IBM Reference Manual

7030 Data Processing System

=

IB

Reference Manual

7030 Data Processing System

A22 6530 2

o
N
o
&~
b
E:

0€0Z4 wal

W'S'N Ul pasug

z-0€59-ZeV

N
‘International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N.Y.

EM Reference Manual

7030 Data Processing System

Major REvVIsiON August 1961

This edition, Form A22-6530-2, obsoletes Form A22-6530-1. Major
changes occur on pages 33, 34, 66, 67, 83, 89, 91, 121, 125, 134,
135, 136, 141 through 148, and 157 through 162.

This description of the 1M 7030 Data Processing System
is subject to modification by engineering developments.

© 1960 by International Business Machines Corporation

IBM 7030 DATA PROCESSING SYSTEM

System Organization ... 6
Storage UNItS ..o 7
Input and OULPUL ..o 7
Central Processing Unit 8
INStruction St 10
FEALUITES .ovieeeiieieieeieere s te et aes e sae bbb e et sien 14
OPERAND DESIGNATION
INFORMATION FORMAT ...o.coooviiiiiiiiic ittt 16
Data FOIMAL ...oooooiiiiiiiiie e 16
Control FOMAL ..ot 19
OPERAND ADDRESScccooivmtiariiiiruesriatesieenneenieesasenisissasnasanssnanees 19
INDEXING ..iiiiiuiiiiieie i oe ettt ettt en ettt s
Address Modificationcocooivieiiieiiinii
Progressive Indexing ...,
INDEX ARITHMETIC
Index Indicators

Direct Index Arithmetic ...
Immediate Index Arithmetic ...

Refill OPerations ...
Count and Branch Operations ... 26
Named Index Loading ..., 27
Multiple Indexing ..o 27
Indirect AAressing ... 28
ADDRESS INSERTIONcccooiiviiiiiniaiiicinenie e .. 29
DATA TRANSMISSIONccooooiiiiiiiiiiiienreeicnesnice s ... 30
DATA RESET 31
ADDRESS MONITORINGc...c. 31
Definition of Monitored Area 81
Action of Address Monitoring Signal ... 31
Addresses MONItOTed ..o 32
STORAGE ASSIGNMENTocooviiveriaeerieraiertiieaceareeatentateenenesineesmnesseeneas 33
YO oo et e e 33
Special ReGIStETScoo.oooiiiiiii e 34
Index REGISLErSoccooooiriiioriiiciciii e, 38
Main Core SLOTAZE ... 38

INSTRUCTION SEQUENCING

NORMAL SEQUENTIAL OPERATION.......ccocooiiiviimiimiiininiscnnnisenes 39
Branching ... 39
Unconditional Branching ..., 39
Indicator Branching ... 40
Index Branching 40
Bit Branching41
Storage of Instruction Counter . 41

PROGRAM INTERRUPTION SYSTEMcoooooiiiiiniiiiinninieneiernnne 42
Indicator ReGiSteT ... 42
Indicator LiSt ..o 43
Definitions of Indicators ... 44
Mask REGISLET ..o st e 48
Interruption Address Register ... 48

EXECUTION INSTRUCTIONS 49

SYSTEM ALERTS ...ccooooveiiiiiciieiinc e, .. 50
Independent Treatment of Alerts . .. 50
.............. 51

Program Resumption ...

SYSTEM STATES
Initial Program Loading ... 53
Initial Power On ... 53

Systems Status Lights ... 54

Contents

VARIABLE FIELD-LENGTH DATA HANDLING

INTEGER ARITHMETIC OPERATIONScoccoovivmmrmiiennncienccns .. b5
FOIMAL ..coooeviviveveceeeeaee e .. b6
Indicatorscoceeonnee .. b8
Operations 59

RADIX CONVERSION OPERATIONS ...ooovoviciriiiniiniicinnnnincinnse e
Formatcooooivieennneeneennnnn
TNAICALOTS oot caere ettt n et ss e
OPETALIONS ...oooviceniinrcisrec et

CONNECTIVE OPERATIONS
FOIMAL .oooiiiiiiiiiri ettt oe e
Counts and Indicators

CONNECLIVES ... vveeieiieietviesraercreeeree et ebe e eere st ece et e saesssaoan e
FLOATING-POINT ARITHMETIC

Data Format e 78

Instruction FOXMatcccocoiiiinniieiieiiies cvireenste e 80

Single- and Double-Precision Arithmetic ... 80

NOrmalizatiOnccoooovoviiiiriiie e 81

Sign CONLIOLoo.oiiiiiiiiiiies e e e 81

Data Flag Bits ... 82

Zero Definitionocoovoiioiiire e 82

Range Definition and Handling ... 83

Noisy Mode

Indicators

Operations

CAPACILY <oovoveei e 104
Reading and Writing ... 106
Addressing of Input-Output Instructions 110
Input-Output Instruction Indicators 111
TNSETUCHIONSvvvitieviieiee e ee et e et eeaatesbasnesaeate e eians 119
Handling of Control Word ... 123
Initial Program Loading ... 125
Handling of Data Errors ... 127

EXTERNAL UNITS

Standard Features of Input-Output Units 129
1BM 729 1v Magnetic Tape Unit ..., 130
1BM 7508 Card Reader
1BM 7553 Card Punch
1BM 1403-2 Printer,

1BM 7152 Operator’s Console ... 149

HiGH-SPEED DisK SYSTEM

1M 7612 Disk Synchronizer and Storage Unit 157
OPErations160
Automatic Access Elimination ... 162
APPENDIX
Instruction FOrmatscccooiviiiviniiiiiee e .. 163
List of INdIicatorscccccoovviiiiiiciiiiiieee e, 164
Storage ASSIENIMENL ... 165
Character Codescoccoiiiiiiiiioii e 166
Alphabetical Listing of Operation Codes 167
Complete Operation and Modifier List ... 168
Powers of TWO ..o 170

1. Core Stora

. Exchange
Power: Distribution R
Disk Sync. . ‘Magnetic Tope Coi
Disk Storage . Card Reader Control
Magnetic Tape Units Operators’ Console

Printer

18M 7030 Data Processing System

IBM 7030 Data Processing System

The 18Bm 7030 Data Processing System substantially in-
creases over-all performance on large technical com-
puting problems. It solves important problems that
earlier computers do not have the capacity and speed
to complete in a reasonable time. The power and gen-
eral-purpose design of the 7030 also permit the effi-
cient solution of large data-processing and business-
oriented problems, as well as a more rapid completion
of many lesser problems.

Impressive speed increases have been realized in the
design of new components and circuits in the 7030
system. To match and fully utilize this technological
development, a high degree of overlapped operation,
new input-output facilities, a more powerful instruc-
tion set, and other logical organization improvements
have been made to reach the very high over-all per-
formance of the system.

For example, the 7080 is equipped with the high-
speed 18BM 7302 Core Storage units. These units, when
used with the 7030, will contain 16,384 words of 72
bits each. Several storage units can be cycled con-
currently. Results produced can be placed in storage
and one or more new instructions and operands can
be fetched from storage, while the arithmetic unit is
busy executing an instruction with data already in
its registers. Indexing of instructions is carried on in
a separate index arithmetic unit; some instructions
can even be executed entirely in that unit while a pre-
vious operation is being completed in the main arith-
metic section. Automatic interlocks and safeguards ad-
just the flow of information and assure that the pro-
gram is executed correctly.

Because of the overlapped operation of many parts
of the system, it is quite difficult to predict the exact
speed at which a given program will be executed. The
duration of each operation depends on the data, on
the availability of various units, and on the instruc-
tions which preceded it. While a time can be given
for each operation alone, in terms of a formula or as
an average, the over-all time is not the sum of these
times. Representative time estimates for a problem
can only be obtained by simulating the many de-
tailed time relationships in terms of that program or
by actually running it. The computer is effective in
adjusting the flow of information between various
units during the execution of a program. Thus the
programmer is relieved of the burden of optimizing
his program.

Another factor contributing to high performance is
the efficient handling of input-output and external
devices. Extensive buffering and multiplexing facili-

ties built into the 7030 exchange and associated chan-
nels permit the simultaneous operation of many in-
put-output units together with computation. Eight
input-output channels with an aggregate rate of about
6 million bits per second are provided with the ex-
change. These rates insure that high computational
speeds can be maintained when dealing with data that
cannot all be held in internal storage.

The input-output system is flexible enough so that
almost any kind of device furnishing or accepting
digital information can be connected to the computer.

Large high-speed magnetic disk storage units, each
with multi-million word capacity, are available to
store large data arrays and read or write at rates of a
few microseconds per word.

The instruction set which has been developed for
this system exhibits new and powerful features. As a
result, fewer instructions are usually required to write
a given program. Moreover, most of the instructions
used in the inner loops of floating point arithmetic
problems will be only half a word, or 32 bits, long.
Fewer and shorter instructions mean less storage space
for programs, fewer accesses to core storage, and fewer
instructions executed. All of this contributes to high
performance. Fewer instructions written also means
less programming effort.

Much of the emphasis in the instruction set is on
efficient floating point, indexing, and branching in-
structions, which form the heart of a great many pro-
grams in the technical field. It is equally important,
though, to have available good instructions for house-
keeping functions, for editing input-output data, and
tor processing data other than floating point numbers.

The use of solid-state components throughout makes
the system inherently reliable. Automatic error de-
tection, together with means for localizing faults and
other maintenance aids, serves to reduce the time re-
quired to identify and repair those machine malfunc-
tions which do arise. Automatic error correction is
provided in areas where this is expected to improve
performance materially. Automatic checking will pro-
vide continuous monitoring to insure that a reliable
machine continues to be reliable. By reducing rerun
time, checking enhances computer performance.

Another contribution to performance is made by
features to improve operating techniques. Routine
operating functions are, as much as possible, placed
under direct control of the stored program. Input-
output units require 2 minimum of manual set-up.
Control panels are omitted entirely; all rearrangement
and control of data is under the more general and

System Organization 5

flexible control of the stored program. Multiple in-
put-output channels, buffering, and multiprogram-
ming facilities make it possible to do independent in-
put-output data conversion efficiently on units at-
tached to the computer without significantly increasing
the computing time on the major job. Physical switch-
ing of units or manual transfer of tape reels is thus
avoided.

The console is separated from the main computer
and becomes an optional input-output device. The
keyboard, switches, lights, digital display, and console
printer are all subject to programmed interpretation
and control. The interpretive program may endow
these devices with sophisticated control functions or
may ignore them altogether. This interpretive ap-
proach to the console gives exceptional flexibility and
makes possible console facilities which will not be-
come inadequate as new operating techniques are
developed. The use of programmed definition of con-
sole functions also permits protective and logging
functions which would be quite uneconomical in hard-
ware.

These facilities are provided to permit close com-

Magnetic Core Storage

munication between man and machine where human
intervention and supervision is desired. These facili-
ties are included because planned intervention and
supervision can often bring a problem to completion
more quickly than computation alone. Of course,
matching a high performance computer directly to
the thinking and reaction times of a human user is
very costly in wasted machine power. With facilities
provided for multiprogramming, however, the eco-
nomics of human intervention may be radically
changed. With two or more programs ready for op-
eration, the machine need not wait idly while the

‘user thinks. All console facilities are designed to take

advantage of the intervention techniques made pos-
sible by multiprogramming.

System Organization

The basic system is composed of a central processing
unit, one or more core storage units, an exchange, and
input-output devices.

Information moves between the input-output de-

i

i

]

16,384 16,384 16,384 16,384
Words Words Words J- - - Words
2.18 usec. 2.18 usec. 2,18 usec 2.18 usec.

}

i

Storage Bus Control

- ‘ Central Processing Unlit
Disk I]
Synchro- i l
nizer || Instruction Look- |
l Processor Ahead I
| [
Disk Storage I |
2,097,152 Words e ndex I l
125,000 Words/sec. | egisters = yo |
rithmetic
l Logical =
II Unit |
— _ —__
Exchange |

|

I
Figure 1. Typical 18M 7030 System

6 IBM 7030

iR

Mag 1000 cpm
]&%e,s 600 Ipm Card Reader
Printer !

250 cpm
Card Punch

Console and
Console Printer|

vices and the core storage under control of the ex-
change. The central processing unit consists of the
registers, arithmetic devices, and control circuits neces-
sary for performing operations upon data taken from
core storage. The central processing unit is con-
trolled by a succession of instructions which them-
selves come from core storage, and a special set of
registers and controls permits the instructions to be
obtained and modified at high speed.

A typical system configuration is shown in Figure 1.

Storage Units

Core Storage

The computing system uses 1M 7302 Core Storage
units with a read-write cycle time of 2.18 micro-
seconds. A word consists of 64 information bits and 8
non-addressable redundancy bits. Storage and bus ac-
tion is checked, and any single-bit errors are automa-
tically corrected without slowing the speed of opera-
tion.

The address space in instructions provides for ad-
dressing directly any of 2'¢ (262,144) word locations
on any operations. Storage addresses are numbered
from 0 to 2'8—1 consecutively, although addresses 0
to 31 are reserved for index words and other special
registers.

Each unit of storage consists of 16,584 (2*4) words.
A typical system will contain several such units with
each storage unit operating independently. In sys-
tems with two or more units, several storage references
may be in process at the same time. In order that ad-
dressing may take advantage of this, successive ad-
dresses are distributed among different units. When a
system includes two units, successive addresses alter-
nate between the two. When a system includes four
or more units, successive addresses are distributed
within groups of four units.

Index Word Storage

The number of index registers used in the 7030 sys-
tem is 16. A separate fast magnetic core storage with a
read-out cycle of .4 ps is used for index words. The
index words have addresses 16 to 31. These registers
are located in the central processing unit for use by
the instruction processor.

Special Registers

Many of the special registers of the machine are di-
rectly addressable to lend increased programming and
operating flexibility to the system. Some of these reg-

isters are transistor registers; others are in a fast mag-
netic core storage. These special registers are assigned
addresses 1 to 15.

Input and Output

Input to the system passes from the input devices to
core storage through the exchange. The exchange as-
sembles complete 64-bit words from the flow of input
information and stores the assembled words in core
storage locations without tying up the central process-
ing unit. The cpu specifies the starting location and
the number of input words to be read. While the cpu
proceeds with computation, the exchange completes
the input operation and signals the cru when the
transmission is finished.

The same exchange operates similarly for output,
fetching core storage words and disassembling them
for the output devices independently of the cru. Ex-
ternal storage devices, such as tapes, may be operated
via the exchange as if they were input and output
umnits.

The exchange can operate eight independent input-
output units. This eight-channel exchange can be en-
larged by adding other eight-channel groups. The ex-
change can address up to 32 channels. Each of the
exchange channels has a nominal information rate of
500,000 bits per second. However, for special require-
ments, higher information rates are possible. The ex-
change as a whole can reach a peak rate of 100,000
words or 6,400,000 bits per second.

A wide variety of input-output units can be oper-
ated by the exchange. These include card readers and
punches, printers, magnetic tape units, and operator’s
consoles. Most control units permit only one input-
output device to be attached to a channel. The mag-
netic tape control unit, however, is designed to allow
up to eight tape units to be attached to a single ex-
change channel. When this is done, of course, only
one of these units can be operated at a time.

Many of the problems to be solved by the 7030 re-
quire auxiliary storage capacity and transfer rates in
excess of those available in magnetic tape units to
fully utilize the very high computational speeds of the
7030 system. To take care of this requirement, a
large volume magnetic disk storage unit is available,
capable of writing a full 64-bit word each 8 micro-
seconds. Each disk unit has a capacity of 2,097,152
words. One or more disk units may be attached di-
rectly to the system by means of a disk synchronizer
unit which functions like the exchange to control the
flow of information to and from the disk unit by exe-

System Organization 7

cuting instructions specified by the central processing
unit.

Using these disk units, large volumes of information
can be continuously and rapidly transferred in and
out of core storage without affecting the rates of any
other input-output operations being carried on
through the exchange or noticeably slowing computa-
tion in the cpu.

Central Processing Unit

The central processing unit consists basically of three
functional units: the instruction processor, look-ahead,
and the arithmetic and logical unit. The central proc-
essing unit performs arithmetic and logical operations
upon operands taken from storage. Operations are
specified one at a time by instructions, which are
also taken from storage. Each instruction fundamen-
tally specifies an operation and an operand. The
operand specification is made up of an address and
an index word address. Part of the index word con-
tents are added to the address to obtain an effective
address. The effective address actually designates the
operand used. The additions needed to derive the
effective address and to modify index words are per-
formed in the instruction processor by an independent
index arithmetic unit.

Instruction Processor

Since the arithmetic and logical unit operates very
rapidly, it needs to receive data and decoded and
modified instructions at high speed. The decoding
and modifying are performed in the instruction proc-
essor, using the index arithmetic unit, while the arith-
metic and logical unit is executing some preceding
instruction. Several types of instructions can actually
be executed in the instruction processor without re-
quiring the use or time of the main arithmetic unit.
The index arithmetic unit consists of registers for
holding instructions to be modified and the index
words that are used in the modification. When index
words themselves are modified, some of these regis-
ters also hold the operand data. The possible modi-
fications to index registers include loading, storing,
adding, and comparing. The index arithmetic unit
includes gates for selecting the necessary fields in in-
dex and instruction words and a 24-bit algebraic
adder. The index words themselves are addressable as
locations 16 to 31 in a special high-speed core storage.
An instruction may be one word or one-half word
in length. Full and halflength instructions can be
intermixed without regard to word boundaries.

8 IBM 7030

Instructions are taken in succession under control
of an instruction counter. Alteration of the succes-
sion of instructions is possible by branching opera-
tions, which can be controlled by a wide variety of
conditions. Automatic interruption of the normal
sequence can also be caused by many conditions. The
conditions for interruption and control of branching
are represented by bits in an indicator register. The
interruption system also includes a mask register for
controlling interruption and a base address register
for selecting suitable alternate programs. When
needed, the address of the input or output unit caus-
ing an interruption can be read from a channel ad-
dress register which can only be set up by the ex-
change.

The instruction counter contents can be stored by
a specific operation. The indicator, mask, interrup-
tion address and unit address registers are assigned
certain of the first sixteen addresses.

The interpretation and execution of instructions
is also controlled by an address monitoring system.
This provides two boundary registers which define a
protected storage region. The boundary registers are
also assigned certain of the first sixteen addresses.

Special control bits are provided for signalling
other computers in multi-computer systems and for
causing the machine to simulate malfunctions. These
bits lie in certain of the first sixteen word addresses.
Others of these special addresses are used for a time
clock and an interval timer whose values are stored
in a high-speed core storage.

Look-Ahead

The parallelism or overlap in the modification and
execution of instructions is extended to include fur-
ther overlapping of the fetching of instructions and
data from core storage. In the previous description of
the core storage units, mention was made of the fact
that several core storage units can be referenced for
instructions and data simultaneously. The device
which coordinates and controls the overlapping of
instruction processing is known as the Look-Ahead.
When the instruction processor has finished de-
coding and modifying an instruction, a fetch request
is made to core storage for the data associated with
this instruction. The instruction and its data are then
loaded into one of four look-ahead levels, preparatory
to being executed in turn by the arithmetic and logi-
cal unit. The arithmetic and logical unit operates
very rapidly, much more rapidly than single instruc-
tions could be fetched from the relatively slow stor-
age units. The instruction processor and look-ahead
function together to maintain a reservoir of pre-proc-
essed instructions together with their data to allow

the arithmetic and logical unit to operate at its maxi-
mum speed. From this point of view, look-ahead acts
as a virtual storage for the arithmetic unit, effectively
cutting the core storage reference rate to a small frac-
tion of the actual time required for sequential storage
accesses.

If the result of an arithmetic operation is to be re-
turned to storage, it is first placed in look-ahead, from
whence it returns to storage. Frequently, subsequent
instructions will require data that are already in look-
ahead, so that data references are eliminated in these
cases.

In spite of the internal complexities, the overlap-
ping of fetching, modification, and execution of in-
structions as well as the simultaneous fetching and
storing of data does not place any constraints on the
programmer. The only external difference in system
operation due to look-ahead is a higher operation
speed. The look-ahead unit takes care of the usual
conditions which overlapping causes, and makes the
machine appear as if it were dealing with only one
instruction at a time.

Arithmetic Unit

The arithmetic unit consists of an apparatus for per-
forming floating point arithmetic upon a data word
in parallel and a closely associated mechanism for per-
forming arithmetic and logical functions upon arbi-
trary fields of bits. In the latter case, the bits may be
operated upon as individual entities or as numbers
encoded in binary or decimal.

To or from Storage

by by

For simplicity, the arithmetic unit may be consid-
ered to be composed of four one-word registers and a
short register. This conceptual structure is shown in
Figure 2, where the full-length registers are labeled
A, B, C, and D and the short register is labeled S. The
registers marked A and B constitute the left and right
halves of the accumulator. The registers marked C
and D serve as storage registers, receiving words from
core storage via look-ahead and assembling results
to be placed in storage again by way of look-ahead.
The short register stores the accumulator sign bit,
data flag bits, and zone bits, collectively called the
accumulator sign byte.

In floating point mMuLTIPLY and ADD, one factor
comes from storage to register C while the other comes
from the factor register (FT) to register D. The two
are multiplied and added to the accumulator con-
tents. In ordinary multiplication, one factor comes
from storage to C and the other is taken from A to D.
The product is developed in the cleared accumulator.

In variable field length operations, the core storage
word or words containing the data are placed in C
and D. The data are selected a few bits at a time
and processed. The result either replaces the accumu-
lator contents, or replaces selected bits of C and D
whose contents are then returned to core storage. Bi-
nary multiplication and division data are stepped
into the parallel mechanism a few bits at a time, then
the actual operation is performed in parallel.

In division, the quotient appears in the accumula-
tor and the remainder is developed in C and D from
whence it returns to the remainder register (RR). Reg-

—— ———
83] 63
= (
: Yy
l ADDER
| !
| !
i /
L7
I s
| 7
1#
0r a 63!) : 63J 0r : J7
i Pt i1
Word 8 Word 9 Word 10

Figure 2. Conceptual Register Organization

System Organization 9

isters A, B, FT, RR, and the sign byte register are as-
signed certain of the first sixteen addresses. Registers
C and D always hold copies of the contents of storage
words or of FT or RR and thus need no addresses. In
some operations, other registers are used in the devel-
oping of results at high speeds, but the operation is
always equivalent to that described above.

The transit register, a full-word core location, is
used in some automatic subroutine entries. Two
seven-bit registers are used in connective operations
to hold bit counts developed upon the results. These,
the all-ones counter and left-zeros counter, are also
assigned certain of the first sixteen addresses.

Instruction Set

The instruction set is summarized in this section. De-
tails will be found in the appropriate sections.

Classes of Operations

The operations available may be divided into these
broad categories:

Floating point arithmetic operations
Integer arithmetic operations

Radix conversion operations
Connective operations

Index arithmetic operations
Branching operations

Transmission operations
Input-output operations
Miscellaneous operations

Summary of Data Arithmetic Operations

The arithmetic instruction set includes the elementary
operations LOAD, ADD, STORE, MULTIPLY, and DIVIDE.
Modifier bits are available to control the sign of the
data. Thus the operations “subtract” or “add abso-
lute” are obtained by use of sign modifiers with an
ADD instruction, and are not provided as separate
operations. These same modifiers permit controlling
the sign of a number to be loaded, stored, multiplied,
or divided.

A convenient feature of the MULTIPLY operation is
that one of the factors is taken from the accumulator
rather than a separate register and, therefore, may be
the result of previous computation. Similarly, pivipE
places the quotient in the accumulator, thus making
it directly available for further operations.

Extensions of the basic set of arithmetic operations
permit adding and counting in storage, rounding, cu-

10 IBM 7030

mulative multiplication, comparison, and other varia-
tions of the standard add operation.

One of these variations is a new add-type operation,
ADD TO MAGNITUDE, that is like App when numbers of
like signs are involved. With numbers of unlike signs,
the ADD TO MAGNITUDE operation is different from a
subtraction in that it does not allow the sign of the
augend to change. Instead, the result is set to zero.
This operation is useful when dealing with non-nega-
tive numbers or computing with discontinuous rates.

Most arithmetic operations are available in the float-
ing point mode as well as the fixed point or integer
mode. The floating point set includes additional in-
structions to handle portions of a floating point num-
ber and multiple precision numbers with ease. A float-
ing point square root is provided.

Floating Point Arithmetic

Floating point arithmetic is done at very high speed
in parallel binary arithmetic using a specialized data
format wherein numbers are represented as a signed
exponent, = E (a power of 2), and a signed fraction,
= F, which together occupy a full 64-bit word.

The emphasis in the design of the floating point
arithmetic is on high-speed computation of large
mathematical problems. Simplification of the floating
point instruction set is achieved through full utiliza-
tion of the uniform nature of the floating point data.
Two floating point instructions may be stored per
word which results in an increase in storage efficiency
and reduces the number of storage accesses.

Floating point instructions contain sign modifiers
which permit any desired combination of operand
signs. They also contain a normalization modifier
which specifies the choice between normalized and un-
normalized operation.

The 48-bit fraction makes it possible to compute in
single precision mode for a number of problems which
would have to be done in double precision on earlier
computers. When required, however, the floating
point instruction set contains a number of operations
which provide double precision results. These opera-
tions have been designed to facilitate the program-
ming of double or multiple precision operations.

In order to simplify significance studies, a mode of
operation called “noisy mode” is provided in which
results are altered in a specified fashion. Consecutive
runs of the same problem in standard and noisy mode
permit an estimate of the significance of the results to
be obtained.

Floating point numbers cover a range between the
positive and negative value of the fraction having the
maximum exponent. Since the exponent range is
finite, a discontinuity exists between the positive and

negative values of the fraction having minimum ex-
ponent. Included in this range is the number zero. A
control or flag bit has been incorporated in the ex-
ponent field to provide a straightforward control of
data which exceeds the exponent range or falls within
the range of discontinuity.

Integer Arithmetic

The class of integer arithmetic operations is designed
to facilitate all data arithmetic on other than the
specialized floating point numbers. The emphasis here
is on versatility and economy of storage. Arithmetic
may be performed directly in either decimal or binary
radix. Individual numbers or fields, may be of any
length, from 1 to 64 bits. Fields of different lengths
may be assigned to adjacent locations in core storage,
even if this means that a field lies partly in one word
and partly in the next. Each field may be addressed
directly by specifying its position and length in the in-
struction; the computer takes care of selecting the
words required and altering only the desired informa-
tion. Since the field length is explicitly stated in each
instruction, rather than being implied by the data or
by previous length-setting instructions, there is no re-
striction on the coding of variable field length data.

Individual characters, or bytes, in a field may also
be varied in length. Thus a decimal digit may be com-
pactly represented by a binary code of 4 bits, or it may
be expanded to 6 or more bits when intermixed with
alphabetic information. Decimal arithmetic may be
performed directly on a decimal number, regardless of
how many bits are used to encode a digit. Because
decimal digits, alphabetic characters, and other single
symbols may be encoded several different ways, the
term byte is introduced to denote a single group of
bits processed together, regardless of the meaning. A
field may consist of one or more bytes.

The name integer arithmetic derives from the fact
that in multiplication and division the results are
normally aligned as if the numbers were integers. It
is possible, though, to specify that numbers be offset so
as to obtain any desired alignment of the radix point.
An offset can be specified in every instruction, and
there is no need for separate instructions to shift the
contents of the accumulator.

Numeric data may be signed or unsigned. For un-
signed data, the sign is simply omitted in storage, thus
saving space and avoiding the task of assigning signs
where there are none to begin with. Unsigned num-
bers are treated arithmetically as if they were positive.

A significant feature of the integer pIVIDE operation
is that it will produce meaningful results provided
the magnitudes of the dividend and the divisor fall

within the bounds of numbers generally acceptable to
the arithmetic unit. The only and obvious exception
is a zero divisor. This greater freedom eliminates
much of the scaling previously required before a pIviDE
instruction could be accepted.

Alphabetic and other non-numeric fields of various
lengths may be handled by integer arithmetic opera-
tions as if they were unsigned binary numbers, re-
gardless of the character code or the number of bits
used for each character. In fact, there is no fixed char-
acter code built into the computer. Alphameric high-
low comparisons are made by a simple binary subtrac-
tion of two fields. The only requirement is that the
binary numbers representing each character fall into
the comparing sequence desired for the application.
If the code used for input or output does not con-
form to this comparing requirement, special provisions
facilitate translating the code to any other form by
programming a table look-up.

Another use for the integer arithmetic operation is
to perform general arithmetic on portions of floating
point words, instruction words, or index words. The
floating point and index arithmetic instruction classes
do contain addition and comparison instructions to
cover the most frequent cases; the integer operations
provide a complete set for all purposes.

An operation is provided that causes an automatic
entry to a subroutine. A field of this instruction may
be used to distinguish up to 128 pseudo-operations.

All integer operations are available in either deci-
mal or binary form by setting one modifier bit. Deci-
mal multiplication and division, however, are not
built into the computer directly; their operation codes
are instead used to cause an automatic entry to a sub-
routine which can take advantage of high-speed radix
conversion and binary multiplication or division. Deci-
mal multiplication and division are thus as convenient
to program as if they had been built in, and they are
faster this way.

The integer instruction set is similar to the floating
point set; most of the operations in both sets have the
same names and analogous meanings.

Radix Conversion

A group of radix conversion operations is provided to
facilitate the use of decimal input and output while
retaining the advantages of binary operation within
the machine. These operations are also used in im-
plementing the decimal multiplication and division
pseudo-operations mentioned in the preceding section.

Several operations are provided to allow a variety
of locations for the operand and the result. A field
from storage may be converted and placed in either

System Organization 11

the accumulator or the transit register. Alternatively,
a field from the accumulator may be converted and
the result returned to the accumulator. In all these
operations the operand is an integer, and it may be
converted either from binary to decimal or from deci-
mal to binary.

Connectives

Instructions which logically combine bits by anp, or,
and EXCLUSIVE OR have been included in earlier com-
puters. These and many other non-arithmetic data
handling operations are here replaced in a simple and
orderly fashion by connective operations which pro-
vide many logical facilities not previously available.
The operations are called CONNECT, CONNECT TO MEM-
ORY, and CONNECT FOR TEST.

Each connective operation specifies a storage field
of any length from 1 to 64 bits, as in integer arith-
metic. Each bit in the storage field is logically com-
bined with a corresponding bit in the accumulator.
The result replaces the accumulator bit in CONNECT
and the storage bit in coNNECT TO MEMORY. These op-
erations make available certain tests and counts of
zero and one bits. A new operation, CONNECT FOR TEST,
has been added, which is analogous to compare. This
instruction allows fields to be tested and the corre-
sponding counts to be made available without alter-
ing the content of either operand.

There are sixteen possible ways in which to com-
bine or connect two bits. Each of these connectives
can be specified with each of the three connective op-
erations. Besides the connectives AND, OR, and EXCLU-
SIVE OR, there are connectives to match bits, to replace
bits, and to set bits to zero or one. Either or both of
the operands may be inverted.

While the term logical connectives suggests evalua-
tion of elaborate expressions in Boolean algebra, the
connective instructions have important everyday ap-
plications, such as assembling and converting input-
output data. Their power lies in the ability to specify
fields of any length and in any position in storage,
whether they be single test bits or strings of adjacent
bits.

The connective operations also facilitate new pro-
gramming techniques. For example, instead of search-
ing through a list of items to find the first one which
is not zero, it is often faster and more convenient to
maintain a list of yes-no bits. A set of 64 such bits
may be tested with a single connective instruction
which provides a count to indicate the position of the
first non-zero bit on the left. This count is easily con-
verted to an address for indexing to the location of
the desired item. A second count gives the total num-
ber of one bits in the result field.

12 IBM 7030

Index Arithmetic

Every instruction may have its address part modified
by adding a number in a specified index register be-
fore using the address. Normally both the instruction
and the index register remain unchanged. To alter
the index registers is the function of the index arith-
metic operations.

The set includes operations for loading, storing, in-
crementing, and comparing index values. The index
value is a signed number and additions are algebraic.
One of the instructions allows up to 16 index values
to be added together for use in further indexing. An-
other indexing instruction provides the function of
indirect addressing.

Each index word contains a count to keep track of
the number of times a program loop has been trav-
ersed. Counting may be coupled with incrementing
the index value. A third field in each index word
specifies a refill address from which another index
word may be loaded automatically.

‘Together these three fields provide a very conven-
ient indexing technique. At each traversal of a pro-
gram loop, a signed increment is added to the index
value and the count is stepped down by one. When
the count reaches zero, the index register is reset by
refilling it from the storage location which contained
the original value and count. All this may be done
with one indexing instruction at the appropriate
point in the loop.

The instruction set permits many other indexing
techniques. An important one is the use of the refill
address to indicate the next index word in succession
in an indexing chain. Such chains permit the com-
putation to progress through a series of items or rec-
ords which are not stored in the order in which they
are to be used. Chaining can greatly simplify inser-
tion, deletion, and sorting of items by not requiring
rearrangement of the data in storage.

Instructions generally specify one of a set of 15
index registers for address modification, but the num-
ber of available registers may be readily supplemented
by other index locations in storage through an op-
eration called RENAME. This operation identifies one
designated index register with one of these storage
locations and does the bookkeeping necessary to cause
this storage location to reflect changes in the index
register.

While indexing instructions are provided to change
index values and counts explicitly, it is possible to
use another mode, called progressive indexing, in
which the index quantities may be advanced each
time they are used. This mode may be applied to ad-
vantage for stepping along a string of data of vari-
ous lengths without requiring a separate incrementing
instruction at each step.

Branching

The branching operations either conditionally or un-
conditionally alter the instruction counter so as to
change the course of a program. The number of opera-
tions is not large, but modifiers are available to pro-
vide a great deal of flexibility.

All machine state indicators such as sign, overflow,
error, and input-output conditions are collected in
one 64-bit indicator register. The BRANCH ON INDICA-
TOR instruction may specify any one of these 64 indi-
cators as the condition to be tested. A modifier speci-
fies whether branching is to occur when the indi-
cator is on or off. Another modifier may cause the
tested indicator to be reset to zero.

A second operation, BRANCH ON BIT, permits testing
a single 'bit anywhere in storage with one instruction.
The tested bit may also be modified. This instruction
places a virtually unlimited number of indicators
under the direct control of the program.

Among the unconditional branches is a BRANCH
RELATIVE operation which causes the address part to
be added to the current contents of the instruction
counter, so as to simplify relative addressing.

A hybrid operation combines advancing of an index
word with testing and branching. Thus, the most
common program loops may be closed with one half-
length instruction.

Branch instructions may be coupled with an op-
eration to store the instruction counter contents at
any desired location before branching. This simplifies
re-entry to a program from a subprogram.

Internal Data Transmission

The operation TRANSMIT provides the facilities to
move a block of data from one set of addresses to an-
other. One use of this operation is to preserve the
contents of addressable registers, including index reg-
isters, in storage when it is necessary to bring in an-
other program, and later to reload those registers to
restore them to their earlier state before restarting
the interrupted program.

A second operation, swap, interchanges the contents
of two storage areas.

Input-Output

There are basically two operations for controlling in-
put-output and external storage units: READ and WRITE.
Each instruction specifies the unit desired and a stor-
age area for the data to be read or written.

The storage area is specified by giving the address
of a control word which contains the first data ad-
dress in storage and a count of the number of words
to be transferred. The control word also contains a

refill address which can specify the address of another
control word. Control words can thus be chained to-
gether to define storage areas which are not adjacent.

Control words have the same format as index words
and can be used for indexing. This important feature
means that the same word can first be used for read-
ing new data, then for indexing while processing those
data, and finally for writing the data from the same
storage area. This technique greatly speeds up the
processing and sorting of large files.

Various modifications of REap and WRITE are pro-
vided to fit different circumstances. Other instructions
perform external controlling and switching functions
which do not cause data to be transferred.

All instructions for operating external units are
issued by the computer program but are executed in-
dependently of the program. A number of data trans-
fers can thus take place simultaneously, all sharing
access to storage. Signalling functions inform the
program when each external process is completed.

All external units, regardless of their characteris-
tics, are controlled by the same set of instructions.
They are distinguished by a number assigned to each
unit. Still, the complete set of functions needed to
control external devices is rather complex. It is rarely
necessary, though, to take care of all conditions relat-
ing to external units in every program. In a specific
set of applications, it is possible to have a common
supervisory program to take care of most of the excep-
tional conditions in a predefined manner, thus greatly
reducing the amount of information to be specified in
each operating program.

The apparent complexity of input-output functions
is really an unavoidable consequence of the complex
environment in which a powerful computer must op-
erate. By using a supervisory program, rather than
restrictive built-in controls, the flexibility is retained
to adapt the computer to a wide range of applications.

Miscellaneous Operations

The miscellaneous category includes: EXECUTE, NO OP-
ERATION, and BRANCH ENABLED AND WAIT.

Execute gives the address of an instruction which
the computer then executes. It permits tracing of pro-
gramis at high speed.

By changing a single bit in the operation code, a
branch instruction can be converted to NO OPERATION,
and vice versa. This technique is a convenient way
of altering the future course of a program.

BRANCH ENABLED AND WAIT replaces the familiar
stop instruction. Although the computer ceases to
process instructions after setting a new value into the
instruction counter, the interruption system is enabled
and it is ready for an external signal to restart the

System Organization 13

program at any time. The start signal may come from
an operator or from an external mechanism.

Since the computer may be set up to execute sev-
eral programs on a timeshared basis, it is important
that the computer be able to continue after one of
the programs has come to an end or has run into
trouble. BRANCH ENABLED AND WAIT is a program stop;
there is no machine stop in the repertoire.

Features

New programming features not identified with specific
instructions are summarized below.

Addressing

In instructions where this is meaningful, the position
of a single bit in any word of storage can be addressed
directly. A complete word and bit address forms a
24-bit number. The word address (18 bits) is on the
left and the bit address (6 bits) is on the right of that
number. For the purpose of bit addressing, the entire
core storage can be considered as a set of consecutively
numbered bits. Since the number of bits in a word
(64) is a power of 2 and all addressing is binary, the
address of the last bit of one word is followed immedi-
ately by the address of the first bit of the next word.
If appropriate, word boundaries may be ignored by
the program.

Other instructions use only full words as data, and
these provide space for only 18 bits of address. The
bit address is assumed to be zero. Still other instruc-
tions refer to half-words and use 19 bits of address.
The extra bit is immediately to the right of the word
address and the remaining five bits of the bit address
are treated as zeros.

Index words provide space for sign and 24 bits in
the value field, so that all addresses may be fully in-
dexed to the bit level. The entire signed 24-bit ad-
dress, with zeros inserted where instructions have fewer
address bits, participates in the algebraic addition dur-
ing modification. Where less than 24 bits are needed
in the effective address, the low-order bits are dropped.

The ability to address and index to any bit position
in storage is a powerful new programming feature.
Data need not be unpacked and packed to fit an ar-
bitrary word length imposed by storage for structural
reasons, Data can be addressed directly at the location
at which they are stored for input-output handling.
Storage space can be assigned for greatest efficiency.
For example, tables of character codes may be stored
most conveniently in consecutive 8-bit locations, rather

14 IBM 7030

than taking a full word for each entry. Look-up of
such a table involves merely offsetting the argument to
attach three zero bits on the right and indexing this
number with the starting address of the table.

Most of the internal machine registers are directly
addressable. For instance, the accumulator may be
added to itself by giving its address as the operand of
an App instruction. An important use of the register
addressability is for preserving and restoring the con-
tents of internal registers by transmitting them as a
block to or from some storage area with one TRANSMIT
instruction.

Instead of selecting a location from which to fetch
data, a modifier bit in the instruction may be set to
specify that the address itself serve as data in the op-
eration. It is then called an immediate address. Such
data are limited to 24 bits. This feature is very con-
venient for defining short constants without having to
provide the space and time for separate access to
storage.

The term direct address is used to distinguish the
usual type of address which defines the location of data
for an operation or of an instruction to be executed.

The term indirect address refers to an address which
defines the location of another address. An indirect
address may select an immediate address, a direct ad-
dress, or another indirect address. Indirect addresses
are obtained in this system by the instruction LoAD

VALUE EFFECTIVE which places the effective address
found at the specified storage location into an index
register for indexing on a subsequent instruction.
Multiple-level indirect addressing is obtained when
LOAD VALUE EFFECTIVE finds at the selected location
another instruction LOAD VALUE EFFECTIVE which
causes the indirect addressing process to be repeated.

Program Interruption

A program interruption system is provided for two
quite distinct purposes. The first of these is to provide
a means by which a computer can respond rapidly to
extra-program circumstances which occur at arbitrary
times, performing useful work while waiting for such
circumstances. These circumstances will most often be
signals from the exchange that some interrogation has
been received or that an input-output operation is
complete. For efficiency in real-time operation, the
computer must quickly respond to these signals. This
demands a system by which such signals cause a trans-
fer of control to a suitable special program.

The second purpose is to permit the computer to
make rapid and facile selection of alternate instruc-
tions when program-activated indicators signal that
special circumstances have occurred. For example, it
is clearly desirable to have such a system for arithmetic

overflow since the alternatives are tedious and waste-
ful programmed testing or a costly machine stop when
the condition arises. As another example, it is de-
sirable to have a special routine seize control and take
corrective steps whenever the regular program at-
tempts a division by zero.

These two purposes, response to asynchronously oc-
curring external signals and monitoring of exceptional
conditions generated by the program itself, are distinct,
and it would be conceivable to have systems for han-
dling each independently. However, a single system
serves both purposes equally well, and provision of a
single uniform system permits more powerful operat-
ing techniques.

The program interruption system consists of a com-
mon indicator register which is continuously moni-
tored. When one of the indicators comes on, the com-
puter selects an instruction from a corresponding
position in a table of correction instructions. This
instruction is sandwiched into the program currently
being executed at whatever time the interruption oc-
curs. The extra instruction is commonly a STORE IN-
STRUCTION COUNTER IF BRANCH operation which leads
to a correction routine while preserving the point at
which the current program was interrupted. The table
of correction instructions may be placed anywhere in
storage.

Means are provided to select which indicators may
cause interruption and when interruption will be per-
mitted. Priorities can thus be established. If more
than one interrupting condition should occur at one
time, the system takes them in order. Special provi-
sions are made to permit interruptions to any level to
occur without causing program confusion.

The program interruption system was designed so
that programming the base program will be straight-
forward, efficient, and as simple as the inherent con-
ceptual complexities allow. The computer is not re-
tarded by the interruption system, except when inter-
ruptions do in fact occur. Once this happens, and the
computer has entered a special program pertaining to
the interrupting condition, the full flexibility of a
stored program computer may be brought into play.
Elaborate correction programs will usually be written

by specialists and are no burden on the programmer
of the base program.

Address Monitoring

Address monitoring facilities are provided for two
reasons. One is to make it possible for a program
supervising the check-out of another program to de-
tect when reference is made to a storage location out-
side the area assigned to that program. Another is to
protect one program from accidental destruction by
another program being executed on a multipro-
grammed basis while the first program is waiting for
service.

The upper and lower boundaries of the storage area
to be defined are placed in two address boundary reg-
isters. An alarm will be given when an address falls
either inside or outside the defined area, whichever is
desired. Storing in protected areas is normally sup-
pressed.

The addresses to be compared against the bounda-
ries are the effective addresses after indexing, if any.
Because it is often very difficult to predict all the ad-
dresses which might be generated by indexing or other
address modification, especially when the program is
not yet known to be free of errors, the built-in address
monitoring facilities give far better protection than is
possible by screening the program before execution.

Clocks

An interval timer is built in to measure elapsed time
over relatively short intervals. It can be set to any
value at any time, and an indicator shows when the
time period has ended. This indicator can be used to
cause an automatic program interruption.

To provide a continuous indication of time, a time
clock is also furnished. This clock runs continuously
while the machine is in operation, and its setting can-
not be altered by the programmer. It may be used to
time longer intervals for logging purposes, or, in con-
nection with an external calibrating signal, to provide
a time-of-day indication.

System Organization 15

Operand Designation

Information Format

The computer system stores information in core stor-
age in 64-bit words. Information transmission between
storage, exchange and computer sections, is in par-
allel, a 64-bit word at a time. Information words of
64 bits are part of 72-bit machine words. The extra
8 bits are check bits, not available to the program-
mer, which permit single-error correction and double-
error detection. Within the central processing unit,
the information bits are combined with check bits in
a variety of ways, in order to insure single error
detection.

Words in storage are specified by a contiguous set of
addresses. Addresses are numbered from 0 to 262,143
(2'*—1). In each word, the bits are numbered from 0
to 63, left to right. Bit 63 of a word may be considered
adjacent to bit 0 of the next higher addressed word.

The set of addresses includes the addresses of reg-
isters located in the computer. By addressing such a
register, its information may be treated as if it were
located in core storage. A list of register addresses is
shown in Figure 3, and these registers are described
in the storage assignment section.

Storage location 0 is not available as standard stor-
age. When information is taken from location 0, an

Location Name Length | Bit Address |
0 ext Zero 64 0-63
1 ind Interval Timer (P,a) 19 0-18
1 ind Time Clock (P,b) 36 28-63
2 ext Interruption Address (P) 18 0-17
3 int Upper Boundary (P) 18 0-17
3 int Lower Boundary (P) 18 32-49
3 int Boundary Control Bit (P) 1 57
4 ext Maintenance Bits 64 0-63
5 int Channel Address (b) 7 12-18
6 int Other CPU 19 0-18
7 int Left Zeros Count 7 17-23
7 int All Ones Count 7 44~50
8 int Left Half of Accumulator 64 0-63
9 int Right Half of Accumulator 64 0-63
10 int Accumulator Sign 8 0-7
1 int Indicators (c) 64 0-63
12 int Mask (d) 64 0-63
13 ext Remainder 64 0-63
14 ext Factor 64 0-63
15 ext Transit 64 0-63
16-31ind Index Registers X0-X15 64 0-63
P = Permanently protected area of storage
a = Read-only except for Store Value, Store Count, Store
Refill, and Store Address
= Read-only
¢ = Bit positions 0-19 are read-only
d = Bit positions 0-19 are always ones and positions 48-63
are always zeros
ext = External storage location
ind = Index core storage location
int = Internal registers
Figure 3. Register Addresses

16 IBM 7030

all-zero word is obtained at all times. Information
stored at location zero cannot be recovered.

Storage locations 1-15 contain various special reg-
isters of the central processing unit. These registers
contain different numbers of bit positions as indi-
cated in Figure 3. All other bits in locations 1-15 are
always zero. They act like the bits of location 0.

The purpose and function of the index registers in
storage locations 16-31 are explained under “Index-
ing.”

Addresses greater than 31 are used for main core
storage.

In some operations, information is processed a word
at a time. In another group of operations, informa-
tion is processed a half word at a time. A half word
contains 32 bits and corresponds either to the first
half, bits 0-31, or the second half, bits 32-63, of a full
word. In a third group of operations, the variable-
field-length operations, information is processed a field
at a time. A field may have any length from one to
64 bits. A field may start at any bit position in a word
in storage and continue through that word and into
the word in the next higher addressed storage loca-
tion. Thus, fields of any length from one to 64 bits
may be stored in adjacent storage positions, regardless
of core storage word boundaries.

Information, whether a full-word, half-word or
field, is always addressed by the leftmost bit. The
length, in bits, of the information is either implied by
the operation to be performed or specifically stated
as part of the instruction.

Data Format

Data generally represent alphameric information. For
both arithmetic operations and non-arithmetic opera-
tions, the format of the data needs further specifica-
tion besides the length of the field.

Arithmetic instructions specify either binary or
decimal integer arithmetic, or binary floating point
arithmetic. The adder used in the arithmetic opera-
tion adjusts its mode of operation accordingly.

In integer arithmetic, numbers can be signed or un-
signed as specified by the instruction. When present,
the sign of a number is specified by a single bit. A
zero indicates a positive sign; a one indicates a nega-
tive sign.

With the sign, up to three flag bits may be used.

Flag bits permit special identification of numbers.
Also, from zero to four zone bits may be used with
the sign. The zone bits have no special function, but
may be used as code bits to obtain an alphameric rep-
resentation of the sign. Flag bits are placed to the
right of the sign bit, zone bits to the left of the sign
bit. Zone bits, sign bit, and flag bits are treated as a
single information unit, or byte. The sign byte can
be from one to eight bits long.

For unsigned numbers, the sign is assumed to be
plus. During arithmetic operations, all numbers are
handled as if they were signed. When unsigned op-
erands are obtained from storage, the implied sign is
supplied as specified by the instruction. Thus, an
operand can be brought in without sign and the re-
sult stored with sign, or vice versa.

In binary integer arithmetic, the data fields speci-
fied have variable field length. For unsigned data, the
entire field is treated as a positive binary integer. For
signed data, the low-order byte is interpreted as a sign
byte. The number of bits in the sign byte, the byte
size, must be specified in the arithmetic instructions.

In decimal integer arithmetic, the digits 0 through
9 are represented by the ten four-bit binary integers
0000 through 1001. To these four bits, extra high-
order bits (zone bits) may be added to permit alpha-
meric representation. A maximum of four zone bits
can be used, which makes the decimal character size,
or byte size, a maximum of eight bits. Decimal arith-
metic makes use of variable length fields. For un-
signed data, the entire field is treated as a group of
numeric bytes. All bytes have the same byte size,
with a possible exception of the high-order byte. For
signed data, the low-order byte is interpreted as a
sign byte. The sign byte has the same size as the nu-
meric bytes. Figure 4 shows possible data formats.

Decimal information placed in the accumulator al-
ways has byte size 4. The zone bits of decimal bytes
do not enter the accumulator or the accumulator sign
byte register. The zone bits of the sign byte register
may be used to set the zone bits of decimal bytes in

storage.
/WORD BOUNDARY

Y

A standard data format is provided for floating
point arithmetic (Figure 5). The field corresponds
to a core storage word. It has a length of 64 and starts
at bit address 0. The two portions of the floating point
word are: left, the 12-bit exponent; and right, the 52-
bit fraction. Both of these are signed binary numbers.
The exponent has a flag bit, ten numeric bits, and a
one-bit sign byte. The fraction has 48 numeric bits
and a four-bit sign byte. The three flag bits of the frac-
tion serve for the entire floating point word.

WORD BOUNDARY

EXPONENT FLAG
< y

EXPONENT 14 T
(Fl woets) | FRACTION (48 BITS) s TV
o Z €3[0
f FRACTION SIGN /

EXPONENT SIGN

3 FLAG BITS

Figure 5. Floating Point Data Format

Floating point instructions may specify absolute
value arithmetic. In absolute value floating point op-
erations, the sign bit of the fraction is ignored. The
remainder of the fraction sign byte and the exponent
sign are used as in the signed arithmetic operations.

Byte size, field length, and bit address need not be
specified in floating point operation since a standard
format is used.

The programmer has the option to specify normal-
ized or unnormalized operation. These two modes dif-
fer in the way in which the exponent and fraction of
the result of an operation are adjusted.

For the non-arithmetic operations of the connect
type, it is possible to specify the byte size of the data.
The accumulator byte size is always eight for connect
operations. The accumulator sign byte register is not
used as part of the accumulator in these operations.
The byte size of the data in storage may be one
through eight.

PROGRAMMING NOTE

The choice of byte size in decimal arithmetic and con-
nect operations permits convenient byte expansion
and contraction in code translation.

L A L
54 630 6
FIELD 256 42 —| © 2 5 6 o} 9
TYPE UNSIGNED SIGNED UNSIGNED
BINARY BINARY DECIMAL,
LENGTH 10 BITS 78ITS 16 BiTS
BYTE SIZE - 1 4

Figure 4. Data Formats

T T ¥ T T T U T
EooooooocﬂEuoml 000000100101 011011000011 001 ||0|oon|00|on|on|
I [l]] L
37 a7

4 2 -

SIGNED
DECIMAL

30BITS

6

Operand Designation 17

INTEGER

CONNECTIVE

INPUT-OUTPUT

TRANSMI|T

SIC BRANCH

BRANCH ON BIT

FLOATING POINT

MISCELLANEOQUS

DIRECT INDEX

IMMEDIATE INDEX

COUNT .AND BRANCH

BRANCH-ON INDICATOR

INDEX WORD

Figure 6. Instruction Formats

18 IBM 7030

' Iel l
ADDRESS | 1000] | P |LENGTH|BS |OFFSET SID[|
0 18 24 28 32 35 a1 44 60 63
BINARY
DECIMAL
T
ADDRESS | 1000 I P |LENGTH|BS |OFFSET CONNOPIII |
1
(o] 18 24 28 32 35 41 44 5t 55 60 63
I T T
ADDRESS A 1000] | ADDRESS l OP lIOOOO 1
O CHANNEL ADDRESS 18 24 28 32 60 63
FORWARD RANSMIT
BACKWARD \ J wm:
T I FOTI
ADDRESS l 1000] 1 ADDRESS | J BISllO I
) I8 24 28 32 51 55 60 63
DIRECT }counr \
IMMEDIATE]
T T
ADDRESS 1000] | ADDRESS OP
| 1
) 18 24 28 32 BRANCH ADDRESS 51 63
I I ILCF
ADDRESS 1000 | ADDRESS l IIIOOOOOO l
o 28 32 BRANCH ADDRESS 51 se
{NORMALIZED LEAVEL | o
l UNNORMALIZED INVERT,
I LEA
ADDRESS ls oP IIo l SETB'”°ZE“°
0 8 BRANCHIF{ }
| |
ADDRESS | Oor 00000] |
[0 o L
I |
ADDRESS { J | OP Il |
) 5 3 28 3l
1 T
ADDRESS A J IOOOO[OF?
0 19 23 3l
{NO REFILL
REFILL
! J lIOOIIRF |
\
ADDRESS | | RN
) r9 23 3
anancr 1+ {57
! ILr
ADDRESS IND. [IO00O
| |ZN
0 19 25 1
{LEAVE INDICATOR
SETINDICATOR TO ZERD
T |
VALUE \ IiF COUNT REFILL
) 18 25 28 a6 63

Control Format

Computer control is provided by instructions and in-
dices. These are used in the control section of the
computer to specify the operations to be performed.
They are stored in core storage. When desired, they
may be operated upon as data. Instructions occupy
one or two half-words. They are referred to as half-
length and full-length instructions. A full-length as
well as a half-length instruction may have a bit ad-
dress of 0 or 32. An index word always occupies a
full word. It always has bit address 0. The formats
used for instructions and indices are shown in Fig-
ure 6. In this figure, the bit address of all instructions
is assumed to be 0. It equally well might have been
32. If the bit address is 32, the addresses of the in-
dividual fields in the instruction will be different from
those shown. For convenience of presentation, all
references to bits and fields will use the numbering
of Figure 6.

Instruction Format

Instructions follow a basic pattern upon which some
variations are made. This pattern consists of three
parts: the address part, the operation part, and the
index part.

L ADDRESS

o [

The address part is leftmost in the instruction. It con-
tains 18, 19 or 24 bits according to the type of opera-
tion to be performed. The address specifies the loca-
tion of the operand which is involved in the opera-
tion specified by the instruction. The operation to be
performed is specified in the operation part of the
instruction. This part contains from 4 to 12 bits. The
bits are used as class bits, to specify format and op-
eration class; as code bits, to specify basic operations;
and as modifier bits, to specify modifications to the
basic operations. The operand address can be modi-
fied by the index specified in the rightmost part of the
instruction half-word. The index part, if present,
contains one or four bits. It may specify the address
of one out of 15 words available for index operations.

The instruction format as described so far occupies
a half-word and specifies a single address operation
with simple indexing. There are two major variations
to this basic pattern. One includes a second index ad-
dress. The other is the full-length format in which the
half-word pattern is repeated. The operand address of
the second half-word may be used as a second address,

as in transmit operations, or it may be used as an ex-
tension of the first address, specifying field length, byte
size and accumulator offset for variable field length
operations. In any event, both address parts are inde-
pendently indexable.

nEn

L ADDRESS

l ADDRESS ADDRESS

END

Index Format

The format of an index word consists of the value,
count and refill fields and the index flag bit. The
value field is leftmost in the index. It contains 25 bits
that are interpreted as an address of 24 bits and a sign
bit. The count and refill fields each contain 18 bits
and are adjacent to each other in the rightmost part
of the index. The index flag bit is adjacent to the
value sign bit. The format, as shown below, has two
bits between the index flag and the count field which
are not used in indexing operations.

T T
VALUE tk f COUNT
1 1

8 25 28

REFILL
a6 63

In input-output operations, the index word is used
to control data transmission to and from the exchange.
In these operations the index flag and the two bits be-
tween the index flag and the count field are used as
control bits. Part of the value field is used for status
bits. The definition of these bits allows an index word
to be used both for input-output and indexing op-
erations.

Operand Address

The format of the operand is determined by the op-
eration specified in the instruction. A full word op-
erand is implied by floating point operations. These
operations have an address part of 18 bits. A half
word operand is implied by most branch, index modi-
fication, and transmit operations. This group of op-
erations has an address part of 19 bits. The 18 high-
order bits address full words. The low-order bit ad-
dresses the first or second half of the full word. A
variable field operand is implied by integer arithmetic
and connect operations. This group of operations, the
integer arithmetic and connect operations, has an ad-
dress part of 24 bits. The 18 high-order bits address

Operand Designation 19

full words. The six low-order bits address the bit in
the addressed word which corresponds to the left end
of the field. The variable field length operations are
specified in a full-length instruction. The length of
the field is specified in bits 3540 of the instruction and
completes the definition of the operand location. Zero
in bits 35-40 indicates a 64-bit field.

