Publication Number
GC31-2066-1

4700 Finance o
Communication System

|

Controller
Programming Libra

Volume 1
General
Controller
Programming

4700 Finance
Communication System

Controller
Programming Library

Volume 1
General
Controller
Programming

Publication Number . File Number
GC31-2066-1 S370/4300/8100/S34-30

Second Edition (January 1984)

This edition applies to Release 3 and previous releases of the 4700 Finance
Communication System and to all subsequent releases and modifications until
otherwise indicated in new editions or Technical Newsletters (TNLs).

Changes occur often to the information herein; before using this publication to
install or operate IBM equipment, consult the latest IBM System/370 Bibliography
of Industry Systems and Application Programs, GC20—0370, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM’s program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader’s comments is provided at the back of this publication. Address
comments about this manual to IBM Corporation, Information Development,
Department 78C, 1001 W.T. Harris Blvd., Charlotte, NC 28257 USA. IBM may
use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984

Preface

This is Volume 1 of the IBM 4700 Programming Library - one of a set of six
volumes for the 4700 programmer. Figure 0-1 on page v summarizes the topics
covered in the other volumes. All six volumes are available from your IBM
representative or local branch office under a single order number (GBOF-1387).
You will need these volumes if you are developing programs, writing program
extensions, or modifying existing programs in the 4700 Assembler Language.

This book -- Volume 1: General Controller Programming -- introduces key
programming concepts you need to understand, such as how storage is allocated
and how programs can be invoked. This volume also describes the fundamental
instructions that form the basis of a typical controller application program. The
instructions described in Volume 1 perform basic operations such as adding,
subtracting, defining, comparing, and moving data.

Who Should Read This Book

Anyone doing any 4700 Assembler programming will need this book because it
contains the instructions that are required in all 4700 programming.

How This Book Is Organized

What Else To Read

This book begins with some introductory material about the 4700. It will help you
understand how the 4700 operates from a programming point of view. Following
the introduction we have grouped instructions according to the overall function
they perform, such as data definition and program control, for the purpose of
introducing them to the reader. The instructions themselves are arranged
alphabetically. We have started each instruction description on a separate page,
so that you can reorganize the descriptions in whatever order you later find most
useful.

The first five volumes of 4700 Programming Library describe the 4700 Assembler
Language and explain how you use it. The sixth volume explains how you
generate a control program -- CPGEN -- for the controller.

You must generate a control program even if you are not writing your application
program in the 4700 Assembler Language. If you are not using the 4700
Assembler Language, you need only the sixth volume. But we recommend you
review the other volumes too. They describe many concepts that will enhance
your understanding of the sixth volume.

The following is a summary of what you’ll find in each volume.
Valume 2 -- Disk and Diskette Programming explains how you organize files for
the controller disks and diskettes, and how your program gains access to these

files. Both the basic access method and the extended access method are
described.

Preface iii

iv

Volume 3 -- Communication Programming shows how your program can
communicate with a host computer. Two communication protocols are described:
Binary Synchronous Communication (BSC) and Systems Network Architecture
(SNA).

Volume 4 -- Loop and Device Cluster Adapter (DCA) Device Programming explains
how your program controls and exchanges data with the terminals attached to the
controller. Protocols for both loop-attached terminals and for DCA-attached
terminals are discussed.

Volume 5 -- Cryptographic Programming describes the cryptographic facilities
that are available in the controller and in the 4704 encryptmg Personal
Identification Number (PIN) keypad. .

Volume 6 -- Control Program Generation tells you how to define each controller’s
resources (application programs, storage, and terminals) and specify how they are
to be related. If you do not wish to generate the control program at the host
computer, Volume 6 tells you how you can generate the control program at the
controller.

The 4700 Assembler Language is the basic programming language of the 4701
Controller. If you are writing programs in a higher-level language (COBOL.) or
are using IBM-written programs in your controller, see the publications for those
products. A brief description of these products and their associated publications
appears in the IBM 4700 System Summary, GC31-2016.

4700 Controller Programming Library, Volume 1: General Controller Programming

VOLUME 1: GENERAL CONTROLLER PROGRAMMING (GC31-2066)
« Programming Concepts

« Using the General Programming Instructions

« Coding Rules

« General Programming Instructions (Reference)

» General Machine Instruction Formats

« Parameter List Reference

« Status Codes, Program Check Codes, and Error Messages

« Programming Techniques for 3600 Compatibility

Figure 0-1.4700 Controller Programming Library (GBOF-1387)

Vi 4700 Controller Programming Library, Volume 1: General Controller Programming

Summary of Amendments

| GC31-2066-1 (January, 1984)
This edition reflects the following Release 3 changes:

« The addition of dynamic management of main storage including two new
instructions: SEGALLOC and SEGFREE

« Two instructions - Address List (ADRLST) and Indexed Return (IRETURN)
that provide new return capability following a branch-and-link operation.

Significant changes and additions to this manual are marked with the same change
bars that you see at the left of this summary.

Summary of Amendments Vii

vili 4700 Controller Programming Library, Volume 1: General Controller Programming

Contents

Chapter 1. Introduction 1-1

The Controller 1-2

The 4700 Terminals 1-2

The Network 1-2

Controller Operation 1-3

Programming the 4700 1-3
Application Programs 1-4
Main Storage 1-4
The Logical Work Station 1-5

Chapter 2. Coding Considerations 2-1
Contents and Purpose 2-1
Application Program Organization 2-1
Nonrelocatable Programs 2-2
Relocatable Programs 2-3
Call Programming 2-3
Subroutine Programming 2-4
Overlay Programming 2-4
Nested Overlay Sections 2-5
Shared Overlay Sections 2-5
Nonrelocatable Overlays 2-5
Relocatable Overlays 2-5
Using Copy Files 2-5
Programming Notes 2-6
Referencing Labels Between Sections 2-6
Dummy Sections 2-6
Main Storage 2-7
Managing Storage 2-7
Managing Storage by System Configuration 2-7
Managing Storage by Application Programming 2-8
Storage Management by the Controller 2-11
Initializing Storage 2-12
Allocating Two Sets of Registers 2-12
Shared Storage Control 2-12
Addressing Main Storage 2-13
Segment-Displacement Addressing 2-13
Segment Header Addressing 2-15
Register Addressing 2-16
Modified Register Addressing 2-17
Programming Notes About Segment Headers 2-19
Fixed-Length Fields 2-19
Variable-Length Fields 2-20
Programming Notes About Field Delimiters 2-22
Inserting Delimiters in Fields 2-22
Processing Messages and Fields 2-22
Logical Work Station Dispatching 2-23
Dispatching Modes 2-23
Priority Dispatching 2-23
Entry Point Priority 2-24
Gaining Control 2-24
Releasing Control 2-25
System COPY Files 2-26
Condition and Program Check Codes 2-27
Optional Instructions 2-28
COBOL Considerations 2-29
Use of 3600 Programs 2-29

Chapter 3. 4700 Instruction Categories 3-1
Program Definition Instructions 3-1
Assembly Definition 3-1
Section Definition 3-3
Assembly Control Instructions 3-3
Equates 3-3
COPY Instruction 3-3
Controlling Base Registers during Assembly 3-3
Assembly Listing Control Instructions 3-4

Contents

Data Definition Instructions 3-4
Defining Constants 3-4
Defining Delimiters 3-4
Defining Dump Parameters 3-4
Defining Masks and Modulus Factors 3-4
Defining Tables 3-4
Defining Fields 3-5
Data Operation Instructions 3-5
Formatting Input Data 3-5
Moving Data within Controller Storage 3-5
Verifying Data 3-6
Data Translation 3-6
Table Lookup 3-7
Packing and Unpacking Data 3-7
Packing Instructions 3-7
Unpacking Instructions 3-7
Compression and Compaction 3-8
Data Compression 3-8
Data Compaction 3-8
String Control Characters 3-9
Data Decompression 3-10
Data Decompaction 3-10
Arithmetic and Logical Instructions 3-10
Arithmetic Operations 3-10
Binary Operations 3-11
Zoned Decimal Operations 3-11
Comparisons 3-12
Logical Operations 3-12
AND and ANDI 3-13
INOR and INORI 3-13
EXOR and EXORI 3-13
Testing Bits 3-13
Setting and Resetting Bits 3-13
Shifting Data 3-13
Program Control Instructions 3-14
Call Programming Instructions 3-14
Passing Data Between Programs 3-14
Instructions that Release Control 3-14
Branch Instructions 3-14
Branch on Condition Code Instructions 3-14
Branch on Bit Switch Instructions 3-15
Branch on Index Instruction 3-16
Branch and Link Instructions 3-16
Instructions that Return Control 3-16
The Execute (LEXEC) Instruction 3-17
Storage Management Instructions 3-17
Other 4700 Instructions 3-17
Storage Initialization Instructions 3-17
Scratch-Pad Instruction 3-17
Timer Control Instructions 3-17
The Dump Instruction 3-18

Chapter 4. Coding Rules 4-1
Syntax Notation 4-1
Interpreting the Syntax Notation 4-1
Specifying Operands 4-2
Labels and Mnemonics 4-6

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-1
ADDFLD~-Add Field 5-3

ADDFLDL--Add Field Logical 5-5

ADDREG-Add Register 5-7

ADDZ~Add Zoned Decimal 5-9

ADRLST-Return Address List 5-11

AND-AND Field 5-13

ANDI-AND Field Immediate 5-15
APBDUMP-DUMP Segment or File to Diskette 5-17
APCALL~Call Assembler Application Program 5-19
APOPT-Application Program Options 5-23

X 4700 Controller Programming Library, Volume 1: General Controller Programming

APRETURN--Return to Calling Program 5-25
BEGIN-Assembly Control 5-27

BRAN--Branch 5-31

BRANL-Branch and Link 5-33
BRANLR-Branch and Link Register 5-35
BRANR--Branch Register 5-37

BRANX--Branch on Index 5-39
CAFLD-Compare Arithmetic Field 5-41
CAFLDL~Compare Arithmetic Field Logical 5-43
CAREG-Compare Arithmetic Register 5-45
CCDI~-Compare Character Data Immediate 5-47
CCFLD--Compare Character Field 5-49
CCFXD-Compare Character Fixed 5-51
CCSEG-Compare Character Segment 5-53
COBLCALL~Call a COBOL Application Program 5-55
COMP--Compress and Compact 5-57
COMPTB-Build Compaction Table 5-61
COMPZ--Compare Zoned Decimal 5-65
COPY-Copy Source Code 5-67
CRETN-Conditional Return (COBOL) 5-69
DECOMP-Decompress and Decompact 5-71
DECOMPTB-Build a Decompaction Table 5-75
DEFCON-Define Constant 5-77
DEFDEL-Define Delimiters 5-79
DEFDMP--Define APBDUMP Buffer 5-83
DEFLD-Define Field 5-85

DEFRF-Define a Modified Register Address Field 5-89
DEFSTOR-Define Segment Storage 5-93
DIVFLD-Divide Field 5-95

DIVFLDL~Divide Field Logical 597
DIVREG-Divide Register 5-99

DIVZ-Divide Zoned Decimal 5-101
DTACCESS—~Data Access 5-103
DTAFREE~Data Free 5-105

EDIT-Edit Monetary Field 5-107

ENDINIT-End Initialization Section 5-111
ENDOVLY-End of Overlay Section 5-113
ENDSEG-End Application Program Section 5-115
EQUATE—-Equate a Label to a Value 5-117
ERRLOG-Obtain Statistical Counters 5-119
EXOR--Exclusive OR 5-123

EXORI-Exclusive OR Immediate 5-125
EXPS--Exchange Primary and Secondary Field Pointers 5-127
FCLENTER~-Define COBOL Entry Linkage 5-129
FCLEXIT-Define COBOL Exit Linkage 5-131
FINDAP-Find Application Program 5-133
FINISH-End the Application Program 5-137
INITSEG-Initialize Segments 5-139
INOR-Inclusive OR 5-141

INORI-Inclusive or Immediate 5-143
INTMR~Interval Timer 5-145
IRETURN-Indexed Conditional Return 5-151
JUMP-Short Branch 5-153

LCHAP--Change Priority 5-155

LCHECK-Check Status of Station-to-Station Write 5-157
LCONVERT--Convert Binary/Character 5-159
LDDI-Load Data Immediate 5-161
LDFLD--Load Field 5-163

LDFLDC-Load Field Character 5-165
LDFLDL~Load Field Logical 5-167

LDFP-Load Primary Field Pointer 5-169
LDLN-~Load Field Length Indicator 5-171
LDRA~Load Register Address 5-173
LDREG~Load Register 5-175

LDSECT--DSECT Definition (BEGIN) 5-177
LDSEG~Load Segment 5-179

LDSEGC-Load Segment Character 5-181
LDSEGLN-Load Segment Length 5-183
LDSFP-Load Secondary Field Pointer 5-185
LEJECT-Eject to a New Page 5-187

Contents

xi

LEND-DSECT Definition (End) 5-189
LEXEC-Execute 5-191

LEXIT--End of Processing 5-193

LHRT--Load High-Resolution Counter 5-195
LIFOFF-If Off Then Branch 5-197

LIFON-If On Then Branch 5-199

LLOAD~Load an Overlay Section into Main Storage 5-201
LMERGE-Merge Blocks of Records 5-205

Ln~Level Definition for DSECTS 5-213

LPOST--Post Work Station 5-215

LREAD-Read Station-to-Station Message 5-217
LRETURN--Return after a Branch-and-Link 5-219
LSEEK-Seek (Table Lookup) 5-221
LSEEKP--Extended Seek 5-225

LSEEKPL~Extended LSEEK Parameter List 5-229
LSETOFF--Set Off 5-233

LSETON--Set On 5-235

LSORT-Sort a Block of Records 5-237

LSPACE~Space a Line of Output 5-241

LTIME~Time (Fixed Format) 5-243

LTIMET-Time Table 5-247

LTIMEV~Time (Variable Format) 5-249
LTRT--Translate Input Data 5-253
LTRTBEG-Translate Table Begin 5-265
LTRTENT-Translate Table Entry 5-267
LTRTGEN-Translate Table Configuration 5-269
LWAIT-Wait 5-271

LWRITE~WRITE Station-to-Station Message 5-273
MASK~Mask (For EDIT Instruction) 5-275
MOD-Modulus Factor (For MODCHK Instruction) 5-277
MODCHK~-Modulus Check 5279

MPYFLD-Multiply Field 5-281

MPYFLDL~Multiply Field Logical 5-283
MPYREG-Multiply Register 5-285

MPYZ~Multiply Zoned Decimal 5-287

MVCZ~Move and Convert Zoned Decimal 5-289
MVDI-Move Data Immediate 5-291

MVFLD-Move Field 5-293

MVFLDR--Move Field Reverse 5-295

MVFXD-Move Fixed 5-297

MVFXDR-~-Move Fixed Reverse 5-299

MVSEG-Move Segment 5-301

MVSEGR~Move Segment Reverse 5-303
OVLYSEC-Define Load Address and Entry Point 5-305
PAKFLD-Pack Field 5-307

PAKSEG-Pack Segment 5-309

PAUSE-Suspend Processing 5-311

PLPCMD-Post-List Processor Commands 5-313
PRINTI-Print Macro Expansion 5-315
REBASE-Restore the Base Register for a DSECT 5-317
SAVEBASE~Save the Base Register for a DSECT 5-319
SCALE~Scale Number 5-321

SCRPAD-Scratch Pad 5-327

SECTION-Section Control 5-339
SEGALLOC-Segment Allocate 5-341
SEGCODE~Application Program Section Identifier 5-343
SEGCOPY-Segment Copy 5-345

SEGFREE-Segment Free 5-349

SELECT-Select Segment 0 5-351

SETFLDI-Set Field Immediate 5-353

SETFPL--Set Primary Field Pointer and Field Length Indicator 5-355
SETSFP-Set Secondary Field Pointer 5-361
SHIFTL~Shift-Left Data in a Register 5-365
SHIFTR~Shift-Right Data in a Register 5-367
SINIT-Start Initialization Section 5-369
STATS~Obtain or Reset Extended Statistical Counters 5-371
STFLD-Store Field 5-379

STFLDC-Store Field Character 5-381

STOVLY-Start Overlay 5-383

STSEG-Store Segment 5-385

Xii 4700 Controller Programming Library, Volume 1: General Controller Programming

STSEGC-Store Segment Character 5-387
SUBFLD--Subtract Field 5-389
SUBFLDL~Subtract Field Logical 5-391
SUBREG-Subtract Register 5-393
SUBZ-Subtract Zoned Decimal 5-395
TABLE-Define Table for LSEEK/LSEEKP 5-397
TSTMSK-Test under Mask 5-399

TSTMSKI-Test under Mask Immediate 5-401
UPKFLD~-Unpack Field 5-403

UPKSEG-Unpack Segment 5-405
USEBASE~Use a Base Register for a DSECT 5-407
VERIFY—Verify 5-409

VIEW--VIEW APCALL/APRETURN Stack 5-411

Appendix A. Machine Instruction Formats A-1

Appendix B. COPY Files B-1

DEFAPB B-3

Segment 14 Fields B-3

DEFCPL B-5
DEFDCP B-5
DEFELP B-6
DEFESP B-6
DEFFAP B-7
DEFGMS B-7

Segment 15 Fields B-10

DEFINT B-13
DEFMER B-14
DEFREG B-14
DEFRGS B-15
DEFSCA B-15
DEFSCP B-15
DEFSEG B-16
DEFSKP B-17
DEFSMS B-18

Segment 1 Fields B-21

DEFSOR B-26
DEFTRP B-26
DEFTRT B-27
DEFTSX B-27
DEFVUE B-28

Appendix C. Assembler Error Messages C-1
Appendix D. Program Check Codes D-1
Appendix E. Status Codes E-1

Appendix F. Functions Retained for 3600 Compatibility F-1
Split Programs F-1
APOPT Instruction: SPLIT Operand F-1
BEGIN Instruction F-1
APBNM Operand F-1
INSNAME Operand F-1
DEFCON Instruction F-1
LEXEC Instruction F-1
LLOAD Instruction F-2
LSEEK Instruction F-2
LSEEKP Instruction F-2
LSEEKPL Instruction F-2
NOINST F-2

INST F-2

OVLYSEC Instruction F-3
inst-org/const-org Operand F-3
SECTION Instruction F-3
SEGCODE Instruction F-3
SEGCOPY Parameter List F-3
STOVLY Instruction F-4

Contents

xiii

TABLE Iunstruction F-4

Segment Indexing F-4
Indexing Affects on Instructions F-9

BRANX Instruction F-9

LDRA Instruction F-9

MVDI Instruction F-9

MVFXD Instruction F-9
SETX-Enable/Disable Segment Indexing F-10
SETXREG-Set Index Register Number F-13
TESTX~Test for Active Indexing F-15

Appendix G. Program Communication with the System Monitor G-1
Application Program Debugging G-1
Programmable Input Facility G-1

Monitor Restrictions under Programmable Input Control G-2

Bibliography X-1

Index X-3

Xiv 4700 Controller Programming Library, Volume 1: General Controller Programming

Figures

. 4700 Controller Programming Library (GBOF-1387) v

. The 4700 Finance Communication System 1-1

. Format of Statistical Counters Returned by ERRLOG 5-120

. Physical Device Address Used by ERRLOG 5-121

. Set Field Pointer Instructions Summary 5-359

. Set Field Pointer Instructions Summary 5-364

. Format 1 Request and Information Returned by STATS 5-373
. Format 2 Request and Information Returned by STATS 5-374
. Status Codes E-2

. Status Codes E-4

Figures

XV

XVi 4700 Controller Programming Library, Volume 1: Genéral Controller Programming

Chapter 1. Introduction

The IBM 4700 Finance Communication System is a family of telecommunication
products designed for financial institutions and their branches. A typical 4700
system is made up of devices and programs that allow processing to be distributed
through the network rather than concentrated at the central site. Message
processing and terminal control at a finance communication controller enable the
central site to provide support for larger and more complex networks, because less
central-site processing is required for each terminal. The processing capabilities of
the controller also enable branch operations to continue during fajlures at the
central site or in the communication network. Figure 1-1 shows a sample 4700
system.

Host Processor
OS VS or DOS VSE p
4700
TCAM Program VSAM
VTAM Data
Base
3704 or 3705 3704 or 3705
Communication Communication
Controller or Controller or
Muiti-Use Multi-Use
Attachment Loop Attachment Loop
Finance Finance
Communication Communication
System System
Finance 3614/24 Consumer
Communication Transaction
System Facility
L
r——'-———————q—-—-——_
4700 Subsystem Direct
' 4701 Finance Attach '
' C ication C] '
I Application '
Program 3262
| 3278 |
l 3289 l
I Local Remote Loop l
Loop
I Terminal asrze | |
l Terminal
I 3614/24 '

-
I
I
|
I
I
I
I
I
I
I
I
|

Figure 1-1. The 4700 Finance Communication System

Chapter 1. Introduction 1-1

The Controller

The 4700 Terminals

The Network

The IBM 4701 Controller is a programmable controller that uses application
programs, provided by the using institution, to control terminals, process data, and
transfer data to the central site. Terminals are attached to the controller either
directly, or by a local or remote loop. The controller may be connected to a host
processor by several means that are described in Volume 3: Communication
Programming.

The terminals that attach to the controller of a 4700 system are a keyboard
display, financial services terminals, document and passbook printers, a consumer
transaction facility, and several terminals and line printers. Most of the terminals
are available in more than one model, providing choices in display size, keyboard
size and arrangement, and character sets and printing speeds.

These terminals and a terminal attachment unit that provide telecommunications
line connection facilities for 4700 terminals are discussed in Volume 4.

