrm{B}^{*}$ |
| 11 | HDWERR | Set Sense Byte 11 Bit 4 (force ROS 1 ALU hardware error)*** | XFR Set Checkout error* |
| 12 | Clear | Reset all hardware error latches for ROS1, ROS2 and data flow | Reset Sense Data* |
| 14 | TIP | MP1 XOUTA to Dead Track register | Xfr XOUTA to DT Reg |
| 18 | Spare |  | Spare Xfr 18 |
| 21 | AR | LSR to A Reg | Xfr LSR to A Reg |
| 22 | ic | LSR to Instr. Ctr (Lo IC) | Xfr B Bus to IC |
| 24 | TUADR | LSR to TU Address Reg | Xfr TU Address |
| 28 | STAT | LSR to ROS1 Stat Reg | Xfr LSR1 to Stat |
| 41 | хоитв | LSR to ROS1 XOUTB Reg | Xfr XOUTB TO Trap ALU2 |
| 42 | xOUTA | LSR to ROS1 XOUTA Reg | Xfr LSR1 to XOUTA |
| 43** |  | --- - | - |
| 44 | PING | Hardware Error Reset | Reset PING Pulse* |
| 48 | MIST | LSR to set or reset Req In Tags | Xfr LSR1 to Request Tags |
| 50 | CTI | LSR to Channel Tags In Reg | Xfr LSR1 to Channel Tags |
| 60 | CBI | LSR to Channel Bus in Tags Reg | Xfr LSR1 to Channel Bus in |
| 81 | EXT | ROS2 ALU hardware error reg to LSR | Xfr Ext inputs to LSR1 |
| 82 | INHP | Not used |  |
| 84 | HDWR | ROS1 ALU hardware error to LSR | Xfr Hardware Reg |
| 88 | XINB | ROS2 XOUTB Reg to ROS1 LSR | Xfr XINB to LSR1 |
| 90 | XIN | ROS2 XOUTA Reg to ROS1 LSR | Xfr XINA to LSR1 |
| A0 | CBO | Channel Bus Out Reg to LSR | Gate Chan Bus Out to ALU |

3803-2/3420



TRANSFER DECODE-MP2

| decode |  | MP2 |  |
| :---: | :---: | :---: | :---: |
| Field 2 | $\begin{gathered} \text { Micro- } \\ \text { program } \\ \text { Name } \end{gathered}$ | Use | Logic Line Names XFR |
| 05 | Spare sense byte 11 bit 4 (force |  | Spare |
| 06 | LSR | Set local store sel lateh hi or lo | Set LSR hi or lo ${ }^{*}$ |
| 09 | Reset ERR | Reset errors single byte noise | File Operation Pulse |
| OA | CRC | Shift CRC Pulse | Spare Xfr OA |
| 11 | Indf | Set Diagnostic Channel Buffer Read | Pulse Reset CRC |
| 12 | POINTERS | Sample pulse to set. TIE | Step Format Count |
| 14 | Red Light | Set CE Panel Uprog det DF error | SKB and Det Crri |
| 18 | Buff CRC | Sample Buffer CRC error latch | Spare Xfr 18 |
| 21 | AR | LSR to $A$ Reg | Xfr LSR to $A$ Reg |
| 22 | IC | LSR to Instr Ctr (Lo IC) | Xfr B Bus to IC |
| 24 | tutag | LSR to TU Tags Reg | Xfr LSR2 to TU Tags 24 |
| 28 | Stat | LSR to ROS2 Stat Reg | Xfr LSR2 to Stat |
| 41 | хоитв | LSR to ROS2 $\times$ OUUTB Reg | Xfr LSR2 to XOUTB |
| 42 | xouta | LSR to ROS2 XOUTA Reg | Xfr LSR2 to XOUTA |
| $43^{* *}$ | XANXB |  |  |
| 44 | HDWERR | Set sense byte 12. bit 4 (force ROS2 ALU hardware error)*** | Xfr Set Checkout Error |
| 48 | Spare |  | $\cdots$ |
| 50 | comito | Reset Device Committed latch | Reset Committed latch pulse* |
| 60 | тUво | LSR to TU Bus Out Reg | Xfr LSR2 to TU Bus Out |
| 81 | TUBI | TU Bus In Reg to LSR | Gate Device Bus in to LSR2 |
| 82 | INHP | Inhibit Parity on D Bus | Inhibit Partit on D Bus |
| 84 | XADDR | TU Bit Address Reg to LSR | Gate TU Addr to ALU2 |
| 88 | XINB | ROS 1 XOUTB Reg to ROS2 LSR | Xfr XINB to LSR |
| 90 | XINA | ROS1 XOUTA Reg to ROS2 LSR | Xfr XINA to LSR2 |

$\therefore \quad$ These transter operations cause no actual information transter
With transfer decode of 43 . transter decodes 41 and 42 are executed simultaneously
... Also sets CE Panel UPGM Error light (Control Check Indicators)

## ALU1

| Instr Addr | $\begin{aligned} & \text { Patch } \\ & \text { Store } \\ & \text { Storrol } \\ & \hline \end{aligned}$ | Object Code |  | Sourc | Statement | Patch Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20C | Enter | C400 |  | AND | WORK 1, ZERO | allocated busy |
| 20D | RETURN | 62DE |  | BU | 2DE |  |
| 328 | ENTER | 4828 | DEPRIM4 | XFR | StATIMG, STAT | ALTERNATE PATH DEVICEBUSY |
| 329 |  | 388С |  | вос | STATD, DEPRIM70 |  |
| 32A |  | 6380 |  | ви | 380, freearea |  |
| 380 |  | 3 A82 | freearea | вос | STATC, CKCONCHA |  |
| 381 | RETURN | 632 B |  | BU | 32B |  |
| 382 |  | D981 | CKCONCHA | ANDM | FLAGS, CONCON+CHAIN |  |
| 383 |  | 2085 |  | воС | DBus, TAGO |  |
| 384 | RETURN | 6338 | PCHKONA | BU | 338 |  |
| 385 |  | 0202 | tago | STO | XOUTAIM, SETSTATC |  |
| 386 |  | 4228 |  | XfR | XOUTAIM, STAT |  |
| 387 |  | A202 | PA1DLY | ADD | XOUTAIM, X:O2' |  |
| 388 |  | 2187 |  | BOC | NALCO, PA1DLY |  |
| 389 |  | 0200 |  | STO | XOUTAIM, 0 |  |
| 38A |  | 4828 |  | XFR | STATIMG, STAT |  |
| 38B |  | 6384 |  | BU | PCHKONA |  |
| 38 C | RETURN | 633A | DEPRIM 70 | BU | 33A |  |
| 335 | Enter | 4828 | DEPRIM6 | XFR | Statdmg, stat |  |
| 336 |  | 2882 |  | BOC | STATB, CKCONCHA |  |
| 337 | RETURN | 6337 |  | ви | 337 |  |
| OA3 | enter | 8520 |  | ORI | PNDSTS, CUE | extra device end |
| OA4 |  | D50C |  | ANDM | PNDSTS, CEND+DEND |  |
| OA5 |  | 34AA |  | BOC | DREG4, RTN 1 |  |
| OA6 |  | 204 A |  | BOC | DBUS, RTN1 |  |
| OA7 |  | 4642 |  | XFR | PNDADDR, XOUTA |  |
| OA8 |  | 14EB |  | STO | XOUTBIM, NDXSTS |  |
| OA9 |  | 5441 |  | XFR | XOUTBIM, XOUTB |  |
| OAA | RETURN | 6296 | RTN1 | BU | TERMSTA2 |  |
| Ofo | enter | 1348 |  | STo | LINK4, TERMATE | Sense reset |
| OF1 | return | 5322 |  | XFR | LINK4. IC |  |

ALU 2

| Instr Addr | - Patch Store Contro | Object Code | Source Statement |  |  | Patch Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 213 | Enter | 1600 | WRTSTR1 | STOH | SENSE 1,0 | velocity retry extension |
| 214 | return | 1300 | VELSTR | STOH | WORK 4, zero |  |
| 788 | enter | 0200 |  | sто | WORK 3, 0 |  |
| 789 | Return | 1500 |  | STOH | WORK 5, ZERO |  |
| 15A | Enter | 0708 | dodelay | ANDM | SENSE 2, HIDEN | turnaround delay |
| 15B | return | 615 C |  | BU | 15 C |  |
| 53 F | enter | 6744 | CTLRET6 | BU | ERASE6 | truncated postamble |
| 744 | return | 0083 | ERASE6 | sto | WORK 1, $\mathrm{X}^{\prime} 83$ |  |
| 36 E | enter | 8402 | DRVUNTCK | ORI | STATIMG, SETSTATC | alternate path device busy |
| 36 F |  | 6300 |  | BU | 3C0, FREEAREA |  |
| 3 CO |  | 4428 | freearea | XFR | Statimg, stat |  |
| 3 C 1 |  | 3AC4 | PPOLMTIX | BOC | STATC, TAG00 |  |
| $3{ }^{2}$ |  | ЗвСЕ |  | BOC | STATD, EXITPTCH |  |
| 3 C 3 |  | 63 C 1 |  | BU | PPOLMTIX |  |
| 3 C 4 |  | 0002 | TAGOO | Sto | WORK 1, RESET |  |
| 3 C 5 |  | 4060 |  | XFR | WORK 1, TUBO |  |
| $3 \mathrm{C6}$ |  | 000A |  | STo | WORK 1, DEVSEL+COMMD |  |
| $3 \mathrm{C7}$ |  | 4024 |  | XFR | WORK 1, TUTAG |  |
| $3<8$ |  | 0000 |  | Sto | WORK 1, 0 |  |
| 3С9 |  | A000 |  | ADD | WORK 1, 0 |  |
| 3СA |  | 4024 |  | XFR | WORK 1, TUTAG |  |
| зСв |  | A024 | TAG002 | ADD | WORK 1, 36 |  |
| 3 CC |  | 21 CB |  | BOC | NALCO, TAG002 |  |
| 3 CD |  | 4050 |  | XFR | COMITD |  |
| 3CE | RETURN | 6370 | EXITPTCH | BU | POLLMTIX |  |

- Note 1: ENTER Enables the patch store for succeeding instructions, and RETURN Disables the patch store for succeeding instructions.


## 3803-2/3420



## oscillator gating

Crystal oscillators supply the basic timing pulses that drive the clocks and counters throughout the 3803.
The Microsecond Frequency used at any specific time depends on the speed of the tape unit addressed. Th Detection Register gates the correct frequency. The master clock controls the read clock stepping pulses.


203-2/3420
$\left.\begin{array}{|l|l|l|l|}\hline \mathbf{X G 1 9 0 0} \\ \text { Seq } 1 \text { of } 2\end{array}\right)$
6 Copyright International Business Machines Corporation 1976. 197

## READ/WRITE CLOCKS AND COUNTERS

| CLOCC/ <br> COUNTER | ALD | CONTROL (Reset) | INPUT | OUTPUT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |



OPER-CLOCK CHART

## DATA FLOW CLOCK



\begin{tabular}{|c|c|c|}
\hline Clock Output \& ALD \& Use \\
\hline -0-50 Clock Bus YA \& \begin{tabular}{l} 
CD151 \\
CD251 \\
CD531 \\
CH061 \\
CHO81 \\
\\
\hline
\end{tabular} \& Skew and Master Clock Zone 1 Skew and Master Clock Zone 2
Skew and Master Clock Zone 3 Format Character Clocks Residual Frame Controls \\
\hline -0-50 Clock Bus YB \& CB411 CE101 CN28 \& ROC Counter S1 Register NRZI Hi Clip and Read VRC \\
\hline -0-50 Delayed \& BS051 \& Read Buffer Controls \\
\hline -0-50 Clock Bus A1 Delayed \& BNO51
BR071 \& DC and Xlate Controls Cycle Request Latches \\
\hline -25-75 Clock Bus YA \& \begin{tabular}{l}
CD151 CD251 CH141 \\

\end{tabular} \& Skew and Master Clock Zone 1 Skew and Master Clock Zone 2 Format Character Clocks Modular 7 Residue Compare Equal <br>

\hline -25-75 Clock Bus Үв \& CB411 CN281 \& | ROC Counter |
| :--- |
| Skew and Master Clock Zone 3 NRZI Hi Clip and Read VRC | <br>


\hline -25-75 Clock Bus A1 Delayed \& | BNO71 |
| :--- |
| BR071 | \& Read DC and Xlate Control (7-trk Mode) Cycle Request Latches <br>

\hline -75-25 Delayed \& BS051 \& Read Buffer Controls <br>
\hline
\end{tabular}

Write clock and write counter


> Write Counter: Gates bytes to the write triggers.

3803-2/3420

| XC2000 |  |
| :--- | :--- | :--- | :--- |
| Seq 2 of 2 | 2735990 |
| Patr Number |  | \(\begin{aligned} \& See EC <br>

\& History\end{aligned} $$
\begin{gathered}845958 \\
1 \text { Sep 79 }\end{gathered}
$$\)



## WRITE CLOCK

| WC Pulse | ALD | Use |
| :---: | :---: | :---: |
| 0 | BW151 | Reset Error Sample. <br> With CNTR=0, Gate Write Controls A1, A2, Mark1, Mark2, <br> Format, Initiate Sample, All Ones Branch Condition. |
| 1 | ${ }^{\text {BWW161 }}$ BW151 | Reset WRITE TIME GATE. <br> With WRITE CNTR=0, flip CNTR B FF. (Write Group B Branch) |
| 2 | BW151 | Gate SET 2ND BUFFER. |
| 3 | BW161 | Sample WR TGR VRC. |
| 5 | BW091 | PE Diagnostic Mode. |
| 6 | BW151 BW161 | Set SAMPLE FL if CNTR 4 is On. Flip ODD/EVEN CHAR FF. |
| 7 | 61 | Generate WR TGR GATE if not NRZI. |
| 9 | BW091 | Step WRITE COUNTER 1. |
| 11 | BW091 BW101 BW161 | Step WRITE COUNTER 4 if 1 and 2 are off. Restart Clock (6250) <br> Set Write Controls. <br> Sample WR TGR VRC. |
| 13 | BW161 | Set WRITE TIME GATE (PE and NRZII). |
| 15 | BW151 BW161 BW101 | Gate SAMPLE SET trigger. Generate WRITE TRIGGER GATE Restart Clock (PE and NRZI). |

## WRIE COUNTER

| Wr $_{\text {Cntr }}$ | ALD | Use |
| :---: | :---: | :--- |
| 0 | BW151 <br> BW151 | With WCO, See WCO Pulse. <br> Gate END MAR FL. <br> Gate CNTR B FL FL WC1. |
| $1,2,4 \mathrm{~A}$ | BW011-051 | Gate Write Encoder. |
| 4 | BW151 | With WC6 and Not NRZI, Sample BUFFER EMPTY. <br> With WC15 and NRZI, Sample BUFFER EMPTY. |

WRITE GROUP BUFFER CONTROL


3803-2/3420

| XG2100 <br> Seq 1 of 2 | $2735991$ <br> Part Number | See EC History | $\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## CHANNEL BUFFER CONTROLS



3803-2/3420

| XG2100 |  |  |  |
| :--- | :--- | :--- | :--- |
| Seq 2 2 2 2 | $\begin{array}{l}\text { Part Number }\end{array}$ | $\begin{array}{l}\text { See EC } \\ \text { History }\end{array}$ | $\begin{array}{c}845958 \\ 1 \\ \text { Pep 79 }\end{array}$ |




3803-2/3420


## Write service controls



1. The ALTERNATE flip flop controls alternate Service In and Data In cycles.
2. The PERMIT flip latch ensures that multiple tag lines will not be active at the same time.
3. Buffer Write Cycle or Req controls Service Different and Buffer.

3803-2/3420

(6) Copyright International Eusiness Machines Corporation 1976, 197


Objective:
This register is a temporary buffer for the channel buffer write byte from either interface bus out or read data track.

## WRITE CHECK REGISTER



## Objective

An ORC byte character is generated for each ECC group


Objective:
The POINTER register accumulates the pointers for one group of 6250 data. These pointers are used for correction as required.


CRC GENERATORS


3803-2/3420

| $\begin{aligned} & \text { XG2400 } \\ & \text { Seq } 1 \text { of } 2 \end{aligned}$ | $2735994$ <br> Part Number | See EC History | $\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



3803-2/3420


## OPER-CRC DESCRIPTION

## CYCLIC REDUNDANCY CHECK (CRC)

 GENERATIONTwo cyclic redundancy check (CRC) errors set sense bits. A CRC error sets sense byte 3, bit 3 and a CRC III error sets sense byte 9 , bit 3 . See $50-000,50-001$, and 50-002 for relationships to data flow.

CRC GENERATION DURING 9-TRACK WRITE OPERATIONS

Write data from the channel is shifted into the CRC A register ( $50-000$ ), byte by byte, as the channel buffer is loaded. As the data is being read out of the channel buffer, the output is shifted into the CRC B register ( $50-000$ ), as demanded by the write section
are compard when the channel buffer B register (53-066). Dropping or picking up a bit or bits in transferring data through the channel buffer results in a mismatch and sets P COMPARE ERROR (byte 3 bit 7 )
and sense byte 9 , bit 2 .
a. 6250 bpi Mode

The content of the CRC A register is written on tape as the CRC III byte. The CRC III byte is also
shifted into the Write CRC generator ( $50-001$ ) with data and other bytes. Content of the WRITE CRC register is also written on tape as a CRC byte.
b. PE Mode

CRC III is generated during PE operations for write checking, but is not written on tape.
c. 9-Track NRZI Mode

Only the accumulated data bytes generate the CRC byte.

CRC USE DURING READ BACK CHECK OF WRITE OPERATIONS
a. 6250 bpi Mode

Data previously written is read back through the normal read data path and the Check CRC Byte is stored in the CRC D register ( $50-000$ ). CRC D is
compared with CRC B; a mismatch sets CRC III compared with
error and sense byte 9 , bit 3 .
During the read back check, all data bytes and other bytes are shifted in the READ CRC register. The result should be a match pattern in the READ CRC register. Any other pattern sets CRC error only.
b. PE/9-Track NRZI Modes

Only data bytes are read back and stored in CRC C register ( $50-000$ ). Contents of CRC C register are compared with CRC B (53-066). A mismatch sets CRC III error and sense byte 9 , bit 3 .
c. 9-Track NRZI Mode

All data bytes are read back and combined with the CRC byte in the READ CRC register ( $53-065$ ) The acc Any other patten sets CRC Error Any other pattern sets CRC Error

## CRC GENERATION DURING 9-TRACK READ

 FORWARD OPERATIONSCRC generation during a read forward operation is similar to CRC generation during the read back check of a write operation. Data bytes read from tape go to the channel buffer ( $50-000$ ) and also into CRC A egister. CHANNEL BUFFER FULL initiates data transfer to the Interface Bus In and also shifts bytes into CRC B register. Accumulated contents of CRC A and CRC mpties (53-066) Dropping or picking up a bit in transferring data through the channel buffer results in a mismatch and sets P COMPARE ERROR (byte 3 bit 7) and sense byte 9 , bit 2 .

6250 bpi Mode:
CRC generation and use during 6250 read
operations is identical to CRC use during read back checking.

CRC GENERATION DURING 9-TRACK READ BACKWARD OPERATIONS

CRC generation detects the loss or gain of bits transferred through the channel buffer during both read backward and read forward operations.

6250 bpi Mode:
Read CRC error determinations are identical in 6250 ead backward and read back checking operations except that bytes are shifted into registers in a reverse order.
The CRC C register accumulates combined data bytes and the check CRC bytes. With no read errors, the result should be a match pattern in the rror and sense byte 9 , bit 3 .

7-Track NRZI operations do not use a CRC checking procedure

## WRITE TRIGGERS



6250 bpi Write Waveform


## WRITE TRIGGER OPERATION

Data bytes from the CHANNEL BUS OUT consist of binary ones and binary zeros. The tape control and ape unit convert these binary bits to flux changes on ape. The 6250 bpi and NRZI methods of writing distinguish ones from zeros by a flux change for a one
and no flux change for a zero.
hase encoding (PE) distinguishes ones from zeros by the direction of flux change. A flux change in one direction indicates a one bit and in the opposite direction indicates a zero bit

Write triggers produce magnetic flux changes on tape in one direction when they are flipped on and in the opposite direction when they are flipped off.

## 6250 BPI WRITE TRIGGER OPERATION

250 bpi method of writing on tape flips the WRITE TRIGGERS at Write Clock 7 to write one bits on tape. The Write Clock runs to Write Clock 11 and then starts over.

## PE WRITE TRIGGER OPERATION

In PE operation, the write clock runs from 0 through 15 or each cycle.
Each byte is set into the write encoder. For each bit of the byte that is a one, the corresponding write trigger is "set up" at WC7. All write triggers are flipped at WC15 to write a byte on tape with flux reversals in one direction for one bits and in the opposite direction for zero bits.

## NRZI WRITE TRIGGER OPERATION

For a NRZI write operation, each byte is set into the write encoder. For each one-bit of the byte, the corresponding write trigger is flipped to write a flux reversal on tape. For zero-bits of each byte, the write trigger is not flipped, and thus, no flux reversal is written.


NRZI Write Waveform


## dead track register




## RIC-ROC

The read section contains nine 32-position Read In Counters (RICs), one for each track, and one unter (ROC).
A RIC specifies which skew buffer position receives the next one or zero bit for a data byte read from tape. When a bit is detected, it is placed in the skew buffer, and the RIC for that track is stepped to the next position.
The ROC selects the skew buffer position from which a byte is transferred to the group buffer

Initially, all RICs and ROC are reset. As each bit of the first data byte enters skew buffer position 0 , the
corresponding RIC is stepped from 0 to 1 . When none of the RICs are equal to ROC, RIC-ROC NO-COMPARE is activated, indicating that all bits of the byte have outputs of the ROC counter to the ROC image register and steps the Read Ready Counter, which times the read out of the skew buffer.
The operation continues in this manner until GROUP BUFFER FULL or IBG becomes active to stop the read out.

OPER-LOGIC CIRCUITS
RIC-ROC


3803-2/3420

| XG2700 | 2739997 | $\begin{array}{c}\text { See EC }\end{array}$ | $\begin{array}{c}845958 \\ \text { Sea 1, of } 2\end{array}$ |
| :--- | :--- | :--- | :--- |
| Pert Number |  |  |  |

© Copyright Internatonal Business Machines Corporation 197.

## SKEW DETECTION


${ }^{3803-2 / 3420}$


## OPER-LOGIC CIRCUITS (Cont'd)

## GROUP BUFFER COUNTER

Objectives:

1. Limits skew buffer read out to one $\mathbf{6 2 5 0}$ group of data ( 5 bytes per group).
2. Controls skew buffer read out in PE Mode after the first five bytes are read out to give one-byte-in and one-byte-out control.
3. Controls translator operation during a group buffe read out to convert five parallel 6250 bytes into four serial data bytes.
4. Controls translator operation to detect 6250 characters and to decode format marks.
5. Group buffer counter counts to five and conditions translator for read out to ECC group buffer. If ECC group buffer is full, counter stepping is inhibited.


## READ CYCLE CONTROLS



Clock is initialized with 00-07 only when TAPE OP becomes active.
Format Groups and PE mode use " A " cycles only

803-2/3420



## INITIAL SELECTION OF TAPE UNIT

## DESCRIPTION

The initial selection sequence is the communication between the channel and tape control that initiates an operation
During initial selection, the tape control obtains initial status information that indicates the availability of the selected tape unit. If the tape unit response indicates is available, the tape control activates lines that tell the tape unit to perform a specific command. In response to the command, the tape unit furnishes additional status information that indicates its ability to perform he specife con command the tape control activates MOVE to the tape unit.
The communication between the tape control and tape nit is over the device interface lines.

## DEVICE INTERFACE LINES

The device interface is composed of the following lines that perform the listed functions

BUS OUT (9 lines): Transmits commands, amplitude sensing levels, write data, and sense byte identification oo the tape unit.
MOVE tag: Initiates tape motion
COMMAND tag: In conjunction with BUS OUT, initiates he execution of a command.
CONTROL tag: In conjunction with BUS OUT, initiates he execution of a control command.

CLOCK/METER OUT: Causes the tape unit usage meter to run
UUS IN (9 lines): Transmits status, sense information, and read data to the tape control.
TACHOMETER IN/BUSY IN: When no tag is active his line indicates that the tape unit is busy. When any OUT tag is active, this line carries the capstan
tachometer pulses to the tape control

NTERRUPT: This line signals the tape control that one of the following unusual conditions has occurred in the tape unit.

- Load Check
- Loss of mechanical ready during a rewind
- Transition from not ready to ready status occurred
- Transition from ready to not ready status occurred while the MOVE tag was active
- BOT was sensed during a read backward operation


## BUS OUT Lines

| bus out Bit | $\underset{\substack{\text { Active }}}{\substack{\text { Com } \\ \text { mag }}}$ | CONTROL Tag Active |
| :---: | :---: | :---: |
| 0 | Backward read | Rewind Unload |
| 1 | Forward read | Not used |
| 2 | Diagnostic (LWR) | (Mod 4, 6, 8 only) Diagnostic (set high sense) |
| 3 | Pulse | NRz1 or 6250 bpi mode |
| 4 | Write | (Mod 4, 6, 8 only) Diagnostic (set low sense) |
| 5 | Set Extend Stop (Mod <br> 4, 6, 8 only) | Data security erase |
| 6 | Reset error latches | (Mod 4, 6, 8 only) Erase Status |
| 7 | Not used | Rewind |

BUS IN Lines

| BUS IN Bit | $\underset{\text { Byte }}{\substack{\text { COMMAND STATUS }}}$ | CONTROL STATUS Byte |
| :---: | :---: | :---: |
| 0 | Backward | Rewind Unload |
| 1 | Gap control | Not used |
| 2 | Diagnostic mode | (Mod 4, 6, 8 only) High Sense ON |
| 3 | (Mod 4, 6, 8 only) | NRZ1 or 6250 bpi mode |
| 4 | write status | (Mode 4, 6, 8 only) Low sense ON |
| 5 | Extended Stop (Mod 4, 6, 8 only) | Erase |
| 6 | Unit Check | (Mod 4, 6, 8 only) Erase status ON |
| 7 | (Mod 4, 6, 8 only) Positioning | Rewind |



## SEQUENCE (TAG

LINES/STATUS)

## burst commands





Notes:

1. Request-in interrupt sequence initiated when 'rewinding' line goes from active to inactive stat
2. Request-in interrupt sequence initiated only if operator reloads and 'readies' tape unit to generate second 'device end.'

$$
\begin{array}{|l|}
\text { TEST I/O } \\
\hline \text { Initial Selection } \\
\sqrt{\text { Address Out }} \sqrt{\text { Address In }} \sqrt{\text { Command Out }} \sqrt{\text { Status In }} \sqrt{\text { Service Out }}
\end{array}
$$

3803-2/3420
$\square$


## TAPE CONTROL AND TAPE UNIT

 SELECTIONA tape control and tape unit are selected by placing the combined tape control and tape unit address on CHANNEL BUS OUT. The address on CHANNEL BUS OUT is compared with the address assigned to the tape control. (To assign a tape control address, see 90-110.)

