
--- -'"::' -=-= -:. :: = = =---= - - - ---
=~= ~ =

SC21· 7790-0
S5280-21

IBM 5280
Distributed Data
System
Assembler Language Reference Manual

Program Number 5708·ASI

-~- ------ - ---- ~--- ~ -~-- - - ------ .. -
-~-.-

SC21-7790-0
S5280-21

IBM 5280
Distributed Data
System
Assembler Language Reference Manual

Program Number 5708-AS1

First Edition (January 1980)

This edition applies to release 1, modification 0 of the IBM 5280 Assembler Program
Product (Program 5708-AS1) and to all subsequent releases and modifications until
otherwise indicated in new editions or technical newsletters. Changes are periodically
made to the information herein. These changes will be reported in technical newsletters
Or in new editions of this publication.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

This publication contains examples of coded statements and the resulting operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious, and
any similarity to the names and addresses used by an actual enterprise is entirely
coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM publica
tions and for technical information about the system should be made to your IBM
representative or to the branch office serving your local ity.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader's Comment Form at the back of this publication to make comments about this
publication. If the form has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. IBM may use and
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

©Copyright International Business Machines Corporation 1980

This reference manual is intended for programmers who
want to write programs for the IBM 5280 using the
assembler language. The programmer is expected to
either have previous experience using an assembler lan
guage or be familiar with the 3741 Application Control
Language (ACL).

Using this publication, the programmer should be able to:

• Understand the general organization of main storage.

• Understand the purpose of each control statement and
the proper order for using each control statement in
an assembler program.

• Understand the purpose of each instruction and the
proper order for using each instruction in an assembler
program.

• Write a source program.

• Load the assembler program product into the IBM 5280
system, respond to the assembler prompts, assemble the
source program, and write the object program to a
diskette.

• Understand the assembly listing and cross reference
listing.

• Debug the assembler source program to get an error-free
listing.

Chapter 1 contains a general overview of how (1) a source
program is written, (2) an object program is executed. and
(3) main storage is organized. It also explains the coding
conventions used in the assembler language and in this
publication.

Chapter 2 discusses such programming concepts as tables,
subroutines, formats, external status, and self-check compu
tations. It describes data management for input and output
operations.

Chapter 3 describes each control statement.

Preface

Chapter 4 describes each instruction.

Chapter 5 explains how to load the assembler program
product and how to assemble a source program. It describes
an assembly listing and cross-reference listing.

Chapter 6 describes control areas and functions. The func
tions include optional common functions.

Chapter 7 explains how to use the ACL to assembler lan
guage conversion program to convert ACL programs.

Appendix A lists the instruction mnemonics in alphabetic
order and gives the op code and format for each mnemonic.

Appendix B describes SCS control codes.

Appendix C describes the computations generated by the
.SELFCHK control statement parameters.

Appendix D consists of codes and charts, including
EBCDIC charts and scan codes.

Appendix E lists all error codes for the assembler program
and conversion program.

Related Publications

• IBM 5280 General Information, GA21-9350

• IBM 5280 System Concepts, GA21-9352

• IBM 5280 Functions Reference Manual (availablf at a
later date)

• IBM 5280 Message Manual (available at a later date)

iii

iv

CHAPTER 1. INTRODUCTION••.•••••.••••••. 1
Overview of the Assembler Language 1

The Control Statements 1
The Instructions2
The Source Program Format
The Assembler Program
Loading the Object Code

Overview of Program Execution .. .
Overlapped I/O
External Status .. .
Data Input
Data Manipulation .
Data Output

· .. 2
.3
.3
.3
.4
.4
.4
.4
.5

Overview of Main Storage . . . 5
Logical Device Identifiers6
Common Functions 6

Partitions . 6
Partition Control Area 8
Indicators and Registers 8
Storage 11
Addressing Methods 11
Partition Work Area 12

Main Storage Boundary Alignment . . 13
Blanks, Constants, and Coding Symbols . 14

Symbols Used in This Manual 15

CHAPTER 2. PROGRAMMING CONCEPTS
Tables

System Tables
Data Tables ..
Label Tables

Data Types
Subroutines

The Partition Subroutine Stack
Subroutine Returns

The Status Line
Nondisplay of the Status Line .,

External Status and Error Conditions
Keyboard Data Entry .

Modes of Entry
Automatic Functions .

Auto Enter
Auto Duplicate/Skip
Alternate Record Advance

Screen Formats
Prompts
Constant Insert Data
Field Definitions .. .
Field Control
Returning (RG) Exits

Edit Formats
Data Directed Formatting

Field Modification Indicators
Diskette Data Management . .

Label Update
Physical and Logical Buffers
Automatic Logical Buffering
Pointer I/O ...
Keyed Data Sets

........... 17
. 17

· . 17
· . 18
· . 18
· . 19
· . 19

· 20
. 20

· 22
· .23

. . . 24
. 25
. 26
.28
. 29

......... 29
.29

· 29
· .30

· 31
· .31
· .32
· .34
· .34
· .35
· .35
· .36
· .36
· .36
· .36
· .37
· .38

Shared Data Sets
SCS Conversion Data Sets

Self-Check
Choosing Your Algorithm
Using the GSCK Instruction .
Using the IF ... CHK Instruction

Contents

.40

.40

.41

.44

.47
. 47

CHAPTER 3. ASSEMBLER LANGUAGE CONTROL
STATEMENTS •....••..••.••..••.••••.•••• 49

Format51
Blanks 51
Comments 51

Initialize the Partition Control Area 52
.ST ART Control Statement 52
.KBCRT Control Statement .. 53
.EDITC Control Statement .. 56

Declare and Label Data Areas .
.DC Control Statement
.DCLBR Control Statement
.DCLDR Control Statement .
.DCLIND Control Statement

· .57
· .57
· .65

........ 65
.65

. EQUATE Control Statement 66
Set Up and Initialize Device Control Blocks 67

.COMM Control Statement 67

.DAT ASET Control Statement
Set Up and Label Tables

.TABLE Control Statement

.LABTAB Control Statement

.SYST AB Control Statement
Set Up Edit Formats

.FMTST Control Statement

.FMTF LD Control Statement

.FMTEND Control Statement
Set Up Screen Control Formats .

.SFMTST Control Statement .

.SFMTCTL Control Statement

.SFMTPMT Control Statement .

.SFMTCNS Control Statement .

.SFMTFLD Control Statement .

.SFMTEND Control Statement
Field Type Keywords ...
Field Definition Keywords

Control the Assembly Listing
.TITLE Control Statement
.EJECT Control Statement
.SPACE Control Statement

Miscellaneous Control
.INCLUDE Control Statement
.SELFCHK Control Statement
.XTRN Control Statement
.END Control Statement ...

CHAPTER 4.5280 ASSEMBLER LANGUAGE

.70
· .76

. .. 76

... 78

· .79
.81
.82
.82

· .89
· .89
· .94

....... 95
· .97

......... 99

. 100
103
104
106
110
110
111
111
111
112
112
116
117

INSTRUCTIONS , ..•..••••.•••••••••• 119
Instructions Format 119

Blanks. 119
Symbolic Labels 119
The Instruction Fields. 120
Comments 120

Contents v

Storage SpeciricotiUIl$
Labeled Addressing
Base Displacement Addressing

Constant Specifications
Register and Indicator Specifications
Operation Types

Assembly Time Arithmetic
Arithmetic Expressions
The AD DR Function .
The LENG Function
Changing a Declared Length
Changing a Data Type

Arithmetic/Logical Instructions
Binary Register Arithmetic/Logical
Binary Register Shift/Rotate
Decimal Register Arithmetic
Decimal Register Shift
Decimal Register Zone Modification

Branch and Skip Instructions ..
Unconditional Branch
Subroutine Call and Return
Full Conditional Branch on Test

Short Conditional Branch on Relational Compare

Skip on Constant Compare

Skip on Bit Mask
Skip on AND/Exclusive-OR Mask
Exclusive-OR Write, Skip on AND Mask

Loop Control
Communications Instructions
Diskette Instructions

Control Operations
Search Operations .

Printer Instructions .,
Error Recovery Procedures

Keyboard and Display Instructions
Key Entry Instructions .
Keyboard Operations ..

Data Movement Instructions
Load Binary Register ..
Load Decimal Register
Store at a Labeled Address
Store at Base Displacement Address
Exchange Data
Convert Register Contents
Move Bytes Between Decimal Registers
Move Bytes in Storage
Move Bytes Between Storage and Screen
Move Formatted Data

Partition Load and Exit Instructions
Load a Partition .. .
Exit a Partition
The Load Parameters
Partial Overlay
Error Recovery

Table Instructions
Table Read Operations
Table Write Operations
Table Search Operations
Global Tables

Miscellaneous Instructions .

vi

Compare Logical Character Strings
Generate a Self-Check Digit
Modification for Indirect Instruction Execution
Search Resource Allocation Table
Set Bits with Mask
Set Indicators

120
121 . .,.
ILl

121
122
122
128
128
129
130
130
130
131
131
135
137
141
144
145
145
147
150
154
158
160
161
162
162
164
170
170
184
188
192
195
195
199
214
214
216
218
220
221
222
225
226
228
231
233
234
235
235
237
237
238
239
240
243
246
247
247
248
248
250
251
251

System Lock and Unlock

Translation

CHAPTER 5. HOW TO ASSEMBLE YOUR PROGRAM.
The 5280 Assembler

Loading the Assembler into a Partition
The Assembler Prompts ..

The Assembler Listing
A Printed Assembly Listing .
The Cross-Reference Listing
Error Messages

CHAPTER 6. CONTROL AREAS
System Indicators within a Partition
System Registers within a Partition
Program Check Errors
Keystroke Counters

Data Entry Keystroke Counter .
Verify Correction Keystroke Counter

Common F unction Routines
Keyboard/Display External Status

Restricted External Status Indicator
External Status Subroutines
External Status Conditions

CHAPTER 7. THE ACL TO ASSEMBLER LANGUAGE
CONVERSION PROGRAM .•••.

Operation
Notes About the Converted Program .. .

The Format of the Converted Program
Labels and Sequence Numbers ..
The Format of the Display Screen .
Buffers
The .FORMAT Control Statement
Indexed Branch Instructions
The OPEN Instructions
The ENTR Instructions
The ACL Deleted Record Subroutine
Overlapping for PRNT Instruction
Function Keys
ACL Toggle Switches

Conversion Chart
Control Statements
Instructions
Indicator Conversion

APPENDIX A. MNEMONIC TO OPERATION CODE
CONVERSION CHART AND INSTRUCTIONS FORMAT.

APPENDIX B. SCS CONTROL CHARACTERS ••.•
Set Types Available for Use with the Format (Fmt)

Printer Control Character

APPENDIX C. SELF-CHECK COMPUTATIONS

APPENDIX D. KEYBOARD CODES AND EBCDIC
CHARTS •.•..••••..•.•••...••.••

EBCDIC Charts for Printable Characters
Keyboard Functions: EBCDIC Codes and Bit Numbers

APPENDIX E. ERROR MESSAGES
Assembler Errors and Messages
Conversion Program Errors

252
252

255
255
256
256
262
263
264
265

267
267
268
269
269
269
270
270
285
287
287
288

297
297
300
300
300
301
302
304
304
304
304
305
305
305
306
307
307
308
311

315

321

323

329

347
347
349

353
353
355

APPENDIX F.SAMPLE PROGRAM •.•••••..••.••• 357

GLOSSARY. • • • • • • • •••••••••...•••••••• 363

INDEX •••••••••••••••.•••.•••••••••••• 371

Contents vii

viii

Chapter 1. Introduction

The IBM 5280 is a diskette-based data entry system with partitioned main storage.
It consists of keyboard/display data stations with optional diskette drives, a com
munications line, and printers. The 5280 operates with multiple tasks, each running
in a main storage partition. It can be used in data entry, remote batch, remote
inquiry, or preprocessing environments. Input source records can be edited, veri
fied, and placed into main storage registers, tables, or other data areas. In main
storage, the records can be manipulated with arithmetic and logical operations.
The records can then be reformatted and written to a data set. (A data set is a
group of records stored on a diskette.) The data sets on the diskettes can then be

used as input to a data processing system.

The data stations and I/O (input/output) devices are described in the General
Information manual. You should be familiar with these units before you begin pro
gramming in the 5280 assembler language. You must also be familiar with the
organization of main storage, which is described in this chapter. Preceding the
overview of main storage, this chapter gives overviews of the assembler language and
of program execution. These overviews briefly describe the format of the source
statements, the generation of the object code, how the 5280 executes the object
code instructions, and the major functions the object code can perform.

OVERVIEW OF THE ASSEMBLER LANGUAGE

The IBM 5280 assembler language consists of control statements and instructions.
The control statements define the main storage control and data areas. The instruc
tions specify the operations and operands. No job control language is necessary for
the 5280.

The Control Statements

In your source program, a control statement is always preceded by a period (.).
Control statement parameters are written with uppercase letters. The control
statements are described in Chapter 3, where they are organized by function:

• Initialize control areas and I/O control blocks (lOBs)

• Declare and label data areas

• Organi ze tables

• Set up screen formats

• Set up edit formats

• Control the assembly listing

Introduction 1

2

The Instructions

In your source program, the instructions specify the operations and the operands.
Operations are specified by arithmetic symbols or by uppercase mnemonics. Oper
ands are specified as immediate data or as the contents of a data area. Data areas
are referred to by a label or by a base displacement address. The instructions are
described in Chapter 4, where they are organized by the types of operation they
perform. The operations include:

• Arithmetic/logical

• Branch and subroutine

• Communications input and output

• Input and output to diskette or printer

• Input and output to keyboard/display

• Data movement

• Partition load and exit

• Table read, write, and search

• Miscellaneous

The Source Program Format

Source statements are written with a length of 72 positions per line. Parameters
are separated with spaces. You may space freely between parameters, but spaces
are not allowed between a parameter and a parameter value. A control statement
may be written on one or more lines. An instruction, however, must be complete
within the first 72 positions of a line. Comments may be written on a control state
ment or instruction line, or an entire line may be written as a comment line.

Certain control statements must be written in a prescribed order. This order is
explained in Figure 3-1, Control Statement Summary in Chapter 3.

The control statements and instructions of a source program must be written to a
diskette data set before the source program can be processed by the assembler pro
gram. Enter each line of the source program as an 80-position record. The
assembler program ignores the data in positions 73-80.

The Assembler Program

The 5280 assembler program reads the source program from the diskette and uses
it to generate the object code. It detects syntax errors in the source control state
ments and instructions. It converts each label and base displacement address to
an address relative to the beginning of the partition. It converts each series of
screen format control statements to a string of object code, which is referred to as
a screen format control string. From each source instruction, it generates a 4-byte
object code instruction; the first byte always contains the operation code that
determines the operation, and the other 3 bytes contain the operands. An operand
may be immediate data, a format number, a table index, or the address of data to
be operated upon. When the assembler program has converted the source program
to object code, it then writes the object code to a diskette data set. It also gener
ates an assembly listing that can include:

• Source code and object code

• Syntax error messages

• Storage allocation messages

• Alphabetic cross-reference of symbols used in the source program

The assembly listing can be written to a printer or to a diskette data set. Chapter 5
describes how to load and execute the assembler program.

Loading the Object Code

The object code data set that is written by the assembler program must be loaded
into a main storage partition for execution. The object code for a program can be
loaded into any partition that is of sufficient size. An operator may load the object
code by responding to a load prompt. Or a program being executed in a partition
can have instructions to load another object program into another partition or into
the same partition. See Partition Load and Exit Instructions in Chapter 4 for more
information about loading the object code.

OVERVIEW OF PROGRAM EXECUTION

When the object data set is loaded into main storage partition, control informa
tion and address pointers are stored in a partition control area. This control infor
mation is used by the 5280 and the I/O devices during program execution. The
control information is followed (1) by the data areas specified in the source pro
gram control statements and (2) by the 4-byte object code instructions.

The 5280 executes the object code instructions sequentially until a specified time
limit is expired or until an I/O instruction is encountered. When the time limit
expires, the 5280 suspends processing in that partition. The 5280 then enters the
next partition that has been loaded with an object data set and begins executing
instructions in that partition.

Introduction 3

4

If an I/O instruction is encountered, the 5280 determines which liD device is to
process the operation. It places control information into the partition control area

and issues the I/O instruction to the device. The I/O device processes the I/O
operation, using the control information in the partition control area and in the
108 that describes that I/O operation.

Overlapped I/O

Certain instructions may specify overlapped I/O. (The instruction descriptions in
Chapter 4 indicate when overlapped I/O may be specified.) When the 5280
encounters an I/O instruction that requests overlapped I/O, it issues the instruction
to the appropriate I/O device. The 5280 then either: (1) remains in the current
partition and executes the instruction following the I/O instruction, or (2) if the
time limit has expired for the current partition, exits the current partition and
executes instructions in the next partition that contains an object data set. The
I/O device processes the I/O operation concurrently with the sequential instruction
execution.

If overlapped I/O is not specified, the 5280 issues the I/O instruction to the I/O
device and exits the partition. The instruction following the I/O instruction is not
executed until the I/O instruction is completed by the device.

External Status

While an I/O device is processing an I/O operation, it may encounter an external
status condition that requires operator intervention or processing by the 5280
controller. A four-digit condition code is placed into the 108; it may also be dis
played on the status line. These condition codes are described in Chapter 2 under
External Status and Error Conditions.

Data Input

For input via the keyboard/display, the screen format (which you specify with
control statements) determines the prompts that are displayed on the screen and
the display attributes for the screen, such as blink or underscore. The screen format
can specify which characters are valid for each individual field of the input record.
Valid fields of the input record are stored in an I/O buffer.

For input from a diskette data set, a program instruction can direct the 5280 to
read a data set record. The records in a data set can be accessed sequentially,
directly by relative record number, or directly by key. The input record is stored
in the I/O buffer.

Data Manipulation

Your instructions direct the 5280 to move the record from the I/O buffer. You can
move a complete record or individual fields of a record to registers for arithmetic/
logical operations. You can place the data into a table and can search the table
entries for logical comparisons. You can keep running totals or perform self-check
validation. You can test the contents of a register or a storage byte. You can
.-"'_tI"'~""'''''.v'\ ,..:rY'Iro l,... _ ... ",,~r"t.I_'U' ,..,t.."+",, ""'_~I""l + .." ,..a ,..,.."+..,, ,.."t""r"'-t""\..." ... :r,..., "nnr..,,+;,...nr
tJC1 IVI 'II ,;)11 I ItJlt:I VI \,.,Vlt'tJ1C;/\ UOLQ IIIVVt;;III,{;;11 L (;111\..1 UQI.O ,",VI'.,..,OI '.o>VII vtJ~. "LIVII"'_

Data Output

Your program instructions and formats also control record output. Records can be
moved from main storage data areas to an I/O buffer. An edit format can reformat
the record and insert punctuation. The records can then be written to a display, a
diskette data set, a printer, or the communications line.

OVERVIEW OF MAIN STORAGE

Main storage is organized into areas for system control, tables, common functions,
partitions, and a system work buffer, as illustrated in Figure 1-1.

Absolute
Addresses

X'OOOO'

X'OOFF'

X'OOOO'

--

System Control Block
(256 bytes)

Global Tables
(variable length)

Common Functions
(variable length)

First Partition

... -

X'O~'1
(variable length) I

Next Partitions
(each of variable length)

Relative
Addresses X'OOOO'

Last Partition
(variable length)

System Work Buffer
(256 bytes)

Figure 1-1. The Organization of Main Storage

The system control block is located in the first 256 bytes of main storage.

The fields of the system control block have fixed locations. However, all partitions,
and all storage locations within a partition, are accessed by pointers. The pointers,
which are set up and maintained by the 5280, are located in the fixed locations of
the system control block. These pointers make it possible for each of your assembler
source programs to address locations as they relate to the partition, rather than as
they relate to main storage as a whole. These relative addresses remain valid for
any partition into which your program is loaded.

Introduction 5

6

Logical Device Identifiers

Logical device identifiers are 2-character IDs that allow you to symbolically address
a resource independently of machine or partition configuration. The logical device
IDs are stored in a resource allocation table, which is created and loaded into the
global tables area by the system configuration portion of the SCP (System Control
Program). The resource allocation table specifies the logical devices that can be
accessed by each partition. Each resource allocation table entry contains both the
logical device 10 and the physical address of that device. Whenever a program
instruction requires a device address, you can specify the 2-character ID. The 5280
searches the resource allocation table for the physical address of the device with
the matching I D. The 5280 uses the device at that physical address to access the
data set that is available to that device.

The logical device I Ds are used only in program instructions. Do not enter a
logical device 10 via the keyboard in response to a prompt that requests a physical
address.

Common Functions

The common functions area contains I BM-supplied global subroutines. They can be
accessed by a subroutine call from any partition. The labels and functions of these
subroutines are listed in Chapter 6 under Common Function Routines.

PARTITIONS

There may be up to eight partitions numbered sequentially from zero. There must
be at least one partition for each keyboard. A partition is of variable length, but it
cannot cross a 64 K byte boundary. The number, size, and location of the parti
tions is defined at system configuration time. The first 256 bytes of each partition
contains control information in fixed locations from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, binary
registers, or storage areas. This area is followed by a variable-length storage area.
The last 256 bytes of each partition is used for a work area. Each byte of a parti
tion is addressable relative to the first byte of the partition. Figure 1-2 shows the
different areas of a main storage partition.

::J ...
8.
c
~ o·
::J

....,

" t'
;; ..
~

• -I
!,i'
c' 0 .. ~

a. i
~ 2,
~ N

I i'
; a
III III

::~
i :i'
iiiCl)
;::r'" • 0

!;i
~"
:rill .. ~ -,
o ~,
c 0
~ ~ ;.
~-I
cS: i'
iii' :::;'

III =-......
... :r :r ~ .. I
g ~
'0 -, . a'

a ...
i
i
i ..
n
3'
!!.

Relative
Addresses
X'IIII'

TL
000

OOF

010

011

012

01F

020

021

OFE

OFF

100

BRO
1000-1015

BR8 t
1128-1143

BR16

-'-. ...
. BR120

_
......

_ ...
.......

2 3 4 5

BRl BR2
1016-10~1 1032-1047

BR9 1 BR10 I
1144-1159 1160-1175

BR17 BR18

BR121 BR122

Storage Area

Work Buffer

- I

6 7 8 9 A B C 0

plrtition Clntrol Arla

I I
BR3 I BR4 J BR5 BR6
1048-1063 1064-1079 1080-1095 1096-1111 .
BRll 1
1176-1191

BR12 J.
1192-1207

BR13 _I

1208-1223
BR14 1
1224-1239

BR19 BR20 BR21 BR22

BR 123- BR124 BR125 BR126

E F

BR7
1112-1127

BR15 1
1240-1254

BR23

...
-""

BR127

-....

..... -.....

RO}

Rl

R2

R15

R16

R17

R238

R239

) '\
Indicators

I
Binary
Registers

Decimal
Registers

8

Partition Control Area

The partition control area contains control information that describes the program
that is loaded into the partition and defines the I/O devices used in the program.
The 5280 loads this information into fixed locations within the control area, using
information from the common area and from the source program control state
ments. During program execution, the 5280 uses this control information each
time it enters the partition to determine the partition status, the I/O status of the
program, and the address of the next executable instruction.

Indicators and Registers

Immediately following the partition control area is an area that may be used for
indicators, binary registers, and decimal registers. These bytes may be used in any
desired combination of indicators and registers as described in the following para
graphs: if some of these bytes are not used for their binary register/decimal
register capabilities, the unused bytes may be used as storage. Figure 1-2 shows
the bytes that may be used for indicators and registers.

Indicators

The first 32 bytes of this area contain 255 one-bit indicators. In your source pro
gram, the indicators can be represented by the letter I and the indicator number.
They are numbered sequentially from 10 to 1254. The first 100 indicators (10-199)

may be labeled, set, tested, and reset as your source program dictates. These indi
cators are referred to as program indicators. The remaining indicators (1100-1254)
are set and maintained by the 5280, and are referred to as system indicators.
System indicators have specific meanings assigned to them, as described in Chapter
6 under System Indicators Within a Partition.

You can label program indicators with a .DCLIND control statement. When the
assembler processes the .DCLIND control statement, it assigns each specified label
to an available program indicator.

You can label system indicators with an .EQUATE control statement. The
.EQUATE control statement allows you to specify the number of the indicator you
want assigned to each label. You could use the .EQUATE statement to label pro
gram indicators also; however, you usually don't care which program indicator is
assigned to each label.

Two instructions are available to test indicators. The I F I instruction can test the
indicator and perform a conditional branch. The I FIR instruction tests the indicator
and performs a conditional branch, but it also resets the indicator to O. Your pro
gram can use these instructions to test program or system indicators.

You can use the instruction SON to set an indicator (1), or the instruction SOFF
to reset an indicator (0). See Set Indicators under Miscellaneous Instructions in
Chapter 4 for a description of these instructions.

As Figure 1-2 illustrates, the bytes that are used for the indicators are also used for
the first 16 binary registers or for the first two decimal registers. The last bit of the
sixteenth binary register, or the second decimal register, is not used as an indicator.

Binary Registers

The first 256 bytes of this area may be used for up to 128 two-byte binary registers.
Binary registers can be represented by the letters 'BR' followed by the register
number. The registers are numbered sequentially from BRO to BR127. BRO-BR15
are used as indicators (as described in the preceding paragraphs), and BR 16-BR31
are used as system registers. The system registers are used and maintained by the
5280 during program execution and hold information as described in Chapter 6
under System Registers Within a Partition. You should not assign these registers
to any other purpose. The system registers should always be reserved (see the
RGL T parameter of the .START control statement). In your source program you
can access the reserved registers by register number, or you can use the. EOUA TE
control statement to assign them labels.

The binary registers that are not reserved by the RGL T parameter of the .START
control statement can be labeled and initialized by declare control statements in
your source program. Use the .DC control statement to label and initialize one
binary register, or the .DCLBR control statement to label several uninitialized
binary registers.

Although binary registers are 2 bytes in length, you can access either 1 or 4 bytes
by defining the byte length, in parentheses, following the register number or label.
If you specify a length of 1 byte (BR40(1)), only the rightmost byte of BR40 is
accessed. If you specify a length of 4 bytes (BR40(4)), the 2 bytes of BR40 and
the 2 bytes of BR41 are accessed. A binary register specification with a length of
4 bytes is referred to as a binary double register.

Binary registers are often used to hold addresses. The instructions to load a binary
register are described in Load Binary Register under Data Movement Instructions in
Chapter 4. In your source program, you can load a 2-byte binary register with:

• An unsigned decimal integer (0-65535)

• Two EBCDIC characters

Figure 1-3 shows the hex representation of binary data in two binary registers.

High- Low·
Order Order
Byte Byte
~~

BR75 I F 0 A I
BR76 I C 0 0 F

Figure 1-3. Binary Registers

Introduction 9

10

The following examples illustrate the different ways you can refer to BR75 if you
assign it the label BREG1.

BR75
BR75(2)
BREG1
BREG1(2)

BREG1(l)
BR75(1)

BR75(4)
BREG1(4)

Decimal Registers

}
}
}

specifies the full 2-byte binary register, which contains
hexadecimal F01A.

specifies the low-order byte of BR75, which contains
hexadecimal 1 A.

specifies the 4 bytes of BR75 and BR76, which contain
hexadecimal F01 ACDOF.

The 3840 bytes of this area may be used for up to 240 sixteen-byte decimal
registers. Decimal registers can be represented by the letter R and the register
number. The registers are numbered sequentially from RO to R239. The bytes
within RO and R 1 are used for indicators; the bytes within R2 and R3 are used for
system registers. You should not assign RO-R3 for any other purpose. In your
source program, the decimal registers reserved by the RGL T parameter of the
.START control statement can be accessed by register number. Or you can use
the .EQUATE control statement to assign them labels.

Decimal registers not reserved by the RGL T parameter of the .START control
statement can be labeled and initialized by the declare control statements in your
source program. Use the .DC control statement to label and initialize one decimal
register, or the .DCLDR control statement to label several uninitialized decimal
registers.

Although a decimal register is 16 bytes in length, a double decimal register of 32
bytes may be specified by defining the byte length in parentheses, following the
register number or label. Decimal registers and double decimal registers are valid
in decimal arithmetic and shift operations, branch operations, and table operations.
All data in decimal registers is stored in EBCDIC notation. The instructions to
load a decimal register are in Load Decimal Register under Data Movement Instruc
tions in Chapter 4. In your source program, you can load a 16-byte decimal
register with:

• A positive or negative decimal number (±O to 1016 -1)

• Up to 16 EBCDIC characters

The following examples illustrate the different ways that you can refer to R 120 if
you assign it the label REGX.

R120 }
REGX

R120(32) }
REGX(32)

specifies the 16 bytes of R 120.

specifies the 32 bytes of R 120 and R 121.

The contents of a decimal register may be positive or negative; the sign is deter
mined by the zone half of the byte in the units position (byte 15) of the decimal
register. If the register contains a positive number, hex F is in the zone half; if it
contains a negative number, hex D is in the zone half. Figure 1-4 illustrates the sign
control position in a decimal register.

Sign Control Position

Byte
Zone
Digit

Q
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I··· ·l····f··· ·J·····f··· ·1··· ·1··· ·l····f··· ·1···· -(····f··· ·J·····f··· ·I····}· .. ·1
Figure 1-4. The Sign Control Position in a Decimal Register

The zone halves of the bytes are used for sign control; however, no checking is done
by the 5280 to determine whether the register contents are numeric or alphabetic.

Storage

Following the registers is a variable-length area of storage. The size of this area is the
size of the partition, less the 256 bytes of the partition control area and the bytes
used for indicators and registers. The instruction object code is stored in this area,
with the buffers, tables, formats, messages, device lOBs, control tables, data, and
data structures necessary for the program.

Addressing Methods

In your source program, each byte of storage within a partition can be addressed
directly, using an assigned label, or indirectly, using a displacement and a base
address.

Direct labeled addressing of a storage location is accomplished by using a declare
control statement to assign a label to a storage area of any length. To access this
labeled area in a source program instruction, the following format is used.

label [(length)]

where:

label is the assigned label from the declare control statement. The label
addresses the leftmost byte of the storage area.

length is the length, in bytes, of the storage area. If length is not specified in
the instruction, the length defaults to the length assigned to that area by the
declare statement.

Introduction 11

12

Indirect base displacement addressing of a storage location is accomplished by
specifying in the instruction (1) the location of the base addres and (2) the dis
placement from that base address at which the storage area is located. The length
may be specified for many, but not all, instructions. To access a storage location
by indirect addressing, one of the following formats is used.

[displacement] ([length], BRn)
[displacement] (BRn)

where:

displacement is the number of bytes (0-255) from the base address at which the
storage area is located. If the displacement is not specified, it defaults to O.

length is the length, in bytes, of the storage area. The instruction descriptions
indicate whether or not length is allowed in the address. If a length specification
is allowed, it must be followed by a comma. If length is omitted from an instruc
tion that allows a length specification, the comma must be retained. If the
instruction does not allow a length specification, the comma must not be
included in the address.

BRn is a binary register that contains the base address. The base address is rela
tive to the start of the partition.

When a source program instruction that.has an indirect storage address is
assembled, the displacement is added to the base address in the binary register.
The result is the relative address of the leftmost byte of the data area. This address
is placed in the object code.

Examples:

Direct: BIN1 = STOR1(2)
The contents of the byte at STOR 1 and the next byte (length is 2)
are loaded into the binary register labeled BIN 1.

Indirect: BIN2 = 1 (2, BREG)
The displacement of 1 is added to the address stored in the binary
register labeled BREG. The contents of the byte at the resulting
address and the contents of the next byte (length is 2) are loaded
into the binary register labeled BIN2.

Partition Work Area

Following the variable-length storage area is a 256-byte work area. This area is set
up by the assembler. and it is used by the 5280 during program load and program
execution. Your assembler program should not access or change the bytes of this
work area.

MAIN STORAGE BOUNDARY ALIGNMENT

o
000-

OOF-

010- BRO
1000-1015

011- BR8 t
1128-1143

012- BR16

: I

Main storage is divided by several types of boundaries. Each type of boundary
encloses an area of a specific number of bytes. Many data areas must begin on a
certain type of boundary. Figure 1-5 represents a main storage partition and
points out the different types of boundaries. The system configuration portion of
the SCP begins each partition on a 256-byte boundary and measures the length
of each partition in multiples of 256 bytes.

2 3 4 5 6 7 8 9 A B c o

pLtition Cbntrol ArL

I I
BRl BR2 BR3 t BR4 J BR5 BR6
1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111

BR9 1
1144-1159

BR10 1
1160-1175

BRll 1
1176-1191

BR12 J
1192-1207

BR13 _I

1208-1223
BR14 1
1224-1239

BR17 BR18 BR19 I BR20 I BR21 BR22

I I I I I I

- X'0126' is on a 2-byte boundary.
- X'0124' is on a 2-byte and 4-byte boundary.

- X'0120' is on a 2-byte, 4-byte, and 16-byte boundary.

-' 'i e X 0100 s on a 2 byte, 4 byt ,16 byte, 128 byte, and 256 byte boundary.
~--- X'OOOO' is always on a 256-byte boundary.

The address of a 2-byte boundary ends in 0, 2,4,6,8, A, or C.
The address of a 4-byte boundary ends in 0,4,8, or C.
The address of a 16-byte boundary ends in O.
The address of a 128-byte boundary ends in 00 or 80.
The address of a 256-byte boundary ends in 00.

Figure 1-5. Main Storage Boundaries

When you declare a register in your source program, the assembler places it on the
next sequential boundary appropriate for the type; it places a binary register on a
2-byte boundary and a decimal register on a 16-byte boundary. It places all other
data types on 1-byte boundaries unless you specify a boundary. When you are build
ing a storage structure, you may want to specify a boundary. When the 5280
assembler processes your source control statements and sets up these data areas, it
skips over any storage bytes between the current location and the next appropriate
boundary in order to observe the boundary restrictions. These bytes cannot be
used by your program. Your assembly listing indicates how many storage bytes are
lost due to boundary alignment. See the examples following the description of the
.DC control statement in Chapter 3 for an illustration of boundary alignment.

E F

BR7
1112-1127 RO

BR15 1
1240-1254 Rl

BR23
R2

I

Introduction 13

14

BLANKS, CONSTANTS, AND CODING SYMBOLS

In your source program, you may specify optional blanks before or after an equal
sign, arithmetic operator, or parenthesis. Blanks may follow a comma but must not
precede a comma. Blanks are not allowed within a field; however, one or more
blanks must separate fields if no other delimiter is used.

A constant may be specified as a decimal value, a hexadecimal value, a binary value,
or a character. A constant may also be equated to a label; the label can be specified
in an instruction that accepts a constant. Decimal digits are simply written as digits.
Binary, hexadecimal, and character data are prefixed by a capital letter (B, X, and
C respectively) and enclosed in single quotes. For character data the capital C is
optional. Do not leave a blank between the capital letter and the first quote.

n Decimal digits
X'I' Hexadecimal digits; I = O-F
B'I' Binary digits; I = 1 or 0
CT EBCDIC characters; I = any valid EBCDIC character

To specify the single quote character, use two quotes (C'IT"S').

Symbols Used in This Manual

The symbols used in this manual are of two types, syntax symbols and statement
symbols. The syntax symbols are used to illustrate syntax and are not to be used in
writing your source programs. The statement symbols are a part of the language
and must be coded as shown.

Syntax Symbols

Syntax symbols are not to be coded in the source program.

Symbol

[]

{ }

Definition

Brackets enclose optional item (s) to be used or not, at your
discretion.

Braces enclose two or more items from which you must select one.

Three dots indicate that the preceding can be repeated.

b Lowercase letters represent information you must supply. (You
label must substitute your own values for the lowercase terms.)

n Represents an unsigned decimal number.

±n Represents a signed decimal number.

0-9 Represents a range of numbers from which one number can be
selected. (The dash is not coded.)

In Represents an indicator, which can be referred to by label or
number.

BRn

Rn

BRa
Rb

constant

Represents a binary register, which can be referred to by label or
number.

Represents a decimal register, which can be referred to by label or
number.

When more than one register may be used in a statement, the letters
a, b, and c may replace the n to more clearly demonstrate the posi
tions in the statement that the different registers may occupy.

Represents any form of constant as described in this chapter.

Introduction 15

16

Statement Symbols

Statement symbols must be used in an assembler source program as shown in the
syntax iilustrations:

Symbol

()

S
LABEL

Definition

Colon is used after symbolic labels.

Semicolon delimits statements.

Point, or period, begins control statements.

Equal sign causes the value of the data area on the left of the equal
sign to be changed according to the value of the data area on the
right of the equal sign.

Parentheses enclose certain parameter values.

Single quotes enclose literals and are used to specify numeric data
other than decimal. The use of single quotes is interchangeable with
the use of capital C and single quotes. For example, C'abc' and 'abc'
produce the same results.

Comma separates parameter values.

Uppercase fetters are assembler language and must be coded as
shown.

Chapter 2. Programming Concepts

This chapter discusses various data areas that are set up according to your control
statements and are used by the 5280 during program execution. The discussions
often refer to the control statements that generate the areas and the instructions
that use the areas during program execution. Each control statement is described
in Chapter 3; each instruction is described in Chapter 4.

TABLES

Tables play an important part in 5280 assembler programming. Two kinds of
tables may be set up and used by your program: data tables, which are set up by
.TABLE control statements, and label tables, which are set up by .LABTAB
control statements. Also, the assembler builds system tables, which are used by the
5280 during program execution. These system tables allow you to refer to a data
area with a label; the 5280 converts the label to an index that points into a system
table and locates the address and parameters of the area.

System Tables

When the assembler processes control statements that set up as tables, formats, or
prompts, it places the address of each table, format, or prompt in a table. This table
of addresses is a system table, and is used by the 5280 during program execution.
System tables are stored in the partition storage area. You can specify the address
of the system tables by using the .SYST AB control statement in your source pro
gram. Otherwise, when the assembler encounters the .END control statement, it
stores the system tables at the addresses immediately following the last address that
contains program object code. The address of each system table is stored in the
partition control area. The control statements that generate a system table argu
ment are listed below, with the system table into which the argument is entered.

System Table Control Statements

Table control .TABLE

Edit format control . FMT series (each series = 1 argument)

Screen format control .SFMT series (each series = 1 argument)

Prompt control .DC TVPE=PRMT

Duplicate and store control .DC TVPE=MDUP

Programm ing Concepts 17

18

When a source instruction refers to a prompt, table, duplicate field, store field, or
format, the insiruction specifies only the !abe!. The 5280 uses this label to find

the system table entry; the system table entry provides the address and other control
parameters. The system table entries are stored sequentially, in the order they
occur in the source program. Except for the prompt system table, the first entry
in a system table is at index 0; for the prompt system table, the first entry is at
index 1. The assembler places the table index into the object code instruction.
This method requires only 8 to 10 bits of the 4-byte object code to provide the
address and parameters of the requested data area. The .SYSTAB control state
ment description in Chapter 3 describes how to specify the labels and addresses of
the system tables.

Data Tables

Contiguous fields of related data can be referred to as a data table. In your source
program, you can allocate and initialize the fields of a data table by using .DC
control statements. After you have allocated the fields, you must use the .TABLE
control statement to structure the fields into a table. The first argument in a data
table is at index 1. You may have up to 128 tables within a partition. You must
include one .TABLE control statement for each table in your source program.

You can use instructions in your source program to request that the 5280 search,
read, or write the entries in a data table. See Table Instructions in Chapter 4 for a
description of these instructions.

Data tables can be fixed length or variable length, according to your .TABLE control
statement. See the .TABLE control statement definition in Chapter 3 for an
example of .DC and .TABLE control statements that build a variable length table.

Label Tables

Label tables are tables that contain addresses; they are used by your program to
make indexed branches and indexed subroutine calls. In your source program you
use a .LABTAB control statement to set up a label table.

The parameters of the. LABT AB control statement specify the labels of the sub
routines or instructions you wish to enter into the label table. The address of the
first label specified in the .LABTAB statement is entered at index 0 in the label
table, the address of the second label is entered at index 1, and so on. When you
code a GOT AB or CAL L TB instruction, you specify (1) the label of the label table
and (2) the label table index of the subroutine or instruction you wish to execute.

The 5280 makes similar indexed branches through the label table you use for your
external status condition subroutines, if you code a separate subroutine to handle
each condition. (See Keyboard/Display External Status in Chapter 6.) You specify
this label table in the ETAB parameter of the .KBCRT control statement.

DATA TYPES

Each source instruction and control statement requires specific types of data to be
used as operands. For some operands only one type of data is accepted. For
example, the format operand of the ENTR instruction requires a screen format
specification; no other type of data is accepted. For other operands more than one
type of data may be specified. For example, the operand of the ZONE instruction
may be specified as a decimal register or as a constant.

The following data types can be used in the instruction and control statement
operands.

• Label or number of an indicator

• Label or number of a binary register

• Label or number of a decimal register

• Label of an instruction

• Label of a data storage area (from a STOR type .DC)

• Label of a prompt (from a PRMT type .DC)

• Label of a duplicate area (from a MDUP type .DC)

• Label of an edit format

• Label of a screen format

• Number of a data set

• Index of a table

• Constant

SUBROUTINES

A program can call any subroutine that is stored within the partition. Calls to
routines in the common function area are discussed under Common Function
Routines in Chapter 6.

Two source instructions can be used to call a subroutine: the CALL and CALL TB
instructions. These instructions are described in Chapter 4 under the Subroutine
Call and Return instructions. A CALL instruction must include a label or a binary
register, or both. If the CALL instruction includes a label, a normal call is made to
the statement at the specified label. If the CALL instruction specifies a binary
register and no label, a call is made to the address contained in the register. If the
CALL instruction specifies a binary register and a label, the contents of the binary
register are added to the address of the specified label, and a branch is made to the
resulting address.

Programming Concepts 19

20

iilt: CALLiS instruction is used to make an indexed branch through <l label table.
The label table must be set up and labeled by a .LABTAB control statement. You
include this label table and a binary register when you write the CALL TB instruc
tion. The binary register contains the index of the subroutine you wish to call. The
first entry in the label table is at index O. When the CALL TB instruction is
executed, the call is made to the subroutine at the specified index into the label
table. If you use a separate subroutine for each external status condition, the 5280
uses this method to call the appropriate external status subroutine. The 5280 uses
BR23 to hold the index into the external status subroutine label table.

The Partition Subroutine Stack

Whenever a subroutine call instruction is executed, the address of the next
sequential instruction is assumed to be the return address and is stored into the
partition stack. The partition stack is a system table with 2-byte entries, located in
partition storage. You may use the .SYSTAB control statement in your source
program to specify the address and size of the partition stack. Otherwise, when the
assembler encounters the .END statement it locates the beginning of the partition
stack in the address following the last address that contains program object code or
system tables. In either case, it stores the address of the beginning of the partition
stack in BR18, which is referred to as the stack pointer. When the first subroutine
call is executed, the 2-byte return address is placed in storage at the address indi
cated by BR18. Then the address in BR18 is incremented by two, so that it points
to the next available stack entry. If another call is executed before a return is
made to the first call, the return address for the second call is placed in the address
indicated by BR18, and BR18 is incremented by two. In this way, you can have
nested subroutine calls. You must remember, however, that each nested call adds
another 2-byte entry to the partition stack. If the partition stack extends beyond
the end of the partition, a program check error results.

Subroutine Returns

External status subroutine returns depend upon the particular external status
condition and are described under External Status and Error Conditions in this
chapter.

Other subroutines end with a RETURN instruction. When this instruction is exe
cuted, the content of BR18 is decremented by two so it points to the last address
entered into the partition subroutine stack. If the RETURN instruction includes a
binary register, an indexed return is made. The content of the binary register is
added to the address pointed to by BR18, and control returns to the resulting
address.

Figure 2-1 illustrates how the partition stack and stack pointer are used during sub
routine calls and during returns.

Yes---~

Go to the subrou
tine stack address
specified by BR18

Write the return
address (of the
next sequential
instruction) in the
subroutine stack

Increment BR18
by 2

Branch to the
subroutine

Get an
instruction

Yes

Decrement
BR18 by 2

Go to the subrou-
tine stack address
speci tied by B R 18

Return to the
address stored in
this subroutine
stack position

Figure 2-1. Overview of Subroutine Calls and Returns

No

~--No

Execute the
instruction

Programming Concepts 21

22

THE STATUS LINE

The top line of the data station screen normally displays the status line. The 5280
maintains status line fields, which communicate status information to the operator.
Figure 2-2 illustrates the status line fields.

Position

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 . . . 32

p C C C C s R R H H

p C C C C s R R > H H

p C C C C E E E E s R R H H

p C C C C E E E E L L N N N N N N N N o 0 ... 0

Key
P is the partition number.
C is the current position counter.

E is the error or condition code.

S is the field shift.
> is the insert mode symbol.
R is the positions remaining in the field.
H is the hex value of the current position.
L is the logical device 10.
N is the program name (first 8 characters).
o is the data set name.

Figure 2-2. The Status Line Fields

The Partition Number

The partition number is maintained only during an attach or detach operation.
Upon completion of a successful attach operation, this status line field contains
the partition number of the attached partition. Upon completion of a successful
detach operation, this field contains the partition number of the foreground parti

tion that is permanently associated with the keyboard.

The Current Position Counter

The current position counter is maintained only during the processing of an
ENTR command. This status line field contains the value of the position counter.
The value is automatically updated with each keystroke. The value reflects the
current position, relative to: (1) the beginning of the I/O buffer, (2) the first posi
tion on the screen, (3) the first position of the record, or (4) the first position of
the field. The CNTR parameter of the .KBCRT control statement determines
which value is maintained in the counter.

Mode

Normal Entry

Normal Entry,
Insert Mode

Keystroke

Error
I/O Error

The Error Code

The error code field of the status line contains the error code of the current error.
It is maintained by the 5280 to reflect all errors. If your program issues a keyboard
operation to send an error code to the status line, you may place the code in
positions 1-65 of the status line; however, the code is normally placed in positions
3-11.

The Field Shift

The field shift position of the status line is maintained only while an ENTR com
mand is being processed. It contains the symbol that reflects the keyboard shift
for the current field or subfield.

The Insert Mode Symbol

The insert mode symbol is maintained only during the processing of an ENTR
command in insert mode, after the operator has pressed the Ins (Insert) key.

The Positions Remaining in the Field

This status line field is maintained only while an ENTR command is being processed.
It reflects the number of field positions remaining to be entered in the current input
field. If the value is greater than 99, two asterisks (**) are contained in the status
line field.

The Hex Value of the Current Position

The hex value is maintained on the status line only while an ENTR command is
being processed. It is the hex value contained in the I/O buffer position that corre-,
sponds to the current position of the cursor.

Nondisplay of the Status Line

Certain applications may require the use of every line on the screen. For these
applications, the DISPEX instruction can remove the status line from the screen so
the top line can be used to display data or prompts, or both. The 5280 maintains
the status line whether or not it is displayed on the screen. If an error occurs when
the status line is not being displayed, the DISPST instruction can temporarily
replace the current top line with the status line in order to communicate error
information to the operator. Or the FUNC parameter of the .KBCRT control state
ment can specify that the 5280 determines whether the status line is being displayed
whenever an error occurs; if it is not, the 5280 displays it, then returns the top line
when the error is reset. The data from the top line is not lost and may be returned
to the screen after appropriate error recovery has been accomplished.

The DISPEX and DISPST instructions are discussed under Keyboard Operations in
Chapter 4. The .KBCRT control statement is discussed under .KBCRT Control
Statement in Chapter 3.

Programming Concepts 23

24

EXTERNAL STATUS AND ERROR CONDITIONS

When an I/O error condition or a condition that requires operator intervention
occurs, the 5280 generates an appropriate condition code and places it into the
lOB of the data set that was being processed when the condition occurred. The
condition code is made up of four digits that describe the condition:

• Device reporting the condition (first digit)

• Category of the condition (second digit)

• Condition number (third and fourth digits)

The device digits are:

Digit Device

o 5280 controller
1 Keyboard/display
2 Printer
3 Diskette
4 SNA communications access method
5 BSC communications access method
9 Program

The category digits are:

Digit Device

o Communications completion codes
1 Operator intervention required
2 Hard error (not retried)
3 Error that has been unsuccessfully retired
4 lOB error
5 Soft error (has been successfully retried)
6 Exception condition
7 Warning message, program execution may continue
8 Reserved
9 Software termination

The last two digits of the condition code are the condition number. The condition
number specifies the condition and varies depending upon the device and category.
All condition codes and messages will be described in the Message Manual.

The following information concerning the condition is placed into system binary
registers within the partition when the condition occurs.

Register

BR19

BR20

Information

Used only with keyboard/display external status, this register con
tains the relative address of the field in the I/O buffer that holds the
current record. The address is relative to the beginning of the parti
tion and is valid only when BR21 contains a field specification.

Used only with keyboard/display external status, this register con
tains the absolute address of the current field in the screen refresh
buffer and is valid only when BR21 contains a field specification.
The screen refresh buffer is located within the keyboard/display unit
and holds the data that appears on the screen.

BR21 Used only with keyboard/display external status, this register con
tains a control specification or a field specification. If it contains a
field specification, it also contains the length minus one of the
current field in the I/O buffer. See Keyboard/Display External
Status in Chapter 6 for the format of the contents of this register.

BR22

BR23

Used with all external status except keyboard/display. this register
contains the relative address of the last lOB to report external status.

Used with all external status, this register contains the index of the
current external status condition. This index can be used by your
program as the index into your external status subroutine label table.
Except for keyboard/display external status, this index is the cate
gory digit from the condition code. See Keyboard/Display External
Status in Chapter 6 for information about this index for keyboard/
display external status.

If you write subroutines to handle certain external status conditions, such as the
keyboard/display external status conditions, your program may use the data in
these registers. Do not change the data in the system registers.

KEYBOARD DATA ENTRY

Keyboard entry of each input record is initiated with an ENTR command. The
input record is formatted according to the screen format. The operator enters
characters into the fields of the input record, and the 5280 makes character and edit
checks to make sure the characters are valid for the field, according to the specifica
tions in the screen format. Data keys and many function keys sound a response
click from the keyboard. The characters, as they are entered, are stored into the
I/O buffer and are displayed on the screen. For enter, update, and verify modes a
keystroke counter is incremented when each character is entered. (See Keystroke
Counters in Chapter 6 for more information.) The cursor is moved to the screen
position where the next character is to be entered. The operator can move the
cursor forward and backward within the current record.

Programming Concepts 25

26

The siaius iille displays data EntPI inform<ltion such as the current keying position,

the number of positions remaining to be filled in the current field, and the key
board shift for the field.

The operator can select functions, such as duplicate or skip, by pressing the appro
priate function keys. You can let the 5280 process keyboard functions, or you can
include your own routines to handle these functions. See the Functions Reference
Manual for more information about the keyboard functions.

Modes of Entry

The 5280 supports three basic modes for data entry:

• Enter mode, for initial data entry

• Update mode, for inspection and modification of previously entered data

• Verify mode, for having data checked for accuracy and making necessary
corrections

In addition to these basic modes, rerun mode or display mode can be selected by
your program to perform special functions. You can select one of these five modes
with the MODE parameter of the .KBCRT control statement. (See .KBCRT Con
trol Statement in Chapter 3.) Insert mode or field correct mode is automatically
selected by the 5280 when the appropriate keystroke is entered.

Enter Mode

When the 5280 executes an ENTR command in enter mode, each data character is
displayed on the screen and placed into the I/O buffer as it is entered. Prompts,
constant inserts, duplicate fields, skip fields, and display attributes are displayed
when the cursor moves to the first position of the field or to the attribute position;
these positions are specified in the screen format. Constant inserts are also placed
into the I/O buffer as they are displayed. When the complete screen format has
been processed, the I/O buffer holds the constant inserts and the newly entered
data.

Update Mode

When the 5280 executes an ENTR command in update mode, prior instructions in
your program must have placed a previously-entered record into the I/O buffer.
The 5280 displays prompts, display attributes, and the contents of the I/O buffer.
The display attributes and prompts are determined by the screen format. The
operator can enter a new data character into any record position to replace the data
character currently in the record. The new data character is displayed on the
screen and placed into the I/O buffer as it is entered. When the operator has
completed a" necessary modifications, the I/O buffer contains the original data.in
all positions that were not modified and the new data in the positions that were
modified.

Verify Mode

When the 5280 executes an ENTR command in verify mode, prior instructions in
your program must have placed a previously-entered record into the I/O buffer. The
5280 displays the prompts and display attributes as for enter mode, according to the
screen format. It does not display the contents of the I/O buffer. As the operator
enters a data character into a record field position, it is verified against the contents
of the corresponding field position in the I/O buffer. If the newly entered
character matches the original character, which is in the I/O buffer, it is displayed
on the screen and the cursor moves to the next position. If the newly entered
character does not match the original character, the cursor remains at the character
position, the original character and the remainder of the field in the I/O buffer are
displayed, and a verify mismatch error is reported. The operator must press the
Reset key, then enter either the character displayed above the cursor or reenter
the character that caused the mismatch. If the character that is displayed above the
cursor is entered, the remainder of the field is removed from the screen and the
cursor moves to the next position. If the character that caused the mismatch is
reentered, that character is displayed above the cursor and replaces the original
character in the I/O buffer. A verify-correction keystroke counter is incremented

(see Keystroke Counters jn Chapter 6) and the cursor moves to the next position.
If the character entered is neither the original character nor the character that
caused the mismatch, another verify mismatch error is reported. If the operator
backspaces over a data position on the screen, the position is blanked and must be
reentered and reverified.

Rerun Mode

When the 5280 executes an ENTR command in rerun mode, no data or prompts
are displayed on the screen. The status line counters, keyboard shift, and hex
display information is not maintained. The entire screen format is processed,
except that a clear-screen function that is specified at the start or end of the format
is ignored. Character and field edit checks are bypassed. Auto duplicate, auto skip,
and main storage duplicate and store functions are performed if the auto-dup}3kip
switch is turned on or if the field has the AA (absolutely automatic) attribute speci
fied in the screen format. Constant inserts are placed into the I/O buffer. When
an RG (return to program) exit specification is encountered in the format, the
appropriate external status condition occurs.

Rerun/Display Mode

When the 5280 processes an ENTR command in rerun/display mode, the prompts,
display attributes and the contents of the I/O buffer are displayed as for update
mode. The status line information is maintained. Character and field edit checks
are bypassed. Auto duplicate, auto skip, main storage duplicate and store, and RG
functions are performed as for rerun mode.

Rerun mode requires less execution time than rerun/display mode, and is the mode
usually selected for the rerun function. Rerun/display mode can be used when an
error occurs when a record is being processed in rerun mode, and the operator
must inspect the record data order to recover from the error.

Programming Concepts 27

28

Display Mode

When the 5280 executes an ENTR command in display mode, prior instructions
in your program must have placed a previously-entered record into the I/O buffer.
The 5280 displays prompts, display attributes and the contents of the I/O buffer.
The display attributes and prompts are determined by the screen format. The
cursor is not displayed, and no data can be entered. If a buzz or clear-screen func
tion is specified at the end of the screen format, it is ignored. When the 5280 has
processed the complete screen format, the external status condition for record
advance (condition 6) occurs.

You can use display mode to inspect the prompts and display attributes of a screen
format. Do not confuse display mode with rerun/display mode.

Insert Mode

Insert mode is initiated when the operator presses the Ins key. Insert mode is valid
only when an ENTR command is being processed. When the Ins key is pressed, the
insert mode symbol is displayed on the status line. When the operator presses a
data key, the data character is inserted into the field at the current cursor position.
All field positions to the right of the cursor, and the cursor and character above the
cursor, are shifted one position to the right. Insert mode is canceled when the
operator presses the Reset key.

Field Correct Mode

Field correct mode is selected by the 5280 when it is processing an ENTR in verify
mode and the operator presses the unshifted Corr key. The cursor moves to the
first position of the field, and the field is filled with blanks in the I/O buffer and
on the screen. The operator can then enter data into the entire field as for enter
mode. The character and field edit checks are performed. When the cursor exits
the field in the forward direction, the 5280 returns to verify mode. The field can
now be verified.

AUTOMATIC FUNCTIONS

While the 5280 is processing formatted data entry, certain functions may be

initiated automatically as specified in your application program. These functions
include auto enter, auto duplicate/skip, and alternate record advance. You can
activate these automatic functions by including the FUNC parameter of the
.KBCRT control statement. You can activate automatic functions by providing
support in your program for the Auto Enter and Dup Skip keys. See the
Functions Reference Manual for a detailed description of all keyboard functions.

Auto Enter

If you specify auto enter in your .KBCRT control statement, the 5280 automati
cally performs a record advance function when the operator enters the last input
position of a record.

If you do not specify auto enter, the 5280 sets the system in the awaiting record
advance state when the operator enters the last position of a record. The operator
must then press the Enter key or Rec Adv key to initiate a record advance function.

Auto Duplicate/Skip

If you specify auto duplicate/skip in your .KBCRT control statement, the 5280
automatically processes any field that is defined in your program as an auto
duplicate or auto skip field. When the cursor moves to the first position of an auto
duplicate field, the 5280 duplicates data into the field from the area specified by
your program. (See Field Definitions later in this chapter for more information
about duplicate fields.) When the cursor moves to the first position of a skip field"
the 5280 fills the field with blanks and then moves the cursor to the first position
of the next field.

If you do not specify auto duplicate/skip in the .KBCRT control statement, a dupli
cate field or skip field is processed as for a manual field. In order to initiate the
duplicate or skip function, the field must have also been specified as absolutely
automatic in the program, or the operator must press the Dup Skip key. (Software
must provide support for this key.)

Alternate Record Advance

If you specify alternate record advance in your .KBCRT control statement, when
the operator presses the Enter key or Rec Adv (Record Advance) key the processing
of the current record stops. Any specifications for fields or screen control that is
defined in your program for positions between the cursor position and the end of
the record are ignored.

If you do not specify alternate record advance, any specifications for fields or
screen control defined for positions between the cursor position and the end of
the record are processed. Input fields are processed as though a ~ (Field Advance)
key were pressed for each field.

SCREEN FORMATS

A screen format is a series of source program control statements that define each
field of a record to be entered via the keyboard. The control statements also define
the prompts and display attributes that appear on the screen while the record is
being entered. The series of control statements must begin with a .SFMTST state
ment and must end with a .SFMTEND statement. You can write up to 256 screen
formats for each partition.

Programming Concepts 29

30

When the assembler processes each series of controi statements, it generates a string
of object cede referred to as a screen format control string. The assembler stores
each screen format control string in the partition storage area, and places the address
of each string in a system table.

During program execution, formatted key entry is initiated by a key entry com
mand, the ENTR command. Each ENTR command specifies the format to be used
to enter the record. The 5280 searches the system table for the address of the
screen format control string generated from the specified format. The 5280 then
processes the screen format control string in the same order that the source program
control statements were written.

Besides the .SFMTST and .SFMTEND control statements, the screen format control
series includes the following control statements:

Control
Statement

.SFMTPMT

.SFMTCNS

.SFMTFLD

.SFMTCTL

Purpose

To specify prompts
To specify constant insert data
To define each field and subfield of the record
To specify keyboard, screen, and format control

The sequence of a screen format for a typical key entry job could begin with a
statement to display a prompt requesting the operator to enter a field of data.
The next format statement could define the valid characters that the operator may
enter into the field. As the operator enters the field, the 5280 checks each input
character to make sure it is valid according to the screen format statement that
defines the field. Each valid input character is placed into an I/O buffer. The next
screen format statement could move the cursor or the pointer in the I/O buffer
that contains the current record. Then another prompt could request the operator
to enter the next field.

When all the specifications of a screen format are processed, the complete input
record is in the current record buffer. The 5280 must then execute object code
instructions to move the data from the current record buffer to registers or other
storage areas. When the 5280 has moved the data from the buffer, another ENTR
may be issued, with the same or a different screen format specification.

Prompts

In your source program, you label and initialize each prompt by using a .DC
(declare) control statement. You must specify PRMT for the TYPE parameter and
define the prompt message with the INIT parameter. Then, when you write a
screen format using the .SFMT control statements, you specify the label of the
prompt with a .SFMTPMT statement.

When the assembler processes your source statements, it stores the prompt labels
in a system table. It stores the system table index for the prompt in the screen
format control string.

During program execution, when the 5280 encounters a prompt index while
processing a screen format control string, it finds the address of the appropriate
prompt at that index into the system table. It takes the prompt message from the
storage address and displays it on the screen. The prompt message is not inserted
into the current record buffer.

You can specify the screen position where each of your prompts are displayed. A
prompt can be displayed in the standard fixed prompt location, which begins in
column one of line two. You can specify a different line for the fixed prompt posi
tion by including the FPLC parameter of the .KBCRT statement. Each current
fixed prompt replaces the previous fixed prompt on the prompt line. You can also
have the prompt displayed at the current cursor position, or at a specified number
of positions to the right or left of the current cursor position, or on the beginning
of the next line. All of these options for the placement of your prompt are
described under .SFMTPMT Control Statement in Chapter 3.

Constant I nsert Data

In your source program, you can specify constant data to be inserted into the
current record buffer and displayed upon the screen during program execution. The
constant data is labeled and initialized with a .DC control statement, with PRMT
specified for the TYPE parameter. It is specified in a source screen format with a
.SFMTCNS statement. The 5280 finds the appropriate constant insert data by using
the prompt system table. The insert is processed as if it were a prompt, except that
the constant is displayed on the screen and inserted into the current record buffer.

Field Definitions

You can define the individual fields of the record by including a .SFMTF LD state
ment for every field. The parameters of the .SFMTFLD statement specify the field
length and the character set that is valid for the field. Other parameters can break
a field down into a number of subfields, or indicate that the field is a data required,
automatic duplicate, or right adjust field. Parameters can also specify display attri
butes that effect the individual field, such as blink, highlight, or underscore.

Main Storage Duplicate and Store

You can specify a main storage duplicate field, or a main storage store field, by

including an MD or MS parameter in the .SFMTFLD statement that defines the field.
The MD or MS parameter specifies the label of the main storage data area. This
main storage data area must be allocated and labeled with a .DC statement that
specifies MDUP for the TYPE parameter.

When a main storage duplicate field (MD) is entered, the contents of the specified
main storage area are automatically copied into the field in the current record buffer
if one of the following is true:

• The field is also specified as auto duplicate and absolutely automatic (AD, AA
in the third FLDF position).

• The field is also specified as auto duplicate (AD in the third FLDF position) and
the auto dup/skip mode is active.

Programming Concepts 31

32

If the field is defined only as rv10, duplication can be initiated by pressing the Dup
key. When the Dup key is pressed, the duplication starts at the current field posi
tion and continues to the end of the field.

When a main storage store field (MS) is exited, the contents of the field are auto
matically copied into the specified main storage location if one of the following is
true:

• The field is also defined as absolutely automatic (AA in the third FLDF position).

• The auto dup/skip mode is active.

Example: The following declare control statements allocate and initialize a prompt
and a constant insert and allocate a data area in main storage. The screen format
control statements use the prompt, constant insert, and data area to illustrate a
main storage store and main storage duplicate.

.DC LABEL=PTNAME

.DC LABEL=CONST1
TVPE=PRMT
TVPE=PRMT

.DC LABEL=DUPNAME TVPE=MDUP

LABEL=PFT04 CNTL=MV;

INIT='Name: ';
INIT='Helio
LEN=20;

'. ,

.SFMTST

.SFMTPMT

.SFMTFLD
PRMT=SP,PTNAME ; display a standard position prompt
FLDF=A,20,AA MS=DUPNAME;

*The operator enters a name into the 20-byte alphabetic field, which is
*specified as absolutely automatic. The characters are displayed and placed
*into the I/O buffer as they are entered. When the field is exited, the

*contents of the field are stored into the main storage data area labeled
*DUPNAME because the AA is specified .
. SFMTCNS CNST=CONSTl BFPS=l CSPS=NL;
*The constant is displayed on a new line, the I/O buffer pointer is incremented
*1 to skip 1 position in the buffer, and the constant is placed into the I/O
*buffer .
. SFMTFLD FLDF=A,20,AD,AA MD=DUPNAME ;
*When the cursor moves to the first position of this field, the name is
*automatically copied from the data area labeled DUPNAME into the I/O
*buffer and is displayed on the screen.

Field Control

You can specify control of the screen, of the keyboard, and of the format with a
.SFMTCTL control statement. The parameters of this control statement can specify
display attributes for the screen, such as blink, reverse image, and nondisplay. Other
parameters can enable or disable the Dup key or specify whether a field exit key is
required to exit the current field. Other parameters can cause a field to be duplicated
or stored, cause a conditional bypass of a portion of the format, or cause a secondary
format to be processed.

Secondary Screen Format

You can specify a secondary screen format series by including a .SFMTCTL control
statement at the position where you want the secondary screen format to begin.
The .SFMTCTL statement must have an ES parameter that indicates the label
(LABEL parameter of the .SFMTST statement) of the secondary screen format.

The secondary screen format specification acts in a way similar to a subroutine
call. When an ES parameter is encountered while the primary screen format series
specifications are being processed, control goes to the first specification of the
secondary screen format. All specifications of the secondary screen format series
are processed. Then control returns to the primary screen format, to the statement
following the ES parameter.

Only one level of secondary formats is allowed.

Example: In the following example, three screen formats are used to enter a
record: the primary format FMT04, the secondary screen format FMT16, and the
secondary screen format FMT17 .

. SFMTST LABEL = FMT04; begin primary screen format .

. SFMTPMT LABEL = PROMPT6; primary format displays a prompt .

. SFMTCTL ES = FMT16; process complete screen format FMT16 .

. SFMTPMT LABEL = PROMPT7; primary format displays a prompt .

. SFMTCTL ES = FMT17; process complete screen format FMT17 .

. SFMTPMT LABEL = PMTEOR;

.SFMTEND; primary screen format ends.

Conditional Bypass

You can specify a conditional bypass for any section of a screen format. Include a
.SFMTCTL control statement with a CI parameter at the position in the screen
format series where the bypass begins. Then include a .SFMTCTL statement with
a CNTL = CE parameter at the position where the bypass section ends.

For the CI parameter, you must specify an indicator label followed by either ON
or OFF. Use the label assigned by a .DCLIND control statement. When the 5280
encounters the bypass specification, it checks the specified indicator. If the indi
cator is 1 and the CI parameter specified ON, or if the indicator is 0 and the CI
parameter specified OFF, the 5280 bypasses all field, display attribute, and prompt
specifications between the CI and the CE specifications. However, the cursor and
current record buffer pointer are moved past the space on the screen and in the
current record buffer where the bypassed fields, display attributes, or prompts
would have appeared. If the bypass specifications are encountered in a forward
direction, the current field counter is incremented by the number of fields by
passed. If it is encountered in a backward direction, the current field counter is
decremented. If an RG (return to program), BFPS (change buffer position pointer),
CSPS (change screen position pointer), or a control specification to change status
is encountered during bypass, it is processed as normal. If an ES (execute second
ary format) specification is encountered, the fields and control specifications of the
secondary format are processed as described above for a bypass.

Programming Concepts 33

34

Example: The secondary format FMT06 is not p.xecuted if the indicator CHECK 10

is 1:

.SFMTST LABEL = FMT05 CNTL = MV;

.SFMTCTL CI = CHECK10, ON; the indicator is labeled CHECK10 .

. SFMTCTL ES = FMT06; a secondary format specification .

. SFMTCTL CNTL = CE; end bypass section.

Only one level of conditional bypass is allowed. Do not follow a CI parameter with a
second CI parameter before a CE specification is included. However, you can have
more than one bypass within a screen format series if each CI parameter is followed

with a CE specification. Do not follow a CI parameter with a .SFMTST or a
.SFMTEND control statement before a CE specification is included.

Returning (RG) Exits

When you write a screen format in your source program, you may wish to
temporarily interrupt key entry in order to have program operations performed.
You can do this by including a CNTL=RG parameter in any .SFMT control state
ment except the .SFMTEND statement. The assembler sets a bit in the screen

format control string whenever it encounters an RG specification in the source
screen format. Then, when the 5280 executes the screen format control string and
encounters this bit in a forward or backward direction, it interrupts key entry and
reports external status condition 4 or 5, respectively.

You could include an RG exit immediately following an input field you want to
self-check, or immediately following an input field you want to add to a running
total.

EDIT FORMATS

Edit formats are used to reformat the fields of a record as the record is moved
between main storage and the current record buffer. Each edit format is set up by
one .FMTST control statement followed by one .FMTFLD for every field in the
record. The .FMTFLD statement specifies the length of the field and the registers

to or from which the field is moved. It can also specify editing for the field, such
as the placement of a currency sign, decimal point, or minus sign. Each edit format
must end with a .FMTEND control statement.

The edit formats are used for several data movement instructions to move the fields
of the record to or from the current record buffer after the record has been read,
or before it is written.

Edit formats may be used for read and write instructions for the diskette drive,
communications line, and printer. When an edit format is specified in a read
instruction, the record is reformatted as it is read into the current record buffer.
The format edits the record, removing currency symbols and punctuation. The
edit format then specifies the registers or storage locations into which each field is
moved. For a write instruction, the format moves the fields from the specified
registers or storage locations to the current record buffer and replaces the currency
symbols and punctuation. The reformatted record is then written from the current
record buffer to the diskette, printer or communications line.

Data Directed Formatting

For input records, you can specify that the formatting is data directed. The
.FMTST statement allows you to specify a control character and where the control
character is located in the record. When you write a data directed read instruction,
you specify an asterisk (*) rather than a format label. Then, during execution of a
read operation, the 5280 selects the appropriate format by matching the control
character of the input record to the first format that has the same control character
specification.

FIELD MODIFICATION INDICATORS

There are 32 field modification indicators: 1160-1191. Each indicator represents a
field in the screen format, up to 32 fields. If there are more than 32 fields in the
format, each indicator represents every 32nd field. 1160 represents field 0, field 32,
field 64 and so on. A format level zero specification is represented by one indicator
for the entire group of 1-byte fields.

When the 5280 encounters an ENTR command, it sets each field modification
indicator to zero. Each time the cursor is advanced or backspaced into a field, the
5280 sets a bit in the partition control area to zero. If data is entered into the field,
the 5280 sets the bit to 1. When the cursor exits the field, the 5280 ORs the bit
with the field modification indicator that represents the field.

Constant inserts are assigned field modification indicators. Whenever the insert is
moved into the I/O buffer and onto the screen, the corresponding field modifica
tion indicator is turned on.

If an external status condition occurs while the cursor is within a field, the corre
sponding field modification indicator has not yet been ORed with the bit in the

partition control area; therefore, it may not indicate that the field has been modi
fied in the current record.

If your program makes a change to a field in the current record in the I/O buffer, it
is your responsibility to update the corresponding field modification indicator.

Programming Concepts 35

36

DISKETTE DATA MANAGEMENT

Diskette operations for the 5280 include operations to read, write, search, insert,
and delete records that are stored in diskette data sets. The data sets may be
sequential or key indexed data sets. In a sequential or key data set, the 5280 can
access records sequentially, in the order they were entered. In a sequential data
set, the 5280 can access records directly, by relative record number. In a key
indexed data set, the 5280 can access records directly by key. When a key
indexed data set is opened, an index table of the keys is built automatically, or
you can choose to build your own key index table.

Label Update

By specifying a label update type data set, you can update the HDRl labels and
sectors 1 through 7 of track 0 on the diskette index as though it were a sequential
update data set. For label update, the 5280 treats each 128-byte diskette data set
label as a record. The record number of the last label is both the EOD (end of
data) and the EOE (end of extent) record number. By specifying a label update,
erase-type data set, you can create labels without reading the existent label values.
Only the index cylinders are accessed for the label update access method.

Physical and Logical Buffers

You must set up at least one physical buffer in main storage for any program that
has I/O instructions. The physical buffer length must be a multiple of 128 bytes
and must begin on a 128-byte boundary. You can use double buffering for
minimal delays in interactive programs; set up a second physical buffer so the
5280 can process data in one while an input or output operation is being performed
with the other. For keyboard/display I/O, double buffers are required to duplicate
fields of a previous record into the same field of a current record. The 5280 keeps
track of the buffers and the records that are in the buffers.

You can block your data sets for faster execution; set up a logical buffer, and the
blocking and deblocking functions are performed automatically by the 5280. Or
you can omit the logical buffer and use pointer I/O to block and deblock logical
records directly to and from the physical buffer.

Automatic Logical Buffering

When the 5280 opens a data set, it finds the address of the physical buffer and the
logical buffer in the data set lOB. During I/O operations to or from a diskette data
set, the 5280 maintains a record counter to keep track of the record number of the
logical record currently being processed, relative to the first record of the data set.

When the 5280 is processing a sequential data set and encounters the first READ
instruction, it reads the logical records from the diskette into the physical buffer
until the physical buffer is filled. It then moves the first logical record from the
physical buffer to the logical buffer. If the READ instruction specified an edit
format, the fields of the record are edited and moved from the logical buffer
according to the format. When the 5280 encounters the second READ instruction,
it moves the second logical record from the physical buffer to the logical buffer.
No more data is read from the diskette until all the logical records currently in the
physical buffer have been processed.

Output of sequential logical records is managed in the same way. When the 5280
encounters the first write instruction, it writes the contents of the logical buffer
to the physical buffer at the record position specified by the current record counter.
Subsequent write operations place logical records into the physical buffer. The
5280 automatically writes the contents of the physical buffer to the diskette.

Pointer I/O

When you use pointer I/O, your program can access logical records directly from
the physical buffer. This saves storage that is required for a logical buffer, and saves
the time involved in moving the logical record from the physical buffer. Omit the
logical buffer specification in the .DATASET control statement, and specify pointer
(PTR) for the data set attribute. When you process your source program with the
5280 assembler, the assembler places the address of the physical buffer into the lOB
location reserved for the logical buffer address.

When the 5280 is processing a sequential data set that specifies pointer I/O, and
encounters the first READ instruction, it reads the logical records from the diskette
into the physical buffer until the physical buffer is filled. The logical buffer
address in the data set lOB points to the first logical record in the physical buffer.
The logical record is not moved to another storage location but is processed di rectly
from the physical buffer.

When the 5280 encounters subsequent READ instructions, it updates the logical
buffer address in the data set lOB so the address always points to the current logical
record in the physical buffer. For sequential write operations, the logical buffer
address is the address of the next logical record to be written.

You cannot use an edit format to edit and move the record fields when you use
pointer I/O for diskette operations. However, you can place the address of the
logical record into a binary register and use it to access the individual fields of the
record using base displacement addressing. The address of the logical record is in
the lOB at displacement hex OC-OD. The 5280 does not update this base address in
the binary register; you must replace the address before each I/O operation.

Programming Concepts 37

38

Keyed Data Sets

Keyed data sets can be read according to a specified key. When a keyed data set is
opened, an index table is built from the record keys. The index table can be built
either by the application program or automatically by the 5280, depending on the
TYPE parameter of the .DAT ASET control statement. If a K R (key indexed read)
or KU (key indexed update) data set is specified, the 5280 automatically builds the
index table. If a KRN (key indexed read, no table build) or a KUN (key indexed
update, no table build) data set is specified, the application program must build the
index table. The .TABLE control statement is used to define the table. The
parameters of the .DATASET control statement and the .TABLE control statement
that are used for keyed data sets are as follows:

.DATASET Control Statement

TYPE=

KPOS=

KLEN=

TLOC=

DLTA=

Specifies one of the following keywords: KR, KU, KRN, or KUN.
In addition, may also specify ORO (records in ascending key
sequence).

Specifies the position of the key in the record.

Specifies the length of the key.

Specifies the location of the index table.

Specifies the density of the index table; optional for KR and KU
data sets but mandatory for KRN and KUN data sets .

. TABLE Control Statement

LABLE= Specifies the location of the index table (also specified for the TLOC
parameter of the .DATASET control statement).

MAXM= Specifies the maximum number of entries that can be placed into
the index table.

ENTR I ES= Specifies the actual number of entries used in the table.

ARGL= Specifies the length of the index entry. This length can be less than or
equal to the length of the key, but it cannot be greater than the length
of the key.

BYPAS= Specifies the number of bytes to be associated with each index entry
that are not part of the index itself. Valid entries are 0, 1, 2, or 3.
If a nonzero entry is specified, the byte or bytes are used to hold the
relative record number of the record that corresonds to the index
entry. If 0 is specified, the index table entry contains only the index
entry, and the relative record number is calculated from the DL TA
specification and the relative position of the index within the index
table.

Note: These parameters are in addition to the parameters required or normally
used for a data set, as specified in Chapter 3.

Density of the Index Table

The density of the index table is specified with the 0 L T A parameter of the
.DATASET control statement. The density specifies the number of logical records
between index entries. Density may be 1 entry per record, 1 entry per track, 1
entry per 10 records, and so on. For KR and KU data sets, DL TA may be
omitted; the density is calculated by the 5280, using the length of the data set and
the length of the index table. The first entry in the index table is always for the
first record; the last entry is always for the last record. The following examples
show how the 5280 sets up index tables for various density and bypass specifica
tions, using the sample data set in Figure 2-3.

Key A/Data KeyB/Data KeyC/Data KeyD/Data KeyE/Data KeyF/Data KeyG/Oata KeyH/Oata Keyl/Oata KeyJ/Oata

Relative-------- ------------------------ ---- ----
Record
Number: 2 3 4 5 6 7 8

Figure 2-3. Sample Keyed Data Set Records

Examples:

Density = 1/record
Bypass = 2

KeyAOOO1
KeyB0002
KeyC0003
Key 00004

1 KeyJOOOAr

Index
Table

Reading a Keyed Data Set

Density = 1/2 records
Bypass = 3

KeyA000001
KeyC000003
Key E000005
KeyG000007
Key 1000009
KeyJOOOOOA

Index
Table

Density = 1/3 records
Bypass = 0

Key A
Key 0
KeyG
KeyJ

Index
Table

When the 5280 encounters a READ instruction for a keyed data set, the instruction
specifies a decimal register that contains the key of the record to read. The 5280
determines which entry in the index table is the highest entry that is lower than the
specified key, and which entry is the lowest that is not higher than the specified
key. The 5280 determines the relative record number for the record that corres
ponds to each of these index entries, either by finding them in the index table (if a
nonzero BVPAS is specified) or by calculating them (if BVPAS=O). The 5280
searches the key positions of the records between these two relative record numbers
until a matching key is found, and reads the record with the matching key. If the
.DAT ASET control statement specifies the 0 R 0 parameter, the 5280 uses a binary
search; otherwise the 5280 uses a sequential search. If the .DATASET control
statement specifies a nonzero BVPAS and omits the ORO parameter, and if the
index has one entry per record, the 5280 searches the index for the first entry that
matches the key, then reads the data set record that corresponds to that index entry.

9 A

Programming Concepts 39

40

Updating a Keyed Data Set

A keyed data set can be updated by using a READ instruction with a key specified
to find the desired relative record number, then using a WRT instruction to update
the record at that record position. The 5280 does not update the index table.

Adding to a Keyed Data Set

A record can be: (1) inserted or (2) added to the end of a keyed data set. The
5280 does not update the index table. Therefore, records must not be added or
inserted unless the application program provides instructions to update or rebuild
the index before reading the data set again.

Shared Data Sets

Data sets that have share attributes specified in the .DATASET control statement
can be used simultaneously by more than one program. Corresponding share
attributes must be specified in every program that shares the data set. Improperly
specified share attributes result in an access error external status.

If a record is added to a shared data set, the EOD of all lOBs for that data set are
updated to the new increased value. Record inserts are not allowed for a shared
data set. Any operation that reduces the EOD or EOE value of a shared data set is
not allowed.

To make logical records more quickly available to be shared, you can use the quick
release (OR) and early write (EW) parameters in the .DATASET control statement.
These functions make direct access to update data sets more efficient because the
logical record to be read or written will be released so that other programs can use
it as soon as the operation is complete.

SCS Conversion Data Sets

When you store a data set on a diskette, you can save diskette space by using an
SCS conversion data set. An SCS conversion data set is defined by specifying
SCS in the TYPE parameter of the .DATASET control statement. When an SCS
conversion data set is processed, SCS (standard character string) control characters
are inserted by the 5280 to repiace blank characters. When you write the SCS
conversion data set to a diskette, the record length on the HDRl label must equal
the block length. See SCS Conversion under Printer Instructions in Chapter 4 for
information about using the SCS conversion data set.

Register

SELF-CHECK

The 5280 self-check facilities allow you to verify an input field at the time it is
entered. The self-check function can detect incorrect keystrokes and character
transpositions. It can also detect fraudulent entries.

The self-check facilities include the:

• .SELFCHK control statement, to define the self-check field, register, modulus
and algorithm.

• GSCK instruction, to generate a unique self-check number for each self-check
field.

• IF ... CHK instruction, to verify the self-check field each time it is entered.

The Self-Check Field

A self-check field consists of the self-check number, which may be one or two digits
long, and the foundation. The foundation may consist of any characters available
to your 5280 keyboard. The self-check number may be assigned to any position in
the field. If the self-check number is two digits long, the two digits must be
adjacent.

The maximum length of a self-check field is 32 bytes.

The Self-Check Register

The self-check field must be placed into a decimal register, or if the self-check field
is larger than 16 bytes, a decimal double register. The 5280 right-adjusts the field
in the register. All unused register bytes are bypassed.

Figure 2-4 illustrates a self-check field with a self-check number one digit in length.
The position assigned for the self-check number is the rightmost position of the
decimal double register that acts as the self-check register.

Self-Check Register

Self-Check Field

Position 1 234567 8 91011121314151617181920212223242526272829303132

o 6 o 9 1 9 8 0 * A R d d s # 4 7 81
~------~------~H~----------------~------------~/t

Bypass positions are ignored. Foundation Number Self-Check
Digit Position

Figure 2-4. A Self-Check Field in a Decimal Double Register

Programming Concepts 41

42

The Modulus

The self-check function uses a modular arithmetic. Modular arithmetic replaces a
number with its remainder after it is divided by a fixed number. This fixed number
is the modulus.

For example, clocks follow a modular arithmetic with modulus12. If you add 5 to
10 o'clock, the sum is 15 modulus12. Replace 15 with the remainder after it is
divided by 12:

10 o'clock + 5

1

15 modulus 12 = 12 f15
12
3 Remainder
~

3 Replaces 15.

Stated another way, modular arithmetic replaces a number with the value in the
units position when the number is expressed in the base of the modulus. You can
convert a number to the base of the modulus by dividing it by the modulus and
using the remainder for the value of the units position:

1
15 modulus 12 = 12 (15

12
3 Remainder

The value in the units position can be any number up to the modulus minus one.
For example, if the modulus is 125, the units position can contain any number up
to 124:

31
4978 modulus 125 = 125 14978

375
228
125
103 Remainder I

3 o'clock

The Self-Check Algorithm

The basic steps of a self-check algorithm can be illustrated as follows, using 15 for
the foundation and 12 for the modulus:

1. Convert a number to the
base of the modul us.

2. The value in the units
position is the self-check
number.

Self-Check
Field

~

15
~

Foundation ~ L Position for 1-Digit

Self-Check Number

15 modulus 12 = 13 12

j
153
~

Self-Check
Field

Usually, however, the number converted to the base of the modulus is not the
foundation, but a number derived from the individual characters of the foundation.
The most common way to derive a number from the characters of the foundation
is to:

1. Multi ply the contents of
each position in the
foundation by a weight.

2. Add the resulting products.

3.

4.

Convert this sum of the
products to the base of
the modulus.

The value in the units posi
tion is the self-check
number.

Self-Check
Field

5 Position for 1-Digit
Weights: *§. *§. + ... ___ Self-Check Number

Products: 8 30
8 +30 = 38 sum

3
38 modulus 12 = 12 f3s

36
2

32 12

I
1 5 1-
~

Self-Check
Field

Programming Concepts 43

44

Numerous variations can be added to these basic steps to design a unique algorithm.
These variations include:

1. Input translation. You can translate each character in the foundation to a
specified numeric value by using an input translate table. Input translation is
useful to assign a specific value to each alphabetic or special character in the
foundation.

2. Product table. You can find the product for the numeric value of each
foundation position by looking it up in a table rather than multiplying it by
a weight.

3. Output translation. You can translate the generated self-check number to
any specified output characters by using an output translate table. This is
useful if the self-check number can be up to two digits long (for modulus
11-100) and only one self-check number position is used in the self-check
field, or if the self-check number can be up to three digits long (for modulus
101-127).

Choosing Your Algorithm

Appendix C shows how the 5280 manipulates the self-check field according to
various parameters of the .SELFCHK control statement. Use this appendix to
select the variations you want for your unique algorithm.

If you do not want to design your own algorithm, you may use one of the IBM
supplied algorithms available with the 5280. These algorithms are referred to as
Standard Modulus 10 and Standard Modulus 11. If you use Standard Modulus 10
or 11, the 5280 assumes that your self-check field is as follows:

• The self-check number is one digit long.

