I B M Reference Manual

704-709-7090 Programming Package
for the IBM 7030 Data Processing System

EM Reference Manual

704-709-7090 Programming Package
for the IBM 7030 Data Processing System

The program descriptions in this manual are considered pre-
liminary and subject to future revision. Revisions will reflect
changes in the programs and correction and clarification of de-
tails.

Strap-1 was produced by the Los Alamos Scientific Laboratory.
The chapter describing Strap-1 was prepared by IBM, but in-
cludes many descriptions and examples supplied by Los Alamos
personnel. The Simulator programs and write-up were pro-
duced by IBM.

Neither IBM nor Los Alamos guarantee the accuracy of the
Strap-1 and Simulator programs. Furthermore, neither IBM
nor Los Alamos assume any responsibility for errors resulting
from the use of these programs.

© 1960 by International Business Machines Corporation

STRAP-1

CONTENTS

STRAP CODING FORM .
EXPRESSION OF MACHINE INSTRUCTIONS
Symbolic Instruction Formats

Data Description (dds)

Mnemonics

Numbers and Symbols

Arithmetic Expressions .

System Symbols
Variable-in-Number Field Format .

PSEUDO-OPERATIONS .
Pseudo-Operations that Create Storage Elements . .
Entry Mode in Data Definition Statements
The Form of D in a Data Definition Statement
Pseudo-Operations that Define Symbols

Pseudo-Operations that Give Directions to the Comp11er

IBM 7030 SIMULATION SYSTEM

PROGRAMMER'S NOTES
Setting Up Input for Strap-1 M
Strap-1 Binary Output

Card Formats Accepted by the Slmulator Loader

Preparing a Binary Deck for the Simulator . .
Input-Output Usage :
Breakpoint Check-Out

OPERATOR'S NOTES

Copying Tape with the System Tape detor
Assembly Using Strap-1
Simulating a 7030 Program

Summary of Sense Switch Settings

Summary of Stops

APPENDIX A;
APPENDIX B;
APPENDIX C;

APPENDIX D;

Strap-1 Mnemonics .

Strap-1 Pseudo-Operations

Symbolic Descriptions and Mnemomcs for IBM 7030
Error Marks

i7
17
19
23
30
32

38

38
39
39
41
42
43
44

47
47
48
49
53
54

56
59
60
68

STRAP-1

STRAP-1 is a symbolic programming system for the IBM 7030 which utilizes a 704 with
32,768 word capacity for assembly. It is a planned predecessor of Strap-2, a more
elaborate programming system for the 7030 which is to use the 7030 instead of the 704
for assembly. Because Strap-1 is a planned subset of Strap-2, the specifications de-
fined here are applicable to both Strap-1 and Strap-2.

Strap-1 specifications are divided into three categories: Category 1 pertains to the
Strap coding form. In this category a form is defined that conveniently allows for the
expression of both machine instructions and pseudo-instructions that direct the assem-
bler itself. Category 2 pertains to the expression of symbolic machine instructions.

In this category, definitions are made covering symbolic instruction formats, the fields
which make them up, and the various mnemonics, classes of symbols, and numbers
that may be used in fields. Category 3 pertains to the expression of the compiler's
pseudo-instructions. In this category pseudo-instruction mnemonics, formats, and
addresses are defined.

STRAP CODING FORM

The coding form is directly related to the instruction card form. Both have 80
columns and are divided into 4 fields. These four fields and their respective positions
are:

1 2 9 | 10 72|73 80
CLASS NAME STATEMENT IDENTIFICATION

STRAP CODING FORM

The purpose of each field is:
1. Class (1 column): to identify the card format (binary, decimal, symbolic,
etc.). '
2. Name (8 columns): to identify the statement.
3. Statement (63 columns): to express a machine instruction or a pseudo-
instruction,
4. Identification (8 columns): to identify the card.

Card identification (columns 73-80) is reproduced on the listing, but does not contribute
any information to the assembly program for translating instructions.

EXPRESSION OF MACHINE INSTRUCTIONS

Machine instructions are written symbolically on the coding form described previously.
They are usually entered one per line, according to a prescribed format that varies with
the type of instruction operation.- The instructions are written with fixed mnemonic
operation codes.

Symbolic instructions are divided into fields (operation, address, offset, etc.) by
commas. These fields may be stated within the general symbolic forms of the system,
and, when so stated, constitute symbolic expressions. The order and manner in which
such symbolic expressions are written in specifying the elements of any particular in-
struction are dictated by the symbolic instruction format; that is, a general type that
provides for the expression of a whole class of particular machine instructions. Major
fields may be further divided into subfields or modified by expressions contained in
parentheses, such as index register specifications, secondary operatlons in progres-
sive indexing, and so on.

1. A 11-0 double punch (;) is used to imply the end of a statement, so that multiple
statements may be written per line. The number of instructions that may be written on
one line is limited only by the number of columns available in the statement field of the
card. The symbol in the name field of a card having more than one instruction in the
statement field is associated with the first instruction only. The remaining instructions
are treated as if they appeared on separate cards having blank name fields.

2. A single instruction cannot be continued from one card to another.

‘3. A comment may follow any instruction. A comment is initiated by the symbol '
(an 8-4 double punch) and is terminated either by the end of the card or by a ; . Thus,
the character ; may never be used in a comment. A ' in the name field causes the
whole card to be treated as a comment; it will be printed on the listing but will not
otherwise affect the assembly.

SYMBOLIC INSTRUCTION FORMATS

Symbolic instructions are entered in the statement field. Within this field, variable
length operation codes and address expressions are separated by commas and form)
subfields. A variable length modifier to either an operation or an address is enclosed
in parentheses and attached to the modified subfield. Blanks have no meaning in any
field except to indicate the spacing desired on the printed output listing. Blank cards
are ignored. The twelve symbolic instruction formats for Strap-1 are:

Format Type Operation
1, OP(dds), Ajg(D Floating point
2, OP, Aj9(D) Miscellaneous, unconditional branch, SIC
3. OP,J, Aj9(I) or OP,J,Aq1g(T) Direct index arithmetic ‘
4. OP,J, Ajgor OP, J, A1g Immediate index arithmetic
5. OP,J, B1g(K) Count and branch
6. OP,B19(K) Indicator branch
7. OP(dds), A24(I), OF7(1") VFL arithmetic, connect, convert
8. OP1(OPg)(dds), Aoy(I),OF7(I") Progressive indexing

Format Type

9.
10.
11.
12.

