
----------- ------- - -----------·-

Publication Number
GC31-2066-1

4700 Finance
Communication System

Controller
Programming Library

Volume 1
General
Controller
Programming

File Number
5370/4300/8100/534-30

Second Edition (January 1984)

This edition applies to Release 3 and previous releases of the 4700 Finance
Communication System and to all subsequent releases and modifications until
otherwise indicated in new editions or Technical Newsletters (TNLs).

Changes occur often to the information herein; before using this publication to
install or operate IBM equipment, consult the latest IBM System/370 Bibliography
of Industry Systems and Application Programs, GC20-0370, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. Address
comments about this manual to IBM Corporation, Information Development,
Department 78C, 1001 W.T. Harris Blvd., Charlotte, NC 28257 USA. IBM may
use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984

Preface

This is Volume 1 of the IBM 4700 Programming Library - one of a set of six
volumes for the 4700 programmer. Figure 0-1 on page v summarizes the topics
covered in the other volumes. All six volumes are available from your IBM
representative or local branch office under a single order number (GBOF-1387).
You will need these volumes if you are developing programs, writing program
extensions, or modifying existing programs in the 4 700 Assembler Language.

This book -- Volume 1: General Controller Programming -- introduces key
programming concepts you need to understand, such as how storage is allocated
and how programs can be invoked. This volume also describes the fundamental
instructions that form the basis of a typical controller application program. The
instructions described in Volume 1 perform basic operations such as adding,
subtracting, defining, comparing, and moving data.

Who Should Read This Book

Anyone doing any 4 700 Assembler programming will need this book because it
contains the instructions that are required in all 4 700 programming.

How This Book Is Organized

What Else To Read

This book begins with some introductory material about the 4 700. It will help you
understand how the 4700 operates from a programming point of view. Following
the introduction we have grouped instructions according to the overall function
they perform, such as data definition and program control, for the purpose of
introducing them to the reader. The instructions themselves are arranged
alphabetically. We have started each instruction description on a separate page,
so that you can reorganize the descriptions in whatever order you later find most
useful.

The first five volumes of 4 700 Programming Library describe the 4 700 Assembler
Language and explain how you use it. The sixth volume explains how you
generate a control program -- CPGEN -- for the controller.

You must generate a control program even if you are not writing your application
program in the 4 700 Assembler Language. If you are not using the 4 700
Assembler Language, you need only the sixth volume. But we recommend you
review the other volumes too. They describe many concepts that will enhance
your understanding of the sixth volume.

The following is a summary of what you'll find in each volume.

Volume 2 -- Disk and Diskette Programming explains how you organize files for
th"C controller disks and diskettes, and how your program gains access to these
files. Both the basic access method and the extended access method are
described.

Preface iii

Volume 3 -· Communication Programming shows how your program can
communicate with a host computer. Two communication protocols are described:
Binary Synchronous Communication (BSC) and Systems Network Architecture
(SNA).

Volume 4 -- Loop and Device Cluster Adapter (DCA) Device Programming explains
how your program controls and exchanges data with the terminals attached to the
controller. Protocols for· both loop-attached terminals and for DCA-attached
terminals are discussed.

Volume 5 -- Cryptographic Programming describes the cryptographic facilities
that are available in the controller and in the 4 704 encrypting Personal
Identification Number (PIN) keypad.

Volume 6 -- Control Program Generation tells you how to define each controller's
resources (application programs, storage, and terminals) and specify how they are
to be related. If you do not wish to generate the control program at the host
computer, Volume 6 tells you how you can generate the control program at the
controller.

The 4700 Assembler Language is the basic programming language of the 4701
Controller. If you are writing programs in a higher-level language (COBOL) or
are using IBM-written programs in your controller, see the publications for those
products. A brief description of these products and their associated publications
appears in the IBM 4700 System Summary, GC31-2016.

iv 4700 Controller Programming Library, Volume 1: General Controller Programming

VOLUME 1: GENERAL CONTROLLER PROGRAMMING (GC31-2066)
• Programming Concepts
• Using the General Programming Instructions
• Coding Rules
• General Programming Instructions (Reference)
• General Machine Instruction Formats
• Parameter List Reference
• Status Codes, Program Check Codes, and Error Messages
• Programming Techniques for 3600 Compatibility

Figure 0-1. 47()0 Controller Programming Library (GBOF-1387)

v

vi 4700 Controller Programming Library, Volume 1: General Controller Programming

Summary of Amendments

GCJl-2066-1 (January, 1984)

This edition reflects the following Release 3 changes:

• The addition of dynamic management of main storage including two new
instructions: SEGALLOC and SEGFREE

• Two instructions - Address List (ADRLST) and Indexed Return (IRETURN)
that provide new return capability following a branch-and-link operation.

Significant changes and additions to this manual are marked with the same change
bars that you see at the left of this summary.

Summary of Amendments vii

viii 4700 Controller Programming Library, Volume 1: General Controller Programming

Contents

Chapter 1. Introductfon 1-1
The Controller 1-2
The 4700 Terminals 1-2
The Network 1-2
Controller Operation 1-3
Programming the 4700 1-3

Application Programs 1-4
Main Storage 1-4
The Logical Work Station 1-5

Chapter 2. Coding Considerations 2-1
Contents and Purpose 2-1
Application Program Organization 2-1

Nonrelocatable Programs 2-2
Relocatable Programs 2-3
Call Programming 2-3
Subroutine Programming 2-4
Overlay Programming 2-4

Nested Overlay Sections 2-5
Shared Overlay Sections 2-5
Nonrelocatable Overlays 2-5
Relocatable Overlays 2-5

Using Copy Files 2-5
Programming Notes 2-6

Referencing Labels Between Sections 2-6
Dummy Sections 2-6

Main Storage 2-7
Managing Storage 2-7

Managing Storage by System Configuration 2-7
Managing Storage by Application Programming 2-8
Storage Management by the Controller 2-11

Initializing Storage 2-12
Allocating Two Sets of Registers 2-12
Shared Storage Control 2-12

Addressing Main Storage 2-13
Segment-Displacement Addressing 2-13
Segment Header Addressing 2-15
Register Addressing 2-16
Modified Register Addressing 2-17
Programming Notes About Segment Headers 2-19

Fixed-Length Fields 2-19
Variable-Length Fields 2-20

Programming Notes About Field Delimiters 2-22
Inserting Delimiters in Fields 2-22
Processing Messages and Fields 2-22

Logical Work Station Dispatching 2-23
Dispatching Modes 2-23
Priority Dispatching 2-23
Entry Point Priority 2-24
Gaining Control 2-24
Releasing Control 2-25

System COPY Files 2-26
Condition and Program Check Codes 2-27
Optional Instructions 2-28
COBOL Considerations 2-29
Use of 3600 Programs 2-29

Chapter 3. 4700 Instruction Categories 3-1
Program Definition Instructions 3-1

Assembly Definition 3-1
Section Definition 3-3

Assembly Control Instructions 3-3
Equates 3-3
COPY Instruction 3-3
Controlling Base Registers during Assembly 3-3

Assembly Listing Control Instructions 3-4

Contents ix

Data Definition Instructions 3-4
Defining Constants 3-4
Defining Delimiters 3-4
Defining Dump Parameters 3-4
Defining Masks and Modulus Factors 3-4
Defining Tables 3-4
Defining Fields 3-5

Data Operation Instructions 3-5
Formatting Input Data 3-5
Moving Data within Controller Storage 3-5
Verifying Data 3-6
Data Translation 3-6
Table Lookup 3-7
Packing and Unpacking Data 3-7

Packing Instructions 3-7
Unpacking Instructions 3-7

Compression and Compaction 3-8
Data Compression 3-8
Data Compaction 3-8
String Control Characters 3-9
Data Decompression 3-10
Data Decompaction 3-10

Arithmetic and Logical Instructions 3-10
Arithmetic Operations 3-10

Binary Operations 3-11
Zoned Decimal Operations 3-11

Comparisons 3-12
Logical Operations 3-12

AND and ANDI 3-13
INOR and INORI 3-13
EXOR and EXORI 3-13

Testing Bits 3-13
Setting and Resetting Bits 3-13
Shifting Data 3-13

Program Control Instructions 3-14
Call Programming Instructions 3-14
Passing Data Between Programs 3-14
Instructions that Release Control 3-14
Branch Instructions 3-14

Branch on Condition Code Instructions 3-14
Branch on Bit Switch Instructions 3-15
Branch on Index Instruction 3-16
Branch and Link Instructions. 3-16

Instructions that Return Control 3-16
The Execute (LEXEC) Instruction 3-17

Storage Management Instructions 3-17
Other 4700 Instructions 3-17

Storage Initialization Instructions 3-17
Scratch-Pad Instruction 3-17
Timer Control Instructions 3-17
The Dump Instruction 3-18

Chapter 4. Coding Rules 4-1
Syn.tax Notation 4-1

Interpreting the Syntax Notation 4-1
Specifying Operands 4-2
Labels and Mnemonics 4-6

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-1
ADDFLD-Add Field 5-3
ADDFLDL-Add Field Logical 5-5
ADDREG-Add Register .5-7
ADDZ-Add Zoned Decimal 5-9
. ADRLST-Return Address List 5-11
AND-AND Field 5-13
ANDI-AND Field Immediate 5-15
APBDUMP-DUMP Segment or File to Diskette S-17
APCALL-Call Assembler Application Program 5-19
APOPT-Application Program Options 5-23

X 4700.Controller Programming Library, Volume l: General Controller Programming

APRETURN--Return to Calling Program 5-25
BEGIN-Assembly Control 5-27
BRAN--Branch 5-31
BRANL-Branch and Link 5-33
BRANLR-Branch and Link Register 5-35
BRANR-Branch Register 5-37
BRANX--Branch on Index 5-39
CAFLD-Compare Arithmetic Field 5-41
CAFLDL-Compare Arithmetic Field Logical 5-43
CAREG-Compare Arithmetic Register 5-45
CCDI--Compare Character Data Immediate 5-47
CCFLD--Compare.Character Field 5-49
CCFXD-Compare Character Fixed 5-51
CCSEG--Compare Character Segment 5-53
COBLCALL-Call a COBOL Application Program 5-55
COMP--Compress and Compact 5-57
COMPTB-Build Compaction Table 5-61
COMPZ-Compare Zoned Decimal 5-65
COPY-Copy Source Code 5-67
CRETN-Conditional Return (COBOL) 5-69
DECOMP-Decompress and Decompact 5-71
DECOMPTB--Build a Decompaction Table 5-75
DEFCON-Define Constant 5-77
DEFDEL--Define Delimiters 5-79
DEFDMP--Define APBDUMP Buffer 5-83
DEFLD-Define Field 5-85
DEFRF--Define a Modified Register Address Field 5-89
DEFSTOR-Define Segment Storage 5-93
DIVFLD-Divide Field 5-95
DIVFLDL-Divide Field Logical 5-97
DIVREG--Divide Register 5-99
DIVZ--Divide Zoned Decimal 5-101
DTACCESS-Data Access 5-103
DTAFREE-Data Free 5-105
EDIT-Edit Monetary Field 5-107
ENDINIT-End Initialization Section 5-111
ENDOVL Y-End of Overlay Section 5-113
ENDSEG-End Application Program Section 5-115
EQUATE-Equate a Label to a Value 5-117
ERRLOG-Obtain Statistical Counters 5-119
EXOR--Exclusive OR 5-123
EXORI--Exclusive OR Immediate 5-125
EXPS-Exchange Primary and Secondary Field Pointers 5-127
FCLENTER--Define COBOL Entry Linkage 5-129
FCLEXIT-Define COBOL Exit Linkage 5-131
FINDAP-Find Application Program 5-133
FINISH--End the Application Program 5-137
INITSEG-Initialize Segments 5-139
INOR--Inclusive OR 5-141
INORI-Inclusive or Immediate 5-143
INTMR--Interval Timer 5-145
!RETURN-Indexed Conditional Return 5-151
JUMP-Short Branch 5-153
LCHAP-Change Priority 5-155
LCHECK--Check Status of Station-to-Station Write 5-157
LCONVERT--Convert Binary/Character 5-159
LDDI-Load Data Immediate 5-161
LDFLD-Load Field 5-163
LDFLDC-Load Field Character 5-165
LDFLDL--Load Field Logical 5-167
LDFP-Load Primary Field Pointer 5-169
LDLN--Load Field Length Indicator 5-171
LDRA-Load Register Address 5-173
LDREG-Load Register 5-175
LDSECT--DSECT Definition (BEGIN) 5-177
LDSEG-Load Segment 5-179
LDSEGC-Load Segment Character 5-181
LDSEGLN-Load Segment Length 5-183
LDSFP-Load Secondary Field Pointer 5-185
LEJECT--Eject to a New Page 5-187

Contents xi

LEND-DSECT Definition (End) 5-189
LEXEC-Execute 5-191
LEXIT--End of Processing 5-193
LHRT-Load High-Resolution Counter 5-195
LIFOFF-If Off Then Branch 5-197
LIFON-If On Then Branch 5-199
LLOAD-Load an Overlay Section into Main Storage 5-201
LMERGE-Merge Blocks of Records 5-205
Ln-Level Definition for DSECTS 5-213
LPOST-Post Work Station 5-215
LREAD-Read Station-to-Station Message 5-217
LRETURN-Return after a Branch-and-Link 5-219
LSEEK-Seek (Table Lookup) 5-221
LSEEKP-Extended Seek 5-225
LSEEKPL-Extended LSEEK Parameter List 5-229
LSETOFF-Set Off 5-233
LSETON-Set On 5-235
LSORT-Sort a Block of Records 5-237
LSPACE-Space a Line of Output 5-241
LTIME-Time (Fixed Format) 5-243
LTIMET-Time Table 5-247
LTIMEV-Time (Variable Format) 5-249
LTRT-Translate Input Data 5-253
LTRTBEG--Translate Table Begin 5-265
LTRTENT-Translate Table Entry 5-267
LTRTGEN-Translate Table Configuration 5-269
LWAIT-Wait 5-271
LWRITE-WRITE Station-to-Station Message 5-273
MASK-Mask (For EDIT Instruction) 5-275
MOD-Modulus Factor (For MODCHK Instruction) 5-277
MODCHK-Modulus Check 5-279
MPYFLD-Multiply Field 5-281
MPYFLDL--Multiply Field Logical 5-283
MPYREG-Multiply Register 5~285
MPYZ-Multiply Zoned Decimal 5-287
MVCZ-Move and Convert Zoned Decimal 5-289
MVDI-Move Data Immediate 5-291
MVFLD-Move Field 5-293
MVFLDR-Move Field Reverse 5-295
MVFXD-Move Fixed 5-297
MVFXDR-Move Fixed Reverse 5-299
MVSEG-Move Segment 5-301
MVSEGR-Move Segment Reverse 5-303
OVL YSEC-Define Load Address and Entry Point 5-305
P AKFLD-Pack Field 5-307
P AKSEG-Pack Segment 5-309
PA USE-Suspend Processing 5-311
PLPCMD-Post-List Processor Commands 5-313
PRINTI-Print Macro Expansion 5-315
REBASE-Restore the Base Register for a DSECT 5-317
SA VEBASE-Save the Base Register for a DSECT 5-319
SCALE-Scale Number 5-321
SCRP AD--Scratch Pad 5-327
SECTION-Section Control 5-339
SEGALLOC--Segment Allocate 5-341
SEGCODE-Application Program Section Identifier 5-343
SEGCOPY-Segment Copy 5-345
SEGFREE-Segment Free 5-349
SELECT-Select Segment 0 5-351
SETFLDl-Set Field Immediate 5-353
SETFPL-Set Primary Field Pointer and Field Length Indicator 5-355
SETSFP-Set Secondary Field Pointer 5-361
SHIFTL-Shift-Left Data in a Register 5-365
SHIFTR-Shift-Right Data in a Register 5-367
SINIT-Start Initialization Section 5-369
STATS-Obtain or Reset Extended Statistical Counters 5-371
STFLD-Store Field 5-379
STFLDC-Store Field Character 5-381
STOVLY-Start Overlay 5-383
STSEG-Store Segment 5-385

xii 47~ Controller ProgrammingLibrary, Volume 1: General Controller Programming

STSEGC--Store Segment Character 5-387
SUBFLD--Subtract Field 5-389
SUBFLDL-Subtract Field Logical 5-391
SUBREG-Subtract Register 5-393
SUBZ-Subtract Zoned Decimal 5-395
TABLE-Define Table for LSEEK/LSEEKP 5-397
TSTMSK-Test under Mask 5-399
TSTMSKI-Test under Mask Immediate 5-401
UPKFLD-Unpack Field 5-403
UPKSEG-Unpack Segment 5-405
USEBASE-Use a Base Register for a DSECT 5-407
VERIFY-Verify 5-409
VIEW-VIEW APCALL/ APRETURN Stack 5-411

Appendix A. Machine Instruction Formats A-1

Appendix B. COPY Files B-1
DEFAPB B-3

Segment 14 Fields B-3
DEFCPL B-5
DEFDCP B-5
DEFELP B-6
DEFESP B-6
DEFFAP B-7
DEFGMS B-7

Segment 15 Fields B-10
DEFINT B-13
DEFMER B-14
DEFREG B-14
DEFRGS B-15
DEFSCA B-15
DEFSCP B-15
DEFSEG B-16
DEFSKP B-17
DEFSMS B-18

Segment 1 Fields B-21
DEFSOR B-26
DEFTRP B-26
DEFTRT B-27
DEFTSX B-27
DEFVUE B-28

Appendix C. Assembler Error Messages C-1

Appendix D. Program Check Codes D•l

Appendix E. Status Codes E-1

Appendix F. Functions Retained for 3600 Compatibility F-1
Split Programs F-1

APOPT Instruction: SPLIT Operand F-1
BEGIN Instruction F-1

APBNM Operand F-1
INSNAME Operand F-1

DEFCON Instruction F-1
LEXEC Instruction F-1
LLOAD Instruction F-2
LSEEK Instruction F-2
LSEEKP Instruction F-2
LSEEKPL Instruction F-2

NOINST F-2
INST F-2

OVL YSEC Instruction F-3
inst-org/const-org Operand F-3

SECTION Instruction F-3
SEGCODE Instruction F-3
SEGCOPY Parameter List F-3
STOVL Y Instruction F-4

Contents xiii

TABLE Instruction F-4
Segment Indexing F-4
Indexing Affects on Instructions F-9

BRANX Instruction F-9
LORA Instruction F-9
MVDl Instruction F-9
MVFXD Instruction F-9

SETX-Enable/Disable Segment Indexing F-10
SETXREG-Set Index Register Number F-13
TESTX-Test for Active Indexing F-15

Appendix G. Program Communication with the System Monitor G-1
Application Program Debugging G-1
Programmable Input Facility G-1

Monitor Restrictions under Programmable Input Control G-2

Bibliography X-1

Index X-3

xiv 4700 Controller Programming Library, Volume 1: General Cont.roller Programming

Figures

0-1. 4700 Controller Programming Library (GBOF-1387) v
1-1. The 4700 Finance Communication System 1-1
5-1. Format of Statistical Counters Returned by ERRLOG 5-120
5-2. Physical Device Address Used by ERRLOG 5-121
5-3. Set Field Pointer Instructions Summary 5-359
5-4. Set Field Pointer Instructions Summary 5-364
5-5. Format 1 Request and Information Returned by STATS 5-373
5-6. Format 2 Request and Information Returned by STATS 5-374
E-1. Status Codes E-2
E-2. Status C~des E-4

Figures xv

xvi 47()() Controller Programming Library, Volume 1: General Controller Programming

Chapter 1. Introduction

The IBM 4 700 Finance Communication System is a family of telecommunication
products designed for financial institutions and their branches. A. typical 4 700
system is made up of devices and programs that allow processing to be distributed
through the network rather than concentrated at the central site. Message
processing and terminal control at a finance communication controller enable the
central site to provide support for larger and more complex networlpi, because less
central-site processing is required for each terminal. The processing capabilities of
the controller also enable branch operations to continue during failures at the
central site or in the communication network. Figure 1-1 shows a sample 4 700
system.

Holt Proc1aor

OS VS or DOS VSE

TCAM

Application
Program VSAM

VTAM

3704or3705
Communication
Controller or
Mui ti-Use

Attachment Loop

3)'04 or 3705
Communication
Controller or
Multi-Use
Attachment Loop

Finance
Communication
System

, _____, Finance

•

Finance
Communication
System

Communication
System

3614/24 Comum•
Tra11111C1ion
Facility

r .;;;-.. bays~em----- -~----, _____ ___ -. Direct

Terminal

4701 Finance
Communication Controlls

Application
Program

3814/24

Termi1111I

Attach

3292
3278
3289

L - - - --- - - - - - - __ J
Figure 1-1. The 4700 Finance Communication System

Chapter 1. Introduction 1-1

The Coutn>ller

The 4700 Terminals

The Netw()rk

The IBM 4701 Controller is a programmable controller that uses application
programs, provided by the using institution, to control terminals, process data, and
transfer data to the central site. Terminals. are attached to the controller either
directly, or by a local or remote foop. The controller may be connected to a host
processor by several means that are described in Volume 3: Communication
Programming.

The terminals that attach to the controller of a 4700 system are a keyboard
display, financial services terminals, document and passbook printers, a consumer
transaction facility, and sevetal termin,als and line printers. Most of the terminals
are available in more than one model, providing choices in display size, keyboard
size and arrangement, and character sets and printing speeds.

These terminals and a terminal attachment unit that provide telecommunications
line connection facilities for 4700 terminals are discussed in Volume 4.

The 4700 terminals are:

IBM 4 704 Display
IBM 4 710 Receipt/Validation Printer
IBM 4720 Forms/Passbook Printer
IBM 3604 Display
IBM 3606 Financial Services Terminal
IBM 3608 Printing Financial Services Tertninal
IBM 3610 Document Printer
IBM 3611 Passbook Printer
IBM 3612 Passbook and Document Printer
IBM 3614 and 3624 Consumer Transaction Facilities
IBM 3615 Administrative Terminal Printer
IBM 3616 Passbook and Document Printer
IBM 3262 Line Printer
IBM 3278 Display
IBM 3279 Display
IBM 3287 Printer

The IBM 3603. Terminal Attachment Unit provides telecommunication line
connection facilities for the Financial Services Terminals and other devices. With
customer-provided data access arrangements, the 3603 provides manual dial
backup capability (over a switched network) to enable you to restore
communications if the normal telecommunication line fails. The ~603 is. designed
for unattended operation and has no impact on programming support.

The 4700 controller attaches to the host system either directly or on dedicated
(leased) or switched lines. You can use: Binary Synchronous Control (BSC3);
Systems Network Architecture I Synchronous Data Link Control (SNA/SDLC);
CCITT Recommendation X.21; or the 4331 Multiuse Communication Loop
protocol. Depending on which protocill is used, the type of link can be either
point-to-point or multipoint full.:.duplex.

You will find additional information on this subject in Volume 3: Communication
Programming.

1·2 47QO CQntroller Programming Library, Volume·1: General Controller Programming

Controller Operation

Programming the 4700

You can operate the controller independently of the central processor. You start
the controller by a load operation that, along with many other operations, is
carried out at the controller using a facility called the system monitor. The system
monitor is used by the control operator, who, depending on the circumstances, may
be one of the branch personnel, an application programmer, or a customer
engineer. Information about using the system monitor is in the IBM 4700
Finance Communication System: Subsystem Operating Procedures.

You load the controller from a diskette, either the one provided by IBM, ref erred
to as the installation diskette, or one you created, referred to as the operating
diskette. The primary function of the installation diskette is to allow you to create
an operating diskette. An operating diskette contains application programs and
information to tailor the controller to your needs.

Two configuration procedures are available. One is performed on a host system
using the IBM 4700 Host Support (Licensed Program 5668-989) and the other,
called the Local Configuration Facility (LCF), runs in the controller.

You must describe your 4 700 system using one of the controller configuration
procedures. These specifications include information such as: a description of the
physical controller, its communication links, and its terminals; and a description of
the programming environment to be used.

With the information specified in the configuration procedure as a reference, you
can use a 4700 programming language to write an application program. 4700
programming languages consist of symbolic instructions and statements that
define data and that become machine instructions.

You can combine configuration data and application programs in a host system
and transmit them to the controller to create operating. diskettes. You can
combine application programs from a disk with configuration data from a diskette
to create an operating diskette. You can also transmit controller application
programs, without the configuration data, to a controller to replace the current
program set on a disk or diskette.

You can also create operating diskettes at the controller by combining
LCF-generated configuration data with assembled application programs.

You can copy application programs from disks and diskettes to disks and
diskettes.

The IBM 4700 Finance Communication System is programmable in ways that are
similar to other computing systems. It can be programmed in it's own assembler
language, or in COBOL (COmmon Business Oriented Language) a popular
programming language for business data processing.

The succeeding sections of this chapter describe, in general terms, 4700
application programs; main storage and how it can be used by application
programs; and the concept of a 4 700. Logical Work Station.

Chapter 1. Introduction 1-3

Application Programs

Main Storage

You may choose to write your own application program or to select from those
that are available from IBM. If you choose to write your own application program
it may be subdivided and be written in a combination of the two languages
mentioned above, that is, part of the program coded in 4700 assembler language
and part of it coded in COBOL. You may also separate the program into pieces
so that more than one programmer can be assigned or so that sections can be
coded at different times. In fact, the organization of the 4 700 Programming
Library reflects this ability by separating disk and diskette programming from host
communication programming and from terminal programming.

In the IBM 4 700 Finance Communication System an application program is
assigned an amount of main storage and some of the controller's terminals. This
combination of an application program, main storage, and terminals, is called a
Logical Work Station. One application program can service more than one logical
work station, each work station having it's own terminals and it's own storage.

The logical work station, application programs, and controller main storage will be
described in more detail in later sections and chapters.

4700 controller main storage will, in general, be used in the following ways: some
of it will be used by system functions; some for tables that define the system
configuration, and some will be assigned to logical work stations. The amounts of
main storage required for each one of these will depend on factors such as; the
functions the system is to perform, the numbers and types of terminals, the sizes
of application programs, and the amounts of data to be processed. All of these
factors will be described in this, and in other volumes of the 4700 Programming
Library.

Our primary interest, in this book, is in storage allocated to a logical work station
because it is directly related to writing an application program.

The 4 700 allocates main storage from storage pools. Storage pools are collections
of areas of storage that can be assigned to logical work stations upon request.
There are two different types of storage pools in the 4 700: pools that are shared
by all logical work stations and pools that are owned by one logical work station
or shared by a selected group of logical work stations. Chapters 2, 3, and 5
contain more information about main storage pools.

Main storage can be used as private or as shared storage after it has been assigned
to a work station.

• Private storage is available only to a single logical work station. This assures
that information concerning a transaction being processed by a logical work
station will not be affected by transactions being processed by other logical
work stations. It also assures that one logical work station will not have
access to data it does not need.

1-4 4700 Controller Programming Library, Volume 1: General Controller Programming

The Logical Work Station

• Shared storage is available to some or all logical work stations. You might use
shared storage to transfer an account deposit from a teller logical work station
to an account-posting logical work station, or to provide space for information
such as a list of overdrawn checking accounts.

Logical work station storage is divided into units called segments. Each logical .
work station has one segment that contains registers. Another segment contains
groups of data fields that provide communication between the controller and
logical work stations. The remaining segments are used for data buffers and work
areas.

Storage segments are numbered 0 through 15. Segments numbered 0 through 12
are the private storage segments that can be allocated to each logical work station.
Segment 13 can be private or shared; Segment 14 always contains an application
program; and Segment 15 can be shared among all logical work stations. There
can be only one Segment 15 in a system configuration. All of these concepts of
4700 main storage will be further described later.

The 4700 performs work for a conceptual unit called a logical work station. A
logical work station is, as we saw earlier, main storage, one or more terminals, and
a controller application program. As many as 60 logical work stations can exist in
a controller (depending on installation requirements.and available storage). All
logical work stations have access to disk and diskette drives, to communication
links, and to terminals.

The controller allocates processing time to, or dispatches, each logical work station
in several ways that will be described in this book. When an application program
is running on behalf of a logical work station, it can perform various tasks for the
financial institution. For example, a commercial bank can have four logical work
stations for savings and demand deposit, two for loans, and two for account
inquiry. To keep the transaction data separated, each logical work station is given
a separate portion of storage. An application program can be shared by more
than one logical work station.

Therefore, one could write three application programs: one for savings and
demand deposit, one for loans, and one for account inquiry.

The remainder of this manual provides the information needed to design and code
a 4 700 assembler application program.

The earlier chapters discuss programming considerations such as: selecting a
program structure; calling other programs from your program; and designing your
program to be called by other programs. They also describe the actual program
functions and instructions by_ categories such· as data operations, arithmetic and
logical operations, and program control.

The later chapters describe the coding and syntax rules, and the 4 700 general
controller instructions in detail. Topics such as program checks, status codes, and
error messages are in appendixes at the back of this manual.

Chapter Llntrod~ction 1-5

1-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 2. Coding Considerations

Contents and Purpose

This chapter contains information about the major concepts of 4 700
programming:

several different ways in which you can organize your program

• getting storage and using it

• addressing data

• getting control of the controller.

The purpose of this chapter is to introduce these concepts to you and to help you
begin to know: how the system is designed; what it can do for you; and what you
can do with it.

Application Program Organization

The IBM 4 700 Finance Communication System provides several ways to organize
application programs allowing you to place functions or tasks in different parts of
the program; to assign these parts to several programmers; or to implement the
parts at different times.

The ways in which you can organize a 4 700 application program are:

• Nonrelocatable Programs - programs that have only one part; that is, they are
completely contained in one assembly.

• Relocatable Programs - programs made up of sections that can be assembled
separately and are link-edited together.

• Call Programming - writing complete programs that are assembled separately
and that invoke, that is 'call' other programs or are 'called' by other programs.

• Subroutine Programming - writing routines to which the main program can
branch.

• Overlay Programming - writing program sections that can be loaded when
required.

• Copy Files - sets of instructions that can be assembled into programs or
sections.

A non-relocatable program is one assembly containing an entire program. It is the
least difficult to understand and use but it also offers the least flexibility. Any
change to the program, during development or later, requires that the entire
program be reassembled.

A relocatable application program is coded in sections that will be link-edited
together by the Host Support. The sections can either be assembled together or
assembled separately.

Chapter 2. Coding Considerations 2-1

Nonrelocatable Programs

Call programming allows you to divide work into distinct tasks and to write a
separate program for each task. To use this facility you must have a primary
application program that calls secondary application programs. The primary
application program must be associated with a logical work station in the
configuration specifications. Programs to be called may be resident in main
storage or they may be transient, that is; they are on a disk or diskette.

Subroutine programming is a well known technique for coding program functions
that are required more than once. For example, you might write a subroutine to
handle all disk and diskette operations.

Overlay programming is generally used when available storage is insufficient for
an application. In this situation you can use one area of storage for multiple parts
of the program when the functions to be performed are somewhat independent of
each other. For example, one overlay could receive data from an automated teller
terminal; leave it in an area of storage; and a second overlay could send the data
to a host system.

Copy files are useful in reproducing sets of instructions in more than one
assembly. For example, when 2 programmers are coding related programs and
both programs need access to a common data area that can be defined by one set
of data definition instructions. The data definition instructions can be created
once and then 'copied' into the appropriate assemblies.

Each controller application program includes:

• A BEGIN instruction, which defines the beginning of the application root and
builds an application program header that is used by the linkage editor.

• A FINISH instruction that defines the end of the application root.

The BEGIN instruction is usually followed by equates, constants, and data field
instructions. These are grouped together to make them easier to find.
Instructions that become data must be placed so that they do not interfere with
executable machine instructions.

Each application program section, other than the root, must begin and end with a
SEGCODE-ENDSEG or an OVL YSEC-ENDOVL Y pair.

The simplest form of a 4 700 application program is one in which the entire
program is contained in one assembly. These are usually called 'non-relocatable'
programs because there are no parts to arrange before they are loaded into
storage. Nonrelocatable programs are preceded by an APOPT instruction that
either omits the RELOC operand or specifies RELOC=N. The following shows
how a non-relocatable application program can be organized.

APOPT RELOC=N
BEGIN

Data Definition and Machine Instructions
FINISH
END

2-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Relocatable Programs

Call Programming

A relocatable application program is coded in sections that will be linkage edited
together by the Host Support. 'Relocatable' means that program sections will be
placed in order by the linkage editor and that references to data and instructions
between sections will be resolved. The application program module being
assembled must begin with an APOPT instruction that specifies RELOC= Y.

Each relocatable application program must include a root section, and may
include other sections. You must use the following instructions to define
application program sections.

• A BEGIN instruction, to name a root section.

• A FINISH instruction, to define the end of a root section.

A SEGCODE instruction, to name a section and identify the beginning of a
section.

• An ENDSEG instruction, to define the end of a section.

• An OVL YSEC instruction, to name a section and identify it as an overlay
section.

• An ENDOVL Y instruction, to define the end of an overlay section.

Instructions that appear between BEGIN-FINISH, OVL YSEC-ENDOVL Y, and
SEGCODE-ENDSEG instruction pairs are recognized by the Host Support. If an
assembly is attempted where instructions appear outside an application section,
Host Support will not process the assembly.

The following shows how a relocatable program can be organized.

*

APOPT RELOC=Y
BEGIN

FINISH
END

Instructions

APOPT RELOC=Y
SEGCODE

BNDSEG
END

Instructions

The term 'call' programming simply means that application programs can invoke
other application programs. This allows you to assign tasks to small, independent,
but interconnected programs. When running in the controller, each program can
have its own allocated segment storage, can share segment storage, or both.

As we saw earlier, programs can be written in either of the 2 available languages
(Assembler and COBOL). You'll find the instructions that you can use in later
chapters. Assembler programs can invoke other assembler programs using the

Chapter 2. Coding Considerations 2-3

Subroutine Programming

Overlay Programming

APCALL instruction, or they can use the COBLCALL instruction to call
COBOL programs. COBOL programs can also invoke Assembler programs.

The first program that operates on behalf of a logical work station is the primary
application program; any program invoked by that program or by any other
program is termed a called, or a secondary application program. Later we will also
use the term 'current' application which means the program that is in control of
the logical work station.

Application programs may be 'resident', that is, they are in main storage; or they
may be 'transient' which means that they are on a disk or diskette.

For example: you might write four programs: one program to handle overall
branch office operations; one program to take care of real-time customer activity;
one to send account transaction data to a host computer at your home office; and
one to save account transactions on a disk. The overall branch office program
might:

determine that a teller has a customer deposit and 'call' the customer activity
program;

determine that the host link is currently not available;

'call' the disk program to save the transaction data so that it can be sent to the
host at a later time.

You can write subroutines to perform discrete functions rather than repeating
sequences of instructions in your program. The 4 700 has branch-and-link
facilities that allow you to pass control to a subroutine. You can also return
control to the point at which your program invoked the subroutine. The
instructions that you can use are BRANL (Branch and Link); BRANLR (Branch
and Link Register); and LRETURN.

You must code a root section of an overlay program that remains in main storage
at all times. One of its functions must be to cause the non-resident sections to be
brought from disk or diskette into main storage as they are needed.

If the application is written in overlays, the overlay sections themselves may be
subdivided into sections. The overlay sections and subsections may be assembled
separately, together, or in some combination. with a root section.

YOU Will find the instructions you can USe to write overlay programs among the
detailed descriptions later in this book. Specifically, they are: Define an Overlay
Section (OVL YSEC); Start an Overlay (STOVL Y); End an Overlay
(ENDOVLY); and Load an Overlay Section (LLOAD).

2-4 4700 Controller Programming Library, Volume 1: General Controller Programming

Nested Overlay Sections

Shared Overlay Sections

Nonrelocatable Overlays

Relocatable Overlays

Using Copy Files

The instructions used for overlay programming are:

• LLOAD, which loads the specified application overlay and is in the calling
routine.

• STOVL Y, which identifies the load point (origin address) of the specified
application overlay.

• OVL YSEC, which defines the beginning of the application overlay and may
define the entry point of the overlay. It is the first instruction in the overlay
section.

• ENDOVL Y, which defines the end of the overlay section.

If the application overlay is assembled as relocatable, the following instructions
may also be used:

• SEGCODE, which defines the beginning of a section that may be added to
the overlay section to form a complete application overlay.

• ENDSEG, which defines the end of a SEGCODE section.

If the controller application program includes application overlays, the first
section in each application overlay must begin with an OVL YSEC instruction and
end with an ENDOL VY instruction. The remaining sections in the application
overlay are those defined by the SEGCODE/ENDSEG instruction pairs. The
link-edit function of the Host Support Program resolves all addresses so that the
completed application overlay begins at the address of the overlay load point (the
STOVL Y instruction) and is addressed consecutively.

The controller application program may be organized so that nested application
overlays are used; that is, one overlay can load another overlay.

Your program must handle application overlay areas so that one logical work
station does not lpad an overlay into an overlay area being used by another logical
work station.

Nonrelocatable application overlays are assembled with the application program
root but can be loaded individually.

Relocatable application overlays are similar to nonrelocatable overlays except that
they can be assembled separately.

Copy files are purely a program assembly facility. You must define a copy file
and add it to your macro library in the host system before it can be used by the
assembler. When the assembler encounters a COPY instruction it simply inserts
all of the contents of the copy file at the point where it found the COPY
instruction.

Chapter 2. Coding Considerations 2-5

Programming Notes

Here are several things that you should know about writing application programs
that have not been described previously.

Referencing Labels Between Sections

Dummy Sections

Application program sections can refer to labels outside themselves without being
assembled together, by using EXTRN statements. If you need to refer to a label
that is not defined in this section, you must identify it as an external label with an
EXTRN instruction. Another application program section must define the label
and identify it with an ENTRY instruction. If these sections are assembled
together ENTRY and EXTRN will have no effect; however, you should use these
instructions so that you will have the flexibility of being able to assemble the
sections separately. ENTRY and EXTRN instructions may appear anywhere
within the appropriate application program sections.

4 700 Assembler Language provides two ways in which you can code a program
section that refers to (or uses) data in an area of storage defined in some other
section. One way is by a SECTION DUMMY instruction and the other is by an
LDSECT (Dummy Section) function. Although they are similar, the LDSECT
function offers more flexibility and is the basis for some of the data addressing
functions.

Using the SECTION DUMMY instruction, you can refer to, for example,
constants that have been defined in the root section of the program. This may
sound like the EXTRN and ENTRY description but it differs in that SECTION
DUMMY allows you to refer to an entire data area having many labels, not just a
few labels in another section.

By using the DEFRF and/ or LDSECT instructions you can refer to data areas
defined by other sections and other programs. You can dynamically change the
reference to the data while the program is running and not be required to recode
or reassemble any of the program. This capability will be described in detail later
in this chapter.

2-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Main Storage

Managing Storage

The following sections describe three ways that you can manage storage in the
4700:

• Describe main storage usage in your configuration specifications.
• Allow application programs to manage main storage usage dynamically.
• Use a combination of the above.

In the following sections, we discuss managing storage in terms of "defining" and
"allocating" storage. "Defining" storage means that you describe an area of
storage that a work station or your program may need. "Allocating" storage
means that the 4700 assigns an area of storage to an application program or a
logical work station.

The term "segment" simply means an area of main storage that is used for specific
purposes. Later in this book, we'll talk more about the number of segments that
can be used by each work station. For now, we'll use the number 16, 13 private
segments and three that can be shared. The purpose of each segment is shown
below.

Segment 0

Segment 1

Segments 2 - 12

Segment 13

Segment 14

Segment 15

contains the six-byte registers used by your application
program for arithmetic and logical operations. As shown
later in this chapter, the program can also use these registers
for addressing.

is the SMS (System Machine Segment), an area of storage
that the system uses for communication with logical work
stations.

are data storage areas assigned to each work station for
holding input data, work areas, and output data.

is a data storage area that can be shared with other primary
and secondary application programs.

is the read-only storage area holding the application program.
It includes constants, machine instructions, and tables.
Segment 14 can be a shared segment in the sense that the
application program can service more than one logical work
station.

is the Global Machine Segment (GMS) shared by all
application programs.

Managing Storage by System Configuration

Your installation can choose to define and allocate main storage exclusively
within the Control Program Generation specifications. Main storage management
that is accomplished this way can be called "static", meaning that storage usage
can be changed only by modifying and reprocessing your CPGEN.

Chapter 2. Coding Considerations 2-7

The system configuration process automatically defines and allocates:

• sixteen 6-byte registers (the first 96 bytes of Segment O)
• a System Machine Segment for each logical work station (Segment 1)
• Segment 14 for each application program
• a Global Machine Segment.

System configuration can also determine the size of the storage pools that will be
in effect during system operation.

An important point to remember is that your installation can take a rigid approach
to storage management by defining storage usage only within system
configuration specifications. If your installation decides to do so, then you may
not need to be concerned with storage management at all within your program.
Remember, however, the 4700 allows:

• calling independent programs
• running more than one program on behalf of a work station.

If any programs in your controller do these things, you must have some
understanding of storage management.

Managing Storage by Application Programming

The 4 700 also provides a dynamic way to allocate storage. This storage
management function is provided when you include a TRANPL macro in your
configuration specifications.

All storage remaining - after requirements for microcode, system configuration
data, and resident application programs are satisfied - is available for allocation.
When your application program issues an instruction that requires storage, it is
allocated from the available space. Storage is returned to the available space
when your application program issues the appropriate instruction. The
instructions that allocate space are APCALL (Call an Application Program),
DTACCESS (Data Access), and SEGALLOC (Segment Allocate). The
instructions that release space are APRETURN (Return to Calling Program),
DTAFREE (Data Free), and SEGFREE (Segment Free).

Storage Refreshability: The 4700 provides for both non-refreshable (read/write)
and refreshable (read-only) programs. You specify which by the Application
Program Options (APOPT) instruction. Both kinds of programs can contain
executable or non-executable instructions.

2-8 4700 Controller Programming Library, Volume 1: General Controller Programming

Refreshable means that the program cannot be dynamically modified; that it is
not an overlay or does not use overlays; and that the 4 700 can reuse the storage it
occupies and reload the program. If you identify a program as refreshable, the
4 700 will not allow it to be modified.

Non-refreshable means that the program can be dynamically modified and that it
will remain in main storage until released.

Refreshable programs must be transient and can only exist in the SYSAP data set.
These programs will be loaded by the 4 700 when another program issues an
APCALL or DTACCESS instruction. If your program accesses a non-refreshable
program by means of DTACCESS, the 4700 will load that program into a data
storage segment; that is, a segment in the range of 2 through 12. Your program
can address the program that is loaded only by the register address returned by
the DTACCESS instruction.

Storage Management by the 4700: When a request for storage is made, the 4 700
will attempt to allocate the space from a storage pool in a series of steps:

1. Search for an available block of storage that can satisfy the request.

2. Move segments currently in use in an attempt to consolidate the available
space.

3. Steal the space currently being used by a refreshable area and use this space to
satisfy the current request for storage.

If a refreshable area is stolen by storage management it will be automatically
reloaded when it is referenced again. This reloading may cause degradation in
application program or system performance. Only areas containing programs that
are transient and refreshable can be stolen by the system.

To activate the 4700 to perform steal and refresh operations, you must specify a
RFSH= Y operand on one of the TRANPL macros in your system configuration.
See the 4700 Programming Library Volume 6: Control Program Generation for
further information.

Storage Pools: The 4700 system allows you to define multiple storage pools to
tailor the available storage to your specific needs. There are three types of storage
pools: station pools, the general pool, and segment-class pools. There can be one
station pool for each station or multiple stations can share a single station pool.
There is only one general pool. Up to 15 segment-class storage pools can be
defined.

Station Pools: Station-pools allow you to reserve storage for a station or group of
stations. You might define station pools when an application program needs a
gua1antee that a specific amount of storage be available. For example, a station
pool could be defined for the station which runs the 4700 CNM application. This
would allow the CNM application to operate as long as no other program is
operating for this station and no other station is using the same station pool.

Station pools have the disadvantage that their storage is reserved for a station, or
group of stations, and cannot be used by other stations even if some is available.

Chapter 2. Coding Considerations 2-9

You define station pool usage by the TRANPL operand of the ST A TION macro
in your system configuration specifications. This pool will be shared only by those
stations that identify it in your configuration specifications.

Station pool storage can be used to satisfy both read/write requests and
refreshable requests.

The General Pool: You should assign most available storage to the general pool by
keeping the station and segment-class pools as small as possible. Any storage not
assigned to station pools, to segment-class pools or to the microcode trace area is
automatically assigned to the general pool. You can control the amount of space
used for the microcode trace area by specifying the TRACE parameter of the
STARTGEN configuration macro.

The general pool is shared by all stations. There is no way of excluding a station
from using the general pool. Storage in the general pool can be used to satisfy
both read/write requests and refreshable requests.

A request is satisfied from the general pool if either there is no station pool
defined for the requesting station or there is insufficient space in the station pool.
The storage manager will attempt to steal space used by refreshable segments in
the station pool before attempting to satisfy the request in the general pool.

Segment-Class Pools: Segment-class pools allow you to reserve storage for a
particular program or set of programs, independent of the station on which they
operate. You might specify a segment-class pool for a program which cannot wait
for storage. For example, you may wish to define a segment-class pool for a
program which must respond to a request from the host. If you specify the
segment-class pool large enough to satisfy this program's storage requirement, and
it is the only program that uses the segment-class pool, it will never have to wait
for storage.

A segment-class pool is defined by specifying the ID= parameter on the TRANPL
macro in your configuration specifications.

If there is insufficient space in the general pool to satisfy a request for storage, an
attempt will be made to allocate it from a segment-class pool. Storage is allocated
from a segment-class pool to only one station at a time. This station will maintain
ownership of the pool until all storage has been returned to the segment-class
pool. A request from any other station for storage from that pool will cause the
requesting station to be placed into a wait state until the owning station releases
the pool or storage becomes available in some other pool.

Each segment-class pool has an ID in the range 1-15. Segment-class pool 1 is
used only to satisfy refreshable requests (APCALL for Segment 14 and
DTACCESS). Segment-class pools 2-15 can only be used to satisfy the
read/write storage requests for Segments 0 and 2-12. Storage requests by
DTACCESS and APCALL for non-refreshable programs cannot use
segment-class pools. Storage requests are associated with a particular
segment-class pool by specifying the ID= parameter on the DEFSTOR instruction
or by specifying the segment-class ID in the SEGALLOC parameter list. Your
application program should not specify segment-class ID 1.

2-10 4700 Controller Programming Library, Volume 1: General Controller Programming

Usage of segment-class pools is controlled only by programming protocol. There
is no enforcement of this protocol by the 4700 controller. If only one program
specifies a particular segment-class ID, it will always have sufficient space to
complete its operation independent of storage availability in the other pools.

Segment-class storage pools reserve space for particular programs. Because this
may adversely affect performance of other programs, segment-class pools should
be used with care. Programs that use segment-class pools should attempt to
minimize their storage requirements so that these pools can be kept as small as
possible.

Storage Management Operation: For a given controller, storage pools can be
defined in any combination. If a particular type of pool is not defined, the next
type in the hierarchy is used. The steps that the 4700 takes, see "Storage
Management by the 4 700" on page 2-9, to allocate storage are performed at each
level of the hierarchy. The storage allocation hierarchy is illustrated by the
following:

1. If a station pool exists and sufficient space can be found, allocate the space.

2. If space can be found in the general pool, allocate the space.

3. If there is a segment-class pool and no program owns this pool and sufficient
storage can be found, allocate the space.

4. If there is no segment-class pool for the request or if another program owns
this pool or if sufficient space cannot be found,

a. and if the request specified W AIT=N, set the condition code and process
the next instruction.

b. if the request specified WAIT= Y, place the station in wait state until
sufficient space is returned to any pool that can satisfy the request.

When storage is returned to any pool, the wait list is examined. If any pending
request can be satisfied, the station is made dispatchable. However, before this
station is dispatched, some other station (including the one which just released the
storage) may issue a request for this storage. This may cause the station which
was waiting to return to its wait for storage. Thus, any wait for storage may be
indefinite. If multiple stations are requesting storage and none is available, then
potential for a storage deadlock condition exists. A deadlock condition can be
avoided by defining segment-class pools that can satisfy the storage requirements
of your applications. Any storage wait can be broken by pressing the keyboard
Reset key twice. This will cause the APCALL, DT ACCESS or SEGALLOC
instruction to set a condition code and store attention status in SMSDST.

I Storage Management by the Controller

The controller manages storage space for primary and secondary programs when
you are using call programming, but you determine how this will be accomplished.
You may choose to use one set of storage segments for both the primary program
and its secondary programs. If you do, you probably need some conventions to
determine which programs use which segments, and when. You may also choose
to allow some or all secondary programs to have their own allocations of storage.

Chapter 2. Coding Considerations 2-11

Initializing Storage

Segments allocated to the primary application program and to secondary
application programs each have a segment space ID. This ID is always 1 for
segments allocated to the primary application for each logical work station. The
controller assigns a new segment space ID for segments allocated to each
secondary application for each logical work station. The cu"ent segment space ID
is the ID of the segments allocated to the current application program.

Storage may be initialized, or set to specific values before program run time by
specifying the values either during system CPGEN or within your application
program. You can use the Start Initialization (SINIT); Initialize Segment
(INITSEG); and End Initialization (ENDINIT) instructions to accomplish
segment storage initialization in your program. These instructions are described
in detail later in this book.

Allocating Two Sets of Registers

Shared Storage Control

When two sets of registers are allocated for a logical work station, the SELECT
instruction can be used to select the registers as needed.. You must set a segment
select character A or B, designating the correct Segment 0, in Segment 1 before
you issue SELECT.

For example, if you allow the operator to enter the keyword ADDR, indicating to
the program that the operator wants to use the 4 704 as an adding machine, you
might require the program to use registers other than those used for normal
processing. For this purpose, you must allocate two Segment O's.

There are situations when a logical work station need not be dedicated to one
operator (for example, back office applications, such as proof). The controller
permits either keyboard or program selection between identical Segment O's (the
registers and optional storage). For program selection, the program must issue the
SELECT instruction. SELECT indicates which Segment 0 (A or B) is associated
with the station, and allows the work station to address that segment.

Because Segment 15 is accessible to any logical work station, you may need to
ensure that one station has exclusive control of the segment for a period of time.
You do this by setting an indicator in the global area that the system can check
before allowing the station to use the global information or by ensuring that the
logical work station does not release control of the controller while using global
storage.

For example, all stations may be given control during controller startup so that the
tellers can log on. Before allowing most tellers to log on, however, you may wish
to ensure that the time and date have been set by one of the tellers. One station
sets an indicator in the global storage area that remains on until the time-and-date
dialog is completed. As other stations gain control, their application programs can
test the indicator and release control until the indicator is off.

2-12 4700 Controller Programming Library, Volume 1: General Controller Programming

Addressing Main Storage

The 4700 addresses data either as the contents of one of 16 registers, or as a field
within a storage segment. Registers can be addressed either by referring to the
register number or by referring to the register's Segment 0 field. The four ways to
address data in the storage segments are:

Segment-displacement addressing address a field by specifying the segment
number, the displacement into the segment, and in some cases, the
field length. This type of addressing is usually specified as a
DEFCON or DEFLD. Its advantage is ease-of-use for fields of fixed
location and length.

Segment header addressing use the addressing information, maintained by the
system, in the segment header. Each segment has a header
containing displacement and length fields that you can use to address
data simply by specifying the segment number. The advantages of
Segment Header addressing are: you can easily construct data strings
of variable length items and you can readily determine the length of
items within a data string.

Register addressing load the segment space ID, segment number, displacement,
and length information into a register and use the contents of the
register to address data. This type of addressing allows your program
to dynamically modify addressing values.

Modified register addressing describe data fields using the DEFRF instruction
and load addressing information into a register. The controller will
modify the register using addressing values from the DEFRF
description. This type of addressing has the same advantages as
Register Addressing. Also, its use of DEFRF provides a
straight-forward way of describing the data area to be processed.

Segment-displacement and segment header addressing do not provide a way to
specify segment space ID, therefore, you can use them to address only storage
that is allocated to your program. Register and modified register addressing allow
you to address storage that is allocated to all application programs associated with
the same logical work station.

For example, you may use modified register addressing in a secondary application
to address storage allocated to the primary application. The primary application
can pass its segment space ID to the secondary program allowing it to access
segments that were assigned to the primary program.

Segment-Displacement Addressing

The components of this type of addressing are:

1. the segment number. This is the number (from 0 to 15) of a segment. If the
instruction refers to a segment that was never allocated, a program check
occurs.

2. the displacement to the beginning of the field, in bytes, from the beginning of
the segment. This is a value between 0 and 65 534. If a displacement is
specified that is greater than the length of the segment, a program <;heck
occurs.

Chapter 2. Coding Considerations 2-13

3. the field length, where appropriate. If the displacement plus the length of the
field is greater than the size of the segment, a program check occurs.

For example, an input buffer might contain a field that is to be moved to an
output buffer for printing.

Buffer Segment Format

10 bytes

Input 3 Field 1

0 20

Output 2 Field 2

0 10

You can use a MVFXD instruction to move field 1 to field 2:

MVFXD 2,10,3,20,10 l r l l l_Length of the source field
Displacement of the source field

Source segment number
Displacement of the destination field

Destination segment number

The following example shows another way of coding the same thing using
DEFLD instructions. DEFLD associates a label with a field definition so that
subsequent instructions can reference the field symbolically. Application
programs written using DEFLDs, rather than absolute references, will be easier to
modify.

MSG DEFLD S02,0,10
OUT PT DEFLD S02,,20

* DATA1 DEFLD S03,0,20
INPT DEFLD S03,,10
DATA2 DEFLD S03,,5

MVFXD OUTPT,INPT

2-14 4700 Controller Programming Library, Volume 1: General Controller Programming

The operands of the DEFLD instruction specify the segment, displacement, and
length of a field. Notice that the displacement operand has been omitted from
several DEFLDs in the example. When you do not specify a displacement, it is
equal to the sum of the displacement and length of the last DEFLD referring to
that segment. In the example above, the displacement of INPT is 20 and the
displacement of DATA2 is 30. You can code either DEFLD or Ln instructions to
create DEFLDs (see the LDSECT, Ln, and LEND instruction descriptions).

Segment Header Addressing

Segment Header addressing uses the segment header associated with each
segment. The header consists of:

The segment length indicator (SLI) contains the length of the segment. This
length does not include the segment header.

The primary field pointer (PFP) contains a displacement that is an offset from
the beginning of the segment.

• The field length indicator (FLI) contains the length of a field.

• The secondary field pointer (SFP) also contains a displacement that is an
offset from the beginning of the segment. Sometimes two pointers, that is,
the primary and secondary field pointers are required in the same segment.

Segment Header addressing applies only to certain instructions, therefore you
should be aware of those instructions that allow you to use Segment Header
addressing and those that require this type of addressing.

Data entered by a teller or transmitted from the host processor may form fields of
variable lengths. Segment Header addressing enables the controller application
program to handle these fields.

The PPP and FLI work together to describe a field. For example, a seven-digit
account number, located at displacement 0 of the segment, can be addressed
when the PPP is equal to 0 and the FLI is equal to 7.

Segment Storage:

FLI _.._
1255687

t
PFP

If this account number is to be moved to another location in the same segment,
the SFP is used to point to the beginning of the destination field. For example, to
move the account number to bytes 20-26, the SFP is set to 20.

FLI

Segment Storage: 1255687

t
20

t
PFP SFP

Chapter 2. Coding Considerations 2-15

Register Addressing

You can use a move instruction to move the account number. The .number of
bytes moved is determined by the value of the PLI.

The PPP and SPP are used to describe a field when a write is performed using the
two-byte form of the L WRITE instruction. The SPP points to the leftmost byte of
the field, and the PPP points 1 byte past the rightmost byte of the field. P or
example:

Segment Storage: rD MORNI7
SFP PFP

This arrangement is used because move instructions, which are normally used to
load the output area, update the PPP. At the end of a move operation, the PPP
points 1 byte past the end of the destination field, thus allowing a series of move
instructions to place data in a contiguous area without resetting the PPP.

The segment header cannot be directly addressed. However, you can obtain and
alter the fields using the following instructions:

SETFPL Sets the PPP and PLI.

SETSFP Sets the SPP.

EXPS Exchanges the PPP and SPP values.

LDFP Loads the contents of the PPP into a register.

LDLN Loads the contents of the FLI into a register.

LDSFP Loads the contents of the SPP into a register.

LDSEGLN Loads the segment length into a register.

Private segments each have their own segment header. Shared segments have a
separate headers for each logical work station to prevent one station's operation
from interfering with another station's addressing.

Register addressing means that all of the information required to address a field is
contained in a register. You indicate register addressing by coding (reg) in
instruction operands.

2-16 4700 Controller Programming Library, Volume 1: General Controller Programming

You can load a register with a register address using the LDRA instruction. In the
following example assume that the displacement of FIELD A is 100.

FI ELDA

*
*
*
*

DEFLD

LDRA

802" 6

R04,FIELDA
load segment space ID,
segment number 2,
displacement 100 and
length 6 into register 4

Following the operation of an LDRA instruction the register will contain:

1. The segment space ID of the main storage segments assigned to this
application program. This ID is always 1 for the segments allocated to the
primary application program of each logical work station. The controller will
assign new segment space IDs for secondary programs;

2. The segment number. This is the number (from 0 to 15) of a segment
allocated to the logical work station. If the instruction refers to a segment
that is not allocated, a program check occurs.

3. The displacement, in bytes, to a field from the beginning of the segment. This
will be a value between 0 and 65 535. If a displacement is specified that is
greater than the length of the segment, a program check occurs.

4. The length of the field, in bytes, determined by the length of field-2. If the
displacement plus the length of the field is greater than the range of the
segment, a program check occurs.

The displacement is in the low-order two bytes of the register. Therefore, you can
change the displacement by adding or subtracting a value to or from the register.
For example, to increase a displacement by 6:

SIX DEFCON 6

ADDFLD R04,SIX

Modified Register Addressing

Modified register addressing means that an address value contained in a register is
modified by another value. You must indicate modified register addressing by
coding the (defrf) addressing form in the instruction operands.

(defrf)is the label of a DEFRF instruction that contains values used to modify an
address in a register. A modified register address is formed as follows:

1. segment space ID - is taken from the register

2. segment number - is taken from the register

Chapter 2. Coding Considerations 2-1 7

3. displacement - is obtained by adding the displacement from the register to the
displacement of the DEFRF

4. length - is taken from the DEFRF.

For example, the following DEFRF associates register 3 with a displacement of 15
and a length of 5:

BALANCE DEFRF R03,15,5

If register 3 contained the following address (perhaps initialized by an LDRA
instruction):

segment space ID

segment number 4

displacement 100

length = 200

t11en the following instruction:

ADDFLD R06,(BALANCE)

would add the 5-byte field in segment space l, Segment 4, displacement 115, to
register 6.

The register (register 3 in the above example) is not altered when a modified
register address is formed.

You can also use modified register addressing with DSECTS (Dummy Sections).
You can define a dummy section by a series of DEFRF instructions. For example,
assume a 20-byte customer record includes a 12-byte account number, a 3-byte
status code, and a 5-byte current balance. This record could be defined as follows:

ACTNUM
STATUS
BALANCE

DEFRF
DEFRF
DEFRF

R03,0,12
R03,, 3
R03,, 5

Further, assume that Segment 4 contains a series of the 20-byte records described
above, starting at displacement l 00, and defined as follows:

RECORDS DEFLD S04,100,0

An application program could initialize register 3 to point to the first record by:

LDRA R03,RECORDS

The displacement in register 3 would be 100 and the length would be zero. Now,
if the program performs:

ADDFLD R06,(BALANCE)

then the balance from the first record (displacement 115, length 5) will be added
to register 6.

2-18 4700 Controller Programming Library, Volume I: General Controller Programming

The program could then add 20 to register 3 (the displacement part of a register
address is in the low-order 2 bytes) as follows:

TWENTY DEFCON 20

ADDFLD R03,TWENTY

so that register 3 would now point to the second record. The program could loop
back to. the ADDFLD instruction to add the second balance to register 6.

Programming Notes About Segment Headers

Fixed-Length Fields

The purpose of this section is to give you some idea of the ways in which your
program can manipulate and use the Segment Headers in the 4700. It
concentrates on the SETFPL instruction which can be used to set the PFP and
FU for both fixed-length and variable-length fields. SETFPL has the following
general format:

[label] SETFPL seg,pfp,fli

I l Lan optional FLI operand
an optional PFP operand

the segment number

The simplest form of the SETFPL instruction refers to a DEFLD or DEFCON
instruction used elsewhere in the program. The segment, displacement, and
length values specified in the DEFLD, or implied in the DEFCON, are used by
SETFPL to set the PFP and FU.

The following example shows how DEFLD and SETFPL are used to set the PFP
and FU of a segment. After the SETFPL is executed, the PFP for Segment 2 is
set to 0, and the FU for Segment 2 is set to 100:

* OUTPUT DEFLD 802,0,100

SETPTRS SETFPL OUTPUT

The PFP and FU may also be set using values in registers. The registers must be
loaded prior to executing the SETFPL:

SETPTRS SETFPL S02,(R04),(R03)

Chapter 2. Coding Considerations 2-19

Variable-Length Fields

Modifying the PFP and FLI: The PFP and FLI :tllay be increased or decreased
using the SETFPL instruction. This is done by using a signed number in the
applicable operand.

When the PFP is modified, an inverse modification is performed on the FLI. For
example, if 5 is added to the PFP, 5 is subtracted from the FLI. After this
operation takes place, the FLI is further modified by the FLI operand. For
example, two 7-digit account numbers are in adjacent fields in Segment 2, and the
PFP and FLI describe the first field:

FLI

Segment Storage: 33822063833047

t
PFP

The following SETFPL modifies the PFP and FLI to describe the second field:

INCRFLD SETFPL S02,+7,+7

When the PFP is increased by 7, the FLI is decreased by 7 to O. Then the FLI is
increased by 7. Thus, at the end of the operation, the second field is described:

33822063833047

\ FLI

PFP

You can define a variable-length field by inserting delimiters at the beginning and
end of the field when it is created. The program can then use SETFPL to locate
the delimiters and set the PFP and FLI accordingly.

You can also define a variable-length field as the data between the beginning of
the segment and the first delimiter, or between the last delimiter and the end of
the segment. You define delimiters themselves using the DEFDEL instruction
described under -- Heading id 'delimit' unknown--. The rest of this section
assumes that the appropriate delimiters have been defined and are recognized by
SETFPL. The fields shown in the examples are typical of data entered by a teller
using blanks, hex FA, and hex FB as delimiters. (Hex FA and hex PB have no
EBCDIC character equivalent and are therefore represented by asterisks(*) in
the text and figures.) The format of the fields is:

transaction accountno. amount amount EOM*

(EOM* is the end-of-message indication.)

The controller uses three operands-F, +F, and-F-when scanning a segment
for variable-length field delimiters. When the controller finds the desired
delimiter, it sets the PFP to the segment address of the first b:Yte of the field and
the FLI to the field length.

2-20 4700 Controller Programming Libtary, Volume 1: General Controller Programming

Note: Because scanning a field to set the FLI requires extra processing time, you
should avoid this process, if possible, by setting the FLI to a valid absolute
number. This stops the SETFPL instruction from scanning for the field length).

The following examples show the use of F, +F, and -F.

For example, the teller enters:

SDEP 3382206 128.50 400.00 EOM*

The entry is read into the input area, INPUTSEG, starting at the PPP. The read
operation does not change the PPP or FLI.

To define the first field, you can code the following SETFPL:

FINDFLD SETFPL INPUTSEG,F

The pointers are now set as follows:

FLI -SDEP 338220 128.50 400.00 EOM*

t
PPP

To point to the next field, you can code the following SETFPL:

FINDNEXT SETFPL INPUTSEG,+F

The pointers are now set as follows:

FLI
, ·~

SDEP r82206 128.50 400.00 EOM'

PPP

To point to the previous field, you can code the following SETFPL:

FINDLAST SETFPL INPUTSEG,-F

Chapter 2. Coding Considerations 2-21

The pointers are now set as follows:

FU -SDEP 3382206 128.50 400.00 EOM*

t
PFP

Programming Notes About Field Delimiters

Inserting Delimiters in Fields

Processing Messages and Fields

To use delimiters you must choose a one-byte delimiter character, and then
identify it using the DEFDEL instruction. Refer to the DEFDEL instruction
description in "Data Definition Instructions."

The programmer should establish conventions for using delimiters. The following
are suggested ways of placing delimiters at the beginning and end of the fields,
depending on the source of the data:

Program-Created Fields: If only one delimiter is required, a routine can first fill the
data area with the delimiter character, and then can place the individual fields
into the data area leaving one space (delimiter) between fields. If more than one
delimiter is required for the message, you can associate individual delimiters with
various subfields.

Operator-Created Fields: The keys used by the operator to denote the end of a
field or message must be set to the desired delimiters using the INTRTBL
configuration instruction. An operator procedure must then be devised that
describes how each field or message is ended (by pressing the space bar, an
end-of-message key, or other convention).

When a message is read by the application program, the message length is placed
in Segment 1 at SMSIML, and the beginning of the message is identified by the
PFP4 Thus, the message is fully defined to the application program. However, the
program must define individual message fields, either by using delimiters or by
predefining fixed fields.

For example, the teller enters:

transaction accountno amount ... EOM

If the beginning of the input area is known and the transaction type and account
number have fixed lengths, these fields can be addressed as fixed fields. The
remainder of the message contains a varying number of variable-length amounts
separated by delimiters. Each is addressed as a variable-length field. To move
the entire message, the FLI is set to the value in SMSIML.

The application program can also process transactions in which the teller enters
the fields as individual messages. For example, the teller can press a key that
indicates the type of transaction and EOM. The teller can then enter a field and
press a key that indicates the account number and EOM. The teller can

2-22 4700 Controller Programming Library, Volume l: General Controller Programming

continue to enter individual fields as discrete messages until the entire transaction
is entered. As each field is read, it could be checked for errors and processed.

Logical Work Station Dispatching

Dispatching Modes

Priority Dispatching

The controller allocates processing time to, or dispatches, each logical work station
either in work-station-ID-number order or according to a predefined table. This
dispatch order, combined with other conditions that permit the stations to gain or
release control, determines whether or not and when an application program runs
on behalf of a logical work station.

The dispatched station and any others that have not completed processing by
issuing an LEXIT instruction are active. All logical work stations that have never
become active or that have indicated that processing is completed are idle.

The following are descriptions of how logical work stations gain and release
control, or are. dispatched by, the controller.

The order and frequency with which work stations are checked for dispatching
are determined by the type of dispatching mode in effect in the system:

• Station-Chain Dispatching-Stations are dispatched in station-ID sequence.
No one station is checked for dispatching any more frequently than another.

• Priority Dispatching-You can choose to dispatch work stations in a certain
order by defining the order in a priority dispatch table. The table, which you
define during CPGEN, also controls how often a station is dispatched,
compared to other stations. You can define more than one table and transfer
control dynamically from one table to the other. More information on
priority dispatching is under "Priority Dispatching."

Station chain dispatching is the basic dispatching mode. It is in effect unless a
priority dispatching table was defined with the PRIDSP configuration macro and
priority dispatching is invoked by the LCHAP (Change Priority) instruction.
LCHAP also turns off priority dispatching.

In either mode, only those stations that have work to perform are dispatched;
stations without work are passed by. One complete pass by the controller through
the dispatch chain or priority dispatch table is called a dispatching cycle.

Priority dispatching allows specification of the order and frequency with which
logical work stations are checked for dispatching. An individual work-station ID
can appear as often as desired in the table.

To use priority dispatching, at least one priority dispatching table must be defined
in the controller configuration; the most you can have is four tables. A table is a
list of station IDs in the order that they are to be checked for dispatching.

Chapter 2. Coding Considerations 2-23

Entry Point Priority

Gaining Control

It is possible for a station to have more than one type of work to perform when its
turn occurs during a dispatching cycle. The controller, in this circumstance, gives
control to the station's application program so that the type of work with the
highest priority is performed. Work priorities are as follows:

1. Startup processing (occurs only once during a session)
2. Resumption of processing
3. Receiving data from a telecommunications line
4. Receiving data from a terminal
5. Receiving data from another station
6. Program interrupt
7. Asynchronous timer interrupt

A work station can be dispatched when one of the following happens:

• The controller has just been loaded, the application program has a startup
entry point (the STP operand of the BEGIN instruction), and startup has
been specified for the station during configuration (the STARTUP operand of
the STATION configuration statement). The station's application program is
given control at the instruction label selected by the STP operand. A startup
dispatch can occur only once during a processing session. (A processing
session is the period of time between controller startup and restart or
shutdown.)

• An active logical work station is ready to resume work that it began earlier.
The logical work station may have given up control temporarily because of a
data transmission operation. The station's application program is given
control at the instruction pointed to by the station's instruction counter. A
logical work station may be dispatched in this manner many times during the
time it is active. Also, a logical work station may receive unsolicited messages
while it is active (from the telecommunications line, a terminal, or another
station). If the station does not read these messages before issuing LEXIT, it
is redispatched; control is given to the application program at the appropriate
entry point.

• The station receives a message from the telecommunications line, the station is
idle, and the application program has an appropriate entry point (the ACP
operand of the BEGIN instruction) entry point defined. The station's
program receives control at the instruction selected by the ACP operand.

• The station received data terminal data, is idle, and the station's program
defines a terminal entry point (the ATD operand of the BEGIN instruction).
The program receives control at the instruction selected by the A TD operand.

2-24 4700 Controller Programming Library, Volume 1: General Controller Programming

Releasing Control

• The station received data from another station, is idle, and the program
defines a station entry point (the AST operand of the BEGIN instruction).
The station's program receives control at the instruction selected by the AST
operand.

• The station received a program interrupt (an LPOST issued by another
program), the station is idle, and the station's program defines a program
interrupt entry point (API operand of the BEGIN instruction). The station's
program receives control at the instruction selected by the API operand.

• The station received an asynchronous timer interrupt, the station is idle, and
the station's program defines asynchronous timer-entry point (ATM operand
of the BEGIN instruction). The station's program receives control at the
instruction selected by the ATM operand.

The asynchronous timer gives an idle work station the ability to dispatch
itself. This is in contrast to being dispatched because of an asynchronous
request from another source. During a dispatching cycle, the controller
compares the current value of the controller timer with a preset value in the
station's program. The comparison result and the current station status (idle
with no asynchronous requests pending) determine if the station is
dispatched. The following conditions control timer operation:

1. Any asynchronous requests pending when the timer request occurs, are
processed first; the timer request is deferred.

2. If the station is idle and the station's timer value is not zero but is equal to,
or less than, the value of the controller timer, the station's program
receives control at the entry point defined in the ATM operand of' the
BEGIN instruction. The station's timer value is reset to zero.

3. Setting.the station's timer value to zero cancels the timer request. The
station's timer is not reset if the controller defers the timer request
because another asynchronous request is pending. However, the station
can change the timer value while processing a higher-priority
asynchronous interrupt. Resetting the timer value to zero cancels any
pending timer interrupt request.

In all cases except startup, a logical work station may be dispatched, at one of an
application program's entry points, any number of times during an active session.

Logical work stations give up control allowing other stations to be dispatched.
Releasing control is done in the station's application program and may cause the
logical work station to remain active or to become idle.

1. A logical work station remains active when it gives up control in one of the
following ways:

• A PAUSE instruction is executed. This causes the controller to take a
dispatching cycle. Control will be returned to this station's program at the
next sequential instruction.

Chapter 2. Coding Considerations 2-25

System COPY Files

• A data transmission instruction is executed that requires a pause in
processing until the operation is completed. Other logical work stations
are checked and may be dispatched. Control is returned to the program
that released control at the next sequential instruction.

An L WAIT instruction is executed. Other logical work stations are
checked and may be dispatched. Control is returned to the next
sequential instruction when an asynchronous interrupt occurs or an
operator signals an attention.

• A program check causes control to be given to a program check routine
(the PC operand of the BEGIN instruction).

2. A logical work station becomes idle when it gives up control in one of the
following ways:

• An LEXIT instruction is executed.

• A program check occurs that causes an LEXIT.

Segments 0, l, 14, and 15 contain fields that have special meaning during
controller application program execution. Definitions of these fields are made
available by coding the following operands of the COPY instruction:

• DEFRGS or DEFREG, which defines the registers in Segment 0

• DEFSMS, which defines the fields in Segment 1, the System Machine
Segment

• DEF APB, which defines the fields in Segment 14, the application program
header

• DEFGMS, which defines the fields in the fixed portion of Segment 15, the
Global Machine Segment.

Because the definitions are subject to change, you should base any references to
the standard definitions on the labels provided by the system copy files. You
should also ensure that fields defined by a system copy file are referenced
individually.

For example, COPY DEF APB might contain:

APBLBL1 DEFLD 514,,2
APBLBL2 DEFLD 514,,2

Because it is possible that the DEF APB definition could change, it would not be
advisable for you to code one DEFLD (of length 4) and expect it to contain both
fields.

2-26 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix B contains details of system copy files. Those copy files that contain
the DEFxxx notation can be created in two forms; one for the
Segment-Displacement addressing and the other for modified register addressing.
For example, DEFCPL will expand into a series of DEFRF instructions for
modified register addressing, if the following is used:

LDSECT BASE=r
COPY DEFCPL
LEND

where: r is a register number (0 - 15)

DEFCPL will create a series of DEFLD instructions, for Segment-Displacement
addressing if you code an EQUATE before the COPY instruction, as follows:

DEFGPLS EQUATE s
COPY DEFCPL

where: s is a valid segment number

Note:

Appropriate volumes of this 4700 Controller Programming Library contain similar
DEFxxx COPY parameter lists and files. Refer to the volume for the type of
programming you are performing, for detailed descriptions of the applicable
DEFxxx files.

Condition and Program Check Codes

Condition and program check codes supply information about program operation
and any errors that might occur:

• Condition codes: Some instructions set one or more condition codes.
Condition codes indicate the result of the operation of an instruction. Each
instruction description in Chapter 5 includes the condition codes that can be
set by that instruction.

• Program check codes: Program checks are indications of errors detected by
the controller during operation of an application program. In general, they
indicate that the application program has attempted to instruct the controller
to perform an invalid operation. For example, scan a field for a delimiter
without providing the required delimiter table.

Your application program can include a routine to handle program checks. Its
entry point is defined by the PC operand of the BEGIN instruction. When
the program check routine receives control, a flag (SMSPCR) is set to
indicate that a program check routine is in control. If this flag is not reset by
the application program, it is reset when an LEXIT is issued.

All program checks cause the controller to write a message to the system log
that contains the station number, application program name, program check
code, program check address, loop instruction count, and the first two bytes
of the failing instruction. In addition, the program check code and program
check address of the failing instruction are placed in the System Machine
Segment (Segment 1). All of this information can be printed on a terminal or
transmitted to the host processor by a program check routine. A program
check can also appear as a CNM (Communications Network Management)
alert if specified in your configuration.

Chapter 2. Coding Considerations 2-27

Optional Instructions

The controller uses the following rules when a program check occurs, depending
on whether a program check processing routine is active:

If SMSPCR is off, give control to the program check entry point of the current
application program.

If there is no program check entry point and the current program is the
primary program, then perform an LEXIT.

If there is no program check entry point and a current application is the
secondary program, then perform an APRETURN; place an entry in the
system log showing that an APCALL caused a program check; and give
control to the program check entry point of the calling program. If the
calling program does not have a program check entry point, the controller
will continue to perform APRETURNs until a program check entry point
is found or an LEXIT is performed because the primary application has no
program check entry point.

If SMSPCR is on, the controller will attempt to give control to a program
check entry point as above, except that it will not give control to the program
check entry point of the current application program.

4 700 subsystem controller instructions are executed by controller modules
incorporated into the configuration image. For most 4 700 instructions, the
controller includes the required modules in the configuration image during its
generation. However, for certain instructions, the controller does not
automatically include these modules in the configuration image; they must be
specifically requested in the specifications you use to define the configuration
image.

Including optional instruction modules will affect the amount of storage required
for controller functions and may create a need for additional storage.

Even though the appropriate controller data modules are included in the
configuration image, the programmer should be aware that the control operator
can prevent these modules from being loaded during the controller load
procedure.

If the appropriate controller data modules are not in the controller when an
optional operation code is encountered, a program check hex 09, invalid operation
code, occurs.

The Global Machine Segment (GMS) contains information that can be tested for
the presence of optional modules. See the DEFGMS copy file in Appendix B.

Volume 6: Control Program Generation of this 4700 Programming Library
contains the information you might need on this subject.

2-28 4700 Controller Programming Library, Volume 1: General Controller Programming

COBOL Considerations

Use of 3600 Programs

4 700 assembler programs that transfer control to and from COBOL programs
require additional instructions if they receive or send parameters, and must follow
these conventions:

1. A called assembler program receives an APCALL parameter list from the
calling COBOL program set as follows:

• Shared segment flags = X'BFF A'
• Register flags = X' 4000' (Passes register 1)

2. Register 1 contains a register address of a list of addresses, each of which
selects a parameter. The register-1 length field defines the address-list length.

3. The contents of Register 12 are destroyed by COBLCALL.

The called assembler program should have an FCLENTER instruction at the
APCALL entry point to define a save area for the contents of register 1 and
assign names to the parameters. It should also have an FCLEXIT instruction at
the APRETURN point to restore the contents of register 1 and redefine the
parameters to be returned to the COBOL program.

The 4700 COBOL Compiler generates 4700 assembler output that can contain
two additional instructions, CRETN and LCONVERT, primarily for COBOL
use. See the IBM 4700 Finance Communication System, COBOL Programmer's
Guide, SL23-0082, for more information.

The 4 700 system accepts 3600 application programs with little or no change.
Application programs that use non-standard forms of SMS (the System Machine
Segment) or GMS (the Global Machine Segment) may require changes to operate
with different 4 700 system formats ..

