

Systems

GA22-7o.7o.-o.
File No. 430.0.-0.1

IB M 4300 Processors
Principles of Operation
for ECPS: VSE Mode

--- ------ ----- ---- -. ---- - - ----~-----_.-

First Edition (January 1979)
Changes are continually made to the information herein; any such changes
will be reported in subsequent revisions or Technical Newsletters.

Publications are not stocked at the address given below; requests for IBM
pUblications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If
the form has been removed, comments may be addressee to . IBM
Corporation, Product Publications, Department B98, PO Box 390,
Poughkeepsie, NY, U.S.A. 12602. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring
any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1979

Preface

This publication provides, for reference purposes, a
detailed definition of the architecture of mM 4300
Processors when operating in the Extended Control
Program Support: Virtual Storage Extended
(ECPS:VSE) mode.

The publication describ~s each function of the ar
chitecture to the level of detail that mb.st be under
stood in order to prepare an assembler-language
program that relies on that function. It does not,
however, describe the notation and conventions that
must be employed in preparing such a program.

The information in this publication is provided
principally for use by assembler-language pro
grammers, although anyone concerned with the func
tional details of the IBM 4300 Processors will find it
useful.

This publication is written as a reference document
and should not be considered an introduction or a
textbook.

All facilities discussed in this publication are not
necessarily available on every processor. Further
more, in some instances the definitions have been
structured to allow for some degree of extensibility,
and therefore certain capabilities may be described or
implied that are not offered on any model. An
example of such capabilities is the provision for the
number of channel-mask bits in the control register.
The allowance for this type of extensibility should not
be construed as implying any intention by mM to
provide such capabilities. For information about the
characteristics and availability of features on a
specific processor, use the functional characteristics
manual for that processor. The availability of
features on processors is summarized in the IBM

4300 Processors Summary and Input/Output & Data
Communications Configurator, GA33-1523.

This publication applies only to the ECPS: VSE
mode of operation. The IBM System/3 70 Principles
of Operation, GA22-7000, should be consulted re
garding the functions of the architecture which
appW when the processor operates in the
System/370 mode.

Size Notation
The letters K, M, and G denote the multipliers 210,

220, and 230, respectively. It should be noted that
although the letters are borrowed from the decimal
system and stand for kilo (103), mega (106), and giga
(109), they do not have the decimal meaning, but
instead represent the power of 2 closest to the corre
sponding power of 10. Their meaning in this
publication is as follows:

Symbol Value

K (kilo) 1,024 = 210

M (mega) 1,048,576 == 220
G (giga) 1,073,741,824 == 230

The following are some examples of the use of K,
M, and G:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words "thousand," "million,H and
"billion" are used, no special power-of-2 meaning is
assigned to them.

iv

Contents

Chapter 1. Introduction 1-1
The IBM 4300 Processors 1-1
Compatibility 1-2

Compatibility Among 4300 Processors
Compatibility Between 4300 Processors

and System/370 1-2
Control-Program Compatibility 1-2
Problem-State Compatibility 1-2

Chapter 2. Organization 2-1
Main Storage 2-1
Central Processing Unit 2-1

General Registers 2-2
Floating-Point Registers 2-2
Control Registers 2-3

Input and Output 2-3
Channels 2-4
Input/Output Devices and Control Units

Operator Facilities 2-4

Chapter 3. Storage 3-1
Information Formats and Addressing 3-1

Information Formats 3-1
Storage Addressing 3-2
Integral Boundaries 3-2

One-Level Addressing 3-2
Storage Size 3-3
Pages 3-3
Page Frames 3-3
Page Description 3-3

Storage Key 3-3
Page Bits 3-4
Page States 3-4
Frame Index 3-5

Page and Frame Control 3-5
Capacity Counts 3-5
Storage-Control Instructions 3-6

Key-Controlled Protection 3-6
Protection Action 3-6
Accesses Protected 3-7

Reference and Change Recording 3-7
Assigned Storage Locations 3-8

1-2

2-4

Storage While CPU Is in Operating State 3-8
Storage While CPU Is in Load State 3-10

Chapter 4. Control 4-1
CPU States 4-1

Wait State 4-2
Supervisor and Problem States 4-2
Stopped, Operating, Load, and Check-Stop States 4-2

EC and BC Modes 4-3
Program-Status Word 4-4

Program-Status-Word Format inEC Mode 4-4

Program-Status-Word Format in BC Mode
Control Registers 4-7
Monitoring 4-8
Program-Event Recording 4-9

Control-Register Allocation 4-9
Operation 4-10

Identification of Cause 4-10
Priority of Indication

Storage-Area Designation
PER Events 4-12

Successful Branching

4-11
4-11

4-12
Instruction Fetching 4-12
Storage Alteration 4-12
General-Register Alteration 4-12

Indication of Events Concurrently with Other
Interruption Conditions 4-13

Timing 4-15
Time-of-Day Clock 4-15

Format 4-15
States 4-16
Setting and Inspecting the Value 4-16

Clock Comparator 4-18
CPU Timer 4-18
Interval Timer 4-19

Externally Initiated Functions 4-20
Resets 4-20

Program Reset 4-21
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-23

Initial Program Loading 4-24
Machine Save 4-25

Chapter S. Program Execution 5-1
Instructions 5-1

Operands 5-1
Instruction Format 5-2

Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3

Operand-Address Generation 5-4
Instruction Execution 5-4

Sequential Instruction Execution 5-4
Branching 5-4
Interruptions 5-5

Sequence of Storage References 5-5
Instruction Fetch 5-6
Page-Description Accesses 5-6
Storage-Operand References 5-7

Storage-Operand Fetch References 5-7
Storage-Operand Store References 5-7

4-6

Storage-Operand Update References 5-7
Storage-Operand Consistency 5-8

v

Relation Between Operand Accesses 5-8
Other Storage References 5-9

Serialization 5-9
CPU Serialization 5-9
Channel Serialization 5-10

Chapter 6. Interruptions 6-1
Interruption Action 6-1

Source Identification 6-2
Enabling and Disabling 6-4
Instruction-Length Code 6-4

Zero ILC 6-5
ILC on Instruction-Fetch Exceptions 6-5

Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-6

Types of Instruction Ending 6-6
Interruptible Instructions 6-7

Point of Interruption 6-7
Ending of Interruptible Instructions 6-7

Machine-Check Interruption 6-8
Supervisor-Call Interruption 6-8
Program Interruption 6-8

Program-Interruption Conditions 6-9
Addressing Exception 6-9
Data Exception 6-9
Decimal-Divide Exception 6-10
Decimal-Overflow Exception
Execute Exception 6-10
Exponent-Overflow Exception 6-10
Exponent-U nderflow Exception 6-10
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception

6-10
6-11

Floating-Point-Divide Exception 6-11
Monitor Event 6-11
Operation Exception 6-11
Page-Access Exception 6-11
Page-State Exception 6-12
Page-Transition Exception 6-12
PER Event 6-12
Privileged-Operation Exception 6-12
Protection Exception 6-12
Significance Exception 6-13
Special-Operation Exception 6-13
Specification Exception 6-13

Recognition of Access Exceptions 6-13
Nontransparent Nullification 6-16
Multiple Program-Interruption Conditions

External Interruption 6-19
Clock Comparator 6-19
CPU Timer 6-19
External Signal 6-20
Interrupt Key 6-20
Interval Timer 6-20

vi

6-17

Input/Output Interruption 6-20
Restart Interruption 6-21
Priority of Interruptions 6-21

Chapter 7. General Instructions 7-1
Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3

Instructions 7-4
ADD 7-7
ADD HALFWORD 7-7
ADD LOGICAL 7-7
AND 7-7
BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-10
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL 7-10
COMPARE 7-11
COMPARE AND SWAP 7-11
COMPARE DOUBLE AND SWAP 7-11
COMPARE HALFWORD 7-13
COMPARE LOGICAL 7-13
COMPARE LOGICAL CHARACTERS

UNDER MASK 7-13
COMPARE LOGICAL LONG 7-14
CONVERT TO BINARY
CONVERT TO DECIMAL
DIVIDE 7-16
EXCLUSIVE OR 7-17
EXECUTE 7 -17
INSERT CHARACTER

7-15
7-16

7-18
INSERT CHARACTERS UNDER MASK 7-18
LOAD 7-19
LOAD ADDRESS 7-19
LOAD AND TEST 7-19
LOAD COMPLEMENT 7-20
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20
LOAD NEGATIVE 7-21
LOAD POSITIVE 7-21
MONITOR CALL 7-21
MOVE 7-22
MOVE INVERSE 7-22
MOVE LONG 7-23
MOVE NUMERICS 7-25
MOVE WITH OFFSET 7-25
MOVE ZONES 7-26
MULTIPLY 7-26
MULTIPLY HALFWORD 7-27
OR 7-27
PACK 7-28
SET PROGRAM MASK 7-28
SHIFT LEFT DOUBLE 7-29

SHIFT LEFT DOUBLE LOGICAL 7-29 LOAD ROUNDED 9-12

SHIFT LEFT SINGLE 7-30 MULTIPLY 9-12

SHIFT LEFT SINGLE LOGICAL 7-30 STORE 9-14

SHIFT RIGHT DOUBLE 7-30 SUBTRACT NORMALIZED 9-14

SHIFT RIGHT DOUBLE LOGICAL 7-31 SUBTRACT UNNORMALIZED 9-15

SHIFT RIGHT SINGLE 7-31
SHIFT RIGHT SINGLE LOGICAL 7-32 Chapter 10. Control Instructions 10-1
STORE 7-32 CLEAR PAGE 10-3
STORE CHARACTER 7-32 CONNECT PAGE 10-3
STORE CHARACTERS UNDER MASK 7-32 DECONFIGURE PAGE 10-4
STORE CLOCK 7-33 DIAGNOSE 10-4
STORE HALFWORD 7-33 DISCONNECT PAGE 10-5
STORE MULTIPLE 7-33 INSERT PAGE BITS 10-5
SUBTRACT 7-34 INSERT PSW KEY 10-5
SUBTRACT HALFWORD 7-34 INSERT STORAGE KEY 10-6
SUBTRACT LOGICAL 7-34 LOAD CONTROL 10-6
SUPERVISOR CALL 7-35 LOAD FRAME INDEX 10-6
TEST AND SET 7-35 LOAD PSW 10-7
TEST UNDER MASK 7-36 MAKE ADDRESSABLE 10-7
TRANSLATE 7-36 MAKE UNADDRESSABLE 10-8
TRANSLATE AND TEST 7-37 RESET REFERENCE BIT 10-8
UNPACK 7-38 RETRIEVE STATUS AND PAGE 10-8

SET CLOCK 10-9
Chapter 8. Decimal Instructions 8-1 SET CLOCK COMPARATOR 10-9
Data Format 8-1 SET CPU TIMER 10-10

Zoned Format 8-1 SET PAGE BITS 10-10
Packed Format 8-1 SET PSW KEY FROM ADDRESS 10-10

Number Representation 8-2 SET STORAGE KEY 10-11
Instructions 8-2 SET SYSTEM MASK 10-11

ADD DECIMAL 8-3 STORE CAPACITY COUNTS 10-11
COMPARE DECIMAL 8-4 STORE CLOCK COMPARATOR 10-12
DIVIDE DECIMAL 8-4 STORE CONTROL 10-12
EDIT 8-5 STORE CPU ID 10-12
EDIT AND MARK 8-8 STORE CPU TIMER 10-13
MULTIPLY DECIMAL 8-8 STORE THEN AND SYSTEM MASK 10-13
SHIFT AND ROUND DECIMAL 8-8 STORE THEN OR SYSTEM MASK 10-14
SUBTRACT DECIMAL 8-10
ZERO AND ADD 8-10 Chapter 11. Machine-Check Handling 11-1

Chapter 9. Floating-Point Instructions 9-1
Data Format 9-1
Guard Digit 9-2
Number Representation 9-3
Normalization 9-3
Instructions 9-4

ADD NORMALIZED 9-6
ADD UNNORMALIZED 9-7
COMPARE 9-8
DIVIDE 9-8
HALVE 9-9
LOAD 9-10
LOAD AND TEST 9-10
LOAD COMPLEMENT 9-11

Machine-Check Detection 11-1
Correction of Machine Malfunctions 11-1
Handling of Machine Checks 11-2

Invalid CBC in Storage 11-2
Invalid CBC in Page Descriptions 11-2
Invalid CBC in Registers 11-3
Usage of Validation 11-3

Check-Stop State 11-3
Machine-Check Interruption 1 t-4

Exigent Conditions 11-4
Repressible Conditions 11-4
Interruption Action 11-4
Point of Interruption 11-·5
Machine-Cheek-Interruption Code 11-6

Subclass 11-7
LOAD NEGATIVE 9-11
LOAD POSITIVE 9-11

Auxiliary Bits 11-8
Machine-Check Interruption-Code Validity Bits 11-8

vii

Machine-Check Extended Interruption
Information 11-9

Register-Save Areas 11-9
Failing-Storage Address 11-9

Machine-Check Masking 11-9

Chapter 12. Input/Output Operations 12-1
Attachment of Input/Output Devices 12-2

Input/Output Devices 12-2
Control Units 12-2
Channels 12-3

Modes of Operation 12-3
Types of Channels 12-4

I/O-System Operation 12-5
Compatibility of Operation 12-7

Control of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-11

1/ 0 System Reset 12-11
1/ 0 Selective Reset 12-11
Effect of Reset on a Working Device 12-11
Reset Upon Malfunction 12-12

Condition Code 12-12
Instruction Formats 12-14
Instructions 12-15
CLEAR I/O 12-16
HALT DEVICE 12-18
HALT I/O 12-21
START I/O 12-23
START I/O FAST RELEASE 12-23
STORE CHANNEL ID 12-26
TEST CHANNEL 12-27
TEST I/O 12-27
Input/Output-Instruction-Exception Handling 12-30

Execution of Input/Output Operations 12-30
Blocking of Data 12-30
Channel-Address Word 12-30
Channel-Command Word 12-31
Command Code 12-32
Designation of Storage Area 12-32
Chaining 12-33

Data Chaining 12-35
Command Chaining 12-36

Skipping 12-36
Program-Controlled Interruption 12-36
Commands 12-37

Write 12-39
Read 12-39
Read Backward 12-39
Control 12-40
Sense 12-40
Transfer in Channel 12-42

Command Retry 12-42
Conclusion of Input/Output Operations 12-43

Types of Conclusion 12-43

viii

Conclusion at Operation Initiation 12-43
Immediate Operations 12-44
Conclusion of Data Transfer 12-44
Termination by HALT I/O or

HALT DEVICE 12-45
Termination by CLEAR I/O 12-46
Termination Due to Equipment Malfunction

Input/Output Interruptions 12-47
Interruption Conditions 12-47
Channel-Available Interruption 12-48

Priority of Interruptions 12-48
Interruption Action 12-49

Channel-Status Word 12-49
Unit Status 12-50

Attention 12-50
Status Modifier 12-50
Control-Unit End 12-51
Busy 12-51
Channel End 12-53
Device End
Unit Check

12-53
12-53

Unit Exception 12-54
Channel Status 12-55

Program-Controlled Interruption
Incorrect Length 12-55
Program Check 12-55
Protection Check 12-56
Channel-Data Check 12-56
Channel-Control Check 12-56
Interface-Control Check 12-57
Chaining Check 12-57

Contents Of Channel-Status Word
Information Provided by

Channel-Status Word 12-57
Subchannel Key 12-58
CCW Address 12-58
Count 12-59
Status 12-60

Channel Logout 12-63
I/O Communications Area 12-63

Chapter 13. Operator Facilities
Basic Operator Facilities 13-1

Address-Compare Controls
Alter-and-Display Controls
Check Control 13-2
Check-Stop Indicator 13-2
IML Controls 13-2
Interrupt Key 13-2
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3

13-1

13-1
13-2

Load-Unit-Address Controls 13-3
Machine-Save Key 13-3
Manual Indicator 13-3

12-55

12-57

12-47

Mode Indicator
Power Controls
Rate Control
Restart Key

13-3
13-4

13-4
13-4

Save Indicator 13-4
Start Key 13-4
Stop Key 13-4
Storage-Size Control 13-4
System Indicator 13-5
System-Reset-Clear Key 13-5
System-Reset-Normal Key 13-5
Test Indicator 13-5
TOD-Clock Control 13-5
Wait Indicator 13-5

Appendix A. Number Representation and Instruction-Use
Examples A-I

Number Representation A-2
Binary Integers A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5

Instruction-Use Examples A-5
Machine Format A-5
Assembler-Language Format A-5

General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6

AND (NI) A-6
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR

EQUAL (BXLE) A-9
COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLR, CLI, CLC) A-9

Compare Logical (CLR) A-9
Compare Logical (CLI) A-9
Compare Logical (CLC) A-lO

COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) A-I0

COMPARE LOGICAL LONG (CLCL) A-ll
CONVERT TO BINARY (CVB)
CONVERT TO DECIMAL (CVD)
DIVIDE (D,DR) A-13
EXCLUSIVE OR (X, XR, XI, XC)

Exclusive OR (XI)
Exclusive OR (XC)

EXEC UTE (EX) A-14

A-13

A-13

INSERT CHARACTERS UNDER
MASK OCM) A-IS

LOAD (L, LR) A-16
LOAD ADDRESS (LA) A-16

A-12
A-12

A-13

LOAD HALFWORD (LH) A-16
MOVE (MVI) A-17
MOVE (MVC) A-17
MOVE LONG (MVCL) A-18
MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-19
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-20
MULTIPLY HALFWORD (MH)
OR (0, OR, 01, OC) A-21

OR (01) A-21
PACK (PACK) A-21
SHIFT LEFT DOUBLE (SLDA)
SHIFT LEFT SINGLE (SLA)
STORE CHARACTERS UNDER

MASK (STCM) A-22

A-20

A-21
A-22

STORE MULTIPLE (STM) A-23
TEST UNDER MASK (TM) A-23
TRANSLATE (TR) A-23
TRANSLATE AND TEST (TRT) A-24
UNPACK (UNPK) A-25

Decimal Instructions A-25
ADD DECIMAL (AP) A-26
COMPARE DECIMAL (CP) A-26
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-27
EDIT AND MARK (EDMK) A-28
MUL TIPL Y DECIMAL (MP) A-28
SHIFT AND ROUND DECIMAL (SRP) A-29

Decimal Left Shift A-29
Decimal Right Shift A-29
Decimal Right Shift and Round A-29
Multiplying by a Variable Power of 10

ZERO AND ADD (ZAP) A-30
Floating-Point Instructions A-30

ADD NORMALIZED (AE, AER, AD, ADR)
ADD UNNORMALIZED (AU, AUR,

AW, AWR) A-31
COMPARE (CE, CER, CD, CDR) A-31

Multiprogramming and Multiprocessing Examples
Example of a Program Failure Using

OR Immediate A-32
COMPARE AND SWAP (CS, CDS) A-32

Setting a Single Bit A-33
Updating Counters A-33

Appendix B. Lists of Instructions B-1

Appendix C. Condition-Code Settings C-I

Appendix D. Table of Powers of 2 D-l

Appendix E. Hexadecimal Tables E-l

Index X-I

A-30

A-30

A-32

ix

Chapter 1. Introduction

Contents

The IBM 4300 Processors 1-1
Compatibility 1-2

Compatibility Among 4300 Processors 1-2
Compatibility Between 4300 Processors and System/370 1-2

Control-Program Compatibility 1-2
Problem-State Compatibility 1-2

The IBM 4300 Processors
The IBM 4300 Processors are small and moderately
sized processors that have evolved from System/370.
They may be used in one of two architectural modes
of operation. When operating in the Extended
Control Program Support: Virtual Storage Extended
(ECPS:VSE) mode, a processor provides new
facilities that are designed specifically to enhance the
DOS/VSE control program. To run control programs
such as VM/370 and OS/VS1, which do not use
these facilities, a processor is placed in the
System/370 mode. This publication describes t~e .
architecture of the 4300 Processors when operatIng In
the ECPS:VSE mode.

The architecture of a machine defines its attributes
as seen by the programmer, that is, the conceptual
structure and functional behavior of the machine, as
distinct from the organization of the data flow, the
logical design, the physical design, and the perfor
mance of any particular implementation. Several
dissimilar machine implementations may conform to a
single architecture. When programs running on
different machine implementations produce the
results that are defined by a single architecture, the
implementations are considered to be compatible.

The ECPS: VSE mode includes a new storage
control facility, called one-level addressing, for
creating a single virtual storage of up to 16,777,216
bytes, which both the CPU and the channels address
directly using one uniform set of virtual addresses.
Mapping the virtual storage onto the real storage is
performed internal to the machine.

The one-level-addressing facility provides new
instructions and interruptions which the control

program uses to determine which parts of virtual
storage currently are mapped onto real storage and
thereby are made addressable. These instructions
and interruptions, and the associated internal
address-mapping functions, take the place of dynamic
address translation (DAT) and channel indirect data
addressing in System/ 3 70.

The ECPS: VSE mode also includes a new status
saving function, called machine save, which preserves
the entire CPU state and the first 2,048 (2K) bytes
of storage. The operator uses machine save in
preparation for a complete storage dump. Machine
save replaces the store-status function of
System/370, which necessarily alters some of the
storage to be dumped.
If multiple virtual storages are not required, the

ECPS:VSE mode affords the following advantages
when compared to System/370:
• . Simpler storage-mapping function, with more of

the function performed automatically by the
machine

• Improved control-program performance, because
the control program need not translate the virtual
addresses of channel programs

Programming of the machine has been simplified,
relative to System/370, by omitting the following
functions:
• Multiprocessing and associated instructions
• Machine-check logout and full channel logout

These model-dependent logouts are replaced by
internal facilities for diagnosing machine
malfunctions. This removes model-dependent error
handling procedures from the control program and
improves serviceability.

Chapter 1. Introduction 1-1

Compatibility

Compatibility Among 4300 Processors
Although models of the 4300 Processors differ in
implementation and physical capabilities, logically
they are upward and downward compatible.
Compatibility provides for simplicity in education,
availability of system backup, and ease in system
growth. Specifically, any program will give identical
results on any model, provided that it:
1. Is not time-dependent.
2. Does not depend on system facilities (such as

storage capacity, I/O equipment, or optional
features) being present when the facilities are not
included in the configuration.

3. Does not depend on system facilities being absent
when the facilities are included in the
configuration. For example, the program should
not depend on interruptions caused by the use of
operation codes or command codes that in some
models are not assigned or not installed. Also, it
must not use or depend on fields associated with
uninstalled facilities. For example, data should
not be placed in an area used by another model
for logout. Similarly, the program must not use
or depend on unassigned fields in machine
formats (control registers, instruction formats,
etc.) that are not explicitly made available for
program use.

4. Does not depend on results or functions that are
defined in this publication to be unpredictable or
model-dependent, ·or on special-purpose functions
(such as emulators and assists) that are not des
cribed in this publication. This includes the
requirement that the program should not depend
on the assignment of I/O addresses.

5. Does not depend on results or functions that are
defined in the functional-characteristics publica
tion for a particular model to be deviations from
this publication.

1-2 IBM 4300 Processors Principles of Operation

Compatibility Between 4300 Processors and
System/370

Control-Program Compatibility

If the preceding compatibility restrictions are
observed, a program written for the 4300 Processors
or System/370 will run on the other system.
However, because of the compatibility restrictions,
control programs cannot be transferred between these
systems if they take advantage of facilities that are
available on one system but not the other. In
partiCUlar, the 4300 Processors do not offer the
System/370 dynamic-address-translation facility in
the ECPS:VSE mode and, hence, cannot execute
programs which rely on this particular facility.

To provide full control-program compatibility
between System/370 and the 4300 Processors, the
4300 Processors offer an alternate microprogram that
causes the machine to assume the characteristics of a
System/3 70 model. When the machine is in this
mode~ the operation of the machine is as described in
the IBM System/3 70 Principles of Operation,
GA22-7000.

Problem-State Compatibility

A high degree of compatibility exists at the problem
state level between 4300 Processors operating in the
ECPS:VSE mode and System/370. Because the
majority of a user's applications are written for the
problem state, this problem-state compatibility is
useful in many installations.

A program written to run in the problem state on
4300 Processors or System/370 will run on the other
system, provided that it:
1. Observes the limitations described in the section

"Compatibility Among 4300 Processors. "
2. Is not dependent on results defined in this

publication or in the IBM System/370 Principles
of Operation, as appropriate, to be unpredictable
or model-dependent (an extension of the fourth
rule in the section "Compatibility Among 4300
Processors ").

3. Is not dependent on control-program facilities
which are unavailable on the system.

To allow the problem programmer to guard against
the effects of facilities that are available on
System/370 but not on 4300 Processors, this
publication in several places describes the results of
such effects. For example, when a program is written
which shares storage in a multiprogramming
environment on a single-CPU configuration,

precautions should be taken to allow such a program
to run correctly on a multiple-CPU (multiprocessing)
configuration.

Specifically, COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, and TEST AND SET are the
only instructions which should be used to create
interlocks between concurrent programs. These are
the only instructions that do not, between fetching
and storing of the storage operand, permit another
CPU to access the operand location. The instructions
AND (NI or NC), EXCLUSIVE OR (XI or XC), and
OR (01 or OC) should not be used for such inter
locks.

Serialization of CPU operations, which is performed
by all· interruptions and by the execution of certain
instructions, affects the sequence of events as
observed by other CPUs in a multiprocessing
configuration as well as by channels. (See the
section "Serialization" in Chapter 5, "Program
Execution. II)

Programming Note

This publication assigns meanings to various opera
tion codes, to bit positions in instructions, channel
command words, registers, and table entries, and to
fixed locations in the low 512 bytes of storage
(addresses 0-511). Other operation codes, bit
positions, and low-storage locations are specifically
noted as being available for programming use. The
remaining ones are unassigned and reserved for
future assignment to new facilities and other
extensions of the architecture.

To ensure that existing programs run if and when
such new facilities are installed, programs should not
depend on an indication of an exception as a result of
invalid values that are currently defined as being
checked. If a value must be placed in unassigned
positions that are not checked, the program should
enter zeros. When the machine provides a code or
field, the program should take into account that new
codes and bits may be assigned in the future. The
program should not use unassigned low-storage loca
tions for keeping information since these locations
may be assigned in the future in such a way that the
machine causes this location to be changed.

Chapter 1. Introduction 1-3

Chapter 2. Organization

Contents

Main Storage 2-1
Central Processing Unit ·2-1

General Registers 2-2
Floating-Point Registers 2-2
Control Registers 2-3

Input and Output 2-3
Channels 2-4
Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Logically, IBM 4300 Processors consist of main
storage, a central processing unit (CPU), operator
facilities, and channels. The channels allow
inputloutput (II 0) devices to be attached, usually
through . control units (see the figure "Logical
Structure I').

Specific processors may differ in their internal
characteristics, the number and types of channels, the
size of main storage, and the representation of the
operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Main
Storage

Channel

Logical Structure

CP!J

Channel

I/O Devices

Main Storage
The 4300 Processors provide fast-access main storage
and storage-control functions to permit high-speed
processing of data by the CPU and channels. The
storage-control functions permit main storage to be
controlled at two levels: real storage and virtual
storage.

Real storage is the storage where data and instruc
tions actually reside at the time they are accessed by
the CPU and channels, but neither CPU programs
nor channel programs can address real storage
directly. The size of real storage depends on the
model.

Virtual storage allows both CPU programs and
channel programs to address an apparent main
storage of up to 16,777,216· (16M) bytes. Virtual
storage may be larger than the underlying real
storage. If the virtual storage is larger than the real
storage, a supervisory control program using the
storage-control functions of the machine is required
for controlling which parts of virtual storage are
currently mapped onto real storage. This control is
dynamic and transparent to the other programs
except for the time delay.

Central Processing Unit
The central processing unit (CPU) is the controlling
center of the machine. It contains the sequencing
and processing facilities for instruction execution,
interruption action, timing functions, initial program
loading, and other machine-related functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the

Chapter 2. Organization 2-1

logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed

. length, decimal integers of variable length, and logical
information of either fixed or variable length.
Processing may be in parallel or in series; the width
of the processing elements, the multiplicity of the
shifting paths, and the degree of simultaneity in
performing the different types of arithmetic differ
from one CPU to another without affecting the
logical results.

Instructions which the CPU executes fall into five
classes: general, decimal, floating-point, control, and
input/ output instructions. The general instructions
are used in performing fixed-point arithmetic opera
tions and logical, branching, and other non arithmetic
operations. The decimal instructions operate on data
in the decimal format, and the floating-point
instructions on data in the floating-point format. The
control instructions and the input/output instructions
are privileged instructions that can be executed only
when the CPU is in the supervisor state.

To perform its functions, the CPU may use a cer
tain amount of internal storage. Examples of such
functions include the mapping of virtual storage to
real storage and the arithmetic and logical functions.
This internal storage is not considered part of main
storage and is not addressable by programs.

The CPU provides registers which are available to
programs but do not have addressable representations
in main storage. They include the current program
status word (PSW), the general registers, the
floating-point registers, the control registers, and
registers associated with the timing facilities. The
current PSW contains information used to control
instruction sequencing and to hold and indicate the
states of the machine in relation to the program
currently being executed. Registers associated with
the timing facilities are the time-of-day (TOD) clock,
the clock comparator, and the CPU timer.

Some models may use the same physical storage for
both addressable main storage and un addressable
internal storage, and internal storage may actually
contain the CPU registers. Such internal storage is
not considered to be part of main storage, because
the program cannot access the contents of internal
storage by means of storage addresses.

The general, floating-point, and control registers are
discussed separately in the following sections. (See
also the figure "General, Floating-Point, and Control

2-2 IBM 4300 Processors Principles of Operation

Registers. II) The instruction operation code deter
mines which type of register is to be used in an
operation.

General Registers
Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators in
general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated by
a four-bit R field in an instruction. Some instructions
provide for addressing multiple general registers by
having several R fields.

For some operations, two adjacent general registers
are coupled, providing a 64-bit format. In these
operations, the program must designate an even
numbered register, which contains the leftmost
(high-order) 32 bits. The next higher-numbered
register contains the rightmost (low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address and
index registers in address generation. In these cases,
the registers are designated by a four-bit B field or X
field in an instruction. A value of zero in th~ B or X
field specifies no base or index is to be applied, and,
thus, general register 0 cannot be designated as
containing a base address or index.

Floating-Point Registers
Four floating-point registers are available for
floating-point operations. They are identified by the
numbers 0, 2, 4, and 6. Each floating-point register
is 64 bits long and can contain either a short (32-bit)
or a long (64-bit) floating-point operand. A short
operand occupies the leftmost bit positions of a
floating-point register. The rightmost portion of the
register is ignored and remains unchanged in
arithmetic operations that call for short operands.
Two pairs of adjacent floating-point registers can be
used for extended operands: registers 0 and 2, and
registers 4 and 6. Each of these pairs provides a
128-bit format.

Control Registers
The CPU has provisions for 16 control registers, each
having 32 bit positions. The bit positions in the
registers are assigned to particular facilities in the
system, such as program-event recording, and are
used either to specify that an operation can take
place or to furnish special information required by
the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the

instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

Input and Output
Inputloutput (II 0) operations involve the transfer of
information between main storage and an 110 device.
110 devices attach to channels, which control this
data transfer.

R Field Reg Number· Control Registers General Registers Floating-point Registers

0000 0

0001

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

~32Bits~

I
I
I

~32Bits~ 1 -.-----64 Bits -------:· ~I

Note: The braces indicate that the two registers may be coupled as a double-register pair. designated by specifying the lower
numbered register in the R field. For example, the general-register pair 0 and 1 is designated in the A field by the number O.

General, Floating-Point, and Control Registers

Chapter 2. Organization 2-3

Channels
A channel relieves the CPU of the burden of
communicating directly with 110 devices and permits
data processing to proceed concurrently with 1/0
operations. A channel connects with the CPU, with
main storage, and with control units.

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, channel functions are identical. Channels may
be implemented, however, to have different maximum
data-transfer capabilities.

There are three types of channels:
byte-multiplexer, block-multiplexer, and selector
channels.

Input/Output Devices and Control Units
Inputloutput devices include such equipment as card
readers and punches, magnetic-tape units, direct
access storage, displays, keyboards, printers, tele
processing devices, and sensor-based equipment.
Many 110 devices function with an external medium
such as punched cards or magnetic tape. Some 110 '

2-4 IBM 4300 Processors Principles of Operation

devices handle only electrical signals, such as those
found in sensor-based networks. In either case
I/O-device operation is regulated by a control ~nit.
The control-unit function may be housed with the
110 device or in the CPU, or a separate control unit
may be used. In all cases, the control-unit function
provides the logical and buffering capabilities neces
sary to operate the associated 110 device. From the
programming point of view, most control-unit
functions merge with I/O-device functions.

Operator Facilities
The operator facilities provide the functions
necessary for operator control of the machine. It
may have an associated operator-console device
which may also be used as an 110 device for
communicating with the control program and problem
programs.

The main functions provided by the operator facili
ties are system reset, clearing, initial program loading,
start, stop, alter, and display.

Chapter 3. Storage

Contents

Information Formats and Addressing 3-1
Information Formats 3-1
Storage Addressing 3-2
Integral Boundaries 3-2

One-Level Addressing 3-2
Storage Size 3-3
Pages 3-3
Page Frames 3-3
Page Description 3-3

Storage Key 3-3
Page Bits 3-4
Page States 3-4

This chapter discusses the representation of
information in storage, how information is addressed,
and the one-level-addressing facility for controlling
virtual and real storage. The chapter also contains a
list of permanently assigned storage locations.

The term "main storage" is used generically to
describe both virtual and real storage, in order to
distinguish this fast-access storage from auxiliary
storage, such as direct-access storage devices.
Because, in this publication, most references to main
storage apply to virtual storage, the abbreviated term
"storage" is generally used in place of "virtual
storage" when the meaning is clear.

All addresses of storage locations are virtual
addresses, because they always refer to virtual
storage. Hence, when applied to main storage,
address means virtual address in this publication.

Information Formats and Addressing

In/ormation Formats
Information is transmitted between storage and the
CPU or a channel in units of eight bits, or a multiple
of eight bits, at a time. Each eight-bit unit of
information is called a byte, the basic building block
of all formats. The bits in a byte are numbered 0
through 7, from left to right.

The bits in an address, which is 24 bits long, are
numbered 8 through 31. Within any other
fixed-length format of mUltiple bytes, the bits making
up the format are consecutively numbered from left
to right, starting with the number O. Leftmost bits

Frame Index 3-5
Page and Frame Control 3-5

Capacity Counts 3-5
Storage-Control Instructions 3-6

Key-Controlled Protection 3-6
Protection Action 3-6
Accesses Protected 3-7

Reference and Change Recording 3-7
Assigned Storage Locations 3-8

Storage While CPU Is in Operating State 3-8
Storage While CPU Is in Load State 3-10

are sometimes referred to as the "high-order" bits
and rightmost bits as the "low-order" bits.

For purposes of error detection, and in some models
for correction, one or more check bits may be
transmitted with each byte or with a group of bytes.
Such check bits are generated automatically by the
machine and cannot be directly controlled by the
program. References in this manual to the length of
data fields and registers exclude mention of the
associated check bits. All storage capacities are
expressed in number of bytes.

Bytes may be handled separately or grouped
together in fields. A halfword is a group of two
consecutive bytes and is the basic building block of
instructions. A word or fullword is a group of four
consecutive bytes; a doubleword is a group of eight
bytes. The location of any field or group of bytes is
specified by the address of its leftmost byte.

The length of fields is either implied by the
operation to be performed or stated explicitly as part
of the instruction. When the length is implied, the
information is said to have a fixed length, which can
be one, two, four, or eight bytes.

When the length of a field is not implied by the
operation code, but is stated explicitly, the
information is said to have variable field length.
Variable-length operands are variable in length by
increments of one byte.

When information is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the

Chapter 3. Storage 3-1

width of the physical path to storage may be greater
than the length of the field being stored.

Storage Addressing
Byte locations in storage are consecutively numbered,
left to right, starting with 0; each number is
considered the address of the corresponding byte. A
group of bytes in storage is addressed by the leftmost
byte of the group. The number of bytes in the group
is either implied or explicitly defined by the
operation. Addresses are 24-bit binary numbers,
which provide 16,777,216 (224 or 16M) byte
addresses.

Storage addressing wraps around from the maximum
byte address, 16,777,215, to address o. In a
16M-byte storage, information may be located
partially in the last and partially in the first locations
of storage and is processed without any special
indication of crossing the maximum-address
boundary.

Integral Boundaries
Certain units of information must be located in
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the unit
in bytes. Special names are given to fields of two,
four, and eight bytes when they are located on an
integral boundary. A halfword is a group of two
consecutive bytes on a two-byte boundary and is the
basic building block of instructions. A word is a
group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight
consecutive bytes on an eight-byte boundary.

Thus, a word is on an integral boundary when it is
located in storage so that its address (that is, the
address of the leftmost of the four bytes) is a multiple
of the number 4. Similarly, a halfword is on an
integral boundary when it has an address that is a
multiple of the number 2, and a doubleword is on an
integral boundary when it has an address that is a
multiple of the number 8. (See the figure "Integral
Boundaries for Halfwords, Words, and
Doublewords. I')

When storage addresses designate halfwords, words,
and doublewords on integral boundaries, the binary
representation of the address contains one, two, or
three low-order zero bits, respectively.

Instructions must appear on halfword integral
boundaries, and channel-command words and the
storage operands of certain instructions must appear
on other integral boundaries. The storage operands

3-2 IBM 4300 Processors Principles of Operation

of most instructions do not have boundary-alignment
requirements.

t • I
I
I

• I
I
I

• I
I

+
I
I

Integral Boundaries for Halfwords, Words, and Doublewords

Programming Note

Significant performance degradation is possible when
storage operands are not positioned at addresses that
are integral multiples of the operand length. To
improve performance, frequently used storage
operands should be aligned on integral boundaries.

One-Level Addressing
The one-level-addressing facility may be used by the
control program to create virtual storage that is larger
than the actual capacity of the underlying real
storage. Other programs and channels address this
virtual storage directly as if all data and instructions
actually resided in virtual storage.

Main storage is volatile; that is, the contents are not
preserved when power is off.

Storage Size
The storage size is the number of addressable byte
locations provided in virtual storage. A model may
allow one or more storage sizes. If more than one
storage size is provided, the current storage size is
determined by the manual storage-size control during
an initial microprogram loading (IML) operation.
The storage size cannot be changed by programming.

The storage size is always a multiple of 2,048 (2K)
bytes, up to a maximum of 16,777,216 (16M) bytes.

When the storage size exceeds the size of real
storage, the parts of virtual storage which are
currently not directly accessible may be kept on
auxiliary storage, such as direct-access storage devices
(DASD). The transfer of the contents of virtual
storage to and from auxiliary storage may be
controlled by a supervisory control program using
110 instructions in such a way that the remaining
CPU programs and channel programs can address any
part of virtual storage as if it were all directly
accessible.

Storage addresses range from zero to one less than
the storage size. If the CPU attempts to refer to a
storage location that is not provided or to the
corresponding page description (see below), that
attempt is indicated by an addressing exception or, in
the case of the LOAD FRAME INDEX instruction,
by the condition code. If an 110 operation attempts
to access a storage location that is not provided, the
operation is terminated by a channel program check.

Normally, the indication that a location is not
provided is given only when the information
associated with that location is actually required, and
not when the operation can be completed without
that information.

When the storage size is set to the maximum of
16M bytes, all storage locations are provided;
addressing exceptions or channel program checks for
CCW or data locations cannot occur.

Pages
Virtual storage is divided into pages, each page
consisting of 2,048 (211) consecutive bytes on a
2,048-byte address boundary. Virtual storage has up
to 8,192 (213) pages of storage. The size of virtual
storage and, hence, the number of pages provided
depend on the model and on the setting of the
manual storage-size control, if one is provided.

Storage-control instructions, except for INSERT
STORAGE KEY and SET STORAGE KEY, refer to
a page by the address of any byte in that page. The
low-order 11 bits of an operand address referring to

a whole page are ignored. The INSERT STORAGE
KEY and SET STORAGE KEY instructions also use
a page address, but the low-order four bits of their
operand address must be zeros.

Page Frames
Real storage is divided into page frames, each capable
of containing the data for one page of virtual storage.
The size of real storage and, hence, the number of
page frames present in the machine depend on the
model. Real storage is not explicitly addressable by
CPU programs and channel programs.

A virtual-storage page, to be accessible to CPU
programs and channel programs, must be associated
with a real-storage page frame. An instruction is
provided which assigns to a page a free page frame
selected by the machine. This instruction is said to
connect the page to its assigned frame. Thereafter,
the page frame is referred to by the address of the
corresponding page. When any previous contents of
the page have been retrieved from external storage
and the page is ready for accessing by a CPU
program, another instruction is used to make the page
addressable.

As the supply of free page frames diminishes, the
control program may make a page not addressable
and, if any bytes in the page have been changed,
write the contents of the page on auxiliary storage.
An instruction may then be issued to disconnect the
page, thus freeing its frame.

A page frame cannot be assigned to more than one
page at a time.

Page Description
Associated with each virtual-storage page which is
provided are a seven-bit storage key, three
programmable page bits, a page state, and the frame
index of the page frame· currently assigned to the
page, ifany. This information, called the page
description, is maintained in internal storage.

Storage Key

A control field, called storage key, is associated with
each page that is provided.

o 4 6

Chapter 3. Storage 3-3

The bit positions in the storage key are allocated as
follows:

Access-Control Bits (ACC): The four access-control
bits, bits 0-3, are matched with the four-bit access
key whenever information is stored, or whenever
information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): The fetch-protection bit,
bit 4, controls whether protection applies to
fetch-type references: a zero indicates that only
store-type references are monitored and that fetching
with any access key is permitted; a one indicates that
protection applies both to fetching and storing. No
distinction is made between the fetching of
instructions and of operands.

Reference Bit (R): The reference bit, bit 5, normally
is set to one each time a location in the
corresponding page is referred to either for storing or
for fetching of information.

Change Bit (C): The change bit, bit 6, is set to one
each time information is stored at a location in the
corresponding page.

The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
The reference and change bits are also set by SET
PAGE BITS and inspected by INSERT PAGE BITS.
Additionally, the instruction RESET REFERENCE
BIT provides a means of inspecting the reference and
change bits and of setting the reference bit to zero.

Page Bits

The three programmable page bits associated with
each page may be set by the instruction SET PAGE
BITS and inspected by INSERT PAGE BITS. The
page bits are disregarded by the machine during other
operations.

Programming Note

The page bits may be used by the program to assist in
managing pages on auxiliary page storage. For
example, one of the bits may indicate whether a
version of the corresponding page exists on auxiliary
storage.

3-4 IBM 4300 Processors Principles of Operation

Page States

A page may be in one of three states:
• Disconnected
• Connected
• Addressable
If disconnected, the page does not have a page

frame assigned to it. Any attempt by the CPU to
access a disconnected page causes a page-access
exception or, when a CLEAR PAGE instruction is
being executed, a page-state exception. Any attempt
by a channel to access a disconnected page, in order
to fetch a CCW or to access a data area designated
during the execution of a CCW, creates an
I/O-interruption condition indicating protection
check. However, if a CCW is prefetched, a
protection check is not indicated until the CCW is
due to be executed.
If connected, the page has a page frame assigned to

it. A connected page may be accessed, if the
protection mechanism permits:
1. By 110 channels
2. By the CPU as the operand of a CLEAR PAGE

instruction
Except when executing CLEAR PAGE, an attempt

by the CPU to access a connected page causes a
page-access exception.
If addressable, the page has a page frame assigned

to it, and the CPU and 110 channels may access the
page if the protection mechanism permits.

Although the addressable state implies that the page
is also connected, the term "connected state" refers
specifically to the state of a page that is neither
addressable nor disconnected.

The page state is checked for all storage accesses to
locations that are explicitly or implicitly accessed by
the CPU or by a channel.

The page state is changed by instructions, which
may make the transition from the disconnected to the
connected state and from the connected to the
addressable state, or vice versa. The instructions are
CONNECT PAGE, DECONFIGURE PAGE,
DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE. Most of these
instructions may also be applied to pages which are
already in the desired state. An attempt to change
directly from disconnected to addressable, or vice
versa, causes a page-transition exception. A
page-transition exception is also caused by
DECONFIGURE PAGE when applied to a
disconnected page.

The first page, page' 0, containing byte locations 0
to 2047, is always addressable. It cannot be placed
in the connected or disconnected state.

The clear-reset function causes a number of
consecutive pages, starting with page 0, to be
assigned to· page frames, cleared, and placed in the
addressable state. (See the section "Clear Reset" in
Chapter 4, "Control. ")

Programming Notes
1. The three page states permit programs to

distinguish pages in the disconnected state, which
cannot be accessed at all, from pages in the
connected state, which are undergoing 1/0
operations to or from external page storage, and
from pages in the addressable state, which are
ready for normal storage access.

2. The storage-control instructions other than
CLEAR PAGE operate on page descriptions, not
pages. Instructions which operate on page
descriptions do not make storage accesses and do
not cause page-access or protection exceptions.

3. All channel accesses to storage appear as if they
referred to pages and not to the associated page
frames. If a page that is being accessed by a
channel becomes disconnected and another
channel access is attempted, protection check is
indicated, and the 110 operation terminates. If
the page becomes disconnected and then becomes
reconnected before protection check is indicated,
protection check may be indicated subsequently,
or accesses may continue using the newly
assigned page frame.

Frame· Index
A unique 16-bit binary integer is assigned to each
page frame existing in the machine. This integer is
the frame' index of the page frame. The value of the
frame index ranges from zero up to, but not
including, the existing-frame-capacity count (EPCC)
(see the section "Capacity Counts" in this chapter).

When a CONNECT PAGE instruction connects a
page to a frame, the frame index of the connected
frame is returned by. the instruction. The frame
index remains associated with that page until the
page is disc.onnected. When the same page is
connected again, the new frame index is, in general,
different and unpredictable unless there was only one
free frame remaining.

The frame index for an already connected or
addressable page may be displayed by LOAD
FRAME·INDEX.

When DECONFIGURE PAGE makes a page frame
unavailable, the frame index of that frame will not
recur until a clear-reset operation is performed.

The frame index currently associated with a page is
part of its page description. A disconnected page has
no frame index, and LOAD FRAME INDEX returns
no frame-index value for a disconnected page.

Programming Notes

1. The frame index assists the control program in
maintaining compact tables of connected or
addressable pages. The frame index is not, and
should not be interpreted as, the address of a
frame in real storage. The algorithm for
assigning a frame index to a page frame is
implementation-dependent. Programming should
not depend on a particular algorithm.

2. The set of frame indexes is dense if the EFCC
equals the AFCC, that is, if there are no
unavailable page frames. It becomes nondense to
the extent that frames are made unavailable by
DECONFIGURE PAGE or by maintenance
intervention.

3. DECONFIGURE PAGE removes a page frame
from contention for connection when a machine
check has indicated damage itQ;!;\;"page .. This· can. .
be done only while the frame is connected to a
page, because a frame cannot be addressed
directly.

Page and Frame Control

Capacity Counts

Four internally maintained counts are defined to
assist the program in managing pages and page
frames. Each count is a 16-bit unsigned binary
integer. The counts are set or updated by the
machine. They are displayed by the STORE
CAPACITY COUNTS instruction, which stores each
count as a 32-bit integer with 16 high-order zero bits.

The page-capacity count (PCC) is the number of
virtual-storage pages provided by the machine. The
pages have page addresses from 0 to PCC minus one.
The value of the PCC is equal to the storage size
divided by 2,048; it is set during clear reset according
to the current setting of the manual. storage-size
control, if one is provided.

The existing-frame-capacity count (EFCC) is the
number of page frames existing in a particular
implementation of the machine. The EPCC reflects
the total capacity of real storage. The value of the
EPCC is set during clear reset.

Chapter 3. Storage 3-5

The available-frame-capacity count (AFCC) is the
number of page frames connected or available for
connection to pages. The value of AFCC may be ,
equal to or less than the EFCC. During CPU
operation, the AFCC may be decreased by the
instruction DECONFIGURE PAGE. The clear-reset
function initializes the AFCC to the value of the
EFCC less the number of frames that are kept
unavailable for connection by maintenance
intervention.

The free-frame-capacity count (FFCC) is the
number of available page frames that are currently
not connected to pages. The value of the FFCC may
range from zero to the AFCC minus one. During
CPU operation, the value of the FFCC may be
changed by the instructions CONNECT PAGE and
DISCONNECT PAGE. The clear-reset operation
initializes the FFCC to zero or to the value of AFCC
minus PCC, depending on whether the AFCC is less
than the pce or not.

Since page 0 must always be addressable, the frame
connected to page 0 is considered available but not
free. Hence, the minimum value of the AFCC is one,
and the maximum. value of the FFCC is the AFCC
minus one.

Storage-Control Instructions

CONNECT PAGE is used to change a page from the
disconnected to the connected state. MAKE
ADDRESSABLE changes a page from connected to
addressable. MAKE UNADDRESSABLE changes
the page state from addressable to connected.
DISCONNECT PAGE changes the page state from
connected to disconnected. DECONFIGURE PAGE
disconnects a connected page and makes the
corresponding page frame and its frame index
unavailable. LOAD FRAME INDEX tests the page
state of a page and displays its frame index, if any.
These six instructions do not change or check the
storage key of the specified pages.

CLEAR PAGE sets the contents of a page to zero
and validates the page.

SET STORAGE KEY replaces the storage key of a
page. INSER T STORAGE KEY retrieves the storage
key of a page except, in the BC mode, for the
reference and change bits. RESET REFERENCE
BIT tests the reference and change bits. and resets the
reference bit to zero.

SET PAGE BITS tests the reference and change
bits of a page and then explicitly sets them along with
the three programmable page bits of that page.
INSERT PAGE BITS retrieves the values of the three

3-6 IBM 4300 Processors Principles of Operation

page bits, the reference bit, and the change bit of a
page.

All storage-control instructions are privileged.

Key-Controlled Protection
Key-controlled protection is provided to protect the
contents of storage from destruction or misuse caused
by erroneous or unauthorized storing or fetching by
the program. It affords protection against improper
storing or against both improper storing and fetching,
but not against improper fetching alone.

Protection Action
When key-controlled protection applies to a storage
access, a store is permitted only when the storage key
matches the access key associated with the request
for storage access; a fetch is permitted when the keys
match or when the fetch-protection bit of the storage
key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to the
access key or when the access key is zero.

The protection action is summ.arized in the figure
"Summary of Protection Action. "

Conditions

Fetch-Protection
Bit of Storage
Key

o
o

Explanation:

Key Relation

Match
Mismatch
Match
Mismatch

Is access to
storage perm itted?

Fetch Store

Yes Yes
Yes No
Yes Yes
No No

Match The four access-control bits of the storage key are equal
to the access key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the information
is not made available to the program; on storing, the
contents of the storage location are not changed.

Summary of Protection Action

When the access to storage is initiated by the CPU,
and protection applies, the PSW key is the access key
which is used as the comparand. The PSW key
occupies bit positions 8-11 of the current PSW.

When the reference is made by a channel, and
protection applies, the subchannel key associated with
the 110 operation is the access key which is used as
the comparand. The subchannel key is specified for

an I/O operation in bit positions 0-3 of the
channel-address word (CAW); the subchannel key is
later placed in bit positions 0-3 of the channel-status
word (CSW) that is stored as a result of the 1/0
operation.

When a CPU access is prohibited because of
protection, the operation is suppressed or terminated,
and a program interruption for a protection exception
takes place. When a channel access is prohibited,
protection check is indicated in the CSW stored as a
result of the operation.

When a store access is prohibited because of
protection, the contents of the protected location
remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location, or
provided to an I/O device.

Key-controlled protection is always active,
regardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being
executed.

Accesses Protected
All accesses to storage locations that are explicitly
designated by the program and that are used by the
CPU to store or fetch information are subject to
protection.

All storage accesses by a channel to fetch a CCW
or to access a data area designated during the
execution of a CCW are subject to protection.
However, if a CCW or output data is prefetched, a
protection check is not indicated until the CCW is
due to be executed or the data is due to be written.

Protection is not applied to accesses that are
implicitly made by the CPU or channel for such
sequences as:
• Interruptions,
• Updating the interval timer,
• Fetching the CAW during the execution of an I/O

instruction,
• Storing the CSW by an 110 instruction or

interruption,
• Storing channel identification during the execution

of STORE CHANNEL ID,
• Limited channel logout, or
• Initial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the program
explicitly designates these locations, they are subject
to protection.

Reference and Change Recording
Reference recording provides information for use in
selecting pages for replacement. Change recording
provides information as to which pages have to have
their contents saved when their connected page
frames are to be reused.

The reference bit normally is set to one each time a
location in the corresponding page is referred to
either for storing or fetching of information. . The
change bit is set to one each time information is
stored in the corresponding page.

Reference and change recording takes place for any
storage access and applies to accesses made by the
CPU, as well as accesses due to I/O operations.
References to a storage location associated with
interruptions and 110 instructions, such as references
to the CA W, CSW, or PSW locations, are included.
It is unpredictable whether updating of the interval
timer causes the reference and change bits for
location 80 to be set to ones. I

References to the page operand of the following .
instructions do not cause storage access and do not
cause reference and change bits to be set to ones
implicitly:

CONNECT PAGE
DECONFIGURE PAGE (both bits are set to zeros)
DISCONNECT PAGE (both bits are set to zeros)
INSERT PAGE BITS
INSERT STORAGE KEY
LOAD FRAME INDEX
MAKE ADDRESSABLE
MAKE UNADDRESSABLE
RESET REFERENCE BIT (reference bit is set to zero)
SET PAGE BITS (both bits are set explicitly)
SET STORAGE KEY (both bits are set explicitly)

The change bit is not set to one for an attempt to
store if the storage reference is not permitted,
regardless of whether the CPU instruction responsible
for the reference is suppressed or terminated. In
particular, a CPU reference causing a protection or
page-access exception, and an I/O reference causing
a protection check, do not cause the change bit to be
set to one.

The instructions SET PAGE BITS and SET
STORAGE KEY may be used to set the reference
and change bits explicitly to either zero or one. SET
PAGE BITS also sets the condition code to indicate
the previous state of the reference and change bits.
The instruction RESET REFERENCE BIT tests both
the reference and change bits and sets the condition
code; it also sets the reference bit to zero. The

Chapter 3. Storage 3-7

instructions DECONFIGURE PAGE and
DISCONNECT PAGE set both the reference and
change bits to zeros.

The record of references provided by the reference
bit is substantially accurate. The reference bit may
be set to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be made
without the reference bit being set to one. Under
certain unusual conditions, a reference bit may be set
to zero by other than explicit program action.

The record of changes provided by the change bit is
also substantially accurate. Under certain conditions,
the change bit may be set to one when storing is
permitted but no storing has actually taken place.
However, the change bit is always set to one when
storing occurs and is never set to zero without
explicit program action.

Programming Note

The accliracy of reference and change recording is
sufficient to alloW' effective operation of
page-replacement algorithms.

Assigned Storage Locations
Assigned locations in storage have different uses
when the CPU is in the operating state or in the load
state. This section is summarized in the figure
"Assigned Storage Locations. "

Programming Note

In the BC mode, there is no implicit storing in
locations 128 and above if all of the following
conditions are m,et:
1. The manual check control is set to stop.
2. The MONITOR CALL and STORE CHANNEL

ID instructions are not issued.
3. The page-capacity count is equal to or less than

the available-frame-capacity count and all pages
are addressable.

Storage While CPU Is in Operating State
This section shows the format and extent of the
assigned storage locations while the CPU is in the
operating state. Unless specifically noted, the usage
applies to both the. EC and BC modes.

0-7 Restart New PSW: The new PSW is
fetched from locations 0-7 during a restart
interruption.

3-8 IBM 4300 Processors Principles of Operation

8-15 Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.

24-31 External Old PSW: The current PSW is
stored as the old PSW at locations 24-31
during an external interruption.

32-39 Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at locations
32-39 during a supervisor-call interruption.

40-47 Program Old PSW: The current PSW is
stored as the old PSW at locations 40-47
during a program interruption.

.'
48-55 Machine-Check Old PSW: The current

PSW is stored as the old PSW at locations
48-55 during a machine-check
interruption.

56-63 Input/Output Old PSW: The current PSW
is stored as the old PSW at locations 56-63
during an I/O interruption.

64-71 CSW: The channel-status word (CSW) is
stored at locations 64-71 during an I/O
interruption. It, or a portion thereof, may
be stored during the execution of START
I/O, START I/O FAST RELEASE, TEST
I/O, CLEAR I/O, HALT I/O, or HALT
DEVICE, in which case condition code 1
is set.

72-75 CAW: The channel-address word (CAW)
is fetched from locations 72-75 during the
execution of START I/O and START I/O
FAST RELEASE.

80;..83 Interval Timer: Locations 80-83 contain
the interval timer. The interval timer is
updated whenever the CPU is in the
operating state and the manual interval
timer control is set to enable.

88-95 External New PSW: The new PSW is
fetched from locations 88-95 during an
external interruption.

96-103 Supervisor-Call New PSW: The new PSW
is fetched from locations 96-103 during a
supervisor-call interruption.

104-111 Program New PSW: The new PSW is
fetched from locations 104-111 during a
program interruption.

112-119 Machine-Check New PSW: The new PSW
is fetched from locations 112-119 during a
machine-check interruption.

120-127 Input/Output New PSW: The new PSW is
fetched from locations 120-127 during an
I/O interruption.

132-135 External-Interruption Code: During an
external interruption in the EC mode, the
interruption code is stored at locations
134-135, and zeros are stored at locations
132-133.

136-139 Supervisor-Call-Interruption Identification:
During a supervisor-call interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of location
137, and the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of 137.

140-143 Program-Interruption Identification:
During a program interruption in the EC
mode, the instruction-length code is stored
in bit positions 5 and 6 of location 141,
and the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of 141.

144-147 Access-Exception Address: During a
program interruption due to a page-access
exception, the address for which the
exception is being indicated is stored at
locations 145 -147, and zeros are stored at
location 144.

148-149 Monitor-Class Number: During a program
interruption due to a monitor event, the
monitor-class number is stored at location
149, and zeros are stored at 148.

150-151 PER Code: During a program interruption
due to a program event, the program
event-recording (PER) code is stored in bit
positions 0-3 of location 150, and zeros
are stored in bit positions 4-7 and at
location 151. This field can be stored only
when the instruction causing the PER
condition was executed under the control
of a PSW specifying the EC mode.

152-155 PER Address: During a program interrup
tion due to a program event, the
program-event-recording (PER) address is
stored at locations 153-155, and zeros are
stored at location 152. This field can be
stored only when the instruction causing
the PER condition was executed under the
control of a PSW specifying the BC mode.

156-159 Monitor Code: During a program
interruption due to a monitor event, the
monitor code is stored at locations
157-159, and zeros are stored at location
156.

168-171 ChannelID: The four-byte channel
identification information is stored at
locations 168-171 during the execution of
STORE CHANNEL ID.

176-179 Limited Channel Logout: The limited
channel··logout information is stored at
locations 1 76-179. This field may be
stored only when the CSW or a portion of
the CSW is stored.

185-187 I/O Address: During an I/O interruption
in the BC mode, the two-byte I/O address
is stored at locations 186-187, and zeros
are stored at location 185.

216-223 CPU-Timer Save Area: During a
machine-check interruption, the contents
of the CPU timer are stored at locations
216-223.

224-231 Clock-Comparator Save Area: During a
machine-check interruption, the contents
of the clock comparator are stored at
1De:atWlIS 224-231.

232-239 Machine-Cheek-Interruption Code: During
a machine-check interruption, the
machine-cheek-interruption code is stored
at locations 232-239.

248-251 Failing-Storage Address: During a
machine-check interruption, a failing
storage address, if any, is stored at
locations 249-251, and zeros are stored at
location 248.

352-383 Floating-Point-Register Save Area: During
a machine-check interruption, the contents
of the floating-point registers are stored at
locations 352-383.

384-447 General-Register Save Area: During a
machine-check interruption, the contents of
the general registers are stored at locations
384-447.

448-511 Control-Register Save Area: During a
machine-check interruption, the contents
of the control registers are stored at
locations 448-511.

Chapter 3. Storage 3-9

Storage While CPU Is in Load State

0-7 IPL PSW: The first eight bytes read
during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new PSW at
the completion of the IPL operation.
These locations may also be used for
temporary storage at the initiation of the
IPL operation.

8-15 IPL CCW1: Bytes 8-15 read during the
IPL initial-read operation are stored at

3-10 IBM 4300 Processors Principles of Operation

16-23

locations 8-15. The contents of these
locations are ordinarily used as the next
CCW in an IPL CCW chain after comple
tion of the IPL initial-read operation.

IPL CCW2: Bytes 16-23 read during the
IPL initial-read operation are stored at
locations 16-23. The contents of these
locations may be used as another CCW in
the IPL CCW chain to follow IPL CCWI.

Hex Dec

o 0

4 4

8 8

C 12

10 16

14 20

18 24

1C 28

20 32

24 36

28 40

2C 44

30 48

34 52

38 56

3C 60

40 64

44

48

4C

68

72

76

50 80

54 84

58 88

5C 92

2

6

0

4

Restart New PSW

Restart Old PSW

External Old PSW

SupervilOr-can Old PSW

Program Old PSW

Machine-Check Old PSW

Input/Output Old PSW

Channel Status Word

Channel Address Word

Interval Timer

External New PSW

Supervisor-call New PSW

Program New PSW

Machine-Check New PSW

Input/Output New PSW

2 0000000000000000

60 96

64 100

68 104

6C 108

70 11

74 11

78 12

7C 12

80 128

84 13

88 136

8C 14

90 144

94 148

98 15

9C 156

AO 16

A4 164

A8 168

AC 17

BO 17

B4 18

B8 184

External-I nterruption Code

oooooooooooooi'Lclo ·Superv -Call-Irptn. Code

o oooooooOOOOOOIILC~ Program-I nterruption Code

00000000 Access-Exception Address

100000000 Monitor CI # Per C 1000000000000

200000000 PER Address

100000000 Monitor Code

0

Channel to
2

6 Limited Channel Logout

0

00000000 I/O Address

Assigned Storage Locations

Hex Dec
BC 188

2 CO 19

C4 196

C8 200

CC 204

DO 208

2

6

0

4

8

2

0

CPU-Timer s.ve Area

Clock-Comparator Seve Area

Machine-Check Interruption Code

04 21

08 21

DC 22

EO 22

E4 22

E8 23

EC 236

FO 24

F4 244

F8 248

FC 25

100 25

104 26

108 264

000000001 Failing-Storage Address

2

6

0

,.. -....
-I-" -,...

154 340

158 344

16C 348

160 352 Floating-Point Register Save A

164 356

168 360

16C 364

170 368

174 372

178 376

17C 380

180 384 Generel-Register Save Area

184 388

188 392

18C 396
-1.,..0 -.....

1B4 436

1B8 440

1BC 444

1CO 448 Control-Register Seve A

1C4 452

1C8 456

1CC 460

1F4 :1 J 1F8

1FC

Chapter 3. Storage 3-11

Chapter 4. Control

CPU States 4-1
Wait State 4-2
Supervisor and Problem States 4-2

Contents

Stopped, Operating, Load, and Check-Stop States 4-2
EC and BC Modes 4-3
Program-Status Word 4-4

Program-Status-Word Format in EC Mode 4-4
Program-Status-Word Format in BC Mode 4-6

Control Registers 4-7
Monitoring 4-8
Program-Event Recording 4-9

Control-Register Allocation 4-9
Operation 4-10

Identification of Cause 4-10
Priority of Indication 4-11

Storage-Area Designation 4-11
PER Events 4-12

Successful Branching
Instruction Fetching
Storage Alteration

4-12
4-12

4-12

This chapter describes in detail a number of facilities
for:
• Changing and interrogating the state of the ,~CPlJ
• Measuring time
• Initiating certain operations externally
• In general, enhancing the efficiency, utility, and

programmability of the machine
The information determining the state and

controlling the operation of the CPU resides in the
program-status word (PSW) and in control registers.
Additional status and control information appears in
permanently assigned storage locations which are
listed in Chapter 3, "Storage." Supervisor state and a
set of instructions that are valid only in supervisor
state provide a means for avoiding unauthorized or
inadvertent change of the machine state.

There are four facilities for measuring time:
• The time-of-day clock permits indication of

calendar time.
• The clock comparator permits a program to be

alerted at a particular value of the time-of-day
clock.

• . The CPU timer and the interval timer provide
means for a program to be alerted after a specified
time interval has elapsed.

General-Register Alteration 4.,.12
Indication of Events Concurrently with

Other Interruption Conditions 4-13
Timing 4-15

Time-of-Day Clock 4-15
Format 4-15
States 4-16
Setting and Inspecting the Value 4-16

Clock Comparator 4-18
CPU Timer 4-18
Interval Timer 4-19

Externally Initiated Functions 4-20
Resets 4-20

Program Reset 4-21
Initial Program Reset 4-23
Clear Reset 4-23
Power-On Reset 4-23

Initial Program Loading
Machine Save 4-25

4-24

There is a set of externally initiated functions for
initializing the machine or for inspecting its status.
These operations include resets, initial program
loading, and machine save.

Two' facilities enhance the usability of the machine.
Monitoring is useful for performing various
measurement functions. Program-event recording
provides a means to assist in debugging programs.

CPU States
Excluding states that may exist only during
maintenance, the CPU has three sets of alternative
states:
• Wait and nonwait
• Supervisor and problem
• Stopped, operating, load, and check stop
These states differ in the way they affect CPU
functions and in the way they are indicated and
changed.

Chapter 4. Control 4-1

Wait State
In the wait state, no instructions are processed,
whereas in the nonwait state, instruction processing
proceeds in the normal manner. The CPU is
interruptible in the wait state, provided it is enabled
for the interruption source.

The CPU is in the wait state when bit 14 of the
PSW is one. When bit 14 is zero, the CPU is in the
nonwait state.

When the CPU is in the wait state, the wait
indicator is on.

The updating of timing facilities is not affected by
whether the CPU is in the wait or nonwait state.

Programming Note

The wait state may be used to halt instruction
processing until an I/O or external interruption
occurs. To leave the wait state without manual
intervention, the CPU must be enabled for the
interruption source.

Supervisor and Problem States
The choice between supervisor and problem state
determines whether the full set of instructions is
valid.

In the problem state, only those instructions are
valid that cannot be used to affect system integrity
and that do not pertain to maintenance functions. In
the supervisor state, all instructions are valid.

The instructions that are valid only when the CPU
is in the supervisor state are called privileged
instructions. They include those which modify or
inspect storage keys and other parts of the page
descriptions, those which modify or inspect the
control fields in the PSW and in control registers, and
those which pertain to timing facilities and
input/ output. A privileged instruction encountered
in the problem state constitutes a privileged-operation
exception and causes a program interruption.

The CPU is in the problem state when bit 15 of the
PSW is one. When bit 15 is zero, the CPU is in the
supervisor state.

The updating of timing facilities is not affected by
whether the CPU is in the problem or supervisor
state.

4-2 IBM 4300 Processors Principles of Operation

Programming Note

The CPU may be switched between the wait and
nonwait states and between the supervisor and
problem states only by introducing an entire new
PSW. This may be performed by an interruption or
by initial program loading.

The instruction LOAD PSW may be used to switch
from the supervisor to the problem state and from the
nonwait to the wait state, but not vice versa. To
allow the return from an interruption-handling
routine by LOAD PSW, the PSW for the
interruption-handling routine must specify the
supervisor state. .

Stopped, Operating, Load, and Check-Stop
States
The stopped, operating, load, and check-stop states
are four mutually exclusive states. When the CPU is
in the stopped state, instructions and interruptions,
other than the restart interruption, are not executed.
In the operating state, the CPU executes instructions
and interruptions, subject to the control of the wait
bit and of bits for masking interruptions, and in the
manner specified by the setting of the manual rate
control. The CPU is in the load state during the
initial-program-Ioading operation. The CPU may
enter the check-stop state only as the result of
machine malfunctions.

A change between these four CPU states cannot be
effected by the program. The states are not
controlled or identified by bits in the PSW.

The state of the CPU is manually changed from
stopped to operating when the start function is
performed or when the restart key is activated and a
restart interruption occurs.

The start function is performed when the start key
is activated. If the rate control is set to instruction
step, the start function causes one unit of operation
to be executed, after which the stop function is
performed. The effect of the start function is
unpredictable when the stopped state has been
entered by means of a reset.

The state of th~ CPU is changed from operating to
stopped by the stop function. The stop function is
performed when:
• The stop key is activated while the CPU is in the

operating state
• The CPU has finished the execution of a unit of

operation with the rate control set to instruction
step

When the stop function is performed, the transition
from the operating to the stopped state occurs at the

end of the current unit of operation. When the CPU
is in the wait state, the transition takes place
immediately. In the case of interruptible instructions,
the amount of data processed in a unit of operation
depends on the particular instruction and may depend
on the model.

Before entering the stopped state, all pending,
allowed interruptions are taken while the CPU is still
in the operating state. They cause the old PSW to be
stored and the new PSW to be fetched before the
stopped state is entered. When the CPU is in the
stopped state, interruption conditions remain pending.

When the CPU is in the wait state and the rate
control is set to instruction step, initiating the start
function causes no instruction to be executed, but all
pending, allowed interruptions are taken before the
CPU returns to the stopped state.

The CPU is also placed in the stopped state:
• When a reset is completed, except when the reset

operation is performed as part of initial program
loading,· and

• When an address comparison indicates equality
and stopping on the match is specified

The execution of resets is described in the section
"Resets" in this chapter, and address comparison is
described in the section "Address-Compare Controls"
in Chapter 13, "Operator Facilities."
If the CPU is in the stopped state when the start

key is activated, the CPU executes at least one
instruction before taking an interruption for which
the CPU is enabled.

When the CPU is in the stopped. state, the manual
indicator is OD.

The CPU enters the load state when the
load-normal or load-clear key is activated (see the
section "Initial Program Loading" in this chapter).
While the CPU is in the load state, the load indicator
is on. When the initial-program-Ioading operation is
completed successfully, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described in
Chapter 11, "Machine-Check Handling." The
check-stop indicator is on when the CPU is in the
check-stop state.

The interval timer is updated only when the CPU is
in the operating state. The CPU timer is updated
when the CPU is in the operating state or the load
state. The time-of-day clock is updated whenever
power is on.

Programming Notes

1. Except for the relationship between execution
time and real time, the execution of a program is
not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and a
reset function has to be invoked instead. A
similar situation occurs when an unending
interruption sequence results from a program new
PSW with a PSW -format error of the type that is
recognized early or from a continuous .
interruption conditipn, such as one due to the
CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of I/O
operations remain pending when the CPU is in
the stopped state.

EC and BC Modes
Two control modes are provided for the formatting
and use of control and status information: the
extended-control (Ee) mode and the basic-control
(BC) mode. Certain functions available in the BC
mode are not available, or are available in a restricted
form, in the Be mode. The mode currently in effect
is specified by PSW bit 12. Bit 12 is one for the BC
mode and zero for the Be mode.

Program-event recording can be specified only in
the Be mode, because the PSW bit to turn this
function on is not -available in the Be mode.

In the BC mode, I/O interruptions can be
controlled individually for up to 32 channels using
the correspondingly numbered 32 mask bits in control
register 2; there is also a summary-mask bit for I/O
interruptions, bit 6 of the PSW. The BC mode
provides these capabilities only for channels 6 and
up: these channels are individually controlled by the
corresponding bits of control register 2, as well as the
summary-mask bit, bit 6 of the PSW; channels 0-5
are controlled separately by bits 0-5 of the PSW and
are not subject to the summary mask or to mask bits
in control register 2.

When interruptions occur while in the EC mode, the
interruption code and instruction-length code are
stored at various permanently assigned storage
locations according to the class of interruptions. In
the BC mode, the interruption code and instruction
length code for all except machine-check
interruptions are placed in the PSW.

Chapter 4. Control 4-3

The program-mask and condition-code fields in the
PSW are allocated to different bit positions in the
two control modes. INSERT STORAGE KEY
provides the reference and change bits when in the
EC mode but produces zeros in the corresponding bit
positions when in the BC mode.

Programming Notes

1. The BC mode provides a PSW format that is
compatible with the PSW of System/360.

2. The choice between EC and BC modes affects
only those aspects of operation that are
specifically defined to be different for the two
modes. It does not affect the operation of any
functions that are not associated with the control
bits in the PSW provided only in the EC mode,
and it does not affect the validity of any
instructions. The instructions SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK perform
the specified function on the leftmost byte of the
PSW regardless of the mode specified by the
current PSW. The instruction SET PROGRAM
MASK introduces a new program mask regardless
of the PSW bit positions occupied by the mask.

Program-Status Word
The current program-status word (PSW) contains
information required for the proper execution of the
currently active program. The PSW is 64 bits in
length and includes the instruction address, condition
code, and other control fields. In general, the PSW is
used to control instruction sequencing and to hold
and indicate much of the status of the CPU in
relation to the program currently being executed.
Additional control and status information is
contained in control registers and permanently
assigned storage locations.

1000000001 Instruction Address

32 40

PSW Format in Ee Mode

4-4 IBM 4300 Processors Principles of Operation

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new PSW.
The status of the CPU can be changed by loading a
new PSW or part of a PSW.

The instruction LOAD PSW introduces a new PSW.
Other instructions operate on only part of the PSW.
SET PROGRAM MASK introduces a new condition
code and the four program-mask bits; SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK change bits in
the leftmost byte of the PSW; SET PSW KEY FROM
ADDRESS introduces a new PSW key; and the
instruction address is updated by sequential
instruction execution and replaced by successful
branches.

The instruction INSERT PSW KEY places the PSW
key in a register; STORE THEN AND SYSTEM
MASK and STORE THEN OR SYSTEM MASK
store the leftmost byte of the PSW; and BRANCH
AND LINK loads the condition code, program mask,
and instruction address in a register, as well as the
instruction-length code, which in the BC mode is part
of the PSW.

A new or modified PSW becomes active (that is, the
information introduced into the current PSW assumes
control over the CPU) when an interruption or the
execution of an instruction is completed. The
interruption for program-event recording associated
with an instruction that changes the PSW occurs
under control of the PER mask that is effective at the
beginning of the operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.

Program-Status-Word Format in EC Mode

00000000

31

63

The following is a summary of the functions of the
PSW fields in the EC mode.

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruption by program events associated
with program-event recording (PER). When the bit is
zero, no program event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER-event-mask bits in control
register 9.

1/0 Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is zero,
an I/O interruption cannot occur. When the bit is
one, I/O interruptions are subject to the channel
mask bits in control register 2: when a channel-mask
bit is zero, the associated channel cannot cause an
I/O interruption; when the channel-mask bit is one,
an interruption condition at the channel can cause an
interruption.

External Mask (EX): Bit 7 controls whether the CPU
is enabled for interruption by conditions included in
the external class. When the bit is zero, an external
interruption cannot occur. When the bit is one, an
external interruption is subject to the corresponding
external subclass-mask bits in control register O.

PSW Key: Bits 8-11 form the access key for storage
references by the CPU. This PSW key is matched
with a storage key whenever information is stored, or
whenever information is fetched from a location that
is protected against fetching.

Ee Mode (E): Bit 12, which controls the format of
the PSW and the mode of operation of the CPU, is
one in the extended-control (EC) mode.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine
check conditions. When the bit is zero, a machine-

check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted, but
interruptions due to other machine-check-subclass
conditions are subject to the subclass-mask bits in
control register 14.

Wait State· (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is not in
the wait state.

Problem State (P): When bit 15 is one, the CPU is in
the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code.

Program Mask: Bits 20-23 are the four
program-mask bits. Each bit is associated with a
program exception, as follows:

Program
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The significance-mask bit also
determines the manner in which floating-point
addition and subtraction are completed.

Instruction Address: Bits 40-63 form the instruction
address. This address designates the location of the
leftmost byte of the next instruction.

Bit positions 0,2-5,16,17, and 24-39 are
unassigned and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Chapter 4. Control 4-5

Program-Status-Word Format in Be Mode

o

Channel Masks
0-5

Interruption Code

Instruction Address

PSW Format in Be Mode

The following is a summary of the functions of the
PSW fields in the BC mode:

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for 110 interruptions from channels
0-5, respectively. When a bit is zero, the associated
channel cannot cause an 110 interruption. When the
bit is one, an interruption condition at the channel
can cause an 110 interruption.

110 Mask (10): Bit 6 controls whether the CPU is
enabled for 110 interruptions from channels 6 and
higher. When the bit is zero, these channels cannot
cause 110 interruptions. When the bit is one, 1/0
interruptions are subject to the channel-mask bits of
the corresponding channels in control register 2:
when a channel-mask bit is zero, the associated
channel cannot cause an 110 interruption; when the
channel-mask bit is one, an interruption condition at
the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the bit is
one, an external interruption is subject to the
corresponding external subclass-mask bits in control
register O.

PSW Key: Bits 8-11 form the access key for storage
references by the CPU. This PSW key is matched
with a storage key whenever information is stored, or
whenever information is fetched from a location that
is protected against fetching.

EC Mode (E): Bit 12, which controls the format of
the PSW and the mode of operation of the CPU, is
zero in the basic-control (BC) mode.

4-6 IBM 4300 Processors Principles of Operation

31

63

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine
check conditions. When the bit is zero, a machine
check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage
and instruction-processing damage are permitted, but
interruptions due to other machine-check-subclass
conditions are subject to the subclass-mask bits in
control register 14.

Wait State (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is not in
the wait state.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Interruption Code: Bits 16-31 in the old PSW,
which is stored during a program, supervisor-call,
external, or 110 interruption, identify the cause of
the interruption. When a new PSW is introduced, the
contents of this field are ignored.

Instruction-Length Code (ILC): The code in bit
positions 32 and 33 indicates the length of the last
interpreted instruction when a program or
supervisor-call interruption occurs or when BRANCH
AND LINK is executed. When a new PSW is
introduced, the contents of this field are ignored.

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code.

Program Mask: Bits 36-39 are the four program
mask bits. Each bit is associated with a program
exception, as follows:

Program
Mask Bit

36

37

38

39

Program Exception

Fixed-point overflow

Decimal overflow

Exponent underflow

Significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The significance-mask bit also
determines the manner in which floating-point
addition and subtraction are completed.

Instruction Address: Bits 40-63 form the instruction
address. This address designates the location of the
leftmost byte of the next instruction.

Control Registers
The control registers provide a means for maintaining
and manipulating control information that resides
outside the PSW.

The addressing structure provides for sixteen 32-bit
control registers. The contents of these registers are
part of the CPU state. The instruction LOAD
CONTROL loads control information from storage
into control registers, whereas STORE CONTROL
transfers information from control registers to
storage.

One or more specific bit positions in control
registers are assigned to each function requiring such
register space. The bits control the indicated
function.

STORE CONTROL returns the information placed
in the assigned register positions by LOAD
CONTROL or by initial program reset. Values
corresponding to unassigned register positions are
unpredictable.

When the registers are loaded, the information is
not checked for exceptions.

The definition of each assigned control-register
position appears elsewhere with the description of the
function with which the register position is
associated. The figure "Control-Register
Assignments" here is a summary that shows the
function with which each assigned field is associated
and the initial value of the field upon execution of
initial program reset.

Programming Note

To ensure that existing programs run if and when
new facilities using additional control-register
positions are installed, the programs should load only
zeros in unassigned control-register positions.
Although STORE CONTROL may provide zeros in
bit positions corresponding to unassigned register
positions, the program should not depend on such
zeros.

Chapter 4. Control 4-7

CR Bits Name of Field Associated With I nitial Value

0 0 Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 20 Clock-comparator mask Clock comparator 0
0 21 CPU-timer mask CPU timer 0
0 24 I nterval-timer mask I nterval timer
0 25 Interrupt-key mask Interrupt key

0 26 External-signal mask External signal

2 0-31 Channel masks Channels

8 16-31 Monitor masks MONITOR CALL 0

9 0 Successful-branching-event mask Program-event recording 0
9 1 I nstruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-alteration-event mask Program-event recording 0
9 16-31 PERl general-register masks Program-event recording 0

10 8-31 PER starting address Program-event recording 0

11 8-31 PER ending address Program-event recording 0

14 0 (Not used) Machine-check handling 1
14 4 Recovery-report mask Machine-check handling 0
14 5 Degradation-report mask Machine-check handling 0
14 6 External-damage-report mask Machine check handling
14 7 Warning mask Machine-check handling 0

Explanation:

The fields not listed are unassigned. The initial value of unassigned register postions is unpredictable.

IPER means program-event recording.

Control-Register Assignments

Monitoring
Monitoring provides the capability for passing control
to· a monitoring program when selected indicators are
reached in the monitored program. The indicators
are MONITOR CALL instructions implanted in the
monitored program. When executed, these instruc
tions cause a program interruption for monitoring to
take place, prOVided an interruption is allowed for the
monitor class specified by the instruction. Along
with the interruption, the monitor-class number and a
monitor code are stored for subsequent use by the
monitoring program.

program interruption when the monitor-mask bit for
the class specified in the instruction is one.

Monitoring includes the instruction MONITOR
CALL, which designates one of 16 monitoring
classes, together with a set of 16 monitor masks in a
control register. One mask bit is assoCiated with each
class. The execution of the instruction causes a

4-8 IBM 4300 Processors Principles of Operation

Monitoring is available in both the BC and BC
modes.

The monitor-mask bits are in bit positions 16-31 of
control register 8.

Control Register 8

Monitor Masks

o 16 31

The mask bits, bits 16-31, correspond to monitor
classes 0-15, respectively. Any number of monitor
mask bits may be on at anyone time; together they

specify the classes of monitor events that are
monitored at that time. The mask bits are initialized
to zero.

When a MONITOR CALL instruction is interpreted
for execution and the corresponding monitor-mask bit
is one, a program interruption for monitoring occurs.
The cause of the interruption is identified by setting
bit 9 of the interruption code to one, and by the
information stored at locations 148-149 and
156-159. The format of the information stored at
these locations is the same in the EC and BC modes
and is as follows:

Locations 148-149

Monitor

00000000 Class No.

o 8 15

Locations 156-159

00000000 Monitor Code

o 8 31

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by the
Bl and Dl fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

Program-Event Recording
The purpose of the program-event recording (PER)
facility is to assist in debugging programs. It permits
the program to be alerted to the following PER
events:
• Successful execution of a branch instruction
• Fetching of an instruction from designated storage

locations
• Alteration of the contents of designated storage

locations
• Alteration of the contents of designated general

registers
The program can selectively specify one or more of

the above PER events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption, with

the cause of the interruption being identified in the
interruption code. PER is only available in the EC
mode.

Control-Register Allocation
The information for controlling program-event
recording resides in control registers 9, 10, and 11
and consists of the following fields:

Control Register 9

EM General-Register Masks

o 4 16

Control Register 10

Starting Address

o 8

Control Register 11

Ending Address

o 8

31

31

31

PER-Event Masks (EM): Bits 0-3 of control register
9 specify which events are monitored. The bits are
assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration event
Bit 3: General-register-alteration event

Bits 0-3, when ones, specify that the corresponding
events are monitored. When the bit is zero, the event
is not monitored.

PER General-Register Masks: Bits 16-31 of control
register 9 specify which general registers are
monitored for alteration of their contents. The 16
bits, in the order of ascending bit numbers,
correspond one for one with the 16 registers, in the
order of ascending addresses. When a bit is one, the
associated register is monitored for alteration; if zero,
the register is not monitored.

Chapter 4. Control 4-9

PER Starting Address: Bits 8-31 of control register
10 form an address that designates the beginning of
the monitored storage area.

PER Ending Address: Bits 8-31 of control register
11 form an address that designates the end of the
monitored storage area.

Programming Note

Models may operate at reduced performance while
the CPU is enabled for PER events. In order to
ensure that CPU performance is not degraded
because of the operation of the
program-event-recording facility, programs that do
not use program-event recording should disable
program-event recording by setting the PER mask in
the EC-mode PSW to zero. No degradation due to
program-event recording. occurs in the BC mode or
when the PER mask in the EC-mode PSW is zero.
Disabling of program-event recording in the EC mode
by means of the masks in control register 9 does not
necessarily prevent performance degradation due to
the facility.

Operation
Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an
interruption. When the mask is one, a monitored
event, as specified by the contents of control registers
9, 10, and 11, causes a program interruption. In BC
mode, program-event recording is disabled.

An interruption due to a PER event is taken after
the execution of the instruction responsible for the
event. The occurrence of the event does not affect
the execution of the instruction, which may be either
completed, terminated, suppressed, or nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in the
PSW or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction. If
the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition to
be recognized if it occurs during the execution of the
instruction.

When LOAD PSW or SUPERVISOR CALL causes
a PER condition and at the same time changes CPU

4-10 IBM 4300 Processors Principles of Operation

operation from the EC mode to the BC mode, the
PER interruption is taken with the old PSW
specifying the BC mode and with the interruption
code stored in the old PSW. The additional
information identifying the PER condition is stored :in
its regular format at locations 150-155.

Program-event recording applies to emulation
instructions in the following way. Emulation
instructions indicate all events that have occurred and
may additionally indicate events that did not occur
and were not called for in the instruction, provided
monitoring was enabled for the type of event by the
PER mask in the PSW and the PER -event masks, bits
0-3 in control register 9. In such cases, the contents
of the remaining positions in control registers 9, 10,
and 11 may be ignored. Thus, for example, an
emulation instruction may cause general-register
alteration to be indicated even though no general
registers are altered and even though bits 16-31 of
control register 9 are all zeros.

Identification of Cause

A program interruption for PER is identified by
setting bit 8 of the interruption code to one and by
the information placed in storage locations 150-155.
The format of the information stored at locations
150-155 is as follows:

Locations 150-151

PC I 000000000000

o 4 15

Locations 152-155

00000000 PER Address

o 8 31

The event causing a PER interruption is identified
by a one in bit positions 0-3 of location 150, the PER
code (PC), with the rest of the bits in the code set to
zeros. The bit position in the PER code for a
particular event is the same as the bit position for
that event in the PER event-mask field.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the EXECUTE
instruction is placed in the PER -address field. In

either case, the address of the instruction to be
executed next is placed in the PSW. Zeros are stored
in bit positions 4-7 of location 150 and at locations
151 and 152.

Priority of Indication

When a PER interruption occurs and more than one
designated PER event has been recognized, all
recognized PER events are concurrently indicated in
the PER code. Additionally, if another program
interruption condition concurrently exists, the
interruption code for a program interruption indicates
both the PER condition and the other condition.

Except as listed below, a PER event does not cause
premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.
• When the execution of an interruptible instruction

is due to be interrupted by an I/O, external, or
repressible machine-check condition, an
interruption for a pending PER condition occurs
first, and the I/O, external, or machine-check
interruption is subsequently subject to the control
of mask bits in the new PSW.

• Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is
entered.

• When any program exception is encountered, the
pending PER condition is indicated concurrently.

• Depending on the model, in certain situations, a
PER condition may cause the execution of an
interruptible instruction to be interrupted without
an associated asynchronous condition or program
exception. .

In the case of an instruction-fetching event for
SUPERVISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes

1. In the following cases, an instruction can both
cause a PER interruption and change the value of
bits controlling the occurrence of a PER
interruption for that particular event. In these
cases the original values of the. control bits
determine whether a PER interruption occurs.
a. The instructions LOAD PSW, SET SYSTEM

MASK, STORE THEN AND SYSTEM
MASK, and SUPERVISOR CALL can cause
an instruction-fetching event and disable the
CPU for PER interruptions. Additionally,

STORE THEN AND SYSTEM MASK can
cause storage alteration to be indicated. The
old program PSW associated with the PER
interruption may indicate that the CPU was
disabled for the interruption.

b. The instruction LOAD CONTROL may cause
an instruction-fetching event and change the
value of the PER -event masks in control
register 9 or the addresses in control registers
10 and 11 controlling indication of the
instruction-fetching event.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be -recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the ILC
indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused by branching,
the PER address identifies the branch instruction
(or EXECUTE, as appropriate), whereas the old
PSW points to the next instruction to be
executed. When the interruption occurs during
the execution of an interruptible instruction, the
PER address and the instruction address in the
old PSW are the same.

Storage-Area Designation
Two of the PER events-instruction fetching and
storage alteration-involve the designation of an area
in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends up
to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

The set of locations designated for monitoring
purposes wraps around at location 16777215; that is,
location 0 is considered to follow location 16777215.
When the starting address is smaller than the ending
address, the area is contiguous. Wben the starting
address is larger than the ending address, the set of
locations designated for monitoring purposes includes
the area from the starting address to location
16777215 and the area from location 0 to, and
including, the ending address. When the starting

Chapter 4. Control 4-11

address is equal to the ending address, only the
location designated by that address is monitored.

The inonitoring of storage alteration and instruction
fetching is performed by comparing all 24 bits of the
monitored address with the starting and ending
addresses.

PER Events

Successful Branching

Execution of a successful branch operation causes a
program-event interruption if bit 0 of the
PER-event-mask field is one and the PER mask in
the PSW is one.

A successful branch occurs whenever one of the
following instructions causes control to be passed to
the instruction designated by the branch address:

BRANCH ON CONDITION
BRANCH AND LINK
BRANCH ON COUNT
BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an emulation
instruction when the emulation instruction itself
causes a branch. That is, the branch event is
indicated when the location of the next instruction
executed by the CPU after leaving emulation mode
does not immediately follow the location of the
emulation instruction.

The event is indicated by setting bit 0 of the PER
code to one.

Instruction Fetching

Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event
interruption if bit 1 of the PER-event-mask field is
one and the PER mask in the PSW is one.

A PER event for instruction fetching is recognized
whenever the CPU executes an instruction whose
initial byte is located within the monitored area.
When the instruction is executed by means of
EXECUTE, a PER event is recognized when the first
byte of the EXECUTE instruction or the target
instruction or both is located in the monitored area.

The event is indicated by setting bit 1 of the PER
code to one.

4-12 IBM 4300 Processors Principles of Operation

Storage Alteration

Storing of data by the CPU in the storage area
designated by the contents of control registers 10 and
11 causes a program-event interruption if bit 2 of the
PER-event-mask field is one and the PER mask in
the PSW is one.

The contents of storage are considered to have been
altered whenever the CPU executes an instruction
that causes a whole operand or part of it to be stored
within the monitored area of storage. Alteration is
considered to take place whenever storing is
considered to take place for purposes of indicating
~~e.cept~ (See.thesection "&e~ll
ot1\.eeess~~1jiii:Cfia:pter ~
Rlnte~/") ··Sti!)ri:Bg constitutes ~~iOf
program ... e.vent:..recording pllrpuseseven if lbev:~
stored is the same as the original value

Implied locations that are referred to by the CPU in
the process of interval-timer updating, interruptions,
and execution of 110 instructions, including the
interval-timer, PSW, and CSW locations, are not
monitored. These locations, however, are monitored
when information is stored there explicitly by an
instruction. Similarly, monitoring does not apply to
storing of data by a channel.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the second-operand location only when storing
actually occurs.

The instruction STORE CHARACTERS UNDER
MASK is not considered to alter the storage location
when the mask is zero.

The event is indicated by setting bit 2 of the PER
code to one.

General-Register Alteration

Alteration of the contents of a general register causes
a program-event interruption if bit 3 of the
PER-event;..mask field is one, the alteration mask
corresponding to that general register is one, and the
PER mask in the PSW is one.

The contents of a general register are considered to
have been altered whenever a new value is placed in
the register. Recognition of the event is not
contingent on the new value being different from the
previous one. The execution of an RR-format
arithmetic or movement instruction is considered to
fetch the contents of the register, perform the
indicated operation, if any, and then replace the
value in the register. The register can be designated
implicitly, such as in TRANSLATE AND TEST and
EDIT AND MARK, or explicitly by an RR, RX, or

RS instruction, including BRANCH AND LINK,
BRANCH ON COUNT, BRANCH ON INDEX
HIGH, and BRANCH ON INDEX LOW OR
EQUAL.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to have
altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter the
contents of the four registers specifying the two
operands, including the cases where the padding byte
is used, when both operands have zero length, or
when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the general register
when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the general register, or general-register pair,
designated by R1, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the PER
code to one.

Programming Note

The following are some examples of general-register
alteration:
1. Register-to-register load instructions are

considered to alter the register contents even
when both operand addresses designate the same
register.

2. Addition or subtraction of zero and multiplication
or division by one are considered to constitute
alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even for
shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even When zero is added to its value.

Indication of Events Concurrently with
Other Interr"ption Conditions
The following rules govern the indication of PER
events caused by an instruction that has also caused a
program exception or the monitor event to be
indicated, or that causes a supervisor-call
interruption.
1. The indication of an instruction-fetching event

does not depend on whether the execution of the
instruction was completed, terminated,
suppressed, or nullified. The event, however, is
not indicated when an access exception prohibits
access to the first byte of the instruction. When
the first halfword of the instruction is accessible
but an access exception applies to the second or
third halfword of the instruction, it is
unpredictable whether the instruction-fetching
event is indicated.

2. When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is recognized.

3. Successful branching, storage alteration, and
general-register alteration are not indicated for an
operation or, in case the instruction is
interruptible, for a unit of operation that is
suppressed or nullified.

4. When the execution of the instruction is
terminated, general-register or storage alteration
is indicated whenever the event has occurred, and
a model may indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values.

5. When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW -format error that is 'recognized immediately
after the PSW becomes active, the interruption
code identifies both the PER condition and the
specification exception. When these instructions
introduce a PSW-format error of the type that is
recognized as part of the execution of the
following instruction, the PSW is stored as the old
PSW without the specification exception being
recognized.

The indication of PER events concurrently with
other program interruption conditions. is summarized
in the figure "Indication of PER Events. "

Chapter 4. Control 4-13

PER Event

Type of Instruction Storage GR
Exception Ending Branch Fetch Alteration Alteration

Operation S Xl

Privileged operation S Xl

I:xecute S Xl

Protection
Instruction S - I

Operand S or T X X+ X+
Addressing

Instruction S -I

Operand S or T X X+ X+
Specification

Odd instruction address S
Invalid PSW format C X
Other S X

Data
Invalid sign S X
Other T X X+ X+

Fixed-point overflow C X X
Fixed-point divide

Division S X
Conversion C X X

Decimal overflow C X X
Decimal divide S X
Exponent overflow C X
Exponentunderftow C X
Significance C X
Floating-point divide S X
Special operation S X
Page access

I nstruction address N - I

Operand address N X X2 X2

Page state S X
Page transition S X
Monitor event C X

Explanation:

C The operation or, in the case of the interruptible instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible instructions, the unit of operation is nullified. The instruction
address in the old PSW has not been updated.

S The operation or, in the case of the interruptible instructions, the unit of operation is suppressed.

T The execution of the instruction is terminated.

X The event is indicated with the exception If the event has occurred; that is, the contents of the monitored storage
location or general register were altered, or an attempt was made to execute an instruction whose first byte is
located in the monitored area.

+ A model is permitted. but not required. to indicate the event if the event would have occurred had the operation
been completed but did not take place because the execution of the instruction was terminated.

The event is not indicated.

lWhen an access exception applies to the second or third halfwOrd of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction-fetching event is indicated.

2This condition may occur in the case of the interruptible instructions when the event is recognized in the unit of
operation that is completed and the exception causes the next unit of operation to be suppressed or nullified.

Indication of PER Events

4-14 IBM 4300 Processors Principles of Operation

Programming Notes

1. The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE '
LOGICAL LONG (CLCL) can cause events for
general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

Since the execution of MVCL and CLCL can
be interrupted, a program event may be indicated
more than once. It may be necessary, therefore,
for a program to remove the redundant event
indications from the PER data. The following
rules govern the indication of the applicable
events during execution of these two instructions:
a. The instruction-fetching event is indicated

whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

b. The general-register-alteration event is
indicated on the initial execution and on each
resumption and does not depend on whether
or not the register actually is changed.

c. The storage-alteration event is indicated only
when data· has been stored in' the monitored
area by the portion of the operation starting
'with the last initiation and ending with the
last byte transferred before the interruption.
No special indication is provided on
premature interruptions as to whether the
event will occur again upon the resumption of
the operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE LONG.

2. The following is an outline of the general action a
program must take to delete the redundant entries'

in the PER data for MOVE LONG and
COMPARE LOGICAL LONG so that only one
entry for each complete execution of the
instruction is obtained:
a. Check to see if the PER address is equal to

the instruction address in the old PSW and if
the last instruction executed was MVCL or
CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met, and the event is
storage alteration, delete the event if the
current destination-operand address is within
the monitored area and the count for the
destination operand is not zero.

'Timing

. Time-oj-Day Clock
The time-of-day (TOD) clock provides a
high-resolution measure of real time that is also
suitable for the indication of both calendar date and
time of day. The cycle of the clock is approximately
143 years.

Format

The time-of-day clock is a binary counter with the
format shown in the following illustration. The bit
pOSitions of the clock are numbered 0 to 63,
corresponding to the bit positions of a 64-bit
unsigned binary integer. Time is measured by
incrementing the value of the counter.

r 1 microsecond

I ____ --""":1--: ~I ..1.-1 ------J
o 51 63

Chapter 4. Control 4-15

In the basic form, the time-of-day clock is
incremented at a rate corresponding to adding a one
in bit position 51 every microsecond. In models
having a higher or lower resolution of the clock, a
different bit position is incremented at such a
frequency that the rate of advancing the clock is the
same as if a one were added in bit position 51 every
microsecond. The resolution of the clock is such that
the actual in,crementing rate is comparable to the
instruction-execution rate of the model.

The bit positions of the clock that are always
provided are the leftmost positions up to and
including the actually incremented bit position.
Additional bit positions may be provided to the
immediate right of the incremented position; the
value they contain is unpredictable. Any remaining
bit positions at the extreme right of the doubleword
which are not provided are considered to contain
zeros.

When incrementing of the clock causes a carry to be
propagated out of bit position 0, the carry is ignored,
and counting continues. The program is not alerted
because no interruption condition is generated as· a
result of the overflow.

The operation of the clock is not affected or
inhibited by any normal activity or event in the
system. The clock runs independently of the CPU
states, that is, regardless of whether the CPU is in the
wait or stopped state, or in the instruction-step or
other test mode (test indicator on). Its operation is
not affected by resets, initial program loading, or an
IML operation. The clock does not run when the
CPU power is off.

States

The following states are distinguished for the
time-of-day clock: set, not set, error, and
not-operational. The state determines the condition
code set by the instruction STORE CLOCK. The
clock is incremented, and is said to be running, when
it is in either the set or not-set state.

The clock enters the not-set state, and the value of
the clock is set to zero, during a power-on reset. The
clock is incremented from zero at the completion of
power-on reset. When the clock is in the not-set
state, STORE CLOCK causes the current value of
the running clock to be stored and condition code 1
to be set.

SET CLOCK causes the clock to enter the set state
from the not-set, set, or error state. The clock is
incremented from the newly set clock value beginning
with the first stepping pulse after the clock enters the

4-16 IBM 4300 Processors Principles of Operation

set state. When the clock is in the set state, STORE
CLOCK causes the current value of the running
clock to be stored and condition code 0 to be set.

The clock enters the error state when a malfunction
is detected that is likely to have affected the validity
of the clock value. A timing-facility-damage
machine-check interruption condition is generated
whenever the clock enters the error state. When
STORE CLOCK is executed with the clock in the
error state, condition code 2 is set, and a value of all
zeros is stored.

The clock is in the not-operational state when
disabled. It depends on the model whether the clock
can be placed in this state. A timing-facility-damage
machine-check-interruption condition is generated
when the clock enters the not-operational state.
When the clock is in the not-operational state,
STORE CLOCK causes·condition code 3 to be set
and a value of all zeros to be stored.

Setting and Inspecting the Value

The clock can be inspected by means of the
instruction STORE CLOCK, which causes the
current 64-bit clock value to be placed in storage.
The execution of STORE CLOCK is interlocked so
that successive executions do not provide the same
clock value if the clock is running. This unique value
may be obtained from additional bits to the right of
the bit which is actually incremented; the additional
bits are not stored when the clock is in the
not-operational state. Zeros are stored for the
low-order bits not provided by the clock.

The bit positions which are updated by the· clock
can be set to a specific value by means of the SET
CLOCK instruction. SET CLOCK causes the value
of the clock to be changed only when the operator
activates the TOD-clock key to permit changing the
value of the clock.

Programming Notes

1. Bit position 31 of the clock is incremented every
1.048576 seconds; hence, for timing applications
involving human responses, reference to the
high-order clock word may provide sufficient
resolution.

2. Communication between systems is facilitated by
establishing a standard time origin, or standard
epoch, which is the calendar date and time to
which a clock value of zero corresponds.
January 1, 1900,0 AM Greenwich Mean Time
(GMT) is recommended as the standard epoch
for the clock.

3. A program using the clock value as a time-of-day
and calendar indication must be consistent with
the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit 0 of the clock
remains one through the years 1972-2041.
Ordinarily, testing the high-order bit for a one is
sufficient to determine if the clock value is in the
standard epoch.

In converting to or from the current date or
time, the programming support assumes each day
to be 86,400 seconds. It does not take into
account "leap seconds" inserted or deleted
because of time-correction standards.

4. Because of the limited accuracy of manually
setting the clock value, the low-order bit positions
of the clock, expressing fractions of a second, are
normally not valid as indications of the time of
day. However, they permit elapsed-time
measurements of high resolution.

5. The following chart shows the time interval
between instants at which various bit positions of
the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOO-Clock Stepping Interval
Bit Position Days Hours Minutes Seconds

51 0.000 001
47 0.000 016
43 0.000 256

39 0.004 096
35 0.065 536
31 1.048 576

27 16.777 216
23 4 28.435 456
19 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock setting at the
start of various years, when the recommended
standard epoch is used. The clock settings,
expressed in hexadecimal notation, correspond to
o AM Greenwich Mean Time on January 1 of
each year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000
1976 8853 BAFO B400 0000
1980 8F80 9F03 2200 0000
1984 96AD 8485 9000 0000
1988 9DDA 6997 FEOO 0000
1992 A507 4E7A 6COO 0000
1996 AC34 335C DAoo 0000
2000 B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2_12 microseconds,
or approximately 244. picoseconds. This value is
called a clock unit.

The following chart shows various time
intervals in clock units expressed·· in hexadecimal
notation.

Interval Clock Units (Hex)

1 microsecond 1000

1 millisecond 3E 8000

1 second F424 0000

1 minute 39 3870 0000

1 hour 069 3A40 0000

1 day 4100 7600, 0000

365 days 1CA E8C1 3EOO 0000

366 days 1CC 2A9E 8400 0000

1,461 days 1 72C E4E2 6EOO 0000

INumber of days in four years, including a leap year.

Chapter 4. Control 4-17

Clock Comparator
The clock comparator provides a means of causing an
interruption when the time-of-day clock has passed a
value specified by the program.

The clock comparator has the same format as the
. time-of-day clock. The clock comparator consists of
at least bits 0-47. Higher resolution is obtained when
more than 48 bits are provided. The bits in positions
provided in the clock comparator are compared with
the corresponding bits of the time-of-day clock.
When the resolution of the time-of-day clock is less
than that of the clock comparator, the contents of the
clock comparator are compared with the clock value
as this value would be stored by STORE CLOCK.

The. values of the clock comparator and the
time-of-day clock are equal when all compared bit
positions are· equal. When the values are unequal,
the condition is determined by the first unequal pair
of bits in a left-to-right comparison of
correspondingly numbered bit positions: the zero bit
indicates the lesser value and the one bit the greater
value.

The clock comparator causes an external
interruption with the interruption code 1004 (hex). A
request for a clock-comparator interruption exists
whenever either of the following conditions occurs:
1. The time-of-day clock is running and the value of

the clock comparator is less than the value in the
compared portion of the time-of-day clock.

2. The time-of-day clock is in the error or
not-operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that of
the time-of-day clock or when the value of the
time-of-day clock is made less than the
clock-comparator value. The latter may occur as a
result of the time-of-day clock either being set or
wrapping to zero.

The clock comparator can be inspected by means of
the instruction STORE CLOCK COMPARATOR
and can be set to a specific value by means of the
SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initialized
to zero by initial program reset.

4-18 IBM 4300 Processors Principles of Operation

Programming Notes

1. An interruption request for the clock comparator
persists as long as the clock-comparator value is
less than that of the time-of-day clock or as long
as the time-of-day clock is in the error or
not-operational state. Therefore, one of the
following actions must be taken after an external
interruption for the clock comparator has
occurred and before the CPU is again enabled for
external interruptions: the value of the clock
comparator has to be replaced, the time-of-day
clock has to be set, or the clock-comparator
submask has to be set to zero. Otherwise, loops
of external interruptions are formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled for
the clock-comparator interruption. This is
because the time-of-day clock may be
incremented one or more times between the
instants when instruction execution is begun and
when the clock value is accessed. In this
situation, the interruption occurs when the
execution of STORE CLOCK is completed.

CPU Timer
The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit 0 is considered a sign. In the basic
form, the CPU timer is decremented at a rate
corresponding to subtracting a one in bit position 51
every microsecond. In models having a higher or
lower resolution, a different bit position is
decremented at such a frequency that the rate of
reducing the CPU timer is the same as if a one were
subtracted in bit position 51 every microsecond.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever the
value in the CPU timer is negative (bit 0 of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is made positive.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are synchronized
such that both are stepped at the same rate.
Normally, decrementing the CPU timer is not
affected by concurrent I/O activity. However, the
CPU timer may stop during extreme I/O activity and
other similar interference situations. In such cases,
the time recorded by the CPU timer provides a more

accurate measure of the CPU time used by the
program than that which would have been recorded
had the CPU timer continued to step.

The CPU timer is decremented when the CPU is
executing instructions, during the wait state, and
during initial program loading, but it is not
decremented when the CPU is in the stopped state.
When the manual rate control is set to instruction
step, the CPU timer is decremented only during the
time when the CPU is actually performing a unit of
operation. Depending on the model, the CPU timer
mayor may not be decremented when the
time-of-day clock is in the error or not-operational
state or when the CPU is in the check-stop state.

The CPU timer can be inspected by means of the
instruction STORE CPU TIMER and can be set to a
specific value by means of the SET CPU TIMER
instruction.

The contents of the CPU timer are initialized to
zero by initial program reset.

Programming Notes

1. The CPU timer, in association with a program,
may be used both to measure CPU -execution time
and to signal the end of a time interval on the
CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as 110 interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the same
installation may differ.

3. The fact that a CPU-timer interruption does not
remain pending when the CPU timer is set to a
positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer value
goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by the
CPU timer is interrupted for a cause other than
the CPU timer, external interruptions are
disallowed by the new PSW, and the CPU-timer
value is then saved by STORE CPU TIMER.
This value could be negative if the CPU timer

went from positive to negative since the
interruption. Subsequently, when the program
being timed is to continue, the CPU timer may be
set to the saved value by SET CPU TIMER. A
CPU-timer interruption will occur immediately
after external interruptions are again enabled if
the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an external
interruption for the CPU timer has occurred,
either the value of the CPU timer has to be
replaced or the CPU-timer submask has to be set
to zero before the CPU is again enabled for
external interruptions. Otherwise, loops of
external interruptions are formed.

5. The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled
for the interruption. This is because the
CPU-timer value may be decremented one or
more times between the instants when instruction
execution is begun and when the CPU timer is
accessed. In this situation, the interruption
occurs when the execution of STORE CPU
TIMER is completed.

Interval Timer
The interval timer is a binary counter that occupies a
word at storage location 80 and has the following
format:

o 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of the
interval timer are reduced by one in bit position 23
every 1/300 of a second. Higher resolution of timing
may be obtained in some models by counting with
higher frequency in one of the positions 24 through
31. In each case, the frequency is adjusted to cause
decrementing in bit position 23 at the rate of 300
times per second. The cycle of the interval timer is
approximately 15.5 hours.

