Systems

IBM 4331 Processor Channel Characteristics

Information contained in this manual is subject to change from time to time. Any such change will be reported in subsequent revisions or through the System Library Subscription Service.

Requests for copies of $I B M$ publications should be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of the publication. If the form has been removed, comments may be addressed to IBM Product Publications, Department 3179, Schoenaicher Strasse 220, 7030 Boeblingen/Wuertt., Federal Republic of Germany. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.
(C) Copyright International Business Machines Corporation 1979

This manual describes how the effects of imposing loads on the channels of the IBM 4331 processor can be checked. The book is intended for physical planning engineers and systems analysts who wish to check that a proposed configuration of input/output (I/O) devices will work satisfactorily in the IBM 4331 processor.

The first section of the book describes the types of channels to which $I / 0$ devices can be connected, the theoretical data rates of the channels, and the possible effects of imposing heavy I/O loads on those channels. The effects considered are: data overrun, loss of device performance, channel interference with the IBM 4331 processor, program overrun, and excessive channel utilization.

The second section gives the procedures for testing data overrun on individual channels, on the integrated channel bus, and on the IBM 4331 processor. The section also includes a description of how to assign priorities to devices on the byte multiplexer channel.

The third section deals with interference with the IBM 4331 processor that is caused by activities on the channels, and describes how the interference can be assessed. Estimates for the effects of this interference on system throughput are given and it is shown how to check for the possibility of program overrun.

The fourth section describes channel interference between I/O devices and how it can be calculated. The concept of channel utilization is given. Examples in this section show how the block multiplexing concept and the rotational position sensing feature reduce channel utilization. In addition, the impact of channel utilization on I/O device access time is described together with its estimated effect on system throughput.

The fifth section gives recommended channel programming conventions. Test procedures in this manual assume that channel programs have been prepared in accordance with these conventions.

Before using this manual, the reader should have a thorough understanding of input/output operations for the IBM 4331 processor as described in:

IBM 4331 processor Functional Characteristics GA33-1526
and
IBM 4300 Processor Principles of Operation, for ECPS: VSE Mode, GA22-7070.

When testing for data overrun on the byte multiplexer channel, a special worksheet is required: IBM 4331 Processor Channel Load Sum Worksheet; GA33-1532 (available in pads of 50).
GENERAL DESCRIPTION OF THE IBM 4331 PROCESSOR CHANNELS 1
Attachment Capabilities. 1
Effect of Channel Loading 3
TESTS FOR CHANNEL DATA OVERRUNS. 4
General. 4
Test $0 f$ Individual Channels 5
Test of The Integrated Channel Bus 6
Test for processor overrun 12
Internal Priorities. 12
Priorities on Byte Multiplexer Channel 13
Method of overrun Calculation. 18
Data Overrun Test procedure. 23
231X On BMPX Overrun Considerations. 30
I/O INTERFERENCE WITH PROCESSOR. 31
Channel interference timings 31
Calculation of I / O Interference with the processor 36
Interference due to Channel Activities in the processor. 36
Interference due to I/O Utilization of Main Memory 39
Effects of $I / 0$ Interfering with the processor 42
Effect of $I / 0$ Interference on System Throughput. 42
The Effect of I/O Interference on Program Overrun. 42
ChANNEL INTERFERENCE BETWEEN I/O DEVICES 45
Calculation $O f$ Channel Utilization 45
Procedure for Tape Devices 45
Procedure for Direct Access Storage Devices 48
Impact $0 f$ Channel Utilization On I/O Access Time 53
Effect of Channel Contention On System Throughput. 55
IMPLICIT ASSUMPTIONS 56
Channel Programming Conventions 56
IMMEDIATE OPERATIONS 56
DATA CHAINING. 56
CHAINABLE COMMANDS 57
APPENDIX A. CHANNEL EVALUATION FACTORS FOR DEVICES
ATTACHED TO BMPX AND DASD/MAGNETIC TAPE ADAPTERS. A 1
APPENDIX B. BYTE MULTIPLEXER DEVICES CHANNEL EVALUATION FACTORS 1
APPENDIX C. COMMUNICATIONS ADAPTER CHANNEL EVALUATION FACTORS C 1
APPENDIX D. IBM 2701 DATA ADAPTER UNIT: PRIORITY
ASSIGNMENT AND CHANNEL EVALUATION FACTORS D 1
How to Assign Priority Position of a 2701. D 1
How to Enter 2701 Priority Information on Load Sum Worksheet D2
How to obtain Channel Evaluation Factores for Each 2701 Communication Line. D 2

```
APPENDIX E. IBM 2702 TRANSMISSION CONTROL: PRIORITY
    ASSIGNMENT AND CHANNEL EVALUATION FACTORS . . . . . . . .E }
PROCEDURE WHEN TERMINAL CONTROLS AND SPEEDS ARE ALIKE. . .E }
PROCEDURE WHEN TERMINAL CONTROLS AND SPEEDS ARE DIFFERENT.E2
    How to Assign Priority Position of a 2702. . . . . . . . E2
    How to Obtain Channel Evaluation Factors of a 2702 . . .E 3
APPENDIX F. IBM 2703 TRANSMISSION CONTROL: PRIORITY
    ASSIGNMENT AND CHANNEL EVALUATION FACTORS . . . . . . . . F1
```


ATTACHMENT CAPABILITIES

Input/Output (I/O) devices can be connected to the IBM 4331 processor on the following standard channels:

- BYTE MULTIPLEXER CHANNEL (27 UNSHARED SUBCHANNELS + 4 SHARED)
- BLOCK MULTIPLEXER CHANNEL (32 UNSHARED SUBCHANNELS +8 SHARED)

The block multiplexer channel appears as selector channel to those devices that do not block multiplex.

In addition, certain I / O devices can be connected directly, by using the following adapters instead of the usual channel and control unit combination:
1.) DASD Adapter - for connecting the following series of disk devices:

- 3310 (up to 4 strings, max. 4 devices/string)
- 3370 (up to 4 strings, max. 8 devices/string)
- 3340 (up to 2 strings, max. 8 devices/string)
2.) MAGNETIC-TAPE Adapter - for connecting up to 6 IBM 8809 tape drives.
3.) Communications Adapter (CA) - for connecting up to eight Communication lines with the following rates:
BSC/SDLC: $60-64000$ BITS/SEC
S/S : 75-1200 BITS/SEC
One 64000 BIT/SEC line is exclusive to all other lines
4.) Bus-to-Bus Adapter 1 (BBA-1) - for connecting one 5424 Multifunction card Unit
5.) Bus-to-Bus Adapter 2 ($B B A-2$) - for connecting local terminals and printers.
- IBM 3278-2A operator console
- IBM 3278-2 keyboard/display
- IBM 3287 terminal printer $80 / 120$ cps
- IBM 3289-4 line printer 155/400 LPM
- IBM 3262-1 line printer 600 LPM
- user diskette

A maximum of 15 devices plus operator console can be attached, two of which can be line printers.

Although these devices are attached directly to adapters and not to the standard $I / 0$ channel interface, the devices appear to the programmer as if they were connected to channels as shown in Figure 1.1

Fig. 1.1 Use of channel by integrated adapters

Theoretical Data Rates of Channels

The theoretical maximum data rates, which can be measured under ideal conditions, of the IBM 4331 processor channels are:

Byte multiplexer channel: 500 kilobytes/second (burst mode) 18 kilobytes/second (byte mode)

Block multiplexer channel: 500 kilobytes/second

If the channels of the IBM 4331 processor are too heavily loaded, that is, if the processor attempts to communicate simultaneously with too many devices that have high data rates, the following effects can occux:

- Unbuffered $1 / 0$ devices may lose data; this is called data overrun. Data overrun occurs when a channel does not accept or transfer data within the required time limits. This data loss may occur if the total channel activity that is started by the program exceeds the channel capabilities. The possibility of data overrun can be checked as described in the section 'Tests for Channel Data overruns'.
- Processor performance may be reduced. This occurs if channel activities interfere with processor operations and effectively cause the processing of processor instructions to be slowed down. The duration of interference caused by channel activities is given in section 'I/O Interference with processor!. The effect of this I/O interference on system throughput is outlined in section effect of I/O interference on system throughput'.
- Certain real-time devices may not receive service from the program fast enough to prevent incorrect device operation; this effect is called program overrun and is described in section 'effect of $I / 0$ interference program overrun'.
- Queues may develop for tasks that require channel service, thus leading to loss of throughput; see the section 'Channel Interference between I / O Devices'.

Because of these effects, it is desirable that the loading of a particular configuration of $1 / 0$ devices be checked, using the procedures in this manual, during the physical planning phase of a system installation. These procedures will determine, in most cases, whether system operation will be satisfactory More detailed investigation may be necessary for configurations that appear to exceed the IBM 4331 processox input/output capabilities.

The tests assume the worst-case situation that is likely to occur in practice; that is, one in which the most demanding devices in the configuration all make their heaviest demands on the channels simultaneously. Such a situation may not occur frequently, but it is the situation that the procedures in this manual place under test.

The tests also assume that the channel programs are written in accordance with the rules given later in the section, 'Channel Programming Conventions'.

GENERAL

This section describes how the channels can be tested for data overrun. The test procedure involves three basic steps.

The first step is a check on the data rates of the individual I / O devices to find out whether any exceeds the maximum allowable data rate of the channel to which it is connected.

The second step consists in finding the worst case read-to-write ratios which in turn leads to the maximum allowable data rate on the integrated channel bus which multiplexes the data traffic from all channels.

The final and most critical test for data overrun uses the channel loading factors from the Appendix. The addition of the applicable loading factors in priority sequence can be done on a "channel load sum work sheet" and the result will show overrun hazard if the sum amounts to 100 or above.

The validity of the final step depends on a number of assumptions which are explainded in the Appendix. These assumptions include the expectation that certain loops (e.g. search-TIC-search, sense-TIC-sense, etc) are avoided as well as other hazardous techniques (e.g. long chains of immediate or no-op commands). It is especially assumed that the channel programming conventions listed in section implicit assumptions' are adhered to.

If actual system behavior is worse than implied by the assumptions, freedom from overrun cannot be predicted with certainty. If, on the other hand, actual system behavior is better than implied by the assumptions, the system may still be overrun-free even when calculations indicate otherwise. In this case, special investigation may be necessary.

Figure 2.1 shows the maximum possible data rates for each individual channel attached to the processor. The individual data rates are limited by the design of each channel, that is, by its internal micro code and hardware structure. Obviously none of the maximum data rates must ever be exceeded otherwise immediate data overrun is incurred.

The channels composed of Communications Adapter, Bus-to-Bus Adapter, DASD Adapter and Magnetic Tape Adapter are customized to accomodate all I/O device combinations within the constraints of the IBM 4331 processor configurator without causing data overrun. The byte multiplexer channel and the block multiplexer channel are capable of transferring data at maximum rate of 500 kilobytes per sec in burst mode. Input/output devices which transfer data at a higher rate cannot be connected to these channels.

The byte multiplexer channel, when operating in single byte mode is capable of transferring data at a rate of 18 Kilobytes per second. The maximum data rates for channels and direct attachments are shown below:

Note: The CA does not use the cycle steal facility. only a single line can operate 24 kilo bits per sec $=8$ Kilobytes per sec.

Figure 2.1: Channel Data Rates

When the individual channels have been verified to cause no data overrun among their own devices, the common interface between these channels and the storage must be tested for overrun. This interface is referred to in the following sections as "IC-bus'.

The data transfer priorities on the IC-bus are as follows:

1. Block Multiplexer Channel (BMPX)
2. DASD Adapter
3. Byte Multiplexer Channel (MPX)
4. Magnetic Tape Adapter
5. Bus-To-Bus Adapter 1,2 (BBA 1,2) (Local Displays, Printers, Diskettes)

If the processor is in trap level ≥ 4, the BBA 1,2 data transfer on the IC bus is stopped. Processor internal priorities are referred to in the following sections as 'trap level'. For details of these trap level priorities see section 'internal priorities'.

The maximum unidirectional data transfer rates are 3.67. Megabytes/sec for sequential I/O write operations, and 3.33 MB/sec for sequential I/o read operations. The figures include a degradation which is caused by the storage refresh interference.

However, such maximum data rates can rarely be achieved because the more realistic case is one where read and write operations alternate frequently. The IC timings for various read/write sequences are shown in figure 2.2. Based on these times, the maximum aggregate IC-data rates are computed as a function of the worst case read-to-write ratio that can be expected. The curves shown in figure 2.3 apply to the critical case where the processor operates in a trap level higher than level 4 , in which case the processor gets control for an average of 0.9 usec each time the IC-bus traffic changes from read to write.

Figure 2.2:: IC Bus Timings, PU Trap levels 4
For Traplevel >4 the sequence starts new after every change in diretion of data transfer.

Figure 2.3: Maximum IC Bus Rates

The general method for assessing IC-bus overrun is to use figure 2.3 in the following way:

1. List the maximum data rates Ri, i=1... 4 that can occur on BMPX, DASD Adapter, Magnetic Tape Adapter, and on MPX due to burst mode devices.
2. Divide the rates Ri into two classes and form the sum of the rates within each class with the intent to make the ratio between the sums in both classes as close to 1 as possible, but without becoming smaller than 1.
3. The ratio obtained in the preceding step represents the worst case read-to-write ratio that can be expected with the given configuration: Use this ratio to enter figure 2.3 on the abscissa (x-axis), then get the maximum allowable IC-bus data rate from the ordinate (y-axis).
4. If the IC-bus data rate found is smaller than the sum of all rates $R i$, then the planned configuration has a potential overrun hazard due to IC-bus interference.

A simpler, more straight-forward method can be used when one adapter has a data rate which is larger than the data rates summed up from all remaining adapters. This situation is quite often encountered, especially with high speed disk storage devices such as IBM 3310 and IBM 3370. Figure 2.4 shows the maximum allowable data rates that remain available on each adapter when high speed disk storage devices are connected.

Figure 2.4: Maximum allowable data rates for unbuffered burst mode devices on all channels, and buffered devices on block multiplexer channel and byte multiplexer channel, if the Magnetic Tape Adapter has tapes attached.

For other 'predetermined' rates Rp the maximum allowable'remaining' rate $R r$ can be found by solving the following non-linear equation:

$$
R p+R y=R m(R y)
$$

where Rm is the maximum allowable data rate given in figure 2.3 as a function of the read-to-write ratio (RD/WR).

The solution to the equation can be found by varying $R r$ until $R m(R D / W R)=R m(R p / R r)$ is equal to $R p+R r$.

By approximating Rm with a simple first order fractional polynomial it was possible to solve above equation in closed form. The result is shown in Figure 2.5, giving Rr as a function of Rp .

The maximum allowable data rates in Figure 2.4 apply to the case where the procesor operates at a trap level higher than 4, which means heavy cycle steal data transfer and chaining activity. The rates clearly show that an 3370 DASD operating together with a $3420-4$ magnetic tape unit (data rate 470 KB/sec) will not allow any additional burst mode data transfer from either a direct attached IBM 8809 tape or tape units attached to the byte multiplexer channel.

Figure 2.5: Remaining Possible Channel Rates Versus Given, Predetermined Rates

When the individual channels and the integrated channel have been checked, the processor must be tested for overrun because it is the central resource for all channel processing activities.

In the processor service is required for address and count updating after every fullword (4-byte) burst transfer. The processor is also needed for byte mode data transfer (byte multiplexer and communication adapter). Besides these service functions in the actual data transfer, the processor is employed in the initiation (Start I/O), termination (interrupt handing) and continuation (command or data chaining) processes on all channels.

To find the most critical device, that is, the device that will experience overrun if not serviced within a given time, it is necessary to look at the internal priority structure of the processor first, and to assign the correct selection priorities to the MPX-attached devices next. In addition, the general methods to calculate overrun based on previous load, priority load, and device load must be understood. The overrun calculation may then be carried out on a load sum worksheet.

INTERNAL PRIORITIES

The following internal priorities are implemented in the processor, as listed in descending order:

```
    0. Cycle steal burst mode data transfer
        Trap Level
                none
    1. Control store load, Microinstruction buffer none
        load
    2. DASD/Tape Adapter fast response operations
        (data chaining)
    3. Communications adapter transfer 7(*)
    4. Block multiplexer (not 231x operations) 6
    5. Byte multiplexer 5
    6. Disk/tape adapters (normal response) 4
    7. Bus-to-bus adapters (local displays, etc) 3
    8. Page boundary crossing 2
    9. PU trap handling 1
10. Instruction processing 0
*) Note: During the time the 231 x channel program is in operation, the priority levels of the communication adapter and the block multiplexer channel are interchanged.
```

Cycle steal operations are hardware controlled, hence, do not employ the $P U$ trapping mechanism but they intercept the micro code (with highest priority).

The cycle steal priorities between the individual channels
are given in figure 2.1. Cycle steal operations are here assumed to cause no overruns but they do present a priority load to all channel operations which have a lower priority.

Control store buffer loads or micro code buffer loads which are microcode controlled always take less than 5 usec, and therefore do represent previous loads. (Appendix B)

DASD/Tape Adapter fast response operations have the highest trap-priority but require only 8 micro seconds processor time, hence are not likely to cause overrun. The operations associated with $231 x$ disk devices are normally conducted on trap level 6 except for command chaining or data chaining. For $231 x$ chaining activities the trap levels are swaped between communication adaptex and $231 x$ so that the $231 x$ temporarily gets level 7 and the communication adapter gets level 6 assigned. In addition, all burst mode data transfer from other channels is stopped in favor of 2318 chaining on the block multiplexer. obviously, this preference treatment avoids overruns on the $231 x$ but may cause them on devices attached to the Magnetic Tape Adapter or the byte multiplexer channel. The effects of this procedure are separately explained in section 231 X on MPX overrun considerations'.

Channel sexvices which run on trap levels lower than 5 do not cause overrun and are, therefore, excluded from further discussion. However, delays in Disk/Tape Adapter-services on trap level 4 can cause additional disk retries after the channel reconnection point if the "disk ready" signal is missed. This non-linear effect on device performance will be discussed in chapter channel interference between $1 / 0$ devices'.

Delays in channel services rendered at trap level 3 (local displays, terminal printers, MFCU) will cause a linear performance degradation, that is, only a gradual slow-down during heavy channel activity is experienced.

Each trap level is allowed to disable higher trap priorities for a duration up to 5 usec. This time represents a certain previous load which is included in the previous loads of the Appendixes.

PRIORITIES ON BYTE MULTIPLEXER CHANNEL

The priority of devices on a byte-multiplexer channel is determined at the time of installation by the sequence in which they are connected to the channel. The cabling facilities provide considerable flexibility in the physical location and logical position of $I / 0$ devices.

Devices may have the priority sequence in which they are physically attached to the cable (select-out line priority), or the device most remote from the channel may be connected to have highest priority and the device nearest the channel connected to have lowest priority (select-in priority).

Each device on the byte-multiplexer channel cable may be connected (for selection) either to the select-out line, or to the select-in line. Thus, one or the other of the lines is specified in establishing priority for a desired physical layout of devices.

Priority assignments and machine-room layout should be established during the physical planning phase of an installation so that cables for the I/O devices may be properly specified.

A major consideration in assigning priority to multiplex mode devices is their susceptibility to overrun. Devices are identified in this manual as being in one of three classes:

Class 1: Devices subject to overrun, such as the IBM 2501 Card Reader.

Class 2: Devices that require channel service to be in synchronization with their mechanical operations. For example, the IBM 2540 Card Read Punch has a fixed mechanical cycle. Delay in channel service for such devices usually occasions additional delay due to synchronization lag.

Class 3: Devices that do not require synchronized channel service, such as an IBM 2260 Display station with a 2248 Display Control. An $I B M 1443$ printer is another device that does not require synchronized channel service: it can begin printing as soon as its buffer is full and line spacing is completed. Any loss of performance by devices in this class is limited to that caused by channel delay in providing service.

Devices in the first class need the highest priority. The devices in the last two classes may operate with reduced performance on an overloaded channel but are not subject to overrun: their control units have data buffers or an ability to wait for channel service. Devices in the second class, however, should have higher priority than those in the third class.