If the address on CHANNEL BUS OUT matches the internally generated tape control address, ADDRESS COMPARE is activated and the tape unit address is gated to the TU SELECT register.
The tape unit addresses are determined by the tailgate position to which the tape unit is cabled.

## TAPE CONTROL AND TAPE UNIT <br> \section*{ADDRESSING}

The combined tape control and tape unit address is contained in a single byte. In subsystems without the 16 address feature, bits 0 through 4 are used for the tape control address, and bits 5 through 7 are used for the tape unit address. In subsystems with the 16 address feature, bits 0 through 3 are used for the tape control address, bits 4 through 7 are used for the tape unit address.

$$
+\pi
$$

## TAPE UNIT SELECTION LOGIC

TAPE UNIT SELECTION PRIORITY
On subsystems with a Device Switching feature, more than one tape control may try to access the same tape unit at the same time. To handie this situation,
switching logic has card jumpers that establish priorities for each tape control in the subsystem. Tape controls with device switching features are shipped with device selection priorities already plugged. It should not be necessary to change these priorities. See Section 90.

## Tape Unit Selection

-1 A four bit address on the B Bus is set in the TAPE UNIT ADDRESS SELECT register.
2 The inbound and outbound address decoders then decode ROS2's TUTAG BIT 4 and the Address Select lines.
3 One of eight select lines is active to the crosspoint switches to determine which tape unit will be used

On machines with the Two-Charinel Switch featur installed the TUADR BIT 2 SELECT B line and the BUSY/TACH line generate METERING IN to channel B. The NOT TUADR BIT 2 SELECT B and the BUSY/TACH line generate METERING IN to channel A.
(c) This circuit interrogates a tape unit's status without selecting the tape unit


3803-2/3420

| $\mathbf{X G 2 9 0 0}$ |  |
| :--- | :--- |
| Sea 27 | of 275999 |
| Part Number |  |


sss Machines Corporation 1976. 197

## CHANNEL PRIORITY CIRCUITS

- 'Select out' priority determines the order in which tape controls are selected if more than one tape control requires service at the same time.
- A tape control's 'select out' priority is determined by jumpers in the tape control and by the tape control's location on the I/O interface.
- The select signal leaves channel on the SELECT OUT line and returns to channel on the SELECT IN line if it is not 'trapped' by a tape control requiring service.
- A tape control not requiring service propagates the select signal to the next lower priority tape control.
- Jumpers in each tape control determine whether the tape control will respond to the SELECT OUT line ('select out priority high') or the SELECT IN line ('select out priority low')
- All units shipped from the factory are jumpered for high 'select out' priority. If it is necessary to change the priority, see $90-120$
Device Selection priority circuits are present in tape ubsystems where a tape unit is accessed by more act as 'tie breakers' when two or more tape ontrols are trying to select a tape unit at the same time.
- Additional jumpers in the switching logic of each Additional jumpers in the switching logic of host' tape control establish device selection
priorities (1, 2, 3, or 4) for each tape control in tape switching configuration.


3803-2/342

\section*{| XG3000 |
| :---: | :---: |}

Copright International Business Machines Coroporation 1976. 1979

LOOP WRITE TO READ (LWR)

Loop write to read allows checking tape control and tape unit data and control paths without moving tape. The LWR (8B) command can be initiated from the processing unit or the CE panel. An LWR performed from the processing unit uses the same data path as a normal write operation. The following sense byte errors cannot be detected:

Data Checks:
Early Begin Read Back check Early Ending Read Back check Slow Begin Read Back check Slow End Read Back check Velocity During Write check
Equipment Checks:
No Block on Record Read Back check
No Block Detected on WTM
Velocity check
Tach Start failure
A loop write to read operation is initiated from the CE panel by entering the command code (8B), and it receives its data from one of two locations. A count of service responses generates a ripple pattern, which is selected by putting the Command Control switch at the Ripple position. The fixed data comes from the Write Data switches when the Command Control switch is in the Write Data position. A CE panel LWR writes continuously until it is stopped by operating the Reset switch, except when the LWR with gaps jumper is installed (A1S2G08 to ground).

LWR TAPE UNIT OPERATION
The tape control activates SET DIAGNOSTIC and the COMMAND tag. The DIAGNOSTIC MODE latch is set in the tape unit (FT104). READ/WRITE GATE (FT104) ANDs with DIAGNOSTIC MODE to activate LOOP
SELECT (FT147). The tape control activates the MOVE tag and drops the COMMAND tag, then the diagnostic latch degates Move command to prevent tape motion. LOOP SELECT active gates BUS OUT data back to tape control via the tape unit response lines.


| XG3100 <br> Seq 1 of 2 | $2736001$ <br> Part Number | See EC History | $\begin{aligned} & 845958 \\ & 1 \text { Sep } 79 \end{aligned}$ | $\begin{aligned} & 847298 \\ & 15 \text { Aug } 83 \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

803-2/3420

55-006
Coovright interaratoonal Busness Machnes Corporatoon 1976, 1979, 1983

## description

Three types of recording techniques are used in the IBM 3803-2/3420.

- Phase encoded (PE)
- Non-return to zero IBM (NRZI)
- 6250 bpi group coded recording (GCR)

Data bytes contain a combination of one and zero bit to represent binary ones and zeros. The PE tape system uses a flux change from minus to plus to minus to represent a zero bit. (The NRZI system uses a flux change in either direction to represent a one bit and lack of a flux change to represent a zero bit.) Flux changes on tape are created by changing the direction of current through the write heads by the write triggers.

## PHASE ENCODED (PE)

## (See Figure 1 )

- At write clock (WC) 15 , flip all write triggers to write ones or zeros on tape.
To write a PE one bit, the write register is reset. Set up write trigger by setting it at WC 7 if not can be reset at WC 15 (complemented).

To write a PE zero bit, reset the write trigger WC 7 so that WC 15 turns it on.

## NRZI

## (See Figure 2)

Flip write trigger at WC 15 to write one bits only. Do not flip write trigger to indicate a zero bit.

## 6250 BPI

(See 55-008)

## MODE SET 1(SEVEN-TRACK NRZ

 OPERATION)Mode set 1 commands sent to seven-track tape controls establish tape unit operating mode for succeeding seven-track NRZI operation. Bits 0 and 1 control density ( $556 / 800$ bpi); and bits 2,3 , and 4
control parity (odd or even), data converter (on or off) and translator (on or off) circuits in the 3803
A mode set 1 command affects operation of all seven-track tape units attached to the 3803 . Unless reset, the 3803 retains its mode
another mode set 1 command.
Mode set 1 commands sent to a 3803 without the seven-track features are treated as no-op command except that sense data bytes are reset (no-op reset sense). Channel end and device end are set during initial selection. 200 bpi mode set 1 commands (hex codes 13, 23, 2B, and 33) default to 555 bpi.

## MODE SET 2 (NINE-TRACK PE/NRZI

 OPERATION)Mode set 2 commands sent to PE/NRZI dual density tape controls set operating mode ( 1600 bpi PE or 800 bpi NRZI) for succeeding write or write tape mark (WTM) operations. Mode set 2 commands sent to a 3803 without the dual density feature are treated as no-op commands, except that sense data bytes are
reset (no-op reset sense). Channel end and device end are set during initial selection

## DIAGNOSTIC MODE SET

A diagnostic mode set command causes an artifical signal loss condition that checks read and write erro detection circuits.

- In PE mode, whenever write data contains successive one bits in any track, writing in that track is inhibited until the last one-bit is reached
- In nine-track NRZI mode, no bits are written in track $P$.
In seven-track NRZI mode, no bits are written in track C.
A diagnostic mode set command affects only write operations for the command in which it is issued Channel end and device end are set during initial selection.
Note: For additional information, see 53-070.

Figure 1. Bit Cell and PE Write Waveform


Figure 2. Bit Cell and NRZI Write Waveform


## GROUP CODED RECORDING (6250 BPI)

Group coded recording (GCR) offers many advantages over previously used recording methods. This recording offers higher reliability even with existing tape libraries. Greatly expanded error correction capability has been engineered into GCR. Higher data reduced channel time, resulting in higher system performance. Data is compacted on tape, reducing rewind times, shortening the length of tape required for a data set, reducing the number of reels, reducing mounts and dismounts, and improving overall tape handling
The data is recorded in blocks, or groups of characters. A block of data may be a single character or byte, or a number of bytes as determined by the programming system used. The significant improvements in the GCR mode are:

1. The information data is recorded at an effective density of 6250 bytes per inch (bpi) of tape
2. The separation between blocks (IBG) is 0.3 inches $(7,6 \mathrm{~mm})$.
3. Simultaneous errors in any two of the nine tracks are corrected automatically.

## GCR BLOCK

A GCR block consists of a preamble, data, and a postamble (see $55-009$ ). The preamble and postamble are each 80 bytes long and serve to synchronize the read detection circuits in a manner similar to previous 1600 bpi subsystems. The data portion of the block consists of the following

1. Data to be written by the $\mathbf{6 2 5 0}$ bpi feature is continuously collected in seven character groups (9 bits in each character) and is held in the control unit 6250 bpi feature circuitry. (see $50-000$ through 50-002 for second level logic details.) An error correction character is generated and then added
to the seven characters to make an eight character data group. This data group is then divided into two subgroups of four characters each. The four bits in each of the 9 tracks are encoded into five bits. (see Figure 1a through le.) This matrix of bits, $9 \times 10$, is recorded on the tape (see Figure 3a on 55-010).

Reading of the tape reverses the process, with: error correction occuring where needed. There are as many of these 10 bit storage groups as there are multiples of seven channel data bytes in the record block.
2. The remainder, or last group of the channel data bytes (zero to six bytes) is encoded with whatever pyd bytes are necessary, an auxilliary check character, and the error correction code (ECC) generated from these into a 10 -byte residual group This residual data group is created for every block recorded even though no residual bytes are found in the record. The auxiliary check character verifies read and write operations.
3. End of data (EOD) is signaled by a unique subgroup of five bytes immediately preceding the esidual group
4. Following the residual group, a 8 -byte cyclic redundancy check (CRC) is encoded into a ten bit group. This group, with the auxiliary check character, ensures the integrity of the read and write operation, including verifying any
5. Interleaved into the recorded block, every 158 storage groups, is a resync burst. This burst allows the tape control to put into full operation dead tracked due to tape defects. The action limits dead tracking for greater throughput.

## Figure 1a

Figure 1b.


Note: There are 1106 bytes of channel input data in each 1580 ( 6250 bpi) group recoded data block written on tape.

## 803-2/3420

$\begin{array}{ll}\text { XG3107 } & 4169678\end{array}$

## GROUP CODED RECORDING 6250 BP



## GROUP CODED RECORDING 6250 BP

(Cont'd)
6250 bpi does not relate to actual writing density on tape, but to effective data density. ${ }^{\text {- Actual density (9042 }}$ bpi) is greater due to the formatting and encoding.
This formatting and encoding is transparent to the The formatting and encoding method allows reliable user. error correction for any two tracks simultaneously in error. Also, tracks are not immediately dequeued or dead tracks assigned when an error occurs as they were in the past. It is conceivable that a block could have errors in all nine tracks and appear to the user to
be read error free as long as only two tracks have errors at any given instant.
Figure 3a. Encoded Data Group

| PhysicalTracks | data group |  | Storage group |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Subgroup |  | Subgroup |  |
|  | A | B | A | B |
|  | DDDD | DDDD | GGGGG | GGGGG |
| 2 | DDDD | DDDD | GGGGG | GGGGG |
| 3 | DDDD | DDDD | GGGGG | GGGGG |
| 4 | DDDD | DDDD | GGGGG | GGGGG |
| 5 | DDDD | DDDD | GGGGG | GGGGG |
| 6 | DDDD | DDDD | GGGGG | GGGGG |
| 7 | DDDD | DDDD | GGGGG | GGGGG |
| 8 | DDDD | DDDD | GGGGG | GGGGG |
| 9 | DDDD | DDDD | GGGGG | GGGGG |
|  | 1234 | 5678 | 12345 | 678910 |
| $\begin{gathered} \text { Group } \\ \text { Positions } \end{gathered}$ |  |  |  |  |

Figure 3b. How 4 Bit (Address) Becomes 5 Data

Legend 2. Data Symbols

| Symbol | Data Represented |
| :---: | :--- |
| B | CRC or Pad Characters |
| C | Cyclic Redundancy Check Characters |
| D | Channel Data Characters |
| E | ECC Characters |
| G | Encoded Group Recorded Bits |
| L | Last Character |
| N | Auxiliary CRC |
| X | Residual Character |


| XG3109 Soa 2 of 2 | 4169686 Part Number | See EC History | $\begin{aligned} & 845958 \\ & \hline 1 \text { Sep } 79 \end{aligned}$ | $\begin{gathered} 847298 \\ 15 \text { A4g } 83 \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

55-010

This section introduces the microprogram controls used to read and write a record from load point. Addresses noted within the charts are key checkpoint addresses which perform a major function
These charts provide major syncronization points within a routine, and lay out a path to check the path through the microcode. The common Start 1/O routine is followed by the write operation, then the read operation from load point. The paths shown are for single, unchained operations with no exceptional conditions.

Using the compare ROS stop sync on ROS address of the CE panel (see sequence 10 on page 12-011), synchronization can be developed at various points within the operation being performed

Remember that many routines are commonly used many times and will provide unstable synchronization points
Some knowledge of basic microprogram concepts is assumed. XOUTA and XOUTB registers as well as the status registers A, B, C, and D provide response back and forth between the ALUs. ALU1 basically control the processing unit channel, while ALU2 controls the device interface. Both ALUs control various portions of the data flow.
ALU2 is a slave to ALU1, and is controlled by a transfer command and XOUTB branch index byte bein passed from ALU1 to ALU2. Response from ALU2 is by way of ALU2 status registers.



[^0]
## BRANCH TO WRITE FROM LOAD POINT

Write from load point is performed by controlling drive motion and controls with ALU2. ALU2 also sets the data control to write the single 1 or P track dentification (ID) at load point.
ALU1 initiates the first data Service-In cycle, then relinquishes data transfer to the hardware. ALU1 als controls the write triggers for all control characters within the preamble, postamble, and resync burst.
Once the data portion of the write command is entered, ALU2 monitors velocity during the tach period to test for velocity change during write.
The write operation is divided into the following steps

1. Trigger ALU2 to issue a sense reset to the drive. ALU1 will monitor ALU2 Status D, which indicate that ALU2 is finished with sense reset.
2. Fetch TU sense bytes 0 and 1 and test for drive status.
3. Raise Service In for one byte of data before turning control of the channel over to the data flow section
4. ALU1 again allows ALU2 to perform the write operation.
5. Set Erase in the drive (not Write Status yet) and erase backward, then forward. (Backward 150 tachs, forward 140 tachs.)
6. Test for Tach Start fail or Velocity Error, then write 1-track ID burst.
7. Write self-adjusting gain control (SAGC) burst with the inverse Tape Mark (no zone 1) attached to the end.
8. Set SAGC circuits in the drive to perform read back check.
9. Write record preamble consisting of the following characters: 10101, 01111, seventy $1 \mathrm{~s}, 00111$
10. The hardware data flow section now takes over the writing of data while ALU2 monitors the capstan tach velocity in the drive.
11. Every 1106 channel bytes ( 158 storage groups on tape), ALU1 intersperses a resync burst consisting of: $00111,11111,11111,11100$.
12. When data is complete, the hardware writes an all ones character.
13. ALU1 checks for an all ones character indicating the end of data. This allows for writing of the sidual and CRC frames.
14. ALU1 then writes the postamble consisting of the following characters: 11100 , seventy 1 s , 11110 , 10101.
15. ALU2 waits for IBG, then tests for errors. ALU2 finishes by setting Status D and trapping to 000

## WRITE FROM LOAD POINT


803-2/3420

| XG3124 | 4169680 | See EC | $958$ |
| :---: | :---: | :---: | :---: |
|  |  |  |  |

## WRITE FROM LOAD POINT




| XG3128 <br> Seq 1 of 2 | 4169681 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



3803-2/3420

BRANCH TO WRITE FROM LOAD POINT (Cont'd)

## WRITE FROM LOAD POINT



## WRITE FROM LOAD POINT



BRANCH TO WRITE FROM LOAD POINT (Cont’d
55-036

## WRITE FROM LOAD POINT

```
\ALVM1 Iooping unntil write \
```



## WRITE FROM LOAD POINT



3803-2/3420


BRANCH TO READ FROM LOAD POINT

Read from load point is basically performed by ALU2 and the hardware data flow controls.

Once ALU1 has triggered ALU2 to perform sense reset to the drive, and again to initiate the read from load point, ALU1 is basically finished. ALU1 tests to be sure that the first service cycle takes place, then goes into a loop until ALU2 finishes and sets Status D.

The read forward operation from load point steps follow:

1. ALU1 triggers ALU2 to issue a sense reset to the drive.
2. ALU1 triggers ALU2 to begin the read operation. If Status D from ALU2 is sensed before the first service cycle, an error is signalled.
3. ALU2 tests the status of the drive and checks for correct velocity.
4. Move 3 in . $(76,2 \mathrm{~mm})$ of tape, then test for a 1 -track envelope indicating a 6250 bpi tape.
5. Count through part of SAGC, then initiate read SAGC circuits in the drive.
6. Clock through 550 tachs, then check the Inverse Tape Mark.
7. When IBG is reached, fetch two bytes of drive sense and test status to this point.
8. Set read condition after gap control comes up again, and wait for the Mark 1 character preceding the data.
9. The hardware data flow now takes over until the end of data is sensed.
10. Test for errors. ALU2 sets Status D when finished, altering ALU1.
11. ALU1 compares the modulo count then branches to the status handler.

READ FROM LOAD POINT


| XG3140 <br> Seq 1 of 2 | 4169684 <br> Part Number | See EC History | 845958 <br> 1 Sep 79 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



3803-2/3420


## BRANCH TO READ FROM LOAD POINT (Cont'd)

READ FROM LOAD POINT


## READ FROM LOAD POINT



3803-2/3420


NRZI READ DATA FLOW


## WRITE TRANSLATOR (CARD A1E2)

## TRANSLATOR

Some tape subsystems use a six-bit BCD code. Each character of the six-bit code can be translated to an equivalent eight-bit character for processing by 9 -track tape subsystems. A translator in the tape control
ranslates eight-bit code to six-bit code while writing
reading. The translator operates only if Microprocess
1 XOUTA bits 2 and 4 are on at the rise of TAPE OP and Microprocessor 2 Stat bits 0 and 3 are on.
On 7-track write operations with the translator off, the ape control discards the two high-order bit positions ape control discards the two high-order bit positions
BUS OUT bits 0 and 1) of each byte from channel. Only the six low order data bits (plus a parity bit) are transferred to the tape unit.
On 7-track read operations with the translator off, the ape control inserts zeros in the two high order bit ositions (BUS IN bits 0 and 1) of each byte when transferring it to channel.


Notes:
[1] The graphics in these charts may not be identical to those printed by the printer or printer-keyboard The graphics are intended as references for translating bit codes on a read or write operation
[2] The write translator accepts the complete EBCDIC code and translates the bits to the BCD code However, the read translator translates the BCD code only to the bits outlined
[3] When operating in the even-parity mode, the EBCDIC blank (bl) is translated to a BCD substitute blank (bl), and the BCD substitute blank is translated to an EBCDIC blank (01000000). The odd parity blank's bit code is 000000

803-2/3420
$\square$


OPER-LOGIC CIRCUITS
READ TRANSLATOR (CARD A1E1)
Read Translator Data Flow
ANDs and ORs translate bits 0-7 to determine EBCDIC
code.


WRITE DATA CONVERTER (CARD A1E2)
The data converter is used for 7 -track write and read forward operations only.
The data converter is disabled during read backward
operations, but is left on for the next write or read
forward operation.
The data converter is turned on and off by a mode set command. When Microprocessor 1 XOUTA BIT 2 is on at the rise of TAPE OP (MP2, Status 0), the data
converter is off. When Microprocessor 1 XOUTA BIT 2 is off at the rise of TAPE OP (MP2, Status 0 ), the data converter is on.
During a write operation, three 8 -bit EBCDIC bytes from channel are converted to four 6 -bit BCD characters for writing on tape. If the byte count is not a multiple of three, any remaining bits of the last 6 -bit character are set to zero.

DATA CONVERT WRITE TIMING



3003-2/3420

| XG3300 |
| :--- | :--- | :--- | :--- |
| Seq 2 of 2 | | 2736003 |
| :--- | :--- | :--- |
| Part Number |

Copyright International Bustress Machnnes Corporation 1976. 1979

OPER-LOGIC CIRCUITS (Cont'd)

READ DATA CONVERTER
During a read operation, four 6 -bit characters (plus
parity) from tape are converted to three 8 -bit bytes
(plus parity) for transfer to channel. If the character
count of the block is not a multiple of four, any
paddeng positions in the last byte having bits a
indicated.


## OBJECTIVES

1. The switching circuit enables a 3803-2 to be attached to either a System/360 or a System $/ 370$
2. Selection is accomplished by plugging cards to reflect system type on which the tape subsystem is installed. See installation, Page 90-130 or AA010,
Sheet 2.
3. When plugged for $\mathrm{S} / 360$, a Service In/Service Out sequence is used.
4. When plugged for $\mathrm{S} / 370$, a Service $\ln /$ Service

Out/Data In/Data Out sequence is used


A 3803-2 tape control with a two-channel switch (TCS 1] operates with two channel interfaces. All 3803-2 operations can be performed on either channel interface. Channels attached to the TCS interfaces can be attached to the same system or to separate systems, allowing tape units on the tape control with the TCS feature to be shared by two channels on a single system, or by two systems. In addition to all normal operations, a tape control with this feature can execute Reserve and Release commands for program
control of interface switching. The large block in the center of the diagram and the unshaded blocks represent control circuits for a standard tape control. The shaded blocks represent additional logical functions installed on the tape control for the Two-Channel switch.

> Two Systems Sharing a Tape Contro Through the Use of a Two-Channel Switch


Channel interface lines going into or out of the tape control pass through interface switch circuits. The circuits consist of gated drivers that connect the tape control to either channel interface (A or B).
Tie-breaker logic (XM101) controls the interface switch lines so only one channel operates the subsystem preventing one channel from interfering with the preventing one channel from interfering with the reserved or operating, the interface switch circuits are in a neutral state, and either interface can initiate an Initial Selection sequence.

Address decoders monitor the bus out lines of each interface. If the tape control address appears on the decoders send a signal to the interface switch controls. When no interfering conditions exist, the controls connect that interface to the tape control. If the tape control is reserved or operating with the other interface, a 'short busy' sequence is sent to the nterface attempting to break in

When the tape control becomes available, a Control Unit End status byte is sent to the channel that previously received the BUSY signal.


3803-2/3420

| $\mathbf{X G 3 5 0 0}$ | 27360 |
| :--- | :--- |

Copyright International Business Machines Corporation 1976. 1979

The Sense/Reserve command (F4) locks the two-channel switching circuits to one interface, so the other interface does not have access to the tape control. The Sense/Release command (D4) resets the reserved condition and allows the tape control to accept commands from either interface.
When a tape unit completes an operation, a Device End signal is sent to the channel. A tape control with the Two-Channel switch uses the second Device End LSR to ensure that the Device End is returned to the channel that initiated the operation. See Device End on 58-012.

RESETS
The Reset circuits of the two-channel switch are interlocked so a Reset from one channel cannot disrupt operations on the other channel. A Reset can be accepted only from the operating channel. Resets are further conditioned to prevent a channel from destroying information needed by the other channel.

INTERFACE SWITCH CONTROL
A tape control with a Two-Channel switch monitors addresses on two channel interfaces. When the tape control receives its own address, it tries to start an operation with the interface attempting selection. If the tape control is neither busy nor reserved, the OPERATIONAL IN latch for that interface is activated. If the tape control is busy or reserved to interface $A$, interface B ADDRESS OUT will be answered with a SHORT BUSY sequence, and vice versa. The interface which received SHORT BUSY will receive a CU END when the tape control is available. If the channel stacks status containing UNIT CHECK or UNIT EXCEPTION, the tape control will remain connected to that interface until status is accepted. If both interfaces attempt selection simultaneously, a tie-breaker circuit resolves the selection. See 58-030.

The purpose of interface switching circuits is to connect the tape control 'common' circuits to whichever interface is operating. To operate with an interface output from the OPERATIONAL IN latch (FC141) gates interface drivers for the corresponding interface when OPERATIONAL IN is gated by -SWITCHED TO CHANNEL A (or B) (58-030).

The two-channel switch microprogram is entered by branching from Initial Selection (or Ending Sequence) to ensure that data is sent to or from the proper interface.

RESERVE/RELEASE OPERATION

- A Sense/Reserve command locks the tape control to an interface until a Sense/Release command or a Reset is received from that interface.
- A Sense/Release command resets the RESERVE flag to allow operation on either interface.
- A Sense/Reserve or Sense/Release command, while chained, results in Command Reject.
- After Initial Selection, operation of Sense/Reserve and Sense/Release commands are identical to a Sense command.
The Sense/Reserve and Sense/Release commands enable the tape control to remain locked to one interface. Executing a Sense/Reserve command places a tape control under exclusive control of one channel until that channel issues a Sense/Release command. A Sense/Reserve command from channel $A$ or $B$ activates the RESERVE flag for A or B. A Sense/Release command deactivates the RESERVE flag.

Modifier bits, in positions 0,1,2, and 3 of a Sense command byte identify the reserve and release operations. After Initial Selection, modifier bit 2 determines whether the command is a Reserve or a Release. If bit 2 is on, (command code F4) Reserve is indicated. If bit 2 is off, (command code D4) Release is indicated.

SENSE/RESERVE COMMAND [F4]
A Sense/Reserve command locks the tape control to the interface of whichever channel initiated the command.