The interval timer causes an external interruption,
with bit 8 of the interruption code set to one and bits
0-7 set to zeros. Bits 9-15 of the interruption code
are zeros unless set to ones for another condition that
is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is

Chapter 4. Control 4-19

decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by an
interval-timer interruption or a program reset. The
overflow occurring as the interval-timer value is
decremented from a large negative number to a large
positive number is ignored.

The interval timer is not . necessarily synchronized
with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval timer
may be updated during the execution of an
interruptible instruction, such as MOVE LONG. An
updated interval-timer value is normally available at
the end of each instruction execution. When the
execution of an instruction or other machine activity
causes updating to be delayed by more than one
period, the contents of the interval timer may be
reduced by more than one unit in a single updating
cycle. Interval-timer updating may be omitted when
110 data transmission approaches the limit of storage
capability, or when a channel sharing CPU equipment
and operating in burst mode causes CPU activity to
be locked out. The program is not alerted when
omission of updating causes the real-time count to be
lost.

The value of the interval timer is accessible by
fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by storing a
word at location 80. When location 80 is protected,
any attempt by the program to change the value of
the interval timer causes a program interruption for
protection exception.

When the contents of the interval timer are fetched
by a channel or are used as the source of an
instruction, the result is unpredictable. Similarly,
storing by the channel at location 80 causes the
contents of the interval timer to be unpredictable.

The interval timer is not decremented when the
interval-timer control is set to disable. The interval
timer is also not decremented when the CPU is not in
the operating state or when the rate control is set to
instruction step.

4-20 IBM 4300 Processors Principles of Operation

Programming Notes

1. The value of the interval timer may be changed
without losing the real-time count by storing the
new value at locations 84-87 and then shifting
bytes 80-87 to locations 76-83 by means of the
instruction MOVE (MVC). Thus, in a single
operation, the new interval-timer value is placed
at location 80, and the old value is made
available at location 76.

If any means other than the instruction MOVE
(MVC) are used to interrogate and then replace
the value of the interval timer, including MOVE
LONG or two separate instructions, the program
may lose a time increment when an updating
cycle occurs between fetching and storing.

2. When the value of the interval timer is to be
recorded on an 110 device, the program should
first store the interval-timer value in a temporary
storage location to which the 110 operation
subsequently refers. When the channel fetches
the interval-timer value directly from location 80,
the value obtained is unpredictable.

Externally Initiated FUDctions

Resets
Four reset functions are provided:
• Program reset
• Initial program reset
• Clear reset
• Power-on reset

Program reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU and 110 state with the
least amount of information destroyed. In particular,
it is used to clear check conditions when the machine
state is to be preserved for analysis or resumption of
operation.

Initial program reset provides the functions of
program reset together with initialization of the
current psw ~ CPU timer, clock comparator, and
control registers.

Clear reset causes initial program reset to be
performed and, additionally, clears or initializes all
storage locations and the remaining registers with the
exception of the time-of-day clock. Such clearing is
useful in debugging programs and in ensuring user
privacy. Clearing does not affect external storage,
such as direct-access storage devices used by the
control program to hold the contents of
unaddressable pages.

Power-on reset combines the functions of clear
reset with initializing the time-of-day clock and
selecting storage size.

Program reset and clear reset are initiated manually
using the operator facilities (see Chapter 13,
"Operator Facilities"). Initial program 'reset is part
of the initial-program-Ioading function. Power-on
reset is performed as part of turning power on. The
reset actions are tabulated in the figure " Summary of
Reset Actions."

Program Reset
Program reset causes the following actions:
1. The execution of the current instruction or other

processing sequence, such as an interruption, is
terminated, and all program-interruption and
supervisor-calI-interruption conditions are
cleared.

2. Any pending external-interruption conditions are

cleared.
3. Any pending machine-cheek-interruption

conditions, error indications, and check-stop state
are cleared.

4. Any buffers containing prefetched instructions or
operands, or results due to be stored, are cleared.

5. The CPU is placed in the stopped state after
actions 1-4 have been completed.

6., I/O system reset is performed in each channel.
7. Any ongoing machine-save function is canceled,

and partially saved information is invalidated.
Register and storage contents remain unchanged by

program reset. However, if a register or storage
location is being accessed at the time the
program-reset operation is performed, the subsequent
contents of the register or location are unpredictable.

Chapter 4. Control 4-21

Reset Function

Initial
Program Program Clear Power-On

Area Affected Reset Reset Reset Reset

CPU state S S S S

Channels R R R R

PSW U C C C

CPU timer U C C C

Clock comparator U C C C

Time-of-day clock U1 U1 U1 T

Control registers U N N N

General registers U U C C

Floating-point registers U U C C

Capacity counts U U N N

Page descriptions U U C C

Storage U U P P

Machine save H H I

Explanation:

C The contents are cleared to zero and validated.

H Any ongoing machine-save function is halted, and any partially altered save information is invalidated.

The contents are invalidated.

N The contents are initialized.

P The first n storage pages are cleared and made addressable, where n is the lesser of the available-frame-capacity
and page-capacity counts. Any remaining pages are left disconnected.

R I/O system reset is performed in the channels, and I/O-interruption conditions are cleared. As part of this
reset, system reset is signaled to the I/O control units and devices configured to each channel.

S The CPU is reset, terminating current operations, after which the CPU is in the stopped state.

T The TOO clock is initialized to zero and validated, and it enters the not-set state_

U The contents remain unchanged by the reset.

1 Access to the TOO clock by means of STOR E CLOCK at the time a reset function is performed does not affect
the value of the TOO clock.

Summary of Reset Actions

As part of the I/O system reset performed in each
channel (see the section "I/O System Reset" in
Chapter 12, "Input/Output Operations"), pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
configured to the channel. The effect of system reset
on I/O control units and devices and the resultant
control-unit and device state are described in the
appropriate publication on the control unit or device.
A system reset, in general, resets only those functions

4-22 IBM 4300 Processors Principles of Operation

in a shared control unit or device that are associated
with the particular CPU signaling the reset.

Program reset is performed when the
system-reset-normal key is activated. It is also part
of the initial-program-reset function.

Initial Program Reset

Initial program reset combines the program-reset
functions with the following actions:
1. The contents of the current PSW, CPU timer,

and clock comparator are set to zero.
2. All assigned control-register positions are set to

their initial values.
These clearing and initializing functions include

validation.
Clearing the current PSW to zero causes the PSW

to assume the BC-mode format. The
instruction-length code and interruption code in the
PSW are unpredictable, because these values are not
retained when a new PSW is introduced.

Initial program reset is part of the clear-reset
function. It is also part of the initial-program-Ioading
function when the load-normal or load-clear key is
activated.

Clear Reset

Clear reset combines the initial-program-reset
function with an initializing function which causes
the following actions:
1. The general and floating-point registers are set to

zero.
2. The storage key of every storage page is set to

zero.
3. The page bits of every storage page are set to

zeros.
4. All page frames that had been made temporarily

unavailable by DECONFIGURE PAGE
instructions are made available. (This excludes
frames made permanently unavailable by
maintenance intervention.)

5. The page-capacity, existing-frame-capacity,
available-frame-capacity, and free-frame-capacity
counts are initialized.

6. Let n: be the lesser of AFCC, the current
available-frame-capacity count, and PCC, the
page-capacity count. Then each of n page frames
is assigned to one of the first n storage pages,
namely those with page addresses 0 to n minus
one. These pages are cleared to zero bytes and
have their page states set to addressable. Any
remaining pages have their page states set to
disconnected.

7. Any previously saved machine-save information is
invalidated.

Validation is included in setting registers and
capacity counts and in clearing storage and page
descriptions.

Clear reset is performed when the
system-reset-clear key is activated. Clear reset is also
part of the power-on-reset function, and part of the
initial-pro gram-loading function when performed
upon activating the load-clear key.

Programming Notes

1. For the program.,.reset operation not to affect the
contents of fields that are to be left unchanged,
the CPU must not be executing instructions and
must be disabled for all interruptions at the time
of the reset. Except for the operation of the
time-of-day clock, CPU timer, and interval timer,
and for the possibility of taking a machine-check
interruption, all CPU activity can be quiesced by
placing the CPU in the wait state and by
disabling it for I/O and external interruptions.
To avoid the possibility of causing a program
reset at the time the timing facilities are being
updated or a machine-check interruption occurs,
the CPU must be in the stopped state.

2. Program reset, initial program reset, and clear
reset do not affect the value and state of the
time-of-day clock.

3. Clear reset causes all bit positions of the interval
timer to be cleared to zeros.

4. Program reset and initial program reset leave
machine-save information unchanged if no
machine save is being performed at the time of
the reset.

5. The conditions under which the CPU enters the
check-stop state are model-dependent and include
malfunctions that preclude the completion of the
current operation. Hence, if program reset or
initial program reset is executed while the CPU is
in the check-stop state, the contents of registers,
the CPU state, and the storage location accessed
at the time of the error may still be in error after
the check;'stop state is cleared by these resets. In
such a case, a clear reset is required in order to
clear the error.

Power-On Reset

Power-on reset causes the following actions:
1. The· clear-reset function is performed.
2. The value of the time-of-day clock is set to zero,

and the clock enters the not-set state.
Power-on reset is part of the power-on sequence of

the machine. The power-on sequence is not complete
until the clear-reset function has been performed
successfully and the time-of-day clock has entered
the not-set state.

Chapter 4. Control 4-23

Initial Program Loading
Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing.

Initial program loading is initiated manually by
designating an input device with the
load-unit-address controls and subsequently
activating the load-normal or load-clear key. The
load-normal key causes an initial-program-reset
operation to be performed, and the load-clear key
causes a clear-reset operation to be performed. The
CPU enters the load state. Subsequently, a read
operation is initiated from the selected input device.
The CPU does not necessarily enter the stopped state
during the execution of the reset operation. The load
indicator is on while the CPU is in the load state.

The read operation is performed as if a START I/O
instruction were executed that specified the channel,
subchannel, and I/O device designated by the
load-unit-address controls. The operation uses an
implied channel-address word (CAW) containing a
subchannel key of zero, and a
channel-command-word (CCW) address of 0, but the
CAW location in storage, location 72, is not accessed.
The load-unit-address controls provide the 12
rightmost bits of the I/O address; zeros are implied
for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a byte
count of 24, the chain-command flag set to one, the
SLI flag set to one, the chain-data flag set to zero,
the skip flag set to zero, and the PCI flag set to zero.
The CCW fetched, as a result of command chaining,
from storage location 8 or 16, as well as any
subsequent CCW in the IPL sequence, is interpreted
the same as a CCW in any I/O operation, except that
any PCI flags that are specified in CCWs used for
the IPL sequence are ignored.

When the I/O device provides channel-end status
for the last operation of the IPL chain and no
exceptional conditions are detected in the operation,
a new PSW is obtained from storage locations 0-7.
When this PSW specifies the BC mode, the I/O
address that was used for the IPL operation is stored
at locations 186-187, and zeros are stored at location
185; when the BC mode is specified, the I/O address
is stored at locations 2-3. The CPU leaves the load
state and enters the operating state, with CPU
operation proceeding under the control of the new

4-24 IBM 4300 Processors Principles of Operation

PSW, provided the rate control is set to process; if
the rate control is set to instruction step, the CPU
enters the stopped state after the new PSW has been
obtained.

When channel-end status for the IPL operation is
presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL sequence are
ignored. If the device-end status for the IPL
operation is provided separately after channel-end
status, it causes an I/O interruption condition to be
generated.
If the IPL I/O operation or the PSW loading is not

completed satisfactorily, the CPU idles in the load
state, and the load indicator remains on. This occurs
when the device designated by the load-unit-address
controls is not operational, when the device or
channel signals any condition other than channel end
device end, or status modifier during or at the '
completion of the IPL I/O operation, or when the
PSW loaded from location 0 has a PSW -format error
that is recognized during the loading procedure. The
address of the I/O device used in the IPL operation
is not stored. The contents of storage locations 0-7
are unpredictable, but the contents of other storage
locations remain unchanged.

When fewer than eight bytes are read into locations
0-7, the PSW fetched from location 0 at the
conclusion of the IPL operation is unpredictable.

Programming Notes

1. The information read and placed at locations
8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer to
these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel to
fetch and chain to the CCW whose address is 16
higher than that of the current CCW. This
applies also to the initial chaining that occurs
after completion of the read operation specified
by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL I/O operation or may be
placed at locations 0-7 by a subsequent CCW.

2. When the PSW in location 0 has bit 14 set to
one, the CPU is placed in the wait state after the
IPL procedure is completed; at that point, the
load and manual indicators are off, and the wait
indicator is on.

3. Activating the load-normal key permits an IPL
program to be loaded with a minimum
disturbance of storage contents. This function
may be useful in debugging. When the power is
turned on or the load-clear key is activated, the
IPL program starts with a cleared machine in a
known state, except that information on external
storage remains unchanged.

Machine Save
The machine-save operation saves the current CPU
status and the status and contents of storage page 0
for subsequent retrieval by programming. The
operation is initiated manually by the machine-save
key (see Chapter 13, "Operator Facilities").

Machine save causes the following actions:

1. The current contents of all CPU registers and the
status of page 0 are saved in internal storage.
The format of the saved information is not
defined. The figure "Machine Status, Retrieval
Format" describes the machine-status information
in the 256-byte format in which it is moved to
addressable storage by a subsequent RETRIEVE
STATUS AND PAGE instruction.

2. The current contents of page 0, that is, the 2,048
bytes at addresses 0-2047, are saved in internal
storage.

The register contents and the status and contents of
page 0 remain unchanged.

When a machine-save operation has been
successfully completed, the save indicator is turned
on.

Byte
Offset

0-7

8-15

16-23

24-31

32-63

64-127

128-191

192-199

200-203

204-207

208-211

212-215

216

217

218-219

220-255

Explanation:

Bits

o
1-3

Contents

CPU timer!
Clock comparator!

Program-status word
Time-of-day clock!
Floating-point registers 0, 2,4,6

General registers 0-15

Control registers 0-15
CPU IO!

Page-capacity counl
Existing-frame-capacity counl
Available-frame-capacity count2

Free-frame-capacity count2

Zero

Page bits of page 0
4 Zero
5 Reference bit of page 0
6 Change bit of page 0

7

0-3

4

5-7

Zero
Access-control bits of page 0
Fetch-protection bit of page 0

Zeros
Frame index2 of page 0

Zeros

!The formats of these fields are the same as those produced by
STORE CPU TIMER, STORE CLOCK COMPARATOR, STORE
CLOCK, and STORE CPU ID, respectively.

2The capacity counts and the frame index are right-aligned with
leftmost bits of zeros.

Machine Status, Retrieval Format

Chapter 4. Control 4-25

A machine save replaces the information saved by
the previous machine save.

When a clear-reset operation is performed, any
previously saved information becomes invalid.
Subsequent execution of the RETRIEVE STATUS
AND PAGE instruction returns condition code 3
until another machine-save operation is successfully
performed.

A reset operation occurring while a machine save is
in progress halts the machine-save operation. If an
incomplete machine save partially alters previously
saved information, the saved information is indicated
to be invalid, and subsequent execution of
RETRIEVE STATUS AND PAGE returns condition
code 3 until the next successful machine-save
operation. Invalid machine saves cannot be
retrieved.

The CPU must be in the stopped state before a
machine-save operation can be initiated. If an error
is encountered during the operation, the saved
information becomes invalid, the CPU enters the
check-stop state, and the save indicator is not turned
on.

4-26 IBM 4300 Processors Principles of Operation

Programming Notes

1. Machine save may be used as part of a
machine-dump procedure when the normal
supervisor program is not functioning properly,
such as after a hard wait (wait state with
interruptions disabled). By preserving the
complete machine status and page 0, machine
save permits loading a dump program, which can
preserve additional pages if necessary. The dump
program can then merge the saved information
with the undisturbed pages to create a complete
image of the machine at the time of the machine
save. The machine should not be cleared before
loading the dump program.

2. When the supervisor program is still functioning,
it is less disruptive to use the supervisor to invoke
a dump program without a machine save. An
intermediate option is the restart function.

3. The format of the byte at offset 216 corresponds
to the byte inserted by the instruction INSERT
PAGE BITS.

4. Unassigned bits in the retrieval format of the
machine status are stored as zeros. The program
should not depend on such zeros, however, to
ensure that existing programs run if new facilities
using these bits are defined.

Chapter S. Program Execution

Contents

Instructions 5-1
Operands 5-1
Instruction Format 5-2

Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3

Operand-Address Generation 5-4
Instruction Execution 5-4

Sequential Instruction Execution 5-4
Branching 5-4
Interruptions 5-5

Sequence of Storage References 5-5
Instruction Fetch 5-6

Normally, operation of the CPU is controlled by
instructions taken in sequence. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, or manual intervention.

Instructions
Each instruction consists of two major parts:
1. An operation code (op code), which specifies the

operation to be performed, and '
2. The designation of the operands that participate

Operands
Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, or control registers, with the type of
register identified by the op code. The register
conta~ning the operand is specified by identifying the
register in a four-bit field, called the R field, in the
instruction. For some instructions, an operand is
located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other cases,
be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.

Page-Description Accesses 5-6
Storag.e-Operand References 5-7

Storage-Operand Fetch References 5-7
Storage-Operand Store References 5-7
Storage-Operand Update References 5-7

Storage-Operand Consistency 5-8
Relation Between Operand Accesses 5-8
Other Storage References 5-9

Serialization 5-9
CPU Serialization 5-9
Channel Serialization 5-10

The addresses of operands in storage are specified by
means of a format that uses the contents of a general
register as part of the address. This makes it possible
to:
1. Specify a complete address by using an

abbreviated notation
2. Perform address manipulation using instructions

which employ general registers for operands
3. Modify addresses by program means without

alteration of the instruction stream
4. Operate independently of the location of data

areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X, and
D fields, respectively, in the instruction.

For purposes of describing the execution of
instructions, operands are designated as first and
second operands and, in some cases, third operands.

In general, two operands participate in an
instruction execution, and the result replaces the first
operand. An exception is instructions with "store" in
the instruction name, other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK, where the result replaces the second operand.
Except for storing the final result, the contents of all
registers and storage locations participating in the
addressing or execution part of an operation remain
unchanged.

Chapter 5. Program Execution 5-1

Instruction Format
An instruction is one, two, or three halfwords in RR Format

length and must be located in storage on a halfword

I I integral boundary. Each instruction is in one of six Op Code R1 R2

basic formats: RR, RX, RS, SI, S, and SS, with two
variations of SS. (See the figure "Basic Instruction 0 8 12 15
Formats. ")

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the RX Format
operation performed does not follow the general rules

I I stated in this section. All of these exceptions are Op Code R1 X2 B2 02
explicitly identified in the individual instruction
descriptions. 0 8 12 16 20 31

The format names indicate, in general terms, the
classes of operands which participate in the
operation: RS Format
• RR denotes a register-and-register operation.

I I I • RX denotes a register-and-indexed-storage Op Code R1 R3 B2 02
operation.

• RS denotes a register-and-storage operation. 0 8 12 16 20 31
• SI denotes a storage-and-immediate operation.
• S denotes an operation using an implied operand

and storage. SI Format
• SS denotes a storage-and-storage operation.

Op Code 12 B1 01

0 8 16 20 31

S Format

Op Code

o 16 20 31

SS Format

~O_P_c_od_e~ ____ L __ ~_B_1~1;~~
o 8 16 20 32 36 47

o 8 12 16 20 32 36 47

Basic Instruction Formats

5-2 IBM 4300 Processors Principles of Operation

The first byte or, in the S format, the first two bytes
of an instruction contain the op code. For some
instructions in the S format, all or a portion of the
second byte is ignored.

The first two bits of the first or only 'byte of the op
code specify the length and format of the instruction,
as follows:

Bit Positions Instruction Instruction
(0-1) Length Format

00 One halfword RR
01 Two halfwords RX
10 Two halfwords RS/SI/S
11 Three halfwords SS

In the format illustration for each individual
instruction description, the op-code field shows the
op code in hexadecimal representation. The
hexadecimal representation uses one graphic for a
four-bit code, and therefore two graphics for an
eight-bit byte. The graphics 0-9 are used for the
codes 0000-1001; the graphics A-F are used for
codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,
consisting of a letter and possibly a subscript number.
The subscript number denotes the operand to which
the field applies.

Register Operands

In the RR, RX, and RS formats, the contents of the
register designated by the R1 field are called the first
operand. In the RR format, the R2 field designates
the register containing the second operand, and the
same register may be designated for the first and
second operand. In the RS format, the use of the R3
field depends on the instruction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general register or a
control register and 64 bits for a floating-point
register), and the second operand is the same length
as the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The B1 and
D1 fields designate the first operand, which is one
byte in length.

Storage Operands

In the SI and SS formats, the contents of the general
register designated by the B1 field are added to the
contents of the D1 field to form the first-operand
address. In the S, RS, and SS formats, the contents
of the general register designated by the B2 field are
added to the contents of the D2 field to form the
second-operand address. In the RX format, the
contents of the general registers designated by the
X2 and B2 fields are added to the contents of the
D2 field to form the second-operand address.

In the SS format, with two length fields given, L1
specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-16, corresponding to a length code in
L1 of 0-15. Similarly, L2 specifies the number of
additional operand bytes to the right of the location
designated by the second-operand address. Results
replace the first operand, and are never stored
outside the field specified by the address and length.
If the first operand is longer than the second, the
second operand is extended on the left with zeros up
to the length of the first operand. This extension
does not modify the second operand in storage.

In the -SS format with a single, eight-bit length field,
L specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-256, corresponding to a length code in L
of 0-255. Storage results replace the first operand
and are never stored outside the field specified by the
address and length. In this format, the second
operand has the same length as the first operand,
except for the following instructions: EDIT, EDIT
AND MARK, TRANSLATE, and TRANSLATE
AND TEST. RETRIEVE STATUS AND PAGE does
not use the L field, the operand lengths being fixed.

Chapter 5. Program Execution 5-3

Operand-Address Generation
An operand address that refers to storage either is
contained in a register designated by an R field in the
instruction or is calculated from the sum of three
binary numbers: base address, index, and
displacement.

The base address is a 24-bit number contajned in a
general register specifed by the program in a four-bit
field, called the B field, in the instruction. Base
addresses can be used as a means of independently
addressing each program and data area. In
array-type calculations, it can specify the location of
an array, and, in record-type processing, it can
identify the record. The base address provides for
addressing the entire storage. The base address may
also be used for indexing purposes.

The index is a 24-bit number contained in a general
register designated by the program in a four-bit field,
called the X field, in the instruction. It is included
only in the address specified by the RX instruction
format. The RX format instructions permit double
indexing; that is, the index can be used to provide the
address of an element within an array.

The displacement is a 12-bit number contained in a
field, called the D field, in the instruction. The
displacement provides for relative addressing of up to
4,095 bytes beyond the location designated by the
base address. In array-type calculations, the
displacement can be used to specify one of many
items associated with an element. In the processing
of records, the displacement can be used to identify
items within a record.

In forming the address, the base address and index
are treated as 24-bit unsigned binary integers. The
displacement is similarly treated as a 12-bit unsigned
binary integer, and 12 high-order zeros are appended.
The three are added as 24-bit binary numbers,
ignoring overflow. The sum is always 24 bits long.
The bits of the generated address are numbered 8-31,
corresponding to the numbering of the base-address
and index bits in the general register.

A zero in any of the Bl, B2, or X2 fields indicates
the absence of the corresponding address component.
For the absent component, a zero is used in forming
the address, regardless of the contents of general
register O. A displacement of zero has no special
significance.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

5-4 IBM 4300 Processors Principles of Operation

Unless otherwise indicated in the individual
instruction definition, the computed operand address
designates an operand in storage. When a storage
operand is designated, the address designates the
leftmost byte of the operand. For branching
instructions, the second-operand address is used as
the branch address. For shifting instructions, the
second -operand address is not used as an address but
specifies the shift amount.

Instruction Execution
The program-status word (PSW), described in
Chapter 4, "Control," contains information required
for proper program execution. The PSW is used to
control instruction sequencing and to hold and
indicate the status of the machine in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Sequential Instruction Execution
In program execution, instructions are normally
executed sequentially, one at a time, left to right in
storage. An instruction is fetched from the location
designated by the instruction address in the current
PSW. The instruction address is then increased by
the number of bytes in the instruction in order to
address the next instruction in sequence. The
instruction is then executed, and the same steps are
repeated using the new value of the instruction
address.

Branching
The normal sequential execution of instructions may
be changed by the use of the branching instructions
in order to perform subroutine linkage,
decision-making, and loop control. A branch
instruction affects instruction sequencing by
introduCing a new instruction address into the current
PSW.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also the
preservation of the return address and associated
information.

Facilities for decision making are provided by the
BRANCH ON CONDITION instruction. This
instruction inspects a two-bit condition code that
reflects the result of a majority of the arithmetic,
logical, and 110 operations. Each of these operations
can set the code in anyone of four states, and the
instruction BRANCH ON CONDITION can specify
any selection of these four states as the criterion for

branching. For example, the condition code reflects
such conditions as nonzero, first operand high, equal,
overflow, channel busy, and zero. Once set, the
condition code remains unchanged until modified by
an instruction that causes a different condition code
to be set.

The two bits of the condition code provide for four
possible condition-code settings: 0, 1, 2, and 3. The
specific meaning of any setting depends on the
operation that sets the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arithmetic
and tests, the instructions BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW are provided. These branches, being
specialized~ provide increased performance for these
tasks.

Interruptions
Interruptions permit the CPU to change state as a
result of conditions external to the system, in
input/output (I/O) devices, or in the CPU itself. Six
classes of interruption conditions are possible:
machine check, supervisor call, program, external,
I/O, and restart.

Each class has two related PSWs, called old and
new, in permanently assigned storage locations. In
all classes, an interruption involves storing
information identifying the cause of the interruption,
storing the current PSW in its old position, and
making the PSW at the new position the current
PSW.

The old PSW holds all necessary CPU status
information existing at the time of the interruption.
If, at the conclusion of the program invoked by the
interruption, there is an instruction to make the old
PSW the current PSW, the CPU is restored to the
state prior to the interruption,and the interrupted
program continues.

Sequence of Storage References
Conceptually, the CPU processes instructions one at
a time, with the execution of one instruction
preceding the execution of the following instruction.
The execution of the instruction specified by a
successful branch follows the execution of the
branch. Similarly, an interruption takes place
between instructions or, for interruptible instructions,
between units of operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with one instruction being
fetched after the preceding operation is completed
and before the execution of the current operation is
begun, even though, as observed by the CPU itself,
storage-implementation characteristics and overlap of
instruction execution with storage accessing may
cause actual processing to be different. The results
generated are those that would have been obtained
had the operations been performed in the conceptual
sequence. Thus, it is possible to modify an
instruction in storage by the immediately preceding
instruction.

In simple models in which operations are not
overlapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of
operands and results, and execution times which are
comparable to the propagation delays between units
can cause the actual sequence to differ considerably
from the conceptual sequence. In these machines,
special circuitry is employed to detect dependencies
between operations and ensure that the results
obtained are those that would have been obtained if
the operations had been performed in the conceptual
sequence. However, channels may, unless otherwise
constrained, observe a sequence that differs from the
conceptual sequence.
It can normally be assumed that the execution of

each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and some
delay may occur between fetching operands and
storing results. As a consequence, a channel may be
able to observe intermediate, or partially completed,
results.

When the program on the CPU interacts with a
program on a channel, the programs may have to take
into consideration that a single operation may
consist of a series of storage references, that a
storage reference may in turn consist of a series of
accesses, and that the conceptual and actual
sequences of these accesses may differ. Storage
references associated with instruction execution are
of the following types: instruction fetches and
storage-operand references. For the purposes of the

Chapter 5. Program Execution 5-5

following discussion, page-description accesses are
also considered to be storage references.

Instruction Fetch
Instruction fetching consists in fetching the one, two,
or three halfwords specified by the instruction
address in the current PSW. The immediate field of
an instruction is accessed as part of an instruction
fetch. If, however, an instruction specifies a storage
operand at the location occupied by the instruction
itself, the location is accessed both as an instruction
and as a storage operand. The fetch of the target
instruction of EXECUTE is considered to be an
instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched mUltiple times for a single execution; for
example, it may be fetched for testing the
address ability of operands or for inspection of PER
events, and it may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they are
executed. In particular, the fetching of an instruction
may precede the storage-operand references for an
instruction that is conceptually earlier. The
instruction fetch occurs prior to all storage-operand
references for all instructions that are conceptually
later.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies may be fetched of the contents of a single
storage location. As a result, the instruction executed
is not necessarily the most recently fetched copy ..
Storing caused by channels does not necessarily
change the copy of prefetched instructions.
However, if a store that is conceptually earlier occurs
on the CPU and modifies the location from which the
instruction is subsequently fetched, the updated
information is obtained.

All copies of prefetched instructions are discarded
by a serializing operation and as the CPU enters the
operating state.

Programming Note

When a channel modifies an instruction, it is possible
for the CPU to recognize the changes to some but
not all modified bit positions of the instruction.

5-6 IBM 4300 Processors Principles of Operation

Page-Description Accesses
References to the page description are handled as
follows:
1. Whenever a reference to storage is made and

protection checking applies to the reference, the
four access-control bits and the fetch-protection
bit of the storage key associated with the storage
location must appear to be inspected concurrently
with the reference to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY causes the
four access-control bits, the fetch-protection bit,
and the change bit to be set concurrently. The
instruction also modifies the reference bit. The
access to the access-control bits, the
fetch-protection bit, and the change bit for SET
STORAGE KEY follows the sequence rules for
storage-operand store references, and is a
single-access reference.

4. The instruction INSERT STORAGE· KEY
inspects but does not modify the storage key.

5. The instruction SET PAGE BITS provides a
consistent image of the change bit. The
instruction modifies both the reference and
change bits, and the three programmable page
bits. The page bits are only accessible by the
CPU. The access to the change bit follows the
sequence rules for storage-operand update
references, with the following exception: if the
change bit is being set to zero, no storing in the
associated storage page by a channel is permitted
between the fetching of the change bit and the
setting of the change bit to zero.

6. The instruction INSER T PAGE BITS inspects but
does not modify the reference, change, and page
bits. The page bits are only accessible by the
CPU.

7. The instruction RESET REFERENCE BIT
modifies only the reference bit. The access to the
storage key for RESET REFERENCE BIT
follows the sequence rules for storage-operand
update references. All bits of the storage key
other than the reference bit remain unchanged.

8. Whenever a reference to storage is made and
page-state checking applies to the reference, the
page state and frame index associated with the
storage location must appear to be inspected
concurrently with the reference to the storage
location.

9. The instruction CONNECT PAGE causes the
page state and frame index to be set concurrently
in the page description, with the access to the
page state and frame index following the
sequence rules for storage-operand store
references.

10. During the execution of the instructions
DECONFIGURE PAGE and DISCONNECT
PAGE, the accesses to set the reference bit and
the change bit to zeros occur concurrently with or
after the access to set the page state to
disconnected.

11. The instructions MAKE ADDRESSABLE and
MAKE UNADDRESSABLE modify only the
page state.

12. The instruction LOAD FRAME INDEX inspects
but does not modify the page state and frame
index. The page state and frame index may only
be modified explicitly by other instructions.

The record of references provided by the reference
bit is not necessarily accurate, and the handling of
the reference bit is not subject to the concurrency
rules. However, in the majority of situations,
reference recording approximately coincides with the
storage reference.

In certain situations, the change bit may be set
when no storing has actually taken place.

Storage-Operand References
A storage-operand reference is the fetching or storing
of the explicit operand or operands in the storage
locations specified by the instruction.

During the execution of an instruction, all, or a
portion, of the storage operands for that instruction
may be fetched, intermediate results may be
maintained for subsequent modification, and final
results maybe temporarily held prior to placing them
in storage. Stores caused by channels do not
necessarily affect these intermediate results.
Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand participate in
the instruction execution only as a source, the
reference to the location is called a storage-operand
fetch reference. A fetch reference is identified in
individual instruction definitions by indicating that
the access exception is for fetch.

All bits within a single byte of a fetch reference are
accessed concurrently. When an operand consists of

more than one byte, the bytes may be fetched
piecemeal a byte at a time from storage. Unless
otherwise specified, the bytes are not necessarily
fetched in any particular order.

Storage-Operand Store References

When the bytes of a storage operand participate in
the instruction execution only as a destination, to the
extent of being replaced by the result, the reference
to the location is called a storage-operand store
reference. A store reference is identified in
individual instruction definitions by indicating that
the access exception is for store.

All bits within a single byte of a store reference are
accessed concurrently. When an operand consists of
more than one byte, the bytes may be stored
piecemeal a byte at a time into storage. Unless
otherwise specified, the bytes are not necessarily

. stored in any particular order.
The CPU may delay storing results into storage.

There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the order in which results
are placed in storage. The results of one instruction
are placed in storage after the results of all preceding
instructions have been placed in storage and before
any results of the succeeding instructions are stored
as observed by channels. The results of anyone
instruction are stored in the order specified for that
instruction.

The CPU does not fetch operands from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may seem to be updated before the
information appears in storage.

The stores are necessarily completed only as a result
of a serializing operation and before the CPU enters
the stopped state.

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination. In
these cases, the reference to the location consists first
of a fetch and subsequently of a store. The
combination of the two accesses is referred to as an
update reference. Instructions. such as MOVE
ZONES, TRANSLATE, OR (01), and ADD
DECIMAL cause an update to the first-operand
location. No special interlock is provided between
the fetch and store, and accesses by channels are
permitted. An update reference is identified in the
individual instruction definition by indicating that the

Chapter 5. Program Execution 5-7

access exception is for both fetch and store. The
fetch and store accesses associated with an update
reference are not necessarily contiguous, and it is
possible for a channel to make one or more
interleaved accesses to the same location. The
interleaved accesses can be either fetches or stores.

Storage-Operand Consistency
A fetch reference is said to be a single-access
reference if the a value is fetched in a single access to
each byte of the data field. In the case of
overlapping operands, the location may be accessed
once for each operand. A store-type reference is said
to be a single-access reference if a single store access
occurs to each byte location within the data field.
An update reference is said to be single-access if both
the fetch and store accesses are each single-access.

Except for the following cases, storage-operand
references are single-access references.
1. Instructions which operate on decimal data. The

storage references associated with the following
instructions are not necessarily single-access
references: the decimal instructions and the
instructions CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE WITH
OFFSET, PACK, and UNPACK.

2. Page-access exceptions.
a. When a storage operand in which there is

storing crosses a page boundary and a
page-access exception is recognized, the
storage-operand store references to the part
of the operand which does not cause the
page-access exception are not necessarily
single-access references.

b. In an instruction involving two storage
operands (for example, an SS-format
instruction or MOVE LONG) for which there
is storing in a storage operand, the
storage-operand store references for one
operand are not necessarily single-access
references when a page-access exception is
recognized for the other operand.

When a storage-operand store reference to a
location is not a single-access reference, the contents
placed at a byte location are not necessarily the same
for each store access; thus, intermediate results in a
single-byte location may be observed by channels.

5-8 IBM 4300 Processors Principles of Operation

Programming Notes

1. When multiple fetch accesses are made to a single
byte that is being changed by a channel, the
result is not necessarily limited to that which
could be obtained by fetching the bits
individually. For example, the process used in
MUL TIPL Y DECIMAL may consist of repetitive
additions and subtractions each of which causes
the second operand to be fetched from storage.

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, mUltiple store accesses to a single
byte by the CPU may result in intermediate
values being observed by a channel. To avoid
these intermediate values (especially when
modifying a CCW chain), only instructions
making single-access references should be used.
Either one storage page should be operated on at
a time or preliminary testing should be performed
to ensure that all required pages are addressable.
The instructions which operate on decimal data
should not be used.

Relation Between Operand Accesses
Storage-operand fetches associated with one
instruction execution must appear to precede all
storage-operand references for conceptually
subsequent instructions. A storage-operand store
specified by one instruction must appear to precede
all storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by
conceptually subsequent instructions. However, a
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands both
of which cause fetch references, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. When the two operands overlap, the
common locations may be fetched independently for
each operand.

When an instruction has two storage operands the
first of which causes a store and the second a fetch
reference, it is unpredictable how much of the second
operand is fetched before the results are stored. In
the case of destructively overlapping operands, the
portion of the second operand which is common to
the first is not necessarily fetched from storage.

When an instruction has two storage operands the
first of which causes an update reference and the

second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one operand
is fetched before the other operand is fetched.
Similarly, it is unpredictable how much of the result is
processed before it is returned to storage. In the case
of destructively overlapping operands, the portion of
the second operand which is common to the first is
not necessarily fetched from storage.

Programming Note

The independent fetching of a single location for
each of two operands may affect the program
execution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and a
channel causes the contents of the location to change
during execution of the instruction, the old and new
values of the location may be used simultaneously.
For example, comparison of a field to itself may yield
a result other than equal, or EXCLUSIVE-DRing of
a field to itself may yield a result other than zero.

Other Storage References
Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent
instruction. Interval-timer updates can also occur
within an interruptible instruction between units of
operation.

The interruption codes not stored within the old
PSW are not necessarily single-access stores. The
external and SVC interruption-code stores occur
between the conceptually previous and conceptually
subsequent operations. The program
interruption-code store accesses may precede the
storage-operand references associated with the
instruction which results in the program interruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the interruption
or 110 instruction with which they are associated.

Serialization
The order of functions performed by a CPU is
normally independent of the functions performed by
channels. Similarly, the order of functions performed
by a channel is normally independent of the functions
performed by other channels and by the CPU.
However, at certain points in its execution,
serialization of the CPU occurs. Serialization also
occurs at certain points for channels.

CPU Serialization
All interruptions and the execution of certain
instructions cause serialization of CPU operation. A
serialization operation consists in completing all
conceptually prior storage accesses by the CPU, as
observed by channels, before the conceptually
following storage accesses occur. Serialization affects
the order of all CPU accesses to storage and to the
page descriptions.

Serialization is performed by all interruptions and
by the execution of the following instructions:
1. The general instructions BRANCH ON

CONDITION (BCR) with the Rl and R2 field
containing 15 and zero, respectively, and
COMPARE AND SWAP, COMPARE DOUBLE
AND SWAP, STORE CLOCK, SUPERVISOR
CALL, and TEST AND SET.

2. LOAD PSW.
3. All 110 instructions.

The sequence of events associated with a serializing
operation is as follows:
• All conceptually previous storage accesses by the

CPU are completed, as· observed by channels. This
includes all conceptually previous stores and
changes to page descriptions.

• The normal function associated with the serializing
operation is performed. In the case of instruction
execution, operands are fetched, and the storing of
results is completed. The exceptions are LOAD
PSW, in which the operand may be fetched before
previous stores have been completed, and
interruptions, in which the interruption code and
associated fields may be stored prior to the
serialization. The fetching of the serializing
instruction occurs before the execution of the
instruction and may precede the execution of
previous instructions, but may not precede the
completion of the previous serializing operation.
In the case of an interruption, the old PSW, the
interruption code, and other information, if any,
are stored, and the new PSW is fetched.

• Finally, instruction fetch and operand accesses for
conceptually subsequent operations may begin.

A serializing function affects the order of storage
accesses that are under the control of the CPU. It
does not affect the order of storage accesses under
the control of a channel.

Chapter 5. Program Execution 5-9

Programming Notes

1. When a serializing operation takes place,
channels observe instruction and operand
fetching and result storing to take place in the
order established by the serializing operation.

Storing by a channel into a location from which
a serializing instruction is fetched does not
necessarily affect the execution of the serializing
instruction unless a serializing operation has been
performed after the storing and before the
execution of the serializing instruction.

2. For programs that are intended to run also on
multiprocessing configurations of System/370, it
should be noted that the serializing operations
affect the order of CPU accesses to storage and
to the storage key, as observed by other CPUs as
well as by channels. Therefore, serializing
instructions should be inserted wherever it is
necessary to control the interaction of programs
that may run concurrently on different CPUs.

5-10 IBM 4300 Processors Principles of Operation

Channel Serialization
Serialization of a channel occurs as follows:
1. For a single channel program, all storage accesses

and page-description accesses by the channel
follow the execution of START 1/0 or START
II 0 FAST RELEASE, as observed by the CPU
and other channels. This includes all accesses for
the CAW, CCW s, and data.

2. For the last CCW of a chain, all storage accesses
and page-description accesses are completed, as
observed by the CPU and other channels, before
the interruption condition indicating channel end
is presented to the CPU.

3. If a CCW in the chain contains a PCI bit which
is one, all storage accesses and page-description
accesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and other
channels, before the PCI condition is presented to
the CPU.

The serialization of a channel does not affect the
order of storage accesses or page-description accesses
caused by a program in the CPU or another channel.
It also does not affect the order of storage accesses or
page-description accesses caused by other channel
programs on the same channel.

Chapter 6. Interruptions

Interruption Action 6-1
Source Identification 6-2
Enabling and Disabling 6-4
Instruction-Length Code 6-4

Zero ILC 6-5
ILC on Instruction-Fetch Exceptions 6-5

Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-6

Types of Instruction Ending 6-6
Interruptible Instructions 6-7

Point of Interruption 6-7
Ending of Interruptible Instructions 6-7

Machine-Check Interruption 6-8
Supervisor-Call Interruption 6-8
Program Interruption 6-8

Program-Interruption Conditions 6-9
Addressing Exception 6-9
Data Exception 6-9
Decimal-Divide Exception 6-10
Decimal-Overflow Exception 6-10
Execute Exception 6-10
Exponent-Overflow Exception 6-10
Exponent-Underflow Exception 6-10
Fixed-Point-Divide Exception 6-10
Fixed-Point-Overflow Exception 6-11

Contents

The interruption facility permits the CPU to change
its state as a result of conditions external to the
machine, within the machine, or within the CPU
itself. To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into six
classes: machine check, supervisor call, program,
external, input/output, and restart.

Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing further detail information
identifying the cause of the interruption, and fetching
a new PSW. Processing resumes as specified by the
new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the

Floating-Point-Divide Exception 6-11
Monitor Event 6-11
Operation Exception 6-11
Page-Access Exception 6-11
Page-State Exception 6-12
Page-Transition Exception 6-12
PER Event 6-12
Privileged-Operation Exception 6-12
Protection Exception 6-12
Significance Exception 6-13
Special-Operation Exception 6-13
Specification Exception 6-13

Recognition of Access Exceptions 6-13
Nontransparent Nullification 6-16
Multiple Program-Interruption Conditions 6-17

External Interruption 6-19
Clock Comparator 6-19
CPU Timer 6-19
External Signal 6-20
Interrupt Key 6-20
Interval Timer 6-20

Input/Output Interruption 6-20
Restart Interruption 6-21
Priority of Interruptions 6-21

interrupted program. For program and supervisor-call
interruptions, the information stored also contains a
code that identifies the length of the last-executed
instruction, thus permitting the program to respond to
the cause of the interruption. In the case of some
program conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly identifies
the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in either
the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in the
figure "Interruption Action. "

Chapter 6. Interruptions 6-1

Source Identification
The six classes of interruptions (machine check,
supervisor call, program, external, I/O, and restart)
are distinguished by the storage locations at which
the old PSW is stored and from which the new PSW
is fetched. For most classes, the causes are further
identified by an interruption code and, for some
classes, by additional information placed in
permanently assigned storage locations during the
interruption. (See also the section "Assigned Storage
Locations" in Chapter 3, "Storage.") For
supervisor-call, program, external, and I/O
interruptions, the interruption code comprises 16 bits.

For machine-check interruptions, the interruption
code comprises 64 bits and is stored at locations
232-239. Additional information for identifying the
cause of the interruption and for recovering the state
of the machine may be provided by the contents of
the machine-check save areas. (See Chapter 11,
"Machine-Check Handling. ")

For supervisor-call interruptions, in the BC mode,
the interruption code is stored at locations 138-139,
and the instruction-length code is stored in bit
positions 5 and 6 of location 137. In the BC mode,

PSvv Mask
Bits

Source Identification I nterruption Code BC EC
- --

Machine check Locations 232-2391

(old PSW 48, new PSW 112)

Exigent condition 13 13
Repressible condition 13 13

Supervisor call
(old PSW 32, new PSW 96)

Instruction bits 00000000 ssssssss

Program
(old PSW 40, new PSW 104)

Operation 00000000 pOOOOO01

Privileged operation 00000000 pOOOO010

Execute 00000000 pOOOO011

Protection 00000000 pOOO0100

Addressing 00000000 pOOO0101

Specification 00000000 pOOO0110

Data 00000000 pOOO0111

Fixed-point overflow 00000000 pOO01000 36 20
Fixed-point divide 00000000 pOO01001

Decimal overflow 00000000 pOO01010 37 21

Decimal divide 00000000 pOO01011

Exponent overflow 00000000 pOO01100

Exponent underflow 00000000 pOO01101 38 22

Significance 00000000 pOO01110 39 23
Floating-point divide 00000000 pOO01111

Interruption Action (Part 1 of 2)

6-2 IBM 4300 Processors Principles of Operation

the interruption code and instruction-length code are
placed in the old PSW.

For program interruptions, in the EC mode, the
interruption code is stored at locations 142-143, and
the instruction-length code is stored in bit positions 5
and 6 of location 141. In the BC mode, the
interruption code and instruction-length code are
placed in the old PSW. Further information may be
provided in the form of the access-exception address
monitor-class number, monitor code, PER code, and'
PER address, which are stored at locations 144-159.

For external interruptions, in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/O interruptions, in the EC mode, the
interruption code, which contains the I/O address, is
stored at locations 186-187. In the BC mode, the
interruption code is placed in the old PSW.
Additional information is provided by the contents of
the channel-status word (CSW) stored at location 64.
Further information may be provided by the limited
channel logout stored at location 176.

Mask Bits in
Control Registers Execution of Instruction
Register Bit ILC Set Identified by Old PSW
--- --

x terminated
14 4-7 x unaffected 7

1,2 completed

1,2,3 suppressed
1,2 suppressed
2 suppressed
1,2,3 suppressed or terminated
1,2,3 suppressed or termi nated
0,1,2,3 suppressed or completed
2,3 suppressed or termi nated
1,2 completed
1,2 suppressed or completed
2,3 completed
2,3 suppressed
1,2 completed
1,2 completed
1,2 completed
1,2 suppressed

Source Identification

Special operation

Page access

Page state

Page transition

Monitor event

PER event

External

(old PSW 24, new PSW 88)

Interval timer

Interrupt key

External signal 2

External signal 3

External signal 4

External signal 5

External signal 6

External signal 7

Clock comparator

CPU timer

Input/output

(old PSW 56, new PSW 120)

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6 and up

Restart

(old PSW 8, new PSW 0)

Restart key

Explanation:

Interruption Code

00000000 p0010011

00000000 p0011000

00000000 p0011010

00000000 p0011011

00000000 p1000000

00000000 1nOnnnnn2

00000000 1eeeeeee

00000000 e1eeeeee

00000000 ee1eeeee

00000000 eee1eeee

00000000 eeee1eee

00000000 eeeee1ee

00000000 eeeeee1e

00000000 eeeeeee1

00010000 00000100

00010000 00000101

00000000 dddddddd4

00000001 dddddddd4

00000010 dddddddd
4

00000011 dddddddd
4

00000100 dddddddd4

00000101 dddddddd4

cccccccc dddddddd
4

00000000 000000006

PSW Mask Mask Bits in
Bits Control Registers

BC EC Register Bit

0

8 16+

9 0-3

7 7 0 24

7 7 0 25

7 7 0 26

7 7 0 26

7 7 0 26

7 7 0 26

7 7 0 26

7 7 0 26

7 7 0 20

7 7 0 21

0 6 2 05

1 6 2 15

2 6 2 25

3 6 2 35

4 6 2 45

5 6 2 55

6 6 2 6+

1 A model-dependent machine-check-interruption code of 64 bits is stored at locations 232-239.

ILC Set

2

1,2,3

2

2

2

0,1,2,3

x

x

x

x

x

x

x

x

x
x

x
x
x

x

x
x
x

x

Execution of Instruction
Identified by Old PSW

suppressed

nullified

suppressed

suppressed

completed

completed3

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

2 When the interruption code indicates a PER event, an I LC of 0 may be stored only when bits 8-15 of the interruption code are
10000110 (PER, specification).

3The unit of operation is completed, unless a program exception concurrently indicated has caused the unit of operation to be
nullified, suppressed, or terminated.

4 1n the EC mode, the I/O address is stored at locations 186-187.

5For channels 0-5, channel masks in control register 2 have no effect in the BC mode.

6 Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption code is provided in the EC mode.

7 For a repressible machine-cheek-interruption condition, the effect of the condition is identified by the validity bits in the machine-
check-interruption code. The instruction has been unaffected only if all the associated validity bits are ones.

+ Plus the following bits in the control register.
* I n the BC mode, program-event recording is disabled.
c Channel-address bits.
d Device-address bits.
e If one, the bit indicates another concurrent external-interruption condition.
n A possible nonzero code, indicating another concurrent program-interruption condition.
p If one, the bit indicates a concurrent program-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
x Unpredictable in the BC mode; not stored in the EC mode.

Interruption Action (Part 2 of 2)

Chapter 6. Interruptions 6-3

For restart interruptions, in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

Enabling and Disabling
By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or disabled
for all I/O, external, and machine-check
interruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these
interruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions that
cause I/O or external interruptions remain pending.
Machine-cheek-interruption conditions remain
pending or cause the CPU to enter the check-stop
state. The disallowed program-interruption
conditions are ignored, except that some ca:uses are
indicated also by the setting of the condition code.

Program interruptions for which mask bits are not
provided, as well as the supervisor-call and restart
interruptions, are always taken.

The mask bits may allow or disallow all
interruptions within the class, or they may selectively
allow or disallow interruptions for particular causes.
This control may be provided by mask bits in the
PSW that are assigned to particular causes, such as
the bits assigned to the four mask able
program-interruption conditions. Alternatively, there
may be a hierarchy of masks, where a mask bit in the
PSW controls all interruptions within a type, and
mask bits in a control register provide more detailed
control over the sources.

When the mask bit is one, the CPU is enabled for
the corresponding interruptions. When the mask bit
is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask bits
are ones.

Programming Notes

1. Mask bits in the PSW provide a means of
disallowing all maskable interruptions; thus,
subsequent interruptions can be disallowed by the
new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt the
program handling a condition in another class but
not vice versa. To prevent an interruption
handling routine from being interrupted before

6-4 IBM 4300 Processors Principles of Operation

the necessary housekeeping steps are performed,
the new PSW must disable the CPU for further
interruptions within the same class or within a
class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an
interruption immediately after a previous
interruption in the same class. The mask bits in
control registers provide a means for selectively
enabling the CPU for some sources and disabling
it for others within the same class.

Instruction-Length Code
The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed~ It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided also
by the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the ILC
for supervisor-call and program interruptions is stored
in bit positions 5 and 6 of the bytes at locations 137
and 141, respectively. For machine-check, external,
I/O, and restart interruptions, the ILC is not stored
since it cannot be related to the length of the
last-executed instruction.

When the old PSW specifies the BC mode, the ILC
is stored in bit positions 32 and 33 of that PSW. The
ILC is meaningful, however, only after a program or
supervisor-call interruption. For I/O, external,
machine-check, and restart interruptions, the ILC
does not indicate the length of the last-executed
instruction and is unpredictable. Similarly, the ILC is
unpredictable in the PSW stored during execution of
the machine-save function and when the PSW is
displayed.

For supervisor-call and program interruptions, a
nonzero instruction-length code identifies in
halfwords the length of the instruction that was last
executed. Whenever an instruction is executed by
means of EXECUTE, instruction-length code 2 is set
to indicate the length of EXECUTE and not that of
the target instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the operation
code is assigned or on whether the instruction is
installed. The following table summarizes the
meaning of the instruction-length code:

ILC Instruction
Oecimal Binary Bits 0-' I nstruction Length

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 11 11 Three halfwords

Zero ILC

Instruction-length code 0, after a program
interruption, indicates that the location of the
instruction causing the interruption is not made
available to the program.

An ILC of 0 occurs only when a specification
exception is recognized that is due to a PSW -format
error, other than one due to an odd instruction
address, and the invalid PSW has been introduced by
LOAD PSW or an interruption. (See the section
"Exceptions Associated with the PSW" later in this
chapter.) In the case of LOAD PSW, the address of
the instruction has been replaced by the instruction
address of the new PSW. When the invalid PSW is
introduced by an interruption, the PSW -format error
cannot be attributed to an instruction.

In the case of LOAD PSW and the supervisor-call
interruption, a PER event may be indicated
concurrently with a specification exception having an
ILC of O.

ILC on Instruction-Fetch Exceptions

When a program interruption occurs because of an
exception that prohibits access to the instruction, the
instruction-length code cannot be set on the basis of
the first two bits of the instruction. As far as the
significance of the ILC for this case is concerned, the
following two situations are distinguished:
1. When an odd instruction address causes a

specification exception to be recognized or when
an addressing or protection exception is
encountered on fetching an instruction, the ILC
is arbitrarily set to 1, 2, or 3, indicating the
multiple of 2 by which the instruction address has
been incremented. By reducing the instruction
address in the old PSW by the number of
halfword locations indicated in the
instruction-length code, the address originally
appearing in the PSW may be obtained.

2. When a page-access exception is recognized while
fetching an instruction, including the target

instruction of EXECUTE, the ILC is arbitrarily
set to 1, 2, or 3. In this case the operation is
nullified, and the instruction address is not
incremented.

The ILC is not necessarily related to the first two
bits of the instruction when the first halfword of an
instruction can be fetched but an access exception is
recognized on fetching the second or third halfword.
The ILC may be arbitrarily set to 1, 2, or 3 in these
cases. The instruction address is or is not updated, as
described in situations 1 and 2 above.

When any exceptions other than page access are
encountered on fetching the target instruction of
EXECUTE, the ILC is 2.

Programming Notes

1. A nonzero instruction-length code for a program
interruption indicates the number of halfword
locations by which the instruction address in the
old PSW must be reduced to obtain the address of
the last instruction executed, unless one of the
following situations exists:
a. The interruption is caused by a page-access

exception.
b. An interruption for a PER event occurs

before the execution of an interruptible
instruction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR CALL.

d. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address has
been introduced into the PSW by a means
other than sequential operation (by a branch
instruction, LOAD PSW, or an interruption).

e. The interruption is caused by a specification
exception because of an odd instruction
address.

For situations a and b above, a unit of
operation is nullified, and the instruction
designated by the instruction address is the
same as the last one executed. These two are
the only cases where the instruction address
in the old PSW identifies the instruction
causing the exception.

For situations c, d, and e, the address of the
last instruction executed has been replaced in
the old PSW and cannot be calculated using
the one appearing in the old PSW.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the

Chapter 6. Interruptions 6-5

word at location 152 identifies the location of the
instruction causing the interruption, and the
instruction-length code (ILC) is redundant.
Similarly, the ILC is redundant when the
operation is nullified, since in this case the
instruction address in the PSW is not
incremented. If the ILC value is required in this
case, it can be derived from the operation code of
the instruction identified by the old PSW.

Exceptions Associated with the PSW
Exceptions associated with erroneous information in
the current PSW may be recognized when the
information is introduced into the PSW, or as part of
the execution of the next instruction. Errors in the
PSW which are specification-exception conditions are
called PSW -format errors.

Early Exception Recognition

A program interruption for a specification exception
occurs immediately after the PSW becomes active if a
one is introduced in an unassigned bit position of an
EC-mode PSW (that is, bit positions 0, 2-5, 16, 17,
24-39).

The interruption takes place regardless of whether
the wait state is specified. If the invalid PSW causes
the CPU to become enabled for a pending I/O,
external, or machine-check interruption, the program
interruption is taken instead, and the pending
interruption is subject to the mask bits of the new
PSW introduced by the program interruption.

When the execution of LOAD PSW or an
interruption introduces a PSW with one of the above
error conditions, the instruction-length code is set to
0, and the newly introduced PSW, except for the
interruption code and the instruction-length code in
the BC mode, is stored unmodified a's the old PSW.
When one of the above conditions is introduced by
execution of SET SYSTEM MASK or STORE THEN
OR SYSTEM MASK, the instruction-length code is
set to 2, and the instruction address is updated by
two halfword locations. The PSW containing the
invalid value introduced into the system-mask field is
stored as the old PSW.

When a PSW with one of the above error conditions
is introduced during initial program loading, the
loading sequence is not completed, and the load
indicator remains on.

6-6 IBM 4300 Processors Principles of Operation

Late Exception Recognition

For the following conditions, the exception is
recognized as part of the execution of the next
instruction:
• A specification exception is recognized due to an

odd instruction address in the PSW (PSW bit 63 is
one).

• An access (protection, addressing, or page-access)
exception is associated with the location deSignated
by the instruction address or with the location of
the second or third halfword of the instruction
starting at the designated address.

The instruction-length code and instruction address
stored in the program old PSW under these
conditions are discussed in the section "ILC on
Instruction-Fetch Exceptions" in this chapter.
If the invalid PSW causes the CPU to be enabled

for a pending I/O, external, or machine-check
interruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized. Similarly,
the specification or access exception is not recognized
in a PSW specifying the wait state.

Programming Notes

1. The execution of LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on a protection or addressing
exception, and hence the program old PSW
provides information concerning the program
causing the exception.

2. When the first halfword of an instruction can be
fetched but an access exception is recognized on
fetching the second or third halfword, the
instruction-length code is not necessarily related
to the operation code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of
interruptions occurs. (See the section "Priority of
Interruptions" in this chapter.)

Types 0/ Instruction Ending
Instruction execution is said to end in one of four
ways: completion, nullification, suppression, and
termination.

Completion of instruction execution provides results
as called for in the definition of the instruction.
When an interruption occurs after the completion of
the execution of an instruction, the instruction
address in the old PSW designates the next
instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified "no
operation." The contents of any result fields,
including the condition code, are not changed. The
instruction address in the old PSW on an interruption
after suppression designates the next sequential
instruction.

Nullification has the same effect as suppression,
except that when an interruption occurs after the
execution of an instruction has been nullified, the
instruction address in the old PSW designates the
instruction whose execution was nullified instead of
the next sequential instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may
have replaced all, part, or none of the contents of the
designated result fields and may have changed the
condition code if such change was called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption code,
and the instruction-length code are not affected; and
the state or the operation of the machine has not
been affected in any other way. The instruction
address in the old PSW on an interruption after
termination designates the next sequential instruction.

Inte"uptible Instructions

Point of Interruption

An interruption is permitted between operations; that
is, an interruption can occur after the performance of
one operation and before the start of a subsequent
operation. The entire execution of an instruction is
one operation.

For the following instructions, referred to as
interruptible instructions, an interruption is permitted
after a partial execution of the instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of
operation, and an interruption is permitted between
units of operation. The amount of data processed in
a unit of operation depends on the particular
instruction and may depend on the particular
condition that causes the execution of the instruction
to be interrupted.

Whenever points of interruption that include those
occurring within the execution of an interruptible

instruction are discussed, the term "unit of
operation" is used. For a noninterruptible
instruction, the entire execution consists in effect, of
one unit of operation.

Ending of Interruptible Instructions

The execution of an interruptible instruction is
completed when all units of operation associated with
that instruction are completed. When an interruption
occurs after completion, nullification, or suppression
of a unit of operation, all prior units of operation
have been completed.

On completion of a unit of operation other than the
last one and on nullification of any unit of operation,
the instruction address in the old PSW designates the
interrupted instruction, and the operand parameters
are adjusted such that the execution of the
interrupted instruction is resumed from the point of
interruption when the old PSW stored on the
interruption is made the current PSW. It depends on
the instruction how the operand parameters are
adjusted.

When a unit of operation is suppressed, the
instruction address in the old PSW designates the
next sequential instruction. The operand parameters,
however, are adjusted so as to indicate the extent to
which instruction execution has been completed. If
the instruction is reexecuted after the conditions
causing the suppression have been removed, the
execution is resumed from the point of interruption.
As in the case of completion and nullification, it
depends on the instruction how the operand
parameters are adjusted.

When a unit of operation of an interruptible
instruction is terminated, the contents, in general, of
any fields due to be changed by the instruction are
unpredictable. On an interruption, the instruction
address in the old PSW designates the next sequential
instruction.

Programming Notes

1. Any interruption, other than supervisor call and
some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for machine-check,
external, and 110 conditions and for access
exceptions and PER events can occur between
units of operation.

2. The amount· of data processed in a unit of
operation of an interruptible instruction depends
on the model and may depend on the type of
condition which causes the execution of the

Chapter 6. Interruptions 6-7

instruction to be interrupted or stopped. Thus,
when an interruption occurs at the end of the
current unit of operation, the length of- the unit
of operation may be different for different types
of interruptions. Also, when the stop function is
requested during the execution of an interruptible
instruction, the CPU enters the stopped state at
the completion of the execution of the current
unit of operation. Similarly, in the instruction
step mode, only a single unit of operation is
performed, but the unit of operation for the
various cases of stopping may be different.

Machine-Check Interruption
The machine-check interruption is a means for
reporting to the program the occurrence of equipment
malfunctions. Information is provided to assist the
program in determining the location of the fault and
extent of the damage.

A machine-check interruption causes the old PSW
to be stored at location 48 and a new PSW to be
fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and instruction-length-code fields
in the old PSW are unpredictable. In the EC mode,
the instruction-length code is not stored.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at locations 232-239. Further
information identifying the cause of the interruption
and the location of the fault may be stored at
locations 216-511.

The interruption action and the storing of the
associated information are under the control of PSW
bit 13 and bits in control register 14 .. See Chapter 11,
"Machine-Check Handling," for more detailed
information.

Supervisor-Call Interruption
The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and the
interruption occurs immediately upon the execution
of the instruction.

The supervisor-call interruption causes the old PSW
to be stored at location 32 and a new PSW to be
fetched from location 96.

The contents of bit positions 8-15 of SUPERVISOR
CALL are placed in the low-order byte of the
interruption code. The high-order byte of the
interruption code is set to zero. The
instruction-length code is 1, unless the instruction

6-8 IBM 4300 Processors Principles of Operation

was executed by means of EXECUTE, in which case
the code is 2.

When: the old PSW specifies the EC mode, the
interruption code is placed at locations 138-139, the
instruction-length code is placed in bit positions 5
and 6 of the byte at location 137, with the other bits
set to zeros, and zeros are stored at location 136.
When the old PSW specifies the BC mode, the
interruption code and instruction-length code appear
in the old PSW.

Program Interruption
Exceptions resulting from execution of the program,
including the improper specification or use of
instructions and data, or from the detection of a PER
event or monitor event, generate a program
interruption.

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the
EC mode, the interruption code is placed at locations
142-143, the instruction-length code is placed in bit
positions 5 and 6 of the byte at location 141 with the
rest of the bits set to zeros, and zeros are stored at
location 140. When the old PSW specifies the BC
mode, the interruption code and the
instruction-length code are placed in the old PSW.
For some causes, additional information identifying
the reason for the interruption is stored at locations
144-159 in both the EC and BC modes.

Except for the PER-event condition, the condition
causing the interruption is identified by a coded value
placed in the rightmost seven bit positions of the
interruption code. Only one condition at a time can
be indicated. Bits 0-7 of the interruption code are
set to zeros.

The PER-event condition is indicated by setting bit
8 of the interruption code to one, with bits 0-7 set to
zeros. When this is the only condition, bits 9-15 are
also set to zeros. When a PER-event condition is
indicated concurrently with another condition, bit 8 is
one, and the coded value for the other condition
appears in bit positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The program
mask in the PSW permits masking four of the
exceptions, bit 1 in control register 0 controls
whether SET SYSTEM MASK causes a special
operation exception, bits 16-31 in control register 8
permit masking interruption conditions due to

monitor events, and, in the EC mode, masks are
provided for controlling interruptions due to PER
events. When the mask bit is zero, the condition is
ignored; the condition does not remain pending.

Programming Notes

1. When the new PSW for a program interruption
has a format error or causes an exception to be
recognized in the process of instruction fetching,
a string of program interruptions takes place. See
the section "Priority of Interruptions" in this
chapter for a description of how such strings are
terminated. .

2. Some of the conditions indicated as program
exceptions may be recognized also by an 1/0
operation, in which case the exception is
indicated in the channel-status word.

Progra", ... l"te"uptio" Conditions
The following is a detailed description of each
program-interruption condition.

Addressing Exeeption

An addressing exception is recognized when the CPU
causes a reference to a virtual-storage location that is
not provided. A storage location is not provided
when the page address, bits 8-20 of the storage
address, equals or exceeds the page-capacity count.
An address designating a storage location that is not
provided is referred to as invalid.

The execution of the instruction is suppressed when
the location of the instruction, including the location
of the target instruction of EXECUTE, is not
provided. Except for some specific instructions whose
execution is suppressed, the operation is terminated
when an operand location is not provided. For
termination, changes may occur only to result fields,
which include the condition code, registers, and any
storage locations that are provided and that are
designated to be changed by the instruction.
Therefore, if an instruction is due to change only the
contents of a field in storage, and every byte of the
field is in a location that is not provided, the
operation is suppressed.

The instructions whose execution is always
suppressed are LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET SYSTEM
MASK, STORE CLOCK COMPARATOR, STORE
CPU ID, STORE CPU TIMER, STORE THEN AND
SYSTEM MASK, and STORE THEN OR SYSTEM
MASK.

When part of an operand location is provided and
part is not, storing may be performed in the part that
is provided.

When the address of any halfword of an instruction
is invalid, the instruction-length code (ILC) is 1 2
or 3, indicating the multiple of 2 by which the ' ,
instruction address has been incremented. It is
unpredictable whether the ILC is 1, 2, or 3.

In all cases of addressing exceptions not associated
with instruction fetching, the ILC is 1, 2, or 3,
designating the length of the instruction that caused
the reference. When an addressing exception is
associated with fetching the target of EXECUTE the
ILC is 2. '

Data Exception

A data exception is recognized when:
1. The sign or digit codes of operands in the decimal

instructions (described in Chapter 8, "Decimal
Instructions") or in CONVERT TO BINARY are
invalid.

2. The operand fields in ADD DECIMAL
COMPARE DECIMAL, DIVIDE DECiMAL
MULTIPLY DECIMAL, and SUBTRACT '
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of the
rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL has
an insufficient number of high-order zeros.

For all instruction other than EDIT and EDIT AND
MARK, the. action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing the
exception exists; when no sign code is invalid, the
operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain
unchanged or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Chapter 6. Interruptions 6-9

Programming Notes

1. The definition for data exception permits
termination when no sign code is invalid. On
some models, valid digit codes may be placed in
the result location even if the original contents
were invalid. Thus it is possible, after getting a
data exception, for all fields to appear valid.

2. When, on a program interruption for data
exception, the program finds that a sign code is
invalid, the operation has been suppressed if the
following two conditions are met:
a. The invalid sign of the source field is not

located in the numerical portion of the result
field.

b. The sign code appears in a position specified
by the instruction to be checked for valid
sign. (This condition excludes the first
operand of ZERO AND ADD and both
operands of EDIT and EDIT AND MARK.)

An invalid sign code for the rightmost byte
of the result field is not generated when the
operation is terminated. However, an invalid
second -operand sign code is not necessarily
preserved when it appears in the numerical
portion of the result field.

Decimal-Divide Exception

A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception can be indicated only
if the digit or digits used in establishing the exception
are valid.

The operation is suppressed.
The instruction-length code is 2 or 3.

Decimal-Overflow Exception

A decimal-overflow exception is recognized when one
or more significant high-order digits are lost because
the destination field in a decimal operation is too
small to contain the result.

The interruption may be disallowed by PSW bit 21
in the EC mode and by PSW bit 37 in the BC mode.

The operation is completed. The result is obtained
by ignoring the overflow information, and condition
code 3 is set.

The instruction-length code is 2 or 3.

6-10 IBM 4300 Processors Principles of Operation

Execute Exception

The execute exception is recognized when the target
instruction of EXECUTE is another EXECUTE.

The operation is suppressed.
The instruction-length code is 2.

Exponent-Overflow Exception

An exponent-overflow exception is recognized when
the result characteristic in floating-point addition,
subtraction, multiplication, or division exceeds 127
and the result fraction is not zero.

The operation is completed. The fraction is
normalized, and the sign and fraction of the result
remain correct. The result characteristic is made 128
smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception

An exponent-underflow exception is recognized when
the result characteristic in floating-point addition,
subtraction, multiplication, halving, or division is less
than zero and the result fraction is not zero.

The interruption may be disallowed in the EC mode
by PSW bit 22, and in the Be mode by PSW bit 38.

The operation is completed. The exponent
underflow mask also affects the result of the
operation. When the mask bit is zero, the sign,
characteristic, and fraction are set to zero, making
the result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made 128
larger than the correct characteristic, and the sign
and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception

A fixed-point-divide exception is recognized when in
fixed-point division the divisor is zero or the quotient
exceeds the register size, or when the result of
CONVERT TO BINARY exceeds 31 bits.

In the case of division, the operation is suppressed.
Execution of CONVERT TO BINARY is completed
by ignoring the high-order bits that cannot be placed
in the register.

The instruction-length code is 1 or 2.

Fixed-Point-Overflow Exception

A fixed-paint-overflow exception is recognized when
an overflow occurs during signed binary arithmetic or
left-shift operations.

The interruption may be disallowed in the BC mode
by PSW bit 20, and in the BC mode by PSW bit 36.

The operation is completed. The result is obtained
by ignoring the overflow information, and condition
code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception

A floating-point-divide exception is recognized when
a floating-point division by a number with a zero
fraction is attempted.

The operation is suppressed.
The instruction-length code is 1 or 2.

Monitor Event

A monitor event is recognized when MONITOR
CALL is executed and the mask bit in control
register 8 corresponding to the class specified by
instruction bits 12-15 is one.

The operation is completed.
As part of the interruption, information identifying

the event is stored at locations 148-149 and
156-159. See the section "Monitoring" in Chapter 4,
" Control," for a detailed description of the
interruption condition.

The instruction-length code is 2.

Operation Exception

. An operation exception is recognized when the CPU
encounters an instruction which has an invalid
operation code.

For the purpose of checking the operation code of
an instruction, the operation code is defined as
follows:
1. When the first eight bits of an instruction have

the hexadecimal value B2, the first 16 bits form
the operation code.

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.
The instruction-length code is 1, 2, or 3.

Programming Notes

1. In the case of I/O instructions with the values
9C, 9D, and 9E in bit positions 0-7, the value of
bit 15 is used to distinguish between two
instructions. Bits 8-14, however, are not checked
for zeros, and these operation codes never cause
an operation exception to be recognized.

To ensure that presently written programs run
if and when the operation codes 9C, 9D, and 9E
are extended further to provide for new
functions, only zeros should be placed in bit
positions 8-14. Similarly, zeros should be placed
in bit positions 8-15 in the instruction with the
operation code 9F. In accordance with these
recommendations, the operation codes for seven
of the I/O instructions are shown as 9COO, 9COl,
9DOO, 9D01, 9EOO, 9E01, and 9FOO.

2. The operation code 00, with a two-byte
instruction format, and the set of sixteen 16-bit
operation codes B2EO to B2EF, with a four-byte
instruction format, are allocated for use by the
program when an indication of invalid operation
is required. It is improbable that these operation
codes will ever be assigned to an instruction
implemented in the CPU.

3. Some models may offer instructions not described
in this publication, such as those provided for
'emulation. Consequently, operation codes not
described in this publication do not necessarily
cause an operation exception to be recognized.
Furthermore, these instructions may cause modes
of operation to be set up or otherwise alter the
machine so as to affect the execution of
subsequent instructions. In order to avoid the
possibility of accidentally causing such operation,
an instruction with an operation code not
described in this publlcation shoul<,i be issued only
when the specific function associated with the
operation code is desired.

Page-Access Exception

A page-access exception is recognized when storage
is addressed either explicitly or implicitly by the CPU
and the addressed storage location is in a page that is
in the connected or disconnected state.

The exception is recognized as part of the execution
of the instruction when an attempt is made to access
either the instruction or operand location. However,'
page-access exceptions are not recognized for the
page operands of the instructions CLEAR PAGE,
CONNECT PAGE, DECONFIGURE PAGE,

Chapter 6. Interruptions 6-11

DISCONNECT PAGE, MAKE ADDRESSABLE,
and MAKE UNADDRESSABLE.

The unit of operation is nullified, except for the
possible effects on storage described in the section
"Nontransparent Nullification" in this chapter.

The address of the storage location causing the
exception is stored at locations 145 -147, and zeros
are stored at location 144. The low-order 11 bits of
the address stored are unpredictable.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC) is
1, 2, or 3 and indicates the length of the instruction
causing the exception. When the exception occurs
during fetching of an instruction, the ILC is 1, 2, or
3, the value being unpredictable.

Page-State Exception

A page-state exception is recognized when the target
page of the CLEAR PAGE instruction is in the
disconnected state.

The operation is suppressed.
The instruction-length code is 2 or 3.

Page-Transition Exception

A page-transition exception can only be recognized
for instructions that cause a page-state transition.
These instructions are CONNECT PAGE,
DECONFIGURE PAGE, DISCONNECT PAGE,
MAKE ADDRESSABLE, and MAKE
UNADDRESSABLE.

The exception is recognized as part of the execution
of the instruction when attempting to perform an
invalid page-state transition. For the definition of an
invalid page-state transition, see the section "Page
States" in Chapter 3, "Storage."

The operation is suppressed.
The instruction-length code is 2.

PER Event

A PER event is recognized when program-event
recording (PER) is specified by the contents of
control registers 9-11 and one or more of these
events occur.

In the EC mode, the interruption may be disallowed
by PSW bit 1. In the BC mode, program-event
recording is disabled.

The unit of operation is completed, unless another
concurrently indicated condition has caused the unit
of operation to be nullified, suppressed, or
terminated.

As part of the interruption, information identifying
the event is stored at locations 150-155. See the

6-12 IBM 4300 Processors Principles of Operation

section "Program-Event Recording" in Chapter 4,
"Control," for a detailed description of the
interruption condition.

The instruction-length code is 0, 1, 2, or 3. Code 0
can be set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
,

A privileged-operation exception is recognized when
the CPU encounters a privileged instruction in the
problem state.

The operation is suppressed.
The instruction-length code is 1 or 2.

Protection Exception

A protection exception is recognized when the CPU
attempts to access a storage location that is protected
against the type of reference by the storage key.

The execution of the instruction is suppressed when
the location of the instruction, including the location
of the target instruction of EXECUTE, is protected
against fetching. Except for some specific
instructions whose execution is suppressed, the
operation is terminated when a protection exception
is encountered during a reference to an operand
location. Changes may occur only to result fields. In
this context, the term "result field" includes
condition code, registers, and storage locations, if
any, which are designated to be changed by the
instruction. However, no change is made to a storage
location when a reference t6 that location causes a
protection exception. Therefore, if an instruction is
due to change only the contents of a field in storage,
and every byte of that field would cause a protection
exception, the operation is suppressed.

The instructions whose execution is always
suppressed are: LOAD PSW, SET CLOCK
COMPARATOR, SET CPU TIMER, SET SYSTEM
MASK, STORE CLOCK COMPARATOR, STORE
CPU ID, STORE CPU TIMER, STORE THEN AND
SYSTEM MASK, and STORE THEN OR SYSTEM
MASK.

On fetching, the protected information is not loaded
into a register or moved to another storage location.
When a part of an operand location is protected
against storing and part is not, storing may be
performed in the unprotected part. The contents of a
protected location remain unchanged.

For a protected operand location, the instruction
length code is 1, 2, or 3, designating the length of
the instruction that caused the reference.

When the location of any part of the instruction is
protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the instruction
address has been incremented. It is unpredictable
whether the ILC is 1, 2, or 3.

Significance Exception

A significance exception is recognized when the
result fraction in floating-point addition or
subtraction is zero.

The interruption may be disallowed in the EC mode
by PSW bit 23, and in the BC mode by PSW bit 39.

The operation is completed. The significance mask
also affects the result of the operation. When the
mask bit is zero, the operation is completed by
replacing the result with a true zero. When the mask
bit is one, the operation is completed without further
change to the characteristic and sign of the result.

The instruction-length code is 1 or 2.

Special-Operation Exception

A special-operation exception is recognized when a
SET SYSTEM MASK instruction is encountered in
the supervisor state and the SSM -control bit, bit 1 of
control register 0, is one.

The execution of SET SYSTEM MASK is
suppressed.

The instruction-length code is 2.

Specification Exception

A specification exception is recognized for the
following causes:
1. An odd instruction address is introduced into the

PSW.
2. An operand address does not designate an

integral boundary in an instruction requiring such
integral-boundary designation.

3. The storage address in SET STORAGE KEY or
INSERT STORAGE KEY does not have zeros in
the four low-order bit positions.

.4. An odd-numbered general register is designated
by an R field of an instruction that requires an
even-numbered register designation.

5. A floating-point register other than 0, 2, 4, or 6
is specified for a short or long operand, or a
floating-point register other than 0 or 4 is
specified for an extended operand.

6. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

7. The length of the first-operand field is less than
or equal to the length of the second-operand field
in decimal multiplication or division.

8. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

9. A one is introduced into an unassigned bit
position of the EC-mode PSW (bit positions 0,
2-5,16-17,24-39).

10. Page 0 is designated to become connected or
disconnected.

The execution of the instruction identified by the
old PSW is suppressed. However, for cause 9, the
operation that produces the invalid PSW is
completed, and an interruption occurs immediately
thereafter.
. When. the instruction address is odd (cause 1), the
InstructIon-length code (ILC) is 1, 2, or 3, indicating
the multiple of 2 by which the instruction address has
been incremented. It is unpredictable whether the
ILC is 1, 2, or 3.

For causes 2-8 and 10, the ILC is 1, 2, or 3,
designating the length of the instruction causing the
reference.

When the exception is recognized because of
cause 9, and the invalid bit value has been
introduced by LOAD PSW or an interruption, the
ILC is 0. When the exception due to cause 9 is
introduced by SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the ILC is 2.

See the section "Exceptions Associated with the
PSW" in this chapter for more details of when
specification exceptions associated with the PSW are
recognized.

Recognition of Access Exceptions
The addressing, page-access, and protection
exceptions are collectively referred to as access
exceptions.

An access exception due to fetching an instruction
is indicated when an instruction halfword cannot be
fetched without encountering the exception. The
exception is indicated as part of the execution of the
instruction.

Except for the specific cases described below, an
access exception due to a reference to an operand
location is indicated whenever a reference to a part
of the designated storage operand causes the
exception. The exception for a partially inaccessible
operand is recognized even if the operation could be
completed without the use of the inaccessible part of
the operand. The access exception is indicated as
part of the execution of the instruction making the
reference.

Whenever an access to an operand location can
cause an access exception to be recognized, the word

Chapter 6. Interruptions 6-13

" access" is included in the list of program exceptions
in the description of the instruction. This entry also
indicates which operand can cause the exception to
be recognized and whether the exception is
recognized on a fetch or store access to that operand
location. Additionally, each instruction can cause an
access exception to be recognized due to instruction
fetch.

The following are exceptions or special cases where
the instruction does not explicitly specify the extent
of the storage operand or where the instruction
provides for completion of execution without the use
of the entire operand (the handling of these cases is
summarized in the figure "Recognition of Access
Exceptions") :
1. When the instructions COMPARE LOGICAL

(CLC or CL), COMPARE LOGICAL
CHARACTERS UNDER MASK (CLM) with a
nonzero mask, and COMPARE LOGICAL
LONG (CLCL) designate part of an operand in
an inaccessible location but the operation can be
completed by using the accessible operand parts,
it is unpredictable whether the access exception
for the inaccessible part is indicated.

2. Access exceptions are not indicated for that part
of the first operand (argument) of TRANSLATE
AND TEST (TRT) which is not used for the
completion of the operation.

3. Access exceptions are not indicated for that part
of the second operand (list) of TRANSLATE

6-14 IBM 4300 Processors Principles of Operation

(TR) and TRANSLATE AND TEST which is not
used for the completion of the operation.

4. Access exceptions are not indicated for that part
of the second operand (source) of EDIT (ED)
and EDIT AND MARK (EDMK) which is not
used for the completion of the operation.

5. When the instructions MOVE WITH OFFSET
(MVO), PACK, and UNPACK (UNPK)
designate part of the second operand in an
inaccessible location but the operation can be
completed by using the accessible operand parts,
it is unpredictable whether the access exception
for the inaccessible part is indicated.

6. Access exceptions are not indicated for that part
of the second operand (source) of MOVE LONG
(MVCL) which is not used for the completion of
the operation.

7. When the mask in INSERT CHARACTERS
UNDER MASK (ICM) and COMPARE
LOGICAL CHARACTERS UNDER MASK
(CLM) is zero, access exceptions are indicated
for the one byte designated by the
second-operand address.

8. When the mask in STORE CHARACTERS
UNDER MASK (STCM) is zero, access
exceptions are not indicated.

9. When the saved information is invalid, access
exceptions are not indicated for either operand of
RETRIEVE STATUS AND PAGE (RSP).

Instruction
Is an acoe55 exoeption indic,ted for that part of the d8$ignataci
operand whioh is not used for the completion of the operation ?

Instructions that can be completed without
the use of the entire designated or impl ied
operand:

CLC, CL

CLM (nonzero mask)

CLCL
TRT (first operand)

TR, TRT (second operand)

ED, EDMK (second operand)

RSP (invalid save)

Instructions in which the second operand
may specify more data than can be processed
with the designated first operand:

PACK, UNPK, MVO

MVCL

Special cases:

ICM, CLM (zero mask)

STeM (zero mask)

Explanation:

Unpredictable

No

Ves

It is unpredictable whether the exception is indicated.

The exception is not indicated.

The exception is indicated.

Unpredictable

Unpredictable

Unpredictable*

No
No
No
No

Unpredictable

No

Ves for one byte

No

For CLCL, any addressing or page-access exception indicated is for the current
page or the following page of each operand.

Access exceptions include the following:

Addressing
Page access
Protection

Recognition of Access Exceptions

Chapter 6. Interruptions 6~ 15

The execution of the interruptible instructions
CLCL and MVCL is initiated only when no
addressing or page-access exceptions for the initial
page of each operand exist, and the initiation may
additionally be contingent on the absence of
addressing or page-access exceptions for the
following page of each operand. After the execution
of the instruction has been initiated, an addressing or
page-access exception may be indicated as early as
when execution has progressed to the point where the
last accessible page of the operand preceding the
page causing the exception is being processed.

The extents of the operands that are actually used
in the operation may be established in a pretest for
operand accessibility at the beginning of the
execution of the instruction.

In the case of TR, ED, and EDMK, the initiation of
the execution is contingent only on the absence of
addressing or page-access exceptions for that part of
the second operand that is actually used for the
completion of the operation.
If the first operand of TR or either operand of ED

or EDMK is changed by an I/O operation, after the
initial pretest but before completion of execution, the
results are unpredictable. Furthermore, it is
unpredictable whether or not an interruption occurs
for an access exception that was not initially
applicable.

This case is an exception to the general rule that the
operation is nullified on page-access exceptions.
When, in this case, an interruption for page access
occurs, the instruction address in the old PSW points
to the instruction causing the exception even though
partial results have been stored.

Programming Note

An access exception is indicated as part of the
execution of the instruction with which the exception
is associated. In particular, the exception is not
recognized when the CPU has made an attempt to
fetch from the inaccessible location or otherwise has
detected the access exception, but a branch
instruction or an interruption changes the instruction
sequence such that the instruction is not executed.

The following are some specific storage references
where access exceptions, including storage protection
when applicable, are recognized even if the operation
could be completed without the use of the
inaccessible part of the operand:
1. Fetching the operand of TEST UNDER MASK

with a zero mask.

6-16 IBM 4300 Processors Principles of Operation

2. Fetching parts of operands of algebraic-compare
instructions (C and CH).

3. Fetching parts of operands of floating-point
instructions.

4. References to the first-operand location of
decimal instructions when the second operand in
addition and subtraction is zero or in
multiplication and division is one.

S. Storing the pattern character in an edit operation
when the pattern character remains unchanged.

6. Storing during SHIFT AND ROUND DECIMAL
when no shifting or rounding takes place.

7. Storing during move operations when the first
and second-operand locations coincide.

8. Storing the first operand of OR (01 and OC)
when the corresponding second-operand byte is
zero, as well as the analogous cases for AND and
EXCLUSIVE OR.

9. Storing the first operand of TRANSLATE when
the argument and function bytes are the same.

With a nonzero mask in INSERT CHARACTERS
UNDER MASK, COMPARE LOGICAL
CHARACTERS UNDER MASK, and STORE
CHARACTERS UNDER MASK, access exceptions
are indicated only for the extent of the storage
operand designated by the mask. In MOVE LONG
or COMPARE LOGICAL LONG, no exceptions are
recognized for any operand having a length of zero.

Nontransparent Nullification
For page-access exceptions, the unit of operation is
nullified, except that, on some models, a channel may
observe the effects on storage described in the
following cases:
• When a storage operand for which there is a

store-type access crosses a page boundary and a
page-access exception is recognized, that part of
the operand which does not cause a page-access
exception may be changed to an intermediate value
and then changed back to the original value.

• In an instruction involving two storage operands
(for example, an SS-format instruction or MOVE
LONG) for which there is a store-type access to
an operand, that operand may change to an
intermediate value and then back to the original
value when a page-access exception is recognized
for the other operand.

Except for the instructions which operate on
decimal data, the intermediate value, if any, is always
equal to what would have been the final value if the
page-access exception had not occurred.

Programming Note

On some models, when CPU instructions are used to
modify storage locations simultaneously being
accessed by a channel, page-access exceptions may
result in intermediate values being observed by the
channel. To avoid getting these intermediate values
(especially when modifying a CCW chain), either one
storage page should be operated on at a time or
preliminary testing should be performed to ensure
that all required pages are addressable.

Multiple Program-Interruption Conditions
Except for PER events, only one program
interruption condition is indicated with a program
interruption. The existence of one condition
however, does not preclude the existence of ~ther
conditions. When more than one program
interruption condition exists, only the condition
having the highest priority is identified in the
interruption code.

When two conditions exist of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the two
parts of an operand that crosses a page boundary is
unpredictable and is not necessarily related to the
sequence specified for the access of bytes within the
operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is

indicated which permits termination, and another
condition also exists which would cause either
nullification or suppression, then the unit of operation
is suppressed.

The figure "Priority of Program-Interruption
Conditions" lists the priorities of all program
interruption conditions other than PER events. All
exceptions associated with references to storage for a
particular instruction halfword or a particular operand
byte are grouped as a single entry called "access."
The priorities of access exceptions for a single access
are, in descending order of priorities:
1. Addressing exception
2. Page-access exception
3. Protection exception due to an attempt to access

a protected instruction or operand location
The relative priorities of any two conditions can be

found by comparing the priority numbers within a
table from left to right until a mismatch is found. If
the first inequality is between numeric characters, the
two conditions are either mutually exclusive, or, if
both can occur, the condition with the smaller
number is indicated. If the first inequality is between
alphabetic characters, the two conditions are not
exclusive, and it is unpredictable which is indicated
when both occur.

The second instruction halfword is accessed only if
bits 0-1 of the instruction are not 00. The third
instruction halfword is accessed only if bits 0-1 of the
instruction are 11.

Chapter 6. Interruptions 6-17

1.

2.

Specification exception due to a one in an unassigned bit position of an EC-mode PSW.1

Specification exception due to an odd instruction address in the PSW.

3. Access exceptions for first halfword of EXECUTE.2

4. Access exceptions for second halfword of EXECUTE.2

5.

6.

7.A

7.B

7.C.1

7.C.2

7.C.3

7.C.4

8.A

8.B

B.C

8.0

8.E

9.

Specification exception due to target instruction of EXECUTE not being specified on halfword boundary.2

Access exceptions for first instruction halfword.

Access exception for second instruction halfword.3

Access exception for third instruction halfword.3

Operation exception.

Privileged-operation exception.

Execute exception.

Special-operation exception.

Specification exception due to conditions other than those included in 1, 2 and 5 above.

Access exceptions for any particular access to an operand in storage.
4

Data exception.
5

Decimal-divide exception.
6

Page-state exception.

Page-transition exception.

10. Fixed-point divide, floating-point divide, and conditions, other than PER events, which result in completion. These
conditions are mutually exclusive, or their priority is specified in the corresponding definitions.

Explanation:

Numbers indicate priority, with priority decreasing in ascending order of numbers; letters indicate no priority.

1 A one may be introduced in an unassigned bit position of an
EC-mode PSW by a new PSW loaded as a result of an
interruption or by the instructions LOAD PSW, SET
SYSTEM MASK, and STORE THEN OR SYSTEM MASK.

The priority shown in the chart is that for a PSW error
introduced by an interruption and may also be considered
as the priority for a PSW error introduced by the previous
instruction. The error is introduced only if the instruction
encounters no other exceptions. If the recognition of this
exception is considered to be part of the execution of the
instruction introducing the error, then it is of lower priority
than a\l other exceptions for that instruction.

2
Priorities 3, 4, and 5 apply only to an EXECUTE instruc-
tion. Priorities 6-10 apply to instructions other than
EXECUTE, including the target instruction of EXECUTE.

3Separate accesses may occur for each halfword of an
instruction. The second instruction halfword is accessed if
bits 0-1 of the instruction are not 00. The third instruction
halfword is accessed only if bits 0-1 of the instruction are 11.

Priority of Program-Interruption Conditions

6-18 IBM 4300 Processors Principles of Operation

4 As in instruction fetching, separate accesses may occur for
each portion of an operand. Each of the accesses is of equal
priority. Addressing exceptions for INSERT STORAGE
KEY, RESET REFERENCE BIT, and SET STORAGE KEY
are also included in 8.B. For MOVE LONG and COM
PARE LOGICAL LONG, an access exception for a parti
cular operand can be indicated only if the R field for that
operand designates an even-numbered register. For instruc
tions requiring that storage operands be specified on integral
boundaries, an access exception may be indicated for the
extent of the operand that would be implied if alignment
were not required.

5 The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception.

6The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception, and only if the digit or
digits used in establishing the exception are valid.

External Interruption
The external interruption provides a means by which
the CPU responds to various signals originating either
from within or from outside of the machine.

An external interruption causes the old PSW to be
stored at location 24 and a new PSW to be fetched
from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at locations
134-135, and zeros are stored at locations 132-133.
When the old PSW specifies the BC mode, the
interruption code is placed in bit positions 16-31 of
the old PSW, and the instruction-length code is
unpredictable.

External-interruption conditions are of two types:
those for which an interruption request condition is
held pending, and those for which the condition
directly requests the interruption. Clock comparator
and CPU timer are conditions which directly request
external interruptions. If a condition which directly
requests an external interruption is removed before
the request is honored, the request does not remain
pending, and no interruption occurs. Conversely, the
request is not cleared by the interruption, and if the
condition persists, more than one interruption may
result from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is taken,
and the interruption condition is of the type which is
held pending, only one request for that source is
preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for interruption
by that source. The external interruption occurs at
the completion of a unit of operation. Whether the
CPU is enabled for external interruption is controlled
by the external mask, PSW bit 7, and external
submask bits in control register O. Each source for
an external interruption has a submask bit assigned to
it, and the source can cause an interruption only
when the external-mask bit is one and the
corresponding submask bit is one. The use of the
submask bits does not depend on whether the CPU is
in the EC or BC mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction execution
or interruption that causes the enabling.

More than one source may present a request for an
external interruption at the same time. When the
CPU becomes enabled for more that one concurrently

pending request, the interruption occurs for the
pending condition or conditions having the highest
priority.

The priorities for external-interruption requests in
descending order are as follows:

Interval timer, interrupt key, external signals 2-7
(indicated concurrently)

Clock comparator
CPU timer

Clock Comparator
An interruption request for the clock comparator
exists whenever either of the following conditions is
met:
1. The time-of-day clock is in the set or not-set

state, and the value of the clock comparator is
less than the value in the compared portion of the
time-of-day clock, both comparands being
considered unsigned binary integers

2. The time-of -day clock is in the error or not
operational state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the
interruption, and, if the condition persists, more than
one interruption may result from a single occurrence
of the condition.

The condition is indicated by an external
interruption code of 1004 (hex).

The submask bit is in bit position 20 of control
register O. This bit is initialized to zero.

CPU Timer
An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made positive
before the request is honored, the request does not
remain pending, and no interruption occurs.
Conversely, the request is not cleared by the
interruption, and if the condition persists, more than
one interruption may occur from a single occurrence
of the condition.

The condition is indicated by an external
interruption code of 1005 (hex).

The submask bit is in bit position 21 of control
register O. This bit is initialized to zero.

Chapter 6. Interruptions 6-19

External Signal
An interruption request for an external signal is
generated when a signal is received on one or more
of the signal-in lines. Up to six signal-in lines may
be connected, providing for external signal 2 through
external signal 7. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to one
interruption-code bits 10-15, respectively. Bits 0-7
are set to zeros, and any other bits in the rightmost
byte are made zeros unless set to ones for other
conditions that are concurrently indicated.

All external signals are subject to control by the
submask bit in bit position 26 of control register O.
This bit is initialized to one.

External signaling is independent of 110 operations
and interruptions.

For a detailed description, see the IBM System I 360
and System I 370 Direct" Control and External
Interruption Features- Original Equipment
Manufacturers' Information, GA22-6845.

Programming Note

The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals do
not necessarily arrive at the same time, and some may
not be included in the external interruption resulting
from the earliest signals. These late signals may
cause another interruption to be taken.

Interrupt Key
An interruption request for the interrupt key is
generated when the operator activates that key. The
request is preserved and remains pending until it is
cleared. The pending request is cleared when it
causes an interruption and by program reset. When
several requests are made before the interruption is
taken, only one interruption occurs.

When the interrupt key is activated while the CPU
is in the load state, it depends on the model whether
an interruption request is generated or the condition
is lost.

The condition is indicated by setting bit 9 in the
interruption code to one and by setting bits 0-7 to

6-20 IBM 4300 Processors Principles of Operation

zeros. Bits 8 and 10-15 are zeros unless set to ones
for another condition that is concurrently indicated.

The submask bit is in bit position 25 of control
register O. This bit is initialized to one.

Interval Timer
An interruption request for the interval timer is
generated when the value of the interval timer is
decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an
interruption and by program reset.

The condition is indicated by setting bit 8 in the
interruption code to one and by setting bits 0-7 to
zeros. Bits 9-15 are zeros unless set to ones for
another condition that is concurrently indicated.

The submask bit is in bit position 24 of control
register O. This bit is initialized to one.

Input/Output Interruption
The input I output (II 0) interruption provides a
means by which a CPU responds to conditions in 1/0
devices and channels.

A request for an 110 interruption may occur at· any
time, and more than one request may occur at the
same time. The requests are preserved and remain
pending in channels or devices until accepted by the
CPU. The 1/0 interruption occurs at the completion
of a unit of operation. Priority is established among
requests so that only one interruption request is
processed at a time. For more details, see the section
"InputlOutput Interruptions" in Chapter 12,
"Input/Output Operations. II

When the CPU becomes enabled for 1/0
interruptions, and a channel has established priority
for an I/O-interruption condition, the interruption
occurs at the completion of the instruction execution
or interruption that causes the enabling.

An 110 interruption causes the old PSW to be
stored at location 56, a channel-status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176.

When the old PSW specifies the Ee mode, the 1/0
address identifying the channel and device causing
the interruption is stored at locations 186-187, and
zeros are stored at location 185. When the old PSW
specifies the BC mode, the interruption code in PSW
bit positions 16-31 contains the 110 address, and the
instruction-length code in the PSW is unpredictable.

An 110 interruption can occur only while the CPU
is enabled for interruption by the channel presenting
the request. Mask bits in the PSW and channel
masks in control register 2 determine whether the
CPU is enabled for interruption by a channel; the
method of control depends on whether the current
PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start at
bit position 0 and extend for as many contiguous bit
positions as the number of channels provided. The
assignment is such that a bit is assigned to the
channel whose address is equal to the position of the
bit in control register 2. Channel-mask bits for
installed channels are initialized to one by initial
program reset. The state of the channel-mask bits for
unavailable channels is unpredictable.

When the current PSW specifies the EC mode, each
channel is controlled by the I/O-mask bit, PSW bit 6,
and the corresponding chann.el-mask bit in control
register 2; the channel can cause an interruption only
when the I/O-mask bit is one and the corresponding
channel-mask bit is one.

When the current PSW specifies the BC mode, in
terruptions from channels 6 and up are controlled by
the I/O-mask bit, PSW bit 6, in conjunction with the
corresponding channel-mask bit: the channel can
cause an interruption only when the I/O-mask bit is
one and the corresponding channel-mask bit is one.
Interruptions from channels 0-5 are controlled by
channel-mask bits 0-5 in the PSW; an interruption
can occur only when the mask bit corresponding to
the channel is one. In the BC mode, bits 0-5 in
control register 2 do not participate in controlling
I/O interruptions; they are, however, preserved in
the control register if the corresponding channels are
installed.

Restart Interruption
The restart interruption provides a means for the
operator to invoke the execution of a program. The
CPU cannot be disabled for this interruption.

A restart interruption causes the old PSW to be
stored at location 8 and a new PSW, specifying the
start of the program to be executed, to be fetched
from location O. The instruction-length and
interruption codes are not stored in the EC mode. In
the BC mode, the instruction-length code in the PSW
is unpredictable, and zeros are stored in the
interruption-code field.
If the CPU is in the operating state, the exchange

of the PSWs occurs at the completion of the current
unit of operation and after all pending interruption

conditions for which the CPU is enabled have been
taken. If the CPU is in the stopped state, the CPU
enters the operating state and exchanges the PSW s
without first taking any pending interruptions.

The restart interruption is initiated by activating the
restart key.

When the rate control is set to instruction step, it is
unpredictable whether restart causes a unit of
operation or additional interruptions to be performed
after the PSWs have been exchanged.

Programming Note

In order to perform restart when the CPU is in the
check-stop state, the CPU has to be reset. This can
be accomplished by means of program reset, which
does not clear the contents of registers, including the
control registers, but causes the channels to be reset.

Priority of Interruptions
During the execution of an instruction, several
interruption-causing events may occur simultaneously.
The instruction may give rise to a program
interruption, a request for an external interruption
may be received, equipment malfunctioning may be
detected, an I/O-interruption request may be made,
and the restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if the program-event
recording facility is enabled. Simultaneous interrup
tion requests are honored in a predetermined order.

An exigent machine-check condition has the highest
priority. When it occurs, the current operation is
terminated or nullified. Program and supervisor-call
interruptions that would have occurred as a result of
the current operation may be eliminated. Any
pending repressible machine-check conditions may be
indicated with the exigent machine-check
interruption. Every reasonable attempt is made to
limit the side effects of an exigent machine-check
condition, and, normally, requests for I/O and
external interruptions remain unaffected.

In the absence of an exigent machine-check
condition, requests for interruption existing
concurrently at the end of a unit of operation are
honored, in descending order of priority, as follows:

Supervisor call
Program
Repressible machine-check
External
Input/ output
Restart

Chapter 6. Interruptions 6-21

The processing of multiple simultaneous
interruption requests consists in storing the old PSW
and fetching the new PSW belonging to the
interruption first taken. This new PSW is
subsequently stored without the execution of any
instructions, and the new PSW assocjated with the
next interruption is fetched. Storing and fetching
continues until no more interruptions are to be
serviced. The priority is reevaluated after the new
PSW is loaded. Each evaluation is performed taking
into consideration any additional interruptions which
may have become pending. Additionally, external
and 110 interruptions, as well as machine-check
interruptions due to repressible conditions, are taken
only if the current PSW at the instant of evaluation
indicates that the CPU is interruptible for the cause.

Instruction execution is resumed using the last
fetched PSW. The order of executing interruption
subroutines is therefore the reverse of the order in
which the PSW s are fetched.
If the new PSW for a program interruption has an

odd instruction a.~dress or causes an access exception
to be recognized, another program interruption
occurs. Since this second interruption introduces the
same unacceptable PSW, a string of interruptions is
established. These program exceptions are
recognized as part of the execution of the following
instruction, and the string may be broken by an I/O,
external, or restart interruption or the stop function.
If the new PSW for a program interruption contains

a one in an unassigned bit position of an BC-mode
PSW, another program interruption occurs. This
condition is of higher priority than restart, I/O,

6-22 IBM 4300 Processors Principles of Operation

external, or repressible machine-check conditions, or
the stop function, and program reset has to be used
to break the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW is enabled for
the interruption just taken. These include machine
check interruptions, external interruptions, and I/O
interruptions due to pci conditions generated
because of CCWs which form a loop. Furthermore, a
string of interruptions involving more than one
interruption class can exist. For example, assume
that the CPU timer is negative and the CPU-timer
subclass mask is one. If the external new PSW has a
one in an unassigned bit position in the EC mode,
and the program new PSW is enabled for external
interruptions, then a string of interruptions occurs,
alternating between external and program. Even
more complex strings of interruptions are possible.
As long as more interruptions must be serviced, the
string of interruptions cannot be broken by employing
the stop function; program reset is required.

Interruptions for all requests for which the CPU is
enabled are taken before the CPU is placed in the
stopped state. When the CPU is in the stopped state,
restart has a higher priority than pending I/O,
external, or repressible machine-check conditions.

Programtning Note

The order in which concurrent interruption requests
are honored can be changed to some extent by
masking.

Chapter 7. General Instructions

Contents

Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3

Instructions 7-4
ADD 7-7
ADD HALFWORD 7-7
ADD LOGICAL 7 .. 7
AND 7--7
BRANCH AND LINK 7-8
BRANCH ON CONDITION 7-9
BRANCH ON COUNT 7-10
BRANCH ON INDEX HIGH 7-10
BRANCH ON INDEX LOW OR EQUAL 1-10
COMPARE 7-11
COMPARE AND SWAP 7-11
COMPi\RE DO~LE AND SWAP 7~U,

COMPARE HALFWORD 7--13
COMPARE LOGICAL 7~I3
COl\{PARE LOGICAL CHARACTERS
UNDER MASK 7-13

COMPARE LOGIGA-L LONG ,7-14
CONVERT TO BINARY 7-15
CONVERT TO DECIMAL 7-16
DIVIDE 7 ... 16
EXCLUSIVE OR . 7-17
EXECUTE 7-17
INSERT CHARACTER :7-18.
INSERT CHARACTERS UNDER MASK 7-18
LOAD 7-19·
LOAD ADDRESS 7-19
LOAD AND TEST 7-19
LOAD COMPLEMENT 7-20
LOAD HALFWORD 7-20
LOAD MULTIPLE 7-20
LOADNEGATIVE 7-21
LOAD POSITIVE 7-21

This chapter includes all the unprivileged instru~tions
described. in this publication, other than the decimal
and floating-point instructions.

MONITOR CALL 7-21
MOVE 7-22
MOVE INVERSE 7-22
MOVE LONG' 7-23
MPVE NUMERICS 7-25
MOVE WITH OFFSET 7-25
MOVE ZONES 7-26
MULTIPLY .7-26
MULTIPLY HALFWORD 7-27
OR '7-27
PACK 7-28
SETfROGRAM MASK 7~28
SHIFrLEFT DOUBLE 7-29
SHIFT LEFT DOUBLE LOGICAL 7~29

SHIFTLEFTSINGLE 7-30
SHIFT LEFI':SINGLELOGICAL' 7-30
SlIiFT.:RJQHT'DOUBLE 7-30
SHIFTRIGHTDQUBLE LOGIC.AL 7-31
SBIFT.RIGHT.SINGLE 7-31
SNIFf RIGHT SINGLE LOGICAL .7-32
STORE 7..:32'
.~TQ·8.EC:HARACTER. 7-32
STORE·:CHARACTERS UNDER MASK 7-32
S;TORE.CLOCK . 7-33
STORE HALPWORD 7-33
$TORE:MUL TlPLE 7-33
SUBTRACT . 7-34
SUBTRACT HALFWORD 7-34
SUBTRACTLOGICAL 7-34
SUPERVISOR CALL 7-35
TEST .t\.NDSET 7-35
TEST UNDER MASK 7-36
'(RANSLATE 7-36
TRANSLATE AND TEST 7-37-
UNPACK ,7-38

Data Format
The general instructions treat dat~ as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal data.
'Data is treated as decimal by the conversion, packing,
and unpacking instructions. Decimal data is
describe<.t in Chapter 8, "Decimal Instructions."

Data resides in general registers orin storage or is

Chapter 7. General Instructions 7-1

introduced from the instruction stream.
In a storage-to-storage operation the operand fields

may be defined in such a way that they overlap. The
effect of this overlap depends upon the operation.
When the operands remain unchanged, as in
COMPARE or TRANSLATE AND TEST,
overlapping does not affect the execution of the
operation. For instructions such as MOVE and
TRANSLATE, one operand is replaced by new data,
and the execution of the operation may be affected
by the amount of overlap and the manner in which
data is fetched or stored. For purposes of evaluating
the effect of overlapped operands, data is considered
to be handled one eight-bit byte at a time. All
overlapping fields are considered valid.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When two
unsigned binary integers of different lengths are
added, the shorter number is considered to be
extended with high-order zeros.

For signed binary integers, the leftmost bit
represents the sign, which is followed by the numeric
field. Positive numbers are represented in true binary
notation with the sign bit set to zero. Negative
numbers are represented in two's-complement binary
notation with a one in the sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of the
same absolute value. The two's complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be
considered the low-order portion of an infinitely long
representation of the number. When the number is
positive, all bits to the left of the most significant bit
of the number are zeros. When the number is
negative, all these bits are ones. Therefore, when a
signed operand must be extended with high-order
bits, the extension is achieved by setting these bits
equal to the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger than
the set of positive numbers. The maximum positive
number consists of a sign bit of zero followed by all
ones, whereas the maximum negative number (the
negative number with the greatest absolute value)

7-2 IBM 4300 Processors Principles of Operation

consists of a sign bit of one followed by all zeros.
The number zero consists of all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by forming
its two's complement. This operation of
complementing a number- is eqUivalent to subtracting
the number from zero. The complement of zero is
zero.

The complement of the maximum negative number
cannot be represented in the same number of bits.
When an operation, such as a subtraction of the
maximum negative number from zero, attempts to
produce the complement of the maximum negative
number, the result is the maximum negative number,
and a fixed-point-overflow exception is recognized.
An overflow does not result, however, when the
maximum negative number is complemented as an
intermediate result but the final result is within the
representable range. An example of this case is a
subtraction of the maximum negative number from
minus one. The product of two maximum negative
numbers is representable as a double-length positive
number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the sign
bit. Thus, the expression "32-bit signed binary
integer" denotes an integer with 31 numeric bits and
a sign bit, and the expression "64-bit signed binary
integer" denotes an integer with 63 numeric bits and
a sign bit.

In some operations, the result is achieved by the use
of the one's complement of the number. The one's
complement of a number is obtained by inverting
each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign bit
does not change even if significant high-order bits are
shifted out.

Programming Notes

1. An alternate way of forming the two's
complement of a signed binary integer is to invert
all bits to the left of the rightmost one bit,
leaving the rightmost one bit and all zero bits to
the right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value, with
the sign representing a value of either zero or the
maximum negative number.

Signed and Unsigned Binary Arithmetic
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the length
of the longer operand by propagating the sign-bit
value. If the carry out of the sign-bit position and
the carry out of the high-order numeric bit position
disagree, an overflow occurs. The sign bit is not
changed after the overflow.

Subtraction is performed by adding the one's
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers.
Specifically, for ADD and SUBTRACT, which
operate on 32-bit signed binary integers, there is an
overflow when the proper result would be greater
than or equal to +231 or less than _231. The actual
result placed in the general register after an overflow
differs from the proper result by 232. An overflow
causes a program interruption for fixed-point
overflow if it is allowed.