T
L ADDRESS IOP. P |LENGTH BSIOFFSET I OP. 1 I
M

< 8 24 28 32 35 4l 449 Ell 60 63

I

The address part of the instruction may be modified
by indexing as described in the next section. The final
address thus obtained is called the effective address.
When no indexing occurs, the address part of the in-
struction, extended with the necessary low-order zeros,
is the effective address.

There are three modes of addressing. The most fre-
quently used mode is direct addressing. In this mode,
the effective address is used to specify the storage lo-
cation of the operand. A second mode of addressing
is immediate addressing. In this mode, the effective
address itself constitutes the operand. Up to 24 bits
of information may be available in the effective ad-
dress. Zeros are supplied to the right of the effective
operand field when a field length of more than 24 is
specified. The sign of the effective address is ignored.
Immediate addressing is available for some operations.
A third mode of addressing is indirect addressing. In
this mode, the effective address is used to obtain a sec-
ond level effective address, which subsequently can be
used for addressing the operand. The indirect mode
of addressing is made possible by the operation LoAD
VALUE EFFECTIVE. The immediate, direct, and indirect
mode of addressing, taken in this order, require an
increasing number of storage references. The exact
number of storage references for each mode depends
upon the amount of indexing which is specified.

Besides the specified operand, a second operand is
required in most operations. In the majority of op-
erations, the second operand is implied. In floating
point arithmetic, the implied operand is in the ac-
cumulator unless otherwise stated. In branch opera-
tions, the implied operand may be considered to be in
the instruction counter. In index arithmetic, the sec-
ond operand must be stated specifically by the second
index field. In transmit operations, the second op-
erand is stated explicitly in the second half of the in-
struction. In integer arithmetic and connect opera-
tions, the contents of the accumulator is implied as
the second operand. The offset field is used to specify
the number of bits between the low-order bit of the
field and the low-order end of the accumulator. An
offset of zero indicates that the field lines up at the
right end of the accumulator.

20 IBM 7030

ProGrRAMMING NOTE

In the section “Address Insertion,” the operation STORE
VALUE IN ADDRESS is described. This operation permits
convenient insertion of an address part of proper
length in an instruction.

Indexing

In most half-length instructions, an index address field,
I, is available for indexing operations. In full-length
instructions, two fields I are available, one in each
half-word. The field I normally contains four bits.
The index address, when zero, normally indicates that
no indexing is to take place. When the index address
is not zero, it indicates which of the 15 available index
registers X1-X15 is to be used in the indexing opera-
tion. Each index register occupies one full-word stor-
age location. The registers X1-X15 have addresses 17-
31. 'The use of a storage location for an index register
does not preclude its being addressed and used in the
standard fashion. In conditional branch instructions,
the indexing choice is limited between 0 (no index-
ing) and 1 (use index register X1). In this class of
instructions, the index field is only one bit.

When an index register is specified in the index
field I of an instruction, its contents may be used for
address modification or for progressive indexing. The
modification of the address part of the instruction is
possible in almost all instructions. One group of in-
structions do not permit address modification. In these
instructions, the index address field I is not available.
Progressive indexing is possible only for the variable-
field-length operations.

Address Modification

In address modification, the value part of the index
is added to the address part of the instruction in order
to obtain the effective address. The addition is alge-
braic. The value field of the index is interpreted as a
signed 24-bit field. The address part of the instruction
is interpreted as a positive unsigned field. The length
of the address field depends upon the instruction class.
The missing low-order bits, if any, are always assumed
to be zero. In the addition of index and instruction
address, an overflow bit may be produced. This over-
flow bit, which is a carry produced in the high-order
bit position, is ignored. The overflow bit may occur

when a complement notation is used to obtain the
equivalent of negative instruction addresses.

The index and the address part of an instruction
half-word normally are used together. In the variable
field instructions, the 19 bits which form the length,
byte size, and offset field are indexed as a single field.
Carries between parts of this field, if present, are not
suppressed.

Index register X0, storage location 16, is not avail-
able for address modification. An I field value of zero
indicates that no modification is to be applied.

The effective address which results from an index-
ing operation always has 24 numeric bits and a sign.
Depending upon the operation, a full-word, half-
word, or bit-address may be required. In each case,
only the applicable part of the effective address is used.
The non-applicable part is ignored. The effective ad-

dress sign is not used in storage addressing or immedi-
ate data fields.

When an effective word address is obtained which
does not correspond to a core storage location that is
physically available in a particular installation, indi-
cator AD, address invalid, is turned on. An instruction
with an invalid data address is executed as a No OP-
ERATION instruction. A branch instruction with an in-
valid address is also executed as a NO OPERATION. A
negative effective address is not considered to be in-
valid; its magnitude is used.

The index flag, index result, and index comparison
indicators, XF, XCz, XVLZ, XVZ, XVGZ, XL, XE, and XH, are
not changed when an index is used in address modi-
fication.

Progressive Indexing

In variable-field-length instructions, the field P, bits
32-34, is available to specify the choice between ad-
dress modification and progressive indexing. The
codes 0 and 4 in the field P indicate standard address
modification. The codes 1-3 and 5-7 indicate progres-
sive indexing.

ADDRESS

|OP.| 1 JP LENGTH BSIOFFSET OP. I IJ

o 8 24 28 32 35 4l 44 El 60 63

The codes 0 and 4, which both specify standard ad-
dress modification, indicate a difference in the mode
of addressing. For code 0, the direct mode is specified
and the effective address is used to address the op-
erand. For code 4, the immediate mode is specified
and the effective address is used as the operand itself.
This mode is applicable to all operations of the fetch
type in the connect and integer class. Operations of

the store type are not possible with immediate ad-
dressing, since no storage location is specified. When
a store type operation is given with immediate ad-
dressing, the instruction is executed as a NO OPERATION
and indicator op (operation code invalid) is turned
on. For operation classes other than variable-field-
length instructions, immediate addressing is specified
for the individual operations in which it is available.

In progressive indexing, the value field, bits 0-24 of
the index specified by I, is used as the effective address.
If progressive indexing with index register X0 is speci-
fied, indicator op (operation code invalid) is set. Sub-
sequent to this use as the effective address, the address
part, bits 0-23, of the instruction is added to the value
field. The address part is used as a positive unsigned
quantity. The addition is algebraic and takes into
account the sign, bit 24, of the index value.

For code 1, the addition takes place as defined above.
For code 2, addition takes place and also the index
word is counted down. For code 8, addition and count-
ing take place and also the index specified by I is re-
filled if the count reaches zero.

For codes 5-7, the operations are identical to those
for codes 1-3, with the exception that the address part
of the instruction is algebraically subtracted rather
than added. The operations then are: 5 subtract from
value; 6 subtract from value and count; and 7 sub-
tract from value, count and refill.

Progressive indexing combines immediate index in-
crementing with any one of the variable field length
operations. It is possible only when the effective ad-
dress can be specified in an index quantity and re-
quires no further address modification.

The index flag and index result indicators are set
following each progressive index operation. They are
set according to the new contents of the index register
specified by I. The setting occurs prior to the refill
operation which may be specified.

The index field I controlling progressive indexing
is that located in the first half of the full-length in-
struction. The index field I in the second half of the
instruction may be used to modify bits 35-50 of the
instruction. On doing this, bit position 3 of the index
word is aligned with bit position 35 of the instruction;
the three high-order bits of the index word are ig-
nored. If the same index register is specified in both
halves of an instruction while using progressive index-
ing, the value of the index register before modification
will be used in indexing the second half of the in-
struction.

PROGRAMMING NOTES

An operation in which progressive indexing is speci-
fied is executed in two parts. The variable field length
part of the operation is prepared and then the

Operand Designation 21

index modification portion of the operation is per-
formed. If an exception condition is detected during
the variable field length portion of the operation, the
entire operation will be suppressed, and the appro-
priate indicator will be turned on. However, if an ex-
ception condition is detected during the index modifi-
cation portion of the operation, only this portion will
be suppressed, the variable field length portion having
been executed already.

If the index register specified by the I field of an
operation using progressive indexing is an operand in
the variable field length portion of that operation, the
original value of this index register will be used.

A CcONNECT operation with connective 0101, with a
progressive indexing operation, can be used as an im-
mediate increment operation without disturbing the
accumulator. The progressive indexing mode of op-
eration is the only means for obtaining an immediate
increment of 24 bits.

PrROGRAMMING EXAMPLE

Stored in core storage starting at location LIST is a list
of ten data records. EFach record consists of three
fields, R, S, and T, each an unsigned binary integer.
Field R is seven bits long, field S is eight bits long,

=S

S
>
<

]

|
Ba Ter 10

il BN

5 Tio 7

<
s—l T <
25

and field T is five bits long. For each record add field
T to field R and place the result in field S. Figure 7
illustrates the use of progressive indexing.

NAME STATEMENT NOTES
LX, $X12, CTLWD 1

LOOP L(V+) (BU, 7, 8), 0.15 ($X12), 0 2
+(V-I)(BU, 5, 8), 0.08 ($X12), 0 3
ST(VHICR)(BU, 8, 8), 0.13($X12), 0 4
BZXCZ, LOOP 5

CTLWD XW, LIST,-10, CTLWD

Notes: 1. Loads index register from control word.

2. Loads field R into the accumulator, increments
index regjister to address field T.

3. Adds field T, increments index register back to
address field S.

4. Stores result in field S, increments index register
to address field R of next record, counts down in-
dex, and tests count. If count is zero, refills in-
dex to its original value, thus permitting repetition
of program to start at LOOP.

5. Test for last record in list.

Figure 7. Progressive Indexing

22 IBM 7030

Index Arithmetic

The three fields of an index word are intended for
three distinct purposes. The value field contains the
quantity which is combined with the instruction ad-
dress in order to obtain the effective operand address
in instruction address modification. The value can be
changed by increment operations. The count field reg-
isters the number of times an increment is to be ap-
plied. The contents of the count field are reduced by
one whenever a count is specified. The count field
contains no sign. On reaching zero, the count pro-
ceeds to 262,143 (2'* — 1). The refill field contains
the address of a new index word that can replace the
original index word. A refill operation will occur only
it it is specified by an instruction. The refill can be
made conditional on the count’s reaching zero, or it can
be specified to occur unconditionally. A refill address
of zero will replace the index word with all zeros.
The instruction set takes full advantage of the use of
the index fields for the above purposes. However, a
different use of the index fields is possible if desired,
and sufficient operations are available to permit flexi-
bility in this respect.

T T
VALUE tim COUNT REFILL —’
L 1

[} 8 25 28 46 ©

ol

The set of operations provided for index arithmetic
can be divided into seven groups: direct index arith-
metic, immediate index arithmetic, refill operations,
count and branch operations, named index loading,
multiple index loading and indirect index loading.

Direct index arithmetic permits loading, storing, in-
crementing, and comparing of index quantities. The
operand is specified in the instruction by the effective
address. The effective address may be obtained by
modifying the instruction address part with an index
quantity. The operand is obtained from storage or
stored in storage.

Immediate index arithmetic permits loading, incre-
menting, and comparing of index quantities. The op-
erand is contained in the instruction itself and not
subject to further modification.

The count and branch instructions combine an in-
dex arithmetic operation with a conditional branch
operation. The branch is conditioned by the result
of an index count. The indexing operation is a special
case of the immediate increment operation.

The remaining groups of index arithmetic permit
loading of an index register only.

The index word to be modified by index arithmetic
is specified in the field marked J, instruction bits 19-
22. When one of the numbers 1-15 is specified in field

J. the corresponding index word X1-X15 will be used
in the operation. These words are in storage locations
17-31. When the field J is 0, storage location 16 is
used in the operation. This location is named X0.

PROGRAMMING NOTE

X0 cannot be used directly for address modification,
since a zero I field in such an instruction specifies no
indexing. However, if progressive indexing is speci-
fied, a zero I field will cause the indicator op (operation
code invalid) to be set. X0 may take part in any index
arithmetic instruction, since a zero J field always refers
to location 16, X0.

Index Indicators

Eight indicators are used to describe the result of in-
dex arithmetic. These are the index flag indicator xF,
the index result indicators Xxcz, XvLz, Xvz, and XVGZ,
and the index comparison indicators XL, XE, and xH.

The index flag indicator is set in any index opera-
tion that specifies an index in the field J. These in-
clude index arithmetic and count and branch opera-
tions. This indicator is further set in progressive in-
dexing operations, in which case the index is specified
in the I field of the left half of the instruction. Finally,
this indicator is set in the refill operations according
to the index specified in the address field of the in-
struction. The index result indicators are set in all
cases in which the index flag indicator is set, except
the index comparison operations. The indicators are
not set when an index is used for address modifica-
tion or to specify the count in a transmit operation.
Also, the indicators are not set when index quantities
are modified by other operations such as variable field
length or transmit operations.

The indicators describe the index after the index
modification is completed, but before any refill op-
eration conditioned by the modification takes place.
In the operations REFILL and REFILL ON COUNT ZERO,
also, the indicators describe the index before the refill
operation takes place. The particular conditions ap-
plying to each indicator are summarized below.

Index Flag (XF). This indicator is set to one when
the index flag bit, bit 25, is one. It is set to zero when
the index flag bit is zero.

Index Count Zero (XCZ). This indicator is set to
one when the count field is zero. It is set to zero when
the count field is not zero.

Index Value Less than Zero (XVLZ). This indica-
tor is set to one when the value field is non-zero and
negative. It is set to zero when the value field is zero
or positive.

Index Value Zero (XVZ). This indicator is set to
one when the value field is zero. It is set to zero when
the value field is not zero.

Index Value Greater than Zero (XVGZ). This in-
dicator is set to one when the value field is non-zero
and positive. It is set to zero when the value field is
zero or negative.

The index comparison operations compare the
value or the count field with a quantity specified by
direct or immediate addressing. The index compari-
son indicators XL, xg, and xH described below are set
for the comparison operations instead of the index
result indicators. The names of the index comparison
indicators refer to the index specified in the J field
of the instruction as it is compared with the quantity
specified by the operand.

Index Low (XL). This indicator is set to one when
the field in the index specified by] is lower than the
comparand. It is set to zero when the index field is
equal to or higher than the comparand.

Index Equal (XE). This indicator is set to one
when the field in the index specified by J is equal to
the comparand. It is set to zero when the index field
is lower or higher than the comparand.

Index High (XH). This indicator is set to one when
the field in the index specified by] is higher than
the comparand. It is set to zero when the index field
is equal to or lower than the comparand.

Direct Index Arithmetic

The direct index arithmetic operations make use of
the format shown below. The format includes two
index fields. The rightmost field, marked I, is used in
standard fashion to produce an effective operand ad-
dress. In the majority of these operations, 19 bits of
the effective address are used in order to permit ad-
dressing of half-words. The two exceptions use only
18 bits of the effective address because they require
full-word operands. The index field] specifies the
index register upon which the operation is performed.

I
|7 ADDRESS | J l OP. I IJ
1

) [23 28 3l

Load Index (LX)
The index word specified by J is replaced by the full-
word specified by bits 0-17 of the effective address.

Load Value (LV)

The value field, bits 0-24, of the index word specified
by J is replaced by bits 0-24 of the half-word specified
by bits 0-18 of the effective address.

Operand Designation 23

Load Count (LC)

The count field, bits 28-45, of the index word speci-
fied by J is replaced by bits 0-17 of the half-word speci-
fied by bits 0-18 of the effective address.

Load Refill (LR)

The refill field, bits 46-63, of the index word specified
by J is replaced by bits 0-17 of the half-word specified
by bits 0-18 of the effective address.

Store Index (SX)

The index word specified by J is stored in the full-
word memory location specified by bits 0-17 of the
effective address.

Store Value (SV)

The value field, bits 0-24, of the index word specified
by J replaces bits 0-24 of the half-word specified by
bits 0-18 of the effective address.

Store Count (SC)

The count field, bits 28-45, of the index word specified
by J replaces bits 0-17 of the half word specified by
bits 0-18 of the effective address. Bits 18-24 of the
half word are set to zero.

Store Refill (SR)

The refill field, bits 46-63, of the index word specified
by J replaces bits 0-17 of the half word specified by
bits 0-18 of the effective address. Bits 18-24 of the half
word are set to zero.

Add to Value (V4)

The address part, bits 0-24, of the half-word addressed
by bits 0-18 of the effective address is added to the ad-
dress part, bits 0-24, of the index word specified by J.
Addition is algebraic, taking into account the sign,
bit 24, of both addresses.

Add to Value and Count (V4-C)

This operation is identical to Abp To VALUE, except
that in addition the count field of the index word
specified by J is counted down by one.

Add to Value, Count and Refill (V4-CR)

This operation is identical to ADD TO VALUE AND COUNT,
except that in addition the index word specified by J
is refilled if the count reaches zero as a result of this
operation.

24 IBM 7030

ProGrAMMING NOTES

The refill does not occur if the count was zero prior to
the operation, since in that case the count reaches the
value 2% — 1 as a result of this operation.

The index-flag and index-result indicators are set
in all of the preceding direct index arithmetic opera-
tions. The index-comparison indicators are un-
changed.

Compare Value (KV)

The address part, bits 0-24, of the half-word addressed
by bits 0-18 of the effective address is compared with
the address part, bits 0-24, of the index word specified
by J. Comparison is algebraic, taking into account
the sign, bit 24, of both addresses. Positive and nega-
tive zero are considered equal.

Compare Count (KC)

Bits 0-17 of the half-word specified by bits 0-18 of the
effective address are compared with the count field,
bits 28-45, of the index word specified by J. The com-
parison is unsigned and for magnitude only.

The index-flag and index-comparison indicators are
set in each of the last two operations; the index result
indicators are not set in these operations.

PrOGRAMMING NOTES
The LOAD INDEX and STORE INDEX operations involve
transmission of full words. In all other operations the
effective operand address refers to a half-word. Of this
half-word, either the first 18 or the first 25 bits are
used, depending on the operation to be performed.
The remaining bits are ignored and unchanged. When
instructions or data are used as the operand in incre-
ment and compare operations, proper care should be
taken that the left 25 bits are usable as a signed quan-
tity. Note further that the first 25 bits of the half-
word have been numbered 0-24. However, the actual
bit address of this field may be either 0 or 32.

‘The overflow which may occur in index arithmetic
is ignored.

Immediate Index Arithmetic

The immediate index arithmetic operations make use
of the format shown below. The index field J con-
tains the address of the index to which the operation
applies. The address part contains the operand. A
19-bit operand can be specified. In some operations,
only 18 of these 19 bits are used. In this class of op-
erations, the index field I is not available and no ad-
dress modification by indexing takes place.

T
ADDRESS | J | OF.

5] 19 23 3

Load Value Immediate (LVI)

Bits 0-18 of the value field of the index word specified
by J are replaced by the address part, bits 0-18, of the
instruction. The remaining bits of the value field, bits
1924, are set to zero. In so doing, the sign of the ad-
dress contained in the value field is made positive.

Load Count Immediate (LCI)

The count field, bits 28-45, of the index word speci-
fied by J is replaced by bits 0-17 of the address part
of the instruction.

Load Refill Inmediate (LRI)

The refill field, bits 46-63, of the index word specified
by] is replaced by bits 0-17 of the address part of the
instruction.

Load Value Negative Immediate (LVNI)

Bits 0-18 of the value field of the index word specified
by J are replaced by the address part, bits 0-18, of the
instruction. Bits 19-23 of the value field are set to zero.
The sign bit, bit 24, of the value field is set to one.
In so doing, the sign of the address contained in the
value field is made negative.

Add Immediate to Value (V--I1)

The address part, bits 0-18, of the instruction is added
to bits 0-18 of the value field of the index word speci-
fied by J. Zeros are added to bits 19-24 of the value
field. Addition is algebraic, taking into account the
sign, bit 24, of the value field.

Add Immediate to Value and Count (V--IC)

This operation is identical to ADD IMMEDIATE TO VALUE
except that in addition the count field of the index
word specified by J is counted down by one.

Add Immediate to Value Count and Refill (V4-ICR)

This operation is identical to ADD IMMEDIATE TO VALUE
AND COUNT except that in addition the index specified
by] is refilled if the count reached zero.

Subtract Inmediate from Value (V—I)
Subtract Inmediate from Value and Count (V—IC)

Subtract Immediate from Value, Count

and Refill (V—ICR)

These three operations are identical to the preceding
three ADD IMMEDIATE TO VALUE operations, except that
the address part of the instruction is subtracted from,

not added to, the value field of the index word speci-
fied by]J.

Add Immediate to Count (C-1)

Bits 0-17 of the address part of the instruction are
added to the count field, bits 28-45, of the index word
specified by J. Both quantities are unsigned and the
addition takes place modulo 2.

Subtract Immediate from Count (C—1)

Bits 0-17 of the address part of the instruction are sub-
tracted from the count field, bits 28-45, of the index
word specified by]J. Both quantities are unsigned and
the subtraction takes place modulo 218,

The index flag and index result indicators are set in
all of the preceding immediate index arithmetic op-
erations. The index comparison indicators are not
changed.

Compare Value Immediate (KVI)

The address part, bits 0-18, of the instruction is com-
pared with bits 0-18 of the value field of the index
word specified by J. Zeros are compared with bits
19-24 of the value field. Comparison is algebraic, tak-
ing into account the sign, bit 24, of the value field.
Positive and negative zero are considered equal.

Compare Value Negative Immediate (KVNI)

The address part, bits 0-18, of the instruction is com-
pared with bits 0-18 of the value field of the index
word specified by J. Zeros are compared with bits
19-28 of the value field. A one, or negative sign, is
compared with the sign, bit 24, of the value field.

Compare Count Immediate (KCI)

Bits 0-17 of the address part of the instruction are com-
pared with the count field, bits 28-45, of the index
word specified by J. The comparison is unsigned and
for magnitude only.

The index flag and index comparison indicators are
set in each of the last three operations; the index re-
sult indicators are not set in these operations.

PrROGRAMMING NOTE

To set the index flag and index result indicators ac-
cording to the status of an index without modifying
that index, an ADD IMMEDIATE TO VALUE operation with
zero address part can be used as one of several pos-
sibilities.

Operand Designation 25

Refill Operations

The refill operations make use of the format shown
below. These operations make possible the refilling
of any index word in storage. The index word speci-
fied by the I field is used in standard fashion to form
an effective address. Eighteen bits of the effective ad-
dress are used to specify the full word in storage that
is to be refilled. The refill operation can be made con-
ditional (the count of the addressed index word to be
zero) or it can be specified to occur unconditionally. A
refill operation replaces an index word with the word
addressed by the refill field of the original index word.

‘ ADDRESS

Refill (R)

The full word addressed by bits 0-17 of the effective
address is replaced with the full word that is addressed
by the refill field, bits 46-63, of the word at the effective
address.

The index flag and index result indicators are set
according to the original contents of the word at the
effective address.

Refill on Count Zero (RCZ)

This operation is the same as REFILL, except that the
refill will occur only if the count field, bits 28-45, of
the addressed word is zero.

PROGRAMMING NOTE

The index-count-zero indicator may be used to find
out whether the refill operation took place in REFILL
ON COUNT ZERO.

Count and Branch Operations

The count and branch operations make use of the
format shown below. The format includes two index
fields. The rightmost field, marked I, is used in stand-
ard fashion to produce an effective operand address.
The I field is a one-bit field and provides a choice be-
tween no address modification and the use of X1 for
address modification. The other index field, marked],
designates an index register to be counted down. After
this count operation, the index flag and index result
indicators are set according to the resulting contents
of index register J. The resulting count is then tested
in a conditional branch operation. The condition for

26 IBM 7030

a successful branch is specified by instruction bit 30.
If this bit is one, the branch is performed if the result-
ing count field of index register J is zero. If this bit is
zero, the branch is performed if the resulting count
field is non-zero. The effective address of the instruc-
tion is used as the branch address.

T
ADDRESS l J
1

The count and branch operations may be combined
with the immediate incrementing of the value field by
1, 14, or —1, as specified by the code in instruction bits
23 and 24. According to this code, a one may be added
in bit position 17 or 18, or subtracted in bit position
17, of the value field of the index word specified by J.
The addition or subtraction is algebraic and takes into
account the sign, bit 24 of the value field. This addi-
tion or subtraction is termed advancing. The four
codes are:

00 ILeave value unchanged.
01 Add half to value.
10 Add one to value.
11 Subtract one from value.

The increment, count, and refill operations are inde-
pendent of the success of the branch. The index result
indicators are set after the value field is incremented.
The setting of the index flag and index result indi-
cators precedes the refill operation. If the index flag
indicator is turned on, if its mask bit is one, and if the
interruption system is enabled, the entire index
branching operation except the actuation of this indi-
cator is suppressed. If fields I and] both specify the
same index register, the effective instruction address is
formed before any modification of the contents of the
index register.

Count and Branch (CB)

The index word specified by J is counted down. The
value field of the index is incremented as specified.
Subsequently a conditional branch is performed con-
ditioned by the value of the resulting count field in J.

Count, Branch and Refill (CBR)

This operation is identical to COUNT AND BRANCH, ex-
cept that in addition the index word specified by] is
refilled if the count reached zero.

PROGRAMMING EXAMPLE

It is required to obtain the scalar product of two vec-
tors, A and B. Each vector has n elements, each a
single precision floating point word. Vector A has its
first element at a,; vector B has its first element at b,.

The product is to be stored at ¢,. A is stored in suc-
cessive core storage locations. B is a column vector
of a matrix whose rows have p elements and are stored
in successive storage locations. Therefore, the ele-
ments of B have locations which are p words apart.
Figure 8 shows the program.

NAME STATEMENT NOTES
LX, $X7, CTLWD 1
LX, $X8, CTLWD 1

START L(N), TRUZERO 2

LOOP LFT(N), ag ($X7) 3
*+(N), by ($X8) 4
V+CR, $X8, p.0 5
CBR+, $X7, LOOP 6
ST(N), cg

TRUZERO DD(U), 0E-600

CTLWD XW, 0.0, n, CTLWD

Notes: 1. Set index registers to initial values. These instruc-

tions are necessary only when the program is first
loaded.

2. Resets accumulator to true zero. Successive execu-
tions of the program may start at this point. The
XPFN indicator is turned on as the result of the range
of the floating point number loaded into the accumula-
tor,

3. Loads element of A in factor register.

4. Multiplies by element of B, adds product to accumula-
tor.

5. Increments to next element in B, and counts down the
index. If a zero count is reached, the index register
is refilled - ready for the next execution of the pro-
gram,

6. Increments to the next element in A and counts down
the index. Branches back to the start of the loop un-
less the last element is reached, in which case the
index is refilled and the result stored.

Figure 8. Example of Count, Branch and Refill

Named Index Loading

Fifteen index registers are directly available to the
programmer for use in address modification. In some
applications it may be desirable to use a larger num-
ber of index registers. Such an application may re-
quire frequent loading and storing of index words. In
order to simplify the loading and storing of index
words, the method of named index loading has been
provided. When this method of index loading is
used, X0 contains the core storage address, or name,
of the index word last Joaded into one of the regis-
ters X1-X15 by a named index load. When a named
index load is specified, the contents of the index reg-
ister are first stored in the core storage location speci-
fied by X0. The name of the new index word is then
placed in X0 and the word itself placed in the speci-

fied register. The named index load operation, RENAME,
makes use of the format shown below. The field J
specifies the index register which is to be stored and
loaded. The field I is used in standard fashion to form
an effective address.

T
ADDRESS | J I OP. [I
1

) 19 23 28 31
The RENAME instruction makes it pessible to use any
core storage word conveniently as an index quantity.

Rename (RNX)

The index word in the index register specified by the
field J is stored in the location addressed by the refill
field of X0. The renll field of X0 is then replaced by
bits 0-17 of the effective address. The remaining bits
of X0 remain unchanged. Next, the index word speci-
fied by J is replaced by the word in core storage ad-
dressed by the new refill field of X0. When either the
old or the new name of the index refers to one of the
locations 0-31, the instruction is executed as no-
operation and indicator Ap is set. If the interrupt sys-
tem is enabled and if the old name is both out of
bounds and invalid, the Ap and bs indicators are set.
If the new name is both out of bounds and invalid, the
Ap and pF indicators are set. The index flag and index
result indicators are set according to th2 new contents
of the index register specified by].

PROGRAMMING NOTE

In many applications the RENAME instruction can be
considered as a prefix to another operation which ex-
pands the index address field I of that operation to
include any address in core storage.

PROGRAMMING EXAMPLE

One hundred words of floating point data are placed
in a block starting at location pATa. Each word is to
be stored in one of eight blocks, A through H, accord-
ing to the binary number, from 0 to 7, formed by the
three flag bits in its sign byte. The control words de-
fining the position and length of each of these eight
blocks are stored in order in successive locations start-
ing at location ctLwpl. Assume that index registers
X14 and X15 and the refill field of X0 are available
to the program, but that all the remaining index regis-
ters are occupied. Also assume that the data flag in-
dicators are masked oft. See Figure 9.

Multiple Indexing

In some applications index quantities are derived as
the sum of a selected number of basic quantities. As
the basic quantities are modified, the derived quanti-
ties should change accordingly. It may be convenient

Operand Designation 27

NAME STATEMENT NOTES

LRI, $X0, 0.0

RNX, $X14, CTLWDO
L(BU, 3,8), 0.61 ($X14), 14
LV, $X15, 9.32

LWF (U), 0.0($X14)

RNX, $X14, CTLWD1($X15)
BXCZ, ERROR

ST (U), 0.0($X14)

v+C, $X14, 1.0

RNX, $X14, CTLWDO
CB+, $X14, LOOP

LOOP

SN O W3O U LN

I

ERROR Start of error routine for too

many words in block

CTLWDO
CTLWD1

XW, DATA, 100
XW, A, ng

CTLWDS XW, H, n,

Notes: Clears refill field of XO0.

Sets up index for DATA.

Loads flags in accumulator.

Places flags in word address portion of X15.
Loads floating point data.

Places control word for proper block in X14.
Branches to error routine if block is full.
Stores floating point data.

Increments and counts control word for block.
Increments and counts control word for DATA.
Tests for last word.

'OCDOO\'IOEUI»QCJN)—‘

-

Figure 9. Rename Program Example

to update only the basic quantities and form a derived
sum when that particular sum is required. In order
to facilitate this mode of operation, it should be pos-
sible to specify in one instruction a group of index
registers and indicate which registers of the group
should be used in forming the derived sum. This
mode of indexing is called multiple indexing. The
index registers which participate in multiple indexing
are named X0-X15. They are the words in storage
locations 16-31.

In multiple indexing, bits 0-15 of the address part
of the instruction are used to indicate which index
registers participate in the operation. When bit posi-
tion n contains a one, the register Xn participates.
When bit position n contains a zero, the register Xn
does not participate. Bits 16-19 of the address part
of the instruction are ignored.

The multiple indexing operation makes use of the
instruction format shown below. The index field J
contains the address of the index to which the opera-
tion LOAD VALUE WITH suM applies. No address modi-
fication is available for this operation.

T
L ADDRESS | J | OP.
|

] 9 23 3

28 IBM 7030

Load Value with Sum (LVS)

The address parts, bits 0-24, of the index registers
which participate are added and replace bits 0-24 of
the index word specified by J. The addition is alge-
braic, taking into account the sign, bit 24, of all quan-
tities. Bits 25-63 of the index word specified by J re-
main unchanged. If bits 0-15 of the address part of
the instruction are all zero, the value field of the index
register specified by J is cleared.

The index flag and index result indicators are set
according to the new contents of the index register
specified by J.

Indirect Addressing

The effective address of an instruction is normally
used to address the data upon which the instruction
operation is performed. In another mode of address-
ing, the effective address can be used to address an-
other instruction. This instruction, in turn, contains
an operand address and index which can be used to
form a second level effective address. In some appli-
cations, it is desirable to address the operand by the
second level effective address rather than by the effec-
tive address of the original instruction. The process
of using a first level effective address to obtain a sec-
ond level effective address is called indirect address-
ing. The second level effective address, of course, can
refer to another instruction of which, again, the effec-
tive address can be obtained. In this manner it is pos-
sible to extend indirect addressing through many
levels.

Indirect addressing is made possible by the instruc-
tion LOAD VALUE EFFECTIVE whose format is shown be-
low.

T
ADDRESS l J ’ OP. l I
!

[} 19 23 28 3l

Load Value Effective (LVE)

Bits 0-24 of the index word specified by J are replaced
by the effective value plus sign of the instruction found
at the location specified by the effective address. When
the instruction found at the location specified by the
effective address is another LOAD VALUE EFFECTIVE
instruction, the process is repeated with that instruc-
tioh. The final effective value plus sign is placed in
the index register specified by the field J of the origi-
nal instruction.

All instructions encountered in a multiple level in-
direct addressing process, except for the last one, are
LOAD VALUE EFFECTIVE instructions. The instruction

which produces the final effective address is any in-
struction other than LOAD VALUE EFFECTIVE. It is as-
sumed to be either a half length instruction or the
first half of a full length instruction. The final effec-
tive address is produced according to the rules which
apply to that instruction. In particular, the lengths
of the address and index fields are determined from
the instruction class to which the instruction belongs.
No check is made for invalid operation codes.

Although the address part of the second half word
of TRANsMIT and swaP instructions is 19 bits, only the
first 18 bits of the address field are used when the sec-
ond half of those instructions ‘is encountered in the
process. If the second half word of any other type of
full length instruction is encountered, the full 19 bits
of the second address are used.

When the first half of any variable field length in-
struction terminates the operation, the address modi-
fication mode of indexing is assumed, even though the
full instruction may use the progressive indexing
mode.

Even though the instruction class of the final in-
struction is determined in order to obtain the proper
effective address, the instruction operation is not exe-
cuted. The operation LOAD VALUE EFFECTIVE, which
extends the indirect addressing to another level, is
always executed. The index register in which the final
effective address is to be stored is specified by the
index field J of the original LOAD VALUE EFFECTIVE in-
struction. The fields J of all subsequent instructions
encountered in the operation are ignored.

In indirect addressing, it is possible that addresses
refer to each other in such a way that they form a loop.
As a result, the computer cannot finish its operation
and no interruption is accepted. This situation would
be the result of a programmer’s error. In order to pre-
vent the machine from being locked up in this way,
the LOAD VALUE EFFECTIVE operation will be termi-
nated, if still active, after one millisecond and indi-
cator usa, unended sequence of addresses, will be
turned on. At time of termination, the final effective
address is placed in the index register specified by the
J field of the original instruction.

Index flag and index result indicators are set accord-
ing to the new contents of the index specified by J.

PROGRAMMING EXAMPLE

Suppose that a floating point result exception has oc-
curred. The instruction counter was stored in location
1c. As part of the interruption correction routine, it is
necessary to obtain the operand of the floating point
operation that produced the exception, placing this
operand in the accumulator. Assume that the operand
is single precision. The instructions shown in Figure
10 accomplish this.

NAME STATEMENT NOTES
LX, $X1, IC 1
LVE, $X15, -0.32 ($X1) 2
L (U), 0.0 ($X15) 3
Notes: 1. Loads instruction counter in index register X1.

2. Places effective address of previous instruction
in X15. Since this instruction is a floating point
operation, it is located a half word back from the
stored instruction counter reading. The negative
address is obtained by using the two's complement.
3. Loads operand of floating point instruction into
accumulator.

Figure 10. Indirect Addressing Example

Address Insertion

The length of the address field of an instruction may
be 18, 19, or 24 bits, depending upon the operation
class of the instruction. In order to facilitate the inser-
tion of an address of proper length in an instruction,
the operation STORE VALUE IN ADDRESs is provided. This
operation replaces the address field of an instruction
with a field of proper length. The field is obtained
from the value field of an index word. The instruction
addresses a half word and assumes it to be either a half
length instruction or the first half of a full length in-
struction. The length of the address field is deter-
mined from the instruction operation code.

The STORE VALUE IN ADDRESS operation makes use of
the format shown below. The index field J specifies
the index register from which the address is to be ob-
tained. The location of the instruction in which the
address will be inserted is given by the effective address
of the instruction.

ADDRESS

Store Value in Address (SVA)

The first 18, 19, or 24 bits of the value field of the in-
dex word specified by J replace the address field of the
instruction specified by the effective address.

The index flag and index result indicators are set
according to the contents of the index register speci-
fied by J.

PROGRAMMING NOTE

Although the address part of the second half-word of
TRANSMIT and SWAP instructions is 19 bits, only the first
18 bits of the address field are replaced when the sec-
ond half-word is referred to by the STORE VALUE IN AD-
pRESs instruction. If an address is stored in the second
half-word of any other type of full-length instruction,
the full 19 bits of the second address are replaced.

Operand Designation 29

Data Transmission

A set of instructions is available to transmit data from
one storage location to another. One word or a group
of words may be transmitted in a single operation.
The number of words to be transmitted is specified by
a count. The count may be immediate, or it may be
contained in an index word. Up to 2!® — 1 (262,143)
full words may be transmitted in one operation.

Transmission may be unidirectional or bidirectional.
In unidirectional transmission, data are moved from
one storage location to another storage location. After
completion of the operation, the data remain un-
changed in the original storage locations. The data
which were originally in the receiving storage loca-
tions are destroyed. In bidirectional transmission,
data are interchanged. Following this operation, both
sets of data are preserved, but they have interchanged
their locations. Unidirectional transmission of full
words is specified by the TRANsMIT operation. Bidirec-
tional transmission of full words is specified by the
SWAP operation.

T
ADDRESS I OP.

I ADDRESS orl 1

o 18 24 28 32 Si 55 60 63

T T
K%

A full-length instruction is used for transmit opera-
tions. The format contains two addresses. Each ad-
dress can be modified by the index word specified by
the I field in its respective half-word. The two effec-
tive addresses obtained as a result of the modification
specify the starting addresses of the two storage areas
which participate in the word transmission. Only 18
bits of each effective address are used.

Bits 55-57 of the data transmission instructions are
used as modifiers. The choice between unidirectional
and bidirectional transmission is specified by modifier
bit 57. A zero specifies unidirectional transmission;
a one specifies bidirectional transmission. The choice
between an immediate or a direct count is specified by
modifier bit 56. A zero specifies a direct count; a one
specifies an immediate count. The choice between for-
ward and backward transmission is specified by modi-
fier bit 55. A zero specifies forward transmission; a one
specifies backward transmission.

In direct count operations, the field J, bits 51-54,
specifies an index register. The count field, bits 28-45,
of the index word in this register is used as a full
word count. A count field of zero is interpreted as 218.
Since this many words cannot be transmitted without
encountering an invalid address, such a count is never
valid. It is not detected, however, until the data trans-
mission actually encounters an invalid or protected
address. The count field in the index register is not

30 IBM 7030

changed as a result of the operation, and the index re-
sult indicators are not affected. A zero J field refers to
location 16, XO0.

In immediate count operations, the full word count
is specified by instruction bits 51-54. A zero count field
indicates the maximum count of 16 full words.

In forward transmission, the sending and receiving
addresses of each successive word transmitted are ob-
tained by incrementing the previous addresses by one.
The starting addresses specified in the instruction are
therefore the addresses of the first word in each of the
two storage areas.

In backward transmission, the sending and receiving
addresses of each successive word transmitted are ob-
tained by decrementing the previous addresses by one.
The starting addresses specified in the instruction are
therefore the addresses of the last word in each of the
two storage areas.

Transmit (T)

The number of full words specified by the count is
transmitted from the area which starts at the location
addressed by bits 0-17 of the left effective address to
the area which starts at the location specified by bits
0-17 of the right effective address.

Swap (SWAP)

The number of full words specified by the count is
transmitted from the area which starts at the location
addressed by bits 0-17 of the left effective address to
the area which starts at the location specified by bits
0-17 of the right effective address. At the same time,
the full words of the area which starts at the right
effective address are transmitted to the area which
starts at the left effective address.

ProGRAMMING NOTES

The difference between backward and forward trans-
mission is important. When the receiving area overlaps
the upper end of the sending area, backward transmis-
sion must be used; if the receiving area overlaps the
lower end of the sending area, forward transmission
must be used.

All full-length instructions are assumed to have a
24-bit address part in the left half-word. Since data
transmission instructions are full length, 24 bits of the
left half-word of the instruction are used in forming
the effective address. However, only 18 bits of the
effective address are used by these operations.

ProGrRAMMING EXAMPLE

Storage locations 112, 113, and 114 contain the float-
ing point constants a, b, and c. It is desired to rotate

these constants so that their order is b, ¢, and a. The
instruction which accomplishes this rotation is:

swarl, 2, 112.0, 113.0

Data Reset

Several instructions are available which set the bits in
a storage field to zero. The value, count, and refill
fields of an index word can be set to zero with an im-
mediate load instruction. With the CONNECT TO MEM-
ORY operation, using connective 0000, a variable stor-
age field may be set to zero. In order to facilitate set-
ting all the bits in a full storage word to zero, the in-
struction STORE ZERO is provided. This is a half-length
instruction which has the format shown below. When
the instruction is followed by a COUNT AND BRANCH
operation in a programmed loop, a storage area of
several full words may be set to zero.

ADDRESS

Store Zero (Z)

An all-zero word is stored in the full storage word
location specified by bits 0-17 of the effective address.

Address Monitoring

In multiprogrammed operation, when several pro-
grams are in core storage at one time and are exe-
cuted in intermixed fashion, it is important that errors
in one program be prevented from causing changes
in data or instructions belonging to another program.
This protection may be provided by monitoring all
addresses at which data are to be stored and suppress-
ing the storage if an address lies within the protected
area of core storage, as defined by the contents of two
boundary registers.

By extending the address monitoring to include ad-
dresses from which instructions and data are fetched,
it may also be used to verify the proper execution of
a program and to detect incorrect instructions. For
instance, in program check-out, incorrect instructions
or data addresses, especially those which are the re-
sult of address computation, may be detected by this
means.

The monitoring procedure can be refined by chang-
ing boundaries as the program proceeds. This refine-
ment can be used to ascertain that the addresses used

in each program section do not belong to those re-
served for other program sections.

In order to verify the correct execution of a pro-
gram, a key instruction or block of instructions can be
monitored. When an instruction fetch occurs from
the monitored instructions, the programmer can verity
whether the execution up to that point was satisfac-
tory. Similarly, a key data word can be used to verify
correct program execution.

Definition of Monitored Area

A core storage are: is defined by placing an address in
each of two address boundary registers. This area in-
cludes the word specified by the address in the lower
boundary register and all words in subsequent loca-
tions up to, but not including, the address in the
upper boundary register. The address in the upper
boundary register is normally larger than that in the
lower boundary register. If it is equal or smaller, no
words are contained in the core storage area. The
upper boundary and lower boundary registers are lo-
cated in bits 0-17 and 32-49, respectively, of storage
location 3.

The boundary control bit, bit 57 of storage location
3, determines which condition will cause an address
monitoring signal. When the boundary control bit is
zero, a signal is obtained for a comparand inside the
specified area. When the boundary control bit is one,
a signal is obtained for a comparand outside the speci-
fied area. An instruction or data field which straddles
a boundary always gives an address monitoring signal.

The monitoring of references to locations 0-31 is in-
dependent of the contents of the boundary registers.
Locations 1, 2, and 3 are referred to as the perma-
nently protected area of storage. References to these
locations always give an address monitoring signal, re-
gardless of the contents of the boundary registers or
the setting of the boundary control bit. References to
locations 0 and 4 through 31, inclusive, never cause
an address monitoring signal.

Action of Address Monitoring Signal

The action of the address monitoring system depends
upon the state of the interruption system and upon
the masks of the indicators that can be activated by
the address monitoring signal. The indicators that
can be turned on by the presence of the address moni-
toring signal are ps (data store), oF (data fetch), and
IF (instruction fetch).

Operand Designation 31

When the interruption system is disabled, address
monitoring is ineffective. In the disabled mode, core
storage protection as specified by the address bound-
ary registers in conjunction with the boundary control
bit does not take place, and the address monitoring
signal is ignored. As a result, the ps, pF and 1F indica-
tors cannot be turned on when the system is disabled.

When the interruption system is enabled, any refer-
ence to the protected storage area causes one of these
three indicators to be turned on, the choice depending
upon the type of storage reference. The subsequent
action depends upon the status of the mask bit. If the
mask bit is one, the operation is terminated and an
interruption occurs; if the mask bit is zero, the indi-
cator is set, but the operation proceeds. The sub-
sequent description of the action of the address moni-
toring system applies only when the interruption sys-
tem is in the enabled state.

When an address alarm is caused by a data address
used in a store-type operation, indicator ps is turned
on. Since this indicator is permanently masked on,
storing in core storage is always suppressed, and the
operation is always terminated. A store-type operation
is one in which the contents of an addressed storage
location are subject to change.

When an address alarm is caused by a data address
used in a fetch-type operation, indicator pr is turned
on. If the pF mask bit is one, the data fetch is sup-
pressed and the operation terminated. If the pr mask
bit is zero, the operation proceeds normally. A fetch-
type operation is one in which the contents of an
addressed storage location are read out for use but are
not subject to change by the operation.

When an address alarm is caused by the location of
the instruction which is to be executed next, indicator
IF is turned on. If the indicator is masked for inter-
ruption, the interruption occurs before execution of
the instruction causing the indication and after execu-
tion of all preceding instructions has been completed
or terminated. If the branch address of a successful
branch operation is such that control would pass into
a protected area, the entire branch operation, includ-
ing any counting, bit changing, or index alteration, is
suppressed. The address boundaries are ignored if the
mask bit is zero.

The three address alarm indicators, ps, pF, and IF,
are permanent. Once turned on, they remain on until
they cause an interruption or are turned off by pro-
gram control.

When an interruption occurs, the resulting inter-
ruption address is not monitored for instruction fetch.
Consequently, the interruption table of instructions
need not be in the same area of storage as the program.
After the instruction at the interruption address is

82 IBM 7030

obtained, it is monitored in the usual manner for an
instruction of its type.

Addresses Monitored

All storage addresses actually used by the cpu in the
course of an operation are subject to address monitor-
ing. If an address which is associated with an opera-
tion is not actually used, it will not be monitored by
the contents of the boundary registers. For example,
the store instruction counter address prefixed to a
branch operation is not monitored unless the branch
is successful.

Core storage addresses used by the exchange are not
subject to address monitoring.

An address which actuates indicator ap, address in-
valid, is not compared with the contents of the bound-
ary registers and cannot actuate any of the addresss
alarm indicators.

Address monitoring for Instruction Fetch includes:

1. The location of each instruction to be executed
with the exception of the single instructions at
the effective interruption address which are ex-
ecuted when an interruption occurs.

2. The branch address of all successful branch
operations.

3. The location of the subject instruction of the
EXECUTE and EXECUTE INDIRECT AND COUNT Opera-
tions when this location is in main storage.

Address monitoring for Data Store includes:

1. The effective address of all store-type operations.

2. The address of the location which receives the
original contents of the index register specified
in the RENAME operation.

3. All addresses encountered during the swap op-
eration.

4. Each address that receives data during the TRANs-
MIT operation.

5. The effective address of EXECUTE INDIRECT AND
COUNT.

Address monitoring for Data Fetch includes:

1. The effective address of all fetch-type operations
with a direct address.

2. The effective address at each level of the roap
VALUE EFFECTIVE operation with the exception of
the final effective address which is loaded into
the specified index register.

3. The refill address used in index refill operations
and the operations REFILL and REFILL ON COUNT
ZERO.

4. All addresses encountered during the swap op-
eration.

5. Each address from which data are obtained in
the TRANSMIT operation.

ProGRAMMING NOTES

In general, when a protected address is encountered
during an operation with the interruption system en-
abled and the corresponding indicator masked for in-
terruption, the operation is terminated. This may or
may not result in complete suppression of the opera-
tion. In a multilevel operation, such as TRANSMIT, part
of the operation may already have been completed
when the address alarm occurs, and hence this part of
the operation cannot be suppressed.

If any address encountered during the swAp opera-
tion is in a protected area of storage, indicators ps and
oF are both turned on and the operation is terminated.

Two addresses are used in the RENAME operation:
the effective address and the address in the refill field
of X0. The former is monitored for oF and the latter
for ps. If indicator oF is turned on and its mask bit is
one, or if indicator ps is turned on, the entire opera-
tion is suppressed. If the operation is not allowed for
either reason, the specified index is neither stored nor
loaded.

Since the execute-type operations are used to per-
form other operations, it is desirable to have the indi-
cators describe the subject instruction as far as pos-
sible. For this reason, if the location of the subject
instruction is in a protected area of storage, indicator
IF is turned on.

If the LOAD VALUE EFFECTIVE operation is terminated
at any level because of oF, the specified index is not
loaded and remains unchanged. The index flag and
index result indicators remain as set before the opera-
tion.

The bit address used in the BRANCH ON BIT opera-
tion is monitored for an address alarm. The operation
is considered a data-fetch operation if it specifies that
the tested bit remain in its original state, zero or one.
It is considered a data-store operation if it specifies
that the tested bit be inverted, or made zero or one
regardless of the original setting of the addressed bit.

CONNECT TO MEMORY is a store-type operation re-
gardless of the connective specified.

Not included in the address monitoring are:

1. All data references to storage locations 0 and 4
through 31.

2. Immediate addresses.

3. Effective addresses of LOAD VALUE WITH SUM
operations.

4. Channel and control word addresses in input-
output operations.

5. Data and control word addresses generated by
the exchange.

6. Effective interruption addresses.

7. Effective addresses of EXECUTE operations when
these addresses are less than 32,

Note that while index refill operations in the com-
puter are monitored, control word refills which take
place in the exchange are not.

Storage Assignment

The address field of all operations provides for an 18-
bit word address. Addresses 0 through 31 are for spe-
cific purposes assigned to these locations.

Instructions cannot be executed from storage loca-
tions 0-31. Any attempt to obtain an instruction from
these locations will turn on indicator Ap, address in-
valid. Similarly, any attempt to branch to these loca-
tions will turn on indicator Ap, and the branch and all
associated operations will be suppressed.

PrOGRAMMING NOTE

Since instructions cannot be obtained from locations
0 to 31, the address in the interruption address register
must be 32 or greater. If it is not, the effective inter-
ruption address formed when an interruption occurs
may be less than 32. In this event the computer will be
unable to obtain an instruction and indicator ap, ad-
dress invalid, will be turned on. If this, in turn, causes
an effective interruption address of less than 32, the
computer will not be able to complete the interruption
and will hang up at this point. The operator must use
the INITIAL PROGRAM LOAD key to override the error
condition.

Zero

The 64 bits of storage location 0 are always zero. When
information is taken from location 0, an all-zero word
is obtained at all times. After an initial power on, this
location may contain random bits. Any STORE opera-
tion to location 0 causes it to contain a 0 with correct
parity. Information stored in location zero can not be
recovered. Address 0 can be used as a convenient source
of zeros. It also permits pseudo-store operations for test
purposes.

Location 0 is a valid word address in all but the
following cases, in which it will cause an address-
invalid or exchange-program-check indication:

1. Instructions cannot be executed from location 0

either normally or as part of an EXECUTE INDIRECT
AND COUNT operation. The contents of this loca-

Operand Designation 33

tion can be executed as the subject instruction
of an EXECUTE operation, however.

2. Location 0 is not a valid refill address for con-
trol words used in input-output operations.

3. The control word for an input-output operation
cannot be taken from location 0.

4. Data cannot be transmitted to or from location
0 in an input-output operation.

5. Execute indirect pseudo-instruction counters may
not occupy location 0.

6. The STORE INSTRUCTION COUNTER instruction may
not store into location 0.

7. The effective address of the rREAD, WRITE, and

© COPY CONTROL WORD instructions may not refer
to location 0.

8. Neither the old nor the new name in a RENAME
instruction may refer to location 0.

Special Registers

Addresses 1 through 15 are used for all addressable
special registers employed by the central processing
unit.

Except as noted in connection with the individual
registers, addresses 1-15 are valid word addresses in all
but the following cases, in which they cause an address-
invalid or exchange-program-check indication:

1. Instructions cannot be executed from the special
registers, either normally or as part of an EXECUTE
INDIRECT AND COUNT operation. The subject instruc-
tion of an EXECUTE operation may be located in the
special registers, however.

2. The special registers are not valid refill ad-
dresses for index or control words.

8. The control word for an input-output operation
cannot be located in a special register.

4. Data cannot be transmitted to or from the spe-
cial registers in an input-output operation.

5. The instruction counter cannot be stored in a
special register.

6. The pseudo-instruction counter used in EXECUTE
INDIRECT AND COUNT cannot be located in a special
register.

7. In the operation RENAME, neither the old nor
new name of the index register can be in the range
1 through 15.

Not all bit positions in locations 0-15 are assigned
to specific functions. Those bit positions that are not
so assigned are always zero. Information stored in
these positions is not recoverable. (However, for an
exception see the programming note in the next
section.)

34 IBM 7030

Interval Timer

The interval timer is intended to measure elapsed
time over relatively short intervals. It can be set to
any value at any time, and indicator Ts, time signal,
is actuated when the time period has ended.

The value of the interval timer reading is stored in
core storage and occupies bit positions 0 through 18
of location 1. It is continually stepped down by pulses
originating from a stable oscillator. Each time the
oscillator delivers a pulse, the value of the timer is
read out, decremented by one, and returned to core
storage. The oscillator operates at 1,024 (29) cycles
per second, or a pulse about every millisecond. Bits
0-8 show time in seconds. A full cycle is about 814
minutes.

The timer runs whenever the machine is operating,
which includes also the execution of BRANCH ENABLED
AND WAIT. Whenever it goes from one to zero, it turns
on the time signal indicator in the indicator register.
The next oscillator pulse then sets the timer to all
ones unless the program in the meantime has changed
its contents. The timer does not stop after reaching
zero.

The interval timer is in the permanently protected
area of storage, and cannot be read if indicator bF,
data fetch, is masked on and the interruption system
is enabled, nor can it be set if the system is enabled.
The only store-type operations that may store in the
left half of location 1, and hence may be used to set
the interval timer, are STORE VALUE, STORE COUNT, STORE
REFILL, and STORE VALUE IN ADDRESS, and these opera-
tions can be performed only when the interruption
system is disabled. When enabled, these operations
will turn on indicator ps, data store, and be suppressed.
An attempt by any other operation to store into the
first half of location 1 will be suppressed and indicator
AD, address invalid, will be turned on.

PROGRAMMING NOTE

Core storage provides valid and usable storage loca-
tions for each bit position of location 1, including bit
positions 19 through 27 which are unused and appear
between the interval timer and the time clock. When
the interval timer is reset, storing into these bit posi-
tions is not suppressed, and, consequently, it is pos-
sible that some information may appear there tem-
porarily. Specifically, when STORE VALUE is used to
reset the interval timer and bits 19 through 24 of the
value placed in the interval timer contain any one-bits,
these bits are set into the corresponding bit positions
of location 1, and remain there until the first time the
interval timer is stepped down. The length of the
address modified by STORE VALUE IN ADDRESS depends
upon the contents of bit position 24 of the word being
changed. Once bit position 24 of location 1 has been

set to one, bit positions 19 through 23 can be changed
also by means of STORE VALUE IN ADDRESS. A store ad-
dress of 1 in the instructions T, swap, sx, Z, R, and
Rrez, causes both the Ap and ps indicators to be set if the
interrupt system is enabled.

Time Clock

The time clock is provided to measure time difference
or duration over relatively long periods. This clock
consists of 2 number 36 bits long which is continually
stepped up by pulses originating from the same 1024
cycle per second oscillator which controls the updating
of the interval timer. The two clocks are updated
consecutively in the same time interval. The leftmost
26 bits of the time clock measure time in seconds. A
full cycle is about 777 days.

The value of the clock occupies bits 28-63 of loca-
tion 1. Each time the oscillator delivers a pulse it is
read out, incremented by one, using the index adder,
and returned to core storage.

The clock runs continually while the computer is
under program control, including the time the com-
puter is executing a BRANCH ENABLED AND WAIT Opera-
tion. When the clock reaches its maximum reading of
all ones, the next oscillator pulse sets it to all zeros.
No indication is given when the clock recycles to zero.

The time clock is also in the permanently protected
area of storage. It may be read under the same con-
ditions as the interval timer. Its setting, however, can-
not be altered under program control. Any attempt to
store into the right half of location 1 is suppressed,
and indicator ap, address invalid, is turned on.

ProGRAMMING NOTES

The time clock can be used to obtain a time-of-day
indication. A known external time is taken as a
reference point and the setting of the time clock at
that time is stored. The time-of-day at a later time
can be obtained by using the time which has elapsed
since the reference time. The difference between the
current clock setting and the setting at the time of
reference can be converted to hours, minutes and sec-
onds. If this time difference is added to the time-of-
day which was used as the reference, the current exter-
nal time of day is obtained. Since the time clock is con-
tinually stepping and has a recycle time of over two
years, it may be used to provide a convenient “serial
number” for program outputs. Each output can in-
clude a clock reading which will provide a chron-
ological identification of the output.

Interruption Address

Bits 0-17 of location 2 form the interruption address
register. When an interruption occurs, the contents of
this register are used to obtain the address of an in-
struction to be inserted into the normal sequence. The

interruption address register is located in the per-
manently protected area of storage.

Address Boundaries

The address monitoring system requires the definition
of an area in core storage. The two limits of this area
are defined by the upper and lower boundary registers.
The area starts with the word at the address in the
lower boundary register and includes all words in sub-
sequent locations up to, but not including, the word
at the address in the upper boundary register. If the
contents of the upper boundary register are equal to
or smaller than the contents of the lower boundary
register, no words are included in the area.

The upper boundary register occupies bit positions
0-17 of location 3. The lower boundary register oc-
cupies bit positions 32-49 of location 3. The boundary
control bit, which determines whether addresses inside
or outside of the defined area are to be protected, is
located in bit 57 of location 3. All bits of location 3
are in the permanently protected area of storage.