0P,J,A15(0),A'1g("

OP, Agy(@,B1gK)

OP, (OP,), A7(D), CW; (I
LVS, J, A, A", A", A", ...,

Operation
Swap, transmit full words
Branch on bit
Input-output
Load value with sum

Definitions of the above format symbols are:

1.
2.

~

7.
8.
9.

10.
11.
12,
13.

OP and OP;y
OPy

An

Big
1

K

OTF'y
dds
J

Aq
CWig
LVS
primes

Primary instruction operation.

A secondary operation permitted only in progressive indexing
and input-output.

An "n" -bit data address.

A 19 -bit branch address.

A 4-bit index address where (0) signifies no indexing and (1.)
to (15.) signifies indexing by the corresponding index
register.

A 1-bit index address where no modification (0) or modifica-
tion by index register 1 (1.)are the only possibilities.

'A 7-bit offset field.

Data description (see '"Data Description').

A 4-bit index address that refers to an index register as an
operand. Here (0) refers to index register 0, word 16.

A 7-bit input-output channel address.

An 18-bit control word address.

Refers to one specific operation: Load Value with Sum

Used to distinguish otherwise identical fields in a format.

There is a general right-to-left drop-out order for all fields separated by commas.
For example, a VFL instruction (format 7 above), for which the offset and its index
modifier are zero, is written:

OP, A (1)

The comma is the major separator for the symbolic instruction types. If there are less
than the maximum number of major symbolic fields in a given instruction expression
(as indicated by the comma count), the instruction is compiled as if the missing fields
contained zeros and had been added at the end of the statement. Such fields, whose
contents are implied in a standard way by the omission of any explfcit specification, are
called null fields.
(indicated under "Data Description') of those subfields of a data description which ex-
press mode and byte size. Within a major field, a parenthesized subfield may be made
null by omission. Thus, in the VFL example above, if the main index designation were
to be zero but the offset and its index modifier (which in the hardware also modifies
field length and byte size) were both to be one, the instruction could be written:

A null field is always compiled as a zero, with the exception

OP, A, 1(1.)

A major field may be null, even though other non-null fields follow it. Such is the case
if nothing but the comma denoting the field termination is written. Thus, in the example
just shown, if the offset and its modifier were both to be one but the principal address
and its modifier were both to be zero, the instruction could be written:

oP, , 1(1.)

DATA DESCRIPTION (dds)

The small letters "dds'" enclosed in parentheses in the special instruction formats
stand for the data description field. This field is established by specifying:
1. M use mode
2, L field length, and
3. BS byte size

These three entries appear in the above order within parentheses and are separated by
commas, thus: (M, L, BS).

A data description given with any of the four data entry or data reservation pseudo-
operations (DD, DDI, SYN, and DR) is attached to the symbol in the name field, and is
automatically invoked whenever that symbol appears in the principal address field of an
instruction. When a string of symbols is added in an address field, the last symbol
written is the one whose data properties control those of the instructions. When the
data description is specified explicitly as a modifier to the operation code in the two
machine instruction formats where it applies (VFL and floating point), it overrules any
other data description derived from a symbolic address. Thus, in straightforward
coding, it is unnecessary to write a data description in machine operations.

A description of the method by which a data description may be attached to the symbol
that names a piece of data is given under '"Data Definition. "

There are seven fixed use mode designators:
1. N Normalized Floating Point

2. U Unnormalized Floating Point
3. B Binary

4, BU Binary Unsigned

5. D Decimal

6. DU Decimal Unsigned

7. P Properties Mode

The mnemonic "P" in the mode field of a data description has the following meaning:
(P, RIVER)

implies in an instruction that the data description associated with the symbol RIVER
is to be invoked as if it had been written out explicitly. Thus, in an instruction, the
dds of RIVER overrules anything implied by the symbol in the major address field.
The P mode can be used only with legal machine instructions, never with a pseudo-
operation.

Within a data description field, the usual right-to-left drop-out order and null field
conventions hold (except, as indicated, that the mode field may not be null), so that a
data description may appear in any of the following four forms:

(M) Field length and byte size are null
(M, L) Byte size is null

(M, , BS) Field length is null

(M, L, BS)

If the field length is null, a field length of 0 (effectively 64, except in the case of
immediate VFL operations, where it is 24) is compiled. If the byte size is null, the
compiled byte size is a function of the mode:

Mode Standard Byte Size

D or DU 4

B 1

BU 8

NorU Fixed format of 64 bits; field length

and byte size not appropriate.

Cases can arise from programmer errors in which a data description and an opera-
tion are not mutually consistent. In this case, the operation overrules. If there is no
way to obtain a data description from either the symbolic address or an explicit data
description field, three cases arise:
1. The operation symbol can stand for either floating point or VFL operations
(+,-,%*,/). The operation is assembled as a VFL operation with data description
(BU, 64, 8).

2. The operation symbol can stand for a VFL operation only (M+1). It is assigned
a data description (BU, 64, 8). If VFL immediate, (BU, 24, 8) is assigned.

3. The operation can stand for a floating point operation only (-A, *NA). The oper-
ation is assembled as normalized floating point, except for E+1 and its modified
forms, which are made unnormalized unless overruled.

Anerror mark will be printed on the listing in any of these cases. (See description of
error flag "M" in Appendix D.)

MNEMONICS

A complete list of all machine mnemonics is included in Appendix A. Both operation
codes and system symbols are included in the list.

A complete list of Strap-1 pseudo-operation mnemonics is given in Appendix B.
NUMBERS AND SYMBOLS

Two different number systems, in general, run through the Strap-1 language: the
ordinary system of real numbers, and a bit-address numbering system. The ordinary
real numbers are restricted in all non-data fields to being integers. Real numbers that
are not integers may be entered as data, but they may not take part in arithmetic ex-
pressions nor may they be symbolized, so that the general forms of the language are
actually limited to integers and bit addresses.

A bit address is a style of writing a machine address; it consists of a pair of integers
separated by a period. The integer to the left of the period specifies a word address,
and the integer to the right of the period specifies a bit address. Thus, 6.32 is the
decimal equivalent of either a 19- or 24-bit binary address specifying bit 32 of storage
location 6--the bit preceded by exactly six and one-half storage words. (Note that only
the presence of the period distinguishes a bit address from an integer.)

Example: 505.17 =500.337 = 0. 32337

As the name ''bit address" implies, the two integers are converted to and carried as
24-bit binary integers, such as are appropriate to the address fields of VFL instructions.
When used in the address field of an instruction for which a shorter address is appro-
priate, a bit address is truncated to the correct length and inserted. The location
counter contains a bit address. There is no limit on the size of the pair of integers in

a bit address except that 64 x word address portion + bit address portion = L2 4.