4700 allocations for the global (GMS), system (SMS), and application program
storage segments are larger than for the 3600 system. Those 3600 programs that
refer to the GMS and SMS fields defined by COPY DEFGMS or COPY
DEFSMS are not affected by the larger GMS and SMS segments in the 4700.
Those programs that use other than the standard system definitions may require
redefining of those areas. Also, those configurations at or near the limits of their
segment specifications for the GMS, SMS, or Segment 14 might need testing to
ensure that enough storage remains to accommodate the larger segments.

There have been a num.ber of changes in 4 700 Control Program Generation. You
may find it necessary to modify your 3600 CPGEN specifications for them to be
acceptable in the 4 700 environment.

Chapter 2. Coding Considerations 2-29

2-30 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 3. 4700 Instruction Categories

This chapter introduces to you various kinds of 4 700 instructions. They are
divided here into categories to help you understand their purpose and function.
Not all of the controller's base instructions are included, and this chapter does not
contain detailed information. Chapter 5 contains descriptions of each instruction
including examples.

Program Definition Instructions

Assembly Definition

This section describes the instructions that are used to control assembly of
application programs and program sections.

You must place an APOPT (Application Program Options) as the first instruction
in an assembly. BEGIN and FINISH are used to define an assembly. SEGCODE
(Application Program Section Identifier) and ENDSEG (End Application
Program Section) are used to define relocatable sections that may be appended to
relocatable root sections and overlay sections.

The A.POPT lmll'llction: APOPT precedes all other 4700 assembler instructions in
an assembly. It is used to specify whether the instructions that follow are part of
a nonrelocatable program (RELOC=N or an omitted operand) or a relocatable
program (RELOC== Y). If the APOPT is omitted, a nonrelocatable assembly is
performed. APOPT may be specified only once in an application source program.

APOPT also has other functions:

• DISP=NEW specifies that the section or sections are new and should only be
added to the host library if a section with the same name does not already
exist.

• DISP=OLD (or an omitted operand) specifies that a section or sections may
already exist in the host library. If the same name(s) already exists, then the
section(s) being assembled replaces those in the library. If the section does
not exist, it will be added.

• DIRNAME=(name,NEW) specifies that the named directory should be
created in the host library and that directory entries for all sections in the
assembly should be added to the new directory. If a directory with the same
name already exists, another directory will not be created and the entries for
the sections will not be added to the old directory.

• DIRNAME=(name,OLD) specifies thatthe named directory already exists
and that directory entries for all sections in the assembly should be added.
(An entry will not be added if a duplicate entry already exists in the
directory.) If the directory does not exist, a new one is created and entries for
all sections in the assembly are added to it.

• YL2= Y specifies that all AL2 address constants used as operands of
DEFCON instructions in the following sections should be changed to
relocatable YL2 address constants. You should be careful when using this
operand because the DEFCON macro cannot distinguish between expressions
that are not intended to be relocated and those that are. You should

Chapter 3. 4700 Instruction Categories 3-1

therefore manually change the source statements if there is any question
about the use of AL2 address constants in the application program. If
YL2-N is specified or the operand is omitted, AL2 address constants will not
be altered.

The BEGIN Instruction: You use the· BEGIN instruction to identify the application
program and specify.its entry points. It may also be used to specify the address of
a delimiter table.

The application program name consists of an eight-character name (names are
padded to the right with blanks), a date, and a version number. When the
application program is processed by Host Support, the name and version number
are used to associate the program with a load image. The name is also used to
associate an application program with a station. Application programs with the
same name cannot be in a controller at the same time.

Program entry points define where processing begins for:

initial startup · The STP entry point is specified if the application program is to
gain control when the controller is loaded by the control operator.

data received asynchronously Three entry points are used when data is sent to the
program running on behalf of a logical work station:

• AST for data from another station

• A TD for data from a terminal

• ACP for data from the central (host) processor.

entry from another program The APENTRY entry point must be specified if your
program can be called by another.

interrupts from another program. The API entry point must be specified if your
program can be interrupted by a9other.

timer functions The ATM entry point must be specified if the station timer
facility is to be used to dispatch your program.

program checks The PC entry point must be specified if your program contains a
routine to handle program checks.

The following conditions occur when an entry point is not specified and an
attempt is made to dispatch the application program at that entry point:

With no STP entry point and startup specified for the logical work st~tion: a
program check.

• With no AST, ACP, ATD, ATM, or API entry point the dispatch will be
suppressed and held. With APCALL/ APRETURN the entry point may be
defined in another application program's BEGIN instruction.

With no APENTRY point and an APCALL issued by another station: a
program check.

3-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Section Definition

The FINISH Instruction: FINISH defines the end of the assembly and must be the
last instruction in the assembly.

The next few paragraphs introduce the instructions that you can use to define
different kinds of program sections. Detailed information about these instructions
is in Chapter 5.

The SEGCODE Instruction: SEGCODE must be the first instruction in a
relocatable section that will be appended to another assembly during link-edit. It
specifies the name and version number of that section.

The ENDSEG Instruction: ENDSEG defines the end of a section begun by a
SEGCODE instruction.

The OVLYSEC Instruction: The OVL YSEC instruction must be the first
instruction in overlay section.

The ENDOVLY Instruction: The ENDOVL Y instruction defines the end of an
overlay section begun by an OVL YSEC instruction.

The SECTION Instruction: SECTION is used to define a dummy section
(DSECT). A dummy section is a description of an area of storage that is defined
elsewhere in the program or in another assembly. It may appear anywhere
between the BEGIN/FINISH, OVL YSEC/ENDOVL Y, or
SEGCODE/ENDSEG instruction pairs and may appear as many times as are
required. A SECTION DUMMY must be ended by a SECTION END.

Assembly Control Instructions

Equates

COPY Instruction

Using an absolute value in symbolic instructions has two disadvantages:

• If a value such as a register number is changed, many instructions may have to
be changed.

• Absolute numbers do not convey meaning and make it difficult to understand
the logic of a program when reading the listing.

The EQUATE instruction allows you to associate a meaningful label with an
absolute value; the absolute value must still conform to the specifications of the
operand. It also defines information for the assembler and makes your program
easier to modify.

Use of the COPY instruction is described in Chapter 2.

Controlling Base Registers during Assembly

USEBASE, ·SA VEBASE, and REBASE allow you to control the base register
numbers that are assembled into instructions that use modified register addressing

Chapter 3. 4700 Instruction Categories 3-3

with the LDSECT instruction. The USEBASE instruction must refer to an
LDSECT instruction that describes an area to be addressed by a register.
LDSECT is one of the Data Definition instructions in this chapter.

Asse..,.bly'Listing Control Instructions

This section mentions the instructions that are provided so that you can control
the printed output of the ass~mbly process. They are: LEJECT (Eject a Page);
LSPACE (Space a Line); PLPCMD (Post List Processor Command); and
PRINTI (Print Macro Expansions).

These instructions allow you to leave blank space in your assembly listing to
improve its readability. They also allow you to have some control over what is
printed and what is not printed.

Data Definition Instructions

Defining Constants

Defining Delimiters

Defining Dump Parameters

This section describes the instructions that define data, both in the form of
constants and in the form of areas to be used for input, intermediate, or output
storage.

The instruction that defines a constant field is DEFCON (Define Constant).
DEFCON is used to create bytes of data within the application program. This
data can be used, for example, as prompting messages for the teller. When a
DEFCON is assembled, it has an implied:

segment number (14)

displacement (its location in the application program)

length (the number of bytes defined).

The DEFDEL (Define Delimiters) instruction defines delimiter characters that
can be used to process variable-length fields. Use of delimiters is discussed in
Chapter 2 under "Programming Notes About Field Delimiters" on page 2-22.

The DEFDMP (Define Dump Constants) instrilction is used in conjunction with
the APBDUMP instruction to request that the station dump one or more segments
to a diskette.

Defining Masks and Modulus Factors

Defining Tables

The MASK and MOD (Modulus) instructions create constants that are used
during the execution of the EDIT and MODCHK (Modulus Check) instructions
respectively.

The LTRTBEG, LTRTENT, and LTRTGEN (Translate Table Begin, Entry, and
Generate) instructions create a table that is used by the LTRT (Translate)

3•4 4700 Controller Programming Library, Volume l: Generaj. Controller Programming

Defining Fields

instruction. The TABLE instruction creates a table that is used by the LSEEK
and LSEEKP instructions.

Three instructions, LTRTBEG, LTRTENT, and LTRTGEN, are used to define
and generate a translation table during assembly of the application program. This
translation table is used by the LTRT instruction. LTRTBEG and LTRTENT
define the characteristics and contents of the translation table; LTRTGEN
generates the table.

DEFLD (define field) is used to associate a label (symbolic location) with a field
definition. Using DEFLD instructions makes coding easier because the field so
defined can be referred to symbolically.

The DEFRF (define modified register-addressed field), LDSECT (dummy
section), Ln (DSECT level definition), and LEND (DSECT End) instructions are
used to describe areas of segment storage that can be processed using modified
register addressing.

Data Operation Instructions

Formatting Input Data

This section describes the instructions you can use to perform: general data
movement; translation; editing; and a large number of other operations.

For the convenience of an operator, it is usually desirable to allow monetary
values to be entered from a keyboard in a relatively free form. However, these
free-form values frequently must be reformatted by the application program for
the values to be suitable for arithmetic processing. The SCALE instruction,
together with a scale parameter list (see COPY DEFSCA instruction), can be
used to perform such operations. In addition, the SCALE instruction provides
validity checking on the input data.

Moving Data within Controller Storage

The Move and Convert Zoned (MVCZ); Move Field (MVFLD) and Move Field
Reverse (MVFLDR); Move Fixed (MVFXD) and Move Fixed Reverse
(MVFXDR); and Move Segment (MVSEG) and Move Segment Reverse
(MVSEGR) instructions move data from one storage location to another.
Movement can either be between segments or between locations in the same
segment.

Move Data Immediate (MVDI) moves one or two bytes of immediate data. After
executing any of these instructions, the PPP of the result segment points one byte
past the result field. Successive operations for moving data to the receiving
segment can be performed without resetting the PPP, unless register or modified
register addressing is specified.

Chapter 3. 4700 Instruction Categories 3-5

Verifying Data

Data Translation

The VERIFY Instruction: VERIFY can be used to check a field for data type and
length. The result of the check is indicated by one or more condition codes. The
application program tests the condition code to determine whether the field is
valid or invalid.

For example, all savings account numbers are seven numeric digits. The VERIFY
instruction allows you to test an account number to determine that it has 7
characters and that they are numeric.

The MODCHK Instruction: Modulus checking can also be used to help determine
that an operator has not entered an account number incorrectly such as: reversing
two digits, entering a non-numeric EBCDIC character, or entering too many
characters. For example, when the account number is initially generated, the first
six digits could be arbitrarily selected and the seventh digit could be calculated so
that the account number will pass the modulus check.

The LTRT instruction translates 8-bit input codes as specified by a translation
table within the application program. The location of the translation table and
other information needed for LTRT execution are contained in a parameter list.
The parameter list must be initialized before L TRT is executed. (The parameter
list fields are defined by the COPY DEFTRP instruction.) After operation of
L TRT, some of the parameter list fields will describe the results of the L TRT
operation.

The translation table (there may be 4) is defined and generated during assembly
of the application program (using the LTRTBEG, LTRTENT, and LTRTGEN
instructions). An input area into which the input code stream is read and an
output area to contain the translated output from LTRT are required, and are
pointed to by the parameter list.

Each input code may have translation, translation control, and program control
definitions assigned to it in the translation table. These definitions control LTRT
and program operation as follows:

1. Translation Definition: The input code may be translated into 1 to 7
characters of output, or defined as a character for which no output is to be
generated.

2. Translation Control Definition: The input code can be defined to cause a shift
from one translation table to another; to permit input codes to be passed to
the output area without processing (transparent write); and to control the
position of the next character in the output area (backspaced or advanced).
Positioning does not destroy characters already in the output area. The input
code can also be defined to cause a user function code to be entered in the
LTRT parameter list when execution ends on the associated input code.

3. Program Control Definition: The input code can be defined to end LTRT
execution with program control passing to the next sequential instruction in
the application program or to a specified address in the application program.

3-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Table Lookup

Any input code may be assigned any combination of the three definitions just
noted. If none of the definitions is specified, the input character will be treated as
a null character, with no corresponding translation output or control function
associated with it. If more than one definition is specified, the operations are
performed in the following order: translation, translation control, program
control.

The LSEEK and LSEEKP instructions allow you to compare a field with elements
in a table. They can be specified so that when a match is found between the field
and a table element, a branch is taken to an address associated with either the
table element or the instruction. LSEEK searches a table sequentially.

LSEEKP searches a table using either a sequential search or a binary search on a
sorted table.

Tables can be created in one of two ways:

• when the application program is assembled by specifying a TABLE instruction
or using one or more DEFCON instructions

during application program execution.

A table, such as table of savings accounts that require special processing, can also
be built by the controller application program. The host application program in
the host processor can send a list of account numbers daily. The controller
application program can then build the table in one of the global segments so that
all logical work stations have access to the table.

Packing and Unpacking Data

Packing Instructions

Unpacking Instructions

The fm;ir instructions for packing and unpacking hexadecimal data (0-9 and A-F)
are: PAKFLD, PAKSEG, UPKFLD, and UPKSEG. These instructions convert a
byte into 4 bits or convert 4 bits into the EBCDIC hexadecimal equivalent. Data
compaction using these instructions requires less execution time than the
load-and-convert and store-and-convert instructions (which convert decimal
numbers to binary and binary numbers to decimal).

You can use P AKFLD and PAKSEG to convert a byte of EBCDIC hexadecimal
data (X'Fl'-X'F9' and X'Cl'-X'C6') into the 4-bit binary equivalent. The data is
packed from left to right; the resulting field occupies half the storage of the
original field. If an odd number of digits is converted, the leftmost 4 bits of the
resulting field are set to 0. If digits other than 0-9 and A-Fare packed, the results
are unpredictable.

You can use UPKFLD and UPKSEG to convert any 4 bits into the EBCDIC
hexadecimal equivalent. The resulting field requires twice the space of the source
field. The same procedure is used to unpack data as to pack it.

Chapter 3. 4700 Instruction Categories 3-7

For example, the application program could contain a routine that converts the
binary number to printable form and displays it on the teller's display. UPKFLD
or UPKSEG could be used to convert X'A200' to X'C1F2FOFO' (a printable
A200). Unpacking is from right to left, and the fields can overlap if result
(unpacked) data does not replace packed source data.

Compression and Compaction

Data Compression

Data Compaction

You can use the COMP instruction to reduce the size of a data stream to be sent
to another system or to be stored on an auxiliary storage device. Compression
replaces a string of from 3 to 63 duplicate (repeated) characters with a 1- or
2-byte code. Compaction replaces pairs of commonly used characters with single
coded bytes. Normally, compression is used when a data stream contains long
sequences of identical characters: blanks, zeros, or nulls, for example. Use
compaction for character pairs that are repeated frequently, such as: th, sh, ea.
(You would not normally compact uppercase characters unless your data streams
use uppercase only.)

Compression replaces strings of repeated prime characters with a 1-byte
compression code. The prime character should be the character most frequently
repeated in the data stream. (Normally, the prime character used is the blank or
space hex 40 or the null hex 00.) However, compression also compresses
repetitions of other characters, called non-prime characters. Each string of
repeated non-prime characters is compressed into 2 bytes (a 1-byte code followed
by the character being compressed). For example, if a data stream contains:

$$$$$$$$aaaaa$$$$$bbbbbb

and the prime character selected is the dollar sign($), the compressed string will
contain:

• 1 byte indicating 8 repetitions of the prime character.
• 2 bytes indicating 5 iterations of the "a".
• 1 byte indicating 5 iterations of the prime character.
• 2 bytes indicating 6 iterations of the "b".

The actual compressed data stream will contain these codes in the form of string
control characters (SCB). See "String Control Characters" in this chapter for a
description of the format of a compressed data stream.

Compaction reduces frequently used character pairs to 1-byte compaction codes.
For example, if the data stream contains many occurrences of the character pair
"th", the t and the h would be defined as master characters. During compaction,
each occurrence of th~ pair "th" would be reduced to a single byte. All other
characters would remain as 1-byte characters (but not in their normal EBCDIC
notation). The nUm.ber of master characters (maximum is 16) is governed by the
total number of unique characters that could occur in the data stream (the
compaction set).

3-8 4700 Controller Programming Library, Volume 1: General Controller Programming

String Control Characters

After you use COMPTB to build the compaction table and before the COMP
instruction is issued, the location of the compaction table is placed in the CPL TBS
and CPLTBD fields in the COMP parameter list (DEFCPL). On execution of
COMP, each pair of master characters in the data stream is compacted by a
1-byte code. Any non-master character, and master character not paired with
another master character, occupies a full byte in the compacted data stream, but
not in its normal EBCDIC format. (The EBCDIC characters are encoded to the
compaction table values.) Only paired master characters are compacted.

The compression and compaction methods used are the standard Systems
Network Architecture (SNA) compression and compaction procedures. The
output data stream is a series of smaller data strings separated by codes called
string control characters. The string control character identifies the data string that
follows it, and describes the length of that string. After compression, for example,
the output data stream will contain a series of data strings in compressed mode.
Each string is preceded by a string control character (SCB). Each SCB begins
with a 2-bit code describing the kind of string, and a 6-bit field containing the
length of the string.

SCB Code: Data String Described:

OOxxxxxx This SCB describes a string of from 1 to 63 uncompressed and
uncompacted characters; the data is unchanged from the input
data stream. The xxxxxx bits contain the length of the data string,
identifying the location of the next following SCB. The actual data
string of from 1 to 63 characters immediately follows this SCB.

Otxxxxxx This SCB describes a string of from 1to63 compacted characters
in the following data string. The xxxxxx bits contain the length of
the following string. Note that a string of compacted characters
can contain: single bytes representing pairs of compacted master
characters; single bytes containing single, unmatched master
characters; and single bytes containing the compact code for
non-master characters.

10xxxxxx This SCB describes and replaces a string of from 1 to 63
consecutive prime, compressed characters from the input data
stream. The xxxxxx contains the number of consecutive prime
characters represented by this SCB. No data follows this SCB.

1 txxxxxx This SCB describes a string of from 1 to 63 consecutive
non-prime, compressed characters from the input data stream. The
xxxxxx bits contain the number of times the characters are
repeated in the input data stream. The byte immediately following
this SCB contains the non-prime character being repeated.

Chapter 3. 4700 Instruction Categories 3-9

Data Decompression

Data Decompaction

After compression and compaction have been performed on an input data stream,
the format of the output data stream (and its data strings) might look like this:

SCB chars SCB SCB byte SCB chars

Olxxxxxx data string 1 to 63
compacted
characters

11xxxxxx character represents 1 to 63 repetitions
of a non-prime character

1 Oxxxxxx represents from 1 to 63 repetitions
of the prime character

OOxxxxxx data string represents 1 to 63 repetitions
of a non-prime character

The DECOMP instruction decompresses a data stream based on the parameter
information contained in the list described by the COPY DEFDCP instruction.
(This list must not be in Segment 14.) During decompression, the input data
stream containing compressed characters is restored to its decompressed state in
the output area. Fields in the DEFDCP parameter list are set to indicate return
information. If a data stream has been compressed for transmission to another
program at the central computer, for example, the receiving program must be
given (using standard SNA protocols) the prime compression characters.

The DECOMP instruction decompacts a compacted data stream using both a
DEFDCP parameter list and a decompaction table created with the DECOMPTB
instruction. To permit decompaction and decompression processing, set the
DCPFCT flag on and store the table address in DCPTBS and DCPTBD.

If a data stream has been compacted for transmission to another program, at the
central computer for example, the receiving program must have a copy of the
decompaction table.

Arithmetic and Logical Instructions

Arithmetic Operations

This section describes the two types of arithmetic operations performed by the
4 700, binary and zoned decimal, and the logical (AND, OR, Exclusive-OR, and
comparison) operations that can be executed.

The 4700 controller performs arithmetic in either binary or zoned decimal. The
EBCDIC data entered by the terminal operator can be operated on either directly
by the zoned decimal instructions. EBCDIC data can also be converted to binary
by the application program before an arithmetic operation and the results
reconverted back to EBCDIC form for other use such as printing or displaying.

3-10 4700 Controller Programming Library, Volume 1: General Controller Programming

Binary Operations

Zoned Decimal Operations

LDFLD and LDSEG are used to load a binary number into a register. LDREG
replaces the contents of one register with the contents of another register. STFLD
and STSEG are used to store the contents of a register into a field. The data is
loaded or stored without conversion. The LDFLD and LDSEG instructions are
used when a binary, number is generated in the application program or a value is
retained in binary form. If the number being loaded is shorter than 6 bytes, the
leftmost bit is propagated to the left in the register. If the field into which the
number is stored is shorter than 6 bytes, the number being stored is truncated on
the left.

LDDI loads 2 bytes of immediate data from the instruction into the low-order 2
bytes of a register; the high-order 4 bytes are set to zeros.

LDFLD, LDSEG, LDDI, STFLD, and STSEG do not change the PFP or FU
during execution; other instructions must be issued to set the PFP and FLI. The
following instructions store the rightmost 4 bytes of a register into a field:

SETFPL
STSEG

OUTSEG,,4
l,OUTSEG

Sets the FLI for amount of data.
Stores the rightmost 4 bytes.

LDFLDC and LDSEGC convert an EBCDIC decimal number (hex FO-hex F9),
which may be preceded by a minus sign (hex 60) into a 6-byte binary number,
and load it into the specified register. A negative number is loaded in twos
complement form.

The 4 700 Assembler Language contains instructions that perform the following
arithmetic operations.

• Addition: ADDREG and ADDFLD

• Subtraction: SUBREG and SUBFLD

• Multiplication: MPYREG and MPYFLD

• Division: DIVREG and DIVFLD

STSEGC and STFLDC convert the binary contents of a register into an EBCDIC
decimal number (FO-F9) and store the result in a specified field. The largest
possible decimal number resulting from a store-and-convert instruction is 15
digits. However, if the number will never exceed 10 digits, the field can be
specified as being 10 bytes long, and truncation, which occurs to the left, can be
ignored. When the field is stored, a condition code is set indicating a positive or
negative number so that the proper sign can be added.

Zoned decimal operations do not require converted operands, but do require sign
indicator processing by the application program. Both operands and results
contain a sign indicator in the high-order four bits of the least significant digit.
The application program must set a negative indicator in those bits on negative
operands. The program must also analyze the same bits of a zoned decimal result
to determine the sign, and then format any output accordingly. In other words,
the sign of an operand or result is not automatically changed to an appropriate
displayable character.

Chapter 3. 4700 Instruction Categories 3-11

Comparisons

Logical Operations

The following are the zoned decimal instructions, and the functions they perform:

• ADDli--Add Zoned Decimal
• COMPli--Compare Zoned Decimal
• DNZ-Divide Zoned Decimal
• MPYZ-Multiply Zoned Decimal
• SUBZ-Subtract Zoned Decimal

The zoned decimal instructions operate on operands that are character strings in a
storage segment. The result,· where created, replaces the first operand. All
operands have the standard zoned decimal form-each byte is a digit with X'F' in
the high-order four bits and a digit (X'O'-X'9') in the low-order four bits. The
sign position, which the application program must set, contains a positive (+) sign
code (X'A', X'C', or X'F') or a negative (-) sign code (X'B', X'D', X'E'). All
zoned decimal operands are processed byte-by-byte, from right to left. The
maximum operand length is 63 bytes, but operands greater than 15 bytes must be
specified with register addressing or modified register addressing.

The 4 700 has instructions that compare the contents of two fields, a register and a
field, two registers, or a field and immediate data:

• CAFLD and CAREG perform a binary arithmetic comparison. The leftmost
bit of each field or register is checked to determine whether the number is
positive (bit is 0) or negative (bit is 1), and the numbers are compared to
determine which is larger.

• CCFLD, CCFXD, and CCSEG perform a logic comparison of the data in two
fields. CCDI logically compares the contents of a fixed-field with a 1- or
2-byte immediate operand in the instruction. The comparison is performed
on the EBCDIC representations: an A is less than a C (Cl is less than C3),
and Fis greater than a$ (C6 is greater than SB).

• COMPZ performs an algebraic comparison of two zoned decimal operands.
A shorter operand is logically padded to the left (high-order positions) with
(X'FO').

If your application program is going to perform multiple comparisons to find
equivalent fields, the LSEEK instruction should be used.

AND and ANDI perform logical AND operations, INOR and INORI perform
inclusive OR operations, and EXOR and EXORI perform exclusive OR
operations. They operate on two fields or on a field and 1 or 2 bytes of data in
the instruction (immediate data).

3-.J2 4700 Controller Programmip.g Library, Volume 1: General Controller Programming

AND and ANDI

INOR and INORI

EXOR and EXORI

Testing Bits

. Setting and Resetting Bits

Shifting Data

An AND operation produces the logical product of the bits in two fields. If both
bits in the same relative position are 1 's, a 1 is set in the result. Otherwise, a 0 is
set in the result.

Field 1
Field 2
Result

01100011
11001011
01000011

An inclusive OR operation produces the logical sum of the bits in two fields. If
either bit in the same relative position is a 1, a 1 is set in the result. If both bits
are 0, a 0 is set in the result.

Field 1
Field 2
Result

01100011
11001011
11101011

An exclusive OR operation produces the modulo-two sum of the bits in two fields.
If only one bit is a 1, a 1 is set in the result. Otherwise, a 0 is set in the result.

Field 1
Field 2
Result

01100011
11001011
10101000

LIFON and LIFOFF test a single bit, TSTMSK and TSTMSKI test from 1to16
contiguous bits in a 1-byte or 2-byte field. The mask specified in the instruction
determines which bits are tested; a mask bit set to 1 indicates that the
corresponding data bit is to be tested. A condition code indicates the result of the
test .

You can set a bit on by using the INOR, !NORI, or LSETON instructions. You
can reset a bit (set it off) by using the AND, ANDI, or LSETOFF instructions.

SIDFTL and SIDFTR are used to shift the contents of a register left or right.
Any significant bits that are shifted out of the register are lost. As the bits are
shifted, zeros are inserted as padding. A maximum of 16 bits may be shifted for
each execution of this instruction.

Chapter 3. 4700 Instruction Categories · 3-13

Shifting a number in a register to the left has the effect of multiplying the register
contents by powers of 2. Shifting a positive number in a register to the right has
the effect of dividing the register by powers of 2.

Program Control Instructions

This section describes the instructions that you will use to: determine the
sequence in which your program will be executed; to invoke other programs; to
transfer control to various parts of your program; and to execute single
instructions outside of the sequence of execution.

Call Programming Instructions

The APCALL and COBLCALL instructions are the ones you will use to invoke
another assembler language application program or a COBOL application.

The FCLENTER instruction is used to receive control and parameters from a
COBOL program.

You will use the APRETURN and FCLEXIT instructions to return control to an
assembler application or to a COBOL program that called your program.

Passing Data Between Programs

You can pass data such as operands and addresses between programs by allowing
the programs to share the same segment storage or by placing the address of the
data in a register. In the cases where storage cannot be shared, you can have the
calling program load the address of an operand into a register with LORA, and
the secondary program refer to the field using a DEFRF instruction label that
refers to that register address.

Your assembler language program can use the six-byte registers in segment 0 to
pass addresses or other values from your program to a called assembler program.
You must define the specific registers, any segments your program will share with
the called program, and the called program name in a parameter list selected by
APCALL. If your program receives parameters from the called program, y'ou
should either share a segment with the called program that it can use to return
data, or establish an area selected by a register address that the called program
can use to return parameters to you.

Instructions that Release Control

Branch Instructions

You may use the LEXIT, L WAIT and PAUSE instructions to discontinue
execution of your program for a short time or until something happens that should
cause your program to continue.

Branching instructions in the 4 700 system fall into four categories: those that test
a condition code set by a previous instruction, those that test a bit switch (on or
off), those that test an index value, and those that link to a subroutine.

Branch on Condition Code Instructions

JUMP, BRAN, BRANL, BRANR, and BRANLR test the condition code set by a
previous instruction and change the sequence of program execution if the tested
condition exists. Each bit of the testing value in the branch instruction (the mask

3~14 4700 Controller Programming Library, Volume 1: General Controller Programming

operand) corresponds to a bit in the rightmost half of the condition code byte in
Segment 1 (at SMSCCD). The branch mask is set using the rightmost 4 bits
specified in the mask byte when the instruction is coded; for example, if X'OF' is
coded, the branch mask is set to X'F'. Setting a mask bit to 1 tests the
corresponding condition code bit. If the branch mask is X'F', the branch is always
taken (an unconditional branch); if the branch mask is X'O', the branch is never
taken (no operation). If the mask is not specified in the instruction, the mask is
set to X'F'.

The branch mask must be set by using a mnemonic; by specifying a hexadecimal
value; or by specifying the label of an EQUATE instruction. If an EQUATE is
used, its label should not duplicate any of the mask mnemonics that are defined
by the 4700 Controller.

The JUMP Imtruction: JUMP is a branch instruction that:

• Requires only 2 bytes of storage.

• Is faster than other branches.

• Has a maximum range of 510 bytes (255 halfwords).

The branch-to address is generated during assembly.

The BRAN Instruction: BRAN assembles into a 4-byte instruction that has a range
of 64K bytes. The branch-to address is generated during assembly.

The BRANR Imtruction: BRANR assembles into a 2-byte instruction. The
application program must place the branch-to address in the rightmost 2 bytes of a
register before BRANR is executed.

Branch on Bit Switch Instructions

The LIFON and LIFOFF branch instructions are used to control program flow by
testing a bit (a bit switch) and changing the sequence of program execution if the
tested switch is on (LIFON) or off (LIFOFF). If the setting that is tested is not
found, program execution continues with the next sequential instruction. The
instructions operate on a 2-byte field, and any single bit in the field may be
tested. The bits (bit switches) are numbered 0 to 15, starting with the high-order
bit in the field.

LIFON and LIFOFF have the ability to conditionally set the bit switch being
tested. LIFON can set the switch on if it is off, and LIFOFF can set the switch
off if it is on. The branch is not taken in these cases.

Two bit-setting instructions, LSETON and LSETOFF, may be used to
unconditionally set the bit switches tested by the branch instructions. Both
instructions operate on the two-byte field used by LIFON and LIFOFF. When
hexadecimal notation is used to specify the bit switches to be set, more than one
switch may be set with a single instruction execution; for example, specifying
x'COOO' in the instruction would set bit switches 0 and 1 on or off as desired.

Chapter 3. 4700 Instruction Categories 3-15

Branch on Index Instruction

Branch and Link Instructions

BRANX provides index increment, compare, and branch abilities in a single
instruction. This instruction can be used to control the number of times a series of
instructions is executed. The branch-to address is specified i'n. the instruction
along with a register that is initiafu:ed before BRANX is executed. This register
contains three 2-byte fields: the comparand, the increment, and the index value.
The increment is added. algebraically to the index value and the sum is placed in
the index field. The updated index field is then compared with the comparand. H
the comparison is unequal, the branch is taken. H the comparison is equal, the
branch is not taken and processing proceeds with the next sequential instruction.

BRANL and BRANLR store the address of the next sequential instruction if the
branch is taken. These instructions provide a method of using subroutines. The
difference between BRANL and BRANLR is in how you specify the branch-to
address: for BRANL, the address is specified in the instruction; for BRANLR, the
address must be placed in the register specified by the instruction.

1le BRANL lmh'llction: BRANL assembles into a 4-byte instruction. The
branch-to address is specified in the instruction. Depending on the operands
specified, the return address is placed either in a register or in the return-address
stack. H the return-address stack is used, LRETURN should be used to return
control to the next sequential instruction and clear the address from the stack.

1le BRANLR ln.th'llction: BRANLR assembles into a 2-byte instruction. The
branch address must be stored in the branch register before BRANLR is executed.
The return address is placed in the specified register (1-15) or the return-address
stack.

I Instructions that Return Control

You may use the IRETURN and LRETURN instructions to return control
following one of the Branch-and-Link instructions.

1le LRETURN ll&ftruction: LRETURN assembles into a 2-byte instruction. When
executed, it removes the latest entry from the return-address stack (last in, first
out) and gives control to the instruction at that address.

Return Addres.ro: For both BRANL and BRANLR, the return address (the
location of the next sequential instruction) is placed in a register if one of registers
1 through 15 is specified, or in a specially reserved portion of Segment 1 called
the return-address stack if register 0 or no register number is specified. The return
address is stored only if the branch is taken. When a register is specified, the
return address is placed in the rightmost 2 bytes of the register.

The return-address stack is managed by the controller on a last-in first-out basis.
The controller uses the SMSLSE field to keep a count of the number of entries in
the stack. When a BRANL or BRANLR instruction adds an entry to the stack,
the controller increases SMSLSE by 1.

When an LRETURN instruction is executed, the controller decreases SMSLSE by
1 and executes the instruction whose address was placed in the stack last.

3-16 4700 Controller Programining Library, Volume 1: General Controller Programming

The /RETURN Instruction: The !RETURN instruction is used in conjunction with
the ADRLST and one of the branch-and-link instructions.

The Execute (LEXEC) Instruction

The execute instruction, LEXEC, is used to cause out-of-sequence execution of a
single instruction (the subject instruction). The next sequential instruction after
LEXEC is performed following execution of the subject instruction (except when
the subject instruction is an LEXIT, LSEEK, or an instruction that modifies the
instruction counter). The subject instruction may be any valid executable
instruction except a jump, branch, or another LEXEC instruction.

The subject instruction is created by taking an instruction pointed to by LEXEC
(the addressed instruction) and ORing it with all or part of the data in a register.
The resulting subject instruction is then executed. Both the operation code and
operands may be modified except for the immediate data field of the WR TI
instruction. Specifying register 0 suppresses the ORing operation and causes the
addressed instruction to become the subject instruction.

The subject instruction exists only for a single execution, the addressed instruction
and the register are not changed by the ORing.

I Storage Management Instructions

Other 4700 Instructions

You can define segment storage in your program by using the DEFSTOR (Define
Segment Storage) instruction. You can allocate segment storage by the
SEGALLOC and SEGFREE, and by the DTACCESS and DTAFREE
instructions.

Storage Initializ.ation Instructions

Scratch-Pad Instruction

Timer Control Instructions

Your primary application program can initialize segment storage, that is you can
set storage to some value or values, by the SINIT (Start Initialization), INITSEG
(Initialize Segment), and ENDINIT (End Initialization) instructions. This
initialization will take place when your program is loaded into storage.

The scratch-pad area (SPA) is a global section of user storage that is separate
from segmented storage, and accessible to all application programs. The SPA can
be used to contain a dynamically-changing table, temporary data storage, or a
shared area for communication between work stations.

The 4700 provides three timers for program control and dating, or
"time-stamping" of system activities and data.

The time-of-day timer is a variable-format value representing year, month, day,
hour, minute, and second. Your program may set, adjust, and read the
time-of-day timer with the LTIME instruction. You can also expand the timer
format to contain such values as the complete month (such as January) and

Chapter 3. 4700 Instruction Categories 3-17

The Dump Instruction

weekday (such as Tuesday). Your program can read the expanded timer format
with the optional L TIMEV and L TIMET instructions. The resulting values of
either format are available to your program for either dating or branching. The
interval timers measure the elapsed time, or intervals, of a program execution or
some other event. Intervals.can be as short as 1/256 of a second with the
optional INTMR instruction.

The high-resolution counter (HRC) measures program activity in intervals of
1/256 of a second, and can be used as a time-stamp or to control your program
execution. Your program must define a field to contain the timer value when it is
read with the LHRT instruction.

To write any segments or files to a diskette data set use APBDUMP. The data set
must be defined during the configuration process. When the dump is complete,
you can use the system monitor to send the dump data set to the host.

If an APBDUMP instruction is included in the application program, the DEFDMP
and COPY DEFSMS instructions must also be included. These instructions
define the buffer used by APBDUMP and provide the locations of Segment 1
fields required by APBDUMP.

APBDUMP can be used in the program check routine so that a listing of the
registers (Segment 0), the location of the instruction that caused the program
check (Segment 1), and other desired information is available for debugging.

Note: The Extended Disk and Diskette Access Method (EDAM) is required in
order for you to use the APBDUMP instruction. You will find further information
in the IBM 4700 FCS Controller Programming Library: Volume 6: Control
Program Generation and in Volume 2: Disk and Diskette Programming.

3-18 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 4. Coding Rules

Syntax Notation

Syntax Notation Key

This chapter describes the rules by which 4 700 application programs must be
written. The coding rules governing the coding of 4 700 assembler instructions are
a limited set of the same coding and syntax rules used by the
OS/VS-DOS/VS-VM/370 assembler language. The following sections of this
manual explain the limitations on those assembler coding rules that you must
observe when writing 4 700 application programs. The prerequisite assembler
publications listed in the preface of this manual describe the detailed coding and
syntax rules that apply to the 4 700 assembler language as well as error messages
that could occur during assembly of your program.

We use a uniform notation to describe the syntax of the controller symbolic
instructions. The notation indicates which operands you must code and which are
optional, the options that are available for expressing values, the values assumed
by the system if you don't code an operand, and the punctuation.

CAPITAL LETTERS
Capital letters indicate values that you must enter exactly as shown.

lowercase letters
Lowercase letters indicate where you are to insert a number, character
string, or keyword in place of the lowercase letters.

punctuation .,='0
The period, comma, equal sign, single quotation mark, and parentheses are
punctuation that you must code exactly as shown. These punctuation
marks separate the operands of the instructions. You need not code a
comma preceding a keyword parameter for the first parameter in the
operand field. Parentheses are sometimes optional, see "ellipsis" below.

brackets(]
Brackets indicate that you can choose not to code the elements and
punctuation they enclose; the operand is optional.

braces n
Braces indicate that you must code the elements and punctuation they
enclose; the operand is required.

selecting options
When you choose from more than one operand, the choices appear like this,
with vertical bars separating them:

[_ll213] or {11213}

or they might appear stacked, like this:

[~] or { ~ }

Chapter 4. Coding Rules 4-1

Specifying Operands

underscoring
We underscore a value to indicate that if you do not code a value for the
element, the system assumes the underscored value. The value that the
system assumes is called a default. In the following examples, if you do not
code TYPE, the system uses TYPE=l.

[TYPE={.J..1213}] or [TYPE= { t)]
ellipsis •..

Ellipsis points indicate that you can add one or more additional operands or
sets of operands, each having the same format. For example,

CASE=(element1, ...)

indicates that you can repeat the syntactical unit (element) preceding the
ellipsis. The parentheses are not needed if you code only one element.

Generally, a 4700 assembler instruction performs an operation on two operands
and replaces one of them with the result. Operands for these instructions are
designated operand 1 and operand 2. For example, an instruction performing
addition adds operand 1 and operand 2 and replaces operand 1 with the result.
Operand 2 remains unchanged.

Note: When an instruction has only one principal storage reference, the suffix (1
or 2) has an additional significance. In such an instruction, the suffix identifies
which part of an Index Register Number Table (IRNT) applies to the storage
reference. For example, the COMP instruction has one storage reference -
identified as 'operand 2'. This means that the second half of the IRNT applies to
the COMP instruction. See "Segment Indexing" in Appendix F for more
information.

4-2 4700 Controller Programming Library, Volume 1: General Controller Programming

This section of the chapter describes how these operands, which can be either
defined constants or the contents of registers and/ or fields, are designated in the
assembler instructions.

operand 1
Is the value shown in the instruction notation having a suffix of 1.
Examples are:

defconl
defldl
(defrfl)
regl
(regl)
segl
segl,displ
seg l ,disp 1,len 1
immdatal

Each of these are variables that represent a way of selecting a constant or
value located in a field or register that is operand 1, and is defined later in
this section. When the operation creates a result, the area containing
operand 1 usually contains the result unless otherwise noted in the
instruction description. One or more operand 1 designators can be specified
for an instruction - any one of which can be used to define the operand.
They are described collectively, however, as "Operand 1" in the instruction
description.

operand 2
Is described by one or more variables in the syntax notation having a suffix
of 2. Examples are:

defcon2
defld2
(defrf2)
reg2
(reg2)
seg2
seg2,disp2
seg2,disp2,len2
immdata2

As in operand 1, one or more of these variables in the syntax notation of
the instruction description means that operand 2 may be defined as noted;
the variables are described collectively as "Operand 2". Operand 2 is not
normally changed by the operation unless as described in the instruction
description.

The rest of this section describes the variables that select an operand or
operands. The operand suffix is disregarded in these descriptions, because
most of these variables can be used to define either operand.

The operands listed below appear in several controller symbolic
instructions. A subset of the OS/VS or DOS/VS assembler constants is
used to code these operands. (Refer to the latest edition of
OS/VS-DOS/VSE-VM/370 Assembler Language for detailed information

Chapter 4. Coding Rules 4-3

defld

on constants.) The following descriptiol;ls include the constants that are
valid for the operands, unless specified otherwise in the description of the
individual instructions.

This variable repre8ents the label of a DEFLD (Define Field) instruction.
DEFLD instructions represent storage areas rather than specific values
themselves, but the storage area is usually initialized to a specific value.
DEFLD instructions always are coded in the data definition area of the
program.

def con

label

reg

seg

disp

len

This variable represents the label of a DEFCON (Define Constant)
instruction. DEFCON instructions define actual values, and cannot be
fields that are changed by the instruction. DEFCON instructions are always
coded in the data definition area of the program.

This is the label of an instruction, such as a DEFLD, an executable
instruction that is the target of a branch, or the name of a table. Label
must be a character string from one to eight characters (unless specified
otherwise in the descriptions of the individual instructions). The label
operand follows the rules governing assembler labels; all characters must be
alphameric, and the first character must be alphabetic. For further
discussion of labels, refer to the latest edition of
OV/VS-DOS/VSE-VM/370 Assembler Language.

This variable selects one of the sixteen registers available to this application
program. The value for reg can be 0 through 15, and can be specified as an
unsigned decimal integer, or the label of an EQUATE instruction that
refers to an unsigned decimal integer.

This variable selects one of the 16 segments that the program can address.
The value can be 0 through 15, as long as the corresponding segment has
been defined for the work station. The value 0-15 can be an unsigned
decimal integer, or the label of an EQUATE instruction that defines the
integer.

This variable defines the displacement into a segment. The value of disp
cannot be larger than the size of the related segment. The variables seg and
disp are usually used together to define a field. Specify disp as an unsigned
decimal integer ranging 0 to 65 534, or as the label of an EQUATE
instrilction that defines the integer.

This variable defines the length of a field in a segment. The beginning of
the field is usually located by seg,disp. The allowable maximum that len
can be varies according to the instruction. Specify len as an unsigned
decimal integer or the label of an EQUATE instruction that defines the
integer.

4 ... 4 4700 Controller Programming Library, Volume 1: General Controller Programming

(reg)
This variable defines a register containing an address that locates a storage
area. Register addresses have the following format:

Bits
00-07
08-11
12-15
16-31
32-47

Contents
Set to Zero
Segment space ID
Segment
Length
Displacement

Register addresses can be created in a register by the LDRA (Load Register
Address) instruction. You can use registers to pass data addresses from
your program to another. Specify reg as an unsigned decimal integer or the
label of an EQUATE instruction specifying the integer. The parentheses
must be coded.

(defrf)
This is the label of a DEFRF instruction. The DEFRF instruction identifies
a register (containing a register address), a displacement, and a length. The
displacement to the storage area is calculated by adding the displacement in
the register to the displacement from the DEFRF instruction. The length of
the storage area is the length in the DEFRF. DEFRF instructions can be
used to define multiple dummy section (DSECT) overlays. The
parentheses must be coded.

immdata

data

Defines immediate data, usually as operand 2, that becomes part of, and is
an operand of the instruction with which it is used.

Immdata must be 1 or 2 bytes of data specified as one of the valid types
discussed below or you can specify the label of an EQUATE instruction.
Immdata can also be a decimal value such as: 4 or 16. With DOS/VS there
is a limit of eight characters in the immediate data including the descriptors.
For example, B'10101' is counted as eight characters, because Band the
single quotation marks are included in the count.

Note: If a single quotation mark(') or ampersand(&) is included in a data
string, two quotation marks or ampersands must be coded in order to obtain
the desired data. For example, if the data wanted is the word can't it must
be coded as can"t. Similarly, if the data wanted is the phrase one & two, it
must be coded as one && two.

Is any character (C), hexadecimal (X), binary (B), fullword (F), or
halfword (H) specification in one of the following forms:

dddt'xxx ... x'
tLnn'xxx ... x'
tL.nn'xxx ... x'

where ddd is a decimal number indicating the number of times the constant
is to be generated (if only a single constant is required, this number is not
needed); tis one of the valid types (C, X, B, F, or H); nn is a decimal
number indicating the actual length of the constant; and xxx ... x is the data

Chapter 4. Coding Rules . 4-5

Labels and Mnemonics

that makes up the constant, enclos~din single quptation mar:ks for all types
except address constants, which are enclosed in parentheses.

An address {A or Y) specification may also be used, but must be in the
form:

dddA{label-apbname) or dddA{label-label) ,
ALn{label-apbname) or ALn{label-label) or ALn{label)
AL.n{label-apbname) or AL.n{label-label)
dddY{label-apbname) or dddY{label-label)
YLn{label-apbname) or YLn{label-label) or YLn{label)
YL.n{label-apbname) or YL.n{label-label)

when using the standard OS/vs'and DOS/VS assembler. label is the label
of the instruction and apbname is the CSECT name. If an address
specification is not in this form, the assembler builds an RLD entry which
will be rejected by the FORMAT service.program.

Notes:

1. The above forms of data specification are the only ones valid for a
controller application program. Any other forms may produce
unexpected results.

2. AL3 and AL4 address constants have specific meanings for the Host
Support program.

ccmask
Must be a hexadecimal value specified as X'xx' (the rightmost 4 bits of the
hexadecimal value are used as the mask; the other 4 bits are ignored); a
binary value specified as B'nnnn', a mnemonic (refer to the next section for
a list of the mnemonics representing coded values), or the label of an
EQUATE instruction that is associated with one of these values.

To avoid possible conflict, the. labels of the standard definitions copied by the
COPY instructions should not be repeated as labels of controller symbolic
instructions.

Mnemonics are used in several ways in the 4 700 assembly language; as a
representation of data sets and logical work. stations and as a mask in a branch or
JUMP instruction. A mnemonic used in a branch or JUMP instruction represents
a coded value that is the value of a condition code that may have been set. The
following are the mnemonics that have special meaning when coding a controller
application program.

4-6 4700 Controller Programming Library, Volume 1: General Controller Programming

Coded values for files:

A
c
CR
DSID
DSK
L
p
PBN
PLR
TFl
TF2
TF3
TF4

Absolute address
Composite file
Control Record

Disk or diskette
Log
Permanent file
Physical Block Number
Data set logical record

Temporary Files

Coded value for a logical work station

ST Station

Coded values for masks:

Mnemonic Hex Value Explanation

BL 08 A significant (one) bit is lost.
BU 04 The device is not available (busy).
EQ 01 The values compared are equal.
GE 05 The first operand is greater than or equal to the second

operand.
GT 04 The first operand is greater than the second operand.
ID 02 The ID specified is invalid, the name was not found, or the ID

was out of the range of valid IDs.
IL 02 An incorrect length is specified.
IO 04 An invalid Segment 0 is specified: Segment 0 operator A has

been set as the default.
IS 04 An invalid segment is specified in the parameter list.
LE 03 The first operand is less than or equal to the second operand.

LT 02 The first operand is less than the second.
MD 08 A modulus error occurred.
ME 04 The tested field and mask are identical.
MO 08 All tested bits are l's.
MX 02 The tested bits are mixed l's and O's.
MZ 01 All tested bits are 0 or the mask bits are all 0.
NE 06 The values compared are not equal.
NG 02 The result or data is negative.
NL 01 No significant (one) bits are lost.
NN 04 The field is not numeric.
NO 08 No Segment 0 for operator B exists.
NS 04 There is an invalid device specification.
NZ 02 The result or data is nonzero (logical instructions only).
OK 01 The operation is successful.

Chapter 4. Coding Rules 4-7

Mnemonic Hex Value Explanation

ov 08 An overflow occurred.
PS 04 The result or data is positive.
SP 04 There is insufficient segment space.
ST 02 Status is retUrned.
SU 08 The segment is in use.
TR 08 Truncation occurred.
ZD 08 Division by zero was attempted.
zo 01 The result or data is zero.

The mnemonics listed above. are those that are available for branching
instructions. If none of these mnemonics are meaningful to the branch operation,
use an EQUATE instruction to define another mnemonic.

These mnemonics may also be used as labels. but when they are used in ways
other than those stated in the descriptions of the individual instructions, they may
cause an error or an unexpected value to be assembled. For example, if a
mnemonic is coded in an instruction for which the mnemonic is not valid, an
assembler error occurs. The mnemonics are defined to represent specific coded
values and have meaning only for the instructions that specifically define their
use. The mnemonic representation of a coded value may be defined by some other
means, such as an EQUATE, but the coded value defined by an instruction has
priority over this other mnemonic definition. For example, if the following is
coded:

EQ EQUATE
BRAN

X'50'
EQ,ADDR

no assembler error is indicated, but the EQ in the BRAN instruction will be
assembled as hex 01 not hex 50.

If, however, the following is coded:

EQ EQUATE
TSTMSKI

X'50'
FLD,EQ

'EQ' will become hex 50 because TSTMSKI does not define a coded value for this
mnemonic.

4-8 4700 Controller Programming Library, Volume 1: General Controller Programming

Chapter 5. 4700 Instruction Descriptions (Alphabetically)

The following are non-executable instructions. They are not machine instructions
and do not appear within the assembled application program.

AP OPT
• BEGIN
• COPY
• DEFLD
• DEFRF

DEFSTOR
• ENDINIT
• ENDSEG
• EQUATE

FINISH
• INITSEG
• Ln

LDSECT
• LEJECT
• LEND
• LSPACE
• PLPCMD
• PRINT!
• RE BASE
• SAVEBASE
• SECTION
• SEGCODE
• SINIT

USEBASE

The following are non-executable instructions. They are not machine instructions
but they do become data within the application program and you must place them
properly. For example, DEFCON instructions cannot be interspersed with
executable instructions unless you branch around them.

• ADRLST
• DEFCON
• DEFDEL
• DEFDMP
• LSEEKPL
• LTIMET
• LTRTBEG
• LTRTENT
• LTRTGEN
• MASK

MOD
• TABLE

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-1

5-2 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDFLD--Add Field

ADDFLD

ADDFLD algebraically adds the binary value from a field to the binary contents
of a register and places the result in the register. The leftmost sign bit of the
result is propagated to the left in the register.

The length of the field must not exceed 6 bytes. The leftmost bit of the field is
the sign. If the length is 0, data in the register is not changed, but the condition
code is set according to that register data.

Name Operation Operand

{ ~~i~~~2 }
[label] ADDFLD reg1, (defrf2)

operand 1

(reg2)
seg2,disp2,len2

A register to which operand 2 will be added.

operand 2
A field to be added to operand 1. The field length is 0-6 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overlfow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-3

5-4 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDFLDL

ADDFLDL--Add Field Logical

ADDFLDL adds the contents of a 6-byte field to a register. If the field is less
than 6 bytes in length, it is functionally extended to 6 bytes before addition by
propagating zeros. ADDFLDL then adds the binary value from the field to the
binary contents of the register and places the result in the register.

The length of the field must not exceed 6 bytes. The leftmost bit of the result is
the sign. If the length is 0, data in the register is not changed, but the condition
code is set according to that register data.

Name Operation Operand

[label) ADDFLDL reg1, (defrf2) { ~:i~~~2 }

operand 1

(reg2)
seg2,disp2,len2

Is a register to which operand 2 will be added.

operand 2
Is a field to be added to operand 1. The field length must be 0-6 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overlfow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-5

5-6 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDREG--Add Register

ADD REG

ADDREG algebraically adds the binary contents of two registers and places the
result in the register specified by reg I.

Name Operation Operand

[label] ADDREG reg1 ,reg2

operand 1
A register to which operand 2 will be added.

operand 2
A register containing the value to be added to the first operand.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overlfow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5~ 7

5-8 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDZ

ADDZ--Add Zoned Decimal

This instruction adds the zoned decimal value in operand 1 to the zoned decimal
operand 2 value, and replaces operand 1 with the result. The length of either
operand is 1-63 bytes; operands greater than 15 bytes long must be specified
using register addressing.

Note: This is an optional instruction, and requires that module P31 be specified
on the OPTMOD configuration macro.

Name Operation Operand

defcon2
defld2

[label] ADDZ (defrf1)
{ defld1 } { (defrf2) } (reg1) (reg2)

seg1,disp1,len1 seg2,disp2,len2

operand 1
Defines a zoned decimal field to which operand 2 will be added. This field
cannot be in Segment 14; nor can the label of a DEFCON be specified. If
the result is less than the size of operand 1, each remaining high-order byte
is filled with hex PO.

operand 2
Defines a zoned decimal field to be added to operand 1.

Condition Codes: The following can be set.

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overlfow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, 09~ or 27 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-9

5-10 4700 Controller Programming Library, Volume 1: General Controller Programming

ADRLS

I ADRLST--Return Address List

ADRLST creates a list of return addresses to which the !RETURN instruction will
refer.

Name Operation Operand

[label l ADRLST [addr-1,addr-2, ...]

addr-n
Is a label. The maximum number of labels allowed is 7. The operands are
positional. If you omit one operand then the address of the next sequential
instruction (NSI) will be created in that position of the address list. If you
code no labels then one address will be created pointing to the next
sequential instruction.

The format of the address list is as follows:

Byte

O I FF lcountl

2 addr-1

addr-n

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-11

5-12 4700 Controller Programming Library, Volume 1: General Controller Programming

AND--AND Field

You may use AND to 'AND' from 1to255 bytes of field 2 with the same number
of bytes in field 1 and place the result in field 1. The length of field 2 determines
the length of the operation.

When the AND is performed, a bit in the result is set to 1 if the corresponding bits
in both fields are l's.

Name Operation Operand

defcon2
defld1 defld2

[label] AND { (defrf1) } { (defrf2) } (reg1) (reg2)
seg1 ,disp1 seg2,disp2,len2

operand 1
Defines a field to which the second operand will be ANDed. The segment
number cannot be 14.

operand 2
Defines a field to be ANDed to the first operand. The length (1-255)
determines how many bytes are in the AND operation.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all O's.
The result is mixed l's and O's, or all l's.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4 700 Instruction Descriptions (Alphabetically) 5-13

5-14 4700 Controller Programming Library, Volume· 1 :. General Controller Programming

14~1.11
ANDI--AND Field Immediate

ANDI is used to 'AND' 1 or 2 bytes of immediate data with field 1 and place the
result in field 1.

When the AND is performed, a bit in the result is set to 1 if the corresponding bits
in both the field and the immediate data are l's.

Name Operation Operand

[label] ANDI { 1~~~~11) } , immdata2
(reg1.)
seg1,disp1

operand 1
Defines a field to which the immediate data will be ANDed. The segment
number cannot be 14.

operand 2
Is 1 or 2 bytes of immediate data. The length of the immediate data
determines the length of the operation.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all O's.
The result is mixed l's and O's, or all l's.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-15

5-16 4700 Controller Programming Library, Volume l: General Controller Programming

APBDUMP

APBDUMP--DUMP Segment or File to Diskette

This instruction writes the contents of one or more segments, files, or the system
log to a diskette data set that can be allocated during operating diskette creation.
When the dump is completed, APBDUMP restores all register and SMS field
values except register 15. Operation resumes with the next instruction following
APBDUMP.

Notes:

To use this instruction you must code:

1. the EDAM operand on the FILES configuration macro

2. the COPY DEFSMS instruction - before a DEFDMP

3. the DEFDMP instruction to reserve a 454-byte area at the beginning of a
segment.

Name Operation Operand

[label] APBDUMP ({ (~~g, ...) } [,FILE]) [,ID=durnpid]

seg

list

FILE

Is the number of the segment to be dumped. The segment numbers are
specified in ascending order.

Note: If the segment specified is the same as the buffer segment specified
in DEFDMP, no dump of this segment occurs.

Is the list of files to be dumped. There is no dump for composite files; the
list can include any combination of the following:

TF1,TF2, TF3, TF4 for temporary file subdivisions

L for the log

p for the permanent file

Note: At least one operand (seg or FILE) must be coded with APBDUMP.

dump id
Is a unique identifier for this dump.

Condition Codes: This instruction may modify the condition code, however; any
condition code returned will have no significance.

Program Checks (hex): 01, 02, 03, 09, 11 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-17

5-18 4700 Controller Programming Library, Volume l; General Controller Programming

APCALL

I APCALL--Call Assembler Application Program

This instruction calls and passes control to another 4 700 assembler application
program. The called program begins execution with shared or private
work-station storage.

APCALL requires a 12-byte parameter list with the following format:

Bytes

0-7
8-9
10-11

Function

Called program name
Shared segment flags
Register flags

The called program name must be the same as that specified by the APBNM
parameter of the called program's BEGIN statement.

The 16 bits of the shared segment flags field correspond, from left to right, to the
application program's Segments 0-15. To share a segment between the calling
and called application program, the corresponding flag bit must be set to 0. If a
bit is set to 1 and the called application program's DEFSTOR statement defines
that segment, a new segment will be allocated. Regardless of their flag bit
settings, Segments 1 and 15 are always shared; Segment 13 is preallocated and
shared across all stations; and Segment 14 is always allocated.

New initialized segment headers are created for newly allocated segments. For
shared segments, the calling program's segment headers are passed unchanged by
APCALL. The 4700 also creates segment headers for Segments 1 and 15.

The bits in the 2-byte register flag field correspond, from left to right, to the
calling program's sixteen 6-byte registers. If Segment 0 was not passed (that is, it
was allocated for the called program) and a register flag bit is 1, the
corresponding register's contents are copied to the equivalent register for the
called program. Segments and registers can be shared in any combination
between the calling and called programs. For example, a register can contain a
register address pointing to a data area of a dummy section (DSECT) in a
common shared storage segment.

Note: Shared segments will pass data in both directions across the
APCALL/ APRETURN interface, but data in passed registers (Segment 0 not
shared) will not be returned to the calling program.

The called program may reside in controller storage or may reside on diskette or
disk until called. If programs are to be transient you must include the required
macros in your system configuration. See the APLIST and TRANPL
configuration macros in the IBM 4 700 Finance Communication System
Programming Library: Volume 6.

APCALL also does the following:

1. Creates a segment space ID for the called program.

2. Controls the base of the return address stack for each segment ~,pace ID.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-19

3. Saves the alternate delimiter table pointer (SMSDEL) and the delimiter
control mask (SMSDCB). SMSDEL will be initialized to zero for the called
program.

4. Saves and clears any segment indexing that may be active.

Name Operation Operand

[label] APCALL { ~:i~~~2 }·,
(defrf2)
(reg2)
seg2,disp2

[, WAIT={~ IN}]

operand 2

WAIT

is a field containing the 12-byte parameter list. Any length specified for
operand 2 is ignored.

controls whether or not the station will wait if storage is not available to
load a non-resident program. If you specify W AIT=N and storage is not
available, an immediate return is made to the calling program with a
condition code of 04. The default is WAIT= Y which causes the station to
be put in wait status until storage becomes available. The WAIT parameter
is ignored for a resident program.

Condition Codes: One of the following is set:

Hex Code

01

02

04

Possible
Mnemonic

OK

Explanation

Instruction executed successfully. This condition
code is actually the result of an APRETURN
instruction because if APCALL is successful,
control is given to the called program. The called
program performs an APRETURN and control
returns to the calling program.
Status is stored; the status code is contained in
SMSDST. See the IBM 4700 Controller
Programming Library: Volume 2 for explanation of
the status codes.
W AIT=N is specified and there is no available
area to load the requested transient application
program.

Program Checks (Hex): 01, 02, 04, 09, 20, 21, 22, 23, 24, 25, 27, and 28 can be
set.

5-20 4700 Controller Programming Library, Volume 1: General Controller Programming

Programming Notes

1. You must establish interrupt handling conventions between calling and called
programs. For a given station, asynchronous interrupts that are not processed
by a called program are held until another program gets control. The program
that gets control must have an interrupt handling routine or an appropriate
entry point defined. This program should be able to determine why the
interrupt occurred. Alternatively, the original program should process the
interrupt.

If asynchronous interrupts occur while the logical work station is idle and the
current application program has no entry point defined, the interrupts are
held until the program is redispatched and can clear them. However, because
no processing can occur, the station remains idle or appears locked up.

2. If the called application's program check routine resets the link stack counter
(SMSLSE), it must not be zeroed. Its contents must be equal to the current
link stack base value (SMSLSB).

3. The SMSDEL field is zeroed for the called application program and restored
by APRETURN. SMSDCB is passed unchanged to the called program, but is
restored by APRETURN.

4. All called application programs, whether transient or resident, may also have
overlays.

5. The space allocated to a particular segment space ID may be permanent or
temporary as determined by the USE parameter of the DEFSTOR instruction.
If you specify USE=STATIC the area allocated, when that program is called
the first time, is retained unchanged (segments, segment headers, and
registers) until the controller is IPLed again.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-21

5-22 4700 Controller Programming Library, Volume 1: General Controller Programming

APOP'f

I APOPT--Application Program Options

The APOPT instruction specifies application program assembly options. APOPT
must be the first assembler instruction in each assembly, and can be specified only
once.

Name Operation Operand

[label) APOPT [RELOC= {YI!::!)) [, SPLIT= {YI!::!))

[,DIRNAME=name, {NEWIOLD})

[, DISP= {NEW I OLD}) [, YL2= {YI!::!))

[,INDEX={nnnlQ}J [,DISP16={YI~})

[,REFRESH= {YI~})

RELOC
Specifies whether the relocate option is selected allowing modules to be
used in the LINKAPB function (Y) or no relocate and not allowing the
modules to be used in the LINKAPB function (N).

SPLIT
Specifies whether the application program is split. If your application is to
be split, see Appendix F, otherwise do not code this operand.

DIRNAME

DISP

DIRNAME=(name,NEW) specifies that the named directory should be
created on the host library, and that directory entries for all sections in the
assembly should be added to the new directory. If a directory with the
same name already exists, another directory will not be created and the
entries for the sections will not be added to the old directory.

DIRNAME=(name,OLD) specifies that the named directory already exists
and that directory entries for all sections in the assembly should be added.
(An entry will not be added if a duplicate entry already exists in the
directory.) If the directory does not exist, a new one is created and entries
for all sections in the assembly are added to it.

DISP=NEW specifies that the section or sections are new and should be
added to the host library only if a section with the same name does not
already exist.

DISP=OLD (or an omitted operand) specifies that a section or sections
'Inay already exist with the same name(s) as the section(s) being assembled,
and that the sections being assembled should replace those that exist. If a
section does not exist, the new section will be added.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-23

YL2
YL2= Y specifies that all AL2 address constants used as operands of
DEFCON instructions in the following sections should be changed to
relocatable YL2 address constants. 'Be careful when using this operand
because the DEFCON instruction cannot distinguish between expressions
that are not intended to be relocated and those that are. Therefore, you
should manually change the source statements if there is any question about
the use of AL2 address constants in your application program.

If YL2=N is specified or the operand is omitted, AL2 address constants
will not be altered.

INDEX
Provides for a unique rtai:ne for each CSECT as required for OVL YSEC
and SEGCODE sections that are assembled with RELOC= Y option and
when the sections are separately assembled. Values may be from 0 to 998.
The constant CSECT has the name specified on the macro; the instruction
CSECT has a generated name (BOK.IN index number) that includes the
number specified by INDEX. Each instruction control section increases the
value by one to create a ullique name.

DISP16
Specifies whether 12- or 16-bit addresses are created for DEFCON
instructions (RELOC must specify Y). If DISP16 is Y, 16-bit address
fields are created, regardless of the displacement size. If N (the default) is
specified, the displacement (12- or 16-bit) determines the field size.

REFRESH
REFRESH= Y means that this program is read-only; that is, it is not
dynamically modified by any other program. It al~o means that the 4 700
may reuse the main storage occupied by this program when it is not
operating. The 4 700 will reload the program into storage when it is to be
referenced subsequently. REFRESH=N means that this program may be
dynamically modified and will not be reloaded by the 4 700.

If a program contains an OVL YSEC instruction then it will be assembled as
if you specified REFRESH=N.

5-24 4700 Controller Programming Library, Volume 1: General Controller Programming

APRETURN
APRETURN--Retum to Calling Program

This instruction is issued by a called 4 700 assembler application program to return
control to the calling program. Control is returned with the following conditions
set:

1. Allocated segments belonging to this program are released unless its
DEFSTOR statement specified USE-STATIC.

2. The current segment space ID is restored to reflect what had originally been
assigned to the calling program by the controller.

3. The return address stack pointer, and alternate delimiter table address, and
the delimiter control mask are restored.

4. Segment indexing is restored if it was active.

5. Control passes to the instruction following the APCALL instruction in the
calling program.

Name Operation Operand

[label] APRETURN

Condition Codes: The condition code is always set to hex 01 (mnemonic OK).

Program Checks (hex): 26 can be set.

Programming Notes

1. If an APRETURN frees storage for which another station has been waiting,
then the storage will be allocated to the other station and the request for that
station will be processed.

2. You can test the condition code of APCALL in an instruction following the
APCALL instruction. If the APCALL fails (fbr example, a diskette read error
of a transient program) then the condition code will not be hex 01. If the
APCALL is successful then control will be given to the called program and
APRETURN will set condition code hex 01 when control is returned to the
calling program.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5$25

5-26 4700 Controller Programming Library, Volume 1: General Controller Programming

BEGIN--Assembly Control

BEGIN

BEGIN identifies the beginning of a controller application program during
assembly and builds a CSECT with the name identified by APBNM-name; an
ADDMEM statement, and a control block that is used to identify the controUer
application program and its entry points. At least one asynchronous entry point
must be specified. A48-byte area is reserved at the beginning of each controller
application program whether or not all operands are specified. BEGIN can be
preceded by APOPT only.

Name Operation Operand

[label] BEGIN APBNM=(name [,{vnll}]) ,DATE=mmddyy

[,PC=label] [,DEL=label] [,STP=label]

[,APENTRY=label] [,API=label]

[,ATD=label] [,ACP=label] [,AST=label]

[~NUMOVLY=n] [,ATM='label] [,ALA=label]

[,INSNAME=name] [,DSECT={YI~}]

APB NM
Specifies the name and version number of the controller application
program:

name

m

Is the eight-character name of the controller application program.
This name is also used in·the APBNM operand of the STATION
configuration macro instruction.

Is the version number of this assembly (a decimal integer from 0 to
99). If it is omitted, 1 is assumed.

DATE

PC

DEL

Is the month, day, and year of this assembly.

Is the entry point to be used when the program encounters a program
check. 'label' can be an external symbol when RELOC-Y is specified in
the APOPT instruction.

Is the location of the delimiter tab._le (refer to the DEFDEL instruction for a
description of defining deJimiters). If DEL is not specified, SMSDEL must
be dynamically alt~.red to point to the delimiter table. 'label' may be an
external symbol when RELOC= Y is specified in the APOPT instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-27

STP
Is the startup entry point. After controller initialization is completed,
control is passed to each logical station that uses this program and that was
configured with a startup flag during the controller configuration procedure
(that is, the STARTUP operand on the STATION macro instruction is
specified as Y). If a startup entry point is not specified, control is not
passed to a station until one of the other entry points is used. 'label' may be
an external symbol when RELOC= Y is specified in the APO PT
instruction.

APENTRY

API

ATD

ACP

AST

Defines the label of the entry point for executing this application program
when it is called by another program using APCALL.

Note: You must include a DEFSTOR instruction in your program in order
to use the APENTRY operand.

Is the label of the entry point to be used when a program interrupt
(LPOST) is presented to a station that has relinquished control by an
LEXIT instruction. The 'label' may be an external symbol when
RELOC=Y is specified in the APOPT instruction.

Is the entry point to be used whenever an asynchronous operation is started
on a device assigned to a station using this controller application program
(for example, an operator starts typing on a 4 704 to initiate a transaction).
The device can be at any Logical Device Address (LDA) that was specified
for asynchronous input. This entry point is used only when a station has
relinquished control by means of an LEXIT instruction or has never been in
control. 'label' may be an external symbol when RELOC= Y is specified in
the APOPT instruction.

Is the entry point to be used whenever the central processor issues an
asynchronous write to a station that has relinquished control by means of
an LEXIT instruction or that has never been in control. 'label' may be an
external symbol when RELOC= Y is specified in the APOPT instruction.

Is the entry point to be used whenever one station transmits data to another
station that has relinquished control by means of an LEXIT instruction or
that has never been in control. 'label' may be an external symbol when
RELOC= Y is specified in the APO PT instruction.

NUMOVLY
This operand is not used. It is included for compatibility reasons only.

5-28 4700 Controller Programming Library, Volume 1: General Controller Programming

ATM

ALA

Is the asynchronous entry point to be used when a station's timer request is
honored. A timer request is generated when the station is idle, and the
SMS timer (SMSTMR) is not 0 and is equal to, or less than, the GMS timer
(GMSTMR). If no other asynchronous requests are pending, the station is
given control at the entry point specified by the ATM, and the SMSTMR is
reset to 0. If other asynchronous requests are pending, the timer request is
canceled, but the SMSTMR value is unchanged. If timer entry processing is
not desired, the SMSTMR value should remain at 0. A program check may
result in SMSTMR is set to a nonzero value when ATM is not specified.
'label' may be an external symbol when RELOC = Y is specified in the
APOPT instruction.

Is the Alternate Line Attachment program entry point where 'label' is a
1-to-8-character name. Processing begins at this point when an
SNA-Primary device presents data or status to an idle station. You must
specify this entry point name if asynchronous entry can occur. An
SN A-Primary/ ALA LREAD is normally coded at this entry.

IN SN AME
This operand is used only in split application programs. See Appendix F for
further information.

DSECT
Specifies whether DEFLD instructions expand as DSs or EQUs. (DS and
EQU are System/370 instructions.) If DSECT= Y is specified, DEFLD
instructions expand as DSs within a dsect. For each segment (0 through
15) there is a unique dsect named BQK$Sx, where x equals one character,
0 through F. In this case, the value field of the cross-reference listing
contains the displacement of the field defined by the DEFLD instruction.
If DSECT=N is specified, DEFLD instructions expand as EQUs and no
dsects are formed. In the latter case, the value field of the cross-reference
listing is meaningless.

Note: The label of an EQUATE instruction cannot be used in the operands for
the BEGIN instruction.

Programming Notes: Asynchronous entry point priorities are as follows:

1. CPU message pending
2. ALA message pending
3. terminal message pending
4. station message pending
5. program interrupt pending
6. timer interrupt pending.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-29

5-30 4700 Cg_ntroller Programming Library, Volume 1: General Controller Programming

BRAN--Branch

BRAN

BRAN conditionally or unconditionally changes the sequence of program
execution. If any bit is set to 1 in the mask that is specified in the instruction and
the corresponding bit is set in the present condition code, then the condition is
satisfied, and the branch is taken. When an unconditional branch or a branch
with the condition satisfied is executed, operation continues with the instruction
referred to by the BRAN instruction. Otherwise, operation continues with the
next sequential instruction.

Name Operation Operand

[label] BRAN [ccmasklX'F' ,] branch address

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). The ccmask can be in the form of a
mnemonic (see Chapter 4 for a list of the mnemonics representing coded
values), a 1-byte hexadecimal expression, a 4-bit binary expression, or the
label of an EQUATE instruction expressing one of the preceding numeric
values. If the operand is omitted or if X'F' is coded then the branch is
always pedormed. If ccmask is specified as hex 0, the branch is never
taken.

branch address
Is the label of the instruction to be executed if the branch is taken. The
label may be an external symbol when RELOC= Y is specified in the
APOPT instruction.

Condition Codes: The code is not changed.

Program Checks (hex): OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-31

5-32 4700 Controller Programming Library, Volume 1: General Controller Programming

BRANL--Branch and Link

BRANL

BRANL conditionally or unconditionally changes the sequence of program
execution and stores the location of the next sequential instniction. If any bit in
the mask specified in the instruction is set and the corresponding bit in the present
condition code is set, then the condition is satisfied and the branch is taken.
When an unconditional branch or a branch with the condition satisfied is
executed, the location of the next sequential instruction is:

• placed in the return-address stack in the segment 1 machine section (SMS), if
no register, or register 0 is specified;

or

• placed in the register specified by the BRANL instruction;

and execution continues with the instruction to which the BRANL instruction
refers. Otherwise, execution continues with the next sequential instruction.

Use the BRANR instruction to return to the next sequential instruction from a
BRANL when a register is specified; and the LRETURN instruction to return
otherwise. The number of entries that the station's return-address stack can hold
may be specified as 0 to 255 (default=6) by coding the RETSTK operand of the
STATION macro. Each BRANL, BRANLR, and LSEEKP instruction that uses
the return-address stack adds one entry, and each LRETURN instruction removes
one entry. It is possible to overflow the stack, which results in program check.

Name Operation Operand

[label] BRANL [ccmasklX'F' ,] branch address [,reg]

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X'F' is
coded then the branch is always performed. If ccmask is specified as hex 0,
the branch is never taken.

branch address

reg

Is the label of the instruction to be executed if the branch is taken. The
label may be an external symbol when RELOC= Y is specified in the
APOPT instruction.

Is a register (1-15) in which the location of the next sequential instruction
is to be stored if the branch is taken. The location of the NSI is stored in
the rightmost 2 bytes of the register. The leftmqst 4 bytes are set to zeros.
If this operand is omitted or specified as 0, the location is stored in the
return-address stack in segment 1.

Condition Codes: The code is not changed.

Program Checks (hex): 04 or OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-33

5-34 4700 Controller Programining Library, Volume 1: General Controller Programming

BRAN LR

BRANLR--Branch and Link Register

BRANLR conditionally or unconditionally changes the sequence of program
execution. If any bit in the mask specified in the instruction and the
corresponding bit in the present condition code is set, the condition is satisfied,
and the branch is taken. When an unconditional branch or a branch with the
condition satisfied is executed, the location of the next sequential instruction is:

placed in the register (reg2) specified in the BRANLR instruction
or placed in the return-address stack of segment 1.

If the return register (reg2) is not specified or is specified as 0, the branch is taken
to the instruction whose location is specified by reg 1. Otherwise, execution
continues with the next sequential instruction.

When the NSI location is placed in the return-address stack, the program should
issue an LRETURN instruction to return control to the NSI. When the NSI
location is stored in a register, the program should issue a BRANR instruction
specifying the return register to return control to the next sequential instruction.

The number of entries that the station's return-address stack can hold may be
specified as 0 to 255 (default=6) by coding the RETSTK operand of the
ST A TION macro. Each BRANL, BRANLR, or LSEEKP instruction that uses
the return-address stack adds one entry, and each LRETURN instruction removes
one entry. It is possible to overflow the stack. The overflow results in program
check 04.

Name Operation Operand

[label] BRANLR [ccmasklX'F' ,] regl [,reg]

cc mask

regl

reg2

Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X'F' is
coded then the branch is always performed. If ccmask is specified as hex 0,
the branch is never taken.

Is a register (0-15) that contains the location of the instruction to be
executed if the branch is taken. The location must be in the rightmost 2
bytes.

Is a register (1-15) in which the location of the next sequential instruction
is to be stored. The location of the NSI is stored in the rightmost 2 bytes,
and the leftmost 4 bytes of the register are zeroed. If reg2 is not specified
or is specified as 0, the return location is placed in the return-address stack
in segment 1. The same register may be used for both the branch-to and
the return locations.

Condition Codes: The code is not changed.

Program Checks (hex): 04 or OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-35

5:-36 47QQ Controller Programming Library, Volume 1: General Controller Programming

BRANR--Branch Register

BRANR

BRANR conditionally or unconditionally changes the sequence of program
execution. If any bit in the mask specified in the instruction and the
corresponding bit in the present condition code is set, the condition is satisfied,
and the branch is taken. When an unconditional branch or a branch with the
condition satisfied is performed, execution continues with the instruction referred
to by the register in the BRANR instruction. Otherwise, execution continues with
the next sequential instruction.

Name Operation Operand

[label] BRANR [ccmasklX'F' ,] reg

ccmask

reg

Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). If the operand is omitted or if X'F' is
coded then the branch is always performed. If the ccmask is specified as
hex 0, the branch is never taken.

Is a register (0-15) that contains the location of the instruction to be
executed if the branch is taken.

Condition Codes: The code is not changed.

Program Checks (hex): OB may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-37

5-3 8 4700 Controller Programming Library, Volume l: General Controller Programming

BRANX--Branch on Index

BRANX

The BRANX instruction specifies a register and a branch address. The register
contains three 2-byte fields:

Bytes Field Range of Values

0,1
2,3
4,5

Comparand
Increment
Index

0 to 65 535
-32768 to 32767
0 to 65 535

The increment is added to the index and the sum is placed into the index field.
The index field is compared with the comparand field. If the comparison is not
equal, a branch is made to the branch address; on equal comparison, no branching
occurs.

An increment value of zero defaults to minus one.

An overflow during addition is ignored and does not affect the comparison.

Name Operation Operand

[label] BRANX reg,branch address

reg
Is a register (0-15) that contains the comparand, increment, and index.

branch address
Is the label of the instruction to be executed if the updated index field is not
equal to the comparand field. The label may be an external symbol when
RELOC=Y is specified in the APOPT instruction.

Condition Code: The code is not changed.

Program Checks (hex): OB can be set.

Prognunming Notes: The following example shows a use of the BRANX
instruction for loop control. Assume a loop is to be executed three times with the
index having successive values of 20, 25, and 30.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-39

Note: Be sure that the sum of the' initial index val1ie plus the repeated additions
of the increment will eventually equal the comparand.

CONST DEFCON H'35',H'5',H'20' 1
•

MVFXD REG2,CONST 2

LOOP •

• 3

•

BRANX R02,LOOP 4

1 Defines constants for coniparand, increment, and index values.

2 Initializes register 2 for loop control.

3 Loop to be executed.

4 Performs· loop function until the index in register 2 equals
the comparand.

5-40 4700 Controller Programming Library, Volume 1: General Controller Programming

CAFLD

CAFLD--Compare Arithmetic Field

CAFLD algebraically compares the value of the data in a register with the value
of the data in a field and sets the condition code to indicate the result. Six bytes
are compared. If the field is less than 6 bytes long, CAFLD compares the field as
if its length were increased to 6 bytes by the propagation of the field's leftmost
bit.