Maintenance Bits

The 64 bits of storage location 4 are reserved for main-
tenance purposes. These bits are active only when the
machine is in the maintenance mode. When it is not
in this mode, they act like the bits of location 0. After
an initial program load, this location contains the first
word read from the input unit. This is the control
word for the initial load. Any store to location 4 causes
it to contain a 0 with correct check bits.

Channel Address

The exchange channel responsible for the current set-
tings of the input-output status indicators is identified
by the channel address register. This register occupies
bits 12-18 of location 5. The channel address register
is a read-only register; any information stored there is
lost. In this respect it resembles location 0. The chan-
nel address register can be set only by the exchange.

Other CPU Bits

In some systems, several computers or other central
processing units may be very closely interrelated, shar-
ing common core storage units or a common exchange.
In order to permit a program in one computer to
signal others, the other cpu register, bits 0-18 of loca-
tion 6, and the cpu signal indicator, cpus, have been
provided. Each of the bits can actuate the cpu signal
indicator of one and only one other computer. The
system thus provides for up to nineteen other com-
puters. When a bit is set to one by programming, the
cru signal indicator is actuated in the computer asso-
ciated with that bit. In this manner any computer can
actuate the indicator in any other computer, and thus
interrupt the other computer’s program. When a bit

Operand Designation 85

is zero, it has no effect on the associated computer.

The other cru register is provided only in com-
puters which are to be used in multi-computer sys-
tems. When not present, these bit positions behave
like the bit positions of address 0.

PrOGRAMMING NOTE

Consider a system with ten closely coupled computers
known as ceu 0, cpu 1, . ¢cpu 9. If the program in
cpu 4 turns on bit 6.07 in its registers, the cpu indi-
cator in cpu 7 is actuated, permitting program inter-
ruption in machine 7. The program which responds
to such interruption examines some agreed-upon loca-
tion in the common core storage to find the full mes-
sage that cpu 4 desired to send. This message may
contain the fact that it is sent by cpu 4.

This technique is necessary only in closely coupled
multi-computer systems. In systems where each com-
puter has its own core storage units and exchange, the
several computers can communicate with one another
through the exchanges, using channel signal to attract
the attention of the called computer.

Left Zeros Counter

In the connective operations, a count is developed of
the number of zeros in the result field which are to the
left of the most significant one-bit. This count is
placed in the left zeros counter, bits 17-23 of location
7. It remains there until changed by another connec-
tive operation or by one of the operations described
below.

The two high-order bits of the left zeros counter are
also used to distinguish between the four operations
that can turn on the indicator pT, decimal transit.
These are the decimal operations MULTIPLY, DIVIDE,
MULTIPLY AND ADD, and LOAD TRANSIT AND SET. The
remaining bits of the left zeros counter are cleared.
The left zeros counter is similarly set when indicator
BT, binary transit, is turned on by a binary LoAD TRAN-
SIT AND SET operation.

The contents of the left zeros counter are also
changed in all floating point division operations. In
these operations the left zeros counter contains the
amount of shift that is applied in the normalization
process.

All-Ones Counter

In the connective operations, a count is developed of
the total number of ones in the result field. This
count is placed in the all-ones counter, bits 44-50 of
location 7. It remains there until changed by another
connective operation or by one of the operations de-
scribed below.

36 IBM 7030

The operations that turn on indicator BT, binary
transit, or indicator pt, decimal transit, also place the
effective offset of the operation in the all-ones counter.
These operations are LOAD TRANSIT AND SET and decimal
MULTIPLY, DIVIDE, annd MULTIPLY AND ADD.

Accumulator and Sign Byte Register

In many operations an implied operand is a field from
the accumulator. The accumulator is a 128-bit register
occupying locations 8 and 9. The left half of the
accumulator is in location 8, and the right half is in
location 9. The sign of the accumulator operand is
contained in an associated register, the accumulator
sign byte register, an 8-bit register cccupying bits 07
of location 10.

Variable field length binary quantities may be posi-
tioned at any point in the accumulator. In decimal
operations, the accumulator is considered as 32 digit
positions, each of four bits. A variable field length
decimal quantity may be positioned at any of these
digit positions, but its digits may not be split between
accumulator digit positions.

Floating point quantities in the accumulator may
have either single- or double-precision format. In either
format the exponent and its sign occupy bits 0-11 of
the left half of the accumulator, location 8. In the
single-precision format, the 48-bit fraction occupies
bits 12-59 of the left half of the accumulator. The
remainder of the accumulator is not used. In the
double-precision format, the high-order portion of the
fraction occupies the same position as the single
precision fraction. The remaining low-order 48 bits
of the 96-bit double precision fraction extend from bit
60 of the left half of the accumulator, location 8,
through bit 107 of the right half of the accumulator,
location 9. The sign of the fraction is located in the
accumulator sign byte register in either format.

Operands in storage may have associated with them
sign bytes ranging in size from one to eight bits. The
eight possible sign bytes and their corresponding posi-
tions in the accumulator sign byte register are:

BYTE SIGN POSITION IN
SIZE BYTE SIGN BYTE REGISTER
01234567
1 S 0000S 000
2 ST 0000STOO
3 STU 0000STUO
4 STUV 0000STUV
5 ZSTUV 000ZSTUV
6 Z2Z72STU 00ZZSTUYV
7 ZZZSTUV 0272Z2ZSTUV
8 Z72Z2Z7ZSTUV ZZZ2ZZ7ZSTUV

Here S is the sign bit, T, U, and V are flag bits, and
the bits marked Z are zone bits. The sign and flag

bits may be placed in or obtained from the 8-bit
accumulator sign byte register. The sign byte is posi-
tioned in such a way that the sign bit always occupies
position 4 in the register. The zone bit positions, 0-3,
of the sign byte register are not changed in an arith-
metic operation unless specifically addressed. The zone
bits of a sign byte do not normally enter the sign byte
register. In data store operations, the zone bits of the
sign byte register may be used.

Normally, the accumulator contents are addressed
as the implied operand of an operation. In this case,
the sign, flag, and zone bits of the accumulator sign
byte register are correctly associated with this operand.

The accumulator may also be addressed as an oper-
and in storage. When location 8, the left half of the
accumulator, is explicitly addressed as the operand in
a floating point operation, a word is obtained that
consists of bits 0-59 of the accumulator followed by
bits 4-7 of the accumulator sign byte, thus forming a
proper floating point word.

When locations 9 or 10 are explicitly addressed as
the operand of a floating point operation, or any part
of the accumulator or the accumulator sign byte is
explicitly addressed as the operand of any other opera-
tion, these locations are treated like any other storage
locations. Thus, in a variable field length operation,
the contents of the accumulator sign byte register are
interpreted correctly as the zone, sign, and flag bits of
the accumulator contents only if byte size 8 is specified
in the operation, and the low-order bit of the ad-
dressed field is bit 7 of location 10.

Indicator Register

The indicator register, location 11, contains 64 indi-
cators. Each indicator is turned on (set to 1) or off
(set to 0) when certain conditions unique to it occur
in the computer system. When an indicator is on, the
corresponding bit in the mask register is 1, and the
interruption system is enabled, an automatic inter-
ruption will occur. When an indicator causes an
interruption, it is automatically turned off. An indi-
cator may also be turned off by a BRANCH ON INDI-
CATOR instruction that tests it.

Bit positions 0-19 of the indicator register can be
read, but not loaded. Any attempt to store into these
positions has no effect. Bit positions 20-63 may either
be read or loaded.

When the indicator register is addressed as the
operand of a fetch-type instruction, its contents at the
start of execution of that instruction are obtained. (If
indicator 1F, instruction fetch, is to be turned on be-
cause of the location of an instruction, it will have
been turned on when the instruction was fetched, pre-
vious to the start of execution of that instruction.)

When an instruction calls for storing into any part of
the indicator register, the result in bits 20-63 of the
indicator register will be the same as if this operation
had acted upon any other storage location whose in-
itial contents were the same as those of the indicator
register at the start of execution of the instruction.
The setting of any of the indicators 20-63 that would
normally occur as part of the store operation is over-
ridden by this result. In the execution of the opera-
tions BRANCH ON INDICATOR and BRANCH ON BIT when
the interruption system is enabled, the actuation of
indicator 1¥ that results if a branch is attempted to a
protected location is considered to be associated with
the instruction at that location, and hence in such
cases this indicator will be on at the completion of the
operation regardless of the previous setting of this
indicator or any alteration of it specified in the opera-
tion.

Mask Register

Corresponding to each indicator in the indicator reg-
ister is a bit position in the mask register, location 12.
Those indicators for which the corresponding mask
bit is zero cannot cause automatic program interrup-
tion. Those indicators for which the mask bit is one
may cause interruption if the interruption system is
enabled.

Bits 0-19 of the mask register are permanently set
to one. Bits 20-47 can be set to either zero or one by
storing the desired value in these positions. Bits 48-63
are permanently set to zero. Any information stored
in bit positions 0-19 or 48-63 of location 12 is lost and
is not recoverable.

Remainder Register

The remainder developed in the binary integer pivipE
operation or the floating point DIVIDE DOUBLE opera-
tion is placed in the 64-bit remainder register, location
13. In the binary integer operation, the four low-
order bits of the register form a 4-bit sign byte in
which the flag bits are zero. In the floating point oper-
ation, the format of the remainder is the same as that
of a floating point word in storage whose flag bits are
zero. The remainder register is not altered as the im-
plied operand of any other operations.

Factor Register

The operation MULTIPLY AND ADD obtains one of the
factors in the multiplication from the factor register
as an implied operand. The factor register is a 64-bit
register in location 14.

The factor register is loaded as an implied operand
in the operation LOAD FACTOR. In an integer opera-

Operand Designation 37

tion, the four low-order bits of the factor register
form a 4-bit sign byte in which the flag bits are zero.
In a floating point operation, the factor has the same
format as a floating point word in storage whose flag
bits are zero. The factor register is not altered as the
implied operand of any other operation.

Transit Register

The 64-bit transit register, location 15, is used to pro-
vide a linkage to the subroutines that handle inter-
ruptions caused by the transit indicators. This register
is loaded as part of the operation LOAD TRANSIT AND
SET and also the decimal operations MULTIPLY, DIVIDE,
and MULTIPLY AND ADD, which are very similar in
action to LOAD TRANSIT AND SET.

The operation LOAD TRANSIT CONVERTED also loads
the transit register, placing the result of the radix con-
version in that location.

In each of the operations above, the four low-order
bits of the transit register form a 4-bit sign byte. The
transit register is not altered as the implied operand
of any other operations.

Index Registers

The sixteen index registers X0 through X15 have
memory addresses 16 through 31. Index register X0
cannot be used for address modification. It can, how-
ever, be used in progressive indexing and as an oper-
and location in index arithmetic. The other 15 index
registers can be used in any index operation. The
refill field of index register X0 is also used in the

38 IBM 7030

operation RENAME to hold the name of another index
register.

Addresses 16-31 are valid word addresses in all but
the following cases, in which they cause an address-
invalid or exchange-program-check indication:

I. Instructions cannot be executed from the index
registers, either normally or as part of an Ex-
ECUTE INDIRECT AND COUNT operation. The sub-
ject instruction of an EXECUTE operation may be
located in an index register, however.

2. The control words for an input-output operation
cannot be located in an index register.

3. Data cannot be transmitted to or from the index
registers in an input-output operation.

4. In the operation RENAME, neither the old nor
new name of the index register can be that of an
index register.

Main Core Storage

Addresses from 32 through 262,143 (2:*—1) are avail-
able for addressing the main core storage. Not all of
these addresses may be provided in a given installa-
tion. If less than the maximum amount of core stor-
age is provided, consecutive addresses starting at loca-
tion 0 are used, of which the first 32 are reserved for
special registers, and hence not used in main core
storage. The entire address is used from the instruc-
tion, and if the effective address is above the limit of
available core storage, indicator Ap, address invalid,
or indicator EPGK, exchange program check, will be
turned on. Locations in main core storage are valid
word addresses in any operation.

Normal Sequential Operation

Normally, the operation of the computer is controlled
by instructions taken in sequential order. An in-
struction is fetched from a core storage location whose
address is specified by the contents of the instruction
counter. Any required address modification on the
instruction is then performed and when execution
of the previous instruction is sufficiently completed,
execution of the modified instruction is begun. In-
structions are taken in sequences other than normal
as a result of branching operations, interruptions, and
execution operations.

Instruction Counter

The instruction counter is a 19-bit register that speci-
fies the location of the next instruction to be exe-
cuted. When the nineteenth bit is a one, the full
word taken from storage will start at bit 32 of the
addressed location and continue to bit 31 of the next
higher location. When the nineteenth bit is a zero, the
full word will start at bit 0 and continue to bit 63 of
the addressed location.

Some instruction words are full length occupying
64 bits while others are half length of 32 bits. Both
full and half-word instructions may be intermixed in
storage. Each time an instruction is executed, the
instruction counter is stepped to specify the location
of the next instruction. If the fetched instruction is
half length, the instruction counter is stepped once
at its nineteenth position. If full length, the counter
is stepped twice.

The instruction counter is not addressable by the
program, but its contents can be changed by a branch-
type operation or stored at any storage location by
prefixing a half-length branch instruction with the
half-length instruction STORE INSTRUCTION COUNTER IF.

ProcrRAMMING NOTE

If an instruction causes its own modification (other
than that caused by index registers), that modifica-
tion changes only the instruction format in storage
and does not alter the execution in process. If the
instruction modifies any succeeding instruction, the
modification is effected before the execution of that
instruction.

Instruction Sequencing

Branching

The normal sequence of instructions may be altered
by the use of branching instructions. These are of
four types: unconditional, indicator, index, and bit
branching. Any of these instruction types may cause
a new value to be transferred to the instruction coun-
ter, thereby causing the instruction sequence to pro-
ceed from the newly addressed location.

The addresses between 0.0 and 381.82 are invalid
branching addresses. All other available 19-bit ad-
dresses are valid.

PrROGRAMMING NOTES

After an instruction is fetched, but before its execu-
tion, the instruction counter contents are stepped in
ordinary fashion. Accordingly, with branching opera-
tions, this is done prior to any attempt to replace the
instruction counter contents. For example, if the in-
struction counter contents are 231.32 and a half-word
branch instruction is fetched from the addressed loca-
tion, before execution of the fetched instruction, the
instruction counter is stepped to 232.0.

Unconditional Branching

There are five unconditional branching operations,
all of which provide for normal modification of the
branch address by the contents of an index register.
Unconditional branching instructions are specified
in the half-word format shown. The address field,
bits 0-18, represents the branch address. Unconditional
branching is specified by bits 19-27, where bits 19-21,
the op field, select the particular operation. Bits 28-31
name the index register used for address modification.

T T
ADDRESS |OP 000000| T
1 1

4] 18 22 28 3l

Branch (B)

This operation replaces the instruction counter con-
tents with bits 0-18 of the effective address of the

instruction.

Instruction Sequencing 39

Branch Relative (BR)

This instruction causes the absolute value of the
effective address to be added to the instruction coun-
ter contents. Bits 0-18 of the sum replace the instruc-
tion counter contents.

Branch Enabled (BE)

This operation enables the interruption mechanism,
and then performs the same operation as BRANCH.

ProOGRAMMING NOTE

A half-word of all zeros when taken as an instruction
will be interpreted as BRANCH ENABLED to location
0.0, an invalid address.

Branch Disabled (BD)

This operation disables the interruption mechanism,
and then performs the same operation as BRANCH.

Branch Enabled and Wait (BEW)

This instruction provides a means of stopping pro-
gram execution. The interruption mechanism is en-
abled, and the instruction counter contents are re-
placed with bits 0-18 of the effective address of the
operation as in BRANCH ENABLED. However, no fur-
ther instruction will be executed until after an inter-
ruption occurs.

No Operation (NOP)

The address and index fields of No OPERATION are not
interpreted, so they cannot cause any indicators to be
actuated; no addressable bits or locations are altered.
The computer proceeds to the next instruction in
sequence.

PrROGRAMMING NOTE

The operation code for No oreraTiON differs from
those for BRANCH and BRANCH ENABLED AND WAIT in
only one bit position each. Similarly, the operation
code for STORE INSTRUCTION COUNTER IF NO OPERATION
differs in only one bit position from BRANCH ON BIT.
Thus, a branching or waiting instruction can readily
be switched from active to inactive condition within
a program.

Indicator Branching

In indicator branching, the success of branching de-
pends upon a test of one of the 64 indicators. Normal
modification of the branch address is provided by in-
dex register X1 (address 17). The indicator branch-

40 IBM 7030

ing instruction is specified in the half-word format
shown below. Bits 0-18, the address, represent the
branch address. Bits 19-24 specify the number of the
tested indicator. Bits 25-30 specify the operation,
where bits 29 and 30 serve as modifiers. Bit 31 de-
termines whether or not there will be branch address
modification using index register X1.
ADDRESS

1 T
, | IND, IXOOOUE
4] 9

Branch on Indicator (B)

This operation causes the specified indicator to be
tested. If its value matches that of bit 30 of the in-
struction, bits 0-18 of the effective address replace the
instruction counter contents. Whether or not a
branching operation is successful, the tested indicator
is reset to zero when instruction bit 29 is one; when
bit 29 is zero, the tested indicator remains unchanged.
A B1 which addresses indicators 0 through 19 of the
indicator register may not be used as free (due to an
interrupt) instruction in the interrupt table.

Index Branching

In index branching, the count field of an index reg-
ister J is counted down, which sets the index count
zero indicator, xcz, according to whether or not the
count field became zero. This setting of xcz deter-
mines the success of branching. Limited increment-
ing of the value field of the index register is possible.
Normal branch address modification can be provided
by index register X1. The index branching instruc-
tions are specified in the half-word format shown be-
low. Bits 0-18, the address, represent the branch ad-
dress. Bits 19-22 specify the index register J whose
count field will be counted down. Bits 23-30 specify
the operation, where bits 23, 24, 29, and 30 are modi-
fiers. Bit 31 determines whether or not there will be
branch address modification using index register XI.
When bit 29 is zero, the instruction is COUNT AND
BRANCH; when the bit is one, the instruction is COUNT,
BRANCH, AND REFILL.

ADDRESS

Count and Branch (CB)

The count field of index register J is counted down
by subtracting one at bit position 45, and appropri-
ately setting the index count zero indicator, xcz. The
value field of index register J is incremented as indi-
cated by the table below:

INSTRUCTION

BITS DESCRIPTION OF INDEX VALUE
23 24 CODE INCREMENTING
0 0 No incrementing.

H Add half to value
+ Add one to value

— Subtract one from
value

The incrementing takes into account the sign, bit 24,
of the value field of the index register. Then, if the
status of indicator xcz matches that of instruction bit
30, bits 0-18 of the effective branch address will re-
place the instruction counter contents. Indicator xcz
cannot be reset as in BRANCH ON INDICATOR.

Add one in bit position 18.
Add one in bit position 17.

0
1
1 Subtract one in bit position

—_ O

Count, Branch, and Refill (CBR)

This operation is the same as COUNT AND BRANCH €X-
cept that, after execution, index register | is refilled
if the index count zero indicator is on (count reached
zero). The index register is refilled by the contents
of the location specifted by the refill field of index
register J. All available 18-bit addresses larger than
and including 16.0 are valid for refilling.

PROGRAMMING NOTES

All index incrementing and comparing operations set
indicators that can be tested by the BRANCH ON INDI-
CATOR operation. The generalized functions of incre-
menting, counting, conditionally refilling, and testing
an index register normally require two half-length
instructions, such as ADD TO VALUE and BRANCH ON
INDICATOR. For the common case, when the increment
is 4- 1, + 14, 0, or — 1, the index branching opera-
tion permits all these functions to be specified in a
single half-length instruction.

Bit Branching

Any bit in storage can control branching with the
BRANCH ON BIT instruction. The choice of the tested
bit may be varied by address modification, and the
bit may be set to zero, inverted, or set to one if de-
sired. The bit branching instruction is specified in
the full-word format shown below. Bits 0-2% consti-
tute the bit address. Bits 24-27 and 51-62 designate
the operation, where bits 60-62 are modifiers. Bits
23-31 name the index register to be used for bit ad-
dress modification. Bits 32-50 represent the branch
address. Bit 63 determines whether or not there will
be branch address modification using index register
XI.

T T
ADDRESS 1000 T ADDRESS |IIIOOOOOO ;;E
1 I
o 18 24 28 51 60 &3

BIT ADDRESS BRANCH ADDRESS

Branch on Bit (BB)

The bit specified by the effective bit address is tested.
If its status matches that of bit 62 of the instruction,
bits 0-18 of the effective branch address replace the
instruction counter contents.

Following the above operation, whether branching
occurs or not, the tested bit is set according to the
table below:

INSTRUCTION BITS TESTED BIT WILL BE

60 61

0 0 Unchanged.
0 1 Set to zero.
1 0 Inverted.

1 1 Set to one.

While any bit in storage can be tested by BRANCH
ON BIT, those bits in read-only locations will remain
unchanged when there is any attempt to change
them.

Storage of Instruction Counter

Any half-length branching operation defined above
can be converted to a full-word instruction, which
also provides for storing the instruction counter at
any specified storage location. This is done by pre-
fixing any of the above instructions except BRANCH
ON BIT with the operation STORE INSTRUCTION COUNTER
1F, as in the format shown below. Bits 0-23 constitute
the storage address. Bits 24-27, together with the
half-word branch instruction operation code, specily
the full-word operation. Bits 28-31 name the index
register used for storage address modification. Bits
8263 specify the half-word branch instruction used.

L ADDRESS IIOOO' I HALF LENGTH BRANCH INSTRUCTION
o 18 24 28 32 63

Store Instruction Counter If (SIC)

This instruction may always be prefixed to one of
the half-word branching instructions. It is executed
if and only if the associated branching is successtul.
When it is executed, it causes the instruction counter
contents to be stored in bits 0-18 of the half-word
specified by bits 0-18 of the effective storage address.
Other bits of the half-word are not disturbed. The
stored instruction counter contents always address the
instruction whose location is next higher in storage
than that of the branch instruction to which STORE
INSTRUCTION COUNTER IF is prefixed.

Instruction Sequencing 41

The instruction counter may be stored in any avail-
able location with 19-bit address 16.0 or above.

PROGRAMMING NOTES

A simple storage of the instruction counter without
branching action is accomplished by STORE INSTRUC-
TION COUNTER IF BRANCH RELATIVE with a branch
address of 0.

The combination of the sic prefix and NO OPERA-
TION is executed as a valid full-word NO OPERATION;
the counter is not stored.

STORE INSTRUCTION COUNTER IF cannot be used by
itself as a halflength instruction, and it cannot be
used to prefix any instruction other than the half-
length branching instructions. If STORE INSTRUCTION
COUNTER IF should be accidentally used in either of
these ways, the full-word beginning with STORE IN-
STRUCTION COUNTER IF might be interpreted by the
computer as a valid connect, integer, or other type of
instruction.

Program Interruption System

The sequence of instructions executed may be altered
not only by programmed branch-type operations, but
also by the computer itself upon occurrence of certain
conditions. These conditions are recorded in a col-
lection of indicators, which can be tested by the
BRANCH ON INDICATOR operation. An actuated indi-
cator can cause program interruption without an ex-
plicit programmed test.

For many indicators there are mask bits which the
programmer can set. If a mask bit is set to zero, oc-
currence of the corresponding indication will not
cause program interruption. If, however, the mask
bit is set to one, occurrence of the corresponding indi-
cation can cause the instruction sequence to be im-
mediately altered so that a single instruction located
at a place unique to the causing condition is exe-
cuted. Since this instruction may be of the branch
type, provision is made for complete sequence re-
arrangements when unexpected or irregularly timed
conditions occur. Some indicators have mask bits
that are permanently set to zero or one. Those with
permanent mask bits of zero can never cause inter-
ruption, but they can be tested by branching opera-
tions. Indicators with mask bits permanently set to
one will cause interruption whenever both the indi-
cator is actuated and the interruption system is
enabled.

In order that interruption correction routines have
adequate time to correct conditions causing inter-
ruption, or at least to store the machine state at the

42 IBM 7030

time of interruption, it is necessary to be able to pre-
vent immediately succeeding interruptions. This is
accomplished by controlling an enabling mechanism.
Upon execution of the instruction BRANCH DISABLED,
the mechanism will disable the computer’s ability to
interrupt a program. The system will remain in the
disabled state until execution of one of the instruc-
tions BRANCH ENABLED OI BRANCH ENABLED AND WAIT.
The system is then said to be enabled, and interrup-
tion will occur whenever both an indicator and its
corresponding mask bit are on.

Address monitoring is also controlled by the en-
abling mechanism. When the system is enabled,
monitoring is in force; when disabled, monitoring is
suspended. Most indicators may come on at any time
whether the system is enabled or disabled.

PrROGRAMMING NOTE

The program interruption system is so designed that
a program written without detailed knowledge of the
feature may be interrupted at any time with control
transferred to a supervisory program. The procedure
for taking care of the various conditions causing in-
terruption can be a task for the supervisory program.
On completing the special procedure, the supervisory
program can return control to the interrupted pro-
gram at the point of interruption.

Indicator Register

The indicator register contains 64 bits. Each bit is
turned on (set to 1) or off (set to 0) when certain
conditions occur in the computer system. Each bit is
also turned off automatically as it causes a program
interruption. An individual bit may be turned off
by a BRANCH ON INDICATOR instruction that tests it.

The indicator register has address 11. Bit positions
0-19 may be read, but not loaded. Any attempt to
store into these bit positions has no effect. Bit posi-
tions 20-63 may either be read or loaded. Thus, the
entire contents of the indicator register may be stored
in any storage location by a transmission-type instruc-
tion. Similarly, the register may be loaded from any
storage location by a transmission-type instruction,
but only bit positions 20-63 will be affected.

On any arithmetic or connective operations in
which indicator positions 20-63 are the replaced
operand, these indicators are read before they can
be set by the result of the arithmetic or connective
instruction, with the exception of 1r, which can
be set before the indicators are read when the lo-
cation of this instruction has a protected address.
The result is placed in the indicators at the end of

the operation and is exactly the same as if an operand
in core storage were used. This result overrides the
normal setting of all indicator positions from 20
through 68 which occurs during this type of opera-
tion. BRANCH ON BIT may also be used to test and
change the contents of positions 20-63 of the indicator
register.

For the purpose of program interruption, the bits
in the indicator register have a built-in priority,
which decreases from left to right. This only affects
interruption when two conditions are present when
interruption occurs.

Indicator List

On the list in Figure 11, some indicators are tempo-
rary and other indicators are permanent. The per-
manent indicators remain on when once turned on,
unless they cause program interruption or are other-
wise turned off. A temporary indicator only remains
on (offy until the performance of the next result
which could turn it off (on). It is then changed
to correspond to that latest result. The comparison
result indicators, for example, are temporary. At
any time all three of those indicators are set to show

Mne-

No. monic Mask Class Name

Equipment Check

0 MK 1 P,H Machine Check

T K 1 P,H Instruction Check

2 1 1 P,S Instruction Reject

3 EK 1 P,C Exchange Control Check
Attention Request

4 TS 1 P,C Time Signal

5 CPUS 1 P,C CPU Signal

Input-Output Rejects

6 EKJ 1 P,S Exchange Check Reject
7 UNRJ 1 P,S Unit Not Ready Reject
8 CBJ 1 P,S Channel Busy Reject

Input-Output Status

9 EPGK 1 P,C Exchange Program Check
10 UK 1 P,C Unit Check

11 EE 1 P,C End Exception

12 EOP 1 P,C End of Operation

13 CS 1 P,C Channel Signal

14 1 Reserved

Instruction Exception

15 OP 1 P,S Operation Code Invalid

16 AD 1 P,S Address Invalid

17 USA 1 P,S Unended Sequence of Addresses
18 EXE 1 P,S Execute Exception

19 DS 1 P,S Data Store

20 DF m P,5*,C Data Fetch

21 IF m P,S5*,C Instruction Fetch

*Class S when mask is one; otherwise Class C.

Result Exception

22 LC m P,C Lost Carry
23 PF m P,C Partial Field
24 ZD m P,C Zero Divisor

Result Exception - Floating Point

25 IR m P,C Imaginary Root

26 LS m P,C Lost Significance

27 PSH m P,C Preparatory Shift Greater than 48
28 XPFP m P,C Exponent Flag Positive: Exp. 2&]0
29 XPO m P,C Exponent Overflow; Exp.Z= 2!

30 XPH m P,C Exponent High: %‘°> Exp.= 29

31 XPL m PC Exponent Low: 27 > Exp =20

32 XPU m P,C Exponent Underflow: Exp._<_-2'I

33 M m T,C Zero Multiply

34 RU m P,C Remainder Underfiow

Mne-
No. monic Mask Class Name
Flagging Reset by variable field
3B TF m I.C Data Flag T length and floating
36 UF m T.C Data Flag U point operations re-
37 W m T.C Data Flag V quiring data fetch.
38 XF m T,5%,C Index Flag - Reset by index arith-

metic operations
*Class S only during index branching when the mask is
one and the system enabled; otherwise Class C.

Transit Operations
39 BTR m

P,C Binary Transit
40 DTR m P,C

Decimal Transit

Program
41- PGO- m p,C Program Indicators Zero
47 PGé through Six

48 XCZ 0 1,C Index Count Zero Reset by index

49 XVLZ 0 T,C Index Value Less arithmetic ops.
than Zero other than

50 XVvzZ 0 1,C Index Value Zero comparisons

51 XVGz 0 T,C Index Value Greater
than Zero

52 XL 0 T,C Index Low Reset by index

53 XE 0 T,C Index Equal } comparison

54 XH] T,C Index High operations.

Arithmetic Result

Reset by variable
55 MOP 0 T,C

field length or
floating point op.

To-Memory Op.

56 RLZ 0 T,C Result Less than Zero | Reset by variable
57 Rz 0 T,C Result Zero field length or
58 RGZ 0 T,C Result Greater than floating point
Zero ops. except com-
59 RN 0 T,C Result Negative parisons
60 AL 0 1.C Accum. Low
61 AE 0 T,C Accum. Equal » Reset by compari-
62 AH 0 1,C Accum. High son operations
Mode
63 NM 0 P,C Noisy Mode
T Indicator temporary and is reset by later operations.
P Indicator permenent but may be turned off by interruption
or during BI.
C The execution of the instruction during which the indicator
is actuated is completed.
H The execution of the instruction during which the indicator
is actuated is terminated.
S The execution of the instruction during which the indicator
is actuated is suppressed, except during EX,EXIC,T, and
SWAP .

Figure 11. Indicator List

Instruction Sequencing 43

the result of the most recent comparison performed,
unless they have been changed by programming.
The input-output status indicators EPGK, UK, EE,
EOP, and cs are controlled as a group, so they collec-
tively describe the status of a single unit at any time.
These indicators are set to describe a unit status and
the channel address register is set to the address of
the unit. As interruptions occur, the indicators are
reset. When all five are zero and if the interruption
mechanism is enabled, the exchange may set the whole
group to describe another unit. This group of indi-
cators is described in detail in the Exchange section.

Definitions of Indicators

The 64 indicators are defined below in terms of the
conditions which would actuate the indicator, and
the peculiar conditions by which the indicator is
turned off. Any indicator is turned off by interrup-
tion upon it, and can be turned off or left unchanged
when testing it with a BRANCH ON INDICATOR opera-
tion. Indicators 20 through 63 may also be turned
on or off by a BRANCH ON BIT operation or by operat-
ing upon the indicator register contents as a field in
storage. Except where noted, these are the only
means of turning indicators off. The indicators are
listed in the order of their priority.

Equipment Check

0. Machine Check (MK). An error has been de-
tected by the machine checking circuits. There is no
guarantee that any specific element in the machine is
in either its original or correct state.

1. Instruction Check (IK). An error has been de-
tected during the performance of the current instruc-
tion. Only elements usually affected by the operation
can be in error. The instruction counter (which can-
not be in error) contains the address of the next in-
struction in storage after the one during which the
error was detected.

2. Instruction Reject (IJ). An error has been de-
tected which was identified with the current instruc-
tion. The instruction has been executed as though it
were a NO OPERATION instruction. The instruction
counter contains the address of the next instruction
in storage.

3. Exchange Control Check (EK). The exchange
has failed to function properly in a manner that is
not identified with any particular unit.

44 IBM 7030

Attention Request

4. Time Signal (TS).
become zero.

5. CPU Signal (CPUS). Some other instruction
execution system in another central processing unit
desires the attention of this ceu.

The interval timer has

Input-Output Reject

6. Exchange Check Reject (EKJ). An error was
detected by the exchange in the course of testing and
setting up the present instruction. This reject may
indicate equipment malfunction or attempted selec-
tion of a channel which is not available to the pro-
grammer. The instruction is not executed, and the
indicator is actuated before the computer proceeds
to the next instruction.

7. Unit Not Ready Reject (UNRJ). An instruc-
tion was given for a unit which was not ready to be
operated. The unit ready status bit is zero. The in-
struction is not executed, and the indicator is actu-
ated before the computer proceeds to the next
instruction.

8. Channel Busy Reject (CBJ). An instruction was
given for a unit which was still connected to the ex-
change or which is still waiting to give a program
interruption as a result of a previous instruction.
The instruction is not executed, and the indicator is
actuated before the computer proceeds to the next
instruction. Certain operations, such as rewinding
tape, are completed by the unit after disconnecting
from the exchange. New instructions for channels
performing such operations can be accepted; they do
not cause busy rejects.

Input-Output Status

9. FExchange Program Check (EPGK). The last
operation initiated for the unit specified by the chan-
nel address register has been terminated by a pro-
gramming error. Such errors include giving a unit
an instruction it cannot execute or specifying core
storage locations to which the exchange does not
have access.

10. Unit Check (UK). The last operation initiated
for the unit specified by the channel address register
encountered malfunctioning of the equipment or de-
fects of the recording medium. These malfunctions
include uncorrectable data errors, card jams, broken
tapes, and so on. .

11. End Exception (EE). The last operation in-
itiated for the unit specified by the channel address
register encountered an exceptional condition, usu-
ally associated with the recording medium or some

subdivision of the data to be transmitted, which is
not expected to occur during every operation. Exam-
ples of such conditions are: out of material, sensing
of a tape mark, or depression of the erase key on a
console.

12, End of Operation (EOP). The last operation
initiated for the unit specified by the channel address
register has been completed as specified by the in-
struction and its control words, if any, unless the unit
check indicator is also on. End of operation in con-
junction with unit check indicates that the operation
was terminated because an uncorrectable data error
had been discovered.

13. Channel Signal (CS). A unit on the channel
specified by the channel address register has trans-
mitted a channel signal to the computer. If the signal
originates while one of the units connected to this
channel is in operation, it is transmitted to the com-
puter at the end of the operation. The signal can
originate upon depression of the signal key on the
unit, by the readying of a unit, or by completion of
operations such as rewinding.

14. Reserved

Both the input-output rejects and status indicators
are described in greater detail in the Exchange
section.,

Instruction Exceptions

15. Operation Code Invalid (OP). The instruction
just attempted used an operation code or combina-
tion of modifiers which is not defined. An instruc-
tion with invalid operation code is executed as No
OPERATION.

16. Address Invalid (AD). The location of the in-
struction next due for execution is at an address not
provided in the computer system, or the location
specified by the effective operand address of the in-
struction just attempted is either not provided in the
computer system or invalid for the specified opera-
tion. The affected instruction is executed as a NoO
OPERATION. Branching to an address below 32 also
actuates the indicator. A negative effective address is
not invalid; the magnitude of such an address is used
in the operation.

17. Unended Sequence of Addresses (USA). A
LOAD VALUE EFFECTIVE, EXECUTE, or EXECUTE INDI-
RECT AND COUNT operation has been in progress for
longer than one millisecond (several hundred indi-
rect addressing cycles). The operation is terminated
wherever it may be and the program proceeds. This
indicator is the only means of breaking out of a loop
that occurs as a result of a programming error in the

use of execution operations or indirect addressing. If
interruption occurs, it takes place after execution of
the causing instruction has been terminated.

18. Execute Exception (EXE). An instruction was
executed under control of the EXECUTE or the EXE-
CUTE INDIRECT AND COUNT operations that attempted
to change the contents of the instruction counter.
The subject operation was suppressed.

19. Data Store (DS). A STORE or other to-memory
operation has attempted to change the contents of
some location in the protected area of storage while
the interruption system was enabled. The operation
was suppressed.

20. Data Fetch (DF). A computer operation has
attempted to fetch data from a location in the pro-
tected area of storage while the interruption system
was enabled. If the corresponding mask bit was one,
the fetch did not take place, and the entire operation
was suppressed. If the mask bit was zero, the opera-
tion was completed normally.

21. Instruction Fetch (IF). An attempt has been
made to fetch an instruction from, or branch to, a
location in the protected area of storage while the
interruption system was enabled. If the correspond-
ing mask bit was one, the fetch or branch did not
take place and the entire operation was suppressed.
If the mask bit was zero, the instruction was executed
normally.

Result Exceptions

22. Lost Carry (LC). Information was lost on the
operation just executed as a result of a carry propa-
gating beyond the end of the legitimate sum field, as
defined for the operation. This includes unsigned
add-type to-memory operations which attempt to re-
verse the sign of the storage field. Lost carry is actu-
ated in unnormalized floating point operation when
a fraction overflow bit occurs in a sum or when a
low-order one is lost in a remainder. Lost carry is
also actuated when a SHIFT FRACTION operation shifts
non-zero bits left beyond the end of the fraction field.

23. Partial Field (PF). The operation just exe-
cuted failed to use all the operand data provided.
This condition may arise in any of the following
ways:

a. Significant bits of a result extend beyond the

left end of the accumulator.

b. A storage-altering operation uses an operand

from the accumulator which has non-zero data
to its left.

Instruction Sequencing 45

¢. The decimal operand of a single-length decimal-
to-binary conversion instruction is over 64 bits
long when translated to byte size four.

d. A binary multiplier, multiplicand, divisor, or
result of a decimal-to-binary LOAD TRANSIT CON-
VERTED OI CONVERT exceeds 48 bits.

e. A binary dividend or result of a CONVERT pOU-
BLE exceeds 96 bits.

f. In unnormalized floating-point division, the
magnitude of the dividend fraction is larger
than or equal to the magnitude of the divisor
fraction.

24. Zero Divisor (ZD). The divisor or divisor frac-
tion of the division just attempted consisted only of
zero bits. 'The division was not attempted.

Result Exceptions, Floating Point Only

25. Imaginary Root (IR). A STORE ROOT operation
was performed on the magnitude of a negative
operand.

26. Lost Significance (LS). In a floating point add-
type operation in which at least one operand was
non-zero, both the final result placed in the accumu-
lator and the overflow bit were zero. This indicator
is not turned on when both operands have zero frac-
tions prior to the pre-addition shifting, when the re-
sult is a forced zero produced in add to magnitude
type operations, or when the result has a propagated
exponent flag.

27. Preparatory Shift Greater than 48 (PSH). A
floating point add-type operation, using operands
with exponent flags of zero, required a preparatory
shift of the operands relative to one another by an
amount greater than 48 places.

28. Exponent Flag Positive: Exponent = 21 (XPFP).
The result of a floating point operation had a posi-
tive exponent with an exponent flag of 1 propagated
from an operand with an exponent flag of 1.

29. Exponent QOuverflow: Exponent = 21 (XPO).
The result of a floating point operation had a positive
exponent with an exponent flag of 1, generated from
operands with exponent flags of 0.

30. Exponent Range High: 2'° > Exponent == 29
(XPH). The result of a floating point operation had
a positive exponent with an exponent flag of 0, in the
range 2° through 21° — 1, inclusive.

31. Exponent Range Low: 2° > Exponent > 2¢
(XPL). The result of a floating point operation had
a positive exponent, with an exponent flag of 0, in
the range 2¢ through 2° — 1, inclusive.

46 IBM 7030

32. Exponent Underflow: Exponent = — 2'(XPU).
The result of a floating point operation had a nega-
tive exponent with an exponent flag of 1, generated
from operands with exponent flags of 0.

33. Zero Multiply (ZM). The final result of a
normalized floating point operation using multiplica-
tion is an order of magnitude zero with exponent not
in the XFN range.

34. Remainder Underflow (RU). The remainder
developed during a floating point division had a
negative exponent with an exponent flag of 1, gen-
erated from a dividend with exponent flag of 0.

Flagging

35. Data Flag T (TF). The data flag bit T (im-
mediately to the right of the sign bit) of the operand
of the instruction just executed was 1. The indicator
is turned off by any arithmetic instruction whose
operand from storage is not so flagged.

36. Data Flag U (UF). The second of the possible
data flag bits of the operand just used was 1. The
indicator is turned off by any arithmetic instruction
whose operand from storage is not so flagged.

37. Data Flag V (VF). The third and rightmost
of the possible data flag bits of the operand just used
was 1. The indicator is turned off by any arithmetic
instruction whose operand from storage is not so
flagged.

38. Index Flag (XF). The index flag bit (bit 25)
of the index word just modified was 1, before any
refill operation was performed. The indicator is
turned off by any index arithmetic or refill operation
whose modificand does not have its flag on.

Transit Operations

39. Binary Transit (BTR). A binary LOAD TRANSIT
AND SET operation was executed.

40. Decimal Transit (DTR). A decimal MmULTIPLY,
DIVIDE, MULTIPLY AND ADD, OI LOAD TRANSIT AND SET
operation was executed.

Program

4147. Program Indicators Zero through Six (PGO-
PG6). These indicators are set by programming only.

Index Result

48. Index Count Zero (XCZ). The result count
field of the index word last modified by an index

modification operation, including REFILL, was zero
before a refill, if any, but after any other modifica-
tions. This indicator is turned off by any index modi-
fication operation whose result does not have a zero
count field.

49. Index Value Less than Zero (XVLZ). The
value field resulting from the index modification op-
eration just executed was non-zero and negative. This
indicator is turned off by any index modification
operation whose result has a value field which is zero
or positive.

50. Index Value Zero (XVZ). The value field re-
sulting from the index modification operation just
executed was zero. This indicator is turned off by
any index modification operation whose result has a
value field which is non-zero.

51. Index Value Greater than Zero (XVGZ). The
value field resulting from the index modification op-
eration just executed was non-zero and positive. This
indicator is turned off by any index modification
operation whose result has a value field which is zero
or negative. One and only one of indicators xvLz,
XvZ, XVGZ is on at any time, unless they have been
changed by programming.

52. Index Low (XL). The result of the index
comparison operation just executed was that the
compared field of the index word was lower than that
of the comparand specified by the effective address.
This indicator is turned off by an index comparison
whose result is not low.

53. Index Equal (XE). The result of the index
comparison just executed was that the compared field
of the index word was equal to that of the compa-
rand. This indicator is turned off by an index com-
parison whose result is not equal.

54. Index High (XH). The result of the index
comparison just executed was that the compared field
of the index word was higher than that of the com-
parand. This indicator is turned off by an index
comparison whose result is not high.

One and only one of indicators XL, XE, and xH is
on at any time, unless they have been changed by
programming.

Arithmetic Result

55. To-Memory Operation (MOP). The result of
the arithmetic or connective operation last executed
was placed in storage. This indicator is actuated by
integer and floating point to-memory operations, in-
cluding STORE, ADD TO MEMORY and its variants, and
CONNECT TO MEMORY. It is turned off by any other
arithmetic, connective, or comparison operation.

56. Result Less than Zero (RLZ). The result of
the integer or floating-point arithmetic operation
just executed was non-zero and negative. This indi-
cator is turned off by any non-comparative arithmetic
operation whose result is zero or positive, or by any
connective operation.

57. Result Zero (RZ). The result of the non-
comparative arithmetic or connective operation just
executed was zero. This indicator is turned off by
any non-comparative arithmetic or connective opera-
tion whose result was non-zero.

58. Result Greater than Zero (RGZ). The result
of the non-comparative arithmetic operation just ex-
ecuted was non-zero and positive or the result of the
connective operation just executed was non-zero. This
indicator is turned off by a non-comparative arith-
metic operation whose result is zero or negative, or
by a connective operation whose result is zero. One
and only one of indicators rLZ, RZ, and RGZ is on at
any one time, unless they have been changed by
programming.

59. Result Negative (RN). The result of the non-
comparative arithmetic operation just executed was
negative whether zero or not. This indicator is turned
off by a non-comparative arithmetic operation whose
result is positive, whether zero or not, or by any
connective operation. ‘

60. Accumulator Low (AL). The result of the
arithmetic comparison operation just executed was
that the accumulator contents were less than the com-
parand specified by the effective address. The arith-
metic comparison operations are COMPARE, COMPARE
FIELD, COMPARE MAGNITUDE, COMPARE FOR RANGE, COM-
PARE FIELD FOR RANGE, COMPARE MAGNITUDE FOR RANGE,
COMPARE IF EQUAL, and COMPARE FIELD IF EQUAL. This
indicator is turned off by a comparison operation
whose result is not low.

61. Accumulator Equal (AE). The result of the
arithmetic comparison operation just executed was
that the accumulator contents were equal to the com-
parand or within the compared range. This indica-
tor is turned off by a comparison operation whose
result is not equal or within the compared range.

62. Accumulator High (AH). The result of the
arithmetic comparison operation just executed was
that the accumulator contents were greater than the
comparand. This indicator is turned off by a com-
parison operation whose result is not high. One and
only one of indicators AL, AE, and AH is on at any
time, unless they have been changed by program-
ming.

Instruction Sequencing 47

Mode

63. Noisy Mode (NM). This indicator can only be
turned on by program control, through the use of a
connective operation, a loading of the indicator reg-
ister, or BRANCH oN BIT. When on, all floating point
operations are performed in the noisy mode, as de-
fined in “Floating Point Arithmetic.”

Mask Register

The mask word consists of 64 bits. Fach bit corre-
sponds to an indicator in the indicator register. If
the bit of the mask is 1 and the interruption system
enabled, occurrence of the corresponding condition
will cause program interruption at the end of the
operation during which the indicator is turned on.
If the bit of the mask is 0, turning on the indicator
does not cause program interruption. Thus, inter-
ruption requires the mask bit to be 1, the indicator
bit to be 1, and the mechanism to be enabled.

Not all of the 64 mask bits can be set by program
control. Those corresponding to indicators 0-19 are
permanently set to 1. Those corresponding to indi-
cators 20-47 can be set to 0 or 1 by program control.
Those corresponding to indicators 48-63 are perma-
nently set to 0. Thus, when the interruption mecha-
nism is enabled, some indicators always cause pro-
gram interruption, some may or may not, and others
can never cause interruption. Figure 11 shows the
masking property of each indicator.

The mask has address 12 and can be loaded and
stored by transmission instructions. When the mask
contents are read, the permanently set bits read out
as 1 or 0 according to their type, regardless of what
may have been loaded into those positions earlier.
Individual mask bits with addresses 12.20 through
12.47 can be set or changed by connective operations,
arithmetic operations, or BRANCH ON BIT.

Interruption Address Register

Because of the varied conditions which turn on in-
dicators, varied correction routines are required to
meet the needs created by the conditions. There can
be up to 48 such routines tailored to the program in
execution, and each corresponding to an indicator.
The initial instruction for a routine occupies all or
half of a location in a table of 48 successive full-
word locations. The address of the first location is
contained in the interruption address register. The
interruption address register contains 18 bits and has

48 IBM 7030

address 2.0, which places it in the protected area of
storage.

Interruption Action

When a program interruption occurs, a mechanism
develops the number of the leftmost actuated indi-

. cator whose mask bit is one. After this leftmost indi-

cator has been turned off, the developed number is
added to the contents of the interruption address
register to form the effective interruption address.
This address does not replace the contents of tne
instruction counter but is used to fetch a single in-
struction which is executed before a second inter-
ruption can occur. The instruction fetch indicator
(1F) cannot be turned on when this instruction is
fetched even though it might lie in the protected
area of core storage.

The instruction counter is stepped neither before
nor during the execution of the instruction at the
effective interruption address; however, the instruc-
tion counter can be replaced as the result of a suc-
cessful branching operation.

When interruption occurs and an instruction at
the effective interruption address is executed (it may
be of the branch type), the next instruction executed
will be one of the following:

1. The instruction then addressed by the instruc-
tion counter in case a second interruption has
not occurred

2. The instruction at the new effective interrup-
tion address in case a second interruption has
occurred

If the interruption system is enabled and an indi-
cator and its corresponding mask bit are both on,
interruption will follow as early as possible but never
during the execution of an instruction. Interruption
is permitted after the execution of an instruction is
completed, terminated, or suppressed and before ex-
ecution of the next instruction.

ProGRAMMING NOTES

The leftmost one identification defines the relative
priority of actuated indicators if more than one has
its corresponding mask bit turned on when interrup-
tion occurs. If the interruption instruction does not
disable the system in such a case, then another suc-
ceeding interruption will be caused by the new left-
most selected indicator before the execution of an
instruction addressed by the instruction counter. This
is true even if the first interruption instruction is a
branch instruction. The instruction counter is not
stepped during execution of either interruption in-
struction.

The instruction at the effective interruption ad-
dress may be of any type: half-length or full-length;
an arithmetic, connective, branch, or any other type.

A half-length instruction in the right half of the
fullword location at the effective interruption ad-
dress will not be executed except by a branch to that
location.

When an instruction itself causes an indicator to
be turned on and interruption occurs at the end of
the operation in progress, the instruction counter con-
tains the location plus one of that instruction even if
the instruction is a branch. Instructions at effective
interruption addresses are excepted.

Four levels of generality and complexity can be
identified in the correction routines selected by the
program interruption mechanism.

The simplest routine is a single instruction which
is suitable for some conditions, such as input-output
or floating-point range exceptions. In this case, the
instruction is stored in the proper place relative to
the interruption address, and it is executed whenever
the condition occurs. After this instruction is ex-
ecuted, the program proceeds with the first instruc-
tion after that on which the interrupting condition
arose.

The next simplest type of correction routine con-
sists of a subroutine sufficiently short and simple that
further interruptions can be excluded while it is in
effect. An unconditional STORE INSTRUCTION COUNTER
IF BRANCH DISABLED instruction to the subroutine is
put at the proper place in the interruption address
table, storing the counter in a suitable address. When
the subroutine is complete, return is effected by a
BRANCH ENABLED instruction that uses the suitable
return address.

In the next most general case, the correction rou-
tine itself must be subjegt to further interruptions
under control of the same mask and interruption
address. The entry in the interruption address table
is then a STORE INSTRUCTION COUNTER IF BRANCH in-
struction to the correction routine. Return from the
correction routine is made with BRANCH.

In the most general case, when interruption con-
trolled by a new mask and/or interruption address
must be permitted during the subroutine, it is en-
tered with STORE INSTRUCTION COUNTER IF BRANCH
pisABLED. The mask register and/or the interruption
address register are loaded and the mechanism is
enabled. At the end of the subroutine, the mechan-
ism is disabled, the mask register and/or the inter-
ruption address register are restored to their original
values, and return to the main program is made with
BRANCH ENABLED. This procedure permits any con-
ceivable priority system to be set up for interruptions.

Execution Instructions

Three types of instruction sequencing have already
been explained: normal sequencing by the stepping
of the instruction counter, in which the program
keeps control of sequencing; branching, in which the
program gives control to a second program; and in-
terruption, in which a new program takes control.
Since it is often desirable to permit one program to
execute the instructions of a second program with-
out losing control to the second program, a fourth
type of instruction sequencing is provided, which
lends control. This is furnished by means of the two
execution instructions.

One instruction, EXECUTE, directly specifies the loca-
tion of a second instruction, the subject instruction,
which is executed. The other instruction, EXECUTE
INDIRECT AND COUNT, specifies a location which imi-
tates the instruction counter, a pseudo-instruction
counter. The pseudo-instruction counter addresses the
location of a single subject instruction, which is
fetched and executed. After the subject instruction
has been f[etched, but prior to its execution, the
pseudo-instruction counter is stepped.

In either of the execution instructions, the subject
instruction may be of any type and is performed ac-
cording to the normal rules for an operation of its
type. However, in order that the main program may
have full control at all times, the subject instruction
is not allowed to change the state of the interruption
system or replace the contents of the instruction
counter. The execution exception indicator (EXE) is
turned on by any branch operation of a subject in-
struction in which the condition for a successful
branch is met. When indicator EXE is actuated, the
branch and all associated operations are not per-
formed. The suppressed actions include the disabling
in BRANCH DISABLED, the enabling in BRANCH ENABLED
Or BRANCH ENABLED AND WAIT, the counting and re-
filling in COUNT, BRANCH AND REFILL, and so on.

If an execution operation specifies an execution
instruction as its subject instruction, the subject in-
struction of the second-level execution operation is
obtained. If this, in turn, is still another execution
instruction, the procedure is carried to succeeding
levels until an instruction that is not an execution
instruction is obtained.

When an execution operation is initiated in the
main program, the instruction counter is stepped in
normal fashion as in all operations of the main pro-
gram. However, it is never stepped during the execu-
tion of any subject instruction even if the subject in-
struction is again one of the execution instructions.

In general, when the interruption system is dis-

Instruction Sequencing 49

abled, interruption cannot occur and address moni-
toring is suspended. In order that control may re-
main entirely with the main program during an exe-
cution operation, two special exceptions are made.
First, address monitoring is always in force during
(I) EXECUTE and (2) EXECUTE INDIRECT AND COUNT,
except for the address of the location of the first level
pseudo-instruction counter. Second, at the comple-
tion, termination, or suppression of an execution
operation, interruption is always permitted.

ProGRAMMING NOTE

When interruption occurs following an execution
operation with the interruption system disabled, it
is caused only by the actuated indicator of highest
priority whose mask bit is one. Further interruptions
cannot occur until either the system is enabled or
another execution operation is completed, termi-
nated, or suppressed. Examination for other actuated
indicators can be programmed into the correction
routine.

Any actuated indicator whose mask bit is on may
cause interruption at the completion, termination,
or suppression of an execution operation.

Execute (EX)

Bits 0-18 of the effective address form the address of
the location of a subject instruction that is fetched
and executed. Subject instructions of EXECUTE may
occupy any addressable location. An effective address
of EXECUTE that is below 32.00 (including addresses
between 1.00 and 3.32) is not monitored by the ad-
dress monitoring mechanism; that is, indicator 1F
cannot be actuated by these addresses.

Execute Indirect and Count (EXIC)

Bits 0-18 of the full-word addressed by bits 0-17 of
the effective address are used as a pseudo-instruction
counter. The contents of the pseudo-instruction coun-
ter address the location of a subject instruction that is
fetched and executed. After the subject instruction
has been fetched but prior to its execution, the pseudo-
instruction counter is stepped. If the subject instruc-
tion is half-length, the pseudo-instruction counter is
stepped once; if full-length, twice.

When EXECUTE INDIRECT AND COUNT is a subject
instruction in a multi-leveled execution operation,
each pseudo-instruction counter involved is appro-
priately stepped between the fetching and executing
of its corresponding subject instruction.

Pseudo-instruction counters may occupy any of the
index registers as well as main core storage locations
but cannot occupy locations addressed between 0 and

50 IBM 7030

15. Subject instructions of EXECUTE INDIRECT AND
COUNT may occupy any available locations with ad-
dresses 32.00 and greater.

PrROGRAMMING NOTES

The execution instructions may be used not only
for supervisory routines, such as tracing programs,
but also for parameter determination in subroutine-
calling sequences. For example, execution operations
in a subroutine may execute parameter-specifying sub-
ject instructions whose locations follow that of the
branch to the subroutine. The instruction EXECUTE
also executes instructions conveniently from the reg-
isters. This facilitates table look-up, diagnostic, and
other routines.

System Alerts

During the execution of a program, certain condi-
tions arising because of the program or outside influ-
ences should cause the computer to alert the pro-
gram. Five types of alert causes may be recognized:

1. External signals, as from the interval timer,
input-output units, or other central processing
units.

2. Data exceptions, such as data flags, zero divisors,
or negative operands in square root operations.

3. Result exceptions, such as lost carries, partial
fields, or floating point exponents within cer-
tain ranges.

4. Instruction exceptions, such as instructions
which should not or cannot be completed or
should signal when they are completed.

5. Machine malfunctions.

These causes are recorded in the indicator register as
they occur, thus altering the program. The inter-
ruption system allows programmed action on the
alerts. The detailed action of the interruption sys-
tem should permit (1) independent treatment of
alerts, and (2) preservation of the state of execution
at the time of alert to facilitate program resumption.

Independent Treatment of Alerts

Each alert can be treated independently by program-
ming because of the following three properties:

1. The interruption system may be disabled as a
part of the programmed action taken on an alert.

Thus, other alerts that may have occurred simulta-
neously can be held for action at a later time when
the action on the first alert has been completed.

2. One alert does not affect other alerts. However,
an alert may cause an instruction in execution to be
suppressed or terminated, thus preventing other alerts
from occurring. For example, in swap, if a protected
address is encountered, it will cause termination of
the execution. The transmissions that would have
been performed if the execution had not been termi-
nated might have encountered an invalid address.
Thus, possible alerts are prevented.

3. Each cause for alert actuates a single indicator,
except for the input-output status indicators that
collectively form a single alert. Furthermore, each
alert has a single cause. It is possible, however, for
several alerts to occur during the execution of a
single instruction. More than one alert can be caused
by (1) the instruction in progress, and (2) external
signals. For example, the single floating point in-
struction STORE ROOT can cause the alerts IR and xpH.
Also, during the execution, the external signals Ts,
cpus, EE, and EoP may have occurred.