Thus, the address designation A(I) has two possible meanings:

1. TIfIis a bit address, then it designates an index word and is compiled in the
so-called I field.

2. If Iis an integer, then an address equal to A plus I times the field length of A
is compiled.

A symbol is any sequence of six or fewer alphabetic and numeric characters con-
forming to the following conditions:
1, It contains only alphameric characters.
2. Its first character is specifically alphabetic.
3. It appears in the name field of an instruction, by virtue of which it is "defined"
and is assigned a value that is either a 24-bit binary address or an integer, or
occasionally both.

A given symbol may appear in the name field only once. The name of an ordinary
machine instruction or data entry pseudo-operation is set equal to the value of the
assembly program location counter at the point of its appearance in the code.

Symbols that identify storage elements in the object program are automatically
assigned bit addresses that locate these storage elements. A symbol may, however, be
given the value of an integer through the use of a "'synonym' pseudo-operation. Thus,
in general, both bit addresses and integers may be symbolized. The term "integer"
is used to denote either an integral number or a symbol that takes on an integral value.

Symbols that name instructions themselves are automatically assigned data descrip-
tions. Specifically, instruction-naming symbols are given field lengths equal to the
lengths of the particular instructions named (either 32 or 64), and are defined as un-
signed binary with byte size 8.

A programmer symbolized field is a field that may contain programmer symbols
and/or system symbols. Of the fields shown in the instruction formats, all may con-
tain programmer symbols except the operation field and the mode field of a data
description.

Integers in programmer symbolized fields are always converted to binary. They
are limited in length to the length of the field in which they are to be inserted. An
integer larger than 24 bits cannot be symbolized.

Bit addresses and symbols for bit addresses are intended primarily for use in
address fields of machine instructions. Integers and symbols for integers are intended
primarily for use in fields for which they seem more appropriate: counts, shifts,
field length, byte size, and so on.

10

ARITHMETIC EXPRESSIONS

Arithmetic expressions in Strap-1 may be composed of addition and/or subtraction
of any combination of symbols, integers, and bit addresses. Although integers and bit
addresses are generally used in different fields, algebraic addition of the two types of
numbers is defined; the result is a function of the type of field into which the sum is
to be inserted.

Integers add into all fields as integers; that is, the units digit adds into the low-
order position of the field. Symbols for both bit addresses and integers are signed
numbers. The number of additive operands in an arithmetic expression is limited only
by the space available on the card.

Example: SAM- JOE+ FRED- 72. 386+5,

This example, where SAM and JOE are defined as bit addresses and FRED is an integer,
is, ingeneral, a legal address. The data description of the final symbol, FRED, applies
to the whole combination.

If the field for which the address is intended is signed. (for example, the value field
of XW or VF), the sign will be placed in the correct bit and the true value will be
compiled.

If the final result is negative and the n-bit field for which it is intended is unsigned,
a 2's complement is formed and inserted, except in the case of EXT (L, L") where|L|
and|L'|are used. For example, in the case of the 7-bit offset field of a symbolic in-
struction, negative numbers may be used to describe the low-order position of the data
field in relation to the left rather than the right end of the accumulator. Thus, the 128
bits of the accumulator, proceding from left to right, bear the offset addresses "127,
126,....1,0" or, alternatively, of -1, -2,.... -127, -128." The programmer is re-
minded that a 2's complement must be used with care on the 7030 in order not to cause
the address invalid indicator to be turned on.

A positive result is inserted as a true value.

Either an integer or a bit address, or a combination of the two, may app;ear in any

programmer symbolized field with five restrictions:

1. The "I" or "K" index field must contain at least one bit address term.

2. The entries in an array specification must not contain any bit address terms.
In EXT (L, L"),(L, L') is not considered an array specification (See "Pseudo-
operations that Direct the Compiler" for a discussion of DR and the specifica-
tions of arrays).

3. A period may not appear in the field of a parenthetical integer entry. A bit
address appearing in such a field is treated as a 24-bit integer. For example,
V+I, (.18) 4.32 is not allowed, but V+I, (.18)9 is.

4. No arithmetic may appear in the name field, which is reserved entirely for the
definition of symbols. Only one symbol per statement may be defined in this manner.

5. Arithmetic expressions may not appear in the operation code part of the opera-
tion field, the mode subfield of the data description field or any entry mode
field. These exceptions are reserved for designations whose meanings to the
compiler are absolute and may not be symbolized.

11

Rules for Combining Integers and Bit Addresses

The following rules describe the method by which bit addresses and integers are
truncated and added:
1. The numbers are shifted with respect to each other by the proper amount. See
the following diagram.
2. The numbers are assumed to be signed 24-bit integers before the operation.
Addition is algebraic.
3. The result is complemented if necessary.
The result is truncated if necessary.
5. The result is inserted into the correct position in the operation word.

~

Although the diagrams show the final sum truncated to the appropriate length, the
bits are not actually discarded unless they fall outside the address field of the instruc-
tion. Some operations do not use all of the space available in their address fields
(transmit, input-output select), and in these cases bits may be placed in the unused
portions.

An error indication is given if non-zero bits are discarded when truncation occurs
(see explanation of "V'" error flag in Appendix D), except in the case of index fields
where a '"1'" bit in the fifth position from the right(in the "16" position) is discarded

without error indication.

Truncation occurs for particular fields in the following manner:

1. A24 Bit Address

Rule: No truncation I 24 bits j Bit Address Term
Note: An integer in -
a 24-bit field L 24 bits j Integer Term
counts bits [24 bits j Sum
2. Ajq Half-Word Address | 19 bits [5 bits| Bt Address Term
Rule: Leftmost 5 L 24 bits] Integer Term
bits and right—_____ ——
most 5 bits {5 bits| 19 bits T5 bits| Sum
[— ——
are truncated
from sum

Note: An integer in a 19-bit field counts half-words

3. Ajg Full-Word Address 18 bits |6 bit?l Bif Address Term
Rule: Leftmost 6 and L 24 bits j Integer Term
rightmost 6 bits .——-—}-3—.—— o —————
are truncated Lg__lt_s_[18 bits G_EIES_E Sum

from the sum

Note: An integer in an 18-bit field counts full words
or unit address, control operation, control word
address, and so on, in right I-O address.