Addition of unsigned binary integers is performed
by adding all bits of each operand. When one of the
operands is shorter, the shorter operand is extended
on the left with zeros. Unsigned binary arithmetic is
used in address arithmetic for adding the X, B, and D
fields. It is also used to obtain the addresses of the
function bytes in the instructions TRANSLATE and
TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit unsigned binary
integers by the instructions ADD LOGICAL and
SUBTRA CT LOGICAL. Given the same two
operands, ADD and ADD LOGICAL produce the
same 32-bit result. The instructions differ only in the
interpretation of this result. ADD interprets the
result as a signed binary integer and inspects it for
sign, magnitude, and overflow to set the condition
code accordingly. ADD LOGICAL interprets the
result as an unsigned binary integer and sets the
condition code according to whether the result is zero
and whether there was a carry out of the high-order
bit position. Such a carry is not necessarily
considered an overflow, and no program interruption
can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one's complement of the
second operand and a low-order one are added to the
first operand.

Programming Notes

1. Logical addition and subtraction may be used to
program mUltiple-precision arithmetic. Thus, for
multiple-precision binary-integer addition, ADD
LOGICAL is used to add the corresponding
lower-order parts of the operands. If the
condition code indicates a carry, a one is added
to the first operand of the next higher pair of
integers before adding the second operand. If the
integers are signed, the ADD instruction is used
on the highest-order parts after propagating any
carry. The condition code then indicates any
overflow or the proper sign and magnitude of the
entire result; an overflow is also indicated by a
fixed-point-overflow interruption if it is allowed.
If the integers are unsigned, ADD LOGICAL is
used throughout.

2. Another use for ADD LOGICAL is to increment
values representing binary counters, which are
allowed to wrap around from all ones to all zeros
without necessarily indicating overflow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater (high).
Signed-binary comparison operations are provided
which treat the operands as signed binary integers,
and logical comparison operations are provided which
treat the operands as unsigned binary integers or as
unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison
operations. These instructions are equivalent to
SUBTRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting difference
being used only to set the condition code. The
operations permit comparison of numbers of opposite
sign which differ by 232 or more. Thus, unlike
SUBTRACT, COMPARE can cause no overflow.

Logical comparison is performed by a left-to-right,
bit-by-bit comparison of the two operands. The
operands are equal when all their bits are equal.
When the operands are unequal, the condition is
determined by the first unequal pair of bits in a left
to-right comparison of corresponding bit
positions: the zero bit indicates the low operand and
the one bit the high operand. Since the remaining bit
positions do not change the comparison, it is not
necessary to continue comparing unequal operands
beyond the first unequal bit pair.

Chapter 7. General Instructions 7-3

Instructions
The general instructions and their mnemonics,
formats, and operation codes are listed in the
following table. The table also indicates when tbe·
condition code is set and the exceptional conditions ..
in operand designations, data, or results that cause a
program interruption.

A detailed definition of instruction formats, operand
designation and length, and address generation is
contained in the section "Instructions It in ChapterS,
tlProgram Execution. It Exceptions to the general
rules stated in that section are explicitly identified· in
the individual instruction descriptions.

Several instruction descriptions in this chapter .
contain' references to other CPUs, even though the

7-4 IBM 4300 Processors Principles of Operation

4300 Processors make no provision for
multiprocessing, so as to permit thewriti~ of
problem-state programs that are .compatible with
multiprocessing. configurations. of System/370 (see
the section HProblem-State· Co:tnpatibili~y" in· Chapter
I, "Intr()(l~~on ")

Note: In the detailed descriptions' of th~ individual
instructions, the mnemonic and. the symbolic operand
designations for the assembler lan8JlflKeare shown
with each instruction. For LOADA,ND. TEST, fOl

.example,LTR isthemnemoniea"dRj, R 2 the
··iJ~r41id desigMtio.n.

ADD
ADD

Name

ADD HALFWORD
ADD LOGICAL
ADD LOGICAL

Mnemonic

AR
A
AH
ALR
AL

NR

RR C

RX C
RX C
RR C
RX C

RR C AND
AND N RX C

AND (character)
AND (immediate)
BRANCH AND LINK

NC SS C
NI SI C
BALR RR

BRANCH AND LINK
BRANCH ON CONDITION
BRANCH ON CONDITION
BRANCH ON COUNT
BRANCH ON COUNT

BAL RX
BCR RR
BC RX
BCTR RR
BCT RX

BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR

EQUAL
COMPARE
COMPARE
COMPARE AND SWAP

BXH
BXLE

CR
C

CS

COMPARE DOUBLE AND SWAP CDS
COMPAREHALFWORD CH
COMPARE LOGICAL CLR
COMPARE LOGICAL CL
COMPARE LOGICAL (character) CLC

COMPARE LOGICAL (immediate) CLI
COMPARE LOGICAL CHAR- CLM

ACTERS UNDER MASK
COMPARE LOGICAL LONG
CONVERT TO BINARY
CONVERT TO DECIMAL

DIVIDE
DIVIDE
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR (character)

CLCL
CVB
CVD

DR
D
XR
X
XC

EXCLUSIVE OR (immediate) XI
EXECUTE EX
INSERT CHARACTER IC
INSERT CHARACTERS UNDER ICM

MASK·
LOAD LR

RS
RS

RR C

RX C
RS C

RS C
RX C
RR C

RX C
SS C

SI C
RS C

RR C

RX
RX

RR
RX
RR C
RX C
SS C

SI C
RX
RX
RS C

RR

A
A

A

A
A
A

A
A

A
A

A
A

A
A

A
A
A

A

A
A

A
A
A
A

LOAD L
LA
LTR
LCR
LH

RX A
LOAD ADDR ESS
LOAD AND TEST
LOAD COMPLEMENT
LOAD HALFWORD

LOAD MULTIPLE
LOAD NEGATIVE
LOAD POSITIVE
MONITOR CALL
MOVE (character)

LM
LNR
LPR
MC
MVC

RX
RR C
RR C
RX

RS
RR C

RR C
SI
SS

Summary of General Instructions (Part 1 of 2)

A

A

A

SP

SP

SP

SP
SP

SP

SP

Characteristics

D

IF
IF
IF

IF

IF

IK

IK
IK

$

II

EX

MO

B

B
B
B
B
B

B
B

R

R
R

R

R

R
R

R

R

R
R

R
R

R

R

R
R

R
R
R
R

R
R

R

R

R
R
R
R

R
R
R

Code

1A
5A
4A
1E
5E

14
54

ST D4
ST 94

05

45
07
47
06
46

86
87

19
59

ST BA

ST BB
49
15
55
D5

95
BD

OF
4F

ST 4E

1D
5D
17
57

ST D7

ST 97
44
43
BF

18

58
41
12
13
48

98
11
10
AF

ST 02

Chapter 7. General Instructions 7-5

Name Mnemonic Characteristics Code

MOVE (immediate) MVI SI A ST 92
MOVE INVERSE MVCIN SS A ST E8
MOVE LONG MVCL RR C A SP II R ST OE
MOVE NUMERICS MVN SS A ST D1
MOVE WITH OFFSET MVO SS A ST F1

MOVE ZONES MVZ SS A ST 03
MULTIPLY MR RR SP R. 1C
MULTIPLY M RX A SP R 5C
MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16

OR 0 RX C A R 56
OR {character} OC SS C A ST D6
OR (immediate) 01 SI C A ST 96
PACK PACK SS A ST F2
SET PROGRAM MASK SPM RR L 04

SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E

SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST 56
STORE CHARACTER STC RX A ST 42

STORE CHARACTERS UNDER MASK STCM RS A ST BE
STORE CLOCK STCK S C A $ ST B205
STORE HALFWORD STH RX A ST 40
STORE MULTIPLE STM RS A si 90
SUBTRACT SR RR C IF R 1B

SUBTRACT S RX C A IF R 5B
SUBTRACTHALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR C R 1F
SUBTRACT LOGICAL SL RX C A R 5F
SUPERVISOR CALL SVC RR $ OA

TEST AND SET TS S C A $ ST 93
TEST UNDER MASK TM SI C A 91
TRANSLATE TR SS A ST DC
TRANSLATE AND TEST TRT SS C A R DO
UNPACK UNPK S5 A ST F3

Explanation:

A Access exceptions RS RS instruction format

B PER branch event RX RX instruction format

C Condition code is set S S instruction format

0 Data exception SI SI instruction format

EX Execute exception SP Specification exception

IF Fixed-paint-overflow exception SS SS instruction format

II Interruptible instruction ST PER storage-alteration event

IK F ixed-point-divide exception $ Causes serialization

L New condition code loaded $1 Causes serialization when the Ml and R2 fields contain

MO Mon itor event all ones and all zeros, respectively.

R PER general-register-alteration event

RR RR instruction format

Summary of General Instructions (Part 2 of 2)

7-6 IBM 4300 Processors Principles of Operation

ADD

AR Rt,Rz [RR]

'1A' I R, I R2 I
0 8 12 15

A Rt,D2(X2,Bz) [RX]

'SA' I ft, I X2 I 82 I D2

0 a 12 16 20

The second.operarid. is added to the :first:o~ta.il~"
and the sum is placed in thefirst-operaJlJiJ&6ti6a
The operands and the sum are treatedas;~2.;,b:it~
signed binary integers.

An overflow causes' a'program intetruptiOn;wli~ri
thefixed~point-overflow ,mask bit is one.

ResllftillgCondititiaCode:

o Sumjs zero
1 Sum is less than zero
2 Sum is gre.ater than zero
3 Overflow

P1'tJ6lY1m.ExceptillllS:

Access, (fetch, operand. 2· of A only)
Fixed~Poin.t Overflow

ADD lMLFWORD

AH Rl~D2(X2,B2) [RX]

'4A' I Rt I X2 I 8 2] '02

I
3t

I
0 8' 12. 16 20 ,'c~1

The second; operand is added to the first'opetai'Jdi
and the sum is placed in the first..;operandlocation':.
The second operand is two bytes in lengthatidis
treated as a 16-bit signed binary integer: Thefitst
operand and· the sum are treated as ~3,2-bit.signed
binary integers.

An overflow causes a program interru,ption,;when:
the fixed-point-overflow mask bit is one.

Res.fling .Condition· Code:

o Sum is zero
1 Sum' is less than zero
2 Sum, is greater than zero
3 'Overflow

progrllm .. Exceptions:

Access (fetch; operand 2)
Fixed;"PomtOverflow

PrograDiming Note

AlI-exampie of the use ofADD~,J:IA1jFW01IDis
given in: Appendix A.

AL:R. R1;Ri [RR]

! "tE' I R, I ft, I
12 15

.1
,:31

,lbe:'secol1d::operand-.is,.added,tlfihe!'-fu-sfop¢rano.,
and:the;,snM is, placedjri"the fitst~ijpet.a~d']()cldion.,
Tbe'operands' and "the sum· are, tte~d:.:a$,32-l>it,
lin~iIP~~:~binatYrntegetS.