• The self-check number is in the rightmost position of the self-check field.

• The foundation may be from 2 to 31 characters long.

For Standard Modulus 10 or 11, any 5280 keyboard character may be included in
the foundation. The numeric value of each foundation position is determined by
the low-order 4 bits of the EBCDIC representation of the contents of that position.
If the low-order 4 bits are 0-9, the numeric value is 0-9. If the low-order 4 bits are
A-F, the numeric value is O.

Example:

Foundation: 6 9 7 * X Y , , , , , !
EBCDIC: F6 F9 F7 5C E7 E8 , , , , , ,

Value: 6 9 7 0 7 8

Standard Modulus 10

Standard Modulus 10 is designed to detect single incorrect keystrokes and single
transpositions. If you use Standard Modulus 10, the 5280 performs the following
operations to generate a self-check number for this sample self-check field:

Foundation
<\ u,•. _.~ __ Self-Check Position

7·· .··1·2 ···W '""-
\ I

Self-Check Field

7 1 2 W -Foundation

1. Find the numeric value for
t t t t t
F7 F1 F2 60 E6 -EBCDIC

each foundation position. t + t t t
7 1 2 9 6 -Value

Multiply each value by the
7 2 0 6

corresponding weight. The
*2 *1 *2 *1 *2 -Weights

weights alternate between 2

2.

and 1, with 2 always in the 14 4 0 12 -Products

rightmost position of the . oC:-·.oC:-
foundation. 1+4 +1 +4 +0 + 1 + 2 = 13 Sum .$... ¢

o"'o~
<L'~

3. Add each digit of the result-
~.'.~
.:::f

ing products. 13 modulus 10 = 1 310

Convert the sum to the lOJ
base of the modulus. -3

4.

7 Complement

5. Subtract the value in the units
position from the modulus to
find the complement.

Note: If the remainder is 0, 7 1 2 - W.L
the complement is O. If the f

remainder is 1, the character Self-Check Field
combination in the foundation
does not have a valid self-check
number. You must eliminate
these character combinations
when you generate self-check
numbers.

6. The complement is the self-
check number.

Programming Concepts 45

46

Standard Modulus 11

Standard Modulus 11 is designed to detect single incorrect keystrokes, single
transpositions, and double transpositions. If you use Standard Modulus 11, the
5280 performs the following operations to generate a self-check number for this
sample self-check field:

Foundation

... ---- Self-Check Position
W 1-, 2

Self-Check Field

1. Find the numeric value for 6 1 2 W -Foundation
each foundation position. • • • • t

F6 Fl F2 60 E6 -EBCDIC
t t t t t

2. Multiply each value by the 6 1 2 0 6 -Value

corresponding weight. Weights
are the numbers from 2 to 7, 6 2 0 6 -Value

starting in the rightmost posi- *6 *5 *4 *3 *2 -Weights

tion of the foundation and 36 5 8 0 12 -Products
going leftward. Repeat the
numbers if necessary.

3. Add the whole number ~.' ~

36 +5 +8 +0 +12 61 Sum .~o. .. ~o
products. ott. ~

"q, •• ·q,o
..... '..~~

4. Convert the sum to the base
.·v

61 modulus 11 = 5 6 11
of the modulus.

~ 5. Subtract the value in the units 11
position from the modulus -6
to find the complement. 5 -Complement

Note: If the remainder is 0,

I
the complement is O. If the
remainder is 10, the character
combination in the foundation 6 1 2 - WiG

does not have a valid self-check Ii

number. You must eliminate Self-Check Field
these character combinations
when you generate self-check
numbers.

6. The complement is the self-check
number.

Using the GSCK Instruction

The GSCK instruction is used to create a new file of fixed numbers, such as
account numbers that require self-checking each time an operator enters them.
Your program must move the foundation into the self-check register before it
issues the GSCK instruction.

During the execution of a GSCK operation, the 5280 (using the algorithm you
defined with the .SELFCHK control statement) performs manipulations upon the
foundation to generate a self-check number. When the self-check number is
generated from the foundation, the 5280 can place the self-check number into the
self-check register. The foundation and its self-check number make up the
complete self-check field.

Using the IF ... CHK Instruction

The IF ... CHK instruction is used to verify a self-check field. When an operator
enters a self-check field, your program must move the field into the self-check
register before it issues the IF ... CHK instruction.

During the execution of an IF ... CHK operation, the 5280 again uses your algo
rithm to generate a self-check number from the foundation currently in the self-check
register. The 5280 then compares this self-check number with the current
contents of the self-check number position in the self-check register. The compari
son fails when the characters now in the self-check register do not match the
characters that were in the same register positions when the GSCK operation was
performed.

Programming Concepts 47

48

Chapter 3. Assembler Language Control Statements

The 5280 assembler language control statements provide control information to the
system and allocate registers and data areas in main storage. Certain control state
ments must occur in a specific order. Others may occur anywhere throughout the
program, interspersed with instruction statements. The prescribed order is indicated
in Figure 3-1.

To Initialize the Partition Control Area

.START

.KBCRT

.EDITC

One is required as the first statement of a program, except for optional
listing control statements, to indicate the start of the program.
One is required as the second statement, to specify keyboard/display
control parameters.
One is allowed as the third statement, to specify the edit control
characters.

To Declare and Label Data Areas

.DC

.DCLBR

.DCLDR

. DCLIND

.EQUATE

One or more are allowed to allocate, label, and initialize any kind of
data area.
One or more are allowed following the .KBCRT statement, to allocate
and label binary registers.
One or more are allowed to allocate and label decimal registers, and
should follow any .DCLBR statements.
One or more are allowed anywhere to label user indicators .
One or more are allowed anywhere to label registers, constants,
expressions, and system registers.

To Set Up and Initialize Device Control Areas

. COMM

. DATASET
One is allowed to specify the characteristics of the communications line .
One or more are allowed to specify the characteristics of a data set .

To Set Up and Label Tables

.TABLE

.LABTAB

.SYSTAB

One or more are allowed anywhere to define the parameters of a data
table. All. TABLE statements must be contiguous.
One or more are allowed anywhere to set up a label table of specified
subroutine addresses.
One or more are allowed anywhere to specify the label and location of
system tables or the subroutine stack.

Figure 3-1 (Part 1 of 2). Control Statement Summary

Assembler Language Control Statements 49

50

To Set Up Edit Formats

. FMTST

.FMTFLD

. FMTEND

One or more allowed to begin each edit format specification .
One or more allowed following a .FMTST or another .FMTFLD
statement, to define an edit format field.
One is required as the last statement of an edit format specification .

To Set Up Screen Formats

.SFMTST

.SFMTCTL

.SFMTPMT

.SFMTCNS

. SFMTFLD

.SFMTEND

One is required for each screen format, to indicate the start of a screen
format control specification.
One or more are allowed within a screen format series, to specify control
operations.
One or more are allowed within a screen format series, to specify a
prompt to display.
One or more are allowed within a screen format series, to specify a
constant to display and to place into the I/O buffer for the current
record .
One or more are allowed within a screen format series, to define a key
entry field.
One is required as the last statement of each screen format series, to
end the screen format.

To Control the Assembly Listing

.TITLE

. EJECT

. SPACE

One is allowed to specify a heading to be printed on each page of the
listing.
One or more are allowed to begin printing on the next page .
One or more are allowed to skip one or more lines .

Miscellaneous Control

. INCLUDE

.SELFCHK

.XTRN

.END

One or more are allowed to insert another data set into the program .
One is allowed to set up the self-check control area and define the self
check algorithm.
One is required if the program uses any common functions, to specify
the labels of the common functions.
One is required following all control statements and instructions, to
indicate the end of the program.

Figure 3-1 (Part 2 of 2). Control Statement Summary

The .TABLE control statements are the only ones that must be consecutive in your
source program. However, for best performance from the assembler, place state
ments of the same kind together. For example, place all .FMT statements together,
all .LABTAB statements together, and all .DC statements together. Place the
.XTRN statement toward the beginning of the source program.

Control statements are listed in this chapter by the type of function the control
statement performs. The control statements are divided as indicated in Figure 3-1.
The syntax, parameters, and parameter keywords are described for each control
statement.

FORMAT

Each control statement is written for a length of 72 positions per line. Each control
statement must begin with a period (.) in the first position, followed by an upper
case statement name and its associated parameters. The parameters may be in any
order and are separated by one or more blanks. Each parameter consists of an
uppercase parameter name, an equal sign, and a parameter value. The parameter
value may be one or more fields, with each field identified by the order of its
appearance on the line. The parameter fields are separated by commas or paren
theses. Each control statement must end with a semicolon (;). The general format
of a control statement is as follows:

.NAME PARAM1=XX PARAM2=XX,XX PARAM3=(XX,XX),(XX,XX)

Control statements may be continued from one line to the next by stopping
between two parameters. The statement is continued on the next line. Each
parameter should be complete on one line unless the parameter contains a sublist of
keywords. In this case, the sublist may be interrupted after a comma between key
words as in the following example.

Example:

.NAME PARAM1=XX PARAM2=XX,XX PARAM3=XX,

XX PARAM4=XX ;

The end of the statement is always determined by the semicolon.

Blanks

Optional blanks may be placed before or after an equal sign or parentheses.
Blanks may follow a comma but must not precede a comma. Blanks are not
allowed within a control statement field; however, one or more blanks must separ
ate fields if no other delimiter is used.

Comments

A comment may be included on any line, following the semicolon. An entire line
may be designated as a comment line by placing an asterisk (*) in the first position
of the line. A comment line may be included before the .START statement and
before print control statements.

Examples:

.NAME PARAM1=XX ; This is a comment on a statement line.

*This is a comment line.

Assembler Language Control Statements 51

52

INITIALIZE THE PARTITION CONTROL AREA

The 5280 provides, uses, and updates much of the partition control information
during program execution. However, the assembler initializes certain control areas
during assembly, using the following control statements. This control information
is used by the 5280, but it is not changed during program execution.

The .START control statement is mandatory for every program, and the .KBCRT
statement is mandatory for every program that uses keyboard/display I/O. The
.EDITC statement is optional.

.START Control Statement

.START [ENTRY= PNAM=
TMSL=

OPTION=
RGLT=]

ORG=
MCHK=

The mandatory .ST ART control statement must be the first control statement of
every program. It specifies program name, origin, error routines, register usage
limits, and time slice factor.

Parameter
Name

ENTRY

PNAM

OPTION

ORG

MCHK

Description

Entry point; the label of the instruction to be executed first.
If omitted, it defaults to the first executable instruction
encountered.

Program name; 8-character field of alphabetic or numeric
characters, enclosed in single quotes. The first character must
be alphabetic. It defaults to PROGRAM.

This name is printed in the listing header and included in the
object code. Do not specify any unprintable code for this
parameter.

Option; informs the assembler whether the code being
assembled is a main program (MAIN) or a separately assembled
subroutine (SUB). It defaults to MAIN.

Origin; mandatory with parameter OPTION=SUB, to assemble
a transient overlay. It specifies the actual location (relative to
start of partition) to place the first instruction of executable
code. Control statements preceding it are used to define shared
labels but do not produce object code. Given in decimal or hex,
ORG does not have to be a 256-byte boundary unless you are
writing a partial overlay.

Main program check errors; the label of the routine that has
been coded to handle program errors. If omitted, the program
is terminated if a program check error occurs. If you use the
common function from the common area, specify the name
CFPGMCHK, and include this name in an .XTRN control state

ment. See Program Check Errors in Chapter 6 for more informa
tion about main program check errors.

TMSL

RGLT

Time slice factor; a 1-byte field that specifies the maximum
length of time the controller executes instructions within the
current partition. Acceptable time limits are 4-60 milliseconds.
Default is 12 milliseconds.

Register limit; the number of 16-byte blocks you want to
reserve to use as undeclared decimal or binary registers. The
assembler skips over these 16-byte blocks during allocation of
space. The default of four reserves the first four decimal
registers, which includes all indicators, or the first 32 binary
registers.

Note: You do not have to reserve registers that you declare and label with a .DC,
.DCLBR, or .DCLDR control statement. Reserve only the registers you use in
.EQUATE control statements or the registers that you refer to by register number
rather than by label in instructions.

Examples:

.START PNAM='PA YRO L'

ENTRY=BEGIN MCHK=MCHKER RGL T=8;
.START;

.KBCRT Control Statement

.KBCRT CRBA=
[PRBA=
FPLC=

{
ETAB=}
ELAB=
TRAP=
NMIN=

MODE=
HUN=

AFIL= NFIL= BKCK=
CNTR= FUNC= SCREEN=]

The .KBCRT statement specifies .the location of the keyboard/display record
buffer, the handling of keyboard/display error conditions, and the initialization of
keyboard/display parameters.

This control statement is mandatory in each main program.

Parameter
Name

CRBA

ELAB

ETAB

Description

Current record buffer; the label assigned by a .DC statement for
the I/O buffer that holds the current record. This parameter is
mandatory.

Exception label (either ELAB or ETAB must be specified); the
label of a subroutine that handles all external status conditions.

Exception table (either ELAB or ETAB must be specified); the
label of a label table set up by a .LABTAB statement. Each
entry in the label table is the address of a subroutine that
handles one specific external status condition.

Assembler Language Control Statements 53

Parameter
Name

PRBA

TRAP

MODE

AFIL

NFIL

BKCK

FPLC

54

Previous record buffer; the label assigned by a .DC statement for
the I/O buffer that holds the previous record. This parameter
is optional; if omitted, the 5280 sets the address for the PRBA
to the CRBA address.

Trap; one or more numbers that represent certain functions
normally handled by the 5280 that you want to process with
your own subroutine. The number assignments are described in
Appendix D under Keyboard Functions: EBCDIC Codes and
Bit Numbers.

The format of the input is TRAP=BITn, ... as follows:

TRAP=BIT1,BIT5

This code causes an external status condition to occur whenever
a shifted Cmd key (BIT1) or an Ins key (BITS) is pressed.

Mode of entry; one of the following keywords to specify the
mode of entry.

Keyword Mode

E Enter
U Update
V Verify
D Display
R Rerun
y Rerun/display

See Modes of Entry in Chapter 2 for a description of the modes.
Default is enter (E) mode.

Alphabetic fill character; used for padding the left end of the
right-adjust alphabetic fill fields. It defaults to blank (hex 40).

Numeric fill character; used for filling the left end of right-adjust
numeric fill fields. It defaults to zero (hex FO).

Blank check character; the character that is not permitted in a
blank checked field. It defaults to blank (hex 40).

Fixed prompt location; indicates the row at which the fixed
prompts occur on the screen. It defaults to row 2.

Parameter
Name

NMIN

HLiN

CNTR

Description

Normal display attribute; specified as a l-byte constant, this
entry determines the display attributes of fields not currently
being processed; the attribute is in effect after the cursor exits
the field. This parameter is normally omitted if you specify
display attributes with the DSPL Y parameter in your screen
format control statements. Each bit specifies an attri bute as
follows:

Bit Meaning If 1

0-2 Not assigned
3 Column separators displayed
4 Blink screen
5 Underline
6 High intensity
7 Reverse image

The value for NMIN defaults to no high intensity.

Display attributes; specified as a l-byte hex constant, this entry
determines the display attributes of the input field being
processed; the attribute is in effect when the cursor moves to
the first position of the field. This parameter is normally
omitted if you specify display attributes with the DSPL Y param
eter in your screen format control statements. Each bit
specifies an attribute, as described for NMIN. The value for
HLiN defaults to no highlighting.

Current-position counter; the value of the internal register
maintained by the system during formatted data entry. This
value is displayed in columns 3-6 of the status line while an
ENTR is being processed. The counter reflects one of the four
values listed below. It defaults to K.

K - current keying position of next keystroke to enter, relative
to fi rst position of the record.

B current position in the current record buffer, relative to the
beginning of the buffer, where the next data character
entered will be stored.

C current relative position of the cursor on the screen.

F current position within the current field, relative to the
beginning of the field, where the next data character
entered will be stored.

Assembler Language Control Statements 55

56

FUNC

SCREEN

Functions; one to three functions may be specified. If more than
one is specified, separate them with a comma:

A - auto duplicate/skip (see Auto DuplicatelSkip in Chapter 2).

C - click software function keys.

D do not display fixed prompts on the screen.

R auto enter (see Auto Enter in Chapter 2).

S on keystroke error, determine if status line is currently dis
played. If not, display it and on error reset remove it from
screen. (See Nondisplay of the Status Line in Chapter 2.)

x - alternate record advance (see Alternate Record Advance in
Chapter 2).

Screen positions; the number of valid screen positions you wish to
use in the current program. Valid entries are 480, 960, or 1920.
Default is 480.

Examples of input:

.KBCRT CRBA=BUFR01 PRBA=BUFR02 ELAB=ERRTN AFIL=/ NFIL=X'40';

.KBCRT CRBA=BUFFX PRBA=BUFFY ETAB=RTN1 TRAP=BIT4,BIT8
FPLC=4 CNTR=B FUNC=C, S, D;

.EDITC Control Statement

.EDITC [EDCUR= EDDEC= EDCOM= EDCNT=]

The .EDITC control statement specifies the edit control characters. These characters
are stored in the partition I/O control block and are used by other control
statements.

Parameter
Name

EDCUR

EDDEC

Description

Edit currency sign; a 2-character field that specifies the currency
symbol. It defaults to C '$'.

Edit decimal character; a 1-character field that separates the
decimal portion of a number from the fraction. (It may be
specified by X' ',but numerics or hex codes of hex FO or
greater must not be used.) It defaults to C'.'.

EDCOM

EDCNT

Edit separator character; a l-character field that specifies the
symbol used to separate groups of digits in an edited field. (It
may also be specified as X' ',but numerics or hex codes of hex
FO or greater must not be used.) It defaults to C','.

Edit control count; a l-character field that specifies the number
of digits between the occurrence of the edit separator character.
It defaults to 3.

Note: All characters must be enclosed in single quotes; they may also be specified
as hex values.

Example:

.EDITC EDCUR=C'FR' EDDEC=',' EDCOM=X'40'

DECLARE AND LABEL DATA AREAS

Several different control statements assign labels to data areas, but each statement
has a specific purpose. Use the following to help decide which control statement
to use.

• Use .DC to label and initialize one data area or register.

• Use .DCLIND ot label up to 30 program indicators.

• Use .DCLBR to label up to 30 uninitialized binary registers.

• Use .DCLDR to label up to 30 uninitialized decimal registers.

• Use .EQUATE to label initialized decimal or binary registers reserved by the
RGL T parameter of the .START statement. You must specify register numbers.

• Use .EQUATE to label system indicators. You must specify the indicator
number.

• Use .EQUATE to label a constant or expression .

. DC Control Statement

.DC [LABEL=
BDY=

TYPE=
PREFIX=

LEN=
DISP=

LEVL=
INIT=]

LOC=

The .DC control statement specifies the allocation of data areas and storage
structures, and assigns labels to decimal and binary registers. It also allows you to
initialize the data set.

Assembler Language Control Statements 57

58

When declaring registers, it IS Important to deciare aii binary registers first. If you
declare decimal rp.gisters or storage areas before you declare all binary registers, you
can fill the 256 bytes of the partition that contains the 128 two-byte binary
registers. An attempt to declare a binary register beyond the binary register limit
causes an error message to be written on the assembly listing.

When using boundary alignment, remember that storage is assigned sequentially
and any bytes which are unused between boundaries cannot be recovered. Declar
ing two l-byte field, both on 256-byte boundaries, results in the loss of 255 bytes
between the fields. These bytes cannot be recovered. Statistics are maintained to
indicate how many bytes are lost dlJe to boundary alignment. These statistics are
written to the assembly listing.

Note: Any unassigned storage byte is initialized to hex 00.

Parameter
Name

LABEL

TYPE

LEN

Description

Label; the name that refers to the storage area or register. Th is is
an optional parameter.

Type; specified as DEC (decimal register), BIN (binary register),
STaR (storage area), PRMT (prompt) or MDUP (duplication).
It defaults to STaR.

The PRMT type allocates and initializes space for character
strings that are used as either prompts or constant insert data
during data entry.

The MDUP parameter allocates space in main storage for duplica
tion during data entry.

A table containing the addresses for these PRMT and MDUP areas
is created and the address of the table is stored in the keyboardl
display 1/0 control block. A source statement refers to these
areas by using the label, and the system finds the address for the
area in this table.

Length; the length of the area being declared, specified in bytes.
This is an optional parameter. If TYPE=DEC, it defaults to 16.
If TYPE=BIN, it defaults to 2. For other types, the length
defaults to the length of the IN IT field, or to 1 byte if no IN IT
field is specified.

A length of zero is valid for a declare that uses no space. For
example, a .DC that specifies 0 length, and specifies LaC (loca
tion) acts in the same way as the origin (ORG) parameters in the
.START control statement.

Note: The LEN specification overrides the actual length of an
IN IT entry. If LEN is less than the number of bytes necessary
for the INIT data, some of the INIT data is lost.

Parameter
Name

LEVL

Lac

BOY

PREFIX

DISP

Description

Level; the structure level of the area being declared. Variable
leveling builds a storage structure if a level-l declare is followed
by one or more level-2 declares; the level-2 areas are overlaid into
the level-l area. The level-2 declare does not affect the current
location counter. If the level-2 area extends beyond the level-l
area an overflow condition message results. However, the over

flow message is suppressed if the preceding level-l declare had the
length specified as zero; this allows you to assign labels without
advancing the current location counter. If omitted, it defaults to
level-l.

Location; a number that specifies the relative location for the
area being declared, or the label of a previously defined location.
When LaC is specified, the assembler will reset its internal loca
tion counter. After processing a .DC statement with LaC speci
fied, the location counter will equal LaC + LEN. Subsequent
storage will be assigned starting at this location. If this parameter
is omitted, the area is declared at the next sequential location.

Note: LaC cannot be specified with a LEVL=2 declare.

Boundary alignment; the type of boundary on which to locate
the first byte of the data area. Specify a numeric value that is
valid for the particular type of data area. See Main Storage
Boundary Alignment in Chapter 1 for more information. An
easy way to remember boundary alignment requirements is:
an n-byte boundary is evenly divisible by n. For example, a
binary register can begin on any boundary that is evenly divisible

by 2, a decimal register can begin on any boundary that is
evenly divisible by 16, and a buffer can begin on any boundary
that is evenly divisible by 128.

If BOY is omitted, the boundary defaults to the next sequential
boundary that is appropriate for the specified TYPE.

Note: BOY cannot be specified if LEVL=2 has been specified.

Prefix; a 1 or 2 character prefix that may be added to a level-l
declare. All level-2 declares may then be copied from a single
statement to define an identical structure several times. The
character or characters specified for the level-l area attaches to
the level-2 labels as a prefix to prevent duplicate labels. This is
an optional parameter valid only for LEVL=l declares.

Displacement; used only with LEVL=2 declares. Displacement
is the number of bytes into the last level-l area where this level-2
area is defined. If omitted, the subfields are contiguous.

Assembler Language Control Statements 59

60

Parameter
Name

INIT

Description

Initialization; numeric or character data may be used to initialize
the data area. The IN IT parameter must be complete on a single
line.

Decimal data is specified as decimal numbers with no quotes.

Character data must be enclosed in single quotes. It may be
preceded by an uppercase C, or the C may be omitted.

Note: If you are sending data to a printer, do not use character
data with an EBCDIC representation of lower than hex 40. If
you must send data with an EBCDIC lower than hex 40 to the
printer, specify it as hex data.

Binary data must be enclosed in single quotes and must be pre
ceded by an uppercase B. Binary data must be at least 8 digits
in length, and the total number of binary digits must be a multiple
of 8.

Hex data must be enclosed in single quotes and must be preceded
by an uppercase X. Hex data must be at least two hex digits in
length, and the total number of hex digits must be a multiple of
2.

If a constant has been equated with a label, the label may be used
for the INIT parameter, and the equated constant is placed into
the data area.

The address of a data area may be initialized into storage by
coding:

INIT=ADDR (label [± constant]);

where label is the label of the data area.

Initialization occurs as illustrated in Figure 3-2.

Note: Initialization of a decimal register with an equated constant
fills the register with binary data.

Decimal Binary Stor, MDUP, and
Registers Registers PRMT Areas

Characters Right adjust, Left adjust, Left adjust,
pad with blanks. pad with blanks. pad with blanks.

Hex Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros. pad with zeros.

Binary Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros. pad with zeros.

+Integer Right adjust, Right adjust, Right adjust,
pad with zeros. pad with zeros, pad with zeros,
Zone on low- convert to convert to
order byte is binary. binary.
X'F'; leave as
EBCDIC.

-Integer Right adjust, Error. Error.
pad with zeros.
Zone on low-
order byte is
X'D'; leave as
EBCDIC.

Figure 3-2. Initialization of Data Areas

The following examples illustrate how the assembler allocates data areas as it
assembles the .DC control statements.

Figure 3-3 represents an area of storage in a partition. The assembler has assigned the
2 bytes of BR120 and the high-order byte of BR121 to a previously allocated data
area. The next sequential byte that is available to the assembler is the low-order byte
of B R 121. The bytes of B R 127 are the last bytes that can be allocated as a binary
register.

Previously
Assigned Bytes

023 4

Next Available I Byte

5 6 7 a 9 A

Binary IT Boundaries

BCD E F

IF
~20-

Decimal ~ 21 ::
Boundaries .. 22_

BR120 BR 121 BR122

Figure 3-3. Storage Bytes

BR123 BR124 BR125 BR126 BR127 R15
R16
R17
Rla

Assembler Language Control Statements 61

62

Figure 3-4 iiiustrates how the assembier aiiocates oaia areas to the bytes n~piesented
in Figure 3-3. according to the .DC statements in Example 1.

Example 1: Boundary Alignment and Initialization; TVPE, BDV, INIT

.DC LABEL=EMP#TVPE=BIN INIT=l;
* Assembler skips to next binary
* boundary. Integer init for
* B IN type right-adjusts .
. DC LABEL=KEVl TVPE=BIN LEN=4 INIT='ABC';
* Character init left-adjusts .
. DC LABEL=DEPT# LEN=3 INIT=2;
* Type defaults to STOR, integer
* init right-adjusts .
. DC LABEL=EMPNAM TVPE=DEC INIT='A'; uses R16.
* Character in it for DEC type right-adjusts .
. DC LABEL=VRTODAT$ TVPE=DEC INIT=6; uses R17.
* Integer init for DEC type right-adjusts .
. DC LABEL=PRMTl TVPE=PRMT LEN=13

INIT='PRESS RESET';
* Init for PRMT type left-adjusts .
. DC LABEL=TAGS TVPE=BIN; error example
* * * Error message, cannot declare a
* binary register beyond relative
*** address X' l FE' .
. DC LABEL=BUFFR LEN=128 BDV=128;
* Buffers must be on a 128-byte boundary .
. DC LABEL=HOURS TVPE=STOR LEN=3;
* All uninitialized bytes are filled
* with X'OO' rather than zero (X'FO')
* or blank (X'40')

EMP# KEVl DEPT#
~I 'I r-~"--

Xoo 01 A B C 00 00 02 X X X 1FO R15
A 200 R16

0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 6 210 R17
P R E S S RES E T X X X 220 R18
X X X X)(Iv V.- v .v X X X X X X X 230 R19