Within each class, devices are assigned decreasing priority in the order of their increasing wait-time factors: smaller wait-time factors should have higher priority. Wait time factors are listed in the Appendis and explained in section 'method of overrun calculations'.

The control unit determines whether a device operates on the byte-multiplexer channel in burst mode or in byte mode. If unbuffered byte mode devices are connected to the byte-multiplexer channel, all burst mode devices should be connected to the block-multiplexer channel. If no overrunable, unbuffered byte-mode devices are connected to the byte-multiplexer channel, burst mode devices may also be connected to the byte-multiplexer channel.

When burst mode devices are attached to the byte-multiplexer channel, they should have lower priority than buffered byte-mode devices. Low-priority devices take longer to
respond to selection than do higher-priority devices: a burst-mode device need be selected only once for an operation, but a byte-mode device must be selected for the transfer of each byte, or a short burst, of data.

Some devices, such as the IBM 2821 Control Unit, may operate on a byte-multiplexer channel in either burst mode or in byte mode, as determined by the setting of a manual switch on the control unit's customer engineer panel. Because of the high interference such devices cause in byte mode on lower priority channels, these devices should always be operated in burst mode instead of byte mode.

A byte-multiplexer channel can transfer data most rapidly in burst mode. Where an application uses only class 2 or 3 devices, that have the mode choice, improved byte-multiplexer-channel efficiency may be obtained by operating the devices in burst mode. Similarly, if a device can operate in single byte mode or in multibyte mode, the multibyte mode should be used for increased data transfer efficieny. Since the IBM 4331 processor can transfer 4 bytes with one memory access, the four byte mode should be choosen whenever available with the device.

Appendix B specifies whether a device operates in burst mode or in byte mode.

The Appendix B gives the wait times for devices that can be connected to the byte multiplexer channel and are liable to data overrun. The following device examples are class-2 or class-3 devices and no information is given in the Appendix because these devices do not overrun:

IBM 1017	Paper Tape Reader
IBM 1018	Paper Tape Punch
IBM 1403	Printer
IBM 1443	Printer
IBM 2150	Console
IBM 2250	Display Unit
IBM 2260	Display Station
IBM 2265	Display Station
IBM 2495	Tape Cartridge Reader
IBM 2540	Card Read Punch
IBM 2671	Paper Tape Reader
IBM 2715	Transmission Control Unit
IBM 3203	Printer
IBM 3211	Printer
IBM 3277	Display Station
IBM $3278-2$	Keyboard Displays
IBM 3284	Printer
IBM 3286	Printer
IBM 3287	Terminal Printer
IBM 3288	Printer
IBM 3289	Line Printer
IBM 3505	Card Reader
IBM 3525	Card Punch
IBM 3800	Printer
IBM 3881	Mark Reader
IBM 3886	Char. Reader
IBM 3890	DoG. Processor

Special Cases

Integrated 5424 MFCU attachment and diskette I/O drive are both considered class 3 devices which have the lowest priority on the byte multiplexer channel.

Devices Having Class-1 and Class-2 Components:

Class-1 devices that have an inseparable class-2 component should be assigned a priority according to the class-1 wait time. For example, the IBM 1442 Card Read Punch Model 1 incorporates a class-1 reading component and a class-2 punching component. The priority that is assigned to the 1442 Card Read Punch should be in the sequence of the wait time for the reading (class-1) component.

Burst Mode Devices:
The maximum data rate of the byte multiplexer channel for burst mode operations is reduced to 67 kilobytes/second if data chaining between every 4 bytes is used. Indirect data addressing (370 mode) will further reduce this rate to 52 KB.

Burst mode operation on the byte multiplexer channel is not recommended for concurrent operation with unbuffered byte mode devices, because a burst mode device monopolizes the channel for the duration of an entire operation, a period of time which is long relative to the wait times of typical byte mode devices. Therefore, any class-1 device that has not finished transferring all the bytes of a byte mode operation when the burst mode operation begins, is very likely to overrun. Similarly, class-2 or class-3 devices are likely to lose performance.

Example Priority Sequence:

Figure 2.6 shows an example priority sequence of devices and the arrangement of 'select out' and 'select in' lines to achieve these priorities.

Device Classes and Priority Positions

Device	Class	Wait time (ms)	Priority position
1419 Magnetic Character Reader, with expanded capability feature High-priority interface position	1	0.65	1
Low-priority interface position 2520 Card Read Punch Model B1,	1	1.02	3
2701 Data Adapter Unit			
1442 Card Read Punch Model N1, punching EBCDIC	2	11.00	5
1443 Printer	3	-	6

* Effective wait time for a 2701 serving three lines with wait times of (for example) $63.20 \mathrm{~ms}, 14.20 \mathrm{~ms}$, and 7.70 ms ;
'Select Out' and 'Select In' Lines Connected for Correct Priority Sequence

Figure 2.6: Example Prioxity Sequence of Devices on the Byte Multiplexer Channel, and 'Select In' and 'Select Out' Line Connections

Wait Time and Interference

Each I/O device has a wait time (WT). The wait time is the maximum period that the device can wait for completion of channel service before data overrun occurs (that is, the device loses data) or before its performance is impaired. In this manual, a device that is waiting for the completion of channel service is called a waiting device and any activity that causes a device to wait for channel service is called interference.

The following three types of interference can cause a device to wait for completion of channel service:

Previous load
Priority load
Device load
If the combined effect of these three types of interference causes the completion of channel service for a waiting device to be delayed beyond its wait time, the device may lose data (data overrun) or may suffer loss of performance as shown in figure 2.7. The procedure for testing data overrun (given later in this section) assumes the worst case, namely that all these factors cause interference with the waiting device.

3

Figure 2.7 Three Kinds of Interference Can Cause Channel Service to be Delayed Beyond a Waiting Device's Wait Time

A device on a channel may be forced to wait for channel service if another device with lower priority is in operation at the moment when the waiting device requests channel service. The lower-priority device must be allowed to finish its operation before channel service can be given to the waiting device. Interference of this type is called a previous load and is assumed to last for at most 0.10 millisecond (ms) (command chaining). The Appendixes to this manual contain tables of channel evaluation factors in which the previous load factor for each waiting device is expressed as a percentage of the wait time for that device.

Priority Load

The IBM 4331 processor services all attached devices in order of their priority. A waiting device on the byte multiplexer channel may for instance be forced to wait for channel service while channel sexvice is being given to devices on the block multiplexer channel, and higher-priority devices on the byte multiplexer channel. In this manual, a higher-priority device that can cause a waiting device to wait for channel service is called priority device. The interference from a priority device is called a priority load.

Because of the way in which data overrun is tested, the priority load of each priority device is expressed as a percentage of the waiting device's wait time. Therefore, a priority device does not necessarily have the same priority-load factor for all waiting devices. In the calculation of priority load, the interference is considered to have two distinct components: the A factor and the B factor.

A-FACTOR INTERFERENCE:
A-factor interference is caused by channel microcode activity, such as command chaining, for the priority device. The duration of this type of interference is significant compared with typical wait times. Therefore the priority load, being expressed as a percentage of wait time, depends on the wait time of the waiting device. For example, if a waiting device's wait time is 0.20 millisecond and the microcode activity associated with the priority device lasts for 0.10 millisecond, then the priority load is 50 percent. (In the channel evaluation factor tables, the A factors are expressed in milliseconds multiplied by 100. In the foregoing example, the A factor associated with a microprogram activitiy lasting 0.10 milliseconds is therefore 0.10 x $100=10.00$.) Figure 2.8 shows how A-factor interference varies with the wait time of the waiting device.

* The A factor given in the channel evaluation factor tables (in the appendixes) is the duration of interference in mitliseconds inultiplied by 100. If the duration of interference is 0.10 millisecond (as shown in the illustration), the A factor is $0.10 \times 100=10.00$. Thus, for a waiting device having a wait time of 0.2 millisecond, the interference is obtained directly as a percentage thus:

$$
\frac{\text { A factor }}{\text { Wait time }}=\frac{10.00}{0.2}=50 \%
$$

Figure 2.8: Example of Priority Device Causing Interference by Command Chaining (A-factor Interference)

Figure 2.9: Example of Priority Load Curve of a Priority Device Causing Interference by Transferring Data (B-factor Interference)

B-FACTOR INTERFERENCE:

B-factor interference is typically caused by data transfers to and from the priority device. As shown by the example in Figure 2.9, the duration of each data transfer is short compared with typical wait times; the data transfers occur frequently enough, however, to have a total effect that can be expressed as a percentage interference, namely, the B factor, that is constant for all wait times.

A AND B FACTORS COMBINED:
In actual $I / 0$ operations, the pattern of interference tends to be more complex than has been suggested by the example priority load curves in Figures 2.7 and 2.8. Usually, the A and B factors are both nonzero and the total priority load of a priority device is given by:

Priority load $=(A / W A I T$ TIME) $+\mathrm{B} \%$
where the wait time is that of the waiting device.

MULTIPLE A AND B FACTORS:
Some devices have only one set of A and B factors but others have more than one set; see the tables in the Appendixes. In these tables (as shown in Figure 2.10) the A and B factors have priority time factors associated with them that show the ranges of wait times (of waiting devices) for which the A and B factors are valid. Figure 2.10 also shows how to choose the appropriate A and B factors according to the wait time of a waiting device. The selection principle is the following: pick the time (in the Time-column) closest to but smaller than the wait time of the waiting device, then use the associated A and B factors. In other words, the wait time of the waiting device must fit between the time factors of the priority device.

Example 1
When considering the priority load which a 2501 Card Reader Model B2, (that is reading EBCDIC) imposes upon a waiting device that has a wait time of 10 ms , use the following priority load factors:
$A=5.65$ and $B=15.0$ (because 10 ms is in the range. 325 ms to 25 ms)

Example 2
Similarly, for a waiting device that has a wait time of .3 ms , use the following priority load factors:
$A=10.53$ and $B=0.00$ (because .3 ms is in the range . 100 ms to . 325 ms

Figure 2.10: Examples Showing How to Choose Priority Load Factors

When channel service to priority devices has finished (see Figure 2.6), channel service to the waiting device then starts and continues until the data byte has been transferred to or from the waiting device. The delay caused by providing this channel service to the waiting device is called the device load and is expressed in the channel evaluation factor tables as a percentage of the device's own wait time.

data overrun test procedure

The test for data overrun involves the calculation of a load sum for each waiting device. These calculations are given as a step-by-step procedure in Figure 2.11.

Before starting the step-by-step procedure:

1. Obtain IBM 4331 processor Channel Load Sum Worksheet GA33-1532.
2. Check that the configuration of burst mode devices has been decided and tested for data overrun; see test of Integrated Channel Bus' in this section.
3. Check that the devices to be connected to the byte multiplexer channel have been assigned their priorities as described under 'Priorities on Byte Multiplexer Channel' in this section.

Calculate the load sums as shown in Figure 2.11. Steps (1) through(5) of the procedure consist of copying on to the load sum worksheet all data that are required for the data overrun calculations. Steps (6) through (9) yield the load sum for each class-1 device. From the load sum, the possibility of data overrun can be assessed.

Figures 2.12 and 2.13 give examples of obtaining load sums.
For each waiting device to operate satisfactorily (that is, without data overrun), its load sum must be less than 100 . If, however, any of the load sums is greater than 100 , the reader is advised either to try an alternative configuration or to consult his local IBM representative for a more detailed analysis.

It is particularly important that the load sum for the communications adapter does not exceed 100 because, if data overrun occurs on output from CA, special programming support is needed for recovery.

The foregoing procedure for testing data overrun assumes that:

1. Each waiting device makes its request for channel service at the worst possible time, that is, when all the priority devices combine to cause maximum interference during the waiting device's wait time. However, the greater the number of priority devices that contribute to the load sum for a particular waiting device, the less likelihood there is of all worst-case conditions occurring simultaneously.
2. Devices all work at their maximum possible data rates, or at their tolerance limits, whichever is the worst case.
3. Data field lengths and command sequences cause the worst interference that can be reasonably expected in practice.
4. Channel programming conventions have been followed; see the section 'Channel Programming Conventions'.

โBM

IBM 4331 Processor: Chanr

Figure 2.11: Procedure for Calculating Load Sums

Procedure for Calculating Load Sums, Using the Load Sum Worksheet of Figure 2.11:
(1) At the top of the 'Waiting Devices' columns numbered 1 , 2, 3, and so on, enter the device model numbers of the I/o devices in the priority sequence previously established (according to traplevel priorities and prioxities on byte multiplexex bus.)

Notes:
a.) Treat each communication line that is connected to a 2701 Data Adapter Unit as an individual waiting device; see Appendix D.
b.) Class-2 or class-3 devices can be delayed in certain worst-case conditions, but can never overrun, and therefore need not be entered on the worksheet.
c.) Each burst mode device that is attached to a block multiplexer. channel should also be entered as a waiting device, to assure proper consideration of its priority load on other devices.
(2) For the waiting device entered in column 1 , obtain the following values from the appendixes (rear of this manual):
a. Wait time 7 Copy these values into the Device load $\quad \mid->$ appropriate boxes of the vertical Previous load | column for the waiting device being considered, as shown by 2a in Fig. 2.11.

For burst mode devices attached to a block-MPX channel this step can be omitted since data overrun due to traplevel interference cannot occur.
b. Priority-load values:

Time	7	Copy these values into the boxes
A	,	of the device position 1 (row
B	1	number 1) on the byte multiplexer
	$\mid->$	channel, as shown by (2b) in
	I	Fig. 2.11. Where two or three lines
	1	of priority-load figures are given
	1	for a device, copy all of them on th
	」	worksheet

(3) Repeat step (2) for each of the remaining waiting devices entered at step (1).
(4) Into the first four positions of the leftmost 'priority Device' Column enter the model number of each burst mode device having the highest nominal data rate see Appendix A and B) on
a.) the Block Multiplex Channel
b.) the DASD Adapter
c.) Byte Multiplex Channel
d.) the Magnetic Tape Adapter

If no device is connected to one of the channels a...d draw a line across the entire row on the worksheet.
(5) Into the third 'priority load' column, the 'B' column, enter the B-factor associated with the data transfer of the device entered in step (4). The B-factor for the data transfer is obtained by multiplying the nominal data rate of the priority device in Kb/sec (See Appendix A and B) by . 023 .

All the information needed is now on the worksheet, and steps (6) through (9) can be performed without further reference to the tables of channel evaluation factors.
(6) Into the B columns, numbered (6), of the first four rows copy the appropriate b-factors from left to right, up to, but not including the burst mode device (see (1.), note C) causing this data transfer interference. Through the b -column of the waiting device and all columns to the right of the waiting burst mode device, draw a line accross the remaining part of the row.
(7) Into the 'A' and 'B' columns, numbered (7), copy the appropriate priority-load A and B factors from the column numbered (2b). Where more than one set of A and B factors are given for one priority device, copy only the set that is appropriate for the wait time of the waiting device being considered. The way to choose the 'appropriate' set of A and B factors for any priority device is shown in Figure 2.10.
(8) For the next waiting device (in column 3) copy the appropriate priority-load A and B factors from the column, numbered (3), similarly as described in (7). Note that these factors can be different from column to column because the wait time of a waiting device may fall into a different time range.

Repeat step (8) for each waiting device up to, but not including the last one having the lowest priority. For example, when copying A and B factors for the device at position 5, include the appropriate A and B factors for the higher priority devices in rows $1,2,3$ and 4.
(9) Calculate load sums. In the vertical column for each waiting device being considered, proceed thus:
a. Add the values in the 'A' column and enter the result as the A Sum.
b. Add the values in the ' B ' column and enter the result as the B Sum.
c. Divide the A Sum by the wait time for the waiting device being evaluated. Enter the quotient in the space provided.
d. Find the LOAD SUM by adding together the following four values: the B Sum, the quotient found in step 9c; the device load and the previous load.

[^0]

IBM 4331 Processor: Channel Load S

Svsaem Iuentifation				Waiting Devices (Priority positions								
Priority Devices	Pronery Loos					$\begin{aligned} & \text { oeve No } 3420-7 \\ & \text { Name Kope } 320 \mathrm{~kg} \end{aligned}$						Devere Ne Name
				${ }_{\substack{\text { wame } \\ \text { Time }}}^{\text {med }}$	1.62		-		. 91	$\substack{\text { coum } \\ \text { time }}$	3.0	
	T, me	A	B	A	8	${ }^{\text {a }}$	8	A	8	A	8	A
Bioc Mpx chanion	-	-	7.36	-	7.36	-		-		-		
OASD A Aapie Device Jon $33 / 0$	-	-	23.70	-	23.7	-		-	23.7	-	23.7	
$\begin{aligned} & \text { Byre MP } \times \text { Channel } \\ & \text { Device No } \\ & \text { Nanie. . . . } \end{aligned}$	-	-	-	-	-	-		-	-	-		
Mapnetic Tope dagig Dence No ounce NMe日 apo	-	-	3.68	-	3.68	-		-	3.68	-	3.68	
	0.193	34.38	3.15	(A Sum)	${ }^{34858.74}$			34.38	3.15	34.38	3.15	
				${ }_{\text {a }}^{\substack{\text { Sumen } \\ \text { Wart } \\ \text { Time }}}$	0.0							
	.10 1.05	11.4	7.0		3.406	(14 sum)	$\left.{ }^{18} \mathrm{sum}\right)$	11.4	0.0	0.0	7.36	
				Previous	6.173							
	. 105	10.5	. 0	${ }_{\text {L }}^{\text {Loan }}$ Sunt	. 44.049	Soxt		45.78	$\underset{18 \text { cum }}{30.53}$	5.83	14.6	
	. 322	$\begin{array}{\|c} 5.83 \\ 264.3 \end{array}$	$\frac{14.6}{5.74}$			Stion		${ }_{\text {a }}^{\substack{\text { Asum } \\ \text { Wail Time }}}$	50.3			
						Losio			7.65	40.21) 52.48		
									10.9			
								$\underset{\substack{\text { Load } \\ \text { Sunt }}}{ }$	99.38	Oevice 2.37		Sum
										$\underset{\substack{\text { Loso } \\ \text { sumt }}}{ }$	71.59	$\xrightarrow{\text { Device }}$ Lead
												$\underset{\substack{\text { Loat } \\ \text { sum } \\ \hline}}{ }$

Figure 2.13: Example of load sum calculations on load sum worksheet - system with 3310 , CA 3420-7, 2501, 1287

The block multiplexer channel has been designed to give reasonable performance for a relatively low price. To achieve this, compromises had to be made with respect to channel rates and channel chaining capabilities. To achieve the required fast channel turn around times for $231 x$ command chaining and data chaining the following strategy was applied:

As long as $231 \times$ chaining is active:

1. The BMPX trap level processing occurs at a priority level one above the communications adapter (instead of one below) and
2. All burst mode data transfers on MPX, DASD Adapter or Magnetic Tape Adapter are stopped.

Note: Data chaining in between the individual bytes of a contiguous 231x field is nevertheless not possible. Data chaining can however be conducted successfully in the field separator gaps, such as the gap between count field and key field or between key field and data field. Attempts to chain data within a field cause overrun.

Strategy (1) will somewhat favour $231 x$ chaining operations with respect to $C A$ data transfer, without necessarily causing CA data overruns. However, Strategy (2), will have an ever present impact on all burst mode transfers with unbuffered devices. For this reason it is not recommended to use unbuffered burst mode devices on the MPX, or operate IBM 8809 tapes or 33 kx disks together with 231 x disk devices.

The impact of strategy (2) on the new disk devices 3310 and 3370 is not as critical because both have hardware retry facilities built in. Instead of having to go through lengthy software recovery procedures, the disk goes only through one additional rotation before the total data transfer is repeated.