The 4700 terminals are:

IBM 4704 Display

IBM 4710 Receipt/Validation Printer

IBM 4720 Forms/Passbook Printer

IBM 3604 Display ‘

IBM 3606 Financial Services Terminal

IBM 3608 Printing Financial Services Terminal
IBM 3610 Document Printer

IBM 3611 Passbook Printer

IBM 3612 Passbook and Document Printer
IBM 3614 and 3624 Consumer Transaction Facilities
IBM 3615 Administrative Terminal Printer
IBM 3616 Passbook and Document Printer
IBM 3262 Line Printer

IBM 3278 Display

IBM 3279 Display

IBM 3287 Printer

The IBM 3603 Terminal Attachment Unit provides telecommunication line
connection facilities for the Financial Services Terminals and other devices. With
customer-provided data access arrangements, the 3603 provides manual dial
backup capability (over a switched network) to enable you to restore
communications if the normal telecommunication line fails. The 3603 is designed
for unattended operation and has no impact on programming support.

The 4700 controller attaches to the host system either directly or on dedicated
(leased) or switched lines. You can use: Binary Synchronous Control (BSC3);
Systems Network Architecture / Synchronous Data Link Control (SNA/SDLC);
CCITT Recommendation X.21; or the 4331 Multiuse Communication Loop
protocol. Depending on which protocol is used, the type of link can be either
point-to-point or multipoint full-duplex.

You will find additional information on this subject in Volume 3: Communication
Programming.

1-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Controller Operation

Programming the 4700

You can operate the controller independently of the central processor. You start
the controller by a load operation that, along with many other operations, is
carried out at the controller using a facility called the system monitor. The system
monitor is used by the control operator, who, depending on the circumstances, may
be one of the branch personnel, an application programmer, or a customer
engineer. Information about using the system monitor is in the IBM 4700
Finance Communication System: Subsystem Operating Procedures.

You load the controller from a diskette, either the one provided by IBM, referred
to as the installation diskette, or one you created, referred to as the operating
diskette. The primary function of the installation diskette is to allow you to create
an operating diskette. An operating diskette contains application programs and
information to tailor the controller to your needs.

Two configuration procedures are available. One is performed on a host system
using the IBM 4700 Host Support (Licensed Program 5668-989) and the other,
called the Local Configuration Facility (LCF), runs in the controller.

You must describe your 4700 system using one of the controller configuration
procedures. These specifications include information such as: a description of the
physical controller, its communication links, and its terminals; and a description of
the programming environment to be used.

With the information specified in the configuration procedure as a reference, you
can use a 4700 programming language to write an application program. 4700
programming languages consist of symbolic instructions and statements that
define data and that become machine instructions.

You can combine configuration data and application programs in a host system
and transmit them to the controller to create operating diskettes. You can
combine application programs from a disk with configuration data from a diskette
to create an operating diskette. You can also transmit controller application
programs, without the configuration data, to a controller to replace the current
program set on a disk or diskette.

You can also create operating diskettes at the controller by combining
LCF-generated configuration data with assembled application programs.

You can copy application programs from disks and diskettes to disks and
diskettes.

The IBM 4700 Finance Communication System is programmable in ways that are
similar to other computing systems. It can be programmed in it’s own assembler
language, or in COBOL (COmmon Business Oriented Language) a popular
programming language for business data processing.

The succeeding sections of this chapter describe, in general terms, 4700

application programs; main storage and how it can be used by application
programs; and the concept of a 4700 Logical Work Station.

Chapter 1. Introduction 1-3

Application Programs

Main Storage

You may choose to write your own application program or to select from those
that are available from IBM. If you choose to write your own application program
it may be subdivided and be written in a combination of the two languages
mentioned above, that is, part of the program coded in 4700 assembler language
and part of it coded in COBOL. You may also separate the program into pieces
so that more than one programmer can be assigned or so that sections can be
coded at different times. In fact, the organization of the 4700 Programming
Library reflects this ability by separating disk and diskette programming from host
communication programming and from terminal programming.

In the IBM 4700 Finance Communication System an application program is
assigned an amount of main storage and some of the controller’s terminals. This
combination of an application program, main storage, and terminals, is called a
Logical Work Station. One application program can service more than one logical
work station, each work station having it’s own terminals and it’s own storage.

The logical work station, application programs, and controller main storage will be
described in more detail in later sections and chapters.

4700 controller main storage will, in general, be used in the following ways: some
of it will be used by system functions; some for tables that define the system
configuration, and some will be assigned to logical work stations. The amounts of
main storage required for each one of these will depend on factors such as; the
functions the system is to perform, the numbers and types of terminals, the sizes
of application programs, and the amounts of data to be processed. All of these
factors will be described in this, and in other volumes of the 4700 Programming
Library.

Our primary interest, in this book, is in storage allocated to a logical work station
because it is directly related to writing an application program.

The 4700 allocates main storage from storage pools. Storage pools are collections
of areas of storage that can be assigned to logical work stations upon request.
There are two different types of storage pools in the 4700: pools that are shared
by all logical work stations and pools that are owned by one logical work station
or shared by a selected group of logical work stations. Chapters 2, 3, and §
contain more information about main storage pools.

Main storage can be used as private or as shared storage after it has been assigned
to a work station.

o Private storage is available only to a single logical work station. This assures
that information concerning a transaction being processed by a logical work
station will not be affected by transactions being processed by other logical
work stations. It also assures that one logical work station will not have
access to data it does not need. '

1-4 4700 Controller Programming Library, Volume 1: General Controller Programming

The Logical Work Station

o Shared storage is available to some or all logical work stations. You might use
shared storage to transfer an account deposit from a teller logical work station
to an account-posting logical work station, or to provide space for information
such as a list of overdrawn checking accounts.

Logical work station storage is divided into units called segments. Each logical
work station has one segment that contains registers. Another segment contains
groups of data fields that provide communication between the controller and
logical work stations. The remaining segments are used for data buffers and work
areas.

Storage segments are numbered O through 15. Segments numbered O through 12
are the private storage segments that can be allocated to each logical work station.
Segment 13 can be private or shared; Segment 14 always contains an application
program; and Segment 15 can be shared among all logical work stations. There
can be only one Segment 15 in a system configuration. All of these concepts of
4700 main storage will be further described later.

The 4700 performs work for a conceptual unit called a logical work station. A
logical work station is, as we saw earlier, main storage, one or more terminals, and
a controller application program. As many as 60 logical work stations can exist in
a controller (depending on installation requirements and available storage). All
logical work stations have access to disk and diskette drives, to communication
links, and to terminals.

The controller allocates processing time to, or dispatches, each logical work station
in several ways that will be described in this book. When an application program
is running on behalf of a logical work station, it can perform various tasks for the
financial institution. For example, a commercial bank can have four logical work
stations for savings and demand deposit, two for loans, and two for account
inquiry. To keep the transaction data separated, each logical work station is given
a separate portion of storage. An application program can be shared by more
than one logical work station.

Therefore, one could write three application programs: one for savings and
demand deposit, one for loans, and one for account inquiry.

The remainder of this manual provides the information needed to design and code
a 4700 assembler application program.

The earlier chapters discuss programming considerations such as: selecting a
program structure; calling other programs from your program; and designing your
program to be called by other programs. They also describe the actual program
functions and instructions by categories such as data operations, arithmetic and
logical operations, and program control.

The later chapters describe the coding and syntax rules, and the 4700 general

controller instructions in detail. Topics such as program checks, status codes, and
error messages are in appendixes at the back of this manual.

Chapter 1. Introduction 1-5

1-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 2. Coding Considerations

Contents and Purpose

This chapter contains information about the major concepts of 4700
programming;:

« several different ways in which you can organize your program
» getting storage and using it

o addressing data

e getting control of the controller.

The purpose of this chapter is to introduce these concepts to you and to help you
begin to know: how the system is designed; what it can do for you; and what you
can do with it.

Application Program Organization

The IBM 4700 Finance Communication System provides several ways to organize
application programs allowing you to place functions or tasks in different parts of
the program; to assign these parts to several programmers; or to implement the
parts at different times.

The ways in which you can organize a 4700 application program are:

« Nonrelocatable Programs - programs that have only one part; that is, they are
completely contained in one assembly.

« Relocatable Programs - programs made up of sections that can be assembled
separately and are link-edited together.

« Call Programming - writing complete programs that are assembled separately
and that invoke, that is ‘call’ other programs or are ‘called’ by other programs.

¢ Subroutine Programming ~ writing routines to which the main program can
branch.

« Overlay Programming - writing program sections that can be loaded when
required.

o Copy Files - sets of instructions that can be assembled into programs or
sections.

A non-relocatable program is one assembly containing an entire program. It is the
least difficult to understand and use but it also offers the least flexibility. Any
change to the program, during development or later, requires that the entire
program be reassembled.

A relocatable application program is coded in sections that will be link-edited

together by the Host Support. The sections can either be assembled together or
assembled separately.

Chapter 2. Coding Considerations 2-1

Nonrelocatable Programs

Call programming allows you to divide work into distinct tasks and to write a
separate program for each task. To use this facility you must have a primary
application program that calls secondary application programs. The primary
application program must be associated with a logical work station in the
configuration specifications. Programs to be called may be resident in main
storage or they may be transient, that is; they are on a disk or diskette.

Subroutine programming is a well known technique for coding program functions
that are required more than once. For example, you might write a subroutine to
handle all disk and diskette operations.

Overlay programming is generally used when available storage is insufficient for
an application. In this situation you can use one area of storage for multiple parts
of the program when the functions to be performed are somewhat independent of
each other. For example, one overlay could receive data from an automated teller
terminal; leave it in an area of storage; and a second overlay could send the data
to a host system.

Copy files are useful in reproducing sets of instructions in more than one
assembly. For example, when 2 programmers are coding related programs and
both programs need access to a common data area that can be defined by one set
of data definition instructions. The data definition instructions can be created
once and then ‘copied’ into the appropriate assemblies.

Each controller application program includes:

« A BEGIN instruction, which defines the beginning of the application root and
builds an application program header that is used by the linkage editor.

« A FINISH instruction that defines the end of the application root.

The BEGIN instruction is usually followed by equates, constants, and data field
instructions. These are grouped together to make them easier to find.
Instructions that become data must be placed so that they do not interfere with
executable machine instructions.

Each application program section, other than the root, must begin and end with a
SEGCODE-ENDSEG or an OVLYSEC-ENDOVLY pair.

The simplest form of a 4700 application program is one in which the entire
program is contained in one assembly. These are usually called non-relocatable’
programs because there are no parts to arrange before they are loaded into
storage. Nonrelocatable programs are preceded by an APOPT instruction that
either omits the RELOC operand or specifies RELOC=N. The following shows
how a non-relocatable application program can be organized.

APOPT RELOC=N
BEGIN
Data Definition and Machine Instructions
FINISH
END

2-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Relocatable Programs

Call Programming

A relocatable application program is coded in sections that will be linkage edited
together by the Host Support. ‘Relocatable’ means that program sections will be
placed in order by the linkage editor and that references to data and instructions
between sections will be resolved. The application program module being
assembled must begin with an APOPT instruction that specifies RELOC=Y.

Each relocatable application program must include a root section, and may
include other sections. You must use the following instructions to define
application program sections.

« A BEGIN instruction, to name a root section.
« A FINISH instruction, to define the end of a root section.

« A SEGCODE instruction, to name a section and identify the beginning of a
section.

« An ENDSEG instruction, to define the end of a section.

e An OVLYSEC instruction, to name a section and identify it as an overlay
section.

« An ENDOVLY instruction, to define the end of an overlay section.

Instructions that appear between BEGIN-FINISH, OVLYSEC-ENDOVLY, and
SEGCODE-ENDSEG instruction pairs are recognized by the Host Support. If an
assembly is attempted where instructions appear outside an application section,
Host Support will not process the assembly.

The following shows how a relocatable program can be organized.

APOPT RELOC=Y
BEGIN

Instructions
FINISH
END

APOPT RELOC=Y
SEGCODE

Instructions
ENDSEG
END

The term ‘call’ programming simply means that application programs can invoke
other application programs. This allows you to assign tasks to small, independent,
but interconnected programs. When running in the controller, each program can
have its own allocated segment storage, can share segment storage, or both.

As we saw earlier, programs can be written in either of the 2 available languages

(Assembler and COBOL). You’ll find the instructions that you can use in later
chapters. Assembler programs can invoke other assembler programs using the

Chapter 2. Coding Considerations 2-3

Subroutine Programming

Overlay Programming

APCALL instruction, or they can use the COBLCALL instruction to call
COBOL programs. COBOL programs can also invoke Assembler programs.

The first program that operates on behalf of a logical work station is the primary
application program; any program invoked by that program or by any other
program is termed a called, or a secondary application program. Later we will also
use the term ‘current’ application which means the program that is in control of
the logical work station.

Application programs may be ‘resident’, that is, they are in main storage; or they
may be ‘transient’ which means that they are on a disk or diskette.

For example: you might write four programs: one program to handle overall
branch office operations; one program to take care of real-time customer activity;
one to send account transaction data to a host computer at your home office; and
one to save account transactions on a disk. The overall branch office program

might:

determine that a teller has a customer deposit and ‘call’ the customer activity
program;

determine that the host link is currently not available;

‘call’ the disk program to save the transaction data so that it can be sent to the
host at a later time.

You can write subroutines to perform discrete functions rather than repeating
sequences of instructions in your program. The 4700 has branch-and-link
facilities that allow you to pass control to a subroutine. You can also return
control to the point at which your program invoked the subroutine. The
instructions that you can use are BRANL (Branch and Link); BRANLR (Branch
and Link Register); and LRETURN.

You must code a root section of an overlay program that remains in main storage
at all times. One of its functions must be to cause the non-resident sections to be
brought from disk or diskette into main storage as they are needed.

If the application is written in overlays, the overlay sections themselves may be
subdivided into sections. The overlay sections and subsections may be assembled
separately, together, or in some combination with a root section.

You will find the instructions you can use to write overlay programs among the
detailed descriptions later in this book. Specifically, they are: Define an Overlay
Section (OVLYSEC); Start an Overlay (STOVLY); End an Overlay
(ENDOVLY); and Load an Overlay Section (LLOAD).

2-4 4700 Controller Programming Library, Volume 1: General Controller Programming

Nested Overlay Sections

Shared Overlay Sections

Nonrelocatable Overlays

Relocatable Overlays

Using Copy Files

The instructions used for overlay programming are:

« LLOAD, which loads the specified application overlay and is in the calling
routine.

« STOVLY, which identifies the load point (origin address) of the specified
application overlay.

« OVLYSEC, which defines the beginning of the application overlay and may
define the entry point of the overlay. It is the first instruction in the overlay
section.

« ENDOVLY, which defines the end of the overlay section.

If the application overlay is assembled as relocatable, the following instructions
may also be used:

« SEGCODE, which defines the beginning of a section that may be added to
the overlay section to form a complete application overlay.

« ENDSEG, which defines the end of a SEGCODE section.

If the controller application program includes application overlays, the first
section in each application overlay must begin with an OVLYSEC instruction and
end with an ENDOLVY instruction. The remaining sections in the application
overlay are those defined by the SEGCODE/ENDSEG instruction pairs. The
link-edit function of the Host Support Program resolves all addresses so that the
completed application overlay begins at the address of the overlay load point (the
STOVLY instruction) and is addressed consecutively.

The controller application program may be organized so that nested application
overlays are used; that is, one overlay can load another overlay.

Your program must handle application overlay areas so that one logical work
station does not load an overlay into an overlay area being used by another logical
work station.

Nonrelocatable application overlays are assembled with the application program
root but can be loaded individually.

Relocatable application overlays are similar to nonrelocatable overlays except that
they can be assembled separately.

Copy files are purely a program assembly facility. You must define a copy file
and add it to your macro library in the host system before it can be used by the
assembler. When the assembler encounters a COPY instruction it simply inserts
all of the contents of the copy file at the point where it found the COPY
instruction.

Chapter 2. Coding Considerations 2-5

Programming Notes

Here are several things that you should know about writing application programs
that have not been described previously.

Referencing Labels Between Sections

Application program sections can refer to labels outside themselves without being
assembled together, by using EXTRN statements. If you need to refer to a label
that is not defined in this section, you must identify it as an external label with an
EXTRN instruction. Another application program section must define the label
and identify it with an ENTRY instruction. If these sections are assembled
together ENTRY and EXTRN will have no effect; however, you should use these
instructions so that you will have the flexibility of being able to assemble the
sections separately. ENTRY and EXTRN instructions may appear anywhere
within the appropriate application program sections.

Dummy Sections

4700 Assembler Language provides two ways in which you can code a program
section that refers to (or uses) data in an area of storage defined in some other
section. One way is by a SECTION DUMMY instruction and the other is by an
LDSECT (Dummy Section) function. Although they are similar, the LDSECT
function offers more flexibility and is the basis for some of the data addressing
functions.

Using the SECTION DUMMY instruction, you can refer to, for example,
constants that have been defined in the root section of the program. This may
sound like the EXTRN and ENTRY description but it differs in that SECTION
DUMMY allows you to refer to an entire data area having many labels, not just a
few labels in another section.

By using the DEFRF and/or LDSECT instructions you can refer to data areas
defined by other sections and other programs. You can dynamically change the
reference to the data while the program is running and not be required to recode
or reassemble any of the program. This capability will be described in detail later
in this chapter.

2-6 4700 Controller Programming Library, Volume 1: General Controller Programming

| Main Storage

| Managing Storage

The following sections describe three ways that you can manage storage in the
4700:

¢ Describe main storage usage in your configuration specifications.
¢ Allow application programs to manage main storage usage dynamically.
e Use a combination of the above.

In the following sections, we discuss managing storage in terms of "'defining'' and
"allocating' storage. ''Defining'' storage means that you describe an area of
storage that a work station or your program may need. "Allocating" storage
means that the 4700 assigns an area of storage to an application program or a
logical work station.

The term "segment' simply means an area of main storage that is used for specific
purposes. Later in this book, we’ll talk more about the number of segments that
can be used by each work station. For now, we’ll use the number 16, 13 private
segments and three that can be shared. The purpose of each segment is shown
below.

Segment 0 contains the six-byte registers used by your application
program for arithmetic and logical operations. As shown
later in this chapter, the program can also use these registers
for addressing.

Segment 1 is the SMS (System Machine Segment), an area of storage
that the system uses for communication with logical work
stations.

Segments 2 - 12 are data storage areas assigned to each work station for
holding input data, work areas, and output data.

Segment 13 is a data storage area that can be shared with other primary
and secondary application programs.

Segment 14 is the read-only storage area holding the application program.
It includes constants, machine instructions, and tables.
Segment 14 can be a shared segment in the sense that the
application program can service more than one logical work
station.

Segment 15 is the Global Machine Segment (GMS) shared by all
application programs.

v Managing Storage by System Configuration

Your installation can choose to define and allocate main storage exclusively
within the Control Program Generation specifications. Main storage management
that is accomplished this way can be called “static”’, meaning that storage usage
can be changed only by modifying and reprocessing your CPGEN.

Chapter 2. Coding Considerations 2-7

The system configuration process automatically defines and allocates:

o sixteen 6-byte registers (the first 96 bytes of Segment 0)

o a System Machine Segment for each logical work station (Segment 1)
+ Segment 14 for each application program

« a Global Machine Segment.

System configuration can also determine the size of the storage pools that will be
in effect during system operation,

An important point to remember is that your installation can take a rigid approach
to storage management by defining storage usage only within system
configuration specifications. If your installation decides to do so, then you may
not need to be concerned with storage management at all within your program.
Remember, however, the 4700 allows:

» calling independent programs
« running more than one program on behalf of a work station.

If any programs in your controller do these things, you must have some
understanding of storage management.

| Managing Storage by Application Programming

The 4700 also provides a dynamic way to allocate storage. This storage
management function is provided when you include a TRANPL. macro in your
configuration specifications.

All storage remaining - after requirements for microcode, system configuration
data, and resident application programs are satisfied - is available for allocation.
When your application program issues an instruction that requires storage, it is
allocated from the available space. Storage is returned to the available space
when your application program issues the appropriate instruction. The
instructions that allocate space are APCALL (Call an Application Program),
DTACCESS (Data Access), and SEGALLOC (Segment Allocate). The
instructions that release space are APRETURN (Return to Calling Program),
DTAFREE (Data Free), and SEGFREE (Segment Free).

Storage Refreshability: The 4700 provides for both non-refreshable (read/write)
and refreshable (read-only) programs. You specify which by the Application
Program Options (APOPT) instruction. Both kinds of programs can contain
executable or non-executable instructions.

2-8 4700 Controller Programming Library, Volume 1: General Controller Programming

Refreshable means that the program cannot be dynamically modified; that it is
not an overlay or does not use overlays; and that the 4700 can reuse the storage it
occupies and reload the program. If you identify a program as refreshable, the
4700 will not allow it to be modified.

Non-refreshable means that the program can be dynamically modified and that it
will remain in main storage until released.

Refreshable programs must be transient and can only exist in the SYSAP data set.
These programs will be loaded by the 4700 when another program issues an
APCALL or DTACCESS instruction. If your program accesses a non-refreshable
program by means of DTACCESS, the 4700 will load that program into a data
storage segment; that is, a segment in the range of 2 through 12. Your program
can address the program that is loaded only by the register address returned by
the DTACCESS instruction.

Storage Management by the 4700: When a request for storage is made, the 4700
will attempt to allocate the space from a storage pool in a series of steps:

1. Search for an available block of storage that can satisfy the request.

2. Move segments currently in use in an attempt to consolidate the available
space.

3. Steal the space currently being used by a refreshable area and use this space to
satisfy the current request for storage.

If a refreshable area is stolen by storage management it will be automatically
reloaded when it is referenced again. This reloading may cause degradation in
application program or system performance. Only areas containing programs that
are transient and refreshable can be stolen by the system.

To activate the 4700 to perform steal and refresh operations, you must specify a
RFSH=Y operand on one of the TRANPL macros in your system configuration.
See the 4700 Programming Library Volume 6: Control Program Generation for
further information.