280

300

~~~ X X I.>f.I...o 

~!x!~i~ii 
l11Wllmii i IT 
~:-Next Available Byt~ 

o = byte lost due to boundary alignment 

Figure 3-4. Storage Initialization for Example 1 

R24 

R32 



Figure 3-5 represents an area of overlapped storage in a partition. The assembler 
has assigned the 2 bytes of BR96, the 2 bytes of BR97, and the high-order byte of 

BR98 to a previously allocated data area. The next sequential byte that is available 
to the assembler is the low-order byte of BR98. 

lC 

10 

lE 

lF 

Previously 
Assigned Bytes 

•• ritil~~ 98 

Figure 3-5. Storage Bytes 

~ Next Available Byte 

BR 100 BR h02 R12 

R13 

R14 

R15 

Assembler Language Control Statements 63 



64 

Example 2 shows .DC statements that use the LEVL and PREFiX parameters and 
illustrates how the assembler allocates the bytes in Figure 3-5. 

Example 2: Storage Structures; LEVL, PREFIX 

Double Binary Register 

.DC LABEL=AREAB LEVL=l TVPE=BIN II I I I Ixl~10203041xlxlxlxlxlxlR12 
BDV=2 LEN=4 PREFIX=B; 
.DC LABEL=A 1 LEVL=2 IN IT=1; 
.DC LABEL=A2 LEVL=2 IN IT=2; 
.DC LABEL=A3 LEVL=2 INIT=3; 
.DC LABEL=A4 LEVL=2 INIT=4; 

_BA\A2==!JW 1 
-------------------BA3~ 
----------------------BA4 

* DISP may be omitted for contiguous fields. 
* The level 1 area is referred to as AREAB; 
* the level 2 areas as BA 1, BA2, BA3, BA4. 
* 
* 
* The following shows how to use PREFIX 
* to define two decimal registers and 
* overlay them with eight binary registers 
* each. The coding for the AREADX registers 
* can be copied for the AREADV registers. 
* I ! 
.DC LABEL=AREADX LEVL=l TVPE=DEC t , 

BDV=16 LEN=16 PREFIX=DX; IOOOBJ0016100211o02Cloooolo0371E7404040lR13 

.DC LABEL=A 1 LEVL=2 TVPE=BIN INIT=ll; -DXA 1! 1 I J 

.DC LABEL=A2 LEVL=2 TVPE=BIN INIT=22; DXA2 

.DC LABEL=A3 LEVL=2 TVPE=BIN INIT=33; DXA3 

.DC LABEL=A4 LEVL=2 TVPE=BIN INIT=44; DXA4 

.DC LABEL=A5 LEVL=2 TVPE=BIN LEN=4 
INIT=55; Double Binary Register. _______________ DXA5 

.DC LABEL=A6 LEVL=2 TVPE=BIN LEN=4 
INIT='X'; Double Binary Register. ___________________ DXA6 

* The level 1 decimal register is referred to as AREADX, 
* the level 2 binary registers as DXA 1, DXA2, and so on . 

. DC LABEL=AREADV TVPE-DEC PREFIX-DV; IOOOBJ0016100211o02doooolo0371E8404040jR14 

.DC LABEL=Al LEVL=2TVPE=BIN INIT=11; -DVA1'" j J J J 

.DC LABEL=A2 LEVL=2 TVPE=BIN INIT=22; --DVA2 

.DC LABEL=A3 LEVL=2 TVPE=BIN INIT=33; DVA3 

.DC LABEL=A4 LEVL=2 TVPE=BIN INIT=44; DVA4 

.DC LABEL=A5 LEVL=2 TVPE=BIN INIT=55 LEN=4; DVA5 
* Change INIT for DVA6 . 
. DC LABEL=A6 LEVL=2 TVPE=BIN INIT='V' LEN=4; DVA6 



.DCLBR Control Statement 

.DCLBR LABEL= [, ... J 

The .DCLBR control statement declares and labels one or more binary registers with 
a single statement. It may be used only for declaring registers which are not initial
ized. The registers will contain hex ODs. You do not specify a register number. The 
system assigns the labels to the next available binary registers. You can declare up 
to a maximum of 30 binary registers with each .DCLBR control statement. 

Parameter 
Name Descri ption 

LABEL Label; lists the names of the binary registers, each name separated 
by a comma. 

Example: 

.DCLBR LABEL=PATRN,REGB 1,R EGB2,CHK4; 

.DCLDR Control Statement 

.DCLDR LABEL= [, ... J 

The .DCLDR statement declares and labels one or more deCimal registers with a 
single statement. It may be used only for declaring registers which are not initial
ized. The decimal registers will contain hex ODs. You do not specify a register 
number. The system assigns the labels to the next available decimal registers. You 
can declare up to a maximum of 30 decimal registers with each .DCLDR control 
statement. 

Parameter 
Name 

LABEL 

Example: 

Description 

Label; lists the names of the decimal registers; each name separ
ated by a comma. 

.DCLDR LABEL=PAYMT,BAL 1 ,RATE,EXCH,TOTAL,SEND; 

.DCLIND Control Statement 

.DCLIND LABEL= [, .. .] 

The DCLIND statement is used to declare and label one or more user indicators 
(10-199) with a single statement. You do not specify indicator numbers. The 
system assigns the labels to available user indicators. You can declare up to a 
maximum of 30 indicators with each .DCLIND control statement. 

Assembler Language Control Statements 65 



66 

Parameter 
Name 

LABEL 

Example: 

Description 

Label; lists the names you assign to the indicators, each name 
separated by a comma. 

.OCLINO LABEL=LABL 1 ,LABL2,LABL3,LABL4,LABL6; 

.EQUATE Control Statement 

.EQUATE [REG= NUMB= 
EXPR=] 

INO= 
LABEL= 

This control statement equates labels to registers, constants, indicators (10-199), or 
the value of an expression. You must specify the register or indicator number 
along with the label you wish to use. You may equate up to 30 register or indicator 
labels with each .EQUATE control statement, or one arithmetic expression. This 
statement is useful to label system registers and indicators. It is the only means to 
specify an arithmetic expression in the control statements. 

A labeled expression may be used in subsequent instructions as a constant or a stor
age specification. If it is used as a storage label, the result of the expression must be 
a valid storage address or an error results. Otherwise, it may be used in any 
instruction that requires immediate data, such as a length or displacement 
specification. 

Note: Only reserved registers and self-defining terms may be used in the equate 
statement. EQUATE does not check to see if the specified register already has a 
label. The current EQUATE label overrides any previously assigned labels. 

Parameter 
Name 

REG 

NUMB 

INO 

LABEL 

Description 

Registers; ordered pairs of a register (binary or decimal) followed 
by a label. Separate the register and label with a comma, enclose 
each pair in parentheses, and separate the pairs with a comma. 

Numbers; ordered pairs of a constant and a label. Separate the 
constant and label with a comma, enclose each pair in parentheses, 
and separate the pairs with a comma. 

Ordered pairs of an indicator and a label. Separate the indicator 
and label with a comma, enclose each pair in parentheses, and 
separate pairs with a comma. 

Expression label; used only with the EXPR parameter, it speci
fies the name you want to assign to the result of the expression. 
You may specify this label as a parameter in a subsequent 
instruction. Do not use this label in an instruction that occurs 
prior to this .EQUATE statement in the source program. 



Parameter 
Name 

EXPR 

Examples: 

Description 

Expression; an expression of up to eight terms, separated by 
arithmetic symbols. The following symbols may be used: 

Symbol Meaning 

+ Add 
Subtract 

* Multiply 

/ Divide 

The arithmetic operations are performed with 2-byte integers; 
fractions and overflows are ignored. The arithmetic operations 
are performed from left to right, although the multiply and 
divide operations are performed before the add and subtract 
operations. Do not include parentheses in the expression. 

The terms may be any type of previously defined labels. 

.EQUATE REG=(BR5,XREG),(BR6,YREG) NUMB=(22,INDEX) IND=17,SWITCH); 

.EQUATE REG=(R4,BUF7),(R5,BUF8),(R8,BUF9); 

SET UP AND INITIALIZE DEVICE CONTROL BLOCKS 

One device I/O control block (lOB) must be set up and initialized for each data set 
your program uses. Use the .COMM statement for a data set that uses the com
munications line. Use a .DAT ASET control statement for a data set that uses a 
printer or diskette . 

• COMM Control Statement 

.COMM [CAM=] 
[RECl= 
HTAB= 

DSN= 
BSIZ= 
VTAB=] 

Parameters unique to sse: 

[SIDL= SIDH= RECFM=] 

Parameter unique to SNA: 

PLUNAME= 

{
ELAB=} 
ETAB= 
LBUF= 

TYPE= 
LABEL= 

Assembler Language Control Statements 67 



68 

The .COMM statement specifies the characteristics of the communications line for 
the current communications session. It also sets up the device 1/0 control block 
in the current partition. The IBM 5280 Communications Utilities Reference 
Manual, SC34-0247, describes the functions of the SNA and the BSC versions of the 
communications access method, how to determine which version to use, and how 
to load the access method. 

Although most .COMM parameters apply to both the BSC and SNA versions of the 
communication access method, some parameters are unique to one of the versions. 

Parameter 
Name 

CAM 

DSN 

ETAB 

ELAB 

TYPE 

Description 

Communications access method; defines the CAM as either BSC 
or SNA. If omitted, it defaults to BSC. 

Data-set number; a decimal number from 1 to 15 that identifies 
the communications device 1/0 control block. This is a manda
tory parameter. 

Error table label (either ETAB or ELAB must be specified); the 
label of the label table set up by a .LABTAB statement. Each 
entry in the label table is the address of a subroutine that handles 
one specific external status condition. 

Error subroutine label (either ETAB or ELAB must be specified); 
the label of the subroutine that handles all external status 
conditions. 

Type; specifies attributes of the data to be processed. One entry, 
file type, is mandatory. For BSC, one optional attribute key
word may follow the type. Separate the type and attribute with 
a comma. 

File Type, First Position 

SR Sequential read, records can be received only. 

SW Sequential write; records can be transmitted but not 
received. 

COM General communications; sequential read, sequential write, 
or sequential read and write. (BSC only) 

CN Conversational; transmit one message, receive n messages. 

Optional Attributes, Second Position (for BSe only) 

CB Compressed blanks, to expand blank-compressed data that 
is received. (The 5280 does not transmit compressed data.) 

BT Blank Truncation, to truncate trailing blanks in data to be 
transmitted and to insert trailing blanks in data that is 
received. 



Parameter 
Name 

RECl 

BSIZ 

lBUF 

lABEL 

HTAB 

VTAB 

Description 

Record length; length (1-512) of the logical records. Although 
this is an optional parameter in the .COMM statement, the R ECl 
field of the I/O control block must contain a valid RECl value 
when the TINIT instruction is issued. 

If RECl is not coded on the .COMM statement, you must 
initialize the record size field of the communications I/O control 
block as appropriate. 

Block size; maximum block size of the data to be transmitted. 
Include this parameter if you specify FB (fixed length and 
blocked) or VB (variable length and blocked) for the R ECFM 
(record format) parameter. It defaults to 256. 

logical buffer; the label assigned to the buffer by a .OC control 
statement. 

label; a name to identify the I/O control block for communica
tions. If omitted, the I/O control block is assumed to be not 
labeled. 

Horizontal tab table; the label of a horizontal tab table that 
specifies the printer tab settings. 

Vertical tab table; the label of a vertical tab table that specifies 
printer tab settings. 

Parameten that are unique to BSe 

SIOl 

SIOH 

Security 10 local; character string to be sent to the host from a 
local terminal on switched lines. If specified, this 10 will override 
the value in the communications control block, which is specified 
during execution of the communications configuration utility. 
If neither security 10 is specified, no local 10 will be sent to this 
host. 

Security 10 host; a character string 10 sent to local terminals 
from the host on switched lines. If specified, this 10 will over

ride the value in the communications control block, which is 
specified during execution of the communications configuration 
utility. If neither security 10 is specified, no 10 will be checked. 

Assembler Language Control Statements 69 



70 

Parameter 
~Jame 

RECFM Record format; describes the record to be processed, using one 
of the following keywords. If omitted, it defaults to fixed length 
(F ). 

Keyword 

F 

V 
FB 
VB 

Meaning 

Fixed length 
Variable length 
Fixed length and blocked 
Variable length and blocked 

Parameters that are unique to SNA/SDLC 

PLUNAME Primary logical unit name; a character string enclosed in single 
quotes. This is an optional parameter. If specified, it will be 
checked by the communications access method during 
initialization. 

Examples: 

.COMM CAM=BSC DSN=2 TYPE=COM,BT LABEL=COMIOB ETAB=TABL01; 

.COMM CAM=SNA DSN=3 TYPE=SW, LABEL=SNAIOB ELAB=ERRTN 
PLUNAME=LOGOl ; 

.DATASET Control Statement 

.DATASET NAME= DSN= TYPE= 
{ETAB=} 

ELAB= 

{DEVID=} 
DEV= PB1= [PB2= RECL= 
BSIZ= LBUF= LABEL= TRANS= DFLG=] 

Parameters unique to SCS conversion data sets: 

PGSIZ= LlNSZ= LSTLN= [SGEA=] 

Parameters unique to keyed data sets: 

KPOS= KLEN= TLOC= DLTA= 

The .DAT ASET control statement specifies the characteristics of a data set to be 
referred to by the program. It generates the device I/O control block which 
describes the characteristics of the data set to the I/O device. 



Parameter 
Name 

NAME 

DSN 

ETAB 

ELAB 

DEV 

DEVID 

TYPE 

Description 

Data set name; mandatory for diskette, optional for printer. 
Enter the label, which was assigned by a .DC control statement, 
of the area where the data set name is stored. The data set name 
is described in Chapter 4 under Partition Load and Exit Instruc
tions. Do not enter the data set name here. For I exchange data 
sets, the data set name must be blank, and the period that 
follows the volume identifier is optional. 

Data set number; a decimal number from 1 to 15 which identifies 
the data set being described. This is a mandatory parameter. 

Error table label (either ETAB or ELAB must be specified); the 
label of the table set up by a .LABTAB statement. Each entry 
in the label table is the address of a subroutine that handles one 
specific external status condition. 

Error subroutine label (either ETAB or ELAB must be specified); 
the label of the subroutine that handles all external status 
conditions. 

Device address (either DEVor DEVID must be specified); the 
physical address of the device to which this data set information 

is directed. A physical address is expressed as four hexadecimal 
digits. 

Device identifier (either DEVor DEVIO must be specified); the 
2-character logical device identifier that identifies the logical 
device to which this data set information is directed. (See Logical 
Device Identifiers in Chapter 1.) 

Type; specifies the data set type, and may specify other attributes. 
The first positional entry of this parameter (type) is mandatory. 
It may be followed by as many optional second position entries as 
needed. See Diskette Data Management in Chapter 2 for more 
information about the data set types and attri butes. 

If an optional attribute is included after the type specification, 
separate the type and the optional attribute with a comma. 

Data Set Type, Mandatory, First Position 

SR Sequential read; records can be read sequentially, or 
directly by relative record number. Records cannot 
be written. 

SW Sequential write; records can be written but not read. 

The records are accessed starting at EOO (or, if an offset 
is specified, at EOO plus the offset) as specified by the 
HOR1 label on the diskette. 

This is the only valid type for printer data sets. 

Assembler Language Control Statements 71 



72 

Parameter 
Name nft .................. ... ......... " •• ..,uv •• 

TYPE SU Sequential update; records can be read and written 
(continued) sequentially, or directly by relative record number. 

Records can be added at EOD. 

KR Key indexed read; key indexed records can be read 
only, sequentially or directly by key. 

KRN Key indexed read, no table build; records can be read 
only sequentially or directly by key, and you build your 
own index table. 

KU Key indexed update; key indexed records can be read, 
updated, and added, sequentially or directly by key. 

KUN Key indexed update, no table build; records can be 
read, updated, or added sequentially or directly by 
key, and you build your own index table. 

Label update; data set labels can be read and updated. 
The diskette index cylinder is accessed at track 0, 
sector 1. Otherwise, the operation is as for sequential 
update (SU). 

INI Initialize diskette. 

Optional Attributes, Second Position 

SH R Shared read; shares the data set with other jobs that 
specify shared read. 

SHW Shared write; for diskette, shares the data set with other 
jobs that specify shared write. For printer, shares the 
same printer with other data sets that specify shared 
write. 

SHRW Shared read/write; shares the data set with any other 
jobs that specify shared attributes. The data set can be 
read and written to if the other job specifies SH RW; the 
data set is write-only if the other job specifies SHW, or 
is read-only if the other job specifies SH R. 

EW Early write; for diskette, this option allows logical 
records to be updated; then the entire physical buffer 
is written to the diskette immediately, without waiting 
until a full physical buffer has been updated. 

For printer, the data in one logical record is sent to the 
printer and printed immediately, without blocking. 



Parameter 
Name 

TYPE 
(continued) 

Description 

OR Ouick release; like EW, but affects only read operations. 
The entire physical buffer is freed upon completion of 
the read operation. This releases the logical records in 
the buffer to be used by other jobs. Do not use 0 R 
when writing with pointer I/O. 

SCS Standard character string; indicates SCS conversion. 

ERS Erase; existing data is erased at open. You may not 
specify ERS for a shared file. You may specify ERS 
for a label update data set to erase the label area. 

PTR Pointer I/O; indicates pointer I/O is being done. (See 
Pointer I/O in Chapter 2.) 

EXTC Overlapped extent check; during an open or allocate 
operation, checks all extents of all other data sets to 
ensure that they do not overlap this data set. 

CB Compression; using IGS to eliminate blanks on stored 
record. 

CM Compression; as in MRJE. 

CS Compression; using SNA control bytes. 

TLBL Translate label; translation applies to diskette HDR 1 
label as well as to the data. 

ORO Ordered; may be specified only with a keyed data set to 
indicate that key indexed records are in ascending key 
sequence. 

Note: If you specify a keyed data set and include attributes for another file type, 
the system assumes a keyed data set. 

PBl Physical buffer 1; the label assigned to the buffer by a .DC 
control statement. This parameter is mandatory. 

Note: Physical buffer lengths must begin on a 128-byte 
boundary, and must be a multiple of 128, regardless of block 
size or record format. This is because buffer size is specified 
in the I/O control block as a multiple of 128. For data sets 
requesting conversion to SCS (standard character string) data sets, 
the maximum size is 256 bytes. 

Assembler Language Control Statements 73 



Parameter 

PB2 

RECl 

BSIZ 

lBUF 

lABEL 

TRANS 

DFlG 

74 

~----~- ... :--
Llt::t,"-'I~UUII 

Physical buffer 2; the label assigned by the .DC statement that set 
up the buffer. This buffer is used for double buffering. This 
parameter is optional. 

Record length; the length of the logical record to be handled. This 
parameter is required for printer output and for SCS conversion 
data sets; it is optional for diskette I/O. If this parameter is 
omitted for diskette, the value from the data set label is used. If 
this parameter is specified for diskette, it must match the value 
in the HDR 1 label. 

Block size; the length of the block to be handled. This parameter 
is required for SCS conversion data sets; it is optional for printer 
and diskette I/O. If this parameter is omitted for diskette, the 
value from the data set label is used. If this parameter is speci
fied for diskette, it must match the value in the HDR 1 label. 

logical buffer; the label assigned to the buffer by a .DC control 
statement. This parameter should be omitted when using pointer 
I/O (locate mode). If omitted, the logical buffer address is 
assumed to be the same as the physical buffer (PB 1) address, and 
the pointer I/O flag in the data set lOB is set on. 

label; the name you wish to assign to the device I/O control 
block for this data set. This is an optional parameter. If this 
parameter is omitted, the I/O control block is assumed to be not 
labeled. 

Translate tables label; the label specified in a .TABlE control 
statement that describes a pair of 256-byte tables used for code 
translation (substitution). The first table is used for input trans
lation, and the second for output. The content of each table is 
identical to tables used with the equivalent instruction TRANS. 
This optional parameter is used only when translation is desired. 

Delete flag; the character that is placed in the HDR 1 label during 
an allocate, which will be used to indicate a deleted record. This 
character is placed in the last byte of a record that is operated 
upon by a WRTS (write delete) instruction. A deleted record is 
skipped on a READ (sequential read) and overwritten on a WRTI 
(write insert) or WRT (write current) instruction. If a delete 
character is specified in the HDRl label, the HDRl character 
overrides the DFlG parameter (even if the HDRl character is a 
blank). 

This parameter may be used only for an I or E exchange data set. 



Parameter 
Name Description 

These parameters are only for standard character string conversion of printer output 
(when the second TYPE entry is SCS). These parameters are not allowed for keyed 
data sets. 

PGSIZ 

LlNSZ 

LSTLN 

SGEA 

Page size; the number of lines per page. This parameter is manda
tory with SCS conversion. 

Line width; number of characters per line. This parameter is 
mandatory with SCS conversion. 

Last line; line number of the last line to print. This parameter is 
mandatory with SCS conversion. 

Set graphics error action; the symbol to represent unprintable 
values, in the form (character, code). The default is (-,1), which 
prints one dash and continues printing. The only other valid 
entry is (-,3), which prints one dash and stops printing at the 
end of the line. 

The following parameters are only for keyed files. 

KPOS 

KLEN 

TLOC 

DLTA 

Examples: 

Key position; the position of the key in the record (first column 
= 1). This parameter is required for keyed data sets. 

Key length; the number of positions in the key. This parameter 
is mandatory for keyed data sets. 

Table location; the label of the table you have set up for the file 
index parameters. Use the label assigned by the .TABLE state
ment. This parameter is mandatory for keyed data sets, whether 
you build your own index table or let the 5280 automatically 
build the table. 

Delta of index table; the number of logical records between each 
index entry. This parameter is required for KRN and KUN data 
sets. If this parameter is omitted, the delta is calculated from 
data set length and table length. 

.DATASET NAME=TXDATA DSN=3 RECL=80 BSIZ=3120 LBUF=MYAREA 
PB1=WKBUF TYPE=KR,SHR ELAB=ERORTN2 DEVID=Dl 
KPOS=12 KLEN=8 TLOC=KEYTBL; 

Assembler Language Control Statements 75 



76 

SET UP AND LABEL TABLES 

The table control statements organize and assign labels to tables, but do not 
initialize storage. The .LABTAB control statement organizes the labels of sub
routines, which are used in indexed subroutine calls. The .TABLE statement organ
izes data areas initialized by .DC control statements. These data areas are used by 
the TABLE instructions. The .SYSTAB statement assigns labels and determines 
locations of the system tables, which are set up and used by the 5280. 

_TABLE Control Statement 

.TABLE LABEL= DCLBL= ARGL= 
{ 

MAXM= } [BYPASS] ; 
ENTRIES= 

A table consists of a group of contiguous fields of the same length. The content 
of each field is the table argument, and the position of the field within the table 
is the index of the field. The index of the first table field is one. 

Table arguments may be in an ordered or unordered sequence. An ordered table 
has arguments arranged in ascending or descending order according to the standard 
EBCDIC collating sequence. 

The .TABLE control statements build a system table that will be referred to each 
time a table instruction is encountered during program execution. The system 
table contains all the parameters of each table you use in your program. You must 
include one .TABLE statement for each of your tables. These .TABLE statements 
must be consecutive. The address of the system table is stored in the partition I/O 
control block. When a table instruction refers to the label of a table, the address 
and all the parameters of that table are provided by the system table. 

Space for the tables you use in your program must be allocated by .DC statements. 

Parameter 
Name 

LABEL 

DCLBL 

ARGL 

MAXM 

Description 

Label; the label of the table this statement defines. 

DC label; the LABEL parameter from the declare .DC statement 
that assigned space for this table. 

Argument length; the number of bytes in the table argument. 

Maximum; the maximum number of entries allowed in this table. 
Either the MAXM or ENTRIES parameter must be included for 
fixed-length tables. For variable-length tables both MAXM and 
ENTRIES are used. 



Parameter 
Name 

ENTRIES 

BVPAS 

Description 

Entries; the number of entries in the table that have been 
initialized. In variable length tables this may not be the same as 
the maximum number of entries. If MAXM is not included, the 
maximum number of entries is equal to the number specified by 
ENTRIES, and a fully initialized table is assumed. If MAXM is 
included and ENTRIES is omitted, the table is a fixed-length table 
that is not initialized. 

Bypass; the number of bytes per table entry that are not part of 
the table argument. This may be used in conjunction with LEVL 
and DISP on the .DC statement to define a two-dimensional 
table. 

Examples: In Figure 3-6, the following .DC statements allocate space for two tables. 
Then the .TABLE statements define the parameters for the two tables. The param
eters are stored in the system table, which the 5280 builds in another area of stor
age, and refers to during program execution . 

. DC LABEL=TAB2 LEN=400; allocate level-l space for the table . 

. DC LABEL=DAT21 LEN=8 DISP=O LEVL=2 INIT='llllllll'; 

.DC LABEL=DAT22 LEN=2 DISP=8 LEVL=2 INIT='AA'; 

.DC LABEL=DAT23 LEN=8 DISP=10 LEVL=2 INIT='22222222'; 

.DC LABEL=DAT24 LEN=2 DISP=18 LEVL=2 INIT='BB'; 
*TABLE statement defining a table with 8-byte arguments . 

. TABLE LABEL=NUMBERS DCLBL=DAT21 ARGL=8 MAXM=40 BVPAS=2 ENTRIES=2; 
*TABLE statement defining a table with 2-byte arguments . 

. TABLE LABEL=LETTERS DCLBL=DAT22 ARGL=2 MAXM=40 BVPAS=8 ENTRIES=2; 

TAB2 

11111111AA22222222B B 

NUMBERS dJ·· LETTERS 
11111111 AA 
22222222 BB 

Figure 3-6. Data Tables 

Assembler Language Control Statements 77 



78 

.LABTAB Control Statement 

.LABTAB LABEL= ENTRY= 

The .LABTAB control statement specifies a group of subroutine or statement labels 
and creates a label table of the addresses of these subroutines or statements. This 
table of addresses is used to make indexed branches through a table as with the 
GOTAB and CALL TB instructions. You can specify up to a total of 30 ENTRY 
labels for each . LABT AB control statement. 

Note: The .LABTAB tables are not used with the TABLE instructions that are 
described in Chapter 4. 

Parameter 
Name 

LABEL 

ENTRY 

Examples: 

Description 

Label; the name you wish to assign to the table of addresses being 
created. This parameter is mandatory unless you are building a 
label table of more than 30 entries. In that case, include the 
LABEL parameter with the .LABTAB statement that specifies the 
first 30 entries, and follow it with one or more .LABTAB state
ments with the LABEL omitted. 

Label of a subroutine or statement whose address is to be stored 
in the label table. At least one but no more than 30 labels must 
be entered. If two or more labels are entered, separate them with 
a comma. The first entry is at index 0 in the label table, the 
second entry is at index 1, and so on. 

.LABTAB LABEL=MYTABLE ENTRY=EOF ,EOJ,EOT; 

Index Entry 
~f .. 

MYTABLE {-~--~g-~:::::.s:s-
2 EOT address --.-------------

Figure 3-7. Label Table 



.SYST AB Control Statement 

.SYSTAB [PRMT= FMT= MDUP= SFMT= STACK=] 

The .SYSTAB control statement allows you to assign labels and determine the loca
tion of the system control tables and the subroutine stack. When the assembler 
encounters a .SYSTAB statement, the indicated control tables and subroutine 
stack are assigned locations at the address in the current location counter. You 
may reserve space for the entries into the area by specifying the number of entries 
to be placed into the control table or subroutine stack. If you specify the number 
of entries you may omit the label; the space for the specified number of entries will 
be reserved in the table, and the table will be assigned the location in the current 
location counter. If you omit the number of entries, you must specify the label; 
the assembler will make the appropriate number of entries in the table but will 
reserve no extra space for additional entries. See Chapter 2 for more information 
about these control areas, under System Tables and The Partition Subroutine 

Stack. 

If the .SYSTAB statement is not included, any necessary control tables are created 
and placed into the partition storage when the .END statement is encountered, 
and the address of each table is stored into an assigned location in the partition 
1/0 control block. The control tables are assigned no labels; if you wish to refer to 
an entry in a control table, you must read the address from the appropriate area in 
the partition control area. 

On the assembly listing, all system tables and the subroutine stack are written 
immediately following the .END statement. This is true regardless of their actual 
addresses. No system tables or subroutine stack is written on the listing with the 
.SYST AB control statement. 

If the .SYSTAB statement is used for a separately assembled subroutine 
(OPTION=SUB in the .START statement), you must initialize the control table 
addresses in the partition control area at execution time. The location of each table 
address is included in the following parameters. 

Parameter 
Name 

PRMT 

Description 

Prompt control table label; specifies the name you wish to assign 
to the prompt control table. You may optionaJly follow the label 
with a comma and the number of entries to be placed into the table. 

The number specified must include one extra entry to be used for 
the first table entry, which the assembler always creates and fills 
with zeros; specify the number of your prompts plus one. 

Each entry in the table is 2 bytes long and, except for the first 
entry, contains the address of a prompt created by a .DC 
TYPE=PRMT control statement. You must specify the label, 
or the number of entries, or both. The address of the prompt 
table is placed into hex SD-SE of the partition control area. 

Assembler Language Control Statements 79 



80 

Parameter 
Nlme 

FMT 

MDUP 

SFMT 

STACK 

Description 

Format control table label; specifies the name you wish to assign 
to the format control table. You may optionally follow the 
label with a comma and the number of entries to be placed into 
the table. 

The number specified must include one extra entry to be used 
for the last entry, which the assembler creates and fills with hex 
Fs; specify the number of your edit formats plus one. The 
assembler always creates this system table and the entry filled 
with Fs whether or not you write any edit formats. 

Each table entry is 2 bytes long, and contains the address of a 
format created by a .FMTST control statement and its associated 
.FMTFLD statements. The address of the table is placed into hex 
24-25 of the partition control area. You must specify the label, 
or the number of entries, or both. 

Main storage duplication control table; specifies the name you 
wish to assign to the MDUP control table. You may optionally 
follow the label with a comma and the number of entries to be 
placed in the table. 

Each table entry is 2 bytes long, and contains the address of a 
MDUP area created by a .DC TYPE=MDUP control statement. 
The address of the table is placed into hex 86-87 of the partition 
control area. You must specify the label, or the number of 
entries, or both. 

Screen format control table label; assigns a name to the SFMT 
control table. You may optionally follow the label with a comma 
and the number of entries to be placed in the table. 

Each table entry is 2 bytes long and contains the address of a 
screen format. Each screen format is created by a .SFMTST state
ment and its associated .SFMT statements up to and including 
the .SFMTEND statement. The address of the table is placed into 
hex F9-FA of the partition control area. You must specify the 
label, or the number of entries, or both. 

Stack label; assigns a name to the subroutine stack. For the 
STACK parameter, you must specify the number of entries to be 
placed in the table whether or not you specify the label. The 
number required for the partition stack entries is the number of 
levels your program uses for nested subroutine calls. Include 
calls to common function routines, calls to external status 
routines, and a call to the program check routine. It is your 
responsibility to control overflow of the partition stack; the 
system does not check for such overflow to prevent the stack 
from extending beyond the end of the partition. 



Parameter 
Name 

STACK 
(continued) 

Description 

Each stack entry is 2 bytes long and contains the return address 
of the most recent subroutine call. The address of the next 
available space in the subroutine stack is placed into BR18. 

Note: When the number of table entries is included in a .SYSTAB parameter, it 
overrides the actual number of entries generated from your control statements. 
Therefore, you may reserve extra space for future entries by specifying a number 
greater than the present number of entries. 

Examples: 

If the following two statements are the only .SYSTAB control statements in 
the program, the edit format system table is automatically built when the .END 
statement is processed . 

. SYSTAB PRMT==PTABLE MDUP==MTABLE,4 STACK=SUBSTACK,20; 

.SYSTAB SFMT == ,22; 

SET UP EDIT FORMATS 

Certain I/O instructions and data movement instructions may include an edit 
format. Edit formats describe punctuation, data types, and other editing require
ments for the individual fields of a record. The instructions that may include an 
edit format are: 

• READ 

• WRT 

• WFMCRT 

• REBF 

• WRTI 

• WRBF 

For the READ or REBF instruction, the edit format specifies the data area to 
which each input field is moved. For the READ instruction, the fields are moved 
from the I/O buffer after the read operation occurs. For the REBF instruction, the 
fields are moved from the storage area specified in the instruction. 

Data directed formatting may be used with the READ or REBF instruction. 

As the field moves to the data area, specified punctuation and edit characters are 
removed or specified conversion occurs. 

Assembler Language Control Statements 81 



82 

For the \A/rite instructions, the edit format specifies the data area from v~Yhich each 
field is moved. For the WRT and WRTI instructions, the fields are moved to the 
I/O buffer before the write operation occurs. For the WRBF instruction, the fields 
are moved to the storage area specified in the instruction. For the WFMCRT 
instruction, the fields are moved to the screen, at the screen position specified in 
the instruction. 

As the field moves from the data area, specified punctuation and edit characters 
are inserted into the field or specified conversion occurs. 

In your source program, each edit format must begin with a .FMTST statement and 
end with a .FMTEND statement. Any number of .FMTFLD statements necessary 
may be placed between the .FMTST and .FMTFLD statements. The parameters for 
the .FMTFLD and .FMTEND statements are identical. 

.FMTST Control Statement 

.FMTST LABEL= [CCHAR= CCOL= ] ; 

The .FMTST control statement identifies the start of an edit format specification. 
This statement must be followed by one or more .FMTFLD statements and a 
.FMTEND statement, or by a .FMTEND statement alone. 

Parameter 
Name 

LABEL 

CCHAR 

CCOL 

Description 

Format label; the name you want to assign to this format descrip
tion. This label is used as the format parameter in instructions 
that allow edit specifications format. This is a mandatory 
parameter. 

Condition character; the character used in data directed format
ting. Any single character is acceptable. This is an optional 
parameter used only for data directed formatting. 

Character column; the column in which the condition character is 
located. Valid entries range from 1 to the maximum size of the 
I/O buffer. This is an optional parameter used only for data 
directed formatting . 

. FMTFLD Control Statement 

.FMTFLD DCLBL= [LEN= TYPE= COL= {!~I:=}] 

Each .FMTFLD control statement defines a data field. 



Parameter 
Name 

DCLBL 

LEN 

TYPE 

COL 

EDIT 

Description 

Declared label; the label from the control statement that declared 
the register or labeled storage area into which (for READ or REBF 
instructions), or from which (for WRT, WRTI, WRBF, or 
WFMCRT instructions) the field is moved. The label may be 
followed by an optional comma and a length specification of 1 
to 256 bytes. If the length of the storage area is omitted, it 
defaults to the length specified in the declare statement. The 
label is mandatory. 

Length; the number of bytes (1-256) to access for this field. This 
is an optional parameter that defaults to 1. 

Type; the type of the declared area specified by DCLBL. Valid 
entries are DEC for decimal, and BIN for binary; defaults to BIN. 

Column; the position of the first byte of this field, relative to the 
leftmost byte of the I/O buffer. The valid range begins at 1, which 
indicates the first byte of the buffer. This is an optional param
eter that defaults to the next available column to the right. 

Edit specification; indicates how to edit the contents of the 
field during the move. This is an optional parameter that may be 
included if PIC is omitted. You may specify HX, C, W, or an edit 
string. 

HX Converts EBCDIC to binary or binary to EBCDIC. For 
example, B'l 001' converts to or from hex F9, and 
B'1010' to or from hex Cl. Do not use HX for a stor
age area declared with TYPE = DEC. 

C Specifies date edit. Slashes are inserted between each 
two positions as illustrated: 

xx/xx/xx 

W Specifies alternate date edit. Periods are inserted 
between each two positions as illustrated: 

xx.xx.xx 

Edit string characters may be specified only when the field is 
being moved to (for READ and REBF) or from (for write 
instructions) a decimal area, or a binary area with the CV 
parameter specified. 

You may specify more than one of the following, separated by 
commas. 

Assembler Language Control Statements 83 



84 

Parameter 
Name 

EDIT 
(continued) 

Description 

Character 

CV 

FX 

ZS 

CP 

DP 

n 

Meaning 

Converts decimal to binary or binary to decimal. 
For example, B'1001' converts to or from 9 and 
B'1010' to or from 10. If you convert to binary, 
you cannot specify any other edit string 
characters. 

Inserts the currency sign in the field, according to 
the .EDITC parameter EDCUR. It is a fixed sign 
and appears on the left side of the field. It is 
mutually exclusive with F L. It uses two character 
positions; the default is a blank to the left of a 
dollar sign ($). 

Indicates zero suppress. All leading zeros are 
removed except one leading zero to the left of a 
decimal point if decimal character insertion is 
specified. 

Indicates comma punctuation as specified by the 
.EDITC parameter EDCOM. It defaults to a 

comma. 

Indicates decimal point punctuation as specified 
by the .EDITC parameter EDDEC. It defaults to 
a period. 

Specifies the number of digits that appear to the 
right of the decimal point. Valid range is 1-15. 

One of the following edit string characters may be specified. 
Default is blank fill (BF). 

Character 

BF 

AF 

ZF 

FL 

Meaning 

Indicates blank fill. 

Indicates asterisk (*) fill. 

Indicates zero fill. 

Indicates a floating currency sign. It is mutually 

exclusive with FX and uses two character positions. 
It defaults to a blank to the left of a dollar sign ($). 



Parameter 
Name 

EDIT 
(continued) 

PIC 

Description 

One of the following edit string characters may be specified. The 
term zone refers to the zone portion of the rightmost byte of the 
decimal register. The term field refers to the field that is moved to 
or from the decimal register. Default is decimal sign (OS). 

Character 

OS 

SS 

NS 

S 

CR 

DB 

Meaning 

Indicates decimal sign. The zone is hex F for 
positive data, and hex 0 for negative data. 

Indicates stripped sign. The zone is always 
replaced with hex F. 

Indicates negative sign. If the data is negative, the 
zone has a hex 0 and the rightmost position of 
the field has a minus sign (-). If the data is posi
tive, the zone has a hex F and the rightmost posi
tion of the field is blank. 

Indicates signs. Same as NS except the rightmost 
position of the field has a plus sign (+) for positive 
data. 

Indicates credit. If the data is negative, the zone 
is hex 0 and the rightmost two positions of the 
field have C'CR'. If the data is positive, the zone 
has hex F and the rightmost two positions of the 
field are blank. 

Indicates debit. If the data is negative, the zone 
is hex 0 and the rightmost two positions of the 
field have C'OB'. If the data is positive, the zone 
is hex F and the rightmost two positions of the 
field are blank. 

Picture definition; a string of symbols that defines the format of 
the field. This is an optional parameter that may be specified 
only for a WFMCRT, WRT, or WRBF instruction that moves the 
field to a decimal buffer; it is mutually exclusive with the EDIT 
parameter. The number of digits represented by the PIC string 
(not including punctuation) must exactly equal the number of 

digits in the input field in the decimal buffer. Specify one or more 
of the following, enclosed in single quotes. 

Symbol 

9 

z 

Represents 

A decimal digit. A decimal digit is accepted for 
output to the corresponding position of the buffer. 

Suppress leading zeros. The corresponding posi
tion in the buffer is blanked if the character is a 

leading zero. 

Assembler Language Control Statements 85 



86 

Parameter 
r~ame 

PIC 
(continued) 

n ___ -=_..: __ 
LI.::t"".,UUII 

Symbol 

v 

y 

* 

/ 

B 

M 

+ 

Represents 

Stop zero suppress. Zero suppression is stopped in 
the corresponding position of the buffer. V must 
be followed by a comma, slash, or period. 

Note: The picture definition must not end with V. 

Insert a blank if the value is O. A blank is inserted 
into the corresponding position of the buffer if the 
position contains a zero. 

Insert an asterisk. An asterisk is inserted into the 
corresponding position of the buffer if the position 
contains a leading zero. 

Insert a comma. A comma is inserted into the 
corresponding position of the buffer unless zero 
suppression has occurred. 

Insert a slash. A slash is inserted into the corre
sponding position of the buffer unless zero 
suppression has occurred. 

Insert a period. A period i"s inserted into the 
corresponding position of the buffer unless zero 
suppression has occurred. 

Insert a blank. A blank is inserted into the corres
ponding position of the buffer. 

Insert a currency symbol. The currency symbol 
can be at a fixed position or placed to the left of 
the most significant digit. To insert a currency 
symbol at a fixed position, place one M at the 
desired position. To insert a floating currency 
symbol, place an M in all leading digit positions 
of the associated field. 

Insert a minus sign. A minus sign is inserted into 
the corresponding position of the buffer if the 
field is negative. 

Insert a plus sign. A plus sign is inserted into the 
corresponding position of the buffer if the field is 
positive. 



Parameter 
Name 

PIC 
(continued) 

Example: 

Description 

Symbol 

S 

C 

D 

Represents 

Insert the appropriate sign. The appropriate sign 
(+ or -) is inserted into the corresponding position 
of the buffer. 

Insert CR. The characters CR are inserted into the 
corresponding positions of the buffer if the field is 
negative; otherwise the corresponding positions are 
blank. 

Insert DB. The characters DB are inserted into the 
corresponding positions of the buffer if the field is 
negative; otherwise the positions are blank. 

To read the following data from data set 4 and move it from the I/O buffer to 
three decimal registers labeled NAME, SS#, and RATE, the following statements 
may be used: 

3White Elmer J. 404772310 3.36 

.FMTST LABEL=F2; 

.FMTFLD DCLBL=NAME LEN=16 COL=2; skip condition 
character position 
.FMTFLD DCLBL=SS# LEN=9 COL=20; 
.FMTEND DCLBL=RATE LEN=6 COL=31 EDIT=DP, ZF; 
READ (4,F2); 

After the execution of the above statements, the decimal registers contain the 
following data. 

NAME = WHITE ELMER J 
SS# = 404772310 
RATE = 0000000000000336 

A write instruction that specifies F2 as the format parameter would move the 
data from these registers back into the I/O buffer; all punctuation and edit charac
ters would be replaced before the record is written to the I/O device. 

The following tables show examples of PIC edit strings. 

Assembler Language Control Statements 87 



Examples of Zero Suppression 

Input Field Edit Word Output Field 

12345 ZZZ99 12345 
00100 ZZZ99 1616100 
00000 ZZZ99 16161600 
00100 ZZZZZ 1616100 
00000 ZZZZZ 1616161616 
00100 ***** **100 
00000 ***** ***** 
00100 YYYYY 161611616 
10203 9Y9Y9 1162163 

Examples of Character Insertion 

Input Field Edit Word Output Field 

1234 9,999 1,234 
123456 9,999.99 1,234.56 
1234 ZZ.ZZ 12.34 
1234 ZZV.99 12.34 
0003 ZZ.ZZ 161616163 
0003 ZZV.99 1616.03 
0000 ZZ.ZZ 1616161616 
0000 ZZV.99 1616.00 
123456789 9,999,999.99 1,234,567.89 
1234567 ** ,999.99 12,345.67 
0012345 ** ,999.99 ***123.45 
123456789 9.999.999,99 1.234.567,89 
123456 99/99/99 12/34/56 
123456 99.9/99.9 12.3/45.6 
001234 ZZIZZIZZ 16161612/34 
000012 ZZIZZIZZ 16161616161612 
000000 ZZIZZIZZ 1616161616161616 
000000 ** 1** 1** ******** 
123456 99B99B99 1216341656 
123 9BB9BB9 11616216163 
12 9BB/9BB 11616/21616 

88 



FMTEND Control Statement 

. FMTEND DCLBL= [TYPE= LEN= COL= {EDIT=} ] . 
PIC= ' 

The .FMTEND control statement indicates the last field of an edit format. The 
parameters are identical to the .FMTFLD control statement. 

SET UP SCREEN CONTROL FORMATS 

A screen control format describes a record that is entered via the keyboard/display. 
One screen control format must be specified with each ENTR instruction. When 
the 5280 encounters an ENTR instruction during program execution, it directs the 
keyboard/display to allow the fields of one record to be entered from the keyboard. 
The screen control format specifies the length of each field and the type of data 
that may be entered. The 5280 checks the characters entered into each field to 
make sure it meets the specifications of the screen control format. Valid data for 
each field is placed into the I/O buffer as it is entered, according to the current 
mode of entry. (See Modes of Entry in Chapter 2.) The screen control format 
can also specify prompts and display attributes to be displayed as the record is 
entered. The prompts and display attributes are moved to specified positions on 
the screen. 

During an ENTR operation, the keyboard/display maintains two pointers. The 
buffer position pointer always contains the position, relative to the first byte of the 
I/O buffer, of the next available buffer position. The screen position pointer 
always contains the next available screen position. 

In your source program, each screen control format must begin with a .SFMTST 
statement and end with a .SFMTEN D statement. Between these two statements, 
you may include as many of the following statements as necessary: 

Statement Purpose 

.SFMTCTL Specify control of screen attributes, data movement, keyboard 
functions, or format execution . 

. SFMTPMT Specify prompts to move to the screen . 

. SFMTFLD Describe the display attributes, field type, and keyboard functions 
of an input field . 

. SFMTCNS Specify constant insert data to place in the I/O buffer and to also 
move to the screen. 

Assembler Language Control Statements 89 



90 

Certain parameters or parameter keywords are common iO nwre than one .SFMT 
control statement. These are as follows: 

Parameter 

CNTL 

Description 

Control; one or more keywords that specify control of the 
screen attributes, keyboard functions or format execution. 
The CNTL parameter may be specified in any of the .SFMT 
control statements. One or more of the following keywords 
may be specified for the CNTL parameter, depending on the 
particular control statement. 

Keyword 

RG 

DE 

MC 

Meaning 

Return to program; the keyboard/display suspends 
processing key entry under the current ENTR 
command and sets on an external status indicator 
in the KB/CRT I/O control block. 

If the key entry is processing in a forward direc
tion when this parameter specification is encount
ered, the resulting external status condition is 
condition 4. The current .SFMT statement, which 

contains this RG parameter, is processed before 
key entry is suspended. 

If key entry is processing in a backward direction 
such as during a backspace when this parameter is 
encountered, the resulting external status condition 
is condition 5. The current .SFMT statement, 
which contains this RG parameter, is not 
processed before key entry is suspended. 

Dup key status; changes the status that determines 
whether pressing the Dup key is allowed within a 
field. The Dup key is initially enabled at the start 
of each screen format control series. If it is 
enabled when this statement is encountered, it 
becomes disabled. If it is disabled when this state
ment is encountered, it becomes enabled. 

Monocase conversion status; changes the status 
that determines whether all lowercase alphabetic 
characters (and any other characters in the ex
tended international character set for which an 
uppercase-lowercase relationship is defined) are 
converted to their uppercase equivalents as they 
are keyed, before they are inserted into the 
record and displayed upon the screen. The mono'
case conversion feature is initially disabled at the 
start of each screen format control series. If it is 
disabled when this statement is encountered, it 
becomes enabled. If it is enabled when this state
ment is encountered, it becomes disabled. 



Parameter 
Name 

CNTL 
(continued) 

DSPLY 

Description 

Keyword 

FX 

SV 

CS 

Meaning 

Field- status; changes the status that determines 
whether the Field- (Field Exit Minus) key is per

mitted in a field defined as a numeric shift field. 
The Field- key function is initially enabled at the 
start of each screen format control series. If it is 
enabled when this statement is encountered, it 
becomes disabled. If it is disabled when this state
ment is encountered, it becomes enabled. 

Specify verify status; changes the status that 
determines whether the mode is changed from 
verify mode to special verify mode for this field. 
If special verify mode is enabled when the cursor 
enters the field, the mode is changed to special 
verify mode. Special verify mode allows the oper
ator to enter data into the field without the 
normal verify checking against the contents of 
the field in the I/O buffer. When the field is 
exited in the forward or backward direction, the 
mode is restored to verify mode. The special 
verify mode status is disabled at the start of each 
screen control format. If it is disabled when this 
statement is encountered, it becomes enabled. 
If it is enabled when this statement is encountered, 
it becomes disabled. 

Clear screen; the screen is cleared, except for the 
status line, prior to processing any other CNTL 
specifications within this statement. 

Display attributes; specifies display attributes to affect this field 
only. The 5280 replaces the display attributes currently in effect 
by moving the attributes you specify in this DSPL Y parameter 
to the screen as immediate data. The 5280 uses the cursor posi
tion immediately preceding the field to move the attributes to the 
screen. It also uses the cursor position immediately following 
the field to return to the screen the attributes in effect before 
the change. Remember to include these two cursors if you are 
counting positions for the CSPS parameter. For example, if you 
change display attributes for a field that is 8 positions long, the 
5280 uses 10 cursor positions. 

This parameter is optional and should not be used if you specified 
the display attributes with the HUN and NMIN parameters of the 
.KBCRT control statement. You may specify one or more of the 
following attributes, separated by commas. 

Assembler Language Control Statements 91 



92 

Parameter 
Name 

DSPLY 
(continued) 

BFPS 

CSPS 

Notes to CSPS: 

Descri po on 

Symbol 

NO 
NM 
BL 
CS 
HI 
RI 
UL 

Notes: 

Meaning 

Nondisplay of the field 
Normal display of the field 
Blink the field 
Display column separators for the field 
High intensity for the field 
Reverse image for the field 
Underl ine the field 

1. The NO (nondisplay) and the NM (normal display) attributes 
are incompatible with any other specification. 

2. If you specify UL (underline), R I (reverse image), and HI 
(high intensity) for the same field, display of the field is inhibited. 

3. The DSPL Y parameter has a different effect when specified 
in a .SFMTCTL control statement than when specified in one 
of the other statements. Check the DSPL Y description for 
the .SFMTCTL control statement. 

Buffer position pointer changed; specifies a signed number (±n) 
that specifies the direction and number to change the current 
record buffer pointer position. This pointer determines where the 
next keystroke is to be placed within the current record buffer. 
This is an optional parameter. 

Screen position pointer changed; changes the pointer before any 
prompts, constant inserts, or input data is displayed on the screen. 
This is an optional parameter. You may enter one of the 
following: 

Entry Meaning 

±n A signed number; indicates the direction and number of 
the change. 

NL Next line; places the pointer in the first column of the 
next line. 

1. You must be careful not to move any data to the screen at a position that will 
allow the data to extend beyond the available screen positions. If this happens, 
the data may overwrite the data on another screen. 

2. NL is incompatible with ES (execute secondary format), CI (conditional bypass), 
and CP (continue at current cursor position) specifications. 

The 5280 assembler generates a string of object code for each screen control format 
in your source program. Each series of control statements, which begins with a 
.SFMTST statement and ends with a .SFMTEND statement, is used to generate one 
string of object code. This string of object code is referred to as a screen format 

control string. 



The assembler converts the control statements to object code sequentially, so you 
must code your .SFMT statements in the order you wish them to be executed. 
Within each source control statement, you may specify parameters in any order. 
However, there is a prescribed order in which certain parameter keyword specifica
tions are placed in the object code string. This affects the order in which the param
eter specifications are processed during program execution. The control statement 
descriptions specify the order in which the parameter specifications are processed. 

The RG (return to program) specification is always placed in the object code string 
in association with another parameter specification. Therefore, if you specify 
CNTL=RG in a control statement, you must specify at least one other parameter. 

The RG specification is usually associated with the parameter that is first processed 
in each control statement. When the object code string is being processed in a 
forward direction and an RG specification is encountered, an external status 4 
condition results. The RG specification is encountered after the parameter with 
which it is associated is processed. However, if the object code string is being 
processed in a backward direction when an RG specification is encountered, an 
external status 5 condition results. The RG specification is encountered before the 
parameter with which it is associated is processed. 

Therefore, if you include a .SFMTCTL control statement that contains only an 
RG specification and an ES (execute secondary screen format) parameter, or a CI 
(conditional bypass) parameter, the RG specification is encountered after the ES 
or CI parameter has been processed. If you want the return (external status 4 
condition) to be made before the secondary screen format or the conditional bypass 
is processed, you must include another parameter in the control statement. The 
other parameter must be higher in the processing order than the ES or CI parameter. 
Then the RG return is made, after the other parameter is processed and before the 
ES or CI parameter is processed. 

An exception is made when an RG specification is included in a .SFMTFLD or a 
.SFMTCNS control statement. For these control statements, the RG specification 
is always associated with the FLDF parameter or the CNST parameter. This is true 
even if another parameter (such as BFPS) is included that is higher in the processing 
order. The return (external status 4 condition) is made after the FLDF input field 
or CNST constant has been entered into the I/O buffer. If the object code string is 
being processed in a backward direction, the return (external status 5 condition) is 
made before the cursor enters the FLDF or CNST field. 

Assembler Language Control Statements 93 



94 

.SFMTST Controi Statement 

.SFMTST LABEL= [CNTL=]; 

The .SFMTST control statement identifies the start of a screen format control 
series. Each screen format control series specifies one format for data input via 
the keyboard/display unit. Each series must start with a .SFMTST statement and 
must end with a .SFMTEND statement. No other .SFMTST statements are valid 
before a .SFMTEND statement is encountered. 

Parameter 
Name 

LABEL 

CNTL 

Description 

Label; identifies this screen format series, which includes all 
.SFMT statements before a .SFMTEND statement is 
encountered. This parameter is mandatory. This label is 
specified as the format operand in an ENTR command. 

Control keywords; up to four keywords are acceptable; 
separate them with commas. This is an optional parameter. 

Keyword 

RG 

MV 

cs 

CP 

Meaning 

Return to program. 

Move data; before data entry keystrokes are 
accepted, the contents of the current record buffer 
are moved into the appropriate data input and 
constant insert fields. Prompts and display attri
butes specified within the screen format series are 
moved to the screen as specified. 

In update, rerun/display, or display mode, this 
function is automatically invoked. 

In verify mode, this function is automatically 
invoked except that data fields on the screen are 
blanked. 

In enter mode, you must include the MV parameter 
in the .SFMTST statement if you want the move 
data function to be invoked. Otherwise, the 
prompts and display attributes appear on the 
screen when they are passed over by the cursor for 
the first time. The content of the current record 
buffer does not appear on the screen unless it is 
rekeyed by the operator. 

Clear screen. 

Continue at current cursor position; begins this 
screen format at the current cursor position. If 
this keyword is omitted, the cursor position is 
reset to line two, column one at the beginning of 
data entry under the enter statement. 



Example: 

.SFMTST LABEL=FORMATl CNTL=CP,MV; 

.SFMTCTL Control Statement 

.SFMTCTL [CI= CNTL= DSPLY= CSPS= BFPS= ES=] 

The .SFMTCTL control statement specifies screen or keyboard control operations. 
Although all parameters are optional, at least one parameter must be specified each 
time you include the .SFMTCTL statement. 

Parameter 
Name 

CI 

CNTL 

Description 

Conditional bypass indicator; the label of an indicator, followed 
by OFF or ON, for a conditional bypass of a portion of this 
.SFMT series. This must be followed by an end of bypass control 
parameter (CNTL=CE) in a .SFMTCTL statement within this 
.SFMT series. All statements between this statement and the 
.SFMTCTL statement with the CE parameter are bypassed if the 
specified indicator is on and ON is indicated, or if it is off and 
OFF is coded. This is an optional parameter. Only one level of 
bypass is allowed. See Conditional Bypass under Screen Formats 
in Chapter 2 for more information. 

Control keywords; up to five keywords are allowed. If more than 
one keyword is entered, separate them with a comma. 

Keyword 

RG 

CE 

DE 

MC 

FX 

SV 

Meaning 

Return to program. Whenever the RG keyword is 
included for the CNTL parameter of a .SFMTCTL 
statement, at least one more keyword must also be 
included. 

End of bypass; concludes the bypass portion with
in the format control series. A CE specification 
must have been preceded by a start of bypass (CI) 

parameter in a previous control statement within 
this .SFMT series. 

Dup key status change. 

Monocase conversion status. 

Field exit status change. 

Special verify mode status change. 

Assembler Language Control Statements 95 



96 

Parameter 
Na~ 

DSPLY 

CSPS 

BFPS 

ES 

Description 

Display attribute; specifies a display screen attribute, which is 
moved to the screen at the current cursor position. The fields 
preceding the cursor position are not changed. The fields follow· 
ing the cursor position are displayed with the display attributes 
specified in the .SFMTCTL statement DSPL Y parameter until 
another DSPL Y parameter is encountered. Remember to include 
this cursor position if you are counting positions for the CSPS 
parameter. This is an optional parameter and should not be used 
if you specified the display attributes with the HUN and NMIN 
parameters of the .KBCRT control statement. One or more of 
the following keywords, separated by commas, may be entered. 

Keyword 

BL 
CS 
HI 
NO 
RI 
UL 
NM 

Meaning 

Blink 
Column separators are displayed 
High intensity 
Nondisplay 
Reverse image 
Underline 
Normal display 

Note: The NO (nondisplay) and the NM (normal display) attri
butes are incompatible with any other specification. If you 
specify UL (underline), R I (reverse image) and HI (high intensity) for 
the same field, display of the field is inhibited. 

Screen position pointer changed. 

Buffer positions pointer changed. 

Execute secondary screen format; specify the label (LABEL 
parameter from the .SFMTST statement) of the secondary screen 
format. When the 5280 encounters this specification, it executes 
the entire secondary screen format, then returns to the primary 
screen format at the specification following the ES specification. 
See Secondary Screen Format under Screen Formats in Chapter 
2 for more information. This is an optional parameter. 

Only one level of secondary format is permitted. The secondary 
format specified by this parameter must not have a secondary 
format specification within its statements. 



Although the parameters may be specified in any order, the order in which they 
are processed is: 

1. BFPS, CSPS 

2. DSPLY 

3. FX, MC, DE 

4. ES 

5. CI 

6. CE 

If RG is included, it is associated with the parameter that is first in processing order. 
The return (external status 4 or 5 condition) is made after that parameter is 
processed in the forward or backward direction (respectively). 

Example: 

.SFMTCTL CNTL=DE,FX CSPS=20 BFPS=+15 ES=FMT6 CI=CHK,OFF; 

.SFMTPMT Control Statement 

.SFMTPMT PRMT= [CSPS= DSPL Y= CNTL=]; 

The .SFMTPMT control statement specifies a prompt to display on the screen. 
You set up and initialize the prompts with .DC control statements. 

When you specify prompts for a screen format, be careful that the prompt length 
is not greater than the available screen positions. If such a prompt is moved to 
the screen, the prompt may extend beyond the screen into the screen area used by 
another keyboard. This may overwrite and destroy the original contents of 
another screen or destroy control information for your screen. 

Parameter 
Name 

PRMT 

Description 

Prompt; you must specify one of the following for this mandatory 
parameter. 

SP, label Standard position prompt; specifies the LABEL 
parameter of the .DC statement that set up and 
initialized the prompt. The indicated prompt is 
displayed at the current location of the screen posi
tion pointer. A standard position prompt is not 
redisplayed if it is encountered during backspace 
operations. 

Assembler Language Control Statements 97 



98 

Parameter 
Name 

PRMT 
(continued) 

CSPS 

DSPLY 

CNTL 

Description 

FP, label Fixed position prompt; specifies the LABEL param
eter of the .DC statement that set up and initialized 
the prompt. The indicated prompt is displayed in 
column 1 of the fixed prompt line. You can 

CP,nn 

specify the fixed prompt line by including the 
FPLC parameter in the .KBCRT control statement. 
If you omit the FPLC parameter, the fixed prompt 
line defaults to line two. The line is cleared before 
the prompt is displayed. A fixed prompt is red is
played if it is encountered during backspace 
operations. 

Clear fixed prompt line. No label may be specified 
with CP, although an optional length may be speci
fied. If a length (nn) is specified, only the indicated 
number of positions are cleared on the fixed prompt 
line. If no length is specified, the entire line is 
cleared from the screen. 

Change screen position pointer. 

Display attribute specification. 

Control; only RG may be specified. 

Although the parameters may be specified in any order, the order in which they are 
processed is: 

1. CSPS 

2. DSPL Y (turn on an attribute) 

3. PRMT 

4. DSPL Y (turn off the attribute) 

If RG is included, it is associated with the parameter that is first in processing 
order. The return (external status 4 or 5 condition) is made after the parameter 
with which it is associated is processed in the forward or backward direction 
(respectively). 

Examples: 

.SFMTPMT PRMT=SP,PMESGE3 DSPLY=BL,HI CSPS=+7 CNTL=RG; 

.SFMTPMT PRMT=CP; this clears the fixed prompt line . 

. SFMTPMT PRMT=CP,20; this clears the first 20 positions of the fixed prompt 
line. 



.SFMTCNS Control Statement 

.SFMTCNS CNST= [CSPS= BFPS= DSPL Y= CNTL=] 

The .SFMTCNS control statement specifies a constant insert field. 

In enter, update, and rerun modes, a constant insert is placed into the I/O buffer 
and displayed on the screen in the current field position. The cursor does not 
appear within the constant insert field and the operator cannot enter data into the 
field. 

In verify mode, verification of a constant insert field is done automatically. The 
contents of the field are compared to the contents of the main storage area 
declared with a .DC control statement and specified with the CNST parameter 
described below. If the verification is successful, a field advance is performed. If 
the verification is not successful, the cursor is positioned in the leftmost position 
of the constant insert field and the contents of the field in the I/O buffer are dis
played on the screen. A constant insert verify mismatch error is reported. The 
operator must press the Reset key, then press either the ~I(Field Advance) key, or 
a field correct key. If the ~Ikey is pressed, the contents of the field in the I/O 
buffer remain unchanged and a field advance is performed. If a field correct key 
is pressed, the contents of the field in the I/O buffer and on the screen are replaced 
with the contents of the main storage area, then a field advance is performed. Any 
data key or any function key handled by the 5280 (except a shift key) is invalid 
after the Reset key is pressed. 

Parameter 
Name Description 

CNST Constant name; the label assigned to the character string by a 
.DC statement, which includes the TYPE=PRMT parameter. 

CSPS Change screen position pointer. 

BFPS Change buffer position pointer. 

DSPLY Display attributes. 

CNTL Control; only RG may be specified. 

Although the parameters may be specified in any order, the order in which they are 

processed is as follows: 

1. BFPS, CSPS 

2. DSPL Y (turn on attribute) 

3. CNST 

4. DSPL Y (turn off attribute) 

If RG is specified, it is associated with the CNST parameter. The return (external 
status 4 condition) is made after the constant is entered into the I/O buffer. 

Assembler Language Control Statements 99 



100 

Example: 

.SFMTCNS CNST=PAYRATE CSPS=NL BFPS=+2 DSPL Y=CS,HI,UL CNTL=RG; 

.SFMTFLD Control Statement 

.SFMTFLD FLDF= [CNTL= CSPS= BFPS= PIC= DSPL Y=] 

The .SFMTFLD control statement defines a data field for data entry. Field type 
and field definition keywords for the FLDF parameter are defined following the 
.SFMT control statement descriptions. 

Parameter 
Name 

FLDF 

Description 

Field Definition; three positional keywords that specify field 
type, field length, and field definition. Field type is omitted 
if the PIC parameter is used. 

Field type and field definition keywords are described following 
the .SFMTEND control statement under Field Type Keywords 
and Field Definition Keywords. Following the keyword descrip
tions is a chart (Figure 3-8) that shows which keywords are 
mutually exclusive and which require other keywords. 

Note: Characters considered valid in any field type may be rede
fined at system configuration. 

Field type, mandatory first position: Mandatory unless you use 
the PIC parameter. If you use PIC, omit the field type entry in 
this position and retain the comma before the length entry. If 
you do not use PIC, enter one or more of the following, separ
ated by commas. 

Symbol Meaning 

A Alphabetic shift 
N Numeric shift 
W Special characters shift 
X Alphabetic only 
Y Numeric only 
V Special characters only 
D Digits only 
H Hex field 
S Signed numeric 
F Format level zero 

Field Length, mandatory second position: Enter a number from 
1 to the maximum number of valid positions remaining on the 
screen. 



Parameter 
Name 

CNTL 

MD 

Description 

Field definition, optional third position: Enter one or more of 
the following, separated by commas. 

Symbol 

FE 
RB 
RZ 
AD 
AS 
ME 
DR 
MF 
BC 
RL 
BV 
AA 
BY 

Meaning 

Field exit required 
Right adjust, blank fill (not allowed if PIC is coded) 
Right adjust, zero fill (not allowed if PIC is coded) 
Auto dup 
Auto skip 
Mandatory enter 
Data required 
Mandatory fill 
Blank check 
Right-to-Ieft (not allowed if PIC is coded) 
Verify bypass 
Absolutely automatic 
Bypass 

Control keywords; up to four optional keywords are acceptable; 
separate them with commas. 

Keyword Meaning 

RG Return to program. 

DE Dup key status change. 

MC Monocase conversion status change. 

FX Field- key status change. 

SV Special verify mode status change. 

Main storage duplication; the label of a storage location defined 
for duplication by a .DC control statement, using the TYPE = 
MDUP parameter. In enter, update, or field correct mode, the 
data from the storage location is duplicated into the field when the 
Dup key is pressed. Duplication starts at the current position 
within the field and continues to the end of the field. 

In verify mode, the contents of the field are verified against the 

contents of the storage location. If a mismatch error occurs 
during verification, the cursor stops at that position, the entire 
field is displayed, and a verify mismatch error is reported. If the 
operator presses the Reset key, then again presses the Dup key, 
the character in the storage location replaces the character in the 
I/O buffer. Verification then continues to the end of the field. 

If the field is also defined as auto dup (AD), the duplication 
from storage is done automatically for the entire field if the 
auto dup/skip mode is active or if the absolutely automatic (AA) 
attribute is also specified for the field. 

Assembler Language Control Statements 101 



Parameter 
ft.Jame 

MS 

CSPS 

BFPS 

PIC 

DSPLY 

102 

Main storage store; the label of a storage location defined by a 
.DC using the TYPE = MDUP parameter. In enter, update, 
verify, or rerun mode, the content of the field is moved into this 
storage location when the field is exited and if the auto dup 
switch is on, or if the absolutely automatic (AA) attribute is 
also specified for the field. 

Change screen position pointer. 

Change buffer position pointer. 

Subfield picture definition; defines subfields within the original 
field. 

PIC consists of one or more ordered pairs of 2-positional entries; 
the first position is field length and the second position is field 
type. The positional entries are separated by commas; each pair 
of entries is enclosed by parentheses; and the pairs are separated 
by commas. 

Note: If this parameter is specified, place a blank in the field 
type (first) position of the FLDF parameter for this .SFMTFLD 
control statement. The PIC parameter cannot be specified if 
RB (right adjust, blank fill) or RZ (right adjust, zero fill) is 
specified for the field definition keyword (third) position of the 
FLDF parameter for this .SFMTFLD control statement. 

Subfield Length; First Position 

A number from 1 to 8 that specifies the length of the subfield. 

Subfield Type; Second Position 

Symbol Meaning 

A Alphabetic shift 
D Digits only 
H Hexadecimal 
N Numeric shift 
V Special characters shift 
X Alphabetic only 
Y Numeric only 
Z Special characters only 

Display attributes. 



Although the parameters may be specified in any order, the order in which they are 
processed is as follows: 

1. BFPS, CSPS 

2. DSPL Y (turn on attribute) 

3. DE, MC, FX 

4. FLDF 

5. DSPL Y (turn off attribute) 

If RG is included, it is always associated with the FLDF parameter. The return 
(external status 4 condition) is made after the FLDF input field is entered into the 
I/O buffer. 

Examples; 

.SFMTFLD FLDF=A,10,FE,ME CNTL=RG,DE MS=STORS CSPS=+10 BFPS=+10 
DSPLY=HI; 

.SFMTFLD FLDF= ,20 PIC=(8,A), (6,N), (6,A); 

.SFMTEND Control Statement 

.SFMTEND [CNTL=] ; 

The .SFMTEND control statement identifies the end of a screen format series. 

This must be the last statement of each screen format control series. 

Parameter 
Name 

CNTL 

Description 

Control keywords; up to two keywords are acceptable, separated 
by a comma. This is an optional parameter. 

Keyword 

BZ 

CS 

Meaning 

Sound buzzer; when this statement is encountered 
at the end of a screen format control series, a 
buzzer is sounded in the keyboard/display unit. 

Clear screen; the screen is cleared except for the 
status line. 

Assembler Language Control Statements 103 



104 

Examples: 

.SFMTEND CNTL=BZ,CS; 

.SFMTEND; 

Example of Screen Format Control Series: 

.SFMTST LABEL=EXAMP1 CNTL=CS,MV; 

.SFMTPMT PRMPT=SP,MSG CSPS=10 DSPLY=HI; 

.SFMTFLD FLDF=,12, DR,BC CNTL=RG CSPS=NL BFPS=5 PIC=(5,A), (7,0); 

.SFMTCNS CNST=KONST CSPS=+5 DSPL Y=UL; 

.SFMTFLD FLD=N, 20,AD CNTL=DE MD=DUPDATE CSPS=+5 BFPS=1; 

.SFMTEND CNTL=BZ; 

Field Type Keywords 

Keyword Meaning 

A Alphabetic shift. All characters are accepted under this character set 
definition. The keyboard shift is positioned to the lower symbol of 
each data key for data entry, proof, and typewriter keyboards. 

o Digits only. Only the digits 0-9 are accepted under this character set 
definition. If any other character is keyed, an error results. The key
board shift is positioned as for a numeric shift field (N). 

F Format level zero. In enter, update, or verify mode, format level zero 
specifies a series of 1-byte alphabetic fields. The length of the field 
specified determines the number of 1-byte fields. 

Note: The field definition keywords of the FLDF parameter must 
not be used if type F is specified. 

H Hexadecimal. Only hexadecimal characters (0-9, A-F) are accepted 
under this character set definition. If any other character is keyed, an 
error results. The keyboard shift is positioned to the upper symbol of 
each data key for data entry and proof keyboards, or on the lower 
symbol for typewriter keyboards. 

Each pair of hex digits entered is combined to form one position in the 
field. For example, if hex 3 and hex F are keyed, 3F is inserted into 
one record position. The Alpha shift key must be used to select A 
through F on the data entry or proof keyboards. 

N Numeric shift. All characters are accepted under this character set 
definition. The keyboard shift is positioned to the upper symbol on 
each data key for data entry and proof keyboards, or to the lower 
symbol for typewriter keyboards. 



Keyword Meaning 

S Signed numeric. The rightmost position of the field on the screen is 
reserved for a sign; no data can be entered directly into this position. 
The .SFMTF LO statement that defines the field must not specify digits 
only (0) for the field type, and must not specify right adjust (RA) and 
field exit required (FE) for the field definition keywords. These speci
fications are already implied for a signed numeric field. To exit the 
field in enter, update, or field correct mode, the Field+, Field Exit, 
or Field- key must be used. If one of the first two keys is pressed, the 
data is right-adjusted, the sign position is set to blank on the screen, 
and the data in the record does not change. If the Field- key is 
pressed, the data is right-adjusted, the sign position is set to minus on the 
screen, and the zone portion of the low-order digit of the field is changed 
to hex O. 

This field type cannot be specified for a PIC field specification. 

V Special characters shift. All characters are accepted under this character 
set definition. On some native language keyboards certain key tops are 
divided into quadrants. The two rightside quadrants represent special 
characters; the two leftside quadrants represent standard alphameric 
characters. The following illustrates the quadrants. 

I 
I 
I 
I 
I 
I --- ---------.---------I 
I 
I 
I 
I 

Alphameric Special 
Characters Characters 

Upper 
Shift 

Lower 
Shift 

For a special characters shift field, the keyboard is initially positioned 
in lower shift. If a key is pressed that has both special and alphameric 
symbols, the lower rightside special symbol is selected unless a shift key 
is pressed. 

This field type is valid only for the appropriate native language symbols. 
If it is specified for any other keyboard, a format-control-series-error 
external status condition (13) occurs. 

X Alphabetic only. Only the following characters are accepted under this 
character set definition: A-Z, comma, period, dash, and blank. If any 
other character is keyed, an error results. The keyboard shift is posi
tioned to the lower symbol on each data key for data entry, proof, and 
typewriter keyboards. 

Y Numeric only. Only the following characters are accepted under this 
character set definition: 0-9, comma, period, dash, plus, and blank. If 
any other character is keyed, an error results. The keyboard shift is 
positioned to the upper symbol on each data key for data entry and 
proof keyboards, or on the lower symbol for typewriter keyboards. 

Assembler Language Control Statements 105 



106 

K,.vwnrtl M..Jllninn 
.. --, •• -- - .... -_ ••••• &1 

V Special characters only. Only characters defined via the character 
validity table as special characters are accepted under this character set 
definition. If any other character is keyed, an error results. The key
board shift is positioned as in a special character shift field. This field 
type is valid only for the appropriate native language keyboards. 

Field Definition Keywords 

Keyword Meaning 

AA Absolutely automatic. In enter, verify, field correct, update, or rerun 
mode, this keyword is used in conjunction with auto dup (AD), auto 
skip (AS), or main storage (MS). Automatic processing of the dup, 
skip, or store is done whether or not the auto dup/skip mode is active. 
If the field is defined as auto dup (AD), main storage dup (M D), and 
absolutely automatic (AA), automatic duplication from main storage 

occurs. 

AD Auto duplicate. AD may be specified alone or in conjunction with 
main storage duplicate (MD). In an enter or update mode, if a field is 
defined only as auto dup, the system automatically duplicates data 
from corresponding positions in the previous record if the auto dup/ 
skip mode is active, or if the absolutely automatic (AA) attribute is 
also specified for the field. The duplication starts at the current posi
tion within the field and continues to the end of the field. 

If a field is defined as auto dup (AD) and main storage dup (MD), the 
duplication occurs as described under the main storage dup (MD) 
function. 

In verify mode, if a field is defined as auto dup (AD), the system auto
matically verifies that the data in the current record buffer matches the 
data in corresponding positions in the previous record buffer. Verify 
mismatch error recovery from an AD field is identical to the error 
recovery from manual dup. 

If the auto dup function is invoked, all character and field edit checks 
are released for the field; the verify checks are not released. 

AS Auto skip. When an auto skip field is entered, the system automatically 
fills it with blanks and skips to the next field if the auto dup/skip mode 
is active or if the absolutely automatic (AA) attribute is specified in the 
field definition. 

In verify mode, the positions of the field are verified for blanks. If a non
blank character is encountered, the cursor stops at the position, the 
remainder of the field is displayed, and a verify mismatch error is 
reported. If the operator presses the Reset key, then presses the Skip 
key, a blank is inserted into the I/O buffer at that position and the 
verification continues. 



Keyword Meaning 

BC Blank check. In enter, update, or field correct mode, the system 
checks each character as it is entered to ensure that it is not a blank 
character. When a field is exited, the system checks the entire field to 
ensure that if one character is entered into the field, no blanks are 
entered into the field. Therefore, should an operator move the cursor 
over a number of blank positions in the field before keying in the first 
character, the blank positions are detected before the field is exited. 

The Skip, Field Exit, or Field+ key is valid in the first position of the 
field; the entire field is filled with blanks. 

In verify mode, the BC is ignored except during a field correct. 

The code for the blank may be defined on the .KBCRT statement or 
defaulted to hex 40. 

BV Bypass in verify mode. In verify mode, the system bypasses this field. 
No verification is required, and the data in the record is left unchanged. 
BV overrides the auto dup (AD) and auto skip (AS) functions. 

In enter or update mode the field is processed normally. 

BY Bypass. In enter, update, verify, or rerun mode, the system passes over 
this field and allows no data to be entered into it. Data already in the 
field is left unchanged. (The auto dup/skip switch does not affect 
processing of bypass fields.) 

DR Data required. In enter, update, or field correct mode, the system 
ensures that at least one non blank character is present in the field. The 
checking is done as the advance to the next field is being processed. 

In verify mode, DR is ignored except during a field correct. 

FE Field exit required. In enter, update, verify, or field correct mode, a 
nondata key (for example Field Exit or Skip) must be pressed to leave 
the field. When a data character has been keyed into the last position 
of the field, the cursor remains beneath that character and blinks to 
signal the operator that a field exit key is needed. If the field is signed 
numeric (S), the cursor remains to the left of the sign position. A data 
key or Dup key entered at this time results in an error. The counter for 
positions remaining in the field, which is maintained on the status line, 
is at 01. If the operator wishes to make a correction in the field, 
prssing the ~ key will turn off the blinking cursor and allow corrections 
to be made. 

FE must not be specified if RB or RZ is specified. 

Assembler Language Control Statements 107 



108 

Keyword Meaning 

ME Mandatory enter. In enter, update, or field correct mode, at least one 
data character must be entered into the field before the field is exited. 
Blanks are acceptable in a mandatory enter (ME) field; use the blank 
check (Be) specification if you do not want blanks to be entered into 
the field. The check is done as the advance to the next field is being 
processed. 

The ME is ignored in verify mode, except during a field correct. 

A field exit or Skip key pressed in the first position of an ME field 
does not satisfy the mandatory enter requirement; it results in an error. 
If a field exit or Skip key is pressed in any position other than the first 
position and no valid character has yet been entered, it results in an error. 

MF Mandatory fill. In enter, update, or field correct mode, the system 
ensures that if one character is entered into the field, all positions in the 
field must be filled. Blanks are acceptable. 

MF cannot be specified with a right-adjust (RA) specification. 

In a left-to-right field, any data entry must begin in the leftmost posi
tion of the field. After one data character is entered, the operator can 
proceed through the field only by keying each position. Any attempt 
to move forward in the field with a key other than a data key or space 
key results in an error. Any attempt to key the first character into a 
position other than the leftmost position results in an error. The Ins 
(Insert) and Del (Delete) keys are invalid. 

In a right-to-right field (RL), any data entry must begin in the rightmost 
position of the field. After one data character is entered, the operator 
can proceed through the field only by keying each position. Any 
attempt to move backward in the field with a key other than a data 
key or space key results in an error. An attempt to key the first charac
ter into a position other than the rightmost position results in an error. 

If the field is not filled with blanks when the cursor moves into the field, 
no mandatory fill (MF) checking is performed. 

The Skip, Field+, or Field- key is valid in the first position of a manda
tory fill (MF) field. The entire field is filled with blanks, except in the 
following two conditions: 

1. When the Field- key is pressed in the first position of a field that 
is not specified as signed numeric (S), the rightmost position is set 
to minus zero. 

2. When the Field- key is pressed in the first position of a signed 
numeric field, the rightmost field position on the screen is set to 
zero, and the sign position is set to minus. In the record buffer, 
the rightmost position is set to minus zero. 



Keyword Meaning 

RB Right adjust, blank fill. A right adjust field must be two or more bytes 
in length. When the Field Exit, Field+, or Field- key is pressed in enter, 
update, or field correct mode, the system automatically right adjusts the 
data within the field, and the nondata positions on the left are filled 
with the alphabetic fill character, which is normally blank. When a 
right adjust is performed in a signed numeric field, the data is justified to 
the next rightmost position of the field on the screen before the appro
priate sign is inserted. If the field is processed as an auto field, or if any 
other key is used to exit the field, the field is processed but no right 
adjust is performed. 

RB is not allowed if subfields are defined with the PIC parameter. Do 
not specify FE; field exit required is implied for a right adjust field. 

RZ Right adjust, zero fill. RZ is as for RB, except the numeric fill character, 
which is normally a zero, is used. 

RL Right-to-Ieft. The first position of the field is the rightmost position; 
the last position of the field is the leftmost position. In enter, update, 
field correct, or verify mode, the cursor is initially positioned in the 
rightmost position of the field, which is the first manual position of the 
field. The system accepts or verifies data in the field moving from the 
rightmost position to the leftmost position. (For example, the keys A, 
B, C entered into an R L field would appear as: 

with the cursor positioned to the left of the C.) 

RL is not allowed if subfields are defined with the PIC parameter, or if 
the field is a signed numeric field. 

Assembler Language Control Statements 109 



Field Types 
A - Alpha shift 

o - Digits only 
H - Hex field 
F - Format 0 
N - Numeric shift 
S - Signed numeric 
V - Special characters only 
W - Special characters shift 

X - Alphabetic only 

Y - Numeric only 

Field Definitions 
AA - Absolutely automatic 

~Pl {Ml 

A 0 H F N S V W X Y AA AD AD AS BC BV BY DR FE ME MF RB RL RZ 
X X X X X X X X X 

X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X X X X X X X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X 

X I X X X X X X X X X 

X X X X X X X X X X X 
AD(P) - Auto dup, previous record 
AD(M) - Auto dup, main storage 

AS - Auto skip 

X 
X 
X I : X 

& X X 
X X 

X X 
BC - Blank check 
BV - Verify bypass 
BY - Bypass 
DR - Data required 
FE - Field exit required 
ME - Mandatory potpr 

MF - Mandatory fill 
RB - Right adjust, blank fill 
RL - Right·to·left 
RZ - Right adjust, zero fill 

Parameters 
MD - Main storage dup 
MS - Main storage store 
PIC - Picture subfields 

X X X 
X X 
X X X X X X X X X X X X X X X 
X X X 
X X X X X X 
)( X )( 

X X I~ X X X 
X X X X X 
X X X X X X 
X X X X X X 

X X & X 
X * 

X X X X X X X X X X X X X X X 

A 0 H F N S V W X Y AA AD AD AS BC BV BY DR FE ME MF RB RL RZ 
(P) (M) 

Key 
X = Mutually exclusive 

& = If attribute at top is specified, attribute at right must also be specified. 
If attribute at top is specified, one of the attribute~ at right must also be specified. 

Figure 3-8. Field Attribute Chart 

110 

CONTROL THE ASSEMBLY LISTING 

The assembly listing control statements specify headings and spacing for the 
assembly listing. These control statements may be placed before or after any other 
control statement or any instruction in your source program. They have no effect 
on the object code. Use as many of these control statements as you wish to control 
the spacing and headings of your assembly listing . 

. TITLE Control Statement 

.TITLE INIT= ; 

The .TITLE control statement specifies the heading to print on each page of the 
assembly listing. The specified title is printed immediately following the program 
name specified by the PNAM parameter of the .START control statement. If the 
.TITLE statement is omitted, only the program name is printed on the listing. You 
can specify more than one title. The first .TITLE statement usually precedes the 
.START statement. The assembler causes the heading specified by the first .TITLE 
statement to be printed on each page. When the assembler encounters another 
.TITLE control statement, it causes the printer to eject to the next page. Then the 
heading specified by the most recent .TITLE statement is printed on the subsequent 
pages. 

MD MS PIC 
X 
X 
X 

X X X 
X 
X 
X 
X 
X 
X 

X 

X X 

X 
X 
X 

MD MS PIC 

A 
D 
H 
F 

N 
S 
V 

W 
X 

Y 

AA 
AD(P) 
AD(M) 

AS 
BC 
BV 
BY 
DR 
FE 
ME 
MF 
RB 
RL 
RZ 

MD 
MS 
PIC 



Parameter 
Name Description 

INIT Initialization; a character string of 1 to 32 characters enclosed in 
single quotes. 

Example: 

.TITLE INIT='ASSEMBLER DRIVER'; 

.EJECT Control Statement 

.EJECT ; 

The .EJECT control statement stops the printing of the assembly listing on the 
current page and continues the printing on the next page. Use this statement when
ever you wish to skip to a new page. 

Example: 

.EJECT; 

.SPACE Control Statement 

.SPACE [NUMB=] ; 

When the assembler encounters a .SPACE control statement it inserts one or more 
blank lines in the assembly listing. This control statement should be included in the 
source program in each position where you want the assembly listing to leave blank 
lines. 

Parameter 
Name 

NUMB 

Example: 

Description 

Number; the number of blank lines to insert. If the parameter is 
omitted, it defaults to one line. 

.SPACE NUMB=4; 

MISCELLANEOUS CONTROL 

The miscellaneous control statements specify a data set to insert into your object 
program, specify the labels of the common function subroutines your program uses, 
and indicate the end of your source program. 

Assembler Language Control Statements 111 



112 

.INCLUDE Control Statement 

.INCLUDE NAME= ; 

The .INCLUDE control statement allows you to insert source code from another 
data set into your current work file. When the assembler encounters an .INCLUDE 
statement, it stops reading your source data set, goes to the specified data set and 
reads it from beginning to end, then returns to your source data set. The source 
data set that contains the code to insert is not changed. The source file that con
tains your source program is not changed. 

Parameter 
Name 

NAME 

Example: 

Description 

Data set name; the name of data set you wish to insert into the 
current data set. Use the complete data set name, enclosed in 
single quotes. 

.INCLUDE NAME='PROG7' 

.SE L FCH K Control Statement 

.SELFCHK MOD= [LABEL= FLDLEN= WGTS= CNTL= 
DISP= AL TREG= INTAB= OUTTAB= PROD=] 

The .SELFCHK control statement defines the self-check field, the self-check 
register, the modulus, and the algorithm for the self-check function. The assembler 
uses the parameters of the .SELFCHK control statement to set up the self-check 
control area. During program execution, the 5280 uses this control area to gener
ate the self-check number during a GSCK or IF ... CHK operation. 

If you use Standard Modulus 10 or 11, see Choosing Your Algorithm under Self
Check in Chapter 2 for a description of the algorithm. If you design your own 
algorithm, see Appendix C for a description of how the .SELFCHK parameters 
define your algorithm. 

Parameter 
Name 

MOD 

LABEL 

FLDLEN 

Description 

Modulus; specifies the modulus for the self-check algorithm. 
If you design your own algorithm, you may specify a number 
from 2 to 127 and use the other parameters to define the 
algorithm. Or you may specify S10 or S11 to use Standard 
Modulus 10 or 11 and omit the remaining parameters. 

Label; specifies the alphameric name you wish to assign to the 
self-check control area. 

Field length; the number of bytes in the self-check field. 



Parameter 
Name 

WGTS 

CNTL 

Description 

Weighting factors; specifies up to 32 bytes of hex digits that act 
as the weights for the algorithm. The value of each byte must 
be less than the value of the modulus. Enter hex 00 in the posi
tions of the self-check number, and in all other positions that are 
bypassed. When you use a product table, enter hex 01 in all 
positions except the positions of the self-check number and the 
positions to be bypassed. 

Begin the WGTS parameter in column 1 of a new line, and code 
the complete parameter on the single line. If you use a decimal 
register pair for the self-check register, all 72 positions of the line 
are used, as in the example following the parameter descriptions. 

Control; six positional fields specify how to find the products 
and how to determine the N R (rightmost number) and NL (left
most number). The positional fields are separated by commas. 
Any of the six fields may be omitted, but the comma for the 
omitted field must be retained. 

Field 1; if the field 1 entry is omitted and PROD is not specified 
for a product table, each position of the foundation is 
multiplied by the corresonding weight, and the whole 
number products are summed. The sum becomes the 
NR, and NL is O. 

If the field 1 entry is omitted and PROD is specified for 
a product table, the product table repeats every three 
characters. The N R is found by translating each position 
of the foundation through the upper half of the product 
table to find the products, and adding each digit of the 
products. The NL is found by translating each position 
of the foundation through the lower half of the product 
table to find the products, and adding each digit of the 
products. 

D Each position of the foundation is multiplied by the 
corresponding weight, and the unit digits of the products 
are summed. The modulus is usually 10 if this option is 
used. 

U Each position of the foundation is multiplied by the 
corresponding weight, and the unit digits of the products 
are summed. 

F Each position of the foundation is translated through the 
upper half of the product table to a product, and the 
digits of the products are summed to find the N R. To 
find the N L, each position of the foundation is translated 
through the lower half of the product table to a product, 
and each digit of the products are summed. The product 
table repeats every fourth digit. 

Assembler Language Control Statements 113 



114 

Parame1er 
Name 

CNTL 
(continued) 

n ... ,.rinrinn ---_.-.--_ .. 
Field 2; If the field 2 entry is omitted, the NL (leftmost self

check number) is forced to zero, and NR (rightmost 
self-check number) is divided by the modulus. 

o The NL is forced to zero, the digits of the N Rare 
summed, and the sum is divided by the modulus. 

K The NL and NR are added, and the digits of the sum 
are cross added. The hundreds digit of this sum is 
added to the units digit to equal the NR, and the tens 
digit is added to the carry from N R to equal the N L. 

E For special modulus 8 and 3; the units position of the 
self-check number is converted to modulus 8, and the 
tens position is converted to modulus 3. Field 1 must 
not be omitted, and C cannot be specified in field 3 
for a modulus less than 8. 

Field 3; If the field 3 entry is omitted, the NL and NR remain 
unchanged. 

C The NL and NR are complemented to the 
modulus. 

Field 4; If the Field 4 entry is omitted, it defaults to 1. 

One digit is generated or checked. If K is entered 
in Field 2 and an output translate table is used, 
the NL and NR are summed and the sum is trans
lated through an output translate table. 

2 Two digits are generated or checked. If E is 
entered in Field 2, the NL is multiplied by 8, the 
product is added to the N R, and the su m is trans
lated through an output translate table. 

Field 5; If the Field 5 entry is omitted, the zone portion of NL 
and NR is forced to X'F' to produce the OL (display
able leftmost self-check digit) and DR (displayable 
rightmost self-check digit). 

o The NR is used to produce a 2-digit decimal number. 
The units digit is converted to the 0 R, and the tens 
digit is converted to the OL. 

If the result of this operation exceeds 99, the units 
digit output is correct, and the second digit has a zone 
portion of hex F and a digit portion of hex A-C. 

Field 6; If the Field 6 entry is omitted, all eight bits of each 
byte in the input translate field are used for the input 
translate number. 



Parameter 
Name 

CNTL 
(continued) 

DISP 

ALTREG 

INTAB 

OUTTAB 

Description 

F Each byte in the input translate field is interpreted as 
two hex digits. The rightmost hex digit becomes the 
input translate character, and the leftmost hex digit 
becomes a shift left count. The positions being trans
lated and all higher positions in the register are shifted 
left, with zero fill, the number of positions in the shift 
count when the shifted register contains 16 bytes. All 
unused high-order bytes of the original register are 
bypassed. 

Displacement; specifies the displacement (0-32) of the rightmost 
self-check digit from the leftmost position of the register. It 
defaults to zero. 

If the displacement is zero, the result of a GSCK operation must 
also be zero to pass the IF ... CK operation. If the displacement 
is 1, and two self-check digits are specified, the leftmost digit 
of the self-check computation must be zero to pass the IF ... CK 
operation. (The leftmost result of the GSCK operation is not 
stored.) 

Alternate register; specify a decimal register or register pair that 
contains the weighting factors for the self-check algorithm. If 
AL TREG is specified, the weights specified by the WGTS param
eter are ignored. 

Input translate table label; specify the LABEL entry from the 
.DC control statement that defined the table. The input trans
late table can translate all foundation characters to specific hex 
characters. If this parameter is omitted, the lower 4 bits of the 
EBCDIC of each foundation position translates to the numerals 
0-9, with A-F translating to O. 

Output translate table label; specify the LABEL from the .DC 
control statement that defined the table. The value of the self
check digit determines the buffer position of the character to be 
inserted into the self-check register. If omitted, the output self
check register is not translated. 

If one digit is to be generated and Field 2 specifies K, the NL 
and NR are added and the sum is translated. 

If Field 2 specifies E, the NL is multiplied by 8 and added to NR, 
and the sum is translated. 

Assembler Language Control Statements 115 



116 

Parameter 

Name 

PROD 

Examples: 

Description 

Product table label; specify the LABEL from the .DC control 
statement that defined the product table. The product table trans
lates the rightmost four digits of each byte in the self-check 

register to the product at the corresponding position in the 
product table. If two self-check digits are to be generated, the 

second product is displaced 64 positions from the first product. 

If this parameter is omitted, the products are found by using the 
weights. 

If the Field 2 entry is omitted, or if the Field 1 entry is U, the 

NL is forced to zero. 

.SELFCHK MOD=Sll; no more parameters needed for Standard Modules 

.SFLFCHK MOD=7 LABEL=SKAREA INTAB=SKINTAB OUTTAB=SKOUTAB 

VVGTS= X'0605040503020 1 050601 0301 040102030405060401 01 06060403020 101020300' 

FLDLEN=16 CNTL=D" ,1,D; 

.XTRN Control Statement 

.XTRN LABEL= ; 

The .XTRN control statement specifies the labels of the routines or global tables in 

the common function area that your program uses. This control statement reserves all 
specified labels as common function labels. This is a required control statement if any 

calls to the common function area are initiated. See Common Function Routines in 
Chapter 6 for the labels to specify. 

Parameter 
Name 

LABEL 

Example: 

Description 

Label; label of one or more common function routines or data 

areas. You may specify up to 30 labels on each .XTRN statement. 

Labels are separated by a comma. This parameter is mandatory. 

The following statement specifies that the program is using the standard load 

processor, program check error handler, and general I/O error handler . 

. XTRN LABEL= CFLOAD01,CFPGMCHK,CFGIOERR; 



.END Control Statement 

.END ; 

The .END control statement is mandatory and must be the last control statement of 
every program to specify the end of the source code. There are no parameters for 
the .END statement. All system tables are built when the .END statement is 
processed. If a .SYSTAB control has not caused the system tables to be built in 
another location, the system tables are built at the address in the current location 
counter when the .END control statement is encountered. If a .SYSTAB statement 
has caused the system tables to be located at other addresses, they are built at those 
addresses when the .END statement is encountered. 

Example: 

.END; End of PAYROLS 

Assembler Language Control Statements 117 



118 



Chapter 4. 5280 Assembler Language Instructions 

Source instructions specify program operations. The 5280 assembler generates 4 
bytes of object code from each source instruction. 

Instructions may be interspersed with certain control statements, according to the 
conventions detailed in Chapter 3. 

INSTRUCTIONS FORMAT 

Each source instruction contains one or more fields; each field is identified by 
the order of its position within the instruction. Blanks, commas, and paren
theses separate the fields. Each instruction must be written on a single line, 
between column one and column 72. The format of a source instruction consists 
of an optional symbolic label, the instruction, and an optional comment. 

[Label:] Instruction [;Comment] 

Blanks 

Optional blanks may be placed before and after an equal sign, parenthesis, or 
arithmetic operator. Blanks are not allowed within a field or within a binary 
arithmetic/logical operator. One or more blanks must be used to separate fields if 
no other del i miter is used. 

Symbolic labels 

A symbolic label is a character string of one to eight characters. The first character 
must be an uppercase alphabetic character (A-Z, $, @, #). The other characters 
may include any uppercase or lowercase character available to your keyboard. 
The label must begin in column 1 and must be followed by a colon (:). 

5280 Assembler Language Instructions 119 



120 

The Instruction Fields 

Blanks, commas, and parentheses are used to separate fields, depending upon the 
particular type of instruction. If commas are used to separate optional fields, the 
commas must be retained when fields are omitted that are to the left of fields 
that are specified. The general format of an instruction is: 

r Data Movementi 

Result Operator Operands 

where: 

Result specifies the address that contains the resulting data at the completion 
of the operation. 

Operator may be an arithmetic symbol or a mnemonic to specify the operation. 
Mnemonics may be to the left or to the right of the result, depending upon the 
particular operation. 

Operand may include one or more storage, register, or constant specifications, 
depending upon the particular operation. 

Comments 

A comment may be included on any line following an instruction statement. The 
comment is preceded by a semicolon. An entire line may be specified as a 
comment line by placing an asterisk (*) in the first column of the line. 

Examples: 

LABEL: INSTRUCTION; this is a comment on an instruction line. 

*This whole line is a comment line. 

STORAGE SPECI FICATIONS 

An instruction may refer to a location in storage by specifying one of the following 
addressing methods: 

• Labeled addressing. 

• Base displacement addressing. 

The length of the data area may optionally be specified with either method. 
These addressing methods are described in detail in Chapter 1 under Storage. 

Whenever an instruction description includes the word storage either addressing 
method may be used. If the instruction allows only one of the methods, the 
format of that addressing method is indicated in the instruction description. 



Labeled Addressing 

A storage area may be declared and labeled by a .DC control statement. An 
instruction may refer to that labeled storage area by specifying the following 
format: 

label [(length)] 

The label is the name assigned to the area by the .DC control statement. If the 
optional length is omitted, it defaults to the length declared in the .DC statement. 