.~.ii":n."";"'JU.", 'I""f_~
~~~Wft6~}v,.~If:lf)lIi:':"U8e:' 

:0 
J 
2 
3 

'S:Ulti,,'iS;~r?~, Withno:cany 
~'SQm,iS'\~~tzero, with.noearry 
'S~~is"iero~""WitIi:carry 
'SumJs<notzero, with carry 

,Progril1ll:&ceptwnS': 

Access· (fetch,.: operand 2 of ,AL onty) 

'AND 

NR Rt;Rz, [RR} 

'14' I Rt I R2 I 
0 8 12 15 

Chapter 7. Oeneral'Instructions 7-7 



N [RXJ 

'54' 
I ~ 

o 8 12 16 20 31 

NI [SI] 

'94' I Dl 

o 8 16 20 31 

The AND of the. first and '. second op.erandsis ... placed. 
in the first-operand location. 

The cQnnective AND is applied to the op~ra~ds.bit· 
hy hit. A bit position in the result is set toone<U:t:ne 
corresponding bit positions in both operands .contiUtl .. 
ones; otherwise, the result bit is set to zero. 

For NC, each operand is processed left to. right. 
When the operands overlap, the result is.obtained,as , 
if the operands. were processed one byte at.a·tim~and 
each result byte were stored immediately after the 
necessary operand byte is fetched. 

For Nl, the first operand is one byte in length; and 
only one byte is stored. 

Resulting Condition' Code: 

o Result is zero 
1 Result is not zero 
2 
3 

Program Exceptions: 

Access (fetch, operand 2, Nand NC; fetch and store, 
operand 1, NI and NC) 

7-8 IBM 4300 Processors Principles of Operation 

Programming. Notes 

1. An example of the use of the AND instruction is 
given in Appendix A. 

2. The instruction AND may be used to set· a bit to 
zero. 

3. Accesses to the first operand of NI and NC 
consist in fetching a first~operand byte from 
storage and subsequently storing the updated 
value. These fetch and store accesses to a 
'particular byte do not necessarily occur one 
immediately after the other. . Thus, the instruction 
AND cannot be safely used to update a location 
in storage if the possibility exists that. another 
CPU'or a channel may also be up~ating the 
location. An example of thi~ effect IS shown for 
the instruction OR (01) in th~'section 
"MuJtiproces~n.g. Examples "ip~~pp~~d~~ A~ 

BRANOHAND::LJNK 

BALR .Rj,Rz [RR] 

r'~ I A, I A2 I 
'12 15 

HAL Rt"D2(X2,B2) [RX.J 

t ':45' I Rt I X2 I 82 t 02 

0 . 8:' 12 16. 20 . ,~1. 

Information from thecurrentP~W;'incl~ding the; 
uPdated instruction address~ is.;ioag,ed' as·lillk 
information in ·the. general regist~r; !?~signatedpy:~J.' 
Su,b~eque~tly ~ the instructionad~re~s :isrepl~Ced:ijy: 
the branehaddress: ' '. . ,. 

In tIw .~X.·format, . the second"'0pe,and .. addreS$ . .is 
nsedas the branch address. In the:ltllformat; ~it$ 
~-31 of the general register desigrtaled by Rz·are .. 
used as the" branch address; however,'whe:n:"theR2 

field contains zeros, the operation is performed 
withoutpra:Qching~ The branch address is cOl11Puted 
before the.··linkinformation is loaded. 

The link information consists of the instruction
length code (ILC), the condition:code (CC), the 
program mask bits, ,and the updated: inStruction 
address,arrangedin the following.Jormat: 

I 



Prog 

IlC CC Mask Instruction Address 

o 2 4 8 31 

The instruction-length code is 1 or 2. 

Condition Code: The code remains unchanged. 

Program Exceptions: None. 

Programming Notes 

1. An example of the use of BRANCH AND LINK 
is given in Appendix A. 

2. When the R2 field in the RR format contains all 
zeros, the link information is loaded without 
branching. 

3. When BRANCH AND LINK is the subject 
instruction of EXECUTE, the instruction-length 
code is 2. 

4. The format and the contents of the link 
information do not depend on whether the PSW 
specifies the EC or BC mode. In both modes, the 
link information is in the format of the rightmost 
32 bit positions of the BC-mode PSW. 

BRANCH ON CONDITION 

BCR Ml,R2 [RR] 

'01' 1M! I R2 I 
0 8 12 15 

BC M1,D2(X2,B2) [RX] 

'47' 1M! I X2 I 82 I D2 

0 8 12 16 20 31 

The instruction address in the current PSW is 
replaced by the branch address if the condition code 
has one of the values specified by Ml; otherwise, 
normal instruction sequencing proceeds with the 
updated instruction address. 

In the RX format, the second-operand address is 
used as the branch address. In the RR format, bits 

I 8-31 of the general register specified by R2 are used 
as the branch address; however, when the R2 field 

contains zeros, the operation is performed without 
branching. 

The Ml field is used as a four-bit mask. The four 
condition codes (0, 1,2, and 3) correspond, left to 
right, with the four bits of the mask, as follows: 

Mask 
Condition Instruction Position 
Code Bit Value 

0 8 8 
1 9 4 
2 10 2 
3 11 

The current condition code is used to select the 
corresponding mask bit. If the mask bit selected by 
the condition code is one, the branch is successful. If 
the mask bit selected is zero, normal instruction 
sequencing proceeds with the next sequential 
instruction. 

When the Ml and R2 fields of BCR are all ones and 
all zeros, respectively, a serialization function is 
performed. CPU operation is delayed until all 
previous accesses by this CPU to storage have been 
completed, as observed by channels and other CPUs. 
No subsequent instructions or their operands are 
accessed by this CPU until the execution of this 
instruction is completed. 

Condition Code: The code remains unchanged. 

Program Exceptions: None. 

Programming Notes 

1. An example of the use of BRANCH ON 
CONDITION is given in Appendix A. 

2. When a. branch is to depend on more than one 
condition, the pertinent condition codes are 
specified in the mask as the sum of their mask 
position values. A mask of 12, for example, 
specifies that a branch is to be made when the 
condition code is 0 or 1. 

3. When all four mask bits are zero or when the R2 
field in the RR format contains zero, the branch 
instruction is equivalent to a no-operation. When 
all four mask bits are ones, that is, the mask value 
is 15, the branch is unconditional unless the R2 
field in the RR format is zero. 

4. Execution of BCR 15,0 (that is, an instruction 
with a value of 07FO hex) may result in 
significant performance degradation. To ensure 
optimum performance, the program should avoid 

Chapter 7. General Instructions 7-9 



use of BCR 15,0 except in cases when the 
serialization function is actually required. 

5. Note that the relation between the RR and RX 
formats in branch-address specification is not the 
same as in operand-address specification. For 
branch instructions in the RX format. the branch 
address is the address specified by X2, B2, and 
D2; in the RR format, the branch address is 
contained in the register specified by R2 • For 
operands, the address specified by X2, B2, and D2 
is the operand address, but the register specified 
by R2 contains the operand itself. 

BRANCH ON COUNT 

BCTR R1,R2 [RR] 

"06" I R, I R2 I 
o 8 12 15 

BCT R1,D2(X2,B2) [RX] 

'46' I R, I X2 I 82 I D2 

0 8 12 16 20 31 

A one is subtracted from the first operand, and the 
result is placed in the first-operand location. The 
first operand and result are treated as 32-bit binary 
integers, with overflow ignored. When the result is 
zero, normal instruction sequencing proceeds with the 
updated instruction address. When the result is not 
zero, the instruction address in the current PSW is 
replaced by the branch address. 

In the RX format, the second-operand address is 
used as the branch address. In the RR format, the 
contents of bit positions 8-31 of the general register 
specified by R2 are used as the branch address; 
however, when the R2 field contains zeros, the 
operation is performed without branching. 

The branch address is computed before the counting 
operation. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

None. 

7-10 IBM 4300 Processors Principles of Operation 

Programming Notes 

1. An example of the use of BRANCH ON COUNT 
is given in Appendix A. 

2. The first operand and result can be considered as 
either signed or unsigned binary integers since the 
result of a binary subtraction is the same in both 
cases. 

3. An initial count of one results in zero, and no 
branching takes place; an initial count of zero 
results in minus one and causes branching to be 
executed; an initial count of minus one results in 
minus 2 and causes branching to be executed; 
and so on. In a loop, branching takes place each 
time the instruction is executed until the result is 
again zero. Note that, because of the number 
range, an initial count of minus 231 results in a 
positive value of 231-1. 

4. Counting is performed without branching when 
the R2 field in the RR format contains zero. 

BRANCH ON INDEX HIGH 

BXH R1,R3,D2(B2 ) [RS] 

'86' I R, I R3 I B2 I D2 

0 8 12 16 20 

BRANCH ON INDEX LOW OR EQUAL 

31 

o 8 12 16 20 31 

An increment is added to the first operand, and the 
sum is compared with a comparand. Subsequently, 
the sum is placed in the first-operand location. The 
second-operand address is used as a branch address. 

For BXH, when the sum is high, the instruction 
address in the current PSW is replaced by the branch 
address. When the sum is low or equal, normal 
instruction sequencing proceeds with the updated 
instruction address. 

For BXLE, when the sum is low or equal, the 
instruction address in the current PSW is replaced by 
the branch address. When the sum is high, normal 
instruction sequencing proceeds with the updated 
instruction address. 



When the R3 field is even, the even and odd 
registers of the pair specified by the R3 field are used 
as the increment and the comparand, respectively. 
When the R3 field is odd, the register specified by the 
R3 field is used as both the increment and the 
comparand. The branch address is computed before 
the addition and comparison. 

For purposes of the addition and comparison, all 
operands and results are treated as 32-bit signed 
binary integers. Overflow caused by the addition is 
ignored. When the first-operand and comparand 
locations coincide, the original register contents are 
used as the comparand. 

The sum is placed in the first-operand location 
regardless of whether the branch is taken. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

None. 

Programming Notes 

1. An example of the use of BRANCH ON INDEX 
HIGH is given in Appendix A. 

2. The word "index" in the names of these 
instructions indicates that one of the major 
purposes is the incrementing and testing of an 
index value. The increment, being a signed 
binary integer, may be used to increase or 
decrease the value in register Rl by an arbitrary 
amount. 

COMPARE 

CR Rl,R2 [RR] 

'19' I R j I R2 I 
o 8 12 15 

C [RX] 

'59' I Rl I X2 I B2 

o 8 12 16 20 31 

The first operand is compared with the second 
operand, and the result is indicated in the condition 
code. The operands are treated as 32-bit signed 
binary integers. 

Resulting Condition Code: 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions: 

Access (fetch, operand 2 of Conly) 

COMPARE AND SWAP 

CS Rt,R3,D2(B2 ) [RS] 

'BA' I R, I R3 I B2 I 
0 8 12 16 20 

D2 

COMPARE DOUBLE AND SWAP 

o 8 12 16 20 

31 

31 

The first and second operands are compared. If they 
are equal, the third operand is stored at the second
operand location. If they are unequal, the second 
operand is loaded into the first-operand location. 
The result of the comparison is indicated in the 
condition code. 

For CS, the first and third operands are 32 bits in 
length, with each operand occupying a general 
register. The second operand is a word in storage. 

For CDS, the first and third operands are 64 bits in 
length, with each operand occupying an even-odd 
pair of general registers. The second operand is a 
doubleword in storage. 

When the result of the comparison is unequal, the 
second-operand location remains unchanged. No 
attempt to store occurs, and no change-bit and 
store-protection actions are taken. 

When an equal comparison occurs, no access by 
another CPU to the second-operand location is 
permitted between the moment that the second 
operand is fetched for comparison and the moment 
that the third operand is stored at the second
operand location. 

Serialization is performed before the operand is 
fetched, and again after the operation is completed. 
CPU operation is delayed until all previous accesses 

Chapter 7. General Instructions 7 -11 



by this CPU to storage have been completed, as 
observed by channels and other CPUs, and then the 
second operand is fetched. No subsequent 
instructions or their operands are accessed by this 
CPU until the execution of this instruction is 
completed, including placing the result value, if any, 
in storage, as observed by channels and other CPUs. 

The second operand of CS must be designated on a 
word boundary. The Rl and R3 fields for CDS must 
each designate an even register, and the second 
operand for CDS must be designated on a 
doubleword boundary. Otherwise, a specification 
exception is recognized. 

Resulting Condition Code: 

o First and second operands equal, second operand 
replaced by third operand 

1 First and second operands unequal, first operand 
replaced by second operand 

2 
3 

Program Exceptions: 

Access (fetch and store, operand 2) 
Specification 

Programming Notes 

1. Several examples of the use of the COMPARE 
AND SWAP and COMPARE DOUBLE AND 
SWAP instructions are given in Appendix A. 

2. The instruction CS can be used by programs 
sharing common storage areas in either a 
multiprogramming or multiprocessing 
environment. Two examples are: 
a. By performing the following procedure, a 

program can modify the contents of a storage 
location even though the possibility exists that 
the program may be interrupted by another 
program that will update the location or even 
though the possibility exists that another CPU 
may simultaneously update the location. 
First, the entire word containing the byte or 
bytes to be updated is loaded into a general 
register. Next, the updated value is computed 
and placed in another general register. Then 
the instruction CS is executed with the Rl 
field designating the register that contains the 
original value and the R3 field designating the 
register that contains the updated value. If 
condition code 0 is set, the update has been 
successful. If condition code 1 is set, the 

7-12 IBM 4300 Processors Principles of Operation 

storage location no longer contains the 
original value, the update has not been 
successful, and the general register designated 
by the Rl field of the CS instruction contains 
the new current value of the storage location. 
When condition code 1 is set, the program 
can repeat the procedure using the new 
current value. 

b. The instruction CS can be used for controlled 
sharing of a common storage area in a 
manner similar to that described in the 
programming note under TEST AND SET, 
but it provides the added capability of leaving 
a message when the common area is in use. 
To accomplish this, a word in storage can be 
used as a control word, with a zero value in 
the word indicating that the common area is 
not in use, a negative value indicating that 
the area is in use, and a nonzero positive 
value indicating that the common area is in 
use and that the value is the address of the 
most recent message added to the list. Thus, 
any number of programs desiring to seize the 
area can use CS to update the control word to 
indicate that the area is in use or to add 
messages to the list. The single program 
which has seized the area can also safely use 
CS to remove messages from the list. 

3. The instruction CDS can be used in a manner 
similar to that described for CS. In addition, it 
has another use. Consider a chained list, with a 
control word used to address the first message in 
the list, as described in programming note 2b 
above. If multiple programs are permitted to add 
and delete messages by using CS, there is a 
possibility the list will be incorrectly updated. 
This would occur if, after one program has 
fetched the address of the most recent message in 
order to remove the message, another program 
removes the first two messages and then adds the 
first message back into the chain. The first 
program, on continuing, cannot easily detect that 
the list is changed. By increasing the size of the 
control word to a double word containing both the 
first message address and a word with a change 
number that is incremented for each modification 
of the list, and by using CDS to update both 
fields together, the possibility of the list being 
incorrectly updated is reduced to a negligible 
level. That is, an incorrect update can occur only 
if the first program is delayed while changes 
exactly equal in number to a multiple of 232 take 



place and only if the last change places the 
original message address in the control word. 

4. The instructions CS and CDS do not interlock 
against storage accesses by channels. Therefore, 
the instructions should not be used to update a 
location which is in an 110 input area, since the 
input data may be lost. 

COMPARE HALFWORD 
CH Rt,D2(X2,B2) [RX] 

o 8 12 16 20 31 

The first operand is compared with the second 
operand, and the result is indicated in the condition 
code. The second operand is two bytes in length and 
is treated as a 16-bit signed binary integer. The first 
operand is treated as a 32-bit signed binary integer. 

Reslliting Condition Code: 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions: 

Access (fetch, operand 2) 

Programming Note 

An example of the use of COMPARE HALFWORD 
is given in Appendix A. 

COMPARE LOGICAL 
CLR Rt,R2 [RR] 

'15' I R, I R2 I 
0 8 12 15 

CL Rt,D2(X2,B2) [RX] 

'55' I R, I X2 I B2 I 
0 8 12 16 20 31 

CLI D 1(B1),h [SI] 

'95' 12 I B1 I 01 

0 8 16 20 31 

The first operand is compared with the second 
operand, and the result is indicated in the condition 
code. 

The comparison proceeds left to right, bit for bit, 
and ends as soon as an inequality is found or an end 
of the fields is reached. For CL and CLC, access 
exceptions mayor may not be recognized for the 
portion of a storage operand to the right of the first 
unequal byte. 

Resultillg Conditioll Code: 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions: 

Access (fetch, operand 2, CL and CLC; fetch, 
operand 1, CLI and CLC) 

Programming Notes 

1. Examples of the use of the COMPARE 
LOGICAL instructions are given in Appendix A. 

2. The COMPARE LOGICAL instructions treat all 
bits of each operand alike as part of a field of 
unstructured logical data. For CLC, the 
comparison may extend to field lengths of 256 
bytes. 

COMPARE LOGICAL CHARACTERS 
UNDER MASK 
CLM Rt,M3,D2(B2 ) [RS] 

'BD' I R, I M3 I B2 I D2 

o 8 12 16 20 31 

Chapter 7. General Instructions 7 -13 



The first operand is compared with the second 
operand under control of a mask, and the result is 
indicated in the condition code. 

The contents of the M3 field are used as a mask. 
These four bits, left to right, correspond one for one 
with :-he four bytes, left to right, of the general 
register designated by the Rl field. The byte 
positions corresponding to ones in the mask are 
considered as a contiguous field and are compared 
with the second operand. The second operand is a 
contiguous field in storage, starting at the second
operand address and equal in length to the number of 
ones in the mask. The bytes in the general register 
corresponding to zeros in the mask do not participate 
in the operation. 

The comparison proceeds left to right, bit for bit, 
and ends as soon as an inequality is found or the end 
of the fields is reached. 

When the mask is not zero, exceptions associated 
with storage-operand access are recognized for no 
more than the number of bytes specified by the mask. 
Access exceptions mayor may not be recognized for 
the portion of a storage operand to the right of the 
first unequal byte. When the mask is zero, access 
exceptions are recognized for one byte. 

Resulting Condition Code: 

o Selected bytes are equal, or mask is zero 
1 Selected field of first operand is low 
2 Selected field of first operand is high 
3 

Program Exceptions: 

Access (fetch, operand 2) 

Programming Note 

An example of the use of COMPARE LOGICAL 
CHARACTERS UNDER MASK is given in 
Appendix A. 

COMPARE LOGICAL LONG 

CLCL Rt,R2 [RR] 

I R, I R, I 
o 8 12 15 

7-14 IBM 4300 Processors Principles of Operation 

The first operand is compared with the second 
operand, and the result is indicated in the condition 
code. The shorter operand is considered to be 
extended on the right with padding bytes. 

The Rl and R2 fields each specify an even-odd pair 
of general registers and must designate an even
numbered register; otherwise, a specification 
exception is recognized. 

The location of the leftmost byte of the first 
operand and second operand is designated by bits 
8-31 of the general registers specified by the Rl and 
R2 fields, respectively. The number of bytes in the 
first-operand and second-operand locations is 
specified by bits 8-31 of general registers Rl + 1 and 
R2+ 1, respectively. Bit positions 0-7 of register 
R2+ 1 contain the padding byte. The contents of bit 
positions 0-7 of registers R1, R2, and Rl + 1 are 
ignored. 

Graphically, the contents of the registers just 
described are as follows: 

~ First-Operand Address 

o 8 

~ First-Operand Length 

o 8 

~ Second-Operand Address 

o 8 

Pad Second-Operand Length 

o 8 

31 

31 

31 

31 

The comparison proceeds left to right, bit for bit, 
and ends as soon as an inequality is found or the end 
of the longer operand is reached. If the operands are 
not of the same length, the shorter operand is 
considered to be extended on the right with the 
appropriate number of padding bytes. 



If both operands are of zero length, the operands 
are considered to be equal. 

The execution of the instruction is interruptible. 
When an interruption occurs, other than one that 
causes termination, the contents of registers RI + 1 
and R2 + 1 are decremented by the number of bytes 
compared, and the contents of registers RI and R2 are 
incremented by the same number, so that the 
instruction, when reexecuted, resumes at the point of 
interruption. The high-order bits which are not part 
of the address in registers Rl and R2 are set to zeros; 
the contents of the high-order byte of registers RI + 1 
and R2 + 1 remain unchanged; and the condition code 
is unpredictable. If the operation is interrupted after 
the shorter operand has been exhausted, the length 
field pertaining to the shorter operand is zero, and its 
address is updated accordingly. 
If the operation ends because of an inequality, the 

address fields in registers RI and R2 at completion 
identify the first unequal byte in each operand. The 
lengths in bit positions 8-31 of registers RI + 1 and 
R2 + 1 are decremented by the number of bytes that 
were equal, unless the inequality occurred with the 
padding byte, in which case the length field for the 
shorter operand is set to zero. The addresses in 
registers RI and R2 are incremented by the amounts 
by which the corresponding length fields were 
reduced. 
If the two operands, including the padding byte, if 

necessary, are equal, both length fields are made zero 
at completion, and the addresses are incremented by 
the corresponding operand-length values. The bits 
which are not part of the address in registers RI and 
R2 are set to zeros, including the case when one or 
both of the initial length values are zero. The 
contents of bit positions 0-7 of registers RI + 1 and 
R2 + 1 remain unchanged. 

Access exceptions for the portion of a storage 
operand to the right of the first unequal byte mayor 
may not be recognized. 

When the length of an operand is zero, no access 
exceptions are recognized for that operand. Access 
exceptions are not recognized for an operand if the R 
field associated with that operand is odd. 

Resulting Condition Code: 

o Operands are equal, or both have zero length 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions: 

Access (fetch, operands 1 and 2) 
Specification 

Programming Notes 

1. An example of the use of COMPARE LOGICAL 
LONG is given in Appendix A. 

2. When the RI and R2 fields are the same, the 
operation proceeds in the same way as when two 
distinct pairs of registers having the same 
contents are specified, and, in the absence of 
dynamic modification of the operand area by 
another CPU or a channel, condition code 0 is 
set. However, it is unpredictable whether access 
exceptions are recognized for the operand since 
the operation can be completed without storage 
being accessed. 

3. Another programming note concerning 
interruptible instructions is included in the section 
"Point of Interruption" in Chapter 6, 
"Interruptions. " 

4. Special precautions should be taken when 
COMPARE LOGICAL LONG is made the target 
of EXECUTE. See the programming note 
concerning interruptible instructions under 
EXECUTE. 

CONVERT TO BINARY 

o 8 12 16 20 

The radix of the second operand is changed from 
decimal to binary, and the result is placed in the 
first-operand location. 

31 

The second operand occupies eight bytes in storage 
and is treated as packed decimal data, as described in 
Chapter 8, "Decimal Instructions." It is checked for 
valid sign and digit codes, and a data exception is 
recognized when an invalid code is detected. 

The result of the conversion is a 32-bit signed 
binary integer, which is placed in the general register 
specified by RI. The maximum positive number that 
can be converted and still be contained in a 32-bit 
register is 2,147,483,647; the maximum negative 
number (the negative number with the greatest 
absolute value) that can be converted is 
-2,147A8 ,648. For any decimal number outside 

Chapter 7. General Instructions 7 -15 



this range, the operation is completed by placing the 
32 low-order bits of the binary result in the register, 
and a fixed-point-divide exception is recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 
Data 
Fixed-Point Divide 

Programming Notes 

1. An example of the use of CONVERT TO 
BINARY is given in Appendix A. 

2. When the second operand is negative, the result 
is in two's-complement notation. 

CONVERT TO DECIMAL 

o 8 12 16 20 31 

The radix of the first operand is changed from binary 
to decimal, and the result is stored at the second
operand location. The first operand is treated as a 
32-bit signed binary integer. 

The result occupies eight bytes in storage and is in 
the format for packed decimal data, as described in 
Chapter 8, "Decimal Instructions. " The low-order 
four bits of the result represent the sign. A positive 
sign is encoded as 1100; a negative sign is encoded 
as 110l. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

Programming Notes 

1. An example of the use of CONVERT TO 
DECIMAL is given in Appendix A. 

2. The number to be converted is a 32-bit signed 
binary integer obtained from a general register. 
Since 15 decimal digits are available for the 
result, and the decimal equivalent of 31 bits 
requires at most 10 decimal digits, an overflow 
cannot occur. 

7-16 IBM 4300 Processors Principles of Operation 

DIVIDE 

DR Rl,R2 [RR] 

'10' I R, I R2 I 
o 8 12 15 

D 

'50' 

o 8 12 16 20 31 

The doubleword first operand (the dividend) is 
divided by the second operand (the divisor), and the 
remainder and the quotient are placed in the first
operand location. 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an even
numbered register. When Rl is odd, a specification 
exception is recognized. 

The dividend is treated as a 64-bit signed binary 
integer. The divisor, the remainder, and the quotient 
are treated as 32-bit signed binary integers. The 
remainder and quotient replace the dividend in the 
pair of registers specified by the Rl field. The 
remainder is placed in the even-numbered register, 
and the quotient is placed in the odd-numbered 
register. 

The sign of the quotient is determined by the rules 
of algebra. The remainder has the same sign as the 
dividend, except that a zero quotient or a zero 
remainder is always positive. When the magnitudes 
of the dividend and divisor are such that the quotient 
cannot be expressed by a 32-bit signed binary 
integer, a fixed-point-divide exception is recognized, 
and the operation is suppressed. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of D only) 
Fixed-Point Divide 
Specification 



EXCLUSIVE OR 

XR R 1,R2 [RR] 

'17' I R, I R2 I 
o 8 12 15 

x [RX] 

o 8 12 16 20 31 

[SI] 

'97' h 

o 8 16 20 31 

o 8 16 20 32 36 47 

The EXCLUSIVE OR of the first and second 
operands is placed in the first-operand location. 

The connective EXCLUSIVE OR is applied to the 
operands bit by bit. A bit position in the . result is set 
to one if the corresponding bit positions in the two 
operands are unlike; otherwise, the result bit is set to 
zero. 

For XC, each operand is processed left to right. 
When the operands overlap, the result is obtained as 
if the operands were processed one byte at a time and 
each result byte were stored immediately after the 
necessary operand byte is fetched. 

For XI, the first operand is one byte in length, and 
only one byte is stored. 

Resulting Condition Code: 

o Result is zero 
1 Result is not zero 
2 
3 

Program Exceptions: 

Access (fetch, operand 2, X and XC; fetch and store, 
operand 1, XI and XC) 

Programming Notes 

1. An example of the use of EXCLUSIVE OR is 
given in Appendix A. 

2. The instruction EXCLUSIVE OR may be used to 
invert a bit, an operation particularly useful in 
testing and setting programmed binary bit 
switches. 

3. A field EXCLUSIVE-ORed with itself becomes 
all zeros. 

4. For XR, the sequence A EXCLUSIVE-OR B, B 
EXCLUSIVE-OR A, A EXCLUSIVE-OR results 
in the exchange of the contents of A and B 
without the use of an additional general register. 

5. Accesses to the first operand of XI and XC 
consist in fetching a first-operand byte from 
storage and subsequently storing the updated 
value. These fetch and store accesses to a 
particular byte do not necessarily occur one 
immediately after the other. Thus, the instruction 
EXCLUSIVE OR cannot be safely used to update 
a location in storage if the possibility exists that 
another CPU or a channel may also be updating 
the location. An example of this effect is shown 
for the instruction OR (01) in the section 
"Multiprocessing Examples," in Appendix A. 

EXECUTE 

EX 

'44' 

o 8 12 16 20 

The single instruction at the second-operand address 
is modified by the contents of the general register 
specified by Rl, and the resulting target instruction is 
executed. 

When the Rl field is not zero, bits 8-15 of the 
instruction designated by the second-operand address 
are ORed with bits 24-31 of the register specified by 
R 1. The ~Ring does not change either the contents 
of the register specified by Rl or the instruction in 
storage, and it is effective only for the interpretation 
of the instruction to be executed. When the Rl field 
is zero, no ORing takes place. 

Chapter 7. General Instructions 7-17 



The target instruction may be two, four, or six bytes 
in length. The execution and exception handling of 
the target instruction are exactly as if the target 
instruction were obtained in normal sequential 
operation, except for the instruction address and the 
instruction-length code. 

The instruction address of the current PSW is 
increased by the length of EXECUTE. This updated 
address and the instruction -length code of 
EXECUTE are used as part of the link information 
when the target instruction is BRANCH AND LINK. 
When the target instruction is a successful branching 
instruction, the instruction address of the current 
PSW is replaced by the branch address specified by 
the target instruction. 

When the target instruction is in turn an 
EXECUTE, an execute exception is recognized. 

The effective address of EXECUTE must be even; 
otherwise, a specification exception is recognized. 
Access exceptions are not recognized for the second
operand address when the address is odd. 

Condition Code: The code may be set by the target 
instruction. 

Program Exceptions: 

Access (fetch, target instruction) 
Execute 
Specification 

Programming Notes 

1. An example of the use of EXECUTE is given in 
Appendix A. 

2. The GRing of eight bits from the general register 
with the designated instruction permits indirect 
length, index, mask, immediate-data, and register 
specification. 

3. The fetching of the target instruction is 
considered to be an instruction fetch for purposes 
of program-event recording and for purposes of 
reporting access exceptions. 

4. An access or specification exception may be 
caused by EXECUTE or by the target instruction. 

S. When an interruptible instructiop. is made the 
target of EXECUTE, the program normally 
should not designate any register updated by the 
interruptible instruction as the Rt, X2, or B2 
register for EXECUTE, since on resumption of 
execution after an interruption, or if the 
instruction is refetched without an interruption. 
the updated values of these registers will be used 
in the execution of EXECUTE. Similarly, the 

7-18 IBM 4300 Processors Principles of Operation 

program should normally not let the destination 
field of an interruptible instruction include the 
location of the EXECUTE, since the new 
contents of the location may be interpreted when 
resuming execution. 

INSERT CHARA.CTER 

o 8 12 16 20 31 

The byte at the second-operand location is inserted 
into bit positions 24-31 of the general register 
designated by the Rl field. The remaining bits in the 
register remain unchanged. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 

INSERT CHARACTERS UNDER MASK 

o 8 12 16 20 

Bytes from contiguous locations beginning at the 
second-operand address are inserted into the first
operand location under control of a mask. 

The contents of the M3 field are used as a mask. 

31 

These four bits, left to right, correspond one for one 
with the four bytes, left to right, of the general 
register designated by the Rl field. The byte 
positions corresponding to ones in the mask are filled, 
left to right, with bytes from successive storage 
locations beginning at the second-operand address. 
When the mask is not zero, the length of the second 
operand is equal to the number of ones in the mask. 
The bytes in the general register corresponding to 
zeros in the mask remain unchanged. 

The resulting condition code is based on the mask 
and on the value of the bits inserted. When the mask 
is zero or when all inserted bits are zeros, the 
condition code is set to o. When all inserted bits are 
not zeros, the code is set according to the leftmost bi~ 



of the storage operand: if this bit is one, the code is 
set to 1; if this bit is zero, the code is set to 2. 

When the mask is not zero, exceptions associated 
with storage-operand access are recognized only for 
the number of bytes specified by the mask. When 
the mask is zero, access exceptions are recognized for 
one byte. 

Resulting Condition Code: 

o All inserted bits are zeros, or mask is zero 
1 Leftmost bit of the inserted field is one 
2 Leftmost bit of the inserted field is zero, and not 

all inserted bits are zeros 
3 

Program Exceptions: 

Access (fetch, operand 2) 

Programming Notes 

1. Examples of the use of INSERT CHARACTERS 
UNDER MASK are given in Appendix A. 

2. The condition code for INSERT CHARACTERS 
UNDER MASK (ICM) is defined such that, when 
the mask is 1111, the instruction causes the same 
condition code to be set as for LOAD AND 
TEST. Thus, the instruction may be used as a 
storage-to-register load-and-test operation. 

3. An ICM instruction with a mask of 1111 or 0001 
performs a function similar to that of a LOAD 
(L) or INSERT CHARACTER (IC), respectively, 
with the exception of the condition-code setting. 
However, the performance of ICM may be 
slower. 

LOAD 

LR R1,R2 [RR] 

'lS' I R, I R, I 
o 8 12 15 

L [RX] 

o 8 12 16 20 31 

The second operand is placed unchanged in the first
operand location. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of L only) 

Programming Note 

An example of the use of LOAD is given in 
Appendix A. 

LOAD ADDRESS 

LA Rt,D2(X2,B2) [RX] 

'41' I R, I X2 I 82 I 02 

0 8 12 16 20 31 

The address specified by the X2, B2, and D2 fields is 
placed in bit positions 8-31 of the general register 
specified by the Rl field. Bits 0-7 of the register are 
set to zeros. The address computation follows the 
rules for address arithmetic. 

No storage references for operands take place, and 
the address is not inspected for access exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

None. 

Programming Notes 

1. An example of the use of the LOAD ADDRESS 
instruction is given in Appendix A. 

2. The same general register may be specified by the 
Rt, X2, and B2 fields, except that general register 
o can be specified only by the Rl field. In this 
manner, it is possible to increment the low-order 
24 bits of a general register, other than register 0, 
by the contents of the D2 field of the instruction. 
The register to be incremented should be 
specified by Rl and by either X2 (with B2 set to 
zero) or B2 (with X2 set to zero). 

LOAD AND TEST 

L TR R 1,R2 [RR] 

'12' I R, I R, I 
o 8 12 15 

Chapter 7. General Instructions 7-19 



The second operand is placed unchanged in the first
operand location, and the sign and magnitude of the 
second operand, treated as a 32-bit signed binary 
integer, are indicated in the condition code. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

None. 

Programming Note 

When the Rl and R2 fields designate the same 
register, the operation is equivalent to a test without 
data movement. 

LOA.D COMPLEMENT 

LCR Rt,R2 [RR] 

'13' I R, I R2 I 
o 8 12 15 

The two's complement of the second operand is 
placed in the first-operand location. The second 
operand and result are treated as 32-bit signed binary 
integers. 

An overflow causes a program interruption when 
the fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Fixed-Point Overflow 

Programming Note 

The operation complements all numbers. Zero and 
the maximum negative number remain unchanged. 
An overflow condition occurs when the maximum 
negative number is complemented. 

7-20 IBM 4300 Processors Principles of Operation 

LOA.D HALFWORD 

o 8 12 16 20 31 

The second operand is extended to a 32-bit signed 
binary integer and placed in the first-operand 
location. The second operand is two bytes in length 
and is considered to be a 16-bit signed binary 
integer. The second operand is extended by 
propagating the sign-bit value through the 16 high
order bit positions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 

Programming Note 

An example of the use of LOAD HALFWORD is 
given in Appendix A. 

LOAD MULTIPLE 

LM 

'98' 

o 8 12 16 20 31 

The set of general registers starting with the register 
specified by Rl and ending. with the register specified 
by R3 is loaded from storage beginning at the location 
designated by the second-operand address and 
continuing through as many locations as needed. 

The general registers are loaded in the ascending 
order of their register numbers, starting with the 
register specified by Rl and continuing up to and 
including the register specified by R3, with register 0 
following register 15. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 



Programming Note 

All combinations of register numbers specified by R1 
and R3 are valid. When the register numbers are 
equal, only four bytes are transmitted. When the 
number specified by R3 is less than the number 
specified by Rl, the register numbers wrap around 
from 15 to O. 

LOAD NEGATIVE 

LNR R],R2 [RR] 

'11' I R, I R2 I 
o 8 12 15 

The two's complement of the absolute value of the 
second operand is placed in the first-operand 
location. The second operand and result are treated 
as 32-bit signed binary integers. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 
3 

Program Exceptions: 

None. 

Programming Note 

The operation complements positive numbers; 
negative numbers remain unchanged. The number 
zero remains unchanged. 

LOAD POSITIVE 

LPR R1.R2 [RR] 

'10' I Rl I R2 I 
o 8 12 15 

Tpe absolute value of the second operand is placed in 
the first-operand location. The second operand and 
the result are treated as 32-bit signed binary integers. 

An overflow causes a program interruption when 
the fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Result is zero 
1 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Fixed-Point Overflow 

Programming Note 

The operation complements negative numbers; 
positive numbers and zero remain unchanged. An 
overflow condition occurs when the maximum 
negative number is complemented; the number 
remains unchanged. 

MONITOR CALL 

[SI] 

'AF' h D1 

o 8 16 20 

A program interruption is caused if the appropriate 
monitor-mask bit in control register 8 is one. 

31 

The monitor-mask bits are in bit positions 16-31 of 
control register 8. The mask bits, bits 16-31, 
correspond to monitor classes 0-15, respectively. 

Bit positions 12-15 in the h field contain a binary 
number specifying one of 16 monitoring classes. 
When the monitor-mask bit corresponding to the 
class specified by the 12 field is one, a monitor-event 
program interruption occurs. The contents of the h 
field are stored at location 149, with zeros stored at 
location 148. Bit 9 of the program-interruption code 
is set to one. 

The first-operand address is not used to address 
data; instead, the address specified by the B1 and D1 
fields forms the monitor code, which is placed in the 
word at loeation 156. Address computation follows 
the rules of address arithmetic; bits 0-7 are set to 
zeros. 

When the monitor-mask bit corresponding to the 
class specified by bits 12-15 of the instruction is 
zero, no interruption occurs, and the instruction is 
executed as a no-operation. 

Bit positions 8-11 of the instruction must contain 
zeros; otherwise, a specification exception is 
recognized. 

Chapter 7. General Instructions 7-21 



Condition Code: The code remains unchanged. 

Program Exceptions: 

Monitor Event 
Specification 

Programming Notes 

1. The MONITOR CALL instruction provides the 
capability for passing control to a monitoring 
program when selected points are reached in the 
monitored program. This is accomplished by 
implanting MONITOR CALL instructions at the 
desired points. This function may be useful in 
performing various measurement functions; 
specifically, by implanting MONITOR CALL 
instructions within the programs, tracing 
information can be generated indicating which 
programs were executed, counting information 
can be generated indicating how often particular 
programs are used, and timing information can be 
generated indicating how long a particular 
program required for execution. 

2. The monitor masks provide a means of 
disallowing all interruptions due to MONITOR 
CALL or allowing monitoring for all or selected 
classes. 

3. The monitor code provides a means of associating 
descriptive information, in addition to the class 
number, with each MONITOR CALL instruction. 
Without the use of a base register, up to 4,096 
distinct monitor codes can be associated with a 
monitoring interruption. With the base register 
designated by a nonzero value in the Bl field, 
each monitoring interruption can be identified by 
a 24-bit code. 

MOVE 

[SI] 

01 

o 8 16 20 31 

o 8 16 20 32 36 47 

7-22 IBM 4300 Processors Principles of Operation 

The second operand is placed in the first-operand 
location. 

For MVC, each operand is processed left to right. 
When the operands overlap, the result is obtained as 
if the operands were processed one byte at a time and 
each result byte were stored immediately after the 
necessary operand byte is fetched. 

For MVI, the first operand is one byte in length, 
and only one byte is stored. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of MVC; store, operand 1, 
MVI and MVC) 

Programming Notes 

1. Examples of the use of the MOVE instructions 
are given in Appendix A. 

2. It is possible to propagate one byte through an 
entire field by having the first operand start one 
byte to the right of the second operand. 

MOVE INVERSE 

o 8 16 20 32 36 47 

The second operand is placed in the first-operand 
location with the left-to-right sequence of the bytes 
inverted. 

The first-operand address designates the leftmost 
byte of the first operand. The second-operand 
address designates the rightmost byte of the second 
operand. Both operands have the same length. 

The result is obtained as if the second operand were 
processed from right to left and the first operand 
from left to right. The second operand may wrap 
around from location 0 to location 16,777,215. The 
first operand may wrap around from location 
16,777,215 to location O. 

When the operands overlap by more than one byte, 
the contents of the overlapped portion of the result 
field are unpredictable. 

Condition Code: The code remains unchanged. 



Program Exceptions: 

Access (fetch, operand 2; store, operand 1) 

Programming Notes 

1. The contents of each byte moved remain 
unchanged. 

2. MOVE INVERSE is the only SS-format 
instruction for which the second-operand address 
designates the rightmost, instead of the leftmost, 
byte of the second operand. 

Note: The MOVE INVERSE instruction is also 
available in the System/3 70 mode. This will be 
incorporated in a future update of the IBM 
System/370 Principles of Operation. 

MOVE LONG 

MveL Rt,R2 [RR] 

'OE' I Rl I R2 I 
o 8 12 15 

The second operand is placed in the first-operand 
location, provided overlapping of operand locations 
does not affect the final contents of the first-operand 
location. The remaining rightmost byte positions, if 
any, of the first-operand location are filled with 
padding bytes. 

The Rl and R2 fields each specify an even-odd pair 
of general registers and must designate an even
numbered register; otherwise, a specification 
exception is recognized. 

The location of the leftmost byte of the first 
operand and second operand is designated by bits 
8-31 of the general registers specified by the Rl and 
R2 fields, respectively. The number of bytes in the 
first-operand and second-operand locations is 
specified by bits 8-31 of general registers Rl + 1 and 
R2+ 1, respectively. Bit positions 0-7 of register 
R2 + 1 contain the padding byte. The contents of bit 
positions 0-7 of registers Rt, R2, and Rl + 1 are 
ignored. 

Graphically, the contents of the registers just 
described are as follows: 

Rl 

~ First-Operand Address 

o 8 31 

Rl+1 

~ First-Operand Length 

31 

~ Second-Operand Address 

8 31 

Pad Second-Operand Length 

o 8 31 

The movement starts at the left end of both fields 
and proceeds to the right. The operation is ended 
when the number of bytes specified by bit positions 
8-31 of register Rl + 1 have been moved into the 
first-operand location. If the second operand is 
shorter than the first operand, the remaining 
rightmost bytes of the first-operand are filled with 
the padding byte. 

As part of the execution of the instruction, the 
values of the two length fields are compared for the 
setting of the condition code, and a check is made for 
destructive overlap of the operands. Operands are 
said to overlap destructively when the first-operand 
location is used as a source after data has been 
moved into it. When the operands overlap 
destructively, no movement takes place, and 
condition code 3 is set. 

Operands do not overlap destructively, and 
movement is performed, if the leftmost byte of the 
first operand does not coincide with any of the 
second-operand bytes participating in the operation 
other than the leftmost byte of the second operand. 
When an operand wraps around from location 
16,777,215 to location 0, operand bytes in locations 
up to and including 16,777,215 are considered to be 
to the left of bytes in locations from 0 up. 

When the length specified by bit positions 8-31 of 
register Rl + 1 is zero, no movement takes place, and 
condition code 0 or 1 is set to indicate the relative 
values of the lengths. 

The execution of the instruction is interruptible. 
When an interruption occurs other than one that 
causes termination, the contents of registers Rl + 1 
and R2 + 1 are decremented by the number of bytes 
moved, and the contents of register Rl and R2 are 

Chapter 7. General Instructions 7-23 



incremented by the same number, so that the 
instruction, when reexecuted, resumes at the point of 
interruption. The high-order bits which are not part 
of the address in registers Rl and R2 are set to zeros; 
the contents of the high-order byte of registers Rl + 1 
and R2+ 1 remain unchanged; and the condition code 
is unpredictable. If the operation is interrupted 
during padding, the length field in register R2 + 1 is 0, 
the address in register R2 is incremented by the 
original contents of register R2 + 1, and registers Rl 
and Rl + 1 reflect the extent of the padding operation. 

When the first-operand location includes the 
location of the instruction, the instruction may be 
refetched from storage and reinterpreted even in the 
absence of an interruption during execution. The 
exact point in the execution at which such a refetch 
occurs is unpredictable. 

At the completion of the operation, the length in 
register Rl + 1 is decremented by the number of bytes 
stored at the first-operand location, and the address 
in register Rl is incremented by the same amount. 
The length in register R2+ 1 is decremented by the 
number of bytes moved out of the second-operand 
location, and the address in register R2 is incremented 
by the same amount. The bits which are not part of 
the address in registers R1 and R2 are set to zeros, 
including the case when one or both of the original 
length values are zeros or when condition code 3 is 
set. The contents of bit positions 0-7 of registers 
Rl + 1 and R2 + 1 remain unchanged. 

When condition code 3 is set, no exceptions 
associated with operand access are recognized. When 
the length of an operand is zero, no access exceptions 
for that operand are recognized. Similarly, when the 
second operand is longer than the first operand, 
access exceptions are not recognized for the part of 
the second-operand field that is in excess of the 
first-operand field. Access exceptions are not 
recognized for an operand if the R field associated 
with that operand is odd. Also, when the Rl field is 
odd, PER storage alteration is not recognized, and no 
change bits are set. 

Resulting Condition Code: 

o First-operand and second-operand lengths are 
equal 

1 First-operand length is low 
2 First-operand length is high 
3 No movement performed because of destructive 

overlap 

7-24 IBM 4300 Processors Principles of Operation 

Program Exceptions: 

Access (fetch, operand 2; store, operand 1) 
Specification 

Programming Notes 

1. The instruction MOVE LONG may be used for 
clearing storage by setting the padding byte to 
zero and the second-operand length to zero. 

. 2. The program should avoid specification of a 
length for either operand which would result in 
an addressing exception. Addressing (and also 
protection) exceptions may result in termination 
of the entire operation, not just the current unit 
of operation. The termination may be such that 
the contents of all result fields are unpredictable; 
in the case of MVCL, this includes the condition 
code and the two even-odd general-register pairs, 
as well as the first-operand location in main 
storage. The following are situations that 
actually occur on one or more System/370 
models. 
a. When a protection exception occurs on a 

2,048-byte block of a first operand which is 
several blocks in length, stores to the 
protected block are suppressed. However, the 
move continues into the subsequent blocks of 
the first operand, which are not protected. 
Similarly, in the case of reconfigurable 
storage, an addressing exception on a block 
does not necessarily suppress processing of 
subsequent blocks which are addressable. 

b. The model may update the general registers 
only when an 110 interruption occurs, or a 
program interruption occurs which is required 
to nullify or suppress. Thus, if after a move 
into several blocks of the first operand, an 
addressing or protection exception occurs, the 
registers remain unchanged. 

3. When the first-operand length is zero, the 
operation consists in setting the condition code 
and setting the high-order bytes of registers Rl 
and R2 to zero. 

4. When the contents of the Rl and R2 fields are the 
same, the operation proceeds the same way as 
when two distinct pairs of registers having the 
same contents are specified. Condition code 0 is 
set. 

5. The following is a detailed description of those 
cases in which movement takes place, that is, 
where destructive overlap does not exist. 
Depending on whether the second operand wraps 



around from location 16,777,215 to location 0, 
movement takes place in the following cases: 
a. When the second operand does not wrap 

around, movement is performed if the 
leftmost byte of the first operand coincides 
with or is to the left of the leftmost byte of 
the second operand, or if the leftmost byte of 
the first operand is to the right of the 
rightmost second-operand byte participating 
in the operation. 

b. When the second operand wraps around, 
movement is performed if the leftmost byte of 
the first operand coincides with or is to the 
left of the leftmost byte of the second 
operand, and if the leftmost byte of the first 
operand is to the right of the rightmost 
second-operand byte participating in the 
operation. 

The rightmost second-operand byte is 
determined by using the smaller of the first
operand and second":,,operand lengths. 

When the second-operand length is one or zero, 
destructive overlap cannot exist. 

6. Special precautions must be taken if MOVE 
LONG is made the target of EXECUTE. See the 
programming note concerning interruptible 
instructions under EXECUTE. 

7. Since the execution of MOVE LONG is 
interruptible, the instruction cannot be used for 
situations where the program must rely on 
uninterrupted execution of the instruction or on 
the interval timer not being updated during the 
execution of the instruction. Similarly, the 
program should normally not let the first operand 
of MOVE LONG include the location of the 
instruction since the new contents of the location 
·may be interpreted for a resumption after an 
interruption, or the instruction may be refetched 
without an interruption. 

8. Further programming notes concerning 
interruptible instructions are included in the 
section "Interruptible Instructions" in Chapter 6, 
"Interruptions. " 

MOVE NUMERICS 

The rightmost four bits of each byte in the second 
operand are placed in the rightmost bit positions of 
the corresponding bytes in the first operand. The 
leftmost four bits of each byte in the first operand 
remain unchanged. 

Each operand is processed left to right. When the 
operands overlap, the result is obtained as if the 
operands were processed one byte at a time and each 
result byte were stored immediately after the 
necessary operand byte is fetched. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 

Programming Notes 

1. An example of the use of MOVE NUMERICS is 
given in Appendix A. 

2. MVN moves the numeric portion of a decimal
data field that is in the zoned format. The 
zoned-decimal format is described in Chapter 8, 
"Decimal Instructions." The operands are not 
checked for valid sign and <;ligit codes. 

3. Accesses to the first operand of MVN consist in 
fetching the rightmost four bits of each byte in 
the first operand and subsequently storing the 
updated value of the byte. These fetch and store 
accesses to a particular byte do not necessarily 
occur one immediately after the other. 

MOVE WITH OFFSET 

MVO 

'F1' 

o 

The second operand is placed to the left of and 
adjacent to the rightmost four bits of the first 
operand. 

The rightmost four bits of the first operand are 
attached as the rightmost bits to the second operand, 
the second operand bits are offset by four bit 
positions, and the result is placed in the first-operand 
location. 

The result is obtained as if the operands were 
processed right to left. When necessary, the second 
operand is considered to be extended on the left with 

Chapter 7. General Instructions 7-25 



zeros. If the first operand is too short to contain all 
of the second operand, the remaining leftmost portion 
of the second operand is ignored. Access exceptions 
for the unused portion of the second operand mayor 
may not be indicated. 

When the operands overlap, the result is obtained as 
if the operands were processed one byte at a time and 
each result bvte were stored immediately 'after the 
necessary op~rand bytes are fetched. The left digit 
of each second-operand byte remains available for 
the next result byte and is not refetched. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 

Programming Notes 

1. An example of the use of MOVE WITH OFFSET 
is given in Appendix A. 

2. Access to the rightmost byte of the first operand 
of MVO consists in fetching the rightmost four 
bits and subsequently storing the updated value 
of this byte. These fetch and store accesses to 
the rightmost byte of the first operand do not 
necessarily occur one immediately after the other. 

3. MVO may be used to shift packed decimal data 
by an odd number of digit positions. The 
packed-decimal format is described in Chapter 8, 
"Decimal Instructions." The operands are not 
checked for valid sign and digit codes. 

MOVE ZONES 

The leftmost four bits of each byte in the second 
operand are placed in the leftmost four bit positions 
of the corresponding bytes in the first operand. The 
rightmost four bits of each byte in the first operand 
remain unchanged. 

Each operand is processed left to right. When the 
operands overlap, the result is obtained as if the 
operands were processed one byte at a time and each 
result byte were stored immediately after the 
necessary operand byte is fetched. 

7-26 IBM 4300 Processors Principles of Operation 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 

Programming Notes 

1. An example of the use of MOVE ZONES is given 
in Appendix A. 

2. MVZ moves the zoned portion of a decimal field 
in the zoned format. The zoned format is 
described in Chapter 8, "Decimal Instructions." 
The operands are not checked for valid sign and 
digit codes. 

3. Accesses to the first operand of MVZ consist in 
fetching the leftmost four bits of each byte in the 
first operand and subsequently storing the 
updated value of the byte. These fetch and store 
accesses to a particular byte do not necessarily 
occur one immediately after the other. 

MULTIPLY 

MR Rt,R2 [RR] 

'lC' I R, I R2 I 
0 8 12 1S 

M R1,D2(X2,B2) [RX] 

'SC' I R, I X2 I 82 I D2 

0 8 12 16 20 31 

The second word of the first operand (multiplicand) 
is multiplied by the second operand (multiplier), and 
the double word product is placed at the first-operand 
location. 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an even
numbered register. When Rl is odd, a specification 
exception is recognized. 

Both the multiplicand and multiplier are treated as 
32-bit signed binary integers. The multiplicand is 
taken from the odd-numbered register of the pair 
specified by the Rl field. The contents of the even
numbered register are ignored. The product is a 
64-bit signed binary integer, which replaces the 



contents of the even-odd pair of general registers 
specified by the R1 field. An overflow cannot occur. 

The sign of the product is determined by the rules 
of algebra from the multiplier and multiplicand sign, 
except that a zero result is always positive. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of M only) 
Specification 

Programming Notes 

1. An example of the use of MUL TIPL Y is given in 
Appendix A. 

2. The significant part of the product usually 
occupies 62 bits or fewer. Only when two 
maximum negative numbers are multiplied are 63 
significant product bits formed. 

MULTIPLY HALFWORD 

MH Rt,D2(X2,B2) [RX] 

'4C' I R, I X2 I B2 I 02 

0 8 12 16 20 31 

The first operand (multiplicand) is multiplied by the 
second operand (multiplier), and the product is 
placed at the first-operand location. The second 
operand is two bytes in length and is considered to be 
a 16-bit signed binary integer. 

The multiplicand is treated as a 32-bit signed binary 
integer and is replaced by the low-order 32 bits of 
the signed-binary-integer product. The bits to the 
left of the 32 low-order bits are not tested for 
significance; no overflow indication is given. 

The sign of the product is determined by the rules 
of algebra from the multiplier and multiplicand sign, 
except that a zero result is always positive. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 

Programming Notes 

1. An example of the use of MULTIPLY HALF
WORD is given in Appendix A. 

2. The significal}t part of the product usually 
occupies 46 bits or fewer. Only when two 
maximum negative numbers are multiplied are 47 
significant product ,bits formed. Since the low
order 32 bits of the product are stored unchanged, 
ignoring all bits to the left, the sign bit of the 
result may differ from the true sign of the 
product in the case of overflow. For a negative 
product, the 32 bits placed in register Rl are the 
low-order part of the product in two's
complement notation. 

OR 

OR Rt,R2 [RR] 

'16' I R, I R2 I 
0 8 12 15 

0 R1,D2(X2,B2) [RX] 

'56' I R, I X2 I B2 I D2 

o 8 12 16 20 31 

01 [SI] 

'96' B1 

o 8 16 20 31 

The OR of the first and second operands is placed in 
the first-operand location. 

The connective OR is applied to the operands bit by 
bit. A bit position in the result is set to one if the 
corresponding bit position in one or both operands 
contains a one; otherwise, the result bit is set to zero. 

Chapter 7. General Instructions 7-27 



For OC, each operand is processed left to right. 
When tJJ.e operands overlap, the result is obtained as 
if the operands were processed one byte at a time and 
each result byte were stored immediately after the 
necessary operand byte is fetched. 

For 01, the first operand is only one byte in length, 
and only one byte is stored. 

Resulting Condition Code: 
o Result is zero 
1 Result is not zero 
2 
3 

Program Exceptions: 

Access (fetch, operand 2, 0 and OC; fetch and store, 
operand 1, 01 and OC) 

Programming Notes 

1. Examples of the use of the OR instructions are 
given in Appendix A. 

2. The instruction OR may be used to set a bit to 
one. 

3. Accesses to the first operand of 01 and OC 
consist in fetching a first-operand byte from 
storage and subsequently storing the updated 
value. These fetch and store accesses to a 
particular byte do not necessarily occur one 
immediately after the other. Thus, the instruction 
OR cannot be safely used to update a location in 
storage if the possibility exists that another CPU 
or a channel may also be updating the location. 
An example of this effect is shown in the section 
"Multiprocessing Examples," in Appendix A. 

PACK 

PACK 

'F2' 

o 8 12 16 20 32 36 47 

The format of the second operand is changed from 
zoned to packed, and the result is placed in the first
operand location. The zoned and packed formats are 
described in Chapter 8, "Decimal Instructions. " 

The second operand is treated as having the zoned 
format. All zones are ignored, except the zone in the 
rightmost byte, which is treated as a sign. The sign is 
placed in the rightmost four bits of the rightmost 
byte, and the digits are placed adjacent to the sign 

7-28 IBM 4300 Processors Principles of Operation 

and to each other in the remainder of the result field. 
The sign and digits are moved unchanged to the first 
operand and are not checked for valid codes. 

The result is obtained as if the operands were 
processed right to left. When necessary, the second 
operand is considered to be extended on the left with 
zeros. If the first operand is too short to contain all 
digits of the second operand, the remaining leftmost 
portion of the second operand is ignored. Access 
exceptions for the unused portion of the second 
operand mayor may not be indicated. 

When the operands overlap, the result is obtained as 
. if each result byte were stored immediately after the 

necessary operand bytes are fetched. Two second
operand bytes are needed· for each result byte, except 
for the rightmost byte of the result field, which 
requires only the rightmost second-operand byte. 

Condition Code: The code' remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; store, operand 1) 

Programming Notes 

1. An example of the use of PACK is given in 
Appendix A. 

2. The PACK instruction may be used to 
interchange the two hexadecimal digits in one 
byte by specifying a zero in the Ll and L2 fields 
and the same address for both operands. 

3. To remove the zones of all bytes of a field, 
including the rightmost byte, both operands must 
be extended on the right with a dummy byte, 
which subsequently is ignored in the result field. 

SET PROGRAM MASK 

SPM [RR] 

'04' Rl ~ 
o 8 12 15 

The contents of the general register specified by the 
Rl field are used to set the condition code and the 
program mask of the current PSW. Bits 12-15 of the 
instruction are ignored. 

Bits 2 and 3 of the register specified by the Rl field 
replace the condition code, and bits 4-7 replace 



the program mask. Bits 0, 1, and 8-31 of the register 
specified by the Rl field are ignored. 

Resulting Condition Code: 

OBit 2 is zero, and bit 3 is zero 
1 Bit 2 is zero, and bit 3 is one 
2 Bit 2 is one, and bit 3 is zero 
3 Bit 2 is one, and bit 3 is one 

Program Exceptions: 

None. 

Programming Notes 

1. Bits 2-7 of the general register may have been 
loaded from the PSW by BRANCH AND LINK. 

2. The instruction permits setting of the condition 
code and the mask bits in either the problem or 
supervisor state. 

3. The program should take into consideration that 
the setting of the program mask can have a 
significant effect on subsequent execution of the 
program. Not only do the four mask bits control 
whether the corresponding interruptions occur, 
but the exponent-underflow and significance 
masks also determine the result which is obtained. 

SHIFT LEFT DOUBLE 

SLDA Rt,D2 (B2 ) [RS] 

'8F' I R1 ~ B2 I D2 

0 8 12 16 20 31 

The double-length numeric part of the first operand is 
shifted left the number of bits specified by the 
second-operand address. Bits 12-15 of the 
instruction are ignored. 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an even
numbered register. When R 1 is odd, a specification 
exception is recognized. 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The first operand is treated as a 64-bit signed 
binary integer. The sign position of the even register 
remains unchanged. The leftmost position of the odd 
register contains a numeric bit, which participates in 

_ the shift in the same manner as the other numeric 

bits. Zeros are supplied to the vacated register 
positions on the right. 
If one or more bits unlike the sign bit are shifted 

out of bit position 1 of the even register, an overflow 
occurs. The overflow causes a program interruption 
when the fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Fixed-Point Overflow 
Specification 

Programming Notes 

1. An example of the use of SHIFT LEFT 
DOUBLE is given in Appendix A. 

2. The eight shift instructions provide the following 
three pairs of alternatives: left or right, single or 
double, and signed or logical. The signed shifts 
differ from the logical shifts in that, in the signed 
shifts, overflow is recognized, the condition code 

3. 

4. 

is set, and the leftmost bit participates as a sign. 
A zero shift amount in the two signed double
shift operations provides a double-length sign and 
magnitude test. 
The base register participating in the generation 
of the second-operand address permits indirect 
specification of the shift amount. A zero in the 
ih field indicates the absence of indirect shift 
specification. 

SHIFT LEFT DOUBLE LOGICAL 

'SO' I R, ~ 82 I 02 

o 8 12 16 20 

The double-length first operand is shifted left the 
number of bits specified by the second-operand 
address. Bits 12-15 of the instruction are ignored. 

31 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an even
numbered register. When Rl is odd, a specification 
exception is recognized. 

Chapter 7. General Instructions 7-29 



The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder· of the address 
is ignored. 

All 64 bits of the first operand participate in the 
shift. Bits shifted out of bit position 0 of the even
numbered register are not inspected and are lost. 
Zeros are supplied to the vacated register positions on 
the right. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Specification 

SHIFT LEFT SINGLE 

o S 12 16 20 

The numeric part of the first operand is shifted left 
the number of bits specified by the second-operand 
address. Bits 12-15 of the instruction are ignored. 

31 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The ,remainder of the address 
is ignored. 

The first operand is treated as a 32-bit signed 
binary integer. The sign of the first operand remains 
unchanged. All 31 numeric bits 'of the operand 
participate in the left shift. Zeros are supplied to the 
vacated register positions on the right. 
If one or more bits unlike the sign bit are shifted 

out of bit position 1, an overflow occurs. The 
overflow causes a program interruption when the 
fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Fixed-Point Overflow 

7-30 IBM 4300 Processors Principles of Operation 

Programming Notes 

1. An example of the use of SHIFT LEFT SINGLE 
is given in Appendix A. 

2. For numbers with an absolute value of less than 
230, a left shift of one bit position is equivalent to 
multiplying the number by two. 

3. Shift amounts from 31 to 63 cause the entire 
numeric part to be shifted out of the register, 
leaving a result of the maximum negative number 
or zero, depending on whether or not the initial 
contents were negative. 

SHIFT LEFT SINGLE LOGICAL 

'89' IR1~BZI Dz 

o S 12 16 20 31 

The first operand is shifted left the number of bits 
specified by the second -operand address. Bits 12-15 
of the instruction are ignored. 

The second -operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

All 32 bits of the first operand participate in the 
shift. Bits shifted out of bit position 0 are not 
inspected and are lost. Zeros are supplied to the 
vacated register positions on the right. 

'Condition Code: The code remains unchanged. 

Program Exceptions: 

None. 

SHIFT RIGHT DOUBLE 

SRDA 

'SE' 

o S 12 16 20 31 

The double-length numeric part of the first operand is 
shifted right the number of places specified by the 
second-operand address. Bits 12-15 of the 
instruction are ignored. 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an 



even-numbered register. When Rl is odd, a 
specification exception is recognized. 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The first operand is treated as a 64-bit signed 
binary integer. The sign position of the even register 
remains unchanged. The leftmost position of the odd 
register contains a numeric bit, which participates in 
the shift in the same manner as the other numeric 
bits. Bits shifted out of bit position 31 of the odd
numbered register are not inspected and are lost. 
Bits equal to the sign are supplied to the vacated 
register positions on the left. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

Specification 

SHIFT RIGHT DOUBLE LOGICAL 

o 8 12 16 20 

The double-length first operand is shifted right the 
number of bits specified by the second-operand 
address. Bits 12-15 of the instruction are ignored. 

31 

The Rl field of the instruction specifies an even-odd 
pair of general registers and must designate an even
numbered register. When Rl is odd, a specification 
exception is recognized. 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

All 64 bits of the first operand participate in the 
shift. Bits shifted out of bit position 31 of the odd
numbered register are not inspected and are lost. 
Zeros are supplied to the vacated register positions on 
the left. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Specification 

SHIFT RIGHT SINGLE 

[RS] 

"SA" I R1 ~ B2 

o 8 12 16 20 31 

The numeric part of the first operand is shifted right 
the number of bits specified by the second-operand 
address. Bits 12-15 of the instruction are ignored. 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The first operand is treated as a 32-bit signed 
binary integer. The sign of the first operand remains 
unchanged. All 31 numeric bits of the operand 
participate in the right shift. Bits shifted out of bit 
position 31 are not inspected and are lost. Bits equal 
to the sign are supplied to the vacated register 
positions on the left. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

None. 

Programming Notes 

1. A right shift of one bit position is equivalent to 
division by 2 with rounding downward. When an 
even number is shifted right one position, the 
result is equivalent to dividing the number by 2. 
When an odd number is shifted right one 
position, the result is equivalent to dividing the 
next lower number by 2. For example, +5 
shifted right by one bit position yields + 2, 
whereas - 5 yields - 3. 

2. Shift amounts from 31 to 63 cause the entire 
numeric part to be shifted out of the register, 
leaving a result of - 1 or zero, depending on 
whether or not the initial contents were negative. 

Chapter 7. General Instructions 7-31 



SHIFT RIGHT SINGLE LOGICAL 

o 8 12 16 20 31 

The first operand is shifted right the num.ber of bits 
specified by the second-operand address. Bits 12-15 
of the instruction are ignored. 

The second-operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

All 32 bits of the first operand participate in the 
shift. Bits shifted out of bit position 31 are not 
inspected and are lost. Zeros are supplied to the 
vacated register positions on the left. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

None. 

STORE 

o 8 12 16 20 

The first operand is stored at the second-operand 
location. 

The 32 bits in the general register are placed 
unchanged at the second-operand location. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

STORE CHARACTER 

o 8 12 16 20 

7-32 IBM 4300 Processors Principles of Operation 

31 

31 

Bits 24-31 of the general register designated by the 
Rl field are placed unchanged at the second-operand 
location. The second operand is one byte in length. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

STORE CHARACTERS UNDER MASK 

o 8 12 16 20 31 

Bytes selected from the first operand under control of 
a mask are placed in contiguous byt~ locations 
beginning at the second-operand address. 

The contents of the M3 field are used as a mask. 
These four bits, left to right, correspond one for one 
with the four bytes, left to right, of the general 
register designated by the Rl field. The bytes 
corresponding to ones in the mask are placed in the 
same order in successive and contiguous storage 
locations beginning at the second-operand address. 
When the mask is not zero, the length of the second 
operand is equal to the number of ones in the mask. 
The contents of the general register remain 
unchanged. 

When the mask is not zero, exceptions associated 
with storage-operand accesses are recognized only for 
the number of bytes specified by the mask. 

When the mask is zero, the single byte designated 
by the second-operand address remains unchanged, 
and no access exceptions are recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

Programming Notes 

1. An example of the use of STORE 
CHARACTERS UNDER MASK is given in 
Appendix A. 

2. STCM with a mask of 0111 may be used to store 
a three-byte address, for example, in modifying 
the address in a CCW. 

3. STCM with a mask of 1111, 0011, or 0001 



performs the same function as STORE (ST), 
STORE HALFWORD (STH), or STORE 
CHARACTER (STC), respectively. However, on 
most models, the performance of STCM will be 
slower. 

STORE CLOCK 

STCK D2(B2) [S] 

'B205' B2 I D2 

0 16 20 .31 

The current value of the time-of-day clock is stored 
at the eight-byte field designated by the second
operand address, provided the clock is in the set or 
not-set state. 

Zeros are stored for the rightmost bit positions that 
are not provided by the clock. 

Zeros are stored at the operand location when the 
clock is in the error state or in the not-operational 
state. 

The quality of the clock value stored by the 
instruction is indicated by the resultant condition
code setting. 

A serialization function is performed before the 
value of the clock is fetched and again after the value 
is placed in storage. CPU operation is delayed until 
all previous accesses by this CPU to storage have 
been completed, as observed by channels and other 
CPUs, and then the value 'of the clock is fetched. No 
subsequent instructions or their operands are fetched 
by this CPU until the clock value has been placed in 
storage, as observed by channels and CPUs. 

Resulting Condition Code: 

o Clock in set state 
1 Clock in not-set state 
2 Clock in error state 
3 Clock in not-operational state 

Program Exceptions: 

Access (store, operand 2) 

Programming Notes' 

1. Bit position 31 of the clock is incremented every 
1.048576 seconds; hence, for timing applications 
involving human responses, the high-order clock 
word may provide sufficient resolution. 

2. Condition code 0 normally indicates that the 
clock has been set by the control program. 
Accordingly, the value may be used in elapsed
time measurements and as a valid time-of-day 
and calendar indication. Condition code 1 
indicates that the clock value is the elapsed time 
since the power for the clock was turned on. In 
this case the value may be used in elapsed-time 
measurements but is not a valid time-of-day 
indication. Condition codes 2 and 3 mean that 
the value provided by STORE CLOCK cannot be 
used for time measurement or indication. 

STORE HALFWORD 

o 8 12 16 20 31 

Bits 16-31 of the general register designated by the 
Rl field ·are placed unchanged at the second-operand 
location. The second operand is two bytes in length. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

STORE MULTIPLE 

o 8 12 16 20 31 

The contents of the set of general registers starting 
with the register specified by Rl and ending with the 
register specified by R3 are placed in the storage area 
beginning at the location designated by the second
operand address and continuing through as many 
locations as needed. 

The general registers are stored in the ascending 
order of register numbers, starting with the register 

Chapter 7. General Instructions 7-33 



specified by Rl and continuing up to and including 
the register specified by R3, with register 0 following 
register 15. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 

Programming Note 

An example of the use of STORE MULTIPLE is 
given in Appendix A. 

SUBTRACT 

SR R1,R2 [RR] 

'1 B' I R, I R2 I 
o 8 12 15 

o 8 12 16 20 

The second operand is subtracted from the first 
operand, and the difference is placed in the first
operand location. The operands and the difference 
are treated as 32-bit signed binary integers. 

An overflow causes a program interruption when 
the fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch, operand 2 of S only) 
Fixed-Point Overflow 

7-34 IBM 4300 Processors Principles of Operation 

31 

Programming Notes 

1. When, in the RR format, the Rl and R2 fields 
designate the same register, subtracting is 
equivalent to clearing the register. 

2. Subtracting a maximum negative number from 
another maximum negative number gives a zero 
result and no overflow. 

SUBTRACT HALFWORD 

o 8 12 16 20 31 

The second operand is subtracted from the first 
operand, and the difference is placed in the first
operand location. The second operand is two bytes 
in length and is treated as a 16-bit signed binary 
integer. The first operand and the difference are 
treated as 32-bit signed binary integers. 

An overflow causes a program interruption when 
the fixed-point-overflow mask bit is one. 

Resulting Condition Code: 

o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch, operand 2) 
Fixed-Point Overflow 

SUBTRACT LOGICAL 

SLR R1,R2 [RR] 

'1 F' I R, I R2 I 
0 8 12 15 

SL R1,D2(X2,B2) 

'5F' I R, I X2 I 82 

0 8 12 16 

[RX] 

I 
20 

D2 

31 



The second operand is subtracted from the first 
operand, and the difference is placed in the first
operand location. The operands and the difference 
are treated as 32-bit unsigned binary integers. 

Resulting Condition Code: 

o 
1 Difference is not zero, with no carry 
2 Difference is zero, with carry 
3 Difference is not' zero, with carry 

Program Exceptions: 

Access (fetch, operand 2 of SL only) 

Programming Notes 

1. Logical subtraction is performed by adding the 
one's complement of the second operand and a 
low-order one to the first operand. The use of 
the one's complement and the low-order one 
instead of the two's complement of the second 
operand results in a carry when subtracting zero. 

2. SUBTRACT LOGICAL differs from 
SUBTRACT only in the meaning of the condition 
code and in the absence of the interruption for 
overflow. 

3. A zero differen.ce is always accompanied by a 
carry out of the high-order bit position. 

4. The condition-code setting for SUBTRACT 
LOGICAL ~an also be interpreted as indicating 
the presence and absence. of a borrow, as follows: 

1 Difference is not zero, with borrow 
2 Difference is zero, with no borrow 
3 Difference is not zero, with no borrow 

SUPERVISOR CALL 

SVC I [RR] 

'OA' 

I 
o 8 15 

The instruction causes a supervisor-call interruption, 
with the I field of the instruction providing the 
interruption code. 

Bits 8-15 of the instruction, with eight high -order 
zeros appended, are placed in the supervisor-call 
interruption code that is stored in the course of the 
interruption. The old PSW is stored at location 32, 
and a new PSW is obtained from location 96. The 

instruction is valid in both the problem and supervisor 
states. 

A seriali~ation function is. performed. CPU 
operation is delayed until all previous storage accesses 
by this CPU to storage have been completed, as 
observed by channels and other CPUs. No 
subsequent instructions or their operands are accessed 
by this CPU until the. execution of this instruction is 
completed. 

Condition Code: The code remains unchanged and 
is saved as part of the old PSW. A new condition 
code is loaded as part of the supervisor-call 
interruption. 

Program Excep~ions: 

None. 

TEST AND SET 

o 8 16 20 31 

The leftmost bit (bit position 0) of the byte located 
at the second-operand address is used to set the 
condition code, and then the byte is set to all ones. 
Bits 8-15 of the instruction are ignored. 
:The byte in ston~,ge is set to all ones as it is fetched 

for the testing of hit position O. No access by 
another CPU to this location is permitted between 
the moment of fetching and the moment of storing all 
ones. 

A serialization function is performed before the 
byte is fetched and again after the storing of all ones. 
CPU operation is delayed until all previous accesses 
by this CPU to storage have been completed, as 
observed by channels and other CPUs, and then the 
byte is fetched. No subsequent instructions or their 
operands are accessed by this CPU until the all-ones 
value has been 'placed in storage, as observed by 
channels and other CP:Us. 

Resulting Condition Code: 

o . Leftmost bit of byte specified was zero 
1 Leftmost bit of byte specified was one 
2 
3 

Chapter 7. General Instructions 7-35 



Program Exceptions: 

Access (fetch and store, operand 2) 

Programming Notes 

1. TEST AND SET may be used for controlled 
sharing of a common storage area by more than 
one program. To accomplish this, bit position 0 
of a byte must be designated as the control bit. 
The desired interlock can be achieved by 
establishing a program convention in which a 
zero in the bit position indicates that the common 
area is available but a one means that the area is 
being used. Each using program then must 
examine this byte by means of TEST AND SET 
before making access to the common area. If the 
test sets condition code 0, the area is available 
for use; if it sets condition code 1, the area 
cannot be used. Because TEST AND SET 
permits no other CPU access to the test byte 
between the moment of fetching (for testing) and 
the moment of storing all ones (setting), the 
possibility is eliminated of a second program 
testing the byte before the first program is able to 
set it. 

2. It should be noted that TEST AND SET does not 
interlock against storage accesses by channels. 

TEST UNDER MASK 

TM D 1(Bl),h [SI] 

'91' 12 I 81 I D1 

0 8 16 20 31 

A mask is used to select bits of the first operand, and 
the result is indicated in the condition code. 

The byte of immediate data, 12, is used as an eight
bit mask. The bits of the mask are made to 
correspond one for one with the bits of the byte in 
storage designated by the first-operand address. 

A mask bit of one indicates that the storage bit is to 
be tested. When the mask bit is zero, the storage bit 
is ignored. When all storage bits thus selected are 
zero~ condition code 0 is set. Condition code 0 is 
also set when the mask is all zeros. When the 
selected bits are all ones, condition code 3 is set; 
otherwise~ the code is set to 1. 

Access exceptions associated with the storage 
operand are recognized for one byte, even when the 
mask is all zeros. 

7-36 IBM 4300 Processors Principles of Operation 

Resulting Condition Code: 

o Selected bits all zeros; or the mask is all zeros 
1 Selected bits mixed zeros and ones 
2 
3 Selected bits all ones 

Program Exceptions: 

Access (fetch, operand 1) 

Programming Note 

An example of the use of TEST UNDER MASK is 
given in Appendix A. 

TRANSLATE 

o 8 16 20 32 36 47 

The bytes of the first operand are used as eight-bit 
arguments to reference a list designated by the 
second-operand address. Each function byte selected 
from the list replaces the corresponding argument in 
the first operand. 

The L field designates the length of only the first 
operand. 

The bytes of the first operand are selected one by 
one for translation, proceeding left to right. Each 
argument byte is added to the initial second-operand 
address. The addition is performed following the 
rules for address arithmetic, with the argument byte 
treated as an eight-bit unsigned binary integer and 
extended with high-order zeros. The sum is used as 
the address of the function byte, which then replaces 
the original argument byte. 

The operation proceeds until the first-operand field 
is exhausted. The list is not altered unless an overlap 
occurs. 

When the operands overlap, the result is obtained as 
if each result byte were stored immediately after the 
corresponding function byte is fetched. 

Access exceptions are recognized only for those 
bytes in the second operand which are actually 
required. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 



Programming Notes 
1. An example of the use of TRANSLATE is given 

in Appendix A. 
2. The instruction TRANSLATE may be used to 

convert data from one code to another code. 
3. The instruction may also be used to rearrange 

data. This may be accomplished by placing a 
pattern in the destination area, by designating the 
pattern as the first operand of TRANSLATE, and 
by designating the data that is to be rearranged 
as the second operand. Each byte of the. pattern 
contains an eight-bit number specifying the byte 
destined for this position. Thus, when the 
instruction is executed, the pattern selects the 
bytes of the second operand in the desired order. 

4. The fetch and subsequent store accesses to a 
particular byte in the first-operand field do not 
necessarily occur one immediately after the other. 

5. Because each eight-bit argument byte is added to 
the initial second-operand address to obtain the 
address of a function byte, the list may contain 
256 bytes. In cases where it is known that not all 
eight-bit argument values will occur, it is possible 
to reduce the size of the list. 

6. Because of pretesting, significant performance 
degradation is possible when the second-operand 
address of TRANS LA TE designates a location 
less than 256 bytes to the left of a 2,048-byte 
boundary. 

TRANSLATE A.ND TEST 

The bytes of the first operand are used as eight-bit 
arguments to select function bytes from a list 
designated by the second-operand address. The first 
nonzero function byte is inserted in general register 
2, and the related argument address in general 
register 1. 

The L field designates the length of only the first 
operand. 

The bytes of the first operand are selected one by 
one for translation, proceeding from left to right. 
The first operand remains unchanged in storage. 
Fetching of the function byte from the list is 
performed as in TRANSLATE. The function byte 
retrieved from the list is inspected for a value of zero. 

When the function byte is zero, the operation 
proceeds with the ne~t byte of the first operand. 
When the first-operand field is exhausted before a 
nonzero function byte is encountered, the operation 
is completed by setting condition code O. The 
contents of general registers 1 and 2 remain 
unchanged. 

When the function byte is nonzero, the related 
argument address is inserted in the rightmost 24 bits 
of general register 1. This address points to the 
argument byte last translated. The function byte is 
inserted in the low-order eight bits of general 
register 2. Bits 0-7 of register 1 and bits 0-23 of 
register 2 remain unchanged. 

When the function byte is nonzero, either condition 
code 1 or 2 is set, depending on whether the 
argument byte is the rightmost byte of the first 
operand. Condition code 1 is set if one or more 
argument bytes remain to be translated. Condition 
code 2 "is set if no more argument bytes remain. 

Access exceptions are recognized only for those 
bytes in the second operand which are actually 
required. Access exceptions are not recognized for 
those bytes in the first operand which are to the right 
of the first byte for which a nonzero function byte is 
obtained. " 

Ralliting Condition Code: 

o All function bytes zero 
1 Nonzero function byte; first-operand field not 

exhausted 
2 Nonzero function byte; first-operand field 

exhausted 
3 

Program ExceptiollS: 

Access (fetch, operands 1 and 2) 

Programming .Notes 

1. An example of the use of TRANSLATE AND 
TEST is given in Appendix A. 

2. The instruction TRANSLATE AND TEST may 
be used to scan the fir$t operand for characters 
with special meaning. The second operand, or 
list, is set up with all-zero function bytes for 
those characters to be skipped over and with 
nonzero function bytes for the characters to be 
detected. 

Chapter 7. General Instructions 7-37 



UNPACK 

o 8 12 16 20 32 36 47 

The format of the second operand is changed from 
packed to zoned, and the result is placed in the first
operand location. The packed and zoned formats are 
described in Chapter 8, "Decimal Instructions." 

The second operand is treated as having the packed 
format. Its digits and sign are placed unchanged in 
the first-operand location, using the zoned format. 
Zones with coding of 1111 are supplied for all bytes 
except the low-order byte, which receives the sign of 
the second operand. The sign and digits are not 
checked for valid codes. 

The result is obtained as if the operands were 
processed right to left. When necessary, the second 
operand is considered to be extended on the left with 
zeros. If the first-operand field is too short to 
contain all digits of the second operand, the 
remaining leftmost portion of the second operand is 
ignored. Access exceptions for the unused portion of 
the second operand mayor may· not be indicated. 

When the operands overlap, the result is obtained as 
if the operands were processed one byte at a time and 

7-38 IBM 4300 Processors Principles of Operation 

each result byte were stored immediately after the 
necessary operand byte is fetched. The entire 
rightmost second-operand byte is used in forming the 
first result byte. For the remainder of the field, 
information for two result bytes is obtained from a 
single second-operand byte, and the leftmost four bits 
of the byte remain available and are not refetched. 
Thus, two result bytes are stored immediately after 
fetching a single operand byte. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; store, operand 1) 

Programming Notes 

1. An example of the use of UNPACK is given in 
Appendix A. 

2. A field that is to be unpacked can be destroyed 
by improper overlapping. To save storage space 
for unpacking by overlapping the operands, the 
rightmost position of the first operand must be to 
the right of the rightmost position of the second 
operand by the number of bytes in the second 
operand minus 2. If only one or two bytes are to 
be unpacked, the low-order positions of the two 
operands may coincide. 



Chapter 8. Decimal Instructions 

Contents 

Data Format 8-1 
Zoned Format 8-1 
Packed Format 8-1 

Number Representation 8-2 
Instructions 8-2 

ADD DECIMAL 8-3 
COMPARE DECIMAL 8-4 
DIVIDE DECIMAL 8-4 

Decimal instructions provide arithmetic, shifting, and 
editing operations on decimal data. 

Data Format 
Decimal operands reside in storage and may be in 
either the zoned or packed format. 

Zoned Format 

In the zoned format, the rightmost four bits of a byte 
are called the numeric (N) and normally comprise a 
code representing a decimal digit. The leftmost four 
bits of a byte are called the zone (Z), except for the 
rightmost byte of the field, where these bits may be 
treated either as a zone or as a sign (S) code. 

Packed Format 

In the packed format, each byte contains two decimal 
digits (D), except for the rightmost byte, which 
contains a sign to the right of a decimal digit. The 
digit and sign codes each comprise four bits. 

Arithmetic and shifting are performed with 
operands in the packed format and generate results in 
the packed format. Decimal numbers in the zoned 
format are represented as part of an alphameric 
character set, which includes also alphabetic and 

EDIT 8-5 
EDIT AND MARK 8-8 
MULTIPLY DECIMAL 8-8 
SHIFT AND ROUND DECIMAL 8-8 
SUBTRACT DECIMAL 8-10 
ZERO AND ADD 8-10 

special characters. The zoned format is usually 
produced by input devices, such as keyboards, and is 
usually used for displaying or printing decimal data 
on output devices. 

The instructions MOVE ZONES and MOVE 
NUMERICS are provided for operating on data in 
the zoned format. Two instructions are provided for 
converting data between the zoned and packed 
formats: the PACK instruction transforms zoned 
data into packed data, and UNPACK performs the 
reverse transformation. Two instructions are 
provided for conversion between the packed-decimal 
and binary formats. The CONVERT TO BINARY 
instruction converts packed decimal to binary, and 
CONVERT TO DECIMAL converts binary to packed 
decimal. These six instructions are not considered to 
be decimal instructions and are described in 
Chapter 7, "General Instructions." The instructions 
EDIT and EDIT AND MARK may also be used to 
change data from the packed to the zoned format. 

Decimal operands occupy fields in storage that start 
on a byte boundary. For all deci~al instructions 
other than EDIT and EDIT AND MARK, the 
operands are in the packed format and are composed 
of one to sixteen 8-bit bytes. For the two editing 
instructions, operands of up to 256 bytes in length 
can be designated. 

For the decimal-arithmetic instructions, the lengths 
of the two operands specified in the instruction need 
not be the same. If necessary, the operands are 
considered to be extended with zeros to the left of 
the high-order digit. Results, however, never exceed 
the first-operand field length as specified in the 
instruction. When a carry or high-order significant 
digits are lost because the first-operand field is too 
small, a program interruption for decimal overflow 

Chapter 8. Decimal Instructions 8-1 



occurs, provided the decimal-overflow mask bit is 
one. For the two editing instructions. only one 
operand (the pattern) has an explicitly specified 
length; the other operand (the source) is considered 
to have as many digits as necessary for the 
completion of the operation. 

The operand fields in decimal instructions, other 
than EDIT and EDIT AND MARK, should not over
lap at all or should have coincident rightmost bytes. 
In ZERO AND ADD, the field may also overlap in 
such a manner that the rightmost byte of the first 
operand is to the right of the rightmost byte of the 
second operand. For these cases of proper overlap, 
the result is obtained as if operands were processed 
right to left. Because the code configurations for 
digits and signs are verified during the performance 
of the arithmetic, improperly overlapping fields are 
recognized as data exceptions. In editing, 
overlapping operands yield unpredictable results. 

During the execution of a decimal instruction, all 
bytes of the operands are not necessarily accessed 
concurrently, and the fetch and store accesses to a 
single location do not necessarily occur one 
immediately after the other. Furthermore, for 
decimal instructions, intermediate values may be 
placed in the result field that may differ from the 
original operand and final result values. Thus, in a 
multiprocessing system, an instruction such as ADD 
DECIMAL cannot be safely used to update a shared 
storage location when the possibility exists that 
another CPU may also be updating that location. 

Number Representation 
Packed decimal numbers are represented as right
aligned true integers with a plus or minus sign. 

The digits 0-9 have the binary encoding 0000-1001. 
The codes 1010-1111 are invalid as digit codes and 
are interpreted as sign codes, with 1010, 1100, 1110, 
and 1111 recognized as plus and with 1011 and 1101 

8-2 IBM 4300 Processors Principles of Operation 

recognized as minus. The codes 0000-1001 are 
invalid as sign codes. A data exception is recognized 
when an invalid code is detected. The operation is 
terminated, except when the sign position contains an 
invalid sign code, in which case the operation is 
suppressed. 

Although alternate encoding of the sign in an 
operand is accepted, the preferred sign codes are 
always generated for the results of decimal arithmetic 
and shifting operations (for the first-operand field of 
ADD DECIMAL, DIVIDE DECIMAL, MULTIPLY 
DECIMAL, SHIFT AND ROUND DECIMAL, 
SUBTRACT DECIMAL, and ZERO AND ADD). 
These codes are plus, 1100, and minus, 1101. They 
are provided even when the operand value is 
otherwise unchanged, such as when adding zero to a 
number or when shifting the field by a zero amount. 
The editing instruction, as well as UNPACK, 
generates the zone code 1111. 

Instructions 
The decimal instructions and their mnemonics, 
formats, and operation codes are listed in the figure 
II Summary of Decimal Instructions." The figure also 
indicates when the condition code is set and the 
exceptional conditions in operand designations, data, 
or results that cause a program interruption. 

Note: In the detailed descriptions of the individual 
instructions, the mnemonic and the symbolic operand 
designation for the assembler language are shown 
with each instruction. For ADD DECIMAL, 
for example, AP is the mnemonic and 
D t(L bB J,D 2(L 1"B?J the operand designation. 



Name Mnemonic 

ADD DECIMAL AP SS C 
COMPAR E DECIMAL CP SS C 
DIVIDE DECIMAL DP SS 
EDIT ED SS C 
EDIT AND MARK EDMK SS C 

MUL TIPL Y DECIMAL MP SS 
SHIFT AND ROUND DECIMAL SRP SS C 
SUBTRACT DECIMAL SP SS C 
ZERO AND ADD ZAP SS C 

Explanation: 
A Access exceptions 
C Condition code is set 
o Data exception 
OF Decimal-overflow exception 
OK Decimal-divide exception 
R PER general-register-alteration event 
SP Specification exception 
SS SS instruction format 
ST PER storage-alteration event 

Summary of Decimal Instructions 

Programming Note 

The moving and logical-comparing instructions may 
also be used in decimal calculations. 

ADD DECIMAL 

o 8 12 16 20 32 36 

The second operand is added to the first operand, 
and the sum is placed in the first-operand location. 

47 

Addition is algebraic, taking into account the signs 
and all digits of both operands. All sign and digit 
codes are checked for validity. If necessary, high
order zeros are supplied for either operand. When 
the first-operand field is too short to contain all 
significant digits of the sum, a decimal overflow 
occurs, and a program interruption is taken, provided 
that the decimal-overflow mask bit is one. 

Overflow has two possible causes. The first occurs 
when a carry out of the high-order digit position of 
the result field is lost. The second occurs when the 
second-operand field is longer than the first-operand 
field and significant result digits are lost. The field 
lengths alone are not an indication of overflow. 

A 
A 
A 
A 
A 

A 
A 
A 
A 

Characteristics 

o DF 
o 

SP D 
D 
o 

SP 0 
D OF 
o OF 
D DF 

DK 

R 

Code 

ST FA 
F9 

ST FO 
ST DE 
ST DF 

ST FC 
ST FO 
ST FB 
ST F8 

The first-operand and second-operand fields may 
overlap when their low-order bytes coincide; 
therefore, it is possible to add a number to itself. 

The sign of the sum is determined by the rules of 
algebra. When the operation is completed without an 
overflow, a zero sum has a positive sign, but when 
high-order digits are lost because of an overflow, a 
zero sum may be either positive or negative, as 
determined by what the sign of.ethe correct sum would 
have been. 

Resulting Condition Code: 

o Sum is zero 
1 Sum is less than zero 
2 Sum is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 
Decimal Overflow 

Chapter 8. Decimal Instructions 8-3 



COMPARE DECIMAL 

o 8 12 16 20 32 36 47 

The first operand is compared with the second, and 
the condition code indicates the comparison result. 

Comparison is algebraic, taking into account the 
sign and all digits of both operands. All sign and 
digit codes are checked for validity, and any valid 
plus or minus sign is considered equal to any other 
valid plus or minus sign, respectively. If the fields 
are unequal in length, the shorter is extended with 
high-order zeros. A field with a zero value and 
positive sign is considered equal to a field with a zero 
value but negative sign. Neither operand is changed 
as a result of the operation. Overflow cannot occur 
in this operation. 

The first-operand and second-operand fields may 
overlap when their low-order bytes coincide. It is 
possible, therefore, to compare a number with itself. 

ResUlting Condition Code: 

o Operands equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions: 

Access (fetch, operands 1 and 2) 
Data 

DIVIDE DECIMAL 

DP 

'FD' 

o 8 12 16 20 32 36 47 

The dividend (the first operand) is divided by the 
divisor (the second operand) and replaced by the 
quotient and remainder. 

The quotient field is placed leftmost in the first
operand field. The remainder field is placed 
rightmost in the first-operand field and has a length 
equal to the divisor length. Together, the quotient 
and remainder occupy the entire dividend field; 
therefore, the address of the quotient field is the 

8-4 IBM 4300 Processors Principles of Operation 

address of the first operand. The length of the 
\{ uuiicui ii~iu in oytes is 1...1-1...2, ana tne length code 
for this field is one less (L1-Lrl). When the 
divisor length code is greater than seven (15 digits 
and sign) or greater than or equal to the dividend 
length code, a specification exception is recognized. 
The operation is suppressed, and a program 
interruption occurs. 

The dividend, divisor, quotient, and remainder are 
all signed integers, right-aligned in their fields. All 
sign and digit codes of the dividend and divisor are 
checked for validity. 

The sign of the quotient is determined by the rules 
of algebra from dividend and divisor signs. The sign 
of the remainder has the same value as the dividend 
sign. These rules are true even when the quotient or 
remainder is zero. 

Overflow cannot occur. If the quotient is too large 
to be represented by the number of digits allowed, a 
decimal-divide exception is recognized. The 
operation is suppressed, and a program interruption 
occurs. The divisor and dividend remain unchanged 
in their storage locations. The decimal-divide 
exception can be indicated only if the digit or digits 
used in establishing the exception are valid. 

The divisor and dividend fields may overlap only if 
their low-order bytes coincide. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 
Decimal Divide 
Specification 

Programming Notes 

1. The maximum dividend size is 31 digits and sign. 
Since the smallest remainder size is one digit and 
sign, the maximum quotient size is 29 digits and 
sign. 

2. The condition for a decimal divide exception can 
be determined by a trial subtraction. The 
leftmost digit of the divisor field is aligned with 
the leftmost-less-one digit of the dividend field. 
When the divisor, so aligned, is less than or equal 
to the dividend, a divide exception is indicated. 

3. A decimal-divide exception occurs if the dividend 
does not have at least one leading zero. 



EDIT 

ED Dl(L,Bl),D2(B2) [SS] 

'DE' L 

I ; I 01 I 82 ID(J 
0 8 16 20 32 36 47 

The format of the source (the second operand) is 
changed from packed to zoned, and is modified under 
control of the pattern (the first operand). The edited 
result replaces the pattern. 

Editing includes sign and punctuation control, and 
the suppressing and protecting of leading zeros. It 
also facilitates programmed blanking of all-zero 
fields. Several fields may be edited in one operation, 
and numeric information may be combined with text. 

The length field applies to the pattern (the first 
operand). The pattern may contain any bit 
combination. 

The length of the source (the second operand) is 
determined by the operation according to the 
contents of the pattern. Access exceptions are 
recognized only for those bytes in the second 
operand which are actually required. 

The source has the packed format. The leftmost 
four bits of a source byte must specify a decimal digit 
code (0000-1001); a sign code (1010-1111) is 
recognized as a data exception and causes a program 
interruption. The rightmost four bits may specify 
either a sign or a decimal digit. 

The result is obtained as if both operands were 
processed left to right one byte at a time. 
Overlapping pattern and source fields give 
unpredictable results. 

During the editing process, each character of the 
pattern is affected in one of three ways: 
1. It is left unchanged. 
2. It is replaced by a source digit expanded to zoned 

format. 
3. It is replaced by the first character in the pattern, 

called the fill character. 
Which of the three actions takes place is determined 

by one or more of the following: the type of the 
pattern character, the state of the significance 
indicator, and whether the source digit examined is 
zero. 

Pattern Characters: There are four types of pattern 
characters: digit selector, significance starter, fi~ld 
separator, and message character. Their coding is as 
follows: 

Name Code 

Digit selector 0010 0000 
Significance starter 0010 0001 
Field separator 0010 0010 
Message character Any other 

The detection of either a digit selector or a 
significance starter in the pattern causes an 
examination to be made of the significance indicator 
and of a source digit. As a result, either the 
expanded source digit or the fill character, as 
appropriate, is selected to replace the pattern 
character. Additionally, encountering a digit selector 
or a significance starter may cause the significance 
indicator to be changed. 

The field separator identifies individual fields in a 
multiple-field editing operation. It is always replaced 
in the result by the fill character, and the significance 
indicator is always off after the field separator is 
encountered. 

Message characters in the pattern are either 
replaced by the fill character or remain unchanged in 
the result, depending on the state of the significance 
indicator. They may thus be used for padding, 
punctuation, or text in the significant portion of a 
field or for the insertion of sign-dependent symbols. 

Fill Character: The fill character is obtained from 
the pattern as part of the editing operation. The first 
character of the pattern is used as the fill character. 
The fill character can have any code and may 
concurrently specify a control function. If this 
character is a digit selector or significance starter, the 
indicated editing action is taken after the code has 
been assigned to the fill character. 

Source Digits: Each time a digit selector or 
significance starter is encountered in the pattern, a 
new source digit is examined for placement in the 
pattern field. The source digit either is given a zone 
and replaces the pattern character or is disregarded. 

The source digits are selected one byte at a time, 
and a source byte is fetched for inspection only once 
during an editing operation. Each source digit is 
examined only once for a zero value. The leftmost 
four bits of each byte are examined first, and the 
rightmost four bits, when they represent a decimal
digit code, remain available for the next pattern 
character that calls for a digit examination. When 
the leftmost four bits contain an invalid digit code, 
the operation is terminated. At the time the left digit 

Chapter 8. Decimal Instructions 8-5 



of a source byte is examined, the rightmost four bits 
~!"~ ~~~~!:~~ f0! !b.P. p.Yl~tp.n~p. of a sign code. When a 
sign code is encountered in the four rightmost bit 
positions, these bits are not treated as a decimal-digit 
code, and a new source byte is fetched from storage 
for the next pattern character that calls for a source
digit e~amination. 

When the source digit is stored in the result, its 
code is expanded from the packed to the zoned 
format by attaching the zone code 1111. 

Significance Indicator: The significance indicator, by 
its on or off state, indicates the significance or 
nonsignificance, respectively, of subsequent source 
digits or message characters. Significant source digits 
replace their corresponding digit selectors or 
significance starters in the result. Significant message 
characters remain unchanged in the result. 

The significance indicator, by its on or off state, 
indicates also the negative or positive value, 
respectively, of the source and is used as one factor 
in the setting of the condition code. 

The indicator is set to the off state, if not already so 
set, at the start of the editing operation, after a field· 
separator is encountered, or after a source byte is 
examined that has a plus code in the rightmost four 
bit positions. Any of the codes 1010, 1100, 1110, 
and 1111 is considered a plus code. 

The indicator is set to the on state, if not already so 
set, when a significance starter is encountered whose 
source digit is a valid decimal digit, or when a digit 
selector is encountered whose source digit is a 
nonzero decimal digit, and if in both instances the 
source byte does not have a plus code in the 
rightmost four bit positions. 

In all other situations, the indicator is not c~anged. 
A minus sign code has no effect on the significance 
indicator. 

Result Characters: The field resulting from an 
editing operation replaces and is equal in length to 
the pattern. It is composed from pattern characters, 
fill characters, and zoned source digits. 
If the pattern character is a message character and 

the significance indicator is on, the message character 
remains unchanged in the result. If the pattern 
character is a field separator or if the significance 
indicator is off when a message character is 
encountered in the pattern, the fill character replaces 
the pattern character in the result. 
If the digit selector or significance starter is 

encountered in the pattern with the significance 

8-6 IBM 4300 Processors Principles of Operation 

indicator off and the source digit zero, the source 
digit is considered nonsignificant, and the fill 
character replaces the pattern character. If a digit 
selector or significance starter is encountered with 
either the significance indicator on or with a nonzero 
decimal source digit, the source digit is considered 
significant, is zoned, and replaces the pattern 
character in the result. 

Result Condition: All digits examined are tested for 
the code 0000. The sign of the last field edited and 
whether all source digits in the field contain zeros are 
recorded in the condition code at the completion of 
the editing operation. 

The condition code is made 0 when the last field is 
zero, that is, when all source digits examined since 
the last field separator are zeros. When the pattern 
has no digit selectors or significance starters, the 
source is not examined, and the condition code is 
made O. Similarly, the condition code is made 0 
when the last character in the pattern is a field 
separator or when no digit selector or significance 
starter is encountered beyond the last field separator. 

When the last field edited is nonzero and the 
significance indicator is on, the condition code is 
made 1 to indicate a result field less than zero. 

When the last field edited is nonzero and the 
significance indicator is off, the condition code is 
made 2 to indicate a result field is greater than zero. 

The figure "Summary of EDIT Functions" 
summarizes the functions of the editing operation. 
The leftmost four columns list all the significant 
combinations of the four conditions that can be 
encountered in the execution of an editing operation. 
The rightmost two columns list the action taken for 
each case-the type of character placed in the result 
field and the new setting of the significance 
indicator. 

Resulting Condition Code: 

o Last field is zero 
1 Last field is less than zero 
2 Last field is greater than zero 
3 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 



Programming Notes 

1. As a rule, the source is shorter than the pattern 
because for each source digit a zone and numeric 
are inserted in the result. 

2. The total number of digit selectors and 
significance starters in the pattern must equal the 
number of source digits to be edited. 

3. If the fill character is a blank, if no significance 
starter appears in the pattern, and if the source is 
all zeros, the editing operation blanks the result 
field. 

Pattern Character 

Digit selector 

Significance starter 

Field separator 
Message character 

Explanation: 

Conditions 

Previous State 
of Significance 
Indicator 

Off 

On 

Off 

On 

Off 
On 

Source 
Digit 

0 
1-9 
1-9 
0-9 
0-9 
0 
0 
1-9 
1-9 
0-9 
0-9 

low-Order Source 
Digit Is a Plus Sign 

No 
Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 
Yes 

* No effect on result character and new state of significance indicator 
** Not applicable because source digit not examined 

Summary of ED IT Functions 

4. The resultant condition code indicates whether or 
not the last field is all zeros, and, if nonzero, 
reflects the state of the significance indicator. 
The significance indicator reflects the sign of the 
source field only if the last source byte examined 
contains a sign code in the low-order digit 
position. For multiple-field editing operations, 
the condition code reflects the sign and value 
only of the field following the last field separator. 

Result Character 

Fill character 
Source digit 
Source digit 
Source digit 
Source digit 
F ill character 
Fill character 
Sou rce digit 
Sou rce digit 
Source digit 
Sou rce digit 
F ill character 
Fill character 
Message character 

Results 

State of Significance 
Indicator at End of 
Digit Examination 

Off 
On 
Off 
On 
Off 
On 
Off 
On 
Off 
On 
Off 
Off 
Off 
On 

Chapter 8. Decimal Instructions 8-7 



EDIT AND MARK 

EDMK 

o 8 16 20 32 36 47 

The format of the source (the second operand) is 
changed from packed to zoned and is modified under 
control of the pattern (the first operand). 

The address of e:ach first significant result character 
is recorded in general register 1. The edited result 
replaces the pattern. 

The instruction EDIT AND MARK is identical to 
EDIT, except for the additional function of inserting 
the address of the result character in bit positions 
8-31 of general register 1 whenever the result 
character is a zoned source digit and the significance 
indicator was off before the examination. The use of 
general register 1 is implied. The contents of bit 
positions 0-7 of the register are not changed. 

Resulting Condition Code: 

o Last field is zero 
1 Last field is less than zero 
2 Last field is greater than zero 
3 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 

Programming Notes 

1. The instruction EDIT AND MARK facilitates the 
programming of floating currency-symbol 
insertion. The character address inserted in 
general register 1 is one more than the address 
where a floating currency-sign would be inserted. 
The instruction BRANCH ON COUNT (BCTR), 
with zero in the R2 field, may be used to reduce 
the inserted address by one. 

2. The character address is not stored when 
significance is forced. To ensure that general 
register 1 contains a valid address when 
significance is forced, it is necessary to place into 
the register beforehand the address of the pattern 
character that immediately follows the 
significance starter. 

8-8 IBM 4300 Processors Principles of Operation 

MULTIPLY DECIMAL 

MP 

'Fe' 

o 8 12 16 20 32 36 47 

The product of the multiplier (the second operand) 
and the multiplicand (the first operand) replaces the 
multiplicand. 

The multiplier length is limited to 15 digits and sign 
and must be less than the multiplicand length. If the 
length code L2 is greater than 7, or greater than or 
equal to the length code L1, a specification exception 
is recognized. The operation is suppressed, and a 
program interruption occurs. 

The multiplicand must have at least as many bytes 
of high-order zeros as the multiplier length in bytes; 
otherwise, a data exception is recognized, the 
operation is terminated, and a program interruption 
occurs. This definition of the multiplicand field 
ensures that no product overflow can occur. The 
maximum product length is 31 digits. At least one 
high-order digit of the product field is zero. 

All operands and results are treated as signed 
integers, right-aligned in their field. All sign and 
digit codes of the ·multiplier and multiplicand are 
checked for validity. 

The sign of the product is determined by the rules 
of algebra from the multiplier and multiplicand signs, 
even if one or both operands are zeros. 

The multiplier and product fields may overlap only 
if their low-order bytes coincide. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 
Specification 

SHIFT AND ROUND DECIMAL 

o 8 12 16 20 32 36 

The first operand is shifted in the direction and for 
the number of digit positions specified by the 

47 



second-operand address, and, when shifting to the 
right is specified, is rounded by the rounding 
factor, 13• 

The second-operand address, specified by the B2 
and D2 fields, is not used to address data; its low
order six bits are the shift value, and the remainder of 
the address is ignored. 

Second-Operand Address 

Shift Value 

o 26 31 

The shift value is a six-bit signed binary integer, 
indicating· the direction and the number of digit 
positions to be shifted. Positive shift values specify 
shifting to the left. Negative shift values, which are 
represented in two's complement notation, specify 
shifting to the right. The following are examples of 
the interpretation of shift values: 

Shift Value 

011111 
000001 
000000 
111111 
100000 

Amount and Direction 

31 digits to the left 
One digit to the left 
No shift 
One digit to the right 
32 digits to the right 

The L1, B1, and Dl fields are interpreted in the 
same manner as in the SS format with two length 
fields. The result replaces the first operand and is 
not stored outside the field specified by the address 
and length. 

The first operand is considered to be in the 
packed-decimal format. Only its digit portion is 
shifted; the sign position does not participate in the 
shifting. Zeros are supplied for the vacated digit 
positions. 

For right shift, the contents of the 13 field, bit 
positions 12-15, are used as a rounding factor. The 
first operand is rounded by decimally adding the 
rounding factor to the leftmost digit to be shifted out 
and by propagating the carry, if any, to the left. The 
result of this addition is then shifted right. Both the 
first operand and the rounding factor are considered 
positive quantities for the purpose of this addition. 
No overflow results from the propagation of a carry 
since all digits resulting from the addition participate 
in the shift. Except for validity checking and the 

participation in rounding, the digits shifted out of the 
low-order digit position are ignored and are lost. 

In the absence of overflow, the sign of a zero result 
is made positive. Otherwise, the sign of the result is 
the same as the original sign, but the code is the 
preferred sign code. 

A data exception is recognized when the first 
operand does not have valid sign and digit codes or 
when the rounding factor does not have a valid digit 
code. The validity of first-operand codes is checked 
even when no shift is specified, and the validity of 
the rounding factor is checked even when no addition 
for rounding takes place. The operation is 
terminated, except when the sign position contains an 
invalid sign code, in which case the operation is 
suppressed. 

When one or more significant digits are shifted out 
of the high-order digit positions during left shift, a 
decimal overflow occurs and results in a program 
interruption, provided that the decimal-overflow mask 
bit is one. Overflow cannot occur on right shift or 
when no shifting is specified. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch and store, operand 1) 
Data 
Decimal Overflow 

Programming Note 

SHIFT AND ROUND can be used for shifting up to 
31 digit positions left and up to 32 digit positions 
right. This is sufficient to clear all digits of any 
decimal field even when rounding in right shift is 
specified. 

Note that when the B2 field is zero, the six-bit shift 
value, bits 26-31 of the second-operand address, are 
obtained directly from bits 42-47 of the instruction. 

Chapter 8. Decimal Instructions 8-9 



SUBTRACT DECIMAL 

o 8 12 16 20 - 32 36 47 

The second operand is subtracted from the first 
operand, and the difference is placed in the first
operand location. 

Subtraction is algebraic, taking into account the 
signs and all digits of both operands. The execution 
of SUBTRACT DECIMAL is identical to that of 
ADD DECIMAL, except that the sign of the second 
operand, if negative, is treated as positive, and, if 
positive, is treated as negative. 

The sign of the difference is determined by the rules 
of algebra. When the operation is completed without 
an overflow, a zero difference has a positive sign, but 
when high-order digits are lost because of an 
overflow, a zero difference may be either positive or 
negative, as determined by what the sign of the 
correct difference would have been. 

Resulting Condition Code: 

o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 
Decimal Overflow 

Programming Note 
The operands of SUBTRACT DECIMAL may 
overlap when their low-order bytes coincide, even 
when their lengths are unequal. This property may 
be used to set to zero an entire field or the low -order 
part of a field. 

8-10 IBM 4300 Processors Principles of Operation 

ZERO A.ND A.DD 

o 8 12 16 20 32 36 

The second operand is placed in the first-operand 
location. 

47 

The operation is equivalent to an addition to zero. 
A zero result is positive. When high-order digits are 
lost because of overflow, a zero result has the sign of 
the second operand. 

Only the second operand is checked for valid sign 
and digit codes. Extra high-order zeros are supplied 
if needed. When the first-operand field is too short 
to contain all significant digits of the second operand, 
a decimal overflow occurs and results in a program 
interruption, provided that the decimal-overflow mask 
bit is one. 

The first-operand and second-operand fields may 
overlap when the rightmost byte of the first-operand 
field is coincident with or to the right of the 
rightmost byte of the second operand. In this case 
the result is obtained as if the operands were 
processed right to left. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Exceptions: 

Access (fetch, operand 2; store, operand 1) 
Data 
Decimal Overflow 



Chapter 9. Floating-Point Instructions 

Data Format 9-1 
Guard Digit 9-2 
Number Representation 9-3 
Normalization 9-3 
Instructions 9-4 

ADD NORMALIZED 9-6 
ADD UNNORMALIZED 9-7 
COMPARE 9-8 
DIVIDE 9-8 
HALVE 9-9 
LOAD 9-10 

Contents 

The floating-point instructions are used to perform 
calculations on operands with a wide range of 
magnitude and to yield results scaled to preserve 
precision. 

A floating-point number consists of a signed 
exponent, represented by the characteristic, and a 
signed fraction. The quantity expressed by this 
number is the product of the fraction and the number 
16 raised to the power of the exponent. The 
exponent is expressed in excess-64 binary notation 
(see the section "Number Representation" in this 
chapter); the fraction is expressed as a hexadecimal 
number having a radix point to the left of the 
high -order digit. 

To avoid unnecessary storing and loading operations 
for results and operands, four floating-point registers 
are provided. The· floating-point instructions provide 
for the loading, rounding, adding, subtracting, 
comparing, multiplying, dividing, and storing, as well 
as the sign control, of short, long, and extended 
operands. Short operands generally provide faster 
processing and require less storage than long or 
extended operands. On the other hand, long and 
extended operands provide greater precision in 