Storage Pools: The 4700 system allows you to define multiple storage pools to
tailor the available storage to your specific needs. There are three types of storage
pools: station pools, the general pool, and segment-class pools. There can be one
station pool for each station or multiple stations can share a single station pool.
There is only one general pool. Up to 15 segment-class storage pools can be
defined.

Station Pools: Station-pools allow you to reserve storage for a station or group of
 stations. You might define station pools when an application program needs a
guarantee that a specific amount of storage be available. For example, a station
pool could be defined for the station which runs the 4700 CNM application. This
would allow the CNM application to operate as long as no other program is
operating for this station and no other station is using the same station pool.

Station pools have the disadvantage that their storage is reserved for a station, or
group of stations, and cannot be used by other stations even if some is available.

Chapter 2. Coding Considerations 2-9

You define station pool usage by the TRANPL operand of the STATION macro
in your system configuration specifications. This pool will be shared only by those
stations that identify it in your configuration specifications.

Station pool storage can be used to satisfy both read/write requests and
refreshable requests.

The General Pool: You should assign most available storage to the general pool by
keeping the station and segment-class pools as small as possible. Any storage not
assigned to station pools, to segment-class pools or to the microcode trace area is
automatically assigned to the general pool. You can control the amount of space
used for the microcode trace area by specifying the TRACE parameter of the
STARTGEN configuration macro.

The general pool is shared by all stations. There is no way of excluding a station
from using the general pool. Storage in the general pool can be used to satisfy
both read/write requests and refreshable requests.

A request is satisfied from the general pool if either there is no station pool
defined for the requesting station or there is insufficient space in the station pool.
The storage manager will attempt to steal space used by refreshable segments in
the station pool before attempting to satisfy the request in the general pool.

Segment-Class Pools: Segment-class pools allow you to reserve storage for a
particular program or set of programs, independent of the station on which they
operate. You might specify a segment-class pool for a program which cannot wait
for storage. For example, you may wish to define a segment-class pool for a
program which must respond to a request from the host. If you specify the
segment-class pool large enough to satisfy this program’s storage requirement, and
it is the only program that uses the segment-class pool, it will never have to wait
for storage.

A segment-class pool is defined by specifying the ID= parameter on the TRANPL
macro in your configuration specifications.

If there is insufficient space in the general pool to satisfy a request for storage, an
attempt will be made to allocate it from a segment-class pool. Storage is allocated
from a segment-class pool to only one station at a time. This station will maintain
ownership of the pool until all storage has been returned to the segment-class
pool. A request from any other station for storage from that pool will cause the
requesting station to be placed into a wait state until the owning station releases
the pool or storage becomes available in some other pool.

Each segment-class pool has an ID in the range 1-15. Segment-class pool 1 is
used only to satisfy refreshable requests (APCALL for Segment 14 and
DTACCESS). Segment-class pools 2-15 can only be used to satisfy the
read/write storage requests for Segments 0 and 2-12. Storage requests by
DTACCESS and APCALL for non-refreshable programs cannot use
segment-class pools. Storage requests are associated with a particular
segment-class pool by specifying the ID= parameter on the DEFSTOR instruction
or by specifying the segment-class ID in the SEGALLOC parameter list. Your
application program should not specify segment-class ID 1.

2-10 4700 Controller Programming Library, Volume 1: General Controller Programming

Usage of segment-class pools is controlled only by programming protocol. There
is no enforcement of this protocol by the 4700 controller. If only one program
specifies a particular segment-class ID, it will always have sufficient space to
complete its operation independent of storage availability in the other pools.

Segment-class storage pools reserve space for particular programs. Because this
may adversely affect performance of other programs, segment-class pools should
be used with care. Programs that use segment-class pools should attempt to
minimize their storage requirements so that these pools can be kept as small as
possible.

Storage Management Operation: For a given controller, storage pools can be
defined in any combination. If a particular type of pool is not defined, the next
type in the hierarchy is used. The steps that the 4700 takes, see “Storage
Management by the 4700” on page 2-9, to allocate storage are performed at each
level of the hierarchy. The storage allocation hierarchy is illustrated by the
following:

1. If a station pool exists and sufficient space can be found, allocate the space.
2. If space can be found in the general pool, allocate the space.

3. If there is a segment-class pool and no program owns this pool and sufficient
storage can be found, allocate the space.

4. If there is no segment-class pool for the request or if another program owns
this pool or if sufficient space cannot be found,

a. and if the request specified WAIT=N, set the condition code and process
the next instruction.

b. if the request specified WAIT=Y, place the station in wait state until
sufficient space is returned to any pool that can satisfy the request.

When storage is returned to any pool, the wait list is examined. If any pending
request can be satisfied, the station is made dispatchable. However, before this
station is dispatched, some other station (including the one which just released the
storage) may issue a request for this storage. This may cause the station which
was waiting to return to its wait for storage. Thus, any wait for storage may be
indefinite. If multiple stations are requesting storage and none is available, then
potential for a storage deadlock condition exists. A deadlock condition can be
avoided by defining segment-class pools that can satisfy the storage requirements
of your applications. Any storage wait can be broken by pressing the keyboard
Reset key twice. This will cause the APCALL, DTACCESS or SEGALLOC
instruction to set a condition code and store attention status in SMSDST.

| Storage Management by the Controller

The controller manages storage space for primary and secondary programs when
you are using call programming, but you determine how this will be accomplished.
You may choose to use one set of storage segments for both the primary program
and its secondary programs. If you do, you probably need some conventions to
determine which programs use which segments, and when. You may also choose
to allow some or all secondary programs to have their own allocations of storage.

Chapter 2. Coding Considerations 2-11

Initializing Storage

Segments allocated to the primary application program and to secondary
application programs each have a segment space ID. This ID is always 1 for
segments allocated to the primary application for each logical work station. The
controller assigns a new segment space ID for segments allocated to each
secondary application for each logical work station. The current segment space ID
is the ID of the segments allocated to the current application program.

Storage may be initialized, or set to specific values before program run time by
specifying the values either during system CPGEN or within your application
program. You can use the Start Initialization (SINIT); Initialize Segment
(INITSEG); and End Initialization (ENDINIT) instructions to accomplish
segment storage initialization in your program. These instructions are described
in detail later in this book.

Allocating Two Sets of Registers

Shared Storage Control

When two sets of registers are allocated for a logical work station, the SELECT
instruction can be used to select the registers as needed. You must set a segment
select character A or B, designating the correct Segment 0, in Segment 1 before
you issue SELECT.

For example, if you allow the operator to enter the keyword ADDR, indicating to
the program that the operator wants to use the 4704 as an adding machine, you
might require the program to use registers other than those used for normal
processing. For this purpose, you must allocate two Segment 0’s.

There are situations when a logical work station need not be dedicated to one
operator (for example, back office applications, such as proof). The controller
permits either keyboard or program selection between identical Segment 0’s (the
registers and optional storage). For program selection, the program must issue the
SELECT instruction. SELECT indicates which Segment O (A or B) is associated
with the station, and allows the work station to address that segment.

Because Segment 15 is accessible to any logical work station, you may need to
ensure that one station has exclusive control of the segment for a period of time.
You do this by setting an indicator in the global area that the system can check
before allowing the station to use the global information or by ensuring that the
logical work station does not release control of the controller while using global
storage.

For example, all stations may be given control during controller startup so that the
tellers can log on. Before allowing most tellers to log on, however, you may wish
to ensure that the time and date have been set by one of the tellers. One station
sets an indicator in the global storage area that remains on until the time-and-date
dialog is completed. As other stations gain control, their application programs can
test the indicator and release control until the indicator is off.

2-12 4700 Controller Programming Library, Volume 1: General Controller Programming

Addressing Main Storage

The 4700 addresses data either as the contents of one of 16 registers, or as a field
within a storage segment. Registers can be addressed either by referring to the
register number or by referring to the register’s Segment O field. The four ways to
address data in the storage segments are:

Segment-displacement addressing address a field by specifying the segment
number, the displacement into the segment, and in some cases, the
field length. This type of addressing is usually specified as a
DEFCON or DEFLD. Its advantage is ease-of-use for fields of fixed
location and length.

Segment header addressing use the addressing information, maintained by the
system, in the segment header. Each segment has a header
containing displacement and length fields that you can use to address
data simply by specifying the segment number. The advantages of
Segment Header addressing are: you can easily construct data strings
of variable length items and you can readily determine the length of
items within a data string.

Register addressing load the segment space ID, segment number, displacement,
and length information into a register and use the contents of the
register to address data. This type of addressing allows your program
to dynamically modify addressing values.

Modified register addressing describe data fields using the DEFRF instruction
and load addressing information into a register. The controller will
modify the register using addressing values from the DEFRF
description. This type of addressing has the same advantages as
Register Addressing. Also, its use of DEFRF provides a
straight-forward way of describing the data area to be processed.

Segment-displacement and segment header addressing do not provide a way to
specify segment space ID, therefore, you can use them to address only storage
that is allocated to your program. Register and modified register addressing aliow
you to address storage that is allocated to all application programs associated with
the same logical work station.

For example, you may use modified register addressing in a secondary application
to address storage allocated to the primary application. The primary application
can pass its segment space ID to the secondary program allowing it to access
segments that were assigned to the primary program.

Segment-Displacement Addressing

The components of this type of addressing are:

1. the segment number. This is the number (from O to 15) of a segment. If the
instruction refers to a segment that was never allocated, a program check
OCCUrs. '

2. the displacement to the beginning of the field, in bytes, from the beginning of
the segment. This is a value between 0 and 65 534. If a displacement is
specified that is greater than the length of the segment, a program check
occurs,

Chapter 2. Coding Considerations 2-13

2-14

3. the field length, where appropriate. If the displacement plus the length of the
field is greater than the size of the segment, a program check occurs.

For example, an input buffer might contain a field that is to be moved to an
output buffer for printing.

Buffer Segment Format
10 bytes
Input 3 Field 1
0 20
Output ' 2 Field 2
0 10

You can use a MVFXD instruction to move field 1 to field 2:

MVFXD 2,10,3,20,10

1:-Length of the source field
Displacement of the source field
Source segment number
Displacement of the destination field
Destination segment number

The following example shows another way of coding the same thing using
DEFLD instructions. DEFLD associates a label with a field definition so that
subsequent instructions can reference the field symbolically. Application
programs written using DEFLDs, rather than absolute references, will be easier to
modify.

MSG DEFLD S02,0,10
OUTPT DEFLD S02,,20

*

DATA1 DEFLD S03,0,20
INPT DEFLD S03,,10

DATA2 DEFLD S03,,5

MVFXD OUTPT, INPT

4700 Controller Programming Library, Volume 1: General Controller Programming

The operands of the DEFLD instruction specify the segment, displacement, and
length of a field. Notice that the displacement operand has been omitted from
several DEFLDs in the example. When you do not specify a displacement, it is
equal to the sum of the displacement and length of the last DEFLD referring to
that segment. In the example above, the displacement of INPT is 20 and the
displacement of DATAZ2 is 30. You can code either DEFLD or Ln instructions to
create DEFLDs (see the LDSECT, Ln, and LEND instruction descriptions).

Segment Header Addressing

Segment Header addressing uses the segment header associated with each
segment. The header consists of:

o The segment length indicator (SLI) contains the length of the segment. This
length does not include the segment header.

e The primary field pointer (PFP) contains a displacement that is an offset from
the beginning of the segment.

« The field length indicator (FLI) contains the length of a field.

e The secondary field pointer (SFP) also contains a displacement that is an
offset from the beginning of the segment. Sometimes two pointers, that is,
the primary and secondary field pointers are required in the same segment.

Segment Header addressing applies only to certain instructions, therefore you
should be aware of those instructions that allow you to use Segment Header
addressing and those that require this type of addressing.

Data entered by a teller or transmitted from the host processor may form fields of
variable lengths. Segment Header addressing enables the controller application
program to handle these fields.

The PFP and FLI work together to describe a field. For example, a seven-digit
account number, located at displacement O of the segment, can be addressed
when the PFP is equal to O and the FLI is equal to 7.

FLI

r——
Segment Storage: 1255687

PFP

If this account number is to be moved to another location in the same segment,
the SFP is used to point to the beginning of the destination field. For example, to
move the account number to bytes 20-26, the SFP is set to 20.

FLI
Segment Storage: 1255687 20
PFP SFP

Chapter 2. Coding Considerations 2-15

Register Addressing

You can use a move instruction to move the account number. The number of
bytes moved is determined by the value of the FLI.

The PFP and SFP are used to describe a field when a write is performed using the
two-byte form of the LWRITE instruction. The SFP points to the leftmost byte of

the field, and the PFP points 1 byte past the rightmost byte of the field. For
example:

Segment Storage: GOOD MORNING

SFP PFP
This arrangement is used because move instructions, which are normally used to
load the output area, update the PFP. At the end of a move operation, the PFP
points 1 byte past the end of the destination field, thus allowing a series of move
instructions to place data in a contiguous area without resetting the PFP.
The segment header cannot be directly addressed. However, you can obtain and
alter the fields using the following instructions:

SETFPL Sets the PFP and FLI.

SETSFP Sets the SFP.

EXPS Exchanges the PFP and SFP values.
LDFP Loads the contents of the PFP into a register.
LDLN Loads the contents of the FLI into a register.

LDSFP Loads the contents of the SFP into a register.
LDSEGLN Loads the segment length into a register.

Private segments each have their own segment header. Shared segments have a
separate headers for each logical work station to prevent one station’s operation
from interfering with another station’s addressing.

Register addressing means that all of the information required to address a field is
contained in a register. You indicate register addressing by coding (reg) in
instruction operands.

2-16 4700 Controller Programming Library, Volume 1: General Controller Programming

You can load a register with a register address using the LDRA instruction. In the
following example assume that the displacement of FIELDA is 100.

FIELDA DEFLD s02,,6

LDRA RO4 ,FIELDA
* load segment space 1D,
* segment number 2,
* displacement 100 and
*

length 6 into register 4
Following the operation of an LDRA instruction the register will contain:

1. The segment space ID of the main storage segments assigned to this
application program. This ID is always 1 for the segments allocated to the
primary application program of each logical work station. The controller will
assign new segment space IDs for secondary programs.

2. The segment number. This is the number (from 0 to 15) of a segment
allocated to the logical work station. If the instruction refers to a segment
that is not allocated, a program check occurs.

3. The displacement, in bytes, to a field from the beginning of the segment. This
‘will be a value between 0 and 65 535. If a displacement is specified that is
greater than the length of the segment, a program check occurs.

4. The length of the field, in bytes, determined by the length of field-2. If the
displacement plus the length of the field is greater than the range of the
segment, a program check occurs.

The displacement is in the low-order two bytes of the register. Therefore, you can

change the displacement by adding or subtracting a value to or from the register.
For example, to increase a displacement by 6:

SIX DEFCON 6

-

ADDFLD R04,SIX
Modified Register Addressing

Modified register addressing means that an address value contained in a register is
modified by another value. You must indicate modified register addressing by
coding the (defrf) addressing form in the instruction operands.

(defrf) is the label of a DEFRF instruction that contains values used to modify an
address in a register. A modified register address is formed as follows:

1. segment space ID - is taken from the register

2. segment number - is taken from the register

Chapter 2. Coding Considerations 2-17

3. displacement - is obtained by adding the displacement from the register to the
displacement of the DEFRF

4. length - is taken from the DEFRF.

For example, the following DEFRF associates register 3 with a displacement of 15
and a length of 5:

BALANCE DEFRF R03,15,5

If register 3 contained the following address (perhaps initialized by an LDRA
instruction):

segment space ID = 1
segment number = 4
displacement = 100

length = 200

tuen the following instruction:
ADDFLD R06,(BALANCE)

would add the 5-byre field in segment space 1, Segment 4, displacement 115, to
register 6.

The register (register 3 in the above example) is not altered when a modified
register address is formed.

You can also use modified register addressing with DSECTS (Dummy Sections).
You can define a dummy section by a series of DEFRF instructions. For example,
assume a 20-byte customer record includes a 12-byte account number, a 3-byte
status code, and a 5-byte current balance. This record could be defined as follows:

ACTNUM DEFRF RO03,0,12

STATUS DEFRF RO3,,3
BALANCE DEFRF RO3,,5

Further, assume that Segment 4 contains a series of the 20-byte records described
above, starting at displacement 100, and defined as follows:

RECORDS DEFLD S04,100,0

An application program could initialize register 3 to point to the first record by:

LDRA R03,RECORDS

The displacement in register 3 would be 100 and the length would be zero. Now,
if the program performs:

ADDFLD R06, (BALANCE)

then the balance from the first record (displacement 115, length 5) will be added
to register 6.

2-18 4700 Controller Programming Library, Volume 1: General Controller Programming

The program could then add 20 to register 3 (the displacement part of a register
address is in the low-order 2 bytes) as follows:

TWENTY DEFCON 20

ADDFLD RO3,TWENTY

so that register 3 would now point to the second record. The program could loop
back to the ADDFLD instruction to add the second balance to register 6.

Programming Notes About Segment Headers

Fixed-Length Fields

The purpose of this section is to give you some idea of the ways in which your
program can manipulate and use the Segment Headers in the 4700. It
concentrates on the SETFPL instruction which can be used to set the PFP and
FLI for both fixed-length and variable-length fields. SETFPL has the following
general format:

[label] SETFPL seqg,pfp,fli

an optional FLI operand
an optional PFP operand
the segment number

The simplest form of the SETFPL instruction refers to a DEFLD or DEFCON
instruction used elsewhere in the program. The segment, displacement, and
length values specified in the DEFLD, or implied in the DEFCON, are used by
SETFPL to set the PFP and FLI.

The following example shows how DEFLD and SETFPL are used to set the PFP

and FLI of a segment. After the SETFPL is executed, the PFP for Segment 2 is
set to 0, and the FLI for Segment 2 is set to 100:

. ;
OUTPUT DEFLD $02,0,100
SETPTRS SETFPL OUTPUT

The PFP and FLI may also be set using values in registers. The registers must be
loaded prior to executing the SETFPL.:

SETPTRS SETFPL 502,(R02),(R0O3)

Chapter 2. Coding Considerations 2-19

Variable-Length Fields

Modifying the PFP and FLI: The PFP and FLI may be increased or decreased
using the SETFPL. instruction. This is done by using a signed number in the
applicable operand. : : '

When the PFP is modified, an inverse modification is performed on the FLI. For
example, if 5 is added to the PFP, 5 is subtracted from the FLI. After this
operation takes place, the FLI is further modified by the FLI operand. For
example, two 7-digit account numbers are in adjacent fields in Segment 2, and the
PFP and FLI describe the first field:

FLI

/—/‘
Segment Storage: 33822063833047

PFP
The following SETFPL modifies the PFP and FLI to describe the second field:
INCRFLD SETFPL S02,+7,+7

When the PFP is increased by 7, the FLI is decreased by 7 to 0. Then the FLI is
increased by 7. Thus, at the end of the operation, the second field is described:

33822063833047
N e’
FLI

PFP

You can define a variable-length field by inserting delimiters at the beginning and
end of the field when it is created. The program can then use SETFPL to locate
the delimiters and set the PFP and FLI accordingly.

You can also define a variable-length field as the data between the beginning of
the segment and the first delimiter, or between the last delimiter and the end of
the segment. You define delimiters themselves using the DEFDEL instruction
described under -- Heading id ’delimit’ unknown --. The rest of this section
assumes that the appropriate delimiters have been defined and are recognized by
SETFPL. The fields shown in the examples are typical of data entered by a teller
using blanks, hex FA, and hex FB as delimiters. (Hex FA and hex FB have no
EBCDIC character equivalent and are therefore represented by asterisks (*) in
the text and figures.) The format of the fields is:

transaction accountno. amount amount EOM*

(EOM* is the end-of-message indication.)
The controller uses three operands—F, +F, and -F—when scanning a segment
for variable-length field delimiters. When the controller finds the desired

delimiter, it sets the PFP to the segment address of the first byte of the field and
the FLI to the field length.

2-20 4700 Controller Programming Library, Volume 1: General Controller Programming

Note: Because scanning a field to set the FLI requires extra processing time, you

should avoid this process, if possible, by setting the FLI to a valid absolute

number. This stops the SETFPL. instruction from scanning for the field length).

The following examples show the use of F, +F, and -F.
For example, the teller enters:

SDEP 3382206 128.50 400.00 EOM*

The entry is read into the input area, INPUTSEG, starting at the PFP. The read

operation does not change the PFP or FLL

To define the first field, you can code the following SETFPL.:
FINDFLD SETFPL INPUTSEG,F

The pointers are now set as follows:

FLI

e —

SDEP 338220 128.50 400.00 EOM*

PFP
To point to the next field, you can code the following SETFPL.:
FINDNEXT SETFPL INPUTSEG,+F

The pointers are now set as follows:

FLI

| r———
SDEP 3382206 128.50 400.00 EOM*

PFP
To point to the previous field, you can code the following SETFPL:

FINDLAST SETFPL INPUTSEG,-F

Chapter 2. Coding Considerations

2-21

The pointers are now set as follows:

FLI

e,
SDEP 3382206 128.50 400.00 EOM*

PFP

Programming Notes About Field Delimiters

To use delimiters you must choose a one-byte delimiter character, and then
identify it using the DEFDEL instruction. Refer to the DEFDEL instruction
description in “Data Definition Instructions.”

Inserting Delimiters in Fields

The programmer should establish conventions for using delimiters. The following
are suggested ways of placing delimiters at the beginning and end of the fields,
depending on the source of the data:

Program-Cereated Fields: If only one delimiter is required, a routine can first fill the
data area with the delimiter character, and then can place the individual fields
into the data area leaving one space (delimiter) between fields. If more than one
delimiter is required for the message, you can associate individual delimiters with
various subfields.