If you want to access a number of bytes that is different from the declared length, 
include the number in parentheses to the right of the label. 

Base Displacement Addressing 

An instruction may refer to a location in storage by using a base displacement 
specification. The format of a base displacement specification is as follows: 

[displacement] ([length] ,BRn) 

The binary register holds the base address. The optional displacement, which may 
be from 0 to 255 and defaults to 0, is added to the base address. The result is 
the address of the first byte of the storage area. The optional length of the area 
defaults to one byte. Except for the I FB instruction and store-a-constant 
instruction (under Store at Base Displacement Address in this chapter), the comma 
is retained if no length is specified. 

CONSTANT SPECIFICATIONS 

Certain instruction operands may be specified as a constant. Constants may be 
specified in the forms described under Blanks, Constants, and Coding Symbols in 
Chapter 1. A l-byte constant may be specified in any of the following forms: 

• A decimal number, 0-255 

• Two hexadecimal digits, X'II', where I = 0-9, A-F. 

• Eight binary digits, B'II II II 11', where I = 0 or 1. 

• One EBCDIC character, C'I', where I = any printable graphic. 

The following example demonstrates the way the four forms of constants 
represent the same value: 

Form Representation 

Decimal 193 
Hexadeci mal X'Cl' 
Binary B'll 000001' 
EBCDIC C'A' or 'A' 

Whenever constant is specified in an instruction description, any form of constant 
may be specified in the source instruction. 

5280 Assembler Language Instructions 121 



122 

REGISTER AND INDICATOR SPECIFICATIONS 

An instruction may refer to an indicator or a reserved register by specifying the 
indicator or register number (In, BRn, or Rn). Registers may be reserved with the 
RGL T parameter of the .START statement. 

Labels can be assigned to indicators and registers. The control statements that 
assign these labels are discussed in Chapter 1 under Indicators and Registers. If 
an indicator or register has been assigned a label, an instruction may refer to it by 
specifying the label. 

In the instruction descriptions in this chapter, indicators and registers are 
indicated by number specifications. Any time such a number specification is 
indicated either the number or label may be used. 

In certain instructions an optional length may be indicated in a register specifica
tion. By indicating the length, in parentheses, to the right of the register 
specification, you can access a binary half register (BRn(l)), a binary double 
register (BRn(4)), or a decimal double register (Rn(32}). 

OPERATION TYPES 

Source instructions are listed in this chapter by the type of operation the 
instruction performs. The instructions are divided into the following operation 
types; 

A Arithmetic/Logical K Keyboard/Display 
B Branch and Skip M Data Movement 
C Communications P Partition Load and Exit 
D Diskette T Table 
E Printer X Miscellaneous 

In Figure 4-1, all mnemonics are listed in alphabetic order. The operation type and 
a brief description of the operation performed are included for each instruction 
mnemonic. 

Figure 4-2 shows the operation types and lists the mnemonics for each type. 



Mnemonic Type Operation 

+ A1 Decimal add 
A2 Deci mal subtract 

* A2 Decimal multiply 

/ A2 Decimal divide 
+= A1 Binary add 

A1 Binary subtract 
* A1 Binary multiply 

/= A1 Binary divide 
&= A1 Binary AND 
V= A1 Binary OR 
X= A1 Binary exclusive-OR 

<=> M1 Exchange register data 

ALLOC 01 Allocate diskette 
BINDEC M2 Convert binary storage to EBCDIC 
BINHEX M2 Convert binary to EBCDIC storage 
BRa= M1 Load binary register 
BRn= M2 Convert decimal register to binary 
(,BRn)= M1 Store at base displacement address 
BUZZ K2 Sound buzzer 
CALL B2 Call subroutine 
CALLTB B2 Call subroutine through table 
CLC X Compare logical characters 
CLICK K2 Click keyboard 
CLOZ 01, E Close data set 
CNENTR K2 Cancel current ENTR 
CRTMM M3 Move bytes to screen 
DECBIN M2 Convert EBCDIC to binary storage 
DECR B6 Decrement, branch if 0 
DISPEX K2 Display extra line 
DISPST K2 Display status line 
DUP X Duplicate a byte 
ENABLE K1 Enable external status 
ENTR K1 Enter data via keyboard 
EXIT P Exit partition 
GOTAB B1 Branch through table 

GOTO B1 Unconditional branch 

GSCK X Generate self-check digit 

HEXBIN M2 Convert EBCDIC storage to binary 

IF BRn B4 Branch on relational compare, binary 

IF BRn 0 B3 Branch if 0, binary 

IF Rn B4 Branch on relational compare, decimal 

IF Rn- 83 Branch if negative 

IF Rn 0 B3 Branch if 0, decimal 

IF Rn AN B3 Branch if positive number 

IF Rn CK B3 Branch if self check 

IF Rn SN B3 Branch if signed numeric 

IF fmt B3 Branch on format test 

IFB 85 Skip on bit test 

IFC 85 Skip on character test 
IFD Rn B4 Branch on deci mal compare 

IFDSI B3 Branch on data set indicator test 

Figure 4-1 (Part 1 of 3). Instruction Mnemonics 

5280 Assembler Language Instructions 123 



Mnemonic Type Operation 

IFHI B5 Skip on mask 
IFLO B5 Skip on mask 
IFH BRn B4 Branch on immediate data compare 
IFI B3 Branch on indicator test 
IFIR B3 Branch on indicator test, and reset 
INIT D1 Initialize diskette labels 
INSBLK D2 Insert block into data set 
INXEQ X Indirect statement execution 
KACCPT K2 Accept unformatted keystrokes 
KATTCH K2 Attach keyboard to partition 
KDETCH K2 Detach keyboard from partition 
KERRCL K2 Reset error mode 
KERRST K2 Request error mode 
KEYOP K2 Keyboard operation 
label= M1 Store at labeled address 
LOAD P Load partition 
MMCRT M3 Move from screen to storage 
MOFF M3 Move to decimal register offset 
MVC M3 Move storage to storage 
MVCR M3 Move storage right to left 
MVCV M3 Move storage reverse fill 
MVER M3 Move to corresponding decimal byte 
NOP B1 Null operation 
OPEN Dl, E Open a data set 
POSN Dl Position diskette pointer 
Ra= Ml Load decimal register 
Rn= M2 Convert/move to decimal register 
READ D2 Read a data set record 
READMG K2 Read magnetic stripe buffer 
REBF M3 Move data to registers 
REPFLD K2 Redisplay field on screen 
RESCAL Kl Resume entry, call subroutine 
RESMXT Kl Resume entry, enable external status 
RESUME K1 Resume entry 
RETEXT Kl Return and enable external status 
RETURN B2 Return from subroutine 
RL Al Binary rotate left 
RR Al Binary rotate right 
RSTMG K2 Reset magnetic stripe reader 
RTIMER K2 Read interval timer 
RXORW B5 Exclusive-OR, write 
SEARCH D3 Search a data set 
SETOFF X Set off bit 
SETON X Set on bit 
SKIP WHILE B6 Loop control 
SL A Shift left, binary or decimal 
SLS A2 Shift left signed, decimal 
SR A Shift right, binary or decimal 
SRAT X Search resource allocation table 
SRR A2 Shift right and round, decimal 
SRS A2 Shift right signed, decimal 

Figure 4=1 {Part 2 of 3l. !nst!'uetion Mnemonics 

124 



Mnemonic Type Operation 

SOFF X Set indicator off 
SON X Set indicator on 
SYSLCK X Lock system 
SYSUNL X Unlock system 
TBBS T3 Search table, binary 
TBDL T2 Delete table entry 
TBFH T3 Search table for equal or higher 
TBFL T3 Search table for lower entry 
TBFX T3 Search table for equal entry 
TBIN T2 Insert table entry 
TBRD T2 Read table entry 
TBRL T2 Read last table entry 
TBWE T2 Extend table and write entry 
TBWT T2 Write table entry 
TCLOZ C Close communications data set 
TCTL C Communications device control 
TINIT C Initiate communications session 
TLCK T1 Lock shared table 
TOPEN C Open communications data set 
TRANS X Translate 
TREAD C Receive communications record 
TRT X Translate and test 
TTERM C Terminate communications 
TUNLCK T1 Unlock shared table 
TWAIT C Wait for communications I/O 
TWRT C Transmit communications record 
WAIT 01, E Wait for I/O completion 
WFMCRT M3 Move data to screen 
WRBF M3 Store register data 
WRT D2,E Write a data set record 
WRTI 02 Insert data set record 
WRTS 02 Delete data set record 
ZONE A2 Modify decimal register zone 

Figure 4-1 (Part 3 of 3). Instruction Mnemonics 

5280 Assembler Language Instructions 125 



A1 Arithmetic/Logical Binary 

+= &= RL 
V= RR 

* X= SL 
/= SR 

A2 Arithmetic/Logical Decimal 

+ SL SR 
SLS SRS 

* SRR 

/ ZONE 

B1 Branch Unconditional 

NOP GOTO GOTAB 

B2 Subroutine 

CALL RETURN CALLTB 

B3 Branch Conditional, Full 

IF BRn 0 IF Rn AN IF fmt 
IF Rn 0 IF Rn CK IFDSI 
IF Rn- IF Rn SN 1Ft 

IFIR 

B4 Branch Conditional, Short 

IF Rn IF BRn 
IFD Rn IFH BRn 

B5 Skip 

IFC IFHI RXORW 
IFB IFLO 

B6 Loop Control 

SKIP WHILE DECR 

C Communications 

TINIT TREAD TWAIT 
TOPEN TWRT TCLOZ 
TCTL TTERM 

01 Diskette Control 

ALLOC CLOZ INIT 
OPEN WAIT POSN 

Figure 4·2 (Part 1 of 3). Instruction Types 

126 



02 Diskette I/O 

READ WRTS WRTI 
WRT INSBlK 

03 Diskette Search 

SEARCH 

E Printer Instructions 

OPEN WAIT 
WRT ClOZ 

K1 Keyboard/Display Key Entry Commands 

ENTR RESUME RESCAl 
ENABLE RETEXT RESMXT 

K2 Keyboard/Display Keyboard Operations 

BUZZ KACCPT KEYOP 
CLICK KATTCH READMG 
CNENTR KDETCH RSTMG 
DISPEX KERRCl REPFlD 
DISPST KERRST RTIMER 

M1 load, Store, and Exchange 

BRa= label= BRa<=> 
Ra= (,BRn)= Ra<=> 

M2 Convert and Move 

Rn= BINHEX BINDEC 
BRn= HEXBIN DECBIN 

M3 Move Bytes 

MOFF MVCR REBF 
MVER MVCV WRBF 
MVC CRTMM WFMCRT 

MMCRT 

P Partition Load and Exit 

lOAD EXIT 

T1 Table Control for Shared Tables 

TlCK TUNlCK 

Figure 4-2 (Part 2 of 3). Instruction Types 

5280 Assembler Language Instructions 127 



128 

T2 Table Read and Write 

TBRD 
TBRL 

T3 Table Search 

TBBS 

X Miscellaneous 

CLC 
DUP 
GSCK 
INXEQ 

TBDL 
TBIN 

TBFH 
TBFL 

SETON 
SETOFF 
SON 
SOFF 
SRAT 

Figure 4-2 (Part 3 of 3). Instruction Types 

ASSEMBLY TIME ARITHMETIC 

TBWE 
TBWT 

TBFX 

SYSLCK 
SYSUNL 
TRANS 
TRT 

For instruction operands that require a constant or a label, you can use an 
arithmetic expression, the ADDR function, or the LENG function in your source 
program. You can also change the declared length of an area, or change the data 
type of an area. The assembler makes the specified calculations or changes and 
places the result in the object code instruction. 

Arithmetic Expressions 

An arithmetic expression may be specified for an instruction operand that 
allows a constant or a label of a data area. An expression consisting of 
label ± constant may replace any storage label. An expression consisting of 
label-label may replace any constant. This applies only to the executable 
instruction, and not to the control statements. The only control statement that 
may specify an expression is the .EQUATE statement. 

An arithmetic expression specified in a source instruction is composed of two 
or more terms separated by arithmetic operators. A term may be a constant or a 
data label. Do not use labels that are defined for decimal registers. The label does 
not have to be defined before you use it in the expression. 

Arithmetic operators for add (+) and subtract (-) may be used. Multiplication 
and division are not allowed. The arithmetic operations are performed from 
left to right, upon the constant and the address generated by the label. Do not 
add a label to a label. The result must be dimensionally correct for both a 
valid label and a constant. 



If you use an expression for an operand that allows a length specification, do 
not put a constant between the label and the length. 

Right: R15=LABL(10)+6; 
Wrong: R15=LABL+6 (10); 

The number of terms must not total over eight for the entire instruction. This 
total includes any terms to the left of the equal sign or within parentheses. 

5 Terms: 

8 Terms: 

1 2 -1 ~~ 
BR26(4)+=LABL +2-A 

1 2 3 .1 -2.§. 2..§ 
MVC(BR 1 (4),BR2,ADDR(LBL l-LBL2)+1 0) 

An example of using assembly time arithmetic is to find the contents of a 
particular byte within a buffer. The following code declares a 50-byte buffer 
labeled I NPUT and uses assembly time arithmetic to find the contents of the 
24th byte . 

. DC LABEL=SCAN TVPE=DEC; set up a decimal register . 

. DC LABEL=INPUT LEN=50; set up the 50 byte storage buffer. 
SCAN = INPUT(1)+23; copy contents of 24th byte into SCAN. 

The ADDR Function 

The ADDR function can be used as an instruction operand in place of any 
constant to specify the address of a register, storage area, instruction, or control 
block. This is a convenient way to load a base address register. The format of 
the ADDR function is: 

{ 
BRn} 

ADDR( Rn [±offsetl ) 
label 

If an offset is included for an ADDR specification in an expression, the ADDR 
specification must be the first term in the expression. If the label of a data 
table is used within the ADDR function, the value returned is the index into 
the system table where the address of the data table is stored. The address or 
index returned by the ADD R function is not checked for validity. 

Examples: The following instruction places the declared address of BUFR 
into BR65. 

B R65=ADD R (BU F R); 

The following instruction places the address of the fourth byte of 
BUFT into BR65. 

BR65=ADDR(BUFR+4); 

5280 Assembler Language Instructions 129 



130 

The LENG Function 

The LENG function can be used as an instruction operand to specify the 
declared length of an area. The format of the LENG function is: 

LENG(label) 

An offset cannot be included within the parentheses; however, an expression 
can follow the right parentheses to change the length: 

LENG(label)+4 

Example: The following code moves 'GHIJKL' into the area labeled LABL 1 . 

. DC LABEL=LABL 1 INTI='ABCDEF' 

.DC LABEL-LABL2 INTI='GHIJKLMNO' 

BR30 = ADDR(LABL 1) 
BR31 = ADDR(LABL2) 
MVC(BR30, BR31, LENG(LABL 1)) 

Changing a Declared Length 

In an instruction, you can follow any declared label with a constant enclosed in 
parentheses. The value of the constant supercedes the declared length of the area 
for that instruction. The declared length is not changed in storage. 

Example: The following code loads 'AB' into BR55 . 

. DC LABEL= LABL1 INIT='ABCDEF' 

BR55 = LABL 1(2) 

Changing a Data Type 

Any time you use assembly time arithmetic, you can use any of the types of 
data described in Chapter 2 under Data Types. However, the result of assembly 
time arithmetic is always a constant or a label of a data storage area. This is 
important to remember when using a binary register with assembly time 
arithmetic. Except for a binary register, when you specify a length of 1 in an 
instruction: 

label(1) 



the first byte of the labeled area is accessed. For a binary register, when you 
specify a length of 1 in an instruction, the second (rightmost) byte of the binary 
register is accessed. However, if you use the label of a binary register with a 
length of 1 with an expression: 

label(1 )+0 

the first (leftmost) byte of the binary register is accessed because the result of an 
expression is a data storage area rather than a binary register. 

Examples: The following code shows what is loaded into the binary register 
labeled A for the different specifications . 

. DC LABEL=A TVPE=BIN INIT='FFFF' 

.DC LABEL=B TVPE=BIN INIT='1234' 

.DC LABEL=C LEVL=2 

A=C-2 A contains 'OOFF' 
A(1)+0 = B A contains '34FF' 
A=B A contains '1234' 
A= B(2) A contains '1234' 
A = B(1) A contains '0034' 
A = B(1)+0 A contains '0012' 
A=C A contains '0012' 
A= C(2) A contains '1234' 
A= C+1 A contains '0034' 

ARITHMETIC/LOGICAL INSTRUCTIONS 

All arithmetic/logical operations are performed upon binary or decimal registers. 
The 2·byte binary registers contain unsigned binary notation. The 16-byte 
decimal registers contain character or signed numeric data represented in 
EBCDIC notation. Decimal register data is negative if the zone portion of the 
rightmost byte contains a hex D. 

Binary Register Arithmetic/Logical 

Full 2-byte binary registers (BRO-BR127) may be specified in any binary 
arithmetic/logical operation. One byte of a binary register (BRn(1)) may be used 
as a storage reference for operands that allow a storage reference. When one 
byte of a binary register is specified, only the rightmost byte is used, and the 
leftmost byte is padded with zeros. A double register (BRn(4) may be specified 
as the result register in double precision add and subtract operations. When a 
double register is specified, the register referred to, and the next sequential 
register, are used in the operation. See Binary Registers under Indicators and 
Registers in Chapter 1 for more information about binary registers. 

When the length of the operand is less than the length of the result register or 
result register pair, the operand is expanded to the left with zeros to the length 
of the result. 

5280 Assembler Language Instructions 131 



132 

The format for binary arithmetic/logical instructions is as follows. There must 
be at least one blank between the operator and the operand. 

Result 

BRn ((4)] 

BRn 

where: 

Operator 

* 
/= 
+= 

&= 
V= 
X= 

Operand 

BRn [(1)] 
constant 

storage 

Result must specify a binary register (BRn). Except for AND, OR, and 
Exclusive-OR, it may be a binary double register (BRn (4]). When the 
instruction is executed, the contents of the result register are operated upon, 
and the resulting data replaces the original contents of the result register. The 
register specified for result can be specified for the operand. 

Operand may specify a binary register, a binary half register, a constant, or a 
storage location: 

+= (Add) 

Result Operator Operand 

BRa[(4)] 
{ 

BRb((1)] } 
+= constant 

storage 

The data specified by the operand is logically added to the data in the result 
register, and reSUlting data replaces the original contents of the result register. 

When a binary double register is used as the result register, the operand is added 
to the contents of the specified double register, and the result is right-adjusted 
into the double register. 

Example: 

Before: B R 27 00000000 00000011 B R 28 11111111 11111110 

BR27(4) += 2 

After: B R 27 00000000 00000100 B R 28 00000000 00000000 



-= (Subtract) 

Result Operator Operand 

BRa[(4)] 
{ 

BRb[(1)] } 
constant 
storage 

The data specified by the operand is logically subtracted from the contents of 
the result register, and the resulting data replaces the original contents of the 
result register. 

When a binary double register is used for the result register, the operand is 
subtracted from the contents of the specified register and the next sequential 
register. 

Example: 

Before: B R X 00000000 00001000 B RY 00000000 00000100 

BRX - = BRY 

After: BR X 00000000 00000100 BRY 00000000 00000100 

*= (Multiply) 

Result Operator Operand 

BRa[(4)] *= 
{ 

BRb} 
label 

The contents of the 2-byte labeled data area specified by the operand are 
logically multiplied with the contents of the result register, and the resulting data 
replaces the original contents of the result register. 

When a binary double register is used as the result register, the operand is 
multiplied by the contents of the leftmost register. The resulting data is right
adjusted into the double register. 

/= (Divide) 

Result Operator Operand 

BRa [(4)] /= 
{ 

BRb } 
label 

The data specified by the operand is logically divided into the contents of the 
result register, and the resulting data replaces the original contents of the 
result register. 

5280 Assembler Language Instructions 133 



134 

When a binary doubie register is used for the resuit register, the operand is 
logically divided into the contents of the leftmost register, and the resulting 
data replaces the contents of the leftmost register. The remainder replaces the 
original contents of the rightmost register. 

& = (And) 

Result Operator Operand 

{ BRb[(1)] } BRa &= constant 
storage 

The data specified by the operand is logically ANDed with the contents of the 
result register, and the resulting data replaces the original contents of the result 
register. 

Example: 

Before: BRX 11111111 00000000 B R Y 11110000 11110000 

BRX &= BRY 

After: BRX 11110000 00000000 B R Y 11110000 11110000 

V= (Or) 

Result Operator Operand 

BRa 
{ 

BRb[(1)] } 
V= constant 

storage 

The data specified by the operand is logically ORed with the contents of the 
result register, and the resulting data replaces the original contents of the result 
register. 

Example: 

Before: BRX 11111111 00000000 B R Y 11110000 11110000 

BRX V= BRY 

After: BRX 1111111111110000 BRY 11110000 11110000 



x = (Exclusive-OR) 

Result Operator Operand 

BRa 
{ 

BRb[(l)]} 
X= constant 

storage 

The data specified by the operand is exclusively-ORed with the contents of the 
result register, and the resulting data replaces the original contents of the result 
register. 

Example: 

Before: BRX 11111111 00000000 BRY 11110000 11110000 

BRX X= BRY 

After: BRX 00001111 11110000 BRY 11110000 11110000 

Binary Register Shift/Rotate 

The contents of a binary register, a labeled storage area, or a binary double 
register (BRn (4)), may be shifted or rotated. Shift operations move the contents 
of the register out of one end of the register and set the bits from which data 
was shifted to zero. Rotate operations move the contents of the register out of 
one end and into the other end of the register. 

The first operand of a shift instruction cannot be an arithmetic expression; 
however, it may be followed by a length in parentheses: 

Right: label (1) SR 3 
Wrong: label+1 SR 3 

The format of all shift and rotate operations is as follows. 

Result Operator Operand 

label (len) 

{~; } BRn 1-16 
BRn(l ) 1-8 
BRn(4) 1-32 

where: 

Result is the register (BRn), labeled storage area, or double register (BRn(4)) 
that contains data to be shifted. Upon completion of the operation, the 
resulting shifted data is in the result. The length, whether explicit or implied, 
must be 1, 2, or 4. 

Operand specifies the number of bits to shift or rotate. The number must be 
greater than the number of bits contained in the result register, labeled area, 
or double register. 

5280 Assembler Language Instructions 135 



136 

RL (Rotate left) 

Result 
label(len) 
BRa 
BRa(l) 
BRa(4) 

Operator 

RL 
RL 
RL 

Operand 

1-16 
1-8 
1-32 

The data in the result register is rotated left the number of bits indicated by the 
operand. Data rotated off the high-order end is moved into the low-order end of the 
register. 

Example: 

1: Bafo .. : ~ After: ;J.., ::L 
BRX 111110000 000011111 BRX RL 4 B R X 100000000 11111111 I 

R R (Rotate right) 

Result Operator Operand 
label {len) 
BRa RR 1-16 
BRa(l ) RR 1-8 
BRa(4) RR 1-32 

The data in the result register is rotated right the number of bits indicated by the 
operand. Data rotated off the low-order end of the register is moved into the 
high-order end. 

Example: 

Before: ~ 
B R X 110000000 10000000 I 

, j 

After: A 
BRX(l) RR 6 

t 
B R X /10000000 00000010 I 

, .I 

SL (Shift left) 

Result Operator Operand 

label {len) 
BRa SL 1-16 
BRa(l) SL 1-8 
BRa(4) SL 1-32 



The data in the result is shifted left the number of bits indicated by the operand. 
The bits from which data is shifted are set to zero. 

Example: 

Before:, , r== 1, After: 

BRX 111111111 000011111 BRX SL 8 100001111 000000001 

r I 

These bits are shifted out 
of the register and are lost. 

SR (Shift right) 

Result Operator 

label(len) 
BRa SR 
BRa( 1) SR 
BRa(4) SR 

Operand 

1·16 
1·8 
1·32 

These bits are 
set to zero. 

The data in the result is shifted right the number of bits indicated by the operand. 
The bits from which data was shifted are set to zero. 

Example: 

Before: ~ 
BR4SIr-l-ll-l-l-ll-l-0-0-00-0-0-00~1 BR46 111111111 111111111 

BR4S(4) SR 4 

BR4SI0000llll 111100001 
~ 

These bits are set to zero. 

Decimal Register Arithmetic 

After: 

BR46 100001111 111111111 

I 
These bits are shifted out of 
the register and are lost. 

A decimal register (RO·R239) may be specified for any arithmetic operation. A 
decimal double register (Rn (32)) may be specified for the double precision 
mUltiply and divide operations. When a decimal double register is specified, the 
contents of the specified register and the next sequential decimal register are 
used in the operation. See Decimal Registers under Indicators and Registers in 
Chapter 1 for more information about decimal registers. 

Decimal data can be positive or negative. The data is negative if the rightmost 
byte of the register or register pair has a hex D in the zone portion of the rightmost 
byte. Zones of the other register bytes are not checked to determine if the digit 
portions contain valid numeric data. If a register contains nonnumeric data, the 
operation proceeds with unpredictable results. 

5280 Assembler Language Instructions 137 



138 

When a decimal register is altered, any leading blanks (hex 40) are changed to 
zeros (FO). When a zero results from a calculation, the zero is stored as positive 
(hex FO) in a decimal register. 

The format of decimal arithmetic instructions is as follows. All data that is 
allowed for the operands is indicated. 

Result Operand 1 Operator Operand2 

Ra = {:~} 
0-9 

+ 

Ra [(32)] * 

Ra Rb [(32)] / 

where: 

Result indicates a decimal register or, for double precision multiply, a decimal 
double register, into which the result of the operation is placed. If the result is 
positive, all zones contain a hex F; if the result is negative, the zone of the 
rightmost byte contains a hex 0, and all other zones contain hex F. 

OperandI specifies the data that is operated upon. A decimal register that 
holds operandl may be specified. Except for divide, it may be the same 
decimal register that is specified as the result register. Except for divide, the 
contents of the register are unchanged by the operation unless it is the same 
register as the result register. Except for divide, operand 1 may be a single
digit constant (0-9). If operandl is a constant, operand2 must be a register. 

For divide operations, operandl must specify a decimal register or decimal 
double register that holds the operand 1 data; it must not be the same 
register as the one specified for the result register. Upon completion of the 
operation, the remainder of the divide operation is placed into the register or 
double register specified for operandl. The original contents of the register 
are lost. 

Operand2 specifies data to operate upon the operand 1 data. A decimal register 
that holds operand2 may be specified. If operand 1 is not a constant, 
operand2 may be a single-digit constant. For divide, the constant may be 
one to nine; for all other operations the constant may be zero to nine. For 
add and subtract, operand2 may specify the same decimal register that is also 
specified as operandl. The operand2 data remains unchanged by the operation 
unless it is the decimal register that is also specified as the result register. 



+ (Add) 

Result Operand 1 Operator Operand2 

Ra = + 

Operand2 is algebraically added to operand1, and the sum is placed in the decimal 
register specified as result. 

If a carry results out of the high-order position of the result register, the decimal 
arithmetic overflow indicator (1124) is set on. 

- (Subtract) 

Result Operand 1 Operator Operand2 

Ra Ra 

Ra = 

Operand2 is algebraically subtracted from operand1 and the remainder is placed 
into the decimal register specified as result. 

/ (Divide) 

Result Operand 1 Operator Operand2 

Ra = Rb [(32)] / 

The contents of the register or register pair specified by operand1 are divided by 
operand2. The quotient is placed into the decimal register specified as result, and 
the remainder is placed into the decimal register or register pair specified for 
operand1. The result register must not be the same register as specified for 
operand1 or operand2. 

Both operand 1 and operand2 are signed quantities; if they have the same sign 
the result is positive, and if they have opposite signs the result is negative. The 
remainder retains the sign of the original contents of the operandl register. 

5280 Assembler Language Instructions 139 



140 

Zone 
Digit 

00 01 

I I I 
AVERAGE = 0 

Zone 
Digit I I I 
TOTAL=32 

Zone 
Digit 

LAST =-5 

Division by zero is invalid and causes the decimal arithmetic overflow (1124) 
and the divide error (! 120) indicators to be set on. If an eirOi OCCUiS dUiing a 

double precision divide, the result register is unchanged. 

Before: 

12 13 14 15 AVERAGE=TOTAL/LAST 

The contents of TOTAL are divided 
by the contents of LAST. Because i 

Zone 
Digit 

After: 

00 01 

I I I 
the two signs are opposite, the result I AVERAGE =-6 
register will contain a minus sign 

12 13 14 15 

(D-zone in the units position). The zDo"9n,.e
t 
I I I· .. I OF I OF I OF 12F I 

register TOTAL will retain the . .. ..... 
original sign and will hold the 
remainder to the division. The 
register LAST remains unchanged. 

TOTAL = 2 

Zone 
Digit 

LAST =-5 

* (Multiply) 

Result Operand 1 

Rb 
Ra [(32)] = 0-9 

Operator 

* 
* 

Operand2 

0-9 
Rb 

Operand1 is algebraically multiplied by operand2 and the product is stored in the 
decimal register(s) specified as result. Neither operand 1 nor operand2 may be 
specified as the result register. 

If a carry results out of the high order position of result, both the decimal arith
metic overflow (1124) and the multiply overflow (1123) indicators are set on. 
The low-order product is preserved. 

Examples: 

WAGES = HRS * RATE 

The contents of the decimal registers addressed by the labels HRS and RATE are 
multiplied and the product is placed into the decimal register WAGES. The 
contents of HRS and RATE remain unchanged by the operation. 

TOTAL(32) = QUANTY * ITEM$ 

The contents of the decimal registers addressed by the labels QUANTY and 
ITEM$ are multiplied and the product is placed in the decimal register pair 
addressed by the label TOTAL. The contents of QUANTY and ITEM$ remain 
unchanged by the operation. 



Decimal Register Shift 

The contents of a decimal register can be shifted to the left or right. Any data 
shifted out of one end of a decimal register is lost. Bytes from which data is 
shifted are filled with zeros or blanks, depending upon the particular shift 
instruction. 

The format of decimal register shift instructions is as follows. 

Result Operand 1 

Ra = {:~ } 
where: 

Operator 

SL 
SLS 
SR 
SRS 
SRR 

Operand 2 

Result indicates a decimal register into which the shifted results of the 
operation is placed. If the zone of the rightmost byte contains a hex D, the 
contents of the register are negative. 

Operand1 indicates a decimal register which holds the data to be shifted. The 
contents of this register are not changed unless it is the same register as the 
one specified for result. 

Operand2 indicates the number of bytes to shift the operand1 data. 
Operand2 may be a constant (1-15) or a decimal register that contains the 
shift count. 

If operand2 specifies a register, a single-digit shift count (decimal 1-9) is 
determined from the digit portion of the low-order position of the register. A 
shift count of hex 1-F may be accomplished by setting the digit portion of 
the low-order position of the decimal register to a binary number. This is 
done by overlaying the rightmost 2 bytes of the decimal register with a binary 
register, then loading the binary register with the hex shift count. This can be 
done only in decimal registers that are located within the area of overlapped 
storage that can also contain binary registers (RO-R14). See the .DC control 
statement description in Chapter 3 for information about overlaying registers. 

5280 Assembler Language Instructions 141 



142 

SL Shift Left, Blank Fill 

Result Operand 1 Operator Operand2 

Ra = SL 

The bytes of the operand 1 register are shifted left the number of bytes 
indicated by operand2, and the shifted result is placed into the result register. 

The low-order positions of the shift result contain the blank character (hex 40) 
for the number of positions shifted. If a negative number is shifted left, the 
D-zone is shifted left out of the units position. Therefore, the register no longer 
contains a negative number. 

SLS Shift Left, Zero Fill and Retain Sign 

Result Operand 1 Operator Operand2 

Ra = {:: } SLS 

The bytes of the operand 1 register are shifted left the number of bytes 
indicated by operand2, and the shifted result is placed into the result register. 
The low-order bytes of the shifted result contain zeros (hex FO) for the number 
of positions shifted. If a negative number is shifted left, the units position of 
the result register retains the D-zone. 

Example: 

Before: RX= RXSLS2 After: 

RX FFFFFFFFFFFFFFFD 
0000000123456789 

~'----------------

RX FFFFFFFFFFFFFFFD 
0000012345678900 

RX contains-0000000123456789 RX contains -0000012345678900 

SR (Shift 1 to Blank Decimal Register) 

Result Operand 1 Operator Operand2 

Rn = SR 

The bytes are shifted as though operand1 were a decimal register with decimal 1 
in the rightmost byte, and bytes 0 to 14 were blanks. The rightmost byte is 
shifted out of the register so the register contains only blanks. These blanks 
replace the contents of the result register. 

This is the quickest way to blank a decimal register 



SR (Shift Right, Pad Blank) 

Result Operand 1 Operator Operand2 

Ra = SR , 

The bytes of the operand 1 register are shifted right the number of bytes 
indicated by operand2, and the shifted result is placed into the result register. 
The high-order bytes of the shifted result contain blanks (hex 40) for the 
number of characters shifted. If a negative number is shifted right, the D-zone 
is shifted out of the register and the register contents are no longer negative. 

Example: 

Before: 

RX FFFFFFFFFFFFFFFD 
0123456789000000 

RX = RX SR 1 

! After: 

RX 4FFFFFFFFFFFFFFF 
0012345678900000 

RX contains -0123456789000000 RX contains +0012345678900000 

SRS (Shift Right and Retain Sign) 

Result Operand 1 Operator Operand2 

Ra SRS 

The bytes of the operand1 register are shifted right the number of bytes 
indicated by operand2, and the shifted result is placed into the result register. 
The high-order bytes of the result register contain zero (hex FO) for the number 
of bytes shifted. Any blanks present are shifted without change. If the unshifted 
contents of the operand1 register contained a negative value, the result register 
contains a hex 0 in the zone portion of the rightmost byte. All other zones 
remain unchanged. 

Example: 

Before: RX= RXSRS4 After: 

RX FFFFFFFFFFFFFFFD 
1230000000000000 

RX FFFFFFFFFFFFFFFD 
0000123000000000 

R X contains -1230000000000000 RX contains -0000123000000000 

5280 Assembler Language Instructions 143 



144 

SRR Shift Right, Retain Sign, and Round 

Result Operand 1 Operator Operand2 

Ra = {::} SRR 

The bytes of the operand1 register are shifted right the number bytes indicated 
by operand2, and the shifted result is placed into the result register. The high
order bytes of the shifted result contains zeros (hex FO) for the number of 
positions shifted, and the units position of the shifted number retains the zone of 
the original contents of the operandl register. The result is rounded by adding 
5 of like sign to the last byte shifted out of the right end of the result register 
(the shift-count-minus-1 position). 

Example: 

RX = RX SRR 4 
~ore: ~ 

RX FFFFFFFFFFFFFFFF 
0000000000136790 

After: 

RX FFFFFFFFFFFFFFFF 
0000000000000014 

L-add 5 to round 

Decimal Register Zone Modification 

The zone portions of decimal register bytes can be modified. One or more 
zones can be changed to a specified hex character. 

The format for the zone modification instruction is as follows: 

Operator Result Operand Offset length 

ZONE 

(Ra, [X'O-F' , 1-16] ) 

where: 

Result indicates the decimal register (Ra) that has zones to modify. 

Operand specifies the hex character, or the decimal register that contains 
the hex character, that replaces the zones of the specified bytes in the 
result register. If a decimal register is specified, the character in the zone 
portion of the rightmost byte is used. 

Offset specifies the number of bytes (0-15), from the leftmost byte of the 
register, to be skipped before zone modification begins. Offset defaults to zero. 

Length indicates the number of bytes (1-16) to modify. Length defaults to 
1 byte. 



The bytes of the decimal result register (Ra) are modified, starting at the byte 
specified by offset and continuing to the right for the number of bytes specified 
by length. The hex character specified by the operand replaces the original zone 
of each byte specified. If the offset plus length exceeds 16 bytes, the bytes of 
the next register are also modified. 

Example: 

Before: REGX 44FFFFFFFFFFFFFF 
0000000002433534 

R E GX=OO000002433534 

ST1 
ZON E (R EG X,X'4' ,2, 7) 

After: REGX 444444444FFFFFFF REGX=2433534 
0000000002433534 

BRANCH AND SKIP INSTRUCTIONS 

Unconditional branch, conditional branch, subroutine calls, and skip operations 
alter the sequential execution of a program. Unconditional branching instructions 
include normal branching, indexed branching, and branching through a table. 
Subroutine calls include normal calls, indexed calls, and calls through a label 
table. Skip operations include a constant compare, a mask test, a bit test, and a 
numeric test. The numeric test is useful for loop control. 

Conditional branching instructions are divided into two types, full branches and 
short branches. A short branch compares two operands for a specified relational 
condition, such as greater than or equal. A branch can be made to another 
instruction within +128 or -126 instructions from the short branch instruction. 
Full branches can branch to an address anywhere within the current partition. 
A full branch tests an operand against a specified condition or value. 

Unconditional Branch 

Unconditional branch instructions consist of a mnemonic and, in most cases, 
an operand. Unconditional branches include branches through a table, indexed 
branches, and indexed branches through a table. By using a table or index, you 
have a greater capacity to manipulate the flow of your program to best accom
plish your particular application. 

The format of unconditional branch instructions is as follows: 

Mnemonic 

NOP 

GOTO 

GOTAB 

Operand 

{
label {diSP } } 
BRn [, label ] 

BRn,label 

5280 Assembler Language Instructions 145 



146 

when:: 

Operand specifies the address of the instruction to which the branch is made. 

A binary register (BRn) may be included in the operand. This register may 
hold the address of the instruction to which to branch, or it may act as an 
index register for an indexed branch or a branch through a label table. 
BRO must not be used. 

NOP (Null Operation) 

Mnemonic 

Nap 

The Nap instruction is used as a space filler and performs a branch to the next 
sequential instruction. There are no operands for this instruction. 

GOTO (Unconditional Branch) 

Mnemonic 

GOTO 

Operand 

{

label } 
BRn 
BRn,label 
BRn,disp 

The labeled statement at the operand label is the next statement executed, unless 
the optional binary register is included with the label. In that case, the contents 
of BRn are added to the address of the instruction with the indicated label, and 
the result is taken as the address of the next instruction to execute. 

If a binary register is coded with no label, a branch is made to the address in 
the binary register. This address should be on a 4-byte boundary. 

No registers, indicators, or storage areas are changed. 

Note: The resulting address is not checked for validity unless indexing is used. 

GOTAB (Unconditional Branch Through Table) 

Mnemonic Operand 

GOTAB Brn,label 

The operand label specifies the label of a label table defined in a .LABTAB 
control statement. The contents of B Rn are taken as the index into the label 
table specified. The address stored at that entry position is taken as the address 
of the next instruction to be executed. The first table index is O. 

No registers or storage areas are changed. 



Subroutine Call and Return 

A subroutine call consists of a mnemonic and an operand. You can make an 
indexed call or a call through a label table. You can call a subroutine that is 
stored within the current partition, or you can call a common function routine 
that is stored in the common functions area. If you call any routines that are 
stored in the common functions area, you must specify the routine labels in an 
.XTRN control statement in your source program. 

A subroutine return consists of a mnemonic. Optionally, you can include an 
operand to make an indexed return. There are special return operations for 
keyboard/display external status subroutines. These external status returns are 
discussed under Key Entry Instructions in this chapter. 

The format for subroutine calls and returns is as follows: 

Mnemonic 

CALL 

RETURN 

CALLTB 

where: 

Operand 

{

label } 
BRn 

BRn,label 
BRn,disp 

[(BRn)] 

BRn,label 

Operand specifies the subroutine to call or the return address, as follows: 

Entry 

label 

BRn 

disp 

Description 

The label of a subroutine. 

A binary register used to hold an index or address. 

May be specified with a binary register for a call to a base dis
placement address. 

CALL (Subroutine Call) 

Mnemonic 

CALL 

Operand 

{

label } 
BRn,label 
BRn,disp 
BRn 

5280 Assembler Language Instructions 147 



148 

When a call instruction is encountered, the address of the next sequential 
.. a __ .... ....... JL. ___ .. I ____ .. .&.~ ____ .&. __ , __ .&..&. _____ I_. _______ I ____ ~1~_._JL • • nn4n 
HlSUUGLIOn IS SlOrea HI Ule liUOIOULIlie l>ldG~ dl lIle dUUreSSeu sfJt:GllleU uy on 10. 

BR18 is then incremented by 2. 

A call is made to the instruction specified by the operand. If a label is specified 
without the optional binary register, the call is made to the instruction at the 
label specified. 

If a label is specified with a binary register, the contents of the register are 
added to the address of the specified label, and the call is made to the resulting 
address. 

If a displacement is specified with a binary register, the displacement is added 
to the address contained in the binary register, and the call is made to the 
resulting address. 

If a binary register is specified with no label and no displacement, the call is 
taken to the address in the binary register. This address should be on a 4-byte 
boundary. 

After the call, the instructions of the called subroutine are executed sequentially 
until the subroutine is terminated. 

RETURN (Subroutine Return) 

Mnemonic Operand 

RETURN [(BRn)] 

When a return statement is encountered in a subroutine, the subroutine is 
terminated and B R 18 is decremented by two. If no operand is included in the 
instruction, the next statement to be executed is the statement at the address in 
the partition stack location pointed to by BR18. 

If a binary register is included in the instruction, the contents of the binary 
register, which must be a multiple of four, are added to the address in the 
partition stack location pointed to by BR18. The result is the address of the 
next statement to be executed. If the resulting address is not on a 4-byte 
boundary, a program check error (hex 03) results. 

Example, Normal Call; 

COMP1: TAL Y = TAL Y + 3 ; Subroutine start 

COMPX: RETURN 

SUB1: CALL COMP1 
ADDC: TALY = XY + X 

; Subroutine end 

; Call subroutine COMP1 



When the instruction SUB1 executes, the absolute address of ADDC is placed 
in the partition stack at the address specified by B R 18, and a branch is made to 
the subroutine at the label COMP1. The statements following COMP1 are 
executed until the RETURN at statement COMPX is encountered. At this time 
the address of AD DC is taken from the partition stack at the address specified 
by BR18, and the next statement to be executed is ADDC. 

Example, Indexed Call: 

BR28 = X'08' 
CALL BR28,RTN6 
RTN6: X = X + Y; assume start RTN6 at address X'0670' 

RTN7: X = Y; assume start RTN7 at address X'0678' 

When the instruction CALL BR28, RTN6 is executed, the branch is made to 
RTN7. 

CALL TB (Subroutine Call Through Table) 

Mnemonic Operand 

CALLTB BRn, label 

The label specified is the label of a label table defined in a .LABTAB control 
statement. The contents of the binary register (Brn) are used as an index into 
the table. The index is the entry number, not the byte displacement. The 
address at the table entry indicated by the binary register is the address of the 
next statement to execute. If BRn contains 0, the first entry position is used. 

Example: 

BR28 100000000 000000111 RTNTAB 

L! X'0850' 
X'0754' 
X'0790' 

3 X '0820' 
4 X'0696' 

t ~ 
Index Argument 

The instruction CALL TB BR28,RTNTAB would call the subroutine whose first 
instruction begins at address hex 0790. 

5280 Assembler Language Instructions 149 



150 

Full Conditional Branch on Test 

A full conditional branch tests an operand against a specified condition. If the 
operand meets the condition, a branch is made to a specified branch label. The 
branch label can indicate an instruction at any location in the current partition. 

The format of a full conditional branch instruction is as follows. All types of 
data allowed for the operand and condition is indicated for each mnemonic. 

Mnemonic Operand Condition Branch 

IF BRn {~OT} 0 GOTO label 

0 

{~OT} 
-

IF Rn 
AN 
CK 
SN 

GOTO label 

IF fmt {~OT} FMT GOTO label 

IFDSI 
IFI 
IFIR 

dsin,dsn 
In 
In COT} ON 

GOTO label 
GOTO label 
GOTO label 

where: 

Operand specifies the data to be tested. 

Condition includes the keyword IS or NOT (but not both), and the condition 
keyword. The condition keywords are explained in the individual operation 
descriptions. 

Branch includes the mnemonic GOTO, and the label of the statement to 
which a branch is made if the operand meets the specified condition. 

IF BRn 0 (Test Binary Register for Zero) 

Mnemonic Operand Condition Branch 

IF BRn GOTO label 

If the condition specifies IS, and the register specified for operand contains all 
zeros, a branch is made to the label. Otherwise, the next sequential statement is 
executed. 



If the condition specifies NOT, and the register specified for operand contains 
some value other than zero, a branch is made to the label. If the register contains 
zero, the next sequential statement is executed. 

A 1-byte half register is not allowed in this operation. 

No registers, storage areas, or indicators are changed. 

IF Rn (Test Decimal Register) 

Mnemonic Operand 

IF Rn 

Condition 

o 

AN 
CK 
SN 

Branch 

GOTO label 

The contents of the decimal register specified as the operand are tested against 
the specified condition. Decimal register bytes are tested from left to right. 

If the condition specifies IS, and the condition is met, a branch is made to the 
instruction specified by label. If the condition is not met, the next sequential 
instruction is executed. 

If the condition specifies NOT, and the condition is met, the next sequential 
instruction is executed. If the condition is not met, a branch is made to the 
instruction specified by the label. 

The decimal register test conditions include: 

Entry 

o 

Description 

The condition is met if the decimal register bytes contain only blanks 
or zeros. 

The condition is met if the units position (rightmost byte) of the 
decimal register contains a hex D in the zone portion. 

AN As for SN, except the zone of the rightmost byte must contain hex 
F unless the register contains all blanks. 

CK The condition is met if the decimal register bytes contain data that 
includes a self-check digit, and the self-check digit is verified as 
correct by the self-check algorithm. 

SN The condition is met if the decimal register bytes contain all 
blanks. It is also met if the decimal register bytes contain leading 
blanks followed by one or more valid numbers (hex FO-F9) and the 
rightmost byte contains either a hex F or a hex D in the zone 
portion. It is also met if the decimal register bytes contain all valid 
numbers (hex FO-F9) and the rightmost byte contains either a 
hex F or a hex D in the zone portion. 

5280 Assembler Language Instructions 151 



152 

Example: 

FFFFFFFFFFFFFFFF 
RX 0000000000000170 

RY 
FFFFFFFFFFFFFFFD 
0000000000000355 

RZ 
44444444444444FF 
0000000000000078 

The instruction IF RX IS 0 GOTO LOOPX results in no branch. 

The instruction 

The instruction 

The instruction 

IF RY NOT - GOTO LOOPX results in no branch. 

IF RY NOT AN GOTO LOOPX results in a branch to 
LOOPX. 

IF RZ IS SN GOTO LOOPX results in a branch to 
LOOPX. 

The instruction IF RZ NOT CK GOTO ERR5 results in a branch to ERR5 if 
the self-check digit is incorrect when verified against the self-check algorithm. If 
the self-check digit is correct, the next instruction statement is executed. 

IF fmt (Test Format Number) 

Mnemonic Operand Condition Branch 

IF fmt {~OT} FMT GOTO label 

The format specified by the operand is tested against the format used in the last 
I/O instruction. It may be used to determine what format was used in a data 
directed READ. 

For the operand, specify the LABEL parameter from the .FMST control 
statement that set up the desired format. 

If the condition specifies IS, and the format specified for operand is the same as 
the format used in the last I/O instruction, a branch is made to the instruction at 
label. Otherwise, the next sequential instruction is executed. 

If the condition specifies NOT, and the format specified for operand is not the 
same as the format used in the last I/O instruction, a branch is made to the 
instruction at label. 

Example: 

IF FORMAT61S FMT GOTO LOOPX 

This instruction results in a branch to LOOPX if the last format used for an 
I/O operation was FORMAT6. 



IFDSI (Test Data Set Indicator) 

Mnemonic Operand Condition Branch 

IFDSI dsin,dsn {~OT} ON GOTO label 

The data set status indicator specified by the operand is tested against the 
specified condition. The operand entry includes the data set status indicator 
number (dsin), a comma, and the data set number (dsn). The entry for the data 
set number is the DSN parameter of the .DAT ASET control statement that 
defined the data set you wish to use. The entry for data set status indicator is a 
number from 0-15. If you specify a number from 0 to 7, it represents bits 0-7 
of the status byte (byte hex 00) of the data set lOB. If you specify a number from 
8 to 15, it represents bits 0-7 of the data set flag byte (byte hex 13) of the 
data set lOB. See the Functions Reference Manual for a description of these bits. 

Example: 

IFDSI 8,3 IS ON GOTO LOOP 

This instruction results in a branch if bit 8 of the 1 DB status byte (byte hex 00) 
of data set 3 contains a B'1'; this bit is 1 if the data set is open. 

I FI (Test Indicator) 

Mnemonic Operand Condition Branch 

IFI GOTO label 

The indicator specified by the operand is tested against the condition IS ON or 
NOT ON. If the indicator meets the condition, a branch is made to label. 
Otherwise, the next sequential statement is executed. 

Examples: 

I F I 196 NOT ON GOTO LOOP 

This instruction results in a branch if 196 contains B'O'; it results in no branch if 
196 contains B'1'. 

IFI 177 IS ON GOTO LOOP 

This instruction results in a branch if 177 contains B'1'; it results in no branch if 
177 contains B'O'. 

5280 Assembler Language Instructions 153 



154 

IFIR (Test Indicator and Reset) 

Mnemonic Operand Condition Branch 

IFIR GOTO label 

The indicator specified by the operand is tested against the condition IS ON or 
NOT ON. If the indicator meets the condition, a branch is made to label. The 
indicator is set to off (B'O') after the test is completed, regardless of the result 
of the test. 

Examples: 

197 = B'l' 198 = B'O' 

IFIR 1197 IS ON GOTO LOOP 

This instruction results in a branch, and 197 is reset to B'O'. 

IFIR 198 NOT ON GOTO LOOP 

This instruction results in a branch, and 198 remains B'O'. 

Short Conditional Branch on Relational Compare 

A short conditional branch operation compares two operands for a specified 
relation condition. Except for the I FD instruction, both the zone and digit 
portions of the bytes are compared. Therefore, a hex 40 (blank) will not equal a 
hex FO (zero). If the result of the relational compare is true, a branch is made to 
the instruction specified by the label. If the result is not true, the next sequential 
statement is executed. The label must specify an instruction within +128 or -127 
instructions from the short branch instruction. 

The format of a short branch instruction is as follows. All types of data that 
are allowed for the mnemonics and operands are indicated. 

Mnemonic Operand1 

IF BRa 

Ra 

IFH BRn 

Operator 

EQ 

GE 

GT 

LE 
LT 
NE 

Operand2 Branch 

BRb GOTO label 

GOTO label 

constant GOTO label 



where: 

Operand1 specifies the register which contains the data to be compared. 

Operator must be one of the following: 

Operator Meaning 

EO Branch 
if operand1 is equal to operand2. 

GE Branch 
if operand1 is equal to or greater than operand2. 

GT Branch 
if operand 1 is greater than operand2. 

LE Branch 
if operand1 is less than or equal to operand2. 

L T Branch 
if operand1 is less than operand2. 

NE Branch 
if operand1 is not equal to operand2. 

Operand2 specifies the register or constant which will be compared against 
operand1. 

Branch is always the mnemonic GOTO and a label. The label specifies an 
instruction, which must be within +128 or -127 instructions from the branch 
instruction. A branch is made to this instruction if the specified relational 
condition is true. 

IF BRa (Binary Register Relational Compare) 

Mnemonic Operand1 

IF BRa 

Operator 

EO 
GE 
GT 
LE 
LT 
NE 

Operand2 Branch 

Bb GOTO label 

The contents of the operand1 register are compared to the contents of the 
operand2 register. A branch is made to the label if the relational compare is 
true. Otherwise, the next sequential statement is executed. 

No registers, data areas, or indicators are changed. 

5280 Assembler Language Instructions 155 



156 

Examples: 

B REG /1111 00 11 1111 01 00 I 
BREG contains X'F3F4' 

CNTR 111110000 11110000 I 
CNTR contains X'FOFO' 

The instruction IF BREG EO CNTR GOTO LOOP4 results in no branch. 

The instruction IF BREG GE CNTR GOTO LOOP4 results in a branch to LOOP4. 

IF Ra (Decimal Register Relational Compare) 

Mnemonic Operand1 Operator Operand2 Branch 

EO 
GE 

{~-~ } IF Ra 
GT 
LE 

GOTO label 

LT 
NE 

The contents of the operand 1 register are compared against operand2 for the 
condition specified by the relational operator. If the result of the relational 
compare is true, a branch is made to the instruction specified by the label. 
Otherwise, the next sequential statement is executed. 

If operand2 is a register (Rb), the corresponding positions of the operand1 and 
operand2 registers are compared byte for byte, starting at the high order position 
of each register. The standard EBCDIC collating sequence is used. 

If operand2 is a constant (0-9), the contents of the operand1 register are 
compared against fifteen leading blanks with the specified constant in the rightmost 
byte of the register. The leading blanks cannot be successfully compared with 
zeros. 

No registers, data areas, or indicators are changed. 

Note: You should use the I FD instruction when comparing decimal data. I FD 
does not compare the zone portions of the bytes. This avoids problems resulting 
from comparing blanks (hex 40) to zeros (hex FO). 

Examples: 

IFFF""Fl 
REG1~ 

iFFFFl 
REG2~ 

IFFFFl 
REG3~ 

The instruction IF REG1 NE REG2 GOTO LOOPX results in a branch to 
LOOPX. 



The instruction IF REG3 E07 GOTO LOOPX results in no branch. This is 
because the leading zeros of REG3 are compared against leading blanks 
associated with the constant 7, and hex FO does not equal hex 40. 

IFD Rn (Decimal Register Relational Compare to Decimal) 

Mnemonic Operand 1 

IFO Ra 

Operator 

EO 
GE 
GT 
LE 
LT 
NE 

Operand2 Branch 

GOTO label 

The contents of the operand1 register are algebraically compared to operand2 for 
the condition specified by the relational operator. If the result of the comparison is 
true, a branch is made to the instruction specified by the label. Otherwise the 
next sequential statement is executed. 

If the zone portion of the rightmost byte of a decimal register contains hex 0, 
the contents of the register are negative. If it is not hex 0, the contents of the 
register are positive. 

If operand2 is another decimal register (Rb), the digit portion of each corresponding 
byte of the two registers and the zone portion of the rightmost byte of each 
register are compared. 

If operand2 is a constant, the contents of the operand1 decimal register are 
compared against 15 leading blanks and the specified single-digit constant. The 
constant is assumed to be a positive value. 

IFH BRn (Binary Register Relational Compare to Immediate Data) 

Mnemonic Operand 1 

IFH BRa 

Operator 

EO 

GE 
GT 
LE 
LT 
NE 

Operand2 

0-255 
X'Q-FF' 

Branch 

GOTO label 

The rightmost byte of the binary register specified as operand1 is compared 
against the binary representation of the constant specified by operand2. A 
branch is made to the instruction specified by the label if the result of the 
comparison is true. Otherwise, the next sequential instruction is executed. 

No registers, indicators, or data areas are changed. 

5280 Assembler Language Instructions 157 



158 

Examples: 

Only this byte is compared. 
1 

The instruction I FH BREG EQ X'F3' GOTO LOOPX results in a branch to 
LOOPX. 

The instruction IFH BREG GE X'F4' GOTO LOOPX results in no branch. 

Skip on Constant Compare 

The contents of a specified byte are compared with a 1-byte constant. 

The format for a constant compare skip instruction is as follows: 

Mnemonic Test Condition Operand Result 

IFe 
[offset,] label IS 

SKIP 
[offset,] Rn NOT 

constant 

IFB [disp] (BRn) IS constant SKIP 

where: 

Test specifies the byte that holds data to compare with the constant, as 
follows. 

[offset,] label specifies the label of a storage area. If the storage area is 
longer than one byte, you may specify an optional offset. The offset 
specifies the offset from the first byte of the storage area where the byte is 
located. Offset defaults to 0, which specifies the first (leftmost) byte of the 
data area. 

[offset,] Rn specifies a decimal register (Rn) and the offset (0-15) from 
the leftmost byte of the register where the byte is located. For example, 
7,RX indicates byte 7 of the decimal register labeled RX. The offset is 
optional and defaults to zero, which specifies the leftmost byte of the 
register. If the test register is a decimal register, the operand must be a 
deci mal register. 

[disp} (BRn) specifies the base displacement address of the storage byte. 
The binary register holds the base address. The displacement (0-255) is 
optional and defaults to zero. A base displacement address is valid only 
for the I FB mnemonic. 

Note: Do not specify length for this base displacement address. Do not 
precede the binary register with a comma, as is required for other base 
displacement addresses. 



Condition specifies how the test byte is compared, as follows. 

Entry Description 

IS Specifies that a skip takes place if the contents of the test 
byte equal the specified constant. 

NOT Specifies that a skip takes place if the contents of the test 
byte do not equal the specified constant. This is valid only for 
the I FC mnemonic. 

Operand specifies a 1-byte constant, as described near the beginning of this 
chapter under Constant Specifications. 

I FC (Skip on Constant Compare) 

Mnemonic Test Condition Operand Result 

IFC {
[offset,] label} {IS } 
[offset,] Rn NOT 

constant SKIP 

The contents of the byte specified by test are compared against the specified 
constant. If IS is coded, and the test byte equals the constant, the next sequential 
statement is skipped. If NOT is coded, and the contents of the test byte do not 
equal the constant, the next sequential instruction is skipped. Otherwise the next 
sequential instruction is executed. 

Example: The following code initializes a decimal register to contain fifteen 
bytes of zeros and one byte of hex FF. Hex data is right-justified into a decimal 
register, so byte 15 of the decimal register contains the hex constant. 

0001 020304 050607 0809 10 11 12 13 14 15 
REG F F F F F F F F F F F F F F F F 

000 0 0 0 0 0 0 0 0 0 0 0 0 F 

.DC LABEL = REG TYPE = DEC INIT = X'FF'; 
STMT1: IFC 15,REG NOT X'FF' SKIP ;STMT2 is not skipped 
STMT2: IFC 14,REG IS X'FO' SKIP ;STMT3 is skipped 
STMT3: IFC 15,REG IS X'FF' SKIP ;not executed 
STMT4: IFC 1,REG NOT X/FF' SKIP ;STMT5 is skipped 
STMT5: REG = 0 
STMT6: IFC 15,REG NOT X'FO' SKIP ;STMT7 is skipped 

5280 Assembler Language Instructions 159 



160 

IFB (Base Displacement Skip on Constant Compare) 

Mnemonic Test Condition Operand Result 

IFB [disp] (BRn) IS constant SKIP 

The displacement is added to the base address contained in the binary register. 
The contents of the byte at the resulting address are compared to the '·byte 
constant specified by operand. If the contents of the byte are equal to the 
constant, the next sequential instruction is skipped. If the contents of the byte 
are not equal to the constant, the next sequential instruction is executed. It is 
invalid to specify NOT for the condition. 

Skip on Bit Mask 

The contents of a '·byte base displacement address are masked with a '·byte 
constant. The format for a bit mask instruction is as follows: 

Mnemonic Test Condition Operand Result 

IFB [disp] (BRn) X'II' SKIP 

where: 

Test specifies a base displacement address of a storage byte. The binary 
register holds the base address. The displacement (0-255) is optional and 
defaults to zero. 

Note: Do not specify length for this base displacement address. Do not 
precede the binary register with a comma as is required for other base 
displacement addresses. 

Condition indicates how the bits in the test byte that are specified by the 
mask are tested. 

Entry 

ON 

OFF 

Descri ption 

Specifies that a skip takes place if any of the masked bits are 
on (B" '). 

Specifies that a ski p takes place if any of the masked bits are 
off (B'O'). 

Operand specifies the '·byte mask that specifies which bits of the test byte 
are tested. 

Result is always the mnemonic SKIP. 

The contents of the byte at the base displacement address are masked with the 
'·byte operand. The bits that correspond with the bits in the mask that are on 
(B" ') are tested against the specified condition. If one or more of these bits 
meets the specified condition (ON or OFF), the skip results. Otherwise, the 
next sequential instruction is executed. 



Skip on AND/Exclusive-OR Mask 

This mask test can perform logical operations upon one byte of a binary register. 

The format for an AND,Exciusive-OR mask test instruction is as follows: 

Test 

IFHI 
IFLO 

where: 

BRn 

Mnemonic Mask1 

AND X'II' 

Operand Mask2 Result 

IS X'II' SKIP 

Test specifies the byte of the binary register to operate upon. It includes a 
binary register (BRn) and either I FHI to specify the high-order byte of the 
binary register, or I FLO to specify the low-order byte. 

Mask 1, Mask2 are 1-byte constants to mask with the test byte. See Constant 
Specifications near the beginning of this chapter for the forms of the constants 
that may be used. 

Operand is always IS. 

Result is always the mnemonic SKIP. 

The byte that is accessed depends on the test entry. Coding I FHI BRn indicates 
the high order byte of the specified binary register (BRn). Coding IFLO BRn 
indicates the low-order byte of the specified binary register (BRn). The original 
contents of the binary register remain unchanged by the operation. 

The contents of the indicated byte are logically ANDed with mask 1, and the 
result is exclusively-ORed with mask2. If the result of the operation is zero, 
the next sequential instruction is skipped. Otherwise the next sequential 
instruction is executed. 

Examples: 

High Low 
~ r-' 

BRX 01011100 11110000 

IFHI BRX AND X'B4' IS X'14' SKIP 
"-vI "-vI 

r--::: 1100 - ------' L& ~~~:O100 
00010100 

X 00010100 
00000000 

This instruction results in a skip. 

IFLO BRX AND X'SA' IS X'CF' SKIP 
y V 

'-----b ' 1:110000 
& 10001010 

10000000 
X 11001111 

01001111 

This instruction does not result in a skip. 

5280 Assembler Language Instructions 161 



162 

Exclusive-OR Write, Skip on AND Mask 

The following instruction specifies that two logical operations be performed 
upon the same data. These operations can change the original contents of a 
specified byte; they can also test the original contents to determine if a skip 
should take place. This instruction is useful to test and set/reset lock bits with a 
single instruction. 

The format of the instruction is as follows: 

Mnemonic Mask1 Test Mask2 

RXORW (constant ,BRn ,constant) 

where: 

Mask1 specifies a l-byte constant to be exciusively-ORed with the contents of 
the test byte. See Constant Specifications near the beginning of this chapter 
for the forms that the constant may have. 

Test specifies a binary register that contains the address of the byte to test. 

Mask2 specifies a l-byte constant to be ANDed with the contents of the test 
byte. The constant may be expressed in any of the forms indicated for maskl. 

The l-byte constant specified by maskl is exclusively-ORed with the contents of 
the test byte at the address indicated by the binary register. The original contents 
of the test byte are ANDed with mask2. If the result of the AND operation is 0, 
a skip results. The result of the exclusive-OR operation replaces the original 
contents of the test byte. If the result of the AND operation is not 0, the next 
sequential instruction is executed, and the original contents of the test byte 
remain unchanged. 

Loop Control 

Loop control can be performed with the following two instructions, which 
decrement or increment a binary register, then test the register contents against 
zero or a specified limit. 

The format of the loop control instructions is as follows: 

Mnemonic Test Condition Limit Operand 

SKIP WHILE BRa LE BRb [STEP 0-255] 

DEeR BRn GOTO label 



where: 

Test indicates the binary register that is decremented or incremented. 

Condition is specified only for SKIP WHILE, and is always LE. 

Limit is specified only for SKIP WHI LE, and indicates the limit that is 
compared with the test register. 

Operand is always specified for DECR, to indicate a branch label. It is 
optional for SKIP WHI LE, to indicate the value of the increment to add to the 
test register. If it is not specified, the register is incremented by one. 

SKIP WHILE (Increment Binary Register and Skip if Not Limit) 

Mnemonic Test Condition Limit Operand 

SKIP WHILE BRa LE BRb [STEP 0=255] 

When this instruction is executed, an increment is added to the contents of the 
test binary register (BRa), and the sum replaces the contents of the test binary 
register (BRa). The new contents of the test register (BRa) are then compared 
with the contents of the limit register (BRb). If the contents of the test register 
(BRa) are lower than or equal to the limit register (BRb), the next sequential 
instruction is skipped. 

If the optional increment operand (STEP n) is coded, the contents of the test 
register are incremented by n, where n is 0-255. If STEP n is not coded, the 
test register is incremented by one. 

Example: The following code sums the integers from 1 to 10 using SKIP WHILE 
as the loop control. 

.DC LABEL=SUM TVPE=BIN IN IT=O; set up register for sum 
* 
.DC LABEL=NUM TVPE=BIN INIT=O; set up register for integers 
* 
.DC LABEL=LMT TVPE=BIN INIT=10; set loop limit to 10 
* 
LOOP1: SKIP WHILE NUM LE LMT STEP 1; 
* 
* 
EXIT1: 

Add 1 to NUM and test for 10. 
When NUM is greater than LMT, EXIT1 EXECUTES. 

GOTO OUT: 
SUM += NUM 
GOTO LOOP1 
OUT: NOP 

add next integer. 
continue loop. 
N UM = 11 and SUM = 55. 

5280 Assembler Language Instructions 163 



164 

DECR (Decrement Binary Register and Branch If Not 0) 

Mnemonic Operand Branch 

OECR BRn GOTO label 

The contents of the binary register are first decremented by 1 every time this 
instruction is executed, and then the decremented result is tested against O. If the 
register contents are not 0, a branch is made to the statement at label. 

Example: 

X#l: BREG = B'll'; initialize BRn to loop 3 times 
LOOP: 

ENOL: OECR BREG TO LOOP; decrement BRn by one, 
* if B Rn is not zero after decrement, branch to LOOP. 
X#2: REGX = REGX + 1 

The statement labeled X#l sets BREG to 3, then the statements from LOOP to 
ENOL are executed 3 times. The third time ENOL is executed, BREG will contain 
o and the statement labeled X#2 will be the next statement executed. 

COMMUNICATIONS INSTRUCTIONS 

The 5280 communications facilities include a communications access method that 
provides an interface between your 5280 assembler application program and the 
host system. The communications access method can support either BSC (binary 
synchronous communication) or SOLC (synchronous data link control). SOLC is 
provided through SNA (Standard Network Architecture) and is referred to in this 
manual as SNA. The following communications instructions and the .COMM 
control statement described in Chapter 3 are used with the 5280 communications 
access method. See the IBM 5280 Communications Utilities Reference Manual, 
SC34·0247, for more information about the communications access method. 



Most of the communications instructions are used for both the BSC and the SNA 
versions of the communications access method. Any instruction or instruction 
parameter that is unique to either the BSC or SNA versions is so indicated. The 
format for the communications instructions is as follows: 

Mnemonic Data Set Format Operand 1 Operand2 Operand3 

TINIT (1-15) 

TCTL (1-15 LX'IIII' 

TOPEN (1-15) 

lWAIT (1-15) 

TCLOZ (1-15) 

TTERM (1-15) 

TREAD (1-15 [. G.b.} 
lWRT (1-15 [,label ,F 

where: 

Data set specifies the data set to access. Enter the DSN parameter of the 
.COMM control statement that defined the data set. 

Format indicates edit formatting you want during an input or output 
operation. Format may be omitted (retain the comma) if no edit formatting 
is desired. If you want formatting, specify one of the following: 

Entry 

label 

* 

Description 

The label of the edit format you wish to use. Enter the 
LABEL parameter of the .FMTST control statement that 
started the edit format definition. 

May be specified for a TREAD instruction to indicate data 
directed formatting. Data Directed Formatting, in Chapter 2, 
and the .FMTST control statement writeup describe this method 
of format selection. 

Operand1 depends upon the particular instruction and is explained with the 
operand description for each instruction. 

Operand2 specifies overlapped (0) or nonoverlapped (N) I/O. It defaults to 
nonoverlapped. See Overlapped I/O in Chapter 1 for more information. 

Operand3 depends upon the particular instruction and is explained with the 
operand description for each instruction. 

,0] ) 

, -]) 

,B] ) 

5280 Assembler Language Instructions 165 



166 

TINIT (Initialize Communications Session) 

Mnemonic Data Set 

TINIT (1-15) 

For BSC and for SNA, this must be the first communications instruction in your 
application program. The TINIT operation must be completed before an I/O 
instruction can be executed. For BSC, this instruction must be followed by a 
TOPEN instruction. 

For BSC, the TINIT instruction establishes the linkage between the COMM lOB 
and your program, which is executing in a partition, and the communications 
access method, which is concurrently executing in another partition. When this 
instruction is executed, it prepares to establish the line connection between the 
5280 and the host system. 

For SNA, this instruction initializes the network by establishing the data link 
and attaching a session. If log-on is required by the host system, the communica
tions lOB must point to a logical buffer that contains the log-on data when the 
TINIT instruction is issued. See the IBM 5280 Communications Utilities 
Reference Manual, for information about communications sessions. Multiple 
sessions may be established. 

TOPEN (Open Communications Data Set) 

Mnemonic Data Set 

TOPEN (1-15) 

This instruction opens the specified BSC communications data set 108 for 
transmitting or receiving records, or for inquiry. This instruction must be issued 
before any TREAD, TWRT, or TCTL instructions are issued. The TOPEN 
instruction must always be followed, at any later point in your program, with 
a TCLOZ instruction for the same data set. 

TCTL (Communications Control) 

Mnemonic Data Set Operand 1 Operand2 Operand3 

TCTL (1-15 LX'IIII' ,D]) 



Operand1 specifies a hex code for one of the following control operations: 

Hex 
Code Operations Valid for BSC 

0100 Write status 
0300 Transmit EOT (The EOT function is used only to initiate the 

premature termination of a transmit or receive operation.) 
0400 Transmit RVI (The RVI function turns the line around.) 
0500 Transmit header (SOH-heading-STX) 
0600 Transmit header (SOH-heading-ETB) 
0700 Transmit header (SOH-heading-ITB) 
0800 Transmit header (SOH-heading-STX-ETX) 
0900 Execute wrap test 
OAOO Transmit online test message 
OBOO Receive online test message 
0001 Set compression (Expand blank-compressed data that is received.) 
0002 Reset compression (Do not expand compressed data.) 
0003 Set transparent mode (Transmit in transparent mode.) 
0004 Reset transparent mode (Do not transmit in transparent mode.) 
0005 Set trace (on) 
0006 Reset trace (off) 

Operations Valid for SNA 

0001 Cancel 
0002 Chase 
0003 LU status 
0004 Request shutdown 
0005 Positive response 
0006 Negative response 
0007 Transmit signal command (SIGNAL) to the host 
0008 Shutdown complete 

If 0 is specified for operand3, the diagnostic flag is set in the lOB, and the operation 
is performed in diagnostic mode. 

TWAIT (Wait for I/O Completion) 

Mnemonic Data Set 

TWAIT (1-15) 

For BSC and for SNA, this instruction ensures that any transmit or receive 
operation is completed before the next sequential instruction is executed. This 
is generally used in conjunction with overlapped I/O to prevent loss of data. See 
Overlapped I/O in Chapter 1 for more information. 

5280 Assembler Language Instructions 167 



168 

TCLOZ (Close Communications Data Set) 

Mnemonic Data Set 

TCLOZ (1-15) 

This instruction closes the specified BSC communications data set lOB, and 
signifies the end of the communications operations. Any lOB that is opened 
(using TOPEN) must be closed (using TCLOZ) before another lOB is opened. 

TTE RM (Terminate Communications Session) 

Mnemonic Data Set 

TTERM (1-15) 

For BSC and SNA, this instruction terminates the logical connection between 
your application program and the communications access method. If a switched 
line is being used, the line connection with the host is also terminated. 

The communications access method remains in the background partition, 
available for use by other application programs. 

TREAD (Receive Communications Record) 

Mnemonic Data Set Format Operand 1 Operand2 

TREAD ( 1-15 I. {~bel} 
When the TREAD instruction is executed, data is received from the host 

Operand3 

,-J) 

system into the I/O buffer of the data set specified by the data set number. If 
an edit format is indicated with a format label or the asterisk (for data directed 
formatting), the data is edited and moved from the I/O buffer to the registers 
as specified in the appropriate edit format. If no edit format is specified in the 
instruction, the data remains in the I/O buffer at the end of the operation. If 0 
is specified for operand2, successive instructions are executed concurrently with 

the TREAD instruction. If operand2 specifies N or is omitted, the TREAD 
operation must be completed before any successive instructions are executed. 

For SNA and for BSC, if operand1 is a minus sign, it indicates that the status is 
to be received. If operand1 is omitted, it indicates that data is to be received. 

For SNA and for BSC, if operand3 is a minus sign, it indicates that an entire 
block of data is to be received. If operand3 is omitted, the next logical record 
is received. 



TWR T (Transmit Communications Record) 

Mnemonic Data Set Format Operand 1 Operand2 Operand3 

TWRT (1-15 [,label ,F ,B] ) 

When the TWRT instruction is executed, a record is transmitted to the host system 
from the data set specified by the data set number. If the instruction specifies 
an edit format, data is moved from the registers specified by the format into the 
I/O buffer, and editing is performed as specified in the format. If no format is 

specified, it is assumed that the record is already in the I/O buffer. The record is 
transmitted from the I/O buffer. If operand2 is 0, successive instructions are 
executed concurrently with the TWRT instruction. If operand2 is N or is omitted, 
the TWRT instruction must be completed before successive instructions are executed. 

For SNA, if operand1 is F, it indicates that this is the final record to be trans
mitted in an interactive application. Otherwise operand 1 is omitted. For BSC, 
operandl must be omitted. Retain the comma. 

For SNA and for BSC, if operand3 is B, it indicates that the I/O buffer is to be 
filled with blanks at the start of the operation. If operand3 is omitted, the I/O 
buffer is not changed at the start of the operation. This operand may be 
specified only for a formatted TWRT operation. 

Example: The following code sets up a BSC data set with the .COMM statement. 
It then initializes a BSC communications session, transmits one data record, 
receives one data record, and terminates the session . 

. START ENTRY=INIT; 

.DC LABEL=LBUFR LEN=80; logical buffer for transmit data set 

.DC LABEL=DATAR LEN=132; logical buffer for receive data set 

.COMM CAM=BSC DSN=l RECL-80 LBUF=LBUFR ELAB=ERR 
TYPE=SW; set up a write sequential transmit data set lOB 

.COMM CAM=BSC DSN=2 RECL=132 LBUF=DATAR ELAB=ERR 
TYPE=SR; set up a read sequential receive data set lOB 

.INIT TINIT(l); initialize session with host 
TOPEN(l); open transmit data set lOB 

* Code to move data 
* to the logical buffer LBU F R 
* must be included here. 

TWRT(l); transmit a record from LBUFR 
TCLOZ(l); close transmit data set lOB 
TTERM(l); 
TINIT(2); 
TOPEN (2); open receive data set lOB 
TREAD(2); receive a record into DATR 

* Code to move data from 
* the logical buffer DATAR 

* must be included here. 
TCLOZ(2); close receive data set lOB 
TTERM(l); terminate session with host 

ERR: ; error routine . 
. END; 

5280 Assembler Language Instructions 169 



170 

DISKETTE INSTRUCTIONS 

The diskette instructions include operations to control, read/write, and search 
a data set. The operations are performed upon data set records or, for label 
update data sets, upon data set labels. Data set labels on diskette index 
cylinders describe each data set that is stored on the diskette. Information 
contained on the data set label includes the data set name, the exchange type, 
and the diskette addresses of the BOE (beginning of extent), EOD (end of data), 
and EOE (end of extent) for that data set. The data set label will be described in 
detail in the Functions Reference Manual. 

Records may be organized into sequential or key indexed data sets. The records 
are moved between the diskette and a physical buffer in main storage. Logical 
records may optionally be moved between the physical buffer and a logical 
record buffer for blocking and deblocking records, or printer I/O can be used to 
block and deblock records. See Diskette Data Management in Chapter 2 for a 
description of the data set organizations and buffers. 

During the execution of a diskette operation, the 5280 maintains a record 
counter to keep track of the record number, relative to the first data set 
record, of the logical record currently being processed. 

Control Operations 

In order to share the diskette devices with the different data sets, the 5280 
maintains an lOB chain for each drive. An lOB chain begins with a pointer, in 
the system control area, which holds the address of the first lOB that uses the 
device. This lOB in turn holds the address of the next lOB that uses the device. 
When the device finishes the work described by one lOB, it goes to the next lOB 
on the lOB chain. An lOB address is placed on the lOB chain whenever a data 
set is opened with the OPEN operation. When the data set has finished using 
the device, it may be closed with the CLOZ operation, which removes the lOB 
address from the lOB chain. 

Besides the open and close operations, data set control includes instructions to 
allocate a data set and to initialize diskettes. 



The format for the data set control instructions is as follows: 

Mnemonic Data Set Operands 

ALLOe (1-15 "BRn) 
OPEN (1-15 ["BRn ]) 

eLOZ (1-15 [, { n · {~J. {n· {q ,BRnJ) 

WAIT [(1-15)] 
,BRn) 

INIT (1-15 

rOE} [. C} II POSN (1-15 
EOD 

, eURR 

LAST 

where: 

Data Set specifies the data set number. This is the DSN parameter of the 
.DATASET control statement that set up the lOB for this data set. If data 
set is specified as hex 0 in the WAIT instruction, it specifies the keyboard 
rather than a data set. Do not specify 0 for any other control operation. 

Operands are explained for each instruction in the operation description. 

ALLOC (Allocate a Data Set) 

Mnemonic Data Set Operand 

ALLoe ( 1-15 "BRn) 

This instruction is always executed nonoverlapped. When the ALLOe operation is 
executed, the data set is allocated in the physical space following the last valid 
data set existing on the diskette, provided sufficient extent and label space 
exists. A data set cannot be allocated between existing data sets and always 
originates on a physical track/sector boundary. 

The data set HDR1 label is placed in the first deleted HDR1 label space. If 
there are no deleted HDR1 label spaces, the allocation cannot take place, and an 
external status (3229) is presented. The HDR1 information is taken from the 
data set lOB and from a parameter string you prepare and place into storage. The 
binary register (BRn) in the ALLOe instruction contains the address of the fifth 
byte of the parameter string. Two commas must precede the binary register. The 
format of the parameter string is as follows. 

5280 Assembler Language Instructions 171 



172 

Byte Meaning 

Data set exchange type. Enter the number that corresponds to the 
appropriate exchange type: 

X'OO' = basic exchange 
X'Ol' = H exchange 
X'02' = I exchange (This is the type normally used) 
X'03' = E exchange, unblocked and unspanned 
X '04' = E exchange, blocked and unspanned 
X'05' = E exchange, blocked and spanned 

2-4 The number of logical records to allocate. Enter 0 to allocate the 
maximum number of records that can be placed on the remaining 
diskette space. 

5 The first of up to 14 characters of an optional owner identification, 
required for allocating on a secure diskette. The address stored in 
the binary register always points to the first byte of this owner 10. 
If the owner 10 is omitted, the address points to the end blank. 

end The last byte in the parameter string must always be a blank, hex 40. 

Note: This parameter string can also be used to open a data set on a secure 
diskette; the OPEN instruction does not use the bytes before the fifth byte. 

The information that is taken from the data set lOB is as follows: 

Parameter Explanation 

Data set name (NAME) The data set name is mandatory for allocating a 
diskette data set. 

logical record length (REel) If this optional .DATASET parameter is 
omitted, the length is set to equal to block size. 

Block size (BSIZ) 

Delete character (DFlG) 

Except for blocked and spanned data sets, the 
block size must equal, or be a multiple of, the 
logical record length. For blocked and spanned 
data sets, BSIZ is an optional parameter; if 
specified it must equal sector size, and if 
omitted the 5280 sets it to sector size. 

F or E and I exchange data sets, this character is 
checked, during allocation, for a valid printable 
character. Valid delete characters are A-Z, 0-9, Of 

one of the following symbols: 

.,-/%#@:$& 



During the allocation operation, the data set organization byte of the HDR1 label 
is set to blank (hex 40) for basic and H exchange data sets. It is set to D for E and 
I exchange data sets. It is invalid to allocate a label update data set with the 
ALLOe instruction. 

Upon completion of the ALLOe operation, the allocated data set is also opened. 
The HDR1 label is placed into the first 128 bytes of the physical buffer. The 
opcode byte in the data set lOB is replaced with hex 00. Upon completion of 
the ALLOe; or if there is an external status for (1) insufficient physical buffer 
size (3430), (2) two physical buffers specified with unequal sizes (3435); or if 
a 3730 warning message is presented the minimum number of 128-byte blocks 
required for sufficient buffer size space is placed into hex 78 of the data set lOB. 
If any other external status occurs, this number is not placed into the lOB. 

OPEN (Open a Data Set) 

Mnemonic Data Set Operand 

OPEN (1-15 ["BRn] ) 

The OPEN operation is always executed in nonoverlapped mode. When the OPEN 
is executed, the 5280 searches the diskette index for the HDR1 label of the 
specified data set. The search begins at the position indicated by the data set 
lOB at hex 30 and 31. The assembler initializes this value to zero, which causes 
the search to begin with the first HDR1 label. If you know where your data 
set HDR1 label is stored, you can place the position number (the first HDR1 
label is at number 8) in the data set lOB to save time when the data set is 
opened. If the position number in the lOB is greater than 8, the search begins 
with that position and continues until the desired data set HDR1 label is found 
or until the last label is searched. No labels preceding the position number in 
the lOB are searched. If the desired HDR1 label is not found, or if the position 
number is greater than the number of HDR 1 labels existing on the diskette, an 
external status (3215) is presented. When the 5280 finds the label, it places the 
label number in bytes hex 30 and 31 of the data set lOB. On subsequent 
OPENs, the search begins with this number unless you reset these bytes to zero. 

If the data set is stored on a secure diskette, you must include the binary register 
(BRn) in the OPEN instruction. The binary register contains the address of an 
owner identification, as described for the ALLOe instruction. If you include 
the binary register and the diskette is not a secure diskette, the binary register 
is ignored. Two commas must precede the binary register. 

When the desired HDR1 label is found, the expiration date is checked. If the 
date is all blanks, the data set is expired. If it is all 9s, the data set is not 
expired. If the HDR1 expiration data contains a year value less than 50, the year 
is assumed to be in the 21st century. If a system date is available and exceeds 
the HDR1 label date, the data set is expired. An unexpired data set cannot be 
opened as an erase data set. 

5280 Assembler Language Instructions 173 



174 

The physical buffer is checked to ensure adequate buffer size. If there is an 
external status for (1) insufficient size (3430) or (2) two physicai buffers 
specified with unequal sizes (3435), the OPEN is not completed and the 
minimum number of 128-byte blocks required for sufficient buffer space is 
placed into hex 78 of the data set lOB. If enough space is available for the 
OPEN to complete, another check is made to ensure that sufficient buffer 
space is available to process the data set. If a keyed data set does not have 
sufficient buffer space to process the index table build, the OPEN does not 
complete. If a sequential data set does not have sufficient buffer space to 
process the data set, the OPEN completes but the minimum number of 128-byte 
blocks required for sufficient buffer space is placed into hex 78 of the data set 
lOB, and a 3730 warning message is presented. 

If the block size and logical record length are not specified in the data set lOB, 
the HDR1 values are used. If they are specified in the lOB, they are compared 
with the HDR1 values and an error results if they are not the same. 

For an erase data set, the block size and record length on the HDR1 label are 
updated to the values in the lOB if the lOB values are not zero. If no logical 
record length is specified, it is assumed to be the same as the block size. 

When the open completes, the address of the data set lOB is placed into the 
lOB chain for the device. The open-flag in the data set lOB is set to indicate 
that the data set is open. The H DR 1 label is placed into the fi rst 128 bytes of 
the physical buffer (in PB 1 if two physical buffers are used). For a label 
update data set, however, the VOL 1 label is placed into the buffer in place of 
the HDR1 label. 

The OPEN instruction must be used to open a data set during program 
execution, or to reopen a data set. If you reopen a data set, the data set 
pointers are reset to the beginning of the data set and the parameters specified 
in the .DATASET control statement are used to supply the open information. 

CLOZ (Close a Data Set) 

Mnemonic Data Set Operands 

CLOZ ( 1-15 L {U · {:} · {n · {n .BRn] I 

A CLOZ operation removes the data set lOB address from the lOB chain and 
resets the open-flag in the data set lOB. The CLOZ operation is always executed 
in nonoverlapped mode. If any records have been added to the data set, the 
HDR1 label is updated as appropriate. Any functions specified in the operand 
fields are performed. When the CLOZ operation is completed, even if external 
status is presented, the opcode in the data set lOB is reset to zero. 



The operand fields indicate close options. You may specify one option in 
each of five fields, or you may leave any of the fields blank. If you omit a 
field that is to the left of a specified field, retain the comma for the omitted 
field. If you omit all the fields, a normal close as described above is performed, 
with no additional functions. The operand fields are as follows. 

Field 1: Close functions option. If omitted, a normal close is performed. You 
may not specify R, E, or 0 for a shared or unexpired data set. 

Entry 

R 

Description 

Release; the EOE is replaced with the EOD-1 value to free unused 
extent space. 

E Erase; the EOD is replaced with the BOE value to create a new output
only data set. 

o Delete; the data set label is marked as deleted. 

N No label update; the lOB address is removed from the lOB chain and 
the lOB open-flag is reset, but the HDR1 label is not updated. 

Field 2: Write-protect option. If omitted, the contents of the write-protect 
position in the HDR1 label remain unchanged. 

Entry 

P 

Description 

Protect; a P is placed into the write-protect position so the data set 
does not accept any write operations. 

W Write; clears the P from the HDR1 label so the data set can accept 
writes. 

Field 3: Verify/copy option. If omitted, the contents of the verify/copy 
position on the HDR1 label remains unchanged. 

Entry 

V 

C 

* 

Description 

Verified; a V is placed into the verify/copy position of the HDR1 
label to indicate that the data set has been verified. 

Copy; a C is placed into the verify/copy position to indicate that the 
contents of the data set have been successfully transferred. Do not 
enter the C for a partial data set copy or for a null data set. 

Clear; the contents of the verify/copy position are replaced with a 
blank. 

5280 Assembler Language Instructions 175 



176 

Field 4: Multivolume option. If omitted, the contents of the multivolume 
fields are left unchanged. Field 5 must also be omitted. 

Entry 

C 

L 

* 

Descri ption 

Continued; a C is placed into the multivolume position to indicate that 
the data set is conti nued on another diskette. 

Last; an L is placed into the multivolume position to indicate that 
this is the last diskette on which a continued data set is stored. 

Clear; the contents of the fields are replaced with blanks. 

BRn may be specified if field 4 is spacified. The binary register contains the 
sequence number for this volume of a multivolume data set. The contents of 
this register are placed into the HD R 1 label in the volume sequence position. 
You may specify a sequence number from 01 to 99. 

If an error occurs during a CLOZ, the lOB is not removed from the chain. 
Overwriting the lOB by loading another program would break the chain. 
However, if two consecutive CLOZ commands are issued (even if they contain 
close options) that cause errors, the lOB address is removed from the lOB chain 
but the HDR1 label is not updated and no optional functions are performed. 

Another use for the two consecutive CLOZ instructions is to close a data set 
that has been interrupted by accidental opening of the diskette door. If a 
data set is being processed when the diskette door is opened, the diskette drive 
makes a buzzing sound for five seconds and a 3151 error is reported. If no I/O 
operation was taking place when the door was opened, you may simply close 
the door and reset the error. The 5280 assumes that the data set is the same one 
being processed before the door opened. However, if an I/O operation was in 
the process of moving data between the physical buffer and the diskette, the 
data movement is terminated but the data set is not closed; a 3251 error is 
reported. Two consecutive CLOZ instructions remove the lOB address from the 
lOB chain. You may close an unopened or undefined data set with no effect. 

WAIT (Wait for I/O Completion) 

Mnemonic Data Set 

WAIT [(1-15)] 

The WAIT instruction is used when you are processing with overlapped I/O. 
When the 5280 encounters an overlapped I/O instruction, it issues the I/O 
operation to the appropriate device and immediately proceeds to execute 
subsequent instructions. If a subsequent instruction accesses data that was 
involved in an overlapped I/O operation, you should place a WAIT instruction 
immediately before that instruction. When the 5280 encounters the WAIT 
instruction, it waits until all outstanding I/O operations for the specified data 
set are completed before it executes the instructions following the WAIT. It 
also detects any errors that occurred during the I/O. 



If the WAIT instruction specifies hex 0 for the data set, the 5280 waits until 
all outstanding keyboard I/O operations are completed. If the WAIT instruction 
omits the data set number, all I/O operations for all data sets must be completed 
before the 5280 proceeds with the instructions following the WAIT. 

INIT (Initialize a Diskette) 

Mnemonic Data Set Operand 

INIT (1-15 ,BRn) 

The INIT operation initializes the diskette with information from the lOB of 
the specified data set. The data set must have been previously opened for 
initialization (TYPE=INI on the .DATASET control statement). The diskette 
may not be shared during an initialization operation. All data on the diskette 
prior to the I NIT is lost. 

The binary register (BRn) contains the address of a parameter string you have 
prepared and placed into storage. The format of the parameter string is as 
follows. 

Byte 

2 

3-28 

Bit Meaning 

o Head number 
1-7 
0-1 

2-7 

Track number 
00 for type 1 
01 for type 2 
11 for type 20 
Number minus one of 128-byte blocks that make up the 
sector size. 
Sequence of sector numbers. If byte 3 = hex F F, the track 
specified by byte 1 is flagged as a defective track. 

Each track is accessed as a separate data set. The physical sector IDs and records 
are written to the track. The data set is accessed sequentially, starting at cylinder 
0, head 0, sector 1. Each track must be initialized with the I NIT instruction 
before it can accept a write instruction. You must use instructions to write the 
HDR1 labels for the index area. 

POSN (Position Record Pointer) 

Mnemonic Data Set Operand 1 Operand2 

POSN ( 1-15 

5280 Assembler Language Instructions 177 



178 

When the POSN operation is executed, the current record pointer number is 
modified. The diskette is repositioned to the specified record, spedfifJd in the 
instruction as follows: 

Operand 1 
Mnemonic 

BOE 

CURR 

LAST 

Purpose 

Sets the record number to O. The first record in the data set is 
record 1, so a subsequent READ instruction that specifies next
record (+) reads the first record of the data set. Or a subsequent 
search-forward instruction begins the search with record 1. 

Rereads the current record (as specified by the current record 
pointer) from the diskette into the physical buffer and into the 
logical record buffer. The data set type must allow reads. 

Sets the record number to the number of the last logical record 
of the data set, and reads the last record from the diskette into 
the physical buffer and into the logical buffer. The data set type 
must allow reads. 

EOO Sets the record number to the EOO number, which is the 
number of the next available record space on the diskette past 
the last record (last record plus one). Subsequent write instruc
tions that specify current-record extend the data set. 

Read and Write Operations 

Records can be read according to a key, or read and written by sequential 
record number or relative record number. For sequential records, the system 
keeps track of the record number in an internal register. For operations at the 
relative record number, you must assign a binary register or register pair to hold 
the relative record number. After every read or write instruction, the system 
updates the internal register. You must update the assigned binary register if 
you are using relative record access. 

The buffer management for the following read and write operations is described 
as for automatic logical buffering. If you use pointer I/O, the logical buffer 
address in the data set lOB points to the logical record within the physical 
record buffer. See Diskette Data Management in Chapter 2 for more informa
tion about pointer I/O. 



The format for read and write instructions is as follows: 

Mnemonic Data Set Format Record Operand 1 

Rn 

[. {~abel} · 
BRn[(4)] 

READ (1-15 

+ 
0 

BRn [(4)] 

WRT (1-15 [ ,label , 
+ 

0 

WRTS 
(1-15 [ ,label ,0 

WRTI 

INSBLK (1-15 "BRn 

where: 

Data Set specifies the number of the data set to read or write. The label is 
the DSN parameter from the .DATASET control statement. Do not specify 
o for an I/O instruction. 

Format specifies the label of the edit format to use. The label is the 
LABEL parameter of the .FMTST control statement that defined the format. 
If the format is omitted, you must move the data to or from the logical 
buffer with other instructions. No format may be specified with pointer 
I/O. An asterisk (*) may be specified for READ, indicating that formatting 
is data directed. See Data Directed Formatting in Chapter 2 for more informa
tion. 

Note: When formatting is used, operand 1 defaults to nonoverlapped I/O 
regardless of what is specified in the instruction. 

Record specifies the logical record to read or write. The following specifica
tions are allowed. 

Operand2 

] ) 

,B] ) 

,B] ) 

5280 Assembler Language Instructions 179 



180 

Entry 

(Key) Rn 

Descri ption 

A decimal register may be specified (for READ only) 
when using a key data set. The decimal register 
contains the key of the record to read. 

(Relative) BRn [(4)] When a binary register is included for a write instruc
tion the 5280 checks the .DATASET parameters to 
determine the data set type. If this is an SCS 
conversion data set, the binary register is used as a 
pointer to a storage area that you have declared and 
stored SCS control characters. See Printer Instructions 
for a description of the SCS control characters for an 
SCS conversion data set. 

+ 

If this is not a write instruction to an SCS conversion 
data set, the binary register contains the relative 
record number of a sequential data set. This number 
replaces the current record number. If necessary for 
the size of the number, a binary register pair may be 
used. The number is relative to the BOE (beginning 
of extent) for the data set, which is record 1. The 
contents of this register are not changed after the 

operation. If it must be incremented, you must code 
instructions for incrementation. 

A minus sign indicates the previous sequential non
deleted record. A previous-record specification defaults 
to 0 for the WRTS or WRTI instruction. A previous
record specification does not permanently alter the 
current record number for a write operation. Conse
cutive previous-record write operations process the 
same record. If a WRT instruction that specifies 
previous-record is issued at EOD, the last record of the 
data set is overwritten and the record pointer still 
points to EOD. A read-previous operation decrements 
the current record pointer. 

A plus sign indicates the next sequential non-deleted 
record. The next-record specification is the default for 
the READ instruction. When a read-next operation is 
executed, the current record number is incremented. 

The next-record specification defaults to 0 for the WRTS 
or WRTI instruction. If a WRT instruction specifies 
next-record, the current record number is not 
incremented. Consecutive next-record write operations 
write the same record. If an instruction that specifies 
next-record is issued at EOD, an external status is 
presented. 



Entry 

o 

Description 

A zero indicates the current record number. The 
current-record specification is the default for the write 
operations. If a write operation is issued at EOD, the 
current record number is incremented and the data 
set is extended. The record is written into the EOD 
space, and the EOD is incremented. The current 
record number and the EOD point to the same record 
space on the diskette. 

If a READ instruction specifies current-record, the 
current record is not incremented and the current 
record is re-read. 

Operand1 specifies whether the operation is executed as overlapped (0) or 
nonoverlapped (N) I/O. If not specified, or if formatting is to be done, it 
defaults to nonoverlapped. See Overlapped I/O in Chapter 1 for more informa
tion. 

Operand2 B may be specified if a format is included for the write instructions, 
but B is not allowed for READ. If B is coded, the I/O buffer is blanked at 
the start of the operation. 

Access Methods Valid for Each File Type 

The access methods for the file types are illustrated in Figure 4-3. The keywords, 
which indicate both file type and access method, are described under the TYPE 
parameter of the .DAT ASET control statement in Chapter 3. 

Type: SR SW SU KR/N KU/N 
~ . ~ r , , , r , r , I . , 

Record: + - 0 8rn 0 + - 0 8rn + - 0 Rn + - 0 Rn 
r+ _ 0 8rn 

READ C C V C C C V C C C V C C C V C C C V C 

WRT U V V E C V V E VVVC 

WRTS U E E V 

WRTI U U 

INSBLK U U 

Key 
V Valid. 
C Valid; current record pointer updated. 
E Valid; EOD updated if writing at EOD; otherwise current record pointer is not changed. 

U Valid; EOD updated. 

Figure 4-3. Access Methods for Data Set Types 

5280 Assembler Language Instructions 181 



182 

READ (Read a Data Set Record) 

Mnemonic Data Set Format Record Operand 1 

Rn 

[,Gabel} 
BRn[(4)] 

, {~} II READ (1-15 

+ 
0 

When the READ instruction is executed, the specified record is copied from the 
physical buffer into logical I/O buffer. If the logical record is not within the 
physical buffer, logical records that include the specified record are read from the 
diskette until the physical buffer is filled. Then the logical record is copied 
into the logical buffer. If formatting is to be done, the data is moved and 
formatted from the logical buffer into the locations specified in the indicated 
format. 

WRT (Write a Record) 

Mnemonic Data Set 

WRT (1-15 

Format 

[,Iabel 

Record 

BRn[(4)] 

+ 
o 

Operand 1 

When the WRT instruction is executed with a format, the logical I/O buffer is 
blanked if the operand is coded B. The data is formatted and moved from the 
locations indicated in the format into the logical I/O buffer. The data is written 
from the logical I/O buffer into the physical buffer, at the position indicated by 
the record parameter. If you are using pointer I/O, the logical record address in 
the lOB is not modified unless you are extending the data set at EOD. 

for an SCS data set, you can use the binary register normally specified for the 
Record operand to specify SCS control characters. See SCS Conversion under 
Printer Instructions for more information about an SCS conversion data set. See 
Appendix B for a description of SCS control characters. 

WRTS (Delete a Record) 

Mnemonic Data Set Format Record Operand 1 

WRTS (1-15 [,Iabel ,0 

Operand2 

,B] ) 

Operand2 

,B] ) 

When the WRTS instruction executes, the current record is written as in the WRT 
instruction. In addition, the record is marked as deleted. 



For a basic or H exchange data set, a special address mark is used to flag a 
deleted sector. For an I or E exchange data set, the character specified by the 
DFLG parameter of the .DATASET control statement is placed in the last byte 
of a deleted logical record. 

If you issue a WRTS to a HDR1 label on cylinder 0, side 0 it is written as a 
physically deleted record (address mark). 

If you want to delete a record at a relative record number, read the record at that 
relative record number, then delete the record with the WRTS operation. You 
can use WRTS at EOD to create a deleted record. In order to read a deleted 
record you must use a relative record read instruction. 

WR TI (Insert a Record) 

Mnemonic Data Set Format Record Operand 1 

WRTI {1-15 [,Iabel, 0, 

When the WRTI instruction is executed, the current logical record is written into 
the position immediately preceding the current record. The write takes place as 
for the WRT instruction. Unless the record is inserted as the last record in the 
data set, the 5280 moves all records below the inserted record down one record 
position. If a deleted record is present, the records move down to the deleted 
record and the deleted record is removed. There must always be enough room 
for 1 record at the end of the data set even if there are deleted records in the 
data set. You must specify two physical buffers and a logical buffer in the 
.DAT ASET control statement for the data set in order to use the WRTI 
instruction. WRTI is not allowed for a shared data set, an SCS data set, or a 
pointer I/O data set. 

INSBLK (Insert a Block of Records) 

Mnemonic Data Set Operand 

INSBLK {1-15 "BRn • [ {~} 11 

The INSBLK operation inserts a number of logical records into the specified 
data set. The binary register (BRn) specifies the number of records to insert. 
The records are inserted immediately preceding the current record, and the 
records following the current record are relocated, with no data loss, to make 
room for the inserted records. 

If there is not enough room in the data set for the inserted records, external 
status is presented and the insert does not take place. 

If the instruction specifies 0, the operation is executed in overlapped mode. 
Otherwise it is executed in nonoverlapped mode. 

Operand2 

,B] ) 

5280 Assembler Language Instructions 183 



184 

If the current record pointer is set to EOO when this Instruction is executed, you 
must reposition the pointer to EOD to perform write-current operations at EOD. 