Name Operation Operand

defld2
[label] CAFLD regl, {

defcon2)

(defrf2)

operand 1

(reg2)
seg2,disp2,len2

Is a register containing the first comparand.

operand 2
Is a field containing the other comparand. The length of the field is from 0
to 6 bytes. If 0 is specified, the register contents are compared to 0.

Condition Codes: One of the following is set:

Hex Code

01
02
03

04

05

06

Possible
Mnemonic

EQ
LT
LE

GT

GE

NE

Explanation

The values are equal.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-41

5-42 4700 Controller Programming Library, Volume 1: General Controller Programming

CAFLDL.

CAFLDL--Compare Arithmetic Field Logical

CAFLDL compares the contents of a register with the contents of a 6-byte field.
H the field is less than 6 bytes, CAFLDL compares the field as if its length is
increased to 6 bytes by propagating zeros. CAFLDL sets a condition code to
indicate the result of the comparison.

Name Operation Operand

defld2
[label] CAFLDL reg1, { (defrf2)

defcon2 }

operand 1

(reg2)
seg2,disp2,len2

Is a register containing the first comparand.

operand 2
Is a field containing the other comparand. The length of the field is from 0
to 6 bytes. If 0 is specified, the register contents are compared to 0.

Condition Codes: One of the following is set:

Hex Code

01
02
03

04

05

06

Possible
Mnemonic

EQ
LT
LE

GT

GE

NE

Explanation

The values are equal.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-43

--- ..

5-44 4700 Controller Programming Library, Volume 1: General Controller Programming

CA REG

CAREG--Compare Arithmetic Register

CAREG algebraically compares the arithmetic value of the contents of two
registers and sets the condition code to indicate the result.

Name Operation Operand

[label) CAREG reg1 ,reg2

operand 1
Is a register containing the first comparand.

operand 2
Is a register containing the second comparand.

Condition Codes: One of the following is set:

Hex Code

01
02
03

04

05

06

Possible
Mnemonic

EQ
LT
LE

GT

GE

NE

Explanation

The values are equal.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5;.45

5-46 4700 Controller Programming Library, Vel.ume 1: Gener.U Controller Programming

g;.11
CCDI--Compare Character Data Immediate

The CCDI instruction compares the logical value of a field with the immediate
operand and sets the condition code to indicate the result. Either 1 or 2 bytes are
compared.

Name Operation Operand

defld1
[label] CCDI (defrf1) {

defcon1 }

,imrndata2
(reg1)
seg1,disp1

operand 1
Is a field to compare with operand 2.

operand 2
Is 1 or 2 bytes of immediate data. If only 1 byte of immediate data is
specified, CCDI performs a 1-byte comparison. If 2 bytes of immediate
data are specified, CCDI performs a 2-byte comparison.

Condition Code: One of the following is set:

Hex Code

01
02
03

04

05

06

Possible
Mnemonic

EQ
LT
LE

GT

GE

NE

Explanation

The values are equal.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex}: 01, 02, 03, or 27 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-4 7

5-48 4700 Controller PrograII!Jlling Library, Volume 1: General Controller Programming

I CCFLD

CCFLD--Compare Character Field

CCFLD compares the logical value of a segment-header addressed field with the
logical value of another field, and sets the condition code to indicate the result.
The length of the two fields is assumed to be the same.

When performing logical comparisons, fields are compared from left to right and
the comparison ends when a difference is found or the fields are determined to be
equal. The comparison is based on EBCDIC codes of the bytes having the same
relative positions.

Name Operation Operand

defld2
[label] CCFLD seg1, { (defrf2)

defcon2 }

(reg2)
seg2,disp2,len2

operand 1
Is a field in the specified segment to compare with operand 2. The field
location is determined by the primary field pointer.

operand 2
Is a field to compare with operand 1. The length of the field is 0 to 15
unless you specify register addressing, which allows a length ranging 0 to 65
535. If 0, the length of the comparison is determined by the field length
indicator of segl.

Condition Codes: One of the following is set:

Hex Code

01

02
03

04

05

06

Possible
Mnemonic

EQ

LT
LE

GT

GE

NE

Explanation

The values are equal or the length of the field in
segl is 0 and no operation (NOP) occurs.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-49

5-50 4700 Controller Programming Library, Volume 1: General Controller Programming

CCFXD

CCFXD--Compare Character Fixed

CCFXD compares the logical values of two fixed fields and sets the condition
code to indicate the result. The length of the two fields is assumed to be the same.

Name Operation Operand

defld2
[label] CCFXD

defld1
defrf1) {

defcon1

} {
defcon2 }

, (defrf2 1

(reg1)
seg1 ,disp1

(reg2)
seg2,disp2,len2

operand 1
Is a field to be compared with operand 2.

operand 2
Is a field to be compared with the field defined in operand 1. The length of
this field is from 0 to 65 535; operands greater than 255 bytes long must be
selected using register addressing. The number of bytes to compare is
determined by this field length.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 EQ The values are equal or the length of field 2 is 0,
and no operation (NOP) occurs.

02 LT The first operand is less than the second operand.
03 LE The first operand is less than or equal to the

second operand.
04 GT The first operand is greater than the second

operand.
05 GE The first operand is greater than or equal to the

second operand.
06 NE The first operand and the second operand are not

equal.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-51

Pl'Ogl'tllflming Notes: For example, when the new balance is received from the
central processor, the application program may compare account numbers to
ensure that the correct data has been received. Below are the instructions that
perlorm the comparison. ·

CPACCT
OUT ACCT

CH KR ESP

DEFLD
DEFLD

•
•
•

CCFXD
BRAN

CPINSEG,0,7
OUTSEG,2,7

OUTACCT,CPACCT
NE,DIFRESP

1 Defines the account number within the field transmitted from the
central processor.

2 Defines the account number within the field sent to the central
processor.

3 Compares the two account numbers.

1
2

3
4

4 Branches to a routine that processes the message if the account numbers
are not equal.

5;.;52 4700 Controller Programming Library, Volume 1: General Controller Programming

I

CCSEG

CCSEG--Compare Character Segment

CCSEG compares the logical value of two segment-header addressed fields and
sets the condition code to indicate the result. The comparison starts at the
primary field pointer (PPP) in each of the segments. The length of the
comparison is determined by the field length indicator of the second segment. If
segl and seg2 are the same segmept, the comparison field of segl starts at the
secondary field pointer; the secondary field pointer, however, does not change.

Name Operation Operand

[label l CCSEG seg1,seg2

operand 1
Is a field in the specified segment to compare with operand 2.

operand 2
Is a field in the specified segment to compare with operand 1. The length
of this field can be 0 to 65 535.

Condition Codes: One of the following is set:

Hex Code

01

02
03

04

05

06

Possible
Mnemonic

EQ

LT
LE

GT

GE

NE

Explanation

The values are equal or the length of the field in
operand 2 is 0, and no operation (NOP) occurs.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex): 01or02 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-53

5-54 4700 Controller Programming Library, Volume 1: General Controller Programming

COBLCALL

COBLCALL--Call a COBOL Application Program

This instruction must be used by a 4700 assembler program to call another
application program written in the COBOL programming language. This
instruction creates the parameter list protocol expected by the COBOL program.
COBLCALL sets register 1 to the parameter list, then does an APCALL.
Register 2 is used as a work register. Refer to the 4700 COBOL Programmer~~
Guide for instructions and other requirements.

Name Operation Operand

[label] COBLCALL ap, { 1~!}~i1) t , { 1~!}~~2)}
(reg1) j (reg2)

[' { 1~!}~~3) l , ...]
(reg3) j

ap
Names the COBOL program being called.

operand 1
Defines the location of a parameter list containing six-byte register
addresses, one for each parameter that is to be passed to the COBOL
program.

operand 2, 3, and so on.
Define the parameters to be passed to the called COBOL program by
COLBCALL. COBLCALL stores a register address for each parameter in
the parameter list defined by operand 1.

Condition Codes: This instruction may modify the condition code, however, any
condition code returned will have no significance.

Program Checks(hex): 01, 02, 03, 09, 11, and 20 - 29.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-55

5-56 4700 Controller Programming Library, Volume 1: General Controller Programming

COMP

COMP--Compress and Compact

COMP compresses and compacts an input data stream, based on the information
in a parameter list, and stores the results in a specified segment. See Chapter 3
for a detailed discussion of compression and compaction.

Note: COMP requires the optional P27 module, which may be included via the
P27 operand on the OPTMOD configuration macro.

COMP requires information coded in a parameter list (see COPY DEFCPL)
containing the following fields:

CPLINS
2-byte field containing the segment number of the input area. The input
area contains the data to be processed.

CPLIND
2-byte field containing the displacement into the segment to the input area.

CPLINL
2-byte field containing the length of the input area.

CPLOUS
2-byte field containing the segment number of the output area. At the
completion of COMP, the output area contains the compressed/compacted
data. The segment may not be 14.

CPLOUD
2-byte field containing the displacement into the segment to the output
area.

CPLOUL
2-byte field containing the length of the output area.

CPLPRI
1-byte field specifying the prime compression character (the character that
will be represented by SCB type lOxxxxxx). During compression, any
occurrence of from 3 to 63 repetitions of the prime character is replaced by
one byte containing the compression code (lO:Xxxxxx), where 'xxxxxx' is
the count of prime character repetitions.

CPLFLG
1-byte input flag field
Bit Meaning

0 = 1 Compaction requested. CPL TBS and CPL TBD must be
initialized to the segment and displacement of a
compaction table (see the COMPTB instruction).

0 =0 Compaction not requested.
1 = 1 Compression requested.
1 =0 Compression not requested.
2-7 =0 Reserved.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-57

Note: Compaction, compression or both functions may be
requested. At least one of the functions must be requested.

CPLTBS
2-byte field containing the segment number of the compaction table
information area. See the COMPTB instruction.

CPLTBD
2-byte field containing the displacement into the segment to the
compaction table information area. The assumed length of the area is 257
bytes.

During operation of the COMP instruction, the controller sets the following
fields in the parameter list:

CPL IND
Contains the displacement to the next input byte. If the input area is
exhausted, CPLIND will point to the byte immediately following the input
area.

CPLINL
Contains the remaining length of the input area. When the input area is
exhausted, CPLINL contains zero.

CPLOUD
Contains the displacement to the next output byte. If the output area is full,
CPLOUD will point to the byte immediately following the output area.

CPLOUL
Contains the remaining length of the output area. When the output area is
full, CPLOUL contains zero.

CPLTST

Name

Contains the completion status for COMP. When the condition code is 01,
CPL TST will be zero. When the condition code is 02, CPLTST will contain
a code that indicates the reason for termination of the COMP instruction.

CPLTOV (X'80'): Indicates the output for the next input byte would
extend beyond the output area.

CPLTIL (X'40'): Indicates that the length of the input area was initialized
to zero.

Operation Operand

[label] COMP defrf2) {
defld2 }

(reg2)
seg2,disp2.

5-58 4700 Controller Programming Library, Volume 1: General Controller Programming

operand 2
Is a field containing the parameter list (see the COPY DEFCPL instruction
in Appendix B). The length specified is ignored because the parameter list
is defined as a fixed length area. The parameter list must not be in Segment
14.

When using register addressing to locate a parameter list, the parameter list
can be located in a noncurrent segment space. However, if the parameter
list contains the address (segment, displacement) of other storage areas
(that is, input and output areas, tables) the other storage areas are always in
the current segment space.

Note: The prime compression characters for a data stream compressed at
the host or some other point on the network must be passed to the receiving
program using standard SNA protocols.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK
ST

Explanation

The instruction was executed successfully.
COMP was terminated. See CPLTST in the DEFCPL
parameter list.

Program Checks: 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-59

5~60 4700 Controller Programming Library, Volume 1: General Controller Programming

COMPTB

COMPTB--Build Compaction Table

COMPTB dynamically builds a 257-byte compaction table for use by the COMP
instruction. See Chapter 3 and the COMP instruction for a discussion of
compaction.

The COMPTB operands specify the location of the input data to be formatted
into the compaction table, and the area in which the compaction table is to be
built. You select the characters that will appear in the data to be compacted (the
compaction set), and the subset of those characters that will appear most
frequently in pairs in the data stream (the master characters). COMPTB formats
this information into the compaction table for use by COMP.

Note: This instruction requires the P27 module, which may be included via the
P27 operand on the OPTMOD configuration macro.

Coding Input for COMPTB: The COMPTB instruction builds a compaction table,
in the correct format, from information you supply in an input area. The input
area contains:

• The number of master characters

• The master characters, themselves

• The remainder of the compaction set, arranged beginning with those
characters least likely to occur in the data stream to be compacted.

To begin, calculate the number of characters that can appear in the data stream.
Assume a compaction set of 87 possible characters in the data stream. The
following table:

Compaction Master
Set Size Characters

255 1
252 2
247 3
240 4
231 5
220 6
207 7
192 8
175 9
156 10
135 11
112 12
87 13
60 14
31 15
16 16

indicates that 13 master characters are used with an 87-character compaction set.
So, the first byte of the COMPTB input area would be coded as:

MCHLGTH DEFCON X'OD' 13 master characters

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-61

The compaction set' must contain a number of characters that matches exactly one
of the sizes in the left-hand column (Compaction Set Size). If it does not match,
the compaction set must be expanded to contain the next higher increment.

For master characters, assume that the following 13 characters will occur in the
data stream most regularly in pairs:

a d e g i l n o r s t u 'space'

The next portion of the COMPTB input area would be coded as:

MCHARS DEFCON X'818485878993959699A2A3A440'

the hexadecimal equivalents of the master characters. The remainder of the
COMPTB input area will be the hexadecimal equivalents of the remaining
nonmaster characters in the compaction set:

COMPSET DEFCON X'4C6E7C828386889192949798A5
A6A7A8A9C1C2C3C4C5C6C7C8C9
D1D2D3D4DSD6D7D8D9E2E3E4ES
E6E7E8E9FOF1F2F3F4FSF6F7F8
F94A4B4D4E505A5B5CSDSE606l
6B6C6D6F7 A 7B7D7E7F'

You may then code the COMPTB instruction referring to the input area and the
output area where the compaction table will be created.

The location of the input area is indicated by the primary field pointer of the
segment specified by operand 1. A length of 1 7 is assumed when the number of
master characters (M) is 16. A length of 257 minus M x Mis assumed when Mis
less than 16.

Name Operation Operand

[label] COMPTB seg1,

operand 1

{
defld2 }
(defrf2)
(reg2)
seg2,disp2

Is a field containing input data.

operand 2
Is a field that will contain the compaction table. The field must not be in
Segment 14. A length of 257 is assumed.

5..:62 4700 Controller Programming Library, Volume 1: General Controller Programming

Condition Codes: One of the following may be set:

Hex Code

01
04

08

Possible
Mnemonic

OK

Explanation

Successful execution.
The number of master characters chosen is zero,
or greater than 16.
The same character occurs more than once in the
compaction set.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter S. 47QO Instruction Descriptions (Alphabetically) 5-63

5~64 4700 Controller Programming Library, Volume 1: General Controller Ptogramming

COMPZ

COMPZ--Compare Zoned Decimal

This instruction compares the zoned decimal data in operands 1 and 2
algebraically; neither operand is altered by the operation. The length of either
operand is from 1 to 63 bytes; operands longer than 15 bytes must be addressed
using register addressing. A shorter operand is padded on the left with decimal
zeros (hex FO) to make it the same length as the longer operand.

Note: This is an optional instruction, and requires that optional module P31 be
specified on the OPTMOD macro.

Name Operation Operand

defld1 defld2
[label) COMPZ {

defcon1

(defrf1)
(reg1)

, (defrf2) } {

defcon2 }

seg1 , displ , len 1

operand 1

(reg2)
seg2,disp2,len2

Is a field containing the first zoned decimal comparand.

operand 2
Is a field containing the second zoned decimal comparand.

Condition Codes: One of the following is set:

Hex Code

01
02
03

04

05

06

Possible
Mnemonic

EQ
LT
LE

GT

GE

NE

Explanation

The values are equal.
The first operand is less than the second operand.
The first operand is less than or equal to the
second operand.
The first operand is greater than the second
operand.
The first operand is greater than or equal to the
second operand.
The first operand and the second operand are not
equal.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-65

5~66 4700 Controller Program.ming Library, Volume 1: General Controller Programming

I COPY--Copy Source Code

COP¥

The COPY instruction copies predefined source code into your application
program during the assembly process. It can be used to make system definitions
for: segments 0, 1, 14, and 15; parameter lists; and other source code - part of
your program. System definitions provided by the 4 700 are in Appendix B.

You can also define your own copy files and include them in the subsystem library
of the 4700 Host Support. (See 4700 Host Support User's Guide, SC31-0020.

Because system definitions are subject to change, you should refer to system
information and parameter lists using the labels provided. Fixed fields that are
defined within system copy files should be referred to individually, for example,
COPY DEFAPB contains:

APBLTH DEFLD 14,,2
APBROD DEFLD 14,,2

Because the DEF APB definition can change, you should not code the following
DEFLD and expect it to contain both APBLTH and APBROD:

BOTH DEFLD 14,APBLTH,4

COPY instructions should be included in the data definition section of your
application program.

The fields defined in DEFGMS and DEFSMS are primarily intended to be
read-only by your application program, however, application programs do have
access to these fields. Be careful in modifying any of these fields. Modification
by your application program can affect its own subsequent operation.

For a more detailed description of the fields defined by system copy files, refer to
Appendix B.

Name Operation Operand

COPY copyfilename

copyfilename
Is the name of the file to be copied.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-67

5-68 4700 Controller Programming Library, Volume I: General Controller Programming

CRETN

CRETN--Conditional Return (COBOL)

This instruction transfers control to another location in the program depending on
the content of a two-byte location in storage. If the location contains zero,
execution resumes at the next instruction following CRETN. If the location is
nonzero, the value is used as a displacement from the beginning of the program to
find the point where execution begins; the nonzero location is set to zero by
CRETN.

This instruction has been implemented to facilitate support for COBOL and is not
considered useful for general purpose for COBOL and is not considered useful for
general purpose application programming.

Note: This instruction requires that module P34 be specified on the OPTMOD
configuration macro.

Name Operation Operand

[label] CRETN (defrf2) {
defld2 }

operand 2

(reg2)
seg2,disp2

Is a field containing the two-byte value. The field must not be in Segment
14.

Condition Code: The condition code is unchanged.

Program Checks (hex): 01, 02, 09, OB, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-69

5-70 4700 Controller Programming Library, Volume 1: General Controller Programming

DECOMP

DECOMP--Decompress and Decompact

DECOMP decompresses and optionally decompacts a data stream based on the
information contained in the DEFDCP parameter list defined by the COPY
DEFDCP instruction.

Note: DECOMP requires the P26 optional module, which you may include on the
OPTMOD configuration instruction.

See Chapter 3 for a discussion of decompression and decompaction.

Before issuing the DECOMP instruction to decompress/ decompact a data stream,
complete these fields in the parameter list:

DCPINS
Is a 2-byte field containing the segment number of the segment containing
the input data to be processed.

DCPIND
Is a 2-byte field containing the displacement of the input data into the input
segment.

DCPINL
Is a 2-byte field containing the length of the input data.

DCPOUS
Is a 2-byte field containing the segment number of the segment that is to
contain output data. Do not use Segment 14.

DCPOUD
Is a 2-byte field containing the displacement into the output segment.

DCPOUL
Is a 2-byte field containing the length of the output area.

DCPPRI
Is a 1-byte field containing the prime compression character used during
compression. Remember, the String Control Character for compressed
prime characters contains only the count of repeated characters, not the
character itself. This prime character must be supplied to the
decompression procedure.

DCPFLG
Is a one-byte compaction request flag:

DCPTBS

lxxxxxxx Input contains compacted data. DCPTBS and DCPTBD
must also be set if this value is specified.

Is a 2-byte field containing the segment number of the segment containing
the decompaction table (see the DECOMPTB instruction).

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-71

DCPfBD
Is a 2..,byte field.containingthe displacement of the decompaction table.

When DECOMP is complete, the following fields in the DEFDCP
parameter list· are completed to indicate the status of the operation.

DCPIND
Contains the displacement of the next SCB in the input data stream. When
the data stteam contains no further SCBs, this field contains the
displacement of the byte immediately following the input area.

DCPINL
Contains the number of characters remaining in the input area. When the
entire input stream is processed, this field contains zero.

DCPOUD
Contain.S the displacement. of the next available byte in the output area.
When the output area is full, this field contains the displacement of the byte
immediately following the output area.

DCPOUL
Contains the number of bytes remaining in the output area. When the
output area is exhausted, this field .contains zero.

DCPTST
Contains the completion status of the DECOMP operation. H the
condition. code is hex 0 ~, this field contains zero. When the condition code
is hex 02, this field indicates the reason for premature ending of DECOMP.

DCPTOV (X'80')
Indicates the output area is not large enough to contain the
decompressed/ decompacted data for the current SCB.

When output overflow.occurs, decompression/decompaction ends as if the
SCB causing the overflow had not been processed. Although partially
processed data from the current SCB may appear in the output area, the
input and output areas' displacements and lengths (DCPIND, DCPINL,
DCPOUD, DCPOUL) reflect the completion status of the last fully
processed SCB.

DCPTIV (X'40')
Indicates the remaining length of the input area is not of sufficient size to
contain the current SCB's associated data. For a
non-compressed/non-compacted SCB or for a compact code SCB,
DCPINL is not large enough to contain the SCB plus the number of bytes
indicated by the SCB count field. For a repeat-next-character SCB, the
remaining length of the input area is 1 (DCPINL-1) and is therefore not
large enough to contain both the SCB and the byte to be duplicated.

When input overflow occurs, decompression/ decompaction is terminated as
if the SCB causing the overflow had not been processed.

5-72 4700 Controller Programming Library, Volume 1: General Controller Programming

DCPTCE (X'20')
Indicates the input area contains a compact code SCB. The parameter list
does not specify input data in compact code.

Decompression/ decompaction ends as if the compact code SCB had not
been processed.

DCPTSL(X't 0')
Indicates the current SCB count field equals B'OOOOOO'.

Decompression/ decompaction ends as if the invalid SCB had not been
processed.

DCPTIL (X'08')
Indicates that the length of the input area was initialized to zero.

Name Operation Operand

[label] DECOMP (defrf2) {
defld2 }

(reg2)
seg2,disp2

operand 2
Is a field containing the parameter list (see the COPY DEFDCP
instruction). The length specified is ignored because the parameter list is
defined as a fixed length area. The parameter list must not be in Segment
14.

When using register addressing to locate a parameter list, the parameter list
can be located in a noncurrent segment space. However, if the parameter
list contains the address (segment, displacement) of other storage areas
(that is, input/output areas, tables), the other storage areas are always in
the current segment space.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK
ST

Explanation

Successful completion.
Processing terminated; see DCPTST for status code.

Program Checks (hex): 01, 02, 09, 11, or 27 may be set.

Chapter 5. 47001nstruction Descriptions (Alphabetically) 5-73

5-74 4709 Controller Programming Library, Volume 1: General Controller Programming

DECOMPTB

DECOMPTB--Build a Decompaction Table

DECOMPTB builds a 256-byte decompaction table for use by the DECOMP
instruction in decompacting a compacted data stream.

Note: DECOMPTB requires the P26 module, which may be included via the P26
operand on the OPTMOD configuration macro.

The DECOMPTB operands specify the location of the input data to be formatted
into the decompaction table, and the area in which the decompaction table is to
be built. The input for the decompaction table must be the same as that used to
build the compaction table (see COMPTB) with which the data stream was
compacted.

The input field's location is indicated by the primary field pointer. A field length
of 17 is assumed when the number of master characters is 16. When the number
of master characters is less than 16 the field length is assumed to be 257 less the
square of the number of master characters.

Name Operation Operand

(defrf2)
[label] DECOMPTB seg1, {

defld2 }

(reg2)
seg2,disp2

operand 1
Is a field in the specified segment that contains the input used to create the
decompaction table.

operand 2
Is a field into which the decompaction table will be built. The field must
not be in Segment 14. DECOMPTB assumes a length of 257 bytes for this
operand.

Condition Codes: One of the following is set:

Hex Code

01
04

Possible
Mnemonic

OK

Explanation

Successful completion.
The number of master characters is zero or greater
than 16.

Program Checks (hex): 01, 02, 09, and 27 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-75

5-76 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFCON

DEFCON--Define Constant

DEFCON becomes a data string within Segment 14 (the controller application
program). It must be specified before any of the other instructions that refer to
the data string. The specification of data is the same as for an assembler language
DC instruction, but fewer types of data may be specified.

Note: The maximum number of DEFCONs that can be included in an assembly is
4095.

Name Operation Operand

[label] DEFCON data1 [,data2] ... [,data~] [,OJ

data-datan
Is any character (C), hexadecimal (X), binary (B), fullword (F), or
halfword (H) specification in one of the following forms:

dddt'xxx ... x'
tLnn'xxx ... x'
tL.nn'xxx ... x'

where ddd is a decimal number indicating the number of times the constant
is to be generated (if only a single constant is required, this number is not
needed); tis one of the valid types listed above; nn is a decimal number
indicating the actual length of the constant; and xxx ... x is the data that
makes up the constant, enclosed in single quotation marks for all types
except address constants which are enclosed in parentheses.

An address (A or Y) specification may also be used, but must be in the form:

dddA(label-apbname) or dddA(label-label)
ALn(label-apbname) or ALn(label-label)
AL.n(label-apbname) or AL.n(label-label)
dddY(label-apbname) or dddY(label-label)
YLn(label-apbname) or YLn(label-label) or YLn(label)
YL.n(label-apbname) or YL.n(label-label)

When using the standard OS/VS and DOS/VS assembler, label is the label of the
instruction and apbname is the CSECT name. If not in this form, the assembler
builds an RLD entry. 'label' in the form YLn (label) may be an external symbol
when RELOC= Y is specified in the APO PT instruction. Note that AL3 and
AL4 address constants have specific meanings for the host support and should not
be used to create an RLD entry. The only valid relocatable address constant is
YL2 or Y(label). All other A or Y specifications should be for non-relocatable
expressions.

Note: The above forms of data specification are the only ones valid for a
controller application program. Any other forms may produce unexpected results.

0
Associates a length of 0 with this constant.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-77

Programming Notes: For example, the following instructions define a message in
Segment 14 and move it to an output area in Segment 2:

OP MSG

FIELD2

DEFCON C'STOP PAYMENT'

DEFLD 2, 10,20

•

MVFXD FIELD2,0PMSG (The number of characters moved
is determined by the length of the
source field, OPMSG.)

Note that, if DSECT= Y is specified on the BEGIN instruction, a DSECT name of
BQK$Sn (where n is the segment number from 0 to F) will be generated for each
segment referenced in a DEFLD or DEFCON instruction. This DSECT name can
then be used to generate values with absolute expressions. For example, if the
following instructions are coded:

INPUT DEFLD 4,2,8
DEFCON AL2(INPUT-BQK$S4)

the DEFCON will generate a two-byte address of the beginning of the field name
INPUT into Segment 4.

5-78 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFDEL

DEFDEL--Define Delimiters

DEFDEL becomes a list of characters that will be recognized as field or message
delimiters. The use of these characters is controlled by an associated mask and
the delimiter control byte in Segment 1 (SMSDCB field). If any corresponding
bits (between the delimiter control byte and the mask in the instruction) are both
set (=1), the delimiter is recognized as valid. The set of delimiters used can be
altered by changing the delimiter control byte.

Only one DEFDEL instruction is used in a controller application program when
DEL is specified in the BEGIN instruction. If DEL is not specified, multiple
DEFDELs may be used. The address of the delimiter table must be specified by:

• setting SMSDEL with the displacement into Segment 14 of the beginning of a
delimiter table or

• loading the address of a delimiter table into a register, setting the register
number in SMSDRG, and setting SMSDEL to hex FFFF.

The station saves and restores delimiter status (SMSDEL,SMSDCB) as the
application programs are called and released.

Any 1-byte value may be specified as a delimiter. Printable characters, however,
should be avoided because they may appear in a field, and the controller would
mistake data for delimiters. Also, if the field will be transmitted to one of the
terminals, values from hex 00 to hex 3F should not be used because they are
reserved for control characters.

Name Operation Operand

label DEFDEL (char,mask) , (char,mask), ...

char

mask

Is any byte of data to be recognized as a delimiter. The maximum number
of characters allowed is 255.

Is any 1-byte data expression. The bit configuration created is used as the
mask.

The char and mask operands may be expressed as hexadecimal (X'nn'),
character (C'c'), or binary (B'nnnnnnnn') data.

Note: The label of an EQUATE instruction cannot be used as an operand
for the DEFDEL instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-79

Programming Notes: Delimiters can be divided into sets using the mask associated
with each delimiter; all delimiters in a set have the same mask. Delimiter sets are
used when several types of operations are performed at the same keyboard. For
example, the application program may support both normal transactions and an
adding machine function. A period, ininus sign, or slash might be an acceptable
delimiter during normal processing, but might be data when the teller is using the
adding machine function. A field in Segment 1, SMSDCB, is set by the
application program to indicate which delimiters are in use; if any corresponding
bits in the SMSDCB and the instruction mask are set (= 1), the delimiter is
recognized by the controller.

Assume, for example, that three delimiters are being used, and the following
masks have been associated with them (the values used as delimiters are not
shown; they are referred to as 1, 2, and 3):

Delimiter

1
2
3

Mask

X'Ol'
X'02'
X'80'

If SMSDCB has been set to X'Ol', only delimiter 1 is recognized. (The result of
ANDing the value in SMSDCB and the mask associated with delimiter 1 is not 0.)
If SMSDCB has been set to X'03', both delimiter 1and2 are recognized. If
SMSDCB has been set to X'82', both delimiter 2 and 3 are recognized. If
SMSDCB has been set to X'FF', all delimiters are recognized.

SMSDCB is set in two ways:

• By specifying the initial value in the DELSET operand of the STATION
configuration macro instruction.

• By instructions in the application program.

The initial value is set for each station when the controller is loaded and altered
only by the application program.

To speed up the scan for delimiters, the DEFDEL instruction can be used to
create a number of delimiter tables, each containing a relatively few entries. You
must then load the address of the desired delimiter table into the SMSDEL field
or a register number into the SMSDRG field in Segment 1. With the use of
register addressing, a delimeter table may be found in segments other than 14, as
well as in segment space different from that of the application referring to it.
Under application program control, the tables can be switched as desired. If this
approach is taken, specification of a delimiter table address must not be made in
the BEGIN instruction.

5-80 4700 Controller Programming Library, Volume 1: General Controller Programming

When SETFPL and SETSFP scan for a delimiter, each character in the field is
checked against the one-byte values in the delimiter table. The checking
procedure used by the controller changes, depending on whether the table
contains multiple specifications of a single one-byte value or the table consists
entirely of unique one-byte values. The DEFDEL instruction will determine
whether there are multiple specifications of a single one-byte value when the
DEFDEL instruction is assembled.

If the delimiter table contains multiple specifications of a single one-byte value,
the controller will check each one-byte value until a match is made between the
character in the field and the value in the table, or until the end of the table is
reached. If a match is found, the controller will check for a valid mask. If the
mask is not valid, the controller will resume checking the delimiter table until
another match is found, so that the mask can be checked, or until the end of the
table is reached. If the mask is valid, the controller will set the appropriate field
pointer. Any time the end of the delimiter table is reached, the controller begins
processing the next character in the field.

If the delimiter table consists of unique one-byte values, checking proceeds in the
same manner as it does for tables with multiple specifications of a single one-byte
value until a match is found between a character in the field and the one-byte
value in the delimiter table. If the mask is not valid, the controller immediately
begins processing the next character in the field without checking the remaining
one-byte values in the delimiter table.

Any one byte value may be specified as a delimiter. Printable characters,
however, should be avoided because they may be within a field and the controller
could mistake them for delimiters. Also, if the field will be read from or written to
a terminal then the hex values from 00 to 3F should not be used because they are
reserved as control characters.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-81

5-82 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFDMP

DEFDMP--Define APBDUMP Buff er

DEFDMP defines the constants necessary for the APBDUMP instruction and
defines a segment for APBDUMP to use as a buffer for its processing. DEFDMP
is required if APBDUMP is used, and should be issued only once. It must be
issued before APBDUMP, but after COPY DEFSMS. It should be coded with the
data definition instructions of the controller application program, and must occur
before decimal location 4095 in Segment 14.

Name Operation Operand

[label] DEFDMP SEG=n

n
Is the number of the segment (2-12, or 13) that APBDUMP can use as a
buffer during its execution. The buffer must be greater than, or equal to,
454 bytes and must begin at locationO in the segment.

Note: The data in this buffer area before APBDUMP is issued is lost when
APBDUMP is executed; thus, if Segment 15 is specified, the data in the
global machine section (GMS) is lost.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5..:83

5 .. g4 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFLD--Define Field

DEFLD

DEFLD associates a label with an area of segment storage. This area can then be
referred to in other instructions without altering the field pointer or length
indicator of the actual segment. DEFLD, however, must be coded before any of
the other instructions that refer to the field it defines.

Note: The maximum number of DEFLDs that may be included in an assembly is
4095.

Name Operation Operand

[label) DEFLD

seg

disp

[I BDY=HALF)

Is the number (0-15) of the segment in which the field is defined, or is the
label of an EQUATE instruction that has a value of 0-15.

Is the location of the field within the segment or the label of a previous
DEFLD or DEFCON instruction. If the label of a DEFLD or DEFCON
instruction is used, the location value assigned to this DEFLD instruction is
the same as that specified in the instruction indicated by the label. If the
disp operand is omitted, the value assumed is 0 for the first occurrence of a
DEFLD instruction referring to a particular segment, or is the sum of the
location and length of the last DEFLD instruction that referred to the
segment.

Note: If RELOC= Y is specified in the APOPT instruction, specifying a
label in an external CSECT will result in an error.

abs exp
Is an absolute expression of the location of the field within the segment.
When used in place of length, it is an absolute expression of the length of
the defined field. The absolute expression may be:

1. An absolute value.
2. The label of an EQUATE instruction.
3. The label of another DEFLD, a DEFRF, or DEFCON instruction.
4. The displacement attribute of a DEFLD, a DEFRF, or a DEFCON; by

specifying the label of the DEFLD, DEFRF, or DEFCON as follows:

D:label

5. The length attribute of a DEFLD, DEFRF, or DEFCON instruction; by
specifying the label of the instruction as follows:

L:label

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-85

6. An arithmetic expression using the above five expressions in the
following forms:

a. (abs exp+ abs exp)
b. (abs exp - abs exp)
c. (abs exp • abs exp)
d. (abs exp/abs exp)

When the label of a DEFLD, DEFCON or DEFRF is used without an attribute
modifier, the value of the expression is the displacement of the field when used in
the displacement operand, and is the value of the field length when used in the
length operand.

When the label of an EQUATE instruction is used, the value of the EQUATE
must be an absolute number.

*

Jen

Indicates that the field is to begin at the highest displacement that has been
defined by previous DEFLD's for this segment.

Note: The value of disp, the absolute expression, or the sum value of the
last DEFLD location plus its length must not exceed 65 535 bytes.

is the length of the defined field (Oto 65 535). The length must agree with
any length limitations set by instructions that refer to this DEFLD.

BDY=HALF
Aligns the field on a halfword boundary. When the specified displacement
is not on a halfword boundary, BDY=HALF aligns the field on the next
halfword boundary. If this operand is omitted, the field is aligned on a byte
boundary only.

Programming Notes:

• When you are coding the instruction

[label] DEFLD seg,[disp],len

you should omit the disp operand or it should be the label of a previous
DEFLD or DEFCON. The disp operand is used to redefine fields within
previously defined fields.

• When the assembler language instruction format provides for the choice defld
or seg,disp{,len], use defld. This may require the addition of a DEFLD
instruction to define seg,disp,len, if the DEFLD does not already exist.

Using DEFLD you could define fields as follows:

FIELDl DEFLD 3,20,10

/I "'Length of field 1
/ Displacement of field 1

Number of the segment

5-86 4700 Controller Programming Library, Volume l: General Controller Programming

FIELD2 DEFLD 2,10,20

j I 'Length of field 2
/ Displacement of field 2

Number of the segment

DEFLD can be used to define overlapping fields. For example:

FIELD 1 DEFLD
FIELDS DEFLD

3,0,20
3,10,20

DEFLD will calculate the displacement of the next sequential field if a
displacement is not specified. For example:

FIELDl DEFLD 3,0,10
FIELD2 DEFLD 3,,10

The displacement of the beginning of FIELD2 is set to the first byte after the end
of FIELDl.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-87

5-88 4700 Controller Programming Library, Volume I: General Controller Programming

DEFRF

DEFRF--Define a Modified Register Address Field

This instruction associates a 'label' with a segment, displacement, and length for
modified register addressing. The most DEFRF instructions that your program
can contain is 4095.

Name Operation Operand

label DEFRF reg, (abs exp) , { len I (abs exp) } [
disp J

reg

disp

(label)

Is the register (0-15) that contains the register address.

Is the displacement (O - 65 535) added to the register address to create a
modified register address that locates the specified field.

abs exp
Is an absolute expression of the location of the field within the segment.
When used in place of length, it is an absolute expression of the length of
the defined field. The absolute expression may be:

1. An absolute value.
2. The label of an EQUATE instruction.
3. The label of another DEFLD, a DEFRF, or DEFCON instruction.
4. The displacement attribute of a DEFLD, a DEFRF, or a DEFCON; by

specifying the label of the DEFLD, DEFRF, or DEFCON as follows;

D:label

5. The length attribute of a DEFLD, a DEFRF, or DEFCON instruction;
by specifying the label of the instruction as follows:

L:label

6. An arithmetic expression using the above five expressions in the
following forms:

a. (abs exp + abs exp)
b. (abs exp - abs exp)
c. (abs exp * abs exp)
d. (abs exp/abs exp)

When the label of a DEFLD, DEFCON, or DEFRF is used without an attribute
modifier, the value of the expression is the displacement of the field when used in
the displacement operand, and is the value of the field length when used in the
length operand.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-89

When the label of an EQUATE instruction is used, the value of the EQUATE
must be an absolute number.

Note: The value of disp, the absolute expression, or the sum value of the last
DEFLD location plus its length must not exceed 65 535 bytes.

label
Is the label of another DEFRF statement that defines a displacement value.

len
Is the field length (0 - 65 535).

Programming Notes: DEFRF allows you to assign a label to a field selected by a
register address. This allows you to use the same register address to define a
series of contiguous fields, such as in dummy sections (DSECTs), and then refer
to any of the fields symbolically using the label assigned by one or more DEFRF
instructions.

When a DEFRF label is used as an instruction operand, the segment is obtained
from the register address. The displacement specified by the DEFRF instruction is
added to the register address displacement, and the DEFRF length replaces the
length from the register address.

The following example shows how DEFRFs can be used:

Assume the following record definition is repeated a total of 10 times and is
located in Segment 2 beginning at displacement 4 7:

two-byte record type field (TYPE):
one-byte flags field (FLAGS):
two-byte record code field (CODE):
one-byte data ID:
fourteen-byte data field (DATA):

Thus, the record length is 20 bytes and can be represented with the following
instructions:

RECORD DEFRF 4,0,20 This entry refers to the entire record.
TYPE DEFRF 4,(RECORD),2 First entry is length 2 and is based on

the starting location of the record
(disp=O).

FLAGS DEFRF 4,,1 Second entry is length 1 and
immediately follows TYPE.

CODE DEFRF 4,,2 Third entry is length 2.
ID DEFRF 4,,1 Fourth entry is length 1.
DATA DEFRF 4,,14 Fifth entry is length 14.

Initialize the register by using the instruction LDRA (Load Register Address). In
this example, the LDRA instruction would look like:

*
*
*

LDRA 4,2,47,20 Load the current segment space ID,
then load the base address of
Segment 2, displacement 4 7 and
record length 20 into register 4.

5-90 4700 Controller Programming Library, Volume 1: General Controller Programming

You can move the starting address of any record by adding to, or subtracting
from, the base register, the multiple of the record length. As long as the base
register address increases or decreases only by a multiple of the record length, the
symbol TYPE always refers to the type of one of the 10 records, FLAGS always
refers to the flags field in that same record, and so on.

The length value loaded into a register is only significant if the normal (reg) form
of register addressing is to be used. In this case, the length of the operation is
determined by the length in the register. For modified register-addressed fields,
the length of the operation is determined by tb.e length associated with the symbol
and the length in the register is ignored.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-91

5-92 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFSTOR

DEFSTOR--Define Segment Storage

Segment space for the work station's initial application program is defined during
either configuration or while the application program is assembled, but (except for
Segment 13) is not allocated until the program is loaded. A called application
program can either define and allocate its own storage, or it can share storage
with the calling application program.

The DEFSTOR instruction allows you to define segment storage in your
application program. You can define Segments 0 and 2 through 13 with
DEFSTOR. The DEFSTOR instruction must be within the first 4095 program
bytes. If the station configuration and DEFSTOR define the same segment, the
DEFSTOR values override the configuration values. DEFSTOR creates a table
of segment sizes that follows the FINISH instruction in the program listing.

Name Operation Operand

[label] DEFSTOR SEGSIZE=({segOI*} , {seg21*}
, ... , {seg1 3 I*})

SEGSIZE

[,MAXSTOR=n] [,USE={STATICIDYNAMIC}]

[, ID=n]

Are decimal values that specify the length, in bytes, of the segment or
segments. The segO value defines the user portion of Segment 0 on:ly;
exactly 96 additional bytes are allocated for registers. Specifying an
asterisk(*) causes the segment space to be determined by the DEFLD and
DEFCON statements defined for that segment. The SEGSIZE parameters
are positional, and intervening commas (,) must be coded for segment
definitions you omit.

Notes:

If CPGEN or the primary application program defined a Segment 13
for any logical work station using this program, the following rules
apply:

1. You can override the CPGEN definition when the program defined in
the CPGEN is sharing the same storage class as your program and no
other program defined in the CPGEN is sharing that class for Segment
13.

2. When the CPGEN has not declared a shared Segment 13 for the
stations to which the application is assigned, then a shared Segment 13
can be assigned via the DEFSTOR.

3. A global Segment 13 can be assigned on:ly by CPGEN and the
STARTGEN instruction, and when declared it is assigned to all stations
that have not been assigned a shared 13. If the program overrides the
global Segment 13, then it will have a shared Segment 13 for those
stations to which the program is assigned. The global 13 remains with
those programs that do not have a shared Segment 13.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-93

Failure to follow these rules, which apply to all logical work stations using
your program, may cause an error and end the IPL procedure.

MAXSTOR

USE

ID

Used by the primary application program to define the total storage
requirements for the logical work station. MAXSTOR defines the total
segment storage assigned to the station in bytes; this value overrides the
MAXSTOR value defined on the STATION macro. Specify n as a decimal
value.

If your program will be called more than once by another application
program, specify USE=STATIC if you want the using station to hold the
storage space needed by your program between calls. This storage remains
unchanged until your program is.recalled. If you do not specify
USE=STATIC, the space is classified as DYNAMIC (the default), and
released for use by other application programs in this work station.

Is the identification of an application storage pool. Specify n as a decimal
value between 1and15. The default value is 1.

Programming Notes: You must include a DEFSTOR instruction in your program if
you specify the APENTRY operand of the BEGIN instruction.

DEFSTOR will define a new Segment 0 if you indicate that no segments are to be
defined and specify USE=STATIC. If DEFSTOR is coded in this manner an
additional 96 bytes must be included in the MAXSTOR value for the new
segment.

5-94 4700 Controller Programming Library, Volume 1: General Controller Programming

DIVFLD--Divide Field

DIVFLD

DIVFLD algebraically divides the binary contents of a register by the binary
contents of a field. The length of the field must be 6 bytes or less. The quotient
is placed in the register, and the remainder is lost. A divisor of 0 results in no
operation.

Name Operation Operand

[label] DIVFLD reg1, (defrf2) { ~~i~~~2 }

operand 1

(reg2)
seg2,disp2,len2

Is a register that first contains the dividend, and later the quotient.

operand 2
Is a field containing the divisor. The length of the field must be from 0 to 6
bytes; if the length is 0, no operation takes place.

Condition Codes: One of the following is set.

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ZD

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
The divisor is 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-95

5-96 4700 Controller Programming Library, Volume 1: General Controller Programming

DIVFLDL

DIVFLDL--Divide Field Logical

DIVFLDL divides the contents of a register by a 6-byte field. If the field is less
than 6 bytes in length, it is treated as a 6-byte field by propagating zeros.
DIVFLDL then divides the binary contents of a register by the binary contents of
a field. The quotient is placed in the register and the remainder is lost. A divisor
of 0 results in no operation.

Name Operation Operand

defld2
[label] DIVFLDL reg1, {

def con2 }

(defrf2)

operand 1

(reg2)
seg2,disp2,len2

Is a register that first contains the dividend, and later the quotient.

operand 2
Is a field containing the divisor. The length of the divisor is from 0 to 6
bytes. If a length of 0 is specified, no operation takes place.

Condition Codes: One of the following is set.

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ZD

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
The divisor is 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-97

5-9 8 4 7 00 Controller Programming Library, Volume 1: General Controller Programming

DIVREG--Divide Register

DIVREG

DIVREG algebraically divides the binary contents of one register by the binary
contents of another register. After the division, the quotient replaces the dividend
and the remainder replaces the divisor. Both the quotient and remainder have the
same sign.

Name Operation Operand

[label] DIVREG reg1, reg2

operand 1
Is a register that contains the dividend. At the end of the operation, the
quotient replaces the dividend.

operand 2
Is a register that contains the divisor. At the end of the operation, the
remainder replaces the divisor.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ZD

Program Checks: None are set.

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
The divisor is 0.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-99

5-100 4700 Controller Programming Library, Volume 1: General Controller Programming

l11fjj
DIVZ--Divide Zoned Decimal

This instruction divides the zoned decimal operand 1 by the zoned decimal
operand 2, and replaces operand 1 with a zoned decimal result. The length of
either operand is 1-63 bytes; an operand longer than 15 bytes must be selected
using register addressing.

Note: This is an optional instruction; module P31 must be specified on the
OPTMOD configuration macro.

Name Operation Operand

defld2
[label] DIVZ (defrf1) {

defld 1
defcon2 }

(defrf2)
(reg1)
seg1,disp2,len1

(reg2)
seg2,disp2,len2

operand 1
Is a field containing the zoned decimal dividend, and the location of the
result (quotient); any remainder is lost. If the result is shorter than the
operand length, each high-order result byte is set to X'FO'. The field must
not be in Segment 14.

operand 2
Is a field containing the zoned decimal divisor. If zero, the appropriate
condition code is set, and the operation ends.

Condition Codes: The following can be set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ZD

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Divisor is 0.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-101

5-102 4700 Controller Programming Library, Volume 1: General Controller Programming

I DTACCESS--Data Access

DTACCESS

DT ACCESS allows the accessing of application programs, as data for those
programs that have been put in the SYSAP data set on the operating diskette.
These "programs" would typically contain non-executable instructions such as
DEFCONs. Addressing of the program "segment" is accomplished through
register addressing. The program may be either resident or transient. This
function allows data to be handled by the Host Transmission Facility and the
System Monitor functions to add, delete, or update single application programs.
This assumes that the file has a standard program header. The station, under
which the program issuing the DT ACCESS is operating, is put into a wait state
until storage becomes available and the data program has been loaded. When the
program has been successfully loaded, the station will be removed from the wait
state. If the requested program is resident, DTACCESS will return the address of
the resident program in register 1.

Assuming sufficient storage space is available to accommodate the data programs,
a station may have up to 11 outstanding requests at a given time. DTACCESS
will load the requested application program and return its address, in LDRA
format, in register 1. If DTACCESS determines that the requested program has
already been loaded, it simply returns the address of the requested program in
register 1.

Your configuration specifications must include several macros and operands in
order for you to use the DTACCESS (and DTAFREE) instruction. See APLIST,
STATION, and TRANPL in the IBM 4700 Programming Library: Volume 6.

The format of this instruction is:

Name Operation Operand

[label] DTACCESS (defrf2) {
defld2)

[, WAIT= {~IN }]

operand 2

(reg2)
seg2,disp2,

Is a field containing the parameter list. The format of this parameter list is:

bytes 0-7 = apname --> 8-byte name of the data file

Condition Codes: One of the following is set.

Hex Code

01
02

04
08

Possible
Mnemonic

OK

Explanation

Successful execution.
DT ACCESS canceled via Attention or because
data could not be loaded from diskette.
No pool block available (NOWAIT).
Requested data already accessed.

Chapter 5. 4700 Instruction. Descriptions (Alphabetically) 5-103

Program Checks (hex): 01, 02, 21, 25, 27, or 28 can be set.

Hex Code Explanation

01 The specified PUST is in ari undefined segment.
02 The PUST length extends beyond the segment.
21 Requested data not found.
25 No room in segment header area (DTACC too small).
27 DTACC=O specified (seg space id invalid).
28 Target data is transient but no pool is defined.

Programming Notes: The application program that issues this instruction may put
its work station into the wait state until storage becomes available. See the
APCALL instruction for further information.

5-104 4700 Controller Programming Library, Volume 1: General Controller Programming

DTAFREE--Data Free

DTAFREE

DTAFREE will free application programs accessed as data by the DTACCESS
instruction.

If the application program to be freed is transient, the storage area containing this
program is made available for other uses. The segment header associated with an
application (resident or transient) that has been freed is also available for use.

Name Operation Operand

[label l DTAFREE (defrf2) {
defld2 }

operand 2

(reg2)
seg2,disp2

Is a field containing the parameter list. The format of the parameter list is:

bytes 0-7 = apname --> 8-byte name of the data file

Condition Codes: The following may be set.

Hex Code

01

Possible
Mnemonic

OK

Explanation

Successful execution.

Program Checks (hex): 01, 02, and 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-105

5-106 4700 Controller Programming Library, Volume 1: General Controller Programming

EDIT--Edit Monetary Field

EDIT formats a field by suppressing leading zeros, adding fill characters, and
adding monetary symbols. The mask that EDIT uses in formatting a field is
created by the MASK instruction, and is made up of the following characters:

fill

9

z

$

b

Is a 1-byte, hexadecimal, character, or binary expression used in place of
leading zeros when zero suppression is specified.

Indicates significant position. A number from the field to be edited that
corresponds to this position in the mask is moved to the field that is to
contain the edited data without inspection.

Indicates the leading zero suppression. Leading zeros in the field to be
edited are suppressed, and the corresponding position in the field to contain
the edited data is loaded with a fill character. Characters from the field to
be .)dited, other than leading zeros, that correspond to this position in the
mask are moved to the field that is to contain the edited data.

Indicates a dollar-sign insertion. Significant digits are inserted in the edited
field. When the last leading 0 is encountered, the dollar sign is inserted in
place of the 0 and all leading zeros are replaced by the fill character
specified in the MASK instruction. If, however, (1) the next character in
the field to be edited is not a leading 0 and the next mask character is not
an insertion character, or (2) the next mask character is 9 or Z, "$",
together with all other characters in the field to be edited, is moved to the
field that is to contain the edited data.

Indicates blanks insertion. Blanks in the mask are always inserted in the
corresponding positions of the field that is to contain the edited data.

Any other characters except 9, Z, $,and b may be insertion characters. They are
inserted in the corresponding positions of the field that is to contain the edited
data after a significant digit has been included in this field. (See the MASK
instruction for a further description of the mask.) If no significant digit is found in
the field to be edited before the last insertion character, all insertion characters
are replaced by the fill character.

If the field to be edited is longer than the mask, the field is truncated on the left.
If the field to be edited is smaller than the mask, the edited field is padded with
zeros or fill characters, as specified in the MASK instruction. Note that the length
of the mask does not include insertion characters.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-107

Following the execution of EDIT, the primary field pointer in the segment
containing the edited field points to the first.character after the last character
moved. The field length indicator is unchanged.

Name Operation Operand

[label] EDIT seg1,seg2, {label31(reg3)}

operand 1
Is a field in the specified segment to place the edited data. The field's
location is indicated by the primary field pointer (PFP), and the field length
indicator is ignored. If segl and seg2 specify the same segment, the field is
indicated by the secondary field pointer.

operand 2
Is a field in the specified segment to be edited. The field's location is
indicated by the primary field pointer and the length by the field length
indicator.

label 3
Is the label of the MASK instruction defining the mask to be used during
editing. The length of the edited field in segl is determined by the length of
the mask. 'label' may be an external symbol when RELOC= Y is specified
in the APOPT instruction.

Condition Codes: One of the following is set:

Hex Code

01
08

Possible
Mnemonic

OK
TR

Explanation

Editing was successful.
Truncation occurred.

Program Checks (hex): 01, 02, or OE can be set.

· 5-108 4700 Controller Programming Library, Volume 1: General Controller Programming

Programming Notes: For example, the message received from the host processor
contains the transaction amount and the new balance as binary numbers without
monetary symbols or decimal points. The following example shows the
instructions that edit the new balance before printing the customer's passbook.
The field transmitted from the central processor is:

03232E

Its EBCDIC equivalent is:

0000205614

The edited field is:

bbbb$2,056.14

AMNTMASK
CPTOTAL
WORKAREA
PRNTOUT

MASK
DEFLD
DEFLD
DEFLD

C'$$,$$$,$99.99'
CPINSEG,22,3
WORKSEG,,10
PRNTSEG,15,13

1
2
3
4

EDITAMNT LDFLD REGl,CPTOTAL 5
STFLDC REGl,WORKAREA 6
SETFPL WORKAREA 7
SETFPL PRNTOUT 8
EDIT PRNTSEG,WORKSEG,AMNTMASK 9

1 Indicates that at least four digits and a decimal point must
always appear in the output.
A monetary sign will also appear if the field to be edited contains
fewer than 10 characters.
When leading zeros are encountered in the leftmost portion of the
data, one monetary sign is inserted and the edited field is
padded to the left with blanks. If the mask was defined as MASK
C'*',C'$ZZ,ZZZ,Z99.99' the edited field would appear
as $****"'2,056.14.

2 Defines the field that contains the binary value transmitted
from the central processor.

3 Defines a workarea used when the field is converted from binary
to EBCDIC.

4 Defines the location of the result.
5 Loads the binary amount field into a register.
6 Stores the EBCDIC equivalent of the register contents into the

work area.
7 Sets the PPP and FLI of WORKSEG to define the EBCDIC amount in

WORKAREA.
8 Sets the PPP and FLI of PRINTSEG to define the location of the

edited field.
9 Edits the total and places it in the output area.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-109

5-110 4700 Controller Programming Library, Volume 1: General Controller Programming

ENDINIT--End Initialization Section

This instruction defines the end of an initialization section
of the program that begins with an SINIT instruction, continues
with INITSEG instructions, and ends with an ENDINIT instruction.
No other 4700 Assembler instructions can be within this sequence.

Name Operation Operand

[label) ENDINIT

EN DIN IT

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-111

5-112 4700 Controller Programming Library, Volume 1: General Controller Programming

I

ENDOVLY

ENDOVL Y--End of Overlay Section

ENDOVL Y specifies the end of an overlay section. It must be the last
instruction in the overlay section.

Name Operation Operand

[label] ENDOVLY

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-113

5-114 4700 Controller Programming Library, Volume 1: General Controller Programming

ENDSEG--End Application Program Section

ENDSEG indicates to the assembler the end of a controller
application section that was begun with a SEGCODE instruction.
ENDSEG is a required instruction in application sections
that start with SEGCODE.

Name Operation Operand

ENDSEG

Note: The assembler instruction END must be used to
end an assembly.

ENDSEG

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-115

5-116 4700 Controller Programming Library, Volume 1: General Controller Programming

EQUATE

EQUATE--Equate a Label to a Value

EQUATE associates a label with a character or a value.
This label can then be used in other instructions
in place of the value or character. EQUATE, however,
must be coded before any of the other instructions
that refer to the label.

Note: The maximum number of EQUATES that may be used in
an assembly is 4095.

Name Operation Operand

label EQUATE { value }

value

(abs exp)

Is any valid decimal, hexadecimal, binary, fullword, halfword, address, or
character specification.

abs exp
Is an absolute expression of the value to be equated. The absolute
expression may be:

1. An absolute value.
2. The label of an EQUATE instruction.
3. The displacement attribute of a DEFLD, DEFRF, or a DEFCON; by

specifying the label of the DEFLD, DEFRF, or DEFCON as follows:

D:label

4. The length attribute of.-a DEFLD, a DEFRF, or a DEFCON; by
specifying the label of the DEFLD, DEFRF, or DEFCON as follows:

L:label

5. An arithmetic expression using the preceding four expressions in the
following forms.

a. (abs exp + abs exp)
b. (abs exp - abs exp)
c. (abs exp* abs exp)
d. (abs exp/abs exp)

Note: The maximum length of value is 8 characters in DOS/VS and 255
characters in OS/VS.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-117

Programming Notes: For example, a controller application program may always use
Segment 2 as the input area and register 3 to contain the total amount of the
transaction. The following could be coded:

INPTAREA EQUATE 2
TRANTOT EQUATE 3

The labels INPT AREA and TRANTOT would then be used in applicable
instructions rather than the absolute numbers. To change the input segment
number, change only the value specified in the EQUATE. When the program is
assembled again, the new value will appear in applicable instructions.

5~118 4700 Controller Programming Library, Volume l: General Controller Programming

ERR LOG

ERRLOG--Obtain Statistical Counters

ERRLOG causes the device type, station ID, and statistical counters for a
particular component to be stored in a segment. The statistical counters include
both error counters (for example, machine failures) and diagnostic counters
(improper operating procedure).

After instruction operation, the PPP still points to the start of the field containing
the stored information, and the FLI contains the field length. ERRLOG returns
the modulus value in the last four bits of the device address for loop terminals,
and the loop speed and clocking indicator in the last eight bits of the physical loop
address. For device cluster adapter (DCA) terminals, the last four bits of the
physical device address are set to binary zeros.

Name Operation Operand

[label] ERRLOG seg1 , (defrf2) {
defld2 }

operand 1

(reg2)
seg2,disp2

Contains the device type code, station ID, and statistical counters. The
segment number cannot be 14. The location of the field, within the
segment that is to contain the statistical counters, is indicated by the PPP.
The FLI is ignored. At the end of the operation the PPP still points to the
beginning of the field, and the FLI contains the field length. The format of
the information returned is explained in Figure 5-1 on page 5-120.

operand 2
Defines the field containing the physical device address of the component
for which the statistical counters are to be stored. The format of this
address is explained in Figure 5-2 on page 5-121. The length associated
with this operand is ignored, and the first 2 bytes are assumed to contain
the physical device address.

Note: The label of a DEFCON cannot be used.

Condition Codes: One of the following is set:

Hex Code Explanation

01 The instruction was executed successfully.
02 There was an invalid device specification.
04 There was insufficient space in the segment to store the counters.

Program Checks: 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-119

Code !Station ID I Statistical Counters (1 byte eac~)

Byte 0 2

Code
Is a 1-byte component code, as follows:

Code

X'Ol'
X'02'
X'03'
X'04'
X'05'
X'80' ..
X'81'

X'82'
X'83'
X'84'
X'86'
X'87'
X'88'
X'89'
X'8A'
X'92'
X'95'
X'9A'·
X'AB'
X'BO'

Station ID

Component

Communication Link
Diskette
ALA Line
Disk
Encryption Facility
Loop
4704/3604/3278/3279 Keyboard
Displaywriter
Personal Computer
4704/3604/3278/3279 Display
3610/3612 Document Printer; 3611/3612 Passbook Printer
3262/3287 /3289 Printer
4 707 /3604 Magnetic Stripe Encoder
3614/3624 Consumer Transaction Facility
3606/3608 Keyboard/Display
3608 Printer
3615 Administrative Terminal Printer
3616 Printer
Device Cluster Adapter
4 710 Printer
Magnetic Stripe Encoder for 4 704 Models 2 and 3
4 720 Printer

Is the binary ID number of the station associated with the component.

Statistical Counters
Are a variable number of counters.

Figure 5-1. Format of Statistical Counters Ret.urned by ERRLOG

5-120 4700 Controller Programming Library, Volm:ne l:General Controller Programming

Primary x'9' X'O' X'2' X'O'
Diskette
Auxiliary X'9' X'O' X'3' X'O'
Diskette
Disk A X'9' X'O' X'7' X'O'
DiskB X'9' X'O' X'S' X'O'
Host Link X'9' X'O' X'l' X'O'
Loop Loop X'O' X'O' X'O'
Loop Device Loop Terminal Component X'O'
DCAAdapter X'9' X'A' X'O' X'O'
DCAPort X'A' Port X'O' X'O'
DCADevice X'A' Port Component X'O'

Loop
Is the 4-bit binary loop number (1-4) assigned during the controller
configuration procedure.

Terminal
Is' the 4-bit binary terminal address, established at the terminal by setting
address switches on the terminal itself.

Port
Is the 4-bit binary number (0-7) of the DCA port to which the terminal is
connected to the controller.

Component
Is the 4-bit component address of a terminal component, as follows:

Component Address

0001
0010
0011
0100
0101
0100
0110
0111
1000
0100
nnnn*
nnnn*
nnnn*+l

Component

4704/3604/3278/3279 Keyboard
4 704/3604/3278/3279 Display
4704/3604 Magnetic Stripe Encoder/Reader
4710/3610/3612 Document Printer
3611/3612 Passbook Printer
3615 Administrative Terminal Printer (not address shared)
3606/3608 Keyboard/Display
3608 Printer
3614/3624 Terminal
3262/3287 Printer
3615 Administrative Terminal Printer (address shared)
3616 Journal Printer
3616 Document Printer

*nnnn = setting of the units subaddress switches

Figure 5-2. Physical Device Address Used by ERRLOG

Chapter 5. 4700 Instruction Descriptions (Alp,llabetically) 5-121

5-122 4700 Controller Programming Library, Volume 1: General Controller Programming

EXOR--Exclusive OR

EXOR performs an exclusive OR operation of two fields, and places the result in
operand 1. When the exclusive OR is executed, a 0 is set in the result if
corresponding bits in the tested fields are alike; a 1 is set in the result if
corresponding bits in the tested fields are not alike. The length of the operation is
governed by the length of the second field; this length must be in the range of 1 to
255 bytes.

Name Operation Operand

defld1 defld2
[label] EXOR (defrf 1) , (defrf2) {

defcon2 }

{ seg1,disp1 } seg2,disp,1en2
(reg1) (reg2)

operand 1
Is a field that is to be exclusive-ORed with operand 2, and is to contain the
result. The length specification for this field is ignored; the length of the
operation depends on the length of operand 2. The field must not be in
Segment 14.

operand 2
Is a field used in the exclusive OR operation with operand 1.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all zeros.
The result is mixed ones and zeros, or all ones.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-123

5•124 4700 Controller Programming Library, Volume 1: General Controller Programming

I

EXORI

EXORI--Exclusive OR Immediate

EXORI performs an exclusive OR operation of a 1-byte or 2-byte field with a
1-byte or 2-byte immediate operand, and places the.result in operand 1. When the
exclusive OR is executed, a 0 is set in the result if corresponding bits in the tested
fields are alike; a 1 is set in the result if corresponding bits in the tested fields are
not alike.

Name Operation Operand

[label] EXORI (defrf1) , immdata2 {
defld1 }

(reg1)
seg1 ,disp1

operand 1
Is a field that is to be exclusive-ORed with operand 2, and is to contain the
result. The length specification for this field is ignored; the length of the
operation depends on the length of operand 2. The field must not be in
Segment 14.

operand 2
Is 1 or 2 bytes of immediate data.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all zeros.
The result is mixed ones and zeros, or all ones.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-125

5-126 4700 Controller Programming Library; Volume J: General Controller Programming

•i3U-i
EXPS--Exchange Primary and Secondary Field Pointers

EXPS swaps the primary and secondary field pointers of the indicated segment.

Name Operation Operand

[label] EXPS segl

operand 1
Is the number of the segment for which the pointers are to be swapped.

Condition Codes: The code is not changed.

Program Checks (hex): 01 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-127

5-128 4700 Controller Programming Ltbrary, Volume I: General Controller Programming

FCLENTER

l FCLENTER--Define COBOL Entry Linkage

You can use FCLENTER at entry of a program to assist in following the COBOL
linkage conventions. On entry, register 1 contains the register address of a list
and the list contains register addresses that locate the parameters. The called
program can, using FCLENTER, save the address of the list (that is; the value in
register 1) and move the parameters to fields in the current segment space.

FCLENTER uses registers 8 and 9 as work registers.

Name Operation Operand

[label] FCLENTER saveaddress [,a1,a2, ... ,a254]

saveaddress
Is the label of a DEFLD instruction where the address of the list is stored.
The length of the field should be at least 6 bytes. This operand must not be
in Segment 14. Register 1, which by COBOL convention always contains
the parameter list address, is stored at this location.

a1,a2, ••• ,a2S4
Are labels of DEFLD instructions defining the target locations of the
parameter move operations. These fields must not be in Segment 14.
These names identify the parameters in sequence as they occur in the
COBOL program's parameter list. You may define up to 254 parameters on
an FCLENTER instruction.

Condition Codes: This instruction may modify the condition code; however, any
condition code returned will have no significance.

Program Checks (hex): 01, 02, 03, 09, 11, and 27 may be set.

Programming Notes: FCLENTER and FCLEXIT are used in conjunction,
FCLENTER at the entry point of the assemler program being invoked, and
FCLEXIT at the point of return to the COBOL program.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-12 9

5~130 4700 Controller Programming Library, Volume 1: General Controller Programming

I

FCLEXIT

FCLEXIT--Define COBOL Exit Linkage

FCLEXIT can be used at the return logic of a program to assist in following the
COBOL linkage conventions; register 1 is to in following the COBOL linkage
conventions; register 1 is to contain the register address of a list, the list contains
register addresses which locate parameters. The called program can, using
FCLEXIT, set register 1 to the address of the list, move the parameter from the
fields specified by al,a2, ... (below) to the locations specified in the list, and then
APRETURN.

FCLEXIT uses registers 2 and 3 as work registers.

Name Operation Operand

[label] FCLEXIT saveaddress [,a1,a2, ... ,a254]

saveaddress
If the label of the DEFLD or DEFCON instruction that contains the
address (of the list) to be loaded into register 1. H your program received
parameters from the calling COBOL program, saveaddress is the same as
that coded on the FCLENTER instruction.

a1,a2, ... ,a254
Are labels of DEFLD instructions defining the source locations of the
parameter move operations. If your program received parameters from the
calling COBOL program, the parameter names can be the same as those
you specified on the FCLENTER instruction. H you use the FCLENTER
names but do not return a result parameter in place of any but the last
name, you must code a comma(,) in place of the missing result parameter;
the result parameters in this case are positional.

Condition Codes: This instruction may modify the condition code; however, any
condition code returned will have no significance.

Program Checks: 01, 02, 03, 09, 11, 26, and 27 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-131

5"132 4700 Controller Programming Library, Volume 1: General Controller Programming

FINDAP

I FINDAP--Find Application Program

This instruction provides two major functions: it determines the presence of an
application program and it supplies information about dynamic storage
management.

FINDAP determines if an application program is in your active, application
program data set. You must set a function code and the name of the program to
be found into a parameter list (see COPY DEFFAP in Appendix B). FINDAP
sets a condition code to indicate whether or not the named application program
was found.

This instruction also provides statistical information about storage management
operation in the 4700.

You must include optional module M45 in your OPTMOD configuration
specifications in order to use function codes 01through04.

Name Operation Operand

[label] FINDAP

operand 2

{
defld2 }
(defrf2)
(reg2)
seg2,disp2

Is a field containing the parameter list. The field must not be in
Segment 14.

You must set the F APFCN field in DEPP AP for one of the following:

Hex Code Meaning

00 Determine the absence or presence of an application program.

Set by Program

FAPAPN

Set by 4700

F APFLG (F APTRN mask)
FAPCAL
FAPLOD
FAPWAT

01 Obtain the amount of storage currently allocated to the specified
application program on the specified work station. If the station ID is set to
hex FF, you will get the amount of storage allocated to the specified
program on all work stations. This amount of storage represents Segments
0, and 2 through 12.

Set by Program

FAPAPN
FAPCSH

Set by 4700

FAPSTOR

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-133

02 Obtain the amount of storage currently allocated to the specified work
station. The amount of storage represents segments 0, and 2 through 12.

Set by Program Set by 4700

FAPCSH FAPSTOR

03 Obtain the amount of storage reserved for the specified pool and the
amount of storage in use. If the pool has not been defined then zero values
are returned. If you specify a pool ID of 00 the values.for the general pool
are returned.

Set by Program

FAPCSH

Set by4700

FAPTTL
FAPSTOR

04 Obtain statistics for the specified pool. If the reset flag (see F APCLR) is
set, then the counters will also be reset to 0.

Set by Program Set by 4700

FAPFLG(FAPCLR)FAPTTL
FAPCSH FAPSTQ

FAPSTN
FAPCBY
FAPCBN
FAPCUR
Counters: FAPSMAX, FAPSAPC, FAPSRCL,

FAPSREQ, FAPSCMB, FAPSDEC,
FAPSSCN, FAPSMOV, FAPSLNG,
FAPSWTC, FAPSWTS, FAPSWTQ

5-134 4700 Controller Programming Library, Volume 1: General Controller Programming

Condition Codes:

Hex Code Explanation

For function code 00, one of the following is set:

01 The program was found.

02 The program was not found.

For function code 01, one of the following is set:

01

02

The program was found.

The program was not found or is not currently in main storage and
in use.

For function code 02, one of the following is set:

01 The station was found.

02 The station was not found

For function codes 03 and 04, one of the following is set:

01 The storage pool was found.

02 The storage pool was not found.

Program Checks (hex): 01, 02, 11, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-13 5

5-136 4700 Controller Programming Library, Volume 1: General Controller Programming

FINISH

FINISH--End the Application Program

FINISH indicates the end of the conroller application program to the assembler.
FINISH is a required instruction in a controller application program.

Name Operation Operand

FINISH

Note: The assembler instruction END must be used to end an assembly.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-13 7

5-138 4700 Controller Programming Library, Volume 1: General Controller Programming

INITSEG

INITSEG--Initialize Segments

INITSEG permits an initial application program to initialize segment storage
during controller load time. INITSEG allows you to:

1. Set some program data fields differently for each work station.

2. Override values set into fields of your program by configuration.

INITSEG instructions must be within an initialization section of your program
that begins with an SINIT instruction, ends with an ENDINIT instruction, and
contains no other 4 700 assembler instructions. Your program can contain more
than one initialization section, and each section can contain more than one
INITSBG instruction. If multiple INITSBG instructions refer to the same field, it
is set to the value contained in the last referring instruction.

Name Operation Operand

[label] INITSEG [id,] ({seg,displdefld},data) [, ...]

id

seg

disp

defld

Specifies the work station to which the initialization values apply. If
omitted, these values apply to any station using this program as its initial
application program.

Is the number of the segment to be initialized (2-13, 15, OA, or OB). OA
and OB specify the Segment 0 for operators A and B on a shared station. If
the station is not shared, specify OA.

Is a decimal number indicating the location of the data within the segment
to be initialized. Specifying 0 with a 'seg' parameter of OA or OB selects the
high-order byte of register 0. Specifying 0 with a seg of 15 specifies the
beginning of user storage in Segment 15, because the system storage
portion of Segment 15 cannot be specified.

Is the label of a DEFLD instruction that defines the area to be initialized.
The DBFLD instruction must be coded before this INITSBG instruction in
your program.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-139

data
Is the initializing data, specified in one of the following forms:

ddd

t

DD

Is a decimal number specifying how often the constant ('xxx ... x')
occurs. If the constant occurs only once, do not specify ddd.

Defines the type of data in the constant. Specify X for hexadecimal,
C for character data, F for fullword, and so on, as defined in
Chapter 4.

Is a decimal number specifying the length of the constant 'xxx ... x'.

'xxx ... x'
Is the constant data, enclosed in single quotation marks.

5~140 4700 Controller Programming Library, Volume 1: General Controller Programming

INOR--Inclusive OR

11~[,];I

INOR performs an OR operation of two fields, and places the result in operand 1.
When the OR is executed, a 0 is set in the result if neither of the corresponding
bits in the fields is a 1 ; a 1 is set in the result if either or both the corresponding
bit~ in the fields are 1 's. The result is placed in the first operand location.

Name Operation Operand

defcon2
defld2

[label] INOR (defrf1) {
defld1

} l
(defrf2)

(reg1)
seg1,disp1

(reg2)
seg2,disp2,len2

operand 1
Is a field to be ORed with the second operand, and the location that is to
contain the result. The length specification for this field is ignored. The
field must not be in Segment 14.

operand 2
Is a field to be ORed with the field defined in operand 1. The length of
operand 2 is from 1to255 bytes, and determines how many bytes are
included in the OR operation.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all zeros.
The result is mixed ones and zeros, or all ones.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-141

5-142 4700 Controller Programming Library, Volume 1: General Controller Programming

INORI

INORI--Inclusive or Immediate

INORI performs an OR operation of a 1-byte or 2-byte field with a 1-byte or
2-byte immediate operand. When INORI is executed, a 0 is set in the result if
neither of the corresponding bits in the fields is a 1; a 1 is set in the result if either
or both the corresponding bits in the fields are 1 's. The result is placed in the first
operand location.

Name Operation Operand

[label] INORI (defrf1) , immdata2 {
defld1)

(reg1)
seg1 ,disp1

operand 1
Is a field to be ORed with the second operand, and the location that is to
contain the result. The length specification for this field is ignored. The
field must not be in Segment 14.

operand 2
Is 1 or 2 bytes of immediate data.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

zo
NZ

Explanation

The result is all zeros.
The result is mixed ones and zeros, or all ones.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-143

5-144 4700 Controller Programming Library, Volume 1: General Controller Programming

INTMR--Interval Timer

INTMR

INTMR starts, stops, reads, resets, or controls access to as many as 15 interval
timers that each work station can have. INTMR selects a parameter list that, in
turn, selects the particular interval timer and the function to be performed.

Except for starting and stopping, any work station can control interval timers for
any other work station. A work station can start and stop only its own timers.
When it is started, a timer counts intervals of time measured in seconds and
fractions of seconds until the owning work station stops the timer. The timer also
records the minimum interval measured, the maximum interval, the number of
intervals measured, and the total time of all intervals measured until the timer is
reset or deactivated by the owning or some other work station. Deactivation
causes all values for that work station to be lost; all values are reset to zero, and
the timer cannot be restarted until the timer is reactivated.

INTMR selects a parameter list having one of the three formats. The parameter
list defines the timer, the operation performed, and can contain status flags for the
timer as well as fields where the timer values, if any, are returned. INTMR must
select a parameter list that is appropriate for the operation it performs. The
parameter list can be defined using the DEFINT operand of the COPY
instruction, or by your own definition. The two largest parameter lists, including
the list defined by DEFINT, should not be in Segment 14; the smallest list can be
in any segment. Refer to the example below for the parameter list formats,
INTMR function codes, and their operation.

Note: To use this instruction, you must code the P2C operand on the OPTMOD
configuration macro.

Using the INTMR Instruction: The INTMR instruction function depends on the
function code in the parameter list that the instruction selects. INTMR can
perform the following interval timer functions:

• Activate or deactivate one or all timers on its own or another work station. A
timer must be activated before it can be started or stopped; controller startup
sets all timers to the inactive state. Only activated timers are reported back to
the host through CNM/ CS.

• Start, stop, and read the last interval timed by any timer on its own work
station.

• Read the longest interval, the shortest interval, the total time of all intervals,
and the total number of intervals timed since the timer was last activated or
reset. These values can be read for any timer on this or any other work
station, and you may choose whether to reset the timer counters after they are
read.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-145

Threshold Analysis and Remote Access (TARA) uses the interval timers to
measure response times; as a result, you must include the INTMR instructions.in
existing or new application programs at points that correctly measure the response
times reported to the host site by CNM/CS. For this reason, you may be required
to code INTMR instructions according to procedures defined by personnel at your
host site. For example, your site might want to measure the time need~d to process
a transaction. In this case, you would code an INTMR instruction to start the
timer just before issuing an L WRITE CP instruction, and another INTMR to stop
the timer just before an LREAD CP instruction.

Another example is to measure the time needed to receive a response to your·
program's request to a terminal. You would start the timer just after issuing the
L WRITE to the terminal, and stop the timer when the operator first entered data
(just after the terminal entry point for an idle station, or after exit from a test of
the LDA Attention Summary Field if that terminal's bit was set for either an idle
or active station).

Name Operation Operand

[label] INTMR { ~~i~~~2 }
(defrf2)
(reg2)
seg2,disp2

operand 2
Is a field containing the parameter list. You can define the parameter list
by means of the DEFINT copy file described in Appendix B. If your
program reads timers or enters data in the parameter list, the field must not
be in Segment 14.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK

Explanation

INTMR completed successfully.
The specified timer is not supported
(undefined) or was not activated.

Program Checks (hex): 01, 09, 11, or 27 can be set.

5-146 4700 Controller Programming Library, Volume 1: General Controller Programming

Work
Station Timer

ByteO 2

Format 1

Reserved
INTMR or

Function Flag

3

Format 2

J ,
Ela
Min

psed or
imum

terval In Interval Time

Number
of

Intervals
,

Maxitljmm To:

\.--~-'-~~,> ~~__._~~~__,

4 6 7 9 10 13 14 15

Format 3

You must select and define a parameter list with a format appropriate for each
INTMR instruction that your work station issues. Choose the format according to
the functions your INTMR instructions perform. Refer to the descriptions of the
INTMR function byte (byte 2) for the operations, their function codes, and
format requirements that each requires.

Depending on the format chosen, specify the parameter list fields as follows:

Work Station (Byte 0)
Specify the work station owning the interval timer or timers controlled by
this parameter list. This is the binary equivalent of a decimal value ranging
00 through 60. If 00 is specified, this work station is assumed. You must
specify zero for all start and stop timer functions (byte 2 = X"OO", X"Ol",
orX"ll").