Operator-Created Fields: The keys used by the operator to denote the end of a
field or message must be set to the desired delimiters using the INTRTBL
configuration instruction. An operator procedure must then be devised that
describes how each field or message is ended (by pressing the space bar, an
end-of-message key, or other converition).

Processing Messages and Fields

When a message is read by the application program, the message length is placed
in Segment 1 at SMSIML, and the beginning of the message is identified by the
PFP, Thus, the message is fully defined to the application program. However, the
program must define individual message fields, either by using delimiters or by
predefining fixed fields.

For example, the teller enters:
transaction accountno amount...EOM

If the beginning of the input area is known and the transaction type and account
number have fixed lengths, these fields can be addressed as fixed fields. The
remainder of the message contains a varying number of variable-length amounts
separated by delimiters. Each is addressed as a variable-length field. To move
the entire message, the FLI is set to the value in SMSIML.

The application program can also process transactions in which the teller enters
the fields as individual messages. For example, the teller can press a key that
indicates the type of transaction and EOM. The teller can then enter a field and
press a key that indicates the account number and EOM. The teller can

2-22 4700 Controller Programming Library, Volume 1: General Controller Programming

continue to enter individual fields as discrete messages until the entire transaction
is entered. As each field is read, it could be checked for errors and processed.

Logical Work Station Dispatching

Dispatching Modes

Priority Dispatching

The controller allocates processing time to, or dispatches, each logical work station
either in work-station-ID-number order or according to a predefined table. This
dispatch order, combined with other conditions that permit the stations to gain or
release control, determines whether or not and when an application program runs
on behalf of a logical work station.

The dispatched station and any others that have not completed processing by
issuing an LEXIT instruction are active. All logical work stations that have never
become active or that have indicated that processing is completed are idle.

The following are descriptions of how logical work stations gain and release
control, or are dispatched by, the controller.

The order and frequency with which work stations are checked for dispatching
are determined by the type of dispatching mode in effect in the system:

« Station-Chain Dispatching—Stations are dispatched in station-ID sequence.
No one station is checked for dispatching any more frequently than another.

e Priority Dispatching—You can choose to dispatch work stations in a certain
order by defining the order in a priority dispatch table. The table, which you
define during CPGEN, also controls how often a station is dispatched,
compared to other stations. You can define more than one table and transfer
control dynamically from one table to the other. More information on
priority dispatching is under “Priority Dispatching.”

Station chain dispatching is the basic dispatching mode. It is in effect unless a
priority dispatching table was defined with the PRIDSP configuration macro and
priority dispatching is invoked by the LCHAP (Change Priority) instruction.
LCHAP also turns off priority dispatching.

In either mode, only those stations that have work to perform are dispatched;
stations without work are passed by. One complete pass by the controller through
the dispatch chain or priority dispatch table is called a dispatching cycle.

Priority dispatching allows specification of the order and frequency with which
logical work stations are checked for dispatching. An individual work-station ID
can appear as often as desired in the table.

To use priority dispatching, at least one priority dispatching table must be defined

in the controller configuration; the most you can have is four tables. A tableisa
list of station IDs in the order that they are to be checked for dispatching.

Chapter 2. Coding Considerations 2-23

Entry Point Priority

Gaining Control

It is possible for a station to have more than one type of work to perform when its
turn occurs during a dispatching cycle. The controller, in this circumstance, gives
control to the station’s application program so that the type of work with the
highest priority is performed. Work priorities are as follows:

NAaU kWD~

Startup processing (occurs only once during a session)
Resumption of processing

Receiving data from a telecommunications line
Receiving data from a terminal

Receiving data from another station

Program interrupt

Asynchronous timer interrupt

A work station can be dispatched when one of the following happens:

The controller has just been loaded, the application program has a startup
entry point (the STP operand of the BEGIN instruction), and startup has
been specified for the station during configuration (the STARTUP operand of
the STATION configuration statement). The station’s application program is
given control at the instruction label selected by the STP operand. A startup
dispatch can occur only once during a processing session. (A processing
session is the period of time between controller startup and restart or
shutdown.)

An active logical work station is ready to resume work that it began earlier.
The logical work station may have given up control temporarily because of a
data transmission operation. The station’s application program is given
control at the instruction pointed to by the station’s instruction counter. A
logical work station may be dispatched in this manner many times during the
time it is active. Also, a logical work station may receive unsolicited messages
while it is active (from the telecommunications line, a terminal, or another
station). If the station does not read these messages before issuing LEXIT, it
is redispatched; control is given to the application program at the appropriate
entry point.

The station receives a message from the telecommunications line, the station is
idle, and the application program has an appropriate entry point (the ACP
operand of the BEGIN instruction) entry point defined. The station’s
program receives control at the instruction selected by the ACP operand.

The station received data terminal data, is idle, and the station’s program
defines a terminal entry point (the ATD operand of the BEGIN instruction).
The program receives control at the instruction selected by the ATD operand.

2-24 4700 Controller Programming Library, Volume 1: General Controller Programming

Releasing Control

The station received data from another station, is idle, and the program
defines a station entry point (the AST operand of the BEGIN instruction).
The station’s program receives control at the instruction selected by the AST
operand.

The station received a program interrupt (an LPOST issued by another
program), the station is idle, and the station’s program defines a program
interrupt entry point (API operand of the BEGIN instruction). The station’s
program receives control at the instruction selected by the API operand.

The station received an asynchronous timer interrupt, the station is idle, and
the station’s program defines asynchronous timer-entry point (ATM operand
of the BEGIN instruction). The station’s program receives control at the
instruction selected by the ATM operand.

The asynchronous timer gives an idle work station the ability to dispatch
itself. This is in contrast to being dispatched because of an asynchronous
request from another source. During a dispatching cycle, the controller
compares the current value of the controller timer with a preset value in the
station’s program. The comparison result and the current station status (idle
with no asynchronous requests pending) determine if the station is
dispatched. The following conditions control timer operation:

1. Any asynchronous requests pending when the timer request occurs, are
processed first; the timer request is deferred.

2. If the station is idle and the station’s timer value is not zero but is equal to,
or less than, the value of the controller timer, the station’s program
receives control at the entry point defined in the ATM operand of the
BEGIN instruction. The station’s timer value is reset to zero.

3. Setting the station’s timer value to zero cancels the timer request. The
station’s timer is not reset if the controller defers the timer request
because another asynchronous request is pending. However, the station
can change the timer value while processing a higher-priority
asynchronous interrupt. Resetting the timer value to zero cancels any
pending timer interrupt request.

In all cases except startup, a logical work station may be dispatched, at one of an
application program’s entry points, any number of times during an active session.

Logical work stations give up control allowing other stations to be dispatched.
Releasing control is done in the station’s application program and may cause the
logical work station to remain active or to become idle.

1.

A logical work station remains active when it gives up control in one of the
following ways:

o« A PAUSE instruction is executed. This causes the controller to take a

dispatching cycle. Control will be returned to this station’s program at the
next sequential instruction.

Chapter 2. Coding Considerations 2~25

o A data transmission instruction is executed that requires a pause in
processing until the operation is completed. Other logical work stations
are checked and may be dispatched. Control is returned to the program
that released control at the next sequential instruction.

« An LWAIT instruction is executed. Other logical work stations are
checked and may be dispatched. Control is returned to the next
sequential instruction when an asynchronous interrupt occurs or an
operator signals an attention.

« A program check causes control to be given to a program check routine
(the PC operand of the BEGIN instruction).

2. A logical work station becomes idle when it gives up control in one of the
following ways:

« An LEXIT instruction is executed.

« A program check occurs that causes an LEXIT.

System COPY Files

Segments 0, 1, 14, and 15 contain fields that have special meaning during
controller application program execution. Definitions of these fields are made
available by coding the following operands of the COPY instruction:

« DEFRGS or DEFREG, which defines the registers in Segment 0

« DEFSMS, which defines the fields in Segment 1, the System Machine
Segment

« DEFAPB, which defines the fields in Segment 14, the application program
header

« DEFGMS, which defines the fields in the fixed portion of Segment 15, the
Global Machine Segment.

Because the definitions are subject to change, you should base any references to
the standard definitions on the labels provided by the system copy files. You
should also ensure that fields defined by a system copy file are referenced
individually.

For example, COPY DEFAPB might contain:

APBLBL1 DEFLD S14,,2
APBLBL2 DEFLD S14,,2

Because it is possible that the DEFAPB definition could change, it would not be

advisable for you to code one DEFLD (of length 4) and expect it to contain both
fields.

2-26 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix B contains details of system copy files. Those copy files that contain
the DEFxxx notation can be created in two forms; one for the
Segment-Displacement addressing and the other for modified register addressing.
For example, DEFCPL will expand into a series of DEFRF instructions for
modified register addressing, if the following is used:

LDSECT BASE=r
COPY DEFCPL
LEND

where: ¥ is a register number (0 - 15)

DEFCPL will create a series of DEFLD instructions, for Segment-Displacement
addressing if you code an EQUATE before the COPY instruction, as follows:

DEFCPLS EQUATE s
COPY DEFCPL

where: s is a valid segment number
Note:

Appropriate volumes of this 4700 Controller Programming Library contain similar
DEFxxx COPY parameter lists and files. Refer to the volume for the type of
programming you are performing, for detailed descriptions of the applicable
DEFzxxx files.

Condition and Program Check Codes

Condition and program check codes supply information about program operation
and any errors that might occur:

« Condition codes: Some instructions set one or more condition codes.
Condition codes indicate the result of the operation of an instruction. Each
instruction description in Chapter 5 includes the condition codes that can be
set by that instruction.

o Program check codes: Program checks are indications of errors detected by
the controller during operation of an application program. In general, they
indicate that the application program has attempted to instruct the controller
to perform an invalid operation. For example, scan a field for a delimiter
without providing the required delimiter table.

Your application program can include a routine to handle program checks. Its
entry point is defined by the PC operand of the BEGIN instruction. When
the program check routine receives control, a flag (SMSPCR) is set to
indicate that a program check routine is in control. If this flag is not reset by
the application program, it is reset when an LEXIT is issued.

All program checks cause the controller to write a message to the system log
that contains the station number, application program name, program check
code, program check address, loop instruction count, and the first two bytes
of the failing instruction. In addition, the program check code and program
check address of the failing instruction are placed in the System Machine
Segment (Segment 1). All of this information can be printed on a terminal or
transmitted to the host processor by a program check routine. A program
check can also appear as a CNM (Communications Network Management)
alert if specified in your configuration.

Chapter 2. Coding Considerations 2-27

The controller uses the following rules when a program check occurs, depending
on whether a program check processing routine is active:

« If SMSPCR is off, give control to the program check entry point of the current
application program.

— If there is no program check entry point and the current program is the
primary program, then perform an LEXIT.

— If there is no program check entry point and a current application is the
secondary program, then perform an APRETURN; place an entry in the
system log showing that an APCALL caused a program check; and give
control to the program check entry point of the calling program. If the
calling program does not have a program check entry point, the controller
will continue to perform APRETURNS until a program check entry point
is found or an LEXIT is performed because the primary application has no
program check entry point.

o If SMSPCR is on, the controller will attempt to give control to a program
check entry point as above, except that it will not give control to the program
check entry point of the current application program.

Optional Instructions

4700 subsystem controller instructions are executed by controller modules
incorporated into the configuration image. For most 4700 instructions, the
controller includes the required modules in the configuration image during its
generation. However, for certain instructions, the controller does not
automatically include these modules in the configuration image; they must be
specifically requested in the specifications you use to define the configuration
image.

Including optional instruction modules will affect the amount of storage required
for controller functions and may create a need for additional storage.

Even though the appropriate controller data modules are included in the
configuration image, the programmer should be aware that the control operator
can prevent these modules from being loaded during the controller load
procedure.

If the appropriate controller data modules are not in the controller when an
optional operation code is encountered, a program check hex 09, invalid operation

code, occurs.

The Global Machine Segment (GMS) contains information that can be tested for
the presence of optional modules. See the DEFGMS copy file in Appendix B.

Volume 6: Control Program Generation of this 4700 Programming Library
contains the information you might need on this subject.

2-28 4700 Controller Programming Library, Volume 1: General Controller Programming

COBOL Considerations

Use of 3600 Programs

4700 assembler programs that transfer control to and from COBOL programs
require additional instructions if they receive or send parameters, and must follow
these conventions:

1. A called assembler program receives an APCALL parameter list from the
calling COBOL program set as follows:

¢ Shared segment flags = X‘BFFA’
« Register flags = X‘4000’ (Passes register 1)

2. Register 1 contains a register address of a list of addresses, each of which
selects a parameter. The register-1 length field defines the address-list length.

3. The contents of Register 12 are destroyed by COBLCALL.

The called assembler program should have an FCLENTER instruction at the
APCALL entry point to define a save area for the contents of register 1 and
assign names to the parameters. It should also have an FCLEXIT instruction at
the APRETURN point to restore the contents of register 1 and redefine the
parameters to be returned to the COBOL program.

The 4700 COBOL Compiler generates 4700 assembler output that can contain
two additional instructions, CRETN and LCONVERT, primarily for COBOL
use. See the IBM 4700 Finance Communication System, COBOL Programmer’s
Guide, S1.23-0082, for more information.

The 4700 system accepts 3600 application programs with little or no change.
Application programs that use non-standard forms of SMS (the System Machine
Segment) or GMS (the Global Machine Segment) may require changes to operate
with different 4700 system formats.

4700 allocations for the global (GMS), system (SMS), and application program
storage segments are larger than for the 3600 system. Those 3600 programs that
refer to the GMS and SMS fields defined by COPY DEFGMS or COPY
DEFSMS are not affected by the larger GMS and SMS segments in the 4700.
Those programs that use other than the standard system definitions may require
redefining of those areas. Also, those configurations at or near the limits of their
segment specifications for the GMS, SMS, or Segment 14 might need testing to
ensure that enough storage remains to accommodate the larger segments.

There have been a number of changes in 4700 Control Program Generation. You

may find it necessary to-modify your 3600 CPGEN specifications for them to be
acceptable in the 4700 environment.

Chapter 2. Coding Considerations 2-29

2-30 - 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 3. 4700 Instruction Categories

This chapter introduces to you various kinds of 4700 instructions. They are
divided here into categories to help you understand their purpose and function.
Nor all of the controller’s base instructions are included, and this chapter does not
contain detailed information. Chapter 5 contains descriptions of each instruction
including examples.

Program Definition Instructions

Assembly Definition

This section describes the instructions that are used to control assembly of
application programs and program sections.

You must place an APOPT (Application Program Options) as the first instruction
in an assembly. BEGIN and FINISH are used to define an assembly. SEGCODE
(Application Program Section Identifier) and ENDSEG (End Application
Program Section) are used to define relocatable sections that may be appended to
relocatable root sections and overlay sections.

The APOPT Instruction: APOPT precedes all other 4700 assembler instructions in
an assembly. It is used to specify whether the instructions that follow are part of
a nonrelocatable program (RELOC=N or an omitted operand) or a relocatable
program (RELOC=Y). If the APOPT is omitted, a nonrelocatable assembly is
performed. APOPT may be specified only once in an application source program.

APOPT also has other functions:

« DISP=NEW specifies that the section or sections are new and should only be
added to the host library if a section with the same name does not already
exist.

o DISP=OLD (or an omitted operand) specifies that a section or sections may
already exist in the host library. If the same name(s) already exists, then the
section(s) being assembled replaces those in the library. If the section does
not exist, it will be added.

« DIRNAME=(name, NEW) specifies that the named directory should be
created in the host library and that directory entries for all sections in the
assembly should be added to the new directory. If a directory with the same
name already exists, another directory will not be created and the entries for
the sections will noz be added to the old directory.

« DIRNAME-=(name,OLD) specifies that the named directory already exists
and that directory entries for all sections in the assembly should be added.
(An entry will not be added if a duplicate entry already exists in the
directory.) If the directory does not exist, a new one is created and entries for
all sections in the assembly are added to it.

¢ YL2=Y specifies that all AL2 address constants used as operands of
DEFCON instructions in the following sections should be changed to
relocatable YL2 address constants. You should be careful when using this
operand because the DEFCON macro cannot distinguish between expressions
that are not intended to be relocated and those that are. You should

Chapter 3. 4700 Instruction Categories - 3-1

therefore manually change the source statements if there is any question
about the use of AL2 address constants in the application program. If
YL2=N is specified or the operand is omitted, AL2 address constants will not
be altered.

The BEGIN Instruction: You use the BEGIN instruction to identify the application
program and specify its entry points. It may also be used to specify the address of
a delimiter table.

The application program name consists of an eight-character name (names are
padded to the right with blanks), a date, and a version number. When the
application program is processed by Host Support, the name and version number
are used to associate the program with a load image. The name is also used to
associate an application program with a station. Application programs with the
same name cannot be in a controller at the same time.

Program entry points define where processing begins for:

initial startup The STP entry point is specified if the application program is to
gain control when the controller is loaded by the control operator.

data received asynchronously Three entry points are used when data is sent to the
program running on behalf of a logical work station:

o AST for data from another station
e« ATD for data from a terminal
e ACP for data from the central (host) processor.

entry from another program The APENTRY entry point must be specified if your
program can be called by another.

interrupts from another program. The API entry point must be specified if your
program can be interrupted by another.

timer functions The ATM entry point must be specified if the station timer
facility is to be used to dispatch your program.

program checks The PC entry point must be specified if your program contains a
routine to handle program checks.

The following conditions occur when an entry point is not specified and an
attempt is made to dispatch the application program at that entry point:

» With no STP entry point and startup specified for the logical work station: a
program check.

* With no AST, ACP, ATD, ATM, or API entry point the dispatch will be
suppressed and held. With APCALL/APRETURN the entry point may be
defined in another application program’s BEGIN instruction.

« With no APENTRY point and an APCALL issued by another station: a
program check.

3-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Section Definition

The FINISH Instruction: FINISH defines the end of the assembly and must be the
last instruction in the assembly.

The next few paragraphs introduce the instructions that you can use to define
different kinds of program sections. Detailed information about these instructions
is in Chapter 5.

The SEGCODE Instruction: SEGCODE must be the first instruction in a
relocatable section that will be appended to another assembly during link-edit. It
specifies the name and version number of that section.

The ENDSEG Instruction: ENDSEG defines the end of a section begun by a
SEGCODE instruction.

The OVLYSEC Instruction: The OVLYSEC instruction must be the first
instruction in overlay section.

The ENDOVLY Instruction: The ENDOVLY instruction defines the end of an
overlay section begun by an OVLYSEC instruction.

The SECTION Instruction: SECTION is used to define a dummy section
(DSECT). A dummy section is a description of an area of storage that is defined
elsewhere in the program or in another assembly. It may appear anywhere
between the BEGIN/FINISH, OVLYSEC/ENDOVLY, or
SEGCODE/ENDSEG instruction pairs and may appear as many times as are
required. A SECTION DUMMY must be ended by a SECTION END.

Assembly Control Instructions

Egquates

COPY Instruction

Using an absolute value in symbolic instructions has two disadvantages:

« If a value such as a register number is changed, many instructions may have to
be changed.

« Absolute numbers do not convey meaning and make it difficult to understand
the logic of a program when reading the listing.

The EQUATE instruction allows you to associate a meaningful label with an
absolute value; the absolute value must still conform to the specifications of the
operand. It also defines information for the assembler and makes your program
easier to modify.

Use of the COPY instruction is described in Chapter 2.

Controlling Base Registers during Assembly

USEBASE, SAVEBASE, and REBASE allow you to control the base register
numbers that are assembled into instructions that use modified register addressing

Chapter 3. 4700 Instruction Categories 3-3

with the LDSECT instruction. The USEBASE instruction must refer to an
LDSECT instruction that describes an area to be addressed by a register.
LDSECT is one of the Data Definition instructions in this chapter.

Assembly Listing Control Instructions

This section mentions the instructions that are provided so that you can control
the printed output of the assembly process. They are: LEJECT (Eject a Page);
LSPACE (Space a Line); PLPCMD (Post List Processor Command); and
PRINTI (Print Macro Expansions).

These instructions allow you to leave blank space in your assembly listing to
improve its readability. They also allow you to have some control over what is
printed and what is not printed.

Data Definition Instructions

Defining Constants

Defining Delimiters

Defining Dump Parameters

This section describes the instructions that define data, both in the form of
constants and in the form of areas to be used for input, intermediate, or output
storage.

The instruction that defines a constant field is DEFCON (Define Constant).
DEFCON is used to create bytes of data within the application program. This
data can be used, for example, as prompting messages for the teller. When a
DEFCON is assembled, it has an implied:

segment number (14)
displacement (its location in the application program)

length (the number of bytes defined).

The DEFDEL (Define Delimiters) instruction defines delimiter characters that
can be used to process variable-length fields. Use of delimiters is discussed in
Chapter 2 under “Programming Notes About Field Delimiters” on page 2-22.

The DEFDMP (Define Dump Constants) instruction is used in conjunction with
the APBDUMP instruction to request that the station dump one or more segments
to a diskette.

Defini'ng Masks and Modulus Factors

Defininrg Tables

The MASK and MOD (Modulus) instructions create constants that are used
during the execution of the EDIT and MODCHK (Modulus Check) instructions
respectively.

The LTRTBEG, LTRTENT, and LTRTGEN (Translate Table Begin, Entry, and
Generate) instructions create a table that is used by the LTRT (Translate)

3-4 4700 Controller Programming Library, Volume 1: General Controller Programming

instruction. The TABLE instruction creates a table that is used by the LSEEK
and LSEEKP instructions.

Three instructions, LTRTBEG, LTRTENT, and LTRTGEN, are used to define
and generate a translation table during assembly of the application program. This
translation table is used by the LTRT instruction. LTRTBEG and LTRTENT
define the characteristics and contents of the translation table; LTRTGEN
generates the table.