12

Aqy. Signed 11-Bit Address | 24 bits

Rule: Leftmost 13 bits | 24 bits

are truncated from

] Bit Address Term

J Integer Term

the sum. Rightmost ! 13 bits |11 bits [1 bit | sum

e e e

11 bits plus sign are
placed in leftmost 12
bits of address field
of shift and Add Immediate
to Exponent instructions
Note: Integer counts number of bits in shift or
number of bits to be added to exponent of
floating point word

OF, Offset | 24 bits |

Rule: Leftmost 17 bits of | 24 bits |
sum are truncated F——mm—————————— :

Note: Integers count number | 17 bits |7Dbits

of bits of offset
Bit address 1.32 = .96 = integer 96

FLg Field Length | 24 bits |

Rule: Leftmost 18 bits | 24 bits B
of sum are truncated -—-— ————— -

Note: Integers count length | __18 bits I 6 bits I

of field in bits
Bit address 1.0 = .64 = 0 not error marked

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

Sum

Bit Address Term

Integer Term

~

Sum

Bit Address Term

Integer Term

BS3 Byte Size [24 bits |
Rule: Leftmost 21 bits l 24 bits J
of sum are truncated i 21 bits |3 bits |
Note: Integers count byte b
size in bits
.8 =8 =0 not error marked
I, J 4-Bit Index Fields 18 bits |6 bits
Rule: Leftmost 20 bits
and rightmost 6 24 bits
bits of sum are N —
truncated ! 20 bits l4 bits I 6 bits| Sum

Note: Integers represent
index register number.
A '"1'" in the bit position
immediately to the left
of the final sum field is
discarded with no error
indication.

13

9. K Single Bit Index Field | 18 bits l 6 bits Bit Address Term

Rule: Leftmost 23 bits

and rightmost 6 I 24 bits | Integer Term
bits of sum are __ .
truncated ! 23 bits [1Dbit| 6bits | Sum

Note: Integers specify either
index register 0 or index
register 1. A "1" in the
bit position that corresponds to "'16'" in the
sum is discarded with no error indication.

10. A,7 I-O Left Effective Addressl 19 bits |5 bits | Bit Address Term

Rule: Leftmost 17 and l 24 bits l Integer Term
rightmost 5 bits
are truncated from

sum ' 17 bits [7 bits| 5bits | Sum
Note: Integers specify channel
address

SYSTEM SYMBOLS

System symbols are symbols whose values are fixed in the compiler. They are
identified in programmer symbolized fields by the appearance of the special prefix
character $ (which, as one of the non-alphameric characters, can never appear in a
programmer symbol), followed by five or fewer alphabetic or numeric characters.
System symbols may appear in arithmetic expressions in programmer symbolized
fields where, in cases where restrictions apply, they can be considered the same as
numeric entries because their values are immediately available to the compiler,

All system symbols that represent the addresses of special registers in storage
(3A0C, the All Ones Counter) or special bits in storage ($LC, the Lost Carry indicator)
are bit addresses. All others are integers or real numbers.

The appearance of the $ character alone makes for a special system symbol that
provides a standardized substitute in place of a name for the current statement. That
is, the character $ is a bit address which, in any particular statement where it appears,
functions as if it had been defined by being written in the name field of that statement.
Because it represents the value of the location counter when the instruction is encounter-
ed by the compiler (if the instruction actually compiles space in the program), the
appearance of the $ as follows:

B, $-2.

means "Branch to the instruction which begins two full words before this branch in-
struction. ' In another illustration:

B, $+.32
the meaning is "Branch to the next instruction.', effectively a '""no operation."
Another special use of the $ character is to prefix any operation code in this manner;

$OP. This directs the compiler to suppress any error indications that arise in con-
nection with the compilation of this statement.

14

The system symbols are:
1. Index Registers

$0 through $15, identical to $X0 through $X15, represent index registers 0 through
15, addresses 16. 0 through 31.0 in storage. For example, $5 (or $X5) will be cor-
rectly replaced by the index field 5 if it appears in an I or J field, or by the address
21,0 if it appears in an address field.

2. Special Registers

The mnemonics for the system symbols that stand for special registers in the 7030
are listed below with the bit address and name for each.

Bit Address Mnemonic Name
0.0 $Z Word number zero
1.0 $IT Interval timer
1.28 $TC Time clock
2.0 1A Interruption address
3.0 $UB Upper boundary
3.32 $LB Lower boundary
3.57 $BC Boundary control
4,32 $MB Maintenance bits
5.12 $CA Channel address
6.0 $CPU Other CPU
7.17 $LZC Left zeros count
7.44 $AOC All ones count
8.0 $L Left half of accumulator
9.0 $R Right half of accumulator
10.0 $SB Sign byte ’
11.0 $IND Indicator register
12,20 $MASK Mask
13.0 $RM Remainder register
14.0 $FT Factor register
15.0 $TR Transit register i

3. Indicator Bits

The symbol for any indicator bit may be prefixed with a dollar sign and placed in a
programmer symbolized field, where it will represent the correct bit address in word
11. Note that when the indicator symbols are inserted in the "branch on indicator”
instructions, the dollar sign prefix is omitted. System symbols for indicator bits are
listed in Appendix A.

4. Input-Output Addresses
Since the actual numeric addresses which are to identify particular I-O units and
channels may be chosen arbitrarily, system symbols that represent integers are pro-

vided for use in addressing I-O equipment. The numeric values of members of this
set of system symbols, unlike the values of all other system symbols, may vary from

15

one installation to another in order that RDR, for example, may represent the card
reader channel address independently of what that address, in any particular installa-
tion, may be. I-O system symbols are:

Symbol Meaning

$PCH Punch (Channel Address)
$PRT Printer (Channel Address)
$RDR Reader (Channel Address)
$DISK Disk Unit (Channel Address)

Note: The arcs of a disk may be addressed
by any legal symbolic integer expression
evaluated modulo 212 to assure a valid
arc address.
$CNSL Console (Channel or Unit Address)
$TC1,TC2,...$TCK Tape Channels 0, 1,...,K

If more than one punch, printer, console or any other input-output unit is attached to
the machine, the same numbering system used in channel and tape addresses is adopted,
where $CONSL=3CONSLO, and so on. Thus, one may have $PRT0, $PRT1, $PRT2,
ete,

At each installation's option, some system symbols representing equipment not
included in the particular system at hand may elicit error flags in the listings.

5. Mathematical Constants
Four mathematical constants, useful in many scientific and engineering problems,

can be represented by system symbols. The four system symbols and their real
number values are:

Symbol Mathematical Constant
$E e
$M logloe
$N loge2
$PI1 d

These four symbols can be used only in the data field of a DD statement using normal-
ized floating -point mode. All of the system symbols in classes 1, 2, and 3 are bit
addresses and are assigned standard data descriptions with mode binary unsigned, byte
size 8, and a field length equal to the length of the register (or bit, in which case BS=1).