Timer (Byte 1)
Specify the timer or timers on which the function (byte 2) is performed.
Specify the binary equivalent of a decimal value ranging 1through15.
Coding X"OO" for function codes X"04" or X"05" activates or deactivates
all allocated timers on the specified work station; on all other functions,
X"OO" causes a no-operation. Any timer specified must be within the range
specified by the INTMR operand of the STATION macro, or condition
code 2 is set.

Chapter 5. 4700 Instruction Descriptions-(Alphabetfoally) 5-14 7

INTMR Function (Byte 2)
Determines the function performed by the INTMR instruction, and the
format of the parameter list. An invalid function code causes a program
check of X" 11" in the log message. The functions, their codes, and the
minimum allowable parameter list formats are as follows:

Function

Start Timer

Stop Timer

Read Timer

Read Timer
with Reset

Activate Timer

Hex Code

00

01

02

03

04

Description

Start the timer specified by byte 1
for this work station (byte 0 must
be X"OO"). The timer is not
affected if it was already started.
This fune<tion requires a format-1
parameter list.
Stop the timer specified by byte 1
for this work station (byte 0 must
be X"OO"). If the timer is already
stopped, this operation is ignored.
This function requires a format-1
parameter list.
Set all interval timer results
(shortest interval, longest interval,
total time, and the total number of
intervals) for the work station and
timer specified by bytes 0 and 1.
This function requires a format-3
parameter list. If there is
insufficient space in the segment,
INTMR causes a program check of
X" 11" in the log message.
Perform the same function as Read
Timer (X"02"), but reset the result
counters. This function requires a
format-3 parameter list. If there is
insufficient space in the segment,
INTMR causes a program check of
X"l 1" in the log message.
Allow other INTMR functions to
be performed on the timer or timers
specified by byte 1. If byte 1 =
X"OO", all timers for the work
station specified in byte 0 are
activated (if allowed by that
station's ST A TION macro
instruction). This function requires
a format-1 parameter list for each
timer.

5-148 4700 Controller Programming Library, Volume 1: General Controller Programming

Function

Deactivate
Timer

Stop Timer-­
Read Elapsed
Interval

Flag (Byte 3)

Hex Code

05

11

Description

Prevent other INTMR functions
from being performed on the timer
or timers specified by byte 1. If
byte 1 = X"OO'', all timers for the
work station specified in byte 0 are
deactivated. This function requires
a format-1 parameter list for each
timer.
Stop the timer specified by byte 1
for this work station, and set the
last interval timed into the timer's
parameter list. If the timer was not
started, the interval is zero. This
function requires a format-2
parameter list; byte 3 of each list is
unused.

For format 2, this field is unused (reserved). On INTMR instructions
performing read timer or stop and read elapsed interval, the flag byte
contains one, or a combination, of the following values, indicating timer
status before the operation was performed.

X"OO": Timer was active
X"40": Timer was running
X"80": Timer inactive at start of this operation.

Elapsed or Minimum Interval (Bytes 4 - 6)
In format 2, this field is set to the time of the interval ended by the function
just performed. In format 3, INTMR sets this field to the minimum interval
timed since the timer was last activated or reset. In both formats, the
leftmost two bytes contain the number of seconds in the interval, and the
rightmost byte contains any fraction of a second. The count stays in the
parameter list until another INTMR instruction uses this parameter list, or
the timer is deactivated.

Maximum Interval (Bytes 7 - 9)
INTMR sets this field to the maximum interval timed since the timer was
last activated or reset. The leftmost two bytes contain the number of
seconds, the rightmost byte contains any fraction of a second. The count
stays in the parameter list until another INTMR instruction reads a timer
using this parameter list, or until the timer is deactivated.

Total Time (Bytes 10 - 13)
INTMR sets this field to the total of all intervals timed since the timer was
last activated or reset. This count ranges 0-16, 777, 215 seconds with the
rightmost byte containing any fraction of a second. The count stays in the
parameter list until the list is used to perform another read operation, or
until the timer is deactivated.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-149

Number of Intervals (Bytes 14 - 15)
INTMR sets this field to the total of the intervals counted since the timer
was last activated or reset. The count stays in the parameter list until
another INTMR instruction uses this list to perform another read operation,
or until the timer is deactivated.

5-150 4700 Controller Programming Library, Volume 1: General Controller Programming

IRETURN

IRETURN--Indexed Conditional Return

!RETURN conditionally returns control to the program that issued one of the
branch-and-link instructions. It is used in conjunction with the ADRLST
instruction.

Name Operation Operand

[label] IRETURN [masklX'F'], index

mask

index

Is the condition to be met for the return to be performed. If any bit in the
mask is set and the corresponding bit is set in the present condition code,
then the condition is satisfied and the return is performed. If the condition
is not satisfied, then operation continues with the next sequential
instruction. If the mask is omitted, then hex F is used as the mask to cause
an unconditional return.

Indicates the address within an address list to which the return should be
made. If index is 0, then no address list exists and return is performed
through the return-address stack. If index is not 0, then it is the index of
the entry that contains the return address. Code index as a decimal value
between 0 and 7.

Condition Codes: The code is not changed.

Program Checks (hex): 04 can be set.

Programming Notes: In the example below the program will continue operation at
label CASE2.

CASE1

CASE2

BRANL subroutine
ADRLST CASE1,CASE2

subroutine

IRETURN X'F' ,2

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-151

5-152 4700 Controller Programming Library, Volume 1: General Controller Programming

JUMP--Short Branch

JUMP

JUMP conditionally or unconditionally changes the sequence of program
operation. If any bit is set to 1 in the mask specified in the instruction and the
corresponding bit is set in the present condition code, then the condition is
satisfied, and the branch is taken. When an unconditional branch or a branch
with the condition satisfied is executed, execution continues with the instruction
referred to in the JUMP instruction. Otherwise, execution continues with the
next sequential instruction.

Because the JUMP instruction is only 2 bytes long, it can be used in place of
BRAN (a 4-byte instruction) to save controller storage. The location branched
to, however, must not be more than 510 bytes away from the JUMP instruction
address.

Note: If RELOC= Y is specified on the APOPT instruction, the JUMP
instruction can be used to branch only within a CSECT.

Name Operation Operand

[label] JUMP [ccmasklX'F' ,] branch address

ccmask
Is the condition to be met for the branch to be taken (refer to the condition
codes set by individual instructions). The ccmask can be in the form of a
mnemonic (see Chapter 4 for a list of the mnemonics representing coded
values), a 1-byte hexadecimal expression, a 4-bit binary expression, or the
label of an EQUATE instruction expressing one of the preceding numeric
values. If the operand is omitted or if X'F' is coded, then the branch is
always performed. If ccmask is specified as hex 0, the branch is never
taken.

branch address
Is the label of the instruction where processing is to continue if the branch
is taken.

Condition Codes: The code is not changed.

Program Checks (hex): OB can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-153

5-154 4700 Controller Programming Library, Volume 1: General Controller Programming

LCHAP--Change Priority

LC HAP

LCHAP provides the application program with an instruction to control priority
dispatching. When priority dispatching is ON, priorities will be defined by the
tables generated by the PRIDSP configuration macro. GMSPRI contains the
identification of the dispatching table being used and an indicator of priority
dispatching status.

Name Operation Operand

[label] LCHAP OFF [ON J

ON

OFF

NEXT

Specifies that priority dispatching will be active for the table indicated in
bits 1-7 of GMSPRI. If LCHAP is successful, bit 0 will be switched on by
LCHAP to indicate that priority dispatching is active for the table
indicated.

Deactivates priority dispatching and returns control to the station chain
dispatching sequence. Bit 0 of GMSPRI will be switched off.

NEXT
Will cause the station specified iil SMSDSS to be the next station that the
controller will attempt to dispatch. Note that priority dispatching must be
active for this operand to be valid. Be careful when using this function
because it is possible, through frequent selection of one set of stations, to
prevent dispatching of the remaining stations.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK

Explanation

The change was made.
The change was not made. The required priority
table was not defined when ON was specified; or
the station id in SMSDSS was invalid; or priority
dispatching was not active when NEXT was
specified.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-15 5

Note: The dispatching status indicator in GMSPRJ does not control dispatching
status. It is set/reset by LCHAP for information only. Modification of this bit
setting by other instructions has no effect as to whether priority dispatching is on
or off. Modifications to the dispatching table ID have no effect until LCHAP ON
is issued.

An application program can check the status (on or off) of priority dispatching,
obtain the ID number of the priority dispatqhing table currently being used,
and/ or transfer dispatching control to another table, a one-byte
field--GMSPRI--is maintained in Segment 15. The low-order 7 bits of this field
contain the dispatching table ID number, and the high-order bit is used to indicate
priority dispatching status. The dispatching order may be selected during program
execution by loading GMSPRI with the ID of the new table, and issuing LCHAP
ON. Station chain dispatching may be invoked by issuing LCHAP OFF.

5-156 4700 Controlle:t< Programming Library, Volume 1: General Controller Programming

LCHECK

LCHECK--Check Status of Station-to-Station Write

LCHECK determines the status of a station and synchronizes data transmission.
Before an LCHECK is issued for another station, the station number must be
stored in binary in SMSDSS. If there is an outstanding message previously written
to the other station, LCHECK causes a wait state until that station has read the
message.

Note: If this wait state is terminated by an operator signaling attention
(SMSIND=X'40'), the outstanding write request is discarded. However, the
message remains pending at the other station, and, when the LREAD is issued, a
status of "no message pending" is returned. The cancel flag in SMSIND should be
turned off before issuing LCHECK; if the cancel flag is on, the LCHECK will
return immediately with a condition code of 02 and status (SMSDST) set to
X'0800'.

When the station has completed the read operation for the write request, the
condition code is set, the wait state ends, control passes to the next sequential
instruction, and a status code is stored in SMSDST. If there were no outstanding
write operations, a status code of 0 is returned.

Name Operation Operand

[label] LCHECK ST [,TIO]

ST

TIO

Specifies that write operations to another station are to be checked.

Specifies that the appropriate status is to be returned and the condition
code set to reflect the status of the last L WRITE ST issued. The application
program retains control whether the L WRITE ST has been completed or
not.

Condition Codes: One of the following is set:

Hex Code

01
02

04

Possible
Mnemonic

OK
ST

Explanation

Zero status is returned.
Nonzero status is returned: the status code is
contained in SMSDST. (See Appendix E for an
explanation of the status codes.)
The L WRITE ST has not been completed (applies
only to the TIO option).

Program Checks: None are set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-15 7

5-158 4700 Controller Programming Library, Volume 1: General Controller Programming

LCONVERT

LCONVERT--Convert Binary /Character

This instruction converts between binary (bit) strings and character (byte) strings
containing X'FO' and X'Fl'. The source field for the conversion is the data
specified by operand 2. The result of the LCONVERT operation is placed in
operand 1. This instruction has been implemented to facilitate support for
COBOL and is not considered useful for general purpose application
programming.

Note: LCONVERT is an optional instruction, requiring that optional module P34
be specified by the OPTMOD configuration macro.

Name Operation Operand

[label] LCONVERT {
defld1
(defrf1) } { (defrf2)

defld2 }

operand 1

(reg1)
seg1,disp1

I { TOBITS }
TOBYTES

(reg2)
seg2,disp2,len2

Is a field that receives the converted data. The field must not be in
Segment 14 and the operand length is implied by the operand-2 length and
the operation performed. If TOBITS is specified, the implied length of
operand 1 is eight times that of operand 2. If TOBYTES is specified, the
implied length is 1/8 that of operand 2. The length allowed for either
operand 1or2 is from 1to4095 bytes.

operand 2
Is a field containing the binary or X'FO/Fl' character string to be
converted. The operand length is from 1 to 255 unless you specify register
addressing, which allows a length ranging from 1 to 4095 bytes.

TO BYTES
Specifies a conversion from a character string of X'FO' and/or X'Fl's to
binary bits. X'FO' becomes a zero bit; X'Fl ', a one bit. Every eight
X'F 1 /PO' characters become a byte of binary data. Any unfilled bit
positions of the last byte are padded with zero bits. Conversion operates
from left to right, and any operand-2 character bytes other than X'FO' or
X'Fl' cause unpredictable results.

TO BITS
Specifies a conversion from a binary string to a character string of X'FO'
and/or X'Fl's. Each binary 1 bit becomes X'Fl', and each binary 0
becomes X'FO'. Conversion operates from left to right.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-15 9

Programming Notes: LCONVERT could be used to convert a flag byte used in an
assembler application to an eight-byte character string that a COBOL application
can examine. For example, using the LCONVERT instruction with the TOBITS
operand:

INPUT LCONVERT output

(operand 2) (operand 1)

X'24' X'FOFOFlFOFOFlFOFO'

5-160 4700 Controller Programming Library, Volume 1: General Controller Programming

••. ,.,,
LDDI--Load Data Immediate

LDDI loads a halfword of immediate data into the low-order 2 bytes of a register.
The high-order 4 bytes are set to 0.

Name Operation Operand

[label] LDDI reg1,immdata2

operand 1
Is a register into which the immediate data is loaded.

operand 2
Is a 1- or 2-byte immediate data operand which becomes the halfword of
immediate data. If a 1-byte numeric operand is used, it will be
right-justified in the halfword of immediate data and the left byte will be
set to 0. If a 1-byte character operand is used, it will be left-justified in the
halfword immediate data, and the right byte will be set to a character blank.

Condition Code: The condition code is not changed.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-161

5-162 4700 Controller Programming Library, Volume 1: General Controller Programming

LDFLD--Load Field

LDFLD

LDFLD loads a field into a register. If the field is less than 6 bytes long, it is
treated as a signed binary number, and the leftmost bit is propagated to the left in
the register. If the field is more than 6 bytes long, truncation occurs on the left,
and the condition code is set.

Name Operation Operand

defld2
[label] LDFLD reg1, {

defcon2 }

(defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a register into which the field is to be loaded.

operand 2
Defines the field to be loaded. The length of the field is from 0 to 4095;
operands greater than 15 bytes long must be selected using register
addressing. If 0 is specified, the register is loaded with binary zeros.

Condition Codes: One or more of the following are set:

Hex Code

01

02
03
04
05
06
08

Possible
Mnemonic

zo

NG
LE
PS
GE
NE
TR

Explanation

The result is 0, or the length was
specified as 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4 700 Instruction Descriptions (Alphabetically) 5-163

5-164 4700 Controller Programming Library, Volume 1: General Controller Programming

LDFLDC

I,DFLDC--Load Field Character

LDFLDC loads the signed binary equivalent of a decimal EBCDIC number into a
register. Because the largest field that can be loaded is 15 digits, the range of
values that can be loaded is from -140737488355328 to 140737488355327. A
negative number is stored in twos complement form. If the field to be loaded
contains other than the digits 0 through 9 or a leading minus sign (hex 60), the
results of the conversion to binary are unpredictable.

Name Operation Operand

[label] LDFLDC reg1, (defrf2) { '~~~~~~2 }

(reg2)
seg2,disp2,len2

operand 1
Is a register into which the field is to be loaded.

operand 2
Is a field to be loaded. The length of the field is from 0 to 4095; operands
greater than 15 bytes long must be selected using register addressing. If 0 is
specified, a condition code of hex 01 is set, and the register is loaded with
zeros.

Condition Codes: One or more of the following is set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
TR

Explanation

The result is 0, or the length was specified as 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-165

5-166 4700 Controller Programming Library, Volume 1: General Controller Programming

I

LDFLDL

LDFLDL--Load Field Logical

LDFLDL loads a field into a register. If the field is less than 6 bytes long it is
treated as a 6-byte field by propagating a zero bit to the left in the register. If the
field is more than 6 bytes long, truncation occurs on the left, and the condition
code is set.

Name Operation Operand

{ ~:i~~~2 }
[label] LDFLDL reg1, (defrf2)

(reg2)
seg2,disp2,len2

operand 1
Is a register into which the field is to be loaded.

operand 2
Is a field to be loaded. The length of the field is from 0 to 4095; operands
greater than 15 bytes long must be selected using register addressing. If 0 is
specified, the register is loaded With binary zeros.

Condition Codes: One or more of the folloWing are set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
TR

Explanation

The result is 0, or the length was specified as 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Programming Note: The source field must not overlap the register field (registers
are in Segment 0).

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-167

5-168 4700 Controller Programming Library, Volume 1:- General Controller Programming

,,,,,,
LDFP--Load Primary Field Pointer

LDPP loads the binary form of the PPP of a segment into the rightmost 2 bytes of
a register. The leftmost 4 bytes are set to 0.

Name Operation Operand

[label) LDFP reg1,seg2

operand 1
Is the register that is to receive the PPP.

operand 2
Is the segment number (0-15) whose PPP is to be loaded.

Condition Codes: The code is not changed.

Program Checks (hex): 01 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-169

5-170 4700 Controller Programming Library, Volume 1: General Controller Programming

••. ,.~,
LDLN--Load Field Length Indicator

LDLN loads the binary value of the field length indicator (FLI) of a segment into
the rightmost 2 bytes of a register. The leftmost 4 bytes of the register are set to 0.

Name Operation Operand

[label] LDLN reg1,seg2

operand 1
Is the register that is to receive the FLI.

operand 2
Is the segment number (0-15) whose FLI is to be loaded.

Condition Codes: The code is not changed.

Program Checks (hex): 01 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-171

5-172 4700 Controller Programming Library, Volume 1: General Controller Programming

LDRA--Load Register Address

This instruction creates a register address in operand 1. A register address has the
following format:

Bits 00-07: (Set to zero)
08-11: Segment space ID
12-15: Segment
16-31: Length
32-4 7: Displacement

If operand 2 is a segment-displacement operand (that is; 'defcon2',
'defld2', or 'seg2,disp2,len2') then the register address loaded into operand 1 will

contain: the current segment space ID and the segment number, length, and
displacement associated with the operand.

If operand 2 is an unmodified register address (that is, '(reg2)') then the address
will be loaded, as is, in operand 1.

If operand 2 is a modified register address (that is, '(defrf)') then the register
address loaded into operand 1 will contain:

• the segment space ID from operand 2

• the segment number from operand 2

• the length from the referenced 'defrf'

• the sum of the displacement of the referenced defrf and the displacement in
the register associated with the defrf.

Name Operation Operand

[label] LDRA { ~:~~~~2 }
reg1, (defrf2)

operand 1

(reg2)
seg2,disp2,len2

Is the register where the register address is created.

operand 2
Specifies the field or field label whose address becomes the register address
in operand 1.

Condition Codes: The code is not changed.

Program Checks (hex): 01 and 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5~ 173

5-174 4700 Controller Programming Library, Volume.1: General Controller Programming

LDREG--Load Register

LOREG

LDREG replaces the contents of one register with the contents of another
register. The contents of reg2 are not changed. Both operands may specify the
same register to test its contents.

Name Operation Operand

[label) LDREG reg1 ,reg2

operand 1
Is the register to be loaded.

operand 2
Is the.register whose contents are to be loaded into the first register
specified.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06

Possible
Mnemonic

zo
NG
LE
PS
GE
NE

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-17 5

5-176 4700 Controller Programming Library, Volume 1: General Controller Programming

LDSECT

LDSECT--DSECT Definition (BEGIN)

The LDSECT instruction starts the definition of a sequence of level (Ln)
instructions. Each level instruction associates a label with a corresponding length
and displacement. The LDSECT instruction options determine whether the above
label (field) is defined within a segment or as an offset from a register.

Name Operation Operand

label LDSECT { SDL= {segldefld} }
BASE= { regl*} [,DISP=number)

SDL

BASE

DISP

Either a segment number or the label of a defld instruction.

A register number that is used, assumed to contain a register address
locating the fields of the DSECT.

Either an'*' or a number that specifies the starting displacement of the
fields of the DSECT. An'*' indicates the fields should start after the
previous DEFLD or DEFRF specification for the specified segment.

Note: The SDL and BASE keywords are mutually exclusive.

If no keywords are specified then defaults are set as follows:

1. Level instructions define fields within a segment.

2. The starting displacement and segment number are defaulted to the last
DEFLD instruction's values encountered prior to the LDSECT instruction.

You can use the SDL and DISP keywords in conjunction as follows:

1. SDL specifies that the level instructions define fields within a segment and the
SDL operand specifies the segment number. If SDL specifies the label of a
DEFLD instruction then the field starts within the segment and at the
displacement specified on the DEFLD instruction.

2. DISP specifies the starting displacement within the segment. The DISP
operand overrides the DEFLD displacement of SDL. If SDL specifies a
DEFLD label and DISP specifies an '*', then only the segment value of the
SDL specification is used.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-177

Programming Notes: The following are examples of how Level definition
instructions may be used to describe a data areft.

BUFFER

FLD1 I FLD2 FLD3

FLD3A T FLD3B

In this example assume that the data area is to be located by register 5.

BUFF LDSECT BASE=S

BUFFER
FLD1
FLD2
FLD3
FLD3AB
FLD3A
FLD3B

L1 BUFFER
L3 FLD1,10
L3 FLD2,10
L3 FLD3,40
L3 ·FLD3AB,REbEF=FLD3

LS .FLD3A,20
LS FLD3B,20

LEND PRINT=ON

DEFRF
DEFRF
DEFRF
DEFRF
DEFRF
DEFRF
DEFRF

S,0,60
S , (BUFFER) , 1 0
s,, 10
s, ,40
S, (FLD3) ,40
S, (FLD3AB), 20
s,,20

The following is another example of a DSECT definition:

BUFF LDSECT SDL=3,DISP=O
L1 BUFFER

L3 FLD1,10
L3 FLD2,10
L3 FLD3,40
L3 FLD3AB,REDEF=FLD3

LS FLD3A,20
LS FLD3B,20

LEND PRINT=ON

The following instructions are created from the coding above:

BUFFER
FLD1
FLD2
FLD3
FLD3AB
FLD3A
FLD3B

DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD

3,0,60
3 ,BUFFER, 10
3, I 10
3, ,40
3,FLD3,40
3,FLD3AB,20
3,, 20

5-178 4700Controller Programming Library, Volume 1: General Controller Programming

LDSEG--Load Segment

LDSEG

LDSEG places the contents of a Segment 1-header addressed field into a register.
If the field is longer than 6 bytes, truncation occurs on the left; if the field is less
than 6 bytes, it is treated as a signed binary number, and the leftmost bit is
propagated to the left in the register.

Name Operation Operand

[labe.l] LDSEG reg1, seg2

operand 1
Is a register that is to contain the result of the operation.

operand 2
Is a field in the specified Segment 1 to be loaded into the register. The
location of the field within the Segment 1 is determined by the PPP, and its
length by the FU. If the field length is 0, the register is loaded with binary
zeros.

Condition Codes: One or more of the following are set:

Hex Code

01

02
03
04
05
06
08

Possible
Mnemonic

zo

NG
LE
PS
GE
NE
TR

Explanation

The result is ·o or the field length was specified as
0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01 and 03 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-179

5-180 470Q Controller Programming Library, Volume 1: General Controller Programming

I LDSEGC

LDSEGC--Load Segment Character

LDSEGC loads the binary equivalent of a Segment 1-header addressed field into
a register. The range of values that can be loaded is from -140737488355328 to
+140737488355327. A negative number is loaded in twos complement form. If
the field contains other than the digits 0 through 9 or a leading minus sign (hex
60), the results of the conversion to binary are unpredictable.

Name Operation Operand

[label] LDSEGC reg1,seg2

operand 1
Is the register into which the field is to be loaded.

operand 2
Is a field in the specified Segment 1 to be loaded into the register. The
location of the field within the Segment 1 is determined by the primary
field pointer, and its length by the field length indicator. The field length
can be from 0 to 4095 bytes. If the field length is 0, the register is loaded
with binary zeros.

Condition Codes: One or more of the following are set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0 or the length is specified as 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.

Program Checks (hex): 01or03 can be set.

Chapter S. 4700Instruction Descriptions (Alphabetically) 5-181

5~182 4700 Controller Programming Library, Volume 1: General Controller Programming

LDSEGLN

LDSEGLN--Load Segment Length

LDSEGLN loads the length of the Segment 1 (in binary) into a register.

Name Operation Operand

[label] LDSEGLN reg1,seg2

operand 1
Is the register that is to contain the Segment I length.

operand 2
Is the Segment 1 number whose length is to be loaded.

Condition Codes: The code is not changed.

Program Checks (hex): 01 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-183

5-184 4700 Controller Programming Library, Volume 1: General Controller Programming

LDSFP

LDSFP--Load Secondary Field Pointer

LDSFP loads the secondary field pointer (SFP) in binary into a register. The SFP
is loaded into the rightmost 2 bytes of a register and the leftmost 4 bytes are set to
zero.

Name Operation Operand

[label l LDSFP reg1 ,seg2

operand 1
Is the register that is to contain the SFP.

operand 2
Is the Segment 1 number whose SFP is to be loaded.

Condition Codes: The code is not changed.

Program Checks (hex): 01 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5:..1 g5

5-186 4700 Controller Programming Library, Volume 1: General Controller Programming

LEJECT

LEJECT--Eject to a New Page

The LEJECT instruction is used to separate pages of print in the output listing of
your program. When issued, the LEJECT instruction will skip to the first
printable line of a new page. The standard EJECT instruction of the DOS/VS or
OS/VS assembler may be included, but will be ignored.

Name Operation Operand

[label l LEJECT

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-187

5-188 4700 Controller Programming Library, Volume 1: General Controller Programming

LEND--DSECT Definition (End)

The LEND instruction is used to indicate the end of a set of level (Ln)
instructions. It causes the generation of either DBFLD's or DBFRF's that
represent the preceding level instructions.

Name Operation Operand

LEND [PRINT= {OFFION}]

PRINT

LEND

Is an optional operand that specifies whether the DBFLD or DBFRF
instructions are to be listed (ON) or not listed (OFF). OFF is the default.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-189

5-190 4700 Controller Programming Library, Volume 1: General Controller Programming

I LEXEC--Execute

LEX EC

The LEXEC instruction specifies the label of an instruction and a register. The
labeled instruction is ORed with all or part of the data in the register. The
resulting subject instruction is then executed. Neither the labeled instruction nor
the register is altered by the ORing.

The execute instruction performs the following sequence of steps to create the
subject instruction:

1. The labeled instruction is placed, left-justified, into an 8-byte buffer of zeros.
The length of the labeled instruction is determined by its operation code. (The
8-byte buffer is internal to the controller.)

2. If register number 0 is specified by the execute instruction, no ORing takes
place and the labeled instruction is the subject instruction.

If the register number is not 0, then the rightmost 2, 4, or 6 bytes of the
register are ORed with the leftmost 2, 4, or 6 bytes of the buffer, respectively.
The number of bytes ORed is determined by an operand of the execute
instruction.

3. The subject instruction is now left-justified in the buffer. Notice that the
length or the subject instruction is a function of the operation code of the
subject instruction, and the length may be 2, 4, 6, or 8 bytes.

The subject instruction may be any valid executable instruction except a jump,
branch, or another LEXEC.

LEXEC supports a WRTI subject instruction only if SPLIT=N is coded or
defaulted on the APOPT instruction and the immediate data is in the addressed
instruction. (WRTI is in 4700 Programming Library, Volume 4.) Control
continues with the instruction following the LEXEC after the subject instruction
completes, unless the subject instruction is an LEXIT, LSEEK (that branches), or
instructions that modify SMSUIC.

The ORing of the labeled instruction with the register permits control of, for
example, the operation code or Segment 1 number at execution time.

Name Operation Operand

[label) LEXEC reg1,addr [,lenlQJ

reg

addr

Is the register to be used when forming the subject instruction. If you
specify register 0, the labeled instruction is used as the subject instruction;
that is, no ORing takes place.

Is the label of the instruction (within Segment 14) which is to be ORed to
regl when forming the subject instruction. The value of "addr" must be
even and may be an external symbol when RELOC= Y is specified in the
APOPT instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5~191

Ien
For a register other than 0, len determines the number of bytes to be ORed.
Valid values for Jen are 0, 2, 4, and 6. The default value is zero. A value of
0 indicates that the length of the labeled instruction is the number of bytes
to OR. Values of 2, 4, and 6 indiCate that 2, 4, and 6 bytes are to be ORed,
respectively. The two low-order instruction bytes cannot be changed for
8-byte instructions.

Jen must be

• an unsigned decimal integer

• the label of an EQUATE instruction that is associated with a decimal
integer.

Condition Code: The condition code can be set by the subject instruction.

Program Checks (hex): Program checks can be generated by the LEXEC or the
subject instruction; in either case, it is the address of the LEXEC instruction that
is flagged as having caused the program check. The LEXEC instruction can cause
the following program checks:

03 = field length error (Jen not 0, 2, 4, or 6)

OB = instruction address error

11 = subject instruction cannot be performed by LEXEC

Programming Notes: The following example illustrates a use of LEXEC to create
and execute the subject instruction LOSEGLN R03, S04.

GETLNO LOSEGLN R03,0
•
•
•

LOOI
GETLN4 LEXEC

•
•
•

nsi

5,X'04'
5,GETLNO

addressed instruction

load .register 5 with ORing value.
-create and execute subject instruction;
addressed instruction . . . 1030
low-order 2 bytes of reg 5 . . . 0004
e.x;ecuted subject instruction .. 1034
control returns to nsi

5-192 4700 Controller Programming Library, Volume 1: General Controller Programming

LEXIT--End of Processing

LEXIT

LEXIT signals the end of current processing for a station (usually, the end of a
transaction). It waits until all devices assigned to the station are not busy and
until all activity with the communication link is in a quiesced state. If any
outstanding responses are required from a previous read operation with the host
processor, LEXIT causes them to be sent. When the instruction is performed, the
following fields in Segment 1 are set to 0:

Relative instruction counter (SMSUIC)
Pause Instruction Counter (SMSPCT)
Indicator byte (SMSIND)
Terminal group unit (SMSTGU)

The instruction loop threshold count (SMSL TC) is set to 1 and the flag bit in
SMSFG2 indicating program check routine in control is set off.

The station ID is also restored (SMSSID in Segment 1) to ensure that the correct
ID exists, and SMSLSE is set to the value in SMSLSB.

After execution of LEXIT, the applicable station stops processing until an
asynchronous entry point is activated for the station. The station relinquishes
control even if an asynchronous input is pending at the time of the LEXIT
execution.

Note: When LREAD NOW AIT for a keyboard/ display precedes the LEXIT, the
operator must complete the input operation before the LEXIT is performed. See
the 4700 Programming Library, Volume 4.

A work terminal sharing a terminal with another station can relinquish control of
that terminal before issuing LEXIT by using an ASSIGN instruction. (See the
description of "ASSIGN" in Volume 4.)

Name Operation Operand

[label] LEXIT

Condition Codes: The code is not changed.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-193

5-194 4700 Controller Programming Library, Volume 1: General Controller Programming

LHRT

LHRT--Load High-Resolution Counter

This instruction loads the high-resolution counter (HRC) into a six-byte field
defined by the instruction. The low-order byte of the field contains 1/256
seconds, and the high-order five bytes contain the seconds. The time measured
by the HRC is the total time elapsed since the last controller load (IPL).

Name Operation Operand

[label] LHRT (defrf2) {
defld2 }

(reg2)
seg2,disp2

operand 2
Is a field to contain the timer value read from the HRC. The field length is
six bytes, and any specified length is ignored. The field must not be in
Segment 14.

Condition Codes: The condition code is not changed.

Program Checks (hex): 01, 02, or 27 can be set.

Programming Notes: The following example uses LHRT to compute the time to
perform operation X:

BEGIN DEFLD 3,,6 6 BYTE SA VE AREA IN SEGMENT 3
END DEFLD 3,,6

•
•
LHRT BEGIN SA VE BEGIN COUNTER VALUE
•
• (Operation X)
•
LHRT END GET CURRENT COUNTER VALUE
LDFLD 2,END
SUBFLD 2,BEGIN REG2 =INTERVAL

The error factor of the interval measured is always less than the resolution of the
counter. For example, the computed interval would be almost 1/256 second too
large if the first LHR T was executed just before the counter increased, and the
second LHR T was executed just after the counter increased.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-195

5-196 4700 Controller Programming Library, Volume 1: General Controller Programming

LIFO FF

LIFOFF--If Off Then Branch

LIFOFF changes the sequence of program execution by causing a branch when a
specified bit is off. If the specified bit is on, no branching occurs. The ELSE
operand can be coded to set the specified bit off if the branch is not taken and the
next sequential instruction is executed.

Name Operation Operand

[label] LIFOFF (defrf2) ,bitnurn,branch address {
defld2 }

(reg2)
seg2,disp2

[, ELSE=SETOFF]

operand 2
Is a field containing the bit to be tested. The length associated with this
fixed field is ignored; the field is assumed to be 2 bytes long. If
ELSE=SETOFF is coded, the Segment 1 number associated with the field
may not be 14.

bitnum
Is the bit number (0-15), within the 2-byte field, to be tested. Bit number 0
is the leftmost bit of the first byte. One of the following must be used for
bitnum:

1. An unsigned decimal integer (0 to 15) representing the bit to be tested.

2. A 1- or 2-byte hexadecimal value which, after translation, represents
the bit to be tested. The following illustrates valid hexadecimal values
and the resulting translation:

Hex Bit to be Tested

X'80' 0
X'40' 1
X'20' 2

•
X'02' 6
X'Ol' 7
X'8000' 0
X'4000' 1
•

X'0002' 14
X'OOOl' 15

3. A label of an EQUATE instruction associated with a decimal or a
hexadecimal value (as described above) that identifies the bit to be
tested.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-197

branch address
Is the label of the instruction to be executed if the bit tested is off.

ELSE=SETOFF
If used, will set the tested bit off if the branch is not taken. If it is omitted,
no change is made to the bit tested.

Condition. Code: The condition code is not changed.

Program Checks (hex): 01, 02, or OB can be set.

5-198 4700 Controlfor Programming Library, Volume 1: General Controller Programming

LIFON

LIFON--If On Then Branch

LIFON changes the sequence of program execution by causing a branch when a
specified bit is on. If the specified bit is off no branching occurs. The ELSE
operand can be coded to set the specified bit on if the branch is not taken and the
next sequential instruction is executed.

Name Operation Operand

[label] LIFON (defrf2) {
defld2 }

,bitnurn,branch address

operand 2

(reg2)
seg2,disp2

[,ELSE=SETON]

Is a field containing the bit to be tested. The length associated with this
fixed field is ignored; the field is assumed to be 2 bytes long. If
ELSE=SETON is coded, the segment number associated with the field may
not be 14.

bitnum
Is the bit number (0-15), within the 2-byte field, to be tested. Bit
number 0 is the leftmost bit of the first byte. One of the following must be
used for bitnum:

1. An unsigned decimal integer (0 to 15) representing the bit to be tested.

2. A 1- or 2-byte hexadecimal value which, after translation, represents
the bit to be tested. The following illustrates valid hexadecimal values
and the resulting translation:

Hex Bit to be Tested

X'80' 0
X'40' 1
X'20' 2
•
•
X'02' 6
X'Ol' 7
X'8000' 0
X'4000' 1
•
•
X'0002' 14
X'OOOl' 15

3. A label of an EQUATE instruction associated with a decimal or a
hexadecimal value (as described above) that identifies the bit to be
tested.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-199

branch address
Is the label of the instruction to be executed if the bit tested is on.

ELSE=SETON
H used, will set the tested bit on if the branch is not taken. If it is omitted,
no change is made to the bit tested.

Condition Code: The condition code is not changed.

Program Checks (hex): 01, 02, or OB can be set.

Programming Notes: In the following example, a work station has established a
'FLAGS' field in one of its private storage Segment ls. FLAGS is being used as a
bit switch field by the work station and switch 4 is being used to indicate whether
process x and y or just process y must be executed. When the switch is on,
process y is to be executed; when the switch is off, process x and y are to be
executed. Switch 4 is assumed to be set by another routine.

FLAGS DEFLD
SW4 EQUATE
START •

•
•

LIFON
(nsi)

•
•
•
•

SKIP •
•
•
•

In this example:

2,,2 (1)
4 (2)

FLAGS,SW4,SKIP (3)
(begin process x)

(end process x)
(begin process y)

statement (1) defines the 2-byte field of bit switches; statement (2) is the
equate for bit switch 4 (X'0800'); and statement (3) controls program flow -­
if the switch is on, a branch to SKIP is taken, and only process y is executed; if
the switch is off, both process x and process y are executed.

5-200 4700 Controller Programming Library, Volume 1: General Controller Programming

LLOAD

LLOAD--Load an Overlay Section into Main Storage

LLOAD loads an application overlay into main storage. If a register other than
0 is specified, the location of the first instruction in the overlay section is
returned in the specified register. This location can be used to branch to an
overlay section that was assembled independently of the root section.

Two different types of LLOAD operations can be performed, depending on
whether or not the parameter PARM=EXP is specified. A 'normal' LLOAD
operation is performed if PARM=EXP is not coded. In this case, the LLOAD
instruction loads the specified overlay into main storage only if it is not already
loaded. The location where the overlay is loaded is derived from the Resident
Overlay Directory (ROD).

An 'expanded' LLOAD operation is performed if the parameter PARM=EXP
is coded in the LLOAD instruction. The 'expanded' LLOAD operation loads
overlays into main storage at locations different from those defined in the
ROD; in this case, the load address(es) where the overlay is to be loaded must
be specified explicitly by you in the expanded LLOAD parameter list.

Name Operation Operand

[label] LLOAD

operand 1

{

defcon2
defld2

[reg1], (defrf2)
(reg2)
seg2,disp2

} I ,PARM•EXP]

Is the register that is to contain the location of the overlay section's first
instruction after this LLOAD is executed. LLOAD sets operand 1 to
zero if a split overlay is loaded with no instruction section, or if an
expanded LLOAD loads a nonsplit overlay into a segment other than 14.
If operand 1 is omitted or specified as 0, the location of the overlay
section's first instruction is not returned, but the execution of the
LLOAD still takes place.

operand 2
Defines the name of the overlay when P ARM=EXP is not coded, or
defines the expanded LLOAD parameter list when PARM=EXP is
coded. Any length is ignored. If PARM=EXP is not coded, the first 8
bytes are assumed to be the name of the overlay. If PARM=EXP is
coded, the first 14 bytes are assumed to be the expanded LLOAD
parameter list.

PARM=EXP
If coded, will perform an expanded LLOAD operation. The load
address(es) for the overlay must be specified in the expanded LLOAD
parameter list.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-201

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK
ST

Explanation

The instruction was executed successfully.
Status is stored.
The status code is contained in SMSDST.
This instruction may produce status
that is defined in the IBM 4700 Controller Programming
Library Volume 2: Disk and Diskette Programming.

Program Checks (hex): 01, 02, 03, 06, 08, or 27 can be set. If PARM=EXP is
coded, 11 can also be set.

Programming Notes: LLOAD loads the application overlay into Segment 14 as
defined by the STOVL Y instructions in the calling routine and the OVL YSEC
instruction at the beginning of the overlay.

Operation of the LLOAD instruction includes data transfer because application
overlays reside on a disk or diskette. Unsuccessful operations set a condition
code to indicate that status has been stored. (Application programs, including
overlays, are placed on a disk if CPY AP= Y and DSK=A were coded in the
FILES configuration macro.)

An expanded LLOAD operation loads overlays into user storage under control
of the expanded LLOAD parameter list. When you code P ARM=EXP in the
LLOAD, overlays can be loaded into various locations in storage. You can
specify load addresses in the expanded parameter list or you can allow them to
default to the normal load addresses. Addresses in the parameter list are used if
you set the appropriate flags.

Expanded LLOAD can be used when more than one station share a common
application program containing a number of overlay sections, and the overlay
sections are all defined to use the same storage space.

The normal LLOAD operation does not load an overlay into more than one
location. One station could load an overlay while another station required the
same space to load another overlay from the same program. The latter station
would have to wait until the first station completed operation and released the
space. You can avoid this situation by using the expanded LLOAD capability.
You must define a set of storage areas where any overlay can be loaded. Your
program must manage these storage areas by keeping track of whether they are
'occupied' or 'free'.

The definition of the LLOAD parameter list is provided by the COPY
DEFELP instruction. (See Appendix B for details.)

5-202 4700 Controller Programming Library, Volume 1: General Controller Programming

The following describe the parameter list entries for expanded LLOAD:

Field

ELPOVN
Bytes 0-7

ELPFLG
Byte 8

ELPSEG
Byte9

ELPCLA
Bytes 10,11

EL PILA
Bytes 12,13

Contents

The 8-byte name of an existing overlay.
This name is used by LLOAD to locate the overlay.

This field contains the flags that indicate
which parameter list entries, if any, should be used to
determine the relative load address or addresses for the
overlay. If neither flag is set, a program check (hex 17) will
occur.

Flag bit masks:

ELPCSF This flag causes LLOAD to derive load
addresses This flag causes LLOAD to derive
load addresses for the overlay from the ELPSEG
and ELPCLA fields.

ELPISF This flag causes the load address to be taken
from the ELPILA field.

This field specifies the segment (0 - 15)
where the overlay will be loaded. It is used only if the
appropriate flag is set.

This field specifies the relative address
within the segment defined by ELPSEG, where the overlay
will be loaded. This value must be an even number. If
ELPSEG specifies Segment 14 then this value must not be
less than 48 (hex 30). This field is used only if the
appropriate flag is set.

This field specifies the relative address
within the application program for the overlay. This value
must be even; and must be greater than or equal to 48 (hex
30). This field is used only if the appropriate flag is set.

If the overlay section is to be loaded at a location other than that defined in the
ROD, the use of branching instructions that refer to locations within the
overlay causes incorrect operations to occur. Branching instructions cannot be
used to transfer from outside an overlay (such as from a root section) to a point
within an overlay.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-203

In the same sense, do not code the OVL YEP parameter of the OVL YSEC
instruction if the overlay is to be loaded in a location other than that defined in
the ROD. Coding OVL YEP creates a branch to the entrY point label. The
entry point of such an overlay should always be the instruction following the
2-byte header in the overlay, or the entry point must be calculated before the
branch to the entry point occurs.

The same restriction applies when referencing DEFLD or DEFCON
instructions that refer to labels within the overlay. All references should
instead first calculate the current overlay load address, and then add the offset
to the desired data fields within the overlay.

5-204 4700 Controller Programming Library, Volume 1: General Controller Programming

LMERGE

LMERGE--Merge Blocks of Records

LMERGE collates sequenced data items from two separate input blocks into a
third output block as specified by the parameters contained in a list. After the
merging is completed, execution continues with the next sequential instruction
(unless a program check occurs).

The instruction points to a parameter list (see the DEFMER copy file)
consisting of block pointers, data item descriptions, and other variables. Two
input blocks of fixed-length data items are merged into an output block. Each
data item contains a collating key at a fixed displacement in the item. The data
items in each block occupy contiguous storage space.

Note: This is an optional instruction that requires optional module P5C be
specified in the OPTMOD configuration instruction.

In general, LMERGE attempts to place one of the two current items from the
input blocks into the next available portion of the output block. LMERGE
tries to place the current item with the smaller (larger) key into the output
block for an ascending (descending) merge. The current item from the input
block, which is tried first, is called the primary item; the other input block's
current item is called the secondary item.

The following definitions will help clarify LMERGE.

Current Item of an Input Block- is the data item being considered for
placement into an output block.

Current Item of an Output Block - is the next available position in the output
block.

Data Set Swap Flag - is a bit switch in the return byte of the LMERGE
parameter list. It will be switched on when a sequence check
occurs on a merge unit boundary. The flag can be used in a sort
application that is data driven.

Empty Input Block - is an input block that LMERGE has marked as empty
(by setting a bit in the return flag byte of the LMERGE parameter
list) because the last physical item has just been copied from the
input to the output block.

Fragmented Key - A key of a data item is said to be fragmented if its contents
(from most significant to least significant) are not sequential from
left to right.

Merge Unit - is the size, in bytes, of the smallest string of ordered items that
are to be read from or written to a disk or diskette.

Merge Unit Boundary - is used to test for a sequence check that will occur if:

• Both the primary and secondary items of the input blocks are
out of sequence with respect to the previous data item of the
output block.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-205

• The current output pointer minus the displacement to the begin.
pointer is a multiple of the Merge Unit.

Null Input Block - is an input blockthat the application program has marked
as null (by setting a bit in the input flag byte of the parameter list).
LMERGE will not copy items from a null input block.

Previous Item - is the item most recently copied to the output block. The
displacement to the previous item plus the item length equals the
displacement to the current item of the output block.

Primary Item - is the item with the smaller key for an ascending merge (or
larger key for a descending merge) of the 2 input blocks. If the
keys are equal then the primary item is the current item from block
1. (If one input block is null then the primary item is the current
item from the non.:.null block.)

Secondary Item- is the item with the larger key for an ascending merge (or
smaller key for a descending merge) of the 2 input blocks. If the
keys are equal then the secondary item is the current item from
block 2. (If one input block is null then the secondary item is the
current item from the non-null block.)

Sequence Check - occurs during operation of LMERGE when both current
items of the input blocks are out of sequence with the previous
item of the output block. If one of the input blocks is a null block,
a sequence check occurs when the active input block current item
is out of sequence with the previous item of the output block.

LMERGE operates according to the following rules:

When invoking LMERGE or after the output block contents have been written
to a data set because of a sequence check, the key of the physically last data
item in the output block should be set to hex OOs (ascending merge) or hex FFs
(descending merge). This will avoid an unwanted sequence check.

If the current pointer of any block equals the end pointer of the block,
LMERGE begins by setting the current pointer equal to the begin pointer of
the block. Therefore, having the current pointer equal to the begin pointer and
having the current pointer equal to the end pointer are equivalent.

If the input flag byte indicates that both input blocks are null, LMERGE ends
with the both-input-blocks-null bit on in the return flag byte.

If the input flag byte indicates that one input block is null, a one-way merge is
performed, using the other block as the sole input source. The
input-block-empty bit in the return flag byte is not set on for the null block.

5-206 4700 Controller Programming Library, Volume 1: General Controller Programming

If the key of the previous item of the output block is in sequence with the key
of the primary item, the primary item is copied into the current position of the
output block. The current pointer of the block that contained the primary item
is increased by the item length, and, if its new value equals the block's end
pointer, the appropriate input-block-empty bit of the return flag byte is
switched on.

If the key of the previous item of the output block is not in sequence with the
key of the primary item, and is in sequence with the secondary item's key, the
secondary item is copied into the current position of the output block. The
current pointer of the block that contained the secondary item is increased by
the item length, and, if its new value equals the block's end pointer, the
appropriate input-block-empty bit of the return flag byte is set.

After a data item is copied to the output block, the previous item becomes the
item just moved, and the output block's current pointer is increased by the item
length. If this new current pointer equals the end pointer, the output-block-full
bit of the return flag byte is switched on.

If any bit or bits of the return flag byte have been switched on, execution of the
next sequential instruction begins; otherwise, an attempt is made to copy
another data item to the output block.

The merge output block should always be written out to a disk or diskette data
set (unless the current pointer equals the begin pointer) when the return flag
byte requests processing (output block full, sequence check on a merge unit
boundary, or both input blocks null) before another LMERGE is executed.

If the key of the previous item of the output block is out of sequence with both
the primary and secondary item's keys:

1. Neither input item is copied into the output block.

2. The sequence check condition code is set.

3. If the merge unit is not zero and the current pointer minus the begin pointer
of the output block is a multiple of the merge unit, the
sequence-check-on-a-merge-unit-boundary of the return flag is set.
Otherwise, the sequence-check-not-on-a-merge-unit-boundary is set.

4. LMERGE processing ends and program operation continues with the next
sequential instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) S-207

LMERGE Parameter List: The parameter list has the following format:

Displ Size

0 1

1 1

Parameter

Input flag byte.

The following bits are set/reset by the application
program.

Bit Meaning

0 =0 indicates ascending keys
= 1 indicates descending keys

1-5 Reserved
6 = 1 indicates input block 1 null
7 = 1 indicates input block 2 null

Return Flag Byte

The following bits are set/reset by each operation
ofLMERGE:

Bit Meaning

0 Output block full
(Note: The current pointer of the output block
equals its end pointer.)

1 Input block 1 empty
(Note: The current pointer of input block 1
equals its end pointer.)

2 Input block 2 empty
(Note: The current pointer of input block 2
equals its end pointer.)

3 A sequence check occurred,
and the current pointer for the output block
was not on a merge unit boundary.

4 Data-set swap flag:
A sequence check occurred, and the current
pointer for the output block
was on a merge unit boundary.

5 Both input-blocks were null input blocks
(that is; both null-block
of the input flag byte are set).

6-7 Reserved.

5-208 4700 Controller Programming Library, Volume 1: General Controller Programming

Displ Size Parameter

2 2 Displacement to the beginning of the first
input block within its segment (begin pointer).

4 2 Displacement to the end of the first input
block within its segment (that is, the byte
following the last item) (end pointer).

6 2 Displacement to the beginning of the second
input block within its segment (begin pointer).

8 2 Displacement to the end of the second input
block within its segment (that is, the byte
following the last item) (end pointer).

10 2 Length of each data item.
12 2 Displacement to the collating key from the start

of an item.
14 1 Length of the collating key.
15 1 The number of the segment containing the first

input block.
16 1 The number of the segment containing the second

input block.
17 1 The number of the segment containing the output bfock.

This may not be 14.
18 2 Displacement to the beginning of the output block

within its segment (begin pointer).
20 2 Displacement to the end of the output block within

its segment (that is; the byte following the last item)
(end pointer).

22 2 Displacement to the current item in the first input
block (initially set to the beginning of the block and
subsequently modified by the controller during LMERGE
processing). This current item is the next entry from
input block 1 to be considered for placement into the
output block (current pointer).

24 2 Displacement to the current item in the second input
block (initially set to the beginning of the block and
subsequently modified by the controller during LMERGE
processing). This current item is the next entry from
input block 2 to be considered for placement into the
output block (current pointer).

26 2 Displacement to the current item in the output block
(initially set equal to the beginning of the block
and subsequently modified by the controller during
LMERGE processing). The current item in the output
block is the next position available to receive a
data item (current pointer).

28 2 Merge unit. This is the size in bytes of the smallest
string of ordered items that are input from, or output
to, a data set while merging. The value of the merge unit
determines which sequence check bit of the return flag
byte is switched on if a sequence check occurs.
If the merge unit is set to zero by the application program,
and if a sequence check does occur, then the
sequence-check-not-on-a-merge-unit-boundary bit is
switched on. If the merge unit is not zero, then the merge
output block should be a multiple of the merge unit.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-209

Name Operation Operand

[label] LMERGE { fi!!~~2) }
(reg2)
seg2,disp2

operand 2
is a field containing the parameter list. The field cannot be in
Segment 14. If you specify seg2 only, the displacement of the list within
the segment is determined from the primary field pointer (PPP). Any
field length is ignored.

When using register addressing to locate a parameter list it can be in
noncurrent segment space. However, if the parameter list contains
addresses (segments, displacements) of other storage areas then these
storage areas must be in the current segment space.

Condition Codes: At completion of LMBRGE execution, one of the following
condition codes is set:

Hex Code Explanation

01
02

Sequence check did not occur.
Sequence check did occur.

Below is a table of all possible combinations of condition codes (CC) and bits
returned in the return flag byte of the parameter. list:

CC: Flag: Description:

01 80 Output block full.
01 40 Input block 1 empty.
01 CO Input block 1 empty and output block full.
01 20 Input block 2 empty.
01 AO Input block 2 empty and output block full.
01 04 Both input blocks were null input blocks.
02 10 Sequence check, not on merge unit boundary.
02 08 Sequence check, on merge unit boundary.

Program Checks (hex): 01, 02, 09, 11, or 27 can be set.

Program check 01 results from one of the following conditions:

• Parameter list is located in an invalid or undefined segment.

• Invalid or undefined segment referred to in the parameter list.

Program check 02 results from one of the following conditions:

• The parameter list is not completely contained within the given segment.

• Input block 1, input block 2, or output block is not completely contained
within its segment.

5-210 4700 Controller Programming Library, Volume 1: General Controller Programming

5-211 to 5-258
missing from original

document

Field Value

IND 8
INL 2
OUD 6
OUL 3
LIC X'4C'
FNC X'3F'
LID 7
LOD 4
CNT 6
TST X'80' -- indicates ending on

translation break.

Data Tl'llllSlation Example 2: In this example, two translation tables are
generated, each with four entries. The input code ranges are X'lB' to X'lE',
and X'61' to X'64'.

Note: Generating one table with a range of X'lB' to X'64' would result
in a table with 7 4 entries, requiring more storage space.

In addition to the operations of example 1, translation control functions for
case shift (up and down -- CASn and DS), transparent write (TW), and
positioning (ADV) are illustrated in this example, as well as a demonstration of
the handling of an input stream with exceptional data (that is, data that is not
to be processed by LTRT). In this example, the exceptional data is 2 bytes long,
and is immediately preceded by the input code of X'61'. Routine SPEC61 is
designed to process this data. This example results intwo executions of LTRT.

BEGIN ... ,DSECT=Y, ...

DEFTRPS
COPY DEFTRP

EQUATE2
Note 1

TRANS2 DEFLD DEFTRPS,,4
•
•

INPUT DEFLD S3,l,14
OUTPUT DEFLD S4,l,12

input area's location
output area's location

•
•

PUST DEFCON AL2(3), INS=3
AL2(INPUT-BQK$S3), IND=l
AL2(L'INPUT), INL=14
AL2(4), OUS=4
AL2(0UTPUT-BQK$S4), OUD=l
AL2(L'OUTPUT), OUL= 12
X'80', MSK=X'80'
AL1(2), NTT=2
ALl(l), PTT=l
ALl(l), CTT=l
XL 10'00', fill
AL2(14), TTS1=14
YL2(TTBLY), TTDl=addr of TTBLY in seg 14
AL2(14), translation table 2's segment
YL2(TTBLZ) translation table 2's addr

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-259

Notes:

1. Define LTRT parameter list fielilll in Segment 2 and define an ~dditional
4-byte field (TRANS2) for the segment number and displacement of the
second translation table .

TTBLY

TTBLZ

CONT

SPEC61

•
•

LTRTBEG
LTRTENT

(X'lC',,CAS2),
(X' 1D',X'2D' ,ADV),
(X'lE',X'FF',TW)

LTRTGEN

LTRTBEG
LTRTENT

(X'62' ,,,X'7F'),
(X'63',X'20')
(X'64' ,X'21 ',DS)

LTRTGEN
•
•

MVFXD TRPP AR,PLIST
LTRT TRPPAR

•
•

LEXIT

•
•

BRAN CONT
•
•
•

2. Initialize L TR T parameter list.·

RANGE=(X'lB',X'lE',SKIP)
(X'lB' ,X'22'),

generate table 1

RANGE=(X'61',X'64',X'OO')
(X'61',,,X'C1 ',SPEC6 l ,3),

generate table 2

Note2

Note3

3. For the sample input shown following, LTRT ends processing of input code
X'61' with a branch to SPEC61. When SPEC61 makes the branch to
CONT, LTRT begins operation for a second time. Note that between the
first and second operations of LTRT, the parameter list has not been
reinitialized.

5-260 4700 Controller.Programming Library, Volume 1: General Controller Programming

INPUT (seg 3)

0

OUTPUT (seg 4)
(first execution)

0

The translation process for the first operation of LTRT follows:

I8 ID IE 02 AA 88 IC 62 6I I2 34 63 64 IB

2 3

~
5 6 r 8 9 Li I

2 3 4 5 I
....

a. b. c. d. e. f. g. h.

1 22 1!>-(FFl~lee]
f

2 3 4 5 6 7 8 9 1 1 1

0 2 3

1. Translation definition and ADV translation control definition. Output,
starting with the next input code, is spaced forward one position. Byte 3 of
Segment 4 was not modified by this operation.

2. Translation definition and TW translation control definition. AA and BB
are passed to the output area as is, although out of range. 02 is the length
specification for the transparent write.

3. CAS2 translation control definition causes shift to translation table 2
(TTBLZ). In the parameter list, PTT is set to 1 and CTT is set to 2.

4. Program control definition; however, no bits in the mask specified match
any bits in the parameter list mask. Translation continues.

5. Program control definition and translation control definition. LTRT
operation ends with a condition code of 02 and status of translation break.
Program flow branches to SPEC61 to process the exceptional data (1234)
following input code 61. SPEC61 does not place any data in the output
area. When SPEC61 branches back to CONT, LTRT operation resumes,
starting with input code 63 because the translation control definition
associated with 61 specified a displacement of three positions to the next
input code to be processed. Because the parameter list is not reinitialized
between operations, the input displacement value (IND) field will be set to
12 when the second L TRT operation starts.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-261

The fields of the parameter list that are set or modified at the end of the
first LTRT operation are shown below, along with the values resulting from
this first operation of LTRT:

Field

IND
INL
OUD
OUL
PTT
CTT
LIC
FNC
LID
LOD
CNT
TST

Value

12
3
7
6
1
2
X'61'
X'OO'
9
7
6
X'80' -- indicates ending on

translation break

When the branch is made to CONT, LTRT begins operation for the second
time. This time, for the sample input, translation will end with condition
code 01 (input exhausted) and program operation will continue with the
next sequential instruction. At the end of this second operation, the output
area appears as follows:

f. g. h.

OUTPUT
(seg 4)

+ + + I 22 I 2D I -- I FF I AA I BB I 20 I 21 I 22 I
0 2 3 4 5 6 7 8 9 JO 11

6. Translate definition only.

7. Translation definition and DS translation control definition. Translation
control shifts back to table 1 (TTBLY).

8. Translate definition only.

5-262 4700 Controller Programming Library, Volume 1: General Controller Programming

I r
12

The parameter list fields that are modified or set by L TRT operation appear as
follows after this second operation:

Field Value

IND 15
INL 0
OUD 10
OUL 3
PTT 1
CTT 1
LIC X'lB'
PNC X'OO'
LID 14
LOD 9
CNT 3 (for 2nd operation only)
TST X'OO' -- indicates translation was completed

(all input data processed)

Chapter S 4100 Instruction Descriptions (Alphabetically) 5-263

5-264 4700 Controller Programming Library, Volume 1: General Controller Programming

LTRTBEG

LTRTBEG--Translate Table Begin

L TR TBEG is used to define the range of input codes in the translation table.
The table will be used during LTR T operation. Included in the instruction is
the mode of handling (during LTRT operation) input codes that are out of the
range of codes in the table.

This instruction initializes the contents of the global array, which is to be
subsequently used in generating a translation table, so that each input code has
no processing requirements (no ochr, func, mask, addr, or inlen operands: see
the LTRTENT instruction). No constants in the application program are
generated by this instruction.

Name Operation Operand

[label] LTRTBEG [RANGE=([low code],[high code] ,[mode])]

RANGE

mode

Indicates the range of codes recognized for this translation table, and
action to be taken when codes are not within the specified range.

low code:

high code:

Is the value of the lowest code to be used; low code
defaults to zero. The value may be X'nn' (hexadecimal),
nnn (decimal), or C'c' (character).

Is the value of the highest code to be used; high code
defaults to 255. The value may be X'nn' (hexadecimal),
nnn (decimal), or C'c' (character).

Specifies the treatment (during L TR T operation) of codes that are out of
the range specified:

ERROR Specifies that an out-of-range code will cause translation to
stop with the appropriate condition code. ERROR is the
default for mode.

SKIP Specifies that out-of-range codes are to be processed as a
NULL input code. Translation is not stopped.

MOVE Specifies that any out-of-range code is to be moved directly to
the output area without translation. Translation is not stopped.

use Specifies that the value of use will be placed into the output
area for any code that is out of range. The use value may be
X'nn' (hexadecimal), nnn (decimal), or C'c' (character).

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-265

5-266 4700 Controller Programming Library, Volume 1: General Controller Programming

LTRTENT

LTRTENT--Translate Table Entry

Each operand in the L TR TENT defines the processing requirements for an
input code. All input codes may be defined by one LTRTENT instruction or
may be described by a number of L TR TENT instructions. The number of
operands per instruction for DOS users is limited to 200.

This instruction modifies the contents of the global array that is to be
subsequently used in generating a translation table. No constants are
generated in application program by this instruction.

Name Operation Operand

[label] LTRTENT (code, [ochr], [func], [mask],
[addr], [inlen]) [,(...)]

code

ochr

func

Is a one-byte character that is to be translated. The value may be X'OO'
to X'FF' but must also be within the range specified by the LTRTBEG
instruction. The specification of code may be X'nn' (hexadecimal), nnn
(decimal), or C'c' (character).

If the same code is specified more than once, only the last occurrence will
be used in the translation table.

Is a byte or group of bytes identifying the output for the associated input
code. ochr may be 1 to 7 bytes of characters (C'cc ... c') or 1 to 4 bytes of
hexadecimal data (X'nn ... n'). If ochr is not specified, no ochr will be
generated for the input code during L TR T operation.

May be one of the following functions to be performed when the
associated input code is recognized. The functions value, defined below
for each function, for the last input code processed will be returned in
the parameter list (TRPFNC) when LTRT completes. If the last input
code processed has no associated function, X'OO' will be returned.

CASn

DS

TW

Is a shift to the translation table identified by n (1 to 4). The shift
will be effective on the next input code. The value in the
translation table for CASn is (X'40' +n-1).

Is a downshift to the previously used table. The new table will be
effective on the next input code. More than one consecutive DS
without an intervening CASn forces a return to translation table 1.
The value in the translation table for DS is X'60'.

Specifies that a transparent write (no translation) is to be
performed for the number of bytes specified in the first (or
second) byte following the input code that caused the TW
function. For that length, all input that immediately follows the

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-:267

mask

addr

inlen

BSP

ADV

ufc

length byte will be placed in the output area as received. The
input length (see in/en below) may be set to Vl (or V2,
respectively) for transparent write operations. If inlen was not
specified, the default is Vl. The value in the translation table for
TWisX'61'.

Specifies that the current output text position should be moved
back one position nondestructively. The output text position will
not be modified if an attempt is made to backspace beyond the
beginning of the output area. The value in the translation table for
BSP is X'62'.

Specifies that the current output text position should be advanced
one position nondestructively. The value in the translation table
for ADV is X'63'.

Can be specified by the user to be a hexadecimal value (X'Ol' to
X'3F') or a decimal value (1 to 63). This value will be returned to
the parameter list when the associated input code is recognized.

Specifies that this input code is a translation break. The mask (nonzero)
may be hexadecimal (X'nn'), decimal (nnn), or character (C'c') and
must match one or more bits of the current parameter list mask
(TRPMSK) to be effective.

Is the label of an AP routine that is to get control when the translation
break (see mask) is effective. If addr is not specified for an effective
break code, control goes to the next sequential instruction.

If the label specified does not appear in the current assembly, an EXTRN
must exist for the label and the corresponding assembly must contain an
ENTRY for the label.

Specifies length to be associated with the code, in/en may be any
self-defining term in the range 1to255 (X'Ol' to X'FF'), or it may be
Vl orV2.

At operation time, in/en of 1to255 represents the displacements (in
bytes) from the input code currently being processed to the next input
code to be processed. The default is 1 (except for TW; see TW above).

Specifying the letter Vl (or V2) for in/en indicates that the input code's
associated length is variable. The length (0 to 255) is in the first (or
second, respectively) byte following the input code, and represents the
displacement from the byte following the length byte to the next input
code to be processed.

5-268 4700 Controller Programming Library, Volume 1: General Controller Programming

LTRTGEN

LTRTGEN--Translate Table Configuration

LTRTGEN causes the translation table defined by the preceding LTRTBEG
and LTRTENT instructions to become part of the program's data definition.

LTRTGEN uses the assembler global array initialized by LTRTBEG and
modified by L TR TENT to create a series of constants that are the translation
table.

L TRTGEN has no operands.

Name Operation Operand

[label] LTRTGEN

The format of the translation table is as follows.

2 bytes 2 bytes

Length of Table Off-Pointed String Displacement

Header Low Code !Length of Entry Header Flags I Use Value

Number of Codes in Table Reserved

Entry

.
Entry n

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-269

5-270 4700 Controller Programming Library, Volume 1: General Controller Programming

LWAIT--Wait

LWAIT

The L WAIT instruction causes the currently operating station to enter wait
state, and therefore become nondispatchable until an ending condition is
present.

Name Operation Operand

[label] LWAIT

Condition Codes: None are set

Program Checks: None are set.

Programming Notes: Ending conditions are:

1. an attention, signaled by the operator pressing the keyboard Reset key
twice in succession, or

2. any asynchronous interrupts for which an entry point has been specified in
the application program BEGIN instruction.

When an ending condition occurs, the station becomes dispatchable and
operation continues with the next sequential instruction (that is, the instruction
following L WAIT) with SMSW AIT set to a one-byte value indicating the
ending condition.

The L WAIT instruction could therefore be followed by:

SETFPL SMSW AIT
LSEEK 1,label

where "label" locates a table with each entry containing an ending condition
value and an associated branch address.

The ending condition values are listed below in order of priority (highest
priority is first):

Hex value Meaning

10 CPU message pending
20 ALA message pending
30 terminal message pending
40 station message pending
50 program interrupt pending
60 timer interrupt pending
70 attention signaled

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-271

t- .

If more than one ending condition is present, only the highest priority
condition's value is posted.

If any ending conditions are present when the L WAIT instruction is performed,
a dispatch cycle is taken before operation continues with the next sequential
instruction.

If an interrupt occurs that causes the controller to end an L WAIT and if the
station then issues an LEXIT, the controller does not dispatch the station at the
asynchronous entry point for that interrupt.

5-272 4700 Controller Programming Library, Volume 1: General Controller Programming

LWRITE

L WRITE--WRITE Station-to-Station Message

L WRITE writes data to another logical work station. Before the L WRITE is
issued, the station number must be stored in binary form in SMSDSS.

An L WRITE to another station is a request only. No data is transferred until
the receiving station issues an LREAD. The LWRITE is rejected if the
receiving station already has a message waiting.

When an L WRITE ST instruction with a length of zero is issued, the receiving
station, when it completes the LREAD ST, will receive a condition code of 1,
and SMSIML will be set to zero.

Immediate status is returned (X'0401 ') if the receiving station's application
program does not have an AST entry point. The L WRITE still occurs,
however, and the status may be ignored if the receiving station's program
eventually performs an LREAD.

Name Operation Operand

[label l LWRITE ST, (defrf2) I ~:i~~~2)

ST

(reg2)
seg2
seg2,disp2,len2

Specifies a write to another station.

operand 2
Is a field containing the data to be written. If only seg2 is specified, the
data is written starting at the location pointed to by the secondary field
pointer (SFP) up to, but not including, the location pointed to by the
primary field pointer (PPP); otherwise, the data is as addressed. The
maximum length of a message to be written is 255 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02

Possible
Mnemonic

OK
ST

Explanation

The write operation was completed successfully.
Status is returned; the status code is contained in
SMSDST. (See Appendix E for an explanation of
the status codes.)

Program Checks (hex): 01, 02, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-273

5-274 4700 Controller Programming Library, Volume 1: General Controller Programming

MASK

MASK--Mask (For EDIT Instruction)

MASK produces a data string used by the EDIT instruction to format monetary
fields.

Name Operation Operand

label MASK [fill,] t'characters'

fill
Is a one-byte hexadecimal (X'xx'), character (C'c'), or binary
B'nnnnnnnn' value used in place of leading zeros when zero suppression
is specified. If this operand is omitted, blanks are used as the fill for zero
suppression.

t'characters'
Is the control field in which t indicates the type of data: X for
hexadecimal or C for character; and 'characters' is made up of the
following characters:

9 Indicates a significant position.

z Indicates leading zero suppression.

$ Is a dollar-sign insertion.

b Indicates blank insertion.

All other characters are insertion characters. These may be any characters
except 9, Z, $,and b.

See the EDIT instruction for further description.

Notes:

1. An insertion character cannot be the last character in the mask field.

2. The label of an EQUATE instruction cannot be used as an operand for
MASK.

The MASK format is:

Number of non· Total number Fill
Character Mask Char 1 Mask Char 2 { I Mask Char n insertion chars of chars

0 8 16 24 32 39

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-275

5-2 7 6 4700 Controller Programming Library, Volume 1: General Controller Programming

MOD--Modulus Factor (For MODCHK Instruction)

MOD specifies the type, modulus number, and weighting factors used in the
modulus check done by the MODCHK instruction. The number of weighting
factors determines the maximum length of the field to be checked.

Name Operation Operand

label MOD modnum, { wt 1 }
(wtl,wt~, ... ,wtQ)

[~ J
modnum

Is an absolute number from zero to 99 used as the modulus number in
the check.

wt1,wt2, ... ,wtn

MA

AP

Are up to 31 four-character weighting factors in the range of -128 to
+ 127. If only one weighting factor is specified, it must be coded without
parentheses.

Specifies a type of modulus check in which each character in the field is
multiplied by the corresponding weighting factor, and the sum of these
multiplications is divided by the modulus number. This type of modulus
check is performed if the type operand is omitted.

((nl X wtJ) + (n2 X wt2) + ...

(nn X wtn)) I modnum

Specifies a type of modulus check in which each char~ter in the field is
multiplied by the corresponding weighting factor, and the numbers
comprising each result of the multiplications are divided into two
separate values; the numbers in the thousands (K), hundreds (H) and
tens (T) positions are used as one value and the number in the units (U)
position as another value. The new values from the results are then
added together. For example: 5 x 25 = 125 --> 12 + 5 = 17. The sum
of all the additions is divided by the modulus number.

nl X wtl -->KlHJTJUJ
n2 X wt2 -->K2H2T2U2
nn X wtn -->KnHnTnUn

((KJHJTJ + UJ) + (K2H2T2 + U2) + ... (KnHnTn +Un))/
modnum

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-277

MOD

:
Type I Length

l
0 3 8

Max is 31

UN
Specifies a type of modulus check in which each character in the field is
multiplied by the corresponding weighting factor and the only number
kept from each result of the multiplications is the number in the units
position. For example, 5 X 25 = 125 --> 5. The sum of these numbers
is then divided by the modulus number.

nl X wtl --> UJ
n2 X wt2 --> U2
nn X wtn -->Un
((UJ) + (U2) + ... Un)) I modnum

The format of the modulus factor is as follows:

Modulus Weight for
number digit 1

+
16

t
0-99 -128 to +127

Where:

Type = OOOforUN
= OlOforMA
= 100 for AP

Weight for
digit 2

24

t
-128 to +127

}
31

Weight for
digit n

t
-128 to +127

5-278 4700 Controller Programming Library, Volume 1: General Controller Programming

MODCHK

I MODCHK--Modulus Check

Bit:

MODCHK checks a field for valid EBCDIC numeric characters, and that the
length is less than or equal to the number of weights. The field is then
validated by a modulus check which uses the following parameter list defined
by the MOD instruction:

I~ -Ty_p_e~l...__L_en_g-th~_,_~_M_o_d_n_u_m~~~~~w-t,~~~~~~w-ta~~_,i ~
0 3 7 8 15 16 23 24 31

Refer to the MOD instruction for a description of these parameters.

Name Operation Operand

[label) MODCHK seg1 , reg2, { label }
(reg3) .

operand 1
Is a field in the specified segment to be checked. The start of the field is
indicated by the primary field pointer, and the length by the field length
indicator.

operand 2
Is a register (1-15) that will contain the results of MODCHK. If this
operand is specified as zero, it does not indicate a register.

operand3
Points to a MOD instruction or it's equivalent.

label

(reg3)

Is the label of the MOD instruction that defines the parameter list
used by MODCHK. The label may be an external symbol when
RELOC="Y is specified on the APOPT instruction.

Is the register containing the address of a field with data in the
same format that MOD generates.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-279

All modulus checks begin by multiplying each character in the field by the
corresponding weighting factor. For example, the first character in the field is
multiplied by thefirst weighting factor listed in MOD. The last step of all the
modulus checks is to divide the sum of the results (or variations of the results)
of these multiplications by the modulus number (refer to the descriptions of the
mod..µus type operands in the MOD instruction for the different types of
modulus checks). If there is no remainder, the field checked is good fa terms of
the modulus check.

If reg2 specified in MODCHK and the modulus number (modnum) are nonzero
values, the remainder generated by the modulus check is stored in the reg2. If
the modulus number is zero and the register is nonzero, the sum of all the
results (or variations of the results) of the multiplications performed in the
modulus check is stored in the register. If the register is zero and the modulus
number is nonzero, the remainder is not stored. If both the register and
modulus number are zeros, no modulus check occurs, and a condition code of
hex 01 is set.

Condition Codes: One of the following is set:

Hex Code

01

02
04
08

Possible
Mnemonic

OK

n..
NN
MD

Explanation

The check was successful, or the register and
modulus numbers were zero.
The field is too long.
The field is not numeric.
A modulus error occurred (can be returned only if
register is zero).

Program Checks (hex): 01, 02, or 27 can be set.

Programming Note: If you do not specify reg2 as zero, you are indicating a
request to do further processing of the result of the modulus check. For
example, you may wish to calculate a modulus-check digit.

A condition code of 01 is returned even if there is a remainder. Condition code
08 can be returned only when the specified register is zero.

5-280 4700 Controller Programming Library, Volume 1: General Controller Programming

MPYFLD~-Multiply Field

MPYFLD

MPYFLD algebraically multiplies the binary contents of a register by the
binary contents of a field. The result is placed in the register.

Name Operation Operand

[label] MPYFLD reg1, l ?i!}~~:) I
(reg2)
seg2,disp2,len2

operand 1
Is a register that contains the multiplicand. At the end of the operation
this operand contains the product.

operand 2
Is a field that contains the multiplier. The length of the field must be
from zero to 6 bytes; if the length is zero, the register is multiplied by
zero; if the length is not zero, the leftmost bit in the field is the sign.

Condition Codes: One of the following is set:

Hex Code
Possible
Mnemonic Explanation

01
02
03
04
05
06
08
09
OA
oc

zo
NG
LE
PS
GE
NE
ov

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-281

5-282 4700 Controller Programming Library, Volume 1: General Controller Programming

MPYFLDL

MPYFLDL--Multiply Field Logical

MPYFLDL multiplies the contents of a register by the contents of a 6-byte
field. If the field is less than 6 bytes, it is treated as a 6-byte field by
propagating zeros. The binary contents of the register are then multiplied by
the binary contents of the field and the result is placed in the register.

Name Operation Operand

l ~:~~~~2 [label] MPYFLDL reg1, (defrf2)
(reg2)
seg2,disp2,len2

operand::.
Is ~ register that conhins the multiplicand. At the end of the operation
this operand contains the product.

operand 2
Is a field that contains the multiplier. The length of the field must be
from zero to 6 bytes; if the length is zero, the register is multiplied by
zero.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 6.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-283

5-284 4700 Controller Programming Library, Volume 1: General Controller Programming

MPYREG

MPYREG--Multiply Register

MPYREG algebraically multiplies the binary contents of one register by the
binary contents of another register. The result is placed in the register
indicated by operand 1.

Name Operation Operand

[label) MPYREG reg1 ,reg2

operand 1
Is a register that contains the multiplicand. At the end of the operation,
this register contains the result.

operand 2
Is a register that contains the multiplier.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-285

5-286 4700 Controller Programming Library, Volume 1: General Controller Programming

MPYZ

MPYZ--Multiply Zoned Decimal

This instruction multiplies zoned decimal operand 1 by zoned decimal operand
2, and replaces operand 1 with the result. The length of either operand is 1-63
bytes; an operand over 15 bytes must be selected using register addressing.

Note: This is an optional instruction; module P31 must be specified on the
OPTMOD configuration macro.

Name Operation Operand

defcon2
defld2

[label] MPYZ I defld 1
(defrf1)
(reg1) I I (defrf2)

seg1 ,disp1 ,len1
(reg2)
seg2,disp2,len2

operand 1
Is a field containing the zoned decimal multiplicand, and the location of
the result. If the result is less than the operand length, each high-order
byte is set to X'FO'. The field must not be in Segment 14.

operand 2
Is a field containing the zoned decimal multiplier.

Condition Codes: One of the following can be set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-287

5-288 4700 Controller Programming Library, Volume 1: General Controller Programming

MVCZ

MVCZ--Move and Convert Zoned Decimal

This instruction converts a zoned decimal number into displayable form. The
zoned decimal number specified by operand 2 is moved to operand 1. The sign
(zone bits of the least significant number) is ORed with X'FO' to give the digit
a displayable value.

Note: MVCZ is an optional instruction, and requires specifying module P31 on
the OPTMOD configuration macro.

Name Operation Operand

defld2
[label] MVCZ (defrf1) {

defld1 } {
defcon2 }

(defrf2)
(reg1)
seg1,disp1,len1

(reg2)
seg2,disp2,len2

operand 1
Is the field into which the zoned decimal data is moved for displaying. If
this operand is longer than operand 2, this operand is padded to the left
(high-order positions) with X'FO's. If this operand is shorter than
operand 2, the high-order digits are truncated. In either case, an
appropriate condition code is set. The field must not be in Segment 14.

operand 2
Is a field of decimal numeric zoned data to be moved to operand 1.

Note: Operands 1 and 2 can range 1to15 bytes for non-register addressed
fields, and up to 63 bytes when register addressing is used.

Condition Codes: One of the following is set:

Hex Code

01
04
08

Possible
Mnemonic

EQ

TR

Explanation

The operands were equal lengths.
Operand 1 was padded with X'FO'.
Truncation occurred.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-289

5-290 4700 Controller Programming Library, Volume 1: General Controller Programming

MVDI

MVDI--Move Data Immediate

MVDI moves a one- or two-byte immediate operand to a field. At the end of
the operation, the primary field pointer of the segment to receive the immediate
data points 1 byte past the end of the field (unless register addressing is used),
and the field length indicator is not changed.

Name Operation Operand

[label] MVDI

operand 1

{ f~~i~i1) } , imrndata2
(reg1)
seg1 ,disp1

Is a field into which the immediate data is to be moved. The field must
not be in Segment 14.

operand 2
Is one or two bytes of immediate data.