The I NSB LK instruction is not allowed for a shared data set, an SCS data set, or a 
data set that uses pointer I/O. To execute this instruction you must specify two 
physical buffers and a logical buffer in the .DATASET control statement that 
sets up the lOB for this data set. 

The inserted records are treated as deleted records and may be written with the 
WRTI or WRT instruction. 

The WRTI instruction performs a similar operation except only one logical record 
is inserted and written. The INSBLK instruction can save time when a large 
number of records must be added to a data set. Performance is improved with a 
greater buffer size for I and E exchange. 

Upon completion of the operation, the current record pointer is modified to 
point to the first of the inserted records. If an error occurs during the operation, 
the contents of the current record pointer are unpredictable. 

Search Operations 

The 5280 can search a data set for a record that agrees with one or more mask 
specifications. The 5280 reads each physical record into the physical record 
buffer, then searches each logical record for the mask specifications. If a record 
is found that matches the mask specifications, it is placed into the logical record 
buffer and the search ends. If no matching record is found, an external status is 
presented; the contents of the logical buffer depend upon the kind of search 
performed. You can specify a binary search to search the data set for a specified 
mask. Or you can specify a sequential search to search the data set or the current 
contents of the logical record buffer for one or more relational mask specifications. 

A binary search is performed to find the location within the data set of the logical 
record that matches the contents of the mask specification. The data field that is 
searched must be in the same record position of each record and must be in 
ascending order. 

A sequential search is performed to find a record that matches the contents of 
one or more mask specifications. Multiple mask specifications include relational 
and logical operators. There is no limit to the number of mask specifications you 
can include for each sequential search. The logical operations are logical AND 
and logical OR. The logical operations are performed from left to right with 
AND having priority over OR. You cannot group the mask specifications to 
give OR priority, such as: (FLD1 or FLD2) and FLD3. You can accomplish this 
operation, however, by expanding the specifications sequence to: FLD1 
AND FLD3 OR FLD2 AND FLD3. For each mask specification you may 
indicate only one logical operator and one relational specification. 

If translation is performed on the data set being searched, it occurs in the physical 
buffer before the logical records are searched. 

A record begins with position 1. The detailed format for the mask specifications 
is illustrated with each search operation. 



The format of the search instruction is as follows: 

Mnemonic Data Set Operand 1 Operand2 

SEARCH {1-15 ,BRn, H} 
where: 

Data Set indicates the data set to search. 

Operand1 indicates a binary register that contains the storage address of the 
mask specifications. The mask specifications must be loaded into a storage 
address before you issue the SEARCH instruction. The format of the mask 
specifications depends upon the kind of search performed. Each format is 
explained with the search type descriptions. 

Operand2 indicates the kind of search to perform. One of the search keywords 
must be specified, as follows: 

Operand2 
Entry 

F 

Description 

Forward sequential: an unordered data set is searched, starting 
with the record following the current logical record and ending 
with the desired record or the last data set record. Each record is 
searched for the mask specifications. If a matching record is 
found, it is written into the logical record buffer. If no matching 
record is found, the last logical record in the data set is placed 
into the logical record buffer and an external status (3702) is 
presented. 

If the current record pointer is at zero, the search starts at the 
beginning of the data set. 

5280 Assembler Language Instructions 185 



186 

Operand2 
1: ....... ....... , 
(continued) Description 

B 

The format of a mask specification for a type F search is as follows: 

Byte Contents 

0-1 Length of the mask. 
2 Relative and logical operators. The 5280 does not 

check bits 0 and 1 when it processes the first mask 
specification. However, every following mask 
specification must have either bit 0 or bit 1 turned 
on. Each mask specification can have one, and only 
one, of bits 2-7 turned on. If more than one is on, 
an external status (3417) is presented. 

Bit Meaning If 1 

0 logical AND 
1 logical OR 
2 L T (less than) 

3 GT (greater than) 
4 LE (less than or equal) 
5 GE (greater than or equal) 
6 EQ (equal) 
7 NE (not equal) 

3-4 Field position in which to begin search. 
5-6 Field position in which to end search. 
7-n ~ask. 

The mask specification can be repeated from byte O. 
Follow the mask in the last specification with hex 
0000 to indicate the end. 

Binary; an ordered data set is searched for a record that agrees with 
a mask specification. The mask specification is compared to a 
field that must be located in the same position of each record and 
must contain data in ascending order. If a record matching the 
mask is found, it is written into the logical record buffer. If 
a matching record is not found, the logical record immediately 
following the relative record position where the record would 
have been located is placed into the logical record buffer, and 
an external status (3702) is presented. However, if the record 
position would have been beyond the EOD, the last record in 
the data set is placed into the logical record buffer and an 
external status (3703) is presented. 



Operand2 
Entry 
(continued) Description 

R 

L 

The format of a mask specification for a type B search is as 
follows: 

Byte Contents 

0-1 ; length of the mask. 
2-3; field position in which to begin search. 
4-n; mask. 

Only one mask specification may be used. 

Reverse; an unordered data set is searched as for a forward 
sequential (F) search, except the data set is searched in a back
ward direction. The search begins with the record preceding the 
current logical record. If the current record pointer is at zero, 
the search begins at the end of the data set (at the last record). 
When a matching record is found, it is placed in the logical 
record buffer. If no matching record is found, the first record 
in the data set is placed in the logical record buffer. 

The format of the mask specification for a type R search is as for 
a type F search. 

Logical record; the contents of the current logical record buffer 
are searched for mask specifications. If the record matches the 
mask specifications, no external status is presented. If the 
record does not match, an external status (3702) is presented. 

The format of the mask specifications for a type L search is as 
for a type (F) search. 

Examples: The following mask specification uses a binary search to search a data 
set for a record containing 137, starting in position 15. 

Length Mask 
~ ~ 

X'0003000FFl F3F7' 
~ 

Position 

The following mask specifications search a data set for a record that satisfies 
one of the following three conditions. 

1. The record contains ABC in positions 1-5. 

2. The record contains DE in positions 1-10 AND ABC is not in positions 1-5. 

3. The record contains ABCDE in positions 6-20. 

5280 Assembler Language Instructions 187 



188 

PRINTER INSTRUCTIONS 

Printer instructions include instructions to open, write, and close a data set. A 
printer data set must be described in a .DATASET control statement as follows: 

• There must be one physical buffer; two physical buffers are allowed for double 
buffering unless the data set specifies share attributes, ses conversion, or early 
write. 

• If the logical buffer address is omitted or specified to be the same as the physical 
buffer address, pointer I/O is selected by the assembler. Pointer I/O is not valid 
for ses conversion data sets. 

• The logical record length must be specified. It must be less than or equal to 
the length of the physical buffer, and less than or equal to the space allocated 
for the logical buffer. 

• The data set type must be sequential write (SW). 

You can write a diskette data set to the printer if the data set specifications are 
valid for the printer. If a diskette data set has an ALLOe (allocate) instruction, 
the printer processes it as though it were an OPEN instruction. The binary register 
specified with the ALLOe instruction is ignored. 

SCS Conversion 

The format of the printed output can be altered with ses (standard character 
string) control characters. You can insert the control characters into your data 
stream, or you can use an ses conversion data set. See Appendix B for a descrip
tion of the ses control characters you can use if you are not using an ses conver
sion data set. If you are using an ses conversion data set, the 5280 inserts the 
control characters into the data set. A data set that has ses conversion specified 
in the .DATASET control statement is referred to as an ses conversion data set. 
The 5280 inserts the SCS control characters into the ses conversion data set 
record during a write operation when the record is moved from the logical buffer 
to the physical buffer. All I/O operations for an ses conversion data set are 
processed by the 5280 rather than by the I/O device, and must therefore be 
specified as nonoverlapped I/O. 



You can store a data set on a diskette and save diskette space by defining the data 
set as an SCS conversion data set. If you later write the data set from the diskette 
to the printer, do not again request SCS conversion on the data set. This would 
cause the 5280 to again try to perform the SCS conversion processing on a data 
set that already contains SCS control characters. A data set that already contains 
SCS control characters is referred to as an SCS data set. 

SCS control characters have EBCDIC values under hex 40. In order to prevent 
unpredictable printer results, do not place an EBCDIC below hex 40 into the 
logical buffer. If SCS control characters are in data that is to be translated, they 
must not be altered by the translation. See Translation under Miscellaneous 
Instructions in this chapter for more information. 

When a data set is processed during SCS conversion, presentation control characters 
are substituted for four or more blanks that occur on a single line. Blank characters 
that occur between the last nonblank character and the end of the line are replaced 
by a new-line control character. When the 5280 processes a line equal to or 
greater than the line number specified as the last line (LSTLN), an indicator (1115) 
is set on. Your program may at this time cause SCS control characters to be 
placed into the data stream. This is done by including a binary register with the 
write instruction. The binary register holds the address of a string of control data. 

When using this binary register to point to control data to insert into the data 
stream, the line size (LiNSIZ) and logical record length (LRECL) must be equal. 
The format of the data string is as follows: 

Byte 

o 

Bits 

0=1 

Meaning 

The 5280 spaces the number of lines given in byte 1 of this 
control string. If the 5280 is at or past the line specified 
for the LSTLN parameter of the .DATASET control 
statement, 1115 is set on. A value of zero causes only a 
carriage return. Bit 0 and bit 1 are mutually exclusive. 

1 =1 The 5280 skips to the line number given in byte 1. If 
the line number is greater than the number specified for 
the PGSIZ parameter of the .DATASET control statement, 
an error (2229) is reported and processing stops. A value 
of zero causes only a carriage return. Bit 1 and bit 0 are 
mutually exclusive. 

2=1 The 5280 inserts into the physical buffer the control 
characters specified in this data string. Byte 1 specifies the 
number, minus 1, of control characters to insert. Byte 2 is 
the first byte of control characters to insert. The control 
characters may be any of the control characters described 
in this appendix. The contents of the logical buffer are 
moved into the physical buffer, then the control characters 
are moved into the physical buffer. 

If you put in any control characters that change the 
presentation surface format (maximum number of lines 
per page or maximum number of characters per line), 
you must also update bytes 43 and 47 of the data set 
lOB to reflect these changes. If you put in control 
characters that change the line number or character 
position for the next character to be printed after the 
control string is completed, you must also update bytes 
41 and 46 of the data set lOB to reflect these changes. 

5280 Assembler Language Instructions 189 



190 

Byte 

2 

Bits Meaning 

3=1 The 5280 moves only control characters into the physical 
buffer; it does not move the contents of the logical buffer 
into the physical buffer. If bit 0 or bit 1 = 1, the control 
characters are generated by the 5280. If bit 2 = 1, the 
control characters are the ones specified in this data string. 

4-7 Reserved 

Space control if byte 0, bit 0 = 1. Skip control if byte 0, 
bit 1 = 1. Number minus 1 of bytes of control characters 
if byte 0, bit 2 = 1. 

First byte of control characters to move to physical 
buffer; used only if byte 0, bit 2 = 1. 

The .DATASET control statement that requests SCS conversion must specify a 
logical buffer. You cannot use pointer I/O and specify SCS conversion concurrently. 
The .DATASET control statement must also specify the logical record length 
(RECl) and the physical block size (PBSIZ), line size, and they must be equal to 
or less than 132 bytes. They may be overridden from the HDR1 label of a diskette 
data set. 

If you want to close a data set lOB that requested SCS conversion, then reopen 
the same data set lOB, you must reinitialize certain bytes of the lOB. (The 
bytes at displacement hex 40, 41, and 42 must be set to hex 00. The 2 bytes at 
displacement hex 44-45 must be reinitialized to the symbol you want to use to 
represent unprintable EBCDIC values [SGEA]). Reloading the program will 
accomplish this reinitialization. 

Pointer I/O 

Pointer I/O may be used for a printer data set unless SCS conversion is specified. 
The logical records are blocked and deblocked directly to and from the physical 
buffer. The logical buffer address points to the address, within the physical 
buffer, where the next logical record is to be placed. See Pointer I/O in Chapter 2 
for more information. 

Early Write 

Early write may be specified for any printer data set to transfer one logical record 
to the printer for each write operation. If early write is not specified, the data is 
not sent to the printer until the physical buffer is full. Early write is always used 
for SCS conversion data sets whether or not it is specified in the .DATASET 
control statement. Early write data sets must not specify double physical 
buffering. 



Share Data Sets 

The conventional method for using printer data sets is to open a data set, issue 
write instructions, close the data set, then open the next data set. However, if 
you want to keep an lOB open but also let other lOBs use the same printer, you 
can use share data sets. A share data set has share attributes specified in the 
.DATASET control statement that sets up the data set lOB. The lOBs that 
share a printer may be in the same partition or in different partitions. Do not use 
double physical buffering for a share data set; use one physical buffer and one 
logical buffer. Pointer I/O is allowed for shared data sets. It is recommended 
that you always specify early write for a share data set so the requirement for a 
full physical buffer does not prevent data from being sent to the printer. 

When more than one share data set lOB is open to the same printer, the printer 
uses the specifications (such as lines per page and line length) from the last 
lOB that was opened. For example, if the first share lOB specifies line length 
of 80 characters, then a second lOB is opened that specifies line length of 132 
characters, the printer uses 132 characters for line length for printing data from 
either data set. 

A share data set lOB retains control of the printer until the physical activity for 
that data set is complete (data has been moved from the physical buffer to the 
printer, and the printer has completed printing the data). If a second 
share data set lOB tries to use the printer (with an OPEN or a WRT instruction) 
before the physical activity for the first share lOB is complete, a 2755 warning 
message is reported to the second share lOB. Subsequent retries return the 2755 
warning message to the second lOB until the physical activity for the first lOB 
is reported to be complete. The second share lOB then takes control of the 
printer until the physical activity for the second share lOB is reported to be 
complete. 

It is possible for the printer to report physical activity complete for an lOB 
before all the data you expect from the lOB has been printed. This can happen, 
for example, when the 5280 must process other instructions for the lOB between 
the WRT instructions. To avoid letting a second share lOB from gaining unexpected 
access to the printer, you may wish to use an indicator that prevents another 
lOB from using the printer and is turned off only when all the WRTs you expect 
from the first lOB have been executed. Any share lOB would check this indicator 
when it needs the printer, and would try to share the printer only when the 
indicator is off. Or, you can avoid using share data sets; open and close each 
data set lOB as it needs the printer. 

5280 Assembler Language Instructions 191 



192 

Error Recovery Procedures 

Error recovery depends upon: (1) the instruction stored in the data set lOB when 
the error occurred, and (2) whether the operation that was being executed when 
the error occurred had completed processing data. If the operation had not 
completed processing data when the printer reported external status, the 
instruction may need to be reissued for that operation. For example, if a write 
operation is being executed and the printer reports external status before the 
logical record has been processed, the WRT instruction must be reissued to reload 
the logical buffer. Unless external status is reported when an OPEN is in the 
data set lOB, the 5280 sets byte 13, bit 5 of the data set lOB when external status 
is reported before an operation has completed processing data. If the operator 
presses the Reset key, the 5280 goes to your printer external status subroutine. If 
your subroutine clears the condition and then issues a RETURN, the 5280 returns 
to reissue the instruction if byte 13, bit 5 is on, and returns to the next sequential 
instruction if the bit is not on. (This bit can be tested with the I FDSI instruction, 
using dsin 13.) If external status occurs when an OPEN is in the data set lOB, the 
5280 always returns to the instruction following the OPEN when the RETURN is 
issued. Your program must reissue the OPEN if you want to continue with that 
lOB. 

A Directed Close 

When a CLOZ is issued while byte 13, bit 5 is on, the data set is closed and any 
unprinted data is lost. This is referred to as a directed close. You may want to 
use a directed close when the external status condition cannot be cleared. The 
closed data set can then be opened for another printer. 

External Status during Close 

If the printer reports external status when a CLOZ is in the data set lOB, the 
5280 checks byte 13, bit 5 of the data set lOB when the RETURN is issued. If 
the bit is on, the 5280 reissues the CLOZ instruction. This causes a directed 
close, and can result in a loss of data. To avoid loss of the unprinted data, you "can 
(1) have your subroutine keep checking byte 0, bit 2 (dsin 2) of the data set lOB 
until it is turned off (physical activity complete), then issue the RETURN, (2) 
direct the operator to clear the condition and allow the printer to finish printing 
before pressing the Reset key, or (3) if the printer is still printing (2292 error), 
direct the operator to let the printer finish printing before pressing the Reset key. 

Operator Determined Error Recovery 

You can let the operator determine error recovery by using function keys or key 
sequences. For example, the Cmd, End of Job key sequence can be used to issue 
a CLOZ for a directed close. Another function key or key sequence could call a 
subroutine to check byte 0, bit 2 (dsin 2) of the data set lOB, and issue a close 
when this bit is off; this could be used instead of the Reset key after a printer error. 



Discontinuing a Print Job from the Printer 

If you want to discontinue a print job from the printer before the printing is 
completed, use the Cancel switch rather than the Stop switch on the printer. 
Cancel causes a 2601 error; a CLOZ should be issued for this condition in your 
program. The printer will finish printing the data that has been sent from the 
physical buffer in main storage before it stops printing. If you use the Stop switch, 
the data that has been sent from the physical buffer in main storage is not 
cleared from the printer buffer when the printer stops printing; this data is 
retained until the Start switch is used, then it is printed. 

The format of the printer instructions is as follows: 

Mnemonic Data Set Format Operands 

OPEN ( 1-15) 

WRT (1-15 [,label ,0 ,{~} ,B]) 

WAIT (0-15) 

CLOZ (1-15) 

where: 

Data Set specifies the data set number. This is the DSN parameter of the 
.DATASET control statement that set up the lOB for this data set. If data set 
is specified as 0 in the WAIT instruction, it specifies the keyboard rather than 
a data set. Do not specify 0 for any other instruction. 

Format specifies the label of the edit format to use; specified only for the 
WRT instruction. Do not specify a format if you use pointer I/O. 

Operands are explained for each instruction in the operation description. 

OPEN (Open a Data Set) 

Mnemonic Data Set 

OPEN ( 1-15) 

When an OPEN instruction is executed, the printer specifications are initialized 
to the following: 

Page size = 1; the forms control can page forward at every line. 
SGEA = (-,1); print one dash and continue printing for unprintable characters. 
Maximum line size = logical record length (from the .DAT ASET control statement). 

These printer specifications can be altered by SCS control characters in the data 
stream. See Appendix B for a description of the SCS control characters. 

The OPEN instruction is always processed in nonoverlapped mode. The data set 
must be a sequential write data set. The lOB is placed on the lOB chain, and the 
open flag in the data set lOB is set to indicate that the data set is open. 

5280 Assembler language Instructions 193 



194 

WR T (Write a Record) 

Mnemonic Data Set Format Operands 

WRT (1-15 [,Iabel ,0 , {~} ,Bl) 

When the WRT instruction is executed with a format, the logical I/O buffer is 
blanked if the operand B is coded. The data is formatted and moved from the 
locations indicated in the format into the logical I/O buffer. The data is written 
from the logical I/O buffer into the physical buffer unless you are using pointer 
I/O. Unless early write is specified, the logical records are not written from the 
physical buffer until the physical buffer is full. The zero, for write current, may 
be omitted, but the comma must be retained if an operand to the right is 
specified. When the data has been sent from the physical buffer to the printer, 
it is placed into a printer device buffer. The physical buffer is free to accept more 
logical records while the data in the printer device buffer is being printed. 
Therefore, a print error can occur for data that is already sent from the physical 
buffer. 

If 0 is specified, the write is executed as overlapped I/O. See Overlapped I/O 
in Chapter 2 for more information about overlapped I/O. If N is specified, the 
write is executed as nonoverlapped I/O. 

WAIT (Wait for I/O Completion) 

Mnemonic Data Set 

WAIT (0-15) 

The WAIT instruction is used when you are processing with overlapped I/O. It 
is processed as described for the diskette instructions to prevent modification of 
the logical buffer prior to completion of the I/O instruction last issued to each I/O 
device. 

CLOZ (Close a Data Set) 

Mnemonic Data Set 

CLOZ (1-15) 

When the CLOZ instruction is executed, the 5280 checks to determine if the 
data that was sent to the printer for the data set has completed printing. If it 
has, the data set is closed; the lOB is removed from the lOB chain and the data set 
open flag in the lOB is turned off to indicate that the data set is not open. If it 
has not completed printing, and if it is the only lOB on the chain, the 5280 will 
wait up to three minutes (approximately) for the printing to be completed. If 
the printing is completed within this time, the data set is closed. If the printing 
is not completed, a 2292 error for failure to close is reported. If more than one 
lOB is on the lOB chain, the time limit is extended. If a directed close is 
issued before the data has completed printing, the data still within the printer 
device buffer and the data that is still within the physical buffer in main storage 
is lost. See Error Recovery Procedures under Printer Instructions for a description 
of a directed close. 



KEYBOARD AND DISPLAY INSTRUCTIONS 

The keyboard and display instructions include the key entry commands and 
keyboard operations. The commands initiate formatted data entry through the 
keyboard. Keyboard operations allow unformatted key entry, cause limited data 
movement, and perform other tasks related to the keyboard and display screen. 

A command or an operation can be requested by a program executing in either a 
foreground or background partition. While a keyboard operation is being 
processed for a partition, the keyboard attached to the partition is locked. If a 
keyboard operation is requested while a key entry command is in process, data 
entry under that command is suspended at least until the operation is completed. 

Key Entry Instructions 

A formatted record can be entered only when an ENTR command is being 
processed. An ENTR command may be issued by a program loaded into any 
partition. However, the partition must be attached to its associated keyboard. 

When the 5280 encounters an ENTR while it is processing instructions within a 
partition, it unlocks the keyboard attached to that partition. The keyboard/ 
display may then accept a record. This input record is formatted according to a 
screen format control string, which is generated from a series of .SFMT control 
statements and is specified in the ENTR command. The screen format control 
strings are described in Chapter 2 under Screen Formats. 

During key entry under an ENTR command, an external status condition may occur. 
External status conditions are described in Chapter 6 under Keyboard/Display 
External Status. When an external status condition occurs, the keyboard/display 
locks the keyboard to temporarily suspend key entry. It sets an external status bit 
and specifies the condition number in the appropriate partition control area 
locations, then it notifies the 5280. When the 5280 checks the partition control 
area and finds an external status condition outstanding, it executes the appropriate 
external status subroutine. This subroutine handles the condition and determines 
when the keyboard is unlocked and when the external status bit is turned off. If 
the interrupted screen format is not completed, return from the external status 
subroutine is made to the place in the format control string where the interruption 
occurred. If the screen format is completed, return is made to the instruction 
following the ENTR instruction. 

5280 Assembler Language Instructions 195 



196 

The format for the key entry command and external status subroutine instruc-
tions is as follows: 

Mnemonic Operands 

ENTR (label [,BRn , {~} ]) 

RESUME [(B)] 

ENABLE (label [,POP] ) 

RESCAl (BRn ,label) 

RETEXT [(BRn)] 

RESMXT [(BRn)] 

where: 

Operands depend upon the particular instruction and are explained with the 
operand description for each instruction. 

ENTR (Accept key Entry) 

Mnemonic Operand1 Operand2 Operand3 

ENTR (label [, BRn , {~} ]) 

where: 

Operand1 specifies the screen format control string with which to format the 
input record. Enter the lABEL parameter from the .SFMTST statement of the 
screen format you wish to use. 

Operand2 specifies that the functions of the current record buffer (CRBA) 
and the previous record buffer (PRBA) are alternated. The binary register 
(BRn) always holds the address of the buffer that was used as the current 
record buffer for the most recently completed ENTR, and that will be used as 
the previous record buffer for this ENTR. If the binary register is omitted, 
you must use data movement instructions, such as MVC instructions, to move 
the previous record to the PRBA before each new record is input into the 
CRBA. 

Operand3 indicates whether the ENTR is processed an overlapped (0) or 
nonoverlapped (N) I/O. This is an optional parameter that defaults to 
nonoverlapped I/O. See Overlapped I/O in Chapter 1 for more information. 



When the 5280 encounters an ENTR command, it sets a bit in the partition 
control area to indicate to the keyboard/display that an ENTR command is 
outstanding. The keyboard/display unlocks the keyboard and processes the 
input of the record, according to the screen format specified by operand 1. 
The prompts and display attributes specified in the screen format are moved to the 
screen in the order in which they were coded. The input data is checked 
against the screen format input field definitions. All valid data is placed into the 
input buffer designated to hold the current record. 

If operand 2 specifies the binary register (BRn), the functions of the current 
record buffer and previous record buffer are alternated. If operand 3 specifies 0, 
overlapped I/O occurs. 

RESUME (Resume Key Entry) 

Mnemonic Operand 

RESUME [(B)] 

where: 

Operand is an optional entry to reposition the cursor after an external status 
hex 04 or 05 condition. 

When data entry under an ENTR command is interrupted by an external status 
condition, the appropriate external status subroutine is called. If a RESUME is 
encountered in the external status subroutine, the keyboard is unlocked and 
input from the keyboard resumes under the interrupted ENTR command. 
RESUME does not return control from a subroutine, nor does it clear the external 
status bit in the partition control area. 

If the operand (B) is included with the RESUME instruction, it is ignored except 
after an external status hex 04 or 05 condition. After an external status hex 04 or 
05 condition, which indicates a forward or backward pass over an RG specification, 
the cursor is repositioned to the last manual position preceding the RG 
specification. There must be at least one manual data position defined preceding 
the RG specification when the RESUME(B) instruction is executed. 

If external status hex 04 has occurred, and the operand (B) is omitted, the 
format resumes processing in a forward direction with the format specification 
following the RG specification. 

RESCAL (Resume and Call Subroutine) 

Mnemonic Operand1 Operand2 

REseAL (BRn label) 

where: 

Operand1 specifies a binary register that contains either the index into the 
label table or a displacement. 

Operand2 specifies the label of a subroutine or a label table. 

5280 Assembler Language Instructions 197 



198 

When a RESCAL command is encountered in an external status subroutine, the 
keyboard is unlocked and the piocessing of the int€iiupt€d ENTR command is 
resumed. At the same time, the subroutine specified by the operands is called 
and executed. 

If the operands specify a label with no binary register, the call is made to the 
subroutine at that label. If a subroutine label is specified with a binary register, 
the contents of the binary register are added to the address of the subroutine and 
the call is made to the resulting address. If a binary register is specified with the 

label of a label table, the contents of the binary register are used as the index into 
the label table. The call is made to the address at that index. 

This instruction can be used when the cursor enters a screen format field that 
has CNTL = RG specified in the control string specification for that field. 
Entering the field causes external status condition 4; the 5280 calls the appropriate 
subroutine, which includes a RESeAL command. The processing of the ENTR 
continues, and the 5280 calls the subroutine specified by the RESeAL instruc
tion. This subroutine executes, probably processing the data entered into the 
field, while input for successive fields of the input record are being accepted by 

the keyboard. RESeAL does not turn off the external status bit in the parti-
tion control area or return control from the external status subroutine. 

ENABLE (Reset External Status Bit) 

Mnemonic Operand 

ENABLE [(label [,POP])] 

Whenever an external status condition occurs during the processing of an ENTR, 
the external status bit is set in the partition control area. If an ENABLE 
instruction is encountered in the external status subroutine that is called, the 
bit is cleared. 

If no operand label is included in the instruction, the next sequential instruc

tion is executed. 

If a label is included in the instruction, a branch is made to the statement at 
that label. 

If POP is coded, BR18 is decremented by two. It points no longer to the last 
entry into the partition subroutine stack, but to the entry prior to the last entry. 
The ENABLE instruction may be used when the subroutine is terminated with 
a GOTO rather than a return operation. 

Note: If a RESUME or RESeAL is issued before an ENABLE, you can get a 
double external status condition, especially with a forward or backward pass over 
an RG. 



RETEXT (Subroutine Return and Enable External Status) 

Mnemonic Operand 

RETEXT [(BRn) ] 

This instruction acts as the RETURN and ENABLE instructions combined. The 
subroutine is terminated and the external status bit is turned off. BR18 is 
decremented by two, and the return is made to the address in the partition 
subroutine stack pointed to by BR18. If the operand binary register is included, 
the contents of the binary register are added to the address in the partition stack, 
and the return is made to the resulting address. 

RESMXT (Retext and Resume) 

Mnemonic Operand 

RESMXT [(BRn)] 

This instruction acts as the RETURN, ENABLE, and RESUME instructions 
combined. The subroutine is terminated, the external status bit is turned off, 
and data entry processing is resumed. BR18 is decremented by two, and the 
return is made to the address in the partition subroutine stack pointed to by BR18. 
If the operand binary register is included, the contents of the binary register are 
added to the address in the partition stack, and the return is made to the resulting 
address. 

Note: Use of RESMXT avoids possible double external status that can result 
from issuing a RESUME or RESeAL before an ENABLE. 

Keyboard Operations 

Instructions for keyboard operations may be issued at any location in your 
program. If a keyboard operation is issued while an ENTR command is being 
processed, data entry under the command is suspended at least until the operation 
is completed. 

5280 Assembler Language Instructions 199 



200 

The format of keyboard operation instructions is as foiiows: 

Mnemonic Operand1 Operand2 

BUZZ 
CLICK 
CNENTR 
DISPEX 
DISPST 
KACCPT (BRa, BRb) 
KATTCH 
KDETCH 
KERRCL (BRa) 
KERRST (BRa, BRb) 
KEYOP (X'II' LBRa ,BRb] ) 
READMG (BRa, BRb) 
RSTMG 
REPFLD 
RTIMER (BRa) 

The operands depend upon the particular mnemonic. They are described in the 
operation description for each mnemonic. 

Note: Repeated use of these instructions may result in a degradation of performance 
because the schedule for processing the partitions is altered. 

BUZZ (Sound Buzzer) 

Mnemonic 

BUZZ 

The BUZZ instruction sounds the alarm on the keyboard associated with the 
partition. The duration of the alarm is approximately 180 milliseconds. 

This instruction can be used to signal the operator for various purposes. For 
example, during key entry the operator may not watch the screen at all times. 
The buzzer can bring the operator's attention back to the screen for a particular 
prompt, when a screen format control string has completed, after a record advance, 
or when a background program attaches to the keyboard. 

CLICK (Sound Click) 

Mnemonic 

CLICK 

The CLICK instruction clicks the keyboard associated with the partition. The 
CLICK instruction could be used after accepting keystrokes under the 
KACCPT operations, to give a response click. 



CNENTR (Cancel Current ENTR) 

Mnemonic 

CNENTR 

The current enter command is terminated. The end of format control string 
functions are executed, and data entry is no longer accepted by the keyboard/ 
display. On the status line, the counters, insert mode symbol, keyboard shift, 
and hex display positions are set to blanks. The command opcode is set to zero. 

If there is no current ENTR outstanding, the CNENTR acts as a null operation 
and the next sequential instruction is executed. 

This instruction may be used when an error occurs in a field and the operator 
indicates that no further processing of the record should be done. It can also be 
used to exit from a marked record following a record mark. 

If this operation is executed in an external status subroutine during the proces
sing of a nonoverlapped ENTR, the return issued in the subroutine is made to the 
interrupted ENTR. The ENTR is reissued and processing begins at the start of 
the format control string specified. 

DISPEX (Display Extra Line) 

Mnemonic 

DISPEX 

The top line on the screen can display either the status line or an extra line used 
by the screen format. The status line is referred to as row 0, and the extra line 
is referred to as row 1. Both row 1 and row 0 are always maintained, although 
only one may be displayed at any given time. See Nondisplay of the Status Line 
in Chapter 2. 

The DISPEX instruction is used when the extra line (row 1) is being used in the 
screen format, and the status line has been displayed in its place to report an 
error. The DISPEX instruction returns the extra line to the screen, replacing the 
status line. 

DISPST (Display Status Line) 

Mnemonic 

DISPST 

The DISPST instruction displays the status line (row 0) in the top line of the 
screen, replacing the extra line (row 1). The extra line is maintained and may be 
returned to the screen with the DISPEX instruction above. 

5280 Assembler Language Instructions 201 



202 

KACCPT (Accept Keystrokes and Store) 

Mnemonic Operand1 Operand2 

KACCPT (BRa, Brb[(4)] ) 

where: 

Operand1 indicates a binary register that contains the storage address to which 
the keystroke data is stored. 

Operand2 indicates a binary register or binary double register. If a 2-byte 
binary register is specified, it contains the information described for bytes 0 
and 1 below; the keystrokes are not displayed as they are entered. If a 4-byte 
binary double register is specified, it contains the information described for 
bytes 0 to 3 below; the keystrokes are displayed as they are entered. 

Byte 

0 

1 
2 
3 

Bit 

0 

1-4 
5 

6-7 

0-7 
0-7 
0-7 

Meaning 

Option flags: 
=1 if the keyboard is to sound a response click for each 
keystroke. 
=0 if the keyboard is not to sound a response click. 
Not used. 
=1 if the monocase function is enabled. 
=0 if the monocase function is not enabled. 
Keyboard shift flags: 
=00 for Alpha shift 
=01 for Num shift 
=10 for special characters shift 
Number of keystrokes to accept, minus 1. 
Row number where keystroke display begins. 
Column number where keystroke display begins. 

If the operand 2 register is not a binary double register, the number in the low-order 
byte specifies one less than the number of keystrokes to accept. If bit zero of 
the high-order byte of the operand2 register (BRb) is not zero, the keyboard sounds 
a response click for each keystroke. If bit 5 of the high-order byte is not zero, 
keystrokes are converted to their uppercase equivalent as they are entered. The 
keyboard is set to the shift indicated by bits 6-7. The keystroke data is stored 
in main storage, starting at the byte specified by the operand 1 binary register 
(BRa). The keystrokes are not displayed on the screen. 

If operand 2 is a binary double register, the data is displayed as it is entered. 
The rightmost binary register contains the row and column position where the 
first accepted keystroke is displayed. The row number is specified in the high 
order byte of the rightmost binary register, and the column number is specified in 
the low-order byte_ The leftmost register contains data as described above. 



The keystroke data is stored in byte pairs. The first byte of each pair contains 
the keystroke scan code, and the second byte contains the EBCDIC code 
generated from the scan code. The data is not applied to an outstanding ENTER 
command. Shift keys are not stored into main storage; although the keyboard is 
shifted, they do not effect the keystroke count. Command key sequences are 
stored except when the Command key is followed by a console request. In this 
case, only the command is stored before the console function is performed. Hex 
key sequences and diacritic key sequences are stored as two keystrokes. The 

scan code and EBCDIC for control keys such as the Enter key are stored, but 
the control function is not performed. 

If this instruction is issued from a foreground partition, there should be no 
ENTER command outstanding. If this instruction is issued from a background 
partition, the background partition must be attached to the associated keyboard. 

This instruction could be used after an error status is displayed, to accept the 
Reset key. 

KATTCH (Attach Keyboard/Display to Partition) 

Mnemonic 

KATTCH 

When the KATTCH operation is executed, the partition that issued the KATTCH 
instruction is attached to the associated keyboard. All keystrokes from the 
attached keyboard are directed to the attached partition. A partition must be 

attached to a keyboard in order to perform an ENTR, a KACCPT, or a keyboard 
operation to pass scan code (KEYOP(OA)) or to pass EBCDIC (KEYOP(OB)), 
KERRST, KERRCL, perform keyboard function (KEYOP(ll )), or open 
keyboard (KEYOP(15)). 

The KATTCH operation can be initiated by the KATTCH instruction or by an 
operator initiated console request. 

Each foreground partition is permanently associated with (assigned to) a 
keyboard/display. A background partition is associated with the keyboard/display 
that was attached to the partition that loaded the background partition. One 
foreground and several background partitions can be associated with a keyboard/ 
display, but only one partition can be attached to a keyboard/display at any 
given time. If all background partitions associated with a keyboard/display are 
detached (see the KDETCH instruction), the associated foreground partition is 
assumed to be attached in that all function keys and command key sequences that 
normally cause an external status condition are directed to the foreground 
partition. Also, an automatic attach operation is performed each time a fore
ground partition issues a keyboard I/O instruction, so the foreground partition 

does not have to issue a KATTCH instruction. 

If the attach operation is successfully completed, control returns to the second 
instruction following the KATTCH instruction. If the operation is not completed 
successfully, perhaps because another background partition is attached or the 
foreground partition is performing I/O, control returns to the first instruction 
following the KATTCH instruction. 

5280 Assembler Language Instructions 203 



204 

When a partition is successfully attached to a keyboard/display, the status line 
is modified to dispiay the partition number of the newiy attached partition. 

KDETCH (Detach Keyboard) 

Mnemonic 

KDETCH 

The KDETCH instruction releases the keyboard. It is issued by the program in 
the partition that is currently in control of the keyboard, or by the common 
function operator detach (CFPERATT) routine in response to the Attn 
(Attention) key. Normally, it is better to let the operator control the detach 
with the Attention key rather than to issue a KDETCH instruction from the 
program. 

It is essential that a KDETCH operation be executed when a partition no longer 
needs the keyboard. Failure to detach the keyboard inhibits any other partition 
from attaching to the keyboard. See CFPERATT and CFDETFGD under 
Common Function Routines in Chapter 6 for more information. 

KERRST (Request Keyboard Error Mode) 

Mnemonic Operand1 Operand2 

KERRST (BRa, BRb) 

where: 

Operand1 indicates a binary register that contains an attribute mask and 
control information for the display of the status line. The format of the 
information is as follows: 

Byte Bit 

0 
0-2 
3 
4 

5 
6 
7 

0 

2-7 

Meaning If 1 

Attri bute Mask 
Reserved 
Column separators displayed 
Blink 
Underscore 
Highlight 

Reverse image 
Control Information 
Display status line if it is not currently being displayed 
Start in column 1. 
(if bit 1 =0, start in column 3) 
Message length minus 1, up to 63. If 63 is specified, it 
indicates 0 bytes. 

Operand2 indicates a binary register that contains the storage address of the 
message to move to the status line. 

The KE R RST instruction places the keyboard/display in software error mode. 



When the keyboard/display unit is in error mode, all data keys, function keys, and 
command key sequences are ignored. However, if the KEYOP instruction for 
keyboard operation hex 11 (perform keyboard function) is issued, the keyboard 
function is performed regardless of the error mode as long as the keyboard is in 
an appropriate state. 

Bits 3-7 of the attribute mask are exclusively ORed with bits 3-7 of the row 
attribute byte (which determines the display of the row) for the top line of the 
screen. If the status line is not being displayed, the extra line will have the 

attributes specified. 

Bytes are moved from the storage address specified by operand2 (BRb) to the 
status line. The bytes are translated through the display translate table, and 
attributes are translated and passed. The bytes moved from storage overwrite the 
original status line data, and the original status line data is destroyed. 

If the status line is currently being displayed when this instruction is executed, 
the indicated message is displayed in column 1 or column 3, according to byte 1, 
bit 1 of operand1 (BRa). If the status line is not currently being displayed, the 
message is not displayed if byte 1, bit 0 contains 0; it is displayed if it contains 1. 

This operation is invalid if the keyboard/display is already in error mode, or if 
issued from an unattached partition. 

The KE R RST can be used by the program to signal a software detected error, 
such as in a self-check field edit. An example of the K E R RST instruction follows 
the KERRCL operation description. 

KERRCL (Request Keyboard Error Mode Reset) 

Mnemonic Operand1 

KERRCL (BRn) 

where: 

Operand1 specifies a binary register that contains an attribute mask and 
control information, as for KERRST. 

The KER RCL instruction takes the keyboard/display unit out of software error 
mode. A change of screen attributes and display is allowed, according to the 
contents of the binary register (BRn). This register contains an attribute mask 
and control information as described for KER RST. If byte 1, bit 0 =1, and the 
KERRST operation caused the status line to replace the extra line in the top row 
of the screen, the status line is removed from the screen and the extra line is 
redisplayed. Byte 1, bit 1 indicates the column in which the KERRST message 
started. Byte 1, bits 2-7 indicates the number bytes (of the KERRST message) to 

replace with blanks when the KERRCL executes. Byte 0, the attribute mask is 
as for KERRST and can restore the attributes changed by the KERRST operation. 

If an ENTR is outstanding, and bits 2-7 of byte 1 do not equal 0, the field shift, 
current position counter, insert mode indicator, and positions remaining in 
current field counter are restored in the status line. 

5280 Assembler Language Instructions 205 



206 

The KERRCL operation is invalid unless a KERRST operation has set the 
keyboard/display in error mode. It is invalid if issued from an unattached 
partition. 

After a KERRST operation is executed, the KERRCL operation must be 
executed ir. order to enable the keyboard. 

Example: The program can branch to ERRCK when an error in a self-check field 
edit is encountered during key entry. 

ERRCK: KERRST (BRX, BRY) ; keyboard in software error mode, 
* 

* 

* 

blinking error message is displayed. 
KACCPT (BRXX, BRYY) ; accept the Reset key. 
Your program code to resolve the error. 
KERRCL (BRX) ; keyboard software error mode cleared, 

blink attribute removed, message blanked. 
RESUME ; accept key entry under current ENTR. 

The program can now request that the invalid field be rekeyed. 

KEYOP (Keyboard Operation) 

Mnemonic Operand1 Operand2 Operand3 

KEYOP (X'II' [,BRa] [,BRb] ) 

where: 

Operand1 specifies the keyboard operation code that indicates the operation 
to perform. 

Operand2 indicates a binary register that contains the parameterl information 
for the operation. 

Operand3 indicates a binary register that contains the parameter2 information 
for the operation. 

The KEYOP instruction can perform operations that have no mnemonics. It can 
also perform several operations that do have their own instruction mnemonics. 
These mnemonics are listed below. For mnemonics that require operands, the 
entries for operandl and operand2 are used for parameterl and parameter2, 
respectively. Each of these mnemonics is described individually and is not 
repeated for the KEYOP instruction. 



Keyboard 
OpCode Mnemonic Parameter 1 Param8ter2 

10 BUZZ 
14 CLICK 
05 CNENTR 
OC DISPEX 
00 DISPST 
09 KACCPT (BRa, BRb) 
OF KERRCL (BRn) 
OE KERRST (BRa, BRb) 
17 READMG (BRa, BRb) 
16 RSTMG 
03 RTIMER (BRn) 

Example: To perform the KERRST operation with the KEYOP instruction, code 
the following KEYOP instruction: 

KEYOP (X'OE', MASKBRN, ADDRBRN) 

The KEYOP instructions for operations that have no mnemonics (and can be 
performed only by the KEYOP instruction) are as follows: 

Operation 

Change row attri bute 
Open keyboard/display 
Pass scan code to keyboard 
Pass EBCDIC to keyboard 
Perform keyboard function 
Position screen position pointer 
Release character and field edits 

Keyboard 
OpCode 

07 
15 
OA 
OB 
11 
08 
06 

Mnemonic 
Keyboard 
OpCode Operation 

KEYOP (X'06') Release character and field edits 

The following character and field edit checks are discontinued for the current field: 

• Character set check 

• Data required 

• Blank check 

• Mandatory enter 

• Mandatory fill 

The checks are discontinued only until the field is exited in the forward or 
backward direction. If the same field is later advanced or backspaced into, the 
checks will be in effect. 

5280 Assembler Language Instructions 207 



208 

Mnemonic 

KEYOP 

Keyboard 
OpCode 

(X'07' 

Parameteri Parameter2 Operation 

,BRa ,BRb) Change row attribute 

Parameterl specifies a binary register that contains, in the low-order byte, the 
number of the row on the screen to be effected. The valid range for the row number 
is from 1 to the maximum number of lines on the screen. Parameter2 specifies a 
binary register that contains two 1-byte masks. The format of the masks is as follows: 

Bits Meaning 

0-1 System Indicator 
00= None 
01= None 
10= Dash (-) 
11 = Solid rectangle ( • ) 

2 1= Valid row starting attribute. This bit must equal 1 for bits 3-7 to be 
valid. 

0= Invalid row starting attribute. Bits 3-7 are ignored. 
3 1= Column separators are displayed. 

0= Column separators are not displayed. 
4 1 = Blink the row 

0= Do not blink the row 
5 1= Underline the row l 

0= Do not underline the row 
6 1 = High intensityl 

0= Normal intensity 
7 1 = Reverse imagel 

0= Do not reverse image 

When the operation is executed, the attribute byte (which determines the display 
of the row, maintained by the 5280 for the row specified in parameterl is logically 
ANDed with the mask in the high-order byte of parameter2. The result is then 
exclusively ORed with the mask in the low-order byte of parameter2. 

Mnemonic 

KEYOP 

Keyboard 
OpCode 

(X'08' 

Parameter1 Operation 

,BRn) Change cursor address 

The contents of the binary register (BRn) specify the row (high-order byte) and 
column (low-order byte) to place in the cursor address bytes of the I/O control 
block. The keyboard/display uses this address as the screen position pointer to 
determine the placement of fields and prompts on the screen during formatted key 
entry. 

If this operation is performed before an ENTR command that specifies a format 
control string with CNTL = CP (continue at current screen position) in the 
.SFMTST statement, the format is initialized at the screen position specified in 
the binary register (BRn). 

llf bits 5, 6, and 7 equal 111, the display of the row is inhibited. 



If this operation is performed while an ENTR command is being processed, all 
subsequent screen definitions for fields and prompts originate at the position 
specified by the binary register (BRn). The cursor does not move over intervening 
fields and prompts. 

Note: Use of this operation while an ENTR command is being processed is not 
recommended. 

Mnemonic 

KEYOP 

Keyboard 
OpCode 

(X'OA' 

Parameter1 Operation 

,BRn) Pass scan code from storage to keyboard 

The binary register (BRn) contains the address in main storage of one scan code. 
This scan code is moved to the keyboard associated with the partition. The scan 
code is then processed as if it originated from the keyboard. 

Mnemonic 

KEYOP 

Keyboard 
OpCode 

(X'OB' 

Parameter1 Operation 

,BRn) Pass EBCDIC from storage to keyboard 

The binary register (BRn) contains the address in main storage of one EBCDIC 
code. This EBCDIC code is moved to the keyboard associated with the partition. 
If the EBCDIC code corresponds to a data key EBCDIC or a function key EBCDIC, 
it is then processed as if it originated from the keyboard. The associated scan code 
is set to zero. 

EBCDIC codes 29 (clear screen) and 2A (clear status line) are ignored in this 
operation because they are not function key EBCDICs. These functions can be 
performed by specifying keyboard operation code 11 (Perform Keyboard 
Function). 

Mnemonic 

KEYOP 

Keyboard 
Op Code 

(X'11' 

Parameter1 Operation 

,BRn) Perform keyboard function 

The low-order byte of the binary register (BRn) contains a function EBCDIC 
(hex 01 to 2C). If the EBCDIC is a function key EBCDIC, it is processed as if 
the key corresponding to that function has been pressed, with the following two 
exceptions. 

1. The keyboard bit map is not checked to determine whether the program 
handles the function. 

2. If the keyboard is software error mode, the function executes if the state 
of the keyboard is appropriate. If the function is 29 (clear screen) or 2A 
(clear status line), it executes regardless of the state of the keyboard. If a 
function EBCDIC other than hex 01 to 2C is specified, an invalid operation 
external status condition occurs. The codes for the functions will be 
described in the Functions Reference Manual. 

5280 Assembler Language Instructions 209 



210 

Mnemonic 
Keyboard 
OpCode Parameter 1 Operation 

KEYOP (X'16') Open keyboard/display 

The keyboard/display is initialized as follows: 

1. The clear screen function (29) is performed. 

2. The clear status line function (2A) is performed. 

3. The cursor is erased from the screen. 

4. The blink attribute of the top line displayed on the screen is cleared unless a 
keystroke error or software error is outstanding. 

If this operation is issued from an unattached partition, an external status for 
invalid operation occurs. 

This operation is automatically performed during a partition load operation, and 
should not normally be used by an application program. 

READMG (Read Magnetic Stripe Reader) 

Mnemonic Operand 1 Operand2 

READMG (BRa, BRb) 

where: 

Operand1 indicates a binary register that contains the number of bytes that 
are to be read, minus 1. 

Operand2 indicates a binary register that contains the address in main storage 
into which the bytes are read. 

When a badge is inserted into a magnetic stripe reader, the badge characters are 
read into a buffer in the reader. External status condition 11 occurs for the 
partition associated with the reader. Only one partition can be associated with 
one reader. If the partition is background, or if it is available to the loader, the 
badge data is ignored. If external status is already outstanding at the time of the 
status 11 condition, the 6280 waits until the current external status condition is 
cleared before it notifies the partition. 

Once a badge is inserted into the reader and the reader buffer accepts the badge 
data, no other badge data is accepted until the buffer data is read or reset by a 
READMG or RSTMG instruction. After the execution of a READMG instruction, 
the reader is automatically reset to enable the reader to accept another badge. The 
RSTMG instruction is used only when you wish to ignore the current badge data, 
or at the beginning of a program to ready the reader for the first badge. 



Magnetic stripe data consists of a string of from 3 to 128 bytes or characters. 
The first character of a data group must be a start of message (SOM) control 
character. The next-to-the-Iast character must be an end-of-message (EOM) 
control character. The last character must be a longitudinal redundancy check 
(LRC) control character of even parity for the entire data group. Any character 
can be issued in the other bytes except an EOM character. 

The format of the reader characters is as follows: 

Name 

Device flag 
Error flag 

LRC flag 
Parity bit 
Data 

Bit 

o 

2 
3 
4-7 

Meaning if 1 

A magnetic stripe reader is installed. 
One of the following conditions has occurred: 

• Parity error 

• LRC error 

• EOM missing 

• Improper badge insertion or removal 

• Speed error 

• Buffer address overflow 

LRC character. 
Odd parity for bits 4-7. 
If hex 0 to 9, this is a data character. 
If hex B, this is an SOM character. 
If hex F, this is an EOM character. 

If any byte has an error, the error flag is set in all bytes so your program can find 
the error by checking only the first byte. If this flag is set, the data is invalid and 
the badge must be reinserted. 

The device flag should be set on for each data byte in the stripe when the READMG 
instruction is 'executed after the external status 11. If the program executes a 
READMG instruction when status 11 has not occurred, this bit is on if a reader 
is installed or off if a reader is not installed. 

Examples: 

Reader 
Character 

10001011 
10011111 
10100000 
10011001 

Description 

An SOM character 
An EOM character 
An LRC character 
A data character 

5280 Assembler Language Instructions 211 



212 

RSTMG (Reset Magnetic Stripe Reader) 

Mnemonic 

RSTMG 

The RSTMG instruction enables the magnetic stripe reader to read a badge. 

This instruction should be included at the beginning of a program that requires 
magnetic stripe data. This ensures that the reader is ready to accept data from a 
badge. 

Although the magnetic stripe reader is automatically reset after the execution of 
each read (READMG) instruction, the RSTMG instruction may be required in the 
following instance. Once a badge is inserted into the reader, the 5280 will not 
accept data from a second badge until the current badge data is read by the 
READMG instruction, or the reader is reset by an RSTMG instruction. If a 
RSTMG instruction is executed, the current badge data is ignored and the reader 
is ready to accept another badge. 

REPFLD (Replace Field or Screen) 

Mnemonic 

REPFLD 

The REPFLD instruction uses the contents of three system binary registers as 
parameters. Parameterl is taken from BR19, parameter2 is taken from BR20, 
and parameter3 is taken from BR21. When an external status condition occurs 
during the processing of an ENTR, the 5280 places the following information, about 
the last field processed, into the system binary registers: 

Register 

BR19 

BR20 

Information 

Address of the beginning of the field in the current record buffer. 

Absolute address of the beginning of the field in the keyboard/ 
display refresh area. 



BR21 Length of the field, minus 1, and character set specifications, as 
follows: 

Bits Meaning 

0-3 Character set 
0000 = picture check field 
0001 = alphabetic shift field 
0010= numeric shift field 
0011 = hex field 
0100 = special characters field 
0101 = format level zero field 
1001 = alphabetic-only field 
1010 = numeric-only field 
1011 = digits-only field 
1100 = special-characters-only field 

4 1 = signed numeric field 
5-15 Length minus 1 

When the REPFLD instruction is executed, the number of bytes indicated by BR21 
are moved from main storage, starting at the relative address stored in BR19, to the 
absolute address in the screen refresh area stored in BR20. 

If B R21 specifies a signed numeric field, or a digits-only field or numeric-only field 
that is not signed numeric, and the rightmost byte of the bytes moved is a hex DO 
through D9, a minus sign is displayed in the sign position of the field, to the right 
of the rightmost character. Otherwise the sign position is blank. 

The data is translated and displayed as for a CRTMM instruction that specifies the 
S for the attributes parameter. (See Move Bytes Between Storage and Screen, later 
in this chapter.) 

REPFLD can be used when data is entered, then calculated or changed in the 
current record buffer, then redisplayed. 

Example: Enter 2 fields: Hours worked + Rate of pay. The program multiplies 
them to find Gross pay. An RG (return to program) bit is included at end of the 
field for Gross pay (a bypassed field since the program computes it). Binary 
register BR19, BR20, and BR21 are set to the field for Gross pay when the RG 
external status occurs. The subroutine for the RG condition computes the Gross 
pay, and places it in the I/O buffer in the Gross pay field, then issues REPFLD 
to display the computed value. 

RTIMER (Read Elapsed Time Counter) 

Mnemonic Operand 

RTIMER (BRn) 

where: 

Operand specifies a binary register that contains the address of a 3-byte storage 
area into which a timer value is read. 

5280 Assembler Language Instructions 213 



214 

The elapsed time counter is an optional feature of the 5280. It measures elapsed 

reai time and can be used to comlJute production statistics. AppiOximately 

every 1.6 seconds the timer overflows. Each time it overflows, a 2-byte counter in 

the system control block is incremented. The RTIMER instruction reads the 

current value (± .05 seconds) of the counter and the interval timer into the 3-byte 

storage area pointed to by the operand binary register. The high order two bytes 

are read from the counter in the system control block. The interval timer value is 

read into bits 4-7 of the low-order byte; bits 0-3 are always zero. 

DATA MOVEMENT INSTRUCTIONS 

The 5280 assembler language provides instructions to: 

• Load a register with a constant or with the contents of another register or 

storage. 

• Store a constant or the contents of a register. 

• Convert binary and EBCDIC data. 

• Exchange the contents of two locations. 

• Move bytes of a specified length to storage or a screen. 

• Move formatted data to storage or a screen. 

For data movement instructions, registers can be specified by the register number or 

label. Storage locations can be specified by a label or base displacement address. 

Load Binary Register 

One or two bytes of a binary register can be loaded from another binary register or 

from a storage address. The register can also be loaded with a constant or with 

the address of a labeled area. A binary register always contains binary notation with 

no sign. The format for loading a binary register is as follows: 

Result 

BRa = 

where: 

Operand 

{

BRb[(1)]} 
storage 

constant 

Result indicates the binary register into which data is loaded. 

Operand specifies the data to be loaded into the result binary register. The 

operand may be 1 or 2 bytes in length. If the operand is 1 byte, it is loaded 

into the rightmost byte of the result register, and the leftmost byte of the result 

register is set to zero. The operand is unchanged by the operation. 



Load with Contents of Binary Register 

Result Operand 

BRa BRb [(1)] 

The contents of the operand register are loaded into the result register. If the 
operand register specifies a length of l·byte (BRb(l)), the contents of the right
most byte of the operand register are loaded into the rightmost byte of the 
result register, and the leftmost byte of the result register is set to zero. If the 
result register specifies a length of 1-byte (B Ra (1)), the contents of the rightmost 
byte of the operand register are loaded into the rightmost byte of the result register, 
and the leftmost byte of the result register is unchanged. It is invalid to specify a 
1-byte length for both registers. 

Load with Labeled Storage 

Result Operand 

BRa label [(1)] 

The labeled byte and the next consecutive byte are loaded into the binary 
result register. If a length of 1 is specified (labeJ(l )), only the labeled byte 
is loaded into the rightmost byte of the binary register; the leftmost byte of 
the register is set to zero. If the length is omitted, the declared length of the 
label is used; a length greater than two bytes is invalid. 

Load with Base Displacement Storage 

Result Operand 

BRa [disp] ([len] ,BRb) 

When this instruction is executed, the displacement (disp) is added to the 
contents of the binary register (BRn) to find the relative address of the leftmost 
byte specified by length (len). The contents of this 1 or 2 bytes are moved into 
the result register. The data in the storage location remains unchanged. If the 
length is omitted, 1-byte is used. 

Load with a Constant 

Result Operand 

BRa = constant 

The constant specified by the operand is loaded into the binary register. Any 
constant less than 16 bits in length is padded on the left with zeros. 

5280 Assembler Language Instructions 215 



216 

Load Decimal Register 

One to 16 bytes may be loaded into a decimal register from another decimal 
register or from a storage location. A signed constant may be loaded into the full 
register, or a 1-byte constant may be loaded into a specified offset into the 
register. Data in a decimal register is represented in EBCDIC notation. 

The format to load a decimal register is as follows: 

Result Operand 

Ra = 
{

Rb } 
storage 
constant 

Load with Decimal Register 

Result Operand 

Ra = Rb 

The contents of the operand register (Rb) replace the contents of the result register 
(Ra). The operand register remains unchanged. 

Load with Labeled Storage 

Result Operand 

Ra = label [(len)] 

The result register is set to blanks (hex 40s). Then the bytes beginning at label 
are loaded into the result register. 

If length (len) is specified, the specified number of bytes are loaded into the 
decimal register and right adjusted. 

If length is not specified, the number of bytes assigned as the length of the label (by 
the .DC control statement that declared the label) are loaded into the decimal 
register and right adjusted. A length greater than 16 is invalid. 

Note: The label must be assigned to a storage location within the first 32 K of 
storage. 



Example: 

Statements Registers 

.DC LABEL=OTY LEN=10 IN IT=4455667788; 

LOADX: RX=OTY(5); Length specified 

LOADY: RY=OTY ; Length omitted RY ~ ~ ~ ~ ~ ~ 4 4 5 5 6 6 7 7 8 8 

Load with Base Displacement Storage 

Result Operand 

Ra = [disp] ([len], BRn) 

The operand specifies a binary register that acts as a base address register. The 
displacement (disp), if specified, is added to the contents of the base address 
register. The result is taken as the address of the first byte of data to load into the 
result register. If length (len) is included, the number of bytes specified, starting 
at the first byte of the storage area, is moved into the decimal register and right 
adjusted. If length is omitted, it defaults to 1 byte. The result register is set to 
blanks (hex 40s) before the data is transferred. A length greater than 16 is invalid. 

Example: 

1 1 1 1 1 1 1 1 
BASREG = 178 Storage Positions 7 7 8 8 8 8 8 8 

8 9 0 1 2 3 4 5 

Data 1 3 3 5 5 7 7 9 
, ; • 

@ = 2 + 178 I I I 
The instruction REGX = 2(5,BASREG) would result in: 

Load with a Signed Constant 

Result Operand 

Ra = ±constant 

The value specified by the operand is loaded into the result decimal register. If the 
sign is negative, the rightmost byte of the decimal register has hex D in the zone 

portion. If the value is positive, the rightmost byte of the decimal register has hex 
F in the zone partition. The data is right adjusted in the decimal register. 

5280 Assembler Language Instructions 217 



Before 

The constant may be specified as immediate data with decimal or hexadecimal 
digits. Tne maximum decirilal value that can ~ loaded with this operation is 
65535. The operand may also be an equated constant. You must include the sign 
with an equated label. 

When the operand is a signed constant, the unfilled high-order bytes are padded 
with zeros. 

When the operand is an unsigned single-digit constant (0-9), the unfilled high-order 
bytes are padded with blanks. 

Example: The instruction RX = -345 results in: 

RX 

Note: If you attempt to load a register with a character, the register is loaded with 
the decimal EBCDIC equivalent of the character. For example, if the specified 
constant is C' A' (hex C1), the register is loaded with 13 leading zeros (hex FOs) 
and F1 F9F3 (decimal 193). 

Load with a 1-Byte Constant 

Result Operand 

[offset] ,Ra = constant 

The constant specified by the operand is inserted into the decimal result register 
at the byte specified by offset. The constant may be specified in any of the forms 
described under Constant Specifications in this chapter. 

Example: 

After 

RX 
Offset 

DO 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 0001 02 0304 05 06 07 08 09 10 11 12 13 14 15 

R X I I I I I I I I I I I I I IH" fr I 14,RX=C
1 A,' I I I I I I I I I I I I I IH IA IT I 
. f 

218 

Store at a Labeled Address 

One or more bytes of a decimal or binary register can be stored into a labeled 
storage area. Also, a 1-byte constant can be stored into a la.beled storage byte. 
See Addressing Methods under Partitions in Chapter 1 for more information 
about labeled addressing. 



Data is stored into a labeled address using the following format: 

Result Operand 

label[(len)] = 
{

Rn } 
BRn 
constant 

where: 

Result indicates the label of the storage location into which data will be stored. 

Operand indicates data to store. 

Store a Decimal Register 

Result Operand 

label [(len)] = Rn 

If a length (len) is included, the rightmost number of bytes specified by the length 
are moved into the labeled storage area. The storage area begins at the byte 
assigned to label and continues for the number of bytes specified by length. If 
length is omitted, it defaults to the length specified by the .DC control state-
ment that assigned the label. The labeled location must be within the first 
32 K bytes of a partition. 

Example: 

00 01 02 03 04 05 06 07 08 09 1 0 11 12 13 14 1 5 

REG2 12 12 13 13 14 14 15 15 16 16 r r 18 ~ @ @ J 

I 
~ 

j 
STGE(3)=REG2 

I 

.. 
I 

00 01 02 03 04 05 06 07 08 09 1 0 11 12 13 14 1 5 

STGE 18 19 19 1 1 1 I I I I I I I I I I I 

Store a Binary Register 

Result Operand 

label [(len)] = BRn 

If the operand is full binary register, the contents of the two register bytes are 
stored into the byte specified by label, and the next consecutive byte. The result 
storage location must not be specified as more than 2 bytes in length. If the length 
is omitted, the declared length of the labeled area is used. 

5280 Assembler Language Instructions 219 



220 

Store a Constant 

Result Operand 

label = constant 

The 1-byte constant specified by the operand is loaded into the labeled byte. 
Only the one labeled byte is changed. The constant may be specified in any of the 
forms described under Constant Specifications at the beginning of this chapter. 

Store at Base Displacement Address 

Data can be stored at a base displacement address. Base displacement addressing 
is described in Chapter 1 under Storage. 

The format for the instructions to store data at a base displacement address is as 
follows: 

Result Operand 

[disp] ([len] ),BRn) = 
{

Rn } 
BRn 
constant 

where: 

Result indicates the storage area into which data is stored. The binary register 
acts as a base address register. The contents of the base address register (B Rn) 
are added to the displacement (0-255), and the result is the address of the first 
of the storage bytes into which data is stored. The number of bytes stored is 
determined by the length specified (len). 

If the result address specifies a location outside the partition, a program check 
error (hex 01) occurs. 

Operand indicates the register from which data is moved, or a 1-byte constant. 

Store a Decimal Register 

Result Operand 

[disp] ([len], B Rn) = Rn 

The contents of the decimal register specified by the operand are stored into the 
location indicated by result. The contents of the base register (BRn) are added to 
the displacement (disp), and the sum is taken as the address into which the data 

is stored. If length is included (len), the rightmost number of register bytes 
specified by the length are moved into the storage area. The optional length 
defaults to 1 byte. A length greater than 16 is invalid. 



Store a Binary Register 

Result Operand 

[disp] ([len], BRa) = BRb 

The contents of the binary register specified as operand (BRb) are stored into the 
location specified by result. The displacement (disp) is added to the contents of 
the binary base register (BRa), and the result is taken as the rightmost byte of 
storage into which the contents of the binary register are stored. If the length of 
one is specified, the contents of the low-order byte of the operand register are 
stored. 

Store a Constant 

Result Operand 

[disp] (BRa) = constant 

The displacement is added to the address in BRa, and the l-byte constant specified 
by the operand is stored in the byte at the resulting address. Do not specify length 
for this operation, and do not include a comma to the left of the binary register 
as is required for other base displacement addresses. 

Exchange Data 

Data may be exchanged between two registers or between a storage area and a 
binary register. The contents of a binary register may be exchanged with the 
contents of another binary register or a storage location. The contents of a 
decimal register may be exchanged with the contents of another decimal register. 
The format for the exchange operation is as follows: 

Result Operand 

BRa <=> 

Ra <=> 

where: 

Result indicates the register into which the data from the operand register is 
placed upon completion of the operation. Data originally in the result register 
is placed in the operand register. 

Operand indicates the register or storage area that exchanges contents with the 
result register. 

5280 Assembler Language Instructions 221 



222 

BRa <;:> (Binary Register Exchange) 

Result Operand 

BRa <=> {
BRb} 
label 

The contents of the operand, which may be a binary register or a 2-byte labeled 
storage area, are placed into the result register (BRa). The original contents of 
the result register are placed into the operand register. 

Ra <=> (Decimal Register Exchange) 

Result Operand 

Ra<=> Rb 

The contents of the operand register are placed into the result register, and the 
original contents of the result register are placed into the operand register. 

Convert Register Contents 

The contents of a register or labeled storage area can be converted from binary to 
EBCDIC or from EBCDIC to binary. The convert operation both converts and 
moves the data. Although all data is physically stored as binary bits, the bits may 
represent the binary value or the EBCDIC value of the data. Each byte of decimal 
EBCDIC data is divided into a zone portion and a digit portion. Therefore, to 
express the value of one byte of binary data requires 1 byte of EBCDI Cor 2 bytes 
of hexadecimal EBCDIC. EBCDIC data, however, can be displayed on the screen. 
Binary data must be converted to EBCDIC in order to be displayed. For example, 
B'11111000' converts to EBCDIC F2F4F8 with decimal conversion and can be 
displayed as 248. With hexadecimal conversion, B'lllll 000' converts to 
EBCDIC C6F8 and can be displayed as F8. The format of the convert operations 
is as follows: 

Mnemonic 

BINDEC 
BINHEX 
HEXBIN 

DECBIN 

where: 

Result Operand 

Rn = BRn 
(Rn ,label [(2)]) 
(label [(len)] , BRn) 
(BRn , label [(len)]) 
BRn = Rn 
(label [(2)], Rn) 

Result indicates the register or labeled storage location into which the converted 
data is moved. 

Operand indicates the register or storage location that holds data to be converted 
and placed into result register or storage location. The operand remains 
unchanged. 



Rn = (Convert Binary to Decimal) 

Result Operand 

Rn = BRn 

The contents of the operand register (BRn) are converted to decimal, and the 
decimal value is loaded into the decimal register specified as result (Rb). The 
decimal value is represented as positive in the result register. 

The operand register contains the original binary notation upon completion of 
the operation. 

BINDEC (Convert Binary Storage to EBCDIC) 

Mnemonic Result Operand 

BINDEC (Rn, label [(2)]) 

The contents of the 2-byte labeled storage area are converted from binary to 
EBCDIC and placed into the decimal register. 

The storage area must be 2 bytes in length. You may specify the length in the 
instruction, or you may omit the length if the area was declared as 2 bytes in length. 

BINHEX (Convert Binary to EBCDIC Storage) 

Mnemonic Result Operand 

BINHEX (label [( n} )]. BRn) 

The contents of the operand binary register (BRn) are converted to an equivalent 
hexadecimal EBCDIC, and the hexadecimal EBCDIC value is loaded into the 2-byte 
or 4-byte storage area specified by the label. 

The length of the storage area may be specified in the instruction. If the length is 
omitted, it defaults to the length specified by the .DC control statement that 
labeled the storage area. Only 2 or 4 are valid for length. If a length of 2 is 
specified, only the rightmost byte of BRn is used. 

The contents of the binary register are converted to 2 or 4 (depending on the 
length of the storage area) hexadecimal EBCDIC characters and stored into the 2 or 
4 storage bytes. 

5280 Assembler Language Instructions 223 



224 

HEXBIN (Convert Hexadecimal EBCDIC Storage to Binary) 

Mnemonic Result Operand 

HEXBIN (BRn, label [( {~} )1) 

The hexadecimal EBCDIC values at the storage location specified by the label 
are converted to binary and loaded into the binary register specified by BRn. 

The length of the storage area may be specified in the instruction, or it may 
default to the length specified by the .DC statement that labeled the area. Only 
2 or 4 is valid for the length. 

If the length of the storage area is four bytes, the 4 hexadecimal EBCDIC 
characters in the storage area are converted to 2 bytes of binary notation and 
placed into the binary register specified by result. If the length of the storage 
area is 2 bytes, the 2 hexadecimal EBCDIC characters are converted to 1 byte of 
binary notation and placed into the rightmost byte of the binary register; the 
leftmost byte remains unchanged. If the storage area contains any values other 

than '0-9' or 'A-F', 1119 is set and the register contents are unpredictable. 

BRn = (Convert Decimal to Binary) 

Result Operand 

BRn = Rn 

The contents of the operand register are converted to binary notation, and the 
binary notation is loaded into the result register. If the contents of the decimal 
register are negative, or if the binary register overflows, the overflow indicator 
(1124) is set on. 

DECBIN (Convert EBCDIC to Binary Storage) 

Mnemonic Result Operand 

DECBIN (label [(2)], Rn) 

The contents of the decimal register are converted to binary and stored in the 
2-byte labeled storage area specified by result. 

The length of the storage area must be 2 bytes. You may specify the length in the 
instruction, or you may omit the length if the area was declared as 2 bytes in 

length. 



Move Bytes Between Decimal Registers 

One or more bytes can be moved from one decimal register to another. The bytes 
can be moved to corresponding positions or to different positions in the receiving 
register. 

The format to move the partial contents between decimal registers is as follows: 

Mnemonic Result Operand Offset Length 

{
MOFF} 
MVER 

(Ra, Rb [,0-15, 1-16] ) 

where: 

Results indicates the deci mal register to which the data is moved. 

Operand indicates the decimal register from which the data is moved. 

Offset specifies the offset of the leftmost byte to which data is moved. Offset 
defaults to zero. 

Length specifies the number of bytes (1-16) that are moved. Length defaults to 1. 

MOFF (Move to an Offset) 

Mnemonic Result Operand Offset Length 

MOFF (Ra, RB [,0-15 ,1-16] ) 

The rightmost number of bytes specified by length are moved from the operand 
register to the result register. The data is moved from left to right and placed in 
the result register at the byte specified by offset. 

The offset applies only to the result register (Raj, so the move is not Ii mited to 
corresponding byte positions. 

Note: If the sum of offset and length is greater than 16, bytes are moved into the 
register fottowing the result register. 

Example: 

0001 02 03 04 05 06 07 OS 09 10 11 12 13 14 15 
Before: RX 11 11 12 12 13 13 14 @ 15 15 16 16 17 17 Is Is 1 

I 

0001 02 0304 05 06 07 OS 09 10 11 12 13 14 15 
RY 19 19 19 19 19 19 19 19 19 19 19 & 19 19 19 19 I 

MOFF(RX,RY,4,7) 

I 
l 

00 01 02 03 04 05 06 07 OS 09 1 0 11 12 13 14 15 
After: RX 11 11 12 12 19 19 19 19 19 19 19 16 17 ff Is Is I 

5280 Assembler Language Instructions 225 



Before: RX 

After: RX 

226 

MVER (Move to Corresponding Bytes) 

Mnemonic Result Operand Offset length 

MVER (Ra, Rb [,0-15 ,1-16] ) 

The number of bytes specified by length are moved from the operand register to 
the result register. The data is moved from left to right, starting at the offset in 
the operand register and placed in corresponding positions, starting at the offset, in 
the result register. 

The offset applies to both the operand and the result register, so the data is 
always moved to corresponding positions in the result register. 

Note: If the sum of offset and length is greater than 16, bytes are moved into the 
register following the result register. 

Example: 

0001 020304 05 06 07 0809 10 11 12 13 14 15 

11 11 11 11 13 13 13 13 15 15 15 15 j7 j7 17 17 I RY 

I 
MVER(RX,RY,4,7) 

~----------------~II t I , 
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

11 11 11 11 ~ 12 12 12 14 14 14 ~ 17 17 17 171 

Move Bytes in Storage 

00010203040506070809101112131415 

10 10 10 10 r 12 12 I~ 14 14 14,@ 16 16 16 16 1 
t 

From one to 256 bytes can be moved to another storage address within the same 
partition. 

Mnemonic Result Operand length 

{

MVC } 
MVCR 
MVCV (BRa, BRb, 1-256) 

where: 

Result indicates a binary register that contains the address, relative to the start 
of the partition of the leftmost byte into which data is moved. 

Operand specifies a binary register that contains the address of the leftmost 
byte from which data is moved. 

Length specifies the number of bytes to move. The specification is a decimal 
constant (1-256). 



MVC (Move Characters) 

Mnemonic Result Operand Length 

MVC (BRa, BRb, 1-256) 

The number of consecutive bytes specified by length are copied from the storage 
location, beginning at the byte specified by the contents of the operand register 
(BRb), into the location beginning with the byte specified by the contents of the 
result register (BRa). 

Data is moved starting with the leftmost byte and continuing to the rightmost byte. 

Example: 

.DC LABEL=FLD1@ TVPE=BIN INIT=ADDR(FLD1); 

.DC LABEL=FLD2@ TVPE=BIN INIT=ADDR(FLD2); 

FLD1 Iw X V zl 
Before: MVC(FLD1@,FLD2@,3) 

FLD2 IA B C 01 

MVCR (Move Characters Right to Left) 

Mnemonic Result Operand Length 

MVCR (BRa, BRb, 1-256) 

FLD1 'jll. z I 
After: 

FLD2 IA B C 01 

The number of bytes specified by length are copied from the storage location 
indicated by the operand register (BRb) into the location specified by the result 
register (BRa). 

Data is copied starting with the rightmost of the operand bytes specified by 
length and continuing to the leftmost byte. This instruction is useful for moving 
data into overlapped fields. 

Example: 

.DC LABEL=FLD1@ TVPE=BIN INIT=ADDR(FLD1); 

.DC LABEL=FLD2@ TVPE=BIN INIT=ADDR(FLD2); 

Before: 

FLD2 
FLD1 
~ 
~ 
IABCDEFGHI 

MVCR (F LD 1@,FLD2@,5) 

FLD2 
FLD1 

After:~~ 
GHFGHFGH 

5280 Assembler Language Instructions 227 



228 

MVCV (Move Characters Reverse) 

Mnemonic Result Operand Length 

MVCV (BRa, BRb, 1-256) 

The number of bytes specified by length are copied from the storage location 
specified by the contents of the operand register (BRb) into the location specified 
by the contents of the result register (BRa). 

While the data is copied from one location to the other, the order of the bytes is 
reversed. 

Data is copied from the location specified by the operand register (BRb) from left 
to right; the data is copied into the address specified by the result register (BRa) 
from right to left. 

Example: 

.DC LABEL=BRX TYPE=BIN INIT=ADDR(STRX); 

.DC LABEL=BRY TYPE=BIN INIT=ADDR(STRY); 

STRX BCD 
A 

D IA E I STRXdA B C 
Before: MVCV(BRY,BRX,3) After: ; 

STRY IV W X_V 2 I STRY :C BAY 

Move Bytes Between Storage and Screen 

Data bytes may be moved directly between the display screen refresh area and main 
storage. No formatting is done. Bytes are moved to or from any position in the 
refresh area. A binary register is specified to contain the absolute address within 
the refresh area, or the position on the screen. If a screen position is used, the 
high-order byte contains the row number and the low-order byte contains the 
column number. 

Row Column 

Brn ' 00001100 00001011 

If row 0 is indicated, the bytes are moved to the status line. If row 1 is specified, 
the bytes are moved to the top line of the screen, which is not displayed when 
the status line is being displayed. If the position specifies column 0, external 
status condition 10 (invalid operation) occurs. 

Be careful to specify a valid screen position. If the position operands point 
outside your screen, they may point to an area of control information within the 
keyboard/display; this results in external status condition 10. Invalid position 
operands may also point to the area of another display screen; in this case, the 
move proceeds and overwrites the data on the other screen. 

EI 

zl 



The formats of instructions to move data between storage and screen are as 
follows: 

Mnemonic Result Operand Length Attributes 

CRTMM (BRa, BRb, BRc [, {~c} ] ) 

MMCRT (BRa, BRb, BRc 

where: 

Result is a binary register that contains the address of the first storage byte or 
screen position to which data is moved. 

Operand is a binary register that contains the address of the first storage byte 
or screen position from which data is moved. 

Length is a binary register that contains the number of bytes, minus one, to 
move. The number may be from one to the maximum number of positions 
on the screen. 

Attributes may be included with the CRTMM instruction to determine the 
display of the bytes. They are described with the CRTMM operation description. 

CRTMM (Move to Screen) 

Mnemonic Result Operand Length Attributes 

CRTMM (BRa, BRb, BRc 

The number of bytes indicated by the length register (BRc) are moved from storage 
to the screen. The bytes are moved beginning at the address indicated by the 
contents of the operand register (BRb) to the address or screen position specified 
by the contents of the result register (BRa). If the attributes parameter is omitted 
in the instruction, the bytes are translated from EBCDIC notation to display 
codes (using a translate table in keyboard/display storage) before they are placed 
into the screen refresh buffer and displayed on the screen. Most data that is moved 
to the screen requires this translation so the proper display graphics appear on the 
screen. EBCDIC values from hex 20 through 3F are translated to display 
attributes that alter the appearance of the screen, such as blank and underscore. 
Therefore, any data that may contain display attributes, such as prompts, should 
be moved to the screen in this way. 

If NC is specified for the attributes parameter, the bytes are not translated as they 
are moved from mai n storage to the screen refresh buffer. Data that has been 
moved directly from the screen refresh buffer can be returned in this way. 

5280 Assembler Language Instructions 229 



230 

if the S is specified for the attributes parameter, the bytes are transiated through 
the translate table; however, before translation all EBCDI C values in the attribute 
range (hex 20 through 3F) are changed to hex 1 F. Hex 1 F translates to a solid 
rectangle in the translate table. This allows actual data, which may contain hex 
values between hex 20 and 3F, to be moved to the screen without affecting the 
appearance of the screen. All hex values between 20 and 3F appear as solid 
rectangles on the screen; the EBCDIC data in main storage is not altered. The hex 
value position on the status line displays the hex value of the positions that are 
displayed as solid rectangles if they appear within a screen format field when an 
ENTR is being processed. 

MMCRT (Move to Storage) 

Mnemonic Result Operand length 

MMCRT (BRa, BRb, BRc) 

The number of screen positions indicated by the length register (BRc) are moved 
from the screen to storage. The data is moved beginning with the location 
specified by the operand register (BRb) to storage, beginning at the address 
specified by the result register (BRa). The display on the screen remains unchanged. 

Example: The following code moves data from the screen to storage locations 
labeled lETRS1, lETERS2, and NUMBS. 

.DClBR lABEl=TO@,FROM@,lNGTH; 
TO@ = ADDR(lETRS1); 
FROM@ = X'0302'; screen position row 3, column 2 
lNGTH = 7-1; 1 

2 

1 2 3 

Columns 

456 7 8 9 . 

MMCRT(TO@,FROM@,lNGTH); moves 'ABC DEF' into LETRS1 
TO@ = ADDR(lETRS2) + 4; 3 A B C D E F 
FROM@ = X'0306'; screen position row 3, column 6 
LNGTH = lENG(lETRS2) - 4; 
MMCRT(TO@,FROM@,LNGTH); moves 'DEF' into LETRS2 
TO@ = ADDR(NUMBS) + 2; 
FROM@ = X'0502'; screen position row 5, column 2 
lNGTH = 5-1; 
MMCRT(TO@,FROM@,LNGTH); moves 12345 into NUMBS 

Rows 
4 
5 1 
6 
7 
8 
9 

Storage 

LETRS1 

LETRS2 

NUMBS 

2 3 4 5 

IABC DEFJ 

DEFI 

123451 



Move Formatted Data 

The following instructions move data according to a specified edit format. The 
edit format is set up by the .FMT control statements, which specify: 

• The storage areas to or from which data is moved (DCLBL) 

• The length of the data (LEN) 

• The editing of the data fields (EDIT) 

The edit format can convert data to decimal, to binary, or to hexadecimal 
notation. Field punctuation, such as a fixed dollar sign, a floating dollar sign, a 
decimal point, sign control, and fill characters are specified by the format editing. 

The instructions for formatted moves are as follows: 

Mnemonic Operand1 Format Operand2 Operand3 

REBF (BRa, { ~abel} 

WRBF (BRa, label [,BRb] ) 

WFMCRT (BRa, label [,BRb , 

where: 

Operand1 specifies a binary register that contains an address. 

Format indicates the formatting of the data. 

Entry 

label 

* 

Description 

is the LABEL parameter of the .FMTST control statement that 
set up the edit format you wish to use. 

may be specified instead in the REBF instruction to indicate that 
formatting is data directed. See Data Directed Formatting in 
Chapter 2 for more information. 

Operand2 is an optional entry that may be specified for WRBF or WFMCRT and 
is discussed in the operation descriptions. 

Operand3 may be specified only for WFMCRT and is discussed in the WFMCRT 
operation descri ption. 

5280 Assembler Language Instructions 231 



232 

REBF (Read to Format .specifications) 

Mnemonic Operand 1 Format 

REBF (BRa 

Data bytes, beginning at the address specified by the contents of the binary 
register (BRa), are moved into the location specified by the DCLBL parameter of 
the edit format. The number of bytes moved is determined by the LEN parameter 
of the format, and editing is controlled by the EDIT parameter of the format. 

In normal formatting, the instruction specifies the format label (LABEL 
parameter from the .FMTST statement). For data directed formatting, the 
instruction specifies an asterisk (*) instead of a label. 

Example: The following code moves data from a storage location pointed to by 
BUF R according to a format labeled FMT6. 

Before: 01 020304050607 08 09 10 11 12 13 14 15 16 17 18 19 2021 22 

BUFR IT 1 7 0 6 4 C 4 $ 1 4 . 2 9 1 4 7 81 

.FMTST LABEL FMT6 ; set up format 

.FMTFLD DCLBL ITEM# TVPE=DEC LEN 8 COL 1 ; 

.FMTFLD DCLBL ITEM$ TVPE=DEC LEN 7 COL 9 EDIT = $$,DP.02; 

.FMTEND DCLBL ONHAND TVPE=DEC LEN 5 COL 18; 

REBF (BUFR, FMT6) ; move data 

ITEM# ( T17064C4] 

After: ITEM$ 100000000000014291 

ON HAND I 

WRBF (Write Format to Storage) 

Mnemonic Operand1 Format Operand2 

WRBF (BRa, [label] [,BRb] ) 

You can omit the format and include the binary register if you want to blank the 
buffer. This is the best way to blank a buffer that is longer than 256 bytes. The 
binary register can specify up to 65 535 bytes to blank. The 5280 does not check 
to ensure that you do not exceed your partition size. 

The contents of the locations specified by the labeled format are moved to the 
address specified by the operand1 binary register (BRa). If the operand2 
binary register (BRb) is included, the contents of this register are taken as the 
number of bytes to blank, beginning at the location specified by the first binary 
register, before the move is performed. If the second binary register is not 
included, no bytes of the storage location are blanked. 

14781 



WFMCRT (Write Format to Screen) 

Mnemonic Operand 1 Format Operand2 Operand3 

WFMCRT (BRa label [,BRb 

Data is moved to the screen, beginning at column 1 of the row specified by the 
low-order byte of the operand1 register (BRa). Data is moved from the locations 
specified by the labeled edit format, for the number of bytes specified by the 
format. The format also specifies any punctuation that should appear on the 
screen, such as a dollar sign, decimal point, or minus sign. The format must not use 
more than 200 screen positions. If row 0 is specified, data is moved to the status 
line; if row 1 is specified, data is moved to the extra line. If operand2 specifies a 
binary register (BRb), the contents of this register are taken as the number (1-200) 
of screen positions to alter before the formatted data is moved to the screen. 
Operand3 specifies how to alter the screen. 

If B is coded for operand3, all characters on the screen between the data fields 
that are defined in the edit format are blanked for the number of bytes specified 
in operand2. 

If ADD is coded for operand3, only the fields that are defined in the edit format 
are changed on the screen; the characters between the edit format fields remain 
on the screen for the number of bytes specified by operand2. 

If operand2 and operand3 are omitted, and if the edit format does not account for 
all the positions on the screen within the edit format, the results are unpredictable. 

Note: The fields must be in the order they appear on the screen. 

PARTITION LOAD AND EXIT INSTRUCTIONS 

During IPL, the IPL utility can load a program into any 5280 partition. The IPL 
utility prompts the operator to enter the appropriate load parameters via the 
keyboard. At any time after IPL, a program currently executing within a 
partition can load another full or partial program into any available partition. The 
executing program either prompts the operator to enter the load parameters via 
the keyboard or obtains the load parameters from main storage. The LOAD 
instruction, issued by the executing program, specifies which method is used to 
obtain the load parameters. 

The EXIT instruction makes a partition available to be loaded with a program. 

If an error occurs during a load operation, the 5280 can handle error recovery, 
or you can write your own error recovery procedures. 

At IPL, every partition can be loaded with a LOAD instruction. Then, any 
partition which has executed an EXIT instruction is available to be loaded by any 
partition that has a LOAD instruction. 

5280 Assembler Language Instructions 233 



234 

A LOAD instruction can be included at the end of 2VeiY piogiam. Then, when the 
program has completed its execution, the current partition can be reloaded with 
another program. Or, the EXIT instruction can be included at the end of a 
program, making the partition available to be loaded by another partition. In either 
case, the load parameters may be obtained from storage or from the keyboard. 

An EXI T instruction should not be issued from a foreground partition. 1110 is on 
if the partition is a background partition. The normal way to handle the End of Job 
key is to test 1110; if it is on issue an EXIT instruction; if off, call the Standard Load 
Processor. See Chapter 6 under Common Function Routines for a description of the 
standard load processor. 

Load a Partition 

The format for the LOAD instruction is as follows. 

Mnemonic Parameters Operand 

LOAD ( [label] [,P A,E]) 

where: 

Parameters may specify the label of the storage area where the load parameters 
have been stored. The load parameters are described in this chapter. If the 
label is omitted, the operator will be prompted to enter the load parameters 
from the keyboard, using a global load. 

Operand describes the kind of load to execute, as follows. 

Entry 

P 

Description 

Specifies that the load is a partial overlay into the current 
partition. If P is omitted, a full partition load is executed. If Pis 
coded, the load parameters label must be specified, and must include 
the relative address where the partial overlay begins. This 2-byte 
address must be on a 256-byte boundary and must be greater than 
hex 0100. You may not perform a partial overlay if you are using 
the standard-load-processor prompt. (The standard load processor 
is described in Chapter 6 under Common Function Routines.) See 
Partial Overlay later in this chapter for more information. 

A Specifies that, if a foreground partition is loading a background 
partition, the foreground partition attempts to attach the back
ground partition after it is loaded. If the attach fails, the load is 
not affected. If the A is not specified, no attach is attempted. 

E Indicates that, in case of error during the execution of the 
LOAD instruction, you have provided error recovery instructions. 
If the error occurs, control passes to the first instruction following 
the LOAD. If the load operation is successful, control passes to 
the second instruction following the LOAD instruction. 

If E is omitted, system error recovery is used. If E is specified 
and you load the current partition, E is ignored. 



If an executing program loads a program (other than a partial overlay) into a 
different partition, the newly loaded program begins execution in the newly 
loaded partition, and the next sequential statement following the LOAD 
instruction is executed in the current partition. 

If an executing program loads a different program into the partition in which it 
is currently executing, all open data sets within the current partition are closed, 
all outstanding keyboard operations or enter commands are completed, the new 
program is loaded, and the newly loaded program begins execution. 

A newly loaded program begins execution with the statement specified by the 
ENTRY parameter of the .START statement. If the ENTRY parameter is not 
specified, the execution begins with the first executable instruction in the 
program. 

Exit a Partition 

The EXIT instruction may be issued in a foreground or background partition. 
The instruction is used to make a partition available to be loaded. 

The format of the EXIT instruction is as follows. 

Mnemonic 

EXIT 

If the EXIT instruction is issued in a background partition, a flag is set in the 
system control area to indicate that the partition is available to be loaded. This 
flag must be set for the background partition to be loaded by another partition. 

If the EXIT instruction is issued in a foreground partition, a flag is set in the 
partition control area to indicate that the partition is available to be loaded. The 
flag in the system control area is not set; this allows the 5280 to process keystrokes 
in the exited partition. 

In both foreground and background partitions, the exit oper:~tion also detaches 
the partition if it was attached to a keyboard. It closes all open data sets, and it 
forces a system unlock in case the partition was locked when the EXIT instruc
tion was issued. 

The Load Parameters 

When the load parameters are placed into a main storage location (instead of 
being read from the keyboard), they are placed into a 43-byte area. The load 
parameters include the partition number, the device I D or address, an optional 
start address, and the data set name. 

Partition Number: Two bytes in length, the partition number specifies the parti
tion to load. The first byte contains the partition number (hex 0 to F). If both 
bytes contain blanks, the current partition is reloaded. 

5280 Assembler Language Instructions 235 



236 

Exampies: 

X'F640' Load the partition number 6. 
X'4040' Reload the current partition. 

Device 10: Four bytes in length, the device identification specifies the device 
that contains the data set identified by the Name parameter. The device 10 
consists of either a 2-character logical 10 defined in the resource allocation table 
or a 4-byte physical device address. If the last 2 bytes contain blanks, the first 
2 bytes contain the logical device 10 that is stored in the resource allocation 
table. Otherwise the 4 bytes contain a physical address. The first 2 bytes of the 
physical address contain the last 2 bytes of the storage address of the lOB 
pointer, which is in the system control area, for that device. The last byte 
contains the device subaddress or zeros. Only the printer uses device subaddresses. 

Examples: 

C'Ol' 
C'4400' 

The physical address of 01 is in the resource allocation table. 
This is the physical address of a diskette. 

Start Address: Two bytes in length, the start address is used only when loading 
a partial overlay. The start address must be greater than hex 100 and must fall on a 
256-byte boundary. 

If you are not loading a partial overlay you must include these 2 bytes but they are 
,ignored. 

Examples: 

X'OCOO' 256 byte boundaries always have hex 00 
X'l FOO' as the last two hex digits. 

Data Set Name: A maximum of 36 bytes in length, the data set name consists of an 
optional volume 10 and the mandatory name of the data set to load. No blanks are 
allowed within the data set name, but the data set name must end with a blank. 

The volume 10 is specified only if volume checking is desired. The volume 10 
may be up to six alphameric characters, must be preceded by an asterisk, and must 
be followed by a period. 

The name may be up to 8 alphameric characters for an H, I, or basic exchange data 
set. For an E exchange data set the name may be up to 17 bytes consisting of one 
or more simple names of up to 8 alphameric characters, with each simple name 
separated by a period. For example, PROG1.PART1.A is a data set name consist
ing of three simple names. 

The final blank must follow the name. 



Partial Overlay 

By using a partial overlay, you can spot load a section of object code or data 
into a partition without destroying the program already in the partition. You 
load a partial overlay by specifying a start address in the load parameters. The 
start address is the storage address where you want the overlay to begin. The 
original contents of the partition remain unchanged except in the area of the 
overlay. When the partial overlay load operation is completed, control returns 
to the instruction following the LOAD instruction. The first 8 bytes of each 
partial overlay contain information that is added by the assembler. 

Specify OPTION=SUB on the .START control statement when you code a 
partial overlay. 

Error Recovery 

Two methods of error recovery can be used if an error occurs during the execu
tion of a LOAD instruction. The first method is to write your own error recovery 
procedures. The second is to let the 5280 handle the errors. 

User-Defined Error Recovery 

When a program instruction loads a data set into another partition, the load 
instruction can indicate that user defined error recovery procedures will handle 
error recovery. If the load operation is successful, control returns to the second 
instruction following the load instruction. If an error occurs during the load 
operation, the system places the error code into a system binary register (BR16) 
and returns control to the first instruction following the load instruction. This 
instruction usually branches to the error recovery procedures. 

System Error Recovery 

There are four types of error recovery procedures, depending on the type of load 
taking place when the error occurred. When any type of error occurs, the system 
sends an error message to the screen and waits for the operator to press the Reset 
key. After the reset, error recovery is as follows for the different types of loads: 

Global load, using the standard load prompt from the common function area to 
prompt for the load parameters to be entered from the keyboard. After reset, 
the load prompt is redisplayed with the error information that was entered. The 
operator can then enter the correct information. 

Program instruction reloading the same partition, with the standard load prompt 
in the common functions area available. 

After reset, the standard load prompt is displayed, which prompts for the load 
parameters to be loaded from the keyboard. 

5280 Assembler Language Instructions 237 