The frequency with which these retries occur depends upon how often 231 x chaining coincides with data transfers on the DASD adapter. This frequency will increase with:

- increasing 231x access rate
- decreasing 231x data field length
- increasing disk access rate
- increasing number of bytes transferred per disk access

Interference of $I / 0$ traffic with instruction processing is caused by the fact that the processor is employed for most channel opexations, such as initiation and termination of burst mode data transfers, handiing of MPX and CA byte mode data trasfers, and for the address and count update of every 4 bytes of data transferred via the integrated channel. In addition, $I / 0$ traffic is causing CPU interference due to contention at the main storage.

The $I / 0$. Interference with the processor is very much application and configuration dependent and has to be calculated on a per workload basis.

This section describes how to calculate the amount of this interference. The procedure involves:

1. Selection of the individual processor times pertaining to the operation of the channel.
2. Finding the frequencies with which the different channel operations occur during a specified interval of time.
3. Multiplying timings with frequencies and summarizing overall time-frequency products.

The next step shows what effects the $I / 0$ interference can have on the systems behavior. In particular it will be shown how to assess the possible occurence of program overuns, and how to estimate the effect of decreased GPU power on system throughput.

CHANNEL INTERFERENCE TIMINGS
The figures given in figure 3.1 are average figures for commonly attached devices.

* The MPX byte transfer time can vary from 55 usec, for fast control units, to 81 usec, for slow control units.
** This command chaining time can vary from 90 usec, for fast control units, to 103 usec, for slow control units.
***This time should be included in CPU interference calculations but excluded from calculations of percentage channel utilization.
170 usec of this time should be included in cpu interference calculation but excluded from perentage channel utilization.

Figure 3.1 Processor Interference Times Caused by Channel Activities for Devices on BBA's, CA, MPX, BMPX

The BBA data transfer occurs via a buffer of 256 Bytes (fig. 3.1). Whenever during an I/O read/write operation the buffer is full or the byte count limit is reached, (whichever comes first), the contents of the buffer are emptied at a rate of 414 KB/SEC. Each such burst transfer requires 90 usec of processor time. In addition, every four-byte transfer requires . 92 usec processor time. If MPX devices operate in byte mode, each byte requires about 60 usec of processor time. Depending upon the type of device attached to the MPX this time may vary by about $\pm 15 \%$.

If a device can operate in multibyte mode, 60 usec are required for the first byte and about 10 usec for each additional byte. If a device operates in burst mode on the byte MPX, only . 92 usec are required for every 4 bytes of data transferred.

The . 92 usec per 4 bytes of data is considexed an average value occuring for typical load situations on the Integrated Channel Bus. Actual times can vary from. 9 usec for low loads to 1.9 usec for high IC-bus utilization, and read operations alternating with write operations (compare fig. 2.2). However, typical IC bus utilization is found to be well below 5\%. The time for SIO handing includes the execution of a single CCW. Since instruction rate calculations do not include the 'start I/O' instruction, this SIO handing time should be included in CPU interference calculation. For calculation of channel utilization, however, only the time for the execution of a single CCW should be included for each SIO. For this purpose, use the time needed for the execution of one command-chained CCW.

The processor time needed for disk devices attached to the DASD Adapter was given for a full chain of commands as required for a normal disk access (Fig. 3.2). Since the 3340 uses the 'full track read' and 'search by microcode' strategy, the appropriate timings from Fig. 3.3 have to be added for random accesses. Similarly, the processor time for emulated disk devices consist of two parts:

1. The timings associated with the accesses to the disk attached to the DASD Adapter, giveen in Fig. 3.2, and
2. The timings associated with the fully electronic search and data move done per microcode, given in Fig. 3.3

In addition, all random write accesses to emulated disks require a full track read followed by a full track write. For sequential accesses to emulated disks the data is already contained in buffer. Therefore the SEEK, SEARCH, and READ/WRITE interference times of the normal disk acess are eliminated (Fig. 3.2), in addition to the full track read interference of the emulator (Fig. 3.3).

Figure 3.2 Interference times caused by channel activities for devices on DASD Adapter and Magnetic Tape Adapter.

1	Processor Time needed forl			
1				
I				
\| Emulator activity		3340	1	231 x
1	Direct Disk	I	Emul. on	
1	Attachment	1	3310	
\|Cycle steal interf.		$8368 / 4$	1	T/4
\|for full track read		8.92	1	x. 92
\|from emulated disk(3)		$=1925$	1	
1		1		
1		1		
1		I		
\| Initiation of disk		2400	1	2600
lemulation (4) \|		,		
1		I		
1		I		
1		,		
\|Electronic search		4184/R (2)	,	T/2R
lover record size R (4)\|	x 540	1	$\times 450$	
1 \|	$=1103$,		
1 I		1		
1 I		I		
1 I		1		
\| Data move of 1 record 1	. $925 \times \mathrm{R}$,	. 925 xR	
\|with 2048 B (4)	$=1895$	1	$=1895$	

(1)	For $2314 \mathrm{~T}=7294$, for $2311 \mathrm{~T}=3625$
(2)	$\mathrm{R}=$ Logical record size in Byte
	Timings given are for $\mathrm{R}=2048 \mathrm{~B}$
(3)	For disk write operation, consisting of 1 full track
(4)	read followed by a full track write, multiply by 2.

Fig. 3.3 Additional CPU interference times caused by random access to emulated disks on DASD Adapter (For basic Disk Adapter times see Fig. 3.2)

Sources of $1 / 0$ interference are the use of processing time by the channels and the use of main storage time by the I/O data transfer.

INterference due to channel activities in the processor

The channel activities that can cause interference, and the durations of those activities in microseconds, are listed in Figures 3.1, 3.2 and 3.3. To calculate the total duration of interference with the processor for a particular time span, proceed as follows:

1. From Figures 3.1, 3.2, and 3.3 list those channel activities (and their associated interference times) that can occur in the time span being considered.
2. Record also the number of times that each channel activity occurs in the time span.
3. For each channel activity, multiply the interference time by the number of times that the activity occurs; the product is the duration of interference with the processor caused by that activity.
4. Add together the individual interference times to obtain the total duration of $I / 0$ interference with the processor.

Example: Figure 3.4 gives an example calculation of total interference time that is caused by a tape-to-printer operation in which:

1. A 1000 -byte block is read from tape (burst mode, block multiplexer channel) via ten command-chained CCWs.
2. The 1000 bytes are sent to the printer (byte mode, byte multiplexer channel) via ten command-chained CCW's.
3. The pertinent time span is assumed to be the duration of the entire $I / 0$ operation.

Note that the duration of this interference with the processor is not dependent on the data rate of the devices but rather on the characteristics of the channels as shown in Figures 3.1 and 3.2 and 3.3 and on the amount of data being handled.

Figure 3.4 Duration of Channel Interference, Example Calculation for a Tape-To-Printer Operation

Fig. 3.4 shows how to obtain the actual duration of interference in mircroseconds over a specific time span. This duration of interference figure, when divided by the time span that is pertinent to the application, yields a percentage interference figure.

The significance of the derived percentage interference depends entirely on the reader's choice of the pertinent time span. For example, the percentage interference due to the tape-to-printer operation in Figure 3.4 over the period of time taken to perform the I / O operation is given in fig. 3.5, once for the case when tape reading and printing occurs sequentially (Example 1), and once for the case where tape reading and printing completely overlap (Example 2).

Suppose, in the application being considered, that tape reading and printing occur consecutively (that is, printing does not start until tape reading has finished).

```
Step 1: Take the pertinent time span to be the duration of
    the I/O operation:
    Time to read 1000 bytes from tape = 24.7 ms
    Time to print 10 lines = 545 ms
    Time span of I/O operation = 569.7 ms
Step 2: Calculate the percentage interference during this
    time span thus:
    62.47 ms (from Figure 3.4)
    -------------------------- =.109 = 10.9%
        569.7 ms
```


Example 2

Suppose, in the application being considered, that the tape reading and printing operations overlap.

Step 1: Determine the duxation of the $1 / 0$ operation: Time to print 10 lines (as in example 1) = 545 ms

Step 2: Calculate the percentage interference during this time span thus:
62.47
$----=.115=11.5 \%$
545

I/O operation times are obtained from the reference literature for the device.

Figure 3.5 Percentage Interference, Example Calculation for a Tape-To-Printer Operation

The percentage interference numbers calculated in Fig. 3.5 indicate how much longer a processing function would take for execution (assuming that during the I / O operation the processing would continuously need processor services without ever going into the wait state). For a first pass estimate of actual percentage increase in processor busy time due to $I / 0$ interference, one can multiply the interference figures calculated in Fig. 3.5 with the figure for the processor utilization (due to instruction processing). This estimate assumes that channel operations are uniformly distributed over processor busy and wait state.

INTERFERENCE DUE TO I/O UTILIZATION OF MAIN MEMORY

The I/O Operations causing memory interference are:

- Fetch, which requires . 9 usec per 4 Bytes, . 5 usec of which are overlapped with processor busy time for the same fetch access; during these . 5 usec the processor can never ask for memory access. Thus only the remaining 4 usec should be used for calculating effective memory utilization.
- STORE, which requires 1.3 usec per 4 Bytes, none of which is overlapped with processor busy time for the same store access.

The effective time $T i$ needed per average memory access is calculated as:

Ti $=$ (. 9 usec * (number of fetch accesses) +1.3 usec * (number of store accesses)) / (number of fetches plus number of stores)

Leqend: * is the multiplication sign
/ is the division sign
The noticeable percentage interference then is the product of the following factors:

1. The effective memory utilization $U i$ due to I/o accesses
2. The Time $T p$ for which an unsuccessful memory access has to wait before memory access is granted, and
3. The number of memory accesses Np the CPU attempts to make within a specific time interval
or $I p=U i * T p * N p$
The memory utilization due to I / O, Ui, is obtained by multiplying the number of I / O memory accesses per time
interval Ni with the average memory access time $T i$,
or Ui $=\mathrm{Ni} * \mathrm{Ti}$.

The average waiting time Tp of a processor access is, assuming low memory utilizations, Ti/2. For higher memory utilizations (Ui >0.05) a better estimate for Tp is
$T p=(T i / 2) /(1-U i)$
This equation is based on Poisson arrival of I / O memory requests.

The number of memory accesses Np can be obtained by multiplying the instruction rate Re with the average number of memory accesses needed per instruction Ne. Both of these values are application dependent. But typical values are Re $=200 \mathrm{~K}$ instr./SEC and $\mathrm{Ne}=1.5$ accesses/instr. Then $N p=\operatorname{Re}$ $x \mathrm{Ne}$.

An example of interference due to memory contention is calculated in Fig. 3.6.
$\mathrm{Ni}=50000 \mathrm{I} / 0 \mathrm{mem}$. acc./sec., (E/B=Instr. Execution/BYTE = 1)
$T i=1.0$ usec Time per $1 / 0$ Memory access:
$U i=N i * T i=.05$ memory utilization due to \quad I/O
$T p=T i / 2=.5$ usec aver. waiting time of CPU mem. access
Re $=200 \mathrm{~K}$ Instr./sec. instr. execution rate
Ne $=1.5$ mem. acc./instr.
$N p=\operatorname{Re} * N e=300000$ memory acc./sec
$I p=U i * T p x N p=.0075=.75 \%$

Legend: * is the multiplication sign.

Fig. 3.6 Calculation of interference due to I/O utilization of memory.

Two effects of $1 / 0$ interference are of prime importance. The first is the effect of $I / 0$ interference on System throughput. The second is the fact that increasing I/O interference may lead to program overruns. A third, less important effect is the slow-down which high priority I/O devices can impose on lower priority buffered I/O devices.

EFFECT OF I/O INTERFERENCE ON SYSTEM THROUGHPUT

The effect of $I / 0$ interference on system throughput is very much application dependent and therefore difficult to predict Comparing an ideal system (without \quad /o interference) with a real system (having I/O interference), it is easy to see that the $I / 0$ interference will have little effect on real system throughput if the processor utilization is low; while the highest effect of interference will occur for high processor utilization. With the reasonable assumption, that all processor times of an ideal system are equally affected by $I / 0$ interference, a conservative estimate for the real system throughput is obtained by dividing the system throughput of the ideal system by

1 + (I/O interference) * ((processor time overlapped with I/O) / (total processor time))
where the $I / 0$ interference is here obtained by dividing the I/O interference time by the elapsed time of the ideal system.

THE EFFECT OF I/O INTERFERENCE ON PROGRAM OVERRUN

A particular effect of channel interference with processing (see section 3.2) is program overrun. program overrun results from a program being slowed down to such an extent that the program is late in providing realtime service to a device and, hence, causes incorrect operation of that device.

Program overrun must always be considered for those $1 / 0$ operations that involve high-speed document-handiing devices such as the 1419 Magnetic Character Reader. In program-sort mode, the 1419 reads data into the processor while the document is passing the read station; then, before the document reaches the stacker-select station, the processor must calculate the stacker required and issue the correct stacker-select command. If the stacker-select command arrives too late (because of program overrun), the document is routed to the reject pocket and the channel program stops.

To investigate the possibility of program overrun, proceed as follows:

1. Establish the available program time, that is, the time during which the program must perform its calculations and issue the command. Call this time 'A' (available time).
2. Establish the time that the program takes between reading data and issuing the command. (This time can be established by totaling the execution times of the component instructions, see 'Instruction Timings' in IBM 4331 processor Functional Characteristics, GA33-1526). When establishing this time, take all program activity into account including, for example, the handing of the I/O interruption after the data is read, and any possible supervisor program activity. Call this time 'P' (processing time).
3. Establish the maximum possible interference time that can be caused by simultaneous activities on all channels during the time 'A'. (The calculation of total interference time is described previously in this section). Call this time 'I' (interference time).
Note: The maximum possible interference time is caused by the combination of channel activities that, during the available time 'A', have the highest interference time 'I'.
4. Calculate $P+I$ and compare the result with A. If $P+I$ is greater than $A, p r o g r a m$ overrun may occur.

Example: Consider the possibility of program overrun with a single-address 1419 and assume that other channel activity consists of (1) a 3310 Disk Storage transferring data on the DASD Adapter in burst mode at the rate of 1031 kilobytes per second, and (2) a 1442 Card Read Punch using 1-byte transfers and punching EBCDIC characters.

For the purpose of this example, it is assumed that the interference with the processor which is caused by these two operations during the available time 'A' is the worst that can occur in the given application; that is, it has the highest interference time 'I'.

Check for program overrun as follows:

1. Establish the available program time 'A'. From IBM 1219 Reader Sorter, IBM 1419 Magnetic Character Reader, GA24-1499, the minimum time available for giving the stacker-select command is 9.50 milliseconds.
2. Establish the processing time 'P' of the program instruction sequence that calculates the stacker required and issues the stacker-select command. For the purpose of this example, assume that the processing time 'P', including possible supervisor activity, is 8.00
milliseconds.
3. Establish the total interference time 'I'.
a. Calculate the duration of the interfexence that is caused by the 3310 data transfer within the time span 'A'. At 1031 kilobytes per second, the number of bytes transferred in time 'A' (9.50 milliseconds) is given by:

Number of bytes 1031000 x 9.50 transferred = ----------- 9795 Bytes 1000

Taking the duration of interference on the block multiplexer channel in burst mode to be 0.92 microseconds per 4 bytes (from Figure 3.2) the total interference in time 'A' caused by transferring 9795 bytes is given by:

Interference time caused by $3310=(9795 \mathrm{x} .92$: 4) microsec. $=2.25$ milliseconds
b. Calculate the duration of the interference that is caused by the 1442 operation. During the time 'A', the channel activity is assumed to be the execution of one command-chained CCW, and two 1-byte data transfers (see Figure 3.1)

Data transfers in byte mode

Interference times

Execution of a CCW
with command chaining Therefore, interference time caused by the 1442
$60 \times 2=120$ us
$98 \times 1=98$ us

$$
=218 \mathrm{us}
$$

$$
=0.22 \mathrm{~ms}
$$

c. Establish the total interference time 'I' from steps a and b.

$$
2.25 \mathrm{~ms}+.22 \mathrm{~ms}=2.47 \mathrm{~ms}
$$

4. Calculate 'P' + 'I' and compare the results with 'A':

$$
\begin{aligned}
& \mathrm{P}+\mathrm{I}=8 \mathrm{~ms}+2.47 \mathrm{~ms}=10.47 \mathrm{~ms} \\
& \mathrm{~A}=9.50 \mathrm{~ms}
\end{aligned}
$$

'P' + 'I' is more than 'A' and, therefore program overrun will occur.

The mutual interference between $I / 0$ devices due to contention at the processor was evaluated by checking for data overrun.

Another kind of interference can potentially occur at the individual hardware channels or adapter units such as BBA-1, BBA-2, MPX, BMPX, DASD Adapter and Magnetic Tape Adapter. The effect of this mutual interference of devices attached to a single hardware adapter unit is a gradual slow down of I/O device operation, and thus a certain loss in system throughput.

This slowdown of I / O devices depends on the fraction of time for which a channel (or adapter) is busy and therefore not available for use by other devices. This fraction is called the channel utilization. Excessive channel utiliaation can cause queues to form for tasks or devices that have to use the channel. In the following it will be shown how to calculate channel utilization, and how to obtain first pass estimates on $I / 0$ device response time degradation as well as degradation of system throughput.

CALCULATION OF CHANNEL UTILIZATION

Hardware channel utilization of $B B A-1$, $B B A-2$, and MPX is generally very low and unlikely to cause significant \quad / o device performance degradation. The following discussions are therefore limited to the hight speed channels such as the block MPX, the adapters, and tapes and disks attachable to these channels. The general way to obtain the percentage channel utilization is to calculate the fraction of time within a given period for which the channel or the adapter is busy.

PROCEDURE FOR TAPE DEVICES

1. Estimate the following values:
a. The number of data bytes in an average-length record.
b. The average number of records to be transferred per second.

These two values are required in subsequent steps of this
2. Obtain the channel-busy time per record as follows:
a. From the table of processor interference times (see Figure 3.1 or 3.2), obtain the time taken to issue a read or write command. Assume this time to be the time needed for the execution of one command-chained CCW on the block multiplexer channel.
b. From Figure $A-2$ in Appendix A, obtain the gap time for the particulax tape device.
c. Calculate the time that is needed to transfer all the data bytes in one average-length record at the nominal data rate of the device.
d. From the table of processor interference figures (see Figure 3.1 or 3.2), obtain the time taken to create a channel-end interruption.
e. Add up the four times obtained in a, b, c, and d to obtain the channel-busy time per record.
3. Obtain the channel-busy time per second or the channel utilization by multiplying the channel-busy time per record (obtained in step 2e) with the average number of records to be transferred per second.

Figure 4.1 gives example calculations of channel utilization for IBM 3410 Magnetic Tape Units Model 1 and 3 working at nominal data rates of 20 and 80 kilobytes per second, respectively.

```
Assumptions:
    1000 bytes per record; four records to be transferred per second; no command chaining 
```



```
Example {
    3410-1 working at a nominal data rate of 20 kilobytes/second
    I/O activities:
    a. Issue read/write command . 098 ms
    b.Gap time 48.00 ms
    c. Transfer 1000 bytes at nominal data rate 50.00 ms
    d. Create channel-end interruption pending condition . 078 ms
            Channel-busy time for one record = 98.176 ms
        = ==== = = = =
    Therefore, at four records per second,
    the channel-busy time per second = 4 X 99.176 ms
    From which, channel utilization = . 39 = 39% (approximately)
Example 2
    3410-3 working at a nominal data rate of 80 kilobytes/second
    I/O activities:
    a. Issue read/write command . .098 ms
    b. Gap time 12.000 ms
    c. Transfer 1000 bytes at nominal data rate 12.500 ms
    d. Create channel-end interruption pending condition .078 ms
            Channel-busy time for one record = 24.676 ms
                                    4.676 ms
                                    ==ー=ー==
    Therefore, at four records per second,
    the channel-busy time per second = 4 X 24.676 ms
                                    98.704 ms
    From which, channel utilization = .099 = 9.9% (approximately)
```


Notes on the examples in Figure 4.1

1. Channel time spent on handling commands and interruptions (which are microprogram activities) is insignificant. In calculations of this type, these times can normally be ignored.
2. The increased data rate (in Example 2) causes the channel utilization to be reduced. The interference with the processor remains unchanged, however, and, as shown in Figure $A-1$, the priority loading is greater, a factor which may affect devices on the byte multiplexer channel.