Condition Code: The code is not changed.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-291

5-292 4700 Controller Programming Library, Volume 1: General Controller Programming

I MVFLD--Move Field

I

MVFLD

MVFLD moves the contents of a field to the specified segment, starting at the
location specified by the PFP of that segment. The number of bytes to be
moved is determined by the specified or implied length of the second operand
(the field to be moved) unless the specified length is 0. At the end of the
operation, the FLI is unchanged and the PFP, of the segment that received the
field, points to the byte following the field.

Name Operation Operand

[label] MVFLD segl, {

operand 1

defcon2 }
defld2
(defrf2)
(reg2)
seg2,disp2,len2.

Is a field in the specified segment to receive the data. The number of
bytes can range from 1 to 32 767. If you specify a length of 0 for the
second operand, then the FLI of operand 1 determines the number of
bytes to be moved. If the field lengths of both .fields are zero, no
operation takes place. The field must not be in Segment 14.

operand 2
Is a field that is to be moved. This field can be from l to 15 bytes long
unless you specify register addressing, which allows a length ranging
from 1 to 32 767 bytes.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, or 27 can be set.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-293

5-294 4700 Controller Programming Library, Volume l: General Controller Programming

MVFLDR

MVFLDR--Move Field Reverse

MVPLDR moves the contents of a field to a segment, starting at the location
specified by the PPP of that segment. The number of bytes to be moved is
determined by the specified or implied length of the second operand; that is,
the field to be moved. At the end of the operation, the PLI is unchanged and
the PPP, of the segment that received the field, points to the byte following the
field.

MVPLDR reverses the order of the source data so that the first byte in the
source field becomes the last byte in the target field.

MVPLDR requires the P60 optional module specified by the OPTMOD macro
in your system configuration.

Name Operation Operand

[label] MVFLDR seg1, {

operand 1

defcon2 }
defld2
(defrf2)
(reg2)
seg2,disp2,len2

Is a field in the specified segment to receive the data. The number of
bytes can range from 1 to 32 767. If you specify a length of 0 for the
second operand, then the PLI of operand 1 determines the number of
bytes to be moved. If the field lengths of both fields are zero, no
operation takes place. The field must not be in Segment 14.

operand 2
Is a field that is to be moved. This field can be from 1 to 15 bytes long
unless you specify register addressing, which allows a length ranging
from 1 to 32 767 bytes.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-295

5-296 4700 Controller Programming Library,Volume 1: General Controller Programming

I MVFXD--Move Fixed

MVFXD

MVFXD moves the contents of a field to another field. The number of bytes
to be moved is determined by the specified or implied length of the second
operand; that is, the field to be moved. At the end of the operation, the FLI is
unchanged and the PFP, of the segment that received the field, points to the
byte following the field.

Name Operation Operand

{
defcon2

} {
lefld1

}
defld2

[label] MVFXD (defrf1) (defrf2)
(reg1) (reg2)
seg1,disp1 seg2 ,disp2 ,-len2

operand 1
Is a field that receives the operand 2 data. The length of this field is
ignored. The field must not be in Segment 14.

operand 2
Is the field to be moved. The length of this field determines how many
bytes are moved. The length can be from 1 to 25 5 unless you specify
register addressing, which allows a length ranging 1to32 767. If the
field length is zero, no operation results.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, or 27 can be set.

Programming Notes: For example, a savings deposit is either transmitted to the
host processor to update the data base or journaled on the diskette for later
transmission. The fields required in either ca8e are:

transaction code/ accountno./ amount

The following example shows the instructions that build the transaction code
and account number portions of the output message.

OUTFLD DEFLD OUTSEG,0,19
SA VDEPCD DEFCON C'Ol'

SAVRTN
MVFXD OUTFLD,SA VDEPCD
MVSEG OUTSEG,INPUTSEG
MVSEG OUTSEG,INPUTSEG

1 Defines the entire output field.

1
2

3
4
s
6

2 Defines the transaction type code for a savings deposit as 01. This avoids
storing or transmitting the 6-byte code entered by the teller.

3 (Miscellaneous processing)

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-297

4 Moves the transaction type code to the first ~wo bytes of OUTFLP~ The ..
PPP changes, when the MVFXD is operated, to point to the third byte of.
OUTFLD.

5 .Moves the account number to OUTFLD.
6 Moves the amount.

5-298 4700 Controller Programming Library, Volume 1: General Controller Programming

MVFXDR

I MVFXDR--Move Fixed Reverse

MVFXDR moves the contents of a field to another field. The number of bytes
to be moved is determined by the specified or implied length of the second
operand; that is, the field to be moved. At the end of t~e operation, the FLI is
unchanged and the PPP, of the segment that received the field, points to the
byte following the field.

MVFXDR reverses the order of the source data so that the first byte in the
source field becomes the last byte in the target field.

MVFXDR requires the P60 optional module specified by the OPTMOD macro
in your system configuration.

Name Operation Operand

{
defcon2

} {
defld1

}
defld2

[label] MVFXDR (defrf1) (defrf2)
(reg1) (reg2)
seg1 ,disp1 seg2,disp2,len2

operand 1
Is a field that receives the operand 2 data. The length of this field is
ignored. The field must not be in Segment 14.

operand 2
Is the field to be moved. The length of this field determines how many
bytes are moved. The length can be from 1to255 unless you specify
register addressing, which allows a length ranging 1 to 32 767. If the
field length is zero, no operation results.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-299

5-300 4700 Controller Programming Library, Volume· 1: General Controller Programming

I MVSEG--Move Segment

MVSEG

MVSEG moves the contents of a segment-header addressed field to another
segment-header addressed field. The number of bytes to be moved is
determined by the FLI of the second operand; that is, the field to be moved.

If the move is between two locations within the same segment, the SFP is used
as the beginning of the receiving field. At the end of the operation, the FLI is
uncnanged and the PFP points to the byte following the field.

If the move is between different segments, the PFP of the receiving segment is
used as the beginning of the receiving field. At the end of the operation, the
PFP points one byte past the end of the receiving field; the PFP of the segment
containing the original field is not changed.

In both cases, the SFP and FLI of the segment containing the data to be moved
are unchanged.

Name Operation Operand

[label] MVSEG seg1, seg2

operand 1
Is a field in the specified segment to receive the data. The field must not
be in Segment 14.

operand 2
Is a field in the specified segment whose contents are to be moved. The
location of the field to be moved is determined by the PFP, and the
number of bytes to be moved is determined by the FLI. The field length
can be 1 to 32 767 bytes. If the field length is zero then no operation
results.

Condition Codes: The code is not changed.

Program Checks (hex): 01or02 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-301

5-302 4700 Controller Programming Library, Volume l: General Controller Programming

MVSEGR

I MVSEGR--Move Segment Reverse

MVSEGR moves the contents of a segment-header addressed field to another
segment-header addressed field. The number of bytes to be moved is
determined by the FLI of the second operand; that is, the field to be moved.

If the move is between two locations within the same segment, the SFP is used
as the beginning of the receiving field. At the end of the operation, the FLI is
unchanged and the PFP points to the byte following the field.

If the move is between different segments, the PFP of the receiving segment is
used as the beginning of the receiving field. At the end of the operation, the
PFP points one byte past the end of the receiving field; the PFP of the segment
containing the original field is not changed.

In both cases, the SFP and FLI of the segment containing the data to be moved
are unchanged.

MVSEGR reverses the order of the source data so that the first byte in the
source field becomes the last byte in the target field.

MVSEGR requires the P60 optional module specified by the OPTMOD macro
in your system configuration.

Name Operation Operand

[label] MVSEGR seg1, seg2

operand 1 ,
Is a field in the specified segment to receive the data. The field must not
be in Segment 14.

operand 2
Is a field in the specified segment whose contents are to be moved. The
location of the field to be moved is determined by the PFP, and the
number of bytes to be moved is determined by the FLI. The field length
can be 1 to 32 767 bytes. If the field length is zero then no operation
results.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-303

5-304 4700 Controller Programming Library, Volume 1: General Controller Programming

OVLYSEC

OVLYSEC--Define Load Address and Entry Point

OVL YSEC defines the load address and entry point of overlay sections
assembled under the nonrelocatable and relocatable assembler options
(RELOC=N or RELOC= Y specified in the APOPT instruction). OVL YSEC
must be the first instruction in the overlay section.

In relocatable and nonrelocatable assemblies, the OVL YSEC instruction causes
an ADDMEM command to be generated for use by the Host Support. For
relocatable and nonrelocatable assemblies, the label of the OVL YSEC
instruction is used to name the CSECT produced.

For nonrelocatable assembly, the load address can be expressed symbolically
only when the root and overlay sections are assembled together. Otherwise, the
load address must be stated as an absolute location in Segment 14.

For relocatable assemblies, the load address can be expressed symbolically
regardless of whether the root and overlay are assembled together or
separately.

Name Operation Operand

label

org
inst-org
const-org

OVLYSEC ORIGIN= { org } ([inst-org) [, const-org])

[,OVLYEP=entry)

[,VERSION= { version } J 0

[,INSTR= { N } J [,INSNAME=name)
y

The org parameter is used to specify the load address for an overlay
being assembled with the nonrelocate or relocate options in effect.

The inst-org and const-org operands are used only for split application
programs. See Appendix F for further information.

These parameters may be specified as an asterisk (*), the label of a
STOVL Y instruction, or a decimal number, as follows:

* indicates that the section, for relocatable assemblies, is to be
loaded at the end of the root or other overlay section already
in storage. For nonrelocatable assemblies, an * indicates that
the current value of the assembler instruction counter is to be
used as the load address.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-305

entry

label is the label of a STOVL Y instruction that defines an overlay
load point. For relocatable assemblies, the STOVL Y
instruction and the OVL YSEC instruction referring to it can
be in the same or separate assemblies; for nonrelocatable
assemblies STOVL Y and OVL YSEC must appear in the same
assembly.

number is the absolute location, expressed in decimal, in Segment 14 at
which the overlay section is to be loaded. This specification
must be used when the nonrelocatable assembler option is
specified and the root and overlay are being assembled
separately.

Is the label of the instruction that is to be used as an entry point. If this
operand is omitted, the entry point is the first byte after the 2-byte
header in the overlay section.

Note: Do not specify an entry point if you load the overlay using the
"expanded" LLOAD instruction. In this case, use the default entry point
at the first byte following the two-byte header.

version
Is the version number (0 to 255) of the overlay section.

INSTR
This operand is used only for split application programs. See Appendix F
for further information.

IN SN AME
This operand is used only for split application programs. See Appendix F
for further information.

Condition Codes: The code is not changed.

Program Checks (hex): None can be set.

5-306 4700Controller Programming Library, Volume 1: General Controller Programming

PAKFLD--Pack Field

PAKFLD

PAKFLD changes a hexadecimal EBCDIC number (for example: C'012F'
which equals X'FOF1F2C6') in a field to a packed value (X'Ol2F' from the
preceding example) and places the packed value in a segment-header addressed
field. In the packed expression, each 4 bits represents a digit of the EBCDIC
number. If an odd number of digits are packed, the leftmost 4 bits of the
leftmost byte in the packed field are set to zeros.

Notes:

1. This packed expression cannot be used in arithmetic operations.

2. The length of the packed field will be one-half the length of the unpacked
field.

The hexadecimal representations and their packed equivalents are:

Hexadecimal Packed
Digit Representation Equivalent (4 bits)

0 FO 0 (0000)
1 Fl 1 (0001)
2 F2 2 (0010)
3 F3 3 (0011)
4 F4 4 (0100)
5 F5 5 (0101)
6 F6 6 (0110)
7 F7 7 (0111)
8 F8 8 (1 000)
9 F9 9 (1001)
A Cl A (1010)
B C2 B (1011)
c C3 c (1100)
D C4 D (1101)
E C5 E (1110)
F C6 F (1111)

Name Operation Operand

defcon2
defld2

[label] PAKFLD segl, (defrf2)
(reg2)
seg2,disp2,len2

operand l
Is a field in the specified segment to receive the packed data. The
segment number cannot be 14. The location of the field to contain this
packed value within operand 1 is indicated by the primary field pointer
(PFP). The field length indicator is ignored unless the length of the
unpacked field is zero. Following the operation of the instruction, the
PFP points to the first byte past the end of the packed field.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-307

operand 2
Is a field to be packed. If you use register addressing, the operand length
can range from 0 to 255 bytes; if you use fixed field addressing, the
length ranges 0 to 15 bytes. If the length is 0, the length indicated by the
field length indicator of segl is used.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 03, or 27 can be set.

5-308 4700 Controller Programming Library, Volume 1: General Controller Programming

PAKSEG--Pack Segment

PAKSEG

PAKSBG changes a hexadecimal number (for example, C'Ol2F' which equals
X'FOF1F2C6') in a segment-addressed EBCDIC field to a packed value
(X'012F') and places it in a segment-header addressed field. In the packed
expression, each 4 bits represents a digit of the hexadecimal number. If an odd
number of digits are packed, the leftmost 4 bits of the leftmost byte in the
packed field are set to zeros.

Notes:

1. This packed expression cannot be used in arithmetic operations.

2. The length of the field to contain the packed value will be one-half the
length of the field that contains the value to be packed.

Refer to the table under P AKFLD for the hexadecimal values and their packed
equivalents.

Name Operation Operand

[label] PAKSEG seg1,seg2

operand 1
Is a field in the specified segment to receive the packed field. The
segment number cannot be 14. If the operands refer to different
segments, the location within this segment is indicated by the primary
field pointer (PPP). If both operands refer to the same segment, the
location of the packed field is indicated by the secondary field pointer;
when the operation is completed, the PPP points to the first byte past the
end of the packed field and the SFP is unchanged. In either case, the
field length indicator is ignored.

operand 2
Is a field in the specified segment to be packed. The PPP indicates the
start of the field, and the field length indicator gives the length (0 to
255) of the field containing the value to be packed. If the length is zero,
no operation occurs. When the operation is completed, the PPP is
unchanged.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, or 03 may be set.

Programming Notes: For example, if the processed teller transaction is packed
before being written to the diskette, it requires only half the space normally
needed. The following shows the instructions used to pack the output field.
The field before being processed is:

X'FOF1F3F3F8F2F2FOF6F5F2C 1 C4C4'

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-309

The packed field is:

X'Ol338220652ADD'

In this example, the source and result fields overlap so that result data does not
replace source data yet to be packed.

OUTFLD DEFLD OUTSEG,0,14 1
•

PAKRTN SET FPL OUTFLD 2
SETSFP OUTFLD 3
PAKSEG OUTSEG,OUTSEG 4

1 Defines the source field.
2 Sets the PPP and FLI of OUTSEG to describe the source field.
3 Sets the SFP to the beginning of OUTFLD.
4 Packs the data in place. After operation, the leftmost 7 bytes of OUTFLD

contain the packed data.

The pack function can also be used to allow the teller to enter hexadecimal
information; for example, the control operator could be told to enter the
parameter list used to start the communication link.

5-310 4700 Controller Programming Library, Volume 1: General Controller Programming

PAUSE

PAUSE--Suspend Processing

PAUSE suspends processing for the logical work station currently in control.
Processing resumes with the next sequential instruction when all other stations
have had an opportunity to process.

Name Operation Operand

[label) PAUSE

Condition Codes: The code is not changed.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions {Alphabetically) 5-311

5~312 4700.Controller Programming Library, Volume 1: General Controller Programming

PLPCMD

PLPCMD-Post-List Processor Commands

The PLPCMD instruction generates commands for execution by the post-list
processor when editing the listing produced by the assembler.

Name Operation Operand

EDIT

PLPCMD {
EDIT }

. NOEDIT
DELETE
NODELETE

Resumes post-list processing of assembled output.

NO EDIT
Temporarily stops post-list processing of assembled output. When the
post-list processor encounters this in the assembled program, the
assembled output is passed unprocessed to the output listing. A
PLPCMD instruction with the EDIT operand resumed post-list
processing of the assembled output lines.

DELETE
Causes the post-list processor to delete all further assembler output lines
from the output listing.

NO DELETE
Causes the post-list processor to resume normal post-list processing of
output lines. This restores the processing deleted by the DELETE
operand.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-313

5-314 4700 Controller Programming Library, Volume 1: General Controller Programming

PRINTI

PRINTI--Print Macro Expansion

The PRINT! instruction enables you to print the assembler instructions (labels,
mnemonics, and operands only), in the Post List Processor (PLP) listing, that
result from expansion of user-written macros found in the application program.
To print these instructions, PRINT! ON must be coded before the desired
macro is encountered or be the first statement in the macro definition. The ON
state remains in effect until PRINT! OFF is coded. When PRINT! ON is
coded, all assembler instructions will be printed regardless of the degree of
macro nesting. All assembler instructions encountered in open code will be
printed twice when PRINT! ON is in effect.

Name Operation Operand

[label] PRINT I ON I OFF

For Example:

4 700 assembler instructions
•
PRINTION
USERMAC
PRINTIOFF
•
•

Macro
Assembler instructions (printed once in
PLP listing)
Mend

4 700 assembler instructions (not printed in PLP listing)
•
•

USERMAC
•
•
•
•
•
PRINTION
•

Macro
PRINTION
Assembler instructions (printed once in
PLP listing)
PRINTIOFF
Mend

4 700 assembler instructions (printed twice, encountered in open code)

Note: The PRINTI macro instruction prints only the label field, operation-code
field, and operand field. (No comment fields are printed.) Only the first 112
characters of the operand field are printed; remaining characters are omitted.
PRINTI does not support the BEGIN macro. Omitted operands are not
printed. For example:

DEFLD
DEFLD

2,,0 -- if coded, will print:
2,0

The following macro instructions issue a PRINTI ON instruction upon entry
and issue a PRINTI OFF instruction on exit:

APBDUMP
DEFDMP

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-315

5"316 4700 Controller Programmillg Library, Volume 1: General Controller Programming

REBASE

REBASE--Restore the Base Register for a DSECT

The REBASE instruction restores the base register for the specified DSECT to
the register value previously saved by a SA VEBASE instruction.

Name Operation Operand

REBASE label

label
The label of an LDSECT instruction.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-317

5-318 4700 Controller Programming Library, Volume 1: General Controller Programming

SAVEBASE

SA VEBASE--Save the Base Register for a DSECT

The SA VEBASE instruction saves the current base register value of the
specified DSECT in a global symbol table. This value was specified either at
definition time with the BASE keyword on the LDSECT instruction or by the
later specification of a base register with the USEBASE instruction.

Name Operation Operand

SAVEBASE label

label
The label of an LDSECT instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-319

5-320 4700 Controller Programming Library, Volume 1: General Controller Programming

SCALE--Scale Number

The SCALE instruction verifies and formats a relatively free-form
character-type number.

Inputs for the SCALE instruction are:

SCALE

1. A relatively free-form character-type input area which may have a one-byte
header field preceding the number field. The input area is unchanged by
the execution of the SCALE instruction.

2. A parameter list defined by a COPY DEFSCA instruction.

Outputs for the SCALE instruction are:

1. The formatted character-type number in an output area.

2. The PPP of the segment containing the output area points to the first byte
of the output area. The FLI is set to the length of the output area. If the
fixed field is indexed, then the new setting of the primary field pointer will
include the index value.

The parameter list contains the following fields (see COPY DEFSCA in
Appendix B) and must contain the following information:

SCALEN -- 1-byte field defining the length of the output area in bytes. The
output area immediately follows the parameter list.

SCACHR -- A 1-byte field containing, in EBCDIC, the input data character to
be treated as a decimal place character (scale character). If the input data does
not contain a scale character, one is assumed immediately following the
rightmost character of the input area. If a scale character appears more than
once in the input area, only the rightmost occurrence is treated as the scale
character. The scale character is not placed into the output area.

SCAFAC -- A 1-byte scale factor defining the number of times the input
number will be multiplied by 10 before being placed into the output area. Each
multiplication by 10 effectively shifts the scale character 1 character position to
the right. The input area is not changed by this operation.

SCA/NP -- A 1-byte input flag indicating which of the six special header
characters defined in the SCAHDR field will be placed into the leftmost byte
of the output area.

Bits 0-5 -- Mask on (1) or off (0) special header characters 1-6
(respectively) in the SCAHDR field, as described in SCAHDR below.

Bits 6 and 7 -- Reserved and must be set to 0.

SCAHDR -- A 6-byte field containing six special header characters (SHCs). If
the first character of the input area equals any of these special header
characters, the input area is said to contain an optional header field. The
header field character will be placed in the leftmost byte of the output area if
the corresponding flag bit in the SCAINP field is on. If the corresponding bit is
off, the header field is ignored.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-321

SCAD EL -- A 4-byte field containingfour delete characters. Delete characters
are those characters that are considered valid but are to be deleted from
positions to the left of the scale character before the number appears in the
output area. If a scale character appears more than once in the number field of
the input area, the rightmost scale character '(the scale character) will be deleted
as described under SCACHR above. Other scale characters will be deleted if
the scale character is also a delete character, otherwise they will be placed in
the output area.

SCARES -- A 3-byte reserved field that must be set to 0.

SCASIG -- A 1-byte field used by the SCALE instruction to inform the
application program of the number of significant digits in the output area. This
number is determined by:

• The total bytes from the leftmost nonzero character (excluding the header
character, if present) to the rightmost position of the output area; or

• The scale factor, whichever is larger.

Note: To use this instruction, you must code the P68 operand on the
OPTMOD configuration macro.

Name Operation Operand

[label] SCALE segl,

operand 1

{
defld2
(defrf2)
(reg2)
seg2,disp2

}

Is a field in the specified segment defining the input area. The PPP and
FU define the locatiQn within the segment and the field length.

operand 2
Is a field containing the parameter list. The length implied is ignored as
the parameter list has a fixed length. The field must not be in Segment
14. The output area immediately follows the parameter list. The length
of the output area is specified in the parameter list (SCALEN).

Note: The input and output areas should not overlap. If they do overlap, the
results are unpredictable.

5-322 4700 Controller Programming Library, Volume 1: Gep.eral Controller Programming

Condition Code: One of the following is set:

Hex Code
Possible
Mnemonic Explanation

01
02
04
08

OK SCALE was successful.
An underflow occurs.
An overflow occurs.
Invalid input data.

Program Checks (hex): 01, 02, 09, 11, or 27 can be set.

Note: Program check 11 (invalid parameter list) can be set by:

a. SCALE factor greater than output area length.

b. Reserved bits (6,7) of SCAINP are not zero.

Programming Notes: The following shows how various input forms (in dollars
and cents) could be reformatted to scale character-type numbers:

Input at SCALE
Terminal Output Area

$12.3 0001230
13,000 1300000
1.26 0000126
-.6 -000060
+2 0000200

If arithmetic operations are to be performed, the application could convert the
scaled character-type number to a binary number using the LDSEGC
instruction.

An example of how this instruction is used to produce scaled numbers in the
instruction's output area is shown below.

NO TOK EQUATE X'OE'

DEFSCAS EQUATE 3 1

COPY DEFSCA 2

FORMAT DEFCON X'07',C'.',X'02',B'01000000', 3
C'+-$$$$',C',,,,',X'OOOOOO',X'OO'

•
•
•

MVFXD SCAPAR,FORMAT 4
•
•
•

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-323

Read the input nUll'lber from the keyboard into Segment 2,
set the PPP to the first byte of the number, and set
the PLI to the length of the number. For example:

. seg2 $12.3

PPP FLI

SCALE 2,SCAPAR

JUMP NOTOK,ERROR

LDSEGC 4,3

1 Defines Segment 3 as the location of the SCALE parameter list (required
for the COPY DEPSCA instruction).

2 Copies the SCALE parameter list (SCAP AR) into the code.
3 Defines the values for the S_(;ALE parameter list as follows:

Parameter
Value List Field

X'07' SC ALEN

C'.' SCACHR

X'02' SCAFAC

B'OlOOOOOO' SCAINP l
C'+-$$$$' SCAHDRl

C' ,,,,' SCAD EL

X'OOOOOO' SCARES

X'OO' SCASIG

Meaning

Output area is 7 bytes.

Scale character is a decimal point.

Move decimal point two places to
right and fill with character zeros if
necessary.
Minus (-) sign is to be recognized as
a special header character and is to be
placed in the leftmost position of the
output area when it appears in the
leftmost position of the input area.

Delete commas to the left of scale
character.

Must be set to zeros.

Initializes SCASIG to zero for
SCALE to update with number of
significant digits.

5-324 4700 Controller Programming Library, Volume 1: General Controller Programming

5

6

7

4 Initializes SCALE parameter list.
S Issue SCALE instruction to place formatted character-type number in the

output area immediately following the parameter list. Following the
execution of the instruction, the PPP and FLI are set as follows:

seg3 0001230 :J
t FLI

Parameter list PPP

6 Tests the condition code following the execution of the SCALE instruction.
If CC=02, 04, and/or 08, branch.to an ERROR subroutine.

7 Loads register 4 with the binary equivalent of the character type number
placed in the output area of the parameter list, and addressed by the PPP
and FLI in Segment 3.

When using the SCALE instruction, the condition code is set following the
execution of the instruction to identify various error conditions. The error
conditions are:

• underflow

• overflow

• invalid input data

An underflow condition results from truncating an input value to the right of
the scaled character. This condition can be the result of either incorrectly
entered data or the improper specification of the scale factor (SCAFAC). An
example of incorrectly entered data is:

Input SCALE Output

1.234 0000123

The input is incorrect because the program does not expect a three-place
decimal value (SCAFAC = X'02') and places the scaled character-type
number right-justified in the output area after moving the decimal place two
character positions to the right. If, in the example, SCAFAC was specified as
X'Ol', all input values having two or more characters to the right of the scale
character would be truncated.

Overflow can result if the output area, specified by SCALEN, is too small. The
output area must be sufficient to accept the largest input value plus a special
header character, if specified. The following is an example of overflow; note
that the most significant digit is dropped, not the special header character:

Input SCALE Output

-13,526.35 -352635

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-325

The SCALE instruction also validity-checks the input for non-numeric
characters. If an input character is non-numeric and is not a special header
character or delete character, the data is moved to the output area as though it
were valid, but the condition code is set to indicate invalid data. For example:

Input SCALE Output

ABC.DE OOABCDE

The condition code setting is cumulative. For example, a code of 06 indicates
that both an overflow and underflow condition occurred.

5-326 4700 Controller Programming Library, Volume 1: General Controller Programming

SCRP AD--Scratch Pad

SCRPAD

This instruction initializes the Scratch Pad Area (SPA) allocated during system
configuration and adds, replaces, or deletes SP A elements.

Before issuing SCRP AD, you must create a control parameter list using COPY
DEFSCP. You must then set the parameter list fields to define the SCRPAD
operation and identify the existing element and/ or the new element value, as
described under Operand 2.

Optional module P2A must be included in the system configuration OPTMOD
macro to use this instruction.

The SCRPAD instruction has the following format:

Name Operation Operand

[label] SCRPAD (defrf2) {
defld2)

(reg2)
seg2,disp2

Operand 2
Is an area containing the parameter list defined by DEFSCP. Segment
14 cannot be used. Any length specified by this operand is ignored; the
COPY DEFSCP instruction determines the parameter list length. The
fields in the parameter list are used to provide information for the various
SCRP AD functions. When you use register addressing to locate a
parameter list, the parameter list can be located in a noncurrent segment
space. However, if the parameter list contains the address (segment,
displacement) of other storage areas (that is, input/output areas, tables)
the other storage areas are always in the current segment space. The
fields set by the application program or returned by SCRP AD are:

SCPFC: A one-byte field defining the SCRPAD operation. This field must
always be completed.

Hex Code

01
02
03
04
05
06
07
08
23
25

Explanation

Initialize the SP A.
Add an element (elements are added sequentially).
Replace an element using either key or number.
Retrieve an element using either key or number.
Retrieve an element for updating.
Delete an element using either key or number.
Delete all elements.
Exchange an element with a data area.
Add or replace a keyed element.
Retrieve or add a keyed element.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-327

SCPTYP: This one-byte field determines whether SCRP AD searches SP A
elements by key, or by number.

Hex Code

00
01

Explanation

Access by key.
Access by element number.

SCP SP ID: A one-byte field containing the ID of the SPA. This value is the
hexadecimal equivalent of any value in the range from 0 to 255.

SCPELMN: A 2-byte field containing the number of the element. When
accessing by element number, the application program stores the element
number in this field. When accessing by key, the SCRPAD instruction places
the element number of the keyed element in this field.

SCPKEYL: A 1-byte field containing the length of the key field in the element.
The key is always part of the element's data and begins in the first position of
the element. Using this field, different application programs could use different
length keys to locate the same element. For example, one program could use
the first four bytes as a key while another program could use the first six bytes.

SCPDATPT: A 3-byte field containing the location of a data area for use by
SCRPAD. The first byte contains the number of the segment; the second and
third bytes contain the displacement into the segment. For an add or update
request, SCRP AD copies the contents of this data area into the SPA element.
For a ret.i;ie-val0request, the retrieved element's data (with key) is copied to this
data area. The length of this data area is implied by the element length for the
SPA.

SCPELMLN: A 2-byte field containing the length of an element for initializing
a SP A. All elements in the SP A are initialized to this element length. This
field is used only for SP A initialization.

SCPELMNB: A 2-byte field containing the number of initialized elements in
the SP A. This field is completed by the SCRP AD instruction after an
initiali2:ation request is processed, and indicates the number of elements in the
SPA.

5-328 4700 Controller Programming Library, Volume 1: General Controller Programming

Condition Codes: SCRPAD sets both the condition code and a return code in
the SCPRC field of the parameter list. The possible condition codes are:

Hex Code

01
02

Possible
Mnemonic

OK
ST

Explanation

SCRPAD executed successfully.
Operation was not completed or completed
conditionally.

SCP RC: A one-byte field containing a return code indicating the result of the
SCRP AD operation.

If the condition code is X'Ol ',the possible return codes and their meanings are:

Hex Code

00

01

Explanation

SCRPAD executed successfully. If SCPFC was X'23' or
X'25', a new element was added.
Execution was successful, the element was returned at
the SCPDATPT location.

If the condition code is X'02', the possible return codes and their meanings are:

Hex Code

02
08

10
20
40
80

Explanation

The SP A is full.
Update is pending by another application program to the
element selected by SCRPAD. This element is
unavailable until that operation ends.
Your program tried to add a duplicate element.
The specified element was not found in the SP A.
The SP A you selected has not been initialized.
Invalid SPA ID.

Program Checks (hex): 01, 02, 09, or 11 can be set.

Programming Notes:

Initializing the SPA: After a SPA has been defined during configuration, an
application program issues the SCRPAD instruction (using the DEFSCP
parameter list) to initialize the SPA to elements of a selected fixed length. The
DEFSCP parameter list is completed by the program to contain:

SCPFC X'Ol' to initialize a SPA.

SCPSPID The ID of the SPA.

SCPELMLN The element length to be used for all elements in the SPA. The
length specified should not include the one-byte flag field
associated with each SPA element.

Upon completion, field SCPELMNB contains the number of elements in the
initialized SPA. Field SCPRC contains the return code.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-329

For example, the following code could be used to initialize SPA ID 01 to
contain 9-byte entries:

DEFSCPS EQUATE 3 SCBATCH PAD PARAMETER SEGMENT
COPY DEFSCP COPY PARAMETER LIST FIELDS

*ERROR

Element
Number

•
•
•
MVDI
MVDI
MVDI
SCRPAD
BRAN
•

TESTING

1 unassigped

2 unassigned

•
•

SCPFC,SCPINTR
SCPSPID,X I 01 I

SCPELMLN;AL1(9)
SCPSTR
OK,CONT

25 unassigned

unused 6 bytes

SET TO INDICATE INITIALIZE
SET SPA ID
ALLOCATE 9 BYTE ELEMENTS
EXECUTE SCRATCH PAD INSTRUCTION
CHECK IF OK

Adding SP A. Entries: After a SP A is initialized, application programs can begin
to add new elements. Elements can be added only if element spaces are
available; elements are always added at the first unassigned element space. If
no unassigned element spaces remain, the element is added at the first space
where an element has been deleted.

You can add elements with or without keys. If keys are used, the key must
begin in the first byte of the element. When the new element is added, all
existing elements are searched to ensure that the new element does not contain
a key already used in the SP A. The new element is added only if the key is not
a duplicate. If the element is added without key addressing, the search is not
made. Note that if an element is added by position, but the first characters
duplicate the key of another element, problems can occur when the SPA
elements are later searched by key.

To add an element, complete the DEFSCP parameter list with the following
information:

SCPFC

SCPSPID

SCPTYP

X'02' indicates the add function.

The ID of the SP A.

Set to X'OO' to add a keyed element.
Set to X'Ol' to add a nonkeyed element to be retrieved by
element number.

5-330 4700 Controller Programming Library, Volume 1: General Controller Programming

SCPDATPT Set to the location (segment followed by displacement) of the
data to be placed in the new element.

SCPKEYL Set to indicate the length of the key, if the element contains a
key. This field is used only if field SCPTYP is set to X'OO' for
keyed addressing.

After SCRP AD completes, field SCPELMN contains the element number of the
added element; the return code in field SCPRC is set to indicate the status of the
operation.

For example, to add element 1 to SPAOl (element 1 will contain the 4-byte key
'1234' and the data 'ELMOl'), the coding might be:

DATADR

BLDDATA

DEFCON

•
DEF CON

•

ALl (5), AL2 (0) LOCATION OF THE
DATAAREA

C'l234ELM01' ELEMENT DATA

MVDI SCPFC,SCP ADDR SET FOR AN ADD FUNCTION
MVDI SCPSPID,X'Ol' SPA ID
MVDI SCPKEYL,AL1(4) SET KEY LENGTH
MVDI SCPTYP,SCPKEYM SET FOR KEYED ADDRESSING
MVDI SCPDATPT,DATADR POINT TO THE ELEMENT DATA
SCRPAD SCPSTR EXECUTE THE SCRATCH PAD
BRAN OK,CONT

•
ERROR ANALYSIS

•
CONT EQUATE * CONTINUE PROCESSING
Element
Number

1 1234ELM01

2 unassigned

25 unassigned

unused 6 bytes

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-331

Retrieving a SPA Element: Use the SCRPAD instruction with the DEFSCP
parameter list to retrieve an element from the SPA using either the key or the
element number. Some elements in the SPA may contain keys, while others do
not. If a·search is made for retrieving a keyed element, all elements are assumed
to contain keys. SCRP AD searches the beginning of each element, beginning with
the first, until a match is found. As shown under "Adding SPA Entries" an
unkeyed element may contain characters that during retrieval may be mistaken
for a key. SCRPAD retrieves the first element whose beginning characters match
the key being sought.

To retrieve a SP A element, complete these fields in the parameter list:

SCPFC X'04' retrieves a SPA.

SCPSPID The ID of the SPA.

SCPTYP Hex 00 to search by key, hex 01 to retrieve a specific element by
element number.

SCPDATPT Contains the segment number and displacement of a data area
where SCRPAD will store the retrieved element. If the search is
by key, the desired key must be placed in the beginning bytes of
the data area before SCRP AD is issued. On completion,
SCRPAD replaces the search key with the retrieved element and
its data.

SCPKEYL Set to the number of bytes to be used for the key when an
element is to be retrieved by key. If this field is set to '4' for
example, SCRPAD will compare the first 4 bytes of the data area
to the first 4 bytes of each SPA element. When a match is found,
the element is retrieved.

SCPELMN Set to the element number when an element is to be retrieved by
element number (and not by key).

When SCRPAD completes, the data area whose location is in SCPDATPT will
contain the retrieved element. If keyed addressing is used, the element number is
stored in field SCPELMN. The return code in field SCPRC is set to indicate the
results of the operation.

Exchanging SPA Elements: Use the SCRP AD instruction and the DBFSCP
parameter list to exchange the contents of a SP A element with the contents of a
specified data area. To use this function, code the DEFSCP fields as follows:

SCPFC X'08' indicates the exchange function.

SCPSPID Indicates the ID of the SPA.

SCPTYP X'OO' indicates addressing by key;
X'Ol' indicates addressing by element number.

SCPDATPT Contains the segment number and displacement of the data area
containing the data to be exchanged. If keyed addressing is
indicated, the first bytes of the data should contain the key.

5-332 4700 Controller Programming Library, Volume 1: General Controller Programming

SCPKEYL Indicates the number of bytes in the data to be used as the key,
beginning with the first data byte.

SCPELMN Indicates the element number when addressing is by element
number.

On completion, the contents of the data area and the contents of the SP A element'
are exchanged. If addressing is by key, the element number of the exchanged
element is returned in SCPELMN.

Retrieving a SPA Element for Update: Use the SCRPAD instruction and the
DEFSCP parameter list to retrieve an element, set it in "update-pending" state,
modify the element, and replace the element in the SPA. The SCRPAD
instruction is first used, just as described in the previous "Retrieving a SP A
Element" section, except that the SCPFC field is set to X'05'. Otherwise, the
parameter list settings are identical. When SCRP AD is complete, the data area
contains the retrieved element. If keyed addressing was used for retrieval, the
element's number is stored in SCPELMN. The return code is set in field SCPRC.

The retrieved element is then set in "update-pending" state so that no other
request can alter the element until the update is complete.

Replacing a SPA Element: The SCRP AD instruction and the DEFSCP parameter
list are used to replace an element either by keyed address or by element number.

If the element to be replaced is in the update-pending state (Retrieve for Update
has been issued), only the station that retrieved the element can update it.
Otherwise, any station can update the element.

When the element is retrieved and is in the data area, the application can make
any desired change. Note that if the beginning characters are changed to duplicate
an existing element key, errors can occur when later searching the SPA by key
sequence.

To use this function, the DEFSCP fields are set as follows:

SCPFC

SCPSPID

SCPTYP

X'03' indicates replacement.

Set to the ID of the SP A.

X'OO' indicates that keyed addressing will later be used to
retrieve this element. The beginning data characters form the
key; X'Ol' indicates that this element will later be retrieved by
element number.

SCPDATPT Contains the segment and displacement of the data area
containing the element data to store into the SP A. This is the
replacement data.

SCPKEYL Contains the number of beginning characters that constitute the
key. This field is used only for addressing by key (field SCPTYP
is set to X'OO').

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-333

SCPELMN Contains the element number of the element being replaced. This
field is used only for replacement using the element address
(SCPTYP set to X'Ol').

If the element is being replaced by key, the first characters (defined by the key
length) are used to search through the SPA for a matching key. When a match is
found, the data in the data area replaces the data in the element.

For example, suppose the program is to retrieve the element with key '3678', and
replace the element data portion with the characters 'CHGOl'. The following
might be coded:

DESKFY DEFCON C'3678' DESIRED KEY FOR
RETRIEVE FUNCTION
NEW DATA NEWDATA DEFCON C'CHGOl'

KEYAREA DEFLD 5,0,4
DATAFLD DEFLD 5,,5

KEY AREA IN DATA AREA
DATA FIELD AREA

LOOP

•
•

MVDI SCPFC,SCPRTUR SET FOR RETRIEVE
FOR UPDATE

MVDI SCPSPID,X'Ol' SPAID
MVDI SCPTYP,SCPKEYM SET FOR KEY ADDRESSING
MVDI SCPKEYL,AL1(4) SET KEY LENGTH
MVFXD KEY AREA,DESKFY SET DESIRED ELEMENT KEY
MVFXD SCPDATPT,DATADR POINT TO KEY AND DATA AREA
SCRP AD SCPSTR EXECUTE THE SCRPAD

INSTRUCTION
BRAN OK,UPDATE
LIFOFF SCPRC,SCPRC08,

ERROR
PAUSE
JUMP LOOP

IF RETRIEVED GO UPDATE
CHECK IF IN UPDATE STATE

WAIT
TRY AGAIN

ERROR EQUATE *
•

ERROR ANALYSIS
•

UPDATE EQUATE*
MVDI . SCPFC,SCPRPLR SET FOR REPLACE FUNCTION
MVFXD DATAFLD,NEWDATA SET NEW DATA
MVDI SCPTYP,SCPELMA SET TO ELEMENT NUMBER

ADDRESSING
SCRPAD SCPSTR EXECUTE UPDATE
BRAN OK, CONT CHECK IF SUCCESSFUL

•
ERROR ANALYSIS

•
CONT EQUATE*

5-334 4700 Controller Programming Library, Volume 1: General Controller Programming

Element
Number

1

23

1234ELM01

•
•

3678CHG01 Replaced element

24 1289ELM24

25 unassigned

unused 6 bytes

Add.or Retrieve for Update: The SCRP AD instruction with the DEFSCP
parameter list can be used to add a new element by key only if an element with
that key does not already exist in the SP A. If the duplicate keyed element exists, it
is retrieved. This function works only for keyed elements. Set the fields in the
DEFSCP list as follows:

SCPFC X'25' indicates add/retrieve.

SCPSPID Set to the SPA ID.

SCPTYP X'OO', only keyed request allowed.

SCPDATPT Contains the segment number and displacement of a data area
containing the element to be added. The beginning characters in
the data area are used as a key.

If the element already exists, it is retrieved and placed in this data
area.

SCPKEYL Contains the number of element bytes that constitute the key.

When this operation completes, either:

1. The new element in the data area is added to the first available element space
of the SPA; the return code is set to X'OO'; field SCPELMN contains the
element number of the added element.

2. The element exists in the SPA, and is copied to the data area; the return code
is set to X'Ol '; field SCPELMN contains the element number of the retrieved
element.

If an error occurs, field SCPRC contains a return code to indicate the status of the
operation.

Add or Replace SPA. Element: Use the SCRPAD instruction with the COPY
DEFSCP parameter list to add or replace a keyed element in the SPA. The
DEFSCP parameter list specifies the type of SCRPAD operation, the SPA ID, the.
address of the new or replacement SP A element, the element key, and its length.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5,-335

If SCRP AD finds an. element with the same key as that in the SCPDATPT data
area, the data area contents replace the old SP A element. If none of the SP A
elements have the data area key, SCRPAD adds the new element to the SPA.
SCRPAD sets a return code, indicating the action taken, in the SCPRC field of
the parameterJist. Set tne COPY DEFSCP parameter list fields as follows:

SCPFC X'23' indicates add or replace an element.

SCPSPID Set to the SPA ID.

SCPTYP X'OO' only keyed elements can be added or replaced.

SCPDATPT Specifies the segment and displacement of the new or
replacement element. The beginning characters contain the key,
as defined by the SCPKEYL field.

SCPKEYL Defines the number of beginning SCPDATPT characters
containing an element key.

Note: If the element to be replaced is in update-pending state,
only the station that originally retrieved the element can replace
it.

Delete a SPA Element: The SCRPAD instruction and the DEFSCP parameter
list are used to delete an element from the SP A. The element is located either
by element number or by key. The element is then removed from the SP A and
its space is made available. Note that elements in "update-pending" state
cannot be deleted. To delete an element, the following fields in DEFSCP are
completed:

SCPFC X'06' indicates deletion.

SCPSPID Set the SPA ID.

SCPTYP X'OO' indicates key addressing;
X'Ol' indicates an element number will be used.

SCPDATPT Contains the segment number and displacement of a data area
containing the key of an element to be deleted. This field is used
only for keyed addressing.

SCPKEYL Contains the number of bytes in the data area to be used for the
key.

SCPELMN Set to contain the element number of an element to be deleted.
This field is used only if the element is located by element
number.

On completion, SCRP AD sets a return code in SCPRC to indicate the status of
the operation.

5-336 4700 Controller Programming Library, Volume 1: General Controller Programming

For example, if SP A 01 contains 25 elements, and element .1 is to be deleted, the
code might look like this:

•
MVDI SCPFC,SCPDLER SET FOR DELETE FUNCTION
MVDI SCPTYP,SCPELMA SET FOR ELEMENT NUMBER

ADDRESSING
MVDI SCPSPID,X'Ol' SET SPA ID
MVDI SCPELMN,ALl(l) SET ELEMENT NUMBER
SCRP AD SCPSTR EXECUTE SCRATCH PAD INSTRUCTION
BRAN OK,CONT CHECK IF SUCCESSFUL

•
ERROR ANALYSIS

CONT EQUATE "'

Element
Number

1

2

24

25

available

1268ELM02

•
•

3678ELM24

1289ELM25

unused 6 bytes

Deleting all Elements: The SCRP AD instruction and the DEFSCP parameter list
are used to delete all elements in the SPA. Even elements in "update-pending"
state are deleted. Set field SCPFC to X'07', and issue SCRP AD. The return code
in field SCPRC indicates the status of the operation.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-337

5~338 4700 Controller Programming Library, Volume 1: General Controller Programming

SECTION

SECTION--Section Control

The SECTION instruction is used to control the active application control section.

Name Operation Operand

END
{

DUMMY }
[label] SECTION INSTR

DUMMY

CONST
AUTO

Specifies that following instructions are to be placed in a DSECT.

END
Specifies the end of the DSECT.

INSTR/CONST/ AUTO
These operands are for 3600 compatibility of split application programs. If
your program is 'split', see Appendix F.

Programming Notes

If a BEGIN, OVL YSEC, or SEGCODE occurs after a SECTION DUMMY
statement and before a SECTION END statement, no CSECTs or
ADDMEM commands will be generated. See the Host Support User's Guide
for further information.

Each subsequent SECTION specification ends the previous specification
except for the dummy section, which is ended only by a SECTION END
statement.

SECTION DUMMY indicates the start of a dummy section (DSECT). The
dummy section is used to maintain addressability for the instructions being
assembled. Instructions and constants in a dummy section will not be
included in the object module. SECTION AUTO, CONST, and INSTR
instructions that appear within a dummy section will be ignored.

SECTION END indicates the end of a dummy section.

For example, the following might be done:

Assembly A:

APO PT RELOC=Y

ROOT2 BEGIN

ADEF DEFCON 1

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-339

BDEF DEFCON

FINISH

AssemblyB:

APO PT RELOC=Y

SECTC SEGCODE

SECTION DUMMY

BEGIN

ADEF DEFCON 2

BDEF DEFCON 2

SECTION END

LDLFD R3,ADEF

ENDSEG

Notes:

1. In assembly A, constants would be generated for the DEFCONs.

2. In assembly B, constants would not be generated but the SECTION DUMMY
would allow the assembler to resolve the reference to ADEF.

We recommend that you define a library member that consists of the constant
definitions contained in the root section. This library member should include the
BEGIN statement and may include EQUATE and DEFLD instructions. When
assembling the root section, you should code a COPY statement as the first
instruction to copy the library member into the source code. When assembling an
application section separate from the root section, you should code a SECTION
DUMMY statement followed by a COPY statement to copy the root constants
into the source code and then close the dummy section by coding a SECTION
END statement. You should follow the dummy section with the application code.

5-340 4700 Controller Programming Library, Volume 1: General Controller Programming

SEGALLOC

I SEGALLOC--Segment Allocate

The SEGALLOC allows you to dynamically allocate segments from a pool
defined during configuration using the TRANPL macro or from the general
storage pool. Dynamic allocation provides more efficient use of controller storage
by allowing run-time management of segment storage. The application issuing the
SEGALLOC may request that control not be returned to it until sufficient space
is available to satisfy the request. The 4700 places the station in a wait state until
the space becomes available. At that time, the request is honored and the station
is taken out of the wait state. After it is obtained, the segment space remains
allocated until the program that originally allocated it (via SEGALLOC), releases
it - explicitly via SEGFREE or implicitly via APRETURN.

Your program addresses a dynamically-allocated segment the same as it addresses
any other segment.

Only segments 2-12 may be allocated or freed dynamically and there is no sharing
of segments between stations.

You can request up to 64 simultaneous allocations for a work station.

Name Operation Operand

[label] SEGALLOC (defrf2) {
defld2 }

,WAIT={~IN}
(reg2)
seg2,disp2

operand 2

WAIT

Is a field containing the parameter list. The format of this parameter list is:

Byte 0 =

Byte 1 =

Bytes 2-3 =

Byte 4 =

one-byte function code - hex 01 =allocate storage

one-byte segment number

bits 0-3 =zeros
bits 4-7 = segment number

two-byte length ranging from 1 to 65 535

one-byte segment-class pool ID from which the segment is
to be allocated

Y means that the station will be placed in the wait state if the storage is not
available. W AIT=N means that a condition code will be set and operation
will continue with the next sequential instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-341

Condition Codes: One of the following is set.

Hex Code

01
04

Possible
Mnemonic

OK

Explanation

Successful execution.
No storage available.

Program Checks (hex): 01, 02, 09, 11, 24, or 25 can be set.

Hex Code

01

02
09
11
25
29

Explanation

The specified parameter list is in an undefined segment
or the parameter list specifies an in-use segment number.
The parameter list length extends beyond the segment.
Invalid operation code.
The parameter list specifies an invalid segment number.
No room in the segment header area.
Size requested in parameter list is larger than the largest
pool area defined.

Programming Notes: The program that issues the SEGALLOC instruction and the
WAIT= Y operand places the work station for which it is operating, in the wait
state until an area becomes available.

5-342 4700 Controller Programming Library, Volume 1: General Controller Programming

SEGCODE

SEGCODE--Application Program Section Identifier

The section following the SEGCODE instruction is to be added to a root or
overlay section. SEGCODE provides for separately assembled sections that will
be connected by the Host Support link-editing function. For a section that is not
a root or overlay, the first instruction must be SEGCODE.

The SEGCODE generates an ADDMEM card and a CSECT with the name
specified in SEGCODE.

Name Operation Operand

[label] SEGCODE NAME=name [I VERSION= { ver1ion } J
[,INSNAME=name]

name
Is a 1 to 8 character name identifying the section.

version
Is the version number (1to255) of the section to be stored.

IN SN AME
Applies to split application programs. See Appendix F.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-343

5-344 4700 Controller Pi:ogramming Library, Volume 1: .General Controller Programming

SEGCOPY

SEGCOPY--Segment Copy

SEGCOPY copies the contents of a field in one segment into a field in a segment
associated with the same or a different logical work station. The copy can be
either to or from a field in storage belonging to the station currently in control.
The beginning of the field that is to contain the copy is indicated by the primary
field pointer. A SEGCOPY operation cannot be done to or from station 1 (the
System Monitor).

SEGCOPY uses a 6-byte parameter list to refer to the other station and field
involved in the data transfer.

The SEGCOPY parameter list defines the second segment and field that either
receives or is a source of data transferred by SEGCOPY. If SEGCOPY specifies
TO, this field is copied into the operand I segment field. If FROM is specified,
the second segment field defined by the parameter list receives a copy of the
segl.

Byte 0 = Station ID
Is the binary station ID of the station that owns the second segment
involved in the data transfer.

Byte 1 = Segment/Section Indicator
Is a character that further identifies the second segment involved in the
data transfer. This field is ignored unless the second segment number is 0
or 14.

If the second segment number is 0, this field can be specified as a character
A or B, to identify which Segment 0 of a shared station is being referenced.
Unless a value of B is specified, A is assumed.

Byte 2 = Segment Space ID and Number
Bits 0 - 3 contain the segment space ID, Bits 4 - 7 contain the segment
number.

Segment space IDs can range from 1 to 15. A value of 0 indicates the
current segment space ID of the station specified in the first byte of the
parameter list.

If field 2 is to receive a copy of field 1 (the FROM operand is specified),
the segment number cannot be 14.

Note: If Segment 0 and Bis specified in the parameter list and no Segment
0 or B exists, a condition code of hex 04 is set, and no copying is done.

Bits 4-7 are the binary segment number of field 2. If field 2 is to receive a
copy of field 1 (the FROM operand is specified), the segment number
cannot be 14.

Byte 3 = Length
Is the binary length of field 2.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-345

Bytes 4 and S =.Displacement·

Name

Is a 2-byte binary number indicating the location of field within the
specified segment.

Operation Operand

defld2
[label] SEGCOPY {

defcon2

seg1 , (defrf2)
(reg2)
seg2,disp2

operand 1
Is a field in the specified segment, associated with the station currently in
control, that contains field 1. If field 1 is to receive a copy of field 2 (TO is
specified). Field 1 must not be in Segment 14.

operand 2

TO

Is a field containing the parameter list. The length associated with this
operand is ignored, and the first 6 bytes are assumed to be the parameter
list.

When you use register addressing to locate a parameter list, the parameter
list can be located in a noncurrent segment space. However, if the
parameter list contains the address (segment,displacement) of other storage
areas (that is, input/output areas, tables), the other storage areas are
always in the current segment space.

Indicates that data is copied from field 2 to operand 1.

FROM
Indicates that data is copied from operand 1 to field 2.

Condition Codes: One of the following is set:

Hex Code

01
02
04

08

Possible
Mnemonic

OK
ID
IS

ov

Explanation

The data was copied successfully.
An invalid station ID was specified.
An invalid segment number or segment space ID
was specified in the parameter list; or Segment 0
and B were specified in the parameter list, but no
Segment 0 for operator B exists (this condition
causes an error to occur).
There was insufficient room in operand 1 or
field 2.

Program Checks (hex): 01, 02, or 27 can be set. Program check 02 is set if the
parameter list used by SEGCOPY starts less than 6 bytes from the end of the
operand 2 segment.

5:...346 4700 Controller Programming Library, Volume 1: General Controller Programming

Programming Notes: The following shows how to transfer data from the processing
station to station 2. Note that SEGCOPY does not cause the other station to gain
control, but merely transfers data.

STALOC

TRANSMIT

DEFCON
•

SETFPL
SEGCOPY
BRAN

X'02C 100400060'

0,96,64
O,STALOC,FROM
X'OE' ,ERRMSG3

1

2
3
4

1 Defines the parameter list referred to by SEGCOPY. The list specifies station
2, operator A, Segment 0 of the current segment space id, a length of 64 bytes
(X'40') and a displacement into Segment 0 of 96 bytes (X'0060'),
immediately following the registers.

2 Sets the PPP of Segment 0 to 96.
3 Transfers 64 bytes of data from this Segment 0 to the Segment 0 associated

with station 2, operator A.
4 Branches to an error routine if the transfer is unsuccessful.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-34 7

5-348 4700 Controller Programming Library, Volume 1: General Controller Programming

I SEGFREE--Segment Free

SEGFREE

SEGFREE returns segment space allocated using the SEGALLOC instruction to
a storage pool.

Your program can free Segments 2 through 12. You can also free segment space
by performing an APRETURN.

This instruction requires the TRANPL macro in your system configuration.

Name Operation Operand

[label) SEGFREE (defrf2) {
defld2 }

operand2

(reg2)
seg2,disp2

Is a field containing a two-byte parameter list. The format of the parameter
list is:

byte 0 = function code - hex 01 = release storage

byte 1 = one-byte segment number

bits 0-3 = zeros
bits 4-7 = segment number

Condition Codes: One of the following is set:

Hex Code Explanation

01 Successful operation.
02 Segment not defined by SEGALLOC or

invalid segment for this segment space ID or
invalid segment space ID.

Program Checks (hex): 01, 02, or 11 can be set.

Programming Notes: Segments allocated in a segment space may be freed in that
space only. For example, program A allocates a segment using SEGALLOC and
calls (APCALL) program B. Program B cannot free the segment allocated by
program A. The segment allocated by program A is automatically freed if
program A issues an APRETURN.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-349

5-350 4700 Controller Programming Library, Volume 1: General Controller Programming

SELECT

SELECT--Select Segment 0

SELECT allows the controller application program to select which Segment 0 is to
be associated with the shared logical work station currently in control. Before the
instruction is executed, the character A or B must be stored in SMSABK.

Name Operation Operand

[label] SELECT

Condition Codes: One or more of the following are set:

Hex Code
Possible
Mnemonic Explanation

Segment 0 is unchanged.
Segment 0 is changed.

01
02
04 IO

NO

A or B was not specified; A has been set by
default.

08 Segment (O) (B) does not exist; Segment 0 (A)
remains in control.

Program Checks: None are set.

Programming Notes: The following is an example of the use of the SELECT
instruction.

TRAN SO
ADDO

SEGSEL

DEFCC>N C'A'
DEFCONC'B'

MVFXD SMSABK,ADDO
SELECT

MVFXD SMSABK,TRANSO
SELECT

1
2

3
4

5

6

1 Defines the character that indicates which Segment 0 is used for normal
transaction processing.

2 Defines the character that indicates which Segment 0 is used for the
adding-machine function.

3 Moves the select character (B) to Segment 1.
4 Selects the "B" Segment 0.
5 Performs the adding-machine functions.
6 Selects the Segment 0 used for normal processing before exiting.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-351

· 5-352 4700 Controller Programming Library, Volume 1: General Controller Programming

I SETFLDI

SETFLDI--Set Field Immediate

This instruction propagates a byte of data (operand 2) through the field defined in
operand 1.

Name Operation Operand

[label) SETFLDI
{

1~~i~i1) } , immdata2

operand 1

(reg1)
seg1,disp1,len1

Is a field through which the operand 2 data is propagated. The field must
not be in Segment 14. The length of operand 1 can be 0 through 65 534
bytes.

operand 2
Is a one-byte value. This byte of data is propagated through the field
defined by operand 1.

Condition Codes: The code is not changed by this instruction.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-353

5-354 4700 Controller Programming Library, Volume 1: General Controller Programming

SET FPL

SETFPL--Set Primary Field Pointer and Field Length Indicator

SETFPL modifies the primary field pointer (PFP) and the field length indicator
(FLI) of the segment referred to in the instruction. The PFP can be modified
arithmetically or logically:

Arithmetic: The PFP can be set to an absolute location within the segment, or to a
positive or negative displacement from its current position.

Logical: The PFP can be altered based on delimiter characters that appear within
the data in the segment.

The second operand of the SETFPL instruction is used to set the PFP; the third
operand is used to set the FLI. At least one of these operands must be specified in
the SETFPL instruction.

Any change to the PFP sets the FLI to the difference between the new position of
the PFP and the position of the next delimiter found in a scan toward the end of
the segment (this includes cases where the FLI operand is not specified) or the
difference between the new position of the PFP and the end of the segment if no
delimiters are found. If both the PFP and FLI operands are specified, and the
FLI operand is a signed number, the FLI is further modified as indicated by the
operand; if the FLI operand is an absolute number, the FLI is set to that value.

Delimiters are defined using the DEFDEL instruction. Depending on the
specification of the DEL operand of the BEGIN instruction, there may be one or
multiple delimiter tables being used.

If [±]n,(regl), or S(regl) is specified for the second operand and the third
operand is not specified, +O is used as the third operand; thus, when the PFP is
modified, an inverse modification is performed on the FLI. The FLI is changed
only in relation to the new value of the PFP and is not modif~d further. Similarly,
if the third operand is specified but the second is not, +O is used for the second
operand; thus, there is no change to the PFP. If[±] For Lis coded for the second
operand and no third operand is specified, no value is assumed for the third
operand, and a 2-byte machine instruction is generated. If[±] n is coded, a
6-byte machine instruction is generated when + n is greater than + 12 7, -n is less
than -128, or n is greater than 255.

Name Operation Operand

[label] SETFPL

defld

seg,

seg,

{ L±] F }

{ L*l F } I [±Jn }
, (reg2)

S(reg2)

[
[±Jn] [{ (reg1)

seg, !~reg1) . ,

[±Jn
(reg2)
S(reg2)
+0

}]

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-355

defld
Is the label of the DEFLD or DEFCON instruction whose definition
(segment, location, and length) is to be used as the new values for the PFP
and FU.

Note: The label of a relocatable DEFCON should not be used.

seg

(±)F

L

Is the number of the segment to be modified.

To change the PFP (second operand):

Indicates that the PFP is to be modified using delimiters within the data in
the segment:

-F

+F

F

The PFP is set to the first byte to the right of the second delimiter
encountered in scanning toward the beginning of the segment (that
is, at the start of the preceding field). If the PFP currently points to
the first field in the segment, the PFP is set to the beginning of the
current field or the beginning of the segment. Unless an FU value is
specified, the FU is set to the length of the new field.

The PFP is set to the first byte to the right of the next delimiter
encountered in scanning toward the end of the segment. If the PFP
currently points to the last field in the segment, the PPP is set to the
last byte of that segment. Unless an FU value is specified, the FU is
set to the length of the new field.

The PFP is set to the first byte to the right of the first delimiter
encountered in scanning toward the beginning of the segment (that
is, at the start of the field it currently points to). Unless an FU value
is specified, the FU is set to the length of the current field.

The PFP is increased (that is, moved toward the end of the segment) by an
amount equal to the length indicated by the current FLI. Unless an FU
value is specified, the FU is set to the difference between the new PPP
value and the location of the next delimiter encountered in scanning toward
the end of the segment.

5-356 4700 Controller Programming Library, Volume 1: General Controller Programming

(±Jn

(regt)

Is a signed or absolute number that indicates the movement or new location
of the PFP and a change to the FLI (if the FLI operand is also a signed or
absolute number, however, that operand further changes the FLI; refer to
the descriptions of the third operand):

-n

+n

n

Is a negative decimal number (from -0 to -32 768) that specifies the
number of bytes the PFP is to be decreased (PFP movement n
characters toward the beginning of the segment). The FLI is
increased by the same value.

Is a positive decimal number (from +Oto +32 767) that specifies the
number of bytes the PFP is to be increased (PFP movement n
characters toward the end of the segment). The FLI is decreased by
the same value.

Is an absolute decimal number (from 0 to 65 535) that specifies a
new value (absolute displacement) for the PFP. The FLI is set to the
difference between the new value of the PFP and the position of the
first delimiter encountered in a scan toward the end of the segment.
If n is 0, the PFP points to the first byte of the segment, and the FLI
is set to the length of the first field in the segment.

Is the number of a register (Oto 15), in parentheses, that contains a binary
value for setting the PFP. The value must be in the rightmost 2 bytes of the
register and may range from 0 to 65 535.

S(regt)
Is the number of the register (0 to 15), preceded by an Sand in
parentheses, that contains.a signed binary value to be algebraically added to
the PFP. The value must be in the rightmost 2 bytes. If the leftmost bit of
this value is 0, the value is positive and between 0 and 32 767; if the
leftmost bit is 1, the value is negative and between 0 and 32 768.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-357

[±Jn

(reg2)

To change the FL/ (third operand):

ls a signed or absolute number for modifying the FU:

-n

+n

D

Is a negative decimal number from -1 to -32 768 that is used to
decrease the FLI.

Is a positive decimal number from +Oto +32 767 that is used to
increase the FLI.

Is a decimal number from 0 to 65 535 that replaces the value of the
FLI.

Is the number of a register (0 to 15), in parentheses, that contains a binary
value for setting the FLI. The value must be in the rightmost 2 bytes of the
register and may range from 0 to 65 535.

S(reg2)
Is the number of the register (Oto 15), preceded by an Sand in
parentheses, that contains a signed binary value to be algebraically added to
the FLI. The value must be in the rightmost 2 bytes. If the leftmost bit of
the value is 0, the value is positive and between 0 and 32 767; if the
leftmost bit isl, the value is negative and between 0 and 32 768.

Notes:

1. The PFP and FLI never become negative. If the specified value would
cause the PFP to become negative, the PFP is set to 0. If the specified
value would cause the FLI to become negative, program check 3
occurs.

2. Program check OD is set if a SETFPL instruction requiring a delimiter
table is issued, and no delimiter table has been defined for the
controller application program.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 03, or OD may be set.

5-358 4700 Controller Programming Library, Volume 1: General Controller Programming

4-Byte Instruction

Format Operation Generated Machine Instruction

OP Code Byte 2 Byte 3 Bytm 4
FP FLI Hex Binary Binary Binary

SETFPL seg,F <+1 >+o 14 ssss uOOO
SETFPL seg,+F >+1 >+-o 14 ssss u001
SETFPL seg,-F <<+1 >to 14 ssss u010
SETFPL seg,L +FU >+o 14 ssss u100
SET FPL seg,F,N <+1 N 18 ssss Ou10 uuuu uOOO NNNN NNNN
SETFPL seg,F,+N <+1 >+N 18 ssss Ou11 uuuu uOOO +NNN NNNN
SETFPL seg,+F,N >+1 N 18 ssss Ou10 uuuu u001 NNNN NNNN
SET FPL seg,+F,+N >+1 >+N 18 ssss Ou11 uuuu u001 +NNN NNNN
SETFPL seg,-F,N <<+1 N 18 ssss Ou10 uuuu u010 NNNN NNNN
SETFPL seg,-F,+N <<+1 >+N 18 ssss Ou11 uuuu u010 +NNN NNNN
SETFPL seg,L,+N +FLI >+N 18 ssss Ou11 uuuu u100 +NNN NNNl'il
SETFPL seg,n,+N n >+N 18 ssss 1011 nnnn nnnn +NNN NNNN
SETFPL seg,L,N. +FLI N 18 ssss Ou10 uuuu u100 NNNN NNNN
SETFPL seg,n,N n N 18 ssss 1010 nnnn nnnn NNNN NNNN
SET FPL seg,+n,N +n N 18 ssss 1110 +nnn nnnn NNNN NNNN
SETFPL seg,+n,+N +n -n+N 18 ssss 1111 +nnn nnnn +NNN NNNN
SETFPL seg,F ,(reg) <+1 (A) 19 ssss Ou10 uuuu uOOO uuuu ARRA
SETFPL seg,F ,S(reg) <+1 >+!RI 19 ssss Ou11 uuuu uOOO uuuu ARRA
SET FPL seg,+F ,(reg) >+1 (RI 19 ssss Ou10 uuuu u001 uuuu ARRA
SETFPL seg,+F ,S(reg) ~+1 >+!RI 19 ssss Ou11 uuuu u001 uuuu ARRA
SETFPL seg,-F,(reg) (R) 19 ssss Ou10 uuuu u010 uuuu ARRA
SETFPL seg,-F ,S(reg) <<+1 >+!RI 19 ssss Ou11 uuuu u010 uuuu ARRA
SETFPL seg,L,S(reg) +FLI >+!RI 19 ssss Ou11 uuuu u100 uuuu ARRA
SETFPL seg.n,S(reg) n >+!RI 19 ssss 1011 nnnn nnnn uuuu ARRA
SET FPL seg,L,(reg) +FLI (RI 19 ssss Ou10 uuuu u100 uuuu ARRA
SETFPL seg,n,(reg) n (A) 19 ssss 1010 nnnn nnnn uuuu ARRA
SETFPL seg,+n,(reg) +n (RI 19 ssss 1110 +nnn nnnn uuuu ARRA
SETFPL seg,+n,S(reg) +n -n+(R) 19 ssss 1111 +nnn nnnn uuuu ARRA
SETFPL seg,(reg),+N (r) >+N 1A ssss 1011 uuuu r r r r +NNN NNNN
SET FPL seg,(reg),N (r) N 1A ssss 1010 uuuu r r r r NNNN NNNN
SETFPL seg,S(reg),N +(r) N 1A ssss 1110 uuuu r r r r NNNN NNNN
SETFPL seg,S(reg),+N +(r) -{r)+N 1A ssss 1111 uuuu r r r r +NNN Nl'i!NN
SETFPL seg,(reg),S(reg) (rl >+IRI 18 ssss 1011 uuuu r r r r uuuu ARRA
SETFPL seg,(reg),(reg) (r) (RI 18 ssss 1010 uuuu r r r r uuuu ARRA
SETFPL seg,S(reg).(reg) +(r) (A) 18 ssss 1110 uuuu r r r r uuuu ARRA
SETFPL seg,S{reg),S(reg) +(r) -(r)+(R) 18 ssss 1111 . uuuu r r r r uuuu ARRA

n •numeric value in binary for Field Pointer s •segment number in binary
R • register number in binary for Field Length u .. unused bit
N • numeric value in binary for Field Length r •register number in binary for Field Pointer
< = scan backwards to the first delimiter encounteredt
>=for FP, scan forwards to the first delimiter encounteredt
> = for F LI, the number of consecutive nondelimiter characters beginning with the character located

by the FP and scanning forward
<< = scan backwards to the second delimiter encounteredt
+ (r), -{r), +(A) =specified register contains a signed binary number ranging between +32 767 and -32 768
(r), (A)• specified register contains an absolute number ranging between 0 and 65,535 ' '

t If the scan results in the start or end of the segment, +1 is not added to the field pointer.

Figure 5-3 (Part 1 of 2}. Set Field Pointer Instructions Summary

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-359

Vt i I
~
O'I ~ 0

tll
I
IM

:!:J '"' '"Cl
0 ! 0
('") ~
0 Q ::I

~ 0
=::::
(ll 00 Ill
"ti

.....
.... ~ 0

~ (JQ I:>.

"" '"Cl s Q s a s· Ill
(JQ ...
~

t;'
~ 2

"" g. :-.<
< = "' s I s
(ll

.....
0
(ll

::I
(ll
e:..
('")
0
::I
8
=::::
(ll
"ti
0

(JQ
"" s s s·

(JQ

6-Byte Instruction
Format Operation Generated Machine Instruction

FP FLI

SET FPL seg,F,N <+1 N

SETFPL seg,F,+N <+1 >+N
SET FPL seg,+F,N >+1 N

SETFPL seg,+F,+N >+1 >+N

SETFPL seg,-F,N <<+1 N

SETFPL seg,-F,+N <<+1 >+N
SET FPL seg,l,N +FU N

SETFPL seg,L,+N +FU >+N
SETFPL seg,n,N n N
SETFPL seg,n,+N n >+N
SET FPL seg,n,(reg) n (R)

SET FPL seg,n,S(reg) n >+(R)

SETFPL seg,+n,N +n N

SET FPL seg,+n,+N +n -n+N

SET FPL seg,+n,(reg) +n (Rl

SETFPL seg,+n,S(reg) +n -n+(R)

SETFPL seg,(reg) ,N (r) N

SETFPL seg,(reg) ,+N (r) >+N

SETFPL seg ,S(reg) ,N +(r) N

SETFPL seg,S(reg) ,+N +(r) .(r)+N

OP
Code Byte2
Hex Binary

5F ssss 0000
5F ssss 0001
5F ssss 0000
5F ssss 0001
5F ssss 0000
5F ssss 0001
5F ssss 0000
5F ssss 0001
5F ssss 1000
5F ssss 1001
5F ssss 1010
5F ssss 1011
5F ssss 1100
5F ssss 1101
5F ssss 1110
5F ssss 1111
5F ssss 0000
5F ssss 0001

5F ssss 0100
5F ssss 0101

s = segment number in binary
u = unused bit

Byte 3
Binary

uuuu 0000
uuuu 0000
uuuu 0001
uuuu 0001
uuuu 0010
uuuu 0010
uuuu 0100
uuuu 0100
nnnn nnnn
nnnn nnnn
nnnn nnnn
nnnn nnnn
+nnn nnnn
+nnn nnnn
+nnn nnnn
+nnn nnnn
uuuu 1000
uuuu 1000
uuuu 1000
uuuu 1000

n = numeric value in binary for Field Pointer
R = register number in binary for Field Length
N =numeric value in binary for Field length r =register number in binary for Field Pointer
<=scan backwards to the first delimiter encounteredt
>=for FP, ·scan forwards to the first delimiter encounteredt
>=for FU, the number of consecutive nondelimiter characters beginning with the character located

by the FP and scanning forward << = scan backwards to the second delimiter encounteredt
+ (r), .(r), + (Rl = specified registe.r contains a signed binary n':'mber ranging between +32, 767 and -32,768
(r), (R) =specified register contains an absolute number ranging between 0 and 65,535

t If the scan results in the start or end of the segment, +1 is not added to the field pointer.

Byte 4 Byte 5
Binary Binary

uuuu uuuu NNNN NNNN

uuuu uuuu +NNN NNNN
uuuu uuuu NNNN NNNN
uuuu uuuu +NNN NNNN
uuuu uuuu NNNN NNNN
uuuu uuuu +NNN NNNN
uuuu uuuu NNNN NNNN
uuuu uuuu +NNN NNNN
nnnn nnnn NNNN NNNN
nnnn nnnn +NNN NNNN
nnnn nnnn uuuu uuuu
nnnn nnnn uuuu uuuu
nnnn nnnn NNNN NNNN
nnnn nnnn +NNN NNNN
nnnn nnnn uuuu uuuu
nnnn nnnn uuuu uuuu
uuuu rrrr NNNN NNNN
uuuu rrrr +NNN NNNN
uuuu rrrr NNNN NNNN
uuuu rrrr +NNN NNNN

Byte 6
Binary

NNNN N.NNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN
uuuu RRRR
uuuu RRRR
NNNN NNNN
NNNN NNNN
uuuu RRRR
uuuu ARRA
NNNN NNNN
NNNN NNNN
NNNN NNNN
NNNN NNNN

SETSFP

SETSFP--Set Secondary Field Pointer

SETSFP modifies the secondary field pointer (SFP). If seg is specified and the
second operand is not, the SFP is set to the value of the primary field pointer
(PPP).

The SFP can be modified arithmetically or logically:

Arithmetic: The SFP can be set to an absolute location within a segment, or to a
positive or negative displacement from its current position.

Logical: The SFP can be altered based on delimiter characters that appear
within the data in the segment.

Delimiters are defined using the DEFDEL instruction. Depending on the
specification of the DEL operand of the BEGIN instruction, there may be one
or multiple delimiter tables being used.

Name Operation Operand

def con
defld

(reg1)
[label] SETSFP [{

[±Jn } J
seg , !~f~g1)

defld

seg

l±Jn

Is the label of a DEFLD or DEFCON whose definition (segment and
location) is to be used for setting the SFP. The displacement of the
DEFLD or DEFCON specified must not be greater than 255. The label
of a relocatable DEFCON should not be used.

Is the number of the segment whose SFP is to be changed.

Is a signed or absolute number that indicates the new location of the
SFP.

-n

+n

n

Is a negative decimal number (from -0 to -128) that specifies the
number of bytes the SFP is to be decreased.

Is a positive decimal number (from +Oto + 127) that specifies the
number of bytes the SFP is to be increased.

Is an absolute decimal number (from 0 to 255) that specifies a new
value for the SFP.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-361

(regl)
Is the number of the register (Oto 15), in parentheses, that contains a
binary value for setting the SFP. The value must be in the rightmost 2
bytes of the register and may range from 0 to 65 535.

S(regl)

[±]F

L

Is the number of a register (Oto 15), preceded by an Sand in
parentheses, that contains a signed binary value to be algebraically added
to the SFP. The value must be in the rightmost 2 bytes of the register. If
the leftmost bit of the value is 0, the value is positive and between 0 and
32 767; if the leftmost bit is 1, the value is negative and between 0 and
32 768.

The SFP is modified using delimiters within the data in the segment;

+F

-F

F

The SFP is set to the first byte after the next delimiter encountered
in scanning toward the end of the segment. If the SFP currently
points to the last field in the segment, the SFP is set to the last
byte of that segment.

The SFP is set to the first byte to the right of the second delimiter
encountered in scanning toward the beginning of the segment
(that is, at the start of the preceding field). If the SFP currently
points to the first field in the segment, the SFP is set to the
beginning of the current field or the beginning of the segment.

The SFP is set to the first byte after the first delimiter encountered
in scanning toward the beginning of the segment (that is, at the
start of the field it currently points to).

The SFP is increased by an amount equal to the length indicated by the
current field-length indicator.

Note: The SFP never becomes negative; if the specified value would
create a negative number, the SFP is set to zero.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, or OD may be set.

Note: Program check OD is set if a SETSFP instruction requiring a delimiter
table is issued, and no delimiter table has been defined for the controller
application program.

5..;362 4700 Controller Programming Library, Volume I:: General Controller Programming

Programming Notes: The following example shows how the SFP can be set for a
DEFLD/DEFCON with a displacement greater than 255:

Fl
FlD

DEFLD
EQUATE
•
•
•
LDDI
LDRA
SETSFP

4,256,l
(D:Fl)

1
2

RS,FlD J 3
R5,Fl J 3
S4,(R5) 4

1 Defines the field to be used when setting the SFP.
2 Assigns a label to the displacement of F 1.
3 The Fl displacement can be set in the rightmost 2 bytes of register 5 by

using either instruction.
4 Sets the SFP to 25 6.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-363

4-Byte Instruction

Format Operation Generated Machine Instruction

FP

SETSFP seg,F <+1
SETSFP seg,+F >i-1
SETSFP seg,-F <<+1
SETSFP seg,L +FLI
SETSFP seg,n n
SETSFP seg,+n +n
SETSFP seg,(reg) (r)
SETSFP seg,S(reg) +(r)
SETSFP seg PFP

n •numeric value in binary for Field Pointer
R "'register number in binary for Field Length
N =numeric value in binary for Field Length

FLI

<=scan backwards to the first delimiter encounteredt

OP Code Byte 2
Hex Binary

20 ssss 0000
20 ssss 0000
20 ssss 0000
20 ssss 0000
20 ssss 1000
20 ssss 1100
22 ssss 1000
22 ssss 1100
52 ssss 0000

s = segment number in binary
u = unused bit

Byte3
Binary

uuuu uOOO
uuuu u001
uuuu u010
uuuu u100
nnnn nnnn
+nnn nnnn
uuuu r r r r
uuuu r r r r

r =register number in binary for Field Pointer

> = for FP, scan forwards to the first delimiter encounteredt
>=for FLI, the number of consecutive nondelimiter characters beginning with the character located

by the FP and scanning forward
<< = scan backwards to the second delimiter encounteredt
+ (r), -(r), +(RI =specified regiJter contains a signed binary number ranging between +32,767 and -32,768
(r), (RI= specified register contains an absolute number ranging between 0 and 65;535

t If the scan results in the start or end of the segment, +1 is not added to the field pointer.

Figure 5-4. Set Field Pointer Instructions Summary

5-364 4700 Controller Programming Library, Volume 1: General Controller Programming

Byte4
Binary

uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu

SHIFTL

SHIFTL--Shift-Left Data in a Register

SHIFTL shifts the contents of a register a specified number of bit positions to
the left. Data that is moved past the leftmost position of the register is lost.
Zeros are shifted into the rightmost position of the register as the operation
takes place.

Name Operation Operand

[label l SHIFTL reg1, count

operand 1

count

Is a register whose contents are to be shifted.

Is the decimal number of bit positions (1-16) the contents are to be
shifted.

Condition Codes: One of the following is set:

Hex Code

01
08

Possible
Mnemonic

NL
BL

Explanation

No significant bits were lost.
Significant (one) bits were lost.