238 

Program instruction reloading the same partition, with no standard load prompt 
available. There is no way to retry this type of load. The main microprocessor 
issues an exit instruction and goes to the next partition. The partition that was 
being loaded is available to be loaded by another partition. 

Program instruction loading another partition. After reset, the load instruction is not 
retried. The partition that was being loaded is made available to be loaded by 
another load instruction following the load instruction. 

TABLE INSTRUCTIONS 

The table instructions are divided into global table, table read, table write, and 
table search instructions. These instructions operate on tables set up by .TABLE 
control statements. 

The table instructions do not operate on label tables set up by the .LABTAB 
control statements. The .LABTAB label tables are used only to make indexed 
branches, as with a CALL TB or GOTAB instruction. 

The .TABLE control statements build the system table that handles the data 
tables. Each data table in your program is represented by an entry in this system 
table. Each system table entry contains the data table address, argument length, 
number of bytes between arguments, maximum number of arguments, and the 
number of arguments currently within the table. A source table instruction 
specifies tha table label. The assembler places in the object code instruction the 
index where the entry for that label is found in the system table. The system 
table address is stored in the partition control area. The 5280 has access to all 
the table parameters each time a table instruction is executed. 

Table instructions for read, write, and search operations specify the table label, 
a binary register, and a decimal register. The binary register holds the table index, 
and the decimal register holds the table argument. More than one decimal register 
may be needed, depending on the length of the argument. The 5280 uses the 
smallest number of decimal registers necessary to hold the argument. (The 
decimal register specification refers to the leftmost decimal register if more than 
one is used.) The argument for a table operation is the rightmost n bytes of the 
decimal register or registers, where n is the value given to the ARGL parameter of 
the .TABLE control statement. 

If an error occurs during a table operation, an indicator is set on. The indicators 
used for table errors are as follows: 

Indicator 

1125 
1126 
1127 

Meaning If 1 

Table search is unsuccessful. 
Invalid index, or table is too small to accept an added entry. 
A table error occurred. When 1127 is on, either 1125 or 1126 is also 
set on. 

Note: The 5280 does not turn these indicators off after the operation has completed. 



Table Read Operations 

Table arguments are read into one or more decimal registers. Either the last table 
entry or the entry at a specified index can be accessed. The format for table read 
instructions is as follows: 

Result Mnemonic Table 

Rn { 
TBRD} (label, BRn) 
TBRL 

where: 

Result indicates a decimal register, or the leftmost of the decimal registers, 
into which the table argument is read. 

Table indicates the table and the table index. The entry is the table label 
(LABEL parameter from the .TABLE statement that entered the table into the 
system table) and a binary register to hold the appropriate table index. 

TBRO (Read Table Entry at Specified Index) 

Result = Mnemonic Table 

Rn = TBRD (label, BRn) 

The argument of the table specified by label, at the index specified by the binary 
register (BRn), is read into the register specified by result (Rn). If the argument 
length is greater than 16 bytes, consecutive registers to the right of Rn are used. Data 
is right adjusted into the smallest number of decimal registers necessary to hold 
the argument. The unfilled leftmost bytes of the decimal register are not changed. 
The argument length is specified by the ARGL parameter of the .TABLE statement. 

TBRL (Read Last Table Entry) 

Result = Mnemonic Table 

Rn = TBRL (label, BRn) 

The last argument of the table specified by label is read into the decimal register 
specified by result (Rn). If the argument length is greater than 16 bytes, consecutive 
decimal registers are used. The argument is right adjusted into the smallest 
number of decimal registers necessary to hold the argument. The unfilled 
leftmost bytes of the decimal register are not changed. The argument length is 
determined by the ARGL parameter of the .TABLE statement. 

The index of the last table argument is loaded into the binary register specified 
(BRn). 

5280 Assembler Language Instructions 239 



240 

Example: 

Before: 

After: 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
RX I~ I~ I~ I~ I~ ra ~ ~ ra ~ ~ I~ I~ I~ I~ I~ I 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
BRY 10 10 10 P 10 10 10 10 10 P 10 P 10 11 11 P I 
RX = TBRL(TABX, BRY) 

00 01 02 03 04 05 06 07 08 09 10 11 12 1314 15 
RX F F F 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

BRY 10 10 10 10 10 10 10 10 10 10 10 10 10 10 j1 P I 

Table Write Operations 

1 

2 
3 

TABX 

12345 
23456 
34567 

Table arguments can be inserted, deleted, and written at a specified index. 
Arguments can be added to variable length tables. The format for these instructions 
is as follows: 

Mnemonic Table Argument 

TBDL (label,BRn) 

{
TBIN} 
TBWE 
TBWT 

(label,B Rn) = Rn 

where: 

Table indicates the table and the table index. The entry is the table label 
(LABEL parameter from the .TABLE statement that entered the table into the 
control table), and a binary register (BRn) to hold this table index. 

Argument indicates a decimal register, or the leftmost of the decimal registers, 
that hold(s) the table argument to be written. The length of the argument is 
determined by the ARGL parameter of the TABLE. The argument register 
(Rn) is not indicated for the delete operation (TBDL). 

TBDL (Delete Table Entry at Specified Index) 

Mnemonic Table 

TBDL (label,BRn) 

The table entry at the index specified by the binary register (BRn) is deleted from 
the table. Entries below the point where the deletion is made are moved upward 
to fill in the space made by the deletion. 



Example: 

Before: 

2 
3 

BRX 2 

TABY TBDL(TABY,BRX) 

1111 
2222 
3333 

TBIN (Insert Table Entry at Specified Index) 

Mnemonic Table Argument 

TBIN (label,BRn) = Rn 

After: 

BRX[] 

TABY 

1[Jjjj] 

2~ 

The argument held in the decimal register or registers (Rn) is inserted into the 

table specified by label, at the index specified by the binary register (BRn). The 
number bytes inserted is determined by the ARGL parameter of the .TABLE 
statement. 

All table entries currently below the inserted entry are moved downward. This 
includes the entry that was previously in the table position where the new entry 
is inserted. The number of entries in the table is increased by 1, and the index 
to the new table entry is loaded into the binary register specified by BRn. 

TBWE (Extend Table and Write Entry) 

Mnemonic Table Argument 

TBWE (label,BRn) = Rn 

This instruction extends a variable length table and writes the contents of the 
decimal register (Rn) beyond the current last entry in the table. The length of the 
argument to be written is determined by the ARGL parameter of the .TABLE 
statement. 

The number of entries in the table is increased by 1, and the index to the new table 
entry is loaded into the binary register specified by BRn. 

Note: Maximum table size is determined by the MAXM parameter of the .TABLE 
statement. Any attempt to extend the table beyond MAXM results in an error. Use 
caution in estimating maximum sizes of variable length tables. 

5280 Assembler Language Instructions 241 



242 

Example: 

Before: After: 

BRY ..... 1 _o-Jjl TAB9 11111 BRYW ~! 

22222 TBWE (TAB9,BRY) = RX 

RX I 444441 33333 TAB9 

1 11111 
2 22222 
3 33333 

'-4 44444 

TBWT (Write Table Entry at Specified Index) 

Mnemonic Table Argument 

TBWT (label, BRn) = Rn 

The contents of the decimal register (Rn) are copied into the table specified by 
label, at the entry position indicated by the contents of the binary register (BRn). 
The number of bytes written into the table is determined by the ARGL parameter 
of the .TABLE statement. 

Example: 

Before: R X I 9999991 

BRY I 31 1 
2 
3 

TBWT(TABX,BRY) = RX 

After: LRX I 9999991 2 

BRY I 31--' 3 

TABX 

666666 
777777 
888888 

TABX 

666666 
777777 
999999 



Table Search Operations 

Tables can be searched to find an entry equal to, lower than, or higher than a 
specified argument. A table can also be searched using a binary search. The 
following indicators are turned on to indicate the result of the search. 

Indicator 

1101 
1102 
1103 
1125 

Result 

(Only one of these will be on; it does not 
Lower entry found. 
Higher entry found. } 

have to be reset.) 
Equal entry found. 
Entry not found. (Must be reset by your program.) 

The number of bytes used in the search are the rightmost n bytes of the decimal 
register or registers specified, where n is the value given to the ARGL parameter 
of the .TABLE control statement. 

The format of the search instructions is as follows: 

Result Mnemonic Table 

BRn TBBS (label,Rn) 

BRn ={~~~~} 
TBFX 

(label,Rn [,N] ) 

where: 

Result indicates a binary register (BRn) into which the index of the table 
entry selected by the search operation is placed upon completion of the operation. 

Table specifies the search parameters. 

Parameter 

label 
Rn 

N 

Description 

The label of the table to search. 
A decimal register that contains the argument to be searched for. 
The argument data is right adjusted within the register. 
May be specified on any search except the TBBS. If N is coded, 
the search begins with the next entry after the current index 
contained in the binary register (BRn). If N is not coded, the 
search begins with the first entry. 

TBBS (Binary Search for Equal Table Entry) 

Result = Mnemonic Table 

BRn = TBBS (label,Rn) 

The labeled table is searched, by binary search, to find a table entry equal to the 

data contained in the decimal register (Rn). The entries of the table being 
searched must be in ascendi ng order. 

5280 Assembler Language Instructions 243 



244 

If an entry is found in the table that equals the seaich aigument in the decimal 
register, the index of that entry is placed into the specified binary register (BRn). 
Indicator 1103 is set on. 

If no equal entry is found, 1125 and 1127 are set on. BRn remains unchanged. 

Example: 

TAB8 

BRX = TBBS(TAB8,RY) 

Before: 
RY I 
BRX I After: 

1 456 
RY I 6661 2 ~-55';"";6~ 

B R X c:::Jl- 3 t--_66_6 ...... 
4 677 

TBFH (Search for Equal or Higher Entry) 

Result Mnemonic Table 

BRn TBFH (label,Rn [,N]) 

The labeled table is searched for an entry equal to or higher than the data 

contained in the decimal register (Rn). The entries in the table to be searched 
must be in ascending order. 

If N is not coded, the search begins with the first table entry (index 1). If N is 
coded in the instruction, the search begins with the next sequential index after 
the index currently held in the binary register (BRn). 

The search ends when the first equal or higher entry is found or when all table 

entries between the beginning of the search and the end of the table have been 
searched. If an equal or higher entry is found in the table, the index of that 

entry is placed into the binary register (BRn). If no equal or higher entry is 
found, 1125 and 1127 are set on. BRn remains unchanged. 

Example: 

BRX = TBFH (TABX,RY,N) 1 

77777771 77777771 
2 

RY RY 3 Before: 

I 21 
After: 

I 41-4 BRX BRX 

..... - ....... 

TABX 

3333333 
4444444 

6666666 
8888888 

The first entry searched was at index 3. 

TBFL (Search for Lower Entry) 

Result = Mnemonic Table 

BRn = TBFL (label, Rn [,N]) 

The labeled table is searched for an entry that is lower than the data contained in 

the decimal register (Rn). The entries in the table to be searched must be in 
descending order. 



If N is coded, the search begins at the next sequential index after the index 
contained in the binary register. If N is not coded, the search begins at index 1. 

The search ends when the first lower entry is found, or when all table entries 
between the beginning of the search and the end of the table have been searched. 
If a lower entry is found, the index of that entry is placed into the binary register 
(BRn). If no lower entry is found, 1125 and 1127 are set on. BRn remains 
unchanged. 

Example: 

RY I 3331 1 
Before: 

BRX C§] 2 
3 
4 

TABX 

600 
500 
400 
300 

After: 
RY I 3331 

BRX 1 ... _4 .... 1 

The instruction BRX = TBFl (TABX,RY) would result in BRX containing 4. 
The search would begin with entry 1 because N is not specified. 

TBFX (Search for Equal Entry) 

Result = Mnemonic Table 

BRn = TBFX (label, Rn [,N] ) 

The labeled table is searched for an entry equal to the data contained in the 
decimal register (Rn). The entries in the table to be searched do not have to be 
ordered, because all entries are searched for an equal entry. 

Unless N is coded, the search begins at index1. If N is coded, the search begins 
at the next sequential index after the index held in the binary register (BRn). 

If any equal entry is found, the index for that entry is placed into the binary 
register (BRn). If no equal entry is found, 1125 and 1127 are set on. BRn 
remains unchanged. 

SRX = TSFX (TAS$,RY,N) 
I 222221 222221 RY RY 

Before I 21 
After: 

SRX I 21 BRX 

The search begins at index 3. After index 4 and 5 are searched and no equal 
entry is found, 1125 and 1127 are set on and the operation terminates. 

1 
2 
3 
4 
5 

TAB$ 

22222 
66666 
88888 
00000 
11111 

5280 Assembler Language Instructions 245 



246 

The following code searches an input record for a specific character: 

.DATASET DSN=2 LBUF=INPUT TYPE=SR ... 

. DC LABEL=INPUT LEN=256; 

.TABLE LABEL=INTAB DCLBL=INPUT ARGL=l MAXM=256; 
READ(2); Get input record. 
15, RY=X'40'; Search argument is a blank. 
BR40(4) SR 32; Zero BR40and BR41. 

TLOOP: BR40=TBFX(lNTAB, RY,N); Search. 
IFIR 125 IS ON GOTO ENDLOOP; 
B R41 += 1; I ncrement recorder. 
GOTO TLOOP; Go to resume search. 

ENDLOOP: SOFF(127) ; Turn off indicator. 

Global Tables 

Tables in the common function area can be accessed by any partition. The label of 
the table must also be included in the .XTRN control statement. The partition can 
then access the table by specifying the label in a TABLE instruction. 

Global tables can be read, searched and updated by any partition. 

Whenever a partition accesses a global table in an instruction, the table is locked 
to any other partition until the instruction is completed. However, the table can 
be locked indefinitely by the TLCK instruction. The program that issued the 
TLCK instruction has exclusive use of the table and must issue a TUN LCK 
instruction before any other partition can access the table. The format of the 
instructions to lock and unlock global tables is as follows. 

Mnemonic Table 

TLCK 
TUNLCK 

where: 

(label) 

Table specifies the label of the global table to lock or unlock. 

TLCK (Lock Shared Table) 

Mnemonic Table 

TLCK (label) 

The table specified by label is locked for exclusive use by this partition. The 
table will remain assigned exclusively to this partition until a table unlock 
(TUN LCK) instruction is encountered. 



If the table is already locked by another partition, the program will remain at 
this instruction until the other partition issues a TUNLCK instruction. 

This instruction is used only with global tables located in the common function 
area. 

Note: There is no automatic deadlock detection or recovery. If two partitions 
are waiting for tables held by each other, the system will lock up and require 
IPL. 

TUNLCK (Unlock Shared Table) 

Mnemonic Table 

TUNLCK (label) 

This instruction frees a shared table that has been locked by the TLCK instruction. 
Whenever a table has been locked, this instruction must be used in order to make 
the table available to other partitions. 

This instruction is used only with global tables located in the common function 
area. 

MISCELLANEOUS INSTRUCTIONS 

Compare Logical Character Strings 

The contents of two character strings are compared. An indicator is set on to 
signify an equal to, greater than, or less than relationship. The character strings 
can be from 1 to 256 bytes in length. The format of the CLC instruction is as 
follows. 

Mnemonic String1 String2 Length 

CLC (BRa, BRb, 1-256) 

where: 

String1 indicates a binary register that contains the address of the first byte 
of string1. 

String2 indicates a binary register that contains the address of the first byte of 
string2. 

Length specifies the number of bytes to compare. Length may be from 1 to 
256 bytes. 

The two strings are compared byte for byte until the first miscompare, according 
to the standard EBCDIC collating sequence. One of the following indicators is 
set to indicate the result of the compare. 

5280 Assembler Language Instructions 247 



248 

Indicator 

1103 
1102 
1101 

Condition 

Stringl is equal to string2 
Stringl is less than string2 
Stringl is greater than string2 

The contents of the 2 byte strings remain unchanged by the operation. 

Example: 

STRNGl 

STRNG2 

X'0970' 

X'0975' 

X'0970' ABC D E 

X '0975' A B D D D 

The instruction CLC (STRNG1, STRNG2, 2) would set indicator 1103. 

The instruction CLC (STRNG1, STRNG2, 4) would set indicator 1102. 

Generate a Self-Check Digit 

The instruction to generate a self-check digit is used when you create a new file 
of numbers that you want to self-check each time an operator enters them. For 
more information about self-check numbers, see Self Check in Chapter 2. 

Mnemonic Operand 

GSCK (Rn) 

where: 

Operand indicates the decimal register (Rn) or double register (Rn(32)) that 
contains the self-check field. 

During the execution of the GSCK operation, the 5280 uses the self-check 
algorithm (specified in the .SELFCHK control statement) to generate a unique 
self-check number from the foundation contained in the decimal register or 
double register. The 5280 places the one or two generated digits into the self
check digit position in the register to complete the self-check field. 

Modification for Indirect Instruction Execution 

Indirect instruction execution is accomplished by instruction modification 
during program execution. An operand of the object code, which was generated by 

a source instruction, is modified. The instruction is then executed with the 
operand modification, although the original object code for the operand, which is 
stored in main storage, is not changed. 

Each source instruction generates 4 bytes of object code. This code is stored in 
main storage. The first byte (byte 0) always contains the operation code, and the 
next 3 bytes (bytes 1-3) contain the operands. See Appendix A for the operation 
codes generated from each assembler mnemonic. The contents of the remaining 
3 bytes of each object code instruction is described in the Function Reference 
Manual. 



The format of the INXEO instruction is as follows: 

Mnemonic Modifier Statement Byte 

INXEO (BRn[(4)], label, [0-3] ) 

where: 

Modifier indicates a binary register that contains the statement modifier. 
If a binary double register is specified, all 4 bytes of the double register are 
used to modify the 4 bytes of the instruction. If a 2-byte binary register is 
used, only one byte of the instruction is modified, with the data in the 
rightmost byte of the binary register. 

Statement specifies the label of the statement to modify. 

Byte specifies which byte of the object code to modify. If a binary double 
register is used for the modifier, this operand is omitted and all 4 bytes are 
modified. If a 2-byte binary register is used for the modifier and this operand is 
omitted, it defaults to byte 1 (the operation code is byte 0). 

When the INXEO statement is executed, the byte or bytes of the object code are 
logically ORed with the contents of the binary register or binary double register. 
The modified statement is then executed. After the modified statement is 
executed, control returns to the next sequential statement following the I NXEO 
statement, unless the modified statement is a branch instruction. If the modified 
statement is a branch, control branches to label specified by the branch instruction. 
This instruction should not be used to modify a short branch instruction. 

The original contents of the object code operand byte remain unchanged. 

Any object code instruction may be modified with this instruction. A list of the 
most commonly modified instructions is as follows: 

Instructions that May be Modified, and Valid Modification 

Instruction 

MVC 
MVCR 
MVCV 
CLC 
TRANS 
TRT 
label = constant 
Rn = constant 
IFC 
IFHI/IFLO 

READ 

WRT 

Table instructions 

Modifiable 
Operand 

length 
length 
length 
length 
length 
length 
constant 
constant 
constant 
mask 

format, dsn 

format, dsn 

index 

Modifiable 
Object Code 
Byte 

1 
2 
3 
2, 1 

2,1 

2 

Object Code Value 

length-l 
length-l 
length-l 
length-l 
length-l 
length-l 
constant 
constant 
constant 
hex AND mask 
hex exclusive-O R mask 
format number, data set 
number 
format number, data set 
number 
index 

5280 Assembler Language Instructions 249 



250 

Duplicate a Byte in Storage 

The contents of a byte in a main storage partition can be duplicated one to 256 
times. 

The format of the DUP instruction is as follows: 

Mnemonic Address Number 

DUP ([disp,] B Rn ,1-256) 

where: 

Address specifies a base displacement address of the storage byte to duplicate. 
The contents of the base register (BRn) are added to the displacement (0-255) 
to find the address of the byte. 

Number specifies the number of times to duplicate the contents of the storage 
byte specified by result. 

The contents of the byte at the base displacement address are duplicated for the 
number of times indicated by number. The duplicated data is placed into storage 
in the bytes immediately following the byte that is being duplicated. 

Search Resource Allocation Table 

Mnemonic Data Set Operand 

SRAT (1-15 ,BRn) 

The SRAT operation loads the physical address for the specified data set into 
the operand binary register (BRn). When the SRAT operation is executed, the 
5280 takes the logical device identifier from hex 60 and 61 of the lOB for the 
data set specified in the instruction. The 5280 searches the resource allocation 
table for a matching logical device identifier entry. If a match is found, the 5280 
loads the binary register specified in the instruction with the corresponding physical 
device address, which is stored with the logical device identifier in the resource 
allocation table. 

If no logical device identifier is present in the lOB, or if no match is found in the 
resource allocation table, or if there is no resource allocation table, 1118 is set on 
and the 5280 finds the physical device address in the partition logical I/O table 
entry that corresponds to the specified data set. 



Set Bits with Mask 

The bits of 1 byte in storage can be set on or off by using a mask and logical 
operations. 

The format for these instructions is as follows: 

Mnemonic 

{
SETON} 
SETOFF 

where: 

Result Mask 

([disp] , 8Rn, constant) 

Result specifies a base displacement address of the byte to be masked. The 
contents of the base register (8Rn) are added to the displacement (0-255) 
to find the address of the byte. 

Mask is a 1-byte constant, as indicated under Constant Specifications at the 
beginning of this chapter. 

When the SETON operation is executed, the storage byte at the address specified 
by result is logically ORed with the mask, and the result replaces the original 
contents of the storage byte. 

When the SETOFF operation is executed, the storage byte at the address 
specified by result is logically ANDed with the complement of the mask, and the 
result replaces the original contents of the storage byte. 

Set Indicators 

Up to three indicators may be turned on or off with a single instruction. 

The format of the instructions to set the indicators is as follows: 

Mnemonic Operand 

{
SON} 
SOFF {

(la) } 
(la,lb) 

(la ,Ib ,Ic) 

where: 

Operand specifies the indicator or indicators to set on or off. Indicators are 
referred to by number (10-1254) or by label. One, two, or three indicator 
numbers may be specified, or the operands may be omitted. 

When the SON operation is executed, the indicator or indicators specified by 
operand are set on (8'1 '). When the SOFF operation is executed, the indicator or 
indicators are reset off (8'0'). 

5280 Assembler Language Instructions 251 



252 

System Lock and Uniock 

An executing program can issue an instruction to cause the 5280 to be locked into 
the current partition. The 5280 remains in the partition until the executing 
program issues an instruction to release the 5280. The format of the instructions 
to lock or unlock current partition is as follows; 

Mnemonic Operand 

SYSLCK 
SYSUNL [(*)] 

where: 

Operand may be specified for SYSUN L. If the asterisk is included, the 5280 
unlocks the partition but executes within the partition for the normal time 
period before it exits. If the asterisk is omitted, the 5280 exits the partition 
as soon as it executes the SYSUNL instruction. 

When the SYSLCK instruction is executed, the 5280 is locked into the current 
partition. Whenever the time limit for the 5280 to work within the partition is 
exhausted, the 5280 resets the timer and continues to work within that partition 
until a SYSUNL instruction is encountered. After the SYSLCK is executed, no 
other partition is processed by the 5280 until the SYSUNL instruction is 
encountered. You should exercise great care when using this instruction. Use 
this instruction only when you want a series of instructions to be executed 
without interruption (such as a time-out interruption). Do not execute I/O 
instructions or access global tables while the 5280 is locked into your partition. 

When the SYSUNL instruction executes, the 5280 leaves the current partition 
for a time-out, unless the asterisk is included in the instruction. If the asterisk 
is included, the 5280 executes instructions within the partition for the normal time 
slice before it exits the partition. 

Translation 

The 5280 processes all data in EBCDIC notation. However, other notation can be 
read into the I/O buffer and translated to EBCDIC. Or data can be moved from 
main storage to the I/O buffer, translated from EBCDIC, and written in another 
notation to a diskette. This translation requires a translate table. You can code 
your own translate table with .DC control statements. If your 5280 common 
function area contains the optional ASCII Translate Table, you may use that table 
from any partition, the label is CFASCII. 

If you code your own translate table, you must declare the table to begin on a 
256-byte boundary. The length must be 512 bytes, divided into two separate 
256-byte tables. The first 256 bytes are used for the input translate table, and the 
next 256 bytes are used for the output translate table. 

In the input translate table, the EBCDIC value of each input character is stored 
at a displacement that corresponds to the value of the translated code. For 
example, the character P is represented by D7 in EBCDIC and by hex 50 in 
ASCII. The value of hex D7 is stored at a displacement of hex 50 in the input 
translate table. When the character P is read into the input buffer, the ASCII 
value of hex 50 is translated to the EBCDIC value stored at displacement hex 50. 



The output translate table stores the code value of the translated code at the 
displacement into the output translate table that corresponds to the EBCDIC 
value. To translate the character P to ASCII, the ASCII value of hex 50 is stored 
in the output translate table at displacement hex 07. 

The EBCDIC values between hex 00 and 3F are used for various keyboard/display 
and printer control characters. For the printer, SCS control characters are very 
difficult to translate. For example, using the printer SCS control characters 
34 C8 06 (skip 6 columns), the hex 34 and 06 may be easily translated to themselves 
by placing hex 34 and 06 at locations 34 and 06 respectively in the translate 
table. However, the hex C8 (EBCDIC H) would have a hex 48 (ASCII H) in the 
translate table causing hex 34 C8 06 to be translated to hex 344806, which will 
cause a printer error. Thus, it is not recommended to translate SCS data sets. 

You can initiate translation in two different ways in your source program. If 
you want translation performed on every record read from or written to a data set, 
you can use the TRANS parameter of the .DA TASET control statement to 
specify the label of the appropriate translate table. The translation will occur 
automatically, immediately after a physical record is read or immediately before 
a physical record is written. 

If you do not use the TRANS parameter, you can issue a translate instruction to 
translate one record. The instruction translates the data that is pointed to by the 
Operand1 register. 

The format for the translate instructions is as follows: 

Mnemonic 

TRANS 
TRT 

where: 

Operand1 

(BRa, 
(BRa, 

Operand2 

BRb, 
BRb, 

Length 

1-256) 
1-256 

Reverse 

LR] ) 

Operand1 indicates a binary register that contains the address of the leftmost 
byte of the data stream to be translated. 

Operand2 indicates a binary register that contains the address of the leftmost 
byte of the translate table. 

Length is a constant between 1-256 that indicates how many bytes are to be 
translated. 

Reverse is specified only for TRT for reverse testing. 

When the TRANS operation is executed, the number of bytes specified by length 
is translated, character by character. The translation begins at the address stored 
in the operand1 binary register (B Ra). The translate table used for the translation 
begins at the address specified by the operand2 binary register (BRb). Characters 
in the data stream are replaced by their translated value. 

When the TRT operation is executed, the test begins at the address stored in the 
operand1 binary register (BRa) and continues for the number of bytes specified 
for length. The translate table used for the test begins at the address stored in the 
operand2 binary register (BRb). 

5280 Assembler Language Instructions 253 



254 

Beginning with the data byte specified, the EBCDIC representation of the 
character at each byte is used as an offset into the translate table. If the entry at 
that offset into the translate table is a zero, the test continues to the next data 
byte. If the entry at that offset into the translate table is not zero, binary 
register sixteen (BR16) is loaded with the relative address of the data byte, and 
the rightmost byte of binary register seventeen (BR 17) is loaded with the translate 
table entry for the data stream character. 

Data characters are tested one by one until the first nonzero translation occurs 
or until the entire data stream has been tested. If each character in the data 
stream translates to a zero, BR16 and BR17 contain zero. 

The original characters in the data stream are not changed. 

The following indicators may be turned on according to the specified conditions. 

Indicator 

1101 
1102 
1103 

Condition 

Nonzero byte not found 
Nonzero byte found 
Nonzero byte found in last position of data. (If R is coded, the 
nonzero byte is found in first position). 



Chapter 5. How To Assemble Your Program 

THE 5280 ASSEMBLER 

The 5280 assembler is stored as a data set on the assembler diskette. It must be 
loaded into a main storage partition in order to process your source program. The 
partition may be a foreground partition or a background partition that has a key
board attached. The partition must be a minimum of 9 K bytes in size. You load 
the assembler by entering the assembler data set name in response to the load 
prompt. The assembler data set name is SYSASM. 

When the assembler begins executing, it displays a series of prompts. The prompts 
request the labels of up to six data sets. These data sets include the: 

1. Source data set, which contains your source program. 

2. Extern data set, which is an optional data set that defines common function 
labels. You must include this data set if your program uses common function 
routines. The extern data set is stored on the assembler diskette. 

3. Work data set 1, which is used by the assembler. This data set is mandatory. 
It may be allocated during the assembly. If allocated during the assembly, it 
will be deleted by the assembler upon normal termination of the assembly. 

4. Work data set 2, which is required if you request a cross reference listing. This 
data set may be allocated during the assembly. If allocated during the 
assembly, it will be deleted by the assembler upon normal termination of the 
assembly. 

5. Object data set, for the object code output. This data set may be allocated 
during the assembly. 

6. Print data set, which is required if you write your listing to a diskette. This 
data set may be allocated during assembly. 

These data sets are not required to be on the same diskette. If you preallocate any 
of the last four data sets, they should be specified as I exchange, with 256-byte 
records and with the delete character omitted. 

During execution, the assembler makes multiple passes over the source code in 
order to generate the object code output. For a 9 K partition, about 285 
symbols may be processed. Any additional available storage is automatically 
added to the symbol table. 

If you requested a cross-reference listing, the symbols from the symbol table are 
copied into work data set 2. The symbols are later sorted into alphabetic order for 
output. 

How to Assemble Your Program 255 



256 

After the symbols are resolved, subsequent passes over work data set 1 develop the 
object coda. The final pass, over ';.:ork data set 1 and the source code together, pro-
duces the object code and assembly listing. The object code is written to the speci
fied object data set. The listing may be written to a diskette as the print data set, 
or may be written to a printer. Printed output is formatted with 128 print positions 
per line and requires a minimum print width of 12.8 inches. Work data set 1 and 
work data set 2 are used only during the assembly process. If allocated by the 
assembler, they are deleted when the assembler has completed its execution. Other
wise, they remain on the diskette to be used for the next assembly. 

Loading the Assembler into a Partition 

The assembler may be loaded into a foreground or a background partition. If it is 
loaded into a foreground partition, the keyboard/display assigned to the partition 
is not available to another partition until the assembler is finished executing. All 
errors detected by the assembler are included in the assembly listing. When the 
assembler encounters certain errors, the assembly stops and the error code is dis
played on the status line. You can press the Reset key to continue the assembly, 
or press the End of Job command function key to terminate the assembly. 

If the assembler is loaded into a background partition, a keyboard/display must be 
attached until the prompts have been displayed and the necessary input has been 
accepted. The keyboard/display is then detached and available to another partition 
while the assembler runs in the background partition. Error messages are included 
on the program listing. 

The Assembler Prompts 

When the assembler begins execution, a series of prompts is displayed. Many of the 
prompts display a default response. If you wish to accept the default, simply press 
the Enter key. The cursor is positioned at the beginning of each response field; to 
change the default response, key over the displayed default. When a separate 
response is required on two or more lines, the cursor will be positioned at the first 
position of the first response field. Key in your response and press the Field Exit 
key. The cursor will move to the first position of the next response field. 

The status line is always active while prompts are being displayed. If an error 
occurs, the status line blinks and the appropriate error message is displayed. Press 
the Reset key to stop the blinking, and key over the error response. 

If an operator who is not familiar with assembler programming is to assemble your 
program, be sure to provide information concerning all necessary data set labels, 
device identification, and options you want for your assembly. 



The assembler prompts are as follows. 

Prompt 1 

o OOO! D Ol Fl. 
5280 assemb leI" 

Op t ion s a I- e : 
1. List to PI" intel" 3. No list ing 
2. List to diskette 

Select option: Press ENTER 10-01 

If you select option 1, the assembly listing will be printed with 128 print positions 
per line. The printer must have a minimum print width of 12.8 inches. If the paper 
width is not sufficient for the printout, part of the listing is lost and damage to the 
printer may occur. 

If you select option 2, the assembly listing will be written to a diskette data set. A 
later prompt will request the name of this data set, referred to as the print data set. 

If you select either option 1 or option 2, Prompt 2 and Prompt 3 are displayed. If 
you select option 3, Prompt 4 is the next prompt displayed. 

Prompt 2 

o 0001 II 01 Fl 
Enter assembler print options 

Cross reference (1.=Yes,2=No): 
Full data print (1=Yes,2=No): 
Literal spacing (1.=Yes,2=No): 

PI" ess ENTER 

Included lines (1=Yes,2=No): 
Errors only (1=Yes,2=No): 
Page size (Lines/Page): 

10-02 

The assembler print options default to 66 lines per page and a cross reference with 
a full data print. If you enter no (2) for the full data print option, the listing will 
print no more than the first 8 bytes of object code generated from each source line. 

If you choose yes (1) for included lines, any program code inserted into the program 
with an .INCLUDE control statement is printed in the listing. 

If you choose yes (1) for errors only, only the error messages and the lines that 
caused the error messages are printed on the listing. If you specify errors only and 
your program assembles error-free, only the program name and title are printed on 
the listing. 

How to Assemble Your Program 257 



258 

The spacing option effects the way your .SPACE and .EJECT control statements 
are processed. If you c.'1oose yes (1) fer this option, the printer \I'Iill space and go 

to a new page exactly as the control statements specify. If you choose no (2) for 
this option, control statement specifications are adjusted to the following 
conditions. 

If .SPACE control statement causes the printer to go to the next page, printing 
begins on the first line of the new page rather than at the line indicated by the 
control statement. For example, if the .SPACE statement specifies six lines to be 
skipped, and only three lines remain on the current page, printing begins on line 1 
of the next page rather than on line 4. 

If an .EJECT control statement is encountered when the printer is already posi
tioned to print the top line of a page, the .EJECT statement is ignored. 

Prompt 3 

I 0 0001 [t 02 ~o 1 
Enter dat~ 
[lay: 

Month: J ·l Year: Press FNTER 10-03 

'--------------'" 
The date prompt is presented if Prompt 2 was used and if the date is not available 
from the system control area. 

Prompt 4 

o 0001 A 25 E2 
5280 assemb I e,-
Enter the following information for - SOURCE data set 
Data set name: 
Device address: 

p,- ess ENTER 

The source data set name is the label you assigned to the diskette data set in which 
you recorded your source statements. Your source statements are entered as 80-
byte logical records, although only the first 72 bytes are used. Source records may 
be stored on a diskette of any exchange type. Any block size may be used, provid
ing the block size is valid for the exchange type and sector size used. 

lH~ ] 

The device address identifies the diskette drive that is to read in the source data set. 
Enter the four-character physical address. 



Before you press the Enter key, be sure the diskette with the specified data set is 
in the diskette drive at the specified device address. 

Prompt 5 

n 0006 A 66 4-0 
Diskette i~ volume protected. 
Device DDDD. Data set S5SS. 

idp.ntifier to access volume. 

l·--·-----·- Pross ENTER 05-01 J 
~--------------

If the protect flag is set in the diskette label, Prompt 5 is displayed. Enter the 14-
character owner 10, as described in the System Concepts Manual. If you terminate 
the assembly at this point, by leaving the owner 10 blank and pressing the Enter 
key, the assembler data set is closed and the partition becomes available to be 
loaded again. 

After the data set name and device address for the source data set have been 
obtained, the assembler will attempt to open the data set. If an error occurs during 
open, the status line blinks and the appropriate error code is displayed in the status 
line. Press the Reset key to stop the blinking, then reenter the parameters. If the 
data set is successfully opened, Prompt 6 is displayed. 

Prompt 6 

o 0001 A 25 E2 
5280 assemhler 
Enter the following information for - rXTRN data set 
Data set name: 
Device address: (leave blank if none) 

Pl- e ss ENTE R 10--05 

The extern data set is a list of common function routine labels. If your source pro
gram makes any calls to the common function area, you must enter the label of the 
extern data set. The extern data set is stored on the assembler diskette. 

After you enter the data set name and device address, the assembler attempts to 
open the file. Errors that occur during open are handled as for the source data set 
open. 

Prompt 7 

l 
o 0001 A 25 E2 
5280 assemb I H 

Enter the following information for - OBJECT data set 
Data set name: 
Device addl-ess: 

Pro e ss ENTER 10-0 .. ] 

How to Assemble Your Program 259 



260 

The object data set is the data set the assembler will use to write the assembled 
object code. It is also used as another work data set during the assembly. After 
you enter the data set name and device address, the assembler attempts to open the 
data set. If the open is successful, Prompt 10 is displayed. 

If the data set cannot be found at the specified device address, the assembler blinks 
the status line and displays an open error message. When you press Reset, the blink
ing stops and Prompt 8 is displayed. 

PromptS 

o 0026 D 01 Fl 
Unable to find data set 
Do you want ita II ocated? 

Options are 
1. Yes 2. No 

Select option: Press ENTER 

If you select 2, Prompt 7 is displayed again. 

If you select 1, Prompt 9 is displayed with the data set name and device address 
you entered for Prompt 7. 

Prompt 9 

o 0030 D 04 40 
Enter data set allocation parameters 
Data set name: 
[lev i ce addl-e~;s: 

Number of records: (0 for MAX) 
P,-ess ENTER 

10-06 

:10-07 

If you wish to change the data set name or device address, use the ~ (Field Back
space) key to move the cursor to the field you want to change. Enter the number of 
256-byte records that you estimate will be written. This typically allows 4 records 
per 1024 bytes of the partition the program will run in. 

After you enter the parameters, the assembler will attempt to allocate the data set 
as indicated. If the allocation fails, the status line blinks and displays an error 
message, as for an open error. Press the Reset key and reenter the parameters. 



Prompt 10 

o 0001 A 25 E2 
5280 a~semb I el-
Enter the following information for - work data set ~ 1 
[lata set name: ·l Del.' i ce address: J 

Pn~ss ENTER 10-04-

-----------------'" 
The work data set 1 is used by the assembler only during the assembly process. 
After you enter the parameters, the assembler attempts to open the data set. 

If the data set is not found at the specified address, the assembler blinks the status 
line and displays an open error message. When you press the Reset key, the. blinking 
stops and Prompt 8 is displayed, as for the object data set. If you select 1, Prompt 
9 is displayed again. Allocate work data set 1 as for the object data set. Work data 
set 1 should be about one-half the size of the source data set. If you assemble more 
than one source program at the same time, be sure to specify a different work data 
set for each assembly. 

After work data set 1 has been successfully opened, the subsequent prompts depend 
upon your responses to the first two prompts. 

If you requested an assembly listing in Prompt 1 and a cross reference in Prompt 2, 
the next prompt requests the name of the work data set 2. The prompt is as for 
Prompt 10, except the first line contains: 

ENTER THE FOLLOWING INFORMATION FOR - WORK DATA SET 2 

Work data set 2 is opened or allocated as for work data set 1. Work data set 2 is 
used only during the assembly process. For work data set 1, one 16-byte record is 
required for each symbol definition or reference. Estimate one record per two source 
lines. 

If you requested an assembly listing to a diskette in Prompt 1, the next prompt 
requests the print data set name. The prompt is as for Prompt 10, except the first 
line contains: 

ENTER THE FOLLOWING INFORMATION FOR - PRINT FILE 

The print data set is used bv the assembler to write an assembly listing to a diskette. 
The print data set is opened or allocated as for work data set 1. 

How to Assemble Your Program 261 



262 

If you requested a printed assembly listing, Prompt 11 is displayed. 

Prompt 11 

I 0 0001 N 04 F-B 1 
5290 •••• mbt.r 

[nt.,· p,·lntfr dttvir.:. addrP.s1S: J 
l 

Press ENTER 
10-09 

'----------------
The printer address must be the 4-character physical address. 

The assembler listing is printed with 128 print positions per line. This requires a 
minimum print width of 12.8 inches. 

When all necessary data sets have been opened, the assembler is ready to process 
the source data set. If the assembler is executing in a background partition, the 
keyboard is now detached. The status line will indicate the partition number of 
the currently attached partition. 

After the assembler has developed the object code, it writes the data sets and listings 
according to your responses to the prompts. The object data set may be loaded into 
any main storage partition for execution. 

Normal error recovery is provided for the printer. However, if the printer is inter
rupted while it is printing your listing and it cannot continue, you can recover 
without reassembling your program. Press the Cmd key, then the End of Job 
command function key; the load prompt is displayed by the standard-load routine. 
Load data set SYSASM8 from the assembler diskette. This data set then prints out 
your assembly listing. The diskette(s) must be in the same diskette drive(s) as when 
the assembly was stopped. The same partition must be used as was used for the 
assembly. 

THE ASSEMBLY LISTING 

The 5280 assembler produces a conventional parallel column source-object listing. 
If the assembler detected an error in a source statement, it flags the statement with 
asterisks and includes an error message. The edit format and screen control format 
messages are printed first, then the other messages are printed together, usually in 
sequence by line number. See Appendix E for a list of the 5280 assembler error 
messages. Following is an example of a printed listing and the kinds of information 
it contains. 



A Printed Assembly Listing 

5280 ASSEMBLEH Ol.OO SAMPLE2 - ORDER ENTRY SAMPLE PROGRAMi 

ADDH 

D. 
0080 
00A6 
OOBE 
0140 
0001 

0114 
0000 
0115 

0140 
0142 
0144 
0146 
0148 
014A 
014C 
014E 
0150 
01.52 
0154 
Ol56 
0158 
Ol60 
0190 
01AO 
01AS 

OBJECT CODE 

E2C1D4D7D3CSF240 
OOlOOOOOOOOOOOOO 

0800 

0435 
08C2 
08E4 
Oi50 
8000 
0006 
0022 
0029 
370i~ 
FOFOFOFOFOFOFOFO 
F9F1F1FiFF 
F9F9F9F8FF 

LINE SOURCE CODE 

n .START PNAM='SAMPLE2' ENTRY=START MCHK=CFPGMCHKi 
~ .KBCRT CRBA=IO~""- ETAB=ERRKBi 
58 • DC LABEL=SCNCIII EVL=2 D I SP=X ' A6' i 
59 .DC LABEL=MODE~w LEVL=2 DISP=X'BE'i 
60 .DCLIND LABEL=EODSW,PRNTSW,QUANSWi 

SCAN CODE ~ CONVERTED EBCDIC 
KB/CRT MODE SWITCH 

61 .EQUATE NUMB=(1,TRANS),(2,PRNT)i .DATASET NUMBERS 
~* THE FOLLOWING EQUATES ARE OPTIONAL, BUT WILL PUT ENTRIES IN THE 
~* CROSS REFERENCE LISTING FOR SYSTEM REGISTERS AND INDICATORS. 

64 .EQUATE REG=(BR10,BR10),(BR18,BR18),(BR19,BR19),(BR22,BR22)j 
65 .EQUATE IND=(I115,I115),(I118,I118),(I125,I125),(I158,I158)j 
66 .XTRN LABEL=CFPGMCHK,CFGIOERR,CFPERATT,CFLOAD01,CFERCDSM, 
67 CFATFBGD,CFOEVCHKj 
68 .DC LABEL=CFWKPTR TYPE=BIN INIT=ADDR(CFSAVE)j 
69 .DC LABEL=CFPARM1 TYPE=BIN; 
70 .DC LABEL=CFPARM2 TYPE=BINj 
71 .DCLBR LABEL=WKBR1; 
72 .DC LABEL=RWCOL TYPE=BIN INIT=X'0435'i 
73 .DC LABEL=BUF@ TYPE=BIN INIT=ADDR(IOBUF)j 

C.F. WORK AREA PTR 
C.F. PARAMETER REG 
C.F. PARAMETER REG 
BINARY WORK REGISTERS 
ROW ~ COL FOR CRTMM 
liD BUFFER PTR 

74 .DC LABEL=TXT@ TYPE=BIN INIT=ADDR(SHPCD)j PTR FOR CRTMM 
75 .DC LABEL=PRCNTL@ TYPE=BIN INIT=ADDR(PRCNTL); PTR TO PRINT CONTROL 
76 .DC LABEL=PRCNTL TYPE=BIN INIT=X'8000'; PRINTER SPACE CONTROL 
77 .DC LABEL=K6 TYPE=BIN INIT=6j 
78 .DC LABEL=K22 TYPE=BIN INIT=X'22'j 
79 .DC LABEL=K29 TYPE=BIN INIT=X'29'j 
80 .DC LABEL=K3701 TYPE=BIN INIT=X'3701'j CODE FOR EOD 
81 .DCLDR LABEL=WKDR1,RQUAN,RPRICEi 
82 .DC LABEL=LIMIT TYPE=DEC INIT=1000i 
83 .DC LABEL=MSG9111 INIT=X'F9F1F1F1FF'i 
84 .DC LABEL=MSG9998 INIT=X'F9F9F9F8FF'; 

DECIMAL WORK REGISTERS 
QUANTITY LIMIT CHECK 

9111 - SELF CHECK INCORHECT 
9998 - UNEXPECTED KB EXT STATUS 

o Hexadecimal address of the object code. 

D Object code generated from the source line. 

II Comment lines included in the source program. 

II Assembler adds sequential statement number, which is not included in the source code. 

II Source line. 

II The assembler includes whatever is coded in columns 73-80 of the source line. 

00560000 
00570000 
00580000 
00590000 
006-:lho 
006"10 
00620000 
00630000 
00640000 
00650000 
00660000 
00670000 
00680000 
00690000 
00700000 
00710000 
00720000 
00730000 
00"740000 
00750000 
00760000 
00770000 
00780000 
00790000 
00800000 
00810000 
00820000 
00830000 
00840000 

How to Assemble Your Program 263 



264 

5280 

The Cross-Reference listing 

The cross-reference listing lists your program symbols in alphabetic order. It lists 
the references for each symbol, combining as many of the individual reference 
records as will fit into a single line, but starting a new line for each new symbol. 
The references indicate the relative record number of the source record that used 
the symbol. Following is an example of a cross-reference listing. 

ASSEMBLER 01.00 SAMPLE2 ORDER ENTRY SAMPLE PROGRAM; 

DEFINED SYMBOL COMP@ LENG VALUE TYPE REFEF.:ENCES 

0~2 
00360 
00417 
00211 
00258 
00064 
00064 
00064 
00064 
00073 
00373 
00094 
0009~ 
0006t-
00066 
00066 
00066 
00066 

AMT ~~J OOOD 08E6 II L." .~ OO: .. ~ 00373 0040l 
ATTN 0000 0004 ODE8 INST 00346 
BKRG 0000 0004 OEA8 INST 0032l 
BLANKS 00i4 0019 OBE5 PRMT 0017"7 00178 ()Ol79 
BLNK 0000 0004 OCBO INST 00248 00358 
BRiO 0014 0002 0114 BIN 00274 00292 
BR18 0024 0002 OJ.24 BIN 00414 
BR19 0026 0002 0126 BIN 00370 
BR22 002C 0002 012C BIN 00307 
BUF@ 004A 0002 014(.1 BIN 00258 00259 00286 00287 
BUFAD 0000 0008 OEOC DATA 00j.20 
BUFF1 fJ 0000 0400 0300 DATA 00087 
BUFF2 0000 0100 0700 DATA 0009l 
CFATFBGD * 0000 0000 012D INST 002:32 OO~.~45 00260 0026~> 0028B 
CFDEVCHK * 0000 0000 01.:39 INST 00236 00251 
CFERCDSM * 0000 0000 0125 INST 00332 00379 
CFGIOERR * 0000 0000 Oi19 INST 00309 
CFLOAD01 * 0000 0000 0141 INST 00:34 i 0036:'i 

D The number of the line where the symbol is defined. 

D Common function labels are marked with asterisks. 

II Compressed address or index into the system table where the address is stored. (See 
Functions Reference Manual for a description of compressed addresses for registers). 

II Data type. 

II The number of each line that refers to the symbol. 

003~.>4 



Error Messages 

Error messages are printed at the beginning of your assembly listing, in the follow
ing format. 

5280 ASSEMBLER 01.00 GALTEST6 - ASSEMBLY ERRORS 

ERROR LINE 

Ab30~2-0B~1 
AWIIJ050-0_w31 
ASM0050-00032 
ASM0077-'OO034 
ASM3002-00035 
ASMOO77-00035 
ASM0077-00036 
ASM3002-000:~6 
ASM3002-00037 
ASM3002-00037 
ASM0050-00020 
ASM1001-00027 

...... ....... 

II 
34 

DESCRIPTION 

TYI:'E is invalid (too lal-ge, etc) 
FIJT2 is an undefined symbol 
MDUP is an undefined symbol 
MS and MD must be identical 
MD is invalid (too lal-ge, etc) 
MS and MD mllst be identical 
MS and MD foust be identical 
MS is i nva lid (too large, etc) 
MD is i nva lid (too lal-ge, etc) 
MS is invalid (too lal-ge, etc) 
MDUP is an undefined symbol 
Invalid de l i III i tel- at cc)lumn ...... 

·r ... 

ASM0036·-00057 Option or mod if i el- not recognized 
ASM0036-00058 Option 01- modifier not l-ecogn i zed 
ASM2003·-00058 02 Opel-and ...... is wrong type ...... 
ASM 2 00 5 -·0 0 066 02 Operand AA must not be Ofll it ted ...... 
ASM200:~'-0007 j. 01 Opel- and ...... is wrong type ...... 
ASM2003-'00072 01 Opel-and AA is w1-on9 type ...... 
ASM0050-00078 IS is an undefined symbol 
ASMOO50-00078 SKIP is an undefined symbol 

o Error code. 

fJ Line in the assembler listing where the error occurred. 

II Description of the error. 

II When a number appears in this column, it corresponds to the ## in the 
description. For example, the 34 indicates an invalid delimiter at column 34 
in line 00027. The first 02 indicates that the second operand in line 00058 is 
the wrong data type. 

How to Assemble Your Program 265 



266 



Chapter 6. Control Areas 

SYSTEM INDICATORS WITHIN A PARTITION 

The first 100 indicators within a partition may be used as you wish. The other 
indicators, however, are used by the system during program execution. The indi
cator assignments are as follows. 

Indicator Condition Meaning if Set to 1 

1100 Reserved 
1101 Table search Result is higher 

TRT Byte not found 
CLC String 1 is greater than string 2 

1102 Table search Result is lower 
TRT Byte is found 
CLC String 1 is less than string 2 

1103 Table search Result is equal 
TRT Byte found in last position (EOF) 
CLC String 1 is equal to string 2 

1108 External status Restricted external status process-
ing. (See Restricted External Status 
Indicator later in this chapter.) 

1109 Program check Program check error 
1110 Background partition 
1111-114 Reserved 
1115 SCS conversion data set Last line (LSTLN) overflow 
1116 Reserved 
1117 Self-check operation Self-check error 
1118 SRAT operation Resource allocation table search 

error 
1119 HEXBIN operation Attempt to convert invalid EBCDIC 

to hex 
1120 Divide operation Divide error (denominator is zero) 
1121 Edit format Invalid conversion request in format 
1122 Arithmetic operation Decimal to binary conversion error 
1123 Multiply operation Multiply overflow 
1124 Decimal arithmetic Decimal arithmetic overflow 

operation 
1125 Table search Table entry not found 
1126 Table write Attempt to access table beyond 

its limit 
1127 Table operation Table operation error 
1128-159 Not defined 
1160-191 Modified field indicators. See 

Field Modification Indicators in 
Chapter 2. 

1192-254 Used with DE/RPG 

Control Areas 267 



268 

SYSTEM REGISTERS WITHIN A PARTITION 

Several binary registers are used by the system during program execution. These 
registers are listed below, with the conditions or instructions that affect each 
register. 

Register 

BR16 

BR17 

BR18 

BR19 

BR20 

BR21 

BR22 

BR23 

BR24 

BR25 

BR26-31 

Condition 

LOAD 

TRT 

TRT 

Subroutine 

Keyboard External 
Status 

Keyboard External 
Status 

Keyboard External 
Status 

External Status 

External Status 

LOAD 

Register Contents 

Relative record number for relative 
record reads during a program read. 
Also contains error code after a 
loader error 
Address of the last position that 
translated to a nonzero character 

Function byte 

Address of next available entry 
position in the partition subroutine 
stack 

Current field starting address within 
the main storage I/O buffer 

Current field starting address within 
the screen refresh buffer in key
board/display control storage 

Field length of current field, minus 
1 

Relative address of the last data set 
lOB to report external status. Not 
used for keyboard/display status 

External status condition code, to 
be used as the index into the external 
status subroutine 

Reserved for system use 

Physical device address of the device 
doing the load 

Reserved 

In addition to these system binary registers, common function routines often use 
BR33, destroying the original contents of the register. If your program uses 
common function routines, you should avoid using BR33 in your program. 



PROGRAM CHECK ERRORS 

The 5280 detects and reports program check errors. When a program check error 
occurs, the 5280 calls the routine specified by the MCHK parameter of your 
.ST ART control statement. If you are using the common function program check 
error handler routine, it places the program check error code on the status line, 
as described in the program check error handler description. 

The conditions that are detected by the 5280 as program check errors are: 

Code 

0200 
0201 
0202 
0203 
0204 

0205 
0206 
0207 
0208 
0209 
020A 

Error 

Common function routine not available in the common area. 
Addressing outside of partition. 
Invalid operation code. 
Instruction not on a 4-byte boundary. 
ENTR issued from a background partition that is not attached to a 
keyboard. 
Subroutine stack extended beyond partition. 
Invalid keyboard/display external status. 
Attempt to access an undefined data set. 
Attempt to access an undefined self-check control area. 
DETACH failed during an exit or load operation. 
ATTACH failed during a load operation. 

KEVSTROKECOUNTERS 

The 5280 maintains two keystroke counters while an ENTR is being processed. 
A data entry keystroke counter is incremented when the operator presses a key 
in enter, update, or verify mode. A verify correction keystroke counter is incre
mented when the operator presses a key to correct a verify mismatch character 
in verify mode. 

Data Entry Keystroke Counter 

When one of the following keys is pressed in ent~r, update, or verify mode, the 
data entry keystroke counter is incremented unless: 

• An error is outstanding when the key is pressed. 

• The keystroke causes an error other than a data required, blank check, or 
mandatory enter error. 

• The keystroke is a Field Exit, Field- (Field Exit Minus), or Skip key that is 
pressed in the first position of a field and causes a mandatory enter error. 

Control Areas 269 



270 

• The keystroke is for a function key that is being handled by your own sub
routine, as specified in the keyboard bit map. 

Data key 
Hex key sequence 
Field Advance key 
Field Backspace key 
Character Advance key 
Character Backspace key 
Record Advance key 
Record Backspace key 
Field Exit or Field+ key 
Field- (Field Exit Minus) key 
Skip key 
Duplicate key 
Scan code passed to the keyboard by keyboard operation OA 
EBCDIC code passed to the keyboard by keyboard operation OB 

Verify Correction Keystroke Counter 

The verify correction keystroke counter is incremented when the operator presses 
a key in verify mode that changes the original data in the record. If the mode is 
field correct, the counter is incremented only once for the entire field. 

COMMON FUNCTION ROUTINES 

The common function routines described in this chapter are listed in alphabetic 
order by title, and include: 

Label Title 

CFASCII ASC II processor 
CFATFBGD Attach partition routine 
CFDETFGD Allow detach routine 
CFDEVCHK Check/move device address 
CFDUMPTR Dump/trace processor 
CFERCDSM Error code with message display 
CFERCDSP Error code display routine 
CFGIOERR General I/O handler 
CFHELPOl Help text processor 
CFKEYRT Keystroke router routine 
CFLOADOl Standard load processor 
CFMSGDSP Message display routine 
CFPERATT Operator detach routine 
CFPGMCHK Program check error handler 
CFSECVOL Secure volume processor 



The common functions can be accessed by a program executing in any main storage 

partition. When you write a source program that uses one or more of these common 

functions, you must: 

1. Specify the common function labels with an .XTRN control statement. 

2. Enter the data set name SYSACF in response to the assembler prompt that 

requests the Extern data set. 

3. Specify the common function label in the program instruction or control 

statement. 

4. Declare a 128-byte area of storage and store the address of the area in BR32. 

If your program is displaying the extra line when a common function routine is 
called, the routine replaces it with the status line. When the routine completes 
execution, it replaces the status line with the extra line. (See Nondisplay of the 
Status Line in Chapter 2.) 

The common function labels and the function descriptions are included in this 
chapter. Several routines require input in addition to the address in BR32. Before 
you use one of the common functions in your program, you must be familiar with 
any input or output pertaining to the function. 

Registers Used by the Common Functions 

During the execution of certain common functions, the 5280 uses binary registers 
BR32-63, which are located within the partition that accessed the common func
tion. You must load the address of a 128-byte register save area into BR32. When 
a routine begins execution, the contents of the binary registers are copied into the 
first 64 bytes of the location pointed to by BR32. 

While the common function routine is executing, it places information in the binary 
registers. If the common function routine in turn calls another common function 
routine, the contents of the binary registers used by the first routine are copied into 
the remaining 64 bytes of the register save area. 

When the common function routine completes execution, the original contents of 
the binary registers are restored except for BR33. The original contents of BR33 
are often destroyed. 

Control Areas 271 



272 

Allow Detach Routine rCFDETFGD) 

This routine is called by a program that is executing in an attached partition. The 
program calls this routine when it reaches a point where it can execute for a period 
of time without needing the keyboard. 

Input 

• 1158 

Output 

• 1158 is turned off 

When this routine is executed, the following operations are performed. 

1. 1158 is turned off to indicate that the program in the partition can execute 
without using the keyboard. This indicator is checked by the standard load 
processor (CFLOAD01) and the operator detach routine (CFPERATT). 

2. Return is to the next sequential instruction. 

ASCII Processor rCI-ASCII) 

The ASCII processor makes the ASCII translate table in the common area available 
to the partition. 

Input 

• BR32-Address of your register save area. 

• BR34-Data set number. 

Output 

• ASCII table index number placed into data set lOB. 

• Bit 2, byte hex 4D of data set lOB set to 1. 

• Registers restored except BR33. 

When the routine is executed, the following operations are performed. 

1. The contents of BR32-63 are copied into the storage location pointed to by 
BR32. 

2. The routine checks to make sure the ASCII table is included in the common 
area. If there is no ASCII table in the common area, an error occurs and 
return is made to the next sequential instruction. 



If there is an ASCII table in the common area, the system table index for the 
ASCII table is placed into displacement hex DE of the lOB specified by 
BR34, and bit 2 of byte 4D is set to 1. This specifies that both the HDR1 
labels and data are to be translated. If the labels are not to be translated, the 
program in the partition must clear this bit to D. 

3. Return is made, and the next sequential irrstruction is skipped. 

Attach Partition Routine (CFATFBGD) 

The attach partition routine attaches the calling partition to its associated keyboard. 
When the keyboard is attached upon completion of this routine, the calling partition 
can accept input from the operator via the keyboard. 

Input 

• BR32-Address of your register save area. 

• 1156-lf your program is displaying the extra line instead of the status line, turn 
on 1156 before calling this routine so the extra line will be returned to the screen 
when the return is made. 

Output 

• 1158 is turned on. 

• Registers are restored. 

• The partition is attached. 

When this routine is executed, the following operations are performed. 

1. The contents of BR32-63 are copied into the storage area pointed to by 
BR32. 

2. A KATTCH instruction is issued to attach the calling partition to the 
keyboard. 

If the calling partition is a foreground partition, or if the calling partition is a 
background and another background partition is attached to the keyboard, 
the routine reissues the KATTCH instruction until the attach is successful, 
then return is made. 

If the calling partition is a background partition and a foreground partition 
is attached to the keyboard, the keyboard alarm is sounded and an edge indi
cator ( I) is displayed on line 6 of the screen. The edge indicator is displayed on 
the right side of the screen except for dual displays; for a dual display, the edge 
indicator is displayed on the left side of one of the screens. The operator must 
respond to the buzzer and edge indicator by pressing the Attn key. After the 
Attn key is pressed, the attach is performed and return is made. 

3. Return is always to the next sequential instruction. 

Control Areas 273 



274 

Check/Move Device Address (CFDEVCHK) 

This routine checks EBCDIC input and processes it for a logical device 10 or for a 
physical device address. 

Input 

• BR32-Address of your register save area. 

• BR33-Address of an input field. 

• BR34-Data set number. 

Output 

• Device 10 or physical address moved to lOB or logical I/O table, or both. 

• Registers restored except BR33. 

When the routine is executed, the following operations are performed. 

1. The contents of BR32-63 are copied into the area pointed to by BR32. 

2. The address of the EBCDIC input is taken from BR33. 

3. If the EBCDIC input is two characters in length, it is treated as a logical 
device 10. It is moved to displacement hex 60-61 of the lOB specified by 
BR34. 

4. If the EBCDIC input is four characters in length, it is treated as a physical 
device address. It is tested to determine if it is a numeric value that can be 
converted to a valid physical address. If it is not, an error occurs. If it is, 
the physical address is not checked to assure that a device is installed. The 
zones are removed from the EBCDIC bytes to convert them to four hex 
digits. The first two hex digits are moved to the logical I/O table in the 
partition, and the second two digits are moved to the data set lOB specified 
by BR34, to displacement hex 16. 

5. If an error occurs and the Reset key is pressed, control returns to the next 
sequential instruction. Otherwise, the next sequential instruction is 
skipped. 

Dump/Trace Processor (CFDUMPTR) 

This routine must be called before any dump or trace operation is performed. The 
Dump/trace routine opens data set 15. You must have previously defined data set 
15 with a .DATASET control statement. The data set must use a 256-byte physical 
buffer and a nonoverlapping 128-byte logical buffer. If you want the data set 
written to a diskette, the data set labeled DUMPOOOO must have been previously 
allocated. This data set cannot be allocated on a secure diskette. The data set 
attributes must include type attributes that work on printer and diskette, such as 
sequential write or shared write (TYPE = SW, SHRW). 



If you want to dump or trace after an error has occurred while a common function 
routine is executing, press the uppercase Cmd (Command) key, then the Dump/ 
trace file open key while the status line is blinking. 

Input 

• BR32-Address of your register save area. 

• DUMPOOOO-preallocated if you want to send output to diskette. 

• Data set 15 defined. 

Output 

• Data set 15 lOB opened. 

• Device address for DUMPOOOO moved to data set 15 lOB and partition logical 
I/O table. 

• Registers restored. 

When the routine is executed, the following operations are executed. 

1. The contents of BR32-63 are copied into the 128-byte storage area pointed 
to by BR32. 

2. The routine checks to make sure the partition has a data set 15 defined. If 
there is no data set 15, error code 9914 is displayed. If the operator presses 
the Reset key to reset the error, return is made and the next sequential 
instruction is skipped. If the operator presses the End of Job command func
tion key to reset the error, return is made to the next sequential instruction. 

3. If data set 15 is defined, the following prompt is displayed on the screen: 

o OOOt N 04 l~() 

n llmp.l t 1" a C f' f i I f' 0 P E' n 

Enter device address: 

l[.~ .. _________ p_r'_f'_<:;_C; __ F_N_T_F_:R_' ________________________________________ il_5_ .... (1.2.,Jr~ 

4. The physical device address is accepted from the operator. 

5. An OPEN is issued to the specified device. If an open error occurs, the 
general I/O handler is called. If the operator presses the Reset key to reset 
the error, return is made and the next sequential instruction is skipped. If 
the operator presses the End of Job command function key to reset the 
error, return is made to the next sequential instruction. 

Control Areas 275 



276 

6. If the operator presses the Cncl (Cancel) key in response to the dump/trace 
prompt, return is made and the next sequential instruction is skipped. 

If the operator presses the End of Job command function key in response to 
the dump/trace prompt, return is made to the next sequential instruction. 

If the operator presses the Sys Req (System Request) key in response to the 
prompt, the standard load processor is called. That routine returns to the 
dump/trace processor, and the dump/trace prompt is redisplayed. 

If the operator presses the Attn (Attention) key in response to the prompt, 
the allow partition detach routine is called. That routine returns to the 
dump/trace processor and the dump/trace prompt is redisplayed. 

If the operator enters a device address and presses the Enter key in response 
to the dump/trace prompt, and the open is successful, return is made and the 
next sequential instruction is skipped. 

At the conclusion of the dump, the data set is closed but the EOD is not updated. 
If you want to access the data set after the dump, you must use the close failure 
program to update the EOD. 

Error Code Display Routine (CFERCDSP) 

The error code display routine displays an error code on the status line. 

Input 

• BR32-Address of your register save area. 

• BR33-Address of the error code. 

Output 

• Error code displayed on status line. 

When the return is called, the following operations are performed. 

1. If the program is being executed in a partition that is not attached to a key
board, the attach routine (CFATFBGD) is called to attach the partition. 

2. The contents of BR32-63 are copied into the area pointed to by B R32. 

3. The address of the 4-byte EBCDIC error code is taken from BR33. 

4. The status line displays the error code, surrounded by dashes, in positions 
7-12 of the status line, and positions 1-12 blink. No other change is made to 
the status line. 



5. The routine accepts a response from the operator, who must press the Help 
key, End of Job command function key, or the Reset key. If the Help key 
is pressed, the help text processor (CFHELP01) is called. If the Reset key is 
pressed, the error code and message are removed from the screen and the 
status line stops blinking. Return is made, and the next sequential instruction 
is skipped. If the operator presses the End of Job command function key, 
control resturns to the next sequential instruction. 

Error Code with Message Display (CFERCDSM) 

This routine displays an error code and message on the status line. You must 
declare and store the message in a storage location, in the following format: 

CCCCLMMMMMMMMMMMMMMM 
Where CCCC is the 4-byte error code, in EBCDIC. 
L is the length-l of the message, in binary. 
M is the message, in EBCDIC. 

If the length of the message is greater than 15, no message is displayed. 

Input 

• BR32-Address of your register save area. 

• B R33-Address of error code and message. 

Output 

• Error code and message are displayed. 

• Registers are restored, except BR33. 

When this routine is executed, the following operations are performed: 

1. The contents of BR32-63 are copied into the area pointed to by B R32. 

2. The address of the error code and message is taken from BR33. 

3. The status line displays the following information: 

Position 

1 
8-11 
16-23 
25-40 

Content 

Partition number 
Error code surrounded by dashes 
Program name 
Message 

Positions 1-40 of the status line blink. 

Control Areas 277 



278 

4. The routine accepts a response from the operator, who must press the Heip 
key i the End of Job command function key. or the Reset key. If the Help 
key is pressed, the Help Text processor (CFHELP01) is called to display help 
text. If the Reset key is pressed, the error code and message are removed from 
the screen and the status line stops blinking. Control returns from this 
routine, and the next sequential instruction is skipped. If the operator presses 
the End of Job command function key, control returns to the next 
sequential instruction. 

General I/O Error Handler (CFGIOERR) 

This routine displays information on the status line when an lID device encounters 
an error. 

Input 

• BR32-Address of your register save area. 

• BR22-Address of the lOB for the data set that had the error. This address is 
placed into BR22 by the 5280 when an external status condition occurs. You 
must call this routine in the external status subroutine before external status is 
enabled or the address may be lost. 

Output 

• Error information is displayed. 

• Registers are restored, except BR33. 

When this routine is called, the following operations are performed: 

1. If the program is being executed in a partition that is not attached to a key
board, the attach routine (CFATFBGD) is called to attach the keyboard. 

2. The contents of BR32-63 are copied into the area pointed to by BR32. 

3. The address of the lOB for the data set that encountered the error is taken 
from BR22. 

4. The status line displays error information as follows: 

Position 

1 
3-6 
7-12 
13-14 
16-23 
25-32 

Content 

Partition number 
Physical device address 
Error code surrounded by dashes 
Logical device 10, if available 
Program name 
Data set name 

Positions 1-40 of the status line blink. 



5. A response is accepted from the operator, who may press the Reset key, End 
of Job command function key, or the Help key. If the Help key is pressed, 
the help text processor (CFHELP01) is called to display help text. If the 
Reset key is pressed, the status line stops blinking, control returns from this 
routine, and the next sequential instruction is skipped. If the operator 
presses the End of Job command function key, control returns to the next 
sequential instruction. 

The routine does not clear the error code in the data set lOB. This is to prevent 
clearing a possible second external status condition. 

Help Text Processor (CFHELP01) 

In an attached partition, when the operator presses the Help key in response to an 
error, the help text processor searches the help text table in the common area for 
a help message that corresponds to an error code. 

Input 

• BR32-Address of your register save area. 

• BR33-A four-digit error code (stripped decimal format). 

Output 

• Help text displayed. 

• Registers restored, except BR33. 

When the routine is executed, the following operations are performed: 

1. The contents of BR32-63 are copied into the location pointed to by BR32. 
BR32 must contain a register save address. 

2. The help text table in the common area is searched for an error code to match 
the code in BR33. This code is the four-digit portions of the error code. If 
a match is not found, a message stating that there is no help text for that 
code is placed in positions 41-80 of the status line. If there is a match, the 
help text corresponding to the code is placed into positions 41-80 of the 
status line. 

3. A response is accepted from the operator, who must press the End of Job 
command function key or Reset key. Positions 41-80 of the status line are 
cleared. 

If the End of Job command function key is pressed, return is made to the 
next sequential instruction. If the Reset key is pressed, return is made and the 
next sequential instruction is skipped. 

Note: Unless the partition is attached, the status line is blinking, and an error code 
is in BR33, an error handling routine should be called instead of the help text 
processor. 

Control Areas 279 



280 

Keystroke Router Routine (CFKEYRT) 

The keystroke router interprets certain keystrokes and either routes them to other 
common function routines or returns to the partition. The assembler program to 
handle the Attention key, System Request key, and End of Job command function 
key. 

Input 

• BR32-Address of your register save area. 

Output 

• Registers are restored. 

When this routine is executed, the following operations are performed. 

1. The contents of B R32-63 are copied into the 128-byte storage area pointed 
to by BR32. 

2. The routine interprets the following keystrokes and routes them as specified: 

Attn (Attention) key calls the operator permit detach routine 
(CFPERATT) 

Sys Req (System Request) calls the standard load processor (C F LOAD01) 
key 

Dump/Trace Open calls the dump/trace processor (CFDUMPTR) 
command function key 

End of Job command 
function key (EOJ) 

returns to the next sequential instruction 
following the CALL. The normal way to 
process the End of Job command function 
key is to check 1110 to determine if the 
partition is a background partition. If it is a 
background (1110 on), issue an EXIT. If it is 
a foreground (1110 off), issue a LOAD or call 
the standard load processor. 

All other returns to the partition skip the next sequential instruction. 

Message Display Routine (CFMSGDSP) 

This routine puts a message of up to 56 characters into the extra line of the 
screen. You must declare and store the message in a storage location in the follow
ing format: 

LMMMM ... 
Where L is the length-l of the message, in binary. 

M is the message, in EBCDIC. 



If you want this message to be displayed and your program is displaying the status 
line instead of the extra line, issue a DISPEX instruction before calling this routine 
or immediately after calling this routine. 

Input 

• BR32-Address of your register save area. 

• BR33-Address of the message. 

Output 

• The message is moved to the extra line. 

• Registers are restored, except BR33. 

When this routine is called, the following operations are performed. 

1. If the program is being executed in a partition that is not attached to a 
keyboard, the attach routine (CFATFBGD) is called to attach the partition. 

2. The contents of BR32-63 are copied into the area pointed to by BR32. 

3. The address of the message is taken from BR33. 

4. The extra line of the screen contains the following: 

Position 

1 
16-23 
25-80 

Content 

Partition number 
Program name 
Message (If the binary length specifies a number greater 
than 55, only the partition number and program name are 
moved to the extra line.) 

5. Control returns from this routine to the partition, to the next sequential 
instruction. 

Operator Detach Routine (CFPE RA TT) 

The operator detach routine detaches the currently attached partition from the 
keyboard. This routine is called via external status when the operator presses the 
Attn key. You must include this call in your external status subroutine if you 
want to allow the operator to interrupt a program executing in an attached parti
tion. When this routine has completed executing (unless 1158 is on), the keyboard 
is available to be attached to another partition. 

Control Areas 281 



282 

Input 

• 1158 

Output 

• The partition is detached. 

• The screen is cleared. 

When this routine is executed, the following operations are performed. 

1. The screen is cleared. 

2. The KDETCH and SYSUNL instructions are issued in the attached partition 
to detach the partition and cancel any remaining execution time. See Chapter 
4 for more information about these instructions. 

3. If 1158 is on, the attacn partition routme (CFATFBGD) IS called to reattach 
the calling partition prior to returning. 

If 1158 is off, the partition remains detached when the return is made. 

4. Return is made to the next sequential instruction. 

Program Check Error Handler (CFPGMCHK) 

The program check error handler displays detected program check errors. If you 
use this common function routine, you must specify the label for the MCHK param
eter of the .START control statement (MCHK=CFPGMCHK). The 5280 calls the 
routine whenever a program check error occurs. See Program Check Errors in this 
chapter for a list of the errors and corresponding error codes. 

Input 

• BR32-Address of your register save area. 

Output 

• Error message is displayed. 

• Registers are restored. 

When the CFPGMCHK routine is called, it performs the following: 

1. If the program is being executed in a partition that is not attached to the 
keyboard, the attach routine (CFATFBGD) is called to attach the partition. 

2. If BR32 is not zero, it copies the contents of BR32-63 into the storage area 
pointed to by BR32. If BR32 is zero, the contents of BR32·63 are placed 
into BR64-95. This destroys the original contents of BR64-95. 



3. The status line displays the following information: 

Position 

7-12 

16-23 
25-28 

Content 

Partition number 
-02CC-
Where CC is the program check error code. 
The program name 
The address of the current instruction 

Positions 1-40 of the status line blink. 

4. The address of the standard load processor (CFLOAD01) is placed into the 
partition control area. This ensures a return to the standard load processor 
from all external status in case the program check resulted from program 
code that destroyed the exit routines. 

5. This routine accepts a response from the operator, who must press the Reset 
key or End of Job command function key. When the End of Job command 
function key or the Reset key is pressed, an EXIT instruction is issued if the 
partition is a background partition. If it is a foreground partition, the 
standard load processor is called. 

While the error code information is being displayed on the status line before reset, 
the operator may use the dump console function to dump the data set. See the 
Functions Reference Manual for a description of the Dump console function. 

Secure Volume Processor (CFSECVOL) 

This routine should be called in response to a 3211 error. The secure volume 
processor displays a prompt requesting the operator to enter owner ID information 
when a secure diskette is being accessed. 

Input 

• BR32-Address of your register save area. 

• BR34-Address of a 14-byte storage area. 

• BR22-Address of the lOB of the data set that had the error. This address is 
placed into BR22 when an external status condition occurs. You must call this 
routine in the external status subroutine before external status is enabled. If 
you call this routine when external status has not occurred, you must place the 
address into BR22. 

Output 

• Registers are restored, except BR33. 

Control Areas 283 



284 

When this routine is executed the foiiowing operations are perforfned. 

1. The contents of BR32-63 are copied into the location pointed to by BR32. 

2. The address of the data set lOB is taken from BR22. 

3. The following prompt is displayed on the screen: 

o OO()6 A 66 I~·O 

Diskette is volume protected, 
Device 1)[1[1[1, Data sd SSf.;S, 
Enter owner identifier to access volume, 

l[.~ ... -.. , ... -,.-.-..... --_, ___________ p_l-_e_S_S __ F_N_T_F_R ____________________________ O_~_j.-_().l~.Jr 

Where ddd is the logical device 10, or physical device address. 
s ... is the first 17 bytes of the data set name If the name IS available. 

4. If the operator enters the owner identification and presses the Enter key, the 
routine accepts the input from the keyboard and stores it into the storage 
location pointed to by BR34. Control returns to the partition, and the next 
sequential command function instruction is skipped. If the operator presses 

the End of Job command function key instead of the Enter key, control returns 
to the next sequential instruction. 

If the operator presses the Attn key instead of the Enter key, the allow attach 
routine (CFPE RATT) is called. If the operator presses the System Request 
key instead of the Enter key, the standard load processor (CFLOAD01) is 
called. Control returns to the secure volume processor from either of these 
routines, and the secure volume prompt is redisplayed. 

Standard Load Processor (CFLOAD01) 

The standard load processor displays the standard load prompt and issues a LOAD 
instruction to load a partition. This routine should be called via an external status 
subroutine when the operator presses the System Request key or when you want to 
exit a foreground partition. 

Input 

• BR32-Address of your register save area. 

• 1158-This indicator may be set by your program or by the attach partition 
routine (CFATFBGD). 

Output 

• The partition is loaded. 

• Registers are restored. 



When the routine is executed, the following operations are performed. 

1. The contents of BR32-63 are copied into the location pointed to by BR32. 

2. The following prompt is displayed on the screen: 

0001 A 17 40 
Pl- 0 gr am name: 
fI!:'v i ce arldl-!:'sS: 
Partition number: 

~~ _____________________ p_r_e_S_S __ F_N_T_F_R __________________________ (_J5_" __ .n_o~,Jr 

3. If the operator enters the load parameters and presses the Enter key, the 
input is accepted. A LOAD instruction is issued, with the input used as 
parameters. The LOAD is issued with the attach option. See the LOAD 
instruction in Chapter 4 for more information about the load operation. 

If the operator presses the Cnd key instead of the Enter key, or if the oper
ator is loading another partition, return is made to the partition, to the next 
sequential instruction. 

If the operator presses the Attn key instead of the Enter key, the allow 
detach routine (CFPERATT) is called. 

4. If 1158 is on, the newly loaded partition is attached before control returns 
to the calling partition. The calling partition is detached. 

KEYBOARD/DISPLAY EXTERNAL STATUS 

The I/O instruction that initiates key entry is the ENTR command. When the 5280 
encounters an ENTR command, it issues the command to the keyboard/display. The 
ENTR command specifies the format of the record as it appears on the screen. The 
keyboard/display uses this screen format to display prompts and accept input fields 
for each record. You use the .SFMT series of control statements in your source pro
gram to describe the screen format for a record. Screen formats are described in 
detail in Chapter 2. 

Normal key entry is processed by the keyboard/display without assistance from 
the 5280 controller. An external status condition occurs when the keyboard/display 
unit encounters a situation that does require processing by the controller. When 
such a condition occurs, the keyboard/display interrupts key entry. The controller 
is notified that the keyboard/display needs assistance. Indicators are turned on in 
associated lOBs to indicate that an external status condition is outstanding. Key 
entry cannot be resumed until the external status indicators are turned off. 

When the controller detects the outstanding external status condition, it places 
certain information in the keyboard/display lOB and into certain system registers 
within the partition. It then calls the subroutine you have written to process the 
condition. Your subroutine can use the information in the lOB and system 
registers. The information in the lOB depends upon the particular condition and 
is discussed in the following external status condition descriptions. Except as 
noted in the condition descriptions, the registers contain the information as 
described in Chapter 2 under External Status and Error Conditions. 

285 



286 

BR19 

BR20 

Information 

Used only with keyboardidisplay externai status, it contains the 
relative address of the start of the current field in the I/O buffer 
that holds the current record. The address is relative to the 
beginning of the partition. The contents of this register are valid 
only if bits 0-4 of BR21 indicate a field specification. 

Used only with keyboard/display external status, it contains the 
absolute address of the start of the current field in the screen 
refresh buffer. The screen refresh buffer is located within the 
keyboard/display storage, and holds the data that appears on the 
screen. The contents of this register are valid only if bits 0-4 of 
BR21 indicate a field specification. 

BR21 Used only with keyboard/display external status, this register 
contains information about the type of specification being 
processed when the external status condition occurred, as 
follows: 

BR23 

Bits Meaning 

0-3 Field type or format specification 
0000 = picture check field 
0001 = alphabetic shift field 
0010 = numeric shift field 
0011 = hex field 
0100 = special characters shift field 
0101 = format level zero field 
0110 = fixed position prompt l 

0111 = standard prompt or constant insert l 

1001 = alphabetic only field 
1010 = numeric only field 
1011 = digits only field 
1100 = special characters only field 
1110 = display attribute l 

1111 = control specification l 

4 0 = not a signed numeric field 
1 = a signed numeric field 

5-15 Field length of the field, minus 1 

Used only with keyboard/display external status, this contains the 
ETAB index of the current external status condition. 

lThese specifications are not field specifications; when any of them is used, and the data in the 
remainder of BR21, and in BR19 and BR20 is not valid. 



Restricted External Status Indicator 

By setting a system indicator, 1108, you can restrict which external status conditions 
are posted to the partition and determine the way they are posted. If 1108 is on 
when external status is enabled, the only conditions normally posted are external 
status conditions 4, 5,9 and 12, which are described below. All others are treated 
as though an external status condition was already outstanding when they occurred. 

External Status Subroutines 

External status subroutines must resolve the external status condition and turn 
off the external status indicators. In addition, in most cases, they must either 
provide for resummg key entry under the current ENTR command or cancel the 
current ENTR. These operations can be performed by including the following 
instructions in the external status subroutines: 

ENABLE (turn off external status indicators) 
RESUME (resume key entry) 
RESCAL (RESUME and call a subroutine) 
RETURN (return from subroutine) 
RETEXT (RETURN and ENABLE) 
RESMXT (RESUME and RETEXT) 
CNENTR (cancel current ENTR) 

The external status indicators can be cleared by either the RETEXT instruction or 
the ENABLE instruction. If you want to clear external status indicators before 
you end the subroutine, you can include an ENABLE instruction in any position 
in your subroutine. The last statement in your subroutine must be a RETURN 
instruction. If you wish to clear external status indicators when your subroutine 
has completed executing, you can include a RETEXT instruction as the last instruc
tion statement in your subroutine. This acts as both the ENABLE and RETURN 
instructions; it clears the external status indicators and ends the subroutine. 

The RESUME instruction resumes key entry under the current ENTR command. 
The RESUME instruction neither causes a branch nor clears external status indi
cators. When the RESUME instruction is executed, the keyboard is unlocked and 
the keyboard/display resumes processing the screen format (specified by the 
current ENTR) at the point where the format was interrupted. The RESCAL 
instruction can be used in place of R ESUM E to resume key entry. The R ESCAL 
instruction performs the same operation as RESUME, and in addition calls 
another subroutine through a label table. Or the RESMXT instruction can be used 
to perform both the RESUME and RETEXT operations. The RETURN instruction 
is described under Subroutine Call and Return instructions in Chapter 4. The 
RESUME, ENABLE, RESCAL, RETEXT, and RESMXT instructions are described 
under Key Entry Instructions in Chapter 4. 

Should you wish to cancel the current ENTR command rather than resuming key 
entry, you can issue a CNENTR instruction. This instruction is described under 
Keyboard Operations in Chapter 4. 

Control Areas 287 



288 

If an external status subroutine issues a CNENTR, RESUME or RESCAl instruc-
tion when no ENTR command is being processed, tha instruction is ignored. There-
fore, you may include these instructions for conditions that may occur whether or 
not an ENTR is outstanding. 

You can write one subroutine to handle all external status conditions, or you can 
write a separate subroutine to handle each condition. If you use one subroutine for 
all external status conditions, you must specify the label of the subroutine for the 
ElAB parameter of the .KBCRT control statement. Whenever any external status 
condition occurs, the 5280 will branch to this subroutine. This subroutine must 
clear external status indicators and resume or cancel the current ENTR command. 

If you write a separate subroutine for each condition, you must use the .lABTAB 
control statement to enter the labels of the subroutines into a label table. The label 
of the subroutine to handle condition 0 must be entered into the table first; the 
label for the condition 1 subroutine must be entered next, and so on. You must 
specify the label of the label table in the ETAB parameter ot the .KBCRT control 
statement. Whenever an external status condition occurs, the 5280 uses the external 

---status conditionnumber in BR23 astt1eTndex tor an Indexed subroutine call 

through the label table. It branches to the subroutine address that is entered at 
that index position. 

Return from an external status subroutine depends upon the external status condi
tion. The following descriptions of the external status conditions include how to 
code a return from the particular external status subroutine, and whether the 
current ENTR is resumed, canceled or completed. An ENTR is completed when 
all the specifications of the screen format have been processed. 

External Status Conditions 

Each external status condition is specified by a condition number. The 5280 stores 
this number into BR23 when an external status condition occurs. If you write a 
separate subroutine to handle each condition, the 5280 uses this number as the 
index into your external status label table (ETAB) to call the appropriate 
subroutine. 

In the following condition descriptions, an external status condition is outstanding 
until the external status indicators are cleared by an ENABLE, RETEXT, or 
RESMXT instruction. 

Condition 0: Double External Status 

This condition occurs when an external status subroutine is interrupted by a 
second external status condition. The second condition may be condition 4 J:; R 

7, 10, or 13. It also occurs when the Restricted External Status Indicator (1108) is 
set on, and external status condition 6, 7, 10, or 13 occurs. Condition 0 results 
from programming errors. If an ENTR command is being processed when condition 
o occurs, the external status subroutine cannot recover normal key entry by issuing 
a RESUME. 



When condition 0 occurs, the contents of BR19, BR20, and BR21 are meaningful 
if there is an ENTR outstanding and the cursor is currently positioned within a 
field. When condition 0 occurs, the following status information is stored in the 
keyboard/display lOB: 

Relative Address 

Hex FE 

Status Information 

The condition number of the external status condition that 
caused condition O. This information remains valid until 
(1) an ENTR command is executed, (2) a keyboard opera
tion (including RESUME, RESCAl, RETEXT, and 
RESMXT) is executed, or (3) an external status condition 
occurs. 

Condition 1: Function Key 

Condition 1 results when the operator presses a function key that requires 
processing by a subroutine. 

If condition 1 occurs while an external status condition is outstanding or while the 
restricted external status indicator (1108) is on, it does not cause condition O. Key
board error 1170, the code for a software overrun error, is displayed on the status 
line unless a keystroke error or program error is already outstanding. The function 
for the keystroke is not processed. 

When condition 1 occurs the contents of BR19, BR20, and BR21 are meaningful 
if there is an ENTR outstanding and the cursor is currently positioned within a field. 

When condition 1 occurs, the following status information is stored in the keyboard/ 
display lOB: 

Relative Address 

Hex A7 

Status Information 

EBCDIC code of the function key. This information 
remains valid until (1) an ENTR command is executed, 
(2) a keyboard operation (inciuding"RESUME, RESCAl, 
RETEXT, and RESMXT) is executed, or (3) an external 
status condition occurs. 

Following is a list of the functions. 

Attention Function 

The attention function is initiated when the operator presses the Attn (Attention) 
key. The purpose of the function is defined by your program. This key is 
normally used to call the common function routine CFPERATT. See Allow Detach 
Routine earlier in this chapter. 

Control Areas 289 



290 

Auto-Enter Function 

The auto-enter function is initiated when the operator presses the Auto Enter key 
on the data entry or proof keyboard. (On a typewriter keyboard it must be initiated 
by a command function key sequence and handled by the external status 2 or 3 
subroutine.) The purpose of the function is to set the auto-enter flag in the key
board function control flag byte. 

When this bit is set to 1, the automatic record advance function is enabled. 

Auto-Dup/Skip Function 

The auto-dup/skip function is initiated when the operator presses the Dup Skip key 
on the data entry or proof keyboard. The purpose of the function is to set the 
auto-dup/skip flag in the keyboard function control flag byte. 

Cancel Function 

The cancel function is initiated when the operator presses the Cncl (Cancel) key. 
Your program defines the purpose of the function and processes the function. 

Erase Function 

The erase function is initiated when the operator presses the Erase Input key. The 
purpose of the function is defined by your program. 

Help Function 

The help function is initiated when the operator presses the Help key. The purpose 
of the function is to move a message to the screen. This key is normally used to 
call the common function routine CFHELP01. See Help Text Processor earlier in 
this chapter. 

Next Format Function 

The next format function is initiated when the operator presses the Next Fmt (Next 
Format) key on the data entry or proof keyboard. The purpose of the function is 
to allow the operator to leave a repetitive format. 

Page Forward Function 

The page forward function is initiated when the operator presses the Page Fwd (Page 
Forward) key on the data entry or proof keyboard. The purpose of the function is 
to read the next record without writing the current record. 



Print Function 

The print function is initiated when the operator presses the Print key. The purpose 
of the function is to specify pri nted output. 

Record Correct Function 

The record correct function is initiated when the operator presses the shifted Corr 
(Correct) key on the data entry or proof keyboard. The purpose of the function is 
to change from verify mode to enter mode to allow the operator to reenter an 
entire record, then change back to verify mode to reverify the entire record. 

Select Format Function 

The select format function is initiated when the operator presses the Sel Fmt 
(Select Format) key on the data entry or proof keyboard. The purpose of the func
tion is to allow the operator to select a screen format for data entry. 

System Request Function 

The system request function is initiated when the operator presses the Sys Req 
(System Request) key. This key is normally used to call the common function 
routine CFlOAD01. See Standard Load Processor earlier in this chapter. 

Condition 2: Command Key Sequence, Lowercase 

This condition occurs when the operator presses a command key sequence that 
requires processing by a subroutine, and the second key is in lowercase. Your pro
gram defines and processes the command functions. If condition 2 occurs while 
another external status condition is outstanding, or while the restricted external 
status indicator (1108) is on, condition 0 does not result. Keyboard error 1170, the 
code for a software overrun error, is displayed on the status line unless a keystroke 
error or program error is already outstanding. The key-sequence command is not 
processed. 

When condition 2 occurs, the contents of BR19, BR20, and BR21 are meaningful 
if there is an ENTR outstanding and the cursor is currently positioned within a 
field. 

When condition 2 occurs, the following information is stored in the keyboard/dis
play lOB. This information remains valid until (1) an ENTR command is exe
cuted, (2) a keyboard operation (including RESUME, RESCAl, RETEXT, and 
RESMXT) is executed, or (3) an external status condition occurs. 

Control Areas 291 



292 

Relative Address 

Hex A6 

Hex A7 

Status Information 

Scan code of the second keystroke. (The scan code is a 
unique code generated by the keyboard.) 

EBCDIC of the second keystroke. 

Condition 3: Command Key Sequence, Uppercase 

This condition occurs when the operator presses a command key sequence that 
requires processing by a subroutine, and the second key is in uppercase. Your pro
gram defines and processes the command functions. Condition 3 is as for condition 
2 except for the shift of the command key. The lOB status information and register 
information is as for condition 2. 

Condition 4: Forward Pass over Return (RG) Specification 

This condition occurs during formatted key entry under an ENTR command; the 
screen format control string is being processed in a forward direction when an RG 
specification is encountered. (See note following Condition 5 for an explanation of 
the RG specification.) Key entry is suspended; the Reset key or a shift key are the 
only keystrokes that may be entered. If any other key is pressed, an error occurs. 

The subroutine that processes condition 4 must include a RESUME command 
before data keystrokes or function key sequences may be entered. If any other key 
is pressed, an error occurs. 

If condition 4 occurs while another external status condition is being processed, 
condition 0 results. Key entry cannot be resumed with a RESUME command in 
the condition 0 subroutine. 

When condition 4 occurs, the contents of BR19, BR20, and BR21 pertain to the 
last field exited in the forward direction. The contents of these registers are 
undefined if condition 4 occurs while a CI (check indicator for bypass) specifica
tion is being processed, or if the RG specification is encountered before the first 
field definition. 

Condition 5: Backward Pass over Return (RG) Specification 

This condition occurs during formatted key entry under an ENTR command; the 
screen format control string is being processed in a backward direction - such as a 
backspace - when an RG specification is encountered. (See note below for an 
explanation of the RG specification.) Key entry is suspended; the Reset key or a 
shift key are the only keystrokes that may be entered. If any other key is pressed, 
an error occurs. 



The subroutine that processes condition 5 must issue a RESUME(B) command 
before data keystrokes or function key sequences may be entered. If any other 
key is pressed, an error occurs. 

If condition 5 occurs, the contents of BR19, BR20, and BR21 pertain to the last 
field exited in the backward direction. If the RG specification is part of a field 
definition, the last field exited is the next sequential field in the forward direction. 
The contents of the registers are undefined if condition 5 occurs while a CI (check 
indicator for bypass) specification is being processed, or if the RG specification is 
encountered before the first field definition. 

Note: You include a return (RG) specification for a CNTL parameter in your 
screen control format whenever you want to temporari Iy interrupt key entry to 
execute program instruction. See Screen Formats in Chapter 2 and the .SFMT 
series of control statements in Chapter 3 for more information about the RG 
specification. 

Condition 6: Record Advance 

This condition occurs during formatted key entry under an ENTR command when 
all fields within the current screen control format have been processed and the end 
of record functions have been processed. The current ENTR command is completed. 
After the external status subroutine has executed, control returns to the next 
sequential instruction after the ENTR command. 

If this condition occurs while another external status condition is being processed, 
or while the restricted external status indicator is on (1108), condition 0 results. 

When condition 6 occurs, the contents of BR 19, BR20, and BR21 pertain to the last 
field defined in the screen format. 

Condition 7: Record Backspace 

This condition occurs during formatted key entry under an ENTR command, when 
the screen control format is at the first position of the first manual field and the 
operator presses the Home key. The ENTR command is made complete. 

If this condition occurs while another external status condition is being processed 
or while the restricted external status indicator is on, condition 0 results. 

When condition 7 occurs, the contents of BR19, BR20, and BR21 pertain to the 
first field defined in the screen format. 

Control Areas 293 



294 

Condition 8: Keystroke Error 

This condition occurs when a keystroke error has occurred and you have specified 
the TRAP parameter of the .KBCRT control statement in Chapter 3. 

If this condition occurs while another external status condition is being processed, 
or while the restricted external status indicator (1108) is set on, condition 0 does 
not result. Keyboard error 1170, the code for a software overrun error, is dis
played on the status line unless a keystroke or program error is already outstanding. 

When condition 8 occurs, the contents of BR 19, BR20, and BR21 are meaningful 
if an ENTR is outstanding and the cursor is currently positioned within a field. 

When condition 8 occurs, the following status information is stored in the key
board/display lOB. This information remains valid until (1) an ENTR command is 
executed, (2) a keyboard operation (including RESUME, RESCAl, RETEXT, and 