For the purpose of calculating disk channel utilizations it is necessary to distinguish four basically different modes of disk and channel operation, namely

1. Selector channel mode without seek separation, (and without block multiplexing and rotational position sensing), where the channel is busy from the transfer of the seek command until completion of the command chain with 'channel end' and 'device end' (compare Fig. 4.2).
2. Selector channel mode with seek separation (without block multiplesing and rotational position sensing), where in comparisons to (1) the channel is not busy during execution of the seek command. (Requires additional SIO instruction plus transfer of seek command.)
3. Block multiplex mode (or selector channel mode with seek separation) but without rotational position sensing where in comparison to (1) the channel is not busy during execution of the seek command (similar to (2), but without additional SIO instruction and seek command).
4. Block multiplex mode with rotational position sensing, where in comparison to (1) the channel is not busy during execution of the seek command and not busy during execution of most of the search period.

Illustrations of the various channel busy times for modes (1)...(4) are given in Fig. 4.2 for a typical chain of $S E E K$, SEARCH, TIC, READ commands.

Selector channel mode (1) is the classical way of operating old disks. It requires the least amount of processor overhead, but gives the highest channel utilization. The cases (2) and (3) selector channel with seek separation and multiplexing mode, gives equivalent channel utilization, but (2) requires less supervisor time. Block multiplexing with RPS (4), gives finally the smallest amount of channel utilization but requires additional supervisor time. This is the reason why, for low channel usage, it may be better for total system performance to use mode (3) without rotational position sensing.

Typical values for the timings of Fig. 4.2. are given in Fig. 4.3 and 4.4 for the disks attachable to the IBM 4331 processor. Two examples of channel utilization were calculated in Fig. 4.5 .

SEEK tIME		SEARCH time	READ time
SEEK	SEARCH		
COMMAND	TIC		

2. SELECTOR CHANNEL WITH SEEK SEPARATION (more supervisor time needed for additional sIO/construction)

SEARCH TIME READ TIME

3. BLOCK MULTIPLEXING MODE (less supervisor time than (2)) SEARCH time read time

$1 / 1 / 1$	$1 / 11 / 1 / 1 / 1 / 1 / 1 / 1 / 11 / 11 / 1 / 11 / 1$	
SEEK	SEARCH	READ
COMMAND	TIC	COMM.

4. BLOCK MULTIPLEXING WITH RPS (additional processor time needed to create CCW's)

READ TIME

Fig. 4.2. MODES OF DISK/CHANNEL OPERATION.

ALL TIMES IN MILLISECONDS

Fig. 4.3 CHANNEL BUSY TIMES DUE TO DEVICE-SPECIFIC FUNCTIONS

Fig. 4.4 CHANMEL BUSY TIMES DUE TO COMMAND HANDLING IN CHANNEL

[^1]Example: 2314 with Block Multiplexing

SEEK command	$=0.285 \mathrm{msec}$
SEARCH	$=12.500 \mathrm{msec}$
READ command	$=0.177 \mathrm{msec}$
2048 B read time	$=6.654 \mathrm{msec}$
$--19.526 \mathrm{msec} /$ record	

Channel busy time for 25 rec./sec $=25 \times 19.53 \mathrm{msec} / \mathrm{sec}$ $=488 \mathrm{msec} / \mathrm{sec}$ $=48.8 \%$

EXAMPLE: 3310 (effectively block multiplexing with RPS)

SEEK command	$=.680 \mathrm{msec}$
SETSECTOR	$=.490 \mathrm{msec}$
SEARCH time	$=1.800 \mathrm{msec}$
READ command	$=.595 \mathrm{msec}$
2048 B read time	$=2.400 \mathrm{msec}$
total	$=5.965 \mathrm{msec} /$ record

Channel busy time for 25 rec/sec $=25 \times 5.965 \mathrm{msec} / \mathrm{sec}$ $=149 \mathrm{msec} / \mathrm{sec}$ $=14.9 \%$

Assumptions: 2048 bytes per record, 25 records per sec

Fig. 4.5 EXAMPLE CALCULATIONS OF CHANNEL UTILIZATION FOR 2314 AND 3310

I/O access time in an unloaded system consists of the following parts

- time to transfer commands over the channel
- time for the device to access the data
- time to transfer the data over the channel

If several devices contend for the usage of the channel, the channel service times for command handling and data transfer have to be incremented by wating times for channel service. For most channel services this waiting will be directly proportional to the channel utilization, or
(effective channel utilization)
$x .5 \times$ (average channel service time.)
Channel utilization and average channel service times can be computed with the data given in section calculation of channel utilisation'. However, the channel utilization and service times for the device under investigation should be excluded from the computation.

A special kind of I / O response time delay occurs for disks employing the rotational position sensing feature or its equivalent on disks implementing the fixed block architecture. Here the waiting time for the channel's data transfer service is increased by a full rotation provided the disk is ready for data transmission but the channel is still busy with another device. In this case a good estimate for the additional waiting delay is given by
(Disk rotation time)
x (effect. channel util.)/ (1 - effect channel util.)
In Fig. 4.6 an example calculation is given for additional waiting times occuring with a 3310 on a channel with 50% effective utilization by other disks.

```
EXAMPLE: 3310, effective channel utilization 50%
    blocklength 2048 bytes
    channel useage time = 5.965 msec
    (from Fig. 4.5, Example 2)
    av. seek time = 23.5 msec
    (from Fig. 4.3)
    -----------------------------------------
total access time = 29.465 msec
Av. channel serv. time = total channel usage time / 3
    = 5.965/3 = 1.99 msec
Av. waiting delays for command transfers
=2 x (effective ch. util.) x . 5 x(aver. ch. service time)
= 2 . 5 x . 5 x 1.99 msec = .995 msec
AV wating delays for data transfer
= (Disk rotation time)x (effect. chann. util.)/(1- eff. ch. util.)
=(19.2 x . % ) /(1-0.5)) msec = 19.2msec
    Total average waiting delays = 20.195 msec
Due to channel contention the av. disk access time
is increased by
    20.2/29.5=68%
```

Fig. 4.6 Calculation of disk access time, including waiting times due to channel contention.

The main effect of channel contention is to increase I / O access times. The effect of increased I/O access times on system throughput is discussed here. This effect is of course very much application dependent and therefore in general difficult to predict. Comparing an ideal system (without channel contention) with a real systein (having channel contention) it is easy to see that the enlarged $1 / 0$ access times will have little effect on system throughput of the real system provided the processor utilization is high. While the largest effect of channel contention will occur for low processor utilization.

With the reasonable assumption that all I / O time of the ideal system is equally affected by channel contention, a conservative estimate for the throughput of the real system is obtained by dividing the system throughput of the ideal system by

1 + (relative $I / 0$ time increase) $x(1-p r o c . u t i l . o f o r i g$. system)
where the relative $I / 0$ time increase of the real system is obtained by dividing the additional I / O time due to channel contention by the original $1 / 0$ time.

CHANNEL PROGRAMMING CONVENTIONS

The procedures given in this manual for checking data overrun assume that channel programs have command sequences that provide efficient operation of I / O devices, and avoid placing unnecessarily large loads on the channels. This section of the manual gives the permissible ways in which commands may be command chained so that the programmer can prevent or, at least, reduce the possibility of overrun during concurrent I / O operations.

Because overrun is caused by excessive load on the processor, these conventions apply to channel programs for all devices, including those that are not subject to overxun.

The command sequence conventions are recommended for use in the writing of channel programs for the IBM 4331 processor, especially for a system that uses multiprogramming in which the programmer is not aware of the overall load on channel facilities. If a programmer controls or has knowledge of all I/O activity, however, he may establish somewhat less restrictive channel programming conventions that may be particularly suited to his application and configuration.

IMMEDIATE OPERATIONS

When commands that cause immediate (or near-immediate) operations are chained together ('no-op' commands, for example) many commands are executed in a short time, thus imposing a heavy continuous load on the channel and causing interference with other lower-priority devices. Therefore, non-data transferring commands that are completed rapidly should not be chained.

DATA CHAINING

The programmer is free to specify data chaining in channel programs, although a channel is able to transfer data at a faster rate, without overrun, when data chaining is not specified.

The procedures and tables in this manual provide guidance in assessing the effects of data chaining.

CHAINABLE COMMANDS

The channel programming conventions permit only certain commands to be command-chained, as shown in figures 5.1 through 5.6. Commands that do not appear in thesefigures should not be command-chained; that is, they can appear only in single-command channel programs.

Note: For diagnostic or device feature-dependent commands, reference should be made to the device-associated manuals.

Figures 5.1 through 5.6 list the chainable commands in classes that define the permitted positions of each command in a channel program. These classes are as follows:

Class-A Commands: Class-A commands are permitted to occur anywhere in a channel program and may be chained in any sequence without restriction.

Class-B Commands: A class-B command is permitted to occur anywhere in a channel program but must not be chained to another class-B command.

Class-C Commands: A class-C command is permitted to appear as the first channel command word (CCW) of a channel program. In general, they provide a function required only once at the beginning of the channel program, and are executed at speeds that impose a somewhat larger load than those of class-B.

Class-D Commands: A class-D command is permitted to appear only as the last CCW of a channel program.

Notes (circled letters):

(a) The 'no-op' command is treated as a class A command when preceded by the 'formatting write' command (0001 XX01 or 0000 0001); otherwise it is treated as a class D command.
(b) The 'recalibrate' command is not defined for all DASD devices.
(c) The following chain of commands is not permitted: Search \longrightarrow TIC \rightarrow write.
(d) The 'restore' command is defined for the IBM 2321 Data Cell Drive only.
$X=0$ or 1 , depending on command code for particular device

Figure 5.1. Chainable commands on direct access storage devices, permitted positions in channel program

Class A commands (Any position in a channel program, and in any sequence.)			Class B commands (Any position in a channel program, but not chained to each other.)			Class C commands (First CCW in a channel program.)		Class D commands (Last CCW in a channel program.)			
Command	Comm	and byte	Command	Comma	nd byte	Command	Command byte	Command	Comm	and byte	
Backspace	0010	$\times 111$	TIC	X $\times \times \times$	1000	Set mode	$\begin{aligned} & \text { XXXX } \quad \times 011 \\ & \text { (excepting } \\ & \text { 'no.0p': } \\ & 0000 \quad 0011 \text {) } \end{aligned}$	No-op	0000	0011	
Erase gap)	0001	0111						Rewind	0000	0111	
Forward space	0011	X111						Rewind and unload	0000	1111	
Read	$x \times x \times$	X×10				The following command chain may be treated as a single classC command:					
Read backwar	d $X \times X X$	1100									
Write	$x \times x \times$	$\times \times 01$				$\left[\begin{array}{lll} \text { Set mode } & x \times x \times & \times 011 \\ T I C & x \times x \times & 1000 \end{array}\right]$					
Write tapemar	0001	1111									

$X=0$ or 1 , depending on command code for particular device

Figure 5.2. Chainable commands on tape devices - permitted positions in channel program

Class A commands (Any position in a channel program, and in any sequence.)			Class B commands (Any position in a channel program but not chained to each other.)		Class C commands (First CCW in a channel program.)		Class D commands (Last CCW in a channel program.)	
Command	Comm	and byte	Command	Command byte	Command ${ }^{\text {d }}$	Command byte	Command	Command byte
Read	$x \times x \times$	$\times \times 10$	TIC	XXXX 1000	Control	XXXX $\times \times 11$	Control	$\times \times \times \times \quad \times \times 11$
Write	$x \times x \times$	$\times \times 01$						

$X=0$ or 1 , depending on command code for particular device

Figure 5.3. Chainable commands on card devices - permitted positions in channel program

Class A commands (Any position in a channel program, and in any sequence.)			Class B commands (Any position in a channel program, but not chained to each other.)		Class C commands (First CCW in a channel program.)		Class D commands (Last CCW in a channel program.)	
Command	Comm	and byte	Command	Command byte	Command	Command byte	Command	Command byte
Write	$\mathbf{X X X X}$	$\times \times 01$	TIC	XXXX 1000	Control	$\times \times \times \times \times 11$	Control	$\times \times \times \times \quad \times \times 11$

[^2]| Figure 5.4. Chainable commands on printer devices | |
| ---: | :--- |
| | permitted positions in channel program |

Class A commands (Any position in a channel program, and in any sequence.)		Class B commands (Any position in a channel program, but not chained to each other.)		Class C commands (First CCW in a channel program.)		Class D commands (Last CCW in a channel program.)	
Command	Command byte						
Read inquiry	00001010	TIC	XXXX 1000	-	-	Control	XXXX
Write	0000×001						

$X=0$ or 1 , depending on command code for particular device

Figure 5.5. Chainable commands on Console Display-Keyboard,' permitted positions in channel program

Notes (circled letters):
(a) Channel programming conventions permit data chaining with or without TIC.
(b) The 'sense' command is class A only when it is used instead of a programcontrolled interruption to signal that a program has reached a particular point.
(c) The $n \circ-$ op \rightarrow TIC chain is treated as a single class-A command only when it is used as a modifiable switch.
$X=0$ or 1 , depending on command code for particular device

Figure 5.6. Chainable commands on communications adapters (2701, 2702, 2703, and CA), permitted positions in Channel Program

APPENDIX A. CHANNEL EVALUATION FACTORS FOR DEVICES ATTACHED TO BMPX AND DASD/MAGNETIC TAPE ADAPTERS.

The following tables contain the A and B load factors for devices attachable to the block multiplexer channel and to the DASD/Magnetic Tape adapters for worst case load conditions including command chaining operations.

Priority load factors for the data transfer only (first 4 rows of Load SUM Worksheet) can be computed from:
$B=.023 \times$ Data Rate in KB/sec

The B-factors of Fig. A-1 are not valid if there is data chaining, unless the data chaining is used on DASD devices and the data chaining takes place in the gap time only.

To account for the additional load when data chaining is used (other than in DASD Gap Time), add
5.8 x (Data Rate in KB/sec)/(smallest byte count being data chained)
to the B factor obtained from Figure $A-1$.

Figure A-1: Block Multiplexer and DASD Adapter Devices Channel Evaluation Factors

* Nine Track Gap Time
 + Data Conversion not used in this model

Figure A-2: (Part 1 of 3) Channel Evaluation Factors for Magnetic Tape Drives

* Nine Track Gap Time
+ Data Conversion not used in this model
Figure A-2: (Part 3 of 3) Channel Evaluation Factors for Magnetic Tape Drives

This page has been left blank intentionally

The following tables contain the wait times, device loads, previous loads, and priority load factors A and B for class 1 devices attachable to the Byte Multiplexer Channel. This data is needed to perform the calculation with the load worksheet.

[^3]

Figure $B-1:(P a r t 2$ of 5) Byte Multiplexer Devices Channel Evaluation Factors

[^4]

Figure B-1: (Part 4 of 5) Byte Multiplexer Devices Channel Evaluation Factors

Figure B-1: (Part 5 of 5) Byte Multiplexer Devices Channel Evaluation Factors

This appendix describes how to obtain the following factors for the $C A$ and how to enter them on the byte multiplexer channel load sum worksheet:

Wait time
Device load
Previous load
Priority-load time, A, and B factors.
These factors are needed at step 2 of the step-by-step procedure for testing channel data (see Figure 2.11).

WAIT TIME:

In Figure $C-1$, find those entries that relate to the line types and data rates of the proposed CA configuration. From these entries, identify those that contain the shortest wait time. Enter this wait time at the top of the $C A$ column, on the worksheet as shown in the examples in Figure $\mathrm{C}-2$, column 1).

DEVICE LOAD:

From the entries in Figure $C-1$ that contain the shortest wait time, select one that has the highest device load. Multiply this device-load figure by the number of communication lines to be used minus one (regardless of type and speed of line) and enter the result in the 'Device Load' box in column 1 of the worksheet. (See Example C-2).

PREVIOUS LOAD:
From the applicable entries in Figure $C-1$ select the one having the largest previous load. Enter this figure in the 'previous load' box in column 1 of the worksheet.

PRIORITY-LOAD A AND B FACTORS:

In Figure C-1, find the priority-load A and B factors that relate to the line types and data rates of the proposed CA configuration. From these entries:

1. Add up all the A factors for every communication line that is to be used in the configuration. Enter the sum in the 'Priority Load' A column in the box corresponding to device position 1 (row number 1) of the worksheet, as shown in Figure C-3.
2. Add up all the B factors for every communication line that is to be used in the configuration. Enter the sum in the 'Priority Load' B column in the box corresponding to device position 1 (row number 1) of the worksheet.

These A and B factors are valid for all waiting devices. Therefore, enter the figure 0.10 in the 'Priority Load' time subcolumn of the $C A$ row (row 1).

Line control	Mode of Operation	$\begin{aligned} & \text { \|Bit } \\ & \text { \|Rate } \\ & \text { \|b/sec \| } \end{aligned}$	Data Rate B/sec	$\begin{array}{ll} \text { \| Wait } & \\ \text { ITime } \\ \text { I Ins } \end{array}$	$\begin{array}{ll} \text { ICA } & \text { ICA **\| } \\ \text { IDev. } & \text { IPrev. } \\ \text { l Load } & \text { \|Load } \end{array}$	Priority lo		
BSC/	\| with autopolling	6001	75	113.301	10.5510 .751	0.19111 .611	0.251	
SDLC *	I with autopolling	12001	150	16.601	1.1211 .521	0.19111 .571	0.501	
	1 with autopolling	24001	300	13.251	2.2613 .081	0.19111 .471	1.001	
	1 with autopoiling	36001	450	12.151	1 3.421 4.651	0.19111 .371	1.501	
	1 with autopolling	48001	600	11.601	14.601 6.251	0.19111 .27 !	2.001	
	\| without autopolling		148001	600	11.621	1.7016 .171	0.19111 .34	1.651
	1 with autopolling	72001	900	11.031	17.1519 .711	0.19111 .101	3.001	
	\| without autopolling		172001	900	11.061	12.6019 .431	$0.19 \mid 11.751$	2.481
	1 with autopolling	96001	1200	10.751	19.81113.331	0.19110 .001	8.251	
					11	1.11115.501	3.311	
	\| without autopolling		96001	1200	10.781	13.54112.821	0.19111 .001	3.311
	1 without autopolling	192001	2400	10.781	13.54112 .821	0.19110 .351	6.621	
	I without autopolling i	1560001	7000	10.231	112.00143 .501	0.1917 .8211	19.321	
	\| without autopolling		1640001	8000	10.201	113.8012 .501	0.1917 .2612	22.101
SS	I	\|134.5		14.8	167.701	10.1110 .151	$0.19\|11.66\|$	0.051
	,	3001	33.4	130.001	10.2510 .331	0.19111 .651	0.101	
	I	6001	66.7	115.001	10.4910 .671	$0.19 \mid 11.631$	0.201	
	1	112001	133.3	17.401	10.9911 .351	0.19111 .591	0.	

* No polling with SDLC lines
** These values are valid if more than one line is used. for a single communication line use prev. Load= .5/(Wait Time in msec)

Figure C-1: Communication Adapter Channel Evaluation Factors

IBM 4331


```
Above entries relate to the following configuration:
4 Start Stop lines with 134.5 bps each
1 Binary Synchronous Comun. line with 1200 bps
1 Binary Synchronous Comun. line with 2400 bps
```

Figure C-2: Example Entries in Load Sum Worksheet For a Typical CA Configuration.

This appendix describes:

1. How to assign the priority of a 2701 Data Adapter Unit in relation to other devices (including other 2701s) on the byte multiplexer channel.
2. How to enter 2701 priority information on the byte multiplexer channel load sum worksheet. This information is needed at step 1 of Figure 2.11 when testing byte multiplexer channel data overrun.
3. How to obtain the following channel evaluation factors for each line connected to a 2701:

Wait time
Device load
Previous load
Priority-load time, A, and B factors
This information is needed at steps 2 and/or 3 of Figure 2.11.