During Command Out of a Sense/Reserve command, the current command is masked for the F4 configuration. If an (F4) command is recognized, the microprogram checks for chaining (SETRESV). If chaining is not indicated, CURFLAG (20) is set in FLAGS1 (LSR 10) to reserve the tape control. If chaining is indicated, Command Reject is set.

In a valid Sense/Reserve command, bit 2 from the CHANNEL TAGS IN (CTI) register (FC161) prevents resetting the SWITCHED TO CHANNEL A or
SWITCHED TO CHANNEL B latch $(58-030)$ and the tape control remains reserved to the operating interface.
Output of the SWITCHED TO A (or B) latch blocks interface switch circuits for the opposite interface
(58-030) until a reset or Sense/Release command is received from the operating interface.

SENSE/RELEASE COMMAND [D4]
A Sense/Release command resets the RESERVE flag to allow the tape control to operate with either interface. As in the sense/reserve operation, the Sense/Release command checks for chaining. A valid Sense/Release command leaves position 2 of the CHANNEL TAGS IN register reset so the SWITCHED TO CHANNEL A and SWITCHED TO CHANNEL B latches are reset at the end of each chain of commands.

SELECTION
Address decoders in the tape control continuously monitor both interfaces. If the correct address bits arrive on the bus out lines along with an ADDRESS OUT tag, the SELECT OUT latch is reset. CONTROL UNIT END latch OFF ANDs with a minus output from the SELECT OUT latch to generate TRAP CHANNEL A or TRAP CHANNEL B.
Assume that the tape control is idle and is addressed by channel A. The TRAP CHANNEL A line ANDs with the SELECT SIGNAL CHAN A to set the SWITCHED TO CHANNEL A (tie breaker) latch. SWITCHED TO CHANNEL A ANDs with DELAY SELECT SIGNAL CHAN A to generate INITIAL SELECTION CHAN A.

Once interface $A$ is addressed and selected, it arms the CONTROL UNIT BUSY AND circuit in interface B. If interface $B$ tries to use the tape control during the time interface $A$ is locked onto the switch, the CONTROL UNIT END latch for interface B is set.

When interface $A$ is finished operating, MP1 determines that the Two-Channel switch is installed, and MP2 checks status of the CONTROL UNIT END latches. If either CUE latch is on, MP1 presents CUE status to the interface associated with that latch. The CUE will have a random tape unit address unless presented along with Device End.

PARTITIONING
Partitioning, achieved by operating the Enable/Disable switches, restricts the accessability of the tape contro to either channel. Partitioning bypasses SELECT OUT and degates all interface functions. When both
interfaces are partitioned (both switches set to DISABLE), the tape control is offline and the CE panel controls can be used.

IMPLICIT CONNECTION
An implicit connection is one that does not depend on program intervention for release. The duration of the connection is determined by the time required for the tape control to perform a command or a chain of commands. The switch reverts to neutral on completion (at the tape control level) of the last command in a chain.
An implicit connection is extended if the channel stacks primary status. The stacked status must then be accepted by the channel to terminate the connection. If the status byte contains Unit Check, a contingent connection is made and acceptance of the status by the channel does not terminate the connection.

If the channel stacks secondary status containing Unit Exception or Unit Check, connection to that channel will be maintained until the status is accepted by the channel. If the status byte contains Unit Check, a contingent connection is made and acceptance of status by the channel does not terminate the connection.
If the channel stacks secondary status other than Unit Check or Unit Exception, the switch returns to neutral and is available to either channel. Any further attempts by the tape control to present this status to the channel that indicated STACK STATUS are controlled by SUPPRESS OUT from that channel.

| XG3600 <br> Seq 1 of 2 | 2736006 <br> Part Number | See EC History | 845958 <br> 1 Sep 79 | $\begin{aligned} & 847298 \\ & 15 \text { Aug } 83 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## CONTINGENT CONNECTION

A contingent connection is initiated when the last status byte contains Unit Check. The connection is NOP is red until a command other than Test I/O or NOP is received from the channel to which status was
presented. Any command other than Test I/O or NOP oo that tape unit clears the contingent connection if the tape unit is READY

The purpose of the contingent connection is to ensure available path to the tape unit and the transmission of sense data from the tape unit to the proper channe a Test I/O or NOP is issued by the addressed connected the tape control responds with SHORT BUSY and retains the connection.

## BUSY

While the tape control is operating with one interface, SELECT from the other interface will be answered with a SHORT BUSY signal (Bits P, 1, 3). Assume that he B interface is operating when the A interface SWITCHED TO CHANNEL B latch blocks the setting of the SWITCHED TO CHANNEL A latch. However, -SELECT SIGNAL CHANNEL A is ANDed with -ADDR COMPARE CHAN A and NOT PROPAGATE SEL OUT CHAN A to reset the CHANNEL A SEL OUT latch. With latch is ANDed with -ENABLE CHAN A and OPERATIONAL IN to condition one input to the channel OPERA from the CU BUSY AND circuit. Thus, the CUE latc for channel $A$, is turned on to send CU BUSY STATUS CHAN A to the A interface

The BUSY signal sent to channel $A$ is a Unit Status byte with bits 1 and 3 on. Bit 3 indicates BUSY, while bit 1 (status modifier) indicates that the BUSY condition applies to the tape control. Bits P, 1, and 3 are forced nto the BUS IN lines at the same time the STATUS IN SHORT BUSY sequ arned on during this SHORT BUSY sequence.

## CONTROL UNIT END

The CONTROL UNIT END latch (58-030) remains on remembering that channel B tried to break into channe A operations. This latch also sends +CUE PENDING CHAN B to the microprogram branch-on-condition logic (AB161) to notify the B interface that a Channel End is pending. When the tape control is no longer operating with, or reserved by, interface A, the SW TO CHAN A latch turns off, - TRAP CHAN B is active, and the TO CHAN B latch.
The SW TO CHAN B latch gates the output from OPERATIONAL IN to channel B to send a Unit Status (bit 2) indicating the status byte will contain a $C$ other operations. A standard REOUEST-IN sequence is used to transmit the CUE status byte.
At the end of an operation, the SW TO CHAN A (or B) latch is reset unless a chain, STACK, INTERRUPT, or UNT CHECK condition exists. OPERATIONAL IN is reset in the Burst Ending Sequ

With OP IN reset, no REQUEST IN, no ADDRESS OUT, and no SELECT OUT for the tape control, the SELECT OUT latch is active. (Note that the SELECT OUT latch is turned on when the tape control is inactive.) With the SELECT OUT latch active, the plus output degates -RESPONDING TO CHAN A (or B). -RESPONDING TO CHAN A (or B) inactive resets the SW TO CHAN A (or B) latch, and the tantrol is available for another selection sequence.

## STACK

 In some cases the channel may refuse the end statusbyte, this turns on a 'stack' condition. If the status byte contains Unit Check or Unit Exception, the tape contro accepts the status. If the status byte contains Unit Check, the connection is maintained until a command other than NOP or Test I/O is received from the channel to which the status was presented. This procedure makes certain the channel has an
opportunity to interrogate a unit check condition before the other channel disturbs the tape control. When the interface connection is maintained because of a unit part of the normal routine).

Stacking of status other than Unit Check or Unit Exception does not maintain the interface connection. The TCS will be reset to neutral, and the tape contro
will become available to either channel.

## STACK INTERRUPT

A Halt $1 / 0$ command received by the tape control before the channel accepts the ending status causes the MP1 microprogram to reset OP IN and check for two-channel operation and contingent connection. If a contingent connection is needed to prevent loss 'Hold Interface' routine
With no contingent connection, an interrupt cycle initiated to present the stacked status. CONTROL UNIT INTERFACE will be set if the STACK or STATUS PENDING flag is on.

## DEVICE END

The purpose of Device End circuits is to signal the dat channel when a tape unit has completed a task and is ready to accept a new one. On a tape control with the two-channel switch feature, separate LSRs in MP2 are used to store the Device End signal for each channel. The second Device End LSR ensures that the D operation
A Device End received while the two-channel switch is in a neutral state causes the tape control to enter an interrupt status. The tape control then presents the Device End to the channel that initiated the Device End operation, if that interface has not been partitioned Partitioning resets pending Device Ends for th interface
An interrupt due to a Control Unit End sends Device End, including the address of that device, and Contro Unit End, to the channel.

## TIE BREAKER

Tie-breaker logic (XM101) on 58-010) controls the interface switch lines so only one channel operates the subsystem, preventing one channel from interfering whe operation of the other. When neither interface is reserved or operating, the interface switch circuits Initial Selection sequence.

Address decoders monitor the bus out lines of each Aderface. If the tape control address appears on the bus out lines along with an ADDRESS OUT tag, the decoders send a signal to the interface switch controls. When no interfering conditions exist, the controls connect that interface to the tape control. If the tape interface, a 'short busy' sequence is sent to the interface attempting to break in.
When the tape control becomes available, a Contro Uit End status byte is sent to the channel that previously received the BUSY signal.
See 58-030 for schematic details.

OPER-TIE BREAKER (TCS)
58-030



3803-2/3420


## DESCRIPTION

Device switching allows access to a maximum of sixteen tape units by two, three, or four tape controls, and permits simultaneous operation of as many tape units as there are tape controls.
3803 Models 1 and 2 can be mixed in a switching configuration; however, attempting to access a 3420 Model 4, 6, or 8 through a 3803 Model 1 produces unpredictable results
Device switching is performed via the Communicato and Device Switch features. Three Device Switch features (58-051) available with the tape subsystem are:

2 Control Switch used with $2 \times 8$ and $2 \times 16$ configurations
3 Control Switch used with $3 \times 8$ and $3 \times 16$ configurations

4 Control Switch used with $4 \times 8$ and $4 \times 16$ configurations
The minimum switching subsystem configuration allow two tape controls to access up to 8 tape units and is called a $2 \times 8$ configuration. The maximum configuration is 4 tape controls and 16 tape units ( $4 \times 16$ ). A non-switching configuration ( $1 \times 8$ ) is referred to a Selection Logic.

Device Switching logic is installed only in those tape controls that have attached tape units.

The location of the Device Switches depends on the configuration desired. For example: In a $2 \times 8,3 \times 8$, or $4 \times 8$ configuration, the switching feature is required only on the first tape control while in the $2 \times 16,3 \times 16$, and $4 \times 16$ configurations, the switching feature is required onfiguration conists of tso the contro
 units. The tape controls may be connected to either different channels of the same system or on different systems
Device switching logic is logically invisible (except for BUSY responses during Initial Selection and Device End interrupts, which result when tape units become available). Device switching logic is modular to allow flexibility for a variety of system configurations. Subsystem priority and device addressing are assigned y pluggable jumpers within the switch. Any tape unit control via toggle switches on the tape control operator's panel (58-060).

## Control Switc

The 2 Control Switch is a $2 \times 8$ configuration of hardware switching logic (58-051, 58-055). Tape Units he Communicator Tape Control 1) can be accessed Communicator of Tape Control 1. A $2 \times 16$ configuration is ubtained by installing a 2 Control Switch in both Tape Controls 1 and 2 , allowing the Communicator in well as 3420 s of the other tape control.

## 3 Control Switch

A $3 \times 8$ configuration is obtained by installing a 3 Control Switch in Tape Control 1 only and a Communicator 1 in Tape Controls 1,2 , and 3 (58-051). Tape units attach to Tape Control 1

A $3 \times 16$ configuration is obtained by installing a 3 Control Switch in both Tape Controls 1 and 2. A third ape control must be added to the configuration. Tape Control 3 does not contain any switching hardware or ttach any tape units, but does contain Communicator

## 4 Control Switch

A $4 \times 8$ configuration is obtained by installing a 4 Contro Switch in Tape Control 1 and a Communicator 1 in Tape Controls 2

A $4 \times 16$ configuration is obtained by installing a 4 Control Switch in both Tape Controls 1 and 2. Tw more tape controls must be added to the configuration Tape Controls 3 and 4 do not contain any switching hardware or atach any tape units, but each contains a communicator.
The 3 Control Switch and the 4 Control Switch are expansions of the 2 Control Switch. They allow access to eight attached tape units by the additional
Communicators.


Notes:
[1] Maximum of 16 tape units and 4 tape controls.
[2] Tape units attach only to tape controls with switching features.
[3] Any or all control units may have two channel switch features.
[4] For 3420 Model 8 power requirements, see 90-180.


3803-2/3420

58-051


OPER- $2 \times 8$ SWITCH LOGIC
operator panel switches (16)
Switch Section A on Tape Control 1 directs Tape
Control 1 's access path to Tape Units 0-7. Switch
Section B on Tape Control 1 directs Tape Control 2's
access to Tape Units 0-7.


3803-2/3420

| XG3900 | 2736009 |
| :--- | :--- | :--- |


| Seat of 2 | Part Number |
| :--- | :--- | :--- | :--- | \(\begin{aligned} \& See EC <br>

\& History\end{aligned} $$
\begin{gathered}845958 \\
1 \text { Sep } 79\end{gathered}
$$\)


Switch section A on tape control 1
directs tape control 1's access path to directs tape control 1's access path to
tape unitito 0.7 . Switch section B on
tape control directs tape control 2's
access to tape units 0.7 . tape control directs tape
access to tape units 0 -7.

## OPERATION

The Device Switch is controlled by lines from the tape control. Although there are necessary switching delays, data transfers, control requests, and responses, tape unit status is sent to the tape control as if the switch were not present.
Selection: When DEVICE SELECT (58-090) is activated with the device address on the DEVICE SWITCH bus and the node is enabled, the switch tries to set the COMMITTED latch for the node. Note: A "node" is the logic circuitry required to select and assign one tape unit to a requesting tape control. If the device has Iready been selected by another tape control, a BUSY insication. If the device is not busy, the COMMITTED latch is set. The latch output is then sent to the other tape control nodes for that device to prevent selection by them. At the same time the committed latch is set, the SELECT crosspoint line to that node will become active and GATE BUS OUT will be the response to the selecting tape control. The BUS OUT and BUS IN connection has now been established between the tape control and tape unit. SWITCH SELECT is not requir 3803 subsystems.
Committed: Once the COMMITTED latch is set for a given node, it remains set until reset by the selecting ape control. Reset is accomplished by addressing and sending a 50 ns pulse on the SET/RESET line
Priority: When two or more tape controls attempt to select a tape unit at the same time, priority of access is 2 (58-100). See Section 90 for plugging details

## LINE DEFINITIONS (58-100)

Busy/Tach: The BUSY/TACH line indicates the state of the device (busy or not busy) to the tape control. Device Operating Interface A and B (2 lines): A device operating line is active when a committed tape unit its BUSY/TACH line active. The DEVICE OP INTF A line to the tape control is used for giCE OP INTF METERING IN line for its channel interface. The DEVICE OP INTF B line serves the same function but is used by the second channel interface when the Two-Channel Switch feature is installed.
Run Meter: When the node is enabled, the RUN METER line is sent to the device for meter operation. Set/Reset: The SET/RESET line is tied active so the ENABLE/DISABLE latch can be set to the corresponding state of the Enable/Disable switch on the operator's panel.

Notes:
[1] The maximum switch configuration consists of 16 tape units and 4 tape controls.
[2] Tape units attach only to the tape controls with device switching features
[3] Any or all tape controls may have a Two-Channel Switch feature.


Functional Units of the Device Switch are
(A) Logic Section: The logic section communicates with the tape control to provide status, device address, and accessing interlocks. The information exchanged establishes tape unit attachment to the ape control and presents switch status to the perating tape control or controls in the subsystem onfiguration
(8) Crosspoint Section: The crosspoint section is a switch matrix capable of switching twelve inbound and twelve outbound lines. Each node (tape control/tape unit
section.
c Communicator: The communicator replaces the selection logic circuits and associated device interface cabling in the basic tape control with switches. The communicator divides the device interface into primary and secondary and controls the gating of each according to the address of the device being selected. The communicator consists of interface drivers and receivers.
The Communicator 1 feature has only one external (primary) interface. The Communicator 2 feature has two external interfaces (primary and secondary). The secondary interface connects attached tape units through Switch Section A (58-055, 58-060). The primary interface connects a 3803 that does not have tape units attached to another tape control through Switch Section B.
(0) Tape Unit Online/Offline Switches: Tape unit toggle switches ( $58-060,58-100$ ) are located on the perator's panel of each tape control having a operator to determine tape unit availability to each operator control in the configuration. In a $4 \times 16$ configuration, four tape controls can access 16 tape units so there are 64 toggle switches, 32 each on Tape Controls 1 and 2. There are no switches in Tape Controls 3 and 4.
Note: ©, ©, ©, ©, ©, ©, © refer to charts located in ALD XC-700 pages.


OPER—DEVICE SWITCH NODE

Gating a control unit to device path node on or off effects switching at the device interface level.
Each node consists of parts of three logic cards. The crosspoint cards (B) contain the electronic switches needed to switch the bus in or bus out lines for a node. The switch logic card (A) contains the circuitry to control the crosspoint switch and communications to the tape controls.

1 The crosspoint (XPT) switches are gated by the set to the COMMITTED latch.
2 COMMITTED lines prevent simultaneous selection of the same device by more than one tape control.
3 INTERFACE COMMITTED, COMMITTED, and DEVICE BUSY are ANDed to generate DEVICE OPERATIONAL, which is sent to the tape control to develop METER IN for the channel interface.

4 DEVICE END INTERRUPT lines are scanned by the tape control to determine which tape unit has a DEVICE END INTERRUPT pending.
5 BUSY/TACH is available to the tape control when the node is selected and enabled and the DEVICE BUSY or SWITCH BUSY line is inactive.


Device


3803-2/3420

| XG4100 <br> Seq 1 of 2 | 2736011 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




3803 CE PANEL DESCRIPTION


CE PANEL SWITCHES
PANEL ENABLE (TWO-POSITION TOGGLE)


Active only if ROS is in normal mode. It may be necessary to raise the Set ROS Mode momentary switch to establish this mode. The Panel Enabled light is ON when the switch is ON .

Note: If the Panel Enabled light does not light, set the ROS Mode rotary switch to Norm and operate the Set ROS Mode switch (momentary)
On
Allows the CE panel functions identified by yellow lettering to be performed with the Interface Disabled
light either on or off light either on or off.
Allows all CE panel functions to be performed with the Interface Disabled light On.

Off
Degates the following functions:

1. Stop On-Control Check
2. Stop On-Data Flow Check
3. Reset/Start or Step
4. ROS Mode
5. Command Control switches (3)

STOP ON-CONTROL CHECK (TWO-POSITION TOGGLE)


Active only while ROS is in Stop mode
On
Stops both ALUs when any control check is recognized in the ALU selected by the ALU1/ALU2 switch. The exact stop usually two less than the stop address except for; it BOC. Generally, microprogram-detected errors will not be recognized until a transfer hardware error (XFR HDWERR) microinstruction is executed. Most other errors will stop the ALUs when the failure occurs. Disables the compare register equal features of the ROS Mode switch Stop position.

Off
Allows normal tape control operation

RESET/START OR STEP (TWO-POSITION MOMENTARY TOGGLE)

Active only while the Panel Enabled light is On.
Reset (UP)
Sets both ALUs to Instruction Counter (IC) address 000 and causes a Power-on Reset Branch Condition

## Start or Step (Down)

Starts both ALUs after a stop condition, with subsequent running of the ALUs controlled by the ROS subsequent running of the ALUs controlled by the ROS any time without interlocks.

STOP ON-DATA FLOW CHECK (TWO-POSITION TOGGLE)


Active only while Interface Disabled light is On (CE Mode).

On
Stops both ALUs at the completion of a command in which a failure occurs on Unit Check condition.

Off
Normal tape control operation
Note: When in CE Mode, the tape control stops on Unit Exception, regardless of switch position. To inhib StopMode, jumper AA1T2」12 to ground

## LAMP TEST (TWO-POSITION TOGGLE)

## Allows you to test the CE panel indicator lights.

## ROS MODE (SEVEN-POSITION ROTARY)



Active only while the Panel Enabled light is On. After selecting any of the seven positions of the ROS Mode switch, activate the Set ROS Mode momentary toggle switch to set the mode.

## Rst/Cmpr

When the IC address of the selected ALU equals the data in the compare register, both ALUs are reset to Display Select switch must be in IC position.)

## Rst/Err

When a control check occurs, both ALUs are reset to location 000 and allowed to continue running

## Set IC

Allows the contents of the compare register to set IC of the ALU selected by the ALU1/ALU2 switch.

## Norm

Normal running condition of both ALUs

## Stop

When the data in the compare register equals the IC address of the ALU selected by the ALU1/ALU2 switch, and the Display Select switch is in IC position both ALUs are stopped. The instructions at the stopped addresses will not have been executed.

When the Stop On-Control Check switch is active, both ALUs are stopped only when an error occurs in the ALU selected by the ALU1/ALU2 switch.
Note: If compare equal stop function does not work, make sure the Control Check Stop switch is off

## Step

Operating the Start or Step momentary switch allows stepping the ALU selected by the ALU1/ALU2 switch while the ALU not selected runs normally.

Cycle
Allows the repetitive execution of an instruction at a selected address. Step or stop at the instruction address on which you want to cycle. Set ROS Mode to Cycle and press Start or Stop.

## ALU1/ALU2 (TWO-POSITION TOGGLE (b)

Selects the ALU to be controlled by the ROS Mode switch.

Selects the ALU when the Display Select switch is se to the IC, Bus In, Bus Out, Hi ROS, or Low RO position.

SET ROS MODE/SET CE COMPR
(TWO-POSITION MOMENTARY TOGGLE
Set
Ros Mode
SE/Cm

## Set ROS Mode

Sets the selected ROS mode.
Set CE/Compr
Sets the data, selected by the three hex rotary switche into the register selected by the Data Entry Select switch. The Set CE/Compr switch operates without the panel enabled or the interface disabled.

## COMMAND CONTROL



Active only while the Intf's Disabled light is on

## Ripple/Wr Dat

Establishes the data pattern mode for offline writ commands.

## Mple/Single

MPLE allows continuous cycling of the four commands entered with the Data Entry Select switch.
SINGLE allows single stepping of the four commands with each activation of the momentary Start switch.

## Stop/Start

STOP halts the continuous cycling of the four commands when the Mple/Single switch is in the MPLE position.
START initiates the commands stored in the CE command registers.

DISPLAY SELECT (SEVEN-POSITION ROTARY)


CE Reg
Displays command/device in conjunction with Data Entry Select.
2. Displays Write Data/Go Down or Byte Ct/Multiplier in conjunction with Data Entry Select.
Note: Some stop-on-error conditions stop the CE lock, which prevents displaying the contents of the CE egisters.

## Cmpr Reg

Displays data currently in the compare register in dicators 0 through 11.
IC
Displays the IC address of the selected ALU in indicators 0 through 11.
Bus In
With ALU1 selected, displays Channel Bus In data in dicators 0 through 7 and $\ln$ Tags in indicators 8 hrough 11
With ALU2 selected, displays TU Bus in data in indicators 0 through 7 and the device address in indicators 8 through 11 .

## Bus Out

With ALU1 selected, displays Channel Bus Out data in 0 through 7, and outbound control or tags in 8 through 0 through 7. and outbound control or tags in 8 throug activates CHANNEL BUS OUT.
With ALU2 selected, displays TU Bus Out data in 0 through 7 and outbound controls or tags in 8 through 11.

## Hi ROS

With ALU1 selected, displays ROS1 data bits 0-7 P1 in 0 through 7 and control lines in 9 through 11.
With ALU2 selected, displays ROS2 data bits 0-7 P1 in 0 through 7 only.

Low ROS


With ALU1 selected, displays ROS1 data bits 8-15 P2 in 0 through 7 and control lines in 9 through 11.
With ALU2 selected, displays ROS2 data bits 8-15 P2 in 0 through 7 only.

## DATA ENTRY SELECT (SEVEN-POSITION

 ROTARY)

## Cmpr Reg

Allows data in the three Data Entry switches to be entered in the compare register.

Cmnd 1, 2, 3, and 4
With the Data Entry Select switch in one of the four positions (Cmnd 1, 2, 3, or 4), a command and its ssociated device address ( $0-F$ ) may be entered into one of the four command positions.

## Byte Cnt

The three Data Entry switch positions determine the total byte count. The left and center switches count to maximum of 256 . The right, or Multiplier switch counts in multiples of 1024. Position zero of the
Multiplier switch adds zero to the total of the other two switches. Position 1 would add 1024, 2 would add 2048 , etc. To provide a byte count of 3140 , set the left and center switches each to 4 , and set the right switch to 3 .
Note: Check to ensure you get the correct byte count.

| Byte Count <br> Dialed | Byte Count <br> Written |
| :--- | :--- |
| 00 to FE | Byte Count dialed +3 |

2

## Write Data Go Down

Write Data and Go Down determine those bits to be written and establishes the go-down time. The left and center data entry switches determine the bits to be written. For example, the Ripple/W Data switch in W writes the following:
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
Note: The P bit is automatically generated whe required.

The right switch determines the go-down time. Position zero gives a go-down of 6.0 milliseconds. The total range is from 6.0 milliseconds to approximately 0.5 second. Each position, 0 to $F$, represents
approximately 26 milliseconds. A setting of 3 results in go-down time of 6 milliseconds $+(3 \times 26)$, or approximately 84 milliseconds.

- To write continuously, jumper from AA1R2J12 to ground.
- To do an LWR with go-down time, jumper from AA1S2G08 to ground.


## Data Entry

The three rotary switches are used to enter data into various registers. Set a command into the left switch and the TU address into the right switch. For example, IA entered into the Command register indicates a write command to device A.


CE PANEL INDICATORS

\section*{INTF'S DISABLED | Intr 's |
| :--- |
| Disabled |}

Indicates when the tape control is offline. The manual Enable/Disable switch(es) on the CU operator's pane must be in Disabled position before the lamp comes on.

CMPR EQUAL
$\square$
Indicates that the data entered in the CE/Compare egister equals that contained in any register selected or comparison.

CONTROL CHECK INDICATORS


## BOC

Checks the 16 branch conditions not checked by the HI IC PARITY/HI ROS register circuits. (A total of 32 BOCs are checked.) If an even number of BOC groups are active, a BOC error is indicated.

## -Bus Parit

hecks the output of an LSR for odd parity on the Bus on instructions which transfer data from ALU to a external register. If parity is even, the error is gated to the hardware error latches and CE panel indicator
Note: When displaying the LSRs, B-Bus parity errors can occur because LSRs are not set to odd parity with power-on reset
Hi IC Pty/Hi ROS Reg Pty
The circuits that set this indicator are:

1. Hi IC parity check.
2. Hi ROS register parity check
3. Instruction Decode error. (ROS instruction check to be sure only one ROS operation was decoded.)
4. BOC Error. (Check of 16 branch conditions.)