VARIABLE-IN-NUMBER FIELD FORMAT

The Load Value with Sum (LVS) instruction may be written with a variable number
of address fields, each of which actually picks out a single bit position within the LVS
address field itself. For an LVS order, each address field may specify one of index
registers 0 through 15. These fields are evaluated exactly as if they were regular
index designator fields, so that index addresses may be specified in terms of either
bit addresses or integers in the usual manner.

16

PSEUDO-OPERATIONS

In this section are itemized a number of operation codes provided for purposes of
defining data and controlling and directing the assembly process itself. Because these
codes do not directly produce machine instructions in the object program, the functions
which they do trigger are referred to as "pseudo-operations. "

The pseudo-operations are grouped according to class. There are two main classes
of pseudo-operations:
1. Those that create storage elements.
2. Those that control the assembly process.
a. Those that define symbols by assigning values that appear in the
variable fields.
b. Those that give directions to the compiler,

The name field of all pseudo-operations that neither create storage elements nor
define symbols is ignored, with the exception of CNOP (see "Pseudo-Operations that
Direct the Compiler").

PSEUDO-OPERATIONS THAT CREATE STORAGE ELEMENTS

The following provide the basic means for defining and entering generalized data in
the Strap-1 language:

Mnemonic Name Usage
1. DD "DATA DEFINITION" (EM) DD (dds), D, D', D",...

Where the bracketed dds is a

data description prescribing the
meaning of all succeeding numbers (D).
The numbers D are compiled in
consecutive fields and any symbol
appearing in the name field of the

DD statement applies to the first

such field.

The use of the pseudo-operation DD enables the programmer to enter data into a pro-
gram in a variety of forms. Among the possibilities that exist are:
a. Decimal to floating binary conversion, either normalized or unnormalized.
b. Conversion of decimal fraction to binary fraction in fixed point.
c. Integer to integer conversion from any of the radices 2 through 10 and 16
to a radix of either 2 or 10,
d. Conversion of alphabetic information to binary coded form.

In the general form illustrated above, the field symbolized by (EM) represents the
entry mode, a field which supplies information about the form in which data appear
on the card (see "Entry Mode in Data Definition Statements').

The data description (dds) is identical in form and content to that described under
"Data Description;" that is, to the data description that may be used when writing an
individual instruction (except that the "P" mode is not permitted in this or any other
pseudo-operation). Thus, a data description may be given with a number at the point of
definition of the number itself, or may be given at the point of reference as part of an

17

instruction referring to the number. The relationship between these two different points
of possible definition is as follows:

When the data description is given by a DD statement(or other data defining operation),
the description is invoked whenever the symbol appearing in the name field of the DD
statement is used in the principal address field of an instruction. The instruction mode
and--in the case of a VFL order--the field length and byte size are.supplied by this data
description, which is logically affixed to the name of the DD statement.

Such a description set down at the point of symbol definition is overruled by a descrip-
tion appearing in an instruction referring to the symbol. Whenever an overruling de-
scription appears in the data description field of an instruction, the entire description
which was given at the point of definition of the address symbol is overruled. Thus,
the statement:

OP (BU), JOE

causes the binary and unsigned modifiers to be compiled along with an implicitly defined
field length of 64 and a byte size of 8, regardless of the description occurring in the
statement in which JOE appeared in the name field. Overruling is strictly local and
applies only to the instruction at hand.

If symbols are used in defining either the field length or byte size subfields of a DD
statement's data description, the symbols must be fully defined when the compiler en-
counters the DD statement on the second pass. This requirement is not imposed on the
data description of an instruction because, in that instance, no assignment of storage
space is dependent on the contents of the subfields.

The address fields,D, D', D", etc. are all equivalent to each other. They are
compiled sequentially as separate pieces of data, each having the data description speci-
fied, but the name specified in the name field is attached only to the first piece of data.
The effect produced is exactly the same as if the entry mode, operation, and data
description were repeated on separate cards with only one D field per card and blank
name fields. If one wishes to name the separate entries D, D', D", etc., it is neces-
sary to punch each one on a separate card with its own name.

Programmer symbols may not appear in the main body of a D field; various letters in
the main body of a D field have fixed meanings not subject to programmer control.

2. XW "INDEX WORD" XW, VALUE, COUNT, REFILL, FLAG

The location counter is rounded to the next full word. The contents of the four
symbolic fields following the operation are converted and compiled in an index word
format. FLAG denotes the machine field comprised of bits 25, 26, and 27. An ex-
pression in the flag field of an XW statement is therefore evaluated modulo 23, The
octal integer 4 written in the flag field turns on the index flag in the index word being
compiled.

NOTE: Bit 24 of the word format is taken to be the VALUE sign position. A nega-
tive sign is interpreted in two's complement form in theusual way for all other fields.

3. VF "VALUE FIELD" VF, VALUE

The location counter is rounded to the next half word. The contents of VALUE are
compiled as a 24-bit plus sign quantity in positions 0-24 of the next half word. The
location counter stands at bit 25 at the end of the operation.

18

4. CF "COUNT FIELD" CF, COUNT

The location counter is rounded to the next half word. The contents of the count
field are compiled as an 18-bit integer in positions 0-17. The location counter stands
at.bit 18 at the end of the operation.

5. RF "REFILL FIELD" RF, REFILL
This pseudo-operation is the same as CF, except Refill is substituted for Count.

NOTE: The last four operations (the index word pseudo-operations) defined above
are given data descriptions by the compiler, as though they had been defined by DD
statements. Specifically, the index elements created by these orders have had the
following data descriptions affixed automatically, and cannot be overruled in the
pseudo-operation statement:

Operation Data Description
XwW i (BU)
VF (B, 25)
CF or RF (BU, 18)
6. CW "CONTROL WORD" CW(OP), ADDRESS, COUNT,

CHAIN ADDRESS

The pseudo-operation CW employs a special symbolic format as illustrated above
and defined initially under "Symbolic Instruction Formats." A set of secondary oper-
ations is provided-- whose members are expressed as parenthesized secondary oper-
ations in the manner of (OP) above--for the purpose of providing mnemonics for control
word functions:

Multiple Bit Chain Bit Skip Flag

CR "Count Within Record" 0 0 0
CCR "Chain Counts Within Record" 0 1 0
CD "Count Disregarding Record" 1 , 0 0
CDSC "Count Disregarding Record, .