HOW TO ASSIGN PRIORITY POSITION OF A 2701
A 2701 may serve several communication lines, each with a different wait time. The effective wait time to be used in assigning the priority position of the 2701 relative to other devices on the byte multiplexer channel is determined by:

1. Refer to figure $D-1$ and find those entries that relate to the types and speeds of communication lines proposed for the 2701.
2. Choose the entry that has the shortest wait time. For example, consider a 2701 that will serve the following communication lines:

IBM Terminal Adapter Type I Model II at 134.5 bps.
(Wait time $=63.20 \mathrm{~ms}$.)
IBM Texminal Adapter Type Model II, at 600 bps .
(Wait time $=14.20 \mathrm{~ms}$.)
Synchronous Data Adapter Type II, operating with eight-bit code, without autopolling, at 200 bps.
(Wait time $=7.70 \mathrm{~ms}$.)

On this 2701, the shortest wait time is 7.70 ms; this figure is used in assigning the priority position of the 2701 as 2 whole.

HOW TO ENTER 2701 PRIORITY INFORMATION ON LOAD SUM WORKSHEET

In step 1 of Figure 2.11 when testing for byte multiplexer channel data overrun, enter 2701 communication lines on the load sum worksheet as if they were individual waiting devices. Make the entries in a continuous block and, within the block, assign decreasing priorities to the communication lines in the order of their increasing wait times; the communication lines with the shorter wait times must get the higher priorities. Figure $\mathrm{D}-1$ gives wait times for all types and speeds of 2701 communication lines.

Figure $D-2$ shows how a typical 2701 and its attached communication lines should appear in the 'Waiting Devices' columns of the load sum worksheet in relation to other devices.

HOW TO OBTAIN CHANNEL EVALUATION FACTORES FOR EACH 2701
COMMUNICATION LINE COMMUNICATION LINE

In steps 2 and/or 3 of Figure 2.11, when testing byte multiplexer channel data overrun, treat each communication line as a separate waiting device; obtain the wait time, device load, previous load, and priority-load time, and A and B factors for each of the 2701 communication lines direct from Figure $D-1$.

Figure D-1 (Part 1 of 2). 2701 Evaluation Factors

Figure D-1 (Part 2 of 2). 2701 Channel Evaluation Factors

The entries below (for step 1 in Figure 2.11) relate to the łollowing byte-multiplexer channel devices:

1. IBM 2520 Card Read Punch Model B1, reading/punching EBCDIC. (Wait time $=1.02 \mathrm{~ms}$.)
2. IBM 2701 Data Adapter Unit serving communication lines which use the following ty pes of line control:

Line 1. IBM Terminal Adapter Type I Model II, at 134.5 bits/second. (Wait time $=63.20 \mathrm{~ms}$.)

Line 2. Synchronous Data Adapter Type II, Operating with eight-bit code, without autopolling, at 200 bits/second. (Wait time $=7.70 \mathrm{~ms}$.)

Line 3. IBM Terminal Adapter Type I Model II at 600 bits/second. (Wait time $=14.20 \mathrm{~ms}$.)
3. IBM 1442 Card Read Punch Model N1, punching EBCDIC. (Wait time $=11.00 \mathrm{~ms}$.)

Figure D-2. Example Showing How the 2701 and its Attached Communication Lines Should Appear in the 'Waiting Devices' Columns of the Load sum Worksheet

This page has been left blank intentionally

This appendix describes:

1. How to assign the priority of a 2702 Transmission Control in relation to other devices (including other 2702s) on the byte-multiplexer channel, for use in step 1 of Figure 2.11 when testing byte-multiplexer channel data overrun.
2. How to obtain the following channel evaluation factors of a 2702 for use in steps 2 and/or 3 of Figure 2.11.

Wait time
Device load
Previous load
Priotiry-load time, A, and B factors.
In this appendix, reference is made to the tables of channel evaluation factors given in Figures $E-1$ through E-26. The following guide is included to help the reader find the correct table(s):

Type of Terminal Control

IBM Terminal Control Type I
75 bps, with autopolling
75 bps, without autopolling
134.5 bps , with autopolling
134.5 bps, without autopolling

600 bps, with autopolling
600 bps , without autopolling

IBM Terminal Control Type II
600 bps , with autopolling
600 bps , without autopolling
Telegraph Terminal Control I
45.5 bps
56.9 bps
74.2 bps

Telegraph Terminal Control Type II
110 bps
World Trade Telegraph Terminal Control
50 bps
75 bps
100 bps

Figure

$$
E-11
$$

$$
E-12
$$

$$
\begin{array}{lll}
E-13 & \varepsilon & E-14 * \\
E-15 & E & E-16 * \\
E-17 & \varepsilon & E-18 *
\end{array}
$$

E-19 E E-20*
E-21 \& E-22*

$$
\begin{array}{lll}
E-1 & E-2 * \\
E-3 & \varepsilon & E-4 * \\
& & \\
E-5 & E & E-6 * \\
E-7 & E & E-8 * \\
E-9 & \\
E-10 &
\end{array}
$$

E-23 \& E-24*
E-25 \& E-26*

* When the 31-Line Expansion feature is installed, use the second of the two numbers listed.

PROCEDURE WHEN TERMINAL CONTROLS AND SPEEDS ARE ALIKE

When all the communication lines connected to the 2702 are to be served by identical terminal control features at the same speed, see the foregoing list. Then find the entry relating to the number of communication lines to be served. Use the wait time in that entry when assigning the priority position of the 2702 on the byte-multiplexer channel, as described under "How to Assign priorities of Byte-Multiplexer Channel Devices" in the section "Data overrun".

Also from the same entry, record the wait time, device load, previous load, and all the priority-load time, A, and B factors on the byte-multiplexer channel load sum worksheet as shown in the exaple in Figure E-27.

PROCEDURE WHEN TERMINAL CONTROLS AND SPEEDS ARE DIFFERENT

When the communication lines connected to the 2702 are to be served by different terminal control features at different speeds, assign the 2702 priority and obtain the priority and channel evaluation factors by the following procedures.

HOW TO ASSIGN PRIORITY POSITION OF A 2702
The different types of communication line conneted to the 2702 may well have different wait times. Therefore, calculate the effective wait time for determining the priority position of the 2702 relative to other devices on the byte-multiplexer channel as follows:

1. Refer to those channel evaluation factor tables that relate to the types and speeds of lines to be served; see the foregoing list. In each relevant table, note the wait time in the first entry, that is, in the entry corresponding to one available line.
2. Select the shortest wait time found in step 1 and divide it by the total number of communication lines to be served by the 2702 , regardless of their types and speeds.

The resultant figure is the effective wait time used for assigning the priority position of the 2702 in relation to other devices.

For example, consider a 2702 that will serve the following communication lines:

Lines 1 through 10, IBM Terminal Control Type II, at 75 bps , with autopolling, without the 31 -line expansion feature.

Lines 11 through 15, IBM Terminal Control Type II, at 600 bps, with autopolling.

From Figures E1 and E11, the "one available line" wait times are 115.66 ms and 14.38 ms respectively. The total number of cummunication lines is 15. The effective wait time - used only for assigning a priority position to the 2702 - is, therefore, 14.38 divided by $15=.958 \mathrm{~ms}$.

HOW TO OBTAIN CHANNEL EVALUATION FACTORS OF A 2702

1. Refer to the channel evaluation factor table that yielded the shortest "one available line" wait time, as described in "How to Assign Priority Position of 2702". In this table, find the entry that corresponds to the total number of lines being served by the 2702 - regardless of their type and speed.
2. From this entry, take the wait time, device load, previous load, and priority-load time, A and B factors for use in steps 2 and/or of Figure 2.11 when testing for byte-multiplexer channel data overrun.

For instance, to obtain the channel evaluation factors for the 2702 desribed in the previous erample, refer to Figure $E-11$ because this table yielded the shortest "one available line" wait time. From this table, take the factors belonging to the 15-line entry.

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	115.664	. 078	. 086	. 100	9.000	10.742
				. 535	14.747	. 046
2	57.584	. 156	. 174	. 100	7.418	17.578
				. 758	12.597	10.742
				1.527	28.860	. 092
3	38.384	. 234	. 261	. 100	7.418	17.578
				1.320	16.440	10.742
				2.519	43.154	. 137
4	28.784	. 313	. 347	. 100	7.418	17.578
				1.882	20.284	10.742
5	23.024	. 391	. 434	. 100	7.418	17.578
				2.444	24.128	10.742
				4.503	71.468	. 229
6	19.184	. 469	. 521	. 100	7.418	17.578
				3.007	27.972	10.742
				5.495	85.489	. 275
7	16.304	. 552	. 613	. 100	7.418	17.578
				3.569	31.815	10.742
				6.487	99.419	. 321
8	14.384	. 626	. 695	. 100	7.418	17.578
				4.131	35.659	10.742
				7.479	113.258	. 367
9	12.464	. 722	. 802	. 100	7.418	17.578
				4.694	39.503	10.742
				8.471	127.006	. 412
10	11.504	. 782	. 869	. 100	7.418	17.578
				5.256	43.347	10.742
				9.463	140.663	. 458
11	10.064	. 894	. 994	. 100	7.418	17.578
				5.818	47.190	10.742
				10.455	154.229	. 504
12	9.584	. 939	1.043	. 100	7.418	17.578
				6.380	51.034	10.742
				11.447	167.704	. 550
13	8.624	1.044	1.160	. 100	7.418	17.578
				6.943	54.878	10.742
				12.439	181.088	. 596
14	8.144	1.105	1.228	. 100	7.418	17.578
				7.505	58.722	10.742
				13.431	194.382	. 642
15	7.664	1.174	1.305	. 100	7.418	17.578
				8.067	62.565	10.742
				14.423	207.584	. 687

[^5]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 115.056 | . 078 | . 087 | . 100 | 9.000 | 5.371 |
| | | | | 1.047 | 14.624 | . 046 |
| 2 | 57.520 | . 156 | . 174 | . 100 | 8.209 | 8.789 |
| | | | | 1.270 | 12.548 | 5.371 |
| | | | | 3.063 | 28.719 | . 092 |
| 3 | 37.680 | . 239 | . 265 | . 100 | 8.209 | 8.789 |
| | | | | 2.344 | 16.220 | 5.371 |
| | | | | 5.079 | 42.802 | . 137 |
| 4 | 28.752 | . 313 | . 348 | . 100 | 8.209 | 8.789 |
| | | | | 3.418 | 19.892 | 5.371 |
| | | | | 7.095 | 56.699 | . 183 |
| 5 | 22.800 | . 395 | . 439 | . 100 | 8.209 | 8.789 |
| | | | | 4.492 | 23.564 | 5.371 |
| | | | | 9.111 | 70.412 | . 229 |
| 6 | 18.832 | . 478 | . 531 | . 100 | 8.209 | 8.789 |
| | | | | 5.567 | 27.236 | 5.371 |
| | | | | 11.127 | 83.940 | . 275 |
| 7 | 15.856 | . 568 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 6.641 | 30.908 | 5.371 |
| | | | | 13.143 | 97.283 | . 321 |
| 8 | 13.872 | . 649 | . 721 | . 100 | 8.209 | 8.789 |
| | | | | 7.715 | 34.580 | 5.371 |
| | | | | 15.159 | 110.442 | . 367 |
| 9 | 11.888 | . 757 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 8.790 | 38.251 | 5.371 |
| | | | | 17.175 | 123.415 | . 412 |
| 10 | 10.896 | . 826 | . 918 | . 100 | 8.209 | 8.789 |
| | | | | 9.864 | 41.923 | 5.371 |
| | | | | 19.191 | 136.204 | . 458 |
| 11 | 9.904 | . 909 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 10.938 | 45.595 | 5.371 |
| | | | | 21.207 | 148.808 | . 504 |
| 12 | 8.912 | 1.010 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 12.012 | 49.267 | 5.371 |
| | | | | 23.223 | 161.227 | . 550 |
| 13 | 7.920 | 1.136 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 13.087 | 52.939 | 5.371 |
| | | | | 25.239 | 173.462 | . 596 |
| 14 | 7.920 | 1.136 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 14.161 | 56.611 | 5.371 |
| | | | | 27.255 | 185.511 | . 642 |
| 15 | 6.928 | 1.299 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 15.235 | 60.283 | 5.371 |
| | | | | 29.271 | 197.376 | . 687 |
| 16 | 6.928 | 1.299 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 16.310 | 63.955 | 5.371 |
| | | | | 31.287 | 209.056 | . 733 |

Figure E-2: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (75 bps), with Autopolling, with 31-Line Expansion (part 1 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
17	5.936	1.516	1.685	. 100	8.209	8.789
				17.384	67.626	5.371
				33.303	220.551	. 779
18	5.936	1.516	1.685	. 100	8.209	8.789
				18,458	71.298	5.371
				35.319	231.862	. 825
19	5.936	1.516	1.685	. 100	8.209	8.789
				19.532	74.970	5.371
				37.335	242.987	. 871
20	4.944	1.820	2.023	. 100	8.209	8.789
				20.607	78.642	5.371
				39.351	253.928	. 917
21	4.944	1.820	2.023	. 100	8.209	8.789
				21.681	82.314	5.371
				41.367	264.684	. 962
22	4.944	1.820	2.023	. 100	8.209	8.789
				22.755	85.986	5.371
				43.383	275.255	1.008
23	4.944	1.820	2.023	. 100	8.209	8.789
				23.830	89.658	5.371
				45.399	285.642	1.054
24	3.952	2.277	2.530	. 100	8.209	8.789
				24.904	93.330	5.371
				47.415	295.843	1.100
25	3.952	2.277	2.530	. 100	8.209	8.789
				25.978	97.001	5.371
				49.431	305.860	1.146
26	3.952	2.277	2.530	. 100	8.209	8.789
				27.052	100.673	5.371
				51.447	315.692	1.192
27	3.952	2.277	2.530	. 100	8.209	8.789
				28.127	104.345	5.371
				53.463	325.340	1.237
28	3.952	2.277	2.530	. 100	8.209	8.789
				29.201	108.017	5.371
				55.479	334.802	1.283
29	3.952	2.277	2.530	. 100	8.209	8.789
				30.275	111.689	5.371
				57.495	344.080	1.329
30	2.960	3.041	3.378	. 100	8.209	8.789
				31.350	115.361	5.371
				59.511	353.172	1.375
31	2.960	3.041	3.378	. 100	8.209	8.789
				32.424	119.033	5.371
				61.527	362.080	1.421

Figure E-2: 2702 Channel Evaluation Factors, IBM Terminal Control Type $I(75$ bps), with Autopolling, with 31-Line Expansion (part 2 of 2)

LINE	WAIT	DEVICE	PREV	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	115.664	. 048	. 086	. 100	9.000	. 046
2	57.584	. 096	. 174	. 100	7.418	17.578
				. 602	17.945	. 092
3	38.384	. 143	. 261	. 100	7.418	17.578
				1.114	26.847	. 137
4	28.784	. 191	. 347	. 100	7.418	17.578
				1.626	35.702	. 183
5	23.024	. 239	. 434	. 100	7.418	17.578
				2.138	44.510	. 229
6	19.184	. 287	. 521	. 100	7.418	17.578
				2.650	53.271	. 275
7	16.304	. 337	. 613	. 100	7.418	17.578
				3.162	61.986	. 321
8	14.384	. 382	. 695	. 100	7.418	17.578
				3.674	70.653	. 367
9	12.464	. 441	. 802	. 100	7.418	17.578
				4.186	79.273	. 412
10	11.504	. 478	. 869	. 100	7.418	17.578
				4.698	87.847	. 458
11	10.064	. 547	. 994	. 100	7.418	17.578
				5.210	96.373	. 504
12	9.584	. 574	1.043	. 100	7.418	17.578
				5.722	104.853	. 550
13	8.624	. 638	1.160	. 100	7.418	17.578
				6.234	113.286	. 596
14	8.144	. 675	1.228	. 100	7.418	17.578
				6.746	121.671	. 642
15	7.664	. 718	1.305	. 100	7.418	17.578
				7.258	130.010	. 687

[^6]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 115.056 | . 048 | . 087 | . 100 | 9.000 | . 046 |
| 2 | 57.520 | . 096 | . 174 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.898 | . 092 |
| 3 | 37.680 | . 146 | . 265 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.706 | . 137 |
| 4 | 28.752 | . 191 | . 348 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.420 | . 183 |
| 5 | 22.800 | . 241 | . 439 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 44.041 | . 229 |
| 6 | 18.832 | . 292 | . 531 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 52.567 | . 275 |
| 7 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 61.000 | . 321 |
| 8 | 13.872 | . 396 | . 721 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 69.339 | . 367 |
| 9 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 77.584 | . 412 |
| 10 | 10.896 | . 505 | . 918 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 85.735 | . 458 |
| 11 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 93.792 | . 504 |
| 12 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 101.755 | . 550 |
| 13 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 109.625 | . 596 |
| 14 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 117.400 | . 642 |
| 15 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 125.082 | . 687 |
| 16 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 132.670 | . 738 |

[^7]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT TIME | $\begin{aligned} & \text { DEVICE } \\ & \text { LOAD } \end{aligned}$ | $\begin{aligned} & \text { PREV . } \\ & \text { LOAD } \end{aligned}$ | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | TIME | A | B |
| 17 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 16.474 | 140.164 | . 779 |
| 18 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 17.498 | 147.564 | . 825 |
| 19 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 18.522 | 154.870 | . 871 |
| 20 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 19.546 | 162.083 | . 917 |
| 21 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 10.570 | 169.201 | . 962 |
| 22 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 21.594 | 176.226 | 1.008 |
| 23 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 22.618 | 183.157 | 1.054 |
| 24 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 23.642 | 189.994 | 1.100 |
| 25 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 24.666 | 196.737 | 1.146 |
| 26 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 25.690 | 203.386 | 1.192 |
| 27 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 26.714 | 209.941 | 1.237 |
| 28 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 27.738 | 216.403 | 1.283 |
| 29 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 28.762 | 222.771 | 1.329 |
| 30 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 29.786 | 229.044 | 1.375 |
| 31 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 30.810 | 235.224 | 1.421 |

Figure E-4: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (75 bps), with Autopolling, without 31-Line Expansion (part 2 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	64.304	. 140	. 156	. 100	9.000	10.742
				. 535	14.747	. 082
2	32.144	. 280	. 311	. 100	7.418	17.578
				. 758	12.597	10.742
				1.527	28.749	. 164
3	21.104	. 426	. 474	. 100	7.418	17.578
				1.320	16.440	10.742
				2.519	42.879	. 247
4	15.824	. 569	. 632	. 100	7.418	17.578
				1.882	20.284	10.742
				3.511	56.846	. 329
5	12.464	. 722	. 802	. 100	7.418	17.578
				2.444	24.128	10.742
				4.503	70.649	. 411
6	10.544	. 854	. 948	. 100	7.418	17.578
				3.007	27.972	10.742
				5.495	84.290	. 493
7	9.104	. 989	1.098	. 100	7.418	17.578
				3.569	31.815	10.742
				6.487	97.768	. 575
8	7.664	1.174	1.305	. 100	7.418	17.578
				4.131	35.659	10.742
				7.479	111.082	. 658
9	6.704	1.342	1.492	. 100	7.418	17.578
				4.694	39.503	10.742
				8.471	124.234	. 740
10	6.224	1.446	1.607	. 100	7.418	17.578
				5.256	43.347	10.742
				9.463	137.222	. 822
11	5.744	1.567	1.741	. 100	7.418	17.578
				5.818	47.190	10.742
				10.455	150.047	. 904
12	5.264	1.710	1.900	. 100	7.418	17.578
				6.380	51.034	10.742
				11.447	162.709	. 986
13	4.784	1.881	2.090	. 100	7.418	17.578
				6.943	54.878	10.742
				12.439	175.209	1.069
14	4.304	2.091	2.323	. 100	7.418	17.578
				7.505	58.722	10.742
				13.431	187.545	1.151
15	3.824	2.354	2.615	. 100	7.418	17.578
				8.067	62.565	10.742
				14.423	199.718	1.233