Defining Fields

DEFLD (define field) is used to associate a label (symbolic location) with a field
definition. Using DEFLD instructions makes coding easier because the field so
defined can be referred to symbolically.

The DEFRF (define modified register-addressed field), LDSECT (dummy
section), Ln (DSECT level definition), and LEND (DSECT End) instructions are
used to describe areas of segment storage that can be processed using modified
register addressing.

Data Operation Instructions

This section describes the instructions you can use to perform: general data
movement; translation; editing; and a large number of other operations.

Formatting Input Data

For the convenience of an operator, it is usually desirable to allow monetary
values to be entered from a keyboard in a relatively free form. However, these
free-form values frequently must be reformatted by the application program for
the values to be suitable for arithmetic processing. The SCALE instruction,
together with a scale parameter list (see COPY DEFSCA instruction), can be
used to perform such operations. In addition, the SCALE instruction provides
validity checking on the input data.

Moving Data within Controller Storage

The Move and Convert Zoned (MVCZ); Move Field (MVFLD) and Move Field
Reverse (MVFLDR); Move Fixed (MVFXD) and Move Fixed Reverse
(MVFXDR); and Move Segment (MVSEG) and Move Segment Reverse
(MVSEGR) instructions move data from one storage location to another.
Movement can either be between segments or between locations in the same
segment.

Move Data Immediate (MVDI) moves one or two bytes of immediate data. After
executing any of these instructions, the PFP of the result segment points one byte
past the result field. Successive operations for moving data to the receiving
segment can be performed without resetting the PFP, unless register or modified
register addressing is specified.

Chapter 3. 4700 Instruction Categories 3—5

Verifying Data

Data Translation

The VERIFY Instruction: VERIFY can be used to check a field for data type and
length. The result of the check is indicated by one or more condition codes. The
application program tests the condition code to determine whether the field is
valid or invalid.

For example, all savings account numbers are seven numeric digits. The VERIFY
instruction allows you to test an account number to determine that it has 7
characters and that they are numeric.

The MODCHK Instruction: Modulus checking can also be used to help determine
that an operator has not entered an account number incorrectly such as: reversing
two digits, entering a non-numeric EBCDIC character, or entering too many
characters. For example, when the account number is initially generated, the first
six digits could be arbitrarily selected and the seventh digit could be calculated so
that the account number will pass the modulus check.

The LTRT instruction translates 8-bit input codes as specified by a translation
table within the application program. The location of the translation table and
other information needed for LTRT execution are contained in a parameter list.
The parameter list must be initialized before LTRT is executed. (The parameter
list fields are defined by the COPY DEFTRP instruction.) After operation of
LTRT, some of the parameter list fields will describe the results of the LTRT
operation.

The translation table (there may be 4) is defined and generated during assembly
of the application program (using the LTRTBEG, LTRTENT, and LTRTGEN
instructions). An input area into which the input code stream is read and an
output area to contain the translated output from LTRT are required, and are
pointed to by the parameter list.

Each input code may have translation, translation control, and program control
definitions assigned to it in the translation table. These definitions control LTRT
and program operation as follows:

1. Translation Definition: The input code may be translated into 1 to 7
characters of output, or defined as a character for which no output is to be
generated.

2. Translation Control Definition: The input code can be defined to cause a shift
from one translation table to-another; to permit input codes to be passed to
the output area without processing (transparent write); and to control the
position of the next character in the output area (backspaced or advanced).
Positioning does not destroy characters already in the output area. The input
code can also be defined to cause a user function code to be entered in the
LTRT parameter list when execution ends on the associated input code.

3. Program Control Definition: The input code can be defined to end LTRT
execution with program control passing to the next sequential instruction in
the application program or to a specified address in the application program.

3-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Table Lookup

Any input code may be assigned any combination of the three definitions just
noted. If none of the definitions is specified, the input character will be treated as
a null character, with no corresponding translation output or control function
associated with it. If more than one definition is specified, the operations are
performed in the following order: translation, translation control, program
control.

The LSEEK and LSEEKP instructions allow you to compare a field with elements
in a table. They can be specified so that when a match is found between the field
and a table element, a branch is taken to an address associated with either the
table element or the instruction. LSEEK searches a table sequentially.

LSEEKP searches a table using either a sequential search or a binary search on a
sorted table.

Tables can be created in one of two ways:

« when the application program is assembled by specifying a TABLE instruction
or using one or more DEFCON instructions

« during application program execution.

A table, such as table of savings accounts that require special processing, can also
be built by the controller application program. The host application program in
the host processor can send a list of account numbers daily. The controller
application program can then build the table in one of the global segments so that
all logical work stations have access to the table.

Packing and Unpacking Data

Packing Instructions

Unpacking Instructions

The four instructions for packing and unpacking hexadecimal data (0-9 and A-F)
are: PAKFLD, PAKSEG, UPKFLD, and UPKSEG. These instructions convert a
byte into 4 bits or convert 4 bits into the EBCDIC hexadecimal equivalent. Data
compaction using these instructions requires less execution time than the
load-and-convert and store-and-convert instructions (which convert decimal
numbers to binary and binary numbers to decimal).

You can use PAKFLD and PAKSEG to convert a byte of EBCDIC hexadecimal
data (X‘F1’-X‘F9’ and X‘C1’-X‘C6’) into the 4-bit binary equivalent. The data is
packed from left to right; the resulting field occupies half the storage of the
original field. If an odd number of digits is converted, the leftmost 4 bits of the
resulting field are set to 0. If digits other than 0-9 and A-F are packed, the results
are unpredictable.

You can use UPKFLD and UPKSEG to convert any 4 bits into the EBCDIC
hexadecimal equivalent. The resulting field requires twice the space of the source
field. The same procedure is used to unpack data as to pack it.

Chapter 3. 4700 Instruction Categories 3-7

For example, the application program could contain a routine that converts the
binary number to printable form and displays it on the teller’s display. UPKFLD
or UPKSEG could be used to convert X‘A200’ to X‘C1F2F0F0Q’ (a printable
A200). Unpacking is from right to left, and the fields can overlap if result
(unpacked) data does not replace packed source data.

Compression and Compaction

Data Compression

Data Compaction

You can use the COMP instruction to reduce the size of a data stream to be sent
to another system or to be stored on an auxiliary storage device. Compression
replaces a string of from 3 to 63 duplicate (repeated) characters with a 1- or
2-byte code. Compaction replaces pairs of commonly used characters with single
coded bytes. Normally, compression is used when a data stream contains long
sequences of identical characters: blanks, zeros, or nulls, for example. Use
compaction for character pairs that are repeated frequently, such as: th, sh, ea.
(You would not normally compact uppercase characters unless your data streams
use uppercase only.)

Compression replaces strings of repeated prime characters with a 1-byte
compression code. The prime character should be the character most frequently
repeated in the data stream. (Normally, the prime character used is the blank or
space hex 40 or the null hex 00.) However, compression also compresses
repetitions of other characters, called non-prime characters. Each string of
repeated non-prime characters is compressed into 2 bytes (a 1-byte code followed
by the character being compressed). For example, if a data stream contains:

$$$$$$$%aaaaa$$$$$bbbbbb

and the prime character selected is the dollar sign ($), the compressed string will
contain:

« 1 byte indicating 8 repetitions of the prime character.
e 2 bytes indicating 5 iterations of the “a”.

+ 1 byte indicating S iterations of the prime character.
« 2 bytes indicating 6 iterations of the “b”.

The actual compressed data stream will contain these codes in the form of string
control characters (SCB). See ''String Control Characters" in this chapter for a
description of the format of a compressed data stream.

Compaction reduces frequently used character pairs to 1-byte compaction codes.
For example, if the data stream contains many occurrences of the character pair
“th”, the t and the h would be defined as master characters. During compaction,
each occurrence of the pair “th” would be reduced to a single byte. All other
characters would remain as 1-byte characters (but not in their normal EBCDIC
notation). The number of master characters (maximum is 16) is governed by the
total number of unique characters that could occur in the data stream (the
compaction set).

3-8 4700 Controller Programming Library, Volume 1: General Controller Programming

String Control Characters

After you use COMPTB to build the compaction table and before the COMP
instruction is issued, the location of the compaction table is placed in the CPLTBS
and CPLTBD fields in the COMP parameter list (DEFCPL). On execution of
COMP, each pair of master characters in the data stream is compacted by a
1-byte code. Any non-master character, and master character not paired with
another master character, occupies a full byte in the compacted data stream, but
not in its normal EBCDIC format. (The EBCDIC characters are encoded to the
compaction table values.) Only paired master characters are compacted.

The compression and compaction methods used are the standard Systems
Network Architecture (SNA) compression and compaction procedures. The
output data stream is a series of smaller data strings separated by codes called
string control characters. The string control character identifies the data string that
follows it, and describes the length of that string. After compression, for example,
the output data stream will contain a series of data strings in compressed mode.
Each string is preceded by a string control character (SCB). Each SCB begins
with a 2-bit code describing the kind of string, and a 6-bit field containing the
length of the string.

SCB Code: Data String Described:

00xxxxxx This SCB describes a string of from 1 to 63 uncompressed and
uncompacted characters; the data is unchanged from the input
data stream. The xxxxxx bits contain the length of the data string,
identifying the location of the next following SCB. The actual data
string of from 1 to 63 characters immediately follows this SCB.

01xxxxxx This SCB describes a string of from 1 to 63 compacted characters
in the following data string. The xxxxxx bits contain the length of
the following string. Note that a string of compacted characters
can contain: single bytes representing pairs of compacted master
characters; single bytes containing single, unmatched master
characters; and single bytes containing the compact code for
non-master characters.

10xxxxxx This SCB describes and replaces a string of from 1 to 63
consecutive prime, compressed characters from the input data
stream. The xxxxxx contains the number of consecutive prime
characters represented by this SCB. No data follows this SCB.

11xxxxxx This SCB describes a string of from 1 to 63 consecutive
non-prime, compressed characters from the input data stream. The
XXXxXx bits contain the number of times the characters are
repeated in the input data stream. The byte immediately following
this SCB contains the non-prime character being repeated.

Chapter 3. 4700 Instruction Categories 3-9

Data Decompression

Data Decompaction

After compression and compaction have been performed on an input data stream,
the format of the output data stream (and its data strings) might look like this:

[scB chars|scB|scB byte | SCB chars \
- 3
[O1xxxxxx data string] 1 to 63
compacted
characters
|11xxxxxx character represents 1 to 63 repetitions

of a non-prime character

|10xxxxxx| represents from 1 to 63 repetitions
of the prime character

IOOxxxxxx data stringl represents 1 to 63 repetitions
of a non-prime character

The DECOMP instruction decompresses a data stream based on the parameter
information contained in the list described by the COPY DEFDCP instruction.
(This list must not be in Segment 14.) During decompression, the input data
stream containing compressed characters is restored to its decompressed state in
the output area. Fields in the DEFDCP parameter list are set to indicate return
information. If a data stream has been compressed for transmission to another
program at the central computer, for example, the receiving program must be
given (using standard SNA protocols) the prime compression characters.

The DECOMP instruction decompacts a compacted data stream using both a
DEFDCP parameter list and a decompaction table created with the DECOMPTB
instruction. To permit decompaction and decompression processing, set the
DCPFCT flag on and store the table address in DCPTBS and DCPTBD.

If a data stream has been compacted for transmission to another program, at the
central computer for example, the receiving program must have a copy of the
decompaction table.

Arithmetic and Logical Instructions

Arithmetic Operations

This section describes the two types of arithmetic operations performed by the
4700, binary and zoned decimal, and the logical (AND, OR, Exclusive-OR, and
comparison) operations that can be executed.

The 4700 controller performs arithmetic in either binary or zoned decimal. The
EBCDIC data entered by the terminal operator can be operated on either directly
by the zoned decimal instructions. EBCDIC data can also be converted to binary
by the application program before an arithmetic operation and the results
reconverted back to EBCDIC form for other use such as printing or displaying.

3-10 4700 Controller Programming Library, Volume 1: General Controller Programming

Binary Operations

Zoned Decimal Operations

LDFLD and LDSEG are used to load a binary number into a register. LDREG
replaces the contents of one register with the contents of another register. STFLD
and STSEG are used to store the contents of a register into a field. The data is
loaded or stored without conversion. The LDFLD and LDSEG instructions are
used when a binary number is generated in the application program or a value is
retained in binary form. If the number being loaded is shorter than 6 bytes, the
leftmost bit is propagated to the left in the register. If the field into which the
number is stored is shorter than 6 bytes, the number being stored is truncated on
the left.

LDDI loads 2 bytes of immediate data from the instruction into the low-order 2
bytes of a register; the high-order 4 bytes are set to zeros.

LDFLD, LDSEG, LDDI, STFLD, and STSEG do not change the PFP or FLI
during execution; other instructions must be issued to set the PFP and FLI. The
following instructions store the rightmost 4 bytes of a register into a field:

SETFPL OUTSEG,,4 Sets the FLI for amount of data.
STSEG 1,OUTSEG Stores the rightmost 4 bytes.

LDFLDC and LDSEGC convert an EBCDIC decimal number (hex FO-hex F9),
which may be preceded by a minus sign (hex 60) into a 6-byte binary number,
and load it into the specified register. A negative number is loaded in twos
complement form.

The 4700 Assembler Language contains instructions that perform the following
arithmetic operations.

+ Addition: ADDREG and ADDFLD

e Subtraction: SUBREG and SUBFLD

* Multiplication: MPYREG and MPYFLD
» Division: DIVREG and DIVFLD

STSEGC and STFLDC convert the binary contents of a register into an EBCDIC
decimal number (FO-F9) and store the result in a specified field. The largest
possible decimal number resulting from a store-and-convert instruction is 15
digits. However, if the number will never exceed 10 digits, the field can be
specified as being 10 bytes long, and truncation, which occurs to the left, can be
ignored. When the field is stored, a condition code is set indicating a positive or
negative number so that the proper sign can be added.

Zoned decimal operations do not require converted operands, but do require sign
indicator processing by the application program. Both operands and results
contain a sign indicator in the high-order four bits of the least significant digit.
The application program must set a negative indicator in those bits on negative
operands. The program must also analyze the same bits of a zoned decimal result
to determine the sign, and then format any output accordingly. In other words,
the sign of an operand or result is not automatically changed to an appropriate
displayable character.

Chapter 3. 4700 Instruction Categories 3-11

Comparisons

Logical Operations

The following are the zoned decimal instructions, and the functions they perform:

ADDZ—Add Zoned Decimal
COMPZ—Compare Zoned Decimal
DIVZ—Divide Zoned Decimal
MPYZ—Multiply Zoned Decimal
SUBZ—Subtract Zoned Decimal

The zoned decimal instructions operate on operands that are character strings in a
storage segment. The result, where created, replaces the first operand. All
operands have the standard zoned decimal form—each byte is a digit with X‘F’ in
the high-order four bits and a digit (X‘0’—X‘9’) in the low-order four bits. The
sign position, which the application program must set, contains a positive (+) sign
code (X‘A’, X‘C’, or X‘F’) or a negative (—) sign code (X‘B’, X‘D’, X‘E’). All
zoned decimal operands are processed byte-by-byte, from right to left. The
maximum operand length is 63 bytes, but operands greater than 15 bytes must be
specified with register addressing or modified register addressing.

The 4700 has instructions that compare the contents of two fields, a register and a
field, two registers, or a field and immediate data:

o CAFLD and CAREG perform a binary arithmetic comparison. The leftmost
bit of each field or register is checked to determine whether the number is
positive (bit is 0) or negative (bit is 1), and the numbers are compared to
determine which is larger.

« CCFLD, CCFXD, and CCSEG perform a logic comparison of the data in two
fields. CCDI logically compares the contents of a fixed-field with a 1- or
2-byte immediate operand in the instruction. The comparison is performed
on the EBCDIC representations: an A is less than a C (C1 is less than C3),
and F is greater than a $ (C6 is greater than 5B).

o« COMPZ performs an algebraic comparison of two zoned decimal operands.
A shorter operand is logically padded to the left (high-order positions) with
(X‘FO).

If your application program is going to perform multiple comparisons to find
equivalent fields, the LSEEK instruction should be used.

AND and ANDI perform logical AND.operations, INOR and INORI perform
inclusive OR operations, and EXOR and EXORI perform exclusive OR
operations. They operate on two fields or on a field and 1 or 2 bytes of data in
the instruction (immediate data).

3-12 4700 Controller Programming Library, Volume 1: General Controller Programming

AND and ANDI

INOR and INORI

EXOR and EXORI

Testing Bits

Setting and Resetting Bits

Shifting Data

An AND operation produces the logical product of the bits in two fields. If both
bits in the same relative position are 1’s, a 1 is set in the result. Otherwise, a O is
set in the result.

Field 1 01100011
Field 2 11001011
Result 01000011

An inclusive OR operation produces the logical sum of the bits in two fields. If
either bit in the same relative position is a 1, a 1 is set in the result. If both bits
are 0, a 0 is set in the result.

Field1 01100011
Field2 11001011
Result 11101011

An exclusive OR operation produces the modulo-two sum of the bits in two fields.
If only one bitis a 1, a 1 is set in the result. Otherwise, a 0 is set in the result.

Field1 01100011
Field2 11001011
Result 10101000

LIFON and LIFOFF test a single bit, TSTMSK and TSTMSKI test from 1 to 16
contiguous bits in a 1-byte or 2-byte field. The mask specified in the instruction
determines which bits are tested; a mask bit set to 1 indicates that the
corresponding data bit is to be tested. A condition code indicates the result of the
test.

You can set a bit on by using the INOR, INORI, or LSETON instructions. You
can reset a bit (set it off) by using the AND, ANDI, or LSETOFF instructions.

SHIFTL and SHIFTR are used to shift the contents of a register left or right.
Any significant bits that are shifted out of the register are lost. As the bits are
shifted, zeros are inserted as padding. A maximum of 16 bits may be shifted for
each execution of this instruction.

Chapter 3. 4700 Instruction Categories -~ 3-13

Shifting a number in a register to the left has the effect of multiplying the register
contents by powers of 2. Shifting a positive number in a register to the right has
the effect of dividing the register by powers of 2.

Program Control Instructions

This section describes the instructions that you will use to: determine the
sequence in which your program will be executed; to invoke other programs; to
transfer control to various parts of your program; and to execute single
instructions outside of the sequence of execution.

Call Programming Instructions

The APCALL and COBLCALL instructions are the ones you will use to invoke
another assembler language application program or a COBOL application.

The FCLENTER instruction is used to receive control and parameters from a
COBOL program.

You will use the APRETURN and FCLEXIT instructions to return control to an
assembler application or to a COBOL program that called your program.

Passing Data Between Programs

You can pass data such as operands and addresses between programs by allowing
the programs to share the same segment storage or by placing the address of the
data in a register. In the cases where storage cannot be shared, you can have the
calling program load the address of an operand into a register with LDRA, and
the secondary program refer to the field using a DEFRF instruction label that
refers to that register address.

Your assembler language program can use the six-byte registers in segment 0 to
pass addresses or other values from your program to a called assembler program.
You must define the specific registers, any segments your program will share with
the called program, and the called program name in a parameter list selected by
APCALL. If your program receives parameters from the called program, you
should either share a segment with the called program that it can use to return
data, or establish an area selected by a register address that the called program
can use to return parameters to you.

Instructions that Release Control

Branch Instructions

You may use the LEXIT, LWAIT and PAUSE instructions to discontinue
execution of your program for a short time or until something happens that should
cause your program to continue.

Branching instructions in the 4700 system fall into four categories: those that test
a condition code set by a previous instruction, those that test a bit switch (on or
off), those that test an index value, and those that link to a subroutine.

Branch on Condition Code Instructions

JUMP, BRAN, BRANL, BRANR, and BRANLR test the condition code set by a
previous instruction and change the sequence of program execution if the tested
condition exists. Each bit of the testing value in the branch instruction (the mask

3-14 4700 Controller Programming Library, Volume 1: General Controller Programming

operand) corresponds to a bit in the rightmost half of the condition code byte in
Segment 1 (at SMSCCD). The branch mask is set using the rightmost 4 bits
specified in the mask byte when the instruction is coded; for example, if X‘OF’ is
coded, the branch mask is set to X‘F’. Setting a mask bit to 1 tests the
corresponding condition code bit. If the branch mask is X‘F’, the branch is always
taken (an unconditional branch); if the branch mask is X‘0’, the branch is never
taken (no operation). If the mask is not specified in the instruction, the mask is
set to X‘F’.

The branch mask must be set by using a mnemonic; by specifying a hexadecimal
value; or by specifying the label of an EQUATE instruction. If an EQUATE is
used, its label should not duplicate any of the mask mnemonics that are defined
by the 4700 Controlier.

The JUMP Instruction: JUMP is a branch instruction that:
e Requires only 2 bytes of storage.

« Is faster than other branches.

e Has a maximum range of 510 bytes (255 halfwords).
The branch-to address is generated during assembly.

The BRAN Instruction: BRAN assembles into a 4-byte instruction that has a range
of 64K bytes. The branch-to address is generated during assembly.

The BRANR Instruction: BRANR assembles into a 2-byte instruction. The
application program must place the branch-to address in the rightmost 2 bytes of a
register before BRANR is executed.

Branch on Bit Switch Instructions

The LIFON and LIFOFF branch instructions are used to control program flow by
testing a bit (a bit switch) and changing the sequence of program execution if the
tested switch is on (LIFON) or off (LIFOFF). If the setting that is tested is not
found, program execution continues with the next sequential instruction. The
instructions operate on a 2-byte field, and any single bit in the field may be
tested. The bits (bit switches) are numbered O to 15, starting with the high-order
bit in the field.

LIFON and LIFOFF have the ability to conditionally set the bit switch being
tested. LIFON can set the switch on if it is off, and LIFOFF can set the switch
off if it is on. The branch is not taken in these cases.