Program Checks (hex): None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-365

5-366 4700 Controller Programming Library, Volume 1: General Controller Programming

SHIFTR

SHIFTR--Shift-Right Data in a Register

SHIFTR shifts the contents of a register a specified number of bit positions to
the right. Data that is moved past the rightmost position of the register is lost.
Zeros are shifted into the leftmost position of the register as the operation takes
place.

Name Operation Operand

[label l SHIFTR regl,count

operand 1

count

Is a register whose contents are to be shifted.

Is the decimal number of bit positions (1-16) the contents are to be
shifted.

Condition Codes: One of the following is set:

Hex Code

01
08

Possible
Mnemonic

NL
BL

Explanation

No significant bits were lost.
Significant (one) bits were lost.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-367

5-368 4700 Controller Programming Library, Volume 1: General Controller Programming

SINIT--Start Initialization Section

Use this instruction to begin a section in your application program that
initializes segments by work station ID. The values this section defines apply
only when this program operates as the initial application for the work station,
but not for any programs called by this program. The initialization section must
follow the FINISH instruction and contain only INITSEG instructions, but can
contain as many as you require. The values specified in the INITSEG
instructions replace any values specified for the same fields during
configuration (CPGEN) by a SEGINIT macro.

The format of the SINIT instruction is:

Name Operation Operand

label SIN IT

Note: The SINIT instruction has no operands but its label is required.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-369

5-370 4700 Controller Programming Library, Volume 1: General Controller Programming

STATS

I STATS--Obtain or Reset Extended Statistical Counters

The ST ATS instruction provides access to the information maintained in the
extended statistical counters that were defined during the configuration process
by the EXTCTR macro. It also provides access to the basic statistical counters
for a specified device. ST ATS performs the following functions according to
the request code:

Request Code 01

Request Code 02

Request Code 03

Request Code 04

Request Code 05

Request Code 06

Return data associated with the specified extended
statistical counters for ESCID (X'Ol'). For the specified
extended statistical counter ID (ESCID), return the first
device ID, the total number of bytes transmitted, the
number of data bytes in error, and the number of
devices assigned to the ESCID. You can set optional
flags in the parameter list requesting that the counter
also be reset (RESET flag), or that the counter to be
returned is the next one in the table (NEXT flag).

Return the physical device address associated with the
specified extended statistical counter. For the specified
ESCID, return the first device ID. You can use the
NEXT flag to obtain each of the additional DEVIDs in
turn.

Reset all extended statistical counters.

Return the extended statistical counter ID for the
specified physical device address.

Return basic statistical counters for the physical device
address specified. You can set optional flags in the
parameter list requesting that the counter also be reset
(RESET flag), or that the counter to be returned is the
next one in the table (NEXT flag).

Reset all basic statistical counters.

The STATS instruction points to a parameter list (see the DEFESP copy file in
Appendix B) that contains a request code. The request code defines the
function to be performed and any parameters required for that request. The
beginning of the parameter list is defined by operand 2. The length of the
parameter list is implied by the request code. Generally, if operand 2 refers to a
segment that has insufficient space, a program check occurs when the
instruction is performed. For a request code of X'OS' (return statistical
counters for the specified physical device address), a program check occurs if
there is insufficient space for at least the first two counters. Otherwise,
insufficient space causes a condition code of C'04'. The PPP and the FLI for
the segment that contains the parameter list remains unchanged after ST ATS is
executed.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-3 71

Name Operation Operand

[label] STATS (defrf2) (
defld2 }

(reg2)

operand 2
Defines the start of the parameter list. The length associated with the
operand is ignored. The parameter is assumed to have one of two
formats. For request codes X'Ol', X'02', X'03', and X'04', format 1 is
used as explained in Figure 5-5 on page 5-373. For request codes X'05'
and X'06', format 2 is used as explained in Figure 5-6 on page 5-374.

Note: DEFCON label cannot be used. Also, the segment number in the
DEFLD instruction cannot be 14.

Condition Codes: One of the following codes is set:

Hex Code

01

02

04

Explanation:

The requested function was performed successfully.

There was an invalid device or extended counter specification.

There was insufficient space in the segment to store all of the
device statistical counters.

Program Checks (hex): 01, 02, 09, 11, or 27 can be set.

Program check 01 occurs if the segment to which DEFLD instruction refers is
14.

Program check 02 occurs if there is insufficient space for the requested
information.

Program check 09 occurs if the EXTCTR macro was not coded in the CPGEN
or if loading of the extended counter module was suppressed by the control
operator.

Program check 11 occurs if the request code is not one of those listed in
Figure 5-5 on page 5-373 or Figure 5-6 on page 5-374. Program check 27 is
set when a register address contained an invalid segment space ID.

5-372 4700 Controller Programming Library, Volume l: General Controller Programming

Request! Flags
Code

Byte 0

Request Code

2 4

Is a 1-byte request code, as follows:

Code Meaning

6

Total
Bytes

12

Error
Bytes INum. of

Devices

16 17

X'Ol' For the specified ESCID, return the first DEVID, total bytes, error count, and number of devices
assigned to an extended counter.

X'02' For the specified ESCID, return a DEVID associated with the extended counter.

X'03' Reset all extended counters.

X'04' For the specified DEVID, return the corresponding ESCID.

Flags
Is an 8-bit modifier as follows:

Flag Name Meaning

X'80' RESET Reset (zero) the extended counter after read-out
(Request Code = 01).

X'40' NEXT The statistical counter to be accessed is the
counter after the one addressed by the parameter list.

ES CID
Is a 2-byte hexadecimal (X'xxxx') ID specified on the EXTCTR macro.

DEVID
Is a 2-byte physical device address consisting of loop, terminal loop address, component, and subaddress.

Total Bytes
Is the number of bytes transmitted from the input device(s).

Error Count
Is the number of error bytes detected on the input transmission.

Number of Devices
Is the number of devices assigned to this extended counter.

Figure 5-5. Format 1 Request and Information Returned by ST ATS

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-373

Byte

RequestlFlagsl DEVID
Code

0 2

IDevicelFeaturelStationlNum. of !Statistical
Type Flags ID Counters Counters

4 5 6 7
(1 byte each)
8

Request Code
Is a 1-byte request code, as follows:

Code

X'05'

X'06'

Meaning

For the specified DEVID, return the basic statistical counters
associated with the device.

Reset all basic statistical counters.

Flags
Is an 8-bit modifier, as follows:

Flag Name Meaning

X'80' RESET Reset (zero) the statistical counters
associated with the device after read-out.

X'40' NEXT The statistical counters to be accessed are
the next counter after the one addressed
by the parameter list.

DEVID
Is a 2-byte physical device, loop, or port address. The following is the
format table of allowable DEVID entries.

Diskette x'9' X'0' X'2' or x'3' * I X'0'

Link X'9' X'0' XI 11 I X'0'

Loop Loop X'0' X'0' I X'0'

Loop Device Loop Terminal Component I X'0'

DCA Adapter x'9' X'A' X'0' I X'0'

DCA Port X'A' Port· X'0' I X'0'

DCA Device X'A' Port Component I X'0'

* X'2' = primary diskette; X'3' secondary diskette

Figure S-6 (Part 1 of 3). Format 2 Request and Information Returned by ST ATS

5-374 4700 Controller Programming Library, Volume 1: General Controller Programming

Loop
Is the 4-bit binary loop number (1-4) assigned during the controller
configuration procedure.

Terminal

Port

Is the 4-bit binary terminal address established at the terminal by setting
address switches on the terminal itself.

Is the 4-bit binary number (0-7) of the DCA port.

Component
Is the 4-bit component address of a terminal component, as follows:

Component
Address Component

0001 4704/3604/3278/3279 Keyboard
0010 4704/3604/3278/3279 Display
0011 4704/3604 Magnetic Stripe Encoder
0100 4710/3610/3612 Document Printer
0101 3611/3612 Passbook Printer
0100 3615 Administrative Terminal Printer
(non-address shared)

0110 3606/3608 Keyboard/Display
0111 3608 Printer
1000 3614/3624 Terminal
0100 3262/3287 Printer
nnnn* 3615 Administrative Terminal Printer
(address shared)

nnnn* 3616 Journal Printer
nnnn * + 1 3 616 Passbook/Document Printer

*nnnn = the setting of the unit's subaddress switches

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-375

Device Type
Is a 1-byte component code, as follows:

Code
X'Ol'
X'02'
X'03'
X'04'
X'05'
X'80'
X'81'
X'82'

X'83'

X'84'
X'86'
X'87'
X'88'
X'89'
X'8A'
X'92'
X'95'
X'9A'
X'AB'
X'BO'

Component
Communication Link
Diskette
ALA Line
Disk
Encryption Facility
Loop
4704/3604/3278 Keyboard
4704/3604/3278 Display
Displaywriter
Personal Computer
4710/3610/3612 Document Printer
3611/3612 Passbook Printer ·
3262/3287 Printer
4704/3604 Magnetic Stripe Encoder
3614/3624 Consumer Transaction Facility
3606/3608 Keyboard/Display
3608 Printer
3615 Administrative Terminal Printer
3616 Printer
Device Cluster Adapter
4 710 Printer
Magnetic Stripe Encoder for 4 704 Models 2 and 3
4 720 Printer

Figure S-6 (Part 2 of 3). Format 2 Request and Information Returned by STATS

5-376 4700 Controller ProgrammingLibrary, Volume 1: General Controller Programming

Feature Flags
Is an 8-bit code. The contents of this byte are device dependent, and the
feature flags defined are listed in the COPY file DEFESP. All application
program references to these flags should be by use of the symbols defined
on DEFESP to avoid source changes or improper execution in case flag
values must be redefined in subsequent releases.

No feature flags are defined for the communication link, diskette, or disk.
The byte for loops indicates the clocking loop and the configured loop
speed. For loop-attached devices, feature flags 5 through 8 are common to
all devices and features 1 through 4 vary by device.

Devices for which no symbols are listed in DEFESP do not use the feature
flags. Flag values for any listed device that are not defined are reserved
and should not be assumed to be either 0 or 1.

Station ID
Is the binary ID number of the station associated with the device.

Number of Counters
Is the binary number of statistical counters that follow.

Statistical Counters
Are the counters themselves (see the 4700 Subsystem Operating
Procedures: GC31-2032 for further information).

Figure 5-6 (Part 3 of 3). Format 2 Request and Information Returned by ST ATS

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-377

5-378 4700 Controller Programming Library, Volume 1: General Controller Programming

STFLD--Store Field

STFLD

STFLD stores the contents of a register into a field. The data is moved without
character conversion. If the field to contain the contents of the register is less
than 6 bytes long, the data is truncated on the left. If this field is longer than 6
bytes, the leftmost bit of the register is propagated to the left to pad the rest of
the field.

Name Operation Operand

[label] STFLD reg1, { (defrf2)
defld2 }

(reg2)
seg2,disp2,len2

operand 1
Is a register whose contents are to be stored.

operand 2
Is a field that is to contain the contents of the register. The field must
not be in Segment 14, and the field length can be 1-15 bytes unless you
specify register addressing, which allows a length ranging from 1 to 4095
bytes.

Condition Codes: One or more of the following are set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
TR

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-379

5-380 4700 Controller Programming Library, Volume 1: General Controller Programming

STFLDC

STFLDC--Store Field Character

STFLDC stores the decimal EBCDIC equivalent of the signed binary number
in a register into a field. If the field is too small, the converted number is
truncated on the left. The maximum value for the converted number is 15
characters. Zero characters C'O' complete the field to the left from the most
significant character. The sign is not retained in the stored data. If a sign is
desired, the programmer must insert a sign character.

Name Operation Operand

[label] STFLDC reg1, (defrf2) {
defld2 }

(reg2)
seg2,disp2,len2

operand 1
Is a register whose contents are to be converted and stored.

operand 2
Is a field to contain the converted number. The field may not be in
Segment 14, and the length of this field can be 1-15 bytes unless you
specify register addressing which allows a length ranging from 1 to 4095
bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
TR

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-381

Programming Notes: All operations are performed algebraically on the contents
of two registers or a register and a field. The example below shows a use of the
STFLDC instruction.

OUTFLD DEFLD OUTSEG,0,19
OUTTYP DEFLD OUTSEG,0,2
OUT ACCT DEFLD OUTSEG,, 7
OUTAMNT DEFLD OUTSEG,,10

•
•
•
ADDREG R01 ,R02
BRAN OV,ERR1
STFLDC RO 1 , OUTAMNT
BRANL NG,MINUSRTN

1 Defines the entire output field.

1
2
3
4

s
6
7
8

2 Defines the transaction type field within OUTFLD.
3 Defines the account number field. Because the displacement is omitted, the

field is assumed to begin at the next byte after OUTTYP.
4 Defines the amount field. Again, the displacement operand is omitted.
S Adds the amount in REG 1 and REG2 and stores the result in REG 1.
6 Tests for overflow. Any other condition is ignored.
7 Converts the total to EBCDIC decimal characters and stores the rightmost

10 digits in OUTAMNT.
8 Branches to a subroutine that inserts the minus sign if a negative number

was stored.

5-382 4700 Controller Programming Library, Volume 1: General Controller Programming

STOVL Y--Start Overlay

STOVLY

STOVL Y defines a load point for an overlay section. This instruction may be
included either in the root section or in an overlay section. The STOVL Y
instruction generates an ENTRY instruction.

Note: When you are assembling with the nonrelocatable option (RELOC=N
in the APOPT instruction), the STOVLYinstruction and the OVLYSEC
instruction that refers to it must appear in the same assembly.

When a relocatable overlay section is assembled separately from the application
root, EXTRN and ENTRY instructions must be used to establish the
connection between the STOVL Y and the OVL YSEC instructions.

Name Operation Operand

[label] STOVLY
[A

CI J

The C, I, and A operands are used only for split application programs. See
Appendix F for further information.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5~383

5-384 4700 Controiler Programming Library, Volume 1: General Controller Programming

STSEG--Store Segment

STSEG

STSEG stores the contents of a register into a segment-header addressed field.
If the field to contain the register contents is less than 6 bytes long, the data is
truncated to the left. If this field is longer than 6 bytes, the high-order bit of
the high-order byte is propagated to the left to fill the entire field.

Name Operation Operand

[label] STSEG reg1,seg2

operand 1
Is a register whose contents are to be stored.

operand 2
Is a field in the specified segment that is to receive the register's
contents. The field must not be in Segment 14. The location of the field
within the segment to contain the register contents is determined by the
primary field pointer and the length is determined by the field length
indicator. The field length can be from 1 to 4095 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
TR

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, or 03 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-385

5-386 4700 Controller Programming Library, Volume 1: General Controller Programming

STSEGC

STSEGC--Store Segment Character

STSBGC stores the decimal EBCDIC equivalent of the binary contents of a
register in a segment-header addressed field. Zero characters (C'O') pad the
field to the left from the most significant digit. If the field is too small, the
converted number is truncated to the left. The maximum value for the
converted number is 15 characters. The sign is not retained in the stored data.
If a sign is desired, the programmer must insert a sign character.

Name Operation Operand

[label] STSEGC regl, seg2

operand 1
Is the register whose contents are to be converted and stored.

operand 2
Is a field in the specified segment that is to receive the register's
contents. The field must not be in Segment 14. The location of the field
within the segment that is to contain the converted number is indicated
by the primary field pointer and the length is indicated by the field length
indicator. The field length can be from 1 to 4095 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08

Possible
Mnemonic

zo
NG
LB
PS
GB
NB
TR

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
Truncation occurred.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-387

5-388 4700 Controller Programming Library, Volume 1: General Controller Programming

SUBFLD--Subtract Field

SUBFLP

SUBFLD algebraically subtracts the binary contents of a fixed field from the
binary contents of a register and places the result in the register.

The field must be between 0 and 6 bytes long. If a length of 0 is specified, a
binary 0 is subtracted from the contents of the register. The leftmost bit of the
leftmost byte is assumed to be the sign.

Name Operation Operand

defcon2
defld2

[label] SUBFLD regl, (defrf2)
(reg2)
seg2,disp2,len2

operand 1
Is a register containing the minuend. At the end of the operation, this
register contains the result.

operand 2
Is a field containing the value (subtrahend) to subtract from
operand 1. The length of the subtrahend is from 0 to 6 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-389

5-390 4700 Controller Programming Library, Volume 1: General Controller Programming

SUBFLDL

SUBFLDL--Subtract Field Logical

SUBFLDL subtracts the contents of a 6-byte field from the contents of a
register. If the field length is less than 6 bytes, the field is treated as a 6-byte
field by propagating zeros to the left. The binary contents of the field is then
subtracted from the binary contents of the register and the result is placed in
the register. If a length of 0 is specified, a binary 0 is subtracted from the
contents of the register.

Name Operation Operand

defld2
[label] SUBFLDL reg1, (defrf2)

defcon2 I
(reg2)
seg2,disp2,len2

operand 1
Is a register containing the minuend. At the end of the operation, this
register contains the result.

operand 2
Is a field containing the value (subtrahend) to subtract from
operand 1. The length of the subtrahend is from 0 to 6 bytes.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-391

5-392 4700 Controller Programming Library, Volume 1:. General Controller Programming

SUBREG

SUBREG--Subtract Register

SUBREG algebraically subtracts the binary contents of one register from the
binary contents of another register and places the result in the register specified
in the first operand.

Name Operation Operand

[label] SUBREG reg1 ,reg2

operand 1
Is the register that contains the minuend. At the end of the operation,
this register contains the result.

operand 2
Is the register that contains the value (subtrahend) to subtract from
operand 1.

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result is greater than 0.

Program Checks: None are set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-393

5-394 4700 Controller Programming Library, Volume 1: General Controller Programming

' SUBZ

SUBZ--Subtract Zoned Decimal

This instruction subtracts zoned decimal operand 2 from zoned decimal
operand l, and replaces operand 1 with the result. The length of either
operand is from 1 to 63 bytes; if either operand is more than 15 bytes long, it
!llUSt be selected using register addressing.

Note: This is an optional instruction, and requires that module P31 be
specified on the OPTMOD configuration macro.

Name Operation Operand

defld2
[label] SUBZ

defld1
(defrf1)
(reg1)

, (defrf2) l defcon2 I
I seg2,d1sp2,len2

(reg2)
seg1 ,disp1 ,len1

operand 1
Is a field containing the zoned decimal minuend (value subtracted from),
and the location of the result. If this operand length is greater than the
result, each unused high-order byte is set to X'FO'. This operand cannot
be located in Segment 14.

operand 2
Is a field containing the zoned decimal subtrahend (the value
subtracted).

Condition Codes: One of the following is set:

Hex Code

01
02
03
04
05
06
08
09
OA
oc

Possible
Mnemonic

zo
NG
LE
PS
GE
NE
ov

Explanation

The result is 0.
The result is less than 0.
The result is less than or equal to 0.
The result is greater than 0.
The result is greater than or equal to 0.
The result is not equal to 0.
An overflow occurred.
An overflow occurred and the result is 0.
An overflow occurred and the result is less than 0.
An overflow occurred and the result.ts greater than 0.

Program Checks (hex): 01, 02, 03, 09, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-395

5-396 4700 Controller Programming Library, Volume 1: General Controller Programming

TABLE

TABLE--Define Table for LSEEK/LSEEKP

TABLE defines a table, in Segment 14, composed of variable-length elements
that may have branching locations associated with them. All entries in a table
occupy the same amount of storage, because entries shorter than the length
specified in the LNG operand are padded on the right with blanks.

The generated TABLE may be referenced by the LSEEK and LSEEKP
instructions. The SRT operand is used with the LSEEKP instruction to provide
a binary search.

A maximum of 200 entries may be specified in a table. Each operand specified
in the TABLE instruction cannot exceed 255 characters including commas,
parentheses, and quotation marks. Each element in the instruction can be
specified in one of two forms:

1. A mixture of data types, enclosed in parentheses with the data types
separated by commas

2. A single data type.

To define a table of elements without associated branching locations, you code
TABLE like this:

Name Operation Operand

[label] TABLE element1 [,element2 ... ,elementn] ,LNG=nnn
[,SRT=n] -

where:
element is { data }

(data1,data2 ... ,datag)

To define a table of elements with associated branching locations, you code
TABLE like this:

Name Operation Operand

[label] TABLE element1[,element2 ... ,elementn],LNG=nnn

data

[,SRT=n] -

where:
element is { (data,addr) }

(data1,data2 ... ,datag,addr)

Is the information, called a data item, to be included in this element of
the table. It may be specified as hexadecimal (X'nn'), character (C'nn'),
an A-type address constant (ALn(nn)), fullword (FLn'nn'), or halfword
(HLn'nn').

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-397

addr

LNG

SRT

Is an address constant or the label of an instruction. The LSEEK
instruction that refers to this table can be coded so that a match between
the field referred to in LSEEK and a table element causes a branch to
this location (see the description of LSEEK). The label may be an
external symbol when RELOC= Y is specified in the APOPT instruction.

Is a decimal value from 1 to 255, specifying the length of the entries in
the table. The length must be equal to or greater than the largest entry.
Entries shorter than the length specified are padded on the right with
blanks.

Specifies that the table is to be sorted, and the number of characters on
which to sort. Replace n with the number of characters at the begin:qing
of each entry that are to be sorted. This sort field is always a subset of
the total entry, and always begins at the beginning of the element.

If you code this operand to sort the table, the first data item of each
element must meet th~se requirements:

• The data type must be either C or X.

• All data items must have the same attribute (C or X).

• If several data items are specified for an element, the element is
sorted according to the first data item only.

5-398 4700 Controller Programming Library, Volume 1: General Controller Programming

TSTMSK

TSTMSK--Test under Mask

TSTMSK tests 1 or 2 bytes of a field under control of a mask. Each bit position
in the mask that contains a 1 causes the corresponding bit position in the field
to be tested. TSTMSK returns a condition code that signifies the bits tested
were all O's, all l's, or mixed, or that the bits tested were identical to the mask.

Name Operation Operand

defld1 defld2
[label] TSTMSK (defrf1) {

defcon1

, (defrf2) } {

defcon2 }

operand 1

(reg1)
seg1 ,disp1

(reg2)
seg2,disp2,len2

Is a field to be tested. The number of bytes to be tested is determined by
the length of the mask.

operand 2
Is a field containing the mask. The length must be either 1 or 2 bytes.

Condition Codes: One of the following is set:

Possible
Hex Code Mnemonic Explanation

01 MZ All tested bits are O's or the mask bits are
all O's.

02 MX The tested bits are mixed l's and O's.
04 ME The tested field and the mask are identical.
08 MO All tested bits are l's.

Note: Condition code hex 04 is set with hex 08; it is never set alone. This ma)
affect the result of a branch (or JUMP) instruction that uses this code as the
condition for the branch.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-399

5-400 4700 Controller Programming Library, Volume 1: General Controller Programming

TSTMSKI

TSTMSKI--Test under Mask Immediate

TSTMSKI tests 1 or 2 bytes of a field under control of a mask made up of 1 or
2 bytes of data. Each bit position in the mask that contains a 1 causes the
corresponding bit position in the field to be tested. TSTMSKI returns a
condition code that signifies the bits tested were all O's, all l's, or mixed, or that
the bits tested were identical to the mask.

Name Operation Operand

defld1
[label] TSTMSKI {

defcon1

(defrf1) } ,immdata2

operand 1

(reg1)
seg1 ,disp1

Is a field to be tested. The length of the field must be either 1 or 2 bytes.

operand 2
Is the 1 or 2 bytes of immediate data to be used as the mask. The length
of the mask determines the length of the operation.

Condition Codes: One of the following is set:

Hex Code

01

02
04
08

Possible
Mnemonic

MZ

MX
ME
MO

Explanation

All tested bits are O's or the mask bits are
all O's.
The tested bits are mixed l's and O's.
The tested field and the mask are identical.
All tested bits are l's.

Note: Condition code hex 04 is set with hex 08; it is never set alone. Consider
this when writing an instruction that uses this code as the condition for a
branch.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-401

Programming Notes: For example, the application program must now transmit
the output field to the central processor or record the field on the diskette for
later transmission. The decision is made by testing the link status bit in
Segment 15. The example below shows the test. (Assume that a COPY
DEFGMS is included in the application program to provide the field definition
for GMSIND.)

TSTLNK TSTMSKI GMSIND,GMSILDM
BRAN
BRANL

MO,DISKWRT
CPUWRT

1
2
3

1 Tests bit 0 of the Segment 15 indicator byte to determine the status of the
link (see the COPY DEFGMS instruction in Appendix B for definitions of
GMSIND and GMSILDM).

2 Branches to the diskette write routine if the tested bit is on (the link is
down).

3 Branches to the central processor write routine if the tested bit is off (the
link is up).

5-402 4700 Controller Programming Library, Volume 1: General Controller Programming

UPKFLD--Unpack Field

UPKFLD

UPKFLD translates a fixed field of 4-bit binary codes into hexadecimal
EBCDIC. The unpacked field can consist of the numbers 0 through 9 and
letters A through F. The length of the unpacked field is twice the length of the
field to be unpacked.

Refer to the P AKFLD instruction for the table of packed and unpacked
equivalents.

Name Operation Operand

[label l UPKFLD

operand 1

{

defcon2 }
defld2

seg1, (defrf2)
(reg2)
seg2,disp2,len2

Is a field in the specified segment that is to contain the unpacked field.
The field must not be in Segment 14. The location of the field within the
segment to contain the unpacked field is indicated by the primary field
pointer (PFP). The field length indicator is ignored unless the operand 2
length is specified as 0. Following the execution of the instruction, the
PFP points 1 byte past the end of the field, and the field length indicator
is unchanged.

operand 2
Is a field to be unpacked. The length of the field to be unpacked is from
0 to 15, unless a form of register addressing is used, which allows a
length ranging from 0 to 255. If 0 is specified, the field length indicator
of operand 1 indicates the length of the operation.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, 03, or 27 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-403

5-404 4700 Controller Programming Library, Volume 1: General Controller Programming

UPKSEG

UPKSEG--Unpack Segment

UPKSEG translates a variable field of 4-bit binary codes into hexadecimal
EBCDIC. The unpacked field can consist of the numbers 0 through 9 and
letters A through P. The unpacked field is twice the length of the field to be
unpacked. If the length of the field to be unpacked is equal to 0, no operation
occurs.

Refer to the PAKPLD instruction for the table of packed and unpacked
equivalents.

Name Operation Operand

[label] UPKSEG seg1,seg2

operand 1
Is a field in the specified segment to contain the unpacked data. The
field must not be in Segment 14. If the operands refer to different
segments, the location of the field to contain the unpacked field is
indicated by the primary field pointer (PPP). If both operands refer to
the same segment, the location of this field is indicated by the secondary
field pointer (SPP); when the operation is completed, the primary field
pointer points to the first byte past the end of the field. In either case,
the field length indicator is ignored.

operand 2
Is a field in the specified segment containing the data to be unpacked.
The PPP indicates the start of the field, and the field length indicator
gives the length of the field to be unpacked. This length cannot exceed
255. The PPP is not changed when the instruction is executed.

Condition Codes: The code is not changed.

Program Checks (hex): 01, 02, or 03 may be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-405

5-406 4700 Controller Programming Library, Volume 1: General Controller Programming

USEBASE
'

USEBASE--Use a Base Register for a DSECT

This instruction specifies that a register will be used as the base register for a
DSECT.

Name Operation Operand

label

reg

An'*'

USEBASE label, { regl* }

specifies the label of a LDSECT instruction.

specifies a register that will be used as the base register when references
are made to the field within the specified DSECT. This value overrides
any previous specification made either on the LDSECT instruction or a
previous USEBASE instruction.

indicates that the register should be reset to the specification made on
the LDSECT instruction.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-407

5~408 4700 Controller Programming Library, Volume 1: General Coll.troller Programming

VERIFY--Verify

VERIFY

VERIFY checks a field for either (1) a maximum and minimum field length, or
(2) a maximum and minimum field length and EBCDIC numeric characters.

Name Operation Operand

defcon2
defld2

[label l VERIFY seg1, { (defrf2) } (reg2)
seg2,disp2

operand 1
Is a field in the specified segment to be verified. The start of the field is
indicated by the primary field pointer, and the length by the field length
indicator.

operand 2
Is a field containing the parameter list. The length associated with this
operand is ignored, and the first 3 bytes are assumed to be the parameter
list.

The format of the parameter list is shown below.

I Type
0

Type

Max

Min

Max I Min
2

Is a 1-byte hexadecimal value that indicates the type of check that
is to be made. If hex 01, a check is made to verify that the length
of the field pointed to by the first operand is within the limits of
the minimun and maximum. If hex 02, the check is the same as a
type hex 01 check, but the field is also checked to verify that all
characters are valid EBCDIC numerics. The first position only
may be a minus sign; if it is a minus sign, it is not included in the
check for length.

Note: Any other value specified for type defaults to hex 01.

Is the maximum length of the field (0-255), excluding the minus
sign for negative numeric fields.

Is the minimum length of the field (0-255), excluding the minus
sign for negative numeric fields.

Chapter 5. 4700 Instruction Descriptions (AlphabetiCally) 5-409

,;:;,\

Condition Codes: One of the following is set:.

Hex Code

01

02

04

Possible
Mnemonic

OK

IL

NN

Explanation

The field checked corresponds to the
characteristics described by the parameter list.
The field length is not within the limits described
by the parameter list.
The field is not numeric.

Program Checks (hex): 01, 02, or 27 can be set.

Programming Notes: In this example, VERIFY tests a field for both length and
EBCDIC numeric characters. The result of the check is indicated by one or
more condition codes. The application program tests the condition code to
determine whether the field is valid or invalid. The instructions below show
how the account number entered by the teller is tested for 7 numeric digits.
Step 2 of the example sets the PPP and PLI of INPUTSEG as follows:

ACCTCHK
SAVRTN

SDEP

DEPCON
SETPPL
VERIFY
BRAN

3382206 128.50 400. EOM*

PPP PLI

X'020707'
INPUTSEG,+P
INPUTSEG,ACCTCHK
X'06',ERROR

1
2
3
4

1 Provides the testing criteria used by VERIFY. It specifies a check for length
(a maximum and minimum of 7 characters) and all numerics.

2 Sets the PPP and PLI so that they define the field containing the account
number.

3 Checks whether the account number consists of seven numeric digits. A
condition code is set to indicate the result.

4 Changes the program flow if the account number was not within the limits
described by the parameter list.

5-410 4700 Controller Programming Library, Volume 1: General Controller Programming

VIEW--VIEW APCALL/ APRETURN Stack

The VIEW instruction returns information associated with
an APCALL/ APRETURN stack entry for a given station.
Stack entry IDs correspond to segment space IDs.

The operand of VIEW locates a parameter list defined by
the COPY DEFVUE instruction. Prior to VIEW execution the
application program must initialize:

1. VUEREQ to X'Ol'

2. VUEST A to the number of the station for which infom1ation
is to be returned

3. VUESTK to the stack ID for which information is to be
returned. A value of X'OO' indicates a request for the
current stack entry of the specified station.

The VIEW instruction will set:

1. VUESTK to contain the requested stack ID (this is
significant only if X'OO' was used on input to request
the 'current' entry)

2. VUEFG 1 to contain flag bits as follows:

a. VUEFLOM if set indicates that the entry is in use.
If reset, then the entry is not in use and other fields returned by
VIEW are residual (that is, values left from the last use of the
stack entry).

b. VUEFLlM if set indicates the entry is permanent.

c. VUEFL2M if set indicates that the 'B' set of registers
(Segment O) is active. If reset, it indicates that the 'A' set of
registers is active.

3. VUEUIC to the user instruction counter.

4. VUELSB to the bottom of the SMS link stack.

5. VUELSE to the top of the SMS link stack.

6. VUEDEL to the saved value of SMSDEL (delimiter
table).

7. VUEPNT to the parent segment stack ID of
the requested stack entry. If the returned stack ID is X'Ol',
then the parent segment space ID is set to X'OO' indicating
no parent exists.

Chapter S. 4700 Instruction Descriptions (Alphabetically) 5-411

8. VUEFG2 to contain flag bits as follows:

a. VUER TF if set indicates the application program is transient.

b. VUEF AC if set indicates that the application program can be
called by an APCALL instruction.

9. VUEPID to the application program name.

An application program could, for example, fetch the
calling program name and instruction counter by executing
a VIEW instruction with X'OO' to get the current stack's
parent ID, then execute a VIEW requesting this parent ID.

5-412 4700 Controller Programming Library, Volume 1: General Controller Programming

The format of the VIEW instruction is:

Name Operation Operand

[label] VIEW (defrf2) {
defld2 }

(reg2)
seg2,disp2

operand 2
Is the field containing the parameter list. The field rpust not be in
Segment 14. The length associated with the field is ignored, as the
parameter list is assumed to be 26 bytes long.

Condition Codes: One of the following is set:

Hex Code

01

02
04

Possible
Mnemonic

OK

ID

Explanation

Normal completion (this includes a stack entry
which is not in use)
Invalid station number.
Invalid segment space ID.

Program Checks (hex): 01, 02, or 11 can be set.

Chapter 5. 4700 Instruction Descriptions (Alphabetically) 5-413

5-414 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix A. Machine Instruction Formats

This appendix contains the machine instruction formats of the 4700 assembler language instructions that are
described in this book. The machine instructions are listed in operation code sequence within an alphabetic
sequence by instruction mnemonic. In other words, the ADDFLD instruction is first and the 01 operation code
of the ADDFLD instruction appears before the 73 operation code.

The following symbols appear in this appendix:

Symbol

A(-)

Dn
In
L
M
N
p

Rn
Sn
T

w
x
y

Hex Digit
0
1
2
3
4
5
6
9
D
E
F

Meaning

Address of "-" (in adcon form)
Displacement
Immediate data
Length
Mask
Bit number
Field pointer
Register
Segment
First bit in field is a wait modifier (0 for wait, 1 for no wait); remaining bits are logical device
address (LDA)
First bit in field is a wait modifier (O for wait, 1 for no wait); remaining bits are reserved
Code - see Volume 1
File - Field is set as follows (see Volume 2 for explanation):

Mnemonic
c
TFl
TF2
TF3
TF4
PLR
PBN
DSID
A
p

L

Appendix A. Machine Instruction Formats A-1

ADDFLD

0 8 12 16 20 31

ADDFLD

In I oo
0 8 16 20 24 28 32 47

ADDFLD

0 8 16 20 24 28 31

ADDFLD

0 8 16 20 24 28 32 47

ADDFLDL

173 I oo
0 8 16 20 24 28 32 47

ADDFLDL

0 8 16 20 24 28 31

ADDFLDL

0 8 16 20 24 28 32 47

AD DREG

I 00 I Rl I R2 I
0 8 12 lS

A-2 4700 Controller Programming Library, Volume 1: General Controller Programming

ADDZ

I 11 I oo I Li I L2 I S2 I Si I Di I D2

0 8 i6 20 24 28 32 48 63

ADDZ

I 11 10 I Li I L2 I R2 I sl I Di I D2

0 8 i6 20 24 28 32 48 63

ADDZ

I 11 I 20 I Li I 0 I R2 I Si I Di

0 16 20 24 28 32 47

ADDZ

I 11 130 I Ll I L2 I S2 I Rl I Di I D2

0 8 i6 20 24 28 32 48 63

ADDZ

I 11 140 I Li I L2 I R2 I Rl I Di I D2

0 8 i6 20 24 28 32 48 63

ADDZ

I 11 I so I LI I 0 I R2 I Rl I D1

0 8 16 20 24 28 32 47

ADDZ

I 11 160 lo I L2 I S2 I Rl I D2

0 8 16 20 24 28 32 47

ADDZ

I 11 I 10 lo I L2 I R2 I Rl I D2

0 8 16 20 24 28 32 47

Appendix A. Machine Instruction Formats A-3

ADDZ

I 11 I so 00 I R2 I Rt I
0 8 16 24 28 31

AND

149 I st I s2 I L2 I D1 I D2

0 12 16 24 36 47

AND

I 7E I oo I L2 I s2 I st I nt I D2

0 8 t6 24 28 32 48 63

AND

I 7E 10 I L2 I R2 I s1 I nt I D2

0 t6 24 28 32 48 63

AND

17E I 20 I L2 I R 2 I st I Dt

0 t6 24 28 32 47

AND

I 7E 30 I L2 I s2 I R, I nt I D2

0 16 24 28 32 48 63

AND

I 7E 140 I L2 I R2 I RI I D1 I D2

0 16 24 28 32 48 63

AND

I 7E I so I oo I R2 I Rt I Dt

0 8 16 24 28 32 47

A-4 4700 Controller Programming Library, Volume 1: General Controller Programming

AND

I 7E 160 I L2 I s2 I Rl I D2

0 8 16 24 28 32 47

AND

I 7E I 10 I L2 I R2 I Rl I D2 I
0 8 16 24 28 32 47

AND

I 7E I so I oo I R2 I Rl I
0 8 16 24 28 31

ANDI

I 25 14 I S1 I L2 I D1 I I1 I I2

0 8 12 16 20 32 40 47

ANDI

174 I oo I oo I L2 I SI I DI 1 Il I I2

0 8 16 24 28 32 48 S6 63

ANDI

174 140 I oo I L2 I Rl I Il 1 I2

0 8 16 24 28 32 40 47

ANDI

174 I so I oo I L2 I RI I D1 1 Il 1 I2

0 8 16 24 28 32 48 S6 63

APCALL (WAIT)

175 I 1 I s 2 I 02

0 8 12 16 31

Appendix A. Machine Instruction Formats A-5

APCALL (WAIT)

I 7A I OB I 00
0 8 16 24 28 31

APCALL (NOWAIT)

0 8 16 24 28 31

APCALL (WAIT)

0 8 16 24 28 32 47

APCALL(NOW AIT)

0 8 16 24 28 32 47

APRETURN

175 I 20 I
0 8 lS

BRAN

I Address

0 4 8 16 31

BRANL

0 4 8 12 16 31

BRAN LR

19 I M I Rl I R2 I
0 4 8 12 1S

A~6 4700 ~ontroller Programming Library, Volume 1: General Controller Programming

BRANR

Is IM I 0 I R 1 I
0 4 8 12 IS

BRANX

I F I R 1 I Address

0 8 12 16 31

CAFLD

0 8 12 16 20 31

CAFLD

173 I 01
0 8 16 20 24 28 32 47

CAFLD

173 I 21
0 8 16 20 24 28 31

CAFLD

173 141
0 8 16 20 24 28 32 47

CAFLDL

173 I 01
0 8 16 20 24 28 32 47

CAFLDL

173 I 21
0 8 16 20 24 28 31

Appendix A. Machine Instruction Formats A-7

CAFLDL

173 141 Is I Rl I R2 I Lz I Dz

0 8 16 20 24 28 32 47

CAREG

I 06 I Rl I R2 I
0 8 12 1S

CCDI

169 l1 Is IL ID 1 11 1 12

0 8 12 16 20 32 40 47

CCDI

174 11 I oo I L2 I S1 I D1 1 11 1 12

0 8 16 24 28 32 48 S6 63

CCDI

174 I s1 l0 00 I L2 I Rl I 11 1 12

0 8 16 24 28 32 40 47

CCDI

174 191 I oo I L2 I Rl I D1 1 11 1 12

0 8 16 24 28 32 48 S6 63

CCFLD

I 2B I S1 I S2 I L2 I D2

0 8 12 16 20 31

CCFLD

177 I oo lo I S1 I S2 I Lz I D2

0 8 16 20 24 28 32 47

A-8 4700 Controller Programming Library, Volume 1: General Controller Programming

CCFLD

177 10 lo I S1 I R2 I 0 I
0 8 16 20 24 28 31

CCFLD

177 I 20 [o I 81 I R2 I L2 I D2

0 16 20 24 28 32 47

CCFXD

I 23 I S1 I S2 I L2 I D1 I D2

0 8 12 16 24 36 47

CCFXD

I 7F I oo I L2 I s2 I s1 I D1 I D2

0 8 16 24 28 32 48 63

CCFXD

I 7F 10 I L2 I R2 I SI I Dl I D2

0 8 16 24 28 32 48 63

CCFXD

I 7F I 20 I oo I R2 I S1 I D1

0 8 16 24 28 32 47

CCFXD

I 7F 130 I L2 I s2 I Rl I D1 I D2

0 8 16 24 28 32 48 63

CCFXD

I 7F 140 I L2 I R2 I Rl I DI I D2

0 8 16 24 28 32 48 63

Appendix A. Machine Instruction Formats A-9

CCFXD

I 7F I so I oo I R2 I Rl I D1

0 8 16 24 28 32 47

CCFXD

I 7F 160 I L2 I s2 I Rl I 02

0 8 16 24 28 32 47

CCFXD

I 7F I 10 I L2 I R2 I Rl I D2

0 16 24 28 32 47

CCFXD

I 7F 180 I oo I R2 I Rl I
0 8 16 24 28 31

CCSEG

12A I s1 I s2 I
0 12 lS

COMP

I 6E 19 I s2 I D2

0 8 12 16 31

COMP

179 I 01 I oo I R2 I 0 I
0 16 24 28 31

COMP

179 11 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

A-10 4700 Controller Programming Library, Volume 1: General Controller Programming

COMPTB

l 6E I A I S2 I S1 I D2

0 8 12 16 20 31

COMPTB

l1c I oo lo I sl I R2 I 0 I D2

0 8 16 20 24 28 32 47

COMPTB

I 7C I 10 lo I S1 I R2 I 0 I
0 8 16 20 24 28 31

COMPTB

l1c I 20 lo I S1 I R2 I 0 I D2

0 8 16 20 24 28 32 47

COMPZ

In I oo I Ll I L2 I s2 I s1 I D1 I D2

0 8 16 20 24 28 32 48 63

COMPZ

In 10 I Ll I L2 I R2 I S1 I D1 I D2

0 8 16 20 24 28 32 48 63

COMPZ

In I 20 I Li I 0 I R2 I S1 I D1

0 8 16 20 24 28 32 47

COMPZ

In 130 I Ll I L2 I S2 I RI I Dl I D2

0 8 16 20 24 28 32 48 63

Appendix A. Machine Instruction Formats A~l 1

COMPZ

In 140 I L1 I Lz I R2 I R1 I D1 I Dz

0 8 16 zo 24 Z8 32 48 63

COMPZ

In I so I LI I 0 I R2 I R1 I Di

0 16 20 24 28 3Z 47

COMPZ

In 160 lo I L2 I S2 I R1 I Dz

0 16 20 Z4 Z8 3Z 47

COMPZ

In 70 lo I Lz I Rz I R1 I Dz

0 16 zo 24 ZS 3Z 47

COMPZ

In I so I oo I Rz I R 1 I
0 8 16 Z4 28 31

CRETN

175 I 3 I Sz I Dz

0 12 16 31

CRETN

179 12A ! oo I R 2 I 0 I
0 16 24 Z8 31

CRETN

179 I 3A I oo I R 2 I 0 I D 2

0 16 24 28 32 47

A-12 4700 Controller Programming Library, Volume 1: General Controller Programming

DECO MP

0 8 12 16 31

DECO MP

0 8 16 .24 28 31

DECO MP

I oo
0 8 16 24 28 32 47

DECOMPTB

0 8 12 16 20 31

DECOMPT~

0 8 16 20 24 28 32 47

DECOMPTB

0 8 16 20 24 28 31

DECOMPTB

0 8 16 20 24 28 32 47

DIVFLD

0 8 12 16 20 31

Appendix A. Machine Instruction Formats A-13

DIVFLD

173 I 02 lo I Ri I Sz I Lz I Dz
0 8 16 20 24 28 32 47

DIVFLD

173 I 22 lo I R 1 I R 2 l 0 I
0 8 16 20 Z4 28 31

DIVFLD

173 142 lo I R1 I Rz I Lz I Dz
0 8 16 20 24 28 3Z 47

DIVFLDL

173 I 02 Is I R1 I Sz I Lz I D2

0 16 20 24 28 3Z 47

DIVFLDL

173 I 22 18 I R 1 I R 2 I 0 I
0 8 16 20 24 28 31

DIVFLDL

173 I 42 Is I R1 I Rz I Lz I Dz
0 8 16 20 24 28 32 47

DIVREG

I oc I R 1 I Rz I
0 8 12 15

DIVZ

I 11 I 03 I L1 I Lz I Sz I S1 I Di I Dz
0 16 zo Z4 Z8 3Z 48 63

A-14 4700 Controller Programming Library, Volume 1: General Controller Programming

DIVZ

I 11 13 I Li I L2 I R2 I S1 I D1 .I D2

0 8 16 20 24 28 32 48 63

DIVZ

I 11 I 23 I Lt I 0 I R2 I s1 I D1

0 8 16 20 24 28 32 47

DIVZ

I 11 133 I Li I L2 I S2 I RI I D1 I D2

0 8 16 20 24 2~ 32 48 63

DIVZ

I 11 143 I Li I L2 I R2 I Rt I D1 I D2

0 8 16 20 24 28 32 48 63

DIVZ

I 11 153 I LI I 0 I R2 I RI I D1

0 8 16 20 24 28 32 47

DIVZ

I 11 163 lo I Li I S2 I Rt I D2

0 8 16 20 24 28 32 47

DIVZ

I 11 173 lo I L2 I R2 I RI I D2

0 8 16 20 24 28 32 47

DIVZ

I 11 183 I oo I R 2 I Rl I
0 8 16 24 28 31

Appendix A. Machine Instruction Formats A-15

DTACCESS

17A I 4D I * I s2 I o I D2

0 8 16 24 28 32 47

* = 00 if the WAIT Parameter = Y
08 if the WAIT Parameter = N

DTACCESS

17A I 5D I * I R2 I 0 I
0 8 16 24 28 31

* = 00 if the WAIT Parameter = Y
08 if the WAIT Parameter = N

DTAFREE

17A I 4D 01 I s2 I o I D2

0 8 16 24 28 32 47

DTAFREE

17A I 5D 01 I R2 I 0 I
0 16 24 28 31

DTAFREE

17A I 6D I 01 I R2 I 0 I D2

0 8 16 24 28 32 47

EDIT

I 24 I S1 I S2 I Mask Address J
0 8 12 16 31

ERRLOG

l4D I s1 I s2 I D1

0 8 12 16 31

A-16 4700 Controller Programming Library, Volume 1: General Controller Programming

ERRLOG

l1c I B8 lo I S1 I Rz I 0 I
0 8 16 zo Z4 Z8 31

ERRLOG

l1c I C8 lo I S1 I Rz I 0 I Dz
0 8 16 zo Z4 Z8 3Z 47

EXOR

153 I S1 I Sz I Lz I Dl I Dz
0 8 lZ 16 Z4 36 47

EXOR

I 7E I 01 I Lz I Sz I S1 I Dl I Dz
0 16 Z4 Z8 3Z 48 63

EXOR

I 7E 11 I Lz I Rz I S1 I Dl I Dz
0 8 16 Z4 Z8 32 48 63

EXOR

I 7E I 21 I oo I Rz I S1 I Dl

0 8 16 Z4 Z8 3Z 47

EXOR

I 7E 131 I Lz I Sz I Rl I Dl I Dz
0 8 16 Z4 ZS 32 48 63

EXOR

17E 141 I Lz I Rz I Rl I D1 I Dz
0 8 16 Z4 Z8 32 48 63

Appendix A. Machine Instruction Formats A-17

EXOR

I 7E I s1 I oo I R2 I Rl I D1

0 8 16 24 28 32 47

EXOR

I 7E 161 I L2 I s2 I Rl I D2

0 8 16 24 28 32 47

EXOR

I 7E I 11 I L2 I R2 I Rl I D2

0 8 16 24 28 32 47

EXOR

I 7E I s1 I oo I R 2 I Rl I
0 8 16 24 28 31

EXORI

I 2s I 1 I S1 I L2 I Dl I 11 1 12

0 8 12 16 20 32 40 47

EXORI

174 I 02 I oo I L2 I S1 I D1 I 11 1 12

0 8 16 24 28 32 48 S6 63

EXORI

174 142 I oo I L2 I Rl I 11 1 12

0 8 16 24 28 32 40 47

EXORI

174 I s2 I oo I L2 I Rl I Dl I 11 1 12

0 8 16 24 28 32 48 S6 63

A~18 4700 Controller Programming Library, Volume 1: General Controller Programming

EXPS

I s2 I S1 I 1 I
0 8 12 15

FIND AP

175 I c I s2 I D2

0 8 12 16 31

FIND AP

179 OD I oo I R2 I 0 I
0 8 16 24 28 31

FIND AP

179 1D 00 I R2 I 0 I D2

0 8 16 24 28 32 47

INOR

I s1 I SI I S2 I L2 I Dl 1 D2

0 8 12 16 24 36 47

INOR

I 7E 02 I L2 I S2 I SI I D1 I D2

0 8 16 24 28 32 48 63

INOR

17E 12 I L2 I R2 I SI I D1 I D2

0 8 16 24 28 32 48 63

INOR

I 7E 22 I oo I R2 I SI I DI

0 8 16 24 28 32 47

Appendix A. Machine Instruction Formats A-19

INOR

I 7E 32 I L2 I S2 I Rl I Dl I D2

0 8 16 24 28 32 48 63

INOR

I 7E 142 I Lz I llz I Rl I Dl I Dz
0 8 16 Z4 28 3Z 48 63

INOR

I 7E I s2 I oo I Rz I Rl I Dl

0 8 16 24 28 3Z 47

INOR

I 7E 62 I Lz I Sz I Rl I D2

0 8 16 Z4 ZS 32 47

INOR

17E I 12 I L2 I R2 I Rl I Dz
0 8 16 24 28 3Z 47

INOR

I 7E 182 00 I R 2 I Rl I
0 8 16 Z4 Z8 31

IN ORI

I 25 lo I s1 I L2 I Dl 1 11 1 lz

0 lZ 16 20 3Z 40 47

IN ORI

174 I 03 I oo I Lz I S1 I Dl 1 11 1 12

0 8 16 24 28 32 48 56 63

A-20 4700 Controller Programming Library, Volume 1: General Controller Programming

IN ORI

174 143 I oo I L2 I R1 I 11 1 12

0 8 16 24 28 32 40 47

IN ORI

174 83 00 I L2 I Rl I Dl 1 1. 1 12

0 8 16 24 28 32 48 S6 63

INTMR

I 6E I o I s2 I D2

0 8 12 16 31

INTMR

17A I OA I oo I R2 I 0 I
0 8 16 24 28 31

INT MR

17A 1A 00 I R2 I 0 I D2

0 8 16 24 28 32 47

JUMP (forward)

le IM I*
0 4 8 IS

*=number of bytes being jumped
JUMP (back)

ID IM I*
0 4 8 IS

*=number of bytes being jumped

Appendix A. Machine Instruction Formats A-21

LCHAP

0 s t2 ts

*Bits 12-13 = 0 for off, 2 for on, 1 for next; Bits 14-15 are reserved.

LCHECK (ST)

I 3F I w I 0 I
0 8 t2 ts

LCONVERT (TOBYTES)

I 1~ I 04 I L2 I Sz I St I Dt I D2
0 8 t6 24 28 32 48 63

LCONVERT (TOBYTES)

I 7E I 14 I L2 I R2 I st ID, I Dz
0 8 16 24 28 32 48 63

LCONVERT (TOBYTES)

17E I 24 I oo I R2 I s1 I Dl
0 8 16 14 28 32 47

LCONVERT (TOBYTES)

I 7E 134 I L2 I s2 IR, I Dt I Dz
0 8 16 24 28 32 48 63

LCONVERT (TOBYTES)

I 7E 144 I L2 I Rz I Rt I Dl I D2
0 8 t6 24 28 32 48 63

LCONVERT (TOBYTES)

17E 154 I oo I Rz I Rl I Dl
0 8 16 Z4 28 32 47

A-22 4700 Controller Programming Library, Volume 1: General Controller Programming

LCONVERT (TOBYTES)

17E 164 I L2 I s2 I R1 I D2

0 8 16 24 28 32 47

LCONVERT (TOBYTES)

I 7E 174 I L2 I R2 I RI I D2

0 16 24 28 32 47

LCONVERT (TOBYTES)

0 8 16 24 28 31

LCONVERT (TOBITS)

17E I 05 I L2 I S2 I S1 I D1 I D2

0 8 16 24 28 32 48 63

LCONVERT (TOBITS)

17E I 15 I L2 I R2 I SI I Dl I D2

0 8 16 24 28 32 48 63

LCONVERT (TOBITS)

17E I 25 I oo I R2 I S1 I D1

0 8 16 24 28 32 47

LCONVERT (TOBITS)

I 7E 135 I L2 I s2 I R1 I D1 I D2

0 8 16 24 28 32 48 63

LCONVERT (TOBITS)

I 7E 145 I L2 I R2 I RI I Dl I D2

0 8 16 24 28 32 48 63

Appendix A. Machine Instruction Formats A-23

LCONVERT (TOBITS)

I 7E 155 I oo I R2 I Rl I D1
0 8 16 24 28 32 47

LCONVERT (TOBITS)

I 7E 165 I L2 I s2 I Rl I D2
0 8 16 24 28 32 47

LCONVERT (TOBITS)

I 7E 175 I L2 I R2 I Rl I D2
0 8 16 24 28 32 47

LCONVERT (TOBITS)

I 7E 185 I oo I R2 I Rl I
0 8 16 24 28 31

LDDI

168 ID I Rl I 11 I I2
0. 8 12 16 24 31

LDFLD

I 05 I Rl I S2 I L2 I D2
0 8 12 16 20 31

LDFLD

173 I 03 lo I Rl I S2 I L2 I D2
0 8 16 20 24 28 32 47

LDFLD

173 I 23 lo I Rl I R2 I 0 I
0 8 16 20 24 28 31

LDFLD

173 143 lo I Rl I R2 I L2 I D2
0 8 16,. 20 24 28 32 47

A-24 4700 Controller Programming Library, Volume 1: General Controller Programming

LDFLDC

0 8 12 16 20 31

LDFLDC

0 8 16 20 24 28 32 47

LDFLDC

0 8 16 20 24 28 31

LDFLDC

0 8 16 20 24 28 32 47

LDFLDC

0 8 16 20 24 28 32 47

LDFLDL

0 8 16 20 24 28 31

LDFLDL

O· 8 16 20 24 28 32 47

LDFP

12 IS

Appendix A. Machine Instruction Formats A-25

LOLN

0 8 12 15

LORA

173 169
0 8 16 20 24 28 32 48 63

LORA

173 179
0 8 16 20 24 28 32 48 63

LOREG

0 12 IS

LOSEG

0 8 12 15

LOSEGC

0 8 12 IS

LOSEGLN

0 8 12 15

LOSFP

0 8 12 15

A-26 4700 Controller Programming Library, Volume I: General Controller Programming

LEXEC

I EO I Rl IL I Address

0 8 12 16 31

LEXIT

146 00
0 8 15

LHRT

175 IB I s2 I D2

0 8 12 16 31

LHRT

179 06 00 I R2 I 0 I
0 8 16 24 28 31

LHRT

179 16 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LIFO FF

169 I A I s2 IN I D2 I Address

0 8 12 16 20 32 47

LIFO FF

169 IB I s2 IN I D2 I Address

0 8 12 16 20 32 47

Change bit switch (N) if no branch taken.

LIFO FF

I 7D 31 lo I 11 I S2 I 0 I Address I D2

0 8 16 20 24 28 32 48 63

Appendix A. Machine Instruction Formats A-27

LIFOFF (ELSE)

l10 132 lo I 11 I S2 I 0 I Address I D2

0 8 16 20 24 28 32 48 63

LIFO FF

l10 141 lo I 11 I R2 I 0 I Address

0 8 16 20 24 28 32 47

LIFOFF (ELSE)

l10 142 lo I 11 I R2 I 0 I Address

0 8 16. 20 24 28 32 47

LIFO FF

l10 I s1 lo IN I R2 I 0 I Address I D2

0 8 16 20 24 28 32 48 63

LIFOFF (ELSE)

l10 I s2 lo IN I R2 I 0 I Address I D2

0 8 16 20 24 28 32 48 63

LIFON

169 Is I s2 IN I D2 I Address

0 8 12 16 20 32 47

LIFON

169 19 I s2 IN I D2 I Address

0 8 12 16 20 32 47

Change bit switch (N) if no branch taken.

LIFON

l10 133 lo I 11 I s2 I o I Address I D2

0 8 16 20 24 28 32 48 63

A-28 4700 Controller Programming Library, Volume 1: General Controller Programming

LIFON (ELSE)

l1D 134 lo I 11 I Sz I 0 I Address I Dz
0 8 16 zo Z4 ZS 3Z 48 63

LIFON

l1D 143 lo I 11 I Rz I 0 I Address

0 8 16 zo Z4 Z8 3Z 47

LIFON (ELSE)

l1D 144 lo I 11 I Rz I 0 I Address

0 8 16 zo Z4 Z8 3Z 47

LIFON

l1D 153 lo IN I Rz I 0 I Address I Dz
0 8 16 zo Z4 Z8 3Z 48 63

LIFON (ELSE)

l1D 154 lo IN I Rz I 0 I Address I Dz
0 8 16 zo Z4 Z8 3Z 48 63

LLOAD

14A I R 1 I Sz I * I Dz
0 8 lZ 16 zo 31

*Mask - 0 for normal LLOAD, 1 for expanded LLOAD

LLOAD

I 1s 34 I * I Rl I Sz I 0 I Dz
0 8 16 zo Z4 Z8 3Z 47

*0 for normal LLOAD; 1 fo1· expanded LLOAD

LLOAD

l1s 144 I* I R 1 I Rz I 0 I
0 8 16 zo 24 Z8 31

Appendix A. Machine Instruction Formats A-29

*0 for normal LLOAD; 1 for expanded LLOAD

LLOAD

0 8 16 20 24 28 32 47

*0 for normal LLOAD; 1 for expanded LLOAD

LMERGE

0 8 12 lS

LMERGE

0 8 12 16 31

LMERGE

I 19 128 I oo I R2 I 0 I
0 8 16 24 28 31

LMERGE

179 138 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LPOST

I 26 I so
0 8 lS

LREAD (ST)

143 I o I s2 I
0 8 12 lS

LRETURN

0 8 lS

A-30 4700 Controller Programming Library, Volume 1: General Controller Programming

LSEEK

140 lo I S2 I A(Table)

0 8 12 16 31

LSEEK

141 I sl I S2 I A(Match)

0 8 12 16 31

LSEEK

142 lo I S2 I A(Table) I A(Match)

0 8 12 16 32 47

LSEEK

l10 165 I oo I R 2 I R 1 I A(Match)

0 8 16 24 28 32 47

LSEEKP

I 6E I c I s2 I D2

0 8 12 16 31

LSEEKP

17A I oo I oo I R2 I 0 I
0 8 16 24 28 31

LSEEKP

17A I 10 I oo I R2 I 0 I D2

0 16 24 28 32 47

LSORT

lsc lo I 82 I
0 8 12 IS

Appendix A. Machine Instruction Formats A-31

LSORT

lsD lo I s2 I D2

0 8 12 16 31

LSORT

17A I 21 I oo I R2 I 0 I
0 8 16 24 28 31

LSORT

I 7A 131 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LTIME (ADJ)

I 1s. I A I s2 I D2

0 8 12 16 31

LTIME (ADJ)

17A I 09 I oo I R2 I 0 I
0 8 16 24 28 31

LTIME (ADJ)

I 7A I 19 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LTIME (GET)

I 1s 16 I s2 I D2

0 8 12 16 31

LTIME(GET)

179 I 07 I oo I R2 I 0 I
0 8 16 24 28 31

A-32 4700 Controller Programming Library, Volume 1: General Controller Programming

LTIME (GET)

179 I 11 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LTIME (SET)

I 15 14 I s2 I 02

0 12 16 31

LTIME (SET)

17A I 08 I oo I R2 I 0 I
0 8 16 24 28 31

LTIME (SET)

17A 118 00 I R2 I 0 I D2

0 8 16 24 28 32 47

LTIMEV

l10 I oo I L2 I s2 I s1 I A(Table) I D2

0 16 24 28 32 48 63

LTIMEV

170 I 10 I oo I R2 I SI I A(Table)

0 8 16 24 28 32 47

LTIMEV

l10 I 20 I L2 I R2 I SI I A(Table) I D2
0 8 16 24 28 32 48 63

LTRT

I 6E lo I s2 I 0 2

0 8 12 16 31

Appendix A. Machine Instruction Formats A-33

LTRT

179 I 09 I oo I R2 I 0 I
0 8 16 24 28 31

LTRT

179 19 I oo I R2 I 0 I D2

0 8 16 24 28 32 47

LWAIT

I 26 140
0 8 15

LWRITE (ST)

13C lo I s 2 I
0 12 15

LWRITE (ST)

I 3E lo I s2 I L2 I Dz I oo
0 lZ 16 28 40 47

LWRITE (ST)

178 138 I oo I Sz I 0 I D2 I Lz

0 8 16 24 Z8 3Z 48 63

LWRITE (ST)

178 148 I oo I Rz I 0 I
0 8 16 24 ZS 31

LWRITE (ST)

178 158 I oo I R2 I 0 I Dz I Lz

0 16 24 ZS 32 48 63

A-34 4700 Controller Programming Library, Volume 1: General Controller Programming

MODCHK

154 I S1 I R2 I A(mod-pl)

0 8 lZ 16 3t

MPYFLD

0 8 tz 16 20 3t

MPYFLD

173 I 05 lo I Rt I Sz I Lz I Dz

0 16 zo 24 Z8 3Z 47

MPYFLD

I 73 I 25 lo I Rt I R2 I 0 I
0 8 t6 20 Z4 Z8 31

MPYFLD

173 I 45 lo I R1 I Rz I I.,z I Dz

0 8 t6 zo 24 Z8 3Z 47

MPYFLDL

173 I 05 18 I R1 I Sz I Lz I Dz

0 8 16 20 24 Z8 3Z 47

MPYFLDL

173 I 25 18 I R 1 I Rz I 0 I
0 8 16 zo 24 Z8 3t

MPYFLDL

173 145 18 I R1 I Rz I Lz I Dz

0 8 16 20 24 Z8 3Z 47

Appendix A. Machine Instruction Formats A-35

MPYREG

I 08 I R 1 I Rz I
0 8 lZ 15

MPYZ

I 11 I 02 I Li I Lz I Sz I S1 I Dl I Dz
0 8 16 zo Z4 Z8 3Z 48 63

MPYZ

I 11 12 I Li I Lz I Rz I S1 I Di I D 2

0 8 16 zo Z4 Z8 3Z 48 63

MPYZ

I 11 I 22 I Ll I 0 I Rz I S1 I Di

0 16 zo Z4 Z8 3Z 47

MPYZ

I 11 132 I Ll I Lz I Sz I R1 I Di I Dz
0 8 16 zo Z4 Z8 3Z 48 63

MPYZ

I 11 142 I Li I Lz I Rz I Rl I Dl I Dz
0 8 16 zo 24 Z8 3Z 48 63

MPYZ

I 11 I s2 I Li I 0 I Rz I R1 I Di

0 8 16 zo 24 Z8 3Z 47

MPYZ

I 11 162 lo I Lz I Sz I R1 I Dz
0 8 16 zo Z4 Z8 3Z 47

MPYZ

I 11 I 12 lo I Lz I Rz I Ri I Dz
0 8 16 zo 24 Z8 3Z 47

A-36 4700 Controller Programming Library, Volume I: General Controller Programming

MPYZ

I 11 182 I oo I R2 I RI I
0 8 16 24 28 31

MVCZ

I 11 I 04 I L1 I L2 I s2 I s1 I 01 I D2

0 16 20 24 28 32 48 63

MVCZ

I 11 14 I L1 I L2 I R2 I SI I DI I D2

0 16 20 24 28 32 48 63

MVCZ

I 11 I 24 I Li I 0 I R2 I S1 I D1

0 16 20 24 28 32 47

MVCZ

I 11 34 I LI I L2 I S2 I RI I DI I D2

0 16 20 24 28 32 48 63

MVCZ

I 11 144 I L 1 I L2 I R2 I R 1 I D 1 I D2

0 8 16 20 24 28 32 48 63

MVCZ

I 11 154 I Li I 0 I R2 I RI I Di

0 16 20 24 28 32 47

MVCZ

I 11 164 lo I L2 I S2 I Rl I D2

0 16 20 24 28 32 47

Appendix A. Machine Instruction Formats A-37

MVCZ

I 11 174 lo I Lz I Rz I Rl I Dz
0 8 16 zo Z4 Z8 3Z 47

MVCZ

I 71 184 I oo I Rz I Rl I
0 8 16 Z4 Z8 31

MVDI

169 16 Is IL ID I I1 1 lz

0 8 lZ 16 zo 3Z 40 47

If only one byte of data is specified, X'OO' is added in bits 40-47.
MVDI

174 134 I oo I L2 I S1 I Dl 1 11 I Iz
0 8 16 Z4 Z8 3Z 48 S6 63

MVDI

174 174 I oo I L2 I Rl I I1 I I2

0 8 16 Z4 28 3Z 40 47

MVDI

174 I B4 I oo I Lz I Rl I Dl 1 11 I Iz
0 8 16 Z4 Z8 3Z 48 S6 63

MVFLD

I 29 I S1 I S2 I L2 I Dz
0 8 12 16 zo 31

MVFLD

I 11 131 lo I S1 I Sz I Lz I D2

0 8 16 20 24 Z8 3Z 47

A-38 4700 Controller Programming Library, Volume 1: General Controller Programming

MVFLD

177 141 lo I S1 I R2 I 0 I
0 8 16 20 24 28 31

MVFLD

177 151 lo I S1 I R2 I L2 I D2

0 8 16 20 24 28 32 47

MVFLDR

177 135 lo I S1 I S2 I L2 I D2

0 8 16 20 24 28 32 47

MVFLDR

I 11 145 lo I S1 I R2 I 0 J
0 16 20 24 28 31

MVFLDR

177 155 lo I sl I R2 I L2 I D2

0 8 16 20 24 28 32 47

MVFLDR

160 I S1 I S2 I L2 I D2

0 12 16 20 31

MVFXD

I 21 I s1 I s2 I L2 I Dl I D2

0 8 12 16 24 36 47

MVFXD

17E I 03 I L2 I s 2 I s 1 I 0 1 I D2

0 8 16 24 28 32 48 63

Appendix A. Machine Instruction Formats A-39

MVFXD

17E 13 I L 2 I :R.2 I 81 I I>l I I>2

0 8 16 24 28 32 48 63

MVFXD

I 7E I 23 I oo I :R.2 I 81 I I>l

0 8 16 24 28 32 47

MVFXD

17E 133 I L 2 I 82 I :R.l I I>l I I>2

0 16 24 28 32 48 63

MVFXD

I 7E 143 I L 2 I :R.2 I :R.l I I>i I I>2

0 8 16 24 28 32 48 63

MVFXD

17E 153 I oo I :R.2 I :R.l I I>l

0 8 16 24 28 32 47

MVFXD

I 7E 163 I L 2 I 82 I :R.l I I>2

0 8 16 24 28 32 47

MVFXD

I 7E 173 I L 2 I :R.2 I :R.l I I>2

0 8 16 24 28 32 47

MVFXD

17E 183 I oo I :R.2 I :R.l I
0 8 16 24 28 31

A-40 4700 Controller, Programming Library, Volume I: General Controller Programming

MVFXDR

162 I SI I S2 I L2 I DI I D2

0 8 12 16 24 36 47

MVFXDR

I 7E I 06 I L2 I S2 I SI I DI I D2

0 16 24 28 32 48 63

MVFXDR

I 7E I 16 I L2 I R2 I S1 I DI I D2

0 16 24 28 32 48 63

MVFXDR

I 7E I 26 I oo I R2 I SI I DI

0 8 16 24 28 32 47

MVFXDR

I 7E I 36 I L2 I s2 I Ri I D1 I D2

0 16 24 28 32 48 63

MVFXDR

I 7E 146 I L2 I R2 I Rl I DI I D2

0 8 16 24 28 32 48 63

MVFXDR

I 7E 156 I oo I R 2 I R 1 I D 1

0 16 24 28 32 47

MVFXDR

17E I 66 I L2 I s2 I R1 I D2

0 16 24 28 32 47

Appendix A. Machine Instruction Formats A-41

MVFXDR

I 7E 176 I L2 I R2 I Rl I D2

0 8 16 24 28 32 47

MVFXDR

17E 186 I oo I R2 I Rl I
0 8 16 24 28 31

MVSEG

128 I S1 I S2 I
0 8 12 15

MVSEGR

161 I s1 I s2 I
0 a 12 IS

PAKFLD

I 2F I S1 I S2 I L2 I D2

0 8 12 16 20 31

PAKFLD

In I 32 lo I S1 I S2 I L2 I D2

0 8 16 20 24 28 32 47

PAKFLD

In I 42 lo I S1 I R2 I 0 I
0 8 16 20 24 28 31

PAKFLD

In I s2 lo I S1 I R2 I L2 I D2

0 8 16 20 24 28 32 47

A-42 4700 Controller Programming Library, Volume 1: General Controller Programming

PAKSEG

I 2E I s1 I s2 I
0 8 12 15

PAUSE

126 I oo
0 8 15

SCALE

168 14 I s2 I S1 I D2

0 8 12 1..6 20 31

SCALE

l1c 166 lo I S1 I S2 I 0 I D2

0 8 16 20 24 28 32 47

SCALE

~ 7C 176 lo I s1 I R2 Io I
0 8 16 20 24 28 31

SCALE

l1c 186 lo I S1 I R2 I 0 I D2

0 8 16 20 24 28 32 47

SCRPAD

I 6E IB I s2 I 02

0 8 12 16 31

SCRPAD

179 I 03 I oo I R2 I 0 I
0 8 16 24 28 31

Appendix A. Machine Instruction Formats A-43

SCRPAD

0 8 16 24 28 32

SEGALLOC

0 8 16 24 28 32

* = 02 if the WAIT Parameter = Y
OA if the WAIT Parameter = N

SEGALLOC

0 8 16 24 28 31

* = 02 if the WAIT Parameter = Y
OA if the WAIT Parameter = N

SEGALLOC

0 8 16 24 28 32

* = 02 if the WAIT Parameter= Y (default)
OA if the WAIT Parameter = N

SEGCOPY

0 8 12 16 20 31

*Mask - 0 = copy to S1; 1 = copy from S1

SEGCOPY

I 11 163
0 8 16 20 24 28 32

*Mask - 0 =copy to S1; 1 =copy from S1

47

47

I
47

47

A-44 4700 Controller Programming Library, Volume 1: General Controller Programming

SEGCOPY

0 8 16 20 24 28 31

*Mask - 0 = copy to S1; 1 = copy from S1

SEGCOPY

0 8 16 20 24 28 32 47

*Mask - 0 =copy to S1; 1 =copy from S1

SEGFREE

03

0 8 16 24 28 32 47

SEGFREE

0 8 16 24 28 31

SEGFREE

17A I 6D I 03 I R2 I 0 I D2

0 16 24 28 32 47

SELECT

116 I oo
0 8 15

SETFLDI

174 I cs I I lo I s, I DI I Lt

0 16 24 28 32 48 63

SETFLDI

174 I D5 I I lo I Rt I
0 8 16 24 28 31

Appendix A. Machine Instruction Formats A-45

SETFLDI

174 I ES I I lo I Rl I D1
I Li.·

0 8 16 24 28 32 48 63

SETFPL

I 14 Isl I~ I
0 12 15

The above instruction format is generated if neither the primary field pointer (PFP) nor the field length
indicator (FLI) is numeric.

SETFPL

0 8 12 16 24 31

The above instruction format is generated if neither the primary field pointer (PFP) nor the field length
indicator (FLI) is specified with register notation.

SETFPL

0 8 12 16 24 31

The above instruction format is generated if the primary field pointer (PFP) is not specified with register
notation, and the field length indicator (FLI) is specified with register notation.

SETFPL

0 8 12 16 24 31

The above instruction format is generated if the primary field pointer (PFP) is specified with register notation,
and the field length indicator (FLI) is not specified with register notation.

SETFPL

0 8 12 16 24 31

The above instruction format is generated if both the primary field pointer (PPP) and the field length indicator
(FLI) are specified with register notation.

A-46 4700 Controller Programming Library, Volume 1: General Controller Programming

SETFPL

I sF Isl Ix Ip IL
0 8 12 16 32 47

SETSFP

I 20 Isl Ix Ip I oo
0 12 16 24 31

SETSFP

I 22 Isl Ix Ip I oo
0 12 16 24 31

SETSFP

I s2 I sl I o I
0 8 12 15

SETX (Off)

168 I oo I oo oo
0 8 16 31

SETX (On)

168 Is I s2 I D2
0 12 16 31

SETX (ON)

179 j 2c I oo I R2 I 0 I
0 8 16 24 28 31

SETX (ON)

179 I 3C I oo I R2 I 0 I D2
0 8 16 24 28 32 47

Appendix A. Machine Instruction Formats A-47

SETXREG

0 8 12 16 20 24 28 31

*Mask - 0 =no operands; 1=operand2 only; 2 =operand 1 only; 3 =both operands.

SHIFTL

0 8 12 15

*Count value = 0-15 for shift positions 1-16

SHIFTR

0 8 12 15

*Count value = 0-15 for shift positions 1-16

STATS

I 6E 16 I s2 I D2

0 8 12. 16 31

STFLD

I OB I Rl I S2 I L2 I D2

0 8 12 16 20 31

STFLD

173 16

0 8 16 20 24 28 32 47

STFLD

173 36

0 8 16 20 24 28 31

A-48 4700 Controller Programming Library, Volume 1: General Controller Programming

STFLD

0 16 20 24 28 32 47

STFLDC

0 8 12 16 20 31

STFLDC

0 8 16' 20 24 28 32 47

STFLDC

173 137
0 8 16 20 24 28 31

STFLDC

0 8 16 20 24 28 32 47

STSEG

0 8 12 IS

STSEGC

I 12 I RI I S2 I
0 8 12 IS

SUBFLD

0 8 12 16 20 31

Appendix A. Machine Instruction Formats A-49

SUBFLD

0 8 16 20 24 28 32 47

SUBFLD

0 16 20 24 28 31

SUBFLD

0 16 20 24 28 32 47

SUBFLDL

0 8 16 20 24 28 32 47

SUBFLDL

0 16 20 24 28 31

SUBFLDL

0 8 16 20 24 28 32 47

SUB REG

I 02 I Rl I R2 I
0 12 15

SUBZ

0 8 16 20 24 28 32 48 63

A-50 4700 Controller Programming Library, Volume 1: General Controller Programming

SUBZ

I 11 11 I L, I L2 I R2 I s, I n1 I D2

0 8 16 20 24 28 32 48 63

SUBZ

I 11 I 21 IL, I 0 I R2 I SI I DI

0 8 16 20 24 28 32 47

SUBZ

I 11 131 I Li I L2 I S2 I RI I D1 I D2

0 8 16 20 24 28 32 48 63

SUBZ

I 71 141 I Ll I L2 I R2 I Rl I D1 I D2

0 8 16 20 24 28 32 48 63

SUBZ

I 11 I st I LI I 0 I R 2 I R 1 I n1

0 8 16 20 24 28 32 47

SUBZ

I 11 161 lo I L2 I S2 I R1 I D2

0 8 16 20 24 28 32 47

SUBZ

I 11 I 11 lo I L2 I R2 I R, I D2

0 8 16 20 24 28 32 47

SUBZ

I 11 181 I oo I R2 I RI I
0 8 16 24 28 31

Appendix A. Machine Instruction Formats A-51

TE STX

168 13 I s2 I D2

0 8 12 16 31

TE STX

179 I OB 00 I R2 I 0 I
0 8 16 24 28 31

TE STX

I 19 1B 00 I R2 I 0 I D2

0 8 16 24 28 32 47

TSTMSK

155 I S1 I S2 I L2 I DI I D2

0 8 12 16 24 36 47

TSTMSK

I 7F I 01 I L2 I s2 I s1 I D1 I D2

0 8 16 24 28 32 48 63

TSTMSK

I 7F I 11 I L2 I R2 I SI I D1 I D2

0 8 16 24 28 32 48 63

TSTMSK

I 7F I 21 00 I R2 I S1 I D1

0 8 16 24 28 32 47

TSTMSK

I 7F I 31 I L2 I s2 I Rl I D1 I D2

0 8 16 24 28 32 48 63

A-52 4700 Controller Programming Library, Volume 1: General Controller Programming

TSTMSK

I 7F 141 I L2 I R2 I Rl I D1 I D2

0 8 16 24 28 32 48 63

TSTMSK

I 7F I s1 I oo I R2 I Rl I Dl

0 8 16 24 28 32 47

TSTMSK

I 7F 161 I L2 I s2 I Rl I D2

0 16 24 28 32 47

TSTMSK

I 7F I 71 I L2 I R2 I Rl I D2

0 16 24 28 32 47

TSTMSK

I 7F 181 00 I R 2 I Rl I
0 16 24 28 31

TSTMSKI

I 25 l2 I S1 I L2 I D1 I I1 I I2

0 8 12 16 20 32 40 47

TSTMSKI

174 126 I oo I L2 I S1 I D1 I I1 I I2

0 8 16 24 28 32 48 56 63

TSTMSKI

174 166 I oo I L2 I Rl I 11 1 12

0 8 16 24 28 32 40 47

Appendix A. Machine Instruction Formats A-53

TSTMSKI

I 1..,2 I Ill I [)1

0 8 16 24 28 32 48 S6 63

UPKFLD

0 8 12 16 20 31

UPKFLD

0 8 16 20 24 28 32 47

UPKFLD

0 8 16 20 24 28 31

UPKFLD

0 8 16 20 24 28 32 47

UPKSEG

I 2c I S1 I s2 I
0 8 12 IS

VERIFY

8 12 16 31

A~54 4700 Controller Programming Library, Volume 1: General Controller Programming

VERIFY

l1c 197 lo I S1 I R1 I 0 I
0 8 16 20 24 28 31

VERIFY

I 7C II A7 lo I S1 I R2 I 0 I D2

0 8 16 20 24 28 32 47

VIEW

179 I OE I oo I R2 I 0 I
0 8 16 24 28 31

VIEW

179 1E I oo I R2 I 0 I D2

0 8 16 24 28 32 47

VIEW

179 I 4E I oo I s2 I o I D2

0 8 16 24 28 32 47

Appendix A. Ma,cltjne Instruction Formats A-55

A-56 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix B. COPY Files

This appendix gives detailed listings of the system definitions that are
appropriate for this book.