computation. Operations may be either register to 
register or storage to register. 

For addition, subtraction, multiplication, and 
division, instructions are provided that generate 
normalized results. Normalized results preserve the 
highest precision in the operation. For addition and 
subtraction, instructions are also provided that 
generate unnormalized results. Normalized and 
unnormalized operands may be used in any 
floating-point operation. 

LOAD AND TEST 9-10 
LOAD COMPLEMENT 9-11 
LOAD NEGATIVE 9-11 
LOAD POSITIVE 9-11 
LOAD ROUNDED 9-12 
MULTIPLY 9-12 
STORE 9-14 
SUBTRACT NORMALIZED 9-14 
SUBTRACT UNNORMALIZED 9-15 

The condition code is set as a result of all 
sign-control, add, subtract, and compare operations. 

Data Format 
Floating-point data occupies a fixed-length format, 
which may be either a four-byte (short) format, an 
eight-byte (long) format, or a 16-byte (extended) 
format. The short and long formats may be 
designated as operands both in main storage and in 
the floating-point registers, whereas the extended 
formats can be designated only in the floating-point 
registers. 

The floating-point registers are numbered 0, 2, 4, 
and 6. Designation of an odd-numbered register in 
the Rl or R2 field of a floating-point instruction 
causes the operation to be suppressed and a program 
interruption for specification exception to occur. 

Short Floating-Point Number 

S Characteristic a-Digit Fr8cti~:,..: _____ ---, 
o 1 8 31 

Long Floating-Point Number 

14-Digit Frac;:;n 
, ,1--------' 

S Characteristic 

o 1 8 83 

Chapter 9. Floating-Point Instructions 9-1 



Extended Floating-Point Number 

____ ------------~--------__ ~(~l----------~i 

S Characteristic 
High-Order Half~ 
of 2a-Digit FraC:ion 

~~------------~----------~ 
o 1 a 63 

Low-Order Half 

of 2a-Digit Fraction 

64 72 127 

In the short and long formats, the first bit is the 
sign bit (S). The subsequent seven bit positions are 
occupied by the characteristic. The following field 
contains the fraction, which, depending on the 
format, consists of six or 14 hexadecimal digits. 

Short floating-point numbers occupy only the 
leftmost 32 bit positions of a floating-point register. 
When a floating-point register is used as the source of 
a short floating-point number, the rightmost 32 bit 
p,ositions of the register are ignored. When a 
floating-point register is used as the destination of a 
short floating-point number, the rightmost 32 bit 
positions of the register remain unchanged. 

An extended floating-point number has a 28-digit 
fraction and consists of two long floating-point 
numbers in consecutive floating-point registers. Two 
pairs of floating-point registers can be used as sources 
of extended operands or destinations of extended 
results: registers 0, 2 and registers 4, 6. The 
designation of any other register pair causes the 
operation to be suppressed and a program 
interruption for a specification exception to occur. 

The two long floating-point numbers comprising an 
extended floating-point number are called the 
high-order and low-order parts. The high-order part 
may be any long floating-point number. If it is 
normalized, the extended number is considered 
normalized. The characteristic of the high-order part 
is the characteristic of the extended number, and the 
sign of the high-order part is the sign of the extended 
number. 

The fraction field of the low-order part contains the 
14 low-order hexadecimal digits of the 28-digit 
extended fraction. The sign and characteristic of the 
low-order part of an extended operand are ignored, 
the value of the number being assumed such as if the 
sign of the low-order part were the same as that of 
the high-order part, and the characteristic of the 
low-order part were 14 less than that of the 
high-order part. In extended results, the sign of the 

9-2 IBM 4300 Processors Principles of Operation 

low-order part is made the same as that of the 
high-order part, and, unless the result is a true zero, 
the low-order characteristic is made 14 less than the 
high-order characteristic. When the subtraction of 
14 causes the low-order characteristic to become less 
than zero, it is made 128 larger than its correct value. 
Exponent underflow is indicated only when the 
high-order characteristic underflows. 

The entire set of floating-point functions is 
available for short and long operands. These 
instructions generate a result that has the same 
format as the sources, except that in the case of 
MUL TIPL Y, a long product is produced from a short 
multiplier and multiplicand. For extended operands, 
instructions are provided for normalized addition, 
subtraction, and multiplication. Additionally, two 
multiplication instructions are provided that generate 
an extended product from a long multiplier and 
multiplicand. The rounding instructions provide for 
rounding from extended to long format and from long 
to short format. 

Programming Note 

A long floating-point number can be extended to the 
extended format by appending any long 
floating-point number having a zero fraction, 
including a true zero. Conversion from the extended 
to the long format can be accomplished by truncation 
or by means of LOAD ROUNDED. 

In the absence of an exponent overflow or exponent 
underflow, the long floating-point number 
constituting the low-order part of an extended result 
correctly expresses the value of the low-order part of 
the extended result when the characteristic of the 
high-order part is 14 or higher. This relation is true 
also when the result is a true zero. When the 
high-order characteristic is less than 14 but the 
number is not a true zero, the low-order part, when 
addressed as a long floating-point number, does not 
have the correct characteristic value. 

Guard Digit 
Although final results have six fraction digits in the 
short format, 14 fraction digits in the long format, 
and 28 fraction digits in the extended format, 
intermediate results iIi. ADD NORMALIZED, 
SUBTRACT NORMALIZED, ADD 
UNNORMALIZED, SUBTRACT 
UNNORMALIZED, COMPARE, HALVE, and 
MULTIPLY may have one additional low-order digit. 
This low-order digit, the guard digit, increases the 
precision of the final result. 



Number Representation 
The fraction of a floating-point number is expressed 
in hexadecimal digits. The radix point of the fraction 
is assumed to be immediately to the left of the 
high-order fraction digit. The fraction is considered 
to be multiplied by a power of 16. The characteristic 
portion, bits 1-7 of the floating-point formats, 
indicates this power. The bits within the 
characteristic field can represent numbers from 0 
through 127. To accommodate large and small 
magnitudes, the characteristic is formed by adding 64 
to the actual exponent. The range of the exponent is 
thus -64 through +63. This technique produces a 
characteristic in excess-64 notation. . 

Both positive and negative quantities have a true 
fraction, the sign being indicated by the sign bit. The 
number is positive or negative, depending on whether 
the sign bit is zero or one, respectively. 

The range covered by the magnitude (M) of a 
normalized floating-point number is: 

In the short format: 

16-65 S M S(l ....., 16-6) x 1663 

In the long . form at: 

16-65 S M ~. (1 - 16-14) x 1663 

In the extended format: 

16-65 ~ M So {I - 16-28) x 1653 

In all formats, approximately: 

5.4 x 10-79 ~ M S 7.2 X 1075 

A number with a zero characteristic, zero fraction, 
and plus sign is called a true zero. When an 
extended result is made a true zero, both the 
high-order and low-order parts are made true zero. 

A true zero may arise as the result of an arithmetic 
operation because of the particular magnitude of the 
operands. A result is forced to be true zero when 
1. An exponent underflow occurs and the 

exponent-underflow mask bit in the PSW is zero, 
2. The result fraction of an addition or subtraction 

operation is ?:ero and the significance mask bit in 
the PSW is zero, or 

3. The operand of HALVE, one or both operands of 
MUL TIPL Y, or the dividend in DIVIDE has a 
zero fraction. 

When a program interruption due to exponent 
underflow occurs, a true zero fraction is not forced; 
instead, the fraction and sign remain correct, and the 
characteristic is 128 too large. When a program 
Interruption due to the significance exception occurs, 
lhe fraction remains zero, the sign is positive, and the 

characteristic remains correct. The 
exponent-overflow and exponent-underflow 
exceptions do not cause a program interruption when 
the result has a zero fraction. When a divisor has a 
zero fraction, division is omitted, and a program 
interruption for a floating-point-divide exception 
occurs. In addition and subtraction, an operand with 
a zero fraction or characteristic participates as a 
normal number. 

The sign of a sum, difference, product, or quotient 
with zero fraction is positive. The sign of a zero 
fraction resulting from other operations is established 
by the rules of algebra from the operand signs. 

Normalization 
A quantity can be represented with the greatest 
precision by a floating-point number of given fraction 
length when that number is normalized. A 
normalized floating-point number has a nonzero 
high -order hexadecimal fraction digit. If one or more 
high-order fraction digits are zeros, the number is 
said to be unnormalized. The process of 
normalization consists in shifting the fraction left, 
one digit at a time, until the high-order hexadecimal 
digit is nonzero and reducing the characteristic by the 
number of hexadecimal digits shifted. For extended 
results, the entire fraction participates in the 
normalization; therefore, the low-order part mayor 
may not appear to be a normalized long number, 
depending on the value of the fraction. A number 
with a zero fraction cannot be normalized, and its 
characteristic therefore remains unchanged when 
normalization is called for. 

Normalization usually takes place when the 
intermediate arithmetic result is changed to the final 
result. This function is called postnormalization. In 
performing multiplication and division, the operands 
are normalized before the arithmetic process. This 
function is called prenormalization. 

Floating-point operations may be performed with or 
without normalization. Most operations are 
performed only with normalization. Addition and 
subtraction with short or long operands may be 
specified either way. 

When an operation is performed without 
normalization, high-order zeros in the result fraction 
are not eliminated. The result mayor may not be 
normalized, depending upon the original operands. 

In both normalized and unnormalized operations, 
the initial operands need not be in normalized form. 
Also, intermediate fraction results are shifted right 
when an overflow occurs, and the intermediate 

Chapter 9. Floating-Point Instructions 9-3 



fraction result is truncated to the final result length 
~f!~! !!!~ ~h!f!!ne, if ~ny 

Programming Note 

Since normalization applies to hexadecimal digits, the 
three high-order bits of the fraction of a normalized 
number may be zero. 

Instructions 
The floating-point instructions and their mnemonics, 
formats, and operation codes are listed in the figure 
"Summary of Floating-Point Instructions." The 
figure also indicates when the condition code is set 
and the exceptional conditions in operand 
designations, data, or results that cause a program 
interruption. 

94 IBM 4300 Processors Principles of Operation 

Note: In the detailed descriptions of the individual 
instructions. the mnemonic and the svmbolic oDerand - -

designation for the assembler language are shown 
with each instruction. For a register-to-register 
operation using LOAD (short), for example, LER is 
the mnemonic and R hR 2 the operand designation. 

Mnemonics for the floating-point instructions have 
an "R" as the last letter when the instruction is in the 
RR format. For instructions where all operands are 
the same length, certain letters are used to represent 
operand-format length and normalization, as follows: 

E short normalized 
U short unnormalized 
D long normalized 
W long unnormalized 
X extended normalized 



Name 

ADD NORMALIZED (extended) 
ADD NORMALIZED (fang) 
ADD NORMALIZED (long) 
ADD NORMALIZED (shard 
ADD NORMALIZED (short) 

ADD UNNORMALIZED (long) 
ADD UNNORMALIZED (fang) 
ADD UNNORMALIZED (short) 
ADD UNNORMALIZED (short) 
COMPARE (fang) 

COMPARE (fang) 
COMPAR E (short) 
COMPARE (short) 
DIVIDE (long) 
DIVIDE (long) 

DIVIDE (short) 
DIVIDE (short) 
HALVE (long) 
HALVE (short) 
LOAD (long) 

LOAD (long) 
LOAD (short) 
LOAD (short) 
LOAD AND TEST (fang) 
LOAD AND TEST (short) 

LOAD COMPLEMENT (long) 
LOAD COMPLEMENT (short) 
LOAD NEGATIVE (long) 
LOAD NEGATIVE (short) 
LOAD POSITIVE (long) 

LOAD POSITIVE (short) 
LOAD ROUNDED (extended to long) 
LOAD ROUNDED (long to short) 
MULTIPLY (extended) 
MULTIPLY (long) 

MULTIPLY (long) 
MUL TIPL Y (long to extended) 
MULTIPLY (long to extended) 
MULTIPLY (short to long) 
MULTIPLY (short to long) 

STORE (long) 
STORE (short) 
SUBTRACT NORMALIZED (extended) 
SUBTRACT NORMALIZED (long) 
SUBTRACT NORMALIZED (long) 

SUBTRACT NORMALIZED (short) 
SUBTRACT NORMALIZED (short) 
SUBTRACT UNNORMALIZED (long) 
SUBTRACT UNNORMALIZED (long) 
SUBTRACT UN NORMALIZED (short) 
SUBTRACT UN NORMALIZED (short) 

Explanation: 
A Access exceptions 
C Condition code is set 
EO Exponent-overflow exception 
FK Floating-paint-divide exception 
LS Significance exception 

Mnemonic 

AXR 
ADR 
AD 
AER 
AE 

AWR 
AW 
AUR 
AU 
CDR 

CD 
CER 
CE 
DOR 
DD 

DER 
DE 
HOR 
HER 
LOR 

LO 
LER 
LE 
LTDR 
LTER 

LCDR 
LCER 
LNOR 
LNER 
LPDR 

LPER 
LROR 
LRER 
MXR 
MOR 

MO 
MXOR 
MXO 
MER 
ME 

STD 
STE 
SXR 
SDR 
SD 

SER 
SE 
SWR 
SW 
SUR 
SU 

Summary of Floating-Point Instructions 

Characteristics 

RR C 
RR C 
RX C 
RR C 
RX C 

RR C 
RX C 
RR C 
RX C 
RR C 

RX C 
RR C 
RX C 
RR 
RX 

RR 
RX 
RR 
RR 
RR 

RX 
RR 
RX 
RR C 
RR C 

RR C 
RR C 
RR C 
RR C 
RR C 

RR C 
RR 
RR 
RR 
RR 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

RX A 
RR 
RX A 
RR 
RX A 

RX 
RX 
RR C 
RR C 
RX C 

RR C 
RX C 
RR C 
RX C 
RR C 
RX C 

A 
A 

A 

A 

A 

A 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 

SP 
SP 
SP 
SP 
SP 
SP 

U 
U 
U 
U 
U 

U 
U 

U 
U 
U 
U 

U 
U 

U 
U 
U 
U 
U 

U 
U 
U 

U 
U 

RR RR instruction format 
RX RX instruction format 
SP Specification exception 

EO 
EO 
EO 
EO 
EO 

EO 
EO 
EO 
EO 

EO FK 
EO FK 

EO FK 
EO FK 

EO 
EO 
EO 
EO 

EO 
EO 
EO 
EO 
EO 

EO 
EO 
EO 

EO 
EO 
EO 
EO 
EO 
EO 

ST PER storage-alteration event 
U Exponent-underflow exception 

LS 
LS 
LS 
LS 
LS 

LS 
LS 
LS 
LS 

LS 
LS 
L.S 

LS 
LS 
LS 
LS 
LS 
LS 

ST 
ST 

Code 

36 
2A 
6A 
3A 
7A 

2E 
6E 
3E 
7E 
29 

69 
39 
79 
2D 
6D 

3D 
70 
24 
34 
28 

68 
38 
78 
22 
32 

23 
33 
21 
31 
20 

30 
25 
35 
26 
2C 

6C 
27 
67 
3C 
7C 

60 
70 
37 
2B 
6B 

3B 
7B 
2F 
6F 
3F 
7F 

Chapter 9. Floating-Point Instructions 9-5 



ADD NORMALIZED 

AER Rl,R2 
[RR, Short Operands] 

'3A' I R, I R2 I 
0 8 12 15 

AE Rl,D2(X2,B2) 
[RX, Short Operands] 

'7A' I R, I X2 I 82 02 

0 8 12 16 20 31 

ADR Rl,R2 
[RR, Long Operands] 

'2A' I R, I R2 I " 

0 8 12 15 

AD Rl,D2(X2,B2) 
[RX, Long Operands] 

'6A' I R, I X2 I 82 02 

0 8 12 16 20 31 

AXR Rt,R2 
[RR, Extended Operands] 

'36' I R, I R2 I 
o· 8 12 15 

iThe second operand is added to the first operand, 
and the normalized sum is placed in the first-operand 
location. 

Addition of two floating-point numbers consists in 
characteristic comparison and fraction addition. The 
characteristics of the two operands are compared, and 
the fraction accompanying the smaller characteristic 
is shifted right, with its characteristic increased by 
one for each hexadecimal digit of shift until the two 
characteristics agree. 

9-6 IBM 4300 Processors Principles of Operation 

When an operand is shifted right during alignment, 
the leftmost hexadecimal digit of the field shifted out 
is retained as a guard digit. The operand that is not 
shifted is considered to be extended with a low-order 
zero. Both operands are considered to be extended 
with low-order zeros when no alignment shift occurs. 
The fractions are then added algebraically to form an 
intermediate sum. 

The short intermediate-sum fraction consists of 
seven hexadecimal digits and a possible carry. The 
long intermediate-sum fraction consists of 15 
hexadecimal digits and a possible carry. The 
extended intermediate-sum fraction consists of 29 
hexadecimal digits and a possible carry. If a carry is 
present, the sum is shifted right one digit position, 
and the characteristic is increased by one. 

After the addition, the intermediate sum is shifted 
left as necessary to form a normalized number, 
provided the fraction is not zero. Vacated low-order 
digit positions are filled with zeros, and the 
characteristic is reduced by the number of 
hexadecimal digits of shift. The intermediate-sum 
fraction is subsequently truncated to the proper 
result-fraction length. 

The sign of the sum is determined by the rules of 
algebra, unless all digits of the intermediate-sum 
fraction are zero, in which case the sign is made plus. 

An exponent-overflow exception is recognized when 
a carry from the high-order position of the 
intermediate-sum fraction causes the characteristic of 
the normalized sum to exceed 127. The operation is 
completed by making the characteristic 128 less than 
the correct value, and a program interruption for 
exponent overflow occurs. The result is normalized, 
the sign and fraction remain correct, and, for AXR, 
the low-order characteristic remains correct. 

An exponent-underflow exception exists when the 
characteristic of the normalized sum is less than zero 
and the fraction is not zero. If the 
exponent-underflow mask bit is one, the operation is 
completed by making the characteristic 128 greater 
than the correct value. The result is normalized, and 
the sign and fraction remain correct. A program 
interruption for exponent underflow then takes place. 
When exponent underflow occurs and the 
exponent-:1!nderflow mask bit is zero, a program 
interruption does not take place; instead, the 
operation is completed by making the result a true 
zero. For AXR, exponent underflow is not 
recognized when the low-order characteristic is less 
than zero, but the high-order characteristic is zero or 
above. 



A significance exception exists when the 
intermediate-sum fraction, including the guard digit, 
is zero. If the significance mask bit is one, the 
intermediate-sum characteristic remains unchanged 
and becomes the characteristic of the result. No 
normalization occurs, and a program interruption for 
significance takes place. If the significance mask bit 
is zero, the program interruption does not occur; 
instead, the result is made a true zero. 

The Rl field for AER, AE, ADR, and AD, and the 
R2 field for AER and ADR must designate register 
0, 2, 4, or 6. The Rl and R2 fields for AXR must 
designate register 0 or 4. Otherwise, a specification 
exception is recognized. 

Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

Access (fetch, operand 2 of AE and AD only) 
Exponent Overflow 
Exponent Underflow 
Significance 
Specification 

Programming Note 

Interchanging the two operands in a floating-point 
addition does not affect the value of the sum. 

ADD UNNORMALIZED 

AUR Rl,R2 
[RR, Short Operands] 

'lE' I Rt I R2 I 
o 8 12 15 

AU Rl,D2(X2,B2) 
[RX, Short Operands] 

'7E' 

o 8 12 16 20 31 

AWR Rt,R2 
[RR, Long Operands] 

'2E' I Rt I R2 I 
o 8 12 15 

A W Rl,D2(X2,B2) 
[RX, Long Operands] 

o 8 12 16 20 

The second operand is added to the first operand, 
and the· unnormalized sum is placed in the 
first-operand location. 

31 

The execution of ADD UNNORMALIZED is 
identical to that of ADD NORMALIZED, except 
that, after the addition, the intermediate-sum fraction 
is truncated to the proper result-fraction length 
without performing normalization. Leading zeros are 
not eliminated in the result fraction, exponent 
underflow cannot occur, and the guard digit does not 
participate in the recognition of significance 
exception. A significance exception is recognized 
when the intermediate-sum fraction, not including the 
guard digit, is zero. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Reslliting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

Access (fetch, operand 2 of AU and AW only) 
Exponent Overflow 
Significance 
Specification 

Chapter. 9. Floating-Point Instructions 9.,.7 



COMPARE 

CER Rl,R2 
[RR, Short Operands] 

'39' I R, I R2 I 
o 8 12 15 

CE R1,D2(X2,B2) 
[RX, Short Operands] 

o 8 12 16 20 31 

CDR R1,R2 
[RR, Long Operands] 

'29' I R, I R2 I 
o 8 12 15 

CD R1,D2(X2,B2) 
[RX, Long Operands] 

'69' I R, I X2 I 
82 

I 
02 

0 8 12 16 20 31 

The first operand is compared with the second 
operand, and the condition code is set to indicate the 
result. 

Comparison is algebraic, taking into account the 
sign, fraction, and exponent of each number. An 
equality is established by following the rules for 
normalized floating-point subtraction. When the 
intermediate sum, including the guard digit, is zero, 
the operands are equal. An exponent inequality is 
not decisive for magnitude determination since the 
fractions may have different numbers of leading 
zeros. Neither operand is changed as a result of the 
operation. 

An exponent-overflow, exponent-underflow, or 
significance exception cannot occur. 

The Rl and R2 fields must designate register 0, 2, 4, 
or 6; otherwise, a specification exception is 
recognized. 

9-8 IBM 4300 Processors Principles of Operation 

I 

Resulting Condition. Code: 

1 
2 
3 

"'"'.~ - "-- ._.-2 ____ -_ ...... _1 
VVCl(UlUi) ,;u,", '"''1 ......... .. 

First operand is low 
First operand is high 

Program Exceptions: 

Access (fetch, operand 2 of CE and CD only) 
Specification 

Programming Note 

N umbers with zero fractions compare equal even 
when they differ in sign or characteristic. 

DIVIDE 

DER Rl,R2 
[RR, Short Operands] 

'3~' I R, I R2 I 
o 8 12 15 

DE R1,D2(X2,B2) 
[RX, Short Operands] 

I 
'70' I R, I 

X2 
I 

82 02 

0 8 12 16 20 

DDR Rl,R2 
[RR, Long Operands] 

'20' I R, I Rz I 
o 8 12 15 

DD Rl,D2(X2,B2) 
[RX, Long Operands] 

'60' I R, I X2 I B2 

o 8 12 16 20 

The first operand (the dividend) is divided by the 
second operand (the divisor) and replaced by the 
normalized quotient. No remainder is preserved. 

31 

31 



Floating-point division consists in characteristic 
subtraction and fraction division. The operands are 
prenormalized, and the difference between the 
dividend and divisor characteristics of the normalized 
operands, plus 64, is used as the characteristic of the 
intermediate quotient. 

All dividend and divisor fraction digits participate in 
forming the fraction of the quotient. Postnormalizing 
the intermediate quotient is never necessary, but a 
right-shift of one digit position may be called for. 
The intermediate-quotient characteristic is adjusted 
for the shift. The intermediate-quotient fraction is 
subsequently truncated to the proper result-fraction 
length. 

The sign of the quotient is determined by the rules 
of algebra, unless the quotient is made a true zero, in 
which case the sign is made plus. 

An exponent-overflow exception is recognized when 
the final-quotient characteristic exceeds 127 and the 
fraction is not zero. The operation is completed by 
making the characteristic 128 less than the correct 
value. The result is normalized, and the sign and 
fraction remain correct. A program interruption for 
exponent overflow occurs. 

An exponent-underflow exception exists when the 
characteristic of the normalized quotient is less than 
zero and the fraction is not zero. If the 
exponent-underflow mask bit is one, the operation is 
completed by making the characteristic 128 greater 
than the correct value, and a program interruption for 
exponent underflow occurs. The result is normalized, 
and the sign and fraction remain correct. If the 
exponent-underflow mask bit is zero, a program 
interruption does not take place; instead, the 
operation is completed by making the quotient a true 
zero. 

Exponent underflow is not signaled when an 
operand characteristic becomes less than zero during 
prenormalization or the intermediate-quotient 
characteristic is less than zero, but the final quotient 
can be expressed without encountering exponent 
underflow. 

A floating-point divide exception is recognized 
when the divisor fraction is zero. The operation is 
suppressed, and a program interruption for 
floating-point divide occurs. 

When the dividend fraction is zero, the quotient is 
made a true zero, and a possible exponent overflow 
or exponent underflow is not recognized. A division 
of zero by zero, however, causes the operation to be 
suppressed and an interruption for floating-point 
divide to occur. 

The Rl and R2 fields must designate register 0, 2, 4, 
or 6; otherwise, a specification exception is 
recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of DD and DE only) 
Exponent Overflow 
Exponent Underflow 
Floating-Point Divide 
Specification 

HALVE 

HER R1,R2 

[RR, Short Operands] 

"34" I R, I R2 I 
o 8 12 15 

HDR Rt,R2 

[RR, Long Operands] 

"24" I R, I R2 I 
o 8 12 15 

The second operand is divided by 2, and the 
normalized quotient is placed in the first-operand 
location. 

The fraction of the second operand is shifted right 
one bit position, placing the contents of the low-order 
bit position into the high-order bit position of the 
guard digit and introducing a zero into the high-order 
bit position of the fraction. The intermediate result is 
subsequently normalized, and the normalized quotient 
is placed in the first-operand location. The guard 
digit participates in the normalization. 

The sign of the quotient is the same as that of the 
second operand, unless the quotient is made a true 
zero, in which case the sign is made plus. 

An exponent-underflow exception exists when the 
characteristic of the normalized quotient is less than 
zero and the fraction is not zero. If the 
exponent-underflow mask bit is one, a program 
interruption occurs. The result is normalized, the 
sign and fraction remain correct, and the 

Chapter 9. Floating-Point Instructions 9-9 



characteristic is made 128 greater than the correct 
,(.T~!1..~~. Tf thp. p.y!,om~nt underflow mask bit is zero, 
program interruption does not take place; instead, the 
operation is completed by making the quotient a true 
zero. 

When the fraction of the second operand is zero, 
the result is made a true zero, and no exceptions are 
recognized. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Exponent Underflow 
Specification 

Programming Notes 

1. With short and long operands, the halve 
operation is identical to a divide operation with 
the number 2 as divisor. Similarly, the result of 
HDR is identical to that of MD or MDR with 
one-half as a multiplier. No multiply operation 
corresponds to HER, since no multiply operation 
produces short results. 

2. The result of HALVE is replaced by a true zero 
only when the second-operand fraction is zero, or 
when exponent underflow occurs with the 
exponent-underflow mask set to zero. When the 
fraction of the second operand is zero, except for 
the low-order bit position, the low-order one is 
shifted into the guard-digit position and 
participates in the postnormalization. 

LOAD 

LER Rt,R2 
[RR, Short Operands] 

'3S' I Rj I R2 r 

o 8 12 15 

LE Rt,D2(X2,B2) 
[RX, Short Operands] 

o 8 12 16 20 31 

9-10 IBM 4300 Processors Principles of Operation 

LDR Rl,R2 
[RR, Long Operands] 

o 8 12 15 

LD Rt,D2(X2,B2) 
[RX, Long Operands] 

o 8 12 16 20 

The second operand is placed unchanged in the 
first-operand location. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2 of LE and LD only) 
Specification 

LOAD AND TEST 

LTER Rt,R2 
[RR, Short Operands] 

o 8 12 15 

LTDR Rt,R2 
[RR, Long Operands] 

o 8 12 15 

31 

The second operand is placed unchanged in the 
first-operand location, and its sign and magnitude are 
tested to determine the setting of the condition code. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 



Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 
Specification 

Programming Note 

When the same register is specified as the 
first-operand and second-operand location, the 
operation is equivalent to a test without data 
movement. 

LOA.D COMPLEMENT 

LCER RbR2 
[RR, Short Operands] 

o 8 12 15 

LCDR RbR2 
[RR, Long Operands] 

'23' 

o 8 12 15 

The second operand is placed in the first-operand 
location with the sign changed to the opposite value. 

The sign bit is inverted, even if the fraction is zero. 
The characteristic and fraction are not changed. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

Specification 

LOAD NEGA.TIVE 

LNER Rl,R2 
[RR, Short Operands] 

'31' I R, I R, I 
o 8 12 15 

LNDR Rl,R2 
[RR, Long Operands] 

'21' I R, I R2 I 
o 8 12 15 

The second operand is placed in the first-operand 
location with the sign made minus. 

The sign bit is made one, even if the fraction is 
zero. The characteristic and fraction are not 
changed. 

The Rl and R2 fields must designate registe.r 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 
3 

Program Exceptions: 

Specification 

LOAD POSITIVE 

LPER Rl,R2 
[RR, Short Operands] 

o 8 12 15 

LPDR Rl,R2 
[RR, Long Operands] 

'20' 

o 8 12 15 

Chapter 9. Floating-Point Instructions 9-11 



T!!e :::e~~!'!':! ~~~!."~!'!t.i !.~ ~!?~~t1 1n thp. fird-0!lf',rand 

location with the sign made plus. 
The sign bit is made zero. The characteristic and 

fraction are not changed. 
The Rl and R2 fields must designate register 0, 2, 

4, or 6; otherwise, a specification exception is 
recognized. 

Resulting Condition Code: 

° Result fraction is zero 
1 
2 Result is greater than zero 
3 

Program Exceptions: 

Specification 

LOAD ROUNDED 

LRER Rt,R2 
[RR, Long Operand 2, Short Operand 1] 

o 8 12 15 

LRDR Rt,R2 
[RR, Extended Operand 2, Long Operand 1] 

'25' I RI I R. I 
o 8 12 .15 

The second operand is rounded to the next smaller 
format, and the result is placed in the first-operand 
location. 

Rounding consists in adding a one in bit position 32 
or 72 of the long or extended second operand, 
respectively, and propagating the carry, if any, to the 
left. For both cases, the sign of the fraction is 
ignored, and addition is performed as if the fractions 
were positive. 
If rounding causes a carry out of the high-order 

digit position of the fraction, the fraction is shifted 
right one digit position, and the characteristic is 
increased by one. 

The sign of the result is the same as the sign of the 
second operand. No normalization takes place. 

An exponent-overflow exception is recognized when 
shifting the fraction right causes the characteristic to 
exceed 127. The operation is comnleted by loading a 

9-12 IBM 4300 Processors Principles of Operation 

number whose characteristic is 128 less than the 
correct value, and a program interruption for 
exponent overflow occurs. The result is normalized, 
and the sign and fraction remain correct. 

Exponent-underflow and significance exceptions 
cannot occur. 

The Rl field must designate register 0, 2, 4, or 6; 
the R2 field of LRER must designate register 0, 2, 4, 
or 6; and the R2 field of LRDR must designate 
register ° or 4. Otherwise, a specification exception 
is recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Exponent Overflow 
Specification 

MULTIPLY 

MER Rl,R2 
[RR, Short Multiplier and Multiplicand, Long 
Product] 

o 8 12 15 

ME Rt,D2(X2,B2) 
[RX, Short Multiplier and Multiplicand, Long 
Product] 

o 8 12 16 20 

MDR Rl,R2 
[RR, Long Operands] 

'2C' I RI I R. I 
o 8 12 15 

MD Rl,D2(X2,B2) 
[RX, Long Operands] 

'BC' I RI I X. I B. 

o 8 12 16 20 

31 

31 



MXDR Rt,R2 
[RR, Long Multiplier and Multiplicand, Extended 
Product] 

o 8 12 15 

MXD Rt,D2(X2,B2) 
[RX, Long Multiplier and Multiplicand, Extended 
Product] 

'67' 

o 8 12 16 20 

MXR Rt,R2 
[RR, Extended Operands] 

o 8 12 15 

31 

The normalized product of the second operand (the 
multiplier) and the first operand (the multiplicand) is 
placed in the first-operand location. 

Multiplication of two floating-point numbers 
consists in exponent addition and fraction 
multiplication. The operands are prenormalized, and 
the sum of the characteristics of the normalized 
operands, less 64, is used as the characteristic of the 
intermediate product. 

The product of the fractions is developed such that 
the result has the exact fraction product truncated to 
the proper result-fraction length. When the result is 
normalized without requiring any postnormalization, 
the intermediate-product fraction is truncated to the 
result-fraction length, and the intermediate-product 
characteristic becomes the final product 
characteristic. When the intermediate-product 
fraction has one leading zero digit, it is shifted left 
one digit position, bringing the contents of the 
guard-digit position into the low-order position of the 
result fraction, and the intermediate-product 
characteristic is reduced by one. The 
intermediate-product fraction is subsequently 
truncated to the result-fraction length. 

For MER and ME, the multiplier and multiplicand 
have six-digit fractions, and the product fraction has 
the full 14 digits of the long format, with the two 
low-order fraction digits always zeros. For MDR and 

MD, the multiplier and multiplicand fractions have 14 
digits, and the result product fraction is truncated to 
14 digits. For MXDR and MXD, the multiplier and 
multiplicand fractions have 14 digits, with the 
multiplicand occupying the high-order part of the first 
operand; the result product fraction contains 28 digits 
and is an exact product of the operand fractions. For 
MXR, the multiplier and multiplicand fractions have 
28 digits, and the result product fraction is truncated 
to 28 digits. 

The sign of the product is determined by the rules 
of algebra, unless all digits of the product fraction are 
zeros, in which case the sign is made plus. 

An exponent-overflow exception is recognized when 
the characteristic of the normalized product exceeds 
127 and the fraction of the product is not zero. The 
operation is completed by making the characteristic 
128 less than the correct value. If, for extended 
results, the low-order characteristic also exceeds 127, 
it, too, is decreased by 128. The result is normalized, 
and the sign and fraction remain correct. A program 
interruption for exponent overflow then occurs. 

Exponent overflow is not recognized if the 
intermediate-product characteristic exceeds 127 but is 
brought within range by normalization. 

An exponent-underflow exception exists when the 
characteristic of the normalized product is less than 
zero and the fraction of the product is not zero. If 
the exponent-underflow mask bit is one, the 
operation is· completed by making the characteristic 
128 greater than the correct value, and a program 
interruption for exponent underflow occurs. The 
result is normalized, and the sign and fraction remain 
correct. If the exponent-underflow mask bit is zero. 
program interruption does not take place; instead, the 
operation is completed by making the product a true 
zero. For extended results, exponent underflow is 
not recognized when the low-order characteristic is 
less than zero but the high-order characteristic is 
equal to or greater than zero. 

Exponent underflow is not recognized when the 
characteristic of an operand becomes less than zero 
during prenormalization, but the characteristic of the 
normalized product is within range. 

When either or both operand fractions are zero, the 
result is made a true zero, and no exceptions are 
recognized. 

The Rl field for MER, ME, MDR, and MD, and 
the R2 field for MER, MDR, and MXDR must 
.designate register 0, 2, 4, or 6. The Rl field for 
MXDR, MXD, and MXR, and the R2 field for MXR 

Chapter 9. Floating-Point Instructions 9-13 



must designate register 0 or 4. Otherwise, a 
~!,~~ifk~ti()n p:y~p:ption is recognized. 

Condition Code: The code remains unchanged. 

Program Exceptions: 
Access (fetch, operand 2 of ME, MD, and MXD 

only) 
Exponent Overflow 
Exponent Underflow 
Specification 

Programming Note 

Interchanging the two operands in a floating-point 
multiplication does not affect the value of the 
product. 

STORE 

STE Rt,D2(X2,B2) 
[RX, Short Operands] 

'70' I R, I X2 I B2 

o 8 12 16 20 

STD Rt,D2(X2,B2) 
[RX, Long Operands] 

'60' I R, I X2 I B2 

o 8 12 16 20 

The first operand is placed unchanged at the 
second-operand location. 

The Rl field must designate register 0, 2, 41Qr;,~'; 
otherwise, a specification exceptionjsrecogniz~cd. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 
Specification 

SUBTRACT NORMALIZED 

SER Rt,R2 
[RR, Short Operands] 

'3B' I R, I R2 I 
o 8 12 15 

9-14 IBM 4300 Processors Principles of Operation 

31 

31 

SE Rl,D2(X2,B2) 
[RX, Short Operands] 

'78' I R, I X2 I B2 I 02 

0 8 12 16 20 31 

SDR Rl,R2 
[RR, Long Operands] 

'2B' I R, I R2 I 
0 8 12 15 

~D Rt,D2(X2,B2) 
[RX, Long Operands] 

'6B~ I R, I X2 I B2 02 

0 8 12 16 20 31 

SXR Rt,R2 
[RR, Extended Operands] 

'37' I R, I R2 I 
0 8 12 15 

The second operand is subtracted from the first 
operand, and the normalized difference is placed in 
the first-operand location. 

The execution of SUBTRACT NORMALIZED is 
identical to that of ADD NORMALIZED, except that 
the second operand participates in the operation with 
its sign bit inverted. 

The Rl field of SER, SE, SDR, and SD, and the 
R2 field of SER and SDR must designate register 0, 
2,4, or 6. The Rl and R2 fields of SXR must 
designate register 0 or 4 .. Otherwise, a specification 
exception is recognized. 

Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 



Program Exceptions: 

Access (fetch, operand 2 of SE and SD only) 
Exponent Overflow 
Exponent Underflow 
Significance 
Specification 

SUBTRACT UNNORMALIZED 

SUR Rt,R2 
[RR, Short Operands] 

o 8 12 15 

SU Rt,D2(X2,B2) 
[RX, Short Operands] 

o 8 12 16 20 

SWR Rt,R2 
[RR, Long Operands] 

o 8 12 15 

31 

SW Rt,D2 (X2,B2) 
[RX, Long Operands] 

'SF' I Rl I X2 I B2 

o 8 12 16 20 31 

The second operand is subtracted from the first 
operand, and the unnormalized difference is placed in 
the first-operand location. 

The execution of SUBTRACT UNNORMALIZED 
is identical to that of ADD UNNORMALIZED, 
except that the second operand participates in the 
operation with its sign bit inverted. 

The Rl and R2 fields must designate register 0, 2, 
4, or 6; otherwise, a specification exception is 
recognized. 

Resulting Condition Code: 

o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Exceptions: 

Access (fetch, operand 2 of SU and SW only) 
Exponent Overflow 
Significance 
Specification 

Chapter 9. Floating-Point Instructions 9-15 



Chapter 10. Control Instructions 

Contents 

CLEAR PAGE 10-3 
CONNECT PAGE 10-3 
DECONFIGURE PAGE 10-4 
DIAGNOSE 10-4 
DISCONNECT PAGE 10-5 
INSERT PAGE BITS 10-6 
INSERT PSW KEY 10-5 
INSERT STORAGE KEY 10-6 
LOAD CONTROL 10-6 
LOAD FRAME INDEX 10-6 
LOAD PSW 10-7 
MAKE ADDRESSABLE 10-7 
MAKE UNADDRESSABLE 10-8 
RESET REFERENCE BIT 10-8 
RETRIEVE STATUS AND PAGE 10-8 

The control instructions include all privileged 
instructions, except the input/output instructions, 
which are described in Chapter 12, "Input/Output 
Operations. " 

Privileged instructions may be executed only when 
the CPU is in the supervisor state. An attempt to 
execute a privileged instruction in the problem state 
generates a privileged-operation exception. 

The control instructions and their mnemonics, 
formats, and operation codes are listed in the figure 
"Control Instructions." The figure also indicates 

SET CLOCK 10-9 
SET CLOCK COMPARATOR 10-9 
SET CPU TIMER 1 0-10 
SET PAGE BITS 10-10 
SET PSW KEY FROM ADDRESS 10-10 
SET STORAGE KEY 10-11 
SET SYSTEM MASK 10-11 
STORE CAPACITY COUNTS 10-11 
STORE CLOCK COMPARATOR 10-12 
STORE CONTROL 10-12 
STORE CPU ID 10-12 
STORE CPU TIMER 10-13 
STORE THEN AND SYSTEM MASK 10-13 
STORE THEN OR SYSTEM MASK 10-14 

when the condition code is set and the exceptional 
conditions in operand designations, data, or results 
that cause a program interruption. 

Note: In the detailed descriptions of the individual 
instructions, the mnemonic and the symbolic operand 
designation for the assembler language are shown 
with each instruction. For LOAD PSW, for example, 
LPSW is the mnemonic and D 2(B 0 the operand 
designation. 

Chapter 10. Control Instructions 10-1 



Name Mnemonic Characteristics Code 

CLEAR PAGE CLRP S M AP PS ST B215 
CONNECT PAGE CTP RS C M AD SP PT R BO 
DECONFIGURE PAGE DEP S M AD SP PT B21B 
DIAGNOSE M DM 83 
DISCONNECT PAGE DCTP S C M AD SP PT B21C 

INSERT PAGE BITS IPB RS M AD R B4 
INSERT PSW KEY IPK S M R B20B 
INSERT STORAGE KEY ISK RR M AD SP R 09 
LOAD CONTROL LCTL RS M A SP B7 
LOAD FRAME INDEX LFI RS C M R B8 

LOAD PSW LPSW S L M A SP $ 82 
MAKE ADDRESSABLE MAD S C M AD PT B21D 
MAKE UNADDRESSABLE MUN S C M AD SP PT B21E 
RESET REFERENCE BIT RRB S C M AD B213 

RETRIEVE STATUS AND PAGE RSP SS C M A ST D8 
SET CLOCK SCK S C M A SP B204 
SET CLOCK COMPARATOR SCKC S M A SP B206 
SET CPU TIMER SPT S M A SP B208 
SET PAGE BITS SPB RS C M AD B5 

SET PSW KEY FROM ADDRESS SPKA S M B20A 
SET STORAGE KEY SSK RR M AD SP 08 
SET SYSTEM MASK SSM S M A SP SO 80 
STORE CAPACITY COUNTS STCAP S M A ST B21F 
STORE CLOCK COMPARATOR STCKC S M A SP ST B207 
STORE CONTROL STCTL RS M A SP ST B6 

STORE CPU ID STIDP S M A SP ST B202 
STORE CPU TIMER STPT S M A SP ST B209 
STORE THEN AND SYSTEM MASK STNSM SI M A ST AC 
STORE THEN OR SYSTEM MASK STOSM SI M A SP ST AD 

Explanation: 

$ Causes serialization PT Page-transition exception 
A Access exceptions R PER general-register-alteration event 
AD Addressing exception RR RR instruction format 
AP Addressing and protection exceptions RS RS instruction format 
C Condition code is set S S instruction format 
OM DIAGNOSE may generate various program exceptions SI SI instruction format 

and may change the condition code SO Special-operation exception 

L New condition code loaded SP Specification exception 

M Privileged-operation exception SS SS instruction format 
PS Page-state exception ST PER storage-alteration event 

Control Instructions 

10-2 IBM 4300 Processors Principles of Operation 



CLEAR PAGE 

CLRP [S] 

'8215' 

o 16 20 31 

The storage page designated by the second-operand 
address is cleared, which is equivalent to storing 
2,048 zero bytes at that location. The page is 
validated. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 

The page may be addressable or connected; if the 
page is disconnected, a page-state exception is raised, 
and the operation is suppressed. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Addressing (operand 2) 
Page State 
Privileged Operation 
Protection (store, operand 2) 

Programming Note 

Page 0 may be cleared, but it can only be in the 
addressable state. 

CONNECT PAGE 

CTP 

o 8 12 16 20 31 

If disconnected, the storage page designated by the 
second-operand address enters the connected state. 
If already connected, the page remains in the 
connected state. The frame index of the page frame 
that is connected to the page is returned in the 
general register designated by the Rl field. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. Bits 12-15 of the instruction are ignored. 
If bits 8-20 of the second-operand address are 

zeros, that is, page 0 is specified, a specification 
exception is recognized, and the operation is 
suppressed. 

If the page is in the addressable state, a page
transition exception is recognized, and the operation 
is suppressed. 
If the operation is not successful, because the page 

is disconnected but no page frame is free for 
connection (free-frame-capacity count is zero), the 
Rl register remains unchanged, and condition code 2 
is set. 
If the operation is successful, the condition code 

indicates whether the page was connected (1) or 
disconnected (0) at the start of the operation. The 
frame index, which is an unsigned binary integer, is 
loaded right-aligned in the Rl register, and the 
remaining high-order bits of the register are set to 
zeros. The frame index is unique and may have any 
value from zero to EFCC - 1, where EPCC is the 
existing-frame-capacity count. 
If the page was disconnected before and the 

operation is successful, the value of the free-frame
capacity count is decreased by one. 

The contents of a newly connected page frame are 
unpredictable. 

Resulting Condition Code: 

o Successful, page was disconnected, index 
returned 

1 Page was already connected, index returned 
2 Not successful, index not returned 
3 

Program Exceptions: 

Addressing (operand 2) 
Page Transition 
Privileged Operation 
Specification 

Programming Notes 

1. The storage key and the reference, change, and 
page bits of a page are not changed when the 
page is connected. 

2. The frame index of the page frame connected to 
the specified page remains unchanged until that 
page is disconnected. The value of the frame 
index to be assigned by ,CONNECT PAGE to a 
previously disconnected page is unpredictable. 

Chapter 10. Control Instructions 10-3 



DECONFIGURE PAGE 

[S] 

'8218' 

o 16 20 31 

If connected, the storage page designated by the 
second-operand address enters the disconnected 
state. The page frame that was connected to the page 
becomes unavailable; that is, it will no longer be 
available for connection to any page. The reference 
and change bits of the page are set to zeros. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 
If bits 8-20 of the second-operand address are 

zeros, that is, page 0 is specified, a specification 
exception is recognized, and the operation is 
suppressed. 

The page must be in the connected state at the start 
of the operation; otherwise, a page-transition 
exception is recognized, and the operation is 
suppressed. 

The value of the available-frame-capacity count is 
decreased by one. The values of the free-frame and 
existing-frame-capacity counts remain unchanged. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Addressing (operand 2) 
Page Transition 
Privileged Operation 
Specification 

Programming Notes 

1. DECONFIGURE PAGE allows a program to put 
a page frame out of operation. This may be 
desirable when the page frame is indicated as 
defective by a machine check which is caused by 
a storage access to the page connected to that 
frame or by an access to the associated storage 
key. The frame may become available again 
during a subsequent manual clear-reset operation. 

2. The instruction cannot be used on the frame 
connected to page 0 because page 0 cannot be in 
the disconnected state. 

10-4 IBM 4300 Processors Principles of Operation 

DIAGNOSE 

'83' 

o 8 31 

The CPU performs built-in diagnostic functions or 
other implementation-dependent functions. The 
purpose of the diagnostic functions is to verify that 
CPU equipment is operating properly and to locate 
any faulty components. Other implementation
dependent functions may include reconfiguration of 
storage and channels. 

Bits 8-31 may be used as in the SI or RS formats 
or in some other way, to specify the particular ' 
diagnostic function. The use depends on the model. 

The execution of the instruction may affect the 
state of the CPU and the contents of a register or 
storage location, as well as the progress of an 1/0 
operation. 

Condition Code: The code is unpredictable. 

Program Exceptions: 

Privileged Operation 
Depending on the function, other exceptions may be 

recognized. 

Programming Notes 

1. Since the instruction is not intended for 
problem-program or control-program use, 
DIAGNOSE has no mnemonic. 

2. DIAGNOSE, unlike other instructions, does not 
follow the rule that programming errors are 
distinguished from equipment errors. Improper 
use of DIAGNOSE may result in false machine
check indications or may cause actual machine 
malfunctions to be ignored. It may also alter 
other aspects of machine operation, including 
instruction execution and channel operation, to 
an extent that the operation does not comply witt 
that specified in this publication. As a result of 
the improper use of DIAGNOSE, the machine 
may be left in such a condition that a power-on 
reset or initial microprogram loading (IML) must 
be performed. 



DISCONNECT PA.GE 

DCTP D2(B2) [S] 

'B21C' B2 
I 

02 

0 16 20 

If connected, the storage page designated by the 
second-operand address enters the disconnected 

31 

state. If already disconnected, the page remains in the 
di$.connected state. The reference and change bits of 
the"page are set to zeros. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 
If bits 8-20 of the second-operand address are 

zeros, that is, page 0 is specified, a specification 
exception is recognized, and the operation is 
suppressed. 
If the page is in the addressable state, a page

transition exception is recognized, and the operation 
is suppressed. 

The condition code indicates whether the page was 
connected (0) or disconnected (1) before. If the page 
was connected before, the value of the free-frame
capacity count is increased by one. 

The contents of the disconnected page frame are 
not necessarily cleared by the machine. The next time 
this frame is connected to a page by some 
CONNECT instruction, its contents will be 
unpredictable. 

Resulting Condition Code: 

o Page was connected 
1 Page was already disconnected 
2 
3 

Program Exceptions: 

Addressing (operand 2) 
Page Transition 
Privileged Operation 
Specification 

INSERT PA.GE BITS 

IPB Rt,D2(B2) [RS] 

'B4' Rl ~ B2 
I 

02 

0 8 12 16 20 31 

The current settings of the three programmable page 
bits and the reference and change bits that are 
associated with the storage page designated by the 
second-operand address are inserted in the general 
register designated by the Rl field. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. Bits 12,..15 of the instruction are ignored. 

The current values of the three page bits are 
inserted in bit positions 25-27, and the reference and 
change bits in bit positions 29-30 of the register 
designated by the Rl field. The contents of bit 
positions 24, 28, and 31 of that register are set to 
zeros. The contents of bit positions 0-23 remain 
unchanged. 

The references to the page bits and to the reference 
and change bits are not subject to a protection 
exception. These bits can be accessed regardless of 
the state of the addressed page. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Addressing (operand 2) 
Privileged Operation 

INSERT PSW KEY 

IPK 

'B20B' 

o 

[S] 

16 31 

The four-bit PSW key, bits 8-11 of the current PSW, 
is inserted in bit positions 24-27 of general register 2, 
and bits 28-31 of that register are set to zeros. Bits 
0-23 of general register 2 remain unchanged. 

Bits 16-31 of the instruction are ignored. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Privileged Operation 

Chapter 10. Control Instructions 10-5 



INSERT STORAGE KEY 

ISK R 1,R2 [RR] 

'09' R, I R21 

o 8 12 15 

The storage key associated with the page that is 
addressed by the contents of the general register 
designated by the R2 field is inserted in the general 
register designated by the Rl field. 

Bits 8-20 of the register designated by the R2 field 
designate the page. Bits 0-7 and 21-27 of the 
register are ignored. Bits 28-31 of the register must 
be zeros; otherwise, a specification exception is 
recognized, and the operation is suppressed. 

The execution of the instruction depends on 
whether the PSW specifies the Be or Be mode. In 
the Be mode, the seven-bit storage key is inserted in 
bit positions 24-30 of the register designated by the 
Rl field, and bit 31 is set to zero. In the Be mode, 
bits 0-4 of the storage key are placed in bit positions 
24-28 of that register, and bits 29-31 of the register 
are set to zeros. In both modes, the contents of bit 
positions 0-23 of the register remain unchanged. 

The reference to the storage key is not subject to a 
protection exception. The storage key can be 
accessed regardless of the state of the addressed 
page. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Addressing (operand 2) 
Privileged Operation 
Specification 

LOAD CONTROL 

'87' R, I R31 liz I D2 

o 8 12 16 20 31 

The set of control registers starting with the control 
register designated by the Rl field and ending with 
the control register designated by the R3 field is 
loaded from the locations designated by the second
operand address. 

10-6 IBM 4300 Processors Principles of Operation 

The storage area from which the contents of the 
control registers are obtained starts at the location 
designated by the second-operand address and 
continues through as many storage words as the 
number of control registers specified. The control 
registers are loaded in ascending order of their 
addresses, starting with the control register 
designated by the Rl field and continuing up to and 
including the control register designated by the R3 
field, with control register 0 following control register 
15. The second operand remains unchanged. 

A word of the operand is fetched from storage for 
each of the designated control registers, regardless of 
whether the control register has any assigned 
positions. Whenever the storage reference causes an 
access exception, the exception is indicated. The 
information fetched for unassigned control-register 
positions may be loaded or ignored. 

The second operand must be designated on a word 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged Operation 
Specification 

Programming Note 

To ensure that existing programs run if and when 
new facilities using additional control-register 
positions are defined, only zeros should be loaded in 
unassigned control-register positions. 

LOAD FRAME INDEX 

o 8 12 16 20 31 

The frame index of the page frame that is connected 
to the storage page designated by the second -operand 
address is returned in the general register designated 
by the Rl field. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. Bits 12-15 of the instruction are ignored. 

The frame index is an unsigned binary integer. It is 
right-aligned in the Rl register, and the remaining 



high-order bits of the register are set to zeros. The 
frame index is unique and may have any value from 
zero to EFCC - 1, where EFCC is the existing
frame-capacity count. 

The frame index is returned only when the page is 
connected or addressable. When the page is 
disconnected or not provided (condition code 2 or 3), 
the Rl register remains unchanged. 

Condition code 0, 1, or 2 is set when the page is 
addressable, connected, or disconnected, respectively. 
Condition code 3 is set when the address is invalid, 
that is, the value of bits 8-20 of the second-operand 
address equals or exceeds the page-capacity count. 

Resulting Condition Code: 

o Index returned, page is addressable 
1 Index returned, page is connected 
2 Index not returned, page is disconnected 
3 Index not returned, address is invalid 

Program Exceptions: 

Privileged Operation 

Programming N"ote 

The instruction may be used to test the page address 
and state of a page and return its frame index, if any, 
without raising an access exception. 

LOA.D PSW 

LPSW D2(B2) [S] 

'82' _ B21 D2 

o 8 16 20 

The current PSW is replaced by the contents of the 
doubleword at the location designated by the 
second-operand address. 

31 

If the new PSW specifies the BC mode, information 
in bit positions 16-33 of the new PSW is not retained 
as the PSW is loaded. When the PSW is subsequently 
stored, these bit positions contain the new 
interruption code and the instruction-length code. 

A serialization function is performed. 
The operand must be designated on a double word 

boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

The value which is to be loaded by the instruction is 
not checked for validity before it is loaded. However, 

immediately after loading, a specification exception is 
recognized, and a program interruption occurs, when 
the newly loaded PSW specifies the EC mode and the 
contents of bit positions 0, 2-5, 16-17, and 24-39 are 
not all zeros. In these cases, the operation is 
completed, and the resulting instruction-length code 
is zero. 

Bits 8-15 of the instruction are ignored. 

Resulting Condition Code: The code is that specified 
in the new PSW loaded. 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged Operation 
Specification 

MAKE ADDRESSA.BLE 

MAD 

'821D' 

o 16 

[S] 

20 31 

If connected, the storage page designated by the 
second-operand address enters the addressable state. 
If already addressable, the page remains in the 
addressable state. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 
If the page is in the disconnected state, a page

transition exception is recognized, and the operation 
is suppressed. 

The condition code indicates whether the page was 
addressable (1) or connected (0) before. 

Resulting Condition Code: 

o Page was connected 
1 Page was already addressable 
2 
3 

Program Exceptions: 

Addressing (operand 2) 
Page Transition 
Privileged Operation 

Chapter 10. Control Instructions 10-7 



MAKE UNADDRESSABLE 

[S] 

'821 E' 

o 16 20 31 

If addressable, the storage page designated by the 
second-operand address enters the connected state. If 
already connected, the page remains in the connected 
state. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 
If bits 8-20 of the second-operand address are 

zeros, that is, page 0 is specified, a specification 
exception is recognized, and the operation is 
suppressed. 
If the page is in the disconnected state, a page

transition exception is recognized, and the operation 
is suppressed. 

The condition code indicates whether the page was 
addressable (0) or connected (1) before. 

Resulting Condition Code: 

o Page was addressable 
1 Page was already connected 
2 
3 

Program Exceptions: 

Addressing. (operand 2) 
Page Transition 
Privileged Operation 
Specification 

RESET REFERENCE BIT 

'8213' 

o 16 

[S] 

20 31 

The reference bit in the storage key associated with 
the storage page that is designated by the second
operand address is set to zero. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. 

10-8 IBM 4300 Processors Principles of Operation 

The condition code is set to reflect the state of the 
reference and change bits before the reference bit is 
set to zero. 

The references to the storage key are not subject to 
protection exceptions. The storage key can be 
accessed regardless of the state of the addressed 
page. The values of the remaining bits of the storage 
key, including the change bit, are not affected. 

Resulting Condition Code: 

o Reference bit zero, change bit zero 
1 Reference bit zero, change bit one 
2 Reference bit one, change bit zero 
3 Reference bit one, change bit one 

Program Exceptions: 

Addressing (operand 2) 
Privileged Operation 

RETRIEVE STATUS AND PAGE 

o 8 16 20 32 36 47 

The saved machine status is retrieved and stored at 
the first-operand location. The contents of the saved 
page are retrieved and stored at the second-operand 
location. 

The saved machine status, as retrieved, consists of 
256 bytes reflecting the state of the machine at the 
last time that the manual machine-save operation was 
performed. (See the figure "Machine Status, 
Retrieval Format" in Chapter 4, "Control," for the 
contents.) The saved page consists of the contents at 
that time of page O. The storage key, page bits, and 
frame index for the saved page are contained in the 
machine status. 
If the two operands overlap, the results are 

unpredictable. 
If the saved information is valid, condition code 0 is 

set. If the saved information is invalid, neither 
storage operand is accessed, no access exceptions are 
recognized, and condition code 3 is set. 

The saved machine status and page remain 
unchanged. 



Resulting Condition Code: 

o Save information is valid 
1 
2 
3 Save information is invalid 

Program Exceptions: 

Access (store, operand 1 and 2) 
Privileged Operation 

Programming Notes 

1. The saved information may be found invalid if a 
partially performed machine save was canceled by 
resetting the machine. The saved information is 
invalid if a clear reset has been performed since 
the last machine save. RETRIEVE STATUS 
AND PAGE will indicate an invalid save until 
another machine save is performed. 

2. Two executions of RETRIEVE STATUS AND 
PAGE will retrieve the same status and page 
information, as long as the information has not 
been invalidated by a reset and no machine save 
has intervened. 

SET CLOCK 

[8] 

,. '8204' 

o 16 20 31 

The current value of the time-of-day clock is replaced 
by the contents of the doubleword designated by the 
second-operand address, and the clock enters the set 
state. 

The double word operand replaces the contents of 
the clock, as determined by the resolution of the 
clock. Only those bits of the operand are set in the 
clock that correspond to the bit positions which are 
updated by the clock; the contents of the remaining 
rightmost bit positions of the operand are ignored and 
are not preserved in the clock. 

The value of the clock is changed and the clock is 
placed in the set state only if the manual TOD-clock 
control is set to enable-set. If the TOD-clock control 
is set to secure, the value and the state of the clock 
are not changed. The two results are distinguished by 
condition codes 0 and 1, respectively. 

When the clock is not-operational, the value and 
state of the clock are not changed, regardless of the 

--
setting of the TOD-clock control,and condition code 
3 is set. 

The operand must be designated on a doubleword 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. Access 
exceptions are recognized regardless of the state of 
the clock and the setting of the TOD-clock control. 

R~ulting Condition Code: 

o Clock value set 
1 Clock value secure 
2 
3 Clock in not-operational state 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged Operation 
Specification 

SET CLOCK COMPARATOR 

SCKC [8] 

'8206' ~I 
o 16 20 31 

The current value of the clock comparator is replaced 
by the contents of the doublewQrd designated by the 
second-operand address. 

Only those bits of the operand are set in the clock 
comparator that correspond to the bit positions to be 
compared with the time-of-day clock; the contents of 
the remaining rightmost bit positions of the operand 
are ignored and are not preserved in the clock 
comparator. 

The operand must be designated on a doubleword 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged Operation 
Specification 

Chapter 10. Control Instructions 10-9 



SET CPU TIMER 

SPT D2(B2) [S] 

'B208' B2 
I 

02 

0 16 20 

The current value of the CPU timer is replaced by 
the contents of the doubleword designated by the 
second-operand address. 

31 

Only those bits of the operand are set in the CPU 
timer that correspond to the bit positions which are 
updated by the CPU timer; the contents of the 
remaining rightmost bit positions of the operand are 
ignored and are not preserved in the CPU timer. 

The operand must be designated on a doubleword 
boundary; otherwise, a specification exception is 
recognized,- and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 
Access (fetch, operand 2) 
Privileged Operation 
Specification 

SET PAGE BITS 

SPB 

'B5' 

o 8 12 16 20 31 

The current settings of the three programmable page 
bits and the reference and change bits that are 
associated with the storage page designated by the 
second-operand address are replaced by the contents 
of the general register designated by the Rl field. 

Bits 8-20 of the second-operand address designate 
the page. Bits 0-7 and 21-31 of the address are 
ignored. Bits 12-15 of the instruction are ignored. 

The condition code is set to reflect the state of the 
reference and change bits before these bits are 
modified. 

The new values of the three page bits are obtained 
from bit positions 25-27, and the reference and 
change bits from bit positions 29-30 of the register 
designated by the Rl field. The contents of bit 
positions 0-24, 28, and 31 of the register are ignored. 

10-10 IBM 4300 Processors Principles of Operation 

The references to the page bits and to the reference 
and change bits are not subject to a protection 
exception. These bits can be accessed regardless of 
the state of the addressed page. 

Resulting Condition Code: 

o Reference bit zero, change bit zero 
1 Reference bit zero, change bit one 
2 Reference bit one, change bit zero 
3 Reference bit one, change bit one 

Program Exceptions: 

Addressing (operand 2) 
Privileged Operation 

SET PSW KEY FROM ADDRESS 

SPKA [S] 

'B20A' 

o 16 20 31 

The four-bit PSW key, bits 8-11 of the current PSW, 
is replaced by bits 24-27 of the second-operand 
address. 

The second-operand address is not used to address 
data; instead, bits 24-27 of the address form the new 
PSW key. Bits 8-23 and 28-31 of the 
second-operand address are ignored. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Privileged Operation 

Programming Notes 

1.. The format of the SET PSW KEY FROM 
ADDRESS instruction permits the program to set 
the PSW key either from the general register 
designated by the B2 field or from the D field in 
the instruction itself. 

2. When a problem program requests a control 
program to access a location specified by the 
problem program, the SET PSW KEY FROM 
ADDRESS instruction can be used by the control 
program to verify that the problem program is 
authorized to make this access, provided the 
storage location of the control program is not 
protected against fetching. The control program 
can perform the verification by replacing the 



PSW key of the control program with the 
problem-program PSW key before making the 
access and subsequently restoring the control
program PSW key to its original value. 

SET STORAGE KEY 

SSK R1,R2 [RR] 

'O~ I R, I R2 I 
o 8 12 15 

The storage key associated with the page that is 
addressed by the contents of the general register 
designated by the R2 field is replaced by the 
contents of the general register designated by the Rl 
field. 

Bits 8-20 of the register designated by the R2 field 
designate the page. Bits 0-7 and 21-27 of the register 
are ignored. Bits 28-31 of the register must be zeros; 
otherwise, a specification exception is recognized, 
and the operation is suppressed. 

The new seven-bit storage-key value is obtained 
from bit positions 24-30 of the register designated by 
the Rl field. The contents of bit positions 0-23 and 
31 of that register are ignored. 

The reference to the storage key is not subject to a 
protection exception. The storage key can be 
accessed regardless of the state of the addressed 
page. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Addressing (operand 2) 
Privileged Operation 
Specification 

SET SYSTEM MASK 

SSM 

'80' 

o 8 16 

[S] 

20 31 

Bits 0-7 of the current PSW are replaced by the byte 
at the location designated by the second-operand 
address. 

When the SSM-suppression bit, bit 1 of control 
register 0, is one and the CPU is in the supervisor 

state, a special-operation exception is recognized, and 
the operation is suppressed. 

The operation is suppressed on protection and 
addressing exceptions. 

The value to be loaded into the PSW is not checked 
for validity before loading. However, immediately 
after loading, a specification exception is recognized, 
and a program interruption occurs, if the CPU is in 
the EC mode· and the contents of bit positions 0 and 
2-5 of the PSW are not all zeros. In this case, the 
instruction is completed, and the instruction-length 
code is set to 2. 

Bits 8-15 of the instruction are ignored. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (fetch, operand 2) 
Privileged Operation 
Special Operation 
Specification (EC mode only) 

Programming Note 

The SSM instruction is frequently used in the BC 
mode to disable or enable the CPU for 110 or 
external interruptions. Hence, suppressing the 
execution of the SSM instruction by means of the 
SSM-suppression bit, bit 1 of control register 0, may 
be useful when converting a program wrtten for a 
BC-mode PSW to operate with an EC-mode PSW. 

STORE CAPACITY COUNTS 

[S] 

'821 F' 

o 16 20 31 

The current values of the page-capacity (PCC), 
existing-frame-capacity (EFCC), available-frame
capacity (AFCC),and free-frame-capacity (FFCC) 
counts are stored at the 16-byte location designated 
by the second-operand address. The counts are stored 
as 32-bit unsigned binary integers in the order, from 
left to right, of PCC, EFCC, AFCC, and FFCC. 

Condition Code: The code remains unchanged. 

Chapter 10. Control Instructions 10-11 



Program Exceptions: 

Access (store, operand 2) 
Privileged Operation 

Programming Notes 
1. The instruction allows the program to display the 

current values of the PCC, EFCC, AFCC, and 
FFCC for initialization purposes at IPL time and 
for the management of virtual storage and real 
storage. 

2. The high-order 16 bits of each counter value, as 
stored, are always zeros. The counter values 
cannot exceed 65,535. 

STORE CLOCK COMPARATOR 

[S] 

'B207' 

o 16 20 31 

The current value of the clock comparator is stored at 
the doubleword location designated by the second
operand address. 

Zeros are provided for the rightmost bit positions of 
the clock comparator that are not compared with the 
time-of -day clock. 

The operand must be designated on a double word 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 
Privileged Operation 
Specification 

STORE CONTROL 

stored at the locations designated by the second
operand address. 

The storage area where the contents of the control 
registers are placed starts at the location designated 
by the second-operand address and continues through 
as many storage words as the number of control 
registers specified. The contents of the control 
registers are stored in ascending order of their 
addresses, starting with the control register 
designated by the Rl field and continuing up to and 
including the control register designated by the R3 
field, with control register 0 following control register 
15. The contents of the control registers remain 
unchanged. 

A word is stored for each of the designated control 
registers, regardless of whether the control register 
has any assigned positions. Whenever the storage 
reference causes an access exception, the exception is 
indicated. The information stored for unassigned 
control-register positions is unpredictable. 

The second operand must be designated on a word 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 
Privileged Operation 
Specification 

Programming Note 

Although STORE CONTROL may provide zeros in 
the bit positions corresponding to unassigned register 
positions, the program should not depend on such 
zeros. 

STORE CPUID 

STIDP [S] 

STCTL R1,R3,D2(B2) [RS] I I I 
~ ___ '_B_6_' __ ~I __ R_l~I~R_3~I __ B_2~1~ _____ D_2 ________ ~1 ~O ____ '_B_2_0_2_' __________ ~_16_B_2~_20 ______ D_2 ________ 3~1 
o 8 12 16 20 31 

The set of control registers starting with the control 
register designated by the Rl field and ending with 
the control register designated by the R3 field is 

10-12 IBM 4300 Processors Principles of Operation 

Information identifying the CPU is stored at the 
double word location designated by the second
operand address. 



CPU Identification Number 

o 8 

~ 1 MOdel Number 10 0 00 0 00 0 000 000 0 01 

32 48 63 

Bit positions 0-7 contain the version code, whicli is . 
information to supplement the model number. 

Bit positions 8-31 contain the CPU identification 
number, consisting of six digits: a high-order zero 
digit and five digits selected from the physical serial 
number stamped on the CPU, or six digits selected 
from the serial number. The contents of the CPU 
identification-number field, in conjunction with the 
model number, permit unique identification of the 
CPU. 

Bit positions 32-47 contain the model number of 
the CPU. 

Bit positions 48-63 contain zeros. 
The operand must be designated on a double word 

boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 

Access (store, operand 2) 
Privileged Operation 
Specification 

Programming Notes 

1. The program should allow for the possibility that 
the CPU identification number may contain the 
hexadecimal digits A-F as well as the digits 0-9. 

2. The CPU identification number, combined with 
the model number, provides a unique CPU 
identification that can be used in associating 
results with an individual machine, particularly in 
tegard to functional differences, performance 
differences, and error handling. 

STORE CPU TIMER 

STPT D2(B2) [S] 

'8209' 82 I 02 

0 16 20 

The current value of the CPU timer is stored at the 
double word location designated by the second
operand address. 

Zeros are provided for the rightmost bit positions 
that are not updated by the CPU timer. 

31 

The operand must be designated on a doubleword 
boundary; otherwise, a specification exception is 
recognized, and the operation is suppressed. The 
operation is suppressed on protection and addressing 
exceptions. 

Condition Code: The code remains unchanged. 

Program Exceptions: 
Access (store, operand 2) 
Privileged Operation 
Specification 

STORE THEN AND SYSTEM MASK 

[SI] 

01 

o 8 16 20 31 

Bits 0-7 of the current PSW are stored at the 
first-operand location. Then the contents of bit 
positions 0-7 of the current PSW are replaced by the 
logical AND of their original contents and the second 
operand. 

The operation is suppressed on protection and 
addressing exceptions. 

Chapter 10. Control Instructions 10-13 



Condition Code: The code remains unchanged. 

PrograM Exceptions: 

Access (store, operand 1) 
Privileged Operation 

Programming Note 

The STORE THEN AND SYSTEM MASK 
instruction permits the program to set selected bits in 
the system mask to zeros while retaining the original 
contents for later restoration. 

STORE THEN OR SYSTEM MA.SK 

STOSM D1(B1),I2 [SI] 

'AD' h B1 I 01 

0 8 16 20 31 

Bits 0-7 of the current PSW are stored at the 
first-operand location. Then the contents of bit 
positions 0-7 of the current PSW are replaced by the 
logical OR of their original contents and the second 
operand. 

10-14 IBM 4300 Processors Principles of Operation 

The value to be loaded into the PSW is not checked 
for validity before loading. However, immediately 
after loading, a specification exception is recognized, 
and a program interruption occurs, if the CPU is in 
the EC mode and the contents of bit positions 0 and 
2-5 of the PSW are not all zeros. In this case, the 
instruction is completed, and the instruction-length 
code is set to 2. 

The operation is suppressed on protection and 
addressing exceptions. 

Condition Code: The code remain~ unchanged. 

Program Exceptions: 
Access (store, operand 1) 
Privileged Operation 
Specification (EC mode only) 

Programming Note 

The STORE THEN OR SYSTEM MASK instruction 
permits the program to set selected bits in the system 
mask to ones while retaining the original contents for 
later restoration. 



Chapter 11. Machine-Check Handling 

Contents 

Machine-Check Detection 11-1 

Correction of Machine Malfunctions 11-1 
Handling of Machine Checks 11-2 

Invalid CBC in Storage 11-2 
Invalid CBC in Page Descriptions 11-2 
Invalid CBC in Registers 11-3 
Usage of Validation 11-3 

Check-Stop State 11-3 
Machine-Check Interruption 11-4 

Exigent Conditions 11-4 
Repressible Conditions 11-4 

The machine-cheek-handling mechanism provides 
machine-malfunction detection to ensure the integrity 
of machine operation and permit automatic recovery 
from some malfunctions. Machine malfunctions are 
reported by machine-check interruptions to assist in 
program-damage assessment and recovery. 

Machine-Check Detection 
Machine-check -detection mechanisms may take many 
forms, especially in control functions for arithmetic 
and logical processing, addressing, sequencing, and 
execution. For program-addressable information, 
detection is normally accomplished by encoding 
redundancy into the information in such a manner 
that most failures in the retention or transmission of 
the information will result in an invalid code. The 
encoding normally takes the form of one or more 
redundant bits, called check bits, appended to a group 
of data bits. Such a group of data bits and the 
associated check bits are called a checking block. 
The size of the checking block depends on the model 
and is less than or equal to 2,048 bytes of data. 

The inclusion of a single check bit in the checking 
block allows the detection of any single.;.bit failure 
within the checking block. In this arrangement, the 
check bit is sometimes referred to as a parity bit. In 
other arrangements, a group of check bits is included 
to permit detection of multiple errors, to permit error 
correction, or both. 

For checking purposes, the entire contents of a 
checking block, including the redundancy, is called a 
checking-block code (CBC). When a CBC 
completely meets the checking requirements (that is, 

Interruption Action 11-4 
Point of Interruption 11-5 
Machine-Cheek-Interruption Code 11-6 

Subclass 11-7 
Auxiliary Bits 11-8 
Machine-Check Interruption-Code Validity Bits 11-8 

Machine-Check Extended Interruption Information 11-9 
Register-Save Areas 11-9 
Failing-Storage Address 11-9 

Machine-Check Masking 11-9 

no failure is detected), it is said to be valid. When 
both detection and correction are provided and a 
CBC is not valid but satisfies the checking 
requirements for correction (the failure is 
correctable), it is said to be near-valid. When a CBC 
does not satisfy the checking requirements (the 
failure is uncorrectable), it is said to be invalid. 

Correction of Machine Malfunctions 
When sufficient redundancy is included in circuitry or 
in a checking block, failures can be corrected. For 
example, circuitry can be triplicated, with a voting 
circuit to take two out of three, thus correcting a 
single failure. An arrangement for correction of 
failures of one order and for detection of failures of a 
higher order is called error checking and correction 
(BCC). Commonly, BCC allows correction of 
single-bit failures and detection of double-bit failures. 

Some models have the capability of correcting 
intermittent errors by retrying CPU operations. 
When a malfunction is detected, recovery is 
attempted by returning the CPU state to that existing 
at the checkpoint when information about the CPU 
state was last saved, and proceeding from that point. 

Machine failures which are corrected successfully 
may be reported by machine-check interruptions as 
system-recovery conditions. This permits the 
program to note the cause of CPU delay and to keep 
a log of such incidents. 

Chapter 11. Machine-Check Handling 11-1 



Handling of Machine Checks 
A machine check can be caused only by a machine 
malfunction and never by data or instructions. This 
is ensured during the power-on sequence by 
initializing the machine controls to a valid state and 
by placing valid CBC in the CPU registers, in the 
page descriptions, and in all available page frames. 

Specification of an unavailable component, such as 
a channel or I/O device, does not cause a 
machine-check indication. Instead, such a condition 
is indicated by the appropriate program or I/O 
interruption or condition -code setting. In particular, 
an attempt to access a storage location which has 
been configured out of the system results in an 
addressing exception and does not generate a 
machine-check condition, even though the storage 
location or its associated storage key has invalid 
CBC. 

A machine check is indicated whenever the result of 
an operation could be affected by information with 
invalid CBC, or when any other malfunction makes it 
impossible to establish reliably that an operation can 
be, or has been, performed correctly. When 
information with invalid CBC is fetched but not used, 
the condition mayor may not be indicated. 

When an operation alters a checking block, invalid 
CBC is preserved as invalid unless the contents of the 
entire checking block are replaced in the operation. 

When a machine malfunction is detected, the action 
taken depends on the model, the nature of the 
malfunction, and the situation in which the 
malfunction occurs. A malfunction detected as part 
of an I/O operation may cause a machine-check 
condition, an I/O-error condition, or both. 
I/O-error conditions are indicated by an I/O 
interruption or by the appropriate condition-code 
setting during the execution of an I/O instruction. 
When a CCW or data with invalid CBC is fetched 
from storage but is not used in an I/O operation, the 
condition mayor may not be reported. 

When the machine reports a failing storage location 
detected during an I/O operation, both I/O-error 
and machine-check conditions are presented. The 
I/O-error condition is the primary indication to the 
program. The machine-check condition is a 
secondary report, which is indicated as system 
recovery together with a failing-storage address. 

A malfunction, detected as part of an operation that 
is not I/O, can only cause a machine-check 
condition. Machine-check conditions may be 
reported as machine-check interruptions, or they may 
cause the CPU to enter the check-stop state. 

11-2 IBM 4300 Processors Principles of Operation 

Invalid CBC in Storage 
An attempt to store into a checking block with 
invalid CBC, without replacing the entire checking 
block, leaves the data in the checking block 
(including the check bits) unchanged. 

When the checking block consists of multiple bytes 
and contains invalid CBC, special procedures are 
necessary to place new information into the checking 
block. Placing valid CBC in storage is called storage 
validation. 

Storage validation is provided as a program function 
and is also provided with the manual clear-reset 
function. Programmed storage validation is done, 
one page at a time, by executing the privileged 
instruction CLEAR PAGE. Manual storage 
validation by clear reset validates all pages. 

Invalid CBC in Page Descriptions 
When invalid CBC is detected in a page description, 
a machine-check interruption may occur; depending 
on the circumstances, the machine-check condition 
may be system damage, instruction-processing 
damage, system recovery, or external damage. The 
machine-check condition mayor may not be 
accompanied by a storage-key-error indication. Also, 
if invalid CBC in a page description is detected 
during an I/O operation, a channel-control check is 
normally indicated at the end of the I/O operation. 

In addition to internal storage for page descriptions, 
some models may have a separate lookaside storage 
for the storage keys of connected or addressable 
pages. Each entry of such a lookaside is associated 
with a page frame, whereas each page description is 
associated with a page. A storage-key error may be 
indicated only when invalid CBC is detected in the 
lookaside storage during a reference to the storage 
key of a page that is in the connected or addressable 
state. 

A storage-key error is not indicated when: 
• Invalid CBC is detected in the storage key of a 

disconnected page 
• Invalid CBC is detected in the page bits, the page 

state, or the frame index of a page, whether 
disconnected or not 

• No look aside storage is provided for storage keys 
All parts of the page descriptions are validated 

manually by clear reset. On models which provide 
look aside storage with a separate checking block for 
the storage key of each connected or addressable 
page, executing the instruction SET STORAGE KEY 
sets new values for and validates the storage key 
after a storage-key error has been indicated. The 



instruction CONNECT PAGE may validate the 
lookaside entry of a page frame which previously had 
invalid CBC by using the values of the storage key 
from the page-description entry. 

No storage-key-error indication is given when a 
machine check occurs during the execution of 
DECONFIGURE PAGE, DISCONNECT PAGE, 
LOAD FRAME INDEX, MAKE ADDRESSABLE, 
and MAKE UNADDRESSABLE. 

Any machine-check condition which would 
otherwise be indicated as a storage-key error is 
ignored if the access key is zero when a fetch 
operation takes place. Depending on the model, a 
storage-key error mayor may not be ignored if the 
access key is zero when a store operation takes place 
or when the instruction CLEAR PAGE is executed. 

The CPU enters the check-stop state when invalid 
CBC is detected in the page description for .page 0, 
and also when a page description is left in an 
inconsistent state after an error occurs while the page 
description is being updated. 

Programming Note 

Recovery from a storage-key error which cannot be 
successfully removed by issuing SET STORAGE KEY 
may be attempted by issuing DECONFIGURE PAGE 
to delete the page frame and CONNECT PAGE to 
use another page frame. The previous contents of 
the page are lost. 

Invalid CBC in Registers 
When invalid CBC is detected in a CPU register, a 
machine-check condition may be recognized. CPU 
registers include the general, floating-point, and 
control registers, the current PSW, the time-of-day 
clock, the CPU timer, and the clock comparator. 

When a machine-check interruption occurs that is 
due to invalid CBC in a CPU register, the following 
actions are taken as part of the interruption. 
1. As for all machine-check interruptions, the 

contents of the CPU registers, other than the 
time-of-day-clock, are saved in assigned storage 
locations. The type of register that is in error is 
identified, unless it is the time-of-day clock, by a 
corrresponding validity bit of zero in the 
machine-check-interruption code. Register saving 
does not result in additional 
machine-check-interruption conditions; instead, 
the accuracy of all the information stored is 
indicated by the appropriate setting of the 
validity bits. 

2. CPU registers with invalid CBC, other than the 
time-of-day clock, are then validated, their actual 
contents being unpredictable. 

CPU registers other than the time-of-day clock are 
also validated manually by the clear-reset function; 
programmed validation is not provided. 

The time-of-day clock enters the error state when a 
malfunction is detected in the clock. It is validated 
by programming when a SET CLOCK instruction 
changes the state of the clock from the error state to 
the set state. The clock is also validated manually by 
a power-on reset. 

Usage of Validation 
When an error occurs in a checking block, the 
original information contained in the checking block 
should be considered lost even after validation. 
Automatic register validation leaves the contents 
unpredictable. Programmed and manual validation of 
checking blocks causes the contents to be changed 
explicitly. 

Validating a checking block does not ensure a valid 
CBC. If the failure is solid, the checking biock will 
still contain an invalid CBC after validation. For an 
intermittent failure, however, validation is useful to 
restore a valid CBC such that a subsequent partial 
store into the checking block (a store into a checking 
block without replacing the entire checking block) by 
either the CPU or a channel will be permitted. 

Check-Stop State 
In certain situations it is impossible or undesirable to 
continue operation when a machine error occurs. In 
these cases, the CPU may enter the check-stop state, 
which is indicated by the check-stop indicator. 

In general, the CPU may enter the check-stop state 
whenever an uncorrectable error or other malfunction 
occurs and the machine is unable to recognize a 
specific machine-check-interruption condition. 

The CPU always enters the check-stop state when: 
• PSW bit 13 is zero and an exigent machine-check 

condition is generated 
• During the execution of an interruption due to one 

exigent machine-check condition, another exigent 
machine-check condition is detected 

• During a machine-check interruption, the 
machine-check-interruption code cannot be stored 
successfully or the new PSW cannot be fetched 
successfully 

• A machine-check interruption cannot be taken 
because of a storage error in page 0 

Chapter 11. Machine-Check Handling 11-3 



• Invalid CBC is detected in the page description for 
page 0 

• An error occurs while a page description is being 
updated, leaving the page description in an 
inconsistent state 

There may be many other conditions for particular 
models when an error may cause check stop. 

When the CPU is in the check-stop state, 
instructions and interruptions are not executed, the 
interval timer is not updated, and channel operations 
may be stopped. The time-of-day clock is normally 
not affected by the check-stop state. The CPU timer 
mayor may not run in the check-stop state, 
depending on the error. The start key and stop key 
are not effective in this state. 

The CPU may be removed from the check-stop 
state by program reset. 

Machine-Check Interruption 
The machine-check interruption provides a means of 
reporting equipment malfunctions and certain 
external disturbances, and it supplies the program 
with information about the extent of the resultant 
damage and the location and nature of the cause. 
There are two major types of conditions which can 
cause a machine-check interruption: exigent 
conditions and repressible conditions. 

Exigent Conditions 
Exigent machine-check-interruption conditions are 
those in which direct damage has occurred to CPU 
operation, so that the current instruction or 
interruption cannot safely continue. Exigent 
conditions are divided into two subclasses: 
instruction-processing damage and system damage. 
Malfunctions which cannot be isolated to a specific 
function are indicated as system damage. 

Repressible Conditions 
Repressible machine-check-interruption conditions 
are those in which the sequential processing 
capability of the CPU has not been damaged. 
Repressible conditions can be delayed, until the 
completion of the current instruction or even longer, 
without affecting the integrity of CPU operation. 
Repressible conditions are of three classes: recovery, 
alert, and repressible damage. Each class has one or 
more subclasses. 

A malfunction in the CPU, storage, channels, or 
operator facilities, which has been successfully 
corrected or circumvented internally without loss of 
machine integrity, is called a recovery condition. 

11-4 IBM 4300 Processors Principles of Operation 

Depending on the model and the type of malfunction, 
some or all recovery conditions may be discarded and 
not reported. Recovery conditions that are reported 
are grouped in one subclass, system recovery. 

A machine-cheek-interruption condition not directly 
related to a machine malfunction is called an alert 
condition. The alert conditions are grouped in two 
subclasses: degradation and warning. 

A malfunction resulting in the loss of integrity of a 
machine function but not directly affecting sequential 
CPU operation is called a repressible-damage 
condition. Repressible-damage conditions are divided 
into three subclasses, according to the fUnction 
affected: interval-timer damage, timing-facility 
damage, and external damage. 

Programming Note 

Classification of a damage condition as repressible 
does not imply that the damage is necessarily less 
severe than damage classified as an exigent condition. 
The distinction is whether action must be taken as 
soon as the damage is detected (exigent), or whether 
the CPU can continue processing (repressible). For a 
repressible condition, the current instruction can be 
completed before taking the machine-check 
interruption if the CPU is enabled; if the CPU is 
disabled for machine checks, the condition can safely 
be kept pending until the CPU is again enabled for 
machine checks. 

For example, the CPU may be disabled for 
machine-check interruptions because it is handling an 
earlier instruction-processing-damage interruption. 
If, during that time, a channel encounters an 
independent storage error, which is an 
external-damage condition, that condition can be 
kept pending because it is not expected to interfere 
with the current machine-check processing. If, 
however, the CPU also makes a reference to that 
damaged area of storage before re-enabling 
machine-check interruptions, another 
instruction-processing damage condition is created, 
which is treated as an exigent condition and causes 
the CPU to enter the check-stop state. 

Inter"uption Action 
A machine-check interruption causes the PSW 
reflecting the point of interruption to be stored as the 
machine-check old PSW at location 48. The contents 
of other registers are stored in register save areas at 
locations 216-231 and 352-511. A failing-storage 
address, if any, is stored at location 248. Then a 
machine-check-interruption code (MCIC) of eight 



bytes is placed at location 232. The new PSW is 
fetched from location 112. 
If the machine-check-interruption code cannot be 

stored successfully or the new PSW cannot be fetched 
successfully, the CPU enters the check-stop state. 

A repressible machine-check condition can cause a 
machine-check interruption only if both PSW bit 13 
and the associated subclass mask bit in control 
register 14 are ones. When it occurs, the interruption 
does not terminate the execution of the current 
instruction; the interruption is taken at a normal 
point of interruption, and no program or 
supervisor-call interruptions are eliminated. If the 
repressible machine-check condition occurs during the 
execution of a machine function, such as a 
CPU-timer update, the machine-check interruption 
takes place after the machine function has been 
completed. 

When the CPU is disabled for a particular 
repressible machine-check condition, the condition 
remains pending. Only one repressible condition is 
held pending for each subclass, regardless of the 
number of conditions that may have been detected. 

When a repressible machine-check interruption 
occurs because the interruption condition is in a 
subclass for which the CPU is enabled, pending 
conditions in other subclasses may also be indicated 
in the same interruption code, even though the CPU 
is disabled for those subclasses. All indicated 
conditions are then cleared. 
If a system-recovery condition is detected during 

the execution of the interruption procedure due to a 
previous machine-check condition, the 
system-recovery condition may be combined with the 
other conditions, discarded, or held pending. 

An exigent machine check can cause a 
machine-check interruption only when PSW bit 13 is 
one. When it occurs, the interruption terminates the 
execution of the current instruction and may 
eliminate the program and supervisor-call 
interruptions, if any, that would have occurred if 
execution had continued. Proper· execution of the 
interruption steps, including the storing of the old 
PSW and other information, depends on the nature of 
the malfunction. When an exigent machine-check 
condition occurs during the execution of a machine 
function, such as a CPU-timer update, the sequence 
is not necessarily completed. 

If, during the execution of an interruption due to 
one exigent machine-check condition, another exigent 
machine-check condition is detected, the CPU enters 
the check-stop state. If an exigent machine-check 

condition is detected during an interruption due to a 
repressible machine-check condition, system damage 
is reported. 

When PSW bit 13 is zero, an exigent machine-check 
condition causes the CPU to enter the check-stop 
state. 

Machine-cheek-interruption conditions are handled 
in the same manner in both the non wait and wait 
states. In the wait state, a machine-check condition 
causes an immediate interruption if the CPU is 
enabled for that condition. 

Machine checks which occur while the rate control 
is set to instruction step are handled in the same 
manner as when the control is set to process; that is, 
recovery and machine-check interruptions occur when 
allowed. 

Every reasonable attempt is made to limit the side 
effects of any machine-check condition and the 
associated interruption. Normally, I/O and external 
interruptions, as well as the progress of I/O data 
transfer and the updating of the CPU timer, remain 
unaffected. The malfunction, however, may affect 
these activities, and, if the currently active PSW has 
bit 13 set to one, the machine-check interruption may 
terminate the process of switching PSWs that is due 
to another type of interruption. In these cases, 
system damage will be indicated. 

Point 0/ Interruption 
The point in the processing which is indicated by the 
interruption and used as a reference point by the 
machine to determine and indicate the validity of the 
status stored is referred to as the point of 
interruption. 

Only certain points in the processing may be used 
as a point of interruption. For repressible machine 
checks, the point of interruption must be after one 
unit of operation is completed and any associated 
program or supervisor-call interruption is taken, and 
before the next unit of operation is begun. 

Exigent machine-check conditions can occur at any 
point during instruction processing. The point of 
interruption may be after the unit of operation is 
completed but before any associated program or 
supervisor-call interruption occurs. In this case, a 
valid PSW is defined as that which would have been 
stored in the old PSW for the program or 
supervisor-call interruption. Even though all status 
may be indicated as valid, damage has occurred 
because the associated interruption is lost. 

When the point of interruption for an exigent 
machine-check condition occurs after an associated 

Chapter 11. Machine-Check Handling 11-5 



program or supervisor-call interruption, the damage 
has not been isolated to a particular program, and 
system damage is indicated. 

Programming Note 

When an exigent machine-check condition occurs, the 
point of interruption which is chosen affects the 
amount of damage which must be indicated. An 
attempt is made, when possible, to choose a point of 
interruption which permits the minimum indication of 
damage. 

When all the status information stored as a result of 
an exigent machine-check condition does not reflect 
the same point, an attempt is made when possible to 
choose tp'e point of interruption so that the 

instruction address which is stored in the 
machine-check old PSW is valid. 

Machine-Check-Inte""ption Code 
The machine-cheek-interruption code (MCIC) is an 
eight-byte field starting at location 232 and has the 
format shown in the figure "Machine-Check 
Interruption-Code Format. " 

Bits in the MCIC which are not assigned, or not 
implemented by a particular model, are stored as 
zeros. 

S PST CEO S K W M P F 
o 0 ROD DOG WOO 0 0 0 ODE 0 E 0 P SMA A 

o 9 15 

o 0 0 0 0 0 0 0 0 0 000 0 00000 000 0 0 0 0 0 0 0 0 

32 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit4 
Bit 5 
Bit 7 
Bit 8 
Bit 15 
Bit 16 
Bit 18 
Bit 20 
Bit 21 
Bit 22 
Bit 23 
Bit 24 
Bit 27 
Bit 28 
Bit 29 
Bit 31 
Bit 46 
Bit 47 

System damage (SO) 
Instruction-processing damage (PO) 
System recovery (SA) 
Interval-timer damage (TO) 
Timing-facility damage (CD) 
External damage (ED) 
Degradation (OG) 
Warning (W) 
Delayed (0) 

Storage error uncorrected (SE) 
Storage-key error uncorrected (KE) 
PSW EMWP validity (WP) 
PSW mask and key validity (MS) 
PSW program-mask and condition-code validity (PM) 
PSW instrl,Jction-address validity (lA) 
Failing-storage-address validity (FA) 
Floating-point-register validity (FP) 
General-register validity (GA) 
Control-register validity (CA) 
Storage logical validity (ST) 
CPU-timer validity (CT) 
Clock-comparator validity (CC) 

All other bits of the MCIC are unassigned and stored as zeros. 

Machine-Check Interruption-Code' Format 

11-6 IBM 4300 Processors Principles of Operation 



Programming Note 

The program should not depend on unassigned bits in 
the machine-check-interruption code being zeros, so 
as to ensure that existing programs run if and when 
new facilities using these bits are defined. 

Subclass 

Bits 0-5 7, and 8 identify the type of machine-check 
condition causing the interruption. At least one of 
the defined subclass bits is stored as a one. When 
multiple errors have occurred, several of the defined 
bits may be set to ones. 

System Damage (SD): Bit 0, when one, indicates 
that damage has occurred which cannot be isolated to 
one or more of the less severe machine-check damage 
subclasses. System damage is an exigent condition. 

IlIStruction-Processing Damage (PD): Bit 1, when 
one, indicates that a malfunction has been detected in 
the processing of an instruction. Detection of such 
damage is synchronous with CPU operation. 

For damage to be indicated as 
instruction-processing damage, the damaged 
instruction and the point of interruption must not be 
separated by an interruption or by a LOAD PSW 
instruction, and the extent of the damage must fall 
within one or more of the following catagories: 
1. The damaged area still contains invalid CBC. 
2. The damaged area lies within the destination 

operand of the instruction. 
3. The damaged area lies within the general 

registers, floating-point registers, control registers, 
or PSW. 

Instruction-processing damage is an exigent 
condition. 

System Recovery (SR): Bit 2, when one, indicates 
that malfunctions were detected but have been 
successfully corrected or circumvented without the 
loss of machine integrity. CPU-detected 
malfunctions are reported as system recovery only if 
the CPU successfully completes the operation or unit 
of operation in which the malfunction was detected. 
Some I/O-detected malfunctions may result ina 
system-recovery condition in addition to anI/O-error 
condition. The indication of system recovery does 
not imply storage logical validity, or that the fields 
stored as a result of the machine-check interruption 
are valid. The presence· and extent of the 
system-recovery capability depend on the model. 

System recovery is a repressible condition. 

Interval-Timer Damage (TD): Bit 3, when one, 
indicates that damage has occurred to the interval 
timer or to storage location 80. Interval-timer 
damage is a repressible condition. 

Timing-Facility Damage (CD): Bit 4, when one, 
indicates that damage has occurred to the time-of-day 
clock, the CPU timer, or the clock comparator. The 
timing-facility-damage machine-check condition is set 
whenever any of the followiQ.g occurs: 
1. The time-of-day clock enters the error or 

not-operational state. 
2. The CPU timer is damaged, and the CPU is 

enabled for CPU-timer external interruptions. 
3. The CPU timer is damaged, and SET CPU 

TIMER or STORE CPU TIMER is executed. 
This condition also sets instruction-processing 
damage. 

4. The clock comparator is damaged, and the CPU 
is enabled for clock-comparator external 
interruptions. 

5. The clock comparator is damaged, and SET 
CLOCK COMPARATOR or STORE CLOCK 
CaMPARA TOR is executed. This condition also 
sets instruction-processing damage. 

Timing-facility damage is a repressible condition. 

Exterllal Damage (ED): Bit 5, when one, indicates 
that damage has occurred to a channel or to storage 
during operations not directly associated with 
processing the current instruction. Channel 
malfunctions are reported as external damage only 
when the channel is unable to report the malfunctions 
by an I/O interruption. Depending on the model and 
on the type and extent of the error, an 
external-damage condition may be indicated as 
system damage instead of external damage. 

External damage is a repressible condition. 

Degradation (DG): Bit 7, when one, indicates that 
continuous degradation of system performance, more 
serious than· that indicated by. system recovery, has 
occurred. Degradation may be reported when 
system-recovery conditions exceed a 
machine-preestablished threshold. The presence and 
extent of the degradation-report capability depends 
on the model. 

Degradation is a repressible condition. 

War"lag (W): Bit 8, when one, indicates that 
damage is imminent in some part of the system (for 
example, that power is about to fail, or that a loss of 

Chapter 11. Machine-Check Handling 11-7 



cooling is occurring). Whether warning conditions 
are recognized depends on the model. 

Warning is a repressible condition. 

Programming Notes 

1. On some models with CPU retry, a CPU-retry 
operation may delay the response to a concurrent 
110 operation, thus causing an 110 overrun or 
chaining check and, hence, an I/O-interruption 
condition. Consequently, when a 
machine-check-interruption condition indicating 
system recovery and such an I/O-interruption 
condition occur at approximately the same time, 
the overrun may be due to a CPU delay rather 
than to timing problems with the 110 device and 
channel. 

2. Timing-facility-damage interruptions for the CPU 
timer and the clock comparator are disallowed 
when these facilities are not in use. The facilities 
are considered not in use when the CPU is 
disabled for the corresponding external 
interruptions (PSW bit 7, or the submask bits, 
bits 21 and 20 of control register 0, are zero), 
and when the corresponding set and store 
instructions are not being issued. 
Timing-facility-damage interruptions due to 
damage to the time-of-day clock cannot be so 
disallowed. 

Auxiliary Bits 

Bits 15, 16, and 18 of the 
machine-check-interruption code may occur together 
with one or more of the bits in the subclass field to 
indicate a delayed condition, an uncorrected storage 
error, and an uncorrected key error, respectively. 

Delayed (D): Bit 15, when one, indicates that one 
or more of the repressible machine-check conditions 
being reported were delayed because, at the time a 
particular error was detected, the CPU was disabled 
for that type of interruption. The bit does not apply 
to exigent conditions, which cannot be delayed. 

Storage Error Uncorrected (SE): Bit 16, when one, 
indicates invalid CBe for the contents of a storage 
page that is in the connected or addressable state. 

Storage-Key Error Uncorrected (KE): Bit 18, when 
one, indicates invalid CBC for the storage key in 
lookaside storage which is associated with a storage 
page that is in the connected or addressable state. 

11-8 IBM 4300 Processors Principles of Operation 

Programming Note 

The storage-error and storage-key-error bits do not in 
themselves indicate the occurrence of damage 
because the error detected may not have affected a 
result. The accompanying subclass bits of the 
interruption code indicate the area affected by the 
error. 

Machine-Check Interruption-Code Validity Bits 

Bits 20-24, 27-29, 31, 46, and 47 of the 
machine-check-interruption code are validity bits. 
Each bit indicates the validity of a particular field in 
storage. With the exception of the 
storage-logical-validity bit (bit 31), each bit is 
associated with a field stored during the 
machine-check interruption. When a validity bit is 
one, it indicates that the corresponding storage field 
is valid with respect to the indicated point of 
interruption and that no error was detected when the 
data was stored. 

When a validity bit is zero, one or more of the 
following conditions may have occurred: the original 
information was incorrect, the original information 
had invalid CBC, additional malfunctions were 
detected while storing the information, or none or 
only part of the information was stored. Even 
though the information is unpredictable, the machine 
will attempt, when possible, to place valid CBC in the 
storage field and thus reduce the possibility of 
additional machine cJ:tecks being caused. 

PSW EMWP Validity (WP): Bit 20, when one, 
indicates that the EMWP bits (bits 12-15) of the 
machine-check old PSW are correct. 

PSW Mask and Key Validity (MS): Bit 21, when 
one, indicates that the system mask and the PSW key 
(bits 0-11) of the machine-check old PSW are 
correct. 

PSW-Program-Mask and Condition-Code Validity 
(PM): Bit 22, when one, indicates that the program 
mask and condition code of the machine-check old 
PSW are correct. 

PSW-Instruction-Address Validity (IA): Bit 23, when 
one, indicates that the instruction address (bits 
40-63) of the machine-check old PSW is correct. 

Failing-Storage-Address Validity (FA): Bit 24, when 
one, indicates that a correct failing-storage address 
has been placed at location 248 after an uncorrected 



storage error or storage,...key error. When no such 
errors are reported, that is, bits 16 and 18 of the 

. machine-cheek-interruption code are zeros, the 
failing-storage address is meaningless, even though it 
may be indicated as valid. 

Floating-Point-Register Validity (FP): Bit 27, when 
one, indicates that the contents of the 
floating-point-register save area at locations 352-383 
reflect the correct state of the floating-point registers 
at the point of interruption. 

General-Register Validity (GR): Bit 28, when one, 
indicates that the contents of the general-register 
save area at locations 384-447 reflect the correct 
state of the general registers at the point of 
interruption. 

Control-Register Validity (CR): Bit 29, when one, 
indicates that the contents of the control-register save 
area at locations 448-511 reflect the correct state of 
the control registers at the point of interruption. 

Storage Logical Validity (ST): Bit 31, when one, 
indicates that the contents of those storage locations 
which are modified by the instructions being executed 
contain the correct information relative to the point 
of interruption. That is, all stores before the point of 
interruption are completed, and all stores, if any, 
after the point of interruption are suppressed. When 
a store before the point of interruption is suppressed 
because of an invalid CBC, the 
storage-logical-validity bit may be indicated as one, 
provided that the invalid CBC has been preserved as 
invalid. 

CPU-Timer Validity (CT): Bit 46, when one, 
indicates that the CPU timer is n~t in error and that 
the contents of the CPU-timer save area at location 
216 reflect the correct state of the CPU timer at the 
time the. interruption occurred. 

Clock-Comparator Validity (CC): Bit 47, when one, 
indicates that the clock comparator is not in error and 
that the contents of the clock-comparator save area 
at location 224 reflect the correct state of the clock 
comparator. 

Machine-Check Extended Interruption 
Inlormation 
During a machine-check interruption, the current 
PSW is stored as the machine-check old PSW at 
storage location 48. The current contents of the 
other CPU registers, except for the time-of-day clock, 
are stored in five register-save areas assigned in 
storage. When an uncorrected storage error. or 
storage-key error is indicated, the failing-storage 
address is also saved. 

Each of these fields has associated with it one or 
more validity bits in the machine-cheek-interruption 
code. If, for any reason, the machine cannot store 
one of these fields or cannot store the field validly, 
the associated validity bit is set to zero. 

Register-Save Areas 

The following are the five sets of registers and the 
locations in storage where their contents are saved 
during a machine check: 

Locations Registers 

216-223 CPU timer 
224-231 Clock comparator 
352-383 Floating-point registers 0, 2, 4, 6 
384-447 General registers 0-15 
448-511 Control registers 0-15 

The information stored for unassigned 
control-register positions is unpredictable. 

Falling-Storage· Address 

When an uncorrected storage error or storage-key 
error is indicated in the machine-cheek-interruption 
code, the associated address, called the failing-storage 
address, is stored in bits 8-31 of the word at location 
248. Bits 0-7 of that word are set to zeros. 

The failing-storage address may be the address of 
any location within the page that is in error or that is 
associated with the storage key in error. When an 
error is detected in more than one location before the 
interruption, the failing-storage address may point to 
any of the failing locations. 

Machine-Check Masking 
The exigent machine-check conditions (system 
damage and instruction-processing damage) are 
controlled only by the machine-check mask, PSW bit 
13. When the mask bit is one, an exigent condition 
causes a machine-check interruption. When the mask 
is zero, the occurrence of an exigent machine-check 
condition causes the CPU to enter the check-stop 
state. 

Chapter 11. Machine-Check Handling 11-9 



The repressible machine-check conditions (system 
recovery, interval-timer damage, timing-facility 
damage, external damage, degradation, and warning) 
are controlled both by the machine-check mask, PSW 
bit 13, and by four subclass mask bits in control. 
register 14. If PSW bit 13 is· one and one of the 
subclass mask bits is one, the associated condition 
initiates a machine-check interruption. If the 
subclass mask is zero, the associated condition does 
not initiate an interruption, but the condition may be 
presented with another condition which initiates the 
interruption. All conditions presented are then 
cleared. 

Control Register 14 

o 1 4 8 31 

Bits 4-7 of control register 14 are the submasks for 
repressible machine-check conditions.' In addition, 

11-10 IBM 4300 Processors Principles of Operation 

bit 0 is initialized to one, but it is otherwise ignored 
by the machine. All other bits of control register 14 
are unassigned. 

Recovery Repol't Mask (RM): Bit 4 of control 
register 14 controls system-recovery-interruption 
conditions. This bit is initialized to zero. 

Degl'adation-Repol't MllSk (DM): Bit 5 of control 
register 14 controls degradation-interruption 
conditions. This bit is initialized to zero. 

Extel'"al-Dllmage-Repol'l MllSk (EM): Bit 6 of 
control register 14 controls the following 
maching-check-interruption conditions: 
interval-timer damage, timing-facility damage, and 
external damage. This bit is initialized to one. 

Wal'"ing MflSk (WM): Bit 7 of control register 14 
controls warning conditions. This bit is initialized to 
zero. 



Chapter 12. Input/Output Operations 

Contents 

Attachment of Input/Output Devices 12-2 
Input/Output Devices 12-2 
Control Units 12-2 
Channels 12-3 

Modes of Operation 12-3 
Types of Channels 12-4 

I/O-System Operation 12-5 
Compatibility of Operation 12-7 

Control of Input/Output Devices 12-7 
Input/ Output Device Addressing 12-7 
States of the Input/Output System 12-8 
Resetting of the Input/Output System 12-11 

I/O System Reset 12-11 
I/O Selective Reset 12-11 
Effect of Reset on a Working Device 12-11 
Reset Upon Malfunction 12-12 

Condition Code 12-12 
Instruction Formats 12-14 
Instructions 12-15 
CLEAR I/O 12-16 
HALT DEVICE 12-18 
HALT I/O 12-21 
START I/O 12-23 
START I/O FAST RELEASE 12-23 
STORE CHANNEL ID 12-26 
TEST CHANNEL 12-27 
TEST I/O 12-27 
Input/ Output-Instruction-Exception Handling 12-30 

Execution of Input/Output Operations 12-30 
Blocking of Data 12-30 
Channel-Address Word 12-30 
Channel-Command Word 12-31 
Command Code 12-32 
Designation of Storage Area 12-32 
Chaining 12-33 

Data Chaining 12-35 
Command Chaining 12-36 

Skipping 12-36 
Program-Controlled Interruption 12-36 
Commands 12-37 

Write 12-39 
Read 12-39 
Read Backward 12-39 
Control 12-40 

Sense 12-40 
Trans'fer in Channel 12-42 

Command Retry 12-42 
Conclusion of Input/Output Operations 12-43 

Types of Conclusion 12-43 
Conclusion at Operation Initiation 12-43 
Immediate Operations 12-44 
Conclusion of Data Transfer 12-44 
Termination by HALT I/O or HALT DEVICE 12-45 
Termination by CLEAR I/O 12-46 
Termination Due to Equipment Malfunction 12-47 

Input/Output Interruptions 12-47 
Interruption Conditions 12-47 
Channe.1-Available Interruption 12-48 

Priority of Interruptions 12-48 
Interruption Action 12-49 

Channel-Status Word 12-49 
Unit Status 12-50 

Attention 12-50 
Status Modifier 12-50 
Control-Unit End 12-51 
Busy 12-51 
Channel End 12-53 
Device End 12-53 
Unit Check 12-53 
Unit Exception 12-54 

Channel Status 12-55 
Program-Controlled Interruption 
Incorrect Length 12-55 
Program Check 12-55 
Protection Check 
Channel-Data Check 

12-56 
12-56 

Channel-Control Check 12-56 
Interface-Control Check 12-57 
Chaining Check 12-57 

Contents Of Channel-Status Word 12-57 
Information Provided by Channel-Status Word 12-57 
Subchannel Key 12-58 
CCW Address 12-58 
Count 12.· 59 
Status 12-60 

Channel Logout 12-63 
I/O Communications Area 12-63 

Chapter 12. Input/Output Operations 12-1 



The transfer of information to or from main storage, 
other than to or from the central processing unit, is 
referred to as an input or output operation. An 
input/ output (I/O) operation involves the use of an 
I/O device. Input/output devices perform I/O 
operations under control of control units, which are 
attached to the central processing unit (CPU) by 
means of channels. 

This portion of the publication describes the 
programmed control of I/O devices by the channels 
and by the CPU. Formats are defined for the various 
types of I/O control information. The formats apply 
to all I/O operations and are independent of the type 
of I/O device, its speed, and its mode of operation. 

The formats described include provisions for 
functions unique to some I/O device types, such as 
an erase gap on a magnetic-tape unit. The way in 
which a device makes use of the format is defined in 
the System Library (SL) publication for the particular 
device. 

All main-storage references for I/O operations are 
references to virtual storage. Unless indicated 
otherwise, "storage" means virtual storage, and 
"address" means virtual address. The terms "I/O 
address," "channel address," and "device address" 
are never abbreviated to "address" in this 
publication. 

Attachment of Input/Output Devices 

Input I Output Devices 
Input/ output devices provide external storage and a 
means of communication between data-processing 
systems or between a system and its environment. 
Input/ output devices include such equipment as card 
readers, card punches, magnetic-tape units, direct
access-storage devices (disks and drums), display 
units, typewriter-keyboard devices, printers, 
teleprocessing devices, and sensor-based equipment. 

Most types of I/O devices, such as printers, card 
equipment, or tape devices, deal directly with 
external media, and these devices are physically 
distinguishable and identifiable. Other types consist 
only of electronic equipment and do not directly 
handle physical recording media. The channel-to
channel adapter, for example, provides a channel-to
channel data-transfer path, and the data never 
reaches a physical recording medium outside main 
storage. Similarly, a transmission-control unit 
handles transmission of information between the 

12-2 IBM 4300 Processors Principles of Operation 

data-processing system and a remote station, and its 
input and output are signals on a transmission line. 
An I/O device may be physically distinct equipment, 
or it may time-share equipment with other I/O 
devices. 

An input/output device ordinarily is attached to one 
control unit and is accessible from one channel. 
Switching equipment is available to make some 
devices accessible to two or more channels by 
switching devices between control units and control 
units between channels. The time required for 
switching occurs during device-selection time and 
may be ignored. 

Control Units 
A control unit provides the logical capabilities 
necessary to operate and control an I/O device and 
adapts the characteristics of each device to the 
standard form of control provided by the channel. 

The control unit accepts control signals from the 
channel, controls the timing of data transfer, and 
provides indications concerning the status of the 
device. 

The I/O device attached to the control unit may be 
designed to perform only certain limited operations, 
or it may perform many different operations. A 
typical operation is moving the recording medium and 
recording data. To accomplish these functions, the 
device needs detailed signal sequences peculiar to the 
type of device. The control unit decodes the 
commands received from the channel, interprets them 
for the particular type of device, and provides the 
signal sequence required for execution of the 
operation. 

A control unit may be housed separately, or it may 
be physically and logically integral with the I/O 
device or the CPU. In the case of most 
electromechanical devices, a well-defined interface 
exists between the device and the control unit 
because of the difference in the type of equipment 
the control unit and the device contain. These 
electromechanical devices often are of a type where 
only one device of a group attached to a control unit 
is required to operate at a time (magnetic-tape units 
or disk-access mechanisms, for example), and the 
control unit is shared among a number of I/O 
devices. On the other hand, in some electronic I/O 
devices such as the channel-to-channel adapter, the 
control unit does not have an identity of its own. 



From the programmer's point of view, most 
functions performed by the control unit can be 
merged with those performed by the I/O device. 
Therefore, this publication normally does not make 
specific mention of the control unit function; the 
execution of I/O operations is described as if the I/O 
devices communicated directly with the channel. 
Reference is made to the control unit only when 
emphasizing a function performed by it or when 
describing how sharing of the control unit among a 
number of devices affects the execution of I/O 
operations. 

Channels 
A channel directs the flow of information between 
I/O devices and main storage. It relieves the CPU of 
the task of communicating directly with the devices 
and permits data processing to proceed concurrently 
with I/O operations. 

A channel provides a means for connecting 
different types of I/O devices to the CPU and to 
storage. It accepts control information from the CPU 
in the format supplied by the program and changes it 
into a sequence of signals acceptable to a control 
unit. After the operation with the device has been 
initiated, the CPU is released for other work, and the 
channel assembles or disassembles data and 
synchronizes the transfer of data bytes with storage 
cycles. To accomplish this, the channel maintains 
and updates an address and a count that describe the 
destination or source of data in storage. Similarly, 
when an I/O device provides signals that should be 
brought to the attention of the program, the channel 
transforms the signals to information that can be used 
in the CPU. 

A channel contains ~ommon facilities for the 
control of I/O operations. When these facilities are 
provided in the form of separate autonomous 
eq'Qipment designed specifically to control I/O 
devices, I/O operations are completely overlapped 
with the activity in the CPU. The only storage cycles 
required during I/O operations in such channels are 
those needed to transfer data and control information 
to or from the final locations in storage. These cycles 
do not interfere with the CPU program, except when 
both the CPU and the channel concurrently attempt 
to refer to the same storage area. 
If separate equipment is not provided, facilities of 

the CPU are used for controlling I/O devices. When 
the CPU and channels, or the CPU, channels, and 
control units, share common facilities, I/O operations 
cause interference to the CPU, varying in intensity 

from occasional delay of a CPU cycle to a complete 
lockout of CPU activity. The intensity depends on 
the extent of sharing and on the I/O data rate. The 
sharing of the facilities, however, is accomplished 
automatically, and the program is not affected by 
CPU delays, except for an increase in execution time. 
The effects of sharing on the CPU timer and interval 
timer are described in Chapter 4, "Control." 

Modes of Operation 

An I/O operation occurs in one of two modes: burst 
or byte mUltiplex. 

In burst mode, the 1/ 0 d~vice monopolizes the 
channel and stays logically connected to the channel 
for the transfer of a burst of information. No other 
device can communicate with the channel during the 
time a burst is transferred. The burst can consist of a 
few bytes, a whole block of data, a sequence of 
blocks with associated control and status information 
(the block lengths may be zero), or status 
information which monopolizes the channel. 

Some channels can tolerate an absence of data 
transfer during a burst-mode operation, such as 
occurs when reading a long gap on magnetic tape, for 
not more than approximately 1/2 minute. Equipment 
malfunction may be indicated when an absence of 
data transfer exceeds this time. 

In byte-multiplex mode, the facilities in the channel 
may be shared by a number of concurrently operating 
I/O devices. In this mode, all I/O operations are 
split into short intervals of time during which only a 
segment of information is transferred. During such 
an interval, only one device is logically connected to 
the channel. The intervals associated with the 
concurrent operation of multiple I/O devices are 
sequenced in response to demands from the devices. 
The channel controls are occupied with anyone 
operation only for the time required to transfer a 
segment of information. The segment can consist of 
a single byte of data, a few bytes of data, a status 
report from the device, or a control sequence used for 
initiation of a new operation. 

Operation in burst and byte-multiplex modes is 
differentiated because of the way the channels 
respond to I/O instructions. A channel operating a 
device in the burst mode appears busy to new I/O 
instructions, whereas a channel operating one or more 
devices in the byte-multiplex mode is available for 
initiating an operation on another device. If a 
channel that can operate in either mode happens to 
be communicating with an I/O device at the instant a 
new I/O instruction is issued, action on the 

Chapter 12. Input/Output Operations 12-3 



instruction is delayed by the channel until the current 
mode of operation is established. Furthermore, the 
new I/O operation is initiated only after the channel 
has serviced all outstanding requests for data transfer 
from devices previously placed in operation. 

The distinction between a short burst of data 