Two bit-setting instructions, LSETON and LSETOFF, may be used to
unconditionally set the bit switches tested by the branch instructions. Both
instructions operate on the two-byte field used by LIFON and LIFOFF. When
hexadecimal notation is used to specify the bit switches to be set, more than one
switch may be set with a single instruction execution; for example, specifying
x‘C000’ in the instruction would set bit switches 0 and 1 on or off as desired.

Chapter 3. 4700 Instruction Categories 3-15

Branch on Index Instruction

BRANX provides index increment, compare, and branch abilities in a single
instruction. This instruction can be used to control the number of times a series of
instructions is executed. The branch-to address is specified in the instruction ‘
along with a register that is initialized before BRANX is executed. This register
contains three 2-byte fields: the comparand, the increment, and the index value.
The increment is added algebraically to the index value and the sum is placed in
the index field. The updated index field is then compared with the comparand. If
the comparison is unequal, the branch is taken. If the comparison is equal, the
branch is not taken and processing proceeds with the next sequential instruction.

Branch and Link Instructions

BRANL and BRANLR store the address of the next sequential instruction if the
branch is taken. These instructions provide a method of using subroutines. The
difference between BRANL and BRANLR is in how you specify the branch-to
address: for BRANL, the address is specified in the instruction; for BRANLR, the
address must be placed in the register specified by the instruction.

 The BRANL Instruction: BRANL assembles into a 4-byte instruction. The
branch-to address is specified in the instruction. Depending on the operands
specified, the return address is placed either in a register or in the return-address
stack. If the return-address stack is used, LRETURN should be used to return
control to the next sequential instruction and clear the address from the stack.

The BRANLR Instruction: BRANLR assembles into a 2-byte instruction. The
branch address must be stored in the branch register before BRANLR is executed.
The return address is placed in the specified register (1-15) or the return-address
stack.

| Instructions that Return Control

You may use the IRETURN and LRETURN instructions to return control
following one of the Branch-and-Link instructions.

The LRETURN Instruction: LRETURN assembles into a 2-byte instruction. When
executed, it removes the latest entry from the return-address stack (last in, first
out) and gives control to the instruction at that address.

Return Addresses: For both BRANL and BRANLR, the return address (the
location of the next sequential instruction) is placed in a register if one of registers
1 through 15 is specified, or in a specially reserved portion of Segment 1 called
the return-address stack if register 0 or no register number is specified. The return
address is stored only if the branch is taken. When a register is specified, the
return address is placed in the rightmost 2 bytes of the register.

The return-address stack is managed by the controller on a last-in first-out basis.
The controller uses the SMSLSE field to keep a count of the number of entries in
the stack. When a BRANL or BRANLR instruction adds an entry to the stack,
the controller increases SMSLSE by 1.

When an LRETURN instruction is executed, the controller decreases SMSLSE by
1 and executes the instruction whose addxess was placed in the stack last.

3-16 = 4700 Controller Programming Library, Volume 1: General Controller Programming

The IRETURN Instruction: The IRETURN instruction is used in conjunction with
the ADRLST and one of the branch-and-link instructions.

The Execute (LEXEC) Instruction

The execute instruction, LEXEC, is used to cause out-of-sequence execution of a
single instruction (the subject instruction). The next sequential instruction after
LEXEC is performed following execution of the subject instruction (except when
the subject instruction is an LEXIT, LSEEK, or an instruction that modifies the
instruction counter). The subject instruction may be any valid executable
instruction except a jump, branch, or another LEXEC instruction.

The subject instruction is created by taking an instruction pointed to by LEXEC
(the addressed instruction) and ORing it with all or part of the data in a register.
The resulting subject instruction is then executed. Both the operation code and
operands may be modified except for the immediate data field of the WRTI
instruction. Specifying register O suppresses the ORing operation and causes the
addressed instruction to become the subject instruction.

The subject instruction exists only for a single execution, the addressed instruction
and the register are not changed by the ORing.

| Storage Management Instructions

Other 4700 Instructions

You can define segment storage in your program by using the DEFSTOR (Define
Segment Storage) instruction. You can allocate segment storage by the
SEGALLOC and SEGFREE, and by the DTACCESS and DTAFREE
instructions.

Storage Initialization Instructions

Scratch-Pad Instruction

Timer Control Instructions

Your primary application program can initialize segment storage, that is you can
set storage to some value or values, by the SINIT (Start Initialization), INITSEG
(Initialize Segment), and ENDINIT (End Initialization) instructions. This
initialization will take place when your program is loaded into storage.

The scratch-pad area (SPA) is a global section of user storage that is separate
from segmented storage, and accessible to all application programs. The SPA can
be used to contain a dynamically-changing table, temporary data storage, or a
shared area for communication between work stations.

The 4700 provides three timers for program control and dating, or
“time-stamping” of system activities and data.

The time-of-day timer is a variable-format value representing year, month, day,
hour, minute, and second. Your program may set, adjust, and read the
time-of-day timer with the LTIME instruction. You can also expand the timer
format to contain such values as the complete month (such as January) and

Chapter 3. 4700 Instruction Categories 3-17

The Dump Instruction

weekday (such as Tuesday). Your program can read the expanded timer format
with the optional LTIMEYV and LTIMET instructions. The resulting values of
either format are available to your program for either dating or branching. The
interval timers measure the elapsed time, or intervals, of a program execution or
some other event. Intervals can be as short as 1/256 of a second with the
optional INTMR instruction.

The high-resolution counter (HRC) measures program activity in intervals of
1/256 of a second, and can be used as a time-stamp or to control your program
execution. Your program must define a field to contain the timer value when it is
read with the LHRT instruction.

To write any segments or files to a diskette data set uss APBDUMP. The data set
must be defined during the configuration process. When the dump is complete,
you can use the system monitor to send the dump data set to the host.

If an APBDUMP instruction is included in the application program, the DEFDMP
and COPY DEFSMS instructions must also be included. These instructions
define the buffer used by APBDUMP and provide the locations of Segment 1
fields required by APBDUMP.

APBDUMP can be used in the program check routine so that a listing of the
registers (Segment 0), the location of the instruction that caused the program
check (Segment 1), and other desired information is available for debugging.

Note: The Extended Disk and Diskette Access Method (EDAM) is required in
order for you to use the APBDUMP instruction. You will find further information
in the IBM 4700 FCS Controller Programming Library: Volume 6: Control
Program Generation and in Volume 2: Disk and Diskette Programming.

3-18 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 4. Coding Rules

Syntax Notation

Syntax Notation Key

This chapter describes the rules by which 4700 application programs must be
written. The coding rules governing the coding of 4700 assembler instructions are
a limited set of the same coding and syntax rules used by the
0S/VS-DOS/VS-VM/370 assembler language. The following sections of this
manual explain the limitations on those assembler coding rules that you must
observe when writing 4700 application programs. The prerequisite assembler
publications listed in the preface of this manual describe the detailed coding and
syntax rules that apply to the 4700 assembler language as well as error messages
that could occur during assembly of your program.

We use a uniform notation to describe the syntax of the controller symbolic
instructions. The notation indicates which operands you must code and which are
optional, the options that are available for expressing values, the values assumed
by the system if you don’t code an operand, and the punctuation.

CAPITAL LETTERS
Capital letters indicate values that you must enter exactly as shown.

lowercase letters
Lowercase letters indicate where you are to insert a number, character
string, or keyword in place of the lowercase letters.

punctuation .,=()
The period, comma, equal sign, single quotation mark, and parentheses are
punctuation that you must code exactly as shown. These punctuation
marks separate the operands of the instructions. You need not code a
comma preceding a keyword parameter for the first parameter in the
operand field. Parentheses are sometimes optional, see "ellipsis' below.

brackets []
Brackets indicate that you can choose not to code the elements and
punctuation they enclose; the operand is optional.

braces {}
Braces indicate that you must code the elements and punctuation they
enclose; the operand is required.

selecting options

When you choose from more than one operand, the choices appear like this,
with vertical bars separating them:

[11213] or {11213}

or they might appear stacked, like this:
1 1
2 or 2
3 3

Chapter 4. Coding Rules 4-1

Specifying Operands

underscoring
We underscore a value to indicate that if you do not code a value for the
element, the system assumes the underscored value. The value that the
system assumes is called a default. In the following examples, if you do not
code TYPE, the system uses TYPE=1.

ellipsis... ,
Ellipsis points indicate that you can add one or more additional operands or
sets of operands, each having the same format. For example,

W N =

[TYPE={11213}] or [TYPE= {

CASE=(element1,...)

indicates that you can repeat the syntactical unit (element) preceding the
ellipsis. The parentheses are not needed if you code only one element.

Generally, a 4700 assembler instruction performs an operation on two operands
and replaces one of them with the result. Operands for these instructions are
designated operand 1 and operand 2. For example, an instruction performing
addition adds operand 1 and operand 2 and replaces operand 1 with the result.
Operand 2 remains unchanged.

Note: When an instruction has only one principal storage reference, the suffix (1
or 2) has an additional significance. In such an instruction, the suffix identifies
which part of an Index Register Number Table (IRNT) applies to the storage
reference. For example, the COMP instruction has one storage reference -
identified as ‘operand 2’. This means that the second half of the IRNT applies to
the COMP instruction. See “Segment Indexing” in Appendix F for more
information.

4-2 4700 Controller Programming Library, Volume 1: General Controller Programming

This section of the chapter describes how these operands, which can be either
defined constants or the contents of registers and/or fields, are designated in the
assembler instructions.

operand 1
Is the value shown in the instruction notation having a suffix of 1.
Examples are:

defconl

defld1

(defrfl)

regl

(regl)

segl

segl,displ
segl,displ,lenl
immdatal

Each of these are variables that represent a way of selecting a constant or
value located in a field or register that is operand 1, and is defined later in
this section. When the operation creates a result, the area containing
operand 1 usually contains the result unless otherwise noted in the
instruction description. One or more operand 1 designators can be specified
for an instruction - any one of which can be used to define the operand.
They are described collectively, however, as “Operand 1" in the instruction
description.

operand 2
Is described by one or more variables in the syntax notation having a suffix
of 2. Examples are:

defcon2

defld2

(defrf2)

reg2

(reg2)

seg2

seg2,disp2
seg2,disp2,len2
immdata2

As in operand 1, one or more of these variables in the syntax notation of
the instruction description means that operand 2 may be defined as noted;
the variables are described collectively as “Operand 2. Operand 2 is not
normally changed by the operation unless as described in the instruction
description.

The rest of this section describes the variables that select an operand or
operands. The operand suffix is disregarded in these descriptions, because
most of these variables can be used to define either operand.

The operands listed below appear in several controller symbolic
instructions. A subset of the OS/VS or DOS/VS assembler constants is
used to code these operands. (Refer to the latest edition of
OS/VS-DOS/VSE-VM/370 Assembler Language for detailed information

Chapter 4. Coding Rules 4-3

on constants.) The following descriptions include the constants that are
valid for the operands, unless specified otherwise in the description of the
individual instructions. -

defld
This variable represents the label of a DEFLD (Define Field) instruction.
DEFLD instructions represent storage areas rather than specific values
themselves, but the storage area is usually initialized to a specific value.
DEFLD instructions always are coded in the data definition area of the
program.

defcon
This variable represents the label of a DEFCON (Define Constant)
instruction. DEFCON instructions define actual values, and cannot be
fields that are changed by the instruction. DEFCON instructions are always
coded in the data definition area of the program.

label :
This is the label of an instruction, such as a DEFLD, an executable
instruction that is the target of a branch, or the name of a table. Label
must be a character string from one to eight characters (unless specified
otherwise in the descriptions of the individual instructions). The label
operand follows the rules governing assembler labels; all characters must be
alphameric, and the first character must be alphabetic. For further
discussion of labels, refer to the latest edition of
OV/VS-DOS/VSE-VM/370 Assembler Language.

reg
This variable selects one of the sixteen registers available to this application
program. The value for reg can be 0 through 15, and can be specified as an
unsigned decimal integer, or the label of an EQUATE instruction that
refers to an unsigned decimal integer.

seg
This variable selects one of the 16 segments that the program can address.
The value can be 0 through 15, as long as the corresponding segment has
been defined for the work station. The value 0-15 can be an unsigned
decimal integer, or the label of an EQUATE instruction that defines the
integer.

- disp . :
This variable defines the displacement into a segment. The value of disp
cannot be larger than the size of the related segment. The variables seg and
disp are usually used together to define a field. Specify disp as an unsigned
decimal integer ranging 0 to 65 534, or as the label of an EQUATE
instruction that defines the integer.

len
This variable defines the length of a field in a segment. The beginning of
the field is usually located by seg,disp. The allowable maximum that len
can be varies according to the instruction. Specify len as an unsigned
decimal integer or the label of an EQUATE instruction that defines the
integer.

4-4 4700 Controller Programming Library, Volume 1: General Controller Programming

(reg)

This variable defines a register containing an address that locates a storage
area. Register addresses have the following format:

Bits Contents

00-07 Set to Zero

08-11 Segment space ID
12-15 Segment

16-31 Length

32-47 Displacement

Register addresses can be created in a register by the LDRA (Load Register
Address) instruction. You can use registers to pass data addresses from
your program to another. Specify reg as an unsigned decimal integer or the
label of an EQUATE instruction specifying the integer. The parentheses
must be coded.

(defrf)

This is the label of a DEFRF instruction. The DEFREF instruction identifies
a register (containing a register address), a displacement, and a length. The
displacement to the storage area is calculated by adding the displacement in
the register to the displacement from the DEFRF instruction. The length of
the storage area is the length in the DEFRF. DEFREF instructions can be
used to define multiple dummy section (DSECT) overlays. The
parentheses must be coded.

immdata

data

Defines immediate data, usually as operand 2, that becomes part of, and is
an operand of the instruction with which it is used.

Immdata must be 1 or 2 bytes of data specified as one of the valid types
discussed below or you can specify the label of an EQUATE instruction.
Immdata can also be a decimal value such as: 4 or 16. With DOS/VS there
is a limit of eight characters in the immediate data including the descriptors.
For example, B‘10101’ is counted as eight characters, because B and the
single quotation marks are included in the count.

Note: If a single quotation mark (’) or ampersand (&) is included in a data
string, two quotation marks or ampersands must be coded in order to obtain
the desired data. For example, if the data wanted is the word can’t it must
be coded as can’’t. Similarly, if the data wanted is the phrase one & two, it
must be coded as one && two.

Is any character (C), hexadecimal (X), binary (B), fullword (F), or
halfword (H) specification in one of the following forms:

dddt‘xxx...x’
tLnn‘xxx...x’
tL.nn‘xxx...x°

where ddd is a decimal number indicating the number of times the constant
is to be generated (if only a single constant is required, this number is not
needed); ¢ is one of the valid types (C, X, B, F, or H); nn is a decimal
number indicating the actual length of the constant; and xxx...x is the data

Chapter 4. Coding Rules 4-5

Labels and Mnemonics

that makes up the constant, enclosed in single quotation marks for all types
except address constants, which are enclosed in parentheses.

An address (A or Y) specifiéét_ion may also be used, but must be in the
form:

dddA (label-apbname) or dddA(label-label) _
ALn(label-apbname) or ALn(label-label) or ALn(label)
AL.n(label-apbname) or AL.n(label-label)

dddY (label-apbname) or dddY(label-label)
YLn(label-apbname) or YLn(label-label) or YLn(label)
YL.n(label-apbname) or YL.n(label-label)

when using the standard OS/VS and DOS/VS assembler. label is the label
of the instruction and apbname is the CSECT name. If an address
specification is not in this form, the assembler builds an RLD entry which
will be rejected by the FORMAT service program.

Notes:

1. The above forms of data specification are the only ones valid for a
controller application program. Any other forms may produce
unexpected results. :

2. AL3 and AL4 address constants have specific meanings for the Host
Support program.

ccmask

Must be a hexadecimal value specified as X‘xx’ (the rightmost 4 bits of the
hexadecimal value are used as the mask; the other 4 bits are ignored); a
binary value specified as B‘nnnn’, a mnemonic (refer to the next section for
a list of the mnemonics representing coded values), or the label of an
EQUATE instruction that is associated with one of these values.

To avoid possible conflict, the labels of the standard definitions copied by the
COPY instructions should not be repeated as labels of controller symbolic
instructions.

Mnemonics are used in several ways in the 4700 assembly language; as a
representation of data sets and logical work stations and as a mask in a branch or
JUMP instruction. A mnemonic used in a branch or JUMP instruction represents
a coded value that is the value of a condition code that may have been set. The
following are the mnemonics that have special meaning when coding a controller
application program.

4-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Coded values for files:

A

C
CR
DSID
DSK
L

P
PBN
PLR
TF1
TF2
TF3
TF4

Absolute address
Composite file
Control Record

Disk or diskette

Log

Permanent file
Physical Block Number
Data set logical record

Temporary Files

Coded value for a logical work station

ST

Coded values for masks:

Mnemonic Hex Value

BL
BU
EQ
GE

GT
D

IL
10

IS
LE

LT
MD
ME
MO
MX
Mz
NE
NG
NL
NN
NO
NS
NZ
OK

Station

08
04
01
05

04
02

02
04

04
03

02
08
04
08
02
01
06
02
01
04
08
04
02
01

Explanation

A significant (one) bit is lost.

The device is not available (busy).

The values compared are equal.

The first operand is greater than or equal to the second
operand.

The first operand is greater than the second operand.

The ID specified is invalid, the name was not found, or the 1D
was out of the range of valid IDs. '

An incorrect length is specified.

An invalid Segment 0 is specified: Segment O operator A has
been set as the default.

An invalid segment is specified in the parameter list.

The first operand is less than or equal to the second operand.

The first operand is less than the second.

A modulus error occurred.

The tested field and mask are identical.

All tested bits are 1°s.

The tested bits are mixed 1’s and 0’s.

All tested bits are O or the mask bits are all 0.
The values compared are not equal.

The result or data is negative.

No significant (one) bits are lost.

The field is not numeric.

No Segment 0 for operator B exists.

There is an invalid device specification.

The result or data is nonzero (logical instructions only).
The operation is successful.

Chapter 4. Coding Rules 4-7

4-8

Mnemonic Hex Value Explanation

ov 08 An overflow occurred.

PS 04 The result or data is positive.

SP 04 There is insufficient segment space.
ST 02 Status is returned.

SU 08 The segment is in use.

TR 08 Truncation occurred.

7D 08 Division by zero was attempted.
70 01 The result or data is zero.

The mnemonics listed above are those that are available for branching
instructions. If none of these mnemonics are meaningful to the branch operation,
use an EQUATE instruction to define another mnemonic.

These mnemonics may also be used as labels, but when they are used in ways
other than those stated in the descriptions of the individual instructions, they may
cause an error or an unexpected value to be assembled. For example, if a
mnemonic is coded in an instruction for which the mnemonic is not valid, an
assembler error occurs. The mnemonics are defined to represent specific coded
values and have meaning only for the instructions that specifically define their
use. The mnemonic representation of a coded value may be defined by some other
means, such as an EQUATE, but the coded value defined by an instruction has
priority over this other mnemonic definition. For example, if the following is
coded:

EQ EQUATE X'50°
BRAN EQ,ADDR

no assembler error is indicated, but the EQ in the BRAN instruction will be
assembled as hex 01 not hex 50.

If, however, the following is coded:

EQ EQUATE XSO
TSTMSKI FLD,EQ

‘EQ’ will become hex 50 because TSTMSKI does not define a coded value for this
mnemonic.

4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 5. 4700 Instruction Descriptions (Alphabetically)

The following are non-executable instructions. They are not machine instructions
and do not appear within the assembled application program.

« APOPT

« BEGIN

« COPY

« DEFLD

« DEFRF

« DEFSTOR
« ENDINIT
« ENDSEG

« EQUATE
« FINISH

« INITSEG

e Ln

« LDSECT

e LEJECT

« LEND

« LSPACE

« PLPCMD
« PRINTI

« REBASE

« SAVEBASE
« SECTION
« SEGCODE
o SINIT

« USEBASE

The following are non-executable instructions. They are not machine instructions
but they do become data within the application program and you must place them
properly. For example, DEFCON instructions cannot be interspersed with
executable instructions unless you branch around them.

« ADRLST

» DEFCON
» DEFDEL

- DEFDMP
« LSEEKPL
« LTIMET

« LTRTBEG
« LTRTENT
e LTRTGEN
« MASK

« MOD

« TABLE

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-1

5-2 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDFLD algebraically adds the binary value from a field to the binary contents
of a register and places the result in the register. The leftmost sign bit of the
result is propagated to the left in the register.

ADDFLD--Add Field

The length of the field must not exceed 6 bytes. The leftmost bit of the field is
the sign. If the length is 0, data in the register is not changed, but the condition
code is set according to that register data.

Name Operation Operand

defcon2
defld2
[label] ADDFLD regil, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
A register to which operand 2 will be added.

operand 2
A field to be added to operand 1. The field length is 0-6 bytes.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 70 The result is 0.
02 NG The result is less than 0.
03 LE The result is less than or equal to 0.
04 PS The result is greater than 0.
05 GE The result is greater than or equal to 0.
06 NE The result is not equal to 0.
08 ov An overflow occurred.
09 An overflow occurred and the result is 0.
0A An overlfow occurred and the result is less than O.
oC An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-3

5-4 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDFLDL
ADDFLDL--Add Field Logical

ADDFLDL adds the contents of a 6-byte field to a register. If the field is less
than 6 bytes in length, it is functionally extended to 6 bytes before addition by
propagating zeros. ADDFLDL then adds the binary value from the field to the
binary contents of the register and places the result in the register.

The length of the field must not exceed 6 bytes. The leftmost bit of the result is
the sign. If the length is 0, data in the register is not changed, but the condition
code is set according to that register data.