Lo IC Pty/Low ROS Reg Pty
Checks parity of the IC (low order) and ROS register (low order). An even parity error sets the HARDWARE ERROR latch and CE panel indicator. Lo IC Parity is Parity is checked on every instruction cycle.

## D Bus Pty

Checks the parity of information to be stored in an LSR at 100 ns time. Bits $0-8$ from the D Bus are
exclusive-ORed with the P bit from Bus Out. Even
parity sets the D BUS PARITY ERROR latch and
HARDWARE ERROR 5 latch, and lights the CE pane indicator. This error condition is only checked on a transfer of data into the ALU from an external source.

## U Pgm

Monitors the selected ALU and signals an error when the ALU detects any hardware error, including checkout errors for both ALUs.

## Data Flow Check Indicators



## P Comp

The P Comp indicator (also C Compare) is set by the following conditions

1. When parity of the byte sent to the channel buffer on read operations is wrong
2. Buffer Overrun.
3. Write Address error
4. If CHANNEL BUFFER READ IN counter gets out of step.
5. Write buffers are empty when a write tape cycle occurs.
6. Parity does not match between the channel buffe and the write buffer outputs on write operations.
7. When operating in 7 -track data convert mode and a count of bits before and after conversion does not match
8. When operating in 7-track mode with the Data Converter off and the count of bits for each byte as it enters and leaves the register fails to compare.

## MTE/LRC

1. Set during a 6250 bpi write operation when there are two or more error pointers:
2. Set during a PE operation when there are two or more error pointers.
3. Set during a NRZI operation when a block has an odd number of bits in any track (LRC)

## ENV/ECC

1. Set when any track signal falls below threshold on read or write. Does not set Data Check
2. Set during a PE operation when any error pointer is set or when any track falls below threshold. Sets Data Check on write only
3. Set during a NRZI write operation if NRZI Register 2 has incorrect parity

## Skew

Set when vertical misalignment of bits exceeds
acceptable limits. (If all bits in a byte are not receive has excessive "skew" and Skew Error is set,

Skew Error is set:

1. During a $6250 \mathrm{bpi} / \mathrm{PE}$ read operation if RIC leads ROC by 30 bits.
2. During a 6250 bpi write operation if RIC leads ROC by 14 bits.
3. During a PE write operation if RIC leads ROC by 4 bits.
4. During a NRZI write operation by skew gate

Read VRC

1. 6250 bpi Mode
a. Set during single-track error correction if a match is not found.
b. Set during a write operation if hardware pointer and correction code indicate different tracks.
2. Set during a PE operation if a parity error occurs and no track pointers are on.

## CRC

Set during 6250 bpi and 9 -track NRZI operations when the CRC byte calculated for a read operation does no match the CRC byte written on tape

Wr Tgr
Set when the output of the write triggers has incorrec parity

## U Pgm

Set when ALU2 detects any microprogram error including End Data Check on PE operations, and any bit 1 ; and sene byte bit 1 ; and sense byte 10 , bits $0-7$.

## NOTES ON CE PANEL OPERATION

- A Start I/O command to a tape unit that has Unit Check or Busy in its initial status byte will prevent stepping to the next command This condition can be caused by a Not Ready tape unit.
CE command sequence hang up: when an error occurs on a 3803 with the Two-Channel Switch out Stop On Error ON. This is caused by dedicated sense data from the failing tape unit. There are three ways to proceed:

1. Issue a Sense command to the same tape unit after any other type of command.
2. Issue all four internal program commands, except a Test I/O or NOP, to the same tape unit. ondition, so it may be necessary to replace this command following initial setup.
3. In order to allow command cycling to multiple tape units without changing the command setup. set ROS Mode to Rst/Cmpr using IC address 302 on ALU1. This restarts both microcodes at 000 on contingent-connection conditions and performs a general reset. To eliminate the need or pressing the CE Command Start pushbutton, connect a jumper from AB2O2S10 (General Reset FCO41) to AA1T2G05 (Start Key Latc РК035).

## TOOLS AND TEST EQUIPMENT

The tools and test equipment listed in this section are required to properly service 3420 Magnetic Tape Units and 3803 Tape Controls

| KEPT AT THE BRANCH OFFICE |  |
| :---: | :--- |
| Part | Name |
| 1848621 | Stress Tape (order from Mechanicsburg) |
| 432152 | Master Signal-Level Tape (order through IRD Sales) <br> (See Note 1.) |
| 451064 | Degausser (See Note 1.) |
| 453522 | Developing Solution |
| 453585 | *Digitec 251 Meter (Digitec 201 Meter, P/N 453046, <br> may be used if available) |
| 460874 | Scale, 0 to 6 pounds (belt adjustment) |
| 2515376 | Capstan Prealignment Gauge |
| 2515390 | Capstan Adjustment Wrench (rear adjustments) |
| 2515401 | Reel Motor and Hub Adjustment Tools: (see 08-460) |
| 2523723 | Capstan Adjustment Wrench (front adjustments) |
| 5861448 | 7-Track NRZ1 Threshold Adjustment Card |
| 5861455 | PE Threshold Adjustment Card |
| 5861452 | Dual Density Threshold Adjustment Card |
| * Trademark of United Systems Corporation |  |


|  | KEPT AT THE CUSTOMER'S ACCOUNT |
| :---: | :---: |
| Part | Name |
| 453511 | Tape Transport Cleaner <br> Scratch tape <br> Oscilloscope (Model 453, 454, 561,545, 766H or equivalent) |
| 352465 | Tape Cleaning Kit |
| 432641 | Master Skew Tape (See Note 1.) |
| 453500 | Manometer, 30 inch (two needed for series connection) (See Notes 1 and 2.) |
| 453504 | Tee and Hose Assembly (See Note 2.) |
| 453522 | Tape Developing Solution |
| 1765342 | Tape Unit Tester |
| 1846251 | Shim, Right Reel Hub Alignment |
| 1846252 | Hex Wrench, Right Reel Hub |
| 2512745 | Adapter Hose (See Note 2.) |
| 2513154 | Pressure Divider (See Note 2.$)$ |
| 2501611 | Tape Unit Cleaning Brush |
| 2512063 | Crimper (supplied by marketing representative) |
| 2515390 | Capstan Box Wrench (read adjustment capstan only) |
| 1848621 | 6250 bpi Stress Tape |
| Notes: <br> 1. Discussed in more detail in this section. <br> 2. Not needed if pressure/vacuum gauge $P / N 5495384$ is available. |  |

## MASTER TAPES

Master skew tapes and master signal-level tapes are manufactured to rigid specifications. They are the standards that are used by CEs to obtain optimum tape unit performance
Because tape unit performance is directly affected by the accuracy of these master tapes, the following precautions should be taken

1. Use master tapes only for their intended purpose
2. Handle tapes with care
3. Make only full-reel passes in order to have even wear throughout the length of the tape.
4. Identify master tapes as such and mark the reels with the letter " $m$," as a reminder to make full passes only.

## MASTER SKEW TAPES

Master skew tapes have a density of 800 FCl and are written with one solid bit across the width of the tap These tapes are written on a specially adapted tape unit at the Tape Test Center with accuracy held to within 0.375 usec total skew betwe ips tape unit.

The master skew tape will run off the reel when reading forward because it is written with no interblock gaps (IBGs). In order to create an IBG and save alterations to the master skew tape:

1. Read the master skew tape forward to the end of tape EOT reflective marke
2. Install a write enable ring.
3. Write one record of any size beyond the EOT marker.
4. Remove the write enable ring
5. Rewind the tape.

After the preceding one-time preparatory steps, set the tape control CE panel as follows when you use the skew tape

1. Command 1-Read Forward ('02')
2. Command 2-Read Backward ('OC')
3. Command 3-Read Forward ('02')
4. Command 4-Read Backward ('OC'

The master skew tape will read forward to the end of the reel, read backward, and repeat the cycle. This permits checking skew from the rear of the tape unit without manipulating the controls.

## MASTER SIGNAL-LEVEL TAPES

Master signal-level tapes have the ability to produce a signal to within $\pm 2 \%$ of the primary master. (A primary master, which is established as an IBM standard, is the base for instrument alignment,
All new master signal-level tapes are checked at 3200 FCl and 800 FCl . The suffix letter "A" is added to the part number to allow field identification of
$3200 / 800 / 556 \mathrm{FCl}$ tapes as opposed to the forme ignal-level tape chek, out ax both 3200 FCI and th 3200 FCl and 800

## DEGAUSSER

Caution: The degausser will demagnitize any material such as tape, disks, etc. Power off the tape unit
To degauss the read/write head

1. Remove magnetic tape from the tape unit. Do not place the tape on top of the tape unit.
2. Plug degausser into 110 Vac receptacle.
3. Press the pushbutton on the degausser while it is at least 1 foot ( $30,5 \mathrm{~cm}$ ) away from the read/write head and move it slowly toward the head
4. Hold the degausser against the front surface of the head for about 10 seconds.
5. Pull the degausser straight away from the head very slowly to a distance of at least 1 foot $(30,5$ cm ) and release the pushbutton.

## WATER MANOMETER

Note: The use of a 30 inch $(76,20 \mathrm{~cm})$ manometer or the 80 inch ( $203,20 \mathrm{~cm}$ ) pressure/vacuum gauge is not dependent on the English (metric) system of measurement.
Use the requested tool by part number and name, and measure to the specified units (whether metric or English) to obtain the desired adjustment or reading. Shown are several setups for using the water manometer, part number 453500. Part A shows a single manometer measuring a pressure of less than 30 series measuring a pressure between 30 and 60 inches $(76,20 \mathrm{~cm}$ and $152,90 \mathrm{~cm})$. Part C shows using the pressure divider and a single manometer measuring a pressure greater than 30 inches $(76,20 \mathrm{~cm})$
General instructions for using the manometer are:

1. Remove the tee from the tee and hose assembly, and connect the hose on the line to be checked.
2. Set up the water manometer by opening both top valves one full turn from closed position. (Incorrect readings will occur if valves are opened too far.)

Connect the pressure-sensing hose to one port, leaving the other port open.
3. Fill the water manometer with tap water maintaining the water level near the 0 position on maintaining the water level near the 0 position on up or down until the 0 mark lines up within 0.2 inch ( $5,7 \mathrm{~mm}$ ) of the bottom of the meniscus in both columns.
4. Set conditions for the specific item to be checked according to the pneumatic-adjustment deca
located on the transfer valve and manifold
5. Read the vacuum level. (The vacuum level is the sum of the displacement of the water level in each column.)

## PROCEDURES

Note: Take readings at bottom of meniscus.
1 Using a single manometer to measure a pressure of less than 30 inches ( $76,20 \mathrm{~cm}$ ). Read at bottom of each meniscus and add the two readings together to get total pressure ( W ). $\mathrm{W}=2.0+1.7$ $=3.7$.



Part B

Using two manometers in series to measure a pressure between 30 and 60 inches 176,30 and add the four Read at bottom of each meniscus and (the sum of $X+Y$ ) $X+Y=20+1.7+2.0+$ $1.7=7.4$ inches.

3 Using a pressure divider with a single manometer to measure a pressure of greater than 30 inches $(76,30)$. First, measure a known pressure of less than 30 inches. Second, insert the divider and adjust the divider's adjusting screw until the manometer reading is $40 \%$ of its original reading inches by reading at the bottom of each meniscus adding the two readings together (to get Z ), and multiplying Z by 2.5 to get pressure. $2.5 \mathrm{Z}=2.5(2.0$ $+1.7)=2.5(3.7)=9.25$ inches. The maximum reading possible with this combination is 75 inches ( $190,50 \mathrm{~cm}$ ).
4 Using a pressure/vacuum gauge to measure a pressure greater than 80 inches ( $203,20 \mathrm{~cm}$ ).
a. Measure a known pressure less than 80 inches a. Measure a known pressure less than 80 inches
$(203,20 \mathrm{~cm})$.
b. Insert the pressure divider between the measurement part and the gauge and adjust the divider's adjusting screw until the gauge read $40 \%$ of its original reading
c. Measure the pressure greater than 80 inches ( $203,20 \mathrm{~cm}$ ) and record the reading ( Z ).
d. Multiply Z by 2.5 to get the total pressure.

Example: If $Z$ reading is $33.2,33.2 \times 2.5=83.0$ inches

## PRESSURE/VACUUM GAUGE

Shown below is pressure/vacuum gauge, part 5495384 To use the gauge.

1. Attach the gauge hose to the fitting to be tested.
2. Read the dial directly in pressure or vacuum. (For measurements above 80 inches $(203,20 \mathrm{~cm})$ add 1 inch $(2,54 \mathrm{~cm})$ to the reading for each $1 / 16$ inch $(1,59$ mm ) of pointer travel beyond the end of the scale.)
Caution: Disconnect from test point before loading or unloading tape unit to prevent damage or miscalibration of gauge.


$4 \begin{aligned} & \text { Pressure/Vacuum Gauge } \\ & \text { Part } 5495384\end{aligned}$

## 3420 FIELD TESTER

Caution: Use extreme care when attaching the field tester because an error can damage the tape unit the tester, or both. Be sure to use only the 3420 field tester, part 1765342, when doing offline maintenance on 3420 tape units. Do not use the 2420 Field Tester. When esting Models 4, 6, and 8, temporary jumper must be installed from K2P02 M2D06 for 6250 operation operation
When operated with the field tester, the tape unit loads and unloads tape, reads, writes, and moves tape forward or backward.
To test several tape units simultaneously, use the manual controls on the tape control CE panel.

To use the field tester:

1. Unload the tape unit
2. Switch the unit off line at the logic gate. To ensure that the on-off line switch circuitry is operating correctly, monitor the - interface disable and +int dis or - off lines. Refer to page FT910 of the 3420 ALDS. Check the following levels for proper

| Position of On-Offline sw | A1L.6D04 | A1L6B03 |
| :---: | :---: | :---: |
| Online | +6 v | -4 v |
| Offline | Gnd | Gnd |

3. With the arrow on the cable pointing up, plug the
 location ANS. Another way to be sure the cable is plugged correctly is to make sure the notches on logic gate. Select, on the tape unit operator's panel, comes on when the Read/Write switch is in the READ position, or in the WRITE position with the MOVE tag active. You can now use the tester switches to load and Ready the tape unit.

Caution: The field tester can cause tape dump and damage under the following conditions:

1. When moving tape with field tester, the direction "Stop"
2. When attached to a tape unit and set to "Fwd" and either "St/Stop" or "Go", the tape unit is loaded and goes to Load Point and becomes Ready. If RESET on the tape unit console is activated and the tape unit does not dump tape and then Reset is followed by activating UNLOAD, the tape will run off the end of the reel.
3. When using "Alt Dir", RESET is activated on the tape unit.

Conditions 1,2 , and 3 above can be eliminated by always putting the tester in "Stop" before doing any other operation.
The switches on the tester operate the tape unit by emote control as follows:
Start/Reset
Operates the same as the control on the tape unit operator's panel. Start makes the unit ready. Rese resets the unit.
Ld Rew/Rew Unid
d Rew loads tape if none is loaded, and rewinds tape o load point if tape was loaded but is not at load point Rew Unid rewinds tape from any position, unloads the unit, closes the cartridge if one is used, and lowers the power window.
p/Fwd
/p/Fwd controls either the time the MOVE line is位诠e during a start/stop operation, or the duration of forward motion in an alternate-direction operation. Dn/Bkwd
Dn/Bkwd controls either the time the MOVE line is nactive during a start/stop operation, or the duration of ackward motion in an alternate-direction operation. St/Stp/Go/Stop

St/Stp causes interruptions in tape motion. Use the Up/Fwd control and Slow/Fast switch to adjust go-up
time. Use the Dn/Bkwd control and Slow/Fast switch to adjust go-down time. Go ensures continuous tap movement. Use the Alt Dir/Fwd/Bkwd Stp halts tape motion

## Alt Dir/Fwd/Bkwd

$\mathrm{St} / \mathrm{Stp} / \mathrm{Go} /$ Stop switch must be at Go to enable this switch. Alt Dir is active in read status only; it moves tape alternately forward and backward. Use Up/Fwd control and Slow/Fast switch to adjust duration of forward movement. Use Dn/Bkwd control and Slow/Fast switch to adjust duration of backward movement. Fwd causes forward tape motion. Bkwd Slow/Fast

This is a range switch for the Up/Fwd and Dn/Bkwd controls. Slow extends the go-up/down timing rang to approximately 3.0 seconds. Fast decreases the go-up/down timing range to approximately 7.0 m Write/Read
Write causes the tape unit to write with gaps. Each time the tape unit writes, as in a start/stop operation, it
generates a PE gap of 0.528 inch $(13,4 \mathrm{~mm})$ and a GCR gap of 0.275 inch $(7,0 \mathrm{~mm})$. Read causes continuous reading
8/16/32 (Models 3, 5, 7) See Note
This switch controls the frequency of the tester's write oscillator. The three positions result in write frequencie of 800 fci (NRZI), and 1600 and 3200 fci (PE),

## respectively.

16/32/64 (Model 4, 6, 8) See Note
When a field tester at EC level 734316 is used on 3420 Models 4, 6, and 8 with the provided jumper installed, these switch positions represent 1600,3200 , and 6400 fci as the label shows. Frequencies generated by the these tester frequencies with normal online recording densities.
Note: The back panel wiring on cable position A1N5 on Models 4.6, and 8 is such that the frequency of the tester is doubled.

3803-2/3420


## SUBSYSTEM PREVENTIVE MAINTENANCE

## GENERAL CLEANING INSTRUCTIONS

This procedure makes all previous 3420 tape unit cleaning procedures obsolete
tems used by this procedure are contained in the IBM Tape Cleaning Kit, part number 352465 (see Figure 1).

Use IBM tape transport cleaner, part 8493001 Performance results cannot be guaranteed when other chemical formulations are used. Other chemical formulations have not been tested by IBM, and their use may impair performance or cause damage to the tape unit or tape.

ANGE When using tape cleaner, do not get it on skin or
clothing. Follow the instructions on the container. clothing. Follow the instructions on the container.
Do not use metal instruments to clean any part of Do not use m the tape unit.

Figure 1. IBM Tape Cleaning Kit


TAPE UNIT CLEANING PROCEDURE FOR 3420 MODELS 3 THROUGH 8

1. R/W AND ERASE HEADS
1.1 Unload tape and remove from tape unit.
1.2 Open outer ( $\mathbf{A}$ and inner ( $\mathbf{B}$ doors.

1.3 Dampen clean area of lint-free cloth with tape cleaner.
1.4 When cleaning Models 3, 5, and 7, hold the inspection mirror down, use dampened cloth to clean the R/W and erase heads (C) using a circular motion.
1.5 When cleaning Models 4, 6, and 8, hold
autocleaner in and clean the $R / W$ and erase heads C with a dampened cloth using a circular motion. To reach the inside tracks, wrap the dampened cloth around a cotton swab.
1.6 Repeat steps 1.3 and 1.4 or 1.5 until cloth remains clean.
1.7 Use inspection mirror for Models 3,5, and 7 or dental mirror for Models 4, 6, and 8, to carefully inspect heads. (Clean mirror with dry cloth, if dirty.) If heads do not look clean, perform step 1.8, otherwise wipe heads with dry clean cloth and go to step 2.
To remove stubborn residue from heads-
1.8 Use either style head cleaning brush dampened with tape cleaner to remove residue (0) and then return to step 1.3.

$\square$

3803-1,2,3/3420 | XHO500 | 2736017 |
| :--- | :--- |
| Sece |  |

 842988
15 Aug 83

TAPE UNIT CLEANING PROCEDURE FOR 3420 MODELS 3 THROUGH 8
2. CLEANER BLADE, BOT/EOT BLOCK, REWIND PLUNGER, AND THREADING CHANNEL REFLECTOR
2.1 Hold the inspection mirror down, or the autocleaner in, when cleaning. Use a cotton swab dampened with tape cleaner to clean the following items.
2.1.1 BOT/EOT block ©

2.2 Use the head cleaning brush ( $\mathrm{P} / \mathrm{N} 6851781$ ) dampened with tape cleaner to clean the cleaner block $\Theta$. Wipe with cloth.

2.1.2 Rewind plunger/filler block $\boldsymbol{\text { P }}$ 2.1.3 Threading channel reflector (G)


3803-1,2,3/3420

TAPE UNIT CLEANING PROCEDURE FOR 3240 MODELS 3 THROUGH 8
3. TAPE TRANSPORT
3.1 Install capstan cover $\boldsymbol{0}$.

3.2 Dampen cotton swab with tape cleaner and clean the following:
3.2.1 Front and back guides ©

3.2.2 D-bearing ( $\mathbf{C}$.

3803.1.23/3420

3.3 Use a lint-free cloth dampened with tape cleaner to clean the following
3.3.1 Threading plates
3.3.2 Back of inner door ©
3.3.3 Back wall $\odot$ and sides $\odot$ of vacuum column
3.3.4 Air bearings ©. Note: If residue remains in vacuum column corners, perform steps 3.3.5 and 3.3.6, otherwise go to step 3.4.
To remove stubborn residue in corners of vacuum columns-
3.3.5 Put clean felt pad on handle making sure the handle does not go through the end of pad.
3.3.6 Dampen felt pad with tape cleaner and clean vacuum column corners as shown © $\boldsymbol{s}$. Make sure no contact is made with capstan cover and/or capstan.

Caution: You may need to use water to remove residue left in the vacuum columns by some tapes. Do not get water on any other part of the machine Water will damage the capstan.
3.3.7 Use a lint-free cloth dampened with tape cleaner to remove any residue left by the fet pad.
3.4 Check bottom of vacuum columns (1) for bits of tape and remove if present.
3.5 Remove capstan cover and replace in storage area


85-003

TAPE UNIT CLEANING PROCEDURE FOR 3420 MODELS 3 THROUGH 8
4. CAPSTAN CLEANING-NORMAL PROCEDURE

This procedure must be done at regular intervals by the customer. Tape will slip on a dirty capstan while accelerating.
Caution: Any capstans not kept free of glaze will eventually build a deposit that cannot be removed by a reasonable amount of scrubbing.
4.1 Wrap a clean, dry cloth around one index finger and a lint-free cloth dampened with tape cleaner around the other index finger.
4.2 Vigorously wipe the capstan rubber with the dampened cloth (without bending the capstan) while rotating the capstan with the dry-cloth-covered finger $U$.
4.3 Continue this procedure until the capstan has a definite dull rubber finish. Any glaze must be removed in order to operate reliably.
4.4 If the glaze cannot be removed, follow the special Glazed Capstan Cleaning procedure on page 08-700.

5. FILE REEL HUB
5.1 With a lint-free cloth dampened with tape cleaner, use a light pressure to clean the following:
5.1.1 Back rubber flange $V$
5.1.2 Rubber ring $\mathbf{W}$ or rubber pads on some models.
6. CARTRIDGE RESTRAINT
6.1 Use a lint free cloth to clean lower restraint $X$. This metal is porous and the air flow can be restricted by using fluids or abrasive material during cleaning.


3803/3420 PREVENTIVE MAINTENANCE SCHEDULE
3420 Tape Unit

| Code |  | Location Operation | Frequency | Action |
| :---: | :---: | :---: | :---: | :---: |
| 0 | R |  |  |  |
| 0 |  | Door Slide and Stop <br> Pin | 4 months | Lubricate the door slide and the stop pin with IBM \#17. |
|  |  | General Cleaning | 4 months | 1. Clean front deck and base. <br> 2. Remove tape cleaner block and clean with tape cleaner. <br> 3. Remove air bearing (D bearing) next to EOT/BOT block and clean. Inspect guide replace if grooved. <br> 4. Clean NRZI guides. <br> 5. Clean EOT/BOT channel mirror. <br> 6. Clean the fiber optic lamp. Use a tissue lightly moistened with water. <br> Caution: Allow lamp to cool before cleaning. <br> Remove the manifold and fiber bundles to provide access to the lamp. Replace the lamp (08-620) if it is not clear. Note: Cleaning or clear. Note: Cleaning or optic lamp may require the readjustment of the EOT/BOT and capstan squaring. |
|  |  | Capstan Tach Squaring Circuit | 4 months | Check and adjust Capstan Squaring. See 08-120 or 08-130. Ensure capstan is free from dents and does no bind. |
|  |  | Capstan Tracking | 4 months | Check and adjust Capstan Tracking. See 08-000. |
|  |  | EOt/bot | 4 months | Check and adjust EOT/BOT. See 08-580. |



| Code |  | LocationOperation | Frequency | Action |
| :---: | :---: | :---: | :---: | :---: |
| 0 | R |  |  |  |
| 3 |  | Output Filter | 36 months | Replace with P/N 2524998. |
| 4 |  | Vacuum Tubing | 60 months | Replace vacuum tubing (order B/M 4416409 ). |
|  |  | Pressure Tubing | 60 months | Replace pnuematic pressure tubing (order B/M 4416408) |
|  |  | Vacuum Pressure Switches | 60 months | Right switch plate <br> - with seven holes - $B / M$ 6851766 <br> - with five holes, one switch top, three grouped center, one at bottom - B/M 6851768 wo switches top, three at bottom - B/M 6851764 Left switch plate - with five holes, three switches top, two at bottom - B/M 6851765 -all other configurations B/M 6851767 <br> Tape transport switches Model 3,5,7 - B/M 6851770 Model 4,6,7 - B/M 685171 Model 4,6,7 - B/M 685177 |

## Note: Inspect the

Inspect the glass bead surface of the stubby bars and vacuum
columns.
Replace if the glass bead is nicked, scratched, burred or has an
area obviously worn to the touch. (If not obviously worn, do not replace).
Run finger on the glass bead surface at the bottom of the vacuum
column. This is a good glass bead surface and may be used as a
reference.
A worn glass bead surface will cause tape motion problems.
3803 Control Unit

| Code |  | Location Operation | Frequency | Action |
| :---: | :---: | :---: | :---: | :---: |
| $u$ | R |  |  |  |
| 0 |  | Air Filter | 2 months | Check cooling air filter for restriction of air flow. Clean or replace as required |
| 2 |  | dc Voltage | 6 months | Check dc voltages. Adjust as required to the levels specified on decals. |

## INTRODUCTION

This section contains installation instructions for the BM 3803 Model 2/3420 Magnetic Tape Subsystem, Companion publications pertaining to this product are
. 3803 Model $2 / 3420$ Subsystem Description GA32-002
2. 3420 Model 4, 6 and 8 Parts Catalog, S132-0007
3. 3803 Models 1 and 2 Parts Catalog, S132-0004
4. 3420 Operator's Guide Card, S232-0003
5. 3803/3420 OLT Users Guide

Safety Note: Ensure your own safety by using caution at all times and by being aware of potentially dangerous areas of the machine. Read and follow the safety suggestions in Form
229-1264, a pocket-sized card issued to all customer engineers and reprinted at the front of this manual.