[^8]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 64.464 | . 140 | . 155 | . 100 | 9.000 | 5.371 |
| | | | | 1.047 | 14.624 | . 082 |
| 2 | 31.728 | . 284 | . 315 | . 100 | 8.209 | 8.789 |
| | | | | 1.270 | 12.548 | 5.371 |
| | | | | 3.063 | 28.496 | . 164 |
| 3 | 20.816 | . 432 | . 480 | . 100 | 8.209 | 8.789 |
| | | | | 2.344 | 16.220 | 5.371 |
| | | | | 5.079 | 42.248 | . 247 |
| 4 | 15.856 | . 568 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 3.418 | 19.892 | 5.371 |
| | | | | 7.095 | 55.667 | . 329 |
| 5 | 12.880 | . 699 | . 776 | . 100 | 8.209 | 8.789 |
| | | | | 4.492 | 23.564 | 5.371 |
| | | | | 9.111 | 68.756 | . 411 |
| 6 | 9.904 | . 909 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 5.567 | 27.236 | 5.371 |
| | | | | 11.127 | 81.513 | . 493 |
| 7 | 8.912 | 1.010 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 6.641 | 30.908 | 5.371 |
| | | | | 13.143 | 93.938 | . 575 |
| 8 | 7.920 | 1.136 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 7.715 | 34.580 | 5.371 |
| | | | | 15.159 | 106.032 | . 658 |
| 9 | 6.928 | 1.299 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 8.790 | 38.251 | 5.371 |
| | | | | 17.175 | 117.795 | . 740 |
| 10 | 5.936 | 1.516 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 9.864 | 41.923 | 5.371 |
| | | | | 19.191 | 129.226 | . 822 |
| 11 | 4.944 | 1.820 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 10.938 | 45.595 | 5.371 |
| | | | | 21.207 | 140.326 | . 904 |
| 12 | 4.944 | 1.820 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 12.012 | 49.267 | 5.371 |
| | | | | 23.223 | 151.094 | . 986 |
| 13 | 4.944 | 1.820 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 13.087 | 52.939 | 5.371 |
| | | | | 25.239 | 161.531 | 1.069 |
| 14 | 3.952 | 2.277 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 14.161 | 56.611 | 5.371 |
| | | | | 27.255 | 171.637 | 1.151 |
| 15 | 3.952 | 2.277 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 15.235 | 60.283 | 5.371 |
| | | | | 29.271 | 181.411 | 1.233 |
| 16 | 3.952 | 2.277 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 16.310 | 63.955 | 5.371 |
| | | | | 31.287 | 190.854 | 1.315 |

Figure E-6: 2702 Channel Evaluation Factors, IBM Terminal Control Type $I(134.5 \mathrm{bps})$, with Autopolling, with 31-Line Expansion (part 1 of 2)

LINE	WAIT	DEVICE	PREV.	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
17	2.960	3.041	3.378	. 100	8.209	8.789
				17.384	67.626	5.371
				33.303	199.966	1.397
18	2.960	3.041	3.378	. 100	8.209	8.789
				18.458	71.298	5.371
				35.319	208.746	1.479
19	2.960	3.041	3.378	. 100	8.209	8.789
				19.532	74.970	5.371
				37.335	217.194	1.562
20	2.960	3.041	3.378	. 100	8.209	8.789
				20.607	78.642	5.371
				39.351	225.311	1.644
21	2.960	3.041	3.378	. 100	8.209	8.789
				21.681	82.314	5.371
				41.367	233.097	1.726
22	1.968	4.573	5.081	. 100	8.209	8.789
				22.755	85.986	5.371
				43.383	240.551	1.808
23	1.968	4.573	5.081	. 100	8.209	8.789
				23.830	89.658	5.371
				45.399	247.674	1.890
24	1.968	4.573	5.081	. 100	8.209	8.789
				24.904	93.330	5.371
				47.415	254.466	1.973
25	1.968	4.573	5.081	. 100	8.209	8.789
				25.978	97.001	5.371
				49.431	260.926	2.055
26	1.968	4.573	5.081	. 100	8.209	8.789
				27.052	100.673	5.371
				51.447	267.055	2.137
27	1.968	4.573	5.081	. 100	8.209	8.789
				28.127	104.345	5.371
				53.463	272.852	2.219
28	1.968	4.573	5.081	. 100	8.209	8.789
				29.201	108.017	5.371
				55.479	278.318	2.301
29	1.968	4.573	5.081	. 100	8.209	8.789
				30.275	111.689	5.371
				57.495	283.453	2.384
30	1.968	4.573	5.081	. 100	8.209	8.789
				31.350	115.361	5.371
				59.511	288.256	2.466
31	1.968	4.573	5.081	. 100	8.209	8.789
				32.424	119.033	5.371
				61.527	292.727	2.548

[^9]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 64.304 | . 086 | . 156 | . 100 | 9.000 | . 082 |
| 2 | 32.144 | . 171 | . 311 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.901 | . 164 |
| 3 | 21.104 | . 261 | . 474 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.725 | . 247 |
| 4 | 15.824 | . 348 | . 632 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.465 | . 329 |
| 5 | 12.464 | . 441 | . 802 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.121 | . 411 |
| 6 | 10.544 | . 522 | . 948 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 52.693 | . 493 |
| 7 | 9.104 | . 604 | 1.098 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 61.181 | . 575 |
| 8 | 7.664 | . 718 | 1.305 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 69.584 | . 658 |
| 9 | 6.704 | . 820 | 1.492 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 77.903 | . 740 |
| 10 | 6.224 | . 884 | 1.607 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 86.139 | . 822 |
| 11 | 5.744 | . 958 | 1.741 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 94.289 | . 904 |
| 12 | 5.264 | 1.045 | 1.900 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 102.356 | . 986 |
| 13 | 4.784 | 1.150 | 2.090 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 110.339 | 1.069 |
| 14 | 4.304 | 1.278 | 2.323 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 118.237 | 1.151 |
| 15 | 3.824 | 1.438 | 2.615 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 126.051 | 1.233 |

[^10]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 64.464 | . 085 | . 155 | . 100 | 9.000 | . 082 |
| 2 | 31.728 | . 173 | . 315 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.817 | . 164 |
| 3 | 20.816 | . 264 | . 480 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.473 | . 247 |
| 4 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 34.960 | . 329 |
| 5 | 12.880 | . 427 | . 776 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 43.280 | . 411 |
| 6 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 51.431 | . 493 |
| 7 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 59.413 | . 575 |
| 8 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 67.227 | . 658 |
| 9 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 74.873 | . 740 |
| 10 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 82.351 | . 822 |
| 11 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 89.660 | . 904 |
| 12 | 4.944 | 1.112 | 2.032 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 96.801 | . 986 |
| 13 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 103.774 | 1.069 |
| 14 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 110.578 | 1.151 |
| 15 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 117.214 | 1.233 |
| 16 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 123.682 | 1.315 |

Figure E-8: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (134.5 bps), without Autopolling, with 31-Line Expansion (part 1 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
17	2.960	1.858	3.378	. 100	8.209	8.789
				16.474	129.981	1.397
18	2.960	1.858	3.378	. 100	8.209	8.789
				17.498	136.112	1.479
19	2.960	1.858	3.378	. 100	8.209	8.789
				18.522	142.074	1.562
20	2.960	1.858	3.378	. 100	8.209	8.789
				19.546	147.869	1.644
21	2.960	1.858	3.378	. 100	8.209	8.789
				10.570	153.494	1.726
22	1.968	2.795	5.081	. 100	8.209	8.789
				21.594	158.952	1.808
23	1.968	2.795	5.081	. 100	8.209	8.789
				22.618	164.241	1.890
24	1.968	2.795	5.081	. 100	8.209	8.789
				23.642	169.362	1.973
25	1.968	2.795	5.081	. 100	8.209	8.789
				24.666	174.315	2.055
26	1.968	2.795	5.081	. 100	8.209	8.789
				25.690	179.099	2.137
27	1.968	2.795	5.081	. 100	8.209	8.789
				26.714	183.715	2.219
28	1.968	2.795	5.081	. 100	8.209	8.789
				27.738	188.163	2.301
29	1.968	2.795	5.081	. 100	8.209	8.789
				28.762	192.442	2.384
30	1.968	2.795	5.081	. 100	8.209	8.789
				29.786	196.553	2.466
31	1.968	2.795	5.081	. 100	8.209	8.789
				30.810	200.495	2.548

Figure E-8: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (134.5 bps), without Autopolling, with 31-Line Expansion (part 2 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	14.384	. 626	. 695	. 100	9.000	10.742
				. 535	14.747	. 367
2	7.184	1.253	1.392	. 100	7.418	17.578
				. 758	12.597	10.742
				1.527	27.880	. 733
3	4.784	1.881	2.090	. 100	7.418	17.578
				1.320	16.440	10.742
				2.519	40.729	1.100
4	3.344	2.691	2.990	. 100	7.418	17.578
				1.882	20.284	10.742
				3.511	52.851	1.467
5	2.864	3.142	3.492	. 100	7.418	17.578
				2.444	24.128	10.742
				4.503	64.244	1.833
6	2.384	3.775	4.195	. 100	7.418	17.578
				3.007	27.972	10.742
				5.495	74.911	2.200
7	1.904	4.727	5.252	. 100	7.418	17.578
				3.569	31.815	10.742
				6.487	84.850	2.567
8	1.424	6.320	7.022	. 100	7.418	17.578
				4.131	35.659	10.742
				7.479	94.062	2.933
9	1.424	6.320	7.022	. 100	7.418	17.578
				4.694	39.503	10.742
				8.471	102.546	3.300
10	1.424	6.320	7.022	. 100	7.418	17.578
				5.256	43.347	10.742
				9.463	110.302	3.667
11	. 944	9.534	10.593	. 100	7.418	17.578
				10.455	117.331	4.033
12	. 944	9.534	10.593	. 100	7.418	17.578
				6.380	51.034	10.742
				11.447	123.633	4.400
13	. 944	9.534	10.593	. 100	7.418	17.578
				6.943	54.878	10.742
				12.439	129.207	4.767
14	. 944	9.534	10.593	. 100	7.418	17.578
				7.505	58.722	10.742
				13.431	134.054	5.133
15	. 944	9.534	10.593	. 100	7.418	17.578
				8.067	62.565	10.742
				14.423	138.174	5.500

Figure E-9: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (600 bps), with Autopolling

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	14.384	. 382	. 695	. 100	9.000	. 367
2	7.184	. 766	1.392	. 100	7.418	17.578
				. 602	17.559	. 733
3	4.784	1.150	2.090	. 100	7.418	17.578
				1.114	25.775	1.100
4	3.344	1.645	2.990	. 100	7.418	17.578
				1.626	33.615	1.467
5	2.864	1.920	3.492	. 100	7.418	17.578
				2.138	41.080	1.833
6	2.384	2.307	4.195	. 100	7.418	17.578
				2.650	48.170	2.200
7	1.904	2.889	5.252	. 100	7.418	17.578
				3.162	54.884	2.567
8	1.424	3.862	7.022	. 100	7.418	17.578
				3.674	61.223	2.933
9	1.424	3.862	7.022	. 100	7.418	17.578
				4.186	67.186	3.300
10	1.424	3.862	7.022	. 100	7.418	17.578
				4.698	72.774	3.667
11	. 944	5.826	10.593	. 100	7.418	17.578
				5.210	77.986	4.033
12	. 944	5.826	10.593	. 100	7.418	17.578
				5.722	82.823	4.400
13	. 944	5.826	10.593	. 100	7.418	17.578
				6.234	87.285	4.767
14	. 944	5.826	10.593	. 100	7.418	17.578
				6.746	91.371	5.133
15	. 944	5.826	10.593	. 100	7.418	17.578
				7.258	95.081	5.500

[^11]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 14.384 | . 626 | . 695 | . 100 | 9.000 | 10.742 |
| | | | | . 535 | 14.747 | . 330 |
| 2 | 7.184 | 1.253 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | . 758 | 12.597 | 10.742 |
| | | | | 1.527 | 27.992 | . 660 |
| 3 | 4.784 | 1.881 | 2.090 | . 100 | 7.418 | 17.578 |
| | | | | 1.320 | 16.440 | 10.742 |
| | | | | 2.519 | 41.006 | . 990 |
| 4 | 3.344 | 2.691 | 2.990 | . 100 | 7.418 | 17.578 |
| | | | | 1.882 | 20.284 | 10.742 |
| | | | | 3.511 | 53.365 | 1.320 |
| 5 | 2.864 | 3.142 | 3.492 | . 100 | 7.418 | 17.578 |
| | | | | 2.444 | 24.128 | 10.742 |
| | | | | 4.503 | 65.070 | 1.650 |
| 6 | 2.384 | 3.775 | 4.195 | . 100 | 7.418 | 17.578 |
| | | | | 3.007 | 27.972 | 10.742 |
| | | | | 5.495 | 76.120 | 1.980 |
| 7 | 1.904 | 4.727 | 5.252 | . 100 | 7.418 | 17.578 |
| | | | | 3.569 | 31.815 | 10.742 |
| | | | | 6.487 | 86.515 | 2.310 |
| 8 | 1.424 | 6.320 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 4.131 | 35.659 | 10.742 |
| | | | | 7.479 | 96.255 | 2.640 |
| 9 | 1.424 | 6.320 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 4.694 | 39.503 | 10.742 |
| | | | | 8.471 | 105.341 | 2.970 |
| 10 | 1.424 | 6.320 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 5.256 | 43.347 | 10.742 |
| | | | | 9.463 | 113.772 | 3.300 |
| 11 | . 944 | 9.534 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 5.818 | 47.190 | 10.742 |
| | | | | 10.455 | 121.548 | 3.630 |
| 12 | . 944 | 9.534 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 6.380 | 51.034 | 10.742 |
| | | | | 11.447 | 128.670 | 3.960 |
| 13 | . 944 | 9.534 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 6.943 | 54.878 | 10.742 |
| | | | | 12.439 | 135.137 | 4.290 |
| 14 | . 944 | 9.534 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 7.505 | 58.722 | 10.742 |
| | | | | 13.431 | 140.949 | 4.620 |
| 15 | . 944 | 9.534 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 8.067 | 62.565 | 10.742 |
| | | | | 14.423 | 146.106 | 4.950 |

[^12]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 14.384 | . 382 | . 695 | . 100 | 9.000 | . 330 |
| 2 | 7.184 | . 766 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.603 | . 660 |
| 3 | 4.784 | 1.150 | 2.090 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 25.897 | . 990 |
| 4 | 3.344 | 1.645 | 2.990 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 33.854 | 1.320 |
| 5 | 2.864 | 1.920 | 3.492 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 41.472 | 1.650 |
| 6 | 2.384 | 2.307 | 4.195 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 48.753 | 1.980 |
| 7 | 1.904 | 2.889 | 5.252 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 55.696 | 2.310 |
| 8 | 1.424 | 3.862 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 62.301 | 2.640 |
| 9 | 1.424 | 3.862 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 68.568 | 2.970 |
| 10 | 1.424 | 3.862 | 7.022 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 74.497 | 3.300 |
| 11 | . 944 | 5.826 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 80.088 | 3.630 |
| 12 | . 944 | 5.826 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 85.341 | 3.960 |
| 13 | . 944 | 5.826 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 90.256 | 4.290 |
| 14 | . 944 | 5.826 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 94.833 | 4.620 |
| 15 | . 944 | 5.826 | 10.593 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 99.073 | 4.950 |

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
2	159.824	. 034	. 063	. 100	9.000	. 031
	79.664	. 069	. 126	. 100	7.418	17.578
				. 602	17.963	. 062
3	53.264	. 103	. 188	. 100	7.418	17.578
				1.114	26.897	. 093
4	39.824	. 138	. 251	. 100	7.418	17.578
				1.626	35.799	. 124
5	31.664	. 174	. 316	. 100	7.418	17.578
				2.138	44.669	. 155
6	26.384	. 208	. 379	. 100	7.418	17.578
				2.650	53.508	. 186
7	22.544	. 244	. 444	. 100	7.418	17.578
				3.162	62.315	. 217
8	19.664	. 280	. 509	. 100	7.418	17.578
				3.674	71.091	. 247
9	17.744	. 310	. 564	. 100	7.418	17.578
				4.186	79.834	. 278
10	15.824	. 348	. 632	. 100	7.418	17.578
				4.698	88.547	. 309
11	14.384	. 382	. 695	. 100	7.418	17.578
				5.210	97.227	. 340
12	12.944	. 425	. 773	. 100	7.418	17.578
				5.722	105.876	. 371
13	11.984	. 459	. 834	. 100	7.418	17.578
				6.234	114.493	. 402
14	11.024	. 499	. 907	. 100	7.418	17.578
				6.746	123.078	. 433
15	10.544	. 522	. 948	. 100	7.418	17.578
				7.258	131.632	. 464

Figure E-13: 2702 Channel Evaluation Terminal Control Type I 31-Line Expansion

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	159.696	. 034	. 063	. 100	9.000	. 031
2	79.344	. 069	. 126	. 100	8.209	8.789
				1.114	17.931	. 062
3	52.560	. 105	. 190	. 100	8.209	8.789
				2.138	26.802	. 093
4	39.664	. 139	. 252	. 100	8.209	8.789
				3.162	35.609	. 124
5	31.728	. 173	. 315	. 100	8.209	8.789
				4.186	44.352	. 155
6	25.776	. 213	. 388	. 100	8.209	8.789
				5.210	53.033	. 186
7	22.800	. 241	. 439	. 100	8.209	8.789
				6.234	61.650	. 217
8	19.824	. 277	. 504	. 100	8.209	8.789
				7.258	70.204	. 247
9	16.848	. 326	. 594	. 100	8.209	8.789
				8.282	78.694	. 278
10	15.856	. 347	. 631	. 100	8.209	8.789
				9.306	87.121	. 309
11	13.872	. 396	. 721	. 100	8.209	8.789
				10.330	95.485	. 340
12	12.880	. 427	. 776	. 100	8.209	8.789
				11.354	103.785	. 371
13	11.888	. 463	. 841	. 100	8.209	8.789
				12.378	112.022	. 402
14	10.896	. 505	. 918	. 100	8.209	8.789
				13.402	120.195	. 433
15	9.904	. 555	1.010	. 100	8.209	8.789
				14.426	128.305	. 464
16	9.904	. 555	1.010	. 100	8.209	8.789
				15.450	136.352	. 495

Figure E-14: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (45.5 bps), with 31-Line Expansion (part 1 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
17	8.912	. 617	1.122	. 100	8.209	8.789
				16.474	144.336	. 526
18	7.920	. 694	1.263	. 100	8.209	8.789
				17.498	152.256	. 557
19	7.920	. 694	1.263	. 100	8.209	8.789
				18.522	160.113	. 588
20	7.920	. 694	1.263	. 100	8.209	8.789
				19.546	167.906	. 619
21	6.928	. 794	1.443	. 100	8.209	8.789
				20.570	175.636	. 650
22	6.928	. 794	1.443	. 100	8.209	8.789
				21.594	183.303	. 681
23	6.928	. 794	1.443	. 100	8.209	8.789
				22.618	190.906	. 712
24	5.936	. 927	1.685	. 100	8.209	8.789
				23.642	198.446	. 742
25	5.936	. 927	1.685	. 100	8.209	8.789
				24.666	205.922	. 773
26	5.936	. 927	1.685	. 100	8.209	8.789
				25.690	213.336	. 804
27	4.944	1.112	2.023	. 100	8.209	8.789
				26.714	220.685	. 835
28	4.944	1.112	2.023	. 100	8.209	8.789
				27.738	227.972	. 866
29	4.944	1.112	2.023	. 100	8.209	8.789
				28.762	235.195	. 897
30	4.944	1.112	2.023	. 100	8.209	8.789
				29.786	242.355	. 928
31	4.944	1.112	2.023	. 100	8.209	8.789
				30.810	249.451	. 959

Figure E-14: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (45.5 bps$)$, with 31-Line Expansion (part 2 of 2)