In a few cases, the general description of indicators
shows that a single cause should actuate two indica-
tors. However, in the event of such an alert, only the
indicator of higher priority is actuated. The order of
priorities of the indicators during indicator actua-
tion is the same as the order shown on the indicator
list except that 1F has priority over Ap.

Examples are:

a. In app TO MEMORY, when the operand in storage
is protected, only indicator ps will be actuated.
Indicator pF will remain unchanged.

b. In swap, however, an encountered protected
address will actuate both indicators ps and DF
because each of the two attempted transmis-
sions causes different alerts.

c¢. An effective branch address that is both invalid
and protected will cause only the actuation of
indicator Ap. Indicator 1F will remain un-
changed because an instruction has not been
fetched.

d. If the address of the location of the subject
instruction of EXECUTE or EXECUTE INDIRECT AND
COUNT is both protected and invalid, indicator
if will be actuated. Indicator Ap will not be
actuated as a result of this invalid address un-
less the 1F mask bit is zero.

Five indicators may be actuated in an input-output
status alert: EPGK, UK, EE, EOP, and cs. These concern

the input-output units specified by the channel ad-
dress. cs is actually an independent alert, but, to
avoid the need for a second channel address register,
it is set with the other indicators.

Program Resumption

The state of execution at the occurrence of an alert,
as known by the program in progress, should be
saved to facilitate program resumption after action
on the alert has been taken. For this reason, the
execution of the instruction in progress is either car-
ried through to completion or entirely suppressed
before beginning action on the alert. When neither
is possible, however, execution of the instruction is
terminated.

The execution of the instruction during which an
alert occurs is not affected by the state of the corre-
sponding indicator mask bit except for alerts IF, DF,
and xr. 1F and DF alerts cause the suppression of the
instruction in progress when their mask bits are one;
otherwise they do not. An xr alert causes suppres-
sion of the instruction in progress only during index
branching when the xF mask bit is one and the inter-
ruption system is enabled.

After the completion, suppression, or termination
of an instruction execution, another instruction is
fetched for execution. The location of this fetched
instruction will be addressed by the instruction coun-
ter if interruption did not occur, or by the effective
interruption address if interruption did occur.

Execution Completed
Generally, the execution of an instruction in progress
will be completed in the event of an alert which:

1. Is not caused by the instruction in execution.

2. Is only a warning of a condition which is not
necessarily an error.

8. Occurred because of the result of a completed
execution.

4. Occurs with no loss of information; that is, the
information is either directly available upon
completion of the instruction or is recoverable
by programming.

The indicators actuated in these cases are of class
C (Figure 11).

PrROGRAMMING NOTE
Indicator zp, activated to indicate division by zero,
is also included as Class C.

Instruction Sequencing 51

Execution Suppressed

Generally, the execution of an instruction in progress
will be suppressed in the event of an alert which:

1. Indicates that the operation is not properly de-
fined or cannot be executed because of the pres-
ent state of the machine (op, Av, EXJ, UNR], Or
CBJ).

2. Indicates that completion of the execution
might destroy information (1J, EXE, vs, DF, IF,
or XF).

3. Indicates that the execution of EXECUTE, EXE-
CUTE INDIRECT AND COUNT, Or LOAD VALUE EFFEC-
TIVE has exceeded one millisecond (the alert is
Usa). Any pseudo-instruction counters referred
to by Exic instructions will have been stepped.

The indicators actuated in these cases are of Class S
(Figure 11).

In order to allow continuous computer operation,
the suppression of an instruction must necessarily
exclude the following operations:

1. The actuation of those indicators, associated
with the instruction, of Class S, and indicators
or and 1F when their mask bits are zero.

2. The actuation of indicators that were caused
by conditions unrelated to the instruction in
execution.

3. The stepping of the instruction counter.

4. The changing of the state of the interruption
system which occurred as specification of BRANCH
ENABLED, BRANCH DISABLED, OI BRANCH ENABLED
AND WAIT.

For example, an invalid effective bit address in
BRANCH ON BIT causes the actuation of indicator Ap
and the suppression of the instruction, since no bit
can be tested to complete its execution. Indicator 1F
cannot be actuated.

Another example is that, since a protected effective
bit address in BRANCH ON BIT could result in the de-
struction of information, alert ps or pF may occur if:

1. The addressed bit is not specified to remain un-
conditionally unchanged; that is, bits 60 and 61
of the instruction are not both zero. The in-
struction is suppressed without a test of the
addressed bit, and indicator bs is actuated.

2. The addressed bit is specified to remain uncon-
ditionally unchanged, and the oF mask bit is
one. The instruction is suppressed without a
test of the addressed bit, and indicator or is
actuated.

3. The addressed bit is specified to remain uncon-
ditionally unchanged, and the prF mask bit is

52 IBM 7030

zero. Indicator pr is actuated but does not
cause suppression of the instruction.

A third example is that, when the instruction counter
contents are stepped in normal fashion beyond the
limit of storage addresses, the instruction counter
addresses a void location and indicator Ap is actuated.
If the address is protected, indicator IF is actuated,
instead. The instruction is suppressed.

Since an instruction is fully interpreted before it
can be suppressed, more than one alert of Class S can
be caused by the instruction. For example, if a STORE
INSTRUCTION COUNTER IF COUNT, BRANCH AND REFILL
is executed as the subject instruction of EXECUTE, it
is possible for (1) the condition for branching to be
met, (2) the effective sic address to be invalid, (3)
the effective branch address and the refill address to
be protected, and (4) the count to reach zero. An
attempt to execute this instruction causes the entire
subject instruction to be suppressed and the actuation
of all the indicators EXE, Ap, 1F, and pr. The pro-
tected effective branch address and the invalid effec-
tive sic address are encountered because the condi-
tion for branching is met. When, however, in this
example, the condition for branching is not met, the
entire subject instruction is still suppressed but only
indicator pF is actuated (the pr mask bit is assumed
to be one). Indicator pF is actuated since the test for
the refilling is independent of the test for a success-
ful branch.

The occurrence of an alert of Class $ during a
transmission in TRANSMIT or swAP or during the execu-
tion of a subject instruction of EXECUTE or EXECUTE
INDIRECT AND COUNT may not cause full suppression
of the instruction.

Execution Terminated

The execution of the instruction in progress will be
terminated when one of these three types of alert
occurs: :

1. The alert indicates that a machine malfunction
occurred during the instruction in progress in such
a way that suppression or completion of the execu-
tion will not eliminate destruction of information.
The indicators actuated in this case are of Class H
(Figure 11).

2. The alert is of Class S but has occurred during
a transmission in TRANSMIT or SWAP or during the exe-
cution of a subject instruction in EXECUTE or EXECUTE
INDIRECT AND COUNT. Such an alert has the following
effect:

a. An alert of Class S during a transmission causes

suppression of that transmission and all that
follow; prior transmissions cannot be suppressed.

b. An alert of Class S during an execution opera-
tion causes suppression of the entire execution
instruction except that (1) every pseudo-instruc-
tion counter that has been stepped prior to the
alert remains stepped, and (2) any transmissions
of swAP or TRANSMIT, as subject instructions,
which occurred before the alert are not sup-
pressed.

3. An alert of Class S during progressive indexing

suppresses only the indexing portion of the operation.

EXAMPLES OF TERMINATION

1. A protected effective transmission address in
swaP will cause the actuation of indicators ps and bF,
the suppression of both the data fetch and the data
store at that location, and suppression of all trans-
missions that follow. The transmissions that have
already been completed cannot be suppressed.

2. A protected effective subject instruction address
of EXECUTE INDIRECT AND COUNT will cause the actua-
tion of indicator 1r and the suppression of the in-
struction except for the stepping of the pseudo-
instruction counter that has already been stepped.

3. A protected effective pseudo-instruction counter
address in EXECUTE INDIRECT AND COUNT will cause
actuation of indicator ps and suppression of the en-
tire instruction. The pseudo-instruction counter will
not be stepped.

4. If EXECUTE INDIRECT AND COUNT is the subject in-
struction of EXECUTE INDIRECT AND COUNT, a protected
effective subject instruction address of the second-
level execution instruction will cause suppression
of the second-level execution instruction, but both
pseudo-instruction counters will remain stepped.

5. If swap is the subject instruction of EXECUTE
INDIRECT AND COUNT, an invalid transmission address
will cause the actuation of indicator Ap and the sup-
pression of that transmission and all which follow;
the pseudo-instruction counter will remain stepped
and all transmissions that occurred prior to the alert
will not be suppressed.

System States

The four system states are: running, programmed
waiting, initial program loading, and initial power
on. The computer system is designed for continuous
running, but the other three states of the system are
necessary. The programmed wait is accomplished by
executing BRANCH ENABLED AND WAIT.

Two status lights are provided with the system to
help indicate the system’s state of sequential opera-
tion.

Initial Program Loading

The INITIAL PROGRAM LOAD key may be used for pro-
gram loading and for manual termination of com-
puter operation, A depression of this key has the
following effect on the central processing unit:

1. The current operation is terminated.

2. The interruption system is disabled.

When the operation of the computer is terminated
by means of the INITIAL PROGRAM LOAD key, all stor-
age locations and registers that were altered prior to
the termination are not restored to a former nor any
other predetermined state, and hence the original
program cannot normally be resumed. No further
instructions are executed until a channel signal is
received.

The INITIAL PROGRAM LOAD key is physically located
on the operator’s console, although not an- integral
logical part of it. If the system does not contain a
console, the load key is provided in a separate box
which may be placed at a convenient operating point.

PROGRAMMING NOTE

Since depression of the INITIAL PROGRAM LOAD key
causes termination of computer operation, changes in
the instruction counter as well as changes in storage
may have occurred because of the interpretation of
more than one instruction in preparation for execu-
tion. Such changes would make resumption of the
terminated program at a later time undesirable.

Initial Power On

When the power is first turned on, the computer is
in the following state:
1. The instruction counter and registers 0, 2, 3, 4, 5,
6,7, 8,9, 10, 11, and 12 contain random bits
not necessarily with proper parity.

2. The interruption system is disabled.
All control units are restored to their initial
power-on status.

After the power is turned on, no instructions are ex-
ecuted until the computer has been signalled. The
INITIAL PROGRAM LOAD key may be depressed for this

purpose.
PROGRAMMING NOTE

The first program executed after the power is turned
on may be a routine designed to alter the contents of
registers 0, 2,3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, since a

Instruction Sequencing 53

fetch from one of these without proper parity may
cause an alarm.

System Status Lights

Two lights are provided with the system to show the
status of sequential operation.

1. Running Light. This light is turned on when
the power is on and the system is not in a pro-
grammed wait status, initial program load status, or
initial power-on status.

2. Inactive Light. This light is turned on when
the power is on but the instruction counter is not
being incremented.

54 IBM 7030

Thus, the four possible states of these two lights
are interpreted as follows:

INACTIVE RUNNING
Off Off Power off.
Oft On Running normally.
On Off Programmed wait, initial pro-
gram load, or initial power on.
On On Trouble: the system is hung

up by continuous interruption,
or lost control signal.

These status lights are located on the same unit as
the INITIAL PROGRAM LOAD key.

The variable field-length data handling operations
may be divided into three general classes: integer
arithmetic operations, radix conversion operations,
and connective operations. All of these three types
operate on a variablelength data field, which may
start at any bit position in storage. The instruction
contains a 24-bit word and bit address that defines
the leftmost bit of the storage field. The instruction
format also includes a field that specifies the length
in bits of the storage field. Another field in the in-
struction specifies the byte size of the addressed oper-
and. The term “byte” describes a group of bits that
represent a digit, alphabetic character, or other sin-
gle symbol. Data fields in storage may be composed
of bytes of any size from 1 to 8 bits.

The second operand in most of these operations is
a field from the accumulator. Since this field may be
located anywhere in the 128-bit accumulator, the in-
struction format contains an offset field that defines
the low-order bit of the accumulator operand. The
low-order positions of the two operands are aligned
for processing. In some operations, the result re-
places the accumulator operand; in others, the result
replaces the storage operand; in yet others only cer-
tain indicators are affected, with both operands re-
maining unchanged.

Integer Arithmetic Operations

This class includes the elementary arithmetic opera-
tions. The variable-length data may be signed or un-
signed, decimal or binary. When the data are signed,
flag bits may be associated with them. The name
“integer arithmetic” is used because the results of
multiplications and divisions are aligned as if the
operands were integers. The elementary arithmetic
operations are:

4+ Add

L. Load

ST Store

* Multiply
/ Divide

A set of modifiers is provided to alter the operand
from storage so that these five operations effectively
include a great many others. One modifier changes
App to an algebraic subtraction; therefore, no sepa-
rate SUBTRACT operation is provided. Another modi-
fier permits integer arithmetic on unsigned numbers.

Variable Field-Length Data Handling

A third modifier specifies the choice of binary or
decimal arithmetic. Decimal multiplication and di-
vision are not provided directly in the machine, but
their operation codes are provided. These may cause
automatic entry to a subroutine, where the desired
operation may be rapidly and easily performed using
the conversion operations and binary multiplication
or division.

Besides the modifications that are specified by the
modifiers, other variations of the basic operations are
provided. Variations on the elementary addition
operation are:

+ MG Add to Magnitude

M+ Add to Memory

M 4+ MG Add Magnitude to Memory
M4+ 1 Add One to Memory

The last three operations above add a quantity to
storage rather than to the accumulator. The two
magnitude operations provide for different treatment
of the accumulator sign and inhibit sign reversal. In-
stead of overdraws they provide a zero result.

The comparison operations provide a comparison
between two operands resulting in a low-equal-high
test; no numeric result is produced, and both oper-
ands remain unchanged. Six operations are provided,
the last four permitting successive comparisons to be
followed by a single test.

K Compare

kF Compare Field

KE Compare if Equal

kre Compare Field if Equal
kR Compare for Range

kFR Compare Field for Range

The operations COMPARE, COMPARE IF EQUAL, and
COMPARE FOR RANGE provide a signed comparison be-
tween the storage operand and the entire accumula-
tor contents to the left of the offset. The operations
COMPARE FIELD, COMPARE FIELD IF EQUAL, and coM-
PARE FIELD FOR RANGE ignore the accumulator sign
and provide a comparison between fields of equal
length in digits, either binary or decimal.

One variation on the LOAD operation is LOAD WITH
FLAG that loads the data flags into the accumulator
sign byte register in addition to performing all the
functions of LoAD.

One variation on sTORE combines rounding with
the store operation:

SRD Store Rounded

The operation LOAD TRANSIT AND SET loads the

transit register and provides automatic entry to a sub-

Variable Field Length 55

routine. 1t may be used, for example, to provide a
square root operation or any other desired special
function.

A variation on the multiply operation and a related
auxiliary function are provided by

LFT Load Factor
and * 4 Multiply and Add.

The set of operations that is available for integer
arithmetic is paralleled by a set of operations that
perform arithmetic in a binary floating point mode.
The floating point operations assume a special data
format that allows these operations to be fully speci-
fied in a half-word instruction format. In addition
to the set of operations that parallels the integer set,
special floating point operations are also available
that simplify double-precision arithmetic and facili-
tate separate handling of exponents and fractions.

Format

The integer arithmetic operations use the full-word
instruction format shown below.

7)) T
ADDRESS IOOOA‘ I | P |[LENGTH|BS |OFFSET ’S ; OP. I‘ I}
r 1
8 24 28 32 35 4 a4 51 \ 60 63
BINARY
DECIMAL

Bits 0-23 may be used as a word and bit address.
This field is indexed by the contents of the index
register specified in the I field of the first half-word,
bits 28 through 31. The effective address may be
used to designate the leftmost bit of a storage field,
or it may be used as data. The three high-order bits
of the second half-word form the P field of the in-
struction and specify the choice between direct and
immediate addressing and the method of indexing
to be used in modifying the first half-word of the
instruction. Although the second half-word may be
indexed, the P field is not modified. The index field
I in bits 60 through 63 specifies the index word that is
used to modify bits 35 through 50 of the instruction.
On indexing the second half-word, bit position 3 of
the index word is aligned with bit position 35 of the
instruction, the three high-order bits of the index
word being ignored. If the same index register is
specified in both halves of an instruction while using
progressive indexing, the value of the index register
before modification is used in indexing the second
half of the instruction.

The field length, bits 35 through 40, defines the
length of the operand from storage, and the length
of the result field when the result replaces the storage

56 IBM 7030

operand. The offset field, bits 44 through 50, specifies
the number of bits by which the right end of the ac-
cumulator operand is offset from the right end of the
accumulator. The byte size field, bits 41 through 43,
specifies the byte size of the storage operand.

The operation code designates the operation to be
performed. All integer arithmetic operations are sub-
ject to three modifiers specified in bit positions 51
through 53 of the instruction. One modifier, bit 51,
designates whether the storage field is signed or not;
another, bit 52, designates whether the sign of the
unreplaced field is to be taken as-is or inverted; the
third, bit 53, designates whether the operation is
decimal or binary.

Field Definition

The operand specified explicitly by an instruction is
defined by a word address, bit address and field
length. If direct addressing is specified, the indexed
word-and-bit addresses are used to define the leftmost
bit of a storage field. The field length specifies the
total length in bits of the storage operand, including
the sign byte when present. A length field of zero
In an instruction specifies a 64-bit storage field.

The storage word or word pair which contains the
addressed memory field is brought from storage to the
arithmetic section of the computer. There, the de-
sired field is extracted, starting with the right end of
the field. Processing is done from right to left, even
though the bit address in the instruction specifies the
leftmost bit of the field.

In integer arithmetic operations that affect storage,
such as STORE and ADD TO MEMORY, the result replaces
the storage operand in the bit positions specified by
the address and field length. Data to the right or left
of the specified field in storage are never affected.

If immediate addressing is specified, the effective ad-
dress itself is used as the operand. The field length spec-
ifies the number of bits in the field starting with the
leftmost bit of the effective address. The sign bit of
the effective address is not used. If the field length
designated is greater than 24, zeros are added to the
right to obtain a field of proper length. The result-
ing field is treated in every respect like a field from
storage. Immediate addressing is, of course, not possi-
ble in operations whose result is placed in storage. If
immediate addressing is specified in a to-memory
operation, the operation is not performed and the
operation code invalid (op) indicator is turned on.

The implied second operand of most operations is
a field from the accumulator. The right end of the
accumulator operand is defined by the offset specified
in the instruction. The left end is the left end of the
accumulator. For example, any carries that occur in

an accumulator-altering operation may propagate to
the left end of the accumulator. If a carry attempts
to propagate beyond the left end of the accumulator,
the carry is lost and the lost carry indicator is turned
on.

It should be pointed out that the entire contents
of the accumulator are treated basically as a unit.
This means that all bits in the accumulator, even
those to the right of the offset, can be changed as a
result of an accumulator-altering operation. This
occurs when such an operation causes the accumula-
tor to be cleared or recomplemented. For example,
Loap clears the entire accumulator regardless of the
offset specified. Recomplementation occurs when the
sign of the accumulator changes as a result of an op-
eration. In this event, the entire accumulator is re-
complemented regardless of the offset.

In accumulator-altering operations, the offset can
be conveniently thought of as equivalent to specify-
ing the number of numeric zero bits to be added to
the low-order end of the other operand before it is
combined with the accumulator contents. In storage-
altering operations, the contents of the accumulator
to the right of the offset are ignored.

In decimal operations, the accumulator is treated
as 32 four-bit digit positions. Decimal fields may
occupy any set of contiguous digit positions in the
accumulator. In decimal operations, the offset is
limited to these digit positions and hence to a multi-
ple of four by ignoring the two low-order bits of the
offset specified by the effective address of the second
half-word.

PROGRAMMING NOTE

Since the accumulator is addressable, it may also be
used as the storage operand of any of the data han-
dling operations. The left half of the accumulator
has address 8, the right half has address 9, and the
accumulator sign byte register has address 10. The
accumulator contents can be used as both operands
of an operation. For example, the accumulator con-
tents can be added to or subtracted from itself in an
unsigned operation.

When the accumulator is used as the addressed
operand in a signed operation, the low-order bits of
the addressed accumulator field are used as the sign
byte as in any addressed storage operand. The con-
tents of the sign byte register are not used as the sign
and flag bits of the addressed accumulator operand
unless the addressed field includes bits 0-7 of word
10 as the low-order bits of the field. The sign and
flag bits in the sign byte register apply to the accu-
mulator contents only when the accumulator is the
implied operand of an operation.

Sign Control

All the integer arithmetic operations include two
modifiers, bits 51 and 52, which affect the use of the
sign of one or both of the operands.

Numeric data fields in storage may be signed or
unsigned. 1f the field is signed, the rightmost byte is
the sign byte. The size of the sign byte is specified
by the byte size. The sign of the accumulator operand
is contained in the fifth bit position from the left in
the accumulator sign byte register.

Instruction bit 51, the wunsigned modifier, desig-
nates whether the addressed storage operand contains
a sign byte or not. If the bit is zero, the operand is
signed. 1f the bit is one, the operand is unsigned. A
positive sign is assumed for an unsigned field and all
bytes including the rightmost byte are processed as
data.

Instruction bit 52, the negative sign modifier, desig-
nates whether the sign of the unreplaced operand is
taken as-is or inverted before processing takes place.
If the bit is zero, the same sign is used; if the bit is
one, the sign is inverted. In general, if the result of
an operation is placed in the accumulator, bit 52 de-
termines the use of the sign of the operand from
storage; if the result is placed in storage, bit 52 deter-
mines the use of the accumulator sign. The negative
sign modifier, when one, has the effect of changing
algebraic additions to subtractions or changing the
sign of the result of multiplications, divisions, or
stores.

The following table summarizes the combinations
which can be specified.

BITS TO-ACCUMULATOR OPERATION TO-MEMORY OPERATION
51-b2 ACC.SIGN STORAGE FIELD SIGN ACC. SIGN STORAGE FIELD SIGN

00 Use as-is Use as-is Use as-is Use as-is
01 Use as-is Invert Invert Use as-is
10 Use as-is Unsigned,use + Use as-is Unsigned, use +
11 Use as-is Unsigned, use — Invert Unsigned, use +

Data Flag and Zone Bits

In some applications it may be desirable to mark
certain data to indicate that special handling of that
data field is required. The data flag bits in the sign
byte of signed data fields allow such marking.

All integer arithmetic operations that obtain data
flag bits from storage place these bits into the indi-
cator register. LOAD WITH FLAG also places the flag
bits into the three rightmost bits of the accumulator
sign byte register. The only other integer arithmetic
operation that affects the data flag positions of the
sign byte register as an inherent part of its operation
is Loap, which sets these three bit positions to zero.

Zone bits in the sign byte of a signed storage oper-

Variable Field Length 57

and do not replace the zone bit positions in the sign
byte register as an inherent part of any operation.
Both the zone bit and flag bit positions of the sign
byte register may be changed by addressing them as
the storage operand of a to-memory operation.

Operations that place a signed result in storage,
with the exception of sTORE and STORE ROUNDED, do
not alter the original flag bits or zone bits of the stor-
age operand sign byte. STORE and STORE ROUNDED re-
place the data flag and zone bits in the sign byte and
the zone bits in decimal bytes with the contents of
the corresponding bit positions in the accumulator
sign byte register.

Radix and Byte Size

Bit 53 of the instruction, the radix modifier, speci-
fies the type of arithmetic to be performed, the inter-
pretation of the byte size field in the instruction, and
the byte size of the accumulator operand. Binary
arithmetic is specified if the bit is zero; decimal arith-
metic is specified if the bit is one.

In a binary operation, the byte size field, bits 41-43,
of the instruction defines only the length of the sign
byte since there is no inherent subdivision among
the numeric bits of a binary number. The remainder
of the field is processed in eight-bit bytes whenever
possible, with the exception of the last byte whose
size is the number of bits necessary to complete proc-
essing of the specified field length. In signed binary
operations to storage, the stored result includes a sign
byte of the size specified.

If decimal arithmetic is specified, the byte size of
the instruction defines the length of each byte in the
storage field including the sign byte if the data are
signed. Decimal digits are represented in four-bit
binary-coded decimal form and, therefore, can be
stored in compact form. The number of bits used to
represent a digit in storage can be more than four
bits, however; for example, two zone bits may be
added to allow decimal information to be readily
interspersed with alphabetic data coded in six-bit
form. Decimal arithmetic can be performed on data
of any byte size. If the byte size is greater than four,
only the four low-order bits of each byte take part in
the operation. The remaining bits of each byte are
ignored. If a byte size less than four is specified in a
decimal operation, normal decimal results may not
be produced if two operands are involved whose effec-
tive signs are unlike, owing to the complementing
procedure used. When complementation is not in-
volved, each byte of the storage operand is converted
to a four-bit byte for processing by the addition of
high-order zeros. The byte size of the accumulator
operand is assumed to be four in all decimal opera-

58 IBM 7030

tions. The accumulator is always composed of inte-
gral 4-bit bytes regardless of the byte size or field
length of the storage operand.

Since the field lengths are not constrained to be
multiples of the byte size, the high-order byte of the
memory operand may have an effective byte size less
than that specified in the operation. The high-order
byte is processed according to its effective byte size
rather than the byte size specified in the operation.

If the field length of a signed operation is less than
the byte size, the byte size is used to determine the
format of the sign byte so that the bits specified are
properly used. For example, a LOAD operation with
byte size four and field length two treats the two ad-
dressed bits as the U and V flags and sets the corre-
sponding positions of the indicator register accord-
ingly. The accumulator and the four low-order bits
of sign byte register are cleared, since there is no
sign or data in the addressed field.

In decimal operations which alter storage, the re-
sult byte generated by processing a byte from the
storage field and a byte from the accumulator replaces
the byte which was obtained from the storage field.
The replacement is made in accordance with the byte
size of the storage field. If the specified byte size is
greater than four, the four bits making up each result
digit replace the four low-order bits of each byte of
the storage field. In STORE and STORE ROUNDED, the
zone bits of each byte in the storage field are replaced
by the contents of the corresponding zone positions
in the accumulator sign byte register; they remain
unchanged in all other arithmetic operations to stor-
age. If the specified byte size is less than four, each
byte of the storage field is replaced by the number of
bits specified by the byte size. These bits are the low-
order bits of each result byte. Higher order bits in
each result byte are dropped, and no indication is
given if these positions contain one-bits. If the high-
order byte of the addressed storage field is less than
the byte size, it is replaced by the low-order bits of
the corresponding result byte. Higher order bits are
dropped, and no indication is given if they are non-
zero.

Indicators

Several indicators in the indicator register are set as
a result of the integer arithmetic operations. These
include the general result exception, the data flag,
the transit, and the arithmetic result indicators. The
general result exception and the transit indicators
are permanent. If they are turned on by any opera-
tion, they will remain on until they are turned off

either by causing an interruption or by being ex-
plicitly made zero by an operation that addresses
them as an operand. For example, BRANCH ON INDI-
CATOR Or CONNECT TO MEMORY can accomplish this
function. The data flag and arithmetic result indi-
cators are temporary. At the completion of an integer
arithmetic operation, all indicators of this type that
apply to the particular operation will be on if the
necessary condition arose during the operation; other-
wise, they will be off. They then remain set until
another operation which affects them is executed.

The indicators that are set as a result of the integer
arithmetic operations are described below.

Lost Carry (LC). In to-accumulator operations, this
indicator is turned on when a carry attempts to prop-
agate beyond the left end of the accumulator. In
binary to-memory operations, this indicator is actu-
ated by a carry beyond the leftmost bit of the ad-
dressed field. In decimal to-memory operations, this
indicator is actuated by a decimal carry beyond the
leftmost decimal digit of the addressed field. Thus,
it the high-order byte of a decimal storage operand
is less than four bits in length, the lost carry indicator
is actuated only if the corresponding result byte
from the processing unit is greater than nine. The
high-order bits that are dropped in truncating the
high-order byte [or storage cannot actuate this indica-
tor even if they are non-zero. This indicator is also
actuated when a to-memory operation with an un-
signed storage operand produces a negative result. 1n
all cases, the operation is completed normally except
for the loss of the carry.

Partial Field (PF). In to-accumulator operations,
this indicator is turned on when significant bits of
the storage operand overlap the left end of the accu-
mulator. The accumulator operand is extended with
high-order zeros to combine with the storage operand,
but these high-order positions are dropped from the
result. Otherwise, the operation is completed nor-
mally. In to-memory operations, the indicator is
turned on when there are non-zero accumulator posi-
tions to the left of the accumulator field that is par-
ticipating in the operation. In binary operations to
storage, this indicator is turned on if there is any one-
bit in the accumulator to the left of the participating
field. In decimal operations to storage, the indicator
is turned on if there is any non-zero digit to the left
of the highest order accumulator digit that is taking
part in the operation. Partial field is also turned on
if a binary multiplier, multiplicand, or divisor ex-
ceeds 48 significant bits in length or if a binary divi-
dend exceeds 96 significant bits.

Zevo Divisor (ZD). This indicator is turned on
when the divisor in a DIVIDE operation is zero. The
division is not performed.

Data Flag T (TF); Data Flag U (UF); Data Flag V
(VF). These indicators are set according to the data
flag bits, if any, of the storage operand. Any opera-
tion that normally affects these indicators will turn
them off if the corresponding data flags are not ob-
tained from storage.

Binary Transit (BTR). This indicator is turned
on by any binary LOAD TRANSIT AND SET operation.

Decimal Transit (DTR). This indicator is turned
on by any decimal LOAD TRANSIT AND SET, MULTIPLY,
MULTIPLY AND ADD, Or DIVIDE operation.

To-Memory Operation (MOP). This indicator is
turned on by all integer arithmetic operations in
which the result is placed in the addressed storage
location. All other integer arithmetic operations turn
this indicator off.

Result Less than Zero (RLZ); Result Zero (RZ);
Result Greater than Zero (RGZ); Result Negative
(RN). These arithmetic result indicators are set ac-
cording to the result of all integer arithmetic opera-
tions except the comparison operations. ‘

Accumulator Low (AL); Accumulator Equal (AE);
Accumulator High (AH). These indicators are set
according to the result of the comparison operations.
They reler to the accumulator operand as compared
with the storage operand.

Operations

It is uselul to classify the twenty integer arithmetic
operations into categories two different ways. The
classifications are shown in the list below.

ARITHMETIC

RESULT ALTERS ACTION

+ Add Accumulator Add
+MG Add to Magnitude Accumulator Add
L Load Accumulator Replace
LWF Load with Flag Accumulator Replace
M4+ Add to Memory Storage Add
M4MGAdd Magnitude

to Memory Storage Add
M4 1 Add One to

Memory Storage Add
ST Store Storage Replace
SRD Store Rounded Storage Replace
K Compare Indicators only Add
KF Compare Field Indicators only Add

KE Compare if Equal Indicators only Add

KFE Compare Field
if Equal Indicators only Add

KR Compare for Range Indicators only Add
KFR Compare Field

for Range Indicators only Add
LTS Load Transit
and Set Transit Replace
* Multiply Accumulator Multiply
LFT Load Factor Factor Replace
* Multiply and Add Accumulator Multiply and add
/ Divide Accumulator and Divide

remainder

Variable Field Length 59

Add (+)

The addressed operand is algebraically added to the
contents of the accumulator with specified offset. The
sign bit in the accumulator sign byte register is set
in accordance with the sign of the algebraic sum.
The remaining bits in the sign byte register remain
unchanged.

MODIFIERS

Unsigned. This modifier describes the addressed
operand.

Negative Sign. This modifier designates whether
the sign of the storage operand is taken as-is or is in-
verted before the operation takes place. Unsigned
fields are considered positive before this modifier is
applied.

Radix. This modifier specifies the accumulator
byte size, determines the properties of the adder, and
controls complementation and recomplementation
when the effective operand signs are unlike. In deci-
mal arithmetic, four-bit bytes are used, only the four
low-order bits of each byte in the addressed operand
participate in the operation, and a carry occurs from
one byte to the next when a sum byte exceeds 9. In
decimal operations, the two low-order bits of the
effective offset are ignored and considered zero. Thus,
the offset is always a multiple of four. In binary
arithmetic, an eight-bit byte is used whenever possi-
ble. Any offset may be specified in a binary operation.

INDICATORS

Lost Carry (LC). This indicator is actuated if in-
formation is lost because a carry attempts to propa-
gate beyond the left end of the accumulator.

Partial Field (PF). This indicator is turned on if
significant bits of the data field from storage overlap
the left end of the accumulator. The accumulator
operand is extended with high-order zeros to combine
with the storage operand, but the high-order bits of
the result are dropped. A partial field condition will
not cause a lost carry indication. However, both con-
ditions may arise during the execution of a single
instruction. :

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the storage operand.

To-Memory Operation (MOP). This indicator is
turned off.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the contents of the
entire accumulator when the operation is complete.

PrROGRAMMING NOTES

The sign modifiers apply to the storage operand in
the App operation. Note that using the negative sign

60 IBM 7030

modifier causes an algebraic subtraction, whether the
field addressed is signed or unsigned. There is there-
fore no need for a subtract operation, and no sepa-
rate operation is provided. Furthermore, using the
unsigned modifier is equivalent to absolute value
addition or subtraction; there is no sign on the ad-
dressed operand so a plus sign is assumed. The accu-
mulator sign is not ignored, but influences the opera-
tion in the usual manner. It is important to realize
that all add-type operations operate upon the con-
tents of the entire accumulator. If an addition of
operands with unlike signs is performed, there is a
possibility of sign change. When this occurs, the
whole contents of the accumulator may be changed,
including the part below the offset. Consider the
examples:

INDICATOR
1. App, L (3764-) offset 8 bits 756794
(2 bytes) where acc. contains 376004

75679+ 118279+ Result greater than zero

2. ADD, L (532—) offset 8 bits 456234
where acc. contains 45623+ 53200 —

7577 — Result less than zero
Result negative
3. Apbp, L (532 —) offset 8 bits 53200+
where acc. contains 53200+ 53200 —
00000+ Result zero
4. aop, L (532+) offset 8 bits 53200 —

where acc. contains 53200— 53200+

00000— Result zero
Result negative
5. app, L (632—) offset 8 bits 53201 +
where acc. contains 532014+ 53200 —
000014 Result greater than zero

The result in every case is the same as one would get
performing the same operations by hand if one con-
siders the offset as describing the number of low-order
zeros that are to be attached to the addressed oper-
and. On any operation in which the result in the
accumulator is all zero, the sign remains as it was
before the operation began.

Add to Magnitude (+ MG)

The addressed operand is algebraically added to the
magnitude of the contents of the accumulator with
specified offset. The accumulator operand is assumed
positive for purposes of the addition itself. If the
result is positive, the sum is placed into the accu-
mulator. If the result is negative, the entire accu-
mulator is cleared to zero. In either case, the content
of the accumulator sign byte register is not changed.

MODIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD,

INDICATORS

Lost Carry (LC); Partial Field (PF); Data Flags
(TF, UF, VF); To-Memory Operation (MOP); Arith-
metic Result (RLZ, RZ, RGZ, RN). These indicators
are set as in ADD.

PROGRAMMING EXAMPLE

Figure 12 shows a simple use of ADD TO MAGNITUDE.
Given two 64-bit unsigned binary numbers x and Y,
put the larger of the two in the accumulator.

NAME STATEMENT NOTES
L (BU, 64, 8), X, 0
- MG (BU, 64, 8), Y, 0 1
+ (BU, 64, 8), Y, 0 2
Notes: x>y If x<y
1. Result is X-y 0
2. Result is X y

Figure 12. Program Example, Add to Magnitude

Load (L)

The entire left and right halves of the accumulator
and the four low-order bits of the accumulator sign
byte register are cleared. The numeric part of the
addressed operand is placed in the accumulator as
specified by the offset. The sign bit in the sign byte
register is set according to the sign of the data as
affected by the sign modifiers. The zone bits of the
accumulator sign byte are not altered.

MoDIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Partial Field (PF); Data Flags (TF, UF, VF); To-
Memory Operation (MOP); Arithmetic Result (RLZ,
RZ, RGZ, RN). These indicators are set as in ADD.

Load with Flag (LWF)

The LoAD WITH FLAG operation is the same as L.OAD
except that if the addressed storage field includes data
flag bits, these bits are placed in the accumulator sign
byte register in addition to setting the data flag
indicators.

MODIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Partial Field (PF); Data Flags (TF, UF, VF); To-
Memory Operation (MOP); Arithmetic Result (RLZ,
RZ, RGZ, RN). These indicators are set as in ADD.

PROGRAMMING NOTE

1LOAD, LOAD WITH FLAG, and LOAD CONVERTED are the
only variable-field-length data handling operations
that affect the data flag bit positions in the accumula-
tor sign byte register as an implied operand. All
other operations of this type leave these. positions
unchanged. No operation changes the zone bit posi-
tions in the accumulator sign byte register as an im-
plied operand.

Add to Memory (M 1)

The accumulator field specified by the offset is alge-
braically added to the addressed operand. The ac-
cumulator sign is used as modified by the negative
sign modifier, and the sum replaces the addressed
field in storage.

MODIFIERS

Unsigned. This modifier describes the addressed
field in storage. If the operation is signed, the sign
bit of the storage operand is set to the sign of the
algebraic sum.

Negative Sign. This modifier applies to the ac-
cumulator sign as used in the operation. The original
accumulator sign remains unchanged in the sign byte
register.

Radix. In a binary ApD TO MEMORY, the byte size
refers only to the length of the sign byte, thereby
determining the position of the sign bit. The re-
mainder of the field is processed in eight-bit bytes
whenever possible.

In a decimal operation, the field is processed in
four-bit bytes. If the byte size of a decimal storage
field participating in ADD TO MEMORY is greater than
four, only the four low-order bits of each byte par-
ticipate in the addition. The high-order bits of each
byte are not changed by the operation. If a byte size
less than four is specified in a decimal operation, each
byte from the storage field is converted to a four-bit
byte for processing by the addition of high-order
zeros. Normal decimal results may not be produced
if two operands are involved whose effective signs are
unlike. Only the low-order bits of each sum byte re-
place the byte from storage, so that the stored result
has the same byte size as the original storage field.
Since normal decimal addition takes place, the high-
order positions that are dropped from each sum byte
may contain one bits. These are lost and no indica-
tion of the loss is given.

Variable Field Length 61

INpICATORS

Lost Carry (LC). This indicator is actuated by a
carry beyond the leftmost digit, either binary or deci-
mal, of the addressed field. This indicator is also
turned on if the result of an unsigned operation is
negative. In such a case, the magnitude of the result
is stored in storage.

Partial Field (PF). This indicator is turned on if
there are non-zero digits, either binary or decimal,
in the accumulator to the left of the highest order
digit that is participating in the operation.

Data Flags (TF, UF, VF). These indicators are set
according to the data flag bits of the storage operand.

To-Memory Operation (MOP). This indicator is
turned on.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the algebraic sum of
the two operands, whether the sign is stored or not.

ProcraAMMING NOTES

The data flag bits of a signed operand in storage are
not altered by App To MEMORY. The accumulator
contents are not altered by Abp To MEMORY.

If the negative sign modifier is one, ADD TO MEMORY
performs an algebraic subtraction of the accumulator
contents from the addressed field. Although the nega-
tive sign modifier applies to the accumulator sign in
to-memory operations, the unsigned modifier always
applies to the operand in storage. Unsigned storage
fields are considered positive.

In operations to storage, the length of the accumu-
lator field between the specitied offset and the left end
of the accumulator can be less than the number of
bits from the storage operand which are to take part
in the operation. In this event the accumulator
operand is lengthened for the operation by the addi-
tion of high-order zeros.

Add Magnitude to Memory (M--MG)

The magnitude of the accumulator field as specified
by the oflset is algebraically added to the addressed
operand. A positive sign is assumed for the accumu-
lator field before the negative sign modifier is applied.
The actual accumulator sign is not used or changed
by the operation. If the sum has the same sign as the
sign of the storage operand, it replaces that operand
in storage. If the sum is of opposite sign, zero bytes
replace the numeric part of the storage field. In
either case the sign byte, if any, of the storage operand
is not changed.

MoODIFIERS

Unsigned. This modifier operates as in ADpp TO
MEMORY.

Negative Sign. The accumulator sign is considered

62 IBM 7030

positive when the negative sign modifier is zero and
negative when the modifier is one.

Radix. This modifier operates as in App To MEM-
ORY.

INDICATORS

Lost Carry (LC); Partial Field (PF); Data Flags
(TF, UF, VF); To-Memory Operation (MOP). These
indicators are set as in ADD TO MEMORY.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the final result stored.

PrOGRAMMING NOTE

The four operations ADD, ADD TO MAGNITUDE, ADD TO
MEMORY, and ADD MAGNITUDE TO MEMORY allow a
flexible handling of the signs of the factors and the
result. Not all possible combinations are provided,
however, and in some cases the results may not be
obvious. Figure 13 shows the storage or accumulator
field that is produced by all possible combinations of
operations, sign modifiers, operand signs, and rela-
tive magnitudes of operands.

The storage field is assumed to be signed in all
cases. When the unsigned modifier is specified, the
field length is adjusted accordingly and the absolute
value of the storage field is used in the operation.
However, in an unsigned to-memory operation, the
original sign of the field remains in storage and is
therefore shown as part of the result field.

Storage operand — 3+ 5+ 3+ 5+ 3= 5 3- 5
Accumulator operand —p 5+ 3 5 3 5+ 3+ 5- 3-

*Operaﬁon and Modifiers

Add 8+ 8f 2- 24+ 2+ 2- 8- 8-
Add, N 2+ 2- 8- 8§ 8+ 8+ 2- 2+
Add, U 8+ 8+ 2- 2+ g+ g+ 2~ 2+
Add, U, N 2+ 2- 8 8 2+ 2- 8- 8-
Add to Magnitude 8+ 8+ 8- 8 2+ 0O+ 2- 0-
Add to Magnitude, N 2+ 0+ 2- 0~ 8+ 8+ 8 8-
Add to Magnitude, U g+ g+ 8- 8- 8+ 8+ 8- 8-
Add to Magnitude, U, N 2+ 0+ 2= 0- 2+ OF 2- 0~
Add to Memory 8+ 8+ 2- 2+ 2+ 2- 8- 8-
Add to Memory, N 2- 2+ g+ 8+ 8- 8 2+ 2-
Add to Memory, U 8+ 8+ 2¢* 2+ 8- 8- 2-% 2-
Add to Memory, U, N 2+% 2+ g+ 8+ 2-* 2o g- g-
Add Magnitude to Memory 8+ 8+ 8+ 8+ 0- 2- 0- 2-
Add Magnitude to Memory, N o+ 2+ O+ 2+ 8- 8 8- 8-
Add Magnitude to Memory, U 8+ g+ 8+ g+ 8- 8- 8- 8-

Add Magnitude to Memory, U, N 0+ 2+ 0+ 2+ 0- 2- 0- 2~

*The Lost Carry indicator is turned on

Figure 13. Sign Condition Results

Add One to Memory (M1)

A plus or minus one is algebraically added to the ad-
dressed storage field.

MoODIFIERS
Unsigned. This modifier operates as in App TO
MEMORY.

Negative Sign. This modifier specifies the sign of the
one to be added. If the modifier is zero, a plus one
is algebraically added to the storage operand; if it is
one, a minus one is added.

Radix. This modifier operates as in ADD TO MEM-
ORY.

INDICATORS

Lost Carry (LC); Data Flags (TF, UF, VF); To-
Memory Opervation (MOP); Arvithmetic Result (RLZ,
RZ, RGZ, RN). These indicators operate as in ADD
TO MEMORY.

PROGRAMMING NOTES
ADpD ONE TO MEMORY is identical to an ADD TO MEM-
ory in which the accumulator operand is +1, except
that the partial field indicator is not altected. This
operation can be used for ordinary adding or count-
ing by ones in signed or unsigned fields. Counting
by any power of the specified radix (2 or 10) can be
performed in fields whose signs are known by using
an unsigned operation with proper bit address.
The offset field in ADD ONE TO MEMORY has no mean-
ing and is ignored.

Store (ST)

The addressed field in storage is replaced by the
accumulator field specified by the offset. I a signed
operation is specified, a sign byte ol proper size is
obtained from the accumulator sign byte register and,
after modification by the negative sign modifier, this
sign byte replaces the rightmost byte ol the storage
field. The accumulator and the sign byte register
remain unchanged.

MODIFIERS

Unsigned. This modifier determines whether the
stored field is signed or unsigned. When the field is
signed, the contents of the accumulator sign byte
register replace the rightmost byte of the addressed
field. If the byte size is less than eight, only part of
the contents of the sign byte register is stored. The
number of bits in the sign byte stored is determined
by the specified byte size.

Negative Sign. 1f this modifier is one, the sign bit
from the accumulator sign byte register is inverted
before being placed in the storage field. The contents
of the accumulator sign byte register remain un-
changed. If the unsigned modifier is specified, the
negative sign modifier has no effect on the field
stored. However, the result indicators are set accord-
ing to the modified accumulator sign, whether it is
stored or not.

Radix. In a binary STORE, the byte size refers only
to the length of the sign byte stored. The specified
accumulator data field is stored in 8-bit bytes where-

ever possible. In a decimal sTORE, the byte size relers
to the size of each byte in the storage field, including
the sign byte if the operation is signed. Each 4-bit
byte of the accumulator replaces the four low-order
bits of each byte of the storage field except the sign
byte. If the specified byte size is greater than four,
the remaining high-order bits of each byte are re-
placed by the corresponding zone bits in the accumu-
lator sign byte register. If the specified byte size is
less than four, only the low-order bits from each ac-
cumulator byte replace each byte in the storage field.

INDICATORS

Partial Field (PF). The partial field indicator is
turned on in a binary sTorE if there is any one-bit in the
accumulator to the left of the last bit position stored.
In a decimal storg, this indicator is turned on if
there is a non-zero byte to the left of the high-order
byte stored. If the field length is not a multiple of
the byte size in a decimal sTORE, only part of the
high-order digit is stored so that only the addressed
field is replaced in storage. If all accumulator bytes
to the left of the entire high-order accumulator byte
taking part in the operation are zero, the partial field
indicator is not turned on even if the high-order bits
of the high-order byte that were not stored are non-
zero.

To-Memory Operation (MOP). This indicator is
turned on.

Avrithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the data field stored.
The sign of the accumulator, as modified by the nega-
tive sign modifier, affects the setting whether it is
stored or not.

PROGRAMMING NOTES

The field length and offset specified in a STORE in-
struction may be such that the field to be stored
extends beyond the left end of the accumulator. In
this event, the accumulator operand is lengthened for
the operation by the addition of high-order zeros. In
a binary operation, this results in replacing the left
end of the storage field with zeros. In a decimal
operation, the high-order part of the storage field is
replaced by bytes whose numeric part is zero and
whose zones, if any, are those provided from the sign
register.

A signed sTORE operation always stores sign bytes
with the data flag bits and zone bits that are in the
accumulator sign byte register. To maintain the
original flag bits on a data field which is to be proc-
essed and then stored, LoAD WITH FLAG should be used
when the field is initially obtained. It should be
remembered that LoAD clears the data flag positions
in the sign byte register and does not place the flag
bits of the addressed operand into these positions.

Variable Field Length 63

Desired zone bits must be placed into the zone bit
positions of the sign byte register by explicitly ad-
dressing these positions as the operand of a to-mem-
ory operation. These positions will then remain un-
changed until they are once again explicitly addressed
in a to-memory operation.

Since data flow into storage in a decimal STORE is
controlled by the byte size in the instruction, while
data flow from the accumulator takes place in four-
bit bytes, sTORE can be used to store decimal data in
any required byte size. This action is the reverse of
a decimal Loap in which only the four low-order bits
of each storage byte are placed into the accumulator.
This feature provides a convenient means of convert-
ing decimal data from one byte size to another. Thus,
it is a simple programming operation to keep numer-
ical files in space-conserving four-bit bytes and still
receive input or prepare output in six- or eight-bit
code without extra program steps for the conversion.
The byte size conversion takes place automatically
during processing of the data when the proper byte
sizes are specified in the instructions used in the
processing. Note, however, that any zone bits present
with the decimal digits would be lost if data were
converted in this fashion. The connective operations
provide a more general means of converting data
from one byte size to another.

The data flag indicators are not changed as a result
of sTorRE. These indicators remain as set before the
operation. The lost carry indicator cannot be turned
on by a STORE operation.

PROGRAMMING EXAMPLE

Figure 14 shows the use of the variable-field-length
features and sign modifiers. Let A and B be two
binary numbers stored in consecutive positions in
storage starting at location 1776.00. Each number
contains sixteen numeric bits and a sign byte of
eight bits. Form A — B,]A—-B|, —]A—B, and
A — B and store in consecutive memory positions

NAME STATEMENT NOTES
L (B, 24, 8), 1776.0, 0
- (B, 24, 8), 1776.24, 0
ST (B, 24, 8), 1774.40, 0 1
L (BU, 16, 8), 1774.40, 0
ST (B, 24, 8), 1775.0, 0 2
STN (B, 24, 8), 1775.24, 0 3
STN (BU, 16, 8), 1775.48, 0 4
Notes: 1. Stores A-B
2. Stores |A-BI
3. Stores - |A-BI

4. Stores A-B. The same result would have been
obtained if the negative sign modifier had not been used,
except for the setting of the arithmetic result indicators.

Figure 14. Sign Modifier Example

64 IBM 7030

starting at location 1774.40. The notation A repre-
sents the unsigned quantity.

Store Rounded (SRD)

The field from the accumulator is rounded by adding
to its magnitude one-half of the proper radix in the
position to the right of the offset. Carries are propa-
gated as in any addition in that radix. This rounded
field replaces the addressed storage field. If a signed
operation is specified, the contents of the accumulator
sign byte register replace the rightmost byte of the
storage field after the sign bit has been modified by
the negative sign modifier. The contents of the
accumulator and the sign byte register are not changed
by this operation. The accumulator sign is ignored in
the actual rounding process.

MODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in STORE.

Radix. This modifier acts in the same manner as
in STORE, except that in addition it governs the
rounding process. If a binary operation is specified,
a binary one is added to the field from the accumula-
tor in the bit position immediately to the right of
the specified offset. Carries are propagated as in any
binary addition. If a decimal operation is specified, a
four-bit byte with value five is added to the four-bit
byte immediately to the right of the offset in the field
from the accumulator. Carries are propagated as in
any decimal addition. This action is equivalent to
adding the five one decimal position to the right of
the offset.

INDICATORS

Partial Field (PF); To-Memory Operation (MOP);
Arithmetic Result (RLZ, RZ, RGZ, RN). These in-
dicators are set as in STORE.

Lost Carry (LC). This indicator is turned on when
the rounding process causes a carry to be propagated
beyond the left end of the field stored.

PROGRAMMING NOTES
The sTORE ROUNDED operation does not change the
contents of the accumulator. This is convenient in
those problems in which it is desirable to store part
of the accumulator contents rounded while retaining
full precision in the accumulator for further calcula-
tion. The accumulator contents can be rounded by
using ADD TO MAGNITUDE with an immediate address
of 1 or 5 with the proper offset. An unsigned sTore
ROUNDED addressing the accumulator as the storage
operand can also be used for this purpose.

A STORE ROUNDED with zero offset specified is equiva-
dent to a STORE.

Compare (K)

The contents of the accumulator left of the specified
offset are algebraically compared with the addressed
operand. The bits to the right of the offset do not
participate in the comparison. The comparison result
indicators are set to describe the accumulator field as
compared with the storage field. Neither operand is
changed by the operation. The arithmetic result
indicators are not affected.

MODIFIERS
Unsigned; Negative Sign; Radix. These. modifiers
operate as in ADD.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Accumulator Low (AL). This indicator is turned
on if the accumulator operand is algebraically less
than the storage operand.

Accumulator Equal (AE). This indicator is turned
on if the accumulator operand is algebraically equal
to the storage operand.

Accumulator High (AH). This indicator is turned
on if the accumulator operand is algebraically greater
than the storage operand.

PROGRAMMING NOTES
Comparison operates numerically and algebraically.
Therefore:

1. If the magnitude of the two comparands are
represented by x and y, where x >y > 0, then the
comparison sequence of the comparands with sign
can be obtained from the statement

+x>4+y>+0=—0>—y>—x

In other words, if the signs of both operands are posi-
tive, the operand with greater magnitude is consid-
ered high. If the signs of the operands are unlike,
the operand with positive sign is considered high
and the operand with negative sign is considered
low. If the signs of both operands are negative, the
more negative operand, that with the greater magni-
tude, is considered low. A negative zero is considered
equal to a positive zero.

2. Alphabetic comparison, including zone bits, re-
quires that the binary modifier be used. An alpha-
meric code can readily be constructed to give any
desired collating sequence.

8. The comparison result indicators correspond to
and substitute for the arithmetic result indicators in
comparison operations. The arithmetic result indi-
cators are not changed by a comparison operation.

4. The comparison is performed by making a sub-
traction and testing the result. A decimal digit with

byte size less than four is handled as in any other
subtraction,

If the field length and offset are such that high-
order positions of the storage field compare with posi-
tions to the left of the left end of the accumulator,
the accumulator field is extended by adding zeros to
its left before the comparison is made.

Neither the lost carry nor the partial field indi-
cator can be turned on by a comparison operation.

Compare Field (KF)

A field in the accumulator is algebraically compared
with the addressed operand. This accumulator field
is the same length in bytes as the field from storage
exclusive of the sign byte, and its location is specified
by the offset in the usual manner. The actual ac-
cumulator sign is not used by the operation. A posi-
tive sign is assumed for the accumulator field. The
sign of the storage field is used as modified by the
sign modifiers. The comparison result indicators are
set to describe the accumulator field as compared with
the storage field. Neither operand is changed by the
operation. The arithmetic result indicators are not
affected.

MODIFIERS
Unsigned, Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Comparison Result (AL, AE, AH). These
indicators are set as in COMPARE.

ProGrRAMMING NOTES

The field comparison operations are the only arith-
metic operations that do not treat the entire accumu-
lator contents as a single quantity. Comparisons are
made between fields of equal length in numeric bytes.
For this reason, no indication is given in these opera-
tions if there is a one-bit in the accumulator to the
left of the field which is being compared with the
storage operand.

Compare if Equal (KE)

If the accumulator-equal indicator is off when this
operation is interpreted, the comparison is not per-
formed and the comparison result indicators are not
changed. Otherwise, the operation is executed exactly
as iS COMPARE.

MODIFIERS
Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

Variable Field Length 65

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in COMPARE.

Comparison Result (AL, AE, AH). These indica-
tors are set as in COMPARE if the accumulator-equal
indicator is on when the operation is initiated. If the
accumulator-equal indicator is off, these indicators
are not affected by the operation.

ProGRAMMING NOTE

COMPARE IF EQUAL can be used with COMPARE to
obtain a comparison of fields of more than 64 bits.
A COMPARE operation is used to compare the high-
order part of both fields. This is followed by one or
more COMPARE IF EQUAL operations comparing the
succeeding lower-order parts of the field. At the
completion of the series of comparisons, the indica-
tors will describe the relation of the entire accumula-
tor field to the entire storage field. The same tech-
nique may also be used to compare fields that are
split into several parts.

PrROGRAMMING EXAMPLE

Two programs for comparing two unsigned fields, M
and N, each of 15 decimal digits in six-bit bytes, are
shown in Figure 15. The first program, using com-
PARE IF EQUAL, requires fewer instructions, but in
some cases will require more execution time than the
second program, which does not use this operation.

USING COMPARE IF EQUAL

NAME STATEMENT NOTES

L (DU, 60, 6), M, 0
K (DU, 60, 6), N, 0

L (DU, 30, 6), M+ .60, 0
KE (DU, 30, 6), N+ .60, 0

NOT USING COMPARE IF EQUAL

NAME STATEMENT NOTES

L (DU, 60, 6), M, 0

K (DU, 60, 6), N, 0
BZAE, END

L (DU, 30, 6), M+ .60, 0
K (DU, 30, 6), N+.60, 0
END Continuation of program

Figure 15. Comparing Unsigned Fields

Compare Field if Equal (KFE)

If the accumulator-equal indicator is off when this
operation is interpreted, the comparison is not per-
formed and the comparison result indicators are not
changed. Otherwise, the operation is executed exactly
as is COMPARE FIELD.

66 IBM 7030

MoDIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Comparison Result (AL, AE, AH). These
indicators are set as in COMPARE IF EQUAL.

ProcraMMING NOTE

COMPARE FIELD IF EQUAL can be used with COMPARE
FIELD to obtain comparison of fields of more than 64
bits in the same way that COMPARE IF EQUAL is used
with COMPARE.

Compare for Range (KR)

If the accumulator-high indicator is off when this
operation is interpreted, the comparison is performed
and the comparison result indicators are not changed.
Otherwise, the operation is identical to COMPARE ex-
cept for the setting of the comparison result indicators.
If the accumulator operand is equal to or higher than
the storage operand, the accumulator-high indicator is
left on. If the accumulator operand is less than the
storage operand, the AE indicator is turned on, and aH
is turned off.

MODIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). Set as in COMPARE.

Accumulator Equal (AE). Set if accumulator oper-
and is algebraically less than storage operand.

Accumulator High (AH). Remains on if accumu-
lator operand is algebraically equal to or greater than
storage operand. Set to zero when accumulator oper-
and is algebraically less than storage operand.

PrROGRAMMING NOTE

COMPARE FOR RANGE can be used with COMPARE to
determine whether a quantity falls within a given
range. The range is defined by two bounds stored
in storage and includes all values equal to or greater
than the lower bound but less than the upper bound.
The field to be tested is placed in the accumulator.
A coMpare is then performed, addressing the lower
range bound, followed by a COMPARE FOR RANGE, ad-
dressing the upper bound. If Ak indicator is on at com-
pletion, the tested field is within range. If AL indicator

is on, the field is below range; if Al is on the field is
above range (Figure 16).