Skip, and Chain" 1 1 0
SCR "Skip, Count Within Record" 0 0 1
SCCR "Skip, Chain Counts Within

Record" 0 1 1
SCD "Skip, Count, Disregarding

Record" 1 0 1
SCDSC ''Skip, Count, Disregarding

Record, Skip and Chain" 1 1 1

The location counter is rounded up to insure that the control word compiled will be-
gin at a full word address. CW is assigned a data description of (BU, 64, 8).

ENTRY MODE IN DATA DEFINITION STATEMENTS
The data description field represents a kind of generalized use mode for the data,

in that properties specified in this field are translated into bits and numbers that are
compiled into machine instructions referring to the data. A corresponding field called

19

the entry mode is available to specify properties which describe the source language
information and its form, but which are not themselves compiled into the object pro-
gram.

The entry mode may be employed in one of three ways.
Statement Entry Mode (EM) DD (dds), D, D', D",..

An entry mode may be used to specify the properties of all data in a DD or DDI
statement. When used in this fashion, it is enclosed in parentheses and appears before
the DD or DDI operation code in the operation field. The mode is more general in form
in its usage in connection with the data of a DD or DDI statement, as it may in this
instance--but only in this instance--designate that alphabetic information is to be com-
piled. The two entry modes that may only appear as statement entry modes--that is,
immediately before the operation code (of a DD or DDI statement)--are:

(Ax) Alphabetic Conversion (AQ) DD (BU, 60, 6), DO NOT PANIC Q

The card code characters beginning with the one after the comma which terminates
the operation field are converted to IBM tape BCD until the character "x" is reached.
The end-of-statement character is not itself compiled. (Note that tape BCD is different
from internal 704 BCD.) Blanks occurring within the field to be converted are retained
and stored correctly, The characters are counted by Strap-1 and the location counter
is properly advanced.

The byte size of converted characters may range from 1 through 12 in a DD state-
ment, or 4 through 12 in a DDI statement, and is specified by the dds. Leading zeros
are inserted for each byte where BS >6; leading bits are truncated from eachbyte where
BS <6. The byte size compiled in an operation referring to the data is set to either the
specified byte size or 8, whichever is smaller.

The statement terminating character "x" may be any legal card code character
except:
)
' (8-4)
; (11-0)
blank

Only one D field is allowed per statement.

(IQSx) Inquiry Station Conversion

The IQS entry mode operates in exactly the same fashion as the alphabetic entry
mode, except that card code characters are converted to the 7-bit inquiry station code.
Therefore, leading zeros are inserted where BS > 7, and leading bits are truncated

where BS <7.

Although the IQS code includes a large number of special characters, Strap-1 is
limited to those which can be entered by means of IBM off-line card and tape equipment.

20

Statement or Field Entry Modes

Some entry modes may be used either to specify the properties of all fields of a
statement or to specify the properties of a specific field or fields in a statement. State-
ment entry modes and field entry modes may both appear in the same statement. When
contradictory properties (for instance, two different radices) are implied by the state-
ment and field entry modes, the field entry mode overrules for the case of the particular
field on hand. Entry modes may not appear in a manner that causes parentheses within
parentheses.

(Fn): The entry mode (Fn) implies that the data which follow are written in the
decimal radix, are to be converted to binary, and may include a decimal fraction por-
tion that is to be converted to a binary fraction of length n bits.

The "n'"" symbolizes a decimal integer that specifies the number of fractional bits
desired to the right of the binary point when the number or numbers which follow are
converted. (Fn) appears in DD or DDI binary mode statements only.

Radix Specifications: In any programmer symbolized field not enclosed by paren-
theses, numerical integers and bit addresses may be written in any radix from 2 through
10, or 16, The radix is specified by enclosing the appropriate integer, written in deci-
mal, in parentheses at some appropriate point in the subfield. (Usually, but not always,
the radix specifier is the first item to appear in the subfield.) The radix applies to the
entire subfield unless it is reset before reaching the end. If no radix is specified, the
base 10 is assumed. If used as a statement entry mode, the radix specified applies to
the entire statement unless individual fields contain their own radix specifier, in which
case the field entry mode overrules the statement entry mode for that field only.

In the case of data entry, the radix specifier can be used with integers only; a
decimal point or floating point notation implies a radix of 10. The entry mode radix
specifies the radix in which an integer is written on the card, but says nothing about
the one to which it is converted.

Some examples of the use of the radix specifier are:

1. (8)573 - 34+50 (all numbers are in octal)

2. (2) 11011011100011.111100 (bit address written in binary)

3. (5) SAM - 342 (the symbol SAM is not affected by the radix, having been
previously converted to binary. The integer 342 is written
in the number system of the base 5.)

4, (8)7436.(10)60+9 (the full word portion of this bit address is written in octal,

whereas the bit address portion and the integer 9 are written
in decimal.)
5. (2)DD(B, 16, 8), (10)-972, 111011110 (the first D field is written in decimal,
the second one is in binary)

Field Entry Mode--Parenthetical Integer Entry

One entry mode in Strap-1 may never appear as a statement entry mode. By means
of the parenthetical integer entry, any integer or pattern of bits may be stored in any
position of an instruction or data entry field. The general format for this entry mode
is:

(.n) Ap+1
21

The symbol . n represents the bit address of the rightmost bit of the field into which
the integer is to be entered. The integer A ; is formed as an unsigned n+1-bit field
and added into the addressed instruction or data field by means of a logical OR into the
leftmost n+1 bits.

The parenthetical integer entry is made by means of a logical OR so that it may be
combined with other fields of the statement or other parenthetical OR fields. The first
bit of the statement is counted as bit 0. Although the parenthetical field may cross field
lines within a statement, it may not cross statement lines. Thus, if the bit address is
specified as ".n'", the parenthetical expression has a field length of n+l and is evaluated
modulo 28%1, A1l parenthetical fields are regarded as unsigned, so that a negative
number is compiled as the complement, re 2n+1, of the magnitude of the number.

This entry mode cannot be used in pseudo-operations that give instructions to the
compiler (SLC, END). This mode must appear in a statement that compiles space in
storage. It is a modification that may be appended to any-D field or to any programmer
symbolized field (or in place of such a field) which is not enclosed in parentheses. Thus,
FL and BS may not contain a parenthetical entry.

In the case of an instruction, the position of the entry is determined by counting the
bits of the whole instruction field, no matter in which subfield the integer entry may be
appended. For example, in a VFL instruction so modified, OP, Ao (I)(.n)Ap41, OF7
is exactly the equivalent of OP, Agy(I), OF7(.n)Ap+1. In the case of a DD pseudo-
operation, the position of the parenthetical field is determined by counting bits of the D
field in which it appears; i.e., from the previous comma forward. In any case, the
integer entry must follow all other information in the field or subfield in which it appears,
except for another parenthetical entry.