occurring in the byte-multiplex mode and an 
operation in the burst mode is in the length of the 
bursts of data. A channel that can operate in either 
mode determines its mode of operation by "time
out. lI Whenever the burst causes the device to be 
connected to the channel for more than 
approximately 100 microseconds, the channel is 
considered to be operating in the burst mode. 

Ordinarily, devices with a high data-transfer rate 
operate with the channel in burst mode, and slower 
devices run in byte-multiplex mode. Some control 
units have a manual switch for setting the mode of 
operation. 

Types of Channels 

A system can be equipped with three types of 
channels: selector, byte mUltiplexer, and block 
multiplexer. 

The channel facilities required for sustaining a 
single I/O operation are termed a subchannel. The 
sub channel consists of internal storage used for 
recording the addresses, count, and any status and 
control information associated with the I/O 
operation. The capability of a channel to permit 
multiplexing depends upon whether it has more than 
one subchannel. 

A selector channel, which contains a minimum of 
facilities, has one subchannel and always forces the 
I/O device to transfer data in the burst mode. The 
burst extends over the whole block of data, or, when 
command chaining is specified, over the whole 
sequence of blocks. A selector channel cannot 
perform any multiplexing and therefore can be 
involved in only one I/O operation or chain of 
operations at a time. In the meantime, other I/O 
devices attached to the channel can be executing 
previously initiated operations that do not involve 
communication with the channel, such as backspacing 
tape. When the selector channel is not executing an 
operation or a chain of operations and is not 
processing an interruption, it monitors the attached 
devices for status information. 

A byte-multiplexer channel contains multiple 
subchannels and can operate in either byte-multiplex 
or burst mode. The channel operates most efficiently 
when running I/O devices that are designed to 

12-4 IBM 4300 Processors Principles of Operation 

operate in byte-multiplex mode. The mode of 
operation is determined by the I/O device, and the 
mode can change at any time. The data transfer 
associated with an operation can occur partially in 
the byte-multiplex mode and partially in the burst 
mode. 

A block-multiplexer channel contains multiple 
subchannels and can only operate in burst mode. 
The channel operates most efficiently when running 
devices that are designed to operate in burst mode. 
When multiplexing is not inhibited, the channel 
permits multiplexing during operations with an I/O 
device, between bursts, or when command retry is 
performed. On most models, the burst is forced to 
extend over the block of data, and multiplexing is 
permitted between blocks of data when command 
chaining is specified. Whether or not multiplexing 
occurs depends on the design of the channel and I/O 
device and on the state of the block-multiplexing
control bit. 

When the block-multiplexing-control bit, bit 0 of 
control register 0, is zero, multiplexing is inhibited; 
when it is one, multiplexing is allowed. 

Whether a block-multiplexer channel executes an 
I/O operation with multiplexing inhibited or allowed 
is determined by the state of the block-multiplexing
control bit at the time the operation is initiated by 
START I/O or START I/O FAST RELEASE and 
applies to thai operation until the involved 
subchannel becomes available. 

Both byte-multiplexer and block-multiplexer 
channels vary in the number of subchannels they 
contain. When multiplexing, they can sustain 
concurrently one I/O operation per subchannel, 
provided that the total load on the channel does not 
exceed its capacity. Each subchannel appears to the 
program as an independent selector channel, except 
in those aspects of communication that pertain to the 
physical channel (for example, individual subchannels 
on a multiplexer channel are not distinguished as such 
by the TEST CHANNEL instruction or by the masks 
controlling I/O interruptions from the channel). 
When a multiplexer channel is not servicing an I/O 
device, it monitors its devices for data and for status 
information. 

Subchannels on a multiplexer channel may be either 
nonshared or shared. 

A subchannel is referred to as nonshared if it is 
associated with and can be used only by a single I/O 
device. A nonshared subchannel is used with devices 
that do not have any restrictions on the concurrency 
of channel-program operations, such as the IBM 3211 



Printer Modell or one drive of an IBM 3330 Disk 
Storage. 

A sub channel is referred to as shared if data 
transfer to or from a set of devices implies the use of 
the same subchannel. Only one device associated 
with a shared subchannel may be involved in data 
transmission at a time. Shared sub channels are used 
with devices, such as magnetic-tape units or some 
disk-access mechanisms, that share a control unit. 
For such devices, the sharing of the subchannel does 
not restrict the concurrency of I/O operations since 
the control unit permits only one device to be 
involved in a data-transfer operation at a time. I/O 
devices may share a control unit without necessarily 
sharing a subchannel. For example, each 
transmission line attached to the IBM 2702 
Transmission Control is assigned a nonshared 
subchannel, although all of the transmission lines 
share the common control unit. 

Programming Notes 

A block-multiplexer channel can be made to operate 
as a selector channel by the appropriate setting of the 
block-multiplexing-control bit. However, since a 
block-multiplexer channel inherently can interleave 
the execution of multiple I/O operations and since 
the state of the block-multiplexing-control bit can be 
changed at any time, it is possible to have one or 
more operations that permit multiplexing and an 
operation that inhibits multiplexing being executed 
simultaneously by a channel. 

Therefore, to ensure complete compatibility with 
selector channel operation, all operational 
subchannels on the block-multiplexer channel must be 
available or operating with mUltiplexing inhibited 
when the use of that channel as a selector channel is 
begun. All subsequent operations should then be 
initiated with the block-multiplexing-control bit 
inhibiting multiplexing. 

I/O-System Operation 
Input/ output operations are initiated and controlled 
by information with two types of formats: 
instructions and channel-command words (CCWs). 
Instructions are decoded by the CPU and are part of 
the CPU program. CCWs are decoded and executed 
by the channels and I/O devices and initiate I/O 
operations, such as reading and writing. One or more 
CCWs arranged for sequential execution form a 
channel program. Both instructions and CCWs are 
fetched from storage and their formats are common 
for all types of I/O devices, although the modifier 

bits in the command code of a CCW may specify 
device-dependent operations. 

The CPU program initiates I/O operations with the 
instruction START I/O or START I/O FAST 
RELEASE. These instructions identify the channel 
and device and cause the channel to fetch the 
channel-address word (CAW) from a fixed location 
in storage. The CAW contains the subchannel key 
and designates the location in storage from which the 
channel subsequently fetches the first CCW. The 
CCW specifies the command to be executed and the 
storage area, if any, to be used. 

When the CAW has been fetched, some channels 
consider the execution of START I/O FAST 
RELEASE complete. The results of the execution of 
the instruction to that point are indicated by setting 
the condition code in the program-status word (PSW) 
and, in certain situations, by storing pertinent 
information in the channel-status word (CSW). 
If the channel is not operating in burst mode and if 

the subchannel associated with the addressed I/O 
device is available, the channel attempts to select the 
device by sending the address of the device to all 
control units attached to the channel. A control unit 
that recognizes the address connects itself logically to 
the channel and responds to its selection by returning 
the address of the selected device. The channel 
subsequently sends the command-code part of the 
CCW to the control unit, and the device responds 
with a status byte indicating whether it can execute 
the command. 

At this time, the execution of START I/O and of 
ST ART I/O FAST RELEASE, if not previously 
considered complete, is completed. The results of the 
attempt to initiate the execution of the command are 
indicated by setting the condition code in the PSW 
and, in certain situations, by storing pertinent 
information in the CSW. 
If the operation is initiated at the device and its 

execution involves transfer of data, the subchannel is 
set up to respond to service requests from the device 
and assumes further control of the operation. In the 
case of operations that do not require any data to be 
transferred to or from the device, the device may 
signal the end of the operation immediately on 
receipt of the command code. 

An I/O operation may involve transfer of data to 
one storage area, designated by a single CCW, or to a 
number of noncontiguous storage areas. In the latter 
case, generally a list of CCWs is used for execution 
of the I/O operation, each CCW designating a 
contiguous storage area, and the CCWs are said to be 

Chapter 12. Input/Output Operations 12-5 



coupled by data chaining. Data chaining is specified 
by a flag in the CCW and causes the channel to fetch 
another CCW upon the exhaustion or filling of the 
storage area designated by the current CCW. The 
storage area designated by a CCW fetched on data 
chaining pertains to the I/O operation already in 
progress at the I/O device, and the I/O device is not 
notified when a new CCW is fetched. Provision is 
made in the CCW format for the programmer to 
specify that, when the CCW is decoded, the channel 
request an I/O interruption as soon as possible, 
thereby notifying the CPU program that chaining has 
progressed at least as far as that CCW. 

The conclusion of an I/O operation normally is 
indicated by channel end and device end. Channel 
end indicates that the I/O device has received or 
provided all data associated with the operation and 
no longer needs channel facilities. Device end 
indicates that the I/O device has concluded execution 
of the operation. Device end can occur concurrently 
with channel end or later. 

Operations that keep the control unit busy after 
releasing channel facilities may, in some situations, 
cause a third indication called control-unit end. 
Control-unit end may occur only concurrently with or 
after channel end and indicates that the control unit 
has become available for initiation of another 
operation. 

Concurrent with channel end, both the channel and 
the device can provide indications of unusual 
situations. Control-unit end and device end can be 
accompanied by error indications from the device. 

The indication of the conclusion of an I/O 
operation can be brought to the attention of the 
program by I/O interruptions or, when the CPU is 
disabled for I/O interruptions from the channel, by 
programmed interrogation of the I/O device. An 
indication that will result in an interruption or that 
can be observed through interrogation is called an 
interruption condition. In either case, a CSW is 
stored, which contains additional information 
concerning the execution of the operation. When 
channel end is indicated in the CSW, the CSW 
identifies the last CCW used and provides its residual 
byte count, thus indicating the extent of storage used. 

Facilities are provided for the program to initiate 
the execution of a chain of I/O operations with a 
single START I/O or START I/O FAST RELEASE. 
When the chaining flags in the current CCW specify 
command chaining and no unusual conditions have 
been detected in the operation, the receipt of the 
device-end signal causes the channel to fetch a new 

12-6 IBM 4300 Processors Principles of Operation 

CCW and to initiate a new command at the device. 
A chained command is initiated in the same way as 
the first operation. Channel end and device end are 
not presented to the program when chaining causes 
another operation to follow. However, unusual 
situations can cause premature termination of 
command chaining and generation of an interruption 
condition. 

Activities that cause I/O-interruption conditions are 
asynchronous to activity in the CPU, and more than 
one interruption condition can exist at the same time. 
The channel and the CPU establish priority among 
the conditions so that only one condition is presented 
to the CPU at a time. The conditions are preserved 
in the I/O devices or subchannels until accepted by 
the CPU. 

The execution of an I/O operation or chain of 
operations thus involves up to four levels of 
participation: 
1. Except for the effects caused by the integration 

of CPU and channel equipment, the CPU is busy 
for the duration of execution of START I/O or 
START I/O FAST RELEASE, which lasts at 
most until the addressed I/O device responds to 
the first command. 

2. The subchannel is busy with the execution from 
the initiation of the operation at the I/O device 
until the interruption condition caused by the 
signal that terminates the last operation of the 
command chain is accepted by the CPU. 

3. The control unit may remain busy after the 
subchannel has been released and may generate 
control-unit end when it becomes free. 

4. The I/O device is busy from the initiation of the 
first operation until the interruption condition 
caused by the device end associated with the 
operation is accepted or cleared by the CPU. 

An interruption condition caused by device end 
makes the device appear busy, but normally does not 
affect the state of any other part of the system. An 
interruption condition caused by control-unit end 
normally blocks communications through the control 
unit to any device attached to it, and an interruption 
condition caused by channel end normally blocks all 
communications through the subchannel. 



Compatibility of Operation 
The organization of the I/O system provides for a 
uniform method of controlling I/O operations. The 
capability of a channel, however, depends on its use 
and on the CPU model to which it is attached. 
Channels are provided with different data-transfer 
capabilities, and an I/O device designed to transfer 
data only at a specific rate (a magnetic-tape unit or a 
disk storage, for example) can operate only on a 
channel that can accommodate at least this data rate. 

The data rate a channel can accommodate depends 
also on the way the I/O operation is programmed. 
The channel can sustain its highest data rate when no 
data chaining is specified. Data chaining reduces the 
maximum allowable rate, and the extent of the 
reduction depends on the frequency at which new 
C CW s are fetched and on the address resolution of 
the first byte in each new storage area. Furthermore, 
since a channel shares storage with the CPU and 
other channels, activity in the rest of the system 
affects the accessibility of storage and, hence, the 
instantaneous load the channel can sustain. 

In view of the dependence of channel capacity on 
programming and on activity in the rest of the 
system, an evaluation of the ability of elements in a 
specific I/O configuration to function concurrently 
must be based on a consideration of both the data 
rate and the way the I/O operations are programmed. 
Two systems employing identical complements of I/O 
devices may be able to execute certain programs in 
common, but it is possible that other programs 
requiring, for example, data chaining, may not run on 
one of the systems because of the increased load 
caused by the data chaining. 

Control of Input/Output Devices 
The CPU controls I/O operations by means of eight 
I/O instructions: START I/O, START I/O FAST 
RELEASE,TESTI/O,CLEARI/O,HALTI/O, 
HALT DEVICE, TEST CHANNEL, and STORE 
CHANNELID. 

The instructions TEST CHANNEL and STORE 
CHANNEL ID address a channel; they do not 
address an I/O device. The other six I/O 
instructions address a channel and a device on that 
channel. 

Input/Output Device A.ddressing 
An I/O device and the associated access path are 
designated by an I/O address. The 16-bit I/O 
address consists of two parts: a channel address in 
the leftmost eight bit positions and a device address 
in the rightmost eight bit positions. 

The channel address provides for identifying up to 
256 channels. Channels are numbered 0-255. 
Channel 0 is a byte-multiplexer channel, and each of 
channels 1-255 may be either a multiplexer or a 
selector channel. 

The number and type of channels and subchannels 
available, as well as their address assignment, depend 
on the system model and the particular installation. 

The device address identifies the particular I/O 
device and control unit on the designated channel. 
The address identifies, for example, a particular 
magnetic-tape drive, disk-access mechanism, or 
transmission line. Any number in the range 0-255 
can be used as a device address, providing facilities 
for addressing up to 256 devices per channel. An 
exception is some multiplexer channels that provide 
fewer than the maximum configuration of 
sub channels and hence eliminate the corresponding 
unassignable device addresses. 

Devices that do not share a control unit with other 
devices may be assigned any device address in the 
range 0-255, provided the address is not recognized 
by any other control unit. Logically, such devices are 
not distinguishable from their control unit, and both 
are identified by the same address. 

Devices sharing a control unit (for example, 
magnetic-tape drives or disk-access mechanisms) are 
assigned addresses within sets of contiguous numbers. 
The size of such a set is equal to the maximum 
number of devices that can share the control unit, or 
16, whichever is smaller. Furthermore, such a set 
starts with an address in which the number of low
order zeros is at least equal to the number of bit 
positions required for specifying the set size. The 
high-order bit positions of an address within such a 
set identify the control unit, and the low-order bit 
positions designate the device on the control unit. 

Control units designed to accommodate more than 
16 devices may be assigned nonsequential sets of 
addresses, each set consisting of 16, or the number 
required to bring the total number of assigned 
addresses equal to the maximum number of devices 
attachable to the control unit, whichever is smaller. 
The addressing facilities are added in increments of a 
set so that the number of device addresses assigned to 

Chapter 12. Input/Output Operations 12-7 



a control unit does not exceed the number of devices 
attached by more than 15. 

The control unit does not respond to any address 
outside its assigned set or sets. For example, if a 
control unit is designed to control devices having only 
bits 0000-1001 in the low-order positions of the 
device address, it does not recognize addresses 
containing 1010-1111 in these bit positions. On the 
other hand, a control unit responds to all addresses in 
the assigned set, regardless of whether the device 
associated with the address is installed. If no control 
unit responds to an address, the 110 device appears 
not operational. If a control unit responds to an 
address for which no device is installed, the absent 
device appears in the not-ready state. 

Input/output devices accessible through more than 
one channel have a distinct address for each path of 
communications. This address identifies the channel 
and the control unit. For sets of devices connected 
to two or more control units, the portion of the 
address identifying the device on the control unit is 
fixed, and does not depend on the path of 
communications. 

The assignment of channel and device addresses is 
arbitrary, subject to the rules described and any 
model-dependent restrictions. The assignment is 
made at the time of installation, and the addresses 
normally remain fixed thereafter. 

12-8 IBM 4300 Processors Principles of Operation 

States 0/ the Input/Output System 
The state of the I/O system identified by an 1/0 
address depends on the collective state of the 
channel, subchannel, and I/O device. Each of these 
components of the 110 system can have up to four 
states, as far as the response to an I/O instruction is 
concerned. These states are listed in the figure 
"Input/OutputtSystem States." The name of the 
state is followed by its abbreviation and a brief 
definition. 

A channel, subchannel, or 110 device that. is 
available, interruption-pending, or working is called 
" operational. " A channel, subchannel, or 110 device 
that is interruption-pending, working, or not
operational is called "not available." 

In the case of a multiplexer channel, the channel 
and subchannel are easily distinguishable and, if the 
channel is operational, any combination of channel 
and subchannel states is possible. Since the selector 
channel can have only one subchannel, the channel 
and subchannel are functionally coupled, ~nd certain 
states of the channel are related to those of the 
subchannel. In particular, the working state can 
occur only concurrently in both the channel and 
subchannel and, whenever an interruption condition 
is pending in the subchannel, the channel also is in 
the same state. The channel and subchannel, 
however, are not synonymous, and an interruption 
condition not associated with data transfer, such as 
attention, does not affect the state of the sub channel. 
Thus, the subchannel may be available when the 
channel has an interruption condition pending. 
Consistent distinction between the subchannel and 
channel permits selector and multiplexer channels to 
be covered uniformly by a single description. 



Name 

Channel 

Available 

I nterruption pending 

Working 

Not operational 

Subchannel 

Available 

Interruption pending 

Working 

Not operational 

I/O Device 

Available 

I nterruption pending 

Working 

Not operational 

Abbreviation and Definition 

A 

I 

W 

N 

A 

I 

W 

N 

A 

I 

W 

N 

None of the following states 

Interruption condition immediately available from channel 

Channel operating in burst mode 

Channel not operational 

None of the following states 

Information for CSW available in subchannel 

Subchannel executing an operation 

Subchannel not operational 

None of the following states 

Interruption condition in device 

Device executing an operation 

Device not operational 

Input/Output-System States 

Chapter 12. Input/Output Operations 12-9 



The device referred to in the figure 
"Input/ Output-System States" includes both the 
device proper and its control unit. For some types of 
devices, such as magnetic-tape units, the working and 
the interruption-pending states can be caused by 
activity in the addressed device or control unit. A 
"not available" shared control unit imposes its state 
on all devices attached to the control unit. The states 
of the devices are not related to those of the channel 
and sub channel. 

When the response to an 110 instruction is 
determined by the state of the channel or subchannel, 
the components further removed are not interrogated. 
Thus, 10 composite states may be distinguished as 
conditions for the execution of I/O instructions. 
Each composite state is identified by three letters. 
The first letter specifies the state of the channel, the 
second letter specifies the state of the subchannel, 
and the third letter specifies the state of the device. 
Each letter may be A, I, W, or N, denoting the state 
of the component. The letter X indicates that the 
state of the corresponding component is not 
significant for the execution of the instruction. 

Available (AAA): The addressed channel, 
subchannel, control unit, and 110 device are·· 
operational, are not engaged in the execution of any 
previously initiated operations, and do not contain 
any pending interruption conditions. 

Because of internal activity, some block-multiplexer 
channels may at times appear to be working even 
though they are not engaged in the execution of a 
previously initiated operation and do not contain any 
interruption condition. This will result in a WXX 
state instead of the AAA state. 

Interruption Pending in Device (AAI) or Device 
Working (AAW): The addressed channel and 
subchannel are available. The addressed control unit 
or I/O device is executing a previously initiated 
operation or contains an interruption condition. 
These situations are possible: 
1. The device is executing an operation, such as 

rewinding magnetic tape or seeking on a disk file, 
after signaling channel end. 

2. The control unit associated with the device is 
executing an operation, such as backspacing file 
on a magnetic-tape unit, after signaling channel 
end. 

3. The device or control unit is executing an 
operation on another subchannel or channel. 

12-10 IBM 4300 Processors Principles of Operation 

4. The device or control unit contains the device
end, control-unit-end, or attention condition or a 
channel-end condition associated with a 
terminated operation. 

Device Not Operational (AAN): The addressed 
channel and subchannel are available. The addressed 
I/O device is not operational. A device appears not 
operational when no control unit recognizes the 
address. This occurs when the control unit is not 
provided in the system, when power is off in the 
control unit, or when the control unit has been 
logically disconnected from the system. The not
operational state is indicated also when the control 
unit is provided and is designed to attach the device, 
but the device has not been installed and the address 
has not been assigned to the control unit. (See also 
the section "Input/Output Device Addressing" in this 
chapter.) 
If the addressed device is not installed or has been 

logically removed from the control unit, but the 
associated control unit is operational and the address 
has been assigned to the control unit, the device is 
said to be not ready. When an instruction is 
addressed to a device in the not-ready state, the 
control unit responds to the selection and indicates 
unit check whenever the not-ready state precludes a 
successful execution of the operation. (See the 
section "Unit Check" in this chapter.) 

Interruption Pending in Subchannel (AIX): The 
addressed channel is available. An interruption 
condition is pending in the addressed subchannel. 
The subchannel is able to provide information for a 
CSW. The interruption condition can indicate 
concluding of an operation at the addressed I/O 
device or at another device on the subchannel. The 
state of the addressed device is not significant, except 
when TEST I/O is addressed to the device associated 
with the interruption condition, in which case the 
CSW contains status information provided by the 
device. 

The state AIX does not occur on the selector 
channel. On the selector channel, the existence of an 
interruption condition in the sub channel immediately 
causes the channel to assign to this condition the 
highest priority for I/O interruptions and, hence, 
leads to the state IIX. 

Subchannel Working (A WX): The addressed channel 
is available. The addressed sub channel is executing a 
previously initiated operation or chain of operations 



and has not yet received channel end for the last 
operation. The state of the addressed device is not 
significant, except when HALT I/O or HALT 
DEVICE is issued. During HALT I/O and HALT 
DEVICE, the state of the device may be interrogated 
and will then be indicated in either the CSW or the 
condition code. 

The subchannel-working state does not occur on the 
selector channel since all operations on the selector 
channel are executed in the burst mode and cause the 
channel to be in the working state (WWX). 

Subchannel Not Operational (ANX): The addressed 
channel is available. The addressed subchannel on 
the multiplexer channel is not operational. A 
sub channel is not operational when it is not provided 
in the system. This' state cannot occur on the selector 
channel. 

Interruption Pending in Channel (IXX): The 
addressed channel is not working and has established 
which device will cause the next I/O interruption 
from this channel. The state where the channel 
contains an interruption condition is distinguished 
only by the instruction TEST CHANNEL. This 
instruction does not cause the subchannel and I/O 
device to be interrogated. The other I/O 
instructions, with the exception of STORE 
CHANNEL ID, consider the channel available when 
it contains an interruption condition. A channel with 
an interruption condition may be considered to be 
working by the instruction STORE CHANNEL ID. 
When the channel assigns priority for interruptions 
among devices, the interruption condition is preserved 
in the I/O device or subchannel. (See the section 
"Interruption Conditions" in this chapter.) 

Channel Working (WXX): The addressed channel is 
operating in the burst mode. In the case of the 
multiplexer channel, a burst of bytes is currently 
being handled. In the case of the selector channel, 
an operation or a chain of operations is currently 
being executed, and the channel end for the last 
operation has not yet been signaled. The states of 
the addressed device and, in the case of the 
multiplexer channel, of the subchannel are not 
significant. In addition, because of internal activity, 
some block-multiplexer channels may at times appear 
to be working even though they are not operating in 
burst mode. Depending on the model and the 
channel type, TEST I/O and HALT DEVICE may 
consider the channel to be available when the 

channel is working with a device other than the 
addressed device. 

Channel Not Operational (NXX): The addressed 
channel is not operational. A channel is not 
operational when it is not provided in the system, 
when power is off in the channel, or when it is not 
configured to the CPU. The states of the addressed 
I/O device and subchannel are not significant. 

Resetting of the Input/Output System 
Two types of resetting can occur in the I/O system: 
an I/O system reset and an I/O selective reset. The 
response of each type of I/O device to the two kinds 
of reset is specified in the SL publication for the 
device. 

I/O System Reset 

I/O system reset is performed when the CPU 
performs a program reset, initial-program reset, clear 
reset, or power-on reset, and when a power-on 
sequence is performed by the channel. 

I/O system reset causes the channel to conclude 
operations on all subchannels. Status information 
and all interruption conditions in all subchannels are 
reset, and all operational subchannels are placed in 
the available state. The channel signals system reset 
to all I/O devices attached to it. 

I/O Selective Reset 

The 110 selective reset is performed by some 
channels when they detect certain equipment 
malfunctions. 

I/O selective reset causes the channel to signal 
selective reset to the device that is connected to the 
channel at the time the malfunction is detected. No 
subchannels are reset. 

Effect of Reset on a Working Device 

With either type of reset, if the device is currently 
communicating with a channel, the device 
immediately disconnects from the channel. Data 
transfer and any operation using the facilities of the 
control unit are immediately concluded, and the I/O 
device is not necessarily positioned at the beginning 
of a block. Mechanical motion not involving the use 
of the control unit, such as rewinding magnetic tape 
or positioning a disk-access mechanism, proceeds to 
the normal stopping point, if possible. The device 
appears in the working state until the termination of 
mechanical motion or the inherent cycle of operation, 

Chapter 12. Input/Output Operations 12-11 



if any, whereupon it becomes available. Status 
information in the device and control unit is reset, 
but an interruption condition may be generated upon 
completing any mechanical operation. 

Reset Upon Malfunction 

When a malfunction occurs and the program is 
alerted by an I/O interruption, or when a 
malfunction occurs during the execution of an I/O 
instruction and the program is alerted by the setting 
of a condition code, then an I/O selective- reset may 
have been performed. A CSW is stored identifying 
the cause of the malfunction. 

The device addressed by the I/O instruction is not 
necessarily the device that is reset. 

When a malfunction occurs and the program is 
alerted by a machine-check interruption, then an I/O 
selective reset may have been performed. This may 
or may not be accompanied by an I/O interruption. 
When no I/O interruption occurs, a CSW is not 
stored and a device is not identified. 

12-12 IBM 4300 Processors Principles of Operation 

Condition Code 
The results of certain tests by the channel and device, 
and the original state of the addressed part of the 
I/O system are used during the execution of an I/O 
instruction to set one of four condition codes in the 
PSW. The condition code is set at the time the 
execution of the instruction is concluded, that is, the 
time the CPU is released to proceed with the next 
instruction. The condition code ordinarily indicates 
whether or not the function specified by the 
instruction has been performed and, if not, the reason 
for the rejection. In the case of START I/O FAST 
RELEASE executed independent of the device, a 
condition code 0 may be set that is later superseded 
by a deferred condition code stored in the CSW. 

The figure "Condition-Code Settings for I/O States 
and Instructions" lists the I/O-system status and the 
corresponding condition codes for each I/O 
instruction. The I/O-system states and associated 
abbreviations were" defined in the section "States of 
the Input/Output System" earlier in this chapter. 
The digits in the figure represent the decimal value of 
the code. The instructions START I/O and START 
1/ 0 FAST RELEASE can set condition code 0 or 1 
for the AAA state, depending on the type of 
operation initiated. Equipment malfunctions and 
programming errors generally cause condition code 1 
to be set and the CSW to be stored. 



IIO-System States 1/0 State 

Available AAA 

Interruption pending in device AAI 

Device working AAW 

Device not operational AAN 

Interruption pending in subchannel AIX 

For the addressed device 

For another device 

Subchannel worki ng AWX 

With the addressed device 

With another device 

Subchannel not operational ANX 

Interruption pending in channel IXX 

Channel working WXX 

With the addressed device 

With another device 

I nternal activity 

Channel not operational NXX 

Explanation: 

* Whenever condition code 1 is set, the CSW or its status 
portion is stored at location 64 during execution of the 
instruction. 

** When CLEAR 110 encounters the WXX state, either 
condition code 2 is set, or the channel is treated as 
available and the condition code is set according to the 
state of the subchannel. When the channel is treated as 
available, the condition codes for the WXX states are the 
same as for the AXX states. 

***Condition code 1 (with the CSW stored) or 2 may be 
set, depending on the channel. 

=/: The condition code depends on the state of the subchannel, 
the channel type, and the system model. If the sub
channel is not operational, a condition code 2 or 3 is set. 
If the subchannel is available or working with the 
addressed device, condition code 2 is set. Otherwise, a 
condition code 0 or i2 is set. 

# When a "device not operational" response is received in 
selecting the addressed device, condition code 3 is set. 

@ START 110 FAST RELEASE may cause the same 
condition code to be set as for START 110 or may cause 
condition code 0 to be set. 

Condition-Code Settings for I/O States and Instructions 

Condition~Code Settings 
SIO 
SIOF TIO CLRIO HIO HDV TCH STIDC 

0,1*@ 0 0 1* 1* -0- -0-

1*@ 1* 0 1* 1* 0 0 
1*@ 1* 0 1* 1* 0 0 

3@ 3 0 3 3 0 0 

2 

2 

2 

2 

3 

2 

2 

2 

3 

1* 1* 0 0 0 0 

2 0 0 0 0 0 

2 1* 1*# 1*# 0 0 

2 0 1*# 0 0 0 

3 3 3 3 0 0 

See Note ## 

2 2 + 2 ## 

2. 2 =/: 2 ## 
2. 2 ~ 2 ## 

3 3 3 3 3 3 

+ If the channel ascertains that the device received the signal 
to terminate, condition code 1 is set and the CSW stored. 
Otherwise, condition code 2 is set. 

## When the channel is unable to store the channel I D because of 
the working or interruption-pending state, condition code 2 
is set. If the working or interruption-pending state does not 
preclude storing the channel 10, condition code 0 is set. 

• If the subchannel is interruption pending for the addressed 
device, condition code 1 may be set depending on the channel 
type. 

Note: For the purpose of executing START I/O, START I/O 
FAST RELEASE, TEST 110, CLEAR 110, HALT DEVICE., and 
HALT 110, a channel containing an interruption condition 
appears the same as an available channel, and the condition-code 
setting depends on the states of the subchannel and device. The 
condition codes for the I XX states are the same as for the AXX 
states, where the Xs represent the states of the subchannel and the 
device. As an example, the condition code for the lAW state is 
the same as for AAW. 

Chapter 12. Input/Output Operations 12-13 



The available state is indicated only when no errors 
are detected during the execution of the I/O 
instruction. 

When a sub channel on a multiplexer channel 
contains an interruption condition (state AIX), the 
I/O device associated with the concluded operation 
normally is in the interruption-pending state. When 
the channel detects during the execution of TEST 
I/O that the device is not operational, condition code 
3 is set. Similarly, condition code 3 is set when 
HAL T I/O or HALT DEVICE is addressed to a 
sub channel in the working state (state AWX), but the 
device is not operational. 

Error conditions, including all equipment or 
programming errors detected by the channel or the 
I/O device during execution of the I/O instruction, 
generally cause the CSW to be stored. However, 
when the nature of the error causes a machine-check 
interruption but no I/O interruption to occur, the 
CSW is not stored. Three types of errors can occur: 

Channel-Equipment Error: The channel can detect 
the following equipment errors during execution of 
START I/O, START I/O FAST RELEASE, TEST 
I/O, CLEAR I/O, HALT I/O, and HALT DEVICE: 
1. The channel received an address from the device 

during initial selection that either had a parity 
error or was not the same as the one the channel 
sent out. Some device other than the one 
addressed may be malfunctioning. 

2. The unit-status byte that the channel received 
during initial selection had a parity error. 

3. A signal from the I/O device occurred at an 
invalid time or had invalid duration. 

4. The channel detected an error in its control 
equipment. (This is also true for STORE 
CHANNEL ID and TEST CHANNEL.) 

The channel may perform an I/O selective reset or 
may generate a halt signal, depending on the type of' 
error and the model. If a CSW is stored, channel
control check or interface-control check is indicated, 
depending on the type of error. 

Channel-Programming Error: The channel can 
detect the following programming errors during 
execution of ST ART I/O or ST ART I/O FAST 
RELEASE. All of the errors are indicated during 
START I/O, and during START I/O FAST 
RELEASE when it is executed as START I/O, by the 
condition-code setting and by the status portion of 
the CSW. When the SIOF function is performed, the 
first two errors are indicated as for START I/O, and 

12-14 IBM 4300 Processors Principles of Operation 

the remaining errors are indicated in a subsequent 
interruption. 
1. Invalid CCW -address specification in CAW 
2. Invalid CAW format 
3. Storage location of first CCW not provided 
4. First-CCW location in a disconnected page 
5. First-CCW location protected against fetching 
6. First CCW specifies transfer in channel 
7. Invalid command code in first CCW 
8. Invalid count in first CCW 
9. Invalid format for first CCW 

The CSW indicates program check, except for items 
4 and 5, for which protection check is indicated. 

Device Error: Programming or equipment errors 
detected by the device during the execution of 
START I/O, or START I/O FAST RELEASE are 
indicated by unit check or unit exception in the CSW. 

The causes of unit check and unit exception for 
each type of 110 device are detailed in the SL 
publication for the device. 

Instruction Formats 
All I/O instructions use the following S format: 

Op Code 02 

o 16 20 31 

Except for STORE CHANNEL ID, bit positions 
8-14 of these instructions are ignored. Bit position 
15 is ignored by the instruction TEST CHANNEL 
but is decoded as part of the operation code for 
START I/O, START I/O FAST RELEASE, TEST 
I/O, CLEAR I/O, HALT I/O, and HALT DEVICE. 

The second-operand address specified by the B2 
and D2 fields is not. used to designate data but 
instead is used to identify the channel and 1/ ° 
device. Address computation follows the rules of 
address arithmetic. The address has the following 
format: 

_ Chn Add. I Dev Add. I 
8 16 24 31 

Bit positions 16-3 1 contain the 16-bit 1/ ° address. 
Bit positions 8-15 are ignored. 



Instructions 
All I/O instructions cause a serialization function to 
be performed. See the section "Serialization" in 
Chapter 5, "Program Execution. " 

The names, mnemonics, format, and operation 
codes of the I/O instructions are listed in the figure 
"Input/ Output Instructions." The figure also 
indicates that all I/O instructions cause a program 
interruption when they are encountered in the 

Name Mnemonic Characteristics 

CLEAR I/O 

HALT DEVICE 

HALT I/O 

START I/O 

START I/O FAST RELEASE 

STORE CHANNEL ID 

TEST CHANNEL 

TEST I/O 

Explanation: 

C Condition code is set. 

M Privileged-operation exception. 

S S instruction format. 

CLRIO 

HOV 

HIO 

SIO 

SIOF 

STiOC 

TCH 

TIO 

* Bits 8-14 of the operation code are ignored. 

j Bits 8-15 of the operation code are ignored. 

~ Causes serialization. 

[nput/Output Instructions 

S C M 
S C M 
S C M 

S C M 
S C M 

S C M 

S C M 
S C M 

problem state, and that all I/O instructions set the 
condition code. 

Note: In the detailed descriptions of the individual 
instructions, the mnemonic and the symbolic operand 
designation for the assembler language are shown 
with each instruction. In the case of STAR T I/O, 
for example, SIO is the mnemonic and D 2(B 1J the 
operand designation. 

Code 

$ 9001* 

$ 9E01* 

$ 9EOO* 

$ 9COO* 

$ 9C01* 

$ B203 

$ 9 FOO;t 

$ 9000* 

Chapter 12. Input/Output Operations 12-15 



Programming Note 

The instructions START I/O, START I/O FAST 
RELEASE, TEST I/O, CLEAR I/O, HALT I/O, 
HAL T DEVICE, and STORE CHANNEL ID cause a 
CSW to be stored. To prevent the contents of the 
CSW stored by the instruction from being destroyed 
by an immediately following I/O interruption, the 
CPU must be disabled for all I/O interruptions 
before START I/O, START I/O FAST RELEASE, 
TEST I/O, CLEAR I/O, HALT I/O, HALT 
DEVICE, or STORE CHANNEL ID is issued and 
must remain disabled until the information in the 
CSW provided by the instruction has been acted upon 
or stored elsewhere for later use. 

CLEA.R 1/0 

CLRIO D2(B2) [S] 

'9001' 82 I 02 

0 16 20 31 

Either a TIO or CLRIO function is performed, 
depending on the block-multiplexing control, bit 0 of 
control register o. The TIO function is performed 
when the block-multiplexing-control bit is zero. 

The TIO function is described in the definition of 
the instruction TEST I/O. 

Bits 8-14 of the instruction are ignored. Bit 
positions 16-31 of the second-operand address 
identify the channel, subchannel, and I/O device to 
which the instruction applies. 

The CLRIO function causes the current operation 
with the addressed device to be discontinued and the 
state of the operation at the time of the 
discontinuation to be indicated in the stored CSW. 

When the subchannel is available, interruption
pending with another device, or working with another 
device, no channel action is taken, and condition 
code 0 is set. Channels not capable of determining 
subchannel states while in the working state may 
instead set condition code 2. 

When the sub channel is either working with the 
addressed device or interruption-pending with the 
addressed device, the CLRIO function causes the 
channel to discontinue the operation with the 
addressed device by storing the status of the 
operation in the CSW and making the subchannel 
available. When the channel is working with the 
addressed device, the device is signaled to terminate 

12-16 IBM 4300 Processors Principles of Operation 

the current operation. Some channels may, instead, 
indicate busy and cause no channel action. 

When any of the following conditions occurs, the 
CLRIO function causes the CSW at location 64 to be 
stored. The contents of the entire CSW pertain to 
the I/O device addressed by the instruction. 
1. The channel is available or interruption-pending, 

and the sub channel contains an interruption 
condition for the addressed device or is working 
with the addressed device. The subchannel-key, 
command-address, and count fields describe the 
state of the operation at the time of the execution 
of the instruction. 

2. The channel is working with the addressed 
device. The subchannel-key, command-address, 
and count fields describe the state of the 
operation at the time the instruction is executed. 
(Some channels alternatively indicate busy under 
this condition.) 

3. The channel is working with a device other than 
the one addressed, and the subchannel contain~ 
an interruption-pending condition for the 
addressed device or is working with the addressed 
device. The subchannel-key, command-address, 
and count fields describe the state of the 
operation at the time CLEAR I/O is executed. 
(Some channels alternatively indicate busy under 
these conditions.) 

4. The channel detected an equipment error during 
the execution of the instruction.· The CSW 
identifies the error condition. The states of the 
channel and the I/O operations in progress are 
unpredictable. The limited channel logout, if 
stored, indicates a sequence code of 000. 

When CLEAR I/O cannot be executed because of 
a pending logout that affects the operational 
capability of the channel, a full CSW is stored. The 
fields in the CSW are all set to zeros, with the 
exception of the logout-pending and channel
control-check bits, which are set to ones. No channe 
logout is associated with this status. 

Program Exceptions: 

Privileged Operation 

Resulting Condition Code: 

o No operation in progress for the addressed devic 
1 CSW stored 
2 Channel busy 
3 Not operational 

The condition code set by the CLRIO function for 
all possible states of the I/O system is shown in the 



figure "Condition Codes Set By CLEAR I/O." See 
the section "States of the Input/Output System" in 
this chapter for a detailed definition of the A, I, W, 
and N states. The condition code set when CLEAR 

I/O causes the TIO function to be performed is 
shown in the figure "Condition Codes Set By TEST 
I/O" in the definition of the instruction TEST I/O. 

Channel 
A 

Subchannel 

A 

W 

N 

o 0 1* 0 1* 3 

Available 

Interruption pending 

11= = I nterruption pending for a device other than 
the one addressed 

1#= I nterruption pending for the addressed device 

Working 

W1= = Working with a device other than the one 
addressed 

W#= Working with the addressed device 

Not operational 

CSWstored 

Condition Codes Set By Clear I/O 

W1= 

t In the W1=AX, W1=I1=X, and W#lIJ1=X states, a 
condition code 0 or 2 may be set, depending on the 
channel. 

tt In the W1=I#X, wm#x, and W#XX states, a 
condition code 1 (with the CSW stored) or 2 may be set, 
depending on the channel. 

ttt I n the W1= NX state, a condition code 2 or 3 may be set, 
depending on the channel. 

Note: Underscored codes pertain to situations that can 
occur only on the multiplexer channel. 

Chapter 12. Input/Output Operations 12-17 



Programming Notes 

1. Since some channels cause a condition code 2 to 
be set when the instruction is received and the 
channel is working, it may be useful to issue a 
halt instruction and then CLEAR I/O to the 
desired address. Using HALT DEVICE will 
ensure that condition code 2 is received on the 
CLEAR I/O only when the channel is working 
with a device other than the one addressed. 
Using HALT I/O will ensure that the current 
working state, if any, is terminated without 
regard for the address. 

2. Because of the inability of CLEAR I/O to 
terminate operations on some channels when in 
the working state, the instruction is not a suitable 
substitute for HALT I/O or HALT DEVICE. 

3. The combination of HALT DEVICE followed by 
CLEAR I/O can be used to clear out all activity 
on a channel by executing the two instructions 
for all device addresses on the channel. 

HALT DEVICE 

HDV [S] 

'9E01' 

o 16 20 

The current I/O operation at the addressed I/O 
device is terminated. The subsequent state of the 
subchannel depends on the type of channel. Bits 
8-14 of the instruction are ignored. 

31 

Bits 16-31 of the second-operand address identify 
the channel, the subchannel, and the I/O device to 
which the instruction applies. 

When the channel is either available or 
interruption-pending with the subchannel available or 
working with the addressed device, HALT DEVICE 
causes the addressed device to be selected and to be 
signaled to terminate the current operation, if any. If 
the subchannel is working with the addressed device, 
HALT DEVICE also causes the sub channel to signal 
termination of the device operation the next time the 
device requests or offers a byte of data, if any. If 
chaining is indicated for the I/O operation using the 
subchannel, it is suppressed. If the subchannel is 
available, the subchannel is not affected. 

When the channel is either available or 
interruption-pending with the subchannel either 
working with a device other than the one addressed 
or interruption-pending, no action is taken. 

12-18 IBM 4300 Processors Principles of Operation 

When the channel is working in burst mode with the 
addressed device, data transfer for the operation is 
immediately terminated, and the device immediately 
disconnects from the channel. If chaining is 
indicated for the I/O operation using the subchannel, 
it is suppressed. 

When the channel is working in burst mode with a 
device other than the one addressed, and the 
subchannel is available, interruption-pending, or 
working with a device other than the one addressed, 
no action is taken. If the sub channel is working with 
the addressed device, the sub channel signals 
termination of the device operation the next time the 
device requests or offers a byte of data, if any. If 
chaining is indicated for the I/O operation using the 
subchannel, it is suppressed. 

When the channel is working in burst mode with a 
device other than the one addressed and the 
subchannel is not operational, is interruption-pending, 
or is working with a device other than the one 
addressed, the resulting condition code may, in some 
channels, be determined by the subchannel state. 

Termination of a burst operation by HALT 
DEVICE on a selector channel causes the channel 
and subchannel to be placed in the interruption
pending state. Generation of the interruption 
condition is not contingent on the receipt of status 
information from the device. When HALT DEVICE 
causes a burst operation on a byte-multiplexer 
channel to be terminated, the subchannel associated 
with the burst operation remains in the working state 
until the device provides ending status, whereupon 
the subchannel enters the interruption-pending state. 
The termination of a burst operation by HALT 
DEVICE on a block-multiplexer channel may, 
depending on the model and the type of subchannel, 
take place as for a selector channel or may allow the 
subchannel to remain in the working state until the 
device provides ending status. 

When any of the three situations numbered below 
occurs, HALT DEVICE causes the 16-bit unit-status 
and channel-status portion of the CSW to be replaced 
by a new set of status bits. The contents of the other 
fields of the CSW are not changed. The CSW stored 
by HALT DEVICE pertains only to the execution of 
HALT DEVICE and does not describe the I/O 
operation, at the addressed subchannel, that is 
terminated. The extent of data transfer, and the 
status at the termination of the operation at the 
subchannel, are provided in the CSW associated with 
the interruption condition caused by the termination. 
The three situations are: 



1. The addressed device is selected and signaled to 
terminate the current operation, if any. The 
CSW then contains zeros in the status field unless 
a machine malfunction is detected. 

2. The control unit is busy and the device cannot be 
given the signal to terminate the operation. The 
CSW unit-status field contains ones in the busy 
and status-modifier bit positions. The channel
status field contains zeros unless a machine 
malfunction is detected. 

3. The channel detects a machine malfunction 
during the execution of HALT DEVICE. The 
status bits in the CSW then identify the type of 
malfunction. The state of the channel and the 
progress of the I/O operation are unpredictable. 

When HALT DEVICE cannot be executed because 
of a pending logout which affects the operational 
capability of the channel or subchannel, a full CSW is 
stored. The fields in the CSW are all set to zeros, 
with the exception of the logout-pending bit and the 
channel-control-check bit, which are set to ones. No 
channel logout occurs in this case. 

When HALT DEVICE causes data transfer to be 
terminated, the control unit associated with the 
operation remains not available until the data
handling portion of the operation in the control unit 
is concluded. Conclusion of this portion of the 
operation is signaled by the generation of channel 
end. This may occur at the normal time for the 
operation, or earlier, or later, depending on the 
~peration and type of device. If the control unit is 
;hared, all devices attached to the control unit appear 
'In the working state on that channel until the 
!hannel-end condition is accepted by the cpu. The 
[j 0 device executing the terminated operation 
~emains in the working state until the end of the 

inherent cycle of the operation, at which time device 
end is generated. If' blocks of data at the device are 
defined, as in read-type operations on magnetic tape, 
the recording medium is advanced to the beginning of 
the next block. 

When HALT DEVICE is issued at a time when the 
sub channel is available and no burst operation is in 
progress, the effect of the HALT DEVICE signal 
depends partially on the type of device and its state. 
In all cases, the HALT DEVICE signal has no effect 
on devices that are not in the working state or are 
executing a mechanical operation in which data is not 
transferred, such as rewinding tape or positioning a 
disk-access mechanism. If the device is executing a 
type of operation that is unpredictable in dUration, or 
in which data is transferred, the device interprets the 
signal as one to terminate the operation. Pending 
attention or device-end conditions at the device are 
not reset. 

Program Exceptions: 

Privileged Operation 

Reslliting Condition Code: 

o Subchannel busy with another device or 
interruption pending 

1 CSW stored 
2 
3 

Channel working 
Not operational 

The condition code set by HALT DEVICE for all 
possible states of the 110 system is shown in the 
figure "Condition Codes Set by HALT DEVICE." 
See the section "States of the Input/Output System" 
in this chapter for a detailed definition of the A, I, 
W, and N states. 

Chapter 12. Input/Output Operations 12-19 



Channel 

Subchannel 

Control Unit 
- Device 

A Available 

A 

I A II IWI N I 
1* 1* 1* 3 

Interruption pending 

W Working 

A 

W# 

IA II IWI N I 
~ 1: ~ ~ 

Wi- = Working with a device other than the one 
addressed 

W# = Working with the addressed device 

N Not operational 

CSW stored 

Note: Underscored condition codes pertain to situations 
that can occur only on the multiplexer channel. 

Condition Codes Set By HALT DEVICE 

WI 
@ 3 

A W# 
o Q 

IA I I IW IN I I A I I IW I N I 
1* 1* 1* 3 1.:. ~ !..:. ~ 

@ In the W# XX state, either condition code 1 (with CSW 
stored) or condition code 2 may be set, depending on 
the channel. However, condition code 1 (with CSW 
stored) can be set only if the control unit has received 
the signal to terminate or if control-unit-busy status is 
received by the channel. 

+ In the Wi-IX and WfWi-X states, either condition code 0 
or 2 may be set. 

• In the W#NX state, either condition code 2 or 3 may be 
set, depending on the model and the channel type. 

12-20 IBM 4300 Processors Principles of Operation 



Programming Note 

The execution of HALT DEVICE always causes data 
transfer between the addressed device and the 
channel to be terminated. The condition code and 
the CSW (when stored) indicate whether the control 
unit was signaled to terminate its operation during 
the execution of the instruction. If the control unit 
was not signaled to terminate its operation, the 
condition code and the CSW (when stored) imply the 
.situations under which the execution of a HALT 
DEVICE for the same address will cause the control 
unit to be signaled to terminate. 

Condition Code 0 indicates that HALT DEVICE 
cannot signal the control unit until an interruption 
condition on the same sub channel is cleared. 

Condition Code 1 with Control-Unit-Busy Status in 
the CSW indicates that HALT DEVICE cannot 
signal the control unit until the control-unit-end 
status is received from that control unit. 

Condition Code 1 with Zeros in the Status Field of 
the CSW indicates that the addressed device was 
selected and signaled to terminate the current 
operation, if any. 

Condition Code 2 indicates that the control unit 
cannot be signaled until the channel is not working. 
The end of the working state can be detected by 
noting an interruption from the channel or by noting 
the results of repeatedly executing HALT DEVICE. 

Condition Code 3 indicates that manual 
intervention is required in order to allow HALT 
DEVICE to signal the control unit to terminate. 

HALT I/O 

HIO D 2(B2) [S] 

'9EOO' 82 I 02 

0 16 20 31 

Execution of the current I/O operation at the 
addressed I/O device, subchannel, or channel is 
terminated. The subsequent state of the subchannel 
depends on the type of channel. Bits 8-14 of the 
instruction are ignored. 

Bits 16-31 of the second-operand address identify 
the channel and, when the channel is not working, 
identify the subchannel and the I/O device to which 
the instruction applies. 

When the channel is either available or 
interruption-pending, with the subchannel either 
available or working, HALT I/O causes the 

addressed device to be selected and to be signaled to 
terminate the current operation, if any. If the 
subchannel is available, its state is not affected. If, 
on the byte-multiplexer channel, the subchannel is 
working, data transfer is immediately terminated, but 
the subchannel remains in the working state until the 
device provides the next status byte, whereupon the 
sub channel is placed in the interruption-pending 
state. 

When HALT I/O is issued to a channel operating in 
the burst mode, data transfer for the burst operation 
is terminated, and the device performing the burst 
operation is immediately disconnected from the 
channel. The subchannel and I/O-device address in 
the instruction, in this case, is ignored. . 

The termination of a burst operation by HALT I/O 
on the selector channel causes the channel and 
subchannel to be placed in the interruption-pending 
state. Generation of the interruption condition is not 
contingent on the receipt of a status byte from the 
device. When HALT I/O causes a burst operation 
on the byte-multiplexer channel to be terminated, the 
subchannel associated with the burst operation 
remains in the working state until the device signals 
channel end, whereupon the subchannel enters the 
interruption-pending state. The termination of a 
burst operation by HAL T I/O on a block-multiplexer 
channel may, depending on the model and the type of 
subchannel, take place as for a selector channel or 
may allow the subchannel to remain in the working 
state until the device provides ending status. 

On the byte-multiplexer channel operating in the 
byte-multiplex mode, the device is selected and the 
instruction executed only after the channel has 
serviced all outstanding requests for data transfer for 
previously initiated operations, including the 
operation to be halted. If the control unit does not 
accept the HALT I/O signal because it is in the not
operational or control-unit-busy state, the subchannel, 
if working, is set up to signal termination of device 
operation the next time the device requests or offers 
a byte of data. If command chaining is indicated in 
the subchannel and the device presents s~atus next, 
chaining is suppressed. 

When the addressed subchannel is interruption
pending, with the channel available or interruption
pending, HALT I/O does not cause any action. 

When any of the following conditions occurs, 
HALT I/O causes the status portion, bits 32-47, of 
the CSW to be replaced by a new set of status bits. 
The contents of the other fields of the CSW are not 
changed. The CSW stored by HALT I/O pertains 

Chapter 12 .. Input/Output Operations 12-21 



only to the execution of HALT I/O and does not 
describe the I/O operation, at the addressed 
subchannel, that is terminated. The extent of data 
transfer, and the status at the termination of the 
operation at the subchannel, are provided in the CSW 
associated with the interruption condition due to the 
termination. 
1. The addressed device was selected and signaled 

to terminate the current operation. The CSW 
contains zeros in the status field unless an 
equipment error is detected. 

2. The channel attempted to select the addressed 
device, but the control unit could not accept the 
HALT I/O signal because it is executing a 
previously initiated operation or had an 
interruption condition associated with a device 
other than the one addressed. The signal to 
terminate the operation has not been transmitted 
to the device, and the subchannel, if in the 
working state, will signal termination the next 
time the device identifies itself. The CSW unit
status field contains ones in the busy and status
modifier bit positions. The channel-status field 
contains zeros unless an equipment error is 
detected. 

3. The channel detected an equipment malfunction 
during the execution of HALT I/O. The status 
bits in the CSW identify the error condition. The 
state of the channel and the progress of the 1/0 
operation are unpredictable. 

When HALT I/O cannot be executed because of a 
pending logout which affects the operational 
capability of the channel or subchannel, a full CSW is 
stored. The fields in the CSW are all set to zeros, 
with the exception of the logout-pending bit and the 
channel-control-check bit, which are set to ones. No 
channel logout occurs in this case. 

When HALT I/O causes data transfer to be 
terminated, the control unit associated with the 
operation remains unavailable until the data-handling 
portion of the operation in the control unit is 
terminated. Termination of the data-transfer portion 

12-22 IBM 4300 Processors Principles of Operation 

of the operation is signaled by the generation of 
channel end, which may occur at the normal time for 
the operation, earlier, or later, depending on the 
operation and type of device. If the control unit is 
shared, all devices attached to the control unit appear 
in the working state until the channel-end signal is 
accepted by the CPU. The I/O device executing the 
terminated operation remains in the working state 
until the end of the inherent cycle of the operation, 
at which time device end is generated. If blocks of 
data at the device are defined, such as reading on 
magnetic tape, the recording medium is advanced to 
the beginning of the next block. 

When HALT I/O is issued at a time when the 
subchannel is available and no burst operation is in 
progress, the effect of the HALT I/O signal depends 
on the type of device and its state and is specified in 
the SL publication for the device. The HALT 1/0 
signal has no effect on devices that are not in the 
working state or are executing a mechanical operation 
in which data is not transferred, such as rewinding 
tape or positioning a disk-access mechanism. If the 
device is executing a type of operation that is variable 
in duration, the device interprets the signal as one to 
terminate the operation. Attention or device-end 
signals at the device are not reset. 

Program Exceptions: 

Privileged Operation 

Resulting Condition Code: 

o Interruption pending in subchannel 
1 CSW stored 
2 Burst operation terminated 
3 Not operational 

The condition code set by HALT I/O for all 
possible states of the I/O system is shown in the 
figure "Condition Codes Set By HALT I/O." See 
the section "States of the Input/Output System" in 
this chapter for a detailed definition of the A, I, W, 
and N states. 



I 
Channel 

Subchannel 

Control Unit 
- Device 

A Available 

A 

A 

A I W N 

'1*'1* 1 1*'3 

Interruption pending 

W Working 

N Not operational 

CSW stored 

2 3 

A 

A I W N 

1 1* 1 1* 1 1* 1 3 

# When a device~not-operational response is received in selecting the addressed device, 
a condition code 3 is set. 

Note: Underscored condition codes pertain to situations that can occur only on the multiplexer channel. 

Condition Codes Set by HALT I/O 

Programming Note 
The instruction HALT I/O provides the program with 
a means of terminating an I/O operation before all 
data specified in the operation has been transferred 
or before the operation at the device has reached its 
normal ending point. It permits the program to 
immediately free the selector channel for an 
operation of higher priority. On the byte-multiplexer 
channel, HALT I/O provides a means of controlling 
real-time operations and permits the program to 
terminate data transmission on a communication line. 

START I/O 

SIO D 2(B2) [S] 

'9COO' 82 I D2 
..::;; 

0 16 20 31 

START I/O FAST RELEASE 

SIOF D(B2) [S] 

'9C01' 82 I D2 

0 16 20 31 

A write, read, read backward, control, or sense 
operation is initiated with the addressed I/O device 
and subchannel. Bits 8-14 of the instruction are 
ignored. 

Either an SIO or SIOF function is performed, 
depending on the instruction, the channel, and the 
block-multiplexing control, bit 0 of control register O. 
The instruction START I/O always causes the SIO 
function to be performed, as does START I/O FAST 
RELEASE when the block-multiplexing-control bit is 
zero. When the bit is one, START 1/ 0 FAST 
RELEASE may, depending on the channel, cause 
either the SIO or the SIOF function to be performed. 

Bits 16-31 of the second-operand address identify 
the channel, subchannel, and I/O device to which the 
instruction applies. The CAW, at location 72, 
contains the subchannel key and the address of the 
first CCW. This CCW specifies the operation to be 
performed, the storage area to be used, and the 
action to be taken when the operation is completed. 

For the SIO function, the I/O operation is initiated 
if the addressed I/O device and subchannel are 
available, the channel is available or interruption
pending, and errorS or exceptional situations have not 
been detected. The I/O operation is not initiated 
when the addressed part of the I/O system is in any 
other state or when the channel or device detects any 
error or exceptional situations during execution of the 
instruction. 

For the SIOF function, the I/O operation is 
initiated if the subchannel is available, the channel is 
available or interruption-pending, and errors or 
exceptional situations have not been detected. The 
I/O operation is not initiated when the sub channel 
and channel are in any other state or when the 
channel or device detects any error or exceptional 
situation during execution of the instruction. The 

Chapter 12. Input/Output Operations 12-23 



device state or device-detected errors are not relevant 
during instruction execution but are indicated in a 
CSW stored during a subsequent interruption. 

When the channel is available or interruption
pending, and the subchannel is available before the 
execution of the instruction, the following situations 
cause a CSW to be stored. How the CSW is stored 
depends on whether an SIO or SIOF function is 
performed. The SIO function causes the status 
portion of the CSW to be replaced by a new set of 
status bits. The status bits pertain to the device 
addressed by the instruction. The contents of the 
other fields of the CSW are not changed. When the 
SIOF function is performed, the first situation causes 
the same action as for the SIO function; also, the 
control-unit state may be tested, and so situation 5 
may cause the same action as for the SIO function, or 
the situation may be indicated in a subsequent 
interruption during which the entire CSW will be 
stored. The remaining situations for the SIOF 
function will be indicated in a subsequent 
interruption, during which the entire CSW will be 
stored. 
1. The channel detects a programming error in the 

contents of the CAW or detects an equipment 
error during execution of the instruction. The 
CSW identifies the error. The channel-end and 
busy bits are zeros, unless, for the SIO function, 
the error was detected after the device was 
selected, and the device was found to be busy, in 
which case the busy bit, as well as any bits 
indicating interruption conditions, are ones. The 
interruption conditions indicated in the CSW 
have been cleared at the device. The I/O 
operation is not initiated. No interruption 
conditions are generated at the I/O device or 
subchannel. The state of the PCI bit in the CSW 
is unpredictable. 

2. The channel detects a programming error 
associated with the first CCW or, for the SIOF 
function, the channel detects an equipment error 
after completion of the instruction. The CSW 
identifies the error. The channel-end and busy 
bits are zeros, unless the error was detected after 
the device was selected, and the device was found 
to be busy, in which case the busy bit, as well as 
any bits indicating interruption conditions, are 
ones. The interruption conditions indicated in 
the CSW have been cleared at the device. The 
I/O operation is not initiated. No interruption 
conditions are generated at the I/O device or 

12-24 IBM 4300 Processors Principles of Operation 

sub channel. The state of the PCI bit in the CSW 
is unpredictable. 

3. An immediate operation was executed, and either 
(a) no command chaining is specified and no 
command retry occurs, or .. (b). chaining is 
suppressed because of unusual situations detected 
during the operation. In the CSW, the channel
end bit is one, the busy bit is zero, and other 
status may be indicated. The PCI bit is one if 
PCI was specified in the first CCW. The I/O 
operation is initiated, but no information has 
been transferred to or from the storage area 
designated by the CCW. No interruption 
conditions are generated at the subchannel, and 
the subchannel is available for a new I/O 
operation. If device end is not indicated, the 
device remains busy, and a subsequent device-end 
condition is generated. 

4. The I/O device is interruption-pending, or the 
control unit is interruption-pending for the 
addressed device. The CSW unit-status field 
contains one in the busy-bit position, identifies 
the interruption condition, and may contain other 
bits provided by the device or control unit. The 
interruption condition is cleared. The 1/0 
operation is not initiated. The channel-status 
field indicates any errors detected by the channel, 
and the PCI bit is one if PCI was specified in the 
first CCW. 

5. The I/O device or the control unit is executing a 
previously initiated operation, or the control unit 
is interruption-pending for a device other than 
the one addressed. The CSW unit-status field 
contains one in the busy-bit position or, if the 
control unit is busy, the busy and status-modifier 
bits are ones. The I/O operation is not initiated. 
The channel-status field indicates any errors 
detected by the channel, and the PCI bit is one if 
specified in the first CCW. 

6. The I/O device or control unit detected an 
equipment or programming error during the 
initiation, or the addressed device is not ready. 
The CSW identifies the error. The channel-end 
and busy bits are zeros, unless the device was 
busy, in which case the busy bit, as well as any 
bits causing interruption conditions, are ones. 
The interruption conditions indicated in the CSW 
have been cleared at the device. The 1/0 
operation is not initiated. No interruption 
conditions are generated at the I/O device or 
subchannel. The PCI bit in the CSW is one if 
PCI was specified in the first CCW. 



When the SIO or SIOF function cannot be executed 
because of a pending logout which affects the 
operational capability of the channel or subchannel, a 
full CSW is stored. The fields in the CSW are all set 
to zeros, with the exception of the logout-pending bit 
and the channel-control-check bit, which are set to 
ones. No channel logout occurs in this case. 

When the SIOF function causes condition code 0 to 
be set and subsequently a situation is encountered 
which would have caused a condition code 1 to be set 
had the function been SIO, a deferred-condition
code-I! I/O-interruption condition is generated. 
When the SIOF function causes condition code 0 to 
be set and, subsequently, it is determined that the 
device is not operational, a deferred-condition-code-3 
I/O-interruption condition is generated. In both of 
the above cases, in the resulting I/O interruption, a 
full CSW is stored, and the deferred condition code 
appears in the CSW. 

On the byte-multiplexer channel, both the SIO and 
SlOP functions cause the addressed device to be 

Channel A 

Subchannel A I ~ I ~ I N A 
3 

selected and the operation to be initiated only after 
the channel has serviced all outstanding requests for 
data transfer for previously initiated operations. 

Program Exceptions: 

Privileged Operation 

Resulting Condition Code: 

o I/O operation initiated and channel proceeding 
with its execution 

1 CSW stored 
2 
3 

Channel or subchannel busy 
Not operational 

The condition code set by START I/O and START 
I/O FAST RELEASE for all possible states of the 
I/O system is shown in the figure "Condition Codes 
Set By START I/O and START I/O FAST 
RELEASE." See the section "States of the 
Input/Output System" in this chapter for a detailed 
definition of the A, I, W, and N states. 

I W I N 
2 3 

I I ~ I ~ I 2 

Control Unit A 11~@11~@1 3~ I I ~ 11~@11~@13~ I - Device ,; 

A Available # 
Interruption pending 

W Working 

N Not operational 

CSW stored 

@ The SIOF function may cause condition code 0 to be set, 
in which case the other condition code shown will be 
specified as a deferred condition code. 

Note: Underscored condition codes pertain to situations 
that can occur only on the multiplexer channel. 

• When a nonimmediate 1/0 operation has been initiated, 
and the channel is proceeding with its execution, 
condition code 0 is set. 

• When an immediate operation has been initiated, and no 
command chaining or command retry is taking place, or 
the device is not ready, or an error has been detected 
by the control unit or device, for the SIO function 
condition code 1 is set, and the CSW is stored. Under 
the same circumstances, for the SIOF function, condi
tion code 0 is set, and a deferred-condition-code 1 
I/O-interruption condition is generated. 

Condition Codes Set by START I/O and START I/O FAST RELEASE 

Chapter 12. Input/Output Operations 12-25 



Programming Notes 

1. The instruction START 1/ 0 FAST RELEASE 
has the advantage over START I/O that the CPU 
can be released after the CAW is fetched, rather 
than after completion of the lengthy device
selection procedure. Thus, the CPU is freed for 
other activity earlier. A disadvantage, however, 
is that if a deferred condition code is presented, 
the resultant CPU execution time may be greater 
than that required in executing START I/O. 

2. When the channel detects a programming error 
during execution of the SIO function, the 
addressed device contains an interruption 
condition, and the channel and subchannel are 
available, the instruction mayor may not clear 
the interruption condition, depending on the type 
of error and the model. If the instruction has 
caused the device to be interrogated, as indicated 
by the presence of the busy bit in the CSW, the 
interruption condition has been cleared, and the 
CSWcontains program or protection check, as 
well as the status from the device. 

3. Two major differences exist between the SIO and 
SIOF functions: 
a. Unchained immediate commands on certain 

channels (that is, those which execute SIOF 
independent of the device) result in a 
condition code 0 for the SIOF function 
whereas condition code 1 is set for the SIO 
function. See also Programming Note 2 in 
the section "Command Retry" of this 
chapter. 

b. Condition code 0 is set by these certain 
channels for the SIOF function, even though 
the addressed device is not available or the 
command is rejected by the device. The 
device information will be supplied by means 
of an interruption. 

STORE CHANNEL 1D 

[S] 

'18203' ~I 
o 16 20 31 

Information identifying the designated channel is 
stored in the four-byte field at storage location 168. 

Bits 16-23 of the second-operand address identify 
the channel to which the instruction applies. Bit 
positions 24-31 of the address are ignored. 

12-26 IBM 4300 Processors Principles of Operation 

The format of the information stored at location 
168 is: 

Type Channel Model 0000000000000000 

o 4 16 31 

Bits 0-3 specify the channel type. When a channel 
can operate as more than one type, the code stored 
identifies the channel type at the time the instruction 
is executed. The following codes are assigned: 

0000 Selector 
0001 Byte multiplexer 
0010 Block multiplexer 

A block-multiplexer channel operates as a selector 
channel if the ,most recently initiated yet uncompleted 
I/O operation in the channel had block multiplexing 
inhibited' at the time the I/O operation was initiated. 

Bits 4-15 identify the channel model. When the 
channel model is implied by the channel type and the 
CPU model, zeros are stored in the field. 

Bits 16-31 are set to zeros. 
When the channel detects an equipment 

malfunction during the execution of STORE 
C:HANNEL ID, the channel causes the status portion, 
bIts 32-47, of the CSW to be replaced by a new set 
of status bits. With the exception of the channel
control-check bit (bit 45), which is stored as a one , 
all bits in the status field are stored as zeros. The 
contents of the other fields of the CSW are not 
changed. 

When STORE CHANNEL ill cannot be executed 
because of a pending logout which affects the 
operational capability of the channel, a full CSW is 
stored. The fields in the CSW are all set to zero, 
with the exception of the logout-pending bit and the 
channel-control-check bit, which are set to ones. No 
channel logout occurs in this case. 

Program Exceptions: 

Privileged Operation 

ResUlting Condition Code: 

o Channel ID correctly stored 
1 CSW stored 
2 Channel activity prohibited storing ID 
3 Not operational 

The condition code set by STORE CHANNEL ID 
for all possible st~tes of the I/O system is shown 
graphically as follows. See "States of the 



Input/Output System" for a detailed definition of the 
A, I, W, and N states. 

A 
Channel 

o 

A Available 
Interruption pending 

W Working 
N Not operational 

w N 

• • 3 

• When the thannel is unable to store the channel 10 because 
of its working state or beca'use it contains a pending inter
ruption condition, a condition code 2 is set. If the working 
or interruption pending state does not preclude the storing 
of the channellD, a condition code 0 is set. 

Condition Codes Set by STORE CHANNEL ID 

TEST CHANNEL 

TCH D2(B2) [S] 

'9FOO' 82 I 02 

0 16 20 31 

The condition code in the PSW is set to indicate the 
state of the addressed channel. The state of the 
channel is not affected, and no action is caused. Bits 
8-15 of the instruction are ignored. 

Bits 16-23 of the second-operand address identify 
the channel to which the instruction applies. Bit 
positions 24-31 of the address are ignored. 

The instruction TEST CHANNEL inspects only the 
state of the addressed channel. It tests whether the 
channel is operating in the burst mode, is 
interruption-pending, or is not operational. When the 
channel is operating in the burst mode and contains 
an interruption condition, the condition code is set as 
for operation in the burst mode. When none of these 
situations exist, the available state is indicated. No 
device is selected, and, on the multiplexer channel, 
the sub channels are not interrogated. 

Program Exceptions: 

Privileged Operation 

Resulting Condition Code: 

() Channel available 
1 Interruption or logout condition in channel 
2. Channel operating in burst mode 
3 Channel not operational 

The condition code set by TEST CHANNEL for all 
possible states of the addressed channel is shown in 

the figure "Condition Codes Set by TEST 
CHANNEL. I' See the section I'States of the 
Input/OutputSystem" in this chapter for a detailed 
definition of the A, I, W, and N states. 

Channel A w N 

o 2 3 

A Available 
I Interruption pending 
W Working 
N Not operational 

Condition Codes Set by TEST CHANNEL 

TEST I/O 

TIO D2(B2) [S] 

'9000' 82 I 02 

0 16 20 31 

The state of the addressed channel, subchannel, and 
device is indicated by setting the condition code in 
the PSW and,' in certain situations, by storing the 
CSW. Interruption conditions may be cleared. Bits 
8-14 of the instruction are .ignored. 

Bits 16-31 of the second-operand address identify 
the channel, subchannel, and 110 device to which the 
instruction applies. 

The TIO function is performed by the instruction 
TEST I/O and, under certain circumstances, by 
CLEAR I/O. 

When the channel is operating in burst mode and 
the addressed subchannel containsal1 interruption 
condition, the TIO function causes condition code 1 
or 2 to be set, depending on the model and channel 
type. If condition code 1 is set, the CSW is stored at 
location 64 to identify the interruption condition, and 
the interruption condition is cleared. 

When the situation' described in the following 
paragraph occurs with the channel either available or 
interruption-pending or, on some channels, working, 
the TIO function causes the CSW to be stored. The 
contents of the entire CSW pertain to the I/O device 
addressed by the instruction. 

The subchannel contains an interruption 
condition due to a terminated operation at the 
addressed device. The CSW identifies the 
interruption condition, and the interruption 
condition is cleared. The subchannel key, CCW 

Chapter 12. Input/Output Operations 12-27 



address, and count fields contain the final values 
for the 110 operation, and the status field may 
include bits provided by the channel and the 
device. The interruption condition in the 
subchannel is not cleared, and the CSW is not 
stored if the channel is working and has not yet 
accepted the interruption condition from the 
device. 

When any of the following situations occurs with 
the channel either available or interruption-pending, 
the TIO function causes the CSW to be stored. The 
contents of the entire CSW pertain to the I/O device 
addressed by the instruction. 
1. The subchannel is available, and the I/O device 

contains an interruption condition or the control 
unit contains control-unit end for the addressed 
device. The CSW unit-status field identifies the 
interruption condition and may contain other bits 
provided by the device or control unit. The 
interruption condition is cleared. The busy bit in 
the CSW is zero. The other fields of the CSW 
contain zeros unless an equipment error is 
detected. 

2. The subchannel is available, and the I/O device 
or the control unit is executing a previously 
initiated operation or the control unit has an 
interruption condition associated with a device 
other than the one addressed. The CSW 
unit-status field contains one in the busy-bit 
position or, if the control unit is busy, the busy 
and status-modifier bits are ones. Other fields of 
the CSW contain zeros unless an equipment error 
is detected. 

3. The subchannel is available, and the I/O device 
or channel detected an equipment error during 
execution of the instruction or the addressed 
device is not ready and does not have any 
interruption condition. The CSW identifies the 
error. If the device is not ready, unit check is 
indicated. No interruption conditions are 
generated at the 110 device or the subchannel. 

When TEST 110 cannot be executed because of a 
pending logout which affects the operational 
capability of the channel or subchannel, a full CSW is 
stored. The fields in the CSW are all set to zeros, 
with the exception of the logout-pending bit and the 
channel-control-check bit, which are set to ones. No 
channel logout is associated with this status. 

When the TIO function is used to clear an 
interruption condition from the subchannel and the 
channel has not yet accepted the condition from the 
device, the function causes the device to be selected 

12-28 IBM 4300 Processors Principles of Operation 

and the interruption condition in the device to be 
cleared. During certain 110 operations, some types 
of devices cannot provide their current status in 
response to TEST 1/0. Some magnetic-tape control 
units, for example, are in such a state when they have 
provided channel end and are executing the 
backspace-file operation. When TEST I/O is issued 
to a control unit in such a state, the unit-status field 
of the CSW has the busy and status-modifier bits set 
to ones, with zeros in the other CSW fields. The 
interruption condition in the device and in the 
subchannel is not cleared. 

On some types of devices, the device never provides 
its current status in response to TEST I/O, and an 
interruption condition can be cleared only by 
permitting an 110 interruption. When TEST 110 is 
issued to such a device, the unit-status field has the 
status-modifier bit set to one, with zeros in the other 
CSW fields~ The interruption condition in the device 
and in the subchannel, if any, is not cleared. 

However, at the time the channel assigns the 
highest priority for interruptions to a -condition 
associated with an operation at the subchannel, the 
channel accepts the status from the device and clears 
the corresponding condition at the device. When the 
TIO function is addressed to a device for which the 
channel has already accepted the interruption 
condition, the device is not selected, and the 
condition in the subchannel is cleared regardless of 
the type of device and its present state. The CSW 
contains unit status and other information associated 
with the interruption condition. 

On the byte-multiplexer channel, the TIO function 
causes the addressed device to be selected only after 
the channel has serviced all outstanding requests for 
data transfer for previously initiated operations. 

Program Exceptions: 

Privileged Operation 

Resulting Condition Code: 

o Available 
1 CSW stored 
2 Channel or subchannel busy 
3 Not operational 

The condition code set by the TIO function for all 
possible states of the 1/0 sys.tem is shown in the 
figure "Condition Codes Set by TEST 1/0." See the 
section "States of the Input/Output System" in this 
chapter for a detailed definition of the A, I, W, and 
N states. 



Channel 

Subchannel 

Control Unit 
or Device 

A Available 

A 

0 1* 

Interruption pending 

A 

W 
I 

N 

1* 3 

A 

III 1
1# I 

W N 

2 1* 2 3 

A III 
2 

AI I I WIN I 
0 1* 1* 3 

II Interruption pending for a device other than the one addressed 
1# Interruption pending for the addressed device 

W Working 

WI Working with a device other than the one addressed 
W# Working with the addressed device 

N Not operational 

CSWstored 

11# I W IN 
1* 2 3 

@ In the WII #X state, either condition code 1 may be set with the CSW stored, or condition 
code 2 may be set, depending on the channel and the conditions in the channel. 

Note: Underscored condition codes pertain to situations that can occur only 
on the multiplexer channel. 

Condition Codes Set by TEST I/O 

wI IW#I N 

2 3 
A II 11#1 W I N 

2 2 @ 2 2 

Chapter 12. Input/Output Operations 12-29 



Programming Notes 

1. Disabling the CPU for I/O interruptions provides 
the program with a means of controlling the 
priority of I/O interruptions selectively by 
channels. The priority of devices attached on a 
channel cannot be controlled by the program. 
The instruction TEST I/O permits the program to 
clear interruption conditions selectively by I/O 
device. 

2. When a CSW is stored by the TIO function, the 
interf ace-control-check and 
channel-control-check indications may be due to 
an interruption condition already existing in the 
channel or may be due to an interruption 
condition created by the TIO function. Similarly, 
the unit-check bit set to one with the 
channel-end, control-unit-end, or device-end bits 
set to zeros may be due to a situation created by 
the preceding operation, the I/O device being not 
ready, or an equipment error detected during the 
execution of TEST I/O. The instruction TEST 
I/O cannot be used to clear an interruption 
condition due to the PCI flag while the 
subchannel is working. 

Input / Output-Instruction-Exception Handling 
Before the channel is signaled to execute an I/O 
instruction, the instruction is tested for validity by 
the CPU. Exceptional situations detected at this time 
cause a program interruption. 

The following exception may cause a program 
interruption: 

Privileged Operation: An I/O instruction is 
encountered when the CPU is in the problem state. 
The instruction is suppressed before the channel has 
been signaled to execute it. The CSW, the condition 
code in the PSW, and the state of the addressed 
sub channel and I/O device are not affected by the 
attempt to execute an I/O instruction while in the 
problem state. 

Execution of Input/Output Operations 
The channel can execute six commands: write, read, 
read backward, control, sense, and transfer in 
channel. Each command except transfer in channel 
initiates a corresponding I/O operation. The term 
"I/O operation" refers to the activity initiated by a 
command in the I/O device and associated 
subchannel. The subchannel is involved with the 

12-30 IBM 4300 Processors Principles of Operation 

execution of the operation from the initiation of the 
command until the channel-end signal is received or, 
in the case of command chaining, until the 
device-end signal is received. The operation in the 
device lasts until device end is signaled. 

Blocking 0/ Data 
Data recorded by an I/O device may be divided into 
blocks. The length of a block depends on the device; 
for example, a block can be a card, a line of printing, 
or the information recorded between two consecutive 
gaps on magnetic tape. 

The maximum amount of information that can be 
transferred in one I/O operation is one block. An 
I/O operation is terminated when the associated 
storage area is exhausted or the end of the block is 
reached, whichever occurs first. For some operations, 
such as writing on a magnetic-tape unit or at an 
inquiry station, blocks are not defined, and the 
amount of information transferred is controlled only 
by the program. 

Channel-A.ddress Word 
The channel-address word ( CAW) specifies the 
sub channel key and the address of the first CCW 
associated with START I/O or START I/O FAST 
RELEASE. The channel refers to the CAW only 
during the execution of START I/O or START I/O 
FAST RELEASE. The CAW is fetched from storage 
location 72. The pertinent information thereafter is 
stored in the subchannel, and the program is free to 
change the contents of the CAW. Fetching of the 
CAW by the channel does not affect the contents of 
the location. 

The CAW has the following format: 

I Keyl 0001 CCW Address 

o 4 8 

The fields in the CAW are allocated for the 
following purposes: 

31 

Subchannel Key: Bits 0-3 form the access key for all 
commands associated with START I/O and START 
I/O FAST RELEASE. This key is matched with a 
storage key during an I/O operation, as described in 
the section "Protection Check" later in this chapter. 



CCW Address: Bits 8-31 designate the location of 
the first CCW in storage. 

Bit positions 4-7 of the CAW must contain zeros. 
The three low-order bits of the CCW address must be 
zeros to specify the CCW on integral boundaries for 
doublewords. If any of these restrictions is violated, 
or if the CCW address specifies a storage location 
which is not provided or is protected against fetching 
or is in a disconnected page, ST ART I/O and, in 
some cases, START I/O FAST RELEASE, cause the 
status portion of the CSW to be stored, with the 
protection-check or program-check bit set to one. In 
this event, the I/O operation is not initiated. 

Programming Note 

Bit positions 4-7 of the CAW, which presently must 
contain zeros, may in the future be assigned to the 
control of new functions. It is, therefore, 
recommended that these bit positions not be set to 
ones for the purpose of obtaining an intentional 
program-check indication. 

Channel-Command Word 
The channel-command word (CCW) specifies the 
command to be executed and, for commands 
initiating I/O operations, it designates the storage 
area associated with the operation and the action to 
be taken whenever transfer to or from the area is 
completed. The CCWs can be located anywhere in 
storage, and more than one can he associated with a 
START I/O or START I/O FAST RELEASE. 

The first CCW is fetched during the execution of 
START I/O or START I/O FAST RELEASE being 
executed as START I/O. When START I/O FAST 
RELEASE is executed independent of the device, the 
first CCW is fetched subsequent to the execution of 
START I/O FAST RELEASE. Each additional 
CCW in the sequence is obtained when the operation 
has progressed to the point where the additional 
CCW is needed. Fetching of the CCWs by the 
channel does not affect the contents of the location 
in storage. 

The CCW has the following format: 

I~ Cmd Code Data Address 

o 31 8 

Count 

37 40 48 63 

The fields in the CCW are allocated for the following 
purposes: 

Command Code: Bits 0-7 specify the operation to be 
performed. 

Data Address: Bits 8-31 specify a location in storage. 
It is the first location referred to in the area 
designated by the CCW. 

Chain-Data (CD) Flag: Bit 32, when one, specifies 
chaining of data. It causes the storage area 
designated by the next CCW to be used with the 
current operation. 

Chain-Command (CC) Flag: Bit 33, when one, and 
when the CD flag is zero, specifies chaining of 
commands. It causes the operation specified by the 
command code in the next CCW to be initiated on 
normal completion of the current operation. 

Suppress-Length-Indication (SLI) Flag: Bit 34 
controls whether incorrect-length is to be indicated to 
the program. When this bit is one and the CD flag is 
zero, the incorrect-length indication is suppressed. 
When both the CC and SLI flags are one, command 
chaining takes place regardless of any 
incorrect-length situation. 

Skip (SKIP) Flag: Bit 35, when one, specifies 
suppression of the transfer of information to storage 
during a read, read backward, or sense operation. 

Program-Controlled-Interruption (PCI) Flag: Bit 36, 
when one, causes the channel to generate an 
interruption condition when the CCW takes control 
of the channel. When bit 36 is zero, normal 
operation takes place. 

Count: Bits 48-63 specify the number of bytes in the 
storage area designated by the CCW. 

Bit positions 37-39 of every CCW other than one 
specifying transfer in channel must contain zeros. 
Otherwise, a program-check condition is generated. 
When the first CCW designated by the CAW does 
not contain the required zeros, the I/O operation is 
not initiated, and the status portion of the CSW with 
the program-check indication is stored during 
execution of START 110 or START I/O FAST 
RELEASE being executed as START I/O. Detection 
of this condition during data chaining causes the I/O 
device to be signaled to conclude the operation. 

Chapter 12. Input/Output Operations 12-31 



When the absence of these zeros is detected during 
command chaining or subsequent to the execution of 
START I/O FAST RELEASE, the new operation is 
not initiated, and an interruption condition is 
generated. 

The contents of bit positions 40-47 of the CCW are 
ignored. 

Programming Note 

Bit positions 37-39 of the CCW, which presently 
must contain zeros, may in the future be assigned to 
the control of new functions. It is recommended, 
therefore, that these bit positions not be set to ones 
for the purpose of obtaining an intentional 
program-check indication. 

Command Code 
The command code, bit positions 0-7 of the CCW, 
specifies to the channel and the I/O device the 
operation to be performed. A detailed description of 
each command appears under "Commands." 

The two low-order bits or, when these bits are 00, 
the four low-order bits of the command code identify 
the operation to the channel. The channel 
distinguishes among the following four operations: 

Output forward (write, control) 
Input forward (read, sense) 
Input backward (read backward) 
Branching (transfer in channel) 

The channel ignores the high -order bits of the 
command code. 

Commands that initiate I/O operations (write, read, 
read backward, control, and sense) cause all eight 
bits of the command code to be transferred to the 
I/O device. In these command codes, the leftmost 
bit positions contain modifier bits. The modifier bits 
specify to the device how the command is to be 
executed. They may, for example, cause the device 
to compare data received during a write operation 
with data previously recorded, and they may specify 
such information as recording density and parity. 
For the control command, the modifer bits may 
contain the order code specifying the control function 
to be performed. The meaning of the modifier bits 
depends on the type of 110 device and is specified in 
the SL publication for the device. 

The command-code assignment is listed in the 
following table. The symbol X indicates that the bit 
position is ignored; M identifies a modifier bit. 

12-32 IBM 4300 Processors Principles of Operation 

Code Command 

XXXX 0000 Invalid 
MMMM MM01 Write 
MMMM MM10 Read 
MMMM 1100 Read Backward 
MMMM MM11 Control 
MMMM 0100 Sense 
XXXX 1000 Transfer in Channel 

Whenever the channel detects an invalid command 
code during the initiation of a command, a program 
check is generated. When the first CCW designated 
by the CA W contains an invalid command code, the 
status portion of the CSW with the program-check 
indication is stored during execution of START I/O 
or START I/O FAST RELEASE being executed as 
START I/O. When the invalid code is detected 
during command chaining or subsequent to the 
execu~ion of START I/O FAST RELEASE, the new 
operation is not initiated, and an interruption 
condition is generated. The command code is ignored 
during data chaining, unless it specifies transfer in 
channel. 

Designation of Storage Area 
The storage area associated with an I/O operation is 
defined by one or more CCWs. A CCW defines an 
area by specifying the address of the first byte to be 
transferred and the number of consecutive bytes 
contained in the area. The address of the first byte 
appears in the data-address field of the CCW. The 
number of bytes contained in the storage area is 
specified in the count field. 

In write, read, control, and sense operations, storage 
locations are used in ascending order of addresses. 
As information is transferred to or from storage, the 
address from the address field is incremented, and the 
count from the count field is decremented. The 
read-backward operation places data in storage in a 
descending order of addresses, and both the count 
and the address are decremented. When the count 
reaches zero, the storage area defined by the CCW is 
exhausted. 

Any storage location that is provided can be used in 
the transfer of data to or from an I/O device, if the 
location is in a page that is in the addressable or 
connected state and is not protected against the type 
of reference. Similarly, a CCW can be located in any 
part of storage, if the location is in a page that is in 
the addressable or connected state and is not 
protected against a fetch-type -reference. 



When the first CCW is designated by the CAW as 
being at a storage location that is not provided, the 
I/O operation is not initiated, and the status portion 
of the CSW with the program-check indication is 
stored during the execution of START I/O or 
START I/O FAST RELEASE being executed as 
START I/O. When, subsequently, during the 
operation or chain of operations, the channel refers 
to a storage location that is not provided, an 
interruption condition indicating program check is 
generated, and the device is signaled to terminate the 
operation. 

When the first CCW designated by the CAW is in a 
disconnected page or in a location that is protected 
against a fetch-type reference, the I/O operation is 
not initiated, and the status portion of the CSW with 
the protection -check indication is stored during the 
execution of START I/O or START I/O FAST 
RELEASE being executed as START I/O. When, 
subsequently, during the I/O operation or chain of 
operations, the channel refers to a disconnected page 
or a protected location, an interruption condition 
indicating protection check is generated, and the 
device is signaled to terminate the operation. 

During an output operation, the channel may fetch 
data from storage before the time the I/O device 
requests the data. Any number of bytes specified by 
the current CCW may thus be prefetched. When 
data chaining during an output operation, and for 
some block-multiplexer channels when data chaining 
during an input operation, the channel may prefetch 
the next CCW at any time during the execution of 
the current C CW. 

Prefetching may cause the channel to refer to 
storage locations that are protected or not provided 
or in disconnected pages. Such errors detected 
during pre fetching of data or CCWs do not affect the 
execution of the operation and do not cause error 
indications until the I/O operation actually attempts 
to use the data or until the CCW takes control. If 
the operation is concluded by the I/O device or by 
HALT I/O, HALT DEVICE, or CLEAR I/O before 
the invalid information is needed, no program check 
or protection check is generated. 

The count field in the CCW can specify any 
number of bytes from one to 65,535. Except for a 
CCW specifying transfer in channel, which has no 
count field, the count field may not contain the value 
zero. Whenever the count field in the CCW initially 
contains a zero, a program check is generated. When 

this occurs in the first CCW designated by the CAW, 
the operation is not initiated, and the status portion 
of the CSW with the program-check indication is 
stored during execution of START I/O or START 
I/O FAST RELEASE being executed as START 
I/O. When a count of zero is detected during data 
chaining, the I/O device is signaled to terminate the 
operation. Detection of a count of zero during 
command chaining or subsequent to the execution of 
ST AR T I/O FAST RELEASE suppresses initiation of 
the new operation and generates an interruption 
condition. 

Chaining 
When the channel has performed the transfer of 
information specified by a CCW, it can continue the 
activity initiated by START I/O or START I/O 
FAST RELEASE by fetching a new CCW. Such 
fetching of a new CCW is called chaining, and the 
CCWs belonging to such a sequence are said to be 
chained. 

Chaining takes place between CCWs located in 
successive doubleword locations in storage. It 
proceeds in an ascending order of addresses; that is, 
the address of the new CCW is obtained by adding 8 
to the address of the current CCW. Two chains of 
CCWs located in noncontiguous storage areas can be 
coupled for chaining purposes by a 
transfer-in-channel command. All CCWs in a chain 
apply to the I/O device specified in the original 
START I/O or START I/O FAST RELEASE. 

Two types of chaining are provided: chaining of 
data and chaining of commands. Chaining is 
controlled by the chain-data (CD) and 
chain-command (CC) flags in conjunction with the 
suppress-length-indication (SLI) flag in the CCW. 
These flags specify the action to be taken by the 
channel upon the exhaustion of the current CCW and 
upon receipt of ending status from the device, as 
shown in the figure "Channel-Chaining Action. " 

The specification of chaining is effectively 
propagated through a transfer-in-channel command. 
When in the process of chaining a transfer-in-channel 
command is fetched, the CCW designated by the 
transfer in channel is used for the type of chaining 
specified in the CCW preceding the transfer in 
channel. The CD and CC flags are ignored in the 
transfer-in-channel command. 

Chapter 12. Input/Output Operations 12-33 



Action in Channel upon Exhaustion of Count or Receipt of Channel End 

Immediate Operation 

End, -

End, -

Stop,IL 

Stop, -

Stop,IL 

Regular Operation 

End,

End,-

II III 

End,IL 

End,

End,IL Chain command 

Chain command Chain command 

Chain command 

Chain command Chain command 

Explanation: 

End, -

End,

End,

End,-

Chain data 

Chain data 

Chain data 

Chain data 

Count exhausted, end of block at device not reached. 

II Count exhausted and channel end from device. 

III Count not exhausted and channel end from device. 

End The operation is terminated. If the operation is immediate 
and has been specified by the first CCW associated with a 
START I/O, a condition code 1 is set, and the status 
portion of the CSW is stored as part of the execution of the 
START I/O. In all other cases an interruption condition 
is generated in the subchannel. 

Stop The device is signaled to terminate data transfer, but the 
subchannel remains in the working state until channel end 
is received; at this time an interruption condition is 
generated in the subchannel. 

IL Incorrect length is indicated with the interruption condition. 

Channel-Chaining Action 

12-34 IBM 4300 Processors Principles of Operation 

End,IL 

End,IL 

End,IL 

End,IL 

Incorrect length is not indicated. 

Chain The channel performs command chaining upon 
command receipt of device end. 

Chain data The channel immediately fetches a new CCW for 
the same operation. 

The situation where the residual count is zero but 
data chaining is indicated at the time the device 
provides channel end cannot validly occur. When 
data chaining is indicated, the channel fetches the 
new CCW after transferring the last byte of data 
designated by the current CCW but before the 
device provides the next request for data or status 
transfer. As a result, the channel recognizes the 
channel end from the device only after it has 
fetched the new CCW, which cannot contain a 
count of zero unless a programming error has been 
made. 



Data Chaining 

During data chaining, the new CCW fetched by the 
channel defines a new storage area for the original 
110 operation. Execution of the operation at the 
110 deviCe is not affected. When all data designated 
by the current CCW has been transferred to storage 
or to the device, data chaining causes the operation 
to continue, using the storage area designated by the 
new CCW. The contents of the command-code field 
of the new CCW are ignored, unless they specify 
transfer in channel. 

Data chaining is considered to occur immediately 
after the last byte of data designated by the current 
CCW has been transferred to storage or to the 
device. When the last byte of the transfer has been 
placed in storage or accepted by the device, the new 
CCW takes over the control of the operation and 
replaces the pertinent information in the subchannel. 
If the device signals channel end after exhausting the 
count of the current CCW but before transferring 
any data to or from the storage area designated by 
the new CCW, the CSW associated with the 
concluded operation pertains to the new CCW. 
If programming errors are detected in the new 

CCW or during its fetching, the error indication is 
generated, and the device is signaled to conclude the 
operation when it attempts to transfer data 
designated by the new CCW. If the device signals 
channel end after the new CCW takes control but 
before transferring any data designated by the new 
CCW, program check or protection check is indicated 
in the CSW associated with the termination. The 
contents of the CSW pertain to the new CCW unless 
a program check or protection check is generated 
while fetching the new CCW or while fetching or 
executing an intervening transfer~in-channel 
command. A data address which causes a program 
check or protection check gives an error indication 
only after the 110 device has attempted to transfer 
data to or from the addressed storage location. 

When data chaining during an output operation, the 
channel may fetch the new CCW from storage ahead 
of the time data chaining occurs. Similarly, some 
block-multiplexer channels may prefetch the new 
CCW when data chaining during input. Any 
programming errors in a prefetched CCW, however, 
do not affect the execution of the operation until all 
data designated by the current CCW has been 
transferred to the 110 device on output or to storage 
on input. If the device concludes the operation 
before all data designated by the current CCW has 
been transferred, or if data chaining is suppressed for 

any other reason, the errors associated with the 
pre fetched CCW are not indicated to the program. 

Only one CCW describing a data area may be 
prefetched. If the prefetched CCW speCifies transfer 
in channel, only one more CCW may be fetched 
before the exhaustion of the current CCW. 

Programming Note 

Data chaining may be used to rearrange data as it is 
transferred between storage and an 110 device. Data 
chaining permits data to be transferred to or from 
noncontiguous areas of storage, and, when used in 
conjunction with the skipping function (see the 
section "Skipping" later in this chapter), data 
chaining enables the program to place in storage 
selected portions of a block of data. 

When, during an input operation for a channel that 
does not pre fetch CCWs on input, the program 
specifies data chaining to a location into which data 
has been placed under the control of the current 
CCW, the channel, in fetching the next CCW, 
fetches the new contents· of the location. This is true 
even if the location contains the last byte transferred 
under the control of the current CCW. When, on 
input, a channel program data-chains to a CCW 
placed in storage by the CCW specifying data 
chaining, the block is said to be self-describing. A 
self-describing block contains one or more CCWs 
that specify storage locations and counts for 
subsequent data in the same block. 

The use of self-describing blocks is equivalent to 
the use of unchecked data. An 110 data-transfer 
malfunction that affects validity of a block is signaled 
only at the completion of data transfer. The error 
normally does not prematurely terminate or otherwise 
affect the execution of the operation. Thus, there is 
no assurance that a CCW read as data is valid until 
the operation is completed. If the CCW is in error, 
the use. of the CCW in the current operation may 
cause subsequent data to be placed in wrong storage 
locations with resultant destruction of the contents of 
those locations. 

Self-describing blocks cannot be used with a 
channel that pre fetches CCWs when data chaining on 
input. 

Chapter 12. Input/Output Operations 12-35 



Command Chaining 

During command chaining, the new CCW fetched by 
the channel specifies a new I/O operation. The 
channel fetches the new CCW and initiates the new 
operation upon receipt of the device-end signal for 
the current operation. When command chaining 
takes place, the completion of the current operation 
does not generate an interruption condition, and the 
count indicating the amount of data transferred 
during the current operation is not made available to 
the program. For operations involving data transfer, 
the new command always applies to the next block at 
the device. 

Command chaining takes place and the new 
operation is initiated only if no unusual situations 
have been detected in the current operation. In 
particular, the channel initiates a new I/O operation 
by command chaining upon receipt of a status byte 
signaling one of the following status combinations: 
device end, device end and status modifier, device 
end and channel end, device end and channel end 
and status modifier. In the former two cases, channel 
end must have been signaled before device end, with 
all other status bits set to zeros. If status such as 
attention, unit check, unit exception, incorrect length, 
program check, or protection check has occurred, the 
sequence of operations is concluded, and the status 
associated with the current operation causes an 
interruption condition to be generated. The new 
CCW in this case is not fetched. Incorrect length 
does not suppress command chaining if the current 
CCW has the SLI flag set to one. 

An exception to sequential chaining of CCWs 
occurs when the I/O device presents status modifier 
with device end. When command chaining is 
specified and no unusual situations have been 
detected, the combination of status modifier and 
device end causes the channel to fetch and chain to 
the CCW whose storage address is 16 higher than 
that of the current CCW. 

When both command and data chaining are used, 
the first CCW associated with the operation specifies 
the operation to be executed, and the last CCW 
indicates whether another operation follows. 

12-36 IBM 4300 Processors Principles of Operation 

Programming Note 

Command chaining makes it possible for the program 
to initiate transfer of mUltiple blocks by means of a 
single START I/O or START I/O FAST RELEASE. 
It also permits a sub channel to be set up for the 
execution of auxiliary functions, such as positioning 
the disk-access mechanism, and for data-transfer 
operations without interference by the program at the 
end of each operation. Command chaining, in 
conjunction with the status-modifier condition, 
permits the channel to modify the normal sequence oj 
operations in response to signals provided by the I/O 
device. 

Skipping 
Skipping is the suppression of storage references 
during an I/O operation. It is defined only for read, 
read backward, and sense operations and is controllec 
by the skip flag, which can be specified individually 
for each CCW. When the skip flag is one, skipping 
occurs; when zero, normal operation takes place. 
The setting of the skip flag is ignored in all other 
operations. 

Skipping affects only the handling of information b) 
the channel. The operation at the I/O device 
proceeds normally, and information is transferred to 
the channel. The channel keeps updating the count 
but does not place the information in storage. 
Chaining is not precluded by skipping. In the case of 
data chaining, normal operation is resumed if the skip 
flag in the new CCW is zero. 

When the skip flag is set to one, the data address in 
the CCW is not checked. 

Programming Note 

Skipping, when combined with data chaining, permits 
the program to place in storage selected portions of a 
block from an I/O device. 

Program-Controlled Interruption 
The program-controlled-interruption (PCl) function 
permits the program to cause an I/O interruption 
during the execution of an I/O operation. The 
function is controlled by the PCI flag in the CCW. 
The flag can be on either in the first CCW specified 
by START I/O or START I/O FAST RELEASE or 
in a CCW fetched during chaining. Neither the PCI 
flag nor the associated interruption affects the 
execution of the current operation. 

Whenever the PCI flag in the CCW is one, an 
interruption condition is generated in the channel. 



When the first CCW associated with an operation 
contains the PCI flag, either initially or upon 
command chaining, the interruption may occur as 
early as immediately upon the initiation of the 
operation. The PCI flag in a CCW fetched on data 
chaining causes the interruption to occur after all 
data designated by the preceding CCW has been 
transferred. The time of the interruption, however, 
depends on the model and the current activity in the 
system and may be delayed even if I/O interruptions 
are allowed. No predictable relationship exists 
between the time the interruption due to the PCI flag 
occurs and the progress of data transfer to or from 
the area designated by the CCW, but the fields 
within the CSW pertain to the same instant of time. 
If chaining occurs before the interruption due to the 

PCI flag has taken place, the PCI interruption 
condition is carried over to the new CCW. This 
carryover occurs both on data and command chaining 
and, in either case, the interruption condition is 
propagated through the transfer-in-channel 
command. The interruption conditions due to the 
PCI flags are not stacked; that is, if another CCW is 
fetched with a PCI flag before the interruption due to 
the PCI flag of the previous CCW has occurred, only 
one interruption takes place. 

A CSW containing the PCI bit set to one may be 
stored by an interruption while the operation is still 
proceeding or by an interruption, TEST I/O, or 
CLEAR I/O upon the termination of the operation. 
It cannot be stored by TEST I/O while the 
subchannel is in the working state. 

When the CSW is stored by an interruption before 
the operation or chain of operations has been 
concluded, the CCW address is 8 greater than the 
address of the current CCW, and the count is 
unpredictable. All unit-status bits in the CSW are 
zero. If the channel has detected any unusual 
situations, such as channel-data check, program 
check, or protection check by the time the 
interruption occurs, the corresponding channel-status 
bit is one, although the status in the subchannel is not 
reset and is indicated again upon the termination of 
the operation. 

A unit-status bit set to one in the CSW indicates 
that the operation or chain of operations has been 

concluded. The CSW in this case has its regular 
format with the PCI bit set to one. 

However, when the interruption due to the PCI flag 
is delayed until the operation at the subchannel is 
concluded, two interruptions from the subchannel 
may still take place. The first interruption indicates 
and clears the interruption condition due to the pcr 
flag, and the second provides the CSW associated 
with the ending status. Whether one or two 
interruptions occur depends on the model and on 
whether the interruption condition due to the PCI. 
flag has been assigned the highest priority for 
interruption at the time of conclusion. TEST I/O or 
CLEAR I/O addressed to the device associated with 
an interruption condition in the subchannel clears the 
interruption condition due to the PCI flag, as well as 
the one associated with the conclusion. 

The setting of the PCI flag is inspected in every 
CCW except those specifying transfer in channel, 
where it is ignored. The PCI flag is also ignored 
during initial program loading. 

Programming Notes 

1. Since no unit-status bits are set to ones in the 
CSW associated with the conclusion of an 
operation of a selector channel by HALT I/O or 
HALT DEVICE, unit-status bits and the pcr bit 
set to ones are not necessary for the operation to 
be concluded. When status in a selector channel 
includes PCI at the time the operation is 
concluded by HALT I/O or HALT DEVICE, the 
CSW associated with the concluded operation is 
indistinguishable from the CSW provided by an 
interruption during execution of the operation. 

2. Program-controlled interruption provides a means 
of alerting the program to the progress of 
chaining during an I/O operation. It permits 
programmed dynamic storage allocation. 

Commands 
The figure "Channel-Command Codes" lists the 
command codes for the six commands and indicates 
which flags are defined for each command. The flags 
are ignored for all commands for which they are not 
defined. 

Chapter 12. Input/Output Operations 12-37 



Name Code Flags 

Write MMMM MMOl CO CC SLI PCI 

Read MMMM MM10 CD CC SLI SKIP PCI 

Read Backward MMMM 1100 CD CC SLI SKIP PCI 

Control MMMM MMll CD CC SLI PCI 

Sense MMMM 0100 CD CC SLI SKIP PCI 

Transfer In Channel XXXX 1000 

Explanation: 

CD Chain data 
CC Chain command 
SLI Suppress length indication 
SKIP Skip 
PCI Program-controlled interruption 
IDA Indirect data addressing 
M Modifier bit 
X Ignored 

Channel-Command Codes 

12-38 IBM 4300 Processors Principles of Operation 



All flags have individual significance, except that 
the CC and SLI flags are ignored when the CD flag 
is set to one. The SLI flag is ignored on immediate 
operations, in which case the incorrect-length 
indication is suppressed, regardless of the setting of 
the flag. The PCI flag is ignored during initial 
program loading. 

Each command is described below, and the format 
is illustrated. 

Programming Note 

A malfunction that affects the validity of data 
transferred in an 110 operation is signaled at the end 
of the operation by means of unit check or 
channel-data check, depending on whether the device 
(control unit) or the channel detected the error. In 
order to make use of the checking facilities provided 
in the system, data read in an input operation should 
not be used until the end of the operation has been 
reached and the validity of the data has been 
checked. Similarly, on writing, the copy of data in 
storage should not be destroyed until the program has 
verified that no malfunction affecting the transfer 
and recording of data was detected. 

Write 

I MMMMMM011 Data Address 

o 8 31 

Count 

32 35 40·· 48 63 

A write operation is initiated at the 110 device, and 
the subchannel is set up to transfer data from storage 
to the I/O device. Data in storage is fetched in an 
ascending order of addresses, starting with the 
address specified in the CCW. 

A CCW used in a write operation is inspected for 
the CD, CC, SLI, and PCI flags. The setting of the 
skip flag is ignored. Bit positions· 0-5 of the CCW 
contain modifier bits. 

Programming Note 

When writing on devices for which block length is 
not defined, such as a magnetic-tape unit or an 
inquiry station, the amount of data written is 
controlled only by the count in the CCW. Every 
operation terminated under count control causes the 
incorrect-length indication, unless the indication is 
suppressed by the SLI flag. 

Read 

o 8 

S p C C S K 
o C L I C 000 

I P I 

Data Address 

Count 

40 48 63 

A read operation is initiated at the 110 device, and 
the subchannel is set up to transfer data from the 
device to storage. For devices such as magnetic-tape 
units, disk storage, and card equipment, the bytes of 
data within a block are provided in the same 
sequence as written by means of a write command. 
Data is placed in storage in an ascending order of 
addresses, starting with the address specified in the 
CCW. 

A CCW used in a read operation is inspected for 
every flag-CD, CC, SLI, SKIP, and PCI. Bit 
positions 0-5 of the CCW contain modifier bits. 

Read Backward 

I MMMM1100 I Data.Address 

o 8 

c C S ~ P 
D C L I C 000 Count 

I P I 

63 

A read .. backward operation is. initiated at the 1/0 
device, and the subchannel is set up to transfer data 
from the device to storage. On magnetic-tape units, 
read backward causes reading to be performed with 
the tape moving backwards. The bytes of data within 

Chapter 12. Input/Output Operations 12-39 



a block are sent to the channel in a sequence opposite 
to that on writing. The channel places the bytes in 
storage in a descending order of address, starting 
with the address specified in the CCW. The bits 
within a byte are in the same order as sent to the 
device on writing. 

A CCW used in a read-backward operation is 
inspected for every flag-CD, CC, SLI, SKIP, and 
PCI. Bit positions 0-3 of the CCW contain modifier 
bits. 

Control 

Data Address 

o 8 

Cpunt 

32 35 40 48 63 

A control operation is initiated at the I/O device, and 
the subchannel is set up to transfer data from storage 
to the device. The device interprets the data as 
control information. The control information, if any, 
is fetched from storage in an ascending order of 
addresses, starting with the address specified in the 
CCW. A control command may be used to initiate at 
the I/O device an operation not involving transfer of 
data-such as backspacing or rewinding magnetic tape 
or positioning a disk-access mechanism. 

For many control functions, the entire operation is 
specified by the modifier bits in the command code, 
and the function is performed as an immediate 
operation (see the section "Immediate Operations" 
later in this chapter). If the command code does not 
specify the entire control function, the data-address 
field of the CCW designates the location containing 
the required additional information. This control 
information may include a code further specifying the 
operation to be performed or an external address, 
such as the disk address for the seek function, and is 
transferred in response to requests by the device. 

A control command code containing zeros for the 
six modifier bits is defined as a no-operation. The 
no-operation order causes the addressed device to 
respond with channel end and device end without 
causing any action at the device. The control 
command can be executed as an immediate operation, 