RESMXT) is executed, or (3) an external status condition occurs. 

Relati ve Address Status Information 

Hex 84 Hex code of the keystroke error 

HexA6 Scan code of the keystroke error 

Hex A7 EBCDIC code of the keystroke error 

Condition 9: Keyboard/Display Storage Parity Error 

This condition occurs when a keyboard/display storage parity error is encountered 
and logged into the hard error log. This error normally occurs when keyboard/dis
play storage is accessed to process a function. If a keyboard operation caused the 
parity error, the error is not reported until after the operation is completed. You 
are responsible for error recovery. You may choose to either abort the job or 
continue on the basis of the status information stored in the keyboard/display lOB. 
If condition 9 occurs when the restricted external status indicator (1108) is on but 
no other external status condition is outstanding, condition 9 is processed normally. 
If a condition 9 occurs while another condition 9 is being processed, condition 0 
does not result and the second condition 9 is not displayed on the status line. 
Normal hard error logging is processed for the second condition 9. If condition 9 
occurs while another external status condition (other than condition 9) is being 
processed, condition 12 results. 

When condition 9 occurs, the contents of BR19, BR20, and BR21 are meaningful 
if an ENTR is outstanding and the cursor is currently positioned within a field. 

When condition 9 occurs during normal operation, the following status information 
is stored in the keyboard/display lOB. 



Relative Address 

Hex FE 

Status Information 

If bits 1 and 2 equal 00, it indicates an invalid keyboard/ 
display storage address, which may have resulted from a 
programming error; bits 3-5 indicate the high order 3 bits 
of the absolute address in keyboard/display storage where 
the error occurred. 

Condition 10: Invalid Operation 

This condition occurs when any invalid operation request is detected. If condition 
10 occurs while another external status condition is being processed or while the 
restricted external status indicator is on, condition 0 results. 

When condition 10 occurs, the contents of BR19, BR20, and BR21 are meaningful 
if an ENTR is outstanding and the cursor is positioned within a field. 

Condition 11: Magnetic Stripe Reader Request 

This condition occurs after a badge has been inserted into the magnetic stripe 
reader, when the badge information has been entered into the magnetic stripe 
reader buffer. If condition 11 occurs while another external status condition is 
being processed, the 5280 waits for the other external status condition processing 
to complete before issuing the reader request. If condition 11 occurs while the 
restricted external status indicator (1108) is on, the 5280 waits until it is turned 
off before issuing the reader request. 

When condition 11 occurs, the contents of BR19, BR20, BR21 are meaningful 
if an ENTR is outstanding and the cursor is currently positioned within a field. 

Condition 12: Keyboard/Display Storage Parity Error Double Condition 

This condition occurs when a keyboard/display storage parity error (condition 9) 
occurs while another external status condition (other than a condition 9) is out
standing. The condition 9 is logged into the hard error log. The subroutine that is 
processing the other external status condition is interrupted, and a branch is made 
to the condition 12 subroutine. The condition 12 subroutine should be terminated 
with a RETURN command rather than a RETEXT, so control returns to the inter
rupted subroutine. When condition 12 occurs, the contents of BR19, BR20 and 
BR21 is meaningful if an ENTR is outstanding and the cursor is currently posi
tioned within a field. The status information stored in the keyboard/display lOB 
is as for condition 9. 

Control Areas 295 



296 

Condition 13: Screen Format Error 

This condition occurs during formatted key entry when an error is detected in the 
syntax of the current screen format control string. The screen format control 
string is the object code generated from one series of .SFMT control statements. 
See the Functions Reference Manual for a complete description of the bytes within 
a screen format control. When condition 13 occurs, the currently executing ENTR 
command is made complete. The following list indicates the kinds of errors that 
cause condition 13. 

• The primary or secondary screen format has more than one start (.SFMSTS) 
or end (.SFMTEND) specification. 

• An end (.SFMTEND) specification is encountered while processing within a 
bypass specification. (See Conditional Bypass under Field Control in Chapter 2 
for a description of a bypass specification,) 

• The screen format control string has nested bypass specifications. 

• The screen format control string has nested secondary formats. (See Secondary 
Screen Format under Field Control in Chapter 2 for a description.) 

• The screen format control string has unmatched bypass specifications to start 
bypass and end bypass. 

• The screen format control string has an invalid character set byte. 

• The screen format control string has an invalid subfield (PIC) specification. 

• The screen format control string has an invalid control byte. 

If a condition 13 occurs when another external status condition is being processed, 
or while the restricted external status indicator is on, condition 0 results. When 
condition 13 occurs, the contents of BR19, BR20, and BR21 are meaningful if an 
ENTR is outstanding and the cursor is currently positioned within a field. 

When condition 13 occurs, the following information is stored in the keyboard/ 
display lOB. This information remains valid until (1) an ENTR command is 
executed, (2) a keyboard operation (including RESUME, RESCAL, RETEXT, and 
RESMXT) is executed, or (3) an external status condition occurs. 

Relative Address 

Hex 9A 

Status Information 

Relative address of the byte within the screen format 
control string that caused the error. 



Chapter 7. The ACL to Assembler Language Conversion Program 

The ACL (Application Control Language) to assembler language conversion pro
gram helps you convert source programs written in ACL to assembler language 
source programs. Use the conversion program each time you convert an ACL pro
gram to an assembler language program. The conversion program should be used 
only once with each program that is converted. No optimization is attempted by 
the conversion program. Any further changes or modifications made to the con
verted programs should be done directly in assembler language. 

The conversion program converts most ACL instructions and control statements 
to assembler language. However, certain control statements and instructions 
cannot be converted by the conversion program; these must be converted to 
assembler language manually. The assembler language output generated by the 
ACL control statements and instructions contains a message for each line of ACL 
code that must be converted manually. Error messages generated by the conversion 
program are listed in Appendix E. 

OPERATION 

The conversion program is stored on the assembler diskette. Use the standard 
load processor to load the conversion program. The name of the conversion pro
gram data set is SYSACLC. 

When the conversion program is loaded, it displays the following prompt: 

Prompt 1 

o 0001 A 16 ~o 
SYSACLC - ACL TO ASH CONVERSION AID 
Insert INPUT diskette and enter: 
Data set name: 

l 
Dey i ce addl-ess: J 

Pr ess ENTER 28-01 

~-------------

Insert the input diskette into the selected diskette drive. Enter the name of the data 
set that contains the ACL program to be converted. The data set name can contain 
up to 17 characters. The ACL program is assumed to be error free. If it is stored 
on a volume protected diskette, the prompt for an owner 10 is displayed. (See . 
Prompt 5 in Chapter 5.) The input data set must remain in the diskette drive while 
the conversion program is executing. 

Enter the device address and press the Enter key. The device address must be four 
alphanumeric characters. Do not use a logical device 10. 

The ACL to Assembler Language Conversion Program 297 



298 

if an invaiid inpui daia sei name or an invaiid device address is eniered, an error 

recovery message is displayed. 

If no error occurs the following prompt is displayed. 

Prompt 2 

o 0001 A 16 E2 
SYSACLC - ACL TO ASH CONVERSION AID 
Ins@rt OUTPUT diskette and enter: 
Data set name: 

l Deu i ce addl-ess: J 
Pr ess ENTER 28-02 

'---------------" 

A default data set name, SYSIN, is displayed with the device address you entered for 
the preceding prompt. You can change the data set name and device address by 
keying over the defaults. 

The output data set must remain in the diskette drive while the conversion pro
gram is executing. The output data set should be at least 2.5 times the size of 
the input data set, and it should be empty when the conversion program begins. 
If the output data set is I exchange, the header label must contain a valid delete 
character. 

If an invalid device address is entered, an error message is displayed. 

If the data set name you specify for the output data set is not found, the following 
prompt is displayed. 

Prompt 3 

0001 Y 01 40 
Output data set not found, [10 you It.1<Hlt it allocated? 

Op t j () n~:; a \' e 
1., Yes 
2, No 

SELECT OPTION: PRESS ENTER 

If you select 2, prompt 2 is redisplayed with the data set name and device address 
you entered previously. You can change the previous entry by keying over the 
existing data. 

28·-0:':j 

If you select 1, the output data set is allocated on the diskette at the specified device 
address. After the data set is successfully allocated, prompt 4 is displayed. 



Prompt 4 

o 0001 Y 01 ~O 
Do ~ou want ACL input included as comments in output? 

Opt ions al-e 

l ;: ~:s J 
SELECT OPTION: Press ENTER 28-03 

~-----------"" 

Enter a 1 if you want the assembler language output only, or enter a 2 if you want 
the assembler language and the original ACL statements as output. If you 
chose to have the original ACL included in the output, each ACL line is 
written as a comment line. Each ACL line precedes the assembler language 
lines it generated. 

After you enter a valid option number and press the ENTER key, the conversion 
process begins. The ACL control statements and instructions are read sequentially, 
then translated to corresponding assembler language control statements and 
instructions. 

If any ACL statement contains source code that the conversion program cannot 
convert, the conversion program inserts one of the following messages in the 
assembler language source at the position of the untranslatable code: 

*MSG***Message or .MSG***Message 

These messages allow you to assemble the rest of your assembler language source 
while preventing loadable object code from being produced. The message that 
begins with an asterisk indicates code that is loadable object code, but that may 
not produce the results you expect. The message that begins with a period indicates 
code that you must change. If your program generates a message that begins with a 
period, the following prompt is also displayed: 

Prompt 5 

o 
UNTRANSLATABLE CODE HAS BEEN FOUN~. THE ASM SOURCE CANNOT BE 
ASSEMBLED. CHECK THE ASM SOURCE FOR MESSAGES. 

Press ENTER 

Each ACL statement that cannot be converted by the conversion program must 

be converted manually. 

28-0" J 

The ACL to Assembler Language Conversion Program 299 



300 

When the ACL to assembler language conversion program has successfully 
completed, the following is displayed: 

Prompt 6 

o 0001 Y 01 40 I 
l 

CONVERSION COMPLETED. 
Opt ions aloe 

1. Restal-t 
2. Exit 

SELECT OPTION: 

3. Assemble 

If you select 1, the conversion program restarts at the beginning. If you choose to 
exit, the standard load processor redisplays the standard load prompt. If you 
select 3, the conversion program loads the IBM 5280 Assembler Program Product 
(see Chapter 5) to process the data set output from the conversion program. 
When the assembler encounters the untranslatable code message, it includes an 
error message for that line in the assembler listing. You must convert this line 
to assembler language and reassemble the program. 

NOTES ABOUT THE CONVERTED PROGRAM 

The following discussion describes the format of the converted program and how 
the converted program may differ from the original ACL program. 

The Format of the Converted Program 

An ACL line often converts to more than one assembler language line. This can 
cause indexed branch instructions and dynamic instruction modification in the 
ACL program to produce unpredictable results in the converted program. 

Each control statement in the converted program is preceded by a period in the 
first column of the line. Each control statement and instruction ends with a 
semicolon. A line that begins with an asterisk is treated as a comment line. 

Labels and Sequence Numbers 

If a label is present in an ACL line, a colon is inserted in column 5, and this label 
precedes the assembler language line or lines generated from the ACL line. 

If a sequence number is present in an ACL line, the number is preceded by Nand 
used as a label on the assembler language line generated from the ACL line. If 
more than one assembler language line is generated, the label is placed on the 
first assembler language line generated from the ACL line. 

1 
28-79 ] 



If an ACL line does not have a sequence number, the conversion aide generates 
a sequence number. The generated number is preceded by N and placed on the 
assembler language line, or the first of the assembler language lines, generated 
from the ACL line. For example, if the ACL program has the following instruc
tion in line 0007: 

AAAA IFO K = 0 009 

it is converted to the following assembler language code: 

AAAA: 
NOOO7: IFO K NE 0 GOTO 

GOTO N0009 

The Format of the Display Screen 

NOOO8: 

The following illustration shows the format of the screen for ACL, and the 
format of the screen for a converted program. 

ACL Screen Format 

,--;----------------1 
r--o-------- --------1 
1--0--- - ----------, 
1-0----- ---------, 
~-;-8~~c---------1 

I~~~=~~~~ ~ ___ -__ ~~~~J 
Screen ACL 
Position Buffer 

I 
Positions Buffer 

A 01 1-40 01 
B 01 41-48 01 

(B) (02) ( 121-128) 

C 01 51-120 01 
0 02 1-120 02 

ASM 
Positions 

1-40 
41-48 

51-120 
1-128 

) implies 'B' or 'M option in col 28 on .FIELO 

The ACL to Assembler Language Conversion Program 301 



302 

5280 Screen Format 

r -------Sta~u-; Li ~ - - - - - -I 
r--A-------- ---------, 
1-D- - - - - - - - - - -- - - -, 
r --0 -- --- - - - --- - - -- -I - - - -
--- - - - - - - - - - - - - -- I I 
I D I ---~--
[~~~~~11-c ~ _-= ~ ~_-_-_-_-_-_~ ~ ~~_-___ -~=~_-~~~=~=J 

In ACL, buffers 01 and 02 contain data that is displayed. On the 5280, a screen 
refresh buffer in keyboard/display storage maintains the screen display according 
to the screen control format referred to in the current ENTR command. The con
version program provides for placing the contents of buffers 01 and 02 into the 
screen refresh buffer by inserting the following instruction in the converted 
program: 

ENTR(SFMTXXX); 

Buffers 

The conversion aid does not automatically declare all 56 buffers. Only the 
following buffers are declared: 

• Buffers 01 and 02. These buffers are contiguous and precede all other 
buffers. 

• Buffers initialized by a .BUFFER control statement in the ACL program. 
These buffers are contiguous if their associated .BUFFER control statements 
are contiguous. 

• Buffers referred to in instructions that are not declared by methods (1) or (2). 



Implied Usage of Buffers 

Implied usage of a nondeclared buffer may produce unpredictable results. For 
example, the ACL instruction PRNT allows buffer specification for a print 
buffer. The buffer referred to in the PRNT instruction will be declared as a 
128-byte buffer. However, the ACL .PRINTER control statement could specify 
up to 132 characters per line. In ACL, the print buffer referred to in the PRNT 
instruction is used for the first 128 characters, and the next sequential buffer is 
used implicitly for the remaining characters. The conversion aid does not 
declare the implied buffer. In the converted program, the declared print buffer 
is used for the first 128 characters and the next sequential declared buffer is used 
for any remaining characters. If you use more than 128 characters per line, it 
is recommended that you increase the size of the declared print buffer in the 
converted program. 

Unlike ACL, the converted program does not store the .FIELD and .FORMAT; 
information in the buffers. Therefore, any attempt to modify .FIELD state
ments during execution of the ACL program by referring to the buffer in which 
they are stored requires manual translation. 

ThePhy~calBufferSue 

ACL programs use basic exchange diskettes, which require a physical buffer size 
of 128 bytes. If you plan to use a different exchange type for your converted 
program, be sure your physical buffer size is valid for that exchange. I exchange, 
for example, requires a physical buffer size at least twice the diskette sector size. 

FIELD Buffers 

The 5280 does not use buffers for the .FIELD control statements in the same 
way the 3741 used them for ACL programs. The conversion aid converts the 
.FIELD control statements to a screen control format and stores the screen control 
format in the next available storage location. 

The conversion aid does not handle all the options that were available in ACL to 
assign to buffers in the .FIELD control statements. This does not affect the 
functions available in the converted program. 

The conversion aid requires that all .FIELD control statements that refer to the 
same buffer be contiguous in the ACL program. This means that if a series of 
.FIELD statements refer to a buffer, such as buffer 05, and then subsequent 
.FIELD statements refer to another buffer, such as 06, the following .FIELD 
statements cannot refer to the first buffer (buffer 05). 

The overflow buffer (ACL columns 18-19) is ignored. If an ACL .FIELD control 
statement specifies overflow into the next buffer to which .FIELD control state
ments refer (this is usually the case), the ACL program will convert correctly. 

The ACL to Assembler Language Conversion Program 303 



304 

The ACL .ENTR instructions refer to fields by field number, relative to the start of 
the buffer. The cunversion aid assigns screen format numbers sequentia::y and 
converts the ACL references to these numbers. This may result in a field sequence 
error of one if a field overflowed from one buffer to another in the ACL program. 

If you add any screen control formats to a converted program, place them following 
the last screen control format generated by the conversion aid in order to maintain 
proper numbering sequences. 

The .FORMAT Control Statement 

The 5280 uses a currency symbol that is always two characters in length. The con

version aid attempts to allow for this when converting ACL .FORMAT control 
statements. 

Indexed Branch Instructions 

Because more than one line of assembler langauge instructions can be generated 
from one ACL instruction, indexed GOTO instructions in the ACL program 
may not produce the expected result in the converted program. You can replace 
the indexed GOTO instructions with GOTO instructions in the converted program. 
Or you can set up a label table of addresses with a .LABTAB control statement 
and replace the indexed GOTO with a GOT AS in the converted program. The 
GOT AB instruction uses the label table of addresses to make the indexed branches. 

The OPEN Instructions 

The converted program does not automatically issue an OPEN instruction when 
an I/O instruction specifies an unopened data set lOB. The converted program 
will, however, try to open all data sets at the start of program execution. 

The 5280 cannot issue an OPEN instruction to a device that already has a data 
set lOB open for label update. Therefore, if the ACL program opened a diskette 
data set for label update, it must be closed before any other data sets on that 
diskette can be opened. 

The ENTR Instructions 

In ACL, an indicator is set whenever an ENTR is executed. Any assembler ENTR 
instruction that was generated from an ACL ENTR instruction sets an indicator 
(1227 in the converted program) when the ENTR instruction is executed. If you 
add ENTR instructions to a converted program, this indicator is not automatically 
set when the added ENTR instruction is executed. If you want the indicator to 
be set, you must write code to set the indicator and include this code in the con
verted program in addition to the ENTR instruction. 



The ACL Deleted Record Subroutine 

The 5280 does not read deleted records unless they are read by relative record 
number, which in turn results in an external status condition. The ACL 
deleted record subroutine, which is specified in columns 48-51 of the 
.DATASET control statement in the ACL program, is not processed by the 
conversion aid. The converted program will contain a message if columns 
48-51 are not blank in the .DATASET statement in the ACL program. 

Overlapping for PRNT Instruction 

The converted program does not use overlapped I/O for printer operations. The 
printer operations in the converted program use SCS conversion data sets. For 
this kind of data set, overlapping is invalid. 

Function Keys 

In the converted program, certain function keys are substituted for the function 
keys used in ACL. The following lists ACL function keys and explains how 
these function keys are handled for a converted program. For a description 
of how all the function keys are handled for a program originally written in 
5280 assembler language, see the Functions Reference Manual. 

The System Request/Attention Key 

In a converted program this key is handled in the same way it is handled for 
any program on the 5280. 

The Reset Key 

In ACL, the Reset key turns on an indicator in addition to resetting the error con
dition. If you want this indicator turned on during the execution of a converted 
program, press the Help key instead of the Reset key. When the operator presses 
the Reset key in a converted program, the error condition is reset: the status line 
stops blinking and the operator can enter correct keystrokes. 

The Command/End of Job Key Sequence and the Help Key 

If there is an error during the execution of a converted program, the status line 
blinks and displays error information. While the status line is blinking, the 
operator can (1) press the Reset key to reset the error and stop the blinking, 
(2) press the Cmd key, then the End of Job command function key to terminate 
the job, or (3) press the Help key to have help text displayed. 

The ACL to Assembler Language Conversion Program 305 



306 

ACL Double-Shift Reset 

During the execution of a converted program, press the Cncl key in upper shift to 
emulate the function caused by pressing the Alpha shift, Num shift, and Reset 
keys simultaneously during the execution of an ACL program. 

The ACL Tab Key 

There is no Tab key on the 5280. During the execution of a converted program, 
press the Page Forward key to emulate the ACL Tab key function. 

ACL T-Option Keys 

The conversion aid does not check the T-option in the ACL .FIELD control 
statement. Five of these keys are always handled as though the T-option in the 
ACL program were specified to redefine the keys. These keys include the: 

• Dup key 

• Sel Prog key 

• Rec Adv key 

• Rec Bksp key 

• Field Adv key 

When any of these keys is pressed during the execution of a converted program, the 
current ENTR command is terminated. Data that has been entered is preserved. 
Any specified right adjust function is not performed on the current field. Special 
keyboard indicator (1230 in the converted program) is set. 

The Field Bksp key is handled as though the T-option in the ACL program were not 
selected for this key. When the Field Bksp key is pressed during the execution of 
a converted program, if the cursor is in any position of the field other than the 
first position, the cursor goes back to the first position of the field. If the key is 
pressed when the cursor is in the first position of the field, it is handled as for one 
of the preceding five T-option keys. 

ACL Toggle Switches 

During the execution of an ACL program, you could use a toggle switch to change 
the status of one of the following functions: 

• Auto Rec Adv 

• Auto Dup/Skip 

• Numbers only field 



The 5280 does not have these toggle switches. During the execution of a con
verted program, you can emulate the function of the toggle switches by 
pressing the following keys: 

• Auto Enter key-emulates the auto Rec Adv switch 

• Dup Skip key-emulates the Auto Dup/Skip switch 

• Erase input key-emulates the Numbers Only setting on the Prog Num 
Shift switch 

When one of these keys is pressed, if the function is disabled it is enabled; if the 
function is enabled it is disabled. 

CONVERSION CHART 

This chart is intended as a preliminary guide for ACL programmers who are 
beginning to program in the 5280 assembler language. It shows the 5280 
assembler language control statements and instruction mnemonics that most 
closely correspond to the ACL control statements and instruction mnemonics. 
All ACL control statements and instructions are listed, although not all ACL 
instructions have corresponding 5280 assembler language instructions. 

The 5280 assembler language has many control statements and instructions 
that are not available with ACL. Instructions for table operations, conditional 
branches and skips, and data movement have been greatly expanded in the 5280 
assembler language. Instructions for binary arithmetic and logical operations have 
been added, along with numerous mask operations for bit manipulation. There
fore, the control statement or instruction that corresponds to ACL is not 
necessarily the most appropriate 5280 assembler language control statement or 
instruction to use. 

Control Statements 

ACL 
Mnemonic 

.NAME 

.DATASET 

.PRINTER 

.SELF-CHECK 

.REGISTER 

.FORMAT 

.BUFFER 

5280 
Mnemonic 

.START 

.EDITC 

.DATASET 

.DATASET 

.SELFCHK 

.DC 

.FMTST 

.FMTFLD 

.FMTEND 

.DC 

The ACL to Assembler Language Conversion Program 307 



308 

A,... 
,",""L. 

Mnemonic 

.FIELD 

.END 

Instructions 

ACL 
Mnemonic 

+ 

/ 
* 

CCMD 

CKPT 

COMM 

CROP 
CLOZ 
CRDR 

CRFL 

CCRD 
CSEL 
CSTR 
CWFL 
CWRD 

ENTR 

EXCH 

EXEC 

EXIT 

GETB 

5280 
Mnemonic 

+ 

/ 
* 
Rn = 

TINIT 

CLOZ 

ENTR 

<=> 

LOAD 

EXIT 

MVC 

5280 
Mnemonic 

.SFMTST 

.SFMTCTL 

.SFMTFLD 

.SFMTCNS 

.SFMTPMT 

.SFMTEND 

.END 

Operation 

Add 
Subtract 
Divide 
Multiply 
Move register to register 

I/O adapter command 

Checkpoint 

Communications linkage 

Punch a card 
Close file 
Read a card 

Read file 

Read a record from attachment 
I/O adapter control 
Start character 
Write file 
Write a record to attachment 

Keyboard input 

Exchange 

Execute next program 

Exit program 

Move data from buffer to register 

Rn = disp (len,BRn) 



ACL 
Mnemonic 

GOTO 

GSCK 

ICBR 

IF {~~} 
IF> 
IF< 
If = 
IF -
IF 0 

If CHK 
IF CRD 
IF FMT 
IF PRT 

IFC 

5280 
Mnemonic 

GOTO 

GSCK 

label = constant 

IF Rn {~~} 
IF Rn GT 
IF Rn LT 
IF Rn EO 
IF Rn-

IF Rn 0 

If Rn Ck 

If fmt 

Operation 

Unconditional branch 

Generate self check 

Insert character in buffer 

Test register numeric 
If register greater than 
If register less than 
Compare register logical 
If register minus 
If register zero or blank 

Self-check test 
Test if card is busy 
Test format number 
If printer busy 

Test for attachment busy 

Note: This mnemonic is used for a different operation in the 5280 assembler 
language. 

IFD> IFD LT Compare decimal for less than 
IFD< IFD GT Compare decimal for greater than 
IFD = IFD EO Compare decimal for equal 

IFI IFI Test indicator 
IFIR IFIR Test and reset indicator 

(load) + Rn = +n Load positive constant into register 
(load - Rn =-n Load negative constant into register 

L SL Shift left 

LS SLS Shift left signed 

LOAD Rn = label (len) Load register from buffer 

Note: This mnemonic is used for a different operation in the 5280 assembler 
language. 

MOFF 
MOVE 
MVER 
NOP 

OPEN 

MOFF 
MVC 
MVER 
NOP 

OPEN 

Move partial contents to register offset 
Move buffers 
Move partial contents, register to register 
Null operation 

Open a file 

The ACL to Assembler Language Conversion Program 309 



ACL I:?on 
"',"uu 

Mnemonic Mnemonic Operation 

PCTL Printer skip or space 
PRNT WRT Print a line 
PUTB MVC Move from register to buffer 

disp(len,BRn) = Rn 

R SR Shift right 
RBLK REBF Reformat registers at buffer offset 
READ READ Read from [diskette] 

REFM REBF Formatted read from buffer 
RGO CALL Return transfer 

RETURN 
RR SRR Shift right and round 
RS SRS Shift right signed 

SCE IFC ... IS Skip if character equal 

SCN IFC ... NOT Skip if character not equal 

SOFF SOFF Set indicators off 
SON SON Set indicators on 

STaR label (len) = Rn Store register to buffer 

TBFN TBFH Search table for equal/high entry 
TBFX TBFX Search table for equal entry 
TBRD TBRD Read table entry 
TBWT TBWT Write table entry 
WAIT WAIT Wait for I/O completion 
WBLK WRBF Reformat buffer at offset 
WRFM WRBF Formatted write to buffer 
WRT WRT Write record to diskette 
WRTE WRT Write extend 
WRTS WRTS Delete a record 
ZONE ZONE Zone part of register 

310 



Indicator Conversion 

Many ACL indicators have direct counterparts in 5280 assembler language, as 
shown in the following table. When these indicators appear in SON, SOFF, IFI, 
or IFIR instructions, the 5280 assembler language equivalent will be substituted. 
Other ACL indicators, particularly those set from the keyboard, are simulated 
by generated software. They are shown by numbers in parentheses. The 
remaining indicators are not translatable or require special handling, as shown 
in the footnotes. The following table lists all the ACL indicators: 

ACL Assembler 
Indicator Definition Set On By Set Off By Indicator 

1·99 User specified User program User program 1·99 
100·146 Reserved 
147 Printer error Any printer error User program None 
148 Print page Printer reaches Next prnt inst 115 

overflow overflow line 
spec'd in col 
23·25 of 
.PRINTER 

149 Card I/O EOD ?/card read User program None 
150 Card I/O EOJ ?*card read User program None 
151·153 Reserved 
154 Invalid GSCK GSCK result = 10 User program 117 

-MOD 11 
155 RBLK/WBLK Low·order of reg User program (192) 

overflow = 000 
156 Table index Read/write past User program 126 

error end of table 
157 Division error Divide by 0 User program 120 
158 Multiply Carry from mult User program 123 

overflow 
159 Add/subtract Carry from +/ User program 124 

overflow 
160 Machine check Ind 155·159 ON User program Note 1 

161 Error line System error User program or None 
causing keyboard Reset key 
lock or screen 
flash 

162 Short keyboard User program User program Note 2 

buzz 
163 Table high = Not found but User program or 101 

entry found > entry found hdwr 
164 Printer busy Print command Print done Note 3 
165 Disk drive busy Disk busy Disk not busy Note 4 

166 Auto rec adv Switch on Switch off (212) 

switch 
167 Prog num shift Switch on Switch off (213) 

168 Auto dup/skip Switch on Switch off (214) 

switch 
169·184 Reserved 
185 Sel pgm Key pressed User program/ (215) 

ENTER 

The ACL to Assembler Language Conversion Program 311 



ACL Assembler 
indicator Definition ,,_.&. ,,- ".- rtA_.&. ,,1,1, n ... 1_"':_-... _-

i>tH VII Dy ~ta VII oy IIIUI\#GLVI 

186 Dup Key pressed User program/ (216) 
ENTER 

187 *Field cor Key pressed User program (217) 
188 *New line Key pressed User program/* (218) 
189 *Tab Key pressed User program/* (219) 
190 Rec bksp Key pressed User program/ (220) 

ENTR 
191 *Char adv Key pressed User program/* (221 ) 
192 * Reset Key pressed User program/* (222) 
193 Field adv Key pressed User program/ (223) 

ENTR 
194 Skip Key pressed User program/ (224) 

ENTR 

195 Right adj Key pressed User program/ (225) 
ENTR 

196 Neg right adjust Key pressed User program/ (226) 
(-) ENTR 

197 Keyboard open ENTR ENTR complete (227) 
198 Field bksp Key pressed User program/ (228) 

ENTR 
199 Rec adv Key pressed User program/ (229) 

ENTR 
200 Special key- Ind 185, 186,190, User program/ (230) 

board ind 193,198,and ENTR 
199 

201 Lower char adv Key pressed These may be set (231) 
202 Lower dup Key pressed off by reset, ind (232} 
203 Lower field cor Key pressed 187·189,191, (233) 
204 Lower < Key pressed or the next (234) 
205 Lower # Key pressed Func Sel or by (235) 
206 Lower % Key pressed the user program (236) 
207 Lower / Key pressed (237) 
208 Lower hex Key pressed (238) 
209 Upper % Key pressed (239) 
210 Upper / Key pressed (240) 

211 Upper hex Key pressed (241 ) 
212 Upper - Key pressed (242) 

213 Lower rec adv Key pressed (243) 

214 Lower @ Key pressed (244) 
215 Lower sel prog Key pressed (245) 
216 Lower field adv Key pressed (246) 
217 Upper @ Key pressed (247) 
218 Upper sel prog Key pressed (248) 
219 Upper field adv Key pressed (249) 
220 Upper char adv Key pressed (250) 
221 Upper dup Key pressed (251 ) 
222 Upper field cor Key pressed (252) 
223 Upper < Key pressed (253) 
224 Upper * Key pressed (254) 

312 



ACL 
Indicator Definition Set On By 

225 No record found Data mgmt 
DSN 1 

226 No record found Data mgmt 

DSN 2 
227 No record found Data mgmt 

DSN 3 
228 No record found Data mgmt 

DSN4 
229 Key not in Data mgmt 

table DSN 1 
230 Key not in Data mgmt 

table DSN 2 
231 Key not in Data mgmt 

table DSN 3 

232 Key not in Data mgmt 
table DSN 4 

240 Continued CKPT completed 
checkpoint 

Notes: 
1. The IFI instruction converts to: 

IF BR7 IS/NOT 0; 
The other instructions generate a message. 

2. The SON instruction converts to: 
BUZZ; 
The other instructions generate a message. 

3. The I F I instruction converts to: 
IFDSI 2, n 
where n is a number from 1 through 214; 
The other instructions generate a message. 

Assembler 
Set Off By Indicator 

User program 

User program 

User program 

User program 

User program 

User program 

User program 

User program 

User or new CKPT None 

The ACL to Assembler Language Conversion Program 313 



314 



Appendix A. Mnemonic to Operation Code Conversion Chart and Instructions 
Format 

The assembler mnemonics are listed in alphabetical order. Arithmetic operators 
are listed with the associated register; for example, binary add is listed as BRn+= 
and decimal double precision divide as Rn(4)/. The instruction format and 
operation code that is generated by the assembler are indicated for each mnemonic. 
The operation code is always stored in the first byte of the 4-byte object code 
instruction. The contents of the other 3 bytes will be described in the 
Functions Reference Manual. 

Op Source 
Mnemonic Code Format 

ALLOC 34 ALLOC (dsn"BRn) 
AND 42 IFHI/IFLO BRn AND constant IS 

constant SKIP 
BINDEC A6 BINDEC (Rn,label) 
BINHEX 49 BINHEX (label [(L)] ,BRn) 
BRa = BRb 98 BRa = BRb[(L)] /Iabel 
BRa <=> BRb 45 BRa <=> BRb/label 
BRn = nn 99 BRn = nn 
BRn (4) -= 96 BRa(4) -= BRb[(L)] /label[(L)] 
BRn (4) += nn 95 BRn(4) += nn 
BRn (4) -= nn 97 BRn(4) -= nn 
BRn (4)+= 94 BRa(4) += BRb[(L)] /label[(L)] 
BRn [(4)] /= AB BRn[(4)] /= label/BRb 
BRn &= 9A BRa &= BRb[(L)] /Iabel [(L)] 
BRa &= d(1 ,BRb) BA BRa &= [d] ([Ll,BRb) 
BRn &= nn 9B BRn &= nn 
BRn V= 9C BRa V= BRb[(L)] /Iabel [(L)] 
BR V= d(1 ,BRb) BC BRa V= [d] ([ L] ,BRb) 
BRn V= nn 90 BRn V= nn 
BRn X= 9E BRa X= BRb[(L)]/label[(L)] 
BRa X= d(1 ,BRb) BE BRa X= [d] ([Ll,BRb) 
BRn X= nn 9F BRn X= nn 
BRn += 90 BRa += BRb[(L)] /Iabel [(L)] 
BRn -= 92 BRa -= BRb[ (L)] /Iabel [(L)] 
BRn[(L)] * AA BRa [(4)] *= BRb 
BRa += d(1 ,BRb) BO BRa += [d] ([Ll,BRb) 
BRa -= d(1 ,BRb) B2 BRa -= [d] ([L],BRb) 
BRn=(jndexed) B8 BRa = [d] ([ L],BRb) 
BRn -= nn 93 BRn -= nn 
BRn += nn 91 BRn += nn 
BRn(4) -= B4 BRa(4) += [d] ([L] ,BRb) 
BRn(4) -= B6 BRa(4) -= [d] ([Ll,BRb) 
BRn = Rn A7 BRn = Rn 
BUZZ C7 BUZZ 
CALL OB CALL [BRn,] label/d 

Mnemonic to Operation Code Conversion Chart and Instructions Format 315 



Op Source 
Mnemonic Code Format 

CALLTB OB CALL TB BRn , label 
CLC AE CLC (BRa,BRb,L) 
CLICK C7 CLICK 
CLOZ 23 CLOZ (dsn) [,N/R/E/D,W/P,C/yl* ,C/L/* ,BRn] ) 
CNENTR C7 CNENTR 
CRTMM CA CRTMM(BRa,BRb,BRC LNC/S]) 
d(l ,BRa) = BRb A3 [d] ([L] ,BRa) = BRb 
d(l ,BRn) = constant B9 [d] ([L] ,BRn) = constant 
d(l ,BRn) = Rn 7L [d] ([ L] ,BRn) = Rn 
d,Rn = constant 44 [d] ,Rn = constant 
DECBIN A7 DECBIN (label,Rn) 
DECR 06 DECR BRn GOTO label 
DISPEX C7 DISPEX 
DISPST C7 DISPST 
DUP BD DUP ([d,] BRn,L) 
ENABLE OC ENABLE ([label] ,[POP]) 
ENTR CF ENTR (sfmt[,BRn,O/N] ) 
EXIT 2F EXIT 
GOTAB 08 GOTAB BRn,label 
GOTO 00 GOTO label 
GOTO BRn (indexed) 08 [BRn,] [label] 
GSCK 48 GSCK (Rn) 
HEXBIN 4A HEXBIN (BRn,labeJ[(U]) 
IF BRn EO 6E IF BRa EO B Rb GOTO label 
IF BRn GE/LE 6F IF BRa GE/LE BRb GOTO label 
IF BRn GT/LT 60 IF BRa GT/LT BTb GOTO label 
IF BRn NE 6C IF BRa NE BRb GOTO label 
IF BRn 0 03 IF BRn IS/NOT 0 GOTO label 
IF fmt 02 IF fmt IS/NOT FMT GOTO label 
IF Rn AN 00 IF Rn IS/NOT AN GOTO label 
IF Rn CK OE IF Rn IS/NOT CK GOTO label 
IF Rn EO 62 IF Ra EO Rb GOTO label 
IF Rn GE/LE 63 IF Ra GE/LE Rb GOTO label 
IF Rn GT/LT 61 IF Ra GT /L T Rb GOTO label 
IF Rn NE 60 IF Ra NE Rb GOTO label 
IF Rn SN OF IF Rn IS/NOT SN GOTO label 
IF Rn 0 01 IF Rn IS/NOT 0 GOTO label 
IF Rn- 05 IF Rn IS/NOT - GOTO label 
IFB IS BB I FB [d] (BRn) IS constant SKI P 
IFB OFF B5 I FB [d] (BRn) OFF constant SKIP 
IFBON Bf IFB [d] (BRn) ON constant SKIP 
IFC IS 4E IFC [d] ,Rn/label IS constant SKIP 
IFC NOT 4C IFC [d] ,Rn/label NOT constant SKIP 
IFD Rn EO 66 IFD Ra EO Rb GOTO label 
IFD Rn GE/LE 67 I FD Ra G E/LE Rb GOTO label 
IFD Rn GT/LE 65 IFD Ra GT/LT Rb GOTO label 
IFD Rn NE 64 IFD Ra NE Rb GOTO label 
IFDSI 25 I FDSI n,dsn IS/NOT ON GOTO label 
IFI 07 I FI In IS/NOT ON GOTO label 

316 



Op Source 
Mnemonic Code Format 

IFH BRn EO 6A IFH BRa EO nn GOTO label 
IFH BRn GE/LE 6B IFH BRn GE/LE nn GOTO label 
IFH BRn GT/L T 69 IFH BRn GT/LT nn GOTO label 
IFH BRn NE 68 I FH B Rn NE nn GOTO label 
IFIR 04 IFIR In IS/NOT ON GOTO label 
INXEO A5 INXEO (BRn[(4)] label [,n]) 
INIT 33 INIT (dsn,BRn) 
INSBLK 32 INSBLK (dsn"BRn LOIN] ) 
KACCPT C7 KACCPT 
KATTCH C4 KATTCH 
KDETCH C5 KDETCH 
KERRCL C7 KERRCL (BRn) 
KERRST C7 KERRST (BRa, BRb) 
KEYOP C7 KEYOP (nnLBRa, BRb]) 
label = BRn A2 label[(L)] = BRn 
label = constant 44 label = constant 
label = Rn 8L label [(L)] = Rn 
label SL n A1 label [(L)] SL n 
LOAD 2E LOAD (label [,P ,A,E] ) 
MMCRT CB MMCRT (BRa, BRb, BRc) 
MOFF 1A MOFF (Ra, Rb[, d, L]) 
MVC AC MVC (BRa, BRb, L) 
MVCR AC MVCR (BRa, BRb, L) 
MVCV AC MVCV (BRa, BRb, L) 
MVER 19 MVER (Ra, Rb [,d,L] ) 
NOP 00 NOP 
OPEN 22 OPEN (dsn ["BRn] ) 
POSN 26 POSN (dsn, BOE/CURR/LAST/EOD LOIN]) 
READ 20 READ (dsn [,fmt, BRn/Rn/-/O/+,O/N] ) 
READMG C7 READMG (BRa, BRb) 
REBF 21 REBF (BRn, fmt) 
REPFLD C3 REPFLD 
RESCAL CD RESCAL (BRn, label) 
RESMXT CD RESMXT [(BRn)] 
RESUME CD RESUME [(B)] 
RETEXT OC RETEXT [(BRn)] 
RETURN OC RETURN [(BRn)] 
RL Al BRn [(L)] RL n 
Rn = 14 Rn = Rn/n 
Rn<=> 13 Ra <=> Rb 
Rn - 11 Ra = Rb - n/RC 
Rn + 10 Ra = Rb + n/Rc 
Rn * 18 Ra = Rb * n/Rc 
Rn I 17 Ra = Rb I n/Rc 
Rn(32) * 15 Ra(32) = Rb * n/Rc 
Rn(32) I 12 Ra = Rb(32) I Rc 
Rn = BRn A6 Rn = BRn 
Rn = d(l ,BRn) 7L Rn = [d) ([ L], BRn) 
Rn = label 8L Rn = label [(L)] 

Mnemonic to Operation Code Conversion Chart and Instructions Format 317 



n_ ~-.... -... 
V,", ~UUI~ 

Mnemonic Code Format 

Rn = nn 46 Rn = +nn 
Rn = -nn 47 Rn = -nn 
RR A1 BRn [(l)] RRn 
RSTMG C7 RSTMG 
RTIMER C7 RTIMER (BRn) 
RXORW 43 RXORW (constant, BRn, constant) 
SEARCH 24 SEARCH (dsn, BRn, B/F/R/L) 
SETOFF B3 SETOF F ([d], BRn,nn) 
SETON B1 SETON ([d) , BRn,nn) 
SKIP WHilE AO SKIP WHilE BRa lE BRb [STEP nn] 
Sl (binary) A1 BRn [(L)] Sl n 
Sl (decimal) 1C Ra = Rb Sl n 
SlS 10 Ra = Rb SlS n 
SOFF 41 SOFF (Ia [, Ib, Ic] ) 
SON 40 SON (la [, Ib, Ic] ) 
SR (binary) A1 BRn [(l)] SR n 
SR (blank register) 16 Rn = 1 SR 1 
SR (decimal) 16 Ra = Rb SR n/Rc 
SRAT 2B SRAT (dsn, BRn) 
SRR 1F Ra=RbSRRn 
SRS 1E Ra - Rb SRS n 
SYSlCK 2C SYSlCK 
SYSUNl 20 SYSUNl [(*)] 
TBBS 55 BRn :: TBBS (label, Rn) 
TBDl 57 TBDl (label, BRn) 
TBFH 50 BRn = TBFH (label, Rn [,N]) 
TBFl 54 BRn = TBFl (label, Rn [,N]) 
TBFX 53 BRn = TBFX (label, Rn [,N]) 
TBIN 56 TBI N (label, BRn) = Rn 
TBRD 52 Rn = TBRD (label, BRn) 
TBRl 52 Rn = TBRl (label, BRn) 
TBWE 51 TBWE (label, BRn) = Rn 
TBWT 51 TBWT (label, B Rn) = Rn 
TClOZ 3F TClOZ (dsn) 
TCTl 3F TCTl (dsn, X'II' [,O/N, 0]) 
TINIT 22 TINIT (dsn) 
TlCK 58 TlCK (label) 
TOPEN 22 TOPEN (dsn) 
TRANS A8 TRANS (BRa, BRb, l) 
TREAD 2A TREAD (dsn [,fmt,-,O/N,-]) 
TRT A9 TRT (BRa, BRb, l [, R]) 
TTERM 23 TTERM (dsn) 
TUNlCK 59 TUNlCK (label) 
TWAIT 36 TWAIT (dsn) 
TWRT 3A TWRT (dsn [,fmt,F,O/N,B]) 
WAIT 36 WAIT [(dsn)] 
WFMCRT 3E WFMCRT (BRa [,fmt,BRb,B/ADD]) 
WRBF 3C WRBF (BRa [,fmt,BRb] ) 
WRT 30 WRT (dsn [,fmt,BRn/-/O/+,O/N,B] ) 
WRTI 31 WRTI (dsn [,fmt"O/N,B] ) 
WRTS 35 WRTS (dsn [,fmt"O/N,B] ) 
ZONE 1B ZONE (Ra,Rb/nn [,d,l] ) 

318 



Key 

d is a displacement. 

dsn is the data set number. 

fmt is the label of the edit format. 

L is a length specification (except for the SEARCH instruction, which 
uses L as a keyword). 

n is a single digit decimal value (0-9). 

nn is a numeric value. 

sfmt is the label of the screen format. 

/ separates two or more parameters when only one may be specified. 
Do not include this symbol in the instruction. 

[] Enclose optional parameters. Do not include these symbols in the 
instruction. 

Mnemonic to Operation Code Conversion Chart and Instructions Format 319 



320 



Appendix B. SCS Control Characters 

The SNA subset support for the printer is accomplished through SCS (standard 
character string) control characters. You code these control characters in the 
printer output data stream. The data stream contains output data for the printer to 
print and control characters that direct the printer to format the data as you specify. 
The format of the data stream is: 

CC Data CC Data CC Data 

where CC is the control characters. 

The following chart describes the general functions provided by the printer control 
characters. A detailed description of each control character follows the chart. 

SCS Control 
Character Hex Code Function 

Bell 2F Bell; sound bell on printer 

CR 00 Carrier return 

FF OC Forms feed 

Fmt 2B ... Format 
2BClnnhh Horizontal (SHF) 
2BC2nnvv Verical (SVF) 
2BC8nngguu Graphic error (SGEA) 

IRS lE Interchange record separator 

LF 25 Line feed 

NL 15 Next line 

NUL 00 No operation 

PP 34 ... Print position 
34COnn Horizontal absolute 
34C8nn Horizontal relative 
34C4nn Vertical absolute 
344Cnn Vertical relative 

SCS Control Characters 321 



322 

• Bell 

Function: This control character stops printing, sounds the audible alarm, if 
installed, and turns on the Attention indicator. 

Code: X'2F' 

Results: When the printer microprocessor detects this control character, it: 

1. Allows all preceding data to be printed and all preceding control characters 
to be executed 

2. Turn the Ready indicator off 

3. Turns the Attention indicator on 

4. Sounds the audible alarm, if installed 

5. Stops pri nti ng 

6. Stops formatting 

7. Returns an unavailable status to the controller 

• CR (Carrier Return) 

Function: This control character performs a carrier return to the first print position 
on the same line. 

Code: X'OD' 

Results: The horizontal print position logically moves to the first print position on 
the same line. If it already is at the first print position, no operation occurs. 

• FF (Forms Feed) 

Function: This control character moves the paper to the next logical page as speci
fied by the Set Vertical Format control character (see Fmt) in this topic. 

Default: 1 logical page = 1 logical line. 

Code: X'OC' 

Results: The print position moves to the first logical print line and first logical 
print position of the next logical page. 

• Fmt (Format) 

Function: This control character defines data formatting for a specified length 
(provided in the parameter). 



Default: Logical line length = 132 character positions; logical page length = 1 line. 

Format of this control character: 

Code 

X'2B' 

Set Type 

Start of formatted data stream. 
Must include: SHF, SVF, or SGEA 
(Note) 

Associated 
Parameters 

Length of fo rmatted 
data stream. 

Note: The following chart shows the various set types and their associated 
parameters. 

Set Types Available for Use with the Format (Fmt) Printer Control Character 

Set Type Format Values of Parameters Description of Set Type 

SHF (set C1nnhh nn = number of bytes in the 
Horizontal SHF string 
Format) 

hh = maximum horizontal Sets the maximum print 
print position (greater than position (MPP), which is 
or equal to 1 and less than the value of the print line 
or equal to 132). The length. 
default is 132. 

SVF (Set C2nnvv nn = number of bytes in the 
Vertical SVF string. 
Format) 

vv = maximum number of lines Sets the maximum print 
on a page greater than or equal line (MPL) on the logical 
to 1 and less than or equal to page; it overrides the 
255). The default is a page physical device logical 
length of one line. page. 

SGEA C8nnggxx nn = number of bytes in the 
(Set SGEA string. See Note. 
Graphic 
Error gg = unprintable character Sets the way the printer 
Action) option will respond when it en-

01=No stop, no status. counters an unacceptable 
02=Defaults to 01. symbol in the data stream. 
03=Stop, hard error status. Note: nn must be at least 
Unit not available 1 and not greater than 3 
Q4=Defaults to 03. for ~he SGEA set type. 
The default for xx is 01. 

SCS Control Characters 323 



324 

The following charts show the characteristics of the SHF and SVF set types. 

Valid Values for the SHF and SVF Set Types 

Set Type 
Code Parameters Results (MPL and MPP) Error 

SHF 
(2BC1nnhh nn=oo MPP=132 Invalid SCS parameter 

nn=Ol MPP=132 None 

nn=02 
hh=OO MPP=132 None 

nn=02 
hh=l-84 M PP= 1-132 as specified None 

nn=02 
hh=85-FF MPP=132 Invalid SCS parameter 

nn=03-FF MPP=132 Invalid SCS parameter 

SVF 
2BC2nnvv nn=OO MPL=l Invalid SCS parameter 

nn=Ol MPL=l None 

nn=02 
vv=OO MPL=l None 

nn=02 
vv=l-FF MPL=1-255 as specified None 

nn=03-FF MPL=l Invalid SCS parameter 

• IRS (Interchange Record Separator) 

Function: This control character does the same thing that NL does. 

Code: X'lE' 

• LF (Line Feed) 

Function: This control character moves the paper one line without altering the 
print position. 

Code: X'25' 

Results: Moves the paper logically to the same print position on the following line. 
If you use this control character on the last line of a page, it will move the print 
position to the first line of the next page. 



• NL (New Line) 

Function: This control character moves the paper to the next line. 

Code: X'15' 

Results: The print position moves to the first print position on the next line if it 
is not coded on the last line of the page. If you code this on the last line, it moves 
the paper to the first print position on the first line of the next page. 

• NUL 

Function: No-op 

Code: X'OO' 

Results: No characters are printed and no functions are performed. 

• PP (Print Position) 

Function: This control character moves the logical print position as determined 
by the associated parameters. 

Restrictions: The absolute parameters (see the following explanation) must be 
equal to or less than the page length. If the absolute horizontal parameter is less 
than the current print position, the printer microprocessor treats it as a separate 
line and inserts a CR control character in the printer data stream. If the absolute 
vertical parameter is less than the current line number, the microprocessor treats 
it as a new page. If both are equal, no operation is performed. Relative values 
must indicate a move to but not past the end of the line or page. A value of 0 is 
not valid, and no operation is performed. 

Code and Format: 

X'34' Function Parameter 
(Hex) 
Note 1 

Value Parameter 
(Decimal) 
Note 2 

The results are determined by the parameters as described in the following notes. 

SCS Control Characters 325 



326 

Notes: 
1. The fO!!C\AJing chart SnO\A/S the t'/pes of moves available and indicates '-"Jhat the 

PP CC accomplishes for each type. 

Function 

Absolute 
horizontal move 

Absolute vertical 
move 

Relative 
horizontal move 

Relative vertical 
move 

Function Parameter 
(Hex) 

co 

C4 

C8 

4C 

Value Parameter 
(Decimal) 

Numeric value of horizontal posi
tion (less than or equal to the end 
of the line) 

Numeric value of vertical position 
(less than or equal to the end of 
page) 

Numeric value of horizontal move
ment from the present position 
(less than or equal to the end of the 
line). 

Numeric value of vertical movement 
from the present position (less than 
or equal to the end of the page). 

2. The following chart shows the relationships of the parameters. 

Function 

Absolute horizontal 
move (X'34COnn') 

Absolute vertical 
move (X'34C4nn') 

Value 
Parameter (nn) 

00 

nn>max PP 

00 

current PP 
~nn~max PP 

O<nn<current PP 

nn>max PP 

Results 

No-op; the current print position 
is unchanged; no error. 

The print position becomes the 
value of nn. 

Error; invalid SCS parameter. 

No-op; the current print position 
is unchanged; no error. 

The print position becomes the 
value of nn and remains on the 
same logical page. 

The print position becomes the 
value of nn and goes to the next 
logical page. 

Error; invalid SCS parameter. 



Value 
Function Parameter (nn) Results 

Relative horizontal 00 No-op; the current print position 
move (X'34CBnn') is unchanged; no error. 

nn+current The new print position is equal to 
PP<max PP the current print position plus 

the value of nne 

nn+current Error; invalid SCS parameter. 
PP>max PP 

Relative vertical 00 No-op; the current print position 
move (X'344Cnn') is unchanged; no error. 

nn+current The print position becomes the 
PP~max PP value of the current print position 

plus the value of nne 

nn+current Error; invalid SCS parameter. 
PP>max PP 

SCS Control Characters 327 



328 



Appendix C. Self·Check Computations 

The description of The Self-Check Algorithm under Self-Check in Chapter 2 
outlines general steps for an algorithm. The 5280 self-check function provides 
variations to the general steps with an input translate table, a product table, 
and an output translate table. Variations in the way the input is translated, 
the way the products are added, and the way the output is translated are also 
available. With these variations, the self-check algorithm you describe with the 
.SELFCHK control statement may be summarized with the following steps: 

1. Determine input value for each foundation position. 

2. Obtain products and sum the products. 

3. Convert the resulting sum. 

4. Determine output for the self-check number or numbers. 

These steps, and the parameters of the .SELFCHK control statement that 
effect each step, are illustrated in Figure C-1. The .SELFCHK parameters 
that describe the self-check register (FLDLEN, DISP) are not included in 
the figure, nor are the parameters that specify the modulus (MOD) or the label 
of the self-check control area (LABEL). The fields in the figure (Field 1 through 
Field 6) represent the positional fields of the CNTL parameter. 

A detailed description of each step, and how it is effected by the .SELFCHK 
parameters, follows the figure. 

Self-Check Computations 329 



330 

1. Determine input value for each foundation position. 

INTAB 

omitted 

I 
I 

Field6=16 

I 

I 

INTAB 
specified 

I 
I 

Field 6 = F 

1 
The low-order 4 bits of A" 8 bits of each input The low-order 4 bits 

the EBCDIC for each 
position are used for the 

translate table byte are of each input translate 
table byte are used for 
the value; the high
order 4 bits are used as 

a shifj left count. "T ""dl'"' >h' ,,'"' 

T 

2. Obtain products for each input value (the product is expressed as t .. "o numbers, the NR [rightmost number] and the N L [leftmost 

number] ), and sum the products. I 
Ir-----------------------~------------------,J 

PROD PROD 

I 

omitted 
I 

I 
Random wieghts are used Calculated weights are used 

for a multiply type for a divide type algorithm. 

algorithrL..-· ------I.-------...J1 
Multiply weights times input 

values to find products. 
I 

Field 1 = 16 Field' = U Field
l
, = D 

I 
Sum whole number sul the units Sum lhe digits of 

products. digits of products. the products. 

NR = sum NR = sum NR = rightmost sum 

NL I = 0 NL = 0 N L I = leftmost sum 

T 

Product table repeats 
every 3 characters. 

I 

specified 
I 

I 
Field 1 = F 

I 
Product table repeats 

every 4 characters. 
I 

PrAducts are found in the 
product table. 

NJ is found in the first half of 

the table. 

NL is found in the second half 

ofJthe table. 

3. Convert resulting sum (converted result is expressed as the DR [rightmost digit] and the DL [leftmost digit]). 

1 I 
Field 2 = 16 Field 2 = D 

I I 
Sum NR + NL. Sum digits of 

NR + NL. 

DR = modulus of sum 

DL I 

I 
= 0 DR = modulus of sum 

o 

4. Determine the output for the self-check number. 

I 
Field 5 = 16 

I 
Use DR and DL. 

I 
Field 4 = 1 

I 
Force an 
F zone to DR 

for the 
self-check 

number. 

I 
Field 3 = 16 

No JmPlement 

! 
OUTTAB 

omitted 
I 

Field
l
4 = 2 

I 
Force an F 
zone to DR 
for rightmost 
number; 

force an F 
zone to DL 
for leftmost 
number. 

I 
Field 5 = D 

I 
Use DR only. 

I 
Field 4 = 1 

I 
Force an F 
zone to units 
position of DR 

for self-check 
number. 

I 
I 

Field 2 = K 

I 
Cross add sum of NL + NR. 

DR = modulus of sum of 
odd-positioned digits 
of NL + NR 

DL = modulus of sum of 
carry from DR, plus 

I sum of remaining digits 

t 

I 

I I 
Fieid 4 = 2 Fieid 4 = 1 

I 
I Force an F 

zone to units 
position of DR DR + DL = sum. 

for rightmost Sum translates 
number; force to self-check 
an F zone to number. 
remaining posi-
tions of DR for 
leftmost number. 

Figure C-1. Self-Check Computations According to .SELFCHK Parameters 

I 
Field2=E 

I 
Special 8 and 3. 

DR = 8 modulus NR 

DL I = 3 modulus NL 

I 
I 

Field 3 = C 

I 
Convert DR and DL to 
the complement of the 

modulus. : 
OUTTAB 

specified 
I 

I 
Field 2 = E 

I 
DR + (DL * 8) 

= sum. Sum 

translates to 
self-check 
number. 

Field 4 = 2 

DR = rightmost 

number. 
DL = leftmost 

number. 



1. Determine input value for each foundation position. 

INTAB 
omitted 

I 
The low-order 4 bits of the 
EBCD IC for each position 
are used for the value. 

If no input translate table is specified, the low order 4 bits of the EBCDIC for each 
foundation position are used for the input value. For example, if the foundation 
is: 

A478B770 

the EBCDIC for the foundation position is: 

High order bits: 
Low order bits: 

CFFFCFFF 
14782770 

The input value for the foundation positions is: 14782770. 

INTAB 
specified 

I 
If an input translate table is specified, the value must be determined from the table. 

An input translate table can provide a different numeric value for each character. 
You must set up and initialize the input translate table with .DC control state
ments. The table must be 256 bytes in length. Initialize the table so that the 
numeric value for each character is stored into the table at the displacement 
that corresponds to the hex value of the character. For example, the hex value 
of the character A is C1; the numeric value for the character A must be stored 
at displacement X'C1' into the input translate table. 

Figure C-2 shows, on the left, the displacement for each of the 5280 keyboard 
characters. The right side of Figure C-2 shows a sample input translate table, 
with numeric values entered for each keyboard character. 

Self-Check Computations 331 



332 

o 
1 

2 
3 
4 
5 
6 
7 

8 
9 
A 
B 
C 
D 
E 
F 

Displacements 

o 1 234 5 6 7 8 9 ABC D E F 

t6 ¢ « + I 
& ! $ * ) , -, 
- / I % > ? I , 

\ #@ , = " 
a b c d e f g h i 
j k I m n 0 p q r 
,...., s t u v w x y z 

} ABC D E F G H I 
} J KLMNOPO R 
\ s T UVWXYZ 
0 1 2 3 4 5 6 7 8 9 

o 
1 
2 
3 
4 

5 

6 
7 

8 
9 
A 

B 
C 
D 
E 
F 

Sample Table 

o 1 234 5 6 7 8 9 ABC D E F 

11 12 13 14 15 16 17 
18 19 20 21 22 23 24 
2526 27 28 29 30 31 32 

33 34 3536 37 38 39 
40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 

58 59 60 61 62 63 64 65 66 

67 70 71 72 73 74 75 76 77 78 

68 79 80 8182 83 84 85 86 87 

69 89 90 91 92 93 94 95 96 

00 01 0203 04 05 06 07 08 09 

Figure C-2. Input Translate Table Displacements and Sample Table 

Many bytes in the input translate table are not initialized, such as the bytes 
from displacement hex 00 to hex 3F. The assembler fills any uninitialized 
bytes with hex 00. 

INTAB 
specified 

I 
j 

Field 6 = t6 

I 
All 8 bits of each input 
translate table byte are 
used for the value. 

If an input translate table is specified, and if Field 6 of the CNTL parameter is 
blank, all 8 bits of the input translate table bytes are used for the input value. 
For example, the letter M is at displacement hex D4; the sample table has the 
value 82 at displacement hex D4. Therefore, the input value for the letter M is 82. 

INTAB 
specified 

I 
I 

Field 6 = F 

I 
The low-order 4 bits of 
each input translate table 
byte are used for the 
value; the high-order 4 bits 
are used as a shift left 
count. 



If an input translate table is specified, and field 6 of the CNTL parameter specifies 
F, the low order 4 bits of each input translate table byte are used for the input 
value, and the high order 4 bits are used as a shift left count. In the example above, 
the input translate table byte contained 82; the input value is 2 and the shift left 
count is 8. The foundation position, and all high order positions are shifted to the 
left 8 positions. 

2. Obtain products for each input value, and sum the products. 

j 

PROD 
omitted 

I 
I 

Random weights are used Calculated weights are used 

for a multiply type 
algorithm. 

I 

for a divide type algorithm. 

I 
Mu'tiPly weights times input 
values to find products. 

If no product table is specified, products are obtained by multiplying the input 
value by the corresponding weight. The weights are specified with the WGTS 
parameter. Enter a hex 00 in each position that corresponds to a self-check digit 
and to a position that is bypassed. Enter a 1-byte weight for each position that 
corresponds to a foundation position. The weight must be lower in value than the 
modulus. 

For a multiply type algorithm, random weights are used. The following example 
shows how to assign weights for a self-check register assuming a modulus of 9, 
a field length (FLDLEN) of 21, and two self-check digit positions at the right 
of the register. 

WGTS= X '00000000000000000000000807060504030 102030405060708070605040000'; 
"'- J~ 

Bypass 
Positions 

Foundation Number 
Positions 

The input value for the rightmost foundation number position is multiplied by 
hex 03, and so on. 

Divide type algorithms require specific calculated weights. An algorithm that 
involves divide operations can be expressed as follows: 

Divide the foundation by some number and the remainder is the check digit(s). 

These divide type algorithms can be defined with the .SE LFCH K control statement 
by determining the correct weights for the equivalent divide operation and using 
the divisor for the modulus. The weights are determined by dividing the desired 
divisor into 1000000000000000 with the remainder of each step the weight for 
the corresponding position of the foundation, starting from the rightmost 
position. 

Self-Check 
Digit positions 

Self-Check Computations 333 



334 

For example: 0142 ... etc. 
7 1000000000000000 

o 
10----------------------------~ 

7 
30--------------------------~ 

28 
20------------------------~ 

14 
6 ... etc.----------.... 

Weighting factors for the above example, 
with the self-check digit in the rightmost 
position and the foundation number four 
positions in length, are: X'000000OO0000060203010r' 

~ypass 'POSitiO~S bheck Digit 

When using a divide type algorithm, Field 1 and Field 2 of the CNTL parameter 
of the .SELFCHECK control statement must be blank. 

When weights are determined, they are multiplied by the input value of each 
foundation position, and the result is the product. The products are then added, 
and the 5280 establishes two results that are stored internally. The two results 
are referred to as the NR (rightmost number) and the NL (leftmost number). 
These two results provide flexibility for numerous algorithms. When only one 
result is appropriate N L is forced to O. 

There are three options for adding the calculated products. Field 1 of the CNTL 
parameter specifies how the products are added to produce the N Rand N L. 

As part of the process of obtaining the modulus, the 5280 internally converts 
the products and sums of the products to the number base of the modulus. 
That is, if the modulus is 11, the products and sums of products is expressed in 
base 11. Usually, your algorithm is such that the effects of this conversion can 
be ignored. Only if your algorithm deviates from the common algorithm as noted 
in the examples do these effects have to be considered. 

Field
l
1 = lIS 

I 
Sum whole number 
products. 

NR = sum 
NL = 0 

Multiply weights times input 
values to find products. 

I 



If Field 1 is blank, the input value is multiplied by the weight for each foundation 
position, and the whole number products are added. The sum is used for the NR, 
and the N L is forced to O. 

Example: 

Numeric value of characters 
Weights 

Products 
Summation 
N R equals 107 
NL equals 0 

Multiply weights times input 
values to find products. 

I 
Field 1 = U 

S 
, . d" 

urn the units Iglts 
of the products. 

NR = sum 
NL = 0 

3 
5 

15 
15 

12 10 4 6 
4 3 2 1 

48 30 8 6 
+48 +30 +8 +6 107 

If Field 1 specifies U, the input value i& multiplied by the weight for each 
input position, and the units positions of the products are added. This sum is 
used for the NR, and NL is forced to O. 

Example: 

Numeric value of characters 3 12 10 4 6 
Weights 5 4 3 2 

Products 15 48 30 8 6 

~ l ~ ~ ~ 
Summation 5 + 8 + o + 8 + 6 27 
NR = 27 
NL = 0 

Self-Check Computations 335 



336 

Commonly, if this option is used, the modulus is 10. The following is an example 
of modulus 11 and consideis t~e effects of expiessinij the product and sum in 
the number base of the modulus. 

Example: Assume modulus 11 

Numeric value of characters 
Weights 

Products (base 10) 
Products (base 11) 

Summation (base 11) 
NR = 28 
NL = 0 

Multiply weights times input 
values to find products. 

I 
I 

Field 1 = D 

I 
Sum the digits of 
the products 
N R = rightmost sum 
N L = leftmost sum 

3 12 10 
543 

4 
2 

6 

15 48 30 8 6 
14 44 28 8 6 

l l l l l 
4 +4 +8 +8 +6 28 base 11 

If Field 1 is D, the input value is multiplied by the weight for each foundation 
position, and the units positions of the products are added. This sum is used for 
the NR. Also, the remaining positions of the products are added; this sum is 
used for the N L. 

Example: 

Numeric value for characters 3 12 10 4 6 
Weights 5 4 3 2 

Products 15 48 

(J 
8 6 

U 
, l ~ 

Summation +8 +8 +6 27 
1 +4 +3 = 8 

NR = 27 
NL = 8 

Usually the weights are such that the products are less than 100 so the sum of 
NR and NL is equivalent to taking the sum of each digit of the product. For 
the example above: 

N R + N L = 27 + 8 - 35 

Summing each digit of the products: 

1 +5+4+8+3+0+8+6 = 35 



Commonly, if this option is used the modulus is 10. The following is an example 
if the modulus is 11 and considers the effects of expressing the product and 
sums in the base of the modulus. 

Numeric value for characters 
Weights 

Products (base 10) 
Products (base 11) 

Summation (base 11) 

I 

PROD 
specified 

I 

3 12 
5 4 

15 48 
14 44 

U rJ 
1 +4 

Field 1 = 16 Field 1 = F 

10 
3 

30 
28 

~! 
+2 

Product table repeats 
I 

Product table repeats 
every 3 characters. every 4 characters 

I I 
I 

Products are found in the 
products table. 

NR is found in the first half 
of the table. 

NL is found in the second 
half of the table. 

4 6 
2 

8 6 
8 6 

l ~ 
+8 +6 28 base 11 

7 base 11 

You can use a product table rather than weights to find the product for each 
foundation position. You must set up and initialize the 128-byte product table 
with .DC control statements. Do not use a .TABLE control statement to 
organize the product table. Specify the label of the product table for the 
PROD parameter of the .SELFCHK control statement. For the WGTS parameter, 
enter hex 00 in the self-check number position(s) and in any positions to be 
bypassed. Enter hex 01 in all foundation positions. 

Although you do not organize the table with a .TABLE control statement, you can 
think of the product table as a data table with eight 16-byte arguments. The first 
four arguments are used to find the NR, and the second four arguments are used 
to find the NL. If no NL is appropriate, initialize the second four arguments 
with hex OOs. If Field 1 of the CNTL parameter is blank, the product table repeats 
every 3 characters; if Field 1 is F the product table repeats every 4 characters. 

When the 5280 uses the product table to find the product for a foundation 
character, the position of the character in the self-check register determines which 
argument of the product table the 5280 uses. 

When the appropriate argument is determined, the 5280 uses the low-order 4 bits of 
the EBCDIC for the foundation character to determine which byte within the argu
ment holds the product to use. 

Self-Check Computations 337 



338 

The following illustration shows which argument of the product table is used for 
each position in a self-check register of up to 32 bytes. On the right are the 
positions for a product table that repeats every 3 characters (Field 1 = ); on the 
left are the positions for a product table that repeats every 4 characters (Field 1 
= F). 

Product Table 
Register Positions Positions Register Positions 

04 08 12 16 20 24 28 32 00 through OF 02 05 08 11 14 17 20 23 26 29 32 
03 07 11 15 19 23 27 31 10 through 1 F 01 04 07 10 13 16 19 22 25 28 31 
02 06 10 14 18 22 26 30 20 through 2F 03 06 09 12 15 18 21 24 27 30 

01 05 09 13 17 21 25 29 30 through 3F (not used) 

04 08 12 16 20 24 28 32 40 through 4F 02 05 08 11 14 17 20 23 26 29 32 

02 07 11 15 19 23 27 31 50 through 5F 01 04 07 10 13 16 19 22 25 28 31 

02 06 10 14 18 22 26 30 60 through 6F 03 06 09 12 15 18 21 24 27 30 

01 05 09 13 17 21 25 29 70 through 7F (not used) 

To find the product for the character in position 26 of the self-check register, 
the 5280 uses argument 3 of the product table (positions hex 20 through 2F) if 
Field 1 = F; it uses argument 1 of the product table (positions 00 through OF) 
if Field 1 is blank. The following example shows how the character in the 26th 
position of the self-check register is translated to the N R, assum ing the product 
table repeats every 4 characters (Field 1 = F). 

Example: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
06/09 / 980 

Register Positions D~ 
._.____11- c = he~ 

o 1 2 3'4 5 6 7 8 9 ABC D E F 
1 2 3 4 5 6 7 8 9 0 
t y u i 0 p a s d f . z x d v b n m, 

04 08 12 16 20 24~8 32 1 
03 07 11 15 19 23 27 ~~2 

02 06 10 14 18 22 26 3 ¢ & * ( ) + OWE -
01 05 09 13 17 21 25 29 4 P A S D F G H J K L 
04 08 12 16 20 24 28 32 5 
02 07 11 15 19 23 27 31 6 
02 06 10 14 18 22 26 30 
01 05 09 13 17 21 25 29 

7 

B 
-

g 

N M 
= q 

h j 

o The register position determines which product table argument to use. 

~ For position 26, use the third product table argument. 

, ? 
w e r 
k I 

II The EBCDIC of the character determines which byte in the argument to use. For 
'c' the EBCDIC is hex 83; use the fourth byte (byte 3). 

1 2 3 
t y u 
, 

z x 

The NR for the character is 'd', or EBCDIC hex 84. If an NL is used, it is found 
in the fourth byte of the seventh argument: NL = 'w', or EBCDIC hex A6. 

4 
i 
c 

- = q w e r 

g h j k I , 
/ ! @#$ % 
R T Y U I 0 

" Z X C V 

5 6 7 8 9 0 
0 p a s d f 
v b n m, 



3. Converting resulting sum. 

The sum of the products (N Rand N L) is converted to the base of a modulus, 
according to Field 2 of the CNTL parameter. The units positions of the result 
of this conversion is expressed as the DR (rightmost digit) and the DL (leftmost 
digit) to prevent confusing them with the N Rand N L. 

Field 2 = ~ 

I Sum NR + NL. 

DR = modulus of sum 
DL = 0 

If Field 2 is blank, the NR and NL are added together, and the sum is converted to 
a base equal to the modulus specified in the MOD parameter. The units positions 
of the result is stored as the DR; only one result is appropriate so the DL is forced 
to O. 

Example: 

The modulus is 10 
From the sum of products 
(Numbers in base 10) 

NR = 107 
NL= 0 

NR + NL = 107 

Modulus is taken on 107; the value of the units position is the result. 

DR =7 
DL= 0 

Example: 

The modulus is 11 
From the sum of products 
(Numbers in base 11) 

NR = 28 base 11 
NL = 7 base 11 

N R + N L = 34 base 11 

Modulus is taken on 34 base 11; the value of the units position is the 
result so: 

DR =4 
DL=O 

FielCf2 = 0 

S I.. f urn digits 0 

NR + NL. 

DR = modulus of sum 
DL = 0 

Self-Check Computations 339 



340 

If Field 1 = D, the NR and NL are added together, then eadl digit of the sum is 

added; this new sum is converted to a base equal to the modulus specified in the 
MOD parameter. The units positions of the result is stored as the DR; only one 
result is appropriate so the DL is forced to O. 

Example: 

The modulus is 10 
From the sum of products 
(Numbers in base 10) 

Sum of each digit 

NR = 107 
NL= 0 

NR + NL = 107 

1+0+7 = 8 

Modulus is taken on 8; value of units position is the result so: 

DR =8 
DL =0 

Commonly, if this option is used the modulus is 10. The following is an example if 
the modulus is 7 and take into account the effects of expressing the values to the 
base of the modulus. 

Example: 

Modulus is 7 
From the sum of products 
(Numbers in base 7) 

NR = 26 base 7 
NL = 16 base 7 

N R + N L = 45 base 7 

4+5 = 12 base 7 

Modulus is taken on 12 base 7; value of units position is the result so: 

DR=2 
DL=O 

Field 2 = K 

I 
Cross add sum of NL + NR. 

DR = modulus of sum of odd
positioned digits of 
NL+ NR 

DL = modulus of sum of carry 
from DR, plus sum of 
remaining digits. 



If Field 2 = K, the N Rand N L are added together, then each odd-positioned digit 
of this sum is added; this new sum is converted to a base equal to the modulus 
specified in the MOD parameter, and the units position of this converted result is 
stored as the DR. Each even-positioned digit of the sum is added, and the remaining 
positions from the DR are added; this new sum is converted to a base equal to the 
modulus specified in the MOD parameter, and the units position of this converted 
result is stored as the 0 L. 

Example: 

Modulus is 10. 
From the sum of products NR = 1746 

NL = 0 

NR + NL = 1746 
Sum digits for first 
modulus (odd position). 

First modulus is taken on 13. 
Result is units position value, 
so: 

DR =3 

Remainder of first modulus 
equals 1. 

Sum digits for second modulus. 

Add remainder for second modulus. 

Second modulus is taken on 1, so: 

DL = 6 

~H 
7+6 13 

1+4 = 5 

l 
1+5=6 

Commonly, if this option is used, the modulus is 10. If modulus 10 is not used, all 
the numbers and summations would be in the base of the modulus. 

Field 2 = E 

1 
Special 8 and 3. 

DR = 8 modulus NR 
DL = 3 modulus NL 

If Field 2 = E, the N Rand N L are treated separately. The N R is converted to 
base 8, and the units position of this converted result is stored as the DR. The NL 
is converted to base 3, and the units position of this converted result is stored as 
the DL. This option should be used only if you use an output translate table. 

Self-Check Computations 341 



342 

Example: 

Modulus is 10. 
From the sum of products 

so result is: 

DR = 3 

From sum of products 

so result is: 

DL =2 

NR = 27 
Modulus 8 taken on 27 
27 base 10 = 33 base 8 

~ 

NL = 8 
Modulus 3 taken on 8 
8 base 10 = 22 base 3 

~ 

4. Determine the output for the self-check number. 

The output for the self-check number is determined by Field 3, which specifies 
whether to complement the DR and DL, by the OUTTAB parameter, which 
specifies whether an output translate table is used, and by Field 4, which specifies 
whether the self-check number is one or two digits. If the output translate 
table is omitted, Field 5 is also used to determine whether the DR and DL, or only 
the DR is used. 

I 
Field 3 = C 

I 
Field 3 = 16 

I 
No complement 

I 
Convert DR and DL to the 
complement of the modulus. 

If Field 3 is blank, no complement is taken. If Field 3 is C, the DR and DL are taken 
to the complement of the modulus. This has the effect of subtracting the modulus 
value from the DR and OL value. 

Example: 

Modulus is 11. 

Complement 0 R to 11. 
DR =4 

Complement 0 L to 11. 
DL=O 

DR =7 
DL=O 

11-7=4 

11-0=0 
The complement of 0 will always be O. 

Note: If you specify E for Field 2 (special 8 and 3), do not specify C for Field 3 if 
your modulus is less than 8. 



OUTTAB 
omitted 

I 
I Fiel~ 5 = t6 Field 5 = D 

I 
Use DR and DL 

Fielb 4 = 1 
I 

Field 4 = 2 

I 
Force an F 

I 
Force an F 

zone to DR for zone to DR for 
the self-check the rightmost 
number. number; force 

an F zone to 
DL for left-
most number. 

If no output translate table is specified, and Field 5 of the CNTL parameter is 
blank, both the DR and DL are used to determine the self-check number output. 

If Field 4 = 1, only one self-check digit is output for the self-check number. An 
F zone is forced to the hexadecimal representation of the DR, and this is used 
for the self-check number. 

Example: 

DR = 7 
Hexadecimal representation of DR 07 
Force an F zone to the DR F7 

The self-check number is 7; 
which is displayed and printed as 7 

If Field 4 = 2, two digits are output for the self-check number. An F zone is 
forced to the hexadecimal representation of the DR, and this is used for the 
rightmost digit; an F zone is forced to the hexadecimal representation of the 
DL, and this is used for the leftmost digit. 

Example: 

DR = 7 
DL = 3 
Force an F zone 
to the DR and DL 

Hexadecimal 07 
Hexadecimal 03 

F7F3 

The self-check number is F7F3, 
which is displayed and printed as 73. 

Usually, if this option is used, the DR and DL have a value of less than 10. 

Self-Check Computations 343 



344 

DUTTAB 

I 
Field 5 = ~ Fiel15 = 0 

I 
Use DR only. 

Fiel~ 4 = 1 

I 
Force an F 
zone to the 
units position 
of DR for the 
self-check 
number. 

I 
Field 4 = 2 

I 
Force an F zone 
to the units posi
tion of 0 R for the 
rightmost number; 
force an F zone 
to the remaining 
positions of DR 
for the leftmost 
number. 

If Field 5 = 0, only the DR is used to determine the self-check number output. 

If Field 4 = 1, only one digit is output for the self-check number. An F zone 
is forced to the units position of the DR, and this is used for the self-check number. 

Example: 

DR = 10 
Force an F zone to the units position. FO 
The self-check number is FO, which is 
displayed and printed as O. 

If Field 4 = 2, two digits are output for the self-check number. An F zone is forced 
to the units position of the DR, and this is used for the rightmost digit; an F zone 
is forced to the remaining positions, and this is used for the leftmost digit. 

Example: 

DR = 123 
Force an F zone to the units position F3 
Force an F zone to the remaining 
positions 

The self-check number is F3FC, wh ich is 
displayed as 3 and printed as 3. 

Th is option is usually used if: 

FC (12 is C in hex) 

• The modulus is greater than 10, there are 2 check digits, and the DL is O . 

• The modulus is 10 or less, and there is only one check digit. 

For this option, DR usually has a maximum value of less than 100. 



Fiel~ 4 = 1 

I 
DR + DL = sum. 
Sum translates 
to self-check 
number. 

aURAB 
specified 

I 

I 
Field 2 = E 

I 
Field 4 = 2 

ORLoL *S)= 

sum. Sum translates 
to self-check number. 

The output translate table is usually used if the modulus is greater than 10 and 
there is a single self-check digit. The 5280 uses the value of the DR or the DR and 
the DL to determine the byte of the output translate table that contains the 
character to insert into the self-check register. 

You must set up and initialize the output translate table with .DC control 
statements. The number of translation characters in the table need be only as 
great as the modulus. 

If Field 4 of the CNTL parameter is 1, the DR and DL values are added, and the 
sum is used to find the character in the translate table. 

If Field 4 = 1 and Field 2 = E, the DL value is multiplied by 8 and the product 
is added to the DR value. This sum is used to find the character in the translate 
table. 

I 
Field 4 = 1 

aUTTAB 
specified 

I 
I 

Field 4 = 2 

DR = rightmost number. 
DL = leftmost number. 

If Field 4 = 2, the value of the DR is used to find the character in the translate 
table for the rightmost digit, and the value of the DL is used to find the character 
in the translate table for the leftmost digit. 

Self-Check Computations 345 



346 



Appendix D. Keyboard Codes and EBCDIC Charts 

EBCDIC CHARTS FOR PRINTABLE CHARACTERS 

First 
Hex 
Digit-O 1 2 3 4 ~5 6 "7 8 9 A B C D E F 

Second 
Hex 

+ Digit 0 & ~ 0 0 
~ ¢ \ 0 

1 e / ~ a j t A J 1 

2 a e A it b k s ¥ B 1"\ S 2 

3 a e A F- e t fy C L T 3 

4 a e A £ d m u :f D M U 4 

5 a A f e n v .s E N V 5 

6 a .j. A I f 0 w 'I F () W 6 

·7 ~ I A I (1 P x G P X 7 

8 .(: ~: i h ,t y H Q y 8 

9 fl a N r· z I R Z 9 

A « 2 
.., ;:: 2 3 

B $ JL » Q ~, 0 U 6 (; or 

C < * ~ @ cf if. D #- 0 ti 0 U 

D ::;. t <> U 0 U 

E + ) M .. :r A: }. <> U 6 lJ 

F A ? " ± ~j 0 y 0 .M. 

IBM 5256 STANDARD CHARACTER SET 

LANGUAGE: INTERNATIONAL --_ ..... -...... - ........ _ ........... -

Keyboard Codes and EBCDIC Charts 347 



First 
Hex 

Second Digit-O 1 2 3 4 5 6 7 8 9 A B C D E F 
Hex 

l Digit 
0 ~ \ 0 

1 / a j A J 1 

2 b k $ B K S 2 

3 c t C L T 3 

4 d fit U D M U 4 

5 e n v E N V 5 

c) f 0 w F 0 W 6 

"7 9 P x G P X 7 

8 h '\ y H Q y 8 

9 1- Z I R Z 9 

A ¢ 

B $ ... ... 

C < * X @ 

1) 

E + > = 
F .... ? " 

IBM 5256 STANDARD CHARACTER SET 

LANGUAGE: 

348 



KEYBOARD FUNCTIONS: EBCDIC CODES AND BIT NUMBERS 

The EBCDIC is the code that is placed into byte hex A7 of the keyboard/display 
lOB. The bit number is the number used for the TRAP parameter of the .KBCRT 
control statement. 

Bit 
EBCDIC Number Key Description 

X'OO' I nval id scan code generated from trans-
late table or hardware. An error code 
is presented to the operator. 

X'01' 0 CMD Command key prefix to select command 
function. 

X'02' CMD Shifted command key. 

X'03' 2 Keyboard overrun; keyboard has lost 
two keystrokes due to hardware key-
stroke buffer overrun. 

X'04' 3 Invalid keystroke; the code is generated 
directly from the scan code translate 
table or the World Trade translate table. 

X'05' 4 RESET Reset function; reset error condition, or 
reset Hex key command, or insert 
function. 

X'06' 5 INS Insert function; initiate character insert. 

X'07' 6 Del Delete function; initiate character delete. 

X'OS' 7 Alpha Alpha shift, with the Alpha key pressed. 

X'09' S • Numeric shift, with the. (Shift) key or 
or Num Num key pressed; uses the lower half of 

the scan code translate table. 

X'OA' 9 t Shift lock, with the t (Shift Lock) key 
pressed; locks shift to use upper half of 
scan code translate table. 

X'OB' 10 Num Katakana numeric sh ift, with the 
Shift Num Shift key pressed; uses upper 

half of scan code translate table. 

X'OC' 11 Alpha Katakana Alphabetic shift, with the 
Shift Alpha shift key pressed; uses lower 

half of scan code translate table. 

X'OD' 12 Kata Katakana shift, with the Kata Shift 
Shift key pressed; uses lower half of 

World Trade translate table. 

Keyboard Codes and EBCDIC Charts 349 



ft! ... 
DIL 

EBCDIC Number Key Description 

X'OE' 13 Sym Katakana upper shift; with Sym 
Shift Sh ift key pressed; uses upper half 

of the World Trade translate table. 

X'OF' 14 Lock Katakana shift lock; with the Lock key 
pressed; locks the sh ift to Kata Sh ift 
or to Katakana Alpha sh ift. 

X'12' 17 t Move cursor up; valid only for format 
level zero. 

X'13' 18 Move cursor down; valid only for 
format level zero. 

X'14' 19 Moves cursor to the first position on 
the next line; valid only for format 
level zero. 

X'15' 20 Field Field exit function. 
Exit, 
Field+ 

X'16' 21 Field - Field exit minus function. 

X'17' 22 Skip Skip function. 

X'18' 23 Alpha Alpha sh ift, with the Alpha key 
released. 

X'19' 24 t Numeric shift, with thet(Shift) key 
or Num or Num key released. 

X'1A' 25 t Shift lock, with the t (Shift Lock) 
key released. 

X'1B' 26 Num Katakana numeric shift, with the Num 
Shift Sh ift key released. 

X'1e' 27 Alpha Katakana alphabetic sh ift, with the 
Shift Alpha Shift key released. 

X'1D' 28 Kata Katakana sh ift, with the 
Shift Kata Shift key released. 

X'1E' 29 Sym Katakana upper shift, with the 
Shift Sym Sh ift key released. 

X'1F' 30 Lock Katakana shift lock, with the 
Lock key released. 

X'20' 31 Dup Duplicate function. 

X'21' 32 ~ Field advance function. 

350 



Bit 
EBCDIC Number Key Description 

X'22' 33 ~ Field backspace function. 

X'23' 34 Corr Field correct function. 

X'24' 35 Enter/ Record advance function 
Rec Adv 

X'25' 36 Home Record backspace function. 

X'26' 37 ~ Character advance function. 

X'27' 38 +-- Character backspace function. 

X'28' 39 Hex Hex command function key. 
command 
function 
key 

40 Keystroke error, detected and 
normally handled by the keyboard/ 
display. 

X'29' No key Clear screen function; blanks all 
is asso- positions on the screen except 
ciated the status line. 
with this 
function. 

X'2A' No key Clear status line function; blanks 
is asso- all positions on the status line. 
ciated 
with this 
function. 

X'2B' No key Keystroke with this EBCDIC is 
is asso- ignored. 
ciated 
with this 
function. 

X'2C' 43 Field-/dash combination key. 

Functions from 2D-3F are handled by your program, with external status 
condition 1 subroutines. 

X'2D-32' Not assigned; you may assign these 
codes to special functions for your 
appl ications. 

X'33' Sel Select format function. 
Fmt 

Keyboard Codes and EBCDIC Charts 351 



Bit 
EBCDiC Number Key .--.- --_!_ .... :_-

ut=$«;rlIIUUII 

X'34' Oup Switches the auto dup/skip flag. 
Skip 

X'35' Auto Switches the auto enter flag. 
Enter 

X'36' Cncl Cancel function; defined and processed 
by your program. 

X'37' Page Page forward function; to read the 
Fwd next record without writing out the 

current record, processed by your 
program. 

X'38' Next Next format function; to allow the 
Fmt operator to exit a repetitive format, 

processed by your program . 

. X'39' Prnt Print function; to initiate output 
from the printer. 

X'3A' Not used. 

X'38' Erase Erase input function. 
Inpt 

X'3C' Corr Record correct function; initiated by 
the shifted Corr key. 

X'30' Sys System request function. 
Req 

X'3E' Attn Attention function. 

X'3F' Help Help function; to request a help message. 

352 



Appendix E. Error Messages 

ASSEMBLER ERRORS AND MESSAGES 

Miscellaneous Errors 

0002 Symbol table full 
0003 Cross-reference table full 

Sequence or Location Assignment Errors 

0004 Location counter inappropriate for register 
0005 Table statements not contiguous 
0006 Invalid sequence of .FMT or .SFMT 
0007 Statement must precede first instruction in SUB 
0009 Invalid parameter combination 
0010 One or more required parameters omitted 

0011 Label is multiply defined 
0012 Invalid combination of labels in expression 
0013 Length of LEVL=2 exceeds length of LEVL=l 
0017 Unable to open included data set 
0022 Branch target out of range 
0023 Statement not allowed in SUB assembly 
0024 .ST ART must be first statement in program 
0025 Control statement sequence error 
0026 .KBCRT statement required in program 

Invalid Operand in Instruction 

0032 Instruction description not in table 
0033 Unbalanced parentheses 
0034 Must not use same register twice 
0035 Extra operands in instruction 
0036 Option or modifier not recognized 
0037 Third operand is not Rn, +, 0, or -
0038 Invalid data set number 
0039 

Error Messages 353 



Invalid Parameter in Control Statement 

0040 Format parameter not valid 
0041 Invalid shift count 
0042 Displacement not multiple of 8 
0043 Displacement plus length too large 
0044 Pad length exceeds 64 
0045 MAXM * (ARGL + BYPASS) > table length 
0046 MAXM x (ARGL + BYPASS) < table length 
0047 PB1 and PB2 must be on a 128-byte boundary 
0048 SCS conversion not allowed in keyed file 
0049 SCS conversion not specified, assumed 

0050 xxxxxxxx is an undefined symbol 
0051 Must not use both ELAB and ETAB 
0052 Either E LAB or ET AB must be used 

Screen Format and Edit Format Messages 

0070 Unfinished BYPASS in series 
0071 BYPASS not permitted within a BYPASS 
0072 Must not have RG alone 
0074 Cursor position exceeds screen size 
0075 Must not have NORMAL and another attribute 
0076 BYPASS end with no BYPASS initiated 
0077 MD and MS must be identical 
0078 No .FMTEND on previous edit format 
0079 No .SFMTEND on previous screen format 
0080 No start statement for this series 

Messages That Reference a Column Number 

1001 Invalid delimiter at column ## 
1002 Unrecognized keyword left of column ## 
1003 Sublist too long, truncated at column ## 
1004 More than 8 operands, truncated at column ## 
1005 Unbalanced parentheses 
1006 Duplicate keyword left of column ## 

Messages That Reference an Operand Number 

2001 Code conversion error in operand ## 
2002 Invalid value (too large, etc) in operand # 
2003 Operand ## is wrong type 
2004 Operand ## is wrong length 
2005 Operand ## must not be am itted 

354 



Messages That Contain a Variable Keyword 

3001 xxxxxxxx has a conversion error 
3002 xxxxxxxx is invalid (too large, etc) 
3003 xxxxxxxx is the wrong data type 
3004 xxxxxxxx is the wrong length 
3005 xxxxxxxx must not be omitted 

Control Statement Error 

4001 Too many prompts, constants or MPUPs 
4002 Too many screen format strings 
4003 Too many edit format stririgs 
4004 Too many table definitions 
4005 Too many indicators 

5002 TYPE is not STOR/BIN/DEC/PRMT/MOUP 
5003 PRMT is not SP/FP/CP 
5004 FLDF(1) is not A/N/W/X/Y /Z/D/H/S/F 
5005 PIC(2) is not A/N/W/X/Y /Z/D/H 
5006 CI (2) is not ON/OFF 
5007 Invalid combination of ED IT specifications 

5011 TYPE(1) is not SR/SW/SU/KR/KRN/KU/KUN/I 
5012 OPTION is not MAIN/SUB 
5013 CNTR is not K/B/C/F 
5015 TYPE(1) is not COM/SR/SW/CN 
5016 TYPE(2) is not CB/CM/BT 
5017 CAM is not BSC/SNA 
5018 RECFM is not F/FBN NB 
5020 MOD is not S10 or S11 or numeric 

5027 Either DEVor DEVID must be used 

CONVERSION PROGRAM ERRORS 

Error Cause and Recovery 

9400 You have entered invalid data for a data set name, a device address, or 
an option. Respecify the invalid entry. 

9900 You have issued an EOJ command. Terminate the current prompt. 
9998 An unexpected external status condition has occurred. Terminate the 

current prompt. 

Error Messages 355 



356 



Appendix F. Sample Program 

Your assembler diskette contains two sample source programs, labeled SYSASMP 
and SYSACLP. SYSACLP is an ACL program that can be converted to 5280 
assembler language by using the ACL to 5280 assembler language conversion aid. 
SYSACLP was originally published as a sample program in A Programmer's 
In troduction to the Application Con trol Language, GA21-9195-1. SYSASM P 
is a source program that performs the same job as the original ACL program but 
has been written in 5280 assembler language to make better use of the language. 
The assembler listing for SYSASMP is illustrated in this appendix. You may 
assemble the sample program with any of the options available, but to obtain 
a listing like the one in this appendix, select the following assembler listing options: 

Cross reference : Yes 
Full data print: No 
Literal spacing: No 

Included lines: Yes 
Errors only: No 
Page size: 84 

Following the listing is an example of the output from the sample program. 

Sample Program 157 



w 
(1'1 

CO 

C>.2B() AS.;LMl:it I R OJ. OU 

"DDR ~)B.Jf C r CI)I>F 

0000 E2C1D4D7D3C5F:'40 
0080 0010000000000000 
00A6 
OOBE 
0140 
0001 

0114 
0000 
01\5 

0140 0800 
014:'~ 

0144 
0146 
0148 0435 
014A OBC2 

.;AM~'LE2 ORDf.:.R EN' ~,,( SAMf'U- 1"'R\l\j~~AM, 

LlNI: S()l!R~~E CUD!;: 

. '"' ... * * .... * *'"'*** *:1(, ** ** * * *****-11'* "\If* **."t * ***** .. * * ****** * \If** ********* *** ***** *** 
J • 
4 '" NAME OJ-del' entl-Y SdlllP Ie pr'oql <HI 

~i :M 

7 • 
'J • HJNC fI LIN 
9 • 

10 -II 

11 • 
1.2 -II 

1.3 ,II-

14 , OPERATION 
i5 .. 
16 , 

17 " 
18 , 
19 .. 
.20 .. 
:)1 .. 

:~~ .. 
23 .. 
24 .. 

25 * 
26 * 
27 * OU TF'lH 
28 * 
29 * 
30 • 
31 • 

32 * 
33 .. 
34 • 

3S * 
36 • 
37 • 
3B • 

39 * 
40 • 

42 • 
43 • 
44 • 
45 • 
46 • 
47 • 
4B • 
49 • 

">0 * 

II.l.ustrdte d~>!-efflblf.!l codIng teLhnl'\U~_~S". 

F-'I-UfIlPt tal l \-ecOI-d data, wl-ite l-eC()I'ds 
to dl.skE..tte wI'de tu d printe\ log .:aLso. * 
At~o allows previously entel-ed records. 
ThE' pr Intel- IS not when scxoLLlng 01 upddting 
pr'pvlously i~l\tered ,ecords. 

The u.5el- IS pl-ompted 1'01 

1. Data set name and address. 
2. PI-Intel' add\-es-s (optional) 
3. Headel I-ecord data fieLds. 
4. Detail I"ecol-d data flel.ds. 
5. Additional detail recOI-ds. 

PI-t'SS the SELECl rORMAT key to entel- a new headel- r'2'cord • 
h'E'55 the HOME key tel backsPdce Into previous records-. 
Mo.!:·t othel- function keyS" (RECORD ADVANCE, SYSTEM REQUEST, * 
ATTENTION, CIJRSOR LoFT dnd RIGHT, CHD [OJ) hdve their 
usual significance. Othel' function keys and the cO"Hlland 
keys "Ire I gnol-ed. 

Heddpr' ,-ecol-d Wl- i t ten to d i sket te 
coLumns Lontents 

1 8 t.u.stofller no. Cself (:heck) 
9 1.6 ol-dl;?r' no. 

17 ._... dati;? 
23 - 24 sa ll~sman no. 
2S - :54 po.st office 
35 _. "1 shiP code (table look-up) 
42 --128 not used, bLank 

Detal L recol>d .... rltten to diskette 
co LU.tHlS contents 

1 - 8 custoftler no. (fl-Ofll header) 
9 _4 16 ol-der no. (fl·o,.\ headel-) 

17 24 del'll no. 
25 29 'ludntity (Lifilit check> 
30 - ;~6 un I t p 1- ice 
37 - 49 amount '\uantity * price 

130 character D - indicates detail 
50 -128 not used, b Ldnk 

Printed Log (optional) * 
The headel> data and the fll-st detai 1 I-ecord are forMatted * 
on the saMe Line. Add I t I ond l deta i 1 ,-ecords for the saMe * 
heade'(" al-e placed beLow it without repeatio9 header data. * 

51 If RESTRICTIONS - Basic COMMon function area (SYSDPRT2) is required. 
52 If The output dataset fllUSt be previously allocated. 
53 • 

54 If * * * * * * *** *** **** * •• * *** * * *** * ** * * ** **** *****.-** .* •• **.***. * ***,. **_ ... *. ** 

:06 ,START F'NAM=' SAMPLE2' ENTRY=START MCHt(=CFPGHCHK; 
57 ,t(BeRT CRBA=IOBUF ETAB=ERRKB; 
5B ,DC LABEL=SCNCD LEVL=2 DISF'=X'A6'; 
59 ,DC LABEL=MODESW LEVL=2 DISF'=X' BE' ; 
60 ,DCLIND LABEL =EODSW, F'RNTSW, QUANSW; 

SCAN CODE 6. CONVERTED EBCDIC 
KB/CRT MODE SWITCH 

61 ,EQUATE NUMB" (1, TRANS) , (2, PRNT> , ,DATASET NUMBERS 
,,2 • THE FOLLOWlNG EQUATES ARE OF'TlONAL, BUT WILL PUT ENTRIES IN nJ'E 
63. CROSS REFERENCE LISTING FOR SYSTEM REGISTERS AND INDICATORS, 
64 ,EQUATE REG= (BRIO, BRIO) , (BRI8, BRI8) , (BRI9, BRI9) , (BR22, BR22) ; 
65 ,EQUATE IND=( I11S, 1115), (111B, jj lB), (1125,1125), (I15B, 1158); 
66 ,XTRN I. ABEL=CFf'GMCHK, CFGIOE'RR, Cf'F'ERATT, CFLOAD01, CFERCDSM, 
67 CFATFBGD,CFQ(VCHK; 
68 ,DC LABEL,'CFWKF'TR TYF'E-'HIN INIT"ADDR (CFSAVE) , 
69 ,DC LABEL=CFF'ARMI TYPE=BIN, 
10 ,DC LABEL=CFF'ARM2 TYF'E=BIN; 
71 ,DCLBI< LABEL=Wt(BR1, 
72 ,DC LABEL=RWCOL TYPE=BIN INIT=X' 0435' , 
13 ,DC LABEL=BUF@ TYF'E=BIN INIT"ADDR (IOBUF) ; 

C. F, WORt( AREA PTR 
C, F. F'ARAMETER REG 
C, F. F'ARAMETER REG 
BINARY WORK REGISTERS 
ROW ~ COL FOR CRTMM 
I/O BUFFER PTR 

5280 ASSEMBL ER 01.00 

AD DR OBJECT CODE 

014C 08E4 
014E 0150 
0150 8000 
0152 0006 
()154 002~ 
0156 0029 
0158 3701 
0160 
0190 FOFOFOFOFOFOFOFO 
01AO F9FlFIF1FF 
01A5 F9F9F9F8FF 

0200 0000000000000000 
0208 0000000008C2FFOO 

0280 0000000000000000 
0288 000OOOOO0840FFOO 
0290 OD50800000000000 
0300 
0700 
0800 
0840 
08B8 

')8C~ 
08L_) [,3D',e1. D~)l 2404040 
08C2 
08CA 
08D2 
Oil DB 
08DA 
08E4 
08D2 
OADA 
OBDF 
OBE6 
0911 

0942 020t020i.02010::!Oi 

096E 098600050600000~j 

0976 0986000500060005 
097E OEOCOO0401000004 
0986 
0986 E3D9£4C3D24040 
098D D9C1C9D3404040 
0994 D7D6E2E3404040 
O179B C I C9D940404040 
09A2 C3D6E4D5E3C5D9 

09A 1l FFOF9A 
09AC 070199 
09AF OF 41 B50 702B8 
09B5 OF 419607038C 
09BB OF418201B7 
09CO OF41B707048D 
09C6 OF 418202034084 
09CD OF83 

09CF FFOF9A 

SAMF'LE::' - ORDER ENTF:~ SAMPLf f'ROG~'AM, 

LINE SOURCE CODI" 

74 ,DC LABEL~ Tnli r'(F'f=HlN \ N.iTo,ADDR( SHPI:D) , f'TR FOR CR TMt1 
75 ,Dl LABEL=PRCNTL@ T'fPE~IIIN ,[N[T~AODR(f'I<CNIL ), f'lR TO F'RINT CONTROL 

f'RINTER SPACE CONTROl 76 ,DC LABEL=f'RCNTL T'fPf>lIIN [N [T=X' BOOO' , 
77 .DC LABEL=~6 T'fF'E=BIN [NET=6, 
78 .o( LABEL-=I\22 T'fPE=cBIN INIT=·X'~~'! 
79 ,DC LABEL=~29 T'rPEoBIN [NIT=X'~9', 

BO ,Df. LABEL=~37()\ I'(F-E"BIN INlT"X'370I', CODl FOR fOD 
81 ,DCLDR LABEL=Wt(DRI,I<QUAN,RF'I<II~E, Dl_CIt1AL WORt( REGISTEf:S 
82 ,DC LABEL=LlMlT r'lPE",DEC INlT=1000, QUANTIlY lIt1lf CHECK 
83 ,Df. LABEL=HSG9111 lNLT=X'F9FIFIFIFF', 9\11 SELf CHECt( INCORECT 
84 ,DC LABEL=MSG999S INLT=X'F9F9F9'SFF' 9'19fJ - UNUf'fCTED t(B EXT STA"US 

B6 • TRANSACTION DATA ,iU DEF INI f ION 
87 ,DIlTASET DSN=TRANS DEVID'=DI RECl-128 ~\,II=O TYf'l-SLI NAME=DSNAME 
8B LBUF=IOBUF PBI=BUfFi ELAB=DSt(ERI<, 

90 • f'RlNTER DEF INIT ION 
91 • Dfi 1 ASET DSN=F'RNT DEV=-x' 8000' R[eL::: 1::!O BS I l~ ,::oC)6 T)' 1-'[ =-SW. SCS 
92 F'GSIl=66 LlNSZ= 120 LS'TLN=50 
93 LBUF=F'REIUF PBI=BUFF:' ELAB=GIJERR, 
94 ,DC LABEL=BUFFI L EN=1024 BDY=12B, 
95 ,DC LABEL=BUFF2 LEN=2">6 BDY =I~B, 
96 ,DC LABEL=CFSAVE LEN=64, 
97 ,DC LABEL=F'RBUF LEN=I~O, 

98 ,DC LABEL =DSNAHE L EN= 10, 

1.00 .. lOGICAL FiLJFI-[J;' ~ Ol~ DL\,hFTTL ,'- I\C1FUAI-;'D 
101 ,I)( l A~E. L - J(,BUF I eN \:'8 
i.O::~ .DC l..EVL=.:! IN]T·:' fk't"1N~ O~X!hHH\' 

iO.3 .DI L~·VL.:.-:I lAl:(EL--t.LJS'TM LE:.N -B fJ[SF 0, 
1.04 .Dl LEVl::-~ I.AHEL URONO LI:.NC"U, 
105 ,DC LEVL<' LABEL 'I.A I E Lf N 6, 
106 ,D( LlVL ,:, LABEL ° MANNO LEN!, 
107 ,D( LlVL.<' LABEL"F'nslO LEN- 10, 
108 ,DC LEVL ~2 LABEL -,,'IWCI) LENo I, 
109 ,DC LEVL-2 LABEL"l [liND LEN ,H DISF',-16, 
110 ,DC LEVL=2 LABELo,QUAN L EN'-'> , 
111 ,DC l.EVl.'2 L ABEL'I'R ICE Ll N- ?, 
112 ,D( LEVL ~2 LABEL·AM [ I.E No IJ, 
113 ,DC LEVL=2 LABEL=CNrL LE.N -, DISF"I'I, 

115 ,SLLFCHt( MOD-,,10, 

U 7 • J'ABL.E OF TI Xl FIlR SHlf' CODE 

h~ 1 (';.::.'1 I llf"I::.rJ \'AI,"{\Ml I ~ R,\ 

LUYTDHE k Ntl, 
l!h'Plh Ntl, 
J:itifl 
SAt f SHAN NIl, 
"U.\' I Of ~ ICE 
SHl f' CODE 
][E t1 NO, 
lJUANl I 1 Y 
f'RIel 
(lUAN • I'R I U: 
CONTROL CHA~' 

.:TM~l)Af..:D SU.F lHE.CI\ 

118 ,T,~BLE LABt:L= SHIF'TXT DCLBL=SHIF'CUDE ARGL -7 INTRIES-'>, 
119 ,T.\BLE LABEL'SHIP[D DCLBL=SHIF'CODE ARGL'I Fln'AS'I, ENTRIU", 
120 ,T.)BLE LABEL'-RGRTN DrL.BL"~UFAD ~NTRItS" ARGL , 
121 ,DC L.ABEL=SHIF'CODt LEN',]S, TtXT FOR SHU' CODE 
122 .01':; LEVLc..:2 LE.N="? [NIT=='TRUCI\ 
123 .01.: LEVl=2 L.FN"-l [NIT=-'RAIl 
124 .01: LEVl=2 Li.N.::-? INIT:-'POS'l 
125 ,DI: LEVL=2 UN~7 lNll--'AIR 
126 ,Dr: LEVL.=2 L.I.N=7 [NLT'·'COLJNTER 

t:!I~ * )'I:R[EN FORMATS: OR DATASE-T UF-'EN r'ROHF-'T S 

129 ,S"'MTST LABLl'H,HANS CNTl-C;',MV, F'RUM,'T ,OR TRANSACTION flU 
130 ,SFMrF'MT F'f(MJ'=SI',TITLE, 
1:\1 ,SI'MTF'MI F'RHT=Sf', TRANSI CSFS- Nl, 
132 ,SFMTPHT F'RH I "SF' , f ~ANS~' 
133 • SFMTFLD f' LDI- :·A, 8 Ih~ r ."1S( 1 NAHl 
134 ,SFMTF'MT F'RM1=SF, TRANS,l 
135 ,SFMITLD FLD, ='N, 4, FC DEV tn_ ADDkl S,' 
1.56 ,SFMTEND, 

138 • SFM T ST LABEL -:.:PRPi-\I NT CNTL 0 C\', MV. f'RllMf'f FOR f'RINTER ADDRESS 



U'J 
Q) 

3 
"'0 
CD 
"'tI 

a 
~ 
Q) 

3 

w 
~ 

; 

~;280 ASSEMBLLR 01,00 

ADDI-\: OB.IFL I CtlDL 

070t99 
OF- 4 t J-(")07059Ft 
OF ;-.t 8~lor 418~·~O::'I03 
OF41AIOI069A 
O~ 8.' 

09ED L:'CI D4D ID:IC540D6 
OA07 
OAOF 
0A40 
OA4D 
OA5B C5D5E.lC5D940D lDY 
OA7 7 DJL~C 1 E5C'540C:~D3 

OA9::.' n I)Vl~(\ 

()A9~> Of.41CfOl0781 
OA91.1 OH11J11I'UI 
OAAO OF 4.18,10 IOBEl4 
OAA6 0["4113131'0784 
OAA[ OF418.10·/0983 
f)AB:':'~ 0F41B1JBBS 
OAB7 OF 419A070A8l 
OABD Of-4tH1 JlU·11 
OAC2 OF 4 1 890 IOB84 
OAC8 Of" 41131 21B9 
OAeD OF4iEll070C88 
vAD:! OF 418101 0044U4 
OADA OF83 

OADC FFOF8~' 

OADF 060D9"): 
OAE2 Of·~lA10F41 n01D3 
OAEE 0600A I 
OAFI OF83 

OAF3 FFOFEl:' 
OAf-6 Of 6480 
OAF9 OF4.1 1I-01EF071498 
OBOl 071498 
OB04 o 7149H 
0[107 Of-S j CAOF 24l;tO 

OBOD 070HI} 
OH10 OF21810F41813BOI 
OB19 OF418~1070F87 

OB1F OF411]1/[<0484 
OB2~i OFMEI:' 
OK!8 OF ~)l lF029QOEAA07 
0[130 10'1 ':Of AO 
OH34 o 111?O 
OB37 OF~~ 1 Ell OF 41850100 
0[141 4680 
OB4,1 OF31E(~)Of. 417F01DF. 
OB4L or41IL' O?1284 
OB54 OF4\EILIF'0684 
OEI~)A OF418 W'1138 E

) 

Ol160 OF- 41 H t 4H(H"OJ 
Of ILl 

0}-(68 (~,U~4f .'f 31>6D4[':)1)9 
Ofl70 D/.,DY( 4C~)I)9 

() Ie 7~) C4C1UC" 
Oll l~t E:!{: i D.~C~E:~[)4L 1 J)'.} 

OF!B1 
ole8/., 
O~Hf 

Ol'A~ 
O~A9 

OLcB1 
0[<C9 
Ol![)A 
Or~DF C 1 04D6[40~U 

"040"~) 4 0404 () 4 1)40 

S AMPLF2 - ORDER ENTRY SAMPLE PROGF~AM; 

LINE SOURCE CODE 

139 ,SFMlF"MT PRMI'''SP, TITLE, 
140 • SFMTPMT f'RM I "SP, PRINT1 CSPS='NL, 
141 ,SfMfFLD FLDr 'N, 4.BC CSPS-'+,I BfT,>,,"'12, 
14;' .SFMIPMT PRMI SP,Pf<INT2 CSPS=N!, 
14.1 ,SlMTEND; 

14~; • DC TYPE 'f'RM I LABEL=·T! n_E INI f' 'SAMF'LE ORDER ENTRY PROGRAM', 
146 • DC TYPl."PRMT LABE.L" TRANSI 
1.4-1 INIT'-'[NTLR THE FOLl_OWING INrfJRMATION FOR TRANSACTION DATA SeT 
14EI ,DC fYPE· PI,M I lABEL, rRANS2 INI f .. 'DATA SET NAME' , 
1.4'1 .DC IYI'F·=f'f'MI lABEL n,ANS" INlT=' DEVICE ADIlRESS' , 
.100 ,DC TYPE-PRMI LABEL-PRIN'Il INlf-'E:NTER PRINfER DEVICE ADDRESS', 
1 ~;1 • DC TYPE~f'RM I LABEL'I"IUNT2 INI 1-·' LEAVE': BLANK IF NOT PRINTING', 

l~L~ 11: SCF.:ETN FURMATS: F"Of\ mWL:R ENTRY 
1~>4 "SFMIST LAl<U ~PRHDR CNTL"O(;S. F'ROMPT FOR HE,ADER DATA 
1"55 _SF"MTF'MT 1-'F.:Ml"oSF',HcAor(1 CSF'S:::NL, CUSTOMER 
j")b .SFM1FLD FL.DI·-""D,8,Rl CSF'S:<~ CNTL'=HGi 
1.51 ,SFMTPMT F"!<M T-'SF', HLADR2 ORDER 
1.58 • SFMTFLD FLDI' "0,13, R1, DR 
.15'1 ,SFMTF'MT PRM I'-SF', HEADR:l DATE 
1.60 ,SFMT H_D n DF =D, 6, RZ 

,SF MTF'MT F','MT "SF', HEADR4 SALESMAN 
t6:~ • SFMTFLD FLDF' :'·D,:,,~, Rl 
.163 • SF MTF'MT F'RMT ~ SF' ,HEADI,S F'. D. 
1.64 ,oTMTFLD FLDf "A, 10,FE 
165 .. '1'MTPMT F'RMI -SP,HF,ADR6 SHIF' CODE 
1.66 .SFMTFLD FLDr -A, 1,DC,DR 
1" 7 ,SFMTEND, 

169 ,SFMIST LABlLo'F'RSHIP, PROMF'T FOR SHIP CODE ERROR 
170 .SFMTF'MT F'RMT "FF', HEADR7, SHIP CODE ERROR 
111 .SFMTFLD FLDV~A, 1,Be,DR CSPS<,l~ BFPS~34; 
112 .SFMTPMT PRMT"CF', 40, CLEAR FIXED PROMPT LINE 
1 /;\ • SFMTEND, 

175 .SFMTST LABEL"PRDUL, PROMPT FOR DETAIL RECORD DATA 
176 • SFMTCTL C1~LODSW, Ofr, Bn'ASS IF IWDATING 
177 ,SFMTF'MT Pf<MT=SF',BLANKS CSF'S":'40, CLEAR LINE 5 - PREVIOUS DETAIL L INf 
lIB ,SFMTPMT PRMT~SP, BLANKS; 
1'?9 • SFMTF'MT PRM I "SF', BLANKS; 
l,BO ,SFMTCTL CSPS~ -75 CNTL=CE; END BYPASS 
181 ,SFMTPMT Pf<MT"SF',DETL1; ITEM 
H12 ,SFMTFLD FLDF"D,!;,RI,DR HfPS--·16, 
18:5 .SFMfF'MT PRMT-"SP,DUL2 IlQANTITY 
184 ,SFM I FLD FLDf ~D, 0, RI, DR CNTl.'RG, 
18~ ,SFMTCIL CI"-('!UANSW,OFF, BYF'ASS IF QUANTITY IS OK 
1.86 .SFMTTMI CSF'S--273 D\TLY"HI,IlL 
.181 PRM I "SF', DE TL}, QUANT I TV ERROR MESSAGE 
11lTl .SFMTPMI f"RMI"Sf",DEIL4; QUANTITY ERROR Ol'TIONS 
tEI9 .STMIFLD Fl Df --A, 1, lIC, DR CSPS~+6 BFPS=+SO; 
190 .SFMT'F"MI PRMI,·CF' CNTL=RG, CLEAR FIXLD PROMF'T LlNE 
191 • SF MTeTL I:SF'S,'+223 BH'S"'- ~;1 eN ".eE; END BYPASS, RESTORE CSF'S ~ BFP" 
1. 92 . SFMT PMT PRM I "SF', DElLS CSPS~3 PRICE 
193 ,Sl M fFLD FLDf 'D, -" DR, RZ CSf'S<' 

• SF M I PMI PRMI "Sl', DET L6 CSF'S=4 AMOUNT 
t 9~> • SF MTFL D VLDF "D, 1.3, BY CSF'S=o2 [NTL ':,'HG, 
t 96 • .$TMl [ND, 

lYEI ,DC LAI)EL =HEADRl InT'-l'RM'1 INlI 'CUSTOMER', 
1.'19 ,DC LABEL=HEADR:' IYf'[opRMT INlT' 'ORDER', 
';!OO ,DC F. ABIL =HEADR3 T Yf'E "PRMT INlf" DA TF ' • 
201 _DC LAIlLL"-HEADR4 TVPE'-f"RMT INlT-' SALESMAN', 

• DC CABH"H~,AI>R~il n'l--f'RMT INl I' 'F', D.'; 
.I>C LABEL ~HEADR6 TYf'E"F'RMI INI T' 'SHIP CODE', 
,DC LABEL °HEADRI TYF'E J"RMI INlT -'SHIP CODl ERROR, Rf'KEY', 
.DC LABEl=OfILl I Yf"["PRMI [NIT-" ITTM', 

206 .DC l.ABfl~DE It:' IYf'["f"RMT lNlf- 'I,UANTlfV' , 
.'07 ,DC LABEl' "DETLJ IVf'E"l'RMI INI f 'EXCEEDS QUANTlIY LIMl r. 
20U ,DC l ABE L -Dl fL4 TYI'E' PRM'I INII" A",ACCEPT, R~R[KEY', 

:>09 ,DC LABEL- DUL'i TYf"E- PRMI INIf- 'I"I<ICE', 
:'10 ,DL LABLL 'D[1l.6 I Yr'l 'F'RM f INI f 'AMOUNT', 
:!11 .DC L.ABH ~"II"AN"S TYF'E:cF'RMl l.E.N"<),,} INI1""' 

~;280 ASSEMBLER 01.00 

ADDH OBJECT CODE 

OBF!. FFFF 40 
OC01 804::?0060070108D2 
OCO<f 0764040408DAOO 
OC10 OC64090608DFF2 
OCt? 3468110COO[6£202 

FFFF 40 
0760070708C2 
OA60070 108CA 
OA680 70',08D2000B 
046001.010808 
OC60090908DA 
2Y6006060BL4 

OC48 2B41FF 46 
OC4C 04lbOC54 
OC50 494608CA 
OC54 OBO()01.2D 
OeS8 CF800000 
OC5C '19440001 
Oe60 9'14:'08CA 
OC64 OI~00()13? 

OC68 00000C54 
OC61: 876j 08C:? 
OC70 876HI8B8 
OC74 2241 FTOO 
OC78 ~,)8tOC5r} 

OC Ie :!6CHTOO 
OC80 4000Ff· FF 

OBOOO121> 
CFfJOO100 
4C4008CE 

OC90 OOOOOCBO 
OC94 911'440002 
OC98 994208CE 
OC9L OBOOO1.l'f 
OCAO 00OOOC84 
OCM 2242FTOO 
OCA8 2~)81 OC8S 
OCAC 400HTFF 

OCI)O B9404AOO 
OCB4 BD4E 4AOO 
OCB8 0l)OOO12D 
OCBe CF800200 
OCCO 806108E4 
OCC4 53014661 
OCC8 047DOCD9 
OCCC OBOOO12D 
OCI)O CFTlOO300 
OCD4 OOOOOCCO 

OCI)/3 5:?OO4b61 
OCDC 8661.88EA 
OC[O CA'):~4C49 

OC[4 OJ140D34 
OCE8 (l1010D05 
OCLr: 99509003 
ocro 04130CF9 
OC1'4 99505003 
OCF8 30G'FT 4E 
ocre 99508000 
ODOO 30D:?O:~4f 
OD04 .1041 VF08 

SAMF'U ORDER ENTRY SAMF'LE PROGRAM, 

LIN!. 

13 • EI>l1 FORMATS FOR PRINIER 
1.4 .FMI Sf LAI,EL=DTLF'MT; 

SOURCE CODE 

1~; • FM'TF CD DCLBL', ITMNTJ I YF'E~DEC LEN·'8 COL·,60, 
16 • f M I FLD DCLBL=QUAN TYPE'DEC LEN=5 COL=70 EDIT"BF, 
!.7 .l-MTELD DeL BL,'Pfller. TYF'l -DU; l.EN=.lO COL=77 EDIT=fT, cp, Df'.::>, 
1.Tl • F M I END DCl,Bl,,··AMI TYF'E>DEC LEN=18 COL=89 EDIT .. rx, AF ,CP, Dr 

::~20 * FDr T FOI:':MAT'S FOR F"F'.:INTEh' 
,FM 1ST LAl<lL"HDHFM I, 
• FMT FLD DCU'I' CLJSTM 
• FMI FL!) DCl [<I.. OIWNO 

:')24 .FMTFLD 

I YI-'f, -DEC: LEN'''EI 
n Pf> DEC LEN'8 

LlN"8 
22':> • f M T FLD ULL,m_, nnl'NU 

:~~6 • ~ M T FLD VLL'" -'" U." u 
:'::! 7 • F M T E.ND VeL"' " "r'"v 

t ENo".l 
LEN·,10 
I'_EN-7 

229 STAFi T 
:':10 
231 
:!:52 OF'N'Y RN 
n:5 
:,~34 

:'?,35 
:>3f, 

SRr~'T (T'RANS, W"B~(i ) , 
[f'IR 111101 IS UN GDTO OPNfRN; 
£<INHEX (ICIBUF(4)+8,WKE'H.I); 
CALL Cf ATFE<l1D, 
ENTR (PR fRANS) ; 
CFPARM2 Tf,ANS; 
Cfl'ARMl ADDR(I(I[<UF'8); 
CALL Cf-DEVCHK, 
GOTO OI'N IRN, 
WKDRI I(]BUF(Il); 
DSNAME (8) WKDR 1, 

GEl DEV ADD!' Of 'Dl' 
BR If SRAT FAILED 
ELSE USE AS DEFAUL T FOR PRMf 
ASSURE KB IS ATTACHED 
PRllMPT FOR TRANS. FILE f'ARMS 
DSN FOf~ CFDEVCHK 
DEV ADDR PTR 
VALIDATE AND STORE DEVICE ADDR 
Bf< TO REPROMPT IF INVALID 
MOVE. DATASET NAME 

:.~ 41 
.24~,) 

UPEN <TRANS), OPEN TRANSACTION FILE 
If DS j 8, I RANS NO I ON GOTti OPNTRN; BR IF OPEN FAILED 
f"OSN (rRANS, EOD) , PREPARE TO ADD TO EXISTING DA fA 

::'43 SON (EUDSW), INDICATE AT EOD 

:·!4':> OF'Nf'R 
:")4..s 

CAL L CFATFBGD, ASSURE KB IS ATTACHED 
(NT!< (f"RPRIN'I). PROMl'T FOR PRINfER PARMS 

:,~4 I [Fe 1:', lOBlIF NOI C' , SKlP', 
GUTD BLNK, BR IF PRINTER NOT REQ' D 

:'4'1 CFr-ARM:' ~ l'RNI, DSN FOR CFDEVCHK 
CFPARMI ADDR( ICIBUF+L'). DEV ADDR PTR 
CALL CfDEVCHK; VALIDATE AND STORE DEVICE AD DR 
GOTo OF'NPR; ElR TO REPROMPT IF INVALID 
OPEN (PRNT); OPEN PRINTER 
IFDSI 8, TRANS NOT ON GOTO OPNPR; BR IF OPEN FAILED 
SON <PRNTSW); INDICATE PRINTER PRESENT 

257. l'RIlMPT FIlR HEADER DATA 
2~;Tl BLNK O(BUF@) ~ C' '; 
259 DUP (0,BUF@,79), 
260 CUS I CALL CFATFBGD, 
2" 1 ENTR (F'RHDR); 
262 SHU WKDRl SHPCD( 1), 
263 WKBRi nFX(SFlIPID,WKDR1); 
264 IFIR 1125 NOT ON GOTU SHlF'OK; 
265 CALL CF ATFBGD; 
266 ENTR (f'RSHIP), 
:~1.17 GO TO SHIP; 

;}6 1j) SHH'OK 
:'70 
271 

WKDRI I BRD (SHIF'TXT, WKBf'iI , 
SHPCD ~ WKDR 1, 
CRTMM (RWCDL, 'I XT@,K6) , 

n J. WR ITE HLADFR RE,CORD 
274 IF BH1() IS () GOlD r,EAJ); 
:>75 IF I PRNT SW NOT ON GUTO WR fHD, 
:'76 PRCNTL ~ X' 900:~' ; 
277 IHR I11S NOT DN GOHJ PRTHD; 
218 PRCN IL ~ X' 500:~' , 
279 PRI FlD WRT (PRNT" PRCNTLTI) , 
2BO PRCN IL = X' 8000' , 
:'ET.I WRT (PRNT, HDRFMI ,PRCNTL@, , B) ; 
:>8:' WRTHD WRf (IRANS" 0), 

SEED A BLANK 
BLANK THE BUFFER 
ASSURE KB ATTACHED 
PROMPT FOR CUST NO. ETC • 
GET SHIP CODE 
LOOK UP IN TABLE 
BR IF CODE FOUND OK 
ASSURE KB ATTACHED 
ELSE GIVE ERROR PROMPT 
RECHECK SHIP CODE 

GET IEXT FOR SHIP CODE 
PUT IN RECORD BUFFER 
MOVE TO DISPLAY SCREEN 

BR IF RECORD WAS NOT MODIFIED 
BR IF NOT PRINTING 
SET FOR fRIPLE SPACE 
SK.lP IF NOT AT END OF PAGE 
SET FOR PAGE SKIP 
SPACE BErORE PRINTING 
SE f FOR sr'ACE SUPPRESS 
WRITE fa F'RINTER, SPACE SUPPRESS 
WRITE TTl DISKETTE 



OO",'i! l!i)'i40DBL Ur)J)UI)D94 
ODHO <"1 uU()t A80[ AUOf- HO 
0l)''14 

OD'14 
OI)(/4 

OD'i4 
0094 
ODY4 
ODY4 
OD94 
OD94 (i94.!()iA~) 

ODYtl OH0001:"j 
0091' OOOOODAO 

ODAO :':3~) j 0000 
ODA4 :...) ~~"j ~)O()OO 

ODAH C 70~()OOO 
ODAC o 1M ODBS 
Ool-iO :)F-OOOOOO 

OoEc4 O~OOO141 
l)DI-IH 000000114 

()oBI. 
OD~L '/t346()OA6 

ODeO 6A46:1E09 
ODC4 6A46JDOA 
ODell 6A463304 
oDer: OOOOOEA8 

ODDO 
ODDO 984700A6 
ODD4 AA4637F-:! 
ODDB OOOOOEA8 

SAMPLE::? ORDER EN my SAMPLE f'ROGRAM, 

llNE SOURce CODE 

:"')H3 If 1 [()I)SW I~nr ON nUIU RE AD, 

:~u':; jj. PF,OMI'T FOR O[ !AIL RECORD DATA 
2HA D[ TL 

:288 J TEM 
2H9 

• WRI TE DE TAIL RECOfW 

I'R 1F llf'DATING OLD Rf~CORDS 

SEI'"D A BLANI\ 
HLANK THE [<UFFER 
ASSURE I\B ATTACHED 
f""OHf'r FOR ITEM NO. ETC. 

IF BRI.O IS ° GOTIl BR IF RECURD WAS NOT MODIFICD 
IFI f'RNTSW NUl ON BR IF NOT PRINT INIJ 
WRT (PRNr, DTLFHT, , WRl TE Til F'RINTER 

c9~, WRTDT CNTL 0 ['D', CONTROL CODE FOR DATA DIR FMT 
WR'T (mANS"O), WRITE TU DISI\ETTF 

29,' IF! EODSW IS ON (mTO DETL, BR TO DO NEXT ITEM 

2'/9' READ I~ROM TRANSACTION rILE, DnA DlRECTf~D fllRMAT 
300 READ READ (TRANS,','), READ NEXT RECORD 
301 U~I EODSW IS ON hllTD Dl'I~, E'R IF REACHED [IlD 
30;' SELECT 1fT eN'lL IS C'D' SI\U', SI\[r' IF DfTAIL R!:CORD 
3():\ GD T U CUS T , eLSE UF'DAT E HEADE R RI, CURD 
304 GOl[J ITEM, UF'DAH DUAIL REeO"D 

JrJ(,.jj OL'I·! Tn 
, r)s~ rFiP WI , r,r 1 CtlN. I"I"Or'l till 

11 1)IITI) ! Ill!, lq U\II' U! 1)1;1,:' 
filII! j,'h' I I ,'I l(J ,,\'TrIIU.' I. INr 

~ ll' I. ND tW JtJI! 1·'1 "'I'UN.:;'I 
~j ~ El,;\ h(1 [lAC'''' r.. n,'Y t)(.,AtN 
_~t.: i._ul) INI)!t'Alr AT ~_\J[) 

:\t~ (,[1 r.tc/CRT M1JlH f~)Tf 
_~1·. LHANG[· lW·I)j.;f[ TO rrnr.R MOVI 
31 ') 
tIt, uN (fOIl! 1\()1 ~~V~1ILAl!t.L 

:.q / I CH flj~Ct\ ON 
_~1!j D" I·(T N 

"It ~,~ H!UAkD r xn kNAl SI{'dtJS 

.l fil.l T (ill '-'<"'"~"L",,''''' 

DLXS 
3:.'4 t.OMS 
~~:2') ",U,k 
·):)6 N~.XS' 

,3:.)1 IN(W 
;';.28 MAGR 
J:!9 Wl XS 
3.JO f CSr. 
331 
,33.) 
J:.I.l 

CF- F"ARM i ADDh: ~ M~:G999B) , 
CAL L C~ [RLDSM, 
Goro EOJ. 

33~,' END OF JOB NO~:MAL OR ERfd)R 
336 E OJ CLUJ (·1 RANS) , 
337 ClOl (I~'RN'I), 

33B CNENTR, 
339 I F I Ii! () NOT ON GO f() [0 J1 , 
340 EXIT, 
341 EO.!l CALL Ci'LOI,1)01, 
34.' GO'TIJ [ILl!, 

9 liD M~HORY ~'ARI1Y ERROR 
10 INVALID OPICRAI ION 

MAti STRIPE' RLADER 
110 MEMORY PAR IT Y ERROl< 

1.3 IN'JALlD SFMT SERIES 
GU MESSAGE PTR 
F'O.\'] ERROR MSGF TO STATUS LINE 
BI1 If END ilF JUB RESI"ONSE 

CLUSE TRANSACTION DA TA S[ I 
PRINTER ALSO 
CANCEL POSSIBLE ENrR SIMT 
BF' IF' IN FOREGROUND ~'ARTITION 
RLLEASE BACKGROUND F'ARnnON 
SHOW L DAD PRUHn 
1,[YEAr If' NECESSARY 

1 - f~UNCTlUN KEY ,,44 rUNe 
34~ WU)Rl SCNCD(2), IE Sf CONVERTLD EBCD[l' 
J46 
J41 
348 
349 

301 COMI\ 
3~)~) 

353 
~~~) 4 