Although one entry could be made to serve in any single instruction, it is more con-
venient to write several different integer entry specifications when one wishes to place
numbers in various positions in an instruction, Therefore, no limit is set on the number
of consecutive entries which can be written together, except as imposed by the length
of the statement field on the card.

Because the parenthetical entry is not permitted to cross statement lines, ".n"
must be less than or equal to 31 in a half word instruction, and less than or equal to 63
in a full word instruction.

Example: E+I, (.8) 41 The integer 41 will be converted to binary and OR'ed
into the leftmost 9 bits of the E+I instruction,

Radix designators are permitted in parenthetical OR fields, separated by commas
from the bit address designation, and the two may be in any order. Thus, (.32,8) or
(8, .32) signifies an octal field to be terminated at bit 32.

Parenthetical expressions may contain anything that goes in a normal address field
(except periods), but may not have other information such as real numbers or alphabetic
characters which are permitted in a DD or DDI statement. A data description associated
with a symbol appearing in a parenthetical field has no effect in this usage of the symbol.
All numbers appearing in a parenthetical field are converted to an internal binary for-
mat, never to decimal or floating point.

22

Example:
1. (.50,8)17 - JOE + (10)4203(4, .22) - 33303(.60)1030
2. (7)(.30)1265(. 20)(10)138 - (6)43 (. 10)553

Note that the radix does not have to be specified with the .n. If no radix is specified,
the current operative radix is continued; it is not reset to 10. It is understood to be 10
if no radix has been previously specified in the field to which the general parenthetical
integer entry is appended.

The radices which apply in the above examples are:

Example Number Radix
1 17 8
1 JOE does not apply
1 4203 10
1 33303 4
1 1030 4
2 1265 7
2 138 10
2 43 6
2 553 6

All numbers that appear within parentheses are interpreted as decimal numbers.
THE FORM OF D IN A DATA DEFINITION STATEMENT

All data fall under the category of one of the six use modes of the data description
field: N, U, B, BU, D, DU. The numbers D, D', D",...are expressed in the general
form:

+ XX,..X.X...X

Decimal numbers are a special case; they may be written in fixed or floating point
form, with or without a decimal point. The general form is:

+ XX, ..X.X...XExYYY

In this form E means that the number which precedes it is multiplied by 10 raised to
the power which follows it. That is, 572.34E - 57 means 572.34 x 10~ 7. Overlapping
facilities for specifying an exponent "Ei'"" are provided in the sense that the decimal
point in the number itself also indicates a decimal exponent. If no decimal point is
written, the number is assumed to be an integer. Thus, parts of the general form that
are not necessary for writing a number may be omitted.

a. XXX integer

b, XXX, XX decimal fraction

c., *xXXXE+£YYY integer times power of 10

d. =2XXX.XXE+YYY decimal fraction times power of 10

A plus sign is understood if no sign is specified. The decimal point may be in any
position in the number. The portion of the number above symbolized by X is limited
in length to 15 digits; that symbolized by Y is restricted to a length of 3 digits (recall
that floating point numbers in the 7030 are limited to a range of 10308 ¢ 10'308).

23

Data entries may have other quantities following them which are identified and sep~-
arated from the main number by declension characters. The declension characters,
which are used for the insertion of specific fields, are:

1. Sign Byte Entry--Si

The letter S is used to enter information into the sign byte of data. The letter i
represents an octal integer which is evaluated and OR'ed in with any sign byte previously
calculated. Thus, if either the sign of the main number or i implies a negative sign bit

in the sign byte, the sign byte sign position is made negative.

The sign byte generated depends on the byte size in accordance with the following
table:

Byte Size Sign Byte

1 S

2 ST

3 STU Z = zone bit

4 STUV S = sign bit

5 ZSTUV T

6 ZZSTUV U} flag bits
7 ZZZSTUV v

8 ZZZ7Z7ZSTUV

In a data definition statement where byte size 1 is specified, using sign byte entry S1
yields a negative sign, whereas if byte size 4 had been specified, S10 would yield a
negative sign with zero flag bits.

2. Exponent Entry--Xi

The letter "X'" may be used to enter any arbitrary information into the exponent of a
floating point word. The decimal integer i is compiled as the machine exponent of a
floating point number. It overrules and replaces the computed exponent, which is
completely eradicated by the replacement process.

Rules for Entering Data

The legal formats for entering data can be classified according to the use mode
written in the data description field of the DD statement. In general, an element listed
in the general format may be omitted if it is not needed to specify the data.

The data entries in a DD statement are restricted to real numbers. Bit addresses
are not permitted. Integers are allowed as a special case of real numbers, but they
may not be symbolized.

Floating point data are always compiled in addressable full-words; the location
counter is rounded up, if necessary, to the next full-word address in order to accom-
plish this. This is an example of a general Strap-1 principle: a machine format that
ordinarily depends in use on the fact that the 24-bit address of the lead bit ends in a
string of zeros of some definite length causes the compiler to round the location counter
appropriately. Thus:

1. Instructions always start at either half- or full-word bit addresses.

2. Indexing full- and half-word storage formats are forced to begin at full- and

half-word addresses, respectively.

24

3. A floating point data block being reserved through use of a DR operation code
(defined in "Pseudo-Operations That Direct the Compiler') is forced to begin at
a full-word address. Moreover, when a field from an instruction format requires
the truncation of the rightmost bits before compilation, a warning indication is
given if significant bits are truncated (which can occur if an instruction addresses
a format other than its natural one; e.g., if a floating point instruction addresses
a VFL data element).

Normalized Floating Point
Format: Name DD(N), +xx"""xx.X" " "xxE+yyySn

The decimal number is converted to a normalized floating binary number consisting
of an 11-bit signed exponent, a 48-bit fraction, and a 4-bit sign byte. If no sign byte
has been entered by means of an S, the sign preceding the number is used with the flag
bits set to zero. If a different binary exponent is desired, it can be entered following
an X, as follows:

Format: Name DD(N), £xx" " "xx.Xx' " ' xxE+yyySnXzzz

Examples:

a. DD(N), 54.73 E 4
54,73 x 104 is converted to floating binary. The sign bit is zero (= plus), and
the flag bits are zero (i, e., entire sign byte is zero).

b. DD(N), -54.73 E 4, or DD(N), 54.73 E 4 S 10

In this case the sign bit is set to one (negative) and the flag bits are zero.

c. DD(N), -54.73E 4S5

The sign bit is one, since the number is negative, and flag bits T and V are
one. U is zero.

d. DD(N), 1, 3E-5, -45.7, 12 817

This example illustrates the multiple entry feature. This single DD state-
ment compiles four 64-bit floating point words and advances the location
counter accordingly.