Copy files may be included in your program by coding a COPY instruction
specifying one of the copy file names in this appendix. For example:

COPY DEFCPL

You must code either an EQUATE or an LDSECT instruction before the
COPY instruction to define a segment or register number for the following
copy files:

• DEF CPL
• DEFDCP
• DEFELP
• DEFESP
• DEFFAP
• DEFINT
• DEFMER

DEFSCA
DEFSCP
DEFSKP

• DEFSOR
DEFTRP

• DEFTRT
• DEFTSX
• DEFVUE

If you code an EQUATE instruction, for example:

DEFCPLS EQUATE n

then the copy file will contain a series of DEFLD instructions. The number
that you specify in the EQUATE instruction will become the segment number
(the first operand) of each DEFLD.

Note: The segment number must be equated to a specific label; these labels are
identified for each copy file.

If you code an LDSECT instruction and specify the BASE= operand, for
example:

LDSECT BASE=n
COPY DEFCPL
LEND

then the copy file will contain a series of DEFRF instructions. The number
that you specify in the.BASE= operand of the LDSECT instruction will
become the register number (the first operand) of each DEFRF.

Appendix B. COPY Files B-1

If you code an LDSECT and the BASE= operand before the COPY DEFAPB
instruction, then the DEF APB copy file will contain DEFRF instructions and
the register number will be as specified by the BASE= operand. Otherwise the
DEFAPB copy file will contain DEFLD instructions and the segment number
will be 14.

You do not need to code anything before the COPY instructions for the
DEFREG and DEFSEG copy files because they contain only EQUATE
instructions.

The following copy files always become part of the segment specified:

Copy File Segment

DEF APB 14

DEFGMS 15

DEFRGS 0

DEFSMS 1

B-2 4700 Controller Programming Library, Volume. I: General Controller Programming

DEF APB

Segment 14 Fields

DEF APB

APBRLD DEFxx 0,2 APB ROOT LENGTH OR ROOT CONSTANT LEN
AP BX IT DEF xx ,2 LEXIT INSTRUCTION
APBPID DEF xx ,8 APB NAME
APBGID DEF xx ,6 APB GENERATION DATE
APBVER DEF xx , 1 APB VERSION NUMBER
APBLVL DEFxx , 1 APB LEVEL NUMBER

DEF xx ,4 RESERVED
APBLTH DEF xx ,2 LENGTH OF SEGMENT 14
AP BROD DEF xx , 2 POINTER TO RESIDENT OVERLAY

DIRECTORY

APBFLG DEF xx , 1 FLAG BYTE:
APBMVO DEF xx APBFLG, 1 OPTION FLAG
APBMVOM EQUATE XI 01 I OPTION FLAG MASK

APBSPR DEF xx , 1 RESERVED
APB SUE DEFxx ,2 STARTUP ENTRY POINT
APBAPC DEFxx , 2 AP CALL ENTRY POINT
APBPCE DEF xx ,2 PROGRAM CHECK ENTRY POINT

DEFxx , 2 RESERVED
APBAPI DEFxx ,2 ASYNCHRONOUS ENTRY POINT - POST
APBATE DEFxx ,2 ASYNCHRONOUS ENTRY POINT - TERMINJl,L
AP BA CE DEFxx ,2 ASYNCHRONOUS ENTRY POINT - CPU
AP BASE DEFxx ,2 ASYNCHRONOUS ENTRY POINT - STATION
APBTME DEFxx ,2 ASYNCHRONOUS ENTRY POINT - TIMER
AP BALA DEFxx ,2 ASYNCHRONOUS ENTRY POINT - ALA
APBPCL DEFxx ,2 RESERVED
APBIVN DEFxx , 2 lST HWD OF INSTR SECTION ADR
APBIAD DEFxx , 2 2ND HWD OF INSTR SECTION ADR
APBSDT DEFxx , 2 SEGMENT DEFINITION TABLE ADDR
APBDEL DEFxx ,2 DELIMITER TABLE ADDRESS

DEFxx , 1 0 RESERVED

APB FU I DEFxx ,0 FIRST USER CONSTANT OR INSTRUCTION

Segment 14 contains the following fixed fields generated by the BEGIN
instruction of the application program:

Length of Root Section (APBRLD): The length of the root section of the
controller application program.

Exit Instruction (APBXIT): An LEXIT instruction executed by the controller
when the logical work station must be forced to give up control.

Application Program Name (APBPID): An 8-byte character field containing
the application program's name.

Month, Day, and Year Assembled (APBGID): A 6-byte character field
containing the date specified in the BEGIN instruction (the DATE operand).

Version Number (APBVER): A 1-byte character field containing the version
number of the application program.

Release Level (APBLVL): The application program assembly release level.

Appendix B. COPY Files B-3

Total Length of Program (APBL TH): The length of the largest aggregate of
root section and overlay sections.

Resident Overlay Directory Pointer (APBROD): The address of the beginning
of the resident overlay directory.

Flag Byte (APBFLG): Reserved for system use.

Startup Entry Point (APBSUE): The address of the startup entry point, if
specified.

Calling Entry Point (APBAPC): The APCALL entry point address, if
specified.

Program Check Entry Point (APBPCE): The address of the program check
entry point, if specified.

Asynchronous Post Entry Point (APBAPI): The address of the application
program entry point to be used by LPOST, if specified.

Asynchronous Terminal Entry Point (APBATE): The address of the terminal
entry point, if specified.

Asynchronous CPU Entry Point (APBACE): The address of the host processor
entry point, if specified.

Asynchronous Station Entry Point (APBASE): The address of the station entry
point, if specified.

Asynchronous Timer Entry Point (APBTME): The address of the application
program entry point to be used when a work station is dispatched because the
work station Segment 1 timer value (SMSTMR) is less than or equal to the
value in the controller's timer (contained in the GMSTMR field in Segment
15).

Optional Host Link Entry Point (APBALA): Address of the feature host
processor (non-SNA/SDLC) link entry point.

Instruction Section Address (APBIVN/ APBIAD): A 4-byte field containing the
application root section address.

Segment Definition Table (APBSDT): Displacement of the SDT, created by
DEFSTOR, in Segment 14.

Address of Delimiter Table (APBDEL): The address of the delimiter table, if
specified.

Application Program (APBFUI): The first constant or instruction in the
application program.

B-4 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFCPL

DEFDCP

Equate DEFCPLS to a segment number.

DEFCPL

CPLPAR
CPL INS
CPL IND
CPLINL
CPLOUS
CPLOUD
CPLOUL
CPLPRI
CPLFLG
CPLFCT
CPLFCR
CPLTBS
CPLTBD
CPLTST
CPLTOV
CPLTIL

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE

SI 19
CPLPAR,2

s,2
s,2
s,2
s,2
s,2
St 1
SI 1
X'80'
X'40'
s,2
s,2
St 1
X'80'
X'40'

Equate DEFDCPS to a segment number.

DEFDCP

DCPPAR DEFxx s, 19

DCPINS DEFxx DCPPAR,2
DCPIND DEFxx s,2
DCPINL DEFxx s,2
DCPOUS DEFxx s,2
DCPOUD DEFxx s,2
DCPOUL DEFxx s,2
DCPPRI DEFxx SI 1
DCPFLG DEFxx SI 1
DCPFCT EQUATE X'80'

DCPTBS DEFxx s,2
DCPTBD DEFxx s,2
DCPTST DEFxx St 1
DCPTOV EQUATE X'80'
DCPTIV EQUATE X'40'
DCPTCE EQUATE X'20 I
DCPTSL EQUATE XI 1 Q f
DCPTIL EQUATE X'08'

COMPRESS/COMPACT PARMETER LIST
SEGMENT CONTAINING INPUT AREA
DISPLACEMENT TO INPUT AREA
LENGTH OF INPUT AREA
SEGMENT CONTAINING OUTPUT ARE
DISPLACEMENT TO OUTPUT AREA
LENGTH OF OUTPUT AREA
PRIME COMPRESSION CHARACTER
INPUT FLAG BYTE

PERFORM COMPACTION
PERFORM COMPRESSION

SEG CONTAINS COMPACT TABLE IN
DISPLACEMENT TO TABLE AREA
TERMINATION STATUS

OUTPUT OVERFLOW
INITIAL INPUT LENGTH IS

ZERO

DECOMPRESS/DECOMPACT PARAMETER
LIST

SEGMENT CONTAINING INPUT AREA
DISPLACEMENT TO INPUT AREA
LENGTH OF INPUT AREA
SEGMENT CONTAINING OUTPUT AREA
DISPLACEMENT TO OUTPUT AREA
LENGTH OF OUTPUT AREA
PRIME COMPRESSION CHARACTER
INPUT FLAG BYTE

INPUT DATA IN COMPACT
CODE

SEGMENT CONTAINING DEC TABLE
DISP TO DECOMPACTION TABLE
TERMINATION STATUS

OUTPUT OVERFLOW
INPUT OVERFLOW
COMPACT CODE INPUT
SCB COUNT FIELD IS ZERO
INITIAL INPUT LENGTH IS

ZERO

Appendix B. COPY Files B-5

DEFELP

IDEFESP

Equate DEFELPS to a segment number.

DEFELP

ELPARM
ELPOVN
ELPFLG
ELPCSF
ELPISF
ELPSEG
ELPCLA
ELPILA

DEF xx
DEFxx
DEFxx
EQUATE
EQUATE
DEFxx
DEFxx
DEF:Xx

$I 14
ELPARM,8

$I 1
X'80'
X'40'

$I 1
s,2
s,2

ENTIRE PARAMETER LIST
OVERLAY NAME
SECTION LOAD FLAGS

LOAD CONSTANT SECTION
LOAD INSTRUCTION SECTION

CONSTANT SECTION SEGMENT NUMBER
CONSTANT SECTION LOAD ADDRESS
INSTRUCTION SECTION LOAD ADDRESS

Equate DEFESPS to a segment number.

DEFESP

ESPREQ
ESPFLG
ESPRST
ESPNXT
ESPE ID
ES PD ID
ESP TOT
ES PERR
ESPNDV
ESPSID
ESPTYP
ESPFEA
ESP STA
ESPNCT
ESPSCTR

*

DEFxx
DEFxx
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx

I 1
I 1
X'80'
X'40'

,2
,2
,6
,4
I 1
ESPEID,2
I 1
I 1
I 1
I 1
,32

REQUEST CODE
OPTION FLAGS

RESET COUNTER AFTER READOUT
REQUEST NEXT COUNTERS DATA

EXTENDED COUNTER ID
DEVICE ID
TOTAL BYTES
ERROR BYTES
NUMBER OF DEVICES ASSIGNED
DEVICE STAT CTR ID
DEVICE TYPE CODE
FEATURE FLAGS
ASSIGNED STATION ID
NUMBER OF COUNTERS
BYTE COUNTERS

* * * * DEFINITION OF FEATURE FLAGS IN ESPFEA
* * LOOP (DEVICE TYPE X'80'
* ESPLPCLK EQUATE X'80' CLOCKING LOOP
ESPLP06 EQUATE X'08' 600 BPS SPEED
ESPLP12 EQUATE X'04' 1200 BPS SPEED
ESPLP24 EQUATE X'02' 2400 BPS SPEED
ESPLP48 EQUATE XI 01' 4800 BPS SPEED

* * COMMON FOR ALL LOOP ATTACHED DEVICES
* ESPFFRA
ESPFFWA
ESPFFSA
ESPFFSO

*

EQUATE
EQUATE
EQUATE
EQUATE

X'08'
X'04'
X'02'
x' 01'

READ OPERATION DEVICE
WRITE OPERATION DEVICE
SHARED ADDRESS SLOT DEVICE
SHARED OPERATOR DEVICE

* FLAGS THAT ARE DEVICE DEPENDENT

* * 3604 DISPLAY
ESPDSCUR EQUATE

* * 3604 KEYBOARD
ESPKBCUR EQUATE
ESPKBERT EQUATE
ESPKBPIN EQUATE"

X'80'

X'80'
X'40'
X' 10'

CURSOR SET ON AT DEVICE INITIALIZATION

CURSOR IS NOT SET ON/OFF AT READ TIME
ERTSL OPTION
PIN PAD AVAILABLE AND USED

B~6 4700 Controller Programming Library, Volume 1: General Controller Programming

I DEFFAP

DEFGMS

* * 3610/3612 DOCUMENT PRINTER
ESPPRPFT EQUATE X'20' PIN FEED TRACTOR
ESPPRACT EQUATE X'10' AUTOMATIC CUT FORM MODE

* * 3618 ADMINISTRATIVE PRINTER
ESPADEPL EQUATE X'80' EXPANDED PRINT LINE
ESPADDFF EQUATE X'20' DUAL FORMS FEED

*

Equate DEFFAPS to a segment number.

DEFFAP

FAPARM
FAPAPN
FAPFLG
FAPCLR

FAPTRN

DEFxx
DEF xx
DEFxx
EQUATE

EQUATE

FAPFCN DEFxx
FAPAPCNT EQUATE
FAPASTOR EQUATE
FAPSSTOR EQUATE
FAPCSTOR EQUATE
FAPSTATS EQUATE
FAPCAL DEFxx
FAPLOD DEFxx
FAPWAT DEFxx
FAPCSH DEFxx

DEF xx
FAPTTL DEFxx
FAPSTOR DEFxx

*
FAPSTQ
FAPSTN
FAPCBY
FAPCBN
FAPCUR
FAPSMAX
FAPSAPC
FAPSRCL
FAPSREQ
FAPSCMB
FAPSDEC
FAPSSCN
FAPSMOV

FAPSLNG

FAPSWTC
FAPSWTS
FAPSWTQ

*

DEFGMS

GMSTMR
GMSHTM
GMSLTM
GMSWTM
GMSHRT

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx

DEFxx

DEFxx
DEFxx
DEFxx

DEFLD
DEFLD
DEFLD
DEFLD
DEFLD

,49
FAPARM,8
, 1
X'80'

X'40'

, 1
X'OO'
X' 01'
X'02'
X'03'
X'04'
,2
,2
,2
FAPCAL, 1
, 1
,3
,3

FAPSTOR, 1
, 1
,2
,2
,3
,3
,2
,2
,2
,2
,2
,2
,2

,2

,2
,2
, 2

15,0,4
15,0,2
15,, 2
15,,4
15 ,,2

ENTIRE PARAMETER LIST
AP NAME
REQUEST/RESPONSE FLAGS

INPUT: READ=O / READ,
RESET=1

OUTPUT: RESIDENT=O /
TRANSIENT=1

FUNCTION CODE
GET AP USAGE COUNTS
GET AP STORAGE USAGE
GET STATION STORAGE USAGE
GET POOL STORAGE DATA
GET POOL STATISTICS

NUMBER OF CALLS MADE
NUMBER OF LOADS FROM DISKETTE
NUMBER OF WAITS FOR BUFFER SPACE
POOL ID/STATION ID
RESERVED
POOL SIZE IN BYTES
STORAGE OWNED BY STATION OR AP
OR IN USE BY A POOL
CURRENT LENGTH OF WAIT QUEUE
STATION CURRENTLY OWNING THIS POOL
COMBINE INITIATE THRESHOLD
COMBINE INHIBIT THRESHOLD
CURRENT BYTES IN USE
MAXIMUM BYTES IN USE
COUNT OF APCALLS/DTACCESSES
TOTAL NUMBER OF RECLAIMS
TOTAL NUMBER OF REQUESTS
NUMBER OF SEGMENT COMBINES
NUMBER OF SEGMENT DECOMPOSES
AVG SCAN TO SATISFY A REQUEST
AVG # BLOCK MOVES IN SHORT GARBAGE

COLL
AVG SUCCESS RATIO FOR LONG GARBAGE

COLL
COUNT OF NUMBER OF POOL WAITS
AVG # SECONDS WAITING FOR POOL
AVG LENGTH OF WAIT QUEUE

AMOUNT IN USE BY POOL

GLOBAL SEGMENT 15 TIMER
HIGH ORDER 2 BYTES DF TIMER
LOW ORDER 2 BYTES OF TIMER
CONTROLLER WAIT TIME (IN SECONDS)
HIGH RESOLUTION TIMER

Appendix B. COPY Files B-7

GMSMFS
GMSMTDM
GMSMDCM
GMSMBLM
GMSMHLM
GMSMHOM
GMSMH1M
GMSMH2M
GMSMH3M
GMSMH5M
GMSMH6M
GMSMH7M
GMSMH8M

GMSDSM
GMSMSZ

GMSFTR
GMSFEDM
GMSFSMM
GMSFSDM
GMSF6AM
GMSFSLM
GMSF68M
GMSFDEM
GMSFMTM
GMSF20M

GMSF25M
GMSF21M
GMSF6DM
GMSF26M
GMSF70M
GMSF24M
GMSF27M

GMSFT2
GMSF2AM
GMSF2CM
GMSF2DM

*
GMSF28M
GMSF31M
GMSF32M
GMSF40M
GMSF41M
GMSF29M
GMSF34M
GMSF36M
GMSF42M
GMSF2FM
GMSFB7M

GMSCUA
GMSLID
GMSL48M
GMSL96M
GMSL02M
GMSL05M
GMSL07M
GMSL08M
GMSL09M

DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE

DEFLD
DEFLD

DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE

EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE

DEFLD
EQUATE
EQUATE
EQUATE

EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
DEFLD

DEFLD
DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE

15,,2
X'2000'
X 1 1000 I
X'0700'
X'OOFO'
X'OOOO'
X'0010'
X'0020'
X'0030'
X'0050'
X'0060'
X'0070'
X'0080'

15" 1
15" 1

15,, 2
X'8000'
X'2000'
X' 1000 I
X'0800'
X'0400'
X'0200'
X'0100'
X'0080'
X'0040'

X'0020'
X'0010'
X'0040'
X'0008'
X'0004'
X'0002'
X'0001'

15,,2
X'8000'
X'2000'
X' 1000'

X'0800'
X'0400'
X'0200'
X'OlOO'
X'0080'
X'0040'
X'0020'
X'0010'
X'0008'
X'0004'
X'0002'
15,,2

15" 1
15" 1
X'Ol'
X'02'
X'02'
X'05'
X'07'
X'08'
X'09'

MACHINE FEATURE SWITCHES:
TWO DISKETTE ADAPTERS
DCA ADAPTER
MASK TO EXTRACT NUM OF B-LOOPS
MASK TO EXTRACT HOST LINK TYPE:

NO HOST LINK
HPCA - X.21 SWITCHED
HPCA - EIA
HPCA - MULTI USE LOOP
CCA - EIA
HPCA - X. 25 EIA
HPCA - X.21 LEASED
HPCA - X.25 X.21

RESERVED FOR SYSTEM USE
NUMBER OF 64K SECTIONS OF MEMORY

OPTIONAL MODULES LOADED FLAGS:
ENCODE/DECODE (AET)
LSORT/LMERGE
SETDSKT
STARTER ADAPTER DIAGS MASK
ALTERNATE LINE MASK
SCALE/SETX ... /TESTX
ENCODE/DECODE (DES)
DISKETTE MULTI-BLOCK I/O MASK
THIS FLAG IS ALWAYS SET, AS
LCHAP IS IN THE BASE

STATS
LTRT
LEFT FOR IR COMPATIBILITY
DECOMP/DECOMPTB
DATA STREAM MANAGEMENT
LSEEKP
COMP/COMPTB

OPTIONAL MODULES LOADED FLAGS:
SCRPAD
INTMR
THIS FLAG IS ALWAYS SET, AS
LLOAD WITH PARM=EXP IS IN BASE
SECURITY INSTRUCTIONS
ZONED DECIMAL INSTRUCTIONS
LTIMEV INSTRUCTION
FORMDKT
COMPDKT
TRANSIENT APCALL/APRETURN
LCONVERT/CRETN
DTACCESS/SEGALLOC
DPOOL
FORMDSK
DISK MULTI-BLOCK I/O MASK

RESERVED

CONTROL UNIT ADDRESS
COMMUNICATION LINK ID:

4800 BPS
9600 BPS
4502 - SNA/SDLC
1422 - BSC
5656 - X.21
4850 - MULTI-USE
8V0134 - X.25

B-8 4700 Controller Programming Library, Volume 1: General Controller Programming

GMSRES1
GMSBLN
GMSMOD
GMSDEF
GMSSDI
GMSTAB
GMSSPR
GMSLOP

GMSIND
GMSILDM
GMSILRM
GMSIWSM
GMSIDSM

GMSISMM
GMSIDCM
GMSIMAM

GMSFLG
GMSFPCM
GMSID2M

GMSD2PM
GMSCSCM
GMSAPCM

GMSBSN

GMSBSA

GMSBSD

GMSBSD2

GMSPRI

GMSTYP
GMSITYM
GMSID1M
GMSIDT2M
GMSID2DM

GMSSTYM
GMSST1M
GMSST2M
GMSST2DM

GMSSID

GMSDKTP
GMSDSK1
GMSD1LM
GMSD1SM
GMSDSK2
GMSD2LM

GMSCSN

GMSMFS3
GMSAL1M
GMSM1SM
GMSM1AM

DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD

DEFLD
EQUATE
EQUATE
EQUATE
EQUATE

EQUATE
EQUATE
EQUATE

DEFLD
EQUATE
EQUATE

EQUATE
EQUATE
EQUATE

DEFLD
DEFLD

DEFLD
DEFLD

DEFLD

DEFLD

DEFLD

DEFLD
EQUATE
EQUATE
EQUATE
EQUATE

EQUATE
EQUATE
EQUATE
EQUATE

DEFLD

DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
DEFLD
DEFLD

DEFLD
EQUATE
EQUATE
EQUATE

15 t t 2
15112
15 II 1
15II1
15,GMSDEF,1
15112
15II1
15 II 1

15 II 1
X'80'
X'40'
X'20'
XI 10 I

X'04 I
X'02'
XI 01 I

15 II 1
X'80'
X'40'

X'20'
XI 10 I
X'08'

15112
15112

1511 2
15112

15114

15 ,,4

15 II 1

15,, 1
X'FO'
XI 10 I
X' 20 I

X'30'

X'OF'
XI 01 f

X'02'
X'03'

15 t t 2

15 II 1
X'FO'
X' 20'
x' 10'
X'OF'
X'02'
1511 1
15 t t 3

15 II 1
X'FO'
X'20'
X'40'

RESERVED
XID BLOCK NUMBER
INPUT MSG ROUTING CONTROL
DEFAULT STB ID IF DEFAULT USE
CLEAR STB ID DISP IN MSG
POINTER TO ROUTING TABLE
RESERVED
SUMMARY LOOP OUTAGE MAP

GLOBAL INDICATOR BYTE:
LOSS OF CONTACT MASK
LINK DOWN MASK
WARM START MASK
2-SIDED DISKETTE ON PRIMARY

DRIVE
SYS MONITOR LOGGED ON AT 3604
DISK CREATE IN PROGRESS FLAG
MSG REQ ACTION WRITTEN TO LOG

FLAG BYTE:
MON PROC CMD IN PROG I/P MODE
2-SIDED DISKETTE ON SECONDARY

DRIVE
SECONDARY DISK DRIVE PRESENT
CNM SPECIFIED IN CONFIGURATION
AP'S TO DISK REQ'TD IN CONFIG-

URATION

RESERVED
CURRENT TF BLOCK NUMBER ON IPL

DRIVE
RESERVED
CURRENT TF BLOCK NUMBER ON 2ND

DRIVE
CURRENT TF BLOCK NUMBER ON 1 S'I'

DISK
CURRENT TF BLOCK NUMBER ON 2ND

DISK
PRIORITY DISPATCH (FLAG AND

TABLE NUM)

DISKETTE TYPE MOUNTED FLAGS
MASK TO EXTRACT IPL DRIVE FLAGS

TYPE 1 DKT ON IPL DRIVE
TYPE 2 DKT ON IPL DRIVE
TYPE 2D DKT ON IPL DRIVE

MASK TO EXTRACT 2ND DRIVE FLAGS
TYPE 1 DKT ON 2ND DRIVE
TYPE 2 DKT ON 2ND DRIVE
TYPE 2D DKT ON 2ND DRIVE

SESSION ID

DISK DRIVE FLAGS
1ST DISK DRIVE CAPACITY MASK
1ST DISK DRIVE IS LARGE CAPACITY
1ST DISK DRIVE IS SMALL CAPACITY
2ND DISK DRIVE CAPACITY MASK
2ND DISK DRIVE IS LARGE CAPACITY
RESERVED
CONTROLLER SERIAL NUMBER

ALA LINE
MASK TO EXTRACT ALA LINE :
ALA - SNAP (HPCA) ADAPTER
ALA - START/STOP (CCA) ADAPTER

Appendix B. COPY Files B-9

Segment 15 Fields

GMSMFS4 DEFLD 15" 1 RESERVED

GMSMFS5 DEFLD 15" 1 RESERVED

GMSMFS6 DEFLD 15" 1 RESERVED

GMSIND2 DEFLD 15" 1 GLOBAL INDICATOR BYTE 2:
GMSILD2M EQUATE X'BO' LINK2 LOSS-OF-CONTACT MASK
GMSILR2M EQUATE X'40' LINK2 LINK DOWN MASK
GMSCUA2 DEFLD 15" 1 LINK2 CONTROL UNIT ADDRESS
GMSLID2 DEFLD 15" 1 LINK2 COMMUNICATIONS LINK ID

GMSRES DEFLD 15,,12 RESERVED

GMSFUF DEFLD 15,, 0 FIRST USER FIELD

The following fields are in the fixed area of Segment 15.

Controller Timer (GMSTMR): A timer with a resolution of 1 second. Any
value set in this field is increased by 1 each second. Controller application
programs can set and reset this field.

Controller Wait Time (GMSWTM): The number of seconds the controller is
waiting for work. Each time the controller accumulates 1 second of 'waiting
for work', it adds 1 to the value in this field.

High Resolution Timer (GMSHRT): A timer whose value is increased by 1
each 64 milliseconds.

Machine Feature Switches (GMSMFS): Indicate the controller configuration,
adapters, host link, and so on. Bit patterns are as follows:

Bit Position

xx lx xxxx xxxx xxxx
xxx 1 xxxx xxxx xxxx
xxxx xNNN xxxx xxxx
xxxx xxxx 0000 xxxx
xxxx xxxx 0001 xxxx
xxxx xxxx 0010 xxxx
xxxx xxxx 0011 xxxx
xxxx xxxx 0101 xxxx
xxxx xxxx 0110 xxxx
xxxx xxxx 0111 xxxx
xxxx xxxx 1000 xxxx
xxxx xxxx xxxx lxxx
xxxx xxxx xxxx xlxx

Meaning

Two diskette adapters present
DCAadapter
NNN = Number of B-Loops
No host link
Host link is HPCA - X21 Switched
Host link is HPCA - BIA
Host link is HPCA - Multi Use Loop
Host link is CCA - BIA
Host link is HPCA - X25
Host link is HPCA - X21 Leased
Host link is HPCA - X25 - X21
First disk drive present
Second disk drive present

Reserved Field (GMSDSM): A 1-byte field reserved for system use.

Memory Size (GMSMSZ): The number of 64K sections of main storage in this
controller.

Features Flag Fields (GMSFTR/FT2): Two 2-byte fields that have bits set to
indicate the optional modules loaded in the controller.

B-10 4700 Controller Programming Library, Volume 1: General Controller Programming

Control Unit Address (GMSCUA): SDLC control unit address.

Communication Link ID (GMSLID): A one-byte field indicating which
controller communication link access method was loaded as follows:

Hex Value:

02
05
07
08
09

Meaning:

SN A/ SD LC
BSC3
X.21
Multiuse loop
X25

SNA Node Identification Block Number (GMSBLN): A 2-byte field containing
the IBM-assigned SNA node identification block number.

Input Message Routing Control (GMSMOD): Reserved.

Default Station ID (GMSDEF): Reserved.

Routing Table Pointer (GMSTAB): Reserved.

Loop Outage Indicator (GMSLOP): Indicates loops that did not start
successfully, or have failed after start. A bit set to 1 indicates that the
corresponding loop is not operational. Bits 0 - 3 correspond to loops 1 - 4
with bit 0 = loop 1. Bits corresponding to loops specified in the configuration
for this load image are initially set to 1. As a loop starts successfully, its bit is
set to 0. When a running loop becomes nonoperational, its bit is set to 1. This
field can be queried by the application program and messages issued to the host
control operator if a loop fails to start or becomes nonoperational.

Global Indicator (GMSIND): The status of the communication link and
controller communication adapter, and whether the current controller startup
was a warm start or a cold start, whether a one-sided or two-sided diskette is
currently mounted in the controller plus other information. Bit patterns are as
follows:

Bit Position

Olxx xxxx
llxx xxxx
xOxxxxxx
xxlx xxxx
xxOxxxxx
xxxl xxxx
xxxO xxxx
xxxx xlxx
xxxx xxlx
xxxxxxxl

Meaning

Link is running (adapter enabled)
Loss of contact (adapter enabled)
Adapter disabled (contact bit ignored)
Warm start
Cold start
Two-sided diskette mounted in primary drive
One-sided diskette mounted in primary drive
System monitor logged on to 4704/3604/3278
Diskette create in progress
Message written to log

Appendix B. COPY Files B-11

Flag Field (GMSFLG): A 1-byte flag field:

Bit Position

lxxx xxxx

xlxx xxxx
xxlx xxxx
xxxl xxxx
xxxx lxxx

Meaning

The system monitor is processing a command
issued from a controller applicatian program.
A 2-sided diskette h1 in the secondary drive.
A secondary diskette is present in the configuration.
CNM is specified in the configuration.
User application program overlays can reside on disk.

Current Temporary File Block Number (GMSBSN): The number of the
temporary file block being used for new temporary file records on the primary
diskette drive.

Current Temporary File Block Sequence Number (GMSBSA): The number of
the temporary file block being used for new temporary file records on the
secondary diskette drive.

Current Disk Temporary File Block Number (GMSBSD): The number of the
temporary file block being used for new temporary file records on the first disk.

Current Disk Temporary File Block Number (GMSBSD2): The number of the
temporary file block being used for new temporary file records on the second
disk.

Priority Dispatching (GMSPRI): Bits 1 - 7 contain the ID of the priority
dispatching table. Bit 0, when set to 1, indicates that priority dispatching is in
effect for the table whose ID is in bits 1 - 7.

Diskette Type (GMSTYP): A 1-byte field indicating the mounted diskette
type.

Controller Session ID (GMSSID): The number of times a system cold start or a
SETDSKT-reset-Temporary-File has been performed using a specific diskette.
Each cold start of the controller increments the session ID and erases the data
in the diskette Temporary File.

Disk Drive Flags (GMSDKTP): A flag byte indicating the disk 1and2
capacities:

Bit Position

0010 xxxx
0001 xxxx
xxxx0010
xxxx 0001

Meaning

First disk drive is large capacity.
First disk drive is small capacity.
Second disk drive is large capacity.
Second disk drive is small capacity.

Controller Serial Number (GMSCSN): The unique identifier of the controller.

B-12 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFINT

ALA Line Field (GMSMFS3): A 1-byte field describing the adapters attached
to the ALA line, as follows:

Bit Position Meaning

0000 0000
0100 0000
00100000

No adapter
ALA-Start/Stop(CCA) adapter
ALA-SNAP(HPCA) adapter

First User Field (GMSFUF): The first user-defined field in Segment 15.

Equate DEFINTS to a segment number.

DEFINT

INTTMR DEFxx s, 16 INTERVAL TIMER PARMLIST
INTSID DEFxx INTTMR, 1 WORKSTATION NUMBER
INTTNO DEFxx s' 1 INTERVAL TIMER NUMBER
INTREQ DEFxx s' 1 REQUEST TYPE

INTSTRTM EQUATE X'OO' REQUEST IS START TIMER
INTSTOPM EQUATE x' 01' REQUEST IS STOP TIMER
INTSTPRM EQUATE x' 11 ' REQUEST IS STOP & RETURN

INTERVAL
INTREADM EQUATE X'02' REQUEST IS READ RESULTS
INTRDRSM EQUATE X'03' REQUEST IS READ & RESET
INTACTVM EQUATE X'04' REQUEST IS ACTIVATE TIMING
INTDACTM EQUATE x•os·• REQUEST IS DEACTIVATE TIMING

* * THIS ENDS THE BASIC PORTION OF INTERVAL TIMER PARAMETER LIST
*
* * THE FOLLOWING FIELD USED WITH READ, READ & RESET, AND
* STOP & REPORT RESULTS REQUESTS
* INTFLG DEFxx s,1

LS PACE
INTDAVTM EQUATE X'80'
INTSTARM EQUATE X'40'

*

FLAG BYTE

TIMER IS DEACTIVATED FLAG
TIMER IS CURRENTLY RUNNING

* THE FOLLOWING FIELD USED WITH STOP & REPORT RESULTS REQUEST
* INTLTH DEFxx s,3
*
* THE FOLLOWING FIELDS
* INTMIN
INTMAX
INTTOT
INTCNT

REQUESTS
DEFxx
DEFxx
DEFxx
DEFxx

INTLTH,3
s,3
s,4
s,2

LENGTH OF INTERVAL

USED WITH READ AND READ & RESET

SHORTEST INTERVAL
LONGEST INTERVAL
SUM OF ALL INTERVALS
NUMBER OF INTERVALS

AppendixB. COPY Files B-13

DEFMER

Equate DEFMERS to a segment number.

DEFMER

MERPAR DEFxx s,30 MERGE PARAMETER LIST
MERIFB DEFxx MERPAR, 1 INPUT FLAG BYTE
MERIFOM EQUATE X'80' BIT ON ---> DESCENDING KEYS
MERIF6M EQUATE X'02' BIT ON ---> INPUT BLOCK 1 NULL
MERIF7M EQUATE X'01 I BIT ON ---> INPUT BLOCK 2 NULL
MERRFB DEF xx s, 1 RETURN FLAG BYTE
MERRFOM EQUATE X'80' OUTPUT BLOCK FULL
MERRF1M EQUATE X'40' INPUT BLOCK 1 EMPTY
MERRF2M EQUATE X'20' INPUT BLOCK 2 EMPTY
MERRF3M EQUATE X' 10 I SEQ CHK NOT ON MERGE UNIT BOUNDARY
MERRF4M EQUATE X'08' SEQ CHK ON MERGE UNIT BOUNDARY
MERRFSM EQUATE X'04' BOTH INPUT BLOCKS NULL
MERI1B DEFxx s,2 INPUT BLOCK 1 BEGIN DISP
MERI1E DEFxx s,2 INPUT BLOCK 1 END DISP
MERI2B DEFxx s,2 INPUT BLOCK 2 BEGIN DISP
MERI2E DEFxx s,2 INPUT BLOCK 2 END DISP
MERDLN DEFxx s,2 DATA ITEM LENGTH
MERK YD DEFxx s,2 DISP TO KEY IN DATA ITEM
MERKYL DEFxx s, 1 KEY LENGTH
MERIS1 DEFxx s, 1 INPUT BLOCK 1 SEGMENT NUMBER
MERIS2 DEF xx s, 1 INPUT BLOCK 2 SEGMENT NUMBER
MEROTS DEF xx s, 1 OUTPUT BLOCKrSEGMENT NUMBER
MEROTB DEFxx s,2 OUTPUT BLOCK BEGIN DISP
MEROTE DEF xx s,2 OUTPUT BLOCK END DISP
MERI1C DEF xx s,2 INPUT BLOCK 1 CURRENT DISPLACEMENT
MERI2C DEFxx s,2 INPUT BLOCK 2 CURRENT DISPLACEMENT
MEROTC DEFxx s,2 OUTPUT BLOCK CURRENT DISPLACEMENT
MERUNT DEFxx s,2 MERGE UNIT SIZE

DEFREG

DEFREG

* * * REGISTER EQUATES

ROO EQUATE 0
R01 EQUATE 1
R02 EQUATE 2
R03 EQUATE 3
R04 EQUATE 4
ROS EQUATE 5
R06 EQUATE 6
R07 EQUATE 7
ROS EQUATE 8
R09 EQUATE 9
R10 EQUATE 10
R11 EQUATE 1 1
R12 EQUATE 12
R13 EQUATE 13
R14 EQUATE 14
R15 EQUATE 15

B-14 4700 Controller Programming Library, Volume 1: General Controller Programming

DE FR GS

DEF SCA

DEF SCP

DEFRGS

* * * REGISTER SECTION OF SEGMENT 0

REGS DEFLD 0,0,96
REGO DEFLD 0,0,6
REG1 DEFLD 0 I ,6
REG2 DEFLD QI I 6
REG3 DEFLD 0 I I 6
REG4 DEFLD 0 I ,6
REGS DEFLD 0 I I 6
REG6 DEFLD O, I 6
REG7 DEFLD 0 I ,6
REGB DEFLD 0 I I 6
REG9 DEFLD 0 I I 6
REG10 DEFLD 0 I I 6
REG11 DEFLD QI ,6
REG12 DEFLD QI I 6
REG13 DEFLD 0 I ,6
REG14 DEFLD QI I 6
REG15 DEFLD QI I 6

Equate DEFSCAS to a segment number.

DEFSCA

SCAPAR
SCALEN
SCACHR
SCAFAC
SCAINP
SCAHDR
SCAD EL
SCARES
SCASIG
SCABEG

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx

s, 18
SCAPAR, 1

$I 1
$I 1
s,1
s,6
s,4
s,3
$I 1
s,O

SCALE PARAMETER LIST
LENGTH OF OUTPUT AREA
SCALE CHARACTER
SCALE FACTOR
INPUT FLAG BYTE
SPECIAL HEADER CHARACTERS
DELETE CHARACTERS
RESERVED (VALUE MUST BE 3X'OO')
NUMBER OF SIGNIFICANT DIGITS
BEGINNING OF OUTPUT AREA

Equate DEFSCPS to a segment number.

DEFSCP

SCPSTR DEFxx s,O START OF PARAMETER LIST

SCPFC DEFxx s,1 FUNCTION REQUESTED

SCPINTR EQUATE XI 01 I INITIALIZE SPA REQUEST
SCPADDR EQUATE X'02' ADD ELEMENT REQUEST
SCPRPLR EQUATE X'03' REPLACE ELEMENT REQUEST
SCPRTRR EQUATE X'04' RETRIEVE ELEMENT REQUEST
SCPRTUR EQUATE X'OS' RETRIEVE ELEMENT FOR UPDATE REQUEST
SCPDLER EQUATE X'06' DELETE AN ELEMENT REQUEST
SCPDLAR EQUATE X'07' DELETE ALL ELEMENTS REQUEST
SCPARUR EQUATE X'25' ADD OR RETRIEVE FOR UPDATE REQUEST
SCPARLR EQUATE X'23 I ADD OR REPLACE REQUEST
SCPEXCR EQUATE X'OB' EXCHANGE DATA AREA WITH THE ELEMENT

AppendixB. COPY Files B-15

SCPTYP DEFxx s, 1 ADDRESSING TYPE

SCPKEYM EQUATE X'OO' KEYED ADDRESSING
SCPELMA EQUATE X' 01' ELEMENT ADDRESSING

SCPSPID DEFxx s, 1 SPA ID
SCPRC DEFxx s, 1 SCRATCH PAD RETURN CODE

SCPRCBO EQUATE X'BO'
SCPRC40 EQUATE X'40'
SCPRC20 EQUATE X'20'
SCPRC10 EQUATE x' 10'
SCPRC08 EQUATE X'OB'
SCPRC04 EQUATE X'04'
SCPRC02 EQUATE X'02'
SCPRC01 EQUATE x' 01'
SCPRCOO EQUATE X'OO'

SCPELMN DEFxx s,2 ELEMENT NUMBER ADDRESS
SCPKEYL DEFxx s, 1 KEY LENGTH
SCPDATPT DEFxx s,3 DATA AREA ADDRESS (SEGMENT,

DISPLACEMENT)

SCPELMLN DEFXX SCPELMN,2 ELEMENT LENGTH
SCPELMNB DEFxx s,2 NUMBER OF ELEMENTS ALLOCATED

SCPDSG DEFXX SCPDATPT I 1
SCPDDSP DEFxx s,2
SCP END DEFxx s,O END OF PARAMETER LIST
SCPPRL DEFXX SCPSTR,(D:SCPEND-D:SCPSTR)

DEFSEG

DEFSEG

* * * SEGMENT EQUATES

SOD EQUATE 0
S01 EQUATE 1
S02 EQUATE 2
S03 EQUATE 3
S04 EQUATE 4
sos EQUATE 5
S06 EQUATE 6
S07 EQUATE 7
SOB EQUATE 8
S09 EQUATE 9
S10 EQUATE 10
S11 EQUATE 11
S12 EQUATE 12
S13 EQUATE 13
S14 EQUATE 14
S15 EQUATE 15

B-16 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFSKP

Equate DEFSKPS to a segment number.

DEFSKP

SKPPAR
SKPFLG1
SKPFPA

*
*
SKPFBS

*
*
SKPFTI

*
*
*
*
SKPFCE

*
*
SKPFEQ

*
*
SKPFBL

*
*
SKPFBG

*

SKPFLG2
SKPFNS

*
* SKPREG

*
*
SKPARS
SKPARD
SKPARL
SKPSCS
SKPSCD
SKPMTH
SKPENS
SKPEND
SKPENL

DEFxx s,18
DEFxx SKPPAR,1
EQUATE X'80'

EQUATE X'40'

EQUATE X' 20'

EQUATE X' 10'

EQUATE X' 08'

EQUATE X' 04'

EQUATE X' 02'

DEFxx s,1
EQUATE X' 80 '

DEFxx s, 1

DEFxx s, 1
DEFxx s,2
DEFxx s,2
DEFxx s,l
DEFxx s,2
DEFxx s,2
DEFxx s, 1
DEFxx s,2
DEFxx s,2

LSEEKP PARAMETER LIST
LSEEKP OPTION FLAG

TABLE/PARM LIST MATCH
ADDRESS

= 0 USE TABLE MATCH
ADDRESS

= 1 USE PARM LIST MATCH
ADR

SEQUENT/BINARY TABLE
SEARCH

= 0 SEQUENTIAL TABLE
SEARCH

= 1 BINARY TABLE SEARCH
TABLE LOCATION

0 IN NON-SPLIT AP OR
CONSTANT PORTION OF
SPLIT
IN INSTRUCTION POR­
TION OF A SPLIT AP

NO COPY/COPY TABLE ELE­
MENT
0 DO NOT COPY TABLE
ELEMENT
1 COPY TABLE ELEMENT

LOCATE EQUAL TABLE ENTRY
(REQUIRED SETTING = 1)
= 1 RETURN EQUAL TABLE

ENTRY
BINARY RETURN < IF NOT

EQUAL
= 0 DO NOT RETURN LESS

THAN
= 1 RETURN IF < IF NOT

EQUAL
BINARY RETURN > IF NOT

EQUAL
= 0 DO NOT RETURN GRTR

THAN
= 1 RETURN GRTR THAN

IF NO

LSEEKP OPTION FLAG BYTE 2
DO NOT/ DO RETURN NSI

= 0 DO NOT RETURN NSI
= 1 RETURN NSI

RETURN NSI IN STACK/REGISTER
= 0 RETURN NSI IN STACK
> 0 REGISTER TO CONTAIN

NSI
SEGMENT CONTAINING ARGUMENT
DISPLACEMENT TO ARGUMENT
LENGTH OF ARGUMENT
TABLE SEGMENT
DISPLACEMENT TO TABLE
MATCH ADDRESS
SEGMENT CONTAINING COPY FIELD
DISPLACEMENT TO COPY FIELD
LENGTH OF COPY FIELD

Appendix B. COPY Files B-1 7

DEFSMS

DEFSMS

*
*
*
*
*

SEGMENT ONE MACHINE SECTION DEFINITIONS

GENERAL FIELDS AND EQUATES SUBSECTION:

*
*
*
*
* ***

SMSPSW
SMSSID
SMSCCD
SMSUIC
SMSPCA
SMSPCC
SMSABK
SMSIML
SMSICT
SMSDST
SMSDS1
SMSDS2
SMSLTC
SMSLTH

SMSIND
SMSDATSM
SMSICAM
SMSICAO

SMSDCB
SMSDEL
SMSDSS

SMSAFL
SMSACP
SMSACPM
SMSAST
SMSAS TM
SMSAAP
SMSAAPM

SMSTMR
SMSHTM
SMSLTM
SMSPCT

SMSFG2
SMSPCRM
SMSLWSM

SMSLSB
SMSWAIT
SMSICPM
SMSIAPM
SMSITPM
SMSISPM
SMSIPPM
SMSITFM
SMSIATM

SMSDRG

LS PACE
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
LS PACE
DEFLD
EQUATE
EQUATE
EQUATE
LS PACE
DEFLD
DEFLD
DEFLD
LS PACE
DEFLD
DEFLD
EQUATE
DEFLD
EQUATE
DEFLD
EQUATE
LS PACE
DEFLD
DEFLD
DEFLD
DEFLD
LS PACE
DEFLD
EQUATE
EQUATE
LS PACE
DEFLD
DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
LS PACE
DEFLD
DEFLD
LS PACE

1 , 0, 4
1 , 0, 1
1 , , 1
1 , , 2
1 , , 2
1 , , 1
1 , , 1
1 , , 2
1,SMSIML,2
1 , , 2
1, SMSDST I 1
1 f I 1
1 I I 2
1 I I 2

1 I I 1
X' 10'
X'40'
X'BF'

1 I I 1
1 I I 2
1 I I 1

1 I I 1
1ISMSAFL,1
X'BO'
1ISMSAFL,1
X'40'
1ISMSAFL,1
X' 20'

1 I f 4
1,SMSTMR,2
1 I I 2
1 I I 2

1 I I 1
X'BO'
X'40'

1 I I 1
1 I I 1
XI 10 1

X' 20'
X' 30'
X'40'
X'SO'
X'60'
X'70'

1 I I 1
1 I I 2

PSW
STATION ID
COMPLETION CODE
RELATIVE INSTRUCTION COUNTER
ADDRESS OF INSTRUCTION THAT CAUSED PC
PROGRAM CHECK CODE
OPB A/B INDICATION
I/P MESSAGE LENGTH
COUNT OF IMPLIED DATA SETS OPENED
DEVICE STATUS BYTES
STATUS FIELD 1
STATUS FIELD 2
LOOP THRESHOLD COUNT
LOOP THRESHOLD VALUE

INDICATOR BYTE:
STATION CONFIGURED FOR DATSM USE MASK
CANCEL MASK
TURN OFF CANCEL FLAG MASK

DELIMITER CONTROL BYTE
ALTERNATE DELIMITER TABLE ADDR
SWITCHED MSG STB ID FIELD

ASYNCHRONOUS FLAG FIELD:
ASYNCHRONOUS CPU INTERRUPT FLAG
ASYNCHRONOUS CPU INTERRUPT MASK
ASYNCHRONOUS STATION INTERRUPT FLAG
ASYNCHRONOUS STATION INTERRUPT MASK
ASYNCHRONOUS ALA INTERRUPT FLAG
ASYNCHRONOUS ALA INTERRUPT MASK

SMS TIMER FIELD
HIGH ORDER 2 BYTES OF TIMER
LOW ORDER 2 BYTES OF TIMER
PAUSE INSTRUCTION COUNTER

FLAG BYTE:
PROGRAM CHECK ROUTINE IN CONTROL
LOGICAL WAIT STATE

PARENT AP LINK STACK USE COUNT
WAIT INSTRUCTION TERMINATING CONDITION

CPU MESSAGE
ALA MESSAGE
TERMINAL MESSAGE
SWITCHED MESSAGE
PROGRAM INERRUPT VIA POST INSTRUCTION
TIMER INTERRUPT
ATTENTION INTERRUPT

REGISTER FOR DELIMITER TABLE ADDRESS
RESERVED

B-18 4700 Controller Programming Library, Volume 1: General Controller Programming

* * * TERMINAL FIELDS AND EQUATES SUBSECTION: *
*
*

*
*

LS PACE

SMSEID DEFLD 1 , , 1 EOM IDENTIFIER
SMSECT DEFLD 1 , , 1 NUMBER OF CHARS IN THE CURRENT EOM

STRING
SMSTGU DEFLD 1 , , 1 ADDRESS OF TERMINAL GROUP UNIT
SMSSSU DEFLD 1, SMSTGU, 1 ADDRESS SHARED SLOT UNIT (SUB-ADDR)

LS PACE
SMSSAM DEFLD 1 , , 1 LDA ATTENTION SUMMARY MASK:
SMSLDAO EQUATE X'SO' MESSAGE AVAILABLE ON LDA-0
SMSLDA1 EQUATE X'40' MESSAGE AVAILABLE ON LDA-1
SMSLDA2 EQUATE X'20' MESSAGE AVAILABLE ON LDA-2
SMSLDA3 EQUATE x' 10' MESSAGE AVAILABLE ON LDA-3
SMSLDA4 EQUATE X'OS' MESSAGE AVAILABLE ON LDA-4
SMSLDAS EQUATE X'04' MESSAGE AVAILABLE ON LDA-5
SMSLDA6 EQUATE X'02' MESSAGE AVAILABLE ON LDA-6
SMSLDA7 EQUATE x' 01' MESSAGE AVAILABLE ON LDA-7

LS PACE
SMSSPR DEFLD 1 , , 2 RESERVED
SMSCUR DEFLD 1, SMSSPR, 2 LOCAL KEYTRACKING CURSOR ADDRESS
SMSMSL DEFLD 1 , , 1 LENGTH OF MAGNETIC STRIPE DATA
SMSKSM DEFLD 1 , , 1 LDA FIRST KEYSTROKE SUMMARY MASK:

LSPACE

Appendix B. COPY Files B-19

*** *
* *
*
*

DISK/DISKETTE FIELD AND EQUATES SUBSECTION: *
*

* *
*** *

SMSUNK
SMSFG1
SMSMBTM
SMSNXRM
SMSDSKM
SMSDT2M
SMSDKTI

SMSDKT1
SMSDKT2

SMSDSK1
SMSDSK2
SMSDSK3
SMSDSK4
SMSDID

SMSRPS
SMSRSNH
SMSRSNL
SMSRSN
SMSRSN1
SMSRSN2

SMSSFW
SMSSFR
SMSKEY
SMSKEY1
SMSKEY2

SMSFSN

SMSSSN

SMSCSN

SMSNDB
SMSADS1
SMSADS

LS PACE
DEFLD
DEFLD
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
LS PACE
EQUATE
EQUATE
LS PACE
EQUATE
EQUATE
EQUATE
EQUATE
DEFLD
LS PACE
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
LS PACE
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
LS PACE
DEFLD
DEFLD
DEFLD
LS PACE

1 I I 2
1 I I 1
X'40'
X'20'
XI 01 1

X'02'
X'OF'

X'OO'
X'02'

XI 01 1

X'03'
X'OS'
X'07'
1 I I 1

1 I I 4
1,SMSRPS,2
1 I I 2
1 I SMSRSNL I 2
1 I SMSRSN I 1
1 I I 1

1 I I 1
1 I I 1
1 I I 4
1,SMSKEY,2
1 I I 2
1 I I 2
1 I I 2
1 I I 2
1 I I 2
1 I I 2
1 I I 2

1 I I 4
1ISMSNDB,2
1 I I 2

UNIQUE ID FOR UNKEYED DATA SET
FLAG BYTE:

MULTI-BLOCK I/O
AVOID RECORD TRANSFER
FLAG: SET-->DISK, RESET-->DISKETTE
ALTERNATE DRIVE - DISK OR DISKETTE
MASK TO ISOLATE DRIVE SELECT BITS

SELECT BIT VALUE FdR DISKETTE DRIVE 1
SELECT BIT VALUE FOR DISKETTE DRIVE 2

SELECT BIT VALUE FOR DISK DRIVE A
SELECT BIT VALUE FOR DISK DRIVE B
SELECT BIT VALUE FOR DISK DRJ;VE C
SELECT BIT VALUE FOR DISK DRIVE D

DATA SET ID

RECORD SEQ NUMBER FOR READ/REPLACE
1ST HWD OF RECORD SEQ NUMBER
2ND HWD OF RECORD SEQ NUMBER
2ND HWD OF RECORD SEQ NUMBER
3RD BYTE OF RECORD SEQ NUMBER
4TH BYTE OF RECORD SEQ NUMBER

SUB-FILE ID FOR TEMP FILE WRITE
SUB-FILE ID FOR TEMP FILE READ/REPLACE
CURRENT POSITION OF KEYED DATA SET
FIRST HWD OF 4 BYTE KEY
SECOND HWD OF 4 BYTE KEY
RESERVED
FILE SEQ NUM FROM LAST TEMP FILE WRITE
RESERVED
SUB-FILE SEQ NUM FROM LAST TEMP FILE WRT
RESERVED
COMPOSITE SEQ NUM FROM LAST TEMP FILE WRT

NUM OF D.S. BLKS AVAIL FOR LWRITE
1ST HWD OF D.S. BLKS AVAIL FOR LWRITE
2ND HWD OF D.S. BLKS AVAIL FOR LWRITE

B-20 4700 Controller Programming Library, Volume l: General Controller Programming

Segment 1 Fields

**
* * * CPU FIELDS AND EQUATES SUBSECTION: *
* * **

LS PACE
1 I f 2
1ISMSCRC,1
1ISMSCRC,1
1 I f 1
1 I f 1
X'04'
1,SMSCSTI1
1 I f 1
1 If 2
1,SMSCWC,1
1,SMSCWC,1
1 I I 1

CPU READ CONTROL FIELDS
CPU READ FLAGS
BSC READ CONTROL
CPU READ TYPE
LINK STATUS BYTE
OPERATIONAL CIRCUIT FLAG
S/S UNIT ID
RESERVED
CPU WRITE CONTROL FIELDS
CPU WRITE FLAGS
BSC WRITE CONTROL
CPU WRITE TYPE
READ SEQ NUMBER OR ID
INPUT HEADER LENGTH
WRITE SEQ NUMBER OR ID
OUTPUT HEADER LENGTH

SMSCRC
SMSCRF
SMSBRL
SMSCRT
SMSCST
SMSCCR
SMSCID
SMSTR2
SMSCWC
SMSCWF
SMSBWC
SMSCWT
SMSCRS
SMSBIH
SMSCWS
SMSBOH
SMSCSR
SMSCHL
SMSCPE
SMSCRE
SMSCWE

DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
EQUATE
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD
DEFLD

1 , , 2
1,SMSCRS,2
1 I I 2
1,SMSCWS,2
1If2
1 ,SMSCSR,2
1 I ,2
1,SMSCPE,1
1 , , 1

READ RESPONSE TO DATA SEQ NUMBER
HEADER LENGTH
CPU READ/WRITE FLAGS EXTENSION
CPU READ FLAGS EXTENSION

DEFLD
DEFLD

1 I ,4
1 I I 1

CPU WRITE FLAGS EXTENSION
RESERVED
RESERVED

SM SAMS DEFLD 1 I I 3 ALA MACHINE SEGMENT, SEG NO./DIS­
PLACEMENT

SMSAMS1
SMSAMS2

DEFLD
DEFLD
LS PACE

1,SMSAMS,1
1 I I 2

AMS SEGMENT NUMBER
AMS SEGMENT DISPLACEMENT

**
* * * LINKSTACK FIELDS SUBSECTION: *
* *
* * **

LS PACE
SMSLSH DEFLD 1 I I 2 LINK STACK HEADER
SMSLSM DEFLD 1,SMSLSH,1 MAXIMUM NUMBER OF ENTRIES
SMSLSE DEFLD 1 , , 1 CURRENT NUMBER OF ENTRIES

* SEE SMSLSB FOR BASE COUNT
SMSLSA DEFLD 1 ,, 12 LINK STACK AREA

Segment 1 contains the following fixed fields:

OF STACK

Station ID (SMSSID): The number (2 through 60) of the logical work station.
This field is regenerated each time an LEXIT instruction is issued.

Condition Code (SMSCCD): A code indicating the result of execution of an
instruction (bits 4-7 of the byte at SMSCCD). Not all instructions set a
condition code.

Instruction Counter (SMSUIC): The displacement, into Segment 14, of the
next instruction to be executed. This field is set to 0 when an LEXIT
instruction is executed. The instruction counter may be changed by the
application program to alter program flow, although a branch or LSEEK
instruction is preferable.

Appendix B. COPY Files B-21

Program Check Address (SMSPCA): The displacement, into Segment 14, of
the instruction that caused a program check. This field is only set when a
program check occurs.

Program Check Code (SMSPCC): A code indicating the cause of the program
check. This field is set before control is given to the application program's
program-check routine.

Segment 0 Selected (SMSABK): A character A or B (hex Cl or hex C2) that
indicates which Segment 0 is desired when a SELECT instruction is executed.

Input Message Length (SMSIML): The length of data placed in the station's
segment as a result of an LREAD instruction or the amount of data not
transmitted (residuallength) by an LWRITE, WRTI, or REPLACE instruction.

Implied Data Set Opens (SMSICT): A count of data sets opened as a result of
opening the associated keyed data set.

Device Status (SMSDST): A code indicating the status that resulted from data
transmission or the reason a data transmission operation failed.

Instruction Count (SMSLTC): The number of instructions executed by the
application program since the last LEXIT instruction was executed.

Instruction Count Threshold (SMSL lli): The maximum number of
instructions to be executed before the controller assumes that the station's
application program: is in an unending loop. When the instruction count
(SMSL TC) exceeds the value in this field, the controller causes a program
check to occur for this station.

Indicator Byte (SMSIND): Bit 1 of this byte is set to 1 when the reset key on a
terminal assigned to LDA 0 is pressed twice (an attention indication). Other
features set this byte to different values. This byte is reset to 0 when an LEXIT
instruction is executed.

Delimiter Control Byte (SMSDCB): A mask used to select the set of delimiters
to be recognized by the controller.

Alternate D~limiter Table Address (SMSDEL): Address of the delimiter table
currently in use when multiple delimiter tables are defined for the application
program.

Switched Message Station ID (SMSDSS): For a station-to-station write or
check of a station-to-station write, the number of the station to receive the
data. For a station-to-station read, the number of the station that sent the data.

Asynchronous Flag Field (SMSAFL): A one-byte field whose two high-order
bits refer to station and CPU interruptions pending. :By scanning this field
before relinquishing control, a,work station can determine if any messages are
pending tor it.

Station Timer Value (SMSTMR): The value (in seconds) that is compared
with the controller timer value (GMSTMR) to determine if the work station
should be dispatched at its asynchronous timer entry point. U zero, the station
is not dispatched.

B-22 4700 Controller Programming Library, Volume 1: General Controller Programming

Pause Instruction Counter (SMSPCT): A count of the number of times PAUSE
has been performed since the last LEXIT.

Flag Field (SMSFG2): A 1-byte flag field indicating the following:

Bit Position

lxxx xxxx
xlxx xxxx

Meaning

A program check routine is currently being executed.
The station is currently in a logical wait state.

Link Stack Base Entry (SMSLSB): The number of the last link stack entry used
by the parent application program.

Wait Terminating Condition (SMSW AIT): A 1-byte field containing the
condition ending the L WAIT instruction. If more than one ending condition is
present, only the highest priority condition is indicated.

Delimiter Table Address Register (SMSDRG): The number of the application
program register that contains the address of the delimiter table.

End-of-Message/End-of-File ID (SMSEID): The translate value defined for a
key designated as an EOM/EOF key with the EID option.

Number of Characters in EOM (SMSECT): The number of characters placed
in the input segment as a result of translating the EOM key (0-6). SMSIML
minus SMSECT is the length of the data entered.

Terminal Group Unit Address (SMSTGU): The subaddress (hex 00 through
hex FF) identifying the individual unit currently in use in a terminal group.

LOA Attention Summary (SMSSAM): A one-byte field whose bits correspond
to logical device addresses (the high-order bit corresponds to LDAO; the
low-order bit, to LDA 7). A bit set to 1 indicates a message pending from the
device associated with that LDA.

Magnetic Stripe Reader Data Length (SMSMSL): The length of the data
string received from the magnetic stripe reader.

Unkeyed Data Set ID (SMSUNK): A 2-byte field containing a unique ID of an
unkeyed data set.

Disk/Diskette Flag Field (SMSFG 1): A 1-byte field containing flags that the
application program sets to control disk and diskette operations. This field
contains a flag that controls single and multi-block operations; a flag that
controls data transfer for keyed operations; and flags that select the disk or
diskette drive to be used.

Disk Data Set ID (SMSDID): The data set ID (DSID) of the disk or diskette
data set to be accessed by the controller application program. This field is set
by the application program prior to issuing an instruction to the disk or diskette
(unless previously set to the desired ID).

Record Sequence Number (SMSRPS): A 4-byte field describing the data
record position for disk and diskette operations. The low-order 2 bytes are
named SMSRSN for compatibility with 3600.

Appendix B. COPY Files B-23

Subfile Index for Disk/Diskette Write (SMSSFW): The subfile number during
a write to the temporary file.

Subfile Index for Disk/Diskette Read (SMSSFR): The subfile number during
read from the temporary file.

Keyed Data Set Position (SMSKEY): A 4-byte field indicating the current
position in a keyed data set.

File Sequence Number from Last Diskette/Disk Write (SMSFSN): The file
sequence number from the last write to the temporary file or the log.

Subfile Sequence Number from Last Diskette/Disk Write (SMSSSN): The
subfile sequence number from the last write to the temporary file.

Composite File Sequence Number from Last Diskette/Disk Write (SMSCSN):
The composite file sequence number from the last write to the temporary file.

Available Data Set Blocks (SMSADS1/ ADS): A 4-byte field indicating the
number of data set blocks available for use by L WRITE.

Host Processor Read Control Field (SMSCRF, SMSCRT): The type of
message received from the central processor and any flags that accompanied
the message.

Link Status (SMSCST): The status of the station's use of the communication
link.

Host Write Control Field (SMSCWF, SMSCWT): The type of message being
sent by the station and any flags that accompany the message.

Host Read Sequence Number (SMSCRS): The sequence number of the last
message received from the host.

Host Write Sequence Number (SMSCWS): The sequence number of the last
message sent to the host.

Host Read-Response Sequence Number (SMSCSR): The sequence number of
the message being responded to.

CPU Read/Write Extension (SMSCPE): A 2-byte flag field used as extensions
when performing CPU LREAD or L WRITE. SMSCRE is used as an extension
of SMSCRF for LREAD and SMSCWE is an extension of SMSCWF for
LWRITE.

ALA Machine Segment Address (SMSAMS): A 3-byte field containing the
address of the ALA Machine Segment. The first byte indicates the segment,
and the remaining 2 bytes are the displacement of the AMS.

B-24 4700 Controller Programming Library, Volume 1: General Controller Programming

Link Stack Maximum (SMSLSM): The maximum number of entries that the
link stack can contain. Initialized by the RETSTK operand of the ST A TION
macro.

Number of Return Stack Entries (SMSLSE): The number of current entries in
the return address stack. The number is incremented each time a BRANL or
BRANLR adds an entry to the stack and decremented each time an
LRETURN uses an entry.

Return Address Stack (SMSLSA): Beginning of the area in Segment 1 where
return addresses will be stored. The number of bytes reserved is two times the
number of return addresses indicated in SMSLSM. Addresses are added to the
stack in the next available field when the appropriate type of branch-and-link
instruction is executed.

Appendix B. COPY Files B-25

DEFSOR

DEFTRP

Equate DEFSORS to a segment number.

DEFSOR

SORPAR DEFxx s, 17 SORT PARAMETER LIST
SORIFB DEFxx SORPAR, 1 INPUT FLAG BYTE
SORIFOM EQUATE X'SO' BIT ON ---> DESCENDING KEYS
SORRFB DEFxx s,1 RESERVED
SORSBG DEFxx s,2 SORT BLOCK BEGIN
SORSND DEFxx s,2 SORT BLOCK END
SORWBG DEFxx s,2 WORK BLOCK BEGIN
SORWND DEFxx s,2 WORK BLOCK END
SORDLN DEFxx s,2 DATA ITEM LENGTH
SORKYD DEFxx s,2 DISPLACEMENT TO KEY IN DATA ITEM
SORKYL DEFxx s,1 KEY LENGTH
SORSSG DEFxx s, 1 SEGMENT NUMBER CONTAINING SORT BLOCK
SORWSG DEFxx s, 1 SEGMENT NUMBER CONTAINING WORK BLOCK

Equate DEFTRPS to a segment number.

DEFTRP

TRPPAR
TRPINS
TRPIND
TRPINL
TRPOUS
TRPOUD
TRPOUL
TRPMSK
TRPNTT
TRPPTT
TRPCTT
TRPLIC
TRPFNC
TRPLID
TRPLOD
TRPCNT
TRPTST
TRPTBR
TRPTOO
TRPTIO
TRPTII
TRPTNL

TRPTTL
TRPENT1
TRPTTS1
TRPTTD1

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEF xx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
EQUATE
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx

s,30
TRPPAR,2

s,2
s,2
s,2
s,2
s,2
s, 1
s,1
s,1
s,1
s,1
s,1
s,2
s,2
s,2
s,1

X'SO'
X'40'
X'20'
x' 10'
X'OB'
s, 1
s,O
s,4

TRPENT1, 2
s,2

PARM LIST (INCLUDES 'TRPENT1')
INPUT AREA'S SEGMENT
INPUT AREA'S DISPLACEMENT
INPUT AREA'S LENGTH
OUTPUT AREA'S SEGMENT
OUTPUT AREA'S DISPLACEMENT
OUTPUT AREA'S LENGTH
BREAK CONTROL MASK
NUMBER OF TRANSLATE TABLES
PRIOR TRANSLATE TABLE NUMBER
CURRENT TRANSLATE TABLE NUMBER
LAST INPUT CODE PROCESSED
FUNCTION CODE
LAST INPUT CODE DISPLACEMENT
LAST INPUT CODE'S OUTPUT DISPLACEMENT
TOTAL NUMBER OF CHARACTERS OUTPUT
TERMINATION STATUS FIELDS

TRANSLATE BREAK
OUTPUT OVERFLOW
INPUT OVERFLOW
INVALID INPUT CODE
INITIAL OUTPUT LENGTH WAS ZERO

RESERVED
TRANSLATE TABLE LIST
ENTRY1 OF XLATE TABLE LIST

XLATE TABLE 1'S SEGMENT
XLATE TABLE 1'S DISPLACEMENT

B-26 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFTRT

DEFTSX

Equate DEFTRTS to a segment number.

DEFTR'.f

TRTHDR
TRTLEN
TRTDOP
TRTLOW
TRTELN
TRTHFG
TRTTRO
TRTMDS
TRTMDM
TRTMDU
TRTUSE
TRTNUM

*
TRTEFG
TRTOPS
TRTOCS

TRTFNC
TRTBRK
TRTBAD
TRTINL

TRTRES1
TRTTOC

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx

SI 12
TRTHDR,2

s,2
SI 1
SI 1
SI J

X'BO'
X'40'
X'20'
XI 10 I

SI 1
s,2
s,2

TRANSLATE TABLE HEADER
LENGTH OF WHOLE TABLE
DISP: TBL-HDR TO OFF POINTED STRINGS
LOW CODE IN TABLE
LENGTH OF ENTRY
HEADER FLAGS

ONLY TRANSLATE ENTRIES
MODE = SKIP (FOR OUT OF RANGE)
MODE= MOVE (FOR OUT OF RANGE)
MODE =USE (FOR OUT OF RANGE)

VALUE FOR 'USER' MODE
NUMBER OF CODES IN THE TABLE
RESERVED

TRANSLATE TABLE ENTRIES' FLAG BYTE

DEFxx s,O ENTRIES' FLAG BYTE:
EQUATE X'BO' VALUES IN OFF-POINTED STRING
EQUATE X'40' OUTPUT CHARACTER STRING

DEFINED
EQUATE X'20' FUNCTION DEFINED
EQUATE X' 10' BREAK DEFINED
EQUATE X'OB' BREAK ADDRESS DEFINED
EQUATE X'04' INLEN DEFINED TO BE OTHER THAN

EQUATE X'02' RESERVED (MUST BE ZERO)
EQUATE x' 01' 2 OUTPUT CHAR'S IN TABLE ENTRY

Equate DEFTSXS to a segment number.

DEFTSX

TSXPAR DEFxx s,S 'TESTX' PARAMETER LIST
TSXFLG DEFxx TSXPAR, 1 FLAG BYTE:
TSXFREM EQUATE X'80' REQUEST SEGMENT'S STATUS
TSXFSTM EQUATE X'02' STATION ACTIVE FOR

INDEXING
TSXFSEM EQUATE X'01' SEGMENT ACTIVE FOR

INDEXING
TSXSID DEFxx s,1 STATION ID
TSXSEG DEFxx s,1 SEGMENT NUMBER
TSXADR DEFxx s,2 INDEX REG-NUM TBL'S ADDRESS
TSXREG1 DEFxx TSXADR, 1 OPERAND ONE'S INDEX REGISTER
TSXREG2 DEFxx SI 1 OPERAND TWO'S INDEX REGISTER

Appendix B. COPY Files B-27

DEFVUE

Equate DEFVUES to a segment number.

DEFVUE

VUEPAR
VUEREQ
VUE STA
VUESTK
VUEFG1
VUEFLOM
VUEFL1M
VUEFL2M
VUEUIC
VUELSB
VUELSE
VUEDEL
VUEPNT
VUEFG2
VUERTF
VUEFAC
VUEPID
VUERES1

DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
EQUATE
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
DEFxx
EQUATE
EQUATE
DEFxx
DEFx:x

s,26
VUEPAR, 1

s, 1
s, 1
s,1

X'BO'
X'40'
X'20'

s,2
s, 1
s, 1
s,2
s, 1
s, 1

X'80'
X'01'

s,8
s,6

VIEW PARAMETER LIST
REQUEST CODE
STATION NUMBER
STACK ID
FLAG BYTE 1

STACK ENTRY IN USE
STACK ENTRY PERMANENT
'B' SET OF REGISTERS ACTIVE

USER INSTRUCTION COUNTER
BOTTOM OF SMS LINK STACK
TOP OF SMS LINK STACK
SAVED VALUE OF SMSDEL
PARENT SEGMENT SPACE ID
FLAG BYTE 2

AP TRANSIENT FLAG
AP CALLABLE

APPLICATION PROGRAM NAME
RESERVED

B-28 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix C. Assembler Error Messages

The following lists the error messages that may result from a 4 700 assembly.

BDK900I SYMBOL NOT EQUATED

Explanation: Self-explanatory.

User Response: Equate the symbol to a value or delete the symbol; reassemble.

BDK901I LABEL MISSING

Explanation: Self-explanatory.

User Response: Add the missing label and reassemble.

BDK902I INCORRECT NUMBER OF OPERANDS

Explanation: The number of operands specified is not correct.

User Response: Check the syntax of the instruction, correct the error, and
reassemble.

BDK903I MISSING OPERANDS

Explanation: Required operand or operands have been omitted.

User Response: Check the syntax of the instruction, correct the error, and
reassemble.

BDK904I MISSING FIRST OPERAND

Explanation: Self-explanatory.

User Response: Add the first operand to the instruction and reassemble.

BDK90SI MISSING SECOND OPERAND

Explanation: Self-explanatory.

User Response: Add the second operand to the instruction and reassemble.

BDK906I MISSING THIRD OPERAND

Explanation: Self-explanatory.

User Response: Add the third operand to the instruction and reassemble.

BDK907I INVALID OPERAND

Explanation: There is a syntax error in one or more operands.

Appendix C. Assembler Error Messages C-1

User Response: Check the syntax of the instruction, correct the error, and
reassemble.

BDK908I INVALID FIRST OPERAND

Explanation: Self-explanatory.

User Response: Correct the first operand and reassemble.

BDK909I INVALID SECOND OPERAND

Explanation: Self-explanatory.

User Response: Correct the second operand and reassemble.

BDK910I INVALID THIRD OPERAND

Explanation: Self-explanatory.

User Response: Correct the third operand and reassemble.

BDK9111 INVALID FOURTH OPERAND

Explanation: Self-explanatory.

User Response: Correct the fourth operand and reassemble.

BDK912I SEGMENT NOT PROPERLY SPECIFIED

Explanation: The segment specification is either nonnumetic or not in the range
of 0 to 15, or an undefined symbol was encountered.

User Response: Correct the segment specification and reassemble.

BDK913I REGISTER NOT PROPERLY SPECIFIED

Explanation: The register specification is either nonnumeric or not in the range
of 0 to 15.

User Response: Correct the register specification and reassemble.

BDK914I LENGUI NOT PROPERLY SPECIFIED

Explanation: The length specification is either nonnumeric or not within the
range valid for the instruction.

User Response: Correct the length specification and reassemble.

BDK915I DISPLACEMENT NOT PROPERLY SPECIFIED

Explanation: The displacement specification is either nonnumeric or not within
the range valid for the instruction.

C-2 4700 Controller Programming Library, Volume 1: General Controller Programming

User Response: Correct the displacement specification and reassemble.

BDK916I SEGMENT FOURTEEN CANNOT BE USED

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK918I DATE OPERAND MISSING OR INCORRECT

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK919I MULTIPLE USE OF BEGIN, FINISH, DEFCODE, DEFLINK,
OR DEFASEP NOT PERMIITED

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK9201 TABLE ENTRY [n) IS INVALID

Explanation: There is a syntax error in positional operand (n) of the TABLE
instruction.

User Response: Correct the error and reassemble.

BDK9211 MISSING FOURTH OPERAND

Explanation: Self-explanatory.

User Response: Add the fourth operand and reassemble.

BDK922I LABEL OR ADDRESS GREATER THAN 8 CHARACTERS

Explanation: Self-explanatory.

User Response: Correct the label or address and reassemble.

BDK923I GLOBAL LOCATION COUNTER OVERFLOW

Explanation: Application program section is greater than 64K.

User Response: Correct the error and reassemble.

BDK924I LENGTH OPERAND MISSING

Explanation: The LNG keyword has been omitted on a TABLE instruction.

User Response: Correct the error and reassemble.

Appendix C. Assembler Error Messages C-3

BDK9251 LENGTH TOO LONG

Explanation: The LNG operand on the TABLE instruction is not within the
valid range.

User Response: Correct the error and reassemble.

BDK9261 CONFLICT: NOT ALL ENTRIES HAVE MATCH ADDRESS

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK9271 DUPLICATE LABEL

Explanation: The same label appears on a previous EQUATE, DEFLD, or
DEFCON instruction.

User Response: Correct the error and reassemble.

BDK9281 OVERLAY MACRO NOT PERMITTED

Explanation: An overlay instruction may occur only after a FINISH or
ENDOVL Y instruction.

User Response: Correct the error and reassemble.

BDK9291 ORIGIN OPERAND OMITTED

Explanation: The ORIGIN operand on an OVL YSEC instruction has been
omitted.

User Response: Add the missing operand and reassemble.

BDK9301 ORIGIN OPERAND INVALID

Explanation: The ORIGIN operand on an OVL YSEC instruction is invalid.

User Response: Correct the error and reassemble.

BDK9311 GLOBAL TABLE OVERFLOW

Explanation: More than 4096 EQUATE, DEFCON, and DEFLD instructions
have been coded.

User Response: If using OS/VS the user may request the customer engineer to
increase the global tables.

BDK9321 LLOAD NOT PERMITTED

Explanation: The LLOAD instruction is not permitted unless the NUMOVL Y
operand is coded on the BEGIN instruction.

C-4 4700 Controller Programming Library, Volume 1: General Controller Programming

User Response: Correct the error and reassemble.

BDK933I TOO MANY ENTRIES FOR TABLE

Explanation: The number of table entries exceeds the limit allowed.

User Response: Correct the error and reassemble.

BDK934I DEFLINK MACRO NOT SPECIFIED

Explanation: Self-explanatory.

User Response: Code the DEFLINK macro and reassemble.

BDK93SI TYPE KEYWORD OPERAND IS INVALID

Explanation: The TYPE operand for the OPENSESS or CLOSSESS macro was
specified incorrectly.

User Response: Correct the error and reassemble.

BDK936I SESSION ID OPERAND NOT SPECIFIED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the OPENSESS macro and reassemble.

BDK937I RESP KEYWORD OPERAND IS INVALID

Explanation: The RESP operand was not specified correctly.

User Response: Correct the error and reassemble.

BDK938I BRCKT KEYWORD OPERAND IS INVALID

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK939I DATA KEYWORD OPERAND IS INVALID

Explanation: The DATA operand of the LSEND macro was not specified
correctly.

User Response: Correct the error and reassemble.

BDK940I LOSS OF CONTACT ENTRY OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the DEFCODE macro and reassemble.

Appendix C. Assembler Error Messages C-5

...

BDK941I CANCEL KEYWORD OPERAND IS INVALID

Explanation: The CANCEL operand of the LRECEIVE macro was not
specified correctly.

User Response: Correct the error and reassemble.

BDK942I OUTPUT SEGMENT OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the error and reassemble.

BDK943I INPUT SEGMENT OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the error and reassemble.

BDK944I WORK SEGMENT OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the error and rea$semble.

BDK94SI LINK REGISTER OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the error and reassemble.

BDK946I WORK REGISTER OPERAND OMITTED

Explanation: The required operand has been omitted, was specified incorrectly,
or has never been defined.

User Response: Correct the error and reassemble.

BDK947I LINK REGISTER SAME AS WORK REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK948I LINK REGISTER SAME AS TRACE REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble .

C-6 4700 Controller Programming Library, Volume 1: General Controller Programming

BDK949I WORK REGISTER SAME AS TRACE REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK950I TRACE REGISTER OPERAND OMITTED

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK9511 REGISTER ZERO INVALID AS LINK REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK952I REGISTER ZERO INVALID AS WORK REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK953I REGISTER ZERO INVALID AS TRACE REGISTER

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK954I INVALID CHARACTER PREFIX

Explanation: Self-explanatory.

User Response: Correct the prefix and reassemble.

BDK955I INVALID CODE SPECIFIED FOR OPERAND XXX

Explanation: The code specified on LTRTENT macro for operand XXX was
invalid. The code was not within the range specified on the L TR TBEG macro
or was not a self-defining term.