or the device can delay the status until after the 

12-40 IBM 4300 Processors Principles of Operation 

initial selection sequence is completed. Other 
operations that can be initiated by means of the 
control command depend on the type of I/O device. 
These operations and their codes are specified in the 
SL publication for the device. 

A CCW used in a control operation is inspected for 
the CD, CC, SLI, and PCI flags. The setting of the 
skip flag is ignored. Bit positions 0-5 of the CCW 
contain modifier bits. 

Programming Note 

Since a CCW (other than transfer in channel) with a 
count of zero is invalid, the program cannot use the 
CCW count field to specify that no data be 
transferred to the I/O device. Any operation 
terminated before data has been transferred causes 
the incorrect-length indication, provided the 
operation is not immediate and has not been rejected 
during the initiation sequence. The incorrect-length 
indication is suppressed when the SLI flag is on. 

Sense 

I: I MMMM0100 I Data Address 

0 8 31 

C C S S P K 000 Count C D L I C 
I P I 

32 40 48 63 

A sense operation is initiated at the I/O device, and 
the subchannel is set up to transfer data from the 
device to storage. The data is placed in storage in an 
ascending order of addresses, starting with the 
address specified in the CCW. 

Data transferred during a sense operation provides 
information concerning both unusual conditions 
detected in the last operation and the status of the 
device. The status information provided by the sense 
command is more detailed than that supplied by the 
unit-status byte in the CSW and may describe 
reasons for the unit-check indication. It may also 
indicate, for example, if the device is in the not-ready 
state, if the tape unit is in the file-protected state, or 
if magnetic tape is positioned beyond the end-of-tape 
mark. 

For most devices, the first six bits of the sense data 
describe situations detected during the last operation. 



These bits are common to all devices having this type 
of information and are designated as follows: 

Bit Designation 

0 Command reject 

Intervention required 

2 Bus-out check 

3 Equipment check 

4 Data check 

5 Overrun 

The following is the meaning of the first six bits: 

Command Reject: The device has detected a 
programming error. A command has been received 
which the device is not designed to execute, such as 
read backward issued to a direct-access storage 
device, or which the device cannot execute because 
of its present state, such as write issued to a 
file-protected tape unit. Command reject is also 
indicated when the program issues an invalid 
sequence of commands, such as write to a 
direct-access storage device without previous 
designation of the block. 

Intervention Required: The last operation could not 
be executed because of a situation requiring some 
type of intervention at the device. This bit indicates 
situations such as the hopper in a card punch being 
empty or the printer being out of paper. It is also 
turned on when the addressed device is not ready, is 
in test mode, or is not provided on the control unit. 

Bus-Out Check: The device or the control unit has 
received a data byte or a command code with an 
invalid parity from the channel. During writing, 
bus-out check indicates that incorrect data has been 
recorded' at the device, but this does not cause the 
operation to be terminated prematurely. Parity errors 
on command codes and control information cause the 
operation to be immediately terminated and suppress 
checking for situations that would cause command 
reject and intervention required. 

Equipment Check: During the last operation, the 
device or the control unit has detected equipment 
malfunctioning, such as an invalid card-hole count or 
a printer-buffer parity error. 

Data Check: The device or the control unit has 
detected a data error other than those included in 
bus-out check. Data check identifies errors 
associated with the recording medium and includes 
errors such as reading an invalid card code or 
detecting invalid parity on data recorded on magnetic 
tape. 

On an input operation, data check indicates that 
incorrect data may have been placed in storage. The 
control unit forces correct parity on data sent to the 
channel. On writing, data check indicates that 
incorrect data may have been recorded at the device. 
Unless the operation is of a type where the error 
precludes meaningful continuation, data errors on 
reading and writing do not cause the operation to be 
terminated prematurely. 

Overrun: The channel has failed to respond on time 
to a request for service from the device. Overrun can 
occur when data is transferred to or from a 
nonbuffered control unit operating with a 
synchronous medium, and the total activity initiated 
by the program exceeds the capability of the channel. 
When the channel fails to accept a byte on an input 
operation, the following data transferred to storage 
may be used to fill the gap. On an output operation, 
overrun indicates that data recorded at the device 
may be invalid. The overrun bit is also set to one 
when the device receives the new command too late 
during command chaining. 

Allinformation significant to the use of the device 
normally is provided in the first two bytes. Any bit 
positions following those used for programming 
information contain diagnostic information, which 
may extend to as many bytes as needed. The amount 
and the meaning of the status information are 
peculiar to the type of 110 device and are specified 
in the SL publication for the device. 

The basic sense command has zero modifier bits. 
This command initiates a sense operation on all 
devices and cannot cause the command-reject, 
intervention-required, data-check, or overrun bit to 
be set to one. If the control unit detects an 
equipment malfunction, or invalid parity of the sense 
command code, the equipment-check or 
bus-out-check bit is set to one, and unit check is 
indicated in the unit-status byte. 

Devices that can provide special diagnostic sense 
information or can be instructed to perform other 
special functions by use of the sense command may 
define modifier bits for the control of these fUnctions. 
The special sense operations may be initiated by a 

Chapter 12. Input/Output Operations 12-41 



unique combination of modifier bits, or a group of 
codes may specify' the same function. Any remaining 
sense command codes may be considered invalid, thus 
causing the unit-check indication, or may cause the 
same action as the basic sense command, depending 
upon the type of device. 

The sense information that pertains to the last 1/0 
operation or other action at a device may be reset 
any time after the completion of a sense command 
addressed to that device. Any command addressed to 
the control unit of a device, other than the 
no-operation command and the command which 
results from a TEST 110 instruction, may be allowed 
to reset the sense information, provided that the busy 
bit is not included in the initial status. The sense 
information may also be changed as a result of 
asynchronous action, such as when attention or 
not-ready-to-ready device-end status is generated. 

A CCW used in a sense operation is inspected for 
every flag-CD, CC, SLI, SKIP, and PCI. Bit 
positions 0-3 of the CCW contain modifier bits. 

Transfer in Channel 

~10001 CCWAdd'ess I: 
o 4 8 31 

:~ 
~ ~ 

The next CCW is fetched from the location in storage 
designated by the data-address field of the CCW 
specifying transfer in channel. The transfer-in
channel command does not initiate any I/O operation 
at the channel, and the I/O device is not signaled. 
The purpose of the transfer-in-channel command is to 
provide chaining between C CW s not located in 
adjacent doubleword locations in an ascending order 
of addresses. The command can occur in both data 
and command chaining. 

The first CCW designated by the CAW must not 
specify transfer in channel. When this restriction is 
violated, no I/O operation is initiated, and a program 
check is generated. The error causes the status 
portion of the CSW, with the program-check status 
bit set to one, to be stored during the execution of 
START I/O or START I/O FAST RELEASE being 
executed as START I/O. When START I/O FAST 
RELEASE is executed independent of the device, the 
error causes an interruption condition to be 
generated. 

12-42 IBM 4300 Processors Principles of Operation 

To address a CCW on integral boundaries for 
doublewords, a CCW specifying transfer in channel 
must contain zeros in bit positions 29-31. 
Furthermore, a CCW specifying a transfer in channel 
must not be fetched from a location designated by an 
immediately preceding transfer in channel. When 
either of these errors is detected, a program check is 
generated. 

The contents of the second half of the CCW, bit 
positions 32-63, are ignored. Similarly, the contents 
of bit positions 0-3 of the CCW are ignored. 

Command Retry 
Some channels have the capability to perform 
command retry, a channel and control-unit procedure 
that causes a command to be retried without 
requiring an I/O interruption. This retry is initiated 
by the control unit presenting either of two status-bit 

. combinations by means of a special communication 
sequence with the channel. When immediate retry 
can be performed, it signals a channel-end, unit
check, and status-modifier status-bit combination, 
together with device end. When immediate retry 
cannot be performed, the presentation of device end 
is delayed until the control unit is prepared. When 
the channel is not capable of performing command 
retry, or when any status bit other than device end 
accompanies the requested command retry initiation, 
the retry is suppressed, and an interruption condition 
is generated. The CSW will contain the channel-end, 
unit-check, and status-modifier status indications, 
along with any other appropriate status. 

During command retry, the channel action is similar 
to that taken when command chaining. Thus, when 
command retry is performed, a START I/O initiating 
an immediate operation for which command chaining 
is not indicated in the CCW causes a condition code 
0, rather than a condition code 1, to be set. The 
subsequent termination of the I/O operation causes 
an interruption condition to be generated. During 
command retry, the CCW may be refetched. 

Programming Note 

The following possible results of a command retry 
must be anticipated by the program: 
1. A CCW with the PCI flag set to one may, if 

retried because of command retry, cause multiple 
PCI interruptions to occur. 

2. A channel program consisting of a single, 
unchained CCW specifying an immediate 
command may cause a condition code 0 rather 



than a condition code 1 to be set. This setting of 
the condition code occurs if the control unit 
signals command retry at the time initial status is 
signaled to the channel. An interruption condition 
is generated upon completion of the operation. 

3. If a CCW used in an operation is changed before 
that operation has been successfully completed, 
the results are unpredictable. 

4. A CSW stored after the initiation of a retry but 
before the presentation of device end, as when an 
interruption condition due to the PCI flag is 
taken, contains the address of the command to be 
retried plus 8. 

5. If a HALT I/O, HALT DEVICE, or CLEAR 
I/O instruction is issued after the initiation of a 
retry but before the presentation of device end, 
the CSW contains the address of the command to 
be retried plus 8. 

6. On a multiplexer channel, chained CCWs which 
might ordinarily have been executed in a burst 
may, upon the occurrence of command retry, 
cause multiplexing to occur, with the result that 
the channel becomes unexpectedly available. 

Conclusion of Input/Output Operations 
When the operation or sequence of operations 
initiated by START I/O or START I/O FAST 
RELEASE is ended, the channel and the device 
generate status. Status can be brought to the 
attention of the program by means of an I/O 
interruption, by TEST I/O or CLEAR I/O, or, in 
certain cases, by START I/O or START I/O FAST 
RELEASE. This status, as well as an address and a 
count indicating the extent of the operation sequence, 
are presented to the program in the form of a 
channel-status word (CSW). 

Types 0/ Conclusion 
Normally an I/O operation at the subchannellasts 
until the device signals channel end. Channel end 
can be signaled during the sequence initiating the 
operation, or later. When the channel detects 
equipment malfunctioning or an I/O system reset is 
performed, the channel disconnects the device 
without receiving channel end. The program can 
force a device to be disconnected prematurely by 
issuing CLEAR I/O, HALT I/O, or HALT DEVICE. 

Conclusion at Operation Initiation 

After the addressed channel and subchannel have 
been verified to be in a state where START I/O or 
START I/O FAST RELEASE can be executed, 
certain tests are performed on the validity of the 
information specified by the program and on the 
availability of the addressed control unit and I/O 
device. This testing occurs during the· execution of 
START I/O, either during or subsequent to the 
execution of START I/O FAST RELEASE, and 
during command chaining. 

A data-transfer operation is initiated at the 
subchannel and device only when no programming or 
eqJ,lipment errors are detected by the channel and 
when the device responds with zero status during the 
initiation sequence. When the channel detects or the 
device signals any unusual situations during the 
initiation of an operation, the command is said to be 
rejected. 

Rejection of the command during the execution of 
START I/O or START I/O FAST RELEASE is 
indicated by the setting of the condition code in the 
PSW. Unless the device is not operational, the 
reasons for the rejection are detailed by the portion 
of the CSW stored by START I/O or START I/O 
FAST RELEASE. The device is not started, no 
interruption conditions are generated, and the 
subchannel is available subsequent to the initiation 
sequence. The device is immediately available for the 
initiation of another operation, provided the 
command was not rejected because the device was 
busy or not operational. 

When an unusual situation causes a command to· be 
rejected during initiation of an I/O operation by 
command chaining, an interruption condition is 
generated, and the subchannel is not available until 
the condition is cleared. The reasons for the rejection 
are indicated to the program by means of the 
corresponding status bits in the CSW. The. not
operational state of· the I/O device, which during the 
execution of START I/O and sometimes during the 
execution of START I/O FAST RELEASE causes 
condition code 3 to be set, instead causes the 
interface-control-check bit to be set to one. The new 
operation at the I/O device is not started. 

When START I/O FAST. RELEASE is executed by 
a channel independent of the addressed device, tests 
for most program-specified information, for control
unit and device availability, for control-unit and 
device status, and for most errors are performed 
subsequent to the execution of START I/O FAST 
RELEASE. Some situations which would have caused 

Chapter 12. Input/Output Operations 12-43 



a condition code 1 or 3 to be set had the instruction 
been START I/O instead cause an interruption 
condition to be generated. The CSW, when stored, 
indicates that the interruption condition is a deferred 
condition code 1 or 3. 

Immediate Operations 

Some control commands cause the I/O device to 
signal channel end immediately upon receipt of the 
command code. An I/O operation causing channel 
end to be signaled during the initiation sequence is 
called an immediate operation. 

When the first CCW designated by the CAW 
during a START I/O or START I/O FAST 
RELEASE executed as a START I/O initiates an 
immediate operation with command chaining not 
indicated and command retry not occurring, no 
interruption condition is generated. In this case, 
channel end is brought to the attention of the 
program by causing START I/O or START I/O 
FAST RELEASE to store the CSW status portion. 
The subchannel is immediately made available to the 
program. The I/O operation, however, is initiated, 
and, if channel end is not accompanied by device 
end, the device remains busy. Device end, when 
subsequently provided by the device, causes an 
interruption condition to be generated. 

An immediate operation initiated by the first CCW 
designated by the CAW during a START I/O FAST 
RELEASE executed independent of the addressed 
device appears to the program as a nonimmediate 
command. That is, any status generated by the 
device for the immediate command or for a 
subsequent command if command chaining occurs, 
causes an interruption condition to be generated. 

When command chaining is specified after an 
immediate operation and no unusual situations have 
been detected during the execution, or when 
command retry occurs for an immediate operation, 
neither START I/O nor START I/O FAST 
RELEASE causes the immediate storing of CSW 
status. The subsequent commands in the chain are 
handled normally, and channel end for the last 
operation generates an interruption condition even if 
the device provides the signal immediately upon 
receipt of the command code. 

Whenever immediate completion of an I/O 
operation is signaled, no data has been transferred to 
or from the device. 

Since a count of zero is not valid, any CCW 
specifying an immediate operation must contain a 
nonzero count. When an immediate operation is 

12-44 IBM 4300 Processors Princinles of Onp.r~tlnn 

executed, however, incorrect length is not indicated 
to the program, and command chaining is performed 
when so specified. 

Programming Note 

Control operations for which the entire operation is 
specified in the command code may be executed as 
immediate operations. Whether the control function 
is executed as an immediate operation depends on the 
operation and type of device and is specified in the 
SL publication for the device. 

Conclusion of Data Transfer 

When the device accepts a command, the subchannel 
is set up for data transfer. The subchannel is in the 
working state during this period. Unless the channel 
detects equipment malfunctioning or the operation is 
concluded by CLEAR I/O, or, on the selector 
channel, the operation is concluded by CLEAR I/O, 
HALT I/O, or HALT DEVICE, the working state 
lasts until the channel receives the channel-end signal 
from the device. When no command chaining is 
specified or when chaining is suppressed because of 
unusual situations, channel end causes the operation 
at the subchannel to be terminated and an 
interruption condition to be generated. The status bits 
in the associated CSW indicate channel end and any 
unusual situations. The device can signal channel 
end at any time after initiation of the operation, and 
the signal may occur before any data has been 
transferred. 

For operations not involving data transfer, the 
device normally controls the timing of channel end. 
The duration of data-transfer operations may be 
variable and may be controlled by the device or the 
channel. 

Excluding equipment errors, CLEAR I/O, HALT 
DEVICE, and HALT I/O, the channel signals the 
device to conclude data transfer whenever any of the 
following events occurs: 
1. The storage areas specified for the operation are 

exhausted or filled. 
2. A program check is detected. 
3. A protection check is detected. 
4. A chaining check is detected. 

The first event occurs when the channel has stepped 
the count to zero in the last CCW associated with the 
operation. A count of zero indicates that the channel 
has transferred all information specified by the 
program. The other three events are due to errors and 
cause premature conclusion of data transfer. In every 
case, the conclusion is signaled in response to a 



service request from the device and causes data 
transfer to cease. If the device has no blocks defined 
for the operation (such as writing from magnetic 
tape), it concludes the operation and generates 
channel end. 

The device can control the duration of an operation 
and the timing of channel end. On certain operations 
for which blocks are defined (such as reading from 
magnetic tape), the device does not provide the 
channel-end signal until the end of the block is 
reached, regardless of whether or not the device has 
been previously signaled to conclude data transfer. 
If the initial data address in the CCW refers to a 

storage location that is not provided or to a 
disconnected or protected page, no data is transferred 
during the operation, and the device is signaled to 
conclude the operation in response to the first service 
request. On writing, devices such as magnetic-tape 
units request the first byte of data before any 
mechanical motion is started and, if the initial data 
address refers to a storage location that is not 
provided or to a disconnected or protected page, the 
operation is concluded before the recording medium 
has been advanced. However, since the operation has 
been initiated, the device provides channel end, and 
an interruption condition is generated. Whether a 
block at the device is advanced when no data is 
. transferred depends on the type of device and is 
specified in the SL publication for the device. 

When command chaining takes place, the 
subchannel is in the working state from the time the 
first operation is initiated until the device signals 
channel end for the last operation of the chain. On 
the selector channel, the device executing the 
operation stays connected to the channel and the 
whole channel is in the working state during the 
entire execution of the chain of operations. On the 
multiplexer channel, an operation in the burst mode 
causes the channel to be in the working state only 
while transferring a burst of data. If channel end and 
device end do not occur concurrently, the device 
disconnects from the channel after providing channel 
end, and the channel can in the meantime 
communicate with other devices. 

Any unusual situations cause command chaining to 
be suppressed and an interruption condition to be 
generated. The unusual situations can be detected by 
either the channel or the device, and the device can 
provide the indications with channel end, control-unit 
end, or device end. When the channel is aware of the 
unusual situation by the time the channel-end signal 
for the operation is received, the chain is ended as if 

the operation during which the situation occurred 
were the last operation of the chain. The device-end 
signal subsequently is processed as an interruption 
condition. When the device signals unit check or unit 
exception with control-unit end or device end, the 
subchannel terminates the working state upon receipt 
of the signal from the device. The channel-end 
indication in this case is not made available to the 
program. 

Termination by HALT I/O or HALT DEVICE 

The instructions HALT I/O and HALT DEVICE 
cause the current operation at the addressed channel 
or subchannel to be immediately terminated. The 
method of termination differs from that used upon 
exhaustion of count or upon detection of 
programming errors to the extent that termination by 
HALT I/O or HALT DEVICE is not necessarily 
contingent on the receipt of a service request from 
the device. 

When HALT I/O is issued to a channel operating in 
burst mode, the channel issues the halt signal to the 
device currently operating with the channel, 
regardless of the device address specified with the 
HAL T I/O instruction. If the channel is involved in 
the data-transfer portion of an operation, data 
transfer is immediately terminated, and the device is 
disconnected from the channel. If HALT I/O is 
addressed to a selector channel executing a chain of 
operations and the device has already provided 
channel end for the current operation, the instruction 
causes the device to be disconnected and command 
chaining to be immediately suppressed. 

When HALT DEVICE is issued to a channel 
operating in burst mode, the halt signal is issued to 
the device involved in the burst-mode operation only 
if that device is the one to which the HALT DEVICE 
is addressed. If the operation thus terminated is in 
the data-transfer portion of the operation, data 
transfer is immediately terminated, and the device is 
disconnected from the channel. If the terminated 
burst involves a selector channel executing a chain of 
operations and the device has already provided 
channel end for the current operation, HALT 
DEVICE causes the device to be disconnected and 
command chaining to be immediately suppressed. If, 
on a selector channel, the device involved in the burst 
is not the one to which the HALT DEVICE is 
addressed, no action is taken. If, on a multiplexer 
channel, the device involved in the burst is not the 
one to which the HALT DEVICE is addressed, 
HAL T DEVICE causes any operation for the 

Chapter 12. Input/Output Operations 12-45 



addressed device to be terminated at the addressed 
sub channel by suppressing any further data transfer 
or command chaining for that device. 

When HALT I/O or HALT DEVICE is issued to a 
channel not operating in burst mode, the addressed 
device is selected, and the halt signal is issued as the 
device responds. On a multiplexer channel, command 
chaining, if indicated in the subchannel, is 
immediately suppressed. 

The termination of an operation by HALT I/O or 
HAL T DEVICE on the selector channel results in up 
to four distinct interruption conditions. The first one 
is generated by the channel upon execution of the 
instruction and is not contingent on the receipt of 
status from the device. The channel-status bits 
reflect the unusual situations, if any, detected during 
the operation. If HALT I/O or HALT DEVICE is 
issued before all data specified for the operation has 
been transferred, incorrect length is indicated, subject 
to the control of the SLI flag in the current CCW. 
The execution of HALT I/O or HALT DEVICE 
itself is not reflected in CSW status, and all status 
bits in a CSW due to this interruption condition can 
be zero. The channel is available for the initiation of 
a new I/O operation as soon as the interruption 
condition is cleared. 

The second interruption condition on the selector 
channel occurs when the control unit signals channel 
end. The selector channel handles this condition as 
any other interruption condition from the device after 
the device has been disconnected from the channel, 
and provides zeros in the subchannel-key, CCW
address, count, and channel-status fields of the 
associated CSW. Channel end is not made available 
to the program when HALT I/O or HALT DEVICE 
is issued to a channel executing a chain of operations 
and the device has already provided channel end for 
the current operation. 

Finally, the third and fourth interruption conditions 
occur when control-unit end, if any, and device end 
are signaled. These signals are handled as for any 
other I/O operation. 

The termination of an operation by HALT I/O or 
HAL T DEVICE on a multiplexer channel causes the 
normal interruption conditions to be generated. If the 
instruction is issued when the sub channel is in the 
data-transfer portion of an operation, the subchannel 
remains in the working state until channel end is 
signaled by the device, at which time the sub channel 
is placed in the interruption-pending state. If HALT 
I/O or HALT DEVICE is issued after the device has 
signaled channel end and the subchannel is executing 

12-46 IBM 4300 Processors Principles of Operation 

a chain of operations, channel-end is not made 
available to the program, and the subchannel remains 
in the working state until the next status byte from 
the device is received. Receipt of a status byte 
subsequently places the subchannel in the 
interruption-pending state. 

The CSW associated with the interruption condition 
in the subchannel contains the status byte provided 
by the device and the channel. If HALT I/O or 
HAL T DEVICE is issued before all data areas 
associated with the current operation have been 
exhausted or filled, incorrect length is indicated, 
subject to the control of the SLI flag in the current 
CCW. The interruption condition is processed as for 
any other type of termination. 

The termination of a burst operation by HALT I/O 
or HALT DEVICE on a block-multiplexer channel 
may, depending on the model and the type of 
subchannel, take place as for a selector channel or 
may allow the subchannel to remain in the working 
state until the device provides ending status. 

Programming Note 

The count field in the CSW associated with an 
operation terminated by HALT I/O or HALT 
DEVICE is unpredictable. 

Termination by CLEAR I/O 

The termination of an operation by CLEAR I/O 
causes the subchannel to be set to the available state 
and causes a CSW to be stored. The validity of the 
CSW fields is defined in the section "CLEAR I/O" 
earlier in this chapter. 

When CLEAR I/O terminates an operation at a 
subchannel in the interruption-pending state, up to 
three subsequent interruption conditions related to 
the operation can occur. Since CLEAR I/O causes 
the subchannel to be made available, these 
interruption conditions will result in only the unit
status portion of the CSW being indicated. 

The first interruption condition arises on a selector 
channel when channel end is signaled to the channel. 
This occurs only when the interruption-pending states 
of the channel and subchannel at the execution of 
CLEAR I/O were due to the previous execution of 
HALT I/O or HALT DEVICE. 

The second and third interruption conditions arise 
when control-unit end, if any, and device end are 
signaled to the channel. 

When CLEAR I/O terminates an operation at a 
subchannel in the working state, up to four 
subsequent inter,ruption conditions related to the 



operation can occur. For all of these conditions, only 
the status portion of the CSW is indicated. 

The first interruption condition arises on certain 
channels when the terminated operation was in the 
midst of data transfer. Since the device is not 
signaled to terminate the operation during the 
execution of CLEAR I/O unless the channel is 
working with the addressed device when the 
instruction is received, the device may, subsequent to 
the CLEAR I/O, attempt to continue the data 
transfer. The channel responds by signaling the 
device to terminate data transfer. Depending on the 
channel, the need to signal the device to terminate 
data transfer may be ignored or may be considered: 
an interface-control check which creates an 
interruption condition. Only channel status is 
indicated in the CSW. 

The second interruption condition occurs when 
channel-end status is received from th"e device. The 
third and fourth conditions occur when control-unit 
end, if any, and device end are presented to the 
channel. In these three cases, only unit status is 
indicated in the CSW. 

Termination Due to Equipment Malfunction 

When channel-equipment malfunctioning is detected 
or invalid signals are received from a device, the 
recovery procedure and the subsequent states of the 
subchannels and devices on the channel depend on 
the type of error and on the model. Normally, the 
program is alerted to the termination by an I/O 
interruption, and the associated CSW indicates 
channel-control check or interface-control check. 
However, when the nature of the malfunction 
prevents an I/O interruption, a machine-check 
interruption occurs, and a CSW is not stored. A 
malfunction may cause the channel to perform the 
I/O selective reset or to generate the halt signal. 

Input/Output Interruptions 
Input/ output interruptions provide a means for the 
CPU to change its state in response to conditions that 
occur in I/O devices or channels. These conditions 
can be caused by the program or by an external event 
at the device. 

Interruption Conditions 

A request for an I/O interruption is called an 1/0-
interruption condition, or, in this chapter, simply an 
interruption condition. An interruption condition can 
be brought to the attention of the program only once 
and is cleared when it causes an interruption. 
Alternatively, an interruption condition can be 
cleared by TEST I/O or CLEAR I/O, and conditions 
generated by the I/O device following the 
termination of the operation at the subchannel can be 
cleared by START I/O or START I/O FAST 
RELEASE. The latter include interruption 
conditions caused by attention, device end, and 
control-unit end, and channel end when provided by 
a device after conclusion of the operation. The 
device attempts to initiate a request to the channel 
for an interruption whenever it detects any of the 
following: 

Channel end 
Control-unit end 
Device end 
Attention 

The channel may also, at command chaining, create 
an interruption condition at the device, which can be 
due to the following: 

Unit check 
Unit exception 
Busy indication from device 
Program check 
Protection check 

When an operation initiated by command chaining 
is terminated because of an unusual situation detected 
during the command initiation sequence, the 
interruption condition may remain pending within the 
channel, or the channel may create an interruption 
condition at the device. An interruption condition is 
created at the device in response to presentation of 
status by the device and causes the device 

. subsequently to present the same status for 
interruption purposes. The interruption condition at 
the device mayor may not be associated with unit 
status. If the unusual situation is detected by the 
device (unit check or unit exception) the unit-status 
field of the associated CSW identifies the condition. 
In the case of program and protection check, the 
identification of the error is preserved in the 
subchannel, and appears in the channel-status field of 
the associated CSW. If the associated interruption 
condition has been queued at the device, the device 
provides zero status for interruption purposes. When 
command chaining takes place, channel end and 

Chapter 12. Input/Output Operations 12-47 



device end do not cause an interruption, and are not 
made available. 

An interruption condition caused by the device may 
be accompanied by channel and other unit status. 
Furthermore, more than one interruption condition 
associated with the same device can be cleared at the 
same time. As an example, when channel end is not 
cleared at the device by the time device end is 
generated, both may be indicated in the CSW and 
cleared at the device concurrently. 

However, at the time the channel assigns highest 
priority for interruptions to an interruption condition 
associated with an operation at the subchannel, the 
channel accepts the status from the device and clears 
the condition at the device. The interruption 
condition and the associated status indication are 
subsequently preserved in the sub channel. Any 
subsequent status generated by the device is not 
included when the CSW is stored, even if the status is 
generated before the interruption condition is cleared. 

When the channel detects any of the following, it 
generates an interruption condition without 
necessarily communicating with or having received 
the status byte from the device: 
• PCI flag in a CCW 
• Execution of HALT I/O or HALT DEVICE on a 

selector channel 
• Channel-available interruption (CAl) 
• A programming error associated with the CCW or 

first IDA W following the SIOF function 
The interruption conditions from the channel, 

except for CAl, can be accompanied by other 
channel-status indications, but none of the device 
status bits is on when the channel initiates the 
interruption. 

Channel-Available Interruption 

The channel-available-interruption (CAl) condition is 
provided on block -multiplexer channels and causes 
the entire CSW to be replaced by a new set of bits. 
All fields of the CSW are set to zero. The I/O 
address stored contains a zero device address and a 
channel address identifying the interrupting channel. 

The channel generates the CAl condition only if it 
previously had responded with a condition code 2 to 
an I/O instruction other than HALT I/O or HALT 
DEVICE and if the working state thus indicated no 
longer exists. When the working state which caused 
condition code 2 was due to a sub channel busy with a 
device other than the one addressed, the conclusion 
of the working state is not signaled by a CAL Since 
any other interruption condition (except pel) 

12-48 IBM 4300 Processors Principles of Operation 

accomplishes the same function as CAl, a CAl 
condition is reset upon the occurrence of any 
interruption (except PCI) on that channel. Some 
channels also reset a CAl condition when another 
interruption condition (except PCI) is cleared by a 
TEST I/O on the same channel. The occurrence of 
another channel-working state before the CAl causes 
the CAl condition to be suspended until the working 
state ends. 

Programming Note 

The CAl is designed to inform the program that a 
channel which previously indicated busy is no longer 
busy. The CAl condition pending in a channel does 
not cause the rejection of a subsequent START I/O 
or START I/O FAST RELEASE but does cause a 
condition code 1 to be returned to TEST CHANNEL. 
The CAl can therefore be used as a tool for keeping 
I/O requests in sequence by using it in conjunction 
with TEST CHANNEL. A channel which responded 
with condition code 2 because the channel was busy 
does not subsequently respond with a condition code 
o to a TEST CHANNEL without clearing an 
interruption condition in the interim. 

Priority of Inte""ptions 
Generation of interruption conditions is asynchronous 
to the activity in the CPU, and interruption 
conditions associated with more than one I/O device 
can exist at the same time. The priority among 
interruption conditions is controlled by two types of 
mechanisms-one establishes the priority among 
interruption conditions within a channel, and another 
establishes priority among interruption conditions 
from different channels. A channel requests an I/O 
interruption only after it has established priority 
among interruption conditions. The status associated 
with interruption conditions is preserved in the 
devices or channels until accepted by the CPU. 

Assignment of priority among requests for 
interruption associated with devices on anyone 
channel is a function of the type of channel, the type 
of interruption condition, and the position of the 
device on the I/O interface. A device's position on 
the interface is not related to its address. 
Interruption conditions from different devices do not 
necessarily occur in the sequence in which they are 
generated. However, multiple interruption conditions 
for a single device are presented in the sequence in 

. which they are generated. 
The priorities among requests for I/O interruptions 

from different channels depend on channel addresses. 



The priorities of channels 1-15 are in the order of 
their addresses, with channel 1 having the highest 
priority. The priority of byte-multiplexer channel 0 is 
undefined. Its priority may be above, below, or 
between those priorities of channels 1-15. 

Interruption Action 

An I/O interruption can occur only when the CPU is 
enabled for I/O interruptions. The interruption 
occurs at the completion of a unit of operation. If a 
channel has established the priority among 
interruption conditions, while the CPU is disabled for 
I/O interruptions, the interruption occurs 
immediately after the completion of the instruction 
enabling the CPU and before the next instruction is 
executed. This interruption is associated with the 
highest priority condition for the channel. If 
interruptions are allowed from more than one channel 
concurrently, the interruption occurs from the 
channel having the highest priority among those 
requesting interruption. 
If the priority among interruption conditions has not 

yet been established in the channel by the time the 
interruption is allowed, the interruption does not 
necessarily occur immediately after the completion of 
the instruction enabling the CPU. This delay can 
occur regardless of how long the interruption 
condition has existed in the device or the sub channel. 

The interruption causes the current program-status 
word (PSW) to be stored as the old PSW at location 
56 and causes the CSW associated with the 
interruption to be stored at location 64. 
Subsequently, a new PSW is loaded from location 
120, and processing resumes in the state indicated by 
this PSW. The channel and device causing the 
interruption are identified by the I/O address which, 
in the EC mode, is stored in locations 186-187 and, 
in the BC mode, is contained in bits 16-31 of the 
I/O old PSW. The CSW associated with the 
interruption identifies the interruption condition 
responsible for the interruption and provides further 
details about the progress of the operation and the 
status of the device. 

Programming Note 

When a number of I/O devices on a shared control 
unit are concurrently executing operations such as 
rewinding tape or positioning a disk-access 
mechanism, the initial device-end signals generated 
on completion of the operations are provided in the 
order of generation, unless command chaining is 
specified for the operation last initiated. In the latter 

case, the control unit provides the device-end signal 
for the last initiated operation first, and the other 
signals are delayed until the subchannel is freed. 
Whenever interruptions due to the device-end signals 
are delayed because the CPU is disabled for I/O 
interruptions or the subchannel is busy, the original 
order of the signals is destroyed. 

Channel-Status Word 
The channel-status word (CSW) provides to the 
program the status of an I/O device or the indication 
of the reasons for which an I/O operation has been 
concluded. The CSW is formed, or parts of it are 
replaced, in the process of I/O interruptions and 
possibly during the execution of START I/O, START 
I/O FAST RELEASE, TEST I/O, CLEAR I/O, 
HALT I/O, HALT DEVICE, and STORE 
CHANNEL ID. The CSW is stored at location 64 
and is available to the program at this location until 
the time the next I/O interruption occurs or until 
another I/O instruction causes its contents to be 
replaced, whichever occurs first. 

The information placed in the CSW by an I/O 
interruption pertains to the device which is identified 
by the I/O address stored during the interruption. 
The information placed in the CSW by START I/O, 
START I/O FAST RELEASE, TEST I/O, CLEAR 
I/O, HALT I/O, or HALT DEVICE pertains to the 
device addressed by the instruction. 

The CSW has the following format: 

CCW Address 

o 4 6 8 

I , 
Unit Channel Count 
Status Status 

I , 
32 40 48 63 

The fields in the CSW are allocated as follows: 

Subcllannel Key: Bits 0-3 form the access key used 
in the chain of operations at the sub channel. 

Logout Pending (L): Bit 5, when one, indicates that 
an I/O instruction cannot be executed until a logout 
has been cleared. Bit 45, channel-control check, will 
always be one when bit 5 is one. 

Chapter 12. Input/Output Operations 12-49 



/ 

1M/erred Condition Code (CC): Bits 6 and 7 
indicate whether situations have been encountered 
subsequent to the setting of a condition code 0 for 
START I/O FAST RELEASE that would have 
caused a different condition-code setting for START 
I/O. The possible setting of these bits, and their 
meanings, are as follows: 

Setting of 

BitS Bit7 Meaning 

0 0 Normal I/O interruption 

0 1 Deferred condition code is 1 

0 (Reserved) 

Deferred condition code is 3 

CCW Address: Bits 8-31 form an address that is 8 
higher than the address of the last CCW used. 

Slam: Bits 32-47 identify the status of the device 
and the channel that caused the storing of the CSW. 
Bits 32-39, the unit status, are obtained from the 
device or control unit and indicate situations detected 
by the device or control unit. Bits 40-47, the channel 
status, are provided by the channel and indicate 
situations associated with the sub channel. The .16 bits 
are designated as follows: 
Bit Designation 

32 Attention 
33 Status modifier 

34 Control-unit end 

35 Busy 

36 Channel end 
37 Device end 

38 Unit check 
39 Unit exception 

40 Program-controlled interruption 

41 I ncorrect length 

42 Program check 

43 Protection check 

44 Channel-data check 

45 Channel-control check 

46 Interface-control check 

47 Chaining check 

ClI"nl: Bits 48-63 form the residual count for the 
last CCW used. 

Unit Stat"s 
The following status indications are generated by the 
I/O device or control unit. The timing and causes of 
these status indications for each type of device are 
specified in the SL publication for the device. 

When the I/O device is accessible from more than 
one channel, status due to channel-initiated 
operations is signaled to the channel that initiated the 

12-50 IBM 4300 Processors Principles of Operation 

associated I/O operation. The handling of status not 
associated with I/O operations, such as attention or 
device end due to transition from the not-ready to 
the ready state, depends on the type of device and 
situation and is specified in the SL publication for the 
device. 

Attention 

Attent~on is signaled when the device detects an 
asynchronous situation that is significant to the 
program. Attention is interpreted by the program 
and is not associated with the initiation, execution, or 
conclusion of an I/O operation. 

The device can signal attention to the channel when 
no operation is in progress at the 110 device, control 
unit, or subchannel. Attention can be signaled with 
device end upon completion of an operation, and it 
can be signaled to the channel during the initiation of 
a new I/O operation. Otherwise, the handling and 
presentation of attention to the channel depends on 
the type of device. 

When the device signals attention during the 
initiation of an operation, the operation is not 
initiated. Attention causes command chaining to be 
suppressed. 

Status Modifier 

Status modifier is generated by the device when the 
device cannot provide its current status in response to 
TEST I/O, when the control unit is busy, when the 
normal sequence of commands has to be modified, or 
when command retry is to be initiated. 

When status modifier is signaled in response to 
TEST I/O and status modifier is the only status bit 
that is set to one, this indicates that the device 
cannot execute the instruction and has not provided 
its current status. The interruption condition, which 
may be pending at the device or subchannel, has not 
been cleared, and the CSW stored by TEST I/O 
contains zeros in the subchannel-key, CCW-address, 
and count fields. 

When the status-modifier bit in the CSW is set to 
one together with the busy bit, it indicates that the 
busy status pertains to the control unit associated 
with the addressed I/O device. The control unit 
appears busy when it is executing a type of operation 
that precludes the acceptance and execution of any 
command or the instructions TEST I/O, HALT I/O, 
and HALT DEVICE or when it contains an 
interruption condition for a device other than the one 
addressed. The interruption condition may be due to 
control-unit end, due to channel end following the 



execution of CLEAR I/O, or, on the selector 
channel, due to channel end following the execution 
of HALT I/O or HALT DEVICE. The busy state 
occurs for operations such as backspace file, in which 
case the control unit remains busy after providing 
channel end, for operations concluded by CLEAR 
I/O, and for operations concluded on the selector 
channel by HALT I/O or HALT DEVICE, and 
temporarily occurs on the 2702 Transmission Control 
after initiation of an operation on a device 
accommodated by the control unit. A control unit 
accessible from two or more channels appears busy 
when it is communicating with another channel. 

Presence of status modifier and device end means 
that the normal sequence of commands must be 
modified. The handling of this status combination by 
the channel depends on the operation. If command 
chaining is specified in the current CCW and no 
unusual situations have been detected, presence of 
status modifier and device end causes the channel to 
fetch and chain to the CCW whose storage address is 
16 higher than that of the current CCW. If the I/O 
device signals status modifier at a time when no 
command chaining is specified, or when any unusual 
situations have been detected, no action is taken in 
the channel, and the status-modifier bit is set to one 
in the CSW. 

Status modifier is set to one in combination with 
unit check and channel end to initiate the 
command-retry procedure. 

Control-Unit End 

Control-unit end indicates that the control unit has 
become available for use for another operation. 

Control-unit end is provided only by control units 
shared by I/O devices or control units accessible by 
two or more channels, and only when one or both of 
the following have occurred: 
1. The program had previously caused the control 

unit to be interrogated while the control unit was 
in the busy state. The control unit is considered 
to have been interrogated in the busy state when 
a command or the instructions TEST I/O, HALT 
I/O, or HALT DEVICE had been issued to a 
device on the control unit, and the control unit 
had responded with busy and status modifier in 
the unit-status byte. See the section "Status 
Modifier" earlier in this chapter. 

2. The control unit detected an unusual situation 
during the portion of the operation after channel 
end had been signaled to the channel. The 

. indication of the unusual situation accompanies 
control-unit end. 

If the control unit remains busy with the execution of 
an operation after signaling channel end but has not 
detected any unusual situations and has not been 
interrogated by the program, control-unit end is not 
generated. Similarly, control-unit end is not provided 
when the control unit has been interrogated and 
could perform the indicated function. The latter case 
is indicated by the absence of busy and status 
modifier in the response to the instruction causing the 
interrogation. 

When the busy state of the control unit is 
temporary, control-unit end is included with busy and 
status modifier in response to the interrogation even 
though the control unit has not yet been freed. The 
busy condition is considered to be temporary if its 
duration is commensurate with·· the program time 
required to handle an I/O interruption. The 2702 
Transmission Control is tjln example of a device in 
which the control unit mflY be busy temporarily and 
which includes control-u~it end with busy and status 
modifier. 

Control-unit end can be signaled with channel end, 
with device end, or between the two. When 
control-unit end is signaled by means of an I/O 
interruption in the absence of any other status, the 
interruption may be identified by any address 
assigned to the control unit. A control-unit end 
causes the control unit to appear busy for initiation of 
new operations. 

Busy 

Busy indicates that the I/O device or control unit 
cannot execute the command or instruction because 
( 1) it is executing a previously initiated operation, 
(2) it contains an interruption condition, (3) it is 
shared by channels or I/O devices and the shared 
facility is not available, or (4) a self-initiated 
function is being performed. The status associated 
with the interruption condition for the addressed 
device, if any, accompanies the busy status. If busy 
applies to the control unit, busy is accompanied by 
status modifier. 

The figure "Indications of Busy in CSW" lists the 
situations for devices connected to only one channel 
when the busy bit is set to one in the CSW and when 
busy is accompanied by status modifier. For devices 
shared by more than one channel, operations related 
to one channel may cause the control unit or device 
to appear busy to the other channels. 

Chapter 12. Input/Output Operations 12-51 



CSW Status Stored By 

Condition SIO or SIOF =F TIO CLRIO+ HIO or HDV 

Subchannel available 

DE or attention in device 

Device working, CU available 

CU end or channel end in CU: 

for the addressed device 

for another device 

CU working 

Interruption condition in subchannel for 
the addressed device because of: 

chaining terminated by busy 

other type of termination 

Subchannel working 

CU available 

CU working 

Explanation: 

B Busy bit in CSW is one. 

B,c1 

B 

B,c1 

B,SM 

B,SM 

cI I nterruption condition cleared; status is placed in CSW. 

CU Control unit. 

DE Device end. 

SM Status-modifier bit appears in CSW. 

CSW not stored, or I/O interruption cannot occur. 

Busy bit is zero. 

-,cI 

B 

-,cI 

B,SM 

B,SM 

B,cI -,c1 

-,cI -,c1 

#- When a channel executes START I/O FAST RELEASE as START I/O, the CSW status 
stored for the two instructions is identical. When START I/O FAST RELEASE is 
executed independently of the device, the same status is stored by an I/O interruption 

with the CSW also indicating deferred condition code 1. 

# Except when the I/O interruption is caused by a deferred condition code 1 for 

START I/O FAST RELEASE. 

B,SM 

+ The entries in this column apply only when the ClRIO function is executed. When CLEAR 110 

causes the TID function to be executed, the entries in the TIO column apply. 

Indications of Busy in CSW 

12-52 IBM 4300 Processors Principles of Operation 

I/O Interruption # 

-,c1 

B 

-,cI 

-,cI 

B,SM 

B,cI 

-,cI 



Channel End 

Channel end is caused by the completion of the 
portion of an I/O operation involving transfer of 
data or control information between the I/O device 
and the channel. The condition indicates that the 
subchannel has become available for use for another 
operation. 

Each I/O operation causes channel end to be 
signaled, and there is only one channel end for an 
operation. Channel end is not signaled when 
programming errors or equipment malfunctions are 
detected during initiation of the operation. When 
command chaining takes place, only the channel end 
of the last operation of the chain is made available to 
the program. Channel end is not made available to 
the program when a chain of coinmands is 
prematurely concluded because of an unusual 
situation indicated with control-unit end or device 
end or during the initiation of a chained command. 

The instant within an I/O operation when channel 
end is signaled depends on the operation and the type 
of device. For operations such as writing on 
magnetic tape, channel end occurs when the block 
has been written. On devices that verify the writing, 
channel end mayor may not be delayed until 
verification is performed, depending on the device. 
When magnetic tape is being read, channel end 
occurs when the gap on tape reaches the read-write 
head. On devices equipped with buffers, channel end 
occurs upon completion of data transfer between the 
channel and the buffer. During control operations, 
channel end is generated when the control 
information has been transferred to the devices, 
although for short operations channel end may be 
delayed until completion of the operation. 
Operations that do not cause any data to be 
transferred can provide channel end during the 
initiation sequence. 

Channel end in the control unit causes the control 
unit to appear busy· for the initiation of new 
operations. 

Channel end is presented in combination with status 
modifier and unit check to initiate the command -retry 
procedure. 

Device End 

Device end is caused by the completion of an I/O 
operation at the device. On some devices, it is also 
caused by manually changing the device from the 
not-ready to the ready state. Device end normally 
indicates that the I/O device has become available 
for use in another operation. 

Each I/O operation causes device end, and there is 
only one device end to an operation. Device end is 
not generated when any programming or equipment 
malfunction is detected during initiation of the 
operation. When command chaining takes place, 
only the device end of the last operation of the chain 
is made available to the program unless an unusual 
situation is detected during the initiation of a chained 
command, in which case the chain is concluded 
without device end. 

Device end associated with an I/O operation is 
generated either simultaneously with channel end or 
later. For data-transfer operations on devices such as 
magnetic-tape units, the device concludes the 
operation at the time channel end is generated, and 
both device end and channel end occur together. On 
buffered devices, device end occurs upon completion 
of the mechanical operation. For control operations, 
device end is generated at the completion of the 
operation at the device. The operation may be 
completed at the time channel end is generated or 
later. 

When command chaining is specified, receipt of the 
device-end signal, in the absence of any unusual 
situations, causes the channel to initiate a new I/O 
operation. 

Unit Check 

Unit check indicates that the I/O device or control 
unit has detected an unusual situation that is detailed 
by the information available to a sense command. 
Unit check may indicate that a programming or 
equipment error has been detected, that the 
not-ready state of the device has affected the 
execution of the command or instruction, or that an 
exceptional situation other than the one identified by 
unit exception has occurred. The unit-check bit 
provides a summary indication of the sense data. 

An error causes the unit-check indication only when 
it occurs during the execution of a command or TEST 
I/O, or during some activity associated with an I/O 
operation. Unless the error pertains to the activity 
initiated by a command and is of immediate 
significance to the program, the error does not cause 
the program to be alerted after device end has been 

Chapter 12. Input/Output Operations 12-53 



cleared; a malfunction may, however, cause the 
device to become not ready. 

Unit check is indicated when the existence of the 
not-ready state precludes a satisfactory execution of 
the command, or when the command, by its nature, 
tests the state of the device. When no interruption 
condition is pending for the addressed device at the 
control unit, the control unit signals unit check when 
TEST I/O or the no-operation control command is 
issued to a not-ready device. In the case of 
no-operation, the command is rejected, and channel 
end and device end do not accompany unit check. 

Unless the command is designed to cause unit 
check, such as rewind and unload on magnetic tape, 
unit check is not indicated if the command is properly 
executed even though the device has become not 
ready during or as a result of the operation. 
Similarly, unit check is not indicated if the command 
can be executed with the device not ready. Selection 
of a device that is not ready does not cause a unit 
check when the sense command is issued or when an 
interruption condition is pending for the addressed 
device at the control unit. 
If the device detects during the initiation sequence 

that the command cannot be executed, unit check is 
signaled to the channel without channel end, 
control-unit end, or device end. Such unit status 
indicates that no action has been taken at the device 
in response to the command. If the situation 
precluding proper execution of the operation occurs 
after execution has been started, unit check is 
accompanied by channel end, control-unit end, or 
device end, depending on when the situation was 
detected. Any errors associated with an operation, 
but detected after device end has been cleared, are 
indicated by signaling unit check with attention. 

Errors, such as invalid command code or invalid 
command-code parity, do not cause unit check when 
the device is working or contains an interruption 
condition at the time of selection. Under these 
circumstances, the device responds by providing busy 
status and indicating the interruption condition, if 
any. The command-code invalidity is not indicated. 

Concluding an operation with the unit-check 
indication causes command chaining to be suppressed. 

Unit check is presented in combination with 
channel end and status modifier to initiate the 
command-retry procedure. 

12-54 IBM 4300 Processors Principles of Operation 

Programming Notes 

1. If a device becomes not ready upon completion of 
a command, the ending interruption condition can 
be cleared by TEST I/O without generation of 
unit check due to the not-ready state, but any 
subsequent TEST I/O issued to the device causes 
a unit-check indication. 

2. In order that sense indications set in conjunction 
with unit check are preserved by the device until 
requested by a sense command, some devices 
inhibit certain functions until a command other 
than test I/O or no-operation is received. 
Furthermore, any command other than sense, test 
I/O, or no-operation causes the device to reset 
any sense information. To avoid degradation of 
the device and its control unit and to avoid 
inadvertent resetting of the sense information, a 
sense command should be issued immediately to 
any device signaling unit check. 

Unit Exception 

Unit exception is caused when the I/O device detects 
a situation that usually does not occur. Unit 
exception includes situations such as recognition of a 
tape mark and does not necessarily indicate an error. 
It has only one meaning for any particular command 
and type of device. 

Unit exception can be generated only when the 
device is executing an I/O operation, or when the 
device is involved with some activity associated with 
an I/O operation and the situation is of immediate 
significance to the program. If the device detects 
during the initiation sequence that the operation 
cannot be executed, unit exception is presented to the 
channel and appears without channel end, 
control-unit end, or device end. Such unit status 
indicates that no action has been taken at the device 
in response to the command. If the situation 
precluding normal execution of the operation occurs 
after the execution has been started, unit exception is 
accompanied by channel end, control-unit end, or 
device end, depending on when the situation was 
detected. Any unusual situation associated with an 
operation, but detected after device end has been 
cleared, is indicated by signaling unit exception with 
attention. 

A command does not cause unit exception when the 
device responds with busy status to the command 
during the initial selection. 

Concluding an operation with the unit-exception 
indication causes command chaining to be suppressed. 



Channel Status 
The following status bits are generated by the 
channel. Except for the status bits resulting from 
equipment malfunction, they can occur only while the 
subchannel is involved with the execution of an I/O 
operation. 

Program -Controlled Interruption 

A program-controlled interruption occurs when the 
channel fetches a CCW with the 
program-controlled-interruption (PCI) flag set to one. 
The I/O interruption due to the PCI flag takes place 
as soon as possible after the CCW takes control of 
the operation but may be delayed an unpredictab}e 
amount of time because I/O interruptions are 
disallowed or because of other activity in the system. 

The interruption condition due to the PCI flag does 
not affect the progress of the I/O operation. 

Incorrect Length 

Incorrect length occurs when the number of bytes 
contained in the storage areas assigned for the I/O 
operation is not equal to the number of bytes 
requested or offered by the I/O device. Incorrect 
length is indicated for one of the following reasons: 

Long Block on Input: During a read, 
read-backward, or sense operation, the device 
attempted to transfer one or more bytes to storage 
after the assigned storage areas were filled. The 
extra bytes have not been placed in storage. The 
count in the CSW is zero. 

Long Block on Output: During a write or control 
operation, the device requested one or more bytes 
from the channel after the assigned storage areas 
were exhausted. The count in the CSW is zero. 

Short Block on Input: The number of bytes 
transferred during a read, read-backward, or sense 
operation is insufficient to fill the storage areas 
assigned to the operation. The count in the CSW is 
not zero. 

Short Block on Output: The device terminated a 
write or control operation before all information 
contained in the assigned storage areas was 
transferred to the device. The count in the CSW is 
not zero. 

Incorrect length is not indicated when the current 
CCW has theSLI flag set to one and the CD flag set 
to zero. The indication "does not occur for immediate 

operations and for operations rejected during the 
initiation sequence. 

When incorrect length occurs~ command chaining is 
suppressed, unless the SLI flag in the CCW is one or 
unless the operation is immediate. See the figure 
"Channel-Chaining Action" in this chapter for the 
effect of the CD, CC, and SLI flags on the indication 
of incorrect length. 

Programming Note 

The setting of incorrect length is unpredictable in the 
CSW stored during CLEAR I/O. 

Program Check 

Program check occurs when programming errors are 
detected by the channel. Program check can be due 
to the following causes: 

Invalid CCW-Address Specification: The CA W or 
the transfer-in-channel command does not designate 
the CCW on integral boundaries for doublewords. 
The three rightmost bits of the CCW address are not 
zeros. 

CCW Location Not Provided: The channel has 
attempted to fetch a CCW from a storage location 
that is not provided. This may occur because the 
program has specified in the CA W or in the 
transfer-in-channel command a page address (bits 
8-20) equal to or greater than the page-capacity 
count (PCC), or because on chaining the channel has 
attempted to fetch a CCW from a page with a page 
address equal to PCC. 

Invalid Command Code: The command code in the 
first CCW designated by the CAW or in a CCW 
fetched on command chaining has four low-order 
zeros. The command code is not tested for validity 
during data chaining. 

Invalid Count: A CCW other than a CCW 
specifying transfer in channel contains the value zero 
in bit positions 48-63. 

Data Location Not Provided: The channel has 
attempted to transfer data to or from a storage 
location that is not provided. This may occur 
because the program has specified in the CCW a page 
address (bits 8-20) equal to or greater than the 
page-capacity count (PCC) or because the channel 
attempts during data transfer to access a page with a 
page address equal to PCC. 

Chapter 12. Input/Output Operations 12-55 



In~alid CA W Format: The CA W does not contain 
zeros in bit positions 4-7. 

In~alid CCW Format: A CCW other than a CCW 
specifying transfer in channel does not contain zeros 
in bit positions 37-39. 

In~alid Sequence: The first CCW designated by the 
CAW specifies transfer in channel, or the channel 
has fetched two successive CCWs both of which 
specify transfer in channel. 

Detection of program check during the initiation of 
an operation causes execution of the operation to be 
suppressed. When program check is detected after 
the device has been started, the device is signaled to 
conclude the operation the next time it requests or 
offers a byte of data. Program check causes 
command chaining to be suppressed. 

Protection Check 

Protection check occurs when the channel attempts a 
storage access that is prohibited by key-controlled 
storage protection. Protection applies to the fetching 
of CCWs and output data, and to the storing of input 
data. Storage accesses associated with each I/O 
operation are performed using the subchannel key 
provided in the CAW associated with that operation. 
For details, see the section "Key-Controlled 
Protection" in Chapter 3, "Storage." 

Protection check also occurs when it is detected that 
the channel has attempted to access a CCW or data 
from a page that is in the disconnected state. For 
details, see the section "Page States" in Chapter 3, 
"Storage." 

When protection check occurs during the fetching 
of a CCW that specifies the initiation of an I/O 
operation, the operation is not initiated. When 
protection check is detected after the device has been 
started, the device is signaled to conclude the 
operation the next time it requests or offers a byte of 
data. Protection check causes command chaining to 
be suppressed. 

Channel-Data Check 

Channel-data check indicates that a machine error 
has been detected in the information transferred to or 
from storage during an I/O operation, or that a 
parity error has been detected on the data on bus-in 
during an input operation. This information includes 
the data read or written, as well as the information 
transferred as data during a sense or control 
operation. The error may have been detected in the 

12-56 IBM 4300 Processors Principles of Operation 

channel, in storage, or on the path between the two. 
Channel-data check may be indicated for data with 
an invalid checking-block code in storage when the 
data is referred to by the channel but the data does 
not participate in the operation. 

Whenever a parity error on 110 input data is 
indicated by means of channel-data check, the 
channel forces correct parity on all data received 
from the I/O device, and all data placed in storage 
has valid checking-block code. When, on an input 
operation, the channel attempts to store less than a 
complete checking block, and invalid checking-block 
code is detected on the checking block in storage, the 
contents of the location remain unchanged with 
invalid checking-block code. On an output operation, 
whenever a channel-data check is indicated, all bytes 
that came from a checking block with invalid 
checking-block code have been transmitted with 
parity errors. 

Channel-data check causes command chaining to be 
suppressed but does not affect the execution of the 
current operation. Data transfer proceeds to normal 
completion, if possible, and an interruption condition 
is generated when the device presents channel end. 
A logout may be performed, depending on the 
channel. Accordingly, the detection of the error may 
affect the state of the channel and the device. 

Channel-Control Check 

Channel-control check is caused by machine 
malfunction affecting channel controls. It may be 
caused by invalid checking-block code on CCW and 
data addresses and invalid checking-block code on 
the contents of the CCW. Channel-control check 
may also include those channel-detected errors 
associated with data transfer that are not indicated as 
channel-data check, as well as those I/O interface 
errors detected by the channel that are not indicated 
as interface-control check. Errors responsible for 
channel-control check may cause the contents of the 
CSW to be invalid and conflicting. The CSW as 
generated by the channel has valid checking-block 
code. 

Detection of channel-control check causes the 
current operation, if any, to be immediately 
concluded. 

Channel-control check is set whenever CSW bit 5, 
logout pending, is set to one. 

In some situations, machine malfunctions affecting 
channel control may instead be reported as an 
external-damage or system -damage machine-check 
condition. 



Interface-Control Check 

Interface-control check indicates that an invalid 
signal has been received by the channel when 
communicating with a control unit or device. It is 
detected by the channel and usually indicates 
malfunctioning of an I/O device. It can be due to 
the following: 
1. The address or status byte received from a device 

has invalid parity. 
2. A device responded with an address other than 

the address specified by the channel during 
initiation of an operation. 

3. During command chaining the device appeared 
not operational. 

4. A signal from a device occurred at an invalid 
time or had invalid duration. 

S. A device signaled I/O error alert. 
Detection of interface-control check causes the 

current operation, if any, to be immediately 
concluded. 

Chaining Check 

Chaining check is caused by channel overrun during 
data chaining on input operations. Chaining check 
occurs when the I/O data rate is too high to be 
handled by the channel and by storage under current 
conditions. Chaining check cannot occur on output 
operations. 

Chaining check c~uses the I/O device to be 
signaled to conclude the operation. It causes 
command chaining to be suppressed. 

Contents Of Channel-Status Word 
The contents of the CSW depend on the reason the 
CSW was stored and on the programming method by 
which the information is obtained. The status portion 
always identifies the reason the CSW was stored. 
The subchannel-key, CCW-address, and count fields 
may contain information pertaining to the last 
operation or may be set to zero, or the original 
contents of these fields at location 64 may be left 
unchanged. 

Information Provided by Channel-Status Word 

Interruption conditions resulting from the execution 
or conclusion of an operation at the subchannel cause 
the whole CSW to be replaced. Such a CSW can be 
stored only by an I/O interruption or by TEST I/O 
or CLEAR I/O. Except for situations associated 
with command chaining and equipment 
Imalfunctioning, the storing can be caused by PCI or 

channel end and by the execution of HALT I/O or 
HALT DEVICE on the selector channel. The 
contents of the CSW are related to the current values 
of the corresponding quantities, although the count is 
unpredictable after program check, protection check, 
and chaining check, and after an interruption due to 
the PCI flag. 

A CSW stored upon the execution of a chain of 
operations pertains to the last operation which the 
channel executed or attempted to initiate. 
Information concerning the preceding operations is 
not preserved and is not made available to the 
program. 

When an unusual situation causes command 
chaining to be suppressed, the premature conclusion 
of the chain is not explicitly indicated in the CSW. 
A CSW associated with a conclusion due to a 
situation occurring at channel-end time contains 
channel end and identifies the unusual situation. 
When the device signals the unusual situation with 
control-unit end or device end, the channel-end 
indication is not made· available to the program, and 
the channel provides the current subchannel key, 
CCW address, and count, as well as the unusual 
indication, with control-unit end or device end in the 
CSW. The CCW-address and count fields pertain to 
the operation that was executed. 

When the execution of a chain of commands is 
concluded by an unusual situation detected during 
initiation of a new operation, the CCW -address and 
count fields pertain to the rejected command. Except 
for situations resulting from equipment 
malfunctioning, conclusion at initiation time can 
occur because of attention, unit check, unit 
exception, or program check, and causes both the 
channel-end and device-end bits in the CSW to be 
set to zeros. 

A CSW associated with status signaled after the 
operation at the subchannel has been concluded 
contains zeros in the subchannel-key, CCW-address, 
and count fields, provided the status is not cleared 
during START I/O or START I/O FAST RELEASE 
and provided logout pending is not indicated. This 
status includes attention, control-unit end, and device 
end (and channel end when it occurs after the 
conclusion of an operation on the selector channel by 
HALT I/O or HALT DEVICE). 

When the above status indications, other than 
logout pending, are cleared during START I/O or 
START I/O FAST RELEASE, only the status 
portion of the CSW is stored, and the original 
contents of the subchannel-key, CCW-address, 

Chapter 12. Input/Output Operations 12-57 



deferred-condition-code, logout-pending, and count 
fields in location 64 are preserved. Similarly, only 
the status bits of the CSW are changed when the 
command is rejected or the operation at the 
subchannel is concluded during the execution of 
START I/O or START I/O FAST RELEASE or 
whenever HALT I/O or HALT DEVICE causes 
CSW status to be stored. 

Errors detected during execution of the I/O 
operation do not affect the validity of the CSW 
unless channel-control check or interface-control 
check are indicated. Channel~control check indicates 
that equipment errors have been detected which can 
cause any part of the CSW, as well as the I/O 
address, to be invalid. Interface-control check 
indicates that the address identifying the device or 
the status bits received from the device may be 
invalid. The channel forces correct parity on invalid 
CSW fields. The validity of these fields can be 
ascertained by inspecting the limited channel logout. 

When any I/O instruction cannot be executed 
because of a pending logout which affects the 
operational capability of the channel or subchannel, a 
full CSW is stored. The fields in the CSW are all set 
to zeros, with the exception of the logout-pending bit 
and the channel-control-check bit, which are set to 
ones. 

12-58 IBM 4300 Processors Principles of Operation 

Subchannel Key 

A CSW stored to reflect the progress of an operation 
at the subchannel contains the subchannel key used 
in that operation. The contents of this field are not 
affected by programming errors detected by the 
channel or by the situations causing termination of 
the operation. 

CCW Address 

When the CSW is formed to reflect the progress of 
the I/O operation at the subchannel, the CCW 
address is normally 8 higher than the address of the 
last CCW used in the operation. 

The figure "Contents of the CCW-Address Field in 
the CSW" lists the contents of the CCW -address 
field for all situations that can cause the CSW to be 
stored. They are listed in order of priority; that is, if 
two situations occur, the CSW appears as indicated 
for the situation higher on the list. When a CSW has 
been stored and the situation exists that a 
command-retry request has been recognized but the 
CCW has not been re-executed, the "last-used CCW 
+ 8" is the CCW that is to be retried. When a 
program check is caused by two CCWs in sequence 
both of which specify transfer in channel, the second 
CCW is the one considered invalid. In the figure, the 
three cases of disconnected location and the two 
cases of invalid key are all protection checks. 



Situations 

Channel-control check 

Status stored by START I/O or START I/O FAST RELEASE 

Status stored by HALT I/O or HALT DEVICE 

Program check because CCW location in TIC not provided 

Program check (all others) 

Disconnected CCW location in TIC 

Disconnected CCW location generated 

Disconnected data location 

I nvalid key on CCW fetch 

I nvalid key on data access 

Chaining check 

Termination under count control 

Termination by I/O device 

Termination by HALT I/O 

Termination by CLEAR I/O 

Suppression of command chaining due to unit check 
or unit exception with device end or control-unit end 

Termination on command chaining by busy, unit check, 
Or unit exception 

Deferred condition code 1 for START I/O FAST RELEASE 

PCI flag in CCW 

I nterface-control check 

Channel end after HALT I/O on selector channel 

Channel end after CLEAR I/O 

Control-unit end 

Device end 

Attention 

Busy 

Status modifier 

Contents of the CCW-Address Field in the CSW 

Count 

The residual count, in conjunction with the original 
count specified in the last CCW used, indicates the 
number of bytes transferred to or from the area 
designated by the CCW. When an input operation is 
concluded, the difference between the original count 
in the CCW and the residual count in the CSW is 
equal to the number of bytes transferred to storage; 

Contents of Field 

Unpredictable 

Unchanged 

Unchanged 

Address of TIC + 8 

Address of invalid CCW + 8 

Address of TIC + 8 

First invalid CCW address + 8 

Address of invalid CCW + 8 

Address of protected CCW + 8 

Address of current CCW + 8 

Address of last-used CCW + 8 

Address of last-used CCW + 8 

Address of last-used CCW + 8 

Address of last-used CCW + 8 

Address of last-used CCW + 8 

Address of last CCW used in the completed operation + 8 

Address of CCW specifying the new operation + 8 

Address of CCW specifying the new operation + 8 

Address of last-used CCW + 8 

Unpredictable 

Zero 

Zero 

Zero 

Zero 

Zero 

Zero 

Zero 

on an output operation, the difference is equal to the 
number of bytes transferred to the 110 device. 

The figure "Contents of the Count Field in the 
CSW" lists the contents of the count field for all 
situations that can cause the CSW to be stored. They 
are listed in the order of priority; that is, if two 
situations occur, the CSW appears as for the situation 
higher on the list. 

Chapter 12. Input/Output Operations 12-59 



Situations Contents of Field 

Channel-control check 

Status stored by START liD or START liD FAST RELEASE 

Status stored by HALT liD or HALT DEVICE 

Program check 

Protection check 

Chaining check 

Termination under count control 

Termination by liD device 

Termination by HALT liD or HALT DEVICE 

Termination by CLEAR liD 

Unpredictable 

Unchanged 

Unchanged 

Unpredictable 

Unpredictable 

Unpredictable 

Correct 

Correct 

Unpredictable 

Unpredictable 

Suppression of command chaining due to unit check or unit 
exception with device end or control-unit end 

Correct. Residual count of last CCW used in the completed 
operation. 

Termination on command chaining by busy, unit check, Correct. Original count of CCW specifying the new operation. 
or unit exception 

Deferred condition code 1 or 3 for START liD FAST 
RELEASE 

Correct. Original count of CCW specifying the new operation. 

PCI flag in CCW 

I nterface-control check 

Channel end after HALT liD on selector channel 

Channel end after CLEAR I/O 

Unpredictable 

Unpredictable 

Zero 

Zero 

Control-unit end Zero 

Device end Zero 

Attention Zero 

Busy Zero 

Status modifier Zero 

Contents of the Count Field in the CSW 

Status 
The status bits identify the situations that have been 
detected during the I/O operation, that have caused a 
command to be rejected, or that have been generated 
by external events. 

When the channel detects several errors, all 
corresponding status bits in the CSW may be set to 
ones or only one may be set, depending on the error 
and model. Errors associated with equipment 
malfunctioning have precedence, and whenever 
malfunctioning causes an operation to be terminated, 
channel-control check, interface-control check, or 
channel-data check is indicated, depending on the 
error. When an operation is concluded by program 
check, protection check, or chaining check, the 
channel identifies the situation responsible for the 
conclusion and mayor may not indicate incorrect 
length. When a data error has been detected and the 
operation is concluded prematurely because of a 
program check, protection check, or chaining check, 

12-60 IBM 4300 Processors Principles of Operation 

both data check and the programming error are 
identified. 
If the CCW fetched on command chaining has the 

PCI flag set to one but a programming error in the 
contents of the CCW precludes the initiation of the 
operation, whether the PCI bit is one in the CSW 
associated with the interruption condition is 
unpredictable. Similarly, if a programming error in 
the contents of the CCW causes the command to be 
rejected during execution of START I/O or START 
I/O FAST RELEASE, the CSW stored by the 
instruction mayor may not have the PCI bit set to 
one. Furthermore, when the channel detects a 
programming error in the CAW or in the first CCW, 
the PCI bit is unpredictable in a CSW stored by 
START I/O or START I/O FAST RELEASE when 
the PCI flag is zero in the first CCW associated with 
the instruction. 

However, if the CCW fetched on command 
chaining has the PCI flag set to one but an unusual 
situation detected by the device precludes the 



initiation of the operation, the PCI bit is one in the 
CSW associated with the interruption condition. 
Likewise, if device status causes the command to be 
rejected during execution of START I/O or START 
I/O FAST RELEASE, the CSW stored by the 
instruction contains the PCI bit set to one. 

Situations detected by the channel are not related to 
those identified by the I/O device. 

The figure "Contents of the CSW Status Fields" 
summarizes the handling of status bits. The figure 
lists the states and activities that can cause status 
indications to be created and the methods by which 
these indications can be placed in the CSW. 

Chapter 12. Input/Output Operations 12-61 



Upon Term ination 

When 
of Operation at 

During By By I/O 
Subchannel Sub- Control I/O Command 510 By By HIO Inter-

Status 

When 
I/O Is 
Idle Is Working channel Unit Device Chaining or SIOF By TIO CLRIO+ or HDV ruption 

Attention 

Status modifier 

Control-unit end 

Busy 

Channel end 

Device end 

Unit check 

Unit exception 

Progra m-con trolled 
interruption 

Incorrect length 

Program check 

Protection check 

Channel-data check 

Channel-control check 

Interface-control check 

Chaining check 

Deferred cond code 1 

Deferred cond code 3 

Explanation: 

C* 

C* 

C 

C* 

C* 

C* 

C* C*H 

C C 

C C 

C* C* 

C C 

C C 

C C 

C C 

C" C* C* 

C* C* C* 

C C 

C The channel or device can create or present status at the 
indicated time. A CSW or its status protion is not 
necessarily stored at this time. 

Status such as channel end or device end is created at the 
indicated time. Other status bits may have been created 
previously but are made accessible to the program only at 
the indicated time. Examples of such status bits are pro
gram check and channel-data check, which are detected 
while data is transferred but are made available to the pro
gram only with channel end, unless the PCI flag or an equip
ment malfunction has caused an interruption condition to be 
generated earlier. 

S The status indication is stored in the CSW at the indicated 
time. 

An S appearing alone indicates that the status has been 
created previously. The letter C appearing with the S 
indicates that the status did not necessarily exist previously 
in the form that causes the program to be alerted, and may 
have been created by the I/O instruction or I/O interruption. 
For example, an equipment malfunction may be detected 
during an I/O interruption, causing channel-control or 
interface-control check to be indicated; or a device such as 
the 2702 may signal control-unit busy in response to in
terrogation by an I/O instruction, causing status modifier, 
busy, and control-unit end to be indicated in the CSW. 

Contents of the CSW Status Fields 

12-62 IBM 4300 Processors Principles of Operation 

C* 

C 

C* 

C 

C 

C* 

C* 

C* S 

C CS 

CS 

C CS 

C*I- CSI-

CI- CSI-

C* CS 

C* CS 

C CS 

C* CS 

C* CS 

C* CS 

C* CS 

C*# 

C*# 

S 

CS 

CS 

CS 

S 

S 

CS 

S 

S 

S 

S 

S 

S 

CS 

CS 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

S 

CS 

CS 

S 

s 
S 

CS 

CS 

CS 

CS 

CS 

* The status generates an interruption condition. 

S 

S 

S 

S 
S 
S 
CS 

S 

S 
S 

S 

S 

S 

CS 

CS 

S 

S 

S 

Channel end and device end do not result in interruption 
conditions when command chaining is specified and no 
unusual situations have been detected. 

i This indication is created at the indicated time only by an 
immediate operation. 

# Applies only to SIOF. 

H When an operation on the selector channel has been con
cluded by HALT DEVICE or HALT I/O, or an operation 
has been concluded by CLEAR I/O, channel end indicates 
the conclusion of the data-handling portion of the operation 
at the control unit. 

+ The entries in this column apply only when the CLRIO 
function is executed. When CLEAR I/O causes the TlO 
function to be executed, the entries in the TIO column 
apply. 



Channel Logout 
When a channel stores a CSW that indicates 
channel-control check in the absence of logout 
pending, or interface-control check, or, on some 
channels, channel-data check, a limited channel 
logout accompanies the storing of the CSW. Such a 
logout is useful for error recovery. 

The limited channellogout contains 
model-independent information and is stored at 
locations 176-179. When it is stored, bit 0 of the 
logout is always stored as a zero. 

110 Communications Area 
Storage locations 160-191 comprise a permanently 
assigned area of storage used for I/O, designated the 
110 communications area (IOCA). (See the figure 
"I/O Communications Area.") 

Locations 160-167, 172-175, 180-184, and 
188-191 are reserved for future I/O use. 

ChannellD (Locations 168-171): Locations 
168-171, when stored during the execution of a 
STORE CHANNEL ID instruction, contain 
information which describes the addressed channel. 

160 

164 

168 Channel 10 

172 

176 Limited Channel Logout (LCU 

180 

184 100000000/ I/O Address 

188 

I/O Communications Area 

Limited Channel Logout (Locations 176-179): The 
limited-channel-logout field (locations 176-179) 
contains model-independent information related to 
equipment errors detected by the channel. This 
information is used to provide detailed machine status 
when errors have affected I/O operations. The field 
may be stored only when the CSW or a portion of the 
CSW is stored. 

The bits of the field are defined as follows: 

o 

1-3 

4-7 

This bit is always stored as a zero when a 
limited channel logout (LCL) is stored. If 
the program ensures that this bit is set to one 
and any channel-control check, 
interface-control check, or channel-data 
check occurs, a test of this bit can determine 
if the LCL was stored by the channel. The 
LCL cannot be stored by a channel unless 
one of these three channel-status bits is set to 
one. 
Identity of the storage-control unit (SCU) 
identifies the SCU through which storage 
references were directed when an error was 
detected. This identity is not necessarily the 
identity of the storage unit involved with the 
transfer. When only one physical path exists 
between channel and storage, the 
storage-control unit has the identity of the 
CPU. If more than one path exists, the 
storage-control unit has its own identity. 

When bit 3 is zero, bits 1 and 2 are 
undefined. In this case, the SCU identity is 
implied to be the same as the CPU identity. 
When bit 3 is one, the binary value of bits 1 
and 2 identifies a physical SCU. Each SCU 
in the system has a unique identity. 
Detect field identifies the type of unit that 
detected the error. At least one bit is present 
in this field, and multiple bits may be set 
when more than one unit detects the error. 

Bit 4 - CPU 
Bit 5 - Channel 
Bit 6 - Main-storage control 
Bit 7 - Main storage 

8-12 Source field indicates the most likely source 
of the error. The determination is made by 
the channel on the basis of the type of error 
check, the location of the checking station, 
the information flow path, and the success or 
failure of transmission through previous check 
stations. 

Normally, only one bit will be present in 
this field. However, when interunit 
communication cannot be resolved to a single 
unit, such as when the interface between 
units is at fault, mUltiple bits (normally two) 
may be· set to ones in this field. When a 
reasonable determination cannot be made, all 
bits in this field are set to zeros. 

If the detect and source fields indicate 
different units, the interface between them 
can also be considered suspect. 

Chapter 12. Input/Output Operations 12-63 



13-18 
19-23 

24-25 

26-27 
28 

29-31 

Bit 8 - CPU 
Bit 9 - Channel 
Bit 10 - Main-storage control 
Bit 11 - Main storage 
Bit 12 - Control unit 

Reserved. Stored zero. 
Field-validity flags. These bits indicate the 
validity of the information stored in the 
designated fields. When the validity bit is set 
to one, the field is stored and usable. When 
the validity bit is set to zero, the field is not 
usable. 

The fields designated are: 

Bit 19 - Sequence code 
Bit 20 - Unit status 
Bit 21 - CCW address and subchannel key 

in CSW 
Bit 22 - Channel address 
Bit 23 - Device address 

Type of termination that has occurred is 
indicated by these two bits. 

This encoded field has meaning only when 
a channel-control check or an 
interface-control check is indicated in the 
CSW. When neither of these two checks is 
indicated, no termination has been forced by 
the channel. 

00 Interface disconnect 
01 Stop, stack, or normal termination 
10 Selective reset 
11 Reserved 
Reserved. Stored zero. 
I 10 error alert. This bit, when set to one, 
indicates that the limited channel logout 
resulted from the signaling of I/O error alert 
by the indicated unit. The I/O-error-alert 
signal indicates that the control unit has 
detected a malfunction which prevents it from 
communicating properly with the channel. 
The channel, in response, performs a 
malfunction reset and causes interface-control 
check to be set. 
Sequence code identifies the 110 sequence in 
progress at the time of error. It is 
meaningless if stored during the execution of 
HALT I/O or HALT DEVICE. 

For all cases, the CCW address in the 
CSW, if validly stored and nonzero, is the 
address of the current CCW plus 8. 

The sequence code assignments are: 

12-64 IBM 4300 Processors Principles of Operation 

000 

001 

010 

011 

100 

101 

A channel-detected error occurred 
during the execution of a TEST 110 or 
CLEAR I/O instruction. 
Command-out with a nonzero 
command byte on bus-out has been 
sent by the channel, but device status 
has not yet been analyzed by the 
channel. This code is set with a 
command-out response to address-in 
during initial selection. 
The command has been accepted by the 
device, but no data has been 
transferred. This code is set by a 
service-out or command-out response to 
status-in during an initial selection 
sequence, if the status is ~ither channel 
end alone, or channel end and device 
end, or channel end, device end, and 
status modifier, or all zeros. 
At least one byte of data has been 
transferred between the channel and 
the device. This code is set with a 
service-out response to service-in and, 
when appropriate, may be used when 
the channel is in an idle or polling 
state. 
The command in the current CCW has 
either not yet been sent to the device 0 

else was sent but not accepted by the 
device. This code is set when one of 
the following situations occurs: 
1. When the CCW address is updated 

during command chaining or a 
START I/O. 

2. When service-out or command-out 
is raised in response to status-in 
during an initial selection sequence 
with the status on bus-in including 
attention, control-unit end, unit 
check, unit exception, busy, status 
modifier (without channel end and 
device end), or device end (withou 
channel end). 

3. When a short, control-unit-busy 
sequence is signaled. 

4. When command retry is signaled. 
5. When the channel issues a test-I/C 

command rather than the commanc 
in the current CCW. 

The command has been accepted, but 
data transfer is unpredictable. This 
code applies from the time a device 



comes on the interface until the time it 
is determined that a new sequence code 
applies. It may thus be used when a 
channel goes into the polling or idle 
state and it is impossible to determine 
that code 010 or 011 applies. It may 
also be used at other times when a 
channel cannot distinguish between 
code 010 or OIl. 

110 Reserved. 

111 Reserved. 

Resened (LOCIltion 185): Zero is stored at location 
185 whenever an I/O address is stored at locations 
186-187. 

I/O A.ddress (Locations 186-187): A two-byte field 
is provided for storing the I/O address on each I/O 
interruption in the Ee mode. 

Chapter 12. Input/Output Operations 12-65 



Chapter 13. Operator Facilities 

Contents 

Basic Operator Facilities 13-1 
Address-Compare Controls 13-1 
Alter-and-Display Controls 13-2 
Check Control 13-2 
Check-Stop Indicator 13-2 
IML Controls 13-2 
Interrupt Key 13-2 
Interval-Timer Control 13-3 
Load Indicator 13-3 
Load-Clear Key 13-3 
Load-Normal Key 13-3 
Load-Unit-Address Controls 13-3 
Machine-Save Key 13-3 
Manual Indicator 13-3 
Mode Indicator 13-3 

The operator facilities provide functions for the 
manual operation and control of the machine. The 
functions include operator-to-machine 
communication, indication -of machine status, control 
over the setting of the time-of-day clock, initial 
program loading, resets, and other manual controls 
for operator intervention in normal machine 
operation. 

A model may provide additional operator facilities 
which are not described in this chapter. Examples 
are the means to indicate specific error conditions in 
the equipment, to change equipment configurations, 
and to facilitate maintenance. Furthermore, controls 
covered in this chapter may have additional settings 
which are not described here. Such additional 
facilities and control settings are contained in the 
appropriate System Library (SL) publication. 

Most models provide, in association with the 
operator facilities, a console device which may be 
used as an 110 device for operator communication 
with the program; this console device may also be 
used to implement some or all of the facilities 
described in this chapter. 

The operator facilities may be implemented on a 
particular model in various technologies and 
configurations. On some models, more than one set 
of physical representations of some keys, controls, 
and indicators may be provided, such as on multiple 

Power Controls 
Rate Control 

13-4 
13-4 

Restart Key 13-4 
Save Indicator 13-4 
Start Key 13-4 
Stop Key 13-4 
Storage-Size Control 13-4 
System Indicator 13-5 
System-Reset-C1ear Key 
System-Reset-Normal Key 
Test Indicator 13-5 
TOD-Clock Control 13-5 
Wait Indicator 13-5 

13-5 
13-5 

local or remote operating stations, which may be 
effective concurrently. 

A machine malfunction that prevents a manual 
operation from being performed correctly, as defined 
for that operation, may cause the CPU to enter the 
check-stop state or give some other indication to the 
operator that the operation has failed. Alternatively, 
a machine malfunction may cause a 
machine-check-interruption condition to be 
recognized. 

Basic Operator Facilities 

Address-Compare Controls 
The· address-compare controls provide a way to stop 
the CPU when a preset address matches· the address 
used in a specified type of main-storage reference. 

One of the address-compare controls is used to set 
up the address to be compared with the storage 
address. 

Another control provides at least two settings to 
specify the action, if any, to be taken when the 
address match occurs. The two settings are normal 
and stop. When this control is set to stop, the test 
indicator is turned on. 

The normal setting disables the address-compare 
operation. 

The stop setting causes the CPU to enter the 
stopped state on an address match. Depending on 

Chapter 13. Operator Facilities 13-1 



the model and the type of reference, pending I/O, 
external, and machine-check interruptions mayor 
may not be taken before entering the stopped state. 

A third control may specify the type of storage 
reference for which the address comparison is to be 
made. A model may provide one or more of the 
following settings, as well as others: 

The any setting causes the address comparison to be 
performed on all storage references. 

The data-store setting causes address comparison to 
be performed when storage is addressed to store data. 

The I/O setting causes address comparison to be 
performed when storage is addressed by a channel to 
transfer data or to fetch a channel-command word. 
Whether references to the channel-address word or 
the channel-status word cause a match to be 
indicated depends on the model. 

The IC setting causes address comparison to be 
performed when storage is addressed to fetch an 
instruction. The rightmost bit of the address setting 
mayor may not be ignored. The match is indicated 
only when the first byte of the instruction is fetched 
from the selected location. It depends on the model 
whether a match is indicated when fetching the target 
instruction of EXECUTE. 

A,lter-and-Display Controls 
The operator facilities provide controls and 
procedures to permit the operator to alter and display 
the contents of addressable locations in main storage, 
the storage keys, the page bits, the general, 
floating-point, and control registers, and the PSW. 
Information in storage can onlyfbe altered or 
displayed if the storage pages containing the 
information are in the connected or addressable state. 

Before alter-and-display operations may be 
performed, the CPU must first be placed in the 
stopped state. During alter-and-display operations, 
the manual indicator may be turned off temporarily, 
and the start and restart keys may be inoperative. 

Check Control 
The check control has at least two settings, stop and 
normal. If the control is set to stop, the CPU enters 
the check-stop state when either 
1. A machine-check condition is detected and not 

corrected 
2. A channel check occurs which would cause 

information to be stored in a channel-logout area 
at locations 1 76-1 79 

Whether information is actually stored in assigned 
storage locations as a result of the machine check or 

13-2 IBM 4300 Processors Principles of Operation 

channel check, the indications given for the cause of 
the stoppage, and the manner of resuming CPU 
operation depend on the model. 
If the check control is set to normal, the action 

resulting from the detection of a machine check or 
channel check is the same as described in Chapter 
11, "Machine-Check Handling," or in Chapter 12, 
"Input/ Output Operations," respectively. 

The test indicator is on while the check control is 
set to stop. 

Programming Note 

Except that recovery from a machine check or a 
channel check with logout is not possible, the check 
control permits a System/360 program, which uses 
assigned storage locations above 128 as ordinary 
storage, to be run in the BC mode. 

Check-Stop Indicator 
The check-stop indicator is on when the CPU is in 
the check-stop state. Reset operations normally 
cause the CPU to leave the check-stop state and thus 
turn off the indicator. The manual indicator may 
also be on in the check-stop state. 

IML Controls 
The IML controls perform initial microprogram 
loading (IML). The IML operation selects the 
ECPS:VSE mode or the System/370 mode of 
operation. 

When the IML operation is completed, the state of 
the affected CPU, channels, storage, and operator 
facilities is the same as if a power-on reset had been 
performed, except that the value and state of the 
time-of-day clock are not reset. 

The IML controls are effective while the power is 
on. 

Interrupt Key 
When the interrupt key is activated, an 
external-interruption condition indicating the 
interrupt key is generated. (See the section 
"Interrupt Key" in Chapter 6, "Interruptions. ") 

The interrupt key is effective when the CPU is in 
the operating or stopped state. It depends on the 
model whether the interrupt key is effective when the 
CPU is in the load state. 



Interval-Timer Control 
The interval-timer control disables or enables 
operation of the interval timer. Disabling the interval 
timer does not affect any other facility. 

When the control is set to disable the interval timer, 
updating of assigned storage locations 80-83 ceases. 
The contents of locations 80-83 remain at the last 
value to which they were updated, unless changed by 
a subsequent store operation. Any already pending 
interval-timer-interruption condition is kept pending 
without regard to the state of the external mask, PSW 
bit 7, and the interval-timer mask, bit 24 of control 
register O. 

When the control is set to enable the interval timer, 
updating of locations 80-83 is resumed using the 
current contents. If an interval-timer-interruption 
request existed and was kept pending when the 
interval-timer control was last set to disable, that 
condition remains pending until the CPU is enabled 
for the interruption. 

The test indicator mayor may not be turned on 
when the interval-timer control is set to disable. 

Programming Note 

Disabling the interval timer allows execution of a 
program which uses locations 80-83 as ordinary 
storage. A program which does not use the interval 
timer will function correctly with the interval timer 
disabled, even. when the interval timer fails. 

Load Indicator 
The load indicator is on during initial program 
loading, indicating that the CPU is in the load state. 
The indicator goes on when the load-clear or 
load-normal key is activated and the corresponding 
operation is started. It goes off after the new PSW is 
loaded successfully. 

Load-Clear Key 
Activating the load-clear key causes a clear-reset 
operation to be performed and initial program loading 
to be started using the 110 device specified by the 
load-unit-address controls. For details, see the 
sections "Resets" and "Initial Program Loading" in 
Chapter 4, "Control." 

The load-clear key is effective when the CPU is in 
the operating, stopped, load, or check-stop state. 

Load-Normal Key 
Activating the load-normal key causes an 
initial-program-reset operation to be performed and 
initial program loading to be started using the 1/0 
device specified by the load-unit-address controls. 
For details, see the sections "Resets" and "Initial 
Program Loading" in Chapter 4, "Control." 

The load-normal key is effective when the CPU is 
in the operating, stopped, load, or check-stop state. 

Load-Unit-AddressControls 
The load-unit-address controls select three 
hexadecimal digits, which provide the 12 rightmost 
110 address bits used for initial program loading. 

Machine-Save Key 
Activating the machine~save key initiates a 
machine-save operation. (See the section "Machine 
Save" in Chapter 4, "Control. ") The save indicator 
is turned on when the operation is completed 
successfully. 

The machine-save key is effective only when the 
CPU is in the stopped state. 

Operation Note 

The machine-save operation may be used in 
conjunction with a standalone dump program for the 
analysis of major program malfunctions. For such an 
operation, the following sequence would be called 
for: 
1. Activation of the stop or system-reset-normal key 
2. Activation of the machine-save key 
3. Activation of the load-normal key to enter a 

standalone dump program 
The system-reset-normal key must be activated in 

step 1 when the stop key is not effective because a 
continuous string of interruptions occurs or the CPU 
is in the check-stop state. 

Manual Indicator 
The manual indicator is on when the CPU is in the 
stopped state. Some functions and several manual 
controls are effective only when the CPU is in the 
stopped state. 

Mode Indicator 
The mode indicator shows the architectural mode of 
operation selected by the last IML operation. 

Chapter 13. Operator Facilities 13-3 



Power Controls 
The power controls are used to turn the power on 
and off. 

The CPU, storage, channels, operator facilities, and 
110 devices may all have their power turned on and 
off by common controls, or they may have separate 
power controls. When a particular unit has its power 
turned on, that unit is reset. The sequence is 
performed so that no instructions or 110 operations 
are performed until explicitly specified. The controls 
may also permit power to be turned on in stages, but 
the machine does not become operational until 
power-on is complete. 

When the power is completely turned on, an IML 
operation is performed. A power-on reset is then 
initiated (see the section "Resets" in Chapter 4, 
"Control"). It depends on the model whether the 
architectural mode of operation can be selected when 
the power is turned on, or whether the IML controls 
have to be used to change the mode after the power 
is on. 

Rate Control 
The setting of the rate control determines the effect 
of the start function and the manner in which 
instructions are executed. 

The rate control has at least two settings. The 
normal setting is process. When the rate control is 
set to process and the start function is performed, the 
CPU starts operating at normal speed. When the rate 
control is set to instruction step, one instruction or, 
for interruptible instructions, one unit of operation is 
executed each time that the start function is 
performed. For details, see the section "Stopped, 
Operating, Load, and Check-Stop States" in Chapter 
4, "Control." 

The test indicator is on while the rate control is not 
set to process. 
If the setting of the rate control is changed while 

the CPU is in the operating or load state, the results 
are unpredictable. 

Restart Key 
Activating the restart key initiates a restart 
interruption. (See the section "Restart Interruption" 
in Chapter 6, "Interruptions. ") 

The restart key is effective when the CPU is in the 
operating or stopped state. The key is not effective 
when the CPU is in the check-stop state. It depends 
on the model whether the restart key is effective 
when the CPU is in the load state. 

13-4 IBM 4300 Processors Principles of Operation 

Save Indicator 
The save indicator is turned on when a machine-save 
operation has been successfully completed. It is 
turned off when the load-clear, load-normal, restart, 
start, system-reset-clear, or system-reset-normal key 
is activated. It may also be turned off when other 
controls are activated. The indicator is off after a 
power-on reset. If an error is encountered during the 
machine-save operation, the indicator remains off. 

Start Key 
Activating the start key causes the CPU to perform 
the start function. (See the section "Stopped, 
Operating, Load, and Check-Stop States" in Chapter 
4, "Control. ") 

The start key is effective only when the CPU is in 
the stopped state. The effect is unpredictable when 
the stopped state has been entered by a reset. 

Stop Key 
Activating the stop key causes the CPU to perform 
the stop function. (See the section "Stopped, 
Operating, Load, and Check-Stop States" in Chapter 
4, "Control. ") 

The stop key is effective only when the CPU is in 
the operating state. 

Operation Note 

Activating the stop key has no effect when a 
continuous string of interruptions occurs or when the 
CPU is in the check-stop state. 

Storage-Size Control 
The storage-size control is provided when a model 
permits more than one size of virtual storage. The 
control determines the storage size and, hence, the 
value of the page-capacity count. The number of 
storage-size settings of the control depends on the 
model. (See the section "Storage Size" in Chapter 3, 
"Storage. ") 

A new setting of the storage-size control becomes 
effective only as part of the IML operation performed 
when turning the power on or when activating the 
IML controls. 



System Indicator 
The system indicator is on when the customer or 
customer-engineer usage meter of the central 
processing complex is running. 

In general, the system indicator is on when the CPU 
is not in the wait state and not in the stopped or 
check-stop state, or when the 110 system is working, 
or both. 

System-Reset-Clear Key 
Activating the system-reset-clear key causes a 
clear-reset operation to be performed. For details, 
see the section "Resets" in Chapter 4, "Control." 

The system-reset-clear key is effective when the 
CPU is in the operating, stopped, load, or check-stop 
state. 

System-Reset-Normal Key 
Activating the system-reset-normal key causes a 
program-reset operation to be performed. For 
details, see the section "Resets" in Chapter 4, 
"Control." 

The system-reset-normal key is effective when the 
CPU is in the operating, stopped, load, or check-stop 
state. 

Test Indicator 
The test indicator is on when a manual control for 
operation or maintenance is in an abnormal position 
that can affect the normal operation of a program. 

Setting the address-compare controls or the check 
control to stop or setting the rate control to 
instruction step turns on the test· indicator. Setting 
the interval-timer control to disable mayor may not 
turn on the test indicator. 

The test indicator may be on when one or more 
'diagnostic functions under the control of DIAGNOSE 
are activated, or when other abnormal conditions 
occur. 

Operation Note 

If a manual control is left in a setting intended for 
maintenance purposes, such an abnormal setting may, 
among other things, result in false machine-check 
indications or cause actual machine malfunctions to 
be ignored. It may also alter other aspects of 
machine operation, including instruction execution, 
channel operation, and the functioning of operator 
controls and indicators, to the extent that operation 
of the machine does not comply with that described 
in this manual. 

TOD-Clock Control 
When the TOD-clock control is not activated, that is, 
the control is set to secure, the value of the 
time-of-day (TOD) clock is protected against 
unauthorized or inadvertent change by not permitting 
the instruction SET CLOCK to change the value. 

When the TOD-clock control is activated, that is, 
the control is set to enable set, alteration of the clock 
value by means of SET CLOCK is permitted. This 
setting is temporary, and the control automatically 
returns to secure. 

Wait Indicator 
The wait indicator is on when the CPU is in the wait 
state. 

Operation Note 

The manual indicator, system indicator, and wait 
indicator may be used by the operator to determine 
the status of the system. The following figure shows 
the possible conditions when power is on .and the 
CPU is not in the load or check-stop state. 

Manual Indicator System Indicator' 

off off 
off off 
off on 
off on 
on off 
on off 
on on 
on on 

Explanation: 

• Abnormal condition. 

Wait Indicator 

off 
on 
off 
on 
off 
on 
off 
on 

CPU State 

Operating, Wait 
Operating 
Operating, Wait 
Stopped 
Stopped, Wait 
Stopped 
Stopped, Wait 

State of I/O System2 

Not Working 
Undetermined 
Working 
Not Working 
Not Working 
Working 
Working 

, When the system indicator is turned on, it remains on for a minimum of approximately 1 second. 

2 The operation of the console 1/0 device is included here as an 1/0 operation. 

System-Status Indications 

Chapter 13. Operator Facilities 13-5 



Appendix A. Number Representation 
and Instruction-Use Examples 

Number Representation A-2 
Binary Integers A-2 

Signed Binary Integers A-2 
Unsigned Binary Integers A-3 

Decimal Integers A-3 
Floating-Point Numbers A-4 
Conversion Example A-5 

Instruction-Use Examples A-5 
Machine Format A-5 
Assembler-Language Format A-5 

General Instructions A-6 
ADD HALFWORD (AH) A-6 
AND (N, NR, NI, NC) A-6 

AND (NI) A-6 
BRANCH AND LINK (BAL, BALR) A-7 
BRANCH ON CONDITION (BC, BCR) A-7 
BRANCH ON COUNT (BCT, BCTR) A-8 
BRANCH ON INDEX HIGH (BXH) A-8 

Contents 

BRANCH ON INDEX LOW OR EQUAL (BXLE) A-9 
COMPARE HALFWORD (CH) A-9 
COMPARE LOGICAL (CL, CLR, CLI, CLC) A-9 

Compare Logical (CLR) A-9 
Compare Logical (CLI) A-9 
Compare Logical (CLC) A-I0 

COMPARE LOGICAL CHARACTERS UNDER 
MASK (CLM) A-tO 

COMPARE LOGICAL LONG (CLCL) A-ll 
CONVERT TO BINARY (CVB) A-12 
CONVERT TO DECIMAL (CVD) A-12 
DIVIDE (D,DR) A-13 
EXCLUSIVE OR (X, XR, XI, XC) A-13 

Exclusive Or (XI) A-13 
Exclusive Or (XC) A-13 

EXECUTE (EX) A-14 
INSERT CHARACTERS UNDER MASK OCM) A-IS 
LOAD (L, LR) A-16 
LOAD ADDRESS (LA) A-16 
LOAD HALFWORD (LH) A-16 
MOVE (MVI) A-17 
MOVE (MVC) A-17 
MOVE LONG (MVCL) A-18 

MOVE NUMERICS (MVN) A-18 
MOVE WITH OFFSET (MVO) A-19 
MOVE ZONES (MVZ) A-19 
MULTIPLY (M, MR) A-20 
MULTIPLY HALFWORD (MH) A-20 
OR (0, OR, 01, OC) A-21 

Or (01) A-21 
PACK (PACK) A-21 
SHIFT LEFT DOUBLE (SLDA) A-21 
SHIFT LEFT SINGLE (SLA) A-22 
STORE CHARACTERS UNDER MASK (STCM) A-22 
STORE MULTIPLE (STM) A-23 
TEST UNDER MASK (TM) A-23 
TRANSLATE (TR) A-23 
TRANSLATE AND TEST (TRT) A-24 
UNPACK (UNPK) A-25 

Decimal Instructions A-25 
ADD DECIMAL (AP) A-26 
COMPARE DECIMAL (CP) A-26 
DIVIDE DECIMAL (DP) A-26 
EDIT (ED) A-27 
EDIT AND MARK (EDMK) A-28 
MULTIPLY DECIMAL (MP) A-28 
SHIFT AND ROUND DECIMAL (SRP) A-29 

Decimal Left Shift A-29 
Decimal Right Shift A-29 
Decimal Right Shift and Round A-29 
Multiplying by a Variable Power of 10 A-30 

ZERO AND ADD (ZAP) A-30 
Floating-Point Instructions A-30 

ADD NORMALIZED (AE, AER, AD, ADR) A-30 
ADD UNNORMALIZED (AU, AUR, AW, AWR) A-31 
COMPARE (CE, CER, CD, CDR) A-31 

Multiprogramming and Multiprocessing Examples A-32 
Example of a Program Failure Using 

OR Immediate A-32 
COMPARE AND SWAP (CS, CDS) A-32 

Setting a Single Bit A-33 
Updating Counters A-33 

Appendix A. Number Representation and Instruction-Use Examples A-I 



Number Representation 
Binary Integers 

Signed Binary Integers 

Signed binary integers are most commonly repre
sented as halfwords (16 bits) or fullwords (32 bits). 
In both lengths, the leftmost bit (bit 0) is the sign of 
the number. The remaining bits (bits 1-15 for 
halfwords and 1-31 for fullwords) are used to 
designate the magnitude of the number. Binary 
integers are also referred to as fixed-point numbers, 
because the radix point is considered to be fixed at 
the right, and any scaling is done by the programmer. 

Positive binary integers are in true binary notation 
with a zero sign bit. Negative binary integers are in 
two's-complement notation with a one bit in the sign 
position. In all cases, the bits between the sign bit 
and the leftmost significant bit of the integer are the 
same as the sign bit (that is, all zeros for positive 
numbers, all ones for negative numbers). 

Negative binary integers are formed in 
two's-complement notation by inverting each bit of 
the positive binary integer and adding one. As an 
example using the halfword format, the binary 
number with the decimal value + 26 is made negative 
(-26) in the following manner: 

S 
+26 0 000 0000 0001 1010 (S is the sign bit) 
Invert 1 111 1111 1110 0101 
Add 1 

-26 111 1111 1110 0110 (Two's complement form) 

This is equivalent to subtracting the number: 

0000000000011010 from 1 0000000000000000 

Negative binary integers are changed to positive in 
the same manner. 

The following addition examples illustrate 
two's-complement arithmetic and overflow 
conditions. Only eight bit positions are used. 

1. +57 == 0011 1001 
+35 == 0010 0011 

+92 == 0101 1100 

2. +57 == 0011 1001 
-35 == 1101 1101 

+22 = 0001 0110 No overflow-carry into 
high-order position and 
carry out. 

A-2 IBM 4300 Processors Principles of Operation 

3. +35 == 00100011 
-57 == 11000111 

-22 == 1110 1010 Sign change only-no 
carry into high-order 
position and no carry out. 

4. -57 == 11000111 
-35 == 1101 1101 

-92 == 10100100 No overflow-carry into 
high-order position and 
carryout. 

5. +57 == 0011 1001 

+92 == 0101 1100 

+ 149 == *1001 0101 *Overflow-carry into 
high-order position, no 
carry out. 

6. -57 = 11000111 

-92 == 1010 0100 

-149 == *0110 1011 *Overflow-no carry into 
high-order position but 
carry out. 

The presence or absence of an overflow condition 
may be recognized from the carries: 
• There is no overflow: 

a. If there is no carry into the high-order bit 
position and no carry out (examples 1 and 3). 

b. If there is a carry into the high-order position 
and also a carry out (examples 2 and 4). 

• There is an overflow: 
a. If there is a carry into the high -order position 

but no carry out (example 5). 
b. If there is no carry into the high-order 

position but there is a carry out (example 6). 
The following are 16-bit signed binary integers. 

The first is the maximum positive 16-bit binary 
integer. The last is the maximum negative 16-bit 
binary integer (the negative 16-bit binary integer 
with the greatest absolute value). 

Number Decimal S Integer 

215 _1 32,767 0 111 1111 1111 1111 

2° 1 0 000 0000 0000 0001 

0 0 0 000 0000 0000 0000 
_2° -1 III 1111 1111 1111 
_2 15 -32,768 000 0000 0000 0000 

The following are several 32-bit signed binary 
integers arranged in descending order. The first is 
the maximum positive binary integer that can be 
represented by 32 bits, and the last is the maximum 
negative binary integer that can be represented by 32 
bits. 



Number Decimal S Integer 

231 1= 2 147483647 = 0 III 1111 III 1 1111 1111 1111 Ill1 llll 

216 65536 = 0 000 0000 0000 0001 0000 0000 0000 0000 

2° 1=0000 0000 0000 0000 0000 0000 0000 0001 

0 0=0000 0000 0000 0000 0000 0000 0000 0000 

_2° -I = 1 III 1111 1111 1111 1111 1111 1111 1111 
_21 -2 = 1 III 1111 1111 1111 1111 III 1 1111 1110 
__ 216 -65536 = 1 III 1111 1111 1111 0000 0000 0000 0000 

_231 +1 = -2147483647 = 1 000 0000 0000 0000 0000 0000 0000 0001 
__ 231 = --2 147483648 = 1 000 0000 0000 0000 0000 0000 0000 0000 

Unsigned Binary Integers 

Certain instructions, such as ADD LOGICAL, treat 
binary· integers as unsigned rather than signed. 
Unsigned binary integers have the same format as 
signed binary integers, except that the leftmost bit is 
interpreted as another numeric bit rather than a sign 
bit. There is no complement notation because all 
unsigned binary integers are considered positive. 

The following examples illustrate the addition of 
unsigned binary integers. Only eight bit positions are 
used. The examples are numbered the same as the 
corresponding examples for signed binary integers. 

1. 

2. 

3. 

4. 

5. 

6. 

57 := 0011 1001 
35 := 00100011 

92 := 0101 1100 

57 := 0011 1001 
221 := 11011101 

278 := *0001 0110 

35 := 0010 0011 
199 := 1100 0111 

234:= 1110 1010 

199 := 11000111 
221 := 1101 1101 

420:= *10100100 

57 := 0011 1001 
92 := 0101 1100 

149 = 1001 0101 

199 := 11000111 
164 := 10100100 

363 := *0110 1011 

*Carryout of 
high-order position 

*Carry out of 
high-order position 

*Carry out of 
high-order position 

A carry out of the high-order bit position mayor 
may not imply an overflow, depending on the 
application. 

The following are several 32-bit unsigned binary 
integers arranged in descending order: 

Number Decimal Integer 

232 _1 4 294 967 296 = 1111 1111 III 1 1111 1111 1111 1111 1111 

231 2 147483648 = 1000 0000 0000 0000 0000 0000 0000 0000 

231 _1 2 147483647 = DIll 1111 1111 1111 IIlI 1I1I 1111 1111 

216 65536 = 0000 0000 0000 0001 0000 0000 0000 0000 

2° I = 0000 0000 0000 0000 0000 0000 0000 0001 

0 o = 0000 0000 0000 0000 0000 0000 0000 0000 

Decimal Integers 
Decimal integers are represented as one or more 
decimal digits and a sign digit. Each digit is a 4-bit 
code. The decimal digits are in binary-coded decimal 
(BCD) form, with the values 0-9 encoded as 
0000-1001. The sign is usually represented as 1100 
(C hex) for plus and 1101 (D hex) for minus. These 
are the preferred sign codes, which are generated by 
the machine for the results of decimal operations. 
There are also several alternate sign codes (1010, 
1110, and 1111 for plus; 1011 for minus). The 
alternate sign codes are accepted by the machine as 
valid but are not generated for results. 

Decimal integers may have different lengths, from 
one to sixteen bytes. There are two decimal formats: 
packed and zoned. In the packed format, each byte 
contains two decimal digits, except for the rightmost 
byte which contains the sign in its right digit. The 
number of decimal digits in the packed format can 
vary from one to 31. Because decimal integers must 
consist of whole bytes and there must be a sign digit 
on the right, the number of decimal digits is always 
odd. If an even number of significant digits is 

,desired, a leading zero must be inserted on the left. 
In the zoned format, each byte consists of a decimal 

digit on the right and the zone code 1111 (F hex) on 
the left, except for the rightmost byte where the sign 
code replaces the zone code. Thus, decimal integers 
in the zoned format can have anywhere from one to 
16 digits. The zoned format may be used directly for 
input and Qutput in the extended 
binary-coded-decimal interchange code (EBCDIC), 
except that the sign must be separated from the 
low-order digit and handled as a separate character. 
For positive (unsigned) numbers, however, the sign 
code of the low-order digit can simply be replaced by 
the zone code, which is one of the acceptable 
alternate codes for plus. 

In either format, negative decimal integers are 
represented in true notation with a separate sign. As 
for binary integers, the radix point (decimal point) of 

Appendix A. Number Representation and Instruction-Use Examples A-3 



decimal integers is considered to be fixed at the right, 
and any scaling is done by the programmer. 

The following are some examples of decimal 
integers shown in hexadecimal notation: 

Value Packed Format Zoned Format 

+123 123C F1 F2 C3 or F1 F2 

-4321 04 32 10 F4 F3 F2 01 

+000050 0000 05 OC FO FO FO FO F5 CO 
FO FO FO FO F5 FO 

-7 70 07 

00000 00 00 OC FO FO FO FO CO or 
FO FO FO FO FO 

F3 

or 

Under some circumstances, a zero with a minus sign 
(negative zero) is produced. For example, the 
multiplicand: 

001230 (-123) 

times the multiplier: 

OC (+0) 

generates the product: 

000000 (-0) 

because the product sign follows the algebraic rule of 
signs even when the value is zero. A negative zero, 
however, is entirely equivalent to a positive zero; 
they compare equal in a decimal comparison. 

Floating-Point Numbers 
A floating-point number is expressed as a fraction 
multiplied by a separate power of 16. The term 
floating point indicates that the radix-point 
placement, or scaling, is automatically maintained by 
the machine. 

The part of a floating-point number which 
represents the significant digits of the number is 
called the fraction. A second part specifies the power 
(exponent) to which 16 is raised and indicates the 
location of the radix point of the number. The 
fraction and exponent may be represented by 32 bits 
(short format), 64 bits (long format), or 128 bits 
(extended format). 

Short Floating-Point Number 

1 81 Characteristic 16-0i91t Fraction 

o 1 8 31 

A-4 JBM 4300 Processors Principles of Operation 

Long Floating-Point Number 

~T-------------~----------~:/~/-----------

S Characteristic 14-Digit Fraction 

~~------------~----------~,,~(-----------
o 1 8 63 

Extended Floating-Point Number 

~r--------------r----------~~~(------------

High-Order Half 
S Characteristic of 28-Digit Fraction 

~~------------~----------~/~~/------------
o 1 8 63 