If a COMPARE FOR RANGE is executed with one or
more AL, AE, or AH indicators on, more than one of
these may be left on after execution of the COMPARE
FOR RANGE. The COMPARE always causes one and only
one indicator to be turned on. Therefore, if 2 COMPARE
FOR RANGE follows a coMPARE, the above case never
exists and indicators are set as described.

Lower bound, Upper bound,

addressed by addressed by, .
COMPARE COMPARE FOR RANGE Increasing value
| | of accumulator
contents
—_——
\ , Indicator readings
v v Vv after COMPARE
AL AE AH FOR RANGE

Figure 16. Compare for Range Operation

PROGRAMMING EXAMPLES

1. Given a signed 10-digit decimal integer (byte
size four) in location 1492. Store it in location 1500
if it is in the range 10° through 108, inclusive (Fig-
ure 17).

NAME STATEMENT NOTES
L (D, 44, 4), 1492.0,0
KI (D, 20, 4), TEN3, 0
KR (D, 40, 4), TENS, 0
BZAE, OUT
ST (D, 40, 4), 1500.0, 0 1
OouUT Continuation of program
TEN3 DDI (D, 20, 4), 1000
TENS DD (D, 40, 4), 100000001

Note: 1. The stored quantity cannot exceed 9 digits,
so a field length of 40 is used.

Figure 17, Compare Example

2. Given a signed 31-digit decimal integer stored
in storage such that the most significant portion is in
location 1935 and the least significant portion and
sign are in location 1936. Store this number in loca-
tions 2000 and 2001 if it is in the range 10 through
20%%, inclusive (Figure 18). Here, because of the
double-length number, COMPARE FOR RANGE cannot be
used. A combination of BRANCH ON INDICATOR and
COMPARE IF EQUAL is used instead.

Compare Field for Range (KFR)

If the accumulator-high indicator is off when this
operation is interpreted, the comparison is not per-
formed and the comparison result indicators are not
changed. Otherwise, the operation is identical to
COMPARE FIELD with the exception of the setting of
the comparison result indicators. If the accumulator

NAME STATEMENT NOTES

L (D, 64, 4), 1936.0, 0
BRLZ, OUT

Co0011 (B, 64, 8), 1935.0, 60
BZRGZ, OUT

K (DU, 64, 4), TEN10, 60
BAH, OUT

KEI (DU, 60, 4), 0, 0
BAH, OUT

ST (DU, 64, 4), 2000.0, 60
ST (D, 64, 4), 2001.0, 0
ouT Continuation of program

A - IS B LR U

TEN10 DD (DU, 64, 4), 10.0 E10

Loads low-order part of number.

Tests for negative number,

Loads high-order part of number.

. If number is less than 1015, then high-order part
is zero,

5. Compare with high-order portion of 1025,

6. Compare with low-order portion of 1025,

7. Branch if number is above range.

Notes:

N

Figure 18. Compare Example

operand is equal to or higher than the storage oper-
and, the AH indicator is turned on. If the accumulator
operand is less than the storage operand, the AE indi-
cator is turned on.

MoODIFIERS

Unsigned; Negative Sign; Radix. These modifiers
operate as in ADD.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Comparison Result (AL, AE, AH). These
indicators are set as in COMPARE FOR RANGE.

PrROGRAMMING NOTE

COMPARE FIELD FOR RANGE can be used with cOMPARE
FIELD to determine whether a quantity falls within a
given range in the same manner that COMPARE FOR
RANGE is used with COMPARE.

Load Transit and Set (LTRS)

The transit register (location 15), the left zeros coun-
ter, and the all-ones counter are cleared. A four-bit
sign byte, in which the leftmost bit is set to the sign
of the addressed storage operand as modified by the
negative sign modifier, is placed in the four low-order
bits of the transit register. The remaining three bits
of this sign byte are zero. The numeric part of the
addressed operand is positioned immediately to the
left of this sign byte in the transit register. The ef-
fective offset specified by the instruction is placed in
the all-ones counter (bits 44-50 of location 7). The
two high-order bits of the left zeros counter (bits
17-18 of location 7) are set to ones.

Variable Field Length 67

At the end of the operation, either the binary-
transit or decimal-transit indicator is turned on, de-
pending on the value of the radix modifier.

MoDIFIERS

Unsigned; Negative Sign. These modifiers operate
as in ADD.

Radix. This modifier operates as in App. In addi-
tion, it determines whether the binary transit (BTR)
or decimal transit (pTR) indicator is turned on.

INDICATORS

Partial Field (PF). Since the low-order four bits of
the transit register are used as a sign byte, only 60
numeric bits can be loaded into it. This indicator is
turned on if the numeric part of the field loaded
contains more than 60 significant bits. If this occurs,
the transit register is loaded up to its left end.
Higher-order bits are lost.

Binary Transit (BTR); Decimal Transit (DTR).
One of these two indicators is turned on at the end
of the operation, depending upon the value of the
radix modifier bit.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the contents of the
transit register when the operation is complete.

ProGRAMMING NOTES

Since the two indicators, binary transit and decimal
transit, have lower priority than any other indicators
capable of causing an interruption, the necessary steps
to correct any errors detected during LOAD TRANSIT
AND SET operation will be taken before entering the
sequence associated with the BTR or p1r indicators.

The primary purpose of this operation is to serve
as an entry to an interpretive routine, for example,
to a routine for an integer arithmetic square root
operation. The effective offset, which has been placed
in the all-ones counter, is available to the interpretive
routine in the correct bit address to be directly trans-
mitted to an index register and used to produce the
desired effective offset.

The offset field of the instruction may also be used
to distinguish between one of 128 pseudo-operations.
For this purpose it is at the correct bit address to be
used directly in indexing to a table of half-word
BRANCH instructions.

The two high-order bits of the left zeros count may
be used after an interruption caused by the pTr indi-
cator to distinguish this operation from decimal
MULTIPLY, DIVIDE, Or MULTIPLY AND ADD, which may
also turn on this indicator. These two bits are set
as follows by the four operations:

68 IBM 7030

MuLtIipLY 00
Divibe 01
MULTIPLY AND ADD 10

L.OAD TRANSIT AND SET 11

These bits are at the correct bit address to be used
directly in indexing to a table of half-word BRANCH
instructions.

Note that, if the interruption mechanism is dis-
abled or the BTR or pTR indicators are masked off, the
contents of the left-zeros and all-ones counters may
have been altered since these indicators were turned
on.

Multiply (*)

If binary is specified, the product of the addressed
operand and the accumulator field specified by the
offset is placed into the cleared accumulator at offset
20. Neither operand may exceed 48 significant nu-
meric bits. If decimal is specified, this operation has
the same action as LOAD TRANSIT AND SET, except that
the two high-order bits of the left zeros counter are
set to Zeros.

MoODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in ADD.

Radix. This modifier operates as in apbp. It also
determines whether a binary multiplication is per-
formed or whether instead the action is like that of
a decimal LOAD TRANSIT AND SET.

InpicATORS

Partial Field (PF). This indicator is turned on in
a binary operation if either operand exceeds 48 sig-
nificant bits in length. In such a case, only the 48
low-order bits of the oversized operand are used in
the operation. If the accumulator operand was over-
sized, the higher-order bits are lost. In a decimal
operation, this indicator is set as in LOAD TRANSIT AND
SET.

Decimal Transit (DTR). This indicator is turned
on if a decimal operation is specified.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Arithmetic Result (RLZ, RZ, RGZ, RN). In a
binary operation, these indicators are set as in ADD.
In a decimal operation, they are set as in LOAD TRAN-
SIT AND SET.

PROGRAMMING NOTE

A decimal MULTIPLY instruction can be used to pro-
duce an automatic entry to a subroutine, where the
desired decimal multiplication may be performed

using the conversion operations and binary multipli-
cation. Thus, if the proper subroutine is provided to
handle interruptions by the decimal-transit indicator,
the decimal MuLTIPLY instruction may be used in a
program as though this action were actually imple-
mented in the machine. The subroutine has the two
factors available in the accumulator and the transit
register and the effective offset available in the all-
ones counter.

Load Factor (LFT)

The factor register (FT) is cleared. A four-bit sign
byte, in which the leftmost bit is the sign of
the addressed - storage operand as modified by the
negative sign modifier, is placed in the four low-order
bits of ¥r. The remaining three bits of this sign byte
are zero. The numeric part of the addressed operand
is positioned to the left of this sign byte in Fr.

MODIFIERS
Unsigned; Negative Sign; Radix. These modifiers

operate as in ADD.

INDICATORS

Partial Field (PF). Since the four low-order bits of
Fr are used as a sign byte, only 60 numeric bits can
be loaded into Fr. This indicator is turned on if the
numeric part of the field loaded contains more than
60 significant bits. If this occurs, Fr is loaded up to
its left end. Higher-order bits are lost.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the contents of the
factor register when the operation is complete.

PROGRAMMING NOTES

This operation is necessary to load the multiplicand
of a subsequent MuLTIPLY AND ADD. This instruction
is not used to load either factor of a MULTIPLY.

The factor register is addressable and, therefore,
can be addressed as the storage operand of any opera-
tion. FT is a 64-bit register with word address 14.

LOAD FACTOR is the only operation that changes the
contents of FT as an integral part of its performance.
FT is not changed by any other operation unless it is
addressed explicitly.

The accumulator contents are not affected by LoAD
Factor. The offset has no meaning in this operation
and is ignored. The lost-carry indicator cannot be
turned on by this operation.

Multiply and Add (*4-)

If a binary operation is specified, the multiplicand
field in the factor register (Fr) is multiplied by the

addressed storage operand. Neither multiplicand nor
multiplier may exceed 48 significant numeric bits.
The product is algebraically added to the accumula-
tor contents as specified by the offset. If a decimal
operation is specified, this operation has the same ac-
tion as LOAD TRANSIT AND SET, except that the two
high-order bits of the left zeros counter are set to 10.

MODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in ADD.

Radix. This modifier operates as in app. It also
determines whether a binary multiplication and addi-
tion are performed or whether instead the action is
like that of a decimal LOAD TRANSIT AND SET.

INDICATORS

Lost Carry (LC). In a binary operation, this indi-
cator is set as in App. Lost carry cannot be turned on
if decimal is specified.

Partial Field (PF). This indicator is turned on in
a binary operation if either the multiplicand or the
multiplier exceeds 48 significant bits in length. In
such a case, only the 48 low-order bits of the over-
sized operands are used in the operation. Partial field
is also turned on in a binary operation if the offset
is such that significant bits of the product attempt to
combine with accumulator positions to the left of the
left end of the accumulator. Such high-order bits of
the product are lost. In a decimal operation, partial
field is set as in LOAD TRANSIT AND SET.

Decimal Transit (DTR). This indicator is turned
on if decimal is specified.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADpD.

Arithmetic Result (RLZ, RZ, RGZ, RN). In a
binary operation the above indicators are set as in
app. In a decimal operation, they are set as in LOAD
TRANSIT AND SET.

PROGRAMMING NOTES

At the completion of the operation, Fr still contains
the multiplicand and its sign. It is unchanged by the
operation. The product that was formed during the
operation is not available anywhere. To retain both
the product and the cumulative sum, the instructions
MULTIPLY and ADD TO MEMORY can be used.

The LOAD FACTOR operation should normally pre-
cede MuLTIPLY AND ApD. However, the loading of Fr
need not be done in the operation immediately pre-
ceding the MULTIPLY AND ADD operation.

The offset specified has no effect upon the multi-
plication. The offset affects the addition of the prod-
uct to the accumulator contents in the same manner
that it affects App.

Variable Field Length 69

The arithmetic result indicators are set according
to the entire contents of the accumulator when the
operation is complete, and not according to the
product.

Divide (/)

If a binary operation is specified, the entire accumu-
lator contents to the left of the offset are divided by
the addressed storage field. Accumulator positions to
the right of the offset are ignored. At the completion
of the operation, the quotient is placed in the cleared
accumulator at the specified offset, and the remainder
with sign is placed in the remainder register (RM).
Both dividend and divisor are treated as integers,
and only the integral part of the quotient is devel-
oped. The length of the dividend to the left of the
offset cannot exceed 96 significant bits, and the di-
visor cannot exceed 48 significant numeric bits. The
sign of the quotient replaces the sign bit in the ac-
cumulator sign byte register. Bits 60-63 of rRM form
a four-bit remainder sign byte with bit 60, the sign
bit, set to the original accumulator sign. Bits 61-63
are set to zero. Bits 0-59 of rm are replaced by the
integer remainder with the low-order remainder bit
in bit position 59 of the remainder register.

If a decimal operation is specified, this operation
has the same action as LOAD TRANSIT AND SET, except
that the two high-order bits of the left zeros counter
are set to 01.

MODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in ADD.

Radix. This modifier operates as in app. It also
determines whether a binary division is performed or
whether instead the action is like that of a decimal
LOAD TRANSIT AND SET.

INDICATORS

Partial Field (PF). In a binary pivipE, this indica-
tor is turned on if there are more than 96 significant
bits in the accumulator to the left of the offset or if
the divisor exceeds 48 significant bits. In such a case,
only the low-order 96 or 48 bits are used in the opera-
tion and higher-order bits are ignored. Such high-
order dividend bits in the accumulator are lost in the
operation. In a decimal operation this indicator is
set as in LOAD TRANSIT AND SET.

Zero Divisor (ZD). This indicator is turned on if
the binary divisor is zero. The division is not at-
tempted, and both the accumulator and the remain-
der register remain unchanged.

Decimal Transit (DTR). This indicator is turned
on if decimal is specified.

70 IBM 7030

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Arithmetic Result (RLZ, RZ, RGZ, RN). In a bi-
nary operation, these indicators are set as in App. In a
decimal operation, they are set as in LOAD TRANSIT
AND SET.

ProGrRAMMING NOTES

The divide operation takes place and produces the
correct result in every situation in which the oper-
ands do not exceed the maximum allowable length
with the exception of the case of a zero divisor. The
programmer need not be concerned with the relative
magnitudes of the divisor and the dividend. The only
scaling necessary is that always required to assure
sufficient zeros on the right end of the dividend so
that the desired length of quotient can be developed.
This is readily accomplished by loading the dividend
from storage with the proper offset. To divide two
integers and obtain only the integral part of the
quotient, no scaling is necessary. A meaningful quo-
tient will be obtained in every case without scaling.
The integral quotient is found in the accumulator at
the completion of the operation with its low-order
position at the specified offset.

The rightmost digit of the quotient is always found
at the offset specified in the instruction. The bits to
the right of the offset are zero.

The arithmetic result indicators describe the quo-
tient, and not the remainder.

Binary point location is exceptionally simple in
this division operation. The rules used in ordinary
long division as performed by hand suffice. Thus, the
ratio is expressed in a form in which the divisor
appears as an integer. Effectively, the number of
places to the right of the binary point in the quotient
is equal to the number of places in the dividend minus
the number of places in the divisor. For example, in
decimal:

32.1 V&

401 = 32]; v 63524,01

The following examples illustrate the ease of de-
termining the divisor offset required. By divisor off-
set is meant the offset specified in the pIVIDE instruc-
tion.

I. Divide 1010.110 by 100.1 and obtain two binary
places in the result. Assume.that the dividend is al-
ready loaded into the accumulator at zero offset.
Thus, the divisor may be considered as an integer:

100.1 v1010.110 = ‘1001

\‘.VIOIOlj]O

Then:

Divisor offset required — number of binary places
in the dividend minus
the number required in
the quotient.

2-2
— 0 bits

After the division, the quotient of 10.01 will be found
at zero offset in the accumulator, and the remainder
of 0.101 in the low-order positions of RM.

2. Divide 11.0110110 by 10.011 and obtain two
binary places in the result. Assume that the dividend
is already loaded into the accumulator at zero offset.

10.011 VIT.0110110 = 10011, v11011,0110
A Ny

Divisor offset required — number of binary places
in the dividend minus
the number required in
the quotient.

—4 -2
= 2 bits

Thus, an offset of two should be specified in DIVIDE.
No scaling of the dividend is needed prior to DIVIDE
because the divisor offset is non-negative. A quotient
of 1.01 at offset two in the accumulator and a remain-
der of 0.01110 will be obtained. Note that the re-
mainder has the same number of binary places as the
portion of the original contents of the accumulator
to the left of the offset. The two low-order positions
of the dividend to the right of the offset are not used
in the operation and are lost.

8. Divide 11.1011 by 101101.1 and obtain six
binary places in the result.

101101.1 v 11,1011 = 1011011‘\/ 111\‘01]

Divisor offset required — number of binary places
in the dividend minus
the number required in
the quotient

=3—-6
— —38 bits

Since a negative offset cannot be specified, it is neces-
sary to scale the dividend prior to the pivibE. In this
example, the dividend would be loaded into the ac-
cumulator with an offset of three bits, and zero offset
would be specified in the pivibE. A quotient of
0.000101 at offset zero in the accumulator and a re-
mainder of 0.0010001 would be obtained.

4. Divide 11001110.1 by 10.11 developing the quo-
tient only as far as the “four” digit (effective number
of binary places required is — 2).

10.11 /' 11001110.1 = 1011./110011101(0),
U &

Divisor offset required — number of binary places
in the dividend minus
the number required in
the quotient

—1—(=2
1 bit

i

i

Thus, an offset of one should be specified in the
pivipe. No scaling of the dividend prior to the DIVIDE
is required. A quotient of 10010 (with the binary
point two places to the right) is obtained positioned
at an offset of one in the accumulator, and a remain-
der of 1000. in the low-order positions of the
remainder register.

In general, divisor offset minus dividend offset is
equal to the number of binary places in the dividend,
minus the number in the divisor, minus the number
in the quotient:

ofy, — ofyy = bgqg —bar — bg

Radix Conversion Operations

Any one of four radix conversion operations may con-
vert an integer either from binary to decimal or
from decimal to binary. Two of these operations,
LOAD CONVERTED and LOAD TRANSIT CONVERTED, obtain
a field from storage, convert it, and place the result
in the accumulator or the transit register, respectively.
The other two operations, CONVERT and CONVERT DOU-
BLE, take a field from the accumulator, convert it,
and return it to the accumulator. These latter two
operations differ from each other in the length and
position of the binary field involved.

Format

The radix conversion operations use the same full-
word instruction format as the integer arithmetic
operations. In this case, bit 53, the radix modifier,
describes the format of the original field and also
determines the type of conversion, binary to decimal
or decimal to binary.

\ T
ADDRESS }IOOO\ I OFFSET lsl; oP l\ I
! L
[® 24 28 32 35 4 44 st \ 60 63
BINARY
DECIMAL

14 ‘LENGTH BS

Variable Field Length 71

Field Definition

The storage operand in LOAD CONVERTED and LOAD
TRANSIT CONVERTED is defined by the effective address,
field length, and byte size in the same manner as in
integer arithmetic. Immediate addressing is also han-
dled in the same way in these radix conversion opera-
tions as in the arithmetic operations.

In the accumulator conversion operations, CONVERT
and CONVERT DOUBLE, no storage operand is required,
and the word address, bit address, length, and byte
size fields of the instruction are not normally used. If
the conversion is from binary to decimal, the binary
field is taken from a fixed position in the accumula-
tor, and the decimal result is put back at a position
specified by the offset. If the conversion is from deci-
mal to binary, the decimal field is taken from the
position in the accumulator specified by the offset,
and the binary result is put back at a fixed position.

Sign Control

The radix conversion operations include two sign
modifier bits which operate in the same manner as
in the integer arithmetic operations. In all cases these
modifiers apply to the original field before conversion
and specify how its sign is to be modified during the
conversion. All possible values may be obtained for
the sign of the result.

Radix

Bit 53 of the instruction, the radix modifier, specifies
the radix of the operand to be converted, and hence
also whether binary-to-decimal or decimal-to-binary
conversion is to be performed. If this bit is zero, the
original field is binary; if this bit is one, the original
field is decimal. This modifier also specifies the in-
terpretation of the byte size field in the same manner
as in integer arithmetic operations. Byte size four is
assumed in the accumulator conversion operation.

Indicators

A number of indicators in the indicator register are
set as a result of radix conversion operations. These
include the partial-field indicator and the data-flag
and arithmetic-result indicators. The partial-field in-
dicator is permanent. If it is turned on by any opera-
tion it will remain on until it either causes an inter-
ruption or is explicitly set to zero. The data-flag and
arithmetic-result indicators are temporary. Those af-
fected by a given operation are set at the end of the
operation to reflect the result of that operation. They

72 IBM 7030

then remain as set until the execution of another
operation that affects them. The indicators that are
affected by the radix conversion operations are de-
scribed below.

Partial Field (PF). This indicator is turned on if a
radix conversion operation does not use all of the
operand data provided. This may occur if significant
result bits extend beyond the left end of the accumu-
lator or if either the operand or result contains more
significant bits than can be handled by the process-
ing unit. The conditions that will cause a partial
field indication are listed in the description of each
operation.

Data Flags (TF, UF, VF). In a radix conversion
operation using a storage operand, these indicators
are set according to the data flag bits, if any, of the
storage operand. Any operation that normally affects
these indicators will turn them off if the unsigned
modifier is designated in the operation. These indi-
cators are not affected by CONVERT or CONVERT DOUBLE.

To-Memory Operation (MOP). This indicator is
turned off by all radix conversion operations.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the final result of the
radix conversion operation.

Operations

The four radix conversion operations are shown in
the table below, which indicates the source of the
operand and the register in which the result is placed.

OPERAND
TAKEN FROM

RESULT
PLACED IN

LCV Load Converted Storage Accumulator

LTRCV Load Transit Storage Transit
Converted

Cv Convert Accumulator Accumulator

DCV Convert Double Accumulator

Accumulator

Load Converted (LCV)

The addressed storage field is converted as an integer
from decimal to binary or from binary to decimal
depending on the setting of the radix modifier. The
accumulator is cleared and the converted field is
placed into it at the specified offset. The four low-
order bits of the sign byte register are cleared. The
sign bit in the sign byte register is set according to
the sign of the data as affected by the sign modifiers.

MoODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in ADD.

Radix. If decimal is specified, the storage operand

is converted from decimal to binary after conversion
of the decimal field to byte size four. If binary is
specified, the storage operand is converted from bi-
nary to decimal, with the decimal result in byte size
four.

INDICATORS

Partial Field (PF). This indicator is actuated when
significant bits of the converted field extend beyond
the left end of the accumulator. In such a case, the
accumulator is filled up to its left end, and higher-
order bits are lost. In a decimal-to-binary conversion,
this indicator is also actuated if the storage field ex-
ceeds 15 decimal digits (as could be specified using a
byte size of less than four). Meaningless results are
then obtained.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN).
These indicators are set as in ADD.

load Transit Converted (LTRCV)

The addressed storage field is converted as an integer
from decimal to binary or from binary to decimal
depending on the setting of the radix modifier. The
transit register, storage location 15, is cleared. The
four low-order bits of the transit register form a sign
byte in which the leftmost bit is the sign of the ad-
dressed storage operand as modified by the negative
sign modifier. The remaining three bits of the sign
byte are zero. The converted field is placed in the
transit register positioned to the left of the four-bit
sign byte. The accumulator is not altered by this
operation, and the offset field of the instruction is
ignored.

MODIFIERS
Unsigned; Negative Sign; Radix. These modifiers
operate as in LOAD CONVERTED.

INDICATORS

Partial Field (PF). This indicator is actuated if the
result in a binary-to-decimal conversion exceeds 15
significant decimal digits or if the result of a decimal
to binary conversion exceeds 48 significant bits. In
the former case the result is placed in the transit reg-
ister up to its left end. In the latter case, only the
48 low-order bits of the result are placed in the tran-
sit register. This indicator is also actuated if the
storage field specified in a decimal-to-binary conver-
sion exceeds 15 decimal digits. Meaningless results
are then obtained.

Data Flags (TF, UF, VF); To-Memory Operation
(MOP). These indicators are set as in ADD.

Arithmetic Result (RLZ, RZ, RGZ, RN). These

indicators are set according to the final result in the
transit register.

Convert (CV)

A field from the accumulator is converted as an
integer from binary to decimal or from decimal to
binary depending on the setting of the radix modi-
fier. If the original field is binary, it is obtained at
an implied offset of 68 and its length is 48 numeric
bits. The decimal result is loaded into the cleared
accumulator at the specified offset. If the original
field is decimal, it is obtained at the specified offset.
The binary result, which can be a maximum of 48
significant bits, is loaded into the cleared accumula-
tor at offset 68. The sign modifiers operate on the
sign bit in the sign byte register; all other positions
of the sign byte register remain unchanged.

MODIFIERS

‘Unsigned. If the unsigned modifier is zero, the ac-
cumulator sign is taken as-is before the negative sign
modifier is applied. If the modifier is one, the accu-
mulator sign is taken as positive before the negative
sign modifier is applied.

Negative Sign. If the negative sign modifier is zero,
the accumulator sign is taken as-is after modification
by the unsigned modifier. If the negative sign modi-
fier is one, the accumulator sign after modification by
the unsigned modifier is inverted.

Radix. 1f binary is specified, the 48-bit accumula-
tor field at offset 68 is converted from binary to deci-
mal. Higher-order bits (positions 0-11 of the accu-
mulator) are ignored and lost. No indication of this
loss is retained. The decimal result in byte size four
is placed into the accumulator at the specified offset.
If decimal is specified, the accumulator field at the
specified offset is converted from decimal to binary.
The binary result is placed into the accumulator at
offset 68. The original decimal field is assumed to be
byte size four.

INDICATORS

Partial Field (PF). This indicator is actuated in a
decimal-to-binary conversion if the binary result ex-
ceeds 48 significant bits. In such a case, the low-order
48 bits of the result are placed in the accumulator.
Any higher-order bits are lost. The indicator is actu-
ated in a binary-to-decimal conversion if significant
bits of the decimal result extend beyond the left end
of the accumulator when this result is placed into the
accumulator at the specified offset.

To-Mémory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN). These indicators are set as in
ADD.

Variable Field Length 73

Convert Double (DCV)

A field from the accumulator is converted as an inte-
ger from binary to decimal or from decimal to binary
depending on the setting of the radix modifier. If
the original field is binary, it is obtained at an im-
plied offset of 20 and its length is 96 numeric bits.
However, no more than 80 significant bits can be con-
verted without causing a partial field condition. The
decimal result, which can be a maximum of 24 sig-
nificant digits, is loaded into the cleared accumulator
at the specified offset. If the original field is decimal,
it is obtained at the specified offset. The binary re-
sult, which can be a maximum of 96 significant bits,
is loaded into the cleared accumulator at offset 20.
The sign modifiers operate on the sign bit in the sign
byte register; all other positions of the sign byte reg-
ister remain unchanged.

MODIFIERS

Unsigned; Negative Sign. These modifiers operate
as in CONVERT.

Radix. If binary is specified, the 96-bit accumula-
tor field at offset 20 is converted from binary to deci-
mal. Higher-order bits (positions 0-11 of the accu-
mulator) are ignored and lost. No indication of this
loss is retained. The decimal result in byte size four
is placed into the accumulator at the specified offset.
If decimal is specified, the accumulator field at the
specified offset is converted from decimal to binary.
The binary result is placed into the cleared accu-
mulator at offset 20. The original decimal field is
assumed to be byte size four.

INDICATORS

Partial Field (PF). This indicator is actuated if
the converted field exceeds 96 significant bits in either
type of conversion. The 96 low-order bits of the re-
sult are obtained, and higher-order bits are lost. The
indicator is also actuated in a binary-to-decimal con-
version if significant bits of the decimal result extend
beyond the left end of the accumulator when this
field is loaded into the accumulator at the specified
offset. Since a maximum of 24 decimal digits can be
produced, no more than 80 significant bits can be
converted without causing a partial field condition.

To-Memory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN). These indicators are set as in
ADD.

ProGrRaAMMING NOTES

The effective address of the first half-word, the byte
size field, and the length field are not normally used
by either the CONVERT or the CONVERT DOUBLE opera-
tions and are ignored. If progressive indexing is
specified, the specified index register will be modified

74 IBM 7030

as specified by the progressing indexing code in the
normal manner.

The definition of the sign modifiers permits com-
plete control over the accumulator sign. It may be
left as-is, inverted, made positive or made negative.

The fixed offsets used in the accumulator conver-
sion operations are designed to facilitate conversion
between binary floating point and decimal formats.
Thus, the 48-bit binary field at offset 68 used in con-
VERT corresponds to the fraction field of a single-
precision floating point number; and the 96-bit binary
field at offset 20 used in CONVERT DOUBLE corresponds
to the fraction field of a double-precision floating
point number. This 96-bit field also corresponds to
the result field of a binary integer MULTIPLY instruc-
tion.

PROGRAMMING EXAMPLE

The problem of multiplying two decimal integers il-
lustrates the use of the radix conversion operations
(Figure 19). Given two four-digit signed decimal in-
tegers (byte size six) in locations 1900 and 1900.30,
form the eight-digit product and store it in location
2000.

NAME STATEMENT NOTES

LCV (D, 30, 6), 1900.0, 8
LTRCV (D, 30, 6), 1900.30, 0
* (B, 64, 4), $TR, 8

DCV (B, 0, 8), 0, 0

ST (D, 54, 6), 2000.0,0

W N =

Notes: 1. Converts multiplier and places it in transit register.
2. The offset of the LCV and the * instruction should be

the same. A byte size of four is used in * because of

the four-bit sign byte in the transit register.

DCV is used instead of CV because of the offset of 20

produced by the * instruction.

©

Figure 19. Radix Conversion

Connective Operations

Each of three connective operations can specify any
one of the sixteen binary connectives. One operand
of these operations is in the accumulator. The other
is in storage or in the instruction itself. The accu-
mulator operand extends from a low-order position
specified by the offset and consists of the same num-
ber of bytes as are in the storage operand. The stor-
age operand is defined by an address and field length
as in integer arithmetic. In each of the connective
operations, the two operands are combined according
to the logical connective specified in the instruction.

The result obtained is used to develop certain tests.
In connEcT, the result replaces the accumulator oper-
and; in CONNECT TO MEMORY, the result replaces the
storage operand; in CONNECT FOR TEST, the result is
discarded after developing the tests.

Format

The connective operations use basically the same full-
word instruction format as the integer arithmetic
operations. The word and bit address, the two I
fields, the P field, the field length, byte size, and off-
set occupy the same bit positions in the instruction
format and have the same function in the connective
operations as they do in the integer arithmetic
operations.

T
ADDRESS ‘IOOOI I LENGTH‘BS]OFFSET ICONNIOP | I|‘ I }
! 1

0 8 24 28 32 35 4 44 51 55

P

The operation code in bits 55-59 designates the
operation to be performed. The connective that is
to be applied is specified in bits 51-54.

Field Definition

The operand specified explicitly by a connective in-
struction is defined by the effective address in the
same manner as in integer arithmetic. Immediate
addressing is also handled in the same way in the
connectives as in the arithmetic operations. The same
is true of field extraction from and field insertion to
storage.

The implied second operand of the connective op-
erations is a field from the accumulator. The right
end of this operand is defined by the offset specified
in the instruction. In contrast to the integer arith-
metic operations, the accumulator operand has a defi-
nite length; it is composed of as many bytes as there
are in the addressed storage field. In cONNEcCT, only
those accumulator bytes which are combined with
the storage operand can be affected. The remainder
of the accumulator contents remains unchanged.

In CONNECT TO MEMORY, the number of accumula-
tor bytes between the specified offset and the left end
of the accumulator can be less than the number of
bytes in the storage operand. In this event, the accu-
mulator operand is lengthened for the operation by
the addition of high-order zeros.

Byte Size

The connective operations process data in eight-bit
bytes. In these operations, the byte size specified in

the instruction designates the number of bits used to
represent each character or symbol in the storage
field. If the byte size of the storage operand is less
than eight, each byte is converted into an eight-bit
byte before processing by the addition of high-order
zeros. The accumulator operand is assumed to have
a byte size of eight. Any offset may be specified and
the field is processed in eight-bit bytes starting with
the offset. Each byte of the storage field, after con-
version to eight-bit form if necessary, is combined
with an eight-bit byte from the accumulator accord-
ing to the specified connective. Consequently, the
result bytes always have a byte size of eight. In con-
NECT, these result bytes replace the accumulator field
which participated in the operation. In CONNECT
FOR TEST, the result field is discarded after develop-
ing certain tests. In CONNECT TO MEMORY, the result
bytes replace the storage operand in accordance with
the byte size of that operand. The storage field may
have any byte size from one to eight. Since each re-
sult byte replaces the corresponding byte in the stor-
age field, the result byte is truncated before being
placed in storage if the byte size of the storage field
is less than eight. Each byte in the storage field is
replaced by the number of bits specified by the byte
size. These bits are the low-order bits of each result
byte; the remaining high-order bits of each result byte
are dropped. No indication is given if the bits which
are dropped are significant.

Since the field lengths of the storage operand need
not be a multiple of the byte size, the last byte need
not be of full size. When this is the case, only those
bits of the high-order accumulator and storage bytes
that are included in the field Iength take part in the
processing. No high-order zeros are added to the
short byte from storage. However, if the field length
is a multiple of the byte size, and if the byte size is
less than eight, high-order zeros are added to the
high-order byte as well as to all other bytes so that
all bytes of the field are treated in the same manner.

To combine a group of bits in storage with the
same number of contiguous bits in the accumulator,
a byte size of eight should be specified. This avoids
the addition of high-order zeros to each byte of the
storage operand.

Counts and Indicators

Two counts describing the result field are available
after a connective operation. The seven-bit all-ones
counter, bits 44-50 of location 7, contains a count of
all ones in the result field. The seven-bit left-zeros
counter, bits 17-23 of location 7, contains a count of

Variable Field Length 75

the number of zeros in the result field that are to the
left of the most significant one-bit. These counts are
positioned so that they can readily be used for index-
ing. The position of the left-zeros counter in the first
half word of location 7 is such that it corresponds to
that part of an index value field which indexes the
bit address of an instruction. The position of the
all-ones counter in the second half-word of location 7
is such that it facilitates indexing of half-word ad-
dresses. Both counters operate modulo 128. Each
count is on the final result field. In conNNEcT and
CONNECT FOR TEST, the counts are made on the result
field with byte size eight. In CONNECT TO MEMORY,
the counts are made on the result field after it is con-
verted to the byte size of the storage operand. The
high-order bits that are dropped from each result
byte if the byte size is less than eight are ignored in
developing the counts. Positions in the accumulator
that do not take part in the operation have no effect
on the counts. The leftzeros and all-ones counts are
destroyed by all LOAD TRANSIT AND SET operations and
by decimal MULTIPLY, MULTIPLY AND ADD, and DIVIDE
operations. The left-zeros count is also destroyed by
all floating-point division operations. These counts
are not changed as an inherent part of any other
non-connective operations. The counts are set at the
end of the connective operations, so their previous
values may be used as operands in the operation.

The indicators that are affected by the connective
operations are described below.

Partial Field (PF). This indicator is turned on if
the storage field attempts to combine with bits be-
yond the left end of the accumulator. If a partial-
field condition occurs, the storage operand is com-
bined with the accumulator operand up to the left
end of the accumulator; higher-order bits in the stor-
age operand are dropped. In such a case, the counts
are developed and the result indicators are set accord-
ing to that portion of the result actually developed.
The partial-field indicator is not affected by conNEcT
TO MEMORY.

To-Memory Operation (MOP). This indicator is
turned on by CONNECT To MEMORY and turned off by
CONNECT and CONNECT FOR TEST.

Result Zero (RZ). This indicator is turned on if
the final result is all binary zeros. This implies that
the all-ones count is also zero and that the left-zeros
count is equal to the number of bits in the final
result field. In CONNECT and CONNECT FOR TEST, this
number is equal to the number of accumulator bits
which take part in the operation. In CONNECT TO
MEMORY, this number is equal to the number of bits
in the storage operand, since this is the length of the
final result field. Only those bits which replace the
storage operand affect the two counts and the result

76 IBM 7030

indicators. The high-order bits that are dropped from
each result byte if the byte size is less than eight are
ignored.

Result Greater than Zero (RGZ). This indicator is
turned on if the result field contains any one-bit.

Result Less than Zero (RLZ); Result Negative
(RN). These indicators are turned off by the connec-
tive operations.

Connectives

The sixteen connectives that can be specified are
listed in Figure 20. The storage (memory) operand
is denoted by m; the accumulator operand by a.

Result Bit for Symbolic Representation

Operand Bit Combinations] of Logical Function
ma] ma| ma] ma
00 01| 10| 11

4] 0 0 0 0 0

1 4] 0 0 1 m*a

2 0 0 1 0 m*a

3 0 0 1 1 m

4 0 1 0 0 m.a

5 0 1 0 1 a

6 0 1 1 0 mv a

7 0 1 1 1 mva

8 1 0 0 o} m.d

9 1 0 0 1 m=a

10 1 0 1 0 q

11 1 0 1 1 mva

12 1 1 0 0 m

13 1 1 0 1 mva

14 1 1 1 0 fva

15 1 1 1 1 1

Figure 20. Connectives

The four-bit code used for the logical connectives
is composed of the result bits obtained for each of
the possible combinations of m and a.

In this code, the first bit represents the result when
m and a are both zero; the second bit represents the
result when m is zero and a is one; the third bit rep-
resents the result when m is one and a is zero; and
the fourth bit represents the result when m and a are
both one.

For example, if connective 0101 is specified, the
result bit will be a one when and only when the a
operand is a one-bit. If connective 1011 is specified,
the result bit will be a one for all combinations of m
and a, except m equal to zero and a equal to one.

Connect (C)

The addressed storage operand is combined with the
accumulator field specified by the offset in accordance
with the logical connective specified. The result field
replaces the accumulator operand. The remainder
of the accumulator remains unchanged.

INDICATORS

Partial Field (PF); To-Memory Operation (MOP);
Arithmetic Result (RLZ, RZ, RGZ, RN). These in-
dicators are set as described in “Counts and Indica-
tors.”

Connect to Memory (CM)

The accumulator field specified by the offset is com-
bined with the addressed storage operand in accord-
ance with the logical connective specified. The result
replaces the storage operand. The accumulator con-
tents are unchanged by the operation.

InpICcATORS

To-Memory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN). These indicators are set as
described in “Counts and Indicators.”

Connect for Test (CT)

The addressed storage operand is combined with the
accumulator field specified by the offset in accord-
ance with the logical connective specified, as in con-
NecT. The result is discarded after the left-zeros and
all-ones counts are developed and the indicators set.
Both the accumulator contents and the storage oper-
and remain unchanged.

INDICATORS

Partial Field (PF); To-Memory Operation (MOP);
Arithmetic Result (RLZ, RZ, RGZ, RN). These indi-
cators are set as described in “Counts and Indicators.”

PROGRAMMING NOTES

The coNNEcT operation has many uses other than
that of evaluating logical conditions. The connectives
0000 and 1111 can be used to set the specified accu-
mulator or storage bits to zero or one. A section of the
accumulator can be replaced by connective 0011,
while connective 0101 has no effect except to test the
accumulator field and develop the counts. Connective
1010 inverts the accumulator operand.

Testing of storage fields for all zeros is readily per-
formed by conNNecT For TEST 0011, while testing for
all ones requires connective 1100. In each case, the
result-zero indicator will be set to one if the test is
satisfied.

To test certain combinations of bits in the accumu-
lator for zero or one, a mask must be furnished in an
immediate address or in storage. If the mask uses 1
for bits to be tested and O for bits to be ignored, the
operation for testing the masked bits for all zeros is
CONNECT FOR TEST 0001. If a test for ones is desired,

the connective 0010 should be used. In either case,
satisfaction of the test is indicated by the result-zero
indicator. If the field to be tested is in storage, the
mask must be in the accumulator and connectives
0001 and 0100, respectively, must be used.

In to-accumulator integer arithmetic operations,
the result indicators are set according to the entire
contents of the accumulator when the operation is
complete. This is not the case in the connective
operations. In CONNECT and CONNECT FOR TEST, these
indicators are not affected by accumulator bits which
do not participate in the operation. For example, if
a zero result field is obtained when the storage oper-
and is combined with the accumulator operand, the
result-zero indicator is turned on even if there are
non-zero bits in the accumulator to the right or left
of the accumulator field that was combined with the
storage operand.

It is possible for all 128 bits of the accumulator to
participate in a single connective operation if the
specified offset is zero and the byte size and field
length are such that the storage operand equals or
exceeds 128 bits when converted to byte size eight.
In this event, a zero all-ones count can indicate either
no ones or 128 ones in the result of a CONNECT or
CONNECT FOR TEST, because the counter operates mod-
ulo 128. The two cases may be distinguished by
interrogation of the result-zero indicator. Similarly, a
zero left-zeros count can indicate either no left zeros
or 128 left zeros in the result. These two cases can
also be distinguished by interrogation of the result-
zero indicator.

The data-flag and lost-carry indicators are not af-
fected by the connective operations.

PROGRAMMING EXAMPLE

Given a 128-bit quantity in the accumulator, shift
the entire quantity left ten bits. Discard the high-
order bits that are shifted out of the accumulator
and shift zeros into the low-order positions. Figure
21 shows the use of the connective operations for
purposes other than the evaluation of logical con-
ditions.

NAME STATEMENT NOTES
C0011 (BU, 54, 8) , 8.10, 74 1
C0011 (BU, 64, 8), 9.0, 10
C0000 (BU, 10, 8) ,0, 0 2

Notes: 1. Shifts the left half of the accumulator left ten bits., A
field length of 54 is used to avoid a partial field condi-
tion from non-zero high-order bits that are discarded.

2. Replaces the ten low-order bits of the accumulator with
zeros. The address of zero is a dummy.

Figure 21. Connective Operations

Variable Field Length 77

Floating-Point Arithmetic

A floating number consists of a signed exponent =+ E,
and a signed fraction = F. The quantity expressed
by this number is the product of the fraction and
the number two raised to the power of the signed
exponent, or +=F X 2:£, The exponent is expressed
as a binary integer and the fraction is expressed
as a binary number having a binary point to the left
of the high-order digit.

A major objective in the design of this system is
maximum processing speed for floating point opera-
tions. Simplification of the floating point instruction
set is achieved through full utilization of the uniform
nature of floating point data. The necessary instruc-
tion information requires only a half-word which
allows two floating-point instructions per storage
word. This results in an increase of program storage
efficiency and reduces the number of storage accesses.
Uniform information such as bit address, field length,
addressing mode, byte size, radix, and accumulator
offset are implied by the operation and thus need
not be specified as required in integer arithmetic.
Operations on the floating point fractions are per-
formed at very high speed in parallel arithmetic, and
operands utilize fixed portions of the operand regis-
ters.

Floating point instructions contain sign modifiers
similar to the integer arithmetic sign modifiers. They
also contain a normalization modifier which specifies
the choice between normalized and unnormalized
operation.

A quantity can be represented by a single floating-
point number with the greatest precision when that
number is normalized. A normalized floating point
number always has a one in the high-order fraction
bit position. If one or more high order fraction bits
are zero, the number is not in normalized form. The
process of normalization consists of shifting the frac-
tion left until the high-order bit is one, and reducing
the exponent by the amount of the shift.

When a single floating-point word cannot express
a quantity with sufficient precision, multiple-precision
operation is required. The floating-point instruction
set contains a number of operations providing double-
precision results. These operations have been de-
signed to facilitate the programming of double or
higher precision operation.

In floating point operation, the fractions of all
arithmetic results contain a standard number of bits.
Not all of these bits need be significant; furthermore,
as a result of calculation, the number of significant
bits may be reduced. When the number of significant

78 IBM 7030

bits becomes too small, the arithmetic procedure may
be revised, or operations using greater precision may
be used.

In order to simplify significance studies, a mode of
floating-point operation is provided in which stand-
ard results are altered in a specific manner. This
mode of operation is called “noisy mode.” By com-
puting a problem section in the standard mode and
comparing the results with those obtained by com-
puting the same problem section in the noisy mode,
an estimate of the significance of the results can be
obtained.

The system gives the best possible speeds for oper-
ands which are single-precision normalized numbers
and results which are also normalized, since they rep-
resent the most frequent use of floating-point arith-
metic. All other cases, however, are handled in a
straightforward manner.

Floating-point numbers cover a range between the
positive and negative values of the fraction having
the maximum exponent. Since the exponent rangs
is finite, a discontinuity exists between the positive
and negative values of the fraction having minimum
exponent. Included in this range is the number zero,
A control or flag bit has been incorporated in the
exponent field in order to provide straightforward
control of data which exceed the exponent range or
fall within the range of the discontinuity.

Data Format

Floating-point numbers are represented in storage in
the following full word format.

WORD BOUNDARY
v/EXPONENT FLAG
| EXPONENT Tg
[CERO T
o 2 €3[0
FRACTION SIGN
EXPONENT SIGN

T
FRACTION (48 BITS) Slf UV|

3 FLAG BITS

The exponent field uses the first 12 bits of the data
word, bit positions 0-11. Bit position 0 is called the
exponent flag, £r. Bit positions 1-10 are called the
exponent magnitude, Em. Bit position 11 is called the
exponent sign, Es. The Es is set to 0 for positive
values and set to 1 for negative values of the expo-
nent. The Em is a binary integer in the range
0=gEmM=1023. The EF is set to 0 for values of Em
within the range. EF is set to 1 when EM exceeds this
range.

The standard operational range for exponents is
from 41023 through —1023. This range is called the
normal, N, range. N range values have magnitudes
for normalized floating point numbers ranging be-
tween 2+102¢ and 2-192¢, or approximately 10+3°¢ and
10—308.

Through the use of the exponent flag, two addi-
tional ranges of numbers are provided. These are
called the exponent flag positive, xFp, range and the
exponent flag negative, XrN, range. The XFP range
may be considered to have the properties of unde-
fined numbers, sometimes symbolized by c. This
range corresponds to all values with exponents greater
than 4+1023. The XFN range may be considered to
have the properties of the number zero. This range
corresponds to all values with exponents less than
—1023.

Algebraically, the use of these types of values in
arithmetic operations produces undefined results. The
requirements of machine processing require specific
definitions for such cases. Therefore, the arbitrary
definitions for these results have been selected such
that result exponents will be propagated in the most
noticeable direction.

The ranges discussed are classified as follows:

RANGE EF ES DEFINITION
XFP 1 0 Exponent=> 1024

N 0 Oorl 41024 > Exponent>> —1024
XFN 1 1 —1024 = Exponent

The fraction field uses the next 49 bits of the data
word, bit positions 12-60. Bit positions 12-59 are the
fraction magnitude, F. Bit position 60 is the fraction
sign, S. The binary point associated with the frac-
tion is defined to be to the left of the high-order
position, bit position 12. This means that a 1, in bit
position 12, has the numerical value of one-half.

The data flag bits T, U, and V occupy bit positions
61, 62, and 63, respectively. These bits can be set by
the programmer and, when set to 1, turn on the asso-
ciated indicators. The four bits S, T, U, and V are
treated as the sign byte for floating-point operations.
In the accumulator sign byte register, they are stored
in bit positions 4, 5, 6, and 7.

The floating point ranges specified above may be
visualized through Figure 22, in which F represents
the binary fraction and f represents the equivalent
decimal fraction. The shaded areas represent the
ranges of exceptional conditions that are handled by the

system. These ranges may be considered as numerical .

buffers that assist in avoiding numerical difficulties
encountered in going from machine processable val-
ues to non-machine processable values because of
exponent overflow or underflow.

Figure 22. Floating Point Number Range

In the accumulator, floating-point numbers are
represented either in single precision or in double
precision. For single precision, the following format
is used:

F Exe ¥

] T
FRACTION NOT USED m
H i
o 2 60 12 4

The exponent field is in bit positions 0-11. The
fraction magnitude is in bit positions 12-59. The
fraction sign bit does not appear in the accumulator
register, but in bit position 4 of the accumulator sign
byte register. Bit positions 5-7 of the accumulator
sign byte register may contain the data flag bits asso-
ciated with the information in the accumulator. Ac-
cumulator bit positions 60-63 are not used and remain
unchanged during single-precision floating-point op-
erations. The contents of the right half of the ac-
cumulator are neither used nor changed by a single-
precision floating-point operation unless address 9 is
used as the addressed operand. Bit positions 0-3 of
the accumulator sign byte register are not used by
any floating-point operation. They will not be
changed by any floating-point operation unless ad-
dress 10 is used as the addressed operand.

For double-precision operations, the following for-
mat is used:

T T T

F ExR :1 FRACTION FRACTION NOT USED

1 ! L_

o 2 60 08 3 47

The exponent field, high-order fraction magnitude
and fraction sign occupy the same bit positions as

Floating-Point Arithmetic 79

indicated in single-precision operations. The low-
order fraction magnitude of 48 bits is in bit positions
60-107. Bit positions 108-127 are not used or changed
by any floating point operation, unless address 9 is
used as the operand address.

The accumulator is used as an implied operand for
most operations. It is possible, however, to use the
accumulator as the addressed operand as well as the
implied operand. The left half of the accumulator
has address 8; the right half of the accumulator has
address 9; the accumulator sign byte register has ad-
dress 10.

In operations other than floating point, the con-
tents of the left half of the accumulator, bit positions
0-63, participate when address 8 is used as the effec-
tive operand address. However, in floating-point in-
structions when address 8 is used as the effective
operand address, accumulator bit positions 0-59 and
sign byte register bit positions 4-7 are used as the
operand. The four sign byte bits replace the four
low-order bits of the accumulator operand. Bits 60-
63 of the accumulator do not serve as operand bits.
For all floating-point single-precision operations, they
remain unchanged. Bit positions 60-63 of the accumu-
lator are changed in floating-point double-precision
operations for which they are part of the implied
operand and are changed as such. This rule applies
to operations of both fetch and store type. Addresses
9 and 10, when used as effective operand addresses,
are treated in floating-point as with other operations.

Floating-point remainders and cumulative multipli-
cands occurring in the remainder register (rM) ad-
dress 13, and the factor register (rT) address 14 have
the format of floating-point words in memory.

Instruction Format

Floating-point instructions are contained in the half-
word format shown below. The address portion, bit
positions 0-17, is the location of the full-word floating-
point operand. Bit position 18 is used as the nor-
malization modifier. Bit positions 19 and 20 are used
as the sign modifiers. The operation code is specified
in bit positions 21-27. Of these, bit positions 26 and
27 contain the fixed code (10), to indicate that the
instruction belongs to the floating-point class. The
five remaining bits of the operation code, bit posi-
tions 21 through 25, allow 32 operations to be speci-
fied. Of these, 29 operations are used. The operand
address can be modified by the value field of the
index register specified in bit positions 28-31.

ADDRESS s or 0] T

80 IBM 7030

Single- and Double-Precision Arithmetic

Single-precision and double-precision operations dif-
fer in the number of bits used in the operands and
developed in the final result fraction. The exponent
field, in either case, has one Er bit, ten EM bits, and
one Es bit.

In single-precision arithmetic, each operand has 48
fraction bits. During the execution of the operation,
zeros are implied to the right of the specified fraction
bits. Only bit positions 12-59 of the accumulator are
used. The final result of a single precision arithmetic
operation is also a 48-bit fraction. However, during
the process of obtaining the final result, an inter-
mediate result is developed in the arithmetic unit,
which may have more than 48 fraction bits. During
addition, a 96-bit sum fraction and a possible high-
order carry, the fraction overflow bit, is obtained as
an intermediate result. During multiplication, a 96-
bit product fraction is obtained. During division, a
48-bit quotient fraction is obtained; no remainder is
preserved. In the operations load, store and square
root, the result fraction is 48 bits. These intermediate
result fractions are adjusted to a final result fraction
of 48 bits according to the rules associated with nor-
malized or unnormalized operations.

In double-precision arithmetic operations, the ac-
cumulator contains a 96-bit fraction. The memory
operand has 48 bits in the fraction. The result is
placed in the accumulator and has 96 bits in the
fraction. Intermediate results of 96 bits and a possi-
ble fraction overflow bit are developed except in the
case of division.

In the operation PIVIDE DOUBLE, a 49-bit quotient
fraction is developed. After the 48th quotient bit has
been developed, the high-order 48 bits of the current
remainder are stored in the remainder register, RM,
with the proper exponent. When the remainder has
been stored, it is compared with the divisor to obtain
the 49th quotient fraction bit. .

The result of an addition may be placed in storage
in the single-precision add-to-memory operation.
This operation is not possible in double-precisior
operation, since the sum has more bits than the
addressed operand.

All single-precision floating-point operations pro-
vide results which are truncated to 48 bits. In sub-
sequent operations, zeros are implied to the right of
the low-order bit. The magnitude of the computed
result may be slightly reduced and the cumulative
effect of truncation may result in a bias in the com-
putation. By using rounded results rather than trun-
cated results, such bias may be reduced. To obtain
rounded single-precision results, a series of operations
may be performed in double-precision, after which

the instruction STORE ROUNDED is used to store the
results. Rounding is achieved by adding 1 to the
49th bit of the result fraction, bit position 60, and
truncating the result fraction to 48 bits.

Normalization

In floating point instructions, normalized or unnor-
malized operation is specified through use of the
normalization modifier, instruction bit position 18.
Normalized operation is specified when this bit is zero;
unnormalized operation is specified when this bit is
one.

When normalized operation is specified, the initial
operands used in the operation need not be in nor-
malized form, but the result of the operation is
usually normalized. The exceptions to providing a
normalized result are discussed with each operation.
When normalization occurs, it may involve a left shift
of the fraction to eliminate high-order zeros, or it
may involve a right shift to insert a high-order one
bit when the arithmetic operation produces a result
fraction overflow bit. After the shift, the result frac-
tion is truncated to 48 or 96 bits. When normaliza-
tion of the result requires shifting, the exponent is
changed by the amount of the shift. A right shift is
added to the exponent; a left shift is subtracted from
the exponent. An exception to the rules for normal-
ization occurs when the 48-bit result fraction in single-
precision operations or the 96-bit result fraction in
double-precision is zero. For zero fractions the nor-
malization is suppressed and no change, due to nor-
malization, is made in the result exponent. This
point is further discussed in “Zero Definition.”

When unnormalized operation is specified, the
arithmetic operation result fraction is truncated to 48
or 96 bits without a normalization cycle. High-order
zeros in the fraction are not eliminated. If a fraction
overflow bit is produced, the extra bit is lost and the
lost carry indicator, LG, is turned on. The details of
unnormalized operation are discussed with each op-
eration.

Normalization, when specified by the instruction,
usually applies to the result of the operation. This is
called post-normalization. In performance of the
arithmetic operations of addition and division, an-
other form of normalization may be used. This is
called prenormalization and is applied to one or more
of the operands specified in the operation. During
addition, the operand having the smaller exponent
is shifted right with its exponent increased by
the amount of the shift, until the exponents of the
two operands agree in magnitude and sign. During

division, both the divisor and dividend may be pre-
normalized. Prenormalization of the divisor occurs as
a part of the arithmetic procedure and is independent
of the normalization modifiers. Prenormalization of
the dividend is required when a normalized quotient
is to be obtained. A fully normalized dividend is de-
veloped when a normalized quotient is to be obtained.
Dividend prenormalization is conditional on the set-
ting of the normalization modifier. If an unnormal-
ized quotient is to be obtained, the dividend fraction
is shifted, at most, the same amount as the divisor.

A normalized result fraction, as developed by this
system, has a magnitude in the range 1 > F=14 or
zero. An unnormalized result fraction has a magni-
tude in the range 1 > F=0.

The unnormalized mode of operation can be used
as the equivalent of a fixed-point set of arithmetic
operations. When so used, the exponent field pro-
vides an automatic means of recording scale changes
during the course of the program. The unnormalized
fraction provides a 48-bit or 96-bit fixed point data
field.

Sign Control

The effective sign of an operand used during instruc-
tion execution can be determined in three ways. Two
operation modifiers, bit positions 19 and 20 of the
instruction, are associated with the floating-point op-
erations to provide flexible sign control: The third
way is through the operation code, as in ADD TO MAG-
NITUDE, and the discussion of this action will be found
under the various operations.

Instruction bit position 19 is called the “absolute
sign modifier.” It corresponds to the unsigned modi-
fier in integer arithmetic. The absolute sign modifier
applies to the storage operand when the data are
fetched from storage. In store operations, the modi-
fier applies to the number which is placed in storage.
When the modifier bit is zero, the sign of the operand
is used as it exists or is subject to further modification
by the negative sign modifier. When the modifier bit
is one, the sign of the operand is considered to be
positive and the original sign is ignored. This as-
sumed positive sign is subject to further modification
by the negative sign modifier.

Instruction bit position 20 is called the ‘“‘negative
sign modifier.” It corresponds to the integer arith-
metic sign modifier with the same name. The nega-
tive sign modifier applies to the operand that is not
changed in the operation. In operations that change
the accumulator contents, it applies to the operand
from storage. In operations that change storage, it

Floating-Point Arithmetic 81

applies to the operand from the accumulator. In com-
pare operations, this modifier applies to the operand
from storage. When this modifier bit is zero, the sign
of the operand, as modified by the operation code or
absolute sign modifier, is used unchanged. When this
modifier bit is one, the sign of the operand, as modified
by the operation code or absolute sign modifier, is
inverted. The negative sign modifier, when one, has
the effect of changing algebraic additions to subtrac-
tions or changing the sign of the result of multiplica-
tions, divisions or stores, including the result of sTORE
ROOT.

When the two sign modifiers are applied to the
same operand during an operation, the absolute sign
modifier is applied first. However, in some opera-
tions, each modifier may be applied to a different
operand. These cases are specified in detail in “Op-
erations.”