Caution: No portion of this procedure is to be omitted. Perform all steps including checks and adjustments.

## INSTRUCTIONS

Perform the following basic steps for each 3803 , regardless of the subsystem configuration:

1. Refer to the checklist on $90-020$ and initial each box when an installation procedure is completed.
2. Complete the configuration worksheet on 90-040. Refer to the instructions on 90-030.
3. Unpack units. (See Unpacking Instructions on this page.)
Note: Before moving 3420 tape units into place, be Note: Before moving 3420 tape units into place, be
sure to remove packing tape from the air flow mercury switch and install the front kickplate. Check ESD grounding. See $90-190$, F7 and F8 before moving machines into place.
4. Remove the wire seal from the 3803 and 3420 's 90-180, only at this time.
5. Install four caster locks.
6. Install front and both side kickplates. See 90-090
7. Install rear kickplate. See 90-090
8. Install and plug cables See $90-050$ through 90-080.
Note: The tag and bus cable pairs must be of equal length. Paired cables of unequal length cause timing errors resulting in hard-to-diagnose subsystem problems.
9. Plug address/feature/priority card jumpers to match configuration requirements, see 90-110

Note: Check the factory-installed items such as card jumpering, and all card and cable seating. Particularly check the write head and read head card seating
10. Rework the 3420 Field Tester, see 90-170 Note: Make sure customer's power matches subsystem requirements. Check for correct blower and motor rotation.
11. Perform power supply checks and note special tape unit power supply requirements, see 90-180
12. Perform all checks and adjustments on 90-190
13. Run system diagnostics on 90-200. (Refer to User's Guide.)
4. If any Emulator is run on a $\mathbf{S} / 360$, install jumper, see 90-200.
Generate a read only tape, on 90-200
Note: It is possible to combine 3803 Models 1 and 2 in one subsystem. Be sure your customer understands that a 3803 Model 1 tape control cannot address any 3420 Models 4, 6, or 8 tape units.

## UNPACKING INSTRUCTIONS

Unpack tape control and tape units
Refer to Unpacking Instructions, which are in a plastic envelope attached to each unit. Move discarded
packing material away from work area. File Unpacking nstructions for future reference if tape subsystem is to be moved.

## CHANNEL ATTACHMENT

The 3803 Model 2 at 6250 bpi will attach to these
systems via the indicated channels:

| System | $3420-8$ | $3420-6$ | $3420-4$ |
| :---: | :---: | :---: | :---: |
| $370 / 195$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $370 / 168$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $370 / 165-2$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $370 / 165$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $370 / 158$ | BKMPX | BKMPX | BKMPX |
| $370 / 155-2$ | BKMPX | BKMPX | BKMPX |
| $370 / 155$ | BKMPX | BKMPX | BKMPX |
| $370 / 145$ | SEL | SEL | SEL |
| $370 / 135$ | SEL | SEL | SEL |
| $360 / 195$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $360 / 91$ | 2860 | 2860 | 2860 |
| $360 / 85$ | $2860 / 2880$ | $2860 / 2880$ | $2860 / 2880$ |
| $360 / 75$ | 2860 | 2860 | 2860 |
| $360 / 65-67$ | 2860 | 2860 | 2860 |
| $360 / 50$ | N/A | N/A | SEL |



3803-2/3420


INSTALLATION CHECKLIST 3803-2 TAPE CONTROI

| Installation Procedure | Reference Page | Initial Box <br> When <br> Wompleted |
| :--- | :---: | :---: |
| Configuration Worksheet | $90-030$ |  |
| Unpacking | $90-000$ |  |
| Cables | $90-060$ <br> $90-070$ <br> $90-080$ |  |
| Cable Retaining Bar | $90-060$ |  |
| Kickplates | $90-090$ |  |
| Address/Priority/Feature <br> Plugging | $90-110$ |  |
| Card and Cable Seating | $90-000$ |  |
| Operator's Panel Labels | $90-160$ |  |
| Wire Seal Removal | $90-180$ |  |
| Check Capacitor Mounting <br> Screws | $90-180$ |  |
| Power Supply Checks | $90-180$ |  |
| ESD Check and Adjustment | $90-190$ |  |
| System Diagnostics | $90-200$ |  |
| Emulator IIf applicable) | $90-200$ |  |
| Generate READ ONLY Tape | $90-200$ |  |

${ }^{3803-2 / 3420}$

Copyright International Business Machines Corporation 1976 -

3420 TAPE UNIT

| Installation Procedure | Reference Page | Initial Each Box When Completed |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0/8 | 1/9 | 2/A | 3/B | 4/C | 5/D | 6/E | 7/F |
| Unpacking | $90-000$ |  |  |  |  |  |  |  |  |
| Cables | $\begin{aligned} & 90-060 \\ & 90-070 \end{aligned}$ |  |  |  |  |  |  |  |  |
| Caster Locks | $90-000$ |  |  |  |  |  |  |  |  |
| Kickplates | $\begin{aligned} & 90-090 \\ & 90-100 \end{aligned}$ |  |  |  |  |  |  |  |  |
| Field Tester Conversion | 90-170 |  |  |  |  |  |  |  |  |
| Wire Seal Removal | 90-180 |  |  |  |  |  |  |  |  |
| Power Supply Checks | 90-180 |  |  |  |  |  |  |  |  |
| Checks and Adjustments | 90-190 |  |  |  |  |  |  |  |  |
| System Diagnostics | 90-200 |  |  |  |  |  |  |  |  |

## SUBSYSTEM INSTALLATION (Cont’d)

## CONFIGURATION WORKSHEET

INSTRUCTIONS
Complete the configuration worksheet on Page 90-040 for your installation. Check customer requirements completed, place worksheet in the front of subsystem ALDs and keep as a subsystem cabling history
Complete all applicable blocks in the worksheet for each 3803 tape control

- Indicate each 3803 serial number in decimal.

2 Indicate processing unit/Channel identity and cable numbers
3 Assign an address to each 3803 tape control in he (bits 0-4, Example: 18X/3BX).
4 Assign "Select Out" priority ("high"/"low") for Assign Select Out priority (high low
5 Indicate features installed on each 3803 tape control.
6 Assign 3420 addresses to each 3803 . Check the $0-7$ (low order) block on one "host" 3803, and the 8-F (high order) block on the other "host" 3803.
7 Draw in cabling for your configuration and insert cable key numbers.

| $\begin{aligned} & \text { XJJO200 } \\ & \text { See } 2 \text { of } 2 \end{aligned}$ | ${ }_{\text {Part }}^{2736021}$ | See EC <br> History | 845958 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



3803-2/3420

| XJ0300 <br> Seq 1 of 2 | $2736022$ <br> Part Number | See EC History | 845958 <br> 1 Sep 79 | $\begin{aligned} & 847298 \\ & 15 \text { Aug } 83 \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## SECTION A: DEVICE SWITCHING

 FEATUREA-1 Tape subsystem configuration flexibility is provided by field-installable switching features that allow up to 16 tape units to be switched between four tape available with the tape subsystem are:
2 Control Switch ( $2 \times 8$ or $2 \times 16$ configuration, 2 Control Switch ( $2 \times 8$ or $2 \times 16$ co
see Figures 1 and 4 on page $90-051$ )
3 Control Switch ( $3 \times 8$ or $3 \times 16$ configuration, see Figures 2 and 3 on page 90-051)
4 Control Switch ( $4 \times 8$ or $4 \times 16$ configuration see Figures 5 and 6 on page 90-052)
3803 must have a Communicator installed in order to be switched. The Communicator sends tape unit selection and device interface signals to one of two device switches, depending on whethe tape units 0 through 7 or 8 through $F$ are being addressed. The location of the device switches depends on the configuration desired. Fo switching feature is required only on the first 3803.

The Communicator is installed by removing the selection logic circuits and the associated device circuitry and cables to the device switches are then installed.
Using a combination of the Communicator and the 2, 3, or 4 Control Switch, two, three, or four interconnected tape controls can address a maximum of 16 tape units. Figures 1 through 6 show some possible switching configurations and cabling.

Note:
[1] The dark gray end of the signal cable is indicated by the arrow tip. (See Figure
$90-060$.)

Figure 7. Cable Connectors


Non-host 3803 with Communicator,
feature only. Sales Feature ( FC ) 9071 .


| 0 Bus | TU7(F) |
| :---: | :---: |
| 0 Tag | TU6(E) |
| ${ }^{c}$ Bus | TU5(0) |
| ${ }^{6}$ Tag | TU4(c) |
| 8 Bus | TU3(8) |
| 8 Tag | Tu2(A) |
| Pri bus | TU1(9) |
| Pri Tag | TVo(8) |

Host 3803 with 4 -Control s.sitch feature.
(it also has the comun catior 1 feature.

## 3803-2/3420

$\square$


Figure 1. $2 \times 8$ Switch Option


Figure 2. $3 \times 8$ Switch Option


3803-2/3420

© Coyright Intematione Eusmass Mcchines cornan


Figure 3. $\mathbf{3} \times 16$ Switch Option


Figure 4. $2 \times 16$ Switch Option


Figure 5. $4 \times 8$ Switch Option


Figure 6. $\mathbf{4 \times 1 6}$ Switch Option
3803-2/3420



SECTION B. SUBSYSTEM CABLING
B-1 Unpack the interface and power cables and lay in place.

Refer to the "Key Number" or "Connector ID" and "X-Length" shown on each interface cable label when placing cables (see Figure 3).

Refer to power cable connector (see Figure 2) to ensure that power cables will be located correctly.
Caution: Ensure that the color scheme on the connectors is followed.

B-2 Plug Cables and Terminators:
a. Plug cables at tape control and tape units. Each tape unit's address is determined by the position on the tape control interface panel to which its signal cable is connected.

Caution: Do not connect 3803 power cable to customer's receptacle at this time.
b. Insert terminators in "outgoing" cable positions in subsystems where "outgoing" cables 132 and 133 are not used.
c. Install cable retaining bars when cabling is complete.

B-3 Observe 'from' and 'to' designations given in Figure 1, Page 90-070. Red or red-striped labels indicate 'from' end of cables; white labels indicate 'to' ends of cables.


Figure 1. Signal Cable


Note: On chrome plated tape unit signal cable connectors, observe the color at the center screw hole.

Figure 2. Power Cable

- Power Cable


Figure 3. Dimension Explanation " X " Dimension = Distance Between Cable $\begin{aligned} & \text { "Y"\& "Z" } \\ & \text { Dimension }\end{aligned}=$ Distance Above the Floor from the Entry Hole to the Connection within the of $X, Y$, and $Z$ dimensions.


External Cable Identification

| XJO400 <br> Seq 1 of 2 2 2736023 <br> Part Number See EC <br> History 845958 <br> 1 Sep 79 846927 <br> 20 Jun 80 847298 <br> 15 Aug 83    |
| :--- |

## SECTION B. SUBSYSTEM CABLING (Cont'd)

## Figure 1. External Cables

| $\begin{aligned} & \text { Group } \\ & \text { No. } \end{aligned}$ | Conn. ID | $\begin{gathered} \text { Plug } \\ \text { Location } \end{gathered}$ | Cable Group | Key No. | Cable P/N | From | To | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | 129 | $\begin{aligned} & 129 \mathrm{~A} \\ & 129 \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 2281630 \\ & 2523073 \end{aligned}$ | $\begin{aligned} & 3420 \text { Signal } \\ & 60 \text { Hz } \\ & 3420 \text { Power } \\ & 60 \text { Hz } \end{aligned}$ | 3803 | 4, 5, 7 |
| 3920 | $\begin{aligned} & \text { 1B (Chan A) } \\ & \text { 3B (Chan B) } \\ & 1 T \\ & \text { 3T (Chan A) } \end{aligned}$ | 01S-A1A1 $015-A 1 A 5$ $015-A 1 A 3$ $015-A 1 A 7$ ois-ala | 130 | $\begin{aligned} & 130 \mathrm{~B} \\ & 130 \mathrm{~T} \end{aligned}$ | 5353920 5353920 | 3803 | Multiplexor Channel | 1,9 |
| 3920 | $\begin{aligned} & \text { 1B (Chan A) } \\ & \text { 3B (Chan B) } \\ & 1 T \\ & \text { 3T (Chan A) A) } \end{aligned}$ | $015-A 1 A 1$ $015-A 1 A 5$ 0 o1S-A1A3 $01 S-A 1 A 7$ | 131 | $\begin{aligned} & 131 \mathrm{~B} \\ & 131 \mathrm{~T} \end{aligned}$ | 5353920 5353920 | 3803 | Selector Channel | 1,9 |
| - | 2B (Chan A) 4B (Chan B) 2T (Chan A) $4 T$ (Chan B) | $\begin{aligned} & 015-A 181 \\ & 015-A 185 \\ & 015=A 183 \\ & 015-A 1 B 7 \\ & \hline 15-A 1 B 7 \end{aligned}$ | 132 | $\begin{aligned} & 132 \mathrm{~B} \\ & 132 \mathrm{~T} \end{aligned}$ | 5353920 5353920 | 3803 | Control Unit | 1,9 |
| - | $\begin{aligned} & 2 \mathrm{~B}(\text { Chan A) } \\ & 4 \mathrm{~B} \text { (Chan B) } \\ & 2 \mathrm{I} \text { (Chan A) } \\ & 4 \mathrm{~T}(\text { Chan B) } \end{aligned}$ |  | 133 | $\begin{aligned} & \text { 1338 } \\ & 133 T \end{aligned}$ | 5353920 5353920 | 3803 | $\underset{\substack{\text { Channel-Channel } \\ \text { Adapter }}}{\text { Chen }}$ | 1, 3, 9 |
| 1178 | 5A (Chan A) | $\begin{aligned} & \mathrm{j11} \\ & 113 \end{aligned}$ | 134 | 134A | 5351178 | 3803 | Channel EPO | 2 |
| 1178 | 9 A | 01U-A1 | 135 | 135 A | 5351178 | 3803 | 2065/2167 | 8 |
| 6456 | $\begin{aligned} & 118 \\ & 111 T \\ & \hline \end{aligned}$ | $\begin{aligned} & 011 \text {-A1A5 } \\ & 01 T-A 1 A 66 \end{aligned}$ | 136 | $\begin{aligned} & 1368 \mathrm{~B} \\ & 136 \mathrm{~T} \end{aligned}$ | 5466456 5466456 | 3803 No. 2 | 3803 No. 1 | 4 |
| 6456 | ${ }^{1118}$ | $\begin{aligned} & \text { 017-A1A5 } \\ & 01 T-A 1 A 6 \end{aligned}$ | 137 | $\begin{aligned} & 1378 \\ & 1375 \end{aligned}$ | 5466456 5466456 | 3803 No. 1 | 3803 No. 2 | 4 |
| 6456 | $\begin{aligned} & 138 \\ & 13 T \end{aligned}$ | $01 T-A 1 A 3$ $01 T-A 1 A 4$ 01 | 138 | $\begin{aligned} & \begin{array}{l} 138 B \\ 1387 \end{array} \end{aligned}$ | 5466456 | 3803 No. 1 | 3803 No. 3 | 4 |
| 6556 | $\begin{aligned} & \begin{array}{l} 138 B \\ 13 T \end{array} \\ & \hline \end{aligned}$ | $01 T-A 1 A 3$ $01 T-A 1 A 4$ 0 | 139 | $\begin{aligned} & 1398 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5466456 \\ & 5466456 \end{aligned}$ | 3803 No. 2 | 3803 No. 3 | 4 |
| 6556 | $\begin{aligned} & \begin{array}{l} 158 \\ 15 T \end{array} \end{aligned}$ | $01 T-A 1 A 1$ $01 T-A 1 A 2$ | 140 | $\begin{aligned} & 1408 \\ & 140 \mathrm{~T} \end{aligned}$ | 5466456 546456 | 3803 No. 1 | 3803 No. 4 | 4 |
| 6556 | $\begin{aligned} & 15 B \\ & \hline 15 T \end{aligned}$ | $01 T-A 1 A 1$ $01 T-A 1 A 2$ | 141 | $\begin{aligned} & 141818 \\ & 1419 \end{aligned}$ | 5466456 <br> 5466456 | 3803 No. 2 | 3803 No. 4 | 4 |
| - | - | - | 142 or 129 | $\begin{aligned} & \text { 142A } \\ & 142 B \end{aligned}$ | 2281630 2521595 | $\begin{aligned} & 3420 \text { Signal } \\ & 540 \text { Power } \\ & 3420 \text { Pow } \end{aligned}$ $50 \mathrm{~Hz}$ | 3803 | 4, 5, 6, 7 |
| 143 | 1A | Signal | 143 or (143) | 143A | 2281630 | $\begin{array}{r} 3420 \text { Signal } \\ 60 \mathrm{~Hz} \end{array}$ | 3803 | 4, 6, 7 |
| 144 | 3A | Power | 144 or (144) | 144A | 2523073 | $\begin{aligned} & 3420 \text { Power } \\ & 60 \mathrm{~Hz} \end{aligned}$ | 3803 | 6, 7 |
| 145 | 3 A | Power | - | - | 2521595 | $\begin{gathered} 3420 \text { Power } \\ 50 \mathrm{~Hz} \end{gathered}$ | 3803 | 6.7 |

Figure 2. Channel Cable Maximum Length for $\mathbf{6 2 5 0}$ bpi.

| System | From 3803-2 | To Channel | Length - Feet (Meters) |
| :---: | :---: | :---: | :---: |
| s/360 | 3420-8 | $\begin{aligned} & 2860 \\ & 2880 \end{aligned}$ | $\begin{array}{\|l\|l} \hline 72(22.0) \\ 119 & (36,3) \end{array}$ |
| s/370 | 3420-8 | $\begin{aligned} & 2860 \\ & \text { Mod } 135 \end{aligned}$ | 72 (22,0) |
|  |  | Mod 155 Mod 155-2 Mod 158 $\qquad$ | 103 (31,4) |
|  |  | $\begin{array}{\|l\|} \hline \text { Mod } 145 \\ 2880 \end{array}$ | 119 (36,3) |
| 4331 | 3420-6/8 | None | N/A |
|  | 3420-4 | BYTEMPX* | $103(31,4)$ |
| All Other | 3420-8 | BKMPX* | 119 (36,3) |

## Notes:

[1] To attach eight or less tape controls to one channel, the last tape control must be attached to the channel with a sum of no more than 200 feet a $3420-6$, subtract 15 feet $(4,5 \mathrm{~m})$ for each intervening control unit between the channel the last tape control. If the tape control is attached to a $3420-8$, subtract 20 feet ( $6,1 \mathrm{~m}$ ) for each intervening control unit between the channe and the last tape control (see Note 10). For cable length limitations when attaching a 3803-2 at 6250 BPI , see Figure 2.
[2] Sequence and Control (EPO).
[3] Channel to channel adapter (Sales Feature 1850).
[4] Total cable length from a 3420 tape unit to the most remote 3803 tape control must not exceed group 136-141.)
[5] Includes both signal and power cable. A maximum of eight 3420 tape units can be connected to each 3803 Tape Control 1 and 2. Tape units cannot be connected to tape control 3 and 4 for power
requirements unless they are used with cabl group 144.
[6] Parenthesis indicates cables to be used in World Trade countries for 60 Hz machines.
[7] When the number of 3420 s to be connected to a 3803 Model 2 exceeds the limitations of power ( 60 Hz ), each extra 3420 tape unit may be supplied power by another 3803 tape control using cable group 144. Cable group 143 is available to signal attach tape units using cable group 144 With SF9001 installed, the 3803 Model 2 ma power a total of eight 3420s (any model).
[8] For use with remote channel switch special feature.
[9] Part number 5466456 ( 24 Signal) may be substituted for 5353920 (20 Signal) for cable group numbers 130, 131, 132 and 133.
[10] Terminators are required when the 3803 is the last control unit in a chain or the only control unit on the channel. Use either 5440649 (20 position) or 2282675 ( 24 position) bus 2282676 ( 24 position) tag terminators as determined by the number of signal lines per cable.

Example:


170 feet ( $52,0 \mathrm{~m}$ ) Maximum cable length that can be used


## SUBSYSTEM INSTALLATION (Cont'd)

## SECTION C. KICKPLATES

C-1 Install 3803 front and rear kickplates and 3420 rear kickplates as shown in Figure 1.

1. Attach pins, nuts, and retaining clips to front and rear frame members of the 3803 and rea frame member of each 3420 as shown in Figure 1
2. Mount kickplates by pushing brackets onto pins. Clips must be positioned below lower flange of brackets
Note: Leave 3420 rear kickplates off until cabling is complete.
3. Turn nuts on pins to level kickplates.
4. If necessary, realign 3803 covers after kickplate installation.

C-2 Install 3420 front kickplates as shown in Figure 2.

1. Install front kickplates before moving tape units into place.
2. Elongated holes in the bracket allow kickplate to be leveled and adjusted to clear the front cover

Figure 1. 3803 (Front and Rear Kickplates 3420 (Rear Kickplates)


Figure 2. 3420 (Front Kickplates)


## SUBSYSTEM INSTALLATION (Cont'd)

SECTION C. KICKPLATES (Cont'd)
C-3 Install 3803 and 3420 side kickplates as shown in Figure 3

1. Install side kickplates only on the machines at end of a group. Use screw P/N 731629
Open or remove covers to attach kickplates Use 12 -inch ( 305 mm ) kickplate, part 2501286 (notched corner), on cover adjacent to tape unit power door hinge. Use 13 $1 / 8$-inch ( 333 mm ) kickplate, part 5356406, on remaining side covers for 3420 tape units and 3803 tape controls.

C-4 Typical Subsystem Configuration
Sufficient side kickplates, parts 2501286 and 5356406 , are shipped for the configuration shown in Figure 4. Kickplates are not provided for installation between adjacent tape units. needed for other configurations.
C-5 Install caster locks (4each), P/N 280336.

## Figure 3. 3803, 3420 Side Kickplates



Figure 4. Subsystem Configuration


SECTION D. TAPE CONTROL
ADDRESS/FEATURE/PRIORITY CARD PLUGGING


D-2 Disconnect-In Handling: $\mathrm{S} / 360$ or $\mathrm{S} / 370$.


## Plugging Data

360 Plug 360 if either Chan A (or B with 2 CS ) is connected to any
370 Plug 370 if $C$ han $A$ (and $B$ with $2 C S$ ) is conected to ary
channel that has disconnect in handling capability.


| XJ0600 | 2736025 | See EC History History | $\begin{aligned} & \substack{845958 \\ 1 \\ \text { Sep } 79} \end{aligned}$ | $\begin{aligned} & 8469297 \\ & 20 \\ & \hline 2040 \end{aligned}$ | $\begin{gathered} 847298 \\ \hline 15 \text { Aug } 83 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SECTION D. TAPE CONTROL ADDRESS/ FEATURE/PRIORITY CARD PLUGGING (Cont'd)
D-3 Select Out Priority:
Tape controls are factory-wired to respond to a select out signal (high priority). If ("low priority") is desired, change the B2 panel wiring to convert a 3803 tape control to respond to a select in signal. Refer to wiring charts below for rework.

| 'High' Priority (3803 Responds to 'Select Out') |  | 'Low' Priority (3803 Responds to 'Select In') |  |
| :---: | :---: | :---: | :---: |
| Channel A (FC281) |  |  |  |
| From | To | From | To |
| V4D09 T4B08 S2P11 | $\begin{aligned} & \text { S2P09 } \\ & \text { V4B08 } \\ & \text { T4D09 } \end{aligned}$ | V4D09 T4B08 S2P11 | $\begin{aligned} & \text { T4D09 } \\ & \text { S2PO9 } \\ & \text { V4B00 } \end{aligned}$ |
| Channel B (XM181) |  |  |  |
| From | To | From | To |
| $\begin{aligned} & \text { U6C02 } \\ & \text { U4B08 } \end{aligned}$ R2P11 | R2P09 U6B04 U4D09 | $\begin{aligned} & \text { U6C02 } \\ & \text { U4B08 } \end{aligned}$ $\text { R2P } 11$ | U4D09 R2P09 U6B04 |


b. Two-channel switch feature ( 3803 Address Channel "B"): Verify factory plugging.

c. NRZI Feature: Verify factory plugging.


3803-2/3420

| XJO700 <br> Seq 1 of 2 | 2736026 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 | 846927 <br> 20 Jun 80 | 847298 <br> 15 Aug 83 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## SECTION D. TAPE CONTROL <br> ADDRESS/FEATURE/PRIORITY CARD

PLUGGING (Cont'd)
D-5 Primary/Secondary Tape Unit Interface Control:
a. With device switching capability.


b. With selection logic $(1 \times 8)$



D-6 a. Data In Handling: S/360 or S/370.



Note: Data Flow Check asymmetry. Do not change jumpers unless card is replaced. This is a factory adjustment only.
b. If you have Selection Logic ( $2 \times 8$ ), go to step D-9 on page 90-160, if device entry, else go to 90-180.
If you have $2 x, 3 x$ or $4 x$ switch, proceed to step -7 on page 90-140.


Plug each channel independently as follows:*
*360 Plug 360 if the attached channel does not have data in/data out capability.
**370 Plug 370 if the attached channel has data in/data out capability.
If attached to a 2880 channel, bus out checks may occur if channel timings are not optimized The 2880 must be at EC718040 level or higher
W/O 2CS-Channel B may be plugged to 360 or 370 since it is not used.

SECTION D. TAPE CONTROL
ADDRESS/FEATURE/PRIORITY CARD PLUGGING (Cont'd)
D-7 Tape Switching Feature Address Control: Change or verify jumper plugging of host 3803 tape controls only.