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	126.224	. 044	. 079	. 100	9.000	. 039
2	62.864	. 087	. 159	. 100	7.418	17.578
				. 602	17.953	. 078
3	41.744	. 137	. 240	. 100	7.418	17.578
				1.114	26.869	. 118
4	31.184	. 176	. 321	. 100	7.418	17.578
				1.626	35.745	. 157
5	24.944	. 220	. 401	. 100	7.418	17.578
				2.138	44.581	. 196
6	20.624	. 267	. 485	. 100	7.418	17.578
				2.650	53.377	. 235
7	17.744	. 310	. 564	. 100	7.418	17.578
				3.162	62.133	. 274
8	15.344	. 358	. 652	. 100	7.418	17.578
				3.674	70.848	. 313
9	13.904	. 396	. 719	. 100	7.418	17.578
				4.186	79.524	. 353
10	12.464	. 441	. 802	. 100	7.418	17.578
				4.698	88.159	. 392
11	11.024	. 499	. 907	. 100	7.418	17.578
				5.210	96.754	. 431
12	10.064	. 547	. 994	. 100	7.418	17.578
				5.722	105.309	. 470
13	9.584	. 574	1.043	. 100	7.418	17.578
				6.234	113.824	. 509
14	8.624	. 638	1.160	. 100	7.418	17.578
				6.746	122.299	. 549
15	8.144	. 675	1.228	. 100	7.418	17.578
				7.258	130.734	. 588

Figure E-15: 2702 Channel Evaluation Factors, Telegrah Terminal Control Type I (56.9 bps), without 31-Line Expansion

LINE	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
1	125.968	. 044	. 079	. 100	9.000	. 039
2	62.480	. 088	. 160	. 100	8.209	8.789
				1.114	17.913	. 078
3	41.648	. 132	. 240	. 100	8.209	8.789
				2.138	26.749	. 118
4	30.736	. 179	. 325	. 100	8.209	8.789
				3.162	35.504	. 157
5	24.784	. 222	. 403	. 100	8.209	8.789
				4.186	44.180	. 196
6	20.816	. 264	. 480	. 100	8.209	8.789
				5.210	52.775	. 235
7	17.840	. 308	. 561	. 100	8.209	8.789
				6.234	61.290	. 274
8	14.864	. 370	. 673	. 100	8.209	8.789
				7.258	69.725	. 313
9	13.872	. 396	. 721	. 100	8.209	8.789
				8.282	78.079	. 353
10	11.888	. 463	. 841	. 100	8.209	8.789
				9.306	86.353	. 392
11	10.896	. 505	. 918	. 100	8.209	8.789
				10.330	94.547	. 431
12	9.904	. 555	1.010	. 100	8.209	8.789
				11.354	102.661	. 470
13	8.912	. 617	1.122	. 100	8.209	8.789
				12.378	110.694	. 509
14	8.912	. 617	1.122	. 100	8.209	8.789
				13.402	118.647	. 549
15	7.920	. 694	1.263	. 100	8.209	8.789
				14.426	126.520	. 588
16	6.928	. 794	1.443	. 100	8.209	8.789
				15.450	134.313	. 627

Figure E-16: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (56.9 bps), with 31-Line Expansion (part 1 of 2)

LINE	WAIT	DEVICE	PREV	PRIORITY - LOAD		
NO.	TIME	LOAD	LOAD	TIME	A	B
17	6.928	. 794	1.443	. 100	8.209	8.789
				16.474	142.025	. 866
18	6.928	. 794	1.443	. 100	8.209	8.789
				17.498	149.657	. 705
19	5.936	. 927	1.685	. 100	8.209	8.789
				18.522	157.209	. 745
20	5.936	. 927	1.685	. 100	8.209	8.789
				19.546	164.681	. 784
21	5.936	. 927	1.685	. 100	8.209	8.789
				20.570	172.072	. 823
22	4.944	1.112	2.023	. 100	8.209	8.789
				21.594	179.383	. 862
23	4.944	1.112	2.023	. 100	8.209	8.789
				22.618	186.614	. 901
24	4.944	1.112	2.023	. 100	8.209	8.789
				23.642	193.765	. 940
25	4.944	1.112	2.023	. 100	8.209	8.789
				24.666	200.835	. 980
26	3.952	1.392	2.530	. 100	8.209	8.789
				25.690	207.825	1.019
27	3.952	1.392	2.530	. 100	8.209	8.789
				26.714	214.735	1.058
28	3.952	1.392	2.530	. 100	8.209	8.789
				27.738	221.564	1.097
29	3.952	1.392	2.530	. 100	8.209	8.789
				28.762	228.314	1.136
30	3.952	1.392	2.530	. 100	8.209	8.789
				29.786	234.983	1.176
31	3.952	1.392	2.530	. 100	8.209	8.789
				30.810	241.572	1.215

[^13]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 95.984 | . 057 | . 104 | . 100 | 9.000 | . 052 |
| 2 | 47.984 | . 115 | . 208 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.938 | . 103 |
| 3 | 31.664 | . 174 | . 316 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.828 | . 155 |
| 4 | 23.984 | . 229 | . 417 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.665 | . 206 |
| 5 | 19.184 | . 287 | . 521 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.449 | . 258 |
| 6 | 15.824 | . 348 | . 632 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 53.180 | . 309 |
| 7 | 13.424 | . 410 | . 745 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 61.859 | . 361 |
| 8 | 11.984 | . 459 | . 834 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 70.484 | . 412 |
| 9 | 10.544 | . 522 | . 948 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 79.057 | . 464 |
| 10 | 9.584 | . 574 | 1.043 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 87.578 | . 516 |
| 11 | 8.624 | . 638 | 1.160 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 96.045 | . 567 |
| 12 | 7.664 | . 718 | 1.305 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 104.460 | . 619 |
| 13 | 7.184 | . 766 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 112.821 | . 670 |
| 14 | 6.704 | . 820 | 1.492 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 121.130 | . 722 |
| 15 | 6.224 | . 884 | 1.607 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 129.386 | . 773 |

[^14]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TIME | LOAD | LOAD | TIME | A | B |
| 12 | 95.216 | . 058 | . 105 | . 100 | 9.000 | . 052 |
| | 47.600 | . 116 | . 210 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.885 | . 103 |
| 3 | 31.728 | . 173 | . 315 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.669 | . 155 |
| 4 | 23.792 | . 231 | . 420 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.348 | . 206 |
| 5 | 18.832 | . 292 | . 531 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 43.921 | . 258 |
| 6 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 52.388 | . 309 |
| 7 | 12.880 | . 427 | . 776 | . 10 | 8.209 | 8.789 |
| | | | | 6.234 | 60.750 | . 361 |
| 8 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 69.006 | . 412 |
| 9 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 77.157 | . 464 |
| 10 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 85.202 | . 516 |
| 11 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 93.141 | . 567 |
| 12 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 100.975 | . 619 |
| 13 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 108.703 | . 670 |
| 14 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 116.325 | . 722 |
| 15 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 123.842 | . 773 |
| 16 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 131.254 | . 825 |

[^15]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TIME | LOAD | LOAD | TIME | A | B |
| 17 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 16.474 | 138.560 | . 877 |
| 18 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 17.498 | 145.760 | . 928 |
| 19 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 18.522 | 152.854 | . 980 |
| 20 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 19.546 | 159.843 | 1.031 |
| 21 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 20.570 | 166.727 | 1.083 |
| 22 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 21.594 | 173.504 | 1.134 |
| 23 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 22.618 | 180.176 | 1.186 |
| 24 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 23.642 | 186.743 | 1.237 |
| 25 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 24.666 | 193.204 | 1.289 |
| 26 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 25.690 | 199.559 | 1.341 |
| 27 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 26.714 | 205.809 | 1.392 |
| 28 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 27.738 | 211.953 | 1.444 |
| 29 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 28.762 | 217.992 | 1.495 |
| 30 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 29.786 | 223.925 | 1.547 |
| 31 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 30.810 | 229.752 | 1.598 |

[^16]| LINE | WAIT | DEVICE | PREV | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 96.944 | . 057 | . 103 | . 100 | 9.000 | . 053 |
| 2 | 48.464 | . 113 | . 206 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.937 | . 105 |
| 3 | 32.144 | . 171 | . 311 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.824 | . 158 |
| 4 | 23.984 | . 229 | . 417 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.658 | . 210 |
| 5 | 19.184 | . 287 | . 521 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.438 | . 263 |
| 6 | 15.824 | . 348 | . 632 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 53.164 | . 316 |
| 7 | 13.424 | . 410 | . 745 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 61.836 | . 368 |
| 8 | 11.984 | . 459 | . 834 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 70.454 | . 421 |
| 9 | 10.544 | . 522 | . 948 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 79.018 | . 473 |
| 10 | 9.584 | . 574 | 1.043 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 87.528 | . 526 |
| 11 | 8.624 | . 638 | 1.160 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 95.985 | . 579 |
| 12 | 7.664 | . 718 | 1.305 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 104.388 | . 631 |
| 13 | 7.184 | . 766 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 112.736 | . 684 |
| 14 | 6.704 | . 820 | 1.492 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 121.031 | . 737 |
| 15 | 6.224 | . 884 | 1.607 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 129.272 | . 789 |

[^17]| LINE | WAIT | DEVICE | PREV | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 97.200 | . 057 | . 103 | . 100 | 9.000 | . 053 |
| 2 | 48.592 | . 113 | . 206 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.883 | . 105 |
| 3 | 31.728 | . 173 | . 315 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.663 | . 158 |
| 4 | 23.792 | . 231 | . 420 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.335 | . 210 |
| 5 | 18.832 | . 292 | . 531 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 43.899 | . 263 |
| 6 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 52.355 | . 316 |
| 7 | 13.872 | . 396 | . 721 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 60.704 | . 368 |
| 8 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 68.945 | . 421 |
| 9 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 77.079 | . 473 |
| 10 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 85.104 | . 526 |
| 11 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 93.022 | . 579 |
| 12 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 100.832 | . 631 |
| 13 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 108.535 | . 684 |
| 14 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 116.129 | . 737 |
| 15 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 123.616 | . 789 |
| 16 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 130.995 | . 842 |

[^18]| LINE | WAIT DEVICE PREV. PRIORITY - LOAD | | | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 17 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 16.474 | 138.267 | . 894 |
| 18 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 17.498 | 145.430 | . 947 |
| 19 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 18.522 | 152.486 | 1.000 |
| 20 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 19.546 | 159.434 | 1.052 |
| 21 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 20.570 | 166.275 | 1.105 |
| 22 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 21.594 | 173.007 | 1.157 |
| 23 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 22.618 | 179.632 | 1.210 |
| 24 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 23.642 | 186.149 | 1.263 |
| 25 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 24.666 | 192.559 | 1.315 |
| 26 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 25.690 | 198.861 | 1.368 |
| 27 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 26.714 | 205.055 | 1.420 |
| 28 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 27.738 | 211.141 | 1.473 |
| 29 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 28.762 | 217.119 | 1.526 |
| 30 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 29.786 | 222.990 | 1.578 |
| 31 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 30.810 | 228.753 | 1.631 |

[^19]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { WAIT } \\ & \text { TIME } \end{aligned}$ | DEVICE
 LOAD | PREV .
 LOAD | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | TIME | A | B |
| 1 | 143.984 | . 038 | . 069 | . 100 | 9.000 | . 037 |
| 2 | 71.984 | . 076 | . 139 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.956 | . 073 |
| 3 | 47.984 | . 115 | . 208 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.877 | . 110 |
| 4 | 35.984 | . 153 | . 278 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.762 | . 147 |
| 5 | 28.784 | . 191 | . 347 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.608 | . 183 |
| 6 | 23.984 | . 229 | . 417 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 53.417 | . 220 |
| 7 | 20.144 | . 273 | . 496 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 62.188 | . 257 |
| 8 | 17.744 | . 310 | . 564 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 70.922 | . 293 |
| 9 | 15.824 | . 348 | . 632 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 79.619 | . 330 |
| 10 | 14.384 | . 382 | . 695 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 88.277 | . 367 |
| 11 | 12.944 | . 425 | . 773 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 96.899 | . 403 |
| 12 | 11.984 | . 459 | . 834 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 105.482 | . 440 |
| 13 | 11.024 | . 499 | . 907 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 114.028 | . 477 |
| 14 | 10.064 | . 547 | . 994 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 122.537 | . 513 |
| 15 | 9.584 | . 574 | 1.043 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 131.008 | . 550 |

[^20]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 143.824 | . 038 | . 070 | . 100 | 9.00 | . 037 |
| 2 | 71.408 | . 077 | . 140 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.918 | . 073 |
| 3 | 47.600 | . 116 | . 210 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.765 | . 110 |
| 4 | 35.696 | . 154 | . 280 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.536 | . 147 |
| 5 | 28.752 | . 191 | . 348 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 44.233 | . 183 |
| 6 | 23.792 | . 231 | . 420 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 52.854 | . 220 |
| 7 | 19.824 | . 277 | . 504 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 61.400 | . 257 |
| 8 | 17.840 | . 308 | . 561 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 69.871 | . 293 |
| 9 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 78.267 | . 330 |
| 10 | 13.872 | . 396 | . 721 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 86.588 | . 367 |
| 11 | 12.880 | . 427 | . 776 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 94.834 | . 403 |
| 12 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 103.004 | . 440 |
| 13 | 10.896 | . 505 | . 918 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 111.100 | . 477 |
| 14 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 119.120 | . 513 |
| 15 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 127.066 | . 550 |
| 16 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | -15.450 | 134.936 | . 587 |

[^21]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 17 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 16.474 | 142.731 | . 623 |
| 18 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 17.498 | 150.451 | . 660 |
| 19 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 18.522 | 158.096 | . 697 |
| 20 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 19.546 | 165.666 | . 733 |
| 21 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 20.570 | 173.161 | . 770 |
| 22 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 21.594 | 180.581 | . 807 |
| 23 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 22.618 | 187.925 | . 843 |
| 24 | 5.936 | . 027 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 23.642 | 195.195 | . 880 |
| 25 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 24.666 | 202.389 | . 917 |
| 26 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 25.690 | 209.509 | . 953 |
| 27 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 26.714 | 216.553 | . 990 |
| 28 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 27.738 | 223.522 | 1.027 |
| 29 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 28.762 | 230.416 | 1.063 |
| 30 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 29.786 | 237.235 | 1.100 |
| 31 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 30.810 | 243.979 | 1.137 |

[^22]| LINE | WAIT | DEVICE | PREV | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 95.984 | . 057 | . 104 | . 100 | 9.000 | . 055 |
| 2 | 47.984 | . 115 | . 208 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.934 | . 110 |
| 3 | 31.664 | . 174 | . 316 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.816 | . 165 |
| 4 | 23.984 | . 229 | . 417 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.642 | . 220 |
| 5 | 19.184 | . 287 | . 521 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.412 | . 275 |
| 6 | 15.824 | . 348 | . 632 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 53.125 | . 330 |
| 7 | 13.424 | . 410 | . 745 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 61.783 | . 385 |
| 8 | 11.984 | . 459 | . 834 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 70.383 | . 440 |
| 9 | 10.544 | . 522 | . 948 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 78.928 | . 495 |
| 10 | 9.584 | . 574 | 1.043 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 87.416 | . 550 |
| 11 | 8.624 | . 638 | 1.160 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 95.848 | . 605 |
| 12 | 7.664 | . 718 | 1.305 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 104.223 | . 660 |
| 13 | 7.184 | . 766 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 112.543 | . 715 |
| 14 | 6.704 | . 820 | 1.492 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 120.806 | . 770 |
| 15 | 6.224 | . 884 | 1.607 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 129.012 | . 825 |

[^23]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 95.216 | . 058 | . 105 | . 100 | 9.000 | . 055 |
| | 47.600 | . 116 | . 210 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.877 | . 110 |
| 3 | 31.728 | . 173 | . 315 | . 1.00 | 8.209 | 8.789 |
| | | | | 2.138 | 26.647 | . 165 |
| 4 | 23.792 | . 231 | . 420 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.304 | . 220 |
| 5 | 18.832 | . 292 | . 531 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 43.849 | . 275 |
| 6 | 15.856 | . 347 | . 631 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 52.281 | . 330 |
| 7 | 12.880 | . 427 | . 776 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 60.600 | . 385 |
| 8 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 68.806 | . 440 |
| 9 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 76.900 | . 495 |
| 10 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 84.882 | . 550 |
| 11 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 92.750 | . 605 |
| 12 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 100.506 | . 660 |
| 13 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 108.150 | . 715 |
| 14 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 115.680 | . 770 |
| 15 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 123.099 | . 825 |
| 16 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 130.404 | . 880 |

Figure E-24: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (75 bps), with 31-Line Expansion (part 1 of 2)

$\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$	WAIT	DEVICE	PREV .	PRIORITY - LOAD		
	TIME	LOAD	LOAD	TIME	A	B
17	4.944	1.112	2.023	. 100	8.209	8.789
				16.474	137.597	. 935
18	4.944	1.112	2.023	. 100	8.209	8.789
				17.498	144.677	. 990
19	4.944	1.112	2.023	. 100	8.209	8.789
				18.522	151.645	1.045
20	3.952	1.392	2.530	. 100	8.209	8.789
				19.546	158.499	1.100
21	3.952	1.392	2.530	. 100	8.209	8.789
				20.570	165.242	1.155
22	3.952	1.392	2.530	. 100	8.209	8.789
				21.594	171.871	1.210
23	3.952	1.392	2.530	. 100	8.209	8.789
				22.618	178.388	1.265
24	3.952	1.392	2.530	. 100	8.209	8.789
				23.642	184.793	1.320
25	2.960	1.858	3.378	. 100	8.209	8.789
				24.666	191.084	1.375
26	2.960	1.858	3.378	. . 100	8.209	8.789
				25.690	197.263	1.430
27	2.960	1.858	3.378	. 100	8.209	8.789
				26.714	203.330	1.485
28	2.960	1.858	3.378	. 100	8.209	8.789
				27.738	209.283	1.540
29	2.960	1.858	3.378	. 100	8.209	8.789
				28.762	215.125	1.595
30	2.960	1.858	3.378	. 100	8.209	8.789
				29.786	220.853	1.650
31	2.960	1.858	3.378	. 100	8.209	8.789
				30.810	226.469	1.705

[^24]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 71.984 | . 076 | . 139 | . 139 | 9.000 | . 073 |
| 2 | 35.984 | . 153 | . 278 | . 100 | 7.418 | 17.578 |
| | | | | . 602 | 17.912 | . 147 |
| 3 | 23.984 | . 229 | . 417 | . 100 | 7.418 | 17.578 |
| | | | | 1.114 | 26.755 | . 220 |
| 4 | 17.744 | . 310 | . 564 | . 100 | 7.418 | 17.578 |
| | | | | 1.626 | 35.523 | . 293 |
| 5 | 14.384 | . 382 | . 695 | . 100 | 7.418 | 17.578 |
| | | | | 2.138 | 44.216 | . 367 |
| 6 | 11.984 | . 459 | . 834 | . 100 | 7.418 | 17.578 |
| | | | | 2.650 | 52.834 | . 440 |
| 7 | 10.064 | . 547 | . 994 | . 100 | 7.418 | 17.578 |
| | | | | 3.162 | 61.377 | . 513 |
| 8 | 8.624 | . 638 | 1.160 | . 100 | 7.418 | 17.578 |
| | | | | 3.674 | 69.845 | . 587 |
| 9 | 7.664 | . 718 | 1.305 | . 100 | 7.418 | 17.578 |
| | | | | 4.186 | 78.237 | . 660 |
| 10 | 7.184 | . 766 | 1.392 | . 100 | 7.418 | 17.578 |
| | | | | 4.698 | 86.555 | . 733 |
| 11 | 6.224 | . 884 | 1.607 | . 100 | 7.418 | 17.578 |
| | | | | 5.210 | 94.797 | . 807 |
| 12 | 5.744 | . 958 | 1.741 | . 100 | 7.418 | 17.578 |
| | | | | 5.722 | 102.965 | . 880 |
| 13 | 5.264 | 1.045 | 1.900 | . 100 | 7.418 | 17.578 |
| | | | | 6.234 | 111.057 | . 953 |
| 14 | 4.784 | 1.150 | 2.090 | . 100 | 7.418 | 17.578 |
| | | | | 6.746 | 119.074 | 1.027 |
| 15 | 4.784 | 1.150 | 2.090 | . 100 | 7.418 | 17.578 |
| | | | | 7.258 | 127.016 | 1.100 |