In some operations, the operation code specifica-
tion causes the accumulator operand to be treated
as a positive absolute value while the absolute sign
modifier is applied to the operand specified by the
effective address. When the operation code itself in-
cludes specification of the sign modification, this
modification is completed prior to the modification
specified by the negative sign modifier.

The sign modifiers always affect the operand signs
as they are used. The original operand sign is never
changed except when the entire operand is replaced
by the result. The use of the data flag bits is not
affected by the sign modifiers.

Data Flag Bits

In some problems it may be desirable to mark some
of the data to indicate the requirement for special
handling. For example, a particular value might be-
long to a boundary point in a mesh-type calculation.
Or, the data might be marked because loss of sig-
nificance has occurred. In the program it may be
desired to attach more than one mark to each data
word and treat the marks selectively. The flag bits
of the sign bytes associated with integer and floating
point data permit such indicative marking. The indi-
cators associated with data flags permit selective ac-
tion when these flag bits are encountered.

Bit positions 61-63 of a floating-point word are
used as data flag bits. These three bits are designated
as the T, U, and V bits, respectively. When a float-
ing-point operand is entered into the accumulator by
means of the operations LOAD WITH FLAG Or LOAD
DOUBLE WITH FLAG, the operand flag bits replace the
accumulator flag bits in the sign byte register bit

82 IBM 7030

positions 5-7. The operations LoAD and LOAD DOUBLE
set the data flag bit positions of the sign byte register
to zero. All other floating point operations leave the
accumulator flag bits unchanged, unless address 10 is
used in the to-storage operations. Flag bits of an
addressed operand are changed only by operations of
the store type, including sTORE rooT, which replace
the flag bits in storage by the accumulator flag bits.

The flag bits of a floating-point data word replace
the contents of the data flag indicators, TF, UF, and
vF, for every operation involving a data fetch. This
includes all floating point operations except stores,
SHIFT FRACTION and ADD EXPONENT IMMEDIATE.

Zero Definition

A floating-point number having a zero fraction may
be interpreted in two ways. It may represent an XFN
type of zero or it may represent an order of magni-
tude. When it is considered as an XFN zero, the ex-
ponent and sign are immaterial. When it is consid-
ered as an order of magnitude, the exponent and
fraction sign indicate the approximate magnitude and
sign of the quantity. Such a quantity may result
from the cancellation of two non-zero numbers, each
representing only a limited amount of accuracy. The
result of this cancellation is not to be a valid zero
and, therefore, the exponent and sign of the result
fraction are meaningful. The discussion of zeros in
this section considers only zeros of the order of mag-
nitude type. XFN zeros are discussed in ‘‘Range Defi-
nition and Handling.”

Floating-point values with zero fractions and ex-
ponent fields with EF — 0 are called “order of magni-
tude zeros.” In single-precision operations, the high-
order 48 bits and the overflow bit of the 96-bit inter-
mediate result fraction are tested for zero. In double-
precision operations, all 96 bits and the overflow bit
of the intermediate result fraction are tested for zero.
In either case, if the tested bits are zero, post-normal-
ization, if specified, is suspended. The intermediate
result exponent field, the zero fraction, and fraction
sign become the final result value. A zero fraction is
not normalized and cannot be normalized.

The fraction sign of an order of magnitude zero
resulting from addition is the fraction sign of the
operand originally having the alegbraically larger ex-
ponent, as modified by the operand and modifiers.
When both operand exponent magnitudes and signs
are equal, the fraction sign of the order of magnitude
zero sum is the modified fraction sign of the operand
in the accumulator. The fraction sign of an order of
magnitude zero resulting from an operation other

than addition is determined from the rules of alge-
bra. Computation of the exponent for a multiplica-
tion, division, or square root operation is not changed
when magnitude-zero result fraction is obtained. In
these cases, the intermediate result exponent becomes
the final result exponent without further modifica-
tion.

The add magnitude operations replace the sum of
an addition with a zero fraction when a fraction sign
reversal is obtained during the addition operation.
This type of order of magnitude zero is called a
“forced zero.” The fraction sign of the forced zero is
the unmodified original fraction sign of the accumu-
lator in ADD TO MAGNITUDE and the unmodified orig-
inal fraction of the addressed operand in ADD MAGNI-
TUDE TO MEMORY. A forced zero turns on the result
zero indicator, rz, but not the lost significance indi-
cator, Ls.

The rz indicator is set for all operations with a zero
fraction result. The Ls indicator is set when a zero re-
sults from cancellations or shifting. In additions, Ls
may be set only when at least one operand is not zero.

In comparisons, order-of-magnitude zeros are con-
sidered equal only when their exponents differ by 48 or
less. When a divisor has a zero fraction, the zp indi-
cator is set. Division is not executed and accumulator
and storage contents remain unchanged.

To leave a negative zero exponent in the accumu-
lator as a result of a floating point operation, a nega-
tive zero exponent must be in the accumulator when a
divide by zero is attempted (divisor fraction zero). If
50, the zp indicator is set and division is ended.

COMPARE Or COMPARE FOR RANGE leaves a negative
zero exponent in the accumulator if the following in-
structions are unnormalized and specify no sign modi-
fication (a minus 0 exponent is loaded into the
accumulator): FLOATING POINT LOAD, LOAD DOUBLE,
LOAD DOUBLE WITH FLAG, and LOAD WITH FLAG. A minus
0 exponent can be stored by an unnormalized FLOATING
POINT STORE which specifies no sign modification.

Range Definition and Handling

As outlined in “Data Format,” three classes of ex-
ponent ranges are provided. These are classified xFp,
N, and XFN, and are defined as follows:

RANGE EF ES DEFINITION

XFP 1 0 Exponent = 11024

N 0 Oorl +1024 > Exponent > —1024
XFN 1 1 —1024 = Exponent

Result values, determined by floating point opera-
tions, may have flagged exponents from two distinct
occurrences. The first way a result may fall in the xrp

or XFN ranges is through normal overflow or underflow
produced by the action of operands in the N range.
The second way that a flagged exponent appears in the
result is through forced action associated with the use
of operands having flagged exponents.

An exponent flag is said to be generated whenever
original operands, with EF of 0, develop a result having
EF of 1, through overflow or underflow from the N
range. An exponent flag is said to be propagated when-
ever an original operand, with EF of 1, forced the result
to have EF of 1. For arithmetic operations, when one or
more operands are in the XFP or XFN range, the result
always has a propagated exponent flag of 1, except for
addition, where one operand is in the N range and the
other is in the XFN range. In such additions the result
may pass from the N range to the XFN range through
post-normalization, and a generated EF of 1 is de-
veloped.

Figure 23 summarizes the result exponent ranges for
the initial operand ranges as specified. The underlined
values represent arbitrary choices selected to propagate
extreme values in the most noticeable range. The result
values in the N range, shown as N*, may be values in
the XFP or XFN ranges owing to normal exponent over-
flow or underflow.

When the result contains a propagated EF of 1,
normalization, if specified, will be suppressed. When
the result contains a generated EF of 1, normalization
will usually occur, if specified.

When two operands originally with eF of 0 gen-
erate an £F of 1 and the subsequent normalization
could produce a double carry, the normalization will

ADDITION TABLE

Addend
Augend XFP N XFN
XFP XEP XFP XFP.
N XFP N* N*
XFN XFP N* XFN

MULTIPLICATION TABLE

Multiplicand
Multiplier XFP N XFN
XFP XFP XEP XEP
N XFP N* XFN
XFN XFP XFN XFN

DIVISION TABLE

Dividend
Divisor XFP N XFN
XEP XEP XEN XFN
N XFP N* XEN
XFN XFP XFP XEP

Figure 23. Result Exponent Ranges

Floating-Point Arithmetic 83

be suppressed. These cases occur in multiplication
of values with large Em and the same Es, and in divi-
sion where the values have large EM and different Es.
This definition insures that overflowed or under-
flowed values will remain in that range.

For comparison operations, Figure 24 shows the
result relative to the accumulator. Comparisons are
made algebraically so that the effective signs of the
operand fractions are the primary consideration. A
value with a positive fraction sign is considered larger
than a value with a negative fraction sign, except that
plus zero is equal to negative zero under certain con-
ditions. When the values have the same fraction sign,
comparison is based on the relative magnitudes of the
exponents and exponent signs and, finally, on the
fraction magnitudes. An asterisk indicates a result
which further depends on the relative magnitudes of
the fractions.

Noisy Mode

The normalization process used with floating-point
operations introduces zeros into the low-order bit po-
sitions of the fraction as left shifting occurs. This
process may result in a loss of significance through-
out the course of a program. Assistance in the study
of such effects has been provided through an al-
ternative method of operation called the “noisy
mode.” Noisy mode operation provides for the intro-
duction of ones, rather than zeros, in the low-order
bit positions during the left shift associated with nor-
malization. Processing the program both in the stand-
ard mode and in the noisy mode provides an esti-
mate for the study of significance loss due to fraction
truncation.

The choice of standard or noisy mode operation is
specified by the setting of the noisy-mode indicator,
NM. When the indicator is zero, standard operation
is used; when it is set to one, noisy mode operation
will be used. Noisy mode is used only when normal-

Storage

Accumulator | XFP, +] N, +| XFN, +| XFN, -| N, -| XFP, -
XFP, + = High | High High High | High
N, + Low * High High High | High
XFN, + Low Low = High High | High
XFN, - Low Low | Low = High | High
N, - Low Low | Low Low x] High
XFP, - Low Low | Low Low Low =

Figure 24. Comparison Results

84 IBM 7030

ized operation is also specified. Unnormalized floating-
point operations are not affected by the noisy mode.
Therefore, many incidental operations associated
with a calculation may be performed without chang-
ing the status of the Nm indicator, yet still using
the higher speed floating-point instructions.

With normalized operation specified, noisy mode
operation differs from standard operation at the start
of execution and during final normalization. At the
start of execution in noisy mode, single-precision 48-
bit fractions are extended with 48 ones. The oper-
ands in all single-precision operations, except MUL-
TIPLY and STORE RoOT, are extended. In additions,
only the operand with the greater exponent is ex-
tended with ones. (For operands with equal expo-
nents the accumulator operand is extended.) In divi-
sions, both the divisor and dividend are extended for
the normalization preceding the actual division. The
divisor is truncated to 48 bits for the division opera-
tion. The effect of the extension on addends (or
augends) and dividends is to provide one bits instead
of the zero bits normally provided when forming the
96-bit intermediate operand. The effect of this exten
sion is to provide low order one-bits on left shifts in
normalizing of 48-bit fractions for divisors and other
operands. When the final normalization is specified,
the extended ones are truncated so that only 48 bits
appear in the single-precision results.

At the start of execution for double-precision op-
erations, all operands are assumed to be 96 bits in
length. Only those operands requiring pre-execution
normalization will acquire one-bits rather than zero
bits in the process. The operand in LOAD FACTOR and
the divisor in pIVIDE DOUBLE are extended. After the
subsequent normalization they are truncated to 48-bit
operand fractions. When the final normalization is
specified, the 96-bit intermediate result, when shifted
left, is extended on the right with ones. The operand
in SHIFT FRACTION is not affected with noisy mode bits.

Indicators

The indicators that may be turned on by floating
point operations can be divided into two groups. The
first group of indicators is of a general nature and
can be turned on by variable field-length operations
as well as floating-point operations. The description
here is with respect to the floating point operations
only. The second group of indicators are specifically
associated only with floating-point operations.
Indicators are either permanent or temporary. The
permanent indicators are turned on by certain speci-
fied operation conditions. Once on, they stay on until

turned off by an interruption or by programming. The
temporary indicators are made either zero or one, de-
pending on the causing condition. These indicators are
changed when a new operation is performed which
sets the indicators. The temporary indicators remain
unchanged for operations with which they are not
associated.

Indicators Set by VFL or Floating-Point Operations

Lost Carry (LC). This indicator is turned on when
a fraction overflow bit occurs in an unnormalized
addition or when a low order one-bit of a remainder
is lost in unnormalized pivipE pouBLE. The indicator
is also turned on during the operation SHIFT FRAC-
TION, when a one is lost because of a left shift past
accumulator bit position 12. This indicator is per-
manent.

Partial Field (PF). This indicator is turned on in
unnormalized division when the magnitude of the
dividend fraction is larger than or equal to the
magnitude of the divisor fraction. The indicator is
permanent.

Zero Divisor (2ZD). This indicator is turned on dur-
ing a division when the divisor fraction is zero. The
indicator is permanent.

Data Flag T (TF); Data Flag U (UF); Data Flag V
(VF). These indicators are collectively referred to as
the data flag indicators. They are set according to
the flag bits (T, U, and V) in the sign byte of the
floating point words which are obtained from storage.
The indicators are temporary.

To-Memory Operation (MOP). This indicator is
set according to the operation type of the floating
point instruction. The indicator is set to one for all
operations of the to-storage type, i.e., those for which
the result appears in the location specified by the
effective address. Such operations consist of the stores
and add to storage operations. For all other floating
point operations, the indicator is set to zero. The
indicator is temporary.

Result Less than Zero (RLZ); Result Zero (RZ);
Result Greater than Zero (RGZ); Result Negative
(RN). These indicators are collectively referred to as
the arithmetic result indicators. They are set accord-
ing to the sign and magnitude of the fraction result
of any floating point operation except the compari-
son operations. The indicators are temporary.

The indicator rz is turned on for all zero result
fractions. The indicator rz will not be turned on
when unnormalized operations result in an overflow
bit and zero fraction. In this case only the lost carry
indicator, Lc, will be affected.

Accumulator Low (AL); Accumulator Equal (AE);
Accumulator High (AH). These indicators are col-

lectively referred to as the comparison result indica-
tors. They are set according to the result of the float-
ing point comparisons. They indicate the compara-
tive value of the accumulator as compared with the
storage operand. The indicators are temporary.

Indicators Set Only by Floating Point Operations

Imaginary Root (IR). This indicator is turned on
if the operand of a STORE ROOT operation is negative.
The indicator is permanent.

Lost Significance (LS). This indicator is turned on
if the result fraction of a floating point addition or
shifting operation is zero unless the following excep-
tion conditions exist. This indicator is not turned
on if both operands in a floating point addition have
zero fractions prior to the pre-addition shifting, if the
zero fraction is a forced zero as in ADD TO MAGNITUDE,
or if the result has a propagated exponent flag. This
indicator is permanent.

Preparatory Shift Greater than 48 (PSH). This in-
dicator is turned on if the exponent difference of op-
erands in floating point addition, both having EF of 0,
is more than 48. It is turned on for both single- and
double-precision addition. It is turned on if the in-
termediate product in MULTIPLY AND ADD has a gen-
erated EF of 1 and its use during the addition leads
to an exponent difference of more than 48. This indi-
cator is not turned on if either operand in a floating
point addition is in the XFp range, or if both oper-
ands are values in the xFN range. The indicator is
permanent.

Exponent Flag Positive (XPFP) Exponent == 1024
This indicator is turned on if the result exponent
has a propagated EF of 1 and Es of 0. The indicator

is permanent.

Exponent Overflow (XPO) Exponent = 1024
This indicator is turned on if the result exponent
has a generated EF of 1 and Es of 0. The indicator is

permanent.

Exponent Range High (XPH)
+ 1024 > Exponent = 4512

This indicator is turned on if the result expo-
nent magnitude has a high order 1, and Er of 0, ES
of 0. The indicator is permanent.

Exponent Range Low (XPL)
+ 512 > Exponent = + 64
This indicator is turned on if the result exponent
magnitude has a high-order zero and a 1 in bit posi-
tions 2, 8, or 4 and EF of 0, Es of 0. This indicator is

permanent.

Floating-Point Arithmetic 85

Exponent Underflow (XPU) Exponent = — 1024

This indicator is turned on if the result exponent
has a generated ¥F of 1 and Es of 1. It is permanent.

These indicators are collectively referred to as the
exponent range indicators. They permit monitoring
of the result exponents of floating point operations.
In the case of the overflow and underflow indicators,
the occurrence of an incorrect result, because of a
lost exponent carry, is signalled. However, the expo-
nent overflow bit sets EF to 1.

The range high indicator signals results which use
all available bit positions in the exponent magnitude.
Continued computation on these numbers may result
in overflow conditions.

The exponent range indicators collectively permit
monitoring of computations whose operands and re-
sults are below the respective magnitude ranges
shown.

The exponent range indicators are set according to
the final result of all floating point operations except
comparisons. The indicators are permanent.

Zero Multiply (ZM). This indicator is turned on if
normalized multiplication or the final result of a norm-
alized multiply and add has an exponent greater than
—1024 and a zero fraction. This indicator is tempo-
rary.

Remainder Underflow (RU) Exponent = — 1024

When the remainder exponent in p1VIDE DOUBLE has
a generated EF of 1 and Es of 1, this indicator is
turned on. It is not turned on when the remainder
exponent has a propagated er of 1. The indicator is
permanent.

Noisy Mode (NM). This indicator is on when
computations are performed in the noisy mode. The
indicator must be set to zero or one by programming.
In contrast to other indicators, the noisy mode indi-
cator is never turned on or off automatically. There-
fore, it is permanent, except as set by programming.

The operation DIVIDE bOUBLE is the only floating
point operation which has two results, a quotient and
a remainder. Most of the above indicators apply to
the primary result, the quotient. The indicators
which may be turned on to describe the remainder
are lost carry (Lc) and remainder underflow (ru).

In the detailed description of the operations, only
the applicable indicators are listed.

Operations

Floating-point operations are divided into single-
precision and double-precision operations. The fol-
lowing table lists the two groups and the location of
the result and the arithmetic action.

86 IBM 7030

ARITHMETIC
SINGLE-PRECISION OPERATIONS RESULT ALTERS ACTION
+ Add Accumulator Add
+MG Add to Magnitude Accumulator Add
L Load Accumulator Replace
LWF Load with Flag Accumulator Replace
M4 Add to Memory Storage Add
M4+MG Add Magnitude to Storage Add
Memory
ST Store Storage Replace
K Compare Indicators only Add
KMG Compare Magnitude Indicators only Add
KR Compare for Range Indicators only Add
KMGR Compare Magnitude Indicators only Add
for Range
* Multiply Accumulator Multiply
/ Divide Accumulator Divide
R/ Reciprocal Divide Accumulator Divide
SRT Store Root Storage Square Root
DOUBLE-PRECISION OPERATIONS
D+ Add Double Accumulator Add
DJL+MG Add Double to Accumulator Add
Magnitude
DL Load Double Accumulator Replace
DLWF Load Double with Accumulator Replace
Flag
SRD Store Rounded Storage Add
SLO Store Low Order Storage Replace
D* Multiply Double Accumulator Multiply
LFT Load Factor FT Register Replace
* 4 Multiply and Add Accumulator Multiply, Add
D/ Divide Double Accumulator, Divide
RM Register
FL Add to Fraction Accumulator Add
SHF Shift Fraction Accumulator Shift
E Add to Exponent Accumulator Add
E41 Add Immediate to Accumulator Add
Exponent
Add ()

The operand specified by the effective address is alge-
braically added to the operand in the left half of the
accumulator. The exponent and fraction of the sum
replace accumulator bits 0-59. Accumulator bits 60-
127 remain unchanged. The fraction sign of the ad-
dressed operand is modified by the sign modifiers
prior to the addition. The sign of the sum replaces
the accumulator sign, bit position 4, of the accumu-
lator sign byte register. Bits 0-3 and 5-7 of the accu-
mulator sign byte register remain unchanged.

The addition of floating point numbers consists of
an exponent comparison and a fraction addition. The
exponent of the addressed operand is subtracted from
the exponent of the operand in the accumulator.
The fraction of the number with the algebraically
smaller exponent is shifted right by the amount of
the exponent difference. The exponent of the oper-
and with the algebraically larger exponent is used as
the exponent of the intermediate result prior to post-
normalization. The fraction sign of the addressed

operand is modified by the sign modifiers prior to
the addition. The fractions are added after the value
with the lower exponent has been shifted right by
the amount of the difference in exponents. A 96-bit
intermediate sum fraction, and possible overflow bit,
is formed by extending each operand fraction to 96-
bit length by the addition of low-order zeros. The
low-order bits of the fraction shifted to the right are
retained in the intermediate 96-bit fraction and par-
ticipate in the addition. When the difference in expo-
nents exceeds 48, indicator preparatory shift greater
than 48 (psH) is set to one, and the low-order bits of
the fraction having the low exponent which are
shifted beyond the right end of the 96-bit interme-
diate sum do not take part in the operation. When
the difference in exponents exceeds 95, no addition
is performed and the result is the number with the
higher exponent.

When unnormalized operation is specified, the 48
high-order bits of the 96-bit intermediate sum replace
accumulator bits 12-59. The overflow bit does not
enter the accumulator, but turns on indicator lost
carry (LG). :

When normalized operation is specified, the entire
96-bit intermediate sum fraction and overflow bit
are shifted to form a normalized fraction and the re-
sult exponent is adjusted accordingly. This normali-
zation is not performed if the overflow bit and high-
order 48 bits of the intermediate sum are zero. The
48 high-order bits of the normalized sum fraction
replace accumulator bits 12-59.

When the noisy mode and normalized operation
are specified, the 48-bit fraction of the number with
high exponent is extended with 48 low-order one-bits.
If the operands have equal exponents, the accumu-
lator operand is extended. The extension takes place
before the intermediate sum is formed. Post-normal-
ization occurs as described above.

If either or both operands are values in the XFP or
XFN range, initially having an exponent flag, EF of 1,
the operation is performed as follows. Modification
of the fraction sign of the addressed operand is made
as specified by the sign modifiers. If the operands
have both exponents in the xFp range or both in the
XEN range, the result is the operand in the same range
having the algebraically larger exponent. When both
operands have the same exponent, the operand ini-
tially in the accumulator is the result. Normalization,
if specified, is suppressed. If one operand has an ex-
ponent in the xFp range and the other has an expo-
nent in the N or XFN range, the result is the operand
in the XFp range. Normalization, if specified, is sup-
pressed. If one operand is in the N range and the
other is in the XFN range, the intermediate result is
the operand in the N range. In this case, however,

normalization, if specified, is performed. This may
lead to a generated EF of 1 through underflow.
INDICATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand.
These indicators are temporary.

To-Memory Operation (MOP). This indicator is
set to zero. This indicator is temporary.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the final arithmetic
result fraction which appears in the accumulator.
These indicators are temporary.

Lost Carry (LC). This indicator is turned on if a
fraction overflow occurred in an unnormalized addi-
tion. The indicator is permanent.

Lost Significance (LS). This indicator is turned on
in addition when at least one operand fraction is non-
zero if the high-order 48 bits of the intermediate sum
and overflow bit are zero and the intermediate result
exponent flag is 0. In this case, the final sum fraction
is zero and a normal order of magnitude zero is pro-
duced with no further normalization, if specified, or
exponent change.

This indicator will not be turned on in addition
if both operands had zero fractions at the start of the
operation or if the intermediate result exponent flag
has a propagated £F of 1. This indicator is permanent.

Preparatory Shift Greater than 48 (PSH). When both
operands are values in the N range and the algebraic
difference of the exponents is greater than 48, or if one
operand is a value in the N range while the other oper-
and is a value in the XFN range, this indicator is
turned on. When the operands are both values in the
XFP range or both in the XFN range, or when one oper-
and is a value in the xFp range while the other is a
value in the N or XFN ranges, the result has a propa-
gated exponent flag of 1, and this indicator is not
turned on. This indicator is permanent.

Exponent Range (XPFP, XPO, XPH, XPL,
XPU). These indicators are set according to the ex-
ponent range of the final result appearing in the
accumulator. When the result has a propagated EF
of 1, the xpFp is set. The zm will be turned off if on
as a result of a previous operation.

PrOGRAMMING NOTE

For most arithmetic operations, if one of the oper-
ands has EF of 1, the result has £F of 1 and the flag is
said to be propagated. In addition operations, how-
ever, a value in the N range, EF of 0, added to a value
in the XFN range, EF of 1, produces an intermediate
sum with exponent in the N range. If this result ex-
ponent is altered during normalization, when speci-
fied, the exponent flag may be set to 1 in the final
result. When this occurs, the exponent flag produced
is said to be a generated exponent flag.

Floating-Point Arithmetic 87

Add to Magnitude (--MG)

This operation is performed in the same manner as
Abp, with the following exceptions:

The fraction sign of the operand in the accumula-
tor is assumed positive and the result fraction is
made a forced zero when a negative sum is obtained.

When the fraction sign of the sum is positive, the
sum is placed in accumulator bits 0-59 and the accu-
mulator sign remains unchanged. When the fraction
sign of the sum is negative, a zero fraction is placed
in accumulator bits 12-59. The sign and exponent
of the accumulator operand become the sign and ex-
ponent of the forced order of magnitude zero result.
For this forced zero, the indicator lost significance
(Ls) is not turned on, distinguishing it from a zero
sum. In an ADD TO MAGNITUDE operation, the sign
byte register bit position 4 never changes.

When either or both operands lie in the XFp or XFN
ranges, the operation is performed as described in App.
The fraction sign of the accumulator operand is as-
sumed positive and the result fraction is made a
forced zero when a negative sign is obtained. As de-
scribed above, the sign and exponent of the accumu-
lator operand become the sign and exponent of the
forced order of magnitude result.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Lost Carry (LC); Preparatory Shift Greater
than 48 (PSH); Exponent Range (XPFP, XPO, XPH,
XPL, XPU; Zero Multiply (ZM). These indicators
are set as in ADD.

Lost Significance (LS). This indicator is set as in
ADD, with the additional exception that if the interme-
diate sum is negative, which gives as a final result a
forced zero fraction, it is not turned on.

PROGRAMMING NOTE

The ADD TO MAGNITUDE operation allows arithmetic to
be performed on the magnitude of the accumulator
contents. Since the arithmetic action of the accumu-
lator operand is restricted to positive magnitude, sign
change is not allowed; instead, a forced zero replaces
the result.

Load (L)

The operand specified by the effective address is placed
in the left half of the accumulator. The exponent
and fraction of the operand replace accumulator bits
0-59. Accumulator bits 60-127 are not changed. The
sign of the operand, as changed by the sign modifiers,
replaces the accumulator sign, bit position 4 in. the
accumulator sign byte register. The accumulator flag
bits are set to zero. When normalized operation is
specified, the result in the left half of the accumulator

88 IBM 7030

is normalized and zero bits enter the low-order posi-
tions. If the address operand has a zero fraction,
normalization is suppressed because the result is an
order of magnitude zero. If noisy mode is also speci-
fied, ones enter the low-order fraction bits during
normalization.

When the specified operand is a value in the xFp or
XFN range, normalization, if specified, is suppressed.
The propagated EF of 1 causes exponent range indi-
cator, XPFP, to be set on. When the £F of 1 is gener-
ated by normalization, the exponent range indicator
XPU is turned on.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Exponent Range (XPFP, XPH, XPL, XPU); Zero
Multiply (ZM). These indicators are set as in ADD.

Load with Flag (LWF)

This operation is the same as LOAD except that the
data flag bits T, U, and V of the addressed operand
sign bytes set the flag bits in positions 5-7 of the accu-
mulator sign byte register as well as the data flag in-
dicators TF, UF, and VF.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Exponent Range (XPFP, XPH, XPL, XPU); Zero
Multiply (ZM). These indicators are set as in ADD.

PROGRAMMING NOTE

The operations LOAD, LOAD WITH FLAG, LOAD DOUBLE
and LOAD DOUBLE WITH FLAG are the only floating
point operations which affect the data flag positions
in the accumulator sign byte register. No floating
point operation changes the zone bits, bit positions
0-3, of the accumulator sign byte register, unless ad-
dress 10 is used as the addressed operand in a to-stor-
age operation.

Add to Memory (M)

The operand in the left half of the accumulator is
added to the operand specified by the effective ad-
dress. The exponent and fraction of the sum replace
bits 0-59 of the storage word. When normalized opera-
tion is specified, the sum is normalized before it is
placed in storage. The sign of the addressed operand
is used as modified by the absolute sign modifier only.
The negative sign modifier is used to modify the sign
of the accumulator. The sign of the sum is placed in
bit position 60 of the storage word. The flag bits,
61-63, of the storage word remain unchanged. The

contents of the entire accumulator and its sign byte
register remain unchanged throughout the operation,
unless these registers are used as the addressed operand.

The addition of the two operands is identical to
the addition described in app. The intermediate re-
sult is a 96-bit fraction and a possible overflow bit.
When normalized operation is specified, the sum is
shifted so that the 48 high-order bits of the sum, in-
cluding the overflow bit, are placed in storage bits
12-59. The exponent of the sum is adjusted by the
amount of the shift.

When unnormalized operation is specified, the 48
high-order bits of the sum are placed in storage bits
12-59. The overflow bit does not enter the storage
word, but turns on the indicator lost carry (LC).

When noisy mode and normalized operation are
specified, the fraction of the operand associated with
the larger exponents, or the accumulator fraction if
the exponents are equal, is extended with 48 low-order
ones before the sum is formed. The result fraction is
truncated to 48 bits prior to storing in storage.

If either or both of the operands lie in the xFp or
XFN range, the operands are added, after modification
of the fraction signs as stated above, in accordance
with the rules specified under app. When the result
has a propagated EF of 1, normalization, if specified,
is suppressed.

INDICATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand.
These indicators are temporary.

To-Memory Operation (MOP). This indicator is
set to one. This indicator is temporary.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the final arithmetic
result fraction which appears in storage. These indi-
cators are temporary.

Lost Carry (LC). This indicator is turned on if a
fraction overflow occurred in unnormalized addition.
This indicator is permanent.

Lost Significance (LS). This indicator is set on when
at least one operand fraction is non-zero if the high-
order 48 bits of the intermediate sum and overflow bit
are zero and the intermediate result exponent flag is
zero. The final sum fraction is zero, and a normal or-
der of magnitude zero is formed with no further nor-
malization or exponent change. This indicator is not
turned on when both operand fractions are zero origi-
nally, or if the intermediate result exponent flag has
a propagated EF of 1. This indicator is permanent.

Preparatory Shift Greater than 48 (PSH). When
both operands are values in the N range, or if one
operand is in the N range while the other operand is
a value in the XFN range and the algebraic difference

of exponents is greater than 48, this indicator is turned
on. When both operands are values in the XFP or XFN
ranges or when one operand is a value in the xFp
range while the other is a value in the N or XFN range,
the result has a propagated EF of 1 and this indicator
is not turned on. This indicator is permanent.

Exponent Range (XPFP, XPO, XPH, XPL,
XPU). These indicators are set according to the ex-
ponent range of the final result appearing in storage.
When this result has a propagated EF of 1, xpFN will
be set. When this result has a generated EF of 1, xPO
or xPU will be set.

Zero Multiply (ZM). If on, this indicator will be
turned off.
PROGRAMMING NOTE

In contrast to unsigned ADD TO MEMORY in integer
arithmetic, this operation causes the result sign to re-
place the sign of the storage operand. This constitutes
the essential difference between unsigned operation, as
in integer arithmetic, and absolute operation as in
floating point.

Add Magnitude to Memory (M+MG)

Same operation as ADD TO MEMORY except the accumu-
lator operand sign is assumed positive before the nega-
tive sign modification occurs, and the sum fraction is
replaced by forced zeros when its sign differs from the
sign of the addressed operand developed after its modi-
fication by the absolute sign modifier.

The sum sign is compared with the addressed oper-
and effective sign. With equal signs, the sum replaces
the addressed storage operand. With opposite signs,
the result fraction is a forced zero in storage. The
forced zero sign is the same as the addressed operands
original sign. The sign and exponent of the storage
operand become the sign and exponent of the forced
order-of-magnitude zero result. For a forced zero, the
lost significance (Ls) indicator is not set. This action
distinguishes it from a zero sum.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Lost Carry (LC); Preparatory Shift Greater than 48
(PSH); Exponent Range (XPFP, XPO, XPH, XPL,
XPU); Zero Multiply (ZM). The above indicators
are set as in ADD TO MEMORY.

Lost Significance (LS). This indicator is set as in
ADD TO MEMORY except that a forced zero does not
turn it on.

PROGRAMMING NOTES

The ADD MAGNITUDE TO MEMORY operation allows the
storage operand, or its magnitude, to be altered as in

Floating-Point Arithmetic 89

ADD TO MEMORY, with the constraint that it cannot be
changed in sign. Where a sign change would occur
in ADD TO MEMORY, a forced zero occurs in ADD MAG-
NITUDE TO MEMORY. Furthermore, this operation uses
only the magnitude of the accumulator contents in-
stead of the signed accumulator contents used by App
TO MEMORY.

In contrast to the operation ADD TO MAGNITUDE,
where the accumulator operand is assumed always
positive, the ADD MAGNITUDE TO MEMORY can operaie
with positive or negative operands in storage.

The table of arithmetic actions shown in Figure 13
is reproduced in Figure 25 for floating point opera-
tions and operands. Results which do not correspond
to the integer arithmetic results are underlined. The
mnemonic symbols N and A refer to the sign modi-
fiers.

The differences between Figures 13 and 25 are due
to a difference in the unsigned integer storage field
and the absolute floating point storage field. In the
integer case, no sign is available. The result must be
a magnitude only, and the lost carry indicator signals
a negative sign. In the floating point case, a sign is al-
ways available, even though it may be ignored and a
negative sign can be recorded as such.

Store (ST)

The operand in the left half of the accumulator is
placed in the location specified by the effective address.
The exponent and fraction of the operand are taken
from accumulator bits 0-59 and replace bits 0-59 of
the storage word. The accumulator sign, sign byte
register bit position 4, as modified by the sign modi-
fiers, and the accumulator flag bits, sign byte register
bits 5-7, replace bits 60-63 of the storage word. The
entire accumulator and its sign byte register remain

Storage Operand —_— 3+ 5+ I 5+ 3- 5- 3 5
Accumulator Operand — 5+ 3+ 5- 8- 5+ 3+ 5 3-
*Operaﬂon and Modifiers
Add 8+ 8+ 2- 2+ 2+ 2- 8- 8
Add, N 2+ 2- 8 8 8+ g+ 2- 2+
Add, A 8+ 8+ 2- 2+ 8+ g+ 2- ¢+
Add, N, A 2+ 2- 8- 8 2+ 2- 8- 8-
Add to Magnitude 8+ 8+ 8- 8- 2+ 0O+ 2- O-
Add to Magnitude, N 2+ 0+ 2- O0- 8+ B8+ 8 8-
Add to Magnitude, A g+ g+ 8- 8- B8+ B8+ 8 8-
Add to Magnitude, N, A 2+ 0+ 2- 0- 2+ 0O+ 2- O0-
Add to Memory 8+ 8+ 2- 2+ 2+ 2- 8- 8-
Add to Memory, N 2- 2+ 8+ 8+ 8- 8- 2+ 2-
Add to Memory, A 8+ 8+ 2- 2+ B8+ 8t 2- 2+
Add to Memory, N, A 2- 2+ gv 8+ 2- 2+ 8+ B+
Add Magnitude to Memory 8+ 8+ 8+ 8+ 0- 2- 0O 2-
Add Magnitude to Memory, N 0+ 2+ 0+ 2+ 8- 8 8 8-
Add Magnitude to Memory, A 8+ 8+ 8+ B8+ 8- 8- B~ 8-
Add Magnitude to Memory, N, A 0+ 2+ 0+ 2+ 0- 2- 0- 2-

Figure 25. Floating Point Operation Results

90 IBM 7030

unchanged throughout the operation unless address 8
is the effective address.

When normalized operation is specified, the 48-bit
operand fraction in the accumulator is nosmalized
before being placed in storage. If the noisy mode is
also specified, ones enter the low-order fraction bit
positions as they are shifted left on normalization.
Normalization is suppressed when the 48 fraction bits
are zero.

When the exponent flag is 1, in the accumulator
operand, normalization, if specified, is suppressed and

‘ the exponent range indicators are set in accordance

with the rules for propagated eF of 1. If an EF of 1
is generated during normalization, the exponent range
indicator xpu is turned on. Thus, for values with ini-
tially flagged exponent, the value in storage is the
same value as appears in the accumulator.

INDICATORS

To-Memory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN); Exponent Range (XPFP, XPH,
XPL, XPU); Zero Multiply (ZM). These indicators
are set as in ADD TO MEMORY.

Compare (K)

The operand in the left half of the accumulator is
compared with the operand specified in the effective
address. The action of the specified sign modifiers
on the addressed operand is completed before the
comparison is made.

The two numbers are compared algebraically by
subtraction. However, the operands in storage and
the accumulator are not altered. In the intermediate
stage the subtraction operation is identical to ADD ex-
cept for a sign inversion. The result is discarded and
the comparison result indicators rather than the arith-
metic result indicators are set.

When the exponent difference between the operands
exceeds 48, the algebraically larger of the two numbers,
judged by exponent and fraction sign, is considered
high. This statement is true when one or both of
the numbers are zero. When the exponent difference
is 48 or less, a zero result is considered an equality,
and for this case 4 0 is equal to — 0.

In an App operation, the normalization modifier
specifies post-normalization. Since there is no stored
arithmetic result in a comparison operation, the nor-
malization modifier affects the operation only during
noisy mode operation. When noisy mode and normal-
ized operation are specified, the operand having the
higher exponent, or the accumulator operand, if both
operands have equal exponents, is extended with 48
low-order ones prior to forming the intermediate dif-
ference, as in ADD.

When one or more of the operands are values in the
XFP Or XFN ranges, comparisons are performed as fol-
lows. When the fractional signs are unlike, the value
having the positive fraction sign is considered greater.
When the fraction signs are alike, the exponent range
is considered. The following criteria apply. If both
operands have fraction signs that are positive, a value
in the xFP range is considered greater than a value in
the N or XrN range, and a value in the N range is
considered greater than a value in the XFN range. If
both operands have fraction signs that are negative, a
value in the XFN range is considered greater than a
value in the N or xFp range, and a value in the N
range is considered greater than a value in the xFp
range. If both operands are in the xFp range or both
in the XFN range and both fraction signs are alike, the
comparison is considered equal.

The arithmetic resuit and exponent range indicators
and the original contents of the accumulator and of
storage are not changed.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Preparatory Shift Greater than 48 (PSH).
These indicators are set as in ADD.

Comparison Result (AL, AE, AH). Set according to
result of the comparison. These indicators refer to the
operand in the accumulator as compared with the
storage operand.

PROGRAMMING NOTE

Figure 26 outlines the combinations of elements
(operand signs, operand magnitudes, subtraction re-
sults) that determine the compare indicator settings
shown. These elements are: Fa — accumulator fraction
sign; Ea —accumulator exponent sign; Fm — storage
fraction sign after negative and absolute sign modifi-
cation; Em — storage exponent sign; Ae — accumulator
exponent; Me — storage exponent; Af — accumulator
fraction; Mf — storage fraction; and Rs —sign of the
discarded result as determined by the modified frac-

Fa R R B R A B B I I A S I I P

Ea Hl+ |+ F| =] === -] =-|+]+]|+]|+

Fm L B R I B B R -l =4+~

Em +| ==+ ==+ +}|-]- +i=|-1+

Preshift, AH|AH|AH|AL| _|AH|AH|ALIAL| |AH|AL|AL|AL

> JAd>Méel| AH AL AH AL

48 [|Ac| <Mel[AL AH| AL AH

Preshift| AF-Mf=0{|AE | AE |AE |AE |AE| AE | AE |AE |AE |AE|AE |AE |AE|AE |AE |AE
< [AF-MfD

48 | Rs (+) JAH|AH|AH|AH|AH AH|AH|AH AL |AL AL |AL
Af-MFA0

Rs (=) JAL|AL AL| AL AL JAL|AH |JAH |AL AL JAH{AH

Figure 26. Indicator Settings, Operands

Storage
Accumulator XFP, +| ‘N, + | XFN, +| XFN, -| N, -} XFP, -
XFP, + AE AH AH AH AH AH
N, + Al * AH AH AH AH
XFN, + AL AL AE AH AH AH
XFN, - AL AL AL AE AH AH
N, - AL AL AL AL * AH
XFP, - AL AL AL AL AL AE

Figure 27. Indicator Settings, Flagged Operands

tion, signs, and the fraction subtraction result. Results
shown are produced for the * values shown in Fig-
ure 27.

Figure 27 shows the indicator settings associated
with flagged exponent operands. The settings are given
relative to the accumulator operand. Column and row
values give the exponent. range and fraction sign for
the respective operands.

Compare Magnitude (KMG)

The comparison is performed as described for coMPARE
except that the comparison is performed as if the sign
of the accumulator were positive.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Comparison Result (AL, AE, AH); Preparatory
Shift Greater than 48 (PSH). The indicators above
are set as in COMPARE.

Compare for Range (KR)

When the indicator accumulator high (AH) is on, a
comparison will be performed between the operand in
the left half of the accumulator and the operand speci-
fied by the effective address. If the indicator accumu-
lator high (AH) is off, the comparison is performed but
the comparison indicators are not changed.

INDIGATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand
whether or not the comparison is performed.

To-Memory Operation (MOP). This indicator is set
to zero whether or not the comparison is performed.

Accumulator Low (AL). This indicator is not
changed.

Accumulator Equal (AE). This indicator is set to
one if the accumulator operand is low when compared
with the addressed operand.

Preparatory Shift Greater than 48 (PSH). This in-
dicator is set as in ADD.

Floating-Point Arithmetic 91

Accumulator High (AH). This indicator remains
one if the accumulator operand is equal or high when
compared with the addressed operand. This indicator
is set to zero when the accumulator operand is low
compared with the addressed operand.

PROGRAMMING NOTE

Following a COMPARE operation, the operation COM-
PARE FOR RANGE can be used to determine whether a
quantity falls within a given range. The addressed
operand of the COMPARE operation may be considered
as the lower bound of the range. The addressed oper-
and of the COMPARE FOR RANGE operation may be con-
sidered as the upper bound of the range.

When both operations have been performed, the set-
tings of the comparison result indicators are inter-
preted as follows:

Accumulator low (aL) is one when the operand in
the accumulator is below the range.

Accumulator equal (AE) is one when the operand
in the accumulator is within the range or equal to the
lower boundary.

Accumulator high (aH) is one when the operand in
the accumulator is above the range or equal to the up-
per boundary.

The lower boundary is included in the range while
the upper boundary is presumed to be outside the
range.

Compare Magnitude for Range (KMGR)

This operation is the same as COMPARE FOR RANGE eX-
cept that the comparison is performed as if the sign
of the accumulator were positive.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Comparison Result (AL, AE, AH); Prepara-
tory Shift Greater than 48 (PSH). These indicators
are set as in COMPARE FOR RANGE.

Multiply (*)

The operand specified by the effective address, the
multiplicand, is multiplied by the operand in the left
half of the accumulator, the multiplier. The product
exponent and fraction replace accumulator bits 0-59.
Accumulator bits 60-127 remain unchanged. The sign
of the product replaces the accumulator sign in bit
position 4 of the sign byte register.

Multiplication of floating point numbers consists
of an exponent addition and a fraction multiplication.
The sum of the exponents is used as the exponent of
the unnormalized result. The two 48-bit operand frac-
tions are multiplied to form a 96-bit intermediate
product. The product sign is determined by the rules
of algebra, using the accumulator sign and the effec-
tive sign of the addressed operand. The sign of the
addressed operand is modified according to the speci-
fications of the sign modifiers.

92 1IBM 7030

If a normalized product is specified, the 96-bit inter-
mediate product fraction is normalized. The product
exponent may be diminished by a value up to 9.
Following the normalization, the intermediate prod-
uct fraction is truncated to 48 bits to form the result
product fraction that is placed in accumulator bits
12-59. Low-order zeros are inserted in the low-order
positions of the 96-bit intermediate product fraction
as normalization occurs. If noisy mode is also speci-
fied, low-order ones instead of zeros will be inserted
during normalization. The zeros or ones do not ap
pear in the result product fraction unless the amount
of post-normalization shift is greater than 48.

When unnormalized operation is specified, the 48
high-order bits of the intermediate product fraction
are used as the result product fraction and are placed
in accumulator bits 12-59.

For values of the operands in the XFP or XFN range,
the following action is taken. When both operands
are in the XFp range or both in the xFN range, the re-
sult exponent is the exponent of the accumulator
operand. The result fraction is the unnormalized
product of the operand fractions. If one operand is
in the xFp range and the other is in the N or Xy
range, the result exponent is the exponent of the oper-
and in the xFp range and the result fraction is the
unnormalized product of the operand fractions. If
one of the operands is in the N range while the second
is in the XFN range, the result exponent is the expo-
nent of the operand in the XFN range and the result is
the unnormalized product of the operand fractions.
For all these cases normalization, if specified, is sup-
pressed. Thus, whenever either operand in a mult
plication has an EF of 1, the result exponent always
has a propagated £F of 1.

When both operands are values in the N range, a
generated EF of 1 may be produced because of over-
flow or underflow. With underflow, when Er of 1 and
Es of 1 are part of the result exponent, normalization
of the result fraction, if specified, is suppressed in order
to prevent occurrence of a double carry. However, the
indicator settings follow the rules for generated expo-
nent flags.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN); Ex-
ponent Range (XPFP, XPO, XPH, XPL, XPU).
These indicators are set for the final arithmetic result
as in ADD.

Zero Multiply (ZM). If normalized operation is
specified and an order of magnitude zero results with
exponent greater than — 1024, this indicator will be
turned on. Otherwise it will be turned off, if already
on.

Divide (/)

The operand in the left half of the accumulator, the
dividend, is divided by the addressed operand, the di-
visor. The sign of the addressed operand is modified
by the sign modifiers prior to the division. The quo-
tient exponent and fraction replace accumulator bits
0-59. Accumulator bits 60-127 remain unchanged. The
quotient sign replaces the accumulator sign in bit po-
sition 4 of the sign byte register. No remainder is re-
tained by this operation.

In both the normalized and the unnormalized mode,
divisions will be performed whether the operands are
initially normalized or not. Since this requirement
sometimes conflicts with the rule that unnormalized
results are not shifted, the indicator partial field (pF)
is used to identify the case, in unnormalized opera-
tions, in which the quotient is shifted right to preserve
high-order bits, and the left zeros counter, Lzc, is used
to indicate the amount of the shift. The only excep-
tion to the rule that all divisions are performed, is
the case of a zero fraction in the divisor, for which
division is suppressed. Indicator zero divisor (zp) is
used to signal the occurrence of a zero divisor frac-
tion. When division is suppressed because of a zero
divisor, the accumulator and the sign byte register re-
main unchanged. The data flag and mop indicators
will be set but the arithmetic result and exponent range
indicators are not changed. With normalized opera-
tion (when division is performed), a normalized quo-
tient is placed in the accumulator.

In the case of unnormalized operation, the quotient
placed in the accumulator may or may not be normal-
ized. When the dividend fraction, developed after
pre-division normalization, is smaller than half the di-
visor fraction, developed after pre-division normaliza-
tion, leading zeros will occur in the unnormalized
quotient fraction. The quotient exponent, for oper-
ands in the N range initially, is equal to the difference
of the dividend and divisor exponents when the mag-
nitude of the divisor fraction is greater than the mag-
nitude of the dividend fraction after pre-division nor-
malization is completed. When the magnitude of the
divisor fraction is equal to or smaller than the magni-
tude of the dividend fraction after pre-division nor-
malization, an overflow condition exists but a correct
shifted quotient is developed.

DETAILS OF OPERATION

The operation described below applies when both
operands are in the N range at the start of the opera-
tion.

Pre-division normalization is applied to both the
divisor and dividend prior to the actual division. Pre-
normalization of the divisor is independent of the nor-
malization modifier. The normalization process ex-

tends the divisor with zeros during left shifting. The
amount of left shift is subtracted from the divisor ex-
ponent and set in rLzc as a positive quantity. If the
fraction is zero, normalization is suppressed and the
indicator zero divisor (zp) is set to one. When the in-
cator zp is set to one, further processing of the division
is suspended and the accumulator contents remain
undisturbed. If a normalized quotient is specified and
noisy mode is also specified, the divisor normalization
extension is made with ones instead of zeros inserted
in the low-order positions.

Subsequent to the divisor normalization, the divi-
dend fraction, extended with 48 low-order bits to form
a 96-bit fraction, may be shifted left. When unnor-
malized operation is specified, the amount of the shift
is equal to the shift that occurred in divisor normali-
zation, or the left shift required for dividend normali-
zation, whichever is less. In either case, the amount
of the shift is subtracted from the dividend exponent
and from the left zeros counter, Lzc. A zero value in
the rzc indicates that both operands were shifted the
same amount,

When normalized operation is specified, the divi-
dend is fully normalized. The value in the rzc will
remain zero if the left shift for dividend normaliza-
tion exceeds the amount required for divisor normali-
zation. If normalized operation and noisy mode are
specified, the extension to 96 bits is made with 48 ones
instead of zeros and ones are introduced in the low-
order bits of the 96-bit dividend fraction during
normalization. If the dividend fraction is zero, the
amount of left shift is only the amount specified by the
value in the rzc.

In the division process, as a result of pre-division
normalization, the divisor is always normalized and
the dividend may or may not be normalized. Both
operands have adjusted exponents and the rzc con-
tains a value indicating the excess, if any, of divisor
shifting over dividend shifting. The divisor has a 48-
bit fraction and the dividend, a 96-bit fraction.

The dividend exponent adjusted for pre-division
normalization and quotient overflow, if required,
minus the adjusted divisor exponent, is the initial
intermediate quotient exponent. The sign of the
quotient is determined by the rules of algebra using
the accumulator sign and the effective sign of the
addressed operand.

If the magnitude of the divisor fraction is greater
than the magnitude of the dividend fraction, 48 quo-
tient bits are obtained. This quotient fraction may
or not may not be normalized depending on the com-
pleteness of the dividend normalization and the rela-
tive magnitudes of the operand fractions.

If the magnitude of the divisor fraction is less than
or equal to the magnitude of the dividend fraction, a

Floating-Point Arithmetic 93

quotient overflow condition is produced and cor-
rected. The correction is accomplished by adding one
to the adjusted intermediate dividend exponent and
placing a one in the high-order bit position of the
quotient fraction. Subsequently, 47 more quotient
fraction bits are obtained. Also a one is added to the
value of the Lzc.

The final result of the operation above is to pro-
duce a fully normalized quotient fraction when nor-
malization is specified, except for conditions outlined
below for operands in the XFp or XFN ranges. The re-
sult quotient exponent and fraction are placed in ac-
cumulator bits 0-59. The quotient sign is placed in
bit position 4 of the sign byte register. If unnormalized
operation was specified and the value in the rzc is
greater than zero, the indicator partial field (pF) is set
to one. With unnormalized operation the result quo-
tient may or may not be normalized.

The contents of rzc remain available for program
use until the rzc is changed by integer multiplication,
LOAD TRANSIT, division or connective operations.

Operand pre-normalization may cause an operand
to go from the N range to the x¢N range. Division
proceeds as described above except for the case when
one operand is in the XFN range and the other is in
the N range with s of 0. For this case, if the divisor
has a generated value in the XFN range, the quotient
exponent has £F of 1, £s of 0 and £m of the exponent
magnitude of the divisor. If the dividend has the
generated value in the XFN range, the quotient expon-
ent is the same as the dividend exponent. For both
situations the quotient fraction is developed normally
and indicator settings are set in accordance with the
rules for generated exponent flags.

When either or both of the operands are in the
XFP Or XFN range prior to pre-normalization, the pre-
normalization process follows the rules for unnormal-
ized processing. This may result in unnormalized
quotient fractions. If the divisor fraction is zero, the
operation is terminated regardless of the exponent and
the zero divisor indicator is turned on. When the di-
visor fraction is non-zero, exponent handling follows
the following rules.

Divisor: Exponent in X¥p or N range

Dividend: Exponent in the XFp range

The quotient exponent is the same as the exponent
of the dividend. Thus the quotient lies in the xFp
range.

Divisor: Exponent in Xrp range

Dividend: Exponent in N or XFN range

The quotient exponent is the same as the divisor
exponent with the exponent sign reversed. Thus the
quotient lies in the XFN range.

Divisor: Exponent in N range

Dividend: Exponent in the XFN range

94 IBM 7030

The quotient exponent is the same as the dividend
exponent. Thus the quotient lies in the XFN range.

Divisor: Exponent in the XFN range

Dividend: Exponent in the xFp, N or XFN range

The quotient exponent is the divisor exponent
with the exponent sign reversed. Thus the quotient
lies in the XFP range.

When either operand in division has EF of 1, the
exponent of the result always has a propagated EF of 1.

InpicATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand.
They are temporary.

To-Memory Operation (MOP). This indicator is
set to zero. It is temporary.

Arithmetic Result (RLZ, RZ, RGZ, RN). These in-
dicators are set according to the quotient fraction as
it appears in the accumulator. They are temporary.

Partial Field (PF). This indicator is turned on when
unnormalized operation is specified, if the left zeros
counter (LzC) is greater than zero.

Zero Division (ZD). This indicator is turned on
when the divisor fraction is zero. In this event, the
division does not take place. This indicator is perma-
nent.

Exponent Range (XPFP, XPO, XPH, XPL,
XPU). These indicators are set according to the ex-
ponent range of the quotient, and are permanent.

Zero Multiply (ZM). If on, this_indicator will be
turned off, except for the case of a zero divisor.

Reciprocal Divide (R/),

The operand specified by the effective address, the
dividend, is divided by the operand in the left half of
the accumulator, the divisor. The sign of the dividend
is modified by the sign modifiers prior to the division.
The quotient exponent and fraction replace accu-
mulator bits 0-59. Accumulator bits 60-127 remain un-
changed. Thesign of the quotient replaces the accumu-
lator sign in bit position 4 of the sign byte register.

The division process is the same as the process de-
scribed in pivipE with the exception of the interchange
of the operands used for dividends and divisor.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN); Par-
tial Field (PF); Zero Divisor (ZD); Exponent Range
(XPFP, XPO, XPH, XPL, XPU); Zero Multiply
(ZM). These indicators are set as in DIVIDE.

Store Root (SRT)

The square root of the operand in the left half of the
accumulator is placed in the storage location specified
by the effective address. The entire accumulator and
its sign byte remain unchanged.

For values of the operand in the N range the square
root operation consists of an exponent division and a
fraction square root operation. The exponent is di-
vided by two. When the exponent is odd, a one is
added to the exponent prior to the division and the
fraction is shifted right one position. Subsequently,
the square root of the 48- or 49-bit fraction is obtained.
During the process the fraction is extended with low-
order zeros. The result is a 48-bit fraction.

When normalized operation is specified, the result is
normalized and placed in storage. When unnormal-
ized operation is specified, the result is placed un-
changed in storage. In both cases the result is placed
in bit positions 0-59 of the storage location specified
by the effective address. No noisy mode 1-bits are en-
tered when normalizing and noisy mode are specified.

The absolute sign modifier is applied to the accumu-
lator sign prior to the extraction of the square root.
When this modifier is zero, the accumulator sign is
used unchanged. If the accumulator sign is negative,
the imaginary root indicator (1r) is turned on. When
the absolute sign modifier is one, the accumulator sign
is assumed positive and IR cannot be turned on. The
negative sign modifier is applied to the result of the
square root process as in the store operation. When
this modifier is zero,, the sign of the stored result is
positive. When this modifier is one, the sign of the
stored result is negative.

As with other store operations, the accumulator
flag bits, sign byte register bits 5-7, are placed in the
flag bit positions, bits 61-63 of the addressed storage
location.

When the operand is a value in the XFp or XFN
range, the result exponent is the same as the operand
exponent. The result fraction is the square root of the
accumulator fraction. Normalization, if specified, is
suppressed. Note that when the operand exponent
is odd the fraction is shifted one position to the right
prior to taking the square root. However, the expo-
nent is not modified as a result of the shift for oper-
ands in the XFP or XFN range.

INDICATORS

To-Memory Operation (MOP). This indicator is
set to one. It is temporary.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the arithmetic result
which appears in storage. They are temporary.

Imaginary Root (IR). This indicator is turned on
when the accumulator sign, as modifiad by the ab-
solute sign modifier, is negative. It is permanent.

Exponent Range (XPFP, XPH, XPL). These in-
dicators are set according to the exponent range of
the result which appears in storage. These indicators
are permanent.

Zero Multiply (ZM). This indicator will be turned
off, if on.
PrOGRAMMING NOTE
The negative sign modifier permits selection of the
sign to be attached to the root. The absolute sign
modifier governs whether the sign of the radicand
is to be checked.

Add Double (D)
The operand specified by the effective address is added

to the operand in the accumulator bits 0-107. The
addressed operand is extended with 48 zeros during
the operation. The exponent and fraction of the sum
replace the accumulator bits 0-107. Accumulator bits
108-127 remain unchanged. The sign of the addressed
operand is modified by the sign modifiers prior to
the addition. The sign of the sum replaces the accu-
mulator sign.

The detailed operation of the addition is similar to
that of app. When the difference between the expo-
nents exceeds 48, preparatory shift greater than 48
indicator, psH, is turned on. When the difference
between the exponents exceeds 95 the number with
the lower exponent is not added. The result is then
the number with the higher exponent. The fraction
addition yields a 96-bit sum and possible fraction
overflow bit.

When normalized operation is specified, the sum
fraction is normalized and replaces bits 12-107. If
noisy mode is also specified, one bits enter the low-
order bit positions when the 96-bit intermediate re-
sult is shifted left during normalization. Noisy mode
one bits are not added to either operand prior to the
addition as is done in ADD.

When unnormalized operation is specified, the 96-
bit intermediate sum fraction is placed in accumula-
tor bits 12-107. The overflow bit does not enter the
accumulator, but turns on the lost carry indicator.