1. For installations with less than a full complement of 3420 tape units (for example, $2 \times 12$ ), plug all cards present as if the to them tape units had addresses assigned Jumper cable locations for switch cards:
$2 \times 8$ and $2 \times 16$ Switch Configuration


3803-2/3420

| XJOO800 <br> Seq 1 of 2 | 2736027 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SECTION D. TAPE CONTROL
ADDRESS/FEATURE/PRIORITY CARD
PLUGGING (Cont'd)
D-8 Device Selection Priority Assignments: Verify that factory plugging of priority jumpers on the switch cards is correct.
Plugging Rules:

1. A priority must be assigned to each set of cards.
2. No duplication of priority should exist between sets of cards in one 3803 tape control
3. All cards must have T23-U23 connected by a jumper wire.
4. Factory plugging for these cards should be as shown, and should not have to be changed for any installation.
5. This plugging establishes priority; if two 3803s try to access the same 3420 tape unit simultaneously to access the same 3420 tape unit simultaneously,
the 3803 with the least number of jumpers will take control.
Connect a jumper cable to locations for switch cards as shown below:



3803 Switch Path "C"
Location:
A3N2
A3S2


3803-2/3420

| XJO800 | 2736027 |
| :--- | :--- |




## SUBSYSTEM INSTALLATION (Cont'd)

SECTION D. TAPE CONTROL
ADDRESS/FEATURE/PRIORITY CARD
PLUGGING (Cont'd)
D-9 Apply labels to tape control operator's panel as
shown
a. Operator's Panel Labels

For the 3803 that "hosts" tape units 0-7:

1. Use labels furnished to indicate addresses of tape control associated with each group of operator panel switches.
2. Apply 3420 address labels $0-7$ above each group of switches as shown

b. Operator's Panel Labels
or the 3803 that "hosts" tape units 8-F
3. Use labels furnished to indicate tape control addresses associated with each group of operator panel switches.
4. Apply 3420 address labels 8 -F above each group of switches as shown.


## FIELD TESTER CONVERSION

Do the following rework to make the field tester compatible with 3420 Models 4,6 , and 8 . The new EC Level is 734316. (The field tester remains compatible to 3420 Models 3, 5, and 7.)

1. Remove the four screws from the bottom of the tester. Then remove the cover. Check the probe side of the card/connector socket block
a. If connections are made by means of a printed circuit card, replace the cover and four retaining screws, then skip to step 7.
b. If connections are made by means of wire wrapping, proceed to step 2.
2. Remove the logic card, unplug the signal cables, and slide the connector block out
3. Delete yellow wire from B1G02 to A2B13.
4. Add \#30 gauge SLT wire from B1J05 to A2B13.
5. Reassemble the tester: slide the connector block into the tester, plug the cables, and install the logic card.
6. Replace the cover and the four retaining screws

7 Install label, part 1845758, to the right of the data rate switch $(8,16,32)$ as shown
© Install label, part 1845760 , over the existing instructions (1-3) on top of the tester
9. Before converting a Model 3,5 , or 7 tape unit to a Model 4, 6, or 8, take the tape unit offline. Then connect the field tester
Note: Simula Model 4, 6, or 8 by grounding N5BO2 on the tape unit
10. Mount and load a CE work tape. Then set the field tester to WRITE CONTINUOUS. See 80-020.
11. Scope test point A1H1B11 (-WRITE DATA TRACK P), at the tape unit. Observe a full write cycle period and compare to the chart below. Make sur the data rate switch is set correctly for the tape nit model being used
Note: Times are nominal and are given in microseconds. Tolerance is $\pm 5 \%$.

| Model | Data Rate Switch Position |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{8}$ | $\mathbf{1 6}$ | $\mathbf{3 2}$ | $\mathbf{6 4}$ |
|  | 32.8 | $\mathbf{1 6 . 4}$ | 8.2 | - |
| 4 | - | 16.4 | 8.2 | 4.1 |
| 5 | 20.0 | 10.0 | 5.0 | - |
| 6 | - | 10.0 | 5.0 | 2.5 |
| 7 | 12.4 | 6.2 | 3.1 | - |
| 8 | - | 6.2 | 3.1 | 1.6 |

Note: Take any 3420 tape unit Incident Report (IR) and code your time, using Service Code 33, ECA \#991.


```
1. Unload drive before plugging or unplugging tester.
    Place tape unit in off-line status
3. Connect at A1NN, wiring sidi.,
```




## SECTION E. POWER SUPPLY CHECKS

E-1 Remove the wire seal from the 3420 tape unit $J 1$ power connector, and the wire seal from around the 3803 Model 2 power plug.
E-2 With power off, check the 18 filter capacitor mounting screws on the 3803 Model 2 tape control's +6 v and -4 v power supplies. If loose, tighten the screws being careful not to
over-torque and damage the power board. Also, check all other power supply screws and connections. (See 08-575.)


E-3 With power off, check that the customer's supply voltage matches that shown on the voltage rating label.

Note: To connect a 3803 tape control for operation at a different input voltage, refer to

3803 logic page YFO10 ( 60 Hz ) or YFO15 (50 Hz ).
See Page 08-570 to determine if each tape unit has a modified power supply. Then, refer to logic has a modified power supply. Then, refer to log;
pages listed for the connections to be changed:

Frequency Logic Pages Affected




- For tape units with "Modified"
\# For all tape units.
E-4 Customer Power Phasing
Check three-phase ac power receptacles to ensure proper motor rotation in each unit. Any improper phasing must be corrected before power is
applied to the subsystem.

E-5 With power on, check that all blowers and motors operate correctly.
a. Incorrect phasing of input voltage causes the tape unit pneumatic supply motor to turn backward, preventing the tape unit from loading.
b. The cooling fan assembly blower motor in the tape unit will run backwards. Remove filter from machine and observe the direction of the fan as power is dropped. Fan should turn clockwise when viewed from below. (See arrow.)
Note: All blowers in the tape control are single phase
E-6 Mount and load a tape. Using a Digital
Voltmeter, part 453585, 453046, or equivalent, check that the +6 volt and -4 volt power
supplies are within the tolerances listed:

3420 Tape Unit Models 3, 5, and 7:

| $\begin{aligned} & +6 v \\ & 4.05 v \end{aligned}$ | A1G1EO9-A1G2DO8 A1N3D02-A1N3D08 | $\begin{aligned} & \pm 0.1 \mathrm{v} \\ & { }_{ \pm 0.05 v} \end{aligned}$ |
| :---: | :---: | :---: |
| T | Unit models 4, 6, and 8 : Test Point | Tolerance (Note 1) |
| ${ }_{-4.05}^{+6 v}$ | A1G2B11-A1G2D08 A1H1C09-A1G2D08 | $\begin{aligned} & \pm 0.1 \mathrm{v} \\ & \pm 0.05 \mathrm{v} \end{aligned}$ | $\begin{array}{ll}+6 \mathrm{v} & \begin{array}{l}\text { A1G2B11-A1G2008 } \\ -4.05 v\end{array} \\ \text { A1H1CO9-A1G2DO8 }\end{array}$ $\pm 0.1 \mathrm{v}$

$\pm 0.05 \mathrm{v}$ Note 1: Ripple specifications for -4 v and +6 v are 24 mv peak-to-peak. Measure at power supply. Refer to DC Logic page
for your machine for TB locations. (YBO2O, YBO25 or YFO2O. for your
YFO25)
3803 Tape Control
Test Point
${ }_{-4.0 v}^{+6 v} \quad$ B2S2M11-82S2DO8
Tolerance (Note 2) $\pm 0.01 \mathrm{v}$
$\pm 0.01 \mathrm{v}$
Note 2: Ripple specification for - 4 v is 80 mv peak-to-peak and for
+6 v is 10 mv peak-to-peak. Measure at power supply
Caution: A ground loop has been purposely installed in the 3803 tape control for
instalied in the 3803 tape control for
electro-static discharge (ESD) control. The electro-static discharge (ESD) control. The
installed ground loop is in the tape signal tail gate connector, and must be disassembled to check for other ground loops.
The tape control is checked at the factory for ground loops.


## EETION F. CHECKS AND

ADJUSTMENTS
Note: Make sure the write head card is seated properly before continuing

This section outlines checks, adjustments, and tests to ensure that the tape units and tape controls operate normally when the subsystem is turned over to the


F-1 Altitude Vacuum Level Setting-3420
Using a water manometer with a pressure divider or a pressure/vacuum gauge, part 5495384 measure the vacuum according to the decal on
the transfer valve. If incorrect
a. 3420 Models 3 through 7 :

Check that the vacuum pump belt and transfer valve plug are set as shown in 08-410.
b. 3420 Model 8 only:

Adjust vacuum line restrictor to obtain vacuum shown in 08-410.
F-2 Regulator Air Pressure-3420
Check/adjust pressure as shown in 08-405.
F-3 Capstan-3420
Caution: Allow fiber optics lamp to warm up 20 to $\mathbf{3 0}$ minutes before making adjustments
Do capstan tach adjustment. See 08-130 for models 3,5,7 or 08-120 for models 4, 6, 8
F-4 Mechanical Skew-3420
a. Visually check tracking before adjusting the skew plate. Perform procedure on page
b. Check that mechanical skew meets the specifications given in 08-170 (1600 and

F-5 BOT/EOT-3420
Caution: Allow fiber optics lamp to warm up 20 to 30 minutes before making the
adjustments.
Verify BOT/EOT adjustment. See 08-580

F-6 Autocleaner Tape Direction-3420
aution: Do not check autocleaner until tape unit has been positioned online, and just prio to returning machine to customer.
Check that autocleaner tape moves from bottom to top by marking tape and observing direction. See 08-380, "Autocleaner Operational Check'
F-7 ESD Grounding-3420 and 3803
Check that each door strike and roller assembly is adjusted correctly to ensure sufficient

3420 lower rear door (1)
3803 upper and lower on the front and rear doors (4).

This adjustment is accomplished as follows:
a. With the screws loose, adjust the roller assembly so the door roller will latch on the strike plare.
b. If necessary, adjust the plate mounted between the strike and frame to ensure proper grounding between the plate and finger stock

Check that the door latching adjustment is still correct.
F-8 ESD Grounding-3803
a. Check the adjustment of the ESD plates on both the left and right sides. Be sure the plates are installed with toward them

Caution: Be sure that the plates are not adjusted to bow too much because the plates dill reverse bow when the door is closed and lose proper grounding
b. If necessary, adjust the plates so that each one bows out sufficiently to make contact with the hat section of the side cover
c. Check the side door latch for a firm latching and adjust, if necessary

F-9 Data Flow Clock Asymmetry
Adjustment-3803
If the A1C2 card is replaced in the 3803, see ALD AAO10 sheet 2 of 3 , for adjustment

803-2/3420

| $\begin{aligned} & \begin{array}{l} \text { X } \\ \text { sea } 2000 \end{array} \end{aligned}$ | 2736029 <br> Part Number | See EC History | $\begin{aligned} & 845958 \\ & 1 \text { Sop } 79 \end{aligned}$ | $\begin{aligned} & 846927 \\ & 20 \\ & 20 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



## SECTION G. SYSTEM DIAGNOSTICS

Note: Make sure the write head card is seated properly before continuing.
G-1 Run 3420 OLTs A-K, M-X and AB through AG. (AB) through AG must be run under OLTSEP. AB is a diagnostic for 3803s with a device switching feature. AD through AG are optional for 3803s with the two-channel switch feature. (You must have a "dedica
through AG.)

Note: OLT section 3420L will run only under sense switch setting ( $3420 \mathrm{~L} /$ EXT $=9$ ). Verify PE clipping levels on machines with PE feature
G-2 Verify serial numbers, EC levels, and features from the diagnostic printout.
a. If the tape control information is incorrect, see plugging chart on $90-210$, or AA010 in the 3803 ALDs.
b. If the tape unit information is incorrect, see plugging chart on $90-210$, and $90-212$ or A6106 in the 3420 ALDs.
G-3 When the diagnostics have run error free, generat and save for future use a read only tape in 6250 bpi mode.
a. Enter the following as show
r 01,'DEVICE/3420A-G/fe,ext=z/
b. To ensure that a good tape has been generated, the program must run without error. When a good tape has been generated, remove the writ enable ring.
c. Mark this reel 6250 bpi READ ONLY and save for diagnostic use with Section 00-010 of the MLMs.
Note: The CE should retain the output from Sections "V" and "W" of the OLTs which will give a printed table listing of all tape unit performance measurements.

EMULATOR: (If applicable to your machine.)
If the 3803 is attached to a System/360 on which
any emulator is run, install a jumper on each tape
unit to disable LOAD FAIL IRPT:
3420-3, 5, and 7, between A1H2U12 and A1H2U08
3420-4, 6, and 8, between A1M2U12 and A1M2U08


## section g. system diagnostics

(Cont'd)
G-4 Tape Control Serial Number/EC Level/Feature Code: Verify from diagnostic printout that factory plugging is correct when diagnostics are run.

Plugging example: tape control serial number is 10430 with 9 -track feature


3803-2/3420


SECTION G. SYSTEM DIAGNOSTICS (Cont'd)
G-5 Tape Unit Serial Number/Model Number/EC Level/ Feature Code: Verify from diagnostic printout that factory plugging is correct on all tape units when diagnostics are run (3420) ALD A6106.

Plugging example: Wired for model 4. Origınal model number (Models 4,6, and 8) (See Notes)


Notes:
[1] The original model number is the high-order digit or alpha character in the serial number, and is not changed with model conversion. See table to convert alpha to model type.
[2] For tape units with a high order digit in the serial number, other than 3 through 8; the diagnostic will print the original model number as the high order digit of the serial number.

| Tape Model | Alpha |
| :--- | :--- |
| Model 3 | A, B, P |
| Model 5 | C, D, Q |
| Model 7 | E, F, R |
| Model 4 | G, H, S |
| Model 6 | J, K, T |
| Model 8 | M, N, U |

Plugging example: Wired for EC734801 and feature code 6250/1600 bpi.

EC Level/Feature Code either a one (1) or a zero ( 0 ).

To plug serial number Plug pins to equal the last four digits of the chart at left. Plugging example: number is 81060 .

| XJ1102 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Seq 1 of 2 | 4169688 <br> Part Number | See EC <br> History | 845958 <br> 1 Sep 79 | 846927 <br> 20 Jun 80 |  |  |  |

A
Abends-Theory $00-035$
A/B Read and Sequencing Register 53-055
A Regeater $52-025$ (see Power Supplies)
AC Power Supply (see
Acceotable Waveforms (Read Card Test Points)
58-004
Characterists, sead/Write (Subsystem
Characteristics
Acronyms and A Abreviations PLAN
Acronyms and Abbreviations PLAN
Active/Inactive/Pulsing/Switched Line
Levels
Levels $00-003$
Adapter Hose (CE Tool) $80-000$
ADDADOM, Arithmetic 1 ALU Operation)
Ad
Additional Stopping Distance After Go
Extend 6 A- $140.6 \mathrm{~B}-205$
Extend 6 A-140, 6B-205
Address Out Active (MAP)
Address Out Active (MAP) $13-300$
Address Out Inactive (MAP) $13-360$
Address/Feature $/$ Priority Card
Address/Feature/Priority Card Plugging
(Installation)
$90-110$
Addrass Decoders, Control Unit 58-010 Addressing
Concepts
The

Adjustment
Altitude Vacuum Level 08-410, 90-190
AMP Sensor (NRZZ-Model $3,5,7)$ O8-300
Amp Sensor (PE Only-Model 3, 5, 1 ) $08-290$

Auticleaner 08-382. 58-10
BOT/EOT, Fiber Optic 08-5
BOT/EOT Voltage $08-575$
Capstan To Stuby Bar
(All Models)
$08-080$
$\begin{array}{lll}\text { (All Models) O8-080 } \\ \text { Capstan Tachometer Model 3, 5, 7) } & 08-130 \\ \text { Capstan Tachometer Model 4, 6. 8) } & 08-120\end{array}$
Capstan Tachometer (Model 4, 6, 8)
Cartridge Moror 08.535
Data Flow Clock Asymmetry
D0-190
 Dual Density Thesthold Adjustment Card $80-000$
Electrical Skew (NRZ) Feaure) $08-200$
ESD Grounding (3420/3803)
OD-190 $\begin{array}{ll}\text { ESD Grounding ( } 3420 / 3803 \text { ) } & 90-120 \\ \text { Head Mirror Stop (Model 3, } 5 \text {, } & 71 \\ \text { O }\end{array}$ Head Mirror Stop (Model 3, 5, 7) 08-350
Left Reel Hub and Motor 80-560 Mechanical Skew (NRZI Feature) 08-180
Mechanical Skew (1600 and 6250 BPI) ${ }^{\text {O }}$ O8-170 Power Wincow Safety Bail $08-640$
Read Amplitude (Model 4, 6,810810 Rewer Amplitud (Model 4, 6, 8) $08-310$
Read
Read Electrical Skew (NRZI Feature) $08-190$ Read Electrical Skew (NRZI Featu
Type 2272 MST Card $17-800$
Vacuum Column
Vacuum Column Door $08-680$
Vacuum Collumn
Vacuum Column Door Glass 08-690
Write Electrical Skew (NRZI Feature) 08-200 Preumatics


Rack and Limit Switch 08-650
Read Amplitude (Models 4.6. 8 ) 08-310
Read Electrical Skew (NR2)
Read Amplitude (Models 4,6, 8) 08-310
Read Electrical Skew (NRZI) 08-190
Right Reel Hub 08-500
Right Reel Hub 08 -500
Safety Bail 08.640
Tape Unat Stubby Bar 08-080
Write Electrical Skew (NRZ)


Air Pressure Check, Regulator 08-405, 90-190
Airflow and Voltage Monitoring Airflow and Voltage Monitoring
System $1 \mathrm{~A}-000,1 \mathrm{~B}-000$

Dyamic (Non-90.000 series) 08-150
Dynamic (90.00 series) $08-160$,
$\begin{array}{lll}\text { Marks } 08-064 \\ \text { Static (Non-90.000 Series) } & 08-060 \\ \text { Static (With Round Supports) } & 08-068\end{array}$
Static (With Round Supports) $08-068$
Static (With Square Support Without Zero Marks) $08-062$
wer Window 08.64
$\begin{array}{ll}\text { Power Window } & 08-640 \\ \text { Alternate llip Flop } & 53-040 \\ \text { ALU ((Arithmetic Logical Unit) Microprocessor)) }\end{array}$
Operations
Arithmetic Add: ADD/ADDM (Hex Code A or B)
S2-065
Branch On Condition: BOC (Hex Code 2 or 3)
$52-085$
$\begin{array}{lll}52-085 \\ \text { Branch to Read from Load Point } & 55-040 \\ \text { Branch to Write from Load Point } & 55-024\end{array}$
Branch to Read from Load Point $55-040$
Branch to Write from Load Point $55-02$
Branch Unconditional: BU (Hex Code-6)
Branch 4
$52-090$
Common Start 1/O Routine $\quad 55-020$
Logical AND: AND/ANDM (Hex Code C or D)
$52-070$.
Logical Exclusive OR: XO/XOM (Hex Code E or F)
$52-075$
Logical OR: OR/ORM (Hex Code 8 or 9)
L2-075
Logical
Store Logic: STO (Hex Code 0 or 1 )
$52-095$
Transfer Logic: XFR (Hex Code 4 or 5) 52-100
ALU1
Charts 1 to $7 \quad 13-091$
$\begin{array}{ll}\text { Fails to Trap to OOO (MAP) } & 13-400 \\ \text { Failure to Reset CTI (MAP) } & 13-210\end{array}$
Failure to Reset CTI (MAP) $13-210$
Hangs at OoO (MAP) 13-010 $\quad 13-410$
Hangs at ALL (MA Falure (MAP)
Hangs on AL) $13-530$ 13-540
Loop (TAP
Loop. TCS (MAP) 13 -080
Microprogram Detected Error (Sense Byte 11
Bit 4) (MAP) $16-060$
Bit 4) MAP) $16-060$
Op In Wait (MAP) $13-250$
Op In Wait (MAP) 13-250
Power-On Reset (MAP) 13-090

Waiting for ALU2 to Complete a
Sequence MAP) $13-420$
Waation
Waiting for ALLU to Drop STATB (MAP)
$13-460,13-470$
Waitite to
Warting for ALU2 STATB Indication (MAP)
$13-450$
$\left.\begin{array}{l}13-470 \\ \text { N }\end{array}\right)$
Waitng for ALU2 STATD Indication (MAP)
$13-440$
ALU Cannot Exit or Loop (MAP) 13-370
$\begin{array}{ll}\text { ALU1 or ALU2 Hangs (Chart) } & 13-005 \\ \text { ALLI or ALU2 Hangs (MAP) } & 13-000 \\ \text { ALU1/ALU2 (Two Position Switch) }\end{array}$
ALU1/ALU2 (Two Position Switch) 75-002
ALU2
Analyzing Microprogram Errors 16 -131
Microorogram Detected Error (Sense Byte 12
Microprogram Detected Error (Sense Byte
Bit 4) $16-130$
Micrer (table) 16-130



## $3803.2 / 3420$

| $\times 60100$ | 2736031 |
| :--- | :--- |



```
Mrase Head 5B-110
```

Mrase Head 5B-110
lol
lol
Operational Check 08-380
Operational Check 08-380
Nalonold 4B-160 5B-110

```
Nalonold 4B-160 5B-110
```




```
B
```

B
B Bus % 0-7 ALU1 Test Points (Table) 16-030
B Bus % 0-7 ALU1 Test Points (Table) 16-030
Marity Error ALU1 (MAP) 16-030
Marity Error ALU1 (MAP) 16-030
Parity Indicator 75-003
Parity Indicator 75-003
Backhtch 6B-230
Backhtch 6B-230
Backspace Block Command 40-007
Backspace Block Command 40-007
l
l
lol
lol
lol
lol
Mad Sens
Mad Sens
M5-140
M5-140
Basic Subsystem (Concepts) 40-001
Basic Subsystem (Concepts) 40-001
MBit Cell and PE Waveform 55-007

```
MBit Cell and PE Waveform 55-007
```




```
Mlock Diagram, Device Switching
```

Mlock Diagram, Device Switching
(2\times8 Switch) 18-012 \$witching
(2\times8 Switch) 18-012 \$witching
Block Diagram, Device Switching
Block Diagram, Device Switching
lol
lol
l
l
lol
lol
lol
lol
lol
lol
ON 3A-150, (1)
ON 3A-150, (1)
\
\
Block Removal/Rticslacement 08-590
Block Removal/Rticslacement 08-590
Mlock Removal/Replacement 08-590
Mlock Removal/Replacement 08-590
LED BOT/EOT Voltage Checks/Adjustments
LED BOT/EOT Voltage Checks/Adjustments
O8-580
O8-580
l
l
MP2 Conditions (Table) 52-087
MP2 Conditions (Table) 52-087
MO
MO
B
B
OT/EOT
OT/EOT
BOT/EOT, Fiber Optics Adustments 08-

```
BOT/EOT, Fiber Optics Adustments 08-
```



3803-2/3420

| XK0100 Sea 2 of 2 | ${ }_{\text {Par Number }}^{2736031}$ | See EC <br> History | 845958 1 Sop 79 | $\begin{aligned} & 846927 \\ & 20 \\ & \hline \end{aligned}$ | ${ }_{15}^{847298} 8$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Bus In/Out Checking (MAP) 13-380
Initial Selection $54-000$
Interface Problems. Tape Control 18-040
Priority Circuits $54-020$
$\begin{array}{ll}\text { Priority Circuits } & 54-020 \\ \text { Stas } \\ \text { Stas } \\ \text { Word Bits } \\ \text { (Table) } & 15-080\end{array}$
$\begin{array}{ll}\text { Tags In Register } & 52-040 \\ \text { Test Points (Table) } & 17-021 \\ \text { Write Pyte Register } & 53-045\end{array}$
$\begin{array}{cc}\text { Write Byte Register } & 53-045 \\ \text { Characteristics, } 3420 \text { Subsystem } & 40-002\end{array}$
ALU1 1 to 7 13-091
ALU2 Power On Reset
Branch Conditions $16-050$ Branch Conditions 16 -050
Cards and Cables. Device Switching
Troubleshooting Pater Troubleshooting Procedure $18-028$
Droping Ready and Thread and Load Failure
2A-000
Features Chart (Sense Byte 6) 117-220
Mode Char (Sense Byte 6) $17-10,17-220$
Moad/Write Vertical Redu
Reference 18 -029
Skew Error Test Points 17-162
Skew Error Tost Points
Tape Control To/ From Device 1 182-005
Tape Unit Control Lines 16 16-213
1 18 Selection $18-001,18-005$
Checks

## $1 \times 8$ Se Checks Auto

Autocleaner Operational 08-380
BOT/EOTVOItage 08-580 Copstan Tachameter ${ }^{\text {O }}$


Cartridge Restraint Pressure 08
Cleaner Blade Gauss $08-390$
Cleaner Blade Gauss $08-390$
Column Vacuum Level $08-400$
DC Power Supoly $08-570$
DC Power Supply 08-570
Erase Head Polarity and Erasure $08-320$
ESD Grounding $(3420 / 3803$ ) $90-190$
Feedthrough 08-330
File Protect Mechanism 08-340 echanical Secw
1600 and 6250 $\begin{array}{lll}1600 \text { and } 6250 & 08-170 \\ \text { NRZ1 Feature } & 08-180\end{array}$
Pneumatic Pressure Vacuum 08-400
Power Supply $90-180,08-570-400$
Read/Write Head Resistance (Model 4, 6, 8)
08-280
Reglator Air Pressure 08-405, 90-190
Tape Guide (NRZI Feature) $08-230$
Tape Guide (NRZI Feature) 08
Tape Unit Grounding $08-600$
Threading Vacuum $08-400$
Transfer Valve Plug $08-410$
Transfer Valve Plug 08-410
Vacuum Column Switch $08-450$
$\begin{array}{ll}\text { Vacuum Pump Belt } & \text { O8-010 } \\ \text { heck Register. Write } & 53-045\end{array}$
Check Register, Write ( 53 -045
Checking. Read Back
Cleanerert Blade Gauss Check $08-3000$
Cleanerg. Blade Gauss Check Cl ) 8 - 30 -001
Cleaning Procedures (see Preventive Maintenal
Cleaning Procedures (see Preventive M
$\begin{aligned} & \text { Clock } \\ & \text { Asymmetry Adjustment } \\ & \text { 17-800 }\end{aligned}$
Asymmetry Adjustment
Chart $53-015$ (1)
Check (MAP) 17-800
$\begin{array}{ll}\text { Control Logic, Microprocessor } & \text { 52-005 }\end{array}$

```
Clocks/Oscillators/Counters
    Byte Counter 53-025
    CRIC-CROC Address Counters 
    lol
    Master Clock 53-005 53-005
    Microsecond Frequency 53-005
    Read Clock Stepping Pulses 53-005 
    W Write Clock and Write Counters (Table)
Clol
Command Controls Switches (CE Panel) 75-
6A-16
Command Out Inactive During Reset or
Power On Reset (MAP) 13-330 (1)
lol
Command Select Sequencer and Decoder 12-026
Commands and Instructions (16-160
    l
    Motion Control Commands 40-007
Non-Motion Control Commands 40-008
Common Start 1/O (S1O) Routine 55-020
M
Communicator Feature, Device Switch 18-010
lol
Compare Errors,, P Compare or C Compare
(Timing Chart)
lol
Configrations, Subsystem (Concepts)
M0-003,90-100 (1) (TCS Feature) 58-012
Col
Control Check Indicators (CE Panel), 75-003
Control Unit (see Tape Control)
    Common Start 1O (SIO) 55-020
#
\,
Cl
Cooling System (see Vol
M
```



```
Write Data Flow Logic 50-001 
    Write Translator 7-Track 57-021
    Security Erase Command 40-007 (12-013
* Securty Erase Procedure Offline 12-013
*)
$C Power Supply (see Power Supplies) 
*)
Degausser (CE Tool) 80-000
lol
    Mensity Feature Combinations (Table) 40-004
    M
    Mhase Encoded (P
    2250 BPI 55-007
Detection Register 53-005
Detection Register 53-005
*)
lol
evelop Tape 00-011
    M evice In x to DF Test Points (Table) 17-312
    \,
        *)
        l
        Feature (Logic) 18-010
        Inbound Crosspoint Switch
        Operation 58-060
        lol
        SWitch Node 58-090, 90-050
    Mterace Exchange on Device Interface During Write
        Operation 5A-130,5B-130
    Lines 07-000, 54-000
lon
lol
    Miagram
        Autocleaner Operation 08-360
    CE Cntry 12-027
    *)
    Cin
    Device Interface During a W
    $,
    \ Dever Interface During Read Forward
    Device Switching
            C
            lol
            Most Probable Cause Analysis 18-0, (o-000
```