JFH WKE'Rl [(~ X',ll' riUfU ATTN BR lF~ AITENT I[JN I\EY
IFH Wt\llkl ECoI X' 5})' bOlU ~;YSkW, DR [F SYSlfM f..:E~UE.S' KE:Y
IFH WKi'R1 E[l X'.l.l' GOTII S[LI" M T, BR IF SELEe I FORMA'! I\E Y
G010 KFn N, I-iR ro IBNORF KI: Y

W~BR1 SCNCD (1) ,
lFH Wt\llh'l fr~ X'3/' \,oro [OJ,
GOlD t\!.:IN,

• UNSH1FTED COMMAND I\FY
T[ST SCAN eLIDE
l'R IF CMD ElL! KEY
flk 1 U I (JNOkE:. M:. Y

5280 ASSEMBLER 01.00

ADDR OBJECT CODE

ODDC 07000EA9
ODEO C7050000
ODE4 OC010CBO

ODEU OBOO0131

ODEC 00000EA8

ODFO C7050000
ODF4 OBOOOl2D
ODFS OBOO0141
ODFC 00000EA8

OEOO

OEOO 81610126
OE04 53024661
OEOS 08470E14
OEOC 08C208DA091108E6
OEI4 OD940E200E3COE4C

OE20 876108C2
OE24 OE610EA8
OE28 99420lAO
OE2C OBOOOl25
OE30 OOOOODAO
OE34 CDOOOOOI
OE38 00000EA8

OE3C 847108DA
OE40 67917108
OE44 4002FFFF
OE48 0000OEA8

OE4C 4ED90911
OE50 00000E64
OE54 OC010E59
OE58 CDOOOOOI
OE5C C7115400
OE60 00000EA8

OE64 4102FFFF
OE68 OOOOOEA8

OE6C 868108DF
OE70 18617181
OE74 8C6188E6
OE78 C3000000
OE7C 00000EA8

OE80
OE80 4EC40911
OE84 C7115600
OE88 2041FF07
OE8C 410001FF
OE90 9847009E
OE94 9946000F
OE98 9D460040
OE9C A247009E
OEAO 93240002
OEA4 00000D3C

OEA8
OEA8
OEA8 079EOEBO
OEAC OC010000
OEBO CD010000

0040 0000008000C00200

SAMPLE::' - ORDER ENTf<Y SAMf'U: ~f:OGRAM,

LINE SUlJRC[l:LlDE

356 SELFMT
357
358

360 ATTt;
361

363 SYSf<Q
364
365
366

IFI UlDSW NOT IJN GOlf) "RTN,
CNlN] R,
ENAEcU f,,,, Nt" PDF') ,

CAL L ',fFTRA' T ,
GOlD I\RTN,

CNLNH.: ,

CALL
CALL
GOTO ~RfN,

TO IGNOf.,'f n UFUA1ING flU
CANCE.(I.NILR
-IR rll ,'·1 M-i 1 N[-1,rJ HE- fiDt:.F,

I·U\"M]I f~N01Hth: fARTlT1UN ,)1 TACH

('aNU:.1 F·\):;::II-ILI: £.NHh:

li,\')'\JFi! 1\ 11 A I T ACH~. D
·f·i1JMI-·r F Ilk LUADIN(, llALI\!"f,'UUND

368 FWRC, <1 • OWrthD ~·ASS tlV[h f'l.i
369 * FH-:I'~ r:r)NfrdNS fil)f-nk AI)l)f,;ESS OF CIJRh:f.Nr ~lllj)
370 Wt\DfH :-:: [IRi cl .. v. '~OF'Y AOOH·SS INITHOtJI C()NVll--:SU1N
371 WI\BR1 TfoFX(Rlik'TN,IJI\Dh'1), ~ INO [){'dA ADDh'~ .)'.\' IN IA14I L
372 GOTAB WI\BR I RGkOU r , JTl T U Cf)Rf<1 SF'UND ING ROU T I OIL
373 .LAIITAB LABELoBUFAL ENTRl ClIST" , qllAN, CNrL, "MI,
374 • LABl AB LABEL:::Io:GROL r [NTI·.:Y r '=SE ,t;USl h:JU r ,~LJANROtJ T ,~lJANl","" l·kCLh'llUT

376 CUSTROUT' WKDRI 0 Cl'S rM,
377 IF WI\DRI IS CK GOlU "'TN,
378 CFE'ARM 1 0 AODh (MSGY Ill> ,
379 CALL CF~R(D3M,
380 GOTO EO,J,
381 RESUME (B),
382 GOTO KRTN,

([I'T I U:;TIIMiR 01(1.
HR rr S~tf CHE-C,", IS U,",
(;F. r MF SSf'lGE" r'TR
"UST l RRUR MSGE T(] STAIlIS LINI
BR I, END Of JOB RE SplJNSL
~A(:I\Sf'ACE TO CUSTOMER NU.
I.ET O~'ERATOR rRY AGAIN

384 QUANROUTRQUAN 0 QUAN, GET QIlANflTY IN DEC REG
385 IFD RQUAN L~ L IMI T liOTO QUANOK, BR [F BEL OW MAXIMUM
386 SON (QUANSW), LNABL L LRROR pROMF'T
387 GOTO KRTN, AS, OpEF'ATOR TO VER IF Y

389 QUANCK
390
391
392
393
394

IFC CNTL IS C'R' Sl\lF',
GOTO QUAN()~,

ENABLE;
RESUME (B',
I\EYOP (X' j 1 ' • t'-.2:?) ,
GOTO KRTN

396 QUANOK SOFF (QUANSW),
397 (;OTO KRTN

399 PRCEROUT RFoRICE : f'RICE,
400 WKDR1 " RQUAN • RPRICE,
401 AHT 0 WKDR1;
402 REPFLD,
403 GOTO KRTN

405 RCSK
406
407
408
409
410
411
412
413
414
415

417 BKRG
418 RCAD
419 KRHI
420
421 I\RTNl

423 .END,

IFC CNTL IS C'D' SKIP,
KEVOr' (X' 11 ' ,1(29) ,
kEAD (TRANS" ~~) ,
SOFF (EODSW, F'RNT SW) ,
WKBRI = MODESW,
WKBR1 ~o" OF' ,
WKBR1 V= :,' 40' ,
HODESW 0 WKBR1,
BFH8 -= 2.
GOTO SELECT,

IFI IIS8 IS ON GOTO H'TN\'
RETEXT,
RESMXT ,

OC41J FIRST INSTRUCIION ADDRESS
OEEE MAX1MUM LOCATION COUNTrR
OI.FE SUBROUT INE S]AC~ ADDF:ESS
005E BOUNDARY AL 1 GNMEN f BY Tf lOSS

SI\IF' IF 'RETRY'
BF, IF h:~F·l Y 'ACCF.TT·, CONTlNU
RL ~lNABll I\EYBDARD INTERRUPTS
F lElD 1.",:I\SfACf TO QUANTITY

RECHEC' [lUANlIlY

fiTl-'AS,:; tr,ROR F'ROMf'T

f'kOMF'T FOR F'RICE

GET PRICE IN DEC kEG
MULTIPLY ,'Riel' QUANTITY
STORE lN DATA BUF r ER
REPLACE IN DISPLAY
lE r OPERATOR TRY AGAIN

7 RECORD BACI\SPACE
SKIP If DETAIL RECORD
ELSE CLEAR HEADER FROM SCREEN
READ PREVIOUS RECORD
SET UF'DATE MODE, STOF' PRINTING
GE T ~B/CRT MODE BYTE
Cl EAR MODE i' ITS, I\EEP OT HERS
SET TO UPDATE MODE
PU TIT BAC~
POP SUBRTN STACK NO RETURN
DLTERMINE If HEADER OR DE TAll

5 - BAC~WARD ,'ASS OVER kG
6 RECORD ADVANCE
DR IF ATTACHED
RE TURN, E NABLr:
Rl TURN, ENABLE, RE SUHE

(I)
III

3
1:1
CD
~

a
<El
III

3

w
0') --

');.'BO A.\"SLMHLl f,

0006H
0011 J

00'206
OO~07

00.208
00:.209
00:.!10
OOJ::)~~

00318
00:30 I
00098
00214
0031::1

00060
00336
00341
00321
00330
00344
00368
00309
00221
00198
00199
00200
00201
00202
00203
00204
00327
00101
00288
00109
00065
00065
00065
00065
00325
00419
00421
00078
00079
00080
00077
00082
00328

~Rj ()
[(f;:j U

CfWt\J'fk'
CNTL

1)£ fl ~'

DE r l "~

OF fL4
DL TL,)
[>t. TL6
Dl.XS
DI\RfN
DSl\tkl.;
DSNAM~

Dll ~ I'll
EDD
EUDSW
tOJ
EOJl

ERR"EI
FCSE
FUNC
FWRG
GIOERR
HDRFMl
HEADR1
HEADR:~

HEADR]
HEADR4
HEADR5
HEADR6
HEADR7
INOF'
IOBUF
ITEM
ITHNO
1115
1118
1125
1158
KERR
KRTN
KRTNl
K22
K29
K3701
K6
LIMIT
HAGR

eIJ",I-'('" I fN(, VAL UE

0004 OCffH
0000 oec.'
0004 OE.:!O
OO()6 OI:W~1

0004 ODOC
0004 OHA'.)
0008 OffA!i'
oou~ OBB!
OOt 1 OBC9
0005 OBDA
OOOr) 01;lDf
0004 OD94

0000 0004 0074
0000 0004 OD4t~

0000 OODA OBB8
0001 0003 OI:lFE
0000 0004 ODSe
0000 0000 0000
0000 0004 ODAO
0000 0004 ODB'"
0000 oote OD78
0000 0004 OD94
0000 0004 ODFC
0000 0004 OEOO
0000 0004 OD50
0002 0003 OC 1 F
0007 0008 OB68
0008 0005 OB70
0009 0004 0(175
OOOA 0008 OEt79
OOOB 0005 0981
OOOC 0009 OB86
OOOD 0016 OB8F
0000 0004 OD94
0000 0080 08C2
0000 0004 OD14
0000 0008 0802
0073 000,0 0000
0076 0000 0000
007D 0000 0000
009E 0000 0000
0000 0004 OD94
0000 0004 OEA8
0000 0004 OEBO
0054 0002 0154
0056 0002 0156
0058 0002 0158
0052 0002 0152
0091 0010 0190
0000 0004 OD94

EllN
DATA
DA1A
DAlA
IN,\'T
INSI
[NS1
JNSr
[NSI
BIN
}lIN
IN!i'T
INS"T
DA"TA
~IN
DATA

INSr
INSl
rNSl

DA"TA
INSr
DArA
INS·'
F'f.:MT
PRMT
F·RMl
F"RMl
f'RMl
r'r,M·'
INST
[NSf
INS·'
DATA
r-MT
[NSl
IND
INST
INST
DATA
INST
INST
INST
INST
FMT
F"RMT
F"RMT
PRMT
F"RHT
PRMT
F'RMT
F'RMT
INST
DATA
INST
DATA
IND
IND
IND
IND
INST
INST
INST
BIN
BIN
BIN
BIN
DEC
INST

URIH R F NrkY SAMF'l.t PROGRAM,

003J1 o03ni

OO,djl') 0030:") 00373 OO,3B9 00406
OO,:L'j
00~~2 j

0030:';
00:"':):'
00314
00:?:~4

OO:"''Y? 00301.
0011:11
()01.8,~

001B6
0018H
001c/~

001 <,14
003:?1
00,H6
00081
OOOS7 00239
00~?94

00308

00364

001/6 00243 00283 00297 00301 00312 00356 00409
00310 00333 00353 00380
00339 00342
00057
00.321 00374
003.21
00321
00091
00281
0015~
00157
00159
00161
00163
00165
00170
00321
00057 00073 00087 00231 00235 00238 00247 00250
00304
00215
00277
00230
00264
00419
00321
00349 00354 00356 00361 00366 00377 00382 00387 00394 00397 00403
00419
00393
00407
00308
00271
00385
00321

5280 ASSEMBLER 01.00 SAMPlE2 - ORDER ENTRY SAMPLE PROGRAM i

DEFINED SYMBOL COMP9 LENG VALUE TYPE REFERENCES

00106 "ANNO
00059 MODESW
00083 HSG9111
00084 MSG9998
00326 NEXS
00245 OPNPR
00232 OPNTRN
00104 ORDNO
00107 POSTO
00097 F"R~UF

00399 PRCEROUT
00076 PRCNTL
00075 PRCNTL@
00175 F'RDETl
00154 PRHDR
00111 PRICE
00150 PRINT1
00151 PRINT2
00061 F'RNT
00060 PRNTSW
00138 PRPkINT
00169 PRSHIP

P~:THD

00129 PRTRANS
00110 QUAN
00389 QUANCK
OO,~96 QUANO~
00384 QUANROUT
00060 QUANSW
0041B ReAD
00405 fiCBK
00.100 READ
00,1;74 RGROUT
OOt:lO RGR1N
oooel f\PRICE
DOOSI RQUAN
OOO-,:~ RWCOL
0005B SCNeD
00 ~O:' SfLEcr
001.56 SELFMT
O()~'6:'" SHU'
001 :"!j SHIF'CODE
00119 SH[PID
OO:!6S' SHIPO"
001 HI SHH'TXT
00108 SHPCD
OO:!2S< START
00:363 SYSRLI
OO~ 45 TI TLE
00061 TRANS
00146 TRANSl
00148 lRANS2
OOt49 TRANS3
000"/4 TXT@
OO~Q9 WE)(S
00071 WKBRl

WKDRl
OO:~95 WRTOT
OO:~B2 WRTHH

0000 0002 0808 DATA
0000 0001 OOBE DATA
0000 0005 01AO DATA
0000 0005 01A5 DA1A
0000 0004 OD94 INST
0000 0004 OC84 I NST
0000 0004 OC54 I NST
0000 0008 08CA DATA
0000 OOOA 08DA DATA
0000 0078 0840 DATA
0000 0004 OE6C I NST
0050 0002 0150 BIN
004E 0002 014E BIN
0004 0003 OAF J SF MT
0002 0003 OA92 SFMT
0000 0007 oeDF DATA
0005 D01C OA5E1 PRHT
0006 OOtB OA77 PRHT
0000 0002 0002 SOT
0001 0000 0000 IND
0001 0003 09CF SFMT
0003 0003 OADe SFM T
0000 0004 OCFS INSl
0000 0003 09A9 SFMT
0000 0005 08DA OAT A
0000 0004 OE4C INST
0000 0004 0[64 INSl
0000 0004 OE3C I NST
0002 0000 0000 IND
0000 0004 OEAB] NS r
0000 0004 OE80 INST
0000 0004 OD34 INS'
0000 OOOA 0E14 DATA
0002 0008 097£ ffR
00H1 0010 0180 DEC
00"11 00f.0 0170 OlL
0048 0002 0148 BIN
0000 0001 OOA6 DATA
0000 0004 OD:5C INST
0000 0004 OOOC INS r
0000 0004 occo [NST
0000 0023 0986 OA 1 A
0001 0008 09/6 TEfL
0000 0004 OCD8 INST
0000 0008 or/6E TEfl
0000 0007 08£4 DA' A
0000 0004 OC4B INSl
0000 0004 ODFO 1 NS T
0001 001A 09ED f'RMT
0000 0002 0001 SDl
0002 0039 OA07 f'RM T
0003 OOOD OA40 PRM r
0004 OOOE OA4D f'RHl
004C 0002 014C BIN
0000 0004 OD94 INSl
0046 0002 0146 BIN

0061 0010 0160
0000 0004 OD28 INST
0000 0004 OD04 INST

00225
00313 00315 00410 00413
00378
00331
00321
00252 00254
00230 00237 00241
0022.3
00226
00091
00374
00075 00276 00278 00280
00279 00281
00289
00261
00217 00399
00140
00142
00091 00249 00253 00279 00281 00294 00316 00337
00255 00275 00293 00317 00409
00246
OO:'~6b

00277
00233
00216 00373 OOJ84
00374
00385 00.390
u03"/4
00185 00386 00396
()0321
00321
OO~?74 00:.283 OO:!lJ2
OO~-n:'

00371
0039lj.' 00400
00384 00.585 00400
00271
00345 00.552
00415
00;348
00:267
(l01 HI 00119
00:)63
002b4
00269
00074 OO:!:)7 00:.!6:! 00270
0005h
00347
00130 0013lf
00081 002:"9 OO:?34 00:240 00241 OO~42 00254 0028~ 00;2c76 00.500 003~lj6 0040U
00131
00132
00134
00271
00321
()0229 00231. 00269 00307 00308 003L~ 00:.514 00.315 00345 00·346 00347 0034B
00352 00353 00372 00410 00411 00412 00413
()0238 00239 00263 00269 002-/0 00370 00371 00376 00377 00400 0040i
00293
00275

The following is a sample of output:

OOOOOO~6 12:.t:45678 12/25179 4~) AUSflN TI';;UCI\
j ~) $1, .. !'.J $*** * ... "''''] I.i. /';
/'·i ~,', ;'4 $*****· ... "..**:~43. (" .. ,

tl c .; S,10. 1~> $*** ~**1 ,.'J6, ~'.

OOOOHl34 000853:?6 1~/:)c;,/ 79 0:' RoeHr .~rEk OOOJO:"':i6 63 $l..fr'B j,,**** ... *.*.* t.>4. ,74
ou013 L.";; 14 $Y" r):~ 1o*.*** *.,.,.,tj ,~,,;;, 4:'

362

access method: A technique for moving data between
main storage and input/output device.

active data set: A data set being used by a program.

address: A name, label, or number that identifies a
register, location in storage, or any other data source.

alphabetic characters: Letters and other symbols,
excluding digits, used in a language.

alphabetic field: One or more alphabetic characters of
related information in a record.

alphabetic shift: A control (attribute or key) for
selecting the alphabetic character set in an alphameric
keyboard.

alphameric characters: Same as alphabetic characters,
with the addition of digits 0 through 9.

alphameric field: One or more alphameric characters of
related information in a record.

arithmetic expression: An expression that contains
arithmetic operations and that can be reduced to a
single numeric value. An arithmetic expression is
evaluated from left to right with multiplication and
division preceding addition and subtraction.

alternate record advance: A function that causes the
system to stop processing the current record and ignore
any specifications between the cursor position and the
end of the record when the Enter or Record Advance
key is pressed.

application program: A program that processes user
data to perform a particular data processing task; for
example, inventory control or payroll.

ASCII: (ANSI definition) American National Code for
Information Interchange. The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), used for information
interchange among data processing systems, data
communication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters.

Glossary

assembler: A computer program that prepares an
object program from a source program written in a
symbolic source language.

assembler language: A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with the instruction
formats and data formats of the computer.

attribute: A characteristic. For example, attributes of a
data set include record length, label, and creation date.
Attributes of a displayed field could include high
intensity, reverse image, and column separators.

auto dup: Automatic duplication. 1. The process of
automatically copying the contents of a field in a
previous record or a storage area into the corresponding
positions of the current record. 2. The process of
automatically verifying the contents of a field in the
current record with the contents of the corresponding
positions of a previous record or a storage area.

auto record advance: Automatic record advance. A
movement forward to the next sequential record without
manual intervention when current record is completely
entered and the auto rec adv switch is on.

auto skip: Automatic skip. In enter mode, if the auto
skip / dup switch is on, the process of automatically
filling an auto skip field with blanks and advancing to
the next field. In verify mode, the process of verifying
that all the positions in the field are blank.

auto verify: Automatic verify. In verify mode, auto dup
fields are checked against the same fields in the
previous record. See auto dup, 2.

auxiliary duplication: The process of copying or
verifying data from a named storage location into a field.

awaiting field exit: The state of the keyboard when
the operator has entered the last position of a field that
is defined as a field exit required field.

awaiting record advance: The state of the keyboard
when the operator has entered the last position of a
record with a key other than the Record advance key,
and the Auto-enter function is not enabled.

Glossary 363

background job: A job that is run in a partition which
dOes not have immediate access to a keyboard/display
unit.

base displacement addressing: An addressing method
that involves setting up a base address from which
other addresses can be calculated.

basic data exchange: A diskette data exchange that
uses 128-byte sectors and allows only one record per
sector. The logical record length must be S 128 bytes,
and is unblocked and unspanned. The basic data
exchange formats allow you to exchange data between
5280 and other systems that use the basic data
exchange format.

binary: Base 2 arithmetic.

binary register: A two-byte register in partition storage
which contains binary notation and is used for binary
arithmetic/logical operations.

binary search: At each step of the search the set of
items is partitioned into two equal parts so that the
search starts at the middle.

blank check: A check of a field to ensure that there are
no blank characters (hex 40) in the field.

blank fill: To fill a field with blank characters (hex 40).

blocking: Combining two or more records into one
block.

boundary alignment: The positioning of data areas
such as registers or blocks, on an appropriate boundary
for that type of data.

branch instruction: An instruction that changes the
sequence in which the instructions in a computer
program are executed. Execution of instructions
continues at the address specified in the branch
instruction.

asc: Binary synchronous communications.

buffer: An area of storage that is temporarily reserved
for use in performing an input/output operation, into
which data is read or from which data is written.

CAM: Communications access method.

character constant: Any combination of characters,
including blanks, enclosed in apostrophes.

364

collating sequence: The order each character hoids in
relation to other characters according to the bit
structure.

column separators: A display screen attribute that
shows vertical lines preceding each position of a field on
a display. These lines do not occupy positions on the
display. For example .LA.LB.LC.

command function keys: The 14 keys on the top row
of the data station keyboard that are used with the
command key to request functions.

comments: Words or statements in a program that
serve as documentation rather than instructions to an
assembler or compiler.

common area: The first part of main storage that
contains the system control area, common functions,
global tables (such as ASCII and error recording), and so
on. Depending upon the common function option
selected, this area can be 6 K, 14 K, or 16 K. This area
is not available for user programs.

common functions: A set of IBM-supplied programs
in the common area that is used by programs executing
in any partition.

communications access method (CAM): A 5280
program that provides the necessary link between a
communications program and the communication line. It
performs functions such as data formatting and link
protocol.

concurrent: (ANSI Definition) Pertaining to the
occurrence of two or more activites within a given
interval of time.

configuration: The group of machines, devices,
features, and programs that make up a data processing
system.

constant: A data item that does not change during the
execution of a program. This item represents itself and
is actually used in processing rather than being a field
name representing the data. For example, , cost' is a
name representing a field containing data that changes.
The constant 100 is actual data used that does not
change.

control block: A storage area used by a program to
hold control information.

controller: A device that controls operation of one or
more input/output devices; for example, a work station
controller.

copy: To read data from a source, leaving the source
data unchanged, and to write the same data elsewhere
in a physical form that may differ from that of the
source.

counter: A register or storage location used to
accumulate the number of occurrences of an event.

cursor: A movable horizontal line (underscore) on a
display screen, used to indicate where the next
character entered by the operator will appear. It blinks
when no additional entry is allowed and the system is
awaiting the Enter key.

cylinder: The tracks that can be accessed without
repositioning the diskette drive access mechanism.

data-directed format selection: Format selection is
determined by the data contained in the record.

data required: A field attribute that indicates an
operator must enter at least one non-blank character
into the displayed field.

data set: An organized collection of related data
records treated as a unit and existing on a diskette.

data set label: A 128-byte area on the diskette index
cylinder that describes a data set.

data set name: The name associated with a data set.
The first character must be alphabetic, and the
remaining characters can be any combination of
alphabetic or numeric characters. Blanks cannot appear
between characters in a name.

data stream: Data transferred by stream-oriented
transmission, as a continuous stream of data elements
in character form.

data table: A table defined by the .TABLE control
statement.

decimal register: A 16-byte register wherein data is
stored in EBCDIC or signed decimal numbers and is
used for arithmetic/logical operations.

default value: A value automatically chosen by the
system when a value is not specified by the user.

DE/RPG: Data Entry with RPG subroutines. A 5280
program product that provides a means for writing
programs that provide the function required for a
specific job.

device address: Four hex characters used to identify a
5280 I/O device such as a diskette drive or printer.

diacritic: A modifying mark that changes the phonetic
value of a character. When you enter a diacritic from
the keyboard, the cursor does not advance until another
character is entered to combine with the diacritic.

diacritic table: A table that defines diacritic characters
and valid diacritic-character composites for graphic
display.

direct access: The ability to obtain data from a storage
device directly by key or relative record. Contrast with
sequential access.

direct access method: An access method for
processing files by specifying the address (record
number) or key value of each record to be accessed.

direct addressing: A method of addressing in which
the addressed storage location contains the desired
data. See also indirect addressing.

direct by key access method: An access method for
processing index data files by specifying the key
associated with each record to be accessed. The current
key specified need not have any relative sequence with
the last key or next key to be specified.

displacement: The number of bytes from the beginning
of a partition or block to the beginning of a particular
data area.

display attributes: The characteristics assigned to a
field record that control the way the data is displayed.

double register: Two decimal or binary registers used
together as one data area. In a program, the leftmost
register is referenced, followed by the length in
parentheses (4 for binary, 32 for decimal).

dup: Abbreviation for duplicate.

EBCDIC (extended binary-coded decimal interchange
code): A character set containing 256 eight-bit
characters.

Glossary 365

edit format: A description of a record that is read from
a diskette, wiittan to a diskette or printer, or moved
from one storage location to another. An edit format is
set up by a FMT series of control statements, and
defines the fields, puncutation, data types, and other
editing requirements of the record.

ELAB/ETAB: Parameter in the COMM and DATASET
statements which specifies the name of a routine (ELAB)
or table (ETAB) to be used to handle error conditions.

enter mode: The mode in which the operator initially
enters data through a display station. Some editing and
interaction may occur. See also verify mode; update
mode.

E-type data exchange: A diskette data exchange
format that uses blocked and spanned, blocked and
unspanned, or unblocked and unspanned records. Block
size can be up to 16,256 bytes.

extent: A continuous space on a diskette that is
occupied by or reserved for a particular data set.

extra line: Row 1 of the screen refresh buffer, which
can be displayed on the top row of the screen in place
of the status line.

field: One or more bytes of related information in a
record.

field attribute: See attribute.

foreground job: The keyboard/display unit is
immediately available to the partition where the job is
being executed.

format level: The identification associated with a
format.

format 0 (zero): A format for display stations that
allows entering information on an unformatted display.

global load: A load operation that uses the standard
load prompt. A global load is initiated by the system
when the load parameters are not specified for a LOAD
instruction in an assembler program, and when an error
occurs when using the Standard Load Processor.

global table: A table in the common area. The first two
global tables are the error recording tables. If the ASCII
translate table is selected during system configuration,
the ASCII translate table is another global table.

366

hex: Hexadecimal. A number system using 16 symbols:
0-9, A-F each representing 4 bits (one-ha!f byte),

H-type data exchange: A diskette data exchange
format that uses 256-byte sectors. It allows only one
record per sector. The logical record length must be
256 bytes; it is unblocked and unspanned. The H-type
exchange allows you to exchange data between 5280
and other systems that use the H-type data exchange
format.

index data set: A data set in which the keys from
another data set and their record position within that
data set are recorded. When index data sets are used,
the following access methods can be used: sequential;
direct by relative record number; and direct by key
value.

index register: A register whose contents can be
added to or subtracted from the operand address before
or during execution of a computer instruction.

indexed address: An address that is modified by the
content of an index register before or during the
execution of an instruction.

indexed instruction: An instruction that requires
address modification before the data byte is fetched
from storage.

indirect addressing: A method of addressing in which
the addressed storage location contains the address of
the desired data. See also direct addressing.

initial program load (I PL): A sequence of events that
loads the system programs and prepares the system for
execution of jobs.

input data set: A set of records a program uses as
source information.

input/output control block (lOB): A data area that
may be used to pass the required information from the
calling program to the input/output supervisor for data
operations.

input record: A data record that is transferred to
computer storage for processing.

insert field: A field not present in the enter record, but
which will be inserted by the system and will be present
in the output record.

instruction: A statement that specifies an operation to
be performed by the computer and the locations in
storage of all data involved in that operation.

lOB: Input/output control block.

lOB pointer: A 4-byte block in the system control area
that contains the address of a device lOB and other
information (such as, if the device is installed).

IPL: Initial program load.

I-type data exchange: A diskette data exchange format
that uses 128, 256, 512, or 1024 byte sectors. All
records in a data set must be the same length. All
records in the data set are blocked and spanned. The
I-type exchange allows you to exchange data between
the 5280 and other systems that use the I -type data
exchange.

keyboard/display storage: An area of control storage
separate from amin storage, which provides control
information and refresh areas for processing keystrokes
and for displaying characters on the screen.

label table: A table of addresses set up by the
. LABT AB control statement, and used for indexed
branches and indexed subroutine calls.

logical record: A record independent of its physical
environment. Portions of the same logical record may
be located in different physical records, or several logical
records or parts of logical records may be located in one
physical record, depending on the exchange type being
used.

Magnetic Stripe Reader feature: Allows use of the
5280 system only after a valid badge (operator 10) is
read by an attached magnetic stripe reader.

main storage: 1. General purpose storage of a
computer. 2. Storage that can be addressed by
programs, from which instructions can be executed, and
from which data can be loaded directly into registers.

main storage duplication field: See auxiliary
duplication.

main storage store field: A field that is automatically
stored from the current record buffer into a main
storage location.

mandatory enter: A field attribute that indicates an
operator must enter at least one character into the
displayed field.

mandatory fill: A field attribute that indicates an
operator must enter all or none of the displayed field.

mask: A pattern of characters that is used to control
the retention or elimination of another group of
characters.

multinational character set: The 188-character (or
184 character) display and printer character set available
with the 5280.

multivolume data set: A data set that extends beyond
the boundaries of a single data set. It can be extended
on the same diskette or on another diskette.

nondisplay: A field attribute that prevents display of
data. It can be used for fields containing confidential
information.

null character: The hexadecimal character 00.

numeric fields: A field that contains one or more
numeric characters. Valid numeric characters are the
digits 0-9 and + (plus sign), - (minus sign), . (decimal
point), blank, and , (comma).

numeric shift: A control (attribute or key) for selecting
the numeric character set in an alphameric keyboard.

object code: The four-byte instructions from the
compiler or assembler that are machine executable. The
first byte of the object code contains the operation
code.

object program: A set of instructions in machine
language (object code). The object program is produced
by the assembler from the source program.

offset: The distance from the beginning of a register or
record to the beginning of a particular field.

output data set: A data set containing the data that
results from processing.

packed data field: One byte is used to store two
numeric digits. Bits 0 through 3 for one digit and bits 4
through 7 for the other.

Glossary 367

packed decimai format; Each byle within a field
represents two numeric digits except the rightmost byte,

which contains one digit in bits 0 through 3 and the sign
in bits 4 through 7. For all other bytes, bits 0 through 3
represent one digit; bits 4 through 7 represent one digit.
For example, the decimal value +123 is represented as
0001 0010 0011 1111. Contrast with zoned decimal
format.

pad: To fill unused positions in a field with dummy
data, usually zeros or blanks.

partition: An area of 5280 storage in which a program
can execute.

partition pointer: Contains the address of the
beginning of a partition. The partition pointer also
contains flags to indicate the status of the partition
(such as whether the partition is a foreground or
background partition).

physical record: A record whose characteristics depend
on the manner or form in which it is stored, retrieved, or
moved. A physical record may consist of all or part of a
logical record.

program listing: A computer printout that gives
information about the source program, such as source
statements, diagnostic messages, indicators used,
storage addresses of fields and constants used.

program product: An IBM-written, licensed program
for which a monthly charge is made. A program product
performs functions related to processing user data.

reformatting: The rearrangement of an addition or
elimination of fields in a record.

refresh: The continuous redisplaying of data on the
display screen to prevent the data from fading out.

refresh buffers: Areas in keyboard/display storage that
are used to refresh each row of display characters on
the screen. The refresh area for the status line is in an
area separate from the refresh area for the other rows
on the screen.

relative addressing: A means of addressing
instructions and data areas by designating their location
in relation to the location counter or to some symbolic
symbol. Relative addresses of areas within a partition
are relative to the beginning of the partition.

relative record number: A number that specifies
the location of a record in relation to the beginning
of the data set.

368

resource anocation table: ft .. table in storage that is
used to assign a logical device I D (a name) to a physical
device.

return-to-program exit: See RG exit.

RG exit: A user exit that interrupts the processing of a
screen format to give control to a user's routine.

SCP: See system control program.

screen format: A description of a record that is
entered via the keyboard/display. A screen format is set
up by a SFMT series of control statements, and defines
the fields, prompts, control specifications, and display
attributes of the record.

screen format control string: The object code that is
generated by a series of SFMT control statements.

SCS conversion data set: A data set that has SCS
conversion specified in the .DATASET control statement
that defined the data set. The system automatically
inserts SCS control characters into an SCS conversion
data set.

SCS data set: A data set that contains SCS control
characters. Contrast with SCS conversion data set.

SOLC: Sychronous data link control.

self-check field: A field, such as an account number,
consisting of a base number and a self-check digit. For
data entry applications, the self-check digit entered by
the operator is compared to the self-check digit
computed by the system. If the operator makes a
mistake when entering (keying) a self-check field, an
error message is displayed.

sequential access method: An access method in
which records are accessed in the order in which they
occur in the file. Contrast with direct access method.

sequential by key: A method of data set processing
that accesses records in the order in which a keyed or
indexed data set is arranged.

SNA: Systems network architecture.

source program: A set of instructions that represents a
particular job as defined by the programmer. These
instructions are written in a programming language, such
as GSLE.

spanned record: 1. A record that corsses a block
boundary. 2. A record that is stored in more than one
block.

stack pointer: The binary register (BR18) used for
subroutine calls and returns. During a subroutine call,
the stack pointer contains the address of the next
available entry in the subroutine stack; during a
subroutine return, it contains the address of the last
entry in the subroutine stack.

standard load prompt: The screen format stored in the
common area that is used to prompt for load
parameters during a global load or by the Standard Load
Processor.

status line: Usually, the first line on a display screen.
This line provides operational information.

stripped zone: See packed data field.

subroutine stack: A table of return addresses used for
subroutine returns.

Synchronous data link control (SOLe): A discipline
for managing synchronous, transparent, serial-by-bit
information transfer over a communications line.

syntax: (ANSI definition) 1. The structure of
expressions in a language. 2. The rules governing the
structure of a language.

system configuration: A process that specifies the
various components and devices that form a particular
operating system. System configuration combines
user-specified options and parameters with IBM
programs to produce a system having the desired form
and capacity.

system control programs: IBM-supplied programs
that are on a diskette. These programs are included
with each system and allows the opoerator to configure
the system, I PL the system, and recover from power
failures.

system control area: 256 bytes starting at address
X' 00' . This area contains information such as the
address of each partition, device lOB pointers, system
flags, machine storage size, and so on.

system table: A table set up and used by the system
to store the addresses of screen formats, edit formats,
prompts, data tables, and duplicate or store fields.

system network architecture (SNA): A total
description of logical structure, formats, protocols, and
operation sequences for transmitting information
throughout a communications network.

timeout: A time interval during which a station waits
for a certain operation to occur. Some timeouts are
automatic hardware functions and some are program
functions.

update mode: The mode in which the operator selects
certain records for review and correction. See also enter
mode; verify mode.

verify: To determine whether a transcription of data or
other operation has been accomplished accurately.

verify bypass field: A field that was entered, but does
not need to be verified.

verify mode: The mode in which the operator rekeys
data from a source document that has already been
keyed in order to check that the data has been entered
correctly. See also enter mode; update mode.

zero fill: To fill with the numeric value zero.

zero suppress: The elimination of preceding zeros in a
number. For example, 0057 becomes 57 when zero
suppressed.

zoned decimal format: Representation of a decimal
value by 1 byte per digit. Bits 0 through 3 of the
rightmost byte represent the sign; bits 0 through 3 of all
other bytes represent the zone portion; bits 4 through 7
of all bytes represent the numeric portion. For example,
the decimal value +123 is represented as 1111 0001
1111 0010 1111 0011. Contrast with packed decimal
format.

zoned field: A field that contains data in the zoned
decimal format.

Glossary 369

370

+ 139
+= 132
&= 134
* 140
*= 133

139
133

/ 139
/= 133

absolutely automatic field 106
accept key entry (ENTR) 196
accept unformatted keystrokes (KACCPT) 202
access methods 181
ACL conversion 297
add, binary 132
add, decimal 139
ADDR function 60, 129
addressing methods

base displacement addressing 12, 121
direct addressing 11, 121

AFIL (.KBCRT parameter) 54
algorithm, self-check 43
ALLOC 171
allocate 171
allow detach routine (CFDETFGD) 272
alphabetic fill character 54
alphabetic only field 105
alphabetic shift field 104
alternate record advance 29
alternate register 115
ALTREG (.SELFCHK parameter) 115
AND instruction 161
AND, binary 134
application control language 297
ARGL (.TABLE parameter) 76
arithmetic expressions 129
arithmetic instructions, binary 131
arithmetic instructions, decimal 137
ASCII processor 272
ASCII translate table 252
assembler diskette 255
assembler error messages 353
assembly listing 110, 262
assembly time arithmetic 128
attach a partition 203
attach partition routine (CFATFBGD) 273

auto dup field 106
auto dup skip field 29
auto skip field 106
automatic functions 28, 106
automatic logical buffering 36
awaiting record advance 29

background partition 203
badge reader characters 210
base displacement addressing 12, 121

Index

base displacement skip on constant compare 160
BOY (.DC parameter) 59
beginning of extent 170
BFPS (.SFMT series parameter) 92
BFPS (.SFMTCNS parameter) 99
BFPS (.SFMTCTL parameter) 96
BFPS (.SFMTFLD parameter) 102
binary arithmetic 131
binary register relational compare 155
binary registers 9

declare a register 65
double binary registers 9
load 214
store 219
system registers 9, 268

binary search, data set 186
binary search, table 243
BINDEC 223
BINHEX 223
bit numbers for keyboard functions 349
BKCK (.KBCRT parameter) 54
blank a decimal register 142
blank check character 54
blank check field 107
blanks 14

in a control statement 51
in an instruction 119

block size 69, 74, 172
boundaries 13
boundary alignment 13, 59
braces 15
brackets 15
branch instructions 145
branch on relational compare instructions 154
branch on test instructions 150
branch through table 146
BSIZ 172

Index 371

BSiZ i.COMM parameter) 59
BSIZ (.DATASET parameter) 74
buffer position pointer 89, 92
buffers 36
buzz 103
BUZZ 200
BY PAS (.TABLE parameter) 77
bypass 77
bypass field 33, 95, 107
bypass in verify mode field 107

CALL 147
call through table 149
CALLTB 149
CAM (.COMM parameter) 68
cancel current ENTR 201
category digits 24
CCHAR (.FMTST parameter) 82
CCOL (.FMTST parameter) 82
CFASCII 272
CFATFBGD 273
CFDETFGD 272
CFDEVCHK 274
CFDUMPTR 274
CFERCDSM 277
CFERCDSP 276
CFGIOERR 278
CFHELP01 279
CFKEYRT 280
CFLOAD01 284
CFMSGDSP 280
CFPERATT 281
CFPGMCHK 282
CFSECVOL 283
change cursor address 208
change data type 130
change row attribute 208
check/move device address routine (CFDEVCHK)
CI (.SFMTCTL parameter) 95
CLC 247
clear screen 91, 103
CLICK 200
close a data set

communications 168
diskette 174
printer 194

CLOZ 174, 194
CNENTR 201
CNST (.SFMTCNS parameter)
CNTL (.SELFCHK parameter)
CNTL (.SFMT series parameter)
CNTL (.SFMTCNS parameter)
CNTL (.SFMTCTL parameter)
CNTL (.SFMTEND parameter)
CNTL (.SFMTFLD parameter)
CNTL (.SFMTST parameter)
CNTR (.KBCRT parameter)

99
113

90
99

95
103

101
94

55

372

274

coding symbols 14
COL (. FMTFLD parameter) 83
comments

on control statements 51
on instructions 120

common function labels 259
common function routines 270
common functions 116
communications 67
communications access method (CAM) 68
communications control 166
communications instructions 164
compare logical character strings 247
compression 73
condition character, data directed formatting 82
condition code format 24
condition number, external status 24
conditional branch instructions 150, 154
conditional bypass 33, 95
constant insert field 31, 99
constant, store 221
constants 14, 121
control statement summary 49
conversion of data, in edit format 83
conversion program errors 355
convert data 222
CRBA (.KBCRT parameter) 53
cross-reference listing 264
CRTMM 229
CSPS (.SFMT series parameter) 92
CSPS (.SFMTCNS parameter) 99
CSPS (.SFMTCTL parameter) 96
CSPS (.SFMTFLD parameter) 102
current position pointer 22, 55
current record buffer 53, 196
current record pointer 177

data directed formatting 35
data entry, keyboard 25
data movement 214
data required field 107
data set indicator 153
data set label 170
data set name 71, 172, 236
data set number 68
data set type 68, 71
data tables 18
data types 19, 130

change data type 130
DCLBL (.FMTFLD parameter) 83
DCLBL (.TABLE parameter) 76
DECBIN 224
decimal register arithmetic 137
decimal register relational compare
decimal register shift instructions
decimal register zone modification

156
141
144

decimal registers 10
declare a register 65
double decimal registers 10
load 216
store 219

declare binary registers 65
declare control statements 57
declare decimal registers 65
declare indicators 65
DECR 164
decrement binary register and branch 164
delete a data set 175
delete a record 182
delete a table entry 240
delete character 172
delete flag 74
delta 75
density of index tables 39
detach keyboard 204
detach partition routine 281
DEV (.DATASET parameter) 71
device address 71, 274
device identifier 71
DEVID (.DATASET parameter) 71
DFLG 172
DFLG (.DATASET parameter) 74
digits only field 104
direct addressing 11,121
directed close, for printer 192
diskette control operations 170
diskette index 173
diskette initialization 72, 177
DISP (.DC parameter) 59
DISP (.SELFCHK parameter) 115
DISPEX 201
displacement 11
display attributes 91
display extra line 201
display mode 28
display status line 201
DISPST 201
divide, binary 133
divide, decimal 139
DL, self-check 339
DLTA (.DATASET parameter) 75
double buffering 36
DR, seff-check 339
DSN (.COMM parameter) 68
DSN (.DATASET parameter) 71
DSPLY 102
DSPLY (.SFMT series parameter) 91
DSPLY (.SFMTCNS parameter) 99
DSPL Y (.SFMTCTL parameter) 96
dump/trace processor (CFDUMPTR) 274
DUP 250
dup field 31, 101

dup key status 90
duplicate a byte 250

early write 190
EBCDIC charts 347
EDCNT (.EDITC parameter) 57
EDCOM (.EDITC parameter) 57
EDCUR (.EDITC parameter) 56
EDDEC (.EDITC parameter) 56
EDIT (.FMTFLD parameter) 83
edit control characters 56
edit control count 57
edit currency symbol 56
edit decimal character 56
edit format 34, 81, 179, 231
edit format label 82
edit format system table 80
edit separator character 56
edit string characters 83
ELAB (.COMM parameter) 68
ELAB (.DATASET parameter) 71
ELAB (.KBCRT parameter) 53
elapsed time counter 213
ENABLE 198
end of data 170
end of extent 170
enter mode 26
ENTR 196
ENTRIES (.TABLE parameter) 77
ENTRY (.LABTAB parameter) 78
ENTRY (.START parameter) 52
equate 66
erase a data set 175
erase data set 73
error code display routine (CFERCDSP) 276
error code with message display (CFERCDSM)
error label 53, 68, 71
error messages on listing 265
error messages, assembler 353
error messages, conversion program 355
error mode 204
error recovery during load 234, 237
error table 53, 68, 71
errors only listing 257
ES (.SFMTCTL parameter) 96
ETAB (.COMM parameter) 68
ETAB (.DATASET parameter) 71
ETAB (.KBCRT parameter) 53
exchange data 221
exchange type 172
exclusive OR write, skip on AND mask 162
exclusive OR, binary 135
EXIT 235
EXPR (.EQUATE parameter) 67
expression, equate 67
expressions 128

277

Index 373

extern data set 259
external status 24

condition code format 24
system binary registers 25

external status subroutines for keyboard/display 287
external status, keyboard / display 285
extra line 201

field attribute chart 110
field correct mode 28
field definition, edit format 83
field definition, screen format 100
field exit minus key status 91
field exit required field 107
field modification indicators 35
field type 100, 104
fixed position prompt 98
fixed prompt location 54
FLDF (.SFMTFLD parameter) 100
FLD LE N (. S E LFC H K parameter) 112
FMT (.SYSTAB parameter) 80
foreground partition 203
format level zero field 104
format, of control statements 51
format, of instructions 119
FPLC (.KBCRT parameter) 54
full data print 257
FUNC (.KBCRT parameter) 56

general I/O handler (CFGIOERR) 278
generate a self-check digit 248
global tables 246
GOTAB 146
GOTO 146
GSCK 248

HDRl label 183
HDR1 label, translate 73
HDR1 labels 36

for SCS conversion data sets 40
update 36

help text processor (CFHELP01) 279
hex value of current position 23
hexadecimal field 104
HEXBIN 224
HUN (.KBCRT parameter) 55

374

horizontal tab table 69
HTAB (.COMM parameter) 69

I/O control block 67,70
IF 150
IF BRa 155
IF BRn 0 150
IF fmt 152
IF Ra 156
IF Rn- 151
IF Rn AN 151
IF Rn CK 151
IF Rn SN 151
IF Rn 0 151
IFB 160
IFC 159
IFD 157
IFDSI 153
IFH 157
IFHI 161
IFI 153
IFIR 154
IFLO 161
immediate data, binary relational compare 157
included lines 112
increment binary register and skip 163
IND (.EQUATE parameter) 66
index of data table 238
index tables 38

density of index tables 39
indexed call 147, 149
indicators 8, 243

system indicators 8, 267
field modification indicators 35

indirect instruction execution 248
INIT 177
INIT (.DC parameter) 60
INIT (.TITLE parameter) 111
initialization of data areas 60
initialize a data area 60
initialize a diskette 177
initialize a listing title 110
initialize communications session 166
initialize diskette 72
input translate table, self-check 115, 331
INSBLK 183
insert a block of records 183
insert a record 183
insert a table entry 241
insert mode 28
instruction labels 119
instructions 119
INTAB (.SELFCHK parameter) 115
INXEQ 248

lOB 67,70 loop control 162
lOB chain 170, 174 LSTLN (.DATASET parameter) 75

KACCPT 202 magnetic stripe reader 210, 295
KATTCH 203 main storage boundaries 13
KDETCH 204 main storage duplicate 102
KERRCL 205 main storage duplicate field 31
KERRST 204 main storage partitions 5
key entry 195 main storage store 102
key indexed read data set 72 main storage store field 31
key indexed update data set 72 mandatory enter field 108
keyboard function bit numbers 349 mandatory fill field 108
keyboard operations 199 mask 161, 162
keyed data set 38, 180 MAXM (.TABLE parameter) 76
KEYOP 206 MCHK (.START parameter) 52
keystroke counters 269 MD (.SFMTFLD parameter) 101
keystroke router routine (CFKEYRT) 280 MDUP (.SYSTAB parameter) 80
KLEN (.DATASET parameter) 75 message display routine (CFMSGDSP) 280
KPOS (.DATASET parameter) 75 MMCRT 230

mnemonic to op code conversion chart 315
mnemonics list 123
MOD (.SELFCHK parameter) 112
MODE (.KBCRT parameter) 54

label table 18, 78 modes of entry 26, 54
label update 36, 72, 174, 175 modification of instruction 248
labeled addressing 121 modify zone, decimal register 144
last line (for SCS conversion) 75 modulus, self-check 42, 112
LBUF (.COMM parameter) 69 standard modulus 10 45
LBUF (.DATASET parameter) 74 standard modulus 11 46
LEN (.DC parameter) 58 MOFF 225
LEN (.FMTFLD parameter) 83 monocase conversion status 90
LENG function 130 move data 225
length specification 130 MS (.SFMTFLD parameter) 102

changing declared length 130 multiply, binary 133
declared length 58 multiply, decimal 140
of edit format field 83 multivolume option 176

LEVL (.DC parameter) 59 MVC 227
line size (for SCS conversion) 75 MVCR 227
LlNSZ (.DATASET parameter) 75 MVCV 228
listing 262 MVER 226
literal spacing 258
load

binary register 214
decimal register 216
partition 233 NAME 172

LOAD 234 NAME (.DATASET parameter) 71
load parameters 233, 235 NAME (.INCLUDE parameter) 112
load the assembler 256 NFIL (.KBCRT parameter) 54
LOC (.DC parameter) 59 N L, self-check 334
lock system 252 NMIN (.KBCRT parameter) 55
logical buffer 36, 69, 74 non-display of the status line 23
logical device identifier (10) 6,71 NOP 146
logical instructions 131 NR, self-check 334
logical record length 172 null operation 146

NUMB (.EQUATE parameter) 66

Index 375

NUMB (.SPACE parameter) 111
numeric fiii character 54
numeric only field 105
numeric shift field 104

op code
OPEN

315
173,193

open a data set
communications 166
diskette 173
printer 193

open keyboard/display 210
operator detach routine (CFPERATT)
OPTION (.START parameter) 52
OR, binary 135
ORO 73
ordered key data set 73
ORG (.START parameter) 52

281

output translate table, self-check
OUTTAB (.SElFCHK parameter)
overlapped extent check 73

115, 345
115

overlapped fields 227
overlapped I/O 176

page size (for SCS conversion) 75
partial overlay 234, 237
partition control area 8
partition subroutine stack 20, 80
partition work area 12
partitions 6
pass EBCDIC to keyboard 209
Pass scan code to keyboard 209
PBl (.DATASET parameter) 73
PB2 (.DATASET parameter) 74
perform keyboard function 209
PGSIZ (.DATASET parameter) 75
physical buffer 36, 73, 173
PIC (. FMTFlD parameter) 85
PIC (.SFMTFlD parameter) 102
picture definition 84, 102
PlUNAME (.COMM parameter) 70
PNAM (.START parameter) 52
pointer I/O 37, 73
pointer I/O, for printer 190
pointers 5

screen position pointers 89
subroutine stack pointer 20

POP 198
position current record pointer 177
positions remaining in field 23
POSN 177

376

PRBA 54, 196
PRBA U<BCRT parameter) 54
PREFIX (.DC parameter) 59
previous record buffer 54, 196
PRMT (.SFMTPMT parameter) 97
PRMT (.SYSTAB parameter) 79
PROD (.SElFCHK parameter) 116
product table 116
product table, self-check 333, 337
program check error handler (CFPGMCHK)
program check errors 269, 282
prompt system table 79
prompts 29

fixed position prompts 54, 98
standard position prompts 97

quick release data set 73

read
a table entry 239
communications 168
diskette 182
magnetic stripe reader 210

READ 182
READMG 210
REBF 232
receive communications record 168
RECFM ('COMM parameter) 70
RECl 172
RECl (.COMM parameter) 69
RECl (.DATASET parameter) 74
record length 69, 74
REG (.EQUATE parameter) 66
registers 8

binary registers 9
system registers 9, 268, 286

decimal registers 10
declare a register 65
double binary registers 9

relational compare, binary 155
relational compare, decimal 156
relative record number 180
release a data set 175
release character and edit fields 207
REPFLD 212
replace field on screen 212
rerun mode 27
rerun/ display mode 27
RESCAl 197
reset external status bit 198
RESMXT 199

282

resource allocation table 6, 250
restricted external status indicator 287
RESUME 197
resume and call subroutine 197
RETEXT 199
retext and resume 199
RETURN 148
return and enable external status 199
returning (RG) exits 34, 90, 93
RG 34, 90, 93, 292
RGlT (.START parameter) 53
right adjust, blank fill field 109
right adjust, zero fill field 109
right-to-Ieft field 109
Rl 136
rotate instructions, binary 135
rotate left, binary 136
rotate right, binary 136
RR 136
RSTMG 212
RTIMER 213
RXORW 162

SCREEN (.KBCRT parameter) 56
screen attributes 90, 208
screen format 29, 89, 296

secondary screen format 33.
screen format control string 30, 93, 195, 296
screen position pointer 89, 92
SCS control characters 321
SCS conversion data set 40, 73, 180, 182, 188

for diskette 40
SEARCH 184
search a table 243
search resource allocation table 250
secondary format 96
secondary screen format 33
secure diskette 172, 173
secure volume processor (CFSECVOl) 283
security ID 69
self-check 112
self-check algorithm 43
self-check computations
self-check digit 248
self-check field 41
self-check modulus 42
self-check register 41
sequential search 185
sequential read data set
sequential update data set
sequential write data set
set bits with mask 251

329

71
36

71

set graphics error action (for SCS conversion) 75
set indicators 251
SETOFF 251
SETON 251

SFMT (.SYSTAB parameter) 80
SGEA (.DATASET parameter) 75
share data set, for printer 191
share data sets 40
shared tables 246
shift instructions, decimal 141
shift left, binary 136
shift left, blank fill, decimal 142
shift left, zero fill, decimal 142
shift right and round, decimal 144
shift right, binary 137
shift right, pad blank, decimal
shift right, retain sign, decimal
shift 1 to blank register, decimal
shift/ rotate instructions, binary
short branch instructions 154
SIDH (.COMM parameter) 69
SIDl (.COMM parameter) 69
sign control position 11
signed numeric field 105

143
143

142
135

skip on AND/exclusive OR mask 161
skip on bit mask 160
skip on constant compare 158
SKIP WHilE 163
Sl 136, 142
SlS 142
SOFF 251
software error mode 204
SON 251
special characters only 106
special characters shift field 105
special verify status 91
SR 137, 142
SRAT 250
SRR 144
SRS 143
STACK (.SYSTAB parameter) 80
stack pointer 20
standard load processor 284
standard position prompt 97
statement symbols 14
status line 22

non-display of the status line 23
storage structures 59
store

binary register 219
constant 221
decimal register 219

store field 31, 101
subfield definition (PIC)
subfields 84
subroutine instructions
subroutine stack 80
subroutines 19

calls 20, 147

102

147

calls through table 149
partit!on subroutine stack 20
returns 20

subtract, binary 133
subtract, decimal 139

Index 377

symbolic labels 119 transmit communications record 169
symbols 14 TRAP 349

statement symbols 16 TRAP (.KBCRT parameter) 54
syntax symbols 15 TREAD 168

SYSACLC 297 TRT 253
SYSLCK 252 TIERM 168
system control block 5 TUNLCK 247

pointers 5 TWA IT 167
system indicators 8, 267 TWRT 169
system registers 9, 268, 286 TYPE (.COMM parameter) 68
system table 17, 79, 238 TYPE (.DATASET parameter) 71

for edit formats 80 TYPE (.DC parameter) 58
for main storage duplication 80 TYPE (.FMTFLD parameter) 83
for prompts 79
for screen formats 80

SYSUNL 252

unconditional branch 145
unlock system 252
update mode 26

table (data table)
argument 238
control statements 76
index 238
system table 238 V= 134

tables 17 variable leveling 59
data tables 18 verify correction keystroke counter 270
label tables 18 verify mismatch error 27
system tables 17 verify mode 27

TBBS 243 verify/copy option 175
TBDL 240 vertical tab table 69
TBFH 244 volume 10 236
TBFL 244 VTAB (.COMM parameter) 69
TBFX 245
TBIN 241
TBRD 239
TBRL 239
TBWE 241 WAIT 176, 194
TBWT 242 wait for I/O completion
TCLOZ 168 communications 167
TCTL 166 diskette 176
terminate communications session 168 printer 194
test binary register for 0 150 weighting factors 113
test data set indicator 153 weights, self-check 333
test decimal register 151 WFMCRT 233
test format number 152 WGTS (.SELFCHK parameter) 113
test indicator 153 WRBF 232
test indicator and reset 154 write
time slice factor 53 a table entry 239
TINIT 166 communications 169
TLCK 246 diskette 182
TLOC (.DATASET parameter) 75 write delete 182
TMSL (.START parameter) 53 write insert 183
TOPEN 166 write-protect 175
TRANS 253 WRT 182
TRANS (.DATASET parameter) 74
translate and test 252
translate HDRl label 73
translate table 74, 252

378

WRTI 183
WRTS 182

X= 135

zone 11
ZONE 144
zone modification, decimal 144

Index 379

380

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

IBM may use end distribute any of the information you IUPPly in eny WIIV
it believes appropriate without incurring MY obligation what.... . You may.
of courte. continue to use the infonMtion you .,ppty.

• No postege MC8I18ry if mailed in the U.S.A.

Inaccurate or misl_ding information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

NMne ______________________________________ __

Add

~~ o II)
Q,CD
c: 3
~ C'"
:om
CD ~

-~ CD ~
~ 0
CD cc
~ iiJ
CD 3
3:
CII
::l
c:
!!.

(I)

[1
.:.,
~

8

SC21-7790

Fold and tape Please do not staple

IIIIII
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Product I nformation Development
Dept. 997
11400 Burnet Road
Austin, Texas 78758

Please do not staple

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10501
U.S.A.
(I nternational)

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Fold and tape

I
I
n
S

SC21 -7790

==-== - ----- ---- ----- - - ---=="'=":'= II

Intemltion" Buoin ... Machines Co,po,"tion

Gene, .. Syltlms Diyision
4111 Northsidl PorkwlY N.W.
P.O. Box 2150
Adina, G_gia 30301
(U.S.A. only)

Gene .. 1 ausin ... G,oup/lnto" .. tionol
44 South Broodway
Whit. Plains, Now York 10601
U.S.A.
IInamatiONl)

• Ii
3
a
~