If the 96-bit intermediate sum has a zero fraction,
normalization, if specified, will be suppressed. The
exponent replacing accumulator bits 0-11 will be the
exponent of the intermediate result. The lost sig-
nificance indicator (Ls) is set to one.

When the operand values lie in the XFP or XFN
range, the addition process follows the operation out-
lined under App except that the accumulator fraction
is 96 bits and the operand specified by the effective
address is extended with 48 zeros prior to the
addition.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Lost Carry (LC); Preparatory Shift Greater than 48
XPU); Zero Multiply (ZM). These indicators are
set as in ADD.

Floating-Point Arithmetic 95

Lost Significance (LS). This indicator is set to one
when at least one operand is non-zero and when the
96 bits of the result fraction are zero. This indicator
is not set to one if the result exponent has a propa-
gated flag or if both operands have 96 bit zero frac-
tions initially.

Add Double to Magnitude (D-}-MG)

This operation is the same as ADD DOUBLE except that
the sign of the accumulator operand is assumed posi-
tive and the result is made a forced zero when a nega-
tive sum is obtained.

When the sign of the sum is positive, the sum is
placed in the accumulator bits 0-107 and the sign re-
mains unchanged. When the sign of the sum is nega-
tive, a zero fraction is placed into bits 12-107 of the
accumulator and the sign and exponent of the accu-
mulator operand remain equal to the original ac-
cumulator sign and exponent.

Normalization, noisy mode, and values in the xrp
or XFN range are handled as in ADD DOUBLE.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Lost Carry (LC); Preparatory Shift Greater than 48
(PSH); Exponent Range (XPFP, XPO, XPH, XPL,
XPU); Zero Multiply (ZM). These indicators are set
as in ADD TO MAGNITUDE.

Lost Significance (LS). This indicator is actuated
as in ADD DOUBLE except that a forced zero does not
turn it on.

Load Double (DL)

This operation is the same as LoAD except that the
accumulator bits 60-107 are set to zero.

The operand specified by the effective address is
placed in the accumulator. The exponent and frac-
tion replace bits 0-59. Accumulator bits 60-107 are
set to zero. Accumulator bits 108-127 remain un-
changed. The sign of the operand, modified by the
sign modifiers, is placed in bit position 4 of the sign
byte register. The flag bits, bit positions 5-7 of the
sign byte register, are set to zero.

When normalized operation is specified, the 96-bit
fraction is shifted left and the exponent is adjusted
before being placed in the accumulator. If noisy
mode is also specified, one bits are introduced into
the low-order positions of the 96-bit fraction as it is
shifted left during normalization.

Values in the XFP or XFN ranges are handled as in
Loap. Normalization of these operands, if specified,
is suppressed.

96 IBM 7030

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Exponent Range (XPFP, XPH, XPL, XPU); Zero
Multiply (ZM). The above indicators are set as in
ADD,
Load Double with Flag (DLWF)

The operation is the same as LOAD DOUBLE except that
the flag bits T, U, and V of the addressed operand
set the accumulator flag bits in the sign byte register
bit positions 5-7 as well as the data flag indicators
TF, UF, VF.
INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Exponent Range (XPFP, XPH, XPL, XPU); Zero
Multiply (ZM). The above indicators are set as in
ADD.

Store Rounded (SRD)

The contents of the accumulator after rounding are
placed in the location specified by the effective
address.

The rounding is performed by adding one to the
fraction in the accumulator in bit position 60. This
addition results in a 96-bit sum and a possible over-
flow bit. The 48 low-order bits are discarded. When
normalized operation is specified, the 48-bit sum is
then normalized and placed in bit positions 12-59.
Low-order zeros are always supplied in the case of
the left shift. Noisy mode does not affect this
operation.

When unnormalized operation is specified, the 48
high-order bits of the sum are placed in storage bits
12-59. The overflow bit does not enter storage but
sets the lost carry indicator (Lc) on.

The sign of the accumulator, as changed by the
sign modifiers, is placed in storage bit 60. The accu-
mulator flag bits are placed in storage bits 61-63. The
entire accumulator and its sign byte register remain
unchanged throughout the operation unless used as

the effective address.
It the value of the operand lies in the XFP or XFN

range, the rounding process is performed, but the ex-
ponent is not changed. Normalization, if specified, is
suppressed. If, as a result of rounding, the fraction
has an overflow bit set, the overflow bit is lost. How-
ever, the lost carry indicator (Lc) is not set if over-
flow occurs when normalization is specified.
INDICATORS

To-Memory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN); Lost Carry (LC); Exponent
Range (XPFP, XPO, XPH, XPL, XPU); Zero
Multiply (ZM). These indicators are set as in ADD To
MEMORY.

Store Low Order (SLO)

The low-order part of a double-length accumulator
fraction with appropriate exponent is placed in the
location specified by the effective address.

The low-order bits of the accumulator fraction,
bits 60-107, become the fraction of the value to be
stored. The exponent is obtained by subtracting 48
from the exponent in bits 0-11 of the accumulator.

When normalized operation is specified, the low-
order fraction is shifted left until a high-order one
bit is lefumost. If noisy mode is also specified, ones
are entered from the right during the normalization
shifting; otherwise, zeros. When unnormalized op-
eration is specified, the low-order exponent and frac-
tion remain unchanged. The exponent and fraction
are subsequently placed in storage bits 0-59. The
accumulator sign, as modified by the sign modifiers,
and the accumulator flag bits, sign byte register bit
positions 4-7, are placed in bits 60-63 of the storage
word. The entire accumulator and sign byte register
remain unchanged throughout the operation unless
used as the effective address.

When the exponent, accumulator bit positions
0-11, is Aagged, the same exponent is set with the
low-order fraction when stored. The indicator set-
tings are for propagated flags. For this case normali-
zation, if speciﬁed, is suppressed.

When the exponent with the low order fraction
has EF of 1 as a result of the operation, the indicator
settings are for generated exponent flags. Normaliza-
tion, if specified in this case, does occur.

INDICATORS
To-Memory Operation (MOP); Arithmetic Result

(RLZ, RZ, RGZ, RN); Exponent Range (XPFP, XPH,
XPL, XPU); Zero Multiply (ZM). The above indi-
cators are set as in STORE.

PROGRAMMING EXAMPLE

Given two double-precision floating point numbers,
A and B stored at the following locations:

C (100) = a,
C (101) = a,
C(102) =b,
C (103) = b,

Here A — a, + a, and exponent a; = exponent
a, + 48; B = b, + b, and exponent b, = exponent

b, + 48.
Form the double precision difference A — B and

store it in locations 104 and 105 (Figure 28).

Multiply Double (D*)

The operation is the same as MULTIPLY, except that the
96-bit product fraction is placed in accumulator bits
12-107.

NAME STATEMENT NOTES
DL (U), lo1
D- (N), 103 1
D+ (N), 100 2
D- (N), 102 3
ST (U), 104
SLO (U), 105

Notes: 1. Form low-order difference ag - by

2. Add high-order A: aj + (a2 - by)
3. Subtract high-order B: (a1 +ag - bg) - by

Figure 28. Double-Precision Subtract Example

The operand specified by the effective address, the
multiplicand, is multiplied by the operand in the
accumulator bits 0-59, the multiplier. The product
exponent and fraction replace accumulator bits 0-107.
The product sign replaces the accumulator sign, bit
4 of the sign byte register.

The detailed operation of the multiplication is
similar to that of muLTIPLY. An intermediate prod-
uct exponent and 96-bit fraction are obtained.

When normalized operation is specified, the 96-bit
intermediate product fraction is normalized and the
product exponent adjusted accordingly. Low-order
fraction zeros are supplied. If the noisy mode is also
specified, the final normalization introduces low-order
ones instead of zeros. When unnormalized operation
is specified, the intermediate product becomes the
final product.

When either or both of the operands are values in
the XFP or XFN range, the operation is performed as
described in mMuLTIPLY except that a 96-bit fraction is
obtained. Normalization, if specified, is suppressed
for these cases.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Range (RLZ, RZ, RGZ, RN);
Exponent Range (XPFP, XPO, XPH, XPL, XPU);
Zero Multiply (ZM). The above indicators are set as
in MULTIPLY.

PrROGRAMMING NOTE

The exponent range indicators are set for the final
result as it appears in the accumulator or in storage.
In general, exponent overflow or underflow occurring
in an intermediate stage of an operation may be cor-
rected and thus does not cause the xpo or xpU indi-
cators to be turned on.

In order that double underflow carry in the prod-
uct exponent will not occur during multiplication
when both original operands were values in the N
range, the following rule is applied. If the product
exponent, from operands both in the N range, has
gr of 1 and Es of 1, prior to post-normalization, nor-
malization, if specified, is suppressed. The xpu indi-

Floating-Point Arithmetic 97

cator is turned on in accordance with the rules for
generated exponent flags. However, if the generated
EF is 1 and s is 0, normalization of the product frac-
tion, if specified, occurs and the xpo or xpH indicators
may be turned on in accordance with the final expo-
nent range.

Load Factor (LFT)

The operand specified by the effective address is
placed in the factor register, Fr. The accumulator
does not participate in the operation and remains
unchanged. .

When normalized operation is specified, the expo-
nent and fraction of the addressed operand are normal-
ized and subsequently are placed in Fr bits 0-59. If
noisy mode is also specified, ones instead of zeros will
enter the low-order bits of the fraction during normal-
ization. If a shift of 48 or more is required, normaliza-
tion is suppressed and the order of magnitude zero is
stored in bits 0-59.

When unnormalized operation is specified, the ex-
ponent and fraction of the addressed operand are
placed unaltered in Fr bits 0-59.

The sign of the addressed operand as modified by
the sign modifiers is placed in FT bits 60. FT bits 61-63
are set to zero.

When the operand is a value in the XFP or XFN
ranges, normalization, if specified, is suppressed.
INDICATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand.

To-Memory Operation (MOP). This indicator is
set to zero.

Arithmetic Result (RLZ, RZ, RGZ, RN). These
indicators are set according to the arithmetic result
which appears in the FT register.

Exponent Range (XPFP, XPH, XPL, XPU).
These indicators are set according to the exponent
range of the result which appears in the FT register.

Zero Multiply (ZM). This indicator will be turned
off, if on.

PROGRAMMING NOTE
This operation is required for loading the multipli-
cand of a subsequent MULTIPLY AND ADD operation.
The operation is not used to load either factor of a
MULTIPLY operation.

The factor register, FT, is addressable and, there-
fore, can be addressed as the storage operand of any
operation. FT is a 64-bit register with word address 14.

Loap FACTOR is the only operation which changes
the contents of Fr as an integral part of its perform-
ance. FT is not changed by any other operation unless
it is addressed explicitly.

98 IBM 7030

Multiply and Add (*-)

The operand in the FT register, designated as the mul-
tiplicand, is multiplied by the operand specified by
the effective address, designated as the multiplier.
The product is added to the contents of the accumu-
lator, bit positions 0-107. The sum exponent and
fraction replace accumulator bits 0-107. The sign of
the sum replaces the accumulator sign, sign byte reg-
ister bit 4. Accumulator bits 108-127 remain un-
changed.

The intermediate product consists of an exponent
formed from the sum of the operand exponents and
a 96-bit fraction formed as the product of the two
48-bit operand fractions. The intermediate product
fraction remains unnormalized throughout the addi-
tion. The sign of this product is developed by the
rules of algebra using the sign of the FT register and
the effective sign of the addressed operand as devel-
oped through modification of the operand sign by
the sign modifiers.

Subsequent to the multiplication, an addition is
performed similar to that described in ADD DOUBLE.
When the difference in exponents exceeds 48, the in-
dicator preparatory shift greater than 48, psH, is set
to one. When the difference in exponents exceeds 95,
the number with the smaller exponent is not added.
In this case the result is the number with the high
exponent. Addition of two 96-bit fractions yields a
96-bit sum fraction and possibly an overflow bit.
When normalized operation is specified, the sum is
shifted so that the high-order bits of the sum, includ-
ing the overflow bit, are placed in the accumulator
bit positions 12-107. The sum exponent is adjusted
by the amount of the shift. When noisy mode is
specified with normalized operation, one bits are en-
tered in the low-order bit positions of the 96-bit sum
fraction during the left shifting associated with
normalization.

This operation initially specifies three operands.
They are the operand in the FT register, the operand
specified by the effective address, and the operand in
the accumulator. The description above considered
the details of operation when all operands were in
the N range and all intermediate results remained
in the N range. When values of the operands or in-
termediate results fall in the xFP or XFN ranges, the
following action is taken.

During multiplication, the operands used are the
operand in the FT register and the operand specified
by the effective address. If either operand exponent
has £F of 1, the product exponent has a propagated
EF of 1. When both operands are in the XxFp range
or both in the XFN range, the product exponent is
the exponent of the operand specified by the effective

address. When one operand is in the XFp range while
the other is in the N or XFN range, the product expo-
nent is the exponent of the operand in the XFp range.
When one operand is in the N range while the other
is in the XFN range, the product exponent is the expo-
nent of the operand in the XFN range.

For all cases, the intermediate product fraction is
the unnormalized fraction determined as the prod-
uct of the two operand fractions. The normalization
modifier applies only to the final result fraction devel-
oped during the addition portion of this operation.

During addition, the operands used are the inter-
mediate product developed during multiplication
and the operand in the accumulator. When both
operands are in the XFp range or both in the XFN
range, the result is the operand, exponent and frac-
tion, in the same range having the algebraically
larger exponent. When both operands have the same
exponent value, the operand initially in the accumu-
lator is the result. Normalization, if specified, is sup-
pressed. If one operand is in the X¥p range while
the other is in the N or XFN ranges, the result is the
operand, exponent and fraction, in the XFp range.
Normalization, if specified, is suppressed. If one
operand is in the N range and the other is in the
XEN range, the intermediate result sum is the operand
in the N range. In this case, normalization, if speci-
fied, occurs.

The exponent range indicator is set in accordance
with the propagated or generated exponent flag when
the sum exponent has EF of 1. The sum, EF of 1, is
considered generated if all operands are initially in
the N range or if the intermediate product has a
value in the XFN range with a propagated exponent
flag while the accumulator operand is in the N range
but the sum has EF of 1, Es of 1 owing to final nor-
malization. All other cases lead to a propagated EF
of 1, in the final result.

INDICATORS
Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Lost Carry (LC); Preparatory Shift Greater than 48
(PSH); Exponent Range (XPFP, XPO, XPH, XPL,
XPU). The above indicators are set as in ADD DOUBLE.
Zero Multiply (ZM). 1f the final result, after addi-
tion, is an order of magnitude zero with exponent
greater than —1024 this indicator will be turned on,
otherwise, if on, it will be turned off.
PROGRAMMING EXAMPLE
Given two double precision numbers A and B at loca-
tions 100-103, form the double-precision product and
store it in locations 106-107 (Figure 29).
C (100) = a,; C (101) = a,
C (102) = b,; C (103) =b,

NAME STATEMENT NOTES
DL (U), 100
D* (U), 103 1
LFT (U), 102
*4 (N), 101 2
*4 (N), 100 :
ST (U), 106
SLO (U), 107
Notes: 1. ay by

2. ag bl +ay b,
3. ap by + (ag by +ag by)

Figure 29. Double-Precision Multiply Example
A = a, + a, with exponent a, = exponent a, + 48.
B — b, 4 b, with exponent b, = exponent b, 4 48.
The product term a, b,, which may result in a differ-
ence of one in the low-order bit position of the prod-
uct, is ignored.
Divide Double (D/)

The operand in the accumulator bits 0-107, the divi-
dend, is divided by the operand specified by the effec-
tive address, the divisor. The sign of the divisor is
modified by the sign modifiers prior to the division.
The quotient exponent and fraction replace accumu-
lator bits 0-60. Accumulator bits 61-107 are set to
zero. The sign of the quotient replaces the accumulator
sign. Accumulator bits 108-127 remain unchanged. The
remainder is placed in the remainder register, RM ad-
dress 13. The original accumulator sign becomes the
sign of the remainder rm register bit 60. The flag
bits 61-63 of the remainder register are set to zero.

As noted in pivipg, division is always performed
regardless of the original state of normalization or
the setting of the normalization modifier, unless the
divisor fraction is zero. The partial field indicator
(pF) indicates the occurrence of a quotient shift in
the unnormalized operation; the left zeros counter,
rzc, indicates the excess of divisor shift over dividend
shift for pre-division normalization. In the case of a
zero divisor, the division is not performed and the
zero divisor indicator (zp) is set to one.

Double-precision division is designed to provide 48-
bit quotient and remainder fractions from a 96-bit divi-
dend fraction and a 48-bit divisor fraction. Depending
upon the relative magnitudes of the dividends and
divisor fractions, the remainder may be 48 or 49 bits
after a 48-bit quotient is developed. In normalized
operation, the entire remainder is normalized and
in the case of 49 significant bits, the low-order bit is
discarded. In unnormalized operation, the 48 high-
order bits of the remainder are stored. In either case,
the remainder exponent and fraction are stored in
the remainder register, RM, bits 0-59. If the low-order
49th bit dropped in storing is a one, the lost carry
indicator (Lc) is turned on.

Floating-Point Arithmetic 99

All double-precision results can be stored with
rounding as single-precision values, by using the
STORE ROUNDED operation. In order to allow the quo-
tient of a double-precision division to be rounded,
a 49th quotient fraction bit is developed after the
remainder is preserved.

DETAILS OF OPERATION

The details of pre-division normalization and the
generation of the first 48 bits of the quotient fraction
in normalized and unnormalized division follow the
description given for pIvIDE except for the introduc-
tion of noisy mode ones into the dividend. In the
double-precision handling, pre-division normalization
for the dividend is permitted to have up to 96 posi-
tions of shift. Ones are introduced in noisy mode
operation only in positions vacated at the low-order
end of the double length fraction as it is shifted left.

In pIvIDE DOUBLE, the remainder is preserved. When
the divisor fraction is equal to or smaller than the 48
high-order bits of the dividend fraction, a remainder
of 49 bits is obtained. Otherwise a 48-bit remainder
fraction is obtained. The intermediate remainder
exponent is obtained by subtracting 48 from the ad-
justed exponent of the shifted dividend.

When normalized operation is specified, the re-
mainder is normalized and placed in rRM bit positions
0-59. In the case of a 49-bit remainder, the low-order
remainder bit is lost. When unnormalized operation
is specified, the remainder is not normalized, but the
48 high-order remainder fraction bits and the remain-
der exponent are placed unnormalized in rRM bit po-
sitions 0-59. Again, if a 49-bit remainder was devel-
oped, the low-order bit is lost. Lost carry indicator
(Lc) is set to one if the lost bit is one.

Before normalization, the remainder is compared
with the divisor to obtain a 49th quotient fraction
bit. The 49-bit fraction is placed in accumulator bits
12-60. The quotient exponent is placed in accumula-
tor bits 0-11. The sign of the quotient, obtained by
the rules of algebra, using the dividend sign and the
effective divisor sign, replaces the accumulator sign,
sign byte register bit 4. Accumulator bits 61-107 are
set to zero. The accumulator flag bits, sign byte reg-
ister bits 5-7, remain unchanged.

When normalized operation is specified, the final
quotient placed in the accumulator is normalized,
because of the complete normalization of the divi-
dend during pre-division normalization. When un-
normalized operation is specified, the quotient may
or may not be normalized, depending on the extent
of pre-division normalization shifting of the dividend.
If the divisor shift for normalization exceeds the divi-
dend shift for relative normalization or if the quo-
tient had an overflow condition corrected, as in

100 IBM 7030

DIVIDE, the contents of the left zeros counter are
greater than zero. In unnormalized operation the
partial field indicator (pF) is set to one when these
conditions exist.

When either or both of the operands are values in
the XFP or XFN range, the quotient exponent and
quotient fraction are developed as described under
DIVIDE except that the dividend fraction is initially
bits 12-107 of the accumulator. When either or both
of the operands are flagged with &F of 1, prior to pre-
division normalization, the quotient exponent always
has a propagated EF of 1. For this case divisor pre-
division normalization will always be complete.
However, dividend pre-division normalization of the
fraction follows the procedure for unnormalized op-
eration; i.e., the maximum left-shift permitted is the
same amount as the divisor leftshift. However, the
partial field indicator (pF) is turned on only if un-
normalized operation is specified and the rzc has a
value after pre-division normalization greater than
one. If normalized operation is specified, pF is not
turned on through incomplete dividend shifting.

When the quotient has a propagated er of 1, the
remainder exponent is the same as the original divi-
dend exponent, prior to pre-division normalization.
Normalization of the remainder fraction, if specified,
is suppressed. When the remainder has a propagated
EF of 1 and Es of 1, setting of the remainder under-
flow indicator (Rru) is suppressed.

When both operands are originally in the N range,
either or both may acquire exponent flag, Er of 1, prior
to the division. The divisor may become a value in
the XFN range through pre-division normalization.
The dividend may become a value in the xrp range
through quotient overflow adjustment or a value in
the XFN range through pre-division normalization and
quotient overflow adjustment, if required. When a
generated EF of 1 is developed, division proceeds nor-
mally except for the following cases. If the dividend
has a generated EF of 1 and Es of 1 while the divisor
has F of 0 and Es of 0, the quotient exponent is the
adjusted dividend exponent. If the divisor has a gen-
erated EF of 1 and £s of 0 and the dividend has a gener-
ated EF of 0 or 1 and s of 0, the quotient exponent will
be the divisor exponent with Es set to 0. This action
is required to avoid double overflow or double under-
flow. The quotient for all cases just discussed may
have a generated F of 1 and the indicators xpo and
xpU will be set in accordance with the rules for gen-
erated EF of 1.

When both operands, prior to pre-division normali-
zation, are in the N range, the remainder exponent
is the dividend exponent (after pre-division normali-
zation and quotient overflow adjustment) minus 48.
Normalization, if specified. occurs. If the final remain-

der exponent has a generated EF of 1 and Es of 1, the
remainder underflow indicator (ru) is turned on.

INDICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arvithmetic Result (RLZ, RZ, RGZ, RN);
Partial Field (PF); Zero Divisor (ZD); Exponent Range
(XPFP, XPO, XPH, XPL, XPU); Zero Multiply
(ZM). The above indicators are set as in DIVIDE.

Lost Carry (LC). The indicator is turned on if a 49-
bit remainder is obtained, when unnormalized divi-
sion is specified, and the low-order bit which was one
was dropped.

Remainder Underflow (RU). When the remainder
exponent has a generated EF of 1 and Es of 1, this indi-
cator is turned on. If the remainder exponent has a
propagated EF of 1 and Es of 1, this setting of this in-
dicator is suppressed.

PROGRAMMING NOTES

Since a 49-bit quotient is obtained, the result zero in-
dicator (rz) is turned on only when all 49 quotient
bits are zero.

The four examples in Figure 30 illustrate the results
which may be obtained in DIVIDE DOUBLE operations.
The examples are for 3-bit fractions for operands in
memory and for a 6-bit fraction for operands in the
accumulator. The exponent is expressed in decimal to
the left of the period.

PROGRAMMING EXAMPLES
Given the two double-precision numbers A and B at
location 100-103, form the double-precision quotient

Example 1 2 3 4
Divisor 0.011 0.011 0.101 0.001
Dividend 0.111 011 | 0.001011 | 0.110011 0.000 101
Shifted U, N [-1.110 -1.110 0.101 -2.100
Divisor nm-N [-1.111 -1.111 0.101 -2.111
Shifted U} 0.111011 |-1.010110 | O.11001 ~-2.010 100
Dividend N| 0.111011 |-2.101100 { O0.11001 -3.101 000
nm-N | 0.111011 {-2.101 111 | 0.110011 -3.101 111
Quotient Ul 2.1001 0.0111 1.101 0 0.101 0
N| 2.1001 -1.1110 1.101 0 0.101 0
nm-N| 2.1000 -1.1101 1.1010 -1.1101
Remainder U -2.101" -4.100 -2.000L -5.000
N| -2.101 -6.100 -5.100 -6.000
nm-N| -4.110 -5.101 -5.100 -6.101
Left Zero
Counter 2P 0 lP 0
U: Unnormalized
N: Normalized
nm: Noisy Mode
P: Partial Field indicator is turned on in the
unnormalized case
L: Lost Carry indicator is turned on

Figure 30. Divide Double Results

of A divided by B and store it at locations 108-109
(Figure 31). A and B are assumed normalized double
precision values.
A = a, -} a, where exponent a, = exponent a, + 48
B = b, 4 b, where exponent b, — exponent b, 4 48

Add to Fraction (F-|-)

The operation is the same as ADD DOUBLE except that
the exponent of the operand in the accumulator is
used for both the addressed operand and the operand
in the accumulator.

The operand specified by the effective address is
added to the operand in the accumulator. The ex-
ponent of the addressed operand is ignored. Instead,
the exponent of the operand in the accumulator is
also used as the exponent of the addressed operand.
The sum fraction and exponent replace accumulator
bits 0-107. Accumulator bits 108-127 remain un-
changed. The sign of the addressed operand is modi-
fied by the sign modifiers prior to the addition. The
sign of the sum replaces the accumulator sign.

When normalized operation is specified, the result
fraction is normalized. If noisy mode is also specified,
ones enter in the low-order position instead of zeros.

When the accumulator operand is a value in the
XFP or XFN range, the fraction addition is not per-
formed since the operand specified by the effective ad-

NAME STATEMENT NOTES
DL (U), 101
D+ (U),100 ‘g to accumulator
D/ (N), 102 'divide by by 1
ST (N, 108 2
D*N (N), 103 'quotient times b 3
D+ (N), $RM 4
D/ @), 102 5
D+ (N), 108 6
ST (N), 108
SLO (U), 109
Notes: The double-precision quotient is evaluated according to the
formula:
a_ayj+ag ., 4 =
b b‘—b_l + b2 qi1+4z2=q
aj+ag r
h = -2
where q3 By Be
“rp-aiby 73
q, =4 L 44 9
and 2 by b,

The evaluation neglects third-order terms. Because of this and the
possible occurrence of a 49-bit remainder fraction, the double
precision quotient fraction may be accurate to 95 bits only.

1. Divide (aj + ag) by b; yielding quotient q; used and
remainder rj.
Store q; (48 bit fraction only).
Multiply q (48 bit fraction) by (-b2).
Form ry - q_ by,
. Dividesg - q by by yielding quotient q, and remainder r3,
Add q; and gy to form a standard double-precision number.

Ut W

Figure 31. Double-Precision Divide Example

Floating-Point Arithmetic 101

dress assumes the exponent of the accumulator oper-
and.

INpICATORS

Data Flags (TF, UF, VF); To-Memory Operation
(MOP); Arithmetic Result (RLZ, RZ, RGZ, RN);
Lost Carry (LC); Lost Significance (LS); Exponent

Range (XPFP, XPO, XPH, XPL, XPU); Zero
Multiply (ZM). The above indicators are set as in
ADD DOUBLE.

Shift Fraction (SHF)

The fraction in the accumulator is shifted in the di-
rection and amount specified by the effective address
bits 0-11. A left shift is specified if bit 11 is zero, a
right shift, if bit 11 is one. The amount of the shift
is specified by bits 0-10. Zeros are inserted in the bit
positions which are vacated. Only accumulator bits
12-107 participate in the shifting; all other accumu-
lator bits remain unchanged. If a one bit is shifted
left beyond accumulator bit position 12, it is lost and
the lost carry indicator (LC) is set to one. A one-bit
shifted right beyond accumulator bit position 107 is
lost, but no indicator is turned on. The sign of the
shift bit 11 of the effective address, or shift amount,
is subject to modification by the sign modifiers. No
change in the exponent field of the accumulator oper-
and is made by this operation.

This operation does not address storage. The ef-
fective shift may be obtained by standard indexing
procedures. The effective shift is not monitored for
address boundaries. The operation is not affected by
the normalization modifier. No noisy mode one bits
are entered on left shift if noisy mode is specified.

When the accumulator operand is a value in the
XFP or XFN range, the operation is performed as de-
scribed above. The result is the original accumulator
exponent and the fraction shifted in the specified di-
rection by the specified amount.

INDICATORS

Arithmetic Result (RLZ, RZ, RGZ, RN). These in-
dicators are set according to the arithmetic result
which appears in the accumulator.

Lost Carry (LC). This indicator is set to one when
a one-bit is shifted left beyond accumulator bit posi-
tion 12.

Exponent Range (XPFP, XPH, XPL). These in-
dicators are set according to the exponent range of
the result as it appears in the accumulator.

Zero Multiply (ZM). If on, this indicator will be
turned off.

To-Memory Operation (MOP). This indicator is set
to zero.

Add to Exponent (E-}-)
The exponent of the operand specified by the effec-
tive address is added to the exponent of the operand

102 IBM 7030

in the accumulator. The addition is algebraic and
takes into account the signs of both exponents. The
sign of the exponent of the addressed operand is sub-
ject to modification by the sign modifiers. The frac-
tion and sign of the addressed operands are ignored.
The result of the exponent addition is placed in ac-
cumulator bits 0-11. When normalized operation is
specified, the accumulator exponent and fraction bits
12-107 are normalized. Accumulator bits 108-127 and
the sign byte register remain unchanged. If noisy
mode is also specified low-order one bits instead of
zeros are introduced during normalization. When
unnormalized operation is specified, normalization is
omitted. The sign modifiers are ignored if either one
or both of the exponents are in the XFP or XFN range.

When the exponents of either or both operands lie
in the XFp or XFN range, the rules for exponent han-
dling follow the definitions given under MuLTIPLY.
When either operand has eF of 1, the result will have
a propagated EF of 1 and normalization, if specified, is
suppressed. In this case the result fraction is the orig-
inal accumulator fraction. When both operands have
EF of 0, the result exponent may have a generated
EF of 1. For this case normalization, if specified, occurs
if Es is 0 and is suppressed if Es is 1.

The multiplication table is shown in Figure 32.
InpicATORS

Data Flags (TF, UF, VF). These indicators are set
according to the flag bits of the addressed operand.

To-Memory Operation (MOP). This indicator is set
to zero.

Arithmetic Result (RLZ, RZ, RGZ, RN). These in-
dicators are set according to the entire floating point
result which appears in the accumulator.

Exponent Range (XPFP, XPO, XPH, XPL,
XPU). These indicators are set according to the ex-
ponent range of the results.

Zero Multiply (ZM). If on, this indicator will be
turned off. '

Add Immediate to Exponent (E-4-1)

‘The operation is the same as ADD TO EXPONENT, except
that the addend is bits 0-11 of the effective address.
This operation does not address storage. The effective
address field of the instruction is not monitored for
address boundaries.

Multiplier Multiplicand
XFP N XFN
XFP XFP XFP XFP
N XFP N* | XFN
XFN XEP XFN | XFN

*These values may be in the XFP or XFN
range as the result of normal overflow or
underflow.

Figure 32. Exponent Multiplication Table

The addition is algebraic, taking into account the
signs of exponent operands. The sign of the immediate
operand, effective address bit 11, is subject to modi-
fication by the sign modifiers.

INDICATORS
To-Memory Operation (MOP); Arithmetic Result
(RLZ, RZ, RGZ, RN); Exponent Range (XPFP, XPO,

XPH, XPL, XPU); Zero Multiply (ZM). These in-
dicators are set as in ADD EXPONENT.

PROGRAMMING NOTE
The instruction set does not contain a double-preci-
sion store operation. Either of two interpretations
for such an order may be programmed, using the sin-
gle-precision sTORE, which will be equivalent. One
interpretation is that the double-precision fraction
be normalized, after which the high-order 48-bit frac-
tion and exponent are stored. The normalization of
the 96-bit fraction can be accomplished through the
use of the operation ADD IMMEDIATE TO EXPONENT with
a zero operand, unless the accumulator is a value in
the XFP range or XFN range.

The second interpretation is to store both halves of
the accumulator fraction. In order to accomplish this
the two operations STORE and STORE LOW ORDER are

used with the normalization modifier specifying un-
normalized operation.

ProGrRAM EXAMPLE

Given two integers, A and B, which appear as un-
normalized numbers with zero exponent in memory
locations 200 and 201; store the integer quotient and
remainder of A/B as unnormalized numbers with zero
exponent in memory locations 202 and 203 (Figure
33).

NAME STATEMENT NOTES
DL (U), 200
SHFR 48 1
D/ (U), 201 2
ST (U), 202
L (U), CON1 3
+ (U), RM 4
E4 (U), +48 5
ST (U), 203

CON1 DD (N), +OE +48

Notes: 1. The integer dividend is shifted right 48 places.

2. A zero divisor will turn on indicator ZD.

3. The accumulator is set to exponent -48 and
fraction zero.

4. The remainder is aligned.

5. The remainder exponent is made zero.

Figure 33. Program Example

Floating-Point Arithmetic 103

IBM 7619 Exchange

The 1BM 7619 Exchange directs information flow be-
tween input-output units and core storage. The ex-
change relieves the central processing unit of the task
of communicating with input-output units and enables
processing of data to proceed simultaneously with op-
eration of a number of these units.

The exchange provides a general method of con-
necting many different kinds of units to the com-
puter system. It contains the common control facili-
ties to be time-shared among the external units, thus
keeping these units as simple as possible, yet main-
taining fully overlapped operation. The exchange
also does the necessary housekeeping of addresses and
the assembly or disassembly of information without
taking time away from the computer or core storage.
The only computer time involved is that needed to
start and interlock the operations. The only core
storage cycles required during external operations are
those needed to transfer the data to or from the final
locations in core storage. These cycles are sandwiched
between computing operations without interfering
with the computer program except for the slight delay
involved in the actual core storage references.

A common method of program control applies to
all external units. When an input-output instruction
is given, the computer executes all address modifica-
tion. It then sends the addresses and the decoded
operation to the exchange, which completes the exe-
cution of the instruction by obtaining the operand
(control word) from core storage and starting the ex-
ternal unit. This procedure permits the exchange, be-
fore it accepts an instruction, to determine from its
stored status indication bits whether the unit is ready,
and to sandwich into available time periods the extra
cycles necessary to start an operation. If the unit is
not ready (for instance, if the unit is out of material
and waiting to be reloaded), the exchange rejects the
instruction and sends a signal to the indicator register.

The computer waits until the exchange has signalled
that it has accepted or rejected the instruction. If
the exchange is operating near full load, the computer
may have to wait some microseconds because it is
more flexible in its operation than the external units,
most of which cannot wait. It usually does not wait
for the external unit to respond or to finish the opera-
tion, which may take milliseconds to minutes. The
exchange takes over full control and signals the com-
puter when the operation is completed. The com-
puter can in the meantime proceed with the program.

An outline of the logical components of the ex-
change is shown in Figure 34.

104 IBM 7030

CORE STORAGE
ADDRESSES

CORE STORAGE
TO FROM

BUFFER ADDR
REGISTER REGS

e— CONTROL
WORD
ERROR CHECKING ADDRESS
ES REGISTER AND CORRECTION FROM
COMPUTER

—

1

EXCHANGE DATA WORD CONTROL WORD
~ STORAGE SHIFTING MODIFICATION

(ES) l

STORAGE
DRIVERS

OUTPUT INPUT
BYTE BYTE
ES ADDRESS | Scf\mg:EALND
CONTROL
CHANNEL SWITCH

BEING SERVICED

s

32333435 63

CHANNEL
ADDRESS

FROM TO AND FROM
COMPUTER EXTERNAL

CONTROL UNITS

Figure 34. Exchange Components

Capacity

Channels

The exchange provides up to 32 channels for connect-
ing external units directly to the system. These units
are of the kind that operate serially one 8-bit byte at
a time, and thus require eight bytes to transmit a full
storage word of 64 bits. The channels are nine bits
wide, accommodating an 8-bit byte and a parity bit
to check transmission over the channel. With units
that are presently available, a channel can achieve
data rates of one byte every 16 microseconds, but
higher rates can be accommodated.

The exchange can have several combinations of
channels. The minimum is eight. This minimum
can be augmented by additional channels in groups
of eight up to 24 additional, or a total of 32 channels.

Each exchange channel is connected to one control
unit. Most control units are designed to handle only
one specific external unit and accommodate only that
one unit. Other control units are capable of handling
more than one input-output or external storage device

of a given type. Only one such device, however, may
operate at a time over a single channel, and the pro-
gram selects which device is connected to the control
unit at any one time. Thus, there may be more ex-
ternal devices connected to the system than there are
channels, but this does not increase the amount of
simultaneous operation.

Simultaneity of Data Transfer

The amount of simultaneous reading and writing de-
pends upon the number of exchange channels and
upon the data transmission rates of the units attached.
As to the data transmission rates, the limitation can
be imposed either by the transmission of bytes of data
between the exchange and the units or by the trans-
mission of data words and control words between the
exchange and core storage.

The limitations on the simultaneity of data transfer
imposed by the transmssion of data between the ex-
change and the units is expressed by means of the
byte weight system. The byte weight of a unit indi-
cates the relative amount of exchange capacity which
is necessary to service the unit. It depends upon the
shortest interval in which the exchange may have to
respond to the unit’s byte request and is not necessarily
proportional to the data transmission rate of the unit.

As far as estimation of the maximum data flow
between the exchange and the units is concerned, the
external units can be classified into two types: non-
buffered units whose operation cannot be interrupted
without loss of information, and units which are buf-
fered or because of some other reason can be delayed
in case of conflict.

The latter type of units (e.g., card readers, card
punches, consoles, printers) are flexible in timing their
data transmission and have a byte weight of zero.
When the exchange cannot service their byte requests,
their operation is interrupted. This interruption,
however, is not associated with any loss of informa-
tion. As soon as the excess load is removed and the
exchange has time to spare, the mechanism of the unit
is automatically restarted and the original reading or
writing operation is continued. The interruption does
not have any effect on the completion of the opera-
tion, and no indication is given to the computer to this
effect.

In the non-buffered type of external units (e.g.,
tape units), data are transmitted continuously between
the external unit and core storage. These units have
non-zero weights. When exchange capacity is ex-
ceeded, such units cannot interrupt their operation,
and, as a result, some data may be lost. When this
happens, a unit-check indication is automatically sent
to the computer. This indication is identical to that

given in case of data errors and can be treated ac-
cordingly.

In order to avoid exceeding exchange capacity, the
program can keep track of the amount of data flow
in process by adding the byte weights of all units op-
erating in the form of a byte weight count. The scale
of byte weights is defined such that a byte weight
count of 256 represents the maximum safe load on
the exchange. The total data transmission rate of the
exchange corresponding to this byte weight count is
not fixed and depends upon the particular set of units
used.

Since the byte weight of a unit reflects only the rate
of transfer of bytes of data between the exchange and
the units, it is fixed for a given type of unit and does
not depend upon the mode of operation. Normally
the sum of the byte weights indicates when exchange
capacity is exceeded. The byte weight system, how-
ever, does not reflect the load imposed on the exchange
by the transfer of data words for the zero-byte-weight
units and the fetching of control words for chained
operations. When extensive chaining is employed or
many zero-byte-weight units are operated, it is possible
that the word transfer between the exchange and the
core storage may limit the capacity of the exchange.

In order to facilitate the evaluation of the total in-
stantaneous rate of transmission of information be-
tween the exchange and core storage, a word weight is
defined for each external unit, including the zero-byte-
weight units. The word weight of a unit is an indica-
tion of the unit’s data transmission rate and is equal to
2560 divided by (T — 11), where T is the unit’s mini-
mum instantaneous word period expressed in micro-
seconds per word. When a unit is engaged in chained
reading or writing, its word weight has to be doubled.
The word weight count, which is the sum of the word
weights of all units reading and writing, then is an in-
dication of the amount of information that is cur-
rently being transmitted between the exchange and
core storage. As in the case of the byte weight system,
the scale of the word weight system is defined such
that a word weight count of 256 represents the maxi-
mum safe load on the exchange. Whenever the ex-
change capacity to communicate with core storage is
exceeded and a data word or a control word is not
transferred, a unit-check indication for that channel
is given. The communications between the exchange
and core storage limit the maximum instantaneous
information transmission rate of the exchange to
100,000 words per second.

Both the ahove weight systems assume that the units
are connected to the exchange in such a way that the
unit having the highest byte and word weights has
the lowest channel address of the system, with the
weights decreasing in the order of ascending chan-

IBM 7619 Exchange 105

nel addresses. If this sequence is violated, a unit’s
byte and word weights have to be set equal to those of
the unit having the largest weights at a higher channel
address.

The two weight count systems provide a program-
ming means of keeping the total input-output data
transmission rate below the maximum safe limit. When
one of the weight counts is exceeded, there is danger
of losing some information. However, it should be
noted that in specifying the weight systems, the maxi-
mum possible instantaneous load on the exchange is
considered. In the case of chaining, the doubling of
the word weight of a unit affords a further factor of
safety in that it permits chaining to occur after each
word transmitted to or received from core storage.
Thus, on the average, the exchange will not operate
as close to capacity as indicated by the weight counts.
Unless many channels are installed and units with
high data transmission rates are used, in some instal-
lations it may not be possible to exceed the exchange
capacity at all.

WEIGHT COUNT EXAMPLE
Consider a system at an instant when the following
units are executing READ Or WRITE instructions:

UNIT’S WEIGHT WEIGHT COUNTS

TYPE OF NO. OF UNITS CHAIN-

UNIT OPERATING ING? BYTE WORD BYTE WORD
729 high dens. 2 no 32 17 64 34
729 low dens. 1 yes 9 6 9 12
Card reader 2 no 0 5 0 10
Card punch 1 yes 0 5 0 10
Console 1 no 0 3 0 3
Total weight counts 73 69

Both the byte and word weight counts are well below
the maximum limits, and hence there is no danger
of exceeding exchange capacity.

Reading and Writing

Data are transferred between external units and core
storage by read and write operations. A read or write
instruction is first given by the program. This instruc-
tion specifies the external unit (channel address) and
the location of a control word, which defines the be-
ginning and end of the core storage area to be used
for the data transfer. These two pieces of information
are sent to the exchange, and the computer then pro-
ceeeds to the execution of the next instruction in the
program,

The control word defines the core storage area to
be used in data transfer by specifying the initial data
word address in the storage and a count of the num-
ber of words to be transferred. After READ or a WRITE

106 IBM 7030

is received, the exchange obtains the specified control
word from core storage and stores it in the exchange.
The desired unit is then started, and reading or writ-
ing proceeds, using the storage area indicated by the
control word.

As each data word is read or written, the control
word in the exchange is modified: the data word ad-
dress is advanced by one, and the word count is de-
creased by one. The control word in the exchange
always contains the data word address of the next core
storage reference and a count of the number of words
remaining to be transferred to or from the external
unit. The control word in core storage, however, is
not affected during the data transfer. Thus, the con-
trol word in the core storage unit retains the initial
data word address and count, and it can be used re-
peatedly to transfer data to or from the same storage
area.

There are four basic variations of a read or write
operation depending on the setting of certain flag bits
in the control word:

1. The operation may be terminated by the ex-
change upon reaching a count of zero or by the
unit upon reaching the end of the block, which-
ever happens first. (Single block operation with-
out chaining)

2. After the core storage area defined by a control
word is exhausted, it is possible for the exchange
to substitute another control word and con-
tinue data transfer without stopping, using the
core storage area defined by the new control
word. (Chaining)

3. More than one block may be read or written
with one instruction, until the specified core
area has been used. (Multiple block operation)

4. During reading, it is possible to suppress entry
into storage of selected portions of the informa-
tion. (Skipping)

A block of data is defined for each type of unit as
the amount of information recorded in the interval
between adjacent starting and stopping points of the
unit. The length of a block depends upon the type of
unit used; e.g., it can be a card, a line of printing, or
the information between two consecutive gaps on tape.

Control Word Format

The control word format follows that of an index
word: the data word address occupies the word address
portion of an index word value field while the count
and refill fields of control and index words are the
same. This facilitates the use of control words for
indexing. In addition, the control word contains a
number of bits which describe the status of the exter-

nal units and specify the mode of reading or writing.

The following is a detailed description of the con-
trol word format shown in Figure 35.

= Unit Ready
1 F— Exchange Program Check
! 1 = Unit Check

111 = End Exception

I - End of Operation
; ! — Channel Signal

i

t

I

et

3]

1

[

11

{
i
i '
i
! ! 11 ~=Multiple
THH S
thab il
TR
r Data Word Address l S;?fsus l Eblftgs Count I Refill |
[} [} 23 28 46 3
CONTROL WORD
~ Index Flag
|' T :
[Valve ’l |§| Count l Refill
[] lll L 5 28 46 [
INDEX WORD

Figure 35. Control Word and Index Word Formats

Bits 0 To 17, DATA WORD ADDRESS
This field contains the address of the first data word
in storage. (This field is the word address portion of
the value field in an index word.)

Bits 18 To 24, STATUS BITS

When obtaining a control word from core storage, the
exchange ignores these bits and treats them as if they
were zero. Inside the exchange, however, these same
bit positions are used to retain the status bits which
indicate the status of the unit. When the copy con-
TROL WORD instruction is used to extract the control
word from the exchange, the status bits appear in the
following positions.

18. Unit Ready. This bit is on whenever the unit
is in condition to accept an instruction from the com-
puter or is executing an operation. When the bit is
off, the unit is in the not-ready status and cannot be
operated by the computer.

19-22, Exchange Program Check, Unit Check, End
Exception, End of Operation. These status bits signal
the cause of the termination of an operation at an ex-
ternal unit.

23. Channel Signal. This bit signals operator
request for attention or indicates that a unit has
changed from not ready to ready status.

Bits 19 through 23 have corresponding indicators
in the indicator register and, when certain conditions
are satisfied, cause the indicators to be turned on.

24. Suppress End of Operation. This bit is turned

on by a SEOP (suppress end of operation) type in-
struction to suppress the end of operation indication
upon a normal completion of the operation.

Bits 25 To 27, Frac Bits
These are control bits which permit certain variations
in reading and writing operations.

25. Chain Flag. If on, another control word is ob-
tained by the exchange when the count in the current
control word reaches zero.

26. Multiple Flag. 1f on, more than one block of
data may be read or written with a single instruction.

27. Skip Flag. If on, during reading, transfer of
data to storage is suppressed. The skip flag has no
effect on writing.

Bits 28 T0 45, COUNT

This field contains the number of words that can be
transferred under control of the corresponding con-
trol word. (This field has an analogous meaning in
an index word.)

Brrs 46 To 63, REFILL ADDRESS

This field contains the address of the next control
word to be obtained by the exchange when the count
reaches zero and the chain flag is on. (This field has
an analogous meaning in an index wora.)

Definition of Core Storage Area

The control word, as the exchange initially obtains it
from core storage, contains the address of the first data
word in the storage unit. Subsequent data words are
sent to or received from consecutive higher core stor-
age addresses, which the exchange obtains by adding
one to the data word address in the control word after
each data transfer. Similarly, the count of the con-
trol word is stepped down by one whenever a word is
read or written. If data transfer is not terminated by
other means as described below, the process repeats
until the cycle at which the count is stepped from one
to zero.

Reaching a count of zero requires that the opera-
tion be terminated or, if chaining is used, that a new
control word be obtained. The number of words
that have been transferred is then equal to the num-
ber initially specified in the count field. The initial
data word address and count thus define the core
storage area set aside for this control word. The ex-
change guarantees that data transfer will not proceed
beyond the storage area defined by the control word,
even if there is more information in the block being
read.

The exchange can only handle and address blocks

IBM 7619 Exchange 107

of information starting at the left end of a full word
in core storage and containing an integral number of
words (i.e., multiples of 64 data bits). An external
unit may, however, terminate an operation at any
time within a block or even within a word. In both
reading and writing, data transfer takes place a byte
at a time, starting with the leftmost byte of a word
and proceeding to the right. Consequently, an inter-
ruption may prevent the low-order bytes of a word
from being read or written. When a reading opera-
tion is interrupted within a word, the exchange al-
ways completes the word by filling in zero bits to the
right of the data bits before sending it to core storage.

The exchange has access to data and control words
at any existing core storage address from 32 up. This
range does not include internal computer registers
and index registers. When the exchange discovers
that a control word address or a data word address
refers to a core storage location to which the exchange
does not have access (locations 0 to 31 or addresses
above the maximum available address in a particular
installation), the operation is stopped and the ex-
change-program-check status bit for the appropriate
channel is turned on. When the right effective ad-
dress of an input-output instruction specifies a con-
trol word address in the range 0 through 31, the
operation is not started, and the address-invalid indi-
cator is turned on. An exception is made during
initial program loading, when storage address 4 is
used in a special way without giving an error indi-
cation.

Chaining

The chain flag of each control word specifies whether
this is the last control word or whether another one
follows.

If the chain flag is zero, the present control word
is the last one, and the refill address is not used. The
operation cannot proceed after the count is exhausted.
If the chain flag is one, the refill address specifies the
address of another control word which the exchange
obtains automatically whenever the count reaches
zero. In this case, data transfer continues beyond the
portion specified by the current control word, unless
terminated sooner by other causes.

The chaining technique is used to permit scatter-
ing portions of a block of information in different
areas of core storage. A “chain” of control words is,
in effect, formed in core storage by having each con-
trol word specify its successor. The exchange then
automatically follows this chain until it encounters
a control word with a zero chain flag, or until the
external unit stops the process.

108 IBM 7030

Single- and Multiple-Block Operation

The multiple flag specifies whether a new block of
data may be started at the end of the current block
or not.

When the multiple flag of a control word is zero,
reading or writing proceeds either until the unit
reaches the end of the block or until the control word
reaches a count of zero, whichever happens first. If
a new control word in a chained operation is fetched
before the end of the block, the multiple flag of the
new control word determines the mode of operation
during the time the new control word is in force. It
follows that if all control words in a chain have the
multiple flags set to zero, only a single block of data
may be read or written with one instruction. It is
possible, however, to read or write less than a block
of data by specifying a count which is less than the
number of words in the block.

When the multiple flag of a control word is one,
operation always proceeds, if not terminated prema-
turely by exceptional causes, until the number of
words transferred equals the number specified in the
count field. If the unit meanwhile reaches the end
of the block, a new block is automatically started.
As before, in a chained operation the multiple flag
of the control word in force always determines the
mode of operation. With the multiple flag set to one,
it thus becomes possible to read or write more than
one block of data with one instruction. By letting the
multiple flags of all control words in a chained oper-
ation be one, the amount of information transferred
is completely under control of the control word
counts.

When chaining occurs at the end of a block (ie,
when the count of a control word reaches zero upon
the transmission of the last data word of a block),
the continuation of the operation depends upon the
multiple flag of the old control word. Thus, if the
chain flag in the old control word is on but the mul-
tiple flag is off, the operation is terminated at the end
of the block. On the other hand, if both flags are on,
the operation is continued regardless of the state of
the multiple flag in the new control word.

All signalling between the unit and the exchange
is done one block at a time. This applies to the
status indications from the unit to the exchange as
well as to the control information sent by the ex-
change to the unit. To obtain multiple block opera-
tion, the exchange merely signals the unit to restart
as soon as the end of a block is reached, as if a new
read or write instruction had been given by the com-
puter for each separate block. The distinction be-
tween single- and multiple-block operation is thus

retained at the exchange and is not apparent at the
unit.

A multiple block operation may, however, be ter-
minated before reaching the last block specified by
the instruction. If an exchange program check, a
unit check, or an end exception is caused, the opera-
tion never proceeds beyond the end of the block in
which the condition is discovered.

Whenever the end of a block is reached and a new
block is started, data transfer continues with the next
full word in core storage. If a block is not an integral
number of full words long, on reading, the missing
bytes of the last word are filled with zeros. On writ-
ing, the bytes remaining after completion of the block
are ignored.

The case when both the multiple and the chain
flags are on and the control word is exhausted any-
where within a block (i.e., not upon the transmission
of the last word of a block) is treated in a special
way. When the count reaches zero, the exchange
sends a disconnect signal to the unit indicating that
it does not expect to transfer any more data to or
from the unit until the end of the current block is
reached. The unit proceeds upon the receipt of the
signal to the end of the current block without any
data transfer and without any control word modifica-
tion. On reading, the remainder, if any, of the cur-
rent block is skipped. On writing, no more informa-
tion is sent out until a new block is started. When
the end of the block is reached, the unit is restarted,
the new control word is fetched and the operation
is resumed with the next block. Thereafter, chaining
and block control take place in accordance with the
chain and multiple flags of the next control word.
Thus, in this mode of operation, it is possible to
force a gap on tape at the end of any selected control
word in a chain.

Successive control words in a chain may have dif-
ferent chain and multiple flag bits. The precise oper-
ation may be determined from Figure 36. The exact
contents of the control word in the exchange depends
upon the type and the stage of the operation. A more
detailed description of the exact state of the control
word in the exchange is given later.

Skipping

The skip flag, when zero, specifies normal reading.
On writing, the flag is meaningless and is ignored.
When the skip flag is one, no data words are trans-
ferred to core storage. The operation of the unit is
still continued, and the system goes through all the
sequences associated with data transfer between the
exchange and the unit. The control word is also ap-

Multiple| Chain | Count End of Block .
Flag Flag | 0= Zero 0= Yes Action
1 = Not Zero 1= No

0 0 0 0 End operation

0 0 0 1 Disconnect, then end op.
0 0 1 0 End operation

0 0 1 1 Continue

0 1 0 0 End operation

0 1 0 1 Chain and continve

] 1 1 0 End operation

0 1 1 1 Continue

1 0 0 0 End operation

I 0 0 1 Disconnect, then end op.
I 0 1 0 Restart and continue

1 0 1 1 Continue

1 1 0 0 Chain, restart and continue
1 1 0 1 Disconnect and chain

1 1 1 0 Restart and continue

1 1 1 i Continve

Figure 36. Multiple and Chain Flag Operations

propriately modified by incrementing its address and
decrementing the count, and, if necessary, a new con-
trol word is fetched in chained operations. The
assembled data words, however, are not transferred
to core storage. By setting the approptiate control
words in a chain to skip or not, any selected portion
of data may thus be suppressed during reading.

Since the testing for data word addresses that ex-
ceed the available core storage is performed in the
core storage controls, reference to non-existent core
storage locations cannot cause an exchange-program-
check indication when reading with the skip flag on.
The exchange-program-check indication is always
given when an attempt is made to fetch a control word
from a core storage address that is not accessible to the
exchange.

As a result of the above, the program can specify
any address above 31 when reading with the skip
flag on. If in the process of control word modification
the address 2!8 is reached, the next cycle resets the
address to 0. Since address 0 is invalid, the operation
is terminated when an attempt is made to store a
word in this location.

The presence of the skip flag does not aftect the
treatment of the unit-check and end-exception indica-
tions. When a unit check or end exception occurs,
the operation is terminated in accordance with the

general rules.

IBM 7619 Exchange 109

Chain and Multiple Flag Examples

In Figures 37 and 38, a section of a continuous line
bounded by arrow heads indicates data transfer under
control of one control word. A dashed line indicates
skipping over the remainder of a block without any
data transfer and without any control word modifica-
tion taking place. The latter happens after a discon-
nect signal on units where the length of the blocks is
fixed. The vertical lines at the ends of arrows indicate
the start or the termination of the operation.

WRITING

Figure 37 shows the use of the chain and multiple
flags on writing. The operation is assumed to be per-
formed on a type of unit where the length of the
blocks is not fixed (e.g., magnetic tape). Note that a
new block is started whenever the count goes to zero
and both the multiple and chain flags are on. When
the length of the blocks is fixed, as in the case of
printers and card punches, the writing operation is
the same as for reading.

READING

In Figure 38, there are three blocks of data, each
block containing 15 words. Cases 2 and 3 are iden-
tical as far as transfer of information is concerned, but
two different methods are used to terminate the op-
eration. In 2, the termination is under the control of
the count since the multiple flag is 1 and the opera-
tion would proceed if a bigger count were specified.
In 3 the termination is under block control; the count
may specify more than the block contains, but a new
block is not started because the multiple bit is 0.
Note also that in order to read contiguous ten-word
sections of the first two blocks of data into three
different locations in memory, four control words are
required with chaining taking place also at the end
of the first block. This is illustrated by case 7.

'::; cnts 20
y
I o\ €= chain flag
BLOCK OF DATA m= multiple flog
20 WORDS x= Qorl
cnt = contents of the count field
of the control word
':;? cnt=z10 '::? cnt=10 ';':3 ent=10
— J
r)
BLOCK OF DATA
30 WORDS
m=t . m=| n msx
toy cMsIs . ooy cmM=Is c.0 Snt=I5
— —]
BLOCK OF DATA BLOCK OF DATA BLOCK OF DATA
I5 WORDS. i5 WORDS 15 WORDS

Figure 37. Writing with Chain and Multiple Flags

110 IBM 7030

BLOCK OF DATA BLOCK OF DATA BLOCK OF DATA
IS WORDS IS WORDS IS WORDS

mex | I

e=0 ctM=l0 l
) p——— ey |

| I

'::; cntz15 | I
@ » : I'

:.:g cntz13 ' I
™ > |

' %

'::‘I, cnt= 45 l |
@) | — |

P30 catero mh ent=30
5} o - -

20 catsio T carsio oo cntzi0
) p— —— e ——— —_—_————

::? cnt =10 '::: '::? r:; cnt =10
n — tal

cnts$ cnt=S

Figure 38. Reading with Chain and Multiple Flags

Addressing of Input-Output Instructions

The basic operations involving external units are
reading and writing, initiated by READ and WRITE in-
structions. A number of other functions are necessary
for the purpose of setting up the external units for
reading and writing and for monitoring these proc-
esses after they have been initiated. These tasks are
accomplished by means of CONTROL, LOCATE, RELEASE,
and cOPY CONTROL WORD instructions. In addition to
the above, there are five seop (suppress end of opera-
tion) instructions: READ SEOP, WRITE SEOP, CONTROL
SEOP, LOCATE SEOP, and RELEASE SEOP. The seor in-
structions are identical to the corresponding instruc-
tions without the sEop specification except that the
end-of-operation indication in the control word, and
therefore in the indicator register, is not turned on at
the normal and successful completion of the opera-
tion. As a group, the instructions related to the ex-
ternal units are called input-output instructions.