System Action: The translation table will still be generated, but this code will be
defaulted.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK956I INVALID CHARACTER STRING OPERAND XXX

Explanation: The OCHR operand was not specified as character or
hexadecimal data, or the length of the data exceeded the maximum allowed, 7
for character and 8 for hexadecimal.

Appendix C. Assembler Error Messages C-7

System Action: The translation table will still be generated but this code will be
defaulted.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK957I INVALID FUNCTION FOR OPERAND XXX

Explanation: The function code specified for operand XXX of the L TRTEN'T
was not CASl, CAS2, CAS3, CAS4, BSP, ADV, DS, TW, or user-defined
value from X'Ol' to X'3F'.

System Action: The translation table will still be generated but this code will be
defaulted.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK958I INVALID ADDRESS FOR OPERAND XXX

Explanation: The Address specified in the LTRTENT macro for operand XXX
exceeded 8 characters, or a mask operand was not specified.

System Action: The translation table will still be generated but this code will be
defaulted.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK959I INVALID INLEN FOR OPERAND XXX

Explanation: The value specified for the INLEN operand on the L TR TENT
macro for operand XXX was not V, or within the range of 1to255.

System Action: The translation table will still be generated but this code will be
defaulted.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK960I OFF-POINTED STRING GT65535 OP=XXX

Explanation: The displacement value exceeded 65 535.

System Action: The translation table will still be generated but this code will be
defaulted.

User Response: The table should be split into multiple tables and then
reassembled.

BDK9611 MASK FOR OPERAND xx IGNORED

Explanation: Invalid mask specified for the L TR TENT macro.

C-8 4700 Controller Programming Library, Volume 1: General Controller Programming

User Response: Correct the mask and reassemble.

BDK962I INVALID LOW RANGE FOR LTRTBEG

Explanation: The low range was not a self-defining term, or contained too
many characters.

System Action: Default low range of 0 is used.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK963I INVALID IDGH RANGE FOR LTRTBEG

Explanation: The high-range operand was less than the low range or it was not
a self-defining term, or the operand contained too many characters.

System Action: Default of 255 is used.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK964I INVALID MODE OPERAND ON LTRTBEG

Explanation: The mode operand was not ERROR, MOVE, SKIP, or a
self-defined term.

System Action: Default of ERROR is used.

User Response: Correct the error and reassemble if the generated table is
unusable.

BDK965I USAGE OF DEFCODE MACRO CONFLICTS WITH THE
USAGE OF THE DEFLINK MACRO

Explanation: SEPASMB keywords are in conflict.

User Response: Correct the error and reassemble.

BDK966I ADDRESS 'table entry' IS TOO LONG

Explanation: Self-explanatory.

User Response: Correct the error and reassemble.

BDK967I TOO MANY OPERAND-EXCESS IGNORED

Explanation: This message usually occurs with another message indicating the
failing instruction or operand, and may indicate that correct operands were
dropped during assembly because of a syntax error.

User Response: Correct the specific errors.indicated by other messages first and
recheck the syntax of the affected instructions, then reassemble the program.

Appendix C. Assembler Error Messages C-9

BDK9681 CHNGDIR KEYWORD OPERAND INVALID

Explanation: Invalid CHNGDIR keyword option specified on LSEND.

User Response: Correct the error and reassemble.

BDK.9691 INVALID OPERAND (operand) FOR MACRO (macro)

Explanation: You specified an invalid keyword or positional operand on the
named assembler instruction.

User Response: Correct the source, and reassemble.

BDK9701 MISSING DEFSTOR SEGMENT SPECIFICATION

Explanation: You did not specify a required SEGSIZE segment value on the
DEFSTOR instruction, or you tried to default to a predefined segment value by
omitting the segment value rather than specifying zero (0).

User Response: Correct the SEGSIZE operand coding, and reassemble.

BDK9711 INVALID REGISTER ADDRESS

Explanation: A norm.al or modified register address contains an incorrect
segment, length, or displacement.

User Response: Correct the register address and reassemble.

BDK9721 SINIT MACRO HAS NOT BEEN ISSUED

Explanation: An INITSEG or ENDINIT instruction appears in your program
before or without an SINIT instruction.

User Response: One or more INITSEG instructions must begin with an SINIT
instruction and end with ENDINIT, and have no other intervening instructions.
Correct and reassemble your program.

BDK9731 LENGTH 1 TOO LARGE-USE REGISTER FORM

Explanation: The length field assembled for operand 1 is too large for a
nonregister address.

User Response: Recode the instruction using register addressing, which allows a
length of up to 64K, depending on the instruction. Reassemble the program.

BDK9741 LENGTH 2 TOO LARGE-USE REGISTER FORM

Explanation: The length field assembled for operand 2 is too large for a
nonregister address.

User Response: Record the instruction using register addressing, which allows a
length of up to 64K, depending on the instruction. Reassemble the program.

C-10 4700 Controller Programming Library, Volume 1: General Controller Programming

BDK975I IMPROPER ERROR CODE PRESENTED

Explanation: An error code occurred that has no corresponding error message.

User Response: Request assistance from.your programming liaison or service
facility.

BDK976I DEFSTOR IS REQUIRED WITH APENTRY

Explanation: APENTRY was specified on the BEGIN instruction, but a
DEFSTOR instruction was not included in your program or the DEFSTOR
does not precede the FINISH instruction.

User Response: Check your program, correct any error, and reassemble.

BDK977I END OF DEFSTOR EXCEEDS 4096

Explanation: The DEFSTOR instruction occurred partially or completely
outside the first 4096 bytes of your program.

User Response: Recode the DEFSTOR instruction at an earlier point in your
program, within the first 4060 bytes (address X'FDC', or earlier).

BDK978I SEGMENT (segment) LENGTH TOO LONG, MAXIMUM SIZE
FORCED

Explanation: You defined a segment on the DEFSTOR instruction longer
than 65 535 bytes.

System Action: A default of 65 535 is assumed.

User Response: Restructure your program, if necessary, to accommodate the
segment limit.

BDK979I USE INVALID, DYNAMIC ASSUMED

Explanation: The DEFSTOR instruction's USE parameter does not specify
STATIC or DYNAMIC.

System Action: DYNAMIC is assumed.

User Response: Recode the DEFSTOR instruction if you want the storage
defined as STATIC.

BDK980I REDEF LABEL MUST REFERENCE SAME LEVEL

Explanation: The REDEF keyword of Ll - Ln instructions refer to previous
L 1 - Ln instructions but the levels are not equal.

User Response: Recode the instructions specifying the same level.

Appendix C. Assembler Error Messages C-11

BDK9811 LDSECT ENCOUNTERED BEFORE LEND

Explanation: Two or more LDSECT instructions without an intervening
LEND.

User Response: Add LEND instruction and reassemble.

BDK982I REDEF AS label IS SMALLER IBAN DEFN. xx FILLER
BYTE(S) ADDED.

Explanation: The definition of a level field is smaller than the original
specification. The field has been padded to the same length.

User Response: None

BDK983I REDEF AT label LABEL IS LARGER IBAN DEFN
STRUCTURE. EXPANSION TERMINATED.

Explanation: The redefinition of a level field is larger than the original field and
the structure size cannot be determined.

User Response: Correct the redefinition and reassemble.

BDK984I NO LDSECT ENCOUNTERED BEFORE LEVEL DEFINillON.

Explanation: A level instruction (Ln) was coded before an LDSECT.

User Response: Add LDSECT and reassemble.

C-12 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix D. Program Check Codes

If the 4700 controller encounters an execution request that indicates a logic
error, a program check results. The following are the hexadecimal codes and
the explanations for possible program checks:

Code Explanation

01 Invalid segment specification: An operand specifies a segment that
was not defined during controller configuration procedure, or
Segment 14 was specified in an instruction that will cause data to
be stored or changed in Segment 14.

02 Segment overflow: Completion of the instruction requires more
storage than the specified segment provides.

03 Field length error: An incorrect field was specified. The length is
greater than 2 for an immediate operand; or a SETFPL instruction
attempted to adjust the field length indicator to a negative value;
or a value is specified which, when added to the PPP, would be
greater than the segment length; or the field length was greater
than 255 for a PAKSEG instruction.

04 Return-address stack error: An LRETURN instruction was issued,
but the return-address stack was empty; or a branch instruction
was issued, but the stack was full.

06 Instruction count threshold: The number of instruction executions
allowed per transaction has been exceeded.

08 No overlay name: The overlay name is not in the resident overlay
directory.

09 Invalid operation or segment code: The instruction operation or
segment selection code specified is invalid. Make sure that any
required OPTMOD coding for the instruction was entered and
that any parameter fields are properly coded.

OA No entry point: There is no startup entry point specified.

OB Instruction address error: An addressing error has occurred. In the
case of branch instructions, the program check address field of
Segment 1 will contain the address of the branch instruction.

OC Instruction count exceeded: 65,535 instructions have been
executed without a release of control.

OD DEFDEL missing or incorrectly used: Either a delimiter request
was made but no delimiter table was found or the table is not
halfword aligned.

OE EDIT mask error: The mask used with an EDIT instruction
contains an error.

Appendix D. Program Check Codes D-1

OF Invalid link write control field: The link write control field or write
options are invalid.

10 Communication link write length error: Data length exceeds 4095,
data length during an L WRITE in batch mode was too long,
command data length is incorrect; negative-response data length is
incorrect, or there was a negative response to setting or testing
sequence numbers.

11 Invalid parameter list, or parameter space is insufficient.

12 Indexing is not active.

20 Program check in called application program.

21 Called application program not found.

22 APCALL link stack full.

23 Recursive APCALL to an application program defined as
USE=STATIC during configuration.

24 APCALL storage pool defined by MAXSTOR=was exceeded.

25 APCALL segment pool defined by MAXSEG=was exceeded.

26 APRETURN issued with no APCALL link stack entry - no calling
application program.

27 Register address contains invalid segment space ID.

28 No transient pool: a transient pool was not defined for this station.

29 T:i;-ansient application size error: The target transient application
program will not fit in the largest transient area defined in the pool
for this station.

FF System error.

D-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Appendix E. Status Codes

The list below and the table that follows gives information about the two bytes
of status bits that are set in SMSDST when an exceptional condition occurs
(condition code=X'02'). The status bits in the first byte (SMSDSl) indicate
the general condition:

Bits in SMSDSI Condition
-------1 (X'Ol') Incorrect length
------1- (X'02') Unit check
-----1-- (X'04') Command reject
----1--- (X'08') Attention
---1---- (X'lO') Prior operation
--1----- (X'20') Data check
-1------ (X'40') Unit exception
1------- (X'80') Intervention required

The status bits in the second byte (together with those in the first) indicate the
specific condition, as shown in the table.

The table applies to communications between stations. To use the table, find
the status bits in the leftmost column of the table, the applicable instruction in
the third column; read the explanation of the corresponding condition in the
second column of the table.

A status value not in the table may be a combination of status codes. When
such status values occur, review the table and search for the highest value first,
then the next highest value. Remember that a status bit can be shared by more
than one status code.

Appendix E. Status Codes E-1

Status Bits

-------1 -------1
(X'0101 ')

-----1-- -------1
(X'0401 ')

Condition

Incorrect length:

The message was longer than the space available
in the segment (that is, the space between
the PFP and the end of the segment).
Or the message was longer than the value of the FLI
when the FLI was nonzero and less than
or equal to the length between the PFP
and the end of the segment.
Or a write to a logical work station
contained more than 255 bytes.

Action:Change the segment so that
enough space is available for the message.
Or, if the end of the field was unexpected,
change the FLI.

Command reject:

No asynchronous station entry point defined
in the current controller application program
of the station receiving the message from the
write operation. One of the following may
may have caused the condition: the
receiving or sending application program
may have been incorrect;
a message may have been sent to all stations
whether they could receive it or not.

Action: If necessary, change the
application program of the receiving station
so that it has an asynchronous station entry
point or change the application program
of the sending station so that no messages
are sent to the other station.

Figure E-1 (Part 1of2). Status Codes

E-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Instruction

LREAD
LWRITE

LWRITE

Status Bits

-----·1-- ------1-
(X'0402')

Condition

Command reject:

The station ID specified was not the ID
of any station that exists for the con­
troller application program sending the
message. One of the following may have
caused the condition: the station IDs
may have been specified incorrectly
during the controller configuration;
the application program may have specified
the station ID incorrectly; or a message
may have been broadcast to all stations
whether they existed or not.

Action: If necessary, check the controller
configuration and the controller application program
and make corrections.

Instruction

LWRITE
LCHECK

Figure E-1 (Part 2 of 2). Status Codes

Appendix E. Status Codes E-3

Status Bits

----1--- --------
(X' 0800'}

-1------ --------
(X' 4000')

1------- --------
(X' 8000')

Figure E-2. Status Codes

Condition

Attention:

The operator signaled attention by pressing
the Reset key twice in succession.
The operation was in a wait state with an
indeterminate end point (an attention does
not affect a wait state with a determinate
end point}. The wait state may have re­
sulted from such condition as:
a read from a 4704 terminal or the central pro­
cessor; intervention required for a printer;
failure to encode a magnetic stripe
after the magnetic stripe encoder was enabled.

Action: Prompt the operator to carry out
the appropriate action (such as replacing the forms
on a printer}. Reset the magnetic stripe encoder
if it was enabled.

Unit exception:

No message was found for the read operation
because no message was pending for the station.

Action: Ignore the lack of a pending message.

Intervention required:

A message was already pending for the station
that was to receive the message from the write
operation.

Action: Wait until the pending message
has been read.

E-4 4700 Controller Programming Library, Volume 1: General Controller Programming

Instruction

LCHECK

LREAD

LWRITE

Appendix F. Functions Retained for 3600 Compatibility

Split Programs

The split program structure separates the instruction section of your program
from the constants section, and is supported on the 4700 for compatibility with
the IBM 3600 Finance Communication System. You must specify the split
option during configuration. The split program structure can be used with
overlay programming, and applies to either the relocatable or nonrelocatable
programs described earlier.

The following paragraphs describe the operands of the instructions in
Chapter 5 that control the split programming capability.

A.POPT Instruction: SPLIT Operand

BEGIN Instruction

APBNM Operand

INSNAME Operand

DEFCON Instruction

LEXEC Instruction

The split assembly option (SPLIT= Y specified in the APOPT instruction)
produces two CSECTs. The OVL YSEC instruction label is used to name the
constant section and an internally generated label is used to name the
instruction section. If SPLIT= Y is specified, SECTION AUTO is assumed
unless overridden by a SECTION instruction. The default is (N).

If SPLIT= Y option was specified in the APOPT instruction, two CSECTs will
be generated; a CSECT with the name identified by APBNM=name for the
constants and a CSECT with an internally created unique name for the
instructions.

A 1-to-8 character symbolic name to be associated with the instruction portion
of a split application program. If this name is omitted, the internal name
BQKINx is assigned, where xis an integer in the range 1-999.

When SPLIT=Y and RELOC=N are both coded, (in the APOPT instruction)
and a label in the instruction section of the program is referred to in the
(LABEL-APBNAME) format, the format must be changed to:

• (label-BQKINl), where BQKINl is the CSECT name of the instruction
portion

• or the (label-name) format where name is the symbolic name assigned to
the instruction section by the INSNAME operand of the BEGIN
instruction.

When the program is assembled using the SPLIT option, the addressed
instruction must be in an instruction section, if the addressed instruction is in a
constant section, the results are unpredictable.

Appendix F. Functions Retained for 3600 Compatibility F-1

LLOAD Instruction

LSEEK lnstruetion

LSEEKP Instruction

LSEEKPL Instruction

NO INST

INST

When you use the LLOAD instruction to load a split overlay containing a
constants section only, set the ELPCSF flag and the ELPSEG and ELPCLA
parameters. Do not set the ELPISFflag. For a split overlay containing an
instruction section only, set the ELPISF flag and the ELPILA address. Do not
set the ELPCSF flag. In either case, setting both flags causes program check
(hex 17), invalid parameter list.

ELPCSF
If the SPLIT option is specified and this flag is on in ELPFLG then the
LLOAD instruction derives the load address for the constants from the
ELPSEG and ELPCLA parameter list fields.

ELPISF
If the SPLIT option is specified and this flag is on in the ELPFLG field
then LLOAD obtains the load address for the instructions from the
ELPILA parameter list field.

The table must be located in the constants section of a program assembled with
the SPLIT= Y option in the APOPT instruction. (Use the LSEEKP instruction
to search a table located in the instruction portion.)

If SPLIT= Y is coded in the APO PT instruction and the table is in the
instruction portion of a split program, the PFP and FU are not changed.
LSEEKP searches tables in either the constants or instruction section of a split
or non-split application program.

You must set the following parameter list fields before issuing the LSEEKP
instruction.

SKPFLG1 A 1-byte flag field.

Hex Code

xxOxxxxx

xxtxxxxx

Meaning

The table is in a non-split program or in the constants portion of
a split program.

The table is in the instruction portion of a split program.

Specifies that the table to be searched is located in a nonsplit program, in the
constant portion of a split program, or in any segment.

Specifies that the table to be searched is located in the instruction portion of a
split program.

F-2 4700 Controller Programming Library, Volume 1: General Controller Programming

OVLYSEC Instruction

inst-org/ const-org Operand

SECTION Instruction

SEGCODE Instruction

SEGCOPY Parameter List

OVL YSEC defines the load addresses for the instruction section and the
constant section of an overlay assembled with the split option (SPLIT= Yin the
APOPT instruction).

The inst-org/const-org operand is used to specify the load address for the
instruction and constant sections, respectively, of an overlay when assembling
with the split option in effect. One of these parameters must be specified. If
one is omitted, the omitted operand will default to an'"'' specification.

INSTR
Specifies the presence (Y) or absence (N) of an instruction portion in the
overlay section. This applies only when SPLIT= Y is specified on the
APOPT instruction. The default is Y.

INS NAME
A 1-to-8 character symbolic name to be associated with the instruction
portion of a split application program. If this name is not supplied, the
instruction portion is given the name BQKINx, where x is in the range
1-999.

INSTR
Specifies that following instructions are to be placed in the instruction
section. INSTR works only if SPLIT= Y has been specified.

CONST
Specifies that following instructions are to be placed in the constant
section. CONST works only if SPLIT= Y has been specified.

AUTO
Causes an automatic collection of instructions and constants into
respective CSECTs. AUTO works only if SPLIT=Y has been specified.

For the SPLIT= Y option, two CSECTs will be generated: one with the name
specified in SEGCODE for the constants and another with an internally
generated name for the instructions.

INSNAME Operand: The INSNAME operand is a 1-to 8-character symbolic
name to be associated with the instruction portion of a split application
program. If this name is not supplied, the instruction portion is given the name
BQKINx, where xis in the range 1-999.

Byte 1 - Segment/Section Indicator: If the second segment number is 14, this
field can be specified as a character C or I, to identify whether the constant or
instruction section of the segment is being referenced. Unless a value of I is
coded, C is assumed. If the application program occupying Segment 14 for the
specified station was assembled without the SPLIT= Y option, this field is
ignored.

Appendix F. Functions Retained for 3600 Compatibility F-3

STO VLY Instruction

TABLE Instruction

Segment Indexing

c

I

A

This STOVLY identifies the origin address of the constant portion of a
split application overlay.

This STOVL Y identifies the origin address of the instruction portion of a
split application overlay.

The preceding SECTION instruction controls whether this STOVL Y
identifies the instruction or constant portion of a split application
overlay. The default is A.

An LSEEK table must be in Segment 14 (for a split program, the constants
section). A table for LSEEKP can be in any part of the program. The SRT
operand is used with the LSEBKP instruction to provide a binary search of a
sorted table.

Segment indexing is the ability to store a displacement value in a register and
have this displacement value added to the displacement (address) of data
referenced in a machine instruction. For example, consider the machine
instruction:

~reg,defld

~- ~ ---
01 [Rl I S2 I L2 [D2

0 78 1112 15 16 19 20 31

Without segment indexing, D2 points directly to the data within Segment S2
that is to be added to Rl. With segment indexing, an index value is added to
the displacement in D2 to locate the data within Segment S2. The index value
is a binary number from 0 to 65 535 and is located in the low-order 2 bytes of
any of the general registers from 1to15. Register 0 has a special meaning and
is discussed later. The use of indexing allows real-time addressing of data
during program execution.

F-4 4700 Controller Programming Library, Volume 1: General Controller Programming

Segment indexing is applicable to all instructions that use fixed-field addressing
with the exception of the SETFPL and SETSPF instructions. Before using
segment indexing, an application program must first define a 16-byte Index
Register Number Table (IRNT) in any segment except Segments 0 and 14.
Each 1-byte field of this table corresponds to a segment, with byte 0
corresponding to Segment 0, byte 1 to Segment l, and so on, as follows:

Byte Applies to Segment

0

2

3

15

oprl

oprl

oprl

oprl

opr2

opr2

opr2

opr2

--------J

•
•
•

1 ..
1-byte

0

2

3

15

Because the instructions that use indexing can have either one or two
fixed-field operands, each byte of the IRNT contains two 4-bit entries for the
application segment. The first four bits refer to operand! of an instruction, and
the second four bits refer to operand2. (FF instructions have both operandl
and operand2. FI instructions have only operand!. RF and SF instructions
have only operand2.) Each four bits represent a register number from 1 to 15,
and the specified register contains the actual index value. If a 0 is specified as a
four-bit entry in the IRNT, then the index value for that operand (oprl or
opr2) referring to that particular segment is 0, regardless of the contents of
register 0.

Appendix F. Functions Retained for 3600 Compatibility F-5

In the following example, instructions with fixed-field operands that refer to
data in Segment 1 will have the value in register 5 (a decimal 256) added to the
displacement for both operandl and operand2 of the machine instruction.

byte 0
ofIRNT

byte 1
oflRNT

byte 15
oflRNT

Some segment

segment 0
(general register)

) ~

~___o __.__l o___._I _5 .___5 -'---(I ·; ;. I o 1

operand!/ ~ operand2

o~

~ '.,____\ ___.___256 ---i. ~
reg 0 reg 4 reg 5 reg 6 reg 15

The purpose of two register numbers per segment is to simplify simultaneous
index addressing of two different sets of DEFLDs (for example, two different
record formats) within one segment. For simplicity, if the user requires an
application with simultaneous index addressing of two different sets of
DEFLDs, place each set in a different segment. Then, the program is not
concerned with the operand1/operand2 distinction because only one index
register is used per segment, as in the above example.

A record of the indexing status for each station and segment is maintained
internally by the controller and determines whether indexing is active or
inactive for the station and segment. Indexing is initially inactive for all
stations. Each station requiring indexing must execute a SETX ON instruction
to activate indexing for that station, to define the location of the IRNT, and to
cause the controller to record the active/inactive status for each segment that
the station can access. The indexing status for Segments 13, 14, and 15 is
unique for each logical work station. If two Segment Os exist for one station,
and if indexing is set active (or inactive) for one Segment 0, it is actually set
active (or inactive) for both.

The SETX ON instruction can also be used to cause an indexing active station
to change from one IRNT to another. The controller's indexing active/inactive
status is updated for the new IRNT contents.

The SETX OFF instruction is used to deactivate segment indexing for the
current station.

When indexing is active for a station, the SETXREG is used to modify an
active IRNT. SETXREG updates the segment's IRNT and also updates the
active/inactive status as recorded by the controller. Using instructions such as
STFLD and MYFXD to modify an IRNT entry does not update the controller's
recorded status for the segment.

F-6 4700 Controller Programming Library, Volume 1: General Controller Programming

If a segment does not require indexing but has been activated with a SETX ON
instruction, it is generally better to change the entry in the IRNT for that
segment to X'OO' than to have indexing active for the segment with an index
value of zero in the indexing register. Both approaches would cause the
relevant fixed-field operands to address the same data; however, address
resolution with an index value of zero is slightly slower.

The TESTX instruction is used to test whether indexing is active for a specified
station or segment.

The following example illustrates how an application program might take
advantage of segment indexing to refer to fields in a sequence of similar
records. The example assumes that indexing is active (the SETX ON
instruction has been issued) for the station and the IRNT entry for Segment 2
is X'33'. Each record is 50 bytes long and contains information describing a
customer's checking account, as follows:

Displacement
into Segment

0 AC TN AM DEFLD 2,0,20 NAME
20 A CTN UM DEFLD 2 It 9 NUMBER
29 ACTFLG DEFLD 2 I I 2 FLAGS:

ACTFMN EQUATE X'0001' ON No minimum balance
required

ACTFOV. EQUATE X'0002' ON Eligible for
overdraft

31 ACT BAL DEFLD 2,,4 CURRENT BALANCE

Assume that 5 of the above records are consecutively located in Segment 2,
with the first record beginning 6 bytes into the segment. (The records might be
part of a disk/diskette data set where each 256-byte block contains 5 records.)

segment 2 record 1 record 2 record 3 record 4 record 5

0 6 56 106 156 206 256

Appendix F. Functions Retained for 3600 Compatibility F-7

The following application computes a total of the current balances for those
accounts that are eligible for overdraft. The IRNT indicates that register 3 is
Segment 2's index register. Upon completion, register 4 will contain the desired
total.

HOOO
H006
H050
H256

LOOP

NEXT

Notes:

DEFCON
DEFCON
DEFCON
DEFCON

LDFLD

LDFLD
TSTMSKI

JUMP
ADDFLD

ADDFLD
CAFLD
JUMP

H'O'
H'6'
H'50'
H'256'

3,H006

4,HOOO
ACTFLG,
ACTFOV
MZ,NEXT
4,ACTBAL

3,H050
3,H256
LT,LOOP

Load index register with address
of record 1

Initialize total to zero

Is account eligible for overdraft
NO -then go past for next record
Yes -add current balance to

total
Add record length to index register
Are there more records

Yes -go check next record
No -desired total is in

register 4

1. This instruction will be executed 5 times, once for each record.
The following table shows addresses (with respect to Segment 2)
actually referenced by the field ACTFLG on successive execution.

Displacement
(in TSTMSKI's Index Address

Execution Machine + Value = Actually
Number Instruction) (in register 3) Referenced

1 29 6 35
2 29 56 85
3 29 106 135
4 29 156 185
5 29 206 235

2. Because ACTBAL references Segment 2, it also will be indexed.

3. To further reduce application program execution time and size,.the
TSTMSKI and JUMP instructions could be replaced with a LIFOFF
instruction, and the ADDFLD, CAFLD, and JUMP instructions could be
replaced with a BRANX instruction.

F-8 4700 Controller Pr()gram,ming Library, Volume 1: .General Controller Programming

1

2

3

Indexing Affects on Instructions

BRANX Instruction

LDRA Instruction

MVDI Instruction

MVFXD Instruction

This section describes how indexing affects certain instructions.

Because the instruction algebraically increases the low-order 2 bytes of a
register, BRANX can also be used as an aid to simplify table processing.

If indexing is active in the specified segment, LDRA adds the index value to
the specified displacement before it is placed in the operand 1 register. When
referenced during program operation, a register address is unaffected by
indexing.

If the fixed field is indexed, then. the new setting of the primary field pointer
will include the index value.

If the fixed field is indexed, then the new setting of the primary field pointer
will include the index value.

Appendix F. Functions Retained for 3600 Compatibility F-9

SETX--Enable/Disable Segment Indexing

The SETX instruction activates or deactivates.segment indexing for the current
station. When the first operand is ON, indexing is activated for this station and
the location of the Index Register Number Table (IRNT) is also specified.
When the first operand is OFF, indexing is deactivated for this station and no
teference is made to the IRNT. Register- or modified register-addressed
operands cannot use indexing.

The IRNT is 16 bytes long and resides in any segment except 0 or 14. It has
the following format:

Byte

Applies to
Segment

0 2 15

,...:.~~~~.......L~~=~~=~=~-- ,,,_..___
j oprl I opr2 oprl opr2 I oprl I opr2 I __ I oprl I opr2 I ..___.. ..___.. --.,..-. ..___..

0 2 15

Because the instructions that use indexing can have either one or two
fixed-field operands, each byte of the IRNT contains two 4-bit entries for the
applicable segment. The first four bits ref er to operand 1 of an instruction, and
the second four bits ref er to operand 2 (FF instructions have both operand 1
and operand 2, FI instructions have only operand 1, and RF and SF
instructions have only operand 2). Each four bits represent a register number
from 1 to 15, and the register contains the actual index value. If a 0 is specified
as a 4-bit entry in the IRNT, indexing is not used for that operand.

Note: To use this instruction, you must code the P68 operand of the OPTMOD
configuration instruction.

Name Operation Operand

[label] SETX { OFFION }

ON

{
defld2 }
(defrf2)
(reg2)
seg2,disp2

Indexing is to be activated for this station.

OFF
Indexing is to be deactivated for this station.

F-10 4700 Controller Programming Library, Volume 1 ~General Controller Programming

operand 2
Is the label of a DBFLD instruction which defines the location of an
IRNT. The implied length is ignored; the table is assumed to be 16 bytes
long. The segment number associated with this table cannot be 0 or 14.
If a register-addressed IRNT is specified, the segment space ID in the
register must equal the current segment space ID.

Condition Code: The code is not changed.

Program Checks (hex): 01, 02, 09, or 27 can be set.

Appendix F. Functions Retained for 3600 Compatibility F-11"

F-12 4700 Controller Programming Library, Volume 1: General Controller Programming

SETXREG--Set Index Register Number

The SETXREG instruction modifies the contents of the IRNT for a station that
is active for indexing. See the SETX instruction to activate indexing for a
station. See SETX for a description of the IRNT.

Note.: To use this instruction, you must code the P68 operand in the OPTMOD
configuration macro.

Name Operation Operand

{
(segl , [regl])

[label] SETXREG
(seg2 [, reg2])

r , { ~~~g2 [, reg2]) }] }

segt

regt

segl

regl

DUP

Locates the byte in the IR.NT that corresponds to segl. If segl is
specified, the leftmost four bits of the located byte are set to regl. If segl
is omitted, no change is made to the leftmost four bits in any byte of the
IRNT.

Is a decimal integer from 0 to 15. Integers 1-15 indicate a register
number. If segl is specified, the default for regl is 0. When regl is 0,
the index value is zero regardless of the contents of regO.

Locates the byte in the IR.NT that corresponds to seg2. If seg2 is
specified, the rightmost four bits of the located byte are set to reg2. If
seg2 is omitted, no change is made to the rightmost four bits in any byte
of the IR.NT (unless DUP is coded).

Is a decimal integer from 0 to 15. Integers 1-15 indicate a register
number. The default for reg2 is 0, if seg2 was specified. If reg2 is 0, the
index value is zero regardless of the contents of regO.

Is an abbreviation that will provide seg2,reg2 with the same values given
to segl,regl. DUP is valid only when operand 1 is specified.

CoNlition Code: The code is not changed.

Program Checks (hex): 01, 09, or 12 (indexing inactive) may be set.

Appendix F. Functions Retained for 3600 Compatibility F-13

F-14 4700 Controller Programming Library, Volume 1: General Controller Programming

TESTX--Test for Active Indexing

The TBSTX instruction tests the indexing status (active or inactive) for a
station or a specified station segment. The instruction points to a parameter list
(see COPY DBFTSX). A flag byte (TSXFLG) in the parameter list must be
set list (see COPY DBFTSX). A flag byte (TSXFLG) in the parameter list
must be set to X'OO' or X'80' as follows:

TSXFLG=OO (test indexing status of station)

To test whether indexing is active for a specified station, the program must first
initialize the TSXFLG field to X'OO' and enter a station number in the
TSXSID field of the parameter list. If indexing is inactive for the specified
station, the parameter list is unchanged.

If indexing is active for a specified station, the TSXFLG field is set to X'02'
and the segment number and address of the IRNT are also returned in the
parameter list in fields TSXSBG and TSXADR, respectively.

TSXFLG=80 (test indexing status of station and segment)

To test whether indexing is active for a specified station and a specified
segment, the program must first initialize the TSXFLG field to X'80', enter a
station number in the TSXSID field, and enter a segment number in the
TSXSBG field of the parameter list.

If indexing is inactive for the specified station, the parameter list is unchanged.

If indexing is active for the specified station, the two register numbers from the
IRNT for the specified segment are returned in the parameter list in fields
TSXRBGl and TSXRBG2. TSXFLG is set to X'82' if the segment is not
active for indexing or to X'83' if the segment is active for indexing.

Testing for active/inactive indexing for the segment is via the controller's
internal indicators which are set/reset through SETX and SBTXRBG
instructions.

If the TBSTX request is not valid (for example, an invalid station). TBSTX will
not modify any part of the parameter list.

Note: To use this instruction, you must code the P68 operand on the OPTMOD
configuration instruction.

Name Operation Operand

[label] TESTX (defrf2) {
defld2 }

operand 2

(reg2)
seg2,disp2

Defines the field that contains the parameter list. The implied length is
ignored; the parameter list is fixed in length. The segment number for this
operand cannot be 14.

Appendix F. Functions Retained for 3600 Compatibility F-15

Condition Code: One of the following is set:

Hex Code

01 OK
02ID
04IS

Explanation

TESTX was successful
Invalid station ID in the parameter list
Invalid segment number in the parameter list
(can only be returned if
a segment's indexing status is being tested).

Program Checks (hex): 01, 02, 09, 11, or 27 can be set.

F-16 4700 Controller Programming Library, Volume l: General Controller Programming

Appendix G. Program Communication with the System Monitor

Applicati·on Program Debugging

You can use the control operator's console to debug controller application
programs. Any application program may be ~essed as it operates on behalf of
one of its associated logical work stations. The followirig may be done when in
debugging mode:

• Address stop: The coatrolier application program can be stopped just before an
instruction is executed "so ·that" station storage or global storage can be
examined.

• Display: Any location in programmable storage, station storage, global
storage, or the controller application program may be displayed on the
4704/3278.

• Alter: Any location in programmable storage, global storage, or the controller
application program may be altered by entering the hexadecimal equivalents
of the bytes to be altered. The storage or application program is altered only
for the current day's operations; a permanent change requires that the
application programs or configuration be changed by creating a new operating
diskette. Because anyone who knows the system monitor logon procedure
and the operator password can alter an application program, you should be
careful to protect the password.

The application program on the diskette may also be altered using the 032
command.

Note: Any alter command, including 032, will not be accepted if the diskette
has been declared operational during configuration assembly
(DSKOP= YES).

• Instruction step: The controller application program can be stopped after each
instruction is executed. The addresses of the instructions and 8 bytes at those
addresses are displayed in hexadecimal when the controller stops. To execute
the next instruction, the EOM key is pressed.

• Hard-copy trace: The order of execution of the instructions in a controller
application program can be traced. Each instruction address and 8 bytes at
that address are printed on the specified hard-copy terminal (that is, the
journal and administrative printers). Hard-copy trace differs from instruction
step in that the controller does not stop after each instruction is executed.

• Checking indexing status: If segment indexing is being used, its status may be
checked using command 15.

Programmable Input Facility

The programmable input facility of the system monitor enables a logical -work
station to input commands to the system monitor. These commands could be
stored in disk or diskette data sets, or could be reeeived from a host program
communicating with the logical work station. A controller application program
could be written specifically to support logical work station control of the monitor,

Appendix G. Program Communication with the System Monitor G-1

or routines eould be incorporated into programs doing other processing also. The
program issues LREADs and LWRITEs to station 1 (SMSDSS=l) to
communicate with the monitor. A flag in the GMSFLG field (GMSFPCM) is set
ori by the controller while the system monitor is processing the command. This
flag is set to 0 when command processing is complete.

If the work station is also in communication with a host application program that
accepts input from a host terminal or if the Communications Network
Management/ Controller Support (CNM/ CS) facility is installed on your system,
a host terminal can become the system monitor terminal for any attached 4 700
controller.

When not in communication with a work station or being controlled by a remote
operator at the host, the system monitor can still be controlled from a 4704/3278
keyboard display with all commands valid. ·

Monitor Restrictions under Programmable Input Control

When the programmable input facility is being used, some system monitor
commands are limited or not allowed. The following list notes the differences.

1. If the 049 command had been issued the line value that was entered is ignored
except on the 001 command. Each response will contain the full message
normally displayed.

2. Debugging mode is not allowed for the station that is currently communicating
with the system monitor via station reads and writes. If a Debug request
(123) for that station is sent, a 90013 error message will be returned.

3. Logon (three Attentions plus the monitor ID) is not required when using the
programmable input facility. Any write (valid or not) to station 1 will serve
as the logon, provided that no one else is logged on as the monitor. When you
are logged on in programmable input mode, only the 000 command (if in
Debug mode, must be 00, then 000) or a station read or write error will log
off the monitor and make it available for another station, CNM, or 4704
terminal. A 90032 message will be sent if a station read or write error occurs.

4. If a station attempts to communicate with the system monitor while it is
logged on to another station, the request will be rejected and a 90033 error
message returned.

Note: If the system monitot is currently logged on to a 4704/3278 terminal,
the message will not be read until a logoff (000) is issued at the 4704/3278.
A flag in GMSIND field (GMSISMM) is set on whenever a 4704/3278 is
logged on to the system monitor. To avert a possible lockout, this flag should
be checked before a write operation is requested from the monitor.

G-.2 4700 Controller Programming Library, Volume 1: General Controller Programming

5. After a station writes a command to the system Monitor it should check for
the L WRITE completion. This check should be in the form of a pause loop
that includes the following instruction.

LCHECK ST,TIO

In the pause loop you should check the SMSAFL flag for appropriate
interrupts. Waiting for interrupts in this manner will prevent possible
lockouts where the station and the System Monitor attempt to write to each
other at the same time.

6. A zero length write to station 1 is treated as an Attention or Enter Jcey. The
action taken by the sysrem monitor depends on the function it is executing at
the time it reads the zero length write. If an attention was expected, the zero
length write is accepted; however, a 90001 error message is.returned. You
should ignore the error message. If both an Attention and Enter key can be
accepted, the system monitor will always assume that the enter key was the
response.

7. During create disk (999) or transmit (888), any station write by the station
logged on to the system monitor will be interpreted as an attention after
communication with the host has started. If a read CPU is outstanding, the
read will break with an attention error (0800) or prompt message 00020 or
00090.

8. While in programmable input mode, pressing the Attention key 15 times in 2
minutes on any idle 4704 or 3278 will fog off the system monitor. Three
more attentions should activate the monitor at that 4704/3278 and lock out
the programmable input facility. If, at the time the 15 attentions are given,
the monitor is in create disk (999) mode, logoff will not take place; instead
the attentions will be ignored.

9. If create disk (999) is going to be used, the controller configuration procedure
must specify at least one read buffer of 256 bytes or more (CNL operand on
the COMLINK macro). If the expanded system monitor with multiple-block
support is used (MONITOR=EXPMB in the STARTGEN macro), more than
one read buffer should be specified. The number of required read buffers is
proportional to the speed of the communications line. (Enough buffers
should be specified so that, when a diskette write operation is in progress,
data from the host can continue to be accumulated.) Two read buffers are
usually sufficient for line speeds up to 4800 bits per second. To realize any
performance benefits from the expanded system monitor's support of
multiple-block 1/0, communication-line speeds of at least 7200 bits per
second must be used.

Appendix G. Program Communication with the System Monitor G-3

G-4 4700 Controller Programming Library, Volume 1: General Controller Programming

Bibliography

The publications listed below contain information that may be
useful to persons programming a 4700 system.

IBM Vocabulary for Data Processing Telecommunication and
Office Systems,GC20-1699

IBM System/370 Bibliography, GC20-0001

IBM System/370 Bibliography of Industry Systems and
Application Programs, GC20-0370

IBM 4700 Finance Communication System: System Summary,
GC31-2016

Subsystem Operating Procedures, GC31-2032

Subsystem Problem Determination Guide, GC31-2033

Host Support User's Guide, SC31-0020

4701 Controller Operating Instructions, GC31-2022

4704 Display Operating Instructions, GC31-2025

Systems Network Architecture (SNA) General Information,
GA27-3102

Bibliography X-1

X-2 4700 Controller Programming Library, Volume 1: General Controller Programming

Index

SpeCial Characters

(defrf) 4-5
(defrf) addressing, rise and example of 2-17
(reg) 4-4
"Allocating" storage 2-7
"Defining" storage 2-7

A

ACP operand 2-24
active logical work station, definition of 2-23
added function for release 3 vii
ADDFLD 2-17
ADDFLD and ADDREG, using 3-11
ADDFLD-Add Field 5-3
ADDFLDL-Add Field Logical 5-5
ADDMEM 5-27
ADDREG-Add Register 5-7
address constants, AL2 and YL2 3-1
Address stop G-1
addressing between primary and secondary programs 2-13
addressing data 2-1
addressing storage and register locations 2-13
addressing, base 3-3
addressing, modified register 2-17
addressing, register 2-16
ADDZ--Add Zoned Decimal 5-9
ADDZ, using 3-12
AD RLST-Return Address List 5-11

!RETURN 5-11
alert messages, program check CNM 2-27
alter, storage G-1
AL2 address constants 3-1
ampersand 4-5
AND-AND Field 5-13
AND, using 3-12
ANDl--AND Field Immediate 5-15
ANDI, using 3-12
APBDUMP 3-18
APBDUMP-DUMP Segment or File to Diskette 5-17

DEFDMP 5-17
APCALL 2-3
APCALL and APRETURN, using 3-14
APCALL-Call Assembler Application Program 5-19

BEGIN 5-19
DEFSTOR 5-19

APCALL/ APRETURN 3-2
APCALL, using 2-29
API operand 2-25
APLIST 5-19
APOPT 2-2, 3-1, 5-153
APOPT-Application Program Options 5-23
APOPT, using 3-1
application program 1-5, 2-7
application program header 2-2
application program name 2-27
application programs 2-1, 2-6
APRETURN-Return to Calling Program 5-25

APCALL 5-25
DEFSTOR 5-25

arithmetic 1-5
arithmetic/logical instructions 3-10
arithmetic, types of 3-10
assembler language 1-3

assembly control instructions, using .3-3
AST operand 2-25
asynchronousjnterrupts 5-21
asynchronous interrupts, entry point priority of 2-24
asynchronous requests 2-25
ATD operand 2-24
ATM operand 2-25

B

base addressing registers, using 3-3
BEGIN 2-2
BEGIN-Assembly Control 5-27
BEGIN, detailed description 3-2
BEGIN, using 3-1
bibliography X-1
binary 4-5
binary arithmetic 3-10
binary operations 3-11
Binary Synchronous Control (BSC3) 1-2
bit control with LSETON and LSETOFF 3-13
bit-by-bit testing 3-13
braces 4-1
brackets 4-1
BRAMLR 2-4
BRAN 3-14, 3-15
BRAN-Branch 5-31

APOPT 5-31
EQUATE 5-31

Branch Instructions 3-14
branching, condition code 3-14
BRANL 2-4, 3-14, 3-16
BRANL-Branch and Link 5-33

BRANLR 5-33
BRANR 5-33
LRETURN 5-33
LSEEKP 5-33

BRANLR 3-14, 3-16
BRANR 3-14, 3-15
BRANR-Branch Register 5-37
BRANX 3-16
BRANX-Branch on Index 5-39

APOPT 5-39

c
CAFLD-Compare Arithmetic Field 5-41
CAFLD, using 3-12
CAFLDL-Compare Arithmetic Field Logical 5-43
call programming 2-1, 2-3
calling programs, instructions for 3-14
calls 2-2
CAREG-Compare Arithmetic Register 5-45
CAREG, using 3-12
CCDI-Compare Character Data Immediate 5-47
CCDI, using 3-12
CCFLD-Compare Character Field 5-49
CCFLD, using 3-12
CCFXD-Compare Character Fixed 5-51
CCFXD, using 3-12
CCITT Recommendation X.21 1-2
ccmask 4-6
CCSEG-Compare Character Segment 5-53
CCSEG, using 3-12

Index X-3

chain dispatching, work station 2-23
changes/ additions, release 3 vii
character 4-5
character, delimiter 2-20
characters, master compaction 3-8
check codes D-1

APCALL D-2
APRETURN D-2
DEFDEL D-1
EDIT D-1
LRETURN D-1
LWRITE D-2
PAKSEG D-1
SETFPL D-1

checking indexing status G-1
CNM (communications network management) 2-27
CNM/CS 5-145
CNM/CS. 5-146

LREAD CP 5-146
LWRITE CP 5-146

COBLCALL 2-3
COBLCALL-Call a COBOL Application Program 5-55

APCALL 5-55
COBLCALL, destroying register 12 contents by 2-29
COBLCALL, using 3-14
COBOL 2-3, 5-129
COBOL (COommon Business Oriented Language) 1-3
COBOL programs, linking your program to 2-29
coding and syntax rules 1-5
coding rules 4-1
Communication Network Management/Controller Support

(CNM/CS) G-2
communications network management (CNM) 2-27
COMP 3-8
COMP-Compress and Compact 5-57
compaction and compression, data 3-8
comparing data, binary and logical 3-12
compatibility, 3600 program 2-29
COMPTB-Build Compaction Table 5-61
COMPTB, using 3-8
COMPZ-Compare Zoned Decimal 5-65
COMPZ, using 3-12
condition code branching instructions 3-14
condition codes 2-27
configuration 1-3
constants 2-7
constants, AL2 and YL2 address· 3-1
constants, defining 3-4
control instructions, assembly listing 3-4
control instructions, using assembly 3-3
control operator 1-3
control, ending work station 2-25
control, getting processing 2-24
control, instructions for program 3-14
control, releasing 3-14
controller timer 2-25
conversion, binary/zoned decimal 3-10
converting between decimal and binary data 3-7
COPY 2-5, 3-3, 4-6
COPY DEFCPL, using 3-9
COPY DEFDCP, using 3-10
COPY DEFTRP, using 3-6
copy files 2-1, 2-5
COPY files and lists (DEFxxx) 2-26
COPY-Copy Source Code 5-67
copyfilename 5-67
CPGEN iii
CPGEN usage limits, 3600 2-29
CPLTBD and CPLTBS fields of DEFCPL 3-9
CRETN-Conditional Return (COBOL) 5-69

CRETN, using 2-29

D

data 4-5
data comparing, binary and logical 3-12
data compression and compaction 3-8
data decompression/ decompaction 3-10
data definition instructions 3-4
data movement 3-5
data operation instructions, using 3-5
data operations 1-5
data translation 3-6
data verification and checking 3-6
data, formatting input 3-5
debug G-1 ·
debugging G-1
decimal arithmetic, zoned 3-10
DECOMP-Decompress and Decompact 5-71
DECOMP, using 3-10
decompression/ decompaction, data 3-10
DECOMPTB-Build a Decompaction Table 5-75
DECOMPTB, using 3-10
DEFAPB 2-26, B-3
default 4-2
DEFCON 4-4
DEFCON-Define Constant 5-77
DEFCON, operand addressing using 2-13
DEFCON, table definition with 3-7.
DEFCON, using 3-4
DEFCPL 5-57, B-5

COMPTB 5-57
DEFDCP 5-71, B-5
DEFDCP, using COPY 3-10
DEFDEL-Define Delimiters 5-79
DEFDEL, using 2-20, 2-22, 3-4
DEFDMP-Define APBDUMP Buffer 5-83

APBDUMP 5-83
DEFDMP, using 3-4
DEFELP 5-202, B-6

DEFCON 5-204
DEFLD 5-204
OVL YSEC 5-204

DEFESP 5-371, B-6
DEFFAP 5-133, B-7
DEFGMS 5-67, B-7
DEFINT B-13
defintion instructions, data 3-4
DEFLD 4-4.
DEFLD instruction, creating a 2-15
DEFLD-Define Field 5-85

APOPT 5-85
DEFCON 5-85, 5-86
DEFLD 5-86
DEFRF 5-85
EQUATE 5-85

DEFLD, example of using 2-14
DEFLD, operand addressing using 2-13
DEFLD, using 3-5
DEFMER 5-205, B-14
DEFREG 2-26, B-14
DEFRF 2-6
DEFRF-Define a Modified Register Address Field 5-89
DEFRF, operand addressing using 2-13
DEFRGS 2-26, B-15
DEFSCA 5-321, B-15
DEFSCA, using COPY 3-5
DEFSCP 5-327, B-15
DEFSEG B-16

X-4 4700 Controller Programming Library, Volume 1: General Controller Programming

DEFSKP 5-226, 5-229, B-17
DEFSMS 5-17, 5-67, B-18
DEFSOR 5-237, B-26
DEFSTOR 2-17, 3-17
DEFSTOR-Define Segment Storage 5-93
DEFTRP 5-253, B-26
DEFTRP, using COPY 3-6
DEFTRT B-27
DEFTSX B-27, F-15
DEFVUE 5-411, B-28
DEFxxx COPY files and lists i-26
delimiter table, defining location of a 3-2
delimiters 5-79
delimiters, defining and using field 2-22
delimiters, defining fields with 2-20
directory naming 3-1
DIRNAME- operand of APOPT 3-1
disp 4-4
DISP ... operand of APOPT 3-1
dispatch control, detailed description of acquiring 2-24
dispatch tables, definition and limit 2-23
dispatches 1-5
dispatching cycle 2-23
dispatching logical work stations 2-23
dispatching, definition of station 2-23
displacement 2-13
displacement, definition of segment 2-13
displacement, use in modified register address 2-18
displacement, use in register addressing 2-17
display, storage G-1
DIVFLD and DIVREG, using 3-11
DIVFLD-Divide Field 5-95

DIVFLDL-Divide Field Logical 5-97
DIVREG-Divide Register 5-99
DIVZ-Divide Zoned Decimal 5-101
DIVZ, using 3-12
dollar-sign insertion 5-107

APOPT 5-108
DSECTs, defining 3-3
DTACCESS 3-17
DTACCESS-Data Access 5-103
DTAFREE 3-17
DTAFREE-Data Free 5-105
DUMMY SECTION 2-6
Dummy Sections 2-6
dummy sections (DSECTs), defining 3-3
dump 3-18
dump area, defining a 3-4

E

EDAM 5-17
EDIT-Edit Monetary Field 5-107

MASK 5-107
EDIT, using 3-4
ellipsis 4-2
ending a DSECT (dummy section) 3-3
ENDINIT-End Initialization Section 5-111

ENDINIT 5-111
INITSEG 5-111
SINIT 5-111

ENDINIT, using 2-12
ENDOVLY 2-2, 2-4
ENDOVLY-End of Overlay Section 5-113
ENDOVLY, using 3-3
ENDSEG 2-2
ENDSEG-End Application Program Section 5-115

SEGCODE 5"115
ENDSEG, using 3-1, 3-3

ENTRY 2-6
entry point 2-5
entry points and priorities 2-24
entry points, defining and processing program 3-2
EQUATE 4-8
EQUATE-Equate a Label to a Value 5-117

DEFCON 5-117
DEFLD 5-117
DEFRF 5-117

EQUATE, using 3-3
equating values 3-3
ERRLOG-Obtain Statistical Counters 5-119
error messages 1-5
error, entry point processing 3-2
errors, processing program check and condition

code-related 2-27
example of defining fields within messages 2-22
example of moving fixed-length data 2-14
example of multiple-register-set programming 2-12
example, changing register address displacement 2-17
exclusive control 2-12
EXOR-Exclusive OR 5-123
EXOR, using 3-12
EXORI-Exclusive OR Immediate 5-125
EXORI, using 3-12
EXPS 2-16
EXPS-Exchange Primary and Secondary Field Pointers 5-127

EXPS 5-127
Extended Disk and diskette Access Method (EDAM) 3-18
external label 2-6
EXTRN 2-6

F

F; +F, and-F
use for variable-field addressing 2-20

FCLENTER and FCLEXIT, usirig 3-14
FCLENTER-Define COBOL Entry Linkage 5-129
FCLENTER, using 2-29
FCLEXIT-Define COBOL Exit Linkage 5-131

APRETURN 5-131
FCLENTER 5-131

FCLEXIT, using 2-29
field delimiters, defining and using 2-22
field length indicator (FLI) 2-15
field length, use in register addressing 2-17
field, length 2-18
fields, defining message 2-22
fields, referring to fixed-length 2-19
FILES 5-17, 5-202
FINDAP-Find Application Program 5-133
FINISH 2-2
FINISH-End the Application Program 5-137

END 5-137
FINISH, using 3-1, 3-3
fixed-length fields, addressing 2-19
flag, program check routine (SMSPCR) 2-27
formatting input data 3-5
fullword 4-5

G

Global Machine Segment (OMS) 2-7
global storage 2-12

Index X-5

H

halfword 4-S
hard-copy trace G-1.
header, segment 2-13
headers, programming segment 2-19
hexadecimal 4-5
higli-resolution counter (HRC) 3-18, 5-195
Host Support 1-3, 2-1, 2-3, 2-S, 3-2, 4-6, 5-67, 5-305, 5-343

APOPT 2-3
Host Support User's Guide 5-339

COPY 5-340
DEFCON 5-340
DEFLD 5-340
EQUATE 5-340

Host Transmission Facility 5-103

I

ID, definition of segment space 2-12
idle logical work station, definition of 2-23
immdata 4-S
Index Register Number Table (IRNT) 4-2, F-5, F-10

BRANX F-9
LDRA F-9

indexing F-9
MVDI P-9
MVFXD F-9

initializing storage 2-12
INITSEG--Initialize Segments S-139

ENDINIT S-139
SINIT S-139

INITSEG, using 2-12
INOR-lnclusive OR 5-141
INOR, using 3-12
INORl-lnclusive or Immediate S-143
INORI, using 3-12
installation diskette 1-3
instruction counter 2-24
instruction step G-1
instructions, arithmetic/logical 3-10
instructions, data operation 3-S
interrupt handling conventions 5-21 ·
interrupt, LPOST 2-25
interrupts, entry point priorities of 2-24
interval timers S-14!!
INTMR 3-18
INTMR-Interval Timer S-145
INTRTBL, defining delimiters.with 2-22
!RETURN 3-17
!RETURN-Indexed Conditional Return S-151

ADRLST S-151

J

JUMP 3-14, 4-6
JUMP-Short Branch 5-153

BRAN S-153

L

label 4-4
LCF (Local Configuration Facility) 1-3
LCHAP-Change Priority 5-1 SS
LCHAP, controlling dispatching w:ith 2-23
LCONVERT, using 2-29
LDDl-Load Data Immediate 5-161
LDDI, using 3-11
LDFLD-Load Field S-163
LDFLD, using 3-11
LDFLDC and LDSEGC, using 3-11
LDFLDC-Load Field Character S-16!!
LDFP 2-16
LDFP-Load Primary Field Pointer 5-169
LDLN 2-16
LDLN-Load Field Length Indicator S-171
LDRA-Load Register Address 5-173
LDRA, using 2-17, 3-14
LDREG--Load Register 5-175
LDREG, using 3-11
LDSECT 2-6
LDSECT-DSECT Definition (BEGIN) S-177

DEFLD 5-177
DEFRF 5-177
Ln 5-177

LDSECT, using 2-15
LDSEG-Load Segment 5-179
LDSEG, using 3-11
LDSEGC-Load Segment Character 5-181
LDSEGLN 2-16
LDSEGLN-Load Segment Length 5-183
LDSFP 2-16
LDSFP--Load Secondary Field Pointer 5-185
leading zero .suppression 5-107
LEJECT-Eject to a New Page 5-187
LEJECT, using 3-4
len 4-4
LEND-DSECT Definition (End) 5-189

DEFLD 5-189
DEFRF 5-189
Ln 5-189

LEND, using 2-15, 3-S
length 2-13
length field, use in modified register address 2-18
length, field 2-17
length, specifying segment operand 2-14
letters 4-1
level definition instructions 5-178
LEXEC 3-17
LEXEC-Execute 5-191

APOPT 5-191
EQUATE S-192
LEXIT 5-191
LSEEK 5-191
WRTI 5-191

LEXIT 3-17
LBXIT and LWAIT, using 3-14
LEXIT-End of Processing 5-193
LHRT 3-18
LHRT-Load High-Resolution Counter 5-195
LIFOFF-H Off Then Branch 5-197
LIFOFF, using 3-13
LIFON-If On Then Branch 5-199

EQUATE S-199
LIFON, using 3-13
limit of dispatch tables 2-23
limits, 3600 CPGEN usage 2-29
link interrupts, entry point priority of 2-24
link-edit 2-5

X-6 4700 Controller Programming Library, Volume 1: General Controller Programming

link-edited 2-1
link-editing 5-343
link-editing program sections 3-3
linkage edited 2-3
LINKAPB 5-23
LLOAD 2-4
LLOAD--Loa.d an Overlay Section into Main Storage 5-201

OVL YSEC 5-202
STOVLY 5-202

LMERGE-Merge Blocks of Records 5-205
Ln-Level Definition for DSECTS 5-213

LDSECT 5-213
Ln, using 2-15, 3-5
load image 3-2
load point 2-5
log messages, content of system-written 2-27
logical operations 1-5, 3-12
logical work station 1-3, 1-4
logical work station, dispatching the 2-23
logical work station, sharing a 2-12
logical work stations 1-4
loop control 5-40
loop instruction count 2-27
LPOST interrupt, processing an 2-25
LPOST-Post Work Station 5-215

LEXIT 5-215
LWAIT 5-215

LREAD-Read Station-to-Station Message 5-217
LREAD 5-217

LRETURN 2-4, 3-16
LRETURN-Return after a Branch-and-Link 5-219

BRANL 5-219
BRANLR 5-219
LSEEKP 5-219

LSEEK 3-17
LSEEK and LSEEKP, using 3-4, 3-7
LSEEK-Seek (Table Lookup) 5-221

APOPT 5-222
DEFCON 5-221
LSEEK 5-225
LSEEKP-Extended Seek 5-225
TABLE 5-221, 5-225

LSEEKPL-Extended LSEEK Parameter List 5-229
LSETOFF 3-15
LSETOFF-Set Off 5-233

EQUATE 5-233
LSETOFF, using 3-13
LSETON 3-15
LSETON-Set On 5-235

EQUATE 5-235
INORI 5-235

LSETON, using 3-13
LSORT-Sort a Block of Records 5-237

LSORT 5-237
LSPACE-Space a Line of Output 5-241
LSP ACE, using 3-4
LTIME 3-17
L TIME-Time (Fixed Format) 5-243
LTIMET 3-17
LTIMET-Time Table 5-247

L TIMEV 5-247
LTIMEV 3-17
LTIMEV-Time (Variable Format) 5-249

L TIMET 5-249
LTRT-Translate Input Data 5-253
LTRT, using 3-6
L TRTBEG-Translate Table Begin 5-265

LTRT 5-265
LTRTENT 5-265

LTRTBEG,LTRTENT,andLTRTGEN
using 3-4

LTRTENT-Translate Table Entry 5-267
LTRT 5-267
LTRTBEG 5-267

LTRTGEN-Translate Table Generation 5-269
LTRTBEG 5-269
LTRTENT 5-269

LWAIT-Wait 5-271
BEGIN 5-271
LEXIT 5-272

LWAIT,.ending an active session using 2-26
L WRITE-WRITE Station-to-Station Message 5-273

LREAD S-273

M

macro library 2-5
main storage 1-4, 2-7
MASK-Mask (For EDIT Instruction) S-275

EDIT 5-275
EQUATE 5-275

MASK, using 3-4
master characters for data compaction 3-8
message fields, defining and processing 2-22
mnemonics 4-8
MOD-Modulus Factor (For MODCHK Instruction) 5-277

MODCHK 5-277
MOD, using 3-4
MODCHK-Modulus Check 5-279

APOPT 5-279
MOD 5-279

MODCHK, using 3-4, 3-6
modified register addressing 2-13, 3-5, 5-89
modified register addressing, description and example 2-17
modules, selecting and loading optional 2-28
modulus 4-7
moving data 3-5
MPYFLD and MPYREG, using 3-11
MPYFLD-Multiply Field 5-281
MPYFLDL-Multiply Field Logical 5-283
MPYREG-Multiply Register 5-285
MPYZ-Multiply Zoned Decimal 5-287
MPYZ, using 3-12
MVCZ-Move and Convert Zoned Decimal 5-289
MVCZ, using 3-5
MVDI-Move Data Immediate 5-291
MVDI, using 3-5
MVFLD-Move Field 5-293
MVFLD, using 3-5
MVFLDR-Move Field Reverse 5-295

OPTMOD 5-295
P60 5-295

MVFLDR, using 3-5
MVFXD 2-14
MVFXD-Move Fixed S-297
MVFXD, using 3-5
MVFXDR-Move Fixed Reverse 5-299

OPTMOD 5-299
P60 S-299

MVFXDR, using 3-5
MVSEG-Move Segment 5-301
MVSEG, using 3-5
MVSEGR-Move Segment Reverse 5-303

OPTMOD 5-303
P60 5•303

MVSEGR, using 3·5
M45 5-133

Iildex X-7

N

name 5-27
Nested Overlay Sections 2-5
next sequential instruction 2-25
next sequential instruction (NSI) 5-33

BRANLR-Branch and Link Register 5-35
BRANR 5-35
LRETURN 5-35

non-resident 2-4, 5-20
nonrelocatable 2-2
Nonrelocatable Overlays 2-5
nonrelocatable programs 2-1, 2-2
nsi 5-192

0

operand 1 4-2
operand 2 4-2
operands 4-1
operands, addressing 2-13
operating diskette 1-3
operations, logical 3-12
optional instruction 5-9
optional instruction modules 2-28
optional instruction modules, determining presence of 2-28
options 4-1
QPTMOD 5-9, 5-51, 5-61, 5-65, 5-69, 5-71, 5-75, 5-101, 5-133,

5-145, 5-159, 5-205, 5-225, 5-237, 5-249, 5-253, 5-287, 5-289,
5-322, 5-327, 5-395, F-10, F-13, F-15

DECOMPTB 5-71
LTRTBEG 5-255

overflow 4-8
overlaid program sections, defining 3-3
overlay programming 2-1, 2-4
OVLYSEC 2-2, 2-4
OVL YSEC-Define Load Address and Entry Point 5-305

APOPT 5-305
OVLYSEC-ENDOVLY pair 2-2
OVLYSEC, using 3-3

p

packing/unpacking data with PAKFLD/PAKSEG and
UPKFLD/UPKSEG 3-7

pairs, compaction chanicter 3-8
P AKFLD-Pack Field S-307
PAKFLD, using 3-7
P AKSEG-Pack Segment 5-309
PAKSEG, using 3-7
parameter list 5-55
parameter lists, system-defined DEFxxx 2-26
passing data between programs 3-14
PAUSE-Suspend Processing 5-311
PAUSE, ending an active session using 2-25
PAUSE, using 3-14
PC operand, defining a program check entry point with 2-26
PFP and FLI, source of values for 2-19
PLPCMD-Post-List Processor Commands 5-313
PLPCMD, using 3-4
pointers 2-21
post-list processing 5-31~
PRIDSP 5-155

LCHECK 5-157
LCHECK ST 5-157
LCONVERT 5-159

PRIDSP, defining dispatch tables using 2-23

primary and secondary application programs 2-7
primary and secondary programs, defining storage for 2-11
primary application program 2-2, 2-4
primary field pointer (PFP) 2-15
primary-secondary cross-addressing 2-13
PRINTI-Print Macro Expansion 5-315
PRINT!, using 3-4
priority dispatch table 2-23
priority dispatching, work station 2-23
priority, entry point 2-24
private storage 1-4
processing session, definition 2-24
program calling, instructions for 3-14
program check address 2-27
program check codes 2-27, D-1
program checks 1-5
program checks, entry point-related 3-2
program checks, primary/secondary ap processing of 2-28
program control 1-5
program control instructions 3-14
program interrupts, entry point priority of 2-24
program-to-program data transfer 3-14
programmable input facility G-1
publications, related X-1
punctuation 4-1
P2A 5-327
P2C 5-145
P21 5-253
P24 5-225
P26 5-71, 5-75
P27 5-57, 5-61
P31 5-9, 5-65, 5-101, 5-287, 5-289, 5-395
P32 5-249
P34 5-69, 5-159
P5C 5-205, 5-237
P68 5-322, F-10, F-13, F-15

Q

quotation mark 4-5

R

REBASE-Restore the Base Register for a DSECT 5-317
LDSECT 5-317
SA VEBASE 5-317

REBASE, using 3-3
reg 2-16, 4-4
register address 5-89

DEFCON 5-89
DEFLD 5-89
EQUATE 5-89

register addresses 4-5
register addressing 2-13
register addressing, description and example 2-16
register 1 2-29
register, using a base addressing 3-3
registers 2-7
registers, allocating extra 2-12
registers, passing 2-29
related publications X-1
release control 2-12
release 3 changes/additions vii
releasing control, instructions for 3-14
releasing work station control 2-25
reloc 2-2
relocatable 2-5

X-8 4700 Controller Programming Library, Volume 1: General Controller Programming

Relocatable Overlays 2-5
relocatable programs 2-1, 2-3
resident 2-2, 2-4
restart 2-24
resuming processing, entry point priority of 2-24
return-address stack 3-16, 5-151
root 2-2

s
SAVEBASE-Save the Base Register for a DSECT 5-319

LDSECT 5-319
USEBASE 5-319

SA VEBASE, using 3-3
SCALE-Scale Number 5-321
SCALE, using 3-5
scb (string control characters) 3-8
scratch-pad 3-17
SCRPAD-Scratch Pad 5-327
secondary application program 2-4
secondary application programs 2-2
secondary field pointer (SFP) 2-15
SECTION 2-6
SECTION-Section Control 5-339

BEGIN 5-339
OVLYSEC 5-339
SEGCODE 5-339

SECTION, using 3-3
sections 2-1
sections, defining program 3-3
seg 4-4
SEGALLOC 3-17
SEGALLOC-Segment Allocate 5-341

APRETURN 5-341
SEGFREE 5-341

SEGCODE 2-2
SEGCODE-Application Program Section Identifier 5-343
SEGCODE-ENDSEG pair 2-2
SEGCODE, ENDSEG 2-5
SEGCODE, using 3-1, 3-3
SEGCOPY--Segment Copy 5-345
SEGFREE 3-17
SEGFREE-Segment Free 5-349

APCALL 5-349
APRETURN 5-349
SEGALLOC 5-349

segment 1-5, 2.-1
segment header 2.:13
segment header addressing 2-13, 2-15
segment headers, programming notes about 2-19
Segment Indexing 4-2, 5•20, F-4
segment length indicator (SLI) 2-15
segment number, use in register addressing 2-17
segment space ID, definition 2-12
segment space ID, use in modified register address 2-17
segment space ID, use in register addressing 2-17
segment 0 2-7, 5-19, 5-93, 5-94, 5-139, 5-167, 5-351

APCALL/ APRETURN 5-19
DEFCON 5-93
DEFLD 5-93

segment 0 sharing 2-12
segment 0, addressing registers in 2-13
segment 1:2-7, 5-19, 5-79, 5-179, 5-183, B-21

BEGIN 5-79
EQUATE 5-79

segment 13 1-5
segment 14 1-5, 5-77, 5-305; B-3

APOPT 5-77
LLOAD 5-306

STOVL Y 5-306
Segment 14

5-9
DEFCON 5-9

segment 15 1-5, 5-19, 5-83, B-10
segment-displacement addressing 2-13
segment, specifying the 2-13
segments 1-5
segments 2 - 12 2-7
SELECT-Select Segment 0 5-351
SELECT, using 2-12
SETFLDI-Set Field Immediate 5-353
SETFPL 2-16
SETFPL-Set Primary Field Pointer and Field Length

Indicator 5-355
BEGIN 5-355
DEFCON 5-356
DEFDEL 5-355
DEFLD 5-356

SETFPL, example and use 2-19
SETSFP 2-16
SETSFP-Set Secondary Field Pointer 5-361

BEGIN 5-361
DEFCON 5-361
DEFDEL 5-361
DEFLD 5-361

setting bits on and off 3-13
SETX-Enable/Disable Segment Indexing F-10
SETXREG-Set Index Register Number F-13
Shared Overlay Sections 2-5
shared storage 1-5
sharing storage segments with COBOL programs 2-29
shifting data 3-13
SHIFTL-Shift-Left Data in a Register 5-365
SHIFTL, using 3-13
SHIFTR-Shift-Right Data in a Register 5-367
SHIFTR, using 3-13
shutdown 2-24
SINIT--Start Initialization Section 5-369

FINISH 5-369
INITSEG 5-369

SINIT, using 2-12
sms, recording program checks in 2-27
SMSIML 2-22
SMSIML, message definition by 2-22
SMSLSE 3-16
SMSLTC 5-193

LREAD NOWAIT 5-193
SMSPCR program check routine flag 2-27
SMSUIC 5-193
SNA:Primary 5-29

DEFLD 5-29
EQUATE 5-29

SPA 3-17
SPLIT 5-23

DEFCON 5-24
OVL YSEC 5-24
SEGCODE 5-24

split programs F-1
standard definitions 2-26
STARTGEN 5-93
STARTUP operand (STATION CPGEN macro) 2-24
startup, entry point priority of 2-24
STATION 5-27, 5-35, 5-80, 5-94, 5-147

APCALL 5~28
APOPT 5-27
BEGIN 5-94
BRANL 5-35
DEFDEL 5-27
DEFSTOR 5-28

Index X-9

LEXIT 5-28
LPOST 5-28
LSEEKP 5-35
SETFPL 5-80
SETSFP 5-80

station chain dispatching 2-23
statistical counters 5-119
STATS-Obtain or Reset Extended Statistical Counters 5-371
status 4-8
status codes 1-5
STFLD-Store Field 5-379
STFLD, using 3-11
STFLDC 3-11
STFLDC-Store Field Character 5-381
storage allocation 2-7
storage definition 2-7, 2-12
storage definition, primary/secondary program 2-11
storage initialization with SINIT, INITSEG, and

ENDINIT 2-12
storage pools 1-4
storage segments 1-5
storage, COBOL sharing 2-29
storage, defining a dump work area in 3-4
storage, initializing 2-12
STOVLY 2-4
STOVLY-Start Overlay 5-383

APOPT 5-383
ENTRY 5-383
EXTRN 5-383
OVL YSEC 5-383
STOVLY 5-383

STP (startup) operand of BEGIN 2-24
string control characters (SCB) 3-8
STSEG-Store Segment 5-385
STSEG, using 3-11
STSEGC 3-11
STSEGC-Store Segment Character 5-387
SUBFLD and SUBREG, using 3-11
SUBFLD-Subtract Field 5-389
SUBFLDL-Subtract Field Logical 5-391
SUBREG-Subtract Register 5-393
subroutine programming 2-1, 2-4
subsystem library 5-67
Subsystem Operating Procedures 1-3
SUBZ-Subtract Zoned Decimal 5-395
SUBZ, using 3-12
syntax rules 4-1
SYSAP 5-103

DEFCON 5·103
system configuration 1-4
system log, program check messages in 2-27
System Machine Segment (SMS) 2-7
system monitor 1-3, 5-103, 5-345, G-1

DTAFREE 5-103
Systems Network Architecture/Synchronous Data Link

Control (SNA/SDLC) 1-2

T

table definition with DEFCON 3-7
table location, delimiter 3-2
table lookup using LSEEK and LSEEKP 3-7
TABLE-Define Table for LSEEK/LSEEKP 5-397

APOPT 5-398
LSEEK 5-397
LSEEKP 5-397

TABLE, using 3-4, 3-7
tables 2-7

tables, dispatch 2-23
terminal interrupts, entry point priority of 2-24
testing bits 3-13
TESTX-Test for Active Indexing F-15
TF1,TF2, TF3, TF4 5-17
Threshold Analysis and Remote Access (TARA) 5-146
time-of-day 5-243
time-of-day timer 3-17 ·
time-stamp 3-18
timer 2-25
timer interrupts, entry point priority of 2-24
TRANPL 5-19
transient 2-2, 2-4
translating data with L TRT 3-6
translation table 3-5
TSTMSK-Test under Mask 5-399
TSTMSK, using 3-13
TSTMSKI-Test under Mask Immediate 5-401
TSTMSKI, using 3-13
twos complement 5-165

LDFLDL 5-167

u
underscoring 4-1
unpacking data 3-7
UPKFLD-Unpack Field 5-403
UPKFLD, using 3-7
UPKSEG-Unpack Segment 5-405
UPKSEG, using 3-7
USEBASE-Use a Base Register for a DSECT 5-407

LDSECT 5-407
USEBASE, using 3-3
user-written macros 5-315

v
variable-length fields, defining 2-20
variables 4-3
VERIFY-Verify 5-409
VERIFY, using 3-6
verifying data 3-6
version number, specifying a program 3-2
VIEW-VIEW APCALL/ APRETURN Stack 5-411

APCALL S-411
APRETURN 5-411 ·

Volume 2: Disk and Diskette Programming iii
Volume 3: Communication Programming iii
Volume 4: Loop and Device Cluster Adapter iv
Volume 5: Cryptographic Programming iv
Volume 6: Control Program Generation iv

w
work·station 2-7
work station dispatching 2-23
WRTI 3-17

y

YL2 and AL2 address constants,·specifying 3-1

X-10 4700 Controller Programming Library, Volume 1: General Controller Programming

z
zoned decimal 3-11
zoned decimal arithmetic 3-10

3

3600 Finance Communication System F-1
APOPT F-1
BEGIN F-1
DEFCON F·l
LEXEC F-1
LLOAD F-2
LSEEK F-2
LSEEKP F-2

LSEEKPL F-2
OVLYSEC F-3
SECTION F-3
SEGCODE F-3
SEGCOPY F-3
STOVLY F-4
TABLE F-4

3600 programs, using 2-29

4

4331 Multiuse Communication Loop protocol 1-2
4700 Terminals 1-2

Index X-11

X-12 4700 Controller Programming Library, Volume 1: General Controller Programming

~
0 z

I
I
L
I
J
r

4700 Finance Communication System
Controller Programming Library
Volume 1
General Controller Programming

Order No. GC31-2066-l

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate. Comments may be written in your own language; English is not
required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

READER'S
COMMENT
FORM

What is your occupation? ______________________________ _

Number of latest Newsletter associated with this publication: _________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

GC31·2066·'

Reader's Comment Form

I ~ ~
·----~d.:d~~-------~a:_°~~taple----------~:.d~p~- I ~ 8

--1 "' 'Tl

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 78C
1001 W.T. Harris Boulevard
Charlotte, NC, USA 28257

NO
POSTAGE

NEC ESSA RV
IF MAIL.ED

IN THE
UNITED
STATES

I g ~-
:I :I I q- g

I 2.. ("')
-o
!!l 3

I "'"O 3 ... c:
~:I I ii1 g·
3 !:!'. I 3 0

:r ~ I cc <

I ~r
I ? g

(/)

l ~ £
0 li)

I :p; ...
c.> "'"O

I 8 a -. cc
00 ii1

I g ~
-. -· I ~~ f" r-

1 ~ c:
- Ql

·---------------~---------------------------~ ~~ I ~ 2.. Fold and Tape Please Do Not Staple Fold and Tape CD c:
a. 3

==-= =® - --- --- ---~ - -. -~--- -----_..._..,_ --
._ _' -

I ~ ~
I ~
I 8
I -
I ~
I
I
I
I
I
I
I

--- ------ - ---- --- ---- - - ------ -----·-

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	5-125
	5-126
	5-127
	5-128
	5-129
	5-130
	5-131
	5-132
	5-133
	5-134
	5-135
	5-136
	5-137
	5-138
	5-139
	5-140
	5-141
	5-142
	5-143
	5-144
	5-145
	5-146
	5-147
	5-148
	5-149
	5-150
	5-151
	5-152
	5-153
	5-154
	5-155
	5-156
	5-157
	5-158
	5-159
	5-160
	5-161
	5-162
	5-163
	5-164
	5-165
	5-166
	5-167
	5-168
	5-169
	5-170
	5-171
	5-172
	5-173
	5-174
	5-175
	5-176
	5-177
	5-178
	5-179
	5-180
	5-181
	5-182
	5-183
	5-184
	5-185
	5-186
	5-187
	5-188
	5-189
	5-190
	5-191
	5-192
	5-193
	5-194
	5-195
	5-196
	5-197
	5-198
	5-199
	5-200
	5-201
	5-202
	5-203
	5-204
	5-205
	5-206
	5-207
	5-208
	5-209
	5-210
	5-211
	5-259
	5-260
	5-261
	5-262
	5-263
	5-264
	5-265
	5-266
	5-267
	5-268
	5-269
	5-270
	5-271
	5-272
	5-273
	5-274
	5-275
	5-276
	5-277
	5-278
	5-279
	5-280
	5-281
	5-282
	5-283
	5-284
	5-285
	5-286
	5-287
	5-288
	5-289
	5-290
	5-291
	5-292
	5-293
	5-294
	5-295
	5-296
	5-297
	5-298
	5-299
	5-300
	5-301
	5-302
	5-303
	5-304
	5-305
	5-306
	5-307
	5-308
	5-309
	5-310
	5-311
	5-312
	5-313
	5-314
	5-315
	5-316
	5-317
	5-318
	5-319
	5-320
	5-321
	5-322
	5-323
	5-324
	5-325
	5-326
	5-327
	5-328
	5-329
	5-330
	5-331
	5-332
	5-333
	5-334
	5-335
	5-336
	5-337
	5-338
	5-339
	5-340
	5-341
	5-342
	5-343
	5-344
	5-345
	5-346
	5-347
	5-348
	5-349
	5-350
	5-351
	5-352
	5-353
	5-354
	5-355
	5-356
	5-357
	5-358
	5-359
	5-360
	5-361
	5-362
	5-363
	5-364
	5-365
	5-366
	5-367
	5-368
	5-369
	5-370
	5-371
	5-372
	5-373
	5-374
	5-375
	5-376
	5-377
	5-378
	5-379
	5-380
	5-381
	5-382
	5-383
	5-384
	5-385
	5-386
	5-387
	5-388
	5-389
	5-390
	5-391
	5-392
	5-393
	5-394
	5-395
	5-396
	5-397
	5-398
	5-399
	5-400
	5-401
	5-402
	5-403
	5-404
	5-405
	5-406
	5-407
	5-408
	5-409
	5-410
	5-411
	5-412
	5-413
	5-414
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	G-01
	G-02
	G-03
	G-04
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	replyA
	replyB
	xBack