In normalized floating point a special feature is available for use in any D field,
making the entry of rational fractions and certain irrational numbers much easier.
Arithmetic involving several numbers may be written using the standard Fortran sym-
bols. Strap-1 will perform the arithmetic and compile a single normalized constant.
The operations available are: addition (+), subtraction (-), multiplication (*), and
division (/); only relatively simple expressions are allowed-~that is, they must con-
tain no parentheses. Multiplications and divisions are performed first (in a series
of multiplications and divisions they are done in order from left to right), and then
the additions and subtractions. The arithmetic is done among absolute constants, and
a sign byte may be used at the end. It will be OR'ed in with the final result.

Examples:

a. DD(N), 1/3, 472*351, 4-7*5/21 S 4
Note: Sign byte entered in last D field.

25

b. DD(N), 27.9/31.4/12/14 E 5, 4+3*7/5%6
The number produced in the first case is:
3x7Tx6
s
c. DD(N), 1/7 -3/11 +1.4321 E - 2, .12 +1/144

27.9
31.4x12x 14 x 109

in the second: 4 +

As an extra convenience, certain system symbols are defined by which constants
involving irrational numbers can be entered. They are:

1. $PI i

2. $E e

3. $M log; 0®
4, $N logg2

Thus, one can enter a number such as 4 7~ x 1077 by writing:

DD(N), 4 * $PI * 1E - 7.

Note that in Strap-1 this arithmetic feature is available with the normalized floating
point mode only.

Unnormalized Floating Point

Format: Name | (Fn)DD(U), # xx** *x.x- - - xE£yyySn Xtn
or DD(U), (Fn) £ xx*** xX.x" * * XxEx+yyySnX+n, (Fn)+xx'**etc.

The number is converted to binary with the correct number of binary fractional
places as specified by the (Fn) entry mode, and a correct exponent is computed and
entered. This exponent is overruled and replaced by that following the X if X is used
(necessary only if, for some reason, the programmer desires an incorrect exponent).
The entry mode (Fn) can come before the DD, in which case it applies to all D fields
of the statement, or it may form the first.elementof a D field, in which case it over-
rules one given before the DD. Either the X or the S or both may be omitted or their
order may be interchanged. Omitting S has the same effect here as in the normalized
case. Omitting X simply allows the correct exponent to remain as computed. Leaving
out the sign, decimal point, or E is permitted as in normalized numbers.

Examples:

a. DD(U), (F21) - 343.7, (F10) 432
Two numbers are compiled. In the first, 343 is converted as an integer and
.7 is converted to a 21-bit fraction. They are joined and placed in the right-
most bits of the fraction portion of the floating point word, and the correct
exponent (in this case 27) and sign are supplied. In the second D field, 432
is converted to a binary integer. Because ten fractional bits are specified,
but no decimal fraction is written, the ten rightmost bits of the fraction field
are set to zero and the number is entered with its rightmost bit in position
50.

b. (F15)DD(U), 767.52, 767.52 X-12 S11
The (F15) applies to both D fields. In the second, the computed exponent is
overruled by the specified one and the number is made negative by means of
the specified sign byte.

26

c. (F15)DD(U), 767.52, (F20) 767.52 S11 X-12, 398
This example is identical to example b except that in the second field the
operation entry mode (F15) is overruled by a field entry mode (F20), and
the order of S and X is interchanged, which makes no difference. (F15) still
applies to 398, however.

If the entry mode is omitted, two cases arise:

1) If the number entered is an integer, (FO0) is understood.
2) If the number entered is a decimal fraction, it is converted to a normalized floating
point number, but will be used as though unnormalized.

Examples:

a. DD(U), 17, 17X-35
In the first case 17 is converted to binary and placed in the fraction with its
rightmost bit in position 60 and an exponent of 48 supplied. In the second
field the same thing is done except that the exponent is set to -35.

b. DD(U), 17.5
In this example 17.5 is converted to normalized floating binary and stored
as such. However, instructions whose normalization bits depend on the
symbol in the name field of this pseudo-operation will have them set to

unnormalized.
Note: 17E 5 is an integer and will be recognized as such.
17 E-5 is a decimal fraction and will be normalized.

17.5 E 5 is an integer but will be treated as a fraction and normalized.
Thus, a normalized integer can be assigned use mode
"unnormalized. "

An integer greater than 248 is stored as a normalized number.

Binary Signed VFL

Formats: (Fn)DD(B, FL, BS), + xx'*'X.X"**xExyy Sn
DD(B, FL, BS), (Fn) £xx"""x.X' "' xE+yy Sn
(R)DD(B, FL, BS), +xx'*“xx Sn .
DD(B, FL, BS), (R) #4xx XX Sn

A data definition of binary signed data may have either (Fn) or (R) entry modes,

but not both at the same time. (Fn) implies that the data following it are written in a
decimal radix, whereas (R) implies that the number following it is an integer. An
integer subject to a radix entry mode must be written without the aid of E because E is
not defined for a radix other than 10. A decimal fraction must have a controlling (Fn)
entry mode. There is no obvious way to convert to a fixed point number without speci-
fying the binary scaling. In the data description either the field length or byte size or
both may be omitted. The implied field length in this case is 64; the implied byte size
is 1. The sign byte need not be specified unless the programmer desires to have flag
or zone bits different from zero. Note that the sign bit position changes for a byte size
less than 4. To make a number negative, specify the sign byte as:

BS =1, S1

BS =2, S2

BS =3, S4

BS =4, S10

27

If a number has no entry mode at all, it must be a decimal integer, but may in this
case be written with the aid of the E notation.

Examples:
a. (F7)DD(B,,4), .005E3813, -17, 143, 2811, (8) 77760, 777
Implied field length is 64. Octal specification in the fourth D field overrules
(F7) written before DD, but (F7) still applies to 777.
b. (2)DD(B, 16, 8) 1101018377, (10) -972, 111011108201
Binary entry, overruled in only the second D field.
c. (F12)DD(B, 24), 1.324E3, -72.1E-4, 3.4E-4S1
Implied byte size is 1.
d. DD(B), 1489, -1272, 1491, (F13) -972.16, 13948S1, 12E5
Decimal integers, except where a field entry