‘Name Operation Operand

defcon2
defld2
[label] ADDFLDL regl, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a register to which operand 2 will be added.

operand 2
Is a field to be added to operand 1. The field length must be 0-6 bytes.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 70 The result is O.
02 NG The result is less than 0.
03 LE The result is less than or equal to 0.
04 PS The result is greater than 0.
05 GE The result is greater than or equal to 0.
06 NE The result is not equal to O.
08 ov An overflow occurred.
09 An overflow occurred and the result is 0.
0A An overlfow occurred and the result is less than O.
0oC An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-5

5-6 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDREG algebraically adds the binary contents of two registers and places the
result in the register specified by reg!.

ADDREG--Add Register

Name Operation Operand

[label] ADDREG regl,reg2

operand 1
A register to which operand 2 will be added.

operand 2
A register containing the value to be added to the first operand.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 70 The result is O.
02 NG The result is less than 0.
03 LE The result is less than or equal to O.
04 PS The result is greater than 0.
05 GE The result is greater than or equal to O.
06 NE The result is not equal to 0.
08 ov An overflow occurred.
09 An overflow occurred and the result is 0.
0A An overlfow occurred and the result is less than 0.
oC An overflow occurred and the result is greater than 0.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-7

5-8 4700 Controller Programming Library, Volume 1: General Controller Programming

This instruction adds the zoned decimal value in operand 1 to the zoned decimal
operand 2 value, and replaces operand 1 with the result. The length of either
operand is 1-63 bytes; operands greater than 15 bytes long must be specified
using register addressing.

ADDZ--Add Zoned Decimal

Note: This is an optional instruction, and requires that module P31 be specified
on the OPTMOD configuration macro.

Name Operation Operand

defcon2
. defldil defld2
[label] ADDZ (defrf1) ’ (defrf2)
(regl) (reg2)
segl,displ,lent seg2,disp2,len2
operand 1

Defines a zoned decimal field to which operand 2 will be added. This field
cannot be in Segment 14; nor can the label of a DEFCON be specified. If
the result is less than the size of operand 1, each remaining high-order byte
is filled with hex FO.

operand 2
Defines a zoned decimal field to be added to operand 1.

Condition Codes: The following can be set.

Possible
Hex Code Mnemonic Explanation

01 70 The result is 0.

02 NG The result is less than O.

03 LE The result is less than or equal to 0.

04 PS The result is greater than 0.

05 GE The result is greater than or equal to 0.

06 NE The result is not equal to O.

08 ov An overflow occurred.

09 An overflow occurred and the result is 0.

0A An overlfow occurred and the result is less than 0.
0oC An overflow occurred and the result is greater than O.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-9

5-10 4700 Controller Programming Library, Volume 1: General Controller Programming

ADRLST creates a list of return addresses to which the IRETURN instruction will
refer.

| ADRLST--Return Address List

‘Name Operation Operand

[label] ADRLST [addr-1,addr-2,...]

addr-n
Is a label. The maximum number of labels allowed is 7. The operands are
positional. If you omit one operand then the address of the next sequential
instruction (NSI) will be created in that position of the address list. If you
code no labels then one address will be created pointing to the next
sequential instruction.

The format of the address list is as follows:

Byte
0 | FF |count|
2 | addr-1 |

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-11

5-12 4700 Controller Programming Library, Volume 1: General Controller Programming

You may use AND to ‘AND’ from 1 to 255 bytes of field 2 with the same number

of bytes in field 1 and place the result in field 1. The length of field 2 determines
the length of the operation.

AND--AND Field

When the AND is performed, a bit in the result is set to 1 if the corresponding bits
in both fields are 1’s.

Name Operation Operand

defcon2
defldi defld2
[label] AND (defrf1) , (defrf2)
(regl) | (reg2)
segl,displ seg2,disp2,len2

operand 1

Defines a field to which the second operand will be ANDed. The segment
number cannot be 14.

operand 2
Defines a field to be ANDed to the first operand. The length (1-255)
determines how many bytes are in the AND operation.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 70 The result is all 0’s.
02 NZ The result is mixed 1’s and O’s, or all 1’s.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-13

5-14 4700 Controller Programming Library, Volume 1: General Controller Programming

ANDI--AND Field Immediate

ANDI is used to ‘AND’ 1 or 2 bytes of immediate data with field 1 and place the
result in field 1.

When the AND is performed, a bit in the result is set to 1 if the corresponding bits
in both the field and the immediate data are 1’s.

Name Operation Operand

defld1

[label] ANDI (defrf1) ,immdata2
(regt)
segl,displ

operand 1
Defines a field to which the immediate data will be ANDed. The segment
number cannot be 14.

operand 2 _
Is 1 or 2 bytes of immediate data. The length of the immediate data
determines the length of the operation.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 70 The result is all 0’s.
02 NZ The result is mixed 1’s and O’s, or all 1’s.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-15

5-16 4700 Controller Programming Library, Volume 1: General Controller Programming

This instruction writes the contents of one or more segments, files, or the system
log to a diskette data set that can be allocated during operating diskette creation.
When the dump is completed, APBDUMP restores all register and SMS field
values except register 15. Operation resumes with the next instruction following
APBDUMP.

| APBDUMP--DUMP Segment or File to Diskette

Notes:

To use this instruction you must code:
1. the EDAM operand on the FILES configuration macro
2. the COPY DEFSMS instruction - before a DEFDMP

3. the DEFDMP instruction to reserve a 454-byte area at the beginning of a
segment.

Name Operation Operand

{ seg }
(seg,...) [,FILE] [, ID=dumpid]

[label] APBDUMP
FILE

seg
Is the number of the segment to be dumped. The segment numbers are
specified in ascending order.
Note: If the segment specified is the same as the buffer segment specified
in DEFDMP, no dump of this segment occurs.

list

Is the list of files to be dumped. There is no dump for composite files; the
list can include any combination of the following:
TF1,TF2, TF3, TF4 for temporary file subdivisions
L for the log
P for the permanent file
Note: At least one operand (seg or FILE) must be coded with APBDUMP.

dumpid
Is a unique identifier for this dump.

Condition Codes: This instruction may modify the condition code, however; any
condition code returned will have no significance.

Program Checks (hex): 01, 02, 03, 09, 11 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-17

5-18 4700 Controller Programming Library, Volume 1: General Controller Programming

This instruction calls and passes control to another 4700 assembler application
program. The called program begins execution with shared or private
work-station storage.

| APCALL--Call Assembler Application Program

APCALL requires a 12-byte parameter list with the following format:

Bytes Function

0-7 Called program name
8-9 Shared segment flags
10-11 Register flags

The called program name must be the same as that specified by the APBNM
parameter of the called program’s BEGIN statement.

The 16 bits of the shared segment flags field correspond, from left to right, to the
application program’s Segments 0-15. To share a segment between the calling
and called application program, the corresponding flag bit must be set to 0. If a
bit is set to 1 and the called application program’s DEFSTOR statement defines
that segment, a new segment will be allocated. Regardless of their flag bit
settings, Segments 1 and 15 are always shared; Segment 13 is preallocated and
shared across all stations; and Segment 14 is always allocated.

New initialized segment headers are created for newly allocated segments. For
shared segments, the calling program’s segment headers are passed unchanged by
APCALL. The 4700 also creates segment headers for Segments 1 and 15.

The bits in the 2-byte register flag field correspond, from left to right, to the
calling program’s sixteen 6-byte registers. If Segment 0 was not passed (that is, it
was allocated for the called program) and a register flag bit is 1, the
corresponding register’s contents are copied to the equivalent register for the
called program. Segments and registers can be shared in any combination
between the calling and called programs. For example, a register can contain a
register address pointing to a data area of a dummy section (DSECT) in a
common shared storage segment.

Note: Shared segments will pass data in both directions across the
APCALL/APRETURN interface, but data in passed registers (Segment 0 not
shared) will not be returned to the calling program.

The called program may reside in controller storage or may reside on diskette or
disk until called. If programs are to be transient you must include the required
macros in your system configuration. See the APLIST and TRANPL

configuration macros in the IBM 4700 Finance Communication System
Programming Library: Volume 6.

APCALL also does the following:
1. Creates a segment space ID for the called program.

2. Controls the base of the return address stack for each segment space ID.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-19

3. Saves the alternate delimiter table pointer (SMSDEL) and the delimiter
control mask (SMSDCB). SMSDEL will be initialized to zero for the called
program, .

4. Saves and clears any segment indexing that may be active.

Name Operation Operand

defcon2
defld2
[label] APCALL (defrf2) [,WAIT={Y|N}]
(reg2)
seg2,disp2

operand 2

is a field containing the 12-byte parameter list. Any length specified for
operand 2 is ignored.

WAIT
controls whether or not the station will wait if storage is not available to
load a non-resident program. If you specify WAIT=N and storage is not
available, an immediate return is made to the calling program with a
condition code of 04. The default is WAIT=Y which causes the station to
be put in wait status until storage becomes available. The WAIT parameter
is ignored for a resident program.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 OK Instruction executed successfully. This condition

code is actually the result of an APRETURN
instruction because if APCALL is successful,
control is given to the called program. The called
program performs an APRETURN and control
returns to the calling program.

02 Status is stored; the status code is contained in
SMSDST. See the IBM 4700 Controller
- Programming Library: Volume 2 for explanation of
the status codes.

04 WAIT=N is specified and there is no available
area to load the requested transient application
program.

Program Checks (Hex): 01, 02, 04, 09, 20, 21, 22, 23, 24, 25, 27, and 28 can be
set.

5-20 4700 Controller Programming Library, Volume 1: General Controller Programming

Programming Notes

1.

You must establish interrupt handling conventions between calling and called
programs. For a given station, asynchronous interrupts that are not processed
by a called program are held until another program gets control. The program
that gets control must have an interrupt handling routine or an appropriate
entry point defined. This program should be able to determine why the
interrupt occurred. Alternatively, the original program should process the
interrupt.

If asynchronous interrupts occur while the logical work station is idle and the
current application program has no entry point defined, the interrupts are
held until the program is redispatched and can clear them. However, because
no processing can occur, the station remains idle or appears locked up.

If the called application’s program check routine resets the link stack counter
(SMSLSE), it must not be zeroed. Its contents must be equal to the current
link stack base value (SMSLSB).

The SMSDEL field is zeroed for the called application program and restored
by APRETURN. SMSDCB is passed unchanged to the called program, but is
restored by APRETURN.

All called application programs, whether transient or resident, may also have
overlays.

The space allocated to a particular segment space ID may be permanent or
temporary as determined by the USE parameter of the DEFSTOR instruction.
If you specify USE=STATIC the area allocated, when that program is called
the first time, is retained unchanged (segments, segment headers, and
registers) until the controller is IPLed again.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-21

5-22 = 4700 Controller Programming Library, Volume 1: General Controller Programming

" The APOPT instruction specifies application program assembly options. APOPT
must be the first assembler instruction in each assembly, and can be specified only
once.

| APOPT--Application Program Options

Name Operation Operand

[label] APOPT [RELOC={Y|N}] [,SPLIT={Y|N}]
[,DIRNAME=name, {NEW|OLD}]
[,DISP={NEW|OLD}] [,YL2={Y|N}]
[, INDEX={nnn|0}] [,DISP16={Y[N}]

[,REFRESH={Y |N}]

RELOC
Specifies whether the relocate option is selected allowing modules to be
used in the LINKAPB function (Y) or no relocate and not allowing the
modaules to be used in the LINKAPB function (N).

SPLIT
Specifies whether the application program is split. If your application is to
be split, see Appendix F, otherwise do not code this operand.

DIRNAME
DIRNAME=(name,NEW) specifies that the named directory should be
created on the host library, and that directory entries for all sections in the
assembly should be added to the new directory. If a directory with the
same name already exists, another directory will not be created and the
entries for the sections will not be added to the old directory.

DIRNAME=(name,OLD) specifies that the named directory already exists
and that directory entries for all sections in the assembly should be added.
(An entry will not be added if a duplicate entry already exists in the
directory.) If the directory does not exist, a new one is created and entries
for all sections in the assembly are added to it.

DISP
DISP=NEW specifies that the section or sections are new and should be
added to the host library only if a section with the same name does not
already exist.

DISP=0LD (or an omitted operand) specifies that a section or sections
“may already exist with the same name(s) as the section(s) being assembled,
and that the sections being assembled should replace those that exist. If a
section does not exist, the new section will be added.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-23

5-24

YL2=Y specifies that all AL2 address constants used as operands of
DEFCON instructions in the following sections should be changed to
relocatable YL2 address constants. Be careful when using this operand
because the DEFCON instruction cannot distinguish between expressions
that are not intended to be relocated and those that are. Therefore, you
should manually change the source statements if there is any question about
the use of AL2 address constants in your application program.

If YL2=N is specified or the operand is omitted, AL2 address constants
will not be altered.

INDEX :
Provides for a unique name for each CSECT as required for OVLYSEC
and SEGCODE sections that are assembled with RELOC=Y option and
when the sections are separately assembled. Values may be from 0 to 998.
The constant CSECT has the name specified on the macro; the instruction
CSECT has a generated name (BQKIN index number) that includes the
number specified by INDEX. Each instruction control section increases the
value by one to create a unique name.

DISP16
Specifies whether 12- or 16-bit addresses are created for DEFCON
instructions (RELOC must specify Y). If DISP16 is Y, 16-bit address
fields are created, regardless of the displacement size. If N (the default) is
specified, the displacement (12- or 16-bit) determines the field size.

REFRESH
REFRESH=Y means that this program is read-only; that is, it is not
dynamically modified by any other program. It also means that the 4700
may reuse the main storage occupied by this program when it is not
operating. The 4700 will reload the program into storage when it is to be
referenced subsequently. REFRESH=N means that this program may be
dynamically modified and will not be reloaded by the 4700.

If a program contains an OVLYSEC instruction then it will be assembled as
if you specified REFRESH=N.

4700 Controller Programming Library, Volume 1: General Controller Programming

APRETURN

This instruction is issued by a called 4700 assembler application program to return
control to the calling program. Control is returned with the following conditions
set:

APRETURN--Return to Calling Program

1. Allocated segments belonging to this program are released unless its
DEFSTOR statement specified USE=STATIC.

2. The current segment space ID is restored to reflect what had originally been
assigned to the calling program by the controller.

3. The return address stack pointer, and alternate delimiter table address, and
the delimiter control mask are restored.

4. Segment indexing is restored if it was active.

5. Control passes to the instruction following the APCALL instruction in the
calling program.

Name Operation Operand

[label] APRETURN

Condition Codes: The condition code is always set to hex 01 (mnemonic OK).
Program Checks (hex): 26 can be set.
Programming Notes

1. If an APRETURN frees storage for which another station has been waiting,
then the storage will be allocated to the other station and the request for that
station will be processed.

2. You can test the condition code of APCALL in an instruction following the
APCALL instruction. If the APCALL fails (for example, a diskette read error
of a transient program) then the condition code will not be hex 01. If the
APCALL is successful then control will be given to the called program and
APRETURN will set condition code hex 01 when control is returned to the
calling program.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-25

5-26 4700 Controller Programming Library, Volume 1: General Controller Programming

BEGIN
BEGIN--Assembly Control

BEGIN identifies the beginning of a controller application program during
assembly and builds a CSECT with the name identified by APBNM=name, an
ADDMEM statement, and a control block that is used to identify the controller
application program and its entry points. At least one asynchronous entry point
must be specified. A 48-byte area is reserved at the beginning of each controller
application program whether or not all operands are specified. BEGIN can be
preceded by APOPT only.

Name Operaﬁon Operand

[label] BEGIN APBNM=(name [,{vn|1}]) ,DATE=mmddyy
[,PC=label] [,DEL=label] [,STP=labell
[,APENTRY=label] [,API=label]
[,ATD=1label] [,ACP=label] [,AST=label]
| [,NUMOVLY=n] [,ATM=label] [,ALA=label]

[, INSNAME=name] [,DSECT={Y|N}]

APBNM
Specifies the name and version number of the controller application
program:

name
Is the eight-character name of the controller application program.
This name is also used in-.the APBNM operand of the STATION
configuration macro instruction.

Is the version number of this assembly (a decimal integer from 0 to
99). If it is omitted, 1 is assumed.

DATE
Is the month, day, and year of this assembly.

PC
Is the entry point to be used when the program encounters a program
check. ‘label’ can be an external symbol when RELOC=Y is specified in
the APOPT instruction.

DEL
Is the location of the delimiter table (refer to the DEFDEL instruction for a
description of defining delimiters). If DEL is not specified, SMSDEL must
be dynamically altered to point to the delimiter table. ‘label’ may be an
external symbol when RELOC=Y is specified in the APOPT instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-27

STP
Is the startup entry point. After controller initialization is completed,
control is passed to each logical station that uses this program and that was
configured with a startup flag during the controller configuration procedure
(that is, the STARTUP operand on the STATION macro instruction is
specified as Y). If a startup entry point is not specified, control is not
passed to a station until one of the other entry points is used. ‘label’ may be
an external symbol when RELOC=Y is specified in the APOPT
instruction.

APENTRY
Defines the label of the entry point for executing this application program
when it is called by another program using APCALL.

Note: You must include a DEFSTOR instruction in your program in order
to use the APENTRY operand.

Is the label of the entry point to be used when a program interrupt
(LPOST) is presented to a station that has relinquished control by an
LEXIT instruction. The ‘label’ may be an external symbol when
RELOC=Y is specified in the APOPT instruction.

ATD
Is the entry point to be used whenever an asynchronous operation is started
on a device assigned to a station using this controller application program
(for example, an operator starts typing on a 4704 to initiate a transaction).
The device can be at any Logical Device Address (LDA) that was specified
for asynchronous input. This entry point is used only when a station has
relinquished control by means of an LEXIT instruction or has never been in
control. ‘label’ may be an external symbol when RELOC=Y is specified in
the APOPT instruction.

ACP
Is the entry point to be used whenever the central processor issues an
asynchronous write to a station that has relinquished control by means of
an LEXIT instruction or that has never been in control. ‘label’ may be an
external symbol when RELOC=Y is specified in the APOPT instruction.

AST
Is the entry point to be used whenever one station transmits data to another
station that has relinquished control by means of an LEXIT instruction or
that has never been in control. ‘label’ may be an external symbol when
RELOC=Y is specified in the APOPT instruction.

NUMOVLY
This operand is not used. It is included for compatibility reasons only.

5-28 4700 Controller Programming Library, Volume 1: General Controller Programming

ATM

ALA

Is the asynchronous entry point to be used when a station’s timer request is
honored. A timer request is generated when the station is idle, and the
SMS timer (SMSTMR) is not 0 and is equal to, or less than, the GMS timer
(GMSTMR). If no other asynchronous requests are pending, the station is
given control at the entry point specified by the ATM, and the SMSTMR is
reset to 0. If other asynchronous requests are pending, the timer request is
canceled, but the SMSTMR value is unchanged. If timer entry processing is
not desired, the SMSTMR value should remain at 0. A program check may
result in SMSTMR is set to a nonzero value when ATM is not specified.
‘label’ may be an external symbol when RELOC=Y is specified in the
APOPT instruction.

Is the Alternate Line Attachment program entry point where ’label’ is a
1-to-8-character name. Processing begins at this point when an
SNA-Primary device presents data or status to an idle station. You must
specify this entry point name if asynchronous entry can occur. An
SNA-Primary/ALA LREAD is normally coded at this entry.

INSNAME

This operand is used only in split application programs. See Appendix F for
further information.

DSECT

Note:

Specifies whether DEFLD instructions expand as DSs or EQUs. (DS and
EQU are System/370 instructions.) If DSECT=Y is specified, DEFLD
instructions expand as DSs within a dsect. For each segment (0 through
15) there is a unique dsect named BQKS$Sx, where x equals one character,
0 through F. In this case, the value field of the cross-reference listing
contains the displacement of the field defined by the DEFLD instruction.
If DSECT=N is specified, DEFLD instructions expand as EQUs and no
dsects are formed. In the latter case, the value field of the cross-reference
listing is meaningless.

The label of an EQUATE instruction cannot be used in the operands for

the BEGIN instruction.

Programming Notes: Asynchronous entry point priorities are as follows:

VAW

CPU message pending
ALA message pending
terminal message pending
station message pending
program interrupt pending
timer interrupt pending.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-29

5-30 4700 Controller Programming Library, Volume 1: General Controller Programming

BRAN conditionally or unconditionally changes the sequence of program
execution. If any bit is set to 1 in the mask that is specified in the instruction and
the corresponding bit is set in the present condition code, then the condition is
satisfied, and the branch is taken. When an unconditional branch or a branch
with the condition satisfied is executed, operation continues with the instruction
referred to by the BRAN instruction. Otherwise, operation continues with the
next sequential instruction.

BRAN--Branch

Name Operation Operand

[label] BRAN [ccmask |X'F',] branch address

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). The ccmask can be in the form of a
mnemonic (see Chapter 4 for a list of the mnemonics representing coded
values), a 1-byte hexadecimal expression, a 4-bit binary expression, or the
label of an EQUATE instruction expressing one of the preceding numeric
values. If the operand is omitted or if X‘F’ is coded then the branch is
always performed. If ccmask is specified as hex 0, the branch is never
taken.

branch address
Is the label of the instruction to be executed if the branch is taken. The
label may be an external symbol when RELOC=Y is specified in the
APOPT instruction.

Condition Codes: The code is not changed.

Program Checks (hex): OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-31

5-32 4700 Controller Programming Library, Volume 1: General Controller Programming

BRANL conditionally or unconditionally changes the sequence of program
execution and stores the location of the next sequential instruction. If any bit in
the mask specified in the instruction is set and the corresponding bit in the present
condition code is set, then the condition is satisfied and the branch is taken.
When an unconditional branch or a branch with the condition satisfied is
executed, the location of the next sequential instruction is:

BRANL--Branch and Link

« placed in the return-address stack in the segment 1 machine section (SMS), if
no register, or register 0 is specified;

or
« placed in the register specified by the BRANL instruction;

and execution continues with the instruction to which the BRANL instruction
refers. Otherwise, execution continues with the next sequential instruction.