[^25]| $\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$ | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | TIME | LOAD | LOAD | TIME | A | B |
| 1 | 71.408 | . 077 | . 140 | . 100 | 9.000 | . 073 |
| | 35.696 | . 154 | . 280 | . 100 | 8.209 | 8.789 |
| | | | | 1.114 | 17.837 | . 147 |
| 3 | 23.792 | . 231 | . 420 | . 100 | 8.209 | 8.789 |
| | | | | 2.138 | 26.530 | . 220 |
| 4 | 17.840 | . 308 | . 561 | . 100 | 8.209 | 8.789 |
| | | | | 3.162 | 35.072 | . 293 |
| 5 | 13.872 | . 396 | . 721 | . 100 | 8.209 | 8.789 |
| | | | | 4.186 | 43.465 | . 367 |
| 6 | 11.888 | . 463 | . 841 | . 100 | 8.209 | 8.789 |
| | | | | 5.210 | 51.708 | . 440 |
| 7 | 9.904 | . 555 | 1.010 | . 100 | 8.209 | 8.789 |
| | | | | 6.234 | 59.800 | . 513 |
| 8 | 8.912 | . 617 | 1.122 | . 100 | 8.209 | 8.789 |
| | | | | 7.258 | 67.742 | . 587 |
| 9 | 7.920 | . 694 | 1.263 | . 100 | 8.209 | 8.789 |
| | | | | 8.282 | 75.534 | . 660 |
| 10 | 6.928 | . 794 | 1.443 | . 100 | 8.209 | 8.789 |
| | | | | 9.306 | 83.176 | . 733 |
| 11 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 10.330 | 90.667 | . 807 |
| 12 | 5.936 | . 927 | 1.685 | . 100 | 8.209 | 8.789 |
| | | | | 11.354 | 98.008 | . 880 |
| 13 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 12.378 | 105.200 | . 953 |
| 14 | 4.944 | 1.112 | 2.023 | . 100 | 8.209 | 8.789 |
| | | | | 13.402 | 112.241 | 1.027 |
| 15 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 14.426 | 119.131 | 1.100 |
| 16 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 15.450 | 125.872 | 1.173 |

[^26]| LINE | WAIT | DEVICE | PREV . | PRIORITY - LOAD | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | TIME | LOAD | LOAD | TIME | A | B |
| 17 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 16.474 | 132.462 | 1.247 |
| 18 | 3.952 | 1.392 | 2.530 | . 100 | 8.209 | 8.789 |
| | | | | 17.498 | 138.903 | 1.320 |
| 19 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 18.522 | 145.193 | 1.393 |
| 20 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 19.546 | 151.333 | 1.467 |
| 21 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 20.570 | 157.322 | 1.540 |
| 22 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 21.594 | 163.162 | 1.613 |
| 23 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 22.618 | 168.851 | 1.687 |
| 24 | 2.960 | 1.858 | 3.378 | . 100 | 8.209 | 8.789 |
| | | | | 23.642 | 174.390 | 1.760 |
| 25 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 24.666 | 179.779 | 1.833 |
| 26 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 25.690 | 185.018 | 1.907 |
| 27 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 26.714 | 190.106 | 1.980 |
| 28 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 27.738 | 195.045 | 2.053 |
| 29 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 28.762 | 199.833 | 2.127 |
| 30 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 29.786 | 204.471 | 2.200 |
| 31 | 1.968 | 2.795 | 5.081 | . 100 | 8.209 | 8.789 |
| | | | | 30.810 | 208.959 | 2.273 |

[^27]IBM 4331

Figure E-27: Example of load sum worksheet entries for a 2702 (with all communication lines of the same type)

This page has been left blank intentionally

This appendix describes:

1. How to assign the priority of a 2703 Transmission Control in relation to other devices on the byte-multiplexer channel, for use in step 1 of figure 2.11 when testing byte-multiplexer channel data overrun.
2. How to obtain the following channel evaluation factors of a 2703 for use in steps 2 and/or 3 of Figure 2.11.

Wait time
Device load
Previous load
For configurations having more than one 2703 on the byte-multiplexer channel, consult your local IBM representative.

How to Assign Priority Position of a 2703
Assign to the 2703 the lowest priority of the class-1 devices, regardless of relative wait times.

How to Calculate Channel Evaluation Factors for a 2703
The procedure for calculating the channel evaluation factors has two stages:

1. To determine the "cxitical" base.
2. To obtain the required channel evaluation factors from simple formulas by using factors that are associated with the critical base.

How to Determine the "Critical" Base
For the purpose of this procedure, call the installed bases A, B, and C. Using the calculation format shown in Figure F-1, proceed by:

1. Enter the number of lines $N(A), N(B), N(C)$ to be installed on each base. If less than three bases are used, enter the number of lines for the unused base as 0 (zero).
2. From Figure $F-2$, enter the internal priority number $P(A)$,
 the number of lines installed. For any base that is not used, enter the prioxity number as 0 (zero).
3. For base A, find the time $W T(A)$.
a. From Figure $F-3$, find those entries that relate to the types and speeds of lines to be installed on that base.
b. Choose the entry that has the shortest wait time and enter that time in the calculation format as WT(A).
4. Repeat step 3 for the remaining bases.
5. For each base, complete the calculation format as shown in the example (figure $F-4$) in order to determine the "effective" number of lines Ne for each base and the "effective" wait time WTe.
6. The base having the smallest effective wait time WTe is the critical base.

How to Determine Wait Time, Device Load, and Previous Load
Wait Time: Use the $W T$ () * of the critical base.
Device Load: This is given by the following formula:
8.75 XNe ()

Device load $=----------$
WT() *
where Ne() and $W T($) * are, respectively, the effective number of lines and the wait time of the critical base.

Previous Load: This is the lesser of the following items 1 and 2:

1. The device load just calculated.
2. The result of the following calculation:

where X and Y are factors relating to each lower-priority device on the byte-multiplexer channel (Figure F-5).

Priority Load: A priority-load factor is not needed because the 2703 is the lowest priority class-1 device to appear on the byte-multiplexer channel load sum worksheet.

[^28]| Action | Base A | | Base B | | Base C | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENTER DATA | Number of lines on base $A=$
 Internal priority number
 for base A
 (see Figure E-2) $=$ \qquad
 $P(A)$
 Watt time for
 base A
 (see Figure E-3) $=$ | $N(A, B)$
 $N(A, C)$ | Number of lines on base B=
 Internal priority number
 for base B
 (see Figure E-2) =
 $P(B)$
 Wait time for
 base B
 (see Figure E-3) $=\ldots . .$.
 $W T(B)$ | $\cdots(B)$ | Number of lines on base $C=$
 Internal priority number
 for base C
 (see Figure E-2) $=\ldots \ldots$.
 $P(C)$
 Wait time for
 base C
 (see Figure E-3) $=$
 WT(C) | $N(C)$ |
| CALCULATE | $\left.\begin{array}{l} N(A, B)=\frac{P(B)}{P(A)} \times N(A) \\ \text { or } \\ N(A, B)=2 \times N(B) \\ \text { (whichever is smaller) } \end{array}\right\}$ | | $\left.\begin{array}{l} N(B, C)=\frac{P(C)}{P(B)} \times N(B) \\ \text { or } \\ N(B, C)=2 \times N(C) \\ \text { (whichever is smalier) } \end{array}\right\}$ | $\cdots \cdots \cdots{ }^{\text {N }}$ (B,C) | $\left.\begin{array}{l} N(C, A)=\frac{P(A)}{P(C)} \times N(C) \\ \text { or } \\ N(C, A)=2 \times N(A) \\ (\text { whichever is smaller) } \end{array}\right\}$ | $\underset{N(C, A)}{ }$ |
| | $\left.\begin{array}{l} N(A, C)=\frac{P(C)}{P(A)} \times N(A) \\ \text { or } \\ N(A, C)=2 \times N(C) \\ \text { (whichever is smaller) } \end{array}\right\}$ | | $\left.\begin{array}{l} N(B, A)=\frac{P(A)}{P(B)} \times N(B) \\ \text { or } \\ N(B, A)=2 \times N(A) \\ \text { (whichever is smaller) } \end{array}\right\}$ | $\cdots(\ddot{B}, \bar{A})$ | $\left.\begin{array}{l} N(C, B)=\frac{P(B)}{P(C)} \times N(C) \\ \text { or } \\ N(C, B)=2 \times N(B) \\ \text { (whichever is smaller) } \end{array}\right\}$ | $\sim N(C, B)$ |
| | $\begin{aligned} \mathrm{Ne}(A)=N(A) & +N(A, B) \\ & +N(A, C)= \end{aligned}$ | Ne(A) | $\begin{aligned} N e(B)=N(B) & +N(B, C) \\ & +N(B, A)= \end{aligned}$ | $\cdots \mathrm{Ne}(\mathrm{B})$ | $\begin{aligned} N e(C)=N(C) & +N(C, A) \\ & +N(C, B)= \end{aligned}$ | $\mathrm{Ne}(\mathrm{C})$ |
| | $W T e(A)=\frac{W T(A)}{\operatorname{Ne}(A)}=$ | WTe(A) | $W \mathrm{Te}(\mathrm{B})=\frac{\mathrm{WT}(\mathrm{B})}{\mathrm{Ne}(\mathrm{B})}=$ | | $W \mathrm{Te}(\mathrm{C})=\frac{W T(C)}{\mathrm{Ne}(\mathrm{C})}=$ | $\ddot{W} \ddot{T} \dot{e}(\ddot{C})$ |

Figure $F-1: 2703$ calculation format

Type of base	Number of lines	Internal priority number
Start-Stop Base Type I	16	1
	32	2
	48	3
	64	4
	80	5
	88	6
Start-Stop Base Type II	8	1
	16	3
	24	4
Synchronous Base	4	1
Type 1A	8	3
	12	4
	16	5
	20	7
Synchronous Base	24	8
Type 1B	4	2
	8	4
Synchronous Base	12	6
Type 2A	16	8

Figure $F-2$: Internal priority numbers as functions of 2703 base types and number of lines installed per base

Type of line control	Bit rate (bps)	Data rate (cps)	Wait time (ms)
IBM Terminal Control Type I	75	8.3	108.50
	134.5	14.8	59.50
	600	66.7	13.30
IBM Terminal Control Type II	600	60	13.30
Synchronous Terminal Control, Synchronous Base Type 1A, 24 lines, eight bit code			
Without autopolling	600	75	51.00
	1200	150	24.00
	2000	250	15.00
	2400	300	12.00
With autopolling	600	75	24.00
	1200	150	12.00
	2000	250	6.00
	2400	300	6.00
Synchronous Terminal Control, Synchronous Base Type 1B, 16 lines, eight-bit code			
Without autopolling	600	75	53.00
	1200	150	24.50
	2000	250	14.30
	2400	300	12.20
With autopolling	600	75	26.50
	1200	150	12.20
	2000	250	6.10
	2400	300	6.10
Synchronous Terminal Control, Synchronous Base Type 1B, 16 lines, six-bit code			
Without autopolling	600	100	38.70
	1200	200	16.40
	2000	333	10.20
	2400	400	8.20
With autopolling	600	100	18.30
	1200	200	8.20
	2000	333	4.10
	2400	400	4.10
Synchronous Terminal Control, Synchronous Base Type 2A, 12 lines, eight bit code			
Without autopolling	4800	600	6.20
With autopolling	4800	600	3.10
Telegraph Terminal Control Type I	45.5	6.0	131.00
	56.9	7.5	105.00
	74.2	10	80.90
Telegraph Terminal Control Type II	110	100	81.80

Figure $F-3:$ Wait times of 2703 base types according to type and speed of lines installed

These entries relate to a 2703 having the following bases and lines:
Base A: Start-Stop Base Type 1, with 88 lines, having IBM Terminal Control Type I and working at 134.5 bits per second.
Base B: Start-Stop Base Type II, with 24 lines, having IBM Terminal Control Type II and working at 600 bits per second.
Base C: Synchronous Base Type IA, with 24 lines, having synchronous terminal control, autopolling, and working at 2400 bits per second.

The example shows $W T e(C)$ to be the smallest effective wait time (0.111) and, hence, base C to be the critical base.

Action	Base A		Base B		Base C	
ENTER DATA	Number of lines on base $A=$ Internal priority number for base A $($ see Figure E-2) $=\ldots 6$. Wait time for base A $($ see Figure E-3) $=59.50$	88 N(A)	Number of lines on base $\mathrm{B}=$	2.4 N(B)		2.4
			Internal priority number for base B $($ see Figure E-2 $)=\ldots 4$ $P(B)$		Internal priority number for base C $($ see Figure E-2) $=\ldots 8$	
			Wait time for base B $($ see Figure E-3) $=13.30$ WT(B)		Wait time for base C (see Figure E-3) $=\quad .6 .00 .0$	
	$\left.\begin{array}{l} N(A, B)=\frac{P(B)}{P(A)} \times N(A) \\ \text { or } \\ N(A, B)=2 \times N(B) \\ \text { (whichever is smaller) } \end{array}\right\}$	48 $N(A, B)$	$\left.\begin{array}{l} N(B, C)=\frac{P(C)}{P(B)} \times N(B) \\ \text { or } \\ N(B, C)=2 \times N(C) \\ (\text { whichever is smaller) } \end{array}\right\}$	$\begin{aligned} & 48 \\ & N(B, C) \end{aligned}$	$\left.\begin{array}{l} N(C, A)=\frac{P(A)}{P(C)} \times N(C) \\ \text { or } \\ N(C, A)=2 \times N(A) \\ \text { (whichever is smaller) } \end{array}\right\}$	$\stackrel{18}{N(C, A)}$
CALCulate	$\left\{\begin{array}{l} N(A, C)=\frac{P(C)}{P(A)} \times N(A) \\ \text { or } \\ N(A, C)=2 \times N(C) \\ \text { (whichever is smaller) } \end{array}\right\}$	$\begin{gathered} 48 \\ N(A, C) \end{gathered}$	$\left.\begin{array}{l} N(B, A)=\frac{P(A)}{P(B)} \times N(B) \\ \text { or } \\ N(B, A)=2 \times N(A) \\ (\text { whichever is smaller) } \end{array}\right\}$	$\begin{aligned} & 36 \\ & N(B, A) \end{aligned}$	$\left.\begin{array}{l} N(C, B)=\frac{P(B)}{P(C)} \times N(C) \\ \text { or } \\ N(C, B)=2 \times N(B) \\ (\text { whichever is smaller }) \end{array}\right\}$	$\begin{gathered} 12 \\ N(C, B) \end{gathered}$
	$\begin{aligned} \mathrm{Ne}(A)=N(A) & +N(A, B) \\ & +N(A, C)= \end{aligned}$	$\begin{aligned} & 184 \\ & N e(A) \end{aligned}$	$\begin{aligned} N e(B)=N(B) & +N(B, C) \\ & +N(B, A)= \end{aligned}$	$\underset{\substack{108 \\ 108 \\ \hline}}{ }$	$\begin{aligned} \mathrm{Ne}(C)=N(C) & +N(C, A) \\ & +N(C, B)= \end{aligned}$	54 $\mathrm{Ne}(\mathrm{C})$
	$W \operatorname{Te}(A)=\frac{W T(A)}{\operatorname{Ne}(A)}=$	$\begin{gathered} 0.323 \\ \text { wre(A) } \end{gathered}$	$W T e(B)=\frac{W T(B)}{N e(B)}=$	$\begin{gathered} 0.123 \\ w T e(B) \end{gathered}$	$W T e(C)=\frac{W T(C)}{N e(C)}=$	$0 \cdot 1!!$ WTe(C)

Figure $F-4$: Example calculations to determine critical base, effective number of lines, and 2703 wait time,

Figure $F-5: X$ and Y values used to calculate previous load for 2703

This page has been left blank intentionally

Your views about this publication may help improve its usefulness; this form will be sent to the author's department for appropriate action. Using this form to request system assistance, or additional publications will delay response.
For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? \qquad
Number of latest Technical Newsletter (if any) concerning this publication:
Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments).

Your comments, please. . .
This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. Your comments on the other side of this form will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM.

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:
International Business Machines Corporation
Department 813B
1133 Westchester Avenue
White Plains, New York 10604

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York 10017
(International)

K12 M

International Business Machines Corporation Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604 (U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York 10017
(International)

[^0]: Figure 2.12: Example of load sum calculations on load sum worksheet - system with 3310 , CA, 3420-3, 1419, 2520, 1442

[^1]: 1 includes hardware busy times overlapped with Traplevel 4 $2 C E=$ channel end.
 3 DDA = Direct Disk Attachment

[^2]: $X=0$ or 1 , depending on command code for particular device

[^3]: Figure B-1: (Part 1 of 5) Byte Multiplexer Devices Channel Evaluation Factors

[^4]: Figure B-1: (Part 3 of 5) Byte Multiplexer Devices Channel Evaluation Factors

[^5]: Figure E-1: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (75 bps), with Autopolling, without 31-Line Expansion

[^6]: Figure E-3: 2702 Channel Evaluation Factors, IBM Terminal Control Type $I(75$ bps), without Autopolling, without 31-Line Expansion

[^7]: Figure E-4: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (75 bps), with Autopoling, without 31-Line Expansion (part 1 of 2)

[^8]: Figure E-5: 2702 Channel Evaluation Factors, IBM Terminal Control Type $I(134.5$ bps), with Autopolling, without 31-Line Expansion

[^9]: Figure E-6: 2702 Channel Evaluation Factors, IBM Texminal Control Type $I(134.5 \mathrm{bps})$, with Autopolling, with 31-Line Expansion (part 2 of 2)

[^10]: Figure E-7: 2702 Channel Evaluation Factors, IBM Terminal Control Type I (134.5 bps), without Autopolling, without 31-Line Expansion

[^11]: Figure E-10: 2702 Channel Evaluation Factors, IBM Terminal Control Type $I(600 \mathrm{bps})$, without Autopolling

[^12]: Figure E-11: 2702 Channel Evaluation Factors, IBM Terminal Control Type II (600 bps), with Autopolling

[^13]: Figure E-16: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (56.9 bps), with 31-Line Expansion (part 2 of 2)

[^14]: Figure E-17: 2702 Channel Evaluation Factors, Telegraph Texminal Control Type $I(74.2 \mathrm{bps})$, without 31-Line Expansion

[^15]: Figure E-18: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (74.2 bps), with 31-Line Expansion (part 1 of 2)

[^16]: Figure E-18: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type I (74.2 bps), with 31-Line Expansion (part 2 of 2)

[^17]: Figure E-19: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type II (110 bps), without 31-Line Expansion

[^18]: Figure E-20: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type II (110 bps), with 31-Line Expansion (part 1 of 2)

[^19]: Figure E-20: 2702 Channel Evaluation Factors, Telegraph Terminal Control Type II (110 bps), with 31-Line Expansion (part 2 of 2)

[^20]: Figure E-21: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (50 bps), without 31-Line Expansion

[^21]: Figure E-22: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (50 bps), with 31-Line Expansion (part 1 of 2)

[^22]: Figure E-22: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (50 bps), with 31-Line Expansion (part 2 of 2)

[^23]: Figure E-23: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (75 bps), without 31-Line Expansion

[^24]: Figure E-24: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (75 bps), with 31-Line Expansion (part 2 of 2)

[^25]: Figure E-25: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (100 bps), without 31-Line Expansion

[^26]: Figure E-26: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (100 bps), with 31-Line Expansion (part 1 of 2)

[^27]: Figure E-26: 2702 Channel Evaluation Factors, World Trade Telegraph Terminal Control (100 bps), with 31-Line Expansion (part 2 of 2)

[^28]: * Use the time $W T($), not the effective time $W T e()$, of the critical base.