Head Current $40-007$
Head
 Error Analysis (see MAPs, Tape Control)
Error Anal Error Analysisis see MAPs, Tape Control
Read/Write Chawt, Permanent Read/Write $00-011$
Error Correction Sense Analysis (MAP) 21-000 Error Correction Sense Analysis (MAP) ${ }^{21-000}$
Example of TYpical Flow Thyough MAPs
Excursions (Wide) in Left Column During HS Rewind Excursions ( $W$ ide) in
$3 \mathrm{~A}-160$.
$3 B-160$
Extended Go 6B-205
Extra or Missing Interrupts (A2 Panel) $18-050$ F

Failure Follows Tape Unit $00-040$
Failure Modes, Device Switch Feature $18-010$


3803-2/3420

| $\begin{aligned} & \text { XKO200 } \\ & \text { Sod } 10+2 \end{aligned}$ | $\begin{aligned} & 2736032 \\ & \text { Par } \end{aligned}$ | See EC History | $\begin{aligned} & 845958 \\ & \hline 150079 \end{aligned}$ |  | ${ }^{847298}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



LED ROT/EOT Block Removal/Replacement
$08-590$ OR
ED BOT/EOT Voltage Checks/Adjustments 08-580 08-590
Field Feedback Problem Fixes
Field Replaceable Units (FRUs)
OO-050
PLAN Accuracy Check 08-290, 08-300
$08-315$
Conversion
$3420-170$
$80-020$
$1 \mathrm{~B}-000$
File Protect Mechanism Check 08-340
file Protection (Concept) $40-001$
Flag Brtes 1 and 2 (Tables) $40-006$
Flat Belt Replacement, Pneumatic Supply $08-442$ low Cha
$\begin{array}{ll}\text { Branch To Read From Load Point } & 55-040 \\ \text { Branch To Write From Load Point } & 55-024\end{array}$
common Start I From Routine $55-020$
Read From Load Point $55-040$
$\begin{array}{ll}\text { Read from Load Point } & 55-040 \\ \text { Selection and Priority } \\ \text { Write From Load Point } & 55-024\end{array}$
Flow Through MAPs, Typical (Example) $00-003$
Format Character Trk $\times$ (Tabie)
Ormat, Data (see Recording Methods/Formats)
ormat of MAPs
$00-001$
Forward Microprocessor Instruction $52-030$
$68-230$
Forward Space Block (FSB) Command $40-00$
Forward Space File (FFFF) Command $40-007$
Foward Start Times (S)
Forward Start Times (Subsystem Characteristics
$40-002$
$\begin{array}{ll}\text { Four Control Switch (Concepts) } & 58-050 \\ \text { Full-Width Erasure (Concept) } & 40-001\end{array}$ $3420 \begin{gathered}19-010 \\ 3803-2 \\ 19-000\end{gathered}$
Functions. MP1 and MP2 52-030
(
eneral Referation 07-000
Microprocessor $16-000$
General Reset
$50-011$
$\begin{array}{ll}\text { Generators, CRC } & 53-065 \\ \text { Generation, CRC } & 53-067 \\ \text { Generation, } 1 B G & 6 A-150\end{array}$
Glazed Capstan Cleaning Procedure 08-700
Glossary of Terms PLAN 5
$68-205$
GO Extensions in Quarter Tach Pulses $68-205$

Gray Code Counter (GCC) 6B-205
Ground Check, Tape Unit 08-600
Group Buffer Control $53-025$
Group Buffer Counter $53-090$
Group Coded Recording (GCR) $6250 \mathrm{BPI} \quad 55-008$
GCR 5260 BP (Concepts)
GCR Block 55-008
H
Halt 1/O Instruction
Hardware Errors (MP1 Special Register)
40-009

Head. Erase $58-110$
Head Mirror Stop Adjustment (Models 3, 5 , and 7 ) $08-350$
Hex Wren
Hex Wrench, Right Reel Hub (CE Tool) 80-000
Hi IC Pty/Hi ROS Reg Pty Indicator (CE Panel)
High-Order ROS Registers 52-035, 16-020
High-Order ROS Registers $52-035,16$-020
High ROS/IC Parity Error on A Branch Condition ALU1 (MAP) $16-020$
ALU2 (MAP)
High-Speed Rewind (see Rewind Operation)
High--Speed Rewind Solenoid Check 08-405
How ${ }^{\text {Co }}$ In init
CE Initial Entry Flow Chart Start 1
Determine the Failing Instruction Address
16-000 Develop Tape $00-011$
$\begin{array}{ll}\text { Make the ALU Loop on an Error } & 16-000\end{array}$
Operate CE Panel 12 -000
Use MAPs $00-000$, PLAN
$\begin{array}{lll}\text { Use MAPs } & 00-000, \text { PLAN } 1 \\ \text { Use Section } & 18-x \times x & 18-010\end{array}$
${ }_{18 G}$ IBG Counter 2A-010
18G Detected on Write (MAP) 17-080
IBM Easy Load Cartidge 40-001
IBM Easy Load Car
ID Burst
ID 0 B
Burst Check (MA
10 Burst Check (MAP) 17-050
Implicit Conection (TCS Feature) $58-011$
Inactive/Active/Pulsing/Switched Line Levels
$00-003$
Inbound
Inbound Crosspoint Switch Schematic (Device Switch
Feature)
Indicators, CE Panel 75-003
Inhibit Preamble/Postamble 40-005
$\begin{array}{lll}\text { Inhibit Preamble/Postamble } & \text { 40-005 } \\ \text { Initaia Enty FFow Chart. CE } & \text { Start } 1 \\ \text { Initial } & \text { Selection Description } & 54-000\end{array}$
Initial Selection Description $54-000$
Initial Selection
Initial Selection
$A B C E$
$50-011$
$\begin{array}{lr}\text { Bus in/ Bus Out Lines } & 54-000 \\ \text { Device Interface Lines } 07-000 \\ \text { Tape Unit } & 07-000,54-000\end{array}$
Tape Unit 07-000, 54-000
Inititang a Rewind $3 A-010,38-010$
Initiating Tape Motion
Initiating Tap
Installation
Address/Feature/Priority Plugging (see Card Plugging)
Cable and Terminator Plugging $90-060$
Cable and Terminator Plugging $90-0$
Cabe Retaining Bar 900060
Cabling, Subsy
Card Plugging

Address. Tape Control ${ }^{\text {ata }}$ 90-110
Data In Handling $90-130$

Device Swithing Feature 90-110
Device Switching Feature, Address Control (Chart)
$90-140$
Disconnect In Handling
NRZI Feature $90-120$
90-110
Nrimary/Secondary TU Interface Control (With
Device Switch) $90-130$
Primary $/$ Secondary TU Interface Control
(With $1 \times 8$ ) $90-130$

Selec
Serial No/EC Level/Feaiere Code (Tape Control)
Serial No/Model No/EC Level/Feature Code
$\begin{array}{lll}\text { trape Unit) } & 90-212 & \text { Tape Control Address } \\ \text { To-110 }\end{array}$
Tape Sontrol Addreas $90-110$
Tape
$90-140$ Two Channel Switch Feature $90-120$
Two Channel Switch Feat
3803 Address $90-110$
Checks and Adjustments (Instaliation)
Chir
 Air Bearning ressure, Level Setting, 3420
Altitud Vacuum Lever
Autocleaner $90-190$ Autocieaner
BOT/EOT Check $90-$ -
Castan Check
Capstan Check $90-190$
Data Flow Clock Asymmetry Adjustment,
3803 90-190 Data Flow Clock
$3803 \quad 90-190$ ESD Grounding ${ }_{w}^{90-190} 90-190$ Configuration Worksheet (Instruction
$90-030,90-040$
$90-030,90-040$
Device Switch Ca
Device Switch Cabling 90-050
Emulator Jumper 9000
Field Tester Conver
Emulator Jumper 90-2000
Field Tester Conversion $90-170$
Installation Checklist $90-020$
instructions, Subsystem Installation 90-000
10 Interface 40 -003
Kickplates 900 O90, 90-100
Operator Panel Labels, Tape Control
P0-160
Ppuging, Cables and Terminators $90-000$
Power Requirements, Special-3420 Model 8 $90-180$
Powurer Suply
Power Supply Checks
Procedures
$90-020$
Special Power Requirements-3420 Model 8
$90-180$
Subsystem Cabling (Chart) $90-070$
Subsystem Cabling (Chart) ${ }^{\text {and }}$ 90-070
System Diagnostics
$90-200$
Terminatoon and Cable Plugging $90-060$
Instructions (see Commands and Instructions)
$\begin{array}{lll}\text { Instructions (see Commands and Instructions) } \\ \text { Instruction Counter. Microprocessor } 1 & 52-010\end{array}$ Intruction Coanter,
nterblock
(IBG)
Counter Logic 6A-130, 6B-205
Detected on Writ
Detected on Write $17-080$
Generation $6 \mathrm{~A}-150,6 \mathrm{~B}-210$
Go Extend IBG Counts (Model 3,5, 7) 6A-140
Noise or Bit in $5 \mathrm{~A}-115,5 \mathrm{~B}-025$

Subsystem Characteristics 40-002 Interface Disabled Indicator (CE Panell) 75-003
 Intermitent Drop Ready Problems $2 \mathrm{~A}-005$,
$28-005,07-010$ 28-005,
Interrupt
$57-010$
$54-000$
Interrupts, $\begin{aligned} & \text { Extra or Missing (A2 Panell) } \\ & \text { Intervention Required (MAP) } \\ & \text { 15-010 }\end{aligned}$ 18-050 intervention Required (MAP) $15-010$
Introduction to Maintenance Philosophy PLAN 1
 $1 / 0$ Pins (3 Bit Code) $\quad 12-023,12-024$
$\kappa$
Kickplates, Installation 90-090, 90-100
L
Lamp, Skew Check 53-085
Lamp Test Switch (CE Panel) 75-002 Latch, Reel (see Right Reel Latch)
Lett Movable Guide and Retractor Remov
and Replacement (NRZI Feature) $08-2$
 Left or Right Vacuum Column
2B-170 $3 \mathrm{~A}-110,3 \mathrm{~B}-110$
Left Reei Left Reee
Does No

Does Not Turn Clockwise at Threading Speed $2 \mathrm{~A}-110,2 \mathrm{~B}-110$
Hub and Motor Removal/Replacement/Adjustment
$80-560$
Logic 3A-030, 3B-030
Motor Speed, Voltages 3 -020. $3 \mathrm{~B}-020$
Right or Left Reel Won't Load Tape Into Column
Tape Rewinds Off Left Reel $3 B-180$
Theory, Rewind and Timing Chart 3A-010, 38-010
Left threading Channel OLA-230
Legend and Symbols PLAN
Light Source Removal/Replacement 08-620
Lights/Indicators (see Maintenance Procedures)
CE Panel $75-001$.
File Protect Indicator Off $1 \mathrm{~A}-000,1 \mathrm{~B}-000$
Load Check Prior to BOT Sense $2 \mathrm{~A}-150,2 \mathrm{~B}-150$
Power Check Indicator On $1 \mathrm{~A}-0001 \mathrm{~B}-000$

Line Definitions, Device SA-150, 3B-150
Line Leve
$00-003$
Line Names for Reference to ALD XC70x
Linking Microprogram Routines (Description) 52-030
Listings, Microprocessor $52-030$
Listings. Microprocessor 52-030
Lo IC Pty/ / ow Ros Reg Py Indicator 75-003
Load Check 2A-000, 28-000

 Load Operation
Characterisics
Approximate
40 -OO2 Coar Testrtstics Minirel 08 -800 Local Storage Register (LSRR)
Displaying Contint
$12-013$
 Locating inform
Loctains
Control
Con Unit
Contro
Tape Unit
Tor








 Regulator Cards $1 \mathrm{~A}-002$ 2. 18 -002


$\underset{\substack{\text { Lock } \\ \text { Logic } \\ \text { A }}}{\text { R }}$ $\qquad$
Aregister
Arithmetic Add
52-035
$52-065$
$\begin{array}{ll}\text { Branch On Condition } \\ \text { Branch } \\ \text { Unconditional } & 52-085 \\ 520-120\end{array}$

Capstan Control, Pulise Generator, and
Motor Controls
$6 \mathrm{~A}-120.6 \mathrm{E}-200$

Caltridgs Dos Not Open 2A-100, 2B-100
Cantride
Opener Does Not Close 4 A



Pointer Registers $\begin{aligned} & \text { 53-045 } \\ & \text { Command Select } \\ & \text { CRC Gequencer and Decoder 120ators } \\ & \text { E3-065 }\end{aligned}$ 12-026

Data Fow Clock $53-015$
Device Switch Node 58 -090
Device Swith
$58-050$

$\begin{array}{cc}\text { nvelope and Read/Write } \\ \text { Model } 3,5,7 & 5 A-100 \\ \text { Model 4, 6, } & 5 B-100\end{array}$


3803-2/3420


## M

Magnetic Tape and Reels (Concepts) 40-002
General Cleaning Instructions 85-000



$$
N
$$

9-Track NRZI (Concepts)
9-Track NRZI Feature (Tape Control
No Block Ditected on Write/Write Tape Mark
(WTM $16-190$
No-Operation (NOP) Command $40-008$

No Re-100
No Response When Rewind/Unload Button is
Pressed $4 \mathrm{~A}-110,4 \mathrm{~B}-110$
Pressed 4A-110 4B-110
Noise Detection (MAP) $17-370$
Noise or Bits in the Interblock Gap
Noise Detection (MAP) 17-370
Noise or Bits in the interblock Gap
Non-Motion Control Commands

Not Capable (MAP) 15-060
Not Capable Conditions (Table) 15-064
Cyclic Redundancy Check (CRC) (MAP) 17-590
Hi-Clip VRC (Write Only)
Cyclic Redundancy Check (CRC) (MAP) 17-590
Hi-CClip VRC (Write Only $17-310$
Read Data Bit $\times$ Test Points (Table)
Res
Read Data Bit $\times$ Test Points (Table) 17-590
Read Dota Flow $57-006$
R/W VRC Hi Cip
Read Data Flow 57-006
R/W VRC, Hi Clip VRC, LRC Error 17-314
7-Track (Concepts) 40-002
9-Track (Conels)
0
Offline Duplication of Online Failures (MAP) 12-001



$$
\begin{aligned}
& \begin{array}{l}
\text { Mple/Single Switch (CE Panel) 75-002 } \\
\text { MP1 (see ALU) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { A-Register } 52 \text {-035 } \\
\text { Branch Conditions (Table) } 52-086 \\
\text { Cock Control Logic } 52-005
\end{array} \\
& \begin{array}{l}
\text { Branch Conditions (Table) } 52-0 \\
\text { Clock Control Logic } 52-005 \\
\text { Clock Timing Charts } 52-005 \\
\text { Functional Descriotion } 52-030
\end{array} \\
& \begin{array}{l}
\text { Clock Timing Charts } 52-005 \\
\text { Functional Desscription } 52-030 \\
\text { High-Order ROS Registras } 52-035 \\
\text { Instruction Counter Logic } \\
\text { 52-025 }
\end{array} \\
& \begin{array}{ll}
\text { High-Order ROS Registers } & 52-035 \\
\text { Instruction Counter Logic } & 52-025 \\
\text { Low-Order ROS Registers } & 52-035 \\
\text { Schematic } & 50-003
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Stat Registers } 52-015 & \\
\text { Transfer Decoles Trable) } & 52-101 \\
\text { XOUTA Register Bit Usage } & 52-025
\end{array} \\
& \begin{array}{l}
\text { A-Register } 52-035 \\
\text { Branch Conditions (Ta }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { Functional Description } & 52-030 \\
\text { High-Order ROS Registers } & 52-035 \\
\text { Instuutional Counter Logic } & 52-030 \\
\text { Low-Order ROS Registers } & 52-035
\end{array} \\
& \begin{array}{ll}
\text { Low-Order ROS Registers } & \text { 52-035 } \\
\text { Schematic } 50-003 \\
\text { Spocial Register ( } 14 \\
\text { Stat Bus in) } & 52-040
\end{array} \\
& \begin{array}{lc}
\text { Stat Registers. } 52-015 \\
\text { Transfer Decodes (Table) } & 52-101 \\
\text { XOUTA Register Bit Usage } & 52-025
\end{array} \\
& \begin{array}{l}
\text { XOUA } \\
\text { Muti-Track Eror } \\
\text { Lister } \\
17-112
\end{array} \\
& \begin{array}{ll}
\text { Logic } 17-112 & \\
\text { MTE/LCC Indicator } & 75-004 \\
\text { Without Envelope Check (MAP) } & \text { 17-110 }
\end{array}
\end{aligned}
$$

```
Operation, Autocleaner 008-360 08-380
Operations, ALU, Arithmetic Add: ADD/ADDM (Hex Code A or B
    52-065 On Condition: BOC (Hex Code 2 or 3)
    Branch to Read from Load Point 55-040
    *)
    B2-090
    Col
    52-070 Exclusive OR: XO/XOM (Hex Code E or F)
    52-075
    Store Logic: STO (Hex Code 0 or 1)
    52-095 Logic: XFR (Hex Code 4 or 5) 52-100
\,
Logional Tape Cartridge (Concept) 40-00
ORC Byte 53-045
Oscillator Gating 53-005
Os,
    <verrun 
    MAP 15-040
P
M Compare Error Test Points (Table) 17-013
lol
Panel, CE 75-001
lol
Parity Error, B Bus, ALU2
l
Paritioning (TCS Feature) 58-011 
l
Passing Tim
Patch Card / ALU2 Card Location 52-104
    GLU1/ALU2 Card Location (52-
PE or NRZI and GCR Vaut 52-104
PE or NRZI and GCR Velocity Checks/Changes (MAP)
PE Threshold Adjustment Card 80-000
*)
Permanent Data Checks (MAP) 5A-105,5B-002
*)
lol
    Flow Chart 00-011
```


## 3803-2/3420

| $\mathbf{X K O O 3 0 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Soc 20 2 |

INDEX（Cont＇d）

Permit Flip Latch 53－040
$\begin{array}{ll}\text { Persistent Pointers } & 17-602 \\ \text { Phase Encoded（PE）} & 55-007\end{array}$
Phase Pointers（Table）08－250
Phasing Check（Installation）90－180
Phasing Check（Installation）90－180
Phasing，Power 90－180
Phasing，Power 90－180
Photo Cell，Radius Sensor 08－610
Picking／Dropping Records（MAP）15－200
Pins to Logic．Cross Reference List
Pins to Logic，Cross
（3803－2） $20-000$
Plugging，Cables and Terminators 90－060
Plugging，Reverse High Power Drive Current
To Capstan（Model 7 Only）6A－140
Plugging．Write Head Card（Model 4，6，8）08－270
Pneumatic System
Imbalance or Leaks Check 6A－010，6B－150
Motor Does Not Turn Off
4A－160， $4 \mathrm{~B}-160$
Motor Not Running or Transfer Valve Not Picked 2A－130，2B－130
Motor Stepped Pulley Alignment（Type 3 Supply）
$08-434$
Pressure Level Adjustment（All Models）08－420
Pressure／Vacuum Checks 08－400
Procedure to Check for Imbalance or Leaks 6A－010
Supply Flat Belt Replacement／Adjustment 08－442
$\begin{array}{ll}\text { Supply Fat Reit Replacement／Adjustment } \\ \text { Supply Pulley Removal／Replacement } & 08-430\end{array}$
System，Description
Air Bearing 4A－160，4B－160
Flow Diagram $4 \mathrm{~A}-161,4 \mathrm{~B}-161$
Pnematic Switches $\quad 4 \mathrm{~A}-160,4 \mathrm{~B}-160$
Three－Way Valve 4A－160，4B－160
Transfer Valve $4 \mathrm{~A}-160,4 \mathrm{~B}-160$
Transfer Valve Leakage Test $08-400$
Transfer Valve Not Picked 2A－130
Pointer System
MAP 17－602
Pointer Register（Second Level）53－045
Probe List（Table）17－70
Polarity Hold Drive（PHD）Register 6B－205
$\begin{array}{lrl}\text { Possible 3420／3803 Problem Fix } & \text { 00－050 } \\ \text { Postamble Error（MAP）}\end{array}$
Power
Cable 90－060
Check Indicator On 1A－000，1B－000
Supply Checks（Installation）90－180
Power－On／Off Sequencing（Concepts）40－003
Reel Motor Voltage
Reel Motor Voltages，Speed 3A－020，3B－020
Requirements，Spec
（Table）90－180
Power Supplies
$\begin{array}{lll}\text { DC Checks／Adjustments } & \text { 08－570 } \\ \text { DC Test Points（3803／3420 Tables）} & \\ \text { 08－570 }\end{array}$
Modified 1A－002
Printed Circuit Board Removal／Replacement （3803 Model 2 Only）08－575
TCU Power Supply Failure Analysis 11－000 $3420 \quad 1 \mathrm{~A}-000,1 \mathrm{~B}-000$
3420 Power Interface Board，B1 1A－003，1B－001
Power Window
Alignment $08-640$
Does Not Go Down $4 \mathrm{~A}-140,4 \mathrm{~B}-140$

Glass Removal／Replacement 08－670
Rack，Switch Adjustment 08－650
Safety Bail Adjustment 08－640
Safety Bail Cable Removal／Replacement 08－660
Preamp（see Ajustment）
Pressure，Air（see Pneumatic System）
Pressure Divider（CE Tool） $80-000$
Pressure Test，Right Reel Latch
Rear Housing 08－520
Preventive Maintenance 80－010
Fiber Optic Lamp Cleaning Procedure 08－260
$\begin{array}{ll}\text { General } & 85-000 \\ \text { Schedule } & 85-005\end{array}$
Tape Unit Cleaning Procedure 85－001
Priority，Select Out 90－120
Priority（2X16 Switch Logic）58－060
Capstan Motion Checks（Motion Appears Normal） 6B－020
Check for Tape Drag 6A－010
Diagnosing CE Panel Failure 12－020
Displaying Sense Information from CE Panel
$12-012$
$\begin{array}{lc}\text { Locating a Failing Command } & 12-010 \\ \text { Offline Duplication of Failures } & 12-000\end{array}$
Priority Circuits $54-020$
Priority（see Selection and Priority）
Problems，Intermittent Drop Ready 2A－005
Proportional Drive Control，
（Second Level） $6 \mathrm{~B}-215$
Proportional Drive Counter（PDC）6B－205
Protection，File（Con
$\begin{array}{ll}\text { Protection，File（Concept）} & \text { 40－001 } \\ \text { Pulse Generator，Capstan } & 6 A-120\end{array}$
Pulse Generator，Capstan 6A－120

Q

Quick Fix Index，3803－2 Subsystem 00－009
R
Radius Sensor Photo Cell 08－610
Read
Acceptable Waveforms（Read Card Test
Points 5B－004
Access Times（ 3420 Subsystem
Characteristics）40－002
Amplitude Adjustment（Model 4，6，and 8）08－310
$\begin{array}{ll}\text { Back Checking（Concept）} & 40-0 \\ \text { Backspace Operation } & 6 B-230\end{array}$
$\begin{array}{ll}\text { Backward Command } & \text { 40－005 }\end{array}$
Backward Operation $5 \mathrm{~A}-140,5 \mathrm{~B}-140$
Card Reference Generator
Cycle Controls $53-095$
Cycle Converter Data Flow Logic 57－026
Data Flow Logic 50－002
Data Flow Logic，NRZI 57－006
Errors，Permanent（see Permanent Read
Error Analysis）
onward to Backward Ratio Test（All Models）
Forward to Backward Ratio Test（Models 3，5，7）
5A－110