Use the BRANR instruction to return to the next sequential instruction from a
BRANL when a register is specified; and the LRETURN instruction to return
otherwise. The number of entries that the station’s return-address stack can hold
may be specified as 0 to 255 (default=6) by coding the RETSTK operand of the
STATION macro. Each BRANL, BRANLR, and LSEEKP instruction that uses
the return-address stack adds one entry, and each LRETURN instruction removes
one entry. It is possible to overflow the stack, which results in program check.

Name Operation Operand

[label] BRANL [ccmask|X'F',] branch address [,regl

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X‘F’ is
coded then the branch is always performed. If ccmask is specified as hex 0,
the branch is never taken.

branch address
Is the label of the instruction to be executed if the branch is taken. The
label may be an external symbol when RELOC=Y is specified in the
APOPT instruction.

reg
Is a register (1-15) in which the location of the next sequential instruction
is to be stored if the branch is taken. The location of the NSI is stored in
the rightmost 2 bytes of the register. The leftmost 4 bytes are set to zeros.
If this operand is omitted or specified as 0, the location is stored in the
return-address stack in segment 1.

Condition Codes: The code is not changed.

Program Checks (hex): 04 or OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-33

5-34 4700 Controller Programming Library, Volume 1: General Controller Programming

BRANLR conditionally or unconditionally changes the sequence of program
execution. If any bit in the mask specified in the instruction and the
corresponding bit in the present condition code is set, the condition is satisfied,
and the branch is taken. When an unconditional branch or a branch with the
condition satisfied is executed, the location of the next sequential instruction is:

BRANLR--Branch and Link Register

o placed in the register (reg2) specified in the BRANLR instruction
e or placed in the return-address stack of segment 1.

If the return register (reg2) is not specified or is specified as 0, the branch is taken
to the instruction whose location is specified by regl. Otherwise, execution
continues with the next sequential instruction.

When the NSI location is placed in the return-address stack, the program should
issue an LRETURN instruction to return control to the NSI. When the NSI
location is stored in a register, the program should issue a BRANR instruction
specifying the return register to return control to the next sequential instruction.

The number of entries that the station’s return-address stack can hold may be
specified as 0 to 255 (default=6) by coding the RETSTK operand of the
STATION macro. Each BRANL, BRANLR, or LSEEKP instruction that uses
the return-address stack adds one entry, and each LRETURN instruction removes
one entry. It is possible to overflow the stack. The overflow results in program
check 04.

Name Operation Operand

[label] BRANLR [ccmask |X'F',] regl [,reqgl]

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X‘F’ is
coded then the branch is always performed. If ccmask is specified as hex 0,
the branch is never taken.

regl
Is a register (0-15) that contains the location of the instruction to be
executed if the branch is taken. The location must be in the rightmost 2
bytes.

reg2

Is a register (1-15) in which the location of the next sequential instruction
is to be stored. The location of the NSI is stored in the rightmost 2 bytes,
and the leftmost 4 bytes of the register are zeroed. If reg2 is not specified
or is specified as 0, the return location is placed in the return-address stack
in segment 1. The same register may be used for both the branch-to and
the return locations.

Condition Codes: The code is not changed.

Program Checks (hex): 04 or OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-35

5-36 4700 Controller Programming Library, Volume 1: General Controller Programming

BRANR--Branch Register

BRANR conditionally or unconditionally changes the sequence of program
execution. If any bit in the mask specified in the instruction and the
corresponding bit in the present condition code is set, the condition is satisfied,
and the branch is taken. When an unconditional branch or a branch with the
condition satisfied is performed, execution continues with the instruction referred
to by the register in the BRANR instruction. Otherwise, execution continues with
the next sequential instruction.

Name Operation Operand

[label] BRANR [ccmask [X'F',]1 reg

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X‘F’ is
coded then the branch is always performed. If the ccmask is specified as
hex 0, the branch is never taken.

reg
Is a register (0-15) that contains the location of the instruction to be
executed if the branch is taken.

Condition Codes: The code is not changed.

Program Checks (hex): OB may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-37

5-38 ° 4700 Controller Programming Library, Volume 1: General Controller Programming

BRANX--Branch on Index

The BRANX instruction specifies a register and a branch address. The register
contains three 2-byte fields:

Bytes Field Range of Values
0,1 Comparand 0to 65 535
2,3 Increment -32768 to 32767
4,5 Index 0 to 65 535

The increment is added to the index and the sum is placed into the index field.
The index field is compared with the comparand field. If the comparison is not
equal, a branch is made to the branch address; on equal comparison, no branching
occurs.

An increment value of zero defaults to minus one.

An overflow during addition is ignored and does not affect the comparison.

Name Operation Operand

[label] BRANX reg,branch address

reg
Is a register (0-15) that contains the comparand, increment, and index.

branch address
Is the label of the instruction to be executed if the updated index field is not
equal to the comparand field. The label may be an external symbol when
RELOC=Y is specified in the APOPT instruction.

Condition Code: The code is not changed.

Program Checks (hex): 0B can be set.

Programming Notes: The following example shows a use of the BRANX

instruction for loop control. Assume a loop is to be executed three times with the
index having successive values of 20, 25, and 30.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-39

Note: Be sure that the sum of theinitial index value plus the repeated additions
of the increment will eventually equal the comparand.

CONST DEFCON H‘35°,H'5’ H20’° 1
MVEXD REG2,CONST 2

LOOP .
. 3
BRANX R02,LOOP 4

1 Defines constants for comparand, increment, and index values.
2 Initializes register 2 for loop control.
3 Loop to be executed.

4 Performs loop function until the index in register 2 equals
the comparand.

5-40 4700 Controller Programming Library, Volume 1: General Controller Programming

CAFLD algebraically compares the value of the data in a register with the value
of the data in a field and sets the condition code to indicate the result. Six bytes
are compared. If the field is less than 6 bytes long, CAFLD compares the field as
if its length were increased to 6 bytes by the propagation of the field’s leftmost
bit.

CAFLD--Compare Arithmetic Field

Name Operation Operand

defcon2
defld2
[label] CAFLD regl, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a register containing the first comparand.

operand 2
Is a field containing the other comparand. The length of the field is from O
to 6 bytes. If O is specified, the register contents are compared to 0.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) S5-41

5-42 4700 Controller Programming Library, Volume 1: General Controller Programming

CAFLDL compares the contents of a register with the contents of a 6-byte field.
If the field is less than 6 bytes, CAFLDL compares the field as if its length is
increased to 6 bytes by propagating zeros. CAFLDL sets a condition code to
indicate the result of the comparison.

CAFLDL--Compare Arithmetic Field Logical

Name Operation Operand

defcon2
defldz2
[label] CAFLDL regl, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a register containing the first comparand.

operand 2
Is a field containing the other comparand. The length of the field is from 0
to 6 bytes. If 0 is specified, the register contents are compared to 0.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-43

5-44 4700 Controller Programming Library, Volume 1: General Controller Programming

CAREG algebraically compares the arithmetic value of the contents of two
registers and sets the condition code to indicate the resulit.

CAREG--Compare Arithmetic Register

Name Operation Operand

[label] CAREG regl,reg?

operand 1
Is a register containing the first comparand.

operand 2
Is a register containing the second comparand.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-45

5-46 4700 Controller Programming Library, Volume 1: General Controller Programming

The CCDI instruction compares the logical value of a field with the immediate
operand and sets the condition code to indicate the result. Either 1 or 2 bytes are
compared.

CCDI--Compare Character Data Immediate

Name Operation Operand

defconl
defldi
[label] CCDI (defrf1) , immdata?2
(regt)
segl,displ

operand 1
Is a field to compare with operand 2.

operand 2
Is 1 or 2 bytes of immediate data. If only 1 byte of immediate data is
specified, CCDI performs a 1-byte comparison. If 2 bytes of immediate
data are specified, CCDI performs a 2-byte comparison.

Condition Code: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-47

5-48 4700 Controller Programming Library, Volume 1: General Controller Programming

CCFLD compares the logical value of a segment-header addressed field with the
logical value of another field, and sets the condition code to indicate the result.
The length of the two fields is assumed to be the same.

CCFLD--Compare Character Field

When performing logical comparisons, fields are compared from left to right and
the comparison ends when a difference is found or the fields are determined to be
equal. The comparison is based on EBCDIC codes of the bytes having the same
relative positions.

Name Operation Operand

defcon2
defladz
[label] CCFLD segl, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a field in the specified segment to compare with operand 2. The field
location is determined by the primary field pointer.

operand 2
Is a field to compare with operand 1. The length of the field is 0 to 15
unless you specify register addressing, which allows a length ranging O to 65
535. If 0, the length of the comparison is determined by the field length
indicator of segl.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal or the length of the field in
segl is 0 and no operation (NOP) occurs.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-49

5-50 4700 Controller Programming Library, Volume 1: General Controller Programming

CCFXD compares the logical values of two fixed fields and sets the condition
code to indicate the result. The length of the two fields is assumed to be the same.

CCFXD--Compare Character Fixed

Name Operation Operand

defconl defcon?2
defldi defld2
[label] CCFXD defrf1) , (defrf2,
(regt) (reg2)
segl,displ seg2,disp2,len?

operand 1
Is a field to be compared with operand 2.

operand 2
Is a field to be compared with the field defined in operand 1. The length of
this field is from O to 65 535; operands greater than 255 bytes long must be
selected using register addressing. The number of bytes to compare is
determined by this field length.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal or the length of field 2 is 0,
and no operation (NOP) occurs.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-51

Programming Notes: For example, when the new balance is received from the
central processor, the application program may compare account numbers to
ensure that the correct data has been received. Below are the instructions that
perform the comparison. ‘

CPACCT DEFLD CPINSEG,0,7 1
OUTACCT DEFLD OUTSEG,2,7 2
CHKRESP CCFXD OUTACCT,CPACCT 3

BRAN NE,DIFRESP 4

1 Defines the account number within the field transmitted from the
central processor.

Defines the account number within the field sent to the central
processor. . ‘

Compares the two account numbers.

Branches to a routine that processes the message if the account numbers
are not equal.

bW N

5-52° 4700 Controller Programming Library, Volume 1: General Controller Programming

CCSEG compares the logical value of two segment-header addressed fields and
sets the condition code to indicate the result. The comparison starts at the
primary field pointer (PFP) in each of the segments. The length of the
comparison is determined by the field length indicator of the second segment. If
segl and seg2 are the same segment, the comparison field of seg! starts at the
secondary field pointer; the secondary field pointer, however, does not change.

CCSEG--Compare Character Segment

Name Operation Operand

[label] CCSEG segl,seg2

operand 1
Is a field in the specified segment to compare with operand 2.

operand 2
Is a field in the specified segment to compare with operand 1. The length
of this field can be 0 to 65 535.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal or the length of the field in
operand 2 is 0, and no operation (NOP) occurs.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01 or 02 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-53

5-54 4700 Controller Programming Library, Volume 1: General Controller Programming

COBLCALL
COBLCALL--Call a COBOL Application Program

This instruction must be used by a 4700 assembler program to call another
application program written in the COBOL programming language. This
instruction creates the parameter list protocol expected by the COBOL program.
COBLCALL sets register 1 to the parameter list, then does an APCALL.
Register 2 is used as a work register. Refer to the 4700 COBOL Programmer’s
Guide for instructions and other requirements.

Name Operation Operand

defldl : defld2
[label] COBLCALL ap, (defrf1) , (defrf2)

(regt) (reg2)

defld3
, (defrf3) §,...
(reg3)

Names the COBOL program being called.

ap

operand 1
Defines the location of a parameter list containing six-byte register
addresses, one for each parameter that is to be passed to the COBOL
program.

operand 2, 3, and so on.
Define the parameters to be passed to the called COBOL program by
COLBCALL. COBLCALL stores a register address for each parameter in
the parameter list defined by operand 1.

Condition Codes: This instruction may modify the condition code, however, any
condition code returned will have no significance.

Program Checks(hex): 01,02, 03,09, 11, and 20 - 29.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-55

5-56 4700 Controller Programmiing Library, Volume 1: General Controller Programming

COMP compresses and compacts an input data stream, based on the information
in a parameter list, and stores the results in a specified segment. See Chapter 3
for a detailed discussion of compression and compaction.

COMP--Compress and Compact

Note: COMP requires the optional P27 module, which may be included via the
P27 operand on the OPTMOD configuration macro.

COMP requires information coded in a parameter list (see COPY DEFCPL)
containing the following fields:

CPLINS
2-byte field containing the segment number of the input area. The input
area contains the data to be processed.

CPLIND
2-byte field containing the displacement into the segment to the input area.

CPLINL
2-byte field containing the length of the input area.

CPLOUS
2-byte field containing the segment number of the output area. At the
completion of COMP, the output area contains the compressed/compacted
data. The segment may not be 14.

CPLOUD
2-byte field containing the displacement into the segment to the output
area.

CPLOUL
2-byte field containing the length of the output area.

CPLPRI
1-byte field specifying the prime compression character (the character that
will be represented by SCB type 10xxxxxx). During compression, any
occurrence of from 3 to 63 repetitions of the prime character is replaced by
one byte containing the compression code (10xxxxxx), where ‘xxxxxx’ is
the count of prime character repetitions.

CPLFLG

1-byte input flag field

Bir Meaning

0 =1 Compaction requested. CPLTBS and CPLTBD must be
initialized to the segment and displacement of a
compaction table (see the COMPTB instruction).

0 =0 Compaction not requested.

1 = Compression requested.

1 = Compression not requested.

2-7 = Reserved.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-57

5-58

Note: Compaction, compression or both functions may be
requested. At least one of the functions must be requested.

CPLTBS
2-byte field containing the segment number of the compaction table
information area. See the COMPTB instruction.

CPLTBD
2-byte field containing the displacement into the segment to the
compaction table information area. The assumed length of the area is 257
bytes.

During operation of the COMP instruction, the controller sets the following
fields in the parameter list:

CPLIND
Contains the displacement to the next input byte. If the input area is
exhausted, CPLIND will point to the byte immediately following the input
area.

CPLINL
Contains the remaining length of the input area. When the input area is
exhausted, CPLINL contains zero.

CPLOUD
Contains the displacement to the next output byte. If the output area is full,
CPLOUD will point to the byte immediately following the output area.

CPLOUL
Contains the remaining length of the output area. When the output area is
full, CPLOUL contains zero.

CPLTST
Contains the completion status for COMP. When the condition code is 01,
CPLTST will be zero. When the condition code is 02, CPLTST will contain
a code that indicates the reason for termination of the COMP instruction.

CPLTOYV (X‘80°): Indicates the output for the next input byte would
extend beyond the output area.

CPLTIL (X‘40’): Indicates that the length of the input area was initialized
to zero.

Name Operation Operand

defld2
[label] coMP defrf2)

(reg2)

seg2,disp2.

4700 Controller Programming Library, Volume 1: General Controller Programming

operand 2
Is a field containing the parameter list (see the COPY DEFCPL instruction
in Appendix B). The length specified is ignored because the parameter list
is defined as a fixed length area. The parameter list must not be in Segment
14.

When using register addressing to locate a parameter list, the parameter list
can be located in a noncurrent segment space. However, if the parameter
list contains the address (segment, displacement) of other storage areas
(that is, input and output areas, tables) the other storage areas are always in
the current segment space.

Note: The prime compression characters for a data stream compressed at
the host or some other point on the network must be passed to the receiving

program using standard SNA protocols.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation
01 OK The instruction was executed successfully.
02 ST COMP was terminated. See CPLTST in the DEFCPL

parameter list.

Program Checks: 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-59

5-60 4700 Controller Programming Library, Volume 1: General Controller Programming

COMPTB
COMPTB--Build Compaction Table

COMPTB dynamically builds a 257-byte compaction table for use by the COMP
instruction. See Chapter 3 and the COMP instruction for a discussion of
compaction.

The COMPTB operands specify the location of the input data to be formatted
into the compaction table, and the area in which the compaction table is to be
built. You select the characters that will appear in the data to be compacted (the
compaction set), and the subset of those characters that will appear most
frequently in pairs in the data stream (the master characters). COMPTB formats
this information into the compaction table for use by COMP.

Note: This instruction requires the P27 module, which may be included via the
P27 operand on the OPTMOD configuration macro.

Coding Input for COMPTB: The COMPTB instruction builds a compaction table,
in the correct format, from information you supply in an input area. The input
area contains:

e The number of master characters

o The master characters, themselves

o The remainder of the compaction set, arranged beginning with those
characters least likely to occur in the data stream to be compacted.

To begin, calculate the number of characters that can appear in the data stream.
Assume a compaction set of 87 possible characters in the data stream. The
following table:

Compaction Master

Set Size Characters
255 1
252 2
247 3
240 4
231 5
220 6
207 7
192 8
175 9
156 10
135 11
112 12
87 13
60 14
31 15
16 16

indicates that 13 master characters are used with an 87-character compaction set.
So, the first byte of the COMPTB input area would be coded as:

MCHLGTH DEFCON X‘OD’ 13 master characters

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-61

The compaction set must contain a number of characters that matches exactly one
of the sizes in the left-hand column (Compaction Set Size). If it does not match,
the compaction set must be expanded to contain the next higher increment.

For master characters, assume that the following 13 characters will occur in the
data stream most regularly in pairs:

adegil‘norstu‘space’
The next portion of the COMPTB input area would be coded as:
MCHARS DEFCON X‘818485878993959699A2A3A440°

the hexadecimal equivalents of the master characters. The remainder of the
COMPTB input area will be the hexadecimal equivalents of the remaining
nonmaster characters in the compaction set:

COMPSET DEFCON X‘4C6E7C828386889192949798A5
A6ATA8A9C1C2C3C4C5C6CT7C8CIY
D1D2D3D4D5SD6D7D8D9E2E3E4ES
E6E7ES8E9FOF 1F2F3F4F5F6FTF8
F94A4B4D4ES05A5B5C5DSE6061
6B6C6D6F7TATBTDTETF’

You may then code the COMPTB instruction referring to the input area and the
output area where the compaction table will be created.

The location of the input area is indicated by the primary field pointer of the
segment specified by operand 1. A length of 17 is assumed when the number of
master characters (M) is 16. A length of 257 minus M x M is assumed when M is
less than 16.

Name Operation Operand

defld2
[label] COMPTB seg1l, (defrf2)

(reg2)

seg2,disp2

operand 1
Is a field containing input data.

operand 2

Is a field that will contain the compaction table. The field must not be in
Segment 14. A length of 257 is assumed.

5-62 4700 Controller Programming Library, Volume 1: General Controller Programming

Condition Codes: One of the following may be set:

Possible
Hex Code Mnemonic

01 OK
04

08

Explanation

Successful execution.

The number of master characters chosen is zero,
or greater than 16.

The same character occurs more than once in the
compaction set.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-63

5-64 4700 Controller Programming Library, Volume 1: General Controller Programming

This instruction compares the zoned decimal data in operands 1 and 2
algebraically; neither operand is altered by the operation. The length of either
operand is from 1 to 63 bytes; operands longer than 15 bytes must be addressed
using register addressing. A shorter operand is padded on the left with decimal
zeros (hex FO) to make it the same length as the longer operand.

COMPZ--Compare Zoned Decimal

Note: This is an optional instruction, and requires that optional module P31 be
specified on the OPTMOD macro.

Name Operation Operand

defconi defcon2
defldl defld2
[label] COMPZ (defrf1) , (defrf2)
(regl) (reg2)
segl,displ,len seg2,disp2,len2

operand 1
Is a field containing the first zoned decimal comparand.

operand 2
Is a field containing the second zoned decimal comparand.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal.

02 LT The first operand is less than the second operand.

03 LE The first operand is less than or equal to the
second operand.

04 GT The first operand is greater than the second
operand.

05 GE The first operand is greater than or equal to the
second operand.

06 NE The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-65

5-66 4700 Controller Programming Library, Volume 1: General Controller Programming

The COPY instruction copies predefined source code into your application
program during the assembly process. It can be used to make system definitions
for: segments 0, 1, 14, and 15; parameter lists; and other source code - part of
your program. System definitions provided by the 4700 are in Appendix B.

| COPY--Copy Source Code

You can also define your own copy files and include them in the subsystem library
of the 4700 Host Support. (See 4700 Host Support User’s Guide, SC31-0020.

Because system definitions are subject to change, you should refer to system
information and parameter lists using the labels provided. Fixed fields that are
defined within system copy files should be referred to individually, for example,
COPY DEFAPB contains:

APBLTH DEFLD 14,2
APBROD DEFLD 14,2

Because the DEFAPB definition can change, you should not code the following
DEFLD and expect it to contain both APBLTH and APBROD:

BOTH DEFLD 14,APBLTH,4

COPY instructions should be included in the data definition section of your
application program.

The fields defined in DEFGMS and DEFSMS are primarily intended to be
read-only by your application program, however, application programs do have
access to these fields. Be careful in modifying any of these fields. Modification
by your application program can affect its own subsequent operation.

For a more detailed description of the fields defined by system copy files, refer to
Appendix B.

Name Operation Operand

COPY copyfilename

copyfilename _
Is the name of the file to be copied.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-67

5-68 4700 Controller Programming Library, Volume 1: General Controller Programming

CRETN--Conditional Return (COBOL)

This instruction transfers control to another location in the program depending on
the content of a two-byte location in storage. If the location contains zero,
execution resumes at the next instruction following CRETN. If the location is
nonzero, the value is used as a displacement from the beginning of the program to
find the point where execution begins; the nonzero location is set to zero by
CRETN.

This instruction has been implemented to facilitate support for COBOL and is not
considered useful for general <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>