The above instructions are all that are needed to
control any external unit regardless of speed or type.
The computer and exchange, in generil, do not dif-
ferentiate among units which have different charac-
teristics. 'The exact interpretation of how a unit re-
sponds to each instruction is a function of the design
of the external unit and will be described in connec-
tion with each unit.

External Unit Addresses

There are two levels of external unit addresses. The
first level address is called channel address. This ad-
dress is used in all input-output instructions to specify
the external device or set of devices to which the in-
struction applies. A second level address, called selec

tion address, is used for selecting one of a set of de-
vices connected to a control unit.

CHANNEL ADDRESS

The channel addresses correspond to the 32 physical
exchange channels and are assigned the numbers 32
through 63. Within the range 32 through 63 the spe-
cific assignment of the addresses is arbitrary and de-
pends upon the specific units in an installation. Once
installed, the channel address of a specific unit (or
a set of units when more than one unit is accommo-
dated by a control unit) remains fixed. The channel
address is specified by the left effective address of all
input-output instructions.

The channel address determines the priority a unit
receives from the exchange in response to its service
requests for bytes of data: the lower the channel ad-
dress of a unit, the higher is its priority. Conse-
quently, units which cannot interrupt their operation
will normally have lower channel addresses than those
having weights of zero. The same priority applies
also to the transmission of words of data between the
exchange and the core storage.

SELECTION ADDRESS

The selection address selects one unit among a set of
units accommodated by a channel address. The selec-
tion addresses are assigned to a set of units indepen-
dently of other such sets, usually as 0, 1, 2, 3, etc., and
are specified by means of the right effective address
of a LOCATE instruction. All READ, WRITE and CONTROL
instructions apply to units last selected by means of
a LOCATE instruction.

Format

All instructions related to external units use a full-
word format, as shown below.

T T T 4

U CHANNEL §

homeas, | lIOOOI | I ADDRESS .|°P ||oooo‘ I
2

0 12 [4 28 32 49 5l 55 60 €3

The effective address of the first half-word, called
the left effective address, of all input-output instruc-
tions specifies the channel address. The address is
seven bits long and appears in bit positions 12
through 18. The channel address register in the pro-
gram interruption mechanism is also seven bits long
and corresponds to bit positions 12 through 18 when
addressed. The effective word address of the second
half-word of the instruction, called the right effective
address, contains information peculiar to the particu-
lar instruction: it can specify a control word address
in the core storage (READ, WRITE, COPY CONTROL WORD),

a selection address (LOCATE), control information
which is decoded by the external unit (CONTROL) or
it can be left blank (rReLease). The right effective
address is 18 bits long, and it appears in bit positions
32 through 49. Some instructions use only part of
this field.

The addresses of both half-words of the instruction
can be indexed. In the first half-word, index arith-
metic extends over the full 24 bits of the channel
address field of the instruction and the whole value
field of the index word, including its sign, but only
bits 12 through 18 of the effective address are used.
The rest is ignored by the exchange. In the second
half-word, index arithmetic extends over bits 32
through 50 of the instruction word and the whole
value field of the index word, including its sign, but
only bits 32 through 49 are used.

Input-Output Instruction Indicators

In order to permit effective simultaneous operation
of the computer and several external units, all input-
output operations are interlocked with the central
program interruption system. This interlocking is
accomplished by means of two types of indicators: the
input-output reject indicators and the input-output
status indicators. Indicators belonging to these two
groups can be turned on only as a result of an input-
output instruction or some operator interference. In
addition to the above, input-output operations can ac-
tivate other indicators of a more general nature. The
latter indicators are described in this section only as
far as they apply to input-output instructions.

General Indicators

Exchange Control Check (EK). Exchange control
check is used to indicate that the exchange has failed
to function properly in a manner that cannot be
identified with any particular channel. It usually
signals the discovery of major control and addressing
errors such as inserting a byte of data into another
channel’s control word. The turning on of x does not
terminate the performance of the current input-output
operations, if any, in the exchange.

Address Invalid (AD). The purpose of this indicator
is to signal errors in the information contained in an
instruction. In the case of input-output instructions,
this indicator is turned on if the right effective address
of a READ, WRITE Or COPY CONTROL WORD is 0 through 31
or exceeds the largest address of main storage. When
an error causing the Ap indication is found, the process-
ing of the instruction is terminated. The unit is never

IBM 7619 Exchange 111

started and the contents of the channel’s control word
location in the exchange storage are not altered.

PROGRAMMING NOTE

The data-store and data-fetch indicators are never
turned on by an input-output operation. Address
monitoring is not effective on input-output opera-
tions, and data can be read into and written from the
protected core storage area as defined by the upper
and lower boundary registers in conjunction with the
boundary control bit. The exchange, however, can-
not transfer data to or from locations 0 through 31.
Similarly, all control words, including the first one
specified by the input-output instruction, can be
fetched from any existing core storage location, ex-
cept locations 0 through 31.

Input-Output Reject Indicators

When the computer sends an input-output instruction
to the exchange, it usually must wait a few micro-
seconds until the exchange has interrogated the status
of the addressed unit to determine that the instruction
can be accepted. As soon as the exchange signals the
acceptance of the instruction, the computer proceeds
to the next instruction. If the exchange cannot accept
the instruction, it responds by means of one of the
three reject signals, turning on the corresponding in-
dicator in the indicator register:

EK) Exchange Check Reject
UNRY Unit Not Ready Reject
¢y Channel Busy Reject

The reject indicators have a mask bit that is per-
manently set to one. Consequently, if the program
interruption system is enabled, any of the three reject
indicators will always interrupt the program. This
interruption occurs before the computer has pro-
ceeded to the next instruction. It may, however, not
follow immediately after the input-output instruction
causing it if another indicator having a higher pri-
ority is also turned on during the execution of the
input-output instruction. In such a case the higher
priority indicator will interrupt first.

The reject indicators are permanent and hence,
once they have been turned on, they remain on until
they cause a program interruption or are explicitly
set to zero by means of BRANCH ON INDICATOR. They
are not reset by an input-output instruction that is
accepted by the exchange.

If more than one condition exists that could reject
an inputoutput instruction, only the reject having
the higher priority is given. As an example, if an in-
struction is given to a channel which is not ready and
is busy or waiting to make an interruption, only the
UNRJ indicator is set up.

112 IBM 7030

When an input-output instruction is rejected, the
unit is not started, the control word for a READ or
WRITE is not fetched, and the contents of the channel’s
control word location in the exchange storage are not
altered. The following is a description of the reject
indicators in the order of decreasing interruption
priority.

Exchange Check Reject (EK]). This indicator is
turned on when an error is detected by the exchange
in the course of testing and setting up the present
instruction. It can be caused by:

1. Any malfunctioning of equipment that is de-
tected during initiation of the operation. This
includes parity errors in the portions of the
instruction word sent to the exchange and errors
discovered during the unit’s status test.

2. Specification of channel addresses that are not
available to the programmer. An unavailable
channel is one that is not installed in the par-
ticular system. It does not include channels that
are installed but are not operative because no
units have been provided for them. The test
applies only to the 7-bit channel address por-
tion of the left effective address, bit positions 12
through 18. The remaining bits of the figld are
ignored.

Unit Not Ready Reject (UNR]J). This indicator is
turned on when an instruction is given to a channel
that is not ready to be operated. The unit-ready status
bit in the control word is zero. This happens when
the unit accommodated by the channel is in the not-
ready status or no unit is attached to the channel.

Channel Busy Reject (CBJ). This indicator is
turned on when an instruction is addressed to a chan-
nel that is still busy performing a previous instruc-
tion or which is waiting to make a program inter-
ruption.

Certain operations, such as rewinding tape, may be
completed by the unit after disconnecting from the
exchange. New instructions for channels performing
such operations can be accepted, provided another
unit is selected by means of a LOCATE instruction. In
these cases cBy is not turned on.

Input-Output Status Indicators

When an operation concerning an external unit has
been terminated, the status at that time is recorded
in the control word. When certain input-output con-
ditions are satisfied, the status bits turn on the cor-
responding status indicators to cause program inter-

ruption. At the time of such an interruption, the
channel address of the external unit is entered into
the channel address register. The input-output status
indicators are permanent and their mask bits are per-
manently set to one. The following is a list of the
status indicators in the order of decreasing interrup-
tion priority,

EpGK Exchange Program Check

UK Unit Check

EE End Exception

eor End Of Operation

cs Channel Signal

The time at which the status bits in the control
word are turned on depends upon the bits and their
causes. The most common types of indications are
those associated with reading or writing which are
discovered by the external devices (data errors, out
of material, and so on). These conditions are sig-
nalled to the exchange, a block at a time, at the end
of the block in which the conditions are discovered,
and, since they always terminate the operation, they
cannot be on while the operation is in progress. Other
conditions such as specification of an invalid core
storage address can turn on the corresponding status
bit before the operation at the unit has been termi-
nated. The corresponding indicators in the indicator
register, however, can be turned on and the program
can be interrupted only after termination of the cur-
rent operation.

If two or more units are accommodated by a single
channel address (attached to a channel by means of
a single control unit), the status bits can be turned
on only by that unit that has been last selected by
means of a LocaTE. (The channel signal is an excep-
tion; it can be turned on by any unit.)

Since the input-output status is first recorded in the
control word and the corresponding indicators in the
indicator register are subsequently set up only if the
conditions described in “Input-Output Indicators”
are satisfied, the cause and meaning of input-output
status indicators will be explained by describing the
control word status bits. The following is a detailed
description of the status bits.

ExcHANGE ProGRAM CHECK (EPGK)

This bit is turned on when an operation concerning
an external unit is terminated prematurely by a pro-
gramming error. Among the causes are:

1. An instruction is received that the selected unit
is not designed to perform, such as a READ given
to a printer.

2. The eight low-order bits of the right effective
address of a CONTROL instruction contain a code
that is not defined for the unit.

3. An instruction is received that the selected unit
is unable to perform because of its present con-
dition; e.g., a backspace CONTROL given to a tape
unit with the tape at the load point.

4. The exchange attempts to transfer a word to
or from a core storage location to which it does
not have access (locations 0 through 31, or loca-
tions having addresses above the maximum
available address in a particular installation).
This can be caused by an invalid data word ad-
dress, an invalid refill field on chaining, or by
specifying in a READ or WRITE a control word
address that exceeds the available core storage.

Programming errors, like invalid instructions, non-
existent control codes, or operations that are impos-
sible because of the current status of the unit, are
discovered by the external units when the units at-
tempt to initiate the corresponding operations. The
EPGK status bit in these cases is turned on a short time
after the instruction is accepted by the exchange. The
computer, however, will always have proceeded to the
following instructions by the time the program in-

‘terruption is made. The external unit to which the

instruction is addressed is never started. Note that
when a READ or WRITE is issued to a unit that cannot
perform it, the control word for the addressed chan-
nel still is fetched.

In the case of invalid control word or data word
addresses, the error is discovered at the time when the
exchange attempts to fetch the word specified by the
invalid address. The operation always proceeds nor-
mally until the invalid address is encountered. If the
refill field of a control word specifies an address that
is not accessible to the exchange, the operation pro-
ceeds until the word count in the old control word is
exhausted. All data specified by the old control word
are transferred normally, and the exchange at the
time of program interruption contains the old control
word with a count of zero. If a data word address is
invalid, the operation is terminated only after data
transfer up to the invalid address is completed. The
control word at the time of termination refers to the
core storage location following the one that is re-
sponsible for the termination.

When a READ or WRITE is terminated with EPGK
because of an invalid core storage address, the unit
always has been started and at least the first block
of data has been moved at the unit. If the error is
such that no data can be fetched for a wrITE, a word
consisting of zeros is recorded at the unit. This hap-
pens when the original control word address or the
first data word address is invalid. In the correspond-
ing case during a READ, no data are transmitted to
core storage. In either case, if the first control word

IBM 7619 Exchange 113

cannot be fetched because of an invalid address, the
contents of the channel’s control word location in the
exchange are not modified.

When more than one block is read or written, the
restarting of the unit depends upon the operation
and upon the relative position of the invalid address.
On reading, the invalid address is discovered when
the word being sent to that address has already been
assembled in the exchange and, consequently, the
block containing the word is always moved at the
unit. On writing, the new block is not started if the
invalid data word address specifies the first word
of the block; otherwise, the block is started.

When the chain and multiple flags are on, the new
control word applies to the next block, and, as far as
the unit is concerned, the exchange starts a new oper-
ation. As long as all the data word addresses in the
preceding control word are valid, the exchange starts
the block controlled by the new control word. This
restarting does not depend upon the validity of the
refill address that specifies the control word.

The exchange-program-check status bit in the con-
trol word is turned on as soon as the exchange dis-
covers the condition responsible for the indication,
even though the computer can be interrupted only at
the end of the block. These errors are always of the
type that preclude a proper completion of the opera-
tion. Hence, exchange-program-check and end-of-op-
eration bits are never on simultaneously. The turn-
ing on of the EPGK bit is not associated with any
change in the unit-ready status bit.

Programming Note. When a WRITE is terminated
under block control, it is possible to get an invalid
address indication even if the operation is completed
before the word specified by the invalid address is
used. On writing, the exchange fetches new data
words and control words ahead of the time when
these words are actually needed in the operation. As
a result, a properly completed operation is terminated
by Epck if the address of the word following the one
last written is invalid. If the word last written is the
last word specified by a control word in a chain of
control words, EpGK is given if the refill field of the
current control word is invalid and its chain flag is on
or if the first data word address specified by the next
control word is invalid. Note, however, that EpPGK in
the above cases is given only when the unit terminates
a WrITE. It never occurs on reading or when a WRITE
is completed under count control.

Unir Cueck (UK)

This bit is concerned with data errors and malfunc-
tioning of the recording medium or equipment that
can be identified with a particular channel. Among
the causes of unit check are:

114 IBM 7030

Data errors. These can be errors introduced in
the information that is read or written or in
control codes or selection addresses associated
with CONTROL and LOCATE instructions, respec-
tively. The following are the ways in which
these errors can be discovered:

a. The input-output unit can discover by means
of parity, echo or some other type of check-
ing an uncorrectable error in the data read
or written. The error condition is signalled
to the exchange at the end of the block in
which it is discovered. On reading in the
Ecc mode, correctable error indications are
suppressed.

b. The exchange can discover an uncorrectable
error in the data read or written. This can
be a parity error in the byte received from
the unit or an error discovered at the error
checking and correction station. When an
uncorrectable data error is discovered in the
Ecc mode, the data word is forwarded with
the Ecc bits unaltered.

¢. The exchange can discover a parity error in
the main core storage address when fetching
or storing data words. When this happens,
reference to that core storage location is
suppressed. On reading, the data word be-
ing sent to that address is ignored; on writ-
ing, a word consisting of all zeros is written,

d. Some data may have been lost because ex-
change capacity is exceeded. This can arise
when a unit’s byte service or data word trans-
fer has not been performed on time. When
a byte or a word of data is missed on read-
ing, the following data are shifted so as to
fill the gap. On writing, zeros are written in
place of the unavailable data.

e. The input-output unit can discover a parity
error in control codes and selection addresses
associated with cONTROL and LOCATE instruc-
tions, respectively.

2. Malfunctioning of parts of the exchange affect-

ing this channel only, and introduction of errors
that prohibit the continuation of the operation.
Examples of such errors are parity errors in the
main core storage address when fetching a con-
trol word, any uncorrectable errors discovered
in the control word after the control word has
been fetched, and any parity errors discovered
during the control word modification cycle.

Malfunctioning of the unit or the control unit.
Examples of such malfunctioning are card-feed
jam, broken magnetic tape, or failure of some
components.

4. The operation of certain units has been inter-
rupted by a depression of the stop key. Most
units, however, are designed so that a depres-
sion of the stop key interrupts the operation
without causing unit-check. On these units the
operation is automatically resumed as soon as
the ready condition is restored.

If a unit check is caused by uncorrectable data
errors in a READ or WRITE, data transfer proceeds nor-
mally until the end of the current block, at which
time the operation is terminated and both the uk and
rop control word status bits are turned on. Regard-
less of the setting of the multiple block bit, the op-
eration never proceeds beyond the block containing
the error. A data error thus can cause the Eop indi-
cation to be given before the last block specified in
the instruction has been reached. The program must
use the COPY CONTROL WORD instruction to determine
how far the operation has progressed and whether
or not all blocks have been read or written.

When a data error indication is caused by a parity
failure in a control code or selection address, the de-
coding of the information is suppressed, and the op-
eration is not executed. As in the case of other data
errors, the UK indication in this case is accompanied
by rop, but the Epck indication for invalid control
codes is always suppressed.

When a unit check is caused by any type of mal-
functioning in the unit or in the exchange, or when
the operator interrupts the operation, data transfer
is immediately terminated, and only the UK bit is
turned on. If the new control word cannot be fetched
because of an error in the core storage address of the
control word, the original contents of the exchange
control word location are not altered. If the fetching
is successful but the control word has an uncorrect-
able error, the new control word in its incorrect form
replaces the old one. Similarly, the exchange control
word location contains an incorrect control word
when the error is discovered by means of parity
checking in the modification cycle. The Eop bit in
the above cases is not turned on regardless of how
late in execution of the instruction the error is dis-
covered.

Whenever a READ or WRITE is terminated with a
unit check for any of the reasons listed above, the
unit has been started and the first block of data has
been moved at the unit. This takes place even if the
first control word cannot be fetched. In case of WRITE,
a word consisting of zeros is written if the first data
word cannot be obtained.

The state of the unitready bit after a Uk depends
upon the cause of the UK indication. If the indica-
tion is due to some malfunctioning in the unit or

control unit or due to the depression of the sTop key,
the unit-ready bit is off. On the other hand, malfunc-
tioning of the exchange and errors introduced in the
transmission of data, control codes, or selection ad-
dresses do not cause the not-ready status.

Enp ExcepTiON (EE)

This bit is used to signal a number of exceptional
conditions usually associated with the recording me-
dium or some subdivision of the data to be trans-
mitted. It indicates that an operation has been ter-
minated because of conditions such as:

1. A unit reached an out-of-material condition
(e.g., empty card hopper, full card stacker, end
of tape during writing).

2. A tape mark has been sensed on tape during
reading or spacing.

8. The erase key has been pressed on the console.

When an end-exception indication is caused, data
transfer is terminated at the end of the current block.
At the same time the EE status bit in the control word
is turned on. The ready status of the unit may or may
not be affected by end-exception. If the EE indication
is due to a condition which requires operator inter-
vention (e.g., empty card hopper), it causes the unit-
ready bit to be turned off. Other causes of the Er
indication do not affect the unitready status bit
(e.g., tape mark).

Enp oF OpErATION (EOP)

This bit in the absence of the UK bit indicates that an
operation initiated for the unit has been completed as
specified by the instruction and its control words, if
any. EOP in conjunction with UK indicates that an un--
correctable data error has been discovered in the last
block. The Eop indication is given for all input-out-
put operations except COPY CONTROL WORD and except
when an seop (suppress end of operation) instruc-
tion is completed without causing a UK or EE indica-
tion.

When no uncorrectable data errors are discovered in
a READ or WRITE, the Eop bit in the control word is
turned on at the end of the block in which data trans-
fer is completed. Data transfer is considered as com-
pleted when all the words as specified by the word
count in conjunction with the chain and multiple
flags have been read or written. When uncorrectable
data errors are discovered, both the Eop and Uk indi-
cations are given at the end of the block in which the
error is discovered, regardless of whether or not the
operation is completed. As long as the above con-
ditions are satisfied, the turning on of the rop bit is

IBM 7619 Exchange 115

not affected by any exceptional conditions as indi-
cated by the presence of the EE status bit.

In the case of coNTROL and LOCATE instructions, the
EOP status bit is turned on when the specified opera-
tion is completed, except in the case of rewinding of
tape, which is completed after disconnecting from the
exchange. In the case of this exception, the Eop bit
signals the initiation of the operation at the unit, and
it follows soon after acceptance of the corresponding
instruction by the exchange.

The rop indication signalling the completion of a
RELEASE instruction is given at the time when the
execution of the released operation is terminated; if
the unit was not operating at the time the RELEASE
was given, the Eop indication comes on immediately
after the control word is reset to zero.

The copy CONTROL WORD instruction is always com-
pleted at the time the exchange allows the computer
to proceed to the next instruction. No rop indication
results from the execution of this instruction.

When any of the five sEop instructions are given,
the seop bit in the control word is set to one during
the initiation of the operation. As a result of this,
the Eop bit in the control word and the indicator reg-
ister is not turned on upon completion of the opera-
tion unless a UK or EE indication accompanies the
EoP indication.

CHANNEL SiGNAL (CS)

This bit comes on when the siGNAL key on the unit is
depressed, and whenever the unit changes from not-
ready to ready status. This change of status can be
the result of a manual intervention or can be caused
by the completion of rewinding of tape. The main
purpose of channel signal is to provide a means of
communication from the operator servicing the ex-
ternal units to the computer. The cs indication can
be interpreted by means of programming as a request
for READ or WRITE instructions. It is also used for
initial program loading.

Channel signal is treated in the same way as other
input-output status indicators, but is not necessarily
related to the initiation, execution, or termination of
any external unit operations. It can originate at any
time regardless of whether or not the unit is operating
and has been previously selected by a LOCATE instruc-
tion. If a cs is sent by a unit while the same unit or
another unit connected to the same channel is en-
gaged in data transmission, the cs status bit in the
control word is turned on immediately without wait-
ing for the end of the operation or the end of the
block. This bit, however, never affects the progress
of the current operation, and the corresponding indi-
cator bit in the indicator register is turned on only
after the termination of the operation.

116 IBM 7030

As a result of the above, cs can be the only input
output status indicator turned on in an input-output
status report, or it can come on together with any
combination of the other status indicators. In the
latter case the cs status bit normally is not associated
with the operation whose termination is signalled by
the other status indicators. When more than one
external unit is connected to a common control unit,
there is no way of identifying the unit which sends
the channel signal. To the program, the cs appears
to come from the common control unit regardless of
which unit caused it.

SuMMARY oF INPUT-OUTPUT STATUS INDICATION

When an input-output instruction is terminated, the
status bits can appear in various combinations: it is
possible to have none of the above status bits on (an
SEOP type of instruction), any one of the above four
can be on, or a few of them can be on simultaneously.

If the rop bit alone is on, the operation has been
completed successfully as specified without detecting
any errors other than those corrected by the Ecc sys
tem.

The EPck, Uk, and EE indications provide for ex-
ceptions to the normal ending of the operation. Some
of the exception indications, however, do not pre-
clude an kop indication. When a data error occurs,
or an exceptional condition is discovered that does
not prohibit complete execution of the instruction,
the Uk and EE indications can be accompanied by xoe.
Examples of such cases are a byte parity error (uk and
Fop) and spacing over a tape mark (EE and EOP).

EPGK always indicates a type of error that interferes
with proper execution of the instruction. Hence,
EPGK and EOP are never on together. The same applies
to uk if the indication is caused by a condition other
than a data error (e.g., a card jam). In the case of &z,
EOP is absent if the condition causing the EE indication
precludes proper completion of the, operation, such
as running out of material prematurely.

When more than one exceptional condition is dis
covered, the exchange turns on all the exceptional in-
dications which apply to the individual conditions.
The Eop bit, however, is never actuated when EPGK is
on or a UK has been caused by conditions other than
data errors. Thus, there is no distinction between
data errors and equipment malfunctioning once a
programming error has been discovered, as in either
case EPGK is accompanied only by uk. Multiple indi-
cations can arise in cases such as when the exchange
discovers an invalid data word address in the same
block in which a data error occurs (Epck and UK), the
unit runs out of material (EPGk and EE), or both con-
ditions occur together (pGk, Uk and EE). Note that

when the unit runs out of material and a data error
is discovered in the last block, the Eop bit accompa-
nies UK and EE regardless of whether or not the opera-
tion is completed.

Figure 39 lists all the possible causes of termination
of input-output operations and the corresponding sets
of status bits that signal the termination. The chan-
nel signal indication is caused independently of the
current operation and can accompany any of the sets
of bits.

Input-Output Status Bits Not Represented by Indicators

Two of the control word status bits, unitready and
suppress end of operation, are not represented by indi-
cators in the indicator register, but they affect the
turning on of other indicators reflecting the progress
of input-output operations. These two bits are lo-
cated in the control words in the exchange, and are
always accessible to the program by means of the
COPY CONTROL WORD instruction.

UNit READY

The unitready bit indicates whether or not the unit
currently selected on the channel is in a condition
to be operated. The bit is on whenever the unit can
accept an instruction from the computer or is execut-
ing an operation. When the bit is off, the unit is in
the not-ready status and cannot be operated by the
computer. A channel can be in the notready status
because of the following reasons:

1. The unit accommodated by the channel cannot
operate because of conditions such as out of ma-

Cause of Termination
Operation . e .
EPGK UK2 UK] EE Coslplefed? Indication Given
Yes EOP, noindication for SEOP instr.,
X Yes EE, EOP
X No EE
X Yes UK, EOP
X No UK, EOP
X X Yes UK, EE, EOP
X X No UK, EE, EOP
X No UK
X X No UK, EE
X X No UK
X X No UK, EE
X No* EPGK
X X No* EPGK, EE
X X No* EPGK, UK
X X X No* EPGK, UK, EE
S No* EPGK, UK
X X X No* EPGK, UK, EE
X X X No* EPGK, UK
X X X X No* EPGK, UK, EE
UK; Data errors (causes listed in paragraph 1 of "Unit Check".)
UK UK due to causes other than those listed in paragraph 1 of
"Unit Check"
* See Programming Note in " Exchange Program Check"

Figure 39. Termination Causes

terial, operator stop, power off, control error or
mechanical malfunctioning.

2. No unit is attached to the channel.

When a unit is not ready, it remains inoperative until
an operator intervenes. An exception occurs during
certain operations such as rewinding of tape; the unit
may be in the notready status while the operation
takes place, but the unit-ready bit is turned on again
at the completion of the operation.

The unitready status bit cannot directly give rise
to program interruption, but it can cause other indi-
cators to be turned on. When an instruction is given
to a unit which is not ready, the unrjy indication is sent
to the computer. Once the operation is initiated, how-
ever, the exchange ignores the status of the unitready
bit. It depends upon the design of each unit whether
changing to not-ready status during an operation gen-
erates a corresponding indication. On most units the
manual stop key will merely remove the ready status
at the end of the current block without forcing unit
check. Thus, the operator may stop the unit between
blocks and hold up a multiple-block operation until
he presses the start key, without cancelling the opera-
tion. On the other hand, if the unit becomes not
ready because of running out of material, it always
causes the end-exception indication, while not-ready
status due to any malfunctioning is always accom-
panied by uk. If UK or EE accompanies the change to
the not-ready status, the current operation is always
terminated.

SurrrEss END oF OPERATION (SEOP)

The suppress-end-of-operation bit is turned on in the
control word whenever an SEOP type operation is ini-
tiated at the corresponding channel. Its purpose is to
suppress the turning on of the rop status bit in the
control word and the corresponding indicator in the
indicator register when an seop instruction is com-
pleted without encountering any exceptional condi-
tions. The seop bit is always turned off at the time
the operation is terminated. This is the instant when
in the case of successful completion the EoP bit in the
exchange control word is normally turned on.

When a data error is encountered or some other ex-
ceptional condition is discovered (which in the case
of the non-seop instructions does not preclude the Eop
indication upon the completion of the operation),
the Eop indication is not suppressed. In this case the
EoP bit as well as the bit indicating the exceptional
condition (Uk or EE) are turned on, and program in-
terruption is permitted. Similarly, an input-output
status report is permitted when an sEop instruction
is terminated prematurely because of conditions such
as discovery of invalid core storage addresses, equip-

IBM 7619 Exchange 117

ment malfunctioning or running out of material. In
these cases, the EOP bit is off, and only the bit signalling
the cause of termination (EPGK, UK or EE) is turned on.
When an sEop instruction causes an input-output sta-
tus report, the seop bit is removed at the time the
status bits in the exchange control word are turned on.

Setting up of Input-Output Indicators

The status of an exchange channel at any time is de-
scribed by the unit ready, exchange program check
(EPGK), unit check (uk), end exception (EE), end of
operation (EoP), channel signal (cs), and suppress
end of operation (sEop) status bits in the control word.
As mentioned previously, EPGK, UK, EE, EOP, and Cs
have corresponding indicators in the indicator regis-
ter. When an operation concerning an external unit
has been terminated and at least one of these five sta-
tus bits in the control word is on, the exchange at-
tempts to set up the corresponding indicator or indi-
cators and thus cause an interruption of the program.
All of the status indicators for a particular channel are
set up as a group at one time. At the same time, the
address of the channel causing the interruption is en-
tered into the channel address register.

The status indicators in the indicator register and
the channel address in the channel address register
can be set up only if both of the following conditions
are satisfied.

1. The five input-output status indicators (EPGK, UK,
EE, EOP, and cs) in the indicator register have previ-
ously been reset to zero either by permitting an inter-
ruption to occur or by turning them off by means of
a BRANCH ON INDICATOR instruction.

2. The interruption system is currently enabled.

If either condition is not satisfied, the status bits re-
main set in the control word, and another attempt to
turn on the indicators is made a short time later.
While the status bits are in the control word, further
instructions for this channel are rejected by means of
a channel busy reject. If both conditions are met,
the indicators and the channel address are set up,
and the corresponding status bits in the control word
are reset to zero. As soon as the status bits in the con-
trol word have been cleared, a new instruction for the
channel can be accepted.

These two conditions permit the program to inter-
rogate the channel address register and make any
other tests without interference from other input-out-
put status reports. Condition (1) protects the chan-
nel address register and prevents any new input-out-
put status indicators from being set while at least one
status indicator due to a previous status report is on.
Condition (2) prevents the destruction of the contents

118 IBM 7030

of the channel address register after the last indicator
belonging to a given set is reset, but before the sub-
routine whose execution is caused by the indicator has
had time to interrogate the channel address register.

Since the input-output status reports cannot be made
while the interruption system is disabled, it is not
possible to turn the input-output status indicators on
without immediately getting an interruption from
the highest priority indicator. If, after getting this in-
terruption, successive interruptions due to the same
status report are not desired, the program can test
and reset the remaining indicators of the set. In any
case, regardlessc of how status indicators are turned
off, the enabling of the interruption system after re-
setting of the last indicator is used as an indication
that all the action associated with the status report of
a particular channel has been taken, and that a new
set of input-output status indicators can be turned
on. The system, therefore, should not be enabled un-
til all information associated with the current input-
output status report has been acted upon or stored
elsewhere for later use.

It follows from the above two conditions that only
one channel at a time can cause input-output status
interruptions. While interruptions due to one chan-
nel are being processed, the exchange holds up any
other status reports due to the same or other channels.
When the computer has cleared the current set of sta-
tus indicators and the interruption system is enabled,
the exchange presents the next set of status indicators
as if they had just occurred.

When, as a result of operating in the disabled mode,
more than one channel is waiting to make a status re-
port, the order of interruption is determined by a
scanner in the exchange. The channel that gets the
highest priority is the one specified by the current po-
sition of the scanner. This order is not related to the
sequence in which the corresponding operations were
terminated, and normally is random. However, when
an inputoutput instruction is issued, the scanner is
set to the channel to which the instruction is ad-
dressed. Consequently, if, while still disabled, the pro-
gram issues a COPY CONTROL WoRD immediately fol-
lowed by BRANCH ENABLED, the highest interruption
priority is assigned to the channel to which the copy
CONTROL WORD is addressed. If this channel is not ready
to present its status report, the subsequent priorities
are assigned in the order of ascending channel ad-
dresses, looping around to the lowest address once
the highest address of the installation is reached. This
synchronism is lost when one channel has presented
its status report, since the scanner may continue to
scan without being able to interrupt.

As soon as the interruption system has been en-
abled, the indicator register is in a position to accept
a new input-output status report. The turning on of
the next set of input-output status indicators, however,
may not follow immediately after the enabling even
if the exchange does have a channel that is ready to
interrupt. The exchange assigns to the input-output
status reports a lower priority than to such activities
as chaining and transmitting data words to or from
core storage. Since each of the latter functions occu-
pies a 10-microsecond cycle, there can be a delay of
a few such cycles in turning on the input-output status
indicators.

No mask bits are available to prevent status indi-
cator interruptions, as there are for some of the other
indicators. If a4 program interruption due to input-
output status is not desired, the system can stay dis-
abled, and the status bits can be obtained from the ex-
change by means of copy coNTROL WORD. Thereafter,
the status bits in the control word can be reset by
means of RELEASE SEOP, thus clearing the channel for
the next input-output operation. The Eop indication
after a normal completion of the operation can be
avoided by using the seop instructions in lieu of the
normal set of instructions.

Channel Address Register

The channel address register identifies the channel re-
sponsible for the current input-output status indicat-
ors. Whenever input-output status indicators are set
up, the channel address of the unit is placed in the
channel address register. The register has word ad-
dress 5 and corresponds to bit positions 12 through
18. These bit positions are the same as those of the
channel address in an input-output instruction.

The channel address of a unit is retained in the
register until the system is in a condition to accept the
next set of input-output indicators, as described in the
preceding section. At this time, the channel address
is reset to zero. Thereafter, at any time when the in-
terruption system is enabled, the exchange may make
a new status report and load a new address in the
channel address register. If the register is addressed
at an instant when its contents are changed, the in-
struction-check or instruction-reject indicator is turned
on, depending upon the instruction involved. For this
reason the channel address registers should be ad-
dressed only when handling interruptions.

The channel address register can be read out only.
The bits are lost whenever information is loaded into
it. In this sense the effect of the register is the same as
that of location 0.

Instructions

This section describes all input-output instructions. It
also lists all the input-output reject and status indi-
cators that may be turned on by each instruction.

Read (RD)

This instruction initiates a reading operation for the
external device specified by the channel address. If
more than one device is accommodated by a channel
address, the instruction applies to the device last se-
lected by a LOCATE instruction.

The right effective address specifies the first control
word to be used. The control word, in turn, supplies
the information defining the data addresses in core
storage and the number of words to be read from
the external device. An Eop (end of operation) indi-
cation is given when the data transfer is completed as
specified. The basic reading operation can be modi-
fied by means of the chain, multiple and skip flags.

INDICATORS
All input-output reject and status indicators, except
channel signal.

Write (W)

This instruction initiates a writing operation for the
external device specified by the channel address. It is
analogous to the READ, except that the skip flag in the
control word is ignored, and uses the same indicators.

PROGRAMMING NOTE

The exchange does not obtain the control word for a
READ or WRITE from core storage until after the com-
puter has proceeded to the next instruction. Addi-
tional control words in a chain are obtained only
when the operation has progressed to the point where
each control word is needed. The programmer must
therefore exercise caution to avoid altering control
words in core storage that are being used in current
operations, unless he specifically desires to make al-
terations in flight. Normally, control words are set
up before an operation starts and remain unchanged
until the end is signalled.

It must also be realized that some kinds of data
errors are not detectable until the end of the block
is reached. It is easier and safer not to use portions
of a block until the whole block has been read into
core storage, nor to alter the core storage locations of
portions of a block being written until it is certain
that the entire block has been written correctly.

IBM 7619 Exchange 119

Control (CTL)

This instruction is used to initiate the performance of
certain functions at the external devices. Among
these functions are:

Turning on the RESERVED light
Sounding the gong

Rewinding of tape

Backspacing of tape

Writing of tape mark

The right effective address contains control infor-
mation that is decoded at the device specified by the
channel address. If more than one device is accom-
modated by a channel address, the instruction may
apply to the control unit or the device last selected by
a LOCATE instruction, depending upon the control
function. The code specifying the control function
appears in the rightmost byte of the address, bits 42
through 49. Only this byte is sent to the unit; the
rest of the right effective address is ignored. An EoP
indication is given when operation is completed as
specified. No distinction is made between instructions
that cause some operations to be performed and those
that are superfluous. The latter case can arise when
the instruction specifies a state or a mode of operation
that is already set up in the addressed unit.

An exception to the normal process of the execu-
tion of an instruction takes place in the case of re-
winding of tape. In order that another tape unit con-
nected to the same control unit may be used while
rewinding takes place, the Eop indication is given and
the operation at the exchange is regarded as com-
pleted immediately after the initiation of the opera-
tion. The unit subsequently proceeds with rewinding
and is in the notready -status. When rewinding is
completed, a channel signal is given and the unit
automatically assumes the ready status. After the Eop
indication following the initiation of the instruction
is received, another tape unit can be selected by means
of a LOCATE instruction.

INDICATORS
All input-output reject and status indicators.

PROGRAMMING NOTE

When a parity error is discovered on transmitting the
control code from the exchange to the unit, the execu-
tion of the coNTRoL instruction is suppressed. The
Uk indication in this case is always accompanied by
EoP, but an Epck indication due to an invalid code is
suppressed.

Locate (LOC)

This instruction is used to select one of several devices
accommodated by a single channel address. Once a

120 IBM 7030

device is so selected, all operations giving this chan-
nel address refer to the same device until a LoCATE
is given to select another device on that control unit.

The right effective address of the instruction con-
tains the selection address for the channel specified
by the left effective address. The selection address is
three bits long and appears in bit positions 47 through
49 of the instruction. It is sent to and decoded at the
addressed control unit. The remainder of the right
effective address is ignored. An Eop indication is given
when the operation is completed as specified.

In the case of the LOCATE, an exception to the regu-
lar instruction rejection occurs. Since it may be de-
sired to switch from a device that is in the not-ready
status to one that is ready, the LoOCATE is accepted re-
gardless of the state of the unit-ready status bit in the
control word. Thus, a Unit Not Ready Reject will
not be given for a LocATE when the device originally
selected is not ready, or the new device addressed by
the right effective address of the instruction is not
ready. Normally, the common control unit will be
ready and will terminate the instruction. The control
word in exchange storage must be manually cleared
from the exchange maintenance console.

INDICATORS

Exchange check reject (exj), channel busy reject
(cB]), exchange program check (EPGK), unit check
(Uk), and end of operation (EOP).

PROGRAMMING NOTE

When a parity error is discovered on transmitting the
selection address from the exchange to the unit, the
execution of the LOCATE instruction is suppressed, but
an kop indication always accompanies the Uk indica-
tion.

Release (REL)

This instruction immediately terminates any opera-
tion in progress at the external unit specified by the
channel address and resets to zero the EPGK, UK, EE,
EOP, Cs and SEOP status bits in the control word. When
the activities at the unit due to the released operation
have ceased, the Eop indication is given.

If the addressed channel is reading or writing, data
transfer is terminated at the completion of the cur-
rent word. The unit then proceeds to the end of the
block, whereupon all control word status bits except
unit ready are reset to zero, and the EOP status bit is
turned on. If a CONTROL or LOCATE is in progress at
the specified unit, the released operation is executed
normally except that at the completion of the opera-
tion all control word status bits indicating special con-

ditions are suppressed and only the Eop bit is turned
on. If no operation is being executed by the unit at
the time the RELEASE instruction is given, all pre-
viously set status bits, except unit ready, are reset to
zero and the EOP bit is turned on immediately. The
COPY CONTROL WORD cannot be released since it is ex-
ecuted before the computer proceeds to the next in-
struction. The address of the second half-word of the
instruction is not used and is ignored.

The RELEASE instruction is accepted regardless of
the status of the unitready bit in the control word of
the addressed channel. If there is no operation cur-
rently in progress at the unit, the status of the unit
does not affect the execution of the instruction. The
pertinent status bits in the control word are reset to
zero, and the Eop indication is immediately turned
on. If, however,'a LOCATE has been issued to a channel
with an inoperative control unit, or an operation has
been interrupted because of the notready status with-
out cancelling it, the RELEASE cannot free the channel.
The RELEASE instruction is executed immediately. In
order to make the channel available, the control word
in exchange storage must be manually reset. The
RELEASE instruction is not subject to channel busy
reject. Thus, when the exchange fails to complete a
RELEASE instruction because of an 1-o unit malfunction,
the 1-0 unit should be made not ready and a RELEASE
instruction should be given for the unit.

INDICATORS
Exchange check reject (ExJ) and end of operation (£oP).

PrROGRAMMING NOTES

It is possible for an exchange channel to turn a set
of input-output status indicators on while the cpu is
issuing a RELEASE instruction to that channel. As a
result, the status bits due to the released operation
may cause a program interruption between the execu-
tion of the RELEASE and the instruction following
RELEASE. Thereafter, as soon as this set of status indi-
cators has been cleared, the same channel will set the
rop indicator signalling the completion of RELEASE
and cause another program interruption.

If a rRELEASE immediately follows a REaD, no data
transfer takes place, but a block of data is moved at
the unit. If rRELEAsE immediately follows WRITE, a
block consisting of one data word is always written
before the operation is terminated. In cases where
RELEASE is given immediately after a CONTROL or
LocaTE, the execution of the subject instruction is
not affected except for the suppression of status indi-
cations due to exceptional conditions.

Note that in the case of manual input devices, a
READ cannot be released until the operator completes
the current word. If the RELEASE is issued after a word

has been completed but before a new word has been
started, the operator has to provide another input
word in order for RELEASE to terminate the operation.

Read SEOP (RD SEOP)
Write SEOP (W SEOP)
Control SEOP (CTL SEOP)
Locate SEOP (LOC SEOP)
Release SEOP (REL SEOP)

The first four of these five seop (suppress end of oper-
ation) instructions are similar to READ, WRITE, CONTROL,
and LOCATE, respectively, except for the use of the
end-of-operation indication. At the time an seop in-
struction is given, the seop bit in the control word is
set to one. As the result of this, the Eop bit in the con-
trol word (and therefore in the indicator register) is
not turned on unless it is accompanied by unit check
or end exception.

The five seop instructions provide a means of
suppressing program interruption upon the comple-
tion of an operation when no exceptional conditions
are encountered during the execution of the instruc-
tion. When an exceptional condition is discovered, as
indicated by the presence of EPGK, UK or EE status bits,
the interruption of the program is not suppressed. In
this case, the status bit indicating the exceptional con-
dition, as well as the Eop bit if the operation has been
completed, are turned on, and program interruption
is permitted.

Receipt of a channel signal during the execution of
an seop instruction does not cause the £op bit to be
turned on. When the operation is completed, the cs
indicator is set, but this does not have any eftect on
the turning on of the indicators pertaining to the
SEOP operation.

The RELEASE SEOP instruction never causes any in-
terruptions. It performs all the functions of RELEASE
except that it does not cause an Eop indication. Thus,
RELEASE SEOP can be used to turn off EPGK, UK, EE, Cs
as well as any previously set Eop bits in the control
word. If the addressed unit is executing an instruc-
tion at the time RELEASE SEOP is given, the SsEoP bit is
temporarily set in the control word.

INDICATORS

Indicators are the same as in the corresponding non-
SEOP type instructions, except that Eop is never turned
on after execution of RELEASE SEOP.

PROGRAMMING NOTE

The eop indication following a RELEASE always ap-
plies to the RELEASE and not to the instruction being
released. Thus, a RELEASE is always terminated by an
eopr indication regardless of whether the instruction
released is READ, WRITE, CONTROL, or LOCATE or the

IBM 7619 Exchange 121

corresponding sEop instruction. On the other hand,
no Eop indication is ever given at the completion of
a RELEASE SEOP.

Copy Control Word (CCW)

The copy CONTROL WORD instruction causes the cur-
rent control word corresponding to the addressed
channel to be sent to the core storage location speci-
fied by the right effective address. The corYy CONTROL
WORD is completed before the computer proceeds to
the next instruction, and no Eop indication is given.

The format of the control word as copied from the
exchange is the same as that described in “Control
Word Format.” The status bits, bits 18 through 24,
reflect the current status of the input-output unit last
selected. The data word address and count fields also
contain the current values and thus reflect the prog-
ress of the operation. The refill address and the three
flag bits are never modified and are the same as those
originally specified in the control word in core storage.

The copy CONTROL WORD instruction is accepted re--
gardless of the status of the unit and can be executed
while an operation is in progress at the addressed
channel without disturbing the operation. Conse-
quently, it is not subject to uNrRy and cBy. The com-
puter program may thus monitor the progress of an
input-output operation, if desired for special proce-
dures.

Since cory CONTROL WORD by definition does not af-
fect the contents of the control word of the addressed
channel, it cannot cause any status bits or status indi-
cators to be turned on. As a result, all errors that
preclude the completion of the CoPY CONTROL WORD
are signalled by turning on the ExJ (exchange check
reject) indicator. In addition to the regular errors
responsible for ek J, this includes any errors discovered
in the process of transmitting the control word to core
storage. When copy CONTROL WORD is terminated by
means of EKJ, the control word is not transmitted
and the addressed core storage location is not altered.

Caution must be exercised in using the data word
address and count information obtained from the ex-
change if copy CONTROL wORD is given while another
operation is still in progress. During both reading
and writing, the data word address of the control
word specifies the core storage address to which the
next exchange reference will be made. On reading,
the address specified by the control word is that of
the data word just being processed by the external
unit. During writing, the control word always gives
an address which is two words ahead of the data word
just being written.

122 IBM 7030

INDICATORS
Exchange Check Reject (EK]J).

PrROGRAMMING NOTES

If a control word is to be interpreted as an instruction
after it is brought from the exchange by copy coNTROL
WORD, it cannot be located in either of the two core
storage words that are fetched by the instruction fetch-
ing mechanism immediately following the fetching of
the copy coNTROL WORD. This restriction is caused by
the fact that at any time the instruction fetching mech-
anism may be two full core storage words ahead of
the instruction being executed. This mechanism is in-
terlocked to detect any changes in these words caused
by the central processing unit, as when an instruction
is modified arithmetically. When this happens, the
word is refetched. The mechanism cannot, however,
detect changes in these words caused by the exchange,
as in the case of cory coNTROL worp. The above re-
striction, therefore, does not apply to ordinary modi-
fication of immediately succeeding instructions by the
central processing unit. There are no restrictions on
the use of the copied control word when it is used as
the addressed operand rather than as an instruction.

Cory coNTROL WORD has a number of applications
in connection with input-output operations. The in-
struction can be used for checking the progress of
reading operations to determine that a certain block
of information has been read before its processing is
initiated. It also can be used to interrogate input-out-
put status bits in the control word if no interruptions
are desired.

Another application of COPY CONTROL WORD is in the
case of termination of input-output operations due to
exceptional causes. If an exchange program check,
end exception, or a unit check occurs, the unit stops
immediately after the block in which the condition
is discovered. A coPy CONTROL WORD is required to de-
termine which of the blocks in the sequence was the
last one to be read or written. For exarhple, it is fre-
quently not possible to insure that the number of
cards in the hopper of a card reader is precisely a mul-
tiple of the number of cards to be read with one in-
struction. An end-exception indication may occur
at any one block if the unit runs out of cards. If more
cards are to be loaded and the group of blocks is to
be completed, the program must, with the aid of copy
CONTROL WORD, compute the remaining number of
words and addresses.

Summary of Exchange Response to Instructions

The instructions listed in Figure 40 include also the
corresponding SEOP instructions.

Read Copy
Write Locate | .Release | Control
Control Word
1. Reject indicators
available :
Exchange Check Reject Yes Yes Yes Yes
Unit Not Ready Reject Yes No No No
Channel Busy Reject Yes Yes No No
2. Computer waits until No No No Yes
end of operation
3. Status indicators
available at the
end of operation:
Exchange Program Check Yes Yes No No
Unit Check Yes Yes No No
End Exception Yes No No No
End of Operation Yes Yes Yes* No
4, Channel Signal** Available at any time except when
channel ‘is in operation

*The End Of Operation is never turned on in a RELEASE SEOP
instruction.
**A Channel Signal indication can be caused by the program only
upon the completion of tape rewinding (initiated by a CONTROL
instruction).

Figure 40. Exchange Instruction Response

Handling of Control Word

Zero Initial Word Count

If the count field in the control word is zero initially,
it is interpreted as 28, The field is not tested for zero
until the first time the control word is modified; the
count at that time is 2!8 — 1, and counting will con-
tinue. The count field cannot specify less than one
word. This treatment of the count field of a control
word is compatible with the treatment of the count
field of an index word.

An initial word count of zero sometimes can be a
convenient way of indicating that the amount of data
transfer is to be governed entirely by the external
unit. Data transfer, however, is terminated by the ex-
change whenever the data word address exceeds the
largest available address of core storage. It is there-
fore not possible to loop to address 0.

Use of Control Word for Indexing

While in an index register, a control word may be
used for indexing like any other index quantity. A
common use is to treat the data word address of a con-
trol word as a base address modifying a relative ad-
dress. Indexing instructions may be used to operate
on or with the data word address, the count, or the
refill address.

Bits 0 to 17 form the word address, both for index-
ing and for use in the exchange. Bits 18 to 24 form
a bit address and sign for the purpose of indexing, but

they are ignored by the exchange when it obtains a
control word from core storage; normally bits 18 to
24 will be zeros. Bit 25, the chain flag, may set the in-
dex-flag indicator in the indicator register during in-
dexing operations for use by the program as needed.
Bits 26 and 27 are not used for indexing operations,
but they are carried along unchanged when loading,
storing, or refilling index words.

The control word and index word formats are com-
pared in Figure 35.

State of Control Word in the Exchange

The control word in the exchange always reflects the
current status of a data transfer operation. When the
operation is terminated, the contents of the control
word, except for its status bits, are not changed until
the exchange fetches the control word for the next
READ or WRITE that is addressed to the same channel.
It is not changed if the following READ or WRITE is re-
jected or is terminated because the initial control
word address is not accessible to the exchange. By
using COPY CONTROL WORD, the program thus can
always inspect the control word and determine at
what point the last operation has been terminated, or
how far the current operation has progressed.

If such a reference is to be made, the data
word address field in the control word always
contains the address of the core storage location to
which the next data word reference will be made.
This field thus always reflects the current status of
data transfer between the exchange and core storage.
The count, on the other hand, always indicates how
many words remain to be transferred between the ex-
change and the external unit. When any data trans-
fer operation is terminated because of exhausting the
control word count, the count is zero, and the number
of words transmitted between the exchange and core
storage is always the same as the number of words
transmitted between the exchange and the unit. If
this is the intended type of termination, it is gener-
ally not necessary to use the information left in the
control word. Interrogation of the control word, how-
ever, may be necessary if the operation is terminated
under block control or because of some type of error.

During a READ operation the data word address in
the control word is always one word ahead of the ad-
dress of the last word sent to core storage. The last
word sent to core storage is the one whose reading has
just been completed by the unit, regardless of whether
the whole word has been completed or just a few bytes
have been read. In the latter case the rest of the word
is filled up with zeros. The data word address indi-
cated by the control word thus is always also one word
ahead of that of the word whose handling has just

IBM 7619 Exchange 123

been completed by the exchange and the unit and,
if an operation is currently in progress, specifies the
location of the word that is currently being processed
by the unit.

The count in the above case is decreased from the
initial count by the number of words received from
the unit. Since the exchange executes a COPY CONTROL
WORD only after all pending word transfers to or from
core storage have been completed, this number is al-
ways the same as the number of words transmitted to
core storage, and the current count is equal to the
number of words remaining to be read. If the area
described by the control word has been fully used,
the count is zero. The sum of the current values of
the data word address and count fields is always equal
to the sum of the original values of these fields. When
the operation is terminated within a word, no infor-
mation is available as to how many bytes of the last
word have actually been read and how many have
been provided by the exchange.

For wrIiTE, the data word address in the control
word is always one word ahead of the location from
which the last data word was fetched. Normally, how-
ever, the word last fetched is not the one currently
being processed by the unit. In order to insure con-
tinuous data transmission, each exchange channel pro-
vides a buffer for storing two data words for the cur-
rent operation. On writing, one of these buffer posi-
tions contains the word currently being disassembled
while the other position in the meantime is loaded
with the next word to be sent to the unit. When a
WRITE is terminated by the unit, each of these buffer
positions contains a complete new data word. The
exchange always replenishes the buffer position last
used, even if only part of the word contained in it has
been sent to the unit. Consequently, since the control
word always refers to the core storage location from
which the next data word will be fetched, the data
word address is three addresses ahead of the last word
handled by the unit. The program cannot determine
if the whole word or only a few bytes of the last word
have been sent to the unit.

When a cory CONTROL WORD is issued to a channel
executing a WRITE, one of the buffer positions normally
is in the process of being disassembled. Consequently,
the data word address in this case is two words ahead
of the word currently being handled by the unit. The
count on writing indicates the number of words trans-
ferred between the exchange and the unit. It includes
also any words whose handling has been interrupted
and which have not been completely recorded at the
unit. Except for the initial loading of the two buffer
positions during the initiation of an operation, the
count field is stepped down whenever the data word
address is stepped up. Thus, unless the initial count

124 IBM 7030

is one, the sum of the current data word address and
count is always two greater than the sum of the origi-
nally specified contents of these two fields. This rela-
tion holds also whenever the control word is copied
during the execution of a WRITE.

When all data words specified by the control word
have been fetched, further core storage references are
suppressed. Writing, however, still proceeds until the
last two words contained in the exchange buffer have
been written. As each of these words is sent to the
unit, the count is stepped down until it finally reaches
zero. At the same time the data word address is
stepped up, even though it is not used. When the
operation is completed, the count is zero and the
data word address refers to a location that is three
words ahead of the one from which the last word was
fetched. The unused data word addresses are not
tested for invalidity and hence cannot interfere with
a proper termination of the operation.

The following rules summarize the relation be-
tween the data word specified by the control word and
that last handled by the unit when an operation is
terminated.

OPERATION CONTENTS OF CONTROL WORD

TERMINATED DATA WORD ADDRESS COUNT
READ 4, C,—N
WRITE A, +2 C,—N

4, = address of next data word to be handled by
an external unit
= 1 4 address of last word read or written
=A;+ N
A; = initial data word address
N = number of words transmitted between the
exchange and the unit

C; = initial count

If a reading or writing operation is terminated by
a RELEASE, these rules do not hold to the extent that
the last word read by the unit may not be transferred
to core storage and, on writing, both of the buffer
registers may not be filled up.

When an inaccessible core storage location for data
transmission is specified, the error is discovered at the
time the exchange attempts to transmit data to or
from that location. This takes place after the control
word has been modified, and hence the data word
address at this time specifies a location that is one
word beyond the invalid location. The status of the
unit and the contents of the control word for the lat-
ter case are described in more detail in “Exchange
Program Check.”

When chaining is specified, the exchange obtains
the new control word immediately before referring
to the first core storage location specified by the new

control word. On reading, the new control word is
fetched when the data transfer specified by the preced-
ing control word has been completed and the ex-
change has already assembled the first data word to
be sent to the area defined by the new control word.
This timing does not depend upon the original word
count of the control word nor on the state of its mul-
tiple flag.

On single block writing, chaining normally takes
place when the count in the control word is stepped
from 2 to 1. When a control word on chained writ-
ing originally has a word count of one, the next con-
trol word is obtained one word time (the time re-
quired to write one word) after fetching the control
word with the count of one. If the first control word
of 2 wriTE has a word count of one, and the chain
flag is on, the next control word is fetched immedi-
ately after fetching the data word for the first control
word.

As a result of the buffering action of the exchange,
the new control word is fetched and stored in the ex-
change ahead of the time it actually starts controlling
the operation of the unit. The restarting of the unit
at the end of a block depends upon the multiple flag
of the control word controlling the transfer of the
last data word of the block. The next control word
takes over the control only after the unit has re-
quested the first byte of the data word belonging to
that control word. In order to accomplish this, the
exchange always stores the multiple flags of the per-
tinent control words.

An exception to the above rules for chained writing
occurs when the current control word has both the
multiple and the chain flags on. In this case the new
control word starts a new operation as far as the unit
is concerned, and chaining takes place only after the
exchange buffer has been cleared and the preceding
block has been terminated. If an error is discovered
in the completed block, the operation is terminated
at the end of the block, and the exchange contains the
old control word at the time of program interruption.

Initial Program Loading

In order that a program can be loaded into the ma-
chine without a programmed READ instruction, an ini-
tial program loading technique is provided. The ini-
tial program can be loaded from any unit accommo-
dated by the exchange and is based on a special in-
terpretation of channel signal. The loading is ini-
tiated by means of the INITIAL PROGRAM LOAD key,
which sets up the exchange and the computer in a spe-
cial mode. Once the INITIAL PROGRAM LOAD key is de-

pressed, the first channel signal interruption causes
the channel responsible for the interruption to read
in a specified number of words into a specified core
storage area.

The INITIAL PROGRAM LOAD key is physically located
on the operator’s console, although not an integral
logical part of it. If the system does not contain an
operator’s console, it is provided in a separate box,
which may be placed at a convenient operating point.

The initial program, as recorded on the medium
from which it is to be loaded, must start with a con-
trol word that specifies the number of words to be
read and the core storage address at which the first
word of the remainder of the program is to be stored.
This control word is immediately followed by the
program itself. When the program has been read, the
computer automatically starts execution of the new
program. Specifically, the depression of the INITIAL
PROGRAM LOAD key has the following effect:

The execution of any program by the computer is terminated.

The interruption system is temporarily disabled.

All input-output operations on the exchange are terminated.

All control words in the exchange are reset to ze