Forward Command 40－005
Forward Operation 5A－140，5B－140
Head and Read Card Circuits
Head an kea in the Interblock Gap 5A－115
$\begin{array}{lll}\text { Operation } & 5 B-140 \\ \text { Register，} A / B \quad 53-055\end{array}$
Translator Data Flow Logic $57-021$
VRC Indicator $75-004$
6250 Service Requirements 50－030
$\begin{array}{ll}\text { Read Card Reference Generator } & 58-120 \\ \text { Read }\end{array}$
Read Electrical Skew Adjustment（NRZ1 Feature）08－190
Read Head and Read Card Logic 5B－120
Read Only Tape Generation $90-200$
Read Sequencing Circuits 53－055
Read／Write
Read／Write
$\begin{array}{lll}\text { Clocks and Counters（Table）} & 53-010 \\ \text { Clocks／Oscillators } & 53-005\end{array}$
$\begin{array}{ll}\text { CRY A，B，C，D } & 53-066\end{array}$
$\begin{array}{ll}\text { CRC Generators } & 53-065\end{array}$
Cyclic Redundancy Check Generation and Use
Data Flow Clock 53－015
Data Flow Logic 50－000，50－001，50－002
Envelope Failure，Runaway，or Read／Write Problems
$5 A-000,5 B-000$
Head Degaussing and Resistance Check（Models 4，
6 and 8 ） $08-280$
Head Resistance Check Procedure 58－001
Intermittent Permanent Data Checks
Bit Packing Backward Ratio 5A－110，5B－020
Noise or Bit in IBG 5A－115，5B－025
Signal Dropout $5 A-110,5 B-020$
Tape Edge Damage $5 A-110,5 B-030$
Tape Slipping 5B－020
Tape Stretch $5 A-115,5 B-020$
$5 A-100,5 B-100$
Logic Circuits $\quad 5 A-100,5 B-100$
Problems $5 A-000,5 B-000$
Self Adjusting Gain Control（SAGC）5B－120
Vertical Redundancy Check（VRC）（Logic）17－179
Vertical Redundancy Check（VRC）（MAP）
Vertical Redundancy Check（VRC）（Timing
Charts）17－172
VRC Circuit（Logic）17－179
Write Clock and Write Counter 53－020
Write Head Card Plugging（Models 4，6，and 8） 08－270
Write Service Controls 53－040
Zero Threshold 5B－120
Ready Lamp Does Not Turn Off 4A－100，4B－100
Ready Lamp Does Not Turn On／Window Does
Not Close 1A－210， $2 B-210$
Ready Symptoms Failure Chart $2 A-000$
Recording Methods／Formats
$\begin{array}{ll}\text { Concepts } & 40-002 \\ \text { Description } & 55-007\end{array}$
Interblock Gap（IBG）40－002
$\begin{array}{lll}\text { Magnetic Tape amd Reels（Concepts）} & 40-002\end{array}$
Nine－Track NRZI（Concepts）
PE（1600 BPI）Concepts
40－002

7－Track NRZI（Concepts）40－002
6250 BPI（Concepts） $40-002$
6250 BPI Error Correction（Concepts）40－002
Reel
Alignment Tool Preparation Kit 08－460
Alignment Tool Modification／Zeroing $08-465$
$\begin{array}{ll}\text { Alignment Tool Modification／Zeroing } & \text { O8－465 } \\ \text { And Capstan Operations During Rewind } & 3 A-030 \text { ，}\end{array}$
3B－030
Left Reel Does Not Turn Clockwise at Threading
Speed 2A－110，2B－110
Meters and Drivers 3A－020，3B－020
3A－030，3B－030
Reel Does Not Stop 4A－130，4B－130
Reel Motor and Hub Adjustment（CE Tools）80－000
Reel Tachometers 3A－030，3B－030
Rewind
$3 \mathrm{~B}-010$
Right or Left Reel Wont Load
2B－180
Right Reel Does Not Stop 4A－130，4B－130
Right Reel Does Not Turn Clockwise at Correct
Speed 2A－120，2B－120
Right Reel Latch
Check $08-520$
Stabilization 3A－020，3B－020
Tachometer Removal／Replacement 08－550
3B－020，3B－030
Tape Does Not Wind Completely Onto Right Reel 4A－130，4B－130
Tape Fails to Go Backward 3A－130，3B－130
Tape Unwinds Off
$3 A-150,3 B-150$
Reference Charts，Device Switching Feature 18－029
Registers
A／B
$\begin{array}{ll}\text { AlB } & 53-055 \\ \text { Channel }\end{array}$
Channel Tags and Bus in 52－040
$\begin{array}{ll}\text { Crossovers } & 52-025\end{array}$
Dead Track 53－075
High and Low－Order ROS 52－035
$\begin{array}{lc}\text { Local Storage } & 52-015 \\ \text { MIST } & \text { and TCS } \\ 52-060\end{array}$
$\begin{array}{ll}\text { MP1 and MP2 } & 52-060 \\ & 52-060\end{array}$
MP1／MP2 STAT 52－015
$\begin{array}{ll}\text { Pointer } & \text { 53－045 } \\ \text { ROS／LSR } & 52-015\end{array}$
Tape Unit Bus Out 52－045
Write Check 53－045
Regulator Air Pressure Checks／Adjustments
$90-190,08-405$

3803－2／3420

| XK0400 <br> Seq 1 of 2 | 2736034 <br> Pert Number | See EC <br> History | 845958 <br> 1 Sep 79 | 847298 <br> 15 Aug 83 |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

教




| Removals and Replacements Air Bearings（D） $08-210$ <br> Autocleaner 08－370 |
| :---: |
| Capstan Assembly（Non－90，000 Series）08－020， |
| （90，000 series）08－0 |
| 08－050 |
| Capstan Tachomete |
| tan |
|  |
| Cooling Fan 08－630 |
| D－Bearing 08－210 |
| Erase Head 08－250 |
| BOT／EOT Block 08－590 |
| BOT／EOT Block Bundle O8－610 |
| － |
| － |
| LED BOT／EOT Block 08－59 |
| 1 Le Mole |
|  |
| Left Reel Hub and Motor 08－560 |
| Logic Panel（3420／3803）08－630 |
| Pneumatic Supply Flat Belt |
|  |
| Power Circuit Board（3803 Model 2 only）08－575 |
| Power Window Glass 08－67 |
| ver Window Safety Bail Cable 08－ |
| 隹ted Circuit Board（3803 Model 2 On |
| rrite |
| ／Write or Erase Head 08－250 |
| Reen Tachometer |
|  |
| Right Reel Motor 08－530 |
| Right Reel Hub 08－480 |
| Right Reel |
| Vacuum Column Door Glass 08－690 |
| placement |
| Cartridge Motor 08－53 |
| Pneumatic Supply Flat Belt（Type 4） |
| Pneumatic Supply Pulley（All Types of |
| Pneumatic S |
| Right Reel Hub |
| Right Reel Hub individual Parts 08－490 |
| Right Reel－Latch Rear Housing 08－510 |
| Vacuum Column Door 08－680 |
| ， |
| 隹隹st Track－In－Error Command 40－006 |
| Reserve／Release Operation（TCS Feature）58－011 |
| Reset／Start or Step Switch（CE panel） 75 |
| Resets（TCS Feature）58－011 |
| Resources PLAN |
| Response Chart 40－008 |
| wind（REW） |
| Command 40－007 |
| Concept 40－001 |
| Operation and Timing Chart 3A－010，3B－010 |
| Capstan Won＇t Rewind to LP After Loading |
| $2 \mathrm{~B}-175$ |
| No Response or Tape Moves Backward 3A－ |
|  |
| Tape Does Not Enter or Stay in Hi Speed |
|  |
| Tape Does Not Stop or Tape Runaway（Forward |


$\qquad$

| XKO400 | 2736034 | See EC History | $\begin{aligned} & 845958 \\ & \hline \text { Sop } \end{aligned}$ | $\begin{gathered} 842988 \\ 154998 \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |





[^1]$3803-2 / 3420$

| XKO500 | 6851776 |
| :--- | :--- |
| Soc 1 2 2 | Par Number |

847298
15 Aug 83
INDEX 9

| Test 1/O Instruction 40-009 <br> Test Points, Channel Buffer/Write Bus (Table) 17-021 <br> Test Points (Read Card) 5B-004 <br> Tester, CE (see Field Tester) <br> Theory (see Tape Unit or Tape Control Unit) <br> Theory (TCS Feature) 58-010 <br> Theory of Operation <br> Additional Stopping Distances After Go Extend $6 A-140$ <br> Extend 6A-140 <br> Airflow and $4 \mathrm{~A}-160,4 \mathrm{~B}-160$ <br> Airflow and Voltage Monitoring System 1A-000, 1B-000 <br> Backspace 6B-230 <br> Capstan Control Circuits 6A-120, 6B-020 <br> Capstan Drive System 6A-120, 6B-200 <br> Capstan Motion Checks 6A-000, 6B-000 <br> Capstan Motor and Controls 6A-120, 6B-020 <br> Capstan Pulse Generation 6A-120, 6B-200 <br> Cartridge Opener Does Not Close 4A-150, 4B-150 <br> Data Exchange on DEVI During Write Operation $5 A-130,5 B-130$ <br> Operation 5A-130, 5B-130 <br> Erase Head (Schematic) 5B-110 <br> Extended ${ }^{\text {Go Extend }}$ IBG Counts 6A-140 <br> Go Extensions in Quarter TACH Pulses 6B-205 <br> IBG Counter Circuits 6A-130, 6B-205 <br> IBG Generation 6A-150, 6B-210 <br> Left or Right Vacuum Column Problems 3A-110, <br> 3B-110 <br> Left Reel Does Not Turn Clockwise at Threading <br> Speed 2A-110, 2B-110 <br> Load Check Prior to BOT Sense 28-150 <br> Major Elements of Capstan Control Logic 6B-205 <br> Plugging (Model 7 Only) 6A-140 <br> Pneumatic System (flow diagram) 4A-160 <br> Pneumatic Switches 4A-160, 4B-160 <br> Polarity Hold Drive (PHD) Register 6B-205 <br> Power Check 1A-000, 1B-000 <br> Power Supplies $1 \mathrm{~A}-000,1 \mathrm{~B}-000$ <br> 6B-205 <br> Read Backward Operation 5A-140, 5B-140 Read Card and Read Card Circuits <br> Read Card and Read Card Circuits 5B-120 <br> Read Forward Operation 5A-140,5B-140 <br> Read Only Storage (ROS) 6B-205 <br> Reel and Capstan Operations During Rewind <br> 3A-030, 3B-030 <br> Reel Drive System Schematic 3A-020, 3B-020 <br> Reel Motors and Drivers 3A-020, 3B-020 <br> Reel Stabilization $3 A-020,3 B-020$ <br> Reel Tachometers, During Rewind 3 A <br> Reset/Start or Stop Switch 75-001 <br> Rewind Operation 3A-010, 3B-010 <br> Self Adjusting Gain Control (SAGC) 5B-120 <br> TACH Period Counter (TPC) 6B-205 <br> Three-Way Valve 4A-160, 4B-160 Transfer Valve $4 \mathrm{~A}-160,4 \mathrm{~B}-160$ <br> Unload Operation with Cartridge 4A-000, <br> 4B-000 <br> Unload Operation without Cartridge 4A-000, <br> 4B-000 <br> Write Head, Erase head, and Write Card <br> (Schematic) 5B-110 <br> Zero Threshold 5B-120 <br> 6 MHz Oscillator and GCC <br> 6B-205 |
| :---: |

3420 Power Supplies $1 \mathrm{~A}-000$
hread and Load Operations $2 \mathrm{~A}-010,2 \mathrm{~B}-020$
$\begin{array}{ll}\text { hread. Load } \\ \text { Check Points } & 2 A-020,28-030 \\ \text { Chat }\end{array}$
Check Point $2 \mathrm{~A}-020,2 \mathrm{~B}-030$
Checking with Cartridge
Chart)
2Amimg
Chart) $2 \mathrm{~A}-010,2 \mathrm{B-O20}$ (Differences)
Checking without Cartridge (in
Failure Symptoms
Left Reel Turns Too Fast
2A-000. $2 \mathrm{~A}-110,2 \mathrm{~B}$
Left Reel Turns Too Fast 2A-110, 2B-110
Caftridge Does Not Not Open $\begin{aligned} & \text { 2A-100, } \\ & \text { Left }\end{aligned}$ 2B-100
2A-170 Left or Right Vacuum Colum
$28-170.3 A-110.3 B-110$
Left
Letr Rei Does Not Turn Clockwise
Threading Speed 2A-110, 2B-11 Threading Speed 2A-110, 2B-110
Load Check Prior to BOT Sense 2A-150, Load Chec
$28-150$
Mor
Motor Not Running or Transfer Valve Not Picked
$2 \mathrm{~A}-130,2 \mathrm{~B}-130$
Ready Light Does Not Turn On 2A-210. 2B-210
Right Reel Does Not Turn Clockwise at Correct Right Reel Does Not Turn Clockwise at Correct
Speed
$2 A-120,2 B-120$ Tape D oes Not Go Backward or Does Not Stop at
BOT 2 A-190 BOT $2 A-190$
Tape Does Not Load into Either Column 2A-160, 2B-160
Tape Enters Threading Channel and Stops 2A-140 Tape Enters Threading Channel and Stops 2 A
$2 \mathrm{~B}-140$
Tape Goes Forward after Loading into Vacuum Columns 2A-200, 2B-200 Tape Unit Won't Thread, Load, and Return
to BOT Correctly $6 \mathrm{~B}-100$ Time Required in Execute (Subsyster
Characteristics)
40-002

Threading Vacuum Check $08-400$
Transfer Valve Leakage Test $08-400$
Thread Loar Checking Wath Cart Cridge 2A-020, 2B-030
Thread Load Without Cartridge (Differences) $2 \mathrm{~A}-020$
Thread Load Without Cartridge (Differences) $2 \mathrm{~A}-020$
Thread Status AAttive and Inactive $4 \mathrm{~A}-161,4 \mathrm{~B}-161$
Thread Status Active and Inactive $4 \mathrm{~A}-161,4 \mathrm{~B}-161$
Threading Failue Sympoms Chart $2 \mathrm{~A}-000.2 \mathrm{~B}-000$

$\begin{array}{lll}\text { TE Breaker (with TCS Feature) } & 58-012, & 50-030 \\ \text { TIE (Request Track-in-Error Command) } & 40-006\end{array}$
Timing Chart and PE and NRZI Write
Bit Cell and
Waveform
55-007
Waveform 55-007
Branch Unconditional
Byte Count or Go Down
52-090
Be
Branch Uncond
Byte Count or
CE Entry
C
Clock 17-800
Command Select Sequencer and Decoder 12-026
Command Sequence
Command Select Sequencer and Decoder
Cyclic Redundance (Tag Lines/ Status)
Check (CRC) 17-544.
Cyclic Redundanc
$17-545,17-546$
Data Convert Write Timing
Go Extend IBG
GA- 140
${ }_{18 G}$ Generation 68-210
Long Cyle e (BOC or BU) 16-001
Microprocessor Clocks Control
Microprocessor Clocks Control 52-005
NRZI R/W VRC, Hi Clip VRC, LRC Errors
Overrun $17-0414$
Overrun $15-04$
$P E \quad 176$
PE Mode ${ }^{\text {17-176 }}$ 17-016, 17-025, 17-111

PE Write 17-165
Plugging Reverse High Power Current
(Model 7 Only) $6 \mathrm{~A}-140$

$\begin{array}{ll}\text { Pointer System, } 6250 & \text { 17-702 } \\ \text { Read Cycle Controls } & 53-095 \\ \text { Read Electrical }\end{array}$
Read Electrical Skew o8-190
Rewind $3 \mathrm{~A}-010$ 3B-010
Set and Dispolay CE Register 12-021
Set and Dislay COmpare Register 12-020
Set and Dispoay Compare Register $12-022$
Short Cycle (XFR) Example 16-001
Short Cycle (XFR) Example ${ }^{16-001}$
Start Capstan Motion (Write Operation
200 IPS $68-220$
$52-095$
Store $52-045$
Thread and Load 2B-020
2A-020
28-030
Thread Load With Cartridge
Transer
$52-100$
Transfer $52-100$
Write Electrical Skew (NRZI Feature) 08-200
Write Electrical Skew (NRZI Feature) 08-200
6250 BP M Mode $17-014$ 17-015.

$\begin{array}{ll}6250 \text {. PE, and NRZI Waveform. } & 53-070 \\ 650 \\ 6250 \\ \text { Read Servic Requirements } \\ 50-030\end{array}$ 6250 Wrad Service Rea $17-172$
6250 Write (RIC $/$ RO
6250 Write (RIC/ROC) 17-163
6250 Write Service Requirements
6250 Write Trigger VRC $17-022$
6250 Write Trigger VRC 17-022
7 Track $17-313$
173

Transfer (Aecodes. Microprogram (MP1 and MP2) 52-101
Transfer Valve
Ther
Transfer Valve
Not Picked or Pneumatic Motor Not Running
Not Picked or Preumatic
2A-130, $2 B-130$
Leakage Test $08-400$
Translation
Write Translator 7-Track
57-020
$\begin{array}{cc}\text { Read Translator 7-Track } & 57-021 \\ \text { Translator Write } 57-020 \\ \text { Transport Cleaning Procedure } & 85-001\end{array}$
Translator, Write $57-$ Sor
Transport Cleaning Procedure
Transport Concen
85-001
Transport Concepts 40 -0001 001
Transport, Tape (Concept)
40-001
$\begin{array}{lll}\text { Transport, Tape (Concept) } & \text { 40-001 } \\ \text { Trap Channel A/B TCS Feature) } & 58-011 \\ \text { Trap Condition Schematic, ROS } & 50-010\end{array}$
Troubleshooting Premacedure, De
Switching (MAP)
18-020
Switching (MAP)
TU (see Tape Unit)
TY Bus In (MP2 S
U Bus In (MP2 Special Register) $52-060$
TU Control Lines and Control Status Byte
Responsel (ITeses and Control Status $16-213$
TUBP Test Points (Table) $17-312$
UBO Test Point
TUBI Test Points (Table) $117-312$
TUBO Test Points (Table) $17-312$
Two Channel Swith


$u$
U Pgm Indicators 75-004
Unit Check Without Supporting Sense
or Unexpected Sense (MAP) $15-100$
or Unexpected Sense (MAP) $15-100$
Unload Operation With / Without Cartridg $4 \mathrm{~A}-000,48$ - 0000
Unload Dperations (see Rewind/Unload Operation)
Unmodified Power Supply 3420 1A-000 18, Unmodified Power Supply, 3420 iA-000, $1 \mathrm{~B}-002$
Unpacking Instructions, Subsystem Installation $90-000$ v

Vacuum Column
Balance
$08-800$
Balance $08-800$.
Dor Glass Removal/Replacement/Adjustment
$08-690$
$08-690$
Door Replacement/Adjustment $08-680$ Door Replacement/Adjustment 08-680
Left Ror Right Vacuum Column Problems 2A-170 2B-170, $3 \mathrm{~A}-110,3 \mathrm{~B}-110$
2witch Check
 ${ }_{3 B-110}$ ape bottoms in Vacuum Columns $3 A-110$,
Tape Does
$2 B-160$
Tape Exhibits Abnormal Motion Symptoms 3A-110
$3 \mathrm{~B}-110$
3
Tape Goes Forward After Loading into Vacuum
Columns 2A-200, 2 B -200
Tape Pulls Out of Vacuum Columns $3 \mathrm{~A}-110$.
Tape Pulls Out of Vacuum Columns $3 \mathrm{~A}-1$
$38-10$
Wide Excursions in Left Column During
Wide Excursions in Left Column During
High Speed Rewind $3 A-160.38-160$
Vacuum Chart (IInches of Water) All Models) 08-405
Vacuum Level Adjustment, Altitude $08-410$
Vacuum/Pressure Gauge (Setuo)
V0-010
Vacuum/Pressure Gauge (Setup)
Valid Pointers $17-602$ ( $40-006$
Variable Go-Down Time
Variable Go-Down Time 40-006
Velocity Check. Velocity Change During Write $16-180$
Voltage and Airtlow Monitoring System 1A-000, 18-000
Voltage Levels (Limits) 00 (003
Voltages, Standard (Definition Of) $00-003$

w
Water Manometer (Procedures) 80-010
Waveforms (Read Forward and Backward Ratio Test)
Wide Excursions in Left Column During High Speed
Rewind $3 A-160,3 B-160$ Rewind (sA-160, $38-160$
Window Isee Power Win)
Window (see Power Window)
Word Count Zero (MAP). 15-050

## 3803-2/3420

| XK0500 <br> Soa 2 ot 2 | 6851776 <br> Par Numper | 847298 <br> 15440883 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## 



```
Write
    Access Times (Subsystem Characteristics) 40-002
x
MOUTA Register Not Functioning (MAP) }\begin{array}{l}{13-430}\\{\mathrm{ XOUOUTA/XOUTB (Crossover) Registers }}\\{52-025}
Y
Y1 Panel Location 90-080
2
Zero Threshold 5B-120
NUMERIC
1 and 2 Track 6250 Error Correction 17-600
O1 Trap Address, TCS or Device Switching
```




```
Airflow and Voltage Monitoring System Altitude Vacuum Level Adjustment 08-410
Daily and General Cleaning Instructions \(85-000\)
```



``` Field Tester Accuracy Check 08-290
field Tester Procedure 80-020
Write
```

```
    Myye
```

    Myye
    Check Register 53-045
    Check Register 53-045
    Clock and Write Counter 53-020
    Clock and Write Counter 53-020
    Cata Converter Logic 57-025
    Cata Converter Logic 57-025
    *)
    *)
    Eloctrical Skew Adjustment (NRZI Feature) 08-200
    Eloctrical Skew Adjustment (NRZI Feature) 08-200
    Enable Ring (see File Protection-Concepts)
    Enable Ring (see File Protection-Concepts)
    Forward Creep During Write 668-230
    Forward Creep During Write 668-230
    Head Card Plugging (Models 4, 6, and 8) 08-270
    Head Card Plugging (Models 4, 6, and 8) 08-270
    Service Controls 53-040
    Service Controls 53-040
    lol
    lol
    lol
    lol
    Write Tgger \atical Redun004
Write Tgger \atical Redun004
Write Trigger Vertical Redundancy Check (VRC
Write Trigger Vertical Redundancy Check (VRC
Logic 17-026 17-020
Logic 17-026 17-020
Error, 6250 BP1 (Timing Chart) 17-022
Error, 6250 BP1 (Timing Chart) 17-022
Writer, Current Failure or Tape Unit Check (MAP)
Writer, Current Failure or Tape Unit Check (MAP)
W 15-090
W 15-090
Write Head, Erase Head, and Write Card
Write Head, Erase Head, and Write Card
Circuits 5B-110

```
Circuits 5B-110
```



```
Italation Checklist 90-020
Models 3-8 Cleaning Procedure 85-001
Model 8-Special Power Requirements 90-180
Modified Power Suply 1A-002)
Moifled Power Supply 1A-002 ( 85-005
SAGC Checks 08-315
40-002
Unmodified Power Supply 1A-
CE Panel Description 75-00
M,
    Basic Sense Data 40-00
    Cross-Reference, Pins To Logic 17-166
    Features (Concepts) 40-004
    logic Panel Removal/Replacement 08-630
    Status Response 40-001
Sy,
Moration (MAP)\quad13-480
1\times8 Selection Logic (MAP) 
2 Control Switch (Conceots) 188-050
2 Control Switch (Concepts)58-050
2\times8 Switch Logic 5%-055
\
3 Control Switch (Concepts) 58-050
*)
6 MHz Oscillog and Gray Code Counter 6B-205
6250 BPI
    (Concepts) 40-002 (Crors) 40-002
    Ma,
MPECRC 17-540 (MAP) 17-600
lol
6250 Stress Tape (CE Tool) 80-000-020
6250 Write Service Requirements 50-020 
7-Track Timing Chart 17-313
7 and 9 Track NRZI 40-004
\(\square\)```


[^0]:    

[^1]:    Tape Goes Forward After Loading into
    Vacuum Columns $2 \mathrm{~A}-200 \mathrm{O} .2 \mathrm{~B}-200$
    Tape Motion Problems (Stubby Column
    Loops) 6A-O10
    Tape Moves Backward Off Left Reel, or Tape
    Unit Performs a Normal Unload Rewind During Unit Performs a Normal Unload Rewind D
    a Load Operation 2 - 190
    Tape Starts into Threading Channel and a Load operation 2B-190
    Tape Starts into Treading Channel and
    Stops $2 A-140,28-140$ Stops $2 \mathrm{~A}-140,2 \mathrm{E}-140$
    Tape Threads into Right Column 2A-130,
    2B-130
    $2 B-130$
    orward to Backward Ratio $5 A-110,5 B-020$ Fonvard to Backward Ratio 5A-110,
    Intermittent 0 Opo Ready $07-010$,
     Permanent Data Checks (MAP) $5 \mathrm{~A}-1$
    Signal Dropout $5 \mathrm{~A}-110.58-020$
    Tape Drog Check $6 A-010,68-150$
    Tape Edge Damage $5 A-110,58-030$
    Tape Edge Damage $5 \mathrm{~A}-110,5 \mathrm{~B}-030$
    Tape Motion Symptoms $3 \mathrm{~A}-000,3 \mathrm{~B}-000$
    
    Bobbles. Bottoms $3 \mathrm{~A}-110$. $3 \mathrm{~B}-110$
    No Responso To Tape Moves Backward
    No Response or
    $3 \mathrm{~A}-100,3 \mathrm{BB}-100$
    3A-100,
    Tape Does Not Enter or Stay in High Speed
    Rewind or Rewinds to BOT at High Speed
    Rewind or Rewinds to BOT at High Speed
    3 A-170, $38-170$ Tape Does Not Stop or Tape Runaway (Forward) Backward) $3 \mathrm{~A}-140,3 \mathrm{BP}$-140
    Tape Fails to go Backward 3A-130, 3B-130 Tape Has Wide Excursions in Lett column
    Tauring High Speed Rewind $3 A-160$ 3B-160 During High Speed Rewind $3 \mathrm{AA}-160,3 \mathrm{~B}$
    Tape Pulls OUt or Dumps in Left Column During HS Rew $3 \mathrm{~A}-160,3 \mathrm{~B}$-160
    Tape Rewinds to $\mathrm{Begnning}-\mathrm{OF}$ Tape (BOT) at
    High Speed $3 \mathrm{~A}-170,3 \mathrm{~B}-170$ High Speed 3A-170, 3B-170
    Tape Unwinds Off Right Reel $3 A-150,38-150$ Tape Stretch 5A-115, 5B-020
    Tape Unit Check (MAP) $15-090$
    Tape Unit Loads but Capstan Motion is Faulty
    (MAP) $6 \mathrm{~B}-110$ (
    Tape Wont Thread, Load, and Return to BOT
    Properly (MAP) $6 \mathrm{~B}-100$
    Cartridge Opener Does Not Close 4A-150,
    $4 B-150$,
    Pneumatic Motor Does Not Turn Off $4 \mathrm{~A}-160$.
    $4 \mathrm{~B}-16 \mathrm{C}$
    Power Window Does Not Go Down 4A-140.
    $4 \mathrm{~B}-140$
    4B-140
    Ready Lamp Does Not Turn On 4A-100, 4B-100
    Tape Does Not Pull Out of Columns Properly
    Tape Does Not Pull OUt of Colums Properly
    During Unload Rewind $4 \mathrm{~A}-120,4 \mathrm{~B}-120$
    Tape Does Not Wind
    During Unload Rewind 4A-120, 4B-120
    Tape Does Not Wind Completely Onto Right
    Reel or Reels Do Not Stop 4 4-130 4B-130
    Unload Rewind Pushuutton (No Response)
    