~~~~~~~~~------------~/~(------------

Low-Order Half
of 28-Digit Fraction

~~~~~~~~~-----------~/~/~----------~ 
64 72 127 

A floating-point number has two signs: one for the 
fraction and one for the exponent. The fraction sign, 
which is also the sign of the entire number, is the 
leftmost bit of each format (0 for plus, 1 for minus). 
The numeric part of the fraction is in true notation 
regardless of the sign. The numeric part is contained 
in bits 8-31 for the short format, in bits 8-63 for the 
long format, and in bits 8-63 followed by bits 72-127 
for the extended format. 

The exponent sign is obtained by expressing the 
exponent in excess-64 notation; that is, the exponent 
is added as a signed number to 64. The resulting 
number is called the characteristic. It is located in 
bits 1-7 for all formats. The characteristic can vary 
from 0 to 127, permitting the exponent to vary from 
-64 through 0 to +63. This provides a scale 
multiplier in the range of 16-64 to 16+63 • A nonzero 
fraction, if normalized, must be less than one and 
greater than or equal to 1/16, so that the range 
covered by the magnitude M of a floating-point 
number is: 

16-65 S M < 1663 

In decimal terms: 

16-65 is approximately equal to 54 x 10-79 

1663 is approximately equal to 7.2 x 1075 

More precisely, 

In the short format: 

16-65 S M S (1 - 16-6) x 1663 



In the long format: 

16-65 S M S (1 - 16-14) X 1663 

In the extended format: 

16-65 S M S (1 - 16-28) X 1663 

Within a given fraction length (6, 14, or 28 digits), 
a floating-point operation will provide the greatest 
precision if the fraction is normalized. A fraction is 
normalized when the high-order digit (bit positions 8, 
9, 10, and 11) is nonzero. It is unnormalized if the 
high-order digit contains all zeros. 
If normalization of the operand is desired, the 

floating-point instructions that provide automatic 
normalization are used. This automatic normalization 
is accomplished by left-shifting the fraction (four bits 
per shift) until a nonzero digit occupies the 
high-order digit position. The characteristic is 
reduced by one for each digit shifted. 

The following are sample normalized short 
floating-point numbers. The last two numbers 
represent the smallest and the largest positive 
normalized numbers. 

Number Powers of 16 S _ Char- .... --Fraction--_ 

1.0 = +1/16xI61 = 0 100 0001 000100000000000000000000 

O.S = +8/16xI6° = 0 100 0000 100000000000000000000000 

1/64 = +4/16xI6- 1 = 0 011 III I 010000000000000000000000 

0.0 = +0 x16- 64 = 0 000 0000 000000000000000000000000 

-IS.O = -IS/16xI61 = I 100 0001 1111000000000000 0000 0000 

S.4xI0-79 ~ +1/16xI6-64 = 0 000 0000 0001 0000000000000000 0000 

7.2x1075 ~ (I-16- 6 )xI663 = 0 III 1111 11111111 1111 Illi 1I11 1111 

Conversion Example 
Convert the decimal number 149.25 to a short 
floating-point number. (In another appendix are 
tables for the conversion of hexadecimal and decimal 
integers and fractions.) 
1. The number is decomposed into a decimal integer 

and a decimal fraction. 

149.25 = 149 plus 0.25 

2. The decimal integer is converted to its 
hexadecimal representation. 

14910 = 9516 

3. The decimal fraction is converted to its 
hexadecimal representation. 

0.2510 = 0.416 

4. Combine the integral and fractional parts and 
express as a fraction times a power of 16 
(exponent) . 

95.416 = 0.95416 x 162 

5. The characteristic is developed from the exponent 
and converted to binary. 

base + exponent = characteristic 

64 + 2 = 66 = 1000010 

6. The fraction is converted to binary and grouped 
hexadecimally. 

.95416 = .1001 0101 0100 

7. The characteristic and the fraction are stored in 
the short format. The sign position contains the 
sign of the fraction. 

S CHAR FRACTION 
o 1000010 1001 0101 0100000000000000 

Instruction-Use Examples 
The following examples illustrate the use of many of 
the unprivileged instructions. Before studying one of 
these examples, the reader should consult the 
instruction description in this manual for the 
particular instruction of interest to him. 

The instruction-use examples are written principally 
for assembler-language programmers, to be used in 
conjunction with the appropriate assembler-language 
manuals. 

Most examples present one particular instruction, 
both as it is written in an assembler-language 
statement and as it appears when assembled in 
storage (machine format). 

Machine Format 

All machine-format numerical operands are written in 
hexadecimal notation unless otherwise specified. 
Hexadecimal operands are shown converted into 
binary, decimal, or both if such conversion helps to 
clarify the example for the reader. Storage addresses 
are also given in hexadecimal. 

Assembler-Language Format 

In assembler-language statements, registers and 
lengths are presented in decimal. Displacements, 
immediate operands, and masks may be shown in 
decimal, hexadecimal, or binary notation; for 
example, 12, X'C', or B'1100' represent the same 
value. Whenever the value in a register or storage 
location is referred to as "not significant," this value 
is replaced during the execution of the instruction. 

When SS-format instructions are written in the 
assembler language, lengths are given as the total 
number of bytes in the field. This differs from the 
machine definition, in which the length field specifies 
the number of bytes to be added to the field address 

Appendix A. Number Representation and Instruction-Use Examples A-5 



to obtain the address of the last byte of the field. 
Thus, the machine length is one less than the 
assembler-language length. The assembler program 
automatically subtracts one from the length specified 
when the instruction is assembled. 

In some of the examples, symbolic addresses are 
used in order to simplify the examples. In 
assembler-language statements, a symbolic address is 
represented as a mnemonic term written in all 
capitals, such as FLAGS which may denote the 
address of a storage location containing data or 
program-control information. When symbolic 
addresses are used, the assembler supplies actual base 
and displacement values according to the 
programmer's specifications. Therefore, the actual 
values for base and displacement are not shown in 
the assembler-language format or in the 
machine-language format. For assembler-language 
formats, in the labels that designate instruction fields, 
the letter "s" is used to indicate the combination of 
base and displacement fields for an operand address. 
(For example, S 1 represents the combination of B 1 
and D1.) In the machine-language format, the base 
and displacement address components are shown as 
asterisks (* * * ) . 

General Instructions 
(See Chapter 7.) 

ADD HALFWORD (AH) 
The ADD HALFWORD instruction algebraically 
adds the halfword contents of a storage location to 
the contents of a register. The halfword storage 
operand is expanded to 32 bits after it is fetched and 
before it is used in the add operation. The expansion 
consists in propagating the leftmost (sign) bit 16 
positions to the left. For example, assume that the 
contents of storage locations 2000-2001 are to be 
added to register 5. Initially: 

Register 5 contains 0000 00 19 == 2510. 
Storage locations 2000-2001 contain FF FE == -2to. 
Register 12 contains 0000 18 00. 
Register 13 contains 00 00 01 50. 

A-6 IBM 4300 Processors Principles of Operation 

The format of the required instruction is: 

Assembler Format 

AH 5,X'6BO'(13,12) 

Machine Format 

Op Code Rt X2 B2 D2 

I 4A Is I Die 1
6BO 

1 

After the instruction is executed, register 5 contains 
00 00 00 1 7 = 23 10• 

AND (N, NR, NI, NC) 
When the Boolean operator AND is applied to two 
bits, the result is one when both bits are one; 
otherwise, the result is zero. When two bytes are 
ANDed, each pair of bits is handled separately; there 
is no connection from one bit position to another. 
The following is an example of ANDing two bytes: 

First-operand byte: 
Second-operand byte: 

Result byte: 

AND(NI) 

0011 01012 
0101 11002 

0001 01002 

A frequent use of the AND instruction is to set a 
particular bit to zero. For example, assume that 
storage location 4891 contains 0100 001b. To set 
the rightmost bit of this byte to zero without 
affecting the other bits, the following instruction can 
be used (assume that register 8 contains 
00 00 48 90): 

Assembler Format 

NI 1 (8),X'FE' 

Machine Format 

Op Code 12 B1 D1 



When this instruction is executed, the byte in 
storage is ANDed with the immediate byte (the h 
field of the' instructions) : 

Location 4891: 

Immediate byte: 

Result: 

010000112 

111111102 

010000102 

The resulting byte, with bit 7 set to zero, is stored 
back in location 4891. Condition code 1 is set. 

BRANCH AND LINK (BAL, BALR) 
The BRANCH AND LINK instructions are 
commonly used to branch to a subroutine with the 
option of later returning to the main instruction 
sequence. For example, assume that you wish to 
branch to a subroutine at storage address 1160. Also 
assume: 

The contents of register 2 are not significant. 

Register 5 contains 00 00 11 50. 
Address 00 00 C6 contains the BAL instruction, so that 

00 00 CA is the address of the next sequential instruction. 

The format of the BAL instruction is: 

Assembler Format 

BAL 2,X'10'(O,5} 

Machine Format 

After the instruction is executed: 

Register 2 (bits 8-31) contains 00 00 CA. 

PSW bits 40-63 contain 00 11 60. 

The programmer can return to the main instruction 
sequence at any time with a BRANCH ON 
CONDITION (BCR) instruction that specifies 
register 2 and a mask of 1510, provided that 'register 2 
has not meanwhile been disturbed. 

The BALR instruction with the R2 field equal to 
zero may be used to load a register for use as a base 
register. For example, in the assembler language, the 
sequence of statements: 

BALR 15,0 
USING *,15 

tells the assembler program that register 15 is to be 
used as the base register in assembling this program 
and that when the program is executed, the address 
of the next sequential instruction following the BALR 
will be placed in the register. (The USING statement 
is an "assembler instruction" and is thus not a part of 
the object program.) 

BALR 6,0 preserves the condition code in bits 2 
and 3 of register 6 for future inspection. 

BRANCH ON CONDITION (BC, BCR) 
The BRANCH ON CONDITION instructions test the 
condition code to see whether a branch should or 
should not be taken. The branch is taken only if the 
condition code is as specified by a mask. 

Mask Condition 
Value Code 

8 0 
4 1 

2 2 
3 

For example, assume that an ADD (A, AR) 
operation has been performed and that you wish to 
branch to address 6050 if the sum is zero or less 
(condition code 0 or 1). Also assume: 

Register 10 contains 00 00 50 00. 

Register 11 contains 00 00 10 00. 

The RX form of the instruction performs the 
required test (and branch if necessary) when written 
as: 

Assembler Format 

Machine Format 

Op Code Ml X2 B2 D2 

47 I c I B I A I 050 

A mask of 15 indicates a 'branch on any condition 
(an unconditional branch). A mask of zero indicates 
that no branch is to occur (a no-operation). 

Appendix A. Number Representation and Instruction-Use Examples A-7 



BRANCH ON COUNT (BCT, BCTR) 
The BRANCH ON COUNT instructions are often 
used to execute a program loop for a specified 
number of times. For example, assume that the 
following represents some lines of coding in an 
assembler-language program: 

LUPE AR 8,1 

. BACK BCT 6,LUPE 

where register 6 contains 00 00 00 03 and the 
address of LUPE is 6826. Assume that, in order to 
address this location, register 10 is used as a base 
register and contains 00 00 68 00. 

The format of the BCT instruction is: 

Assembler Format 

BCT 6,X'26'(O,10} 

Machine Format 

46 16 10 1 A 1 026 

The effect of the coding is to execute three times 
the loop defined by locations LUPE through BACK. 

BRANCH ON INDEX HIGH (BXH) 
The BRANCH ON INDEX HIGH instruction is an 
index-incrementing and loop-controlling instruction 
that causes a branch whenever the sum of an index 
value and an increment value is greater than some 
comparand. For example, assume that: 

Register 4 contains 00 00 00 8A = 13810 = the index. 
Register 6 contains 00 00 00 02 = 210 = the increment. 
Register 7 contains 00 00 00 AA = 17010 = the comparand. 
Register 10 contains 00 00 71 30 = the branch address. 

A-8 IBM 4300 Processors Principles of Operation 

The format of the instruction is: 

Assembler Format 

BXH 4,6,O(10} 

Machine Format 

When the instruction is executed, first the contents 
of register 6 are added to register 4, second the sum 
is compared with the contents of register 7, and third 
the decision whether to branch is made. After 
execution: 

Register 4 contains 00 00 00 8C = 14010 
Registers 6 and 7 are unchanged. 

Since the new value in register 4 is not greater than 
the value in register 7, the branch to address 7130 is 
not taken. 

When the register used to contain the increment is 
odd, that register also becomes the comparand 
register. The following assembler-language routine 
illustrates how this feature may be used to search a 
table. 

Table 

~ 2 Bytes 

ARG1 FUNCT1 
ARG2 FUNCT2 
ARG3 FUNCT3 
ARG4 FUNCT4 
ARG5 FUNCT5 
ARG6 FUNCT6 

Assume that: 

Register 0 contains the search argument. 
Register 1 contains the width of the table in bytes 
(00 00 00 04). 
Register 2 contains the length of the table in bytes 
(00 00 00 18). 
Register 3 contains the starting address of the table. 
Register 14 contains the return address to the main program. 

As the following subroutine is executed, the 
argument in register 0 is successively compared with 
the arguments in the table, starting with argument 6 
and working backwards to argument 1. If an equality 
is found, the corresponding function replaces the 
argument in register O. If an equality is not found, 



FF 16 replaces the argument in register O. 
The first instruction (LNR) causes the value in 

register 1 to be made negative. After execution of 
this instruction, register 1 contains FFFFFFFC = 
-410. Considering the case when no equality is 
found, the BXH instruction will be executed seven 
times. Each time the BXH is executed, a value of -4 
is added to register 2, thus reducing the value in 
register 2 by 4. The new value in register 2 is 
compared with the -4 value in register 1. Thus the 
branch is taken each time until the value in register 2 
is -4. 

SEARCH LNR 1,1 
NOTEQUAL BXH 2,1,LOOP 
NOTFOUND LA O,X'PF 

BCR 15,14 
LOOP CH 0,0(2,3) 

BC 7,NOTEQUAL 
LH 0,2(2,3) 
BCR 15,14 

BRANCH ON INDEX LOW OR EQUAL 
(BXLE) 
This instruction is similar to BRANCH ON INDEX 
HIGH except that the branch is successful when the 
sum is low or equal compared to the comparand. 

COMPARE HALFWORD (CH) 
The COMPARE HALFWORD instruction compares 
a 16-bit signed binary integer in storage with the 
contents of a register. For example, assume that: 

Register 4 contains FF FF 80 00 = -32,76810. 
Register 13 contains 0001 60 50. 
Storage locations 16080-16081 contain 8000 = -32,76810. 

When the instruction 

Assembler Format 

CH 4.X'30'{O,13) 

Machine Format 

Op Code R1 X2 82 02 

49 14 10 10 1030 

is executed, the contents of locations 16080-16081 
are fetched, expanded to 32 bits (the sign bit is 
propagated to the left), and compared with the 
contents of register 4. Because the two numbers are 
equal, condition code 0 is set. 

COMPARE LOGICAL (CL, CLR, CLI, 
CLC) 
The COMPARE LOGICAL instructions differ from 
the signed-binary comparison instructions (C, CH, 
CR) in that all quantities are handled as unsigned 
binary integers or as unstructured data. 

Compare Logical (CLR) 

Assume that: 

Register 4 contains 00 00 00 01 = 1. 

Register 7 contains FF FF FF PF = 232_1. 

Execution of the instruction 

Assembler Format 

Op Code R1R2 

CLR 4,7 

Machine Format 

Op Code R1 R2 

sets condition code 1. Condition code 1 indicates 
that the first operand is lower than the second. 

If, instead, a signed-binary comparison instruction 
had been executed, the contents of register 4 would 
have been interpreted as + 1 and the contents of 
register 7 as -1. Thus, the first operand would have 
been higher, so that condition code 2 would have 
been set. 

Compare Logical (CLI) 

The CLI instruction compares a byte from the 
instruction stream with a byte from storage. For 
example, assume that: 

Register 10 contains 00 00 17 00. 
Storage location 1703 contains 7E. 

Appendix A. Number Representation and Instruction-Use Examples A-9 



Execution of the instruction 

Assembler Format 

Cli 3(10),X'AF' 

Machine Format 

sets condition code 1, indicating that the first 
operand (the quantity in main storage) is lower than 
the second (immediate) operand. 

Compare Logical (CLC) 

The CLC instruction can be used to perform the 
bit-for-bit comparison of storage fields up to 256 
bytes in length. For example, assume that the 
following two fields of data are in storage: 

Field 1 
1886 

Field 2 
1900 

Also assume: 

Register 9 contains 0000 18 80. 
Register 7 contains 00 00 19 00. 

Execution of the instruction 

Assembler Format 

ClC 6(12,9),0(7) 

Machine Format 

Op Code L 81 D1 82 D2 

1 05 1 0+ 1 
006

17 1 000 

A-I0 IBM 4300 Processors Principles of Operation 

1891 

1908 

sets condition code 1, indicating that the contents of 
field 1 are lower in value than the contents of field 2. 

Because CLC compares on a bit-for-bit basis, the 
instruction can be used to collate fields composed of 
characters from the EBCDIC code. For example, in 
EBCDIC, the above two data fields are: 

Field 1 JOHNSON,A.B. 
Field 2 JOHNSON,A.C. 

Condition code 1 tells us that A.B.JOHNSON 
precedes A.C.JOHNSON, thus placing the names in 
the correct alphabetic order. 

COMPARE LOGICAL CHARACTERS 
UNDER MASK (CLM) 
The CLM instruction provides a means of comparing 
bytes selected from a general register to a contiguous 
field of bytes in main storage. The M3 field of the 
CLM instruction is a four-bit mask that selects zero 
to four bytes from a general register, each mask bit 
corresponding, left to right, to a register byte·. In the 
comparison, the register bytes corresponding to ones 
in the mask are treated as a contiguous field. The 
operation proceeds left to right. For example, assume 
that: 

Three bytes starting at storage location 10200 contain FO BC 
7B. 
Register 12 contains 10000. 
Register 6 contains FO BC 5C 7B. 

Execution of the instruction 

Assembler Format 

ClM 6,B'1101',X'200'(12) 

Machine Format 

causes the following comparison: 



Register 6: FO BC 5C 7B 

Mask 1 1 0 1 -
FO BC 7B 

Three bytes ~ starting at 
location 
10200 

Because the selected bytes are equal, condition code 
o is set. 

COMPARE LOGICAL LONG (CLCL) 
The CLCL instruction is used to compare two 
operands in main storage, bit for bit. Each operand 
can· be of any length. Two even-odd pairs of general 
registers (four registers in all) are used to locate the 
operands and to control the execution of the CLCL 
instruction, as illustrated in the following diagram. 
The first register of each pair must be an even 
register, and it contains the storage location of the 
byte currently being compared in each operand. The 
odd register of each pair contains the length of the 
operand it covers, and the high-order byte of the 
second-operand odd register contains a padding byte 
which is used to extend the shorter operand, if any, 
to the same length as the longer operand. 

R1 (even) 

~ First-Operand Address 

o 8 31 

R1+1 (odd) 

~ First-Operand Length 

o 8 31 

R2 (even) am Second-Operand Addresl 

o 8 31 

Pad Byte Second-Operand Length 

o 8 

Since the CLCL instruction may be interrupted 
during execution, the interrupting program must 
preserve the contents of the four registers for use 
when the instruction is resumed. 

31 

The following instructions set up two register pairs 
to control a text-string comparison. For example, 
assume: 

Operand 1 Padding Byte 

Address: 20800 (hex) Address: 20003 (hex) 
Length: 100 (dec) Length: 1 

Value: 40 (hex) 

Operand 2 

Address: 20AOO (hex) 
Length: 13 2 (dec) 

Register 12 contains 00 02 00 00 

The setup instructions are: 

LA 4,X'800'(12) 
LA 5,100 
LA 8,X'AOO'(12) 
LA 9,132 
ICM 9,B'1000',3(l2) 

Poin t register 4 to start of first operand 
Set register 5 to length of first operand 
Poin 1 register 8 to start of second operand 
Set register 9 to length of second operand 
Insert padding byte in leftmost byte 
position of register 9 

Register pair 4,5 defines the first operand. Bits 
8-31 of register 4 contain the storage location of the 
start of an EBCDIC text string, and bits 8-31 of 
register 5 contain the length of the string, in this case 
100 bytes. 

Register pair 8,9 defines the second operand, with 
bits 8-31 of register 8 containing the starting location 
of the second operand and bits 8-31 of register 9 
containing the length of the second operand, in this 
case 132 bytes. Bits 0-7 of register 9 contain an 
EBCDIC blank character (X'40') to pad the shorter 
operand. In this example, the padding byte is used in 
the first operand, after the 100th byte, to compare 
with the remaining bytes in the second operand. 

With the register pairs thus set up, the format of the 
CLCL instruction is: 

Appendix A. Number Representation and Instruction-Use Examples A-II 



Assembler Format 

Op Code Rl R2 

CLCL 4,8 

Machine Format 

Op Code Rl R2 

OF 1418 1 

When this instruction is executed, the comparison 
starts at the left end of each operand and proceeds to 
the right. The operation ends as soon as an 
inequality is detected or the end of the longer 
operand is reached. 
If this CLCL instruction is interrupted after 60 

bytes are successfully compared, the operand lengths 
in registers 5 and 9 will have been decremented to 
X'28' and X'48', respectively, and the operand 
locations in registers 4 and 8 will have been 
incremented to X'2083C' and X'20A3C'. The 
padding byte X'40' remains in register 9. When the 
CLCL instruction is reissued with these register 
contents, the comparison resumes at the point of 
interruption. 
If the instruction is interrupted after 110 bytes are 

successfully compared, the residual operand lengths in 
registers 5 and 9 are 0 and X'16', respectively, and 
the current operand locations in registers 4 and 8 are 
X'2086E' and X'20A6E'. 

When the comparison ends, the condition code is 
set to 0, 1, or 2, depending on whether the first 
operand is equal to, less than, or greater than the 
second operand, respectively. 

When the operands are unequal, the addresses in 
registers 4 and 8 locate the bytes that caused the 
mismatch. 

CONVERT TO BINARY (CVB) 
The CONVERT TO BINARY instruction converts an 
eight-byte, packed-decimal number into a signed 
binary integer and loads the result into a general 
register. After the conversion operation is completed, 
the number is in the proper form for use as an 
operand in signed binary arithmetic. For example, 
assume: 

A-12 IBM 4300 Processors Principles of Operation 

Storage locations 7608-760F contain a decimal number in the 
packed format: 00 00 00 00 00 25 59 4C (+25,594). 
The contents of register 7 are not significant. 
Register 13 contains 00 00 76 00. 

The format of the conversion instruction is: 

Assembler Format 

CVB 7,8(0,13} 

Machine Format 

Op Code Rl X2 82 02 

4F 17 10 I D 1008 I· 

After the instruction is executed, register 7 contains 
00 00 63 FA. 

CONVERT TO DECIMAL (CVD) 
The CONVERT TO DECIMAL instruction performs 
functions exactly opposite to those of the CONVERT 
TO BINARY instruction. CVD converts a signed 
binary integer in a register to packed decimal and 
stores the eight-byte result. For example, assume: 

Register 1 contains the signed binary integer: 0000 OF OF. 
Register 13 contains 00 00 76 00. 

The format of the instruction is: 

Assembler Format 

CVO 1,8(0,13} 

Machine Format 

After the instruction is executed, storage locations 
7608-760F contain 00 00 00 00 00 03 85 5 C 
( +3855). 

The plus sign generated is the preferred plus sign, 
11002 • 



DIVIDE (D~DR) 
The DIVIDE instruction divides the dividend in an 
even-odd register pair by the divisor in a register or 
in storage. Since the dividend is assumed to be 64 
bits long, it is important that the proper sign be first 
affixed. For example, assume that: 

Storage locations 3550-3553 contain 00 00 08 DE = 227010 

= the dividend. 
Storage locations 3554-3557 contain 00 00 00 32 = 5010 

= the divisor. 
The initial contents of registers 6 and 7 are not significant. 

Register 8 contains 00 00 35 50. 

The following assembler-language statements load 
the registers properly and perform the divide 
operation: 

Statement 

L 6,0 (0,8) 

SRDA 6,32 (0) 

D 6,4 (0,8) 

Comments 

Places 00 00 08 DE into register 6 

Shifts 00 00 08 DE into register 7 

Register 6 is filled with zeros (sign bits) 

Performs the division 

The machine format of the above DIVIDE 
instruction is: 

Machine Format 
Op Code Rl X2 82 D2 

After all the foregoing instructions are executed: 

Register 6 contains 00 00 00 14 = 2010 = the remainder. 

Register 7 contains 000000 2D = 4510 = the quotient. 

Note that if the dividend had not been first placed 
in register 6 and shifted into register 7, register 6 
might not have been filled with the proper sign bits 
(zeros in this example), and the DIVIDE instruction 
might not have given the expected results. 

EXCLUSIVE OR (X, XR, Xl, XC) 
When the Boolean operator EXCLUSIVE OR is 
applied to two bits, the result is one when either, but 
not both, of the two bits is one; otherwise, the result 
is zero. When two bytes are EXCLUSIVE ORed, 
each pair of bits is handled separately; there is no 
connection from one bit position to another. The 
following is an example of the EXCLUSIVE OR of 
two bytes: 

First-operand byte: 
Second-operand byte: 

Result byte: 

Exclusive OR (XI) 

0011 01012 
0101 110~ 

0110 10012 

A frequent use of the EXCLUSIVE OR (XI) 
instruction is to invert a bit (change a zero bit to a 
one or a one bit to a zero). For example, assume 
that storage location 8082 contains 0110 10012. To 
invert the leftmost and rightmost bits without 
affecting any of the other bits, the following 
instruction can be used (assume that register 9 
contains 00 00 80 80): 
Assembler Format 

XI 2(9).X'81' 

Machine Format 

Op Code 12 Bl Dl 

When the instruction is executed, the byte in 
storage is EXCLUSIVE ORed with the immediate 
byte (the 12 field of the instruction): 

Location 8082: 
Immediate byte: 

0110 10012 
100000012 

Result: 1110 10002 

The resulting byte is stored back in location 8082. 
Condition code 1 is set to indicate a nonzero result. 

Exclusive OR (XC) 

The EXCLUSIVE OR (XC) instruction can be used 
to exchange the contents of two areas in storage 
without the use of an intermediate storage area. For 
example, assume two 3-byte fields in storage: 

Field 1 
359 

Field 2 
360 

35B 

362 

Appendix A. Number Representation and Instruction-Use Examples A-13 



Execution of the instruction (assume that register 7 
contains 00 00 03 58): 

Assembler Format 

XC 1 (3,7),8(7) 

Machine Format 

Op Code L 81 01 81 02 

I 0' I 02 1, I 001 I, I 008 

Field 1 is EXCLUSIVE ORed with field 2 as 
follows: 

Field 1: 000000000001 0111 1001 OOO~ 
.= 00 1790 

Field 2: 000000000001 0100 000000012 
= 001401 

Result: 0000 0000 0000 0011 1001 00012 
= 0003 91 

The result replaces the former contents of field 1. 
Now, execution of the instruction 

Assembler Format 

XC 8(3,7),1(7) 

Machine Format 

Op Code L 81 01 82 

produces the following result: 

Field 1: 000000000000 0011 1001 00012 
= 000391 

Field 2: 

Result: 

0000 0000 0001 0100 0000 00012 
== 00 1401 

0000 0000 0001 0111 1001 00002 
= 00 1790 

The result of this operation replaces the former 
contents of field 2. Field 2 now contains the original 
value of field 1. 

A-14 IBM 4300 Processors Principles of Operation 

Lastly, execution of the instruction 

Assembler Format 

XC 1 (3,7),8(7) 

Machine Format 

produces the following result: 

Field 1: 

Field 2: 

Result: 

0000 0000 0000 0011 1001 00012 
== 0003 91 
0000 0000 0001 0111 1001 00002 
== 00 17 90 

0000 0000 0001 0100 0000 00012 
== 00 1401 

The result of this operation replaces the former 
contents of field 1. Field 1 now contains the original 
value of field 2. 

Notes: 

1. With the XC instruction, fields up to 256 bytes in 
length can be exchanged. 

2. With the XR instruction, the contents of two 
registers can be exchanged. 

3. Because the X instruction operates storage to 
register only, an exchange cannot be made solely 
by the use of X. 

4. A field EXCLUSIVE ORed with itself is cleared 
to zeros. 

EXECUTE (EX) 
The EXECUTE instruction causes one target 
instruction in main storage to be executed out of 
sequence without actually branching to the target 
instruction. Unless the R1 field of the EXECUTE 
instruction is zero, bits 8-15 of the target instruction 
are ORed with bits 24-31 of the R1 register before 
the target instruction is executed. Thus, EXECUTE 
may be used to supply the length field for an SS 
instruction without modifying the SS instruction in 
storage. For example, assume that a MOVE (MVC) 
instruction is the target that is located at address 
3820, with a format as follows: 



Assembler Format 

MVC 3(1.12).0(13) 

Machine Format 

Op Code L B1 01 B2 02 

I 02 I 00 I c I 003 1 0 000 

where register 12 contains 00 00 89 13 and register 
13 contains 00 00 90 AO. 

Further assume that at storage address 5000, the 
following EXECUTE instruction is located: 

Assembler Format 

EX 1.0(O.10} 

Machine Format 

Op Code R1 X2 82 02 

44 I, 1
0 I A 

1
000 

where register 10 contains 00 00 38 20 and register 
1 contains 00 OF FO 03. 

When the instruction at 5000 is executed, the 
rightmost byte of register 1 is ORed with the second 
byte of the target instruction: 

Register byte: 0000 OOO~ == 00 
Instruction byte: 000000112 == 03 

Result: 0000 00112 =: 03 

ca~sing the instruction at 3820 to be executed as if it 
originally were: 

Assembler Format 

MVC 3(4.12).0(13) 

Machine Format 

Op Code L B1 01 82 02 

I 02 I 
03

1 c I 
003

1 0 I 000 

However, after execution: 

Register 1 is unchanged. 
The instruction at 3820 is unchanged. 

The contents of the four bytes starting at location 90AO have 
been moved to the four bytes starting at location 8916. 

The CPU next executes the instruction at address 5004 (PSW 
bits 40-63 contain 00 50 04). 

INSERT CHARACTERS UNDER MASK 
(ICM) 

The ICM instruction may be used to replace all or 
selected bytes in a general register with bytes from 
storage and to set the condition code to indicate the 
value of the inserted field. 

For example, if it is desired to insert a three-byte 
address from FIELD A into register 5 and leave the 
high-order byte of the register unchanged, assume: 

Assembler Format 

ICM 5.B·0111·.FIELOA 

Machine Format 

FIELDA: FE DC BA 
Register 5 (before): 12 34 56 78 
Register 5 (after): 12 FE DC BA 
Condition code (after): 1 (leftmost bit of inserted field 

is one) 

As another example: 

Assembler Format 

ICM 6.B'1001',FIELOB 

Machine Format 

Appendix A. Number Representation and Instruction-Use Examples A-I5 



FIELDB: 12 34 
Register 6 (before): 00 00 00 00 
Register 6 (after): 12 00 00 34 
Condition code (after): 2 (inserted field is nonzero with 

leftmost zero bit) 

LOAD (L, LR) 
The LOAD instructions take four bytes from storage 
or from a general register and place them unchanged 
into a general register. For example, assume that the 
four bytes starting with location 21003 are to be 
loaded into register 10. Initially: 

Register 5 contains 00 02 00 00. 
Register 6 contains 00 00 10 03. 
The contents of register 10 are not significant. 
Storage locations 21003-21006 contain 00 00 AB CD. 

To load register 10, the RX form of the instruction 
can be used: 

Assembler Format 

L 10.0(5.6) 

Machine Format 

After the instruction is executed, register 10 
contains 0000 AB CD. 

LOAD ADDRESS (LA) 
The LOAD ADDRESS instruction provides a 
convenient way to place a nonnegative binary integer 
up to 409510 in a register without first defining a 
constant and then using it as an operand. For 
example, assume that the number 204810 is to be 
placed in register 1: 

Assembler Format 

LA 1.2048(0.0) 

A-16 IBM 4300 Processors Principles of Operation 

Machine Format 

The LOAD ADDRESS instruction can also be used 
to increment a register by an amount up to 4095 10 
specified in the D2 field. For example, assume that 
register 5 contains 00 12 34 56. 

The instruction 

Assembler Format 

LA 5.10(0.5) 

Machine Format 

Op Code R1 X2 82 D2 

41 151 0 151 OOA 

adds 10 (decimal) to the contents of register 5 as 
follows: 

Register 5 (old): 

D2 field: 

Register 5 (new): 

00 1234 56 

OOOOOOOA 

00 12 34 60 

The register may be specified as either B2 or X2. 
Thus, the instruction LA 5,10(5,0) produces the same 
result. 

LOAD HALFWORD (LH) 

The LOAD HALFWORD instruction places 
unchanged a halfword from storage into the right half 
of a register. The left half of the register is loaded 
with zeros or ones according to the sign (leftmost bit). 
of the halfword. 

For example, assume that the two bytes in storage 
locations 1803-1804 are to be loaded into register 6. 
Also assume: 

The contents of register 6 are not significant. 

Register 14 contains 00 00 18 03. 

Locations 1803-1804 contain 00 20. 



The instruction required to load the register is: 

Assembler Format 

LH 6,0(0,14) 

Machine Format 

Op Code R1 X2 82 02 

I 48 Is 1
0 

I E 1
000 

After the instruction is executed, register 6 contains 
00 00 00 20. If locations .1803-1804 had contained 
a negative number, for example, A7 B6,. a minus sign 
would have been propagated to the left, giving 
FF FF A 7 B6 as the final result in register 6. 

MOVE (MVI) 
The MOVE (immediate) instruction places one byte 
of information from the instruction stream into 
storage. For example, the instruction 

Assembler Format 

Op Code 01 81 12 

MVI 0(1 ),C'$' 

Machine Format 

Op Code h 81 01 

may be used, in conjunction with the instruction 
EDIT AND MARK, to insert a dollar symbol at the 
storage address contained in general register 1 (see 
also the example for EDIT AND MARK). 

MOVE (MVC) 
The MVC instruction can be used to move data from 
one storage location to another. For example, assume 
that the following two fields are in storage: 

Field 1 
2048 2052 

I C1 I cal C31 C41 csl CSlC71 C81 C91 CA 1 CB I 
Field 2 
3840 3848 

I F1 I F21 F31 F4 I F5 I Fe I F71 F81 FBI 
Also assume: 

Register 1 contains 00002048. 
Register 2 contains 00 00 38 40. 

With the following instruction, the first eight bytes 
of field 2 replace the first eight bytes of field 1: 

Assembler Format 

Op Code Di L 81 D282 

MVC 0(8,1),0(2) 

Machine Format 

Op Code L 81 D1 82 

After the instruction is executed, field 1 becomes: 

Field 1 
2048 2052 

I F1 I F21 F31 F41 Fsi Fel F71 F81 C91 CA I CB I 
Field 2 is unchanged. 

MVC can also be used to propagate a byte through 
a field by starting the first .. operand· field one byte 
location to the right of the second-operand field. For 
example, suppose that an area in storage starting with 
address 358 contains the following data: 

358 360 

I 00 I F1 I F2 I F3 I F4 I Fsi Fe I F71 F81 

With the following MVC instruction, the zeros in 
location 358 can be propagated throughout the entire 

. field (assume that register 11 contains 00 00 03 58): 

Appendix A. Number Representation and Instruction~Use Examples A~17 



Assembler Format 

MVC 1(8,11 ),0(11) 

Machine Format 

Op Code L B1 01 B2 02 

I D2 I 07 1 B I 001 I BloO~ 
Because the MVC handles one byte at a time, the 

above instruction essentially takes the byte at address 
358 and stores it at 359 (359 now contains 00), takes 
the byte at 359 and stores it at 35A, and so on, until 
the entire field is filled with zeros. Note that an MVI 
instruction could have been used originally to place 
the byte of zeros in location 358. 

Notes: 

1. Although the field occupying locations 358-360 
contains nine bytes, the length coded in the 
assembler format is equal to the number of 
moves (one less than- the field length). 

2. The order of operands is important even though 
only one field is involved. 

MOVE LONG (MVCL) 
The MVCL instruction can be used for moving data 
in storage as in the first example of the MVC 
instruction, provided that the two operands do not 
overlap. MVCL differs from MVC in that the 
address and length of each operand are specified in 
an even-odd pair of general registers. Consequently, 
MVCL can be used to move more than 256 bytes of 
data with one instruction. As an example, assume: 
Register 2 contains 00 OA 00 00. 
Register 3 contains 00 00 08 00. 
Register 8 contains 00 06 00 00. 
Register 9 contains 00 00 08 00. 

A-18 IBM 4300 Processors Principles of Operation 

Execution of the instruction 

Assembler Format 

Op Code R1R2 

MVCl 8,2 

Machine Format 

Op Code R1 R2 

moves 2,04810 bytes from locations AOOOO-A07FF to 
location 60000-607FF. Condition code 0 is set to 
indicate that the operand lengths are equal. 
If register 3 had contained FO 00 04 00, only the 

1,02410 bytes from locations AOOOO-A03FF would 
have been moved to locations 60000-603FF. The 
remaining locations 60400-607FF of the first 
operand would have been filled with 1,024 copies of 
the padding byte X'FO', as specified by the leftmost 
byte of register 3. Condition code 2 is set to indicate 
that the first operand is longer than the second. 

The technique for setting a field to zeros that is 
illustrated in the second example of MVC cannot be 
used with MVCL. If the registers were set up to 
attempt such an operation with MVCL, no data 
movement would take place and condition code 3 
would indicate destructive overlap. 

Instead, MVCL may be used to clear a storage area 
to zeros as follows. Assume register 8 and 9 are set 
up as before. Register 3 contains only zeros, 
specifying zero length for the second operand and a 
zero padding byte. The contents of register 2 are not 
significant. Executing the instruction MV CL 8,2 
then causes locations 60000-607FF to be filled with 
zeros. Condition code 2 is set. 

MOVE NUMERICS (MVN) 
To illustrate the operation of the MOVE NUMERICS 
instruction, assume that the following two fields are 
in storage: 



Field A 
7090 

Field B 
7041 

7093 

7046 

I FO I Fl I F2 I F3 I F4 I F5 

Also assume: 

Register 14 contains 000070 90. 

Register 15 contains 00 00 70 40. 

After the instruction 

Assembler Format 

MVN 1(4,15),0(14) 

Machine Format 

Op Code L B1 01 B2 02 

I D1 I 
03

1 F I 001 I E I 000 

is executed, field B becomes: 

7041 7046 

I F6 I F7 I Fa I F9 I F4 I F5 I 

The numeric portions (the rightmost four bits) of 
the bytes at locations 7090-70.93 have been stored in 
the numeric portions of the bytes at locations 
7041-7044. The contents of locations 7090-7093 
and 7045-70.46 are unchanged. 

MOVE WITH OFFSET (MVO) 
Assume that the three-byte unsigned packed -decimal 
number in storage locations 4500.-450.2 is to be 
moved to locations 560.0-560.3 and given the sign of 
the packed-decimal number ending at location 560.3. 
Also assume: 

Register 12 contains 00 00 5600. 
Register 15 contains 00 00 45 00. 
Storage locations 5600-5603 contain 77 88 99 OC. 
Storage locations 4500-4502 contain 12 34 56. 

After the instruction 

Assembler Format 

MVO 0(4,12),0(3,15) 

Machine Format 

Op Code L1 L2 B1 01 B2 02 

Fl 13 12 I C I 000 I F I 000 

is executed, the storage locations 5600.-560.3 contain 
0. 1 23 45 6C. Note that the second operand is 
extended with one high -order zero to fill out the 
first-operand field. 

MOVE ZONES (MVZ) 
The MOVE ZONES instruction can, similarly to 
MVC and MVN, operate on overlapping or 
nonoverlapping fields. (See the examples for MVC 
and MVN.) When operating on nonoverlapping 
fields, MVZ works similarly to the MVN instruction, 
except that MVZ moves the zone portion (the 
leftmost four bits) of each byte. To illustrate the use 
of MVZ with overlapping fields, assume that the 
following data field is in storage: 

800 805 

Also assume that register 15 contains 
0.0 0.0 0.8 QQ. The instruction 

Assembler Format 

MVZ 1 (5, 15},0(15) 

Machine Format 

Op Code L B1 01 82 

Appendix A. Number Representation and Instruction-Use Examples A-19 



propagates the zone from the byte at address 800 
through the data field, so that the field becomes: 

800 805 

I F1 I F2 I F3 I F4 I F5 I F6 

MULTIPLY (M, MR) 
Assume that a number in register 5 is to be multiplied 
by the contents of a word at address 3750. Initially: 

The contents of register 4 are not significant. 
Register 5 contains 00 00 00 9A = 15410 = the 
multiplicand. 
Register 11 contains 00 00 30 00. 
Register 12 contains 00 00 06 00. 
Storage locations 3750-3753 contain 00 00 00 83 13110 = 
the mUltiplier. 

The instruction required for performing the 
multiplication is: 

Assembler Form.at 

Op Code R1 D2 X2 82 

M 4,X'150'(11,12) 

Machine Format 

After the instruction is executed: 

Registers 4 and 5 contain the product: 

Register 4 contains 00 00 00 00. 
Register 5 contains 00 00 4E CE = 20,17410. 
Storage locations 3750-3753 are unchanged. 

The RR format of the instruction can be used to 
square the number in a register. Assume that register 
7 contains 00 00 00 10 = 1610• The instruction 

A-20 IBM 4300 Processors Principles of Operation 

Assembler Format 

Op Code R1R2 

MR 6,7 

Machine Format 

Op Code R1 R2 

multiplies the number in register 7 by itself. 
The product, 00 00 00 00 00 00 01 00 = 25610, 

appears in registers 6 and 7. 

MULTIPLY HALFWORD (MH) 
The MUL TIPL Y HALFWORD instruction is used to 
multiply the contents of a register by a halfword in 
storage. For example, assume that: 

Register 11 contains 00 00 00 15 = 2110 - the 

multiplicand. 

Register 14 contains 00 00 01 00. 

Register 15 contains 00 00 20 00. 

Storage locations 2102-2103 contain FF D9 = -39 = the 
multiplier. 

The instruction 

Assembler Format 

MH 11,2(14,15) 

Machine Format 

multiplies the two numbers. The product, 
FF FF FC CD = - 81910, replaces the original 
contents of register 11. 

Only the low-order 32 bits of a product are stored 
in a register; any high-order bits are lost. No 
program interruption occurs on overflow. 



OR (0, OR, 01, OC) 
When the Boolean operator OR is applied to two bits, 
the result is one when either bit is one; otherwise, the 
result is zero. When two bytes are ORed, each pair 
of bits is handled separately; there is no connection 
from one bit position to another. The following is an 
example of ORing two bytes: 
First-operand byte: 
Second-operand byte: 

Result byte: 

OR (01) 

0011 01012 
0101 110~ 

0111 110h 

A frequent use of the OR instruction is to set a 
particular bit to one. For example, assume that 
storage location 4891 contains 0100 00102. To set 
the rightmost bit of this byte to one without affecting 
the other bits, the following instruction can be used 
(assume that register 8 contains 00 00 48 90): 

Assembler Format 

01 1(8),X'01' 

Machine Format 

When this instruction is executed, the byte in 
storage is ORed with the immediate byte (the 12 field 
of the instruction): 
Location 4891: 
Immediate byte: 

Result: 

0100 001~ 
000000012 

010000112 

The resulting byte with bit 7 set to one is stored 
back in location 4891. Condition code 1 is set. 

PACK (PACK) 
Assume that storage locations 1000-1003 contain the 
following zoned-decimal number that is to be 
converted to a packed-decimal number and left in the 
same location: 

Zoned Number 
1000 1003 

Also assume that register 12 contains 
00 00 10 00. After the instruction 

Assembler Format 

PACK 0(4,12),0(4,12) 

Machine Format 

Op Code L1 L2 Bl 01 B2 02 

F213131 e looole 000 

is executed, the result in locations 1000-1003 is in 
the packed-decimal format: 

Packed Number 
1000 1003 

Notes: 
1. This example illustrates the operation of PACK 

when the first- and second-operand fields overlap 
completely. 

2. During the operation, the second operand was 
extended with high-order zeros. 

SHIFT LEFT DOUBLE (SLDA) 
The SHIFT LEFT DOUBLE instruction is similar to 
SHIFT LEFT SINGLE except that SLDA shifts the 
63 bits (not including the sign) of an even-odd 
register pair. The R1 field of this instruction must be 
even. For example, if the contents of registers 2 and 
3 are: 

00 7F OA 72 FE DC BA 98 = 
0000 0000 0111 1111 0000 1010 0111 0010 
1111 1110 1101 1100 1011 1010 1001 1000

2 

Appendix A. Number Representation and Instruction-Use Examples A-21 



the instruction 

Assembler Format 

SLDA 2,31 (O) 

Machine Format 

results in registers 2 and 3 both being left-shifted 31 
bit positions, so that their new contents are: 

7F 6E 5D 4C 00 00 00 00 = 
0111 1111 0110 1110 0101 1101 0100 1100 
0000 0000 0000 0000 0000 0000 0000 0000

2 

In this case, a significant bit is shifted out of bit 
position 1 of register 2. Condition code 3 is set to 
indicate this overflow and, if the fixed-point-overflow 
mask bit in the PSW is one, a fixed-point overflow 
interruption occurs. 

SHIFT LEFT SINGLE (SLA) 
Because SHIFT LEFT SINGLE leaves the sign bit 
unchanged, this instruction performs an algebraic 
shift. For example, if the contents of register 2 are: 

00 7F OA 72 - 00000000 0111 1111 0000 1010 0111 00102 

the instruction 

Assembler Format 

SLA 2,8(0) 

Machine Format 

Op Code Rl R3 B2 02 

88 12 ~ 0 1 008 

results in register 2 being shifted left eight bit 
positions so that its new contents are: 

A-22 IBM 4300 Processors Principles of Operation 

7F OA 72 00 = 0111 1111 0000 1010 0111 0010000000002 

Condition code 2 is set to indicate that the result is 
nonzero and positive. 
If a left shift of. nine places had been specified, a 

significant bit would have been shifted out of bit 
position 1. Condition code 3 would have been set to 
indicate this overflow and, if the fixed-point-overflow 
mask bit in the PSW is one, a fixed-point overflow 
interruption would have occurred. 

STORE CHARACTERS UNDER MASK 
(STCM) 

STCM may be used to place selected bytes from a 
register into storage. For example, if it is desired to 
store a three-byte address from general register 8 into 
location FIELD3, assume: 

Register Format 

STCM 8,B'0111',FIEL03 

Machine Format 

Register 8: 

FIELD3 (before): 
FIELD3 (after): 

12 34 56 78 

not significant 
34 5678 

As another example: 

Register Format 

Op Code Rl M3 S2 

STCM 9,B'0101',FIELD2 

Machine Format 

Register 9: 

FIELD2 (before): 
FIELD2 (after): 

01 2345 67 

not significant 
2367 



STORE MULTIPLE (STM) 
Assume that the contents of general registers 14, 15, 
0, and 1 are to be stored in consecutive words 
starting with location 4050 and that: 
Register 14 contains 00 00 25 63. 
Register 15 contains 00 01 27 36. 
Register 0 contains 1243 0062. 
Register 1 contains 73 26 12 57. 
Register 6 contains 00 00 40 00. 
The initial contents of locations 4050-405F are not 
significant. 

The STORE MULTIPLE instruction allows the use 
of just one instruction to store the contents of the 
four registers: 

Assembler Format 

STM 14,1,X'50'(6) 

Machine Format 

After the instruction is executed: 
Locations 4050-4053 contain 00 00 25 63. 
Locations 4054-4057 contain 00 01 27 36. 
Locations 4058-405B contain 12 43 0062. 
Locations 405C-405F contain 73 26 12 57. 

TEST UNDER MA.SK (TM) 
The TEST UNDER MASK instruction examines 
selected bits of a byte and sets the condition code 
accordingly. For example, assume that: 
Storage location 9999 contains FB. 
Register 7 contains 000099 90. 

Execution of the instruction 

Assembler Format 

Op Code D1Bl 12 

TM 9(7),8'11000011' 

Machine Format 

Op Code 12 Bl 01 

produces the following result: 

FB 1111 1011 2 
Mask 1.100 0011 2 

Result 11 

Condition code 3 is set: aU selected bits are ones. 
If location 9999 had contained B9, the result would 

have been: 
B9 :;: 1011 1001

2 
Mask II 00 0011

2 

Result 10 

Condition code 1 is set: the select~d bits are both 
zeros and ones. 
If location 9999 had contained 3C, the result would 

have been: 
3C 
Mask 

Result 

0011 1100
2 

1100 0011
2 

00 

Condition code o· is set: all selected bits are zeros. 

Note: Storage location 9999 remains unchanged. 

TRANSLATE (TR) 
The TRANSLATE instruction can be used to 
translate data from any character code to any other 
desired code, provided that each coded character 
consists of eight bits or fewer. In the following 
example, EBCDIC is translated to ASCII. The first 
step is to create a 256-byte table in storage locations 
1000-1 OFF. This table contains the characters of the 
target code in the sequence of the binary 
representation of the source code; that is, the ASCII 
representation of a char~cter is placed in storage at 
the starting address of the table plus the binary value 
of the EBCDIC representation of the same character. 
For simplicity, the example shows only the part of the 
table containing the decimal digits: 
Translate Table for Decimal Digits 

10FO 10F9 

Assume that the four ... byte field at storage location 
2100 contains the EBCDIC code for the digits 1984: 

Appendix A. Number Representation and Instruction-Use Examples A-23 



Locations 2100-2103 contain Fl F9 F8 F4. 
Register 12 contains 00 00 21 00. 

Register 15 contains 00 00 10 00. 

As the instruction 

Assembler Format 

TR 0(4,12),0(15) 

Machine Format 

Op Code L B1 D1 B2 

is executed, the binary value of each source byte is 
added to the starting address of the table, and the 
resulting address is used to fetch a targ~t byte: 

Table starting address: 1000 

First source byte: Fl 

Address of target byte: 10Ft 

After execution of the instruction: 

Locations 2100-2103 contain 31 39 38 34. 

Thus, the ASCII code for the digits 1984 has 
replaced the EBCDIC code in the four-byte field at 
storage location 2100. 

TRANSLATE AND TEST (TRT) 
The 'TRANSLATE AND TEST ,instruction can be 
used to scan a data field for characters with a special 
meaning. To indicate which characters have' a special 
meaning, a table similar to the one used for the 
TRANSLA TE instruction is, set up, except that zeros 
in the table indicate characters without any special 
meaning and nonzero values indicate characters with 
a special meaning. 

The translate-and-test table that follows has been 
set up to distinguish alphameric characters (A to Z 
and 0 to 9) from blanks, certain special symbols, and 
all other characters which are' considered invalid. 
EBCDIC coding is assumed. The 256..;byte table is 
assumed stored at locations. 2000-20FF. 

A-24 IBM 4300 Processors Principles of Operation 

o 1 234 5 6 7 8 9 A 8 C 0 E F 

200_ 

201 

202 

203 

204 

205_ 

206 

207 

208 

209 

20A 

208 

20C_ 

200 

20E_ 

20F 

40 

40 

40 

40 

04 

14 

24 

40 

40 

40 

40 

40 

40 

40 

40 

00 

40 

40 

40 

40 

40 

40 

28 

40 

40 

40 

40 

40 

00 

00 

40 

00 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

40 40 

00 00 

00 00 

00 00 

00 00 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 40 

40 40 40 '40 

40 40 40 40 

40 40 40 40 

00 00 00 00 

00 00 00 00 

00 00 00 00 

00 00 00 00 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

40 40 40 08 40 OC 10 

40 40 40 18 1C 20 40 

40 40 40 2C 40 40 40 

40 40 40 30 34 38 3C 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

40 40 40 40 40 40 40 

00 00 40 40 40 40 40 

00 00 40 40 40 40 40 

00 00 40 40 40 40 40 

00 00 40 40 40 40 40 

Note: If the character codes in the statement being translated 
occupy a range smaller than 00 through FF 16' a table 
of fewer than 256 bytes can be used. 

Translate-and-Test Table 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

40 

The table entries for the alphameric characters in 
EBCDIC are 00; thus, the letter A (code C1) 
corresponds to byte location 20C 1, which contains 
00. 

The 15 special symbols have nonzero entries from 
0416 to 3C16 in increments of 4. Thus, the blank 
(code 40) has the entry 0416, the period (code 4 B) 
has the entry 0816, and so on. 

All other table positions have the entry 4016 to 
indicate an invalid character. 

The table entries are chosen so that they may be 
used to select one of a list of 16 fullwords containing 
addresses of different routines to be entered for each 
special symbol or invalid character encountered 
during the scan. 

Assume that this list of 16 branch addresses is 
stored at locations 3004-3043. 

Starting at storage location CA80, there is the 
following sequence of 2110 EBCDIC characters: 

Locations CA80-CA94: UNPKbPROUT(9),WORD(5) 



Also assume: 

Register 1 contains 00 00 2F FF. 
Register 2 contains 0000 3000. 
Register 15 contains 00 00 20 00. 

As the instruction 

Assembler Format 

TRT 1(21,1}'0(15) 

Machine Format 

Op Code L B1 D1 B2 D2 

I DO 11+ 1001 IF 1000 

is executed, the value of the first argument byte, the 
letter U, is added to the starting address of the table 
to produce the address· of the table entry to be 
examined: 

Table starting address 
First argument byte (U) 

2000 
E4 

Address of table entry 20E4 

Because zeros were placed in storage location 20E4, 
no special action occurs. The operation continues 
with the second and subsequent argument bytes until 
it reaches the blank in location CA84. When this 
symbol is reached, its value is added to the starting 
address of the table, as usual: 

Table starting address 2000 
Argument byte (blank) 40 

Address of table entry 2040 

Because location 2040 contains a nonzero value, the 
following actions occur: 
1. The address of the argument byte, 00CA84, is 

placed in the rightmost 24 bits of register 1. 
2. The table entry, 04, is placed in the rightmost 

eight bits of register 2, which now contains 
00 00 30 04. 

3. Condition code 1 is set (scan not completed). 
The TRANSLATE AND TEST instruction may be 

followed by instructions to branch to the routine at 
the address found at location 3004, which 
corresponds to the blank character encountered in the 
scan. When this routine is completed, program 
control may return to the TRANSLATE AND TEST 
instruction to continue the scan, except that the 
length must first be adjusted for the characters 
already scanned. 

For this purpose, the TRANSLATE AND TEST 
may be executed by the use of an EXECUTE 
instruction, which supplies the length specification 
from a general register. In this way, a complete 
statement scan can be performed with a single 
TRANSLA TE AND TEST instruction repeated over 
and over by means of EXECUTE, and without 
modifying any instructions in storage. In the 
example, after the first execution of TRANSLA TE 
AND TEST register 1 contains the address of the last 
argument byte translated. It is then a simple matter 
to subtract this address from the address of the last 
argument byte (CA94) to produce a length 
specification. This length minus one is placed in the 
register that is referenced as the R 1 field of the 
EXECUTE instruction. (Note that the length code in 
the machine format is one less than the total number 
of bytes in the field.) The second-operand address of 
the EXECUTE instruction points to the 
TRANSLATE AND TEST instruction, which is the 
same as illustrated above, except for the length (L) 
which is set to zero. 

UNPACK (UNPK) 
Assume that storage locations 2501-2502 contain a 
signed, packed-decimal number that is to be 
unpacked and placed in storage locations 1000-1004. 
Also assume: 

Register 12 contains 00 00 10 00. 
Register 13 contains 00 00 25 00. 
Storage locations 2501-2502 contain 12 3D. 
The initial. contents of storage locations 1000-1004 are not 
significant. 

After the instruction 

Assembler Format 

UNPK 0(5,12),1(2,13) 

Machine Format 

Op Code L1 L2 B1 D1 B2 D2 

1 F3 14 11 1 C 1 000 1 0 1 001 1 

is executed, the storage locations 1000-1004 contain 
FO FO Fl F2 D3. 

Decimal Instructions 
(See Chapter 8.) 

Appendix A. Number Representation and Instruction-Use Examples A-25 



ADD DECIMAL (AP) 
Assume that the signed, packed-decimal number at 
storage locations 500-503 is to be added to the 
signed, packed-decimal number at locations 
2000-2002. Also assume: 

Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 05 00. 
Storage locations 2000-2002 contain 38 46 OD (a negative 
number). 
Storage locations 500-503 contain 01 12 34 5C (a positive 
number). 

After the instruction 

Assembler Format 

AP 0(3, 12},0(4, 13) 

Machine Format 

Op Code Ll L2 BIOI B2 

is executed, the storage locations 2000-2002 contain 
73 88 5C; condition code 2 is set to indicate that the 
sum is positive. Note that: 
1. Because the two numbers had different signs, 

they were in effect subtracted. 
2. Although the second operand is longer than the 

first operand, no overflow interruption occurs 
because the result can be entirely contained 
within the first operand. 

COMPARE DECIMAL (CP) 
Assume that the signed, packed-decimal contents of 
storage locations 700-703 are to be algebraically 
compared with the signed, packed-decimal contents 
of locations 500-502. Also assume: 

Register 12 contains 000006 00. 
Register 13 contains 00 00 03 00. 
Storage locations 700-703 contain 17 25 35 60. 
Storage locations 500-502 contain 72 1420. 

After the instruction 

A-26 IBM 4300 Processors Principles of Operation 

Assembler Format 

CP X'1 00'(4, 12),X'200'(3, 13} 

Machine Format 

Op Code Ll L2 BIOI B2 02 

1 F9 13 12 Ie 1,00 I 0 1200 

is executed, condition code 1 is set, indicating that 
the first operand (the contents of locations 700-703) 
is less than the second. 

DIVIDE DECIMAL (DP) 
Assume that the signed, packed-decimal number at 
storage locations 2000-2004 (the dividend) is to be 
divided by the signed, packed-decimal number at 
locations 3000-3001 (the divisor). Also assume: 
Register 12 contains 00 00 20 00. 
Register 13 contains 00 00 30 00. 
Storage locations 2000-2004 contain 01 23 45 67 8C. 
Storage locations 3000-3001 contain 32 1D. 

After the instruction 

Assembler Format 

Op Code 01LlBl 02 L2 B2 

OP 0(5,12),0(2,13) 

Machine Format 

Op Code Ll L2 Bl 01 B2 02 

I FD 14 I, I c I 000 I 0 I 000 
is executed, the dividend is entirely replaced by the 
signed quotient and remainder, as follows: 

Locations 2000-2004 
2000 2004 

Quotient Remainder 



Notes: 
1. Because the dividend and divisor have different 

signs, the quotient receives a negative sign. 
2. The remainder receives the sign of the dividend 

and the length of the divisor. 
3. If an attempt were made to divide the dividend by 

the one-byte field at location 3001, the quotient 
would be too long to fit within the four bytes 
allotted to it. A decimal-divide exception would 
exist, causing a program interruption. 

EDIT (ED) 
Before decimal data in the packed format needed for 
arithmetic can be used in a printed report, digits and 
signs must be converted to printable characters. 
Moreover, punctuation marks, such as commas and 
decimal points, may have to be inserted in 
appropriate places. The highly flexible EDIT 
instruction performs these functions in a single 
instruction execution. 

This example shows step-by-step one way that the 
EDIT instruction can be used. The field to be edited 
(the source) is four bytes long; it is edited against a 
pattern 13 bytes long. The following symbols are 
used: 

Symbol Meaning 

b (hexadecimal 40) blank character 
( (hexadecimal 21 ) significance starter 
d (hexadecimal 20) digit selector 

Assume that the source and pattern fields are: 

Source 

1200 1203 

Pattern 

1000 100C 

b d d d d d d b C R 

Execution of the instruction (assume that register 
12 contains 00 00 10 00) 

Assembler Format 

ED O{13,12},X'200'(12) 

Machine Format 

Op Code L 81 Dl 82 D2 

I DE I OC I C I 000 I C 1200 

alters the pattern field as follows: 

Significance 
Indicator Location 

Pattern Digit (Beforel After) Rule 1 000-1 OOC 

b offloff leave (1) bdd,d(d.ddbCR 
d 0 offloff fill bbd,d(d.ddbCR 
d 2 offlon (2) digit bb2,d(d.ddbCR 

onIon leave same 
d 5 onIon digit bb2,5(d.ddbCR 
( 7 onIon digit bb2,57d.ddbCR 
d 4 onIon digit bb2,574.ddbCR 

onIon leave same 
d 2 onIon digit bb2,574.2dbCR 
d 6+ onloff (3) digit bb2,574.26bCR 
b offloff fill same 
C offloff fill bb2,574.26bbR 
R offloff fill bb2,574.26bbb 

NotfilS: 

1. This character is the fill character. 
2. First nonzero decimal source digit turns on significance 

indicator. 
3. Plus sign in the four low-order bit of the byte turns off 

significance indicator. 

Thus, after the instruction is executed, the patte~n 
field contains the result as follows: 

Pattern 

1000 100C 

b b 2 5 7 4 2 6 b b b 

When printed, the new pattern field appears as: 

2,574.26 

The source field remains unchanged. Condition 
code 2 is set because the number was greater than 
zero. 
If the number in the source field is changed to 

00 00 02 6D, a negative number, and the original 
pattern is used, the edited result this time is: 

Appendix A. Number Representation and Instruction-Use Examples A-27 



Pattern 

1000 100C 

b b b b b b 0 2 6 b C R 

This pattern field prints as: 

0.26 CR 

The significance starter forces the significance 
indicator to the on state and hence causes the 
decimal point to be preserved. Because the minus
sign code has no effect on the significance indicator, 
the characters CR are printed to show a negative 
(credit) amount. 

Condition code 1 is set (number less than zero). 

EDIT AND MARK (EDMK) 
The EDIT AND MARK instruction may be used, in 
addition to the functions of EDIT, to insert a 
currency symbol, such as a dollar sign, at the appro
priate position in the edited result. Assume the same 
source in storage locations 1200-1203, the same 
pattern in locations 1000-100C, and the same con
tents of general register 12 as for the EDIT instruc
tion above. The previous contents of general register 
1 are immaterial; a LOAD ADDRESS instruction is 
used to set up the first digit position that is forced to 
print if no significant digits occur to the left. 

The instructions 

LA 1,6(0,12) Load address of forced 

significant digit into GR 1. 

EDMK 0(13, 12),X'200'(12) Leave address of first 
significant digit in GRt. 

BCTR 1,0 Subtract 1 from address 

in GRl. 
MVI O(1),C$' Store dollar sign and 

address in G R 1. 

produce the following results for the two examples 
under EDIT: 

Pattern 

1000 100C 

b $ 2 5 7 4 2 6 b b b 

This pattern field prints as: 

A-28 IBM 4300 Processors Principles of Operation 

$2,574.26 

Condition code 2 is set to indicate that the number 
edited was greater than zero. 

Pattern 

1000 100C 

140 140 140 140 140 158 I FO 148 I F21 Fsl40 I C31 D9 I 
b b b b b $ 0 2 6 b C R 

This pattern field prints as: 

$0.26 CR 

Condition code 1 is set because the number is less 
than zero. 

MULTIPLY DECIMAL (MP) 
Assume that the signed, packed-decimal number in 
storage locations 1202-1204 (the multiplicand) is to 
be multiplied by the signed, packed-decimal number 
in locations 500-501 (the multiplier). 

Multiplicand 

1202 1204 

Multiplier 

500 501 

EB 
Because the multiplier and multiplicand have a total 
of eight significant digits, at least five bytes must be 
reserved for the signed result. ZERO AND ADD can 
be used to move the multiplicand into a longer field. 
Assume: 

Register 4 contains 00 00 12 00. 
Register 6 contains 00 00 05 00. 

Then execution of the instruction 
ZAP X'100'(5,4),2(3,4) 

sets up a new multiplicand in storage locations 
1300-1304: 

Multiplicand (new) 

1300 1304 



Now, after the instruction 

Assembler Format 

MP X'100'(5.4),O(2.6) 

Machine Format 

Op Code Ll L2 BIOI B2 02 

Fe 14 I, 14 1,00 16 I 000 
is executed, storage locations 1300-1304 contain the 
product: 01 23 45 66 OC. 

SHIFT AND ROUND DECIMAL (SRP) 
The SRP instruction can be used for shifting decimal 
numbers in storage to the left or right. When a 
number is shifted right, rounding can also be done. 

Decimal Left Shift 

In this example, the contents of storage location 
FIELD 1 are shifted three places to the left, 
effectively multiplying the contents of FIELD 1 by 
1000. FIELDI is six bytes long. The following 
instruction performs the operation: 

Assembler Format 

8RP FIEL01(6).3.0 

Machine Format 

Op Code Ll 13 81 B2 02 

FO 15 I 0 1····1 0 I 003 
FIELDI (before): 
FIELDI (after): 

00 01 23 45 67 8C 
12 34 56 78 00 OC 

The second-operand address in this instruction 
specifies the shift amount (three places). The 
rounding factor, 13, is not used in left shift, but it 

must be a valid decimal digit. After execution, 
condition code 2 is set to show that the result is 
greater than zero. 

Decimal Right Shift 

In this example, the contents of storage location 
FIELD2 are shifted one place to the right, effectively 
dividing the contents of FIELD2 by 10 and 
discarding the remainder. FIELD2 is five bytes in 
length. The following instruction performs this 
operation: 

Assembler Format 

8RP FIEL02(5},64 - 1.0 

Machine Format 

Op Code Ll 13 81 B2 02 

FO 1410 1 .... 10 ~~ 

FIELD2 (before): 

FIELD2 (after): 

0011 1111 
, I r 

6-bit two's 

complement 

for -1 

01 23 45 67 8C 

00 12 34 56 7C 

In the SRP instruction, shifts to the right are 
specified in the second-operand address by negative 
shift values, which are represented as a six-bit value 
in two's complement form. 

The six-bit two's complement of a number, n, can 
be specified as 64-n. In this example, a right shift 
of one is represented as 64 -1. 

Condition code 2 is set. 

Decimal Right· Shift and Round 

In this example, the contents of storage location 
FIELD3 are shifted three places to the right and· 
rounded, effectively dividing by 1000 and rounding 
to the nearest whole number. FIELD3 is four bytes 
in length. 

Appendix A. Number Representation and Instruction-Use Examples A-29 



Assembler Format 

SRP FIEL03(4),64- 3,5 

Machine Format 

Op Code Ll 13 81 B2 02 

FO 1315 1 .... 10 ~~ 

FIELD3 (before): 
FIELD3 (after): 

0011 1111 
-~ 

6-bit two's 

complement 

for -3 

1239600D 
0001 240D 

The shift amount (three places) is specified in the 
D2 field. The 13 field specifies the rounding factor 
of 5. The rounding factor is added to the last digit 
shifted out (which is a 6), and the carry is propagated 
to the left. The sign is ignored during the addition. 

Condition code 1 is set because the result is less 
than zero. 

Multiplying by a Variable Power of 10 

Since the shift value designated by the SRP 
instruction specifies both the direction and amount of 
the shift, the operation is equivalent to multiplying 
the decimal first operand by 10 raised to the power 
specified by the shift value. 
If the shift value is variable, it may be specified by 

.the B2 field instead of the displacement D2 of the 
SRP instruction. The general register designated by 
B2 should contain the shift value (power of 10) as a 
signed binary integer. 

A fixed scale factor modifying the variable power of 
10 may be specified by using both the B2 field 
(variable part in a general register) and the D2 field 
(fixed part in the displacement). 

The SRP instruction uses only the rightmost six bits 
of the effective address D2(B2 ) and interprets them as 
a six-bit Signed binary integer to control the left or 
right shift as in the previous two examples. 

A-30 IBM 4300 Processors Principles of Operation 

ZERO AND ADD (ZAP) 

Assume that the signed, packed-decimal number at 
storage locations 4500-4502 is to be moved to 
locations 4000-4004 with four leading zeros in the 
result field. Also assume: 

Register 9 contains 00 00 40 00. 

Storage locations 4000-4004 contain 12 34 56 78 90. 
Storage locations 4500-4502 contain 38 46 00. 

After the instruction 

Assembler Format 

ZAP 0(5,9),X'500' (3,9) 

Machine Format 

Op Code Ll L2 BIOI B2 02 

Fa 1412 19 1000 19 1500 I 
is executed, the storage locations 4000-4004 contain 
00 00 38 46 OD; condition code 1 is set to indicate 
a negative result. 

Note that, because the first operand is not checked 
for valid sign and digit codes, it may contain any 
combination of hexadecimal digits before the 
operation. 

Floating-Point Instructions 
(See Chapter 9.) 

In this section, the abbreviations FPRO, FPR2, FPR4, 
and FPR6 stand for floating-point registers 0, 2, 4, 
and 6 respectively. 

ADD NORMALIZED (AE, AER, A.D, ADR) 

The ADD NORMALIZED instructions perform the 
addition of two floating-point numbers and place the 
normalized result in a floating-point register. Neither 
of the two numbers to be added must necessarily be 
normalized before addition occurs. For example, 
assume that: 



FPR6 contains C3 08 21 00 00 00 00 00 = -82.116 = 
-130.0610 approximately (unnormalized). 

Storage locations 2000-2007 contain 
41 12 34 56 00 00 00 00 = + 1.2345616 = + 1.1410 
(normalized). 

Register 13 contains 00 00 20 00. 

The instruction 

Assembler Format 

AE 6.0(O,13} 

Machine Format 

Op Code R1 X2 

D 1000 

performs the short-precision addition of the two 
operands, as follows. 

The characteristics of the two numbers (43 and 41) 
are compared. Since the number in storage has a 
characteristic that is smaller by 2, it is right-shifted 
two hexadecimal digit positions. The two numbers 
are then added: 

fPR6: -43 08 21 00 
Shifted number from storage: +43 00 12 34 5 

Intermediate sum: -43 08 DE CB B 

!Guard digit 

Because the intermediate sum is unnormalized, it is 
left-shifted to form the normalized floating-point 
number -42 80 EC BB = -80.ECBB16 = -128.92. 
Combining the sign with the characteristic, the result 
is C2 80 EC BB, which replaces the left half of 
FPR6. The right half of FPR6 and the contents of 
storage locations 2000-2007 are unchanged. 
Condition code 1 is set to indicate a negative result. 

If the long-precision instruction AD is used, the 
result in FPR6 is C2 80 EC BA AO 00 00 00. 
Note that the long-precision instruction avoids a loss 
of precision in this example. 

ADD UNNORMALIZED (A U, A UR, A ~ 
AWR) 

The ADD UNNORMALIZED instructions operate 
identically to the ADD NORMALIZED instructions, 
except that the final result is not normalized. For 
example, using the the same operands as in the 
example for ADD NORMALIZED, when the 
short-precision instruction 

Assembler Format 

AU 6.0(0.13) 

Machine Format 

Op Code Rl X2 82 D2 

7E 161 0 I D I 000 

is executed, the two numbers are added as follows: 

FPR6: 
Shifted number from storage: 

Sum: 

IGuard digit 

CD! 
--43 08 21 00 
+43 00 12 34 5 

-43 08 DE CB B 

The guard digit participates in the addition but is 
discarded. The unnormalized sum replaces the left
half of FPR6. Condition code 1 is set because the 
result is negative. 

The result in FPR6 (C3 08 OE CB 00 00 00 00) 
shows a loss of a significant digit when compared to 
the result of short-precision· normalized addition. 

COMPARE (CE, CER, CD, CDR) 
Assume that FPR4 contains 
43 00 00 00 00 00 00 00 (= 0), 
and FPR6 contains 34 12 34 56 78 9A BC DE 
(a positive number). The contents of the two registers 
are to be compared using a long-precision 
COMP ARE instruction. 

Appendix A. Number Representation and Instruction-Use Examples A-31 



Assembler Format 

CDR 4,6 

Machine Format 

Op Code Rl R2 

The number with the smaller characteristic, which is 
the one in register FPR6, is right-shifted 15 
hexadecimal digit positions so that the two 
characteristics agree. The shifted contents of FPR6 
are 43 00 00 00 00 00 00 00, with a guard digit of 
zero. Therefore, when the two numbers are 
compared, condition code 0 is set, indicating an 
equality. 

As the above example implies, when floating-point 
numbers are compared, more than two numbers may 
compare equal if one of the numbers is unnormalized. 
For example, the unnormalized floating-point number 
41 00 12 34 56 78 9A BC compares equal to all 
numbers of the form 3F 12 34 56 78 9A BC OX (X 
represents any hexadecimal digit). When the 
COMP ARE instruction is executed, the two 
low-order digits are shifted right two places, the 0 
becomes the guard digit, and the X does not 
participate in the comparison. 

However, when two normalized floating-point 
numbers are compared, the relationship between 
numbers that compare equal is unique: each digit in 
one number must be identical to the corresponding 
digit in the other number. 

Multiprogramming and Multiprocessing 
Examples 
Although the 4300 Processors make no provision for 
multiple-CPU systems, the references to 
multiprocessing may be helpful when writing 
problem-state programs that are to run correctly on 
multiprocessing configurations of System/370 as well. 

When two or more programs sharing common 
storage locations are running concurrently in a 
multiprogramming or multiprocessing environment, 
one program may, for example, set a flag bit in the 
common-storage area for testing by another program. 
It should be noted that the instructions AND (NI or 
NC), EXCLUSIVE OR (XI or XC), and OR (01 or 
OC) could be used to set flag bits in a 

A-32 IBM 4300 Processors Principles of Operation 

multiprogramming environment; but the same 
instructions may cause program logic errors in a 
multiprocessing system where two or more CPUs can 
fetch, modify, and store data in the same storage 
locations simultaneously. 

Example of a Program Failure Using OR 
Immediate 
Assume that two independent programs try to set 
different bits to one in a common byte in storage. 
The following example shows how the use of the 
instruction OR immediate (OJ) can fail to accomplish 
this, if the programs are executed nearly 
simultaneously on two different CPUs. One of the 
possible error situations is depicted. 

Execution of Instruction Execution of Instruction 
01 FLAGS, X'O,' on 01 FLAGS, X'SO' on 
CPU A FLAGS CPU B 

X'OO' Fetch FLAGS X'OO' 
Fetch FLAGS X'OO' X'OO' 

X'OO' OR X'SO' into X'OO' 
OR X'01' into X'OO' X'OO' 

X'SO' Store X'SO' into FLAGS 
Store X'01' into FLAGS X'01' 

FLAGS should have value of X'Sl' following both updates. 

The problem shown here is that the value stored by 
the 01 instruction executed on CPU A overlays the 
value that was stored by CPU B. The X'80' flag bit 
was erroneously turned off, and the date is now 
invalid. 

The COMPARE AND SWAP instruction has been 
provided to overcome this and similar problems. 

COMPARE AND SWA.P (CS, CDS) 
The COMPARE AND SWAP and COMPARE 
DOUBLE AND SWAP instructions can be used in 
multiprogramming or multiprocessing environments to 
serialize access to counters, flags, control words, and 
other common storage areas. 

The following examples of the use of the 
COMPARE AND SWAP and COMPARE DOUBLE 
AND SWAP instructions illustrate the applications 
for which the instructions are intended. It is 
important to note that these are examples of 
functions that can be performed by programs running 
enabled for interruption (mUltiprogramming) or by 
programs that are running on a multiprocessing 
configuration. That is, the routine allows a program 
to modify the contents of a storage location while 



running enabled, even though the routine may be 
interrupted by another program on the same CPU 
that will update the location, and even though the 
possibility exists that another CPU may 
simultaneously update the same location. 

The CS instruction first checks the value of a 
stQrage location and then modifies it only if the value 
is what the program expects; normally this would be a 
previously fetched value. If the value in storage is 
not what the progra..m expects, then the location is 
not modified; instead, the current value of the 
location is loaded into a general register, in 
preparation for the program to loop back and try 
again. During the execution of CS, no other CPU 
can access the specified location. 

Setting a Single Bit 

The following instruction sequence shows how the CS 
instruction can be used to update a single bit in 
storage. Assume that FLAGS is the first byte of a 
word in storage called "WORD." 

LA 6,X'80' 
SLL 6.24 

L S,WORD 
RETRY LR 4,5 

OR 4.6 
CS S,4,WORD 

Be 4,RETRY 

Put bit to be ORed into register 6 
Shift left 24 places to align the byte to 
be ORed with the location of FLAGS 
within WORD 
Get original flag bit values 
Put flags to be modified into register 4 
Turn on bit in new copy of flags 
Store new flags unless original flags 
were changed 
If new flags not stored, try again 

The format of the CS instruction is: 

Assembler Format 

CS S,4,WORD 

Machine Format 

The CS instruction compares the first operand 
(register 5 containing the original flag values) to the 
second operand (WORD) while storage access to the 
specified location is not permitted to any CPU other 

I than the one executing the CS instruction. 

If the comparison is successful, indicating that 
FLAGS still has the same valu~ that it originally had, 
the modified copy in register 4' is stored into FLAGS. 
If FLAGS has changed since it wasloaded, the ' 
compare will not be successful, and the current value 
of FLAGS is loaded into register 5. 

The CS' instruction sets condition code 0 to indicate 
a successful compare, and swap, and condition code 1 
to indicate an unsuccessful compare and swap. 

The program executing the sample Instructions tests 
the condition code following the CS instruction and 
reexecutes the flag-modifying instructions if the CS 
instruction indicated an unsuccessful comparison. 
When the CS instruction is successful, the progfam 
continues execution outside the loop and FLAGS 
contains valid data. 

The branch to RETRY will be taken only if some 
other program modifies the update location. This 
type of a loop differs from the typical "bit-spin" 
loop. In a bit-spin loop, the program continues to 
loop until the bit changes. In this example, the 
program continues to loop only if the value does 
change during each iteration. If a number of' CPUs 
simultaneously attempt to modify one location by 
using the sample instruction sequence, one CPU will 
fall through on the first try, another will loop once, 
and so on until all CPUs have succeeded. 

Updating Counters 

In this example, a 32-bit counter is updated by a 
program using the CS instruction to ensure that the 
counter will be correctly updated. The original value 
of the counter is obtained by loading the word 
containing the counter into general register 4. The 
original counter is moved into general register 5 to 
provide a modifiable copy, and general register 6 
(containing an increment to the counter) is added to 
the modifiable copy to provide the updated counter 
value. The CS instruction is used to ensure valid 
storing of the counter. 

The program updating the counter checks the result 
by examining the condition code. The condition code 
o indicates a successful update, and the program can 
proceed. If the counter had been changed between 
the time that the program loaded its original value 
and the time that it executed the CS instruction, the 
CS instruction would have loaded the new counter 
value into general register 4 and set the condition 
code to 1, indicating an unsuccessful update. The 
program then must update the new counter value in 
general register 4 and retry the CS instruction, 

Appendix A. Number Representation and Instruction-Use Examples A-33 



retesting the condition code, and retrying until a 
successful update is completed. 

The following instruction sequence performs the 
above procedure: 

LA 
L 

LOOP LR 
AR 
CS 
Be 

6,1 
4,CNTR 
5,4 
5,6 
4,5,CNTR 
4,LOOP 

Put increment (1) in GR6 
Put original counter vahle in GR4 
Set up copy in GR5 to modify 
Increment copy 
Update counter irl storage 
If original value had changed, update 
new value 

The following shows two CPUs, A and B, executing 
this instruction sequence simultaneously: both CPUs 
attempt to add one to CNTR. 

A-34 IBM 4300 Processors Principles of Operation 

CPU A 

GR4 (IRS 

16 16 

16 

16 
16 

16 

17 
17 

CNTR 

16 
16 

16 

16 
16 
17 

17 

18 

CPUB 

GR4 GRS Comments - --
CPU A loads GR4 and GR5 

fromCNTR 
16 16 CPU B loads GR4 and GR5 

from CNTR 
16 17 CPU B adds one to GR5 

CPU A adds one to G R5 
CPU A executes CS; successful 

match. store 
17 17 CPU B executes CS; no match, 

GR4 changed to CNTR value 
17 18 CPU B loads GR5 from GR4, 

adds one to GR5 
17 18 CPU B executes CS; successful 

match, store 



Appendix B. Lists of Instructions 

The following three figures list instructions arranged 
by name, mnemonic, and operation code. Some 
processors may offer instructions that do not appear 
in the figures, such as those provided for emulation or 
as part of special or custom features. 

The operation code 00, with a two-byte instruction 
format, and the set of sixteen 16-bit operation codes 

Explanation of Symbols in "Characteristics" and 

"Op Code" Columns 

A 

AD 

AP 

B 

Access exceptions 

Addressing exception 

Addressing and protection exceptions 

PER branch event 

Condition code is set 

Data exception 

Decimal-overflow exception 

Decimal-divide exception 

B2EO to B2EF, with a four-byte instruction format, 
are allocated for use by the program when an 
indication of an invalid operation is required. It is 
improbable that these operation codes will ever be 
assigned to an instruction implemented in the CPU. 

C 

o 
OF 

DK 

DM 

EO 

EX 

FK 

IF 

DIAGNOSE may generate various program exceptions and may change the condition code 

Exponent-overflow exception 

" IK 

L 

LS 
M 

MO 

PS 

PT 

R 

RR 

RS 

RX 

s 
SI 

SO 

SP 

SS 
ST 

U 

Execute exception 

Floating-point-divide exception 

F ixed-point-overflow exception 

I nterruptible instruction 

F ixed-point-divide exception 

New condition code loaded 

Significance exception 

Privi leged-operation exception 

Monitor event 

Page-state exception 

Page-transition exception 

PER general-register-alteration event 

RR instruction format 

RS instruction format 

RX instruction format 

S instruction format 

SI instruction format 

Special-operation exception 

Specification exception 

SS instruction format 

PER storage-alteration event 

Exponent-underflow exception 

Bits 8-14 of the operation code are ignored 

Bits 8-15 of the operation code are ignored 

Causes serialization 

Causes serialization when the RI and R2 fields are 15 and zero, respectively 

Appendix B. Lists of Instructions B-1 



ADD 
ADD 
ADD DECIMAL 
ADD HAlFWORD 
ADD lOGICAL 

ADD lOGICAL 

Name 

ADD NORMALIZED (extended) 
ADD NORMALIZED (long) 
ADD NORMALIZED (long) 
ADD NORMALIZED (short) 

ADD NORMALIZED (short) 
ADD UNNORMALIZED (long) 
ADD UNNORMALIZED (long) 
ADD UNNORMALIZED (short) 
ADD UNNORMALIZED (short) 

AND 
AND 
AND (character) 
AND (immediate) 
BRANCH AND LINK 

BRANCH AND LINK 
BRANCH ON CONDITION 
BRANCH ON CONDITION 
BRANCH ON COUNT 
BRANCH ON COUNT 

BRANCH ON INDEX HIGH 
BRANCH ON INDEX lOW OR EaUAl 
CLEAR 1/0 
CLEAR PAGE 
COMPARE 

COMPARE 
COMPARE (long) 
COMPARE (long) 
COMPARE (short) 
COMPARE (short) 

COMPARE AND SWAP 
COMPARE DECIMAL 
COMPARE DOUBLE AND SWAP 
COMPARE HAlFWORD 
COMPARE lOGICAL 

COMPARE lOGICAL 
COMPARE lOGICAL (character) 
COMPARE lOGICAL (immediate) 
COMPARE lOGICAL CHARACTERS UNDER MASK 
COMPARE lOGICAL lONG 

CONNECT PAGE 
CONVERT TO BINARY 
CONVERT TO DECIMAL 
DECONFIGURE PAGE 
DIAGNOSE *- DISCONNECT PAGE 
DIVIDE 
DIVIDE 
DIVIDE (long) 
DIV IDE (long) 

Instructions Arranged by Name (Part 1 of 4) 

B-2 IBM 4300 Processors Principles of Operation 

Mnemonic 

AR 
A 
AP 
AH 
AlR 

Al 
AXR 
ADR 
AD 
AER 

AE 
AWR 
AW 
AUR 
AU 

NR 
N 
NC 
NI 
BAlR 

BAl 
BCR 
BC 
BCTR 
BCT 

BXH 
BXlE 
ClRIO 
CLRP 
CR 

C 
CDR 
CD 
CER 
CE 

CS 
CP 
CDS 
CH 
ClR 

Cl 
CLC 
Cli 
CLM 
ClCl 

CTP 
CVB 
CVD 
DEP 

DCTP 
DR 
o 
DDR 
DO 

Characteristics 

RR C 
RX C 
SS C 
RX C 
RR C 

RX C 
RR C 
RR C 
RX C 
RR C 

RX C 
RR C 
RX C 
RR C 
RX C 

RR C 
RX C 
SS C 
SI C 
RR 

RX 
RR 
RX 
RR 
AX 

RS 
RS 
SCM 

A 
A 
A 

A 

IF 
IF 

o OF 
IF 

SP U EO 
SP U EO 

A SP U EO 
SP U EO 

A SP U EO 
SP EO 

A SP EO 
SP EO 

A SP EO 

A 
A 
A 

S M AP 
RR C 

RX C 
AR C 
RX C 
RR C 
RX C 

RS C 
SS C 
RS C 
RX C 
RR C 

RX C 
SS C 
SI C 
RS C 
RR C 

A 
SP 

A SP 
SP 

A SP 

A SP 
A 0 
A SP 
A 

A 
A 
A 
A 
A SP 

RS C M AD SP 
RX A D 
RX A 

IK 

lS 
lS 
lS 
lS 

lS 
LS 
lS 
lS 
lS 

R 
R 

R 
R 

R 

R 
R 

B R 

B R 

ST 

ST 
ST 

$1 B 

$ 

B 
B R 
B R 

B R 
B R 

PS ST 

$ 

$ 

II 

PT 

R ST 

R ST 

R 

R 
R 

ST 
S M AD SP PT 

M OM 

SCM AD SP PT 
RR SP IK 
RX A SP IK 
RR SP U EO FK 
RX A SP U EO FK 

R 
R 

Op 
Code 

1A 
5A 
FA 
4A 
1E 

5E 
36 
2A 
6A 
3A 

7A 
2E 
6E 
3E 
7E 

14 
54 
04 
94 
05 

45 
07 
47 
06 
46 

86 
87 
9001* 
B215 
19 

59 
29 
69 
39 
79 

BA 
F9 
BB 
49 
15 

55 
05 
95 
BD 
OF 

BO 
4F 
4E 
B21B 
83 

B21C 
10 
50 
20 
60 



DIVIDE (short) 

DIVIDE (short) 

DIVIDE DECIMAL 
EDIT 
EDIT AND MARK 

Name 

EXCLUSIVE OR 
EXCLUSIVE OR 
EXCLUSIVE OR (character! 
EXCLUSIVE OR (immediate) 

EXECUTE 

HALT DEVICE 
HALT I/O 
HALVE (long) 

HALVE (short) 

INSERT CHARACTER 

INSERT CHARACTERS UNDER MASK 
-INSERT PAGE BITS 

INSERT PSW KEY 
INSERT STORAGE KEY 
lOAD 

lOAD 
lOAD (long) 

lOAD (tong) 

lOAD (short) 

lOAD (short) 

lOAD ADDRESS 
lOAD AND TEST 
lOAD AND TEST (tong) 

lOAD AND TEST (short) 

lOAD COMPLEMENT 

lOAD COMPLEMENT (long) 

lOAD COMPLEMENT (short) 

lOAD CONTROL 
-lOAD FRAME INDEX 
lOAD HAlFWORD 

lOAD MULTIPLE 
lOAD NEGATIVE 
lOAD NEGATIVE (long) 

lOAD NEGATIVE (short) 

lOAD POSITIVE 

lOAD POSITIVE (long) 

lOAD POSITIVE (short) 
lOAD PSW _ .. -~",-.... 

~extended to long) 

LOAD ROUNDED (long to short) 

MAKE ADDRESSABLE 
MAKE UNADDRESSABlE 
MONITOR CALL 
MOVE {character} 

MOVE (jmmediate) 

MOVE INVERSE 
MOVE lONG 
MOVE NUMERICS 
MOVE WITH OFFSET 
MOVE ZONES 

Instructions Arranged by Name (Part 2 of 4) 

Mnemonic 

DER 
DE 
DP 
ED 
EDMK 

XR 
X 
XC 
XI 
EX 

HDV 
HIO 
HDR 
HER 
IC 

ICM 
IPB 
IPK 
ISK 
lR 

l 
lDR 
lD 
lER 
lE 

lA 
lTR 
lTDR 
lTER 
lCR 

lCDR 
lCER 
LCTl 
lFI 
lH 

lM 
lNR 
lNDR 
lNER 
lPR 

lPDR 
lPER 
lPSW 
lRDR 

lRER 

MAD 
MUN 
MC 
MVC 
MVI 

MVCIN 
MVCl 
MVN 
MVO 
MVZ 

Characteristics 

SP U EO FK 
A SP U EO FK 

RR 
RX 
SS A SP D DK ST 
SS C 
SS C 

A D ~ 

A D R ST 

RR C 
RX C 
SS C 
SI C 
RX 

SCM 
SCM 

A 
A 
A 
A SP 

RR SP U 
RR SP U 

RX A 

RS C A 
RS M AD 
S M 
RR M AD SP 
RR 

EX 

$ 
$ 

R 
R 

R 

R 
R 
R 
R 
R 

ST 
ST 

RX 
RR 
RX 
RR 

RX 

A R 

RX 
RR C 
RR C 
RR C 
RR C 

SP 
A SP 

SP 
A SP 

SP 
SP 

RR C SP 
RR C SP 
RS M A SP 
RS C M 
RX A 

RS A 
RR C 
RR C SP 
RR C SP 
RR C 

RR C SP 
RR C SP 
S l M A SP 
RR SP 
RR SP 

SCM AD 
SCM AD SP 
SI SP 
SS A 
SI A 

SS 
RR C 

SS 
SS 
SS 

A 
A SP 
A 
A 
A 

IF 

IF 

EO 
EO 

$ 

PT 
PT 
MO 

II 

R 
R 

R 

R 
R 

R 
R 

R 

ST 
ST 

ST 
R ST 

ST 
ST 
ST 

Op 
Code 

3D 
7D 
FD 
DE 
DF 

17 
57 
D7 
97 
44 

9E01* 
9EOO* 
24 
34 
43 

BF 
B4 
B20B 
09 
18 

58 
28 
68 
38 
78 

41 

12 
22 
32 
13 

23 
33 
B7 
B8 
48 

98 
11 
21 
31 
10 

20 
30 
82 
25 
35 

B21D 
B21E 
AF 
D2 
92 

E8 
OE 
D1 
F1 
D3 

Appendix B. Lists of Instructions B-3 



Name 

MULTIPLY 

MULTIPLY 
MULTIPLY (extended) 
MULTIPLY (long) 
MULTIPLY (tong) 

MULTIPLY (long to extended) 
MULTIPLY (long to extended) 
MULTIPLY (short to long) 
MULTIPL Y (short to long) 
MULTIPLY DECIMAL 

MULTIPLY HALFWORD 
OR 
OR 
OR (character) 

OR (immediate) ~~) ~ 
,c:;~,~~£!5.-_a,- ,) V e,..&E; ~ \.-~) \>\¢"' 

RESET REFERENCE BIT 
~RETRIEVE STATUS AND PAGE 

SET CLOCK ,-
SET CLOCK COMPARATOR > l(i-
SET CPUTIMER ~ ~(N'()" 

k---SET PAGE BITS 
~ - T PROGRAM MASK 

SET PSW KEY FROM ADDRESS 
SET STORAGE KEY 

SET SYSTEM MASK 
SHIFT AND ROUND DECIMAL 
SHIFT LEFT DOUBLE 
SHIFT LEFT DOUBLE LOGICAL 
SHIFT LEFT SINGLE 

SHIFT LEFT SINGLE LOGICAL 
SHIFT RIGHT DOUBLE f\ 

SHIFT RIGHT DOUBLE LOGICAL J) 
SHIFT RIGHT SINGLE / tz;r,r?"A;' 
SHIFT RIGHT SINGLE LOGICAL "? \ JtJlIY' --sTARTi/O-'--------,< Q~ 

START I/O FAST RELEASE 
STORE 
STORE (long) 
STORE (short) 

STORE CAPACITY COUNTS 
STORE CHANNEL ID 
STORE CHARACTER 
STORE CHARACTERS UNDER MASK 
STORE CLOCK 

STORE CLOCK COMPARATOR ~\S" ~ 
STORE CONTROL \\ ~(Q.~I W 
STORE CPU ID t-.K v ' 

~STORE CPU TIMER .J ' ,o;.{'+ 
STORE HALFWORD ~(4,J~ , 

,\tFJv 
----..~_IQJ3.~---·--'· .. '-:> ' 

STORE THEN AND SYSTEM MASK 
STORE THEN OR SYSTEM MASK 
SUBTRACT 
SUBTRACT 

Instructions Arranged by Name (Part 3 of 4) 

B-4 IBM 4300 Processors Principles of Operation 

Mnemonic Characteristics 

MR RR SP R 
M 
MXR 
MDR 
MD 

RX 
RR 

A SP R 

MXOR 
MXO 
MER 
ME 
MP 

MH 
OR 

o 
OC 
01 

PACK 
RRB 
RSP 
SCK 
SCKC 

SPT 
SPB 
SPM 
SPKA 
SSK 

SSM 
SRP 
SLOA 
SLOL 
SLA 

SLL 
SROA 
SROL 
SRA 
SRL 

SIO 
SIOF 
ST 
STO 
STE 

STCAP 
STIDC 
STC 
STCM 
STCK 

SP U EO 
RR SP U EO 
RX A SP U EO 

RR SP U EO 
RX 
RR 

A SP U EO 
SP U EO 

RX 
SS 

A SP U EO 

RX 
RR C 

A SP D 

A 

RX C A 
SS C A 
SI C A 

SS A 
SCM AD 
SS C M A 
SCM A SP 
SMA SP 

SMA SP 
RS C M AD 
RR L 
S M 

RR M AD SP 

SMA . SP 
SS CAD DF 
RS C SP IF 
RS SP 
RS C IF 

RS 
RS C SP 
RS SP 
RS C 
RS 

SCM 
SCM 
RX A 
RX A SP 
RX A SP 

SMA 
SCM 
RX A 
RS 
S C 

A 
A 

STCKC SMA SP 
STCTL RS M A SP 
STIDP SMA SP 
STPT SMA SP 
STH RX A 

STM RS A 
STNSM SI M A 
STOSM SI M A SP 
SR RR C 
S RX C A 

IF 
IF 

SO 

$ 
$ 

$ 

$ 

R 
R 
R 

R 
R 

R 

R 

R 
R 
R 
R 

R 
R 

ST 

ST 
ST 

ST 

ST 

ST 

ST 

ST 
ST 

ST 

ST 
ST 
ST 

ST 
ST 
ST 
ST 
ST 

ST 
ST 
ST 

Op 
Code 

1C 
5C 
26 
2C 
6C 

27 
67 
3C 
7C 
FC 

4C 
16 
56 
D6 
96 

F2 
B213 
D8 
B204 
B206 

B208 
B5 
04 
B20A 
08 

80 
FO 
8F 
80 
88 

89 
8E 
8C 
8A 
88 

9COO* 
9C01* 
50 
60 
70 

B21F 
B203 
42 
BE 

8205 

B207 
B6 
B202 
B209 
40 

90 
AC 
AD 
18 
58 



Op 
Name Mnemonic Characteristics Code 

SUBTRACT DECIMAL SP SS C A 0 OF ST FB 
SUBTRACT HALFWORD SH RX C A IF R 4B 
SUBTRACT LOGICAL SLR RR C R 1F 
SUBTRACT LOGICAL SL RX C A R 5F 
SUBTRACT NORMALIZED (extended) SXR RR C SP U EO LS 37 

SUBTRACT NORMALIZED (long) SDR RR C SP U EO LS 2B 
SUBTRACT NORMALIZED (long) SO RX C A SP U EO LS 6B 
SUBTRACT NORMALIZED (short) SER RR C SP U EO LS 3B 
SUBTRACT NORMALIZED (short) SE RX C A SP U EO LS 7B 
SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F 

SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS 6F 
SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F 
SUBTRACT UN NORMALIZED (short) SU RX C A SP EO LS 7F 
SUPERVISOR CALL SVC RR L $ OA 
TEST AND SET TS S C A $ ST 93 

TEST CHANNEL TCH S C M $ 9FOOi 
TEST 1/0 TIO S C M $ 9000* 
TEST UNDER MASK TM SI C A 91 
TRANSLATE TR SS A ST DC 
TRANSLATE AND TEST ' t TRT SS C A R DO 

( ) .. '~e \)\ {~~. 
UNPAGK J".. '( ~. UNPK SS A ST F3 
ZERO AND ADD ZAP SS C A 0 OF ST F8 

Instructions Arranged by Name (Part 4 of 4) 

Appendix B. Lists of Instructions B-5 



Mnemonic Name Characteristics 

A 
AD 
ADR 
AE 

AER 
AH 
Al 
AlR 
AP 

AR 
AU 
AUR 
AW 
AWR 

AXR 
BAl 
BAlR 
BC 
BCR 

BCT 
BCTR 
BXH 
BXlE 
C 

CD 
CDR 
CDS 
CE 
CER 

CH 
Cl 
ClC 
ClCl 
CLI 

ClM 
ClR 
ClRIO 
ClRP 
CP 

CR 
CS 
CTP 
CVB 
CVD 

D 
DCTP 
DD 
DDR 
DE 

DEP 
DER 
DP 
DR 
ED 

DIAGNOSE 
ADD 
ADD NORMALIZED (long) 
ADD NORMALIZED (long) 
ADD NORMALIZED (short) 

ADD NORMALIZED (short) 
ADD HAlFWORD 
ADD lOGICAL 
ADD lOGICAL 
ADD DECIMAL 

ADD 
ADD UNNORMAllZED (short) 
ADD UNNORMALIZED (short) 
ADD UN NORMALIZED (long) 

ADD UNNORMALIZED (long) 

ADD NORMALIZED (extended) 
BRANCH AND LINK 
BRANCH AND LINK 
BRANCH ON CONDITION 
BRANCH ON CONDITION 

BRANCH ON COUNT 
BRANCH ON COUNT 
BRANCH ON INDEX HIGH 
BRANCH ON INDEX lOW OR EQUAL 
COMPARE 

COMPARE (long) 
COMPARE (long) 

COMPARE DOUBLE AND SWAP 
COMPAR E (short) 
COMPARE (short) 

COMPARE HAlFWORD 
COMPARE lOGICAL 
COMPARE lOGICAL (character) 
COMPARE lOGICAL lONG 
COMPARE lOGICAL (immediate) 

COMPARE lOGICAL CHARACTERS UNDER MASK 
COMPARE lOGICAL 
CLEAR I/O 
CLEAR PAGE 
COMPARE DECIMAL 

COMPARE 
COMPARE AND SWAP 
CONNECT PAGE 
CONVERT TO BINARY 
CONVERT TO DECIMAL 

DIVIDE 
DISCONNECT PAGE 
DIVIDE (long) 

DIVIDE Oong) 
DIVIDE (short) 

DECONFIGURE PAGE 
DIVIDE (short) 
DIVIDE DECIMAL 
DIVIDE 
EDIT 

Instructions Arranged by Mnemonic (Part 1 of 4) 

B-6 IBM 4300 Processors Principles of Operation 

M DM 
RX C 
RX C 
RR C 
RX C 

RR C 
RX C 
RX C 
RR C 
SS C 

RR C 
RX C 
RR C 
RX C 
RR C 

RR C 
RX 
RR 
RX 
RR 

RX 
RR 
RS 
RS 
RX C 

RX C 
RR C 
RS C 
RX C 
RR C 

RX C 
RX C 
SS C 
RR C 
SI C 

RS C 
RR C 
SCM 

A IF 
A SP U EO 

5P U EO 
A SP U EO 

5P U EO 
A IF 
A 

A D OF 

IF 
A 5P EO 

SP EO 
A SP EO 

SP EO 

5P U EO 

A 

A SP 
SP 

A SP 
A SP 

A 

A 
A 

SP 

A SP 
A 

A 

5 M AP 
5S C A 

RR C 
RS C A SP 
RS C M AD SP 
RX 
RX 

A 
A 

o 

o IK 

RX A SP IK 

lS 
lS 
lS 

l5 

lS 
l5 
lS 
l5 

lS 

R 

R 
R 
R 

R 

B R 
B R 
B 

5T 

$1 B 

$ 

II 

$ 
PS 

$ 
PT 

B R 
B R 

B R 
B R 

R ST 

R 

ST 

R ST 
R 
R 

ST 

R 
SCM AD SP PT 
RX A SP U EO FK 
RR 5P U EO FK 
RX A SP U EO FK 

5 
RR 
5S 
RR 
SS C 

M AD SP 
SP U EO FK 

A SP 0 OK 
SP IK 

A 0 

PT 

ST 
R 

ST 

Op 
Code 

83 
5A 
6A 
2A 
7A 

3A 
4A 
5E 
1E 
FA 

1A 
7E 
3E 
6E 
2E 

36 
45 
05 
47 
07 

46 
06 
86 
87 
59 

69 
29 
BB 
79 
39 

49 
55 
05 
OF 
95 

BD 
'15 
9001* 
B215 
F9 

19 
BA 
BO 
4F 
4E 

50 
B21C 
60 
20 
70 

B21B 
3D 
FO 
10 
OE 



Mnemonic 

EDMK 
EX 
HDR 
HDV 
HER 

HIO 
IC 
ICM 
IPB 
IPK 

ISK 
L 
LA 
LCDR 
LCER 

LCR 
LCTL 
LD 
LDR 
LE 

LER 
LFI 
LH 
LM 
LNDR 

LNER 
LNR 
LPDR 
LPER 
LPR 

LPSW 
LR 
LRDR 
LRER 
LTDR 

LTER 
LTR 
M 
MAD 
MC 

MD 
MDR 
ME 
MER 
MH 

MP 
MR 
MUN 
MVC 
MVCIN 

MVCL 
MVI 
MVN 
MVO 
MVZ 

EDIT AND MARK 
EXECUTE 
HALVE (long) 

HALT DEVICE 
HALVE (short) 

HALT 1/0 

Name 

INSERT CHARACTER 
INSERT CHARACTERS UNDER MASK 
INSERT PAGE BITS 
INSERT PSW KEY 

INSERT STORAGE KEY 
LOAD 
LOAD ADDRESS 
LOAD COMPLEMENT (tong) 

LOAD COMPLEMENT (short) 

LOAD COMPLEMENT 
LOAD CONTROL 
LOAD (long) 

LOAD (long) 

LOAD (short) 

LOAD (short) 

LOAD FRAME INDEX 

LOAD HALFWORD 
LOAD MULTIPLE 
LOAD NEGATIVE (long) 

LOAD NEGATIVE (short) 

LOAD NEGATIVE 
LOAD POSITIVE (long) 

LOAD POSITIVE (short) 

LOAD POSITIVE 

LOAD PSW 
LOAD 
LOAD ROUNDED (extended to long) 

LOAD ROUNDED (long to short) 

LOAD AND TEST (long) 

LOAD AND TEST (short) 

LOAD AND TEST 
MULTIPLY 
MAKE ADDRESSABLE 
MONITOR CALL 

MULTIPLY (long) 

MULTIPLY (long) 

MULTIPLY (short to long) 

MULTIPL Y (short to long) 

MULTIPLY HALFWORD 

MULTIPLY DECIMAL 
MULTIPLY 
MAKE UNADDRESSABLE 
MOVE (character! 

MOVE INVERSE 

MOVE LONG 
MOVE (immediate) 

MOVE NUMERICS 
MOVE WITH OFFSET 
MOVE ZONES 

Instructions Arranged by Mnemonic (Part 2 of 4) 

Characteristics 

A D 
A SP 

SS C 
RX 
RR SP U 
SCM 
RR SP U 

SCM 
RX A 
RS C A 
RS M AD 
S M 

RR M AD SP 
RX A 
RX 
RR C SP 
RR C SP 

RR C 
RS M A SP 
RX A SP 
RR SP 
RX A SP 

RR SP 
RS C M 
RX A 
RS A 
RR C SP 

RR C 
RR C 
RR C 
RR C 
RR C 

SP 

SP 
SP 

S L M A SP 
RR 
RR 
RR 
RR C 

RR C 
RR C 

SP 
SP 
SP 

SP 

RX A SP 
SCM AD 
SI SP 

IF 

IF 

EO 
EO 

RX 
RR 
RX 
RR 
RX 

A SP U EO 

SS 
RR 

SP U EO 
A SP U EO 

SP U EO 
A 

A SP D 
SP 

SCM AD SP 
SS A 
SS A 

RR C 
SI 
SS 
SS 
SS 

A SP 
A 
A 
A 
A 

EX 

$ 

$ 

$ 

PT 
MO 

PT 

II 

R ST 

R 
R 
R 
R 

R 
R 
R 

R 

R 
R 
R 

R 

R 

R 

R 

R 

R 

R 
ST 

ST 
ST 

R ST 
ST 
ST 
ST 
ST 

Op 
Code 

DF 
44 
24 
9E01* 
34 

9EOO* 
43 
BF 
B4 
B20B 

09 
58 
41 
23 
33 

13 
B7 
68 
28 
78 

38 
B8 
48 
98 
21 

31 
11 
20 
30 
10 

82 
18 
25 
35 
22 

32 
12 
5C 
B21D 
AF 

6C 
2C 
7C 
3C 
4C 

FC 
1C 
B21E 
D2 
E8 

OE 
92 
D1 
F1 
D3 

Appendix B. Lists of Instructions B-7 



Mnemonic 

MXD 
MXDR 
MXR 
N 
NC 

NI 
NR 
o 
OC 
01 

OR 
PACK 
RRB 
RSP 

S 

SCK 
SCKC 
SPB 
SD 
SDR 

SE 
SER 
SH 
SIO 

SIOF 

SL 
SLA 
SLDA 
SLDL 
SLL 

SLR 
SP 
SPKA 
SPM 
SPT 

SR 
SRA 
SRDA 
SRDL 
SRL 

SRP 
SSK 
SSM 
ST 
STC 

STCAP 
STCK 
STCKC 
STCM 
STCTL 

STD 
STE 
STH 
STIDC 
STIDP 

Name 

MULTIPLY (long to extended) 

MUL TIPL Y (long to extended) 

MULTIPLY (extended) 

AND 
AND (character! 

AND (immediate) 

AND 
OR 
OR (character! 

OR (immediate) 

OR 
PACK 
RESET REFERENCE BIT 
RETRIEVE STATUS AND PAGE 

SUBTRACT 

SET CLOCK 
SET CLOCK COMPARATOR 
SET PAGE BITS 
SUBTRACT NORMALIZED (long) 

SUBTRACT NORMALIZED (long) 

SUBTRACT NORMALIZED (short) 

SUBTRACT NORMALIZED (short) 

SUBTRACT HALFWORD 
START I/O 
START I/O FAST RELEASE 

SUBTRACT LOGICAL 
SHIFT LEFT SINGLE 
SHIFT LEFT DOUBLE 
SHIFT LEFT DOUBLE LOGICAL 
SHIFT LEFT SINGLE LOGICAL 

SUBTRACT LOGICAL 
SUBTRACT DECIMAL 
SET PSW KEY FROM ADDRESS 
SET PROGRAM MASK 
SET CPU TIMER 

SUBTRACT 
SHIFT RIGHT SINGLE 
SHIFT RIGHT DOUBLE 
SHIFT RIGHT DOUBLE LOGICAL 
SHIFT RIGHT SINGLE LOGICAL 

SHIFT AND ROUND DECIMAL 
SET STORAGE KEY 
SET SYSTEM MASK 
STORE 
STORE CHARACTER 

STORE CAPACITY COUNTS 
STORE CLOCK 
STORE CLOCK COMPARATOR 
STORE CHARACTERS UNDER MASK 

STORE CONTROL 

STORE (tong) 

STORE (short) 

STORE HALFWORD 
STORE CHANNELID 
STORE CPU ID 

Instructions Arranged by Mnemonic (Part 3 of 4) 

B-8 IBM 4300 Processors Principles of Operation 

Characteristics 

RX 
RR 
RR 
RX C 
SS C 

A SP U EO 
SP U EO 
SP U EO 

SI C 
RR C 
RX C 
SS C 
SI C 

RR C 

A 
A 

A 

A 
A 
A 

SS A 
SCM AD 
SS C M A 
RX C A 

SCM A SP 
SMA SP 
RS C M AD 

IF 

RX C A SP U EO 
RR C SP U EO 

RX C A SP U EO 
RR C SP U EO 
RX C A IF 
SCM 
SCM 

RX C A 
RS C IF 
RS C SP IF 
RS SP 
RS 

RR C 
SS CAD DF 
S M 
RR L 
SMA SP 

RR C 
RS C 
RS C 
RS 
RS 

SS C 
RR 
S 
RX 
RX 

A 

SP 
SP 

M AD SP 
M A SP 

A 
A 

SMA 
S C A 
S 
RS 
RS 

M A SP 
A 

M A SP 

RX A SP 
RX A SP 
RX A 
SCM 
S M A SP 

IF 

D DF 

LS 
LS 

LS 
LS 

$ 
$ 

SO 

$ 

$ 

R 

R 
R 

R 

R 

R 

R 
R 
R 
R 
R 

R 

R 
R 
R 
R 
R 

ST 

ST 

ST 
ST 

ST 

ST 

ST 

ST 

ST 
ST 

ST 
ST 
ST 
ST 
ST 

ST 
ST 
ST 

ST 

Op 
Code 

67 
27 
26 
54 
04 

94 
14 
56 
D6 
96 

16 
F2 
B213 
08 
5B 

B204 
B206 
B5 
6B 
2B 

7B 
3B 
48 
9COO* 
9C01* 

5F 
88 
8F 
8D 
89 

1F 
FB 
820A 
04 
B208 

18 
8A 
8E 
8C 
88 

FO 
08 
80 
50 
42 

821F 
B205 
8207 
8E 
B6 

60 
70 
40 . 
8203 
B202 



Op 
Mnemonic Name Characteristics Code 

STM STORE MULTIPLE RS A ST 90 
STNSM STORE THEN AND SYSTEM MASK SI M A ST AC 
STOSM STORE THEN OR SYSTEM MASK SI M A SP ST AD 
STPT STORE CPU TIMER S M A SP ST B209 
SU SUBTRACT UNNORMALIZED (short) RX C A SP EO LS 7F 

SUR SUBTRACT UNNORMALIZED (short) RR C SP EO LS 3F 
SVC SUPERVISOR CALL RR L $ OA 
SW SUBTRACT UNNORMALIZED (long) RX C A SP EO LS 6F 
SWR SUBTRACT UNNORMALIZED (long) RR C SP EO LS 2F 
SXR SUBTRACT NORMALIZED (extended) RR C SP U EO LS 37 

TCH TEST CHANNEL S C M $ 9FOOt 
TIO TEST I/O S C M $ 9DOO* 
TM TEST UNDER MASK SI C A 91 
TR TRANSLATE SS A ST DC 
TRT TRANSLATE AND TEST SS C A R DD 

TS TEST AND SET S C A $ ST 93 
UNPK UNPACK SS A ST F3 
X EXCLUSIVE OR RX C A R 57 
XC EXCLUSIVE OR {character! SS C A ST 07 
XI EXCLUSIVE OR (immediate) SI C A ST 97 

XR EXCLUSIVE OR RR C R 17 
ZAP ZERO AND ADD SS C A D DF ST F8 

Instructions Arranged by Mnemonic (Part 4 of 4) 

Appendix B. Lists of Instructions B-9 



Op 
Code 

04 
05 
06 
07 
08 

09 
OA 
OE 
OF 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
1A 

1B 

1C 
10 
lE 
1F 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

2A 

2B 
2C 
20 
2E 

2F 

30 
31 
32 
33 

34 
35 
36 
37 
38 

39 
3A 
3B 
3C 
3D 

Name 

SET PROGRAM MASK 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH ON CONDITION 
SET STORAGE KEY 

INSERT STORAGE KEY 
SUPERVISOR CALL 
MOVE LONG 
COMPARE LOGICAL LONG 
LOAD POSITIVE 

LOAD NEGATIVE 
LOAD AND TEST 
LOAD COMPLEMENT 
AND 
COMPARE LOGICAL 

OR 
EXCLUSIVE OR 
LOAD 
COMPARE 
ADD 

SUBTRACT 
MULTIPLY 
DIVIDE 
ADD LOGICAL 
SUBTRACT LOGICAL 

LOAD POSITIVE (long) 
LOAD NEGATIVE (long) 
LOAD AND TEST (long) 
LOAD COMPLEMENT (long) 
HALVE (long) 

LOAD ROUNDED (extended to long) 
MULTIPLY (extended) 
MUL TIPL Y (long to extended) 
LOAD (long) 
COMPARE (long) 

ADD NORMALIZED (long) 
SUBTRACT NORMALIZED (long) 
MULTIPLY (long) 
DIVIDE (long) 
ADD UNNORMALIZED (long) 

SUBTRACT UNNORMALIZED (long) 
LOAD POSITIVE (short) 
LOAD NEGATIVE (short) 
LOAD AND TEST (short) 
LOAD COMPLEMENT (short) 

HALVE (short) 
LOAD ROUNDED (long to short) 
ADD NORMALIZED (extended) 
SUBTRACT NORMALIZED (extended) 
LOAD (short) 

COMPARE (short) 
ADD NORMALIZED (short) 
SUBTRACT NORMALIZED (short) 
MULTIPLY (short to long) 
DIVIDE (short) 

Instructions Arranged by Operation Code (Part 1 of 4) 

B-IO IBM 4300 Processors Principles of Operation 

Mnemonic 

SPM 
BALR 
BCTR 
BCR 
SSK 

ISK 
SVC 
MVCL 
CLCL 
LPR 

LNR 
LTR 
LCR 
NR 
CLR 

OR 
XR 
LR 
CR 
AR 

SR 
MR 
DR 
ALR 
SLR 

LPDR 
LNDR 
LTDR 
LCDR 
HDR 

LRDR 
MXR 
MXDR 
LOR 
CDR 

ADR 
£DR 
MDR 
DDR 
AWR 

SWR 
LPER 
LNER 
LTER 
LCER 

HER 
LRER 
AXR 
SXR 
LER 

CER 
AER 
SER 
MER 
DER 

RR L 
RR 
RR 
RR 
RR 

Characteristics 

M AD SP 

B R 
B R 

$1 B 

RR M AD SP R 
RR L 
RR C A SP 

$ 
II 
II RR C A SP 

RR C 

RR C 
RR C 
RR C 
RR C 
RR C 

RR C 

RR C 
RR 
RR C 

RR C 

RR C 
RR 
RR 
RR C 
RR C 

RR C 
RR C 
RR C 
RR C 
RR 

RR 
RR 
RR 
RR 
RR C 

RR C 
RR C 
RR 
RR 
RR C 

RR C 
RR C 
RR C 
RR C 

RR C 

RR 
RR 
RR C 
RR C 

RR 

RR C 

RR C 
RR C 
RR 
RR 

SP 
SP 

SP 
SP 
SP 
SP 
SP U 

IF 

IF 

IF 

IF 

SP EO 
SP U EO 
SP U EO 
SP 
SP 

IK 

SP U EO LS 
SP U EO LS 
SP U EO 
SP U EO FK 
SP EO LS 

SP EO LS 
SP 
SP 
SP 
SP 

SP U 
SP EO 
SP U EO LS 
SP U EO LS 
SP 

SP 
SP U EO LS 
SP U EO LS 
SP U EO 
SP U EO FK 

R ST 
R 
R 

R 
R 

R 
R 

R 
R 
R 

R 

R 

R 
R 
R 
R 



Op 
Code 

3E 
3F 
40 
41 
42 

43 
44 
45 
46 
47 

48 
49 
4A 
48 
4C 

4E 
4F 
50 
54 
55 

56 
57 
58 
59 
5A 

58 
5C 
50 
5E 
5F 

60 
67 
68 
69 
6A 

6B 
6C 
60 
6E 
6F 

70 
78 
79 
7A 
7B 

7C 
70 
7E 
7F 
80 

82 
83 
86 
87 
88 

Name 

ADO UNNORMALIZED (short) 

SUBTRACT UN NORMALIZED (short) 

STORE HALFWORD 
LOAD ADDRESS 
STORE CHARACTER 

I NSERT CHARACTER 
EXECUTE 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH ON CONDITION 

LOAD HALFWORD 
COMPARE HALFWORD 
ADD HALFWORD 
SUBTRACT HALFWORD 
MULTIPLY HALFWORD 

CONVERT TO DECIMAL 
CONVERT TO BINARY 
STORE 
AND 
COMPARE LOGICAL 

OR 
EXCLUSIVE OR 
LOAD 
COMPARE 
ADD 

SUBTRACT 
MULTIPLY 
DIVIDE 
ADD LOGICAL 
SUBTRACT LOG ICAL 

STORE (long) 

MULTIPL Y (long to extended) 
LOAD (long) 

COMPARE (long) 
ADD NORMALIZED (long) 

SUBTRACT NORMALIZED (long) 

MULTIPLY (long) 

DIVIDE (tong) 

ADD UNNORMALIZED (long) 

SUBTRACT UNNORMALIZED (long) 

STORE (short) 

LOAD (short) 

COMPARE (short) 

ADD NORMALIZED (short) 

SUBTRACT NORMALIZED (short) 

MULTIPL Y (short to long) 
DIVIDE (short) 

ADD UNNORMALIZED (short) 

SUBTRACT UNNORMALIZED (shord 

SET SYSTEM MASK 

LOAD PSW 
DIAGNOSE 
BRANCH ON INDEX HIGH 
BRANCH ON INDEX LOW OR EQUAL 
SHIFT RIGHT SINGLE LOGICAL 

Instructions Arranged by Operation Code (Part 2 of 4) 

Mnemonic 

AUR 
SUR 
STH 
LA 
STC 

IC 
EX 
BAL 
BCT 
BC 

LH 
CH 
AH 
SH 
MH 

CVD 
CVB 
ST 
N 
CL 

o 
X 

L 
C 
A 

S 
M 
o 
AL 
SL 

STD 
MXD 
LD 
CD 
AD 

SO 
MO 
00 
AW 
SW 

STE 
LE 
CE 
AE 
SE 

ME 
DE 
AU 
SU 
SSM 

LPSW 

BXH 
BXLE 
SRL 

RR C 
RR C 
RX 
RX 
RX 

RX 
RX 
RX 
RX 
RX 

RX 
RX C 
RX C 
RX C 
RX 

RX 
RX 
RX 
RX C 
RX C 

RX C 
RX C 
RX 
RX C 
RX C 

RX C 
RX 
RX 
RX C 
RX C 

RX 
RX 
RX 
RX C 
RX C 

RX C 
RX 
RX 
RX C 
RX C 

RX 
RX 
RX C 
RX C 
RX C 

RX 
RX 
RX C 
RX C 
S 

Characteristics 

A 

A 

A 

SP 
SP 

A SP 

A 
A 
A 
A 
A 

A 
A 
A 
A 
A 

A 
A 
A 
A 
A 

A 
A SP 
A SP 
A 
A 

A SP 

o 

EO 
EO 

IF 
IF 

IF 

IF 

A SP U EO 
A SP 
A SP 

IK 

IK 

LS 
LS 

EX 

A SP U EO LS 

A SP U EO LS 
A SP U EO 
A SP U EO FK 
A SP EO LS 
A SP EO LS 

A SP 
A SP 
A SP 
A SP U EO LS 
A SP U EO LS 

A SP U EO 
A SP U EO FK 
A SP EO LS 
A SP EO LS 

M A SP SO 

S L M A SP $ 

RS 
RS 
RS 

M OM 

R 

R 

B R 
B R 
B 

R 

R 
R 
R 

R 

R 

R 

R 
R 

R 

R 
R 
R 
R 
R 

B R 
·8 R 

R 

ST 

ST 

ST 

ST 

ST 

ST 

Appendix B. Lists of Instructions B-ll 



Op 
Code 

89 
8A 
8B 
8C 
8D 

8E 
8F 
90 
91 
92 

93 
94 
95 
96 
97 

98 
9COO* 
9C01* 
9DOO* 
9D01* 

9EOO* 
9E01* 
9FOOf 
AC 
AD 

AF 
BO 
B202 
B203 
B204 

B205 
B206 
B207 
B208 
B209 

B20A 
B20B 
B213 
B215 
B21B 

B21C 
B21D 
B21E 
B21F 
B4 

B5 
B6 
B7 
B8 
BA 

BB 
BD 
BE 
BF 
D1 

Name 

SHIFT LEFT SINGLE LOGICAL 
SHIFT RIGHT SINGLE 
SHIFT LEFT SINGLE 
SHIFT RIGHT DOUBLE LOGICAL 
SHIFT LEFT DOUBLE LOGICAL 

SHIFT RIGHT DOUBLE 
SHIFT LEFT DOUBLE 
STORE MULTIPLE 
TEST UNDER MASK 
MOVE (immediate) 

TEST AND SET 
AND (immediate) 

COMPARE LOGICAL (immediate) 

OR (immediate) 

EXCLUSIVE OR (immediate) 

LOAD MULTIPLE 
START I/O 
START I/O FAST RELEASE 
TEST I/O 
CLEAR I/O 

HALT I/O 
HALT DEVICE 
TEST CHANNEL 
STORE THEN AND SYSTEM MASK 
STORE THEN OR SYSTEM MASK 

MONITOR CALL 
CONNECT PAGE 
STORE CPU ID 
STORE CHANNEL 10 

SET CLOCK 

STORE CLOCK 
SET CLOCK COMPARATOR 
STORE CLOCK COMPARATOR 
SET CPU TIMER 
STORE CPU TIMER 

SET PSW KEY FROM ADDRESS 
INSERT PSW KEY 
RESET REFERENCE BIT 
CLEAR PAGE 
DECONFIGURE PAGE 

DISCONNECT PAGE 
MAKE ADDRESSABLE 
MAKE UNADDRESSABLE 
STORE CAPACITY COUNTS 
INSERT PAGE BITS 

SET PAGE BITS 
STORE CONTROL 
LOAD CONTROL 
LOAD FRAME INDEX 
COMPARE AND SWAP 

COMPARE DOUBLE AND SWAP 
COMPARE LOGICAL CHARACTERS UNDER MASK 
STORE CHARACTERS UNDER MASK 
INSERT CHARACTERS UNDER MASK 
MOVE NUMERICS 

Instructions Arranged by Operation Code (Part 3 of 4) 

B-12 IBM 4300 Processors Principles of Operation 

Mnemonic 

SLL 
SRA 
SLA 
SRDL 
SLDL 

SRDA 
SLDA 
STM 
TM 
MVI 

TS 
NI 
CLI 
01 
XI 

LM 
SIO 
SIOF 
TIO 
CLRIO 

HIO 
HDV 
TCH 
STNSM 
STOSM 

MC 
CTP 
STIDP 
STIDC 
SCK 

STCK 
SCKC 
STCKC 
SPT 
STPT 

SPKA 
IPK 
RRB 
CLRP 
DECP 

DCTP 
MAD 
MUN 
STCAP 
IPB 

SPB 
STCTL 
LCTL 
LFI 
CS 

CDS 
CLM 
STCM 
ICM 
MVN 

Characteristics 

RS 
RS C 
RS C 

RS 
RS 

RS C 
RS C 
RS 
SI C 
SI 

S C 
SI C 

SI C 

SI C 

SI C 

RS 
S C 
S C 
S C 
S C 

S C 
S C 
S C 
SI 

M 
M 
M 
M 

M 
M 
M 

A 
A 

A 

A 
A 

A 
A 
A 

A 

M A 

SP 
SP 

SP 
SP 

SI M A SP 

SI SP 
RS C M AD SP 
SMA SP 
SCM 
SCM A SP 

S C A 

SMA SP 
SMA SP 
SMA SP 

s 
S 

M A SP 

M 

S M 
SCM AD 
S 
S 

M AP 
M AD SP 

SCM AD SP 
SCM AD 
SCM AD SP 
SMA 
RS M AD 

RS C M AD 
RS M A SP 
RS M A SP 
RS C M 
RS C A SP 

RS C A SP 
RS C A 
RS A 
RS C 

SS 
A 
A 

IF 

IF 

$ 

$ 
$ 
$ 
$ 

$ 
$ 
$ 

MO 
PT 

$ 

$ 

PS 
PT 

PT 
PT 
PT 

$ 

$ 

R 
R 

R 
R 
R 

R 
R 

R 

R 

R 

R 

R 

ST 

ST 

ST 
ST 

ST 
ST 

ST 
ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

R ST 

R ST 

ST 
R 

ST 



Op 
Code Name Mnemonic Characteristics 

02 MOVE {character> MVC SS A ST 
03 MOVE ZONES MVZ SS A ST 
04 AND (character) NC SS C A ST 
05 COMPARE LOGICAL (character> CLC SS C A 
06 OR (character) DC SS C A ST 

07 EXCLUSIVE OR (character) XC SS C A ST 
08 RETRIEVE STATUS AND PAGE RSP SS C M A ST 
DC TRANSLATE TR SS A ST 
DO TRANSLATE AND TEST TRT SS C A R 
DE EDIT ED SS C A 0 ST 

OF EDIT AND MARK EDMK SS C A 0 R ST 
E8 MOVE INVERSE MVCIN SS A ST 
FO SHIFT AND ROUND DECIMAL SRP SS C A 0 OF ST 
F1 MOVE WITH OFFSET MVO SS A ST 
F2 PACK PACK SS A ST 

F3 UNPACK UNPK SS A ST 
F8 ZERO AND ADD ZAP SS C A 0 OF ST 
F9 COMPARE DECIMAL CP SS C A 0 
FA ADD DECIMAL AP SS C A 0 OF ST 
FB SUBTRACT SP SS C A D OF ST 

FC MULTIPL Y DECIMAL MP SS A SP 0 ST 
FD DIVIDE DECIMAL DP SS A SP 0 OK ST 

Instructions Arranged by Operation Code (Part 4 of 4) 

Appendix B. Lists of Instructions B-13 



Appendix C. Condition-Code Settings 

Condition Code 

Instruction 0 2 3 

ADD (and ADD HALFWORD) zero < zero > zero overflow 
ADD DECIMAL zero zero > zero overflow 
ADD LOGICAL zero, no carry not zero, no carry zero, carry not zero, carry 
ADD NORMALIZED zero < zero > zero 
ADD UNNORMALIZED zero < zero > zero 

AND zero not zero 
CLEAR 1/0 no operation in progress CSW stored channel busy not operational 
COMPARE, COMPARE HALFWORD equal low high 
COMPARE AND SWAP equal not equal 
COMPARE DECIMAL equal low high 

COMPARE DOUBLE AND SWAP equal not equal 
COMPARE LOGICAL equal low high 
COMPARE LOGICAL CHARACTERS equal low high 

UNDER MASK 
COMPARE LOGICAL LONG equal low high 
CONNECT PAGE successful already disconnected unsuccessful 

DISCONNECT PAGE successful already disconnected 
EDIT zero < zero > zero 
EDIT AND MARK zero < zero > zero 
EXCLUSIVE OR zero not zero 
HALT DEVICE interruption pending/busy CSW stored channel working not operational 

HALT I/O interruption pending CSW stored bu rst op stopped not operational 
INSERT CHARACTERS UNDER MASK all zeros 1st bit one 1st bit zero 
LOAD AND TEST zero < zero > zero 
LOAD COMPLEMENT (fixed point) zero < zero > zero overflow 
LOAD COMPLEMENT (floating point) zero < zero > zero 

LOAD FRAME INDEX addressable connected disconnected address invalid 
LOAD NEGATIVE zero < zero 
LOAD POSITIVE (fixed poind zero > zero overflow 
LOAD POSITIVE (floating point) zero > zero 

MAKE ADDR ESSABLE successful already addressable 
MADE UNADDRESSABLE successful already connected 
MOVE LONG length equal length low length high destr overlap 
OR zero not zero 
RESET REFERENCE BIT R bit zero, C bit zero R bit zero, C bit one R bit one, C bit zero R bit one, C bit one 

RETRIEVE STATUS AND PAGE valid invalid 
SET PAGE BITS R bit zero, C bit zero R bit zero, C bit one R bit one, C bit zero R bit one, C bit one 
SET CLOCK set secure not operational 
SHIFT AND ROUND DECIMAL zero < zero > zero overflow 
SHIFT LEFT DOUBLE zero < zero > zero overflow 

SHIFT LEFT SINGLE zero < zero > zero overflow 
SHIFT RIGHT DOUBLE zero < zero > zero 
SHIFT RIGHT SINGLE zero < zero > zero 
START I/O, START 1/0 FAST RELEASE successful CSW stored busy not operational 
STORE CHANNEL ID 10 stored CSW stored busy not operational 

Condition-Code Settings (Part 1 of 2) 

Appendix C. Condition-Code Settings C-l 



Instruction 

STORE CLOCK 
SUBTRACT (and SUBTRACT 

HALFWORD) 
SUBTRACT DECIMAL 
SUBTRACT LOGICAL 
SUBTRACT NORMALIZED 

SUBTRACT UNNORMALIZED 
TEST AND SET 
TEST CHANNEL 
TEST 1/0 
TEST UNDER MASK 

TRANSLATE AND TEST 
ZEROANDADD 

Explanation: 

> zero 
< zero 
high 
low 
length 

Result is greater than zero 
Result is less than zero 
First operand compares high 
First operand compares low 
Length of first operand 

set 
zero 

zero 

zero 

zero 
left zero 
available 
available 
all zeros 

zero 
zero 

o 

Condition Code 

2 

not set error 

< zero > zero 

< zero > zero 
not zero, no carry zero, carry 

< zerO > zero 

< zero > zero 
left one 
interruption pending burst mode 
CSW stored busy 
mixed 

incomplete complete 

< zero > zero 

3 

not operational 
overflow 

overflow 
not zero, carry 

not operational 
not operational 
all ones 

overflow 

Note: The condition code may also be changed by EXECUTE, LOAD PSW, SET PROGRAM MASK, SUPERVISOR CALL, and 
DIAGNOSE, and by an interruption. 

Condition-Code Settings (Part 2 of 2) 

C-2 IBM 4300 Processors Principles of Operation 



Appendix. D. Table of Powers of 2 
PLUS IIIIIUS 

1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.0625 
32 5 0.03125 
64 6 0.01562 5 

128 7 0.00781 25 

256 8 0.00390 625 
512 9 0.00195 3125 

1,024 10 0.00097 65625 
2,048 11 0.00048 82812 5 

4,096 12 0.00024 41406 25 
8,192 13 0.00012 20703 125 

16,384 14 0.00006 10351 5625 
32,768 15 0.00003 05175 78125 

65,536 16 0.00001 52587 89062 5 
131,072 17 0.00000 76293 94531 25 
262,144 18 0.00000 38146 97265 625 
524,288 19 0.00000 19073 48632 8125 

1,048,576 20 0.00000 09536 74316 40625 
2,097,152 21 0.00000 04768 37158 20312 5 
4,194,304 22 0.00000 02384 18579 10156 25 
8,388,608 23 0.00000 01192 09289 55078 125 

16,777,216 24 0.00000 00596 04644 77539 0625 
33,554,432 25 0.00000 00298 02322 38769 53125 
67,108,864 26 0.00000 00149 01161 19384 76562 5 

134,217,728 27 0.00000 00074 50580 59692 38281 25 

268,435,456 28 0.00000 00037 25290 29846 19140 625 
536,870,912 29 0.00000 00018 62645 14923 09570 3125 

1,073.741.824 30 0.00000 00009 31322 57461 54785 15625 
2.147.483.648 31 0.00000 00004 65661 28730 77392 57812 

4,294.967,296 32 0.00000 00002 32830 64365 38696 28906 25 
8,589,934,592 33 0.00000 00001 16415 32182 69348 14453 125 

17,179,869.184 34 0.00000 00000 58207 66091 34674 07226 5625 
34,359,738.368 35 0.00000 00000 29103 83045 67337 03613 28125 

68,719,476,736 36 0.00000 00000 14551 91522 83668 51806 64062 5 
137,438,953,472 37 0,00000 00000 07275 95761 41834 25903 32031 25 
274,877.906,944 38 0.00000 00000 03637 97880 70917 12951 66015 625 
549,755,813,888 39 0.00000 00000 01818 98940 35458 56475 83007 8125 

1,099,511.627,776 40 0.00000 00000 00909 49470 17729 28237 91503 90625 
2,199,023.255,552 41 0.00000 00000 00454 74735 08864 64118 95751 95312 5 
4,398,046,511.104 42 0.00000 00000 00227 37367 54432 32059 47875 97656 25 
8,796,093.022.208 43 0.00000 00000 00113 68683 77216 16029 73937 98828 125 

17,592,186,044,416 44 0.00000 00000 00056 84341 88608 08014 86968 99414 0625 
35,184,372,088,832 45 0.00000 00000 00028 42170 94304 04007 1134811 49707 03125 
70.368,744.177,6611 46 0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5 

140,737,488,355,328 47 0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25 

281,474,976,710.656 48 0.00000 00000 00003 55271 36788 00500 92"135 56213 37890 625 
562,949.953,421,312 49 0.00000 00000 00001 77635 68~94 00250 46467 78106 68945 3125 

1.125,899,906,842,624 50 0.00000 00000 00000 88817 84197 00125 23233 89053 311472 65625 
2.251,799.813,685,248 51 0.1)0000 00000 00000 44408 92098 50062 61616 94526 67236 32812 

4,503.599,627,370,496 52 0.1')0000 00000 00000 22204 46049 25031 308011 117263 33618 161106 25 
9,007,199,254,740,992 53 0.00000 00000 00000 11102 23024 62515 65404 236~1 66809 08203 125 

18,014,398,509,481,984 511 0.00000 00000 00000 05551 1151? 31257 82702 11 1115 831104 54101 5625 
36.028,797,018,963,968 55 O.noooo 00000 00000 02775 557.56 15628 91351 05907 91702 27050 78125 

72,057,594.037,927,936 56 0.00000 0001')0 00000 01387 77878 078111 45675 52953 95851 13525 39062 5 
144,115,188,075.855,872 57 0.00000 00000 00000 00693 88939 03907 22837 76476 97925 56762 69531 25 
288,230.376.151,711,744 58 0.00000 00000 00000 003116 941169 51953 611118 8B238 411962 78381 34765 625 
576,460,752,303,1123,488 59 0.00000 00000 00000 00173 47234 75976 80709 44119 241181 39190 67382 8125 

1,152,921,504.606,846,976 60 0.00000 00000 00000 00086 73617 37988 40354 7?059 62240 69595 33691 40625 
2,305,843,009,213,693,952 61 0.00000 00000 00000 00043 36808 68~94 20177 36029 81120 34797 66845 70312 5 
4,611,686,018,427.387,904 62 0.00000 00000 00000 00021 68404 34497 100118 68014 90560 17398 831122 85156 25 
9,223,372,036,854,775,808 63 0.00000 00000 00000 00010 84202 17248 55044 34007 45280 09699 41711 42578 125 

18,446,744.073,709,551,616 64 0.00000 00000 00000 00005 42101 086211 .27522 17003 72640 04349 70855 71289 0625 

Powers of 2 (Part 1 of 2) 

Appendix D. Table of Powers of 2 D-1 



18,~~6,744,O/3,709.551,61E ~~ 
36,9qJ,488,14~,419,1Q~,23~ fiS 
73,786,Q76,'94,839,2U6,464 E€ 

147.573,952.589,676,412,928 67 

295,147.905,179,~52,B25,856 Fa 
590,295.81C,358,705,651,7~2 ~9 

1,180,~91,620,717,411,303,q2~ 7~ 

2.361.1B3,241,434,822,606,848 71 

~.722.366,482,869,645,213,F96 72 
9.u44,732.965,739,290,427,3~2 73 
18.889.465,931,478,S80,85~,78u 74 
37,778,931,862,957,161.709,568 75 

75,557,863,725,914,323,419,136 76 
151,115,727,451.828,646,93a,272 77 
302,231,454,903,657,293,676,544 7B 
604.452.909,807.314,587,353,098 7q 

1.208.925.819.614,62Q,174,706.176 80 
2.417,851.639,'29.258,1u9,41~,1~2 31 
4,835.703.278,458,516,F98,824.704 82 
9.671.406.55e,917,033,3Q7,649.408 83 

19.342.813.113,S34.066,795,298,~16 8~ 

38,685,626.227,668.133,590,597,632 85 
77.371.252,~55,336.267.181,195,264 86 

154.742,504,910,672,534,362.390.528 87 

309.485.009,821,345,068.724,781,056 88 
618.970,019,64~.690,137,449.562.112 89 

1.237.940,03~,285,3Bn,274,8qq.124.224 90 
2.475.880.078.570.7fiO.54~.798.248,~48 91 

4,951.760,157.141,521.099,596,496,896 92 
9.903.520.314,283,O~2,1~~,192,993,792 93 

19.807.040.628,566,084,398,385.987,584 94 
~9.61~;oal.257.132.168,796,771.q75.168 95 

79.228.162,514.264,337,593.543,950.336 96 
158,456.325,028,528,675,187,087.900,672 97 
316,912,650,057,057,350,374,175,B01,344 Q8 
633.825.300.114,114,700.748.351,602,688 99 

!,267,650,6JO.228.229.401,496.703,205.376 100 
2,535.301.200.456,~5A,802,993.406,410~752 101 
5,070.602,400,912.917,605,986,BI2,821.504 102 

10,141,204.801.825,835.211.973.625,643.008 103 

20.2@2.409.603,651.670.423,947.251.286.016 IOu 
_0.564,819.207,303,340,a47,894,502.572.032 105 
81,129.638.414.6Q6.6e1,695.789,OO~.144,064 106 

162.259.276,829,213,363,391.578.010.288.128 107 

324,518,553,658.426,725,783,156,020.576.256 108 
6_9.~37.107,316.853.453,566.312,041,15'.512 109 

1.298.074,214.633,706,907,132,624.082,305.024 11~ 
2.596.14a.429,267,413.814,265.248,164,610.048 111 

5.192.296,658,534.827.62B,530,496,329.220.096 112 
10.384.593.717,069,655.257,060.992.658,440.192 113 
20.769,187,434.139.310,514,121.985,316,B80.384 114 
_1.S38.374.868.278.621.02~,243,970,633.760,7~8 115 

B3.0~6,749.736.557,24'.056.4B7,9Ul,267.521,536 116 
le~.IS3.499,473,11u,484.112,~75,882,535.0u3.072 117 
332.3r.6.998,946.22e,968.225,q51,765.070.~86.144 118 
664.613.997.892,457,936.451,903.530.140.172,)88 119 

1.329.227,995.784.915.B72.903.807,060.280.344,576 120 
2.658.455,991,569,831,745.907.614,120.560,689.152 121 
5,316.911.983.139,663,491,£15,228,241.121,378.304 122 

10.633.823,9~6.279.326.983,23C.456,482.242.756,608 123 

21,267.647.932.558,653,966,460,~12,964.485,513,216 124 
42,535.295,965,!17.307,932,S21.e25,~2B,971,026.432 125 
8S,070.5g1.730,234,615,865,843,651,A57.942,057,8~4 126 

170,141.!83.460,469,231,731,587.303,715.884,105,728 127 

Powers of 2 (Part 2 of 2) 

0-2 IBM 4300 Processors Principles of Operation 



Appendix E. Hexadecimal Tables 

The following tables aid in converting hexadecimal 
values to decimal values, or the reverse. 

Direct Conversion Table 
This table provides direct conversion of decimal and 
hexadecimal numbers in these ranges: 

Hexadecimal Decimal 
000 to FFF 0000 to 4095 

To convert numbers outside these ranges, and to 
convert fractions, use the hexadecimal and decimal 
conversion tables that follow the direct conversion 
table in this Appendix. 

0 1 2 3 4 5 6 1 

00_ 0000 0001 0002 0003 000.4 0005 0006 0007 
0.1_ 0016 0.017 0018 0019 0020 0021 0022 0023 
0.2_ 0032 0.0.33 0034 0035 0.0.36 0037 0038 0039 
0.3_ 0048 0049 0050. 0051 00.52 0053 0054 0055 
04_ 0064 0065 0066 0067 0068 0069 00.70 0071 
Q'L 0080 0081 0082 0083 0084 0085 0086 00.87 
0.6_ 0096 0.0.97 0098 0099 0100 0101 0.102 0103 
07_ '0112 0.113 0.114 0.115 0116 0117 0118 0.119 
08_ 0.128 0129 0.130. 0131 0132 0133 0134 0135 
0.9_ 0144 0.145 0146 0147 0.148 0.149 0150. 0151 
OA_ 0160 0.161 0162 0163 0164 0165 0166 0167 
OB_ 0.176 0.177 0178 0.179 0180 0.181 0182 0183 
QC_ 0192 0193 0194 0195 0196 0197 0.198 0199 
QD_ 0208 02.09 0210. 0.211 0212 0213 0.214 0215 
OE_ 0.224 0225 0.226 0.227 0.228 0229 0230 0231 
OF_ 0240. 0.241 0242 0.243 0.244 0.245 0246 0247 

10_ 0256 0257 0258 0.259 0.260 0261 0262 0263 
11_ 0272 0.273 0274 0275 0276 0277 0278 0279 . 
12_ 0288 0289 0290. 0291 0.292 0293 0294 0295 
13_ 0.304 0.30.5 0306 0.307 030.8 0309 0310 0311 
14_ 0.320 0.321 0322 0.323 0.324 0325 0326 0.327 
15_ 0.336 0.337 0.338 0339 0340 0341 0342 0343 
16_ 0352 0.353 0.354 0355 0356 0.357 0358 0359 
17_ 0368 0.369 0370 0371 0372 0373 0374 0315 
18_ 0384 0.385 0.386 0387 0.388 0389 0390 0.391 
19_ 0400 040.1 0402 040.3 0.404 0405 0406 040.7 
1A_ 0416 0417 0418 0.419 0420 0421 0422 0423 
1B_ 0432 0.433 0434 0435 0436 0437 0.438 0.439 
1C_ 0448 0449 0.450 0451 0452 Q4S3 0454 0455 
1D_ 0464 0465 0466 0467 0468 0.469 0470. 0.471 
1E_ 0480 0481 0482 0483 0484 0485 0486 0487 
1F_ 0496 0.497 0498 0.499 0500 0501 0502 050.3 

8 9 A B C D E F 

0008 0009 0010. 0011 0.012 0.013 0014 0015 
00.24 0025 0026 0027 0028 0029 0030. 0031 
0040 0041 0042 0043 0044 0045 0046 0047 
0056 0057 0058 0.059 00.60 0061 0062 0063 
0072 0073 0074 0075 0.076 0077 0078 0079 
00.88 0089 0090 0091 0092 0093 0094 0095 
0104 0105 0106 0.107 010.8 0.109 0.110. 0.111 
0120. 0121 0122 0.123 0124 0.125 0126 0127 
0136 0.137 0138 0139 0140 0.141 0.142 0.143 
0152 0.153 0154 0155 0156 0151 0.158 0159 
0168 0169 0170 0171 0172 0173 0.174 0175 
0184 0185 0186 0187 0.188 0.189 0190 0191 
0200 020.1 0202 0.203 0204 0205 0206 0207 
0216 0217 0218 0219 0220 0221 0.222 0223 
0.232 0233 0234 0.235 0236 0.237 0.238 0239 
0248 0249 0250 0251 0252 0253 0.254 0255 

0264 0265 0266 0.267 0.268 0269 0.270 0.211 
0280 0.281 0282 0283 0.284 0285 0286 0287 
0296 0.297 0298 0.299 0300 0.301 0.302 0303 
0312 0313 0314 0.315 0316 0.317 0318 0.319 
0.328 0329 0330. 0.331 0.332 0333 0.334 0335 
0.344 0345 0346 ()347 0348 0.349 0.350 0351 
0360 0361 0362 0363 0.364 0365 0.366 0367 
0.376 0377 0378 0379 0380. 0.381 0382 0383 
0.392 0393 0.394 0.395 0.396 0391 0.398 0399 
0408 0409 0410 0411 0412 0413 0.414 0415 
0424 0.425 0426 0.427 0.428 0429 0430 0431 
0440 0441 0442 0.443 0.444 0445 0446 0447 
0456 0457 0458 0459 0.460. 0461 0462 0463 
0472 0.473 0474. 0475 0476 0.477 0478 0419 
0488 0489 0490 0491 0492 0.493 0.494 0495 
050.4 050.5 0.506 0.507 0508 0.509 0.510. 0.511 

Appendix E. Hexadecimal Tables B-1 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
2L 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 
24 - 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A - 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'84 0685 0686 0687 
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
20_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E - 0736 0737 0738 0739 0740 0741 0742 0743 0744 "0745 0746 0747 0748 0749 0750 0751 
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33 - 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 
34 - 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3E - 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3F_ 1008 1009 1010 lOll 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

40 - 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41 - 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 IlOO llOI ll02 1103 
45_ 1I04 1I05 1I06 1I07 ll08 1I09 llIO lllI llI2 Ill3 Ill4 Ill5 1I16 1117 1I18 1119 
46_ ll20 1I21 ll22 ll23 ll24 1I25 1I26 1I27 1I28 ll29 1I30 1131 1I32 ll33 ll34 ll35 
47_ 1I36 1I37 1I38 1I39 1140 1I41 1I42 ll43 1144 ll45 1146 1I47 1I48 1I49 1I50 1151 
48_ 1I52 1I53 ll54 1I55 ll56 1I57 1158 ll59 1160 ll61 1I62 1163 1I64 1165 1I66 1167 
49_ 1I68 1I69 ll70 1I7l ll72 1I73 1174 ll75 ll76 1I77 1I78 1I79 1I80 1181 1182 1183 
4A_ 1I84 ll85 1I86 ll87 ll88 1I89 1I90 ll91 1I92 ll93 1I94 ll95 1I96 ll97 ll98 1I99 
4B - 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 12ll 1212 1213 1214 1215 
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
40 - 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 - 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307- 1308 1309 1310 1311 
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 
5L 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
5L 1392 1393 "1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 
58_ 1408 1409 1410 141I 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5A - 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5B - 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
50_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5E_ 1504 1505 1506 1507 1508 1509 1510 151I 1512 1513 1514 1515 1516 1517 1518 1519 
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

E-2 IBM 4300 Processors Principles of Operation 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
6L 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
7L 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983 
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
8L 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8E - 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2't14 2415 
97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9D_ 2512 2513 2514 2515 2516 2517 2518 25·19 2520 2521 2522 2523 2524 2525 2526 2527 
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2.541 2542 2543 
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

Appendix E. Hexadecimal Tables E-3 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
AB_ 2736 2737 2738 2739 27.40 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AF_ 2800 2801 2802 2803 28Q4 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2_ 2848 2849 2850 2851 2852 2853 28.54 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7_ 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAc... 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BB - 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 BD __ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BF_ 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C2_ 3104 3105 3106 3107 3lO8 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3 - 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CD - 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
Dl 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5_ 3'408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7_ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB - 3504 3505 3506 3507 3508 3509 35lO 3511 3512 3513 3514 3515 3516 3517 3518 3519 
DC __ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DD - 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DF. 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

E-4 IBM 4300 Processors Principles of Operation 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
EL 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819. 3820 3821 3822 3823 
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
Fl - 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
FL 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Appendix E. Hexadecimal Tables E-5 



Conversion Table: Hexadecimal and Decimal Integers 

HALFWORD 

BYTE BYTE 

BITS: 0123 4567 0123 

Hex Decimal Hex Decimal Hex Decimal 

0 ° 9 0 0 0 
1 268,435,456 1 16,m,216 1 1 048 576 
2 531.,870,912 2 33,554,432 2 2,097,152 
3 1\05,306,368 3 50,331,648 3 3 145 728 
4 1 073 741 824 4 67,108,864 4 4 194304 
5 1,342,177,280 5 83,886,080 5 5,242,880 
6 1,610,612,736 6 100,663,296 6 6,291,456 
7 1,879,048,192 7 117,440,512 7 7340032 
8 2,147,483,648 8 134,217,728 8 8,388,608 
9 !T,415,919,104 9 150,994,944 9 9,437,184 
A 2,684,354,560 A 167,772,160 A 10,485,760 
B 2.952790 016 B 184 549 376 B 11 534336 
C 3,221 225 472 C 201 326 592 C 12582912 
0 3,489 ,660,928 0 218,103 808 D 13,631,488 
E 3,758,096,384 E 234,881,024 E 14,680,064 
F 14,026,531,840 F 1251,658,240 F 15,728,640 

8 7 6 

TO CONVERT HEXADECIMAL TO DECIMAL 

1. locate the column of decimal numbe~ corresponding to 
the left-most digit or letter of the hexadecimal; select 
from this column and record the number that corresponds 
to the position of the hexadecimal digit or letter. 

2. Repeat step 1 far the next (second from the left) 
position. 

3. Repeat step 1 for the units (third from the left) 
position. 

4. Add the numbe~ selected from the table to form the 
decimal number. 

TO CONVERT DECIMAL TO HEXADECIMAL 

1 . (a) Select from the table the highest decimal number 
that is equal to or less than the number to be CO;'l

verted. 
(b) Record the hexadecimal of the column contoining 
the selected number. 
(c) Subtract the selected decimal from the number to 
be converted. 

2. Using the remainder from step l(c) repeat all of step 1 
to develop the second position of the hexadecimal 
(and a remainder) . 

3. Using the remainder from step 2 repeat all ofstep 1 to 
develop the units pasition of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

POWERS OF 16 TABLE 

4567 

Hex Decimal 

° 0 
1 65 536 
2 131,072 
3 196 608 
4 262 144 
5 327,680 
6 393,216 
7 458,752 
8 524,288 
9 589,824 
A 655,360 
B 720896 
C 786 432 
D 851 968 
E 917504 
F 983,040 

5 

EXAMPLE 

Conversion of 
Hexadecimal Value 

1- 0 

2. 

3. 4 

4. Decimal 

EXAMPLE 

Conversion of 
Decimal Value 

1. 0 

2. 3 

3. 4 

4. Hexadecimal 

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 = (107)16 

16n 

1 
16 

256 
4096 

65 536 
1 048 576 

16 m 216 
268435 456 

4 294967 296 
68 719 476 736 

1 099 511 627 776 
17 592 186 044 416 

281 474 976 710 656 
4 503 599 627 370 496 

72 057 594 037 927 936 
,1 152 921 504 606 846 976 

v 
Decimal Values 

° 1 
2 
3 
4 
5 
6 
7 
8 
9 

10=A 
11 = B 
12 =C 
13 = 0 
14 = E 
15,= F 

E-6 IBM 4300 Processors Principles of Operation 

Hex 

0 
1 
2 
3 
4 
S 
6 
7 
8 
9 
A 
B 
C 
0 
E 
F 

034 

3328 

48 

4 

3380 

3380 

-332B 
--s2 

-48 
--4 

-4 

034 

HAlFWORD 

BYTE BYTE 

0123 4567 0123 4567 

Decimal Hex Decimal Hex Decimal Hex Decimal 

0 0 ° 0 0 ° 0 
4096 1 256 1 16 1 1 
8,192 2 512 2 32 2 2 
12,288 3 768 3 "*' 3 3 
16384 4 1,024 4 64 4 4 
20,480 5 1,280 5 80 5 5 
24,576 6 1,536 6 96 6 6 
28,672 7 1,792 7 112 7 7 
32768 8 2048 8 128 8 8 
36,864 9 2,304 9 144 9 9 
40 960 A 2,560 A 160 A 10 
45 056 B 2816 B 176 B 11 
49152 C 3072 C 192 C 12 
53248 D 3328 0 208 0 13 
57,344 E 3,584 E 224 E 14 
61,440 F 3,840 F 240 F 15 

4 3 2 1 

To convert integer numbers greater than the capacity of 
table, use the techniques below: 

HEXADECIMAL TO DECIMAL 

Successive cumulative multiplication from left to right, 
adding units position. 

Example: 03416 = 338010 

DECIMAL TO HEXADECIMAL 

0= 13 
x16 
208 

3 = + 3 rn 
x16 

3376 
4= +4 

3380 

Divide and collect the remainder in reverse order. 

Example: 338010 = X 16 

16 13380 ~ remainder 

16 ~___ 4 t 
16 l..!L ---=:: 3 I 

o 338010= 03416 



Conversion Table: Hexadecimal and Decimal Fractions 

BYTE 

BITS 0123 4567 

Hex Decimal Hex Decimal Hex 

.0 .0000 .00 .0000 0000 .000 .0000 

.1 .0625 .01 .0039 0625 .001 .0002 

.2 .1250 .02 .0078 1250 .002 .0004 

.3 .1875 .03 .0117 1875 .003 .0007 

.4 .2500 .04 .0156 2500 .004 .0009 

.5 .3125 .05 .0195 3125 .005 .0012 

.6 .3750 .06 .0234 3750 .006 .0014 

.7 .4375 .07 .0273 4375 .007 .0017 

.8 .5000 .~ .0312 5000 .008 .0019 

.9 .5625 .09 .0351 5625 .009 .0021 

.A .6250 .OA .0390 6250 .OOA .0024 

.B .6875 .08 .0429 6875 .OOB .0026 

.C .7500 .OC .0468 7500 .OOC .0029 

.0 .8125 .00 .0507 8125 .000 .. 0031 

.E .8750 .a: .0546 8750 .OOE .0034 

.F .9375 .OF .0585 9375 .OOF .0036 

1 2 

TO CONVERT .ABC HEXADECIMAL TO DECIMAL 

Find.A in position 1 .6250 

Find .OB in position 2 .0429 6875 

Find .OOC in position 3 .0029 2968 7500 

. ABC Hex is equal to .6708 9843 7500 

TO CONVERT .13 DECIMAL TO HEXADECIMAL 

1. Find .1250 next lowest to .1300 

HALIWORD 

3 

BYTE 

0123 4567 

Decimal Hex Decimal Equivalent 

0000 
4414 
8828 
3242 
7656 
2070 
6484 

. 0898 
5312 
9726 
4140 
8554 
2968 
7382 
1796 
6210 

0000 .0000 .0000 0000 0000 0000 
0625 .0001 .0000 1525 8789 0625 
1250 .0002 .0000 3051 7578 125() 
1875 .0003 .0000 4577 6367 1875 
2500 .0004 .0000 6103 5156 2500 
3125 .0005 .0000 7629 3945 3125 
3750 .0006 .0000 9155 2734· 3750 
4375 .0007 .0001 0681 1523 4375 
5000 .0008 .0001 2207 0312 5~ 
5625 .0009 .0001 3732 9101 5625 
6250 .OOOA .0001 5258 7890 6250 
6875 .OOOB .0001 6784 6679 6875 
7500 .OOOC .0001 8310 5468 7500 
8125 .0000 .0001 9836 4257 8125 
8750 .OOOE .0002 1362 3046 8750 
9375 .OOOF .0002 2888 1835 9375 

4 

To convert fractions beyond the capocity of table, use techniques below: 

HEXADECIMAL FRACTION TO DECIMAL 

Convert the hexadecimal fraction to its decimal equivalent using the same 
technique as for. integer numbers. Divide the results by 16n Cn is the 
number of fraction positions) • 
Example: .8A7 = .54077110 

8A716 = 221510 

163 = 4096 409612215 .000000 

subtract -. 1250 = .2 Hex 

2. Find .0039 0625 next lowest to .0050 0000 

3. Find.OOO9 7656 2500 

4. Find .0001 0681 1523 4375 

-.00390625 

.0010 9375 0000 
-.0009 7656 2500 

.0001 1718 7500 0000 

= .01 

= .004 

-.0001 0681 1523 4375 = .0007 

.0000 103759765625 = .2147 Hex 

5 .• 13 Decimal is approximately equal to _______ --.;;J4 

DECIMAL FRACTION TO HEXADECIMAL 

Collect integer parts of product in the order of calculation. 

Example: .~1O = •8A716 

.5408 
x16 

1
8 ~ [§].6528 

x16 
A ~ [Q).4448 

x16 
7 ~ 1].1168 

Appendix E. Hexadecimal Tables E-7 



Hexadecimal Addition and Subtraction Table 

Excmple: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2 

1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

1 02 03 04 05 06 07 08 09 OA 08 OC OD OE OF 10 

2 03 04 05 06 07 08 09 OA OS OC OD OE OF 10 11 

3 04 05 06 07 08 09 OA 08 OC OD OE OF 10 11 12 

4 05 06 07 08 09 OA 08 OC OD OE OF 10 11 12 13 

5 06 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14 

6 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14 15 

7 08 09 OA 08 OC OD OE OF 10 11 12 13 14 15 16 

8 09 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 

9 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 18 

A OS OC OD OE OF 10 11 12 13 14 15 16 17 18 19 

8 OC OD OE OF 10 11 12 13 14 15 16 17 18 19 lA 

C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 

0 OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 IE 

Hexadecimal Multiplication Table 

Example: 2 x 4 = 08, F x 2 = 1 E 

1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

1 01 02 03 04 05 06 07 08 09 OA 08 OC OD OE OF 

2 02 04 06 08 OA OC OE 10 12 14 16 18 lA lC IE 

3 03 06 09 OC OF 12 15 18 18 IE 21 24 27 2A 20 

4 04 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C 

5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 48 

6 06 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 SA 

7 07 OE 15 lC 23 2A 31 38 3F 46 4D 54 58 62 69 

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 

9 09 12 18 24 20 36 3F 48 51 SA 63 6C 75 7E 87 

A OA 14 IE 28 32 3C 46 50 SA 64 6E 78 82 8C 96 

8 08 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A AS 

C OC 18 24 30 3C 48 54 60 6C 78 84 90 9C AS '84 

0 OD lA 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3 

E OE lC 2A 38 46 54 62 70 7E 8C 9A AS 86 C4 02 

F OF IE 20 3C 48 5A 69 78 87 96 AS B4 C3 02 El 

E-8 IBM 4300 Processors Principles of Operation 



Index 

A 
access (see also reference) 

exception 6-13 
priority of 6-17 

key 3-6 
access-control bits 3-4 
ADD (A, AR) binary instructions 7-7 
ADD DECIMAL (AP) instruction 8-3 

example A-26 
ADD HALFWORD (AH) instruction 7-7 

example A-6 
ADD LOGICAL (AL, ALR) instructions 7-7 
ADD NORMALIZED (AD, ADR, AE, AER, AXR) 

instructions 9-6 
example A-30 

ADD UNNORMALIZED (AU, AUR, AW, AWR) 
instructions 9-7 

example A-31 
address 

arithmetic 7 -3 
base 5-4 
failing-storage (see failing-storage address) 
format 3-1 
generation 5-4 
invalid 6-9 
I/O (channel/device) 12~7, 12-14 

assigned storage . location for 3-9 
numbering 3-2 
page 3-3 
virtual 3-1 
wraparound 3-2 

addressable (page) state 3-4 
address-compare controls 13-1 
addressing, one-level 3-2 
addressing exception 6-9 

as an access exception 6-13 
relation to storage size 3-3 

AFCC (available,..frame-capacity count) 3-5 
alert 

class of machine-check conditions 11-4 
error (in limited channel logout) 12-64 

allowed interruptions 6-4 
alter-and-display controls 13-2 
dteration 

general-register (PER event) 4-12 
storage (PER event) 4-12 

AND (N, NC, NI, NR) instructions 7-7 
examples A-6 

architectural mode, indication of 13-3 
arithmetic 

binary 7-3 
decimal (see decimal instructions) 

arithmetic (continued) 

floating-point (see floating-point instructions) 
logical (see unsigned binary arithmetic) 

assembler language A-5 
instruction formats in (see individual 
instruction descriptions) 

assigned storage locations 3-8 
attachment of I/O devices 12-50 
attention 12-50 
auxiliary storage 3-1, 3-3 
available (I/O state) 12-10 
available-frame-capacity count (AFCC) 3-5 

B 
B field of instruction 5-1 
base, address 5-4 

register 2-3 
basic control (see BC mode) 
Be (basic-control) mode 4-3 

PSW format in 4-6 
Be to Ee mode conversion 10-11 
binary (see also fixed point) 

arithmetic 7-3 
negative zero 7-2 
number representation, examples of A-2 
one's complement notation 7-2 
overflow 7-3 
sign bit 7-2 
two's complement notation 7-2 

example A-2 
binary-to-decimal conversion 7 -16 
block of I/O data 12-30 

incorrect length for 12-55 
self-describing 12-35 

block-multiplexer channel 12-4 
block-multiplexing control 12-4 

bit in CR 0 4-8 
effect on CLEAR I/O instruction of 12-16 
effect on START I/O FAST RELEASE 

instruction of 12-23 
borrow, binary 7-35 
boundary alignment 3-2 
BRANCH AND LINK (BAL, BALR) instructions 7-8 

example A-7 
BRANCH ON CONDITION (Be, BCR) instructions 7-9 

example A-7 
BRANCH ON COUNT (BCT, BCTR) instructions 7-10 

example A-8 
BRANCH ON INDEX HIGH (BXH) instruction 7-10 

example A-8 
BRANCH ON INDEX LOW OR EQUAL (BXLE) 
instruction 7 -10 

Index X-I 



branching 5-4 
burst mode 12-3 
bus-out check 
busy 

12-41 

as I/O unit-status indication 
in I/O operations 12-6 

byte 3-1 
byte-multiplex mode 12-3 
byte-multiplexer channel 12-4 

C 

12-51 

CAl (channel-available interruption) 12-48 
capacity counts 3-5 
carry 7-2 
CAW (channel-address word) 12-30 
CBC (checking-block code) 11-1 

invalid 
in page descriptions 11-3 
in registers 11-3 
in storage 11-2 

CC (chain-command) flag 12-31 
CCW (channel-command word) 12-31 

address in CAW 12-31 
address in CSW 12-50, 12-58 
assigned storage location (during IPL) 
command code 12-32 
prefetching 12-33 

CD (chain-data) flag 12-31 
central processing unit (see CPU) 
chain-command (CC) flag 12-31 
chain-data (CD) flag 12-31 
chaining 12-33 
chaining check 12-57 
change bit 3-4 
change recording 3-7 
channel 12-2 

address 12-7 
block-multiplexer 12-4 
byte-multiplexer 12-4 
commands 12-37 
control check 12-56 
data check 12-56 
end 12-53 
equipment error 
identification (ID) 

12-14 
12-26 

assigned storage location for 3-9 
in I/O communications area 12-63 

logout 
limited 3-9, 12-63 

masks 
in BC-mode PSW 4-6 
in control register 4-8 

model field 12-26 
programming error 12-14 

,-10 

X-2 IBM 4300 Processors Principles of Operation 

channel (continued) 

selector 12-4 
serialization 5-10 
status 12-55 
time-out 12-4 
type field 12-26 

channel-address word ( CAW) 1.2-30 
channel-available interruption (CAl) 
channel-command word (see CCW) 

12-48 

channel-status word (CSW) 12-49 
channel-to-channel adapter 12-2 
characteristic (of floating-point number 
check 11-1 

code (see CBC) 
check bits 11-1 
check control 13~2 

check-stop indicator B-2 
check-stop state 4-2 

effect of check control on 12-3 
entering of 11-3 

class number, monitor 3-9, 4-9 
CLEAR I/O (CLRIO) instruction 
clear key 

load 13-3 
system-reset 13-5 

12-16 

CLEAR PAGE (CLRP) instruction 10-3 
clear reset 4-23 
clearing 

storage 
by CLEAR PAGE instruction 10-3 
by clear reset 4-23 

clock, time-of-day (TOD) 4-15 
clock comparator 4-18 

external interruption 4-18, 6-19 
mask 4-8 
save area 3-9 
validity bit 11-9 

clock unit 4-17 
CLRIO function 12-16 
code 

check 11-1 
command 12-32 

9-1 

condition (see condition code) 
instruction-length (see instruction-length code) 
monitor 3-9, 4-9 
operation 5-1 
PER 3-9 

codes, decimal digit and sign 8-2 
command 

chaining 12-36 
code 12-32 
reject 12-43 

sense data 12-41 
command retry 12-42 
commands 12-37 



communications area, I/O 12-63 
COMPARE (C, CR) binary instructions 7...,11 
COMPARE (CD, CDR, CE, CER) floating-point 

instructions 9-8 
example A-31 

COMPARE AND SWAP (CS) instruction 7-11 
examples A-32 

COMPARE DECIMAL (CP) instruction 8-4 
example A-26 

COMPARE DOUBLE AND SWAP (CDS) instruction 7-11 
COMPARE HALPWORD (CH) instruction 7-13 

example A-9 
COMPARE LOGICAL (CL, CLC, CLI, CLR) 
instructions 7-13 

examples A-9 
COMPARE LOGICAL CHARACTERS UNDER MASK 

(CLM) instruction 7 -13 
example A-I0 

COMPARE LOGICAL LONG (CLCL) instruction 
example A-11 

comparison 
decimal 8-4 
floating-point 9-8 
logical 7-3 
signed-binary 7 -3 

compatibility 1-2 
I/O operation 12..:7 

completion (instruction ending) 6-7 
conceptual sequence 5-5 
conclusion (I/O-operation) 12-43 
concurrent program-interruption conditions 4.., 13 
condition code 

deferred 12-19 
for SlOP function 12-25 

for I/O operations 12-12 
in PSW 4-5, 4-6 
inspection 5-4 
summary C-l 
validity bit 11-8 

conditions 
interruption 6-1 
I/O 12-47 

program 6-9 
CONNECT PAGE (CTP) instruction 
connected (page) state 3-4 
connective (see logical connective) 
consistency, storage operand 5-8 
console device 13-1 
control 

check 
4-1-

13-2 
command 12-40 
instructions 10-1 

summary 10-2 
interval-timer 13-3 
page and page-frame 3-5 

10-3 

7-14 

control (continued) 
rate 13-4 
register 2-3, 4-7 

save area for 3-9 
validity bit 11-9 

storage size 
TOD-clock 
unit 12-2 

sharing of 

13-4 
13-5 

12-5 
controls 

address 13-1 
alter-and-.display 11 ... 2 
IML 13-2 
load-unit-address . 13-3 
power 13-4 

control-unit end 12-51 
conversion 

BC-to-EC-mode 10-11 
binary-to-decimal 7-16 
decimal-to-binary 7-15 
fixed- to floating-point, example of A-5 

CONVERT TO BINARY (CVB) instruction 
example A-12 

CONVERT TO DECIMAL (CVD) instruction 
example A-12 

count field 
in CCW 12-31 
in CSW 12-50, 12-59 

counter-updating example A-33 
counting 7-10 
CPU (central processing unit) 2-1 

identification (ID) 10-13 
model number 10-13 
registers 2-3 
retry 11-1 
serialization 5-9 
state 4-1 
version code 10-13 

CPU timer 4-18 
external interruption 4-18, 6-19 
mask 4-8 
save area for 3-9 
updating of 4-3 
validity bit 11-9 

CR (see control register) 
CSW (channel-status word) 12-49 
current PSW 4-4 

D 
D field of instruction 5-1 
damage 

external 11-7 
mask bit for 4-8, 11-10 

7-15 

7-16 

Index X-3 



damage (continued) 

instruction-processing 11-7 
system 11-7 

data 
chaining 12-35 
check 12-41 
exception 6-9 
format for 

decimal instructions 8-1 
floating-point instructions 
general instructions 7-1 

prefetching 12-33 
decimal 

comparison 8-4 
data format 8-1 
digit codes 8-2 
instructions 8-1 

examples for A-25 
summary 8-3 

number representation 8-2 
examples A-3 

operand overlap 8-2 
overflow 

exception 6-10 
mask 4-5, 4-6 

rounding 8-8 
sign codes 8-2 

decimal-divide exception 6-10 

9-1 

decimal-to-binary conversion 7 -15 
DECONFIGURE PAGE (DEP) instruction 10-4 
deferred condition code 12-12 

for SIOF function 12-25 
in CSW 12-50 

degradation 
bit in machine-check interruption code 11-7 
mask bit for 4-8, 11-10 

delayed bit 11-8 
destructive overlap 7-23 
detect field (in limited channel logout) 12-63 
device 

address 7 -12 
console 
end 
error 
I/O 

13-1 
12-53 

12-14 
12-2 

not-ready state 12-10 
status 12-40 

DIAGNOSE instruction 10-4 
digit codes, decimal 8-2 
digit selector 8-5 
direct-access storage 3-3 
disabling 

for interruptions 6-4 
the interval timer 4-20 

disallowed interruption 6-4 
DISCONNECT PAGE (DCTP) instruction 10-5 

X-4 IBM 4300 Processors Principles of Operation 

disconnected (page) state 3-4 
displacement 5-4 
displav 13-2 
DIVIDE (0, DR) binary instructions 7-16 

example A-13 
.DIVIDE (DO, DDR, DE. DER) floating-point instructions 
DIVIDE DECIMAL (DP) instruction 8-4 

example A-26 
doubleword 3-2 
dump, standalone 13-3 

E 
early exception recognition 6-6 
EC (extended-control) mode 4-3 

control bit in PSW 4-5, 4-6 
PSW format in 4-4 

ECC (error checking and correction) 11-1 
ECPS:VSE mode (extended control program support: 

virtual storage extended mode) 1-1 
selection of 13-2 

EDIT (ED) instruction 8-5 
example A-27 

EDIT AND MARK (EDMK) instruction 8-8 
example A-28 

EDIT functions, summary 8-7 
EFCC (existing-fram~-capacity count) 3-5 
emulation instruction, PER event for 4-12 
enabling (for interruptions) 6-4 
equipment check 12-41 
error 

alert (in limited channel logout) 12-64 
channel-equipment 12-14 
channel-programming 12 ... 14 
checking and correction (ECC) 11-1 
device 12-14 
state of time-of-day clock 4-16 
storage 11-8 
storage-key 11-8 

event 
monitor 4-8 
PER 4-9 

exception 
addressing 
data 6-9 

6-9 

decimal-divide 6-10 
decimal-overflow 6-10 
early recognition of 
execute 6-10 
exponent-overflow 
exponent-underflow 
fixed-point-divide 
fixed-point-overflow 
floating-point-divide 
late recognition of 

6-6 

6-10 
6-10 

6-10 
6-11 
6-11 

6-6 



!(ception (continued) 

operation 6-11 
page-access 6-11 
page-state 6-12 
page-transition 6-12 
privileged-operation 6-12 
protection 6-12 
significance 6-13 
special-operation 6-13 
specification 6-13 

xceptions 6-8 
access 6-13 
associated with PSW 6-6 

~XCLUSIVE OR (X, XC, XI, XR) instructions 
examples A-13 

~XECUTE (EX) instruction 7 -17 
example A-14 

PER event for target instruction 4-12 
:xecute exception 6-10 
:xigent condition 11-4 
:xisting-frame-capacity count (EFeC) 3-5 
:xponent 9-1 

(see also floating-point) 
overflow 9-6, 9-9, 9-12, 9-13 

exception 6-10 
underflow 9-6, 9-9, 9-10, 9-13 

exception 6-10 
mask bit for 4-5, 4..;6 

~xtended 

control (see EC mode) 
control program support (see ECPS:VSE mode) 
floating-point number 9-1 

~xternal 

damage 11-7 
mask bit for 4-8, 11-10 

interruption 6-19 
clock-comparator 4-18, 6-19 
CPU-timer 4-18, 6-19 
external-signal 6-20 
interrupt-key 6-20 
interval-timer 4-19, 6-20 
priority 6-19 
sub mask bits 6-19 

mask 4-5, 4-6 
signal 6-20 

mask bit for 4-8 
externally initiated functions 4-20 

F 
failing-storage address 3-9, 11-9 

validity bit 11-8 
fetch protection 3-6 
fetch reference to storage 5-7 
fetching, instruction 5-6 
fetch-protection bit 3-4 

7-17 

FFCC (free-frame-capacity count) 3-6 
field separator 8-5 
fill character 8-5 
fixed- to floating-point conversion, example of 
fixed-point (see also binary) 

divide exception 6-10 
overflow exception 6-11 
overflow mask 4-5, 4-6 

flags (in CCW) 12-31 
floating-point (see also exponent) 

characteristic 9-1 
comparison 9-8 
data format 9-1 
divide exception 6-11 
fraction 9-1 
instructions 9-1 

examples for A-30 
summary 9-5 

number representation 9-3 
examples A-4 

range 9-3 
register 2-2 

save area for 3-9 
validity bit 11-9 

rounding 9-12 
shifting (see normalization) 
sign bit 9-3 

format 
address 
data 

3-1 

. floating-point 9-1 
general-instruction 7-1 

information 3-1 
instruction 5-2 

format error, PSW 6-6 
fraction 9-1 
frame, control 3-5 
frame index 3-5 
free-frame-capacity count (FFCC) 
fullword 3-1 

G 
general instructions 7-1 

data formats of 7-1 
examples for A-6 

general register 2-2 
alteration (PER event) 4-12 

masks for 4-8 
save area for 3-9 
validity bit 11-9 

guard digit 9-2 

H 
halfword 3-1 
HALT DEVICE (HDV) instruction 

3-6 

12-18 

A-5 

Index X-5 



HALT I/O (HIO) instruction 12-21 
HAL VE (HDR, HER) instructions 9-9 
hexadecimal (hex) representation 5-3 
high-order bits 3-1 

I 
I field of instruction 5-1 
IC (instruction counter) (see instruction address) 
ID (see channel identification, CPU identificati~D) 
ILC (see instruction-length code) 
IML (initial microprogram loading) 13-2 

controls 13-2 
immediate 'I/O operation 12-44 
immediate operand 5-3 
incorrect length (of I/O block) 12-55 
index 5-4 
index handling, instructions for 7-10 
index register 2-2 
indicator 

check-stop 13-2 
load 13-3 
manual 13-3 
mode 13-3 
save 13-4 
system 13-5 
test 13-5 
wait 13-5 

information format 3-1 
initial 

microprogram loading (IML) 13-2 
program loading (IPL) 4-24 

assigned storage locations for 3-9 
program reset 4-23 

input/output (see I/O) 

INSERT CHARACTER (IC) instruction 7-18 
INSERT CHARACTERs UNDER MASK (ICM) 

instruction 7 -18 
examples A-I5 

INSERT PAGE BITS (IPB) instruction 10-5 
INSERTPSW KEY (IPK) instruction I()"5 
INSERT STORAGE KEY (ISK) instruction 1()"6 
instruction 

address (in PSW) 4-5, 4-7 
validity bit for 11-8 

€lasses 2-2 
execution sequence 5-4 
fetching 5-6 
fetching (PER event) 4-12 

event mask 4-8 
format 5-2 
interruptible 6-7 
length code (ILC) 6-4 

assigned storage locations for 3-9 
in BC-mode PSW 4-6 

lists B-1 

X-6 IBM 4300 Processors Principles of Operation 

instruction (continued) 

modification by EXECUTE instruction 7-17 
prefetching 5-6 
processing damage 11-7 
step 

effect on CPU state of 4-2 
rate-control setting 13-4 

use examples A-5 
instruction counter (see instruction address) 
instructions 

control 10-1 
decimal 8-1 

examples A-25 
floating-point 9-1 

examples A-30 
,~eneral 7-1 

examples A-6 
I/O 12-15 
privileged 4-2 
storage-control 3-6 

integer 
binary 7-1 

examples A-2 
decimal 8-2 

integral boundary 3-2 
interface-control check 12-57 
intermittent failure· 11-3 
internal storage 2-2 
interrupt key 13-2 

external interruption 6-20 
mask 4-8 

interruptible instructions 6-7 
COMPARE LOGICAL LONG 
MOVE LONG 7-23 
stopping of 4-3 

interruption 6-1 
action 

I/O 12-49 
machine-check 11-4 

code 6-2 
assigned storage locations for 
in BC-mode PSW 4-6 
machine-check 11-6 

conditions 6-1 
I/O 12-47 

external 6-19 
input/ output 
machine-check 

code 11-6 
mask bits 6-4 

6-20 
6-8 

pending 6-4 
I/O state for 12-8 
machine-check 11-5 

7-14 

3-9 



interruption (continued) 
priority 6-21 
program 6-8 
restart 6-21 
supervisor-call 6-8 

interruptions, string of 6-22 
interval timer 4-19 

control 13-3 
damage 11-7 
disabling of 4-20 
external interruption 4-19, 6-20 
location 80 for 4-19 
mask 4-8 
update reference 5-9 
updating of 4-3 

intervention required 12-41 
invalid 

address 6-9 
CBC 11-1 

in page descriptions 11-3 
in registers 11-3 
in storage 11-2 

channel programs 12-55 
operation code 6-11 

inverse move 7-22 
I/O 

devices and control units 2-4 
operations 2-3 

I/O (input/outpuf 12-1 
address .12"7~ 12-14 

assigned storage location for 
commands 12-37 
communications area (IOCA) 
data block 12-30 
device 12-2 

address 12-7 
attachment 12-50 
attachment, end 12-53 
attachment, error 12-14 
attachment, not-ready state 
attachment, status 12-40 

instructions 12-15 
interface position 12-48 
interruption 6-20 

action 12-49 
conditions 12-47 
priority 12-48 

mask in PSW 4-5,4-6 
operations 

compatibility of 7-12 
conclusion of 12-43 
storage-area designation for 

selective reset 12-18 
state 12-8 
status 12-50, 12-55 

3-9 

12-63 

12-10 

12-32 

I/O (input/output) (continued) 
system reset 12-18 

as part of program reset 4-21 
system state 12-8 

IOCA (I/O communications area) 12-63 
IPL (initial program loading) 4-24 

assigned storage locations for 3-9 

K 
key 

access 3-6 
interrupt 
load-clear 
load-normal 

13-2 
13-3 

13-3 
machine-save 13-3 
restart 13-4 
start 13-4 
stop 13-4 
storage (see also page description) 
storage 3-3 
system-reset-clear 13-5 
system-reset-normal 13-5 

key-controlled protection 3-6 

L 
L field of instruction 5-1 
late exception recognition 6-6 
left-to-right addressing 3-2 
length 

instruction 5-2 
I/O-block (see also count, I/O) 
I/O-block 12-55 
operand 5-1 

limited channel logout 3-9, 12-63 
link information (for BRANCH AND LINK 

instruction) 7-8 
linkage, subroutine 5-4 
load 

clear key 13-3 
indicator 13-3 
normal key 13-3 
state 4-2, 4-24 . 

assigned storage in 3-9 
unit-address controls 13-3 

LOAD (L, LR) binary instructions 7-19 
example A-16 

LOAD (LD, LDR, LE, LER) floating-point 
instructions 9-10 

LOAD ADDRESS (LA) instruction 7-19 
examples A-16 

LOAD AND TEST (LTDR, L TER) floating-point 
instructions 9-10 

LOAD AND TEST (LTR) binary instruction 7-19 

Index X-7 



LOAD COMPLEMENT (LCDR, LeER) floating-point 
instructions 9-11 

LOAD COMPLEMENT (LCR) binary instruction 7-20 
LOAD CONTROL (LCTL) instruction 10-6 
LOAD FRAME INDEX (LPI) instruction 10-6 
LOAD HALFWORD (LH) instruction 7-20 

examples A-16 
LOAD MULTIPLE (LM) instruction 7-20 
LOAD NEGATIVE (LNDR, LNER) floating-point 

instructions 9-11 
LOAD NEGATIVE (LNR) binary instruction 7-21 
LOAD POSITIVE (LPDR, LPER) floating-point 

instructions 9-11 
LOAD POSITIVE (LPR) binary instruction 7-21 
LOAD PSW (LPSW) instruction 10-7 
LOAD ROUNDED (LRDR, LRER) instructions 9-12 
loading 

initial microprogram 13-2 
initial program 4-24 

location not provided 6-9 
location 80 (for interval timer) 4-19 
logical 

arithmetic (see unsigned binary arithmetic) 
comparison 7-3 
connective 

AND 7-8 
EXCLUSIVE OR 7-17 
OR 7-27 

data 7-1 
logout 

limited channel 3-9, 12-63 
pending 12-49 

long 
floating-point number 9-1 
I/O block 12-55 

look aside for storage keys 
loop control 5-5 
low-order bits 3-1 

M 
machine malfunction 11-1 

11-3 

effect on manual operation of 
machine save 4-25 

key 13-3 
machine status 

retrieval 10-8 
saving 4-25 

machine-check 
detection 11-1 
interruption 6-8 

action 11-4 
code (MCIC) 11-6 

mask in PSW 4-5, 4-6 
sub mask bits 11-9 

13-1 

X-8 IBM 4300 Processors Principles of Operation 

main storage (see also storage) 
main storage 2-1, 3-1 
MAKE ADDRESSABLE (MAD) instruction 
MAKE UNADDRESSABLE (MUN) instruction 
malfunction 

machine 11-1 
effect on manual operation of 13-1 

manual indicator 13-3 
mask 

interruption 6-4 
clock-comparator 
CPU-timer 4-8 

4-8 

decimal-overflow 
degradation-report 
exponent-underflow 
external 4-5, 4-6 

4-5, 4-6 
4-8, 11-10 
4-5, 4-6 

external-dam age-report 4-8, 11-10 
external-signal 4-8 
fixed .. point-overflow 4-5, 4-6 
general-register-alteration-event 4-8 
instruction-fetching.-event 4-8 
interrupt-key 4-8 
interval-timer 4-8 
I/O 4-5,4-6 
machine-check 4-5, 4-6 
PER 4-5,4-9 
program 4-5, 4-6 
recovery-report 4-8, 11-10 
significance 4-5, 4-6 
storage-a! teration-event 4-8 
successful-bran ching-event 4-8 
warning 4-8, 11-10 

mask field 

10-7 
10-8 

for BRANCH ON CONDITION instruction 7-9 
for COMPARE LOGICAL CHARACTERS UNDER 

MASK instruction 7-14 
for INSERT CHARACTERS UNDER MASK 
instruction' 7-18 

for STORE CHARACTERS UNDER·MASK 
instruction 7-32 

masks 
channel 

in BC-mode PSW 4-6 
in control register 4-8 

machine-check 11-9 
monitor 4-8 
PER general-register 4-8, 4-9 
PER-event 4-9 

maximum negative number 7-2 
MCIC (machine-check-interruption code) 11-6 
message character 8-5 
microprogram, initial loading of 13-2 



mode 
BC 4-3 
burst 12-3 
byte-multiplex 
EC 4-3 

12-3 

control bit in PSW 4··5, 4-6 
ECPS:VSE 1-1 
indicator 13-3 
System/370 1-1 

model 
channel 12-26 
CPU 10-13 

modifier bits, in CCW command code 
monitor 

class number 3-9, 4-9 
code 3-9, 4-9 
event 4-8 

as a program interruption 6-11 
masKS 4-H 

12-32 

MONITOR CALL (MC) instrliction 7-21 
monitoring 4-8 
MOVE (MVC, MVI) instructions 7-22 

examples A-14, A-17 
MOVE INVERSE (MVCIN) instruction 7-22 
MOVE LONG (MVCL) instruction 7-23 

example A-18 
MOVE NUMERICS (MVN) instruction 7-25 

example A-18 
MOVE WITH OFFSET (MVO) instruction 7-25 

example A-19 
MOVE ZONES (MVZ) instruction 7-26 

example A-19 
MULTIPLY (M, MR) binary instructions 7-26 

examples A-20 
MULTIPLY (MD, MDR, ME, MER, MXD, MXDR, MXRl 

floating-point instructions 9-12 
MULTIPLY DECIMAL (MP) instruction 8-8 

example A-28 
MUL TIPL Y HALFWORD (MH) instruction 7-27 

example A-20 
multiprocessing, considerations for 7-4, 8-2, A-32 
multiprogramming examples A-32 

N 
near-valid CBC 11-1 
negative zero 

binary 7-2 
decimal, example of 

new PSW 4-4 
A-4 

assigned storage locations for 3-8 
nonshared subchannel 12-4 
nontransparent nullification 6-16 
no-operation (I/O control command) 12-40 

normal key 
load 13-3 
system-reset 13-5 

normalization 9-3 
not-available state (I/O system) 
not-operational state 

of I/O syslem 12-8 

12-8 

12-10 
of time-of-day clock 4-16 

not~ready state (I/O device) 
not-set state (time-of-da~! clock) 
nullification (instn~~:'ion ending) 

exception to rule for 6-16 
nontransparent 6-16 

number, CPU mod~l 10-13 
number representation 

binary, examples of A-2 
decimal 8-2 

examples of A-3 
floating-point 9-3 

examples A-4 
numbering 

addresses (byte locations) 3-2 
bits 3-1 

numeric bits 8-1 

o 

4-16 
6-7 

old PSW, assigned storage loca~.ons for 3-8 
one's complement binary notation 7-2 

used for: SUBTRACT LOGICAL instruction 7-35 
one-level· addressing 3-2 
op code (operation code) 5-1 
operand 5':'1 

address generation 5-4 
immediate 5-3 
length 5-1 
overlap 7-2 

decimal 8-2 
register 5-3 
storage 5-3 

operating state 4-2 
assigned storage in 3-8 

operation 
code (op code) 5-1 

invalid 6-11 
exception 6-11 
unit of 6-7 

operational (I/O state) 12-8 
operator facilities 2-4, 13-1 
OR (0, OC, 01, OR) instructions 7-27 

example of problem with OR immediate A-32 
examples A-21 

organization, system 2-1 
overflow 

binary 7-3 
decimal 6-10 

Index X-9 



overflow (continued) 

exponent 6-10 
fixed-point 6-11 

overlap 
destructive 
operand 

7-23 
7-2 

decimal 8-2 
overrun 12-41 

P 
PACK (PACK) instruction 7-28 

example A-21 
packed decimal number 8-2 

examples A-3 
padding byte 

for COMPARE LOGICAL LONG instruction 7-14 
for MOVE LONG instruction 7-23 

page 3-3 
address 3-3 
bits 3-4 
control 3-5 
description 3-3 

sequence of references for 
validation of 11-3 

frame 3-3 
state 3-4 

page-access exception 6-11 
as an access exception 6-13 

page-capacity count (PCC) 3-5 
page-state exception 6-12 
page-transition exception 
page-O 

retrieval 10-8 
saving 4-25 

parity bit 11-1 
pattern 8-5 

6-12 

PCC (page-capacity count) 3-5 

5-6 

PCI (program-controlled interruption) 
channel status 12-5 5 
flag 12-31 

pending interruption 6-4 
PER (program-event recording) 

address 3-9 
wraparound 4-11 

code 3-9 
ending address 
event 4-9 

4-8, 4-] 0 

4-9 

concurrent interruption conditions 
for emulation instruction 4-12 
masks 4-9 
priority 4-11 
program interruption 6-12 
storage-area designation 4-12 
successful branching 4-12 

12-36 

4-13 

X-I0 IBM 4300 Processors Principles of Operation 

PER (program-event recording) (continued) 

general-register masks 4-8, 4-9 
mask 4-9 

in PSW 4-5 
4-8, 4-10 

6-7 
starting address 

point of interruption 
for machine check 

postnormalization 
11-5 

9-3 
power controls 13-4 
power-on reset 4-23 
precision 9-1 
preferred sign codes 8-2 
prefetching 

for I/O 12-33 
instruction 5-6 

prenormalization 9-3 
pretest for accessibility 6-16 
priority 

access exceptions 6-17 
interruption 6-21 

external 6-19 
I/O 12-48 
program 6-17 

PER event 4-11 
privileged instructions 4-2 

for control 10-1 
for I/O 12-15 

privileged-operation exception 
problem state 4-2 

bit in PSW 4-5, 4-6 
program 

check 12-55 
event (see PER event) 
exceptions 6-8 
initial loading of 4-24 
interruption 6-8 

priority 6-17 
mask 4-5, 4-6 

validity bit for 11-8 
reset 4-21 
status word (PSW) 4-4 

6-12 

program event recording (PER) 4-9 
program-controlled interruption (PCI) 

channel status 12-55 
flag 12-31 

protection 
check 12-56 
exception 6-12 

as an access exception 6-13 
storage 3-6 

PSW (program-status word) 4-4 
assigned storage location (during IPL) 
BC-mode 4-6 
EC-mode 4-4 
exceptions associated with 6-6 

12-36 

3-9 



PSW (program-status word) (continued) 

format error 6-6 
validity bits 11-8 

PSW key 3-6 
in PSW 4-5, 4-6 

R 
R field of instruction 5-1 
range, floating-point 9-3 
rate control 13-4 
read command 12-39 
read-backward command 
real storage 3-3 
recovery 

condition 11-4 
mask bit for 4-8, 11-10 
system 11-7 

redundancy 11-1 
reference 

sequence 
for instructions 5-5 
for operands 5-7 

12-39 

for page description 5-6 
for storage 5-5 

single-access 5-8 
reference bit 3-4 
reference recording 3-7 
register 

base-address 2-2 
index 2-2 
operand 
save areas 
validation 
validity bits 

5-3 
3-9, 11-9 
11-3 

11-9 
remote operating stations 
report masks 4-8, 11-10 
repressible condition 11-4 

13-1 

repressible-damage condition 11-4 
RESET REFERENCE BIT (RRB) instruction 10-8 
resets 4-20 

effect on CPU state of 4-3 
I/O 12-18 

resolution, time-of-day clock 4-16 
restart 

effect on CPU state of 4-2 
interruption 6-21 
key 13-4 

retrieval 
of machine status 10-8 
of page 0 10-8 

RETRIEVE STATUS AND PAGE (RSP) instruction 
~etry, CPU 11-1 

10-8 

rounding 
decimal 8-8 
factor 8-9 
floating-point 9-12 

RR instruction format 5-2 
RS instruction format 5-2 
running 

of CPU (see wait state) 
of time-of-day clock 4-16 

RX instruction format 5-2 

s 
S instruction format 5-2 
save 

areas for registers 3-9, 11-9 
indicator 13-4 
machine (status and page 0) 4-25 

selective (I/O) reset 12-18 
selector channel 12-4 
self-describing (I/O) block 12-35 
sense 

command 12-40 
data 12-40 

sequence 
code (in limited channel logout) 12-64 
conceptual 5-5 
instruction-execution 5-4 
of storage references 5-5 

serialization 
channel 5-10 
CPU 5-9 

SET CLOCK (SCK) instruction 10-9 
SET CLOCK COMPARATOR (SCKC) instruction 10-9 
SET CPU TIMER (SPT) instruction 10-10 
SET PAGE BITS (SPB) instruction 10-10 
SET PROGRAM MASK (SPM) instruction 7-28 
SET PSW KEY FROM ADDRESS (SPKA) 10-10 
set state (time-of-day clock) 4-16 
SET STORAGE KEY (SSK) instruction 10-11 
SET SYSTEM MASK (SSM) instruction 10-11 
shared control unit and subchannel 12-5 
SHIFT AND ROUND DECIMAL (SRP) instruction 8-8 

examples A-29 
SHIFT LEFT DOUBLE (SLDA) instruction 7-29 

example A-21 
SHIFT LEFT DOUBLE LOGICAL (SLDL) instruction 7-2 
SHIFT LEFT SINGLE (SLA) instruction 7-30 

example A-22 
SHIFT LEFT SINGLE LOGICAL (SLL) instruction 7-30 
SHIFT RIGHT DOUBLE (SRDA) instruction 7-30 
SHIFT RIGHT DOUBLE LOGICAL (SRDL) 

instruction 7 -3 1 
SHIFT RIGHT SINGLE (SRA) instruction 7-31 
SHIFT RIGHT SINGLE LOGICAL (SRL) instruction 7-32 
shifting, floating-point (see normalization) 

Index X-ll 



short 
floating-point number 9-1 
I/O block 12-55 

SI instruction format 5-2 
sign bit 

binary 7-2 
floating-point 9-3 

sign codes, decimal 8-2 
signal-in lines 6-20 
signed binary 

arithmetic 7-3 
comparison 7-3 
integer 7-1 

example A-2 
significance 

exception 6-13 
loss 9-7 
mask 4-5, 4-6 
starter 8-5 

single-access reference 5-8 
SIO function 12-23 
SIOF function 12-23 
size, storage 3-2 
skip flag 12-31 
skipping (during I/O) 12-36 
SLI (suppress-length indication) 12-31 
solid failure 11-3 
source field (in limited channel logout) 
special-operation. exception 6-13 
specification exception 6-13 
SS instruction format 5-2 
SSM (SET SYSTEM MASK) suppression 

control 6-13 
bit in CR 0 4-8 

standalone dump 
standard epoch 
start 

function 4-2 
key 13-4 

13-3 
4-16 

START I/O (SIO) instruction 12-23 

12-63 

10-11 

START I/O FAST RELEASE (SIOF) instruction 
state 

CPU 4-1 
page 3-4 
time-of-day clock 4-16 

states, I/O system 12-8 
status 

device 
in CSW 
modifier 
system 

12-40 
12-50, 12-60 
12-50 

13-5 
word, program 4-4 

stop 
function 4-2 
key 13-4 

stopped state 4-2 

X-12 IBM 4300 Processors Principles of Operation 

12-23 

storage 3-1 
address wraparound 3-2 

for MOVE INVERSE instruction 7-22 
for MOVE LONG instruction 7-23 

addressing 3-2 
alteration (PER. event) 4,..12. 

event mask 4-8 
area designation 

for I/O operations 12-32 
for PER events 4-12 

assigned locations in 3-8 
auxiliary 3-1, 3-3 
clearing 

by CLEAR PAGE instruction 10-3 
by clear reset 4-23 

control instructions 3-6 
control unit (in limited channel logout) 
direct-access 3-3 
error 11-8 
internal 2-2 
key 3-3 

(see also page description) 
error 11-8 

location not provided 3-3 
logical validity bit 11-9 
main 3-1 
operand 5-3 

consistency 5-8 
fetch reference 5-7 
store reference 5-7 
update reference 5-7 

protection 3-6 
real 3-3 
sequence of references to 5-5 
sharing, examples of A-32 
size 3-3 
size control 13-4 
validation 11-2 

by CLEAR PAGE instruction 10-3 
virtual 3-3 
volatile 3-2 

STORE (ST) binary instruction 7-32 

12-63 

STORE (STD, STE) floating-point instructions 9-14 
STORE CAPACITY COUNTS (STCAP) instruction 10-11 
STORE CHANNEL ID (STIDC) instruction 12-26 
STORE CHARACTER (STC) instruction 7-32 
STORE CHARACTERS UNDER MASK (STCM) 

instruction 7-32 
examples A-22 

STORE CLOCK (STCK) instruction 7-33 
STORE CLOCK COMPARATOR (STCKC) 

instruction 10-12 
STORE CONTROL (STCTL) instruction 10-12 
STORE CPU ID (STIDP) instruction 10-12 
STORE CPU TIMER (STPT) instruction 10-13 



STORE HALFWORD (STH) instruction 7-33 
STORE MULTIPLE (STM) instruction 7-33 

example A-23 
store reference to storage 5-7 
STORE THEN AND SYSTEM MASK (STNSM) 
instruction 10-13 

STORE THEN OR SYSTEM MASK (STOSM) 
instruction 10-14 

string of interruptions 6-22 
subchannel 12-4 

key 3-6 
in CAW 12-30 
in CSW 12-49, 12-58 

nonshared 12-5 
shared 12-5 
subchannel 12-5 

submask bits 
external-interruption 6-19 
machine-check 11-9 

subroutine linkage 5-4 
SUBTRACT (S, SR) binary instructions 7-34 
SUBTRACT DECIMAL (SP) instruction 8-10 
SUBTRACT HALFWORD (SH) instruction 7-34 
SUBTRACT LOGICAL (SL, SLR) instructions 7-34 
SUBTRACT NORMALIZED (SD, SDR, SE, SER, SXR) 

instructions 9-14 
SUBTRACT UNNORMALIZED (SU, SUR, SW, SWR) 

instructions 9-14 
successful bra,nching 

event mask 4-8 
PER event 4-12 

SUPERVISOR CALL (SVC) instruction 7-35 
supervisor state 4-2 
supervisor-call interruption 6-8 
suppression (instruction ending) 6-7 
suppress-length-indication (SLI) flag 12-31 
swapping 7 -11 
system 

damage 11-7 
indicator 13-5 
mask 4-4 
organization 2-1 
recovery 11-13 
reset (see also clear reset, program reset) 

clear key 13-5 
I/O 12-18 
normal( key 13-5 

status 13-4, 13-5 I 

System/370 mode 1-1 
selection of 13-2 

T 
target of EXECUTE instruction 7-18 

PER event for 4-12 
termination (instruction ending) 6-7 
termination code (in limited channel logout) 12-64 
TEST AND SET (TS) instruction 7-35 
TEST CHANNEL (TCH) instruction 12-27 
test indicator 13-5 
TEST I/O (TIO) instruction 12-27 
TEST UNDER MASK (TM) instruction 7-36 

example A-23 
TIC (transfer in channel) command 12-42 
time':'of-day (TOD) clock 4-15 

control 13-5 
resolution 4-16 
running of 4-16 
states 4-16 
updating of 4-3 
validation 11-3 

time-out, channel 12-4 
timer 

CPU (see CPU timer) 
interval (see interval timer) 

timing facilities 4-15 
timing-facility-damage bit 11-7 
TIO function 12-27 

performed by CLEAR I/O instruction 12-16 
TOD clock (see time-of-day clock) 
TOD-clock control 13-5 
transfer-in-channel (TIC) command 12-42 
TRANSLATE (TR) instruction 7-36 

example A-23 
TRANSLATE AND TEST (TRT) instruction 7-37 

example A-24 
true zero 9-3 
two's complement binary notation 7-2 

example A-2 

U 
unit 

check 12-53 
exception 12-54 
of operation 6-7 
status 12-50 

unnormalized floating-point number 9-3 
UNPACK (UNPK) instruction 7-38 

example A-25 
unsigned binary 

arithmetic 7-3 
integer 7-1 

example A-3 

Index X-13 



update reference to storage 
usage meter 13-5 

V 
valid CBC 
validation 

11-1 

of page descriptions 11-3 
of registers 11-3 
of storage 11-2 

5-7 

by CLEAR PAGE instruction 10-3 
of time-of-day clock 11-3 
usage of 11-3 

validity bits 11-8 
validity flags (in limited channel logout) 12-64 
version code, CPU 10-13 
virtual, address 3-1 
virtual storage 3-3 
volatile storage 3-2 

W 
wait indicator 13-5 
wait state 4-2 

bit in PSW 4-5, 4-6 
warning 

bit in machine-check interruption code 11-7 
mask 4-8, 11-10 

X-14 IBM 4300 Processors Principles of Operation 

word 3-1 

program status 
working (I/O state) 

wraparound 
of PER addresses 

4-4 

12-8 

4-12 
of register numbers 

for LOAD MULTIPLE instruction 7-20 
for STORE MULTIPLE instruction 7-33 

of storage addresses 3-2 

for MOVE INVERSE instruction 7-22 

for MOVE LONG instruction 7-23 
write command 12-39 

x 
X field of instruction 5-1 

z 
zero, true 9-3 

ZERO AND ADD (ZAP) instruction 
example A-30 

zero instruction-length code 6-5 

zone bits 8-1 
zoned decimal number 8-1 

examples A-3 

8-10 



IBM 4300 Processors 
Principles of Operation 
for ECPS:VSE Mode 
Order No. GA22·7070·0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. This form may be used to communicate your views about this publication. 
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. 
Comments may be written in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate 
without incurring any obligation whatever. You may, of course, continue to use the information you 
supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name and mailing address: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



GA22-7070-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 419 POUGHKEEPSIE, NY 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 898 
P.O. Box 390 
Poughkeepsie, New York 12602 

F old and tape 

== =-::::. .:::: ~R; - --------- - ---- - - ------------- - .-
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 

Please Do Not Staple 

Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

F old and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Q) 

c: 
....J 
Cl 
c: 
o 
~ 
"0 
-0 
u.. 
(; ... 
:::I 

U 

I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
- - -- ---

Fold and tape I 
I 
I 

I 
Q) 

c: 
-.oJ 
Cl 
c: 
o 
« 
"0 
(5 
U. 

o ... 
::J 

U 

I 
I 

o 
-h 

o 
"0 
~ 
OJ 
.-+ o· 
::::l 
-h 

~ 
m 
() 
\J 
(J) 

< 
(J) 
m 
S 
o 
a.. 
CD 

'"T1 

CD 
Z 
o 
.j::>. 
tv 
o 
o 
6 




	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	12-57
	12-58
	12-59
	12-60
	12-61
	12-62
	12-63
	12-64
	12-65
	13-01
	13-02
	13-03
	13-04
	13-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	replyA
	replyB
	xBack

